1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kmemcheck.h> 28 #include <linux/kasan.h> 29 #include <linux/module.h> 30 #include <linux/suspend.h> 31 #include <linux/pagevec.h> 32 #include <linux/blkdev.h> 33 #include <linux/slab.h> 34 #include <linux/ratelimit.h> 35 #include <linux/oom.h> 36 #include <linux/notifier.h> 37 #include <linux/topology.h> 38 #include <linux/sysctl.h> 39 #include <linux/cpu.h> 40 #include <linux/cpuset.h> 41 #include <linux/memory_hotplug.h> 42 #include <linux/nodemask.h> 43 #include <linux/vmalloc.h> 44 #include <linux/vmstat.h> 45 #include <linux/mempolicy.h> 46 #include <linux/memremap.h> 47 #include <linux/stop_machine.h> 48 #include <linux/sort.h> 49 #include <linux/pfn.h> 50 #include <linux/backing-dev.h> 51 #include <linux/fault-inject.h> 52 #include <linux/page-isolation.h> 53 #include <linux/page_ext.h> 54 #include <linux/debugobjects.h> 55 #include <linux/kmemleak.h> 56 #include <linux/compaction.h> 57 #include <trace/events/kmem.h> 58 #include <linux/prefetch.h> 59 #include <linux/mm_inline.h> 60 #include <linux/migrate.h> 61 #include <linux/page_ext.h> 62 #include <linux/hugetlb.h> 63 #include <linux/sched/rt.h> 64 #include <linux/page_owner.h> 65 #include <linux/kthread.h> 66 #include <linux/memcontrol.h> 67 68 #include <asm/sections.h> 69 #include <asm/tlbflush.h> 70 #include <asm/div64.h> 71 #include "internal.h" 72 73 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 74 static DEFINE_MUTEX(pcp_batch_high_lock); 75 #define MIN_PERCPU_PAGELIST_FRACTION (8) 76 77 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 78 DEFINE_PER_CPU(int, numa_node); 79 EXPORT_PER_CPU_SYMBOL(numa_node); 80 #endif 81 82 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 83 /* 84 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 85 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 86 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 87 * defined in <linux/topology.h>. 88 */ 89 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 90 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 91 int _node_numa_mem_[MAX_NUMNODES]; 92 #endif 93 94 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 95 volatile unsigned long latent_entropy __latent_entropy; 96 EXPORT_SYMBOL(latent_entropy); 97 #endif 98 99 /* 100 * Array of node states. 101 */ 102 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 103 [N_POSSIBLE] = NODE_MASK_ALL, 104 [N_ONLINE] = { { [0] = 1UL } }, 105 #ifndef CONFIG_NUMA 106 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 107 #ifdef CONFIG_HIGHMEM 108 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 109 #endif 110 #ifdef CONFIG_MOVABLE_NODE 111 [N_MEMORY] = { { [0] = 1UL } }, 112 #endif 113 [N_CPU] = { { [0] = 1UL } }, 114 #endif /* NUMA */ 115 }; 116 EXPORT_SYMBOL(node_states); 117 118 /* Protect totalram_pages and zone->managed_pages */ 119 static DEFINE_SPINLOCK(managed_page_count_lock); 120 121 unsigned long totalram_pages __read_mostly; 122 unsigned long totalreserve_pages __read_mostly; 123 unsigned long totalcma_pages __read_mostly; 124 125 int percpu_pagelist_fraction; 126 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 127 128 /* 129 * A cached value of the page's pageblock's migratetype, used when the page is 130 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 131 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 132 * Also the migratetype set in the page does not necessarily match the pcplist 133 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 134 * other index - this ensures that it will be put on the correct CMA freelist. 135 */ 136 static inline int get_pcppage_migratetype(struct page *page) 137 { 138 return page->index; 139 } 140 141 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 142 { 143 page->index = migratetype; 144 } 145 146 #ifdef CONFIG_PM_SLEEP 147 /* 148 * The following functions are used by the suspend/hibernate code to temporarily 149 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 150 * while devices are suspended. To avoid races with the suspend/hibernate code, 151 * they should always be called with pm_mutex held (gfp_allowed_mask also should 152 * only be modified with pm_mutex held, unless the suspend/hibernate code is 153 * guaranteed not to run in parallel with that modification). 154 */ 155 156 static gfp_t saved_gfp_mask; 157 158 void pm_restore_gfp_mask(void) 159 { 160 WARN_ON(!mutex_is_locked(&pm_mutex)); 161 if (saved_gfp_mask) { 162 gfp_allowed_mask = saved_gfp_mask; 163 saved_gfp_mask = 0; 164 } 165 } 166 167 void pm_restrict_gfp_mask(void) 168 { 169 WARN_ON(!mutex_is_locked(&pm_mutex)); 170 WARN_ON(saved_gfp_mask); 171 saved_gfp_mask = gfp_allowed_mask; 172 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 173 } 174 175 bool pm_suspended_storage(void) 176 { 177 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 178 return false; 179 return true; 180 } 181 #endif /* CONFIG_PM_SLEEP */ 182 183 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 184 unsigned int pageblock_order __read_mostly; 185 #endif 186 187 static void __free_pages_ok(struct page *page, unsigned int order); 188 189 /* 190 * results with 256, 32 in the lowmem_reserve sysctl: 191 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 192 * 1G machine -> (16M dma, 784M normal, 224M high) 193 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 194 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 195 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 196 * 197 * TBD: should special case ZONE_DMA32 machines here - in those we normally 198 * don't need any ZONE_NORMAL reservation 199 */ 200 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 201 #ifdef CONFIG_ZONE_DMA 202 256, 203 #endif 204 #ifdef CONFIG_ZONE_DMA32 205 256, 206 #endif 207 #ifdef CONFIG_HIGHMEM 208 32, 209 #endif 210 32, 211 }; 212 213 EXPORT_SYMBOL(totalram_pages); 214 215 static char * const zone_names[MAX_NR_ZONES] = { 216 #ifdef CONFIG_ZONE_DMA 217 "DMA", 218 #endif 219 #ifdef CONFIG_ZONE_DMA32 220 "DMA32", 221 #endif 222 "Normal", 223 #ifdef CONFIG_HIGHMEM 224 "HighMem", 225 #endif 226 "Movable", 227 #ifdef CONFIG_ZONE_DEVICE 228 "Device", 229 #endif 230 }; 231 232 char * const migratetype_names[MIGRATE_TYPES] = { 233 "Unmovable", 234 "Movable", 235 "Reclaimable", 236 "HighAtomic", 237 #ifdef CONFIG_CMA 238 "CMA", 239 #endif 240 #ifdef CONFIG_MEMORY_ISOLATION 241 "Isolate", 242 #endif 243 }; 244 245 compound_page_dtor * const compound_page_dtors[] = { 246 NULL, 247 free_compound_page, 248 #ifdef CONFIG_HUGETLB_PAGE 249 free_huge_page, 250 #endif 251 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 252 free_transhuge_page, 253 #endif 254 }; 255 256 int min_free_kbytes = 1024; 257 int user_min_free_kbytes = -1; 258 int watermark_scale_factor = 10; 259 260 static unsigned long __meminitdata nr_kernel_pages; 261 static unsigned long __meminitdata nr_all_pages; 262 static unsigned long __meminitdata dma_reserve; 263 264 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 265 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 266 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 267 static unsigned long __initdata required_kernelcore; 268 static unsigned long __initdata required_movablecore; 269 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 270 static bool mirrored_kernelcore; 271 272 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 273 int movable_zone; 274 EXPORT_SYMBOL(movable_zone); 275 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 276 277 #if MAX_NUMNODES > 1 278 int nr_node_ids __read_mostly = MAX_NUMNODES; 279 int nr_online_nodes __read_mostly = 1; 280 EXPORT_SYMBOL(nr_node_ids); 281 EXPORT_SYMBOL(nr_online_nodes); 282 #endif 283 284 int page_group_by_mobility_disabled __read_mostly; 285 286 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 287 static inline void reset_deferred_meminit(pg_data_t *pgdat) 288 { 289 pgdat->first_deferred_pfn = ULONG_MAX; 290 } 291 292 /* Returns true if the struct page for the pfn is uninitialised */ 293 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 294 { 295 int nid = early_pfn_to_nid(pfn); 296 297 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 298 return true; 299 300 return false; 301 } 302 303 /* 304 * Returns false when the remaining initialisation should be deferred until 305 * later in the boot cycle when it can be parallelised. 306 */ 307 static inline bool update_defer_init(pg_data_t *pgdat, 308 unsigned long pfn, unsigned long zone_end, 309 unsigned long *nr_initialised) 310 { 311 unsigned long max_initialise; 312 313 /* Always populate low zones for address-contrained allocations */ 314 if (zone_end < pgdat_end_pfn(pgdat)) 315 return true; 316 /* 317 * Initialise at least 2G of a node but also take into account that 318 * two large system hashes that can take up 1GB for 0.25TB/node. 319 */ 320 max_initialise = max(2UL << (30 - PAGE_SHIFT), 321 (pgdat->node_spanned_pages >> 8)); 322 323 (*nr_initialised)++; 324 if ((*nr_initialised > max_initialise) && 325 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 326 pgdat->first_deferred_pfn = pfn; 327 return false; 328 } 329 330 return true; 331 } 332 #else 333 static inline void reset_deferred_meminit(pg_data_t *pgdat) 334 { 335 } 336 337 static inline bool early_page_uninitialised(unsigned long pfn) 338 { 339 return false; 340 } 341 342 static inline bool update_defer_init(pg_data_t *pgdat, 343 unsigned long pfn, unsigned long zone_end, 344 unsigned long *nr_initialised) 345 { 346 return true; 347 } 348 #endif 349 350 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 351 static inline unsigned long *get_pageblock_bitmap(struct page *page, 352 unsigned long pfn) 353 { 354 #ifdef CONFIG_SPARSEMEM 355 return __pfn_to_section(pfn)->pageblock_flags; 356 #else 357 return page_zone(page)->pageblock_flags; 358 #endif /* CONFIG_SPARSEMEM */ 359 } 360 361 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn) 362 { 363 #ifdef CONFIG_SPARSEMEM 364 pfn &= (PAGES_PER_SECTION-1); 365 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 366 #else 367 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 368 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 369 #endif /* CONFIG_SPARSEMEM */ 370 } 371 372 /** 373 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 374 * @page: The page within the block of interest 375 * @pfn: The target page frame number 376 * @end_bitidx: The last bit of interest to retrieve 377 * @mask: mask of bits that the caller is interested in 378 * 379 * Return: pageblock_bits flags 380 */ 381 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page, 382 unsigned long pfn, 383 unsigned long end_bitidx, 384 unsigned long mask) 385 { 386 unsigned long *bitmap; 387 unsigned long bitidx, word_bitidx; 388 unsigned long word; 389 390 bitmap = get_pageblock_bitmap(page, pfn); 391 bitidx = pfn_to_bitidx(page, pfn); 392 word_bitidx = bitidx / BITS_PER_LONG; 393 bitidx &= (BITS_PER_LONG-1); 394 395 word = bitmap[word_bitidx]; 396 bitidx += end_bitidx; 397 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; 398 } 399 400 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 401 unsigned long end_bitidx, 402 unsigned long mask) 403 { 404 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask); 405 } 406 407 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) 408 { 409 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK); 410 } 411 412 /** 413 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 414 * @page: The page within the block of interest 415 * @flags: The flags to set 416 * @pfn: The target page frame number 417 * @end_bitidx: The last bit of interest 418 * @mask: mask of bits that the caller is interested in 419 */ 420 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 421 unsigned long pfn, 422 unsigned long end_bitidx, 423 unsigned long mask) 424 { 425 unsigned long *bitmap; 426 unsigned long bitidx, word_bitidx; 427 unsigned long old_word, word; 428 429 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 430 431 bitmap = get_pageblock_bitmap(page, pfn); 432 bitidx = pfn_to_bitidx(page, pfn); 433 word_bitidx = bitidx / BITS_PER_LONG; 434 bitidx &= (BITS_PER_LONG-1); 435 436 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 437 438 bitidx += end_bitidx; 439 mask <<= (BITS_PER_LONG - bitidx - 1); 440 flags <<= (BITS_PER_LONG - bitidx - 1); 441 442 word = READ_ONCE(bitmap[word_bitidx]); 443 for (;;) { 444 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 445 if (word == old_word) 446 break; 447 word = old_word; 448 } 449 } 450 451 void set_pageblock_migratetype(struct page *page, int migratetype) 452 { 453 if (unlikely(page_group_by_mobility_disabled && 454 migratetype < MIGRATE_PCPTYPES)) 455 migratetype = MIGRATE_UNMOVABLE; 456 457 set_pageblock_flags_group(page, (unsigned long)migratetype, 458 PB_migrate, PB_migrate_end); 459 } 460 461 #ifdef CONFIG_DEBUG_VM 462 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 463 { 464 int ret = 0; 465 unsigned seq; 466 unsigned long pfn = page_to_pfn(page); 467 unsigned long sp, start_pfn; 468 469 do { 470 seq = zone_span_seqbegin(zone); 471 start_pfn = zone->zone_start_pfn; 472 sp = zone->spanned_pages; 473 if (!zone_spans_pfn(zone, pfn)) 474 ret = 1; 475 } while (zone_span_seqretry(zone, seq)); 476 477 if (ret) 478 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 479 pfn, zone_to_nid(zone), zone->name, 480 start_pfn, start_pfn + sp); 481 482 return ret; 483 } 484 485 static int page_is_consistent(struct zone *zone, struct page *page) 486 { 487 if (!pfn_valid_within(page_to_pfn(page))) 488 return 0; 489 if (zone != page_zone(page)) 490 return 0; 491 492 return 1; 493 } 494 /* 495 * Temporary debugging check for pages not lying within a given zone. 496 */ 497 static int bad_range(struct zone *zone, struct page *page) 498 { 499 if (page_outside_zone_boundaries(zone, page)) 500 return 1; 501 if (!page_is_consistent(zone, page)) 502 return 1; 503 504 return 0; 505 } 506 #else 507 static inline int bad_range(struct zone *zone, struct page *page) 508 { 509 return 0; 510 } 511 #endif 512 513 static void bad_page(struct page *page, const char *reason, 514 unsigned long bad_flags) 515 { 516 static unsigned long resume; 517 static unsigned long nr_shown; 518 static unsigned long nr_unshown; 519 520 /* 521 * Allow a burst of 60 reports, then keep quiet for that minute; 522 * or allow a steady drip of one report per second. 523 */ 524 if (nr_shown == 60) { 525 if (time_before(jiffies, resume)) { 526 nr_unshown++; 527 goto out; 528 } 529 if (nr_unshown) { 530 pr_alert( 531 "BUG: Bad page state: %lu messages suppressed\n", 532 nr_unshown); 533 nr_unshown = 0; 534 } 535 nr_shown = 0; 536 } 537 if (nr_shown++ == 0) 538 resume = jiffies + 60 * HZ; 539 540 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 541 current->comm, page_to_pfn(page)); 542 __dump_page(page, reason); 543 bad_flags &= page->flags; 544 if (bad_flags) 545 pr_alert("bad because of flags: %#lx(%pGp)\n", 546 bad_flags, &bad_flags); 547 dump_page_owner(page); 548 549 print_modules(); 550 dump_stack(); 551 out: 552 /* Leave bad fields for debug, except PageBuddy could make trouble */ 553 page_mapcount_reset(page); /* remove PageBuddy */ 554 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 555 } 556 557 /* 558 * Higher-order pages are called "compound pages". They are structured thusly: 559 * 560 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 561 * 562 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 563 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 564 * 565 * The first tail page's ->compound_dtor holds the offset in array of compound 566 * page destructors. See compound_page_dtors. 567 * 568 * The first tail page's ->compound_order holds the order of allocation. 569 * This usage means that zero-order pages may not be compound. 570 */ 571 572 void free_compound_page(struct page *page) 573 { 574 __free_pages_ok(page, compound_order(page)); 575 } 576 577 void prep_compound_page(struct page *page, unsigned int order) 578 { 579 int i; 580 int nr_pages = 1 << order; 581 582 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 583 set_compound_order(page, order); 584 __SetPageHead(page); 585 for (i = 1; i < nr_pages; i++) { 586 struct page *p = page + i; 587 set_page_count(p, 0); 588 p->mapping = TAIL_MAPPING; 589 set_compound_head(p, page); 590 } 591 atomic_set(compound_mapcount_ptr(page), -1); 592 } 593 594 #ifdef CONFIG_DEBUG_PAGEALLOC 595 unsigned int _debug_guardpage_minorder; 596 bool _debug_pagealloc_enabled __read_mostly 597 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 598 EXPORT_SYMBOL(_debug_pagealloc_enabled); 599 bool _debug_guardpage_enabled __read_mostly; 600 601 static int __init early_debug_pagealloc(char *buf) 602 { 603 if (!buf) 604 return -EINVAL; 605 return kstrtobool(buf, &_debug_pagealloc_enabled); 606 } 607 early_param("debug_pagealloc", early_debug_pagealloc); 608 609 static bool need_debug_guardpage(void) 610 { 611 /* If we don't use debug_pagealloc, we don't need guard page */ 612 if (!debug_pagealloc_enabled()) 613 return false; 614 615 if (!debug_guardpage_minorder()) 616 return false; 617 618 return true; 619 } 620 621 static void init_debug_guardpage(void) 622 { 623 if (!debug_pagealloc_enabled()) 624 return; 625 626 if (!debug_guardpage_minorder()) 627 return; 628 629 _debug_guardpage_enabled = true; 630 } 631 632 struct page_ext_operations debug_guardpage_ops = { 633 .need = need_debug_guardpage, 634 .init = init_debug_guardpage, 635 }; 636 637 static int __init debug_guardpage_minorder_setup(char *buf) 638 { 639 unsigned long res; 640 641 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 642 pr_err("Bad debug_guardpage_minorder value\n"); 643 return 0; 644 } 645 _debug_guardpage_minorder = res; 646 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 647 return 0; 648 } 649 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 650 651 static inline bool set_page_guard(struct zone *zone, struct page *page, 652 unsigned int order, int migratetype) 653 { 654 struct page_ext *page_ext; 655 656 if (!debug_guardpage_enabled()) 657 return false; 658 659 if (order >= debug_guardpage_minorder()) 660 return false; 661 662 page_ext = lookup_page_ext(page); 663 if (unlikely(!page_ext)) 664 return false; 665 666 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 667 668 INIT_LIST_HEAD(&page->lru); 669 set_page_private(page, order); 670 /* Guard pages are not available for any usage */ 671 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 672 673 return true; 674 } 675 676 static inline void clear_page_guard(struct zone *zone, struct page *page, 677 unsigned int order, int migratetype) 678 { 679 struct page_ext *page_ext; 680 681 if (!debug_guardpage_enabled()) 682 return; 683 684 page_ext = lookup_page_ext(page); 685 if (unlikely(!page_ext)) 686 return; 687 688 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 689 690 set_page_private(page, 0); 691 if (!is_migrate_isolate(migratetype)) 692 __mod_zone_freepage_state(zone, (1 << order), migratetype); 693 } 694 #else 695 struct page_ext_operations debug_guardpage_ops; 696 static inline bool set_page_guard(struct zone *zone, struct page *page, 697 unsigned int order, int migratetype) { return false; } 698 static inline void clear_page_guard(struct zone *zone, struct page *page, 699 unsigned int order, int migratetype) {} 700 #endif 701 702 static inline void set_page_order(struct page *page, unsigned int order) 703 { 704 set_page_private(page, order); 705 __SetPageBuddy(page); 706 } 707 708 static inline void rmv_page_order(struct page *page) 709 { 710 __ClearPageBuddy(page); 711 set_page_private(page, 0); 712 } 713 714 /* 715 * This function checks whether a page is free && is the buddy 716 * we can do coalesce a page and its buddy if 717 * (a) the buddy is not in a hole && 718 * (b) the buddy is in the buddy system && 719 * (c) a page and its buddy have the same order && 720 * (d) a page and its buddy are in the same zone. 721 * 722 * For recording whether a page is in the buddy system, we set ->_mapcount 723 * PAGE_BUDDY_MAPCOUNT_VALUE. 724 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is 725 * serialized by zone->lock. 726 * 727 * For recording page's order, we use page_private(page). 728 */ 729 static inline int page_is_buddy(struct page *page, struct page *buddy, 730 unsigned int order) 731 { 732 if (!pfn_valid_within(page_to_pfn(buddy))) 733 return 0; 734 735 if (page_is_guard(buddy) && page_order(buddy) == order) { 736 if (page_zone_id(page) != page_zone_id(buddy)) 737 return 0; 738 739 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 740 741 return 1; 742 } 743 744 if (PageBuddy(buddy) && page_order(buddy) == order) { 745 /* 746 * zone check is done late to avoid uselessly 747 * calculating zone/node ids for pages that could 748 * never merge. 749 */ 750 if (page_zone_id(page) != page_zone_id(buddy)) 751 return 0; 752 753 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 754 755 return 1; 756 } 757 return 0; 758 } 759 760 /* 761 * Freeing function for a buddy system allocator. 762 * 763 * The concept of a buddy system is to maintain direct-mapped table 764 * (containing bit values) for memory blocks of various "orders". 765 * The bottom level table contains the map for the smallest allocatable 766 * units of memory (here, pages), and each level above it describes 767 * pairs of units from the levels below, hence, "buddies". 768 * At a high level, all that happens here is marking the table entry 769 * at the bottom level available, and propagating the changes upward 770 * as necessary, plus some accounting needed to play nicely with other 771 * parts of the VM system. 772 * At each level, we keep a list of pages, which are heads of continuous 773 * free pages of length of (1 << order) and marked with _mapcount 774 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page) 775 * field. 776 * So when we are allocating or freeing one, we can derive the state of the 777 * other. That is, if we allocate a small block, and both were 778 * free, the remainder of the region must be split into blocks. 779 * If a block is freed, and its buddy is also free, then this 780 * triggers coalescing into a block of larger size. 781 * 782 * -- nyc 783 */ 784 785 static inline void __free_one_page(struct page *page, 786 unsigned long pfn, 787 struct zone *zone, unsigned int order, 788 int migratetype) 789 { 790 unsigned long page_idx; 791 unsigned long combined_idx; 792 unsigned long uninitialized_var(buddy_idx); 793 struct page *buddy; 794 unsigned int max_order; 795 796 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1); 797 798 VM_BUG_ON(!zone_is_initialized(zone)); 799 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 800 801 VM_BUG_ON(migratetype == -1); 802 if (likely(!is_migrate_isolate(migratetype))) 803 __mod_zone_freepage_state(zone, 1 << order, migratetype); 804 805 page_idx = pfn & ((1 << MAX_ORDER) - 1); 806 807 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page); 808 VM_BUG_ON_PAGE(bad_range(zone, page), page); 809 810 continue_merging: 811 while (order < max_order - 1) { 812 buddy_idx = __find_buddy_index(page_idx, order); 813 buddy = page + (buddy_idx - page_idx); 814 if (!page_is_buddy(page, buddy, order)) 815 goto done_merging; 816 /* 817 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 818 * merge with it and move up one order. 819 */ 820 if (page_is_guard(buddy)) { 821 clear_page_guard(zone, buddy, order, migratetype); 822 } else { 823 list_del(&buddy->lru); 824 zone->free_area[order].nr_free--; 825 rmv_page_order(buddy); 826 } 827 combined_idx = buddy_idx & page_idx; 828 page = page + (combined_idx - page_idx); 829 page_idx = combined_idx; 830 order++; 831 } 832 if (max_order < MAX_ORDER) { 833 /* If we are here, it means order is >= pageblock_order. 834 * We want to prevent merge between freepages on isolate 835 * pageblock and normal pageblock. Without this, pageblock 836 * isolation could cause incorrect freepage or CMA accounting. 837 * 838 * We don't want to hit this code for the more frequent 839 * low-order merging. 840 */ 841 if (unlikely(has_isolate_pageblock(zone))) { 842 int buddy_mt; 843 844 buddy_idx = __find_buddy_index(page_idx, order); 845 buddy = page + (buddy_idx - page_idx); 846 buddy_mt = get_pageblock_migratetype(buddy); 847 848 if (migratetype != buddy_mt 849 && (is_migrate_isolate(migratetype) || 850 is_migrate_isolate(buddy_mt))) 851 goto done_merging; 852 } 853 max_order++; 854 goto continue_merging; 855 } 856 857 done_merging: 858 set_page_order(page, order); 859 860 /* 861 * If this is not the largest possible page, check if the buddy 862 * of the next-highest order is free. If it is, it's possible 863 * that pages are being freed that will coalesce soon. In case, 864 * that is happening, add the free page to the tail of the list 865 * so it's less likely to be used soon and more likely to be merged 866 * as a higher order page 867 */ 868 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { 869 struct page *higher_page, *higher_buddy; 870 combined_idx = buddy_idx & page_idx; 871 higher_page = page + (combined_idx - page_idx); 872 buddy_idx = __find_buddy_index(combined_idx, order + 1); 873 higher_buddy = higher_page + (buddy_idx - combined_idx); 874 if (page_is_buddy(higher_page, higher_buddy, order + 1)) { 875 list_add_tail(&page->lru, 876 &zone->free_area[order].free_list[migratetype]); 877 goto out; 878 } 879 } 880 881 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 882 out: 883 zone->free_area[order].nr_free++; 884 } 885 886 /* 887 * A bad page could be due to a number of fields. Instead of multiple branches, 888 * try and check multiple fields with one check. The caller must do a detailed 889 * check if necessary. 890 */ 891 static inline bool page_expected_state(struct page *page, 892 unsigned long check_flags) 893 { 894 if (unlikely(atomic_read(&page->_mapcount) != -1)) 895 return false; 896 897 if (unlikely((unsigned long)page->mapping | 898 page_ref_count(page) | 899 #ifdef CONFIG_MEMCG 900 (unsigned long)page->mem_cgroup | 901 #endif 902 (page->flags & check_flags))) 903 return false; 904 905 return true; 906 } 907 908 static void free_pages_check_bad(struct page *page) 909 { 910 const char *bad_reason; 911 unsigned long bad_flags; 912 913 bad_reason = NULL; 914 bad_flags = 0; 915 916 if (unlikely(atomic_read(&page->_mapcount) != -1)) 917 bad_reason = "nonzero mapcount"; 918 if (unlikely(page->mapping != NULL)) 919 bad_reason = "non-NULL mapping"; 920 if (unlikely(page_ref_count(page) != 0)) 921 bad_reason = "nonzero _refcount"; 922 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { 923 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 924 bad_flags = PAGE_FLAGS_CHECK_AT_FREE; 925 } 926 #ifdef CONFIG_MEMCG 927 if (unlikely(page->mem_cgroup)) 928 bad_reason = "page still charged to cgroup"; 929 #endif 930 bad_page(page, bad_reason, bad_flags); 931 } 932 933 static inline int free_pages_check(struct page *page) 934 { 935 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 936 return 0; 937 938 /* Something has gone sideways, find it */ 939 free_pages_check_bad(page); 940 return 1; 941 } 942 943 static int free_tail_pages_check(struct page *head_page, struct page *page) 944 { 945 int ret = 1; 946 947 /* 948 * We rely page->lru.next never has bit 0 set, unless the page 949 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 950 */ 951 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 952 953 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 954 ret = 0; 955 goto out; 956 } 957 switch (page - head_page) { 958 case 1: 959 /* the first tail page: ->mapping is compound_mapcount() */ 960 if (unlikely(compound_mapcount(page))) { 961 bad_page(page, "nonzero compound_mapcount", 0); 962 goto out; 963 } 964 break; 965 case 2: 966 /* 967 * the second tail page: ->mapping is 968 * page_deferred_list().next -- ignore value. 969 */ 970 break; 971 default: 972 if (page->mapping != TAIL_MAPPING) { 973 bad_page(page, "corrupted mapping in tail page", 0); 974 goto out; 975 } 976 break; 977 } 978 if (unlikely(!PageTail(page))) { 979 bad_page(page, "PageTail not set", 0); 980 goto out; 981 } 982 if (unlikely(compound_head(page) != head_page)) { 983 bad_page(page, "compound_head not consistent", 0); 984 goto out; 985 } 986 ret = 0; 987 out: 988 page->mapping = NULL; 989 clear_compound_head(page); 990 return ret; 991 } 992 993 static __always_inline bool free_pages_prepare(struct page *page, 994 unsigned int order, bool check_free) 995 { 996 int bad = 0; 997 998 VM_BUG_ON_PAGE(PageTail(page), page); 999 1000 trace_mm_page_free(page, order); 1001 kmemcheck_free_shadow(page, order); 1002 1003 /* 1004 * Check tail pages before head page information is cleared to 1005 * avoid checking PageCompound for order-0 pages. 1006 */ 1007 if (unlikely(order)) { 1008 bool compound = PageCompound(page); 1009 int i; 1010 1011 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1012 1013 if (compound) 1014 ClearPageDoubleMap(page); 1015 for (i = 1; i < (1 << order); i++) { 1016 if (compound) 1017 bad += free_tail_pages_check(page, page + i); 1018 if (unlikely(free_pages_check(page + i))) { 1019 bad++; 1020 continue; 1021 } 1022 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1023 } 1024 } 1025 if (PageMappingFlags(page)) 1026 page->mapping = NULL; 1027 if (memcg_kmem_enabled() && PageKmemcg(page)) 1028 memcg_kmem_uncharge(page, order); 1029 if (check_free) 1030 bad += free_pages_check(page); 1031 if (bad) 1032 return false; 1033 1034 page_cpupid_reset_last(page); 1035 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1036 reset_page_owner(page, order); 1037 1038 if (!PageHighMem(page)) { 1039 debug_check_no_locks_freed(page_address(page), 1040 PAGE_SIZE << order); 1041 debug_check_no_obj_freed(page_address(page), 1042 PAGE_SIZE << order); 1043 } 1044 arch_free_page(page, order); 1045 kernel_poison_pages(page, 1 << order, 0); 1046 kernel_map_pages(page, 1 << order, 0); 1047 kasan_free_pages(page, order); 1048 1049 return true; 1050 } 1051 1052 #ifdef CONFIG_DEBUG_VM 1053 static inline bool free_pcp_prepare(struct page *page) 1054 { 1055 return free_pages_prepare(page, 0, true); 1056 } 1057 1058 static inline bool bulkfree_pcp_prepare(struct page *page) 1059 { 1060 return false; 1061 } 1062 #else 1063 static bool free_pcp_prepare(struct page *page) 1064 { 1065 return free_pages_prepare(page, 0, false); 1066 } 1067 1068 static bool bulkfree_pcp_prepare(struct page *page) 1069 { 1070 return free_pages_check(page); 1071 } 1072 #endif /* CONFIG_DEBUG_VM */ 1073 1074 /* 1075 * Frees a number of pages from the PCP lists 1076 * Assumes all pages on list are in same zone, and of same order. 1077 * count is the number of pages to free. 1078 * 1079 * If the zone was previously in an "all pages pinned" state then look to 1080 * see if this freeing clears that state. 1081 * 1082 * And clear the zone's pages_scanned counter, to hold off the "all pages are 1083 * pinned" detection logic. 1084 */ 1085 static void free_pcppages_bulk(struct zone *zone, int count, 1086 struct per_cpu_pages *pcp) 1087 { 1088 int migratetype = 0; 1089 int batch_free = 0; 1090 unsigned long nr_scanned; 1091 bool isolated_pageblocks; 1092 1093 spin_lock(&zone->lock); 1094 isolated_pageblocks = has_isolate_pageblock(zone); 1095 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED); 1096 if (nr_scanned) 1097 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned); 1098 1099 while (count) { 1100 struct page *page; 1101 struct list_head *list; 1102 1103 /* 1104 * Remove pages from lists in a round-robin fashion. A 1105 * batch_free count is maintained that is incremented when an 1106 * empty list is encountered. This is so more pages are freed 1107 * off fuller lists instead of spinning excessively around empty 1108 * lists 1109 */ 1110 do { 1111 batch_free++; 1112 if (++migratetype == MIGRATE_PCPTYPES) 1113 migratetype = 0; 1114 list = &pcp->lists[migratetype]; 1115 } while (list_empty(list)); 1116 1117 /* This is the only non-empty list. Free them all. */ 1118 if (batch_free == MIGRATE_PCPTYPES) 1119 batch_free = count; 1120 1121 do { 1122 int mt; /* migratetype of the to-be-freed page */ 1123 1124 page = list_last_entry(list, struct page, lru); 1125 /* must delete as __free_one_page list manipulates */ 1126 list_del(&page->lru); 1127 1128 mt = get_pcppage_migratetype(page); 1129 /* MIGRATE_ISOLATE page should not go to pcplists */ 1130 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1131 /* Pageblock could have been isolated meanwhile */ 1132 if (unlikely(isolated_pageblocks)) 1133 mt = get_pageblock_migratetype(page); 1134 1135 if (bulkfree_pcp_prepare(page)) 1136 continue; 1137 1138 __free_one_page(page, page_to_pfn(page), zone, 0, mt); 1139 trace_mm_page_pcpu_drain(page, 0, mt); 1140 } while (--count && --batch_free && !list_empty(list)); 1141 } 1142 spin_unlock(&zone->lock); 1143 } 1144 1145 static void free_one_page(struct zone *zone, 1146 struct page *page, unsigned long pfn, 1147 unsigned int order, 1148 int migratetype) 1149 { 1150 unsigned long nr_scanned; 1151 spin_lock(&zone->lock); 1152 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED); 1153 if (nr_scanned) 1154 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned); 1155 1156 if (unlikely(has_isolate_pageblock(zone) || 1157 is_migrate_isolate(migratetype))) { 1158 migratetype = get_pfnblock_migratetype(page, pfn); 1159 } 1160 __free_one_page(page, pfn, zone, order, migratetype); 1161 spin_unlock(&zone->lock); 1162 } 1163 1164 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1165 unsigned long zone, int nid) 1166 { 1167 set_page_links(page, zone, nid, pfn); 1168 init_page_count(page); 1169 page_mapcount_reset(page); 1170 page_cpupid_reset_last(page); 1171 1172 INIT_LIST_HEAD(&page->lru); 1173 #ifdef WANT_PAGE_VIRTUAL 1174 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1175 if (!is_highmem_idx(zone)) 1176 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1177 #endif 1178 } 1179 1180 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone, 1181 int nid) 1182 { 1183 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid); 1184 } 1185 1186 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1187 static void init_reserved_page(unsigned long pfn) 1188 { 1189 pg_data_t *pgdat; 1190 int nid, zid; 1191 1192 if (!early_page_uninitialised(pfn)) 1193 return; 1194 1195 nid = early_pfn_to_nid(pfn); 1196 pgdat = NODE_DATA(nid); 1197 1198 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1199 struct zone *zone = &pgdat->node_zones[zid]; 1200 1201 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) 1202 break; 1203 } 1204 __init_single_pfn(pfn, zid, nid); 1205 } 1206 #else 1207 static inline void init_reserved_page(unsigned long pfn) 1208 { 1209 } 1210 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1211 1212 /* 1213 * Initialised pages do not have PageReserved set. This function is 1214 * called for each range allocated by the bootmem allocator and 1215 * marks the pages PageReserved. The remaining valid pages are later 1216 * sent to the buddy page allocator. 1217 */ 1218 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1219 { 1220 unsigned long start_pfn = PFN_DOWN(start); 1221 unsigned long end_pfn = PFN_UP(end); 1222 1223 for (; start_pfn < end_pfn; start_pfn++) { 1224 if (pfn_valid(start_pfn)) { 1225 struct page *page = pfn_to_page(start_pfn); 1226 1227 init_reserved_page(start_pfn); 1228 1229 /* Avoid false-positive PageTail() */ 1230 INIT_LIST_HEAD(&page->lru); 1231 1232 SetPageReserved(page); 1233 } 1234 } 1235 } 1236 1237 static void __free_pages_ok(struct page *page, unsigned int order) 1238 { 1239 unsigned long flags; 1240 int migratetype; 1241 unsigned long pfn = page_to_pfn(page); 1242 1243 if (!free_pages_prepare(page, order, true)) 1244 return; 1245 1246 migratetype = get_pfnblock_migratetype(page, pfn); 1247 local_irq_save(flags); 1248 __count_vm_events(PGFREE, 1 << order); 1249 free_one_page(page_zone(page), page, pfn, order, migratetype); 1250 local_irq_restore(flags); 1251 } 1252 1253 static void __init __free_pages_boot_core(struct page *page, unsigned int order) 1254 { 1255 unsigned int nr_pages = 1 << order; 1256 struct page *p = page; 1257 unsigned int loop; 1258 1259 prefetchw(p); 1260 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1261 prefetchw(p + 1); 1262 __ClearPageReserved(p); 1263 set_page_count(p, 0); 1264 } 1265 __ClearPageReserved(p); 1266 set_page_count(p, 0); 1267 1268 page_zone(page)->managed_pages += nr_pages; 1269 set_page_refcounted(page); 1270 __free_pages(page, order); 1271 } 1272 1273 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \ 1274 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 1275 1276 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1277 1278 int __meminit early_pfn_to_nid(unsigned long pfn) 1279 { 1280 static DEFINE_SPINLOCK(early_pfn_lock); 1281 int nid; 1282 1283 spin_lock(&early_pfn_lock); 1284 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1285 if (nid < 0) 1286 nid = first_online_node; 1287 spin_unlock(&early_pfn_lock); 1288 1289 return nid; 1290 } 1291 #endif 1292 1293 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 1294 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node, 1295 struct mminit_pfnnid_cache *state) 1296 { 1297 int nid; 1298 1299 nid = __early_pfn_to_nid(pfn, state); 1300 if (nid >= 0 && nid != node) 1301 return false; 1302 return true; 1303 } 1304 1305 /* Only safe to use early in boot when initialisation is single-threaded */ 1306 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1307 { 1308 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache); 1309 } 1310 1311 #else 1312 1313 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1314 { 1315 return true; 1316 } 1317 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node, 1318 struct mminit_pfnnid_cache *state) 1319 { 1320 return true; 1321 } 1322 #endif 1323 1324 1325 void __init __free_pages_bootmem(struct page *page, unsigned long pfn, 1326 unsigned int order) 1327 { 1328 if (early_page_uninitialised(pfn)) 1329 return; 1330 return __free_pages_boot_core(page, order); 1331 } 1332 1333 /* 1334 * Check that the whole (or subset of) a pageblock given by the interval of 1335 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1336 * with the migration of free compaction scanner. The scanners then need to 1337 * use only pfn_valid_within() check for arches that allow holes within 1338 * pageblocks. 1339 * 1340 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1341 * 1342 * It's possible on some configurations to have a setup like node0 node1 node0 1343 * i.e. it's possible that all pages within a zones range of pages do not 1344 * belong to a single zone. We assume that a border between node0 and node1 1345 * can occur within a single pageblock, but not a node0 node1 node0 1346 * interleaving within a single pageblock. It is therefore sufficient to check 1347 * the first and last page of a pageblock and avoid checking each individual 1348 * page in a pageblock. 1349 */ 1350 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1351 unsigned long end_pfn, struct zone *zone) 1352 { 1353 struct page *start_page; 1354 struct page *end_page; 1355 1356 /* end_pfn is one past the range we are checking */ 1357 end_pfn--; 1358 1359 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1360 return NULL; 1361 1362 start_page = pfn_to_page(start_pfn); 1363 1364 if (page_zone(start_page) != zone) 1365 return NULL; 1366 1367 end_page = pfn_to_page(end_pfn); 1368 1369 /* This gives a shorter code than deriving page_zone(end_page) */ 1370 if (page_zone_id(start_page) != page_zone_id(end_page)) 1371 return NULL; 1372 1373 return start_page; 1374 } 1375 1376 void set_zone_contiguous(struct zone *zone) 1377 { 1378 unsigned long block_start_pfn = zone->zone_start_pfn; 1379 unsigned long block_end_pfn; 1380 1381 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1382 for (; block_start_pfn < zone_end_pfn(zone); 1383 block_start_pfn = block_end_pfn, 1384 block_end_pfn += pageblock_nr_pages) { 1385 1386 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1387 1388 if (!__pageblock_pfn_to_page(block_start_pfn, 1389 block_end_pfn, zone)) 1390 return; 1391 } 1392 1393 /* We confirm that there is no hole */ 1394 zone->contiguous = true; 1395 } 1396 1397 void clear_zone_contiguous(struct zone *zone) 1398 { 1399 zone->contiguous = false; 1400 } 1401 1402 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1403 static void __init deferred_free_range(struct page *page, 1404 unsigned long pfn, int nr_pages) 1405 { 1406 int i; 1407 1408 if (!page) 1409 return; 1410 1411 /* Free a large naturally-aligned chunk if possible */ 1412 if (nr_pages == pageblock_nr_pages && 1413 (pfn & (pageblock_nr_pages - 1)) == 0) { 1414 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1415 __free_pages_boot_core(page, pageblock_order); 1416 return; 1417 } 1418 1419 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1420 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1421 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1422 __free_pages_boot_core(page, 0); 1423 } 1424 } 1425 1426 /* Completion tracking for deferred_init_memmap() threads */ 1427 static atomic_t pgdat_init_n_undone __initdata; 1428 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1429 1430 static inline void __init pgdat_init_report_one_done(void) 1431 { 1432 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1433 complete(&pgdat_init_all_done_comp); 1434 } 1435 1436 /* Initialise remaining memory on a node */ 1437 static int __init deferred_init_memmap(void *data) 1438 { 1439 pg_data_t *pgdat = data; 1440 int nid = pgdat->node_id; 1441 struct mminit_pfnnid_cache nid_init_state = { }; 1442 unsigned long start = jiffies; 1443 unsigned long nr_pages = 0; 1444 unsigned long walk_start, walk_end; 1445 int i, zid; 1446 struct zone *zone; 1447 unsigned long first_init_pfn = pgdat->first_deferred_pfn; 1448 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1449 1450 if (first_init_pfn == ULONG_MAX) { 1451 pgdat_init_report_one_done(); 1452 return 0; 1453 } 1454 1455 /* Bind memory initialisation thread to a local node if possible */ 1456 if (!cpumask_empty(cpumask)) 1457 set_cpus_allowed_ptr(current, cpumask); 1458 1459 /* Sanity check boundaries */ 1460 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 1461 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 1462 pgdat->first_deferred_pfn = ULONG_MAX; 1463 1464 /* Only the highest zone is deferred so find it */ 1465 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1466 zone = pgdat->node_zones + zid; 1467 if (first_init_pfn < zone_end_pfn(zone)) 1468 break; 1469 } 1470 1471 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) { 1472 unsigned long pfn, end_pfn; 1473 struct page *page = NULL; 1474 struct page *free_base_page = NULL; 1475 unsigned long free_base_pfn = 0; 1476 int nr_to_free = 0; 1477 1478 end_pfn = min(walk_end, zone_end_pfn(zone)); 1479 pfn = first_init_pfn; 1480 if (pfn < walk_start) 1481 pfn = walk_start; 1482 if (pfn < zone->zone_start_pfn) 1483 pfn = zone->zone_start_pfn; 1484 1485 for (; pfn < end_pfn; pfn++) { 1486 if (!pfn_valid_within(pfn)) 1487 goto free_range; 1488 1489 /* 1490 * Ensure pfn_valid is checked every 1491 * pageblock_nr_pages for memory holes 1492 */ 1493 if ((pfn & (pageblock_nr_pages - 1)) == 0) { 1494 if (!pfn_valid(pfn)) { 1495 page = NULL; 1496 goto free_range; 1497 } 1498 } 1499 1500 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) { 1501 page = NULL; 1502 goto free_range; 1503 } 1504 1505 /* Minimise pfn page lookups and scheduler checks */ 1506 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) { 1507 page++; 1508 } else { 1509 nr_pages += nr_to_free; 1510 deferred_free_range(free_base_page, 1511 free_base_pfn, nr_to_free); 1512 free_base_page = NULL; 1513 free_base_pfn = nr_to_free = 0; 1514 1515 page = pfn_to_page(pfn); 1516 cond_resched(); 1517 } 1518 1519 if (page->flags) { 1520 VM_BUG_ON(page_zone(page) != zone); 1521 goto free_range; 1522 } 1523 1524 __init_single_page(page, pfn, zid, nid); 1525 if (!free_base_page) { 1526 free_base_page = page; 1527 free_base_pfn = pfn; 1528 nr_to_free = 0; 1529 } 1530 nr_to_free++; 1531 1532 /* Where possible, batch up pages for a single free */ 1533 continue; 1534 free_range: 1535 /* Free the current block of pages to allocator */ 1536 nr_pages += nr_to_free; 1537 deferred_free_range(free_base_page, free_base_pfn, 1538 nr_to_free); 1539 free_base_page = NULL; 1540 free_base_pfn = nr_to_free = 0; 1541 } 1542 /* Free the last block of pages to allocator */ 1543 nr_pages += nr_to_free; 1544 deferred_free_range(free_base_page, free_base_pfn, nr_to_free); 1545 1546 first_init_pfn = max(end_pfn, first_init_pfn); 1547 } 1548 1549 /* Sanity check that the next zone really is unpopulated */ 1550 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 1551 1552 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages, 1553 jiffies_to_msecs(jiffies - start)); 1554 1555 pgdat_init_report_one_done(); 1556 return 0; 1557 } 1558 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1559 1560 void __init page_alloc_init_late(void) 1561 { 1562 struct zone *zone; 1563 1564 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1565 int nid; 1566 1567 /* There will be num_node_state(N_MEMORY) threads */ 1568 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 1569 for_each_node_state(nid, N_MEMORY) { 1570 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 1571 } 1572 1573 /* Block until all are initialised */ 1574 wait_for_completion(&pgdat_init_all_done_comp); 1575 1576 /* Reinit limits that are based on free pages after the kernel is up */ 1577 files_maxfiles_init(); 1578 #endif 1579 1580 for_each_populated_zone(zone) 1581 set_zone_contiguous(zone); 1582 } 1583 1584 #ifdef CONFIG_CMA 1585 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 1586 void __init init_cma_reserved_pageblock(struct page *page) 1587 { 1588 unsigned i = pageblock_nr_pages; 1589 struct page *p = page; 1590 1591 do { 1592 __ClearPageReserved(p); 1593 set_page_count(p, 0); 1594 } while (++p, --i); 1595 1596 set_pageblock_migratetype(page, MIGRATE_CMA); 1597 1598 if (pageblock_order >= MAX_ORDER) { 1599 i = pageblock_nr_pages; 1600 p = page; 1601 do { 1602 set_page_refcounted(p); 1603 __free_pages(p, MAX_ORDER - 1); 1604 p += MAX_ORDER_NR_PAGES; 1605 } while (i -= MAX_ORDER_NR_PAGES); 1606 } else { 1607 set_page_refcounted(page); 1608 __free_pages(page, pageblock_order); 1609 } 1610 1611 adjust_managed_page_count(page, pageblock_nr_pages); 1612 } 1613 #endif 1614 1615 /* 1616 * The order of subdivision here is critical for the IO subsystem. 1617 * Please do not alter this order without good reasons and regression 1618 * testing. Specifically, as large blocks of memory are subdivided, 1619 * the order in which smaller blocks are delivered depends on the order 1620 * they're subdivided in this function. This is the primary factor 1621 * influencing the order in which pages are delivered to the IO 1622 * subsystem according to empirical testing, and this is also justified 1623 * by considering the behavior of a buddy system containing a single 1624 * large block of memory acted on by a series of small allocations. 1625 * This behavior is a critical factor in sglist merging's success. 1626 * 1627 * -- nyc 1628 */ 1629 static inline void expand(struct zone *zone, struct page *page, 1630 int low, int high, struct free_area *area, 1631 int migratetype) 1632 { 1633 unsigned long size = 1 << high; 1634 1635 while (high > low) { 1636 area--; 1637 high--; 1638 size >>= 1; 1639 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1640 1641 /* 1642 * Mark as guard pages (or page), that will allow to 1643 * merge back to allocator when buddy will be freed. 1644 * Corresponding page table entries will not be touched, 1645 * pages will stay not present in virtual address space 1646 */ 1647 if (set_page_guard(zone, &page[size], high, migratetype)) 1648 continue; 1649 1650 list_add(&page[size].lru, &area->free_list[migratetype]); 1651 area->nr_free++; 1652 set_page_order(&page[size], high); 1653 } 1654 } 1655 1656 static void check_new_page_bad(struct page *page) 1657 { 1658 const char *bad_reason = NULL; 1659 unsigned long bad_flags = 0; 1660 1661 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1662 bad_reason = "nonzero mapcount"; 1663 if (unlikely(page->mapping != NULL)) 1664 bad_reason = "non-NULL mapping"; 1665 if (unlikely(page_ref_count(page) != 0)) 1666 bad_reason = "nonzero _count"; 1667 if (unlikely(page->flags & __PG_HWPOISON)) { 1668 bad_reason = "HWPoisoned (hardware-corrupted)"; 1669 bad_flags = __PG_HWPOISON; 1670 /* Don't complain about hwpoisoned pages */ 1671 page_mapcount_reset(page); /* remove PageBuddy */ 1672 return; 1673 } 1674 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { 1675 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; 1676 bad_flags = PAGE_FLAGS_CHECK_AT_PREP; 1677 } 1678 #ifdef CONFIG_MEMCG 1679 if (unlikely(page->mem_cgroup)) 1680 bad_reason = "page still charged to cgroup"; 1681 #endif 1682 bad_page(page, bad_reason, bad_flags); 1683 } 1684 1685 /* 1686 * This page is about to be returned from the page allocator 1687 */ 1688 static inline int check_new_page(struct page *page) 1689 { 1690 if (likely(page_expected_state(page, 1691 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 1692 return 0; 1693 1694 check_new_page_bad(page); 1695 return 1; 1696 } 1697 1698 static inline bool free_pages_prezeroed(bool poisoned) 1699 { 1700 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) && 1701 page_poisoning_enabled() && poisoned; 1702 } 1703 1704 #ifdef CONFIG_DEBUG_VM 1705 static bool check_pcp_refill(struct page *page) 1706 { 1707 return false; 1708 } 1709 1710 static bool check_new_pcp(struct page *page) 1711 { 1712 return check_new_page(page); 1713 } 1714 #else 1715 static bool check_pcp_refill(struct page *page) 1716 { 1717 return check_new_page(page); 1718 } 1719 static bool check_new_pcp(struct page *page) 1720 { 1721 return false; 1722 } 1723 #endif /* CONFIG_DEBUG_VM */ 1724 1725 static bool check_new_pages(struct page *page, unsigned int order) 1726 { 1727 int i; 1728 for (i = 0; i < (1 << order); i++) { 1729 struct page *p = page + i; 1730 1731 if (unlikely(check_new_page(p))) 1732 return true; 1733 } 1734 1735 return false; 1736 } 1737 1738 inline void post_alloc_hook(struct page *page, unsigned int order, 1739 gfp_t gfp_flags) 1740 { 1741 set_page_private(page, 0); 1742 set_page_refcounted(page); 1743 1744 arch_alloc_page(page, order); 1745 kernel_map_pages(page, 1 << order, 1); 1746 kernel_poison_pages(page, 1 << order, 1); 1747 kasan_alloc_pages(page, order); 1748 set_page_owner(page, order, gfp_flags); 1749 } 1750 1751 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1752 unsigned int alloc_flags) 1753 { 1754 int i; 1755 bool poisoned = true; 1756 1757 for (i = 0; i < (1 << order); i++) { 1758 struct page *p = page + i; 1759 if (poisoned) 1760 poisoned &= page_is_poisoned(p); 1761 } 1762 1763 post_alloc_hook(page, order, gfp_flags); 1764 1765 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO)) 1766 for (i = 0; i < (1 << order); i++) 1767 clear_highpage(page + i); 1768 1769 if (order && (gfp_flags & __GFP_COMP)) 1770 prep_compound_page(page, order); 1771 1772 /* 1773 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1774 * allocate the page. The expectation is that the caller is taking 1775 * steps that will free more memory. The caller should avoid the page 1776 * being used for !PFMEMALLOC purposes. 1777 */ 1778 if (alloc_flags & ALLOC_NO_WATERMARKS) 1779 set_page_pfmemalloc(page); 1780 else 1781 clear_page_pfmemalloc(page); 1782 } 1783 1784 /* 1785 * Go through the free lists for the given migratetype and remove 1786 * the smallest available page from the freelists 1787 */ 1788 static inline 1789 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1790 int migratetype) 1791 { 1792 unsigned int current_order; 1793 struct free_area *area; 1794 struct page *page; 1795 1796 /* Find a page of the appropriate size in the preferred list */ 1797 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 1798 area = &(zone->free_area[current_order]); 1799 page = list_first_entry_or_null(&area->free_list[migratetype], 1800 struct page, lru); 1801 if (!page) 1802 continue; 1803 list_del(&page->lru); 1804 rmv_page_order(page); 1805 area->nr_free--; 1806 expand(zone, page, order, current_order, area, migratetype); 1807 set_pcppage_migratetype(page, migratetype); 1808 return page; 1809 } 1810 1811 return NULL; 1812 } 1813 1814 1815 /* 1816 * This array describes the order lists are fallen back to when 1817 * the free lists for the desirable migrate type are depleted 1818 */ 1819 static int fallbacks[MIGRATE_TYPES][4] = { 1820 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 1821 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 1822 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 1823 #ifdef CONFIG_CMA 1824 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 1825 #endif 1826 #ifdef CONFIG_MEMORY_ISOLATION 1827 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 1828 #endif 1829 }; 1830 1831 #ifdef CONFIG_CMA 1832 static struct page *__rmqueue_cma_fallback(struct zone *zone, 1833 unsigned int order) 1834 { 1835 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1836 } 1837 #else 1838 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1839 unsigned int order) { return NULL; } 1840 #endif 1841 1842 /* 1843 * Move the free pages in a range to the free lists of the requested type. 1844 * Note that start_page and end_pages are not aligned on a pageblock 1845 * boundary. If alignment is required, use move_freepages_block() 1846 */ 1847 int move_freepages(struct zone *zone, 1848 struct page *start_page, struct page *end_page, 1849 int migratetype) 1850 { 1851 struct page *page; 1852 unsigned int order; 1853 int pages_moved = 0; 1854 1855 #ifndef CONFIG_HOLES_IN_ZONE 1856 /* 1857 * page_zone is not safe to call in this context when 1858 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 1859 * anyway as we check zone boundaries in move_freepages_block(). 1860 * Remove at a later date when no bug reports exist related to 1861 * grouping pages by mobility 1862 */ 1863 VM_BUG_ON(page_zone(start_page) != page_zone(end_page)); 1864 #endif 1865 1866 for (page = start_page; page <= end_page;) { 1867 /* Make sure we are not inadvertently changing nodes */ 1868 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1869 1870 if (!pfn_valid_within(page_to_pfn(page))) { 1871 page++; 1872 continue; 1873 } 1874 1875 if (!PageBuddy(page)) { 1876 page++; 1877 continue; 1878 } 1879 1880 order = page_order(page); 1881 list_move(&page->lru, 1882 &zone->free_area[order].free_list[migratetype]); 1883 page += 1 << order; 1884 pages_moved += 1 << order; 1885 } 1886 1887 return pages_moved; 1888 } 1889 1890 int move_freepages_block(struct zone *zone, struct page *page, 1891 int migratetype) 1892 { 1893 unsigned long start_pfn, end_pfn; 1894 struct page *start_page, *end_page; 1895 1896 start_pfn = page_to_pfn(page); 1897 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 1898 start_page = pfn_to_page(start_pfn); 1899 end_page = start_page + pageblock_nr_pages - 1; 1900 end_pfn = start_pfn + pageblock_nr_pages - 1; 1901 1902 /* Do not cross zone boundaries */ 1903 if (!zone_spans_pfn(zone, start_pfn)) 1904 start_page = page; 1905 if (!zone_spans_pfn(zone, end_pfn)) 1906 return 0; 1907 1908 return move_freepages(zone, start_page, end_page, migratetype); 1909 } 1910 1911 static void change_pageblock_range(struct page *pageblock_page, 1912 int start_order, int migratetype) 1913 { 1914 int nr_pageblocks = 1 << (start_order - pageblock_order); 1915 1916 while (nr_pageblocks--) { 1917 set_pageblock_migratetype(pageblock_page, migratetype); 1918 pageblock_page += pageblock_nr_pages; 1919 } 1920 } 1921 1922 /* 1923 * When we are falling back to another migratetype during allocation, try to 1924 * steal extra free pages from the same pageblocks to satisfy further 1925 * allocations, instead of polluting multiple pageblocks. 1926 * 1927 * If we are stealing a relatively large buddy page, it is likely there will 1928 * be more free pages in the pageblock, so try to steal them all. For 1929 * reclaimable and unmovable allocations, we steal regardless of page size, 1930 * as fragmentation caused by those allocations polluting movable pageblocks 1931 * is worse than movable allocations stealing from unmovable and reclaimable 1932 * pageblocks. 1933 */ 1934 static bool can_steal_fallback(unsigned int order, int start_mt) 1935 { 1936 /* 1937 * Leaving this order check is intended, although there is 1938 * relaxed order check in next check. The reason is that 1939 * we can actually steal whole pageblock if this condition met, 1940 * but, below check doesn't guarantee it and that is just heuristic 1941 * so could be changed anytime. 1942 */ 1943 if (order >= pageblock_order) 1944 return true; 1945 1946 if (order >= pageblock_order / 2 || 1947 start_mt == MIGRATE_RECLAIMABLE || 1948 start_mt == MIGRATE_UNMOVABLE || 1949 page_group_by_mobility_disabled) 1950 return true; 1951 1952 return false; 1953 } 1954 1955 /* 1956 * This function implements actual steal behaviour. If order is large enough, 1957 * we can steal whole pageblock. If not, we first move freepages in this 1958 * pageblock and check whether half of pages are moved or not. If half of 1959 * pages are moved, we can change migratetype of pageblock and permanently 1960 * use it's pages as requested migratetype in the future. 1961 */ 1962 static void steal_suitable_fallback(struct zone *zone, struct page *page, 1963 int start_type) 1964 { 1965 unsigned int current_order = page_order(page); 1966 int pages; 1967 1968 /* Take ownership for orders >= pageblock_order */ 1969 if (current_order >= pageblock_order) { 1970 change_pageblock_range(page, current_order, start_type); 1971 return; 1972 } 1973 1974 pages = move_freepages_block(zone, page, start_type); 1975 1976 /* Claim the whole block if over half of it is free */ 1977 if (pages >= (1 << (pageblock_order-1)) || 1978 page_group_by_mobility_disabled) 1979 set_pageblock_migratetype(page, start_type); 1980 } 1981 1982 /* 1983 * Check whether there is a suitable fallback freepage with requested order. 1984 * If only_stealable is true, this function returns fallback_mt only if 1985 * we can steal other freepages all together. This would help to reduce 1986 * fragmentation due to mixed migratetype pages in one pageblock. 1987 */ 1988 int find_suitable_fallback(struct free_area *area, unsigned int order, 1989 int migratetype, bool only_stealable, bool *can_steal) 1990 { 1991 int i; 1992 int fallback_mt; 1993 1994 if (area->nr_free == 0) 1995 return -1; 1996 1997 *can_steal = false; 1998 for (i = 0;; i++) { 1999 fallback_mt = fallbacks[migratetype][i]; 2000 if (fallback_mt == MIGRATE_TYPES) 2001 break; 2002 2003 if (list_empty(&area->free_list[fallback_mt])) 2004 continue; 2005 2006 if (can_steal_fallback(order, migratetype)) 2007 *can_steal = true; 2008 2009 if (!only_stealable) 2010 return fallback_mt; 2011 2012 if (*can_steal) 2013 return fallback_mt; 2014 } 2015 2016 return -1; 2017 } 2018 2019 /* 2020 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2021 * there are no empty page blocks that contain a page with a suitable order 2022 */ 2023 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2024 unsigned int alloc_order) 2025 { 2026 int mt; 2027 unsigned long max_managed, flags; 2028 2029 /* 2030 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2031 * Check is race-prone but harmless. 2032 */ 2033 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages; 2034 if (zone->nr_reserved_highatomic >= max_managed) 2035 return; 2036 2037 spin_lock_irqsave(&zone->lock, flags); 2038 2039 /* Recheck the nr_reserved_highatomic limit under the lock */ 2040 if (zone->nr_reserved_highatomic >= max_managed) 2041 goto out_unlock; 2042 2043 /* Yoink! */ 2044 mt = get_pageblock_migratetype(page); 2045 if (mt != MIGRATE_HIGHATOMIC && 2046 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) { 2047 zone->nr_reserved_highatomic += pageblock_nr_pages; 2048 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2049 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC); 2050 } 2051 2052 out_unlock: 2053 spin_unlock_irqrestore(&zone->lock, flags); 2054 } 2055 2056 /* 2057 * Used when an allocation is about to fail under memory pressure. This 2058 * potentially hurts the reliability of high-order allocations when under 2059 * intense memory pressure but failed atomic allocations should be easier 2060 * to recover from than an OOM. 2061 */ 2062 static void unreserve_highatomic_pageblock(const struct alloc_context *ac) 2063 { 2064 struct zonelist *zonelist = ac->zonelist; 2065 unsigned long flags; 2066 struct zoneref *z; 2067 struct zone *zone; 2068 struct page *page; 2069 int order; 2070 2071 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx, 2072 ac->nodemask) { 2073 /* Preserve at least one pageblock */ 2074 if (zone->nr_reserved_highatomic <= pageblock_nr_pages) 2075 continue; 2076 2077 spin_lock_irqsave(&zone->lock, flags); 2078 for (order = 0; order < MAX_ORDER; order++) { 2079 struct free_area *area = &(zone->free_area[order]); 2080 2081 page = list_first_entry_or_null( 2082 &area->free_list[MIGRATE_HIGHATOMIC], 2083 struct page, lru); 2084 if (!page) 2085 continue; 2086 2087 /* 2088 * It should never happen but changes to locking could 2089 * inadvertently allow a per-cpu drain to add pages 2090 * to MIGRATE_HIGHATOMIC while unreserving so be safe 2091 * and watch for underflows. 2092 */ 2093 zone->nr_reserved_highatomic -= min(pageblock_nr_pages, 2094 zone->nr_reserved_highatomic); 2095 2096 /* 2097 * Convert to ac->migratetype and avoid the normal 2098 * pageblock stealing heuristics. Minimally, the caller 2099 * is doing the work and needs the pages. More 2100 * importantly, if the block was always converted to 2101 * MIGRATE_UNMOVABLE or another type then the number 2102 * of pageblocks that cannot be completely freed 2103 * may increase. 2104 */ 2105 set_pageblock_migratetype(page, ac->migratetype); 2106 move_freepages_block(zone, page, ac->migratetype); 2107 spin_unlock_irqrestore(&zone->lock, flags); 2108 return; 2109 } 2110 spin_unlock_irqrestore(&zone->lock, flags); 2111 } 2112 } 2113 2114 /* Remove an element from the buddy allocator from the fallback list */ 2115 static inline struct page * 2116 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype) 2117 { 2118 struct free_area *area; 2119 unsigned int current_order; 2120 struct page *page; 2121 int fallback_mt; 2122 bool can_steal; 2123 2124 /* Find the largest possible block of pages in the other list */ 2125 for (current_order = MAX_ORDER-1; 2126 current_order >= order && current_order <= MAX_ORDER-1; 2127 --current_order) { 2128 area = &(zone->free_area[current_order]); 2129 fallback_mt = find_suitable_fallback(area, current_order, 2130 start_migratetype, false, &can_steal); 2131 if (fallback_mt == -1) 2132 continue; 2133 2134 page = list_first_entry(&area->free_list[fallback_mt], 2135 struct page, lru); 2136 if (can_steal) 2137 steal_suitable_fallback(zone, page, start_migratetype); 2138 2139 /* Remove the page from the freelists */ 2140 area->nr_free--; 2141 list_del(&page->lru); 2142 rmv_page_order(page); 2143 2144 expand(zone, page, order, current_order, area, 2145 start_migratetype); 2146 /* 2147 * The pcppage_migratetype may differ from pageblock's 2148 * migratetype depending on the decisions in 2149 * find_suitable_fallback(). This is OK as long as it does not 2150 * differ for MIGRATE_CMA pageblocks. Those can be used as 2151 * fallback only via special __rmqueue_cma_fallback() function 2152 */ 2153 set_pcppage_migratetype(page, start_migratetype); 2154 2155 trace_mm_page_alloc_extfrag(page, order, current_order, 2156 start_migratetype, fallback_mt); 2157 2158 return page; 2159 } 2160 2161 return NULL; 2162 } 2163 2164 /* 2165 * Do the hard work of removing an element from the buddy allocator. 2166 * Call me with the zone->lock already held. 2167 */ 2168 static struct page *__rmqueue(struct zone *zone, unsigned int order, 2169 int migratetype) 2170 { 2171 struct page *page; 2172 2173 page = __rmqueue_smallest(zone, order, migratetype); 2174 if (unlikely(!page)) { 2175 if (migratetype == MIGRATE_MOVABLE) 2176 page = __rmqueue_cma_fallback(zone, order); 2177 2178 if (!page) 2179 page = __rmqueue_fallback(zone, order, migratetype); 2180 } 2181 2182 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2183 return page; 2184 } 2185 2186 /* 2187 * Obtain a specified number of elements from the buddy allocator, all under 2188 * a single hold of the lock, for efficiency. Add them to the supplied list. 2189 * Returns the number of new pages which were placed at *list. 2190 */ 2191 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2192 unsigned long count, struct list_head *list, 2193 int migratetype, bool cold) 2194 { 2195 int i; 2196 2197 spin_lock(&zone->lock); 2198 for (i = 0; i < count; ++i) { 2199 struct page *page = __rmqueue(zone, order, migratetype); 2200 if (unlikely(page == NULL)) 2201 break; 2202 2203 if (unlikely(check_pcp_refill(page))) 2204 continue; 2205 2206 /* 2207 * Split buddy pages returned by expand() are received here 2208 * in physical page order. The page is added to the callers and 2209 * list and the list head then moves forward. From the callers 2210 * perspective, the linked list is ordered by page number in 2211 * some conditions. This is useful for IO devices that can 2212 * merge IO requests if the physical pages are ordered 2213 * properly. 2214 */ 2215 if (likely(!cold)) 2216 list_add(&page->lru, list); 2217 else 2218 list_add_tail(&page->lru, list); 2219 list = &page->lru; 2220 if (is_migrate_cma(get_pcppage_migratetype(page))) 2221 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2222 -(1 << order)); 2223 } 2224 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2225 spin_unlock(&zone->lock); 2226 return i; 2227 } 2228 2229 #ifdef CONFIG_NUMA 2230 /* 2231 * Called from the vmstat counter updater to drain pagesets of this 2232 * currently executing processor on remote nodes after they have 2233 * expired. 2234 * 2235 * Note that this function must be called with the thread pinned to 2236 * a single processor. 2237 */ 2238 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2239 { 2240 unsigned long flags; 2241 int to_drain, batch; 2242 2243 local_irq_save(flags); 2244 batch = READ_ONCE(pcp->batch); 2245 to_drain = min(pcp->count, batch); 2246 if (to_drain > 0) { 2247 free_pcppages_bulk(zone, to_drain, pcp); 2248 pcp->count -= to_drain; 2249 } 2250 local_irq_restore(flags); 2251 } 2252 #endif 2253 2254 /* 2255 * Drain pcplists of the indicated processor and zone. 2256 * 2257 * The processor must either be the current processor and the 2258 * thread pinned to the current processor or a processor that 2259 * is not online. 2260 */ 2261 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2262 { 2263 unsigned long flags; 2264 struct per_cpu_pageset *pset; 2265 struct per_cpu_pages *pcp; 2266 2267 local_irq_save(flags); 2268 pset = per_cpu_ptr(zone->pageset, cpu); 2269 2270 pcp = &pset->pcp; 2271 if (pcp->count) { 2272 free_pcppages_bulk(zone, pcp->count, pcp); 2273 pcp->count = 0; 2274 } 2275 local_irq_restore(flags); 2276 } 2277 2278 /* 2279 * Drain pcplists of all zones on the indicated processor. 2280 * 2281 * The processor must either be the current processor and the 2282 * thread pinned to the current processor or a processor that 2283 * is not online. 2284 */ 2285 static void drain_pages(unsigned int cpu) 2286 { 2287 struct zone *zone; 2288 2289 for_each_populated_zone(zone) { 2290 drain_pages_zone(cpu, zone); 2291 } 2292 } 2293 2294 /* 2295 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2296 * 2297 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 2298 * the single zone's pages. 2299 */ 2300 void drain_local_pages(struct zone *zone) 2301 { 2302 int cpu = smp_processor_id(); 2303 2304 if (zone) 2305 drain_pages_zone(cpu, zone); 2306 else 2307 drain_pages(cpu); 2308 } 2309 2310 /* 2311 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2312 * 2313 * When zone parameter is non-NULL, spill just the single zone's pages. 2314 * 2315 * Note that this code is protected against sending an IPI to an offline 2316 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs: 2317 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but 2318 * nothing keeps CPUs from showing up after we populated the cpumask and 2319 * before the call to on_each_cpu_mask(). 2320 */ 2321 void drain_all_pages(struct zone *zone) 2322 { 2323 int cpu; 2324 2325 /* 2326 * Allocate in the BSS so we wont require allocation in 2327 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2328 */ 2329 static cpumask_t cpus_with_pcps; 2330 2331 /* 2332 * We don't care about racing with CPU hotplug event 2333 * as offline notification will cause the notified 2334 * cpu to drain that CPU pcps and on_each_cpu_mask 2335 * disables preemption as part of its processing 2336 */ 2337 for_each_online_cpu(cpu) { 2338 struct per_cpu_pageset *pcp; 2339 struct zone *z; 2340 bool has_pcps = false; 2341 2342 if (zone) { 2343 pcp = per_cpu_ptr(zone->pageset, cpu); 2344 if (pcp->pcp.count) 2345 has_pcps = true; 2346 } else { 2347 for_each_populated_zone(z) { 2348 pcp = per_cpu_ptr(z->pageset, cpu); 2349 if (pcp->pcp.count) { 2350 has_pcps = true; 2351 break; 2352 } 2353 } 2354 } 2355 2356 if (has_pcps) 2357 cpumask_set_cpu(cpu, &cpus_with_pcps); 2358 else 2359 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2360 } 2361 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages, 2362 zone, 1); 2363 } 2364 2365 #ifdef CONFIG_HIBERNATION 2366 2367 void mark_free_pages(struct zone *zone) 2368 { 2369 unsigned long pfn, max_zone_pfn; 2370 unsigned long flags; 2371 unsigned int order, t; 2372 struct page *page; 2373 2374 if (zone_is_empty(zone)) 2375 return; 2376 2377 spin_lock_irqsave(&zone->lock, flags); 2378 2379 max_zone_pfn = zone_end_pfn(zone); 2380 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 2381 if (pfn_valid(pfn)) { 2382 page = pfn_to_page(pfn); 2383 2384 if (page_zone(page) != zone) 2385 continue; 2386 2387 if (!swsusp_page_is_forbidden(page)) 2388 swsusp_unset_page_free(page); 2389 } 2390 2391 for_each_migratetype_order(order, t) { 2392 list_for_each_entry(page, 2393 &zone->free_area[order].free_list[t], lru) { 2394 unsigned long i; 2395 2396 pfn = page_to_pfn(page); 2397 for (i = 0; i < (1UL << order); i++) 2398 swsusp_set_page_free(pfn_to_page(pfn + i)); 2399 } 2400 } 2401 spin_unlock_irqrestore(&zone->lock, flags); 2402 } 2403 #endif /* CONFIG_PM */ 2404 2405 /* 2406 * Free a 0-order page 2407 * cold == true ? free a cold page : free a hot page 2408 */ 2409 void free_hot_cold_page(struct page *page, bool cold) 2410 { 2411 struct zone *zone = page_zone(page); 2412 struct per_cpu_pages *pcp; 2413 unsigned long flags; 2414 unsigned long pfn = page_to_pfn(page); 2415 int migratetype; 2416 2417 if (!free_pcp_prepare(page)) 2418 return; 2419 2420 migratetype = get_pfnblock_migratetype(page, pfn); 2421 set_pcppage_migratetype(page, migratetype); 2422 local_irq_save(flags); 2423 __count_vm_event(PGFREE); 2424 2425 /* 2426 * We only track unmovable, reclaimable and movable on pcp lists. 2427 * Free ISOLATE pages back to the allocator because they are being 2428 * offlined but treat RESERVE as movable pages so we can get those 2429 * areas back if necessary. Otherwise, we may have to free 2430 * excessively into the page allocator 2431 */ 2432 if (migratetype >= MIGRATE_PCPTYPES) { 2433 if (unlikely(is_migrate_isolate(migratetype))) { 2434 free_one_page(zone, page, pfn, 0, migratetype); 2435 goto out; 2436 } 2437 migratetype = MIGRATE_MOVABLE; 2438 } 2439 2440 pcp = &this_cpu_ptr(zone->pageset)->pcp; 2441 if (!cold) 2442 list_add(&page->lru, &pcp->lists[migratetype]); 2443 else 2444 list_add_tail(&page->lru, &pcp->lists[migratetype]); 2445 pcp->count++; 2446 if (pcp->count >= pcp->high) { 2447 unsigned long batch = READ_ONCE(pcp->batch); 2448 free_pcppages_bulk(zone, batch, pcp); 2449 pcp->count -= batch; 2450 } 2451 2452 out: 2453 local_irq_restore(flags); 2454 } 2455 2456 /* 2457 * Free a list of 0-order pages 2458 */ 2459 void free_hot_cold_page_list(struct list_head *list, bool cold) 2460 { 2461 struct page *page, *next; 2462 2463 list_for_each_entry_safe(page, next, list, lru) { 2464 trace_mm_page_free_batched(page, cold); 2465 free_hot_cold_page(page, cold); 2466 } 2467 } 2468 2469 /* 2470 * split_page takes a non-compound higher-order page, and splits it into 2471 * n (1<<order) sub-pages: page[0..n] 2472 * Each sub-page must be freed individually. 2473 * 2474 * Note: this is probably too low level an operation for use in drivers. 2475 * Please consult with lkml before using this in your driver. 2476 */ 2477 void split_page(struct page *page, unsigned int order) 2478 { 2479 int i; 2480 2481 VM_BUG_ON_PAGE(PageCompound(page), page); 2482 VM_BUG_ON_PAGE(!page_count(page), page); 2483 2484 #ifdef CONFIG_KMEMCHECK 2485 /* 2486 * Split shadow pages too, because free(page[0]) would 2487 * otherwise free the whole shadow. 2488 */ 2489 if (kmemcheck_page_is_tracked(page)) 2490 split_page(virt_to_page(page[0].shadow), order); 2491 #endif 2492 2493 for (i = 1; i < (1 << order); i++) 2494 set_page_refcounted(page + i); 2495 split_page_owner(page, order); 2496 } 2497 EXPORT_SYMBOL_GPL(split_page); 2498 2499 int __isolate_free_page(struct page *page, unsigned int order) 2500 { 2501 unsigned long watermark; 2502 struct zone *zone; 2503 int mt; 2504 2505 BUG_ON(!PageBuddy(page)); 2506 2507 zone = page_zone(page); 2508 mt = get_pageblock_migratetype(page); 2509 2510 if (!is_migrate_isolate(mt)) { 2511 /* 2512 * Obey watermarks as if the page was being allocated. We can 2513 * emulate a high-order watermark check with a raised order-0 2514 * watermark, because we already know our high-order page 2515 * exists. 2516 */ 2517 watermark = min_wmark_pages(zone) + (1UL << order); 2518 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 2519 return 0; 2520 2521 __mod_zone_freepage_state(zone, -(1UL << order), mt); 2522 } 2523 2524 /* Remove page from free list */ 2525 list_del(&page->lru); 2526 zone->free_area[order].nr_free--; 2527 rmv_page_order(page); 2528 2529 /* 2530 * Set the pageblock if the isolated page is at least half of a 2531 * pageblock 2532 */ 2533 if (order >= pageblock_order - 1) { 2534 struct page *endpage = page + (1 << order) - 1; 2535 for (; page < endpage; page += pageblock_nr_pages) { 2536 int mt = get_pageblock_migratetype(page); 2537 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)) 2538 set_pageblock_migratetype(page, 2539 MIGRATE_MOVABLE); 2540 } 2541 } 2542 2543 2544 return 1UL << order; 2545 } 2546 2547 /* 2548 * Update NUMA hit/miss statistics 2549 * 2550 * Must be called with interrupts disabled. 2551 * 2552 * When __GFP_OTHER_NODE is set assume the node of the preferred 2553 * zone is the local node. This is useful for daemons who allocate 2554 * memory on behalf of other processes. 2555 */ 2556 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 2557 gfp_t flags) 2558 { 2559 #ifdef CONFIG_NUMA 2560 int local_nid = numa_node_id(); 2561 enum zone_stat_item local_stat = NUMA_LOCAL; 2562 2563 if (unlikely(flags & __GFP_OTHER_NODE)) { 2564 local_stat = NUMA_OTHER; 2565 local_nid = preferred_zone->node; 2566 } 2567 2568 if (z->node == local_nid) { 2569 __inc_zone_state(z, NUMA_HIT); 2570 __inc_zone_state(z, local_stat); 2571 } else { 2572 __inc_zone_state(z, NUMA_MISS); 2573 __inc_zone_state(preferred_zone, NUMA_FOREIGN); 2574 } 2575 #endif 2576 } 2577 2578 /* 2579 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 2580 */ 2581 static inline 2582 struct page *buffered_rmqueue(struct zone *preferred_zone, 2583 struct zone *zone, unsigned int order, 2584 gfp_t gfp_flags, unsigned int alloc_flags, 2585 int migratetype) 2586 { 2587 unsigned long flags; 2588 struct page *page; 2589 bool cold = ((gfp_flags & __GFP_COLD) != 0); 2590 2591 if (likely(order == 0)) { 2592 struct per_cpu_pages *pcp; 2593 struct list_head *list; 2594 2595 local_irq_save(flags); 2596 do { 2597 pcp = &this_cpu_ptr(zone->pageset)->pcp; 2598 list = &pcp->lists[migratetype]; 2599 if (list_empty(list)) { 2600 pcp->count += rmqueue_bulk(zone, 0, 2601 pcp->batch, list, 2602 migratetype, cold); 2603 if (unlikely(list_empty(list))) 2604 goto failed; 2605 } 2606 2607 if (cold) 2608 page = list_last_entry(list, struct page, lru); 2609 else 2610 page = list_first_entry(list, struct page, lru); 2611 2612 list_del(&page->lru); 2613 pcp->count--; 2614 2615 } while (check_new_pcp(page)); 2616 } else { 2617 /* 2618 * We most definitely don't want callers attempting to 2619 * allocate greater than order-1 page units with __GFP_NOFAIL. 2620 */ 2621 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 2622 spin_lock_irqsave(&zone->lock, flags); 2623 2624 do { 2625 page = NULL; 2626 if (alloc_flags & ALLOC_HARDER) { 2627 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2628 if (page) 2629 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2630 } 2631 if (!page) 2632 page = __rmqueue(zone, order, migratetype); 2633 } while (page && check_new_pages(page, order)); 2634 spin_unlock(&zone->lock); 2635 if (!page) 2636 goto failed; 2637 __mod_zone_freepage_state(zone, -(1 << order), 2638 get_pcppage_migratetype(page)); 2639 } 2640 2641 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2642 zone_statistics(preferred_zone, zone, gfp_flags); 2643 local_irq_restore(flags); 2644 2645 VM_BUG_ON_PAGE(bad_range(zone, page), page); 2646 return page; 2647 2648 failed: 2649 local_irq_restore(flags); 2650 return NULL; 2651 } 2652 2653 #ifdef CONFIG_FAIL_PAGE_ALLOC 2654 2655 static struct { 2656 struct fault_attr attr; 2657 2658 bool ignore_gfp_highmem; 2659 bool ignore_gfp_reclaim; 2660 u32 min_order; 2661 } fail_page_alloc = { 2662 .attr = FAULT_ATTR_INITIALIZER, 2663 .ignore_gfp_reclaim = true, 2664 .ignore_gfp_highmem = true, 2665 .min_order = 1, 2666 }; 2667 2668 static int __init setup_fail_page_alloc(char *str) 2669 { 2670 return setup_fault_attr(&fail_page_alloc.attr, str); 2671 } 2672 __setup("fail_page_alloc=", setup_fail_page_alloc); 2673 2674 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 2675 { 2676 if (order < fail_page_alloc.min_order) 2677 return false; 2678 if (gfp_mask & __GFP_NOFAIL) 2679 return false; 2680 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 2681 return false; 2682 if (fail_page_alloc.ignore_gfp_reclaim && 2683 (gfp_mask & __GFP_DIRECT_RECLAIM)) 2684 return false; 2685 2686 return should_fail(&fail_page_alloc.attr, 1 << order); 2687 } 2688 2689 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 2690 2691 static int __init fail_page_alloc_debugfs(void) 2692 { 2693 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 2694 struct dentry *dir; 2695 2696 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 2697 &fail_page_alloc.attr); 2698 if (IS_ERR(dir)) 2699 return PTR_ERR(dir); 2700 2701 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 2702 &fail_page_alloc.ignore_gfp_reclaim)) 2703 goto fail; 2704 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 2705 &fail_page_alloc.ignore_gfp_highmem)) 2706 goto fail; 2707 if (!debugfs_create_u32("min-order", mode, dir, 2708 &fail_page_alloc.min_order)) 2709 goto fail; 2710 2711 return 0; 2712 fail: 2713 debugfs_remove_recursive(dir); 2714 2715 return -ENOMEM; 2716 } 2717 2718 late_initcall(fail_page_alloc_debugfs); 2719 2720 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 2721 2722 #else /* CONFIG_FAIL_PAGE_ALLOC */ 2723 2724 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 2725 { 2726 return false; 2727 } 2728 2729 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 2730 2731 /* 2732 * Return true if free base pages are above 'mark'. For high-order checks it 2733 * will return true of the order-0 watermark is reached and there is at least 2734 * one free page of a suitable size. Checking now avoids taking the zone lock 2735 * to check in the allocation paths if no pages are free. 2736 */ 2737 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 2738 int classzone_idx, unsigned int alloc_flags, 2739 long free_pages) 2740 { 2741 long min = mark; 2742 int o; 2743 const bool alloc_harder = (alloc_flags & ALLOC_HARDER); 2744 2745 /* free_pages may go negative - that's OK */ 2746 free_pages -= (1 << order) - 1; 2747 2748 if (alloc_flags & ALLOC_HIGH) 2749 min -= min / 2; 2750 2751 /* 2752 * If the caller does not have rights to ALLOC_HARDER then subtract 2753 * the high-atomic reserves. This will over-estimate the size of the 2754 * atomic reserve but it avoids a search. 2755 */ 2756 if (likely(!alloc_harder)) 2757 free_pages -= z->nr_reserved_highatomic; 2758 else 2759 min -= min / 4; 2760 2761 #ifdef CONFIG_CMA 2762 /* If allocation can't use CMA areas don't use free CMA pages */ 2763 if (!(alloc_flags & ALLOC_CMA)) 2764 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES); 2765 #endif 2766 2767 /* 2768 * Check watermarks for an order-0 allocation request. If these 2769 * are not met, then a high-order request also cannot go ahead 2770 * even if a suitable page happened to be free. 2771 */ 2772 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 2773 return false; 2774 2775 /* If this is an order-0 request then the watermark is fine */ 2776 if (!order) 2777 return true; 2778 2779 /* For a high-order request, check at least one suitable page is free */ 2780 for (o = order; o < MAX_ORDER; o++) { 2781 struct free_area *area = &z->free_area[o]; 2782 int mt; 2783 2784 if (!area->nr_free) 2785 continue; 2786 2787 if (alloc_harder) 2788 return true; 2789 2790 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 2791 if (!list_empty(&area->free_list[mt])) 2792 return true; 2793 } 2794 2795 #ifdef CONFIG_CMA 2796 if ((alloc_flags & ALLOC_CMA) && 2797 !list_empty(&area->free_list[MIGRATE_CMA])) { 2798 return true; 2799 } 2800 #endif 2801 } 2802 return false; 2803 } 2804 2805 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 2806 int classzone_idx, unsigned int alloc_flags) 2807 { 2808 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 2809 zone_page_state(z, NR_FREE_PAGES)); 2810 } 2811 2812 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 2813 unsigned long mark, int classzone_idx, unsigned int alloc_flags) 2814 { 2815 long free_pages = zone_page_state(z, NR_FREE_PAGES); 2816 long cma_pages = 0; 2817 2818 #ifdef CONFIG_CMA 2819 /* If allocation can't use CMA areas don't use free CMA pages */ 2820 if (!(alloc_flags & ALLOC_CMA)) 2821 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES); 2822 #endif 2823 2824 /* 2825 * Fast check for order-0 only. If this fails then the reserves 2826 * need to be calculated. There is a corner case where the check 2827 * passes but only the high-order atomic reserve are free. If 2828 * the caller is !atomic then it'll uselessly search the free 2829 * list. That corner case is then slower but it is harmless. 2830 */ 2831 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx]) 2832 return true; 2833 2834 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 2835 free_pages); 2836 } 2837 2838 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 2839 unsigned long mark, int classzone_idx) 2840 { 2841 long free_pages = zone_page_state(z, NR_FREE_PAGES); 2842 2843 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 2844 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 2845 2846 return __zone_watermark_ok(z, order, mark, classzone_idx, 0, 2847 free_pages); 2848 } 2849 2850 #ifdef CONFIG_NUMA 2851 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 2852 { 2853 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) < 2854 RECLAIM_DISTANCE; 2855 } 2856 #else /* CONFIG_NUMA */ 2857 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 2858 { 2859 return true; 2860 } 2861 #endif /* CONFIG_NUMA */ 2862 2863 /* 2864 * get_page_from_freelist goes through the zonelist trying to allocate 2865 * a page. 2866 */ 2867 static struct page * 2868 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 2869 const struct alloc_context *ac) 2870 { 2871 struct zoneref *z = ac->preferred_zoneref; 2872 struct zone *zone; 2873 struct pglist_data *last_pgdat_dirty_limit = NULL; 2874 2875 /* 2876 * Scan zonelist, looking for a zone with enough free. 2877 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 2878 */ 2879 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 2880 ac->nodemask) { 2881 struct page *page; 2882 unsigned long mark; 2883 2884 if (cpusets_enabled() && 2885 (alloc_flags & ALLOC_CPUSET) && 2886 !__cpuset_zone_allowed(zone, gfp_mask)) 2887 continue; 2888 /* 2889 * When allocating a page cache page for writing, we 2890 * want to get it from a node that is within its dirty 2891 * limit, such that no single node holds more than its 2892 * proportional share of globally allowed dirty pages. 2893 * The dirty limits take into account the node's 2894 * lowmem reserves and high watermark so that kswapd 2895 * should be able to balance it without having to 2896 * write pages from its LRU list. 2897 * 2898 * XXX: For now, allow allocations to potentially 2899 * exceed the per-node dirty limit in the slowpath 2900 * (spread_dirty_pages unset) before going into reclaim, 2901 * which is important when on a NUMA setup the allowed 2902 * nodes are together not big enough to reach the 2903 * global limit. The proper fix for these situations 2904 * will require awareness of nodes in the 2905 * dirty-throttling and the flusher threads. 2906 */ 2907 if (ac->spread_dirty_pages) { 2908 if (last_pgdat_dirty_limit == zone->zone_pgdat) 2909 continue; 2910 2911 if (!node_dirty_ok(zone->zone_pgdat)) { 2912 last_pgdat_dirty_limit = zone->zone_pgdat; 2913 continue; 2914 } 2915 } 2916 2917 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 2918 if (!zone_watermark_fast(zone, order, mark, 2919 ac_classzone_idx(ac), alloc_flags)) { 2920 int ret; 2921 2922 /* Checked here to keep the fast path fast */ 2923 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 2924 if (alloc_flags & ALLOC_NO_WATERMARKS) 2925 goto try_this_zone; 2926 2927 if (node_reclaim_mode == 0 || 2928 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 2929 continue; 2930 2931 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 2932 switch (ret) { 2933 case NODE_RECLAIM_NOSCAN: 2934 /* did not scan */ 2935 continue; 2936 case NODE_RECLAIM_FULL: 2937 /* scanned but unreclaimable */ 2938 continue; 2939 default: 2940 /* did we reclaim enough */ 2941 if (zone_watermark_ok(zone, order, mark, 2942 ac_classzone_idx(ac), alloc_flags)) 2943 goto try_this_zone; 2944 2945 continue; 2946 } 2947 } 2948 2949 try_this_zone: 2950 page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order, 2951 gfp_mask, alloc_flags, ac->migratetype); 2952 if (page) { 2953 prep_new_page(page, order, gfp_mask, alloc_flags); 2954 2955 /* 2956 * If this is a high-order atomic allocation then check 2957 * if the pageblock should be reserved for the future 2958 */ 2959 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 2960 reserve_highatomic_pageblock(page, zone, order); 2961 2962 return page; 2963 } 2964 } 2965 2966 return NULL; 2967 } 2968 2969 /* 2970 * Large machines with many possible nodes should not always dump per-node 2971 * meminfo in irq context. 2972 */ 2973 static inline bool should_suppress_show_mem(void) 2974 { 2975 bool ret = false; 2976 2977 #if NODES_SHIFT > 8 2978 ret = in_interrupt(); 2979 #endif 2980 return ret; 2981 } 2982 2983 static DEFINE_RATELIMIT_STATE(nopage_rs, 2984 DEFAULT_RATELIMIT_INTERVAL, 2985 DEFAULT_RATELIMIT_BURST); 2986 2987 void warn_alloc(gfp_t gfp_mask, const char *fmt, ...) 2988 { 2989 unsigned int filter = SHOW_MEM_FILTER_NODES; 2990 struct va_format vaf; 2991 va_list args; 2992 2993 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) || 2994 debug_guardpage_minorder() > 0) 2995 return; 2996 2997 /* 2998 * This documents exceptions given to allocations in certain 2999 * contexts that are allowed to allocate outside current's set 3000 * of allowed nodes. 3001 */ 3002 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3003 if (test_thread_flag(TIF_MEMDIE) || 3004 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3005 filter &= ~SHOW_MEM_FILTER_NODES; 3006 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3007 filter &= ~SHOW_MEM_FILTER_NODES; 3008 3009 pr_warn("%s: ", current->comm); 3010 3011 va_start(args, fmt); 3012 vaf.fmt = fmt; 3013 vaf.va = &args; 3014 pr_cont("%pV", &vaf); 3015 va_end(args); 3016 3017 pr_cont(", mode:%#x(%pGg)\n", gfp_mask, &gfp_mask); 3018 3019 dump_stack(); 3020 if (!should_suppress_show_mem()) 3021 show_mem(filter); 3022 } 3023 3024 static inline struct page * 3025 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3026 const struct alloc_context *ac, unsigned long *did_some_progress) 3027 { 3028 struct oom_control oc = { 3029 .zonelist = ac->zonelist, 3030 .nodemask = ac->nodemask, 3031 .memcg = NULL, 3032 .gfp_mask = gfp_mask, 3033 .order = order, 3034 }; 3035 struct page *page; 3036 3037 *did_some_progress = 0; 3038 3039 /* 3040 * Acquire the oom lock. If that fails, somebody else is 3041 * making progress for us. 3042 */ 3043 if (!mutex_trylock(&oom_lock)) { 3044 *did_some_progress = 1; 3045 schedule_timeout_uninterruptible(1); 3046 return NULL; 3047 } 3048 3049 /* 3050 * Go through the zonelist yet one more time, keep very high watermark 3051 * here, this is only to catch a parallel oom killing, we must fail if 3052 * we're still under heavy pressure. 3053 */ 3054 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order, 3055 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3056 if (page) 3057 goto out; 3058 3059 if (!(gfp_mask & __GFP_NOFAIL)) { 3060 /* Coredumps can quickly deplete all memory reserves */ 3061 if (current->flags & PF_DUMPCORE) 3062 goto out; 3063 /* The OOM killer will not help higher order allocs */ 3064 if (order > PAGE_ALLOC_COSTLY_ORDER) 3065 goto out; 3066 /* The OOM killer does not needlessly kill tasks for lowmem */ 3067 if (ac->high_zoneidx < ZONE_NORMAL) 3068 goto out; 3069 if (pm_suspended_storage()) 3070 goto out; 3071 /* 3072 * XXX: GFP_NOFS allocations should rather fail than rely on 3073 * other request to make a forward progress. 3074 * We are in an unfortunate situation where out_of_memory cannot 3075 * do much for this context but let's try it to at least get 3076 * access to memory reserved if the current task is killed (see 3077 * out_of_memory). Once filesystems are ready to handle allocation 3078 * failures more gracefully we should just bail out here. 3079 */ 3080 3081 /* The OOM killer may not free memory on a specific node */ 3082 if (gfp_mask & __GFP_THISNODE) 3083 goto out; 3084 } 3085 /* Exhausted what can be done so it's blamo time */ 3086 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 3087 *did_some_progress = 1; 3088 3089 if (gfp_mask & __GFP_NOFAIL) { 3090 page = get_page_from_freelist(gfp_mask, order, 3091 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac); 3092 /* 3093 * fallback to ignore cpuset restriction if our nodes 3094 * are depleted 3095 */ 3096 if (!page) 3097 page = get_page_from_freelist(gfp_mask, order, 3098 ALLOC_NO_WATERMARKS, ac); 3099 } 3100 } 3101 out: 3102 mutex_unlock(&oom_lock); 3103 return page; 3104 } 3105 3106 /* 3107 * Maximum number of compaction retries wit a progress before OOM 3108 * killer is consider as the only way to move forward. 3109 */ 3110 #define MAX_COMPACT_RETRIES 16 3111 3112 #ifdef CONFIG_COMPACTION 3113 /* Try memory compaction for high-order allocations before reclaim */ 3114 static struct page * 3115 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3116 unsigned int alloc_flags, const struct alloc_context *ac, 3117 enum compact_priority prio, enum compact_result *compact_result) 3118 { 3119 struct page *page; 3120 3121 if (!order) 3122 return NULL; 3123 3124 current->flags |= PF_MEMALLOC; 3125 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3126 prio); 3127 current->flags &= ~PF_MEMALLOC; 3128 3129 if (*compact_result <= COMPACT_INACTIVE) 3130 return NULL; 3131 3132 /* 3133 * At least in one zone compaction wasn't deferred or skipped, so let's 3134 * count a compaction stall 3135 */ 3136 count_vm_event(COMPACTSTALL); 3137 3138 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3139 3140 if (page) { 3141 struct zone *zone = page_zone(page); 3142 3143 zone->compact_blockskip_flush = false; 3144 compaction_defer_reset(zone, order, true); 3145 count_vm_event(COMPACTSUCCESS); 3146 return page; 3147 } 3148 3149 /* 3150 * It's bad if compaction run occurs and fails. The most likely reason 3151 * is that pages exist, but not enough to satisfy watermarks. 3152 */ 3153 count_vm_event(COMPACTFAIL); 3154 3155 cond_resched(); 3156 3157 return NULL; 3158 } 3159 3160 static inline bool 3161 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3162 enum compact_result compact_result, 3163 enum compact_priority *compact_priority, 3164 int *compaction_retries) 3165 { 3166 int max_retries = MAX_COMPACT_RETRIES; 3167 int min_priority; 3168 3169 if (!order) 3170 return false; 3171 3172 if (compaction_made_progress(compact_result)) 3173 (*compaction_retries)++; 3174 3175 /* 3176 * compaction considers all the zone as desperately out of memory 3177 * so it doesn't really make much sense to retry except when the 3178 * failure could be caused by insufficient priority 3179 */ 3180 if (compaction_failed(compact_result)) 3181 goto check_priority; 3182 3183 /* 3184 * make sure the compaction wasn't deferred or didn't bail out early 3185 * due to locks contention before we declare that we should give up. 3186 * But do not retry if the given zonelist is not suitable for 3187 * compaction. 3188 */ 3189 if (compaction_withdrawn(compact_result)) 3190 return compaction_zonelist_suitable(ac, order, alloc_flags); 3191 3192 /* 3193 * !costly requests are much more important than __GFP_REPEAT 3194 * costly ones because they are de facto nofail and invoke OOM 3195 * killer to move on while costly can fail and users are ready 3196 * to cope with that. 1/4 retries is rather arbitrary but we 3197 * would need much more detailed feedback from compaction to 3198 * make a better decision. 3199 */ 3200 if (order > PAGE_ALLOC_COSTLY_ORDER) 3201 max_retries /= 4; 3202 if (*compaction_retries <= max_retries) 3203 return true; 3204 3205 /* 3206 * Make sure there are attempts at the highest priority if we exhausted 3207 * all retries or failed at the lower priorities. 3208 */ 3209 check_priority: 3210 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 3211 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 3212 if (*compact_priority > min_priority) { 3213 (*compact_priority)--; 3214 *compaction_retries = 0; 3215 return true; 3216 } 3217 return false; 3218 } 3219 #else 3220 static inline struct page * 3221 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3222 unsigned int alloc_flags, const struct alloc_context *ac, 3223 enum compact_priority prio, enum compact_result *compact_result) 3224 { 3225 *compact_result = COMPACT_SKIPPED; 3226 return NULL; 3227 } 3228 3229 static inline bool 3230 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 3231 enum compact_result compact_result, 3232 enum compact_priority *compact_priority, 3233 int *compaction_retries) 3234 { 3235 struct zone *zone; 3236 struct zoneref *z; 3237 3238 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 3239 return false; 3240 3241 /* 3242 * There are setups with compaction disabled which would prefer to loop 3243 * inside the allocator rather than hit the oom killer prematurely. 3244 * Let's give them a good hope and keep retrying while the order-0 3245 * watermarks are OK. 3246 */ 3247 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3248 ac->nodemask) { 3249 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 3250 ac_classzone_idx(ac), alloc_flags)) 3251 return true; 3252 } 3253 return false; 3254 } 3255 #endif /* CONFIG_COMPACTION */ 3256 3257 /* Perform direct synchronous page reclaim */ 3258 static int 3259 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 3260 const struct alloc_context *ac) 3261 { 3262 struct reclaim_state reclaim_state; 3263 int progress; 3264 3265 cond_resched(); 3266 3267 /* We now go into synchronous reclaim */ 3268 cpuset_memory_pressure_bump(); 3269 current->flags |= PF_MEMALLOC; 3270 lockdep_set_current_reclaim_state(gfp_mask); 3271 reclaim_state.reclaimed_slab = 0; 3272 current->reclaim_state = &reclaim_state; 3273 3274 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 3275 ac->nodemask); 3276 3277 current->reclaim_state = NULL; 3278 lockdep_clear_current_reclaim_state(); 3279 current->flags &= ~PF_MEMALLOC; 3280 3281 cond_resched(); 3282 3283 return progress; 3284 } 3285 3286 /* The really slow allocator path where we enter direct reclaim */ 3287 static inline struct page * 3288 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 3289 unsigned int alloc_flags, const struct alloc_context *ac, 3290 unsigned long *did_some_progress) 3291 { 3292 struct page *page = NULL; 3293 bool drained = false; 3294 3295 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 3296 if (unlikely(!(*did_some_progress))) 3297 return NULL; 3298 3299 retry: 3300 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3301 3302 /* 3303 * If an allocation failed after direct reclaim, it could be because 3304 * pages are pinned on the per-cpu lists or in high alloc reserves. 3305 * Shrink them them and try again 3306 */ 3307 if (!page && !drained) { 3308 unreserve_highatomic_pageblock(ac); 3309 drain_all_pages(NULL); 3310 drained = true; 3311 goto retry; 3312 } 3313 3314 return page; 3315 } 3316 3317 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac) 3318 { 3319 struct zoneref *z; 3320 struct zone *zone; 3321 pg_data_t *last_pgdat = NULL; 3322 3323 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 3324 ac->high_zoneidx, ac->nodemask) { 3325 if (last_pgdat != zone->zone_pgdat) 3326 wakeup_kswapd(zone, order, ac->high_zoneidx); 3327 last_pgdat = zone->zone_pgdat; 3328 } 3329 } 3330 3331 static inline unsigned int 3332 gfp_to_alloc_flags(gfp_t gfp_mask) 3333 { 3334 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 3335 3336 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 3337 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 3338 3339 /* 3340 * The caller may dip into page reserves a bit more if the caller 3341 * cannot run direct reclaim, or if the caller has realtime scheduling 3342 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 3343 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 3344 */ 3345 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 3346 3347 if (gfp_mask & __GFP_ATOMIC) { 3348 /* 3349 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 3350 * if it can't schedule. 3351 */ 3352 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3353 alloc_flags |= ALLOC_HARDER; 3354 /* 3355 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 3356 * comment for __cpuset_node_allowed(). 3357 */ 3358 alloc_flags &= ~ALLOC_CPUSET; 3359 } else if (unlikely(rt_task(current)) && !in_interrupt()) 3360 alloc_flags |= ALLOC_HARDER; 3361 3362 #ifdef CONFIG_CMA 3363 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3364 alloc_flags |= ALLOC_CMA; 3365 #endif 3366 return alloc_flags; 3367 } 3368 3369 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 3370 { 3371 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 3372 return false; 3373 3374 if (gfp_mask & __GFP_MEMALLOC) 3375 return true; 3376 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 3377 return true; 3378 if (!in_interrupt() && 3379 ((current->flags & PF_MEMALLOC) || 3380 unlikely(test_thread_flag(TIF_MEMDIE)))) 3381 return true; 3382 3383 return false; 3384 } 3385 3386 /* 3387 * Maximum number of reclaim retries without any progress before OOM killer 3388 * is consider as the only way to move forward. 3389 */ 3390 #define MAX_RECLAIM_RETRIES 16 3391 3392 /* 3393 * Checks whether it makes sense to retry the reclaim to make a forward progress 3394 * for the given allocation request. 3395 * The reclaim feedback represented by did_some_progress (any progress during 3396 * the last reclaim round) and no_progress_loops (number of reclaim rounds without 3397 * any progress in a row) is considered as well as the reclaimable pages on the 3398 * applicable zone list (with a backoff mechanism which is a function of 3399 * no_progress_loops). 3400 * 3401 * Returns true if a retry is viable or false to enter the oom path. 3402 */ 3403 static inline bool 3404 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 3405 struct alloc_context *ac, int alloc_flags, 3406 bool did_some_progress, int *no_progress_loops) 3407 { 3408 struct zone *zone; 3409 struct zoneref *z; 3410 3411 /* 3412 * Costly allocations might have made a progress but this doesn't mean 3413 * their order will become available due to high fragmentation so 3414 * always increment the no progress counter for them 3415 */ 3416 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 3417 *no_progress_loops = 0; 3418 else 3419 (*no_progress_loops)++; 3420 3421 /* 3422 * Make sure we converge to OOM if we cannot make any progress 3423 * several times in the row. 3424 */ 3425 if (*no_progress_loops > MAX_RECLAIM_RETRIES) 3426 return false; 3427 3428 /* 3429 * Keep reclaiming pages while there is a chance this will lead 3430 * somewhere. If none of the target zones can satisfy our allocation 3431 * request even if all reclaimable pages are considered then we are 3432 * screwed and have to go OOM. 3433 */ 3434 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3435 ac->nodemask) { 3436 unsigned long available; 3437 unsigned long reclaimable; 3438 3439 available = reclaimable = zone_reclaimable_pages(zone); 3440 available -= DIV_ROUND_UP((*no_progress_loops) * available, 3441 MAX_RECLAIM_RETRIES); 3442 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 3443 3444 /* 3445 * Would the allocation succeed if we reclaimed the whole 3446 * available? 3447 */ 3448 if (__zone_watermark_ok(zone, order, min_wmark_pages(zone), 3449 ac_classzone_idx(ac), alloc_flags, available)) { 3450 /* 3451 * If we didn't make any progress and have a lot of 3452 * dirty + writeback pages then we should wait for 3453 * an IO to complete to slow down the reclaim and 3454 * prevent from pre mature OOM 3455 */ 3456 if (!did_some_progress) { 3457 unsigned long write_pending; 3458 3459 write_pending = zone_page_state_snapshot(zone, 3460 NR_ZONE_WRITE_PENDING); 3461 3462 if (2 * write_pending > reclaimable) { 3463 congestion_wait(BLK_RW_ASYNC, HZ/10); 3464 return true; 3465 } 3466 } 3467 3468 /* 3469 * Memory allocation/reclaim might be called from a WQ 3470 * context and the current implementation of the WQ 3471 * concurrency control doesn't recognize that 3472 * a particular WQ is congested if the worker thread is 3473 * looping without ever sleeping. Therefore we have to 3474 * do a short sleep here rather than calling 3475 * cond_resched(). 3476 */ 3477 if (current->flags & PF_WQ_WORKER) 3478 schedule_timeout_uninterruptible(1); 3479 else 3480 cond_resched(); 3481 3482 return true; 3483 } 3484 } 3485 3486 return false; 3487 } 3488 3489 static inline struct page * 3490 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 3491 struct alloc_context *ac) 3492 { 3493 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 3494 struct page *page = NULL; 3495 unsigned int alloc_flags; 3496 unsigned long did_some_progress; 3497 enum compact_priority compact_priority = DEF_COMPACT_PRIORITY; 3498 enum compact_result compact_result; 3499 int compaction_retries = 0; 3500 int no_progress_loops = 0; 3501 unsigned long alloc_start = jiffies; 3502 unsigned int stall_timeout = 10 * HZ; 3503 3504 /* 3505 * In the slowpath, we sanity check order to avoid ever trying to 3506 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 3507 * be using allocators in order of preference for an area that is 3508 * too large. 3509 */ 3510 if (order >= MAX_ORDER) { 3511 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 3512 return NULL; 3513 } 3514 3515 /* 3516 * We also sanity check to catch abuse of atomic reserves being used by 3517 * callers that are not in atomic context. 3518 */ 3519 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 3520 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 3521 gfp_mask &= ~__GFP_ATOMIC; 3522 3523 /* 3524 * The fast path uses conservative alloc_flags to succeed only until 3525 * kswapd needs to be woken up, and to avoid the cost of setting up 3526 * alloc_flags precisely. So we do that now. 3527 */ 3528 alloc_flags = gfp_to_alloc_flags(gfp_mask); 3529 3530 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 3531 wake_all_kswapds(order, ac); 3532 3533 /* 3534 * The adjusted alloc_flags might result in immediate success, so try 3535 * that first 3536 */ 3537 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3538 if (page) 3539 goto got_pg; 3540 3541 /* 3542 * For costly allocations, try direct compaction first, as it's likely 3543 * that we have enough base pages and don't need to reclaim. Don't try 3544 * that for allocations that are allowed to ignore watermarks, as the 3545 * ALLOC_NO_WATERMARKS attempt didn't yet happen. 3546 */ 3547 if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER && 3548 !gfp_pfmemalloc_allowed(gfp_mask)) { 3549 page = __alloc_pages_direct_compact(gfp_mask, order, 3550 alloc_flags, ac, 3551 INIT_COMPACT_PRIORITY, 3552 &compact_result); 3553 if (page) 3554 goto got_pg; 3555 3556 /* 3557 * Checks for costly allocations with __GFP_NORETRY, which 3558 * includes THP page fault allocations 3559 */ 3560 if (gfp_mask & __GFP_NORETRY) { 3561 /* 3562 * If compaction is deferred for high-order allocations, 3563 * it is because sync compaction recently failed. If 3564 * this is the case and the caller requested a THP 3565 * allocation, we do not want to heavily disrupt the 3566 * system, so we fail the allocation instead of entering 3567 * direct reclaim. 3568 */ 3569 if (compact_result == COMPACT_DEFERRED) 3570 goto nopage; 3571 3572 /* 3573 * Looks like reclaim/compaction is worth trying, but 3574 * sync compaction could be very expensive, so keep 3575 * using async compaction. 3576 */ 3577 compact_priority = INIT_COMPACT_PRIORITY; 3578 } 3579 } 3580 3581 retry: 3582 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 3583 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 3584 wake_all_kswapds(order, ac); 3585 3586 if (gfp_pfmemalloc_allowed(gfp_mask)) 3587 alloc_flags = ALLOC_NO_WATERMARKS; 3588 3589 /* 3590 * Reset the zonelist iterators if memory policies can be ignored. 3591 * These allocations are high priority and system rather than user 3592 * orientated. 3593 */ 3594 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) { 3595 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask); 3596 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 3597 ac->high_zoneidx, ac->nodemask); 3598 } 3599 3600 /* Attempt with potentially adjusted zonelist and alloc_flags */ 3601 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3602 if (page) 3603 goto got_pg; 3604 3605 /* Caller is not willing to reclaim, we can't balance anything */ 3606 if (!can_direct_reclaim) { 3607 /* 3608 * All existing users of the __GFP_NOFAIL are blockable, so warn 3609 * of any new users that actually allow this type of allocation 3610 * to fail. 3611 */ 3612 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL); 3613 goto nopage; 3614 } 3615 3616 /* Avoid recursion of direct reclaim */ 3617 if (current->flags & PF_MEMALLOC) { 3618 /* 3619 * __GFP_NOFAIL request from this context is rather bizarre 3620 * because we cannot reclaim anything and only can loop waiting 3621 * for somebody to do a work for us. 3622 */ 3623 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 3624 cond_resched(); 3625 goto retry; 3626 } 3627 goto nopage; 3628 } 3629 3630 /* Avoid allocations with no watermarks from looping endlessly */ 3631 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) 3632 goto nopage; 3633 3634 3635 /* Try direct reclaim and then allocating */ 3636 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 3637 &did_some_progress); 3638 if (page) 3639 goto got_pg; 3640 3641 /* Try direct compaction and then allocating */ 3642 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 3643 compact_priority, &compact_result); 3644 if (page) 3645 goto got_pg; 3646 3647 /* Do not loop if specifically requested */ 3648 if (gfp_mask & __GFP_NORETRY) 3649 goto nopage; 3650 3651 /* 3652 * Do not retry costly high order allocations unless they are 3653 * __GFP_REPEAT 3654 */ 3655 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT)) 3656 goto nopage; 3657 3658 /* Make sure we know about allocations which stall for too long */ 3659 if (time_after(jiffies, alloc_start + stall_timeout)) { 3660 warn_alloc(gfp_mask, 3661 "page allocation stalls for %ums, order:%u", 3662 jiffies_to_msecs(jiffies-alloc_start), order); 3663 stall_timeout += 10 * HZ; 3664 } 3665 3666 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 3667 did_some_progress > 0, &no_progress_loops)) 3668 goto retry; 3669 3670 /* 3671 * It doesn't make any sense to retry for the compaction if the order-0 3672 * reclaim is not able to make any progress because the current 3673 * implementation of the compaction depends on the sufficient amount 3674 * of free memory (see __compaction_suitable) 3675 */ 3676 if (did_some_progress > 0 && 3677 should_compact_retry(ac, order, alloc_flags, 3678 compact_result, &compact_priority, 3679 &compaction_retries)) 3680 goto retry; 3681 3682 /* Reclaim has failed us, start killing things */ 3683 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 3684 if (page) 3685 goto got_pg; 3686 3687 /* Retry as long as the OOM killer is making progress */ 3688 if (did_some_progress) { 3689 no_progress_loops = 0; 3690 goto retry; 3691 } 3692 3693 nopage: 3694 warn_alloc(gfp_mask, 3695 "page allocation failure: order:%u", order); 3696 got_pg: 3697 return page; 3698 } 3699 3700 /* 3701 * This is the 'heart' of the zoned buddy allocator. 3702 */ 3703 struct page * 3704 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 3705 struct zonelist *zonelist, nodemask_t *nodemask) 3706 { 3707 struct page *page; 3708 unsigned int cpuset_mems_cookie; 3709 unsigned int alloc_flags = ALLOC_WMARK_LOW; 3710 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */ 3711 struct alloc_context ac = { 3712 .high_zoneidx = gfp_zone(gfp_mask), 3713 .zonelist = zonelist, 3714 .nodemask = nodemask, 3715 .migratetype = gfpflags_to_migratetype(gfp_mask), 3716 }; 3717 3718 if (cpusets_enabled()) { 3719 alloc_mask |= __GFP_HARDWALL; 3720 alloc_flags |= ALLOC_CPUSET; 3721 if (!ac.nodemask) 3722 ac.nodemask = &cpuset_current_mems_allowed; 3723 } 3724 3725 gfp_mask &= gfp_allowed_mask; 3726 3727 lockdep_trace_alloc(gfp_mask); 3728 3729 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 3730 3731 if (should_fail_alloc_page(gfp_mask, order)) 3732 return NULL; 3733 3734 /* 3735 * Check the zones suitable for the gfp_mask contain at least one 3736 * valid zone. It's possible to have an empty zonelist as a result 3737 * of __GFP_THISNODE and a memoryless node 3738 */ 3739 if (unlikely(!zonelist->_zonerefs->zone)) 3740 return NULL; 3741 3742 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE) 3743 alloc_flags |= ALLOC_CMA; 3744 3745 retry_cpuset: 3746 cpuset_mems_cookie = read_mems_allowed_begin(); 3747 3748 /* Dirty zone balancing only done in the fast path */ 3749 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE); 3750 3751 /* 3752 * The preferred zone is used for statistics but crucially it is 3753 * also used as the starting point for the zonelist iterator. It 3754 * may get reset for allocations that ignore memory policies. 3755 */ 3756 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist, 3757 ac.high_zoneidx, ac.nodemask); 3758 if (!ac.preferred_zoneref) { 3759 page = NULL; 3760 goto no_zone; 3761 } 3762 3763 /* First allocation attempt */ 3764 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); 3765 if (likely(page)) 3766 goto out; 3767 3768 /* 3769 * Runtime PM, block IO and its error handling path can deadlock 3770 * because I/O on the device might not complete. 3771 */ 3772 alloc_mask = memalloc_noio_flags(gfp_mask); 3773 ac.spread_dirty_pages = false; 3774 3775 /* 3776 * Restore the original nodemask if it was potentially replaced with 3777 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 3778 */ 3779 if (cpusets_enabled()) 3780 ac.nodemask = nodemask; 3781 page = __alloc_pages_slowpath(alloc_mask, order, &ac); 3782 3783 no_zone: 3784 /* 3785 * When updating a task's mems_allowed, it is possible to race with 3786 * parallel threads in such a way that an allocation can fail while 3787 * the mask is being updated. If a page allocation is about to fail, 3788 * check if the cpuset changed during allocation and if so, retry. 3789 */ 3790 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) { 3791 alloc_mask = gfp_mask; 3792 goto retry_cpuset; 3793 } 3794 3795 out: 3796 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page && 3797 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) { 3798 __free_pages(page, order); 3799 page = NULL; 3800 } 3801 3802 if (kmemcheck_enabled && page) 3803 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 3804 3805 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); 3806 3807 return page; 3808 } 3809 EXPORT_SYMBOL(__alloc_pages_nodemask); 3810 3811 /* 3812 * Common helper functions. 3813 */ 3814 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 3815 { 3816 struct page *page; 3817 3818 /* 3819 * __get_free_pages() returns a 32-bit address, which cannot represent 3820 * a highmem page 3821 */ 3822 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 3823 3824 page = alloc_pages(gfp_mask, order); 3825 if (!page) 3826 return 0; 3827 return (unsigned long) page_address(page); 3828 } 3829 EXPORT_SYMBOL(__get_free_pages); 3830 3831 unsigned long get_zeroed_page(gfp_t gfp_mask) 3832 { 3833 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 3834 } 3835 EXPORT_SYMBOL(get_zeroed_page); 3836 3837 void __free_pages(struct page *page, unsigned int order) 3838 { 3839 if (put_page_testzero(page)) { 3840 if (order == 0) 3841 free_hot_cold_page(page, false); 3842 else 3843 __free_pages_ok(page, order); 3844 } 3845 } 3846 3847 EXPORT_SYMBOL(__free_pages); 3848 3849 void free_pages(unsigned long addr, unsigned int order) 3850 { 3851 if (addr != 0) { 3852 VM_BUG_ON(!virt_addr_valid((void *)addr)); 3853 __free_pages(virt_to_page((void *)addr), order); 3854 } 3855 } 3856 3857 EXPORT_SYMBOL(free_pages); 3858 3859 /* 3860 * Page Fragment: 3861 * An arbitrary-length arbitrary-offset area of memory which resides 3862 * within a 0 or higher order page. Multiple fragments within that page 3863 * are individually refcounted, in the page's reference counter. 3864 * 3865 * The page_frag functions below provide a simple allocation framework for 3866 * page fragments. This is used by the network stack and network device 3867 * drivers to provide a backing region of memory for use as either an 3868 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 3869 */ 3870 static struct page *__page_frag_refill(struct page_frag_cache *nc, 3871 gfp_t gfp_mask) 3872 { 3873 struct page *page = NULL; 3874 gfp_t gfp = gfp_mask; 3875 3876 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 3877 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 3878 __GFP_NOMEMALLOC; 3879 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 3880 PAGE_FRAG_CACHE_MAX_ORDER); 3881 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 3882 #endif 3883 if (unlikely(!page)) 3884 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 3885 3886 nc->va = page ? page_address(page) : NULL; 3887 3888 return page; 3889 } 3890 3891 void *__alloc_page_frag(struct page_frag_cache *nc, 3892 unsigned int fragsz, gfp_t gfp_mask) 3893 { 3894 unsigned int size = PAGE_SIZE; 3895 struct page *page; 3896 int offset; 3897 3898 if (unlikely(!nc->va)) { 3899 refill: 3900 page = __page_frag_refill(nc, gfp_mask); 3901 if (!page) 3902 return NULL; 3903 3904 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 3905 /* if size can vary use size else just use PAGE_SIZE */ 3906 size = nc->size; 3907 #endif 3908 /* Even if we own the page, we do not use atomic_set(). 3909 * This would break get_page_unless_zero() users. 3910 */ 3911 page_ref_add(page, size - 1); 3912 3913 /* reset page count bias and offset to start of new frag */ 3914 nc->pfmemalloc = page_is_pfmemalloc(page); 3915 nc->pagecnt_bias = size; 3916 nc->offset = size; 3917 } 3918 3919 offset = nc->offset - fragsz; 3920 if (unlikely(offset < 0)) { 3921 page = virt_to_page(nc->va); 3922 3923 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 3924 goto refill; 3925 3926 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 3927 /* if size can vary use size else just use PAGE_SIZE */ 3928 size = nc->size; 3929 #endif 3930 /* OK, page count is 0, we can safely set it */ 3931 set_page_count(page, size); 3932 3933 /* reset page count bias and offset to start of new frag */ 3934 nc->pagecnt_bias = size; 3935 offset = size - fragsz; 3936 } 3937 3938 nc->pagecnt_bias--; 3939 nc->offset = offset; 3940 3941 return nc->va + offset; 3942 } 3943 EXPORT_SYMBOL(__alloc_page_frag); 3944 3945 /* 3946 * Frees a page fragment allocated out of either a compound or order 0 page. 3947 */ 3948 void __free_page_frag(void *addr) 3949 { 3950 struct page *page = virt_to_head_page(addr); 3951 3952 if (unlikely(put_page_testzero(page))) 3953 __free_pages_ok(page, compound_order(page)); 3954 } 3955 EXPORT_SYMBOL(__free_page_frag); 3956 3957 static void *make_alloc_exact(unsigned long addr, unsigned int order, 3958 size_t size) 3959 { 3960 if (addr) { 3961 unsigned long alloc_end = addr + (PAGE_SIZE << order); 3962 unsigned long used = addr + PAGE_ALIGN(size); 3963 3964 split_page(virt_to_page((void *)addr), order); 3965 while (used < alloc_end) { 3966 free_page(used); 3967 used += PAGE_SIZE; 3968 } 3969 } 3970 return (void *)addr; 3971 } 3972 3973 /** 3974 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 3975 * @size: the number of bytes to allocate 3976 * @gfp_mask: GFP flags for the allocation 3977 * 3978 * This function is similar to alloc_pages(), except that it allocates the 3979 * minimum number of pages to satisfy the request. alloc_pages() can only 3980 * allocate memory in power-of-two pages. 3981 * 3982 * This function is also limited by MAX_ORDER. 3983 * 3984 * Memory allocated by this function must be released by free_pages_exact(). 3985 */ 3986 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 3987 { 3988 unsigned int order = get_order(size); 3989 unsigned long addr; 3990 3991 addr = __get_free_pages(gfp_mask, order); 3992 return make_alloc_exact(addr, order, size); 3993 } 3994 EXPORT_SYMBOL(alloc_pages_exact); 3995 3996 /** 3997 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 3998 * pages on a node. 3999 * @nid: the preferred node ID where memory should be allocated 4000 * @size: the number of bytes to allocate 4001 * @gfp_mask: GFP flags for the allocation 4002 * 4003 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 4004 * back. 4005 */ 4006 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 4007 { 4008 unsigned int order = get_order(size); 4009 struct page *p = alloc_pages_node(nid, gfp_mask, order); 4010 if (!p) 4011 return NULL; 4012 return make_alloc_exact((unsigned long)page_address(p), order, size); 4013 } 4014 4015 /** 4016 * free_pages_exact - release memory allocated via alloc_pages_exact() 4017 * @virt: the value returned by alloc_pages_exact. 4018 * @size: size of allocation, same value as passed to alloc_pages_exact(). 4019 * 4020 * Release the memory allocated by a previous call to alloc_pages_exact. 4021 */ 4022 void free_pages_exact(void *virt, size_t size) 4023 { 4024 unsigned long addr = (unsigned long)virt; 4025 unsigned long end = addr + PAGE_ALIGN(size); 4026 4027 while (addr < end) { 4028 free_page(addr); 4029 addr += PAGE_SIZE; 4030 } 4031 } 4032 EXPORT_SYMBOL(free_pages_exact); 4033 4034 /** 4035 * nr_free_zone_pages - count number of pages beyond high watermark 4036 * @offset: The zone index of the highest zone 4037 * 4038 * nr_free_zone_pages() counts the number of counts pages which are beyond the 4039 * high watermark within all zones at or below a given zone index. For each 4040 * zone, the number of pages is calculated as: 4041 * managed_pages - high_pages 4042 */ 4043 static unsigned long nr_free_zone_pages(int offset) 4044 { 4045 struct zoneref *z; 4046 struct zone *zone; 4047 4048 /* Just pick one node, since fallback list is circular */ 4049 unsigned long sum = 0; 4050 4051 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 4052 4053 for_each_zone_zonelist(zone, z, zonelist, offset) { 4054 unsigned long size = zone->managed_pages; 4055 unsigned long high = high_wmark_pages(zone); 4056 if (size > high) 4057 sum += size - high; 4058 } 4059 4060 return sum; 4061 } 4062 4063 /** 4064 * nr_free_buffer_pages - count number of pages beyond high watermark 4065 * 4066 * nr_free_buffer_pages() counts the number of pages which are beyond the high 4067 * watermark within ZONE_DMA and ZONE_NORMAL. 4068 */ 4069 unsigned long nr_free_buffer_pages(void) 4070 { 4071 return nr_free_zone_pages(gfp_zone(GFP_USER)); 4072 } 4073 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 4074 4075 /** 4076 * nr_free_pagecache_pages - count number of pages beyond high watermark 4077 * 4078 * nr_free_pagecache_pages() counts the number of pages which are beyond the 4079 * high watermark within all zones. 4080 */ 4081 unsigned long nr_free_pagecache_pages(void) 4082 { 4083 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 4084 } 4085 4086 static inline void show_node(struct zone *zone) 4087 { 4088 if (IS_ENABLED(CONFIG_NUMA)) 4089 printk("Node %d ", zone_to_nid(zone)); 4090 } 4091 4092 long si_mem_available(void) 4093 { 4094 long available; 4095 unsigned long pagecache; 4096 unsigned long wmark_low = 0; 4097 unsigned long pages[NR_LRU_LISTS]; 4098 struct zone *zone; 4099 int lru; 4100 4101 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 4102 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 4103 4104 for_each_zone(zone) 4105 wmark_low += zone->watermark[WMARK_LOW]; 4106 4107 /* 4108 * Estimate the amount of memory available for userspace allocations, 4109 * without causing swapping. 4110 */ 4111 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages; 4112 4113 /* 4114 * Not all the page cache can be freed, otherwise the system will 4115 * start swapping. Assume at least half of the page cache, or the 4116 * low watermark worth of cache, needs to stay. 4117 */ 4118 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 4119 pagecache -= min(pagecache / 2, wmark_low); 4120 available += pagecache; 4121 4122 /* 4123 * Part of the reclaimable slab consists of items that are in use, 4124 * and cannot be freed. Cap this estimate at the low watermark. 4125 */ 4126 available += global_page_state(NR_SLAB_RECLAIMABLE) - 4127 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low); 4128 4129 if (available < 0) 4130 available = 0; 4131 return available; 4132 } 4133 EXPORT_SYMBOL_GPL(si_mem_available); 4134 4135 void si_meminfo(struct sysinfo *val) 4136 { 4137 val->totalram = totalram_pages; 4138 val->sharedram = global_node_page_state(NR_SHMEM); 4139 val->freeram = global_page_state(NR_FREE_PAGES); 4140 val->bufferram = nr_blockdev_pages(); 4141 val->totalhigh = totalhigh_pages; 4142 val->freehigh = nr_free_highpages(); 4143 val->mem_unit = PAGE_SIZE; 4144 } 4145 4146 EXPORT_SYMBOL(si_meminfo); 4147 4148 #ifdef CONFIG_NUMA 4149 void si_meminfo_node(struct sysinfo *val, int nid) 4150 { 4151 int zone_type; /* needs to be signed */ 4152 unsigned long managed_pages = 0; 4153 unsigned long managed_highpages = 0; 4154 unsigned long free_highpages = 0; 4155 pg_data_t *pgdat = NODE_DATA(nid); 4156 4157 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 4158 managed_pages += pgdat->node_zones[zone_type].managed_pages; 4159 val->totalram = managed_pages; 4160 val->sharedram = node_page_state(pgdat, NR_SHMEM); 4161 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 4162 #ifdef CONFIG_HIGHMEM 4163 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 4164 struct zone *zone = &pgdat->node_zones[zone_type]; 4165 4166 if (is_highmem(zone)) { 4167 managed_highpages += zone->managed_pages; 4168 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 4169 } 4170 } 4171 val->totalhigh = managed_highpages; 4172 val->freehigh = free_highpages; 4173 #else 4174 val->totalhigh = managed_highpages; 4175 val->freehigh = free_highpages; 4176 #endif 4177 val->mem_unit = PAGE_SIZE; 4178 } 4179 #endif 4180 4181 /* 4182 * Determine whether the node should be displayed or not, depending on whether 4183 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 4184 */ 4185 bool skip_free_areas_node(unsigned int flags, int nid) 4186 { 4187 bool ret = false; 4188 unsigned int cpuset_mems_cookie; 4189 4190 if (!(flags & SHOW_MEM_FILTER_NODES)) 4191 goto out; 4192 4193 do { 4194 cpuset_mems_cookie = read_mems_allowed_begin(); 4195 ret = !node_isset(nid, cpuset_current_mems_allowed); 4196 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 4197 out: 4198 return ret; 4199 } 4200 4201 #define K(x) ((x) << (PAGE_SHIFT-10)) 4202 4203 static void show_migration_types(unsigned char type) 4204 { 4205 static const char types[MIGRATE_TYPES] = { 4206 [MIGRATE_UNMOVABLE] = 'U', 4207 [MIGRATE_MOVABLE] = 'M', 4208 [MIGRATE_RECLAIMABLE] = 'E', 4209 [MIGRATE_HIGHATOMIC] = 'H', 4210 #ifdef CONFIG_CMA 4211 [MIGRATE_CMA] = 'C', 4212 #endif 4213 #ifdef CONFIG_MEMORY_ISOLATION 4214 [MIGRATE_ISOLATE] = 'I', 4215 #endif 4216 }; 4217 char tmp[MIGRATE_TYPES + 1]; 4218 char *p = tmp; 4219 int i; 4220 4221 for (i = 0; i < MIGRATE_TYPES; i++) { 4222 if (type & (1 << i)) 4223 *p++ = types[i]; 4224 } 4225 4226 *p = '\0'; 4227 printk(KERN_CONT "(%s) ", tmp); 4228 } 4229 4230 /* 4231 * Show free area list (used inside shift_scroll-lock stuff) 4232 * We also calculate the percentage fragmentation. We do this by counting the 4233 * memory on each free list with the exception of the first item on the list. 4234 * 4235 * Bits in @filter: 4236 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 4237 * cpuset. 4238 */ 4239 void show_free_areas(unsigned int filter) 4240 { 4241 unsigned long free_pcp = 0; 4242 int cpu; 4243 struct zone *zone; 4244 pg_data_t *pgdat; 4245 4246 for_each_populated_zone(zone) { 4247 if (skip_free_areas_node(filter, zone_to_nid(zone))) 4248 continue; 4249 4250 for_each_online_cpu(cpu) 4251 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 4252 } 4253 4254 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 4255 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 4256 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n" 4257 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 4258 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 4259 " free:%lu free_pcp:%lu free_cma:%lu\n", 4260 global_node_page_state(NR_ACTIVE_ANON), 4261 global_node_page_state(NR_INACTIVE_ANON), 4262 global_node_page_state(NR_ISOLATED_ANON), 4263 global_node_page_state(NR_ACTIVE_FILE), 4264 global_node_page_state(NR_INACTIVE_FILE), 4265 global_node_page_state(NR_ISOLATED_FILE), 4266 global_node_page_state(NR_UNEVICTABLE), 4267 global_node_page_state(NR_FILE_DIRTY), 4268 global_node_page_state(NR_WRITEBACK), 4269 global_node_page_state(NR_UNSTABLE_NFS), 4270 global_page_state(NR_SLAB_RECLAIMABLE), 4271 global_page_state(NR_SLAB_UNRECLAIMABLE), 4272 global_node_page_state(NR_FILE_MAPPED), 4273 global_node_page_state(NR_SHMEM), 4274 global_page_state(NR_PAGETABLE), 4275 global_page_state(NR_BOUNCE), 4276 global_page_state(NR_FREE_PAGES), 4277 free_pcp, 4278 global_page_state(NR_FREE_CMA_PAGES)); 4279 4280 for_each_online_pgdat(pgdat) { 4281 printk("Node %d" 4282 " active_anon:%lukB" 4283 " inactive_anon:%lukB" 4284 " active_file:%lukB" 4285 " inactive_file:%lukB" 4286 " unevictable:%lukB" 4287 " isolated(anon):%lukB" 4288 " isolated(file):%lukB" 4289 " mapped:%lukB" 4290 " dirty:%lukB" 4291 " writeback:%lukB" 4292 " shmem:%lukB" 4293 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4294 " shmem_thp: %lukB" 4295 " shmem_pmdmapped: %lukB" 4296 " anon_thp: %lukB" 4297 #endif 4298 " writeback_tmp:%lukB" 4299 " unstable:%lukB" 4300 " pages_scanned:%lu" 4301 " all_unreclaimable? %s" 4302 "\n", 4303 pgdat->node_id, 4304 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 4305 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 4306 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 4307 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 4308 K(node_page_state(pgdat, NR_UNEVICTABLE)), 4309 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 4310 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 4311 K(node_page_state(pgdat, NR_FILE_MAPPED)), 4312 K(node_page_state(pgdat, NR_FILE_DIRTY)), 4313 K(node_page_state(pgdat, NR_WRITEBACK)), 4314 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4315 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR), 4316 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED) 4317 * HPAGE_PMD_NR), 4318 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR), 4319 #endif 4320 K(node_page_state(pgdat, NR_SHMEM)), 4321 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 4322 K(node_page_state(pgdat, NR_UNSTABLE_NFS)), 4323 node_page_state(pgdat, NR_PAGES_SCANNED), 4324 !pgdat_reclaimable(pgdat) ? "yes" : "no"); 4325 } 4326 4327 for_each_populated_zone(zone) { 4328 int i; 4329 4330 if (skip_free_areas_node(filter, zone_to_nid(zone))) 4331 continue; 4332 4333 free_pcp = 0; 4334 for_each_online_cpu(cpu) 4335 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 4336 4337 show_node(zone); 4338 printk(KERN_CONT 4339 "%s" 4340 " free:%lukB" 4341 " min:%lukB" 4342 " low:%lukB" 4343 " high:%lukB" 4344 " active_anon:%lukB" 4345 " inactive_anon:%lukB" 4346 " active_file:%lukB" 4347 " inactive_file:%lukB" 4348 " unevictable:%lukB" 4349 " writepending:%lukB" 4350 " present:%lukB" 4351 " managed:%lukB" 4352 " mlocked:%lukB" 4353 " slab_reclaimable:%lukB" 4354 " slab_unreclaimable:%lukB" 4355 " kernel_stack:%lukB" 4356 " pagetables:%lukB" 4357 " bounce:%lukB" 4358 " free_pcp:%lukB" 4359 " local_pcp:%ukB" 4360 " free_cma:%lukB" 4361 "\n", 4362 zone->name, 4363 K(zone_page_state(zone, NR_FREE_PAGES)), 4364 K(min_wmark_pages(zone)), 4365 K(low_wmark_pages(zone)), 4366 K(high_wmark_pages(zone)), 4367 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 4368 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 4369 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 4370 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 4371 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 4372 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 4373 K(zone->present_pages), 4374 K(zone->managed_pages), 4375 K(zone_page_state(zone, NR_MLOCK)), 4376 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 4377 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 4378 zone_page_state(zone, NR_KERNEL_STACK_KB), 4379 K(zone_page_state(zone, NR_PAGETABLE)), 4380 K(zone_page_state(zone, NR_BOUNCE)), 4381 K(free_pcp), 4382 K(this_cpu_read(zone->pageset->pcp.count)), 4383 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 4384 printk("lowmem_reserve[]:"); 4385 for (i = 0; i < MAX_NR_ZONES; i++) 4386 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 4387 printk(KERN_CONT "\n"); 4388 } 4389 4390 for_each_populated_zone(zone) { 4391 unsigned int order; 4392 unsigned long nr[MAX_ORDER], flags, total = 0; 4393 unsigned char types[MAX_ORDER]; 4394 4395 if (skip_free_areas_node(filter, zone_to_nid(zone))) 4396 continue; 4397 show_node(zone); 4398 printk(KERN_CONT "%s: ", zone->name); 4399 4400 spin_lock_irqsave(&zone->lock, flags); 4401 for (order = 0; order < MAX_ORDER; order++) { 4402 struct free_area *area = &zone->free_area[order]; 4403 int type; 4404 4405 nr[order] = area->nr_free; 4406 total += nr[order] << order; 4407 4408 types[order] = 0; 4409 for (type = 0; type < MIGRATE_TYPES; type++) { 4410 if (!list_empty(&area->free_list[type])) 4411 types[order] |= 1 << type; 4412 } 4413 } 4414 spin_unlock_irqrestore(&zone->lock, flags); 4415 for (order = 0; order < MAX_ORDER; order++) { 4416 printk(KERN_CONT "%lu*%lukB ", 4417 nr[order], K(1UL) << order); 4418 if (nr[order]) 4419 show_migration_types(types[order]); 4420 } 4421 printk(KERN_CONT "= %lukB\n", K(total)); 4422 } 4423 4424 hugetlb_show_meminfo(); 4425 4426 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 4427 4428 show_swap_cache_info(); 4429 } 4430 4431 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 4432 { 4433 zoneref->zone = zone; 4434 zoneref->zone_idx = zone_idx(zone); 4435 } 4436 4437 /* 4438 * Builds allocation fallback zone lists. 4439 * 4440 * Add all populated zones of a node to the zonelist. 4441 */ 4442 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 4443 int nr_zones) 4444 { 4445 struct zone *zone; 4446 enum zone_type zone_type = MAX_NR_ZONES; 4447 4448 do { 4449 zone_type--; 4450 zone = pgdat->node_zones + zone_type; 4451 if (managed_zone(zone)) { 4452 zoneref_set_zone(zone, 4453 &zonelist->_zonerefs[nr_zones++]); 4454 check_highest_zone(zone_type); 4455 } 4456 } while (zone_type); 4457 4458 return nr_zones; 4459 } 4460 4461 4462 /* 4463 * zonelist_order: 4464 * 0 = automatic detection of better ordering. 4465 * 1 = order by ([node] distance, -zonetype) 4466 * 2 = order by (-zonetype, [node] distance) 4467 * 4468 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 4469 * the same zonelist. So only NUMA can configure this param. 4470 */ 4471 #define ZONELIST_ORDER_DEFAULT 0 4472 #define ZONELIST_ORDER_NODE 1 4473 #define ZONELIST_ORDER_ZONE 2 4474 4475 /* zonelist order in the kernel. 4476 * set_zonelist_order() will set this to NODE or ZONE. 4477 */ 4478 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 4479 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 4480 4481 4482 #ifdef CONFIG_NUMA 4483 /* The value user specified ....changed by config */ 4484 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 4485 /* string for sysctl */ 4486 #define NUMA_ZONELIST_ORDER_LEN 16 4487 char numa_zonelist_order[16] = "default"; 4488 4489 /* 4490 * interface for configure zonelist ordering. 4491 * command line option "numa_zonelist_order" 4492 * = "[dD]efault - default, automatic configuration. 4493 * = "[nN]ode - order by node locality, then by zone within node 4494 * = "[zZ]one - order by zone, then by locality within zone 4495 */ 4496 4497 static int __parse_numa_zonelist_order(char *s) 4498 { 4499 if (*s == 'd' || *s == 'D') { 4500 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 4501 } else if (*s == 'n' || *s == 'N') { 4502 user_zonelist_order = ZONELIST_ORDER_NODE; 4503 } else if (*s == 'z' || *s == 'Z') { 4504 user_zonelist_order = ZONELIST_ORDER_ZONE; 4505 } else { 4506 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s); 4507 return -EINVAL; 4508 } 4509 return 0; 4510 } 4511 4512 static __init int setup_numa_zonelist_order(char *s) 4513 { 4514 int ret; 4515 4516 if (!s) 4517 return 0; 4518 4519 ret = __parse_numa_zonelist_order(s); 4520 if (ret == 0) 4521 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); 4522 4523 return ret; 4524 } 4525 early_param("numa_zonelist_order", setup_numa_zonelist_order); 4526 4527 /* 4528 * sysctl handler for numa_zonelist_order 4529 */ 4530 int numa_zonelist_order_handler(struct ctl_table *table, int write, 4531 void __user *buffer, size_t *length, 4532 loff_t *ppos) 4533 { 4534 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 4535 int ret; 4536 static DEFINE_MUTEX(zl_order_mutex); 4537 4538 mutex_lock(&zl_order_mutex); 4539 if (write) { 4540 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) { 4541 ret = -EINVAL; 4542 goto out; 4543 } 4544 strcpy(saved_string, (char *)table->data); 4545 } 4546 ret = proc_dostring(table, write, buffer, length, ppos); 4547 if (ret) 4548 goto out; 4549 if (write) { 4550 int oldval = user_zonelist_order; 4551 4552 ret = __parse_numa_zonelist_order((char *)table->data); 4553 if (ret) { 4554 /* 4555 * bogus value. restore saved string 4556 */ 4557 strncpy((char *)table->data, saved_string, 4558 NUMA_ZONELIST_ORDER_LEN); 4559 user_zonelist_order = oldval; 4560 } else if (oldval != user_zonelist_order) { 4561 mutex_lock(&zonelists_mutex); 4562 build_all_zonelists(NULL, NULL); 4563 mutex_unlock(&zonelists_mutex); 4564 } 4565 } 4566 out: 4567 mutex_unlock(&zl_order_mutex); 4568 return ret; 4569 } 4570 4571 4572 #define MAX_NODE_LOAD (nr_online_nodes) 4573 static int node_load[MAX_NUMNODES]; 4574 4575 /** 4576 * find_next_best_node - find the next node that should appear in a given node's fallback list 4577 * @node: node whose fallback list we're appending 4578 * @used_node_mask: nodemask_t of already used nodes 4579 * 4580 * We use a number of factors to determine which is the next node that should 4581 * appear on a given node's fallback list. The node should not have appeared 4582 * already in @node's fallback list, and it should be the next closest node 4583 * according to the distance array (which contains arbitrary distance values 4584 * from each node to each node in the system), and should also prefer nodes 4585 * with no CPUs, since presumably they'll have very little allocation pressure 4586 * on them otherwise. 4587 * It returns -1 if no node is found. 4588 */ 4589 static int find_next_best_node(int node, nodemask_t *used_node_mask) 4590 { 4591 int n, val; 4592 int min_val = INT_MAX; 4593 int best_node = NUMA_NO_NODE; 4594 const struct cpumask *tmp = cpumask_of_node(0); 4595 4596 /* Use the local node if we haven't already */ 4597 if (!node_isset(node, *used_node_mask)) { 4598 node_set(node, *used_node_mask); 4599 return node; 4600 } 4601 4602 for_each_node_state(n, N_MEMORY) { 4603 4604 /* Don't want a node to appear more than once */ 4605 if (node_isset(n, *used_node_mask)) 4606 continue; 4607 4608 /* Use the distance array to find the distance */ 4609 val = node_distance(node, n); 4610 4611 /* Penalize nodes under us ("prefer the next node") */ 4612 val += (n < node); 4613 4614 /* Give preference to headless and unused nodes */ 4615 tmp = cpumask_of_node(n); 4616 if (!cpumask_empty(tmp)) 4617 val += PENALTY_FOR_NODE_WITH_CPUS; 4618 4619 /* Slight preference for less loaded node */ 4620 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 4621 val += node_load[n]; 4622 4623 if (val < min_val) { 4624 min_val = val; 4625 best_node = n; 4626 } 4627 } 4628 4629 if (best_node >= 0) 4630 node_set(best_node, *used_node_mask); 4631 4632 return best_node; 4633 } 4634 4635 4636 /* 4637 * Build zonelists ordered by node and zones within node. 4638 * This results in maximum locality--normal zone overflows into local 4639 * DMA zone, if any--but risks exhausting DMA zone. 4640 */ 4641 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 4642 { 4643 int j; 4644 struct zonelist *zonelist; 4645 4646 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK]; 4647 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 4648 ; 4649 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 4650 zonelist->_zonerefs[j].zone = NULL; 4651 zonelist->_zonerefs[j].zone_idx = 0; 4652 } 4653 4654 /* 4655 * Build gfp_thisnode zonelists 4656 */ 4657 static void build_thisnode_zonelists(pg_data_t *pgdat) 4658 { 4659 int j; 4660 struct zonelist *zonelist; 4661 4662 zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK]; 4663 j = build_zonelists_node(pgdat, zonelist, 0); 4664 zonelist->_zonerefs[j].zone = NULL; 4665 zonelist->_zonerefs[j].zone_idx = 0; 4666 } 4667 4668 /* 4669 * Build zonelists ordered by zone and nodes within zones. 4670 * This results in conserving DMA zone[s] until all Normal memory is 4671 * exhausted, but results in overflowing to remote node while memory 4672 * may still exist in local DMA zone. 4673 */ 4674 static int node_order[MAX_NUMNODES]; 4675 4676 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 4677 { 4678 int pos, j, node; 4679 int zone_type; /* needs to be signed */ 4680 struct zone *z; 4681 struct zonelist *zonelist; 4682 4683 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK]; 4684 pos = 0; 4685 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 4686 for (j = 0; j < nr_nodes; j++) { 4687 node = node_order[j]; 4688 z = &NODE_DATA(node)->node_zones[zone_type]; 4689 if (managed_zone(z)) { 4690 zoneref_set_zone(z, 4691 &zonelist->_zonerefs[pos++]); 4692 check_highest_zone(zone_type); 4693 } 4694 } 4695 } 4696 zonelist->_zonerefs[pos].zone = NULL; 4697 zonelist->_zonerefs[pos].zone_idx = 0; 4698 } 4699 4700 #if defined(CONFIG_64BIT) 4701 /* 4702 * Devices that require DMA32/DMA are relatively rare and do not justify a 4703 * penalty to every machine in case the specialised case applies. Default 4704 * to Node-ordering on 64-bit NUMA machines 4705 */ 4706 static int default_zonelist_order(void) 4707 { 4708 return ZONELIST_ORDER_NODE; 4709 } 4710 #else 4711 /* 4712 * On 32-bit, the Normal zone needs to be preserved for allocations accessible 4713 * by the kernel. If processes running on node 0 deplete the low memory zone 4714 * then reclaim will occur more frequency increasing stalls and potentially 4715 * be easier to OOM if a large percentage of the zone is under writeback or 4716 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set. 4717 * Hence, default to zone ordering on 32-bit. 4718 */ 4719 static int default_zonelist_order(void) 4720 { 4721 return ZONELIST_ORDER_ZONE; 4722 } 4723 #endif /* CONFIG_64BIT */ 4724 4725 static void set_zonelist_order(void) 4726 { 4727 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 4728 current_zonelist_order = default_zonelist_order(); 4729 else 4730 current_zonelist_order = user_zonelist_order; 4731 } 4732 4733 static void build_zonelists(pg_data_t *pgdat) 4734 { 4735 int i, node, load; 4736 nodemask_t used_mask; 4737 int local_node, prev_node; 4738 struct zonelist *zonelist; 4739 unsigned int order = current_zonelist_order; 4740 4741 /* initialize zonelists */ 4742 for (i = 0; i < MAX_ZONELISTS; i++) { 4743 zonelist = pgdat->node_zonelists + i; 4744 zonelist->_zonerefs[0].zone = NULL; 4745 zonelist->_zonerefs[0].zone_idx = 0; 4746 } 4747 4748 /* NUMA-aware ordering of nodes */ 4749 local_node = pgdat->node_id; 4750 load = nr_online_nodes; 4751 prev_node = local_node; 4752 nodes_clear(used_mask); 4753 4754 memset(node_order, 0, sizeof(node_order)); 4755 i = 0; 4756 4757 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 4758 /* 4759 * We don't want to pressure a particular node. 4760 * So adding penalty to the first node in same 4761 * distance group to make it round-robin. 4762 */ 4763 if (node_distance(local_node, node) != 4764 node_distance(local_node, prev_node)) 4765 node_load[node] = load; 4766 4767 prev_node = node; 4768 load--; 4769 if (order == ZONELIST_ORDER_NODE) 4770 build_zonelists_in_node_order(pgdat, node); 4771 else 4772 node_order[i++] = node; /* remember order */ 4773 } 4774 4775 if (order == ZONELIST_ORDER_ZONE) { 4776 /* calculate node order -- i.e., DMA last! */ 4777 build_zonelists_in_zone_order(pgdat, i); 4778 } 4779 4780 build_thisnode_zonelists(pgdat); 4781 } 4782 4783 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 4784 /* 4785 * Return node id of node used for "local" allocations. 4786 * I.e., first node id of first zone in arg node's generic zonelist. 4787 * Used for initializing percpu 'numa_mem', which is used primarily 4788 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 4789 */ 4790 int local_memory_node(int node) 4791 { 4792 struct zoneref *z; 4793 4794 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 4795 gfp_zone(GFP_KERNEL), 4796 NULL); 4797 return z->zone->node; 4798 } 4799 #endif 4800 4801 static void setup_min_unmapped_ratio(void); 4802 static void setup_min_slab_ratio(void); 4803 #else /* CONFIG_NUMA */ 4804 4805 static void set_zonelist_order(void) 4806 { 4807 current_zonelist_order = ZONELIST_ORDER_ZONE; 4808 } 4809 4810 static void build_zonelists(pg_data_t *pgdat) 4811 { 4812 int node, local_node; 4813 enum zone_type j; 4814 struct zonelist *zonelist; 4815 4816 local_node = pgdat->node_id; 4817 4818 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK]; 4819 j = build_zonelists_node(pgdat, zonelist, 0); 4820 4821 /* 4822 * Now we build the zonelist so that it contains the zones 4823 * of all the other nodes. 4824 * We don't want to pressure a particular node, so when 4825 * building the zones for node N, we make sure that the 4826 * zones coming right after the local ones are those from 4827 * node N+1 (modulo N) 4828 */ 4829 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 4830 if (!node_online(node)) 4831 continue; 4832 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 4833 } 4834 for (node = 0; node < local_node; node++) { 4835 if (!node_online(node)) 4836 continue; 4837 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 4838 } 4839 4840 zonelist->_zonerefs[j].zone = NULL; 4841 zonelist->_zonerefs[j].zone_idx = 0; 4842 } 4843 4844 #endif /* CONFIG_NUMA */ 4845 4846 /* 4847 * Boot pageset table. One per cpu which is going to be used for all 4848 * zones and all nodes. The parameters will be set in such a way 4849 * that an item put on a list will immediately be handed over to 4850 * the buddy list. This is safe since pageset manipulation is done 4851 * with interrupts disabled. 4852 * 4853 * The boot_pagesets must be kept even after bootup is complete for 4854 * unused processors and/or zones. They do play a role for bootstrapping 4855 * hotplugged processors. 4856 * 4857 * zoneinfo_show() and maybe other functions do 4858 * not check if the processor is online before following the pageset pointer. 4859 * Other parts of the kernel may not check if the zone is available. 4860 */ 4861 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 4862 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 4863 static void setup_zone_pageset(struct zone *zone); 4864 4865 /* 4866 * Global mutex to protect against size modification of zonelists 4867 * as well as to serialize pageset setup for the new populated zone. 4868 */ 4869 DEFINE_MUTEX(zonelists_mutex); 4870 4871 /* return values int ....just for stop_machine() */ 4872 static int __build_all_zonelists(void *data) 4873 { 4874 int nid; 4875 int cpu; 4876 pg_data_t *self = data; 4877 4878 #ifdef CONFIG_NUMA 4879 memset(node_load, 0, sizeof(node_load)); 4880 #endif 4881 4882 if (self && !node_online(self->node_id)) { 4883 build_zonelists(self); 4884 } 4885 4886 for_each_online_node(nid) { 4887 pg_data_t *pgdat = NODE_DATA(nid); 4888 4889 build_zonelists(pgdat); 4890 } 4891 4892 /* 4893 * Initialize the boot_pagesets that are going to be used 4894 * for bootstrapping processors. The real pagesets for 4895 * each zone will be allocated later when the per cpu 4896 * allocator is available. 4897 * 4898 * boot_pagesets are used also for bootstrapping offline 4899 * cpus if the system is already booted because the pagesets 4900 * are needed to initialize allocators on a specific cpu too. 4901 * F.e. the percpu allocator needs the page allocator which 4902 * needs the percpu allocator in order to allocate its pagesets 4903 * (a chicken-egg dilemma). 4904 */ 4905 for_each_possible_cpu(cpu) { 4906 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 4907 4908 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 4909 /* 4910 * We now know the "local memory node" for each node-- 4911 * i.e., the node of the first zone in the generic zonelist. 4912 * Set up numa_mem percpu variable for on-line cpus. During 4913 * boot, only the boot cpu should be on-line; we'll init the 4914 * secondary cpus' numa_mem as they come on-line. During 4915 * node/memory hotplug, we'll fixup all on-line cpus. 4916 */ 4917 if (cpu_online(cpu)) 4918 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 4919 #endif 4920 } 4921 4922 return 0; 4923 } 4924 4925 static noinline void __init 4926 build_all_zonelists_init(void) 4927 { 4928 __build_all_zonelists(NULL); 4929 mminit_verify_zonelist(); 4930 cpuset_init_current_mems_allowed(); 4931 } 4932 4933 /* 4934 * Called with zonelists_mutex held always 4935 * unless system_state == SYSTEM_BOOTING. 4936 * 4937 * __ref due to (1) call of __meminit annotated setup_zone_pageset 4938 * [we're only called with non-NULL zone through __meminit paths] and 4939 * (2) call of __init annotated helper build_all_zonelists_init 4940 * [protected by SYSTEM_BOOTING]. 4941 */ 4942 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone) 4943 { 4944 set_zonelist_order(); 4945 4946 if (system_state == SYSTEM_BOOTING) { 4947 build_all_zonelists_init(); 4948 } else { 4949 #ifdef CONFIG_MEMORY_HOTPLUG 4950 if (zone) 4951 setup_zone_pageset(zone); 4952 #endif 4953 /* we have to stop all cpus to guarantee there is no user 4954 of zonelist */ 4955 stop_machine(__build_all_zonelists, pgdat, NULL); 4956 /* cpuset refresh routine should be here */ 4957 } 4958 vm_total_pages = nr_free_pagecache_pages(); 4959 /* 4960 * Disable grouping by mobility if the number of pages in the 4961 * system is too low to allow the mechanism to work. It would be 4962 * more accurate, but expensive to check per-zone. This check is 4963 * made on memory-hotadd so a system can start with mobility 4964 * disabled and enable it later 4965 */ 4966 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 4967 page_group_by_mobility_disabled = 1; 4968 else 4969 page_group_by_mobility_disabled = 0; 4970 4971 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n", 4972 nr_online_nodes, 4973 zonelist_order_name[current_zonelist_order], 4974 page_group_by_mobility_disabled ? "off" : "on", 4975 vm_total_pages); 4976 #ifdef CONFIG_NUMA 4977 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 4978 #endif 4979 } 4980 4981 /* 4982 * Initially all pages are reserved - free ones are freed 4983 * up by free_all_bootmem() once the early boot process is 4984 * done. Non-atomic initialization, single-pass. 4985 */ 4986 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 4987 unsigned long start_pfn, enum memmap_context context) 4988 { 4989 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn)); 4990 unsigned long end_pfn = start_pfn + size; 4991 pg_data_t *pgdat = NODE_DATA(nid); 4992 unsigned long pfn; 4993 unsigned long nr_initialised = 0; 4994 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4995 struct memblock_region *r = NULL, *tmp; 4996 #endif 4997 4998 if (highest_memmap_pfn < end_pfn - 1) 4999 highest_memmap_pfn = end_pfn - 1; 5000 5001 /* 5002 * Honor reservation requested by the driver for this ZONE_DEVICE 5003 * memory 5004 */ 5005 if (altmap && start_pfn == altmap->base_pfn) 5006 start_pfn += altmap->reserve; 5007 5008 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 5009 /* 5010 * There can be holes in boot-time mem_map[]s handed to this 5011 * function. They do not exist on hotplugged memory. 5012 */ 5013 if (context != MEMMAP_EARLY) 5014 goto not_early; 5015 5016 if (!early_pfn_valid(pfn)) 5017 continue; 5018 if (!early_pfn_in_nid(pfn, nid)) 5019 continue; 5020 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised)) 5021 break; 5022 5023 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5024 /* 5025 * Check given memblock attribute by firmware which can affect 5026 * kernel memory layout. If zone==ZONE_MOVABLE but memory is 5027 * mirrored, it's an overlapped memmap init. skip it. 5028 */ 5029 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 5030 if (!r || pfn >= memblock_region_memory_end_pfn(r)) { 5031 for_each_memblock(memory, tmp) 5032 if (pfn < memblock_region_memory_end_pfn(tmp)) 5033 break; 5034 r = tmp; 5035 } 5036 if (pfn >= memblock_region_memory_base_pfn(r) && 5037 memblock_is_mirror(r)) { 5038 /* already initialized as NORMAL */ 5039 pfn = memblock_region_memory_end_pfn(r); 5040 continue; 5041 } 5042 } 5043 #endif 5044 5045 not_early: 5046 /* 5047 * Mark the block movable so that blocks are reserved for 5048 * movable at startup. This will force kernel allocations 5049 * to reserve their blocks rather than leaking throughout 5050 * the address space during boot when many long-lived 5051 * kernel allocations are made. 5052 * 5053 * bitmap is created for zone's valid pfn range. but memmap 5054 * can be created for invalid pages (for alignment) 5055 * check here not to call set_pageblock_migratetype() against 5056 * pfn out of zone. 5057 */ 5058 if (!(pfn & (pageblock_nr_pages - 1))) { 5059 struct page *page = pfn_to_page(pfn); 5060 5061 __init_single_page(page, pfn, zone, nid); 5062 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5063 } else { 5064 __init_single_pfn(pfn, zone, nid); 5065 } 5066 } 5067 } 5068 5069 static void __meminit zone_init_free_lists(struct zone *zone) 5070 { 5071 unsigned int order, t; 5072 for_each_migratetype_order(order, t) { 5073 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 5074 zone->free_area[order].nr_free = 0; 5075 } 5076 } 5077 5078 #ifndef __HAVE_ARCH_MEMMAP_INIT 5079 #define memmap_init(size, nid, zone, start_pfn) \ 5080 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 5081 #endif 5082 5083 static int zone_batchsize(struct zone *zone) 5084 { 5085 #ifdef CONFIG_MMU 5086 int batch; 5087 5088 /* 5089 * The per-cpu-pages pools are set to around 1000th of the 5090 * size of the zone. But no more than 1/2 of a meg. 5091 * 5092 * OK, so we don't know how big the cache is. So guess. 5093 */ 5094 batch = zone->managed_pages / 1024; 5095 if (batch * PAGE_SIZE > 512 * 1024) 5096 batch = (512 * 1024) / PAGE_SIZE; 5097 batch /= 4; /* We effectively *= 4 below */ 5098 if (batch < 1) 5099 batch = 1; 5100 5101 /* 5102 * Clamp the batch to a 2^n - 1 value. Having a power 5103 * of 2 value was found to be more likely to have 5104 * suboptimal cache aliasing properties in some cases. 5105 * 5106 * For example if 2 tasks are alternately allocating 5107 * batches of pages, one task can end up with a lot 5108 * of pages of one half of the possible page colors 5109 * and the other with pages of the other colors. 5110 */ 5111 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5112 5113 return batch; 5114 5115 #else 5116 /* The deferral and batching of frees should be suppressed under NOMMU 5117 * conditions. 5118 * 5119 * The problem is that NOMMU needs to be able to allocate large chunks 5120 * of contiguous memory as there's no hardware page translation to 5121 * assemble apparent contiguous memory from discontiguous pages. 5122 * 5123 * Queueing large contiguous runs of pages for batching, however, 5124 * causes the pages to actually be freed in smaller chunks. As there 5125 * can be a significant delay between the individual batches being 5126 * recycled, this leads to the once large chunks of space being 5127 * fragmented and becoming unavailable for high-order allocations. 5128 */ 5129 return 0; 5130 #endif 5131 } 5132 5133 /* 5134 * pcp->high and pcp->batch values are related and dependent on one another: 5135 * ->batch must never be higher then ->high. 5136 * The following function updates them in a safe manner without read side 5137 * locking. 5138 * 5139 * Any new users of pcp->batch and pcp->high should ensure they can cope with 5140 * those fields changing asynchronously (acording the the above rule). 5141 * 5142 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 5143 * outside of boot time (or some other assurance that no concurrent updaters 5144 * exist). 5145 */ 5146 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 5147 unsigned long batch) 5148 { 5149 /* start with a fail safe value for batch */ 5150 pcp->batch = 1; 5151 smp_wmb(); 5152 5153 /* Update high, then batch, in order */ 5154 pcp->high = high; 5155 smp_wmb(); 5156 5157 pcp->batch = batch; 5158 } 5159 5160 /* a companion to pageset_set_high() */ 5161 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 5162 { 5163 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 5164 } 5165 5166 static void pageset_init(struct per_cpu_pageset *p) 5167 { 5168 struct per_cpu_pages *pcp; 5169 int migratetype; 5170 5171 memset(p, 0, sizeof(*p)); 5172 5173 pcp = &p->pcp; 5174 pcp->count = 0; 5175 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 5176 INIT_LIST_HEAD(&pcp->lists[migratetype]); 5177 } 5178 5179 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 5180 { 5181 pageset_init(p); 5182 pageset_set_batch(p, batch); 5183 } 5184 5185 /* 5186 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 5187 * to the value high for the pageset p. 5188 */ 5189 static void pageset_set_high(struct per_cpu_pageset *p, 5190 unsigned long high) 5191 { 5192 unsigned long batch = max(1UL, high / 4); 5193 if ((high / 4) > (PAGE_SHIFT * 8)) 5194 batch = PAGE_SHIFT * 8; 5195 5196 pageset_update(&p->pcp, high, batch); 5197 } 5198 5199 static void pageset_set_high_and_batch(struct zone *zone, 5200 struct per_cpu_pageset *pcp) 5201 { 5202 if (percpu_pagelist_fraction) 5203 pageset_set_high(pcp, 5204 (zone->managed_pages / 5205 percpu_pagelist_fraction)); 5206 else 5207 pageset_set_batch(pcp, zone_batchsize(zone)); 5208 } 5209 5210 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 5211 { 5212 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 5213 5214 pageset_init(pcp); 5215 pageset_set_high_and_batch(zone, pcp); 5216 } 5217 5218 static void __meminit setup_zone_pageset(struct zone *zone) 5219 { 5220 int cpu; 5221 zone->pageset = alloc_percpu(struct per_cpu_pageset); 5222 for_each_possible_cpu(cpu) 5223 zone_pageset_init(zone, cpu); 5224 } 5225 5226 /* 5227 * Allocate per cpu pagesets and initialize them. 5228 * Before this call only boot pagesets were available. 5229 */ 5230 void __init setup_per_cpu_pageset(void) 5231 { 5232 struct pglist_data *pgdat; 5233 struct zone *zone; 5234 5235 for_each_populated_zone(zone) 5236 setup_zone_pageset(zone); 5237 5238 for_each_online_pgdat(pgdat) 5239 pgdat->per_cpu_nodestats = 5240 alloc_percpu(struct per_cpu_nodestat); 5241 } 5242 5243 static __meminit void zone_pcp_init(struct zone *zone) 5244 { 5245 /* 5246 * per cpu subsystem is not up at this point. The following code 5247 * relies on the ability of the linker to provide the 5248 * offset of a (static) per cpu variable into the per cpu area. 5249 */ 5250 zone->pageset = &boot_pageset; 5251 5252 if (populated_zone(zone)) 5253 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 5254 zone->name, zone->present_pages, 5255 zone_batchsize(zone)); 5256 } 5257 5258 int __meminit init_currently_empty_zone(struct zone *zone, 5259 unsigned long zone_start_pfn, 5260 unsigned long size) 5261 { 5262 struct pglist_data *pgdat = zone->zone_pgdat; 5263 5264 pgdat->nr_zones = zone_idx(zone) + 1; 5265 5266 zone->zone_start_pfn = zone_start_pfn; 5267 5268 mminit_dprintk(MMINIT_TRACE, "memmap_init", 5269 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 5270 pgdat->node_id, 5271 (unsigned long)zone_idx(zone), 5272 zone_start_pfn, (zone_start_pfn + size)); 5273 5274 zone_init_free_lists(zone); 5275 zone->initialized = 1; 5276 5277 return 0; 5278 } 5279 5280 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5281 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 5282 5283 /* 5284 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 5285 */ 5286 int __meminit __early_pfn_to_nid(unsigned long pfn, 5287 struct mminit_pfnnid_cache *state) 5288 { 5289 unsigned long start_pfn, end_pfn; 5290 int nid; 5291 5292 if (state->last_start <= pfn && pfn < state->last_end) 5293 return state->last_nid; 5294 5295 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 5296 if (nid != -1) { 5297 state->last_start = start_pfn; 5298 state->last_end = end_pfn; 5299 state->last_nid = nid; 5300 } 5301 5302 return nid; 5303 } 5304 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 5305 5306 /** 5307 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range 5308 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 5309 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid 5310 * 5311 * If an architecture guarantees that all ranges registered contain no holes 5312 * and may be freed, this this function may be used instead of calling 5313 * memblock_free_early_nid() manually. 5314 */ 5315 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 5316 { 5317 unsigned long start_pfn, end_pfn; 5318 int i, this_nid; 5319 5320 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 5321 start_pfn = min(start_pfn, max_low_pfn); 5322 end_pfn = min(end_pfn, max_low_pfn); 5323 5324 if (start_pfn < end_pfn) 5325 memblock_free_early_nid(PFN_PHYS(start_pfn), 5326 (end_pfn - start_pfn) << PAGE_SHIFT, 5327 this_nid); 5328 } 5329 } 5330 5331 /** 5332 * sparse_memory_present_with_active_regions - Call memory_present for each active range 5333 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 5334 * 5335 * If an architecture guarantees that all ranges registered contain no holes and may 5336 * be freed, this function may be used instead of calling memory_present() manually. 5337 */ 5338 void __init sparse_memory_present_with_active_regions(int nid) 5339 { 5340 unsigned long start_pfn, end_pfn; 5341 int i, this_nid; 5342 5343 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 5344 memory_present(this_nid, start_pfn, end_pfn); 5345 } 5346 5347 /** 5348 * get_pfn_range_for_nid - Return the start and end page frames for a node 5349 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 5350 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 5351 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 5352 * 5353 * It returns the start and end page frame of a node based on information 5354 * provided by memblock_set_node(). If called for a node 5355 * with no available memory, a warning is printed and the start and end 5356 * PFNs will be 0. 5357 */ 5358 void __meminit get_pfn_range_for_nid(unsigned int nid, 5359 unsigned long *start_pfn, unsigned long *end_pfn) 5360 { 5361 unsigned long this_start_pfn, this_end_pfn; 5362 int i; 5363 5364 *start_pfn = -1UL; 5365 *end_pfn = 0; 5366 5367 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 5368 *start_pfn = min(*start_pfn, this_start_pfn); 5369 *end_pfn = max(*end_pfn, this_end_pfn); 5370 } 5371 5372 if (*start_pfn == -1UL) 5373 *start_pfn = 0; 5374 } 5375 5376 /* 5377 * This finds a zone that can be used for ZONE_MOVABLE pages. The 5378 * assumption is made that zones within a node are ordered in monotonic 5379 * increasing memory addresses so that the "highest" populated zone is used 5380 */ 5381 static void __init find_usable_zone_for_movable(void) 5382 { 5383 int zone_index; 5384 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 5385 if (zone_index == ZONE_MOVABLE) 5386 continue; 5387 5388 if (arch_zone_highest_possible_pfn[zone_index] > 5389 arch_zone_lowest_possible_pfn[zone_index]) 5390 break; 5391 } 5392 5393 VM_BUG_ON(zone_index == -1); 5394 movable_zone = zone_index; 5395 } 5396 5397 /* 5398 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 5399 * because it is sized independent of architecture. Unlike the other zones, 5400 * the starting point for ZONE_MOVABLE is not fixed. It may be different 5401 * in each node depending on the size of each node and how evenly kernelcore 5402 * is distributed. This helper function adjusts the zone ranges 5403 * provided by the architecture for a given node by using the end of the 5404 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 5405 * zones within a node are in order of monotonic increases memory addresses 5406 */ 5407 static void __meminit adjust_zone_range_for_zone_movable(int nid, 5408 unsigned long zone_type, 5409 unsigned long node_start_pfn, 5410 unsigned long node_end_pfn, 5411 unsigned long *zone_start_pfn, 5412 unsigned long *zone_end_pfn) 5413 { 5414 /* Only adjust if ZONE_MOVABLE is on this node */ 5415 if (zone_movable_pfn[nid]) { 5416 /* Size ZONE_MOVABLE */ 5417 if (zone_type == ZONE_MOVABLE) { 5418 *zone_start_pfn = zone_movable_pfn[nid]; 5419 *zone_end_pfn = min(node_end_pfn, 5420 arch_zone_highest_possible_pfn[movable_zone]); 5421 5422 /* Adjust for ZONE_MOVABLE starting within this range */ 5423 } else if (!mirrored_kernelcore && 5424 *zone_start_pfn < zone_movable_pfn[nid] && 5425 *zone_end_pfn > zone_movable_pfn[nid]) { 5426 *zone_end_pfn = zone_movable_pfn[nid]; 5427 5428 /* Check if this whole range is within ZONE_MOVABLE */ 5429 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 5430 *zone_start_pfn = *zone_end_pfn; 5431 } 5432 } 5433 5434 /* 5435 * Return the number of pages a zone spans in a node, including holes 5436 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 5437 */ 5438 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 5439 unsigned long zone_type, 5440 unsigned long node_start_pfn, 5441 unsigned long node_end_pfn, 5442 unsigned long *zone_start_pfn, 5443 unsigned long *zone_end_pfn, 5444 unsigned long *ignored) 5445 { 5446 /* When hotadd a new node from cpu_up(), the node should be empty */ 5447 if (!node_start_pfn && !node_end_pfn) 5448 return 0; 5449 5450 /* Get the start and end of the zone */ 5451 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 5452 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 5453 adjust_zone_range_for_zone_movable(nid, zone_type, 5454 node_start_pfn, node_end_pfn, 5455 zone_start_pfn, zone_end_pfn); 5456 5457 /* Check that this node has pages within the zone's required range */ 5458 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 5459 return 0; 5460 5461 /* Move the zone boundaries inside the node if necessary */ 5462 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 5463 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 5464 5465 /* Return the spanned pages */ 5466 return *zone_end_pfn - *zone_start_pfn; 5467 } 5468 5469 /* 5470 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 5471 * then all holes in the requested range will be accounted for. 5472 */ 5473 unsigned long __meminit __absent_pages_in_range(int nid, 5474 unsigned long range_start_pfn, 5475 unsigned long range_end_pfn) 5476 { 5477 unsigned long nr_absent = range_end_pfn - range_start_pfn; 5478 unsigned long start_pfn, end_pfn; 5479 int i; 5480 5481 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 5482 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 5483 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 5484 nr_absent -= end_pfn - start_pfn; 5485 } 5486 return nr_absent; 5487 } 5488 5489 /** 5490 * absent_pages_in_range - Return number of page frames in holes within a range 5491 * @start_pfn: The start PFN to start searching for holes 5492 * @end_pfn: The end PFN to stop searching for holes 5493 * 5494 * It returns the number of pages frames in memory holes within a range. 5495 */ 5496 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 5497 unsigned long end_pfn) 5498 { 5499 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 5500 } 5501 5502 /* Return the number of page frames in holes in a zone on a node */ 5503 static unsigned long __meminit zone_absent_pages_in_node(int nid, 5504 unsigned long zone_type, 5505 unsigned long node_start_pfn, 5506 unsigned long node_end_pfn, 5507 unsigned long *ignored) 5508 { 5509 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 5510 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 5511 unsigned long zone_start_pfn, zone_end_pfn; 5512 unsigned long nr_absent; 5513 5514 /* When hotadd a new node from cpu_up(), the node should be empty */ 5515 if (!node_start_pfn && !node_end_pfn) 5516 return 0; 5517 5518 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 5519 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 5520 5521 adjust_zone_range_for_zone_movable(nid, zone_type, 5522 node_start_pfn, node_end_pfn, 5523 &zone_start_pfn, &zone_end_pfn); 5524 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 5525 5526 /* 5527 * ZONE_MOVABLE handling. 5528 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 5529 * and vice versa. 5530 */ 5531 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 5532 unsigned long start_pfn, end_pfn; 5533 struct memblock_region *r; 5534 5535 for_each_memblock(memory, r) { 5536 start_pfn = clamp(memblock_region_memory_base_pfn(r), 5537 zone_start_pfn, zone_end_pfn); 5538 end_pfn = clamp(memblock_region_memory_end_pfn(r), 5539 zone_start_pfn, zone_end_pfn); 5540 5541 if (zone_type == ZONE_MOVABLE && 5542 memblock_is_mirror(r)) 5543 nr_absent += end_pfn - start_pfn; 5544 5545 if (zone_type == ZONE_NORMAL && 5546 !memblock_is_mirror(r)) 5547 nr_absent += end_pfn - start_pfn; 5548 } 5549 } 5550 5551 return nr_absent; 5552 } 5553 5554 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5555 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 5556 unsigned long zone_type, 5557 unsigned long node_start_pfn, 5558 unsigned long node_end_pfn, 5559 unsigned long *zone_start_pfn, 5560 unsigned long *zone_end_pfn, 5561 unsigned long *zones_size) 5562 { 5563 unsigned int zone; 5564 5565 *zone_start_pfn = node_start_pfn; 5566 for (zone = 0; zone < zone_type; zone++) 5567 *zone_start_pfn += zones_size[zone]; 5568 5569 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type]; 5570 5571 return zones_size[zone_type]; 5572 } 5573 5574 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 5575 unsigned long zone_type, 5576 unsigned long node_start_pfn, 5577 unsigned long node_end_pfn, 5578 unsigned long *zholes_size) 5579 { 5580 if (!zholes_size) 5581 return 0; 5582 5583 return zholes_size[zone_type]; 5584 } 5585 5586 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5587 5588 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 5589 unsigned long node_start_pfn, 5590 unsigned long node_end_pfn, 5591 unsigned long *zones_size, 5592 unsigned long *zholes_size) 5593 { 5594 unsigned long realtotalpages = 0, totalpages = 0; 5595 enum zone_type i; 5596 5597 for (i = 0; i < MAX_NR_ZONES; i++) { 5598 struct zone *zone = pgdat->node_zones + i; 5599 unsigned long zone_start_pfn, zone_end_pfn; 5600 unsigned long size, real_size; 5601 5602 size = zone_spanned_pages_in_node(pgdat->node_id, i, 5603 node_start_pfn, 5604 node_end_pfn, 5605 &zone_start_pfn, 5606 &zone_end_pfn, 5607 zones_size); 5608 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i, 5609 node_start_pfn, node_end_pfn, 5610 zholes_size); 5611 if (size) 5612 zone->zone_start_pfn = zone_start_pfn; 5613 else 5614 zone->zone_start_pfn = 0; 5615 zone->spanned_pages = size; 5616 zone->present_pages = real_size; 5617 5618 totalpages += size; 5619 realtotalpages += real_size; 5620 } 5621 5622 pgdat->node_spanned_pages = totalpages; 5623 pgdat->node_present_pages = realtotalpages; 5624 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 5625 realtotalpages); 5626 } 5627 5628 #ifndef CONFIG_SPARSEMEM 5629 /* 5630 * Calculate the size of the zone->blockflags rounded to an unsigned long 5631 * Start by making sure zonesize is a multiple of pageblock_order by rounding 5632 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 5633 * round what is now in bits to nearest long in bits, then return it in 5634 * bytes. 5635 */ 5636 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 5637 { 5638 unsigned long usemapsize; 5639 5640 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 5641 usemapsize = roundup(zonesize, pageblock_nr_pages); 5642 usemapsize = usemapsize >> pageblock_order; 5643 usemapsize *= NR_PAGEBLOCK_BITS; 5644 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 5645 5646 return usemapsize / 8; 5647 } 5648 5649 static void __init setup_usemap(struct pglist_data *pgdat, 5650 struct zone *zone, 5651 unsigned long zone_start_pfn, 5652 unsigned long zonesize) 5653 { 5654 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 5655 zone->pageblock_flags = NULL; 5656 if (usemapsize) 5657 zone->pageblock_flags = 5658 memblock_virt_alloc_node_nopanic(usemapsize, 5659 pgdat->node_id); 5660 } 5661 #else 5662 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 5663 unsigned long zone_start_pfn, unsigned long zonesize) {} 5664 #endif /* CONFIG_SPARSEMEM */ 5665 5666 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 5667 5668 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 5669 void __paginginit set_pageblock_order(void) 5670 { 5671 unsigned int order; 5672 5673 /* Check that pageblock_nr_pages has not already been setup */ 5674 if (pageblock_order) 5675 return; 5676 5677 if (HPAGE_SHIFT > PAGE_SHIFT) 5678 order = HUGETLB_PAGE_ORDER; 5679 else 5680 order = MAX_ORDER - 1; 5681 5682 /* 5683 * Assume the largest contiguous order of interest is a huge page. 5684 * This value may be variable depending on boot parameters on IA64 and 5685 * powerpc. 5686 */ 5687 pageblock_order = order; 5688 } 5689 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 5690 5691 /* 5692 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 5693 * is unused as pageblock_order is set at compile-time. See 5694 * include/linux/pageblock-flags.h for the values of pageblock_order based on 5695 * the kernel config 5696 */ 5697 void __paginginit set_pageblock_order(void) 5698 { 5699 } 5700 5701 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 5702 5703 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages, 5704 unsigned long present_pages) 5705 { 5706 unsigned long pages = spanned_pages; 5707 5708 /* 5709 * Provide a more accurate estimation if there are holes within 5710 * the zone and SPARSEMEM is in use. If there are holes within the 5711 * zone, each populated memory region may cost us one or two extra 5712 * memmap pages due to alignment because memmap pages for each 5713 * populated regions may not naturally algined on page boundary. 5714 * So the (present_pages >> 4) heuristic is a tradeoff for that. 5715 */ 5716 if (spanned_pages > present_pages + (present_pages >> 4) && 5717 IS_ENABLED(CONFIG_SPARSEMEM)) 5718 pages = present_pages; 5719 5720 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 5721 } 5722 5723 /* 5724 * Set up the zone data structures: 5725 * - mark all pages reserved 5726 * - mark all memory queues empty 5727 * - clear the memory bitmaps 5728 * 5729 * NOTE: pgdat should get zeroed by caller. 5730 */ 5731 static void __paginginit free_area_init_core(struct pglist_data *pgdat) 5732 { 5733 enum zone_type j; 5734 int nid = pgdat->node_id; 5735 int ret; 5736 5737 pgdat_resize_init(pgdat); 5738 #ifdef CONFIG_NUMA_BALANCING 5739 spin_lock_init(&pgdat->numabalancing_migrate_lock); 5740 pgdat->numabalancing_migrate_nr_pages = 0; 5741 pgdat->numabalancing_migrate_next_window = jiffies; 5742 #endif 5743 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5744 spin_lock_init(&pgdat->split_queue_lock); 5745 INIT_LIST_HEAD(&pgdat->split_queue); 5746 pgdat->split_queue_len = 0; 5747 #endif 5748 init_waitqueue_head(&pgdat->kswapd_wait); 5749 init_waitqueue_head(&pgdat->pfmemalloc_wait); 5750 #ifdef CONFIG_COMPACTION 5751 init_waitqueue_head(&pgdat->kcompactd_wait); 5752 #endif 5753 pgdat_page_ext_init(pgdat); 5754 spin_lock_init(&pgdat->lru_lock); 5755 lruvec_init(node_lruvec(pgdat)); 5756 5757 for (j = 0; j < MAX_NR_ZONES; j++) { 5758 struct zone *zone = pgdat->node_zones + j; 5759 unsigned long size, realsize, freesize, memmap_pages; 5760 unsigned long zone_start_pfn = zone->zone_start_pfn; 5761 5762 size = zone->spanned_pages; 5763 realsize = freesize = zone->present_pages; 5764 5765 /* 5766 * Adjust freesize so that it accounts for how much memory 5767 * is used by this zone for memmap. This affects the watermark 5768 * and per-cpu initialisations 5769 */ 5770 memmap_pages = calc_memmap_size(size, realsize); 5771 if (!is_highmem_idx(j)) { 5772 if (freesize >= memmap_pages) { 5773 freesize -= memmap_pages; 5774 if (memmap_pages) 5775 printk(KERN_DEBUG 5776 " %s zone: %lu pages used for memmap\n", 5777 zone_names[j], memmap_pages); 5778 } else 5779 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n", 5780 zone_names[j], memmap_pages, freesize); 5781 } 5782 5783 /* Account for reserved pages */ 5784 if (j == 0 && freesize > dma_reserve) { 5785 freesize -= dma_reserve; 5786 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 5787 zone_names[0], dma_reserve); 5788 } 5789 5790 if (!is_highmem_idx(j)) 5791 nr_kernel_pages += freesize; 5792 /* Charge for highmem memmap if there are enough kernel pages */ 5793 else if (nr_kernel_pages > memmap_pages * 2) 5794 nr_kernel_pages -= memmap_pages; 5795 nr_all_pages += freesize; 5796 5797 /* 5798 * Set an approximate value for lowmem here, it will be adjusted 5799 * when the bootmem allocator frees pages into the buddy system. 5800 * And all highmem pages will be managed by the buddy system. 5801 */ 5802 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize; 5803 #ifdef CONFIG_NUMA 5804 zone->node = nid; 5805 #endif 5806 zone->name = zone_names[j]; 5807 zone->zone_pgdat = pgdat; 5808 spin_lock_init(&zone->lock); 5809 zone_seqlock_init(zone); 5810 zone_pcp_init(zone); 5811 5812 if (!size) 5813 continue; 5814 5815 set_pageblock_order(); 5816 setup_usemap(pgdat, zone, zone_start_pfn, size); 5817 ret = init_currently_empty_zone(zone, zone_start_pfn, size); 5818 BUG_ON(ret); 5819 memmap_init(size, nid, j, zone_start_pfn); 5820 } 5821 } 5822 5823 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) 5824 { 5825 unsigned long __maybe_unused start = 0; 5826 unsigned long __maybe_unused offset = 0; 5827 5828 /* Skip empty nodes */ 5829 if (!pgdat->node_spanned_pages) 5830 return; 5831 5832 #ifdef CONFIG_FLAT_NODE_MEM_MAP 5833 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 5834 offset = pgdat->node_start_pfn - start; 5835 /* ia64 gets its own node_mem_map, before this, without bootmem */ 5836 if (!pgdat->node_mem_map) { 5837 unsigned long size, end; 5838 struct page *map; 5839 5840 /* 5841 * The zone's endpoints aren't required to be MAX_ORDER 5842 * aligned but the node_mem_map endpoints must be in order 5843 * for the buddy allocator to function correctly. 5844 */ 5845 end = pgdat_end_pfn(pgdat); 5846 end = ALIGN(end, MAX_ORDER_NR_PAGES); 5847 size = (end - start) * sizeof(struct page); 5848 map = alloc_remap(pgdat->node_id, size); 5849 if (!map) 5850 map = memblock_virt_alloc_node_nopanic(size, 5851 pgdat->node_id); 5852 pgdat->node_mem_map = map + offset; 5853 } 5854 #ifndef CONFIG_NEED_MULTIPLE_NODES 5855 /* 5856 * With no DISCONTIG, the global mem_map is just set as node 0's 5857 */ 5858 if (pgdat == NODE_DATA(0)) { 5859 mem_map = NODE_DATA(0)->node_mem_map; 5860 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM) 5861 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 5862 mem_map -= offset; 5863 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5864 } 5865 #endif 5866 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 5867 } 5868 5869 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 5870 unsigned long node_start_pfn, unsigned long *zholes_size) 5871 { 5872 pg_data_t *pgdat = NODE_DATA(nid); 5873 unsigned long start_pfn = 0; 5874 unsigned long end_pfn = 0; 5875 5876 /* pg_data_t should be reset to zero when it's allocated */ 5877 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx); 5878 5879 reset_deferred_meminit(pgdat); 5880 pgdat->node_id = nid; 5881 pgdat->node_start_pfn = node_start_pfn; 5882 pgdat->per_cpu_nodestats = NULL; 5883 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5884 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 5885 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 5886 (u64)start_pfn << PAGE_SHIFT, 5887 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 5888 #else 5889 start_pfn = node_start_pfn; 5890 #endif 5891 calculate_node_totalpages(pgdat, start_pfn, end_pfn, 5892 zones_size, zholes_size); 5893 5894 alloc_node_mem_map(pgdat); 5895 #ifdef CONFIG_FLAT_NODE_MEM_MAP 5896 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 5897 nid, (unsigned long)pgdat, 5898 (unsigned long)pgdat->node_mem_map); 5899 #endif 5900 5901 free_area_init_core(pgdat); 5902 } 5903 5904 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5905 5906 #if MAX_NUMNODES > 1 5907 /* 5908 * Figure out the number of possible node ids. 5909 */ 5910 void __init setup_nr_node_ids(void) 5911 { 5912 unsigned int highest; 5913 5914 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 5915 nr_node_ids = highest + 1; 5916 } 5917 #endif 5918 5919 /** 5920 * node_map_pfn_alignment - determine the maximum internode alignment 5921 * 5922 * This function should be called after node map is populated and sorted. 5923 * It calculates the maximum power of two alignment which can distinguish 5924 * all the nodes. 5925 * 5926 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 5927 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 5928 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 5929 * shifted, 1GiB is enough and this function will indicate so. 5930 * 5931 * This is used to test whether pfn -> nid mapping of the chosen memory 5932 * model has fine enough granularity to avoid incorrect mapping for the 5933 * populated node map. 5934 * 5935 * Returns the determined alignment in pfn's. 0 if there is no alignment 5936 * requirement (single node). 5937 */ 5938 unsigned long __init node_map_pfn_alignment(void) 5939 { 5940 unsigned long accl_mask = 0, last_end = 0; 5941 unsigned long start, end, mask; 5942 int last_nid = -1; 5943 int i, nid; 5944 5945 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 5946 if (!start || last_nid < 0 || last_nid == nid) { 5947 last_nid = nid; 5948 last_end = end; 5949 continue; 5950 } 5951 5952 /* 5953 * Start with a mask granular enough to pin-point to the 5954 * start pfn and tick off bits one-by-one until it becomes 5955 * too coarse to separate the current node from the last. 5956 */ 5957 mask = ~((1 << __ffs(start)) - 1); 5958 while (mask && last_end <= (start & (mask << 1))) 5959 mask <<= 1; 5960 5961 /* accumulate all internode masks */ 5962 accl_mask |= mask; 5963 } 5964 5965 /* convert mask to number of pages */ 5966 return ~accl_mask + 1; 5967 } 5968 5969 /* Find the lowest pfn for a node */ 5970 static unsigned long __init find_min_pfn_for_node(int nid) 5971 { 5972 unsigned long min_pfn = ULONG_MAX; 5973 unsigned long start_pfn; 5974 int i; 5975 5976 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 5977 min_pfn = min(min_pfn, start_pfn); 5978 5979 if (min_pfn == ULONG_MAX) { 5980 pr_warn("Could not find start_pfn for node %d\n", nid); 5981 return 0; 5982 } 5983 5984 return min_pfn; 5985 } 5986 5987 /** 5988 * find_min_pfn_with_active_regions - Find the minimum PFN registered 5989 * 5990 * It returns the minimum PFN based on information provided via 5991 * memblock_set_node(). 5992 */ 5993 unsigned long __init find_min_pfn_with_active_regions(void) 5994 { 5995 return find_min_pfn_for_node(MAX_NUMNODES); 5996 } 5997 5998 /* 5999 * early_calculate_totalpages() 6000 * Sum pages in active regions for movable zone. 6001 * Populate N_MEMORY for calculating usable_nodes. 6002 */ 6003 static unsigned long __init early_calculate_totalpages(void) 6004 { 6005 unsigned long totalpages = 0; 6006 unsigned long start_pfn, end_pfn; 6007 int i, nid; 6008 6009 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 6010 unsigned long pages = end_pfn - start_pfn; 6011 6012 totalpages += pages; 6013 if (pages) 6014 node_set_state(nid, N_MEMORY); 6015 } 6016 return totalpages; 6017 } 6018 6019 /* 6020 * Find the PFN the Movable zone begins in each node. Kernel memory 6021 * is spread evenly between nodes as long as the nodes have enough 6022 * memory. When they don't, some nodes will have more kernelcore than 6023 * others 6024 */ 6025 static void __init find_zone_movable_pfns_for_nodes(void) 6026 { 6027 int i, nid; 6028 unsigned long usable_startpfn; 6029 unsigned long kernelcore_node, kernelcore_remaining; 6030 /* save the state before borrow the nodemask */ 6031 nodemask_t saved_node_state = node_states[N_MEMORY]; 6032 unsigned long totalpages = early_calculate_totalpages(); 6033 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 6034 struct memblock_region *r; 6035 6036 /* Need to find movable_zone earlier when movable_node is specified. */ 6037 find_usable_zone_for_movable(); 6038 6039 /* 6040 * If movable_node is specified, ignore kernelcore and movablecore 6041 * options. 6042 */ 6043 if (movable_node_is_enabled()) { 6044 for_each_memblock(memory, r) { 6045 if (!memblock_is_hotpluggable(r)) 6046 continue; 6047 6048 nid = r->nid; 6049 6050 usable_startpfn = PFN_DOWN(r->base); 6051 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 6052 min(usable_startpfn, zone_movable_pfn[nid]) : 6053 usable_startpfn; 6054 } 6055 6056 goto out2; 6057 } 6058 6059 /* 6060 * If kernelcore=mirror is specified, ignore movablecore option 6061 */ 6062 if (mirrored_kernelcore) { 6063 bool mem_below_4gb_not_mirrored = false; 6064 6065 for_each_memblock(memory, r) { 6066 if (memblock_is_mirror(r)) 6067 continue; 6068 6069 nid = r->nid; 6070 6071 usable_startpfn = memblock_region_memory_base_pfn(r); 6072 6073 if (usable_startpfn < 0x100000) { 6074 mem_below_4gb_not_mirrored = true; 6075 continue; 6076 } 6077 6078 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 6079 min(usable_startpfn, zone_movable_pfn[nid]) : 6080 usable_startpfn; 6081 } 6082 6083 if (mem_below_4gb_not_mirrored) 6084 pr_warn("This configuration results in unmirrored kernel memory."); 6085 6086 goto out2; 6087 } 6088 6089 /* 6090 * If movablecore=nn[KMG] was specified, calculate what size of 6091 * kernelcore that corresponds so that memory usable for 6092 * any allocation type is evenly spread. If both kernelcore 6093 * and movablecore are specified, then the value of kernelcore 6094 * will be used for required_kernelcore if it's greater than 6095 * what movablecore would have allowed. 6096 */ 6097 if (required_movablecore) { 6098 unsigned long corepages; 6099 6100 /* 6101 * Round-up so that ZONE_MOVABLE is at least as large as what 6102 * was requested by the user 6103 */ 6104 required_movablecore = 6105 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 6106 required_movablecore = min(totalpages, required_movablecore); 6107 corepages = totalpages - required_movablecore; 6108 6109 required_kernelcore = max(required_kernelcore, corepages); 6110 } 6111 6112 /* 6113 * If kernelcore was not specified or kernelcore size is larger 6114 * than totalpages, there is no ZONE_MOVABLE. 6115 */ 6116 if (!required_kernelcore || required_kernelcore >= totalpages) 6117 goto out; 6118 6119 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 6120 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 6121 6122 restart: 6123 /* Spread kernelcore memory as evenly as possible throughout nodes */ 6124 kernelcore_node = required_kernelcore / usable_nodes; 6125 for_each_node_state(nid, N_MEMORY) { 6126 unsigned long start_pfn, end_pfn; 6127 6128 /* 6129 * Recalculate kernelcore_node if the division per node 6130 * now exceeds what is necessary to satisfy the requested 6131 * amount of memory for the kernel 6132 */ 6133 if (required_kernelcore < kernelcore_node) 6134 kernelcore_node = required_kernelcore / usable_nodes; 6135 6136 /* 6137 * As the map is walked, we track how much memory is usable 6138 * by the kernel using kernelcore_remaining. When it is 6139 * 0, the rest of the node is usable by ZONE_MOVABLE 6140 */ 6141 kernelcore_remaining = kernelcore_node; 6142 6143 /* Go through each range of PFNs within this node */ 6144 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6145 unsigned long size_pages; 6146 6147 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 6148 if (start_pfn >= end_pfn) 6149 continue; 6150 6151 /* Account for what is only usable for kernelcore */ 6152 if (start_pfn < usable_startpfn) { 6153 unsigned long kernel_pages; 6154 kernel_pages = min(end_pfn, usable_startpfn) 6155 - start_pfn; 6156 6157 kernelcore_remaining -= min(kernel_pages, 6158 kernelcore_remaining); 6159 required_kernelcore -= min(kernel_pages, 6160 required_kernelcore); 6161 6162 /* Continue if range is now fully accounted */ 6163 if (end_pfn <= usable_startpfn) { 6164 6165 /* 6166 * Push zone_movable_pfn to the end so 6167 * that if we have to rebalance 6168 * kernelcore across nodes, we will 6169 * not double account here 6170 */ 6171 zone_movable_pfn[nid] = end_pfn; 6172 continue; 6173 } 6174 start_pfn = usable_startpfn; 6175 } 6176 6177 /* 6178 * The usable PFN range for ZONE_MOVABLE is from 6179 * start_pfn->end_pfn. Calculate size_pages as the 6180 * number of pages used as kernelcore 6181 */ 6182 size_pages = end_pfn - start_pfn; 6183 if (size_pages > kernelcore_remaining) 6184 size_pages = kernelcore_remaining; 6185 zone_movable_pfn[nid] = start_pfn + size_pages; 6186 6187 /* 6188 * Some kernelcore has been met, update counts and 6189 * break if the kernelcore for this node has been 6190 * satisfied 6191 */ 6192 required_kernelcore -= min(required_kernelcore, 6193 size_pages); 6194 kernelcore_remaining -= size_pages; 6195 if (!kernelcore_remaining) 6196 break; 6197 } 6198 } 6199 6200 /* 6201 * If there is still required_kernelcore, we do another pass with one 6202 * less node in the count. This will push zone_movable_pfn[nid] further 6203 * along on the nodes that still have memory until kernelcore is 6204 * satisfied 6205 */ 6206 usable_nodes--; 6207 if (usable_nodes && required_kernelcore > usable_nodes) 6208 goto restart; 6209 6210 out2: 6211 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 6212 for (nid = 0; nid < MAX_NUMNODES; nid++) 6213 zone_movable_pfn[nid] = 6214 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 6215 6216 out: 6217 /* restore the node_state */ 6218 node_states[N_MEMORY] = saved_node_state; 6219 } 6220 6221 /* Any regular or high memory on that node ? */ 6222 static void check_for_memory(pg_data_t *pgdat, int nid) 6223 { 6224 enum zone_type zone_type; 6225 6226 if (N_MEMORY == N_NORMAL_MEMORY) 6227 return; 6228 6229 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 6230 struct zone *zone = &pgdat->node_zones[zone_type]; 6231 if (populated_zone(zone)) { 6232 node_set_state(nid, N_HIGH_MEMORY); 6233 if (N_NORMAL_MEMORY != N_HIGH_MEMORY && 6234 zone_type <= ZONE_NORMAL) 6235 node_set_state(nid, N_NORMAL_MEMORY); 6236 break; 6237 } 6238 } 6239 } 6240 6241 /** 6242 * free_area_init_nodes - Initialise all pg_data_t and zone data 6243 * @max_zone_pfn: an array of max PFNs for each zone 6244 * 6245 * This will call free_area_init_node() for each active node in the system. 6246 * Using the page ranges provided by memblock_set_node(), the size of each 6247 * zone in each node and their holes is calculated. If the maximum PFN 6248 * between two adjacent zones match, it is assumed that the zone is empty. 6249 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 6250 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 6251 * starts where the previous one ended. For example, ZONE_DMA32 starts 6252 * at arch_max_dma_pfn. 6253 */ 6254 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 6255 { 6256 unsigned long start_pfn, end_pfn; 6257 int i, nid; 6258 6259 /* Record where the zone boundaries are */ 6260 memset(arch_zone_lowest_possible_pfn, 0, 6261 sizeof(arch_zone_lowest_possible_pfn)); 6262 memset(arch_zone_highest_possible_pfn, 0, 6263 sizeof(arch_zone_highest_possible_pfn)); 6264 6265 start_pfn = find_min_pfn_with_active_regions(); 6266 6267 for (i = 0; i < MAX_NR_ZONES; i++) { 6268 if (i == ZONE_MOVABLE) 6269 continue; 6270 6271 end_pfn = max(max_zone_pfn[i], start_pfn); 6272 arch_zone_lowest_possible_pfn[i] = start_pfn; 6273 arch_zone_highest_possible_pfn[i] = end_pfn; 6274 6275 start_pfn = end_pfn; 6276 } 6277 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 6278 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 6279 6280 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 6281 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 6282 find_zone_movable_pfns_for_nodes(); 6283 6284 /* Print out the zone ranges */ 6285 pr_info("Zone ranges:\n"); 6286 for (i = 0; i < MAX_NR_ZONES; i++) { 6287 if (i == ZONE_MOVABLE) 6288 continue; 6289 pr_info(" %-8s ", zone_names[i]); 6290 if (arch_zone_lowest_possible_pfn[i] == 6291 arch_zone_highest_possible_pfn[i]) 6292 pr_cont("empty\n"); 6293 else 6294 pr_cont("[mem %#018Lx-%#018Lx]\n", 6295 (u64)arch_zone_lowest_possible_pfn[i] 6296 << PAGE_SHIFT, 6297 ((u64)arch_zone_highest_possible_pfn[i] 6298 << PAGE_SHIFT) - 1); 6299 } 6300 6301 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 6302 pr_info("Movable zone start for each node\n"); 6303 for (i = 0; i < MAX_NUMNODES; i++) { 6304 if (zone_movable_pfn[i]) 6305 pr_info(" Node %d: %#018Lx\n", i, 6306 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 6307 } 6308 6309 /* Print out the early node map */ 6310 pr_info("Early memory node ranges\n"); 6311 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 6312 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 6313 (u64)start_pfn << PAGE_SHIFT, 6314 ((u64)end_pfn << PAGE_SHIFT) - 1); 6315 6316 /* Initialise every node */ 6317 mminit_verify_pageflags_layout(); 6318 setup_nr_node_ids(); 6319 for_each_online_node(nid) { 6320 pg_data_t *pgdat = NODE_DATA(nid); 6321 free_area_init_node(nid, NULL, 6322 find_min_pfn_for_node(nid), NULL); 6323 6324 /* Any memory on that node */ 6325 if (pgdat->node_present_pages) 6326 node_set_state(nid, N_MEMORY); 6327 check_for_memory(pgdat, nid); 6328 } 6329 } 6330 6331 static int __init cmdline_parse_core(char *p, unsigned long *core) 6332 { 6333 unsigned long long coremem; 6334 if (!p) 6335 return -EINVAL; 6336 6337 coremem = memparse(p, &p); 6338 *core = coremem >> PAGE_SHIFT; 6339 6340 /* Paranoid check that UL is enough for the coremem value */ 6341 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 6342 6343 return 0; 6344 } 6345 6346 /* 6347 * kernelcore=size sets the amount of memory for use for allocations that 6348 * cannot be reclaimed or migrated. 6349 */ 6350 static int __init cmdline_parse_kernelcore(char *p) 6351 { 6352 /* parse kernelcore=mirror */ 6353 if (parse_option_str(p, "mirror")) { 6354 mirrored_kernelcore = true; 6355 return 0; 6356 } 6357 6358 return cmdline_parse_core(p, &required_kernelcore); 6359 } 6360 6361 /* 6362 * movablecore=size sets the amount of memory for use for allocations that 6363 * can be reclaimed or migrated. 6364 */ 6365 static int __init cmdline_parse_movablecore(char *p) 6366 { 6367 return cmdline_parse_core(p, &required_movablecore); 6368 } 6369 6370 early_param("kernelcore", cmdline_parse_kernelcore); 6371 early_param("movablecore", cmdline_parse_movablecore); 6372 6373 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6374 6375 void adjust_managed_page_count(struct page *page, long count) 6376 { 6377 spin_lock(&managed_page_count_lock); 6378 page_zone(page)->managed_pages += count; 6379 totalram_pages += count; 6380 #ifdef CONFIG_HIGHMEM 6381 if (PageHighMem(page)) 6382 totalhigh_pages += count; 6383 #endif 6384 spin_unlock(&managed_page_count_lock); 6385 } 6386 EXPORT_SYMBOL(adjust_managed_page_count); 6387 6388 unsigned long free_reserved_area(void *start, void *end, int poison, char *s) 6389 { 6390 void *pos; 6391 unsigned long pages = 0; 6392 6393 start = (void *)PAGE_ALIGN((unsigned long)start); 6394 end = (void *)((unsigned long)end & PAGE_MASK); 6395 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 6396 if ((unsigned int)poison <= 0xFF) 6397 memset(pos, poison, PAGE_SIZE); 6398 free_reserved_page(virt_to_page(pos)); 6399 } 6400 6401 if (pages && s) 6402 pr_info("Freeing %s memory: %ldK (%p - %p)\n", 6403 s, pages << (PAGE_SHIFT - 10), start, end); 6404 6405 return pages; 6406 } 6407 EXPORT_SYMBOL(free_reserved_area); 6408 6409 #ifdef CONFIG_HIGHMEM 6410 void free_highmem_page(struct page *page) 6411 { 6412 __free_reserved_page(page); 6413 totalram_pages++; 6414 page_zone(page)->managed_pages++; 6415 totalhigh_pages++; 6416 } 6417 #endif 6418 6419 6420 void __init mem_init_print_info(const char *str) 6421 { 6422 unsigned long physpages, codesize, datasize, rosize, bss_size; 6423 unsigned long init_code_size, init_data_size; 6424 6425 physpages = get_num_physpages(); 6426 codesize = _etext - _stext; 6427 datasize = _edata - _sdata; 6428 rosize = __end_rodata - __start_rodata; 6429 bss_size = __bss_stop - __bss_start; 6430 init_data_size = __init_end - __init_begin; 6431 init_code_size = _einittext - _sinittext; 6432 6433 /* 6434 * Detect special cases and adjust section sizes accordingly: 6435 * 1) .init.* may be embedded into .data sections 6436 * 2) .init.text.* may be out of [__init_begin, __init_end], 6437 * please refer to arch/tile/kernel/vmlinux.lds.S. 6438 * 3) .rodata.* may be embedded into .text or .data sections. 6439 */ 6440 #define adj_init_size(start, end, size, pos, adj) \ 6441 do { \ 6442 if (start <= pos && pos < end && size > adj) \ 6443 size -= adj; \ 6444 } while (0) 6445 6446 adj_init_size(__init_begin, __init_end, init_data_size, 6447 _sinittext, init_code_size); 6448 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 6449 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 6450 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 6451 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 6452 6453 #undef adj_init_size 6454 6455 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 6456 #ifdef CONFIG_HIGHMEM 6457 ", %luK highmem" 6458 #endif 6459 "%s%s)\n", 6460 nr_free_pages() << (PAGE_SHIFT - 10), 6461 physpages << (PAGE_SHIFT - 10), 6462 codesize >> 10, datasize >> 10, rosize >> 10, 6463 (init_data_size + init_code_size) >> 10, bss_size >> 10, 6464 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10), 6465 totalcma_pages << (PAGE_SHIFT - 10), 6466 #ifdef CONFIG_HIGHMEM 6467 totalhigh_pages << (PAGE_SHIFT - 10), 6468 #endif 6469 str ? ", " : "", str ? str : ""); 6470 } 6471 6472 /** 6473 * set_dma_reserve - set the specified number of pages reserved in the first zone 6474 * @new_dma_reserve: The number of pages to mark reserved 6475 * 6476 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 6477 * In the DMA zone, a significant percentage may be consumed by kernel image 6478 * and other unfreeable allocations which can skew the watermarks badly. This 6479 * function may optionally be used to account for unfreeable pages in the 6480 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 6481 * smaller per-cpu batchsize. 6482 */ 6483 void __init set_dma_reserve(unsigned long new_dma_reserve) 6484 { 6485 dma_reserve = new_dma_reserve; 6486 } 6487 6488 void __init free_area_init(unsigned long *zones_size) 6489 { 6490 free_area_init_node(0, zones_size, 6491 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 6492 } 6493 6494 static int page_alloc_cpu_notify(struct notifier_block *self, 6495 unsigned long action, void *hcpu) 6496 { 6497 int cpu = (unsigned long)hcpu; 6498 6499 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 6500 lru_add_drain_cpu(cpu); 6501 drain_pages(cpu); 6502 6503 /* 6504 * Spill the event counters of the dead processor 6505 * into the current processors event counters. 6506 * This artificially elevates the count of the current 6507 * processor. 6508 */ 6509 vm_events_fold_cpu(cpu); 6510 6511 /* 6512 * Zero the differential counters of the dead processor 6513 * so that the vm statistics are consistent. 6514 * 6515 * This is only okay since the processor is dead and cannot 6516 * race with what we are doing. 6517 */ 6518 cpu_vm_stats_fold(cpu); 6519 } 6520 return NOTIFY_OK; 6521 } 6522 6523 void __init page_alloc_init(void) 6524 { 6525 hotcpu_notifier(page_alloc_cpu_notify, 0); 6526 } 6527 6528 /* 6529 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 6530 * or min_free_kbytes changes. 6531 */ 6532 static void calculate_totalreserve_pages(void) 6533 { 6534 struct pglist_data *pgdat; 6535 unsigned long reserve_pages = 0; 6536 enum zone_type i, j; 6537 6538 for_each_online_pgdat(pgdat) { 6539 6540 pgdat->totalreserve_pages = 0; 6541 6542 for (i = 0; i < MAX_NR_ZONES; i++) { 6543 struct zone *zone = pgdat->node_zones + i; 6544 long max = 0; 6545 6546 /* Find valid and maximum lowmem_reserve in the zone */ 6547 for (j = i; j < MAX_NR_ZONES; j++) { 6548 if (zone->lowmem_reserve[j] > max) 6549 max = zone->lowmem_reserve[j]; 6550 } 6551 6552 /* we treat the high watermark as reserved pages. */ 6553 max += high_wmark_pages(zone); 6554 6555 if (max > zone->managed_pages) 6556 max = zone->managed_pages; 6557 6558 pgdat->totalreserve_pages += max; 6559 6560 reserve_pages += max; 6561 } 6562 } 6563 totalreserve_pages = reserve_pages; 6564 } 6565 6566 /* 6567 * setup_per_zone_lowmem_reserve - called whenever 6568 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 6569 * has a correct pages reserved value, so an adequate number of 6570 * pages are left in the zone after a successful __alloc_pages(). 6571 */ 6572 static void setup_per_zone_lowmem_reserve(void) 6573 { 6574 struct pglist_data *pgdat; 6575 enum zone_type j, idx; 6576 6577 for_each_online_pgdat(pgdat) { 6578 for (j = 0; j < MAX_NR_ZONES; j++) { 6579 struct zone *zone = pgdat->node_zones + j; 6580 unsigned long managed_pages = zone->managed_pages; 6581 6582 zone->lowmem_reserve[j] = 0; 6583 6584 idx = j; 6585 while (idx) { 6586 struct zone *lower_zone; 6587 6588 idx--; 6589 6590 if (sysctl_lowmem_reserve_ratio[idx] < 1) 6591 sysctl_lowmem_reserve_ratio[idx] = 1; 6592 6593 lower_zone = pgdat->node_zones + idx; 6594 lower_zone->lowmem_reserve[j] = managed_pages / 6595 sysctl_lowmem_reserve_ratio[idx]; 6596 managed_pages += lower_zone->managed_pages; 6597 } 6598 } 6599 } 6600 6601 /* update totalreserve_pages */ 6602 calculate_totalreserve_pages(); 6603 } 6604 6605 static void __setup_per_zone_wmarks(void) 6606 { 6607 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 6608 unsigned long lowmem_pages = 0; 6609 struct zone *zone; 6610 unsigned long flags; 6611 6612 /* Calculate total number of !ZONE_HIGHMEM pages */ 6613 for_each_zone(zone) { 6614 if (!is_highmem(zone)) 6615 lowmem_pages += zone->managed_pages; 6616 } 6617 6618 for_each_zone(zone) { 6619 u64 tmp; 6620 6621 spin_lock_irqsave(&zone->lock, flags); 6622 tmp = (u64)pages_min * zone->managed_pages; 6623 do_div(tmp, lowmem_pages); 6624 if (is_highmem(zone)) { 6625 /* 6626 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 6627 * need highmem pages, so cap pages_min to a small 6628 * value here. 6629 * 6630 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 6631 * deltas control asynch page reclaim, and so should 6632 * not be capped for highmem. 6633 */ 6634 unsigned long min_pages; 6635 6636 min_pages = zone->managed_pages / 1024; 6637 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 6638 zone->watermark[WMARK_MIN] = min_pages; 6639 } else { 6640 /* 6641 * If it's a lowmem zone, reserve a number of pages 6642 * proportionate to the zone's size. 6643 */ 6644 zone->watermark[WMARK_MIN] = tmp; 6645 } 6646 6647 /* 6648 * Set the kswapd watermarks distance according to the 6649 * scale factor in proportion to available memory, but 6650 * ensure a minimum size on small systems. 6651 */ 6652 tmp = max_t(u64, tmp >> 2, 6653 mult_frac(zone->managed_pages, 6654 watermark_scale_factor, 10000)); 6655 6656 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 6657 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; 6658 6659 spin_unlock_irqrestore(&zone->lock, flags); 6660 } 6661 6662 /* update totalreserve_pages */ 6663 calculate_totalreserve_pages(); 6664 } 6665 6666 /** 6667 * setup_per_zone_wmarks - called when min_free_kbytes changes 6668 * or when memory is hot-{added|removed} 6669 * 6670 * Ensures that the watermark[min,low,high] values for each zone are set 6671 * correctly with respect to min_free_kbytes. 6672 */ 6673 void setup_per_zone_wmarks(void) 6674 { 6675 mutex_lock(&zonelists_mutex); 6676 __setup_per_zone_wmarks(); 6677 mutex_unlock(&zonelists_mutex); 6678 } 6679 6680 /* 6681 * Initialise min_free_kbytes. 6682 * 6683 * For small machines we want it small (128k min). For large machines 6684 * we want it large (64MB max). But it is not linear, because network 6685 * bandwidth does not increase linearly with machine size. We use 6686 * 6687 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 6688 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 6689 * 6690 * which yields 6691 * 6692 * 16MB: 512k 6693 * 32MB: 724k 6694 * 64MB: 1024k 6695 * 128MB: 1448k 6696 * 256MB: 2048k 6697 * 512MB: 2896k 6698 * 1024MB: 4096k 6699 * 2048MB: 5792k 6700 * 4096MB: 8192k 6701 * 8192MB: 11584k 6702 * 16384MB: 16384k 6703 */ 6704 int __meminit init_per_zone_wmark_min(void) 6705 { 6706 unsigned long lowmem_kbytes; 6707 int new_min_free_kbytes; 6708 6709 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 6710 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 6711 6712 if (new_min_free_kbytes > user_min_free_kbytes) { 6713 min_free_kbytes = new_min_free_kbytes; 6714 if (min_free_kbytes < 128) 6715 min_free_kbytes = 128; 6716 if (min_free_kbytes > 65536) 6717 min_free_kbytes = 65536; 6718 } else { 6719 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 6720 new_min_free_kbytes, user_min_free_kbytes); 6721 } 6722 setup_per_zone_wmarks(); 6723 refresh_zone_stat_thresholds(); 6724 setup_per_zone_lowmem_reserve(); 6725 6726 #ifdef CONFIG_NUMA 6727 setup_min_unmapped_ratio(); 6728 setup_min_slab_ratio(); 6729 #endif 6730 6731 return 0; 6732 } 6733 core_initcall(init_per_zone_wmark_min) 6734 6735 /* 6736 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 6737 * that we can call two helper functions whenever min_free_kbytes 6738 * changes. 6739 */ 6740 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 6741 void __user *buffer, size_t *length, loff_t *ppos) 6742 { 6743 int rc; 6744 6745 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6746 if (rc) 6747 return rc; 6748 6749 if (write) { 6750 user_min_free_kbytes = min_free_kbytes; 6751 setup_per_zone_wmarks(); 6752 } 6753 return 0; 6754 } 6755 6756 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 6757 void __user *buffer, size_t *length, loff_t *ppos) 6758 { 6759 int rc; 6760 6761 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6762 if (rc) 6763 return rc; 6764 6765 if (write) 6766 setup_per_zone_wmarks(); 6767 6768 return 0; 6769 } 6770 6771 #ifdef CONFIG_NUMA 6772 static void setup_min_unmapped_ratio(void) 6773 { 6774 pg_data_t *pgdat; 6775 struct zone *zone; 6776 6777 for_each_online_pgdat(pgdat) 6778 pgdat->min_unmapped_pages = 0; 6779 6780 for_each_zone(zone) 6781 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages * 6782 sysctl_min_unmapped_ratio) / 100; 6783 } 6784 6785 6786 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 6787 void __user *buffer, size_t *length, loff_t *ppos) 6788 { 6789 int rc; 6790 6791 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6792 if (rc) 6793 return rc; 6794 6795 setup_min_unmapped_ratio(); 6796 6797 return 0; 6798 } 6799 6800 static void setup_min_slab_ratio(void) 6801 { 6802 pg_data_t *pgdat; 6803 struct zone *zone; 6804 6805 for_each_online_pgdat(pgdat) 6806 pgdat->min_slab_pages = 0; 6807 6808 for_each_zone(zone) 6809 zone->zone_pgdat->min_slab_pages += (zone->managed_pages * 6810 sysctl_min_slab_ratio) / 100; 6811 } 6812 6813 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 6814 void __user *buffer, size_t *length, loff_t *ppos) 6815 { 6816 int rc; 6817 6818 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6819 if (rc) 6820 return rc; 6821 6822 setup_min_slab_ratio(); 6823 6824 return 0; 6825 } 6826 #endif 6827 6828 /* 6829 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 6830 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 6831 * whenever sysctl_lowmem_reserve_ratio changes. 6832 * 6833 * The reserve ratio obviously has absolutely no relation with the 6834 * minimum watermarks. The lowmem reserve ratio can only make sense 6835 * if in function of the boot time zone sizes. 6836 */ 6837 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 6838 void __user *buffer, size_t *length, loff_t *ppos) 6839 { 6840 proc_dointvec_minmax(table, write, buffer, length, ppos); 6841 setup_per_zone_lowmem_reserve(); 6842 return 0; 6843 } 6844 6845 /* 6846 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 6847 * cpu. It is the fraction of total pages in each zone that a hot per cpu 6848 * pagelist can have before it gets flushed back to buddy allocator. 6849 */ 6850 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 6851 void __user *buffer, size_t *length, loff_t *ppos) 6852 { 6853 struct zone *zone; 6854 int old_percpu_pagelist_fraction; 6855 int ret; 6856 6857 mutex_lock(&pcp_batch_high_lock); 6858 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 6859 6860 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 6861 if (!write || ret < 0) 6862 goto out; 6863 6864 /* Sanity checking to avoid pcp imbalance */ 6865 if (percpu_pagelist_fraction && 6866 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 6867 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 6868 ret = -EINVAL; 6869 goto out; 6870 } 6871 6872 /* No change? */ 6873 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 6874 goto out; 6875 6876 for_each_populated_zone(zone) { 6877 unsigned int cpu; 6878 6879 for_each_possible_cpu(cpu) 6880 pageset_set_high_and_batch(zone, 6881 per_cpu_ptr(zone->pageset, cpu)); 6882 } 6883 out: 6884 mutex_unlock(&pcp_batch_high_lock); 6885 return ret; 6886 } 6887 6888 #ifdef CONFIG_NUMA 6889 int hashdist = HASHDIST_DEFAULT; 6890 6891 static int __init set_hashdist(char *str) 6892 { 6893 if (!str) 6894 return 0; 6895 hashdist = simple_strtoul(str, &str, 0); 6896 return 1; 6897 } 6898 __setup("hashdist=", set_hashdist); 6899 #endif 6900 6901 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 6902 /* 6903 * Returns the number of pages that arch has reserved but 6904 * is not known to alloc_large_system_hash(). 6905 */ 6906 static unsigned long __init arch_reserved_kernel_pages(void) 6907 { 6908 return 0; 6909 } 6910 #endif 6911 6912 /* 6913 * allocate a large system hash table from bootmem 6914 * - it is assumed that the hash table must contain an exact power-of-2 6915 * quantity of entries 6916 * - limit is the number of hash buckets, not the total allocation size 6917 */ 6918 void *__init alloc_large_system_hash(const char *tablename, 6919 unsigned long bucketsize, 6920 unsigned long numentries, 6921 int scale, 6922 int flags, 6923 unsigned int *_hash_shift, 6924 unsigned int *_hash_mask, 6925 unsigned long low_limit, 6926 unsigned long high_limit) 6927 { 6928 unsigned long long max = high_limit; 6929 unsigned long log2qty, size; 6930 void *table = NULL; 6931 6932 /* allow the kernel cmdline to have a say */ 6933 if (!numentries) { 6934 /* round applicable memory size up to nearest megabyte */ 6935 numentries = nr_kernel_pages; 6936 numentries -= arch_reserved_kernel_pages(); 6937 6938 /* It isn't necessary when PAGE_SIZE >= 1MB */ 6939 if (PAGE_SHIFT < 20) 6940 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 6941 6942 /* limit to 1 bucket per 2^scale bytes of low memory */ 6943 if (scale > PAGE_SHIFT) 6944 numentries >>= (scale - PAGE_SHIFT); 6945 else 6946 numentries <<= (PAGE_SHIFT - scale); 6947 6948 /* Make sure we've got at least a 0-order allocation.. */ 6949 if (unlikely(flags & HASH_SMALL)) { 6950 /* Makes no sense without HASH_EARLY */ 6951 WARN_ON(!(flags & HASH_EARLY)); 6952 if (!(numentries >> *_hash_shift)) { 6953 numentries = 1UL << *_hash_shift; 6954 BUG_ON(!numentries); 6955 } 6956 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 6957 numentries = PAGE_SIZE / bucketsize; 6958 } 6959 numentries = roundup_pow_of_two(numentries); 6960 6961 /* limit allocation size to 1/16 total memory by default */ 6962 if (max == 0) { 6963 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 6964 do_div(max, bucketsize); 6965 } 6966 max = min(max, 0x80000000ULL); 6967 6968 if (numentries < low_limit) 6969 numentries = low_limit; 6970 if (numentries > max) 6971 numentries = max; 6972 6973 log2qty = ilog2(numentries); 6974 6975 do { 6976 size = bucketsize << log2qty; 6977 if (flags & HASH_EARLY) 6978 table = memblock_virt_alloc_nopanic(size, 0); 6979 else if (hashdist) 6980 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 6981 else { 6982 /* 6983 * If bucketsize is not a power-of-two, we may free 6984 * some pages at the end of hash table which 6985 * alloc_pages_exact() automatically does 6986 */ 6987 if (get_order(size) < MAX_ORDER) { 6988 table = alloc_pages_exact(size, GFP_ATOMIC); 6989 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 6990 } 6991 } 6992 } while (!table && size > PAGE_SIZE && --log2qty); 6993 6994 if (!table) 6995 panic("Failed to allocate %s hash table\n", tablename); 6996 6997 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n", 6998 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size); 6999 7000 if (_hash_shift) 7001 *_hash_shift = log2qty; 7002 if (_hash_mask) 7003 *_hash_mask = (1 << log2qty) - 1; 7004 7005 return table; 7006 } 7007 7008 /* 7009 * This function checks whether pageblock includes unmovable pages or not. 7010 * If @count is not zero, it is okay to include less @count unmovable pages 7011 * 7012 * PageLRU check without isolation or lru_lock could race so that 7013 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't 7014 * expect this function should be exact. 7015 */ 7016 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 7017 bool skip_hwpoisoned_pages) 7018 { 7019 unsigned long pfn, iter, found; 7020 int mt; 7021 7022 /* 7023 * For avoiding noise data, lru_add_drain_all() should be called 7024 * If ZONE_MOVABLE, the zone never contains unmovable pages 7025 */ 7026 if (zone_idx(zone) == ZONE_MOVABLE) 7027 return false; 7028 mt = get_pageblock_migratetype(page); 7029 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt)) 7030 return false; 7031 7032 pfn = page_to_pfn(page); 7033 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 7034 unsigned long check = pfn + iter; 7035 7036 if (!pfn_valid_within(check)) 7037 continue; 7038 7039 page = pfn_to_page(check); 7040 7041 /* 7042 * Hugepages are not in LRU lists, but they're movable. 7043 * We need not scan over tail pages bacause we don't 7044 * handle each tail page individually in migration. 7045 */ 7046 if (PageHuge(page)) { 7047 iter = round_up(iter + 1, 1<<compound_order(page)) - 1; 7048 continue; 7049 } 7050 7051 /* 7052 * We can't use page_count without pin a page 7053 * because another CPU can free compound page. 7054 * This check already skips compound tails of THP 7055 * because their page->_refcount is zero at all time. 7056 */ 7057 if (!page_ref_count(page)) { 7058 if (PageBuddy(page)) 7059 iter += (1 << page_order(page)) - 1; 7060 continue; 7061 } 7062 7063 /* 7064 * The HWPoisoned page may be not in buddy system, and 7065 * page_count() is not 0. 7066 */ 7067 if (skip_hwpoisoned_pages && PageHWPoison(page)) 7068 continue; 7069 7070 if (!PageLRU(page)) 7071 found++; 7072 /* 7073 * If there are RECLAIMABLE pages, we need to check 7074 * it. But now, memory offline itself doesn't call 7075 * shrink_node_slabs() and it still to be fixed. 7076 */ 7077 /* 7078 * If the page is not RAM, page_count()should be 0. 7079 * we don't need more check. This is an _used_ not-movable page. 7080 * 7081 * The problematic thing here is PG_reserved pages. PG_reserved 7082 * is set to both of a memory hole page and a _used_ kernel 7083 * page at boot. 7084 */ 7085 if (found > count) 7086 return true; 7087 } 7088 return false; 7089 } 7090 7091 bool is_pageblock_removable_nolock(struct page *page) 7092 { 7093 struct zone *zone; 7094 unsigned long pfn; 7095 7096 /* 7097 * We have to be careful here because we are iterating over memory 7098 * sections which are not zone aware so we might end up outside of 7099 * the zone but still within the section. 7100 * We have to take care about the node as well. If the node is offline 7101 * its NODE_DATA will be NULL - see page_zone. 7102 */ 7103 if (!node_online(page_to_nid(page))) 7104 return false; 7105 7106 zone = page_zone(page); 7107 pfn = page_to_pfn(page); 7108 if (!zone_spans_pfn(zone, pfn)) 7109 return false; 7110 7111 return !has_unmovable_pages(zone, page, 0, true); 7112 } 7113 7114 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA) 7115 7116 static unsigned long pfn_max_align_down(unsigned long pfn) 7117 { 7118 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 7119 pageblock_nr_pages) - 1); 7120 } 7121 7122 static unsigned long pfn_max_align_up(unsigned long pfn) 7123 { 7124 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 7125 pageblock_nr_pages)); 7126 } 7127 7128 /* [start, end) must belong to a single zone. */ 7129 static int __alloc_contig_migrate_range(struct compact_control *cc, 7130 unsigned long start, unsigned long end) 7131 { 7132 /* This function is based on compact_zone() from compaction.c. */ 7133 unsigned long nr_reclaimed; 7134 unsigned long pfn = start; 7135 unsigned int tries = 0; 7136 int ret = 0; 7137 7138 migrate_prep(); 7139 7140 while (pfn < end || !list_empty(&cc->migratepages)) { 7141 if (fatal_signal_pending(current)) { 7142 ret = -EINTR; 7143 break; 7144 } 7145 7146 if (list_empty(&cc->migratepages)) { 7147 cc->nr_migratepages = 0; 7148 pfn = isolate_migratepages_range(cc, pfn, end); 7149 if (!pfn) { 7150 ret = -EINTR; 7151 break; 7152 } 7153 tries = 0; 7154 } else if (++tries == 5) { 7155 ret = ret < 0 ? ret : -EBUSY; 7156 break; 7157 } 7158 7159 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 7160 &cc->migratepages); 7161 cc->nr_migratepages -= nr_reclaimed; 7162 7163 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 7164 NULL, 0, cc->mode, MR_CMA); 7165 } 7166 if (ret < 0) { 7167 putback_movable_pages(&cc->migratepages); 7168 return ret; 7169 } 7170 return 0; 7171 } 7172 7173 /** 7174 * alloc_contig_range() -- tries to allocate given range of pages 7175 * @start: start PFN to allocate 7176 * @end: one-past-the-last PFN to allocate 7177 * @migratetype: migratetype of the underlaying pageblocks (either 7178 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 7179 * in range must have the same migratetype and it must 7180 * be either of the two. 7181 * 7182 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 7183 * aligned, however it's the caller's responsibility to guarantee that 7184 * we are the only thread that changes migrate type of pageblocks the 7185 * pages fall in. 7186 * 7187 * The PFN range must belong to a single zone. 7188 * 7189 * Returns zero on success or negative error code. On success all 7190 * pages which PFN is in [start, end) are allocated for the caller and 7191 * need to be freed with free_contig_range(). 7192 */ 7193 int alloc_contig_range(unsigned long start, unsigned long end, 7194 unsigned migratetype) 7195 { 7196 unsigned long outer_start, outer_end; 7197 unsigned int order; 7198 int ret = 0; 7199 7200 struct compact_control cc = { 7201 .nr_migratepages = 0, 7202 .order = -1, 7203 .zone = page_zone(pfn_to_page(start)), 7204 .mode = MIGRATE_SYNC, 7205 .ignore_skip_hint = true, 7206 }; 7207 INIT_LIST_HEAD(&cc.migratepages); 7208 7209 /* 7210 * What we do here is we mark all pageblocks in range as 7211 * MIGRATE_ISOLATE. Because pageblock and max order pages may 7212 * have different sizes, and due to the way page allocator 7213 * work, we align the range to biggest of the two pages so 7214 * that page allocator won't try to merge buddies from 7215 * different pageblocks and change MIGRATE_ISOLATE to some 7216 * other migration type. 7217 * 7218 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 7219 * migrate the pages from an unaligned range (ie. pages that 7220 * we are interested in). This will put all the pages in 7221 * range back to page allocator as MIGRATE_ISOLATE. 7222 * 7223 * When this is done, we take the pages in range from page 7224 * allocator removing them from the buddy system. This way 7225 * page allocator will never consider using them. 7226 * 7227 * This lets us mark the pageblocks back as 7228 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 7229 * aligned range but not in the unaligned, original range are 7230 * put back to page allocator so that buddy can use them. 7231 */ 7232 7233 ret = start_isolate_page_range(pfn_max_align_down(start), 7234 pfn_max_align_up(end), migratetype, 7235 false); 7236 if (ret) 7237 return ret; 7238 7239 /* 7240 * In case of -EBUSY, we'd like to know which page causes problem. 7241 * So, just fall through. We will check it in test_pages_isolated(). 7242 */ 7243 ret = __alloc_contig_migrate_range(&cc, start, end); 7244 if (ret && ret != -EBUSY) 7245 goto done; 7246 7247 /* 7248 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 7249 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 7250 * more, all pages in [start, end) are free in page allocator. 7251 * What we are going to do is to allocate all pages from 7252 * [start, end) (that is remove them from page allocator). 7253 * 7254 * The only problem is that pages at the beginning and at the 7255 * end of interesting range may be not aligned with pages that 7256 * page allocator holds, ie. they can be part of higher order 7257 * pages. Because of this, we reserve the bigger range and 7258 * once this is done free the pages we are not interested in. 7259 * 7260 * We don't have to hold zone->lock here because the pages are 7261 * isolated thus they won't get removed from buddy. 7262 */ 7263 7264 lru_add_drain_all(); 7265 drain_all_pages(cc.zone); 7266 7267 order = 0; 7268 outer_start = start; 7269 while (!PageBuddy(pfn_to_page(outer_start))) { 7270 if (++order >= MAX_ORDER) { 7271 outer_start = start; 7272 break; 7273 } 7274 outer_start &= ~0UL << order; 7275 } 7276 7277 if (outer_start != start) { 7278 order = page_order(pfn_to_page(outer_start)); 7279 7280 /* 7281 * outer_start page could be small order buddy page and 7282 * it doesn't include start page. Adjust outer_start 7283 * in this case to report failed page properly 7284 * on tracepoint in test_pages_isolated() 7285 */ 7286 if (outer_start + (1UL << order) <= start) 7287 outer_start = start; 7288 } 7289 7290 /* Make sure the range is really isolated. */ 7291 if (test_pages_isolated(outer_start, end, false)) { 7292 pr_info("%s: [%lx, %lx) PFNs busy\n", 7293 __func__, outer_start, end); 7294 ret = -EBUSY; 7295 goto done; 7296 } 7297 7298 /* Grab isolated pages from freelists. */ 7299 outer_end = isolate_freepages_range(&cc, outer_start, end); 7300 if (!outer_end) { 7301 ret = -EBUSY; 7302 goto done; 7303 } 7304 7305 /* Free head and tail (if any) */ 7306 if (start != outer_start) 7307 free_contig_range(outer_start, start - outer_start); 7308 if (end != outer_end) 7309 free_contig_range(end, outer_end - end); 7310 7311 done: 7312 undo_isolate_page_range(pfn_max_align_down(start), 7313 pfn_max_align_up(end), migratetype); 7314 return ret; 7315 } 7316 7317 void free_contig_range(unsigned long pfn, unsigned nr_pages) 7318 { 7319 unsigned int count = 0; 7320 7321 for (; nr_pages--; pfn++) { 7322 struct page *page = pfn_to_page(pfn); 7323 7324 count += page_count(page) != 1; 7325 __free_page(page); 7326 } 7327 WARN(count != 0, "%d pages are still in use!\n", count); 7328 } 7329 #endif 7330 7331 #ifdef CONFIG_MEMORY_HOTPLUG 7332 /* 7333 * The zone indicated has a new number of managed_pages; batch sizes and percpu 7334 * page high values need to be recalulated. 7335 */ 7336 void __meminit zone_pcp_update(struct zone *zone) 7337 { 7338 unsigned cpu; 7339 mutex_lock(&pcp_batch_high_lock); 7340 for_each_possible_cpu(cpu) 7341 pageset_set_high_and_batch(zone, 7342 per_cpu_ptr(zone->pageset, cpu)); 7343 mutex_unlock(&pcp_batch_high_lock); 7344 } 7345 #endif 7346 7347 void zone_pcp_reset(struct zone *zone) 7348 { 7349 unsigned long flags; 7350 int cpu; 7351 struct per_cpu_pageset *pset; 7352 7353 /* avoid races with drain_pages() */ 7354 local_irq_save(flags); 7355 if (zone->pageset != &boot_pageset) { 7356 for_each_online_cpu(cpu) { 7357 pset = per_cpu_ptr(zone->pageset, cpu); 7358 drain_zonestat(zone, pset); 7359 } 7360 free_percpu(zone->pageset); 7361 zone->pageset = &boot_pageset; 7362 } 7363 local_irq_restore(flags); 7364 } 7365 7366 #ifdef CONFIG_MEMORY_HOTREMOVE 7367 /* 7368 * All pages in the range must be in a single zone and isolated 7369 * before calling this. 7370 */ 7371 void 7372 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 7373 { 7374 struct page *page; 7375 struct zone *zone; 7376 unsigned int order, i; 7377 unsigned long pfn; 7378 unsigned long flags; 7379 /* find the first valid pfn */ 7380 for (pfn = start_pfn; pfn < end_pfn; pfn++) 7381 if (pfn_valid(pfn)) 7382 break; 7383 if (pfn == end_pfn) 7384 return; 7385 zone = page_zone(pfn_to_page(pfn)); 7386 spin_lock_irqsave(&zone->lock, flags); 7387 pfn = start_pfn; 7388 while (pfn < end_pfn) { 7389 if (!pfn_valid(pfn)) { 7390 pfn++; 7391 continue; 7392 } 7393 page = pfn_to_page(pfn); 7394 /* 7395 * The HWPoisoned page may be not in buddy system, and 7396 * page_count() is not 0. 7397 */ 7398 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 7399 pfn++; 7400 SetPageReserved(page); 7401 continue; 7402 } 7403 7404 BUG_ON(page_count(page)); 7405 BUG_ON(!PageBuddy(page)); 7406 order = page_order(page); 7407 #ifdef CONFIG_DEBUG_VM 7408 pr_info("remove from free list %lx %d %lx\n", 7409 pfn, 1 << order, end_pfn); 7410 #endif 7411 list_del(&page->lru); 7412 rmv_page_order(page); 7413 zone->free_area[order].nr_free--; 7414 for (i = 0; i < (1 << order); i++) 7415 SetPageReserved((page+i)); 7416 pfn += (1 << order); 7417 } 7418 spin_unlock_irqrestore(&zone->lock, flags); 7419 } 7420 #endif 7421 7422 bool is_free_buddy_page(struct page *page) 7423 { 7424 struct zone *zone = page_zone(page); 7425 unsigned long pfn = page_to_pfn(page); 7426 unsigned long flags; 7427 unsigned int order; 7428 7429 spin_lock_irqsave(&zone->lock, flags); 7430 for (order = 0; order < MAX_ORDER; order++) { 7431 struct page *page_head = page - (pfn & ((1 << order) - 1)); 7432 7433 if (PageBuddy(page_head) && page_order(page_head) >= order) 7434 break; 7435 } 7436 spin_unlock_irqrestore(&zone->lock, flags); 7437 7438 return order < MAX_ORDER; 7439 } 7440