1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kmemcheck.h> 28 #include <linux/module.h> 29 #include <linux/suspend.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/slab.h> 33 #include <linux/ratelimit.h> 34 #include <linux/oom.h> 35 #include <linux/notifier.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/stop_machine.h> 46 #include <linux/sort.h> 47 #include <linux/pfn.h> 48 #include <linux/backing-dev.h> 49 #include <linux/fault-inject.h> 50 #include <linux/page-isolation.h> 51 #include <linux/page_cgroup.h> 52 #include <linux/debugobjects.h> 53 #include <linux/kmemleak.h> 54 #include <linux/memory.h> 55 #include <linux/compaction.h> 56 #include <trace/events/kmem.h> 57 #include <linux/ftrace_event.h> 58 #include <linux/memcontrol.h> 59 #include <linux/prefetch.h> 60 61 #include <asm/tlbflush.h> 62 #include <asm/div64.h> 63 #include "internal.h" 64 65 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 66 DEFINE_PER_CPU(int, numa_node); 67 EXPORT_PER_CPU_SYMBOL(numa_node); 68 #endif 69 70 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 71 /* 72 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 73 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 74 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 75 * defined in <linux/topology.h>. 76 */ 77 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 78 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 79 #endif 80 81 /* 82 * Array of node states. 83 */ 84 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 85 [N_POSSIBLE] = NODE_MASK_ALL, 86 [N_ONLINE] = { { [0] = 1UL } }, 87 #ifndef CONFIG_NUMA 88 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 89 #ifdef CONFIG_HIGHMEM 90 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 91 #endif 92 [N_CPU] = { { [0] = 1UL } }, 93 #endif /* NUMA */ 94 }; 95 EXPORT_SYMBOL(node_states); 96 97 unsigned long totalram_pages __read_mostly; 98 unsigned long totalreserve_pages __read_mostly; 99 int percpu_pagelist_fraction; 100 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 101 102 #ifdef CONFIG_PM_SLEEP 103 /* 104 * The following functions are used by the suspend/hibernate code to temporarily 105 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 106 * while devices are suspended. To avoid races with the suspend/hibernate code, 107 * they should always be called with pm_mutex held (gfp_allowed_mask also should 108 * only be modified with pm_mutex held, unless the suspend/hibernate code is 109 * guaranteed not to run in parallel with that modification). 110 */ 111 112 static gfp_t saved_gfp_mask; 113 114 void pm_restore_gfp_mask(void) 115 { 116 WARN_ON(!mutex_is_locked(&pm_mutex)); 117 if (saved_gfp_mask) { 118 gfp_allowed_mask = saved_gfp_mask; 119 saved_gfp_mask = 0; 120 } 121 } 122 123 void pm_restrict_gfp_mask(void) 124 { 125 WARN_ON(!mutex_is_locked(&pm_mutex)); 126 WARN_ON(saved_gfp_mask); 127 saved_gfp_mask = gfp_allowed_mask; 128 gfp_allowed_mask &= ~GFP_IOFS; 129 } 130 #endif /* CONFIG_PM_SLEEP */ 131 132 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 133 int pageblock_order __read_mostly; 134 #endif 135 136 static void __free_pages_ok(struct page *page, unsigned int order); 137 138 /* 139 * results with 256, 32 in the lowmem_reserve sysctl: 140 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 141 * 1G machine -> (16M dma, 784M normal, 224M high) 142 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 143 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 144 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 145 * 146 * TBD: should special case ZONE_DMA32 machines here - in those we normally 147 * don't need any ZONE_NORMAL reservation 148 */ 149 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 150 #ifdef CONFIG_ZONE_DMA 151 256, 152 #endif 153 #ifdef CONFIG_ZONE_DMA32 154 256, 155 #endif 156 #ifdef CONFIG_HIGHMEM 157 32, 158 #endif 159 32, 160 }; 161 162 EXPORT_SYMBOL(totalram_pages); 163 164 static char * const zone_names[MAX_NR_ZONES] = { 165 #ifdef CONFIG_ZONE_DMA 166 "DMA", 167 #endif 168 #ifdef CONFIG_ZONE_DMA32 169 "DMA32", 170 #endif 171 "Normal", 172 #ifdef CONFIG_HIGHMEM 173 "HighMem", 174 #endif 175 "Movable", 176 }; 177 178 int min_free_kbytes = 1024; 179 180 static unsigned long __meminitdata nr_kernel_pages; 181 static unsigned long __meminitdata nr_all_pages; 182 static unsigned long __meminitdata dma_reserve; 183 184 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 185 /* 186 * MAX_ACTIVE_REGIONS determines the maximum number of distinct 187 * ranges of memory (RAM) that may be registered with add_active_range(). 188 * Ranges passed to add_active_range() will be merged if possible 189 * so the number of times add_active_range() can be called is 190 * related to the number of nodes and the number of holes 191 */ 192 #ifdef CONFIG_MAX_ACTIVE_REGIONS 193 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */ 194 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS 195 #else 196 #if MAX_NUMNODES >= 32 197 /* If there can be many nodes, allow up to 50 holes per node */ 198 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50) 199 #else 200 /* By default, allow up to 256 distinct regions */ 201 #define MAX_ACTIVE_REGIONS 256 202 #endif 203 #endif 204 205 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS]; 206 static int __meminitdata nr_nodemap_entries; 207 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 208 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 209 static unsigned long __initdata required_kernelcore; 210 static unsigned long __initdata required_movablecore; 211 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 212 213 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 214 int movable_zone; 215 EXPORT_SYMBOL(movable_zone); 216 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 217 218 #if MAX_NUMNODES > 1 219 int nr_node_ids __read_mostly = MAX_NUMNODES; 220 int nr_online_nodes __read_mostly = 1; 221 EXPORT_SYMBOL(nr_node_ids); 222 EXPORT_SYMBOL(nr_online_nodes); 223 #endif 224 225 int page_group_by_mobility_disabled __read_mostly; 226 227 static void set_pageblock_migratetype(struct page *page, int migratetype) 228 { 229 230 if (unlikely(page_group_by_mobility_disabled)) 231 migratetype = MIGRATE_UNMOVABLE; 232 233 set_pageblock_flags_group(page, (unsigned long)migratetype, 234 PB_migrate, PB_migrate_end); 235 } 236 237 bool oom_killer_disabled __read_mostly; 238 239 #ifdef CONFIG_DEBUG_VM 240 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 241 { 242 int ret = 0; 243 unsigned seq; 244 unsigned long pfn = page_to_pfn(page); 245 246 do { 247 seq = zone_span_seqbegin(zone); 248 if (pfn >= zone->zone_start_pfn + zone->spanned_pages) 249 ret = 1; 250 else if (pfn < zone->zone_start_pfn) 251 ret = 1; 252 } while (zone_span_seqretry(zone, seq)); 253 254 return ret; 255 } 256 257 static int page_is_consistent(struct zone *zone, struct page *page) 258 { 259 if (!pfn_valid_within(page_to_pfn(page))) 260 return 0; 261 if (zone != page_zone(page)) 262 return 0; 263 264 return 1; 265 } 266 /* 267 * Temporary debugging check for pages not lying within a given zone. 268 */ 269 static int bad_range(struct zone *zone, struct page *page) 270 { 271 if (page_outside_zone_boundaries(zone, page)) 272 return 1; 273 if (!page_is_consistent(zone, page)) 274 return 1; 275 276 return 0; 277 } 278 #else 279 static inline int bad_range(struct zone *zone, struct page *page) 280 { 281 return 0; 282 } 283 #endif 284 285 static void bad_page(struct page *page) 286 { 287 static unsigned long resume; 288 static unsigned long nr_shown; 289 static unsigned long nr_unshown; 290 291 /* Don't complain about poisoned pages */ 292 if (PageHWPoison(page)) { 293 reset_page_mapcount(page); /* remove PageBuddy */ 294 return; 295 } 296 297 /* 298 * Allow a burst of 60 reports, then keep quiet for that minute; 299 * or allow a steady drip of one report per second. 300 */ 301 if (nr_shown == 60) { 302 if (time_before(jiffies, resume)) { 303 nr_unshown++; 304 goto out; 305 } 306 if (nr_unshown) { 307 printk(KERN_ALERT 308 "BUG: Bad page state: %lu messages suppressed\n", 309 nr_unshown); 310 nr_unshown = 0; 311 } 312 nr_shown = 0; 313 } 314 if (nr_shown++ == 0) 315 resume = jiffies + 60 * HZ; 316 317 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", 318 current->comm, page_to_pfn(page)); 319 dump_page(page); 320 321 dump_stack(); 322 out: 323 /* Leave bad fields for debug, except PageBuddy could make trouble */ 324 reset_page_mapcount(page); /* remove PageBuddy */ 325 add_taint(TAINT_BAD_PAGE); 326 } 327 328 /* 329 * Higher-order pages are called "compound pages". They are structured thusly: 330 * 331 * The first PAGE_SIZE page is called the "head page". 332 * 333 * The remaining PAGE_SIZE pages are called "tail pages". 334 * 335 * All pages have PG_compound set. All pages have their ->private pointing at 336 * the head page (even the head page has this). 337 * 338 * The first tail page's ->lru.next holds the address of the compound page's 339 * put_page() function. Its ->lru.prev holds the order of allocation. 340 * This usage means that zero-order pages may not be compound. 341 */ 342 343 static void free_compound_page(struct page *page) 344 { 345 __free_pages_ok(page, compound_order(page)); 346 } 347 348 void prep_compound_page(struct page *page, unsigned long order) 349 { 350 int i; 351 int nr_pages = 1 << order; 352 353 set_compound_page_dtor(page, free_compound_page); 354 set_compound_order(page, order); 355 __SetPageHead(page); 356 for (i = 1; i < nr_pages; i++) { 357 struct page *p = page + i; 358 359 __SetPageTail(p); 360 p->first_page = page; 361 } 362 } 363 364 /* update __split_huge_page_refcount if you change this function */ 365 static int destroy_compound_page(struct page *page, unsigned long order) 366 { 367 int i; 368 int nr_pages = 1 << order; 369 int bad = 0; 370 371 if (unlikely(compound_order(page) != order) || 372 unlikely(!PageHead(page))) { 373 bad_page(page); 374 bad++; 375 } 376 377 __ClearPageHead(page); 378 379 for (i = 1; i < nr_pages; i++) { 380 struct page *p = page + i; 381 382 if (unlikely(!PageTail(p) || (p->first_page != page))) { 383 bad_page(page); 384 bad++; 385 } 386 __ClearPageTail(p); 387 } 388 389 return bad; 390 } 391 392 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 393 { 394 int i; 395 396 /* 397 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 398 * and __GFP_HIGHMEM from hard or soft interrupt context. 399 */ 400 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 401 for (i = 0; i < (1 << order); i++) 402 clear_highpage(page + i); 403 } 404 405 static inline void set_page_order(struct page *page, int order) 406 { 407 set_page_private(page, order); 408 __SetPageBuddy(page); 409 } 410 411 static inline void rmv_page_order(struct page *page) 412 { 413 __ClearPageBuddy(page); 414 set_page_private(page, 0); 415 } 416 417 /* 418 * Locate the struct page for both the matching buddy in our 419 * pair (buddy1) and the combined O(n+1) page they form (page). 420 * 421 * 1) Any buddy B1 will have an order O twin B2 which satisfies 422 * the following equation: 423 * B2 = B1 ^ (1 << O) 424 * For example, if the starting buddy (buddy2) is #8 its order 425 * 1 buddy is #10: 426 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 427 * 428 * 2) Any buddy B will have an order O+1 parent P which 429 * satisfies the following equation: 430 * P = B & ~(1 << O) 431 * 432 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 433 */ 434 static inline unsigned long 435 __find_buddy_index(unsigned long page_idx, unsigned int order) 436 { 437 return page_idx ^ (1 << order); 438 } 439 440 /* 441 * This function checks whether a page is free && is the buddy 442 * we can do coalesce a page and its buddy if 443 * (a) the buddy is not in a hole && 444 * (b) the buddy is in the buddy system && 445 * (c) a page and its buddy have the same order && 446 * (d) a page and its buddy are in the same zone. 447 * 448 * For recording whether a page is in the buddy system, we set ->_mapcount -2. 449 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock. 450 * 451 * For recording page's order, we use page_private(page). 452 */ 453 static inline int page_is_buddy(struct page *page, struct page *buddy, 454 int order) 455 { 456 if (!pfn_valid_within(page_to_pfn(buddy))) 457 return 0; 458 459 if (page_zone_id(page) != page_zone_id(buddy)) 460 return 0; 461 462 if (PageBuddy(buddy) && page_order(buddy) == order) { 463 VM_BUG_ON(page_count(buddy) != 0); 464 return 1; 465 } 466 return 0; 467 } 468 469 /* 470 * Freeing function for a buddy system allocator. 471 * 472 * The concept of a buddy system is to maintain direct-mapped table 473 * (containing bit values) for memory blocks of various "orders". 474 * The bottom level table contains the map for the smallest allocatable 475 * units of memory (here, pages), and each level above it describes 476 * pairs of units from the levels below, hence, "buddies". 477 * At a high level, all that happens here is marking the table entry 478 * at the bottom level available, and propagating the changes upward 479 * as necessary, plus some accounting needed to play nicely with other 480 * parts of the VM system. 481 * At each level, we keep a list of pages, which are heads of continuous 482 * free pages of length of (1 << order) and marked with _mapcount -2. Page's 483 * order is recorded in page_private(page) field. 484 * So when we are allocating or freeing one, we can derive the state of the 485 * other. That is, if we allocate a small block, and both were 486 * free, the remainder of the region must be split into blocks. 487 * If a block is freed, and its buddy is also free, then this 488 * triggers coalescing into a block of larger size. 489 * 490 * -- wli 491 */ 492 493 static inline void __free_one_page(struct page *page, 494 struct zone *zone, unsigned int order, 495 int migratetype) 496 { 497 unsigned long page_idx; 498 unsigned long combined_idx; 499 unsigned long uninitialized_var(buddy_idx); 500 struct page *buddy; 501 502 if (unlikely(PageCompound(page))) 503 if (unlikely(destroy_compound_page(page, order))) 504 return; 505 506 VM_BUG_ON(migratetype == -1); 507 508 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 509 510 VM_BUG_ON(page_idx & ((1 << order) - 1)); 511 VM_BUG_ON(bad_range(zone, page)); 512 513 while (order < MAX_ORDER-1) { 514 buddy_idx = __find_buddy_index(page_idx, order); 515 buddy = page + (buddy_idx - page_idx); 516 if (!page_is_buddy(page, buddy, order)) 517 break; 518 519 /* Our buddy is free, merge with it and move up one order. */ 520 list_del(&buddy->lru); 521 zone->free_area[order].nr_free--; 522 rmv_page_order(buddy); 523 combined_idx = buddy_idx & page_idx; 524 page = page + (combined_idx - page_idx); 525 page_idx = combined_idx; 526 order++; 527 } 528 set_page_order(page, order); 529 530 /* 531 * If this is not the largest possible page, check if the buddy 532 * of the next-highest order is free. If it is, it's possible 533 * that pages are being freed that will coalesce soon. In case, 534 * that is happening, add the free page to the tail of the list 535 * so it's less likely to be used soon and more likely to be merged 536 * as a higher order page 537 */ 538 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { 539 struct page *higher_page, *higher_buddy; 540 combined_idx = buddy_idx & page_idx; 541 higher_page = page + (combined_idx - page_idx); 542 buddy_idx = __find_buddy_index(combined_idx, order + 1); 543 higher_buddy = page + (buddy_idx - combined_idx); 544 if (page_is_buddy(higher_page, higher_buddy, order + 1)) { 545 list_add_tail(&page->lru, 546 &zone->free_area[order].free_list[migratetype]); 547 goto out; 548 } 549 } 550 551 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 552 out: 553 zone->free_area[order].nr_free++; 554 } 555 556 /* 557 * free_page_mlock() -- clean up attempts to free and mlocked() page. 558 * Page should not be on lru, so no need to fix that up. 559 * free_pages_check() will verify... 560 */ 561 static inline void free_page_mlock(struct page *page) 562 { 563 __dec_zone_page_state(page, NR_MLOCK); 564 __count_vm_event(UNEVICTABLE_MLOCKFREED); 565 } 566 567 static inline int free_pages_check(struct page *page) 568 { 569 if (unlikely(page_mapcount(page) | 570 (page->mapping != NULL) | 571 (atomic_read(&page->_count) != 0) | 572 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) | 573 (mem_cgroup_bad_page_check(page)))) { 574 bad_page(page); 575 return 1; 576 } 577 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 578 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 579 return 0; 580 } 581 582 /* 583 * Frees a number of pages from the PCP lists 584 * Assumes all pages on list are in same zone, and of same order. 585 * count is the number of pages to free. 586 * 587 * If the zone was previously in an "all pages pinned" state then look to 588 * see if this freeing clears that state. 589 * 590 * And clear the zone's pages_scanned counter, to hold off the "all pages are 591 * pinned" detection logic. 592 */ 593 static void free_pcppages_bulk(struct zone *zone, int count, 594 struct per_cpu_pages *pcp) 595 { 596 int migratetype = 0; 597 int batch_free = 0; 598 int to_free = count; 599 600 spin_lock(&zone->lock); 601 zone->all_unreclaimable = 0; 602 zone->pages_scanned = 0; 603 604 while (to_free) { 605 struct page *page; 606 struct list_head *list; 607 608 /* 609 * Remove pages from lists in a round-robin fashion. A 610 * batch_free count is maintained that is incremented when an 611 * empty list is encountered. This is so more pages are freed 612 * off fuller lists instead of spinning excessively around empty 613 * lists 614 */ 615 do { 616 batch_free++; 617 if (++migratetype == MIGRATE_PCPTYPES) 618 migratetype = 0; 619 list = &pcp->lists[migratetype]; 620 } while (list_empty(list)); 621 622 /* This is the only non-empty list. Free them all. */ 623 if (batch_free == MIGRATE_PCPTYPES) 624 batch_free = to_free; 625 626 do { 627 page = list_entry(list->prev, struct page, lru); 628 /* must delete as __free_one_page list manipulates */ 629 list_del(&page->lru); 630 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ 631 __free_one_page(page, zone, 0, page_private(page)); 632 trace_mm_page_pcpu_drain(page, 0, page_private(page)); 633 } while (--to_free && --batch_free && !list_empty(list)); 634 } 635 __mod_zone_page_state(zone, NR_FREE_PAGES, count); 636 spin_unlock(&zone->lock); 637 } 638 639 static void free_one_page(struct zone *zone, struct page *page, int order, 640 int migratetype) 641 { 642 spin_lock(&zone->lock); 643 zone->all_unreclaimable = 0; 644 zone->pages_scanned = 0; 645 646 __free_one_page(page, zone, order, migratetype); 647 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order); 648 spin_unlock(&zone->lock); 649 } 650 651 static bool free_pages_prepare(struct page *page, unsigned int order) 652 { 653 int i; 654 int bad = 0; 655 656 trace_mm_page_free_direct(page, order); 657 kmemcheck_free_shadow(page, order); 658 659 if (PageAnon(page)) 660 page->mapping = NULL; 661 for (i = 0; i < (1 << order); i++) 662 bad += free_pages_check(page + i); 663 if (bad) 664 return false; 665 666 if (!PageHighMem(page)) { 667 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); 668 debug_check_no_obj_freed(page_address(page), 669 PAGE_SIZE << order); 670 } 671 arch_free_page(page, order); 672 kernel_map_pages(page, 1 << order, 0); 673 674 return true; 675 } 676 677 static void __free_pages_ok(struct page *page, unsigned int order) 678 { 679 unsigned long flags; 680 int wasMlocked = __TestClearPageMlocked(page); 681 682 if (!free_pages_prepare(page, order)) 683 return; 684 685 local_irq_save(flags); 686 if (unlikely(wasMlocked)) 687 free_page_mlock(page); 688 __count_vm_events(PGFREE, 1 << order); 689 free_one_page(page_zone(page), page, order, 690 get_pageblock_migratetype(page)); 691 local_irq_restore(flags); 692 } 693 694 /* 695 * permit the bootmem allocator to evade page validation on high-order frees 696 */ 697 void __meminit __free_pages_bootmem(struct page *page, unsigned int order) 698 { 699 if (order == 0) { 700 __ClearPageReserved(page); 701 set_page_count(page, 0); 702 set_page_refcounted(page); 703 __free_page(page); 704 } else { 705 int loop; 706 707 prefetchw(page); 708 for (loop = 0; loop < BITS_PER_LONG; loop++) { 709 struct page *p = &page[loop]; 710 711 if (loop + 1 < BITS_PER_LONG) 712 prefetchw(p + 1); 713 __ClearPageReserved(p); 714 set_page_count(p, 0); 715 } 716 717 set_page_refcounted(page); 718 __free_pages(page, order); 719 } 720 } 721 722 723 /* 724 * The order of subdivision here is critical for the IO subsystem. 725 * Please do not alter this order without good reasons and regression 726 * testing. Specifically, as large blocks of memory are subdivided, 727 * the order in which smaller blocks are delivered depends on the order 728 * they're subdivided in this function. This is the primary factor 729 * influencing the order in which pages are delivered to the IO 730 * subsystem according to empirical testing, and this is also justified 731 * by considering the behavior of a buddy system containing a single 732 * large block of memory acted on by a series of small allocations. 733 * This behavior is a critical factor in sglist merging's success. 734 * 735 * -- wli 736 */ 737 static inline void expand(struct zone *zone, struct page *page, 738 int low, int high, struct free_area *area, 739 int migratetype) 740 { 741 unsigned long size = 1 << high; 742 743 while (high > low) { 744 area--; 745 high--; 746 size >>= 1; 747 VM_BUG_ON(bad_range(zone, &page[size])); 748 list_add(&page[size].lru, &area->free_list[migratetype]); 749 area->nr_free++; 750 set_page_order(&page[size], high); 751 } 752 } 753 754 /* 755 * This page is about to be returned from the page allocator 756 */ 757 static inline int check_new_page(struct page *page) 758 { 759 if (unlikely(page_mapcount(page) | 760 (page->mapping != NULL) | 761 (atomic_read(&page->_count) != 0) | 762 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) | 763 (mem_cgroup_bad_page_check(page)))) { 764 bad_page(page); 765 return 1; 766 } 767 return 0; 768 } 769 770 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 771 { 772 int i; 773 774 for (i = 0; i < (1 << order); i++) { 775 struct page *p = page + i; 776 if (unlikely(check_new_page(p))) 777 return 1; 778 } 779 780 set_page_private(page, 0); 781 set_page_refcounted(page); 782 783 arch_alloc_page(page, order); 784 kernel_map_pages(page, 1 << order, 1); 785 786 if (gfp_flags & __GFP_ZERO) 787 prep_zero_page(page, order, gfp_flags); 788 789 if (order && (gfp_flags & __GFP_COMP)) 790 prep_compound_page(page, order); 791 792 return 0; 793 } 794 795 /* 796 * Go through the free lists for the given migratetype and remove 797 * the smallest available page from the freelists 798 */ 799 static inline 800 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 801 int migratetype) 802 { 803 unsigned int current_order; 804 struct free_area * area; 805 struct page *page; 806 807 /* Find a page of the appropriate size in the preferred list */ 808 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 809 area = &(zone->free_area[current_order]); 810 if (list_empty(&area->free_list[migratetype])) 811 continue; 812 813 page = list_entry(area->free_list[migratetype].next, 814 struct page, lru); 815 list_del(&page->lru); 816 rmv_page_order(page); 817 area->nr_free--; 818 expand(zone, page, order, current_order, area, migratetype); 819 return page; 820 } 821 822 return NULL; 823 } 824 825 826 /* 827 * This array describes the order lists are fallen back to when 828 * the free lists for the desirable migrate type are depleted 829 */ 830 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = { 831 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 832 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 833 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 834 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */ 835 }; 836 837 /* 838 * Move the free pages in a range to the free lists of the requested type. 839 * Note that start_page and end_pages are not aligned on a pageblock 840 * boundary. If alignment is required, use move_freepages_block() 841 */ 842 static int move_freepages(struct zone *zone, 843 struct page *start_page, struct page *end_page, 844 int migratetype) 845 { 846 struct page *page; 847 unsigned long order; 848 int pages_moved = 0; 849 850 #ifndef CONFIG_HOLES_IN_ZONE 851 /* 852 * page_zone is not safe to call in this context when 853 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 854 * anyway as we check zone boundaries in move_freepages_block(). 855 * Remove at a later date when no bug reports exist related to 856 * grouping pages by mobility 857 */ 858 BUG_ON(page_zone(start_page) != page_zone(end_page)); 859 #endif 860 861 for (page = start_page; page <= end_page;) { 862 /* Make sure we are not inadvertently changing nodes */ 863 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone)); 864 865 if (!pfn_valid_within(page_to_pfn(page))) { 866 page++; 867 continue; 868 } 869 870 if (!PageBuddy(page)) { 871 page++; 872 continue; 873 } 874 875 order = page_order(page); 876 list_move(&page->lru, 877 &zone->free_area[order].free_list[migratetype]); 878 page += 1 << order; 879 pages_moved += 1 << order; 880 } 881 882 return pages_moved; 883 } 884 885 static int move_freepages_block(struct zone *zone, struct page *page, 886 int migratetype) 887 { 888 unsigned long start_pfn, end_pfn; 889 struct page *start_page, *end_page; 890 891 start_pfn = page_to_pfn(page); 892 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 893 start_page = pfn_to_page(start_pfn); 894 end_page = start_page + pageblock_nr_pages - 1; 895 end_pfn = start_pfn + pageblock_nr_pages - 1; 896 897 /* Do not cross zone boundaries */ 898 if (start_pfn < zone->zone_start_pfn) 899 start_page = page; 900 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages) 901 return 0; 902 903 return move_freepages(zone, start_page, end_page, migratetype); 904 } 905 906 static void change_pageblock_range(struct page *pageblock_page, 907 int start_order, int migratetype) 908 { 909 int nr_pageblocks = 1 << (start_order - pageblock_order); 910 911 while (nr_pageblocks--) { 912 set_pageblock_migratetype(pageblock_page, migratetype); 913 pageblock_page += pageblock_nr_pages; 914 } 915 } 916 917 /* Remove an element from the buddy allocator from the fallback list */ 918 static inline struct page * 919 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) 920 { 921 struct free_area * area; 922 int current_order; 923 struct page *page; 924 int migratetype, i; 925 926 /* Find the largest possible block of pages in the other list */ 927 for (current_order = MAX_ORDER-1; current_order >= order; 928 --current_order) { 929 for (i = 0; i < MIGRATE_TYPES - 1; i++) { 930 migratetype = fallbacks[start_migratetype][i]; 931 932 /* MIGRATE_RESERVE handled later if necessary */ 933 if (migratetype == MIGRATE_RESERVE) 934 continue; 935 936 area = &(zone->free_area[current_order]); 937 if (list_empty(&area->free_list[migratetype])) 938 continue; 939 940 page = list_entry(area->free_list[migratetype].next, 941 struct page, lru); 942 area->nr_free--; 943 944 /* 945 * If breaking a large block of pages, move all free 946 * pages to the preferred allocation list. If falling 947 * back for a reclaimable kernel allocation, be more 948 * aggressive about taking ownership of free pages 949 */ 950 if (unlikely(current_order >= (pageblock_order >> 1)) || 951 start_migratetype == MIGRATE_RECLAIMABLE || 952 page_group_by_mobility_disabled) { 953 unsigned long pages; 954 pages = move_freepages_block(zone, page, 955 start_migratetype); 956 957 /* Claim the whole block if over half of it is free */ 958 if (pages >= (1 << (pageblock_order-1)) || 959 page_group_by_mobility_disabled) 960 set_pageblock_migratetype(page, 961 start_migratetype); 962 963 migratetype = start_migratetype; 964 } 965 966 /* Remove the page from the freelists */ 967 list_del(&page->lru); 968 rmv_page_order(page); 969 970 /* Take ownership for orders >= pageblock_order */ 971 if (current_order >= pageblock_order) 972 change_pageblock_range(page, current_order, 973 start_migratetype); 974 975 expand(zone, page, order, current_order, area, migratetype); 976 977 trace_mm_page_alloc_extfrag(page, order, current_order, 978 start_migratetype, migratetype); 979 980 return page; 981 } 982 } 983 984 return NULL; 985 } 986 987 /* 988 * Do the hard work of removing an element from the buddy allocator. 989 * Call me with the zone->lock already held. 990 */ 991 static struct page *__rmqueue(struct zone *zone, unsigned int order, 992 int migratetype) 993 { 994 struct page *page; 995 996 retry_reserve: 997 page = __rmqueue_smallest(zone, order, migratetype); 998 999 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { 1000 page = __rmqueue_fallback(zone, order, migratetype); 1001 1002 /* 1003 * Use MIGRATE_RESERVE rather than fail an allocation. goto 1004 * is used because __rmqueue_smallest is an inline function 1005 * and we want just one call site 1006 */ 1007 if (!page) { 1008 migratetype = MIGRATE_RESERVE; 1009 goto retry_reserve; 1010 } 1011 } 1012 1013 trace_mm_page_alloc_zone_locked(page, order, migratetype); 1014 return page; 1015 } 1016 1017 /* 1018 * Obtain a specified number of elements from the buddy allocator, all under 1019 * a single hold of the lock, for efficiency. Add them to the supplied list. 1020 * Returns the number of new pages which were placed at *list. 1021 */ 1022 static int rmqueue_bulk(struct zone *zone, unsigned int order, 1023 unsigned long count, struct list_head *list, 1024 int migratetype, int cold) 1025 { 1026 int i; 1027 1028 spin_lock(&zone->lock); 1029 for (i = 0; i < count; ++i) { 1030 struct page *page = __rmqueue(zone, order, migratetype); 1031 if (unlikely(page == NULL)) 1032 break; 1033 1034 /* 1035 * Split buddy pages returned by expand() are received here 1036 * in physical page order. The page is added to the callers and 1037 * list and the list head then moves forward. From the callers 1038 * perspective, the linked list is ordered by page number in 1039 * some conditions. This is useful for IO devices that can 1040 * merge IO requests if the physical pages are ordered 1041 * properly. 1042 */ 1043 if (likely(cold == 0)) 1044 list_add(&page->lru, list); 1045 else 1046 list_add_tail(&page->lru, list); 1047 set_page_private(page, migratetype); 1048 list = &page->lru; 1049 } 1050 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 1051 spin_unlock(&zone->lock); 1052 return i; 1053 } 1054 1055 #ifdef CONFIG_NUMA 1056 /* 1057 * Called from the vmstat counter updater to drain pagesets of this 1058 * currently executing processor on remote nodes after they have 1059 * expired. 1060 * 1061 * Note that this function must be called with the thread pinned to 1062 * a single processor. 1063 */ 1064 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 1065 { 1066 unsigned long flags; 1067 int to_drain; 1068 1069 local_irq_save(flags); 1070 if (pcp->count >= pcp->batch) 1071 to_drain = pcp->batch; 1072 else 1073 to_drain = pcp->count; 1074 free_pcppages_bulk(zone, to_drain, pcp); 1075 pcp->count -= to_drain; 1076 local_irq_restore(flags); 1077 } 1078 #endif 1079 1080 /* 1081 * Drain pages of the indicated processor. 1082 * 1083 * The processor must either be the current processor and the 1084 * thread pinned to the current processor or a processor that 1085 * is not online. 1086 */ 1087 static void drain_pages(unsigned int cpu) 1088 { 1089 unsigned long flags; 1090 struct zone *zone; 1091 1092 for_each_populated_zone(zone) { 1093 struct per_cpu_pageset *pset; 1094 struct per_cpu_pages *pcp; 1095 1096 local_irq_save(flags); 1097 pset = per_cpu_ptr(zone->pageset, cpu); 1098 1099 pcp = &pset->pcp; 1100 if (pcp->count) { 1101 free_pcppages_bulk(zone, pcp->count, pcp); 1102 pcp->count = 0; 1103 } 1104 local_irq_restore(flags); 1105 } 1106 } 1107 1108 /* 1109 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 1110 */ 1111 void drain_local_pages(void *arg) 1112 { 1113 drain_pages(smp_processor_id()); 1114 } 1115 1116 /* 1117 * Spill all the per-cpu pages from all CPUs back into the buddy allocator 1118 */ 1119 void drain_all_pages(void) 1120 { 1121 on_each_cpu(drain_local_pages, NULL, 1); 1122 } 1123 1124 #ifdef CONFIG_HIBERNATION 1125 1126 void mark_free_pages(struct zone *zone) 1127 { 1128 unsigned long pfn, max_zone_pfn; 1129 unsigned long flags; 1130 int order, t; 1131 struct list_head *curr; 1132 1133 if (!zone->spanned_pages) 1134 return; 1135 1136 spin_lock_irqsave(&zone->lock, flags); 1137 1138 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1139 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1140 if (pfn_valid(pfn)) { 1141 struct page *page = pfn_to_page(pfn); 1142 1143 if (!swsusp_page_is_forbidden(page)) 1144 swsusp_unset_page_free(page); 1145 } 1146 1147 for_each_migratetype_order(order, t) { 1148 list_for_each(curr, &zone->free_area[order].free_list[t]) { 1149 unsigned long i; 1150 1151 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 1152 for (i = 0; i < (1UL << order); i++) 1153 swsusp_set_page_free(pfn_to_page(pfn + i)); 1154 } 1155 } 1156 spin_unlock_irqrestore(&zone->lock, flags); 1157 } 1158 #endif /* CONFIG_PM */ 1159 1160 /* 1161 * Free a 0-order page 1162 * cold == 1 ? free a cold page : free a hot page 1163 */ 1164 void free_hot_cold_page(struct page *page, int cold) 1165 { 1166 struct zone *zone = page_zone(page); 1167 struct per_cpu_pages *pcp; 1168 unsigned long flags; 1169 int migratetype; 1170 int wasMlocked = __TestClearPageMlocked(page); 1171 1172 if (!free_pages_prepare(page, 0)) 1173 return; 1174 1175 migratetype = get_pageblock_migratetype(page); 1176 set_page_private(page, migratetype); 1177 local_irq_save(flags); 1178 if (unlikely(wasMlocked)) 1179 free_page_mlock(page); 1180 __count_vm_event(PGFREE); 1181 1182 /* 1183 * We only track unmovable, reclaimable and movable on pcp lists. 1184 * Free ISOLATE pages back to the allocator because they are being 1185 * offlined but treat RESERVE as movable pages so we can get those 1186 * areas back if necessary. Otherwise, we may have to free 1187 * excessively into the page allocator 1188 */ 1189 if (migratetype >= MIGRATE_PCPTYPES) { 1190 if (unlikely(migratetype == MIGRATE_ISOLATE)) { 1191 free_one_page(zone, page, 0, migratetype); 1192 goto out; 1193 } 1194 migratetype = MIGRATE_MOVABLE; 1195 } 1196 1197 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1198 if (cold) 1199 list_add_tail(&page->lru, &pcp->lists[migratetype]); 1200 else 1201 list_add(&page->lru, &pcp->lists[migratetype]); 1202 pcp->count++; 1203 if (pcp->count >= pcp->high) { 1204 free_pcppages_bulk(zone, pcp->batch, pcp); 1205 pcp->count -= pcp->batch; 1206 } 1207 1208 out: 1209 local_irq_restore(flags); 1210 } 1211 1212 /* 1213 * split_page takes a non-compound higher-order page, and splits it into 1214 * n (1<<order) sub-pages: page[0..n] 1215 * Each sub-page must be freed individually. 1216 * 1217 * Note: this is probably too low level an operation for use in drivers. 1218 * Please consult with lkml before using this in your driver. 1219 */ 1220 void split_page(struct page *page, unsigned int order) 1221 { 1222 int i; 1223 1224 VM_BUG_ON(PageCompound(page)); 1225 VM_BUG_ON(!page_count(page)); 1226 1227 #ifdef CONFIG_KMEMCHECK 1228 /* 1229 * Split shadow pages too, because free(page[0]) would 1230 * otherwise free the whole shadow. 1231 */ 1232 if (kmemcheck_page_is_tracked(page)) 1233 split_page(virt_to_page(page[0].shadow), order); 1234 #endif 1235 1236 for (i = 1; i < (1 << order); i++) 1237 set_page_refcounted(page + i); 1238 } 1239 1240 /* 1241 * Similar to split_page except the page is already free. As this is only 1242 * being used for migration, the migratetype of the block also changes. 1243 * As this is called with interrupts disabled, the caller is responsible 1244 * for calling arch_alloc_page() and kernel_map_page() after interrupts 1245 * are enabled. 1246 * 1247 * Note: this is probably too low level an operation for use in drivers. 1248 * Please consult with lkml before using this in your driver. 1249 */ 1250 int split_free_page(struct page *page) 1251 { 1252 unsigned int order; 1253 unsigned long watermark; 1254 struct zone *zone; 1255 1256 BUG_ON(!PageBuddy(page)); 1257 1258 zone = page_zone(page); 1259 order = page_order(page); 1260 1261 /* Obey watermarks as if the page was being allocated */ 1262 watermark = low_wmark_pages(zone) + (1 << order); 1263 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 1264 return 0; 1265 1266 /* Remove page from free list */ 1267 list_del(&page->lru); 1268 zone->free_area[order].nr_free--; 1269 rmv_page_order(page); 1270 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order)); 1271 1272 /* Split into individual pages */ 1273 set_page_refcounted(page); 1274 split_page(page, order); 1275 1276 if (order >= pageblock_order - 1) { 1277 struct page *endpage = page + (1 << order) - 1; 1278 for (; page < endpage; page += pageblock_nr_pages) 1279 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1280 } 1281 1282 return 1 << order; 1283 } 1284 1285 /* 1286 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 1287 * we cheat by calling it from here, in the order > 0 path. Saves a branch 1288 * or two. 1289 */ 1290 static inline 1291 struct page *buffered_rmqueue(struct zone *preferred_zone, 1292 struct zone *zone, int order, gfp_t gfp_flags, 1293 int migratetype) 1294 { 1295 unsigned long flags; 1296 struct page *page; 1297 int cold = !!(gfp_flags & __GFP_COLD); 1298 1299 again: 1300 if (likely(order == 0)) { 1301 struct per_cpu_pages *pcp; 1302 struct list_head *list; 1303 1304 local_irq_save(flags); 1305 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1306 list = &pcp->lists[migratetype]; 1307 if (list_empty(list)) { 1308 pcp->count += rmqueue_bulk(zone, 0, 1309 pcp->batch, list, 1310 migratetype, cold); 1311 if (unlikely(list_empty(list))) 1312 goto failed; 1313 } 1314 1315 if (cold) 1316 page = list_entry(list->prev, struct page, lru); 1317 else 1318 page = list_entry(list->next, struct page, lru); 1319 1320 list_del(&page->lru); 1321 pcp->count--; 1322 } else { 1323 if (unlikely(gfp_flags & __GFP_NOFAIL)) { 1324 /* 1325 * __GFP_NOFAIL is not to be used in new code. 1326 * 1327 * All __GFP_NOFAIL callers should be fixed so that they 1328 * properly detect and handle allocation failures. 1329 * 1330 * We most definitely don't want callers attempting to 1331 * allocate greater than order-1 page units with 1332 * __GFP_NOFAIL. 1333 */ 1334 WARN_ON_ONCE(order > 1); 1335 } 1336 spin_lock_irqsave(&zone->lock, flags); 1337 page = __rmqueue(zone, order, migratetype); 1338 spin_unlock(&zone->lock); 1339 if (!page) 1340 goto failed; 1341 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order)); 1342 } 1343 1344 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1345 zone_statistics(preferred_zone, zone, gfp_flags); 1346 local_irq_restore(flags); 1347 1348 VM_BUG_ON(bad_range(zone, page)); 1349 if (prep_new_page(page, order, gfp_flags)) 1350 goto again; 1351 return page; 1352 1353 failed: 1354 local_irq_restore(flags); 1355 return NULL; 1356 } 1357 1358 /* The ALLOC_WMARK bits are used as an index to zone->watermark */ 1359 #define ALLOC_WMARK_MIN WMARK_MIN 1360 #define ALLOC_WMARK_LOW WMARK_LOW 1361 #define ALLOC_WMARK_HIGH WMARK_HIGH 1362 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ 1363 1364 /* Mask to get the watermark bits */ 1365 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) 1366 1367 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 1368 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 1369 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 1370 1371 #ifdef CONFIG_FAIL_PAGE_ALLOC 1372 1373 static struct fail_page_alloc_attr { 1374 struct fault_attr attr; 1375 1376 u32 ignore_gfp_highmem; 1377 u32 ignore_gfp_wait; 1378 u32 min_order; 1379 1380 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1381 1382 struct dentry *ignore_gfp_highmem_file; 1383 struct dentry *ignore_gfp_wait_file; 1384 struct dentry *min_order_file; 1385 1386 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1387 1388 } fail_page_alloc = { 1389 .attr = FAULT_ATTR_INITIALIZER, 1390 .ignore_gfp_wait = 1, 1391 .ignore_gfp_highmem = 1, 1392 .min_order = 1, 1393 }; 1394 1395 static int __init setup_fail_page_alloc(char *str) 1396 { 1397 return setup_fault_attr(&fail_page_alloc.attr, str); 1398 } 1399 __setup("fail_page_alloc=", setup_fail_page_alloc); 1400 1401 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1402 { 1403 if (order < fail_page_alloc.min_order) 1404 return 0; 1405 if (gfp_mask & __GFP_NOFAIL) 1406 return 0; 1407 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1408 return 0; 1409 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1410 return 0; 1411 1412 return should_fail(&fail_page_alloc.attr, 1 << order); 1413 } 1414 1415 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1416 1417 static int __init fail_page_alloc_debugfs(void) 1418 { 1419 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1420 struct dentry *dir; 1421 int err; 1422 1423 err = init_fault_attr_dentries(&fail_page_alloc.attr, 1424 "fail_page_alloc"); 1425 if (err) 1426 return err; 1427 dir = fail_page_alloc.attr.dentries.dir; 1428 1429 fail_page_alloc.ignore_gfp_wait_file = 1430 debugfs_create_bool("ignore-gfp-wait", mode, dir, 1431 &fail_page_alloc.ignore_gfp_wait); 1432 1433 fail_page_alloc.ignore_gfp_highmem_file = 1434 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1435 &fail_page_alloc.ignore_gfp_highmem); 1436 fail_page_alloc.min_order_file = 1437 debugfs_create_u32("min-order", mode, dir, 1438 &fail_page_alloc.min_order); 1439 1440 if (!fail_page_alloc.ignore_gfp_wait_file || 1441 !fail_page_alloc.ignore_gfp_highmem_file || 1442 !fail_page_alloc.min_order_file) { 1443 err = -ENOMEM; 1444 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file); 1445 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file); 1446 debugfs_remove(fail_page_alloc.min_order_file); 1447 cleanup_fault_attr_dentries(&fail_page_alloc.attr); 1448 } 1449 1450 return err; 1451 } 1452 1453 late_initcall(fail_page_alloc_debugfs); 1454 1455 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1456 1457 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1458 1459 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1460 { 1461 return 0; 1462 } 1463 1464 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1465 1466 /* 1467 * Return true if free pages are above 'mark'. This takes into account the order 1468 * of the allocation. 1469 */ 1470 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1471 int classzone_idx, int alloc_flags, long free_pages) 1472 { 1473 /* free_pages my go negative - that's OK */ 1474 long min = mark; 1475 int o; 1476 1477 free_pages -= (1 << order) + 1; 1478 if (alloc_flags & ALLOC_HIGH) 1479 min -= min / 2; 1480 if (alloc_flags & ALLOC_HARDER) 1481 min -= min / 4; 1482 1483 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 1484 return false; 1485 for (o = 0; o < order; o++) { 1486 /* At the next order, this order's pages become unavailable */ 1487 free_pages -= z->free_area[o].nr_free << o; 1488 1489 /* Require fewer higher order pages to be free */ 1490 min >>= 1; 1491 1492 if (free_pages <= min) 1493 return false; 1494 } 1495 return true; 1496 } 1497 1498 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1499 int classzone_idx, int alloc_flags) 1500 { 1501 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1502 zone_page_state(z, NR_FREE_PAGES)); 1503 } 1504 1505 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark, 1506 int classzone_idx, int alloc_flags) 1507 { 1508 long free_pages = zone_page_state(z, NR_FREE_PAGES); 1509 1510 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 1511 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 1512 1513 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1514 free_pages); 1515 } 1516 1517 #ifdef CONFIG_NUMA 1518 /* 1519 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1520 * skip over zones that are not allowed by the cpuset, or that have 1521 * been recently (in last second) found to be nearly full. See further 1522 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1523 * that have to skip over a lot of full or unallowed zones. 1524 * 1525 * If the zonelist cache is present in the passed in zonelist, then 1526 * returns a pointer to the allowed node mask (either the current 1527 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].) 1528 * 1529 * If the zonelist cache is not available for this zonelist, does 1530 * nothing and returns NULL. 1531 * 1532 * If the fullzones BITMAP in the zonelist cache is stale (more than 1533 * a second since last zap'd) then we zap it out (clear its bits.) 1534 * 1535 * We hold off even calling zlc_setup, until after we've checked the 1536 * first zone in the zonelist, on the theory that most allocations will 1537 * be satisfied from that first zone, so best to examine that zone as 1538 * quickly as we can. 1539 */ 1540 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1541 { 1542 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1543 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1544 1545 zlc = zonelist->zlcache_ptr; 1546 if (!zlc) 1547 return NULL; 1548 1549 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1550 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1551 zlc->last_full_zap = jiffies; 1552 } 1553 1554 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1555 &cpuset_current_mems_allowed : 1556 &node_states[N_HIGH_MEMORY]; 1557 return allowednodes; 1558 } 1559 1560 /* 1561 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1562 * if it is worth looking at further for free memory: 1563 * 1) Check that the zone isn't thought to be full (doesn't have its 1564 * bit set in the zonelist_cache fullzones BITMAP). 1565 * 2) Check that the zones node (obtained from the zonelist_cache 1566 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1567 * Return true (non-zero) if zone is worth looking at further, or 1568 * else return false (zero) if it is not. 1569 * 1570 * This check -ignores- the distinction between various watermarks, 1571 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1572 * found to be full for any variation of these watermarks, it will 1573 * be considered full for up to one second by all requests, unless 1574 * we are so low on memory on all allowed nodes that we are forced 1575 * into the second scan of the zonelist. 1576 * 1577 * In the second scan we ignore this zonelist cache and exactly 1578 * apply the watermarks to all zones, even it is slower to do so. 1579 * We are low on memory in the second scan, and should leave no stone 1580 * unturned looking for a free page. 1581 */ 1582 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1583 nodemask_t *allowednodes) 1584 { 1585 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1586 int i; /* index of *z in zonelist zones */ 1587 int n; /* node that zone *z is on */ 1588 1589 zlc = zonelist->zlcache_ptr; 1590 if (!zlc) 1591 return 1; 1592 1593 i = z - zonelist->_zonerefs; 1594 n = zlc->z_to_n[i]; 1595 1596 /* This zone is worth trying if it is allowed but not full */ 1597 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1598 } 1599 1600 /* 1601 * Given 'z' scanning a zonelist, set the corresponding bit in 1602 * zlc->fullzones, so that subsequent attempts to allocate a page 1603 * from that zone don't waste time re-examining it. 1604 */ 1605 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1606 { 1607 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1608 int i; /* index of *z in zonelist zones */ 1609 1610 zlc = zonelist->zlcache_ptr; 1611 if (!zlc) 1612 return; 1613 1614 i = z - zonelist->_zonerefs; 1615 1616 set_bit(i, zlc->fullzones); 1617 } 1618 1619 #else /* CONFIG_NUMA */ 1620 1621 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1622 { 1623 return NULL; 1624 } 1625 1626 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1627 nodemask_t *allowednodes) 1628 { 1629 return 1; 1630 } 1631 1632 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1633 { 1634 } 1635 #endif /* CONFIG_NUMA */ 1636 1637 /* 1638 * get_page_from_freelist goes through the zonelist trying to allocate 1639 * a page. 1640 */ 1641 static struct page * 1642 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, 1643 struct zonelist *zonelist, int high_zoneidx, int alloc_flags, 1644 struct zone *preferred_zone, int migratetype) 1645 { 1646 struct zoneref *z; 1647 struct page *page = NULL; 1648 int classzone_idx; 1649 struct zone *zone; 1650 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1651 int zlc_active = 0; /* set if using zonelist_cache */ 1652 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1653 1654 classzone_idx = zone_idx(preferred_zone); 1655 zonelist_scan: 1656 /* 1657 * Scan zonelist, looking for a zone with enough free. 1658 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1659 */ 1660 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1661 high_zoneidx, nodemask) { 1662 if (NUMA_BUILD && zlc_active && 1663 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1664 continue; 1665 if ((alloc_flags & ALLOC_CPUSET) && 1666 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1667 goto try_next_zone; 1668 1669 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 1670 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 1671 unsigned long mark; 1672 int ret; 1673 1674 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 1675 if (zone_watermark_ok(zone, order, mark, 1676 classzone_idx, alloc_flags)) 1677 goto try_this_zone; 1678 1679 if (zone_reclaim_mode == 0) 1680 goto this_zone_full; 1681 1682 ret = zone_reclaim(zone, gfp_mask, order); 1683 switch (ret) { 1684 case ZONE_RECLAIM_NOSCAN: 1685 /* did not scan */ 1686 goto try_next_zone; 1687 case ZONE_RECLAIM_FULL: 1688 /* scanned but unreclaimable */ 1689 goto this_zone_full; 1690 default: 1691 /* did we reclaim enough */ 1692 if (!zone_watermark_ok(zone, order, mark, 1693 classzone_idx, alloc_flags)) 1694 goto this_zone_full; 1695 } 1696 } 1697 1698 try_this_zone: 1699 page = buffered_rmqueue(preferred_zone, zone, order, 1700 gfp_mask, migratetype); 1701 if (page) 1702 break; 1703 this_zone_full: 1704 if (NUMA_BUILD) 1705 zlc_mark_zone_full(zonelist, z); 1706 try_next_zone: 1707 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) { 1708 /* 1709 * we do zlc_setup after the first zone is tried but only 1710 * if there are multiple nodes make it worthwhile 1711 */ 1712 allowednodes = zlc_setup(zonelist, alloc_flags); 1713 zlc_active = 1; 1714 did_zlc_setup = 1; 1715 } 1716 } 1717 1718 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) { 1719 /* Disable zlc cache for second zonelist scan */ 1720 zlc_active = 0; 1721 goto zonelist_scan; 1722 } 1723 return page; 1724 } 1725 1726 /* 1727 * Large machines with many possible nodes should not always dump per-node 1728 * meminfo in irq context. 1729 */ 1730 static inline bool should_suppress_show_mem(void) 1731 { 1732 bool ret = false; 1733 1734 #if NODES_SHIFT > 8 1735 ret = in_interrupt(); 1736 #endif 1737 return ret; 1738 } 1739 1740 static DEFINE_RATELIMIT_STATE(nopage_rs, 1741 DEFAULT_RATELIMIT_INTERVAL, 1742 DEFAULT_RATELIMIT_BURST); 1743 1744 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...) 1745 { 1746 va_list args; 1747 unsigned int filter = SHOW_MEM_FILTER_NODES; 1748 1749 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs)) 1750 return; 1751 1752 /* 1753 * This documents exceptions given to allocations in certain 1754 * contexts that are allowed to allocate outside current's set 1755 * of allowed nodes. 1756 */ 1757 if (!(gfp_mask & __GFP_NOMEMALLOC)) 1758 if (test_thread_flag(TIF_MEMDIE) || 1759 (current->flags & (PF_MEMALLOC | PF_EXITING))) 1760 filter &= ~SHOW_MEM_FILTER_NODES; 1761 if (in_interrupt() || !(gfp_mask & __GFP_WAIT)) 1762 filter &= ~SHOW_MEM_FILTER_NODES; 1763 1764 if (fmt) { 1765 printk(KERN_WARNING); 1766 va_start(args, fmt); 1767 vprintk(fmt, args); 1768 va_end(args); 1769 } 1770 1771 pr_warning("%s: page allocation failure: order:%d, mode:0x%x\n", 1772 current->comm, order, gfp_mask); 1773 1774 dump_stack(); 1775 if (!should_suppress_show_mem()) 1776 show_mem(filter); 1777 } 1778 1779 static inline int 1780 should_alloc_retry(gfp_t gfp_mask, unsigned int order, 1781 unsigned long pages_reclaimed) 1782 { 1783 /* Do not loop if specifically requested */ 1784 if (gfp_mask & __GFP_NORETRY) 1785 return 0; 1786 1787 /* 1788 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 1789 * means __GFP_NOFAIL, but that may not be true in other 1790 * implementations. 1791 */ 1792 if (order <= PAGE_ALLOC_COSTLY_ORDER) 1793 return 1; 1794 1795 /* 1796 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 1797 * specified, then we retry until we no longer reclaim any pages 1798 * (above), or we've reclaimed an order of pages at least as 1799 * large as the allocation's order. In both cases, if the 1800 * allocation still fails, we stop retrying. 1801 */ 1802 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) 1803 return 1; 1804 1805 /* 1806 * Don't let big-order allocations loop unless the caller 1807 * explicitly requests that. 1808 */ 1809 if (gfp_mask & __GFP_NOFAIL) 1810 return 1; 1811 1812 return 0; 1813 } 1814 1815 static inline struct page * 1816 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 1817 struct zonelist *zonelist, enum zone_type high_zoneidx, 1818 nodemask_t *nodemask, struct zone *preferred_zone, 1819 int migratetype) 1820 { 1821 struct page *page; 1822 1823 /* Acquire the OOM killer lock for the zones in zonelist */ 1824 if (!try_set_zonelist_oom(zonelist, gfp_mask)) { 1825 schedule_timeout_uninterruptible(1); 1826 return NULL; 1827 } 1828 1829 /* 1830 * Go through the zonelist yet one more time, keep very high watermark 1831 * here, this is only to catch a parallel oom killing, we must fail if 1832 * we're still under heavy pressure. 1833 */ 1834 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, 1835 order, zonelist, high_zoneidx, 1836 ALLOC_WMARK_HIGH|ALLOC_CPUSET, 1837 preferred_zone, migratetype); 1838 if (page) 1839 goto out; 1840 1841 if (!(gfp_mask & __GFP_NOFAIL)) { 1842 /* The OOM killer will not help higher order allocs */ 1843 if (order > PAGE_ALLOC_COSTLY_ORDER) 1844 goto out; 1845 /* The OOM killer does not needlessly kill tasks for lowmem */ 1846 if (high_zoneidx < ZONE_NORMAL) 1847 goto out; 1848 /* 1849 * GFP_THISNODE contains __GFP_NORETRY and we never hit this. 1850 * Sanity check for bare calls of __GFP_THISNODE, not real OOM. 1851 * The caller should handle page allocation failure by itself if 1852 * it specifies __GFP_THISNODE. 1853 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER. 1854 */ 1855 if (gfp_mask & __GFP_THISNODE) 1856 goto out; 1857 } 1858 /* Exhausted what can be done so it's blamo time */ 1859 out_of_memory(zonelist, gfp_mask, order, nodemask); 1860 1861 out: 1862 clear_zonelist_oom(zonelist, gfp_mask); 1863 return page; 1864 } 1865 1866 #ifdef CONFIG_COMPACTION 1867 /* Try memory compaction for high-order allocations before reclaim */ 1868 static struct page * 1869 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 1870 struct zonelist *zonelist, enum zone_type high_zoneidx, 1871 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 1872 int migratetype, unsigned long *did_some_progress, 1873 bool sync_migration) 1874 { 1875 struct page *page; 1876 1877 if (!order || compaction_deferred(preferred_zone)) 1878 return NULL; 1879 1880 current->flags |= PF_MEMALLOC; 1881 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask, 1882 nodemask, sync_migration); 1883 current->flags &= ~PF_MEMALLOC; 1884 if (*did_some_progress != COMPACT_SKIPPED) { 1885 1886 /* Page migration frees to the PCP lists but we want merging */ 1887 drain_pages(get_cpu()); 1888 put_cpu(); 1889 1890 page = get_page_from_freelist(gfp_mask, nodemask, 1891 order, zonelist, high_zoneidx, 1892 alloc_flags, preferred_zone, 1893 migratetype); 1894 if (page) { 1895 preferred_zone->compact_considered = 0; 1896 preferred_zone->compact_defer_shift = 0; 1897 count_vm_event(COMPACTSUCCESS); 1898 return page; 1899 } 1900 1901 /* 1902 * It's bad if compaction run occurs and fails. 1903 * The most likely reason is that pages exist, 1904 * but not enough to satisfy watermarks. 1905 */ 1906 count_vm_event(COMPACTFAIL); 1907 defer_compaction(preferred_zone); 1908 1909 cond_resched(); 1910 } 1911 1912 return NULL; 1913 } 1914 #else 1915 static inline struct page * 1916 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 1917 struct zonelist *zonelist, enum zone_type high_zoneidx, 1918 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 1919 int migratetype, unsigned long *did_some_progress, 1920 bool sync_migration) 1921 { 1922 return NULL; 1923 } 1924 #endif /* CONFIG_COMPACTION */ 1925 1926 /* The really slow allocator path where we enter direct reclaim */ 1927 static inline struct page * 1928 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 1929 struct zonelist *zonelist, enum zone_type high_zoneidx, 1930 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 1931 int migratetype, unsigned long *did_some_progress) 1932 { 1933 struct page *page = NULL; 1934 struct reclaim_state reclaim_state; 1935 bool drained = false; 1936 1937 cond_resched(); 1938 1939 /* We now go into synchronous reclaim */ 1940 cpuset_memory_pressure_bump(); 1941 current->flags |= PF_MEMALLOC; 1942 lockdep_set_current_reclaim_state(gfp_mask); 1943 reclaim_state.reclaimed_slab = 0; 1944 current->reclaim_state = &reclaim_state; 1945 1946 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask); 1947 1948 current->reclaim_state = NULL; 1949 lockdep_clear_current_reclaim_state(); 1950 current->flags &= ~PF_MEMALLOC; 1951 1952 cond_resched(); 1953 1954 if (unlikely(!(*did_some_progress))) 1955 return NULL; 1956 1957 retry: 1958 page = get_page_from_freelist(gfp_mask, nodemask, order, 1959 zonelist, high_zoneidx, 1960 alloc_flags, preferred_zone, 1961 migratetype); 1962 1963 /* 1964 * If an allocation failed after direct reclaim, it could be because 1965 * pages are pinned on the per-cpu lists. Drain them and try again 1966 */ 1967 if (!page && !drained) { 1968 drain_all_pages(); 1969 drained = true; 1970 goto retry; 1971 } 1972 1973 return page; 1974 } 1975 1976 /* 1977 * This is called in the allocator slow-path if the allocation request is of 1978 * sufficient urgency to ignore watermarks and take other desperate measures 1979 */ 1980 static inline struct page * 1981 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, 1982 struct zonelist *zonelist, enum zone_type high_zoneidx, 1983 nodemask_t *nodemask, struct zone *preferred_zone, 1984 int migratetype) 1985 { 1986 struct page *page; 1987 1988 do { 1989 page = get_page_from_freelist(gfp_mask, nodemask, order, 1990 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS, 1991 preferred_zone, migratetype); 1992 1993 if (!page && gfp_mask & __GFP_NOFAIL) 1994 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 1995 } while (!page && (gfp_mask & __GFP_NOFAIL)); 1996 1997 return page; 1998 } 1999 2000 static inline 2001 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist, 2002 enum zone_type high_zoneidx, 2003 enum zone_type classzone_idx) 2004 { 2005 struct zoneref *z; 2006 struct zone *zone; 2007 2008 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) 2009 wakeup_kswapd(zone, order, classzone_idx); 2010 } 2011 2012 static inline int 2013 gfp_to_alloc_flags(gfp_t gfp_mask) 2014 { 2015 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 2016 const gfp_t wait = gfp_mask & __GFP_WAIT; 2017 2018 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 2019 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 2020 2021 /* 2022 * The caller may dip into page reserves a bit more if the caller 2023 * cannot run direct reclaim, or if the caller has realtime scheduling 2024 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 2025 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 2026 */ 2027 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 2028 2029 if (!wait) { 2030 /* 2031 * Not worth trying to allocate harder for 2032 * __GFP_NOMEMALLOC even if it can't schedule. 2033 */ 2034 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2035 alloc_flags |= ALLOC_HARDER; 2036 /* 2037 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 2038 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 2039 */ 2040 alloc_flags &= ~ALLOC_CPUSET; 2041 } else if (unlikely(rt_task(current)) && !in_interrupt()) 2042 alloc_flags |= ALLOC_HARDER; 2043 2044 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { 2045 if (!in_interrupt() && 2046 ((current->flags & PF_MEMALLOC) || 2047 unlikely(test_thread_flag(TIF_MEMDIE)))) 2048 alloc_flags |= ALLOC_NO_WATERMARKS; 2049 } 2050 2051 return alloc_flags; 2052 } 2053 2054 static inline struct page * 2055 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 2056 struct zonelist *zonelist, enum zone_type high_zoneidx, 2057 nodemask_t *nodemask, struct zone *preferred_zone, 2058 int migratetype) 2059 { 2060 const gfp_t wait = gfp_mask & __GFP_WAIT; 2061 struct page *page = NULL; 2062 int alloc_flags; 2063 unsigned long pages_reclaimed = 0; 2064 unsigned long did_some_progress; 2065 bool sync_migration = false; 2066 2067 /* 2068 * In the slowpath, we sanity check order to avoid ever trying to 2069 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 2070 * be using allocators in order of preference for an area that is 2071 * too large. 2072 */ 2073 if (order >= MAX_ORDER) { 2074 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 2075 return NULL; 2076 } 2077 2078 /* 2079 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 2080 * __GFP_NOWARN set) should not cause reclaim since the subsystem 2081 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 2082 * using a larger set of nodes after it has established that the 2083 * allowed per node queues are empty and that nodes are 2084 * over allocated. 2085 */ 2086 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 2087 goto nopage; 2088 2089 restart: 2090 if (!(gfp_mask & __GFP_NO_KSWAPD)) 2091 wake_all_kswapd(order, zonelist, high_zoneidx, 2092 zone_idx(preferred_zone)); 2093 2094 /* 2095 * OK, we're below the kswapd watermark and have kicked background 2096 * reclaim. Now things get more complex, so set up alloc_flags according 2097 * to how we want to proceed. 2098 */ 2099 alloc_flags = gfp_to_alloc_flags(gfp_mask); 2100 2101 /* 2102 * Find the true preferred zone if the allocation is unconstrained by 2103 * cpusets. 2104 */ 2105 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) 2106 first_zones_zonelist(zonelist, high_zoneidx, NULL, 2107 &preferred_zone); 2108 2109 rebalance: 2110 /* This is the last chance, in general, before the goto nopage. */ 2111 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, 2112 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS, 2113 preferred_zone, migratetype); 2114 if (page) 2115 goto got_pg; 2116 2117 /* Allocate without watermarks if the context allows */ 2118 if (alloc_flags & ALLOC_NO_WATERMARKS) { 2119 page = __alloc_pages_high_priority(gfp_mask, order, 2120 zonelist, high_zoneidx, nodemask, 2121 preferred_zone, migratetype); 2122 if (page) 2123 goto got_pg; 2124 } 2125 2126 /* Atomic allocations - we can't balance anything */ 2127 if (!wait) 2128 goto nopage; 2129 2130 /* Avoid recursion of direct reclaim */ 2131 if (current->flags & PF_MEMALLOC) 2132 goto nopage; 2133 2134 /* Avoid allocations with no watermarks from looping endlessly */ 2135 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) 2136 goto nopage; 2137 2138 /* 2139 * Try direct compaction. The first pass is asynchronous. Subsequent 2140 * attempts after direct reclaim are synchronous 2141 */ 2142 page = __alloc_pages_direct_compact(gfp_mask, order, 2143 zonelist, high_zoneidx, 2144 nodemask, 2145 alloc_flags, preferred_zone, 2146 migratetype, &did_some_progress, 2147 sync_migration); 2148 if (page) 2149 goto got_pg; 2150 sync_migration = true; 2151 2152 /* Try direct reclaim and then allocating */ 2153 page = __alloc_pages_direct_reclaim(gfp_mask, order, 2154 zonelist, high_zoneidx, 2155 nodemask, 2156 alloc_flags, preferred_zone, 2157 migratetype, &did_some_progress); 2158 if (page) 2159 goto got_pg; 2160 2161 /* 2162 * If we failed to make any progress reclaiming, then we are 2163 * running out of options and have to consider going OOM 2164 */ 2165 if (!did_some_progress) { 2166 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 2167 if (oom_killer_disabled) 2168 goto nopage; 2169 page = __alloc_pages_may_oom(gfp_mask, order, 2170 zonelist, high_zoneidx, 2171 nodemask, preferred_zone, 2172 migratetype); 2173 if (page) 2174 goto got_pg; 2175 2176 if (!(gfp_mask & __GFP_NOFAIL)) { 2177 /* 2178 * The oom killer is not called for high-order 2179 * allocations that may fail, so if no progress 2180 * is being made, there are no other options and 2181 * retrying is unlikely to help. 2182 */ 2183 if (order > PAGE_ALLOC_COSTLY_ORDER) 2184 goto nopage; 2185 /* 2186 * The oom killer is not called for lowmem 2187 * allocations to prevent needlessly killing 2188 * innocent tasks. 2189 */ 2190 if (high_zoneidx < ZONE_NORMAL) 2191 goto nopage; 2192 } 2193 2194 goto restart; 2195 } 2196 } 2197 2198 /* Check if we should retry the allocation */ 2199 pages_reclaimed += did_some_progress; 2200 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) { 2201 /* Wait for some write requests to complete then retry */ 2202 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2203 goto rebalance; 2204 } else { 2205 /* 2206 * High-order allocations do not necessarily loop after 2207 * direct reclaim and reclaim/compaction depends on compaction 2208 * being called after reclaim so call directly if necessary 2209 */ 2210 page = __alloc_pages_direct_compact(gfp_mask, order, 2211 zonelist, high_zoneidx, 2212 nodemask, 2213 alloc_flags, preferred_zone, 2214 migratetype, &did_some_progress, 2215 sync_migration); 2216 if (page) 2217 goto got_pg; 2218 } 2219 2220 nopage: 2221 warn_alloc_failed(gfp_mask, order, NULL); 2222 return page; 2223 got_pg: 2224 if (kmemcheck_enabled) 2225 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 2226 return page; 2227 2228 } 2229 2230 /* 2231 * This is the 'heart' of the zoned buddy allocator. 2232 */ 2233 struct page * 2234 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 2235 struct zonelist *zonelist, nodemask_t *nodemask) 2236 { 2237 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 2238 struct zone *preferred_zone; 2239 struct page *page; 2240 int migratetype = allocflags_to_migratetype(gfp_mask); 2241 2242 gfp_mask &= gfp_allowed_mask; 2243 2244 lockdep_trace_alloc(gfp_mask); 2245 2246 might_sleep_if(gfp_mask & __GFP_WAIT); 2247 2248 if (should_fail_alloc_page(gfp_mask, order)) 2249 return NULL; 2250 2251 /* 2252 * Check the zones suitable for the gfp_mask contain at least one 2253 * valid zone. It's possible to have an empty zonelist as a result 2254 * of GFP_THISNODE and a memoryless node 2255 */ 2256 if (unlikely(!zonelist->_zonerefs->zone)) 2257 return NULL; 2258 2259 get_mems_allowed(); 2260 /* The preferred zone is used for statistics later */ 2261 first_zones_zonelist(zonelist, high_zoneidx, 2262 nodemask ? : &cpuset_current_mems_allowed, 2263 &preferred_zone); 2264 if (!preferred_zone) { 2265 put_mems_allowed(); 2266 return NULL; 2267 } 2268 2269 /* First allocation attempt */ 2270 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, 2271 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET, 2272 preferred_zone, migratetype); 2273 if (unlikely(!page)) 2274 page = __alloc_pages_slowpath(gfp_mask, order, 2275 zonelist, high_zoneidx, nodemask, 2276 preferred_zone, migratetype); 2277 put_mems_allowed(); 2278 2279 trace_mm_page_alloc(page, order, gfp_mask, migratetype); 2280 return page; 2281 } 2282 EXPORT_SYMBOL(__alloc_pages_nodemask); 2283 2284 /* 2285 * Common helper functions. 2286 */ 2287 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 2288 { 2289 struct page *page; 2290 2291 /* 2292 * __get_free_pages() returns a 32-bit address, which cannot represent 2293 * a highmem page 2294 */ 2295 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 2296 2297 page = alloc_pages(gfp_mask, order); 2298 if (!page) 2299 return 0; 2300 return (unsigned long) page_address(page); 2301 } 2302 EXPORT_SYMBOL(__get_free_pages); 2303 2304 unsigned long get_zeroed_page(gfp_t gfp_mask) 2305 { 2306 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 2307 } 2308 EXPORT_SYMBOL(get_zeroed_page); 2309 2310 void __pagevec_free(struct pagevec *pvec) 2311 { 2312 int i = pagevec_count(pvec); 2313 2314 while (--i >= 0) { 2315 trace_mm_pagevec_free(pvec->pages[i], pvec->cold); 2316 free_hot_cold_page(pvec->pages[i], pvec->cold); 2317 } 2318 } 2319 2320 void __free_pages(struct page *page, unsigned int order) 2321 { 2322 if (put_page_testzero(page)) { 2323 if (order == 0) 2324 free_hot_cold_page(page, 0); 2325 else 2326 __free_pages_ok(page, order); 2327 } 2328 } 2329 2330 EXPORT_SYMBOL(__free_pages); 2331 2332 void free_pages(unsigned long addr, unsigned int order) 2333 { 2334 if (addr != 0) { 2335 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2336 __free_pages(virt_to_page((void *)addr), order); 2337 } 2338 } 2339 2340 EXPORT_SYMBOL(free_pages); 2341 2342 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size) 2343 { 2344 if (addr) { 2345 unsigned long alloc_end = addr + (PAGE_SIZE << order); 2346 unsigned long used = addr + PAGE_ALIGN(size); 2347 2348 split_page(virt_to_page((void *)addr), order); 2349 while (used < alloc_end) { 2350 free_page(used); 2351 used += PAGE_SIZE; 2352 } 2353 } 2354 return (void *)addr; 2355 } 2356 2357 /** 2358 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 2359 * @size: the number of bytes to allocate 2360 * @gfp_mask: GFP flags for the allocation 2361 * 2362 * This function is similar to alloc_pages(), except that it allocates the 2363 * minimum number of pages to satisfy the request. alloc_pages() can only 2364 * allocate memory in power-of-two pages. 2365 * 2366 * This function is also limited by MAX_ORDER. 2367 * 2368 * Memory allocated by this function must be released by free_pages_exact(). 2369 */ 2370 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 2371 { 2372 unsigned int order = get_order(size); 2373 unsigned long addr; 2374 2375 addr = __get_free_pages(gfp_mask, order); 2376 return make_alloc_exact(addr, order, size); 2377 } 2378 EXPORT_SYMBOL(alloc_pages_exact); 2379 2380 /** 2381 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 2382 * pages on a node. 2383 * @nid: the preferred node ID where memory should be allocated 2384 * @size: the number of bytes to allocate 2385 * @gfp_mask: GFP flags for the allocation 2386 * 2387 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 2388 * back. 2389 * Note this is not alloc_pages_exact_node() which allocates on a specific node, 2390 * but is not exact. 2391 */ 2392 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 2393 { 2394 unsigned order = get_order(size); 2395 struct page *p = alloc_pages_node(nid, gfp_mask, order); 2396 if (!p) 2397 return NULL; 2398 return make_alloc_exact((unsigned long)page_address(p), order, size); 2399 } 2400 EXPORT_SYMBOL(alloc_pages_exact_nid); 2401 2402 /** 2403 * free_pages_exact - release memory allocated via alloc_pages_exact() 2404 * @virt: the value returned by alloc_pages_exact. 2405 * @size: size of allocation, same value as passed to alloc_pages_exact(). 2406 * 2407 * Release the memory allocated by a previous call to alloc_pages_exact. 2408 */ 2409 void free_pages_exact(void *virt, size_t size) 2410 { 2411 unsigned long addr = (unsigned long)virt; 2412 unsigned long end = addr + PAGE_ALIGN(size); 2413 2414 while (addr < end) { 2415 free_page(addr); 2416 addr += PAGE_SIZE; 2417 } 2418 } 2419 EXPORT_SYMBOL(free_pages_exact); 2420 2421 static unsigned int nr_free_zone_pages(int offset) 2422 { 2423 struct zoneref *z; 2424 struct zone *zone; 2425 2426 /* Just pick one node, since fallback list is circular */ 2427 unsigned int sum = 0; 2428 2429 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 2430 2431 for_each_zone_zonelist(zone, z, zonelist, offset) { 2432 unsigned long size = zone->present_pages; 2433 unsigned long high = high_wmark_pages(zone); 2434 if (size > high) 2435 sum += size - high; 2436 } 2437 2438 return sum; 2439 } 2440 2441 /* 2442 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 2443 */ 2444 unsigned int nr_free_buffer_pages(void) 2445 { 2446 return nr_free_zone_pages(gfp_zone(GFP_USER)); 2447 } 2448 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 2449 2450 /* 2451 * Amount of free RAM allocatable within all zones 2452 */ 2453 unsigned int nr_free_pagecache_pages(void) 2454 { 2455 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 2456 } 2457 2458 static inline void show_node(struct zone *zone) 2459 { 2460 if (NUMA_BUILD) 2461 printk("Node %d ", zone_to_nid(zone)); 2462 } 2463 2464 void si_meminfo(struct sysinfo *val) 2465 { 2466 val->totalram = totalram_pages; 2467 val->sharedram = 0; 2468 val->freeram = global_page_state(NR_FREE_PAGES); 2469 val->bufferram = nr_blockdev_pages(); 2470 val->totalhigh = totalhigh_pages; 2471 val->freehigh = nr_free_highpages(); 2472 val->mem_unit = PAGE_SIZE; 2473 } 2474 2475 EXPORT_SYMBOL(si_meminfo); 2476 2477 #ifdef CONFIG_NUMA 2478 void si_meminfo_node(struct sysinfo *val, int nid) 2479 { 2480 pg_data_t *pgdat = NODE_DATA(nid); 2481 2482 val->totalram = pgdat->node_present_pages; 2483 val->freeram = node_page_state(nid, NR_FREE_PAGES); 2484 #ifdef CONFIG_HIGHMEM 2485 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 2486 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 2487 NR_FREE_PAGES); 2488 #else 2489 val->totalhigh = 0; 2490 val->freehigh = 0; 2491 #endif 2492 val->mem_unit = PAGE_SIZE; 2493 } 2494 #endif 2495 2496 /* 2497 * Determine whether the node should be displayed or not, depending on whether 2498 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 2499 */ 2500 bool skip_free_areas_node(unsigned int flags, int nid) 2501 { 2502 bool ret = false; 2503 2504 if (!(flags & SHOW_MEM_FILTER_NODES)) 2505 goto out; 2506 2507 get_mems_allowed(); 2508 ret = !node_isset(nid, cpuset_current_mems_allowed); 2509 put_mems_allowed(); 2510 out: 2511 return ret; 2512 } 2513 2514 #define K(x) ((x) << (PAGE_SHIFT-10)) 2515 2516 /* 2517 * Show free area list (used inside shift_scroll-lock stuff) 2518 * We also calculate the percentage fragmentation. We do this by counting the 2519 * memory on each free list with the exception of the first item on the list. 2520 * Suppresses nodes that are not allowed by current's cpuset if 2521 * SHOW_MEM_FILTER_NODES is passed. 2522 */ 2523 void show_free_areas(unsigned int filter) 2524 { 2525 int cpu; 2526 struct zone *zone; 2527 2528 for_each_populated_zone(zone) { 2529 if (skip_free_areas_node(filter, zone_to_nid(zone))) 2530 continue; 2531 show_node(zone); 2532 printk("%s per-cpu:\n", zone->name); 2533 2534 for_each_online_cpu(cpu) { 2535 struct per_cpu_pageset *pageset; 2536 2537 pageset = per_cpu_ptr(zone->pageset, cpu); 2538 2539 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", 2540 cpu, pageset->pcp.high, 2541 pageset->pcp.batch, pageset->pcp.count); 2542 } 2543 } 2544 2545 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 2546 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 2547 " unevictable:%lu" 2548 " dirty:%lu writeback:%lu unstable:%lu\n" 2549 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n" 2550 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n", 2551 global_page_state(NR_ACTIVE_ANON), 2552 global_page_state(NR_INACTIVE_ANON), 2553 global_page_state(NR_ISOLATED_ANON), 2554 global_page_state(NR_ACTIVE_FILE), 2555 global_page_state(NR_INACTIVE_FILE), 2556 global_page_state(NR_ISOLATED_FILE), 2557 global_page_state(NR_UNEVICTABLE), 2558 global_page_state(NR_FILE_DIRTY), 2559 global_page_state(NR_WRITEBACK), 2560 global_page_state(NR_UNSTABLE_NFS), 2561 global_page_state(NR_FREE_PAGES), 2562 global_page_state(NR_SLAB_RECLAIMABLE), 2563 global_page_state(NR_SLAB_UNRECLAIMABLE), 2564 global_page_state(NR_FILE_MAPPED), 2565 global_page_state(NR_SHMEM), 2566 global_page_state(NR_PAGETABLE), 2567 global_page_state(NR_BOUNCE)); 2568 2569 for_each_populated_zone(zone) { 2570 int i; 2571 2572 if (skip_free_areas_node(filter, zone_to_nid(zone))) 2573 continue; 2574 show_node(zone); 2575 printk("%s" 2576 " free:%lukB" 2577 " min:%lukB" 2578 " low:%lukB" 2579 " high:%lukB" 2580 " active_anon:%lukB" 2581 " inactive_anon:%lukB" 2582 " active_file:%lukB" 2583 " inactive_file:%lukB" 2584 " unevictable:%lukB" 2585 " isolated(anon):%lukB" 2586 " isolated(file):%lukB" 2587 " present:%lukB" 2588 " mlocked:%lukB" 2589 " dirty:%lukB" 2590 " writeback:%lukB" 2591 " mapped:%lukB" 2592 " shmem:%lukB" 2593 " slab_reclaimable:%lukB" 2594 " slab_unreclaimable:%lukB" 2595 " kernel_stack:%lukB" 2596 " pagetables:%lukB" 2597 " unstable:%lukB" 2598 " bounce:%lukB" 2599 " writeback_tmp:%lukB" 2600 " pages_scanned:%lu" 2601 " all_unreclaimable? %s" 2602 "\n", 2603 zone->name, 2604 K(zone_page_state(zone, NR_FREE_PAGES)), 2605 K(min_wmark_pages(zone)), 2606 K(low_wmark_pages(zone)), 2607 K(high_wmark_pages(zone)), 2608 K(zone_page_state(zone, NR_ACTIVE_ANON)), 2609 K(zone_page_state(zone, NR_INACTIVE_ANON)), 2610 K(zone_page_state(zone, NR_ACTIVE_FILE)), 2611 K(zone_page_state(zone, NR_INACTIVE_FILE)), 2612 K(zone_page_state(zone, NR_UNEVICTABLE)), 2613 K(zone_page_state(zone, NR_ISOLATED_ANON)), 2614 K(zone_page_state(zone, NR_ISOLATED_FILE)), 2615 K(zone->present_pages), 2616 K(zone_page_state(zone, NR_MLOCK)), 2617 K(zone_page_state(zone, NR_FILE_DIRTY)), 2618 K(zone_page_state(zone, NR_WRITEBACK)), 2619 K(zone_page_state(zone, NR_FILE_MAPPED)), 2620 K(zone_page_state(zone, NR_SHMEM)), 2621 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 2622 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 2623 zone_page_state(zone, NR_KERNEL_STACK) * 2624 THREAD_SIZE / 1024, 2625 K(zone_page_state(zone, NR_PAGETABLE)), 2626 K(zone_page_state(zone, NR_UNSTABLE_NFS)), 2627 K(zone_page_state(zone, NR_BOUNCE)), 2628 K(zone_page_state(zone, NR_WRITEBACK_TEMP)), 2629 zone->pages_scanned, 2630 (zone->all_unreclaimable ? "yes" : "no") 2631 ); 2632 printk("lowmem_reserve[]:"); 2633 for (i = 0; i < MAX_NR_ZONES; i++) 2634 printk(" %lu", zone->lowmem_reserve[i]); 2635 printk("\n"); 2636 } 2637 2638 for_each_populated_zone(zone) { 2639 unsigned long nr[MAX_ORDER], flags, order, total = 0; 2640 2641 if (skip_free_areas_node(filter, zone_to_nid(zone))) 2642 continue; 2643 show_node(zone); 2644 printk("%s: ", zone->name); 2645 2646 spin_lock_irqsave(&zone->lock, flags); 2647 for (order = 0; order < MAX_ORDER; order++) { 2648 nr[order] = zone->free_area[order].nr_free; 2649 total += nr[order] << order; 2650 } 2651 spin_unlock_irqrestore(&zone->lock, flags); 2652 for (order = 0; order < MAX_ORDER; order++) 2653 printk("%lu*%lukB ", nr[order], K(1UL) << order); 2654 printk("= %lukB\n", K(total)); 2655 } 2656 2657 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 2658 2659 show_swap_cache_info(); 2660 } 2661 2662 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 2663 { 2664 zoneref->zone = zone; 2665 zoneref->zone_idx = zone_idx(zone); 2666 } 2667 2668 /* 2669 * Builds allocation fallback zone lists. 2670 * 2671 * Add all populated zones of a node to the zonelist. 2672 */ 2673 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 2674 int nr_zones, enum zone_type zone_type) 2675 { 2676 struct zone *zone; 2677 2678 BUG_ON(zone_type >= MAX_NR_ZONES); 2679 zone_type++; 2680 2681 do { 2682 zone_type--; 2683 zone = pgdat->node_zones + zone_type; 2684 if (populated_zone(zone)) { 2685 zoneref_set_zone(zone, 2686 &zonelist->_zonerefs[nr_zones++]); 2687 check_highest_zone(zone_type); 2688 } 2689 2690 } while (zone_type); 2691 return nr_zones; 2692 } 2693 2694 2695 /* 2696 * zonelist_order: 2697 * 0 = automatic detection of better ordering. 2698 * 1 = order by ([node] distance, -zonetype) 2699 * 2 = order by (-zonetype, [node] distance) 2700 * 2701 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 2702 * the same zonelist. So only NUMA can configure this param. 2703 */ 2704 #define ZONELIST_ORDER_DEFAULT 0 2705 #define ZONELIST_ORDER_NODE 1 2706 #define ZONELIST_ORDER_ZONE 2 2707 2708 /* zonelist order in the kernel. 2709 * set_zonelist_order() will set this to NODE or ZONE. 2710 */ 2711 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 2712 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 2713 2714 2715 #ifdef CONFIG_NUMA 2716 /* The value user specified ....changed by config */ 2717 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 2718 /* string for sysctl */ 2719 #define NUMA_ZONELIST_ORDER_LEN 16 2720 char numa_zonelist_order[16] = "default"; 2721 2722 /* 2723 * interface for configure zonelist ordering. 2724 * command line option "numa_zonelist_order" 2725 * = "[dD]efault - default, automatic configuration. 2726 * = "[nN]ode - order by node locality, then by zone within node 2727 * = "[zZ]one - order by zone, then by locality within zone 2728 */ 2729 2730 static int __parse_numa_zonelist_order(char *s) 2731 { 2732 if (*s == 'd' || *s == 'D') { 2733 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 2734 } else if (*s == 'n' || *s == 'N') { 2735 user_zonelist_order = ZONELIST_ORDER_NODE; 2736 } else if (*s == 'z' || *s == 'Z') { 2737 user_zonelist_order = ZONELIST_ORDER_ZONE; 2738 } else { 2739 printk(KERN_WARNING 2740 "Ignoring invalid numa_zonelist_order value: " 2741 "%s\n", s); 2742 return -EINVAL; 2743 } 2744 return 0; 2745 } 2746 2747 static __init int setup_numa_zonelist_order(char *s) 2748 { 2749 int ret; 2750 2751 if (!s) 2752 return 0; 2753 2754 ret = __parse_numa_zonelist_order(s); 2755 if (ret == 0) 2756 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); 2757 2758 return ret; 2759 } 2760 early_param("numa_zonelist_order", setup_numa_zonelist_order); 2761 2762 /* 2763 * sysctl handler for numa_zonelist_order 2764 */ 2765 int numa_zonelist_order_handler(ctl_table *table, int write, 2766 void __user *buffer, size_t *length, 2767 loff_t *ppos) 2768 { 2769 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 2770 int ret; 2771 static DEFINE_MUTEX(zl_order_mutex); 2772 2773 mutex_lock(&zl_order_mutex); 2774 if (write) 2775 strcpy(saved_string, (char*)table->data); 2776 ret = proc_dostring(table, write, buffer, length, ppos); 2777 if (ret) 2778 goto out; 2779 if (write) { 2780 int oldval = user_zonelist_order; 2781 if (__parse_numa_zonelist_order((char*)table->data)) { 2782 /* 2783 * bogus value. restore saved string 2784 */ 2785 strncpy((char*)table->data, saved_string, 2786 NUMA_ZONELIST_ORDER_LEN); 2787 user_zonelist_order = oldval; 2788 } else if (oldval != user_zonelist_order) { 2789 mutex_lock(&zonelists_mutex); 2790 build_all_zonelists(NULL); 2791 mutex_unlock(&zonelists_mutex); 2792 } 2793 } 2794 out: 2795 mutex_unlock(&zl_order_mutex); 2796 return ret; 2797 } 2798 2799 2800 #define MAX_NODE_LOAD (nr_online_nodes) 2801 static int node_load[MAX_NUMNODES]; 2802 2803 /** 2804 * find_next_best_node - find the next node that should appear in a given node's fallback list 2805 * @node: node whose fallback list we're appending 2806 * @used_node_mask: nodemask_t of already used nodes 2807 * 2808 * We use a number of factors to determine which is the next node that should 2809 * appear on a given node's fallback list. The node should not have appeared 2810 * already in @node's fallback list, and it should be the next closest node 2811 * according to the distance array (which contains arbitrary distance values 2812 * from each node to each node in the system), and should also prefer nodes 2813 * with no CPUs, since presumably they'll have very little allocation pressure 2814 * on them otherwise. 2815 * It returns -1 if no node is found. 2816 */ 2817 static int find_next_best_node(int node, nodemask_t *used_node_mask) 2818 { 2819 int n, val; 2820 int min_val = INT_MAX; 2821 int best_node = -1; 2822 const struct cpumask *tmp = cpumask_of_node(0); 2823 2824 /* Use the local node if we haven't already */ 2825 if (!node_isset(node, *used_node_mask)) { 2826 node_set(node, *used_node_mask); 2827 return node; 2828 } 2829 2830 for_each_node_state(n, N_HIGH_MEMORY) { 2831 2832 /* Don't want a node to appear more than once */ 2833 if (node_isset(n, *used_node_mask)) 2834 continue; 2835 2836 /* Use the distance array to find the distance */ 2837 val = node_distance(node, n); 2838 2839 /* Penalize nodes under us ("prefer the next node") */ 2840 val += (n < node); 2841 2842 /* Give preference to headless and unused nodes */ 2843 tmp = cpumask_of_node(n); 2844 if (!cpumask_empty(tmp)) 2845 val += PENALTY_FOR_NODE_WITH_CPUS; 2846 2847 /* Slight preference for less loaded node */ 2848 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 2849 val += node_load[n]; 2850 2851 if (val < min_val) { 2852 min_val = val; 2853 best_node = n; 2854 } 2855 } 2856 2857 if (best_node >= 0) 2858 node_set(best_node, *used_node_mask); 2859 2860 return best_node; 2861 } 2862 2863 2864 /* 2865 * Build zonelists ordered by node and zones within node. 2866 * This results in maximum locality--normal zone overflows into local 2867 * DMA zone, if any--but risks exhausting DMA zone. 2868 */ 2869 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 2870 { 2871 int j; 2872 struct zonelist *zonelist; 2873 2874 zonelist = &pgdat->node_zonelists[0]; 2875 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 2876 ; 2877 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2878 MAX_NR_ZONES - 1); 2879 zonelist->_zonerefs[j].zone = NULL; 2880 zonelist->_zonerefs[j].zone_idx = 0; 2881 } 2882 2883 /* 2884 * Build gfp_thisnode zonelists 2885 */ 2886 static void build_thisnode_zonelists(pg_data_t *pgdat) 2887 { 2888 int j; 2889 struct zonelist *zonelist; 2890 2891 zonelist = &pgdat->node_zonelists[1]; 2892 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 2893 zonelist->_zonerefs[j].zone = NULL; 2894 zonelist->_zonerefs[j].zone_idx = 0; 2895 } 2896 2897 /* 2898 * Build zonelists ordered by zone and nodes within zones. 2899 * This results in conserving DMA zone[s] until all Normal memory is 2900 * exhausted, but results in overflowing to remote node while memory 2901 * may still exist in local DMA zone. 2902 */ 2903 static int node_order[MAX_NUMNODES]; 2904 2905 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 2906 { 2907 int pos, j, node; 2908 int zone_type; /* needs to be signed */ 2909 struct zone *z; 2910 struct zonelist *zonelist; 2911 2912 zonelist = &pgdat->node_zonelists[0]; 2913 pos = 0; 2914 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 2915 for (j = 0; j < nr_nodes; j++) { 2916 node = node_order[j]; 2917 z = &NODE_DATA(node)->node_zones[zone_type]; 2918 if (populated_zone(z)) { 2919 zoneref_set_zone(z, 2920 &zonelist->_zonerefs[pos++]); 2921 check_highest_zone(zone_type); 2922 } 2923 } 2924 } 2925 zonelist->_zonerefs[pos].zone = NULL; 2926 zonelist->_zonerefs[pos].zone_idx = 0; 2927 } 2928 2929 static int default_zonelist_order(void) 2930 { 2931 int nid, zone_type; 2932 unsigned long low_kmem_size,total_size; 2933 struct zone *z; 2934 int average_size; 2935 /* 2936 * ZONE_DMA and ZONE_DMA32 can be very small area in the system. 2937 * If they are really small and used heavily, the system can fall 2938 * into OOM very easily. 2939 * This function detect ZONE_DMA/DMA32 size and configures zone order. 2940 */ 2941 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ 2942 low_kmem_size = 0; 2943 total_size = 0; 2944 for_each_online_node(nid) { 2945 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 2946 z = &NODE_DATA(nid)->node_zones[zone_type]; 2947 if (populated_zone(z)) { 2948 if (zone_type < ZONE_NORMAL) 2949 low_kmem_size += z->present_pages; 2950 total_size += z->present_pages; 2951 } else if (zone_type == ZONE_NORMAL) { 2952 /* 2953 * If any node has only lowmem, then node order 2954 * is preferred to allow kernel allocations 2955 * locally; otherwise, they can easily infringe 2956 * on other nodes when there is an abundance of 2957 * lowmem available to allocate from. 2958 */ 2959 return ZONELIST_ORDER_NODE; 2960 } 2961 } 2962 } 2963 if (!low_kmem_size || /* there are no DMA area. */ 2964 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ 2965 return ZONELIST_ORDER_NODE; 2966 /* 2967 * look into each node's config. 2968 * If there is a node whose DMA/DMA32 memory is very big area on 2969 * local memory, NODE_ORDER may be suitable. 2970 */ 2971 average_size = total_size / 2972 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1); 2973 for_each_online_node(nid) { 2974 low_kmem_size = 0; 2975 total_size = 0; 2976 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 2977 z = &NODE_DATA(nid)->node_zones[zone_type]; 2978 if (populated_zone(z)) { 2979 if (zone_type < ZONE_NORMAL) 2980 low_kmem_size += z->present_pages; 2981 total_size += z->present_pages; 2982 } 2983 } 2984 if (low_kmem_size && 2985 total_size > average_size && /* ignore small node */ 2986 low_kmem_size > total_size * 70/100) 2987 return ZONELIST_ORDER_NODE; 2988 } 2989 return ZONELIST_ORDER_ZONE; 2990 } 2991 2992 static void set_zonelist_order(void) 2993 { 2994 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 2995 current_zonelist_order = default_zonelist_order(); 2996 else 2997 current_zonelist_order = user_zonelist_order; 2998 } 2999 3000 static void build_zonelists(pg_data_t *pgdat) 3001 { 3002 int j, node, load; 3003 enum zone_type i; 3004 nodemask_t used_mask; 3005 int local_node, prev_node; 3006 struct zonelist *zonelist; 3007 int order = current_zonelist_order; 3008 3009 /* initialize zonelists */ 3010 for (i = 0; i < MAX_ZONELISTS; i++) { 3011 zonelist = pgdat->node_zonelists + i; 3012 zonelist->_zonerefs[0].zone = NULL; 3013 zonelist->_zonerefs[0].zone_idx = 0; 3014 } 3015 3016 /* NUMA-aware ordering of nodes */ 3017 local_node = pgdat->node_id; 3018 load = nr_online_nodes; 3019 prev_node = local_node; 3020 nodes_clear(used_mask); 3021 3022 memset(node_order, 0, sizeof(node_order)); 3023 j = 0; 3024 3025 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 3026 int distance = node_distance(local_node, node); 3027 3028 /* 3029 * If another node is sufficiently far away then it is better 3030 * to reclaim pages in a zone before going off node. 3031 */ 3032 if (distance > RECLAIM_DISTANCE) 3033 zone_reclaim_mode = 1; 3034 3035 /* 3036 * We don't want to pressure a particular node. 3037 * So adding penalty to the first node in same 3038 * distance group to make it round-robin. 3039 */ 3040 if (distance != node_distance(local_node, prev_node)) 3041 node_load[node] = load; 3042 3043 prev_node = node; 3044 load--; 3045 if (order == ZONELIST_ORDER_NODE) 3046 build_zonelists_in_node_order(pgdat, node); 3047 else 3048 node_order[j++] = node; /* remember order */ 3049 } 3050 3051 if (order == ZONELIST_ORDER_ZONE) { 3052 /* calculate node order -- i.e., DMA last! */ 3053 build_zonelists_in_zone_order(pgdat, j); 3054 } 3055 3056 build_thisnode_zonelists(pgdat); 3057 } 3058 3059 /* Construct the zonelist performance cache - see further mmzone.h */ 3060 static void build_zonelist_cache(pg_data_t *pgdat) 3061 { 3062 struct zonelist *zonelist; 3063 struct zonelist_cache *zlc; 3064 struct zoneref *z; 3065 3066 zonelist = &pgdat->node_zonelists[0]; 3067 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 3068 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 3069 for (z = zonelist->_zonerefs; z->zone; z++) 3070 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 3071 } 3072 3073 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3074 /* 3075 * Return node id of node used for "local" allocations. 3076 * I.e., first node id of first zone in arg node's generic zonelist. 3077 * Used for initializing percpu 'numa_mem', which is used primarily 3078 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 3079 */ 3080 int local_memory_node(int node) 3081 { 3082 struct zone *zone; 3083 3084 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 3085 gfp_zone(GFP_KERNEL), 3086 NULL, 3087 &zone); 3088 return zone->node; 3089 } 3090 #endif 3091 3092 #else /* CONFIG_NUMA */ 3093 3094 static void set_zonelist_order(void) 3095 { 3096 current_zonelist_order = ZONELIST_ORDER_ZONE; 3097 } 3098 3099 static void build_zonelists(pg_data_t *pgdat) 3100 { 3101 int node, local_node; 3102 enum zone_type j; 3103 struct zonelist *zonelist; 3104 3105 local_node = pgdat->node_id; 3106 3107 zonelist = &pgdat->node_zonelists[0]; 3108 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 3109 3110 /* 3111 * Now we build the zonelist so that it contains the zones 3112 * of all the other nodes. 3113 * We don't want to pressure a particular node, so when 3114 * building the zones for node N, we make sure that the 3115 * zones coming right after the local ones are those from 3116 * node N+1 (modulo N) 3117 */ 3118 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 3119 if (!node_online(node)) 3120 continue; 3121 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3122 MAX_NR_ZONES - 1); 3123 } 3124 for (node = 0; node < local_node; node++) { 3125 if (!node_online(node)) 3126 continue; 3127 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3128 MAX_NR_ZONES - 1); 3129 } 3130 3131 zonelist->_zonerefs[j].zone = NULL; 3132 zonelist->_zonerefs[j].zone_idx = 0; 3133 } 3134 3135 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 3136 static void build_zonelist_cache(pg_data_t *pgdat) 3137 { 3138 pgdat->node_zonelists[0].zlcache_ptr = NULL; 3139 } 3140 3141 #endif /* CONFIG_NUMA */ 3142 3143 /* 3144 * Boot pageset table. One per cpu which is going to be used for all 3145 * zones and all nodes. The parameters will be set in such a way 3146 * that an item put on a list will immediately be handed over to 3147 * the buddy list. This is safe since pageset manipulation is done 3148 * with interrupts disabled. 3149 * 3150 * The boot_pagesets must be kept even after bootup is complete for 3151 * unused processors and/or zones. They do play a role for bootstrapping 3152 * hotplugged processors. 3153 * 3154 * zoneinfo_show() and maybe other functions do 3155 * not check if the processor is online before following the pageset pointer. 3156 * Other parts of the kernel may not check if the zone is available. 3157 */ 3158 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 3159 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 3160 static void setup_zone_pageset(struct zone *zone); 3161 3162 /* 3163 * Global mutex to protect against size modification of zonelists 3164 * as well as to serialize pageset setup for the new populated zone. 3165 */ 3166 DEFINE_MUTEX(zonelists_mutex); 3167 3168 /* return values int ....just for stop_machine() */ 3169 static __init_refok int __build_all_zonelists(void *data) 3170 { 3171 int nid; 3172 int cpu; 3173 3174 #ifdef CONFIG_NUMA 3175 memset(node_load, 0, sizeof(node_load)); 3176 #endif 3177 for_each_online_node(nid) { 3178 pg_data_t *pgdat = NODE_DATA(nid); 3179 3180 build_zonelists(pgdat); 3181 build_zonelist_cache(pgdat); 3182 } 3183 3184 /* 3185 * Initialize the boot_pagesets that are going to be used 3186 * for bootstrapping processors. The real pagesets for 3187 * each zone will be allocated later when the per cpu 3188 * allocator is available. 3189 * 3190 * boot_pagesets are used also for bootstrapping offline 3191 * cpus if the system is already booted because the pagesets 3192 * are needed to initialize allocators on a specific cpu too. 3193 * F.e. the percpu allocator needs the page allocator which 3194 * needs the percpu allocator in order to allocate its pagesets 3195 * (a chicken-egg dilemma). 3196 */ 3197 for_each_possible_cpu(cpu) { 3198 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 3199 3200 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3201 /* 3202 * We now know the "local memory node" for each node-- 3203 * i.e., the node of the first zone in the generic zonelist. 3204 * Set up numa_mem percpu variable for on-line cpus. During 3205 * boot, only the boot cpu should be on-line; we'll init the 3206 * secondary cpus' numa_mem as they come on-line. During 3207 * node/memory hotplug, we'll fixup all on-line cpus. 3208 */ 3209 if (cpu_online(cpu)) 3210 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 3211 #endif 3212 } 3213 3214 return 0; 3215 } 3216 3217 /* 3218 * Called with zonelists_mutex held always 3219 * unless system_state == SYSTEM_BOOTING. 3220 */ 3221 void __ref build_all_zonelists(void *data) 3222 { 3223 set_zonelist_order(); 3224 3225 if (system_state == SYSTEM_BOOTING) { 3226 __build_all_zonelists(NULL); 3227 mminit_verify_zonelist(); 3228 cpuset_init_current_mems_allowed(); 3229 } else { 3230 /* we have to stop all cpus to guarantee there is no user 3231 of zonelist */ 3232 #ifdef CONFIG_MEMORY_HOTPLUG 3233 if (data) 3234 setup_zone_pageset((struct zone *)data); 3235 #endif 3236 stop_machine(__build_all_zonelists, NULL, NULL); 3237 /* cpuset refresh routine should be here */ 3238 } 3239 vm_total_pages = nr_free_pagecache_pages(); 3240 /* 3241 * Disable grouping by mobility if the number of pages in the 3242 * system is too low to allow the mechanism to work. It would be 3243 * more accurate, but expensive to check per-zone. This check is 3244 * made on memory-hotadd so a system can start with mobility 3245 * disabled and enable it later 3246 */ 3247 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 3248 page_group_by_mobility_disabled = 1; 3249 else 3250 page_group_by_mobility_disabled = 0; 3251 3252 printk("Built %i zonelists in %s order, mobility grouping %s. " 3253 "Total pages: %ld\n", 3254 nr_online_nodes, 3255 zonelist_order_name[current_zonelist_order], 3256 page_group_by_mobility_disabled ? "off" : "on", 3257 vm_total_pages); 3258 #ifdef CONFIG_NUMA 3259 printk("Policy zone: %s\n", zone_names[policy_zone]); 3260 #endif 3261 } 3262 3263 /* 3264 * Helper functions to size the waitqueue hash table. 3265 * Essentially these want to choose hash table sizes sufficiently 3266 * large so that collisions trying to wait on pages are rare. 3267 * But in fact, the number of active page waitqueues on typical 3268 * systems is ridiculously low, less than 200. So this is even 3269 * conservative, even though it seems large. 3270 * 3271 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 3272 * waitqueues, i.e. the size of the waitq table given the number of pages. 3273 */ 3274 #define PAGES_PER_WAITQUEUE 256 3275 3276 #ifndef CONFIG_MEMORY_HOTPLUG 3277 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3278 { 3279 unsigned long size = 1; 3280 3281 pages /= PAGES_PER_WAITQUEUE; 3282 3283 while (size < pages) 3284 size <<= 1; 3285 3286 /* 3287 * Once we have dozens or even hundreds of threads sleeping 3288 * on IO we've got bigger problems than wait queue collision. 3289 * Limit the size of the wait table to a reasonable size. 3290 */ 3291 size = min(size, 4096UL); 3292 3293 return max(size, 4UL); 3294 } 3295 #else 3296 /* 3297 * A zone's size might be changed by hot-add, so it is not possible to determine 3298 * a suitable size for its wait_table. So we use the maximum size now. 3299 * 3300 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 3301 * 3302 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 3303 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 3304 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 3305 * 3306 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 3307 * or more by the traditional way. (See above). It equals: 3308 * 3309 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 3310 * ia64(16K page size) : = ( 8G + 4M)byte. 3311 * powerpc (64K page size) : = (32G +16M)byte. 3312 */ 3313 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3314 { 3315 return 4096UL; 3316 } 3317 #endif 3318 3319 /* 3320 * This is an integer logarithm so that shifts can be used later 3321 * to extract the more random high bits from the multiplicative 3322 * hash function before the remainder is taken. 3323 */ 3324 static inline unsigned long wait_table_bits(unsigned long size) 3325 { 3326 return ffz(~size); 3327 } 3328 3329 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 3330 3331 /* 3332 * Check if a pageblock contains reserved pages 3333 */ 3334 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn) 3335 { 3336 unsigned long pfn; 3337 3338 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3339 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn))) 3340 return 1; 3341 } 3342 return 0; 3343 } 3344 3345 /* 3346 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 3347 * of blocks reserved is based on min_wmark_pages(zone). The memory within 3348 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes 3349 * higher will lead to a bigger reserve which will get freed as contiguous 3350 * blocks as reclaim kicks in 3351 */ 3352 static void setup_zone_migrate_reserve(struct zone *zone) 3353 { 3354 unsigned long start_pfn, pfn, end_pfn, block_end_pfn; 3355 struct page *page; 3356 unsigned long block_migratetype; 3357 int reserve; 3358 3359 /* Get the start pfn, end pfn and the number of blocks to reserve */ 3360 start_pfn = zone->zone_start_pfn; 3361 end_pfn = start_pfn + zone->spanned_pages; 3362 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> 3363 pageblock_order; 3364 3365 /* 3366 * Reserve blocks are generally in place to help high-order atomic 3367 * allocations that are short-lived. A min_free_kbytes value that 3368 * would result in more than 2 reserve blocks for atomic allocations 3369 * is assumed to be in place to help anti-fragmentation for the 3370 * future allocation of hugepages at runtime. 3371 */ 3372 reserve = min(2, reserve); 3373 3374 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 3375 if (!pfn_valid(pfn)) 3376 continue; 3377 page = pfn_to_page(pfn); 3378 3379 /* Watch out for overlapping nodes */ 3380 if (page_to_nid(page) != zone_to_nid(zone)) 3381 continue; 3382 3383 /* Blocks with reserved pages will never free, skip them. */ 3384 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn); 3385 if (pageblock_is_reserved(pfn, block_end_pfn)) 3386 continue; 3387 3388 block_migratetype = get_pageblock_migratetype(page); 3389 3390 /* If this block is reserved, account for it */ 3391 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) { 3392 reserve--; 3393 continue; 3394 } 3395 3396 /* Suitable for reserving if this block is movable */ 3397 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) { 3398 set_pageblock_migratetype(page, MIGRATE_RESERVE); 3399 move_freepages_block(zone, page, MIGRATE_RESERVE); 3400 reserve--; 3401 continue; 3402 } 3403 3404 /* 3405 * If the reserve is met and this is a previous reserved block, 3406 * take it back 3407 */ 3408 if (block_migratetype == MIGRATE_RESERVE) { 3409 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3410 move_freepages_block(zone, page, MIGRATE_MOVABLE); 3411 } 3412 } 3413 } 3414 3415 /* 3416 * Initially all pages are reserved - free ones are freed 3417 * up by free_all_bootmem() once the early boot process is 3418 * done. Non-atomic initialization, single-pass. 3419 */ 3420 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 3421 unsigned long start_pfn, enum memmap_context context) 3422 { 3423 struct page *page; 3424 unsigned long end_pfn = start_pfn + size; 3425 unsigned long pfn; 3426 struct zone *z; 3427 3428 if (highest_memmap_pfn < end_pfn - 1) 3429 highest_memmap_pfn = end_pfn - 1; 3430 3431 z = &NODE_DATA(nid)->node_zones[zone]; 3432 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3433 /* 3434 * There can be holes in boot-time mem_map[]s 3435 * handed to this function. They do not 3436 * exist on hotplugged memory. 3437 */ 3438 if (context == MEMMAP_EARLY) { 3439 if (!early_pfn_valid(pfn)) 3440 continue; 3441 if (!early_pfn_in_nid(pfn, nid)) 3442 continue; 3443 } 3444 page = pfn_to_page(pfn); 3445 set_page_links(page, zone, nid, pfn); 3446 mminit_verify_page_links(page, zone, nid, pfn); 3447 init_page_count(page); 3448 reset_page_mapcount(page); 3449 SetPageReserved(page); 3450 /* 3451 * Mark the block movable so that blocks are reserved for 3452 * movable at startup. This will force kernel allocations 3453 * to reserve their blocks rather than leaking throughout 3454 * the address space during boot when many long-lived 3455 * kernel allocations are made. Later some blocks near 3456 * the start are marked MIGRATE_RESERVE by 3457 * setup_zone_migrate_reserve() 3458 * 3459 * bitmap is created for zone's valid pfn range. but memmap 3460 * can be created for invalid pages (for alignment) 3461 * check here not to call set_pageblock_migratetype() against 3462 * pfn out of zone. 3463 */ 3464 if ((z->zone_start_pfn <= pfn) 3465 && (pfn < z->zone_start_pfn + z->spanned_pages) 3466 && !(pfn & (pageblock_nr_pages - 1))) 3467 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3468 3469 INIT_LIST_HEAD(&page->lru); 3470 #ifdef WANT_PAGE_VIRTUAL 3471 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 3472 if (!is_highmem_idx(zone)) 3473 set_page_address(page, __va(pfn << PAGE_SHIFT)); 3474 #endif 3475 } 3476 } 3477 3478 static void __meminit zone_init_free_lists(struct zone *zone) 3479 { 3480 int order, t; 3481 for_each_migratetype_order(order, t) { 3482 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 3483 zone->free_area[order].nr_free = 0; 3484 } 3485 } 3486 3487 #ifndef __HAVE_ARCH_MEMMAP_INIT 3488 #define memmap_init(size, nid, zone, start_pfn) \ 3489 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 3490 #endif 3491 3492 static int zone_batchsize(struct zone *zone) 3493 { 3494 #ifdef CONFIG_MMU 3495 int batch; 3496 3497 /* 3498 * The per-cpu-pages pools are set to around 1000th of the 3499 * size of the zone. But no more than 1/2 of a meg. 3500 * 3501 * OK, so we don't know how big the cache is. So guess. 3502 */ 3503 batch = zone->present_pages / 1024; 3504 if (batch * PAGE_SIZE > 512 * 1024) 3505 batch = (512 * 1024) / PAGE_SIZE; 3506 batch /= 4; /* We effectively *= 4 below */ 3507 if (batch < 1) 3508 batch = 1; 3509 3510 /* 3511 * Clamp the batch to a 2^n - 1 value. Having a power 3512 * of 2 value was found to be more likely to have 3513 * suboptimal cache aliasing properties in some cases. 3514 * 3515 * For example if 2 tasks are alternately allocating 3516 * batches of pages, one task can end up with a lot 3517 * of pages of one half of the possible page colors 3518 * and the other with pages of the other colors. 3519 */ 3520 batch = rounddown_pow_of_two(batch + batch/2) - 1; 3521 3522 return batch; 3523 3524 #else 3525 /* The deferral and batching of frees should be suppressed under NOMMU 3526 * conditions. 3527 * 3528 * The problem is that NOMMU needs to be able to allocate large chunks 3529 * of contiguous memory as there's no hardware page translation to 3530 * assemble apparent contiguous memory from discontiguous pages. 3531 * 3532 * Queueing large contiguous runs of pages for batching, however, 3533 * causes the pages to actually be freed in smaller chunks. As there 3534 * can be a significant delay between the individual batches being 3535 * recycled, this leads to the once large chunks of space being 3536 * fragmented and becoming unavailable for high-order allocations. 3537 */ 3538 return 0; 3539 #endif 3540 } 3541 3542 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 3543 { 3544 struct per_cpu_pages *pcp; 3545 int migratetype; 3546 3547 memset(p, 0, sizeof(*p)); 3548 3549 pcp = &p->pcp; 3550 pcp->count = 0; 3551 pcp->high = 6 * batch; 3552 pcp->batch = max(1UL, 1 * batch); 3553 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 3554 INIT_LIST_HEAD(&pcp->lists[migratetype]); 3555 } 3556 3557 /* 3558 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 3559 * to the value high for the pageset p. 3560 */ 3561 3562 static void setup_pagelist_highmark(struct per_cpu_pageset *p, 3563 unsigned long high) 3564 { 3565 struct per_cpu_pages *pcp; 3566 3567 pcp = &p->pcp; 3568 pcp->high = high; 3569 pcp->batch = max(1UL, high/4); 3570 if ((high/4) > (PAGE_SHIFT * 8)) 3571 pcp->batch = PAGE_SHIFT * 8; 3572 } 3573 3574 static void setup_zone_pageset(struct zone *zone) 3575 { 3576 int cpu; 3577 3578 zone->pageset = alloc_percpu(struct per_cpu_pageset); 3579 3580 for_each_possible_cpu(cpu) { 3581 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 3582 3583 setup_pageset(pcp, zone_batchsize(zone)); 3584 3585 if (percpu_pagelist_fraction) 3586 setup_pagelist_highmark(pcp, 3587 (zone->present_pages / 3588 percpu_pagelist_fraction)); 3589 } 3590 } 3591 3592 /* 3593 * Allocate per cpu pagesets and initialize them. 3594 * Before this call only boot pagesets were available. 3595 */ 3596 void __init setup_per_cpu_pageset(void) 3597 { 3598 struct zone *zone; 3599 3600 for_each_populated_zone(zone) 3601 setup_zone_pageset(zone); 3602 } 3603 3604 static noinline __init_refok 3605 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 3606 { 3607 int i; 3608 struct pglist_data *pgdat = zone->zone_pgdat; 3609 size_t alloc_size; 3610 3611 /* 3612 * The per-page waitqueue mechanism uses hashed waitqueues 3613 * per zone. 3614 */ 3615 zone->wait_table_hash_nr_entries = 3616 wait_table_hash_nr_entries(zone_size_pages); 3617 zone->wait_table_bits = 3618 wait_table_bits(zone->wait_table_hash_nr_entries); 3619 alloc_size = zone->wait_table_hash_nr_entries 3620 * sizeof(wait_queue_head_t); 3621 3622 if (!slab_is_available()) { 3623 zone->wait_table = (wait_queue_head_t *) 3624 alloc_bootmem_node_nopanic(pgdat, alloc_size); 3625 } else { 3626 /* 3627 * This case means that a zone whose size was 0 gets new memory 3628 * via memory hot-add. 3629 * But it may be the case that a new node was hot-added. In 3630 * this case vmalloc() will not be able to use this new node's 3631 * memory - this wait_table must be initialized to use this new 3632 * node itself as well. 3633 * To use this new node's memory, further consideration will be 3634 * necessary. 3635 */ 3636 zone->wait_table = vmalloc(alloc_size); 3637 } 3638 if (!zone->wait_table) 3639 return -ENOMEM; 3640 3641 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) 3642 init_waitqueue_head(zone->wait_table + i); 3643 3644 return 0; 3645 } 3646 3647 static int __zone_pcp_update(void *data) 3648 { 3649 struct zone *zone = data; 3650 int cpu; 3651 unsigned long batch = zone_batchsize(zone), flags; 3652 3653 for_each_possible_cpu(cpu) { 3654 struct per_cpu_pageset *pset; 3655 struct per_cpu_pages *pcp; 3656 3657 pset = per_cpu_ptr(zone->pageset, cpu); 3658 pcp = &pset->pcp; 3659 3660 local_irq_save(flags); 3661 free_pcppages_bulk(zone, pcp->count, pcp); 3662 setup_pageset(pset, batch); 3663 local_irq_restore(flags); 3664 } 3665 return 0; 3666 } 3667 3668 void zone_pcp_update(struct zone *zone) 3669 { 3670 stop_machine(__zone_pcp_update, zone, NULL); 3671 } 3672 3673 static __meminit void zone_pcp_init(struct zone *zone) 3674 { 3675 /* 3676 * per cpu subsystem is not up at this point. The following code 3677 * relies on the ability of the linker to provide the 3678 * offset of a (static) per cpu variable into the per cpu area. 3679 */ 3680 zone->pageset = &boot_pageset; 3681 3682 if (zone->present_pages) 3683 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 3684 zone->name, zone->present_pages, 3685 zone_batchsize(zone)); 3686 } 3687 3688 __meminit int init_currently_empty_zone(struct zone *zone, 3689 unsigned long zone_start_pfn, 3690 unsigned long size, 3691 enum memmap_context context) 3692 { 3693 struct pglist_data *pgdat = zone->zone_pgdat; 3694 int ret; 3695 ret = zone_wait_table_init(zone, size); 3696 if (ret) 3697 return ret; 3698 pgdat->nr_zones = zone_idx(zone) + 1; 3699 3700 zone->zone_start_pfn = zone_start_pfn; 3701 3702 mminit_dprintk(MMINIT_TRACE, "memmap_init", 3703 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 3704 pgdat->node_id, 3705 (unsigned long)zone_idx(zone), 3706 zone_start_pfn, (zone_start_pfn + size)); 3707 3708 zone_init_free_lists(zone); 3709 3710 return 0; 3711 } 3712 3713 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 3714 /* 3715 * Basic iterator support. Return the first range of PFNs for a node 3716 * Note: nid == MAX_NUMNODES returns first region regardless of node 3717 */ 3718 static int __meminit first_active_region_index_in_nid(int nid) 3719 { 3720 int i; 3721 3722 for (i = 0; i < nr_nodemap_entries; i++) 3723 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid) 3724 return i; 3725 3726 return -1; 3727 } 3728 3729 /* 3730 * Basic iterator support. Return the next active range of PFNs for a node 3731 * Note: nid == MAX_NUMNODES returns next region regardless of node 3732 */ 3733 static int __meminit next_active_region_index_in_nid(int index, int nid) 3734 { 3735 for (index = index + 1; index < nr_nodemap_entries; index++) 3736 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid) 3737 return index; 3738 3739 return -1; 3740 } 3741 3742 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 3743 /* 3744 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 3745 * Architectures may implement their own version but if add_active_range() 3746 * was used and there are no special requirements, this is a convenient 3747 * alternative 3748 */ 3749 int __meminit __early_pfn_to_nid(unsigned long pfn) 3750 { 3751 int i; 3752 3753 for (i = 0; i < nr_nodemap_entries; i++) { 3754 unsigned long start_pfn = early_node_map[i].start_pfn; 3755 unsigned long end_pfn = early_node_map[i].end_pfn; 3756 3757 if (start_pfn <= pfn && pfn < end_pfn) 3758 return early_node_map[i].nid; 3759 } 3760 /* This is a memory hole */ 3761 return -1; 3762 } 3763 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 3764 3765 int __meminit early_pfn_to_nid(unsigned long pfn) 3766 { 3767 int nid; 3768 3769 nid = __early_pfn_to_nid(pfn); 3770 if (nid >= 0) 3771 return nid; 3772 /* just returns 0 */ 3773 return 0; 3774 } 3775 3776 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 3777 bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 3778 { 3779 int nid; 3780 3781 nid = __early_pfn_to_nid(pfn); 3782 if (nid >= 0 && nid != node) 3783 return false; 3784 return true; 3785 } 3786 #endif 3787 3788 /* Basic iterator support to walk early_node_map[] */ 3789 #define for_each_active_range_index_in_nid(i, nid) \ 3790 for (i = first_active_region_index_in_nid(nid); i != -1; \ 3791 i = next_active_region_index_in_nid(i, nid)) 3792 3793 /** 3794 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range 3795 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 3796 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node 3797 * 3798 * If an architecture guarantees that all ranges registered with 3799 * add_active_ranges() contain no holes and may be freed, this 3800 * this function may be used instead of calling free_bootmem() manually. 3801 */ 3802 void __init free_bootmem_with_active_regions(int nid, 3803 unsigned long max_low_pfn) 3804 { 3805 int i; 3806 3807 for_each_active_range_index_in_nid(i, nid) { 3808 unsigned long size_pages = 0; 3809 unsigned long end_pfn = early_node_map[i].end_pfn; 3810 3811 if (early_node_map[i].start_pfn >= max_low_pfn) 3812 continue; 3813 3814 if (end_pfn > max_low_pfn) 3815 end_pfn = max_low_pfn; 3816 3817 size_pages = end_pfn - early_node_map[i].start_pfn; 3818 free_bootmem_node(NODE_DATA(early_node_map[i].nid), 3819 PFN_PHYS(early_node_map[i].start_pfn), 3820 size_pages << PAGE_SHIFT); 3821 } 3822 } 3823 3824 #ifdef CONFIG_HAVE_MEMBLOCK 3825 /* 3826 * Basic iterator support. Return the last range of PFNs for a node 3827 * Note: nid == MAX_NUMNODES returns last region regardless of node 3828 */ 3829 static int __meminit last_active_region_index_in_nid(int nid) 3830 { 3831 int i; 3832 3833 for (i = nr_nodemap_entries - 1; i >= 0; i--) 3834 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid) 3835 return i; 3836 3837 return -1; 3838 } 3839 3840 /* 3841 * Basic iterator support. Return the previous active range of PFNs for a node 3842 * Note: nid == MAX_NUMNODES returns next region regardless of node 3843 */ 3844 static int __meminit previous_active_region_index_in_nid(int index, int nid) 3845 { 3846 for (index = index - 1; index >= 0; index--) 3847 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid) 3848 return index; 3849 3850 return -1; 3851 } 3852 3853 #define for_each_active_range_index_in_nid_reverse(i, nid) \ 3854 for (i = last_active_region_index_in_nid(nid); i != -1; \ 3855 i = previous_active_region_index_in_nid(i, nid)) 3856 3857 u64 __init find_memory_core_early(int nid, u64 size, u64 align, 3858 u64 goal, u64 limit) 3859 { 3860 int i; 3861 3862 /* Need to go over early_node_map to find out good range for node */ 3863 for_each_active_range_index_in_nid_reverse(i, nid) { 3864 u64 addr; 3865 u64 ei_start, ei_last; 3866 u64 final_start, final_end; 3867 3868 ei_last = early_node_map[i].end_pfn; 3869 ei_last <<= PAGE_SHIFT; 3870 ei_start = early_node_map[i].start_pfn; 3871 ei_start <<= PAGE_SHIFT; 3872 3873 final_start = max(ei_start, goal); 3874 final_end = min(ei_last, limit); 3875 3876 if (final_start >= final_end) 3877 continue; 3878 3879 addr = memblock_find_in_range(final_start, final_end, size, align); 3880 3881 if (addr == MEMBLOCK_ERROR) 3882 continue; 3883 3884 return addr; 3885 } 3886 3887 return MEMBLOCK_ERROR; 3888 } 3889 #endif 3890 3891 int __init add_from_early_node_map(struct range *range, int az, 3892 int nr_range, int nid) 3893 { 3894 int i; 3895 u64 start, end; 3896 3897 /* need to go over early_node_map to find out good range for node */ 3898 for_each_active_range_index_in_nid(i, nid) { 3899 start = early_node_map[i].start_pfn; 3900 end = early_node_map[i].end_pfn; 3901 nr_range = add_range(range, az, nr_range, start, end); 3902 } 3903 return nr_range; 3904 } 3905 3906 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data) 3907 { 3908 int i; 3909 int ret; 3910 3911 for_each_active_range_index_in_nid(i, nid) { 3912 ret = work_fn(early_node_map[i].start_pfn, 3913 early_node_map[i].end_pfn, data); 3914 if (ret) 3915 break; 3916 } 3917 } 3918 /** 3919 * sparse_memory_present_with_active_regions - Call memory_present for each active range 3920 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 3921 * 3922 * If an architecture guarantees that all ranges registered with 3923 * add_active_ranges() contain no holes and may be freed, this 3924 * function may be used instead of calling memory_present() manually. 3925 */ 3926 void __init sparse_memory_present_with_active_regions(int nid) 3927 { 3928 int i; 3929 3930 for_each_active_range_index_in_nid(i, nid) 3931 memory_present(early_node_map[i].nid, 3932 early_node_map[i].start_pfn, 3933 early_node_map[i].end_pfn); 3934 } 3935 3936 /** 3937 * get_pfn_range_for_nid - Return the start and end page frames for a node 3938 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 3939 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 3940 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 3941 * 3942 * It returns the start and end page frame of a node based on information 3943 * provided by an arch calling add_active_range(). If called for a node 3944 * with no available memory, a warning is printed and the start and end 3945 * PFNs will be 0. 3946 */ 3947 void __meminit get_pfn_range_for_nid(unsigned int nid, 3948 unsigned long *start_pfn, unsigned long *end_pfn) 3949 { 3950 int i; 3951 *start_pfn = -1UL; 3952 *end_pfn = 0; 3953 3954 for_each_active_range_index_in_nid(i, nid) { 3955 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn); 3956 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn); 3957 } 3958 3959 if (*start_pfn == -1UL) 3960 *start_pfn = 0; 3961 } 3962 3963 /* 3964 * This finds a zone that can be used for ZONE_MOVABLE pages. The 3965 * assumption is made that zones within a node are ordered in monotonic 3966 * increasing memory addresses so that the "highest" populated zone is used 3967 */ 3968 static void __init find_usable_zone_for_movable(void) 3969 { 3970 int zone_index; 3971 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 3972 if (zone_index == ZONE_MOVABLE) 3973 continue; 3974 3975 if (arch_zone_highest_possible_pfn[zone_index] > 3976 arch_zone_lowest_possible_pfn[zone_index]) 3977 break; 3978 } 3979 3980 VM_BUG_ON(zone_index == -1); 3981 movable_zone = zone_index; 3982 } 3983 3984 /* 3985 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 3986 * because it is sized independent of architecture. Unlike the other zones, 3987 * the starting point for ZONE_MOVABLE is not fixed. It may be different 3988 * in each node depending on the size of each node and how evenly kernelcore 3989 * is distributed. This helper function adjusts the zone ranges 3990 * provided by the architecture for a given node by using the end of the 3991 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 3992 * zones within a node are in order of monotonic increases memory addresses 3993 */ 3994 static void __meminit adjust_zone_range_for_zone_movable(int nid, 3995 unsigned long zone_type, 3996 unsigned long node_start_pfn, 3997 unsigned long node_end_pfn, 3998 unsigned long *zone_start_pfn, 3999 unsigned long *zone_end_pfn) 4000 { 4001 /* Only adjust if ZONE_MOVABLE is on this node */ 4002 if (zone_movable_pfn[nid]) { 4003 /* Size ZONE_MOVABLE */ 4004 if (zone_type == ZONE_MOVABLE) { 4005 *zone_start_pfn = zone_movable_pfn[nid]; 4006 *zone_end_pfn = min(node_end_pfn, 4007 arch_zone_highest_possible_pfn[movable_zone]); 4008 4009 /* Adjust for ZONE_MOVABLE starting within this range */ 4010 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 4011 *zone_end_pfn > zone_movable_pfn[nid]) { 4012 *zone_end_pfn = zone_movable_pfn[nid]; 4013 4014 /* Check if this whole range is within ZONE_MOVABLE */ 4015 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 4016 *zone_start_pfn = *zone_end_pfn; 4017 } 4018 } 4019 4020 /* 4021 * Return the number of pages a zone spans in a node, including holes 4022 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 4023 */ 4024 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 4025 unsigned long zone_type, 4026 unsigned long *ignored) 4027 { 4028 unsigned long node_start_pfn, node_end_pfn; 4029 unsigned long zone_start_pfn, zone_end_pfn; 4030 4031 /* Get the start and end of the node and zone */ 4032 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 4033 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 4034 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 4035 adjust_zone_range_for_zone_movable(nid, zone_type, 4036 node_start_pfn, node_end_pfn, 4037 &zone_start_pfn, &zone_end_pfn); 4038 4039 /* Check that this node has pages within the zone's required range */ 4040 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 4041 return 0; 4042 4043 /* Move the zone boundaries inside the node if necessary */ 4044 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 4045 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 4046 4047 /* Return the spanned pages */ 4048 return zone_end_pfn - zone_start_pfn; 4049 } 4050 4051 /* 4052 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 4053 * then all holes in the requested range will be accounted for. 4054 */ 4055 unsigned long __meminit __absent_pages_in_range(int nid, 4056 unsigned long range_start_pfn, 4057 unsigned long range_end_pfn) 4058 { 4059 int i = 0; 4060 unsigned long prev_end_pfn = 0, hole_pages = 0; 4061 unsigned long start_pfn; 4062 4063 /* Find the end_pfn of the first active range of pfns in the node */ 4064 i = first_active_region_index_in_nid(nid); 4065 if (i == -1) 4066 return 0; 4067 4068 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 4069 4070 /* Account for ranges before physical memory on this node */ 4071 if (early_node_map[i].start_pfn > range_start_pfn) 4072 hole_pages = prev_end_pfn - range_start_pfn; 4073 4074 /* Find all holes for the zone within the node */ 4075 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) { 4076 4077 /* No need to continue if prev_end_pfn is outside the zone */ 4078 if (prev_end_pfn >= range_end_pfn) 4079 break; 4080 4081 /* Make sure the end of the zone is not within the hole */ 4082 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 4083 prev_end_pfn = max(prev_end_pfn, range_start_pfn); 4084 4085 /* Update the hole size cound and move on */ 4086 if (start_pfn > range_start_pfn) { 4087 BUG_ON(prev_end_pfn > start_pfn); 4088 hole_pages += start_pfn - prev_end_pfn; 4089 } 4090 prev_end_pfn = early_node_map[i].end_pfn; 4091 } 4092 4093 /* Account for ranges past physical memory on this node */ 4094 if (range_end_pfn > prev_end_pfn) 4095 hole_pages += range_end_pfn - 4096 max(range_start_pfn, prev_end_pfn); 4097 4098 return hole_pages; 4099 } 4100 4101 /** 4102 * absent_pages_in_range - Return number of page frames in holes within a range 4103 * @start_pfn: The start PFN to start searching for holes 4104 * @end_pfn: The end PFN to stop searching for holes 4105 * 4106 * It returns the number of pages frames in memory holes within a range. 4107 */ 4108 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 4109 unsigned long end_pfn) 4110 { 4111 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 4112 } 4113 4114 /* Return the number of page frames in holes in a zone on a node */ 4115 static unsigned long __meminit zone_absent_pages_in_node(int nid, 4116 unsigned long zone_type, 4117 unsigned long *ignored) 4118 { 4119 unsigned long node_start_pfn, node_end_pfn; 4120 unsigned long zone_start_pfn, zone_end_pfn; 4121 4122 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 4123 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type], 4124 node_start_pfn); 4125 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type], 4126 node_end_pfn); 4127 4128 adjust_zone_range_for_zone_movable(nid, zone_type, 4129 node_start_pfn, node_end_pfn, 4130 &zone_start_pfn, &zone_end_pfn); 4131 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 4132 } 4133 4134 #else 4135 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 4136 unsigned long zone_type, 4137 unsigned long *zones_size) 4138 { 4139 return zones_size[zone_type]; 4140 } 4141 4142 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 4143 unsigned long zone_type, 4144 unsigned long *zholes_size) 4145 { 4146 if (!zholes_size) 4147 return 0; 4148 4149 return zholes_size[zone_type]; 4150 } 4151 4152 #endif 4153 4154 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 4155 unsigned long *zones_size, unsigned long *zholes_size) 4156 { 4157 unsigned long realtotalpages, totalpages = 0; 4158 enum zone_type i; 4159 4160 for (i = 0; i < MAX_NR_ZONES; i++) 4161 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 4162 zones_size); 4163 pgdat->node_spanned_pages = totalpages; 4164 4165 realtotalpages = totalpages; 4166 for (i = 0; i < MAX_NR_ZONES; i++) 4167 realtotalpages -= 4168 zone_absent_pages_in_node(pgdat->node_id, i, 4169 zholes_size); 4170 pgdat->node_present_pages = realtotalpages; 4171 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 4172 realtotalpages); 4173 } 4174 4175 #ifndef CONFIG_SPARSEMEM 4176 /* 4177 * Calculate the size of the zone->blockflags rounded to an unsigned long 4178 * Start by making sure zonesize is a multiple of pageblock_order by rounding 4179 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 4180 * round what is now in bits to nearest long in bits, then return it in 4181 * bytes. 4182 */ 4183 static unsigned long __init usemap_size(unsigned long zonesize) 4184 { 4185 unsigned long usemapsize; 4186 4187 usemapsize = roundup(zonesize, pageblock_nr_pages); 4188 usemapsize = usemapsize >> pageblock_order; 4189 usemapsize *= NR_PAGEBLOCK_BITS; 4190 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 4191 4192 return usemapsize / 8; 4193 } 4194 4195 static void __init setup_usemap(struct pglist_data *pgdat, 4196 struct zone *zone, unsigned long zonesize) 4197 { 4198 unsigned long usemapsize = usemap_size(zonesize); 4199 zone->pageblock_flags = NULL; 4200 if (usemapsize) 4201 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat, 4202 usemapsize); 4203 } 4204 #else 4205 static inline void setup_usemap(struct pglist_data *pgdat, 4206 struct zone *zone, unsigned long zonesize) {} 4207 #endif /* CONFIG_SPARSEMEM */ 4208 4209 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 4210 4211 /* Return a sensible default order for the pageblock size. */ 4212 static inline int pageblock_default_order(void) 4213 { 4214 if (HPAGE_SHIFT > PAGE_SHIFT) 4215 return HUGETLB_PAGE_ORDER; 4216 4217 return MAX_ORDER-1; 4218 } 4219 4220 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 4221 static inline void __init set_pageblock_order(unsigned int order) 4222 { 4223 /* Check that pageblock_nr_pages has not already been setup */ 4224 if (pageblock_order) 4225 return; 4226 4227 /* 4228 * Assume the largest contiguous order of interest is a huge page. 4229 * This value may be variable depending on boot parameters on IA64 4230 */ 4231 pageblock_order = order; 4232 } 4233 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4234 4235 /* 4236 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 4237 * and pageblock_default_order() are unused as pageblock_order is set 4238 * at compile-time. See include/linux/pageblock-flags.h for the values of 4239 * pageblock_order based on the kernel config 4240 */ 4241 static inline int pageblock_default_order(unsigned int order) 4242 { 4243 return MAX_ORDER-1; 4244 } 4245 #define set_pageblock_order(x) do {} while (0) 4246 4247 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4248 4249 /* 4250 * Set up the zone data structures: 4251 * - mark all pages reserved 4252 * - mark all memory queues empty 4253 * - clear the memory bitmaps 4254 */ 4255 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 4256 unsigned long *zones_size, unsigned long *zholes_size) 4257 { 4258 enum zone_type j; 4259 int nid = pgdat->node_id; 4260 unsigned long zone_start_pfn = pgdat->node_start_pfn; 4261 int ret; 4262 4263 pgdat_resize_init(pgdat); 4264 pgdat->nr_zones = 0; 4265 init_waitqueue_head(&pgdat->kswapd_wait); 4266 pgdat->kswapd_max_order = 0; 4267 pgdat_page_cgroup_init(pgdat); 4268 4269 for (j = 0; j < MAX_NR_ZONES; j++) { 4270 struct zone *zone = pgdat->node_zones + j; 4271 unsigned long size, realsize, memmap_pages; 4272 enum lru_list l; 4273 4274 size = zone_spanned_pages_in_node(nid, j, zones_size); 4275 realsize = size - zone_absent_pages_in_node(nid, j, 4276 zholes_size); 4277 4278 /* 4279 * Adjust realsize so that it accounts for how much memory 4280 * is used by this zone for memmap. This affects the watermark 4281 * and per-cpu initialisations 4282 */ 4283 memmap_pages = 4284 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT; 4285 if (realsize >= memmap_pages) { 4286 realsize -= memmap_pages; 4287 if (memmap_pages) 4288 printk(KERN_DEBUG 4289 " %s zone: %lu pages used for memmap\n", 4290 zone_names[j], memmap_pages); 4291 } else 4292 printk(KERN_WARNING 4293 " %s zone: %lu pages exceeds realsize %lu\n", 4294 zone_names[j], memmap_pages, realsize); 4295 4296 /* Account for reserved pages */ 4297 if (j == 0 && realsize > dma_reserve) { 4298 realsize -= dma_reserve; 4299 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 4300 zone_names[0], dma_reserve); 4301 } 4302 4303 if (!is_highmem_idx(j)) 4304 nr_kernel_pages += realsize; 4305 nr_all_pages += realsize; 4306 4307 zone->spanned_pages = size; 4308 zone->present_pages = realsize; 4309 #ifdef CONFIG_NUMA 4310 zone->node = nid; 4311 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio) 4312 / 100; 4313 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100; 4314 #endif 4315 zone->name = zone_names[j]; 4316 spin_lock_init(&zone->lock); 4317 spin_lock_init(&zone->lru_lock); 4318 zone_seqlock_init(zone); 4319 zone->zone_pgdat = pgdat; 4320 4321 zone_pcp_init(zone); 4322 for_each_lru(l) 4323 INIT_LIST_HEAD(&zone->lru[l].list); 4324 zone->reclaim_stat.recent_rotated[0] = 0; 4325 zone->reclaim_stat.recent_rotated[1] = 0; 4326 zone->reclaim_stat.recent_scanned[0] = 0; 4327 zone->reclaim_stat.recent_scanned[1] = 0; 4328 zap_zone_vm_stats(zone); 4329 zone->flags = 0; 4330 if (!size) 4331 continue; 4332 4333 set_pageblock_order(pageblock_default_order()); 4334 setup_usemap(pgdat, zone, size); 4335 ret = init_currently_empty_zone(zone, zone_start_pfn, 4336 size, MEMMAP_EARLY); 4337 BUG_ON(ret); 4338 memmap_init(size, nid, j, zone_start_pfn); 4339 zone_start_pfn += size; 4340 } 4341 } 4342 4343 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 4344 { 4345 /* Skip empty nodes */ 4346 if (!pgdat->node_spanned_pages) 4347 return; 4348 4349 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4350 /* ia64 gets its own node_mem_map, before this, without bootmem */ 4351 if (!pgdat->node_mem_map) { 4352 unsigned long size, start, end; 4353 struct page *map; 4354 4355 /* 4356 * The zone's endpoints aren't required to be MAX_ORDER 4357 * aligned but the node_mem_map endpoints must be in order 4358 * for the buddy allocator to function correctly. 4359 */ 4360 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 4361 end = pgdat->node_start_pfn + pgdat->node_spanned_pages; 4362 end = ALIGN(end, MAX_ORDER_NR_PAGES); 4363 size = (end - start) * sizeof(struct page); 4364 map = alloc_remap(pgdat->node_id, size); 4365 if (!map) 4366 map = alloc_bootmem_node_nopanic(pgdat, size); 4367 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 4368 } 4369 #ifndef CONFIG_NEED_MULTIPLE_NODES 4370 /* 4371 * With no DISCONTIG, the global mem_map is just set as node 0's 4372 */ 4373 if (pgdat == NODE_DATA(0)) { 4374 mem_map = NODE_DATA(0)->node_mem_map; 4375 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 4376 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 4377 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 4378 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 4379 } 4380 #endif 4381 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 4382 } 4383 4384 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 4385 unsigned long node_start_pfn, unsigned long *zholes_size) 4386 { 4387 pg_data_t *pgdat = NODE_DATA(nid); 4388 4389 pgdat->node_id = nid; 4390 pgdat->node_start_pfn = node_start_pfn; 4391 calculate_node_totalpages(pgdat, zones_size, zholes_size); 4392 4393 alloc_node_mem_map(pgdat); 4394 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4395 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 4396 nid, (unsigned long)pgdat, 4397 (unsigned long)pgdat->node_mem_map); 4398 #endif 4399 4400 free_area_init_core(pgdat, zones_size, zholes_size); 4401 } 4402 4403 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 4404 4405 #if MAX_NUMNODES > 1 4406 /* 4407 * Figure out the number of possible node ids. 4408 */ 4409 static void __init setup_nr_node_ids(void) 4410 { 4411 unsigned int node; 4412 unsigned int highest = 0; 4413 4414 for_each_node_mask(node, node_possible_map) 4415 highest = node; 4416 nr_node_ids = highest + 1; 4417 } 4418 #else 4419 static inline void setup_nr_node_ids(void) 4420 { 4421 } 4422 #endif 4423 4424 /** 4425 * add_active_range - Register a range of PFNs backed by physical memory 4426 * @nid: The node ID the range resides on 4427 * @start_pfn: The start PFN of the available physical memory 4428 * @end_pfn: The end PFN of the available physical memory 4429 * 4430 * These ranges are stored in an early_node_map[] and later used by 4431 * free_area_init_nodes() to calculate zone sizes and holes. If the 4432 * range spans a memory hole, it is up to the architecture to ensure 4433 * the memory is not freed by the bootmem allocator. If possible 4434 * the range being registered will be merged with existing ranges. 4435 */ 4436 void __init add_active_range(unsigned int nid, unsigned long start_pfn, 4437 unsigned long end_pfn) 4438 { 4439 int i; 4440 4441 mminit_dprintk(MMINIT_TRACE, "memory_register", 4442 "Entering add_active_range(%d, %#lx, %#lx) " 4443 "%d entries of %d used\n", 4444 nid, start_pfn, end_pfn, 4445 nr_nodemap_entries, MAX_ACTIVE_REGIONS); 4446 4447 mminit_validate_memmodel_limits(&start_pfn, &end_pfn); 4448 4449 /* Merge with existing active regions if possible */ 4450 for (i = 0; i < nr_nodemap_entries; i++) { 4451 if (early_node_map[i].nid != nid) 4452 continue; 4453 4454 /* Skip if an existing region covers this new one */ 4455 if (start_pfn >= early_node_map[i].start_pfn && 4456 end_pfn <= early_node_map[i].end_pfn) 4457 return; 4458 4459 /* Merge forward if suitable */ 4460 if (start_pfn <= early_node_map[i].end_pfn && 4461 end_pfn > early_node_map[i].end_pfn) { 4462 early_node_map[i].end_pfn = end_pfn; 4463 return; 4464 } 4465 4466 /* Merge backward if suitable */ 4467 if (start_pfn < early_node_map[i].start_pfn && 4468 end_pfn >= early_node_map[i].start_pfn) { 4469 early_node_map[i].start_pfn = start_pfn; 4470 return; 4471 } 4472 } 4473 4474 /* Check that early_node_map is large enough */ 4475 if (i >= MAX_ACTIVE_REGIONS) { 4476 printk(KERN_CRIT "More than %d memory regions, truncating\n", 4477 MAX_ACTIVE_REGIONS); 4478 return; 4479 } 4480 4481 early_node_map[i].nid = nid; 4482 early_node_map[i].start_pfn = start_pfn; 4483 early_node_map[i].end_pfn = end_pfn; 4484 nr_nodemap_entries = i + 1; 4485 } 4486 4487 /** 4488 * remove_active_range - Shrink an existing registered range of PFNs 4489 * @nid: The node id the range is on that should be shrunk 4490 * @start_pfn: The new PFN of the range 4491 * @end_pfn: The new PFN of the range 4492 * 4493 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node. 4494 * The map is kept near the end physical page range that has already been 4495 * registered. This function allows an arch to shrink an existing registered 4496 * range. 4497 */ 4498 void __init remove_active_range(unsigned int nid, unsigned long start_pfn, 4499 unsigned long end_pfn) 4500 { 4501 int i, j; 4502 int removed = 0; 4503 4504 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n", 4505 nid, start_pfn, end_pfn); 4506 4507 /* Find the old active region end and shrink */ 4508 for_each_active_range_index_in_nid(i, nid) { 4509 if (early_node_map[i].start_pfn >= start_pfn && 4510 early_node_map[i].end_pfn <= end_pfn) { 4511 /* clear it */ 4512 early_node_map[i].start_pfn = 0; 4513 early_node_map[i].end_pfn = 0; 4514 removed = 1; 4515 continue; 4516 } 4517 if (early_node_map[i].start_pfn < start_pfn && 4518 early_node_map[i].end_pfn > start_pfn) { 4519 unsigned long temp_end_pfn = early_node_map[i].end_pfn; 4520 early_node_map[i].end_pfn = start_pfn; 4521 if (temp_end_pfn > end_pfn) 4522 add_active_range(nid, end_pfn, temp_end_pfn); 4523 continue; 4524 } 4525 if (early_node_map[i].start_pfn >= start_pfn && 4526 early_node_map[i].end_pfn > end_pfn && 4527 early_node_map[i].start_pfn < end_pfn) { 4528 early_node_map[i].start_pfn = end_pfn; 4529 continue; 4530 } 4531 } 4532 4533 if (!removed) 4534 return; 4535 4536 /* remove the blank ones */ 4537 for (i = nr_nodemap_entries - 1; i > 0; i--) { 4538 if (early_node_map[i].nid != nid) 4539 continue; 4540 if (early_node_map[i].end_pfn) 4541 continue; 4542 /* we found it, get rid of it */ 4543 for (j = i; j < nr_nodemap_entries - 1; j++) 4544 memcpy(&early_node_map[j], &early_node_map[j+1], 4545 sizeof(early_node_map[j])); 4546 j = nr_nodemap_entries - 1; 4547 memset(&early_node_map[j], 0, sizeof(early_node_map[j])); 4548 nr_nodemap_entries--; 4549 } 4550 } 4551 4552 /** 4553 * remove_all_active_ranges - Remove all currently registered regions 4554 * 4555 * During discovery, it may be found that a table like SRAT is invalid 4556 * and an alternative discovery method must be used. This function removes 4557 * all currently registered regions. 4558 */ 4559 void __init remove_all_active_ranges(void) 4560 { 4561 memset(early_node_map, 0, sizeof(early_node_map)); 4562 nr_nodemap_entries = 0; 4563 } 4564 4565 /* Compare two active node_active_regions */ 4566 static int __init cmp_node_active_region(const void *a, const void *b) 4567 { 4568 struct node_active_region *arange = (struct node_active_region *)a; 4569 struct node_active_region *brange = (struct node_active_region *)b; 4570 4571 /* Done this way to avoid overflows */ 4572 if (arange->start_pfn > brange->start_pfn) 4573 return 1; 4574 if (arange->start_pfn < brange->start_pfn) 4575 return -1; 4576 4577 return 0; 4578 } 4579 4580 /* sort the node_map by start_pfn */ 4581 void __init sort_node_map(void) 4582 { 4583 sort(early_node_map, (size_t)nr_nodemap_entries, 4584 sizeof(struct node_active_region), 4585 cmp_node_active_region, NULL); 4586 } 4587 4588 /** 4589 * node_map_pfn_alignment - determine the maximum internode alignment 4590 * 4591 * This function should be called after node map is populated and sorted. 4592 * It calculates the maximum power of two alignment which can distinguish 4593 * all the nodes. 4594 * 4595 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 4596 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 4597 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 4598 * shifted, 1GiB is enough and this function will indicate so. 4599 * 4600 * This is used to test whether pfn -> nid mapping of the chosen memory 4601 * model has fine enough granularity to avoid incorrect mapping for the 4602 * populated node map. 4603 * 4604 * Returns the determined alignment in pfn's. 0 if there is no alignment 4605 * requirement (single node). 4606 */ 4607 unsigned long __init node_map_pfn_alignment(void) 4608 { 4609 unsigned long accl_mask = 0, last_end = 0; 4610 int last_nid = -1; 4611 int i; 4612 4613 for_each_active_range_index_in_nid(i, MAX_NUMNODES) { 4614 int nid = early_node_map[i].nid; 4615 unsigned long start = early_node_map[i].start_pfn; 4616 unsigned long end = early_node_map[i].end_pfn; 4617 unsigned long mask; 4618 4619 if (!start || last_nid < 0 || last_nid == nid) { 4620 last_nid = nid; 4621 last_end = end; 4622 continue; 4623 } 4624 4625 /* 4626 * Start with a mask granular enough to pin-point to the 4627 * start pfn and tick off bits one-by-one until it becomes 4628 * too coarse to separate the current node from the last. 4629 */ 4630 mask = ~((1 << __ffs(start)) - 1); 4631 while (mask && last_end <= (start & (mask << 1))) 4632 mask <<= 1; 4633 4634 /* accumulate all internode masks */ 4635 accl_mask |= mask; 4636 } 4637 4638 /* convert mask to number of pages */ 4639 return ~accl_mask + 1; 4640 } 4641 4642 /* Find the lowest pfn for a node */ 4643 static unsigned long __init find_min_pfn_for_node(int nid) 4644 { 4645 int i; 4646 unsigned long min_pfn = ULONG_MAX; 4647 4648 /* Assuming a sorted map, the first range found has the starting pfn */ 4649 for_each_active_range_index_in_nid(i, nid) 4650 min_pfn = min(min_pfn, early_node_map[i].start_pfn); 4651 4652 if (min_pfn == ULONG_MAX) { 4653 printk(KERN_WARNING 4654 "Could not find start_pfn for node %d\n", nid); 4655 return 0; 4656 } 4657 4658 return min_pfn; 4659 } 4660 4661 /** 4662 * find_min_pfn_with_active_regions - Find the minimum PFN registered 4663 * 4664 * It returns the minimum PFN based on information provided via 4665 * add_active_range(). 4666 */ 4667 unsigned long __init find_min_pfn_with_active_regions(void) 4668 { 4669 return find_min_pfn_for_node(MAX_NUMNODES); 4670 } 4671 4672 /* 4673 * early_calculate_totalpages() 4674 * Sum pages in active regions for movable zone. 4675 * Populate N_HIGH_MEMORY for calculating usable_nodes. 4676 */ 4677 static unsigned long __init early_calculate_totalpages(void) 4678 { 4679 int i; 4680 unsigned long totalpages = 0; 4681 4682 for (i = 0; i < nr_nodemap_entries; i++) { 4683 unsigned long pages = early_node_map[i].end_pfn - 4684 early_node_map[i].start_pfn; 4685 totalpages += pages; 4686 if (pages) 4687 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY); 4688 } 4689 return totalpages; 4690 } 4691 4692 /* 4693 * Find the PFN the Movable zone begins in each node. Kernel memory 4694 * is spread evenly between nodes as long as the nodes have enough 4695 * memory. When they don't, some nodes will have more kernelcore than 4696 * others 4697 */ 4698 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn) 4699 { 4700 int i, nid; 4701 unsigned long usable_startpfn; 4702 unsigned long kernelcore_node, kernelcore_remaining; 4703 /* save the state before borrow the nodemask */ 4704 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY]; 4705 unsigned long totalpages = early_calculate_totalpages(); 4706 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]); 4707 4708 /* 4709 * If movablecore was specified, calculate what size of 4710 * kernelcore that corresponds so that memory usable for 4711 * any allocation type is evenly spread. If both kernelcore 4712 * and movablecore are specified, then the value of kernelcore 4713 * will be used for required_kernelcore if it's greater than 4714 * what movablecore would have allowed. 4715 */ 4716 if (required_movablecore) { 4717 unsigned long corepages; 4718 4719 /* 4720 * Round-up so that ZONE_MOVABLE is at least as large as what 4721 * was requested by the user 4722 */ 4723 required_movablecore = 4724 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 4725 corepages = totalpages - required_movablecore; 4726 4727 required_kernelcore = max(required_kernelcore, corepages); 4728 } 4729 4730 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 4731 if (!required_kernelcore) 4732 goto out; 4733 4734 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 4735 find_usable_zone_for_movable(); 4736 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 4737 4738 restart: 4739 /* Spread kernelcore memory as evenly as possible throughout nodes */ 4740 kernelcore_node = required_kernelcore / usable_nodes; 4741 for_each_node_state(nid, N_HIGH_MEMORY) { 4742 /* 4743 * Recalculate kernelcore_node if the division per node 4744 * now exceeds what is necessary to satisfy the requested 4745 * amount of memory for the kernel 4746 */ 4747 if (required_kernelcore < kernelcore_node) 4748 kernelcore_node = required_kernelcore / usable_nodes; 4749 4750 /* 4751 * As the map is walked, we track how much memory is usable 4752 * by the kernel using kernelcore_remaining. When it is 4753 * 0, the rest of the node is usable by ZONE_MOVABLE 4754 */ 4755 kernelcore_remaining = kernelcore_node; 4756 4757 /* Go through each range of PFNs within this node */ 4758 for_each_active_range_index_in_nid(i, nid) { 4759 unsigned long start_pfn, end_pfn; 4760 unsigned long size_pages; 4761 4762 start_pfn = max(early_node_map[i].start_pfn, 4763 zone_movable_pfn[nid]); 4764 end_pfn = early_node_map[i].end_pfn; 4765 if (start_pfn >= end_pfn) 4766 continue; 4767 4768 /* Account for what is only usable for kernelcore */ 4769 if (start_pfn < usable_startpfn) { 4770 unsigned long kernel_pages; 4771 kernel_pages = min(end_pfn, usable_startpfn) 4772 - start_pfn; 4773 4774 kernelcore_remaining -= min(kernel_pages, 4775 kernelcore_remaining); 4776 required_kernelcore -= min(kernel_pages, 4777 required_kernelcore); 4778 4779 /* Continue if range is now fully accounted */ 4780 if (end_pfn <= usable_startpfn) { 4781 4782 /* 4783 * Push zone_movable_pfn to the end so 4784 * that if we have to rebalance 4785 * kernelcore across nodes, we will 4786 * not double account here 4787 */ 4788 zone_movable_pfn[nid] = end_pfn; 4789 continue; 4790 } 4791 start_pfn = usable_startpfn; 4792 } 4793 4794 /* 4795 * The usable PFN range for ZONE_MOVABLE is from 4796 * start_pfn->end_pfn. Calculate size_pages as the 4797 * number of pages used as kernelcore 4798 */ 4799 size_pages = end_pfn - start_pfn; 4800 if (size_pages > kernelcore_remaining) 4801 size_pages = kernelcore_remaining; 4802 zone_movable_pfn[nid] = start_pfn + size_pages; 4803 4804 /* 4805 * Some kernelcore has been met, update counts and 4806 * break if the kernelcore for this node has been 4807 * satisified 4808 */ 4809 required_kernelcore -= min(required_kernelcore, 4810 size_pages); 4811 kernelcore_remaining -= size_pages; 4812 if (!kernelcore_remaining) 4813 break; 4814 } 4815 } 4816 4817 /* 4818 * If there is still required_kernelcore, we do another pass with one 4819 * less node in the count. This will push zone_movable_pfn[nid] further 4820 * along on the nodes that still have memory until kernelcore is 4821 * satisified 4822 */ 4823 usable_nodes--; 4824 if (usable_nodes && required_kernelcore > usable_nodes) 4825 goto restart; 4826 4827 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 4828 for (nid = 0; nid < MAX_NUMNODES; nid++) 4829 zone_movable_pfn[nid] = 4830 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 4831 4832 out: 4833 /* restore the node_state */ 4834 node_states[N_HIGH_MEMORY] = saved_node_state; 4835 } 4836 4837 /* Any regular memory on that node ? */ 4838 static void check_for_regular_memory(pg_data_t *pgdat) 4839 { 4840 #ifdef CONFIG_HIGHMEM 4841 enum zone_type zone_type; 4842 4843 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) { 4844 struct zone *zone = &pgdat->node_zones[zone_type]; 4845 if (zone->present_pages) 4846 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY); 4847 } 4848 #endif 4849 } 4850 4851 /** 4852 * free_area_init_nodes - Initialise all pg_data_t and zone data 4853 * @max_zone_pfn: an array of max PFNs for each zone 4854 * 4855 * This will call free_area_init_node() for each active node in the system. 4856 * Using the page ranges provided by add_active_range(), the size of each 4857 * zone in each node and their holes is calculated. If the maximum PFN 4858 * between two adjacent zones match, it is assumed that the zone is empty. 4859 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 4860 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 4861 * starts where the previous one ended. For example, ZONE_DMA32 starts 4862 * at arch_max_dma_pfn. 4863 */ 4864 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 4865 { 4866 unsigned long nid; 4867 int i; 4868 4869 /* Sort early_node_map as initialisation assumes it is sorted */ 4870 sort_node_map(); 4871 4872 /* Record where the zone boundaries are */ 4873 memset(arch_zone_lowest_possible_pfn, 0, 4874 sizeof(arch_zone_lowest_possible_pfn)); 4875 memset(arch_zone_highest_possible_pfn, 0, 4876 sizeof(arch_zone_highest_possible_pfn)); 4877 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 4878 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 4879 for (i = 1; i < MAX_NR_ZONES; i++) { 4880 if (i == ZONE_MOVABLE) 4881 continue; 4882 arch_zone_lowest_possible_pfn[i] = 4883 arch_zone_highest_possible_pfn[i-1]; 4884 arch_zone_highest_possible_pfn[i] = 4885 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 4886 } 4887 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 4888 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 4889 4890 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 4891 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 4892 find_zone_movable_pfns_for_nodes(zone_movable_pfn); 4893 4894 /* Print out the zone ranges */ 4895 printk("Zone PFN ranges:\n"); 4896 for (i = 0; i < MAX_NR_ZONES; i++) { 4897 if (i == ZONE_MOVABLE) 4898 continue; 4899 printk(" %-8s ", zone_names[i]); 4900 if (arch_zone_lowest_possible_pfn[i] == 4901 arch_zone_highest_possible_pfn[i]) 4902 printk("empty\n"); 4903 else 4904 printk("%0#10lx -> %0#10lx\n", 4905 arch_zone_lowest_possible_pfn[i], 4906 arch_zone_highest_possible_pfn[i]); 4907 } 4908 4909 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 4910 printk("Movable zone start PFN for each node\n"); 4911 for (i = 0; i < MAX_NUMNODES; i++) { 4912 if (zone_movable_pfn[i]) 4913 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]); 4914 } 4915 4916 /* Print out the early_node_map[] */ 4917 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries); 4918 for (i = 0; i < nr_nodemap_entries; i++) 4919 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid, 4920 early_node_map[i].start_pfn, 4921 early_node_map[i].end_pfn); 4922 4923 /* Initialise every node */ 4924 mminit_verify_pageflags_layout(); 4925 setup_nr_node_ids(); 4926 for_each_online_node(nid) { 4927 pg_data_t *pgdat = NODE_DATA(nid); 4928 free_area_init_node(nid, NULL, 4929 find_min_pfn_for_node(nid), NULL); 4930 4931 /* Any memory on that node */ 4932 if (pgdat->node_present_pages) 4933 node_set_state(nid, N_HIGH_MEMORY); 4934 check_for_regular_memory(pgdat); 4935 } 4936 } 4937 4938 static int __init cmdline_parse_core(char *p, unsigned long *core) 4939 { 4940 unsigned long long coremem; 4941 if (!p) 4942 return -EINVAL; 4943 4944 coremem = memparse(p, &p); 4945 *core = coremem >> PAGE_SHIFT; 4946 4947 /* Paranoid check that UL is enough for the coremem value */ 4948 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 4949 4950 return 0; 4951 } 4952 4953 /* 4954 * kernelcore=size sets the amount of memory for use for allocations that 4955 * cannot be reclaimed or migrated. 4956 */ 4957 static int __init cmdline_parse_kernelcore(char *p) 4958 { 4959 return cmdline_parse_core(p, &required_kernelcore); 4960 } 4961 4962 /* 4963 * movablecore=size sets the amount of memory for use for allocations that 4964 * can be reclaimed or migrated. 4965 */ 4966 static int __init cmdline_parse_movablecore(char *p) 4967 { 4968 return cmdline_parse_core(p, &required_movablecore); 4969 } 4970 4971 early_param("kernelcore", cmdline_parse_kernelcore); 4972 early_param("movablecore", cmdline_parse_movablecore); 4973 4974 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 4975 4976 /** 4977 * set_dma_reserve - set the specified number of pages reserved in the first zone 4978 * @new_dma_reserve: The number of pages to mark reserved 4979 * 4980 * The per-cpu batchsize and zone watermarks are determined by present_pages. 4981 * In the DMA zone, a significant percentage may be consumed by kernel image 4982 * and other unfreeable allocations which can skew the watermarks badly. This 4983 * function may optionally be used to account for unfreeable pages in the 4984 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 4985 * smaller per-cpu batchsize. 4986 */ 4987 void __init set_dma_reserve(unsigned long new_dma_reserve) 4988 { 4989 dma_reserve = new_dma_reserve; 4990 } 4991 4992 void __init free_area_init(unsigned long *zones_size) 4993 { 4994 free_area_init_node(0, zones_size, 4995 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 4996 } 4997 4998 static int page_alloc_cpu_notify(struct notifier_block *self, 4999 unsigned long action, void *hcpu) 5000 { 5001 int cpu = (unsigned long)hcpu; 5002 5003 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 5004 drain_pages(cpu); 5005 5006 /* 5007 * Spill the event counters of the dead processor 5008 * into the current processors event counters. 5009 * This artificially elevates the count of the current 5010 * processor. 5011 */ 5012 vm_events_fold_cpu(cpu); 5013 5014 /* 5015 * Zero the differential counters of the dead processor 5016 * so that the vm statistics are consistent. 5017 * 5018 * This is only okay since the processor is dead and cannot 5019 * race with what we are doing. 5020 */ 5021 refresh_cpu_vm_stats(cpu); 5022 } 5023 return NOTIFY_OK; 5024 } 5025 5026 void __init page_alloc_init(void) 5027 { 5028 hotcpu_notifier(page_alloc_cpu_notify, 0); 5029 } 5030 5031 /* 5032 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 5033 * or min_free_kbytes changes. 5034 */ 5035 static void calculate_totalreserve_pages(void) 5036 { 5037 struct pglist_data *pgdat; 5038 unsigned long reserve_pages = 0; 5039 enum zone_type i, j; 5040 5041 for_each_online_pgdat(pgdat) { 5042 for (i = 0; i < MAX_NR_ZONES; i++) { 5043 struct zone *zone = pgdat->node_zones + i; 5044 unsigned long max = 0; 5045 5046 /* Find valid and maximum lowmem_reserve in the zone */ 5047 for (j = i; j < MAX_NR_ZONES; j++) { 5048 if (zone->lowmem_reserve[j] > max) 5049 max = zone->lowmem_reserve[j]; 5050 } 5051 5052 /* we treat the high watermark as reserved pages. */ 5053 max += high_wmark_pages(zone); 5054 5055 if (max > zone->present_pages) 5056 max = zone->present_pages; 5057 reserve_pages += max; 5058 } 5059 } 5060 totalreserve_pages = reserve_pages; 5061 } 5062 5063 /* 5064 * setup_per_zone_lowmem_reserve - called whenever 5065 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 5066 * has a correct pages reserved value, so an adequate number of 5067 * pages are left in the zone after a successful __alloc_pages(). 5068 */ 5069 static void setup_per_zone_lowmem_reserve(void) 5070 { 5071 struct pglist_data *pgdat; 5072 enum zone_type j, idx; 5073 5074 for_each_online_pgdat(pgdat) { 5075 for (j = 0; j < MAX_NR_ZONES; j++) { 5076 struct zone *zone = pgdat->node_zones + j; 5077 unsigned long present_pages = zone->present_pages; 5078 5079 zone->lowmem_reserve[j] = 0; 5080 5081 idx = j; 5082 while (idx) { 5083 struct zone *lower_zone; 5084 5085 idx--; 5086 5087 if (sysctl_lowmem_reserve_ratio[idx] < 1) 5088 sysctl_lowmem_reserve_ratio[idx] = 1; 5089 5090 lower_zone = pgdat->node_zones + idx; 5091 lower_zone->lowmem_reserve[j] = present_pages / 5092 sysctl_lowmem_reserve_ratio[idx]; 5093 present_pages += lower_zone->present_pages; 5094 } 5095 } 5096 } 5097 5098 /* update totalreserve_pages */ 5099 calculate_totalreserve_pages(); 5100 } 5101 5102 /** 5103 * setup_per_zone_wmarks - called when min_free_kbytes changes 5104 * or when memory is hot-{added|removed} 5105 * 5106 * Ensures that the watermark[min,low,high] values for each zone are set 5107 * correctly with respect to min_free_kbytes. 5108 */ 5109 void setup_per_zone_wmarks(void) 5110 { 5111 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 5112 unsigned long lowmem_pages = 0; 5113 struct zone *zone; 5114 unsigned long flags; 5115 5116 /* Calculate total number of !ZONE_HIGHMEM pages */ 5117 for_each_zone(zone) { 5118 if (!is_highmem(zone)) 5119 lowmem_pages += zone->present_pages; 5120 } 5121 5122 for_each_zone(zone) { 5123 u64 tmp; 5124 5125 spin_lock_irqsave(&zone->lock, flags); 5126 tmp = (u64)pages_min * zone->present_pages; 5127 do_div(tmp, lowmem_pages); 5128 if (is_highmem(zone)) { 5129 /* 5130 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 5131 * need highmem pages, so cap pages_min to a small 5132 * value here. 5133 * 5134 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 5135 * deltas controls asynch page reclaim, and so should 5136 * not be capped for highmem. 5137 */ 5138 int min_pages; 5139 5140 min_pages = zone->present_pages / 1024; 5141 if (min_pages < SWAP_CLUSTER_MAX) 5142 min_pages = SWAP_CLUSTER_MAX; 5143 if (min_pages > 128) 5144 min_pages = 128; 5145 zone->watermark[WMARK_MIN] = min_pages; 5146 } else { 5147 /* 5148 * If it's a lowmem zone, reserve a number of pages 5149 * proportionate to the zone's size. 5150 */ 5151 zone->watermark[WMARK_MIN] = tmp; 5152 } 5153 5154 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); 5155 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); 5156 setup_zone_migrate_reserve(zone); 5157 spin_unlock_irqrestore(&zone->lock, flags); 5158 } 5159 5160 /* update totalreserve_pages */ 5161 calculate_totalreserve_pages(); 5162 } 5163 5164 /* 5165 * The inactive anon list should be small enough that the VM never has to 5166 * do too much work, but large enough that each inactive page has a chance 5167 * to be referenced again before it is swapped out. 5168 * 5169 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 5170 * INACTIVE_ANON pages on this zone's LRU, maintained by the 5171 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 5172 * the anonymous pages are kept on the inactive list. 5173 * 5174 * total target max 5175 * memory ratio inactive anon 5176 * ------------------------------------- 5177 * 10MB 1 5MB 5178 * 100MB 1 50MB 5179 * 1GB 3 250MB 5180 * 10GB 10 0.9GB 5181 * 100GB 31 3GB 5182 * 1TB 101 10GB 5183 * 10TB 320 32GB 5184 */ 5185 static void __meminit calculate_zone_inactive_ratio(struct zone *zone) 5186 { 5187 unsigned int gb, ratio; 5188 5189 /* Zone size in gigabytes */ 5190 gb = zone->present_pages >> (30 - PAGE_SHIFT); 5191 if (gb) 5192 ratio = int_sqrt(10 * gb); 5193 else 5194 ratio = 1; 5195 5196 zone->inactive_ratio = ratio; 5197 } 5198 5199 static void __meminit setup_per_zone_inactive_ratio(void) 5200 { 5201 struct zone *zone; 5202 5203 for_each_zone(zone) 5204 calculate_zone_inactive_ratio(zone); 5205 } 5206 5207 /* 5208 * Initialise min_free_kbytes. 5209 * 5210 * For small machines we want it small (128k min). For large machines 5211 * we want it large (64MB max). But it is not linear, because network 5212 * bandwidth does not increase linearly with machine size. We use 5213 * 5214 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 5215 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 5216 * 5217 * which yields 5218 * 5219 * 16MB: 512k 5220 * 32MB: 724k 5221 * 64MB: 1024k 5222 * 128MB: 1448k 5223 * 256MB: 2048k 5224 * 512MB: 2896k 5225 * 1024MB: 4096k 5226 * 2048MB: 5792k 5227 * 4096MB: 8192k 5228 * 8192MB: 11584k 5229 * 16384MB: 16384k 5230 */ 5231 int __meminit init_per_zone_wmark_min(void) 5232 { 5233 unsigned long lowmem_kbytes; 5234 5235 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 5236 5237 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 5238 if (min_free_kbytes < 128) 5239 min_free_kbytes = 128; 5240 if (min_free_kbytes > 65536) 5241 min_free_kbytes = 65536; 5242 setup_per_zone_wmarks(); 5243 refresh_zone_stat_thresholds(); 5244 setup_per_zone_lowmem_reserve(); 5245 setup_per_zone_inactive_ratio(); 5246 return 0; 5247 } 5248 module_init(init_per_zone_wmark_min) 5249 5250 /* 5251 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 5252 * that we can call two helper functions whenever min_free_kbytes 5253 * changes. 5254 */ 5255 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 5256 void __user *buffer, size_t *length, loff_t *ppos) 5257 { 5258 proc_dointvec(table, write, buffer, length, ppos); 5259 if (write) 5260 setup_per_zone_wmarks(); 5261 return 0; 5262 } 5263 5264 #ifdef CONFIG_NUMA 5265 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, 5266 void __user *buffer, size_t *length, loff_t *ppos) 5267 { 5268 struct zone *zone; 5269 int rc; 5270 5271 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5272 if (rc) 5273 return rc; 5274 5275 for_each_zone(zone) 5276 zone->min_unmapped_pages = (zone->present_pages * 5277 sysctl_min_unmapped_ratio) / 100; 5278 return 0; 5279 } 5280 5281 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, 5282 void __user *buffer, size_t *length, loff_t *ppos) 5283 { 5284 struct zone *zone; 5285 int rc; 5286 5287 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5288 if (rc) 5289 return rc; 5290 5291 for_each_zone(zone) 5292 zone->min_slab_pages = (zone->present_pages * 5293 sysctl_min_slab_ratio) / 100; 5294 return 0; 5295 } 5296 #endif 5297 5298 /* 5299 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 5300 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 5301 * whenever sysctl_lowmem_reserve_ratio changes. 5302 * 5303 * The reserve ratio obviously has absolutely no relation with the 5304 * minimum watermarks. The lowmem reserve ratio can only make sense 5305 * if in function of the boot time zone sizes. 5306 */ 5307 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 5308 void __user *buffer, size_t *length, loff_t *ppos) 5309 { 5310 proc_dointvec_minmax(table, write, buffer, length, ppos); 5311 setup_per_zone_lowmem_reserve(); 5312 return 0; 5313 } 5314 5315 /* 5316 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 5317 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 5318 * can have before it gets flushed back to buddy allocator. 5319 */ 5320 5321 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 5322 void __user *buffer, size_t *length, loff_t *ppos) 5323 { 5324 struct zone *zone; 5325 unsigned int cpu; 5326 int ret; 5327 5328 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 5329 if (!write || (ret == -EINVAL)) 5330 return ret; 5331 for_each_populated_zone(zone) { 5332 for_each_possible_cpu(cpu) { 5333 unsigned long high; 5334 high = zone->present_pages / percpu_pagelist_fraction; 5335 setup_pagelist_highmark( 5336 per_cpu_ptr(zone->pageset, cpu), high); 5337 } 5338 } 5339 return 0; 5340 } 5341 5342 int hashdist = HASHDIST_DEFAULT; 5343 5344 #ifdef CONFIG_NUMA 5345 static int __init set_hashdist(char *str) 5346 { 5347 if (!str) 5348 return 0; 5349 hashdist = simple_strtoul(str, &str, 0); 5350 return 1; 5351 } 5352 __setup("hashdist=", set_hashdist); 5353 #endif 5354 5355 /* 5356 * allocate a large system hash table from bootmem 5357 * - it is assumed that the hash table must contain an exact power-of-2 5358 * quantity of entries 5359 * - limit is the number of hash buckets, not the total allocation size 5360 */ 5361 void *__init alloc_large_system_hash(const char *tablename, 5362 unsigned long bucketsize, 5363 unsigned long numentries, 5364 int scale, 5365 int flags, 5366 unsigned int *_hash_shift, 5367 unsigned int *_hash_mask, 5368 unsigned long limit) 5369 { 5370 unsigned long long max = limit; 5371 unsigned long log2qty, size; 5372 void *table = NULL; 5373 5374 /* allow the kernel cmdline to have a say */ 5375 if (!numentries) { 5376 /* round applicable memory size up to nearest megabyte */ 5377 numentries = nr_kernel_pages; 5378 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 5379 numentries >>= 20 - PAGE_SHIFT; 5380 numentries <<= 20 - PAGE_SHIFT; 5381 5382 /* limit to 1 bucket per 2^scale bytes of low memory */ 5383 if (scale > PAGE_SHIFT) 5384 numentries >>= (scale - PAGE_SHIFT); 5385 else 5386 numentries <<= (PAGE_SHIFT - scale); 5387 5388 /* Make sure we've got at least a 0-order allocation.. */ 5389 if (unlikely(flags & HASH_SMALL)) { 5390 /* Makes no sense without HASH_EARLY */ 5391 WARN_ON(!(flags & HASH_EARLY)); 5392 if (!(numentries >> *_hash_shift)) { 5393 numentries = 1UL << *_hash_shift; 5394 BUG_ON(!numentries); 5395 } 5396 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 5397 numentries = PAGE_SIZE / bucketsize; 5398 } 5399 numentries = roundup_pow_of_two(numentries); 5400 5401 /* limit allocation size to 1/16 total memory by default */ 5402 if (max == 0) { 5403 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 5404 do_div(max, bucketsize); 5405 } 5406 5407 if (numentries > max) 5408 numentries = max; 5409 5410 log2qty = ilog2(numentries); 5411 5412 do { 5413 size = bucketsize << log2qty; 5414 if (flags & HASH_EARLY) 5415 table = alloc_bootmem_nopanic(size); 5416 else if (hashdist) 5417 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 5418 else { 5419 /* 5420 * If bucketsize is not a power-of-two, we may free 5421 * some pages at the end of hash table which 5422 * alloc_pages_exact() automatically does 5423 */ 5424 if (get_order(size) < MAX_ORDER) { 5425 table = alloc_pages_exact(size, GFP_ATOMIC); 5426 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 5427 } 5428 } 5429 } while (!table && size > PAGE_SIZE && --log2qty); 5430 5431 if (!table) 5432 panic("Failed to allocate %s hash table\n", tablename); 5433 5434 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n", 5435 tablename, 5436 (1UL << log2qty), 5437 ilog2(size) - PAGE_SHIFT, 5438 size); 5439 5440 if (_hash_shift) 5441 *_hash_shift = log2qty; 5442 if (_hash_mask) 5443 *_hash_mask = (1 << log2qty) - 1; 5444 5445 return table; 5446 } 5447 5448 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 5449 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 5450 unsigned long pfn) 5451 { 5452 #ifdef CONFIG_SPARSEMEM 5453 return __pfn_to_section(pfn)->pageblock_flags; 5454 #else 5455 return zone->pageblock_flags; 5456 #endif /* CONFIG_SPARSEMEM */ 5457 } 5458 5459 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 5460 { 5461 #ifdef CONFIG_SPARSEMEM 5462 pfn &= (PAGES_PER_SECTION-1); 5463 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5464 #else 5465 pfn = pfn - zone->zone_start_pfn; 5466 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5467 #endif /* CONFIG_SPARSEMEM */ 5468 } 5469 5470 /** 5471 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages 5472 * @page: The page within the block of interest 5473 * @start_bitidx: The first bit of interest to retrieve 5474 * @end_bitidx: The last bit of interest 5475 * returns pageblock_bits flags 5476 */ 5477 unsigned long get_pageblock_flags_group(struct page *page, 5478 int start_bitidx, int end_bitidx) 5479 { 5480 struct zone *zone; 5481 unsigned long *bitmap; 5482 unsigned long pfn, bitidx; 5483 unsigned long flags = 0; 5484 unsigned long value = 1; 5485 5486 zone = page_zone(page); 5487 pfn = page_to_pfn(page); 5488 bitmap = get_pageblock_bitmap(zone, pfn); 5489 bitidx = pfn_to_bitidx(zone, pfn); 5490 5491 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5492 if (test_bit(bitidx + start_bitidx, bitmap)) 5493 flags |= value; 5494 5495 return flags; 5496 } 5497 5498 /** 5499 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages 5500 * @page: The page within the block of interest 5501 * @start_bitidx: The first bit of interest 5502 * @end_bitidx: The last bit of interest 5503 * @flags: The flags to set 5504 */ 5505 void set_pageblock_flags_group(struct page *page, unsigned long flags, 5506 int start_bitidx, int end_bitidx) 5507 { 5508 struct zone *zone; 5509 unsigned long *bitmap; 5510 unsigned long pfn, bitidx; 5511 unsigned long value = 1; 5512 5513 zone = page_zone(page); 5514 pfn = page_to_pfn(page); 5515 bitmap = get_pageblock_bitmap(zone, pfn); 5516 bitidx = pfn_to_bitidx(zone, pfn); 5517 VM_BUG_ON(pfn < zone->zone_start_pfn); 5518 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages); 5519 5520 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5521 if (flags & value) 5522 __set_bit(bitidx + start_bitidx, bitmap); 5523 else 5524 __clear_bit(bitidx + start_bitidx, bitmap); 5525 } 5526 5527 /* 5528 * This is designed as sub function...plz see page_isolation.c also. 5529 * set/clear page block's type to be ISOLATE. 5530 * page allocater never alloc memory from ISOLATE block. 5531 */ 5532 5533 static int 5534 __count_immobile_pages(struct zone *zone, struct page *page, int count) 5535 { 5536 unsigned long pfn, iter, found; 5537 /* 5538 * For avoiding noise data, lru_add_drain_all() should be called 5539 * If ZONE_MOVABLE, the zone never contains immobile pages 5540 */ 5541 if (zone_idx(zone) == ZONE_MOVABLE) 5542 return true; 5543 5544 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE) 5545 return true; 5546 5547 pfn = page_to_pfn(page); 5548 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 5549 unsigned long check = pfn + iter; 5550 5551 if (!pfn_valid_within(check)) 5552 continue; 5553 5554 page = pfn_to_page(check); 5555 if (!page_count(page)) { 5556 if (PageBuddy(page)) 5557 iter += (1 << page_order(page)) - 1; 5558 continue; 5559 } 5560 if (!PageLRU(page)) 5561 found++; 5562 /* 5563 * If there are RECLAIMABLE pages, we need to check it. 5564 * But now, memory offline itself doesn't call shrink_slab() 5565 * and it still to be fixed. 5566 */ 5567 /* 5568 * If the page is not RAM, page_count()should be 0. 5569 * we don't need more check. This is an _used_ not-movable page. 5570 * 5571 * The problematic thing here is PG_reserved pages. PG_reserved 5572 * is set to both of a memory hole page and a _used_ kernel 5573 * page at boot. 5574 */ 5575 if (found > count) 5576 return false; 5577 } 5578 return true; 5579 } 5580 5581 bool is_pageblock_removable_nolock(struct page *page) 5582 { 5583 struct zone *zone = page_zone(page); 5584 return __count_immobile_pages(zone, page, 0); 5585 } 5586 5587 int set_migratetype_isolate(struct page *page) 5588 { 5589 struct zone *zone; 5590 unsigned long flags, pfn; 5591 struct memory_isolate_notify arg; 5592 int notifier_ret; 5593 int ret = -EBUSY; 5594 5595 zone = page_zone(page); 5596 5597 spin_lock_irqsave(&zone->lock, flags); 5598 5599 pfn = page_to_pfn(page); 5600 arg.start_pfn = pfn; 5601 arg.nr_pages = pageblock_nr_pages; 5602 arg.pages_found = 0; 5603 5604 /* 5605 * It may be possible to isolate a pageblock even if the 5606 * migratetype is not MIGRATE_MOVABLE. The memory isolation 5607 * notifier chain is used by balloon drivers to return the 5608 * number of pages in a range that are held by the balloon 5609 * driver to shrink memory. If all the pages are accounted for 5610 * by balloons, are free, or on the LRU, isolation can continue. 5611 * Later, for example, when memory hotplug notifier runs, these 5612 * pages reported as "can be isolated" should be isolated(freed) 5613 * by the balloon driver through the memory notifier chain. 5614 */ 5615 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg); 5616 notifier_ret = notifier_to_errno(notifier_ret); 5617 if (notifier_ret) 5618 goto out; 5619 /* 5620 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself. 5621 * We just check MOVABLE pages. 5622 */ 5623 if (__count_immobile_pages(zone, page, arg.pages_found)) 5624 ret = 0; 5625 5626 /* 5627 * immobile means "not-on-lru" paes. If immobile is larger than 5628 * removable-by-driver pages reported by notifier, we'll fail. 5629 */ 5630 5631 out: 5632 if (!ret) { 5633 set_pageblock_migratetype(page, MIGRATE_ISOLATE); 5634 move_freepages_block(zone, page, MIGRATE_ISOLATE); 5635 } 5636 5637 spin_unlock_irqrestore(&zone->lock, flags); 5638 if (!ret) 5639 drain_all_pages(); 5640 return ret; 5641 } 5642 5643 void unset_migratetype_isolate(struct page *page) 5644 { 5645 struct zone *zone; 5646 unsigned long flags; 5647 zone = page_zone(page); 5648 spin_lock_irqsave(&zone->lock, flags); 5649 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE) 5650 goto out; 5651 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5652 move_freepages_block(zone, page, MIGRATE_MOVABLE); 5653 out: 5654 spin_unlock_irqrestore(&zone->lock, flags); 5655 } 5656 5657 #ifdef CONFIG_MEMORY_HOTREMOVE 5658 /* 5659 * All pages in the range must be isolated before calling this. 5660 */ 5661 void 5662 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 5663 { 5664 struct page *page; 5665 struct zone *zone; 5666 int order, i; 5667 unsigned long pfn; 5668 unsigned long flags; 5669 /* find the first valid pfn */ 5670 for (pfn = start_pfn; pfn < end_pfn; pfn++) 5671 if (pfn_valid(pfn)) 5672 break; 5673 if (pfn == end_pfn) 5674 return; 5675 zone = page_zone(pfn_to_page(pfn)); 5676 spin_lock_irqsave(&zone->lock, flags); 5677 pfn = start_pfn; 5678 while (pfn < end_pfn) { 5679 if (!pfn_valid(pfn)) { 5680 pfn++; 5681 continue; 5682 } 5683 page = pfn_to_page(pfn); 5684 BUG_ON(page_count(page)); 5685 BUG_ON(!PageBuddy(page)); 5686 order = page_order(page); 5687 #ifdef CONFIG_DEBUG_VM 5688 printk(KERN_INFO "remove from free list %lx %d %lx\n", 5689 pfn, 1 << order, end_pfn); 5690 #endif 5691 list_del(&page->lru); 5692 rmv_page_order(page); 5693 zone->free_area[order].nr_free--; 5694 __mod_zone_page_state(zone, NR_FREE_PAGES, 5695 - (1UL << order)); 5696 for (i = 0; i < (1 << order); i++) 5697 SetPageReserved((page+i)); 5698 pfn += (1 << order); 5699 } 5700 spin_unlock_irqrestore(&zone->lock, flags); 5701 } 5702 #endif 5703 5704 #ifdef CONFIG_MEMORY_FAILURE 5705 bool is_free_buddy_page(struct page *page) 5706 { 5707 struct zone *zone = page_zone(page); 5708 unsigned long pfn = page_to_pfn(page); 5709 unsigned long flags; 5710 int order; 5711 5712 spin_lock_irqsave(&zone->lock, flags); 5713 for (order = 0; order < MAX_ORDER; order++) { 5714 struct page *page_head = page - (pfn & ((1 << order) - 1)); 5715 5716 if (PageBuddy(page_head) && page_order(page_head) >= order) 5717 break; 5718 } 5719 spin_unlock_irqrestore(&zone->lock, flags); 5720 5721 return order < MAX_ORDER; 5722 } 5723 #endif 5724 5725 static struct trace_print_flags pageflag_names[] = { 5726 {1UL << PG_locked, "locked" }, 5727 {1UL << PG_error, "error" }, 5728 {1UL << PG_referenced, "referenced" }, 5729 {1UL << PG_uptodate, "uptodate" }, 5730 {1UL << PG_dirty, "dirty" }, 5731 {1UL << PG_lru, "lru" }, 5732 {1UL << PG_active, "active" }, 5733 {1UL << PG_slab, "slab" }, 5734 {1UL << PG_owner_priv_1, "owner_priv_1" }, 5735 {1UL << PG_arch_1, "arch_1" }, 5736 {1UL << PG_reserved, "reserved" }, 5737 {1UL << PG_private, "private" }, 5738 {1UL << PG_private_2, "private_2" }, 5739 {1UL << PG_writeback, "writeback" }, 5740 #ifdef CONFIG_PAGEFLAGS_EXTENDED 5741 {1UL << PG_head, "head" }, 5742 {1UL << PG_tail, "tail" }, 5743 #else 5744 {1UL << PG_compound, "compound" }, 5745 #endif 5746 {1UL << PG_swapcache, "swapcache" }, 5747 {1UL << PG_mappedtodisk, "mappedtodisk" }, 5748 {1UL << PG_reclaim, "reclaim" }, 5749 {1UL << PG_swapbacked, "swapbacked" }, 5750 {1UL << PG_unevictable, "unevictable" }, 5751 #ifdef CONFIG_MMU 5752 {1UL << PG_mlocked, "mlocked" }, 5753 #endif 5754 #ifdef CONFIG_ARCH_USES_PG_UNCACHED 5755 {1UL << PG_uncached, "uncached" }, 5756 #endif 5757 #ifdef CONFIG_MEMORY_FAILURE 5758 {1UL << PG_hwpoison, "hwpoison" }, 5759 #endif 5760 {-1UL, NULL }, 5761 }; 5762 5763 static void dump_page_flags(unsigned long flags) 5764 { 5765 const char *delim = ""; 5766 unsigned long mask; 5767 int i; 5768 5769 printk(KERN_ALERT "page flags: %#lx(", flags); 5770 5771 /* remove zone id */ 5772 flags &= (1UL << NR_PAGEFLAGS) - 1; 5773 5774 for (i = 0; pageflag_names[i].name && flags; i++) { 5775 5776 mask = pageflag_names[i].mask; 5777 if ((flags & mask) != mask) 5778 continue; 5779 5780 flags &= ~mask; 5781 printk("%s%s", delim, pageflag_names[i].name); 5782 delim = "|"; 5783 } 5784 5785 /* check for left over flags */ 5786 if (flags) 5787 printk("%s%#lx", delim, flags); 5788 5789 printk(")\n"); 5790 } 5791 5792 void dump_page(struct page *page) 5793 { 5794 printk(KERN_ALERT 5795 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n", 5796 page, atomic_read(&page->_count), page_mapcount(page), 5797 page->mapping, page->index); 5798 dump_page_flags(page->flags); 5799 mem_cgroup_print_bad_page(page); 5800 } 5801