xref: /openbmc/linux/mm/page_alloc.c (revision 81d67439)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/memory.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <linux/ftrace_event.h>
58 #include <linux/memcontrol.h>
59 #include <linux/prefetch.h>
60 
61 #include <asm/tlbflush.h>
62 #include <asm/div64.h>
63 #include "internal.h"
64 
65 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
66 DEFINE_PER_CPU(int, numa_node);
67 EXPORT_PER_CPU_SYMBOL(numa_node);
68 #endif
69 
70 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
71 /*
72  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
73  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
74  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
75  * defined in <linux/topology.h>.
76  */
77 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
78 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
79 #endif
80 
81 /*
82  * Array of node states.
83  */
84 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
85 	[N_POSSIBLE] = NODE_MASK_ALL,
86 	[N_ONLINE] = { { [0] = 1UL } },
87 #ifndef CONFIG_NUMA
88 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
89 #ifdef CONFIG_HIGHMEM
90 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
91 #endif
92 	[N_CPU] = { { [0] = 1UL } },
93 #endif	/* NUMA */
94 };
95 EXPORT_SYMBOL(node_states);
96 
97 unsigned long totalram_pages __read_mostly;
98 unsigned long totalreserve_pages __read_mostly;
99 int percpu_pagelist_fraction;
100 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
101 
102 #ifdef CONFIG_PM_SLEEP
103 /*
104  * The following functions are used by the suspend/hibernate code to temporarily
105  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
106  * while devices are suspended.  To avoid races with the suspend/hibernate code,
107  * they should always be called with pm_mutex held (gfp_allowed_mask also should
108  * only be modified with pm_mutex held, unless the suspend/hibernate code is
109  * guaranteed not to run in parallel with that modification).
110  */
111 
112 static gfp_t saved_gfp_mask;
113 
114 void pm_restore_gfp_mask(void)
115 {
116 	WARN_ON(!mutex_is_locked(&pm_mutex));
117 	if (saved_gfp_mask) {
118 		gfp_allowed_mask = saved_gfp_mask;
119 		saved_gfp_mask = 0;
120 	}
121 }
122 
123 void pm_restrict_gfp_mask(void)
124 {
125 	WARN_ON(!mutex_is_locked(&pm_mutex));
126 	WARN_ON(saved_gfp_mask);
127 	saved_gfp_mask = gfp_allowed_mask;
128 	gfp_allowed_mask &= ~GFP_IOFS;
129 }
130 #endif /* CONFIG_PM_SLEEP */
131 
132 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
133 int pageblock_order __read_mostly;
134 #endif
135 
136 static void __free_pages_ok(struct page *page, unsigned int order);
137 
138 /*
139  * results with 256, 32 in the lowmem_reserve sysctl:
140  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
141  *	1G machine -> (16M dma, 784M normal, 224M high)
142  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
143  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
144  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
145  *
146  * TBD: should special case ZONE_DMA32 machines here - in those we normally
147  * don't need any ZONE_NORMAL reservation
148  */
149 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
150 #ifdef CONFIG_ZONE_DMA
151 	 256,
152 #endif
153 #ifdef CONFIG_ZONE_DMA32
154 	 256,
155 #endif
156 #ifdef CONFIG_HIGHMEM
157 	 32,
158 #endif
159 	 32,
160 };
161 
162 EXPORT_SYMBOL(totalram_pages);
163 
164 static char * const zone_names[MAX_NR_ZONES] = {
165 #ifdef CONFIG_ZONE_DMA
166 	 "DMA",
167 #endif
168 #ifdef CONFIG_ZONE_DMA32
169 	 "DMA32",
170 #endif
171 	 "Normal",
172 #ifdef CONFIG_HIGHMEM
173 	 "HighMem",
174 #endif
175 	 "Movable",
176 };
177 
178 int min_free_kbytes = 1024;
179 
180 static unsigned long __meminitdata nr_kernel_pages;
181 static unsigned long __meminitdata nr_all_pages;
182 static unsigned long __meminitdata dma_reserve;
183 
184 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
185   /*
186    * MAX_ACTIVE_REGIONS determines the maximum number of distinct
187    * ranges of memory (RAM) that may be registered with add_active_range().
188    * Ranges passed to add_active_range() will be merged if possible
189    * so the number of times add_active_range() can be called is
190    * related to the number of nodes and the number of holes
191    */
192   #ifdef CONFIG_MAX_ACTIVE_REGIONS
193     /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
194     #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
195   #else
196     #if MAX_NUMNODES >= 32
197       /* If there can be many nodes, allow up to 50 holes per node */
198       #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
199     #else
200       /* By default, allow up to 256 distinct regions */
201       #define MAX_ACTIVE_REGIONS 256
202     #endif
203   #endif
204 
205   static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
206   static int __meminitdata nr_nodemap_entries;
207   static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
208   static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
209   static unsigned long __initdata required_kernelcore;
210   static unsigned long __initdata required_movablecore;
211   static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
212 
213   /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
214   int movable_zone;
215   EXPORT_SYMBOL(movable_zone);
216 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
217 
218 #if MAX_NUMNODES > 1
219 int nr_node_ids __read_mostly = MAX_NUMNODES;
220 int nr_online_nodes __read_mostly = 1;
221 EXPORT_SYMBOL(nr_node_ids);
222 EXPORT_SYMBOL(nr_online_nodes);
223 #endif
224 
225 int page_group_by_mobility_disabled __read_mostly;
226 
227 static void set_pageblock_migratetype(struct page *page, int migratetype)
228 {
229 
230 	if (unlikely(page_group_by_mobility_disabled))
231 		migratetype = MIGRATE_UNMOVABLE;
232 
233 	set_pageblock_flags_group(page, (unsigned long)migratetype,
234 					PB_migrate, PB_migrate_end);
235 }
236 
237 bool oom_killer_disabled __read_mostly;
238 
239 #ifdef CONFIG_DEBUG_VM
240 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
241 {
242 	int ret = 0;
243 	unsigned seq;
244 	unsigned long pfn = page_to_pfn(page);
245 
246 	do {
247 		seq = zone_span_seqbegin(zone);
248 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
249 			ret = 1;
250 		else if (pfn < zone->zone_start_pfn)
251 			ret = 1;
252 	} while (zone_span_seqretry(zone, seq));
253 
254 	return ret;
255 }
256 
257 static int page_is_consistent(struct zone *zone, struct page *page)
258 {
259 	if (!pfn_valid_within(page_to_pfn(page)))
260 		return 0;
261 	if (zone != page_zone(page))
262 		return 0;
263 
264 	return 1;
265 }
266 /*
267  * Temporary debugging check for pages not lying within a given zone.
268  */
269 static int bad_range(struct zone *zone, struct page *page)
270 {
271 	if (page_outside_zone_boundaries(zone, page))
272 		return 1;
273 	if (!page_is_consistent(zone, page))
274 		return 1;
275 
276 	return 0;
277 }
278 #else
279 static inline int bad_range(struct zone *zone, struct page *page)
280 {
281 	return 0;
282 }
283 #endif
284 
285 static void bad_page(struct page *page)
286 {
287 	static unsigned long resume;
288 	static unsigned long nr_shown;
289 	static unsigned long nr_unshown;
290 
291 	/* Don't complain about poisoned pages */
292 	if (PageHWPoison(page)) {
293 		reset_page_mapcount(page); /* remove PageBuddy */
294 		return;
295 	}
296 
297 	/*
298 	 * Allow a burst of 60 reports, then keep quiet for that minute;
299 	 * or allow a steady drip of one report per second.
300 	 */
301 	if (nr_shown == 60) {
302 		if (time_before(jiffies, resume)) {
303 			nr_unshown++;
304 			goto out;
305 		}
306 		if (nr_unshown) {
307 			printk(KERN_ALERT
308 			      "BUG: Bad page state: %lu messages suppressed\n",
309 				nr_unshown);
310 			nr_unshown = 0;
311 		}
312 		nr_shown = 0;
313 	}
314 	if (nr_shown++ == 0)
315 		resume = jiffies + 60 * HZ;
316 
317 	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
318 		current->comm, page_to_pfn(page));
319 	dump_page(page);
320 
321 	dump_stack();
322 out:
323 	/* Leave bad fields for debug, except PageBuddy could make trouble */
324 	reset_page_mapcount(page); /* remove PageBuddy */
325 	add_taint(TAINT_BAD_PAGE);
326 }
327 
328 /*
329  * Higher-order pages are called "compound pages".  They are structured thusly:
330  *
331  * The first PAGE_SIZE page is called the "head page".
332  *
333  * The remaining PAGE_SIZE pages are called "tail pages".
334  *
335  * All pages have PG_compound set.  All pages have their ->private pointing at
336  * the head page (even the head page has this).
337  *
338  * The first tail page's ->lru.next holds the address of the compound page's
339  * put_page() function.  Its ->lru.prev holds the order of allocation.
340  * This usage means that zero-order pages may not be compound.
341  */
342 
343 static void free_compound_page(struct page *page)
344 {
345 	__free_pages_ok(page, compound_order(page));
346 }
347 
348 void prep_compound_page(struct page *page, unsigned long order)
349 {
350 	int i;
351 	int nr_pages = 1 << order;
352 
353 	set_compound_page_dtor(page, free_compound_page);
354 	set_compound_order(page, order);
355 	__SetPageHead(page);
356 	for (i = 1; i < nr_pages; i++) {
357 		struct page *p = page + i;
358 
359 		__SetPageTail(p);
360 		p->first_page = page;
361 	}
362 }
363 
364 /* update __split_huge_page_refcount if you change this function */
365 static int destroy_compound_page(struct page *page, unsigned long order)
366 {
367 	int i;
368 	int nr_pages = 1 << order;
369 	int bad = 0;
370 
371 	if (unlikely(compound_order(page) != order) ||
372 	    unlikely(!PageHead(page))) {
373 		bad_page(page);
374 		bad++;
375 	}
376 
377 	__ClearPageHead(page);
378 
379 	for (i = 1; i < nr_pages; i++) {
380 		struct page *p = page + i;
381 
382 		if (unlikely(!PageTail(p) || (p->first_page != page))) {
383 			bad_page(page);
384 			bad++;
385 		}
386 		__ClearPageTail(p);
387 	}
388 
389 	return bad;
390 }
391 
392 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
393 {
394 	int i;
395 
396 	/*
397 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
398 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
399 	 */
400 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
401 	for (i = 0; i < (1 << order); i++)
402 		clear_highpage(page + i);
403 }
404 
405 static inline void set_page_order(struct page *page, int order)
406 {
407 	set_page_private(page, order);
408 	__SetPageBuddy(page);
409 }
410 
411 static inline void rmv_page_order(struct page *page)
412 {
413 	__ClearPageBuddy(page);
414 	set_page_private(page, 0);
415 }
416 
417 /*
418  * Locate the struct page for both the matching buddy in our
419  * pair (buddy1) and the combined O(n+1) page they form (page).
420  *
421  * 1) Any buddy B1 will have an order O twin B2 which satisfies
422  * the following equation:
423  *     B2 = B1 ^ (1 << O)
424  * For example, if the starting buddy (buddy2) is #8 its order
425  * 1 buddy is #10:
426  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
427  *
428  * 2) Any buddy B will have an order O+1 parent P which
429  * satisfies the following equation:
430  *     P = B & ~(1 << O)
431  *
432  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
433  */
434 static inline unsigned long
435 __find_buddy_index(unsigned long page_idx, unsigned int order)
436 {
437 	return page_idx ^ (1 << order);
438 }
439 
440 /*
441  * This function checks whether a page is free && is the buddy
442  * we can do coalesce a page and its buddy if
443  * (a) the buddy is not in a hole &&
444  * (b) the buddy is in the buddy system &&
445  * (c) a page and its buddy have the same order &&
446  * (d) a page and its buddy are in the same zone.
447  *
448  * For recording whether a page is in the buddy system, we set ->_mapcount -2.
449  * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
450  *
451  * For recording page's order, we use page_private(page).
452  */
453 static inline int page_is_buddy(struct page *page, struct page *buddy,
454 								int order)
455 {
456 	if (!pfn_valid_within(page_to_pfn(buddy)))
457 		return 0;
458 
459 	if (page_zone_id(page) != page_zone_id(buddy))
460 		return 0;
461 
462 	if (PageBuddy(buddy) && page_order(buddy) == order) {
463 		VM_BUG_ON(page_count(buddy) != 0);
464 		return 1;
465 	}
466 	return 0;
467 }
468 
469 /*
470  * Freeing function for a buddy system allocator.
471  *
472  * The concept of a buddy system is to maintain direct-mapped table
473  * (containing bit values) for memory blocks of various "orders".
474  * The bottom level table contains the map for the smallest allocatable
475  * units of memory (here, pages), and each level above it describes
476  * pairs of units from the levels below, hence, "buddies".
477  * At a high level, all that happens here is marking the table entry
478  * at the bottom level available, and propagating the changes upward
479  * as necessary, plus some accounting needed to play nicely with other
480  * parts of the VM system.
481  * At each level, we keep a list of pages, which are heads of continuous
482  * free pages of length of (1 << order) and marked with _mapcount -2. Page's
483  * order is recorded in page_private(page) field.
484  * So when we are allocating or freeing one, we can derive the state of the
485  * other.  That is, if we allocate a small block, and both were
486  * free, the remainder of the region must be split into blocks.
487  * If a block is freed, and its buddy is also free, then this
488  * triggers coalescing into a block of larger size.
489  *
490  * -- wli
491  */
492 
493 static inline void __free_one_page(struct page *page,
494 		struct zone *zone, unsigned int order,
495 		int migratetype)
496 {
497 	unsigned long page_idx;
498 	unsigned long combined_idx;
499 	unsigned long uninitialized_var(buddy_idx);
500 	struct page *buddy;
501 
502 	if (unlikely(PageCompound(page)))
503 		if (unlikely(destroy_compound_page(page, order)))
504 			return;
505 
506 	VM_BUG_ON(migratetype == -1);
507 
508 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
509 
510 	VM_BUG_ON(page_idx & ((1 << order) - 1));
511 	VM_BUG_ON(bad_range(zone, page));
512 
513 	while (order < MAX_ORDER-1) {
514 		buddy_idx = __find_buddy_index(page_idx, order);
515 		buddy = page + (buddy_idx - page_idx);
516 		if (!page_is_buddy(page, buddy, order))
517 			break;
518 
519 		/* Our buddy is free, merge with it and move up one order. */
520 		list_del(&buddy->lru);
521 		zone->free_area[order].nr_free--;
522 		rmv_page_order(buddy);
523 		combined_idx = buddy_idx & page_idx;
524 		page = page + (combined_idx - page_idx);
525 		page_idx = combined_idx;
526 		order++;
527 	}
528 	set_page_order(page, order);
529 
530 	/*
531 	 * If this is not the largest possible page, check if the buddy
532 	 * of the next-highest order is free. If it is, it's possible
533 	 * that pages are being freed that will coalesce soon. In case,
534 	 * that is happening, add the free page to the tail of the list
535 	 * so it's less likely to be used soon and more likely to be merged
536 	 * as a higher order page
537 	 */
538 	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
539 		struct page *higher_page, *higher_buddy;
540 		combined_idx = buddy_idx & page_idx;
541 		higher_page = page + (combined_idx - page_idx);
542 		buddy_idx = __find_buddy_index(combined_idx, order + 1);
543 		higher_buddy = page + (buddy_idx - combined_idx);
544 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
545 			list_add_tail(&page->lru,
546 				&zone->free_area[order].free_list[migratetype]);
547 			goto out;
548 		}
549 	}
550 
551 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
552 out:
553 	zone->free_area[order].nr_free++;
554 }
555 
556 /*
557  * free_page_mlock() -- clean up attempts to free and mlocked() page.
558  * Page should not be on lru, so no need to fix that up.
559  * free_pages_check() will verify...
560  */
561 static inline void free_page_mlock(struct page *page)
562 {
563 	__dec_zone_page_state(page, NR_MLOCK);
564 	__count_vm_event(UNEVICTABLE_MLOCKFREED);
565 }
566 
567 static inline int free_pages_check(struct page *page)
568 {
569 	if (unlikely(page_mapcount(page) |
570 		(page->mapping != NULL)  |
571 		(atomic_read(&page->_count) != 0) |
572 		(page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
573 		(mem_cgroup_bad_page_check(page)))) {
574 		bad_page(page);
575 		return 1;
576 	}
577 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
578 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
579 	return 0;
580 }
581 
582 /*
583  * Frees a number of pages from the PCP lists
584  * Assumes all pages on list are in same zone, and of same order.
585  * count is the number of pages to free.
586  *
587  * If the zone was previously in an "all pages pinned" state then look to
588  * see if this freeing clears that state.
589  *
590  * And clear the zone's pages_scanned counter, to hold off the "all pages are
591  * pinned" detection logic.
592  */
593 static void free_pcppages_bulk(struct zone *zone, int count,
594 					struct per_cpu_pages *pcp)
595 {
596 	int migratetype = 0;
597 	int batch_free = 0;
598 	int to_free = count;
599 
600 	spin_lock(&zone->lock);
601 	zone->all_unreclaimable = 0;
602 	zone->pages_scanned = 0;
603 
604 	while (to_free) {
605 		struct page *page;
606 		struct list_head *list;
607 
608 		/*
609 		 * Remove pages from lists in a round-robin fashion. A
610 		 * batch_free count is maintained that is incremented when an
611 		 * empty list is encountered.  This is so more pages are freed
612 		 * off fuller lists instead of spinning excessively around empty
613 		 * lists
614 		 */
615 		do {
616 			batch_free++;
617 			if (++migratetype == MIGRATE_PCPTYPES)
618 				migratetype = 0;
619 			list = &pcp->lists[migratetype];
620 		} while (list_empty(list));
621 
622 		/* This is the only non-empty list. Free them all. */
623 		if (batch_free == MIGRATE_PCPTYPES)
624 			batch_free = to_free;
625 
626 		do {
627 			page = list_entry(list->prev, struct page, lru);
628 			/* must delete as __free_one_page list manipulates */
629 			list_del(&page->lru);
630 			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
631 			__free_one_page(page, zone, 0, page_private(page));
632 			trace_mm_page_pcpu_drain(page, 0, page_private(page));
633 		} while (--to_free && --batch_free && !list_empty(list));
634 	}
635 	__mod_zone_page_state(zone, NR_FREE_PAGES, count);
636 	spin_unlock(&zone->lock);
637 }
638 
639 static void free_one_page(struct zone *zone, struct page *page, int order,
640 				int migratetype)
641 {
642 	spin_lock(&zone->lock);
643 	zone->all_unreclaimable = 0;
644 	zone->pages_scanned = 0;
645 
646 	__free_one_page(page, zone, order, migratetype);
647 	__mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
648 	spin_unlock(&zone->lock);
649 }
650 
651 static bool free_pages_prepare(struct page *page, unsigned int order)
652 {
653 	int i;
654 	int bad = 0;
655 
656 	trace_mm_page_free_direct(page, order);
657 	kmemcheck_free_shadow(page, order);
658 
659 	if (PageAnon(page))
660 		page->mapping = NULL;
661 	for (i = 0; i < (1 << order); i++)
662 		bad += free_pages_check(page + i);
663 	if (bad)
664 		return false;
665 
666 	if (!PageHighMem(page)) {
667 		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
668 		debug_check_no_obj_freed(page_address(page),
669 					   PAGE_SIZE << order);
670 	}
671 	arch_free_page(page, order);
672 	kernel_map_pages(page, 1 << order, 0);
673 
674 	return true;
675 }
676 
677 static void __free_pages_ok(struct page *page, unsigned int order)
678 {
679 	unsigned long flags;
680 	int wasMlocked = __TestClearPageMlocked(page);
681 
682 	if (!free_pages_prepare(page, order))
683 		return;
684 
685 	local_irq_save(flags);
686 	if (unlikely(wasMlocked))
687 		free_page_mlock(page);
688 	__count_vm_events(PGFREE, 1 << order);
689 	free_one_page(page_zone(page), page, order,
690 					get_pageblock_migratetype(page));
691 	local_irq_restore(flags);
692 }
693 
694 /*
695  * permit the bootmem allocator to evade page validation on high-order frees
696  */
697 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
698 {
699 	if (order == 0) {
700 		__ClearPageReserved(page);
701 		set_page_count(page, 0);
702 		set_page_refcounted(page);
703 		__free_page(page);
704 	} else {
705 		int loop;
706 
707 		prefetchw(page);
708 		for (loop = 0; loop < BITS_PER_LONG; loop++) {
709 			struct page *p = &page[loop];
710 
711 			if (loop + 1 < BITS_PER_LONG)
712 				prefetchw(p + 1);
713 			__ClearPageReserved(p);
714 			set_page_count(p, 0);
715 		}
716 
717 		set_page_refcounted(page);
718 		__free_pages(page, order);
719 	}
720 }
721 
722 
723 /*
724  * The order of subdivision here is critical for the IO subsystem.
725  * Please do not alter this order without good reasons and regression
726  * testing. Specifically, as large blocks of memory are subdivided,
727  * the order in which smaller blocks are delivered depends on the order
728  * they're subdivided in this function. This is the primary factor
729  * influencing the order in which pages are delivered to the IO
730  * subsystem according to empirical testing, and this is also justified
731  * by considering the behavior of a buddy system containing a single
732  * large block of memory acted on by a series of small allocations.
733  * This behavior is a critical factor in sglist merging's success.
734  *
735  * -- wli
736  */
737 static inline void expand(struct zone *zone, struct page *page,
738 	int low, int high, struct free_area *area,
739 	int migratetype)
740 {
741 	unsigned long size = 1 << high;
742 
743 	while (high > low) {
744 		area--;
745 		high--;
746 		size >>= 1;
747 		VM_BUG_ON(bad_range(zone, &page[size]));
748 		list_add(&page[size].lru, &area->free_list[migratetype]);
749 		area->nr_free++;
750 		set_page_order(&page[size], high);
751 	}
752 }
753 
754 /*
755  * This page is about to be returned from the page allocator
756  */
757 static inline int check_new_page(struct page *page)
758 {
759 	if (unlikely(page_mapcount(page) |
760 		(page->mapping != NULL)  |
761 		(atomic_read(&page->_count) != 0)  |
762 		(page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
763 		(mem_cgroup_bad_page_check(page)))) {
764 		bad_page(page);
765 		return 1;
766 	}
767 	return 0;
768 }
769 
770 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
771 {
772 	int i;
773 
774 	for (i = 0; i < (1 << order); i++) {
775 		struct page *p = page + i;
776 		if (unlikely(check_new_page(p)))
777 			return 1;
778 	}
779 
780 	set_page_private(page, 0);
781 	set_page_refcounted(page);
782 
783 	arch_alloc_page(page, order);
784 	kernel_map_pages(page, 1 << order, 1);
785 
786 	if (gfp_flags & __GFP_ZERO)
787 		prep_zero_page(page, order, gfp_flags);
788 
789 	if (order && (gfp_flags & __GFP_COMP))
790 		prep_compound_page(page, order);
791 
792 	return 0;
793 }
794 
795 /*
796  * Go through the free lists for the given migratetype and remove
797  * the smallest available page from the freelists
798  */
799 static inline
800 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
801 						int migratetype)
802 {
803 	unsigned int current_order;
804 	struct free_area * area;
805 	struct page *page;
806 
807 	/* Find a page of the appropriate size in the preferred list */
808 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
809 		area = &(zone->free_area[current_order]);
810 		if (list_empty(&area->free_list[migratetype]))
811 			continue;
812 
813 		page = list_entry(area->free_list[migratetype].next,
814 							struct page, lru);
815 		list_del(&page->lru);
816 		rmv_page_order(page);
817 		area->nr_free--;
818 		expand(zone, page, order, current_order, area, migratetype);
819 		return page;
820 	}
821 
822 	return NULL;
823 }
824 
825 
826 /*
827  * This array describes the order lists are fallen back to when
828  * the free lists for the desirable migrate type are depleted
829  */
830 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
831 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_RESERVE },
832 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_RESERVE },
833 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
834 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE,     MIGRATE_RESERVE,   MIGRATE_RESERVE }, /* Never used */
835 };
836 
837 /*
838  * Move the free pages in a range to the free lists of the requested type.
839  * Note that start_page and end_pages are not aligned on a pageblock
840  * boundary. If alignment is required, use move_freepages_block()
841  */
842 static int move_freepages(struct zone *zone,
843 			  struct page *start_page, struct page *end_page,
844 			  int migratetype)
845 {
846 	struct page *page;
847 	unsigned long order;
848 	int pages_moved = 0;
849 
850 #ifndef CONFIG_HOLES_IN_ZONE
851 	/*
852 	 * page_zone is not safe to call in this context when
853 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
854 	 * anyway as we check zone boundaries in move_freepages_block().
855 	 * Remove at a later date when no bug reports exist related to
856 	 * grouping pages by mobility
857 	 */
858 	BUG_ON(page_zone(start_page) != page_zone(end_page));
859 #endif
860 
861 	for (page = start_page; page <= end_page;) {
862 		/* Make sure we are not inadvertently changing nodes */
863 		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
864 
865 		if (!pfn_valid_within(page_to_pfn(page))) {
866 			page++;
867 			continue;
868 		}
869 
870 		if (!PageBuddy(page)) {
871 			page++;
872 			continue;
873 		}
874 
875 		order = page_order(page);
876 		list_move(&page->lru,
877 			  &zone->free_area[order].free_list[migratetype]);
878 		page += 1 << order;
879 		pages_moved += 1 << order;
880 	}
881 
882 	return pages_moved;
883 }
884 
885 static int move_freepages_block(struct zone *zone, struct page *page,
886 				int migratetype)
887 {
888 	unsigned long start_pfn, end_pfn;
889 	struct page *start_page, *end_page;
890 
891 	start_pfn = page_to_pfn(page);
892 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
893 	start_page = pfn_to_page(start_pfn);
894 	end_page = start_page + pageblock_nr_pages - 1;
895 	end_pfn = start_pfn + pageblock_nr_pages - 1;
896 
897 	/* Do not cross zone boundaries */
898 	if (start_pfn < zone->zone_start_pfn)
899 		start_page = page;
900 	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
901 		return 0;
902 
903 	return move_freepages(zone, start_page, end_page, migratetype);
904 }
905 
906 static void change_pageblock_range(struct page *pageblock_page,
907 					int start_order, int migratetype)
908 {
909 	int nr_pageblocks = 1 << (start_order - pageblock_order);
910 
911 	while (nr_pageblocks--) {
912 		set_pageblock_migratetype(pageblock_page, migratetype);
913 		pageblock_page += pageblock_nr_pages;
914 	}
915 }
916 
917 /* Remove an element from the buddy allocator from the fallback list */
918 static inline struct page *
919 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
920 {
921 	struct free_area * area;
922 	int current_order;
923 	struct page *page;
924 	int migratetype, i;
925 
926 	/* Find the largest possible block of pages in the other list */
927 	for (current_order = MAX_ORDER-1; current_order >= order;
928 						--current_order) {
929 		for (i = 0; i < MIGRATE_TYPES - 1; i++) {
930 			migratetype = fallbacks[start_migratetype][i];
931 
932 			/* MIGRATE_RESERVE handled later if necessary */
933 			if (migratetype == MIGRATE_RESERVE)
934 				continue;
935 
936 			area = &(zone->free_area[current_order]);
937 			if (list_empty(&area->free_list[migratetype]))
938 				continue;
939 
940 			page = list_entry(area->free_list[migratetype].next,
941 					struct page, lru);
942 			area->nr_free--;
943 
944 			/*
945 			 * If breaking a large block of pages, move all free
946 			 * pages to the preferred allocation list. If falling
947 			 * back for a reclaimable kernel allocation, be more
948 			 * aggressive about taking ownership of free pages
949 			 */
950 			if (unlikely(current_order >= (pageblock_order >> 1)) ||
951 					start_migratetype == MIGRATE_RECLAIMABLE ||
952 					page_group_by_mobility_disabled) {
953 				unsigned long pages;
954 				pages = move_freepages_block(zone, page,
955 								start_migratetype);
956 
957 				/* Claim the whole block if over half of it is free */
958 				if (pages >= (1 << (pageblock_order-1)) ||
959 						page_group_by_mobility_disabled)
960 					set_pageblock_migratetype(page,
961 								start_migratetype);
962 
963 				migratetype = start_migratetype;
964 			}
965 
966 			/* Remove the page from the freelists */
967 			list_del(&page->lru);
968 			rmv_page_order(page);
969 
970 			/* Take ownership for orders >= pageblock_order */
971 			if (current_order >= pageblock_order)
972 				change_pageblock_range(page, current_order,
973 							start_migratetype);
974 
975 			expand(zone, page, order, current_order, area, migratetype);
976 
977 			trace_mm_page_alloc_extfrag(page, order, current_order,
978 				start_migratetype, migratetype);
979 
980 			return page;
981 		}
982 	}
983 
984 	return NULL;
985 }
986 
987 /*
988  * Do the hard work of removing an element from the buddy allocator.
989  * Call me with the zone->lock already held.
990  */
991 static struct page *__rmqueue(struct zone *zone, unsigned int order,
992 						int migratetype)
993 {
994 	struct page *page;
995 
996 retry_reserve:
997 	page = __rmqueue_smallest(zone, order, migratetype);
998 
999 	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1000 		page = __rmqueue_fallback(zone, order, migratetype);
1001 
1002 		/*
1003 		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1004 		 * is used because __rmqueue_smallest is an inline function
1005 		 * and we want just one call site
1006 		 */
1007 		if (!page) {
1008 			migratetype = MIGRATE_RESERVE;
1009 			goto retry_reserve;
1010 		}
1011 	}
1012 
1013 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
1014 	return page;
1015 }
1016 
1017 /*
1018  * Obtain a specified number of elements from the buddy allocator, all under
1019  * a single hold of the lock, for efficiency.  Add them to the supplied list.
1020  * Returns the number of new pages which were placed at *list.
1021  */
1022 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1023 			unsigned long count, struct list_head *list,
1024 			int migratetype, int cold)
1025 {
1026 	int i;
1027 
1028 	spin_lock(&zone->lock);
1029 	for (i = 0; i < count; ++i) {
1030 		struct page *page = __rmqueue(zone, order, migratetype);
1031 		if (unlikely(page == NULL))
1032 			break;
1033 
1034 		/*
1035 		 * Split buddy pages returned by expand() are received here
1036 		 * in physical page order. The page is added to the callers and
1037 		 * list and the list head then moves forward. From the callers
1038 		 * perspective, the linked list is ordered by page number in
1039 		 * some conditions. This is useful for IO devices that can
1040 		 * merge IO requests if the physical pages are ordered
1041 		 * properly.
1042 		 */
1043 		if (likely(cold == 0))
1044 			list_add(&page->lru, list);
1045 		else
1046 			list_add_tail(&page->lru, list);
1047 		set_page_private(page, migratetype);
1048 		list = &page->lru;
1049 	}
1050 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1051 	spin_unlock(&zone->lock);
1052 	return i;
1053 }
1054 
1055 #ifdef CONFIG_NUMA
1056 /*
1057  * Called from the vmstat counter updater to drain pagesets of this
1058  * currently executing processor on remote nodes after they have
1059  * expired.
1060  *
1061  * Note that this function must be called with the thread pinned to
1062  * a single processor.
1063  */
1064 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1065 {
1066 	unsigned long flags;
1067 	int to_drain;
1068 
1069 	local_irq_save(flags);
1070 	if (pcp->count >= pcp->batch)
1071 		to_drain = pcp->batch;
1072 	else
1073 		to_drain = pcp->count;
1074 	free_pcppages_bulk(zone, to_drain, pcp);
1075 	pcp->count -= to_drain;
1076 	local_irq_restore(flags);
1077 }
1078 #endif
1079 
1080 /*
1081  * Drain pages of the indicated processor.
1082  *
1083  * The processor must either be the current processor and the
1084  * thread pinned to the current processor or a processor that
1085  * is not online.
1086  */
1087 static void drain_pages(unsigned int cpu)
1088 {
1089 	unsigned long flags;
1090 	struct zone *zone;
1091 
1092 	for_each_populated_zone(zone) {
1093 		struct per_cpu_pageset *pset;
1094 		struct per_cpu_pages *pcp;
1095 
1096 		local_irq_save(flags);
1097 		pset = per_cpu_ptr(zone->pageset, cpu);
1098 
1099 		pcp = &pset->pcp;
1100 		if (pcp->count) {
1101 			free_pcppages_bulk(zone, pcp->count, pcp);
1102 			pcp->count = 0;
1103 		}
1104 		local_irq_restore(flags);
1105 	}
1106 }
1107 
1108 /*
1109  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1110  */
1111 void drain_local_pages(void *arg)
1112 {
1113 	drain_pages(smp_processor_id());
1114 }
1115 
1116 /*
1117  * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1118  */
1119 void drain_all_pages(void)
1120 {
1121 	on_each_cpu(drain_local_pages, NULL, 1);
1122 }
1123 
1124 #ifdef CONFIG_HIBERNATION
1125 
1126 void mark_free_pages(struct zone *zone)
1127 {
1128 	unsigned long pfn, max_zone_pfn;
1129 	unsigned long flags;
1130 	int order, t;
1131 	struct list_head *curr;
1132 
1133 	if (!zone->spanned_pages)
1134 		return;
1135 
1136 	spin_lock_irqsave(&zone->lock, flags);
1137 
1138 	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1139 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1140 		if (pfn_valid(pfn)) {
1141 			struct page *page = pfn_to_page(pfn);
1142 
1143 			if (!swsusp_page_is_forbidden(page))
1144 				swsusp_unset_page_free(page);
1145 		}
1146 
1147 	for_each_migratetype_order(order, t) {
1148 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1149 			unsigned long i;
1150 
1151 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1152 			for (i = 0; i < (1UL << order); i++)
1153 				swsusp_set_page_free(pfn_to_page(pfn + i));
1154 		}
1155 	}
1156 	spin_unlock_irqrestore(&zone->lock, flags);
1157 }
1158 #endif /* CONFIG_PM */
1159 
1160 /*
1161  * Free a 0-order page
1162  * cold == 1 ? free a cold page : free a hot page
1163  */
1164 void free_hot_cold_page(struct page *page, int cold)
1165 {
1166 	struct zone *zone = page_zone(page);
1167 	struct per_cpu_pages *pcp;
1168 	unsigned long flags;
1169 	int migratetype;
1170 	int wasMlocked = __TestClearPageMlocked(page);
1171 
1172 	if (!free_pages_prepare(page, 0))
1173 		return;
1174 
1175 	migratetype = get_pageblock_migratetype(page);
1176 	set_page_private(page, migratetype);
1177 	local_irq_save(flags);
1178 	if (unlikely(wasMlocked))
1179 		free_page_mlock(page);
1180 	__count_vm_event(PGFREE);
1181 
1182 	/*
1183 	 * We only track unmovable, reclaimable and movable on pcp lists.
1184 	 * Free ISOLATE pages back to the allocator because they are being
1185 	 * offlined but treat RESERVE as movable pages so we can get those
1186 	 * areas back if necessary. Otherwise, we may have to free
1187 	 * excessively into the page allocator
1188 	 */
1189 	if (migratetype >= MIGRATE_PCPTYPES) {
1190 		if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1191 			free_one_page(zone, page, 0, migratetype);
1192 			goto out;
1193 		}
1194 		migratetype = MIGRATE_MOVABLE;
1195 	}
1196 
1197 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
1198 	if (cold)
1199 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1200 	else
1201 		list_add(&page->lru, &pcp->lists[migratetype]);
1202 	pcp->count++;
1203 	if (pcp->count >= pcp->high) {
1204 		free_pcppages_bulk(zone, pcp->batch, pcp);
1205 		pcp->count -= pcp->batch;
1206 	}
1207 
1208 out:
1209 	local_irq_restore(flags);
1210 }
1211 
1212 /*
1213  * split_page takes a non-compound higher-order page, and splits it into
1214  * n (1<<order) sub-pages: page[0..n]
1215  * Each sub-page must be freed individually.
1216  *
1217  * Note: this is probably too low level an operation for use in drivers.
1218  * Please consult with lkml before using this in your driver.
1219  */
1220 void split_page(struct page *page, unsigned int order)
1221 {
1222 	int i;
1223 
1224 	VM_BUG_ON(PageCompound(page));
1225 	VM_BUG_ON(!page_count(page));
1226 
1227 #ifdef CONFIG_KMEMCHECK
1228 	/*
1229 	 * Split shadow pages too, because free(page[0]) would
1230 	 * otherwise free the whole shadow.
1231 	 */
1232 	if (kmemcheck_page_is_tracked(page))
1233 		split_page(virt_to_page(page[0].shadow), order);
1234 #endif
1235 
1236 	for (i = 1; i < (1 << order); i++)
1237 		set_page_refcounted(page + i);
1238 }
1239 
1240 /*
1241  * Similar to split_page except the page is already free. As this is only
1242  * being used for migration, the migratetype of the block also changes.
1243  * As this is called with interrupts disabled, the caller is responsible
1244  * for calling arch_alloc_page() and kernel_map_page() after interrupts
1245  * are enabled.
1246  *
1247  * Note: this is probably too low level an operation for use in drivers.
1248  * Please consult with lkml before using this in your driver.
1249  */
1250 int split_free_page(struct page *page)
1251 {
1252 	unsigned int order;
1253 	unsigned long watermark;
1254 	struct zone *zone;
1255 
1256 	BUG_ON(!PageBuddy(page));
1257 
1258 	zone = page_zone(page);
1259 	order = page_order(page);
1260 
1261 	/* Obey watermarks as if the page was being allocated */
1262 	watermark = low_wmark_pages(zone) + (1 << order);
1263 	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1264 		return 0;
1265 
1266 	/* Remove page from free list */
1267 	list_del(&page->lru);
1268 	zone->free_area[order].nr_free--;
1269 	rmv_page_order(page);
1270 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1271 
1272 	/* Split into individual pages */
1273 	set_page_refcounted(page);
1274 	split_page(page, order);
1275 
1276 	if (order >= pageblock_order - 1) {
1277 		struct page *endpage = page + (1 << order) - 1;
1278 		for (; page < endpage; page += pageblock_nr_pages)
1279 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1280 	}
1281 
1282 	return 1 << order;
1283 }
1284 
1285 /*
1286  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1287  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1288  * or two.
1289  */
1290 static inline
1291 struct page *buffered_rmqueue(struct zone *preferred_zone,
1292 			struct zone *zone, int order, gfp_t gfp_flags,
1293 			int migratetype)
1294 {
1295 	unsigned long flags;
1296 	struct page *page;
1297 	int cold = !!(gfp_flags & __GFP_COLD);
1298 
1299 again:
1300 	if (likely(order == 0)) {
1301 		struct per_cpu_pages *pcp;
1302 		struct list_head *list;
1303 
1304 		local_irq_save(flags);
1305 		pcp = &this_cpu_ptr(zone->pageset)->pcp;
1306 		list = &pcp->lists[migratetype];
1307 		if (list_empty(list)) {
1308 			pcp->count += rmqueue_bulk(zone, 0,
1309 					pcp->batch, list,
1310 					migratetype, cold);
1311 			if (unlikely(list_empty(list)))
1312 				goto failed;
1313 		}
1314 
1315 		if (cold)
1316 			page = list_entry(list->prev, struct page, lru);
1317 		else
1318 			page = list_entry(list->next, struct page, lru);
1319 
1320 		list_del(&page->lru);
1321 		pcp->count--;
1322 	} else {
1323 		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1324 			/*
1325 			 * __GFP_NOFAIL is not to be used in new code.
1326 			 *
1327 			 * All __GFP_NOFAIL callers should be fixed so that they
1328 			 * properly detect and handle allocation failures.
1329 			 *
1330 			 * We most definitely don't want callers attempting to
1331 			 * allocate greater than order-1 page units with
1332 			 * __GFP_NOFAIL.
1333 			 */
1334 			WARN_ON_ONCE(order > 1);
1335 		}
1336 		spin_lock_irqsave(&zone->lock, flags);
1337 		page = __rmqueue(zone, order, migratetype);
1338 		spin_unlock(&zone->lock);
1339 		if (!page)
1340 			goto failed;
1341 		__mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1342 	}
1343 
1344 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1345 	zone_statistics(preferred_zone, zone, gfp_flags);
1346 	local_irq_restore(flags);
1347 
1348 	VM_BUG_ON(bad_range(zone, page));
1349 	if (prep_new_page(page, order, gfp_flags))
1350 		goto again;
1351 	return page;
1352 
1353 failed:
1354 	local_irq_restore(flags);
1355 	return NULL;
1356 }
1357 
1358 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1359 #define ALLOC_WMARK_MIN		WMARK_MIN
1360 #define ALLOC_WMARK_LOW		WMARK_LOW
1361 #define ALLOC_WMARK_HIGH	WMARK_HIGH
1362 #define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
1363 
1364 /* Mask to get the watermark bits */
1365 #define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
1366 
1367 #define ALLOC_HARDER		0x10 /* try to alloc harder */
1368 #define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
1369 #define ALLOC_CPUSET		0x40 /* check for correct cpuset */
1370 
1371 #ifdef CONFIG_FAIL_PAGE_ALLOC
1372 
1373 static struct fail_page_alloc_attr {
1374 	struct fault_attr attr;
1375 
1376 	u32 ignore_gfp_highmem;
1377 	u32 ignore_gfp_wait;
1378 	u32 min_order;
1379 
1380 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1381 
1382 	struct dentry *ignore_gfp_highmem_file;
1383 	struct dentry *ignore_gfp_wait_file;
1384 	struct dentry *min_order_file;
1385 
1386 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1387 
1388 } fail_page_alloc = {
1389 	.attr = FAULT_ATTR_INITIALIZER,
1390 	.ignore_gfp_wait = 1,
1391 	.ignore_gfp_highmem = 1,
1392 	.min_order = 1,
1393 };
1394 
1395 static int __init setup_fail_page_alloc(char *str)
1396 {
1397 	return setup_fault_attr(&fail_page_alloc.attr, str);
1398 }
1399 __setup("fail_page_alloc=", setup_fail_page_alloc);
1400 
1401 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1402 {
1403 	if (order < fail_page_alloc.min_order)
1404 		return 0;
1405 	if (gfp_mask & __GFP_NOFAIL)
1406 		return 0;
1407 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1408 		return 0;
1409 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1410 		return 0;
1411 
1412 	return should_fail(&fail_page_alloc.attr, 1 << order);
1413 }
1414 
1415 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1416 
1417 static int __init fail_page_alloc_debugfs(void)
1418 {
1419 	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1420 	struct dentry *dir;
1421 	int err;
1422 
1423 	err = init_fault_attr_dentries(&fail_page_alloc.attr,
1424 				       "fail_page_alloc");
1425 	if (err)
1426 		return err;
1427 	dir = fail_page_alloc.attr.dentries.dir;
1428 
1429 	fail_page_alloc.ignore_gfp_wait_file =
1430 		debugfs_create_bool("ignore-gfp-wait", mode, dir,
1431 				      &fail_page_alloc.ignore_gfp_wait);
1432 
1433 	fail_page_alloc.ignore_gfp_highmem_file =
1434 		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1435 				      &fail_page_alloc.ignore_gfp_highmem);
1436 	fail_page_alloc.min_order_file =
1437 		debugfs_create_u32("min-order", mode, dir,
1438 				   &fail_page_alloc.min_order);
1439 
1440 	if (!fail_page_alloc.ignore_gfp_wait_file ||
1441             !fail_page_alloc.ignore_gfp_highmem_file ||
1442             !fail_page_alloc.min_order_file) {
1443 		err = -ENOMEM;
1444 		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1445 		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1446 		debugfs_remove(fail_page_alloc.min_order_file);
1447 		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1448 	}
1449 
1450 	return err;
1451 }
1452 
1453 late_initcall(fail_page_alloc_debugfs);
1454 
1455 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1456 
1457 #else /* CONFIG_FAIL_PAGE_ALLOC */
1458 
1459 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1460 {
1461 	return 0;
1462 }
1463 
1464 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1465 
1466 /*
1467  * Return true if free pages are above 'mark'. This takes into account the order
1468  * of the allocation.
1469  */
1470 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1471 		      int classzone_idx, int alloc_flags, long free_pages)
1472 {
1473 	/* free_pages my go negative - that's OK */
1474 	long min = mark;
1475 	int o;
1476 
1477 	free_pages -= (1 << order) + 1;
1478 	if (alloc_flags & ALLOC_HIGH)
1479 		min -= min / 2;
1480 	if (alloc_flags & ALLOC_HARDER)
1481 		min -= min / 4;
1482 
1483 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1484 		return false;
1485 	for (o = 0; o < order; o++) {
1486 		/* At the next order, this order's pages become unavailable */
1487 		free_pages -= z->free_area[o].nr_free << o;
1488 
1489 		/* Require fewer higher order pages to be free */
1490 		min >>= 1;
1491 
1492 		if (free_pages <= min)
1493 			return false;
1494 	}
1495 	return true;
1496 }
1497 
1498 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1499 		      int classzone_idx, int alloc_flags)
1500 {
1501 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1502 					zone_page_state(z, NR_FREE_PAGES));
1503 }
1504 
1505 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1506 		      int classzone_idx, int alloc_flags)
1507 {
1508 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
1509 
1510 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1511 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1512 
1513 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1514 								free_pages);
1515 }
1516 
1517 #ifdef CONFIG_NUMA
1518 /*
1519  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1520  * skip over zones that are not allowed by the cpuset, or that have
1521  * been recently (in last second) found to be nearly full.  See further
1522  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1523  * that have to skip over a lot of full or unallowed zones.
1524  *
1525  * If the zonelist cache is present in the passed in zonelist, then
1526  * returns a pointer to the allowed node mask (either the current
1527  * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1528  *
1529  * If the zonelist cache is not available for this zonelist, does
1530  * nothing and returns NULL.
1531  *
1532  * If the fullzones BITMAP in the zonelist cache is stale (more than
1533  * a second since last zap'd) then we zap it out (clear its bits.)
1534  *
1535  * We hold off even calling zlc_setup, until after we've checked the
1536  * first zone in the zonelist, on the theory that most allocations will
1537  * be satisfied from that first zone, so best to examine that zone as
1538  * quickly as we can.
1539  */
1540 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1541 {
1542 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1543 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1544 
1545 	zlc = zonelist->zlcache_ptr;
1546 	if (!zlc)
1547 		return NULL;
1548 
1549 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1550 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1551 		zlc->last_full_zap = jiffies;
1552 	}
1553 
1554 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1555 					&cpuset_current_mems_allowed :
1556 					&node_states[N_HIGH_MEMORY];
1557 	return allowednodes;
1558 }
1559 
1560 /*
1561  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1562  * if it is worth looking at further for free memory:
1563  *  1) Check that the zone isn't thought to be full (doesn't have its
1564  *     bit set in the zonelist_cache fullzones BITMAP).
1565  *  2) Check that the zones node (obtained from the zonelist_cache
1566  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1567  * Return true (non-zero) if zone is worth looking at further, or
1568  * else return false (zero) if it is not.
1569  *
1570  * This check -ignores- the distinction between various watermarks,
1571  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1572  * found to be full for any variation of these watermarks, it will
1573  * be considered full for up to one second by all requests, unless
1574  * we are so low on memory on all allowed nodes that we are forced
1575  * into the second scan of the zonelist.
1576  *
1577  * In the second scan we ignore this zonelist cache and exactly
1578  * apply the watermarks to all zones, even it is slower to do so.
1579  * We are low on memory in the second scan, and should leave no stone
1580  * unturned looking for a free page.
1581  */
1582 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1583 						nodemask_t *allowednodes)
1584 {
1585 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1586 	int i;				/* index of *z in zonelist zones */
1587 	int n;				/* node that zone *z is on */
1588 
1589 	zlc = zonelist->zlcache_ptr;
1590 	if (!zlc)
1591 		return 1;
1592 
1593 	i = z - zonelist->_zonerefs;
1594 	n = zlc->z_to_n[i];
1595 
1596 	/* This zone is worth trying if it is allowed but not full */
1597 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1598 }
1599 
1600 /*
1601  * Given 'z' scanning a zonelist, set the corresponding bit in
1602  * zlc->fullzones, so that subsequent attempts to allocate a page
1603  * from that zone don't waste time re-examining it.
1604  */
1605 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1606 {
1607 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1608 	int i;				/* index of *z in zonelist zones */
1609 
1610 	zlc = zonelist->zlcache_ptr;
1611 	if (!zlc)
1612 		return;
1613 
1614 	i = z - zonelist->_zonerefs;
1615 
1616 	set_bit(i, zlc->fullzones);
1617 }
1618 
1619 #else	/* CONFIG_NUMA */
1620 
1621 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1622 {
1623 	return NULL;
1624 }
1625 
1626 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1627 				nodemask_t *allowednodes)
1628 {
1629 	return 1;
1630 }
1631 
1632 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1633 {
1634 }
1635 #endif	/* CONFIG_NUMA */
1636 
1637 /*
1638  * get_page_from_freelist goes through the zonelist trying to allocate
1639  * a page.
1640  */
1641 static struct page *
1642 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1643 		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1644 		struct zone *preferred_zone, int migratetype)
1645 {
1646 	struct zoneref *z;
1647 	struct page *page = NULL;
1648 	int classzone_idx;
1649 	struct zone *zone;
1650 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1651 	int zlc_active = 0;		/* set if using zonelist_cache */
1652 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1653 
1654 	classzone_idx = zone_idx(preferred_zone);
1655 zonelist_scan:
1656 	/*
1657 	 * Scan zonelist, looking for a zone with enough free.
1658 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1659 	 */
1660 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1661 						high_zoneidx, nodemask) {
1662 		if (NUMA_BUILD && zlc_active &&
1663 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1664 				continue;
1665 		if ((alloc_flags & ALLOC_CPUSET) &&
1666 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1667 				goto try_next_zone;
1668 
1669 		BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1670 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1671 			unsigned long mark;
1672 			int ret;
1673 
1674 			mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1675 			if (zone_watermark_ok(zone, order, mark,
1676 				    classzone_idx, alloc_flags))
1677 				goto try_this_zone;
1678 
1679 			if (zone_reclaim_mode == 0)
1680 				goto this_zone_full;
1681 
1682 			ret = zone_reclaim(zone, gfp_mask, order);
1683 			switch (ret) {
1684 			case ZONE_RECLAIM_NOSCAN:
1685 				/* did not scan */
1686 				goto try_next_zone;
1687 			case ZONE_RECLAIM_FULL:
1688 				/* scanned but unreclaimable */
1689 				goto this_zone_full;
1690 			default:
1691 				/* did we reclaim enough */
1692 				if (!zone_watermark_ok(zone, order, mark,
1693 						classzone_idx, alloc_flags))
1694 					goto this_zone_full;
1695 			}
1696 		}
1697 
1698 try_this_zone:
1699 		page = buffered_rmqueue(preferred_zone, zone, order,
1700 						gfp_mask, migratetype);
1701 		if (page)
1702 			break;
1703 this_zone_full:
1704 		if (NUMA_BUILD)
1705 			zlc_mark_zone_full(zonelist, z);
1706 try_next_zone:
1707 		if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1708 			/*
1709 			 * we do zlc_setup after the first zone is tried but only
1710 			 * if there are multiple nodes make it worthwhile
1711 			 */
1712 			allowednodes = zlc_setup(zonelist, alloc_flags);
1713 			zlc_active = 1;
1714 			did_zlc_setup = 1;
1715 		}
1716 	}
1717 
1718 	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1719 		/* Disable zlc cache for second zonelist scan */
1720 		zlc_active = 0;
1721 		goto zonelist_scan;
1722 	}
1723 	return page;
1724 }
1725 
1726 /*
1727  * Large machines with many possible nodes should not always dump per-node
1728  * meminfo in irq context.
1729  */
1730 static inline bool should_suppress_show_mem(void)
1731 {
1732 	bool ret = false;
1733 
1734 #if NODES_SHIFT > 8
1735 	ret = in_interrupt();
1736 #endif
1737 	return ret;
1738 }
1739 
1740 static DEFINE_RATELIMIT_STATE(nopage_rs,
1741 		DEFAULT_RATELIMIT_INTERVAL,
1742 		DEFAULT_RATELIMIT_BURST);
1743 
1744 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1745 {
1746 	va_list args;
1747 	unsigned int filter = SHOW_MEM_FILTER_NODES;
1748 
1749 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
1750 		return;
1751 
1752 	/*
1753 	 * This documents exceptions given to allocations in certain
1754 	 * contexts that are allowed to allocate outside current's set
1755 	 * of allowed nodes.
1756 	 */
1757 	if (!(gfp_mask & __GFP_NOMEMALLOC))
1758 		if (test_thread_flag(TIF_MEMDIE) ||
1759 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
1760 			filter &= ~SHOW_MEM_FILTER_NODES;
1761 	if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
1762 		filter &= ~SHOW_MEM_FILTER_NODES;
1763 
1764 	if (fmt) {
1765 		printk(KERN_WARNING);
1766 		va_start(args, fmt);
1767 		vprintk(fmt, args);
1768 		va_end(args);
1769 	}
1770 
1771 	pr_warning("%s: page allocation failure: order:%d, mode:0x%x\n",
1772 		   current->comm, order, gfp_mask);
1773 
1774 	dump_stack();
1775 	if (!should_suppress_show_mem())
1776 		show_mem(filter);
1777 }
1778 
1779 static inline int
1780 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1781 				unsigned long pages_reclaimed)
1782 {
1783 	/* Do not loop if specifically requested */
1784 	if (gfp_mask & __GFP_NORETRY)
1785 		return 0;
1786 
1787 	/*
1788 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1789 	 * means __GFP_NOFAIL, but that may not be true in other
1790 	 * implementations.
1791 	 */
1792 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
1793 		return 1;
1794 
1795 	/*
1796 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1797 	 * specified, then we retry until we no longer reclaim any pages
1798 	 * (above), or we've reclaimed an order of pages at least as
1799 	 * large as the allocation's order. In both cases, if the
1800 	 * allocation still fails, we stop retrying.
1801 	 */
1802 	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1803 		return 1;
1804 
1805 	/*
1806 	 * Don't let big-order allocations loop unless the caller
1807 	 * explicitly requests that.
1808 	 */
1809 	if (gfp_mask & __GFP_NOFAIL)
1810 		return 1;
1811 
1812 	return 0;
1813 }
1814 
1815 static inline struct page *
1816 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1817 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1818 	nodemask_t *nodemask, struct zone *preferred_zone,
1819 	int migratetype)
1820 {
1821 	struct page *page;
1822 
1823 	/* Acquire the OOM killer lock for the zones in zonelist */
1824 	if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
1825 		schedule_timeout_uninterruptible(1);
1826 		return NULL;
1827 	}
1828 
1829 	/*
1830 	 * Go through the zonelist yet one more time, keep very high watermark
1831 	 * here, this is only to catch a parallel oom killing, we must fail if
1832 	 * we're still under heavy pressure.
1833 	 */
1834 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1835 		order, zonelist, high_zoneidx,
1836 		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1837 		preferred_zone, migratetype);
1838 	if (page)
1839 		goto out;
1840 
1841 	if (!(gfp_mask & __GFP_NOFAIL)) {
1842 		/* The OOM killer will not help higher order allocs */
1843 		if (order > PAGE_ALLOC_COSTLY_ORDER)
1844 			goto out;
1845 		/* The OOM killer does not needlessly kill tasks for lowmem */
1846 		if (high_zoneidx < ZONE_NORMAL)
1847 			goto out;
1848 		/*
1849 		 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1850 		 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1851 		 * The caller should handle page allocation failure by itself if
1852 		 * it specifies __GFP_THISNODE.
1853 		 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1854 		 */
1855 		if (gfp_mask & __GFP_THISNODE)
1856 			goto out;
1857 	}
1858 	/* Exhausted what can be done so it's blamo time */
1859 	out_of_memory(zonelist, gfp_mask, order, nodemask);
1860 
1861 out:
1862 	clear_zonelist_oom(zonelist, gfp_mask);
1863 	return page;
1864 }
1865 
1866 #ifdef CONFIG_COMPACTION
1867 /* Try memory compaction for high-order allocations before reclaim */
1868 static struct page *
1869 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1870 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1871 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1872 	int migratetype, unsigned long *did_some_progress,
1873 	bool sync_migration)
1874 {
1875 	struct page *page;
1876 
1877 	if (!order || compaction_deferred(preferred_zone))
1878 		return NULL;
1879 
1880 	current->flags |= PF_MEMALLOC;
1881 	*did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
1882 						nodemask, sync_migration);
1883 	current->flags &= ~PF_MEMALLOC;
1884 	if (*did_some_progress != COMPACT_SKIPPED) {
1885 
1886 		/* Page migration frees to the PCP lists but we want merging */
1887 		drain_pages(get_cpu());
1888 		put_cpu();
1889 
1890 		page = get_page_from_freelist(gfp_mask, nodemask,
1891 				order, zonelist, high_zoneidx,
1892 				alloc_flags, preferred_zone,
1893 				migratetype);
1894 		if (page) {
1895 			preferred_zone->compact_considered = 0;
1896 			preferred_zone->compact_defer_shift = 0;
1897 			count_vm_event(COMPACTSUCCESS);
1898 			return page;
1899 		}
1900 
1901 		/*
1902 		 * It's bad if compaction run occurs and fails.
1903 		 * The most likely reason is that pages exist,
1904 		 * but not enough to satisfy watermarks.
1905 		 */
1906 		count_vm_event(COMPACTFAIL);
1907 		defer_compaction(preferred_zone);
1908 
1909 		cond_resched();
1910 	}
1911 
1912 	return NULL;
1913 }
1914 #else
1915 static inline struct page *
1916 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1917 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1918 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1919 	int migratetype, unsigned long *did_some_progress,
1920 	bool sync_migration)
1921 {
1922 	return NULL;
1923 }
1924 #endif /* CONFIG_COMPACTION */
1925 
1926 /* The really slow allocator path where we enter direct reclaim */
1927 static inline struct page *
1928 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1929 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1930 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1931 	int migratetype, unsigned long *did_some_progress)
1932 {
1933 	struct page *page = NULL;
1934 	struct reclaim_state reclaim_state;
1935 	bool drained = false;
1936 
1937 	cond_resched();
1938 
1939 	/* We now go into synchronous reclaim */
1940 	cpuset_memory_pressure_bump();
1941 	current->flags |= PF_MEMALLOC;
1942 	lockdep_set_current_reclaim_state(gfp_mask);
1943 	reclaim_state.reclaimed_slab = 0;
1944 	current->reclaim_state = &reclaim_state;
1945 
1946 	*did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1947 
1948 	current->reclaim_state = NULL;
1949 	lockdep_clear_current_reclaim_state();
1950 	current->flags &= ~PF_MEMALLOC;
1951 
1952 	cond_resched();
1953 
1954 	if (unlikely(!(*did_some_progress)))
1955 		return NULL;
1956 
1957 retry:
1958 	page = get_page_from_freelist(gfp_mask, nodemask, order,
1959 					zonelist, high_zoneidx,
1960 					alloc_flags, preferred_zone,
1961 					migratetype);
1962 
1963 	/*
1964 	 * If an allocation failed after direct reclaim, it could be because
1965 	 * pages are pinned on the per-cpu lists. Drain them and try again
1966 	 */
1967 	if (!page && !drained) {
1968 		drain_all_pages();
1969 		drained = true;
1970 		goto retry;
1971 	}
1972 
1973 	return page;
1974 }
1975 
1976 /*
1977  * This is called in the allocator slow-path if the allocation request is of
1978  * sufficient urgency to ignore watermarks and take other desperate measures
1979  */
1980 static inline struct page *
1981 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1982 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1983 	nodemask_t *nodemask, struct zone *preferred_zone,
1984 	int migratetype)
1985 {
1986 	struct page *page;
1987 
1988 	do {
1989 		page = get_page_from_freelist(gfp_mask, nodemask, order,
1990 			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1991 			preferred_zone, migratetype);
1992 
1993 		if (!page && gfp_mask & __GFP_NOFAIL)
1994 			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1995 	} while (!page && (gfp_mask & __GFP_NOFAIL));
1996 
1997 	return page;
1998 }
1999 
2000 static inline
2001 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2002 						enum zone_type high_zoneidx,
2003 						enum zone_type classzone_idx)
2004 {
2005 	struct zoneref *z;
2006 	struct zone *zone;
2007 
2008 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2009 		wakeup_kswapd(zone, order, classzone_idx);
2010 }
2011 
2012 static inline int
2013 gfp_to_alloc_flags(gfp_t gfp_mask)
2014 {
2015 	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2016 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2017 
2018 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2019 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2020 
2021 	/*
2022 	 * The caller may dip into page reserves a bit more if the caller
2023 	 * cannot run direct reclaim, or if the caller has realtime scheduling
2024 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
2025 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2026 	 */
2027 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2028 
2029 	if (!wait) {
2030 		/*
2031 		 * Not worth trying to allocate harder for
2032 		 * __GFP_NOMEMALLOC even if it can't schedule.
2033 		 */
2034 		if  (!(gfp_mask & __GFP_NOMEMALLOC))
2035 			alloc_flags |= ALLOC_HARDER;
2036 		/*
2037 		 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2038 		 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2039 		 */
2040 		alloc_flags &= ~ALLOC_CPUSET;
2041 	} else if (unlikely(rt_task(current)) && !in_interrupt())
2042 		alloc_flags |= ALLOC_HARDER;
2043 
2044 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2045 		if (!in_interrupt() &&
2046 		    ((current->flags & PF_MEMALLOC) ||
2047 		     unlikely(test_thread_flag(TIF_MEMDIE))))
2048 			alloc_flags |= ALLOC_NO_WATERMARKS;
2049 	}
2050 
2051 	return alloc_flags;
2052 }
2053 
2054 static inline struct page *
2055 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2056 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2057 	nodemask_t *nodemask, struct zone *preferred_zone,
2058 	int migratetype)
2059 {
2060 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2061 	struct page *page = NULL;
2062 	int alloc_flags;
2063 	unsigned long pages_reclaimed = 0;
2064 	unsigned long did_some_progress;
2065 	bool sync_migration = false;
2066 
2067 	/*
2068 	 * In the slowpath, we sanity check order to avoid ever trying to
2069 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2070 	 * be using allocators in order of preference for an area that is
2071 	 * too large.
2072 	 */
2073 	if (order >= MAX_ORDER) {
2074 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2075 		return NULL;
2076 	}
2077 
2078 	/*
2079 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2080 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2081 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2082 	 * using a larger set of nodes after it has established that the
2083 	 * allowed per node queues are empty and that nodes are
2084 	 * over allocated.
2085 	 */
2086 	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2087 		goto nopage;
2088 
2089 restart:
2090 	if (!(gfp_mask & __GFP_NO_KSWAPD))
2091 		wake_all_kswapd(order, zonelist, high_zoneidx,
2092 						zone_idx(preferred_zone));
2093 
2094 	/*
2095 	 * OK, we're below the kswapd watermark and have kicked background
2096 	 * reclaim. Now things get more complex, so set up alloc_flags according
2097 	 * to how we want to proceed.
2098 	 */
2099 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
2100 
2101 	/*
2102 	 * Find the true preferred zone if the allocation is unconstrained by
2103 	 * cpusets.
2104 	 */
2105 	if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2106 		first_zones_zonelist(zonelist, high_zoneidx, NULL,
2107 					&preferred_zone);
2108 
2109 rebalance:
2110 	/* This is the last chance, in general, before the goto nopage. */
2111 	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2112 			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2113 			preferred_zone, migratetype);
2114 	if (page)
2115 		goto got_pg;
2116 
2117 	/* Allocate without watermarks if the context allows */
2118 	if (alloc_flags & ALLOC_NO_WATERMARKS) {
2119 		page = __alloc_pages_high_priority(gfp_mask, order,
2120 				zonelist, high_zoneidx, nodemask,
2121 				preferred_zone, migratetype);
2122 		if (page)
2123 			goto got_pg;
2124 	}
2125 
2126 	/* Atomic allocations - we can't balance anything */
2127 	if (!wait)
2128 		goto nopage;
2129 
2130 	/* Avoid recursion of direct reclaim */
2131 	if (current->flags & PF_MEMALLOC)
2132 		goto nopage;
2133 
2134 	/* Avoid allocations with no watermarks from looping endlessly */
2135 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2136 		goto nopage;
2137 
2138 	/*
2139 	 * Try direct compaction. The first pass is asynchronous. Subsequent
2140 	 * attempts after direct reclaim are synchronous
2141 	 */
2142 	page = __alloc_pages_direct_compact(gfp_mask, order,
2143 					zonelist, high_zoneidx,
2144 					nodemask,
2145 					alloc_flags, preferred_zone,
2146 					migratetype, &did_some_progress,
2147 					sync_migration);
2148 	if (page)
2149 		goto got_pg;
2150 	sync_migration = true;
2151 
2152 	/* Try direct reclaim and then allocating */
2153 	page = __alloc_pages_direct_reclaim(gfp_mask, order,
2154 					zonelist, high_zoneidx,
2155 					nodemask,
2156 					alloc_flags, preferred_zone,
2157 					migratetype, &did_some_progress);
2158 	if (page)
2159 		goto got_pg;
2160 
2161 	/*
2162 	 * If we failed to make any progress reclaiming, then we are
2163 	 * running out of options and have to consider going OOM
2164 	 */
2165 	if (!did_some_progress) {
2166 		if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2167 			if (oom_killer_disabled)
2168 				goto nopage;
2169 			page = __alloc_pages_may_oom(gfp_mask, order,
2170 					zonelist, high_zoneidx,
2171 					nodemask, preferred_zone,
2172 					migratetype);
2173 			if (page)
2174 				goto got_pg;
2175 
2176 			if (!(gfp_mask & __GFP_NOFAIL)) {
2177 				/*
2178 				 * The oom killer is not called for high-order
2179 				 * allocations that may fail, so if no progress
2180 				 * is being made, there are no other options and
2181 				 * retrying is unlikely to help.
2182 				 */
2183 				if (order > PAGE_ALLOC_COSTLY_ORDER)
2184 					goto nopage;
2185 				/*
2186 				 * The oom killer is not called for lowmem
2187 				 * allocations to prevent needlessly killing
2188 				 * innocent tasks.
2189 				 */
2190 				if (high_zoneidx < ZONE_NORMAL)
2191 					goto nopage;
2192 			}
2193 
2194 			goto restart;
2195 		}
2196 	}
2197 
2198 	/* Check if we should retry the allocation */
2199 	pages_reclaimed += did_some_progress;
2200 	if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2201 		/* Wait for some write requests to complete then retry */
2202 		wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2203 		goto rebalance;
2204 	} else {
2205 		/*
2206 		 * High-order allocations do not necessarily loop after
2207 		 * direct reclaim and reclaim/compaction depends on compaction
2208 		 * being called after reclaim so call directly if necessary
2209 		 */
2210 		page = __alloc_pages_direct_compact(gfp_mask, order,
2211 					zonelist, high_zoneidx,
2212 					nodemask,
2213 					alloc_flags, preferred_zone,
2214 					migratetype, &did_some_progress,
2215 					sync_migration);
2216 		if (page)
2217 			goto got_pg;
2218 	}
2219 
2220 nopage:
2221 	warn_alloc_failed(gfp_mask, order, NULL);
2222 	return page;
2223 got_pg:
2224 	if (kmemcheck_enabled)
2225 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2226 	return page;
2227 
2228 }
2229 
2230 /*
2231  * This is the 'heart' of the zoned buddy allocator.
2232  */
2233 struct page *
2234 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2235 			struct zonelist *zonelist, nodemask_t *nodemask)
2236 {
2237 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2238 	struct zone *preferred_zone;
2239 	struct page *page;
2240 	int migratetype = allocflags_to_migratetype(gfp_mask);
2241 
2242 	gfp_mask &= gfp_allowed_mask;
2243 
2244 	lockdep_trace_alloc(gfp_mask);
2245 
2246 	might_sleep_if(gfp_mask & __GFP_WAIT);
2247 
2248 	if (should_fail_alloc_page(gfp_mask, order))
2249 		return NULL;
2250 
2251 	/*
2252 	 * Check the zones suitable for the gfp_mask contain at least one
2253 	 * valid zone. It's possible to have an empty zonelist as a result
2254 	 * of GFP_THISNODE and a memoryless node
2255 	 */
2256 	if (unlikely(!zonelist->_zonerefs->zone))
2257 		return NULL;
2258 
2259 	get_mems_allowed();
2260 	/* The preferred zone is used for statistics later */
2261 	first_zones_zonelist(zonelist, high_zoneidx,
2262 				nodemask ? : &cpuset_current_mems_allowed,
2263 				&preferred_zone);
2264 	if (!preferred_zone) {
2265 		put_mems_allowed();
2266 		return NULL;
2267 	}
2268 
2269 	/* First allocation attempt */
2270 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2271 			zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2272 			preferred_zone, migratetype);
2273 	if (unlikely(!page))
2274 		page = __alloc_pages_slowpath(gfp_mask, order,
2275 				zonelist, high_zoneidx, nodemask,
2276 				preferred_zone, migratetype);
2277 	put_mems_allowed();
2278 
2279 	trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2280 	return page;
2281 }
2282 EXPORT_SYMBOL(__alloc_pages_nodemask);
2283 
2284 /*
2285  * Common helper functions.
2286  */
2287 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2288 {
2289 	struct page *page;
2290 
2291 	/*
2292 	 * __get_free_pages() returns a 32-bit address, which cannot represent
2293 	 * a highmem page
2294 	 */
2295 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2296 
2297 	page = alloc_pages(gfp_mask, order);
2298 	if (!page)
2299 		return 0;
2300 	return (unsigned long) page_address(page);
2301 }
2302 EXPORT_SYMBOL(__get_free_pages);
2303 
2304 unsigned long get_zeroed_page(gfp_t gfp_mask)
2305 {
2306 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2307 }
2308 EXPORT_SYMBOL(get_zeroed_page);
2309 
2310 void __pagevec_free(struct pagevec *pvec)
2311 {
2312 	int i = pagevec_count(pvec);
2313 
2314 	while (--i >= 0) {
2315 		trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2316 		free_hot_cold_page(pvec->pages[i], pvec->cold);
2317 	}
2318 }
2319 
2320 void __free_pages(struct page *page, unsigned int order)
2321 {
2322 	if (put_page_testzero(page)) {
2323 		if (order == 0)
2324 			free_hot_cold_page(page, 0);
2325 		else
2326 			__free_pages_ok(page, order);
2327 	}
2328 }
2329 
2330 EXPORT_SYMBOL(__free_pages);
2331 
2332 void free_pages(unsigned long addr, unsigned int order)
2333 {
2334 	if (addr != 0) {
2335 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2336 		__free_pages(virt_to_page((void *)addr), order);
2337 	}
2338 }
2339 
2340 EXPORT_SYMBOL(free_pages);
2341 
2342 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2343 {
2344 	if (addr) {
2345 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
2346 		unsigned long used = addr + PAGE_ALIGN(size);
2347 
2348 		split_page(virt_to_page((void *)addr), order);
2349 		while (used < alloc_end) {
2350 			free_page(used);
2351 			used += PAGE_SIZE;
2352 		}
2353 	}
2354 	return (void *)addr;
2355 }
2356 
2357 /**
2358  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2359  * @size: the number of bytes to allocate
2360  * @gfp_mask: GFP flags for the allocation
2361  *
2362  * This function is similar to alloc_pages(), except that it allocates the
2363  * minimum number of pages to satisfy the request.  alloc_pages() can only
2364  * allocate memory in power-of-two pages.
2365  *
2366  * This function is also limited by MAX_ORDER.
2367  *
2368  * Memory allocated by this function must be released by free_pages_exact().
2369  */
2370 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2371 {
2372 	unsigned int order = get_order(size);
2373 	unsigned long addr;
2374 
2375 	addr = __get_free_pages(gfp_mask, order);
2376 	return make_alloc_exact(addr, order, size);
2377 }
2378 EXPORT_SYMBOL(alloc_pages_exact);
2379 
2380 /**
2381  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2382  *			   pages on a node.
2383  * @nid: the preferred node ID where memory should be allocated
2384  * @size: the number of bytes to allocate
2385  * @gfp_mask: GFP flags for the allocation
2386  *
2387  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2388  * back.
2389  * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2390  * but is not exact.
2391  */
2392 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2393 {
2394 	unsigned order = get_order(size);
2395 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
2396 	if (!p)
2397 		return NULL;
2398 	return make_alloc_exact((unsigned long)page_address(p), order, size);
2399 }
2400 EXPORT_SYMBOL(alloc_pages_exact_nid);
2401 
2402 /**
2403  * free_pages_exact - release memory allocated via alloc_pages_exact()
2404  * @virt: the value returned by alloc_pages_exact.
2405  * @size: size of allocation, same value as passed to alloc_pages_exact().
2406  *
2407  * Release the memory allocated by a previous call to alloc_pages_exact.
2408  */
2409 void free_pages_exact(void *virt, size_t size)
2410 {
2411 	unsigned long addr = (unsigned long)virt;
2412 	unsigned long end = addr + PAGE_ALIGN(size);
2413 
2414 	while (addr < end) {
2415 		free_page(addr);
2416 		addr += PAGE_SIZE;
2417 	}
2418 }
2419 EXPORT_SYMBOL(free_pages_exact);
2420 
2421 static unsigned int nr_free_zone_pages(int offset)
2422 {
2423 	struct zoneref *z;
2424 	struct zone *zone;
2425 
2426 	/* Just pick one node, since fallback list is circular */
2427 	unsigned int sum = 0;
2428 
2429 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2430 
2431 	for_each_zone_zonelist(zone, z, zonelist, offset) {
2432 		unsigned long size = zone->present_pages;
2433 		unsigned long high = high_wmark_pages(zone);
2434 		if (size > high)
2435 			sum += size - high;
2436 	}
2437 
2438 	return sum;
2439 }
2440 
2441 /*
2442  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2443  */
2444 unsigned int nr_free_buffer_pages(void)
2445 {
2446 	return nr_free_zone_pages(gfp_zone(GFP_USER));
2447 }
2448 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2449 
2450 /*
2451  * Amount of free RAM allocatable within all zones
2452  */
2453 unsigned int nr_free_pagecache_pages(void)
2454 {
2455 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2456 }
2457 
2458 static inline void show_node(struct zone *zone)
2459 {
2460 	if (NUMA_BUILD)
2461 		printk("Node %d ", zone_to_nid(zone));
2462 }
2463 
2464 void si_meminfo(struct sysinfo *val)
2465 {
2466 	val->totalram = totalram_pages;
2467 	val->sharedram = 0;
2468 	val->freeram = global_page_state(NR_FREE_PAGES);
2469 	val->bufferram = nr_blockdev_pages();
2470 	val->totalhigh = totalhigh_pages;
2471 	val->freehigh = nr_free_highpages();
2472 	val->mem_unit = PAGE_SIZE;
2473 }
2474 
2475 EXPORT_SYMBOL(si_meminfo);
2476 
2477 #ifdef CONFIG_NUMA
2478 void si_meminfo_node(struct sysinfo *val, int nid)
2479 {
2480 	pg_data_t *pgdat = NODE_DATA(nid);
2481 
2482 	val->totalram = pgdat->node_present_pages;
2483 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
2484 #ifdef CONFIG_HIGHMEM
2485 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2486 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2487 			NR_FREE_PAGES);
2488 #else
2489 	val->totalhigh = 0;
2490 	val->freehigh = 0;
2491 #endif
2492 	val->mem_unit = PAGE_SIZE;
2493 }
2494 #endif
2495 
2496 /*
2497  * Determine whether the node should be displayed or not, depending on whether
2498  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2499  */
2500 bool skip_free_areas_node(unsigned int flags, int nid)
2501 {
2502 	bool ret = false;
2503 
2504 	if (!(flags & SHOW_MEM_FILTER_NODES))
2505 		goto out;
2506 
2507 	get_mems_allowed();
2508 	ret = !node_isset(nid, cpuset_current_mems_allowed);
2509 	put_mems_allowed();
2510 out:
2511 	return ret;
2512 }
2513 
2514 #define K(x) ((x) << (PAGE_SHIFT-10))
2515 
2516 /*
2517  * Show free area list (used inside shift_scroll-lock stuff)
2518  * We also calculate the percentage fragmentation. We do this by counting the
2519  * memory on each free list with the exception of the first item on the list.
2520  * Suppresses nodes that are not allowed by current's cpuset if
2521  * SHOW_MEM_FILTER_NODES is passed.
2522  */
2523 void show_free_areas(unsigned int filter)
2524 {
2525 	int cpu;
2526 	struct zone *zone;
2527 
2528 	for_each_populated_zone(zone) {
2529 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
2530 			continue;
2531 		show_node(zone);
2532 		printk("%s per-cpu:\n", zone->name);
2533 
2534 		for_each_online_cpu(cpu) {
2535 			struct per_cpu_pageset *pageset;
2536 
2537 			pageset = per_cpu_ptr(zone->pageset, cpu);
2538 
2539 			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2540 			       cpu, pageset->pcp.high,
2541 			       pageset->pcp.batch, pageset->pcp.count);
2542 		}
2543 	}
2544 
2545 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2546 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2547 		" unevictable:%lu"
2548 		" dirty:%lu writeback:%lu unstable:%lu\n"
2549 		" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2550 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2551 		global_page_state(NR_ACTIVE_ANON),
2552 		global_page_state(NR_INACTIVE_ANON),
2553 		global_page_state(NR_ISOLATED_ANON),
2554 		global_page_state(NR_ACTIVE_FILE),
2555 		global_page_state(NR_INACTIVE_FILE),
2556 		global_page_state(NR_ISOLATED_FILE),
2557 		global_page_state(NR_UNEVICTABLE),
2558 		global_page_state(NR_FILE_DIRTY),
2559 		global_page_state(NR_WRITEBACK),
2560 		global_page_state(NR_UNSTABLE_NFS),
2561 		global_page_state(NR_FREE_PAGES),
2562 		global_page_state(NR_SLAB_RECLAIMABLE),
2563 		global_page_state(NR_SLAB_UNRECLAIMABLE),
2564 		global_page_state(NR_FILE_MAPPED),
2565 		global_page_state(NR_SHMEM),
2566 		global_page_state(NR_PAGETABLE),
2567 		global_page_state(NR_BOUNCE));
2568 
2569 	for_each_populated_zone(zone) {
2570 		int i;
2571 
2572 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
2573 			continue;
2574 		show_node(zone);
2575 		printk("%s"
2576 			" free:%lukB"
2577 			" min:%lukB"
2578 			" low:%lukB"
2579 			" high:%lukB"
2580 			" active_anon:%lukB"
2581 			" inactive_anon:%lukB"
2582 			" active_file:%lukB"
2583 			" inactive_file:%lukB"
2584 			" unevictable:%lukB"
2585 			" isolated(anon):%lukB"
2586 			" isolated(file):%lukB"
2587 			" present:%lukB"
2588 			" mlocked:%lukB"
2589 			" dirty:%lukB"
2590 			" writeback:%lukB"
2591 			" mapped:%lukB"
2592 			" shmem:%lukB"
2593 			" slab_reclaimable:%lukB"
2594 			" slab_unreclaimable:%lukB"
2595 			" kernel_stack:%lukB"
2596 			" pagetables:%lukB"
2597 			" unstable:%lukB"
2598 			" bounce:%lukB"
2599 			" writeback_tmp:%lukB"
2600 			" pages_scanned:%lu"
2601 			" all_unreclaimable? %s"
2602 			"\n",
2603 			zone->name,
2604 			K(zone_page_state(zone, NR_FREE_PAGES)),
2605 			K(min_wmark_pages(zone)),
2606 			K(low_wmark_pages(zone)),
2607 			K(high_wmark_pages(zone)),
2608 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
2609 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
2610 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
2611 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
2612 			K(zone_page_state(zone, NR_UNEVICTABLE)),
2613 			K(zone_page_state(zone, NR_ISOLATED_ANON)),
2614 			K(zone_page_state(zone, NR_ISOLATED_FILE)),
2615 			K(zone->present_pages),
2616 			K(zone_page_state(zone, NR_MLOCK)),
2617 			K(zone_page_state(zone, NR_FILE_DIRTY)),
2618 			K(zone_page_state(zone, NR_WRITEBACK)),
2619 			K(zone_page_state(zone, NR_FILE_MAPPED)),
2620 			K(zone_page_state(zone, NR_SHMEM)),
2621 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2622 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2623 			zone_page_state(zone, NR_KERNEL_STACK) *
2624 				THREAD_SIZE / 1024,
2625 			K(zone_page_state(zone, NR_PAGETABLE)),
2626 			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2627 			K(zone_page_state(zone, NR_BOUNCE)),
2628 			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2629 			zone->pages_scanned,
2630 			(zone->all_unreclaimable ? "yes" : "no")
2631 			);
2632 		printk("lowmem_reserve[]:");
2633 		for (i = 0; i < MAX_NR_ZONES; i++)
2634 			printk(" %lu", zone->lowmem_reserve[i]);
2635 		printk("\n");
2636 	}
2637 
2638 	for_each_populated_zone(zone) {
2639  		unsigned long nr[MAX_ORDER], flags, order, total = 0;
2640 
2641 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
2642 			continue;
2643 		show_node(zone);
2644 		printk("%s: ", zone->name);
2645 
2646 		spin_lock_irqsave(&zone->lock, flags);
2647 		for (order = 0; order < MAX_ORDER; order++) {
2648 			nr[order] = zone->free_area[order].nr_free;
2649 			total += nr[order] << order;
2650 		}
2651 		spin_unlock_irqrestore(&zone->lock, flags);
2652 		for (order = 0; order < MAX_ORDER; order++)
2653 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
2654 		printk("= %lukB\n", K(total));
2655 	}
2656 
2657 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2658 
2659 	show_swap_cache_info();
2660 }
2661 
2662 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2663 {
2664 	zoneref->zone = zone;
2665 	zoneref->zone_idx = zone_idx(zone);
2666 }
2667 
2668 /*
2669  * Builds allocation fallback zone lists.
2670  *
2671  * Add all populated zones of a node to the zonelist.
2672  */
2673 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2674 				int nr_zones, enum zone_type zone_type)
2675 {
2676 	struct zone *zone;
2677 
2678 	BUG_ON(zone_type >= MAX_NR_ZONES);
2679 	zone_type++;
2680 
2681 	do {
2682 		zone_type--;
2683 		zone = pgdat->node_zones + zone_type;
2684 		if (populated_zone(zone)) {
2685 			zoneref_set_zone(zone,
2686 				&zonelist->_zonerefs[nr_zones++]);
2687 			check_highest_zone(zone_type);
2688 		}
2689 
2690 	} while (zone_type);
2691 	return nr_zones;
2692 }
2693 
2694 
2695 /*
2696  *  zonelist_order:
2697  *  0 = automatic detection of better ordering.
2698  *  1 = order by ([node] distance, -zonetype)
2699  *  2 = order by (-zonetype, [node] distance)
2700  *
2701  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2702  *  the same zonelist. So only NUMA can configure this param.
2703  */
2704 #define ZONELIST_ORDER_DEFAULT  0
2705 #define ZONELIST_ORDER_NODE     1
2706 #define ZONELIST_ORDER_ZONE     2
2707 
2708 /* zonelist order in the kernel.
2709  * set_zonelist_order() will set this to NODE or ZONE.
2710  */
2711 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2712 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2713 
2714 
2715 #ifdef CONFIG_NUMA
2716 /* The value user specified ....changed by config */
2717 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2718 /* string for sysctl */
2719 #define NUMA_ZONELIST_ORDER_LEN	16
2720 char numa_zonelist_order[16] = "default";
2721 
2722 /*
2723  * interface for configure zonelist ordering.
2724  * command line option "numa_zonelist_order"
2725  *	= "[dD]efault	- default, automatic configuration.
2726  *	= "[nN]ode 	- order by node locality, then by zone within node
2727  *	= "[zZ]one      - order by zone, then by locality within zone
2728  */
2729 
2730 static int __parse_numa_zonelist_order(char *s)
2731 {
2732 	if (*s == 'd' || *s == 'D') {
2733 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2734 	} else if (*s == 'n' || *s == 'N') {
2735 		user_zonelist_order = ZONELIST_ORDER_NODE;
2736 	} else if (*s == 'z' || *s == 'Z') {
2737 		user_zonelist_order = ZONELIST_ORDER_ZONE;
2738 	} else {
2739 		printk(KERN_WARNING
2740 			"Ignoring invalid numa_zonelist_order value:  "
2741 			"%s\n", s);
2742 		return -EINVAL;
2743 	}
2744 	return 0;
2745 }
2746 
2747 static __init int setup_numa_zonelist_order(char *s)
2748 {
2749 	int ret;
2750 
2751 	if (!s)
2752 		return 0;
2753 
2754 	ret = __parse_numa_zonelist_order(s);
2755 	if (ret == 0)
2756 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
2757 
2758 	return ret;
2759 }
2760 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2761 
2762 /*
2763  * sysctl handler for numa_zonelist_order
2764  */
2765 int numa_zonelist_order_handler(ctl_table *table, int write,
2766 		void __user *buffer, size_t *length,
2767 		loff_t *ppos)
2768 {
2769 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
2770 	int ret;
2771 	static DEFINE_MUTEX(zl_order_mutex);
2772 
2773 	mutex_lock(&zl_order_mutex);
2774 	if (write)
2775 		strcpy(saved_string, (char*)table->data);
2776 	ret = proc_dostring(table, write, buffer, length, ppos);
2777 	if (ret)
2778 		goto out;
2779 	if (write) {
2780 		int oldval = user_zonelist_order;
2781 		if (__parse_numa_zonelist_order((char*)table->data)) {
2782 			/*
2783 			 * bogus value.  restore saved string
2784 			 */
2785 			strncpy((char*)table->data, saved_string,
2786 				NUMA_ZONELIST_ORDER_LEN);
2787 			user_zonelist_order = oldval;
2788 		} else if (oldval != user_zonelist_order) {
2789 			mutex_lock(&zonelists_mutex);
2790 			build_all_zonelists(NULL);
2791 			mutex_unlock(&zonelists_mutex);
2792 		}
2793 	}
2794 out:
2795 	mutex_unlock(&zl_order_mutex);
2796 	return ret;
2797 }
2798 
2799 
2800 #define MAX_NODE_LOAD (nr_online_nodes)
2801 static int node_load[MAX_NUMNODES];
2802 
2803 /**
2804  * find_next_best_node - find the next node that should appear in a given node's fallback list
2805  * @node: node whose fallback list we're appending
2806  * @used_node_mask: nodemask_t of already used nodes
2807  *
2808  * We use a number of factors to determine which is the next node that should
2809  * appear on a given node's fallback list.  The node should not have appeared
2810  * already in @node's fallback list, and it should be the next closest node
2811  * according to the distance array (which contains arbitrary distance values
2812  * from each node to each node in the system), and should also prefer nodes
2813  * with no CPUs, since presumably they'll have very little allocation pressure
2814  * on them otherwise.
2815  * It returns -1 if no node is found.
2816  */
2817 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2818 {
2819 	int n, val;
2820 	int min_val = INT_MAX;
2821 	int best_node = -1;
2822 	const struct cpumask *tmp = cpumask_of_node(0);
2823 
2824 	/* Use the local node if we haven't already */
2825 	if (!node_isset(node, *used_node_mask)) {
2826 		node_set(node, *used_node_mask);
2827 		return node;
2828 	}
2829 
2830 	for_each_node_state(n, N_HIGH_MEMORY) {
2831 
2832 		/* Don't want a node to appear more than once */
2833 		if (node_isset(n, *used_node_mask))
2834 			continue;
2835 
2836 		/* Use the distance array to find the distance */
2837 		val = node_distance(node, n);
2838 
2839 		/* Penalize nodes under us ("prefer the next node") */
2840 		val += (n < node);
2841 
2842 		/* Give preference to headless and unused nodes */
2843 		tmp = cpumask_of_node(n);
2844 		if (!cpumask_empty(tmp))
2845 			val += PENALTY_FOR_NODE_WITH_CPUS;
2846 
2847 		/* Slight preference for less loaded node */
2848 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2849 		val += node_load[n];
2850 
2851 		if (val < min_val) {
2852 			min_val = val;
2853 			best_node = n;
2854 		}
2855 	}
2856 
2857 	if (best_node >= 0)
2858 		node_set(best_node, *used_node_mask);
2859 
2860 	return best_node;
2861 }
2862 
2863 
2864 /*
2865  * Build zonelists ordered by node and zones within node.
2866  * This results in maximum locality--normal zone overflows into local
2867  * DMA zone, if any--but risks exhausting DMA zone.
2868  */
2869 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2870 {
2871 	int j;
2872 	struct zonelist *zonelist;
2873 
2874 	zonelist = &pgdat->node_zonelists[0];
2875 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2876 		;
2877 	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2878 							MAX_NR_ZONES - 1);
2879 	zonelist->_zonerefs[j].zone = NULL;
2880 	zonelist->_zonerefs[j].zone_idx = 0;
2881 }
2882 
2883 /*
2884  * Build gfp_thisnode zonelists
2885  */
2886 static void build_thisnode_zonelists(pg_data_t *pgdat)
2887 {
2888 	int j;
2889 	struct zonelist *zonelist;
2890 
2891 	zonelist = &pgdat->node_zonelists[1];
2892 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2893 	zonelist->_zonerefs[j].zone = NULL;
2894 	zonelist->_zonerefs[j].zone_idx = 0;
2895 }
2896 
2897 /*
2898  * Build zonelists ordered by zone and nodes within zones.
2899  * This results in conserving DMA zone[s] until all Normal memory is
2900  * exhausted, but results in overflowing to remote node while memory
2901  * may still exist in local DMA zone.
2902  */
2903 static int node_order[MAX_NUMNODES];
2904 
2905 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2906 {
2907 	int pos, j, node;
2908 	int zone_type;		/* needs to be signed */
2909 	struct zone *z;
2910 	struct zonelist *zonelist;
2911 
2912 	zonelist = &pgdat->node_zonelists[0];
2913 	pos = 0;
2914 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2915 		for (j = 0; j < nr_nodes; j++) {
2916 			node = node_order[j];
2917 			z = &NODE_DATA(node)->node_zones[zone_type];
2918 			if (populated_zone(z)) {
2919 				zoneref_set_zone(z,
2920 					&zonelist->_zonerefs[pos++]);
2921 				check_highest_zone(zone_type);
2922 			}
2923 		}
2924 	}
2925 	zonelist->_zonerefs[pos].zone = NULL;
2926 	zonelist->_zonerefs[pos].zone_idx = 0;
2927 }
2928 
2929 static int default_zonelist_order(void)
2930 {
2931 	int nid, zone_type;
2932 	unsigned long low_kmem_size,total_size;
2933 	struct zone *z;
2934 	int average_size;
2935 	/*
2936          * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
2937 	 * If they are really small and used heavily, the system can fall
2938 	 * into OOM very easily.
2939 	 * This function detect ZONE_DMA/DMA32 size and configures zone order.
2940 	 */
2941 	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2942 	low_kmem_size = 0;
2943 	total_size = 0;
2944 	for_each_online_node(nid) {
2945 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2946 			z = &NODE_DATA(nid)->node_zones[zone_type];
2947 			if (populated_zone(z)) {
2948 				if (zone_type < ZONE_NORMAL)
2949 					low_kmem_size += z->present_pages;
2950 				total_size += z->present_pages;
2951 			} else if (zone_type == ZONE_NORMAL) {
2952 				/*
2953 				 * If any node has only lowmem, then node order
2954 				 * is preferred to allow kernel allocations
2955 				 * locally; otherwise, they can easily infringe
2956 				 * on other nodes when there is an abundance of
2957 				 * lowmem available to allocate from.
2958 				 */
2959 				return ZONELIST_ORDER_NODE;
2960 			}
2961 		}
2962 	}
2963 	if (!low_kmem_size ||  /* there are no DMA area. */
2964 	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2965 		return ZONELIST_ORDER_NODE;
2966 	/*
2967 	 * look into each node's config.
2968   	 * If there is a node whose DMA/DMA32 memory is very big area on
2969  	 * local memory, NODE_ORDER may be suitable.
2970          */
2971 	average_size = total_size /
2972 				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2973 	for_each_online_node(nid) {
2974 		low_kmem_size = 0;
2975 		total_size = 0;
2976 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2977 			z = &NODE_DATA(nid)->node_zones[zone_type];
2978 			if (populated_zone(z)) {
2979 				if (zone_type < ZONE_NORMAL)
2980 					low_kmem_size += z->present_pages;
2981 				total_size += z->present_pages;
2982 			}
2983 		}
2984 		if (low_kmem_size &&
2985 		    total_size > average_size && /* ignore small node */
2986 		    low_kmem_size > total_size * 70/100)
2987 			return ZONELIST_ORDER_NODE;
2988 	}
2989 	return ZONELIST_ORDER_ZONE;
2990 }
2991 
2992 static void set_zonelist_order(void)
2993 {
2994 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2995 		current_zonelist_order = default_zonelist_order();
2996 	else
2997 		current_zonelist_order = user_zonelist_order;
2998 }
2999 
3000 static void build_zonelists(pg_data_t *pgdat)
3001 {
3002 	int j, node, load;
3003 	enum zone_type i;
3004 	nodemask_t used_mask;
3005 	int local_node, prev_node;
3006 	struct zonelist *zonelist;
3007 	int order = current_zonelist_order;
3008 
3009 	/* initialize zonelists */
3010 	for (i = 0; i < MAX_ZONELISTS; i++) {
3011 		zonelist = pgdat->node_zonelists + i;
3012 		zonelist->_zonerefs[0].zone = NULL;
3013 		zonelist->_zonerefs[0].zone_idx = 0;
3014 	}
3015 
3016 	/* NUMA-aware ordering of nodes */
3017 	local_node = pgdat->node_id;
3018 	load = nr_online_nodes;
3019 	prev_node = local_node;
3020 	nodes_clear(used_mask);
3021 
3022 	memset(node_order, 0, sizeof(node_order));
3023 	j = 0;
3024 
3025 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3026 		int distance = node_distance(local_node, node);
3027 
3028 		/*
3029 		 * If another node is sufficiently far away then it is better
3030 		 * to reclaim pages in a zone before going off node.
3031 		 */
3032 		if (distance > RECLAIM_DISTANCE)
3033 			zone_reclaim_mode = 1;
3034 
3035 		/*
3036 		 * We don't want to pressure a particular node.
3037 		 * So adding penalty to the first node in same
3038 		 * distance group to make it round-robin.
3039 		 */
3040 		if (distance != node_distance(local_node, prev_node))
3041 			node_load[node] = load;
3042 
3043 		prev_node = node;
3044 		load--;
3045 		if (order == ZONELIST_ORDER_NODE)
3046 			build_zonelists_in_node_order(pgdat, node);
3047 		else
3048 			node_order[j++] = node;	/* remember order */
3049 	}
3050 
3051 	if (order == ZONELIST_ORDER_ZONE) {
3052 		/* calculate node order -- i.e., DMA last! */
3053 		build_zonelists_in_zone_order(pgdat, j);
3054 	}
3055 
3056 	build_thisnode_zonelists(pgdat);
3057 }
3058 
3059 /* Construct the zonelist performance cache - see further mmzone.h */
3060 static void build_zonelist_cache(pg_data_t *pgdat)
3061 {
3062 	struct zonelist *zonelist;
3063 	struct zonelist_cache *zlc;
3064 	struct zoneref *z;
3065 
3066 	zonelist = &pgdat->node_zonelists[0];
3067 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3068 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3069 	for (z = zonelist->_zonerefs; z->zone; z++)
3070 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3071 }
3072 
3073 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3074 /*
3075  * Return node id of node used for "local" allocations.
3076  * I.e., first node id of first zone in arg node's generic zonelist.
3077  * Used for initializing percpu 'numa_mem', which is used primarily
3078  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3079  */
3080 int local_memory_node(int node)
3081 {
3082 	struct zone *zone;
3083 
3084 	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3085 				   gfp_zone(GFP_KERNEL),
3086 				   NULL,
3087 				   &zone);
3088 	return zone->node;
3089 }
3090 #endif
3091 
3092 #else	/* CONFIG_NUMA */
3093 
3094 static void set_zonelist_order(void)
3095 {
3096 	current_zonelist_order = ZONELIST_ORDER_ZONE;
3097 }
3098 
3099 static void build_zonelists(pg_data_t *pgdat)
3100 {
3101 	int node, local_node;
3102 	enum zone_type j;
3103 	struct zonelist *zonelist;
3104 
3105 	local_node = pgdat->node_id;
3106 
3107 	zonelist = &pgdat->node_zonelists[0];
3108 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3109 
3110 	/*
3111 	 * Now we build the zonelist so that it contains the zones
3112 	 * of all the other nodes.
3113 	 * We don't want to pressure a particular node, so when
3114 	 * building the zones for node N, we make sure that the
3115 	 * zones coming right after the local ones are those from
3116 	 * node N+1 (modulo N)
3117 	 */
3118 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3119 		if (!node_online(node))
3120 			continue;
3121 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3122 							MAX_NR_ZONES - 1);
3123 	}
3124 	for (node = 0; node < local_node; node++) {
3125 		if (!node_online(node))
3126 			continue;
3127 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3128 							MAX_NR_ZONES - 1);
3129 	}
3130 
3131 	zonelist->_zonerefs[j].zone = NULL;
3132 	zonelist->_zonerefs[j].zone_idx = 0;
3133 }
3134 
3135 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3136 static void build_zonelist_cache(pg_data_t *pgdat)
3137 {
3138 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
3139 }
3140 
3141 #endif	/* CONFIG_NUMA */
3142 
3143 /*
3144  * Boot pageset table. One per cpu which is going to be used for all
3145  * zones and all nodes. The parameters will be set in such a way
3146  * that an item put on a list will immediately be handed over to
3147  * the buddy list. This is safe since pageset manipulation is done
3148  * with interrupts disabled.
3149  *
3150  * The boot_pagesets must be kept even after bootup is complete for
3151  * unused processors and/or zones. They do play a role for bootstrapping
3152  * hotplugged processors.
3153  *
3154  * zoneinfo_show() and maybe other functions do
3155  * not check if the processor is online before following the pageset pointer.
3156  * Other parts of the kernel may not check if the zone is available.
3157  */
3158 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3159 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3160 static void setup_zone_pageset(struct zone *zone);
3161 
3162 /*
3163  * Global mutex to protect against size modification of zonelists
3164  * as well as to serialize pageset setup for the new populated zone.
3165  */
3166 DEFINE_MUTEX(zonelists_mutex);
3167 
3168 /* return values int ....just for stop_machine() */
3169 static __init_refok int __build_all_zonelists(void *data)
3170 {
3171 	int nid;
3172 	int cpu;
3173 
3174 #ifdef CONFIG_NUMA
3175 	memset(node_load, 0, sizeof(node_load));
3176 #endif
3177 	for_each_online_node(nid) {
3178 		pg_data_t *pgdat = NODE_DATA(nid);
3179 
3180 		build_zonelists(pgdat);
3181 		build_zonelist_cache(pgdat);
3182 	}
3183 
3184 	/*
3185 	 * Initialize the boot_pagesets that are going to be used
3186 	 * for bootstrapping processors. The real pagesets for
3187 	 * each zone will be allocated later when the per cpu
3188 	 * allocator is available.
3189 	 *
3190 	 * boot_pagesets are used also for bootstrapping offline
3191 	 * cpus if the system is already booted because the pagesets
3192 	 * are needed to initialize allocators on a specific cpu too.
3193 	 * F.e. the percpu allocator needs the page allocator which
3194 	 * needs the percpu allocator in order to allocate its pagesets
3195 	 * (a chicken-egg dilemma).
3196 	 */
3197 	for_each_possible_cpu(cpu) {
3198 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3199 
3200 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3201 		/*
3202 		 * We now know the "local memory node" for each node--
3203 		 * i.e., the node of the first zone in the generic zonelist.
3204 		 * Set up numa_mem percpu variable for on-line cpus.  During
3205 		 * boot, only the boot cpu should be on-line;  we'll init the
3206 		 * secondary cpus' numa_mem as they come on-line.  During
3207 		 * node/memory hotplug, we'll fixup all on-line cpus.
3208 		 */
3209 		if (cpu_online(cpu))
3210 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3211 #endif
3212 	}
3213 
3214 	return 0;
3215 }
3216 
3217 /*
3218  * Called with zonelists_mutex held always
3219  * unless system_state == SYSTEM_BOOTING.
3220  */
3221 void __ref build_all_zonelists(void *data)
3222 {
3223 	set_zonelist_order();
3224 
3225 	if (system_state == SYSTEM_BOOTING) {
3226 		__build_all_zonelists(NULL);
3227 		mminit_verify_zonelist();
3228 		cpuset_init_current_mems_allowed();
3229 	} else {
3230 		/* we have to stop all cpus to guarantee there is no user
3231 		   of zonelist */
3232 #ifdef CONFIG_MEMORY_HOTPLUG
3233 		if (data)
3234 			setup_zone_pageset((struct zone *)data);
3235 #endif
3236 		stop_machine(__build_all_zonelists, NULL, NULL);
3237 		/* cpuset refresh routine should be here */
3238 	}
3239 	vm_total_pages = nr_free_pagecache_pages();
3240 	/*
3241 	 * Disable grouping by mobility if the number of pages in the
3242 	 * system is too low to allow the mechanism to work. It would be
3243 	 * more accurate, but expensive to check per-zone. This check is
3244 	 * made on memory-hotadd so a system can start with mobility
3245 	 * disabled and enable it later
3246 	 */
3247 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3248 		page_group_by_mobility_disabled = 1;
3249 	else
3250 		page_group_by_mobility_disabled = 0;
3251 
3252 	printk("Built %i zonelists in %s order, mobility grouping %s.  "
3253 		"Total pages: %ld\n",
3254 			nr_online_nodes,
3255 			zonelist_order_name[current_zonelist_order],
3256 			page_group_by_mobility_disabled ? "off" : "on",
3257 			vm_total_pages);
3258 #ifdef CONFIG_NUMA
3259 	printk("Policy zone: %s\n", zone_names[policy_zone]);
3260 #endif
3261 }
3262 
3263 /*
3264  * Helper functions to size the waitqueue hash table.
3265  * Essentially these want to choose hash table sizes sufficiently
3266  * large so that collisions trying to wait on pages are rare.
3267  * But in fact, the number of active page waitqueues on typical
3268  * systems is ridiculously low, less than 200. So this is even
3269  * conservative, even though it seems large.
3270  *
3271  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3272  * waitqueues, i.e. the size of the waitq table given the number of pages.
3273  */
3274 #define PAGES_PER_WAITQUEUE	256
3275 
3276 #ifndef CONFIG_MEMORY_HOTPLUG
3277 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3278 {
3279 	unsigned long size = 1;
3280 
3281 	pages /= PAGES_PER_WAITQUEUE;
3282 
3283 	while (size < pages)
3284 		size <<= 1;
3285 
3286 	/*
3287 	 * Once we have dozens or even hundreds of threads sleeping
3288 	 * on IO we've got bigger problems than wait queue collision.
3289 	 * Limit the size of the wait table to a reasonable size.
3290 	 */
3291 	size = min(size, 4096UL);
3292 
3293 	return max(size, 4UL);
3294 }
3295 #else
3296 /*
3297  * A zone's size might be changed by hot-add, so it is not possible to determine
3298  * a suitable size for its wait_table.  So we use the maximum size now.
3299  *
3300  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
3301  *
3302  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
3303  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3304  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
3305  *
3306  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3307  * or more by the traditional way. (See above).  It equals:
3308  *
3309  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
3310  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
3311  *    powerpc (64K page size)             : =  (32G +16M)byte.
3312  */
3313 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3314 {
3315 	return 4096UL;
3316 }
3317 #endif
3318 
3319 /*
3320  * This is an integer logarithm so that shifts can be used later
3321  * to extract the more random high bits from the multiplicative
3322  * hash function before the remainder is taken.
3323  */
3324 static inline unsigned long wait_table_bits(unsigned long size)
3325 {
3326 	return ffz(~size);
3327 }
3328 
3329 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3330 
3331 /*
3332  * Check if a pageblock contains reserved pages
3333  */
3334 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3335 {
3336 	unsigned long pfn;
3337 
3338 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3339 		if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3340 			return 1;
3341 	}
3342 	return 0;
3343 }
3344 
3345 /*
3346  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3347  * of blocks reserved is based on min_wmark_pages(zone). The memory within
3348  * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3349  * higher will lead to a bigger reserve which will get freed as contiguous
3350  * blocks as reclaim kicks in
3351  */
3352 static void setup_zone_migrate_reserve(struct zone *zone)
3353 {
3354 	unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3355 	struct page *page;
3356 	unsigned long block_migratetype;
3357 	int reserve;
3358 
3359 	/* Get the start pfn, end pfn and the number of blocks to reserve */
3360 	start_pfn = zone->zone_start_pfn;
3361 	end_pfn = start_pfn + zone->spanned_pages;
3362 	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3363 							pageblock_order;
3364 
3365 	/*
3366 	 * Reserve blocks are generally in place to help high-order atomic
3367 	 * allocations that are short-lived. A min_free_kbytes value that
3368 	 * would result in more than 2 reserve blocks for atomic allocations
3369 	 * is assumed to be in place to help anti-fragmentation for the
3370 	 * future allocation of hugepages at runtime.
3371 	 */
3372 	reserve = min(2, reserve);
3373 
3374 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3375 		if (!pfn_valid(pfn))
3376 			continue;
3377 		page = pfn_to_page(pfn);
3378 
3379 		/* Watch out for overlapping nodes */
3380 		if (page_to_nid(page) != zone_to_nid(zone))
3381 			continue;
3382 
3383 		/* Blocks with reserved pages will never free, skip them. */
3384 		block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3385 		if (pageblock_is_reserved(pfn, block_end_pfn))
3386 			continue;
3387 
3388 		block_migratetype = get_pageblock_migratetype(page);
3389 
3390 		/* If this block is reserved, account for it */
3391 		if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3392 			reserve--;
3393 			continue;
3394 		}
3395 
3396 		/* Suitable for reserving if this block is movable */
3397 		if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3398 			set_pageblock_migratetype(page, MIGRATE_RESERVE);
3399 			move_freepages_block(zone, page, MIGRATE_RESERVE);
3400 			reserve--;
3401 			continue;
3402 		}
3403 
3404 		/*
3405 		 * If the reserve is met and this is a previous reserved block,
3406 		 * take it back
3407 		 */
3408 		if (block_migratetype == MIGRATE_RESERVE) {
3409 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3410 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
3411 		}
3412 	}
3413 }
3414 
3415 /*
3416  * Initially all pages are reserved - free ones are freed
3417  * up by free_all_bootmem() once the early boot process is
3418  * done. Non-atomic initialization, single-pass.
3419  */
3420 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3421 		unsigned long start_pfn, enum memmap_context context)
3422 {
3423 	struct page *page;
3424 	unsigned long end_pfn = start_pfn + size;
3425 	unsigned long pfn;
3426 	struct zone *z;
3427 
3428 	if (highest_memmap_pfn < end_pfn - 1)
3429 		highest_memmap_pfn = end_pfn - 1;
3430 
3431 	z = &NODE_DATA(nid)->node_zones[zone];
3432 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3433 		/*
3434 		 * There can be holes in boot-time mem_map[]s
3435 		 * handed to this function.  They do not
3436 		 * exist on hotplugged memory.
3437 		 */
3438 		if (context == MEMMAP_EARLY) {
3439 			if (!early_pfn_valid(pfn))
3440 				continue;
3441 			if (!early_pfn_in_nid(pfn, nid))
3442 				continue;
3443 		}
3444 		page = pfn_to_page(pfn);
3445 		set_page_links(page, zone, nid, pfn);
3446 		mminit_verify_page_links(page, zone, nid, pfn);
3447 		init_page_count(page);
3448 		reset_page_mapcount(page);
3449 		SetPageReserved(page);
3450 		/*
3451 		 * Mark the block movable so that blocks are reserved for
3452 		 * movable at startup. This will force kernel allocations
3453 		 * to reserve their blocks rather than leaking throughout
3454 		 * the address space during boot when many long-lived
3455 		 * kernel allocations are made. Later some blocks near
3456 		 * the start are marked MIGRATE_RESERVE by
3457 		 * setup_zone_migrate_reserve()
3458 		 *
3459 		 * bitmap is created for zone's valid pfn range. but memmap
3460 		 * can be created for invalid pages (for alignment)
3461 		 * check here not to call set_pageblock_migratetype() against
3462 		 * pfn out of zone.
3463 		 */
3464 		if ((z->zone_start_pfn <= pfn)
3465 		    && (pfn < z->zone_start_pfn + z->spanned_pages)
3466 		    && !(pfn & (pageblock_nr_pages - 1)))
3467 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3468 
3469 		INIT_LIST_HEAD(&page->lru);
3470 #ifdef WANT_PAGE_VIRTUAL
3471 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
3472 		if (!is_highmem_idx(zone))
3473 			set_page_address(page, __va(pfn << PAGE_SHIFT));
3474 #endif
3475 	}
3476 }
3477 
3478 static void __meminit zone_init_free_lists(struct zone *zone)
3479 {
3480 	int order, t;
3481 	for_each_migratetype_order(order, t) {
3482 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3483 		zone->free_area[order].nr_free = 0;
3484 	}
3485 }
3486 
3487 #ifndef __HAVE_ARCH_MEMMAP_INIT
3488 #define memmap_init(size, nid, zone, start_pfn) \
3489 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3490 #endif
3491 
3492 static int zone_batchsize(struct zone *zone)
3493 {
3494 #ifdef CONFIG_MMU
3495 	int batch;
3496 
3497 	/*
3498 	 * The per-cpu-pages pools are set to around 1000th of the
3499 	 * size of the zone.  But no more than 1/2 of a meg.
3500 	 *
3501 	 * OK, so we don't know how big the cache is.  So guess.
3502 	 */
3503 	batch = zone->present_pages / 1024;
3504 	if (batch * PAGE_SIZE > 512 * 1024)
3505 		batch = (512 * 1024) / PAGE_SIZE;
3506 	batch /= 4;		/* We effectively *= 4 below */
3507 	if (batch < 1)
3508 		batch = 1;
3509 
3510 	/*
3511 	 * Clamp the batch to a 2^n - 1 value. Having a power
3512 	 * of 2 value was found to be more likely to have
3513 	 * suboptimal cache aliasing properties in some cases.
3514 	 *
3515 	 * For example if 2 tasks are alternately allocating
3516 	 * batches of pages, one task can end up with a lot
3517 	 * of pages of one half of the possible page colors
3518 	 * and the other with pages of the other colors.
3519 	 */
3520 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
3521 
3522 	return batch;
3523 
3524 #else
3525 	/* The deferral and batching of frees should be suppressed under NOMMU
3526 	 * conditions.
3527 	 *
3528 	 * The problem is that NOMMU needs to be able to allocate large chunks
3529 	 * of contiguous memory as there's no hardware page translation to
3530 	 * assemble apparent contiguous memory from discontiguous pages.
3531 	 *
3532 	 * Queueing large contiguous runs of pages for batching, however,
3533 	 * causes the pages to actually be freed in smaller chunks.  As there
3534 	 * can be a significant delay between the individual batches being
3535 	 * recycled, this leads to the once large chunks of space being
3536 	 * fragmented and becoming unavailable for high-order allocations.
3537 	 */
3538 	return 0;
3539 #endif
3540 }
3541 
3542 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3543 {
3544 	struct per_cpu_pages *pcp;
3545 	int migratetype;
3546 
3547 	memset(p, 0, sizeof(*p));
3548 
3549 	pcp = &p->pcp;
3550 	pcp->count = 0;
3551 	pcp->high = 6 * batch;
3552 	pcp->batch = max(1UL, 1 * batch);
3553 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3554 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
3555 }
3556 
3557 /*
3558  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3559  * to the value high for the pageset p.
3560  */
3561 
3562 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3563 				unsigned long high)
3564 {
3565 	struct per_cpu_pages *pcp;
3566 
3567 	pcp = &p->pcp;
3568 	pcp->high = high;
3569 	pcp->batch = max(1UL, high/4);
3570 	if ((high/4) > (PAGE_SHIFT * 8))
3571 		pcp->batch = PAGE_SHIFT * 8;
3572 }
3573 
3574 static void setup_zone_pageset(struct zone *zone)
3575 {
3576 	int cpu;
3577 
3578 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
3579 
3580 	for_each_possible_cpu(cpu) {
3581 		struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3582 
3583 		setup_pageset(pcp, zone_batchsize(zone));
3584 
3585 		if (percpu_pagelist_fraction)
3586 			setup_pagelist_highmark(pcp,
3587 				(zone->present_pages /
3588 					percpu_pagelist_fraction));
3589 	}
3590 }
3591 
3592 /*
3593  * Allocate per cpu pagesets and initialize them.
3594  * Before this call only boot pagesets were available.
3595  */
3596 void __init setup_per_cpu_pageset(void)
3597 {
3598 	struct zone *zone;
3599 
3600 	for_each_populated_zone(zone)
3601 		setup_zone_pageset(zone);
3602 }
3603 
3604 static noinline __init_refok
3605 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3606 {
3607 	int i;
3608 	struct pglist_data *pgdat = zone->zone_pgdat;
3609 	size_t alloc_size;
3610 
3611 	/*
3612 	 * The per-page waitqueue mechanism uses hashed waitqueues
3613 	 * per zone.
3614 	 */
3615 	zone->wait_table_hash_nr_entries =
3616 		 wait_table_hash_nr_entries(zone_size_pages);
3617 	zone->wait_table_bits =
3618 		wait_table_bits(zone->wait_table_hash_nr_entries);
3619 	alloc_size = zone->wait_table_hash_nr_entries
3620 					* sizeof(wait_queue_head_t);
3621 
3622 	if (!slab_is_available()) {
3623 		zone->wait_table = (wait_queue_head_t *)
3624 			alloc_bootmem_node_nopanic(pgdat, alloc_size);
3625 	} else {
3626 		/*
3627 		 * This case means that a zone whose size was 0 gets new memory
3628 		 * via memory hot-add.
3629 		 * But it may be the case that a new node was hot-added.  In
3630 		 * this case vmalloc() will not be able to use this new node's
3631 		 * memory - this wait_table must be initialized to use this new
3632 		 * node itself as well.
3633 		 * To use this new node's memory, further consideration will be
3634 		 * necessary.
3635 		 */
3636 		zone->wait_table = vmalloc(alloc_size);
3637 	}
3638 	if (!zone->wait_table)
3639 		return -ENOMEM;
3640 
3641 	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3642 		init_waitqueue_head(zone->wait_table + i);
3643 
3644 	return 0;
3645 }
3646 
3647 static int __zone_pcp_update(void *data)
3648 {
3649 	struct zone *zone = data;
3650 	int cpu;
3651 	unsigned long batch = zone_batchsize(zone), flags;
3652 
3653 	for_each_possible_cpu(cpu) {
3654 		struct per_cpu_pageset *pset;
3655 		struct per_cpu_pages *pcp;
3656 
3657 		pset = per_cpu_ptr(zone->pageset, cpu);
3658 		pcp = &pset->pcp;
3659 
3660 		local_irq_save(flags);
3661 		free_pcppages_bulk(zone, pcp->count, pcp);
3662 		setup_pageset(pset, batch);
3663 		local_irq_restore(flags);
3664 	}
3665 	return 0;
3666 }
3667 
3668 void zone_pcp_update(struct zone *zone)
3669 {
3670 	stop_machine(__zone_pcp_update, zone, NULL);
3671 }
3672 
3673 static __meminit void zone_pcp_init(struct zone *zone)
3674 {
3675 	/*
3676 	 * per cpu subsystem is not up at this point. The following code
3677 	 * relies on the ability of the linker to provide the
3678 	 * offset of a (static) per cpu variable into the per cpu area.
3679 	 */
3680 	zone->pageset = &boot_pageset;
3681 
3682 	if (zone->present_pages)
3683 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
3684 			zone->name, zone->present_pages,
3685 					 zone_batchsize(zone));
3686 }
3687 
3688 __meminit int init_currently_empty_zone(struct zone *zone,
3689 					unsigned long zone_start_pfn,
3690 					unsigned long size,
3691 					enum memmap_context context)
3692 {
3693 	struct pglist_data *pgdat = zone->zone_pgdat;
3694 	int ret;
3695 	ret = zone_wait_table_init(zone, size);
3696 	if (ret)
3697 		return ret;
3698 	pgdat->nr_zones = zone_idx(zone) + 1;
3699 
3700 	zone->zone_start_pfn = zone_start_pfn;
3701 
3702 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
3703 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
3704 			pgdat->node_id,
3705 			(unsigned long)zone_idx(zone),
3706 			zone_start_pfn, (zone_start_pfn + size));
3707 
3708 	zone_init_free_lists(zone);
3709 
3710 	return 0;
3711 }
3712 
3713 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3714 /*
3715  * Basic iterator support. Return the first range of PFNs for a node
3716  * Note: nid == MAX_NUMNODES returns first region regardless of node
3717  */
3718 static int __meminit first_active_region_index_in_nid(int nid)
3719 {
3720 	int i;
3721 
3722 	for (i = 0; i < nr_nodemap_entries; i++)
3723 		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3724 			return i;
3725 
3726 	return -1;
3727 }
3728 
3729 /*
3730  * Basic iterator support. Return the next active range of PFNs for a node
3731  * Note: nid == MAX_NUMNODES returns next region regardless of node
3732  */
3733 static int __meminit next_active_region_index_in_nid(int index, int nid)
3734 {
3735 	for (index = index + 1; index < nr_nodemap_entries; index++)
3736 		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3737 			return index;
3738 
3739 	return -1;
3740 }
3741 
3742 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3743 /*
3744  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3745  * Architectures may implement their own version but if add_active_range()
3746  * was used and there are no special requirements, this is a convenient
3747  * alternative
3748  */
3749 int __meminit __early_pfn_to_nid(unsigned long pfn)
3750 {
3751 	int i;
3752 
3753 	for (i = 0; i < nr_nodemap_entries; i++) {
3754 		unsigned long start_pfn = early_node_map[i].start_pfn;
3755 		unsigned long end_pfn = early_node_map[i].end_pfn;
3756 
3757 		if (start_pfn <= pfn && pfn < end_pfn)
3758 			return early_node_map[i].nid;
3759 	}
3760 	/* This is a memory hole */
3761 	return -1;
3762 }
3763 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3764 
3765 int __meminit early_pfn_to_nid(unsigned long pfn)
3766 {
3767 	int nid;
3768 
3769 	nid = __early_pfn_to_nid(pfn);
3770 	if (nid >= 0)
3771 		return nid;
3772 	/* just returns 0 */
3773 	return 0;
3774 }
3775 
3776 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3777 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3778 {
3779 	int nid;
3780 
3781 	nid = __early_pfn_to_nid(pfn);
3782 	if (nid >= 0 && nid != node)
3783 		return false;
3784 	return true;
3785 }
3786 #endif
3787 
3788 /* Basic iterator support to walk early_node_map[] */
3789 #define for_each_active_range_index_in_nid(i, nid) \
3790 	for (i = first_active_region_index_in_nid(nid); i != -1; \
3791 				i = next_active_region_index_in_nid(i, nid))
3792 
3793 /**
3794  * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3795  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3796  * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3797  *
3798  * If an architecture guarantees that all ranges registered with
3799  * add_active_ranges() contain no holes and may be freed, this
3800  * this function may be used instead of calling free_bootmem() manually.
3801  */
3802 void __init free_bootmem_with_active_regions(int nid,
3803 						unsigned long max_low_pfn)
3804 {
3805 	int i;
3806 
3807 	for_each_active_range_index_in_nid(i, nid) {
3808 		unsigned long size_pages = 0;
3809 		unsigned long end_pfn = early_node_map[i].end_pfn;
3810 
3811 		if (early_node_map[i].start_pfn >= max_low_pfn)
3812 			continue;
3813 
3814 		if (end_pfn > max_low_pfn)
3815 			end_pfn = max_low_pfn;
3816 
3817 		size_pages = end_pfn - early_node_map[i].start_pfn;
3818 		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3819 				PFN_PHYS(early_node_map[i].start_pfn),
3820 				size_pages << PAGE_SHIFT);
3821 	}
3822 }
3823 
3824 #ifdef CONFIG_HAVE_MEMBLOCK
3825 /*
3826  * Basic iterator support. Return the last range of PFNs for a node
3827  * Note: nid == MAX_NUMNODES returns last region regardless of node
3828  */
3829 static int __meminit last_active_region_index_in_nid(int nid)
3830 {
3831 	int i;
3832 
3833 	for (i = nr_nodemap_entries - 1; i >= 0; i--)
3834 		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3835 			return i;
3836 
3837 	return -1;
3838 }
3839 
3840 /*
3841  * Basic iterator support. Return the previous active range of PFNs for a node
3842  * Note: nid == MAX_NUMNODES returns next region regardless of node
3843  */
3844 static int __meminit previous_active_region_index_in_nid(int index, int nid)
3845 {
3846 	for (index = index - 1; index >= 0; index--)
3847 		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3848 			return index;
3849 
3850 	return -1;
3851 }
3852 
3853 #define for_each_active_range_index_in_nid_reverse(i, nid) \
3854 	for (i = last_active_region_index_in_nid(nid); i != -1; \
3855 				i = previous_active_region_index_in_nid(i, nid))
3856 
3857 u64 __init find_memory_core_early(int nid, u64 size, u64 align,
3858 					u64 goal, u64 limit)
3859 {
3860 	int i;
3861 
3862 	/* Need to go over early_node_map to find out good range for node */
3863 	for_each_active_range_index_in_nid_reverse(i, nid) {
3864 		u64 addr;
3865 		u64 ei_start, ei_last;
3866 		u64 final_start, final_end;
3867 
3868 		ei_last = early_node_map[i].end_pfn;
3869 		ei_last <<= PAGE_SHIFT;
3870 		ei_start = early_node_map[i].start_pfn;
3871 		ei_start <<= PAGE_SHIFT;
3872 
3873 		final_start = max(ei_start, goal);
3874 		final_end = min(ei_last, limit);
3875 
3876 		if (final_start >= final_end)
3877 			continue;
3878 
3879 		addr = memblock_find_in_range(final_start, final_end, size, align);
3880 
3881 		if (addr == MEMBLOCK_ERROR)
3882 			continue;
3883 
3884 		return addr;
3885 	}
3886 
3887 	return MEMBLOCK_ERROR;
3888 }
3889 #endif
3890 
3891 int __init add_from_early_node_map(struct range *range, int az,
3892 				   int nr_range, int nid)
3893 {
3894 	int i;
3895 	u64 start, end;
3896 
3897 	/* need to go over early_node_map to find out good range for node */
3898 	for_each_active_range_index_in_nid(i, nid) {
3899 		start = early_node_map[i].start_pfn;
3900 		end = early_node_map[i].end_pfn;
3901 		nr_range = add_range(range, az, nr_range, start, end);
3902 	}
3903 	return nr_range;
3904 }
3905 
3906 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3907 {
3908 	int i;
3909 	int ret;
3910 
3911 	for_each_active_range_index_in_nid(i, nid) {
3912 		ret = work_fn(early_node_map[i].start_pfn,
3913 			      early_node_map[i].end_pfn, data);
3914 		if (ret)
3915 			break;
3916 	}
3917 }
3918 /**
3919  * sparse_memory_present_with_active_regions - Call memory_present for each active range
3920  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3921  *
3922  * If an architecture guarantees that all ranges registered with
3923  * add_active_ranges() contain no holes and may be freed, this
3924  * function may be used instead of calling memory_present() manually.
3925  */
3926 void __init sparse_memory_present_with_active_regions(int nid)
3927 {
3928 	int i;
3929 
3930 	for_each_active_range_index_in_nid(i, nid)
3931 		memory_present(early_node_map[i].nid,
3932 				early_node_map[i].start_pfn,
3933 				early_node_map[i].end_pfn);
3934 }
3935 
3936 /**
3937  * get_pfn_range_for_nid - Return the start and end page frames for a node
3938  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3939  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3940  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3941  *
3942  * It returns the start and end page frame of a node based on information
3943  * provided by an arch calling add_active_range(). If called for a node
3944  * with no available memory, a warning is printed and the start and end
3945  * PFNs will be 0.
3946  */
3947 void __meminit get_pfn_range_for_nid(unsigned int nid,
3948 			unsigned long *start_pfn, unsigned long *end_pfn)
3949 {
3950 	int i;
3951 	*start_pfn = -1UL;
3952 	*end_pfn = 0;
3953 
3954 	for_each_active_range_index_in_nid(i, nid) {
3955 		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3956 		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3957 	}
3958 
3959 	if (*start_pfn == -1UL)
3960 		*start_pfn = 0;
3961 }
3962 
3963 /*
3964  * This finds a zone that can be used for ZONE_MOVABLE pages. The
3965  * assumption is made that zones within a node are ordered in monotonic
3966  * increasing memory addresses so that the "highest" populated zone is used
3967  */
3968 static void __init find_usable_zone_for_movable(void)
3969 {
3970 	int zone_index;
3971 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3972 		if (zone_index == ZONE_MOVABLE)
3973 			continue;
3974 
3975 		if (arch_zone_highest_possible_pfn[zone_index] >
3976 				arch_zone_lowest_possible_pfn[zone_index])
3977 			break;
3978 	}
3979 
3980 	VM_BUG_ON(zone_index == -1);
3981 	movable_zone = zone_index;
3982 }
3983 
3984 /*
3985  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3986  * because it is sized independent of architecture. Unlike the other zones,
3987  * the starting point for ZONE_MOVABLE is not fixed. It may be different
3988  * in each node depending on the size of each node and how evenly kernelcore
3989  * is distributed. This helper function adjusts the zone ranges
3990  * provided by the architecture for a given node by using the end of the
3991  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3992  * zones within a node are in order of monotonic increases memory addresses
3993  */
3994 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3995 					unsigned long zone_type,
3996 					unsigned long node_start_pfn,
3997 					unsigned long node_end_pfn,
3998 					unsigned long *zone_start_pfn,
3999 					unsigned long *zone_end_pfn)
4000 {
4001 	/* Only adjust if ZONE_MOVABLE is on this node */
4002 	if (zone_movable_pfn[nid]) {
4003 		/* Size ZONE_MOVABLE */
4004 		if (zone_type == ZONE_MOVABLE) {
4005 			*zone_start_pfn = zone_movable_pfn[nid];
4006 			*zone_end_pfn = min(node_end_pfn,
4007 				arch_zone_highest_possible_pfn[movable_zone]);
4008 
4009 		/* Adjust for ZONE_MOVABLE starting within this range */
4010 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4011 				*zone_end_pfn > zone_movable_pfn[nid]) {
4012 			*zone_end_pfn = zone_movable_pfn[nid];
4013 
4014 		/* Check if this whole range is within ZONE_MOVABLE */
4015 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
4016 			*zone_start_pfn = *zone_end_pfn;
4017 	}
4018 }
4019 
4020 /*
4021  * Return the number of pages a zone spans in a node, including holes
4022  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4023  */
4024 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4025 					unsigned long zone_type,
4026 					unsigned long *ignored)
4027 {
4028 	unsigned long node_start_pfn, node_end_pfn;
4029 	unsigned long zone_start_pfn, zone_end_pfn;
4030 
4031 	/* Get the start and end of the node and zone */
4032 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4033 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4034 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4035 	adjust_zone_range_for_zone_movable(nid, zone_type,
4036 				node_start_pfn, node_end_pfn,
4037 				&zone_start_pfn, &zone_end_pfn);
4038 
4039 	/* Check that this node has pages within the zone's required range */
4040 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4041 		return 0;
4042 
4043 	/* Move the zone boundaries inside the node if necessary */
4044 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4045 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4046 
4047 	/* Return the spanned pages */
4048 	return zone_end_pfn - zone_start_pfn;
4049 }
4050 
4051 /*
4052  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4053  * then all holes in the requested range will be accounted for.
4054  */
4055 unsigned long __meminit __absent_pages_in_range(int nid,
4056 				unsigned long range_start_pfn,
4057 				unsigned long range_end_pfn)
4058 {
4059 	int i = 0;
4060 	unsigned long prev_end_pfn = 0, hole_pages = 0;
4061 	unsigned long start_pfn;
4062 
4063 	/* Find the end_pfn of the first active range of pfns in the node */
4064 	i = first_active_region_index_in_nid(nid);
4065 	if (i == -1)
4066 		return 0;
4067 
4068 	prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
4069 
4070 	/* Account for ranges before physical memory on this node */
4071 	if (early_node_map[i].start_pfn > range_start_pfn)
4072 		hole_pages = prev_end_pfn - range_start_pfn;
4073 
4074 	/* Find all holes for the zone within the node */
4075 	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
4076 
4077 		/* No need to continue if prev_end_pfn is outside the zone */
4078 		if (prev_end_pfn >= range_end_pfn)
4079 			break;
4080 
4081 		/* Make sure the end of the zone is not within the hole */
4082 		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
4083 		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
4084 
4085 		/* Update the hole size cound and move on */
4086 		if (start_pfn > range_start_pfn) {
4087 			BUG_ON(prev_end_pfn > start_pfn);
4088 			hole_pages += start_pfn - prev_end_pfn;
4089 		}
4090 		prev_end_pfn = early_node_map[i].end_pfn;
4091 	}
4092 
4093 	/* Account for ranges past physical memory on this node */
4094 	if (range_end_pfn > prev_end_pfn)
4095 		hole_pages += range_end_pfn -
4096 				max(range_start_pfn, prev_end_pfn);
4097 
4098 	return hole_pages;
4099 }
4100 
4101 /**
4102  * absent_pages_in_range - Return number of page frames in holes within a range
4103  * @start_pfn: The start PFN to start searching for holes
4104  * @end_pfn: The end PFN to stop searching for holes
4105  *
4106  * It returns the number of pages frames in memory holes within a range.
4107  */
4108 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4109 							unsigned long end_pfn)
4110 {
4111 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4112 }
4113 
4114 /* Return the number of page frames in holes in a zone on a node */
4115 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4116 					unsigned long zone_type,
4117 					unsigned long *ignored)
4118 {
4119 	unsigned long node_start_pfn, node_end_pfn;
4120 	unsigned long zone_start_pfn, zone_end_pfn;
4121 
4122 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4123 	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
4124 							node_start_pfn);
4125 	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
4126 							node_end_pfn);
4127 
4128 	adjust_zone_range_for_zone_movable(nid, zone_type,
4129 			node_start_pfn, node_end_pfn,
4130 			&zone_start_pfn, &zone_end_pfn);
4131 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4132 }
4133 
4134 #else
4135 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4136 					unsigned long zone_type,
4137 					unsigned long *zones_size)
4138 {
4139 	return zones_size[zone_type];
4140 }
4141 
4142 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4143 						unsigned long zone_type,
4144 						unsigned long *zholes_size)
4145 {
4146 	if (!zholes_size)
4147 		return 0;
4148 
4149 	return zholes_size[zone_type];
4150 }
4151 
4152 #endif
4153 
4154 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4155 		unsigned long *zones_size, unsigned long *zholes_size)
4156 {
4157 	unsigned long realtotalpages, totalpages = 0;
4158 	enum zone_type i;
4159 
4160 	for (i = 0; i < MAX_NR_ZONES; i++)
4161 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4162 								zones_size);
4163 	pgdat->node_spanned_pages = totalpages;
4164 
4165 	realtotalpages = totalpages;
4166 	for (i = 0; i < MAX_NR_ZONES; i++)
4167 		realtotalpages -=
4168 			zone_absent_pages_in_node(pgdat->node_id, i,
4169 								zholes_size);
4170 	pgdat->node_present_pages = realtotalpages;
4171 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4172 							realtotalpages);
4173 }
4174 
4175 #ifndef CONFIG_SPARSEMEM
4176 /*
4177  * Calculate the size of the zone->blockflags rounded to an unsigned long
4178  * Start by making sure zonesize is a multiple of pageblock_order by rounding
4179  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4180  * round what is now in bits to nearest long in bits, then return it in
4181  * bytes.
4182  */
4183 static unsigned long __init usemap_size(unsigned long zonesize)
4184 {
4185 	unsigned long usemapsize;
4186 
4187 	usemapsize = roundup(zonesize, pageblock_nr_pages);
4188 	usemapsize = usemapsize >> pageblock_order;
4189 	usemapsize *= NR_PAGEBLOCK_BITS;
4190 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4191 
4192 	return usemapsize / 8;
4193 }
4194 
4195 static void __init setup_usemap(struct pglist_data *pgdat,
4196 				struct zone *zone, unsigned long zonesize)
4197 {
4198 	unsigned long usemapsize = usemap_size(zonesize);
4199 	zone->pageblock_flags = NULL;
4200 	if (usemapsize)
4201 		zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4202 								   usemapsize);
4203 }
4204 #else
4205 static inline void setup_usemap(struct pglist_data *pgdat,
4206 				struct zone *zone, unsigned long zonesize) {}
4207 #endif /* CONFIG_SPARSEMEM */
4208 
4209 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4210 
4211 /* Return a sensible default order for the pageblock size. */
4212 static inline int pageblock_default_order(void)
4213 {
4214 	if (HPAGE_SHIFT > PAGE_SHIFT)
4215 		return HUGETLB_PAGE_ORDER;
4216 
4217 	return MAX_ORDER-1;
4218 }
4219 
4220 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4221 static inline void __init set_pageblock_order(unsigned int order)
4222 {
4223 	/* Check that pageblock_nr_pages has not already been setup */
4224 	if (pageblock_order)
4225 		return;
4226 
4227 	/*
4228 	 * Assume the largest contiguous order of interest is a huge page.
4229 	 * This value may be variable depending on boot parameters on IA64
4230 	 */
4231 	pageblock_order = order;
4232 }
4233 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4234 
4235 /*
4236  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4237  * and pageblock_default_order() are unused as pageblock_order is set
4238  * at compile-time. See include/linux/pageblock-flags.h for the values of
4239  * pageblock_order based on the kernel config
4240  */
4241 static inline int pageblock_default_order(unsigned int order)
4242 {
4243 	return MAX_ORDER-1;
4244 }
4245 #define set_pageblock_order(x)	do {} while (0)
4246 
4247 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4248 
4249 /*
4250  * Set up the zone data structures:
4251  *   - mark all pages reserved
4252  *   - mark all memory queues empty
4253  *   - clear the memory bitmaps
4254  */
4255 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4256 		unsigned long *zones_size, unsigned long *zholes_size)
4257 {
4258 	enum zone_type j;
4259 	int nid = pgdat->node_id;
4260 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
4261 	int ret;
4262 
4263 	pgdat_resize_init(pgdat);
4264 	pgdat->nr_zones = 0;
4265 	init_waitqueue_head(&pgdat->kswapd_wait);
4266 	pgdat->kswapd_max_order = 0;
4267 	pgdat_page_cgroup_init(pgdat);
4268 
4269 	for (j = 0; j < MAX_NR_ZONES; j++) {
4270 		struct zone *zone = pgdat->node_zones + j;
4271 		unsigned long size, realsize, memmap_pages;
4272 		enum lru_list l;
4273 
4274 		size = zone_spanned_pages_in_node(nid, j, zones_size);
4275 		realsize = size - zone_absent_pages_in_node(nid, j,
4276 								zholes_size);
4277 
4278 		/*
4279 		 * Adjust realsize so that it accounts for how much memory
4280 		 * is used by this zone for memmap. This affects the watermark
4281 		 * and per-cpu initialisations
4282 		 */
4283 		memmap_pages =
4284 			PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4285 		if (realsize >= memmap_pages) {
4286 			realsize -= memmap_pages;
4287 			if (memmap_pages)
4288 				printk(KERN_DEBUG
4289 				       "  %s zone: %lu pages used for memmap\n",
4290 				       zone_names[j], memmap_pages);
4291 		} else
4292 			printk(KERN_WARNING
4293 				"  %s zone: %lu pages exceeds realsize %lu\n",
4294 				zone_names[j], memmap_pages, realsize);
4295 
4296 		/* Account for reserved pages */
4297 		if (j == 0 && realsize > dma_reserve) {
4298 			realsize -= dma_reserve;
4299 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
4300 					zone_names[0], dma_reserve);
4301 		}
4302 
4303 		if (!is_highmem_idx(j))
4304 			nr_kernel_pages += realsize;
4305 		nr_all_pages += realsize;
4306 
4307 		zone->spanned_pages = size;
4308 		zone->present_pages = realsize;
4309 #ifdef CONFIG_NUMA
4310 		zone->node = nid;
4311 		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4312 						/ 100;
4313 		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4314 #endif
4315 		zone->name = zone_names[j];
4316 		spin_lock_init(&zone->lock);
4317 		spin_lock_init(&zone->lru_lock);
4318 		zone_seqlock_init(zone);
4319 		zone->zone_pgdat = pgdat;
4320 
4321 		zone_pcp_init(zone);
4322 		for_each_lru(l)
4323 			INIT_LIST_HEAD(&zone->lru[l].list);
4324 		zone->reclaim_stat.recent_rotated[0] = 0;
4325 		zone->reclaim_stat.recent_rotated[1] = 0;
4326 		zone->reclaim_stat.recent_scanned[0] = 0;
4327 		zone->reclaim_stat.recent_scanned[1] = 0;
4328 		zap_zone_vm_stats(zone);
4329 		zone->flags = 0;
4330 		if (!size)
4331 			continue;
4332 
4333 		set_pageblock_order(pageblock_default_order());
4334 		setup_usemap(pgdat, zone, size);
4335 		ret = init_currently_empty_zone(zone, zone_start_pfn,
4336 						size, MEMMAP_EARLY);
4337 		BUG_ON(ret);
4338 		memmap_init(size, nid, j, zone_start_pfn);
4339 		zone_start_pfn += size;
4340 	}
4341 }
4342 
4343 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4344 {
4345 	/* Skip empty nodes */
4346 	if (!pgdat->node_spanned_pages)
4347 		return;
4348 
4349 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4350 	/* ia64 gets its own node_mem_map, before this, without bootmem */
4351 	if (!pgdat->node_mem_map) {
4352 		unsigned long size, start, end;
4353 		struct page *map;
4354 
4355 		/*
4356 		 * The zone's endpoints aren't required to be MAX_ORDER
4357 		 * aligned but the node_mem_map endpoints must be in order
4358 		 * for the buddy allocator to function correctly.
4359 		 */
4360 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4361 		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4362 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
4363 		size =  (end - start) * sizeof(struct page);
4364 		map = alloc_remap(pgdat->node_id, size);
4365 		if (!map)
4366 			map = alloc_bootmem_node_nopanic(pgdat, size);
4367 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4368 	}
4369 #ifndef CONFIG_NEED_MULTIPLE_NODES
4370 	/*
4371 	 * With no DISCONTIG, the global mem_map is just set as node 0's
4372 	 */
4373 	if (pgdat == NODE_DATA(0)) {
4374 		mem_map = NODE_DATA(0)->node_mem_map;
4375 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4376 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4377 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4378 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4379 	}
4380 #endif
4381 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4382 }
4383 
4384 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4385 		unsigned long node_start_pfn, unsigned long *zholes_size)
4386 {
4387 	pg_data_t *pgdat = NODE_DATA(nid);
4388 
4389 	pgdat->node_id = nid;
4390 	pgdat->node_start_pfn = node_start_pfn;
4391 	calculate_node_totalpages(pgdat, zones_size, zholes_size);
4392 
4393 	alloc_node_mem_map(pgdat);
4394 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4395 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4396 		nid, (unsigned long)pgdat,
4397 		(unsigned long)pgdat->node_mem_map);
4398 #endif
4399 
4400 	free_area_init_core(pgdat, zones_size, zholes_size);
4401 }
4402 
4403 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4404 
4405 #if MAX_NUMNODES > 1
4406 /*
4407  * Figure out the number of possible node ids.
4408  */
4409 static void __init setup_nr_node_ids(void)
4410 {
4411 	unsigned int node;
4412 	unsigned int highest = 0;
4413 
4414 	for_each_node_mask(node, node_possible_map)
4415 		highest = node;
4416 	nr_node_ids = highest + 1;
4417 }
4418 #else
4419 static inline void setup_nr_node_ids(void)
4420 {
4421 }
4422 #endif
4423 
4424 /**
4425  * add_active_range - Register a range of PFNs backed by physical memory
4426  * @nid: The node ID the range resides on
4427  * @start_pfn: The start PFN of the available physical memory
4428  * @end_pfn: The end PFN of the available physical memory
4429  *
4430  * These ranges are stored in an early_node_map[] and later used by
4431  * free_area_init_nodes() to calculate zone sizes and holes. If the
4432  * range spans a memory hole, it is up to the architecture to ensure
4433  * the memory is not freed by the bootmem allocator. If possible
4434  * the range being registered will be merged with existing ranges.
4435  */
4436 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4437 						unsigned long end_pfn)
4438 {
4439 	int i;
4440 
4441 	mminit_dprintk(MMINIT_TRACE, "memory_register",
4442 			"Entering add_active_range(%d, %#lx, %#lx) "
4443 			"%d entries of %d used\n",
4444 			nid, start_pfn, end_pfn,
4445 			nr_nodemap_entries, MAX_ACTIVE_REGIONS);
4446 
4447 	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4448 
4449 	/* Merge with existing active regions if possible */
4450 	for (i = 0; i < nr_nodemap_entries; i++) {
4451 		if (early_node_map[i].nid != nid)
4452 			continue;
4453 
4454 		/* Skip if an existing region covers this new one */
4455 		if (start_pfn >= early_node_map[i].start_pfn &&
4456 				end_pfn <= early_node_map[i].end_pfn)
4457 			return;
4458 
4459 		/* Merge forward if suitable */
4460 		if (start_pfn <= early_node_map[i].end_pfn &&
4461 				end_pfn > early_node_map[i].end_pfn) {
4462 			early_node_map[i].end_pfn = end_pfn;
4463 			return;
4464 		}
4465 
4466 		/* Merge backward if suitable */
4467 		if (start_pfn < early_node_map[i].start_pfn &&
4468 				end_pfn >= early_node_map[i].start_pfn) {
4469 			early_node_map[i].start_pfn = start_pfn;
4470 			return;
4471 		}
4472 	}
4473 
4474 	/* Check that early_node_map is large enough */
4475 	if (i >= MAX_ACTIVE_REGIONS) {
4476 		printk(KERN_CRIT "More than %d memory regions, truncating\n",
4477 							MAX_ACTIVE_REGIONS);
4478 		return;
4479 	}
4480 
4481 	early_node_map[i].nid = nid;
4482 	early_node_map[i].start_pfn = start_pfn;
4483 	early_node_map[i].end_pfn = end_pfn;
4484 	nr_nodemap_entries = i + 1;
4485 }
4486 
4487 /**
4488  * remove_active_range - Shrink an existing registered range of PFNs
4489  * @nid: The node id the range is on that should be shrunk
4490  * @start_pfn: The new PFN of the range
4491  * @end_pfn: The new PFN of the range
4492  *
4493  * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4494  * The map is kept near the end physical page range that has already been
4495  * registered. This function allows an arch to shrink an existing registered
4496  * range.
4497  */
4498 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4499 				unsigned long end_pfn)
4500 {
4501 	int i, j;
4502 	int removed = 0;
4503 
4504 	printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4505 			  nid, start_pfn, end_pfn);
4506 
4507 	/* Find the old active region end and shrink */
4508 	for_each_active_range_index_in_nid(i, nid) {
4509 		if (early_node_map[i].start_pfn >= start_pfn &&
4510 		    early_node_map[i].end_pfn <= end_pfn) {
4511 			/* clear it */
4512 			early_node_map[i].start_pfn = 0;
4513 			early_node_map[i].end_pfn = 0;
4514 			removed = 1;
4515 			continue;
4516 		}
4517 		if (early_node_map[i].start_pfn < start_pfn &&
4518 		    early_node_map[i].end_pfn > start_pfn) {
4519 			unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4520 			early_node_map[i].end_pfn = start_pfn;
4521 			if (temp_end_pfn > end_pfn)
4522 				add_active_range(nid, end_pfn, temp_end_pfn);
4523 			continue;
4524 		}
4525 		if (early_node_map[i].start_pfn >= start_pfn &&
4526 		    early_node_map[i].end_pfn > end_pfn &&
4527 		    early_node_map[i].start_pfn < end_pfn) {
4528 			early_node_map[i].start_pfn = end_pfn;
4529 			continue;
4530 		}
4531 	}
4532 
4533 	if (!removed)
4534 		return;
4535 
4536 	/* remove the blank ones */
4537 	for (i = nr_nodemap_entries - 1; i > 0; i--) {
4538 		if (early_node_map[i].nid != nid)
4539 			continue;
4540 		if (early_node_map[i].end_pfn)
4541 			continue;
4542 		/* we found it, get rid of it */
4543 		for (j = i; j < nr_nodemap_entries - 1; j++)
4544 			memcpy(&early_node_map[j], &early_node_map[j+1],
4545 				sizeof(early_node_map[j]));
4546 		j = nr_nodemap_entries - 1;
4547 		memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4548 		nr_nodemap_entries--;
4549 	}
4550 }
4551 
4552 /**
4553  * remove_all_active_ranges - Remove all currently registered regions
4554  *
4555  * During discovery, it may be found that a table like SRAT is invalid
4556  * and an alternative discovery method must be used. This function removes
4557  * all currently registered regions.
4558  */
4559 void __init remove_all_active_ranges(void)
4560 {
4561 	memset(early_node_map, 0, sizeof(early_node_map));
4562 	nr_nodemap_entries = 0;
4563 }
4564 
4565 /* Compare two active node_active_regions */
4566 static int __init cmp_node_active_region(const void *a, const void *b)
4567 {
4568 	struct node_active_region *arange = (struct node_active_region *)a;
4569 	struct node_active_region *brange = (struct node_active_region *)b;
4570 
4571 	/* Done this way to avoid overflows */
4572 	if (arange->start_pfn > brange->start_pfn)
4573 		return 1;
4574 	if (arange->start_pfn < brange->start_pfn)
4575 		return -1;
4576 
4577 	return 0;
4578 }
4579 
4580 /* sort the node_map by start_pfn */
4581 void __init sort_node_map(void)
4582 {
4583 	sort(early_node_map, (size_t)nr_nodemap_entries,
4584 			sizeof(struct node_active_region),
4585 			cmp_node_active_region, NULL);
4586 }
4587 
4588 /**
4589  * node_map_pfn_alignment - determine the maximum internode alignment
4590  *
4591  * This function should be called after node map is populated and sorted.
4592  * It calculates the maximum power of two alignment which can distinguish
4593  * all the nodes.
4594  *
4595  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4596  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
4597  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
4598  * shifted, 1GiB is enough and this function will indicate so.
4599  *
4600  * This is used to test whether pfn -> nid mapping of the chosen memory
4601  * model has fine enough granularity to avoid incorrect mapping for the
4602  * populated node map.
4603  *
4604  * Returns the determined alignment in pfn's.  0 if there is no alignment
4605  * requirement (single node).
4606  */
4607 unsigned long __init node_map_pfn_alignment(void)
4608 {
4609 	unsigned long accl_mask = 0, last_end = 0;
4610 	int last_nid = -1;
4611 	int i;
4612 
4613 	for_each_active_range_index_in_nid(i, MAX_NUMNODES) {
4614 		int nid = early_node_map[i].nid;
4615 		unsigned long start = early_node_map[i].start_pfn;
4616 		unsigned long end = early_node_map[i].end_pfn;
4617 		unsigned long mask;
4618 
4619 		if (!start || last_nid < 0 || last_nid == nid) {
4620 			last_nid = nid;
4621 			last_end = end;
4622 			continue;
4623 		}
4624 
4625 		/*
4626 		 * Start with a mask granular enough to pin-point to the
4627 		 * start pfn and tick off bits one-by-one until it becomes
4628 		 * too coarse to separate the current node from the last.
4629 		 */
4630 		mask = ~((1 << __ffs(start)) - 1);
4631 		while (mask && last_end <= (start & (mask << 1)))
4632 			mask <<= 1;
4633 
4634 		/* accumulate all internode masks */
4635 		accl_mask |= mask;
4636 	}
4637 
4638 	/* convert mask to number of pages */
4639 	return ~accl_mask + 1;
4640 }
4641 
4642 /* Find the lowest pfn for a node */
4643 static unsigned long __init find_min_pfn_for_node(int nid)
4644 {
4645 	int i;
4646 	unsigned long min_pfn = ULONG_MAX;
4647 
4648 	/* Assuming a sorted map, the first range found has the starting pfn */
4649 	for_each_active_range_index_in_nid(i, nid)
4650 		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4651 
4652 	if (min_pfn == ULONG_MAX) {
4653 		printk(KERN_WARNING
4654 			"Could not find start_pfn for node %d\n", nid);
4655 		return 0;
4656 	}
4657 
4658 	return min_pfn;
4659 }
4660 
4661 /**
4662  * find_min_pfn_with_active_regions - Find the minimum PFN registered
4663  *
4664  * It returns the minimum PFN based on information provided via
4665  * add_active_range().
4666  */
4667 unsigned long __init find_min_pfn_with_active_regions(void)
4668 {
4669 	return find_min_pfn_for_node(MAX_NUMNODES);
4670 }
4671 
4672 /*
4673  * early_calculate_totalpages()
4674  * Sum pages in active regions for movable zone.
4675  * Populate N_HIGH_MEMORY for calculating usable_nodes.
4676  */
4677 static unsigned long __init early_calculate_totalpages(void)
4678 {
4679 	int i;
4680 	unsigned long totalpages = 0;
4681 
4682 	for (i = 0; i < nr_nodemap_entries; i++) {
4683 		unsigned long pages = early_node_map[i].end_pfn -
4684 						early_node_map[i].start_pfn;
4685 		totalpages += pages;
4686 		if (pages)
4687 			node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4688 	}
4689   	return totalpages;
4690 }
4691 
4692 /*
4693  * Find the PFN the Movable zone begins in each node. Kernel memory
4694  * is spread evenly between nodes as long as the nodes have enough
4695  * memory. When they don't, some nodes will have more kernelcore than
4696  * others
4697  */
4698 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4699 {
4700 	int i, nid;
4701 	unsigned long usable_startpfn;
4702 	unsigned long kernelcore_node, kernelcore_remaining;
4703 	/* save the state before borrow the nodemask */
4704 	nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4705 	unsigned long totalpages = early_calculate_totalpages();
4706 	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4707 
4708 	/*
4709 	 * If movablecore was specified, calculate what size of
4710 	 * kernelcore that corresponds so that memory usable for
4711 	 * any allocation type is evenly spread. If both kernelcore
4712 	 * and movablecore are specified, then the value of kernelcore
4713 	 * will be used for required_kernelcore if it's greater than
4714 	 * what movablecore would have allowed.
4715 	 */
4716 	if (required_movablecore) {
4717 		unsigned long corepages;
4718 
4719 		/*
4720 		 * Round-up so that ZONE_MOVABLE is at least as large as what
4721 		 * was requested by the user
4722 		 */
4723 		required_movablecore =
4724 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4725 		corepages = totalpages - required_movablecore;
4726 
4727 		required_kernelcore = max(required_kernelcore, corepages);
4728 	}
4729 
4730 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
4731 	if (!required_kernelcore)
4732 		goto out;
4733 
4734 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4735 	find_usable_zone_for_movable();
4736 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4737 
4738 restart:
4739 	/* Spread kernelcore memory as evenly as possible throughout nodes */
4740 	kernelcore_node = required_kernelcore / usable_nodes;
4741 	for_each_node_state(nid, N_HIGH_MEMORY) {
4742 		/*
4743 		 * Recalculate kernelcore_node if the division per node
4744 		 * now exceeds what is necessary to satisfy the requested
4745 		 * amount of memory for the kernel
4746 		 */
4747 		if (required_kernelcore < kernelcore_node)
4748 			kernelcore_node = required_kernelcore / usable_nodes;
4749 
4750 		/*
4751 		 * As the map is walked, we track how much memory is usable
4752 		 * by the kernel using kernelcore_remaining. When it is
4753 		 * 0, the rest of the node is usable by ZONE_MOVABLE
4754 		 */
4755 		kernelcore_remaining = kernelcore_node;
4756 
4757 		/* Go through each range of PFNs within this node */
4758 		for_each_active_range_index_in_nid(i, nid) {
4759 			unsigned long start_pfn, end_pfn;
4760 			unsigned long size_pages;
4761 
4762 			start_pfn = max(early_node_map[i].start_pfn,
4763 						zone_movable_pfn[nid]);
4764 			end_pfn = early_node_map[i].end_pfn;
4765 			if (start_pfn >= end_pfn)
4766 				continue;
4767 
4768 			/* Account for what is only usable for kernelcore */
4769 			if (start_pfn < usable_startpfn) {
4770 				unsigned long kernel_pages;
4771 				kernel_pages = min(end_pfn, usable_startpfn)
4772 								- start_pfn;
4773 
4774 				kernelcore_remaining -= min(kernel_pages,
4775 							kernelcore_remaining);
4776 				required_kernelcore -= min(kernel_pages,
4777 							required_kernelcore);
4778 
4779 				/* Continue if range is now fully accounted */
4780 				if (end_pfn <= usable_startpfn) {
4781 
4782 					/*
4783 					 * Push zone_movable_pfn to the end so
4784 					 * that if we have to rebalance
4785 					 * kernelcore across nodes, we will
4786 					 * not double account here
4787 					 */
4788 					zone_movable_pfn[nid] = end_pfn;
4789 					continue;
4790 				}
4791 				start_pfn = usable_startpfn;
4792 			}
4793 
4794 			/*
4795 			 * The usable PFN range for ZONE_MOVABLE is from
4796 			 * start_pfn->end_pfn. Calculate size_pages as the
4797 			 * number of pages used as kernelcore
4798 			 */
4799 			size_pages = end_pfn - start_pfn;
4800 			if (size_pages > kernelcore_remaining)
4801 				size_pages = kernelcore_remaining;
4802 			zone_movable_pfn[nid] = start_pfn + size_pages;
4803 
4804 			/*
4805 			 * Some kernelcore has been met, update counts and
4806 			 * break if the kernelcore for this node has been
4807 			 * satisified
4808 			 */
4809 			required_kernelcore -= min(required_kernelcore,
4810 								size_pages);
4811 			kernelcore_remaining -= size_pages;
4812 			if (!kernelcore_remaining)
4813 				break;
4814 		}
4815 	}
4816 
4817 	/*
4818 	 * If there is still required_kernelcore, we do another pass with one
4819 	 * less node in the count. This will push zone_movable_pfn[nid] further
4820 	 * along on the nodes that still have memory until kernelcore is
4821 	 * satisified
4822 	 */
4823 	usable_nodes--;
4824 	if (usable_nodes && required_kernelcore > usable_nodes)
4825 		goto restart;
4826 
4827 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4828 	for (nid = 0; nid < MAX_NUMNODES; nid++)
4829 		zone_movable_pfn[nid] =
4830 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4831 
4832 out:
4833 	/* restore the node_state */
4834 	node_states[N_HIGH_MEMORY] = saved_node_state;
4835 }
4836 
4837 /* Any regular memory on that node ? */
4838 static void check_for_regular_memory(pg_data_t *pgdat)
4839 {
4840 #ifdef CONFIG_HIGHMEM
4841 	enum zone_type zone_type;
4842 
4843 	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4844 		struct zone *zone = &pgdat->node_zones[zone_type];
4845 		if (zone->present_pages)
4846 			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4847 	}
4848 #endif
4849 }
4850 
4851 /**
4852  * free_area_init_nodes - Initialise all pg_data_t and zone data
4853  * @max_zone_pfn: an array of max PFNs for each zone
4854  *
4855  * This will call free_area_init_node() for each active node in the system.
4856  * Using the page ranges provided by add_active_range(), the size of each
4857  * zone in each node and their holes is calculated. If the maximum PFN
4858  * between two adjacent zones match, it is assumed that the zone is empty.
4859  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4860  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4861  * starts where the previous one ended. For example, ZONE_DMA32 starts
4862  * at arch_max_dma_pfn.
4863  */
4864 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4865 {
4866 	unsigned long nid;
4867 	int i;
4868 
4869 	/* Sort early_node_map as initialisation assumes it is sorted */
4870 	sort_node_map();
4871 
4872 	/* Record where the zone boundaries are */
4873 	memset(arch_zone_lowest_possible_pfn, 0,
4874 				sizeof(arch_zone_lowest_possible_pfn));
4875 	memset(arch_zone_highest_possible_pfn, 0,
4876 				sizeof(arch_zone_highest_possible_pfn));
4877 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4878 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4879 	for (i = 1; i < MAX_NR_ZONES; i++) {
4880 		if (i == ZONE_MOVABLE)
4881 			continue;
4882 		arch_zone_lowest_possible_pfn[i] =
4883 			arch_zone_highest_possible_pfn[i-1];
4884 		arch_zone_highest_possible_pfn[i] =
4885 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4886 	}
4887 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4888 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4889 
4890 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
4891 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4892 	find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4893 
4894 	/* Print out the zone ranges */
4895 	printk("Zone PFN ranges:\n");
4896 	for (i = 0; i < MAX_NR_ZONES; i++) {
4897 		if (i == ZONE_MOVABLE)
4898 			continue;
4899 		printk("  %-8s ", zone_names[i]);
4900 		if (arch_zone_lowest_possible_pfn[i] ==
4901 				arch_zone_highest_possible_pfn[i])
4902 			printk("empty\n");
4903 		else
4904 			printk("%0#10lx -> %0#10lx\n",
4905 				arch_zone_lowest_possible_pfn[i],
4906 				arch_zone_highest_possible_pfn[i]);
4907 	}
4908 
4909 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
4910 	printk("Movable zone start PFN for each node\n");
4911 	for (i = 0; i < MAX_NUMNODES; i++) {
4912 		if (zone_movable_pfn[i])
4913 			printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
4914 	}
4915 
4916 	/* Print out the early_node_map[] */
4917 	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4918 	for (i = 0; i < nr_nodemap_entries; i++)
4919 		printk("  %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4920 						early_node_map[i].start_pfn,
4921 						early_node_map[i].end_pfn);
4922 
4923 	/* Initialise every node */
4924 	mminit_verify_pageflags_layout();
4925 	setup_nr_node_ids();
4926 	for_each_online_node(nid) {
4927 		pg_data_t *pgdat = NODE_DATA(nid);
4928 		free_area_init_node(nid, NULL,
4929 				find_min_pfn_for_node(nid), NULL);
4930 
4931 		/* Any memory on that node */
4932 		if (pgdat->node_present_pages)
4933 			node_set_state(nid, N_HIGH_MEMORY);
4934 		check_for_regular_memory(pgdat);
4935 	}
4936 }
4937 
4938 static int __init cmdline_parse_core(char *p, unsigned long *core)
4939 {
4940 	unsigned long long coremem;
4941 	if (!p)
4942 		return -EINVAL;
4943 
4944 	coremem = memparse(p, &p);
4945 	*core = coremem >> PAGE_SHIFT;
4946 
4947 	/* Paranoid check that UL is enough for the coremem value */
4948 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4949 
4950 	return 0;
4951 }
4952 
4953 /*
4954  * kernelcore=size sets the amount of memory for use for allocations that
4955  * cannot be reclaimed or migrated.
4956  */
4957 static int __init cmdline_parse_kernelcore(char *p)
4958 {
4959 	return cmdline_parse_core(p, &required_kernelcore);
4960 }
4961 
4962 /*
4963  * movablecore=size sets the amount of memory for use for allocations that
4964  * can be reclaimed or migrated.
4965  */
4966 static int __init cmdline_parse_movablecore(char *p)
4967 {
4968 	return cmdline_parse_core(p, &required_movablecore);
4969 }
4970 
4971 early_param("kernelcore", cmdline_parse_kernelcore);
4972 early_param("movablecore", cmdline_parse_movablecore);
4973 
4974 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4975 
4976 /**
4977  * set_dma_reserve - set the specified number of pages reserved in the first zone
4978  * @new_dma_reserve: The number of pages to mark reserved
4979  *
4980  * The per-cpu batchsize and zone watermarks are determined by present_pages.
4981  * In the DMA zone, a significant percentage may be consumed by kernel image
4982  * and other unfreeable allocations which can skew the watermarks badly. This
4983  * function may optionally be used to account for unfreeable pages in the
4984  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4985  * smaller per-cpu batchsize.
4986  */
4987 void __init set_dma_reserve(unsigned long new_dma_reserve)
4988 {
4989 	dma_reserve = new_dma_reserve;
4990 }
4991 
4992 void __init free_area_init(unsigned long *zones_size)
4993 {
4994 	free_area_init_node(0, zones_size,
4995 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4996 }
4997 
4998 static int page_alloc_cpu_notify(struct notifier_block *self,
4999 				 unsigned long action, void *hcpu)
5000 {
5001 	int cpu = (unsigned long)hcpu;
5002 
5003 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5004 		drain_pages(cpu);
5005 
5006 		/*
5007 		 * Spill the event counters of the dead processor
5008 		 * into the current processors event counters.
5009 		 * This artificially elevates the count of the current
5010 		 * processor.
5011 		 */
5012 		vm_events_fold_cpu(cpu);
5013 
5014 		/*
5015 		 * Zero the differential counters of the dead processor
5016 		 * so that the vm statistics are consistent.
5017 		 *
5018 		 * This is only okay since the processor is dead and cannot
5019 		 * race with what we are doing.
5020 		 */
5021 		refresh_cpu_vm_stats(cpu);
5022 	}
5023 	return NOTIFY_OK;
5024 }
5025 
5026 void __init page_alloc_init(void)
5027 {
5028 	hotcpu_notifier(page_alloc_cpu_notify, 0);
5029 }
5030 
5031 /*
5032  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5033  *	or min_free_kbytes changes.
5034  */
5035 static void calculate_totalreserve_pages(void)
5036 {
5037 	struct pglist_data *pgdat;
5038 	unsigned long reserve_pages = 0;
5039 	enum zone_type i, j;
5040 
5041 	for_each_online_pgdat(pgdat) {
5042 		for (i = 0; i < MAX_NR_ZONES; i++) {
5043 			struct zone *zone = pgdat->node_zones + i;
5044 			unsigned long max = 0;
5045 
5046 			/* Find valid and maximum lowmem_reserve in the zone */
5047 			for (j = i; j < MAX_NR_ZONES; j++) {
5048 				if (zone->lowmem_reserve[j] > max)
5049 					max = zone->lowmem_reserve[j];
5050 			}
5051 
5052 			/* we treat the high watermark as reserved pages. */
5053 			max += high_wmark_pages(zone);
5054 
5055 			if (max > zone->present_pages)
5056 				max = zone->present_pages;
5057 			reserve_pages += max;
5058 		}
5059 	}
5060 	totalreserve_pages = reserve_pages;
5061 }
5062 
5063 /*
5064  * setup_per_zone_lowmem_reserve - called whenever
5065  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
5066  *	has a correct pages reserved value, so an adequate number of
5067  *	pages are left in the zone after a successful __alloc_pages().
5068  */
5069 static void setup_per_zone_lowmem_reserve(void)
5070 {
5071 	struct pglist_data *pgdat;
5072 	enum zone_type j, idx;
5073 
5074 	for_each_online_pgdat(pgdat) {
5075 		for (j = 0; j < MAX_NR_ZONES; j++) {
5076 			struct zone *zone = pgdat->node_zones + j;
5077 			unsigned long present_pages = zone->present_pages;
5078 
5079 			zone->lowmem_reserve[j] = 0;
5080 
5081 			idx = j;
5082 			while (idx) {
5083 				struct zone *lower_zone;
5084 
5085 				idx--;
5086 
5087 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
5088 					sysctl_lowmem_reserve_ratio[idx] = 1;
5089 
5090 				lower_zone = pgdat->node_zones + idx;
5091 				lower_zone->lowmem_reserve[j] = present_pages /
5092 					sysctl_lowmem_reserve_ratio[idx];
5093 				present_pages += lower_zone->present_pages;
5094 			}
5095 		}
5096 	}
5097 
5098 	/* update totalreserve_pages */
5099 	calculate_totalreserve_pages();
5100 }
5101 
5102 /**
5103  * setup_per_zone_wmarks - called when min_free_kbytes changes
5104  * or when memory is hot-{added|removed}
5105  *
5106  * Ensures that the watermark[min,low,high] values for each zone are set
5107  * correctly with respect to min_free_kbytes.
5108  */
5109 void setup_per_zone_wmarks(void)
5110 {
5111 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5112 	unsigned long lowmem_pages = 0;
5113 	struct zone *zone;
5114 	unsigned long flags;
5115 
5116 	/* Calculate total number of !ZONE_HIGHMEM pages */
5117 	for_each_zone(zone) {
5118 		if (!is_highmem(zone))
5119 			lowmem_pages += zone->present_pages;
5120 	}
5121 
5122 	for_each_zone(zone) {
5123 		u64 tmp;
5124 
5125 		spin_lock_irqsave(&zone->lock, flags);
5126 		tmp = (u64)pages_min * zone->present_pages;
5127 		do_div(tmp, lowmem_pages);
5128 		if (is_highmem(zone)) {
5129 			/*
5130 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5131 			 * need highmem pages, so cap pages_min to a small
5132 			 * value here.
5133 			 *
5134 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5135 			 * deltas controls asynch page reclaim, and so should
5136 			 * not be capped for highmem.
5137 			 */
5138 			int min_pages;
5139 
5140 			min_pages = zone->present_pages / 1024;
5141 			if (min_pages < SWAP_CLUSTER_MAX)
5142 				min_pages = SWAP_CLUSTER_MAX;
5143 			if (min_pages > 128)
5144 				min_pages = 128;
5145 			zone->watermark[WMARK_MIN] = min_pages;
5146 		} else {
5147 			/*
5148 			 * If it's a lowmem zone, reserve a number of pages
5149 			 * proportionate to the zone's size.
5150 			 */
5151 			zone->watermark[WMARK_MIN] = tmp;
5152 		}
5153 
5154 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
5155 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5156 		setup_zone_migrate_reserve(zone);
5157 		spin_unlock_irqrestore(&zone->lock, flags);
5158 	}
5159 
5160 	/* update totalreserve_pages */
5161 	calculate_totalreserve_pages();
5162 }
5163 
5164 /*
5165  * The inactive anon list should be small enough that the VM never has to
5166  * do too much work, but large enough that each inactive page has a chance
5167  * to be referenced again before it is swapped out.
5168  *
5169  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5170  * INACTIVE_ANON pages on this zone's LRU, maintained by the
5171  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5172  * the anonymous pages are kept on the inactive list.
5173  *
5174  * total     target    max
5175  * memory    ratio     inactive anon
5176  * -------------------------------------
5177  *   10MB       1         5MB
5178  *  100MB       1        50MB
5179  *    1GB       3       250MB
5180  *   10GB      10       0.9GB
5181  *  100GB      31         3GB
5182  *    1TB     101        10GB
5183  *   10TB     320        32GB
5184  */
5185 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5186 {
5187 	unsigned int gb, ratio;
5188 
5189 	/* Zone size in gigabytes */
5190 	gb = zone->present_pages >> (30 - PAGE_SHIFT);
5191 	if (gb)
5192 		ratio = int_sqrt(10 * gb);
5193 	else
5194 		ratio = 1;
5195 
5196 	zone->inactive_ratio = ratio;
5197 }
5198 
5199 static void __meminit setup_per_zone_inactive_ratio(void)
5200 {
5201 	struct zone *zone;
5202 
5203 	for_each_zone(zone)
5204 		calculate_zone_inactive_ratio(zone);
5205 }
5206 
5207 /*
5208  * Initialise min_free_kbytes.
5209  *
5210  * For small machines we want it small (128k min).  For large machines
5211  * we want it large (64MB max).  But it is not linear, because network
5212  * bandwidth does not increase linearly with machine size.  We use
5213  *
5214  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5215  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5216  *
5217  * which yields
5218  *
5219  * 16MB:	512k
5220  * 32MB:	724k
5221  * 64MB:	1024k
5222  * 128MB:	1448k
5223  * 256MB:	2048k
5224  * 512MB:	2896k
5225  * 1024MB:	4096k
5226  * 2048MB:	5792k
5227  * 4096MB:	8192k
5228  * 8192MB:	11584k
5229  * 16384MB:	16384k
5230  */
5231 int __meminit init_per_zone_wmark_min(void)
5232 {
5233 	unsigned long lowmem_kbytes;
5234 
5235 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5236 
5237 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5238 	if (min_free_kbytes < 128)
5239 		min_free_kbytes = 128;
5240 	if (min_free_kbytes > 65536)
5241 		min_free_kbytes = 65536;
5242 	setup_per_zone_wmarks();
5243 	refresh_zone_stat_thresholds();
5244 	setup_per_zone_lowmem_reserve();
5245 	setup_per_zone_inactive_ratio();
5246 	return 0;
5247 }
5248 module_init(init_per_zone_wmark_min)
5249 
5250 /*
5251  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5252  *	that we can call two helper functions whenever min_free_kbytes
5253  *	changes.
5254  */
5255 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5256 	void __user *buffer, size_t *length, loff_t *ppos)
5257 {
5258 	proc_dointvec(table, write, buffer, length, ppos);
5259 	if (write)
5260 		setup_per_zone_wmarks();
5261 	return 0;
5262 }
5263 
5264 #ifdef CONFIG_NUMA
5265 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5266 	void __user *buffer, size_t *length, loff_t *ppos)
5267 {
5268 	struct zone *zone;
5269 	int rc;
5270 
5271 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5272 	if (rc)
5273 		return rc;
5274 
5275 	for_each_zone(zone)
5276 		zone->min_unmapped_pages = (zone->present_pages *
5277 				sysctl_min_unmapped_ratio) / 100;
5278 	return 0;
5279 }
5280 
5281 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5282 	void __user *buffer, size_t *length, loff_t *ppos)
5283 {
5284 	struct zone *zone;
5285 	int rc;
5286 
5287 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5288 	if (rc)
5289 		return rc;
5290 
5291 	for_each_zone(zone)
5292 		zone->min_slab_pages = (zone->present_pages *
5293 				sysctl_min_slab_ratio) / 100;
5294 	return 0;
5295 }
5296 #endif
5297 
5298 /*
5299  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5300  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5301  *	whenever sysctl_lowmem_reserve_ratio changes.
5302  *
5303  * The reserve ratio obviously has absolutely no relation with the
5304  * minimum watermarks. The lowmem reserve ratio can only make sense
5305  * if in function of the boot time zone sizes.
5306  */
5307 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5308 	void __user *buffer, size_t *length, loff_t *ppos)
5309 {
5310 	proc_dointvec_minmax(table, write, buffer, length, ppos);
5311 	setup_per_zone_lowmem_reserve();
5312 	return 0;
5313 }
5314 
5315 /*
5316  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5317  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
5318  * can have before it gets flushed back to buddy allocator.
5319  */
5320 
5321 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5322 	void __user *buffer, size_t *length, loff_t *ppos)
5323 {
5324 	struct zone *zone;
5325 	unsigned int cpu;
5326 	int ret;
5327 
5328 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5329 	if (!write || (ret == -EINVAL))
5330 		return ret;
5331 	for_each_populated_zone(zone) {
5332 		for_each_possible_cpu(cpu) {
5333 			unsigned long  high;
5334 			high = zone->present_pages / percpu_pagelist_fraction;
5335 			setup_pagelist_highmark(
5336 				per_cpu_ptr(zone->pageset, cpu), high);
5337 		}
5338 	}
5339 	return 0;
5340 }
5341 
5342 int hashdist = HASHDIST_DEFAULT;
5343 
5344 #ifdef CONFIG_NUMA
5345 static int __init set_hashdist(char *str)
5346 {
5347 	if (!str)
5348 		return 0;
5349 	hashdist = simple_strtoul(str, &str, 0);
5350 	return 1;
5351 }
5352 __setup("hashdist=", set_hashdist);
5353 #endif
5354 
5355 /*
5356  * allocate a large system hash table from bootmem
5357  * - it is assumed that the hash table must contain an exact power-of-2
5358  *   quantity of entries
5359  * - limit is the number of hash buckets, not the total allocation size
5360  */
5361 void *__init alloc_large_system_hash(const char *tablename,
5362 				     unsigned long bucketsize,
5363 				     unsigned long numentries,
5364 				     int scale,
5365 				     int flags,
5366 				     unsigned int *_hash_shift,
5367 				     unsigned int *_hash_mask,
5368 				     unsigned long limit)
5369 {
5370 	unsigned long long max = limit;
5371 	unsigned long log2qty, size;
5372 	void *table = NULL;
5373 
5374 	/* allow the kernel cmdline to have a say */
5375 	if (!numentries) {
5376 		/* round applicable memory size up to nearest megabyte */
5377 		numentries = nr_kernel_pages;
5378 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5379 		numentries >>= 20 - PAGE_SHIFT;
5380 		numentries <<= 20 - PAGE_SHIFT;
5381 
5382 		/* limit to 1 bucket per 2^scale bytes of low memory */
5383 		if (scale > PAGE_SHIFT)
5384 			numentries >>= (scale - PAGE_SHIFT);
5385 		else
5386 			numentries <<= (PAGE_SHIFT - scale);
5387 
5388 		/* Make sure we've got at least a 0-order allocation.. */
5389 		if (unlikely(flags & HASH_SMALL)) {
5390 			/* Makes no sense without HASH_EARLY */
5391 			WARN_ON(!(flags & HASH_EARLY));
5392 			if (!(numentries >> *_hash_shift)) {
5393 				numentries = 1UL << *_hash_shift;
5394 				BUG_ON(!numentries);
5395 			}
5396 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5397 			numentries = PAGE_SIZE / bucketsize;
5398 	}
5399 	numentries = roundup_pow_of_two(numentries);
5400 
5401 	/* limit allocation size to 1/16 total memory by default */
5402 	if (max == 0) {
5403 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5404 		do_div(max, bucketsize);
5405 	}
5406 
5407 	if (numentries > max)
5408 		numentries = max;
5409 
5410 	log2qty = ilog2(numentries);
5411 
5412 	do {
5413 		size = bucketsize << log2qty;
5414 		if (flags & HASH_EARLY)
5415 			table = alloc_bootmem_nopanic(size);
5416 		else if (hashdist)
5417 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5418 		else {
5419 			/*
5420 			 * If bucketsize is not a power-of-two, we may free
5421 			 * some pages at the end of hash table which
5422 			 * alloc_pages_exact() automatically does
5423 			 */
5424 			if (get_order(size) < MAX_ORDER) {
5425 				table = alloc_pages_exact(size, GFP_ATOMIC);
5426 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5427 			}
5428 		}
5429 	} while (!table && size > PAGE_SIZE && --log2qty);
5430 
5431 	if (!table)
5432 		panic("Failed to allocate %s hash table\n", tablename);
5433 
5434 	printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5435 	       tablename,
5436 	       (1UL << log2qty),
5437 	       ilog2(size) - PAGE_SHIFT,
5438 	       size);
5439 
5440 	if (_hash_shift)
5441 		*_hash_shift = log2qty;
5442 	if (_hash_mask)
5443 		*_hash_mask = (1 << log2qty) - 1;
5444 
5445 	return table;
5446 }
5447 
5448 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5449 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5450 							unsigned long pfn)
5451 {
5452 #ifdef CONFIG_SPARSEMEM
5453 	return __pfn_to_section(pfn)->pageblock_flags;
5454 #else
5455 	return zone->pageblock_flags;
5456 #endif /* CONFIG_SPARSEMEM */
5457 }
5458 
5459 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5460 {
5461 #ifdef CONFIG_SPARSEMEM
5462 	pfn &= (PAGES_PER_SECTION-1);
5463 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5464 #else
5465 	pfn = pfn - zone->zone_start_pfn;
5466 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5467 #endif /* CONFIG_SPARSEMEM */
5468 }
5469 
5470 /**
5471  * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5472  * @page: The page within the block of interest
5473  * @start_bitidx: The first bit of interest to retrieve
5474  * @end_bitidx: The last bit of interest
5475  * returns pageblock_bits flags
5476  */
5477 unsigned long get_pageblock_flags_group(struct page *page,
5478 					int start_bitidx, int end_bitidx)
5479 {
5480 	struct zone *zone;
5481 	unsigned long *bitmap;
5482 	unsigned long pfn, bitidx;
5483 	unsigned long flags = 0;
5484 	unsigned long value = 1;
5485 
5486 	zone = page_zone(page);
5487 	pfn = page_to_pfn(page);
5488 	bitmap = get_pageblock_bitmap(zone, pfn);
5489 	bitidx = pfn_to_bitidx(zone, pfn);
5490 
5491 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5492 		if (test_bit(bitidx + start_bitidx, bitmap))
5493 			flags |= value;
5494 
5495 	return flags;
5496 }
5497 
5498 /**
5499  * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5500  * @page: The page within the block of interest
5501  * @start_bitidx: The first bit of interest
5502  * @end_bitidx: The last bit of interest
5503  * @flags: The flags to set
5504  */
5505 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5506 					int start_bitidx, int end_bitidx)
5507 {
5508 	struct zone *zone;
5509 	unsigned long *bitmap;
5510 	unsigned long pfn, bitidx;
5511 	unsigned long value = 1;
5512 
5513 	zone = page_zone(page);
5514 	pfn = page_to_pfn(page);
5515 	bitmap = get_pageblock_bitmap(zone, pfn);
5516 	bitidx = pfn_to_bitidx(zone, pfn);
5517 	VM_BUG_ON(pfn < zone->zone_start_pfn);
5518 	VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5519 
5520 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5521 		if (flags & value)
5522 			__set_bit(bitidx + start_bitidx, bitmap);
5523 		else
5524 			__clear_bit(bitidx + start_bitidx, bitmap);
5525 }
5526 
5527 /*
5528  * This is designed as sub function...plz see page_isolation.c also.
5529  * set/clear page block's type to be ISOLATE.
5530  * page allocater never alloc memory from ISOLATE block.
5531  */
5532 
5533 static int
5534 __count_immobile_pages(struct zone *zone, struct page *page, int count)
5535 {
5536 	unsigned long pfn, iter, found;
5537 	/*
5538 	 * For avoiding noise data, lru_add_drain_all() should be called
5539 	 * If ZONE_MOVABLE, the zone never contains immobile pages
5540 	 */
5541 	if (zone_idx(zone) == ZONE_MOVABLE)
5542 		return true;
5543 
5544 	if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
5545 		return true;
5546 
5547 	pfn = page_to_pfn(page);
5548 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5549 		unsigned long check = pfn + iter;
5550 
5551 		if (!pfn_valid_within(check))
5552 			continue;
5553 
5554 		page = pfn_to_page(check);
5555 		if (!page_count(page)) {
5556 			if (PageBuddy(page))
5557 				iter += (1 << page_order(page)) - 1;
5558 			continue;
5559 		}
5560 		if (!PageLRU(page))
5561 			found++;
5562 		/*
5563 		 * If there are RECLAIMABLE pages, we need to check it.
5564 		 * But now, memory offline itself doesn't call shrink_slab()
5565 		 * and it still to be fixed.
5566 		 */
5567 		/*
5568 		 * If the page is not RAM, page_count()should be 0.
5569 		 * we don't need more check. This is an _used_ not-movable page.
5570 		 *
5571 		 * The problematic thing here is PG_reserved pages. PG_reserved
5572 		 * is set to both of a memory hole page and a _used_ kernel
5573 		 * page at boot.
5574 		 */
5575 		if (found > count)
5576 			return false;
5577 	}
5578 	return true;
5579 }
5580 
5581 bool is_pageblock_removable_nolock(struct page *page)
5582 {
5583 	struct zone *zone = page_zone(page);
5584 	return __count_immobile_pages(zone, page, 0);
5585 }
5586 
5587 int set_migratetype_isolate(struct page *page)
5588 {
5589 	struct zone *zone;
5590 	unsigned long flags, pfn;
5591 	struct memory_isolate_notify arg;
5592 	int notifier_ret;
5593 	int ret = -EBUSY;
5594 
5595 	zone = page_zone(page);
5596 
5597 	spin_lock_irqsave(&zone->lock, flags);
5598 
5599 	pfn = page_to_pfn(page);
5600 	arg.start_pfn = pfn;
5601 	arg.nr_pages = pageblock_nr_pages;
5602 	arg.pages_found = 0;
5603 
5604 	/*
5605 	 * It may be possible to isolate a pageblock even if the
5606 	 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5607 	 * notifier chain is used by balloon drivers to return the
5608 	 * number of pages in a range that are held by the balloon
5609 	 * driver to shrink memory. If all the pages are accounted for
5610 	 * by balloons, are free, or on the LRU, isolation can continue.
5611 	 * Later, for example, when memory hotplug notifier runs, these
5612 	 * pages reported as "can be isolated" should be isolated(freed)
5613 	 * by the balloon driver through the memory notifier chain.
5614 	 */
5615 	notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5616 	notifier_ret = notifier_to_errno(notifier_ret);
5617 	if (notifier_ret)
5618 		goto out;
5619 	/*
5620 	 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5621 	 * We just check MOVABLE pages.
5622 	 */
5623 	if (__count_immobile_pages(zone, page, arg.pages_found))
5624 		ret = 0;
5625 
5626 	/*
5627 	 * immobile means "not-on-lru" paes. If immobile is larger than
5628 	 * removable-by-driver pages reported by notifier, we'll fail.
5629 	 */
5630 
5631 out:
5632 	if (!ret) {
5633 		set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5634 		move_freepages_block(zone, page, MIGRATE_ISOLATE);
5635 	}
5636 
5637 	spin_unlock_irqrestore(&zone->lock, flags);
5638 	if (!ret)
5639 		drain_all_pages();
5640 	return ret;
5641 }
5642 
5643 void unset_migratetype_isolate(struct page *page)
5644 {
5645 	struct zone *zone;
5646 	unsigned long flags;
5647 	zone = page_zone(page);
5648 	spin_lock_irqsave(&zone->lock, flags);
5649 	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5650 		goto out;
5651 	set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5652 	move_freepages_block(zone, page, MIGRATE_MOVABLE);
5653 out:
5654 	spin_unlock_irqrestore(&zone->lock, flags);
5655 }
5656 
5657 #ifdef CONFIG_MEMORY_HOTREMOVE
5658 /*
5659  * All pages in the range must be isolated before calling this.
5660  */
5661 void
5662 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5663 {
5664 	struct page *page;
5665 	struct zone *zone;
5666 	int order, i;
5667 	unsigned long pfn;
5668 	unsigned long flags;
5669 	/* find the first valid pfn */
5670 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
5671 		if (pfn_valid(pfn))
5672 			break;
5673 	if (pfn == end_pfn)
5674 		return;
5675 	zone = page_zone(pfn_to_page(pfn));
5676 	spin_lock_irqsave(&zone->lock, flags);
5677 	pfn = start_pfn;
5678 	while (pfn < end_pfn) {
5679 		if (!pfn_valid(pfn)) {
5680 			pfn++;
5681 			continue;
5682 		}
5683 		page = pfn_to_page(pfn);
5684 		BUG_ON(page_count(page));
5685 		BUG_ON(!PageBuddy(page));
5686 		order = page_order(page);
5687 #ifdef CONFIG_DEBUG_VM
5688 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
5689 		       pfn, 1 << order, end_pfn);
5690 #endif
5691 		list_del(&page->lru);
5692 		rmv_page_order(page);
5693 		zone->free_area[order].nr_free--;
5694 		__mod_zone_page_state(zone, NR_FREE_PAGES,
5695 				      - (1UL << order));
5696 		for (i = 0; i < (1 << order); i++)
5697 			SetPageReserved((page+i));
5698 		pfn += (1 << order);
5699 	}
5700 	spin_unlock_irqrestore(&zone->lock, flags);
5701 }
5702 #endif
5703 
5704 #ifdef CONFIG_MEMORY_FAILURE
5705 bool is_free_buddy_page(struct page *page)
5706 {
5707 	struct zone *zone = page_zone(page);
5708 	unsigned long pfn = page_to_pfn(page);
5709 	unsigned long flags;
5710 	int order;
5711 
5712 	spin_lock_irqsave(&zone->lock, flags);
5713 	for (order = 0; order < MAX_ORDER; order++) {
5714 		struct page *page_head = page - (pfn & ((1 << order) - 1));
5715 
5716 		if (PageBuddy(page_head) && page_order(page_head) >= order)
5717 			break;
5718 	}
5719 	spin_unlock_irqrestore(&zone->lock, flags);
5720 
5721 	return order < MAX_ORDER;
5722 }
5723 #endif
5724 
5725 static struct trace_print_flags pageflag_names[] = {
5726 	{1UL << PG_locked,		"locked"	},
5727 	{1UL << PG_error,		"error"		},
5728 	{1UL << PG_referenced,		"referenced"	},
5729 	{1UL << PG_uptodate,		"uptodate"	},
5730 	{1UL << PG_dirty,		"dirty"		},
5731 	{1UL << PG_lru,			"lru"		},
5732 	{1UL << PG_active,		"active"	},
5733 	{1UL << PG_slab,		"slab"		},
5734 	{1UL << PG_owner_priv_1,	"owner_priv_1"	},
5735 	{1UL << PG_arch_1,		"arch_1"	},
5736 	{1UL << PG_reserved,		"reserved"	},
5737 	{1UL << PG_private,		"private"	},
5738 	{1UL << PG_private_2,		"private_2"	},
5739 	{1UL << PG_writeback,		"writeback"	},
5740 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5741 	{1UL << PG_head,		"head"		},
5742 	{1UL << PG_tail,		"tail"		},
5743 #else
5744 	{1UL << PG_compound,		"compound"	},
5745 #endif
5746 	{1UL << PG_swapcache,		"swapcache"	},
5747 	{1UL << PG_mappedtodisk,	"mappedtodisk"	},
5748 	{1UL << PG_reclaim,		"reclaim"	},
5749 	{1UL << PG_swapbacked,		"swapbacked"	},
5750 	{1UL << PG_unevictable,		"unevictable"	},
5751 #ifdef CONFIG_MMU
5752 	{1UL << PG_mlocked,		"mlocked"	},
5753 #endif
5754 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5755 	{1UL << PG_uncached,		"uncached"	},
5756 #endif
5757 #ifdef CONFIG_MEMORY_FAILURE
5758 	{1UL << PG_hwpoison,		"hwpoison"	},
5759 #endif
5760 	{-1UL,				NULL		},
5761 };
5762 
5763 static void dump_page_flags(unsigned long flags)
5764 {
5765 	const char *delim = "";
5766 	unsigned long mask;
5767 	int i;
5768 
5769 	printk(KERN_ALERT "page flags: %#lx(", flags);
5770 
5771 	/* remove zone id */
5772 	flags &= (1UL << NR_PAGEFLAGS) - 1;
5773 
5774 	for (i = 0; pageflag_names[i].name && flags; i++) {
5775 
5776 		mask = pageflag_names[i].mask;
5777 		if ((flags & mask) != mask)
5778 			continue;
5779 
5780 		flags &= ~mask;
5781 		printk("%s%s", delim, pageflag_names[i].name);
5782 		delim = "|";
5783 	}
5784 
5785 	/* check for left over flags */
5786 	if (flags)
5787 		printk("%s%#lx", delim, flags);
5788 
5789 	printk(")\n");
5790 }
5791 
5792 void dump_page(struct page *page)
5793 {
5794 	printk(KERN_ALERT
5795 	       "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5796 		page, atomic_read(&page->_count), page_mapcount(page),
5797 		page->mapping, page->index);
5798 	dump_page_flags(page->flags);
5799 	mem_cgroup_print_bad_page(page);
5800 }
5801