xref: /openbmc/linux/mm/page_alloc.c (revision 8134d27103b35dbdc94d762f82ca0bfb00f349ff)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kasan.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <linux/backing-dev.h>
50 #include <linux/fault-inject.h>
51 #include <linux/page-isolation.h>
52 #include <linux/page_ext.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
70 
71 #include <asm/sections.h>
72 #include <asm/tlbflush.h>
73 #include <asm/div64.h>
74 #include "internal.h"
75 
76 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
77 static DEFINE_MUTEX(pcp_batch_high_lock);
78 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
79 
80 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
81 DEFINE_PER_CPU(int, numa_node);
82 EXPORT_PER_CPU_SYMBOL(numa_node);
83 #endif
84 
85 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
86 
87 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
88 /*
89  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
90  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
91  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
92  * defined in <linux/topology.h>.
93  */
94 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
95 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
96 int _node_numa_mem_[MAX_NUMNODES];
97 #endif
98 
99 /* work_structs for global per-cpu drains */
100 DEFINE_MUTEX(pcpu_drain_mutex);
101 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
102 
103 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
104 volatile unsigned long latent_entropy __latent_entropy;
105 EXPORT_SYMBOL(latent_entropy);
106 #endif
107 
108 /*
109  * Array of node states.
110  */
111 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
112 	[N_POSSIBLE] = NODE_MASK_ALL,
113 	[N_ONLINE] = { { [0] = 1UL } },
114 #ifndef CONFIG_NUMA
115 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
116 #ifdef CONFIG_HIGHMEM
117 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
118 #endif
119 	[N_MEMORY] = { { [0] = 1UL } },
120 	[N_CPU] = { { [0] = 1UL } },
121 #endif	/* NUMA */
122 };
123 EXPORT_SYMBOL(node_states);
124 
125 /* Protect totalram_pages and zone->managed_pages */
126 static DEFINE_SPINLOCK(managed_page_count_lock);
127 
128 unsigned long totalram_pages __read_mostly;
129 unsigned long totalreserve_pages __read_mostly;
130 unsigned long totalcma_pages __read_mostly;
131 
132 int percpu_pagelist_fraction;
133 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
134 
135 /*
136  * A cached value of the page's pageblock's migratetype, used when the page is
137  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
138  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
139  * Also the migratetype set in the page does not necessarily match the pcplist
140  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
141  * other index - this ensures that it will be put on the correct CMA freelist.
142  */
143 static inline int get_pcppage_migratetype(struct page *page)
144 {
145 	return page->index;
146 }
147 
148 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
149 {
150 	page->index = migratetype;
151 }
152 
153 #ifdef CONFIG_PM_SLEEP
154 /*
155  * The following functions are used by the suspend/hibernate code to temporarily
156  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
157  * while devices are suspended.  To avoid races with the suspend/hibernate code,
158  * they should always be called with pm_mutex held (gfp_allowed_mask also should
159  * only be modified with pm_mutex held, unless the suspend/hibernate code is
160  * guaranteed not to run in parallel with that modification).
161  */
162 
163 static gfp_t saved_gfp_mask;
164 
165 void pm_restore_gfp_mask(void)
166 {
167 	WARN_ON(!mutex_is_locked(&pm_mutex));
168 	if (saved_gfp_mask) {
169 		gfp_allowed_mask = saved_gfp_mask;
170 		saved_gfp_mask = 0;
171 	}
172 }
173 
174 void pm_restrict_gfp_mask(void)
175 {
176 	WARN_ON(!mutex_is_locked(&pm_mutex));
177 	WARN_ON(saved_gfp_mask);
178 	saved_gfp_mask = gfp_allowed_mask;
179 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
180 }
181 
182 bool pm_suspended_storage(void)
183 {
184 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
185 		return false;
186 	return true;
187 }
188 #endif /* CONFIG_PM_SLEEP */
189 
190 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
191 unsigned int pageblock_order __read_mostly;
192 #endif
193 
194 static void __free_pages_ok(struct page *page, unsigned int order);
195 
196 /*
197  * results with 256, 32 in the lowmem_reserve sysctl:
198  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
199  *	1G machine -> (16M dma, 784M normal, 224M high)
200  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
201  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
202  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
203  *
204  * TBD: should special case ZONE_DMA32 machines here - in those we normally
205  * don't need any ZONE_NORMAL reservation
206  */
207 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
208 #ifdef CONFIG_ZONE_DMA
209 	[ZONE_DMA] = 256,
210 #endif
211 #ifdef CONFIG_ZONE_DMA32
212 	[ZONE_DMA32] = 256,
213 #endif
214 	[ZONE_NORMAL] = 32,
215 #ifdef CONFIG_HIGHMEM
216 	[ZONE_HIGHMEM] = 0,
217 #endif
218 	[ZONE_MOVABLE] = 0,
219 };
220 
221 EXPORT_SYMBOL(totalram_pages);
222 
223 static char * const zone_names[MAX_NR_ZONES] = {
224 #ifdef CONFIG_ZONE_DMA
225 	 "DMA",
226 #endif
227 #ifdef CONFIG_ZONE_DMA32
228 	 "DMA32",
229 #endif
230 	 "Normal",
231 #ifdef CONFIG_HIGHMEM
232 	 "HighMem",
233 #endif
234 	 "Movable",
235 #ifdef CONFIG_ZONE_DEVICE
236 	 "Device",
237 #endif
238 };
239 
240 char * const migratetype_names[MIGRATE_TYPES] = {
241 	"Unmovable",
242 	"Movable",
243 	"Reclaimable",
244 	"HighAtomic",
245 #ifdef CONFIG_CMA
246 	"CMA",
247 #endif
248 #ifdef CONFIG_MEMORY_ISOLATION
249 	"Isolate",
250 #endif
251 };
252 
253 compound_page_dtor * const compound_page_dtors[] = {
254 	NULL,
255 	free_compound_page,
256 #ifdef CONFIG_HUGETLB_PAGE
257 	free_huge_page,
258 #endif
259 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
260 	free_transhuge_page,
261 #endif
262 };
263 
264 int min_free_kbytes = 1024;
265 int user_min_free_kbytes = -1;
266 int watermark_scale_factor = 10;
267 
268 static unsigned long nr_kernel_pages __meminitdata;
269 static unsigned long nr_all_pages __meminitdata;
270 static unsigned long dma_reserve __meminitdata;
271 
272 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
273 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __meminitdata;
274 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __meminitdata;
275 static unsigned long required_kernelcore __initdata;
276 static unsigned long required_kernelcore_percent __initdata;
277 static unsigned long required_movablecore __initdata;
278 static unsigned long required_movablecore_percent __initdata;
279 static unsigned long zone_movable_pfn[MAX_NUMNODES] __meminitdata;
280 static bool mirrored_kernelcore __meminitdata;
281 
282 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
283 int movable_zone;
284 EXPORT_SYMBOL(movable_zone);
285 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
286 
287 #if MAX_NUMNODES > 1
288 int nr_node_ids __read_mostly = MAX_NUMNODES;
289 int nr_online_nodes __read_mostly = 1;
290 EXPORT_SYMBOL(nr_node_ids);
291 EXPORT_SYMBOL(nr_online_nodes);
292 #endif
293 
294 int page_group_by_mobility_disabled __read_mostly;
295 
296 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
297 /* Returns true if the struct page for the pfn is uninitialised */
298 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
299 {
300 	int nid = early_pfn_to_nid(pfn);
301 
302 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
303 		return true;
304 
305 	return false;
306 }
307 
308 /*
309  * Returns false when the remaining initialisation should be deferred until
310  * later in the boot cycle when it can be parallelised.
311  */
312 static inline bool update_defer_init(pg_data_t *pgdat,
313 				unsigned long pfn, unsigned long zone_end,
314 				unsigned long *nr_initialised)
315 {
316 	/* Always populate low zones for address-constrained allocations */
317 	if (zone_end < pgdat_end_pfn(pgdat))
318 		return true;
319 	(*nr_initialised)++;
320 	if ((*nr_initialised > pgdat->static_init_pgcnt) &&
321 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
322 		pgdat->first_deferred_pfn = pfn;
323 		return false;
324 	}
325 
326 	return true;
327 }
328 #else
329 static inline bool early_page_uninitialised(unsigned long pfn)
330 {
331 	return false;
332 }
333 
334 static inline bool update_defer_init(pg_data_t *pgdat,
335 				unsigned long pfn, unsigned long zone_end,
336 				unsigned long *nr_initialised)
337 {
338 	return true;
339 }
340 #endif
341 
342 /* Return a pointer to the bitmap storing bits affecting a block of pages */
343 static inline unsigned long *get_pageblock_bitmap(struct page *page,
344 							unsigned long pfn)
345 {
346 #ifdef CONFIG_SPARSEMEM
347 	return __pfn_to_section(pfn)->pageblock_flags;
348 #else
349 	return page_zone(page)->pageblock_flags;
350 #endif /* CONFIG_SPARSEMEM */
351 }
352 
353 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
354 {
355 #ifdef CONFIG_SPARSEMEM
356 	pfn &= (PAGES_PER_SECTION-1);
357 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
358 #else
359 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
360 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
361 #endif /* CONFIG_SPARSEMEM */
362 }
363 
364 /**
365  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
366  * @page: The page within the block of interest
367  * @pfn: The target page frame number
368  * @end_bitidx: The last bit of interest to retrieve
369  * @mask: mask of bits that the caller is interested in
370  *
371  * Return: pageblock_bits flags
372  */
373 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
374 					unsigned long pfn,
375 					unsigned long end_bitidx,
376 					unsigned long mask)
377 {
378 	unsigned long *bitmap;
379 	unsigned long bitidx, word_bitidx;
380 	unsigned long word;
381 
382 	bitmap = get_pageblock_bitmap(page, pfn);
383 	bitidx = pfn_to_bitidx(page, pfn);
384 	word_bitidx = bitidx / BITS_PER_LONG;
385 	bitidx &= (BITS_PER_LONG-1);
386 
387 	word = bitmap[word_bitidx];
388 	bitidx += end_bitidx;
389 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
390 }
391 
392 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
393 					unsigned long end_bitidx,
394 					unsigned long mask)
395 {
396 	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
397 }
398 
399 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
400 {
401 	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
402 }
403 
404 /**
405  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
406  * @page: The page within the block of interest
407  * @flags: The flags to set
408  * @pfn: The target page frame number
409  * @end_bitidx: The last bit of interest
410  * @mask: mask of bits that the caller is interested in
411  */
412 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
413 					unsigned long pfn,
414 					unsigned long end_bitidx,
415 					unsigned long mask)
416 {
417 	unsigned long *bitmap;
418 	unsigned long bitidx, word_bitidx;
419 	unsigned long old_word, word;
420 
421 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
422 
423 	bitmap = get_pageblock_bitmap(page, pfn);
424 	bitidx = pfn_to_bitidx(page, pfn);
425 	word_bitidx = bitidx / BITS_PER_LONG;
426 	bitidx &= (BITS_PER_LONG-1);
427 
428 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
429 
430 	bitidx += end_bitidx;
431 	mask <<= (BITS_PER_LONG - bitidx - 1);
432 	flags <<= (BITS_PER_LONG - bitidx - 1);
433 
434 	word = READ_ONCE(bitmap[word_bitidx]);
435 	for (;;) {
436 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
437 		if (word == old_word)
438 			break;
439 		word = old_word;
440 	}
441 }
442 
443 void set_pageblock_migratetype(struct page *page, int migratetype)
444 {
445 	if (unlikely(page_group_by_mobility_disabled &&
446 		     migratetype < MIGRATE_PCPTYPES))
447 		migratetype = MIGRATE_UNMOVABLE;
448 
449 	set_pageblock_flags_group(page, (unsigned long)migratetype,
450 					PB_migrate, PB_migrate_end);
451 }
452 
453 #ifdef CONFIG_DEBUG_VM
454 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
455 {
456 	int ret = 0;
457 	unsigned seq;
458 	unsigned long pfn = page_to_pfn(page);
459 	unsigned long sp, start_pfn;
460 
461 	do {
462 		seq = zone_span_seqbegin(zone);
463 		start_pfn = zone->zone_start_pfn;
464 		sp = zone->spanned_pages;
465 		if (!zone_spans_pfn(zone, pfn))
466 			ret = 1;
467 	} while (zone_span_seqretry(zone, seq));
468 
469 	if (ret)
470 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
471 			pfn, zone_to_nid(zone), zone->name,
472 			start_pfn, start_pfn + sp);
473 
474 	return ret;
475 }
476 
477 static int page_is_consistent(struct zone *zone, struct page *page)
478 {
479 	if (!pfn_valid_within(page_to_pfn(page)))
480 		return 0;
481 	if (zone != page_zone(page))
482 		return 0;
483 
484 	return 1;
485 }
486 /*
487  * Temporary debugging check for pages not lying within a given zone.
488  */
489 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
490 {
491 	if (page_outside_zone_boundaries(zone, page))
492 		return 1;
493 	if (!page_is_consistent(zone, page))
494 		return 1;
495 
496 	return 0;
497 }
498 #else
499 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
500 {
501 	return 0;
502 }
503 #endif
504 
505 static void bad_page(struct page *page, const char *reason,
506 		unsigned long bad_flags)
507 {
508 	static unsigned long resume;
509 	static unsigned long nr_shown;
510 	static unsigned long nr_unshown;
511 
512 	/*
513 	 * Allow a burst of 60 reports, then keep quiet for that minute;
514 	 * or allow a steady drip of one report per second.
515 	 */
516 	if (nr_shown == 60) {
517 		if (time_before(jiffies, resume)) {
518 			nr_unshown++;
519 			goto out;
520 		}
521 		if (nr_unshown) {
522 			pr_alert(
523 			      "BUG: Bad page state: %lu messages suppressed\n",
524 				nr_unshown);
525 			nr_unshown = 0;
526 		}
527 		nr_shown = 0;
528 	}
529 	if (nr_shown++ == 0)
530 		resume = jiffies + 60 * HZ;
531 
532 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
533 		current->comm, page_to_pfn(page));
534 	__dump_page(page, reason);
535 	bad_flags &= page->flags;
536 	if (bad_flags)
537 		pr_alert("bad because of flags: %#lx(%pGp)\n",
538 						bad_flags, &bad_flags);
539 	dump_page_owner(page);
540 
541 	print_modules();
542 	dump_stack();
543 out:
544 	/* Leave bad fields for debug, except PageBuddy could make trouble */
545 	page_mapcount_reset(page); /* remove PageBuddy */
546 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
547 }
548 
549 /*
550  * Higher-order pages are called "compound pages".  They are structured thusly:
551  *
552  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
553  *
554  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
555  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
556  *
557  * The first tail page's ->compound_dtor holds the offset in array of compound
558  * page destructors. See compound_page_dtors.
559  *
560  * The first tail page's ->compound_order holds the order of allocation.
561  * This usage means that zero-order pages may not be compound.
562  */
563 
564 void free_compound_page(struct page *page)
565 {
566 	__free_pages_ok(page, compound_order(page));
567 }
568 
569 void prep_compound_page(struct page *page, unsigned int order)
570 {
571 	int i;
572 	int nr_pages = 1 << order;
573 
574 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
575 	set_compound_order(page, order);
576 	__SetPageHead(page);
577 	for (i = 1; i < nr_pages; i++) {
578 		struct page *p = page + i;
579 		set_page_count(p, 0);
580 		p->mapping = TAIL_MAPPING;
581 		set_compound_head(p, page);
582 	}
583 	atomic_set(compound_mapcount_ptr(page), -1);
584 }
585 
586 #ifdef CONFIG_DEBUG_PAGEALLOC
587 unsigned int _debug_guardpage_minorder;
588 bool _debug_pagealloc_enabled __read_mostly
589 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
590 EXPORT_SYMBOL(_debug_pagealloc_enabled);
591 bool _debug_guardpage_enabled __read_mostly;
592 
593 static int __init early_debug_pagealloc(char *buf)
594 {
595 	if (!buf)
596 		return -EINVAL;
597 	return kstrtobool(buf, &_debug_pagealloc_enabled);
598 }
599 early_param("debug_pagealloc", early_debug_pagealloc);
600 
601 static bool need_debug_guardpage(void)
602 {
603 	/* If we don't use debug_pagealloc, we don't need guard page */
604 	if (!debug_pagealloc_enabled())
605 		return false;
606 
607 	if (!debug_guardpage_minorder())
608 		return false;
609 
610 	return true;
611 }
612 
613 static void init_debug_guardpage(void)
614 {
615 	if (!debug_pagealloc_enabled())
616 		return;
617 
618 	if (!debug_guardpage_minorder())
619 		return;
620 
621 	_debug_guardpage_enabled = true;
622 }
623 
624 struct page_ext_operations debug_guardpage_ops = {
625 	.need = need_debug_guardpage,
626 	.init = init_debug_guardpage,
627 };
628 
629 static int __init debug_guardpage_minorder_setup(char *buf)
630 {
631 	unsigned long res;
632 
633 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
634 		pr_err("Bad debug_guardpage_minorder value\n");
635 		return 0;
636 	}
637 	_debug_guardpage_minorder = res;
638 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
639 	return 0;
640 }
641 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
642 
643 static inline bool set_page_guard(struct zone *zone, struct page *page,
644 				unsigned int order, int migratetype)
645 {
646 	struct page_ext *page_ext;
647 
648 	if (!debug_guardpage_enabled())
649 		return false;
650 
651 	if (order >= debug_guardpage_minorder())
652 		return false;
653 
654 	page_ext = lookup_page_ext(page);
655 	if (unlikely(!page_ext))
656 		return false;
657 
658 	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
659 
660 	INIT_LIST_HEAD(&page->lru);
661 	set_page_private(page, order);
662 	/* Guard pages are not available for any usage */
663 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
664 
665 	return true;
666 }
667 
668 static inline void clear_page_guard(struct zone *zone, struct page *page,
669 				unsigned int order, int migratetype)
670 {
671 	struct page_ext *page_ext;
672 
673 	if (!debug_guardpage_enabled())
674 		return;
675 
676 	page_ext = lookup_page_ext(page);
677 	if (unlikely(!page_ext))
678 		return;
679 
680 	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
681 
682 	set_page_private(page, 0);
683 	if (!is_migrate_isolate(migratetype))
684 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
685 }
686 #else
687 struct page_ext_operations debug_guardpage_ops;
688 static inline bool set_page_guard(struct zone *zone, struct page *page,
689 			unsigned int order, int migratetype) { return false; }
690 static inline void clear_page_guard(struct zone *zone, struct page *page,
691 				unsigned int order, int migratetype) {}
692 #endif
693 
694 static inline void set_page_order(struct page *page, unsigned int order)
695 {
696 	set_page_private(page, order);
697 	__SetPageBuddy(page);
698 }
699 
700 static inline void rmv_page_order(struct page *page)
701 {
702 	__ClearPageBuddy(page);
703 	set_page_private(page, 0);
704 }
705 
706 /*
707  * This function checks whether a page is free && is the buddy
708  * we can coalesce a page and its buddy if
709  * (a) the buddy is not in a hole (check before calling!) &&
710  * (b) the buddy is in the buddy system &&
711  * (c) a page and its buddy have the same order &&
712  * (d) a page and its buddy are in the same zone.
713  *
714  * For recording whether a page is in the buddy system, we set PageBuddy.
715  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
716  *
717  * For recording page's order, we use page_private(page).
718  */
719 static inline int page_is_buddy(struct page *page, struct page *buddy,
720 							unsigned int order)
721 {
722 	if (page_is_guard(buddy) && page_order(buddy) == order) {
723 		if (page_zone_id(page) != page_zone_id(buddy))
724 			return 0;
725 
726 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
727 
728 		return 1;
729 	}
730 
731 	if (PageBuddy(buddy) && page_order(buddy) == order) {
732 		/*
733 		 * zone check is done late to avoid uselessly
734 		 * calculating zone/node ids for pages that could
735 		 * never merge.
736 		 */
737 		if (page_zone_id(page) != page_zone_id(buddy))
738 			return 0;
739 
740 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
741 
742 		return 1;
743 	}
744 	return 0;
745 }
746 
747 /*
748  * Freeing function for a buddy system allocator.
749  *
750  * The concept of a buddy system is to maintain direct-mapped table
751  * (containing bit values) for memory blocks of various "orders".
752  * The bottom level table contains the map for the smallest allocatable
753  * units of memory (here, pages), and each level above it describes
754  * pairs of units from the levels below, hence, "buddies".
755  * At a high level, all that happens here is marking the table entry
756  * at the bottom level available, and propagating the changes upward
757  * as necessary, plus some accounting needed to play nicely with other
758  * parts of the VM system.
759  * At each level, we keep a list of pages, which are heads of continuous
760  * free pages of length of (1 << order) and marked with PageBuddy.
761  * Page's order is recorded in page_private(page) field.
762  * So when we are allocating or freeing one, we can derive the state of the
763  * other.  That is, if we allocate a small block, and both were
764  * free, the remainder of the region must be split into blocks.
765  * If a block is freed, and its buddy is also free, then this
766  * triggers coalescing into a block of larger size.
767  *
768  * -- nyc
769  */
770 
771 static inline void __free_one_page(struct page *page,
772 		unsigned long pfn,
773 		struct zone *zone, unsigned int order,
774 		int migratetype)
775 {
776 	unsigned long combined_pfn;
777 	unsigned long uninitialized_var(buddy_pfn);
778 	struct page *buddy;
779 	unsigned int max_order;
780 
781 	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
782 
783 	VM_BUG_ON(!zone_is_initialized(zone));
784 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
785 
786 	VM_BUG_ON(migratetype == -1);
787 	if (likely(!is_migrate_isolate(migratetype)))
788 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
789 
790 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
791 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
792 
793 continue_merging:
794 	while (order < max_order - 1) {
795 		buddy_pfn = __find_buddy_pfn(pfn, order);
796 		buddy = page + (buddy_pfn - pfn);
797 
798 		if (!pfn_valid_within(buddy_pfn))
799 			goto done_merging;
800 		if (!page_is_buddy(page, buddy, order))
801 			goto done_merging;
802 		/*
803 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
804 		 * merge with it and move up one order.
805 		 */
806 		if (page_is_guard(buddy)) {
807 			clear_page_guard(zone, buddy, order, migratetype);
808 		} else {
809 			list_del(&buddy->lru);
810 			zone->free_area[order].nr_free--;
811 			rmv_page_order(buddy);
812 		}
813 		combined_pfn = buddy_pfn & pfn;
814 		page = page + (combined_pfn - pfn);
815 		pfn = combined_pfn;
816 		order++;
817 	}
818 	if (max_order < MAX_ORDER) {
819 		/* If we are here, it means order is >= pageblock_order.
820 		 * We want to prevent merge between freepages on isolate
821 		 * pageblock and normal pageblock. Without this, pageblock
822 		 * isolation could cause incorrect freepage or CMA accounting.
823 		 *
824 		 * We don't want to hit this code for the more frequent
825 		 * low-order merging.
826 		 */
827 		if (unlikely(has_isolate_pageblock(zone))) {
828 			int buddy_mt;
829 
830 			buddy_pfn = __find_buddy_pfn(pfn, order);
831 			buddy = page + (buddy_pfn - pfn);
832 			buddy_mt = get_pageblock_migratetype(buddy);
833 
834 			if (migratetype != buddy_mt
835 					&& (is_migrate_isolate(migratetype) ||
836 						is_migrate_isolate(buddy_mt)))
837 				goto done_merging;
838 		}
839 		max_order++;
840 		goto continue_merging;
841 	}
842 
843 done_merging:
844 	set_page_order(page, order);
845 
846 	/*
847 	 * If this is not the largest possible page, check if the buddy
848 	 * of the next-highest order is free. If it is, it's possible
849 	 * that pages are being freed that will coalesce soon. In case,
850 	 * that is happening, add the free page to the tail of the list
851 	 * so it's less likely to be used soon and more likely to be merged
852 	 * as a higher order page
853 	 */
854 	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
855 		struct page *higher_page, *higher_buddy;
856 		combined_pfn = buddy_pfn & pfn;
857 		higher_page = page + (combined_pfn - pfn);
858 		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
859 		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
860 		if (pfn_valid_within(buddy_pfn) &&
861 		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
862 			list_add_tail(&page->lru,
863 				&zone->free_area[order].free_list[migratetype]);
864 			goto out;
865 		}
866 	}
867 
868 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
869 out:
870 	zone->free_area[order].nr_free++;
871 }
872 
873 /*
874  * A bad page could be due to a number of fields. Instead of multiple branches,
875  * try and check multiple fields with one check. The caller must do a detailed
876  * check if necessary.
877  */
878 static inline bool page_expected_state(struct page *page,
879 					unsigned long check_flags)
880 {
881 	if (unlikely(atomic_read(&page->_mapcount) != -1))
882 		return false;
883 
884 	if (unlikely((unsigned long)page->mapping |
885 			page_ref_count(page) |
886 #ifdef CONFIG_MEMCG
887 			(unsigned long)page->mem_cgroup |
888 #endif
889 			(page->flags & check_flags)))
890 		return false;
891 
892 	return true;
893 }
894 
895 static void free_pages_check_bad(struct page *page)
896 {
897 	const char *bad_reason;
898 	unsigned long bad_flags;
899 
900 	bad_reason = NULL;
901 	bad_flags = 0;
902 
903 	if (unlikely(atomic_read(&page->_mapcount) != -1))
904 		bad_reason = "nonzero mapcount";
905 	if (unlikely(page->mapping != NULL))
906 		bad_reason = "non-NULL mapping";
907 	if (unlikely(page_ref_count(page) != 0))
908 		bad_reason = "nonzero _refcount";
909 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
910 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
911 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
912 	}
913 #ifdef CONFIG_MEMCG
914 	if (unlikely(page->mem_cgroup))
915 		bad_reason = "page still charged to cgroup";
916 #endif
917 	bad_page(page, bad_reason, bad_flags);
918 }
919 
920 static inline int free_pages_check(struct page *page)
921 {
922 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
923 		return 0;
924 
925 	/* Something has gone sideways, find it */
926 	free_pages_check_bad(page);
927 	return 1;
928 }
929 
930 static int free_tail_pages_check(struct page *head_page, struct page *page)
931 {
932 	int ret = 1;
933 
934 	/*
935 	 * We rely page->lru.next never has bit 0 set, unless the page
936 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
937 	 */
938 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
939 
940 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
941 		ret = 0;
942 		goto out;
943 	}
944 	switch (page - head_page) {
945 	case 1:
946 		/* the first tail page: ->mapping may be compound_mapcount() */
947 		if (unlikely(compound_mapcount(page))) {
948 			bad_page(page, "nonzero compound_mapcount", 0);
949 			goto out;
950 		}
951 		break;
952 	case 2:
953 		/*
954 		 * the second tail page: ->mapping is
955 		 * deferred_list.next -- ignore value.
956 		 */
957 		break;
958 	default:
959 		if (page->mapping != TAIL_MAPPING) {
960 			bad_page(page, "corrupted mapping in tail page", 0);
961 			goto out;
962 		}
963 		break;
964 	}
965 	if (unlikely(!PageTail(page))) {
966 		bad_page(page, "PageTail not set", 0);
967 		goto out;
968 	}
969 	if (unlikely(compound_head(page) != head_page)) {
970 		bad_page(page, "compound_head not consistent", 0);
971 		goto out;
972 	}
973 	ret = 0;
974 out:
975 	page->mapping = NULL;
976 	clear_compound_head(page);
977 	return ret;
978 }
979 
980 static __always_inline bool free_pages_prepare(struct page *page,
981 					unsigned int order, bool check_free)
982 {
983 	int bad = 0;
984 
985 	VM_BUG_ON_PAGE(PageTail(page), page);
986 
987 	trace_mm_page_free(page, order);
988 
989 	/*
990 	 * Check tail pages before head page information is cleared to
991 	 * avoid checking PageCompound for order-0 pages.
992 	 */
993 	if (unlikely(order)) {
994 		bool compound = PageCompound(page);
995 		int i;
996 
997 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
998 
999 		if (compound)
1000 			ClearPageDoubleMap(page);
1001 		for (i = 1; i < (1 << order); i++) {
1002 			if (compound)
1003 				bad += free_tail_pages_check(page, page + i);
1004 			if (unlikely(free_pages_check(page + i))) {
1005 				bad++;
1006 				continue;
1007 			}
1008 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1009 		}
1010 	}
1011 	if (PageMappingFlags(page))
1012 		page->mapping = NULL;
1013 	if (memcg_kmem_enabled() && PageKmemcg(page))
1014 		memcg_kmem_uncharge(page, order);
1015 	if (check_free)
1016 		bad += free_pages_check(page);
1017 	if (bad)
1018 		return false;
1019 
1020 	page_cpupid_reset_last(page);
1021 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1022 	reset_page_owner(page, order);
1023 
1024 	if (!PageHighMem(page)) {
1025 		debug_check_no_locks_freed(page_address(page),
1026 					   PAGE_SIZE << order);
1027 		debug_check_no_obj_freed(page_address(page),
1028 					   PAGE_SIZE << order);
1029 	}
1030 	arch_free_page(page, order);
1031 	kernel_poison_pages(page, 1 << order, 0);
1032 	kernel_map_pages(page, 1 << order, 0);
1033 	kasan_free_pages(page, order);
1034 
1035 	return true;
1036 }
1037 
1038 #ifdef CONFIG_DEBUG_VM
1039 static inline bool free_pcp_prepare(struct page *page)
1040 {
1041 	return free_pages_prepare(page, 0, true);
1042 }
1043 
1044 static inline bool bulkfree_pcp_prepare(struct page *page)
1045 {
1046 	return false;
1047 }
1048 #else
1049 static bool free_pcp_prepare(struct page *page)
1050 {
1051 	return free_pages_prepare(page, 0, false);
1052 }
1053 
1054 static bool bulkfree_pcp_prepare(struct page *page)
1055 {
1056 	return free_pages_check(page);
1057 }
1058 #endif /* CONFIG_DEBUG_VM */
1059 
1060 static inline void prefetch_buddy(struct page *page)
1061 {
1062 	unsigned long pfn = page_to_pfn(page);
1063 	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1064 	struct page *buddy = page + (buddy_pfn - pfn);
1065 
1066 	prefetch(buddy);
1067 }
1068 
1069 /*
1070  * Frees a number of pages from the PCP lists
1071  * Assumes all pages on list are in same zone, and of same order.
1072  * count is the number of pages to free.
1073  *
1074  * If the zone was previously in an "all pages pinned" state then look to
1075  * see if this freeing clears that state.
1076  *
1077  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1078  * pinned" detection logic.
1079  */
1080 static void free_pcppages_bulk(struct zone *zone, int count,
1081 					struct per_cpu_pages *pcp)
1082 {
1083 	int migratetype = 0;
1084 	int batch_free = 0;
1085 	int prefetch_nr = 0;
1086 	bool isolated_pageblocks;
1087 	struct page *page, *tmp;
1088 	LIST_HEAD(head);
1089 
1090 	while (count) {
1091 		struct list_head *list;
1092 
1093 		/*
1094 		 * Remove pages from lists in a round-robin fashion. A
1095 		 * batch_free count is maintained that is incremented when an
1096 		 * empty list is encountered.  This is so more pages are freed
1097 		 * off fuller lists instead of spinning excessively around empty
1098 		 * lists
1099 		 */
1100 		do {
1101 			batch_free++;
1102 			if (++migratetype == MIGRATE_PCPTYPES)
1103 				migratetype = 0;
1104 			list = &pcp->lists[migratetype];
1105 		} while (list_empty(list));
1106 
1107 		/* This is the only non-empty list. Free them all. */
1108 		if (batch_free == MIGRATE_PCPTYPES)
1109 			batch_free = count;
1110 
1111 		do {
1112 			page = list_last_entry(list, struct page, lru);
1113 			/* must delete to avoid corrupting pcp list */
1114 			list_del(&page->lru);
1115 			pcp->count--;
1116 
1117 			if (bulkfree_pcp_prepare(page))
1118 				continue;
1119 
1120 			list_add_tail(&page->lru, &head);
1121 
1122 			/*
1123 			 * We are going to put the page back to the global
1124 			 * pool, prefetch its buddy to speed up later access
1125 			 * under zone->lock. It is believed the overhead of
1126 			 * an additional test and calculating buddy_pfn here
1127 			 * can be offset by reduced memory latency later. To
1128 			 * avoid excessive prefetching due to large count, only
1129 			 * prefetch buddy for the first pcp->batch nr of pages.
1130 			 */
1131 			if (prefetch_nr++ < pcp->batch)
1132 				prefetch_buddy(page);
1133 		} while (--count && --batch_free && !list_empty(list));
1134 	}
1135 
1136 	spin_lock(&zone->lock);
1137 	isolated_pageblocks = has_isolate_pageblock(zone);
1138 
1139 	/*
1140 	 * Use safe version since after __free_one_page(),
1141 	 * page->lru.next will not point to original list.
1142 	 */
1143 	list_for_each_entry_safe(page, tmp, &head, lru) {
1144 		int mt = get_pcppage_migratetype(page);
1145 		/* MIGRATE_ISOLATE page should not go to pcplists */
1146 		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1147 		/* Pageblock could have been isolated meanwhile */
1148 		if (unlikely(isolated_pageblocks))
1149 			mt = get_pageblock_migratetype(page);
1150 
1151 		__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1152 		trace_mm_page_pcpu_drain(page, 0, mt);
1153 	}
1154 	spin_unlock(&zone->lock);
1155 }
1156 
1157 static void free_one_page(struct zone *zone,
1158 				struct page *page, unsigned long pfn,
1159 				unsigned int order,
1160 				int migratetype)
1161 {
1162 	spin_lock(&zone->lock);
1163 	if (unlikely(has_isolate_pageblock(zone) ||
1164 		is_migrate_isolate(migratetype))) {
1165 		migratetype = get_pfnblock_migratetype(page, pfn);
1166 	}
1167 	__free_one_page(page, pfn, zone, order, migratetype);
1168 	spin_unlock(&zone->lock);
1169 }
1170 
1171 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1172 				unsigned long zone, int nid)
1173 {
1174 	mm_zero_struct_page(page);
1175 	set_page_links(page, zone, nid, pfn);
1176 	init_page_count(page);
1177 	page_mapcount_reset(page);
1178 	page_cpupid_reset_last(page);
1179 
1180 	INIT_LIST_HEAD(&page->lru);
1181 #ifdef WANT_PAGE_VIRTUAL
1182 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1183 	if (!is_highmem_idx(zone))
1184 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1185 #endif
1186 }
1187 
1188 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1189 static void __meminit init_reserved_page(unsigned long pfn)
1190 {
1191 	pg_data_t *pgdat;
1192 	int nid, zid;
1193 
1194 	if (!early_page_uninitialised(pfn))
1195 		return;
1196 
1197 	nid = early_pfn_to_nid(pfn);
1198 	pgdat = NODE_DATA(nid);
1199 
1200 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1201 		struct zone *zone = &pgdat->node_zones[zid];
1202 
1203 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1204 			break;
1205 	}
1206 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1207 }
1208 #else
1209 static inline void init_reserved_page(unsigned long pfn)
1210 {
1211 }
1212 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1213 
1214 /*
1215  * Initialised pages do not have PageReserved set. This function is
1216  * called for each range allocated by the bootmem allocator and
1217  * marks the pages PageReserved. The remaining valid pages are later
1218  * sent to the buddy page allocator.
1219  */
1220 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1221 {
1222 	unsigned long start_pfn = PFN_DOWN(start);
1223 	unsigned long end_pfn = PFN_UP(end);
1224 
1225 	for (; start_pfn < end_pfn; start_pfn++) {
1226 		if (pfn_valid(start_pfn)) {
1227 			struct page *page = pfn_to_page(start_pfn);
1228 
1229 			init_reserved_page(start_pfn);
1230 
1231 			/* Avoid false-positive PageTail() */
1232 			INIT_LIST_HEAD(&page->lru);
1233 
1234 			SetPageReserved(page);
1235 		}
1236 	}
1237 }
1238 
1239 static void __free_pages_ok(struct page *page, unsigned int order)
1240 {
1241 	unsigned long flags;
1242 	int migratetype;
1243 	unsigned long pfn = page_to_pfn(page);
1244 
1245 	if (!free_pages_prepare(page, order, true))
1246 		return;
1247 
1248 	migratetype = get_pfnblock_migratetype(page, pfn);
1249 	local_irq_save(flags);
1250 	__count_vm_events(PGFREE, 1 << order);
1251 	free_one_page(page_zone(page), page, pfn, order, migratetype);
1252 	local_irq_restore(flags);
1253 }
1254 
1255 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1256 {
1257 	unsigned int nr_pages = 1 << order;
1258 	struct page *p = page;
1259 	unsigned int loop;
1260 
1261 	prefetchw(p);
1262 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1263 		prefetchw(p + 1);
1264 		__ClearPageReserved(p);
1265 		set_page_count(p, 0);
1266 	}
1267 	__ClearPageReserved(p);
1268 	set_page_count(p, 0);
1269 
1270 	page_zone(page)->managed_pages += nr_pages;
1271 	set_page_refcounted(page);
1272 	__free_pages(page, order);
1273 }
1274 
1275 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1276 	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1277 
1278 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1279 
1280 int __meminit early_pfn_to_nid(unsigned long pfn)
1281 {
1282 	static DEFINE_SPINLOCK(early_pfn_lock);
1283 	int nid;
1284 
1285 	spin_lock(&early_pfn_lock);
1286 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1287 	if (nid < 0)
1288 		nid = first_online_node;
1289 	spin_unlock(&early_pfn_lock);
1290 
1291 	return nid;
1292 }
1293 #endif
1294 
1295 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1296 static inline bool __meminit __maybe_unused
1297 meminit_pfn_in_nid(unsigned long pfn, int node,
1298 		   struct mminit_pfnnid_cache *state)
1299 {
1300 	int nid;
1301 
1302 	nid = __early_pfn_to_nid(pfn, state);
1303 	if (nid >= 0 && nid != node)
1304 		return false;
1305 	return true;
1306 }
1307 
1308 /* Only safe to use early in boot when initialisation is single-threaded */
1309 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1310 {
1311 	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1312 }
1313 
1314 #else
1315 
1316 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1317 {
1318 	return true;
1319 }
1320 static inline bool __meminit  __maybe_unused
1321 meminit_pfn_in_nid(unsigned long pfn, int node,
1322 		   struct mminit_pfnnid_cache *state)
1323 {
1324 	return true;
1325 }
1326 #endif
1327 
1328 
1329 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1330 							unsigned int order)
1331 {
1332 	if (early_page_uninitialised(pfn))
1333 		return;
1334 	return __free_pages_boot_core(page, order);
1335 }
1336 
1337 /*
1338  * Check that the whole (or subset of) a pageblock given by the interval of
1339  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1340  * with the migration of free compaction scanner. The scanners then need to
1341  * use only pfn_valid_within() check for arches that allow holes within
1342  * pageblocks.
1343  *
1344  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1345  *
1346  * It's possible on some configurations to have a setup like node0 node1 node0
1347  * i.e. it's possible that all pages within a zones range of pages do not
1348  * belong to a single zone. We assume that a border between node0 and node1
1349  * can occur within a single pageblock, but not a node0 node1 node0
1350  * interleaving within a single pageblock. It is therefore sufficient to check
1351  * the first and last page of a pageblock and avoid checking each individual
1352  * page in a pageblock.
1353  */
1354 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1355 				     unsigned long end_pfn, struct zone *zone)
1356 {
1357 	struct page *start_page;
1358 	struct page *end_page;
1359 
1360 	/* end_pfn is one past the range we are checking */
1361 	end_pfn--;
1362 
1363 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1364 		return NULL;
1365 
1366 	start_page = pfn_to_online_page(start_pfn);
1367 	if (!start_page)
1368 		return NULL;
1369 
1370 	if (page_zone(start_page) != zone)
1371 		return NULL;
1372 
1373 	end_page = pfn_to_page(end_pfn);
1374 
1375 	/* This gives a shorter code than deriving page_zone(end_page) */
1376 	if (page_zone_id(start_page) != page_zone_id(end_page))
1377 		return NULL;
1378 
1379 	return start_page;
1380 }
1381 
1382 void set_zone_contiguous(struct zone *zone)
1383 {
1384 	unsigned long block_start_pfn = zone->zone_start_pfn;
1385 	unsigned long block_end_pfn;
1386 
1387 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1388 	for (; block_start_pfn < zone_end_pfn(zone);
1389 			block_start_pfn = block_end_pfn,
1390 			 block_end_pfn += pageblock_nr_pages) {
1391 
1392 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1393 
1394 		if (!__pageblock_pfn_to_page(block_start_pfn,
1395 					     block_end_pfn, zone))
1396 			return;
1397 	}
1398 
1399 	/* We confirm that there is no hole */
1400 	zone->contiguous = true;
1401 }
1402 
1403 void clear_zone_contiguous(struct zone *zone)
1404 {
1405 	zone->contiguous = false;
1406 }
1407 
1408 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1409 static void __init deferred_free_range(unsigned long pfn,
1410 				       unsigned long nr_pages)
1411 {
1412 	struct page *page;
1413 	unsigned long i;
1414 
1415 	if (!nr_pages)
1416 		return;
1417 
1418 	page = pfn_to_page(pfn);
1419 
1420 	/* Free a large naturally-aligned chunk if possible */
1421 	if (nr_pages == pageblock_nr_pages &&
1422 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1423 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1424 		__free_pages_boot_core(page, pageblock_order);
1425 		return;
1426 	}
1427 
1428 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1429 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1430 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1431 		__free_pages_boot_core(page, 0);
1432 	}
1433 }
1434 
1435 /* Completion tracking for deferred_init_memmap() threads */
1436 static atomic_t pgdat_init_n_undone __initdata;
1437 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1438 
1439 static inline void __init pgdat_init_report_one_done(void)
1440 {
1441 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1442 		complete(&pgdat_init_all_done_comp);
1443 }
1444 
1445 /*
1446  * Returns true if page needs to be initialized or freed to buddy allocator.
1447  *
1448  * First we check if pfn is valid on architectures where it is possible to have
1449  * holes within pageblock_nr_pages. On systems where it is not possible, this
1450  * function is optimized out.
1451  *
1452  * Then, we check if a current large page is valid by only checking the validity
1453  * of the head pfn.
1454  *
1455  * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
1456  * within a node: a pfn is between start and end of a node, but does not belong
1457  * to this memory node.
1458  */
1459 static inline bool __init
1460 deferred_pfn_valid(int nid, unsigned long pfn,
1461 		   struct mminit_pfnnid_cache *nid_init_state)
1462 {
1463 	if (!pfn_valid_within(pfn))
1464 		return false;
1465 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1466 		return false;
1467 	if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
1468 		return false;
1469 	return true;
1470 }
1471 
1472 /*
1473  * Free pages to buddy allocator. Try to free aligned pages in
1474  * pageblock_nr_pages sizes.
1475  */
1476 static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
1477 				       unsigned long end_pfn)
1478 {
1479 	struct mminit_pfnnid_cache nid_init_state = { };
1480 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1481 	unsigned long nr_free = 0;
1482 
1483 	for (; pfn < end_pfn; pfn++) {
1484 		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1485 			deferred_free_range(pfn - nr_free, nr_free);
1486 			nr_free = 0;
1487 		} else if (!(pfn & nr_pgmask)) {
1488 			deferred_free_range(pfn - nr_free, nr_free);
1489 			nr_free = 1;
1490 			touch_nmi_watchdog();
1491 		} else {
1492 			nr_free++;
1493 		}
1494 	}
1495 	/* Free the last block of pages to allocator */
1496 	deferred_free_range(pfn - nr_free, nr_free);
1497 }
1498 
1499 /*
1500  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1501  * by performing it only once every pageblock_nr_pages.
1502  * Return number of pages initialized.
1503  */
1504 static unsigned long  __init deferred_init_pages(int nid, int zid,
1505 						 unsigned long pfn,
1506 						 unsigned long end_pfn)
1507 {
1508 	struct mminit_pfnnid_cache nid_init_state = { };
1509 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1510 	unsigned long nr_pages = 0;
1511 	struct page *page = NULL;
1512 
1513 	for (; pfn < end_pfn; pfn++) {
1514 		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1515 			page = NULL;
1516 			continue;
1517 		} else if (!page || !(pfn & nr_pgmask)) {
1518 			page = pfn_to_page(pfn);
1519 			touch_nmi_watchdog();
1520 		} else {
1521 			page++;
1522 		}
1523 		__init_single_page(page, pfn, zid, nid);
1524 		nr_pages++;
1525 	}
1526 	return (nr_pages);
1527 }
1528 
1529 /* Initialise remaining memory on a node */
1530 static int __init deferred_init_memmap(void *data)
1531 {
1532 	pg_data_t *pgdat = data;
1533 	int nid = pgdat->node_id;
1534 	unsigned long start = jiffies;
1535 	unsigned long nr_pages = 0;
1536 	unsigned long spfn, epfn, first_init_pfn, flags;
1537 	phys_addr_t spa, epa;
1538 	int zid;
1539 	struct zone *zone;
1540 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1541 	u64 i;
1542 
1543 	/* Bind memory initialisation thread to a local node if possible */
1544 	if (!cpumask_empty(cpumask))
1545 		set_cpus_allowed_ptr(current, cpumask);
1546 
1547 	pgdat_resize_lock(pgdat, &flags);
1548 	first_init_pfn = pgdat->first_deferred_pfn;
1549 	if (first_init_pfn == ULONG_MAX) {
1550 		pgdat_resize_unlock(pgdat, &flags);
1551 		pgdat_init_report_one_done();
1552 		return 0;
1553 	}
1554 
1555 	/* Sanity check boundaries */
1556 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1557 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1558 	pgdat->first_deferred_pfn = ULONG_MAX;
1559 
1560 	/* Only the highest zone is deferred so find it */
1561 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1562 		zone = pgdat->node_zones + zid;
1563 		if (first_init_pfn < zone_end_pfn(zone))
1564 			break;
1565 	}
1566 	first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1567 
1568 	/*
1569 	 * Initialize and free pages. We do it in two loops: first we initialize
1570 	 * struct page, than free to buddy allocator, because while we are
1571 	 * freeing pages we can access pages that are ahead (computing buddy
1572 	 * page in __free_one_page()).
1573 	 */
1574 	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1575 		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1576 		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1577 		nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
1578 	}
1579 	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1580 		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1581 		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1582 		deferred_free_pages(nid, zid, spfn, epfn);
1583 	}
1584 	pgdat_resize_unlock(pgdat, &flags);
1585 
1586 	/* Sanity check that the next zone really is unpopulated */
1587 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1588 
1589 	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1590 					jiffies_to_msecs(jiffies - start));
1591 
1592 	pgdat_init_report_one_done();
1593 	return 0;
1594 }
1595 
1596 /*
1597  * During boot we initialize deferred pages on-demand, as needed, but once
1598  * page_alloc_init_late() has finished, the deferred pages are all initialized,
1599  * and we can permanently disable that path.
1600  */
1601 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
1602 
1603 /*
1604  * If this zone has deferred pages, try to grow it by initializing enough
1605  * deferred pages to satisfy the allocation specified by order, rounded up to
1606  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
1607  * of SECTION_SIZE bytes by initializing struct pages in increments of
1608  * PAGES_PER_SECTION * sizeof(struct page) bytes.
1609  *
1610  * Return true when zone was grown, otherwise return false. We return true even
1611  * when we grow less than requested, to let the caller decide if there are
1612  * enough pages to satisfy the allocation.
1613  *
1614  * Note: We use noinline because this function is needed only during boot, and
1615  * it is called from a __ref function _deferred_grow_zone. This way we are
1616  * making sure that it is not inlined into permanent text section.
1617  */
1618 static noinline bool __init
1619 deferred_grow_zone(struct zone *zone, unsigned int order)
1620 {
1621 	int zid = zone_idx(zone);
1622 	int nid = zone_to_nid(zone);
1623 	pg_data_t *pgdat = NODE_DATA(nid);
1624 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1625 	unsigned long nr_pages = 0;
1626 	unsigned long first_init_pfn, spfn, epfn, t, flags;
1627 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1628 	phys_addr_t spa, epa;
1629 	u64 i;
1630 
1631 	/* Only the last zone may have deferred pages */
1632 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1633 		return false;
1634 
1635 	pgdat_resize_lock(pgdat, &flags);
1636 
1637 	/*
1638 	 * If deferred pages have been initialized while we were waiting for
1639 	 * the lock, return true, as the zone was grown.  The caller will retry
1640 	 * this zone.  We won't return to this function since the caller also
1641 	 * has this static branch.
1642 	 */
1643 	if (!static_branch_unlikely(&deferred_pages)) {
1644 		pgdat_resize_unlock(pgdat, &flags);
1645 		return true;
1646 	}
1647 
1648 	/*
1649 	 * If someone grew this zone while we were waiting for spinlock, return
1650 	 * true, as there might be enough pages already.
1651 	 */
1652 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1653 		pgdat_resize_unlock(pgdat, &flags);
1654 		return true;
1655 	}
1656 
1657 	first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn);
1658 
1659 	if (first_init_pfn >= pgdat_end_pfn(pgdat)) {
1660 		pgdat_resize_unlock(pgdat, &flags);
1661 		return false;
1662 	}
1663 
1664 	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1665 		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1666 		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1667 
1668 		while (spfn < epfn && nr_pages < nr_pages_needed) {
1669 			t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION);
1670 			first_deferred_pfn = min(t, epfn);
1671 			nr_pages += deferred_init_pages(nid, zid, spfn,
1672 							first_deferred_pfn);
1673 			spfn = first_deferred_pfn;
1674 		}
1675 
1676 		if (nr_pages >= nr_pages_needed)
1677 			break;
1678 	}
1679 
1680 	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1681 		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1682 		epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa));
1683 		deferred_free_pages(nid, zid, spfn, epfn);
1684 
1685 		if (first_deferred_pfn == epfn)
1686 			break;
1687 	}
1688 	pgdat->first_deferred_pfn = first_deferred_pfn;
1689 	pgdat_resize_unlock(pgdat, &flags);
1690 
1691 	return nr_pages > 0;
1692 }
1693 
1694 /*
1695  * deferred_grow_zone() is __init, but it is called from
1696  * get_page_from_freelist() during early boot until deferred_pages permanently
1697  * disables this call. This is why we have refdata wrapper to avoid warning,
1698  * and to ensure that the function body gets unloaded.
1699  */
1700 static bool __ref
1701 _deferred_grow_zone(struct zone *zone, unsigned int order)
1702 {
1703 	return deferred_grow_zone(zone, order);
1704 }
1705 
1706 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1707 
1708 void __init page_alloc_init_late(void)
1709 {
1710 	struct zone *zone;
1711 
1712 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1713 	int nid;
1714 
1715 	/* There will be num_node_state(N_MEMORY) threads */
1716 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1717 	for_each_node_state(nid, N_MEMORY) {
1718 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1719 	}
1720 
1721 	/* Block until all are initialised */
1722 	wait_for_completion(&pgdat_init_all_done_comp);
1723 
1724 	/*
1725 	 * We initialized the rest of the deferred pages.  Permanently disable
1726 	 * on-demand struct page initialization.
1727 	 */
1728 	static_branch_disable(&deferred_pages);
1729 
1730 	/* Reinit limits that are based on free pages after the kernel is up */
1731 	files_maxfiles_init();
1732 #endif
1733 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1734 	/* Discard memblock private memory */
1735 	memblock_discard();
1736 #endif
1737 
1738 	for_each_populated_zone(zone)
1739 		set_zone_contiguous(zone);
1740 }
1741 
1742 #ifdef CONFIG_CMA
1743 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1744 void __init init_cma_reserved_pageblock(struct page *page)
1745 {
1746 	unsigned i = pageblock_nr_pages;
1747 	struct page *p = page;
1748 
1749 	do {
1750 		__ClearPageReserved(p);
1751 		set_page_count(p, 0);
1752 	} while (++p, --i);
1753 
1754 	set_pageblock_migratetype(page, MIGRATE_CMA);
1755 
1756 	if (pageblock_order >= MAX_ORDER) {
1757 		i = pageblock_nr_pages;
1758 		p = page;
1759 		do {
1760 			set_page_refcounted(p);
1761 			__free_pages(p, MAX_ORDER - 1);
1762 			p += MAX_ORDER_NR_PAGES;
1763 		} while (i -= MAX_ORDER_NR_PAGES);
1764 	} else {
1765 		set_page_refcounted(page);
1766 		__free_pages(page, pageblock_order);
1767 	}
1768 
1769 	adjust_managed_page_count(page, pageblock_nr_pages);
1770 }
1771 #endif
1772 
1773 /*
1774  * The order of subdivision here is critical for the IO subsystem.
1775  * Please do not alter this order without good reasons and regression
1776  * testing. Specifically, as large blocks of memory are subdivided,
1777  * the order in which smaller blocks are delivered depends on the order
1778  * they're subdivided in this function. This is the primary factor
1779  * influencing the order in which pages are delivered to the IO
1780  * subsystem according to empirical testing, and this is also justified
1781  * by considering the behavior of a buddy system containing a single
1782  * large block of memory acted on by a series of small allocations.
1783  * This behavior is a critical factor in sglist merging's success.
1784  *
1785  * -- nyc
1786  */
1787 static inline void expand(struct zone *zone, struct page *page,
1788 	int low, int high, struct free_area *area,
1789 	int migratetype)
1790 {
1791 	unsigned long size = 1 << high;
1792 
1793 	while (high > low) {
1794 		area--;
1795 		high--;
1796 		size >>= 1;
1797 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1798 
1799 		/*
1800 		 * Mark as guard pages (or page), that will allow to
1801 		 * merge back to allocator when buddy will be freed.
1802 		 * Corresponding page table entries will not be touched,
1803 		 * pages will stay not present in virtual address space
1804 		 */
1805 		if (set_page_guard(zone, &page[size], high, migratetype))
1806 			continue;
1807 
1808 		list_add(&page[size].lru, &area->free_list[migratetype]);
1809 		area->nr_free++;
1810 		set_page_order(&page[size], high);
1811 	}
1812 }
1813 
1814 static void check_new_page_bad(struct page *page)
1815 {
1816 	const char *bad_reason = NULL;
1817 	unsigned long bad_flags = 0;
1818 
1819 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1820 		bad_reason = "nonzero mapcount";
1821 	if (unlikely(page->mapping != NULL))
1822 		bad_reason = "non-NULL mapping";
1823 	if (unlikely(page_ref_count(page) != 0))
1824 		bad_reason = "nonzero _count";
1825 	if (unlikely(page->flags & __PG_HWPOISON)) {
1826 		bad_reason = "HWPoisoned (hardware-corrupted)";
1827 		bad_flags = __PG_HWPOISON;
1828 		/* Don't complain about hwpoisoned pages */
1829 		page_mapcount_reset(page); /* remove PageBuddy */
1830 		return;
1831 	}
1832 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1833 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1834 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1835 	}
1836 #ifdef CONFIG_MEMCG
1837 	if (unlikely(page->mem_cgroup))
1838 		bad_reason = "page still charged to cgroup";
1839 #endif
1840 	bad_page(page, bad_reason, bad_flags);
1841 }
1842 
1843 /*
1844  * This page is about to be returned from the page allocator
1845  */
1846 static inline int check_new_page(struct page *page)
1847 {
1848 	if (likely(page_expected_state(page,
1849 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1850 		return 0;
1851 
1852 	check_new_page_bad(page);
1853 	return 1;
1854 }
1855 
1856 static inline bool free_pages_prezeroed(void)
1857 {
1858 	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1859 		page_poisoning_enabled();
1860 }
1861 
1862 #ifdef CONFIG_DEBUG_VM
1863 static bool check_pcp_refill(struct page *page)
1864 {
1865 	return false;
1866 }
1867 
1868 static bool check_new_pcp(struct page *page)
1869 {
1870 	return check_new_page(page);
1871 }
1872 #else
1873 static bool check_pcp_refill(struct page *page)
1874 {
1875 	return check_new_page(page);
1876 }
1877 static bool check_new_pcp(struct page *page)
1878 {
1879 	return false;
1880 }
1881 #endif /* CONFIG_DEBUG_VM */
1882 
1883 static bool check_new_pages(struct page *page, unsigned int order)
1884 {
1885 	int i;
1886 	for (i = 0; i < (1 << order); i++) {
1887 		struct page *p = page + i;
1888 
1889 		if (unlikely(check_new_page(p)))
1890 			return true;
1891 	}
1892 
1893 	return false;
1894 }
1895 
1896 inline void post_alloc_hook(struct page *page, unsigned int order,
1897 				gfp_t gfp_flags)
1898 {
1899 	set_page_private(page, 0);
1900 	set_page_refcounted(page);
1901 
1902 	arch_alloc_page(page, order);
1903 	kernel_map_pages(page, 1 << order, 1);
1904 	kernel_poison_pages(page, 1 << order, 1);
1905 	kasan_alloc_pages(page, order);
1906 	set_page_owner(page, order, gfp_flags);
1907 }
1908 
1909 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1910 							unsigned int alloc_flags)
1911 {
1912 	int i;
1913 
1914 	post_alloc_hook(page, order, gfp_flags);
1915 
1916 	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1917 		for (i = 0; i < (1 << order); i++)
1918 			clear_highpage(page + i);
1919 
1920 	if (order && (gfp_flags & __GFP_COMP))
1921 		prep_compound_page(page, order);
1922 
1923 	/*
1924 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1925 	 * allocate the page. The expectation is that the caller is taking
1926 	 * steps that will free more memory. The caller should avoid the page
1927 	 * being used for !PFMEMALLOC purposes.
1928 	 */
1929 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1930 		set_page_pfmemalloc(page);
1931 	else
1932 		clear_page_pfmemalloc(page);
1933 }
1934 
1935 /*
1936  * Go through the free lists for the given migratetype and remove
1937  * the smallest available page from the freelists
1938  */
1939 static __always_inline
1940 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1941 						int migratetype)
1942 {
1943 	unsigned int current_order;
1944 	struct free_area *area;
1945 	struct page *page;
1946 
1947 	/* Find a page of the appropriate size in the preferred list */
1948 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1949 		area = &(zone->free_area[current_order]);
1950 		page = list_first_entry_or_null(&area->free_list[migratetype],
1951 							struct page, lru);
1952 		if (!page)
1953 			continue;
1954 		list_del(&page->lru);
1955 		rmv_page_order(page);
1956 		area->nr_free--;
1957 		expand(zone, page, order, current_order, area, migratetype);
1958 		set_pcppage_migratetype(page, migratetype);
1959 		return page;
1960 	}
1961 
1962 	return NULL;
1963 }
1964 
1965 
1966 /*
1967  * This array describes the order lists are fallen back to when
1968  * the free lists for the desirable migrate type are depleted
1969  */
1970 static int fallbacks[MIGRATE_TYPES][4] = {
1971 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
1972 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
1973 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1974 #ifdef CONFIG_CMA
1975 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1976 #endif
1977 #ifdef CONFIG_MEMORY_ISOLATION
1978 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1979 #endif
1980 };
1981 
1982 #ifdef CONFIG_CMA
1983 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1984 					unsigned int order)
1985 {
1986 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1987 }
1988 #else
1989 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1990 					unsigned int order) { return NULL; }
1991 #endif
1992 
1993 /*
1994  * Move the free pages in a range to the free lists of the requested type.
1995  * Note that start_page and end_pages are not aligned on a pageblock
1996  * boundary. If alignment is required, use move_freepages_block()
1997  */
1998 static int move_freepages(struct zone *zone,
1999 			  struct page *start_page, struct page *end_page,
2000 			  int migratetype, int *num_movable)
2001 {
2002 	struct page *page;
2003 	unsigned int order;
2004 	int pages_moved = 0;
2005 
2006 #ifndef CONFIG_HOLES_IN_ZONE
2007 	/*
2008 	 * page_zone is not safe to call in this context when
2009 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
2010 	 * anyway as we check zone boundaries in move_freepages_block().
2011 	 * Remove at a later date when no bug reports exist related to
2012 	 * grouping pages by mobility
2013 	 */
2014 	VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
2015 	          pfn_valid(page_to_pfn(end_page)) &&
2016 	          page_zone(start_page) != page_zone(end_page));
2017 #endif
2018 
2019 	if (num_movable)
2020 		*num_movable = 0;
2021 
2022 	for (page = start_page; page <= end_page;) {
2023 		if (!pfn_valid_within(page_to_pfn(page))) {
2024 			page++;
2025 			continue;
2026 		}
2027 
2028 		/* Make sure we are not inadvertently changing nodes */
2029 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2030 
2031 		if (!PageBuddy(page)) {
2032 			/*
2033 			 * We assume that pages that could be isolated for
2034 			 * migration are movable. But we don't actually try
2035 			 * isolating, as that would be expensive.
2036 			 */
2037 			if (num_movable &&
2038 					(PageLRU(page) || __PageMovable(page)))
2039 				(*num_movable)++;
2040 
2041 			page++;
2042 			continue;
2043 		}
2044 
2045 		order = page_order(page);
2046 		list_move(&page->lru,
2047 			  &zone->free_area[order].free_list[migratetype]);
2048 		page += 1 << order;
2049 		pages_moved += 1 << order;
2050 	}
2051 
2052 	return pages_moved;
2053 }
2054 
2055 int move_freepages_block(struct zone *zone, struct page *page,
2056 				int migratetype, int *num_movable)
2057 {
2058 	unsigned long start_pfn, end_pfn;
2059 	struct page *start_page, *end_page;
2060 
2061 	start_pfn = page_to_pfn(page);
2062 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2063 	start_page = pfn_to_page(start_pfn);
2064 	end_page = start_page + pageblock_nr_pages - 1;
2065 	end_pfn = start_pfn + pageblock_nr_pages - 1;
2066 
2067 	/* Do not cross zone boundaries */
2068 	if (!zone_spans_pfn(zone, start_pfn))
2069 		start_page = page;
2070 	if (!zone_spans_pfn(zone, end_pfn))
2071 		return 0;
2072 
2073 	return move_freepages(zone, start_page, end_page, migratetype,
2074 								num_movable);
2075 }
2076 
2077 static void change_pageblock_range(struct page *pageblock_page,
2078 					int start_order, int migratetype)
2079 {
2080 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2081 
2082 	while (nr_pageblocks--) {
2083 		set_pageblock_migratetype(pageblock_page, migratetype);
2084 		pageblock_page += pageblock_nr_pages;
2085 	}
2086 }
2087 
2088 /*
2089  * When we are falling back to another migratetype during allocation, try to
2090  * steal extra free pages from the same pageblocks to satisfy further
2091  * allocations, instead of polluting multiple pageblocks.
2092  *
2093  * If we are stealing a relatively large buddy page, it is likely there will
2094  * be more free pages in the pageblock, so try to steal them all. For
2095  * reclaimable and unmovable allocations, we steal regardless of page size,
2096  * as fragmentation caused by those allocations polluting movable pageblocks
2097  * is worse than movable allocations stealing from unmovable and reclaimable
2098  * pageblocks.
2099  */
2100 static bool can_steal_fallback(unsigned int order, int start_mt)
2101 {
2102 	/*
2103 	 * Leaving this order check is intended, although there is
2104 	 * relaxed order check in next check. The reason is that
2105 	 * we can actually steal whole pageblock if this condition met,
2106 	 * but, below check doesn't guarantee it and that is just heuristic
2107 	 * so could be changed anytime.
2108 	 */
2109 	if (order >= pageblock_order)
2110 		return true;
2111 
2112 	if (order >= pageblock_order / 2 ||
2113 		start_mt == MIGRATE_RECLAIMABLE ||
2114 		start_mt == MIGRATE_UNMOVABLE ||
2115 		page_group_by_mobility_disabled)
2116 		return true;
2117 
2118 	return false;
2119 }
2120 
2121 /*
2122  * This function implements actual steal behaviour. If order is large enough,
2123  * we can steal whole pageblock. If not, we first move freepages in this
2124  * pageblock to our migratetype and determine how many already-allocated pages
2125  * are there in the pageblock with a compatible migratetype. If at least half
2126  * of pages are free or compatible, we can change migratetype of the pageblock
2127  * itself, so pages freed in the future will be put on the correct free list.
2128  */
2129 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2130 					int start_type, bool whole_block)
2131 {
2132 	unsigned int current_order = page_order(page);
2133 	struct free_area *area;
2134 	int free_pages, movable_pages, alike_pages;
2135 	int old_block_type;
2136 
2137 	old_block_type = get_pageblock_migratetype(page);
2138 
2139 	/*
2140 	 * This can happen due to races and we want to prevent broken
2141 	 * highatomic accounting.
2142 	 */
2143 	if (is_migrate_highatomic(old_block_type))
2144 		goto single_page;
2145 
2146 	/* Take ownership for orders >= pageblock_order */
2147 	if (current_order >= pageblock_order) {
2148 		change_pageblock_range(page, current_order, start_type);
2149 		goto single_page;
2150 	}
2151 
2152 	/* We are not allowed to try stealing from the whole block */
2153 	if (!whole_block)
2154 		goto single_page;
2155 
2156 	free_pages = move_freepages_block(zone, page, start_type,
2157 						&movable_pages);
2158 	/*
2159 	 * Determine how many pages are compatible with our allocation.
2160 	 * For movable allocation, it's the number of movable pages which
2161 	 * we just obtained. For other types it's a bit more tricky.
2162 	 */
2163 	if (start_type == MIGRATE_MOVABLE) {
2164 		alike_pages = movable_pages;
2165 	} else {
2166 		/*
2167 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2168 		 * to MOVABLE pageblock, consider all non-movable pages as
2169 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2170 		 * vice versa, be conservative since we can't distinguish the
2171 		 * exact migratetype of non-movable pages.
2172 		 */
2173 		if (old_block_type == MIGRATE_MOVABLE)
2174 			alike_pages = pageblock_nr_pages
2175 						- (free_pages + movable_pages);
2176 		else
2177 			alike_pages = 0;
2178 	}
2179 
2180 	/* moving whole block can fail due to zone boundary conditions */
2181 	if (!free_pages)
2182 		goto single_page;
2183 
2184 	/*
2185 	 * If a sufficient number of pages in the block are either free or of
2186 	 * comparable migratability as our allocation, claim the whole block.
2187 	 */
2188 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2189 			page_group_by_mobility_disabled)
2190 		set_pageblock_migratetype(page, start_type);
2191 
2192 	return;
2193 
2194 single_page:
2195 	area = &zone->free_area[current_order];
2196 	list_move(&page->lru, &area->free_list[start_type]);
2197 }
2198 
2199 /*
2200  * Check whether there is a suitable fallback freepage with requested order.
2201  * If only_stealable is true, this function returns fallback_mt only if
2202  * we can steal other freepages all together. This would help to reduce
2203  * fragmentation due to mixed migratetype pages in one pageblock.
2204  */
2205 int find_suitable_fallback(struct free_area *area, unsigned int order,
2206 			int migratetype, bool only_stealable, bool *can_steal)
2207 {
2208 	int i;
2209 	int fallback_mt;
2210 
2211 	if (area->nr_free == 0)
2212 		return -1;
2213 
2214 	*can_steal = false;
2215 	for (i = 0;; i++) {
2216 		fallback_mt = fallbacks[migratetype][i];
2217 		if (fallback_mt == MIGRATE_TYPES)
2218 			break;
2219 
2220 		if (list_empty(&area->free_list[fallback_mt]))
2221 			continue;
2222 
2223 		if (can_steal_fallback(order, migratetype))
2224 			*can_steal = true;
2225 
2226 		if (!only_stealable)
2227 			return fallback_mt;
2228 
2229 		if (*can_steal)
2230 			return fallback_mt;
2231 	}
2232 
2233 	return -1;
2234 }
2235 
2236 /*
2237  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2238  * there are no empty page blocks that contain a page with a suitable order
2239  */
2240 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2241 				unsigned int alloc_order)
2242 {
2243 	int mt;
2244 	unsigned long max_managed, flags;
2245 
2246 	/*
2247 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2248 	 * Check is race-prone but harmless.
2249 	 */
2250 	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2251 	if (zone->nr_reserved_highatomic >= max_managed)
2252 		return;
2253 
2254 	spin_lock_irqsave(&zone->lock, flags);
2255 
2256 	/* Recheck the nr_reserved_highatomic limit under the lock */
2257 	if (zone->nr_reserved_highatomic >= max_managed)
2258 		goto out_unlock;
2259 
2260 	/* Yoink! */
2261 	mt = get_pageblock_migratetype(page);
2262 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2263 	    && !is_migrate_cma(mt)) {
2264 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2265 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2266 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2267 	}
2268 
2269 out_unlock:
2270 	spin_unlock_irqrestore(&zone->lock, flags);
2271 }
2272 
2273 /*
2274  * Used when an allocation is about to fail under memory pressure. This
2275  * potentially hurts the reliability of high-order allocations when under
2276  * intense memory pressure but failed atomic allocations should be easier
2277  * to recover from than an OOM.
2278  *
2279  * If @force is true, try to unreserve a pageblock even though highatomic
2280  * pageblock is exhausted.
2281  */
2282 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2283 						bool force)
2284 {
2285 	struct zonelist *zonelist = ac->zonelist;
2286 	unsigned long flags;
2287 	struct zoneref *z;
2288 	struct zone *zone;
2289 	struct page *page;
2290 	int order;
2291 	bool ret;
2292 
2293 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2294 								ac->nodemask) {
2295 		/*
2296 		 * Preserve at least one pageblock unless memory pressure
2297 		 * is really high.
2298 		 */
2299 		if (!force && zone->nr_reserved_highatomic <=
2300 					pageblock_nr_pages)
2301 			continue;
2302 
2303 		spin_lock_irqsave(&zone->lock, flags);
2304 		for (order = 0; order < MAX_ORDER; order++) {
2305 			struct free_area *area = &(zone->free_area[order]);
2306 
2307 			page = list_first_entry_or_null(
2308 					&area->free_list[MIGRATE_HIGHATOMIC],
2309 					struct page, lru);
2310 			if (!page)
2311 				continue;
2312 
2313 			/*
2314 			 * In page freeing path, migratetype change is racy so
2315 			 * we can counter several free pages in a pageblock
2316 			 * in this loop althoug we changed the pageblock type
2317 			 * from highatomic to ac->migratetype. So we should
2318 			 * adjust the count once.
2319 			 */
2320 			if (is_migrate_highatomic_page(page)) {
2321 				/*
2322 				 * It should never happen but changes to
2323 				 * locking could inadvertently allow a per-cpu
2324 				 * drain to add pages to MIGRATE_HIGHATOMIC
2325 				 * while unreserving so be safe and watch for
2326 				 * underflows.
2327 				 */
2328 				zone->nr_reserved_highatomic -= min(
2329 						pageblock_nr_pages,
2330 						zone->nr_reserved_highatomic);
2331 			}
2332 
2333 			/*
2334 			 * Convert to ac->migratetype and avoid the normal
2335 			 * pageblock stealing heuristics. Minimally, the caller
2336 			 * is doing the work and needs the pages. More
2337 			 * importantly, if the block was always converted to
2338 			 * MIGRATE_UNMOVABLE or another type then the number
2339 			 * of pageblocks that cannot be completely freed
2340 			 * may increase.
2341 			 */
2342 			set_pageblock_migratetype(page, ac->migratetype);
2343 			ret = move_freepages_block(zone, page, ac->migratetype,
2344 									NULL);
2345 			if (ret) {
2346 				spin_unlock_irqrestore(&zone->lock, flags);
2347 				return ret;
2348 			}
2349 		}
2350 		spin_unlock_irqrestore(&zone->lock, flags);
2351 	}
2352 
2353 	return false;
2354 }
2355 
2356 /*
2357  * Try finding a free buddy page on the fallback list and put it on the free
2358  * list of requested migratetype, possibly along with other pages from the same
2359  * block, depending on fragmentation avoidance heuristics. Returns true if
2360  * fallback was found so that __rmqueue_smallest() can grab it.
2361  *
2362  * The use of signed ints for order and current_order is a deliberate
2363  * deviation from the rest of this file, to make the for loop
2364  * condition simpler.
2365  */
2366 static __always_inline bool
2367 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2368 {
2369 	struct free_area *area;
2370 	int current_order;
2371 	struct page *page;
2372 	int fallback_mt;
2373 	bool can_steal;
2374 
2375 	/*
2376 	 * Find the largest available free page in the other list. This roughly
2377 	 * approximates finding the pageblock with the most free pages, which
2378 	 * would be too costly to do exactly.
2379 	 */
2380 	for (current_order = MAX_ORDER - 1; current_order >= order;
2381 				--current_order) {
2382 		area = &(zone->free_area[current_order]);
2383 		fallback_mt = find_suitable_fallback(area, current_order,
2384 				start_migratetype, false, &can_steal);
2385 		if (fallback_mt == -1)
2386 			continue;
2387 
2388 		/*
2389 		 * We cannot steal all free pages from the pageblock and the
2390 		 * requested migratetype is movable. In that case it's better to
2391 		 * steal and split the smallest available page instead of the
2392 		 * largest available page, because even if the next movable
2393 		 * allocation falls back into a different pageblock than this
2394 		 * one, it won't cause permanent fragmentation.
2395 		 */
2396 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2397 					&& current_order > order)
2398 			goto find_smallest;
2399 
2400 		goto do_steal;
2401 	}
2402 
2403 	return false;
2404 
2405 find_smallest:
2406 	for (current_order = order; current_order < MAX_ORDER;
2407 							current_order++) {
2408 		area = &(zone->free_area[current_order]);
2409 		fallback_mt = find_suitable_fallback(area, current_order,
2410 				start_migratetype, false, &can_steal);
2411 		if (fallback_mt != -1)
2412 			break;
2413 	}
2414 
2415 	/*
2416 	 * This should not happen - we already found a suitable fallback
2417 	 * when looking for the largest page.
2418 	 */
2419 	VM_BUG_ON(current_order == MAX_ORDER);
2420 
2421 do_steal:
2422 	page = list_first_entry(&area->free_list[fallback_mt],
2423 							struct page, lru);
2424 
2425 	steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2426 
2427 	trace_mm_page_alloc_extfrag(page, order, current_order,
2428 		start_migratetype, fallback_mt);
2429 
2430 	return true;
2431 
2432 }
2433 
2434 /*
2435  * Do the hard work of removing an element from the buddy allocator.
2436  * Call me with the zone->lock already held.
2437  */
2438 static __always_inline struct page *
2439 __rmqueue(struct zone *zone, unsigned int order, int migratetype)
2440 {
2441 	struct page *page;
2442 
2443 retry:
2444 	page = __rmqueue_smallest(zone, order, migratetype);
2445 	if (unlikely(!page)) {
2446 		if (migratetype == MIGRATE_MOVABLE)
2447 			page = __rmqueue_cma_fallback(zone, order);
2448 
2449 		if (!page && __rmqueue_fallback(zone, order, migratetype))
2450 			goto retry;
2451 	}
2452 
2453 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2454 	return page;
2455 }
2456 
2457 /*
2458  * Obtain a specified number of elements from the buddy allocator, all under
2459  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2460  * Returns the number of new pages which were placed at *list.
2461  */
2462 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2463 			unsigned long count, struct list_head *list,
2464 			int migratetype)
2465 {
2466 	int i, alloced = 0;
2467 
2468 	spin_lock(&zone->lock);
2469 	for (i = 0; i < count; ++i) {
2470 		struct page *page = __rmqueue(zone, order, migratetype);
2471 		if (unlikely(page == NULL))
2472 			break;
2473 
2474 		if (unlikely(check_pcp_refill(page)))
2475 			continue;
2476 
2477 		/*
2478 		 * Split buddy pages returned by expand() are received here in
2479 		 * physical page order. The page is added to the tail of
2480 		 * caller's list. From the callers perspective, the linked list
2481 		 * is ordered by page number under some conditions. This is
2482 		 * useful for IO devices that can forward direction from the
2483 		 * head, thus also in the physical page order. This is useful
2484 		 * for IO devices that can merge IO requests if the physical
2485 		 * pages are ordered properly.
2486 		 */
2487 		list_add_tail(&page->lru, list);
2488 		alloced++;
2489 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2490 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2491 					      -(1 << order));
2492 	}
2493 
2494 	/*
2495 	 * i pages were removed from the buddy list even if some leak due
2496 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2497 	 * on i. Do not confuse with 'alloced' which is the number of
2498 	 * pages added to the pcp list.
2499 	 */
2500 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2501 	spin_unlock(&zone->lock);
2502 	return alloced;
2503 }
2504 
2505 #ifdef CONFIG_NUMA
2506 /*
2507  * Called from the vmstat counter updater to drain pagesets of this
2508  * currently executing processor on remote nodes after they have
2509  * expired.
2510  *
2511  * Note that this function must be called with the thread pinned to
2512  * a single processor.
2513  */
2514 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2515 {
2516 	unsigned long flags;
2517 	int to_drain, batch;
2518 
2519 	local_irq_save(flags);
2520 	batch = READ_ONCE(pcp->batch);
2521 	to_drain = min(pcp->count, batch);
2522 	if (to_drain > 0)
2523 		free_pcppages_bulk(zone, to_drain, pcp);
2524 	local_irq_restore(flags);
2525 }
2526 #endif
2527 
2528 /*
2529  * Drain pcplists of the indicated processor and zone.
2530  *
2531  * The processor must either be the current processor and the
2532  * thread pinned to the current processor or a processor that
2533  * is not online.
2534  */
2535 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2536 {
2537 	unsigned long flags;
2538 	struct per_cpu_pageset *pset;
2539 	struct per_cpu_pages *pcp;
2540 
2541 	local_irq_save(flags);
2542 	pset = per_cpu_ptr(zone->pageset, cpu);
2543 
2544 	pcp = &pset->pcp;
2545 	if (pcp->count)
2546 		free_pcppages_bulk(zone, pcp->count, pcp);
2547 	local_irq_restore(flags);
2548 }
2549 
2550 /*
2551  * Drain pcplists of all zones on the indicated processor.
2552  *
2553  * The processor must either be the current processor and the
2554  * thread pinned to the current processor or a processor that
2555  * is not online.
2556  */
2557 static void drain_pages(unsigned int cpu)
2558 {
2559 	struct zone *zone;
2560 
2561 	for_each_populated_zone(zone) {
2562 		drain_pages_zone(cpu, zone);
2563 	}
2564 }
2565 
2566 /*
2567  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2568  *
2569  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2570  * the single zone's pages.
2571  */
2572 void drain_local_pages(struct zone *zone)
2573 {
2574 	int cpu = smp_processor_id();
2575 
2576 	if (zone)
2577 		drain_pages_zone(cpu, zone);
2578 	else
2579 		drain_pages(cpu);
2580 }
2581 
2582 static void drain_local_pages_wq(struct work_struct *work)
2583 {
2584 	/*
2585 	 * drain_all_pages doesn't use proper cpu hotplug protection so
2586 	 * we can race with cpu offline when the WQ can move this from
2587 	 * a cpu pinned worker to an unbound one. We can operate on a different
2588 	 * cpu which is allright but we also have to make sure to not move to
2589 	 * a different one.
2590 	 */
2591 	preempt_disable();
2592 	drain_local_pages(NULL);
2593 	preempt_enable();
2594 }
2595 
2596 /*
2597  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2598  *
2599  * When zone parameter is non-NULL, spill just the single zone's pages.
2600  *
2601  * Note that this can be extremely slow as the draining happens in a workqueue.
2602  */
2603 void drain_all_pages(struct zone *zone)
2604 {
2605 	int cpu;
2606 
2607 	/*
2608 	 * Allocate in the BSS so we wont require allocation in
2609 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2610 	 */
2611 	static cpumask_t cpus_with_pcps;
2612 
2613 	/*
2614 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
2615 	 * initialized.
2616 	 */
2617 	if (WARN_ON_ONCE(!mm_percpu_wq))
2618 		return;
2619 
2620 	/*
2621 	 * Do not drain if one is already in progress unless it's specific to
2622 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2623 	 * the drain to be complete when the call returns.
2624 	 */
2625 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2626 		if (!zone)
2627 			return;
2628 		mutex_lock(&pcpu_drain_mutex);
2629 	}
2630 
2631 	/*
2632 	 * We don't care about racing with CPU hotplug event
2633 	 * as offline notification will cause the notified
2634 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2635 	 * disables preemption as part of its processing
2636 	 */
2637 	for_each_online_cpu(cpu) {
2638 		struct per_cpu_pageset *pcp;
2639 		struct zone *z;
2640 		bool has_pcps = false;
2641 
2642 		if (zone) {
2643 			pcp = per_cpu_ptr(zone->pageset, cpu);
2644 			if (pcp->pcp.count)
2645 				has_pcps = true;
2646 		} else {
2647 			for_each_populated_zone(z) {
2648 				pcp = per_cpu_ptr(z->pageset, cpu);
2649 				if (pcp->pcp.count) {
2650 					has_pcps = true;
2651 					break;
2652 				}
2653 			}
2654 		}
2655 
2656 		if (has_pcps)
2657 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2658 		else
2659 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2660 	}
2661 
2662 	for_each_cpu(cpu, &cpus_with_pcps) {
2663 		struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2664 		INIT_WORK(work, drain_local_pages_wq);
2665 		queue_work_on(cpu, mm_percpu_wq, work);
2666 	}
2667 	for_each_cpu(cpu, &cpus_with_pcps)
2668 		flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2669 
2670 	mutex_unlock(&pcpu_drain_mutex);
2671 }
2672 
2673 #ifdef CONFIG_HIBERNATION
2674 
2675 /*
2676  * Touch the watchdog for every WD_PAGE_COUNT pages.
2677  */
2678 #define WD_PAGE_COUNT	(128*1024)
2679 
2680 void mark_free_pages(struct zone *zone)
2681 {
2682 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2683 	unsigned long flags;
2684 	unsigned int order, t;
2685 	struct page *page;
2686 
2687 	if (zone_is_empty(zone))
2688 		return;
2689 
2690 	spin_lock_irqsave(&zone->lock, flags);
2691 
2692 	max_zone_pfn = zone_end_pfn(zone);
2693 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2694 		if (pfn_valid(pfn)) {
2695 			page = pfn_to_page(pfn);
2696 
2697 			if (!--page_count) {
2698 				touch_nmi_watchdog();
2699 				page_count = WD_PAGE_COUNT;
2700 			}
2701 
2702 			if (page_zone(page) != zone)
2703 				continue;
2704 
2705 			if (!swsusp_page_is_forbidden(page))
2706 				swsusp_unset_page_free(page);
2707 		}
2708 
2709 	for_each_migratetype_order(order, t) {
2710 		list_for_each_entry(page,
2711 				&zone->free_area[order].free_list[t], lru) {
2712 			unsigned long i;
2713 
2714 			pfn = page_to_pfn(page);
2715 			for (i = 0; i < (1UL << order); i++) {
2716 				if (!--page_count) {
2717 					touch_nmi_watchdog();
2718 					page_count = WD_PAGE_COUNT;
2719 				}
2720 				swsusp_set_page_free(pfn_to_page(pfn + i));
2721 			}
2722 		}
2723 	}
2724 	spin_unlock_irqrestore(&zone->lock, flags);
2725 }
2726 #endif /* CONFIG_PM */
2727 
2728 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
2729 {
2730 	int migratetype;
2731 
2732 	if (!free_pcp_prepare(page))
2733 		return false;
2734 
2735 	migratetype = get_pfnblock_migratetype(page, pfn);
2736 	set_pcppage_migratetype(page, migratetype);
2737 	return true;
2738 }
2739 
2740 static void free_unref_page_commit(struct page *page, unsigned long pfn)
2741 {
2742 	struct zone *zone = page_zone(page);
2743 	struct per_cpu_pages *pcp;
2744 	int migratetype;
2745 
2746 	migratetype = get_pcppage_migratetype(page);
2747 	__count_vm_event(PGFREE);
2748 
2749 	/*
2750 	 * We only track unmovable, reclaimable and movable on pcp lists.
2751 	 * Free ISOLATE pages back to the allocator because they are being
2752 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2753 	 * areas back if necessary. Otherwise, we may have to free
2754 	 * excessively into the page allocator
2755 	 */
2756 	if (migratetype >= MIGRATE_PCPTYPES) {
2757 		if (unlikely(is_migrate_isolate(migratetype))) {
2758 			free_one_page(zone, page, pfn, 0, migratetype);
2759 			return;
2760 		}
2761 		migratetype = MIGRATE_MOVABLE;
2762 	}
2763 
2764 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2765 	list_add(&page->lru, &pcp->lists[migratetype]);
2766 	pcp->count++;
2767 	if (pcp->count >= pcp->high) {
2768 		unsigned long batch = READ_ONCE(pcp->batch);
2769 		free_pcppages_bulk(zone, batch, pcp);
2770 	}
2771 }
2772 
2773 /*
2774  * Free a 0-order page
2775  */
2776 void free_unref_page(struct page *page)
2777 {
2778 	unsigned long flags;
2779 	unsigned long pfn = page_to_pfn(page);
2780 
2781 	if (!free_unref_page_prepare(page, pfn))
2782 		return;
2783 
2784 	local_irq_save(flags);
2785 	free_unref_page_commit(page, pfn);
2786 	local_irq_restore(flags);
2787 }
2788 
2789 /*
2790  * Free a list of 0-order pages
2791  */
2792 void free_unref_page_list(struct list_head *list)
2793 {
2794 	struct page *page, *next;
2795 	unsigned long flags, pfn;
2796 	int batch_count = 0;
2797 
2798 	/* Prepare pages for freeing */
2799 	list_for_each_entry_safe(page, next, list, lru) {
2800 		pfn = page_to_pfn(page);
2801 		if (!free_unref_page_prepare(page, pfn))
2802 			list_del(&page->lru);
2803 		set_page_private(page, pfn);
2804 	}
2805 
2806 	local_irq_save(flags);
2807 	list_for_each_entry_safe(page, next, list, lru) {
2808 		unsigned long pfn = page_private(page);
2809 
2810 		set_page_private(page, 0);
2811 		trace_mm_page_free_batched(page);
2812 		free_unref_page_commit(page, pfn);
2813 
2814 		/*
2815 		 * Guard against excessive IRQ disabled times when we get
2816 		 * a large list of pages to free.
2817 		 */
2818 		if (++batch_count == SWAP_CLUSTER_MAX) {
2819 			local_irq_restore(flags);
2820 			batch_count = 0;
2821 			local_irq_save(flags);
2822 		}
2823 	}
2824 	local_irq_restore(flags);
2825 }
2826 
2827 /*
2828  * split_page takes a non-compound higher-order page, and splits it into
2829  * n (1<<order) sub-pages: page[0..n]
2830  * Each sub-page must be freed individually.
2831  *
2832  * Note: this is probably too low level an operation for use in drivers.
2833  * Please consult with lkml before using this in your driver.
2834  */
2835 void split_page(struct page *page, unsigned int order)
2836 {
2837 	int i;
2838 
2839 	VM_BUG_ON_PAGE(PageCompound(page), page);
2840 	VM_BUG_ON_PAGE(!page_count(page), page);
2841 
2842 	for (i = 1; i < (1 << order); i++)
2843 		set_page_refcounted(page + i);
2844 	split_page_owner(page, order);
2845 }
2846 EXPORT_SYMBOL_GPL(split_page);
2847 
2848 int __isolate_free_page(struct page *page, unsigned int order)
2849 {
2850 	unsigned long watermark;
2851 	struct zone *zone;
2852 	int mt;
2853 
2854 	BUG_ON(!PageBuddy(page));
2855 
2856 	zone = page_zone(page);
2857 	mt = get_pageblock_migratetype(page);
2858 
2859 	if (!is_migrate_isolate(mt)) {
2860 		/*
2861 		 * Obey watermarks as if the page was being allocated. We can
2862 		 * emulate a high-order watermark check with a raised order-0
2863 		 * watermark, because we already know our high-order page
2864 		 * exists.
2865 		 */
2866 		watermark = min_wmark_pages(zone) + (1UL << order);
2867 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2868 			return 0;
2869 
2870 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2871 	}
2872 
2873 	/* Remove page from free list */
2874 	list_del(&page->lru);
2875 	zone->free_area[order].nr_free--;
2876 	rmv_page_order(page);
2877 
2878 	/*
2879 	 * Set the pageblock if the isolated page is at least half of a
2880 	 * pageblock
2881 	 */
2882 	if (order >= pageblock_order - 1) {
2883 		struct page *endpage = page + (1 << order) - 1;
2884 		for (; page < endpage; page += pageblock_nr_pages) {
2885 			int mt = get_pageblock_migratetype(page);
2886 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2887 			    && !is_migrate_highatomic(mt))
2888 				set_pageblock_migratetype(page,
2889 							  MIGRATE_MOVABLE);
2890 		}
2891 	}
2892 
2893 
2894 	return 1UL << order;
2895 }
2896 
2897 /*
2898  * Update NUMA hit/miss statistics
2899  *
2900  * Must be called with interrupts disabled.
2901  */
2902 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2903 {
2904 #ifdef CONFIG_NUMA
2905 	enum numa_stat_item local_stat = NUMA_LOCAL;
2906 
2907 	/* skip numa counters update if numa stats is disabled */
2908 	if (!static_branch_likely(&vm_numa_stat_key))
2909 		return;
2910 
2911 	if (z->node != numa_node_id())
2912 		local_stat = NUMA_OTHER;
2913 
2914 	if (z->node == preferred_zone->node)
2915 		__inc_numa_state(z, NUMA_HIT);
2916 	else {
2917 		__inc_numa_state(z, NUMA_MISS);
2918 		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
2919 	}
2920 	__inc_numa_state(z, local_stat);
2921 #endif
2922 }
2923 
2924 /* Remove page from the per-cpu list, caller must protect the list */
2925 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2926 			struct per_cpu_pages *pcp,
2927 			struct list_head *list)
2928 {
2929 	struct page *page;
2930 
2931 	do {
2932 		if (list_empty(list)) {
2933 			pcp->count += rmqueue_bulk(zone, 0,
2934 					pcp->batch, list,
2935 					migratetype);
2936 			if (unlikely(list_empty(list)))
2937 				return NULL;
2938 		}
2939 
2940 		page = list_first_entry(list, struct page, lru);
2941 		list_del(&page->lru);
2942 		pcp->count--;
2943 	} while (check_new_pcp(page));
2944 
2945 	return page;
2946 }
2947 
2948 /* Lock and remove page from the per-cpu list */
2949 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2950 			struct zone *zone, unsigned int order,
2951 			gfp_t gfp_flags, int migratetype)
2952 {
2953 	struct per_cpu_pages *pcp;
2954 	struct list_head *list;
2955 	struct page *page;
2956 	unsigned long flags;
2957 
2958 	local_irq_save(flags);
2959 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2960 	list = &pcp->lists[migratetype];
2961 	page = __rmqueue_pcplist(zone,  migratetype, pcp, list);
2962 	if (page) {
2963 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2964 		zone_statistics(preferred_zone, zone);
2965 	}
2966 	local_irq_restore(flags);
2967 	return page;
2968 }
2969 
2970 /*
2971  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2972  */
2973 static inline
2974 struct page *rmqueue(struct zone *preferred_zone,
2975 			struct zone *zone, unsigned int order,
2976 			gfp_t gfp_flags, unsigned int alloc_flags,
2977 			int migratetype)
2978 {
2979 	unsigned long flags;
2980 	struct page *page;
2981 
2982 	if (likely(order == 0)) {
2983 		page = rmqueue_pcplist(preferred_zone, zone, order,
2984 				gfp_flags, migratetype);
2985 		goto out;
2986 	}
2987 
2988 	/*
2989 	 * We most definitely don't want callers attempting to
2990 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
2991 	 */
2992 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2993 	spin_lock_irqsave(&zone->lock, flags);
2994 
2995 	do {
2996 		page = NULL;
2997 		if (alloc_flags & ALLOC_HARDER) {
2998 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2999 			if (page)
3000 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3001 		}
3002 		if (!page)
3003 			page = __rmqueue(zone, order, migratetype);
3004 	} while (page && check_new_pages(page, order));
3005 	spin_unlock(&zone->lock);
3006 	if (!page)
3007 		goto failed;
3008 	__mod_zone_freepage_state(zone, -(1 << order),
3009 				  get_pcppage_migratetype(page));
3010 
3011 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3012 	zone_statistics(preferred_zone, zone);
3013 	local_irq_restore(flags);
3014 
3015 out:
3016 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3017 	return page;
3018 
3019 failed:
3020 	local_irq_restore(flags);
3021 	return NULL;
3022 }
3023 
3024 #ifdef CONFIG_FAIL_PAGE_ALLOC
3025 
3026 static struct {
3027 	struct fault_attr attr;
3028 
3029 	bool ignore_gfp_highmem;
3030 	bool ignore_gfp_reclaim;
3031 	u32 min_order;
3032 } fail_page_alloc = {
3033 	.attr = FAULT_ATTR_INITIALIZER,
3034 	.ignore_gfp_reclaim = true,
3035 	.ignore_gfp_highmem = true,
3036 	.min_order = 1,
3037 };
3038 
3039 static int __init setup_fail_page_alloc(char *str)
3040 {
3041 	return setup_fault_attr(&fail_page_alloc.attr, str);
3042 }
3043 __setup("fail_page_alloc=", setup_fail_page_alloc);
3044 
3045 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3046 {
3047 	if (order < fail_page_alloc.min_order)
3048 		return false;
3049 	if (gfp_mask & __GFP_NOFAIL)
3050 		return false;
3051 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3052 		return false;
3053 	if (fail_page_alloc.ignore_gfp_reclaim &&
3054 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3055 		return false;
3056 
3057 	return should_fail(&fail_page_alloc.attr, 1 << order);
3058 }
3059 
3060 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3061 
3062 static int __init fail_page_alloc_debugfs(void)
3063 {
3064 	umode_t mode = S_IFREG | 0600;
3065 	struct dentry *dir;
3066 
3067 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3068 					&fail_page_alloc.attr);
3069 	if (IS_ERR(dir))
3070 		return PTR_ERR(dir);
3071 
3072 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
3073 				&fail_page_alloc.ignore_gfp_reclaim))
3074 		goto fail;
3075 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3076 				&fail_page_alloc.ignore_gfp_highmem))
3077 		goto fail;
3078 	if (!debugfs_create_u32("min-order", mode, dir,
3079 				&fail_page_alloc.min_order))
3080 		goto fail;
3081 
3082 	return 0;
3083 fail:
3084 	debugfs_remove_recursive(dir);
3085 
3086 	return -ENOMEM;
3087 }
3088 
3089 late_initcall(fail_page_alloc_debugfs);
3090 
3091 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3092 
3093 #else /* CONFIG_FAIL_PAGE_ALLOC */
3094 
3095 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3096 {
3097 	return false;
3098 }
3099 
3100 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3101 
3102 /*
3103  * Return true if free base pages are above 'mark'. For high-order checks it
3104  * will return true of the order-0 watermark is reached and there is at least
3105  * one free page of a suitable size. Checking now avoids taking the zone lock
3106  * to check in the allocation paths if no pages are free.
3107  */
3108 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3109 			 int classzone_idx, unsigned int alloc_flags,
3110 			 long free_pages)
3111 {
3112 	long min = mark;
3113 	int o;
3114 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3115 
3116 	/* free_pages may go negative - that's OK */
3117 	free_pages -= (1 << order) - 1;
3118 
3119 	if (alloc_flags & ALLOC_HIGH)
3120 		min -= min / 2;
3121 
3122 	/*
3123 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3124 	 * the high-atomic reserves. This will over-estimate the size of the
3125 	 * atomic reserve but it avoids a search.
3126 	 */
3127 	if (likely(!alloc_harder)) {
3128 		free_pages -= z->nr_reserved_highatomic;
3129 	} else {
3130 		/*
3131 		 * OOM victims can try even harder than normal ALLOC_HARDER
3132 		 * users on the grounds that it's definitely going to be in
3133 		 * the exit path shortly and free memory. Any allocation it
3134 		 * makes during the free path will be small and short-lived.
3135 		 */
3136 		if (alloc_flags & ALLOC_OOM)
3137 			min -= min / 2;
3138 		else
3139 			min -= min / 4;
3140 	}
3141 
3142 
3143 #ifdef CONFIG_CMA
3144 	/* If allocation can't use CMA areas don't use free CMA pages */
3145 	if (!(alloc_flags & ALLOC_CMA))
3146 		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3147 #endif
3148 
3149 	/*
3150 	 * Check watermarks for an order-0 allocation request. If these
3151 	 * are not met, then a high-order request also cannot go ahead
3152 	 * even if a suitable page happened to be free.
3153 	 */
3154 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3155 		return false;
3156 
3157 	/* If this is an order-0 request then the watermark is fine */
3158 	if (!order)
3159 		return true;
3160 
3161 	/* For a high-order request, check at least one suitable page is free */
3162 	for (o = order; o < MAX_ORDER; o++) {
3163 		struct free_area *area = &z->free_area[o];
3164 		int mt;
3165 
3166 		if (!area->nr_free)
3167 			continue;
3168 
3169 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3170 			if (!list_empty(&area->free_list[mt]))
3171 				return true;
3172 		}
3173 
3174 #ifdef CONFIG_CMA
3175 		if ((alloc_flags & ALLOC_CMA) &&
3176 		    !list_empty(&area->free_list[MIGRATE_CMA])) {
3177 			return true;
3178 		}
3179 #endif
3180 		if (alloc_harder &&
3181 			!list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3182 			return true;
3183 	}
3184 	return false;
3185 }
3186 
3187 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3188 		      int classzone_idx, unsigned int alloc_flags)
3189 {
3190 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3191 					zone_page_state(z, NR_FREE_PAGES));
3192 }
3193 
3194 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3195 		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3196 {
3197 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3198 	long cma_pages = 0;
3199 
3200 #ifdef CONFIG_CMA
3201 	/* If allocation can't use CMA areas don't use free CMA pages */
3202 	if (!(alloc_flags & ALLOC_CMA))
3203 		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3204 #endif
3205 
3206 	/*
3207 	 * Fast check for order-0 only. If this fails then the reserves
3208 	 * need to be calculated. There is a corner case where the check
3209 	 * passes but only the high-order atomic reserve are free. If
3210 	 * the caller is !atomic then it'll uselessly search the free
3211 	 * list. That corner case is then slower but it is harmless.
3212 	 */
3213 	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3214 		return true;
3215 
3216 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3217 					free_pages);
3218 }
3219 
3220 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3221 			unsigned long mark, int classzone_idx)
3222 {
3223 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3224 
3225 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3226 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3227 
3228 	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3229 								free_pages);
3230 }
3231 
3232 #ifdef CONFIG_NUMA
3233 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3234 {
3235 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3236 				RECLAIM_DISTANCE;
3237 }
3238 #else	/* CONFIG_NUMA */
3239 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3240 {
3241 	return true;
3242 }
3243 #endif	/* CONFIG_NUMA */
3244 
3245 /*
3246  * get_page_from_freelist goes through the zonelist trying to allocate
3247  * a page.
3248  */
3249 static struct page *
3250 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3251 						const struct alloc_context *ac)
3252 {
3253 	struct zoneref *z = ac->preferred_zoneref;
3254 	struct zone *zone;
3255 	struct pglist_data *last_pgdat_dirty_limit = NULL;
3256 
3257 	/*
3258 	 * Scan zonelist, looking for a zone with enough free.
3259 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3260 	 */
3261 	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3262 								ac->nodemask) {
3263 		struct page *page;
3264 		unsigned long mark;
3265 
3266 		if (cpusets_enabled() &&
3267 			(alloc_flags & ALLOC_CPUSET) &&
3268 			!__cpuset_zone_allowed(zone, gfp_mask))
3269 				continue;
3270 		/*
3271 		 * When allocating a page cache page for writing, we
3272 		 * want to get it from a node that is within its dirty
3273 		 * limit, such that no single node holds more than its
3274 		 * proportional share of globally allowed dirty pages.
3275 		 * The dirty limits take into account the node's
3276 		 * lowmem reserves and high watermark so that kswapd
3277 		 * should be able to balance it without having to
3278 		 * write pages from its LRU list.
3279 		 *
3280 		 * XXX: For now, allow allocations to potentially
3281 		 * exceed the per-node dirty limit in the slowpath
3282 		 * (spread_dirty_pages unset) before going into reclaim,
3283 		 * which is important when on a NUMA setup the allowed
3284 		 * nodes are together not big enough to reach the
3285 		 * global limit.  The proper fix for these situations
3286 		 * will require awareness of nodes in the
3287 		 * dirty-throttling and the flusher threads.
3288 		 */
3289 		if (ac->spread_dirty_pages) {
3290 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3291 				continue;
3292 
3293 			if (!node_dirty_ok(zone->zone_pgdat)) {
3294 				last_pgdat_dirty_limit = zone->zone_pgdat;
3295 				continue;
3296 			}
3297 		}
3298 
3299 		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3300 		if (!zone_watermark_fast(zone, order, mark,
3301 				       ac_classzone_idx(ac), alloc_flags)) {
3302 			int ret;
3303 
3304 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3305 			/*
3306 			 * Watermark failed for this zone, but see if we can
3307 			 * grow this zone if it contains deferred pages.
3308 			 */
3309 			if (static_branch_unlikely(&deferred_pages)) {
3310 				if (_deferred_grow_zone(zone, order))
3311 					goto try_this_zone;
3312 			}
3313 #endif
3314 			/* Checked here to keep the fast path fast */
3315 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3316 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3317 				goto try_this_zone;
3318 
3319 			if (node_reclaim_mode == 0 ||
3320 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3321 				continue;
3322 
3323 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3324 			switch (ret) {
3325 			case NODE_RECLAIM_NOSCAN:
3326 				/* did not scan */
3327 				continue;
3328 			case NODE_RECLAIM_FULL:
3329 				/* scanned but unreclaimable */
3330 				continue;
3331 			default:
3332 				/* did we reclaim enough */
3333 				if (zone_watermark_ok(zone, order, mark,
3334 						ac_classzone_idx(ac), alloc_flags))
3335 					goto try_this_zone;
3336 
3337 				continue;
3338 			}
3339 		}
3340 
3341 try_this_zone:
3342 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3343 				gfp_mask, alloc_flags, ac->migratetype);
3344 		if (page) {
3345 			prep_new_page(page, order, gfp_mask, alloc_flags);
3346 
3347 			/*
3348 			 * If this is a high-order atomic allocation then check
3349 			 * if the pageblock should be reserved for the future
3350 			 */
3351 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3352 				reserve_highatomic_pageblock(page, zone, order);
3353 
3354 			return page;
3355 		} else {
3356 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3357 			/* Try again if zone has deferred pages */
3358 			if (static_branch_unlikely(&deferred_pages)) {
3359 				if (_deferred_grow_zone(zone, order))
3360 					goto try_this_zone;
3361 			}
3362 #endif
3363 		}
3364 	}
3365 
3366 	return NULL;
3367 }
3368 
3369 /*
3370  * Large machines with many possible nodes should not always dump per-node
3371  * meminfo in irq context.
3372  */
3373 static inline bool should_suppress_show_mem(void)
3374 {
3375 	bool ret = false;
3376 
3377 #if NODES_SHIFT > 8
3378 	ret = in_interrupt();
3379 #endif
3380 	return ret;
3381 }
3382 
3383 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3384 {
3385 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3386 	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3387 
3388 	if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3389 		return;
3390 
3391 	/*
3392 	 * This documents exceptions given to allocations in certain
3393 	 * contexts that are allowed to allocate outside current's set
3394 	 * of allowed nodes.
3395 	 */
3396 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3397 		if (tsk_is_oom_victim(current) ||
3398 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3399 			filter &= ~SHOW_MEM_FILTER_NODES;
3400 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3401 		filter &= ~SHOW_MEM_FILTER_NODES;
3402 
3403 	show_mem(filter, nodemask);
3404 }
3405 
3406 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3407 {
3408 	struct va_format vaf;
3409 	va_list args;
3410 	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3411 				      DEFAULT_RATELIMIT_BURST);
3412 
3413 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3414 		return;
3415 
3416 	va_start(args, fmt);
3417 	vaf.fmt = fmt;
3418 	vaf.va = &args;
3419 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
3420 			current->comm, &vaf, gfp_mask, &gfp_mask,
3421 			nodemask_pr_args(nodemask));
3422 	va_end(args);
3423 
3424 	cpuset_print_current_mems_allowed();
3425 
3426 	dump_stack();
3427 	warn_alloc_show_mem(gfp_mask, nodemask);
3428 }
3429 
3430 static inline struct page *
3431 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3432 			      unsigned int alloc_flags,
3433 			      const struct alloc_context *ac)
3434 {
3435 	struct page *page;
3436 
3437 	page = get_page_from_freelist(gfp_mask, order,
3438 			alloc_flags|ALLOC_CPUSET, ac);
3439 	/*
3440 	 * fallback to ignore cpuset restriction if our nodes
3441 	 * are depleted
3442 	 */
3443 	if (!page)
3444 		page = get_page_from_freelist(gfp_mask, order,
3445 				alloc_flags, ac);
3446 
3447 	return page;
3448 }
3449 
3450 static inline struct page *
3451 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3452 	const struct alloc_context *ac, unsigned long *did_some_progress)
3453 {
3454 	struct oom_control oc = {
3455 		.zonelist = ac->zonelist,
3456 		.nodemask = ac->nodemask,
3457 		.memcg = NULL,
3458 		.gfp_mask = gfp_mask,
3459 		.order = order,
3460 	};
3461 	struct page *page;
3462 
3463 	*did_some_progress = 0;
3464 
3465 	/*
3466 	 * Acquire the oom lock.  If that fails, somebody else is
3467 	 * making progress for us.
3468 	 */
3469 	if (!mutex_trylock(&oom_lock)) {
3470 		*did_some_progress = 1;
3471 		schedule_timeout_uninterruptible(1);
3472 		return NULL;
3473 	}
3474 
3475 	/*
3476 	 * Go through the zonelist yet one more time, keep very high watermark
3477 	 * here, this is only to catch a parallel oom killing, we must fail if
3478 	 * we're still under heavy pressure. But make sure that this reclaim
3479 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3480 	 * allocation which will never fail due to oom_lock already held.
3481 	 */
3482 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3483 				      ~__GFP_DIRECT_RECLAIM, order,
3484 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3485 	if (page)
3486 		goto out;
3487 
3488 	/* Coredumps can quickly deplete all memory reserves */
3489 	if (current->flags & PF_DUMPCORE)
3490 		goto out;
3491 	/* The OOM killer will not help higher order allocs */
3492 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3493 		goto out;
3494 	/*
3495 	 * We have already exhausted all our reclaim opportunities without any
3496 	 * success so it is time to admit defeat. We will skip the OOM killer
3497 	 * because it is very likely that the caller has a more reasonable
3498 	 * fallback than shooting a random task.
3499 	 */
3500 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
3501 		goto out;
3502 	/* The OOM killer does not needlessly kill tasks for lowmem */
3503 	if (ac->high_zoneidx < ZONE_NORMAL)
3504 		goto out;
3505 	if (pm_suspended_storage())
3506 		goto out;
3507 	/*
3508 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3509 	 * other request to make a forward progress.
3510 	 * We are in an unfortunate situation where out_of_memory cannot
3511 	 * do much for this context but let's try it to at least get
3512 	 * access to memory reserved if the current task is killed (see
3513 	 * out_of_memory). Once filesystems are ready to handle allocation
3514 	 * failures more gracefully we should just bail out here.
3515 	 */
3516 
3517 	/* The OOM killer may not free memory on a specific node */
3518 	if (gfp_mask & __GFP_THISNODE)
3519 		goto out;
3520 
3521 	/* Exhausted what can be done so it's blame time */
3522 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3523 		*did_some_progress = 1;
3524 
3525 		/*
3526 		 * Help non-failing allocations by giving them access to memory
3527 		 * reserves
3528 		 */
3529 		if (gfp_mask & __GFP_NOFAIL)
3530 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3531 					ALLOC_NO_WATERMARKS, ac);
3532 	}
3533 out:
3534 	mutex_unlock(&oom_lock);
3535 	return page;
3536 }
3537 
3538 /*
3539  * Maximum number of compaction retries wit a progress before OOM
3540  * killer is consider as the only way to move forward.
3541  */
3542 #define MAX_COMPACT_RETRIES 16
3543 
3544 #ifdef CONFIG_COMPACTION
3545 /* Try memory compaction for high-order allocations before reclaim */
3546 static struct page *
3547 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3548 		unsigned int alloc_flags, const struct alloc_context *ac,
3549 		enum compact_priority prio, enum compact_result *compact_result)
3550 {
3551 	struct page *page;
3552 	unsigned int noreclaim_flag;
3553 
3554 	if (!order)
3555 		return NULL;
3556 
3557 	noreclaim_flag = memalloc_noreclaim_save();
3558 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3559 									prio);
3560 	memalloc_noreclaim_restore(noreclaim_flag);
3561 
3562 	if (*compact_result <= COMPACT_INACTIVE)
3563 		return NULL;
3564 
3565 	/*
3566 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3567 	 * count a compaction stall
3568 	 */
3569 	count_vm_event(COMPACTSTALL);
3570 
3571 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3572 
3573 	if (page) {
3574 		struct zone *zone = page_zone(page);
3575 
3576 		zone->compact_blockskip_flush = false;
3577 		compaction_defer_reset(zone, order, true);
3578 		count_vm_event(COMPACTSUCCESS);
3579 		return page;
3580 	}
3581 
3582 	/*
3583 	 * It's bad if compaction run occurs and fails. The most likely reason
3584 	 * is that pages exist, but not enough to satisfy watermarks.
3585 	 */
3586 	count_vm_event(COMPACTFAIL);
3587 
3588 	cond_resched();
3589 
3590 	return NULL;
3591 }
3592 
3593 static inline bool
3594 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3595 		     enum compact_result compact_result,
3596 		     enum compact_priority *compact_priority,
3597 		     int *compaction_retries)
3598 {
3599 	int max_retries = MAX_COMPACT_RETRIES;
3600 	int min_priority;
3601 	bool ret = false;
3602 	int retries = *compaction_retries;
3603 	enum compact_priority priority = *compact_priority;
3604 
3605 	if (!order)
3606 		return false;
3607 
3608 	if (compaction_made_progress(compact_result))
3609 		(*compaction_retries)++;
3610 
3611 	/*
3612 	 * compaction considers all the zone as desperately out of memory
3613 	 * so it doesn't really make much sense to retry except when the
3614 	 * failure could be caused by insufficient priority
3615 	 */
3616 	if (compaction_failed(compact_result))
3617 		goto check_priority;
3618 
3619 	/*
3620 	 * make sure the compaction wasn't deferred or didn't bail out early
3621 	 * due to locks contention before we declare that we should give up.
3622 	 * But do not retry if the given zonelist is not suitable for
3623 	 * compaction.
3624 	 */
3625 	if (compaction_withdrawn(compact_result)) {
3626 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3627 		goto out;
3628 	}
3629 
3630 	/*
3631 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3632 	 * costly ones because they are de facto nofail and invoke OOM
3633 	 * killer to move on while costly can fail and users are ready
3634 	 * to cope with that. 1/4 retries is rather arbitrary but we
3635 	 * would need much more detailed feedback from compaction to
3636 	 * make a better decision.
3637 	 */
3638 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3639 		max_retries /= 4;
3640 	if (*compaction_retries <= max_retries) {
3641 		ret = true;
3642 		goto out;
3643 	}
3644 
3645 	/*
3646 	 * Make sure there are attempts at the highest priority if we exhausted
3647 	 * all retries or failed at the lower priorities.
3648 	 */
3649 check_priority:
3650 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3651 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3652 
3653 	if (*compact_priority > min_priority) {
3654 		(*compact_priority)--;
3655 		*compaction_retries = 0;
3656 		ret = true;
3657 	}
3658 out:
3659 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3660 	return ret;
3661 }
3662 #else
3663 static inline struct page *
3664 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3665 		unsigned int alloc_flags, const struct alloc_context *ac,
3666 		enum compact_priority prio, enum compact_result *compact_result)
3667 {
3668 	*compact_result = COMPACT_SKIPPED;
3669 	return NULL;
3670 }
3671 
3672 static inline bool
3673 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3674 		     enum compact_result compact_result,
3675 		     enum compact_priority *compact_priority,
3676 		     int *compaction_retries)
3677 {
3678 	struct zone *zone;
3679 	struct zoneref *z;
3680 
3681 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3682 		return false;
3683 
3684 	/*
3685 	 * There are setups with compaction disabled which would prefer to loop
3686 	 * inside the allocator rather than hit the oom killer prematurely.
3687 	 * Let's give them a good hope and keep retrying while the order-0
3688 	 * watermarks are OK.
3689 	 */
3690 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3691 					ac->nodemask) {
3692 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3693 					ac_classzone_idx(ac), alloc_flags))
3694 			return true;
3695 	}
3696 	return false;
3697 }
3698 #endif /* CONFIG_COMPACTION */
3699 
3700 #ifdef CONFIG_LOCKDEP
3701 static struct lockdep_map __fs_reclaim_map =
3702 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3703 
3704 static bool __need_fs_reclaim(gfp_t gfp_mask)
3705 {
3706 	gfp_mask = current_gfp_context(gfp_mask);
3707 
3708 	/* no reclaim without waiting on it */
3709 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3710 		return false;
3711 
3712 	/* this guy won't enter reclaim */
3713 	if (current->flags & PF_MEMALLOC)
3714 		return false;
3715 
3716 	/* We're only interested __GFP_FS allocations for now */
3717 	if (!(gfp_mask & __GFP_FS))
3718 		return false;
3719 
3720 	if (gfp_mask & __GFP_NOLOCKDEP)
3721 		return false;
3722 
3723 	return true;
3724 }
3725 
3726 void __fs_reclaim_acquire(void)
3727 {
3728 	lock_map_acquire(&__fs_reclaim_map);
3729 }
3730 
3731 void __fs_reclaim_release(void)
3732 {
3733 	lock_map_release(&__fs_reclaim_map);
3734 }
3735 
3736 void fs_reclaim_acquire(gfp_t gfp_mask)
3737 {
3738 	if (__need_fs_reclaim(gfp_mask))
3739 		__fs_reclaim_acquire();
3740 }
3741 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3742 
3743 void fs_reclaim_release(gfp_t gfp_mask)
3744 {
3745 	if (__need_fs_reclaim(gfp_mask))
3746 		__fs_reclaim_release();
3747 }
3748 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3749 #endif
3750 
3751 /* Perform direct synchronous page reclaim */
3752 static int
3753 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3754 					const struct alloc_context *ac)
3755 {
3756 	struct reclaim_state reclaim_state;
3757 	int progress;
3758 	unsigned int noreclaim_flag;
3759 
3760 	cond_resched();
3761 
3762 	/* We now go into synchronous reclaim */
3763 	cpuset_memory_pressure_bump();
3764 	fs_reclaim_acquire(gfp_mask);
3765 	noreclaim_flag = memalloc_noreclaim_save();
3766 	reclaim_state.reclaimed_slab = 0;
3767 	current->reclaim_state = &reclaim_state;
3768 
3769 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3770 								ac->nodemask);
3771 
3772 	current->reclaim_state = NULL;
3773 	memalloc_noreclaim_restore(noreclaim_flag);
3774 	fs_reclaim_release(gfp_mask);
3775 
3776 	cond_resched();
3777 
3778 	return progress;
3779 }
3780 
3781 /* The really slow allocator path where we enter direct reclaim */
3782 static inline struct page *
3783 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3784 		unsigned int alloc_flags, const struct alloc_context *ac,
3785 		unsigned long *did_some_progress)
3786 {
3787 	struct page *page = NULL;
3788 	bool drained = false;
3789 
3790 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3791 	if (unlikely(!(*did_some_progress)))
3792 		return NULL;
3793 
3794 retry:
3795 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3796 
3797 	/*
3798 	 * If an allocation failed after direct reclaim, it could be because
3799 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3800 	 * Shrink them them and try again
3801 	 */
3802 	if (!page && !drained) {
3803 		unreserve_highatomic_pageblock(ac, false);
3804 		drain_all_pages(NULL);
3805 		drained = true;
3806 		goto retry;
3807 	}
3808 
3809 	return page;
3810 }
3811 
3812 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3813 			     const struct alloc_context *ac)
3814 {
3815 	struct zoneref *z;
3816 	struct zone *zone;
3817 	pg_data_t *last_pgdat = NULL;
3818 	enum zone_type high_zoneidx = ac->high_zoneidx;
3819 
3820 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
3821 					ac->nodemask) {
3822 		if (last_pgdat != zone->zone_pgdat)
3823 			wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
3824 		last_pgdat = zone->zone_pgdat;
3825 	}
3826 }
3827 
3828 static inline unsigned int
3829 gfp_to_alloc_flags(gfp_t gfp_mask)
3830 {
3831 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3832 
3833 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3834 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3835 
3836 	/*
3837 	 * The caller may dip into page reserves a bit more if the caller
3838 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3839 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3840 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3841 	 */
3842 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3843 
3844 	if (gfp_mask & __GFP_ATOMIC) {
3845 		/*
3846 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3847 		 * if it can't schedule.
3848 		 */
3849 		if (!(gfp_mask & __GFP_NOMEMALLOC))
3850 			alloc_flags |= ALLOC_HARDER;
3851 		/*
3852 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3853 		 * comment for __cpuset_node_allowed().
3854 		 */
3855 		alloc_flags &= ~ALLOC_CPUSET;
3856 	} else if (unlikely(rt_task(current)) && !in_interrupt())
3857 		alloc_flags |= ALLOC_HARDER;
3858 
3859 #ifdef CONFIG_CMA
3860 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3861 		alloc_flags |= ALLOC_CMA;
3862 #endif
3863 	return alloc_flags;
3864 }
3865 
3866 static bool oom_reserves_allowed(struct task_struct *tsk)
3867 {
3868 	if (!tsk_is_oom_victim(tsk))
3869 		return false;
3870 
3871 	/*
3872 	 * !MMU doesn't have oom reaper so give access to memory reserves
3873 	 * only to the thread with TIF_MEMDIE set
3874 	 */
3875 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3876 		return false;
3877 
3878 	return true;
3879 }
3880 
3881 /*
3882  * Distinguish requests which really need access to full memory
3883  * reserves from oom victims which can live with a portion of it
3884  */
3885 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3886 {
3887 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3888 		return 0;
3889 	if (gfp_mask & __GFP_MEMALLOC)
3890 		return ALLOC_NO_WATERMARKS;
3891 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3892 		return ALLOC_NO_WATERMARKS;
3893 	if (!in_interrupt()) {
3894 		if (current->flags & PF_MEMALLOC)
3895 			return ALLOC_NO_WATERMARKS;
3896 		else if (oom_reserves_allowed(current))
3897 			return ALLOC_OOM;
3898 	}
3899 
3900 	return 0;
3901 }
3902 
3903 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3904 {
3905 	return !!__gfp_pfmemalloc_flags(gfp_mask);
3906 }
3907 
3908 /*
3909  * Checks whether it makes sense to retry the reclaim to make a forward progress
3910  * for the given allocation request.
3911  *
3912  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3913  * without success, or when we couldn't even meet the watermark if we
3914  * reclaimed all remaining pages on the LRU lists.
3915  *
3916  * Returns true if a retry is viable or false to enter the oom path.
3917  */
3918 static inline bool
3919 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3920 		     struct alloc_context *ac, int alloc_flags,
3921 		     bool did_some_progress, int *no_progress_loops)
3922 {
3923 	struct zone *zone;
3924 	struct zoneref *z;
3925 
3926 	/*
3927 	 * Costly allocations might have made a progress but this doesn't mean
3928 	 * their order will become available due to high fragmentation so
3929 	 * always increment the no progress counter for them
3930 	 */
3931 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3932 		*no_progress_loops = 0;
3933 	else
3934 		(*no_progress_loops)++;
3935 
3936 	/*
3937 	 * Make sure we converge to OOM if we cannot make any progress
3938 	 * several times in the row.
3939 	 */
3940 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3941 		/* Before OOM, exhaust highatomic_reserve */
3942 		return unreserve_highatomic_pageblock(ac, true);
3943 	}
3944 
3945 	/*
3946 	 * Keep reclaiming pages while there is a chance this will lead
3947 	 * somewhere.  If none of the target zones can satisfy our allocation
3948 	 * request even if all reclaimable pages are considered then we are
3949 	 * screwed and have to go OOM.
3950 	 */
3951 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3952 					ac->nodemask) {
3953 		unsigned long available;
3954 		unsigned long reclaimable;
3955 		unsigned long min_wmark = min_wmark_pages(zone);
3956 		bool wmark;
3957 
3958 		available = reclaimable = zone_reclaimable_pages(zone);
3959 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3960 
3961 		/*
3962 		 * Would the allocation succeed if we reclaimed all
3963 		 * reclaimable pages?
3964 		 */
3965 		wmark = __zone_watermark_ok(zone, order, min_wmark,
3966 				ac_classzone_idx(ac), alloc_flags, available);
3967 		trace_reclaim_retry_zone(z, order, reclaimable,
3968 				available, min_wmark, *no_progress_loops, wmark);
3969 		if (wmark) {
3970 			/*
3971 			 * If we didn't make any progress and have a lot of
3972 			 * dirty + writeback pages then we should wait for
3973 			 * an IO to complete to slow down the reclaim and
3974 			 * prevent from pre mature OOM
3975 			 */
3976 			if (!did_some_progress) {
3977 				unsigned long write_pending;
3978 
3979 				write_pending = zone_page_state_snapshot(zone,
3980 							NR_ZONE_WRITE_PENDING);
3981 
3982 				if (2 * write_pending > reclaimable) {
3983 					congestion_wait(BLK_RW_ASYNC, HZ/10);
3984 					return true;
3985 				}
3986 			}
3987 
3988 			/*
3989 			 * Memory allocation/reclaim might be called from a WQ
3990 			 * context and the current implementation of the WQ
3991 			 * concurrency control doesn't recognize that
3992 			 * a particular WQ is congested if the worker thread is
3993 			 * looping without ever sleeping. Therefore we have to
3994 			 * do a short sleep here rather than calling
3995 			 * cond_resched().
3996 			 */
3997 			if (current->flags & PF_WQ_WORKER)
3998 				schedule_timeout_uninterruptible(1);
3999 			else
4000 				cond_resched();
4001 
4002 			return true;
4003 		}
4004 	}
4005 
4006 	return false;
4007 }
4008 
4009 static inline bool
4010 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4011 {
4012 	/*
4013 	 * It's possible that cpuset's mems_allowed and the nodemask from
4014 	 * mempolicy don't intersect. This should be normally dealt with by
4015 	 * policy_nodemask(), but it's possible to race with cpuset update in
4016 	 * such a way the check therein was true, and then it became false
4017 	 * before we got our cpuset_mems_cookie here.
4018 	 * This assumes that for all allocations, ac->nodemask can come only
4019 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4020 	 * when it does not intersect with the cpuset restrictions) or the
4021 	 * caller can deal with a violated nodemask.
4022 	 */
4023 	if (cpusets_enabled() && ac->nodemask &&
4024 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4025 		ac->nodemask = NULL;
4026 		return true;
4027 	}
4028 
4029 	/*
4030 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4031 	 * possible to race with parallel threads in such a way that our
4032 	 * allocation can fail while the mask is being updated. If we are about
4033 	 * to fail, check if the cpuset changed during allocation and if so,
4034 	 * retry.
4035 	 */
4036 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4037 		return true;
4038 
4039 	return false;
4040 }
4041 
4042 static inline struct page *
4043 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4044 						struct alloc_context *ac)
4045 {
4046 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4047 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4048 	struct page *page = NULL;
4049 	unsigned int alloc_flags;
4050 	unsigned long did_some_progress;
4051 	enum compact_priority compact_priority;
4052 	enum compact_result compact_result;
4053 	int compaction_retries;
4054 	int no_progress_loops;
4055 	unsigned int cpuset_mems_cookie;
4056 	int reserve_flags;
4057 
4058 	/*
4059 	 * In the slowpath, we sanity check order to avoid ever trying to
4060 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
4061 	 * be using allocators in order of preference for an area that is
4062 	 * too large.
4063 	 */
4064 	if (order >= MAX_ORDER) {
4065 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4066 		return NULL;
4067 	}
4068 
4069 	/*
4070 	 * We also sanity check to catch abuse of atomic reserves being used by
4071 	 * callers that are not in atomic context.
4072 	 */
4073 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4074 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4075 		gfp_mask &= ~__GFP_ATOMIC;
4076 
4077 retry_cpuset:
4078 	compaction_retries = 0;
4079 	no_progress_loops = 0;
4080 	compact_priority = DEF_COMPACT_PRIORITY;
4081 	cpuset_mems_cookie = read_mems_allowed_begin();
4082 
4083 	/*
4084 	 * The fast path uses conservative alloc_flags to succeed only until
4085 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4086 	 * alloc_flags precisely. So we do that now.
4087 	 */
4088 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4089 
4090 	/*
4091 	 * We need to recalculate the starting point for the zonelist iterator
4092 	 * because we might have used different nodemask in the fast path, or
4093 	 * there was a cpuset modification and we are retrying - otherwise we
4094 	 * could end up iterating over non-eligible zones endlessly.
4095 	 */
4096 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4097 					ac->high_zoneidx, ac->nodemask);
4098 	if (!ac->preferred_zoneref->zone)
4099 		goto nopage;
4100 
4101 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4102 		wake_all_kswapds(order, gfp_mask, ac);
4103 
4104 	/*
4105 	 * The adjusted alloc_flags might result in immediate success, so try
4106 	 * that first
4107 	 */
4108 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4109 	if (page)
4110 		goto got_pg;
4111 
4112 	/*
4113 	 * For costly allocations, try direct compaction first, as it's likely
4114 	 * that we have enough base pages and don't need to reclaim. For non-
4115 	 * movable high-order allocations, do that as well, as compaction will
4116 	 * try prevent permanent fragmentation by migrating from blocks of the
4117 	 * same migratetype.
4118 	 * Don't try this for allocations that are allowed to ignore
4119 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4120 	 */
4121 	if (can_direct_reclaim &&
4122 			(costly_order ||
4123 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4124 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4125 		page = __alloc_pages_direct_compact(gfp_mask, order,
4126 						alloc_flags, ac,
4127 						INIT_COMPACT_PRIORITY,
4128 						&compact_result);
4129 		if (page)
4130 			goto got_pg;
4131 
4132 		/*
4133 		 * Checks for costly allocations with __GFP_NORETRY, which
4134 		 * includes THP page fault allocations
4135 		 */
4136 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4137 			/*
4138 			 * If compaction is deferred for high-order allocations,
4139 			 * it is because sync compaction recently failed. If
4140 			 * this is the case and the caller requested a THP
4141 			 * allocation, we do not want to heavily disrupt the
4142 			 * system, so we fail the allocation instead of entering
4143 			 * direct reclaim.
4144 			 */
4145 			if (compact_result == COMPACT_DEFERRED)
4146 				goto nopage;
4147 
4148 			/*
4149 			 * Looks like reclaim/compaction is worth trying, but
4150 			 * sync compaction could be very expensive, so keep
4151 			 * using async compaction.
4152 			 */
4153 			compact_priority = INIT_COMPACT_PRIORITY;
4154 		}
4155 	}
4156 
4157 retry:
4158 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4159 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4160 		wake_all_kswapds(order, gfp_mask, ac);
4161 
4162 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4163 	if (reserve_flags)
4164 		alloc_flags = reserve_flags;
4165 
4166 	/*
4167 	 * Reset the zonelist iterators if memory policies can be ignored.
4168 	 * These allocations are high priority and system rather than user
4169 	 * orientated.
4170 	 */
4171 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4172 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4173 					ac->high_zoneidx, ac->nodemask);
4174 	}
4175 
4176 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4177 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4178 	if (page)
4179 		goto got_pg;
4180 
4181 	/* Caller is not willing to reclaim, we can't balance anything */
4182 	if (!can_direct_reclaim)
4183 		goto nopage;
4184 
4185 	/* Avoid recursion of direct reclaim */
4186 	if (current->flags & PF_MEMALLOC)
4187 		goto nopage;
4188 
4189 	/* Try direct reclaim and then allocating */
4190 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4191 							&did_some_progress);
4192 	if (page)
4193 		goto got_pg;
4194 
4195 	/* Try direct compaction and then allocating */
4196 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4197 					compact_priority, &compact_result);
4198 	if (page)
4199 		goto got_pg;
4200 
4201 	/* Do not loop if specifically requested */
4202 	if (gfp_mask & __GFP_NORETRY)
4203 		goto nopage;
4204 
4205 	/*
4206 	 * Do not retry costly high order allocations unless they are
4207 	 * __GFP_RETRY_MAYFAIL
4208 	 */
4209 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4210 		goto nopage;
4211 
4212 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4213 				 did_some_progress > 0, &no_progress_loops))
4214 		goto retry;
4215 
4216 	/*
4217 	 * It doesn't make any sense to retry for the compaction if the order-0
4218 	 * reclaim is not able to make any progress because the current
4219 	 * implementation of the compaction depends on the sufficient amount
4220 	 * of free memory (see __compaction_suitable)
4221 	 */
4222 	if (did_some_progress > 0 &&
4223 			should_compact_retry(ac, order, alloc_flags,
4224 				compact_result, &compact_priority,
4225 				&compaction_retries))
4226 		goto retry;
4227 
4228 
4229 	/* Deal with possible cpuset update races before we start OOM killing */
4230 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4231 		goto retry_cpuset;
4232 
4233 	/* Reclaim has failed us, start killing things */
4234 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4235 	if (page)
4236 		goto got_pg;
4237 
4238 	/* Avoid allocations with no watermarks from looping endlessly */
4239 	if (tsk_is_oom_victim(current) &&
4240 	    (alloc_flags == ALLOC_OOM ||
4241 	     (gfp_mask & __GFP_NOMEMALLOC)))
4242 		goto nopage;
4243 
4244 	/* Retry as long as the OOM killer is making progress */
4245 	if (did_some_progress) {
4246 		no_progress_loops = 0;
4247 		goto retry;
4248 	}
4249 
4250 nopage:
4251 	/* Deal with possible cpuset update races before we fail */
4252 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4253 		goto retry_cpuset;
4254 
4255 	/*
4256 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4257 	 * we always retry
4258 	 */
4259 	if (gfp_mask & __GFP_NOFAIL) {
4260 		/*
4261 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4262 		 * of any new users that actually require GFP_NOWAIT
4263 		 */
4264 		if (WARN_ON_ONCE(!can_direct_reclaim))
4265 			goto fail;
4266 
4267 		/*
4268 		 * PF_MEMALLOC request from this context is rather bizarre
4269 		 * because we cannot reclaim anything and only can loop waiting
4270 		 * for somebody to do a work for us
4271 		 */
4272 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4273 
4274 		/*
4275 		 * non failing costly orders are a hard requirement which we
4276 		 * are not prepared for much so let's warn about these users
4277 		 * so that we can identify them and convert them to something
4278 		 * else.
4279 		 */
4280 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4281 
4282 		/*
4283 		 * Help non-failing allocations by giving them access to memory
4284 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
4285 		 * could deplete whole memory reserves which would just make
4286 		 * the situation worse
4287 		 */
4288 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4289 		if (page)
4290 			goto got_pg;
4291 
4292 		cond_resched();
4293 		goto retry;
4294 	}
4295 fail:
4296 	warn_alloc(gfp_mask, ac->nodemask,
4297 			"page allocation failure: order:%u", order);
4298 got_pg:
4299 	return page;
4300 }
4301 
4302 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4303 		int preferred_nid, nodemask_t *nodemask,
4304 		struct alloc_context *ac, gfp_t *alloc_mask,
4305 		unsigned int *alloc_flags)
4306 {
4307 	ac->high_zoneidx = gfp_zone(gfp_mask);
4308 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4309 	ac->nodemask = nodemask;
4310 	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4311 
4312 	if (cpusets_enabled()) {
4313 		*alloc_mask |= __GFP_HARDWALL;
4314 		if (!ac->nodemask)
4315 			ac->nodemask = &cpuset_current_mems_allowed;
4316 		else
4317 			*alloc_flags |= ALLOC_CPUSET;
4318 	}
4319 
4320 	fs_reclaim_acquire(gfp_mask);
4321 	fs_reclaim_release(gfp_mask);
4322 
4323 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4324 
4325 	if (should_fail_alloc_page(gfp_mask, order))
4326 		return false;
4327 
4328 	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4329 		*alloc_flags |= ALLOC_CMA;
4330 
4331 	return true;
4332 }
4333 
4334 /* Determine whether to spread dirty pages and what the first usable zone */
4335 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4336 {
4337 	/* Dirty zone balancing only done in the fast path */
4338 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4339 
4340 	/*
4341 	 * The preferred zone is used for statistics but crucially it is
4342 	 * also used as the starting point for the zonelist iterator. It
4343 	 * may get reset for allocations that ignore memory policies.
4344 	 */
4345 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4346 					ac->high_zoneidx, ac->nodemask);
4347 }
4348 
4349 /*
4350  * This is the 'heart' of the zoned buddy allocator.
4351  */
4352 struct page *
4353 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4354 							nodemask_t *nodemask)
4355 {
4356 	struct page *page;
4357 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4358 	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4359 	struct alloc_context ac = { };
4360 
4361 	gfp_mask &= gfp_allowed_mask;
4362 	alloc_mask = gfp_mask;
4363 	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4364 		return NULL;
4365 
4366 	finalise_ac(gfp_mask, &ac);
4367 
4368 	/* First allocation attempt */
4369 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4370 	if (likely(page))
4371 		goto out;
4372 
4373 	/*
4374 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4375 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4376 	 * from a particular context which has been marked by
4377 	 * memalloc_no{fs,io}_{save,restore}.
4378 	 */
4379 	alloc_mask = current_gfp_context(gfp_mask);
4380 	ac.spread_dirty_pages = false;
4381 
4382 	/*
4383 	 * Restore the original nodemask if it was potentially replaced with
4384 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4385 	 */
4386 	if (unlikely(ac.nodemask != nodemask))
4387 		ac.nodemask = nodemask;
4388 
4389 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4390 
4391 out:
4392 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4393 	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4394 		__free_pages(page, order);
4395 		page = NULL;
4396 	}
4397 
4398 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4399 
4400 	return page;
4401 }
4402 EXPORT_SYMBOL(__alloc_pages_nodemask);
4403 
4404 /*
4405  * Common helper functions.
4406  */
4407 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4408 {
4409 	struct page *page;
4410 
4411 	/*
4412 	 * __get_free_pages() returns a virtual address, which cannot represent
4413 	 * a highmem page
4414 	 */
4415 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4416 
4417 	page = alloc_pages(gfp_mask, order);
4418 	if (!page)
4419 		return 0;
4420 	return (unsigned long) page_address(page);
4421 }
4422 EXPORT_SYMBOL(__get_free_pages);
4423 
4424 unsigned long get_zeroed_page(gfp_t gfp_mask)
4425 {
4426 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4427 }
4428 EXPORT_SYMBOL(get_zeroed_page);
4429 
4430 void __free_pages(struct page *page, unsigned int order)
4431 {
4432 	if (put_page_testzero(page)) {
4433 		if (order == 0)
4434 			free_unref_page(page);
4435 		else
4436 			__free_pages_ok(page, order);
4437 	}
4438 }
4439 
4440 EXPORT_SYMBOL(__free_pages);
4441 
4442 void free_pages(unsigned long addr, unsigned int order)
4443 {
4444 	if (addr != 0) {
4445 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4446 		__free_pages(virt_to_page((void *)addr), order);
4447 	}
4448 }
4449 
4450 EXPORT_SYMBOL(free_pages);
4451 
4452 /*
4453  * Page Fragment:
4454  *  An arbitrary-length arbitrary-offset area of memory which resides
4455  *  within a 0 or higher order page.  Multiple fragments within that page
4456  *  are individually refcounted, in the page's reference counter.
4457  *
4458  * The page_frag functions below provide a simple allocation framework for
4459  * page fragments.  This is used by the network stack and network device
4460  * drivers to provide a backing region of memory for use as either an
4461  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4462  */
4463 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4464 					     gfp_t gfp_mask)
4465 {
4466 	struct page *page = NULL;
4467 	gfp_t gfp = gfp_mask;
4468 
4469 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4470 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4471 		    __GFP_NOMEMALLOC;
4472 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4473 				PAGE_FRAG_CACHE_MAX_ORDER);
4474 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4475 #endif
4476 	if (unlikely(!page))
4477 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4478 
4479 	nc->va = page ? page_address(page) : NULL;
4480 
4481 	return page;
4482 }
4483 
4484 void __page_frag_cache_drain(struct page *page, unsigned int count)
4485 {
4486 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4487 
4488 	if (page_ref_sub_and_test(page, count)) {
4489 		unsigned int order = compound_order(page);
4490 
4491 		if (order == 0)
4492 			free_unref_page(page);
4493 		else
4494 			__free_pages_ok(page, order);
4495 	}
4496 }
4497 EXPORT_SYMBOL(__page_frag_cache_drain);
4498 
4499 void *page_frag_alloc(struct page_frag_cache *nc,
4500 		      unsigned int fragsz, gfp_t gfp_mask)
4501 {
4502 	unsigned int size = PAGE_SIZE;
4503 	struct page *page;
4504 	int offset;
4505 
4506 	if (unlikely(!nc->va)) {
4507 refill:
4508 		page = __page_frag_cache_refill(nc, gfp_mask);
4509 		if (!page)
4510 			return NULL;
4511 
4512 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4513 		/* if size can vary use size else just use PAGE_SIZE */
4514 		size = nc->size;
4515 #endif
4516 		/* Even if we own the page, we do not use atomic_set().
4517 		 * This would break get_page_unless_zero() users.
4518 		 */
4519 		page_ref_add(page, size - 1);
4520 
4521 		/* reset page count bias and offset to start of new frag */
4522 		nc->pfmemalloc = page_is_pfmemalloc(page);
4523 		nc->pagecnt_bias = size;
4524 		nc->offset = size;
4525 	}
4526 
4527 	offset = nc->offset - fragsz;
4528 	if (unlikely(offset < 0)) {
4529 		page = virt_to_page(nc->va);
4530 
4531 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4532 			goto refill;
4533 
4534 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4535 		/* if size can vary use size else just use PAGE_SIZE */
4536 		size = nc->size;
4537 #endif
4538 		/* OK, page count is 0, we can safely set it */
4539 		set_page_count(page, size);
4540 
4541 		/* reset page count bias and offset to start of new frag */
4542 		nc->pagecnt_bias = size;
4543 		offset = size - fragsz;
4544 	}
4545 
4546 	nc->pagecnt_bias--;
4547 	nc->offset = offset;
4548 
4549 	return nc->va + offset;
4550 }
4551 EXPORT_SYMBOL(page_frag_alloc);
4552 
4553 /*
4554  * Frees a page fragment allocated out of either a compound or order 0 page.
4555  */
4556 void page_frag_free(void *addr)
4557 {
4558 	struct page *page = virt_to_head_page(addr);
4559 
4560 	if (unlikely(put_page_testzero(page)))
4561 		__free_pages_ok(page, compound_order(page));
4562 }
4563 EXPORT_SYMBOL(page_frag_free);
4564 
4565 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4566 		size_t size)
4567 {
4568 	if (addr) {
4569 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
4570 		unsigned long used = addr + PAGE_ALIGN(size);
4571 
4572 		split_page(virt_to_page((void *)addr), order);
4573 		while (used < alloc_end) {
4574 			free_page(used);
4575 			used += PAGE_SIZE;
4576 		}
4577 	}
4578 	return (void *)addr;
4579 }
4580 
4581 /**
4582  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4583  * @size: the number of bytes to allocate
4584  * @gfp_mask: GFP flags for the allocation
4585  *
4586  * This function is similar to alloc_pages(), except that it allocates the
4587  * minimum number of pages to satisfy the request.  alloc_pages() can only
4588  * allocate memory in power-of-two pages.
4589  *
4590  * This function is also limited by MAX_ORDER.
4591  *
4592  * Memory allocated by this function must be released by free_pages_exact().
4593  */
4594 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4595 {
4596 	unsigned int order = get_order(size);
4597 	unsigned long addr;
4598 
4599 	addr = __get_free_pages(gfp_mask, order);
4600 	return make_alloc_exact(addr, order, size);
4601 }
4602 EXPORT_SYMBOL(alloc_pages_exact);
4603 
4604 /**
4605  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4606  *			   pages on a node.
4607  * @nid: the preferred node ID where memory should be allocated
4608  * @size: the number of bytes to allocate
4609  * @gfp_mask: GFP flags for the allocation
4610  *
4611  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4612  * back.
4613  */
4614 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4615 {
4616 	unsigned int order = get_order(size);
4617 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
4618 	if (!p)
4619 		return NULL;
4620 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4621 }
4622 
4623 /**
4624  * free_pages_exact - release memory allocated via alloc_pages_exact()
4625  * @virt: the value returned by alloc_pages_exact.
4626  * @size: size of allocation, same value as passed to alloc_pages_exact().
4627  *
4628  * Release the memory allocated by a previous call to alloc_pages_exact.
4629  */
4630 void free_pages_exact(void *virt, size_t size)
4631 {
4632 	unsigned long addr = (unsigned long)virt;
4633 	unsigned long end = addr + PAGE_ALIGN(size);
4634 
4635 	while (addr < end) {
4636 		free_page(addr);
4637 		addr += PAGE_SIZE;
4638 	}
4639 }
4640 EXPORT_SYMBOL(free_pages_exact);
4641 
4642 /**
4643  * nr_free_zone_pages - count number of pages beyond high watermark
4644  * @offset: The zone index of the highest zone
4645  *
4646  * nr_free_zone_pages() counts the number of counts pages which are beyond the
4647  * high watermark within all zones at or below a given zone index.  For each
4648  * zone, the number of pages is calculated as:
4649  *
4650  *     nr_free_zone_pages = managed_pages - high_pages
4651  */
4652 static unsigned long nr_free_zone_pages(int offset)
4653 {
4654 	struct zoneref *z;
4655 	struct zone *zone;
4656 
4657 	/* Just pick one node, since fallback list is circular */
4658 	unsigned long sum = 0;
4659 
4660 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4661 
4662 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4663 		unsigned long size = zone->managed_pages;
4664 		unsigned long high = high_wmark_pages(zone);
4665 		if (size > high)
4666 			sum += size - high;
4667 	}
4668 
4669 	return sum;
4670 }
4671 
4672 /**
4673  * nr_free_buffer_pages - count number of pages beyond high watermark
4674  *
4675  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4676  * watermark within ZONE_DMA and ZONE_NORMAL.
4677  */
4678 unsigned long nr_free_buffer_pages(void)
4679 {
4680 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4681 }
4682 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4683 
4684 /**
4685  * nr_free_pagecache_pages - count number of pages beyond high watermark
4686  *
4687  * nr_free_pagecache_pages() counts the number of pages which are beyond the
4688  * high watermark within all zones.
4689  */
4690 unsigned long nr_free_pagecache_pages(void)
4691 {
4692 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4693 }
4694 
4695 static inline void show_node(struct zone *zone)
4696 {
4697 	if (IS_ENABLED(CONFIG_NUMA))
4698 		printk("Node %d ", zone_to_nid(zone));
4699 }
4700 
4701 long si_mem_available(void)
4702 {
4703 	long available;
4704 	unsigned long pagecache;
4705 	unsigned long wmark_low = 0;
4706 	unsigned long pages[NR_LRU_LISTS];
4707 	struct zone *zone;
4708 	int lru;
4709 
4710 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4711 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4712 
4713 	for_each_zone(zone)
4714 		wmark_low += zone->watermark[WMARK_LOW];
4715 
4716 	/*
4717 	 * Estimate the amount of memory available for userspace allocations,
4718 	 * without causing swapping.
4719 	 */
4720 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4721 
4722 	/*
4723 	 * Not all the page cache can be freed, otherwise the system will
4724 	 * start swapping. Assume at least half of the page cache, or the
4725 	 * low watermark worth of cache, needs to stay.
4726 	 */
4727 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4728 	pagecache -= min(pagecache / 2, wmark_low);
4729 	available += pagecache;
4730 
4731 	/*
4732 	 * Part of the reclaimable slab consists of items that are in use,
4733 	 * and cannot be freed. Cap this estimate at the low watermark.
4734 	 */
4735 	available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
4736 		     min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
4737 			 wmark_low);
4738 
4739 	/*
4740 	 * Part of the kernel memory, which can be released under memory
4741 	 * pressure.
4742 	 */
4743 	available += global_node_page_state(NR_INDIRECTLY_RECLAIMABLE_BYTES) >>
4744 		PAGE_SHIFT;
4745 
4746 	if (available < 0)
4747 		available = 0;
4748 	return available;
4749 }
4750 EXPORT_SYMBOL_GPL(si_mem_available);
4751 
4752 void si_meminfo(struct sysinfo *val)
4753 {
4754 	val->totalram = totalram_pages;
4755 	val->sharedram = global_node_page_state(NR_SHMEM);
4756 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
4757 	val->bufferram = nr_blockdev_pages();
4758 	val->totalhigh = totalhigh_pages;
4759 	val->freehigh = nr_free_highpages();
4760 	val->mem_unit = PAGE_SIZE;
4761 }
4762 
4763 EXPORT_SYMBOL(si_meminfo);
4764 
4765 #ifdef CONFIG_NUMA
4766 void si_meminfo_node(struct sysinfo *val, int nid)
4767 {
4768 	int zone_type;		/* needs to be signed */
4769 	unsigned long managed_pages = 0;
4770 	unsigned long managed_highpages = 0;
4771 	unsigned long free_highpages = 0;
4772 	pg_data_t *pgdat = NODE_DATA(nid);
4773 
4774 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4775 		managed_pages += pgdat->node_zones[zone_type].managed_pages;
4776 	val->totalram = managed_pages;
4777 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
4778 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4779 #ifdef CONFIG_HIGHMEM
4780 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4781 		struct zone *zone = &pgdat->node_zones[zone_type];
4782 
4783 		if (is_highmem(zone)) {
4784 			managed_highpages += zone->managed_pages;
4785 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4786 		}
4787 	}
4788 	val->totalhigh = managed_highpages;
4789 	val->freehigh = free_highpages;
4790 #else
4791 	val->totalhigh = managed_highpages;
4792 	val->freehigh = free_highpages;
4793 #endif
4794 	val->mem_unit = PAGE_SIZE;
4795 }
4796 #endif
4797 
4798 /*
4799  * Determine whether the node should be displayed or not, depending on whether
4800  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4801  */
4802 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4803 {
4804 	if (!(flags & SHOW_MEM_FILTER_NODES))
4805 		return false;
4806 
4807 	/*
4808 	 * no node mask - aka implicit memory numa policy. Do not bother with
4809 	 * the synchronization - read_mems_allowed_begin - because we do not
4810 	 * have to be precise here.
4811 	 */
4812 	if (!nodemask)
4813 		nodemask = &cpuset_current_mems_allowed;
4814 
4815 	return !node_isset(nid, *nodemask);
4816 }
4817 
4818 #define K(x) ((x) << (PAGE_SHIFT-10))
4819 
4820 static void show_migration_types(unsigned char type)
4821 {
4822 	static const char types[MIGRATE_TYPES] = {
4823 		[MIGRATE_UNMOVABLE]	= 'U',
4824 		[MIGRATE_MOVABLE]	= 'M',
4825 		[MIGRATE_RECLAIMABLE]	= 'E',
4826 		[MIGRATE_HIGHATOMIC]	= 'H',
4827 #ifdef CONFIG_CMA
4828 		[MIGRATE_CMA]		= 'C',
4829 #endif
4830 #ifdef CONFIG_MEMORY_ISOLATION
4831 		[MIGRATE_ISOLATE]	= 'I',
4832 #endif
4833 	};
4834 	char tmp[MIGRATE_TYPES + 1];
4835 	char *p = tmp;
4836 	int i;
4837 
4838 	for (i = 0; i < MIGRATE_TYPES; i++) {
4839 		if (type & (1 << i))
4840 			*p++ = types[i];
4841 	}
4842 
4843 	*p = '\0';
4844 	printk(KERN_CONT "(%s) ", tmp);
4845 }
4846 
4847 /*
4848  * Show free area list (used inside shift_scroll-lock stuff)
4849  * We also calculate the percentage fragmentation. We do this by counting the
4850  * memory on each free list with the exception of the first item on the list.
4851  *
4852  * Bits in @filter:
4853  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4854  *   cpuset.
4855  */
4856 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4857 {
4858 	unsigned long free_pcp = 0;
4859 	int cpu;
4860 	struct zone *zone;
4861 	pg_data_t *pgdat;
4862 
4863 	for_each_populated_zone(zone) {
4864 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4865 			continue;
4866 
4867 		for_each_online_cpu(cpu)
4868 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4869 	}
4870 
4871 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4872 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4873 		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4874 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4875 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4876 		" free:%lu free_pcp:%lu free_cma:%lu\n",
4877 		global_node_page_state(NR_ACTIVE_ANON),
4878 		global_node_page_state(NR_INACTIVE_ANON),
4879 		global_node_page_state(NR_ISOLATED_ANON),
4880 		global_node_page_state(NR_ACTIVE_FILE),
4881 		global_node_page_state(NR_INACTIVE_FILE),
4882 		global_node_page_state(NR_ISOLATED_FILE),
4883 		global_node_page_state(NR_UNEVICTABLE),
4884 		global_node_page_state(NR_FILE_DIRTY),
4885 		global_node_page_state(NR_WRITEBACK),
4886 		global_node_page_state(NR_UNSTABLE_NFS),
4887 		global_node_page_state(NR_SLAB_RECLAIMABLE),
4888 		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4889 		global_node_page_state(NR_FILE_MAPPED),
4890 		global_node_page_state(NR_SHMEM),
4891 		global_zone_page_state(NR_PAGETABLE),
4892 		global_zone_page_state(NR_BOUNCE),
4893 		global_zone_page_state(NR_FREE_PAGES),
4894 		free_pcp,
4895 		global_zone_page_state(NR_FREE_CMA_PAGES));
4896 
4897 	for_each_online_pgdat(pgdat) {
4898 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4899 			continue;
4900 
4901 		printk("Node %d"
4902 			" active_anon:%lukB"
4903 			" inactive_anon:%lukB"
4904 			" active_file:%lukB"
4905 			" inactive_file:%lukB"
4906 			" unevictable:%lukB"
4907 			" isolated(anon):%lukB"
4908 			" isolated(file):%lukB"
4909 			" mapped:%lukB"
4910 			" dirty:%lukB"
4911 			" writeback:%lukB"
4912 			" shmem:%lukB"
4913 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4914 			" shmem_thp: %lukB"
4915 			" shmem_pmdmapped: %lukB"
4916 			" anon_thp: %lukB"
4917 #endif
4918 			" writeback_tmp:%lukB"
4919 			" unstable:%lukB"
4920 			" all_unreclaimable? %s"
4921 			"\n",
4922 			pgdat->node_id,
4923 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4924 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4925 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4926 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4927 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
4928 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4929 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4930 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
4931 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
4932 			K(node_page_state(pgdat, NR_WRITEBACK)),
4933 			K(node_page_state(pgdat, NR_SHMEM)),
4934 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4935 			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4936 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4937 					* HPAGE_PMD_NR),
4938 			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4939 #endif
4940 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4941 			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4942 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4943 				"yes" : "no");
4944 	}
4945 
4946 	for_each_populated_zone(zone) {
4947 		int i;
4948 
4949 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4950 			continue;
4951 
4952 		free_pcp = 0;
4953 		for_each_online_cpu(cpu)
4954 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4955 
4956 		show_node(zone);
4957 		printk(KERN_CONT
4958 			"%s"
4959 			" free:%lukB"
4960 			" min:%lukB"
4961 			" low:%lukB"
4962 			" high:%lukB"
4963 			" active_anon:%lukB"
4964 			" inactive_anon:%lukB"
4965 			" active_file:%lukB"
4966 			" inactive_file:%lukB"
4967 			" unevictable:%lukB"
4968 			" writepending:%lukB"
4969 			" present:%lukB"
4970 			" managed:%lukB"
4971 			" mlocked:%lukB"
4972 			" kernel_stack:%lukB"
4973 			" pagetables:%lukB"
4974 			" bounce:%lukB"
4975 			" free_pcp:%lukB"
4976 			" local_pcp:%ukB"
4977 			" free_cma:%lukB"
4978 			"\n",
4979 			zone->name,
4980 			K(zone_page_state(zone, NR_FREE_PAGES)),
4981 			K(min_wmark_pages(zone)),
4982 			K(low_wmark_pages(zone)),
4983 			K(high_wmark_pages(zone)),
4984 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4985 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4986 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4987 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4988 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4989 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4990 			K(zone->present_pages),
4991 			K(zone->managed_pages),
4992 			K(zone_page_state(zone, NR_MLOCK)),
4993 			zone_page_state(zone, NR_KERNEL_STACK_KB),
4994 			K(zone_page_state(zone, NR_PAGETABLE)),
4995 			K(zone_page_state(zone, NR_BOUNCE)),
4996 			K(free_pcp),
4997 			K(this_cpu_read(zone->pageset->pcp.count)),
4998 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4999 		printk("lowmem_reserve[]:");
5000 		for (i = 0; i < MAX_NR_ZONES; i++)
5001 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5002 		printk(KERN_CONT "\n");
5003 	}
5004 
5005 	for_each_populated_zone(zone) {
5006 		unsigned int order;
5007 		unsigned long nr[MAX_ORDER], flags, total = 0;
5008 		unsigned char types[MAX_ORDER];
5009 
5010 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5011 			continue;
5012 		show_node(zone);
5013 		printk(KERN_CONT "%s: ", zone->name);
5014 
5015 		spin_lock_irqsave(&zone->lock, flags);
5016 		for (order = 0; order < MAX_ORDER; order++) {
5017 			struct free_area *area = &zone->free_area[order];
5018 			int type;
5019 
5020 			nr[order] = area->nr_free;
5021 			total += nr[order] << order;
5022 
5023 			types[order] = 0;
5024 			for (type = 0; type < MIGRATE_TYPES; type++) {
5025 				if (!list_empty(&area->free_list[type]))
5026 					types[order] |= 1 << type;
5027 			}
5028 		}
5029 		spin_unlock_irqrestore(&zone->lock, flags);
5030 		for (order = 0; order < MAX_ORDER; order++) {
5031 			printk(KERN_CONT "%lu*%lukB ",
5032 			       nr[order], K(1UL) << order);
5033 			if (nr[order])
5034 				show_migration_types(types[order]);
5035 		}
5036 		printk(KERN_CONT "= %lukB\n", K(total));
5037 	}
5038 
5039 	hugetlb_show_meminfo();
5040 
5041 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5042 
5043 	show_swap_cache_info();
5044 }
5045 
5046 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5047 {
5048 	zoneref->zone = zone;
5049 	zoneref->zone_idx = zone_idx(zone);
5050 }
5051 
5052 /*
5053  * Builds allocation fallback zone lists.
5054  *
5055  * Add all populated zones of a node to the zonelist.
5056  */
5057 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5058 {
5059 	struct zone *zone;
5060 	enum zone_type zone_type = MAX_NR_ZONES;
5061 	int nr_zones = 0;
5062 
5063 	do {
5064 		zone_type--;
5065 		zone = pgdat->node_zones + zone_type;
5066 		if (managed_zone(zone)) {
5067 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5068 			check_highest_zone(zone_type);
5069 		}
5070 	} while (zone_type);
5071 
5072 	return nr_zones;
5073 }
5074 
5075 #ifdef CONFIG_NUMA
5076 
5077 static int __parse_numa_zonelist_order(char *s)
5078 {
5079 	/*
5080 	 * We used to support different zonlists modes but they turned
5081 	 * out to be just not useful. Let's keep the warning in place
5082 	 * if somebody still use the cmd line parameter so that we do
5083 	 * not fail it silently
5084 	 */
5085 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5086 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5087 		return -EINVAL;
5088 	}
5089 	return 0;
5090 }
5091 
5092 static __init int setup_numa_zonelist_order(char *s)
5093 {
5094 	if (!s)
5095 		return 0;
5096 
5097 	return __parse_numa_zonelist_order(s);
5098 }
5099 early_param("numa_zonelist_order", setup_numa_zonelist_order);
5100 
5101 char numa_zonelist_order[] = "Node";
5102 
5103 /*
5104  * sysctl handler for numa_zonelist_order
5105  */
5106 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5107 		void __user *buffer, size_t *length,
5108 		loff_t *ppos)
5109 {
5110 	char *str;
5111 	int ret;
5112 
5113 	if (!write)
5114 		return proc_dostring(table, write, buffer, length, ppos);
5115 	str = memdup_user_nul(buffer, 16);
5116 	if (IS_ERR(str))
5117 		return PTR_ERR(str);
5118 
5119 	ret = __parse_numa_zonelist_order(str);
5120 	kfree(str);
5121 	return ret;
5122 }
5123 
5124 
5125 #define MAX_NODE_LOAD (nr_online_nodes)
5126 static int node_load[MAX_NUMNODES];
5127 
5128 /**
5129  * find_next_best_node - find the next node that should appear in a given node's fallback list
5130  * @node: node whose fallback list we're appending
5131  * @used_node_mask: nodemask_t of already used nodes
5132  *
5133  * We use a number of factors to determine which is the next node that should
5134  * appear on a given node's fallback list.  The node should not have appeared
5135  * already in @node's fallback list, and it should be the next closest node
5136  * according to the distance array (which contains arbitrary distance values
5137  * from each node to each node in the system), and should also prefer nodes
5138  * with no CPUs, since presumably they'll have very little allocation pressure
5139  * on them otherwise.
5140  * It returns -1 if no node is found.
5141  */
5142 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5143 {
5144 	int n, val;
5145 	int min_val = INT_MAX;
5146 	int best_node = NUMA_NO_NODE;
5147 	const struct cpumask *tmp = cpumask_of_node(0);
5148 
5149 	/* Use the local node if we haven't already */
5150 	if (!node_isset(node, *used_node_mask)) {
5151 		node_set(node, *used_node_mask);
5152 		return node;
5153 	}
5154 
5155 	for_each_node_state(n, N_MEMORY) {
5156 
5157 		/* Don't want a node to appear more than once */
5158 		if (node_isset(n, *used_node_mask))
5159 			continue;
5160 
5161 		/* Use the distance array to find the distance */
5162 		val = node_distance(node, n);
5163 
5164 		/* Penalize nodes under us ("prefer the next node") */
5165 		val += (n < node);
5166 
5167 		/* Give preference to headless and unused nodes */
5168 		tmp = cpumask_of_node(n);
5169 		if (!cpumask_empty(tmp))
5170 			val += PENALTY_FOR_NODE_WITH_CPUS;
5171 
5172 		/* Slight preference for less loaded node */
5173 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5174 		val += node_load[n];
5175 
5176 		if (val < min_val) {
5177 			min_val = val;
5178 			best_node = n;
5179 		}
5180 	}
5181 
5182 	if (best_node >= 0)
5183 		node_set(best_node, *used_node_mask);
5184 
5185 	return best_node;
5186 }
5187 
5188 
5189 /*
5190  * Build zonelists ordered by node and zones within node.
5191  * This results in maximum locality--normal zone overflows into local
5192  * DMA zone, if any--but risks exhausting DMA zone.
5193  */
5194 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5195 		unsigned nr_nodes)
5196 {
5197 	struct zoneref *zonerefs;
5198 	int i;
5199 
5200 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5201 
5202 	for (i = 0; i < nr_nodes; i++) {
5203 		int nr_zones;
5204 
5205 		pg_data_t *node = NODE_DATA(node_order[i]);
5206 
5207 		nr_zones = build_zonerefs_node(node, zonerefs);
5208 		zonerefs += nr_zones;
5209 	}
5210 	zonerefs->zone = NULL;
5211 	zonerefs->zone_idx = 0;
5212 }
5213 
5214 /*
5215  * Build gfp_thisnode zonelists
5216  */
5217 static void build_thisnode_zonelists(pg_data_t *pgdat)
5218 {
5219 	struct zoneref *zonerefs;
5220 	int nr_zones;
5221 
5222 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5223 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5224 	zonerefs += nr_zones;
5225 	zonerefs->zone = NULL;
5226 	zonerefs->zone_idx = 0;
5227 }
5228 
5229 /*
5230  * Build zonelists ordered by zone and nodes within zones.
5231  * This results in conserving DMA zone[s] until all Normal memory is
5232  * exhausted, but results in overflowing to remote node while memory
5233  * may still exist in local DMA zone.
5234  */
5235 
5236 static void build_zonelists(pg_data_t *pgdat)
5237 {
5238 	static int node_order[MAX_NUMNODES];
5239 	int node, load, nr_nodes = 0;
5240 	nodemask_t used_mask;
5241 	int local_node, prev_node;
5242 
5243 	/* NUMA-aware ordering of nodes */
5244 	local_node = pgdat->node_id;
5245 	load = nr_online_nodes;
5246 	prev_node = local_node;
5247 	nodes_clear(used_mask);
5248 
5249 	memset(node_order, 0, sizeof(node_order));
5250 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5251 		/*
5252 		 * We don't want to pressure a particular node.
5253 		 * So adding penalty to the first node in same
5254 		 * distance group to make it round-robin.
5255 		 */
5256 		if (node_distance(local_node, node) !=
5257 		    node_distance(local_node, prev_node))
5258 			node_load[node] = load;
5259 
5260 		node_order[nr_nodes++] = node;
5261 		prev_node = node;
5262 		load--;
5263 	}
5264 
5265 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5266 	build_thisnode_zonelists(pgdat);
5267 }
5268 
5269 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5270 /*
5271  * Return node id of node used for "local" allocations.
5272  * I.e., first node id of first zone in arg node's generic zonelist.
5273  * Used for initializing percpu 'numa_mem', which is used primarily
5274  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5275  */
5276 int local_memory_node(int node)
5277 {
5278 	struct zoneref *z;
5279 
5280 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5281 				   gfp_zone(GFP_KERNEL),
5282 				   NULL);
5283 	return z->zone->node;
5284 }
5285 #endif
5286 
5287 static void setup_min_unmapped_ratio(void);
5288 static void setup_min_slab_ratio(void);
5289 #else	/* CONFIG_NUMA */
5290 
5291 static void build_zonelists(pg_data_t *pgdat)
5292 {
5293 	int node, local_node;
5294 	struct zoneref *zonerefs;
5295 	int nr_zones;
5296 
5297 	local_node = pgdat->node_id;
5298 
5299 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5300 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5301 	zonerefs += nr_zones;
5302 
5303 	/*
5304 	 * Now we build the zonelist so that it contains the zones
5305 	 * of all the other nodes.
5306 	 * We don't want to pressure a particular node, so when
5307 	 * building the zones for node N, we make sure that the
5308 	 * zones coming right after the local ones are those from
5309 	 * node N+1 (modulo N)
5310 	 */
5311 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5312 		if (!node_online(node))
5313 			continue;
5314 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5315 		zonerefs += nr_zones;
5316 	}
5317 	for (node = 0; node < local_node; node++) {
5318 		if (!node_online(node))
5319 			continue;
5320 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5321 		zonerefs += nr_zones;
5322 	}
5323 
5324 	zonerefs->zone = NULL;
5325 	zonerefs->zone_idx = 0;
5326 }
5327 
5328 #endif	/* CONFIG_NUMA */
5329 
5330 /*
5331  * Boot pageset table. One per cpu which is going to be used for all
5332  * zones and all nodes. The parameters will be set in such a way
5333  * that an item put on a list will immediately be handed over to
5334  * the buddy list. This is safe since pageset manipulation is done
5335  * with interrupts disabled.
5336  *
5337  * The boot_pagesets must be kept even after bootup is complete for
5338  * unused processors and/or zones. They do play a role for bootstrapping
5339  * hotplugged processors.
5340  *
5341  * zoneinfo_show() and maybe other functions do
5342  * not check if the processor is online before following the pageset pointer.
5343  * Other parts of the kernel may not check if the zone is available.
5344  */
5345 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5346 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5347 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5348 
5349 static void __build_all_zonelists(void *data)
5350 {
5351 	int nid;
5352 	int __maybe_unused cpu;
5353 	pg_data_t *self = data;
5354 	static DEFINE_SPINLOCK(lock);
5355 
5356 	spin_lock(&lock);
5357 
5358 #ifdef CONFIG_NUMA
5359 	memset(node_load, 0, sizeof(node_load));
5360 #endif
5361 
5362 	/*
5363 	 * This node is hotadded and no memory is yet present.   So just
5364 	 * building zonelists is fine - no need to touch other nodes.
5365 	 */
5366 	if (self && !node_online(self->node_id)) {
5367 		build_zonelists(self);
5368 	} else {
5369 		for_each_online_node(nid) {
5370 			pg_data_t *pgdat = NODE_DATA(nid);
5371 
5372 			build_zonelists(pgdat);
5373 		}
5374 
5375 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5376 		/*
5377 		 * We now know the "local memory node" for each node--
5378 		 * i.e., the node of the first zone in the generic zonelist.
5379 		 * Set up numa_mem percpu variable for on-line cpus.  During
5380 		 * boot, only the boot cpu should be on-line;  we'll init the
5381 		 * secondary cpus' numa_mem as they come on-line.  During
5382 		 * node/memory hotplug, we'll fixup all on-line cpus.
5383 		 */
5384 		for_each_online_cpu(cpu)
5385 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5386 #endif
5387 	}
5388 
5389 	spin_unlock(&lock);
5390 }
5391 
5392 static noinline void __init
5393 build_all_zonelists_init(void)
5394 {
5395 	int cpu;
5396 
5397 	__build_all_zonelists(NULL);
5398 
5399 	/*
5400 	 * Initialize the boot_pagesets that are going to be used
5401 	 * for bootstrapping processors. The real pagesets for
5402 	 * each zone will be allocated later when the per cpu
5403 	 * allocator is available.
5404 	 *
5405 	 * boot_pagesets are used also for bootstrapping offline
5406 	 * cpus if the system is already booted because the pagesets
5407 	 * are needed to initialize allocators on a specific cpu too.
5408 	 * F.e. the percpu allocator needs the page allocator which
5409 	 * needs the percpu allocator in order to allocate its pagesets
5410 	 * (a chicken-egg dilemma).
5411 	 */
5412 	for_each_possible_cpu(cpu)
5413 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5414 
5415 	mminit_verify_zonelist();
5416 	cpuset_init_current_mems_allowed();
5417 }
5418 
5419 /*
5420  * unless system_state == SYSTEM_BOOTING.
5421  *
5422  * __ref due to call of __init annotated helper build_all_zonelists_init
5423  * [protected by SYSTEM_BOOTING].
5424  */
5425 void __ref build_all_zonelists(pg_data_t *pgdat)
5426 {
5427 	if (system_state == SYSTEM_BOOTING) {
5428 		build_all_zonelists_init();
5429 	} else {
5430 		__build_all_zonelists(pgdat);
5431 		/* cpuset refresh routine should be here */
5432 	}
5433 	vm_total_pages = nr_free_pagecache_pages();
5434 	/*
5435 	 * Disable grouping by mobility if the number of pages in the
5436 	 * system is too low to allow the mechanism to work. It would be
5437 	 * more accurate, but expensive to check per-zone. This check is
5438 	 * made on memory-hotadd so a system can start with mobility
5439 	 * disabled and enable it later
5440 	 */
5441 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5442 		page_group_by_mobility_disabled = 1;
5443 	else
5444 		page_group_by_mobility_disabled = 0;
5445 
5446 	pr_info("Built %i zonelists, mobility grouping %s.  Total pages: %ld\n",
5447 		nr_online_nodes,
5448 		page_group_by_mobility_disabled ? "off" : "on",
5449 		vm_total_pages);
5450 #ifdef CONFIG_NUMA
5451 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5452 #endif
5453 }
5454 
5455 /*
5456  * Initially all pages are reserved - free ones are freed
5457  * up by free_all_bootmem() once the early boot process is
5458  * done. Non-atomic initialization, single-pass.
5459  */
5460 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5461 		unsigned long start_pfn, enum memmap_context context,
5462 		struct vmem_altmap *altmap)
5463 {
5464 	unsigned long end_pfn = start_pfn + size;
5465 	pg_data_t *pgdat = NODE_DATA(nid);
5466 	unsigned long pfn;
5467 	unsigned long nr_initialised = 0;
5468 	struct page *page;
5469 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5470 	struct memblock_region *r = NULL, *tmp;
5471 #endif
5472 
5473 	if (highest_memmap_pfn < end_pfn - 1)
5474 		highest_memmap_pfn = end_pfn - 1;
5475 
5476 	/*
5477 	 * Honor reservation requested by the driver for this ZONE_DEVICE
5478 	 * memory
5479 	 */
5480 	if (altmap && start_pfn == altmap->base_pfn)
5481 		start_pfn += altmap->reserve;
5482 
5483 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5484 		/*
5485 		 * There can be holes in boot-time mem_map[]s handed to this
5486 		 * function.  They do not exist on hotplugged memory.
5487 		 */
5488 		if (context != MEMMAP_EARLY)
5489 			goto not_early;
5490 
5491 		if (!early_pfn_valid(pfn))
5492 			continue;
5493 		if (!early_pfn_in_nid(pfn, nid))
5494 			continue;
5495 		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5496 			break;
5497 
5498 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5499 		/*
5500 		 * Check given memblock attribute by firmware which can affect
5501 		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
5502 		 * mirrored, it's an overlapped memmap init. skip it.
5503 		 */
5504 		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5505 			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5506 				for_each_memblock(memory, tmp)
5507 					if (pfn < memblock_region_memory_end_pfn(tmp))
5508 						break;
5509 				r = tmp;
5510 			}
5511 			if (pfn >= memblock_region_memory_base_pfn(r) &&
5512 			    memblock_is_mirror(r)) {
5513 				/* already initialized as NORMAL */
5514 				pfn = memblock_region_memory_end_pfn(r);
5515 				continue;
5516 			}
5517 		}
5518 #endif
5519 
5520 not_early:
5521 		page = pfn_to_page(pfn);
5522 		__init_single_page(page, pfn, zone, nid);
5523 		if (context == MEMMAP_HOTPLUG)
5524 			SetPageReserved(page);
5525 
5526 		/*
5527 		 * Mark the block movable so that blocks are reserved for
5528 		 * movable at startup. This will force kernel allocations
5529 		 * to reserve their blocks rather than leaking throughout
5530 		 * the address space during boot when many long-lived
5531 		 * kernel allocations are made.
5532 		 *
5533 		 * bitmap is created for zone's valid pfn range. but memmap
5534 		 * can be created for invalid pages (for alignment)
5535 		 * check here not to call set_pageblock_migratetype() against
5536 		 * pfn out of zone.
5537 		 *
5538 		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5539 		 * because this is done early in sparse_add_one_section
5540 		 */
5541 		if (!(pfn & (pageblock_nr_pages - 1))) {
5542 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5543 			cond_resched();
5544 		}
5545 	}
5546 }
5547 
5548 static void __meminit zone_init_free_lists(struct zone *zone)
5549 {
5550 	unsigned int order, t;
5551 	for_each_migratetype_order(order, t) {
5552 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5553 		zone->free_area[order].nr_free = 0;
5554 	}
5555 }
5556 
5557 #ifndef __HAVE_ARCH_MEMMAP_INIT
5558 #define memmap_init(size, nid, zone, start_pfn) \
5559 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY, NULL)
5560 #endif
5561 
5562 static int zone_batchsize(struct zone *zone)
5563 {
5564 #ifdef CONFIG_MMU
5565 	int batch;
5566 
5567 	/*
5568 	 * The per-cpu-pages pools are set to around 1000th of the
5569 	 * size of the zone.  But no more than 1/2 of a meg.
5570 	 *
5571 	 * OK, so we don't know how big the cache is.  So guess.
5572 	 */
5573 	batch = zone->managed_pages / 1024;
5574 	if (batch * PAGE_SIZE > 512 * 1024)
5575 		batch = (512 * 1024) / PAGE_SIZE;
5576 	batch /= 4;		/* We effectively *= 4 below */
5577 	if (batch < 1)
5578 		batch = 1;
5579 
5580 	/*
5581 	 * Clamp the batch to a 2^n - 1 value. Having a power
5582 	 * of 2 value was found to be more likely to have
5583 	 * suboptimal cache aliasing properties in some cases.
5584 	 *
5585 	 * For example if 2 tasks are alternately allocating
5586 	 * batches of pages, one task can end up with a lot
5587 	 * of pages of one half of the possible page colors
5588 	 * and the other with pages of the other colors.
5589 	 */
5590 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5591 
5592 	return batch;
5593 
5594 #else
5595 	/* The deferral and batching of frees should be suppressed under NOMMU
5596 	 * conditions.
5597 	 *
5598 	 * The problem is that NOMMU needs to be able to allocate large chunks
5599 	 * of contiguous memory as there's no hardware page translation to
5600 	 * assemble apparent contiguous memory from discontiguous pages.
5601 	 *
5602 	 * Queueing large contiguous runs of pages for batching, however,
5603 	 * causes the pages to actually be freed in smaller chunks.  As there
5604 	 * can be a significant delay between the individual batches being
5605 	 * recycled, this leads to the once large chunks of space being
5606 	 * fragmented and becoming unavailable for high-order allocations.
5607 	 */
5608 	return 0;
5609 #endif
5610 }
5611 
5612 /*
5613  * pcp->high and pcp->batch values are related and dependent on one another:
5614  * ->batch must never be higher then ->high.
5615  * The following function updates them in a safe manner without read side
5616  * locking.
5617  *
5618  * Any new users of pcp->batch and pcp->high should ensure they can cope with
5619  * those fields changing asynchronously (acording the the above rule).
5620  *
5621  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5622  * outside of boot time (or some other assurance that no concurrent updaters
5623  * exist).
5624  */
5625 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5626 		unsigned long batch)
5627 {
5628        /* start with a fail safe value for batch */
5629 	pcp->batch = 1;
5630 	smp_wmb();
5631 
5632        /* Update high, then batch, in order */
5633 	pcp->high = high;
5634 	smp_wmb();
5635 
5636 	pcp->batch = batch;
5637 }
5638 
5639 /* a companion to pageset_set_high() */
5640 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5641 {
5642 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5643 }
5644 
5645 static void pageset_init(struct per_cpu_pageset *p)
5646 {
5647 	struct per_cpu_pages *pcp;
5648 	int migratetype;
5649 
5650 	memset(p, 0, sizeof(*p));
5651 
5652 	pcp = &p->pcp;
5653 	pcp->count = 0;
5654 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5655 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5656 }
5657 
5658 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5659 {
5660 	pageset_init(p);
5661 	pageset_set_batch(p, batch);
5662 }
5663 
5664 /*
5665  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5666  * to the value high for the pageset p.
5667  */
5668 static void pageset_set_high(struct per_cpu_pageset *p,
5669 				unsigned long high)
5670 {
5671 	unsigned long batch = max(1UL, high / 4);
5672 	if ((high / 4) > (PAGE_SHIFT * 8))
5673 		batch = PAGE_SHIFT * 8;
5674 
5675 	pageset_update(&p->pcp, high, batch);
5676 }
5677 
5678 static void pageset_set_high_and_batch(struct zone *zone,
5679 				       struct per_cpu_pageset *pcp)
5680 {
5681 	if (percpu_pagelist_fraction)
5682 		pageset_set_high(pcp,
5683 			(zone->managed_pages /
5684 				percpu_pagelist_fraction));
5685 	else
5686 		pageset_set_batch(pcp, zone_batchsize(zone));
5687 }
5688 
5689 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5690 {
5691 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5692 
5693 	pageset_init(pcp);
5694 	pageset_set_high_and_batch(zone, pcp);
5695 }
5696 
5697 void __meminit setup_zone_pageset(struct zone *zone)
5698 {
5699 	int cpu;
5700 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5701 	for_each_possible_cpu(cpu)
5702 		zone_pageset_init(zone, cpu);
5703 }
5704 
5705 /*
5706  * Allocate per cpu pagesets and initialize them.
5707  * Before this call only boot pagesets were available.
5708  */
5709 void __init setup_per_cpu_pageset(void)
5710 {
5711 	struct pglist_data *pgdat;
5712 	struct zone *zone;
5713 
5714 	for_each_populated_zone(zone)
5715 		setup_zone_pageset(zone);
5716 
5717 	for_each_online_pgdat(pgdat)
5718 		pgdat->per_cpu_nodestats =
5719 			alloc_percpu(struct per_cpu_nodestat);
5720 }
5721 
5722 static __meminit void zone_pcp_init(struct zone *zone)
5723 {
5724 	/*
5725 	 * per cpu subsystem is not up at this point. The following code
5726 	 * relies on the ability of the linker to provide the
5727 	 * offset of a (static) per cpu variable into the per cpu area.
5728 	 */
5729 	zone->pageset = &boot_pageset;
5730 
5731 	if (populated_zone(zone))
5732 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
5733 			zone->name, zone->present_pages,
5734 					 zone_batchsize(zone));
5735 }
5736 
5737 void __meminit init_currently_empty_zone(struct zone *zone,
5738 					unsigned long zone_start_pfn,
5739 					unsigned long size)
5740 {
5741 	struct pglist_data *pgdat = zone->zone_pgdat;
5742 
5743 	pgdat->nr_zones = zone_idx(zone) + 1;
5744 
5745 	zone->zone_start_pfn = zone_start_pfn;
5746 
5747 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
5748 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
5749 			pgdat->node_id,
5750 			(unsigned long)zone_idx(zone),
5751 			zone_start_pfn, (zone_start_pfn + size));
5752 
5753 	zone_init_free_lists(zone);
5754 	zone->initialized = 1;
5755 }
5756 
5757 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5758 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5759 
5760 /*
5761  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5762  */
5763 int __meminit __early_pfn_to_nid(unsigned long pfn,
5764 					struct mminit_pfnnid_cache *state)
5765 {
5766 	unsigned long start_pfn, end_pfn;
5767 	int nid;
5768 
5769 	if (state->last_start <= pfn && pfn < state->last_end)
5770 		return state->last_nid;
5771 
5772 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5773 	if (nid != -1) {
5774 		state->last_start = start_pfn;
5775 		state->last_end = end_pfn;
5776 		state->last_nid = nid;
5777 	}
5778 
5779 	return nid;
5780 }
5781 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5782 
5783 /**
5784  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5785  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5786  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5787  *
5788  * If an architecture guarantees that all ranges registered contain no holes
5789  * and may be freed, this this function may be used instead of calling
5790  * memblock_free_early_nid() manually.
5791  */
5792 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5793 {
5794 	unsigned long start_pfn, end_pfn;
5795 	int i, this_nid;
5796 
5797 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5798 		start_pfn = min(start_pfn, max_low_pfn);
5799 		end_pfn = min(end_pfn, max_low_pfn);
5800 
5801 		if (start_pfn < end_pfn)
5802 			memblock_free_early_nid(PFN_PHYS(start_pfn),
5803 					(end_pfn - start_pfn) << PAGE_SHIFT,
5804 					this_nid);
5805 	}
5806 }
5807 
5808 /**
5809  * sparse_memory_present_with_active_regions - Call memory_present for each active range
5810  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5811  *
5812  * If an architecture guarantees that all ranges registered contain no holes and may
5813  * be freed, this function may be used instead of calling memory_present() manually.
5814  */
5815 void __init sparse_memory_present_with_active_regions(int nid)
5816 {
5817 	unsigned long start_pfn, end_pfn;
5818 	int i, this_nid;
5819 
5820 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5821 		memory_present(this_nid, start_pfn, end_pfn);
5822 }
5823 
5824 /**
5825  * get_pfn_range_for_nid - Return the start and end page frames for a node
5826  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5827  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5828  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5829  *
5830  * It returns the start and end page frame of a node based on information
5831  * provided by memblock_set_node(). If called for a node
5832  * with no available memory, a warning is printed and the start and end
5833  * PFNs will be 0.
5834  */
5835 void __meminit get_pfn_range_for_nid(unsigned int nid,
5836 			unsigned long *start_pfn, unsigned long *end_pfn)
5837 {
5838 	unsigned long this_start_pfn, this_end_pfn;
5839 	int i;
5840 
5841 	*start_pfn = -1UL;
5842 	*end_pfn = 0;
5843 
5844 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5845 		*start_pfn = min(*start_pfn, this_start_pfn);
5846 		*end_pfn = max(*end_pfn, this_end_pfn);
5847 	}
5848 
5849 	if (*start_pfn == -1UL)
5850 		*start_pfn = 0;
5851 }
5852 
5853 /*
5854  * This finds a zone that can be used for ZONE_MOVABLE pages. The
5855  * assumption is made that zones within a node are ordered in monotonic
5856  * increasing memory addresses so that the "highest" populated zone is used
5857  */
5858 static void __init find_usable_zone_for_movable(void)
5859 {
5860 	int zone_index;
5861 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5862 		if (zone_index == ZONE_MOVABLE)
5863 			continue;
5864 
5865 		if (arch_zone_highest_possible_pfn[zone_index] >
5866 				arch_zone_lowest_possible_pfn[zone_index])
5867 			break;
5868 	}
5869 
5870 	VM_BUG_ON(zone_index == -1);
5871 	movable_zone = zone_index;
5872 }
5873 
5874 /*
5875  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5876  * because it is sized independent of architecture. Unlike the other zones,
5877  * the starting point for ZONE_MOVABLE is not fixed. It may be different
5878  * in each node depending on the size of each node and how evenly kernelcore
5879  * is distributed. This helper function adjusts the zone ranges
5880  * provided by the architecture for a given node by using the end of the
5881  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5882  * zones within a node are in order of monotonic increases memory addresses
5883  */
5884 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5885 					unsigned long zone_type,
5886 					unsigned long node_start_pfn,
5887 					unsigned long node_end_pfn,
5888 					unsigned long *zone_start_pfn,
5889 					unsigned long *zone_end_pfn)
5890 {
5891 	/* Only adjust if ZONE_MOVABLE is on this node */
5892 	if (zone_movable_pfn[nid]) {
5893 		/* Size ZONE_MOVABLE */
5894 		if (zone_type == ZONE_MOVABLE) {
5895 			*zone_start_pfn = zone_movable_pfn[nid];
5896 			*zone_end_pfn = min(node_end_pfn,
5897 				arch_zone_highest_possible_pfn[movable_zone]);
5898 
5899 		/* Adjust for ZONE_MOVABLE starting within this range */
5900 		} else if (!mirrored_kernelcore &&
5901 			*zone_start_pfn < zone_movable_pfn[nid] &&
5902 			*zone_end_pfn > zone_movable_pfn[nid]) {
5903 			*zone_end_pfn = zone_movable_pfn[nid];
5904 
5905 		/* Check if this whole range is within ZONE_MOVABLE */
5906 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
5907 			*zone_start_pfn = *zone_end_pfn;
5908 	}
5909 }
5910 
5911 /*
5912  * Return the number of pages a zone spans in a node, including holes
5913  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5914  */
5915 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5916 					unsigned long zone_type,
5917 					unsigned long node_start_pfn,
5918 					unsigned long node_end_pfn,
5919 					unsigned long *zone_start_pfn,
5920 					unsigned long *zone_end_pfn,
5921 					unsigned long *ignored)
5922 {
5923 	/* When hotadd a new node from cpu_up(), the node should be empty */
5924 	if (!node_start_pfn && !node_end_pfn)
5925 		return 0;
5926 
5927 	/* Get the start and end of the zone */
5928 	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5929 	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5930 	adjust_zone_range_for_zone_movable(nid, zone_type,
5931 				node_start_pfn, node_end_pfn,
5932 				zone_start_pfn, zone_end_pfn);
5933 
5934 	/* Check that this node has pages within the zone's required range */
5935 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5936 		return 0;
5937 
5938 	/* Move the zone boundaries inside the node if necessary */
5939 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5940 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5941 
5942 	/* Return the spanned pages */
5943 	return *zone_end_pfn - *zone_start_pfn;
5944 }
5945 
5946 /*
5947  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5948  * then all holes in the requested range will be accounted for.
5949  */
5950 unsigned long __meminit __absent_pages_in_range(int nid,
5951 				unsigned long range_start_pfn,
5952 				unsigned long range_end_pfn)
5953 {
5954 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
5955 	unsigned long start_pfn, end_pfn;
5956 	int i;
5957 
5958 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5959 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5960 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5961 		nr_absent -= end_pfn - start_pfn;
5962 	}
5963 	return nr_absent;
5964 }
5965 
5966 /**
5967  * absent_pages_in_range - Return number of page frames in holes within a range
5968  * @start_pfn: The start PFN to start searching for holes
5969  * @end_pfn: The end PFN to stop searching for holes
5970  *
5971  * It returns the number of pages frames in memory holes within a range.
5972  */
5973 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5974 							unsigned long end_pfn)
5975 {
5976 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5977 }
5978 
5979 /* Return the number of page frames in holes in a zone on a node */
5980 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5981 					unsigned long zone_type,
5982 					unsigned long node_start_pfn,
5983 					unsigned long node_end_pfn,
5984 					unsigned long *ignored)
5985 {
5986 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5987 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5988 	unsigned long zone_start_pfn, zone_end_pfn;
5989 	unsigned long nr_absent;
5990 
5991 	/* When hotadd a new node from cpu_up(), the node should be empty */
5992 	if (!node_start_pfn && !node_end_pfn)
5993 		return 0;
5994 
5995 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5996 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5997 
5998 	adjust_zone_range_for_zone_movable(nid, zone_type,
5999 			node_start_pfn, node_end_pfn,
6000 			&zone_start_pfn, &zone_end_pfn);
6001 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6002 
6003 	/*
6004 	 * ZONE_MOVABLE handling.
6005 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6006 	 * and vice versa.
6007 	 */
6008 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6009 		unsigned long start_pfn, end_pfn;
6010 		struct memblock_region *r;
6011 
6012 		for_each_memblock(memory, r) {
6013 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
6014 					  zone_start_pfn, zone_end_pfn);
6015 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
6016 					zone_start_pfn, zone_end_pfn);
6017 
6018 			if (zone_type == ZONE_MOVABLE &&
6019 			    memblock_is_mirror(r))
6020 				nr_absent += end_pfn - start_pfn;
6021 
6022 			if (zone_type == ZONE_NORMAL &&
6023 			    !memblock_is_mirror(r))
6024 				nr_absent += end_pfn - start_pfn;
6025 		}
6026 	}
6027 
6028 	return nr_absent;
6029 }
6030 
6031 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6032 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
6033 					unsigned long zone_type,
6034 					unsigned long node_start_pfn,
6035 					unsigned long node_end_pfn,
6036 					unsigned long *zone_start_pfn,
6037 					unsigned long *zone_end_pfn,
6038 					unsigned long *zones_size)
6039 {
6040 	unsigned int zone;
6041 
6042 	*zone_start_pfn = node_start_pfn;
6043 	for (zone = 0; zone < zone_type; zone++)
6044 		*zone_start_pfn += zones_size[zone];
6045 
6046 	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6047 
6048 	return zones_size[zone_type];
6049 }
6050 
6051 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
6052 						unsigned long zone_type,
6053 						unsigned long node_start_pfn,
6054 						unsigned long node_end_pfn,
6055 						unsigned long *zholes_size)
6056 {
6057 	if (!zholes_size)
6058 		return 0;
6059 
6060 	return zholes_size[zone_type];
6061 }
6062 
6063 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6064 
6065 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
6066 						unsigned long node_start_pfn,
6067 						unsigned long node_end_pfn,
6068 						unsigned long *zones_size,
6069 						unsigned long *zholes_size)
6070 {
6071 	unsigned long realtotalpages = 0, totalpages = 0;
6072 	enum zone_type i;
6073 
6074 	for (i = 0; i < MAX_NR_ZONES; i++) {
6075 		struct zone *zone = pgdat->node_zones + i;
6076 		unsigned long zone_start_pfn, zone_end_pfn;
6077 		unsigned long size, real_size;
6078 
6079 		size = zone_spanned_pages_in_node(pgdat->node_id, i,
6080 						  node_start_pfn,
6081 						  node_end_pfn,
6082 						  &zone_start_pfn,
6083 						  &zone_end_pfn,
6084 						  zones_size);
6085 		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6086 						  node_start_pfn, node_end_pfn,
6087 						  zholes_size);
6088 		if (size)
6089 			zone->zone_start_pfn = zone_start_pfn;
6090 		else
6091 			zone->zone_start_pfn = 0;
6092 		zone->spanned_pages = size;
6093 		zone->present_pages = real_size;
6094 
6095 		totalpages += size;
6096 		realtotalpages += real_size;
6097 	}
6098 
6099 	pgdat->node_spanned_pages = totalpages;
6100 	pgdat->node_present_pages = realtotalpages;
6101 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6102 							realtotalpages);
6103 }
6104 
6105 #ifndef CONFIG_SPARSEMEM
6106 /*
6107  * Calculate the size of the zone->blockflags rounded to an unsigned long
6108  * Start by making sure zonesize is a multiple of pageblock_order by rounding
6109  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6110  * round what is now in bits to nearest long in bits, then return it in
6111  * bytes.
6112  */
6113 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6114 {
6115 	unsigned long usemapsize;
6116 
6117 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6118 	usemapsize = roundup(zonesize, pageblock_nr_pages);
6119 	usemapsize = usemapsize >> pageblock_order;
6120 	usemapsize *= NR_PAGEBLOCK_BITS;
6121 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6122 
6123 	return usemapsize / 8;
6124 }
6125 
6126 static void __init setup_usemap(struct pglist_data *pgdat,
6127 				struct zone *zone,
6128 				unsigned long zone_start_pfn,
6129 				unsigned long zonesize)
6130 {
6131 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6132 	zone->pageblock_flags = NULL;
6133 	if (usemapsize)
6134 		zone->pageblock_flags =
6135 			memblock_virt_alloc_node_nopanic(usemapsize,
6136 							 pgdat->node_id);
6137 }
6138 #else
6139 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6140 				unsigned long zone_start_pfn, unsigned long zonesize) {}
6141 #endif /* CONFIG_SPARSEMEM */
6142 
6143 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6144 
6145 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6146 void __paginginit set_pageblock_order(void)
6147 {
6148 	unsigned int order;
6149 
6150 	/* Check that pageblock_nr_pages has not already been setup */
6151 	if (pageblock_order)
6152 		return;
6153 
6154 	if (HPAGE_SHIFT > PAGE_SHIFT)
6155 		order = HUGETLB_PAGE_ORDER;
6156 	else
6157 		order = MAX_ORDER - 1;
6158 
6159 	/*
6160 	 * Assume the largest contiguous order of interest is a huge page.
6161 	 * This value may be variable depending on boot parameters on IA64 and
6162 	 * powerpc.
6163 	 */
6164 	pageblock_order = order;
6165 }
6166 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6167 
6168 /*
6169  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6170  * is unused as pageblock_order is set at compile-time. See
6171  * include/linux/pageblock-flags.h for the values of pageblock_order based on
6172  * the kernel config
6173  */
6174 void __paginginit set_pageblock_order(void)
6175 {
6176 }
6177 
6178 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6179 
6180 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
6181 						   unsigned long present_pages)
6182 {
6183 	unsigned long pages = spanned_pages;
6184 
6185 	/*
6186 	 * Provide a more accurate estimation if there are holes within
6187 	 * the zone and SPARSEMEM is in use. If there are holes within the
6188 	 * zone, each populated memory region may cost us one or two extra
6189 	 * memmap pages due to alignment because memmap pages for each
6190 	 * populated regions may not be naturally aligned on page boundary.
6191 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6192 	 */
6193 	if (spanned_pages > present_pages + (present_pages >> 4) &&
6194 	    IS_ENABLED(CONFIG_SPARSEMEM))
6195 		pages = present_pages;
6196 
6197 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6198 }
6199 
6200 /*
6201  * Set up the zone data structures:
6202  *   - mark all pages reserved
6203  *   - mark all memory queues empty
6204  *   - clear the memory bitmaps
6205  *
6206  * NOTE: pgdat should get zeroed by caller.
6207  */
6208 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
6209 {
6210 	enum zone_type j;
6211 	int nid = pgdat->node_id;
6212 
6213 	pgdat_resize_init(pgdat);
6214 #ifdef CONFIG_NUMA_BALANCING
6215 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
6216 	pgdat->numabalancing_migrate_nr_pages = 0;
6217 	pgdat->numabalancing_migrate_next_window = jiffies;
6218 #endif
6219 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6220 	spin_lock_init(&pgdat->split_queue_lock);
6221 	INIT_LIST_HEAD(&pgdat->split_queue);
6222 	pgdat->split_queue_len = 0;
6223 #endif
6224 	init_waitqueue_head(&pgdat->kswapd_wait);
6225 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6226 #ifdef CONFIG_COMPACTION
6227 	init_waitqueue_head(&pgdat->kcompactd_wait);
6228 #endif
6229 	pgdat_page_ext_init(pgdat);
6230 	spin_lock_init(&pgdat->lru_lock);
6231 	lruvec_init(node_lruvec(pgdat));
6232 
6233 	pgdat->per_cpu_nodestats = &boot_nodestats;
6234 
6235 	for (j = 0; j < MAX_NR_ZONES; j++) {
6236 		struct zone *zone = pgdat->node_zones + j;
6237 		unsigned long size, freesize, memmap_pages;
6238 		unsigned long zone_start_pfn = zone->zone_start_pfn;
6239 
6240 		size = zone->spanned_pages;
6241 		freesize = zone->present_pages;
6242 
6243 		/*
6244 		 * Adjust freesize so that it accounts for how much memory
6245 		 * is used by this zone for memmap. This affects the watermark
6246 		 * and per-cpu initialisations
6247 		 */
6248 		memmap_pages = calc_memmap_size(size, freesize);
6249 		if (!is_highmem_idx(j)) {
6250 			if (freesize >= memmap_pages) {
6251 				freesize -= memmap_pages;
6252 				if (memmap_pages)
6253 					printk(KERN_DEBUG
6254 					       "  %s zone: %lu pages used for memmap\n",
6255 					       zone_names[j], memmap_pages);
6256 			} else
6257 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6258 					zone_names[j], memmap_pages, freesize);
6259 		}
6260 
6261 		/* Account for reserved pages */
6262 		if (j == 0 && freesize > dma_reserve) {
6263 			freesize -= dma_reserve;
6264 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6265 					zone_names[0], dma_reserve);
6266 		}
6267 
6268 		if (!is_highmem_idx(j))
6269 			nr_kernel_pages += freesize;
6270 		/* Charge for highmem memmap if there are enough kernel pages */
6271 		else if (nr_kernel_pages > memmap_pages * 2)
6272 			nr_kernel_pages -= memmap_pages;
6273 		nr_all_pages += freesize;
6274 
6275 		/*
6276 		 * Set an approximate value for lowmem here, it will be adjusted
6277 		 * when the bootmem allocator frees pages into the buddy system.
6278 		 * And all highmem pages will be managed by the buddy system.
6279 		 */
6280 		zone->managed_pages = freesize;
6281 #ifdef CONFIG_NUMA
6282 		zone->node = nid;
6283 #endif
6284 		zone->name = zone_names[j];
6285 		zone->zone_pgdat = pgdat;
6286 		spin_lock_init(&zone->lock);
6287 		zone_seqlock_init(zone);
6288 		zone_pcp_init(zone);
6289 
6290 		if (!size)
6291 			continue;
6292 
6293 		set_pageblock_order();
6294 		setup_usemap(pgdat, zone, zone_start_pfn, size);
6295 		init_currently_empty_zone(zone, zone_start_pfn, size);
6296 		memmap_init(size, nid, j, zone_start_pfn);
6297 	}
6298 }
6299 
6300 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6301 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6302 {
6303 	unsigned long __maybe_unused start = 0;
6304 	unsigned long __maybe_unused offset = 0;
6305 
6306 	/* Skip empty nodes */
6307 	if (!pgdat->node_spanned_pages)
6308 		return;
6309 
6310 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6311 	offset = pgdat->node_start_pfn - start;
6312 	/* ia64 gets its own node_mem_map, before this, without bootmem */
6313 	if (!pgdat->node_mem_map) {
6314 		unsigned long size, end;
6315 		struct page *map;
6316 
6317 		/*
6318 		 * The zone's endpoints aren't required to be MAX_ORDER
6319 		 * aligned but the node_mem_map endpoints must be in order
6320 		 * for the buddy allocator to function correctly.
6321 		 */
6322 		end = pgdat_end_pfn(pgdat);
6323 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
6324 		size =  (end - start) * sizeof(struct page);
6325 		map = memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
6326 		pgdat->node_mem_map = map + offset;
6327 	}
6328 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6329 				__func__, pgdat->node_id, (unsigned long)pgdat,
6330 				(unsigned long)pgdat->node_mem_map);
6331 #ifndef CONFIG_NEED_MULTIPLE_NODES
6332 	/*
6333 	 * With no DISCONTIG, the global mem_map is just set as node 0's
6334 	 */
6335 	if (pgdat == NODE_DATA(0)) {
6336 		mem_map = NODE_DATA(0)->node_mem_map;
6337 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6338 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6339 			mem_map -= offset;
6340 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6341 	}
6342 #endif
6343 }
6344 #else
6345 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6346 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6347 
6348 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6349 		unsigned long node_start_pfn, unsigned long *zholes_size)
6350 {
6351 	pg_data_t *pgdat = NODE_DATA(nid);
6352 	unsigned long start_pfn = 0;
6353 	unsigned long end_pfn = 0;
6354 
6355 	/* pg_data_t should be reset to zero when it's allocated */
6356 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6357 
6358 	pgdat->node_id = nid;
6359 	pgdat->node_start_pfn = node_start_pfn;
6360 	pgdat->per_cpu_nodestats = NULL;
6361 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6362 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6363 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6364 		(u64)start_pfn << PAGE_SHIFT,
6365 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6366 #else
6367 	start_pfn = node_start_pfn;
6368 #endif
6369 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6370 				  zones_size, zholes_size);
6371 
6372 	alloc_node_mem_map(pgdat);
6373 
6374 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6375 	/*
6376 	 * We start only with one section of pages, more pages are added as
6377 	 * needed until the rest of deferred pages are initialized.
6378 	 */
6379 	pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION,
6380 					 pgdat->node_spanned_pages);
6381 	pgdat->first_deferred_pfn = ULONG_MAX;
6382 #endif
6383 	free_area_init_core(pgdat);
6384 }
6385 
6386 #ifdef CONFIG_HAVE_MEMBLOCK
6387 /*
6388  * Only struct pages that are backed by physical memory are zeroed and
6389  * initialized by going through __init_single_page(). But, there are some
6390  * struct pages which are reserved in memblock allocator and their fields
6391  * may be accessed (for example page_to_pfn() on some configuration accesses
6392  * flags). We must explicitly zero those struct pages.
6393  */
6394 void __paginginit zero_resv_unavail(void)
6395 {
6396 	phys_addr_t start, end;
6397 	unsigned long pfn;
6398 	u64 i, pgcnt;
6399 
6400 	/*
6401 	 * Loop through ranges that are reserved, but do not have reported
6402 	 * physical memory backing.
6403 	 */
6404 	pgcnt = 0;
6405 	for_each_resv_unavail_range(i, &start, &end) {
6406 		for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) {
6407 			if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages)))
6408 				continue;
6409 			mm_zero_struct_page(pfn_to_page(pfn));
6410 			pgcnt++;
6411 		}
6412 	}
6413 
6414 	/*
6415 	 * Struct pages that do not have backing memory. This could be because
6416 	 * firmware is using some of this memory, or for some other reasons.
6417 	 * Once memblock is changed so such behaviour is not allowed: i.e.
6418 	 * list of "reserved" memory must be a subset of list of "memory", then
6419 	 * this code can be removed.
6420 	 */
6421 	if (pgcnt)
6422 		pr_info("Reserved but unavailable: %lld pages", pgcnt);
6423 }
6424 #endif /* CONFIG_HAVE_MEMBLOCK */
6425 
6426 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6427 
6428 #if MAX_NUMNODES > 1
6429 /*
6430  * Figure out the number of possible node ids.
6431  */
6432 void __init setup_nr_node_ids(void)
6433 {
6434 	unsigned int highest;
6435 
6436 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6437 	nr_node_ids = highest + 1;
6438 }
6439 #endif
6440 
6441 /**
6442  * node_map_pfn_alignment - determine the maximum internode alignment
6443  *
6444  * This function should be called after node map is populated and sorted.
6445  * It calculates the maximum power of two alignment which can distinguish
6446  * all the nodes.
6447  *
6448  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6449  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
6450  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
6451  * shifted, 1GiB is enough and this function will indicate so.
6452  *
6453  * This is used to test whether pfn -> nid mapping of the chosen memory
6454  * model has fine enough granularity to avoid incorrect mapping for the
6455  * populated node map.
6456  *
6457  * Returns the determined alignment in pfn's.  0 if there is no alignment
6458  * requirement (single node).
6459  */
6460 unsigned long __init node_map_pfn_alignment(void)
6461 {
6462 	unsigned long accl_mask = 0, last_end = 0;
6463 	unsigned long start, end, mask;
6464 	int last_nid = -1;
6465 	int i, nid;
6466 
6467 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6468 		if (!start || last_nid < 0 || last_nid == nid) {
6469 			last_nid = nid;
6470 			last_end = end;
6471 			continue;
6472 		}
6473 
6474 		/*
6475 		 * Start with a mask granular enough to pin-point to the
6476 		 * start pfn and tick off bits one-by-one until it becomes
6477 		 * too coarse to separate the current node from the last.
6478 		 */
6479 		mask = ~((1 << __ffs(start)) - 1);
6480 		while (mask && last_end <= (start & (mask << 1)))
6481 			mask <<= 1;
6482 
6483 		/* accumulate all internode masks */
6484 		accl_mask |= mask;
6485 	}
6486 
6487 	/* convert mask to number of pages */
6488 	return ~accl_mask + 1;
6489 }
6490 
6491 /* Find the lowest pfn for a node */
6492 static unsigned long __init find_min_pfn_for_node(int nid)
6493 {
6494 	unsigned long min_pfn = ULONG_MAX;
6495 	unsigned long start_pfn;
6496 	int i;
6497 
6498 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6499 		min_pfn = min(min_pfn, start_pfn);
6500 
6501 	if (min_pfn == ULONG_MAX) {
6502 		pr_warn("Could not find start_pfn for node %d\n", nid);
6503 		return 0;
6504 	}
6505 
6506 	return min_pfn;
6507 }
6508 
6509 /**
6510  * find_min_pfn_with_active_regions - Find the minimum PFN registered
6511  *
6512  * It returns the minimum PFN based on information provided via
6513  * memblock_set_node().
6514  */
6515 unsigned long __init find_min_pfn_with_active_regions(void)
6516 {
6517 	return find_min_pfn_for_node(MAX_NUMNODES);
6518 }
6519 
6520 /*
6521  * early_calculate_totalpages()
6522  * Sum pages in active regions for movable zone.
6523  * Populate N_MEMORY for calculating usable_nodes.
6524  */
6525 static unsigned long __init early_calculate_totalpages(void)
6526 {
6527 	unsigned long totalpages = 0;
6528 	unsigned long start_pfn, end_pfn;
6529 	int i, nid;
6530 
6531 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6532 		unsigned long pages = end_pfn - start_pfn;
6533 
6534 		totalpages += pages;
6535 		if (pages)
6536 			node_set_state(nid, N_MEMORY);
6537 	}
6538 	return totalpages;
6539 }
6540 
6541 /*
6542  * Find the PFN the Movable zone begins in each node. Kernel memory
6543  * is spread evenly between nodes as long as the nodes have enough
6544  * memory. When they don't, some nodes will have more kernelcore than
6545  * others
6546  */
6547 static void __init find_zone_movable_pfns_for_nodes(void)
6548 {
6549 	int i, nid;
6550 	unsigned long usable_startpfn;
6551 	unsigned long kernelcore_node, kernelcore_remaining;
6552 	/* save the state before borrow the nodemask */
6553 	nodemask_t saved_node_state = node_states[N_MEMORY];
6554 	unsigned long totalpages = early_calculate_totalpages();
6555 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6556 	struct memblock_region *r;
6557 
6558 	/* Need to find movable_zone earlier when movable_node is specified. */
6559 	find_usable_zone_for_movable();
6560 
6561 	/*
6562 	 * If movable_node is specified, ignore kernelcore and movablecore
6563 	 * options.
6564 	 */
6565 	if (movable_node_is_enabled()) {
6566 		for_each_memblock(memory, r) {
6567 			if (!memblock_is_hotpluggable(r))
6568 				continue;
6569 
6570 			nid = r->nid;
6571 
6572 			usable_startpfn = PFN_DOWN(r->base);
6573 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6574 				min(usable_startpfn, zone_movable_pfn[nid]) :
6575 				usable_startpfn;
6576 		}
6577 
6578 		goto out2;
6579 	}
6580 
6581 	/*
6582 	 * If kernelcore=mirror is specified, ignore movablecore option
6583 	 */
6584 	if (mirrored_kernelcore) {
6585 		bool mem_below_4gb_not_mirrored = false;
6586 
6587 		for_each_memblock(memory, r) {
6588 			if (memblock_is_mirror(r))
6589 				continue;
6590 
6591 			nid = r->nid;
6592 
6593 			usable_startpfn = memblock_region_memory_base_pfn(r);
6594 
6595 			if (usable_startpfn < 0x100000) {
6596 				mem_below_4gb_not_mirrored = true;
6597 				continue;
6598 			}
6599 
6600 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6601 				min(usable_startpfn, zone_movable_pfn[nid]) :
6602 				usable_startpfn;
6603 		}
6604 
6605 		if (mem_below_4gb_not_mirrored)
6606 			pr_warn("This configuration results in unmirrored kernel memory.");
6607 
6608 		goto out2;
6609 	}
6610 
6611 	/*
6612 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
6613 	 * amount of necessary memory.
6614 	 */
6615 	if (required_kernelcore_percent)
6616 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
6617 				       10000UL;
6618 	if (required_movablecore_percent)
6619 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
6620 					10000UL;
6621 
6622 	/*
6623 	 * If movablecore= was specified, calculate what size of
6624 	 * kernelcore that corresponds so that memory usable for
6625 	 * any allocation type is evenly spread. If both kernelcore
6626 	 * and movablecore are specified, then the value of kernelcore
6627 	 * will be used for required_kernelcore if it's greater than
6628 	 * what movablecore would have allowed.
6629 	 */
6630 	if (required_movablecore) {
6631 		unsigned long corepages;
6632 
6633 		/*
6634 		 * Round-up so that ZONE_MOVABLE is at least as large as what
6635 		 * was requested by the user
6636 		 */
6637 		required_movablecore =
6638 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6639 		required_movablecore = min(totalpages, required_movablecore);
6640 		corepages = totalpages - required_movablecore;
6641 
6642 		required_kernelcore = max(required_kernelcore, corepages);
6643 	}
6644 
6645 	/*
6646 	 * If kernelcore was not specified or kernelcore size is larger
6647 	 * than totalpages, there is no ZONE_MOVABLE.
6648 	 */
6649 	if (!required_kernelcore || required_kernelcore >= totalpages)
6650 		goto out;
6651 
6652 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6653 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6654 
6655 restart:
6656 	/* Spread kernelcore memory as evenly as possible throughout nodes */
6657 	kernelcore_node = required_kernelcore / usable_nodes;
6658 	for_each_node_state(nid, N_MEMORY) {
6659 		unsigned long start_pfn, end_pfn;
6660 
6661 		/*
6662 		 * Recalculate kernelcore_node if the division per node
6663 		 * now exceeds what is necessary to satisfy the requested
6664 		 * amount of memory for the kernel
6665 		 */
6666 		if (required_kernelcore < kernelcore_node)
6667 			kernelcore_node = required_kernelcore / usable_nodes;
6668 
6669 		/*
6670 		 * As the map is walked, we track how much memory is usable
6671 		 * by the kernel using kernelcore_remaining. When it is
6672 		 * 0, the rest of the node is usable by ZONE_MOVABLE
6673 		 */
6674 		kernelcore_remaining = kernelcore_node;
6675 
6676 		/* Go through each range of PFNs within this node */
6677 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6678 			unsigned long size_pages;
6679 
6680 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6681 			if (start_pfn >= end_pfn)
6682 				continue;
6683 
6684 			/* Account for what is only usable for kernelcore */
6685 			if (start_pfn < usable_startpfn) {
6686 				unsigned long kernel_pages;
6687 				kernel_pages = min(end_pfn, usable_startpfn)
6688 								- start_pfn;
6689 
6690 				kernelcore_remaining -= min(kernel_pages,
6691 							kernelcore_remaining);
6692 				required_kernelcore -= min(kernel_pages,
6693 							required_kernelcore);
6694 
6695 				/* Continue if range is now fully accounted */
6696 				if (end_pfn <= usable_startpfn) {
6697 
6698 					/*
6699 					 * Push zone_movable_pfn to the end so
6700 					 * that if we have to rebalance
6701 					 * kernelcore across nodes, we will
6702 					 * not double account here
6703 					 */
6704 					zone_movable_pfn[nid] = end_pfn;
6705 					continue;
6706 				}
6707 				start_pfn = usable_startpfn;
6708 			}
6709 
6710 			/*
6711 			 * The usable PFN range for ZONE_MOVABLE is from
6712 			 * start_pfn->end_pfn. Calculate size_pages as the
6713 			 * number of pages used as kernelcore
6714 			 */
6715 			size_pages = end_pfn - start_pfn;
6716 			if (size_pages > kernelcore_remaining)
6717 				size_pages = kernelcore_remaining;
6718 			zone_movable_pfn[nid] = start_pfn + size_pages;
6719 
6720 			/*
6721 			 * Some kernelcore has been met, update counts and
6722 			 * break if the kernelcore for this node has been
6723 			 * satisfied
6724 			 */
6725 			required_kernelcore -= min(required_kernelcore,
6726 								size_pages);
6727 			kernelcore_remaining -= size_pages;
6728 			if (!kernelcore_remaining)
6729 				break;
6730 		}
6731 	}
6732 
6733 	/*
6734 	 * If there is still required_kernelcore, we do another pass with one
6735 	 * less node in the count. This will push zone_movable_pfn[nid] further
6736 	 * along on the nodes that still have memory until kernelcore is
6737 	 * satisfied
6738 	 */
6739 	usable_nodes--;
6740 	if (usable_nodes && required_kernelcore > usable_nodes)
6741 		goto restart;
6742 
6743 out2:
6744 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6745 	for (nid = 0; nid < MAX_NUMNODES; nid++)
6746 		zone_movable_pfn[nid] =
6747 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6748 
6749 out:
6750 	/* restore the node_state */
6751 	node_states[N_MEMORY] = saved_node_state;
6752 }
6753 
6754 /* Any regular or high memory on that node ? */
6755 static void check_for_memory(pg_data_t *pgdat, int nid)
6756 {
6757 	enum zone_type zone_type;
6758 
6759 	if (N_MEMORY == N_NORMAL_MEMORY)
6760 		return;
6761 
6762 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6763 		struct zone *zone = &pgdat->node_zones[zone_type];
6764 		if (populated_zone(zone)) {
6765 			node_set_state(nid, N_HIGH_MEMORY);
6766 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6767 			    zone_type <= ZONE_NORMAL)
6768 				node_set_state(nid, N_NORMAL_MEMORY);
6769 			break;
6770 		}
6771 	}
6772 }
6773 
6774 /**
6775  * free_area_init_nodes - Initialise all pg_data_t and zone data
6776  * @max_zone_pfn: an array of max PFNs for each zone
6777  *
6778  * This will call free_area_init_node() for each active node in the system.
6779  * Using the page ranges provided by memblock_set_node(), the size of each
6780  * zone in each node and their holes is calculated. If the maximum PFN
6781  * between two adjacent zones match, it is assumed that the zone is empty.
6782  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6783  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6784  * starts where the previous one ended. For example, ZONE_DMA32 starts
6785  * at arch_max_dma_pfn.
6786  */
6787 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6788 {
6789 	unsigned long start_pfn, end_pfn;
6790 	int i, nid;
6791 
6792 	/* Record where the zone boundaries are */
6793 	memset(arch_zone_lowest_possible_pfn, 0,
6794 				sizeof(arch_zone_lowest_possible_pfn));
6795 	memset(arch_zone_highest_possible_pfn, 0,
6796 				sizeof(arch_zone_highest_possible_pfn));
6797 
6798 	start_pfn = find_min_pfn_with_active_regions();
6799 
6800 	for (i = 0; i < MAX_NR_ZONES; i++) {
6801 		if (i == ZONE_MOVABLE)
6802 			continue;
6803 
6804 		end_pfn = max(max_zone_pfn[i], start_pfn);
6805 		arch_zone_lowest_possible_pfn[i] = start_pfn;
6806 		arch_zone_highest_possible_pfn[i] = end_pfn;
6807 
6808 		start_pfn = end_pfn;
6809 	}
6810 
6811 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
6812 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6813 	find_zone_movable_pfns_for_nodes();
6814 
6815 	/* Print out the zone ranges */
6816 	pr_info("Zone ranges:\n");
6817 	for (i = 0; i < MAX_NR_ZONES; i++) {
6818 		if (i == ZONE_MOVABLE)
6819 			continue;
6820 		pr_info("  %-8s ", zone_names[i]);
6821 		if (arch_zone_lowest_possible_pfn[i] ==
6822 				arch_zone_highest_possible_pfn[i])
6823 			pr_cont("empty\n");
6824 		else
6825 			pr_cont("[mem %#018Lx-%#018Lx]\n",
6826 				(u64)arch_zone_lowest_possible_pfn[i]
6827 					<< PAGE_SHIFT,
6828 				((u64)arch_zone_highest_possible_pfn[i]
6829 					<< PAGE_SHIFT) - 1);
6830 	}
6831 
6832 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6833 	pr_info("Movable zone start for each node\n");
6834 	for (i = 0; i < MAX_NUMNODES; i++) {
6835 		if (zone_movable_pfn[i])
6836 			pr_info("  Node %d: %#018Lx\n", i,
6837 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6838 	}
6839 
6840 	/* Print out the early node map */
6841 	pr_info("Early memory node ranges\n");
6842 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6843 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6844 			(u64)start_pfn << PAGE_SHIFT,
6845 			((u64)end_pfn << PAGE_SHIFT) - 1);
6846 
6847 	/* Initialise every node */
6848 	mminit_verify_pageflags_layout();
6849 	setup_nr_node_ids();
6850 	for_each_online_node(nid) {
6851 		pg_data_t *pgdat = NODE_DATA(nid);
6852 		free_area_init_node(nid, NULL,
6853 				find_min_pfn_for_node(nid), NULL);
6854 
6855 		/* Any memory on that node */
6856 		if (pgdat->node_present_pages)
6857 			node_set_state(nid, N_MEMORY);
6858 		check_for_memory(pgdat, nid);
6859 	}
6860 	zero_resv_unavail();
6861 }
6862 
6863 static int __init cmdline_parse_core(char *p, unsigned long *core,
6864 				     unsigned long *percent)
6865 {
6866 	unsigned long long coremem;
6867 	char *endptr;
6868 
6869 	if (!p)
6870 		return -EINVAL;
6871 
6872 	/* Value may be a percentage of total memory, otherwise bytes */
6873 	coremem = simple_strtoull(p, &endptr, 0);
6874 	if (*endptr == '%') {
6875 		/* Paranoid check for percent values greater than 100 */
6876 		WARN_ON(coremem > 100);
6877 
6878 		*percent = coremem;
6879 	} else {
6880 		coremem = memparse(p, &p);
6881 		/* Paranoid check that UL is enough for the coremem value */
6882 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6883 
6884 		*core = coremem >> PAGE_SHIFT;
6885 		*percent = 0UL;
6886 	}
6887 	return 0;
6888 }
6889 
6890 /*
6891  * kernelcore=size sets the amount of memory for use for allocations that
6892  * cannot be reclaimed or migrated.
6893  */
6894 static int __init cmdline_parse_kernelcore(char *p)
6895 {
6896 	/* parse kernelcore=mirror */
6897 	if (parse_option_str(p, "mirror")) {
6898 		mirrored_kernelcore = true;
6899 		return 0;
6900 	}
6901 
6902 	return cmdline_parse_core(p, &required_kernelcore,
6903 				  &required_kernelcore_percent);
6904 }
6905 
6906 /*
6907  * movablecore=size sets the amount of memory for use for allocations that
6908  * can be reclaimed or migrated.
6909  */
6910 static int __init cmdline_parse_movablecore(char *p)
6911 {
6912 	return cmdline_parse_core(p, &required_movablecore,
6913 				  &required_movablecore_percent);
6914 }
6915 
6916 early_param("kernelcore", cmdline_parse_kernelcore);
6917 early_param("movablecore", cmdline_parse_movablecore);
6918 
6919 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6920 
6921 void adjust_managed_page_count(struct page *page, long count)
6922 {
6923 	spin_lock(&managed_page_count_lock);
6924 	page_zone(page)->managed_pages += count;
6925 	totalram_pages += count;
6926 #ifdef CONFIG_HIGHMEM
6927 	if (PageHighMem(page))
6928 		totalhigh_pages += count;
6929 #endif
6930 	spin_unlock(&managed_page_count_lock);
6931 }
6932 EXPORT_SYMBOL(adjust_managed_page_count);
6933 
6934 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6935 {
6936 	void *pos;
6937 	unsigned long pages = 0;
6938 
6939 	start = (void *)PAGE_ALIGN((unsigned long)start);
6940 	end = (void *)((unsigned long)end & PAGE_MASK);
6941 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6942 		if ((unsigned int)poison <= 0xFF)
6943 			memset(pos, poison, PAGE_SIZE);
6944 		free_reserved_page(virt_to_page(pos));
6945 	}
6946 
6947 	if (pages && s)
6948 		pr_info("Freeing %s memory: %ldK\n",
6949 			s, pages << (PAGE_SHIFT - 10));
6950 
6951 	return pages;
6952 }
6953 EXPORT_SYMBOL(free_reserved_area);
6954 
6955 #ifdef	CONFIG_HIGHMEM
6956 void free_highmem_page(struct page *page)
6957 {
6958 	__free_reserved_page(page);
6959 	totalram_pages++;
6960 	page_zone(page)->managed_pages++;
6961 	totalhigh_pages++;
6962 }
6963 #endif
6964 
6965 
6966 void __init mem_init_print_info(const char *str)
6967 {
6968 	unsigned long physpages, codesize, datasize, rosize, bss_size;
6969 	unsigned long init_code_size, init_data_size;
6970 
6971 	physpages = get_num_physpages();
6972 	codesize = _etext - _stext;
6973 	datasize = _edata - _sdata;
6974 	rosize = __end_rodata - __start_rodata;
6975 	bss_size = __bss_stop - __bss_start;
6976 	init_data_size = __init_end - __init_begin;
6977 	init_code_size = _einittext - _sinittext;
6978 
6979 	/*
6980 	 * Detect special cases and adjust section sizes accordingly:
6981 	 * 1) .init.* may be embedded into .data sections
6982 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
6983 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
6984 	 * 3) .rodata.* may be embedded into .text or .data sections.
6985 	 */
6986 #define adj_init_size(start, end, size, pos, adj) \
6987 	do { \
6988 		if (start <= pos && pos < end && size > adj) \
6989 			size -= adj; \
6990 	} while (0)
6991 
6992 	adj_init_size(__init_begin, __init_end, init_data_size,
6993 		     _sinittext, init_code_size);
6994 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6995 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6996 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6997 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6998 
6999 #undef	adj_init_size
7000 
7001 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7002 #ifdef	CONFIG_HIGHMEM
7003 		", %luK highmem"
7004 #endif
7005 		"%s%s)\n",
7006 		nr_free_pages() << (PAGE_SHIFT - 10),
7007 		physpages << (PAGE_SHIFT - 10),
7008 		codesize >> 10, datasize >> 10, rosize >> 10,
7009 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7010 		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
7011 		totalcma_pages << (PAGE_SHIFT - 10),
7012 #ifdef	CONFIG_HIGHMEM
7013 		totalhigh_pages << (PAGE_SHIFT - 10),
7014 #endif
7015 		str ? ", " : "", str ? str : "");
7016 }
7017 
7018 /**
7019  * set_dma_reserve - set the specified number of pages reserved in the first zone
7020  * @new_dma_reserve: The number of pages to mark reserved
7021  *
7022  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7023  * In the DMA zone, a significant percentage may be consumed by kernel image
7024  * and other unfreeable allocations which can skew the watermarks badly. This
7025  * function may optionally be used to account for unfreeable pages in the
7026  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7027  * smaller per-cpu batchsize.
7028  */
7029 void __init set_dma_reserve(unsigned long new_dma_reserve)
7030 {
7031 	dma_reserve = new_dma_reserve;
7032 }
7033 
7034 void __init free_area_init(unsigned long *zones_size)
7035 {
7036 	free_area_init_node(0, zones_size,
7037 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7038 	zero_resv_unavail();
7039 }
7040 
7041 static int page_alloc_cpu_dead(unsigned int cpu)
7042 {
7043 
7044 	lru_add_drain_cpu(cpu);
7045 	drain_pages(cpu);
7046 
7047 	/*
7048 	 * Spill the event counters of the dead processor
7049 	 * into the current processors event counters.
7050 	 * This artificially elevates the count of the current
7051 	 * processor.
7052 	 */
7053 	vm_events_fold_cpu(cpu);
7054 
7055 	/*
7056 	 * Zero the differential counters of the dead processor
7057 	 * so that the vm statistics are consistent.
7058 	 *
7059 	 * This is only okay since the processor is dead and cannot
7060 	 * race with what we are doing.
7061 	 */
7062 	cpu_vm_stats_fold(cpu);
7063 	return 0;
7064 }
7065 
7066 void __init page_alloc_init(void)
7067 {
7068 	int ret;
7069 
7070 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7071 					"mm/page_alloc:dead", NULL,
7072 					page_alloc_cpu_dead);
7073 	WARN_ON(ret < 0);
7074 }
7075 
7076 /*
7077  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7078  *	or min_free_kbytes changes.
7079  */
7080 static void calculate_totalreserve_pages(void)
7081 {
7082 	struct pglist_data *pgdat;
7083 	unsigned long reserve_pages = 0;
7084 	enum zone_type i, j;
7085 
7086 	for_each_online_pgdat(pgdat) {
7087 
7088 		pgdat->totalreserve_pages = 0;
7089 
7090 		for (i = 0; i < MAX_NR_ZONES; i++) {
7091 			struct zone *zone = pgdat->node_zones + i;
7092 			long max = 0;
7093 
7094 			/* Find valid and maximum lowmem_reserve in the zone */
7095 			for (j = i; j < MAX_NR_ZONES; j++) {
7096 				if (zone->lowmem_reserve[j] > max)
7097 					max = zone->lowmem_reserve[j];
7098 			}
7099 
7100 			/* we treat the high watermark as reserved pages. */
7101 			max += high_wmark_pages(zone);
7102 
7103 			if (max > zone->managed_pages)
7104 				max = zone->managed_pages;
7105 
7106 			pgdat->totalreserve_pages += max;
7107 
7108 			reserve_pages += max;
7109 		}
7110 	}
7111 	totalreserve_pages = reserve_pages;
7112 }
7113 
7114 /*
7115  * setup_per_zone_lowmem_reserve - called whenever
7116  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
7117  *	has a correct pages reserved value, so an adequate number of
7118  *	pages are left in the zone after a successful __alloc_pages().
7119  */
7120 static void setup_per_zone_lowmem_reserve(void)
7121 {
7122 	struct pglist_data *pgdat;
7123 	enum zone_type j, idx;
7124 
7125 	for_each_online_pgdat(pgdat) {
7126 		for (j = 0; j < MAX_NR_ZONES; j++) {
7127 			struct zone *zone = pgdat->node_zones + j;
7128 			unsigned long managed_pages = zone->managed_pages;
7129 
7130 			zone->lowmem_reserve[j] = 0;
7131 
7132 			idx = j;
7133 			while (idx) {
7134 				struct zone *lower_zone;
7135 
7136 				idx--;
7137 				lower_zone = pgdat->node_zones + idx;
7138 
7139 				if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7140 					sysctl_lowmem_reserve_ratio[idx] = 0;
7141 					lower_zone->lowmem_reserve[j] = 0;
7142 				} else {
7143 					lower_zone->lowmem_reserve[j] =
7144 						managed_pages / sysctl_lowmem_reserve_ratio[idx];
7145 				}
7146 				managed_pages += lower_zone->managed_pages;
7147 			}
7148 		}
7149 	}
7150 
7151 	/* update totalreserve_pages */
7152 	calculate_totalreserve_pages();
7153 }
7154 
7155 static void __setup_per_zone_wmarks(void)
7156 {
7157 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7158 	unsigned long lowmem_pages = 0;
7159 	struct zone *zone;
7160 	unsigned long flags;
7161 
7162 	/* Calculate total number of !ZONE_HIGHMEM pages */
7163 	for_each_zone(zone) {
7164 		if (!is_highmem(zone))
7165 			lowmem_pages += zone->managed_pages;
7166 	}
7167 
7168 	for_each_zone(zone) {
7169 		u64 tmp;
7170 
7171 		spin_lock_irqsave(&zone->lock, flags);
7172 		tmp = (u64)pages_min * zone->managed_pages;
7173 		do_div(tmp, lowmem_pages);
7174 		if (is_highmem(zone)) {
7175 			/*
7176 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7177 			 * need highmem pages, so cap pages_min to a small
7178 			 * value here.
7179 			 *
7180 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7181 			 * deltas control asynch page reclaim, and so should
7182 			 * not be capped for highmem.
7183 			 */
7184 			unsigned long min_pages;
7185 
7186 			min_pages = zone->managed_pages / 1024;
7187 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7188 			zone->watermark[WMARK_MIN] = min_pages;
7189 		} else {
7190 			/*
7191 			 * If it's a lowmem zone, reserve a number of pages
7192 			 * proportionate to the zone's size.
7193 			 */
7194 			zone->watermark[WMARK_MIN] = tmp;
7195 		}
7196 
7197 		/*
7198 		 * Set the kswapd watermarks distance according to the
7199 		 * scale factor in proportion to available memory, but
7200 		 * ensure a minimum size on small systems.
7201 		 */
7202 		tmp = max_t(u64, tmp >> 2,
7203 			    mult_frac(zone->managed_pages,
7204 				      watermark_scale_factor, 10000));
7205 
7206 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
7207 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7208 
7209 		spin_unlock_irqrestore(&zone->lock, flags);
7210 	}
7211 
7212 	/* update totalreserve_pages */
7213 	calculate_totalreserve_pages();
7214 }
7215 
7216 /**
7217  * setup_per_zone_wmarks - called when min_free_kbytes changes
7218  * or when memory is hot-{added|removed}
7219  *
7220  * Ensures that the watermark[min,low,high] values for each zone are set
7221  * correctly with respect to min_free_kbytes.
7222  */
7223 void setup_per_zone_wmarks(void)
7224 {
7225 	static DEFINE_SPINLOCK(lock);
7226 
7227 	spin_lock(&lock);
7228 	__setup_per_zone_wmarks();
7229 	spin_unlock(&lock);
7230 }
7231 
7232 /*
7233  * Initialise min_free_kbytes.
7234  *
7235  * For small machines we want it small (128k min).  For large machines
7236  * we want it large (64MB max).  But it is not linear, because network
7237  * bandwidth does not increase linearly with machine size.  We use
7238  *
7239  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7240  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
7241  *
7242  * which yields
7243  *
7244  * 16MB:	512k
7245  * 32MB:	724k
7246  * 64MB:	1024k
7247  * 128MB:	1448k
7248  * 256MB:	2048k
7249  * 512MB:	2896k
7250  * 1024MB:	4096k
7251  * 2048MB:	5792k
7252  * 4096MB:	8192k
7253  * 8192MB:	11584k
7254  * 16384MB:	16384k
7255  */
7256 int __meminit init_per_zone_wmark_min(void)
7257 {
7258 	unsigned long lowmem_kbytes;
7259 	int new_min_free_kbytes;
7260 
7261 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7262 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7263 
7264 	if (new_min_free_kbytes > user_min_free_kbytes) {
7265 		min_free_kbytes = new_min_free_kbytes;
7266 		if (min_free_kbytes < 128)
7267 			min_free_kbytes = 128;
7268 		if (min_free_kbytes > 65536)
7269 			min_free_kbytes = 65536;
7270 	} else {
7271 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7272 				new_min_free_kbytes, user_min_free_kbytes);
7273 	}
7274 	setup_per_zone_wmarks();
7275 	refresh_zone_stat_thresholds();
7276 	setup_per_zone_lowmem_reserve();
7277 
7278 #ifdef CONFIG_NUMA
7279 	setup_min_unmapped_ratio();
7280 	setup_min_slab_ratio();
7281 #endif
7282 
7283 	return 0;
7284 }
7285 core_initcall(init_per_zone_wmark_min)
7286 
7287 /*
7288  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7289  *	that we can call two helper functions whenever min_free_kbytes
7290  *	changes.
7291  */
7292 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7293 	void __user *buffer, size_t *length, loff_t *ppos)
7294 {
7295 	int rc;
7296 
7297 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7298 	if (rc)
7299 		return rc;
7300 
7301 	if (write) {
7302 		user_min_free_kbytes = min_free_kbytes;
7303 		setup_per_zone_wmarks();
7304 	}
7305 	return 0;
7306 }
7307 
7308 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7309 	void __user *buffer, size_t *length, loff_t *ppos)
7310 {
7311 	int rc;
7312 
7313 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7314 	if (rc)
7315 		return rc;
7316 
7317 	if (write)
7318 		setup_per_zone_wmarks();
7319 
7320 	return 0;
7321 }
7322 
7323 #ifdef CONFIG_NUMA
7324 static void setup_min_unmapped_ratio(void)
7325 {
7326 	pg_data_t *pgdat;
7327 	struct zone *zone;
7328 
7329 	for_each_online_pgdat(pgdat)
7330 		pgdat->min_unmapped_pages = 0;
7331 
7332 	for_each_zone(zone)
7333 		zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7334 				sysctl_min_unmapped_ratio) / 100;
7335 }
7336 
7337 
7338 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7339 	void __user *buffer, size_t *length, loff_t *ppos)
7340 {
7341 	int rc;
7342 
7343 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7344 	if (rc)
7345 		return rc;
7346 
7347 	setup_min_unmapped_ratio();
7348 
7349 	return 0;
7350 }
7351 
7352 static void setup_min_slab_ratio(void)
7353 {
7354 	pg_data_t *pgdat;
7355 	struct zone *zone;
7356 
7357 	for_each_online_pgdat(pgdat)
7358 		pgdat->min_slab_pages = 0;
7359 
7360 	for_each_zone(zone)
7361 		zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7362 				sysctl_min_slab_ratio) / 100;
7363 }
7364 
7365 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7366 	void __user *buffer, size_t *length, loff_t *ppos)
7367 {
7368 	int rc;
7369 
7370 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7371 	if (rc)
7372 		return rc;
7373 
7374 	setup_min_slab_ratio();
7375 
7376 	return 0;
7377 }
7378 #endif
7379 
7380 /*
7381  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7382  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7383  *	whenever sysctl_lowmem_reserve_ratio changes.
7384  *
7385  * The reserve ratio obviously has absolutely no relation with the
7386  * minimum watermarks. The lowmem reserve ratio can only make sense
7387  * if in function of the boot time zone sizes.
7388  */
7389 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7390 	void __user *buffer, size_t *length, loff_t *ppos)
7391 {
7392 	proc_dointvec_minmax(table, write, buffer, length, ppos);
7393 	setup_per_zone_lowmem_reserve();
7394 	return 0;
7395 }
7396 
7397 /*
7398  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7399  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
7400  * pagelist can have before it gets flushed back to buddy allocator.
7401  */
7402 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7403 	void __user *buffer, size_t *length, loff_t *ppos)
7404 {
7405 	struct zone *zone;
7406 	int old_percpu_pagelist_fraction;
7407 	int ret;
7408 
7409 	mutex_lock(&pcp_batch_high_lock);
7410 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7411 
7412 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7413 	if (!write || ret < 0)
7414 		goto out;
7415 
7416 	/* Sanity checking to avoid pcp imbalance */
7417 	if (percpu_pagelist_fraction &&
7418 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7419 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7420 		ret = -EINVAL;
7421 		goto out;
7422 	}
7423 
7424 	/* No change? */
7425 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7426 		goto out;
7427 
7428 	for_each_populated_zone(zone) {
7429 		unsigned int cpu;
7430 
7431 		for_each_possible_cpu(cpu)
7432 			pageset_set_high_and_batch(zone,
7433 					per_cpu_ptr(zone->pageset, cpu));
7434 	}
7435 out:
7436 	mutex_unlock(&pcp_batch_high_lock);
7437 	return ret;
7438 }
7439 
7440 #ifdef CONFIG_NUMA
7441 int hashdist = HASHDIST_DEFAULT;
7442 
7443 static int __init set_hashdist(char *str)
7444 {
7445 	if (!str)
7446 		return 0;
7447 	hashdist = simple_strtoul(str, &str, 0);
7448 	return 1;
7449 }
7450 __setup("hashdist=", set_hashdist);
7451 #endif
7452 
7453 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7454 /*
7455  * Returns the number of pages that arch has reserved but
7456  * is not known to alloc_large_system_hash().
7457  */
7458 static unsigned long __init arch_reserved_kernel_pages(void)
7459 {
7460 	return 0;
7461 }
7462 #endif
7463 
7464 /*
7465  * Adaptive scale is meant to reduce sizes of hash tables on large memory
7466  * machines. As memory size is increased the scale is also increased but at
7467  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
7468  * quadruples the scale is increased by one, which means the size of hash table
7469  * only doubles, instead of quadrupling as well.
7470  * Because 32-bit systems cannot have large physical memory, where this scaling
7471  * makes sense, it is disabled on such platforms.
7472  */
7473 #if __BITS_PER_LONG > 32
7474 #define ADAPT_SCALE_BASE	(64ul << 30)
7475 #define ADAPT_SCALE_SHIFT	2
7476 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
7477 #endif
7478 
7479 /*
7480  * allocate a large system hash table from bootmem
7481  * - it is assumed that the hash table must contain an exact power-of-2
7482  *   quantity of entries
7483  * - limit is the number of hash buckets, not the total allocation size
7484  */
7485 void *__init alloc_large_system_hash(const char *tablename,
7486 				     unsigned long bucketsize,
7487 				     unsigned long numentries,
7488 				     int scale,
7489 				     int flags,
7490 				     unsigned int *_hash_shift,
7491 				     unsigned int *_hash_mask,
7492 				     unsigned long low_limit,
7493 				     unsigned long high_limit)
7494 {
7495 	unsigned long long max = high_limit;
7496 	unsigned long log2qty, size;
7497 	void *table = NULL;
7498 	gfp_t gfp_flags;
7499 
7500 	/* allow the kernel cmdline to have a say */
7501 	if (!numentries) {
7502 		/* round applicable memory size up to nearest megabyte */
7503 		numentries = nr_kernel_pages;
7504 		numentries -= arch_reserved_kernel_pages();
7505 
7506 		/* It isn't necessary when PAGE_SIZE >= 1MB */
7507 		if (PAGE_SHIFT < 20)
7508 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7509 
7510 #if __BITS_PER_LONG > 32
7511 		if (!high_limit) {
7512 			unsigned long adapt;
7513 
7514 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7515 			     adapt <<= ADAPT_SCALE_SHIFT)
7516 				scale++;
7517 		}
7518 #endif
7519 
7520 		/* limit to 1 bucket per 2^scale bytes of low memory */
7521 		if (scale > PAGE_SHIFT)
7522 			numentries >>= (scale - PAGE_SHIFT);
7523 		else
7524 			numentries <<= (PAGE_SHIFT - scale);
7525 
7526 		/* Make sure we've got at least a 0-order allocation.. */
7527 		if (unlikely(flags & HASH_SMALL)) {
7528 			/* Makes no sense without HASH_EARLY */
7529 			WARN_ON(!(flags & HASH_EARLY));
7530 			if (!(numentries >> *_hash_shift)) {
7531 				numentries = 1UL << *_hash_shift;
7532 				BUG_ON(!numentries);
7533 			}
7534 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7535 			numentries = PAGE_SIZE / bucketsize;
7536 	}
7537 	numentries = roundup_pow_of_two(numentries);
7538 
7539 	/* limit allocation size to 1/16 total memory by default */
7540 	if (max == 0) {
7541 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7542 		do_div(max, bucketsize);
7543 	}
7544 	max = min(max, 0x80000000ULL);
7545 
7546 	if (numentries < low_limit)
7547 		numentries = low_limit;
7548 	if (numentries > max)
7549 		numentries = max;
7550 
7551 	log2qty = ilog2(numentries);
7552 
7553 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
7554 	do {
7555 		size = bucketsize << log2qty;
7556 		if (flags & HASH_EARLY) {
7557 			if (flags & HASH_ZERO)
7558 				table = memblock_virt_alloc_nopanic(size, 0);
7559 			else
7560 				table = memblock_virt_alloc_raw(size, 0);
7561 		} else if (hashdist) {
7562 			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7563 		} else {
7564 			/*
7565 			 * If bucketsize is not a power-of-two, we may free
7566 			 * some pages at the end of hash table which
7567 			 * alloc_pages_exact() automatically does
7568 			 */
7569 			if (get_order(size) < MAX_ORDER) {
7570 				table = alloc_pages_exact(size, gfp_flags);
7571 				kmemleak_alloc(table, size, 1, gfp_flags);
7572 			}
7573 		}
7574 	} while (!table && size > PAGE_SIZE && --log2qty);
7575 
7576 	if (!table)
7577 		panic("Failed to allocate %s hash table\n", tablename);
7578 
7579 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7580 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7581 
7582 	if (_hash_shift)
7583 		*_hash_shift = log2qty;
7584 	if (_hash_mask)
7585 		*_hash_mask = (1 << log2qty) - 1;
7586 
7587 	return table;
7588 }
7589 
7590 /*
7591  * This function checks whether pageblock includes unmovable pages or not.
7592  * If @count is not zero, it is okay to include less @count unmovable pages
7593  *
7594  * PageLRU check without isolation or lru_lock could race so that
7595  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7596  * check without lock_page also may miss some movable non-lru pages at
7597  * race condition. So you can't expect this function should be exact.
7598  */
7599 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7600 			 int migratetype,
7601 			 bool skip_hwpoisoned_pages)
7602 {
7603 	unsigned long pfn, iter, found;
7604 
7605 	/*
7606 	 * TODO we could make this much more efficient by not checking every
7607 	 * page in the range if we know all of them are in MOVABLE_ZONE and
7608 	 * that the movable zone guarantees that pages are migratable but
7609 	 * the later is not the case right now unfortunatelly. E.g. movablecore
7610 	 * can still lead to having bootmem allocations in zone_movable.
7611 	 */
7612 
7613 	/*
7614 	 * CMA allocations (alloc_contig_range) really need to mark isolate
7615 	 * CMA pageblocks even when they are not movable in fact so consider
7616 	 * them movable here.
7617 	 */
7618 	if (is_migrate_cma(migratetype) &&
7619 			is_migrate_cma(get_pageblock_migratetype(page)))
7620 		return false;
7621 
7622 	pfn = page_to_pfn(page);
7623 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7624 		unsigned long check = pfn + iter;
7625 
7626 		if (!pfn_valid_within(check))
7627 			continue;
7628 
7629 		page = pfn_to_page(check);
7630 
7631 		if (PageReserved(page))
7632 			goto unmovable;
7633 
7634 		/*
7635 		 * Hugepages are not in LRU lists, but they're movable.
7636 		 * We need not scan over tail pages bacause we don't
7637 		 * handle each tail page individually in migration.
7638 		 */
7639 		if (PageHuge(page)) {
7640 			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7641 			continue;
7642 		}
7643 
7644 		/*
7645 		 * We can't use page_count without pin a page
7646 		 * because another CPU can free compound page.
7647 		 * This check already skips compound tails of THP
7648 		 * because their page->_refcount is zero at all time.
7649 		 */
7650 		if (!page_ref_count(page)) {
7651 			if (PageBuddy(page))
7652 				iter += (1 << page_order(page)) - 1;
7653 			continue;
7654 		}
7655 
7656 		/*
7657 		 * The HWPoisoned page may be not in buddy system, and
7658 		 * page_count() is not 0.
7659 		 */
7660 		if (skip_hwpoisoned_pages && PageHWPoison(page))
7661 			continue;
7662 
7663 		if (__PageMovable(page))
7664 			continue;
7665 
7666 		if (!PageLRU(page))
7667 			found++;
7668 		/*
7669 		 * If there are RECLAIMABLE pages, we need to check
7670 		 * it.  But now, memory offline itself doesn't call
7671 		 * shrink_node_slabs() and it still to be fixed.
7672 		 */
7673 		/*
7674 		 * If the page is not RAM, page_count()should be 0.
7675 		 * we don't need more check. This is an _used_ not-movable page.
7676 		 *
7677 		 * The problematic thing here is PG_reserved pages. PG_reserved
7678 		 * is set to both of a memory hole page and a _used_ kernel
7679 		 * page at boot.
7680 		 */
7681 		if (found > count)
7682 			goto unmovable;
7683 	}
7684 	return false;
7685 unmovable:
7686 	WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
7687 	return true;
7688 }
7689 
7690 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7691 
7692 static unsigned long pfn_max_align_down(unsigned long pfn)
7693 {
7694 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7695 			     pageblock_nr_pages) - 1);
7696 }
7697 
7698 static unsigned long pfn_max_align_up(unsigned long pfn)
7699 {
7700 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7701 				pageblock_nr_pages));
7702 }
7703 
7704 /* [start, end) must belong to a single zone. */
7705 static int __alloc_contig_migrate_range(struct compact_control *cc,
7706 					unsigned long start, unsigned long end)
7707 {
7708 	/* This function is based on compact_zone() from compaction.c. */
7709 	unsigned long nr_reclaimed;
7710 	unsigned long pfn = start;
7711 	unsigned int tries = 0;
7712 	int ret = 0;
7713 
7714 	migrate_prep();
7715 
7716 	while (pfn < end || !list_empty(&cc->migratepages)) {
7717 		if (fatal_signal_pending(current)) {
7718 			ret = -EINTR;
7719 			break;
7720 		}
7721 
7722 		if (list_empty(&cc->migratepages)) {
7723 			cc->nr_migratepages = 0;
7724 			pfn = isolate_migratepages_range(cc, pfn, end);
7725 			if (!pfn) {
7726 				ret = -EINTR;
7727 				break;
7728 			}
7729 			tries = 0;
7730 		} else if (++tries == 5) {
7731 			ret = ret < 0 ? ret : -EBUSY;
7732 			break;
7733 		}
7734 
7735 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7736 							&cc->migratepages);
7737 		cc->nr_migratepages -= nr_reclaimed;
7738 
7739 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7740 				    NULL, 0, cc->mode, MR_CONTIG_RANGE);
7741 	}
7742 	if (ret < 0) {
7743 		putback_movable_pages(&cc->migratepages);
7744 		return ret;
7745 	}
7746 	return 0;
7747 }
7748 
7749 /**
7750  * alloc_contig_range() -- tries to allocate given range of pages
7751  * @start:	start PFN to allocate
7752  * @end:	one-past-the-last PFN to allocate
7753  * @migratetype:	migratetype of the underlaying pageblocks (either
7754  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
7755  *			in range must have the same migratetype and it must
7756  *			be either of the two.
7757  * @gfp_mask:	GFP mask to use during compaction
7758  *
7759  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7760  * aligned.  The PFN range must belong to a single zone.
7761  *
7762  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
7763  * pageblocks in the range.  Once isolated, the pageblocks should not
7764  * be modified by others.
7765  *
7766  * Returns zero on success or negative error code.  On success all
7767  * pages which PFN is in [start, end) are allocated for the caller and
7768  * need to be freed with free_contig_range().
7769  */
7770 int alloc_contig_range(unsigned long start, unsigned long end,
7771 		       unsigned migratetype, gfp_t gfp_mask)
7772 {
7773 	unsigned long outer_start, outer_end;
7774 	unsigned int order;
7775 	int ret = 0;
7776 
7777 	struct compact_control cc = {
7778 		.nr_migratepages = 0,
7779 		.order = -1,
7780 		.zone = page_zone(pfn_to_page(start)),
7781 		.mode = MIGRATE_SYNC,
7782 		.ignore_skip_hint = true,
7783 		.no_set_skip_hint = true,
7784 		.gfp_mask = current_gfp_context(gfp_mask),
7785 	};
7786 	INIT_LIST_HEAD(&cc.migratepages);
7787 
7788 	/*
7789 	 * What we do here is we mark all pageblocks in range as
7790 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
7791 	 * have different sizes, and due to the way page allocator
7792 	 * work, we align the range to biggest of the two pages so
7793 	 * that page allocator won't try to merge buddies from
7794 	 * different pageblocks and change MIGRATE_ISOLATE to some
7795 	 * other migration type.
7796 	 *
7797 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7798 	 * migrate the pages from an unaligned range (ie. pages that
7799 	 * we are interested in).  This will put all the pages in
7800 	 * range back to page allocator as MIGRATE_ISOLATE.
7801 	 *
7802 	 * When this is done, we take the pages in range from page
7803 	 * allocator removing them from the buddy system.  This way
7804 	 * page allocator will never consider using them.
7805 	 *
7806 	 * This lets us mark the pageblocks back as
7807 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7808 	 * aligned range but not in the unaligned, original range are
7809 	 * put back to page allocator so that buddy can use them.
7810 	 */
7811 
7812 	ret = start_isolate_page_range(pfn_max_align_down(start),
7813 				       pfn_max_align_up(end), migratetype,
7814 				       false);
7815 	if (ret)
7816 		return ret;
7817 
7818 	/*
7819 	 * In case of -EBUSY, we'd like to know which page causes problem.
7820 	 * So, just fall through. test_pages_isolated() has a tracepoint
7821 	 * which will report the busy page.
7822 	 *
7823 	 * It is possible that busy pages could become available before
7824 	 * the call to test_pages_isolated, and the range will actually be
7825 	 * allocated.  So, if we fall through be sure to clear ret so that
7826 	 * -EBUSY is not accidentally used or returned to caller.
7827 	 */
7828 	ret = __alloc_contig_migrate_range(&cc, start, end);
7829 	if (ret && ret != -EBUSY)
7830 		goto done;
7831 	ret =0;
7832 
7833 	/*
7834 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7835 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
7836 	 * more, all pages in [start, end) are free in page allocator.
7837 	 * What we are going to do is to allocate all pages from
7838 	 * [start, end) (that is remove them from page allocator).
7839 	 *
7840 	 * The only problem is that pages at the beginning and at the
7841 	 * end of interesting range may be not aligned with pages that
7842 	 * page allocator holds, ie. they can be part of higher order
7843 	 * pages.  Because of this, we reserve the bigger range and
7844 	 * once this is done free the pages we are not interested in.
7845 	 *
7846 	 * We don't have to hold zone->lock here because the pages are
7847 	 * isolated thus they won't get removed from buddy.
7848 	 */
7849 
7850 	lru_add_drain_all();
7851 	drain_all_pages(cc.zone);
7852 
7853 	order = 0;
7854 	outer_start = start;
7855 	while (!PageBuddy(pfn_to_page(outer_start))) {
7856 		if (++order >= MAX_ORDER) {
7857 			outer_start = start;
7858 			break;
7859 		}
7860 		outer_start &= ~0UL << order;
7861 	}
7862 
7863 	if (outer_start != start) {
7864 		order = page_order(pfn_to_page(outer_start));
7865 
7866 		/*
7867 		 * outer_start page could be small order buddy page and
7868 		 * it doesn't include start page. Adjust outer_start
7869 		 * in this case to report failed page properly
7870 		 * on tracepoint in test_pages_isolated()
7871 		 */
7872 		if (outer_start + (1UL << order) <= start)
7873 			outer_start = start;
7874 	}
7875 
7876 	/* Make sure the range is really isolated. */
7877 	if (test_pages_isolated(outer_start, end, false)) {
7878 		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7879 			__func__, outer_start, end);
7880 		ret = -EBUSY;
7881 		goto done;
7882 	}
7883 
7884 	/* Grab isolated pages from freelists. */
7885 	outer_end = isolate_freepages_range(&cc, outer_start, end);
7886 	if (!outer_end) {
7887 		ret = -EBUSY;
7888 		goto done;
7889 	}
7890 
7891 	/* Free head and tail (if any) */
7892 	if (start != outer_start)
7893 		free_contig_range(outer_start, start - outer_start);
7894 	if (end != outer_end)
7895 		free_contig_range(end, outer_end - end);
7896 
7897 done:
7898 	undo_isolate_page_range(pfn_max_align_down(start),
7899 				pfn_max_align_up(end), migratetype);
7900 	return ret;
7901 }
7902 
7903 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7904 {
7905 	unsigned int count = 0;
7906 
7907 	for (; nr_pages--; pfn++) {
7908 		struct page *page = pfn_to_page(pfn);
7909 
7910 		count += page_count(page) != 1;
7911 		__free_page(page);
7912 	}
7913 	WARN(count != 0, "%d pages are still in use!\n", count);
7914 }
7915 #endif
7916 
7917 #ifdef CONFIG_MEMORY_HOTPLUG
7918 /*
7919  * The zone indicated has a new number of managed_pages; batch sizes and percpu
7920  * page high values need to be recalulated.
7921  */
7922 void __meminit zone_pcp_update(struct zone *zone)
7923 {
7924 	unsigned cpu;
7925 	mutex_lock(&pcp_batch_high_lock);
7926 	for_each_possible_cpu(cpu)
7927 		pageset_set_high_and_batch(zone,
7928 				per_cpu_ptr(zone->pageset, cpu));
7929 	mutex_unlock(&pcp_batch_high_lock);
7930 }
7931 #endif
7932 
7933 void zone_pcp_reset(struct zone *zone)
7934 {
7935 	unsigned long flags;
7936 	int cpu;
7937 	struct per_cpu_pageset *pset;
7938 
7939 	/* avoid races with drain_pages()  */
7940 	local_irq_save(flags);
7941 	if (zone->pageset != &boot_pageset) {
7942 		for_each_online_cpu(cpu) {
7943 			pset = per_cpu_ptr(zone->pageset, cpu);
7944 			drain_zonestat(zone, pset);
7945 		}
7946 		free_percpu(zone->pageset);
7947 		zone->pageset = &boot_pageset;
7948 	}
7949 	local_irq_restore(flags);
7950 }
7951 
7952 #ifdef CONFIG_MEMORY_HOTREMOVE
7953 /*
7954  * All pages in the range must be in a single zone and isolated
7955  * before calling this.
7956  */
7957 void
7958 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7959 {
7960 	struct page *page;
7961 	struct zone *zone;
7962 	unsigned int order, i;
7963 	unsigned long pfn;
7964 	unsigned long flags;
7965 	/* find the first valid pfn */
7966 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
7967 		if (pfn_valid(pfn))
7968 			break;
7969 	if (pfn == end_pfn)
7970 		return;
7971 	offline_mem_sections(pfn, end_pfn);
7972 	zone = page_zone(pfn_to_page(pfn));
7973 	spin_lock_irqsave(&zone->lock, flags);
7974 	pfn = start_pfn;
7975 	while (pfn < end_pfn) {
7976 		if (!pfn_valid(pfn)) {
7977 			pfn++;
7978 			continue;
7979 		}
7980 		page = pfn_to_page(pfn);
7981 		/*
7982 		 * The HWPoisoned page may be not in buddy system, and
7983 		 * page_count() is not 0.
7984 		 */
7985 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7986 			pfn++;
7987 			SetPageReserved(page);
7988 			continue;
7989 		}
7990 
7991 		BUG_ON(page_count(page));
7992 		BUG_ON(!PageBuddy(page));
7993 		order = page_order(page);
7994 #ifdef CONFIG_DEBUG_VM
7995 		pr_info("remove from free list %lx %d %lx\n",
7996 			pfn, 1 << order, end_pfn);
7997 #endif
7998 		list_del(&page->lru);
7999 		rmv_page_order(page);
8000 		zone->free_area[order].nr_free--;
8001 		for (i = 0; i < (1 << order); i++)
8002 			SetPageReserved((page+i));
8003 		pfn += (1 << order);
8004 	}
8005 	spin_unlock_irqrestore(&zone->lock, flags);
8006 }
8007 #endif
8008 
8009 bool is_free_buddy_page(struct page *page)
8010 {
8011 	struct zone *zone = page_zone(page);
8012 	unsigned long pfn = page_to_pfn(page);
8013 	unsigned long flags;
8014 	unsigned int order;
8015 
8016 	spin_lock_irqsave(&zone->lock, flags);
8017 	for (order = 0; order < MAX_ORDER; order++) {
8018 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8019 
8020 		if (PageBuddy(page_head) && page_order(page_head) >= order)
8021 			break;
8022 	}
8023 	spin_unlock_irqrestore(&zone->lock, flags);
8024 
8025 	return order < MAX_ORDER;
8026 }
8027