1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kasan.h> 28 #include <linux/module.h> 29 #include <linux/suspend.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/slab.h> 33 #include <linux/ratelimit.h> 34 #include <linux/oom.h> 35 #include <linux/notifier.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/memremap.h> 46 #include <linux/stop_machine.h> 47 #include <linux/sort.h> 48 #include <linux/pfn.h> 49 #include <xen/xen.h> 50 #include <linux/backing-dev.h> 51 #include <linux/fault-inject.h> 52 #include <linux/page-isolation.h> 53 #include <linux/page_ext.h> 54 #include <linux/debugobjects.h> 55 #include <linux/kmemleak.h> 56 #include <linux/compaction.h> 57 #include <trace/events/kmem.h> 58 #include <trace/events/oom.h> 59 #include <linux/prefetch.h> 60 #include <linux/mm_inline.h> 61 #include <linux/migrate.h> 62 #include <linux/hugetlb.h> 63 #include <linux/sched/rt.h> 64 #include <linux/sched/mm.h> 65 #include <linux/page_owner.h> 66 #include <linux/kthread.h> 67 #include <linux/memcontrol.h> 68 #include <linux/ftrace.h> 69 #include <linux/lockdep.h> 70 #include <linux/nmi.h> 71 72 #include <asm/sections.h> 73 #include <asm/tlbflush.h> 74 #include <asm/div64.h> 75 #include "internal.h" 76 77 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 78 static DEFINE_MUTEX(pcp_batch_high_lock); 79 #define MIN_PERCPU_PAGELIST_FRACTION (8) 80 81 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 82 DEFINE_PER_CPU(int, numa_node); 83 EXPORT_PER_CPU_SYMBOL(numa_node); 84 #endif 85 86 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 87 88 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 89 /* 90 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 91 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 92 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 93 * defined in <linux/topology.h>. 94 */ 95 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 96 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 97 int _node_numa_mem_[MAX_NUMNODES]; 98 #endif 99 100 /* work_structs for global per-cpu drains */ 101 DEFINE_MUTEX(pcpu_drain_mutex); 102 DEFINE_PER_CPU(struct work_struct, pcpu_drain); 103 104 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 105 volatile unsigned long latent_entropy __latent_entropy; 106 EXPORT_SYMBOL(latent_entropy); 107 #endif 108 109 /* 110 * Array of node states. 111 */ 112 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 113 [N_POSSIBLE] = NODE_MASK_ALL, 114 [N_ONLINE] = { { [0] = 1UL } }, 115 #ifndef CONFIG_NUMA 116 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 117 #ifdef CONFIG_HIGHMEM 118 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 119 #endif 120 [N_MEMORY] = { { [0] = 1UL } }, 121 [N_CPU] = { { [0] = 1UL } }, 122 #endif /* NUMA */ 123 }; 124 EXPORT_SYMBOL(node_states); 125 126 /* Protect totalram_pages and zone->managed_pages */ 127 static DEFINE_SPINLOCK(managed_page_count_lock); 128 129 unsigned long totalram_pages __read_mostly; 130 unsigned long totalreserve_pages __read_mostly; 131 unsigned long totalcma_pages __read_mostly; 132 133 int percpu_pagelist_fraction; 134 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 135 136 /* 137 * A cached value of the page's pageblock's migratetype, used when the page is 138 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 139 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 140 * Also the migratetype set in the page does not necessarily match the pcplist 141 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 142 * other index - this ensures that it will be put on the correct CMA freelist. 143 */ 144 static inline int get_pcppage_migratetype(struct page *page) 145 { 146 return page->index; 147 } 148 149 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 150 { 151 page->index = migratetype; 152 } 153 154 #ifdef CONFIG_PM_SLEEP 155 /* 156 * The following functions are used by the suspend/hibernate code to temporarily 157 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 158 * while devices are suspended. To avoid races with the suspend/hibernate code, 159 * they should always be called with pm_mutex held (gfp_allowed_mask also should 160 * only be modified with pm_mutex held, unless the suspend/hibernate code is 161 * guaranteed not to run in parallel with that modification). 162 */ 163 164 static gfp_t saved_gfp_mask; 165 166 void pm_restore_gfp_mask(void) 167 { 168 WARN_ON(!mutex_is_locked(&pm_mutex)); 169 if (saved_gfp_mask) { 170 gfp_allowed_mask = saved_gfp_mask; 171 saved_gfp_mask = 0; 172 } 173 } 174 175 void pm_restrict_gfp_mask(void) 176 { 177 WARN_ON(!mutex_is_locked(&pm_mutex)); 178 WARN_ON(saved_gfp_mask); 179 saved_gfp_mask = gfp_allowed_mask; 180 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 181 } 182 183 bool pm_suspended_storage(void) 184 { 185 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 186 return false; 187 return true; 188 } 189 #endif /* CONFIG_PM_SLEEP */ 190 191 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 192 unsigned int pageblock_order __read_mostly; 193 #endif 194 195 static void __free_pages_ok(struct page *page, unsigned int order); 196 197 /* 198 * results with 256, 32 in the lowmem_reserve sysctl: 199 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 200 * 1G machine -> (16M dma, 784M normal, 224M high) 201 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 202 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 203 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 204 * 205 * TBD: should special case ZONE_DMA32 machines here - in those we normally 206 * don't need any ZONE_NORMAL reservation 207 */ 208 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 209 #ifdef CONFIG_ZONE_DMA 210 256, 211 #endif 212 #ifdef CONFIG_ZONE_DMA32 213 256, 214 #endif 215 #ifdef CONFIG_HIGHMEM 216 32, 217 #endif 218 32, 219 }; 220 221 EXPORT_SYMBOL(totalram_pages); 222 223 static char * const zone_names[MAX_NR_ZONES] = { 224 #ifdef CONFIG_ZONE_DMA 225 "DMA", 226 #endif 227 #ifdef CONFIG_ZONE_DMA32 228 "DMA32", 229 #endif 230 "Normal", 231 #ifdef CONFIG_HIGHMEM 232 "HighMem", 233 #endif 234 "Movable", 235 #ifdef CONFIG_ZONE_DEVICE 236 "Device", 237 #endif 238 }; 239 240 char * const migratetype_names[MIGRATE_TYPES] = { 241 "Unmovable", 242 "Movable", 243 "Reclaimable", 244 "HighAtomic", 245 #ifdef CONFIG_CMA 246 "CMA", 247 #endif 248 #ifdef CONFIG_MEMORY_ISOLATION 249 "Isolate", 250 #endif 251 }; 252 253 compound_page_dtor * const compound_page_dtors[] = { 254 NULL, 255 free_compound_page, 256 #ifdef CONFIG_HUGETLB_PAGE 257 free_huge_page, 258 #endif 259 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 260 free_transhuge_page, 261 #endif 262 }; 263 264 int min_free_kbytes = 1024; 265 int user_min_free_kbytes = -1; 266 int watermark_scale_factor = 10; 267 268 static unsigned long __meminitdata nr_kernel_pages; 269 static unsigned long __meminitdata nr_all_pages; 270 static unsigned long __meminitdata dma_reserve; 271 272 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 273 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 274 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 275 static unsigned long __initdata required_kernelcore; 276 static unsigned long __initdata required_movablecore; 277 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 278 static bool mirrored_kernelcore; 279 280 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 281 int movable_zone; 282 EXPORT_SYMBOL(movable_zone); 283 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 284 285 #if MAX_NUMNODES > 1 286 int nr_node_ids __read_mostly = MAX_NUMNODES; 287 int nr_online_nodes __read_mostly = 1; 288 EXPORT_SYMBOL(nr_node_ids); 289 EXPORT_SYMBOL(nr_online_nodes); 290 #endif 291 292 int page_group_by_mobility_disabled __read_mostly; 293 294 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 295 296 /* 297 * Determine how many pages need to be initialized during early boot 298 * (non-deferred initialization). 299 * The value of first_deferred_pfn will be set later, once non-deferred pages 300 * are initialized, but for now set it ULONG_MAX. 301 */ 302 static inline void reset_deferred_meminit(pg_data_t *pgdat) 303 { 304 phys_addr_t start_addr, end_addr; 305 unsigned long max_pgcnt; 306 unsigned long reserved; 307 308 /* 309 * Initialise at least 2G of a node but also take into account that 310 * two large system hashes that can take up 1GB for 0.25TB/node. 311 */ 312 max_pgcnt = max(2UL << (30 - PAGE_SHIFT), 313 (pgdat->node_spanned_pages >> 8)); 314 315 /* 316 * Compensate the all the memblock reservations (e.g. crash kernel) 317 * from the initial estimation to make sure we will initialize enough 318 * memory to boot. 319 */ 320 start_addr = PFN_PHYS(pgdat->node_start_pfn); 321 end_addr = PFN_PHYS(pgdat->node_start_pfn + max_pgcnt); 322 reserved = memblock_reserved_memory_within(start_addr, end_addr); 323 max_pgcnt += PHYS_PFN(reserved); 324 325 pgdat->static_init_pgcnt = min(max_pgcnt, pgdat->node_spanned_pages); 326 pgdat->first_deferred_pfn = ULONG_MAX; 327 } 328 329 /* Returns true if the struct page for the pfn is uninitialised */ 330 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 331 { 332 int nid = early_pfn_to_nid(pfn); 333 334 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 335 return true; 336 337 return false; 338 } 339 340 /* 341 * Returns false when the remaining initialisation should be deferred until 342 * later in the boot cycle when it can be parallelised. 343 */ 344 static inline bool update_defer_init(pg_data_t *pgdat, 345 unsigned long pfn, unsigned long zone_end, 346 unsigned long *nr_initialised) 347 { 348 /* Always populate low zones for address-constrained allocations */ 349 if (zone_end < pgdat_end_pfn(pgdat)) 350 return true; 351 /* Xen PV domains need page structures early */ 352 if (xen_pv_domain()) 353 return true; 354 (*nr_initialised)++; 355 if ((*nr_initialised > pgdat->static_init_pgcnt) && 356 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 357 pgdat->first_deferred_pfn = pfn; 358 return false; 359 } 360 361 return true; 362 } 363 #else 364 static inline void reset_deferred_meminit(pg_data_t *pgdat) 365 { 366 } 367 368 static inline bool early_page_uninitialised(unsigned long pfn) 369 { 370 return false; 371 } 372 373 static inline bool update_defer_init(pg_data_t *pgdat, 374 unsigned long pfn, unsigned long zone_end, 375 unsigned long *nr_initialised) 376 { 377 return true; 378 } 379 #endif 380 381 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 382 static inline unsigned long *get_pageblock_bitmap(struct page *page, 383 unsigned long pfn) 384 { 385 #ifdef CONFIG_SPARSEMEM 386 return __pfn_to_section(pfn)->pageblock_flags; 387 #else 388 return page_zone(page)->pageblock_flags; 389 #endif /* CONFIG_SPARSEMEM */ 390 } 391 392 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn) 393 { 394 #ifdef CONFIG_SPARSEMEM 395 pfn &= (PAGES_PER_SECTION-1); 396 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 397 #else 398 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 399 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 400 #endif /* CONFIG_SPARSEMEM */ 401 } 402 403 /** 404 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 405 * @page: The page within the block of interest 406 * @pfn: The target page frame number 407 * @end_bitidx: The last bit of interest to retrieve 408 * @mask: mask of bits that the caller is interested in 409 * 410 * Return: pageblock_bits flags 411 */ 412 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page, 413 unsigned long pfn, 414 unsigned long end_bitidx, 415 unsigned long mask) 416 { 417 unsigned long *bitmap; 418 unsigned long bitidx, word_bitidx; 419 unsigned long word; 420 421 bitmap = get_pageblock_bitmap(page, pfn); 422 bitidx = pfn_to_bitidx(page, pfn); 423 word_bitidx = bitidx / BITS_PER_LONG; 424 bitidx &= (BITS_PER_LONG-1); 425 426 word = bitmap[word_bitidx]; 427 bitidx += end_bitidx; 428 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; 429 } 430 431 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 432 unsigned long end_bitidx, 433 unsigned long mask) 434 { 435 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask); 436 } 437 438 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) 439 { 440 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK); 441 } 442 443 /** 444 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 445 * @page: The page within the block of interest 446 * @flags: The flags to set 447 * @pfn: The target page frame number 448 * @end_bitidx: The last bit of interest 449 * @mask: mask of bits that the caller is interested in 450 */ 451 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 452 unsigned long pfn, 453 unsigned long end_bitidx, 454 unsigned long mask) 455 { 456 unsigned long *bitmap; 457 unsigned long bitidx, word_bitidx; 458 unsigned long old_word, word; 459 460 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 461 462 bitmap = get_pageblock_bitmap(page, pfn); 463 bitidx = pfn_to_bitidx(page, pfn); 464 word_bitidx = bitidx / BITS_PER_LONG; 465 bitidx &= (BITS_PER_LONG-1); 466 467 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 468 469 bitidx += end_bitidx; 470 mask <<= (BITS_PER_LONG - bitidx - 1); 471 flags <<= (BITS_PER_LONG - bitidx - 1); 472 473 word = READ_ONCE(bitmap[word_bitidx]); 474 for (;;) { 475 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 476 if (word == old_word) 477 break; 478 word = old_word; 479 } 480 } 481 482 void set_pageblock_migratetype(struct page *page, int migratetype) 483 { 484 if (unlikely(page_group_by_mobility_disabled && 485 migratetype < MIGRATE_PCPTYPES)) 486 migratetype = MIGRATE_UNMOVABLE; 487 488 set_pageblock_flags_group(page, (unsigned long)migratetype, 489 PB_migrate, PB_migrate_end); 490 } 491 492 #ifdef CONFIG_DEBUG_VM 493 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 494 { 495 int ret = 0; 496 unsigned seq; 497 unsigned long pfn = page_to_pfn(page); 498 unsigned long sp, start_pfn; 499 500 do { 501 seq = zone_span_seqbegin(zone); 502 start_pfn = zone->zone_start_pfn; 503 sp = zone->spanned_pages; 504 if (!zone_spans_pfn(zone, pfn)) 505 ret = 1; 506 } while (zone_span_seqretry(zone, seq)); 507 508 if (ret) 509 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 510 pfn, zone_to_nid(zone), zone->name, 511 start_pfn, start_pfn + sp); 512 513 return ret; 514 } 515 516 static int page_is_consistent(struct zone *zone, struct page *page) 517 { 518 if (!pfn_valid_within(page_to_pfn(page))) 519 return 0; 520 if (zone != page_zone(page)) 521 return 0; 522 523 return 1; 524 } 525 /* 526 * Temporary debugging check for pages not lying within a given zone. 527 */ 528 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 529 { 530 if (page_outside_zone_boundaries(zone, page)) 531 return 1; 532 if (!page_is_consistent(zone, page)) 533 return 1; 534 535 return 0; 536 } 537 #else 538 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 539 { 540 return 0; 541 } 542 #endif 543 544 static void bad_page(struct page *page, const char *reason, 545 unsigned long bad_flags) 546 { 547 static unsigned long resume; 548 static unsigned long nr_shown; 549 static unsigned long nr_unshown; 550 551 /* 552 * Allow a burst of 60 reports, then keep quiet for that minute; 553 * or allow a steady drip of one report per second. 554 */ 555 if (nr_shown == 60) { 556 if (time_before(jiffies, resume)) { 557 nr_unshown++; 558 goto out; 559 } 560 if (nr_unshown) { 561 pr_alert( 562 "BUG: Bad page state: %lu messages suppressed\n", 563 nr_unshown); 564 nr_unshown = 0; 565 } 566 nr_shown = 0; 567 } 568 if (nr_shown++ == 0) 569 resume = jiffies + 60 * HZ; 570 571 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 572 current->comm, page_to_pfn(page)); 573 __dump_page(page, reason); 574 bad_flags &= page->flags; 575 if (bad_flags) 576 pr_alert("bad because of flags: %#lx(%pGp)\n", 577 bad_flags, &bad_flags); 578 dump_page_owner(page); 579 580 print_modules(); 581 dump_stack(); 582 out: 583 /* Leave bad fields for debug, except PageBuddy could make trouble */ 584 page_mapcount_reset(page); /* remove PageBuddy */ 585 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 586 } 587 588 /* 589 * Higher-order pages are called "compound pages". They are structured thusly: 590 * 591 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 592 * 593 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 594 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 595 * 596 * The first tail page's ->compound_dtor holds the offset in array of compound 597 * page destructors. See compound_page_dtors. 598 * 599 * The first tail page's ->compound_order holds the order of allocation. 600 * This usage means that zero-order pages may not be compound. 601 */ 602 603 void free_compound_page(struct page *page) 604 { 605 __free_pages_ok(page, compound_order(page)); 606 } 607 608 void prep_compound_page(struct page *page, unsigned int order) 609 { 610 int i; 611 int nr_pages = 1 << order; 612 613 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 614 set_compound_order(page, order); 615 __SetPageHead(page); 616 for (i = 1; i < nr_pages; i++) { 617 struct page *p = page + i; 618 set_page_count(p, 0); 619 p->mapping = TAIL_MAPPING; 620 set_compound_head(p, page); 621 } 622 atomic_set(compound_mapcount_ptr(page), -1); 623 } 624 625 #ifdef CONFIG_DEBUG_PAGEALLOC 626 unsigned int _debug_guardpage_minorder; 627 bool _debug_pagealloc_enabled __read_mostly 628 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 629 EXPORT_SYMBOL(_debug_pagealloc_enabled); 630 bool _debug_guardpage_enabled __read_mostly; 631 632 static int __init early_debug_pagealloc(char *buf) 633 { 634 if (!buf) 635 return -EINVAL; 636 return kstrtobool(buf, &_debug_pagealloc_enabled); 637 } 638 early_param("debug_pagealloc", early_debug_pagealloc); 639 640 static bool need_debug_guardpage(void) 641 { 642 /* If we don't use debug_pagealloc, we don't need guard page */ 643 if (!debug_pagealloc_enabled()) 644 return false; 645 646 if (!debug_guardpage_minorder()) 647 return false; 648 649 return true; 650 } 651 652 static void init_debug_guardpage(void) 653 { 654 if (!debug_pagealloc_enabled()) 655 return; 656 657 if (!debug_guardpage_minorder()) 658 return; 659 660 _debug_guardpage_enabled = true; 661 } 662 663 struct page_ext_operations debug_guardpage_ops = { 664 .need = need_debug_guardpage, 665 .init = init_debug_guardpage, 666 }; 667 668 static int __init debug_guardpage_minorder_setup(char *buf) 669 { 670 unsigned long res; 671 672 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 673 pr_err("Bad debug_guardpage_minorder value\n"); 674 return 0; 675 } 676 _debug_guardpage_minorder = res; 677 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 678 return 0; 679 } 680 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 681 682 static inline bool set_page_guard(struct zone *zone, struct page *page, 683 unsigned int order, int migratetype) 684 { 685 struct page_ext *page_ext; 686 687 if (!debug_guardpage_enabled()) 688 return false; 689 690 if (order >= debug_guardpage_minorder()) 691 return false; 692 693 page_ext = lookup_page_ext(page); 694 if (unlikely(!page_ext)) 695 return false; 696 697 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 698 699 INIT_LIST_HEAD(&page->lru); 700 set_page_private(page, order); 701 /* Guard pages are not available for any usage */ 702 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 703 704 return true; 705 } 706 707 static inline void clear_page_guard(struct zone *zone, struct page *page, 708 unsigned int order, int migratetype) 709 { 710 struct page_ext *page_ext; 711 712 if (!debug_guardpage_enabled()) 713 return; 714 715 page_ext = lookup_page_ext(page); 716 if (unlikely(!page_ext)) 717 return; 718 719 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 720 721 set_page_private(page, 0); 722 if (!is_migrate_isolate(migratetype)) 723 __mod_zone_freepage_state(zone, (1 << order), migratetype); 724 } 725 #else 726 struct page_ext_operations debug_guardpage_ops; 727 static inline bool set_page_guard(struct zone *zone, struct page *page, 728 unsigned int order, int migratetype) { return false; } 729 static inline void clear_page_guard(struct zone *zone, struct page *page, 730 unsigned int order, int migratetype) {} 731 #endif 732 733 static inline void set_page_order(struct page *page, unsigned int order) 734 { 735 set_page_private(page, order); 736 __SetPageBuddy(page); 737 } 738 739 static inline void rmv_page_order(struct page *page) 740 { 741 __ClearPageBuddy(page); 742 set_page_private(page, 0); 743 } 744 745 /* 746 * This function checks whether a page is free && is the buddy 747 * we can do coalesce a page and its buddy if 748 * (a) the buddy is not in a hole (check before calling!) && 749 * (b) the buddy is in the buddy system && 750 * (c) a page and its buddy have the same order && 751 * (d) a page and its buddy are in the same zone. 752 * 753 * For recording whether a page is in the buddy system, we set ->_mapcount 754 * PAGE_BUDDY_MAPCOUNT_VALUE. 755 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is 756 * serialized by zone->lock. 757 * 758 * For recording page's order, we use page_private(page). 759 */ 760 static inline int page_is_buddy(struct page *page, struct page *buddy, 761 unsigned int order) 762 { 763 if (page_is_guard(buddy) && page_order(buddy) == order) { 764 if (page_zone_id(page) != page_zone_id(buddy)) 765 return 0; 766 767 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 768 769 return 1; 770 } 771 772 if (PageBuddy(buddy) && page_order(buddy) == order) { 773 /* 774 * zone check is done late to avoid uselessly 775 * calculating zone/node ids for pages that could 776 * never merge. 777 */ 778 if (page_zone_id(page) != page_zone_id(buddy)) 779 return 0; 780 781 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 782 783 return 1; 784 } 785 return 0; 786 } 787 788 /* 789 * Freeing function for a buddy system allocator. 790 * 791 * The concept of a buddy system is to maintain direct-mapped table 792 * (containing bit values) for memory blocks of various "orders". 793 * The bottom level table contains the map for the smallest allocatable 794 * units of memory (here, pages), and each level above it describes 795 * pairs of units from the levels below, hence, "buddies". 796 * At a high level, all that happens here is marking the table entry 797 * at the bottom level available, and propagating the changes upward 798 * as necessary, plus some accounting needed to play nicely with other 799 * parts of the VM system. 800 * At each level, we keep a list of pages, which are heads of continuous 801 * free pages of length of (1 << order) and marked with _mapcount 802 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page) 803 * field. 804 * So when we are allocating or freeing one, we can derive the state of the 805 * other. That is, if we allocate a small block, and both were 806 * free, the remainder of the region must be split into blocks. 807 * If a block is freed, and its buddy is also free, then this 808 * triggers coalescing into a block of larger size. 809 * 810 * -- nyc 811 */ 812 813 static inline void __free_one_page(struct page *page, 814 unsigned long pfn, 815 struct zone *zone, unsigned int order, 816 int migratetype) 817 { 818 unsigned long combined_pfn; 819 unsigned long uninitialized_var(buddy_pfn); 820 struct page *buddy; 821 unsigned int max_order; 822 823 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1); 824 825 VM_BUG_ON(!zone_is_initialized(zone)); 826 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 827 828 VM_BUG_ON(migratetype == -1); 829 if (likely(!is_migrate_isolate(migratetype))) 830 __mod_zone_freepage_state(zone, 1 << order, migratetype); 831 832 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 833 VM_BUG_ON_PAGE(bad_range(zone, page), page); 834 835 continue_merging: 836 while (order < max_order - 1) { 837 buddy_pfn = __find_buddy_pfn(pfn, order); 838 buddy = page + (buddy_pfn - pfn); 839 840 if (!pfn_valid_within(buddy_pfn)) 841 goto done_merging; 842 if (!page_is_buddy(page, buddy, order)) 843 goto done_merging; 844 /* 845 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 846 * merge with it and move up one order. 847 */ 848 if (page_is_guard(buddy)) { 849 clear_page_guard(zone, buddy, order, migratetype); 850 } else { 851 list_del(&buddy->lru); 852 zone->free_area[order].nr_free--; 853 rmv_page_order(buddy); 854 } 855 combined_pfn = buddy_pfn & pfn; 856 page = page + (combined_pfn - pfn); 857 pfn = combined_pfn; 858 order++; 859 } 860 if (max_order < MAX_ORDER) { 861 /* If we are here, it means order is >= pageblock_order. 862 * We want to prevent merge between freepages on isolate 863 * pageblock and normal pageblock. Without this, pageblock 864 * isolation could cause incorrect freepage or CMA accounting. 865 * 866 * We don't want to hit this code for the more frequent 867 * low-order merging. 868 */ 869 if (unlikely(has_isolate_pageblock(zone))) { 870 int buddy_mt; 871 872 buddy_pfn = __find_buddy_pfn(pfn, order); 873 buddy = page + (buddy_pfn - pfn); 874 buddy_mt = get_pageblock_migratetype(buddy); 875 876 if (migratetype != buddy_mt 877 && (is_migrate_isolate(migratetype) || 878 is_migrate_isolate(buddy_mt))) 879 goto done_merging; 880 } 881 max_order++; 882 goto continue_merging; 883 } 884 885 done_merging: 886 set_page_order(page, order); 887 888 /* 889 * If this is not the largest possible page, check if the buddy 890 * of the next-highest order is free. If it is, it's possible 891 * that pages are being freed that will coalesce soon. In case, 892 * that is happening, add the free page to the tail of the list 893 * so it's less likely to be used soon and more likely to be merged 894 * as a higher order page 895 */ 896 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) { 897 struct page *higher_page, *higher_buddy; 898 combined_pfn = buddy_pfn & pfn; 899 higher_page = page + (combined_pfn - pfn); 900 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); 901 higher_buddy = higher_page + (buddy_pfn - combined_pfn); 902 if (pfn_valid_within(buddy_pfn) && 903 page_is_buddy(higher_page, higher_buddy, order + 1)) { 904 list_add_tail(&page->lru, 905 &zone->free_area[order].free_list[migratetype]); 906 goto out; 907 } 908 } 909 910 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 911 out: 912 zone->free_area[order].nr_free++; 913 } 914 915 /* 916 * A bad page could be due to a number of fields. Instead of multiple branches, 917 * try and check multiple fields with one check. The caller must do a detailed 918 * check if necessary. 919 */ 920 static inline bool page_expected_state(struct page *page, 921 unsigned long check_flags) 922 { 923 if (unlikely(atomic_read(&page->_mapcount) != -1)) 924 return false; 925 926 if (unlikely((unsigned long)page->mapping | 927 page_ref_count(page) | 928 #ifdef CONFIG_MEMCG 929 (unsigned long)page->mem_cgroup | 930 #endif 931 (page->flags & check_flags))) 932 return false; 933 934 return true; 935 } 936 937 static void free_pages_check_bad(struct page *page) 938 { 939 const char *bad_reason; 940 unsigned long bad_flags; 941 942 bad_reason = NULL; 943 bad_flags = 0; 944 945 if (unlikely(atomic_read(&page->_mapcount) != -1)) 946 bad_reason = "nonzero mapcount"; 947 if (unlikely(page->mapping != NULL)) 948 bad_reason = "non-NULL mapping"; 949 if (unlikely(page_ref_count(page) != 0)) 950 bad_reason = "nonzero _refcount"; 951 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { 952 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 953 bad_flags = PAGE_FLAGS_CHECK_AT_FREE; 954 } 955 #ifdef CONFIG_MEMCG 956 if (unlikely(page->mem_cgroup)) 957 bad_reason = "page still charged to cgroup"; 958 #endif 959 bad_page(page, bad_reason, bad_flags); 960 } 961 962 static inline int free_pages_check(struct page *page) 963 { 964 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 965 return 0; 966 967 /* Something has gone sideways, find it */ 968 free_pages_check_bad(page); 969 return 1; 970 } 971 972 static int free_tail_pages_check(struct page *head_page, struct page *page) 973 { 974 int ret = 1; 975 976 /* 977 * We rely page->lru.next never has bit 0 set, unless the page 978 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 979 */ 980 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 981 982 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 983 ret = 0; 984 goto out; 985 } 986 switch (page - head_page) { 987 case 1: 988 /* the first tail page: ->mapping is compound_mapcount() */ 989 if (unlikely(compound_mapcount(page))) { 990 bad_page(page, "nonzero compound_mapcount", 0); 991 goto out; 992 } 993 break; 994 case 2: 995 /* 996 * the second tail page: ->mapping is 997 * page_deferred_list().next -- ignore value. 998 */ 999 break; 1000 default: 1001 if (page->mapping != TAIL_MAPPING) { 1002 bad_page(page, "corrupted mapping in tail page", 0); 1003 goto out; 1004 } 1005 break; 1006 } 1007 if (unlikely(!PageTail(page))) { 1008 bad_page(page, "PageTail not set", 0); 1009 goto out; 1010 } 1011 if (unlikely(compound_head(page) != head_page)) { 1012 bad_page(page, "compound_head not consistent", 0); 1013 goto out; 1014 } 1015 ret = 0; 1016 out: 1017 page->mapping = NULL; 1018 clear_compound_head(page); 1019 return ret; 1020 } 1021 1022 static __always_inline bool free_pages_prepare(struct page *page, 1023 unsigned int order, bool check_free) 1024 { 1025 int bad = 0; 1026 1027 VM_BUG_ON_PAGE(PageTail(page), page); 1028 1029 trace_mm_page_free(page, order); 1030 1031 /* 1032 * Check tail pages before head page information is cleared to 1033 * avoid checking PageCompound for order-0 pages. 1034 */ 1035 if (unlikely(order)) { 1036 bool compound = PageCompound(page); 1037 int i; 1038 1039 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1040 1041 if (compound) 1042 ClearPageDoubleMap(page); 1043 for (i = 1; i < (1 << order); i++) { 1044 if (compound) 1045 bad += free_tail_pages_check(page, page + i); 1046 if (unlikely(free_pages_check(page + i))) { 1047 bad++; 1048 continue; 1049 } 1050 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1051 } 1052 } 1053 if (PageMappingFlags(page)) 1054 page->mapping = NULL; 1055 if (memcg_kmem_enabled() && PageKmemcg(page)) 1056 memcg_kmem_uncharge(page, order); 1057 if (check_free) 1058 bad += free_pages_check(page); 1059 if (bad) 1060 return false; 1061 1062 page_cpupid_reset_last(page); 1063 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1064 reset_page_owner(page, order); 1065 1066 if (!PageHighMem(page)) { 1067 debug_check_no_locks_freed(page_address(page), 1068 PAGE_SIZE << order); 1069 debug_check_no_obj_freed(page_address(page), 1070 PAGE_SIZE << order); 1071 } 1072 arch_free_page(page, order); 1073 kernel_poison_pages(page, 1 << order, 0); 1074 kernel_map_pages(page, 1 << order, 0); 1075 kasan_free_pages(page, order); 1076 1077 return true; 1078 } 1079 1080 #ifdef CONFIG_DEBUG_VM 1081 static inline bool free_pcp_prepare(struct page *page) 1082 { 1083 return free_pages_prepare(page, 0, true); 1084 } 1085 1086 static inline bool bulkfree_pcp_prepare(struct page *page) 1087 { 1088 return false; 1089 } 1090 #else 1091 static bool free_pcp_prepare(struct page *page) 1092 { 1093 return free_pages_prepare(page, 0, false); 1094 } 1095 1096 static bool bulkfree_pcp_prepare(struct page *page) 1097 { 1098 return free_pages_check(page); 1099 } 1100 #endif /* CONFIG_DEBUG_VM */ 1101 1102 /* 1103 * Frees a number of pages from the PCP lists 1104 * Assumes all pages on list are in same zone, and of same order. 1105 * count is the number of pages to free. 1106 * 1107 * If the zone was previously in an "all pages pinned" state then look to 1108 * see if this freeing clears that state. 1109 * 1110 * And clear the zone's pages_scanned counter, to hold off the "all pages are 1111 * pinned" detection logic. 1112 */ 1113 static void free_pcppages_bulk(struct zone *zone, int count, 1114 struct per_cpu_pages *pcp) 1115 { 1116 int migratetype = 0; 1117 int batch_free = 0; 1118 bool isolated_pageblocks; 1119 1120 spin_lock(&zone->lock); 1121 isolated_pageblocks = has_isolate_pageblock(zone); 1122 1123 while (count) { 1124 struct page *page; 1125 struct list_head *list; 1126 1127 /* 1128 * Remove pages from lists in a round-robin fashion. A 1129 * batch_free count is maintained that is incremented when an 1130 * empty list is encountered. This is so more pages are freed 1131 * off fuller lists instead of spinning excessively around empty 1132 * lists 1133 */ 1134 do { 1135 batch_free++; 1136 if (++migratetype == MIGRATE_PCPTYPES) 1137 migratetype = 0; 1138 list = &pcp->lists[migratetype]; 1139 } while (list_empty(list)); 1140 1141 /* This is the only non-empty list. Free them all. */ 1142 if (batch_free == MIGRATE_PCPTYPES) 1143 batch_free = count; 1144 1145 do { 1146 int mt; /* migratetype of the to-be-freed page */ 1147 1148 page = list_last_entry(list, struct page, lru); 1149 /* must delete as __free_one_page list manipulates */ 1150 list_del(&page->lru); 1151 1152 mt = get_pcppage_migratetype(page); 1153 /* MIGRATE_ISOLATE page should not go to pcplists */ 1154 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1155 /* Pageblock could have been isolated meanwhile */ 1156 if (unlikely(isolated_pageblocks)) 1157 mt = get_pageblock_migratetype(page); 1158 1159 if (bulkfree_pcp_prepare(page)) 1160 continue; 1161 1162 __free_one_page(page, page_to_pfn(page), zone, 0, mt); 1163 trace_mm_page_pcpu_drain(page, 0, mt); 1164 } while (--count && --batch_free && !list_empty(list)); 1165 } 1166 spin_unlock(&zone->lock); 1167 } 1168 1169 static void free_one_page(struct zone *zone, 1170 struct page *page, unsigned long pfn, 1171 unsigned int order, 1172 int migratetype) 1173 { 1174 spin_lock(&zone->lock); 1175 if (unlikely(has_isolate_pageblock(zone) || 1176 is_migrate_isolate(migratetype))) { 1177 migratetype = get_pfnblock_migratetype(page, pfn); 1178 } 1179 __free_one_page(page, pfn, zone, order, migratetype); 1180 spin_unlock(&zone->lock); 1181 } 1182 1183 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1184 unsigned long zone, int nid, bool zero) 1185 { 1186 if (zero) 1187 mm_zero_struct_page(page); 1188 set_page_links(page, zone, nid, pfn); 1189 init_page_count(page); 1190 page_mapcount_reset(page); 1191 page_cpupid_reset_last(page); 1192 1193 INIT_LIST_HEAD(&page->lru); 1194 #ifdef WANT_PAGE_VIRTUAL 1195 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1196 if (!is_highmem_idx(zone)) 1197 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1198 #endif 1199 } 1200 1201 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone, 1202 int nid, bool zero) 1203 { 1204 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid, zero); 1205 } 1206 1207 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1208 static void __meminit init_reserved_page(unsigned long pfn) 1209 { 1210 pg_data_t *pgdat; 1211 int nid, zid; 1212 1213 if (!early_page_uninitialised(pfn)) 1214 return; 1215 1216 nid = early_pfn_to_nid(pfn); 1217 pgdat = NODE_DATA(nid); 1218 1219 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1220 struct zone *zone = &pgdat->node_zones[zid]; 1221 1222 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) 1223 break; 1224 } 1225 __init_single_pfn(pfn, zid, nid, true); 1226 } 1227 #else 1228 static inline void init_reserved_page(unsigned long pfn) 1229 { 1230 } 1231 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1232 1233 /* 1234 * Initialised pages do not have PageReserved set. This function is 1235 * called for each range allocated by the bootmem allocator and 1236 * marks the pages PageReserved. The remaining valid pages are later 1237 * sent to the buddy page allocator. 1238 */ 1239 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1240 { 1241 unsigned long start_pfn = PFN_DOWN(start); 1242 unsigned long end_pfn = PFN_UP(end); 1243 1244 for (; start_pfn < end_pfn; start_pfn++) { 1245 if (pfn_valid(start_pfn)) { 1246 struct page *page = pfn_to_page(start_pfn); 1247 1248 init_reserved_page(start_pfn); 1249 1250 /* Avoid false-positive PageTail() */ 1251 INIT_LIST_HEAD(&page->lru); 1252 1253 SetPageReserved(page); 1254 } 1255 } 1256 } 1257 1258 static void __free_pages_ok(struct page *page, unsigned int order) 1259 { 1260 unsigned long flags; 1261 int migratetype; 1262 unsigned long pfn = page_to_pfn(page); 1263 1264 if (!free_pages_prepare(page, order, true)) 1265 return; 1266 1267 migratetype = get_pfnblock_migratetype(page, pfn); 1268 local_irq_save(flags); 1269 __count_vm_events(PGFREE, 1 << order); 1270 free_one_page(page_zone(page), page, pfn, order, migratetype); 1271 local_irq_restore(flags); 1272 } 1273 1274 static void __init __free_pages_boot_core(struct page *page, unsigned int order) 1275 { 1276 unsigned int nr_pages = 1 << order; 1277 struct page *p = page; 1278 unsigned int loop; 1279 1280 prefetchw(p); 1281 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1282 prefetchw(p + 1); 1283 __ClearPageReserved(p); 1284 set_page_count(p, 0); 1285 } 1286 __ClearPageReserved(p); 1287 set_page_count(p, 0); 1288 1289 page_zone(page)->managed_pages += nr_pages; 1290 set_page_refcounted(page); 1291 __free_pages(page, order); 1292 } 1293 1294 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \ 1295 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 1296 1297 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1298 1299 int __meminit early_pfn_to_nid(unsigned long pfn) 1300 { 1301 static DEFINE_SPINLOCK(early_pfn_lock); 1302 int nid; 1303 1304 spin_lock(&early_pfn_lock); 1305 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1306 if (nid < 0) 1307 nid = first_online_node; 1308 spin_unlock(&early_pfn_lock); 1309 1310 return nid; 1311 } 1312 #endif 1313 1314 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 1315 static inline bool __meminit __maybe_unused 1316 meminit_pfn_in_nid(unsigned long pfn, int node, 1317 struct mminit_pfnnid_cache *state) 1318 { 1319 int nid; 1320 1321 nid = __early_pfn_to_nid(pfn, state); 1322 if (nid >= 0 && nid != node) 1323 return false; 1324 return true; 1325 } 1326 1327 /* Only safe to use early in boot when initialisation is single-threaded */ 1328 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1329 { 1330 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache); 1331 } 1332 1333 #else 1334 1335 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1336 { 1337 return true; 1338 } 1339 static inline bool __meminit __maybe_unused 1340 meminit_pfn_in_nid(unsigned long pfn, int node, 1341 struct mminit_pfnnid_cache *state) 1342 { 1343 return true; 1344 } 1345 #endif 1346 1347 1348 void __init __free_pages_bootmem(struct page *page, unsigned long pfn, 1349 unsigned int order) 1350 { 1351 if (early_page_uninitialised(pfn)) 1352 return; 1353 return __free_pages_boot_core(page, order); 1354 } 1355 1356 /* 1357 * Check that the whole (or subset of) a pageblock given by the interval of 1358 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1359 * with the migration of free compaction scanner. The scanners then need to 1360 * use only pfn_valid_within() check for arches that allow holes within 1361 * pageblocks. 1362 * 1363 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1364 * 1365 * It's possible on some configurations to have a setup like node0 node1 node0 1366 * i.e. it's possible that all pages within a zones range of pages do not 1367 * belong to a single zone. We assume that a border between node0 and node1 1368 * can occur within a single pageblock, but not a node0 node1 node0 1369 * interleaving within a single pageblock. It is therefore sufficient to check 1370 * the first and last page of a pageblock and avoid checking each individual 1371 * page in a pageblock. 1372 */ 1373 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1374 unsigned long end_pfn, struct zone *zone) 1375 { 1376 struct page *start_page; 1377 struct page *end_page; 1378 1379 /* end_pfn is one past the range we are checking */ 1380 end_pfn--; 1381 1382 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1383 return NULL; 1384 1385 start_page = pfn_to_online_page(start_pfn); 1386 if (!start_page) 1387 return NULL; 1388 1389 if (page_zone(start_page) != zone) 1390 return NULL; 1391 1392 end_page = pfn_to_page(end_pfn); 1393 1394 /* This gives a shorter code than deriving page_zone(end_page) */ 1395 if (page_zone_id(start_page) != page_zone_id(end_page)) 1396 return NULL; 1397 1398 return start_page; 1399 } 1400 1401 void set_zone_contiguous(struct zone *zone) 1402 { 1403 unsigned long block_start_pfn = zone->zone_start_pfn; 1404 unsigned long block_end_pfn; 1405 1406 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1407 for (; block_start_pfn < zone_end_pfn(zone); 1408 block_start_pfn = block_end_pfn, 1409 block_end_pfn += pageblock_nr_pages) { 1410 1411 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1412 1413 if (!__pageblock_pfn_to_page(block_start_pfn, 1414 block_end_pfn, zone)) 1415 return; 1416 } 1417 1418 /* We confirm that there is no hole */ 1419 zone->contiguous = true; 1420 } 1421 1422 void clear_zone_contiguous(struct zone *zone) 1423 { 1424 zone->contiguous = false; 1425 } 1426 1427 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1428 static void __init deferred_free_range(unsigned long pfn, 1429 unsigned long nr_pages) 1430 { 1431 struct page *page; 1432 unsigned long i; 1433 1434 if (!nr_pages) 1435 return; 1436 1437 page = pfn_to_page(pfn); 1438 1439 /* Free a large naturally-aligned chunk if possible */ 1440 if (nr_pages == pageblock_nr_pages && 1441 (pfn & (pageblock_nr_pages - 1)) == 0) { 1442 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1443 __free_pages_boot_core(page, pageblock_order); 1444 return; 1445 } 1446 1447 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1448 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1449 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1450 __free_pages_boot_core(page, 0); 1451 } 1452 } 1453 1454 /* Completion tracking for deferred_init_memmap() threads */ 1455 static atomic_t pgdat_init_n_undone __initdata; 1456 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1457 1458 static inline void __init pgdat_init_report_one_done(void) 1459 { 1460 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1461 complete(&pgdat_init_all_done_comp); 1462 } 1463 1464 /* 1465 * Returns true if page needs to be initialized or freed to buddy allocator. 1466 * 1467 * First we check if pfn is valid on architectures where it is possible to have 1468 * holes within pageblock_nr_pages. On systems where it is not possible, this 1469 * function is optimized out. 1470 * 1471 * Then, we check if a current large page is valid by only checking the validity 1472 * of the head pfn. 1473 * 1474 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave 1475 * within a node: a pfn is between start and end of a node, but does not belong 1476 * to this memory node. 1477 */ 1478 static inline bool __init 1479 deferred_pfn_valid(int nid, unsigned long pfn, 1480 struct mminit_pfnnid_cache *nid_init_state) 1481 { 1482 if (!pfn_valid_within(pfn)) 1483 return false; 1484 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn)) 1485 return false; 1486 if (!meminit_pfn_in_nid(pfn, nid, nid_init_state)) 1487 return false; 1488 return true; 1489 } 1490 1491 /* 1492 * Free pages to buddy allocator. Try to free aligned pages in 1493 * pageblock_nr_pages sizes. 1494 */ 1495 static void __init deferred_free_pages(int nid, int zid, unsigned long pfn, 1496 unsigned long end_pfn) 1497 { 1498 struct mminit_pfnnid_cache nid_init_state = { }; 1499 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1500 unsigned long nr_free = 0; 1501 1502 for (; pfn < end_pfn; pfn++) { 1503 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) { 1504 deferred_free_range(pfn - nr_free, nr_free); 1505 nr_free = 0; 1506 } else if (!(pfn & nr_pgmask)) { 1507 deferred_free_range(pfn - nr_free, nr_free); 1508 nr_free = 1; 1509 cond_resched(); 1510 } else { 1511 nr_free++; 1512 } 1513 } 1514 /* Free the last block of pages to allocator */ 1515 deferred_free_range(pfn - nr_free, nr_free); 1516 } 1517 1518 /* 1519 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1520 * by performing it only once every pageblock_nr_pages. 1521 * Return number of pages initialized. 1522 */ 1523 static unsigned long __init deferred_init_pages(int nid, int zid, 1524 unsigned long pfn, 1525 unsigned long end_pfn) 1526 { 1527 struct mminit_pfnnid_cache nid_init_state = { }; 1528 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1529 unsigned long nr_pages = 0; 1530 struct page *page = NULL; 1531 1532 for (; pfn < end_pfn; pfn++) { 1533 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) { 1534 page = NULL; 1535 continue; 1536 } else if (!page || !(pfn & nr_pgmask)) { 1537 page = pfn_to_page(pfn); 1538 cond_resched(); 1539 } else { 1540 page++; 1541 } 1542 __init_single_page(page, pfn, zid, nid, true); 1543 nr_pages++; 1544 } 1545 return (nr_pages); 1546 } 1547 1548 /* Initialise remaining memory on a node */ 1549 static int __init deferred_init_memmap(void *data) 1550 { 1551 pg_data_t *pgdat = data; 1552 int nid = pgdat->node_id; 1553 unsigned long start = jiffies; 1554 unsigned long nr_pages = 0; 1555 unsigned long spfn, epfn; 1556 phys_addr_t spa, epa; 1557 int zid; 1558 struct zone *zone; 1559 unsigned long first_init_pfn = pgdat->first_deferred_pfn; 1560 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1561 u64 i; 1562 1563 if (first_init_pfn == ULONG_MAX) { 1564 pgdat_init_report_one_done(); 1565 return 0; 1566 } 1567 1568 /* Bind memory initialisation thread to a local node if possible */ 1569 if (!cpumask_empty(cpumask)) 1570 set_cpus_allowed_ptr(current, cpumask); 1571 1572 /* Sanity check boundaries */ 1573 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 1574 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 1575 pgdat->first_deferred_pfn = ULONG_MAX; 1576 1577 /* Only the highest zone is deferred so find it */ 1578 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1579 zone = pgdat->node_zones + zid; 1580 if (first_init_pfn < zone_end_pfn(zone)) 1581 break; 1582 } 1583 first_init_pfn = max(zone->zone_start_pfn, first_init_pfn); 1584 1585 /* 1586 * Initialize and free pages. We do it in two loops: first we initialize 1587 * struct page, than free to buddy allocator, because while we are 1588 * freeing pages we can access pages that are ahead (computing buddy 1589 * page in __free_one_page()). 1590 */ 1591 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) { 1592 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa)); 1593 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa)); 1594 nr_pages += deferred_init_pages(nid, zid, spfn, epfn); 1595 } 1596 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) { 1597 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa)); 1598 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa)); 1599 deferred_free_pages(nid, zid, spfn, epfn); 1600 } 1601 1602 /* Sanity check that the next zone really is unpopulated */ 1603 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 1604 1605 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages, 1606 jiffies_to_msecs(jiffies - start)); 1607 1608 pgdat_init_report_one_done(); 1609 return 0; 1610 } 1611 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1612 1613 void __init page_alloc_init_late(void) 1614 { 1615 struct zone *zone; 1616 1617 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1618 int nid; 1619 1620 /* There will be num_node_state(N_MEMORY) threads */ 1621 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 1622 for_each_node_state(nid, N_MEMORY) { 1623 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 1624 } 1625 1626 /* Block until all are initialised */ 1627 wait_for_completion(&pgdat_init_all_done_comp); 1628 1629 /* Reinit limits that are based on free pages after the kernel is up */ 1630 files_maxfiles_init(); 1631 #endif 1632 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK 1633 /* Discard memblock private memory */ 1634 memblock_discard(); 1635 #endif 1636 1637 for_each_populated_zone(zone) 1638 set_zone_contiguous(zone); 1639 } 1640 1641 #ifdef CONFIG_CMA 1642 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 1643 void __init init_cma_reserved_pageblock(struct page *page) 1644 { 1645 unsigned i = pageblock_nr_pages; 1646 struct page *p = page; 1647 1648 do { 1649 __ClearPageReserved(p); 1650 set_page_count(p, 0); 1651 } while (++p, --i); 1652 1653 set_pageblock_migratetype(page, MIGRATE_CMA); 1654 1655 if (pageblock_order >= MAX_ORDER) { 1656 i = pageblock_nr_pages; 1657 p = page; 1658 do { 1659 set_page_refcounted(p); 1660 __free_pages(p, MAX_ORDER - 1); 1661 p += MAX_ORDER_NR_PAGES; 1662 } while (i -= MAX_ORDER_NR_PAGES); 1663 } else { 1664 set_page_refcounted(page); 1665 __free_pages(page, pageblock_order); 1666 } 1667 1668 adjust_managed_page_count(page, pageblock_nr_pages); 1669 } 1670 #endif 1671 1672 /* 1673 * The order of subdivision here is critical for the IO subsystem. 1674 * Please do not alter this order without good reasons and regression 1675 * testing. Specifically, as large blocks of memory are subdivided, 1676 * the order in which smaller blocks are delivered depends on the order 1677 * they're subdivided in this function. This is the primary factor 1678 * influencing the order in which pages are delivered to the IO 1679 * subsystem according to empirical testing, and this is also justified 1680 * by considering the behavior of a buddy system containing a single 1681 * large block of memory acted on by a series of small allocations. 1682 * This behavior is a critical factor in sglist merging's success. 1683 * 1684 * -- nyc 1685 */ 1686 static inline void expand(struct zone *zone, struct page *page, 1687 int low, int high, struct free_area *area, 1688 int migratetype) 1689 { 1690 unsigned long size = 1 << high; 1691 1692 while (high > low) { 1693 area--; 1694 high--; 1695 size >>= 1; 1696 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1697 1698 /* 1699 * Mark as guard pages (or page), that will allow to 1700 * merge back to allocator when buddy will be freed. 1701 * Corresponding page table entries will not be touched, 1702 * pages will stay not present in virtual address space 1703 */ 1704 if (set_page_guard(zone, &page[size], high, migratetype)) 1705 continue; 1706 1707 list_add(&page[size].lru, &area->free_list[migratetype]); 1708 area->nr_free++; 1709 set_page_order(&page[size], high); 1710 } 1711 } 1712 1713 static void check_new_page_bad(struct page *page) 1714 { 1715 const char *bad_reason = NULL; 1716 unsigned long bad_flags = 0; 1717 1718 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1719 bad_reason = "nonzero mapcount"; 1720 if (unlikely(page->mapping != NULL)) 1721 bad_reason = "non-NULL mapping"; 1722 if (unlikely(page_ref_count(page) != 0)) 1723 bad_reason = "nonzero _count"; 1724 if (unlikely(page->flags & __PG_HWPOISON)) { 1725 bad_reason = "HWPoisoned (hardware-corrupted)"; 1726 bad_flags = __PG_HWPOISON; 1727 /* Don't complain about hwpoisoned pages */ 1728 page_mapcount_reset(page); /* remove PageBuddy */ 1729 return; 1730 } 1731 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { 1732 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; 1733 bad_flags = PAGE_FLAGS_CHECK_AT_PREP; 1734 } 1735 #ifdef CONFIG_MEMCG 1736 if (unlikely(page->mem_cgroup)) 1737 bad_reason = "page still charged to cgroup"; 1738 #endif 1739 bad_page(page, bad_reason, bad_flags); 1740 } 1741 1742 /* 1743 * This page is about to be returned from the page allocator 1744 */ 1745 static inline int check_new_page(struct page *page) 1746 { 1747 if (likely(page_expected_state(page, 1748 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 1749 return 0; 1750 1751 check_new_page_bad(page); 1752 return 1; 1753 } 1754 1755 static inline bool free_pages_prezeroed(void) 1756 { 1757 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) && 1758 page_poisoning_enabled(); 1759 } 1760 1761 #ifdef CONFIG_DEBUG_VM 1762 static bool check_pcp_refill(struct page *page) 1763 { 1764 return false; 1765 } 1766 1767 static bool check_new_pcp(struct page *page) 1768 { 1769 return check_new_page(page); 1770 } 1771 #else 1772 static bool check_pcp_refill(struct page *page) 1773 { 1774 return check_new_page(page); 1775 } 1776 static bool check_new_pcp(struct page *page) 1777 { 1778 return false; 1779 } 1780 #endif /* CONFIG_DEBUG_VM */ 1781 1782 static bool check_new_pages(struct page *page, unsigned int order) 1783 { 1784 int i; 1785 for (i = 0; i < (1 << order); i++) { 1786 struct page *p = page + i; 1787 1788 if (unlikely(check_new_page(p))) 1789 return true; 1790 } 1791 1792 return false; 1793 } 1794 1795 inline void post_alloc_hook(struct page *page, unsigned int order, 1796 gfp_t gfp_flags) 1797 { 1798 set_page_private(page, 0); 1799 set_page_refcounted(page); 1800 1801 arch_alloc_page(page, order); 1802 kernel_map_pages(page, 1 << order, 1); 1803 kernel_poison_pages(page, 1 << order, 1); 1804 kasan_alloc_pages(page, order); 1805 set_page_owner(page, order, gfp_flags); 1806 } 1807 1808 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1809 unsigned int alloc_flags) 1810 { 1811 int i; 1812 1813 post_alloc_hook(page, order, gfp_flags); 1814 1815 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO)) 1816 for (i = 0; i < (1 << order); i++) 1817 clear_highpage(page + i); 1818 1819 if (order && (gfp_flags & __GFP_COMP)) 1820 prep_compound_page(page, order); 1821 1822 /* 1823 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1824 * allocate the page. The expectation is that the caller is taking 1825 * steps that will free more memory. The caller should avoid the page 1826 * being used for !PFMEMALLOC purposes. 1827 */ 1828 if (alloc_flags & ALLOC_NO_WATERMARKS) 1829 set_page_pfmemalloc(page); 1830 else 1831 clear_page_pfmemalloc(page); 1832 } 1833 1834 /* 1835 * Go through the free lists for the given migratetype and remove 1836 * the smallest available page from the freelists 1837 */ 1838 static __always_inline 1839 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1840 int migratetype) 1841 { 1842 unsigned int current_order; 1843 struct free_area *area; 1844 struct page *page; 1845 1846 /* Find a page of the appropriate size in the preferred list */ 1847 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 1848 area = &(zone->free_area[current_order]); 1849 page = list_first_entry_or_null(&area->free_list[migratetype], 1850 struct page, lru); 1851 if (!page) 1852 continue; 1853 list_del(&page->lru); 1854 rmv_page_order(page); 1855 area->nr_free--; 1856 expand(zone, page, order, current_order, area, migratetype); 1857 set_pcppage_migratetype(page, migratetype); 1858 return page; 1859 } 1860 1861 return NULL; 1862 } 1863 1864 1865 /* 1866 * This array describes the order lists are fallen back to when 1867 * the free lists for the desirable migrate type are depleted 1868 */ 1869 static int fallbacks[MIGRATE_TYPES][4] = { 1870 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 1871 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 1872 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 1873 #ifdef CONFIG_CMA 1874 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 1875 #endif 1876 #ifdef CONFIG_MEMORY_ISOLATION 1877 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 1878 #endif 1879 }; 1880 1881 #ifdef CONFIG_CMA 1882 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1883 unsigned int order) 1884 { 1885 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1886 } 1887 #else 1888 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1889 unsigned int order) { return NULL; } 1890 #endif 1891 1892 /* 1893 * Move the free pages in a range to the free lists of the requested type. 1894 * Note that start_page and end_pages are not aligned on a pageblock 1895 * boundary. If alignment is required, use move_freepages_block() 1896 */ 1897 static int move_freepages(struct zone *zone, 1898 struct page *start_page, struct page *end_page, 1899 int migratetype, int *num_movable) 1900 { 1901 struct page *page; 1902 unsigned int order; 1903 int pages_moved = 0; 1904 1905 #ifndef CONFIG_HOLES_IN_ZONE 1906 /* 1907 * page_zone is not safe to call in this context when 1908 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 1909 * anyway as we check zone boundaries in move_freepages_block(). 1910 * Remove at a later date when no bug reports exist related to 1911 * grouping pages by mobility 1912 */ 1913 VM_BUG_ON(page_zone(start_page) != page_zone(end_page)); 1914 #endif 1915 1916 if (num_movable) 1917 *num_movable = 0; 1918 1919 for (page = start_page; page <= end_page;) { 1920 if (!pfn_valid_within(page_to_pfn(page))) { 1921 page++; 1922 continue; 1923 } 1924 1925 /* Make sure we are not inadvertently changing nodes */ 1926 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1927 1928 if (!PageBuddy(page)) { 1929 /* 1930 * We assume that pages that could be isolated for 1931 * migration are movable. But we don't actually try 1932 * isolating, as that would be expensive. 1933 */ 1934 if (num_movable && 1935 (PageLRU(page) || __PageMovable(page))) 1936 (*num_movable)++; 1937 1938 page++; 1939 continue; 1940 } 1941 1942 order = page_order(page); 1943 list_move(&page->lru, 1944 &zone->free_area[order].free_list[migratetype]); 1945 page += 1 << order; 1946 pages_moved += 1 << order; 1947 } 1948 1949 return pages_moved; 1950 } 1951 1952 int move_freepages_block(struct zone *zone, struct page *page, 1953 int migratetype, int *num_movable) 1954 { 1955 unsigned long start_pfn, end_pfn; 1956 struct page *start_page, *end_page; 1957 1958 start_pfn = page_to_pfn(page); 1959 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 1960 start_page = pfn_to_page(start_pfn); 1961 end_page = start_page + pageblock_nr_pages - 1; 1962 end_pfn = start_pfn + pageblock_nr_pages - 1; 1963 1964 /* Do not cross zone boundaries */ 1965 if (!zone_spans_pfn(zone, start_pfn)) 1966 start_page = page; 1967 if (!zone_spans_pfn(zone, end_pfn)) 1968 return 0; 1969 1970 return move_freepages(zone, start_page, end_page, migratetype, 1971 num_movable); 1972 } 1973 1974 static void change_pageblock_range(struct page *pageblock_page, 1975 int start_order, int migratetype) 1976 { 1977 int nr_pageblocks = 1 << (start_order - pageblock_order); 1978 1979 while (nr_pageblocks--) { 1980 set_pageblock_migratetype(pageblock_page, migratetype); 1981 pageblock_page += pageblock_nr_pages; 1982 } 1983 } 1984 1985 /* 1986 * When we are falling back to another migratetype during allocation, try to 1987 * steal extra free pages from the same pageblocks to satisfy further 1988 * allocations, instead of polluting multiple pageblocks. 1989 * 1990 * If we are stealing a relatively large buddy page, it is likely there will 1991 * be more free pages in the pageblock, so try to steal them all. For 1992 * reclaimable and unmovable allocations, we steal regardless of page size, 1993 * as fragmentation caused by those allocations polluting movable pageblocks 1994 * is worse than movable allocations stealing from unmovable and reclaimable 1995 * pageblocks. 1996 */ 1997 static bool can_steal_fallback(unsigned int order, int start_mt) 1998 { 1999 /* 2000 * Leaving this order check is intended, although there is 2001 * relaxed order check in next check. The reason is that 2002 * we can actually steal whole pageblock if this condition met, 2003 * but, below check doesn't guarantee it and that is just heuristic 2004 * so could be changed anytime. 2005 */ 2006 if (order >= pageblock_order) 2007 return true; 2008 2009 if (order >= pageblock_order / 2 || 2010 start_mt == MIGRATE_RECLAIMABLE || 2011 start_mt == MIGRATE_UNMOVABLE || 2012 page_group_by_mobility_disabled) 2013 return true; 2014 2015 return false; 2016 } 2017 2018 /* 2019 * This function implements actual steal behaviour. If order is large enough, 2020 * we can steal whole pageblock. If not, we first move freepages in this 2021 * pageblock to our migratetype and determine how many already-allocated pages 2022 * are there in the pageblock with a compatible migratetype. If at least half 2023 * of pages are free or compatible, we can change migratetype of the pageblock 2024 * itself, so pages freed in the future will be put on the correct free list. 2025 */ 2026 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2027 int start_type, bool whole_block) 2028 { 2029 unsigned int current_order = page_order(page); 2030 struct free_area *area; 2031 int free_pages, movable_pages, alike_pages; 2032 int old_block_type; 2033 2034 old_block_type = get_pageblock_migratetype(page); 2035 2036 /* 2037 * This can happen due to races and we want to prevent broken 2038 * highatomic accounting. 2039 */ 2040 if (is_migrate_highatomic(old_block_type)) 2041 goto single_page; 2042 2043 /* Take ownership for orders >= pageblock_order */ 2044 if (current_order >= pageblock_order) { 2045 change_pageblock_range(page, current_order, start_type); 2046 goto single_page; 2047 } 2048 2049 /* We are not allowed to try stealing from the whole block */ 2050 if (!whole_block) 2051 goto single_page; 2052 2053 free_pages = move_freepages_block(zone, page, start_type, 2054 &movable_pages); 2055 /* 2056 * Determine how many pages are compatible with our allocation. 2057 * For movable allocation, it's the number of movable pages which 2058 * we just obtained. For other types it's a bit more tricky. 2059 */ 2060 if (start_type == MIGRATE_MOVABLE) { 2061 alike_pages = movable_pages; 2062 } else { 2063 /* 2064 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2065 * to MOVABLE pageblock, consider all non-movable pages as 2066 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2067 * vice versa, be conservative since we can't distinguish the 2068 * exact migratetype of non-movable pages. 2069 */ 2070 if (old_block_type == MIGRATE_MOVABLE) 2071 alike_pages = pageblock_nr_pages 2072 - (free_pages + movable_pages); 2073 else 2074 alike_pages = 0; 2075 } 2076 2077 /* moving whole block can fail due to zone boundary conditions */ 2078 if (!free_pages) 2079 goto single_page; 2080 2081 /* 2082 * If a sufficient number of pages in the block are either free or of 2083 * comparable migratability as our allocation, claim the whole block. 2084 */ 2085 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2086 page_group_by_mobility_disabled) 2087 set_pageblock_migratetype(page, start_type); 2088 2089 return; 2090 2091 single_page: 2092 area = &zone->free_area[current_order]; 2093 list_move(&page->lru, &area->free_list[start_type]); 2094 } 2095 2096 /* 2097 * Check whether there is a suitable fallback freepage with requested order. 2098 * If only_stealable is true, this function returns fallback_mt only if 2099 * we can steal other freepages all together. This would help to reduce 2100 * fragmentation due to mixed migratetype pages in one pageblock. 2101 */ 2102 int find_suitable_fallback(struct free_area *area, unsigned int order, 2103 int migratetype, bool only_stealable, bool *can_steal) 2104 { 2105 int i; 2106 int fallback_mt; 2107 2108 if (area->nr_free == 0) 2109 return -1; 2110 2111 *can_steal = false; 2112 for (i = 0;; i++) { 2113 fallback_mt = fallbacks[migratetype][i]; 2114 if (fallback_mt == MIGRATE_TYPES) 2115 break; 2116 2117 if (list_empty(&area->free_list[fallback_mt])) 2118 continue; 2119 2120 if (can_steal_fallback(order, migratetype)) 2121 *can_steal = true; 2122 2123 if (!only_stealable) 2124 return fallback_mt; 2125 2126 if (*can_steal) 2127 return fallback_mt; 2128 } 2129 2130 return -1; 2131 } 2132 2133 /* 2134 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2135 * there are no empty page blocks that contain a page with a suitable order 2136 */ 2137 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2138 unsigned int alloc_order) 2139 { 2140 int mt; 2141 unsigned long max_managed, flags; 2142 2143 /* 2144 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2145 * Check is race-prone but harmless. 2146 */ 2147 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages; 2148 if (zone->nr_reserved_highatomic >= max_managed) 2149 return; 2150 2151 spin_lock_irqsave(&zone->lock, flags); 2152 2153 /* Recheck the nr_reserved_highatomic limit under the lock */ 2154 if (zone->nr_reserved_highatomic >= max_managed) 2155 goto out_unlock; 2156 2157 /* Yoink! */ 2158 mt = get_pageblock_migratetype(page); 2159 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt) 2160 && !is_migrate_cma(mt)) { 2161 zone->nr_reserved_highatomic += pageblock_nr_pages; 2162 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2163 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2164 } 2165 2166 out_unlock: 2167 spin_unlock_irqrestore(&zone->lock, flags); 2168 } 2169 2170 /* 2171 * Used when an allocation is about to fail under memory pressure. This 2172 * potentially hurts the reliability of high-order allocations when under 2173 * intense memory pressure but failed atomic allocations should be easier 2174 * to recover from than an OOM. 2175 * 2176 * If @force is true, try to unreserve a pageblock even though highatomic 2177 * pageblock is exhausted. 2178 */ 2179 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2180 bool force) 2181 { 2182 struct zonelist *zonelist = ac->zonelist; 2183 unsigned long flags; 2184 struct zoneref *z; 2185 struct zone *zone; 2186 struct page *page; 2187 int order; 2188 bool ret; 2189 2190 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx, 2191 ac->nodemask) { 2192 /* 2193 * Preserve at least one pageblock unless memory pressure 2194 * is really high. 2195 */ 2196 if (!force && zone->nr_reserved_highatomic <= 2197 pageblock_nr_pages) 2198 continue; 2199 2200 spin_lock_irqsave(&zone->lock, flags); 2201 for (order = 0; order < MAX_ORDER; order++) { 2202 struct free_area *area = &(zone->free_area[order]); 2203 2204 page = list_first_entry_or_null( 2205 &area->free_list[MIGRATE_HIGHATOMIC], 2206 struct page, lru); 2207 if (!page) 2208 continue; 2209 2210 /* 2211 * In page freeing path, migratetype change is racy so 2212 * we can counter several free pages in a pageblock 2213 * in this loop althoug we changed the pageblock type 2214 * from highatomic to ac->migratetype. So we should 2215 * adjust the count once. 2216 */ 2217 if (is_migrate_highatomic_page(page)) { 2218 /* 2219 * It should never happen but changes to 2220 * locking could inadvertently allow a per-cpu 2221 * drain to add pages to MIGRATE_HIGHATOMIC 2222 * while unreserving so be safe and watch for 2223 * underflows. 2224 */ 2225 zone->nr_reserved_highatomic -= min( 2226 pageblock_nr_pages, 2227 zone->nr_reserved_highatomic); 2228 } 2229 2230 /* 2231 * Convert to ac->migratetype and avoid the normal 2232 * pageblock stealing heuristics. Minimally, the caller 2233 * is doing the work and needs the pages. More 2234 * importantly, if the block was always converted to 2235 * MIGRATE_UNMOVABLE or another type then the number 2236 * of pageblocks that cannot be completely freed 2237 * may increase. 2238 */ 2239 set_pageblock_migratetype(page, ac->migratetype); 2240 ret = move_freepages_block(zone, page, ac->migratetype, 2241 NULL); 2242 if (ret) { 2243 spin_unlock_irqrestore(&zone->lock, flags); 2244 return ret; 2245 } 2246 } 2247 spin_unlock_irqrestore(&zone->lock, flags); 2248 } 2249 2250 return false; 2251 } 2252 2253 /* 2254 * Try finding a free buddy page on the fallback list and put it on the free 2255 * list of requested migratetype, possibly along with other pages from the same 2256 * block, depending on fragmentation avoidance heuristics. Returns true if 2257 * fallback was found so that __rmqueue_smallest() can grab it. 2258 * 2259 * The use of signed ints for order and current_order is a deliberate 2260 * deviation from the rest of this file, to make the for loop 2261 * condition simpler. 2262 */ 2263 static __always_inline bool 2264 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) 2265 { 2266 struct free_area *area; 2267 int current_order; 2268 struct page *page; 2269 int fallback_mt; 2270 bool can_steal; 2271 2272 /* 2273 * Find the largest available free page in the other list. This roughly 2274 * approximates finding the pageblock with the most free pages, which 2275 * would be too costly to do exactly. 2276 */ 2277 for (current_order = MAX_ORDER - 1; current_order >= order; 2278 --current_order) { 2279 area = &(zone->free_area[current_order]); 2280 fallback_mt = find_suitable_fallback(area, current_order, 2281 start_migratetype, false, &can_steal); 2282 if (fallback_mt == -1) 2283 continue; 2284 2285 /* 2286 * We cannot steal all free pages from the pageblock and the 2287 * requested migratetype is movable. In that case it's better to 2288 * steal and split the smallest available page instead of the 2289 * largest available page, because even if the next movable 2290 * allocation falls back into a different pageblock than this 2291 * one, it won't cause permanent fragmentation. 2292 */ 2293 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2294 && current_order > order) 2295 goto find_smallest; 2296 2297 goto do_steal; 2298 } 2299 2300 return false; 2301 2302 find_smallest: 2303 for (current_order = order; current_order < MAX_ORDER; 2304 current_order++) { 2305 area = &(zone->free_area[current_order]); 2306 fallback_mt = find_suitable_fallback(area, current_order, 2307 start_migratetype, false, &can_steal); 2308 if (fallback_mt != -1) 2309 break; 2310 } 2311 2312 /* 2313 * This should not happen - we already found a suitable fallback 2314 * when looking for the largest page. 2315 */ 2316 VM_BUG_ON(current_order == MAX_ORDER); 2317 2318 do_steal: 2319 page = list_first_entry(&area->free_list[fallback_mt], 2320 struct page, lru); 2321 2322 steal_suitable_fallback(zone, page, start_migratetype, can_steal); 2323 2324 trace_mm_page_alloc_extfrag(page, order, current_order, 2325 start_migratetype, fallback_mt); 2326 2327 return true; 2328 2329 } 2330 2331 /* 2332 * Do the hard work of removing an element from the buddy allocator. 2333 * Call me with the zone->lock already held. 2334 */ 2335 static __always_inline struct page * 2336 __rmqueue(struct zone *zone, unsigned int order, int migratetype) 2337 { 2338 struct page *page; 2339 2340 retry: 2341 page = __rmqueue_smallest(zone, order, migratetype); 2342 if (unlikely(!page)) { 2343 if (migratetype == MIGRATE_MOVABLE) 2344 page = __rmqueue_cma_fallback(zone, order); 2345 2346 if (!page && __rmqueue_fallback(zone, order, migratetype)) 2347 goto retry; 2348 } 2349 2350 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2351 return page; 2352 } 2353 2354 /* 2355 * Obtain a specified number of elements from the buddy allocator, all under 2356 * a single hold of the lock, for efficiency. Add them to the supplied list. 2357 * Returns the number of new pages which were placed at *list. 2358 */ 2359 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2360 unsigned long count, struct list_head *list, 2361 int migratetype) 2362 { 2363 int i, alloced = 0; 2364 2365 spin_lock(&zone->lock); 2366 for (i = 0; i < count; ++i) { 2367 struct page *page = __rmqueue(zone, order, migratetype); 2368 if (unlikely(page == NULL)) 2369 break; 2370 2371 if (unlikely(check_pcp_refill(page))) 2372 continue; 2373 2374 /* 2375 * Split buddy pages returned by expand() are received here in 2376 * physical page order. The page is added to the tail of 2377 * caller's list. From the callers perspective, the linked list 2378 * is ordered by page number under some conditions. This is 2379 * useful for IO devices that can forward direction from the 2380 * head, thus also in the physical page order. This is useful 2381 * for IO devices that can merge IO requests if the physical 2382 * pages are ordered properly. 2383 */ 2384 list_add_tail(&page->lru, list); 2385 alloced++; 2386 if (is_migrate_cma(get_pcppage_migratetype(page))) 2387 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2388 -(1 << order)); 2389 } 2390 2391 /* 2392 * i pages were removed from the buddy list even if some leak due 2393 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 2394 * on i. Do not confuse with 'alloced' which is the number of 2395 * pages added to the pcp list. 2396 */ 2397 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2398 spin_unlock(&zone->lock); 2399 return alloced; 2400 } 2401 2402 #ifdef CONFIG_NUMA 2403 /* 2404 * Called from the vmstat counter updater to drain pagesets of this 2405 * currently executing processor on remote nodes after they have 2406 * expired. 2407 * 2408 * Note that this function must be called with the thread pinned to 2409 * a single processor. 2410 */ 2411 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2412 { 2413 unsigned long flags; 2414 int to_drain, batch; 2415 2416 local_irq_save(flags); 2417 batch = READ_ONCE(pcp->batch); 2418 to_drain = min(pcp->count, batch); 2419 if (to_drain > 0) { 2420 free_pcppages_bulk(zone, to_drain, pcp); 2421 pcp->count -= to_drain; 2422 } 2423 local_irq_restore(flags); 2424 } 2425 #endif 2426 2427 /* 2428 * Drain pcplists of the indicated processor and zone. 2429 * 2430 * The processor must either be the current processor and the 2431 * thread pinned to the current processor or a processor that 2432 * is not online. 2433 */ 2434 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2435 { 2436 unsigned long flags; 2437 struct per_cpu_pageset *pset; 2438 struct per_cpu_pages *pcp; 2439 2440 local_irq_save(flags); 2441 pset = per_cpu_ptr(zone->pageset, cpu); 2442 2443 pcp = &pset->pcp; 2444 if (pcp->count) { 2445 free_pcppages_bulk(zone, pcp->count, pcp); 2446 pcp->count = 0; 2447 } 2448 local_irq_restore(flags); 2449 } 2450 2451 /* 2452 * Drain pcplists of all zones on the indicated processor. 2453 * 2454 * The processor must either be the current processor and the 2455 * thread pinned to the current processor or a processor that 2456 * is not online. 2457 */ 2458 static void drain_pages(unsigned int cpu) 2459 { 2460 struct zone *zone; 2461 2462 for_each_populated_zone(zone) { 2463 drain_pages_zone(cpu, zone); 2464 } 2465 } 2466 2467 /* 2468 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2469 * 2470 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 2471 * the single zone's pages. 2472 */ 2473 void drain_local_pages(struct zone *zone) 2474 { 2475 int cpu = smp_processor_id(); 2476 2477 if (zone) 2478 drain_pages_zone(cpu, zone); 2479 else 2480 drain_pages(cpu); 2481 } 2482 2483 static void drain_local_pages_wq(struct work_struct *work) 2484 { 2485 /* 2486 * drain_all_pages doesn't use proper cpu hotplug protection so 2487 * we can race with cpu offline when the WQ can move this from 2488 * a cpu pinned worker to an unbound one. We can operate on a different 2489 * cpu which is allright but we also have to make sure to not move to 2490 * a different one. 2491 */ 2492 preempt_disable(); 2493 drain_local_pages(NULL); 2494 preempt_enable(); 2495 } 2496 2497 /* 2498 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2499 * 2500 * When zone parameter is non-NULL, spill just the single zone's pages. 2501 * 2502 * Note that this can be extremely slow as the draining happens in a workqueue. 2503 */ 2504 void drain_all_pages(struct zone *zone) 2505 { 2506 int cpu; 2507 2508 /* 2509 * Allocate in the BSS so we wont require allocation in 2510 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2511 */ 2512 static cpumask_t cpus_with_pcps; 2513 2514 /* 2515 * Make sure nobody triggers this path before mm_percpu_wq is fully 2516 * initialized. 2517 */ 2518 if (WARN_ON_ONCE(!mm_percpu_wq)) 2519 return; 2520 2521 /* 2522 * Do not drain if one is already in progress unless it's specific to 2523 * a zone. Such callers are primarily CMA and memory hotplug and need 2524 * the drain to be complete when the call returns. 2525 */ 2526 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2527 if (!zone) 2528 return; 2529 mutex_lock(&pcpu_drain_mutex); 2530 } 2531 2532 /* 2533 * We don't care about racing with CPU hotplug event 2534 * as offline notification will cause the notified 2535 * cpu to drain that CPU pcps and on_each_cpu_mask 2536 * disables preemption as part of its processing 2537 */ 2538 for_each_online_cpu(cpu) { 2539 struct per_cpu_pageset *pcp; 2540 struct zone *z; 2541 bool has_pcps = false; 2542 2543 if (zone) { 2544 pcp = per_cpu_ptr(zone->pageset, cpu); 2545 if (pcp->pcp.count) 2546 has_pcps = true; 2547 } else { 2548 for_each_populated_zone(z) { 2549 pcp = per_cpu_ptr(z->pageset, cpu); 2550 if (pcp->pcp.count) { 2551 has_pcps = true; 2552 break; 2553 } 2554 } 2555 } 2556 2557 if (has_pcps) 2558 cpumask_set_cpu(cpu, &cpus_with_pcps); 2559 else 2560 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2561 } 2562 2563 for_each_cpu(cpu, &cpus_with_pcps) { 2564 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu); 2565 INIT_WORK(work, drain_local_pages_wq); 2566 queue_work_on(cpu, mm_percpu_wq, work); 2567 } 2568 for_each_cpu(cpu, &cpus_with_pcps) 2569 flush_work(per_cpu_ptr(&pcpu_drain, cpu)); 2570 2571 mutex_unlock(&pcpu_drain_mutex); 2572 } 2573 2574 #ifdef CONFIG_HIBERNATION 2575 2576 /* 2577 * Touch the watchdog for every WD_PAGE_COUNT pages. 2578 */ 2579 #define WD_PAGE_COUNT (128*1024) 2580 2581 void mark_free_pages(struct zone *zone) 2582 { 2583 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 2584 unsigned long flags; 2585 unsigned int order, t; 2586 struct page *page; 2587 2588 if (zone_is_empty(zone)) 2589 return; 2590 2591 spin_lock_irqsave(&zone->lock, flags); 2592 2593 max_zone_pfn = zone_end_pfn(zone); 2594 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 2595 if (pfn_valid(pfn)) { 2596 page = pfn_to_page(pfn); 2597 2598 if (!--page_count) { 2599 touch_nmi_watchdog(); 2600 page_count = WD_PAGE_COUNT; 2601 } 2602 2603 if (page_zone(page) != zone) 2604 continue; 2605 2606 if (!swsusp_page_is_forbidden(page)) 2607 swsusp_unset_page_free(page); 2608 } 2609 2610 for_each_migratetype_order(order, t) { 2611 list_for_each_entry(page, 2612 &zone->free_area[order].free_list[t], lru) { 2613 unsigned long i; 2614 2615 pfn = page_to_pfn(page); 2616 for (i = 0; i < (1UL << order); i++) { 2617 if (!--page_count) { 2618 touch_nmi_watchdog(); 2619 page_count = WD_PAGE_COUNT; 2620 } 2621 swsusp_set_page_free(pfn_to_page(pfn + i)); 2622 } 2623 } 2624 } 2625 spin_unlock_irqrestore(&zone->lock, flags); 2626 } 2627 #endif /* CONFIG_PM */ 2628 2629 static bool free_unref_page_prepare(struct page *page, unsigned long pfn) 2630 { 2631 int migratetype; 2632 2633 if (!free_pcp_prepare(page)) 2634 return false; 2635 2636 migratetype = get_pfnblock_migratetype(page, pfn); 2637 set_pcppage_migratetype(page, migratetype); 2638 return true; 2639 } 2640 2641 static void free_unref_page_commit(struct page *page, unsigned long pfn) 2642 { 2643 struct zone *zone = page_zone(page); 2644 struct per_cpu_pages *pcp; 2645 int migratetype; 2646 2647 migratetype = get_pcppage_migratetype(page); 2648 __count_vm_event(PGFREE); 2649 2650 /* 2651 * We only track unmovable, reclaimable and movable on pcp lists. 2652 * Free ISOLATE pages back to the allocator because they are being 2653 * offlined but treat HIGHATOMIC as movable pages so we can get those 2654 * areas back if necessary. Otherwise, we may have to free 2655 * excessively into the page allocator 2656 */ 2657 if (migratetype >= MIGRATE_PCPTYPES) { 2658 if (unlikely(is_migrate_isolate(migratetype))) { 2659 free_one_page(zone, page, pfn, 0, migratetype); 2660 return; 2661 } 2662 migratetype = MIGRATE_MOVABLE; 2663 } 2664 2665 pcp = &this_cpu_ptr(zone->pageset)->pcp; 2666 list_add(&page->lru, &pcp->lists[migratetype]); 2667 pcp->count++; 2668 if (pcp->count >= pcp->high) { 2669 unsigned long batch = READ_ONCE(pcp->batch); 2670 free_pcppages_bulk(zone, batch, pcp); 2671 pcp->count -= batch; 2672 } 2673 } 2674 2675 /* 2676 * Free a 0-order page 2677 */ 2678 void free_unref_page(struct page *page) 2679 { 2680 unsigned long flags; 2681 unsigned long pfn = page_to_pfn(page); 2682 2683 if (!free_unref_page_prepare(page, pfn)) 2684 return; 2685 2686 local_irq_save(flags); 2687 free_unref_page_commit(page, pfn); 2688 local_irq_restore(flags); 2689 } 2690 2691 /* 2692 * Free a list of 0-order pages 2693 */ 2694 void free_unref_page_list(struct list_head *list) 2695 { 2696 struct page *page, *next; 2697 unsigned long flags, pfn; 2698 int batch_count = 0; 2699 2700 /* Prepare pages for freeing */ 2701 list_for_each_entry_safe(page, next, list, lru) { 2702 pfn = page_to_pfn(page); 2703 if (!free_unref_page_prepare(page, pfn)) 2704 list_del(&page->lru); 2705 set_page_private(page, pfn); 2706 } 2707 2708 local_irq_save(flags); 2709 list_for_each_entry_safe(page, next, list, lru) { 2710 unsigned long pfn = page_private(page); 2711 2712 set_page_private(page, 0); 2713 trace_mm_page_free_batched(page); 2714 free_unref_page_commit(page, pfn); 2715 2716 /* 2717 * Guard against excessive IRQ disabled times when we get 2718 * a large list of pages to free. 2719 */ 2720 if (++batch_count == SWAP_CLUSTER_MAX) { 2721 local_irq_restore(flags); 2722 batch_count = 0; 2723 local_irq_save(flags); 2724 } 2725 } 2726 local_irq_restore(flags); 2727 } 2728 2729 /* 2730 * split_page takes a non-compound higher-order page, and splits it into 2731 * n (1<<order) sub-pages: page[0..n] 2732 * Each sub-page must be freed individually. 2733 * 2734 * Note: this is probably too low level an operation for use in drivers. 2735 * Please consult with lkml before using this in your driver. 2736 */ 2737 void split_page(struct page *page, unsigned int order) 2738 { 2739 int i; 2740 2741 VM_BUG_ON_PAGE(PageCompound(page), page); 2742 VM_BUG_ON_PAGE(!page_count(page), page); 2743 2744 for (i = 1; i < (1 << order); i++) 2745 set_page_refcounted(page + i); 2746 split_page_owner(page, order); 2747 } 2748 EXPORT_SYMBOL_GPL(split_page); 2749 2750 int __isolate_free_page(struct page *page, unsigned int order) 2751 { 2752 unsigned long watermark; 2753 struct zone *zone; 2754 int mt; 2755 2756 BUG_ON(!PageBuddy(page)); 2757 2758 zone = page_zone(page); 2759 mt = get_pageblock_migratetype(page); 2760 2761 if (!is_migrate_isolate(mt)) { 2762 /* 2763 * Obey watermarks as if the page was being allocated. We can 2764 * emulate a high-order watermark check with a raised order-0 2765 * watermark, because we already know our high-order page 2766 * exists. 2767 */ 2768 watermark = min_wmark_pages(zone) + (1UL << order); 2769 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 2770 return 0; 2771 2772 __mod_zone_freepage_state(zone, -(1UL << order), mt); 2773 } 2774 2775 /* Remove page from free list */ 2776 list_del(&page->lru); 2777 zone->free_area[order].nr_free--; 2778 rmv_page_order(page); 2779 2780 /* 2781 * Set the pageblock if the isolated page is at least half of a 2782 * pageblock 2783 */ 2784 if (order >= pageblock_order - 1) { 2785 struct page *endpage = page + (1 << order) - 1; 2786 for (; page < endpage; page += pageblock_nr_pages) { 2787 int mt = get_pageblock_migratetype(page); 2788 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt) 2789 && !is_migrate_highatomic(mt)) 2790 set_pageblock_migratetype(page, 2791 MIGRATE_MOVABLE); 2792 } 2793 } 2794 2795 2796 return 1UL << order; 2797 } 2798 2799 /* 2800 * Update NUMA hit/miss statistics 2801 * 2802 * Must be called with interrupts disabled. 2803 */ 2804 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z) 2805 { 2806 #ifdef CONFIG_NUMA 2807 enum numa_stat_item local_stat = NUMA_LOCAL; 2808 2809 /* skip numa counters update if numa stats is disabled */ 2810 if (!static_branch_likely(&vm_numa_stat_key)) 2811 return; 2812 2813 if (z->node != numa_node_id()) 2814 local_stat = NUMA_OTHER; 2815 2816 if (z->node == preferred_zone->node) 2817 __inc_numa_state(z, NUMA_HIT); 2818 else { 2819 __inc_numa_state(z, NUMA_MISS); 2820 __inc_numa_state(preferred_zone, NUMA_FOREIGN); 2821 } 2822 __inc_numa_state(z, local_stat); 2823 #endif 2824 } 2825 2826 /* Remove page from the per-cpu list, caller must protect the list */ 2827 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype, 2828 struct per_cpu_pages *pcp, 2829 struct list_head *list) 2830 { 2831 struct page *page; 2832 2833 do { 2834 if (list_empty(list)) { 2835 pcp->count += rmqueue_bulk(zone, 0, 2836 pcp->batch, list, 2837 migratetype); 2838 if (unlikely(list_empty(list))) 2839 return NULL; 2840 } 2841 2842 page = list_first_entry(list, struct page, lru); 2843 list_del(&page->lru); 2844 pcp->count--; 2845 } while (check_new_pcp(page)); 2846 2847 return page; 2848 } 2849 2850 /* Lock and remove page from the per-cpu list */ 2851 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 2852 struct zone *zone, unsigned int order, 2853 gfp_t gfp_flags, int migratetype) 2854 { 2855 struct per_cpu_pages *pcp; 2856 struct list_head *list; 2857 struct page *page; 2858 unsigned long flags; 2859 2860 local_irq_save(flags); 2861 pcp = &this_cpu_ptr(zone->pageset)->pcp; 2862 list = &pcp->lists[migratetype]; 2863 page = __rmqueue_pcplist(zone, migratetype, pcp, list); 2864 if (page) { 2865 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2866 zone_statistics(preferred_zone, zone); 2867 } 2868 local_irq_restore(flags); 2869 return page; 2870 } 2871 2872 /* 2873 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 2874 */ 2875 static inline 2876 struct page *rmqueue(struct zone *preferred_zone, 2877 struct zone *zone, unsigned int order, 2878 gfp_t gfp_flags, unsigned int alloc_flags, 2879 int migratetype) 2880 { 2881 unsigned long flags; 2882 struct page *page; 2883 2884 if (likely(order == 0)) { 2885 page = rmqueue_pcplist(preferred_zone, zone, order, 2886 gfp_flags, migratetype); 2887 goto out; 2888 } 2889 2890 /* 2891 * We most definitely don't want callers attempting to 2892 * allocate greater than order-1 page units with __GFP_NOFAIL. 2893 */ 2894 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 2895 spin_lock_irqsave(&zone->lock, flags); 2896 2897 do { 2898 page = NULL; 2899 if (alloc_flags & ALLOC_HARDER) { 2900 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2901 if (page) 2902 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2903 } 2904 if (!page) 2905 page = __rmqueue(zone, order, migratetype); 2906 } while (page && check_new_pages(page, order)); 2907 spin_unlock(&zone->lock); 2908 if (!page) 2909 goto failed; 2910 __mod_zone_freepage_state(zone, -(1 << order), 2911 get_pcppage_migratetype(page)); 2912 2913 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2914 zone_statistics(preferred_zone, zone); 2915 local_irq_restore(flags); 2916 2917 out: 2918 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 2919 return page; 2920 2921 failed: 2922 local_irq_restore(flags); 2923 return NULL; 2924 } 2925 2926 #ifdef CONFIG_FAIL_PAGE_ALLOC 2927 2928 static struct { 2929 struct fault_attr attr; 2930 2931 bool ignore_gfp_highmem; 2932 bool ignore_gfp_reclaim; 2933 u32 min_order; 2934 } fail_page_alloc = { 2935 .attr = FAULT_ATTR_INITIALIZER, 2936 .ignore_gfp_reclaim = true, 2937 .ignore_gfp_highmem = true, 2938 .min_order = 1, 2939 }; 2940 2941 static int __init setup_fail_page_alloc(char *str) 2942 { 2943 return setup_fault_attr(&fail_page_alloc.attr, str); 2944 } 2945 __setup("fail_page_alloc=", setup_fail_page_alloc); 2946 2947 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 2948 { 2949 if (order < fail_page_alloc.min_order) 2950 return false; 2951 if (gfp_mask & __GFP_NOFAIL) 2952 return false; 2953 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 2954 return false; 2955 if (fail_page_alloc.ignore_gfp_reclaim && 2956 (gfp_mask & __GFP_DIRECT_RECLAIM)) 2957 return false; 2958 2959 return should_fail(&fail_page_alloc.attr, 1 << order); 2960 } 2961 2962 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 2963 2964 static int __init fail_page_alloc_debugfs(void) 2965 { 2966 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 2967 struct dentry *dir; 2968 2969 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 2970 &fail_page_alloc.attr); 2971 if (IS_ERR(dir)) 2972 return PTR_ERR(dir); 2973 2974 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 2975 &fail_page_alloc.ignore_gfp_reclaim)) 2976 goto fail; 2977 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 2978 &fail_page_alloc.ignore_gfp_highmem)) 2979 goto fail; 2980 if (!debugfs_create_u32("min-order", mode, dir, 2981 &fail_page_alloc.min_order)) 2982 goto fail; 2983 2984 return 0; 2985 fail: 2986 debugfs_remove_recursive(dir); 2987 2988 return -ENOMEM; 2989 } 2990 2991 late_initcall(fail_page_alloc_debugfs); 2992 2993 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 2994 2995 #else /* CONFIG_FAIL_PAGE_ALLOC */ 2996 2997 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 2998 { 2999 return false; 3000 } 3001 3002 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3003 3004 /* 3005 * Return true if free base pages are above 'mark'. For high-order checks it 3006 * will return true of the order-0 watermark is reached and there is at least 3007 * one free page of a suitable size. Checking now avoids taking the zone lock 3008 * to check in the allocation paths if no pages are free. 3009 */ 3010 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3011 int classzone_idx, unsigned int alloc_flags, 3012 long free_pages) 3013 { 3014 long min = mark; 3015 int o; 3016 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3017 3018 /* free_pages may go negative - that's OK */ 3019 free_pages -= (1 << order) - 1; 3020 3021 if (alloc_flags & ALLOC_HIGH) 3022 min -= min / 2; 3023 3024 /* 3025 * If the caller does not have rights to ALLOC_HARDER then subtract 3026 * the high-atomic reserves. This will over-estimate the size of the 3027 * atomic reserve but it avoids a search. 3028 */ 3029 if (likely(!alloc_harder)) { 3030 free_pages -= z->nr_reserved_highatomic; 3031 } else { 3032 /* 3033 * OOM victims can try even harder than normal ALLOC_HARDER 3034 * users on the grounds that it's definitely going to be in 3035 * the exit path shortly and free memory. Any allocation it 3036 * makes during the free path will be small and short-lived. 3037 */ 3038 if (alloc_flags & ALLOC_OOM) 3039 min -= min / 2; 3040 else 3041 min -= min / 4; 3042 } 3043 3044 3045 #ifdef CONFIG_CMA 3046 /* If allocation can't use CMA areas don't use free CMA pages */ 3047 if (!(alloc_flags & ALLOC_CMA)) 3048 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES); 3049 #endif 3050 3051 /* 3052 * Check watermarks for an order-0 allocation request. If these 3053 * are not met, then a high-order request also cannot go ahead 3054 * even if a suitable page happened to be free. 3055 */ 3056 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 3057 return false; 3058 3059 /* If this is an order-0 request then the watermark is fine */ 3060 if (!order) 3061 return true; 3062 3063 /* For a high-order request, check at least one suitable page is free */ 3064 for (o = order; o < MAX_ORDER; o++) { 3065 struct free_area *area = &z->free_area[o]; 3066 int mt; 3067 3068 if (!area->nr_free) 3069 continue; 3070 3071 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3072 if (!list_empty(&area->free_list[mt])) 3073 return true; 3074 } 3075 3076 #ifdef CONFIG_CMA 3077 if ((alloc_flags & ALLOC_CMA) && 3078 !list_empty(&area->free_list[MIGRATE_CMA])) { 3079 return true; 3080 } 3081 #endif 3082 if (alloc_harder && 3083 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC])) 3084 return true; 3085 } 3086 return false; 3087 } 3088 3089 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3090 int classzone_idx, unsigned int alloc_flags) 3091 { 3092 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3093 zone_page_state(z, NR_FREE_PAGES)); 3094 } 3095 3096 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3097 unsigned long mark, int classzone_idx, unsigned int alloc_flags) 3098 { 3099 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3100 long cma_pages = 0; 3101 3102 #ifdef CONFIG_CMA 3103 /* If allocation can't use CMA areas don't use free CMA pages */ 3104 if (!(alloc_flags & ALLOC_CMA)) 3105 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES); 3106 #endif 3107 3108 /* 3109 * Fast check for order-0 only. If this fails then the reserves 3110 * need to be calculated. There is a corner case where the check 3111 * passes but only the high-order atomic reserve are free. If 3112 * the caller is !atomic then it'll uselessly search the free 3113 * list. That corner case is then slower but it is harmless. 3114 */ 3115 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx]) 3116 return true; 3117 3118 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3119 free_pages); 3120 } 3121 3122 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3123 unsigned long mark, int classzone_idx) 3124 { 3125 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3126 3127 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3128 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3129 3130 return __zone_watermark_ok(z, order, mark, classzone_idx, 0, 3131 free_pages); 3132 } 3133 3134 #ifdef CONFIG_NUMA 3135 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3136 { 3137 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3138 RECLAIM_DISTANCE; 3139 } 3140 #else /* CONFIG_NUMA */ 3141 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3142 { 3143 return true; 3144 } 3145 #endif /* CONFIG_NUMA */ 3146 3147 /* 3148 * get_page_from_freelist goes through the zonelist trying to allocate 3149 * a page. 3150 */ 3151 static struct page * 3152 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3153 const struct alloc_context *ac) 3154 { 3155 struct zoneref *z = ac->preferred_zoneref; 3156 struct zone *zone; 3157 struct pglist_data *last_pgdat_dirty_limit = NULL; 3158 3159 /* 3160 * Scan zonelist, looking for a zone with enough free. 3161 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 3162 */ 3163 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3164 ac->nodemask) { 3165 struct page *page; 3166 unsigned long mark; 3167 3168 if (cpusets_enabled() && 3169 (alloc_flags & ALLOC_CPUSET) && 3170 !__cpuset_zone_allowed(zone, gfp_mask)) 3171 continue; 3172 /* 3173 * When allocating a page cache page for writing, we 3174 * want to get it from a node that is within its dirty 3175 * limit, such that no single node holds more than its 3176 * proportional share of globally allowed dirty pages. 3177 * The dirty limits take into account the node's 3178 * lowmem reserves and high watermark so that kswapd 3179 * should be able to balance it without having to 3180 * write pages from its LRU list. 3181 * 3182 * XXX: For now, allow allocations to potentially 3183 * exceed the per-node dirty limit in the slowpath 3184 * (spread_dirty_pages unset) before going into reclaim, 3185 * which is important when on a NUMA setup the allowed 3186 * nodes are together not big enough to reach the 3187 * global limit. The proper fix for these situations 3188 * will require awareness of nodes in the 3189 * dirty-throttling and the flusher threads. 3190 */ 3191 if (ac->spread_dirty_pages) { 3192 if (last_pgdat_dirty_limit == zone->zone_pgdat) 3193 continue; 3194 3195 if (!node_dirty_ok(zone->zone_pgdat)) { 3196 last_pgdat_dirty_limit = zone->zone_pgdat; 3197 continue; 3198 } 3199 } 3200 3201 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 3202 if (!zone_watermark_fast(zone, order, mark, 3203 ac_classzone_idx(ac), alloc_flags)) { 3204 int ret; 3205 3206 /* Checked here to keep the fast path fast */ 3207 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3208 if (alloc_flags & ALLOC_NO_WATERMARKS) 3209 goto try_this_zone; 3210 3211 if (node_reclaim_mode == 0 || 3212 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3213 continue; 3214 3215 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3216 switch (ret) { 3217 case NODE_RECLAIM_NOSCAN: 3218 /* did not scan */ 3219 continue; 3220 case NODE_RECLAIM_FULL: 3221 /* scanned but unreclaimable */ 3222 continue; 3223 default: 3224 /* did we reclaim enough */ 3225 if (zone_watermark_ok(zone, order, mark, 3226 ac_classzone_idx(ac), alloc_flags)) 3227 goto try_this_zone; 3228 3229 continue; 3230 } 3231 } 3232 3233 try_this_zone: 3234 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3235 gfp_mask, alloc_flags, ac->migratetype); 3236 if (page) { 3237 prep_new_page(page, order, gfp_mask, alloc_flags); 3238 3239 /* 3240 * If this is a high-order atomic allocation then check 3241 * if the pageblock should be reserved for the future 3242 */ 3243 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 3244 reserve_highatomic_pageblock(page, zone, order); 3245 3246 return page; 3247 } 3248 } 3249 3250 return NULL; 3251 } 3252 3253 /* 3254 * Large machines with many possible nodes should not always dump per-node 3255 * meminfo in irq context. 3256 */ 3257 static inline bool should_suppress_show_mem(void) 3258 { 3259 bool ret = false; 3260 3261 #if NODES_SHIFT > 8 3262 ret = in_interrupt(); 3263 #endif 3264 return ret; 3265 } 3266 3267 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3268 { 3269 unsigned int filter = SHOW_MEM_FILTER_NODES; 3270 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1); 3271 3272 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs)) 3273 return; 3274 3275 /* 3276 * This documents exceptions given to allocations in certain 3277 * contexts that are allowed to allocate outside current's set 3278 * of allowed nodes. 3279 */ 3280 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3281 if (tsk_is_oom_victim(current) || 3282 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3283 filter &= ~SHOW_MEM_FILTER_NODES; 3284 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3285 filter &= ~SHOW_MEM_FILTER_NODES; 3286 3287 show_mem(filter, nodemask); 3288 } 3289 3290 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3291 { 3292 struct va_format vaf; 3293 va_list args; 3294 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL, 3295 DEFAULT_RATELIMIT_BURST); 3296 3297 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs)) 3298 return; 3299 3300 va_start(args, fmt); 3301 vaf.fmt = fmt; 3302 vaf.va = &args; 3303 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n", 3304 current->comm, &vaf, gfp_mask, &gfp_mask, 3305 nodemask_pr_args(nodemask)); 3306 va_end(args); 3307 3308 cpuset_print_current_mems_allowed(); 3309 3310 dump_stack(); 3311 warn_alloc_show_mem(gfp_mask, nodemask); 3312 } 3313 3314 static inline struct page * 3315 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3316 unsigned int alloc_flags, 3317 const struct alloc_context *ac) 3318 { 3319 struct page *page; 3320 3321 page = get_page_from_freelist(gfp_mask, order, 3322 alloc_flags|ALLOC_CPUSET, ac); 3323 /* 3324 * fallback to ignore cpuset restriction if our nodes 3325 * are depleted 3326 */ 3327 if (!page) 3328 page = get_page_from_freelist(gfp_mask, order, 3329 alloc_flags, ac); 3330 3331 return page; 3332 } 3333 3334 static inline struct page * 3335 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3336 const struct alloc_context *ac, unsigned long *did_some_progress) 3337 { 3338 struct oom_control oc = { 3339 .zonelist = ac->zonelist, 3340 .nodemask = ac->nodemask, 3341 .memcg = NULL, 3342 .gfp_mask = gfp_mask, 3343 .order = order, 3344 }; 3345 struct page *page; 3346 3347 *did_some_progress = 0; 3348 3349 /* 3350 * Acquire the oom lock. If that fails, somebody else is 3351 * making progress for us. 3352 */ 3353 if (!mutex_trylock(&oom_lock)) { 3354 *did_some_progress = 1; 3355 schedule_timeout_uninterruptible(1); 3356 return NULL; 3357 } 3358 3359 /* 3360 * Go through the zonelist yet one more time, keep very high watermark 3361 * here, this is only to catch a parallel oom killing, we must fail if 3362 * we're still under heavy pressure. But make sure that this reclaim 3363 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3364 * allocation which will never fail due to oom_lock already held. 3365 */ 3366 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3367 ~__GFP_DIRECT_RECLAIM, order, 3368 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3369 if (page) 3370 goto out; 3371 3372 /* Coredumps can quickly deplete all memory reserves */ 3373 if (current->flags & PF_DUMPCORE) 3374 goto out; 3375 /* The OOM killer will not help higher order allocs */ 3376 if (order > PAGE_ALLOC_COSTLY_ORDER) 3377 goto out; 3378 /* 3379 * We have already exhausted all our reclaim opportunities without any 3380 * success so it is time to admit defeat. We will skip the OOM killer 3381 * because it is very likely that the caller has a more reasonable 3382 * fallback than shooting a random task. 3383 */ 3384 if (gfp_mask & __GFP_RETRY_MAYFAIL) 3385 goto out; 3386 /* The OOM killer does not needlessly kill tasks for lowmem */ 3387 if (ac->high_zoneidx < ZONE_NORMAL) 3388 goto out; 3389 if (pm_suspended_storage()) 3390 goto out; 3391 /* 3392 * XXX: GFP_NOFS allocations should rather fail than rely on 3393 * other request to make a forward progress. 3394 * We are in an unfortunate situation where out_of_memory cannot 3395 * do much for this context but let's try it to at least get 3396 * access to memory reserved if the current task is killed (see 3397 * out_of_memory). Once filesystems are ready to handle allocation 3398 * failures more gracefully we should just bail out here. 3399 */ 3400 3401 /* The OOM killer may not free memory on a specific node */ 3402 if (gfp_mask & __GFP_THISNODE) 3403 goto out; 3404 3405 /* Exhausted what can be done so it's blame time */ 3406 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 3407 *did_some_progress = 1; 3408 3409 /* 3410 * Help non-failing allocations by giving them access to memory 3411 * reserves 3412 */ 3413 if (gfp_mask & __GFP_NOFAIL) 3414 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3415 ALLOC_NO_WATERMARKS, ac); 3416 } 3417 out: 3418 mutex_unlock(&oom_lock); 3419 return page; 3420 } 3421 3422 /* 3423 * Maximum number of compaction retries wit a progress before OOM 3424 * killer is consider as the only way to move forward. 3425 */ 3426 #define MAX_COMPACT_RETRIES 16 3427 3428 #ifdef CONFIG_COMPACTION 3429 /* Try memory compaction for high-order allocations before reclaim */ 3430 static struct page * 3431 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3432 unsigned int alloc_flags, const struct alloc_context *ac, 3433 enum compact_priority prio, enum compact_result *compact_result) 3434 { 3435 struct page *page; 3436 unsigned int noreclaim_flag; 3437 3438 if (!order) 3439 return NULL; 3440 3441 noreclaim_flag = memalloc_noreclaim_save(); 3442 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3443 prio); 3444 memalloc_noreclaim_restore(noreclaim_flag); 3445 3446 if (*compact_result <= COMPACT_INACTIVE) 3447 return NULL; 3448 3449 /* 3450 * At least in one zone compaction wasn't deferred or skipped, so let's 3451 * count a compaction stall 3452 */ 3453 count_vm_event(COMPACTSTALL); 3454 3455 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3456 3457 if (page) { 3458 struct zone *zone = page_zone(page); 3459 3460 zone->compact_blockskip_flush = false; 3461 compaction_defer_reset(zone, order, true); 3462 count_vm_event(COMPACTSUCCESS); 3463 return page; 3464 } 3465 3466 /* 3467 * It's bad if compaction run occurs and fails. The most likely reason 3468 * is that pages exist, but not enough to satisfy watermarks. 3469 */ 3470 count_vm_event(COMPACTFAIL); 3471 3472 cond_resched(); 3473 3474 return NULL; 3475 } 3476 3477 static inline bool 3478 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3479 enum compact_result compact_result, 3480 enum compact_priority *compact_priority, 3481 int *compaction_retries) 3482 { 3483 int max_retries = MAX_COMPACT_RETRIES; 3484 int min_priority; 3485 bool ret = false; 3486 int retries = *compaction_retries; 3487 enum compact_priority priority = *compact_priority; 3488 3489 if (!order) 3490 return false; 3491 3492 if (compaction_made_progress(compact_result)) 3493 (*compaction_retries)++; 3494 3495 /* 3496 * compaction considers all the zone as desperately out of memory 3497 * so it doesn't really make much sense to retry except when the 3498 * failure could be caused by insufficient priority 3499 */ 3500 if (compaction_failed(compact_result)) 3501 goto check_priority; 3502 3503 /* 3504 * make sure the compaction wasn't deferred or didn't bail out early 3505 * due to locks contention before we declare that we should give up. 3506 * But do not retry if the given zonelist is not suitable for 3507 * compaction. 3508 */ 3509 if (compaction_withdrawn(compact_result)) { 3510 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 3511 goto out; 3512 } 3513 3514 /* 3515 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 3516 * costly ones because they are de facto nofail and invoke OOM 3517 * killer to move on while costly can fail and users are ready 3518 * to cope with that. 1/4 retries is rather arbitrary but we 3519 * would need much more detailed feedback from compaction to 3520 * make a better decision. 3521 */ 3522 if (order > PAGE_ALLOC_COSTLY_ORDER) 3523 max_retries /= 4; 3524 if (*compaction_retries <= max_retries) { 3525 ret = true; 3526 goto out; 3527 } 3528 3529 /* 3530 * Make sure there are attempts at the highest priority if we exhausted 3531 * all retries or failed at the lower priorities. 3532 */ 3533 check_priority: 3534 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 3535 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 3536 3537 if (*compact_priority > min_priority) { 3538 (*compact_priority)--; 3539 *compaction_retries = 0; 3540 ret = true; 3541 } 3542 out: 3543 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 3544 return ret; 3545 } 3546 #else 3547 static inline struct page * 3548 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3549 unsigned int alloc_flags, const struct alloc_context *ac, 3550 enum compact_priority prio, enum compact_result *compact_result) 3551 { 3552 *compact_result = COMPACT_SKIPPED; 3553 return NULL; 3554 } 3555 3556 static inline bool 3557 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 3558 enum compact_result compact_result, 3559 enum compact_priority *compact_priority, 3560 int *compaction_retries) 3561 { 3562 struct zone *zone; 3563 struct zoneref *z; 3564 3565 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 3566 return false; 3567 3568 /* 3569 * There are setups with compaction disabled which would prefer to loop 3570 * inside the allocator rather than hit the oom killer prematurely. 3571 * Let's give them a good hope and keep retrying while the order-0 3572 * watermarks are OK. 3573 */ 3574 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3575 ac->nodemask) { 3576 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 3577 ac_classzone_idx(ac), alloc_flags)) 3578 return true; 3579 } 3580 return false; 3581 } 3582 #endif /* CONFIG_COMPACTION */ 3583 3584 #ifdef CONFIG_LOCKDEP 3585 struct lockdep_map __fs_reclaim_map = 3586 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 3587 3588 static bool __need_fs_reclaim(gfp_t gfp_mask) 3589 { 3590 gfp_mask = current_gfp_context(gfp_mask); 3591 3592 /* no reclaim without waiting on it */ 3593 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 3594 return false; 3595 3596 /* this guy won't enter reclaim */ 3597 if ((current->flags & PF_MEMALLOC) && !(gfp_mask & __GFP_NOMEMALLOC)) 3598 return false; 3599 3600 /* We're only interested __GFP_FS allocations for now */ 3601 if (!(gfp_mask & __GFP_FS)) 3602 return false; 3603 3604 if (gfp_mask & __GFP_NOLOCKDEP) 3605 return false; 3606 3607 return true; 3608 } 3609 3610 void fs_reclaim_acquire(gfp_t gfp_mask) 3611 { 3612 if (__need_fs_reclaim(gfp_mask)) 3613 lock_map_acquire(&__fs_reclaim_map); 3614 } 3615 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 3616 3617 void fs_reclaim_release(gfp_t gfp_mask) 3618 { 3619 if (__need_fs_reclaim(gfp_mask)) 3620 lock_map_release(&__fs_reclaim_map); 3621 } 3622 EXPORT_SYMBOL_GPL(fs_reclaim_release); 3623 #endif 3624 3625 /* Perform direct synchronous page reclaim */ 3626 static int 3627 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 3628 const struct alloc_context *ac) 3629 { 3630 struct reclaim_state reclaim_state; 3631 int progress; 3632 unsigned int noreclaim_flag; 3633 3634 cond_resched(); 3635 3636 /* We now go into synchronous reclaim */ 3637 cpuset_memory_pressure_bump(); 3638 noreclaim_flag = memalloc_noreclaim_save(); 3639 fs_reclaim_acquire(gfp_mask); 3640 reclaim_state.reclaimed_slab = 0; 3641 current->reclaim_state = &reclaim_state; 3642 3643 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 3644 ac->nodemask); 3645 3646 current->reclaim_state = NULL; 3647 fs_reclaim_release(gfp_mask); 3648 memalloc_noreclaim_restore(noreclaim_flag); 3649 3650 cond_resched(); 3651 3652 return progress; 3653 } 3654 3655 /* The really slow allocator path where we enter direct reclaim */ 3656 static inline struct page * 3657 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 3658 unsigned int alloc_flags, const struct alloc_context *ac, 3659 unsigned long *did_some_progress) 3660 { 3661 struct page *page = NULL; 3662 bool drained = false; 3663 3664 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 3665 if (unlikely(!(*did_some_progress))) 3666 return NULL; 3667 3668 retry: 3669 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3670 3671 /* 3672 * If an allocation failed after direct reclaim, it could be because 3673 * pages are pinned on the per-cpu lists or in high alloc reserves. 3674 * Shrink them them and try again 3675 */ 3676 if (!page && !drained) { 3677 unreserve_highatomic_pageblock(ac, false); 3678 drain_all_pages(NULL); 3679 drained = true; 3680 goto retry; 3681 } 3682 3683 return page; 3684 } 3685 3686 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac) 3687 { 3688 struct zoneref *z; 3689 struct zone *zone; 3690 pg_data_t *last_pgdat = NULL; 3691 3692 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 3693 ac->high_zoneidx, ac->nodemask) { 3694 if (last_pgdat != zone->zone_pgdat) 3695 wakeup_kswapd(zone, order, ac->high_zoneidx); 3696 last_pgdat = zone->zone_pgdat; 3697 } 3698 } 3699 3700 static inline unsigned int 3701 gfp_to_alloc_flags(gfp_t gfp_mask) 3702 { 3703 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 3704 3705 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 3706 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 3707 3708 /* 3709 * The caller may dip into page reserves a bit more if the caller 3710 * cannot run direct reclaim, or if the caller has realtime scheduling 3711 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 3712 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 3713 */ 3714 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 3715 3716 if (gfp_mask & __GFP_ATOMIC) { 3717 /* 3718 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 3719 * if it can't schedule. 3720 */ 3721 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3722 alloc_flags |= ALLOC_HARDER; 3723 /* 3724 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 3725 * comment for __cpuset_node_allowed(). 3726 */ 3727 alloc_flags &= ~ALLOC_CPUSET; 3728 } else if (unlikely(rt_task(current)) && !in_interrupt()) 3729 alloc_flags |= ALLOC_HARDER; 3730 3731 #ifdef CONFIG_CMA 3732 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3733 alloc_flags |= ALLOC_CMA; 3734 #endif 3735 return alloc_flags; 3736 } 3737 3738 static bool oom_reserves_allowed(struct task_struct *tsk) 3739 { 3740 if (!tsk_is_oom_victim(tsk)) 3741 return false; 3742 3743 /* 3744 * !MMU doesn't have oom reaper so give access to memory reserves 3745 * only to the thread with TIF_MEMDIE set 3746 */ 3747 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 3748 return false; 3749 3750 return true; 3751 } 3752 3753 /* 3754 * Distinguish requests which really need access to full memory 3755 * reserves from oom victims which can live with a portion of it 3756 */ 3757 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 3758 { 3759 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 3760 return 0; 3761 if (gfp_mask & __GFP_MEMALLOC) 3762 return ALLOC_NO_WATERMARKS; 3763 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 3764 return ALLOC_NO_WATERMARKS; 3765 if (!in_interrupt()) { 3766 if (current->flags & PF_MEMALLOC) 3767 return ALLOC_NO_WATERMARKS; 3768 else if (oom_reserves_allowed(current)) 3769 return ALLOC_OOM; 3770 } 3771 3772 return 0; 3773 } 3774 3775 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 3776 { 3777 return !!__gfp_pfmemalloc_flags(gfp_mask); 3778 } 3779 3780 /* 3781 * Checks whether it makes sense to retry the reclaim to make a forward progress 3782 * for the given allocation request. 3783 * 3784 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 3785 * without success, or when we couldn't even meet the watermark if we 3786 * reclaimed all remaining pages on the LRU lists. 3787 * 3788 * Returns true if a retry is viable or false to enter the oom path. 3789 */ 3790 static inline bool 3791 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 3792 struct alloc_context *ac, int alloc_flags, 3793 bool did_some_progress, int *no_progress_loops) 3794 { 3795 struct zone *zone; 3796 struct zoneref *z; 3797 3798 /* 3799 * Costly allocations might have made a progress but this doesn't mean 3800 * their order will become available due to high fragmentation so 3801 * always increment the no progress counter for them 3802 */ 3803 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 3804 *no_progress_loops = 0; 3805 else 3806 (*no_progress_loops)++; 3807 3808 /* 3809 * Make sure we converge to OOM if we cannot make any progress 3810 * several times in the row. 3811 */ 3812 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 3813 /* Before OOM, exhaust highatomic_reserve */ 3814 return unreserve_highatomic_pageblock(ac, true); 3815 } 3816 3817 /* 3818 * Keep reclaiming pages while there is a chance this will lead 3819 * somewhere. If none of the target zones can satisfy our allocation 3820 * request even if all reclaimable pages are considered then we are 3821 * screwed and have to go OOM. 3822 */ 3823 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3824 ac->nodemask) { 3825 unsigned long available; 3826 unsigned long reclaimable; 3827 unsigned long min_wmark = min_wmark_pages(zone); 3828 bool wmark; 3829 3830 available = reclaimable = zone_reclaimable_pages(zone); 3831 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 3832 3833 /* 3834 * Would the allocation succeed if we reclaimed all 3835 * reclaimable pages? 3836 */ 3837 wmark = __zone_watermark_ok(zone, order, min_wmark, 3838 ac_classzone_idx(ac), alloc_flags, available); 3839 trace_reclaim_retry_zone(z, order, reclaimable, 3840 available, min_wmark, *no_progress_loops, wmark); 3841 if (wmark) { 3842 /* 3843 * If we didn't make any progress and have a lot of 3844 * dirty + writeback pages then we should wait for 3845 * an IO to complete to slow down the reclaim and 3846 * prevent from pre mature OOM 3847 */ 3848 if (!did_some_progress) { 3849 unsigned long write_pending; 3850 3851 write_pending = zone_page_state_snapshot(zone, 3852 NR_ZONE_WRITE_PENDING); 3853 3854 if (2 * write_pending > reclaimable) { 3855 congestion_wait(BLK_RW_ASYNC, HZ/10); 3856 return true; 3857 } 3858 } 3859 3860 /* 3861 * Memory allocation/reclaim might be called from a WQ 3862 * context and the current implementation of the WQ 3863 * concurrency control doesn't recognize that 3864 * a particular WQ is congested if the worker thread is 3865 * looping without ever sleeping. Therefore we have to 3866 * do a short sleep here rather than calling 3867 * cond_resched(). 3868 */ 3869 if (current->flags & PF_WQ_WORKER) 3870 schedule_timeout_uninterruptible(1); 3871 else 3872 cond_resched(); 3873 3874 return true; 3875 } 3876 } 3877 3878 return false; 3879 } 3880 3881 static inline bool 3882 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 3883 { 3884 /* 3885 * It's possible that cpuset's mems_allowed and the nodemask from 3886 * mempolicy don't intersect. This should be normally dealt with by 3887 * policy_nodemask(), but it's possible to race with cpuset update in 3888 * such a way the check therein was true, and then it became false 3889 * before we got our cpuset_mems_cookie here. 3890 * This assumes that for all allocations, ac->nodemask can come only 3891 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 3892 * when it does not intersect with the cpuset restrictions) or the 3893 * caller can deal with a violated nodemask. 3894 */ 3895 if (cpusets_enabled() && ac->nodemask && 3896 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 3897 ac->nodemask = NULL; 3898 return true; 3899 } 3900 3901 /* 3902 * When updating a task's mems_allowed or mempolicy nodemask, it is 3903 * possible to race with parallel threads in such a way that our 3904 * allocation can fail while the mask is being updated. If we are about 3905 * to fail, check if the cpuset changed during allocation and if so, 3906 * retry. 3907 */ 3908 if (read_mems_allowed_retry(cpuset_mems_cookie)) 3909 return true; 3910 3911 return false; 3912 } 3913 3914 static inline struct page * 3915 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 3916 struct alloc_context *ac) 3917 { 3918 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 3919 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 3920 struct page *page = NULL; 3921 unsigned int alloc_flags; 3922 unsigned long did_some_progress; 3923 enum compact_priority compact_priority; 3924 enum compact_result compact_result; 3925 int compaction_retries; 3926 int no_progress_loops; 3927 unsigned int cpuset_mems_cookie; 3928 int reserve_flags; 3929 3930 /* 3931 * In the slowpath, we sanity check order to avoid ever trying to 3932 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 3933 * be using allocators in order of preference for an area that is 3934 * too large. 3935 */ 3936 if (order >= MAX_ORDER) { 3937 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 3938 return NULL; 3939 } 3940 3941 /* 3942 * We also sanity check to catch abuse of atomic reserves being used by 3943 * callers that are not in atomic context. 3944 */ 3945 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 3946 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 3947 gfp_mask &= ~__GFP_ATOMIC; 3948 3949 retry_cpuset: 3950 compaction_retries = 0; 3951 no_progress_loops = 0; 3952 compact_priority = DEF_COMPACT_PRIORITY; 3953 cpuset_mems_cookie = read_mems_allowed_begin(); 3954 3955 /* 3956 * The fast path uses conservative alloc_flags to succeed only until 3957 * kswapd needs to be woken up, and to avoid the cost of setting up 3958 * alloc_flags precisely. So we do that now. 3959 */ 3960 alloc_flags = gfp_to_alloc_flags(gfp_mask); 3961 3962 /* 3963 * We need to recalculate the starting point for the zonelist iterator 3964 * because we might have used different nodemask in the fast path, or 3965 * there was a cpuset modification and we are retrying - otherwise we 3966 * could end up iterating over non-eligible zones endlessly. 3967 */ 3968 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 3969 ac->high_zoneidx, ac->nodemask); 3970 if (!ac->preferred_zoneref->zone) 3971 goto nopage; 3972 3973 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 3974 wake_all_kswapds(order, ac); 3975 3976 /* 3977 * The adjusted alloc_flags might result in immediate success, so try 3978 * that first 3979 */ 3980 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3981 if (page) 3982 goto got_pg; 3983 3984 /* 3985 * For costly allocations, try direct compaction first, as it's likely 3986 * that we have enough base pages and don't need to reclaim. For non- 3987 * movable high-order allocations, do that as well, as compaction will 3988 * try prevent permanent fragmentation by migrating from blocks of the 3989 * same migratetype. 3990 * Don't try this for allocations that are allowed to ignore 3991 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 3992 */ 3993 if (can_direct_reclaim && 3994 (costly_order || 3995 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 3996 && !gfp_pfmemalloc_allowed(gfp_mask)) { 3997 page = __alloc_pages_direct_compact(gfp_mask, order, 3998 alloc_flags, ac, 3999 INIT_COMPACT_PRIORITY, 4000 &compact_result); 4001 if (page) 4002 goto got_pg; 4003 4004 /* 4005 * Checks for costly allocations with __GFP_NORETRY, which 4006 * includes THP page fault allocations 4007 */ 4008 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4009 /* 4010 * If compaction is deferred for high-order allocations, 4011 * it is because sync compaction recently failed. If 4012 * this is the case and the caller requested a THP 4013 * allocation, we do not want to heavily disrupt the 4014 * system, so we fail the allocation instead of entering 4015 * direct reclaim. 4016 */ 4017 if (compact_result == COMPACT_DEFERRED) 4018 goto nopage; 4019 4020 /* 4021 * Looks like reclaim/compaction is worth trying, but 4022 * sync compaction could be very expensive, so keep 4023 * using async compaction. 4024 */ 4025 compact_priority = INIT_COMPACT_PRIORITY; 4026 } 4027 } 4028 4029 retry: 4030 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4031 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 4032 wake_all_kswapds(order, ac); 4033 4034 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4035 if (reserve_flags) 4036 alloc_flags = reserve_flags; 4037 4038 /* 4039 * Reset the zonelist iterators if memory policies can be ignored. 4040 * These allocations are high priority and system rather than user 4041 * orientated. 4042 */ 4043 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4044 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask); 4045 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4046 ac->high_zoneidx, ac->nodemask); 4047 } 4048 4049 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4050 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4051 if (page) 4052 goto got_pg; 4053 4054 /* Caller is not willing to reclaim, we can't balance anything */ 4055 if (!can_direct_reclaim) 4056 goto nopage; 4057 4058 /* Avoid recursion of direct reclaim */ 4059 if (current->flags & PF_MEMALLOC) 4060 goto nopage; 4061 4062 /* Try direct reclaim and then allocating */ 4063 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4064 &did_some_progress); 4065 if (page) 4066 goto got_pg; 4067 4068 /* Try direct compaction and then allocating */ 4069 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4070 compact_priority, &compact_result); 4071 if (page) 4072 goto got_pg; 4073 4074 /* Do not loop if specifically requested */ 4075 if (gfp_mask & __GFP_NORETRY) 4076 goto nopage; 4077 4078 /* 4079 * Do not retry costly high order allocations unless they are 4080 * __GFP_RETRY_MAYFAIL 4081 */ 4082 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 4083 goto nopage; 4084 4085 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4086 did_some_progress > 0, &no_progress_loops)) 4087 goto retry; 4088 4089 /* 4090 * It doesn't make any sense to retry for the compaction if the order-0 4091 * reclaim is not able to make any progress because the current 4092 * implementation of the compaction depends on the sufficient amount 4093 * of free memory (see __compaction_suitable) 4094 */ 4095 if (did_some_progress > 0 && 4096 should_compact_retry(ac, order, alloc_flags, 4097 compact_result, &compact_priority, 4098 &compaction_retries)) 4099 goto retry; 4100 4101 4102 /* Deal with possible cpuset update races before we start OOM killing */ 4103 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4104 goto retry_cpuset; 4105 4106 /* Reclaim has failed us, start killing things */ 4107 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4108 if (page) 4109 goto got_pg; 4110 4111 /* Avoid allocations with no watermarks from looping endlessly */ 4112 if (tsk_is_oom_victim(current) && 4113 (alloc_flags == ALLOC_OOM || 4114 (gfp_mask & __GFP_NOMEMALLOC))) 4115 goto nopage; 4116 4117 /* Retry as long as the OOM killer is making progress */ 4118 if (did_some_progress) { 4119 no_progress_loops = 0; 4120 goto retry; 4121 } 4122 4123 nopage: 4124 /* Deal with possible cpuset update races before we fail */ 4125 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4126 goto retry_cpuset; 4127 4128 /* 4129 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4130 * we always retry 4131 */ 4132 if (gfp_mask & __GFP_NOFAIL) { 4133 /* 4134 * All existing users of the __GFP_NOFAIL are blockable, so warn 4135 * of any new users that actually require GFP_NOWAIT 4136 */ 4137 if (WARN_ON_ONCE(!can_direct_reclaim)) 4138 goto fail; 4139 4140 /* 4141 * PF_MEMALLOC request from this context is rather bizarre 4142 * because we cannot reclaim anything and only can loop waiting 4143 * for somebody to do a work for us 4144 */ 4145 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4146 4147 /* 4148 * non failing costly orders are a hard requirement which we 4149 * are not prepared for much so let's warn about these users 4150 * so that we can identify them and convert them to something 4151 * else. 4152 */ 4153 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); 4154 4155 /* 4156 * Help non-failing allocations by giving them access to memory 4157 * reserves but do not use ALLOC_NO_WATERMARKS because this 4158 * could deplete whole memory reserves which would just make 4159 * the situation worse 4160 */ 4161 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 4162 if (page) 4163 goto got_pg; 4164 4165 cond_resched(); 4166 goto retry; 4167 } 4168 fail: 4169 warn_alloc(gfp_mask, ac->nodemask, 4170 "page allocation failure: order:%u", order); 4171 got_pg: 4172 return page; 4173 } 4174 4175 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4176 int preferred_nid, nodemask_t *nodemask, 4177 struct alloc_context *ac, gfp_t *alloc_mask, 4178 unsigned int *alloc_flags) 4179 { 4180 ac->high_zoneidx = gfp_zone(gfp_mask); 4181 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4182 ac->nodemask = nodemask; 4183 ac->migratetype = gfpflags_to_migratetype(gfp_mask); 4184 4185 if (cpusets_enabled()) { 4186 *alloc_mask |= __GFP_HARDWALL; 4187 if (!ac->nodemask) 4188 ac->nodemask = &cpuset_current_mems_allowed; 4189 else 4190 *alloc_flags |= ALLOC_CPUSET; 4191 } 4192 4193 fs_reclaim_acquire(gfp_mask); 4194 fs_reclaim_release(gfp_mask); 4195 4196 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 4197 4198 if (should_fail_alloc_page(gfp_mask, order)) 4199 return false; 4200 4201 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE) 4202 *alloc_flags |= ALLOC_CMA; 4203 4204 return true; 4205 } 4206 4207 /* Determine whether to spread dirty pages and what the first usable zone */ 4208 static inline void finalise_ac(gfp_t gfp_mask, 4209 unsigned int order, struct alloc_context *ac) 4210 { 4211 /* Dirty zone balancing only done in the fast path */ 4212 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4213 4214 /* 4215 * The preferred zone is used for statistics but crucially it is 4216 * also used as the starting point for the zonelist iterator. It 4217 * may get reset for allocations that ignore memory policies. 4218 */ 4219 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4220 ac->high_zoneidx, ac->nodemask); 4221 } 4222 4223 /* 4224 * This is the 'heart' of the zoned buddy allocator. 4225 */ 4226 struct page * 4227 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid, 4228 nodemask_t *nodemask) 4229 { 4230 struct page *page; 4231 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4232 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */ 4233 struct alloc_context ac = { }; 4234 4235 gfp_mask &= gfp_allowed_mask; 4236 alloc_mask = gfp_mask; 4237 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags)) 4238 return NULL; 4239 4240 finalise_ac(gfp_mask, order, &ac); 4241 4242 /* First allocation attempt */ 4243 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); 4244 if (likely(page)) 4245 goto out; 4246 4247 /* 4248 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4249 * resp. GFP_NOIO which has to be inherited for all allocation requests 4250 * from a particular context which has been marked by 4251 * memalloc_no{fs,io}_{save,restore}. 4252 */ 4253 alloc_mask = current_gfp_context(gfp_mask); 4254 ac.spread_dirty_pages = false; 4255 4256 /* 4257 * Restore the original nodemask if it was potentially replaced with 4258 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4259 */ 4260 if (unlikely(ac.nodemask != nodemask)) 4261 ac.nodemask = nodemask; 4262 4263 page = __alloc_pages_slowpath(alloc_mask, order, &ac); 4264 4265 out: 4266 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page && 4267 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) { 4268 __free_pages(page, order); 4269 page = NULL; 4270 } 4271 4272 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); 4273 4274 return page; 4275 } 4276 EXPORT_SYMBOL(__alloc_pages_nodemask); 4277 4278 /* 4279 * Common helper functions. 4280 */ 4281 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 4282 { 4283 struct page *page; 4284 4285 /* 4286 * __get_free_pages() returns a virtual address, which cannot represent 4287 * a highmem page 4288 */ 4289 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 4290 4291 page = alloc_pages(gfp_mask, order); 4292 if (!page) 4293 return 0; 4294 return (unsigned long) page_address(page); 4295 } 4296 EXPORT_SYMBOL(__get_free_pages); 4297 4298 unsigned long get_zeroed_page(gfp_t gfp_mask) 4299 { 4300 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 4301 } 4302 EXPORT_SYMBOL(get_zeroed_page); 4303 4304 void __free_pages(struct page *page, unsigned int order) 4305 { 4306 if (put_page_testzero(page)) { 4307 if (order == 0) 4308 free_unref_page(page); 4309 else 4310 __free_pages_ok(page, order); 4311 } 4312 } 4313 4314 EXPORT_SYMBOL(__free_pages); 4315 4316 void free_pages(unsigned long addr, unsigned int order) 4317 { 4318 if (addr != 0) { 4319 VM_BUG_ON(!virt_addr_valid((void *)addr)); 4320 __free_pages(virt_to_page((void *)addr), order); 4321 } 4322 } 4323 4324 EXPORT_SYMBOL(free_pages); 4325 4326 /* 4327 * Page Fragment: 4328 * An arbitrary-length arbitrary-offset area of memory which resides 4329 * within a 0 or higher order page. Multiple fragments within that page 4330 * are individually refcounted, in the page's reference counter. 4331 * 4332 * The page_frag functions below provide a simple allocation framework for 4333 * page fragments. This is used by the network stack and network device 4334 * drivers to provide a backing region of memory for use as either an 4335 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 4336 */ 4337 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 4338 gfp_t gfp_mask) 4339 { 4340 struct page *page = NULL; 4341 gfp_t gfp = gfp_mask; 4342 4343 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4344 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 4345 __GFP_NOMEMALLOC; 4346 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 4347 PAGE_FRAG_CACHE_MAX_ORDER); 4348 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 4349 #endif 4350 if (unlikely(!page)) 4351 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 4352 4353 nc->va = page ? page_address(page) : NULL; 4354 4355 return page; 4356 } 4357 4358 void __page_frag_cache_drain(struct page *page, unsigned int count) 4359 { 4360 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 4361 4362 if (page_ref_sub_and_test(page, count)) { 4363 unsigned int order = compound_order(page); 4364 4365 if (order == 0) 4366 free_unref_page(page); 4367 else 4368 __free_pages_ok(page, order); 4369 } 4370 } 4371 EXPORT_SYMBOL(__page_frag_cache_drain); 4372 4373 void *page_frag_alloc(struct page_frag_cache *nc, 4374 unsigned int fragsz, gfp_t gfp_mask) 4375 { 4376 unsigned int size = PAGE_SIZE; 4377 struct page *page; 4378 int offset; 4379 4380 if (unlikely(!nc->va)) { 4381 refill: 4382 page = __page_frag_cache_refill(nc, gfp_mask); 4383 if (!page) 4384 return NULL; 4385 4386 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4387 /* if size can vary use size else just use PAGE_SIZE */ 4388 size = nc->size; 4389 #endif 4390 /* Even if we own the page, we do not use atomic_set(). 4391 * This would break get_page_unless_zero() users. 4392 */ 4393 page_ref_add(page, size - 1); 4394 4395 /* reset page count bias and offset to start of new frag */ 4396 nc->pfmemalloc = page_is_pfmemalloc(page); 4397 nc->pagecnt_bias = size; 4398 nc->offset = size; 4399 } 4400 4401 offset = nc->offset - fragsz; 4402 if (unlikely(offset < 0)) { 4403 page = virt_to_page(nc->va); 4404 4405 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 4406 goto refill; 4407 4408 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4409 /* if size can vary use size else just use PAGE_SIZE */ 4410 size = nc->size; 4411 #endif 4412 /* OK, page count is 0, we can safely set it */ 4413 set_page_count(page, size); 4414 4415 /* reset page count bias and offset to start of new frag */ 4416 nc->pagecnt_bias = size; 4417 offset = size - fragsz; 4418 } 4419 4420 nc->pagecnt_bias--; 4421 nc->offset = offset; 4422 4423 return nc->va + offset; 4424 } 4425 EXPORT_SYMBOL(page_frag_alloc); 4426 4427 /* 4428 * Frees a page fragment allocated out of either a compound or order 0 page. 4429 */ 4430 void page_frag_free(void *addr) 4431 { 4432 struct page *page = virt_to_head_page(addr); 4433 4434 if (unlikely(put_page_testzero(page))) 4435 __free_pages_ok(page, compound_order(page)); 4436 } 4437 EXPORT_SYMBOL(page_frag_free); 4438 4439 static void *make_alloc_exact(unsigned long addr, unsigned int order, 4440 size_t size) 4441 { 4442 if (addr) { 4443 unsigned long alloc_end = addr + (PAGE_SIZE << order); 4444 unsigned long used = addr + PAGE_ALIGN(size); 4445 4446 split_page(virt_to_page((void *)addr), order); 4447 while (used < alloc_end) { 4448 free_page(used); 4449 used += PAGE_SIZE; 4450 } 4451 } 4452 return (void *)addr; 4453 } 4454 4455 /** 4456 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 4457 * @size: the number of bytes to allocate 4458 * @gfp_mask: GFP flags for the allocation 4459 * 4460 * This function is similar to alloc_pages(), except that it allocates the 4461 * minimum number of pages to satisfy the request. alloc_pages() can only 4462 * allocate memory in power-of-two pages. 4463 * 4464 * This function is also limited by MAX_ORDER. 4465 * 4466 * Memory allocated by this function must be released by free_pages_exact(). 4467 */ 4468 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 4469 { 4470 unsigned int order = get_order(size); 4471 unsigned long addr; 4472 4473 addr = __get_free_pages(gfp_mask, order); 4474 return make_alloc_exact(addr, order, size); 4475 } 4476 EXPORT_SYMBOL(alloc_pages_exact); 4477 4478 /** 4479 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 4480 * pages on a node. 4481 * @nid: the preferred node ID where memory should be allocated 4482 * @size: the number of bytes to allocate 4483 * @gfp_mask: GFP flags for the allocation 4484 * 4485 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 4486 * back. 4487 */ 4488 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 4489 { 4490 unsigned int order = get_order(size); 4491 struct page *p = alloc_pages_node(nid, gfp_mask, order); 4492 if (!p) 4493 return NULL; 4494 return make_alloc_exact((unsigned long)page_address(p), order, size); 4495 } 4496 4497 /** 4498 * free_pages_exact - release memory allocated via alloc_pages_exact() 4499 * @virt: the value returned by alloc_pages_exact. 4500 * @size: size of allocation, same value as passed to alloc_pages_exact(). 4501 * 4502 * Release the memory allocated by a previous call to alloc_pages_exact. 4503 */ 4504 void free_pages_exact(void *virt, size_t size) 4505 { 4506 unsigned long addr = (unsigned long)virt; 4507 unsigned long end = addr + PAGE_ALIGN(size); 4508 4509 while (addr < end) { 4510 free_page(addr); 4511 addr += PAGE_SIZE; 4512 } 4513 } 4514 EXPORT_SYMBOL(free_pages_exact); 4515 4516 /** 4517 * nr_free_zone_pages - count number of pages beyond high watermark 4518 * @offset: The zone index of the highest zone 4519 * 4520 * nr_free_zone_pages() counts the number of counts pages which are beyond the 4521 * high watermark within all zones at or below a given zone index. For each 4522 * zone, the number of pages is calculated as: 4523 * 4524 * nr_free_zone_pages = managed_pages - high_pages 4525 */ 4526 static unsigned long nr_free_zone_pages(int offset) 4527 { 4528 struct zoneref *z; 4529 struct zone *zone; 4530 4531 /* Just pick one node, since fallback list is circular */ 4532 unsigned long sum = 0; 4533 4534 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 4535 4536 for_each_zone_zonelist(zone, z, zonelist, offset) { 4537 unsigned long size = zone->managed_pages; 4538 unsigned long high = high_wmark_pages(zone); 4539 if (size > high) 4540 sum += size - high; 4541 } 4542 4543 return sum; 4544 } 4545 4546 /** 4547 * nr_free_buffer_pages - count number of pages beyond high watermark 4548 * 4549 * nr_free_buffer_pages() counts the number of pages which are beyond the high 4550 * watermark within ZONE_DMA and ZONE_NORMAL. 4551 */ 4552 unsigned long nr_free_buffer_pages(void) 4553 { 4554 return nr_free_zone_pages(gfp_zone(GFP_USER)); 4555 } 4556 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 4557 4558 /** 4559 * nr_free_pagecache_pages - count number of pages beyond high watermark 4560 * 4561 * nr_free_pagecache_pages() counts the number of pages which are beyond the 4562 * high watermark within all zones. 4563 */ 4564 unsigned long nr_free_pagecache_pages(void) 4565 { 4566 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 4567 } 4568 4569 static inline void show_node(struct zone *zone) 4570 { 4571 if (IS_ENABLED(CONFIG_NUMA)) 4572 printk("Node %d ", zone_to_nid(zone)); 4573 } 4574 4575 long si_mem_available(void) 4576 { 4577 long available; 4578 unsigned long pagecache; 4579 unsigned long wmark_low = 0; 4580 unsigned long pages[NR_LRU_LISTS]; 4581 struct zone *zone; 4582 int lru; 4583 4584 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 4585 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 4586 4587 for_each_zone(zone) 4588 wmark_low += zone->watermark[WMARK_LOW]; 4589 4590 /* 4591 * Estimate the amount of memory available for userspace allocations, 4592 * without causing swapping. 4593 */ 4594 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 4595 4596 /* 4597 * Not all the page cache can be freed, otherwise the system will 4598 * start swapping. Assume at least half of the page cache, or the 4599 * low watermark worth of cache, needs to stay. 4600 */ 4601 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 4602 pagecache -= min(pagecache / 2, wmark_low); 4603 available += pagecache; 4604 4605 /* 4606 * Part of the reclaimable slab consists of items that are in use, 4607 * and cannot be freed. Cap this estimate at the low watermark. 4608 */ 4609 available += global_node_page_state(NR_SLAB_RECLAIMABLE) - 4610 min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2, 4611 wmark_low); 4612 4613 if (available < 0) 4614 available = 0; 4615 return available; 4616 } 4617 EXPORT_SYMBOL_GPL(si_mem_available); 4618 4619 void si_meminfo(struct sysinfo *val) 4620 { 4621 val->totalram = totalram_pages; 4622 val->sharedram = global_node_page_state(NR_SHMEM); 4623 val->freeram = global_zone_page_state(NR_FREE_PAGES); 4624 val->bufferram = nr_blockdev_pages(); 4625 val->totalhigh = totalhigh_pages; 4626 val->freehigh = nr_free_highpages(); 4627 val->mem_unit = PAGE_SIZE; 4628 } 4629 4630 EXPORT_SYMBOL(si_meminfo); 4631 4632 #ifdef CONFIG_NUMA 4633 void si_meminfo_node(struct sysinfo *val, int nid) 4634 { 4635 int zone_type; /* needs to be signed */ 4636 unsigned long managed_pages = 0; 4637 unsigned long managed_highpages = 0; 4638 unsigned long free_highpages = 0; 4639 pg_data_t *pgdat = NODE_DATA(nid); 4640 4641 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 4642 managed_pages += pgdat->node_zones[zone_type].managed_pages; 4643 val->totalram = managed_pages; 4644 val->sharedram = node_page_state(pgdat, NR_SHMEM); 4645 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 4646 #ifdef CONFIG_HIGHMEM 4647 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 4648 struct zone *zone = &pgdat->node_zones[zone_type]; 4649 4650 if (is_highmem(zone)) { 4651 managed_highpages += zone->managed_pages; 4652 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 4653 } 4654 } 4655 val->totalhigh = managed_highpages; 4656 val->freehigh = free_highpages; 4657 #else 4658 val->totalhigh = managed_highpages; 4659 val->freehigh = free_highpages; 4660 #endif 4661 val->mem_unit = PAGE_SIZE; 4662 } 4663 #endif 4664 4665 /* 4666 * Determine whether the node should be displayed or not, depending on whether 4667 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 4668 */ 4669 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 4670 { 4671 if (!(flags & SHOW_MEM_FILTER_NODES)) 4672 return false; 4673 4674 /* 4675 * no node mask - aka implicit memory numa policy. Do not bother with 4676 * the synchronization - read_mems_allowed_begin - because we do not 4677 * have to be precise here. 4678 */ 4679 if (!nodemask) 4680 nodemask = &cpuset_current_mems_allowed; 4681 4682 return !node_isset(nid, *nodemask); 4683 } 4684 4685 #define K(x) ((x) << (PAGE_SHIFT-10)) 4686 4687 static void show_migration_types(unsigned char type) 4688 { 4689 static const char types[MIGRATE_TYPES] = { 4690 [MIGRATE_UNMOVABLE] = 'U', 4691 [MIGRATE_MOVABLE] = 'M', 4692 [MIGRATE_RECLAIMABLE] = 'E', 4693 [MIGRATE_HIGHATOMIC] = 'H', 4694 #ifdef CONFIG_CMA 4695 [MIGRATE_CMA] = 'C', 4696 #endif 4697 #ifdef CONFIG_MEMORY_ISOLATION 4698 [MIGRATE_ISOLATE] = 'I', 4699 #endif 4700 }; 4701 char tmp[MIGRATE_TYPES + 1]; 4702 char *p = tmp; 4703 int i; 4704 4705 for (i = 0; i < MIGRATE_TYPES; i++) { 4706 if (type & (1 << i)) 4707 *p++ = types[i]; 4708 } 4709 4710 *p = '\0'; 4711 printk(KERN_CONT "(%s) ", tmp); 4712 } 4713 4714 /* 4715 * Show free area list (used inside shift_scroll-lock stuff) 4716 * We also calculate the percentage fragmentation. We do this by counting the 4717 * memory on each free list with the exception of the first item on the list. 4718 * 4719 * Bits in @filter: 4720 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 4721 * cpuset. 4722 */ 4723 void show_free_areas(unsigned int filter, nodemask_t *nodemask) 4724 { 4725 unsigned long free_pcp = 0; 4726 int cpu; 4727 struct zone *zone; 4728 pg_data_t *pgdat; 4729 4730 for_each_populated_zone(zone) { 4731 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 4732 continue; 4733 4734 for_each_online_cpu(cpu) 4735 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 4736 } 4737 4738 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 4739 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 4740 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n" 4741 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 4742 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 4743 " free:%lu free_pcp:%lu free_cma:%lu\n", 4744 global_node_page_state(NR_ACTIVE_ANON), 4745 global_node_page_state(NR_INACTIVE_ANON), 4746 global_node_page_state(NR_ISOLATED_ANON), 4747 global_node_page_state(NR_ACTIVE_FILE), 4748 global_node_page_state(NR_INACTIVE_FILE), 4749 global_node_page_state(NR_ISOLATED_FILE), 4750 global_node_page_state(NR_UNEVICTABLE), 4751 global_node_page_state(NR_FILE_DIRTY), 4752 global_node_page_state(NR_WRITEBACK), 4753 global_node_page_state(NR_UNSTABLE_NFS), 4754 global_node_page_state(NR_SLAB_RECLAIMABLE), 4755 global_node_page_state(NR_SLAB_UNRECLAIMABLE), 4756 global_node_page_state(NR_FILE_MAPPED), 4757 global_node_page_state(NR_SHMEM), 4758 global_zone_page_state(NR_PAGETABLE), 4759 global_zone_page_state(NR_BOUNCE), 4760 global_zone_page_state(NR_FREE_PAGES), 4761 free_pcp, 4762 global_zone_page_state(NR_FREE_CMA_PAGES)); 4763 4764 for_each_online_pgdat(pgdat) { 4765 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 4766 continue; 4767 4768 printk("Node %d" 4769 " active_anon:%lukB" 4770 " inactive_anon:%lukB" 4771 " active_file:%lukB" 4772 " inactive_file:%lukB" 4773 " unevictable:%lukB" 4774 " isolated(anon):%lukB" 4775 " isolated(file):%lukB" 4776 " mapped:%lukB" 4777 " dirty:%lukB" 4778 " writeback:%lukB" 4779 " shmem:%lukB" 4780 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4781 " shmem_thp: %lukB" 4782 " shmem_pmdmapped: %lukB" 4783 " anon_thp: %lukB" 4784 #endif 4785 " writeback_tmp:%lukB" 4786 " unstable:%lukB" 4787 " all_unreclaimable? %s" 4788 "\n", 4789 pgdat->node_id, 4790 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 4791 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 4792 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 4793 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 4794 K(node_page_state(pgdat, NR_UNEVICTABLE)), 4795 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 4796 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 4797 K(node_page_state(pgdat, NR_FILE_MAPPED)), 4798 K(node_page_state(pgdat, NR_FILE_DIRTY)), 4799 K(node_page_state(pgdat, NR_WRITEBACK)), 4800 K(node_page_state(pgdat, NR_SHMEM)), 4801 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4802 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR), 4803 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED) 4804 * HPAGE_PMD_NR), 4805 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR), 4806 #endif 4807 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 4808 K(node_page_state(pgdat, NR_UNSTABLE_NFS)), 4809 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 4810 "yes" : "no"); 4811 } 4812 4813 for_each_populated_zone(zone) { 4814 int i; 4815 4816 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 4817 continue; 4818 4819 free_pcp = 0; 4820 for_each_online_cpu(cpu) 4821 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 4822 4823 show_node(zone); 4824 printk(KERN_CONT 4825 "%s" 4826 " free:%lukB" 4827 " min:%lukB" 4828 " low:%lukB" 4829 " high:%lukB" 4830 " active_anon:%lukB" 4831 " inactive_anon:%lukB" 4832 " active_file:%lukB" 4833 " inactive_file:%lukB" 4834 " unevictable:%lukB" 4835 " writepending:%lukB" 4836 " present:%lukB" 4837 " managed:%lukB" 4838 " mlocked:%lukB" 4839 " kernel_stack:%lukB" 4840 " pagetables:%lukB" 4841 " bounce:%lukB" 4842 " free_pcp:%lukB" 4843 " local_pcp:%ukB" 4844 " free_cma:%lukB" 4845 "\n", 4846 zone->name, 4847 K(zone_page_state(zone, NR_FREE_PAGES)), 4848 K(min_wmark_pages(zone)), 4849 K(low_wmark_pages(zone)), 4850 K(high_wmark_pages(zone)), 4851 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 4852 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 4853 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 4854 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 4855 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 4856 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 4857 K(zone->present_pages), 4858 K(zone->managed_pages), 4859 K(zone_page_state(zone, NR_MLOCK)), 4860 zone_page_state(zone, NR_KERNEL_STACK_KB), 4861 K(zone_page_state(zone, NR_PAGETABLE)), 4862 K(zone_page_state(zone, NR_BOUNCE)), 4863 K(free_pcp), 4864 K(this_cpu_read(zone->pageset->pcp.count)), 4865 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 4866 printk("lowmem_reserve[]:"); 4867 for (i = 0; i < MAX_NR_ZONES; i++) 4868 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 4869 printk(KERN_CONT "\n"); 4870 } 4871 4872 for_each_populated_zone(zone) { 4873 unsigned int order; 4874 unsigned long nr[MAX_ORDER], flags, total = 0; 4875 unsigned char types[MAX_ORDER]; 4876 4877 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 4878 continue; 4879 show_node(zone); 4880 printk(KERN_CONT "%s: ", zone->name); 4881 4882 spin_lock_irqsave(&zone->lock, flags); 4883 for (order = 0; order < MAX_ORDER; order++) { 4884 struct free_area *area = &zone->free_area[order]; 4885 int type; 4886 4887 nr[order] = area->nr_free; 4888 total += nr[order] << order; 4889 4890 types[order] = 0; 4891 for (type = 0; type < MIGRATE_TYPES; type++) { 4892 if (!list_empty(&area->free_list[type])) 4893 types[order] |= 1 << type; 4894 } 4895 } 4896 spin_unlock_irqrestore(&zone->lock, flags); 4897 for (order = 0; order < MAX_ORDER; order++) { 4898 printk(KERN_CONT "%lu*%lukB ", 4899 nr[order], K(1UL) << order); 4900 if (nr[order]) 4901 show_migration_types(types[order]); 4902 } 4903 printk(KERN_CONT "= %lukB\n", K(total)); 4904 } 4905 4906 hugetlb_show_meminfo(); 4907 4908 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 4909 4910 show_swap_cache_info(); 4911 } 4912 4913 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 4914 { 4915 zoneref->zone = zone; 4916 zoneref->zone_idx = zone_idx(zone); 4917 } 4918 4919 /* 4920 * Builds allocation fallback zone lists. 4921 * 4922 * Add all populated zones of a node to the zonelist. 4923 */ 4924 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 4925 { 4926 struct zone *zone; 4927 enum zone_type zone_type = MAX_NR_ZONES; 4928 int nr_zones = 0; 4929 4930 do { 4931 zone_type--; 4932 zone = pgdat->node_zones + zone_type; 4933 if (managed_zone(zone)) { 4934 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 4935 check_highest_zone(zone_type); 4936 } 4937 } while (zone_type); 4938 4939 return nr_zones; 4940 } 4941 4942 #ifdef CONFIG_NUMA 4943 4944 static int __parse_numa_zonelist_order(char *s) 4945 { 4946 /* 4947 * We used to support different zonlists modes but they turned 4948 * out to be just not useful. Let's keep the warning in place 4949 * if somebody still use the cmd line parameter so that we do 4950 * not fail it silently 4951 */ 4952 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 4953 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 4954 return -EINVAL; 4955 } 4956 return 0; 4957 } 4958 4959 static __init int setup_numa_zonelist_order(char *s) 4960 { 4961 if (!s) 4962 return 0; 4963 4964 return __parse_numa_zonelist_order(s); 4965 } 4966 early_param("numa_zonelist_order", setup_numa_zonelist_order); 4967 4968 char numa_zonelist_order[] = "Node"; 4969 4970 /* 4971 * sysctl handler for numa_zonelist_order 4972 */ 4973 int numa_zonelist_order_handler(struct ctl_table *table, int write, 4974 void __user *buffer, size_t *length, 4975 loff_t *ppos) 4976 { 4977 char *str; 4978 int ret; 4979 4980 if (!write) 4981 return proc_dostring(table, write, buffer, length, ppos); 4982 str = memdup_user_nul(buffer, 16); 4983 if (IS_ERR(str)) 4984 return PTR_ERR(str); 4985 4986 ret = __parse_numa_zonelist_order(str); 4987 kfree(str); 4988 return ret; 4989 } 4990 4991 4992 #define MAX_NODE_LOAD (nr_online_nodes) 4993 static int node_load[MAX_NUMNODES]; 4994 4995 /** 4996 * find_next_best_node - find the next node that should appear in a given node's fallback list 4997 * @node: node whose fallback list we're appending 4998 * @used_node_mask: nodemask_t of already used nodes 4999 * 5000 * We use a number of factors to determine which is the next node that should 5001 * appear on a given node's fallback list. The node should not have appeared 5002 * already in @node's fallback list, and it should be the next closest node 5003 * according to the distance array (which contains arbitrary distance values 5004 * from each node to each node in the system), and should also prefer nodes 5005 * with no CPUs, since presumably they'll have very little allocation pressure 5006 * on them otherwise. 5007 * It returns -1 if no node is found. 5008 */ 5009 static int find_next_best_node(int node, nodemask_t *used_node_mask) 5010 { 5011 int n, val; 5012 int min_val = INT_MAX; 5013 int best_node = NUMA_NO_NODE; 5014 const struct cpumask *tmp = cpumask_of_node(0); 5015 5016 /* Use the local node if we haven't already */ 5017 if (!node_isset(node, *used_node_mask)) { 5018 node_set(node, *used_node_mask); 5019 return node; 5020 } 5021 5022 for_each_node_state(n, N_MEMORY) { 5023 5024 /* Don't want a node to appear more than once */ 5025 if (node_isset(n, *used_node_mask)) 5026 continue; 5027 5028 /* Use the distance array to find the distance */ 5029 val = node_distance(node, n); 5030 5031 /* Penalize nodes under us ("prefer the next node") */ 5032 val += (n < node); 5033 5034 /* Give preference to headless and unused nodes */ 5035 tmp = cpumask_of_node(n); 5036 if (!cpumask_empty(tmp)) 5037 val += PENALTY_FOR_NODE_WITH_CPUS; 5038 5039 /* Slight preference for less loaded node */ 5040 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 5041 val += node_load[n]; 5042 5043 if (val < min_val) { 5044 min_val = val; 5045 best_node = n; 5046 } 5047 } 5048 5049 if (best_node >= 0) 5050 node_set(best_node, *used_node_mask); 5051 5052 return best_node; 5053 } 5054 5055 5056 /* 5057 * Build zonelists ordered by node and zones within node. 5058 * This results in maximum locality--normal zone overflows into local 5059 * DMA zone, if any--but risks exhausting DMA zone. 5060 */ 5061 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5062 unsigned nr_nodes) 5063 { 5064 struct zoneref *zonerefs; 5065 int i; 5066 5067 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5068 5069 for (i = 0; i < nr_nodes; i++) { 5070 int nr_zones; 5071 5072 pg_data_t *node = NODE_DATA(node_order[i]); 5073 5074 nr_zones = build_zonerefs_node(node, zonerefs); 5075 zonerefs += nr_zones; 5076 } 5077 zonerefs->zone = NULL; 5078 zonerefs->zone_idx = 0; 5079 } 5080 5081 /* 5082 * Build gfp_thisnode zonelists 5083 */ 5084 static void build_thisnode_zonelists(pg_data_t *pgdat) 5085 { 5086 struct zoneref *zonerefs; 5087 int nr_zones; 5088 5089 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5090 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5091 zonerefs += nr_zones; 5092 zonerefs->zone = NULL; 5093 zonerefs->zone_idx = 0; 5094 } 5095 5096 /* 5097 * Build zonelists ordered by zone and nodes within zones. 5098 * This results in conserving DMA zone[s] until all Normal memory is 5099 * exhausted, but results in overflowing to remote node while memory 5100 * may still exist in local DMA zone. 5101 */ 5102 5103 static void build_zonelists(pg_data_t *pgdat) 5104 { 5105 static int node_order[MAX_NUMNODES]; 5106 int node, load, nr_nodes = 0; 5107 nodemask_t used_mask; 5108 int local_node, prev_node; 5109 5110 /* NUMA-aware ordering of nodes */ 5111 local_node = pgdat->node_id; 5112 load = nr_online_nodes; 5113 prev_node = local_node; 5114 nodes_clear(used_mask); 5115 5116 memset(node_order, 0, sizeof(node_order)); 5117 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5118 /* 5119 * We don't want to pressure a particular node. 5120 * So adding penalty to the first node in same 5121 * distance group to make it round-robin. 5122 */ 5123 if (node_distance(local_node, node) != 5124 node_distance(local_node, prev_node)) 5125 node_load[node] = load; 5126 5127 node_order[nr_nodes++] = node; 5128 prev_node = node; 5129 load--; 5130 } 5131 5132 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5133 build_thisnode_zonelists(pgdat); 5134 } 5135 5136 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5137 /* 5138 * Return node id of node used for "local" allocations. 5139 * I.e., first node id of first zone in arg node's generic zonelist. 5140 * Used for initializing percpu 'numa_mem', which is used primarily 5141 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5142 */ 5143 int local_memory_node(int node) 5144 { 5145 struct zoneref *z; 5146 5147 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5148 gfp_zone(GFP_KERNEL), 5149 NULL); 5150 return z->zone->node; 5151 } 5152 #endif 5153 5154 static void setup_min_unmapped_ratio(void); 5155 static void setup_min_slab_ratio(void); 5156 #else /* CONFIG_NUMA */ 5157 5158 static void build_zonelists(pg_data_t *pgdat) 5159 { 5160 int node, local_node; 5161 struct zoneref *zonerefs; 5162 int nr_zones; 5163 5164 local_node = pgdat->node_id; 5165 5166 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5167 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5168 zonerefs += nr_zones; 5169 5170 /* 5171 * Now we build the zonelist so that it contains the zones 5172 * of all the other nodes. 5173 * We don't want to pressure a particular node, so when 5174 * building the zones for node N, we make sure that the 5175 * zones coming right after the local ones are those from 5176 * node N+1 (modulo N) 5177 */ 5178 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 5179 if (!node_online(node)) 5180 continue; 5181 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5182 zonerefs += nr_zones; 5183 } 5184 for (node = 0; node < local_node; node++) { 5185 if (!node_online(node)) 5186 continue; 5187 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5188 zonerefs += nr_zones; 5189 } 5190 5191 zonerefs->zone = NULL; 5192 zonerefs->zone_idx = 0; 5193 } 5194 5195 #endif /* CONFIG_NUMA */ 5196 5197 /* 5198 * Boot pageset table. One per cpu which is going to be used for all 5199 * zones and all nodes. The parameters will be set in such a way 5200 * that an item put on a list will immediately be handed over to 5201 * the buddy list. This is safe since pageset manipulation is done 5202 * with interrupts disabled. 5203 * 5204 * The boot_pagesets must be kept even after bootup is complete for 5205 * unused processors and/or zones. They do play a role for bootstrapping 5206 * hotplugged processors. 5207 * 5208 * zoneinfo_show() and maybe other functions do 5209 * not check if the processor is online before following the pageset pointer. 5210 * Other parts of the kernel may not check if the zone is available. 5211 */ 5212 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 5213 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 5214 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 5215 5216 static void __build_all_zonelists(void *data) 5217 { 5218 int nid; 5219 int __maybe_unused cpu; 5220 pg_data_t *self = data; 5221 static DEFINE_SPINLOCK(lock); 5222 5223 spin_lock(&lock); 5224 5225 #ifdef CONFIG_NUMA 5226 memset(node_load, 0, sizeof(node_load)); 5227 #endif 5228 5229 /* 5230 * This node is hotadded and no memory is yet present. So just 5231 * building zonelists is fine - no need to touch other nodes. 5232 */ 5233 if (self && !node_online(self->node_id)) { 5234 build_zonelists(self); 5235 } else { 5236 for_each_online_node(nid) { 5237 pg_data_t *pgdat = NODE_DATA(nid); 5238 5239 build_zonelists(pgdat); 5240 } 5241 5242 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5243 /* 5244 * We now know the "local memory node" for each node-- 5245 * i.e., the node of the first zone in the generic zonelist. 5246 * Set up numa_mem percpu variable for on-line cpus. During 5247 * boot, only the boot cpu should be on-line; we'll init the 5248 * secondary cpus' numa_mem as they come on-line. During 5249 * node/memory hotplug, we'll fixup all on-line cpus. 5250 */ 5251 for_each_online_cpu(cpu) 5252 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5253 #endif 5254 } 5255 5256 spin_unlock(&lock); 5257 } 5258 5259 static noinline void __init 5260 build_all_zonelists_init(void) 5261 { 5262 int cpu; 5263 5264 __build_all_zonelists(NULL); 5265 5266 /* 5267 * Initialize the boot_pagesets that are going to be used 5268 * for bootstrapping processors. The real pagesets for 5269 * each zone will be allocated later when the per cpu 5270 * allocator is available. 5271 * 5272 * boot_pagesets are used also for bootstrapping offline 5273 * cpus if the system is already booted because the pagesets 5274 * are needed to initialize allocators on a specific cpu too. 5275 * F.e. the percpu allocator needs the page allocator which 5276 * needs the percpu allocator in order to allocate its pagesets 5277 * (a chicken-egg dilemma). 5278 */ 5279 for_each_possible_cpu(cpu) 5280 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 5281 5282 mminit_verify_zonelist(); 5283 cpuset_init_current_mems_allowed(); 5284 } 5285 5286 /* 5287 * unless system_state == SYSTEM_BOOTING. 5288 * 5289 * __ref due to call of __init annotated helper build_all_zonelists_init 5290 * [protected by SYSTEM_BOOTING]. 5291 */ 5292 void __ref build_all_zonelists(pg_data_t *pgdat) 5293 { 5294 if (system_state == SYSTEM_BOOTING) { 5295 build_all_zonelists_init(); 5296 } else { 5297 __build_all_zonelists(pgdat); 5298 /* cpuset refresh routine should be here */ 5299 } 5300 vm_total_pages = nr_free_pagecache_pages(); 5301 /* 5302 * Disable grouping by mobility if the number of pages in the 5303 * system is too low to allow the mechanism to work. It would be 5304 * more accurate, but expensive to check per-zone. This check is 5305 * made on memory-hotadd so a system can start with mobility 5306 * disabled and enable it later 5307 */ 5308 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5309 page_group_by_mobility_disabled = 1; 5310 else 5311 page_group_by_mobility_disabled = 0; 5312 5313 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n", 5314 nr_online_nodes, 5315 page_group_by_mobility_disabled ? "off" : "on", 5316 vm_total_pages); 5317 #ifdef CONFIG_NUMA 5318 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5319 #endif 5320 } 5321 5322 /* 5323 * Initially all pages are reserved - free ones are freed 5324 * up by free_all_bootmem() once the early boot process is 5325 * done. Non-atomic initialization, single-pass. 5326 */ 5327 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 5328 unsigned long start_pfn, enum memmap_context context, 5329 struct vmem_altmap *altmap) 5330 { 5331 unsigned long end_pfn = start_pfn + size; 5332 pg_data_t *pgdat = NODE_DATA(nid); 5333 unsigned long pfn; 5334 unsigned long nr_initialised = 0; 5335 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5336 struct memblock_region *r = NULL, *tmp; 5337 #endif 5338 5339 if (highest_memmap_pfn < end_pfn - 1) 5340 highest_memmap_pfn = end_pfn - 1; 5341 5342 /* 5343 * Honor reservation requested by the driver for this ZONE_DEVICE 5344 * memory 5345 */ 5346 if (altmap && start_pfn == altmap->base_pfn) 5347 start_pfn += altmap->reserve; 5348 5349 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 5350 /* 5351 * There can be holes in boot-time mem_map[]s handed to this 5352 * function. They do not exist on hotplugged memory. 5353 */ 5354 if (context != MEMMAP_EARLY) 5355 goto not_early; 5356 5357 if (!early_pfn_valid(pfn)) { 5358 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5359 /* 5360 * Skip to the pfn preceding the next valid one (or 5361 * end_pfn), such that we hit a valid pfn (or end_pfn) 5362 * on our next iteration of the loop. 5363 */ 5364 pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1; 5365 #endif 5366 continue; 5367 } 5368 if (!early_pfn_in_nid(pfn, nid)) 5369 continue; 5370 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised)) 5371 break; 5372 5373 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5374 /* 5375 * Check given memblock attribute by firmware which can affect 5376 * kernel memory layout. If zone==ZONE_MOVABLE but memory is 5377 * mirrored, it's an overlapped memmap init. skip it. 5378 */ 5379 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 5380 if (!r || pfn >= memblock_region_memory_end_pfn(r)) { 5381 for_each_memblock(memory, tmp) 5382 if (pfn < memblock_region_memory_end_pfn(tmp)) 5383 break; 5384 r = tmp; 5385 } 5386 if (pfn >= memblock_region_memory_base_pfn(r) && 5387 memblock_is_mirror(r)) { 5388 /* already initialized as NORMAL */ 5389 pfn = memblock_region_memory_end_pfn(r); 5390 continue; 5391 } 5392 } 5393 #endif 5394 5395 not_early: 5396 /* 5397 * Mark the block movable so that blocks are reserved for 5398 * movable at startup. This will force kernel allocations 5399 * to reserve their blocks rather than leaking throughout 5400 * the address space during boot when many long-lived 5401 * kernel allocations are made. 5402 * 5403 * bitmap is created for zone's valid pfn range. but memmap 5404 * can be created for invalid pages (for alignment) 5405 * check here not to call set_pageblock_migratetype() against 5406 * pfn out of zone. 5407 * 5408 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap 5409 * because this is done early in sparse_add_one_section 5410 */ 5411 if (!(pfn & (pageblock_nr_pages - 1))) { 5412 struct page *page = pfn_to_page(pfn); 5413 5414 __init_single_page(page, pfn, zone, nid, 5415 context != MEMMAP_HOTPLUG); 5416 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5417 cond_resched(); 5418 } else { 5419 __init_single_pfn(pfn, zone, nid, 5420 context != MEMMAP_HOTPLUG); 5421 } 5422 } 5423 } 5424 5425 static void __meminit zone_init_free_lists(struct zone *zone) 5426 { 5427 unsigned int order, t; 5428 for_each_migratetype_order(order, t) { 5429 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 5430 zone->free_area[order].nr_free = 0; 5431 } 5432 } 5433 5434 #ifndef __HAVE_ARCH_MEMMAP_INIT 5435 #define memmap_init(size, nid, zone, start_pfn) \ 5436 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY, NULL) 5437 #endif 5438 5439 static int zone_batchsize(struct zone *zone) 5440 { 5441 #ifdef CONFIG_MMU 5442 int batch; 5443 5444 /* 5445 * The per-cpu-pages pools are set to around 1000th of the 5446 * size of the zone. But no more than 1/2 of a meg. 5447 * 5448 * OK, so we don't know how big the cache is. So guess. 5449 */ 5450 batch = zone->managed_pages / 1024; 5451 if (batch * PAGE_SIZE > 512 * 1024) 5452 batch = (512 * 1024) / PAGE_SIZE; 5453 batch /= 4; /* We effectively *= 4 below */ 5454 if (batch < 1) 5455 batch = 1; 5456 5457 /* 5458 * Clamp the batch to a 2^n - 1 value. Having a power 5459 * of 2 value was found to be more likely to have 5460 * suboptimal cache aliasing properties in some cases. 5461 * 5462 * For example if 2 tasks are alternately allocating 5463 * batches of pages, one task can end up with a lot 5464 * of pages of one half of the possible page colors 5465 * and the other with pages of the other colors. 5466 */ 5467 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5468 5469 return batch; 5470 5471 #else 5472 /* The deferral and batching of frees should be suppressed under NOMMU 5473 * conditions. 5474 * 5475 * The problem is that NOMMU needs to be able to allocate large chunks 5476 * of contiguous memory as there's no hardware page translation to 5477 * assemble apparent contiguous memory from discontiguous pages. 5478 * 5479 * Queueing large contiguous runs of pages for batching, however, 5480 * causes the pages to actually be freed in smaller chunks. As there 5481 * can be a significant delay between the individual batches being 5482 * recycled, this leads to the once large chunks of space being 5483 * fragmented and becoming unavailable for high-order allocations. 5484 */ 5485 return 0; 5486 #endif 5487 } 5488 5489 /* 5490 * pcp->high and pcp->batch values are related and dependent on one another: 5491 * ->batch must never be higher then ->high. 5492 * The following function updates them in a safe manner without read side 5493 * locking. 5494 * 5495 * Any new users of pcp->batch and pcp->high should ensure they can cope with 5496 * those fields changing asynchronously (acording the the above rule). 5497 * 5498 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 5499 * outside of boot time (or some other assurance that no concurrent updaters 5500 * exist). 5501 */ 5502 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 5503 unsigned long batch) 5504 { 5505 /* start with a fail safe value for batch */ 5506 pcp->batch = 1; 5507 smp_wmb(); 5508 5509 /* Update high, then batch, in order */ 5510 pcp->high = high; 5511 smp_wmb(); 5512 5513 pcp->batch = batch; 5514 } 5515 5516 /* a companion to pageset_set_high() */ 5517 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 5518 { 5519 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 5520 } 5521 5522 static void pageset_init(struct per_cpu_pageset *p) 5523 { 5524 struct per_cpu_pages *pcp; 5525 int migratetype; 5526 5527 memset(p, 0, sizeof(*p)); 5528 5529 pcp = &p->pcp; 5530 pcp->count = 0; 5531 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 5532 INIT_LIST_HEAD(&pcp->lists[migratetype]); 5533 } 5534 5535 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 5536 { 5537 pageset_init(p); 5538 pageset_set_batch(p, batch); 5539 } 5540 5541 /* 5542 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 5543 * to the value high for the pageset p. 5544 */ 5545 static void pageset_set_high(struct per_cpu_pageset *p, 5546 unsigned long high) 5547 { 5548 unsigned long batch = max(1UL, high / 4); 5549 if ((high / 4) > (PAGE_SHIFT * 8)) 5550 batch = PAGE_SHIFT * 8; 5551 5552 pageset_update(&p->pcp, high, batch); 5553 } 5554 5555 static void pageset_set_high_and_batch(struct zone *zone, 5556 struct per_cpu_pageset *pcp) 5557 { 5558 if (percpu_pagelist_fraction) 5559 pageset_set_high(pcp, 5560 (zone->managed_pages / 5561 percpu_pagelist_fraction)); 5562 else 5563 pageset_set_batch(pcp, zone_batchsize(zone)); 5564 } 5565 5566 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 5567 { 5568 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 5569 5570 pageset_init(pcp); 5571 pageset_set_high_and_batch(zone, pcp); 5572 } 5573 5574 void __meminit setup_zone_pageset(struct zone *zone) 5575 { 5576 int cpu; 5577 zone->pageset = alloc_percpu(struct per_cpu_pageset); 5578 for_each_possible_cpu(cpu) 5579 zone_pageset_init(zone, cpu); 5580 } 5581 5582 /* 5583 * Allocate per cpu pagesets and initialize them. 5584 * Before this call only boot pagesets were available. 5585 */ 5586 void __init setup_per_cpu_pageset(void) 5587 { 5588 struct pglist_data *pgdat; 5589 struct zone *zone; 5590 5591 for_each_populated_zone(zone) 5592 setup_zone_pageset(zone); 5593 5594 for_each_online_pgdat(pgdat) 5595 pgdat->per_cpu_nodestats = 5596 alloc_percpu(struct per_cpu_nodestat); 5597 } 5598 5599 static __meminit void zone_pcp_init(struct zone *zone) 5600 { 5601 /* 5602 * per cpu subsystem is not up at this point. The following code 5603 * relies on the ability of the linker to provide the 5604 * offset of a (static) per cpu variable into the per cpu area. 5605 */ 5606 zone->pageset = &boot_pageset; 5607 5608 if (populated_zone(zone)) 5609 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 5610 zone->name, zone->present_pages, 5611 zone_batchsize(zone)); 5612 } 5613 5614 void __meminit init_currently_empty_zone(struct zone *zone, 5615 unsigned long zone_start_pfn, 5616 unsigned long size) 5617 { 5618 struct pglist_data *pgdat = zone->zone_pgdat; 5619 5620 pgdat->nr_zones = zone_idx(zone) + 1; 5621 5622 zone->zone_start_pfn = zone_start_pfn; 5623 5624 mminit_dprintk(MMINIT_TRACE, "memmap_init", 5625 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 5626 pgdat->node_id, 5627 (unsigned long)zone_idx(zone), 5628 zone_start_pfn, (zone_start_pfn + size)); 5629 5630 zone_init_free_lists(zone); 5631 zone->initialized = 1; 5632 } 5633 5634 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5635 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 5636 5637 /* 5638 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 5639 */ 5640 int __meminit __early_pfn_to_nid(unsigned long pfn, 5641 struct mminit_pfnnid_cache *state) 5642 { 5643 unsigned long start_pfn, end_pfn; 5644 int nid; 5645 5646 if (state->last_start <= pfn && pfn < state->last_end) 5647 return state->last_nid; 5648 5649 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 5650 if (nid != -1) { 5651 state->last_start = start_pfn; 5652 state->last_end = end_pfn; 5653 state->last_nid = nid; 5654 } 5655 5656 return nid; 5657 } 5658 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 5659 5660 /** 5661 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range 5662 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 5663 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid 5664 * 5665 * If an architecture guarantees that all ranges registered contain no holes 5666 * and may be freed, this this function may be used instead of calling 5667 * memblock_free_early_nid() manually. 5668 */ 5669 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 5670 { 5671 unsigned long start_pfn, end_pfn; 5672 int i, this_nid; 5673 5674 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 5675 start_pfn = min(start_pfn, max_low_pfn); 5676 end_pfn = min(end_pfn, max_low_pfn); 5677 5678 if (start_pfn < end_pfn) 5679 memblock_free_early_nid(PFN_PHYS(start_pfn), 5680 (end_pfn - start_pfn) << PAGE_SHIFT, 5681 this_nid); 5682 } 5683 } 5684 5685 /** 5686 * sparse_memory_present_with_active_regions - Call memory_present for each active range 5687 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 5688 * 5689 * If an architecture guarantees that all ranges registered contain no holes and may 5690 * be freed, this function may be used instead of calling memory_present() manually. 5691 */ 5692 void __init sparse_memory_present_with_active_regions(int nid) 5693 { 5694 unsigned long start_pfn, end_pfn; 5695 int i, this_nid; 5696 5697 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 5698 memory_present(this_nid, start_pfn, end_pfn); 5699 } 5700 5701 /** 5702 * get_pfn_range_for_nid - Return the start and end page frames for a node 5703 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 5704 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 5705 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 5706 * 5707 * It returns the start and end page frame of a node based on information 5708 * provided by memblock_set_node(). If called for a node 5709 * with no available memory, a warning is printed and the start and end 5710 * PFNs will be 0. 5711 */ 5712 void __meminit get_pfn_range_for_nid(unsigned int nid, 5713 unsigned long *start_pfn, unsigned long *end_pfn) 5714 { 5715 unsigned long this_start_pfn, this_end_pfn; 5716 int i; 5717 5718 *start_pfn = -1UL; 5719 *end_pfn = 0; 5720 5721 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 5722 *start_pfn = min(*start_pfn, this_start_pfn); 5723 *end_pfn = max(*end_pfn, this_end_pfn); 5724 } 5725 5726 if (*start_pfn == -1UL) 5727 *start_pfn = 0; 5728 } 5729 5730 /* 5731 * This finds a zone that can be used for ZONE_MOVABLE pages. The 5732 * assumption is made that zones within a node are ordered in monotonic 5733 * increasing memory addresses so that the "highest" populated zone is used 5734 */ 5735 static void __init find_usable_zone_for_movable(void) 5736 { 5737 int zone_index; 5738 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 5739 if (zone_index == ZONE_MOVABLE) 5740 continue; 5741 5742 if (arch_zone_highest_possible_pfn[zone_index] > 5743 arch_zone_lowest_possible_pfn[zone_index]) 5744 break; 5745 } 5746 5747 VM_BUG_ON(zone_index == -1); 5748 movable_zone = zone_index; 5749 } 5750 5751 /* 5752 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 5753 * because it is sized independent of architecture. Unlike the other zones, 5754 * the starting point for ZONE_MOVABLE is not fixed. It may be different 5755 * in each node depending on the size of each node and how evenly kernelcore 5756 * is distributed. This helper function adjusts the zone ranges 5757 * provided by the architecture for a given node by using the end of the 5758 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 5759 * zones within a node are in order of monotonic increases memory addresses 5760 */ 5761 static void __meminit adjust_zone_range_for_zone_movable(int nid, 5762 unsigned long zone_type, 5763 unsigned long node_start_pfn, 5764 unsigned long node_end_pfn, 5765 unsigned long *zone_start_pfn, 5766 unsigned long *zone_end_pfn) 5767 { 5768 /* Only adjust if ZONE_MOVABLE is on this node */ 5769 if (zone_movable_pfn[nid]) { 5770 /* Size ZONE_MOVABLE */ 5771 if (zone_type == ZONE_MOVABLE) { 5772 *zone_start_pfn = zone_movable_pfn[nid]; 5773 *zone_end_pfn = min(node_end_pfn, 5774 arch_zone_highest_possible_pfn[movable_zone]); 5775 5776 /* Adjust for ZONE_MOVABLE starting within this range */ 5777 } else if (!mirrored_kernelcore && 5778 *zone_start_pfn < zone_movable_pfn[nid] && 5779 *zone_end_pfn > zone_movable_pfn[nid]) { 5780 *zone_end_pfn = zone_movable_pfn[nid]; 5781 5782 /* Check if this whole range is within ZONE_MOVABLE */ 5783 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 5784 *zone_start_pfn = *zone_end_pfn; 5785 } 5786 } 5787 5788 /* 5789 * Return the number of pages a zone spans in a node, including holes 5790 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 5791 */ 5792 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 5793 unsigned long zone_type, 5794 unsigned long node_start_pfn, 5795 unsigned long node_end_pfn, 5796 unsigned long *zone_start_pfn, 5797 unsigned long *zone_end_pfn, 5798 unsigned long *ignored) 5799 { 5800 /* When hotadd a new node from cpu_up(), the node should be empty */ 5801 if (!node_start_pfn && !node_end_pfn) 5802 return 0; 5803 5804 /* Get the start and end of the zone */ 5805 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 5806 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 5807 adjust_zone_range_for_zone_movable(nid, zone_type, 5808 node_start_pfn, node_end_pfn, 5809 zone_start_pfn, zone_end_pfn); 5810 5811 /* Check that this node has pages within the zone's required range */ 5812 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 5813 return 0; 5814 5815 /* Move the zone boundaries inside the node if necessary */ 5816 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 5817 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 5818 5819 /* Return the spanned pages */ 5820 return *zone_end_pfn - *zone_start_pfn; 5821 } 5822 5823 /* 5824 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 5825 * then all holes in the requested range will be accounted for. 5826 */ 5827 unsigned long __meminit __absent_pages_in_range(int nid, 5828 unsigned long range_start_pfn, 5829 unsigned long range_end_pfn) 5830 { 5831 unsigned long nr_absent = range_end_pfn - range_start_pfn; 5832 unsigned long start_pfn, end_pfn; 5833 int i; 5834 5835 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 5836 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 5837 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 5838 nr_absent -= end_pfn - start_pfn; 5839 } 5840 return nr_absent; 5841 } 5842 5843 /** 5844 * absent_pages_in_range - Return number of page frames in holes within a range 5845 * @start_pfn: The start PFN to start searching for holes 5846 * @end_pfn: The end PFN to stop searching for holes 5847 * 5848 * It returns the number of pages frames in memory holes within a range. 5849 */ 5850 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 5851 unsigned long end_pfn) 5852 { 5853 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 5854 } 5855 5856 /* Return the number of page frames in holes in a zone on a node */ 5857 static unsigned long __meminit zone_absent_pages_in_node(int nid, 5858 unsigned long zone_type, 5859 unsigned long node_start_pfn, 5860 unsigned long node_end_pfn, 5861 unsigned long *ignored) 5862 { 5863 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 5864 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 5865 unsigned long zone_start_pfn, zone_end_pfn; 5866 unsigned long nr_absent; 5867 5868 /* When hotadd a new node from cpu_up(), the node should be empty */ 5869 if (!node_start_pfn && !node_end_pfn) 5870 return 0; 5871 5872 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 5873 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 5874 5875 adjust_zone_range_for_zone_movable(nid, zone_type, 5876 node_start_pfn, node_end_pfn, 5877 &zone_start_pfn, &zone_end_pfn); 5878 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 5879 5880 /* 5881 * ZONE_MOVABLE handling. 5882 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 5883 * and vice versa. 5884 */ 5885 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 5886 unsigned long start_pfn, end_pfn; 5887 struct memblock_region *r; 5888 5889 for_each_memblock(memory, r) { 5890 start_pfn = clamp(memblock_region_memory_base_pfn(r), 5891 zone_start_pfn, zone_end_pfn); 5892 end_pfn = clamp(memblock_region_memory_end_pfn(r), 5893 zone_start_pfn, zone_end_pfn); 5894 5895 if (zone_type == ZONE_MOVABLE && 5896 memblock_is_mirror(r)) 5897 nr_absent += end_pfn - start_pfn; 5898 5899 if (zone_type == ZONE_NORMAL && 5900 !memblock_is_mirror(r)) 5901 nr_absent += end_pfn - start_pfn; 5902 } 5903 } 5904 5905 return nr_absent; 5906 } 5907 5908 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5909 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 5910 unsigned long zone_type, 5911 unsigned long node_start_pfn, 5912 unsigned long node_end_pfn, 5913 unsigned long *zone_start_pfn, 5914 unsigned long *zone_end_pfn, 5915 unsigned long *zones_size) 5916 { 5917 unsigned int zone; 5918 5919 *zone_start_pfn = node_start_pfn; 5920 for (zone = 0; zone < zone_type; zone++) 5921 *zone_start_pfn += zones_size[zone]; 5922 5923 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type]; 5924 5925 return zones_size[zone_type]; 5926 } 5927 5928 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 5929 unsigned long zone_type, 5930 unsigned long node_start_pfn, 5931 unsigned long node_end_pfn, 5932 unsigned long *zholes_size) 5933 { 5934 if (!zholes_size) 5935 return 0; 5936 5937 return zholes_size[zone_type]; 5938 } 5939 5940 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5941 5942 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 5943 unsigned long node_start_pfn, 5944 unsigned long node_end_pfn, 5945 unsigned long *zones_size, 5946 unsigned long *zholes_size) 5947 { 5948 unsigned long realtotalpages = 0, totalpages = 0; 5949 enum zone_type i; 5950 5951 for (i = 0; i < MAX_NR_ZONES; i++) { 5952 struct zone *zone = pgdat->node_zones + i; 5953 unsigned long zone_start_pfn, zone_end_pfn; 5954 unsigned long size, real_size; 5955 5956 size = zone_spanned_pages_in_node(pgdat->node_id, i, 5957 node_start_pfn, 5958 node_end_pfn, 5959 &zone_start_pfn, 5960 &zone_end_pfn, 5961 zones_size); 5962 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i, 5963 node_start_pfn, node_end_pfn, 5964 zholes_size); 5965 if (size) 5966 zone->zone_start_pfn = zone_start_pfn; 5967 else 5968 zone->zone_start_pfn = 0; 5969 zone->spanned_pages = size; 5970 zone->present_pages = real_size; 5971 5972 totalpages += size; 5973 realtotalpages += real_size; 5974 } 5975 5976 pgdat->node_spanned_pages = totalpages; 5977 pgdat->node_present_pages = realtotalpages; 5978 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 5979 realtotalpages); 5980 } 5981 5982 #ifndef CONFIG_SPARSEMEM 5983 /* 5984 * Calculate the size of the zone->blockflags rounded to an unsigned long 5985 * Start by making sure zonesize is a multiple of pageblock_order by rounding 5986 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 5987 * round what is now in bits to nearest long in bits, then return it in 5988 * bytes. 5989 */ 5990 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 5991 { 5992 unsigned long usemapsize; 5993 5994 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 5995 usemapsize = roundup(zonesize, pageblock_nr_pages); 5996 usemapsize = usemapsize >> pageblock_order; 5997 usemapsize *= NR_PAGEBLOCK_BITS; 5998 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 5999 6000 return usemapsize / 8; 6001 } 6002 6003 static void __init setup_usemap(struct pglist_data *pgdat, 6004 struct zone *zone, 6005 unsigned long zone_start_pfn, 6006 unsigned long zonesize) 6007 { 6008 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 6009 zone->pageblock_flags = NULL; 6010 if (usemapsize) 6011 zone->pageblock_flags = 6012 memblock_virt_alloc_node_nopanic(usemapsize, 6013 pgdat->node_id); 6014 } 6015 #else 6016 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 6017 unsigned long zone_start_pfn, unsigned long zonesize) {} 6018 #endif /* CONFIG_SPARSEMEM */ 6019 6020 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 6021 6022 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 6023 void __paginginit set_pageblock_order(void) 6024 { 6025 unsigned int order; 6026 6027 /* Check that pageblock_nr_pages has not already been setup */ 6028 if (pageblock_order) 6029 return; 6030 6031 if (HPAGE_SHIFT > PAGE_SHIFT) 6032 order = HUGETLB_PAGE_ORDER; 6033 else 6034 order = MAX_ORDER - 1; 6035 6036 /* 6037 * Assume the largest contiguous order of interest is a huge page. 6038 * This value may be variable depending on boot parameters on IA64 and 6039 * powerpc. 6040 */ 6041 pageblock_order = order; 6042 } 6043 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6044 6045 /* 6046 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 6047 * is unused as pageblock_order is set at compile-time. See 6048 * include/linux/pageblock-flags.h for the values of pageblock_order based on 6049 * the kernel config 6050 */ 6051 void __paginginit set_pageblock_order(void) 6052 { 6053 } 6054 6055 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6056 6057 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages, 6058 unsigned long present_pages) 6059 { 6060 unsigned long pages = spanned_pages; 6061 6062 /* 6063 * Provide a more accurate estimation if there are holes within 6064 * the zone and SPARSEMEM is in use. If there are holes within the 6065 * zone, each populated memory region may cost us one or two extra 6066 * memmap pages due to alignment because memmap pages for each 6067 * populated regions may not be naturally aligned on page boundary. 6068 * So the (present_pages >> 4) heuristic is a tradeoff for that. 6069 */ 6070 if (spanned_pages > present_pages + (present_pages >> 4) && 6071 IS_ENABLED(CONFIG_SPARSEMEM)) 6072 pages = present_pages; 6073 6074 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 6075 } 6076 6077 /* 6078 * Set up the zone data structures: 6079 * - mark all pages reserved 6080 * - mark all memory queues empty 6081 * - clear the memory bitmaps 6082 * 6083 * NOTE: pgdat should get zeroed by caller. 6084 */ 6085 static void __paginginit free_area_init_core(struct pglist_data *pgdat) 6086 { 6087 enum zone_type j; 6088 int nid = pgdat->node_id; 6089 6090 pgdat_resize_init(pgdat); 6091 #ifdef CONFIG_NUMA_BALANCING 6092 spin_lock_init(&pgdat->numabalancing_migrate_lock); 6093 pgdat->numabalancing_migrate_nr_pages = 0; 6094 pgdat->numabalancing_migrate_next_window = jiffies; 6095 #endif 6096 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6097 spin_lock_init(&pgdat->split_queue_lock); 6098 INIT_LIST_HEAD(&pgdat->split_queue); 6099 pgdat->split_queue_len = 0; 6100 #endif 6101 init_waitqueue_head(&pgdat->kswapd_wait); 6102 init_waitqueue_head(&pgdat->pfmemalloc_wait); 6103 #ifdef CONFIG_COMPACTION 6104 init_waitqueue_head(&pgdat->kcompactd_wait); 6105 #endif 6106 pgdat_page_ext_init(pgdat); 6107 spin_lock_init(&pgdat->lru_lock); 6108 lruvec_init(node_lruvec(pgdat)); 6109 6110 pgdat->per_cpu_nodestats = &boot_nodestats; 6111 6112 for (j = 0; j < MAX_NR_ZONES; j++) { 6113 struct zone *zone = pgdat->node_zones + j; 6114 unsigned long size, realsize, freesize, memmap_pages; 6115 unsigned long zone_start_pfn = zone->zone_start_pfn; 6116 6117 size = zone->spanned_pages; 6118 realsize = freesize = zone->present_pages; 6119 6120 /* 6121 * Adjust freesize so that it accounts for how much memory 6122 * is used by this zone for memmap. This affects the watermark 6123 * and per-cpu initialisations 6124 */ 6125 memmap_pages = calc_memmap_size(size, realsize); 6126 if (!is_highmem_idx(j)) { 6127 if (freesize >= memmap_pages) { 6128 freesize -= memmap_pages; 6129 if (memmap_pages) 6130 printk(KERN_DEBUG 6131 " %s zone: %lu pages used for memmap\n", 6132 zone_names[j], memmap_pages); 6133 } else 6134 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n", 6135 zone_names[j], memmap_pages, freesize); 6136 } 6137 6138 /* Account for reserved pages */ 6139 if (j == 0 && freesize > dma_reserve) { 6140 freesize -= dma_reserve; 6141 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 6142 zone_names[0], dma_reserve); 6143 } 6144 6145 if (!is_highmem_idx(j)) 6146 nr_kernel_pages += freesize; 6147 /* Charge for highmem memmap if there are enough kernel pages */ 6148 else if (nr_kernel_pages > memmap_pages * 2) 6149 nr_kernel_pages -= memmap_pages; 6150 nr_all_pages += freesize; 6151 6152 /* 6153 * Set an approximate value for lowmem here, it will be adjusted 6154 * when the bootmem allocator frees pages into the buddy system. 6155 * And all highmem pages will be managed by the buddy system. 6156 */ 6157 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize; 6158 #ifdef CONFIG_NUMA 6159 zone->node = nid; 6160 #endif 6161 zone->name = zone_names[j]; 6162 zone->zone_pgdat = pgdat; 6163 spin_lock_init(&zone->lock); 6164 zone_seqlock_init(zone); 6165 zone_pcp_init(zone); 6166 6167 if (!size) 6168 continue; 6169 6170 set_pageblock_order(); 6171 setup_usemap(pgdat, zone, zone_start_pfn, size); 6172 init_currently_empty_zone(zone, zone_start_pfn, size); 6173 memmap_init(size, nid, j, zone_start_pfn); 6174 } 6175 } 6176 6177 #ifdef CONFIG_FLAT_NODE_MEM_MAP 6178 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) 6179 { 6180 unsigned long __maybe_unused start = 0; 6181 unsigned long __maybe_unused offset = 0; 6182 6183 /* Skip empty nodes */ 6184 if (!pgdat->node_spanned_pages) 6185 return; 6186 6187 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 6188 offset = pgdat->node_start_pfn - start; 6189 /* ia64 gets its own node_mem_map, before this, without bootmem */ 6190 if (!pgdat->node_mem_map) { 6191 unsigned long size, end; 6192 struct page *map; 6193 6194 /* 6195 * The zone's endpoints aren't required to be MAX_ORDER 6196 * aligned but the node_mem_map endpoints must be in order 6197 * for the buddy allocator to function correctly. 6198 */ 6199 end = pgdat_end_pfn(pgdat); 6200 end = ALIGN(end, MAX_ORDER_NR_PAGES); 6201 size = (end - start) * sizeof(struct page); 6202 map = alloc_remap(pgdat->node_id, size); 6203 if (!map) 6204 map = memblock_virt_alloc_node_nopanic(size, 6205 pgdat->node_id); 6206 pgdat->node_mem_map = map + offset; 6207 } 6208 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 6209 __func__, pgdat->node_id, (unsigned long)pgdat, 6210 (unsigned long)pgdat->node_mem_map); 6211 #ifndef CONFIG_NEED_MULTIPLE_NODES 6212 /* 6213 * With no DISCONTIG, the global mem_map is just set as node 0's 6214 */ 6215 if (pgdat == NODE_DATA(0)) { 6216 mem_map = NODE_DATA(0)->node_mem_map; 6217 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM) 6218 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 6219 mem_map -= offset; 6220 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6221 } 6222 #endif 6223 } 6224 #else 6225 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { } 6226 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 6227 6228 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 6229 unsigned long node_start_pfn, unsigned long *zholes_size) 6230 { 6231 pg_data_t *pgdat = NODE_DATA(nid); 6232 unsigned long start_pfn = 0; 6233 unsigned long end_pfn = 0; 6234 6235 /* pg_data_t should be reset to zero when it's allocated */ 6236 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx); 6237 6238 pgdat->node_id = nid; 6239 pgdat->node_start_pfn = node_start_pfn; 6240 pgdat->per_cpu_nodestats = NULL; 6241 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6242 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 6243 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 6244 (u64)start_pfn << PAGE_SHIFT, 6245 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 6246 #else 6247 start_pfn = node_start_pfn; 6248 #endif 6249 calculate_node_totalpages(pgdat, start_pfn, end_pfn, 6250 zones_size, zholes_size); 6251 6252 alloc_node_mem_map(pgdat); 6253 6254 reset_deferred_meminit(pgdat); 6255 free_area_init_core(pgdat); 6256 } 6257 6258 #ifdef CONFIG_HAVE_MEMBLOCK 6259 /* 6260 * Only struct pages that are backed by physical memory are zeroed and 6261 * initialized by going through __init_single_page(). But, there are some 6262 * struct pages which are reserved in memblock allocator and their fields 6263 * may be accessed (for example page_to_pfn() on some configuration accesses 6264 * flags). We must explicitly zero those struct pages. 6265 */ 6266 void __paginginit zero_resv_unavail(void) 6267 { 6268 phys_addr_t start, end; 6269 unsigned long pfn; 6270 u64 i, pgcnt; 6271 6272 /* 6273 * Loop through ranges that are reserved, but do not have reported 6274 * physical memory backing. 6275 */ 6276 pgcnt = 0; 6277 for_each_resv_unavail_range(i, &start, &end) { 6278 for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) { 6279 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) 6280 continue; 6281 mm_zero_struct_page(pfn_to_page(pfn)); 6282 pgcnt++; 6283 } 6284 } 6285 6286 /* 6287 * Struct pages that do not have backing memory. This could be because 6288 * firmware is using some of this memory, or for some other reasons. 6289 * Once memblock is changed so such behaviour is not allowed: i.e. 6290 * list of "reserved" memory must be a subset of list of "memory", then 6291 * this code can be removed. 6292 */ 6293 if (pgcnt) 6294 pr_info("Reserved but unavailable: %lld pages", pgcnt); 6295 } 6296 #endif /* CONFIG_HAVE_MEMBLOCK */ 6297 6298 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6299 6300 #if MAX_NUMNODES > 1 6301 /* 6302 * Figure out the number of possible node ids. 6303 */ 6304 void __init setup_nr_node_ids(void) 6305 { 6306 unsigned int highest; 6307 6308 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 6309 nr_node_ids = highest + 1; 6310 } 6311 #endif 6312 6313 /** 6314 * node_map_pfn_alignment - determine the maximum internode alignment 6315 * 6316 * This function should be called after node map is populated and sorted. 6317 * It calculates the maximum power of two alignment which can distinguish 6318 * all the nodes. 6319 * 6320 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 6321 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 6322 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 6323 * shifted, 1GiB is enough and this function will indicate so. 6324 * 6325 * This is used to test whether pfn -> nid mapping of the chosen memory 6326 * model has fine enough granularity to avoid incorrect mapping for the 6327 * populated node map. 6328 * 6329 * Returns the determined alignment in pfn's. 0 if there is no alignment 6330 * requirement (single node). 6331 */ 6332 unsigned long __init node_map_pfn_alignment(void) 6333 { 6334 unsigned long accl_mask = 0, last_end = 0; 6335 unsigned long start, end, mask; 6336 int last_nid = -1; 6337 int i, nid; 6338 6339 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 6340 if (!start || last_nid < 0 || last_nid == nid) { 6341 last_nid = nid; 6342 last_end = end; 6343 continue; 6344 } 6345 6346 /* 6347 * Start with a mask granular enough to pin-point to the 6348 * start pfn and tick off bits one-by-one until it becomes 6349 * too coarse to separate the current node from the last. 6350 */ 6351 mask = ~((1 << __ffs(start)) - 1); 6352 while (mask && last_end <= (start & (mask << 1))) 6353 mask <<= 1; 6354 6355 /* accumulate all internode masks */ 6356 accl_mask |= mask; 6357 } 6358 6359 /* convert mask to number of pages */ 6360 return ~accl_mask + 1; 6361 } 6362 6363 /* Find the lowest pfn for a node */ 6364 static unsigned long __init find_min_pfn_for_node(int nid) 6365 { 6366 unsigned long min_pfn = ULONG_MAX; 6367 unsigned long start_pfn; 6368 int i; 6369 6370 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 6371 min_pfn = min(min_pfn, start_pfn); 6372 6373 if (min_pfn == ULONG_MAX) { 6374 pr_warn("Could not find start_pfn for node %d\n", nid); 6375 return 0; 6376 } 6377 6378 return min_pfn; 6379 } 6380 6381 /** 6382 * find_min_pfn_with_active_regions - Find the minimum PFN registered 6383 * 6384 * It returns the minimum PFN based on information provided via 6385 * memblock_set_node(). 6386 */ 6387 unsigned long __init find_min_pfn_with_active_regions(void) 6388 { 6389 return find_min_pfn_for_node(MAX_NUMNODES); 6390 } 6391 6392 /* 6393 * early_calculate_totalpages() 6394 * Sum pages in active regions for movable zone. 6395 * Populate N_MEMORY for calculating usable_nodes. 6396 */ 6397 static unsigned long __init early_calculate_totalpages(void) 6398 { 6399 unsigned long totalpages = 0; 6400 unsigned long start_pfn, end_pfn; 6401 int i, nid; 6402 6403 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 6404 unsigned long pages = end_pfn - start_pfn; 6405 6406 totalpages += pages; 6407 if (pages) 6408 node_set_state(nid, N_MEMORY); 6409 } 6410 return totalpages; 6411 } 6412 6413 /* 6414 * Find the PFN the Movable zone begins in each node. Kernel memory 6415 * is spread evenly between nodes as long as the nodes have enough 6416 * memory. When they don't, some nodes will have more kernelcore than 6417 * others 6418 */ 6419 static void __init find_zone_movable_pfns_for_nodes(void) 6420 { 6421 int i, nid; 6422 unsigned long usable_startpfn; 6423 unsigned long kernelcore_node, kernelcore_remaining; 6424 /* save the state before borrow the nodemask */ 6425 nodemask_t saved_node_state = node_states[N_MEMORY]; 6426 unsigned long totalpages = early_calculate_totalpages(); 6427 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 6428 struct memblock_region *r; 6429 6430 /* Need to find movable_zone earlier when movable_node is specified. */ 6431 find_usable_zone_for_movable(); 6432 6433 /* 6434 * If movable_node is specified, ignore kernelcore and movablecore 6435 * options. 6436 */ 6437 if (movable_node_is_enabled()) { 6438 for_each_memblock(memory, r) { 6439 if (!memblock_is_hotpluggable(r)) 6440 continue; 6441 6442 nid = r->nid; 6443 6444 usable_startpfn = PFN_DOWN(r->base); 6445 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 6446 min(usable_startpfn, zone_movable_pfn[nid]) : 6447 usable_startpfn; 6448 } 6449 6450 goto out2; 6451 } 6452 6453 /* 6454 * If kernelcore=mirror is specified, ignore movablecore option 6455 */ 6456 if (mirrored_kernelcore) { 6457 bool mem_below_4gb_not_mirrored = false; 6458 6459 for_each_memblock(memory, r) { 6460 if (memblock_is_mirror(r)) 6461 continue; 6462 6463 nid = r->nid; 6464 6465 usable_startpfn = memblock_region_memory_base_pfn(r); 6466 6467 if (usable_startpfn < 0x100000) { 6468 mem_below_4gb_not_mirrored = true; 6469 continue; 6470 } 6471 6472 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 6473 min(usable_startpfn, zone_movable_pfn[nid]) : 6474 usable_startpfn; 6475 } 6476 6477 if (mem_below_4gb_not_mirrored) 6478 pr_warn("This configuration results in unmirrored kernel memory."); 6479 6480 goto out2; 6481 } 6482 6483 /* 6484 * If movablecore=nn[KMG] was specified, calculate what size of 6485 * kernelcore that corresponds so that memory usable for 6486 * any allocation type is evenly spread. If both kernelcore 6487 * and movablecore are specified, then the value of kernelcore 6488 * will be used for required_kernelcore if it's greater than 6489 * what movablecore would have allowed. 6490 */ 6491 if (required_movablecore) { 6492 unsigned long corepages; 6493 6494 /* 6495 * Round-up so that ZONE_MOVABLE is at least as large as what 6496 * was requested by the user 6497 */ 6498 required_movablecore = 6499 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 6500 required_movablecore = min(totalpages, required_movablecore); 6501 corepages = totalpages - required_movablecore; 6502 6503 required_kernelcore = max(required_kernelcore, corepages); 6504 } 6505 6506 /* 6507 * If kernelcore was not specified or kernelcore size is larger 6508 * than totalpages, there is no ZONE_MOVABLE. 6509 */ 6510 if (!required_kernelcore || required_kernelcore >= totalpages) 6511 goto out; 6512 6513 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 6514 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 6515 6516 restart: 6517 /* Spread kernelcore memory as evenly as possible throughout nodes */ 6518 kernelcore_node = required_kernelcore / usable_nodes; 6519 for_each_node_state(nid, N_MEMORY) { 6520 unsigned long start_pfn, end_pfn; 6521 6522 /* 6523 * Recalculate kernelcore_node if the division per node 6524 * now exceeds what is necessary to satisfy the requested 6525 * amount of memory for the kernel 6526 */ 6527 if (required_kernelcore < kernelcore_node) 6528 kernelcore_node = required_kernelcore / usable_nodes; 6529 6530 /* 6531 * As the map is walked, we track how much memory is usable 6532 * by the kernel using kernelcore_remaining. When it is 6533 * 0, the rest of the node is usable by ZONE_MOVABLE 6534 */ 6535 kernelcore_remaining = kernelcore_node; 6536 6537 /* Go through each range of PFNs within this node */ 6538 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6539 unsigned long size_pages; 6540 6541 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 6542 if (start_pfn >= end_pfn) 6543 continue; 6544 6545 /* Account for what is only usable for kernelcore */ 6546 if (start_pfn < usable_startpfn) { 6547 unsigned long kernel_pages; 6548 kernel_pages = min(end_pfn, usable_startpfn) 6549 - start_pfn; 6550 6551 kernelcore_remaining -= min(kernel_pages, 6552 kernelcore_remaining); 6553 required_kernelcore -= min(kernel_pages, 6554 required_kernelcore); 6555 6556 /* Continue if range is now fully accounted */ 6557 if (end_pfn <= usable_startpfn) { 6558 6559 /* 6560 * Push zone_movable_pfn to the end so 6561 * that if we have to rebalance 6562 * kernelcore across nodes, we will 6563 * not double account here 6564 */ 6565 zone_movable_pfn[nid] = end_pfn; 6566 continue; 6567 } 6568 start_pfn = usable_startpfn; 6569 } 6570 6571 /* 6572 * The usable PFN range for ZONE_MOVABLE is from 6573 * start_pfn->end_pfn. Calculate size_pages as the 6574 * number of pages used as kernelcore 6575 */ 6576 size_pages = end_pfn - start_pfn; 6577 if (size_pages > kernelcore_remaining) 6578 size_pages = kernelcore_remaining; 6579 zone_movable_pfn[nid] = start_pfn + size_pages; 6580 6581 /* 6582 * Some kernelcore has been met, update counts and 6583 * break if the kernelcore for this node has been 6584 * satisfied 6585 */ 6586 required_kernelcore -= min(required_kernelcore, 6587 size_pages); 6588 kernelcore_remaining -= size_pages; 6589 if (!kernelcore_remaining) 6590 break; 6591 } 6592 } 6593 6594 /* 6595 * If there is still required_kernelcore, we do another pass with one 6596 * less node in the count. This will push zone_movable_pfn[nid] further 6597 * along on the nodes that still have memory until kernelcore is 6598 * satisfied 6599 */ 6600 usable_nodes--; 6601 if (usable_nodes && required_kernelcore > usable_nodes) 6602 goto restart; 6603 6604 out2: 6605 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 6606 for (nid = 0; nid < MAX_NUMNODES; nid++) 6607 zone_movable_pfn[nid] = 6608 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 6609 6610 out: 6611 /* restore the node_state */ 6612 node_states[N_MEMORY] = saved_node_state; 6613 } 6614 6615 /* Any regular or high memory on that node ? */ 6616 static void check_for_memory(pg_data_t *pgdat, int nid) 6617 { 6618 enum zone_type zone_type; 6619 6620 if (N_MEMORY == N_NORMAL_MEMORY) 6621 return; 6622 6623 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 6624 struct zone *zone = &pgdat->node_zones[zone_type]; 6625 if (populated_zone(zone)) { 6626 node_set_state(nid, N_HIGH_MEMORY); 6627 if (N_NORMAL_MEMORY != N_HIGH_MEMORY && 6628 zone_type <= ZONE_NORMAL) 6629 node_set_state(nid, N_NORMAL_MEMORY); 6630 break; 6631 } 6632 } 6633 } 6634 6635 /** 6636 * free_area_init_nodes - Initialise all pg_data_t and zone data 6637 * @max_zone_pfn: an array of max PFNs for each zone 6638 * 6639 * This will call free_area_init_node() for each active node in the system. 6640 * Using the page ranges provided by memblock_set_node(), the size of each 6641 * zone in each node and their holes is calculated. If the maximum PFN 6642 * between two adjacent zones match, it is assumed that the zone is empty. 6643 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 6644 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 6645 * starts where the previous one ended. For example, ZONE_DMA32 starts 6646 * at arch_max_dma_pfn. 6647 */ 6648 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 6649 { 6650 unsigned long start_pfn, end_pfn; 6651 int i, nid; 6652 6653 /* Record where the zone boundaries are */ 6654 memset(arch_zone_lowest_possible_pfn, 0, 6655 sizeof(arch_zone_lowest_possible_pfn)); 6656 memset(arch_zone_highest_possible_pfn, 0, 6657 sizeof(arch_zone_highest_possible_pfn)); 6658 6659 start_pfn = find_min_pfn_with_active_regions(); 6660 6661 for (i = 0; i < MAX_NR_ZONES; i++) { 6662 if (i == ZONE_MOVABLE) 6663 continue; 6664 6665 end_pfn = max(max_zone_pfn[i], start_pfn); 6666 arch_zone_lowest_possible_pfn[i] = start_pfn; 6667 arch_zone_highest_possible_pfn[i] = end_pfn; 6668 6669 start_pfn = end_pfn; 6670 } 6671 6672 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 6673 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 6674 find_zone_movable_pfns_for_nodes(); 6675 6676 /* Print out the zone ranges */ 6677 pr_info("Zone ranges:\n"); 6678 for (i = 0; i < MAX_NR_ZONES; i++) { 6679 if (i == ZONE_MOVABLE) 6680 continue; 6681 pr_info(" %-8s ", zone_names[i]); 6682 if (arch_zone_lowest_possible_pfn[i] == 6683 arch_zone_highest_possible_pfn[i]) 6684 pr_cont("empty\n"); 6685 else 6686 pr_cont("[mem %#018Lx-%#018Lx]\n", 6687 (u64)arch_zone_lowest_possible_pfn[i] 6688 << PAGE_SHIFT, 6689 ((u64)arch_zone_highest_possible_pfn[i] 6690 << PAGE_SHIFT) - 1); 6691 } 6692 6693 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 6694 pr_info("Movable zone start for each node\n"); 6695 for (i = 0; i < MAX_NUMNODES; i++) { 6696 if (zone_movable_pfn[i]) 6697 pr_info(" Node %d: %#018Lx\n", i, 6698 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 6699 } 6700 6701 /* Print out the early node map */ 6702 pr_info("Early memory node ranges\n"); 6703 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 6704 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 6705 (u64)start_pfn << PAGE_SHIFT, 6706 ((u64)end_pfn << PAGE_SHIFT) - 1); 6707 6708 /* Initialise every node */ 6709 mminit_verify_pageflags_layout(); 6710 setup_nr_node_ids(); 6711 for_each_online_node(nid) { 6712 pg_data_t *pgdat = NODE_DATA(nid); 6713 free_area_init_node(nid, NULL, 6714 find_min_pfn_for_node(nid), NULL); 6715 6716 /* Any memory on that node */ 6717 if (pgdat->node_present_pages) 6718 node_set_state(nid, N_MEMORY); 6719 check_for_memory(pgdat, nid); 6720 } 6721 zero_resv_unavail(); 6722 } 6723 6724 static int __init cmdline_parse_core(char *p, unsigned long *core) 6725 { 6726 unsigned long long coremem; 6727 if (!p) 6728 return -EINVAL; 6729 6730 coremem = memparse(p, &p); 6731 *core = coremem >> PAGE_SHIFT; 6732 6733 /* Paranoid check that UL is enough for the coremem value */ 6734 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 6735 6736 return 0; 6737 } 6738 6739 /* 6740 * kernelcore=size sets the amount of memory for use for allocations that 6741 * cannot be reclaimed or migrated. 6742 */ 6743 static int __init cmdline_parse_kernelcore(char *p) 6744 { 6745 /* parse kernelcore=mirror */ 6746 if (parse_option_str(p, "mirror")) { 6747 mirrored_kernelcore = true; 6748 return 0; 6749 } 6750 6751 return cmdline_parse_core(p, &required_kernelcore); 6752 } 6753 6754 /* 6755 * movablecore=size sets the amount of memory for use for allocations that 6756 * can be reclaimed or migrated. 6757 */ 6758 static int __init cmdline_parse_movablecore(char *p) 6759 { 6760 return cmdline_parse_core(p, &required_movablecore); 6761 } 6762 6763 early_param("kernelcore", cmdline_parse_kernelcore); 6764 early_param("movablecore", cmdline_parse_movablecore); 6765 6766 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6767 6768 void adjust_managed_page_count(struct page *page, long count) 6769 { 6770 spin_lock(&managed_page_count_lock); 6771 page_zone(page)->managed_pages += count; 6772 totalram_pages += count; 6773 #ifdef CONFIG_HIGHMEM 6774 if (PageHighMem(page)) 6775 totalhigh_pages += count; 6776 #endif 6777 spin_unlock(&managed_page_count_lock); 6778 } 6779 EXPORT_SYMBOL(adjust_managed_page_count); 6780 6781 unsigned long free_reserved_area(void *start, void *end, int poison, char *s) 6782 { 6783 void *pos; 6784 unsigned long pages = 0; 6785 6786 start = (void *)PAGE_ALIGN((unsigned long)start); 6787 end = (void *)((unsigned long)end & PAGE_MASK); 6788 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 6789 if ((unsigned int)poison <= 0xFF) 6790 memset(pos, poison, PAGE_SIZE); 6791 free_reserved_page(virt_to_page(pos)); 6792 } 6793 6794 if (pages && s) 6795 pr_info("Freeing %s memory: %ldK\n", 6796 s, pages << (PAGE_SHIFT - 10)); 6797 6798 return pages; 6799 } 6800 EXPORT_SYMBOL(free_reserved_area); 6801 6802 #ifdef CONFIG_HIGHMEM 6803 void free_highmem_page(struct page *page) 6804 { 6805 __free_reserved_page(page); 6806 totalram_pages++; 6807 page_zone(page)->managed_pages++; 6808 totalhigh_pages++; 6809 } 6810 #endif 6811 6812 6813 void __init mem_init_print_info(const char *str) 6814 { 6815 unsigned long physpages, codesize, datasize, rosize, bss_size; 6816 unsigned long init_code_size, init_data_size; 6817 6818 physpages = get_num_physpages(); 6819 codesize = _etext - _stext; 6820 datasize = _edata - _sdata; 6821 rosize = __end_rodata - __start_rodata; 6822 bss_size = __bss_stop - __bss_start; 6823 init_data_size = __init_end - __init_begin; 6824 init_code_size = _einittext - _sinittext; 6825 6826 /* 6827 * Detect special cases and adjust section sizes accordingly: 6828 * 1) .init.* may be embedded into .data sections 6829 * 2) .init.text.* may be out of [__init_begin, __init_end], 6830 * please refer to arch/tile/kernel/vmlinux.lds.S. 6831 * 3) .rodata.* may be embedded into .text or .data sections. 6832 */ 6833 #define adj_init_size(start, end, size, pos, adj) \ 6834 do { \ 6835 if (start <= pos && pos < end && size > adj) \ 6836 size -= adj; \ 6837 } while (0) 6838 6839 adj_init_size(__init_begin, __init_end, init_data_size, 6840 _sinittext, init_code_size); 6841 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 6842 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 6843 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 6844 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 6845 6846 #undef adj_init_size 6847 6848 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 6849 #ifdef CONFIG_HIGHMEM 6850 ", %luK highmem" 6851 #endif 6852 "%s%s)\n", 6853 nr_free_pages() << (PAGE_SHIFT - 10), 6854 physpages << (PAGE_SHIFT - 10), 6855 codesize >> 10, datasize >> 10, rosize >> 10, 6856 (init_data_size + init_code_size) >> 10, bss_size >> 10, 6857 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10), 6858 totalcma_pages << (PAGE_SHIFT - 10), 6859 #ifdef CONFIG_HIGHMEM 6860 totalhigh_pages << (PAGE_SHIFT - 10), 6861 #endif 6862 str ? ", " : "", str ? str : ""); 6863 } 6864 6865 /** 6866 * set_dma_reserve - set the specified number of pages reserved in the first zone 6867 * @new_dma_reserve: The number of pages to mark reserved 6868 * 6869 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 6870 * In the DMA zone, a significant percentage may be consumed by kernel image 6871 * and other unfreeable allocations which can skew the watermarks badly. This 6872 * function may optionally be used to account for unfreeable pages in the 6873 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 6874 * smaller per-cpu batchsize. 6875 */ 6876 void __init set_dma_reserve(unsigned long new_dma_reserve) 6877 { 6878 dma_reserve = new_dma_reserve; 6879 } 6880 6881 void __init free_area_init(unsigned long *zones_size) 6882 { 6883 free_area_init_node(0, zones_size, 6884 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 6885 zero_resv_unavail(); 6886 } 6887 6888 static int page_alloc_cpu_dead(unsigned int cpu) 6889 { 6890 6891 lru_add_drain_cpu(cpu); 6892 drain_pages(cpu); 6893 6894 /* 6895 * Spill the event counters of the dead processor 6896 * into the current processors event counters. 6897 * This artificially elevates the count of the current 6898 * processor. 6899 */ 6900 vm_events_fold_cpu(cpu); 6901 6902 /* 6903 * Zero the differential counters of the dead processor 6904 * so that the vm statistics are consistent. 6905 * 6906 * This is only okay since the processor is dead and cannot 6907 * race with what we are doing. 6908 */ 6909 cpu_vm_stats_fold(cpu); 6910 return 0; 6911 } 6912 6913 void __init page_alloc_init(void) 6914 { 6915 int ret; 6916 6917 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD, 6918 "mm/page_alloc:dead", NULL, 6919 page_alloc_cpu_dead); 6920 WARN_ON(ret < 0); 6921 } 6922 6923 /* 6924 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 6925 * or min_free_kbytes changes. 6926 */ 6927 static void calculate_totalreserve_pages(void) 6928 { 6929 struct pglist_data *pgdat; 6930 unsigned long reserve_pages = 0; 6931 enum zone_type i, j; 6932 6933 for_each_online_pgdat(pgdat) { 6934 6935 pgdat->totalreserve_pages = 0; 6936 6937 for (i = 0; i < MAX_NR_ZONES; i++) { 6938 struct zone *zone = pgdat->node_zones + i; 6939 long max = 0; 6940 6941 /* Find valid and maximum lowmem_reserve in the zone */ 6942 for (j = i; j < MAX_NR_ZONES; j++) { 6943 if (zone->lowmem_reserve[j] > max) 6944 max = zone->lowmem_reserve[j]; 6945 } 6946 6947 /* we treat the high watermark as reserved pages. */ 6948 max += high_wmark_pages(zone); 6949 6950 if (max > zone->managed_pages) 6951 max = zone->managed_pages; 6952 6953 pgdat->totalreserve_pages += max; 6954 6955 reserve_pages += max; 6956 } 6957 } 6958 totalreserve_pages = reserve_pages; 6959 } 6960 6961 /* 6962 * setup_per_zone_lowmem_reserve - called whenever 6963 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 6964 * has a correct pages reserved value, so an adequate number of 6965 * pages are left in the zone after a successful __alloc_pages(). 6966 */ 6967 static void setup_per_zone_lowmem_reserve(void) 6968 { 6969 struct pglist_data *pgdat; 6970 enum zone_type j, idx; 6971 6972 for_each_online_pgdat(pgdat) { 6973 for (j = 0; j < MAX_NR_ZONES; j++) { 6974 struct zone *zone = pgdat->node_zones + j; 6975 unsigned long managed_pages = zone->managed_pages; 6976 6977 zone->lowmem_reserve[j] = 0; 6978 6979 idx = j; 6980 while (idx) { 6981 struct zone *lower_zone; 6982 6983 idx--; 6984 6985 if (sysctl_lowmem_reserve_ratio[idx] < 1) 6986 sysctl_lowmem_reserve_ratio[idx] = 1; 6987 6988 lower_zone = pgdat->node_zones + idx; 6989 lower_zone->lowmem_reserve[j] = managed_pages / 6990 sysctl_lowmem_reserve_ratio[idx]; 6991 managed_pages += lower_zone->managed_pages; 6992 } 6993 } 6994 } 6995 6996 /* update totalreserve_pages */ 6997 calculate_totalreserve_pages(); 6998 } 6999 7000 static void __setup_per_zone_wmarks(void) 7001 { 7002 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 7003 unsigned long lowmem_pages = 0; 7004 struct zone *zone; 7005 unsigned long flags; 7006 7007 /* Calculate total number of !ZONE_HIGHMEM pages */ 7008 for_each_zone(zone) { 7009 if (!is_highmem(zone)) 7010 lowmem_pages += zone->managed_pages; 7011 } 7012 7013 for_each_zone(zone) { 7014 u64 tmp; 7015 7016 spin_lock_irqsave(&zone->lock, flags); 7017 tmp = (u64)pages_min * zone->managed_pages; 7018 do_div(tmp, lowmem_pages); 7019 if (is_highmem(zone)) { 7020 /* 7021 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 7022 * need highmem pages, so cap pages_min to a small 7023 * value here. 7024 * 7025 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 7026 * deltas control asynch page reclaim, and so should 7027 * not be capped for highmem. 7028 */ 7029 unsigned long min_pages; 7030 7031 min_pages = zone->managed_pages / 1024; 7032 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 7033 zone->watermark[WMARK_MIN] = min_pages; 7034 } else { 7035 /* 7036 * If it's a lowmem zone, reserve a number of pages 7037 * proportionate to the zone's size. 7038 */ 7039 zone->watermark[WMARK_MIN] = tmp; 7040 } 7041 7042 /* 7043 * Set the kswapd watermarks distance according to the 7044 * scale factor in proportion to available memory, but 7045 * ensure a minimum size on small systems. 7046 */ 7047 tmp = max_t(u64, tmp >> 2, 7048 mult_frac(zone->managed_pages, 7049 watermark_scale_factor, 10000)); 7050 7051 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 7052 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; 7053 7054 spin_unlock_irqrestore(&zone->lock, flags); 7055 } 7056 7057 /* update totalreserve_pages */ 7058 calculate_totalreserve_pages(); 7059 } 7060 7061 /** 7062 * setup_per_zone_wmarks - called when min_free_kbytes changes 7063 * or when memory is hot-{added|removed} 7064 * 7065 * Ensures that the watermark[min,low,high] values for each zone are set 7066 * correctly with respect to min_free_kbytes. 7067 */ 7068 void setup_per_zone_wmarks(void) 7069 { 7070 static DEFINE_SPINLOCK(lock); 7071 7072 spin_lock(&lock); 7073 __setup_per_zone_wmarks(); 7074 spin_unlock(&lock); 7075 } 7076 7077 /* 7078 * Initialise min_free_kbytes. 7079 * 7080 * For small machines we want it small (128k min). For large machines 7081 * we want it large (64MB max). But it is not linear, because network 7082 * bandwidth does not increase linearly with machine size. We use 7083 * 7084 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 7085 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 7086 * 7087 * which yields 7088 * 7089 * 16MB: 512k 7090 * 32MB: 724k 7091 * 64MB: 1024k 7092 * 128MB: 1448k 7093 * 256MB: 2048k 7094 * 512MB: 2896k 7095 * 1024MB: 4096k 7096 * 2048MB: 5792k 7097 * 4096MB: 8192k 7098 * 8192MB: 11584k 7099 * 16384MB: 16384k 7100 */ 7101 int __meminit init_per_zone_wmark_min(void) 7102 { 7103 unsigned long lowmem_kbytes; 7104 int new_min_free_kbytes; 7105 7106 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 7107 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 7108 7109 if (new_min_free_kbytes > user_min_free_kbytes) { 7110 min_free_kbytes = new_min_free_kbytes; 7111 if (min_free_kbytes < 128) 7112 min_free_kbytes = 128; 7113 if (min_free_kbytes > 65536) 7114 min_free_kbytes = 65536; 7115 } else { 7116 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 7117 new_min_free_kbytes, user_min_free_kbytes); 7118 } 7119 setup_per_zone_wmarks(); 7120 refresh_zone_stat_thresholds(); 7121 setup_per_zone_lowmem_reserve(); 7122 7123 #ifdef CONFIG_NUMA 7124 setup_min_unmapped_ratio(); 7125 setup_min_slab_ratio(); 7126 #endif 7127 7128 return 0; 7129 } 7130 core_initcall(init_per_zone_wmark_min) 7131 7132 /* 7133 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 7134 * that we can call two helper functions whenever min_free_kbytes 7135 * changes. 7136 */ 7137 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 7138 void __user *buffer, size_t *length, loff_t *ppos) 7139 { 7140 int rc; 7141 7142 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7143 if (rc) 7144 return rc; 7145 7146 if (write) { 7147 user_min_free_kbytes = min_free_kbytes; 7148 setup_per_zone_wmarks(); 7149 } 7150 return 0; 7151 } 7152 7153 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 7154 void __user *buffer, size_t *length, loff_t *ppos) 7155 { 7156 int rc; 7157 7158 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7159 if (rc) 7160 return rc; 7161 7162 if (write) 7163 setup_per_zone_wmarks(); 7164 7165 return 0; 7166 } 7167 7168 #ifdef CONFIG_NUMA 7169 static void setup_min_unmapped_ratio(void) 7170 { 7171 pg_data_t *pgdat; 7172 struct zone *zone; 7173 7174 for_each_online_pgdat(pgdat) 7175 pgdat->min_unmapped_pages = 0; 7176 7177 for_each_zone(zone) 7178 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages * 7179 sysctl_min_unmapped_ratio) / 100; 7180 } 7181 7182 7183 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 7184 void __user *buffer, size_t *length, loff_t *ppos) 7185 { 7186 int rc; 7187 7188 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7189 if (rc) 7190 return rc; 7191 7192 setup_min_unmapped_ratio(); 7193 7194 return 0; 7195 } 7196 7197 static void setup_min_slab_ratio(void) 7198 { 7199 pg_data_t *pgdat; 7200 struct zone *zone; 7201 7202 for_each_online_pgdat(pgdat) 7203 pgdat->min_slab_pages = 0; 7204 7205 for_each_zone(zone) 7206 zone->zone_pgdat->min_slab_pages += (zone->managed_pages * 7207 sysctl_min_slab_ratio) / 100; 7208 } 7209 7210 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 7211 void __user *buffer, size_t *length, loff_t *ppos) 7212 { 7213 int rc; 7214 7215 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7216 if (rc) 7217 return rc; 7218 7219 setup_min_slab_ratio(); 7220 7221 return 0; 7222 } 7223 #endif 7224 7225 /* 7226 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 7227 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 7228 * whenever sysctl_lowmem_reserve_ratio changes. 7229 * 7230 * The reserve ratio obviously has absolutely no relation with the 7231 * minimum watermarks. The lowmem reserve ratio can only make sense 7232 * if in function of the boot time zone sizes. 7233 */ 7234 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 7235 void __user *buffer, size_t *length, loff_t *ppos) 7236 { 7237 proc_dointvec_minmax(table, write, buffer, length, ppos); 7238 setup_per_zone_lowmem_reserve(); 7239 return 0; 7240 } 7241 7242 /* 7243 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 7244 * cpu. It is the fraction of total pages in each zone that a hot per cpu 7245 * pagelist can have before it gets flushed back to buddy allocator. 7246 */ 7247 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 7248 void __user *buffer, size_t *length, loff_t *ppos) 7249 { 7250 struct zone *zone; 7251 int old_percpu_pagelist_fraction; 7252 int ret; 7253 7254 mutex_lock(&pcp_batch_high_lock); 7255 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 7256 7257 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 7258 if (!write || ret < 0) 7259 goto out; 7260 7261 /* Sanity checking to avoid pcp imbalance */ 7262 if (percpu_pagelist_fraction && 7263 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 7264 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 7265 ret = -EINVAL; 7266 goto out; 7267 } 7268 7269 /* No change? */ 7270 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 7271 goto out; 7272 7273 for_each_populated_zone(zone) { 7274 unsigned int cpu; 7275 7276 for_each_possible_cpu(cpu) 7277 pageset_set_high_and_batch(zone, 7278 per_cpu_ptr(zone->pageset, cpu)); 7279 } 7280 out: 7281 mutex_unlock(&pcp_batch_high_lock); 7282 return ret; 7283 } 7284 7285 #ifdef CONFIG_NUMA 7286 int hashdist = HASHDIST_DEFAULT; 7287 7288 static int __init set_hashdist(char *str) 7289 { 7290 if (!str) 7291 return 0; 7292 hashdist = simple_strtoul(str, &str, 0); 7293 return 1; 7294 } 7295 __setup("hashdist=", set_hashdist); 7296 #endif 7297 7298 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 7299 /* 7300 * Returns the number of pages that arch has reserved but 7301 * is not known to alloc_large_system_hash(). 7302 */ 7303 static unsigned long __init arch_reserved_kernel_pages(void) 7304 { 7305 return 0; 7306 } 7307 #endif 7308 7309 /* 7310 * Adaptive scale is meant to reduce sizes of hash tables on large memory 7311 * machines. As memory size is increased the scale is also increased but at 7312 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 7313 * quadruples the scale is increased by one, which means the size of hash table 7314 * only doubles, instead of quadrupling as well. 7315 * Because 32-bit systems cannot have large physical memory, where this scaling 7316 * makes sense, it is disabled on such platforms. 7317 */ 7318 #if __BITS_PER_LONG > 32 7319 #define ADAPT_SCALE_BASE (64ul << 30) 7320 #define ADAPT_SCALE_SHIFT 2 7321 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 7322 #endif 7323 7324 /* 7325 * allocate a large system hash table from bootmem 7326 * - it is assumed that the hash table must contain an exact power-of-2 7327 * quantity of entries 7328 * - limit is the number of hash buckets, not the total allocation size 7329 */ 7330 void *__init alloc_large_system_hash(const char *tablename, 7331 unsigned long bucketsize, 7332 unsigned long numentries, 7333 int scale, 7334 int flags, 7335 unsigned int *_hash_shift, 7336 unsigned int *_hash_mask, 7337 unsigned long low_limit, 7338 unsigned long high_limit) 7339 { 7340 unsigned long long max = high_limit; 7341 unsigned long log2qty, size; 7342 void *table = NULL; 7343 gfp_t gfp_flags; 7344 7345 /* allow the kernel cmdline to have a say */ 7346 if (!numentries) { 7347 /* round applicable memory size up to nearest megabyte */ 7348 numentries = nr_kernel_pages; 7349 numentries -= arch_reserved_kernel_pages(); 7350 7351 /* It isn't necessary when PAGE_SIZE >= 1MB */ 7352 if (PAGE_SHIFT < 20) 7353 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 7354 7355 #if __BITS_PER_LONG > 32 7356 if (!high_limit) { 7357 unsigned long adapt; 7358 7359 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 7360 adapt <<= ADAPT_SCALE_SHIFT) 7361 scale++; 7362 } 7363 #endif 7364 7365 /* limit to 1 bucket per 2^scale bytes of low memory */ 7366 if (scale > PAGE_SHIFT) 7367 numentries >>= (scale - PAGE_SHIFT); 7368 else 7369 numentries <<= (PAGE_SHIFT - scale); 7370 7371 /* Make sure we've got at least a 0-order allocation.. */ 7372 if (unlikely(flags & HASH_SMALL)) { 7373 /* Makes no sense without HASH_EARLY */ 7374 WARN_ON(!(flags & HASH_EARLY)); 7375 if (!(numentries >> *_hash_shift)) { 7376 numentries = 1UL << *_hash_shift; 7377 BUG_ON(!numentries); 7378 } 7379 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 7380 numentries = PAGE_SIZE / bucketsize; 7381 } 7382 numentries = roundup_pow_of_two(numentries); 7383 7384 /* limit allocation size to 1/16 total memory by default */ 7385 if (max == 0) { 7386 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 7387 do_div(max, bucketsize); 7388 } 7389 max = min(max, 0x80000000ULL); 7390 7391 if (numentries < low_limit) 7392 numentries = low_limit; 7393 if (numentries > max) 7394 numentries = max; 7395 7396 log2qty = ilog2(numentries); 7397 7398 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 7399 do { 7400 size = bucketsize << log2qty; 7401 if (flags & HASH_EARLY) { 7402 if (flags & HASH_ZERO) 7403 table = memblock_virt_alloc_nopanic(size, 0); 7404 else 7405 table = memblock_virt_alloc_raw(size, 0); 7406 } else if (hashdist) { 7407 table = __vmalloc(size, gfp_flags, PAGE_KERNEL); 7408 } else { 7409 /* 7410 * If bucketsize is not a power-of-two, we may free 7411 * some pages at the end of hash table which 7412 * alloc_pages_exact() automatically does 7413 */ 7414 if (get_order(size) < MAX_ORDER) { 7415 table = alloc_pages_exact(size, gfp_flags); 7416 kmemleak_alloc(table, size, 1, gfp_flags); 7417 } 7418 } 7419 } while (!table && size > PAGE_SIZE && --log2qty); 7420 7421 if (!table) 7422 panic("Failed to allocate %s hash table\n", tablename); 7423 7424 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n", 7425 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size); 7426 7427 if (_hash_shift) 7428 *_hash_shift = log2qty; 7429 if (_hash_mask) 7430 *_hash_mask = (1 << log2qty) - 1; 7431 7432 return table; 7433 } 7434 7435 /* 7436 * This function checks whether pageblock includes unmovable pages or not. 7437 * If @count is not zero, it is okay to include less @count unmovable pages 7438 * 7439 * PageLRU check without isolation or lru_lock could race so that 7440 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable 7441 * check without lock_page also may miss some movable non-lru pages at 7442 * race condition. So you can't expect this function should be exact. 7443 */ 7444 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 7445 int migratetype, 7446 bool skip_hwpoisoned_pages) 7447 { 7448 unsigned long pfn, iter, found; 7449 7450 /* 7451 * For avoiding noise data, lru_add_drain_all() should be called 7452 * If ZONE_MOVABLE, the zone never contains unmovable pages 7453 */ 7454 if (zone_idx(zone) == ZONE_MOVABLE) 7455 return false; 7456 7457 /* 7458 * CMA allocations (alloc_contig_range) really need to mark isolate 7459 * CMA pageblocks even when they are not movable in fact so consider 7460 * them movable here. 7461 */ 7462 if (is_migrate_cma(migratetype) && 7463 is_migrate_cma(get_pageblock_migratetype(page))) 7464 return false; 7465 7466 pfn = page_to_pfn(page); 7467 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 7468 unsigned long check = pfn + iter; 7469 7470 if (!pfn_valid_within(check)) 7471 continue; 7472 7473 page = pfn_to_page(check); 7474 7475 if (PageReserved(page)) 7476 return true; 7477 7478 /* 7479 * Hugepages are not in LRU lists, but they're movable. 7480 * We need not scan over tail pages bacause we don't 7481 * handle each tail page individually in migration. 7482 */ 7483 if (PageHuge(page)) { 7484 iter = round_up(iter + 1, 1<<compound_order(page)) - 1; 7485 continue; 7486 } 7487 7488 /* 7489 * We can't use page_count without pin a page 7490 * because another CPU can free compound page. 7491 * This check already skips compound tails of THP 7492 * because their page->_refcount is zero at all time. 7493 */ 7494 if (!page_ref_count(page)) { 7495 if (PageBuddy(page)) 7496 iter += (1 << page_order(page)) - 1; 7497 continue; 7498 } 7499 7500 /* 7501 * The HWPoisoned page may be not in buddy system, and 7502 * page_count() is not 0. 7503 */ 7504 if (skip_hwpoisoned_pages && PageHWPoison(page)) 7505 continue; 7506 7507 if (__PageMovable(page)) 7508 continue; 7509 7510 if (!PageLRU(page)) 7511 found++; 7512 /* 7513 * If there are RECLAIMABLE pages, we need to check 7514 * it. But now, memory offline itself doesn't call 7515 * shrink_node_slabs() and it still to be fixed. 7516 */ 7517 /* 7518 * If the page is not RAM, page_count()should be 0. 7519 * we don't need more check. This is an _used_ not-movable page. 7520 * 7521 * The problematic thing here is PG_reserved pages. PG_reserved 7522 * is set to both of a memory hole page and a _used_ kernel 7523 * page at boot. 7524 */ 7525 if (found > count) 7526 return true; 7527 } 7528 return false; 7529 } 7530 7531 bool is_pageblock_removable_nolock(struct page *page) 7532 { 7533 struct zone *zone; 7534 unsigned long pfn; 7535 7536 /* 7537 * We have to be careful here because we are iterating over memory 7538 * sections which are not zone aware so we might end up outside of 7539 * the zone but still within the section. 7540 * We have to take care about the node as well. If the node is offline 7541 * its NODE_DATA will be NULL - see page_zone. 7542 */ 7543 if (!node_online(page_to_nid(page))) 7544 return false; 7545 7546 zone = page_zone(page); 7547 pfn = page_to_pfn(page); 7548 if (!zone_spans_pfn(zone, pfn)) 7549 return false; 7550 7551 return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, true); 7552 } 7553 7554 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA) 7555 7556 static unsigned long pfn_max_align_down(unsigned long pfn) 7557 { 7558 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 7559 pageblock_nr_pages) - 1); 7560 } 7561 7562 static unsigned long pfn_max_align_up(unsigned long pfn) 7563 { 7564 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 7565 pageblock_nr_pages)); 7566 } 7567 7568 /* [start, end) must belong to a single zone. */ 7569 static int __alloc_contig_migrate_range(struct compact_control *cc, 7570 unsigned long start, unsigned long end) 7571 { 7572 /* This function is based on compact_zone() from compaction.c. */ 7573 unsigned long nr_reclaimed; 7574 unsigned long pfn = start; 7575 unsigned int tries = 0; 7576 int ret = 0; 7577 7578 migrate_prep(); 7579 7580 while (pfn < end || !list_empty(&cc->migratepages)) { 7581 if (fatal_signal_pending(current)) { 7582 ret = -EINTR; 7583 break; 7584 } 7585 7586 if (list_empty(&cc->migratepages)) { 7587 cc->nr_migratepages = 0; 7588 pfn = isolate_migratepages_range(cc, pfn, end); 7589 if (!pfn) { 7590 ret = -EINTR; 7591 break; 7592 } 7593 tries = 0; 7594 } else if (++tries == 5) { 7595 ret = ret < 0 ? ret : -EBUSY; 7596 break; 7597 } 7598 7599 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 7600 &cc->migratepages); 7601 cc->nr_migratepages -= nr_reclaimed; 7602 7603 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 7604 NULL, 0, cc->mode, MR_CMA); 7605 } 7606 if (ret < 0) { 7607 putback_movable_pages(&cc->migratepages); 7608 return ret; 7609 } 7610 return 0; 7611 } 7612 7613 /** 7614 * alloc_contig_range() -- tries to allocate given range of pages 7615 * @start: start PFN to allocate 7616 * @end: one-past-the-last PFN to allocate 7617 * @migratetype: migratetype of the underlaying pageblocks (either 7618 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 7619 * in range must have the same migratetype and it must 7620 * be either of the two. 7621 * @gfp_mask: GFP mask to use during compaction 7622 * 7623 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 7624 * aligned, however it's the caller's responsibility to guarantee that 7625 * we are the only thread that changes migrate type of pageblocks the 7626 * pages fall in. 7627 * 7628 * The PFN range must belong to a single zone. 7629 * 7630 * Returns zero on success or negative error code. On success all 7631 * pages which PFN is in [start, end) are allocated for the caller and 7632 * need to be freed with free_contig_range(). 7633 */ 7634 int alloc_contig_range(unsigned long start, unsigned long end, 7635 unsigned migratetype, gfp_t gfp_mask) 7636 { 7637 unsigned long outer_start, outer_end; 7638 unsigned int order; 7639 int ret = 0; 7640 7641 struct compact_control cc = { 7642 .nr_migratepages = 0, 7643 .order = -1, 7644 .zone = page_zone(pfn_to_page(start)), 7645 .mode = MIGRATE_SYNC, 7646 .ignore_skip_hint = true, 7647 .no_set_skip_hint = true, 7648 .gfp_mask = current_gfp_context(gfp_mask), 7649 }; 7650 INIT_LIST_HEAD(&cc.migratepages); 7651 7652 /* 7653 * What we do here is we mark all pageblocks in range as 7654 * MIGRATE_ISOLATE. Because pageblock and max order pages may 7655 * have different sizes, and due to the way page allocator 7656 * work, we align the range to biggest of the two pages so 7657 * that page allocator won't try to merge buddies from 7658 * different pageblocks and change MIGRATE_ISOLATE to some 7659 * other migration type. 7660 * 7661 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 7662 * migrate the pages from an unaligned range (ie. pages that 7663 * we are interested in). This will put all the pages in 7664 * range back to page allocator as MIGRATE_ISOLATE. 7665 * 7666 * When this is done, we take the pages in range from page 7667 * allocator removing them from the buddy system. This way 7668 * page allocator will never consider using them. 7669 * 7670 * This lets us mark the pageblocks back as 7671 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 7672 * aligned range but not in the unaligned, original range are 7673 * put back to page allocator so that buddy can use them. 7674 */ 7675 7676 ret = start_isolate_page_range(pfn_max_align_down(start), 7677 pfn_max_align_up(end), migratetype, 7678 false); 7679 if (ret) 7680 return ret; 7681 7682 /* 7683 * In case of -EBUSY, we'd like to know which page causes problem. 7684 * So, just fall through. test_pages_isolated() has a tracepoint 7685 * which will report the busy page. 7686 * 7687 * It is possible that busy pages could become available before 7688 * the call to test_pages_isolated, and the range will actually be 7689 * allocated. So, if we fall through be sure to clear ret so that 7690 * -EBUSY is not accidentally used or returned to caller. 7691 */ 7692 ret = __alloc_contig_migrate_range(&cc, start, end); 7693 if (ret && ret != -EBUSY) 7694 goto done; 7695 ret =0; 7696 7697 /* 7698 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 7699 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 7700 * more, all pages in [start, end) are free in page allocator. 7701 * What we are going to do is to allocate all pages from 7702 * [start, end) (that is remove them from page allocator). 7703 * 7704 * The only problem is that pages at the beginning and at the 7705 * end of interesting range may be not aligned with pages that 7706 * page allocator holds, ie. they can be part of higher order 7707 * pages. Because of this, we reserve the bigger range and 7708 * once this is done free the pages we are not interested in. 7709 * 7710 * We don't have to hold zone->lock here because the pages are 7711 * isolated thus they won't get removed from buddy. 7712 */ 7713 7714 lru_add_drain_all(); 7715 drain_all_pages(cc.zone); 7716 7717 order = 0; 7718 outer_start = start; 7719 while (!PageBuddy(pfn_to_page(outer_start))) { 7720 if (++order >= MAX_ORDER) { 7721 outer_start = start; 7722 break; 7723 } 7724 outer_start &= ~0UL << order; 7725 } 7726 7727 if (outer_start != start) { 7728 order = page_order(pfn_to_page(outer_start)); 7729 7730 /* 7731 * outer_start page could be small order buddy page and 7732 * it doesn't include start page. Adjust outer_start 7733 * in this case to report failed page properly 7734 * on tracepoint in test_pages_isolated() 7735 */ 7736 if (outer_start + (1UL << order) <= start) 7737 outer_start = start; 7738 } 7739 7740 /* Make sure the range is really isolated. */ 7741 if (test_pages_isolated(outer_start, end, false)) { 7742 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n", 7743 __func__, outer_start, end); 7744 ret = -EBUSY; 7745 goto done; 7746 } 7747 7748 /* Grab isolated pages from freelists. */ 7749 outer_end = isolate_freepages_range(&cc, outer_start, end); 7750 if (!outer_end) { 7751 ret = -EBUSY; 7752 goto done; 7753 } 7754 7755 /* Free head and tail (if any) */ 7756 if (start != outer_start) 7757 free_contig_range(outer_start, start - outer_start); 7758 if (end != outer_end) 7759 free_contig_range(end, outer_end - end); 7760 7761 done: 7762 undo_isolate_page_range(pfn_max_align_down(start), 7763 pfn_max_align_up(end), migratetype); 7764 return ret; 7765 } 7766 7767 void free_contig_range(unsigned long pfn, unsigned nr_pages) 7768 { 7769 unsigned int count = 0; 7770 7771 for (; nr_pages--; pfn++) { 7772 struct page *page = pfn_to_page(pfn); 7773 7774 count += page_count(page) != 1; 7775 __free_page(page); 7776 } 7777 WARN(count != 0, "%d pages are still in use!\n", count); 7778 } 7779 #endif 7780 7781 #ifdef CONFIG_MEMORY_HOTPLUG 7782 /* 7783 * The zone indicated has a new number of managed_pages; batch sizes and percpu 7784 * page high values need to be recalulated. 7785 */ 7786 void __meminit zone_pcp_update(struct zone *zone) 7787 { 7788 unsigned cpu; 7789 mutex_lock(&pcp_batch_high_lock); 7790 for_each_possible_cpu(cpu) 7791 pageset_set_high_and_batch(zone, 7792 per_cpu_ptr(zone->pageset, cpu)); 7793 mutex_unlock(&pcp_batch_high_lock); 7794 } 7795 #endif 7796 7797 void zone_pcp_reset(struct zone *zone) 7798 { 7799 unsigned long flags; 7800 int cpu; 7801 struct per_cpu_pageset *pset; 7802 7803 /* avoid races with drain_pages() */ 7804 local_irq_save(flags); 7805 if (zone->pageset != &boot_pageset) { 7806 for_each_online_cpu(cpu) { 7807 pset = per_cpu_ptr(zone->pageset, cpu); 7808 drain_zonestat(zone, pset); 7809 } 7810 free_percpu(zone->pageset); 7811 zone->pageset = &boot_pageset; 7812 } 7813 local_irq_restore(flags); 7814 } 7815 7816 #ifdef CONFIG_MEMORY_HOTREMOVE 7817 /* 7818 * All pages in the range must be in a single zone and isolated 7819 * before calling this. 7820 */ 7821 void 7822 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 7823 { 7824 struct page *page; 7825 struct zone *zone; 7826 unsigned int order, i; 7827 unsigned long pfn; 7828 unsigned long flags; 7829 /* find the first valid pfn */ 7830 for (pfn = start_pfn; pfn < end_pfn; pfn++) 7831 if (pfn_valid(pfn)) 7832 break; 7833 if (pfn == end_pfn) 7834 return; 7835 offline_mem_sections(pfn, end_pfn); 7836 zone = page_zone(pfn_to_page(pfn)); 7837 spin_lock_irqsave(&zone->lock, flags); 7838 pfn = start_pfn; 7839 while (pfn < end_pfn) { 7840 if (!pfn_valid(pfn)) { 7841 pfn++; 7842 continue; 7843 } 7844 page = pfn_to_page(pfn); 7845 /* 7846 * The HWPoisoned page may be not in buddy system, and 7847 * page_count() is not 0. 7848 */ 7849 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 7850 pfn++; 7851 SetPageReserved(page); 7852 continue; 7853 } 7854 7855 BUG_ON(page_count(page)); 7856 BUG_ON(!PageBuddy(page)); 7857 order = page_order(page); 7858 #ifdef CONFIG_DEBUG_VM 7859 pr_info("remove from free list %lx %d %lx\n", 7860 pfn, 1 << order, end_pfn); 7861 #endif 7862 list_del(&page->lru); 7863 rmv_page_order(page); 7864 zone->free_area[order].nr_free--; 7865 for (i = 0; i < (1 << order); i++) 7866 SetPageReserved((page+i)); 7867 pfn += (1 << order); 7868 } 7869 spin_unlock_irqrestore(&zone->lock, flags); 7870 } 7871 #endif 7872 7873 bool is_free_buddy_page(struct page *page) 7874 { 7875 struct zone *zone = page_zone(page); 7876 unsigned long pfn = page_to_pfn(page); 7877 unsigned long flags; 7878 unsigned int order; 7879 7880 spin_lock_irqsave(&zone->lock, flags); 7881 for (order = 0; order < MAX_ORDER; order++) { 7882 struct page *page_head = page - (pfn & ((1 << order) - 1)); 7883 7884 if (PageBuddy(page_head) && page_order(page_head) >= order) 7885 break; 7886 } 7887 spin_unlock_irqrestore(&zone->lock, flags); 7888 7889 return order < MAX_ORDER; 7890 } 7891