xref: /openbmc/linux/mm/page_alloc.c (revision 812dd0202379a242f764f75aa30abfbef4398ba4)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kasan.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <xen/xen.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <trace/events/oom.h>
59 #include <linux/prefetch.h>
60 #include <linux/mm_inline.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/lockdep.h>
70 #include <linux/nmi.h>
71 
72 #include <asm/sections.h>
73 #include <asm/tlbflush.h>
74 #include <asm/div64.h>
75 #include "internal.h"
76 
77 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
78 static DEFINE_MUTEX(pcp_batch_high_lock);
79 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
80 
81 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
82 DEFINE_PER_CPU(int, numa_node);
83 EXPORT_PER_CPU_SYMBOL(numa_node);
84 #endif
85 
86 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
87 
88 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
89 /*
90  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
91  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
92  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
93  * defined in <linux/topology.h>.
94  */
95 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
96 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
97 int _node_numa_mem_[MAX_NUMNODES];
98 #endif
99 
100 /* work_structs for global per-cpu drains */
101 DEFINE_MUTEX(pcpu_drain_mutex);
102 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
103 
104 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
105 volatile unsigned long latent_entropy __latent_entropy;
106 EXPORT_SYMBOL(latent_entropy);
107 #endif
108 
109 /*
110  * Array of node states.
111  */
112 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
113 	[N_POSSIBLE] = NODE_MASK_ALL,
114 	[N_ONLINE] = { { [0] = 1UL } },
115 #ifndef CONFIG_NUMA
116 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
117 #ifdef CONFIG_HIGHMEM
118 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
119 #endif
120 	[N_MEMORY] = { { [0] = 1UL } },
121 	[N_CPU] = { { [0] = 1UL } },
122 #endif	/* NUMA */
123 };
124 EXPORT_SYMBOL(node_states);
125 
126 /* Protect totalram_pages and zone->managed_pages */
127 static DEFINE_SPINLOCK(managed_page_count_lock);
128 
129 unsigned long totalram_pages __read_mostly;
130 unsigned long totalreserve_pages __read_mostly;
131 unsigned long totalcma_pages __read_mostly;
132 
133 int percpu_pagelist_fraction;
134 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
135 
136 /*
137  * A cached value of the page's pageblock's migratetype, used when the page is
138  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
139  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
140  * Also the migratetype set in the page does not necessarily match the pcplist
141  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
142  * other index - this ensures that it will be put on the correct CMA freelist.
143  */
144 static inline int get_pcppage_migratetype(struct page *page)
145 {
146 	return page->index;
147 }
148 
149 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
150 {
151 	page->index = migratetype;
152 }
153 
154 #ifdef CONFIG_PM_SLEEP
155 /*
156  * The following functions are used by the suspend/hibernate code to temporarily
157  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
158  * while devices are suspended.  To avoid races with the suspend/hibernate code,
159  * they should always be called with pm_mutex held (gfp_allowed_mask also should
160  * only be modified with pm_mutex held, unless the suspend/hibernate code is
161  * guaranteed not to run in parallel with that modification).
162  */
163 
164 static gfp_t saved_gfp_mask;
165 
166 void pm_restore_gfp_mask(void)
167 {
168 	WARN_ON(!mutex_is_locked(&pm_mutex));
169 	if (saved_gfp_mask) {
170 		gfp_allowed_mask = saved_gfp_mask;
171 		saved_gfp_mask = 0;
172 	}
173 }
174 
175 void pm_restrict_gfp_mask(void)
176 {
177 	WARN_ON(!mutex_is_locked(&pm_mutex));
178 	WARN_ON(saved_gfp_mask);
179 	saved_gfp_mask = gfp_allowed_mask;
180 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
181 }
182 
183 bool pm_suspended_storage(void)
184 {
185 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
186 		return false;
187 	return true;
188 }
189 #endif /* CONFIG_PM_SLEEP */
190 
191 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
192 unsigned int pageblock_order __read_mostly;
193 #endif
194 
195 static void __free_pages_ok(struct page *page, unsigned int order);
196 
197 /*
198  * results with 256, 32 in the lowmem_reserve sysctl:
199  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
200  *	1G machine -> (16M dma, 784M normal, 224M high)
201  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
202  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
203  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
204  *
205  * TBD: should special case ZONE_DMA32 machines here - in those we normally
206  * don't need any ZONE_NORMAL reservation
207  */
208 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
209 #ifdef CONFIG_ZONE_DMA
210 	 256,
211 #endif
212 #ifdef CONFIG_ZONE_DMA32
213 	 256,
214 #endif
215 #ifdef CONFIG_HIGHMEM
216 	 32,
217 #endif
218 	 32,
219 };
220 
221 EXPORT_SYMBOL(totalram_pages);
222 
223 static char * const zone_names[MAX_NR_ZONES] = {
224 #ifdef CONFIG_ZONE_DMA
225 	 "DMA",
226 #endif
227 #ifdef CONFIG_ZONE_DMA32
228 	 "DMA32",
229 #endif
230 	 "Normal",
231 #ifdef CONFIG_HIGHMEM
232 	 "HighMem",
233 #endif
234 	 "Movable",
235 #ifdef CONFIG_ZONE_DEVICE
236 	 "Device",
237 #endif
238 };
239 
240 char * const migratetype_names[MIGRATE_TYPES] = {
241 	"Unmovable",
242 	"Movable",
243 	"Reclaimable",
244 	"HighAtomic",
245 #ifdef CONFIG_CMA
246 	"CMA",
247 #endif
248 #ifdef CONFIG_MEMORY_ISOLATION
249 	"Isolate",
250 #endif
251 };
252 
253 compound_page_dtor * const compound_page_dtors[] = {
254 	NULL,
255 	free_compound_page,
256 #ifdef CONFIG_HUGETLB_PAGE
257 	free_huge_page,
258 #endif
259 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
260 	free_transhuge_page,
261 #endif
262 };
263 
264 int min_free_kbytes = 1024;
265 int user_min_free_kbytes = -1;
266 int watermark_scale_factor = 10;
267 
268 static unsigned long __meminitdata nr_kernel_pages;
269 static unsigned long __meminitdata nr_all_pages;
270 static unsigned long __meminitdata dma_reserve;
271 
272 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
273 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
274 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
275 static unsigned long __initdata required_kernelcore;
276 static unsigned long __initdata required_movablecore;
277 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
278 static bool mirrored_kernelcore;
279 
280 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
281 int movable_zone;
282 EXPORT_SYMBOL(movable_zone);
283 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
284 
285 #if MAX_NUMNODES > 1
286 int nr_node_ids __read_mostly = MAX_NUMNODES;
287 int nr_online_nodes __read_mostly = 1;
288 EXPORT_SYMBOL(nr_node_ids);
289 EXPORT_SYMBOL(nr_online_nodes);
290 #endif
291 
292 int page_group_by_mobility_disabled __read_mostly;
293 
294 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
295 
296 /*
297  * Determine how many pages need to be initialized during early boot
298  * (non-deferred initialization).
299  * The value of first_deferred_pfn will be set later, once non-deferred pages
300  * are initialized, but for now set it ULONG_MAX.
301  */
302 static inline void reset_deferred_meminit(pg_data_t *pgdat)
303 {
304 	phys_addr_t start_addr, end_addr;
305 	unsigned long max_pgcnt;
306 	unsigned long reserved;
307 
308 	/*
309 	 * Initialise at least 2G of a node but also take into account that
310 	 * two large system hashes that can take up 1GB for 0.25TB/node.
311 	 */
312 	max_pgcnt = max(2UL << (30 - PAGE_SHIFT),
313 			(pgdat->node_spanned_pages >> 8));
314 
315 	/*
316 	 * Compensate the all the memblock reservations (e.g. crash kernel)
317 	 * from the initial estimation to make sure we will initialize enough
318 	 * memory to boot.
319 	 */
320 	start_addr = PFN_PHYS(pgdat->node_start_pfn);
321 	end_addr = PFN_PHYS(pgdat->node_start_pfn + max_pgcnt);
322 	reserved = memblock_reserved_memory_within(start_addr, end_addr);
323 	max_pgcnt += PHYS_PFN(reserved);
324 
325 	pgdat->static_init_pgcnt = min(max_pgcnt, pgdat->node_spanned_pages);
326 	pgdat->first_deferred_pfn = ULONG_MAX;
327 }
328 
329 /* Returns true if the struct page for the pfn is uninitialised */
330 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
331 {
332 	int nid = early_pfn_to_nid(pfn);
333 
334 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
335 		return true;
336 
337 	return false;
338 }
339 
340 /*
341  * Returns false when the remaining initialisation should be deferred until
342  * later in the boot cycle when it can be parallelised.
343  */
344 static inline bool update_defer_init(pg_data_t *pgdat,
345 				unsigned long pfn, unsigned long zone_end,
346 				unsigned long *nr_initialised)
347 {
348 	/* Always populate low zones for address-constrained allocations */
349 	if (zone_end < pgdat_end_pfn(pgdat))
350 		return true;
351 	/* Xen PV domains need page structures early */
352 	if (xen_pv_domain())
353 		return true;
354 	(*nr_initialised)++;
355 	if ((*nr_initialised > pgdat->static_init_pgcnt) &&
356 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
357 		pgdat->first_deferred_pfn = pfn;
358 		return false;
359 	}
360 
361 	return true;
362 }
363 #else
364 static inline void reset_deferred_meminit(pg_data_t *pgdat)
365 {
366 }
367 
368 static inline bool early_page_uninitialised(unsigned long pfn)
369 {
370 	return false;
371 }
372 
373 static inline bool update_defer_init(pg_data_t *pgdat,
374 				unsigned long pfn, unsigned long zone_end,
375 				unsigned long *nr_initialised)
376 {
377 	return true;
378 }
379 #endif
380 
381 /* Return a pointer to the bitmap storing bits affecting a block of pages */
382 static inline unsigned long *get_pageblock_bitmap(struct page *page,
383 							unsigned long pfn)
384 {
385 #ifdef CONFIG_SPARSEMEM
386 	return __pfn_to_section(pfn)->pageblock_flags;
387 #else
388 	return page_zone(page)->pageblock_flags;
389 #endif /* CONFIG_SPARSEMEM */
390 }
391 
392 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
393 {
394 #ifdef CONFIG_SPARSEMEM
395 	pfn &= (PAGES_PER_SECTION-1);
396 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
397 #else
398 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
399 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
400 #endif /* CONFIG_SPARSEMEM */
401 }
402 
403 /**
404  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
405  * @page: The page within the block of interest
406  * @pfn: The target page frame number
407  * @end_bitidx: The last bit of interest to retrieve
408  * @mask: mask of bits that the caller is interested in
409  *
410  * Return: pageblock_bits flags
411  */
412 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
413 					unsigned long pfn,
414 					unsigned long end_bitidx,
415 					unsigned long mask)
416 {
417 	unsigned long *bitmap;
418 	unsigned long bitidx, word_bitidx;
419 	unsigned long word;
420 
421 	bitmap = get_pageblock_bitmap(page, pfn);
422 	bitidx = pfn_to_bitidx(page, pfn);
423 	word_bitidx = bitidx / BITS_PER_LONG;
424 	bitidx &= (BITS_PER_LONG-1);
425 
426 	word = bitmap[word_bitidx];
427 	bitidx += end_bitidx;
428 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
429 }
430 
431 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
432 					unsigned long end_bitidx,
433 					unsigned long mask)
434 {
435 	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
436 }
437 
438 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
439 {
440 	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
441 }
442 
443 /**
444  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
445  * @page: The page within the block of interest
446  * @flags: The flags to set
447  * @pfn: The target page frame number
448  * @end_bitidx: The last bit of interest
449  * @mask: mask of bits that the caller is interested in
450  */
451 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
452 					unsigned long pfn,
453 					unsigned long end_bitidx,
454 					unsigned long mask)
455 {
456 	unsigned long *bitmap;
457 	unsigned long bitidx, word_bitidx;
458 	unsigned long old_word, word;
459 
460 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
461 
462 	bitmap = get_pageblock_bitmap(page, pfn);
463 	bitidx = pfn_to_bitidx(page, pfn);
464 	word_bitidx = bitidx / BITS_PER_LONG;
465 	bitidx &= (BITS_PER_LONG-1);
466 
467 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
468 
469 	bitidx += end_bitidx;
470 	mask <<= (BITS_PER_LONG - bitidx - 1);
471 	flags <<= (BITS_PER_LONG - bitidx - 1);
472 
473 	word = READ_ONCE(bitmap[word_bitidx]);
474 	for (;;) {
475 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
476 		if (word == old_word)
477 			break;
478 		word = old_word;
479 	}
480 }
481 
482 void set_pageblock_migratetype(struct page *page, int migratetype)
483 {
484 	if (unlikely(page_group_by_mobility_disabled &&
485 		     migratetype < MIGRATE_PCPTYPES))
486 		migratetype = MIGRATE_UNMOVABLE;
487 
488 	set_pageblock_flags_group(page, (unsigned long)migratetype,
489 					PB_migrate, PB_migrate_end);
490 }
491 
492 #ifdef CONFIG_DEBUG_VM
493 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
494 {
495 	int ret = 0;
496 	unsigned seq;
497 	unsigned long pfn = page_to_pfn(page);
498 	unsigned long sp, start_pfn;
499 
500 	do {
501 		seq = zone_span_seqbegin(zone);
502 		start_pfn = zone->zone_start_pfn;
503 		sp = zone->spanned_pages;
504 		if (!zone_spans_pfn(zone, pfn))
505 			ret = 1;
506 	} while (zone_span_seqretry(zone, seq));
507 
508 	if (ret)
509 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
510 			pfn, zone_to_nid(zone), zone->name,
511 			start_pfn, start_pfn + sp);
512 
513 	return ret;
514 }
515 
516 static int page_is_consistent(struct zone *zone, struct page *page)
517 {
518 	if (!pfn_valid_within(page_to_pfn(page)))
519 		return 0;
520 	if (zone != page_zone(page))
521 		return 0;
522 
523 	return 1;
524 }
525 /*
526  * Temporary debugging check for pages not lying within a given zone.
527  */
528 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
529 {
530 	if (page_outside_zone_boundaries(zone, page))
531 		return 1;
532 	if (!page_is_consistent(zone, page))
533 		return 1;
534 
535 	return 0;
536 }
537 #else
538 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
539 {
540 	return 0;
541 }
542 #endif
543 
544 static void bad_page(struct page *page, const char *reason,
545 		unsigned long bad_flags)
546 {
547 	static unsigned long resume;
548 	static unsigned long nr_shown;
549 	static unsigned long nr_unshown;
550 
551 	/*
552 	 * Allow a burst of 60 reports, then keep quiet for that minute;
553 	 * or allow a steady drip of one report per second.
554 	 */
555 	if (nr_shown == 60) {
556 		if (time_before(jiffies, resume)) {
557 			nr_unshown++;
558 			goto out;
559 		}
560 		if (nr_unshown) {
561 			pr_alert(
562 			      "BUG: Bad page state: %lu messages suppressed\n",
563 				nr_unshown);
564 			nr_unshown = 0;
565 		}
566 		nr_shown = 0;
567 	}
568 	if (nr_shown++ == 0)
569 		resume = jiffies + 60 * HZ;
570 
571 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
572 		current->comm, page_to_pfn(page));
573 	__dump_page(page, reason);
574 	bad_flags &= page->flags;
575 	if (bad_flags)
576 		pr_alert("bad because of flags: %#lx(%pGp)\n",
577 						bad_flags, &bad_flags);
578 	dump_page_owner(page);
579 
580 	print_modules();
581 	dump_stack();
582 out:
583 	/* Leave bad fields for debug, except PageBuddy could make trouble */
584 	page_mapcount_reset(page); /* remove PageBuddy */
585 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
586 }
587 
588 /*
589  * Higher-order pages are called "compound pages".  They are structured thusly:
590  *
591  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
592  *
593  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
594  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
595  *
596  * The first tail page's ->compound_dtor holds the offset in array of compound
597  * page destructors. See compound_page_dtors.
598  *
599  * The first tail page's ->compound_order holds the order of allocation.
600  * This usage means that zero-order pages may not be compound.
601  */
602 
603 void free_compound_page(struct page *page)
604 {
605 	__free_pages_ok(page, compound_order(page));
606 }
607 
608 void prep_compound_page(struct page *page, unsigned int order)
609 {
610 	int i;
611 	int nr_pages = 1 << order;
612 
613 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
614 	set_compound_order(page, order);
615 	__SetPageHead(page);
616 	for (i = 1; i < nr_pages; i++) {
617 		struct page *p = page + i;
618 		set_page_count(p, 0);
619 		p->mapping = TAIL_MAPPING;
620 		set_compound_head(p, page);
621 	}
622 	atomic_set(compound_mapcount_ptr(page), -1);
623 }
624 
625 #ifdef CONFIG_DEBUG_PAGEALLOC
626 unsigned int _debug_guardpage_minorder;
627 bool _debug_pagealloc_enabled __read_mostly
628 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
629 EXPORT_SYMBOL(_debug_pagealloc_enabled);
630 bool _debug_guardpage_enabled __read_mostly;
631 
632 static int __init early_debug_pagealloc(char *buf)
633 {
634 	if (!buf)
635 		return -EINVAL;
636 	return kstrtobool(buf, &_debug_pagealloc_enabled);
637 }
638 early_param("debug_pagealloc", early_debug_pagealloc);
639 
640 static bool need_debug_guardpage(void)
641 {
642 	/* If we don't use debug_pagealloc, we don't need guard page */
643 	if (!debug_pagealloc_enabled())
644 		return false;
645 
646 	if (!debug_guardpage_minorder())
647 		return false;
648 
649 	return true;
650 }
651 
652 static void init_debug_guardpage(void)
653 {
654 	if (!debug_pagealloc_enabled())
655 		return;
656 
657 	if (!debug_guardpage_minorder())
658 		return;
659 
660 	_debug_guardpage_enabled = true;
661 }
662 
663 struct page_ext_operations debug_guardpage_ops = {
664 	.need = need_debug_guardpage,
665 	.init = init_debug_guardpage,
666 };
667 
668 static int __init debug_guardpage_minorder_setup(char *buf)
669 {
670 	unsigned long res;
671 
672 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
673 		pr_err("Bad debug_guardpage_minorder value\n");
674 		return 0;
675 	}
676 	_debug_guardpage_minorder = res;
677 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
678 	return 0;
679 }
680 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
681 
682 static inline bool set_page_guard(struct zone *zone, struct page *page,
683 				unsigned int order, int migratetype)
684 {
685 	struct page_ext *page_ext;
686 
687 	if (!debug_guardpage_enabled())
688 		return false;
689 
690 	if (order >= debug_guardpage_minorder())
691 		return false;
692 
693 	page_ext = lookup_page_ext(page);
694 	if (unlikely(!page_ext))
695 		return false;
696 
697 	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
698 
699 	INIT_LIST_HEAD(&page->lru);
700 	set_page_private(page, order);
701 	/* Guard pages are not available for any usage */
702 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
703 
704 	return true;
705 }
706 
707 static inline void clear_page_guard(struct zone *zone, struct page *page,
708 				unsigned int order, int migratetype)
709 {
710 	struct page_ext *page_ext;
711 
712 	if (!debug_guardpage_enabled())
713 		return;
714 
715 	page_ext = lookup_page_ext(page);
716 	if (unlikely(!page_ext))
717 		return;
718 
719 	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
720 
721 	set_page_private(page, 0);
722 	if (!is_migrate_isolate(migratetype))
723 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
724 }
725 #else
726 struct page_ext_operations debug_guardpage_ops;
727 static inline bool set_page_guard(struct zone *zone, struct page *page,
728 			unsigned int order, int migratetype) { return false; }
729 static inline void clear_page_guard(struct zone *zone, struct page *page,
730 				unsigned int order, int migratetype) {}
731 #endif
732 
733 static inline void set_page_order(struct page *page, unsigned int order)
734 {
735 	set_page_private(page, order);
736 	__SetPageBuddy(page);
737 }
738 
739 static inline void rmv_page_order(struct page *page)
740 {
741 	__ClearPageBuddy(page);
742 	set_page_private(page, 0);
743 }
744 
745 /*
746  * This function checks whether a page is free && is the buddy
747  * we can do coalesce a page and its buddy if
748  * (a) the buddy is not in a hole (check before calling!) &&
749  * (b) the buddy is in the buddy system &&
750  * (c) a page and its buddy have the same order &&
751  * (d) a page and its buddy are in the same zone.
752  *
753  * For recording whether a page is in the buddy system, we set ->_mapcount
754  * PAGE_BUDDY_MAPCOUNT_VALUE.
755  * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
756  * serialized by zone->lock.
757  *
758  * For recording page's order, we use page_private(page).
759  */
760 static inline int page_is_buddy(struct page *page, struct page *buddy,
761 							unsigned int order)
762 {
763 	if (page_is_guard(buddy) && page_order(buddy) == order) {
764 		if (page_zone_id(page) != page_zone_id(buddy))
765 			return 0;
766 
767 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
768 
769 		return 1;
770 	}
771 
772 	if (PageBuddy(buddy) && page_order(buddy) == order) {
773 		/*
774 		 * zone check is done late to avoid uselessly
775 		 * calculating zone/node ids for pages that could
776 		 * never merge.
777 		 */
778 		if (page_zone_id(page) != page_zone_id(buddy))
779 			return 0;
780 
781 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
782 
783 		return 1;
784 	}
785 	return 0;
786 }
787 
788 /*
789  * Freeing function for a buddy system allocator.
790  *
791  * The concept of a buddy system is to maintain direct-mapped table
792  * (containing bit values) for memory blocks of various "orders".
793  * The bottom level table contains the map for the smallest allocatable
794  * units of memory (here, pages), and each level above it describes
795  * pairs of units from the levels below, hence, "buddies".
796  * At a high level, all that happens here is marking the table entry
797  * at the bottom level available, and propagating the changes upward
798  * as necessary, plus some accounting needed to play nicely with other
799  * parts of the VM system.
800  * At each level, we keep a list of pages, which are heads of continuous
801  * free pages of length of (1 << order) and marked with _mapcount
802  * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
803  * field.
804  * So when we are allocating or freeing one, we can derive the state of the
805  * other.  That is, if we allocate a small block, and both were
806  * free, the remainder of the region must be split into blocks.
807  * If a block is freed, and its buddy is also free, then this
808  * triggers coalescing into a block of larger size.
809  *
810  * -- nyc
811  */
812 
813 static inline void __free_one_page(struct page *page,
814 		unsigned long pfn,
815 		struct zone *zone, unsigned int order,
816 		int migratetype)
817 {
818 	unsigned long combined_pfn;
819 	unsigned long uninitialized_var(buddy_pfn);
820 	struct page *buddy;
821 	unsigned int max_order;
822 
823 	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
824 
825 	VM_BUG_ON(!zone_is_initialized(zone));
826 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
827 
828 	VM_BUG_ON(migratetype == -1);
829 	if (likely(!is_migrate_isolate(migratetype)))
830 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
831 
832 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
833 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
834 
835 continue_merging:
836 	while (order < max_order - 1) {
837 		buddy_pfn = __find_buddy_pfn(pfn, order);
838 		buddy = page + (buddy_pfn - pfn);
839 
840 		if (!pfn_valid_within(buddy_pfn))
841 			goto done_merging;
842 		if (!page_is_buddy(page, buddy, order))
843 			goto done_merging;
844 		/*
845 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
846 		 * merge with it and move up one order.
847 		 */
848 		if (page_is_guard(buddy)) {
849 			clear_page_guard(zone, buddy, order, migratetype);
850 		} else {
851 			list_del(&buddy->lru);
852 			zone->free_area[order].nr_free--;
853 			rmv_page_order(buddy);
854 		}
855 		combined_pfn = buddy_pfn & pfn;
856 		page = page + (combined_pfn - pfn);
857 		pfn = combined_pfn;
858 		order++;
859 	}
860 	if (max_order < MAX_ORDER) {
861 		/* If we are here, it means order is >= pageblock_order.
862 		 * We want to prevent merge between freepages on isolate
863 		 * pageblock and normal pageblock. Without this, pageblock
864 		 * isolation could cause incorrect freepage or CMA accounting.
865 		 *
866 		 * We don't want to hit this code for the more frequent
867 		 * low-order merging.
868 		 */
869 		if (unlikely(has_isolate_pageblock(zone))) {
870 			int buddy_mt;
871 
872 			buddy_pfn = __find_buddy_pfn(pfn, order);
873 			buddy = page + (buddy_pfn - pfn);
874 			buddy_mt = get_pageblock_migratetype(buddy);
875 
876 			if (migratetype != buddy_mt
877 					&& (is_migrate_isolate(migratetype) ||
878 						is_migrate_isolate(buddy_mt)))
879 				goto done_merging;
880 		}
881 		max_order++;
882 		goto continue_merging;
883 	}
884 
885 done_merging:
886 	set_page_order(page, order);
887 
888 	/*
889 	 * If this is not the largest possible page, check if the buddy
890 	 * of the next-highest order is free. If it is, it's possible
891 	 * that pages are being freed that will coalesce soon. In case,
892 	 * that is happening, add the free page to the tail of the list
893 	 * so it's less likely to be used soon and more likely to be merged
894 	 * as a higher order page
895 	 */
896 	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
897 		struct page *higher_page, *higher_buddy;
898 		combined_pfn = buddy_pfn & pfn;
899 		higher_page = page + (combined_pfn - pfn);
900 		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
901 		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
902 		if (pfn_valid_within(buddy_pfn) &&
903 		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
904 			list_add_tail(&page->lru,
905 				&zone->free_area[order].free_list[migratetype]);
906 			goto out;
907 		}
908 	}
909 
910 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
911 out:
912 	zone->free_area[order].nr_free++;
913 }
914 
915 /*
916  * A bad page could be due to a number of fields. Instead of multiple branches,
917  * try and check multiple fields with one check. The caller must do a detailed
918  * check if necessary.
919  */
920 static inline bool page_expected_state(struct page *page,
921 					unsigned long check_flags)
922 {
923 	if (unlikely(atomic_read(&page->_mapcount) != -1))
924 		return false;
925 
926 	if (unlikely((unsigned long)page->mapping |
927 			page_ref_count(page) |
928 #ifdef CONFIG_MEMCG
929 			(unsigned long)page->mem_cgroup |
930 #endif
931 			(page->flags & check_flags)))
932 		return false;
933 
934 	return true;
935 }
936 
937 static void free_pages_check_bad(struct page *page)
938 {
939 	const char *bad_reason;
940 	unsigned long bad_flags;
941 
942 	bad_reason = NULL;
943 	bad_flags = 0;
944 
945 	if (unlikely(atomic_read(&page->_mapcount) != -1))
946 		bad_reason = "nonzero mapcount";
947 	if (unlikely(page->mapping != NULL))
948 		bad_reason = "non-NULL mapping";
949 	if (unlikely(page_ref_count(page) != 0))
950 		bad_reason = "nonzero _refcount";
951 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
952 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
953 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
954 	}
955 #ifdef CONFIG_MEMCG
956 	if (unlikely(page->mem_cgroup))
957 		bad_reason = "page still charged to cgroup";
958 #endif
959 	bad_page(page, bad_reason, bad_flags);
960 }
961 
962 static inline int free_pages_check(struct page *page)
963 {
964 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
965 		return 0;
966 
967 	/* Something has gone sideways, find it */
968 	free_pages_check_bad(page);
969 	return 1;
970 }
971 
972 static int free_tail_pages_check(struct page *head_page, struct page *page)
973 {
974 	int ret = 1;
975 
976 	/*
977 	 * We rely page->lru.next never has bit 0 set, unless the page
978 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
979 	 */
980 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
981 
982 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
983 		ret = 0;
984 		goto out;
985 	}
986 	switch (page - head_page) {
987 	case 1:
988 		/* the first tail page: ->mapping is compound_mapcount() */
989 		if (unlikely(compound_mapcount(page))) {
990 			bad_page(page, "nonzero compound_mapcount", 0);
991 			goto out;
992 		}
993 		break;
994 	case 2:
995 		/*
996 		 * the second tail page: ->mapping is
997 		 * page_deferred_list().next -- ignore value.
998 		 */
999 		break;
1000 	default:
1001 		if (page->mapping != TAIL_MAPPING) {
1002 			bad_page(page, "corrupted mapping in tail page", 0);
1003 			goto out;
1004 		}
1005 		break;
1006 	}
1007 	if (unlikely(!PageTail(page))) {
1008 		bad_page(page, "PageTail not set", 0);
1009 		goto out;
1010 	}
1011 	if (unlikely(compound_head(page) != head_page)) {
1012 		bad_page(page, "compound_head not consistent", 0);
1013 		goto out;
1014 	}
1015 	ret = 0;
1016 out:
1017 	page->mapping = NULL;
1018 	clear_compound_head(page);
1019 	return ret;
1020 }
1021 
1022 static __always_inline bool free_pages_prepare(struct page *page,
1023 					unsigned int order, bool check_free)
1024 {
1025 	int bad = 0;
1026 
1027 	VM_BUG_ON_PAGE(PageTail(page), page);
1028 
1029 	trace_mm_page_free(page, order);
1030 
1031 	/*
1032 	 * Check tail pages before head page information is cleared to
1033 	 * avoid checking PageCompound for order-0 pages.
1034 	 */
1035 	if (unlikely(order)) {
1036 		bool compound = PageCompound(page);
1037 		int i;
1038 
1039 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1040 
1041 		if (compound)
1042 			ClearPageDoubleMap(page);
1043 		for (i = 1; i < (1 << order); i++) {
1044 			if (compound)
1045 				bad += free_tail_pages_check(page, page + i);
1046 			if (unlikely(free_pages_check(page + i))) {
1047 				bad++;
1048 				continue;
1049 			}
1050 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1051 		}
1052 	}
1053 	if (PageMappingFlags(page))
1054 		page->mapping = NULL;
1055 	if (memcg_kmem_enabled() && PageKmemcg(page))
1056 		memcg_kmem_uncharge(page, order);
1057 	if (check_free)
1058 		bad += free_pages_check(page);
1059 	if (bad)
1060 		return false;
1061 
1062 	page_cpupid_reset_last(page);
1063 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1064 	reset_page_owner(page, order);
1065 
1066 	if (!PageHighMem(page)) {
1067 		debug_check_no_locks_freed(page_address(page),
1068 					   PAGE_SIZE << order);
1069 		debug_check_no_obj_freed(page_address(page),
1070 					   PAGE_SIZE << order);
1071 	}
1072 	arch_free_page(page, order);
1073 	kernel_poison_pages(page, 1 << order, 0);
1074 	kernel_map_pages(page, 1 << order, 0);
1075 	kasan_free_pages(page, order);
1076 
1077 	return true;
1078 }
1079 
1080 #ifdef CONFIG_DEBUG_VM
1081 static inline bool free_pcp_prepare(struct page *page)
1082 {
1083 	return free_pages_prepare(page, 0, true);
1084 }
1085 
1086 static inline bool bulkfree_pcp_prepare(struct page *page)
1087 {
1088 	return false;
1089 }
1090 #else
1091 static bool free_pcp_prepare(struct page *page)
1092 {
1093 	return free_pages_prepare(page, 0, false);
1094 }
1095 
1096 static bool bulkfree_pcp_prepare(struct page *page)
1097 {
1098 	return free_pages_check(page);
1099 }
1100 #endif /* CONFIG_DEBUG_VM */
1101 
1102 /*
1103  * Frees a number of pages from the PCP lists
1104  * Assumes all pages on list are in same zone, and of same order.
1105  * count is the number of pages to free.
1106  *
1107  * If the zone was previously in an "all pages pinned" state then look to
1108  * see if this freeing clears that state.
1109  *
1110  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1111  * pinned" detection logic.
1112  */
1113 static void free_pcppages_bulk(struct zone *zone, int count,
1114 					struct per_cpu_pages *pcp)
1115 {
1116 	int migratetype = 0;
1117 	int batch_free = 0;
1118 	bool isolated_pageblocks;
1119 
1120 	spin_lock(&zone->lock);
1121 	isolated_pageblocks = has_isolate_pageblock(zone);
1122 
1123 	while (count) {
1124 		struct page *page;
1125 		struct list_head *list;
1126 
1127 		/*
1128 		 * Remove pages from lists in a round-robin fashion. A
1129 		 * batch_free count is maintained that is incremented when an
1130 		 * empty list is encountered.  This is so more pages are freed
1131 		 * off fuller lists instead of spinning excessively around empty
1132 		 * lists
1133 		 */
1134 		do {
1135 			batch_free++;
1136 			if (++migratetype == MIGRATE_PCPTYPES)
1137 				migratetype = 0;
1138 			list = &pcp->lists[migratetype];
1139 		} while (list_empty(list));
1140 
1141 		/* This is the only non-empty list. Free them all. */
1142 		if (batch_free == MIGRATE_PCPTYPES)
1143 			batch_free = count;
1144 
1145 		do {
1146 			int mt;	/* migratetype of the to-be-freed page */
1147 
1148 			page = list_last_entry(list, struct page, lru);
1149 			/* must delete as __free_one_page list manipulates */
1150 			list_del(&page->lru);
1151 
1152 			mt = get_pcppage_migratetype(page);
1153 			/* MIGRATE_ISOLATE page should not go to pcplists */
1154 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1155 			/* Pageblock could have been isolated meanwhile */
1156 			if (unlikely(isolated_pageblocks))
1157 				mt = get_pageblock_migratetype(page);
1158 
1159 			if (bulkfree_pcp_prepare(page))
1160 				continue;
1161 
1162 			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1163 			trace_mm_page_pcpu_drain(page, 0, mt);
1164 		} while (--count && --batch_free && !list_empty(list));
1165 	}
1166 	spin_unlock(&zone->lock);
1167 }
1168 
1169 static void free_one_page(struct zone *zone,
1170 				struct page *page, unsigned long pfn,
1171 				unsigned int order,
1172 				int migratetype)
1173 {
1174 	spin_lock(&zone->lock);
1175 	if (unlikely(has_isolate_pageblock(zone) ||
1176 		is_migrate_isolate(migratetype))) {
1177 		migratetype = get_pfnblock_migratetype(page, pfn);
1178 	}
1179 	__free_one_page(page, pfn, zone, order, migratetype);
1180 	spin_unlock(&zone->lock);
1181 }
1182 
1183 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1184 				unsigned long zone, int nid, bool zero)
1185 {
1186 	if (zero)
1187 		mm_zero_struct_page(page);
1188 	set_page_links(page, zone, nid, pfn);
1189 	init_page_count(page);
1190 	page_mapcount_reset(page);
1191 	page_cpupid_reset_last(page);
1192 
1193 	INIT_LIST_HEAD(&page->lru);
1194 #ifdef WANT_PAGE_VIRTUAL
1195 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1196 	if (!is_highmem_idx(zone))
1197 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1198 #endif
1199 }
1200 
1201 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1202 					int nid, bool zero)
1203 {
1204 	return __init_single_page(pfn_to_page(pfn), pfn, zone, nid, zero);
1205 }
1206 
1207 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1208 static void __meminit init_reserved_page(unsigned long pfn)
1209 {
1210 	pg_data_t *pgdat;
1211 	int nid, zid;
1212 
1213 	if (!early_page_uninitialised(pfn))
1214 		return;
1215 
1216 	nid = early_pfn_to_nid(pfn);
1217 	pgdat = NODE_DATA(nid);
1218 
1219 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1220 		struct zone *zone = &pgdat->node_zones[zid];
1221 
1222 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1223 			break;
1224 	}
1225 	__init_single_pfn(pfn, zid, nid, true);
1226 }
1227 #else
1228 static inline void init_reserved_page(unsigned long pfn)
1229 {
1230 }
1231 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1232 
1233 /*
1234  * Initialised pages do not have PageReserved set. This function is
1235  * called for each range allocated by the bootmem allocator and
1236  * marks the pages PageReserved. The remaining valid pages are later
1237  * sent to the buddy page allocator.
1238  */
1239 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1240 {
1241 	unsigned long start_pfn = PFN_DOWN(start);
1242 	unsigned long end_pfn = PFN_UP(end);
1243 
1244 	for (; start_pfn < end_pfn; start_pfn++) {
1245 		if (pfn_valid(start_pfn)) {
1246 			struct page *page = pfn_to_page(start_pfn);
1247 
1248 			init_reserved_page(start_pfn);
1249 
1250 			/* Avoid false-positive PageTail() */
1251 			INIT_LIST_HEAD(&page->lru);
1252 
1253 			SetPageReserved(page);
1254 		}
1255 	}
1256 }
1257 
1258 static void __free_pages_ok(struct page *page, unsigned int order)
1259 {
1260 	unsigned long flags;
1261 	int migratetype;
1262 	unsigned long pfn = page_to_pfn(page);
1263 
1264 	if (!free_pages_prepare(page, order, true))
1265 		return;
1266 
1267 	migratetype = get_pfnblock_migratetype(page, pfn);
1268 	local_irq_save(flags);
1269 	__count_vm_events(PGFREE, 1 << order);
1270 	free_one_page(page_zone(page), page, pfn, order, migratetype);
1271 	local_irq_restore(flags);
1272 }
1273 
1274 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1275 {
1276 	unsigned int nr_pages = 1 << order;
1277 	struct page *p = page;
1278 	unsigned int loop;
1279 
1280 	prefetchw(p);
1281 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1282 		prefetchw(p + 1);
1283 		__ClearPageReserved(p);
1284 		set_page_count(p, 0);
1285 	}
1286 	__ClearPageReserved(p);
1287 	set_page_count(p, 0);
1288 
1289 	page_zone(page)->managed_pages += nr_pages;
1290 	set_page_refcounted(page);
1291 	__free_pages(page, order);
1292 }
1293 
1294 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1295 	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1296 
1297 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1298 
1299 int __meminit early_pfn_to_nid(unsigned long pfn)
1300 {
1301 	static DEFINE_SPINLOCK(early_pfn_lock);
1302 	int nid;
1303 
1304 	spin_lock(&early_pfn_lock);
1305 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1306 	if (nid < 0)
1307 		nid = first_online_node;
1308 	spin_unlock(&early_pfn_lock);
1309 
1310 	return nid;
1311 }
1312 #endif
1313 
1314 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1315 static inline bool __meminit __maybe_unused
1316 meminit_pfn_in_nid(unsigned long pfn, int node,
1317 		   struct mminit_pfnnid_cache *state)
1318 {
1319 	int nid;
1320 
1321 	nid = __early_pfn_to_nid(pfn, state);
1322 	if (nid >= 0 && nid != node)
1323 		return false;
1324 	return true;
1325 }
1326 
1327 /* Only safe to use early in boot when initialisation is single-threaded */
1328 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1329 {
1330 	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1331 }
1332 
1333 #else
1334 
1335 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1336 {
1337 	return true;
1338 }
1339 static inline bool __meminit  __maybe_unused
1340 meminit_pfn_in_nid(unsigned long pfn, int node,
1341 		   struct mminit_pfnnid_cache *state)
1342 {
1343 	return true;
1344 }
1345 #endif
1346 
1347 
1348 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1349 							unsigned int order)
1350 {
1351 	if (early_page_uninitialised(pfn))
1352 		return;
1353 	return __free_pages_boot_core(page, order);
1354 }
1355 
1356 /*
1357  * Check that the whole (or subset of) a pageblock given by the interval of
1358  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1359  * with the migration of free compaction scanner. The scanners then need to
1360  * use only pfn_valid_within() check for arches that allow holes within
1361  * pageblocks.
1362  *
1363  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1364  *
1365  * It's possible on some configurations to have a setup like node0 node1 node0
1366  * i.e. it's possible that all pages within a zones range of pages do not
1367  * belong to a single zone. We assume that a border between node0 and node1
1368  * can occur within a single pageblock, but not a node0 node1 node0
1369  * interleaving within a single pageblock. It is therefore sufficient to check
1370  * the first and last page of a pageblock and avoid checking each individual
1371  * page in a pageblock.
1372  */
1373 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1374 				     unsigned long end_pfn, struct zone *zone)
1375 {
1376 	struct page *start_page;
1377 	struct page *end_page;
1378 
1379 	/* end_pfn is one past the range we are checking */
1380 	end_pfn--;
1381 
1382 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1383 		return NULL;
1384 
1385 	start_page = pfn_to_online_page(start_pfn);
1386 	if (!start_page)
1387 		return NULL;
1388 
1389 	if (page_zone(start_page) != zone)
1390 		return NULL;
1391 
1392 	end_page = pfn_to_page(end_pfn);
1393 
1394 	/* This gives a shorter code than deriving page_zone(end_page) */
1395 	if (page_zone_id(start_page) != page_zone_id(end_page))
1396 		return NULL;
1397 
1398 	return start_page;
1399 }
1400 
1401 void set_zone_contiguous(struct zone *zone)
1402 {
1403 	unsigned long block_start_pfn = zone->zone_start_pfn;
1404 	unsigned long block_end_pfn;
1405 
1406 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1407 	for (; block_start_pfn < zone_end_pfn(zone);
1408 			block_start_pfn = block_end_pfn,
1409 			 block_end_pfn += pageblock_nr_pages) {
1410 
1411 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1412 
1413 		if (!__pageblock_pfn_to_page(block_start_pfn,
1414 					     block_end_pfn, zone))
1415 			return;
1416 	}
1417 
1418 	/* We confirm that there is no hole */
1419 	zone->contiguous = true;
1420 }
1421 
1422 void clear_zone_contiguous(struct zone *zone)
1423 {
1424 	zone->contiguous = false;
1425 }
1426 
1427 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1428 static void __init deferred_free_range(unsigned long pfn,
1429 				       unsigned long nr_pages)
1430 {
1431 	struct page *page;
1432 	unsigned long i;
1433 
1434 	if (!nr_pages)
1435 		return;
1436 
1437 	page = pfn_to_page(pfn);
1438 
1439 	/* Free a large naturally-aligned chunk if possible */
1440 	if (nr_pages == pageblock_nr_pages &&
1441 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1442 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1443 		__free_pages_boot_core(page, pageblock_order);
1444 		return;
1445 	}
1446 
1447 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1448 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1449 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1450 		__free_pages_boot_core(page, 0);
1451 	}
1452 }
1453 
1454 /* Completion tracking for deferred_init_memmap() threads */
1455 static atomic_t pgdat_init_n_undone __initdata;
1456 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1457 
1458 static inline void __init pgdat_init_report_one_done(void)
1459 {
1460 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1461 		complete(&pgdat_init_all_done_comp);
1462 }
1463 
1464 /*
1465  * Returns true if page needs to be initialized or freed to buddy allocator.
1466  *
1467  * First we check if pfn is valid on architectures where it is possible to have
1468  * holes within pageblock_nr_pages. On systems where it is not possible, this
1469  * function is optimized out.
1470  *
1471  * Then, we check if a current large page is valid by only checking the validity
1472  * of the head pfn.
1473  *
1474  * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
1475  * within a node: a pfn is between start and end of a node, but does not belong
1476  * to this memory node.
1477  */
1478 static inline bool __init
1479 deferred_pfn_valid(int nid, unsigned long pfn,
1480 		   struct mminit_pfnnid_cache *nid_init_state)
1481 {
1482 	if (!pfn_valid_within(pfn))
1483 		return false;
1484 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1485 		return false;
1486 	if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
1487 		return false;
1488 	return true;
1489 }
1490 
1491 /*
1492  * Free pages to buddy allocator. Try to free aligned pages in
1493  * pageblock_nr_pages sizes.
1494  */
1495 static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
1496 				       unsigned long end_pfn)
1497 {
1498 	struct mminit_pfnnid_cache nid_init_state = { };
1499 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1500 	unsigned long nr_free = 0;
1501 
1502 	for (; pfn < end_pfn; pfn++) {
1503 		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1504 			deferred_free_range(pfn - nr_free, nr_free);
1505 			nr_free = 0;
1506 		} else if (!(pfn & nr_pgmask)) {
1507 			deferred_free_range(pfn - nr_free, nr_free);
1508 			nr_free = 1;
1509 			cond_resched();
1510 		} else {
1511 			nr_free++;
1512 		}
1513 	}
1514 	/* Free the last block of pages to allocator */
1515 	deferred_free_range(pfn - nr_free, nr_free);
1516 }
1517 
1518 /*
1519  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1520  * by performing it only once every pageblock_nr_pages.
1521  * Return number of pages initialized.
1522  */
1523 static unsigned long  __init deferred_init_pages(int nid, int zid,
1524 						 unsigned long pfn,
1525 						 unsigned long end_pfn)
1526 {
1527 	struct mminit_pfnnid_cache nid_init_state = { };
1528 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1529 	unsigned long nr_pages = 0;
1530 	struct page *page = NULL;
1531 
1532 	for (; pfn < end_pfn; pfn++) {
1533 		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1534 			page = NULL;
1535 			continue;
1536 		} else if (!page || !(pfn & nr_pgmask)) {
1537 			page = pfn_to_page(pfn);
1538 			cond_resched();
1539 		} else {
1540 			page++;
1541 		}
1542 		__init_single_page(page, pfn, zid, nid, true);
1543 		nr_pages++;
1544 	}
1545 	return (nr_pages);
1546 }
1547 
1548 /* Initialise remaining memory on a node */
1549 static int __init deferred_init_memmap(void *data)
1550 {
1551 	pg_data_t *pgdat = data;
1552 	int nid = pgdat->node_id;
1553 	unsigned long start = jiffies;
1554 	unsigned long nr_pages = 0;
1555 	unsigned long spfn, epfn;
1556 	phys_addr_t spa, epa;
1557 	int zid;
1558 	struct zone *zone;
1559 	unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1560 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1561 	u64 i;
1562 
1563 	if (first_init_pfn == ULONG_MAX) {
1564 		pgdat_init_report_one_done();
1565 		return 0;
1566 	}
1567 
1568 	/* Bind memory initialisation thread to a local node if possible */
1569 	if (!cpumask_empty(cpumask))
1570 		set_cpus_allowed_ptr(current, cpumask);
1571 
1572 	/* Sanity check boundaries */
1573 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1574 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1575 	pgdat->first_deferred_pfn = ULONG_MAX;
1576 
1577 	/* Only the highest zone is deferred so find it */
1578 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1579 		zone = pgdat->node_zones + zid;
1580 		if (first_init_pfn < zone_end_pfn(zone))
1581 			break;
1582 	}
1583 	first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1584 
1585 	/*
1586 	 * Initialize and free pages. We do it in two loops: first we initialize
1587 	 * struct page, than free to buddy allocator, because while we are
1588 	 * freeing pages we can access pages that are ahead (computing buddy
1589 	 * page in __free_one_page()).
1590 	 */
1591 	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1592 		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1593 		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1594 		nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
1595 	}
1596 	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1597 		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1598 		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1599 		deferred_free_pages(nid, zid, spfn, epfn);
1600 	}
1601 
1602 	/* Sanity check that the next zone really is unpopulated */
1603 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1604 
1605 	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1606 					jiffies_to_msecs(jiffies - start));
1607 
1608 	pgdat_init_report_one_done();
1609 	return 0;
1610 }
1611 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1612 
1613 void __init page_alloc_init_late(void)
1614 {
1615 	struct zone *zone;
1616 
1617 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1618 	int nid;
1619 
1620 	/* There will be num_node_state(N_MEMORY) threads */
1621 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1622 	for_each_node_state(nid, N_MEMORY) {
1623 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1624 	}
1625 
1626 	/* Block until all are initialised */
1627 	wait_for_completion(&pgdat_init_all_done_comp);
1628 
1629 	/* Reinit limits that are based on free pages after the kernel is up */
1630 	files_maxfiles_init();
1631 #endif
1632 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1633 	/* Discard memblock private memory */
1634 	memblock_discard();
1635 #endif
1636 
1637 	for_each_populated_zone(zone)
1638 		set_zone_contiguous(zone);
1639 }
1640 
1641 #ifdef CONFIG_CMA
1642 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1643 void __init init_cma_reserved_pageblock(struct page *page)
1644 {
1645 	unsigned i = pageblock_nr_pages;
1646 	struct page *p = page;
1647 
1648 	do {
1649 		__ClearPageReserved(p);
1650 		set_page_count(p, 0);
1651 	} while (++p, --i);
1652 
1653 	set_pageblock_migratetype(page, MIGRATE_CMA);
1654 
1655 	if (pageblock_order >= MAX_ORDER) {
1656 		i = pageblock_nr_pages;
1657 		p = page;
1658 		do {
1659 			set_page_refcounted(p);
1660 			__free_pages(p, MAX_ORDER - 1);
1661 			p += MAX_ORDER_NR_PAGES;
1662 		} while (i -= MAX_ORDER_NR_PAGES);
1663 	} else {
1664 		set_page_refcounted(page);
1665 		__free_pages(page, pageblock_order);
1666 	}
1667 
1668 	adjust_managed_page_count(page, pageblock_nr_pages);
1669 }
1670 #endif
1671 
1672 /*
1673  * The order of subdivision here is critical for the IO subsystem.
1674  * Please do not alter this order without good reasons and regression
1675  * testing. Specifically, as large blocks of memory are subdivided,
1676  * the order in which smaller blocks are delivered depends on the order
1677  * they're subdivided in this function. This is the primary factor
1678  * influencing the order in which pages are delivered to the IO
1679  * subsystem according to empirical testing, and this is also justified
1680  * by considering the behavior of a buddy system containing a single
1681  * large block of memory acted on by a series of small allocations.
1682  * This behavior is a critical factor in sglist merging's success.
1683  *
1684  * -- nyc
1685  */
1686 static inline void expand(struct zone *zone, struct page *page,
1687 	int low, int high, struct free_area *area,
1688 	int migratetype)
1689 {
1690 	unsigned long size = 1 << high;
1691 
1692 	while (high > low) {
1693 		area--;
1694 		high--;
1695 		size >>= 1;
1696 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1697 
1698 		/*
1699 		 * Mark as guard pages (or page), that will allow to
1700 		 * merge back to allocator when buddy will be freed.
1701 		 * Corresponding page table entries will not be touched,
1702 		 * pages will stay not present in virtual address space
1703 		 */
1704 		if (set_page_guard(zone, &page[size], high, migratetype))
1705 			continue;
1706 
1707 		list_add(&page[size].lru, &area->free_list[migratetype]);
1708 		area->nr_free++;
1709 		set_page_order(&page[size], high);
1710 	}
1711 }
1712 
1713 static void check_new_page_bad(struct page *page)
1714 {
1715 	const char *bad_reason = NULL;
1716 	unsigned long bad_flags = 0;
1717 
1718 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1719 		bad_reason = "nonzero mapcount";
1720 	if (unlikely(page->mapping != NULL))
1721 		bad_reason = "non-NULL mapping";
1722 	if (unlikely(page_ref_count(page) != 0))
1723 		bad_reason = "nonzero _count";
1724 	if (unlikely(page->flags & __PG_HWPOISON)) {
1725 		bad_reason = "HWPoisoned (hardware-corrupted)";
1726 		bad_flags = __PG_HWPOISON;
1727 		/* Don't complain about hwpoisoned pages */
1728 		page_mapcount_reset(page); /* remove PageBuddy */
1729 		return;
1730 	}
1731 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1732 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1733 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1734 	}
1735 #ifdef CONFIG_MEMCG
1736 	if (unlikely(page->mem_cgroup))
1737 		bad_reason = "page still charged to cgroup";
1738 #endif
1739 	bad_page(page, bad_reason, bad_flags);
1740 }
1741 
1742 /*
1743  * This page is about to be returned from the page allocator
1744  */
1745 static inline int check_new_page(struct page *page)
1746 {
1747 	if (likely(page_expected_state(page,
1748 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1749 		return 0;
1750 
1751 	check_new_page_bad(page);
1752 	return 1;
1753 }
1754 
1755 static inline bool free_pages_prezeroed(void)
1756 {
1757 	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1758 		page_poisoning_enabled();
1759 }
1760 
1761 #ifdef CONFIG_DEBUG_VM
1762 static bool check_pcp_refill(struct page *page)
1763 {
1764 	return false;
1765 }
1766 
1767 static bool check_new_pcp(struct page *page)
1768 {
1769 	return check_new_page(page);
1770 }
1771 #else
1772 static bool check_pcp_refill(struct page *page)
1773 {
1774 	return check_new_page(page);
1775 }
1776 static bool check_new_pcp(struct page *page)
1777 {
1778 	return false;
1779 }
1780 #endif /* CONFIG_DEBUG_VM */
1781 
1782 static bool check_new_pages(struct page *page, unsigned int order)
1783 {
1784 	int i;
1785 	for (i = 0; i < (1 << order); i++) {
1786 		struct page *p = page + i;
1787 
1788 		if (unlikely(check_new_page(p)))
1789 			return true;
1790 	}
1791 
1792 	return false;
1793 }
1794 
1795 inline void post_alloc_hook(struct page *page, unsigned int order,
1796 				gfp_t gfp_flags)
1797 {
1798 	set_page_private(page, 0);
1799 	set_page_refcounted(page);
1800 
1801 	arch_alloc_page(page, order);
1802 	kernel_map_pages(page, 1 << order, 1);
1803 	kernel_poison_pages(page, 1 << order, 1);
1804 	kasan_alloc_pages(page, order);
1805 	set_page_owner(page, order, gfp_flags);
1806 }
1807 
1808 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1809 							unsigned int alloc_flags)
1810 {
1811 	int i;
1812 
1813 	post_alloc_hook(page, order, gfp_flags);
1814 
1815 	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1816 		for (i = 0; i < (1 << order); i++)
1817 			clear_highpage(page + i);
1818 
1819 	if (order && (gfp_flags & __GFP_COMP))
1820 		prep_compound_page(page, order);
1821 
1822 	/*
1823 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1824 	 * allocate the page. The expectation is that the caller is taking
1825 	 * steps that will free more memory. The caller should avoid the page
1826 	 * being used for !PFMEMALLOC purposes.
1827 	 */
1828 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1829 		set_page_pfmemalloc(page);
1830 	else
1831 		clear_page_pfmemalloc(page);
1832 }
1833 
1834 /*
1835  * Go through the free lists for the given migratetype and remove
1836  * the smallest available page from the freelists
1837  */
1838 static __always_inline
1839 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1840 						int migratetype)
1841 {
1842 	unsigned int current_order;
1843 	struct free_area *area;
1844 	struct page *page;
1845 
1846 	/* Find a page of the appropriate size in the preferred list */
1847 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1848 		area = &(zone->free_area[current_order]);
1849 		page = list_first_entry_or_null(&area->free_list[migratetype],
1850 							struct page, lru);
1851 		if (!page)
1852 			continue;
1853 		list_del(&page->lru);
1854 		rmv_page_order(page);
1855 		area->nr_free--;
1856 		expand(zone, page, order, current_order, area, migratetype);
1857 		set_pcppage_migratetype(page, migratetype);
1858 		return page;
1859 	}
1860 
1861 	return NULL;
1862 }
1863 
1864 
1865 /*
1866  * This array describes the order lists are fallen back to when
1867  * the free lists for the desirable migrate type are depleted
1868  */
1869 static int fallbacks[MIGRATE_TYPES][4] = {
1870 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
1871 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
1872 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1873 #ifdef CONFIG_CMA
1874 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1875 #endif
1876 #ifdef CONFIG_MEMORY_ISOLATION
1877 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1878 #endif
1879 };
1880 
1881 #ifdef CONFIG_CMA
1882 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1883 					unsigned int order)
1884 {
1885 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1886 }
1887 #else
1888 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1889 					unsigned int order) { return NULL; }
1890 #endif
1891 
1892 /*
1893  * Move the free pages in a range to the free lists of the requested type.
1894  * Note that start_page and end_pages are not aligned on a pageblock
1895  * boundary. If alignment is required, use move_freepages_block()
1896  */
1897 static int move_freepages(struct zone *zone,
1898 			  struct page *start_page, struct page *end_page,
1899 			  int migratetype, int *num_movable)
1900 {
1901 	struct page *page;
1902 	unsigned int order;
1903 	int pages_moved = 0;
1904 
1905 #ifndef CONFIG_HOLES_IN_ZONE
1906 	/*
1907 	 * page_zone is not safe to call in this context when
1908 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1909 	 * anyway as we check zone boundaries in move_freepages_block().
1910 	 * Remove at a later date when no bug reports exist related to
1911 	 * grouping pages by mobility
1912 	 */
1913 	VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1914 #endif
1915 
1916 	if (num_movable)
1917 		*num_movable = 0;
1918 
1919 	for (page = start_page; page <= end_page;) {
1920 		if (!pfn_valid_within(page_to_pfn(page))) {
1921 			page++;
1922 			continue;
1923 		}
1924 
1925 		/* Make sure we are not inadvertently changing nodes */
1926 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1927 
1928 		if (!PageBuddy(page)) {
1929 			/*
1930 			 * We assume that pages that could be isolated for
1931 			 * migration are movable. But we don't actually try
1932 			 * isolating, as that would be expensive.
1933 			 */
1934 			if (num_movable &&
1935 					(PageLRU(page) || __PageMovable(page)))
1936 				(*num_movable)++;
1937 
1938 			page++;
1939 			continue;
1940 		}
1941 
1942 		order = page_order(page);
1943 		list_move(&page->lru,
1944 			  &zone->free_area[order].free_list[migratetype]);
1945 		page += 1 << order;
1946 		pages_moved += 1 << order;
1947 	}
1948 
1949 	return pages_moved;
1950 }
1951 
1952 int move_freepages_block(struct zone *zone, struct page *page,
1953 				int migratetype, int *num_movable)
1954 {
1955 	unsigned long start_pfn, end_pfn;
1956 	struct page *start_page, *end_page;
1957 
1958 	start_pfn = page_to_pfn(page);
1959 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1960 	start_page = pfn_to_page(start_pfn);
1961 	end_page = start_page + pageblock_nr_pages - 1;
1962 	end_pfn = start_pfn + pageblock_nr_pages - 1;
1963 
1964 	/* Do not cross zone boundaries */
1965 	if (!zone_spans_pfn(zone, start_pfn))
1966 		start_page = page;
1967 	if (!zone_spans_pfn(zone, end_pfn))
1968 		return 0;
1969 
1970 	return move_freepages(zone, start_page, end_page, migratetype,
1971 								num_movable);
1972 }
1973 
1974 static void change_pageblock_range(struct page *pageblock_page,
1975 					int start_order, int migratetype)
1976 {
1977 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1978 
1979 	while (nr_pageblocks--) {
1980 		set_pageblock_migratetype(pageblock_page, migratetype);
1981 		pageblock_page += pageblock_nr_pages;
1982 	}
1983 }
1984 
1985 /*
1986  * When we are falling back to another migratetype during allocation, try to
1987  * steal extra free pages from the same pageblocks to satisfy further
1988  * allocations, instead of polluting multiple pageblocks.
1989  *
1990  * If we are stealing a relatively large buddy page, it is likely there will
1991  * be more free pages in the pageblock, so try to steal them all. For
1992  * reclaimable and unmovable allocations, we steal regardless of page size,
1993  * as fragmentation caused by those allocations polluting movable pageblocks
1994  * is worse than movable allocations stealing from unmovable and reclaimable
1995  * pageblocks.
1996  */
1997 static bool can_steal_fallback(unsigned int order, int start_mt)
1998 {
1999 	/*
2000 	 * Leaving this order check is intended, although there is
2001 	 * relaxed order check in next check. The reason is that
2002 	 * we can actually steal whole pageblock if this condition met,
2003 	 * but, below check doesn't guarantee it and that is just heuristic
2004 	 * so could be changed anytime.
2005 	 */
2006 	if (order >= pageblock_order)
2007 		return true;
2008 
2009 	if (order >= pageblock_order / 2 ||
2010 		start_mt == MIGRATE_RECLAIMABLE ||
2011 		start_mt == MIGRATE_UNMOVABLE ||
2012 		page_group_by_mobility_disabled)
2013 		return true;
2014 
2015 	return false;
2016 }
2017 
2018 /*
2019  * This function implements actual steal behaviour. If order is large enough,
2020  * we can steal whole pageblock. If not, we first move freepages in this
2021  * pageblock to our migratetype and determine how many already-allocated pages
2022  * are there in the pageblock with a compatible migratetype. If at least half
2023  * of pages are free or compatible, we can change migratetype of the pageblock
2024  * itself, so pages freed in the future will be put on the correct free list.
2025  */
2026 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2027 					int start_type, bool whole_block)
2028 {
2029 	unsigned int current_order = page_order(page);
2030 	struct free_area *area;
2031 	int free_pages, movable_pages, alike_pages;
2032 	int old_block_type;
2033 
2034 	old_block_type = get_pageblock_migratetype(page);
2035 
2036 	/*
2037 	 * This can happen due to races and we want to prevent broken
2038 	 * highatomic accounting.
2039 	 */
2040 	if (is_migrate_highatomic(old_block_type))
2041 		goto single_page;
2042 
2043 	/* Take ownership for orders >= pageblock_order */
2044 	if (current_order >= pageblock_order) {
2045 		change_pageblock_range(page, current_order, start_type);
2046 		goto single_page;
2047 	}
2048 
2049 	/* We are not allowed to try stealing from the whole block */
2050 	if (!whole_block)
2051 		goto single_page;
2052 
2053 	free_pages = move_freepages_block(zone, page, start_type,
2054 						&movable_pages);
2055 	/*
2056 	 * Determine how many pages are compatible with our allocation.
2057 	 * For movable allocation, it's the number of movable pages which
2058 	 * we just obtained. For other types it's a bit more tricky.
2059 	 */
2060 	if (start_type == MIGRATE_MOVABLE) {
2061 		alike_pages = movable_pages;
2062 	} else {
2063 		/*
2064 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2065 		 * to MOVABLE pageblock, consider all non-movable pages as
2066 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2067 		 * vice versa, be conservative since we can't distinguish the
2068 		 * exact migratetype of non-movable pages.
2069 		 */
2070 		if (old_block_type == MIGRATE_MOVABLE)
2071 			alike_pages = pageblock_nr_pages
2072 						- (free_pages + movable_pages);
2073 		else
2074 			alike_pages = 0;
2075 	}
2076 
2077 	/* moving whole block can fail due to zone boundary conditions */
2078 	if (!free_pages)
2079 		goto single_page;
2080 
2081 	/*
2082 	 * If a sufficient number of pages in the block are either free or of
2083 	 * comparable migratability as our allocation, claim the whole block.
2084 	 */
2085 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2086 			page_group_by_mobility_disabled)
2087 		set_pageblock_migratetype(page, start_type);
2088 
2089 	return;
2090 
2091 single_page:
2092 	area = &zone->free_area[current_order];
2093 	list_move(&page->lru, &area->free_list[start_type]);
2094 }
2095 
2096 /*
2097  * Check whether there is a suitable fallback freepage with requested order.
2098  * If only_stealable is true, this function returns fallback_mt only if
2099  * we can steal other freepages all together. This would help to reduce
2100  * fragmentation due to mixed migratetype pages in one pageblock.
2101  */
2102 int find_suitable_fallback(struct free_area *area, unsigned int order,
2103 			int migratetype, bool only_stealable, bool *can_steal)
2104 {
2105 	int i;
2106 	int fallback_mt;
2107 
2108 	if (area->nr_free == 0)
2109 		return -1;
2110 
2111 	*can_steal = false;
2112 	for (i = 0;; i++) {
2113 		fallback_mt = fallbacks[migratetype][i];
2114 		if (fallback_mt == MIGRATE_TYPES)
2115 			break;
2116 
2117 		if (list_empty(&area->free_list[fallback_mt]))
2118 			continue;
2119 
2120 		if (can_steal_fallback(order, migratetype))
2121 			*can_steal = true;
2122 
2123 		if (!only_stealable)
2124 			return fallback_mt;
2125 
2126 		if (*can_steal)
2127 			return fallback_mt;
2128 	}
2129 
2130 	return -1;
2131 }
2132 
2133 /*
2134  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2135  * there are no empty page blocks that contain a page with a suitable order
2136  */
2137 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2138 				unsigned int alloc_order)
2139 {
2140 	int mt;
2141 	unsigned long max_managed, flags;
2142 
2143 	/*
2144 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2145 	 * Check is race-prone but harmless.
2146 	 */
2147 	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2148 	if (zone->nr_reserved_highatomic >= max_managed)
2149 		return;
2150 
2151 	spin_lock_irqsave(&zone->lock, flags);
2152 
2153 	/* Recheck the nr_reserved_highatomic limit under the lock */
2154 	if (zone->nr_reserved_highatomic >= max_managed)
2155 		goto out_unlock;
2156 
2157 	/* Yoink! */
2158 	mt = get_pageblock_migratetype(page);
2159 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2160 	    && !is_migrate_cma(mt)) {
2161 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2162 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2163 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2164 	}
2165 
2166 out_unlock:
2167 	spin_unlock_irqrestore(&zone->lock, flags);
2168 }
2169 
2170 /*
2171  * Used when an allocation is about to fail under memory pressure. This
2172  * potentially hurts the reliability of high-order allocations when under
2173  * intense memory pressure but failed atomic allocations should be easier
2174  * to recover from than an OOM.
2175  *
2176  * If @force is true, try to unreserve a pageblock even though highatomic
2177  * pageblock is exhausted.
2178  */
2179 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2180 						bool force)
2181 {
2182 	struct zonelist *zonelist = ac->zonelist;
2183 	unsigned long flags;
2184 	struct zoneref *z;
2185 	struct zone *zone;
2186 	struct page *page;
2187 	int order;
2188 	bool ret;
2189 
2190 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2191 								ac->nodemask) {
2192 		/*
2193 		 * Preserve at least one pageblock unless memory pressure
2194 		 * is really high.
2195 		 */
2196 		if (!force && zone->nr_reserved_highatomic <=
2197 					pageblock_nr_pages)
2198 			continue;
2199 
2200 		spin_lock_irqsave(&zone->lock, flags);
2201 		for (order = 0; order < MAX_ORDER; order++) {
2202 			struct free_area *area = &(zone->free_area[order]);
2203 
2204 			page = list_first_entry_or_null(
2205 					&area->free_list[MIGRATE_HIGHATOMIC],
2206 					struct page, lru);
2207 			if (!page)
2208 				continue;
2209 
2210 			/*
2211 			 * In page freeing path, migratetype change is racy so
2212 			 * we can counter several free pages in a pageblock
2213 			 * in this loop althoug we changed the pageblock type
2214 			 * from highatomic to ac->migratetype. So we should
2215 			 * adjust the count once.
2216 			 */
2217 			if (is_migrate_highatomic_page(page)) {
2218 				/*
2219 				 * It should never happen but changes to
2220 				 * locking could inadvertently allow a per-cpu
2221 				 * drain to add pages to MIGRATE_HIGHATOMIC
2222 				 * while unreserving so be safe and watch for
2223 				 * underflows.
2224 				 */
2225 				zone->nr_reserved_highatomic -= min(
2226 						pageblock_nr_pages,
2227 						zone->nr_reserved_highatomic);
2228 			}
2229 
2230 			/*
2231 			 * Convert to ac->migratetype and avoid the normal
2232 			 * pageblock stealing heuristics. Minimally, the caller
2233 			 * is doing the work and needs the pages. More
2234 			 * importantly, if the block was always converted to
2235 			 * MIGRATE_UNMOVABLE or another type then the number
2236 			 * of pageblocks that cannot be completely freed
2237 			 * may increase.
2238 			 */
2239 			set_pageblock_migratetype(page, ac->migratetype);
2240 			ret = move_freepages_block(zone, page, ac->migratetype,
2241 									NULL);
2242 			if (ret) {
2243 				spin_unlock_irqrestore(&zone->lock, flags);
2244 				return ret;
2245 			}
2246 		}
2247 		spin_unlock_irqrestore(&zone->lock, flags);
2248 	}
2249 
2250 	return false;
2251 }
2252 
2253 /*
2254  * Try finding a free buddy page on the fallback list and put it on the free
2255  * list of requested migratetype, possibly along with other pages from the same
2256  * block, depending on fragmentation avoidance heuristics. Returns true if
2257  * fallback was found so that __rmqueue_smallest() can grab it.
2258  *
2259  * The use of signed ints for order and current_order is a deliberate
2260  * deviation from the rest of this file, to make the for loop
2261  * condition simpler.
2262  */
2263 static __always_inline bool
2264 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2265 {
2266 	struct free_area *area;
2267 	int current_order;
2268 	struct page *page;
2269 	int fallback_mt;
2270 	bool can_steal;
2271 
2272 	/*
2273 	 * Find the largest available free page in the other list. This roughly
2274 	 * approximates finding the pageblock with the most free pages, which
2275 	 * would be too costly to do exactly.
2276 	 */
2277 	for (current_order = MAX_ORDER - 1; current_order >= order;
2278 				--current_order) {
2279 		area = &(zone->free_area[current_order]);
2280 		fallback_mt = find_suitable_fallback(area, current_order,
2281 				start_migratetype, false, &can_steal);
2282 		if (fallback_mt == -1)
2283 			continue;
2284 
2285 		/*
2286 		 * We cannot steal all free pages from the pageblock and the
2287 		 * requested migratetype is movable. In that case it's better to
2288 		 * steal and split the smallest available page instead of the
2289 		 * largest available page, because even if the next movable
2290 		 * allocation falls back into a different pageblock than this
2291 		 * one, it won't cause permanent fragmentation.
2292 		 */
2293 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2294 					&& current_order > order)
2295 			goto find_smallest;
2296 
2297 		goto do_steal;
2298 	}
2299 
2300 	return false;
2301 
2302 find_smallest:
2303 	for (current_order = order; current_order < MAX_ORDER;
2304 							current_order++) {
2305 		area = &(zone->free_area[current_order]);
2306 		fallback_mt = find_suitable_fallback(area, current_order,
2307 				start_migratetype, false, &can_steal);
2308 		if (fallback_mt != -1)
2309 			break;
2310 	}
2311 
2312 	/*
2313 	 * This should not happen - we already found a suitable fallback
2314 	 * when looking for the largest page.
2315 	 */
2316 	VM_BUG_ON(current_order == MAX_ORDER);
2317 
2318 do_steal:
2319 	page = list_first_entry(&area->free_list[fallback_mt],
2320 							struct page, lru);
2321 
2322 	steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2323 
2324 	trace_mm_page_alloc_extfrag(page, order, current_order,
2325 		start_migratetype, fallback_mt);
2326 
2327 	return true;
2328 
2329 }
2330 
2331 /*
2332  * Do the hard work of removing an element from the buddy allocator.
2333  * Call me with the zone->lock already held.
2334  */
2335 static __always_inline struct page *
2336 __rmqueue(struct zone *zone, unsigned int order, int migratetype)
2337 {
2338 	struct page *page;
2339 
2340 retry:
2341 	page = __rmqueue_smallest(zone, order, migratetype);
2342 	if (unlikely(!page)) {
2343 		if (migratetype == MIGRATE_MOVABLE)
2344 			page = __rmqueue_cma_fallback(zone, order);
2345 
2346 		if (!page && __rmqueue_fallback(zone, order, migratetype))
2347 			goto retry;
2348 	}
2349 
2350 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2351 	return page;
2352 }
2353 
2354 /*
2355  * Obtain a specified number of elements from the buddy allocator, all under
2356  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2357  * Returns the number of new pages which were placed at *list.
2358  */
2359 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2360 			unsigned long count, struct list_head *list,
2361 			int migratetype)
2362 {
2363 	int i, alloced = 0;
2364 
2365 	spin_lock(&zone->lock);
2366 	for (i = 0; i < count; ++i) {
2367 		struct page *page = __rmqueue(zone, order, migratetype);
2368 		if (unlikely(page == NULL))
2369 			break;
2370 
2371 		if (unlikely(check_pcp_refill(page)))
2372 			continue;
2373 
2374 		/*
2375 		 * Split buddy pages returned by expand() are received here in
2376 		 * physical page order. The page is added to the tail of
2377 		 * caller's list. From the callers perspective, the linked list
2378 		 * is ordered by page number under some conditions. This is
2379 		 * useful for IO devices that can forward direction from the
2380 		 * head, thus also in the physical page order. This is useful
2381 		 * for IO devices that can merge IO requests if the physical
2382 		 * pages are ordered properly.
2383 		 */
2384 		list_add_tail(&page->lru, list);
2385 		alloced++;
2386 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2387 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2388 					      -(1 << order));
2389 	}
2390 
2391 	/*
2392 	 * i pages were removed from the buddy list even if some leak due
2393 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2394 	 * on i. Do not confuse with 'alloced' which is the number of
2395 	 * pages added to the pcp list.
2396 	 */
2397 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2398 	spin_unlock(&zone->lock);
2399 	return alloced;
2400 }
2401 
2402 #ifdef CONFIG_NUMA
2403 /*
2404  * Called from the vmstat counter updater to drain pagesets of this
2405  * currently executing processor on remote nodes after they have
2406  * expired.
2407  *
2408  * Note that this function must be called with the thread pinned to
2409  * a single processor.
2410  */
2411 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2412 {
2413 	unsigned long flags;
2414 	int to_drain, batch;
2415 
2416 	local_irq_save(flags);
2417 	batch = READ_ONCE(pcp->batch);
2418 	to_drain = min(pcp->count, batch);
2419 	if (to_drain > 0) {
2420 		free_pcppages_bulk(zone, to_drain, pcp);
2421 		pcp->count -= to_drain;
2422 	}
2423 	local_irq_restore(flags);
2424 }
2425 #endif
2426 
2427 /*
2428  * Drain pcplists of the indicated processor and zone.
2429  *
2430  * The processor must either be the current processor and the
2431  * thread pinned to the current processor or a processor that
2432  * is not online.
2433  */
2434 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2435 {
2436 	unsigned long flags;
2437 	struct per_cpu_pageset *pset;
2438 	struct per_cpu_pages *pcp;
2439 
2440 	local_irq_save(flags);
2441 	pset = per_cpu_ptr(zone->pageset, cpu);
2442 
2443 	pcp = &pset->pcp;
2444 	if (pcp->count) {
2445 		free_pcppages_bulk(zone, pcp->count, pcp);
2446 		pcp->count = 0;
2447 	}
2448 	local_irq_restore(flags);
2449 }
2450 
2451 /*
2452  * Drain pcplists of all zones on the indicated processor.
2453  *
2454  * The processor must either be the current processor and the
2455  * thread pinned to the current processor or a processor that
2456  * is not online.
2457  */
2458 static void drain_pages(unsigned int cpu)
2459 {
2460 	struct zone *zone;
2461 
2462 	for_each_populated_zone(zone) {
2463 		drain_pages_zone(cpu, zone);
2464 	}
2465 }
2466 
2467 /*
2468  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2469  *
2470  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2471  * the single zone's pages.
2472  */
2473 void drain_local_pages(struct zone *zone)
2474 {
2475 	int cpu = smp_processor_id();
2476 
2477 	if (zone)
2478 		drain_pages_zone(cpu, zone);
2479 	else
2480 		drain_pages(cpu);
2481 }
2482 
2483 static void drain_local_pages_wq(struct work_struct *work)
2484 {
2485 	/*
2486 	 * drain_all_pages doesn't use proper cpu hotplug protection so
2487 	 * we can race with cpu offline when the WQ can move this from
2488 	 * a cpu pinned worker to an unbound one. We can operate on a different
2489 	 * cpu which is allright but we also have to make sure to not move to
2490 	 * a different one.
2491 	 */
2492 	preempt_disable();
2493 	drain_local_pages(NULL);
2494 	preempt_enable();
2495 }
2496 
2497 /*
2498  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2499  *
2500  * When zone parameter is non-NULL, spill just the single zone's pages.
2501  *
2502  * Note that this can be extremely slow as the draining happens in a workqueue.
2503  */
2504 void drain_all_pages(struct zone *zone)
2505 {
2506 	int cpu;
2507 
2508 	/*
2509 	 * Allocate in the BSS so we wont require allocation in
2510 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2511 	 */
2512 	static cpumask_t cpus_with_pcps;
2513 
2514 	/*
2515 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
2516 	 * initialized.
2517 	 */
2518 	if (WARN_ON_ONCE(!mm_percpu_wq))
2519 		return;
2520 
2521 	/*
2522 	 * Do not drain if one is already in progress unless it's specific to
2523 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2524 	 * the drain to be complete when the call returns.
2525 	 */
2526 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2527 		if (!zone)
2528 			return;
2529 		mutex_lock(&pcpu_drain_mutex);
2530 	}
2531 
2532 	/*
2533 	 * We don't care about racing with CPU hotplug event
2534 	 * as offline notification will cause the notified
2535 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2536 	 * disables preemption as part of its processing
2537 	 */
2538 	for_each_online_cpu(cpu) {
2539 		struct per_cpu_pageset *pcp;
2540 		struct zone *z;
2541 		bool has_pcps = false;
2542 
2543 		if (zone) {
2544 			pcp = per_cpu_ptr(zone->pageset, cpu);
2545 			if (pcp->pcp.count)
2546 				has_pcps = true;
2547 		} else {
2548 			for_each_populated_zone(z) {
2549 				pcp = per_cpu_ptr(z->pageset, cpu);
2550 				if (pcp->pcp.count) {
2551 					has_pcps = true;
2552 					break;
2553 				}
2554 			}
2555 		}
2556 
2557 		if (has_pcps)
2558 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2559 		else
2560 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2561 	}
2562 
2563 	for_each_cpu(cpu, &cpus_with_pcps) {
2564 		struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2565 		INIT_WORK(work, drain_local_pages_wq);
2566 		queue_work_on(cpu, mm_percpu_wq, work);
2567 	}
2568 	for_each_cpu(cpu, &cpus_with_pcps)
2569 		flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2570 
2571 	mutex_unlock(&pcpu_drain_mutex);
2572 }
2573 
2574 #ifdef CONFIG_HIBERNATION
2575 
2576 /*
2577  * Touch the watchdog for every WD_PAGE_COUNT pages.
2578  */
2579 #define WD_PAGE_COUNT	(128*1024)
2580 
2581 void mark_free_pages(struct zone *zone)
2582 {
2583 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2584 	unsigned long flags;
2585 	unsigned int order, t;
2586 	struct page *page;
2587 
2588 	if (zone_is_empty(zone))
2589 		return;
2590 
2591 	spin_lock_irqsave(&zone->lock, flags);
2592 
2593 	max_zone_pfn = zone_end_pfn(zone);
2594 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2595 		if (pfn_valid(pfn)) {
2596 			page = pfn_to_page(pfn);
2597 
2598 			if (!--page_count) {
2599 				touch_nmi_watchdog();
2600 				page_count = WD_PAGE_COUNT;
2601 			}
2602 
2603 			if (page_zone(page) != zone)
2604 				continue;
2605 
2606 			if (!swsusp_page_is_forbidden(page))
2607 				swsusp_unset_page_free(page);
2608 		}
2609 
2610 	for_each_migratetype_order(order, t) {
2611 		list_for_each_entry(page,
2612 				&zone->free_area[order].free_list[t], lru) {
2613 			unsigned long i;
2614 
2615 			pfn = page_to_pfn(page);
2616 			for (i = 0; i < (1UL << order); i++) {
2617 				if (!--page_count) {
2618 					touch_nmi_watchdog();
2619 					page_count = WD_PAGE_COUNT;
2620 				}
2621 				swsusp_set_page_free(pfn_to_page(pfn + i));
2622 			}
2623 		}
2624 	}
2625 	spin_unlock_irqrestore(&zone->lock, flags);
2626 }
2627 #endif /* CONFIG_PM */
2628 
2629 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
2630 {
2631 	int migratetype;
2632 
2633 	if (!free_pcp_prepare(page))
2634 		return false;
2635 
2636 	migratetype = get_pfnblock_migratetype(page, pfn);
2637 	set_pcppage_migratetype(page, migratetype);
2638 	return true;
2639 }
2640 
2641 static void free_unref_page_commit(struct page *page, unsigned long pfn)
2642 {
2643 	struct zone *zone = page_zone(page);
2644 	struct per_cpu_pages *pcp;
2645 	int migratetype;
2646 
2647 	migratetype = get_pcppage_migratetype(page);
2648 	__count_vm_event(PGFREE);
2649 
2650 	/*
2651 	 * We only track unmovable, reclaimable and movable on pcp lists.
2652 	 * Free ISOLATE pages back to the allocator because they are being
2653 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2654 	 * areas back if necessary. Otherwise, we may have to free
2655 	 * excessively into the page allocator
2656 	 */
2657 	if (migratetype >= MIGRATE_PCPTYPES) {
2658 		if (unlikely(is_migrate_isolate(migratetype))) {
2659 			free_one_page(zone, page, pfn, 0, migratetype);
2660 			return;
2661 		}
2662 		migratetype = MIGRATE_MOVABLE;
2663 	}
2664 
2665 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2666 	list_add(&page->lru, &pcp->lists[migratetype]);
2667 	pcp->count++;
2668 	if (pcp->count >= pcp->high) {
2669 		unsigned long batch = READ_ONCE(pcp->batch);
2670 		free_pcppages_bulk(zone, batch, pcp);
2671 		pcp->count -= batch;
2672 	}
2673 }
2674 
2675 /*
2676  * Free a 0-order page
2677  */
2678 void free_unref_page(struct page *page)
2679 {
2680 	unsigned long flags;
2681 	unsigned long pfn = page_to_pfn(page);
2682 
2683 	if (!free_unref_page_prepare(page, pfn))
2684 		return;
2685 
2686 	local_irq_save(flags);
2687 	free_unref_page_commit(page, pfn);
2688 	local_irq_restore(flags);
2689 }
2690 
2691 /*
2692  * Free a list of 0-order pages
2693  */
2694 void free_unref_page_list(struct list_head *list)
2695 {
2696 	struct page *page, *next;
2697 	unsigned long flags, pfn;
2698 	int batch_count = 0;
2699 
2700 	/* Prepare pages for freeing */
2701 	list_for_each_entry_safe(page, next, list, lru) {
2702 		pfn = page_to_pfn(page);
2703 		if (!free_unref_page_prepare(page, pfn))
2704 			list_del(&page->lru);
2705 		set_page_private(page, pfn);
2706 	}
2707 
2708 	local_irq_save(flags);
2709 	list_for_each_entry_safe(page, next, list, lru) {
2710 		unsigned long pfn = page_private(page);
2711 
2712 		set_page_private(page, 0);
2713 		trace_mm_page_free_batched(page);
2714 		free_unref_page_commit(page, pfn);
2715 
2716 		/*
2717 		 * Guard against excessive IRQ disabled times when we get
2718 		 * a large list of pages to free.
2719 		 */
2720 		if (++batch_count == SWAP_CLUSTER_MAX) {
2721 			local_irq_restore(flags);
2722 			batch_count = 0;
2723 			local_irq_save(flags);
2724 		}
2725 	}
2726 	local_irq_restore(flags);
2727 }
2728 
2729 /*
2730  * split_page takes a non-compound higher-order page, and splits it into
2731  * n (1<<order) sub-pages: page[0..n]
2732  * Each sub-page must be freed individually.
2733  *
2734  * Note: this is probably too low level an operation for use in drivers.
2735  * Please consult with lkml before using this in your driver.
2736  */
2737 void split_page(struct page *page, unsigned int order)
2738 {
2739 	int i;
2740 
2741 	VM_BUG_ON_PAGE(PageCompound(page), page);
2742 	VM_BUG_ON_PAGE(!page_count(page), page);
2743 
2744 	for (i = 1; i < (1 << order); i++)
2745 		set_page_refcounted(page + i);
2746 	split_page_owner(page, order);
2747 }
2748 EXPORT_SYMBOL_GPL(split_page);
2749 
2750 int __isolate_free_page(struct page *page, unsigned int order)
2751 {
2752 	unsigned long watermark;
2753 	struct zone *zone;
2754 	int mt;
2755 
2756 	BUG_ON(!PageBuddy(page));
2757 
2758 	zone = page_zone(page);
2759 	mt = get_pageblock_migratetype(page);
2760 
2761 	if (!is_migrate_isolate(mt)) {
2762 		/*
2763 		 * Obey watermarks as if the page was being allocated. We can
2764 		 * emulate a high-order watermark check with a raised order-0
2765 		 * watermark, because we already know our high-order page
2766 		 * exists.
2767 		 */
2768 		watermark = min_wmark_pages(zone) + (1UL << order);
2769 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2770 			return 0;
2771 
2772 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2773 	}
2774 
2775 	/* Remove page from free list */
2776 	list_del(&page->lru);
2777 	zone->free_area[order].nr_free--;
2778 	rmv_page_order(page);
2779 
2780 	/*
2781 	 * Set the pageblock if the isolated page is at least half of a
2782 	 * pageblock
2783 	 */
2784 	if (order >= pageblock_order - 1) {
2785 		struct page *endpage = page + (1 << order) - 1;
2786 		for (; page < endpage; page += pageblock_nr_pages) {
2787 			int mt = get_pageblock_migratetype(page);
2788 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2789 			    && !is_migrate_highatomic(mt))
2790 				set_pageblock_migratetype(page,
2791 							  MIGRATE_MOVABLE);
2792 		}
2793 	}
2794 
2795 
2796 	return 1UL << order;
2797 }
2798 
2799 /*
2800  * Update NUMA hit/miss statistics
2801  *
2802  * Must be called with interrupts disabled.
2803  */
2804 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2805 {
2806 #ifdef CONFIG_NUMA
2807 	enum numa_stat_item local_stat = NUMA_LOCAL;
2808 
2809 	/* skip numa counters update if numa stats is disabled */
2810 	if (!static_branch_likely(&vm_numa_stat_key))
2811 		return;
2812 
2813 	if (z->node != numa_node_id())
2814 		local_stat = NUMA_OTHER;
2815 
2816 	if (z->node == preferred_zone->node)
2817 		__inc_numa_state(z, NUMA_HIT);
2818 	else {
2819 		__inc_numa_state(z, NUMA_MISS);
2820 		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
2821 	}
2822 	__inc_numa_state(z, local_stat);
2823 #endif
2824 }
2825 
2826 /* Remove page from the per-cpu list, caller must protect the list */
2827 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2828 			struct per_cpu_pages *pcp,
2829 			struct list_head *list)
2830 {
2831 	struct page *page;
2832 
2833 	do {
2834 		if (list_empty(list)) {
2835 			pcp->count += rmqueue_bulk(zone, 0,
2836 					pcp->batch, list,
2837 					migratetype);
2838 			if (unlikely(list_empty(list)))
2839 				return NULL;
2840 		}
2841 
2842 		page = list_first_entry(list, struct page, lru);
2843 		list_del(&page->lru);
2844 		pcp->count--;
2845 	} while (check_new_pcp(page));
2846 
2847 	return page;
2848 }
2849 
2850 /* Lock and remove page from the per-cpu list */
2851 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2852 			struct zone *zone, unsigned int order,
2853 			gfp_t gfp_flags, int migratetype)
2854 {
2855 	struct per_cpu_pages *pcp;
2856 	struct list_head *list;
2857 	struct page *page;
2858 	unsigned long flags;
2859 
2860 	local_irq_save(flags);
2861 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2862 	list = &pcp->lists[migratetype];
2863 	page = __rmqueue_pcplist(zone,  migratetype, pcp, list);
2864 	if (page) {
2865 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2866 		zone_statistics(preferred_zone, zone);
2867 	}
2868 	local_irq_restore(flags);
2869 	return page;
2870 }
2871 
2872 /*
2873  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2874  */
2875 static inline
2876 struct page *rmqueue(struct zone *preferred_zone,
2877 			struct zone *zone, unsigned int order,
2878 			gfp_t gfp_flags, unsigned int alloc_flags,
2879 			int migratetype)
2880 {
2881 	unsigned long flags;
2882 	struct page *page;
2883 
2884 	if (likely(order == 0)) {
2885 		page = rmqueue_pcplist(preferred_zone, zone, order,
2886 				gfp_flags, migratetype);
2887 		goto out;
2888 	}
2889 
2890 	/*
2891 	 * We most definitely don't want callers attempting to
2892 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
2893 	 */
2894 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2895 	spin_lock_irqsave(&zone->lock, flags);
2896 
2897 	do {
2898 		page = NULL;
2899 		if (alloc_flags & ALLOC_HARDER) {
2900 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2901 			if (page)
2902 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
2903 		}
2904 		if (!page)
2905 			page = __rmqueue(zone, order, migratetype);
2906 	} while (page && check_new_pages(page, order));
2907 	spin_unlock(&zone->lock);
2908 	if (!page)
2909 		goto failed;
2910 	__mod_zone_freepage_state(zone, -(1 << order),
2911 				  get_pcppage_migratetype(page));
2912 
2913 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2914 	zone_statistics(preferred_zone, zone);
2915 	local_irq_restore(flags);
2916 
2917 out:
2918 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2919 	return page;
2920 
2921 failed:
2922 	local_irq_restore(flags);
2923 	return NULL;
2924 }
2925 
2926 #ifdef CONFIG_FAIL_PAGE_ALLOC
2927 
2928 static struct {
2929 	struct fault_attr attr;
2930 
2931 	bool ignore_gfp_highmem;
2932 	bool ignore_gfp_reclaim;
2933 	u32 min_order;
2934 } fail_page_alloc = {
2935 	.attr = FAULT_ATTR_INITIALIZER,
2936 	.ignore_gfp_reclaim = true,
2937 	.ignore_gfp_highmem = true,
2938 	.min_order = 1,
2939 };
2940 
2941 static int __init setup_fail_page_alloc(char *str)
2942 {
2943 	return setup_fault_attr(&fail_page_alloc.attr, str);
2944 }
2945 __setup("fail_page_alloc=", setup_fail_page_alloc);
2946 
2947 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2948 {
2949 	if (order < fail_page_alloc.min_order)
2950 		return false;
2951 	if (gfp_mask & __GFP_NOFAIL)
2952 		return false;
2953 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2954 		return false;
2955 	if (fail_page_alloc.ignore_gfp_reclaim &&
2956 			(gfp_mask & __GFP_DIRECT_RECLAIM))
2957 		return false;
2958 
2959 	return should_fail(&fail_page_alloc.attr, 1 << order);
2960 }
2961 
2962 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2963 
2964 static int __init fail_page_alloc_debugfs(void)
2965 {
2966 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2967 	struct dentry *dir;
2968 
2969 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2970 					&fail_page_alloc.attr);
2971 	if (IS_ERR(dir))
2972 		return PTR_ERR(dir);
2973 
2974 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2975 				&fail_page_alloc.ignore_gfp_reclaim))
2976 		goto fail;
2977 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2978 				&fail_page_alloc.ignore_gfp_highmem))
2979 		goto fail;
2980 	if (!debugfs_create_u32("min-order", mode, dir,
2981 				&fail_page_alloc.min_order))
2982 		goto fail;
2983 
2984 	return 0;
2985 fail:
2986 	debugfs_remove_recursive(dir);
2987 
2988 	return -ENOMEM;
2989 }
2990 
2991 late_initcall(fail_page_alloc_debugfs);
2992 
2993 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2994 
2995 #else /* CONFIG_FAIL_PAGE_ALLOC */
2996 
2997 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2998 {
2999 	return false;
3000 }
3001 
3002 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3003 
3004 /*
3005  * Return true if free base pages are above 'mark'. For high-order checks it
3006  * will return true of the order-0 watermark is reached and there is at least
3007  * one free page of a suitable size. Checking now avoids taking the zone lock
3008  * to check in the allocation paths if no pages are free.
3009  */
3010 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3011 			 int classzone_idx, unsigned int alloc_flags,
3012 			 long free_pages)
3013 {
3014 	long min = mark;
3015 	int o;
3016 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3017 
3018 	/* free_pages may go negative - that's OK */
3019 	free_pages -= (1 << order) - 1;
3020 
3021 	if (alloc_flags & ALLOC_HIGH)
3022 		min -= min / 2;
3023 
3024 	/*
3025 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3026 	 * the high-atomic reserves. This will over-estimate the size of the
3027 	 * atomic reserve but it avoids a search.
3028 	 */
3029 	if (likely(!alloc_harder)) {
3030 		free_pages -= z->nr_reserved_highatomic;
3031 	} else {
3032 		/*
3033 		 * OOM victims can try even harder than normal ALLOC_HARDER
3034 		 * users on the grounds that it's definitely going to be in
3035 		 * the exit path shortly and free memory. Any allocation it
3036 		 * makes during the free path will be small and short-lived.
3037 		 */
3038 		if (alloc_flags & ALLOC_OOM)
3039 			min -= min / 2;
3040 		else
3041 			min -= min / 4;
3042 	}
3043 
3044 
3045 #ifdef CONFIG_CMA
3046 	/* If allocation can't use CMA areas don't use free CMA pages */
3047 	if (!(alloc_flags & ALLOC_CMA))
3048 		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3049 #endif
3050 
3051 	/*
3052 	 * Check watermarks for an order-0 allocation request. If these
3053 	 * are not met, then a high-order request also cannot go ahead
3054 	 * even if a suitable page happened to be free.
3055 	 */
3056 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3057 		return false;
3058 
3059 	/* If this is an order-0 request then the watermark is fine */
3060 	if (!order)
3061 		return true;
3062 
3063 	/* For a high-order request, check at least one suitable page is free */
3064 	for (o = order; o < MAX_ORDER; o++) {
3065 		struct free_area *area = &z->free_area[o];
3066 		int mt;
3067 
3068 		if (!area->nr_free)
3069 			continue;
3070 
3071 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3072 			if (!list_empty(&area->free_list[mt]))
3073 				return true;
3074 		}
3075 
3076 #ifdef CONFIG_CMA
3077 		if ((alloc_flags & ALLOC_CMA) &&
3078 		    !list_empty(&area->free_list[MIGRATE_CMA])) {
3079 			return true;
3080 		}
3081 #endif
3082 		if (alloc_harder &&
3083 			!list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3084 			return true;
3085 	}
3086 	return false;
3087 }
3088 
3089 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3090 		      int classzone_idx, unsigned int alloc_flags)
3091 {
3092 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3093 					zone_page_state(z, NR_FREE_PAGES));
3094 }
3095 
3096 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3097 		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3098 {
3099 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3100 	long cma_pages = 0;
3101 
3102 #ifdef CONFIG_CMA
3103 	/* If allocation can't use CMA areas don't use free CMA pages */
3104 	if (!(alloc_flags & ALLOC_CMA))
3105 		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3106 #endif
3107 
3108 	/*
3109 	 * Fast check for order-0 only. If this fails then the reserves
3110 	 * need to be calculated. There is a corner case where the check
3111 	 * passes but only the high-order atomic reserve are free. If
3112 	 * the caller is !atomic then it'll uselessly search the free
3113 	 * list. That corner case is then slower but it is harmless.
3114 	 */
3115 	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3116 		return true;
3117 
3118 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3119 					free_pages);
3120 }
3121 
3122 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3123 			unsigned long mark, int classzone_idx)
3124 {
3125 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3126 
3127 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3128 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3129 
3130 	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3131 								free_pages);
3132 }
3133 
3134 #ifdef CONFIG_NUMA
3135 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3136 {
3137 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3138 				RECLAIM_DISTANCE;
3139 }
3140 #else	/* CONFIG_NUMA */
3141 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3142 {
3143 	return true;
3144 }
3145 #endif	/* CONFIG_NUMA */
3146 
3147 /*
3148  * get_page_from_freelist goes through the zonelist trying to allocate
3149  * a page.
3150  */
3151 static struct page *
3152 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3153 						const struct alloc_context *ac)
3154 {
3155 	struct zoneref *z = ac->preferred_zoneref;
3156 	struct zone *zone;
3157 	struct pglist_data *last_pgdat_dirty_limit = NULL;
3158 
3159 	/*
3160 	 * Scan zonelist, looking for a zone with enough free.
3161 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3162 	 */
3163 	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3164 								ac->nodemask) {
3165 		struct page *page;
3166 		unsigned long mark;
3167 
3168 		if (cpusets_enabled() &&
3169 			(alloc_flags & ALLOC_CPUSET) &&
3170 			!__cpuset_zone_allowed(zone, gfp_mask))
3171 				continue;
3172 		/*
3173 		 * When allocating a page cache page for writing, we
3174 		 * want to get it from a node that is within its dirty
3175 		 * limit, such that no single node holds more than its
3176 		 * proportional share of globally allowed dirty pages.
3177 		 * The dirty limits take into account the node's
3178 		 * lowmem reserves and high watermark so that kswapd
3179 		 * should be able to balance it without having to
3180 		 * write pages from its LRU list.
3181 		 *
3182 		 * XXX: For now, allow allocations to potentially
3183 		 * exceed the per-node dirty limit in the slowpath
3184 		 * (spread_dirty_pages unset) before going into reclaim,
3185 		 * which is important when on a NUMA setup the allowed
3186 		 * nodes are together not big enough to reach the
3187 		 * global limit.  The proper fix for these situations
3188 		 * will require awareness of nodes in the
3189 		 * dirty-throttling and the flusher threads.
3190 		 */
3191 		if (ac->spread_dirty_pages) {
3192 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3193 				continue;
3194 
3195 			if (!node_dirty_ok(zone->zone_pgdat)) {
3196 				last_pgdat_dirty_limit = zone->zone_pgdat;
3197 				continue;
3198 			}
3199 		}
3200 
3201 		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3202 		if (!zone_watermark_fast(zone, order, mark,
3203 				       ac_classzone_idx(ac), alloc_flags)) {
3204 			int ret;
3205 
3206 			/* Checked here to keep the fast path fast */
3207 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3208 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3209 				goto try_this_zone;
3210 
3211 			if (node_reclaim_mode == 0 ||
3212 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3213 				continue;
3214 
3215 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3216 			switch (ret) {
3217 			case NODE_RECLAIM_NOSCAN:
3218 				/* did not scan */
3219 				continue;
3220 			case NODE_RECLAIM_FULL:
3221 				/* scanned but unreclaimable */
3222 				continue;
3223 			default:
3224 				/* did we reclaim enough */
3225 				if (zone_watermark_ok(zone, order, mark,
3226 						ac_classzone_idx(ac), alloc_flags))
3227 					goto try_this_zone;
3228 
3229 				continue;
3230 			}
3231 		}
3232 
3233 try_this_zone:
3234 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3235 				gfp_mask, alloc_flags, ac->migratetype);
3236 		if (page) {
3237 			prep_new_page(page, order, gfp_mask, alloc_flags);
3238 
3239 			/*
3240 			 * If this is a high-order atomic allocation then check
3241 			 * if the pageblock should be reserved for the future
3242 			 */
3243 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3244 				reserve_highatomic_pageblock(page, zone, order);
3245 
3246 			return page;
3247 		}
3248 	}
3249 
3250 	return NULL;
3251 }
3252 
3253 /*
3254  * Large machines with many possible nodes should not always dump per-node
3255  * meminfo in irq context.
3256  */
3257 static inline bool should_suppress_show_mem(void)
3258 {
3259 	bool ret = false;
3260 
3261 #if NODES_SHIFT > 8
3262 	ret = in_interrupt();
3263 #endif
3264 	return ret;
3265 }
3266 
3267 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3268 {
3269 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3270 	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3271 
3272 	if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3273 		return;
3274 
3275 	/*
3276 	 * This documents exceptions given to allocations in certain
3277 	 * contexts that are allowed to allocate outside current's set
3278 	 * of allowed nodes.
3279 	 */
3280 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3281 		if (tsk_is_oom_victim(current) ||
3282 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3283 			filter &= ~SHOW_MEM_FILTER_NODES;
3284 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3285 		filter &= ~SHOW_MEM_FILTER_NODES;
3286 
3287 	show_mem(filter, nodemask);
3288 }
3289 
3290 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3291 {
3292 	struct va_format vaf;
3293 	va_list args;
3294 	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3295 				      DEFAULT_RATELIMIT_BURST);
3296 
3297 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3298 		return;
3299 
3300 	va_start(args, fmt);
3301 	vaf.fmt = fmt;
3302 	vaf.va = &args;
3303 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
3304 			current->comm, &vaf, gfp_mask, &gfp_mask,
3305 			nodemask_pr_args(nodemask));
3306 	va_end(args);
3307 
3308 	cpuset_print_current_mems_allowed();
3309 
3310 	dump_stack();
3311 	warn_alloc_show_mem(gfp_mask, nodemask);
3312 }
3313 
3314 static inline struct page *
3315 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3316 			      unsigned int alloc_flags,
3317 			      const struct alloc_context *ac)
3318 {
3319 	struct page *page;
3320 
3321 	page = get_page_from_freelist(gfp_mask, order,
3322 			alloc_flags|ALLOC_CPUSET, ac);
3323 	/*
3324 	 * fallback to ignore cpuset restriction if our nodes
3325 	 * are depleted
3326 	 */
3327 	if (!page)
3328 		page = get_page_from_freelist(gfp_mask, order,
3329 				alloc_flags, ac);
3330 
3331 	return page;
3332 }
3333 
3334 static inline struct page *
3335 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3336 	const struct alloc_context *ac, unsigned long *did_some_progress)
3337 {
3338 	struct oom_control oc = {
3339 		.zonelist = ac->zonelist,
3340 		.nodemask = ac->nodemask,
3341 		.memcg = NULL,
3342 		.gfp_mask = gfp_mask,
3343 		.order = order,
3344 	};
3345 	struct page *page;
3346 
3347 	*did_some_progress = 0;
3348 
3349 	/*
3350 	 * Acquire the oom lock.  If that fails, somebody else is
3351 	 * making progress for us.
3352 	 */
3353 	if (!mutex_trylock(&oom_lock)) {
3354 		*did_some_progress = 1;
3355 		schedule_timeout_uninterruptible(1);
3356 		return NULL;
3357 	}
3358 
3359 	/*
3360 	 * Go through the zonelist yet one more time, keep very high watermark
3361 	 * here, this is only to catch a parallel oom killing, we must fail if
3362 	 * we're still under heavy pressure. But make sure that this reclaim
3363 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3364 	 * allocation which will never fail due to oom_lock already held.
3365 	 */
3366 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3367 				      ~__GFP_DIRECT_RECLAIM, order,
3368 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3369 	if (page)
3370 		goto out;
3371 
3372 	/* Coredumps can quickly deplete all memory reserves */
3373 	if (current->flags & PF_DUMPCORE)
3374 		goto out;
3375 	/* The OOM killer will not help higher order allocs */
3376 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3377 		goto out;
3378 	/*
3379 	 * We have already exhausted all our reclaim opportunities without any
3380 	 * success so it is time to admit defeat. We will skip the OOM killer
3381 	 * because it is very likely that the caller has a more reasonable
3382 	 * fallback than shooting a random task.
3383 	 */
3384 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
3385 		goto out;
3386 	/* The OOM killer does not needlessly kill tasks for lowmem */
3387 	if (ac->high_zoneidx < ZONE_NORMAL)
3388 		goto out;
3389 	if (pm_suspended_storage())
3390 		goto out;
3391 	/*
3392 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3393 	 * other request to make a forward progress.
3394 	 * We are in an unfortunate situation where out_of_memory cannot
3395 	 * do much for this context but let's try it to at least get
3396 	 * access to memory reserved if the current task is killed (see
3397 	 * out_of_memory). Once filesystems are ready to handle allocation
3398 	 * failures more gracefully we should just bail out here.
3399 	 */
3400 
3401 	/* The OOM killer may not free memory on a specific node */
3402 	if (gfp_mask & __GFP_THISNODE)
3403 		goto out;
3404 
3405 	/* Exhausted what can be done so it's blame time */
3406 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3407 		*did_some_progress = 1;
3408 
3409 		/*
3410 		 * Help non-failing allocations by giving them access to memory
3411 		 * reserves
3412 		 */
3413 		if (gfp_mask & __GFP_NOFAIL)
3414 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3415 					ALLOC_NO_WATERMARKS, ac);
3416 	}
3417 out:
3418 	mutex_unlock(&oom_lock);
3419 	return page;
3420 }
3421 
3422 /*
3423  * Maximum number of compaction retries wit a progress before OOM
3424  * killer is consider as the only way to move forward.
3425  */
3426 #define MAX_COMPACT_RETRIES 16
3427 
3428 #ifdef CONFIG_COMPACTION
3429 /* Try memory compaction for high-order allocations before reclaim */
3430 static struct page *
3431 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3432 		unsigned int alloc_flags, const struct alloc_context *ac,
3433 		enum compact_priority prio, enum compact_result *compact_result)
3434 {
3435 	struct page *page;
3436 	unsigned int noreclaim_flag;
3437 
3438 	if (!order)
3439 		return NULL;
3440 
3441 	noreclaim_flag = memalloc_noreclaim_save();
3442 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3443 									prio);
3444 	memalloc_noreclaim_restore(noreclaim_flag);
3445 
3446 	if (*compact_result <= COMPACT_INACTIVE)
3447 		return NULL;
3448 
3449 	/*
3450 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3451 	 * count a compaction stall
3452 	 */
3453 	count_vm_event(COMPACTSTALL);
3454 
3455 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3456 
3457 	if (page) {
3458 		struct zone *zone = page_zone(page);
3459 
3460 		zone->compact_blockskip_flush = false;
3461 		compaction_defer_reset(zone, order, true);
3462 		count_vm_event(COMPACTSUCCESS);
3463 		return page;
3464 	}
3465 
3466 	/*
3467 	 * It's bad if compaction run occurs and fails. The most likely reason
3468 	 * is that pages exist, but not enough to satisfy watermarks.
3469 	 */
3470 	count_vm_event(COMPACTFAIL);
3471 
3472 	cond_resched();
3473 
3474 	return NULL;
3475 }
3476 
3477 static inline bool
3478 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3479 		     enum compact_result compact_result,
3480 		     enum compact_priority *compact_priority,
3481 		     int *compaction_retries)
3482 {
3483 	int max_retries = MAX_COMPACT_RETRIES;
3484 	int min_priority;
3485 	bool ret = false;
3486 	int retries = *compaction_retries;
3487 	enum compact_priority priority = *compact_priority;
3488 
3489 	if (!order)
3490 		return false;
3491 
3492 	if (compaction_made_progress(compact_result))
3493 		(*compaction_retries)++;
3494 
3495 	/*
3496 	 * compaction considers all the zone as desperately out of memory
3497 	 * so it doesn't really make much sense to retry except when the
3498 	 * failure could be caused by insufficient priority
3499 	 */
3500 	if (compaction_failed(compact_result))
3501 		goto check_priority;
3502 
3503 	/*
3504 	 * make sure the compaction wasn't deferred or didn't bail out early
3505 	 * due to locks contention before we declare that we should give up.
3506 	 * But do not retry if the given zonelist is not suitable for
3507 	 * compaction.
3508 	 */
3509 	if (compaction_withdrawn(compact_result)) {
3510 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3511 		goto out;
3512 	}
3513 
3514 	/*
3515 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3516 	 * costly ones because they are de facto nofail and invoke OOM
3517 	 * killer to move on while costly can fail and users are ready
3518 	 * to cope with that. 1/4 retries is rather arbitrary but we
3519 	 * would need much more detailed feedback from compaction to
3520 	 * make a better decision.
3521 	 */
3522 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3523 		max_retries /= 4;
3524 	if (*compaction_retries <= max_retries) {
3525 		ret = true;
3526 		goto out;
3527 	}
3528 
3529 	/*
3530 	 * Make sure there are attempts at the highest priority if we exhausted
3531 	 * all retries or failed at the lower priorities.
3532 	 */
3533 check_priority:
3534 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3535 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3536 
3537 	if (*compact_priority > min_priority) {
3538 		(*compact_priority)--;
3539 		*compaction_retries = 0;
3540 		ret = true;
3541 	}
3542 out:
3543 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3544 	return ret;
3545 }
3546 #else
3547 static inline struct page *
3548 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3549 		unsigned int alloc_flags, const struct alloc_context *ac,
3550 		enum compact_priority prio, enum compact_result *compact_result)
3551 {
3552 	*compact_result = COMPACT_SKIPPED;
3553 	return NULL;
3554 }
3555 
3556 static inline bool
3557 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3558 		     enum compact_result compact_result,
3559 		     enum compact_priority *compact_priority,
3560 		     int *compaction_retries)
3561 {
3562 	struct zone *zone;
3563 	struct zoneref *z;
3564 
3565 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3566 		return false;
3567 
3568 	/*
3569 	 * There are setups with compaction disabled which would prefer to loop
3570 	 * inside the allocator rather than hit the oom killer prematurely.
3571 	 * Let's give them a good hope and keep retrying while the order-0
3572 	 * watermarks are OK.
3573 	 */
3574 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3575 					ac->nodemask) {
3576 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3577 					ac_classzone_idx(ac), alloc_flags))
3578 			return true;
3579 	}
3580 	return false;
3581 }
3582 #endif /* CONFIG_COMPACTION */
3583 
3584 #ifdef CONFIG_LOCKDEP
3585 struct lockdep_map __fs_reclaim_map =
3586 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3587 
3588 static bool __need_fs_reclaim(gfp_t gfp_mask)
3589 {
3590 	gfp_mask = current_gfp_context(gfp_mask);
3591 
3592 	/* no reclaim without waiting on it */
3593 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3594 		return false;
3595 
3596 	/* this guy won't enter reclaim */
3597 	if ((current->flags & PF_MEMALLOC) && !(gfp_mask & __GFP_NOMEMALLOC))
3598 		return false;
3599 
3600 	/* We're only interested __GFP_FS allocations for now */
3601 	if (!(gfp_mask & __GFP_FS))
3602 		return false;
3603 
3604 	if (gfp_mask & __GFP_NOLOCKDEP)
3605 		return false;
3606 
3607 	return true;
3608 }
3609 
3610 void fs_reclaim_acquire(gfp_t gfp_mask)
3611 {
3612 	if (__need_fs_reclaim(gfp_mask))
3613 		lock_map_acquire(&__fs_reclaim_map);
3614 }
3615 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3616 
3617 void fs_reclaim_release(gfp_t gfp_mask)
3618 {
3619 	if (__need_fs_reclaim(gfp_mask))
3620 		lock_map_release(&__fs_reclaim_map);
3621 }
3622 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3623 #endif
3624 
3625 /* Perform direct synchronous page reclaim */
3626 static int
3627 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3628 					const struct alloc_context *ac)
3629 {
3630 	struct reclaim_state reclaim_state;
3631 	int progress;
3632 	unsigned int noreclaim_flag;
3633 
3634 	cond_resched();
3635 
3636 	/* We now go into synchronous reclaim */
3637 	cpuset_memory_pressure_bump();
3638 	noreclaim_flag = memalloc_noreclaim_save();
3639 	fs_reclaim_acquire(gfp_mask);
3640 	reclaim_state.reclaimed_slab = 0;
3641 	current->reclaim_state = &reclaim_state;
3642 
3643 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3644 								ac->nodemask);
3645 
3646 	current->reclaim_state = NULL;
3647 	fs_reclaim_release(gfp_mask);
3648 	memalloc_noreclaim_restore(noreclaim_flag);
3649 
3650 	cond_resched();
3651 
3652 	return progress;
3653 }
3654 
3655 /* The really slow allocator path where we enter direct reclaim */
3656 static inline struct page *
3657 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3658 		unsigned int alloc_flags, const struct alloc_context *ac,
3659 		unsigned long *did_some_progress)
3660 {
3661 	struct page *page = NULL;
3662 	bool drained = false;
3663 
3664 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3665 	if (unlikely(!(*did_some_progress)))
3666 		return NULL;
3667 
3668 retry:
3669 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3670 
3671 	/*
3672 	 * If an allocation failed after direct reclaim, it could be because
3673 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3674 	 * Shrink them them and try again
3675 	 */
3676 	if (!page && !drained) {
3677 		unreserve_highatomic_pageblock(ac, false);
3678 		drain_all_pages(NULL);
3679 		drained = true;
3680 		goto retry;
3681 	}
3682 
3683 	return page;
3684 }
3685 
3686 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3687 {
3688 	struct zoneref *z;
3689 	struct zone *zone;
3690 	pg_data_t *last_pgdat = NULL;
3691 
3692 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3693 					ac->high_zoneidx, ac->nodemask) {
3694 		if (last_pgdat != zone->zone_pgdat)
3695 			wakeup_kswapd(zone, order, ac->high_zoneidx);
3696 		last_pgdat = zone->zone_pgdat;
3697 	}
3698 }
3699 
3700 static inline unsigned int
3701 gfp_to_alloc_flags(gfp_t gfp_mask)
3702 {
3703 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3704 
3705 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3706 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3707 
3708 	/*
3709 	 * The caller may dip into page reserves a bit more if the caller
3710 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3711 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3712 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3713 	 */
3714 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3715 
3716 	if (gfp_mask & __GFP_ATOMIC) {
3717 		/*
3718 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3719 		 * if it can't schedule.
3720 		 */
3721 		if (!(gfp_mask & __GFP_NOMEMALLOC))
3722 			alloc_flags |= ALLOC_HARDER;
3723 		/*
3724 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3725 		 * comment for __cpuset_node_allowed().
3726 		 */
3727 		alloc_flags &= ~ALLOC_CPUSET;
3728 	} else if (unlikely(rt_task(current)) && !in_interrupt())
3729 		alloc_flags |= ALLOC_HARDER;
3730 
3731 #ifdef CONFIG_CMA
3732 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3733 		alloc_flags |= ALLOC_CMA;
3734 #endif
3735 	return alloc_flags;
3736 }
3737 
3738 static bool oom_reserves_allowed(struct task_struct *tsk)
3739 {
3740 	if (!tsk_is_oom_victim(tsk))
3741 		return false;
3742 
3743 	/*
3744 	 * !MMU doesn't have oom reaper so give access to memory reserves
3745 	 * only to the thread with TIF_MEMDIE set
3746 	 */
3747 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3748 		return false;
3749 
3750 	return true;
3751 }
3752 
3753 /*
3754  * Distinguish requests which really need access to full memory
3755  * reserves from oom victims which can live with a portion of it
3756  */
3757 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3758 {
3759 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3760 		return 0;
3761 	if (gfp_mask & __GFP_MEMALLOC)
3762 		return ALLOC_NO_WATERMARKS;
3763 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3764 		return ALLOC_NO_WATERMARKS;
3765 	if (!in_interrupt()) {
3766 		if (current->flags & PF_MEMALLOC)
3767 			return ALLOC_NO_WATERMARKS;
3768 		else if (oom_reserves_allowed(current))
3769 			return ALLOC_OOM;
3770 	}
3771 
3772 	return 0;
3773 }
3774 
3775 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3776 {
3777 	return !!__gfp_pfmemalloc_flags(gfp_mask);
3778 }
3779 
3780 /*
3781  * Checks whether it makes sense to retry the reclaim to make a forward progress
3782  * for the given allocation request.
3783  *
3784  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3785  * without success, or when we couldn't even meet the watermark if we
3786  * reclaimed all remaining pages on the LRU lists.
3787  *
3788  * Returns true if a retry is viable or false to enter the oom path.
3789  */
3790 static inline bool
3791 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3792 		     struct alloc_context *ac, int alloc_flags,
3793 		     bool did_some_progress, int *no_progress_loops)
3794 {
3795 	struct zone *zone;
3796 	struct zoneref *z;
3797 
3798 	/*
3799 	 * Costly allocations might have made a progress but this doesn't mean
3800 	 * their order will become available due to high fragmentation so
3801 	 * always increment the no progress counter for them
3802 	 */
3803 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3804 		*no_progress_loops = 0;
3805 	else
3806 		(*no_progress_loops)++;
3807 
3808 	/*
3809 	 * Make sure we converge to OOM if we cannot make any progress
3810 	 * several times in the row.
3811 	 */
3812 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3813 		/* Before OOM, exhaust highatomic_reserve */
3814 		return unreserve_highatomic_pageblock(ac, true);
3815 	}
3816 
3817 	/*
3818 	 * Keep reclaiming pages while there is a chance this will lead
3819 	 * somewhere.  If none of the target zones can satisfy our allocation
3820 	 * request even if all reclaimable pages are considered then we are
3821 	 * screwed and have to go OOM.
3822 	 */
3823 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3824 					ac->nodemask) {
3825 		unsigned long available;
3826 		unsigned long reclaimable;
3827 		unsigned long min_wmark = min_wmark_pages(zone);
3828 		bool wmark;
3829 
3830 		available = reclaimable = zone_reclaimable_pages(zone);
3831 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3832 
3833 		/*
3834 		 * Would the allocation succeed if we reclaimed all
3835 		 * reclaimable pages?
3836 		 */
3837 		wmark = __zone_watermark_ok(zone, order, min_wmark,
3838 				ac_classzone_idx(ac), alloc_flags, available);
3839 		trace_reclaim_retry_zone(z, order, reclaimable,
3840 				available, min_wmark, *no_progress_loops, wmark);
3841 		if (wmark) {
3842 			/*
3843 			 * If we didn't make any progress and have a lot of
3844 			 * dirty + writeback pages then we should wait for
3845 			 * an IO to complete to slow down the reclaim and
3846 			 * prevent from pre mature OOM
3847 			 */
3848 			if (!did_some_progress) {
3849 				unsigned long write_pending;
3850 
3851 				write_pending = zone_page_state_snapshot(zone,
3852 							NR_ZONE_WRITE_PENDING);
3853 
3854 				if (2 * write_pending > reclaimable) {
3855 					congestion_wait(BLK_RW_ASYNC, HZ/10);
3856 					return true;
3857 				}
3858 			}
3859 
3860 			/*
3861 			 * Memory allocation/reclaim might be called from a WQ
3862 			 * context and the current implementation of the WQ
3863 			 * concurrency control doesn't recognize that
3864 			 * a particular WQ is congested if the worker thread is
3865 			 * looping without ever sleeping. Therefore we have to
3866 			 * do a short sleep here rather than calling
3867 			 * cond_resched().
3868 			 */
3869 			if (current->flags & PF_WQ_WORKER)
3870 				schedule_timeout_uninterruptible(1);
3871 			else
3872 				cond_resched();
3873 
3874 			return true;
3875 		}
3876 	}
3877 
3878 	return false;
3879 }
3880 
3881 static inline bool
3882 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3883 {
3884 	/*
3885 	 * It's possible that cpuset's mems_allowed and the nodemask from
3886 	 * mempolicy don't intersect. This should be normally dealt with by
3887 	 * policy_nodemask(), but it's possible to race with cpuset update in
3888 	 * such a way the check therein was true, and then it became false
3889 	 * before we got our cpuset_mems_cookie here.
3890 	 * This assumes that for all allocations, ac->nodemask can come only
3891 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3892 	 * when it does not intersect with the cpuset restrictions) or the
3893 	 * caller can deal with a violated nodemask.
3894 	 */
3895 	if (cpusets_enabled() && ac->nodemask &&
3896 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3897 		ac->nodemask = NULL;
3898 		return true;
3899 	}
3900 
3901 	/*
3902 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
3903 	 * possible to race with parallel threads in such a way that our
3904 	 * allocation can fail while the mask is being updated. If we are about
3905 	 * to fail, check if the cpuset changed during allocation and if so,
3906 	 * retry.
3907 	 */
3908 	if (read_mems_allowed_retry(cpuset_mems_cookie))
3909 		return true;
3910 
3911 	return false;
3912 }
3913 
3914 static inline struct page *
3915 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3916 						struct alloc_context *ac)
3917 {
3918 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3919 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3920 	struct page *page = NULL;
3921 	unsigned int alloc_flags;
3922 	unsigned long did_some_progress;
3923 	enum compact_priority compact_priority;
3924 	enum compact_result compact_result;
3925 	int compaction_retries;
3926 	int no_progress_loops;
3927 	unsigned int cpuset_mems_cookie;
3928 	int reserve_flags;
3929 
3930 	/*
3931 	 * In the slowpath, we sanity check order to avoid ever trying to
3932 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3933 	 * be using allocators in order of preference for an area that is
3934 	 * too large.
3935 	 */
3936 	if (order >= MAX_ORDER) {
3937 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3938 		return NULL;
3939 	}
3940 
3941 	/*
3942 	 * We also sanity check to catch abuse of atomic reserves being used by
3943 	 * callers that are not in atomic context.
3944 	 */
3945 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3946 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3947 		gfp_mask &= ~__GFP_ATOMIC;
3948 
3949 retry_cpuset:
3950 	compaction_retries = 0;
3951 	no_progress_loops = 0;
3952 	compact_priority = DEF_COMPACT_PRIORITY;
3953 	cpuset_mems_cookie = read_mems_allowed_begin();
3954 
3955 	/*
3956 	 * The fast path uses conservative alloc_flags to succeed only until
3957 	 * kswapd needs to be woken up, and to avoid the cost of setting up
3958 	 * alloc_flags precisely. So we do that now.
3959 	 */
3960 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
3961 
3962 	/*
3963 	 * We need to recalculate the starting point for the zonelist iterator
3964 	 * because we might have used different nodemask in the fast path, or
3965 	 * there was a cpuset modification and we are retrying - otherwise we
3966 	 * could end up iterating over non-eligible zones endlessly.
3967 	 */
3968 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3969 					ac->high_zoneidx, ac->nodemask);
3970 	if (!ac->preferred_zoneref->zone)
3971 		goto nopage;
3972 
3973 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3974 		wake_all_kswapds(order, ac);
3975 
3976 	/*
3977 	 * The adjusted alloc_flags might result in immediate success, so try
3978 	 * that first
3979 	 */
3980 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3981 	if (page)
3982 		goto got_pg;
3983 
3984 	/*
3985 	 * For costly allocations, try direct compaction first, as it's likely
3986 	 * that we have enough base pages and don't need to reclaim. For non-
3987 	 * movable high-order allocations, do that as well, as compaction will
3988 	 * try prevent permanent fragmentation by migrating from blocks of the
3989 	 * same migratetype.
3990 	 * Don't try this for allocations that are allowed to ignore
3991 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
3992 	 */
3993 	if (can_direct_reclaim &&
3994 			(costly_order ||
3995 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
3996 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
3997 		page = __alloc_pages_direct_compact(gfp_mask, order,
3998 						alloc_flags, ac,
3999 						INIT_COMPACT_PRIORITY,
4000 						&compact_result);
4001 		if (page)
4002 			goto got_pg;
4003 
4004 		/*
4005 		 * Checks for costly allocations with __GFP_NORETRY, which
4006 		 * includes THP page fault allocations
4007 		 */
4008 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4009 			/*
4010 			 * If compaction is deferred for high-order allocations,
4011 			 * it is because sync compaction recently failed. If
4012 			 * this is the case and the caller requested a THP
4013 			 * allocation, we do not want to heavily disrupt the
4014 			 * system, so we fail the allocation instead of entering
4015 			 * direct reclaim.
4016 			 */
4017 			if (compact_result == COMPACT_DEFERRED)
4018 				goto nopage;
4019 
4020 			/*
4021 			 * Looks like reclaim/compaction is worth trying, but
4022 			 * sync compaction could be very expensive, so keep
4023 			 * using async compaction.
4024 			 */
4025 			compact_priority = INIT_COMPACT_PRIORITY;
4026 		}
4027 	}
4028 
4029 retry:
4030 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4031 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4032 		wake_all_kswapds(order, ac);
4033 
4034 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4035 	if (reserve_flags)
4036 		alloc_flags = reserve_flags;
4037 
4038 	/*
4039 	 * Reset the zonelist iterators if memory policies can be ignored.
4040 	 * These allocations are high priority and system rather than user
4041 	 * orientated.
4042 	 */
4043 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4044 		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
4045 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4046 					ac->high_zoneidx, ac->nodemask);
4047 	}
4048 
4049 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4050 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4051 	if (page)
4052 		goto got_pg;
4053 
4054 	/* Caller is not willing to reclaim, we can't balance anything */
4055 	if (!can_direct_reclaim)
4056 		goto nopage;
4057 
4058 	/* Avoid recursion of direct reclaim */
4059 	if (current->flags & PF_MEMALLOC)
4060 		goto nopage;
4061 
4062 	/* Try direct reclaim and then allocating */
4063 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4064 							&did_some_progress);
4065 	if (page)
4066 		goto got_pg;
4067 
4068 	/* Try direct compaction and then allocating */
4069 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4070 					compact_priority, &compact_result);
4071 	if (page)
4072 		goto got_pg;
4073 
4074 	/* Do not loop if specifically requested */
4075 	if (gfp_mask & __GFP_NORETRY)
4076 		goto nopage;
4077 
4078 	/*
4079 	 * Do not retry costly high order allocations unless they are
4080 	 * __GFP_RETRY_MAYFAIL
4081 	 */
4082 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4083 		goto nopage;
4084 
4085 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4086 				 did_some_progress > 0, &no_progress_loops))
4087 		goto retry;
4088 
4089 	/*
4090 	 * It doesn't make any sense to retry for the compaction if the order-0
4091 	 * reclaim is not able to make any progress because the current
4092 	 * implementation of the compaction depends on the sufficient amount
4093 	 * of free memory (see __compaction_suitable)
4094 	 */
4095 	if (did_some_progress > 0 &&
4096 			should_compact_retry(ac, order, alloc_flags,
4097 				compact_result, &compact_priority,
4098 				&compaction_retries))
4099 		goto retry;
4100 
4101 
4102 	/* Deal with possible cpuset update races before we start OOM killing */
4103 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4104 		goto retry_cpuset;
4105 
4106 	/* Reclaim has failed us, start killing things */
4107 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4108 	if (page)
4109 		goto got_pg;
4110 
4111 	/* Avoid allocations with no watermarks from looping endlessly */
4112 	if (tsk_is_oom_victim(current) &&
4113 	    (alloc_flags == ALLOC_OOM ||
4114 	     (gfp_mask & __GFP_NOMEMALLOC)))
4115 		goto nopage;
4116 
4117 	/* Retry as long as the OOM killer is making progress */
4118 	if (did_some_progress) {
4119 		no_progress_loops = 0;
4120 		goto retry;
4121 	}
4122 
4123 nopage:
4124 	/* Deal with possible cpuset update races before we fail */
4125 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4126 		goto retry_cpuset;
4127 
4128 	/*
4129 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4130 	 * we always retry
4131 	 */
4132 	if (gfp_mask & __GFP_NOFAIL) {
4133 		/*
4134 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4135 		 * of any new users that actually require GFP_NOWAIT
4136 		 */
4137 		if (WARN_ON_ONCE(!can_direct_reclaim))
4138 			goto fail;
4139 
4140 		/*
4141 		 * PF_MEMALLOC request from this context is rather bizarre
4142 		 * because we cannot reclaim anything and only can loop waiting
4143 		 * for somebody to do a work for us
4144 		 */
4145 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4146 
4147 		/*
4148 		 * non failing costly orders are a hard requirement which we
4149 		 * are not prepared for much so let's warn about these users
4150 		 * so that we can identify them and convert them to something
4151 		 * else.
4152 		 */
4153 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4154 
4155 		/*
4156 		 * Help non-failing allocations by giving them access to memory
4157 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
4158 		 * could deplete whole memory reserves which would just make
4159 		 * the situation worse
4160 		 */
4161 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4162 		if (page)
4163 			goto got_pg;
4164 
4165 		cond_resched();
4166 		goto retry;
4167 	}
4168 fail:
4169 	warn_alloc(gfp_mask, ac->nodemask,
4170 			"page allocation failure: order:%u", order);
4171 got_pg:
4172 	return page;
4173 }
4174 
4175 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4176 		int preferred_nid, nodemask_t *nodemask,
4177 		struct alloc_context *ac, gfp_t *alloc_mask,
4178 		unsigned int *alloc_flags)
4179 {
4180 	ac->high_zoneidx = gfp_zone(gfp_mask);
4181 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4182 	ac->nodemask = nodemask;
4183 	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4184 
4185 	if (cpusets_enabled()) {
4186 		*alloc_mask |= __GFP_HARDWALL;
4187 		if (!ac->nodemask)
4188 			ac->nodemask = &cpuset_current_mems_allowed;
4189 		else
4190 			*alloc_flags |= ALLOC_CPUSET;
4191 	}
4192 
4193 	fs_reclaim_acquire(gfp_mask);
4194 	fs_reclaim_release(gfp_mask);
4195 
4196 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4197 
4198 	if (should_fail_alloc_page(gfp_mask, order))
4199 		return false;
4200 
4201 	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4202 		*alloc_flags |= ALLOC_CMA;
4203 
4204 	return true;
4205 }
4206 
4207 /* Determine whether to spread dirty pages and what the first usable zone */
4208 static inline void finalise_ac(gfp_t gfp_mask,
4209 		unsigned int order, struct alloc_context *ac)
4210 {
4211 	/* Dirty zone balancing only done in the fast path */
4212 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4213 
4214 	/*
4215 	 * The preferred zone is used for statistics but crucially it is
4216 	 * also used as the starting point for the zonelist iterator. It
4217 	 * may get reset for allocations that ignore memory policies.
4218 	 */
4219 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4220 					ac->high_zoneidx, ac->nodemask);
4221 }
4222 
4223 /*
4224  * This is the 'heart' of the zoned buddy allocator.
4225  */
4226 struct page *
4227 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4228 							nodemask_t *nodemask)
4229 {
4230 	struct page *page;
4231 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4232 	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4233 	struct alloc_context ac = { };
4234 
4235 	gfp_mask &= gfp_allowed_mask;
4236 	alloc_mask = gfp_mask;
4237 	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4238 		return NULL;
4239 
4240 	finalise_ac(gfp_mask, order, &ac);
4241 
4242 	/* First allocation attempt */
4243 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4244 	if (likely(page))
4245 		goto out;
4246 
4247 	/*
4248 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4249 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4250 	 * from a particular context which has been marked by
4251 	 * memalloc_no{fs,io}_{save,restore}.
4252 	 */
4253 	alloc_mask = current_gfp_context(gfp_mask);
4254 	ac.spread_dirty_pages = false;
4255 
4256 	/*
4257 	 * Restore the original nodemask if it was potentially replaced with
4258 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4259 	 */
4260 	if (unlikely(ac.nodemask != nodemask))
4261 		ac.nodemask = nodemask;
4262 
4263 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4264 
4265 out:
4266 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4267 	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4268 		__free_pages(page, order);
4269 		page = NULL;
4270 	}
4271 
4272 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4273 
4274 	return page;
4275 }
4276 EXPORT_SYMBOL(__alloc_pages_nodemask);
4277 
4278 /*
4279  * Common helper functions.
4280  */
4281 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4282 {
4283 	struct page *page;
4284 
4285 	/*
4286 	 * __get_free_pages() returns a virtual address, which cannot represent
4287 	 * a highmem page
4288 	 */
4289 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4290 
4291 	page = alloc_pages(gfp_mask, order);
4292 	if (!page)
4293 		return 0;
4294 	return (unsigned long) page_address(page);
4295 }
4296 EXPORT_SYMBOL(__get_free_pages);
4297 
4298 unsigned long get_zeroed_page(gfp_t gfp_mask)
4299 {
4300 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4301 }
4302 EXPORT_SYMBOL(get_zeroed_page);
4303 
4304 void __free_pages(struct page *page, unsigned int order)
4305 {
4306 	if (put_page_testzero(page)) {
4307 		if (order == 0)
4308 			free_unref_page(page);
4309 		else
4310 			__free_pages_ok(page, order);
4311 	}
4312 }
4313 
4314 EXPORT_SYMBOL(__free_pages);
4315 
4316 void free_pages(unsigned long addr, unsigned int order)
4317 {
4318 	if (addr != 0) {
4319 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4320 		__free_pages(virt_to_page((void *)addr), order);
4321 	}
4322 }
4323 
4324 EXPORT_SYMBOL(free_pages);
4325 
4326 /*
4327  * Page Fragment:
4328  *  An arbitrary-length arbitrary-offset area of memory which resides
4329  *  within a 0 or higher order page.  Multiple fragments within that page
4330  *  are individually refcounted, in the page's reference counter.
4331  *
4332  * The page_frag functions below provide a simple allocation framework for
4333  * page fragments.  This is used by the network stack and network device
4334  * drivers to provide a backing region of memory for use as either an
4335  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4336  */
4337 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4338 					     gfp_t gfp_mask)
4339 {
4340 	struct page *page = NULL;
4341 	gfp_t gfp = gfp_mask;
4342 
4343 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4344 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4345 		    __GFP_NOMEMALLOC;
4346 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4347 				PAGE_FRAG_CACHE_MAX_ORDER);
4348 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4349 #endif
4350 	if (unlikely(!page))
4351 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4352 
4353 	nc->va = page ? page_address(page) : NULL;
4354 
4355 	return page;
4356 }
4357 
4358 void __page_frag_cache_drain(struct page *page, unsigned int count)
4359 {
4360 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4361 
4362 	if (page_ref_sub_and_test(page, count)) {
4363 		unsigned int order = compound_order(page);
4364 
4365 		if (order == 0)
4366 			free_unref_page(page);
4367 		else
4368 			__free_pages_ok(page, order);
4369 	}
4370 }
4371 EXPORT_SYMBOL(__page_frag_cache_drain);
4372 
4373 void *page_frag_alloc(struct page_frag_cache *nc,
4374 		      unsigned int fragsz, gfp_t gfp_mask)
4375 {
4376 	unsigned int size = PAGE_SIZE;
4377 	struct page *page;
4378 	int offset;
4379 
4380 	if (unlikely(!nc->va)) {
4381 refill:
4382 		page = __page_frag_cache_refill(nc, gfp_mask);
4383 		if (!page)
4384 			return NULL;
4385 
4386 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4387 		/* if size can vary use size else just use PAGE_SIZE */
4388 		size = nc->size;
4389 #endif
4390 		/* Even if we own the page, we do not use atomic_set().
4391 		 * This would break get_page_unless_zero() users.
4392 		 */
4393 		page_ref_add(page, size - 1);
4394 
4395 		/* reset page count bias and offset to start of new frag */
4396 		nc->pfmemalloc = page_is_pfmemalloc(page);
4397 		nc->pagecnt_bias = size;
4398 		nc->offset = size;
4399 	}
4400 
4401 	offset = nc->offset - fragsz;
4402 	if (unlikely(offset < 0)) {
4403 		page = virt_to_page(nc->va);
4404 
4405 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4406 			goto refill;
4407 
4408 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4409 		/* if size can vary use size else just use PAGE_SIZE */
4410 		size = nc->size;
4411 #endif
4412 		/* OK, page count is 0, we can safely set it */
4413 		set_page_count(page, size);
4414 
4415 		/* reset page count bias and offset to start of new frag */
4416 		nc->pagecnt_bias = size;
4417 		offset = size - fragsz;
4418 	}
4419 
4420 	nc->pagecnt_bias--;
4421 	nc->offset = offset;
4422 
4423 	return nc->va + offset;
4424 }
4425 EXPORT_SYMBOL(page_frag_alloc);
4426 
4427 /*
4428  * Frees a page fragment allocated out of either a compound or order 0 page.
4429  */
4430 void page_frag_free(void *addr)
4431 {
4432 	struct page *page = virt_to_head_page(addr);
4433 
4434 	if (unlikely(put_page_testzero(page)))
4435 		__free_pages_ok(page, compound_order(page));
4436 }
4437 EXPORT_SYMBOL(page_frag_free);
4438 
4439 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4440 		size_t size)
4441 {
4442 	if (addr) {
4443 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
4444 		unsigned long used = addr + PAGE_ALIGN(size);
4445 
4446 		split_page(virt_to_page((void *)addr), order);
4447 		while (used < alloc_end) {
4448 			free_page(used);
4449 			used += PAGE_SIZE;
4450 		}
4451 	}
4452 	return (void *)addr;
4453 }
4454 
4455 /**
4456  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4457  * @size: the number of bytes to allocate
4458  * @gfp_mask: GFP flags for the allocation
4459  *
4460  * This function is similar to alloc_pages(), except that it allocates the
4461  * minimum number of pages to satisfy the request.  alloc_pages() can only
4462  * allocate memory in power-of-two pages.
4463  *
4464  * This function is also limited by MAX_ORDER.
4465  *
4466  * Memory allocated by this function must be released by free_pages_exact().
4467  */
4468 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4469 {
4470 	unsigned int order = get_order(size);
4471 	unsigned long addr;
4472 
4473 	addr = __get_free_pages(gfp_mask, order);
4474 	return make_alloc_exact(addr, order, size);
4475 }
4476 EXPORT_SYMBOL(alloc_pages_exact);
4477 
4478 /**
4479  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4480  *			   pages on a node.
4481  * @nid: the preferred node ID where memory should be allocated
4482  * @size: the number of bytes to allocate
4483  * @gfp_mask: GFP flags for the allocation
4484  *
4485  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4486  * back.
4487  */
4488 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4489 {
4490 	unsigned int order = get_order(size);
4491 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
4492 	if (!p)
4493 		return NULL;
4494 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4495 }
4496 
4497 /**
4498  * free_pages_exact - release memory allocated via alloc_pages_exact()
4499  * @virt: the value returned by alloc_pages_exact.
4500  * @size: size of allocation, same value as passed to alloc_pages_exact().
4501  *
4502  * Release the memory allocated by a previous call to alloc_pages_exact.
4503  */
4504 void free_pages_exact(void *virt, size_t size)
4505 {
4506 	unsigned long addr = (unsigned long)virt;
4507 	unsigned long end = addr + PAGE_ALIGN(size);
4508 
4509 	while (addr < end) {
4510 		free_page(addr);
4511 		addr += PAGE_SIZE;
4512 	}
4513 }
4514 EXPORT_SYMBOL(free_pages_exact);
4515 
4516 /**
4517  * nr_free_zone_pages - count number of pages beyond high watermark
4518  * @offset: The zone index of the highest zone
4519  *
4520  * nr_free_zone_pages() counts the number of counts pages which are beyond the
4521  * high watermark within all zones at or below a given zone index.  For each
4522  * zone, the number of pages is calculated as:
4523  *
4524  *     nr_free_zone_pages = managed_pages - high_pages
4525  */
4526 static unsigned long nr_free_zone_pages(int offset)
4527 {
4528 	struct zoneref *z;
4529 	struct zone *zone;
4530 
4531 	/* Just pick one node, since fallback list is circular */
4532 	unsigned long sum = 0;
4533 
4534 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4535 
4536 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4537 		unsigned long size = zone->managed_pages;
4538 		unsigned long high = high_wmark_pages(zone);
4539 		if (size > high)
4540 			sum += size - high;
4541 	}
4542 
4543 	return sum;
4544 }
4545 
4546 /**
4547  * nr_free_buffer_pages - count number of pages beyond high watermark
4548  *
4549  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4550  * watermark within ZONE_DMA and ZONE_NORMAL.
4551  */
4552 unsigned long nr_free_buffer_pages(void)
4553 {
4554 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4555 }
4556 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4557 
4558 /**
4559  * nr_free_pagecache_pages - count number of pages beyond high watermark
4560  *
4561  * nr_free_pagecache_pages() counts the number of pages which are beyond the
4562  * high watermark within all zones.
4563  */
4564 unsigned long nr_free_pagecache_pages(void)
4565 {
4566 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4567 }
4568 
4569 static inline void show_node(struct zone *zone)
4570 {
4571 	if (IS_ENABLED(CONFIG_NUMA))
4572 		printk("Node %d ", zone_to_nid(zone));
4573 }
4574 
4575 long si_mem_available(void)
4576 {
4577 	long available;
4578 	unsigned long pagecache;
4579 	unsigned long wmark_low = 0;
4580 	unsigned long pages[NR_LRU_LISTS];
4581 	struct zone *zone;
4582 	int lru;
4583 
4584 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4585 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4586 
4587 	for_each_zone(zone)
4588 		wmark_low += zone->watermark[WMARK_LOW];
4589 
4590 	/*
4591 	 * Estimate the amount of memory available for userspace allocations,
4592 	 * without causing swapping.
4593 	 */
4594 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4595 
4596 	/*
4597 	 * Not all the page cache can be freed, otherwise the system will
4598 	 * start swapping. Assume at least half of the page cache, or the
4599 	 * low watermark worth of cache, needs to stay.
4600 	 */
4601 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4602 	pagecache -= min(pagecache / 2, wmark_low);
4603 	available += pagecache;
4604 
4605 	/*
4606 	 * Part of the reclaimable slab consists of items that are in use,
4607 	 * and cannot be freed. Cap this estimate at the low watermark.
4608 	 */
4609 	available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
4610 		     min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
4611 			 wmark_low);
4612 
4613 	if (available < 0)
4614 		available = 0;
4615 	return available;
4616 }
4617 EXPORT_SYMBOL_GPL(si_mem_available);
4618 
4619 void si_meminfo(struct sysinfo *val)
4620 {
4621 	val->totalram = totalram_pages;
4622 	val->sharedram = global_node_page_state(NR_SHMEM);
4623 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
4624 	val->bufferram = nr_blockdev_pages();
4625 	val->totalhigh = totalhigh_pages;
4626 	val->freehigh = nr_free_highpages();
4627 	val->mem_unit = PAGE_SIZE;
4628 }
4629 
4630 EXPORT_SYMBOL(si_meminfo);
4631 
4632 #ifdef CONFIG_NUMA
4633 void si_meminfo_node(struct sysinfo *val, int nid)
4634 {
4635 	int zone_type;		/* needs to be signed */
4636 	unsigned long managed_pages = 0;
4637 	unsigned long managed_highpages = 0;
4638 	unsigned long free_highpages = 0;
4639 	pg_data_t *pgdat = NODE_DATA(nid);
4640 
4641 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4642 		managed_pages += pgdat->node_zones[zone_type].managed_pages;
4643 	val->totalram = managed_pages;
4644 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
4645 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4646 #ifdef CONFIG_HIGHMEM
4647 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4648 		struct zone *zone = &pgdat->node_zones[zone_type];
4649 
4650 		if (is_highmem(zone)) {
4651 			managed_highpages += zone->managed_pages;
4652 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4653 		}
4654 	}
4655 	val->totalhigh = managed_highpages;
4656 	val->freehigh = free_highpages;
4657 #else
4658 	val->totalhigh = managed_highpages;
4659 	val->freehigh = free_highpages;
4660 #endif
4661 	val->mem_unit = PAGE_SIZE;
4662 }
4663 #endif
4664 
4665 /*
4666  * Determine whether the node should be displayed or not, depending on whether
4667  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4668  */
4669 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4670 {
4671 	if (!(flags & SHOW_MEM_FILTER_NODES))
4672 		return false;
4673 
4674 	/*
4675 	 * no node mask - aka implicit memory numa policy. Do not bother with
4676 	 * the synchronization - read_mems_allowed_begin - because we do not
4677 	 * have to be precise here.
4678 	 */
4679 	if (!nodemask)
4680 		nodemask = &cpuset_current_mems_allowed;
4681 
4682 	return !node_isset(nid, *nodemask);
4683 }
4684 
4685 #define K(x) ((x) << (PAGE_SHIFT-10))
4686 
4687 static void show_migration_types(unsigned char type)
4688 {
4689 	static const char types[MIGRATE_TYPES] = {
4690 		[MIGRATE_UNMOVABLE]	= 'U',
4691 		[MIGRATE_MOVABLE]	= 'M',
4692 		[MIGRATE_RECLAIMABLE]	= 'E',
4693 		[MIGRATE_HIGHATOMIC]	= 'H',
4694 #ifdef CONFIG_CMA
4695 		[MIGRATE_CMA]		= 'C',
4696 #endif
4697 #ifdef CONFIG_MEMORY_ISOLATION
4698 		[MIGRATE_ISOLATE]	= 'I',
4699 #endif
4700 	};
4701 	char tmp[MIGRATE_TYPES + 1];
4702 	char *p = tmp;
4703 	int i;
4704 
4705 	for (i = 0; i < MIGRATE_TYPES; i++) {
4706 		if (type & (1 << i))
4707 			*p++ = types[i];
4708 	}
4709 
4710 	*p = '\0';
4711 	printk(KERN_CONT "(%s) ", tmp);
4712 }
4713 
4714 /*
4715  * Show free area list (used inside shift_scroll-lock stuff)
4716  * We also calculate the percentage fragmentation. We do this by counting the
4717  * memory on each free list with the exception of the first item on the list.
4718  *
4719  * Bits in @filter:
4720  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4721  *   cpuset.
4722  */
4723 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4724 {
4725 	unsigned long free_pcp = 0;
4726 	int cpu;
4727 	struct zone *zone;
4728 	pg_data_t *pgdat;
4729 
4730 	for_each_populated_zone(zone) {
4731 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4732 			continue;
4733 
4734 		for_each_online_cpu(cpu)
4735 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4736 	}
4737 
4738 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4739 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4740 		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4741 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4742 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4743 		" free:%lu free_pcp:%lu free_cma:%lu\n",
4744 		global_node_page_state(NR_ACTIVE_ANON),
4745 		global_node_page_state(NR_INACTIVE_ANON),
4746 		global_node_page_state(NR_ISOLATED_ANON),
4747 		global_node_page_state(NR_ACTIVE_FILE),
4748 		global_node_page_state(NR_INACTIVE_FILE),
4749 		global_node_page_state(NR_ISOLATED_FILE),
4750 		global_node_page_state(NR_UNEVICTABLE),
4751 		global_node_page_state(NR_FILE_DIRTY),
4752 		global_node_page_state(NR_WRITEBACK),
4753 		global_node_page_state(NR_UNSTABLE_NFS),
4754 		global_node_page_state(NR_SLAB_RECLAIMABLE),
4755 		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4756 		global_node_page_state(NR_FILE_MAPPED),
4757 		global_node_page_state(NR_SHMEM),
4758 		global_zone_page_state(NR_PAGETABLE),
4759 		global_zone_page_state(NR_BOUNCE),
4760 		global_zone_page_state(NR_FREE_PAGES),
4761 		free_pcp,
4762 		global_zone_page_state(NR_FREE_CMA_PAGES));
4763 
4764 	for_each_online_pgdat(pgdat) {
4765 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4766 			continue;
4767 
4768 		printk("Node %d"
4769 			" active_anon:%lukB"
4770 			" inactive_anon:%lukB"
4771 			" active_file:%lukB"
4772 			" inactive_file:%lukB"
4773 			" unevictable:%lukB"
4774 			" isolated(anon):%lukB"
4775 			" isolated(file):%lukB"
4776 			" mapped:%lukB"
4777 			" dirty:%lukB"
4778 			" writeback:%lukB"
4779 			" shmem:%lukB"
4780 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4781 			" shmem_thp: %lukB"
4782 			" shmem_pmdmapped: %lukB"
4783 			" anon_thp: %lukB"
4784 #endif
4785 			" writeback_tmp:%lukB"
4786 			" unstable:%lukB"
4787 			" all_unreclaimable? %s"
4788 			"\n",
4789 			pgdat->node_id,
4790 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4791 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4792 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4793 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4794 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
4795 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4796 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4797 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
4798 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
4799 			K(node_page_state(pgdat, NR_WRITEBACK)),
4800 			K(node_page_state(pgdat, NR_SHMEM)),
4801 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4802 			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4803 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4804 					* HPAGE_PMD_NR),
4805 			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4806 #endif
4807 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4808 			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4809 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4810 				"yes" : "no");
4811 	}
4812 
4813 	for_each_populated_zone(zone) {
4814 		int i;
4815 
4816 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4817 			continue;
4818 
4819 		free_pcp = 0;
4820 		for_each_online_cpu(cpu)
4821 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4822 
4823 		show_node(zone);
4824 		printk(KERN_CONT
4825 			"%s"
4826 			" free:%lukB"
4827 			" min:%lukB"
4828 			" low:%lukB"
4829 			" high:%lukB"
4830 			" active_anon:%lukB"
4831 			" inactive_anon:%lukB"
4832 			" active_file:%lukB"
4833 			" inactive_file:%lukB"
4834 			" unevictable:%lukB"
4835 			" writepending:%lukB"
4836 			" present:%lukB"
4837 			" managed:%lukB"
4838 			" mlocked:%lukB"
4839 			" kernel_stack:%lukB"
4840 			" pagetables:%lukB"
4841 			" bounce:%lukB"
4842 			" free_pcp:%lukB"
4843 			" local_pcp:%ukB"
4844 			" free_cma:%lukB"
4845 			"\n",
4846 			zone->name,
4847 			K(zone_page_state(zone, NR_FREE_PAGES)),
4848 			K(min_wmark_pages(zone)),
4849 			K(low_wmark_pages(zone)),
4850 			K(high_wmark_pages(zone)),
4851 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4852 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4853 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4854 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4855 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4856 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4857 			K(zone->present_pages),
4858 			K(zone->managed_pages),
4859 			K(zone_page_state(zone, NR_MLOCK)),
4860 			zone_page_state(zone, NR_KERNEL_STACK_KB),
4861 			K(zone_page_state(zone, NR_PAGETABLE)),
4862 			K(zone_page_state(zone, NR_BOUNCE)),
4863 			K(free_pcp),
4864 			K(this_cpu_read(zone->pageset->pcp.count)),
4865 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4866 		printk("lowmem_reserve[]:");
4867 		for (i = 0; i < MAX_NR_ZONES; i++)
4868 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4869 		printk(KERN_CONT "\n");
4870 	}
4871 
4872 	for_each_populated_zone(zone) {
4873 		unsigned int order;
4874 		unsigned long nr[MAX_ORDER], flags, total = 0;
4875 		unsigned char types[MAX_ORDER];
4876 
4877 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4878 			continue;
4879 		show_node(zone);
4880 		printk(KERN_CONT "%s: ", zone->name);
4881 
4882 		spin_lock_irqsave(&zone->lock, flags);
4883 		for (order = 0; order < MAX_ORDER; order++) {
4884 			struct free_area *area = &zone->free_area[order];
4885 			int type;
4886 
4887 			nr[order] = area->nr_free;
4888 			total += nr[order] << order;
4889 
4890 			types[order] = 0;
4891 			for (type = 0; type < MIGRATE_TYPES; type++) {
4892 				if (!list_empty(&area->free_list[type]))
4893 					types[order] |= 1 << type;
4894 			}
4895 		}
4896 		spin_unlock_irqrestore(&zone->lock, flags);
4897 		for (order = 0; order < MAX_ORDER; order++) {
4898 			printk(KERN_CONT "%lu*%lukB ",
4899 			       nr[order], K(1UL) << order);
4900 			if (nr[order])
4901 				show_migration_types(types[order]);
4902 		}
4903 		printk(KERN_CONT "= %lukB\n", K(total));
4904 	}
4905 
4906 	hugetlb_show_meminfo();
4907 
4908 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4909 
4910 	show_swap_cache_info();
4911 }
4912 
4913 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4914 {
4915 	zoneref->zone = zone;
4916 	zoneref->zone_idx = zone_idx(zone);
4917 }
4918 
4919 /*
4920  * Builds allocation fallback zone lists.
4921  *
4922  * Add all populated zones of a node to the zonelist.
4923  */
4924 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
4925 {
4926 	struct zone *zone;
4927 	enum zone_type zone_type = MAX_NR_ZONES;
4928 	int nr_zones = 0;
4929 
4930 	do {
4931 		zone_type--;
4932 		zone = pgdat->node_zones + zone_type;
4933 		if (managed_zone(zone)) {
4934 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
4935 			check_highest_zone(zone_type);
4936 		}
4937 	} while (zone_type);
4938 
4939 	return nr_zones;
4940 }
4941 
4942 #ifdef CONFIG_NUMA
4943 
4944 static int __parse_numa_zonelist_order(char *s)
4945 {
4946 	/*
4947 	 * We used to support different zonlists modes but they turned
4948 	 * out to be just not useful. Let's keep the warning in place
4949 	 * if somebody still use the cmd line parameter so that we do
4950 	 * not fail it silently
4951 	 */
4952 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4953 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
4954 		return -EINVAL;
4955 	}
4956 	return 0;
4957 }
4958 
4959 static __init int setup_numa_zonelist_order(char *s)
4960 {
4961 	if (!s)
4962 		return 0;
4963 
4964 	return __parse_numa_zonelist_order(s);
4965 }
4966 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4967 
4968 char numa_zonelist_order[] = "Node";
4969 
4970 /*
4971  * sysctl handler for numa_zonelist_order
4972  */
4973 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4974 		void __user *buffer, size_t *length,
4975 		loff_t *ppos)
4976 {
4977 	char *str;
4978 	int ret;
4979 
4980 	if (!write)
4981 		return proc_dostring(table, write, buffer, length, ppos);
4982 	str = memdup_user_nul(buffer, 16);
4983 	if (IS_ERR(str))
4984 		return PTR_ERR(str);
4985 
4986 	ret = __parse_numa_zonelist_order(str);
4987 	kfree(str);
4988 	return ret;
4989 }
4990 
4991 
4992 #define MAX_NODE_LOAD (nr_online_nodes)
4993 static int node_load[MAX_NUMNODES];
4994 
4995 /**
4996  * find_next_best_node - find the next node that should appear in a given node's fallback list
4997  * @node: node whose fallback list we're appending
4998  * @used_node_mask: nodemask_t of already used nodes
4999  *
5000  * We use a number of factors to determine which is the next node that should
5001  * appear on a given node's fallback list.  The node should not have appeared
5002  * already in @node's fallback list, and it should be the next closest node
5003  * according to the distance array (which contains arbitrary distance values
5004  * from each node to each node in the system), and should also prefer nodes
5005  * with no CPUs, since presumably they'll have very little allocation pressure
5006  * on them otherwise.
5007  * It returns -1 if no node is found.
5008  */
5009 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5010 {
5011 	int n, val;
5012 	int min_val = INT_MAX;
5013 	int best_node = NUMA_NO_NODE;
5014 	const struct cpumask *tmp = cpumask_of_node(0);
5015 
5016 	/* Use the local node if we haven't already */
5017 	if (!node_isset(node, *used_node_mask)) {
5018 		node_set(node, *used_node_mask);
5019 		return node;
5020 	}
5021 
5022 	for_each_node_state(n, N_MEMORY) {
5023 
5024 		/* Don't want a node to appear more than once */
5025 		if (node_isset(n, *used_node_mask))
5026 			continue;
5027 
5028 		/* Use the distance array to find the distance */
5029 		val = node_distance(node, n);
5030 
5031 		/* Penalize nodes under us ("prefer the next node") */
5032 		val += (n < node);
5033 
5034 		/* Give preference to headless and unused nodes */
5035 		tmp = cpumask_of_node(n);
5036 		if (!cpumask_empty(tmp))
5037 			val += PENALTY_FOR_NODE_WITH_CPUS;
5038 
5039 		/* Slight preference for less loaded node */
5040 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5041 		val += node_load[n];
5042 
5043 		if (val < min_val) {
5044 			min_val = val;
5045 			best_node = n;
5046 		}
5047 	}
5048 
5049 	if (best_node >= 0)
5050 		node_set(best_node, *used_node_mask);
5051 
5052 	return best_node;
5053 }
5054 
5055 
5056 /*
5057  * Build zonelists ordered by node and zones within node.
5058  * This results in maximum locality--normal zone overflows into local
5059  * DMA zone, if any--but risks exhausting DMA zone.
5060  */
5061 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5062 		unsigned nr_nodes)
5063 {
5064 	struct zoneref *zonerefs;
5065 	int i;
5066 
5067 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5068 
5069 	for (i = 0; i < nr_nodes; i++) {
5070 		int nr_zones;
5071 
5072 		pg_data_t *node = NODE_DATA(node_order[i]);
5073 
5074 		nr_zones = build_zonerefs_node(node, zonerefs);
5075 		zonerefs += nr_zones;
5076 	}
5077 	zonerefs->zone = NULL;
5078 	zonerefs->zone_idx = 0;
5079 }
5080 
5081 /*
5082  * Build gfp_thisnode zonelists
5083  */
5084 static void build_thisnode_zonelists(pg_data_t *pgdat)
5085 {
5086 	struct zoneref *zonerefs;
5087 	int nr_zones;
5088 
5089 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5090 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5091 	zonerefs += nr_zones;
5092 	zonerefs->zone = NULL;
5093 	zonerefs->zone_idx = 0;
5094 }
5095 
5096 /*
5097  * Build zonelists ordered by zone and nodes within zones.
5098  * This results in conserving DMA zone[s] until all Normal memory is
5099  * exhausted, but results in overflowing to remote node while memory
5100  * may still exist in local DMA zone.
5101  */
5102 
5103 static void build_zonelists(pg_data_t *pgdat)
5104 {
5105 	static int node_order[MAX_NUMNODES];
5106 	int node, load, nr_nodes = 0;
5107 	nodemask_t used_mask;
5108 	int local_node, prev_node;
5109 
5110 	/* NUMA-aware ordering of nodes */
5111 	local_node = pgdat->node_id;
5112 	load = nr_online_nodes;
5113 	prev_node = local_node;
5114 	nodes_clear(used_mask);
5115 
5116 	memset(node_order, 0, sizeof(node_order));
5117 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5118 		/*
5119 		 * We don't want to pressure a particular node.
5120 		 * So adding penalty to the first node in same
5121 		 * distance group to make it round-robin.
5122 		 */
5123 		if (node_distance(local_node, node) !=
5124 		    node_distance(local_node, prev_node))
5125 			node_load[node] = load;
5126 
5127 		node_order[nr_nodes++] = node;
5128 		prev_node = node;
5129 		load--;
5130 	}
5131 
5132 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5133 	build_thisnode_zonelists(pgdat);
5134 }
5135 
5136 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5137 /*
5138  * Return node id of node used for "local" allocations.
5139  * I.e., first node id of first zone in arg node's generic zonelist.
5140  * Used for initializing percpu 'numa_mem', which is used primarily
5141  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5142  */
5143 int local_memory_node(int node)
5144 {
5145 	struct zoneref *z;
5146 
5147 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5148 				   gfp_zone(GFP_KERNEL),
5149 				   NULL);
5150 	return z->zone->node;
5151 }
5152 #endif
5153 
5154 static void setup_min_unmapped_ratio(void);
5155 static void setup_min_slab_ratio(void);
5156 #else	/* CONFIG_NUMA */
5157 
5158 static void build_zonelists(pg_data_t *pgdat)
5159 {
5160 	int node, local_node;
5161 	struct zoneref *zonerefs;
5162 	int nr_zones;
5163 
5164 	local_node = pgdat->node_id;
5165 
5166 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5167 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5168 	zonerefs += nr_zones;
5169 
5170 	/*
5171 	 * Now we build the zonelist so that it contains the zones
5172 	 * of all the other nodes.
5173 	 * We don't want to pressure a particular node, so when
5174 	 * building the zones for node N, we make sure that the
5175 	 * zones coming right after the local ones are those from
5176 	 * node N+1 (modulo N)
5177 	 */
5178 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5179 		if (!node_online(node))
5180 			continue;
5181 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5182 		zonerefs += nr_zones;
5183 	}
5184 	for (node = 0; node < local_node; node++) {
5185 		if (!node_online(node))
5186 			continue;
5187 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5188 		zonerefs += nr_zones;
5189 	}
5190 
5191 	zonerefs->zone = NULL;
5192 	zonerefs->zone_idx = 0;
5193 }
5194 
5195 #endif	/* CONFIG_NUMA */
5196 
5197 /*
5198  * Boot pageset table. One per cpu which is going to be used for all
5199  * zones and all nodes. The parameters will be set in such a way
5200  * that an item put on a list will immediately be handed over to
5201  * the buddy list. This is safe since pageset manipulation is done
5202  * with interrupts disabled.
5203  *
5204  * The boot_pagesets must be kept even after bootup is complete for
5205  * unused processors and/or zones. They do play a role for bootstrapping
5206  * hotplugged processors.
5207  *
5208  * zoneinfo_show() and maybe other functions do
5209  * not check if the processor is online before following the pageset pointer.
5210  * Other parts of the kernel may not check if the zone is available.
5211  */
5212 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5213 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5214 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5215 
5216 static void __build_all_zonelists(void *data)
5217 {
5218 	int nid;
5219 	int __maybe_unused cpu;
5220 	pg_data_t *self = data;
5221 	static DEFINE_SPINLOCK(lock);
5222 
5223 	spin_lock(&lock);
5224 
5225 #ifdef CONFIG_NUMA
5226 	memset(node_load, 0, sizeof(node_load));
5227 #endif
5228 
5229 	/*
5230 	 * This node is hotadded and no memory is yet present.   So just
5231 	 * building zonelists is fine - no need to touch other nodes.
5232 	 */
5233 	if (self && !node_online(self->node_id)) {
5234 		build_zonelists(self);
5235 	} else {
5236 		for_each_online_node(nid) {
5237 			pg_data_t *pgdat = NODE_DATA(nid);
5238 
5239 			build_zonelists(pgdat);
5240 		}
5241 
5242 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5243 		/*
5244 		 * We now know the "local memory node" for each node--
5245 		 * i.e., the node of the first zone in the generic zonelist.
5246 		 * Set up numa_mem percpu variable for on-line cpus.  During
5247 		 * boot, only the boot cpu should be on-line;  we'll init the
5248 		 * secondary cpus' numa_mem as they come on-line.  During
5249 		 * node/memory hotplug, we'll fixup all on-line cpus.
5250 		 */
5251 		for_each_online_cpu(cpu)
5252 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5253 #endif
5254 	}
5255 
5256 	spin_unlock(&lock);
5257 }
5258 
5259 static noinline void __init
5260 build_all_zonelists_init(void)
5261 {
5262 	int cpu;
5263 
5264 	__build_all_zonelists(NULL);
5265 
5266 	/*
5267 	 * Initialize the boot_pagesets that are going to be used
5268 	 * for bootstrapping processors. The real pagesets for
5269 	 * each zone will be allocated later when the per cpu
5270 	 * allocator is available.
5271 	 *
5272 	 * boot_pagesets are used also for bootstrapping offline
5273 	 * cpus if the system is already booted because the pagesets
5274 	 * are needed to initialize allocators on a specific cpu too.
5275 	 * F.e. the percpu allocator needs the page allocator which
5276 	 * needs the percpu allocator in order to allocate its pagesets
5277 	 * (a chicken-egg dilemma).
5278 	 */
5279 	for_each_possible_cpu(cpu)
5280 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5281 
5282 	mminit_verify_zonelist();
5283 	cpuset_init_current_mems_allowed();
5284 }
5285 
5286 /*
5287  * unless system_state == SYSTEM_BOOTING.
5288  *
5289  * __ref due to call of __init annotated helper build_all_zonelists_init
5290  * [protected by SYSTEM_BOOTING].
5291  */
5292 void __ref build_all_zonelists(pg_data_t *pgdat)
5293 {
5294 	if (system_state == SYSTEM_BOOTING) {
5295 		build_all_zonelists_init();
5296 	} else {
5297 		__build_all_zonelists(pgdat);
5298 		/* cpuset refresh routine should be here */
5299 	}
5300 	vm_total_pages = nr_free_pagecache_pages();
5301 	/*
5302 	 * Disable grouping by mobility if the number of pages in the
5303 	 * system is too low to allow the mechanism to work. It would be
5304 	 * more accurate, but expensive to check per-zone. This check is
5305 	 * made on memory-hotadd so a system can start with mobility
5306 	 * disabled and enable it later
5307 	 */
5308 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5309 		page_group_by_mobility_disabled = 1;
5310 	else
5311 		page_group_by_mobility_disabled = 0;
5312 
5313 	pr_info("Built %i zonelists, mobility grouping %s.  Total pages: %ld\n",
5314 		nr_online_nodes,
5315 		page_group_by_mobility_disabled ? "off" : "on",
5316 		vm_total_pages);
5317 #ifdef CONFIG_NUMA
5318 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5319 #endif
5320 }
5321 
5322 /*
5323  * Initially all pages are reserved - free ones are freed
5324  * up by free_all_bootmem() once the early boot process is
5325  * done. Non-atomic initialization, single-pass.
5326  */
5327 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5328 		unsigned long start_pfn, enum memmap_context context,
5329 		struct vmem_altmap *altmap)
5330 {
5331 	unsigned long end_pfn = start_pfn + size;
5332 	pg_data_t *pgdat = NODE_DATA(nid);
5333 	unsigned long pfn;
5334 	unsigned long nr_initialised = 0;
5335 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5336 	struct memblock_region *r = NULL, *tmp;
5337 #endif
5338 
5339 	if (highest_memmap_pfn < end_pfn - 1)
5340 		highest_memmap_pfn = end_pfn - 1;
5341 
5342 	/*
5343 	 * Honor reservation requested by the driver for this ZONE_DEVICE
5344 	 * memory
5345 	 */
5346 	if (altmap && start_pfn == altmap->base_pfn)
5347 		start_pfn += altmap->reserve;
5348 
5349 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5350 		/*
5351 		 * There can be holes in boot-time mem_map[]s handed to this
5352 		 * function.  They do not exist on hotplugged memory.
5353 		 */
5354 		if (context != MEMMAP_EARLY)
5355 			goto not_early;
5356 
5357 		if (!early_pfn_valid(pfn)) {
5358 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5359 			/*
5360 			 * Skip to the pfn preceding the next valid one (or
5361 			 * end_pfn), such that we hit a valid pfn (or end_pfn)
5362 			 * on our next iteration of the loop.
5363 			 */
5364 			pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
5365 #endif
5366 			continue;
5367 		}
5368 		if (!early_pfn_in_nid(pfn, nid))
5369 			continue;
5370 		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5371 			break;
5372 
5373 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5374 		/*
5375 		 * Check given memblock attribute by firmware which can affect
5376 		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
5377 		 * mirrored, it's an overlapped memmap init. skip it.
5378 		 */
5379 		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5380 			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5381 				for_each_memblock(memory, tmp)
5382 					if (pfn < memblock_region_memory_end_pfn(tmp))
5383 						break;
5384 				r = tmp;
5385 			}
5386 			if (pfn >= memblock_region_memory_base_pfn(r) &&
5387 			    memblock_is_mirror(r)) {
5388 				/* already initialized as NORMAL */
5389 				pfn = memblock_region_memory_end_pfn(r);
5390 				continue;
5391 			}
5392 		}
5393 #endif
5394 
5395 not_early:
5396 		/*
5397 		 * Mark the block movable so that blocks are reserved for
5398 		 * movable at startup. This will force kernel allocations
5399 		 * to reserve their blocks rather than leaking throughout
5400 		 * the address space during boot when many long-lived
5401 		 * kernel allocations are made.
5402 		 *
5403 		 * bitmap is created for zone's valid pfn range. but memmap
5404 		 * can be created for invalid pages (for alignment)
5405 		 * check here not to call set_pageblock_migratetype() against
5406 		 * pfn out of zone.
5407 		 *
5408 		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5409 		 * because this is done early in sparse_add_one_section
5410 		 */
5411 		if (!(pfn & (pageblock_nr_pages - 1))) {
5412 			struct page *page = pfn_to_page(pfn);
5413 
5414 			__init_single_page(page, pfn, zone, nid,
5415 					context != MEMMAP_HOTPLUG);
5416 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5417 			cond_resched();
5418 		} else {
5419 			__init_single_pfn(pfn, zone, nid,
5420 					context != MEMMAP_HOTPLUG);
5421 		}
5422 	}
5423 }
5424 
5425 static void __meminit zone_init_free_lists(struct zone *zone)
5426 {
5427 	unsigned int order, t;
5428 	for_each_migratetype_order(order, t) {
5429 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5430 		zone->free_area[order].nr_free = 0;
5431 	}
5432 }
5433 
5434 #ifndef __HAVE_ARCH_MEMMAP_INIT
5435 #define memmap_init(size, nid, zone, start_pfn) \
5436 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY, NULL)
5437 #endif
5438 
5439 static int zone_batchsize(struct zone *zone)
5440 {
5441 #ifdef CONFIG_MMU
5442 	int batch;
5443 
5444 	/*
5445 	 * The per-cpu-pages pools are set to around 1000th of the
5446 	 * size of the zone.  But no more than 1/2 of a meg.
5447 	 *
5448 	 * OK, so we don't know how big the cache is.  So guess.
5449 	 */
5450 	batch = zone->managed_pages / 1024;
5451 	if (batch * PAGE_SIZE > 512 * 1024)
5452 		batch = (512 * 1024) / PAGE_SIZE;
5453 	batch /= 4;		/* We effectively *= 4 below */
5454 	if (batch < 1)
5455 		batch = 1;
5456 
5457 	/*
5458 	 * Clamp the batch to a 2^n - 1 value. Having a power
5459 	 * of 2 value was found to be more likely to have
5460 	 * suboptimal cache aliasing properties in some cases.
5461 	 *
5462 	 * For example if 2 tasks are alternately allocating
5463 	 * batches of pages, one task can end up with a lot
5464 	 * of pages of one half of the possible page colors
5465 	 * and the other with pages of the other colors.
5466 	 */
5467 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5468 
5469 	return batch;
5470 
5471 #else
5472 	/* The deferral and batching of frees should be suppressed under NOMMU
5473 	 * conditions.
5474 	 *
5475 	 * The problem is that NOMMU needs to be able to allocate large chunks
5476 	 * of contiguous memory as there's no hardware page translation to
5477 	 * assemble apparent contiguous memory from discontiguous pages.
5478 	 *
5479 	 * Queueing large contiguous runs of pages for batching, however,
5480 	 * causes the pages to actually be freed in smaller chunks.  As there
5481 	 * can be a significant delay between the individual batches being
5482 	 * recycled, this leads to the once large chunks of space being
5483 	 * fragmented and becoming unavailable for high-order allocations.
5484 	 */
5485 	return 0;
5486 #endif
5487 }
5488 
5489 /*
5490  * pcp->high and pcp->batch values are related and dependent on one another:
5491  * ->batch must never be higher then ->high.
5492  * The following function updates them in a safe manner without read side
5493  * locking.
5494  *
5495  * Any new users of pcp->batch and pcp->high should ensure they can cope with
5496  * those fields changing asynchronously (acording the the above rule).
5497  *
5498  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5499  * outside of boot time (or some other assurance that no concurrent updaters
5500  * exist).
5501  */
5502 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5503 		unsigned long batch)
5504 {
5505        /* start with a fail safe value for batch */
5506 	pcp->batch = 1;
5507 	smp_wmb();
5508 
5509        /* Update high, then batch, in order */
5510 	pcp->high = high;
5511 	smp_wmb();
5512 
5513 	pcp->batch = batch;
5514 }
5515 
5516 /* a companion to pageset_set_high() */
5517 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5518 {
5519 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5520 }
5521 
5522 static void pageset_init(struct per_cpu_pageset *p)
5523 {
5524 	struct per_cpu_pages *pcp;
5525 	int migratetype;
5526 
5527 	memset(p, 0, sizeof(*p));
5528 
5529 	pcp = &p->pcp;
5530 	pcp->count = 0;
5531 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5532 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5533 }
5534 
5535 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5536 {
5537 	pageset_init(p);
5538 	pageset_set_batch(p, batch);
5539 }
5540 
5541 /*
5542  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5543  * to the value high for the pageset p.
5544  */
5545 static void pageset_set_high(struct per_cpu_pageset *p,
5546 				unsigned long high)
5547 {
5548 	unsigned long batch = max(1UL, high / 4);
5549 	if ((high / 4) > (PAGE_SHIFT * 8))
5550 		batch = PAGE_SHIFT * 8;
5551 
5552 	pageset_update(&p->pcp, high, batch);
5553 }
5554 
5555 static void pageset_set_high_and_batch(struct zone *zone,
5556 				       struct per_cpu_pageset *pcp)
5557 {
5558 	if (percpu_pagelist_fraction)
5559 		pageset_set_high(pcp,
5560 			(zone->managed_pages /
5561 				percpu_pagelist_fraction));
5562 	else
5563 		pageset_set_batch(pcp, zone_batchsize(zone));
5564 }
5565 
5566 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5567 {
5568 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5569 
5570 	pageset_init(pcp);
5571 	pageset_set_high_and_batch(zone, pcp);
5572 }
5573 
5574 void __meminit setup_zone_pageset(struct zone *zone)
5575 {
5576 	int cpu;
5577 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5578 	for_each_possible_cpu(cpu)
5579 		zone_pageset_init(zone, cpu);
5580 }
5581 
5582 /*
5583  * Allocate per cpu pagesets and initialize them.
5584  * Before this call only boot pagesets were available.
5585  */
5586 void __init setup_per_cpu_pageset(void)
5587 {
5588 	struct pglist_data *pgdat;
5589 	struct zone *zone;
5590 
5591 	for_each_populated_zone(zone)
5592 		setup_zone_pageset(zone);
5593 
5594 	for_each_online_pgdat(pgdat)
5595 		pgdat->per_cpu_nodestats =
5596 			alloc_percpu(struct per_cpu_nodestat);
5597 }
5598 
5599 static __meminit void zone_pcp_init(struct zone *zone)
5600 {
5601 	/*
5602 	 * per cpu subsystem is not up at this point. The following code
5603 	 * relies on the ability of the linker to provide the
5604 	 * offset of a (static) per cpu variable into the per cpu area.
5605 	 */
5606 	zone->pageset = &boot_pageset;
5607 
5608 	if (populated_zone(zone))
5609 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
5610 			zone->name, zone->present_pages,
5611 					 zone_batchsize(zone));
5612 }
5613 
5614 void __meminit init_currently_empty_zone(struct zone *zone,
5615 					unsigned long zone_start_pfn,
5616 					unsigned long size)
5617 {
5618 	struct pglist_data *pgdat = zone->zone_pgdat;
5619 
5620 	pgdat->nr_zones = zone_idx(zone) + 1;
5621 
5622 	zone->zone_start_pfn = zone_start_pfn;
5623 
5624 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
5625 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
5626 			pgdat->node_id,
5627 			(unsigned long)zone_idx(zone),
5628 			zone_start_pfn, (zone_start_pfn + size));
5629 
5630 	zone_init_free_lists(zone);
5631 	zone->initialized = 1;
5632 }
5633 
5634 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5635 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5636 
5637 /*
5638  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5639  */
5640 int __meminit __early_pfn_to_nid(unsigned long pfn,
5641 					struct mminit_pfnnid_cache *state)
5642 {
5643 	unsigned long start_pfn, end_pfn;
5644 	int nid;
5645 
5646 	if (state->last_start <= pfn && pfn < state->last_end)
5647 		return state->last_nid;
5648 
5649 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5650 	if (nid != -1) {
5651 		state->last_start = start_pfn;
5652 		state->last_end = end_pfn;
5653 		state->last_nid = nid;
5654 	}
5655 
5656 	return nid;
5657 }
5658 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5659 
5660 /**
5661  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5662  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5663  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5664  *
5665  * If an architecture guarantees that all ranges registered contain no holes
5666  * and may be freed, this this function may be used instead of calling
5667  * memblock_free_early_nid() manually.
5668  */
5669 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5670 {
5671 	unsigned long start_pfn, end_pfn;
5672 	int i, this_nid;
5673 
5674 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5675 		start_pfn = min(start_pfn, max_low_pfn);
5676 		end_pfn = min(end_pfn, max_low_pfn);
5677 
5678 		if (start_pfn < end_pfn)
5679 			memblock_free_early_nid(PFN_PHYS(start_pfn),
5680 					(end_pfn - start_pfn) << PAGE_SHIFT,
5681 					this_nid);
5682 	}
5683 }
5684 
5685 /**
5686  * sparse_memory_present_with_active_regions - Call memory_present for each active range
5687  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5688  *
5689  * If an architecture guarantees that all ranges registered contain no holes and may
5690  * be freed, this function may be used instead of calling memory_present() manually.
5691  */
5692 void __init sparse_memory_present_with_active_regions(int nid)
5693 {
5694 	unsigned long start_pfn, end_pfn;
5695 	int i, this_nid;
5696 
5697 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5698 		memory_present(this_nid, start_pfn, end_pfn);
5699 }
5700 
5701 /**
5702  * get_pfn_range_for_nid - Return the start and end page frames for a node
5703  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5704  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5705  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5706  *
5707  * It returns the start and end page frame of a node based on information
5708  * provided by memblock_set_node(). If called for a node
5709  * with no available memory, a warning is printed and the start and end
5710  * PFNs will be 0.
5711  */
5712 void __meminit get_pfn_range_for_nid(unsigned int nid,
5713 			unsigned long *start_pfn, unsigned long *end_pfn)
5714 {
5715 	unsigned long this_start_pfn, this_end_pfn;
5716 	int i;
5717 
5718 	*start_pfn = -1UL;
5719 	*end_pfn = 0;
5720 
5721 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5722 		*start_pfn = min(*start_pfn, this_start_pfn);
5723 		*end_pfn = max(*end_pfn, this_end_pfn);
5724 	}
5725 
5726 	if (*start_pfn == -1UL)
5727 		*start_pfn = 0;
5728 }
5729 
5730 /*
5731  * This finds a zone that can be used for ZONE_MOVABLE pages. The
5732  * assumption is made that zones within a node are ordered in monotonic
5733  * increasing memory addresses so that the "highest" populated zone is used
5734  */
5735 static void __init find_usable_zone_for_movable(void)
5736 {
5737 	int zone_index;
5738 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5739 		if (zone_index == ZONE_MOVABLE)
5740 			continue;
5741 
5742 		if (arch_zone_highest_possible_pfn[zone_index] >
5743 				arch_zone_lowest_possible_pfn[zone_index])
5744 			break;
5745 	}
5746 
5747 	VM_BUG_ON(zone_index == -1);
5748 	movable_zone = zone_index;
5749 }
5750 
5751 /*
5752  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5753  * because it is sized independent of architecture. Unlike the other zones,
5754  * the starting point for ZONE_MOVABLE is not fixed. It may be different
5755  * in each node depending on the size of each node and how evenly kernelcore
5756  * is distributed. This helper function adjusts the zone ranges
5757  * provided by the architecture for a given node by using the end of the
5758  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5759  * zones within a node are in order of monotonic increases memory addresses
5760  */
5761 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5762 					unsigned long zone_type,
5763 					unsigned long node_start_pfn,
5764 					unsigned long node_end_pfn,
5765 					unsigned long *zone_start_pfn,
5766 					unsigned long *zone_end_pfn)
5767 {
5768 	/* Only adjust if ZONE_MOVABLE is on this node */
5769 	if (zone_movable_pfn[nid]) {
5770 		/* Size ZONE_MOVABLE */
5771 		if (zone_type == ZONE_MOVABLE) {
5772 			*zone_start_pfn = zone_movable_pfn[nid];
5773 			*zone_end_pfn = min(node_end_pfn,
5774 				arch_zone_highest_possible_pfn[movable_zone]);
5775 
5776 		/* Adjust for ZONE_MOVABLE starting within this range */
5777 		} else if (!mirrored_kernelcore &&
5778 			*zone_start_pfn < zone_movable_pfn[nid] &&
5779 			*zone_end_pfn > zone_movable_pfn[nid]) {
5780 			*zone_end_pfn = zone_movable_pfn[nid];
5781 
5782 		/* Check if this whole range is within ZONE_MOVABLE */
5783 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
5784 			*zone_start_pfn = *zone_end_pfn;
5785 	}
5786 }
5787 
5788 /*
5789  * Return the number of pages a zone spans in a node, including holes
5790  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5791  */
5792 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5793 					unsigned long zone_type,
5794 					unsigned long node_start_pfn,
5795 					unsigned long node_end_pfn,
5796 					unsigned long *zone_start_pfn,
5797 					unsigned long *zone_end_pfn,
5798 					unsigned long *ignored)
5799 {
5800 	/* When hotadd a new node from cpu_up(), the node should be empty */
5801 	if (!node_start_pfn && !node_end_pfn)
5802 		return 0;
5803 
5804 	/* Get the start and end of the zone */
5805 	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5806 	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5807 	adjust_zone_range_for_zone_movable(nid, zone_type,
5808 				node_start_pfn, node_end_pfn,
5809 				zone_start_pfn, zone_end_pfn);
5810 
5811 	/* Check that this node has pages within the zone's required range */
5812 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5813 		return 0;
5814 
5815 	/* Move the zone boundaries inside the node if necessary */
5816 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5817 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5818 
5819 	/* Return the spanned pages */
5820 	return *zone_end_pfn - *zone_start_pfn;
5821 }
5822 
5823 /*
5824  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5825  * then all holes in the requested range will be accounted for.
5826  */
5827 unsigned long __meminit __absent_pages_in_range(int nid,
5828 				unsigned long range_start_pfn,
5829 				unsigned long range_end_pfn)
5830 {
5831 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
5832 	unsigned long start_pfn, end_pfn;
5833 	int i;
5834 
5835 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5836 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5837 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5838 		nr_absent -= end_pfn - start_pfn;
5839 	}
5840 	return nr_absent;
5841 }
5842 
5843 /**
5844  * absent_pages_in_range - Return number of page frames in holes within a range
5845  * @start_pfn: The start PFN to start searching for holes
5846  * @end_pfn: The end PFN to stop searching for holes
5847  *
5848  * It returns the number of pages frames in memory holes within a range.
5849  */
5850 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5851 							unsigned long end_pfn)
5852 {
5853 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5854 }
5855 
5856 /* Return the number of page frames in holes in a zone on a node */
5857 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5858 					unsigned long zone_type,
5859 					unsigned long node_start_pfn,
5860 					unsigned long node_end_pfn,
5861 					unsigned long *ignored)
5862 {
5863 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5864 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5865 	unsigned long zone_start_pfn, zone_end_pfn;
5866 	unsigned long nr_absent;
5867 
5868 	/* When hotadd a new node from cpu_up(), the node should be empty */
5869 	if (!node_start_pfn && !node_end_pfn)
5870 		return 0;
5871 
5872 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5873 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5874 
5875 	adjust_zone_range_for_zone_movable(nid, zone_type,
5876 			node_start_pfn, node_end_pfn,
5877 			&zone_start_pfn, &zone_end_pfn);
5878 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5879 
5880 	/*
5881 	 * ZONE_MOVABLE handling.
5882 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5883 	 * and vice versa.
5884 	 */
5885 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5886 		unsigned long start_pfn, end_pfn;
5887 		struct memblock_region *r;
5888 
5889 		for_each_memblock(memory, r) {
5890 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
5891 					  zone_start_pfn, zone_end_pfn);
5892 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
5893 					zone_start_pfn, zone_end_pfn);
5894 
5895 			if (zone_type == ZONE_MOVABLE &&
5896 			    memblock_is_mirror(r))
5897 				nr_absent += end_pfn - start_pfn;
5898 
5899 			if (zone_type == ZONE_NORMAL &&
5900 			    !memblock_is_mirror(r))
5901 				nr_absent += end_pfn - start_pfn;
5902 		}
5903 	}
5904 
5905 	return nr_absent;
5906 }
5907 
5908 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5909 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5910 					unsigned long zone_type,
5911 					unsigned long node_start_pfn,
5912 					unsigned long node_end_pfn,
5913 					unsigned long *zone_start_pfn,
5914 					unsigned long *zone_end_pfn,
5915 					unsigned long *zones_size)
5916 {
5917 	unsigned int zone;
5918 
5919 	*zone_start_pfn = node_start_pfn;
5920 	for (zone = 0; zone < zone_type; zone++)
5921 		*zone_start_pfn += zones_size[zone];
5922 
5923 	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5924 
5925 	return zones_size[zone_type];
5926 }
5927 
5928 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5929 						unsigned long zone_type,
5930 						unsigned long node_start_pfn,
5931 						unsigned long node_end_pfn,
5932 						unsigned long *zholes_size)
5933 {
5934 	if (!zholes_size)
5935 		return 0;
5936 
5937 	return zholes_size[zone_type];
5938 }
5939 
5940 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5941 
5942 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5943 						unsigned long node_start_pfn,
5944 						unsigned long node_end_pfn,
5945 						unsigned long *zones_size,
5946 						unsigned long *zholes_size)
5947 {
5948 	unsigned long realtotalpages = 0, totalpages = 0;
5949 	enum zone_type i;
5950 
5951 	for (i = 0; i < MAX_NR_ZONES; i++) {
5952 		struct zone *zone = pgdat->node_zones + i;
5953 		unsigned long zone_start_pfn, zone_end_pfn;
5954 		unsigned long size, real_size;
5955 
5956 		size = zone_spanned_pages_in_node(pgdat->node_id, i,
5957 						  node_start_pfn,
5958 						  node_end_pfn,
5959 						  &zone_start_pfn,
5960 						  &zone_end_pfn,
5961 						  zones_size);
5962 		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5963 						  node_start_pfn, node_end_pfn,
5964 						  zholes_size);
5965 		if (size)
5966 			zone->zone_start_pfn = zone_start_pfn;
5967 		else
5968 			zone->zone_start_pfn = 0;
5969 		zone->spanned_pages = size;
5970 		zone->present_pages = real_size;
5971 
5972 		totalpages += size;
5973 		realtotalpages += real_size;
5974 	}
5975 
5976 	pgdat->node_spanned_pages = totalpages;
5977 	pgdat->node_present_pages = realtotalpages;
5978 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5979 							realtotalpages);
5980 }
5981 
5982 #ifndef CONFIG_SPARSEMEM
5983 /*
5984  * Calculate the size of the zone->blockflags rounded to an unsigned long
5985  * Start by making sure zonesize is a multiple of pageblock_order by rounding
5986  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5987  * round what is now in bits to nearest long in bits, then return it in
5988  * bytes.
5989  */
5990 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5991 {
5992 	unsigned long usemapsize;
5993 
5994 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5995 	usemapsize = roundup(zonesize, pageblock_nr_pages);
5996 	usemapsize = usemapsize >> pageblock_order;
5997 	usemapsize *= NR_PAGEBLOCK_BITS;
5998 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5999 
6000 	return usemapsize / 8;
6001 }
6002 
6003 static void __init setup_usemap(struct pglist_data *pgdat,
6004 				struct zone *zone,
6005 				unsigned long zone_start_pfn,
6006 				unsigned long zonesize)
6007 {
6008 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6009 	zone->pageblock_flags = NULL;
6010 	if (usemapsize)
6011 		zone->pageblock_flags =
6012 			memblock_virt_alloc_node_nopanic(usemapsize,
6013 							 pgdat->node_id);
6014 }
6015 #else
6016 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6017 				unsigned long zone_start_pfn, unsigned long zonesize) {}
6018 #endif /* CONFIG_SPARSEMEM */
6019 
6020 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6021 
6022 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6023 void __paginginit set_pageblock_order(void)
6024 {
6025 	unsigned int order;
6026 
6027 	/* Check that pageblock_nr_pages has not already been setup */
6028 	if (pageblock_order)
6029 		return;
6030 
6031 	if (HPAGE_SHIFT > PAGE_SHIFT)
6032 		order = HUGETLB_PAGE_ORDER;
6033 	else
6034 		order = MAX_ORDER - 1;
6035 
6036 	/*
6037 	 * Assume the largest contiguous order of interest is a huge page.
6038 	 * This value may be variable depending on boot parameters on IA64 and
6039 	 * powerpc.
6040 	 */
6041 	pageblock_order = order;
6042 }
6043 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6044 
6045 /*
6046  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6047  * is unused as pageblock_order is set at compile-time. See
6048  * include/linux/pageblock-flags.h for the values of pageblock_order based on
6049  * the kernel config
6050  */
6051 void __paginginit set_pageblock_order(void)
6052 {
6053 }
6054 
6055 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6056 
6057 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
6058 						   unsigned long present_pages)
6059 {
6060 	unsigned long pages = spanned_pages;
6061 
6062 	/*
6063 	 * Provide a more accurate estimation if there are holes within
6064 	 * the zone and SPARSEMEM is in use. If there are holes within the
6065 	 * zone, each populated memory region may cost us one or two extra
6066 	 * memmap pages due to alignment because memmap pages for each
6067 	 * populated regions may not be naturally aligned on page boundary.
6068 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6069 	 */
6070 	if (spanned_pages > present_pages + (present_pages >> 4) &&
6071 	    IS_ENABLED(CONFIG_SPARSEMEM))
6072 		pages = present_pages;
6073 
6074 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6075 }
6076 
6077 /*
6078  * Set up the zone data structures:
6079  *   - mark all pages reserved
6080  *   - mark all memory queues empty
6081  *   - clear the memory bitmaps
6082  *
6083  * NOTE: pgdat should get zeroed by caller.
6084  */
6085 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
6086 {
6087 	enum zone_type j;
6088 	int nid = pgdat->node_id;
6089 
6090 	pgdat_resize_init(pgdat);
6091 #ifdef CONFIG_NUMA_BALANCING
6092 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
6093 	pgdat->numabalancing_migrate_nr_pages = 0;
6094 	pgdat->numabalancing_migrate_next_window = jiffies;
6095 #endif
6096 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6097 	spin_lock_init(&pgdat->split_queue_lock);
6098 	INIT_LIST_HEAD(&pgdat->split_queue);
6099 	pgdat->split_queue_len = 0;
6100 #endif
6101 	init_waitqueue_head(&pgdat->kswapd_wait);
6102 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6103 #ifdef CONFIG_COMPACTION
6104 	init_waitqueue_head(&pgdat->kcompactd_wait);
6105 #endif
6106 	pgdat_page_ext_init(pgdat);
6107 	spin_lock_init(&pgdat->lru_lock);
6108 	lruvec_init(node_lruvec(pgdat));
6109 
6110 	pgdat->per_cpu_nodestats = &boot_nodestats;
6111 
6112 	for (j = 0; j < MAX_NR_ZONES; j++) {
6113 		struct zone *zone = pgdat->node_zones + j;
6114 		unsigned long size, realsize, freesize, memmap_pages;
6115 		unsigned long zone_start_pfn = zone->zone_start_pfn;
6116 
6117 		size = zone->spanned_pages;
6118 		realsize = freesize = zone->present_pages;
6119 
6120 		/*
6121 		 * Adjust freesize so that it accounts for how much memory
6122 		 * is used by this zone for memmap. This affects the watermark
6123 		 * and per-cpu initialisations
6124 		 */
6125 		memmap_pages = calc_memmap_size(size, realsize);
6126 		if (!is_highmem_idx(j)) {
6127 			if (freesize >= memmap_pages) {
6128 				freesize -= memmap_pages;
6129 				if (memmap_pages)
6130 					printk(KERN_DEBUG
6131 					       "  %s zone: %lu pages used for memmap\n",
6132 					       zone_names[j], memmap_pages);
6133 			} else
6134 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6135 					zone_names[j], memmap_pages, freesize);
6136 		}
6137 
6138 		/* Account for reserved pages */
6139 		if (j == 0 && freesize > dma_reserve) {
6140 			freesize -= dma_reserve;
6141 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6142 					zone_names[0], dma_reserve);
6143 		}
6144 
6145 		if (!is_highmem_idx(j))
6146 			nr_kernel_pages += freesize;
6147 		/* Charge for highmem memmap if there are enough kernel pages */
6148 		else if (nr_kernel_pages > memmap_pages * 2)
6149 			nr_kernel_pages -= memmap_pages;
6150 		nr_all_pages += freesize;
6151 
6152 		/*
6153 		 * Set an approximate value for lowmem here, it will be adjusted
6154 		 * when the bootmem allocator frees pages into the buddy system.
6155 		 * And all highmem pages will be managed by the buddy system.
6156 		 */
6157 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6158 #ifdef CONFIG_NUMA
6159 		zone->node = nid;
6160 #endif
6161 		zone->name = zone_names[j];
6162 		zone->zone_pgdat = pgdat;
6163 		spin_lock_init(&zone->lock);
6164 		zone_seqlock_init(zone);
6165 		zone_pcp_init(zone);
6166 
6167 		if (!size)
6168 			continue;
6169 
6170 		set_pageblock_order();
6171 		setup_usemap(pgdat, zone, zone_start_pfn, size);
6172 		init_currently_empty_zone(zone, zone_start_pfn, size);
6173 		memmap_init(size, nid, j, zone_start_pfn);
6174 	}
6175 }
6176 
6177 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6178 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6179 {
6180 	unsigned long __maybe_unused start = 0;
6181 	unsigned long __maybe_unused offset = 0;
6182 
6183 	/* Skip empty nodes */
6184 	if (!pgdat->node_spanned_pages)
6185 		return;
6186 
6187 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6188 	offset = pgdat->node_start_pfn - start;
6189 	/* ia64 gets its own node_mem_map, before this, without bootmem */
6190 	if (!pgdat->node_mem_map) {
6191 		unsigned long size, end;
6192 		struct page *map;
6193 
6194 		/*
6195 		 * The zone's endpoints aren't required to be MAX_ORDER
6196 		 * aligned but the node_mem_map endpoints must be in order
6197 		 * for the buddy allocator to function correctly.
6198 		 */
6199 		end = pgdat_end_pfn(pgdat);
6200 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
6201 		size =  (end - start) * sizeof(struct page);
6202 		map = alloc_remap(pgdat->node_id, size);
6203 		if (!map)
6204 			map = memblock_virt_alloc_node_nopanic(size,
6205 							       pgdat->node_id);
6206 		pgdat->node_mem_map = map + offset;
6207 	}
6208 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6209 				__func__, pgdat->node_id, (unsigned long)pgdat,
6210 				(unsigned long)pgdat->node_mem_map);
6211 #ifndef CONFIG_NEED_MULTIPLE_NODES
6212 	/*
6213 	 * With no DISCONTIG, the global mem_map is just set as node 0's
6214 	 */
6215 	if (pgdat == NODE_DATA(0)) {
6216 		mem_map = NODE_DATA(0)->node_mem_map;
6217 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6218 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6219 			mem_map -= offset;
6220 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6221 	}
6222 #endif
6223 }
6224 #else
6225 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6226 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6227 
6228 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6229 		unsigned long node_start_pfn, unsigned long *zholes_size)
6230 {
6231 	pg_data_t *pgdat = NODE_DATA(nid);
6232 	unsigned long start_pfn = 0;
6233 	unsigned long end_pfn = 0;
6234 
6235 	/* pg_data_t should be reset to zero when it's allocated */
6236 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6237 
6238 	pgdat->node_id = nid;
6239 	pgdat->node_start_pfn = node_start_pfn;
6240 	pgdat->per_cpu_nodestats = NULL;
6241 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6242 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6243 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6244 		(u64)start_pfn << PAGE_SHIFT,
6245 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6246 #else
6247 	start_pfn = node_start_pfn;
6248 #endif
6249 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6250 				  zones_size, zholes_size);
6251 
6252 	alloc_node_mem_map(pgdat);
6253 
6254 	reset_deferred_meminit(pgdat);
6255 	free_area_init_core(pgdat);
6256 }
6257 
6258 #ifdef CONFIG_HAVE_MEMBLOCK
6259 /*
6260  * Only struct pages that are backed by physical memory are zeroed and
6261  * initialized by going through __init_single_page(). But, there are some
6262  * struct pages which are reserved in memblock allocator and their fields
6263  * may be accessed (for example page_to_pfn() on some configuration accesses
6264  * flags). We must explicitly zero those struct pages.
6265  */
6266 void __paginginit zero_resv_unavail(void)
6267 {
6268 	phys_addr_t start, end;
6269 	unsigned long pfn;
6270 	u64 i, pgcnt;
6271 
6272 	/*
6273 	 * Loop through ranges that are reserved, but do not have reported
6274 	 * physical memory backing.
6275 	 */
6276 	pgcnt = 0;
6277 	for_each_resv_unavail_range(i, &start, &end) {
6278 		for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) {
6279 			if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages)))
6280 				continue;
6281 			mm_zero_struct_page(pfn_to_page(pfn));
6282 			pgcnt++;
6283 		}
6284 	}
6285 
6286 	/*
6287 	 * Struct pages that do not have backing memory. This could be because
6288 	 * firmware is using some of this memory, or for some other reasons.
6289 	 * Once memblock is changed so such behaviour is not allowed: i.e.
6290 	 * list of "reserved" memory must be a subset of list of "memory", then
6291 	 * this code can be removed.
6292 	 */
6293 	if (pgcnt)
6294 		pr_info("Reserved but unavailable: %lld pages", pgcnt);
6295 }
6296 #endif /* CONFIG_HAVE_MEMBLOCK */
6297 
6298 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6299 
6300 #if MAX_NUMNODES > 1
6301 /*
6302  * Figure out the number of possible node ids.
6303  */
6304 void __init setup_nr_node_ids(void)
6305 {
6306 	unsigned int highest;
6307 
6308 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6309 	nr_node_ids = highest + 1;
6310 }
6311 #endif
6312 
6313 /**
6314  * node_map_pfn_alignment - determine the maximum internode alignment
6315  *
6316  * This function should be called after node map is populated and sorted.
6317  * It calculates the maximum power of two alignment which can distinguish
6318  * all the nodes.
6319  *
6320  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6321  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
6322  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
6323  * shifted, 1GiB is enough and this function will indicate so.
6324  *
6325  * This is used to test whether pfn -> nid mapping of the chosen memory
6326  * model has fine enough granularity to avoid incorrect mapping for the
6327  * populated node map.
6328  *
6329  * Returns the determined alignment in pfn's.  0 if there is no alignment
6330  * requirement (single node).
6331  */
6332 unsigned long __init node_map_pfn_alignment(void)
6333 {
6334 	unsigned long accl_mask = 0, last_end = 0;
6335 	unsigned long start, end, mask;
6336 	int last_nid = -1;
6337 	int i, nid;
6338 
6339 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6340 		if (!start || last_nid < 0 || last_nid == nid) {
6341 			last_nid = nid;
6342 			last_end = end;
6343 			continue;
6344 		}
6345 
6346 		/*
6347 		 * Start with a mask granular enough to pin-point to the
6348 		 * start pfn and tick off bits one-by-one until it becomes
6349 		 * too coarse to separate the current node from the last.
6350 		 */
6351 		mask = ~((1 << __ffs(start)) - 1);
6352 		while (mask && last_end <= (start & (mask << 1)))
6353 			mask <<= 1;
6354 
6355 		/* accumulate all internode masks */
6356 		accl_mask |= mask;
6357 	}
6358 
6359 	/* convert mask to number of pages */
6360 	return ~accl_mask + 1;
6361 }
6362 
6363 /* Find the lowest pfn for a node */
6364 static unsigned long __init find_min_pfn_for_node(int nid)
6365 {
6366 	unsigned long min_pfn = ULONG_MAX;
6367 	unsigned long start_pfn;
6368 	int i;
6369 
6370 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6371 		min_pfn = min(min_pfn, start_pfn);
6372 
6373 	if (min_pfn == ULONG_MAX) {
6374 		pr_warn("Could not find start_pfn for node %d\n", nid);
6375 		return 0;
6376 	}
6377 
6378 	return min_pfn;
6379 }
6380 
6381 /**
6382  * find_min_pfn_with_active_regions - Find the minimum PFN registered
6383  *
6384  * It returns the minimum PFN based on information provided via
6385  * memblock_set_node().
6386  */
6387 unsigned long __init find_min_pfn_with_active_regions(void)
6388 {
6389 	return find_min_pfn_for_node(MAX_NUMNODES);
6390 }
6391 
6392 /*
6393  * early_calculate_totalpages()
6394  * Sum pages in active regions for movable zone.
6395  * Populate N_MEMORY for calculating usable_nodes.
6396  */
6397 static unsigned long __init early_calculate_totalpages(void)
6398 {
6399 	unsigned long totalpages = 0;
6400 	unsigned long start_pfn, end_pfn;
6401 	int i, nid;
6402 
6403 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6404 		unsigned long pages = end_pfn - start_pfn;
6405 
6406 		totalpages += pages;
6407 		if (pages)
6408 			node_set_state(nid, N_MEMORY);
6409 	}
6410 	return totalpages;
6411 }
6412 
6413 /*
6414  * Find the PFN the Movable zone begins in each node. Kernel memory
6415  * is spread evenly between nodes as long as the nodes have enough
6416  * memory. When they don't, some nodes will have more kernelcore than
6417  * others
6418  */
6419 static void __init find_zone_movable_pfns_for_nodes(void)
6420 {
6421 	int i, nid;
6422 	unsigned long usable_startpfn;
6423 	unsigned long kernelcore_node, kernelcore_remaining;
6424 	/* save the state before borrow the nodemask */
6425 	nodemask_t saved_node_state = node_states[N_MEMORY];
6426 	unsigned long totalpages = early_calculate_totalpages();
6427 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6428 	struct memblock_region *r;
6429 
6430 	/* Need to find movable_zone earlier when movable_node is specified. */
6431 	find_usable_zone_for_movable();
6432 
6433 	/*
6434 	 * If movable_node is specified, ignore kernelcore and movablecore
6435 	 * options.
6436 	 */
6437 	if (movable_node_is_enabled()) {
6438 		for_each_memblock(memory, r) {
6439 			if (!memblock_is_hotpluggable(r))
6440 				continue;
6441 
6442 			nid = r->nid;
6443 
6444 			usable_startpfn = PFN_DOWN(r->base);
6445 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6446 				min(usable_startpfn, zone_movable_pfn[nid]) :
6447 				usable_startpfn;
6448 		}
6449 
6450 		goto out2;
6451 	}
6452 
6453 	/*
6454 	 * If kernelcore=mirror is specified, ignore movablecore option
6455 	 */
6456 	if (mirrored_kernelcore) {
6457 		bool mem_below_4gb_not_mirrored = false;
6458 
6459 		for_each_memblock(memory, r) {
6460 			if (memblock_is_mirror(r))
6461 				continue;
6462 
6463 			nid = r->nid;
6464 
6465 			usable_startpfn = memblock_region_memory_base_pfn(r);
6466 
6467 			if (usable_startpfn < 0x100000) {
6468 				mem_below_4gb_not_mirrored = true;
6469 				continue;
6470 			}
6471 
6472 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6473 				min(usable_startpfn, zone_movable_pfn[nid]) :
6474 				usable_startpfn;
6475 		}
6476 
6477 		if (mem_below_4gb_not_mirrored)
6478 			pr_warn("This configuration results in unmirrored kernel memory.");
6479 
6480 		goto out2;
6481 	}
6482 
6483 	/*
6484 	 * If movablecore=nn[KMG] was specified, calculate what size of
6485 	 * kernelcore that corresponds so that memory usable for
6486 	 * any allocation type is evenly spread. If both kernelcore
6487 	 * and movablecore are specified, then the value of kernelcore
6488 	 * will be used for required_kernelcore if it's greater than
6489 	 * what movablecore would have allowed.
6490 	 */
6491 	if (required_movablecore) {
6492 		unsigned long corepages;
6493 
6494 		/*
6495 		 * Round-up so that ZONE_MOVABLE is at least as large as what
6496 		 * was requested by the user
6497 		 */
6498 		required_movablecore =
6499 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6500 		required_movablecore = min(totalpages, required_movablecore);
6501 		corepages = totalpages - required_movablecore;
6502 
6503 		required_kernelcore = max(required_kernelcore, corepages);
6504 	}
6505 
6506 	/*
6507 	 * If kernelcore was not specified or kernelcore size is larger
6508 	 * than totalpages, there is no ZONE_MOVABLE.
6509 	 */
6510 	if (!required_kernelcore || required_kernelcore >= totalpages)
6511 		goto out;
6512 
6513 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6514 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6515 
6516 restart:
6517 	/* Spread kernelcore memory as evenly as possible throughout nodes */
6518 	kernelcore_node = required_kernelcore / usable_nodes;
6519 	for_each_node_state(nid, N_MEMORY) {
6520 		unsigned long start_pfn, end_pfn;
6521 
6522 		/*
6523 		 * Recalculate kernelcore_node if the division per node
6524 		 * now exceeds what is necessary to satisfy the requested
6525 		 * amount of memory for the kernel
6526 		 */
6527 		if (required_kernelcore < kernelcore_node)
6528 			kernelcore_node = required_kernelcore / usable_nodes;
6529 
6530 		/*
6531 		 * As the map is walked, we track how much memory is usable
6532 		 * by the kernel using kernelcore_remaining. When it is
6533 		 * 0, the rest of the node is usable by ZONE_MOVABLE
6534 		 */
6535 		kernelcore_remaining = kernelcore_node;
6536 
6537 		/* Go through each range of PFNs within this node */
6538 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6539 			unsigned long size_pages;
6540 
6541 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6542 			if (start_pfn >= end_pfn)
6543 				continue;
6544 
6545 			/* Account for what is only usable for kernelcore */
6546 			if (start_pfn < usable_startpfn) {
6547 				unsigned long kernel_pages;
6548 				kernel_pages = min(end_pfn, usable_startpfn)
6549 								- start_pfn;
6550 
6551 				kernelcore_remaining -= min(kernel_pages,
6552 							kernelcore_remaining);
6553 				required_kernelcore -= min(kernel_pages,
6554 							required_kernelcore);
6555 
6556 				/* Continue if range is now fully accounted */
6557 				if (end_pfn <= usable_startpfn) {
6558 
6559 					/*
6560 					 * Push zone_movable_pfn to the end so
6561 					 * that if we have to rebalance
6562 					 * kernelcore across nodes, we will
6563 					 * not double account here
6564 					 */
6565 					zone_movable_pfn[nid] = end_pfn;
6566 					continue;
6567 				}
6568 				start_pfn = usable_startpfn;
6569 			}
6570 
6571 			/*
6572 			 * The usable PFN range for ZONE_MOVABLE is from
6573 			 * start_pfn->end_pfn. Calculate size_pages as the
6574 			 * number of pages used as kernelcore
6575 			 */
6576 			size_pages = end_pfn - start_pfn;
6577 			if (size_pages > kernelcore_remaining)
6578 				size_pages = kernelcore_remaining;
6579 			zone_movable_pfn[nid] = start_pfn + size_pages;
6580 
6581 			/*
6582 			 * Some kernelcore has been met, update counts and
6583 			 * break if the kernelcore for this node has been
6584 			 * satisfied
6585 			 */
6586 			required_kernelcore -= min(required_kernelcore,
6587 								size_pages);
6588 			kernelcore_remaining -= size_pages;
6589 			if (!kernelcore_remaining)
6590 				break;
6591 		}
6592 	}
6593 
6594 	/*
6595 	 * If there is still required_kernelcore, we do another pass with one
6596 	 * less node in the count. This will push zone_movable_pfn[nid] further
6597 	 * along on the nodes that still have memory until kernelcore is
6598 	 * satisfied
6599 	 */
6600 	usable_nodes--;
6601 	if (usable_nodes && required_kernelcore > usable_nodes)
6602 		goto restart;
6603 
6604 out2:
6605 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6606 	for (nid = 0; nid < MAX_NUMNODES; nid++)
6607 		zone_movable_pfn[nid] =
6608 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6609 
6610 out:
6611 	/* restore the node_state */
6612 	node_states[N_MEMORY] = saved_node_state;
6613 }
6614 
6615 /* Any regular or high memory on that node ? */
6616 static void check_for_memory(pg_data_t *pgdat, int nid)
6617 {
6618 	enum zone_type zone_type;
6619 
6620 	if (N_MEMORY == N_NORMAL_MEMORY)
6621 		return;
6622 
6623 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6624 		struct zone *zone = &pgdat->node_zones[zone_type];
6625 		if (populated_zone(zone)) {
6626 			node_set_state(nid, N_HIGH_MEMORY);
6627 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6628 			    zone_type <= ZONE_NORMAL)
6629 				node_set_state(nid, N_NORMAL_MEMORY);
6630 			break;
6631 		}
6632 	}
6633 }
6634 
6635 /**
6636  * free_area_init_nodes - Initialise all pg_data_t and zone data
6637  * @max_zone_pfn: an array of max PFNs for each zone
6638  *
6639  * This will call free_area_init_node() for each active node in the system.
6640  * Using the page ranges provided by memblock_set_node(), the size of each
6641  * zone in each node and their holes is calculated. If the maximum PFN
6642  * between two adjacent zones match, it is assumed that the zone is empty.
6643  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6644  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6645  * starts where the previous one ended. For example, ZONE_DMA32 starts
6646  * at arch_max_dma_pfn.
6647  */
6648 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6649 {
6650 	unsigned long start_pfn, end_pfn;
6651 	int i, nid;
6652 
6653 	/* Record where the zone boundaries are */
6654 	memset(arch_zone_lowest_possible_pfn, 0,
6655 				sizeof(arch_zone_lowest_possible_pfn));
6656 	memset(arch_zone_highest_possible_pfn, 0,
6657 				sizeof(arch_zone_highest_possible_pfn));
6658 
6659 	start_pfn = find_min_pfn_with_active_regions();
6660 
6661 	for (i = 0; i < MAX_NR_ZONES; i++) {
6662 		if (i == ZONE_MOVABLE)
6663 			continue;
6664 
6665 		end_pfn = max(max_zone_pfn[i], start_pfn);
6666 		arch_zone_lowest_possible_pfn[i] = start_pfn;
6667 		arch_zone_highest_possible_pfn[i] = end_pfn;
6668 
6669 		start_pfn = end_pfn;
6670 	}
6671 
6672 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
6673 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6674 	find_zone_movable_pfns_for_nodes();
6675 
6676 	/* Print out the zone ranges */
6677 	pr_info("Zone ranges:\n");
6678 	for (i = 0; i < MAX_NR_ZONES; i++) {
6679 		if (i == ZONE_MOVABLE)
6680 			continue;
6681 		pr_info("  %-8s ", zone_names[i]);
6682 		if (arch_zone_lowest_possible_pfn[i] ==
6683 				arch_zone_highest_possible_pfn[i])
6684 			pr_cont("empty\n");
6685 		else
6686 			pr_cont("[mem %#018Lx-%#018Lx]\n",
6687 				(u64)arch_zone_lowest_possible_pfn[i]
6688 					<< PAGE_SHIFT,
6689 				((u64)arch_zone_highest_possible_pfn[i]
6690 					<< PAGE_SHIFT) - 1);
6691 	}
6692 
6693 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6694 	pr_info("Movable zone start for each node\n");
6695 	for (i = 0; i < MAX_NUMNODES; i++) {
6696 		if (zone_movable_pfn[i])
6697 			pr_info("  Node %d: %#018Lx\n", i,
6698 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6699 	}
6700 
6701 	/* Print out the early node map */
6702 	pr_info("Early memory node ranges\n");
6703 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6704 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6705 			(u64)start_pfn << PAGE_SHIFT,
6706 			((u64)end_pfn << PAGE_SHIFT) - 1);
6707 
6708 	/* Initialise every node */
6709 	mminit_verify_pageflags_layout();
6710 	setup_nr_node_ids();
6711 	for_each_online_node(nid) {
6712 		pg_data_t *pgdat = NODE_DATA(nid);
6713 		free_area_init_node(nid, NULL,
6714 				find_min_pfn_for_node(nid), NULL);
6715 
6716 		/* Any memory on that node */
6717 		if (pgdat->node_present_pages)
6718 			node_set_state(nid, N_MEMORY);
6719 		check_for_memory(pgdat, nid);
6720 	}
6721 	zero_resv_unavail();
6722 }
6723 
6724 static int __init cmdline_parse_core(char *p, unsigned long *core)
6725 {
6726 	unsigned long long coremem;
6727 	if (!p)
6728 		return -EINVAL;
6729 
6730 	coremem = memparse(p, &p);
6731 	*core = coremem >> PAGE_SHIFT;
6732 
6733 	/* Paranoid check that UL is enough for the coremem value */
6734 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6735 
6736 	return 0;
6737 }
6738 
6739 /*
6740  * kernelcore=size sets the amount of memory for use for allocations that
6741  * cannot be reclaimed or migrated.
6742  */
6743 static int __init cmdline_parse_kernelcore(char *p)
6744 {
6745 	/* parse kernelcore=mirror */
6746 	if (parse_option_str(p, "mirror")) {
6747 		mirrored_kernelcore = true;
6748 		return 0;
6749 	}
6750 
6751 	return cmdline_parse_core(p, &required_kernelcore);
6752 }
6753 
6754 /*
6755  * movablecore=size sets the amount of memory for use for allocations that
6756  * can be reclaimed or migrated.
6757  */
6758 static int __init cmdline_parse_movablecore(char *p)
6759 {
6760 	return cmdline_parse_core(p, &required_movablecore);
6761 }
6762 
6763 early_param("kernelcore", cmdline_parse_kernelcore);
6764 early_param("movablecore", cmdline_parse_movablecore);
6765 
6766 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6767 
6768 void adjust_managed_page_count(struct page *page, long count)
6769 {
6770 	spin_lock(&managed_page_count_lock);
6771 	page_zone(page)->managed_pages += count;
6772 	totalram_pages += count;
6773 #ifdef CONFIG_HIGHMEM
6774 	if (PageHighMem(page))
6775 		totalhigh_pages += count;
6776 #endif
6777 	spin_unlock(&managed_page_count_lock);
6778 }
6779 EXPORT_SYMBOL(adjust_managed_page_count);
6780 
6781 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6782 {
6783 	void *pos;
6784 	unsigned long pages = 0;
6785 
6786 	start = (void *)PAGE_ALIGN((unsigned long)start);
6787 	end = (void *)((unsigned long)end & PAGE_MASK);
6788 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6789 		if ((unsigned int)poison <= 0xFF)
6790 			memset(pos, poison, PAGE_SIZE);
6791 		free_reserved_page(virt_to_page(pos));
6792 	}
6793 
6794 	if (pages && s)
6795 		pr_info("Freeing %s memory: %ldK\n",
6796 			s, pages << (PAGE_SHIFT - 10));
6797 
6798 	return pages;
6799 }
6800 EXPORT_SYMBOL(free_reserved_area);
6801 
6802 #ifdef	CONFIG_HIGHMEM
6803 void free_highmem_page(struct page *page)
6804 {
6805 	__free_reserved_page(page);
6806 	totalram_pages++;
6807 	page_zone(page)->managed_pages++;
6808 	totalhigh_pages++;
6809 }
6810 #endif
6811 
6812 
6813 void __init mem_init_print_info(const char *str)
6814 {
6815 	unsigned long physpages, codesize, datasize, rosize, bss_size;
6816 	unsigned long init_code_size, init_data_size;
6817 
6818 	physpages = get_num_physpages();
6819 	codesize = _etext - _stext;
6820 	datasize = _edata - _sdata;
6821 	rosize = __end_rodata - __start_rodata;
6822 	bss_size = __bss_stop - __bss_start;
6823 	init_data_size = __init_end - __init_begin;
6824 	init_code_size = _einittext - _sinittext;
6825 
6826 	/*
6827 	 * Detect special cases and adjust section sizes accordingly:
6828 	 * 1) .init.* may be embedded into .data sections
6829 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
6830 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
6831 	 * 3) .rodata.* may be embedded into .text or .data sections.
6832 	 */
6833 #define adj_init_size(start, end, size, pos, adj) \
6834 	do { \
6835 		if (start <= pos && pos < end && size > adj) \
6836 			size -= adj; \
6837 	} while (0)
6838 
6839 	adj_init_size(__init_begin, __init_end, init_data_size,
6840 		     _sinittext, init_code_size);
6841 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6842 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6843 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6844 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6845 
6846 #undef	adj_init_size
6847 
6848 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6849 #ifdef	CONFIG_HIGHMEM
6850 		", %luK highmem"
6851 #endif
6852 		"%s%s)\n",
6853 		nr_free_pages() << (PAGE_SHIFT - 10),
6854 		physpages << (PAGE_SHIFT - 10),
6855 		codesize >> 10, datasize >> 10, rosize >> 10,
6856 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
6857 		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6858 		totalcma_pages << (PAGE_SHIFT - 10),
6859 #ifdef	CONFIG_HIGHMEM
6860 		totalhigh_pages << (PAGE_SHIFT - 10),
6861 #endif
6862 		str ? ", " : "", str ? str : "");
6863 }
6864 
6865 /**
6866  * set_dma_reserve - set the specified number of pages reserved in the first zone
6867  * @new_dma_reserve: The number of pages to mark reserved
6868  *
6869  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6870  * In the DMA zone, a significant percentage may be consumed by kernel image
6871  * and other unfreeable allocations which can skew the watermarks badly. This
6872  * function may optionally be used to account for unfreeable pages in the
6873  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6874  * smaller per-cpu batchsize.
6875  */
6876 void __init set_dma_reserve(unsigned long new_dma_reserve)
6877 {
6878 	dma_reserve = new_dma_reserve;
6879 }
6880 
6881 void __init free_area_init(unsigned long *zones_size)
6882 {
6883 	free_area_init_node(0, zones_size,
6884 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6885 	zero_resv_unavail();
6886 }
6887 
6888 static int page_alloc_cpu_dead(unsigned int cpu)
6889 {
6890 
6891 	lru_add_drain_cpu(cpu);
6892 	drain_pages(cpu);
6893 
6894 	/*
6895 	 * Spill the event counters of the dead processor
6896 	 * into the current processors event counters.
6897 	 * This artificially elevates the count of the current
6898 	 * processor.
6899 	 */
6900 	vm_events_fold_cpu(cpu);
6901 
6902 	/*
6903 	 * Zero the differential counters of the dead processor
6904 	 * so that the vm statistics are consistent.
6905 	 *
6906 	 * This is only okay since the processor is dead and cannot
6907 	 * race with what we are doing.
6908 	 */
6909 	cpu_vm_stats_fold(cpu);
6910 	return 0;
6911 }
6912 
6913 void __init page_alloc_init(void)
6914 {
6915 	int ret;
6916 
6917 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6918 					"mm/page_alloc:dead", NULL,
6919 					page_alloc_cpu_dead);
6920 	WARN_ON(ret < 0);
6921 }
6922 
6923 /*
6924  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6925  *	or min_free_kbytes changes.
6926  */
6927 static void calculate_totalreserve_pages(void)
6928 {
6929 	struct pglist_data *pgdat;
6930 	unsigned long reserve_pages = 0;
6931 	enum zone_type i, j;
6932 
6933 	for_each_online_pgdat(pgdat) {
6934 
6935 		pgdat->totalreserve_pages = 0;
6936 
6937 		for (i = 0; i < MAX_NR_ZONES; i++) {
6938 			struct zone *zone = pgdat->node_zones + i;
6939 			long max = 0;
6940 
6941 			/* Find valid and maximum lowmem_reserve in the zone */
6942 			for (j = i; j < MAX_NR_ZONES; j++) {
6943 				if (zone->lowmem_reserve[j] > max)
6944 					max = zone->lowmem_reserve[j];
6945 			}
6946 
6947 			/* we treat the high watermark as reserved pages. */
6948 			max += high_wmark_pages(zone);
6949 
6950 			if (max > zone->managed_pages)
6951 				max = zone->managed_pages;
6952 
6953 			pgdat->totalreserve_pages += max;
6954 
6955 			reserve_pages += max;
6956 		}
6957 	}
6958 	totalreserve_pages = reserve_pages;
6959 }
6960 
6961 /*
6962  * setup_per_zone_lowmem_reserve - called whenever
6963  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
6964  *	has a correct pages reserved value, so an adequate number of
6965  *	pages are left in the zone after a successful __alloc_pages().
6966  */
6967 static void setup_per_zone_lowmem_reserve(void)
6968 {
6969 	struct pglist_data *pgdat;
6970 	enum zone_type j, idx;
6971 
6972 	for_each_online_pgdat(pgdat) {
6973 		for (j = 0; j < MAX_NR_ZONES; j++) {
6974 			struct zone *zone = pgdat->node_zones + j;
6975 			unsigned long managed_pages = zone->managed_pages;
6976 
6977 			zone->lowmem_reserve[j] = 0;
6978 
6979 			idx = j;
6980 			while (idx) {
6981 				struct zone *lower_zone;
6982 
6983 				idx--;
6984 
6985 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
6986 					sysctl_lowmem_reserve_ratio[idx] = 1;
6987 
6988 				lower_zone = pgdat->node_zones + idx;
6989 				lower_zone->lowmem_reserve[j] = managed_pages /
6990 					sysctl_lowmem_reserve_ratio[idx];
6991 				managed_pages += lower_zone->managed_pages;
6992 			}
6993 		}
6994 	}
6995 
6996 	/* update totalreserve_pages */
6997 	calculate_totalreserve_pages();
6998 }
6999 
7000 static void __setup_per_zone_wmarks(void)
7001 {
7002 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7003 	unsigned long lowmem_pages = 0;
7004 	struct zone *zone;
7005 	unsigned long flags;
7006 
7007 	/* Calculate total number of !ZONE_HIGHMEM pages */
7008 	for_each_zone(zone) {
7009 		if (!is_highmem(zone))
7010 			lowmem_pages += zone->managed_pages;
7011 	}
7012 
7013 	for_each_zone(zone) {
7014 		u64 tmp;
7015 
7016 		spin_lock_irqsave(&zone->lock, flags);
7017 		tmp = (u64)pages_min * zone->managed_pages;
7018 		do_div(tmp, lowmem_pages);
7019 		if (is_highmem(zone)) {
7020 			/*
7021 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7022 			 * need highmem pages, so cap pages_min to a small
7023 			 * value here.
7024 			 *
7025 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7026 			 * deltas control asynch page reclaim, and so should
7027 			 * not be capped for highmem.
7028 			 */
7029 			unsigned long min_pages;
7030 
7031 			min_pages = zone->managed_pages / 1024;
7032 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7033 			zone->watermark[WMARK_MIN] = min_pages;
7034 		} else {
7035 			/*
7036 			 * If it's a lowmem zone, reserve a number of pages
7037 			 * proportionate to the zone's size.
7038 			 */
7039 			zone->watermark[WMARK_MIN] = tmp;
7040 		}
7041 
7042 		/*
7043 		 * Set the kswapd watermarks distance according to the
7044 		 * scale factor in proportion to available memory, but
7045 		 * ensure a minimum size on small systems.
7046 		 */
7047 		tmp = max_t(u64, tmp >> 2,
7048 			    mult_frac(zone->managed_pages,
7049 				      watermark_scale_factor, 10000));
7050 
7051 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
7052 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7053 
7054 		spin_unlock_irqrestore(&zone->lock, flags);
7055 	}
7056 
7057 	/* update totalreserve_pages */
7058 	calculate_totalreserve_pages();
7059 }
7060 
7061 /**
7062  * setup_per_zone_wmarks - called when min_free_kbytes changes
7063  * or when memory is hot-{added|removed}
7064  *
7065  * Ensures that the watermark[min,low,high] values for each zone are set
7066  * correctly with respect to min_free_kbytes.
7067  */
7068 void setup_per_zone_wmarks(void)
7069 {
7070 	static DEFINE_SPINLOCK(lock);
7071 
7072 	spin_lock(&lock);
7073 	__setup_per_zone_wmarks();
7074 	spin_unlock(&lock);
7075 }
7076 
7077 /*
7078  * Initialise min_free_kbytes.
7079  *
7080  * For small machines we want it small (128k min).  For large machines
7081  * we want it large (64MB max).  But it is not linear, because network
7082  * bandwidth does not increase linearly with machine size.  We use
7083  *
7084  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7085  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
7086  *
7087  * which yields
7088  *
7089  * 16MB:	512k
7090  * 32MB:	724k
7091  * 64MB:	1024k
7092  * 128MB:	1448k
7093  * 256MB:	2048k
7094  * 512MB:	2896k
7095  * 1024MB:	4096k
7096  * 2048MB:	5792k
7097  * 4096MB:	8192k
7098  * 8192MB:	11584k
7099  * 16384MB:	16384k
7100  */
7101 int __meminit init_per_zone_wmark_min(void)
7102 {
7103 	unsigned long lowmem_kbytes;
7104 	int new_min_free_kbytes;
7105 
7106 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7107 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7108 
7109 	if (new_min_free_kbytes > user_min_free_kbytes) {
7110 		min_free_kbytes = new_min_free_kbytes;
7111 		if (min_free_kbytes < 128)
7112 			min_free_kbytes = 128;
7113 		if (min_free_kbytes > 65536)
7114 			min_free_kbytes = 65536;
7115 	} else {
7116 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7117 				new_min_free_kbytes, user_min_free_kbytes);
7118 	}
7119 	setup_per_zone_wmarks();
7120 	refresh_zone_stat_thresholds();
7121 	setup_per_zone_lowmem_reserve();
7122 
7123 #ifdef CONFIG_NUMA
7124 	setup_min_unmapped_ratio();
7125 	setup_min_slab_ratio();
7126 #endif
7127 
7128 	return 0;
7129 }
7130 core_initcall(init_per_zone_wmark_min)
7131 
7132 /*
7133  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7134  *	that we can call two helper functions whenever min_free_kbytes
7135  *	changes.
7136  */
7137 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7138 	void __user *buffer, size_t *length, loff_t *ppos)
7139 {
7140 	int rc;
7141 
7142 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7143 	if (rc)
7144 		return rc;
7145 
7146 	if (write) {
7147 		user_min_free_kbytes = min_free_kbytes;
7148 		setup_per_zone_wmarks();
7149 	}
7150 	return 0;
7151 }
7152 
7153 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7154 	void __user *buffer, size_t *length, loff_t *ppos)
7155 {
7156 	int rc;
7157 
7158 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7159 	if (rc)
7160 		return rc;
7161 
7162 	if (write)
7163 		setup_per_zone_wmarks();
7164 
7165 	return 0;
7166 }
7167 
7168 #ifdef CONFIG_NUMA
7169 static void setup_min_unmapped_ratio(void)
7170 {
7171 	pg_data_t *pgdat;
7172 	struct zone *zone;
7173 
7174 	for_each_online_pgdat(pgdat)
7175 		pgdat->min_unmapped_pages = 0;
7176 
7177 	for_each_zone(zone)
7178 		zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7179 				sysctl_min_unmapped_ratio) / 100;
7180 }
7181 
7182 
7183 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7184 	void __user *buffer, size_t *length, loff_t *ppos)
7185 {
7186 	int rc;
7187 
7188 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7189 	if (rc)
7190 		return rc;
7191 
7192 	setup_min_unmapped_ratio();
7193 
7194 	return 0;
7195 }
7196 
7197 static void setup_min_slab_ratio(void)
7198 {
7199 	pg_data_t *pgdat;
7200 	struct zone *zone;
7201 
7202 	for_each_online_pgdat(pgdat)
7203 		pgdat->min_slab_pages = 0;
7204 
7205 	for_each_zone(zone)
7206 		zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7207 				sysctl_min_slab_ratio) / 100;
7208 }
7209 
7210 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7211 	void __user *buffer, size_t *length, loff_t *ppos)
7212 {
7213 	int rc;
7214 
7215 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7216 	if (rc)
7217 		return rc;
7218 
7219 	setup_min_slab_ratio();
7220 
7221 	return 0;
7222 }
7223 #endif
7224 
7225 /*
7226  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7227  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7228  *	whenever sysctl_lowmem_reserve_ratio changes.
7229  *
7230  * The reserve ratio obviously has absolutely no relation with the
7231  * minimum watermarks. The lowmem reserve ratio can only make sense
7232  * if in function of the boot time zone sizes.
7233  */
7234 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7235 	void __user *buffer, size_t *length, loff_t *ppos)
7236 {
7237 	proc_dointvec_minmax(table, write, buffer, length, ppos);
7238 	setup_per_zone_lowmem_reserve();
7239 	return 0;
7240 }
7241 
7242 /*
7243  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7244  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
7245  * pagelist can have before it gets flushed back to buddy allocator.
7246  */
7247 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7248 	void __user *buffer, size_t *length, loff_t *ppos)
7249 {
7250 	struct zone *zone;
7251 	int old_percpu_pagelist_fraction;
7252 	int ret;
7253 
7254 	mutex_lock(&pcp_batch_high_lock);
7255 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7256 
7257 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7258 	if (!write || ret < 0)
7259 		goto out;
7260 
7261 	/* Sanity checking to avoid pcp imbalance */
7262 	if (percpu_pagelist_fraction &&
7263 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7264 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7265 		ret = -EINVAL;
7266 		goto out;
7267 	}
7268 
7269 	/* No change? */
7270 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7271 		goto out;
7272 
7273 	for_each_populated_zone(zone) {
7274 		unsigned int cpu;
7275 
7276 		for_each_possible_cpu(cpu)
7277 			pageset_set_high_and_batch(zone,
7278 					per_cpu_ptr(zone->pageset, cpu));
7279 	}
7280 out:
7281 	mutex_unlock(&pcp_batch_high_lock);
7282 	return ret;
7283 }
7284 
7285 #ifdef CONFIG_NUMA
7286 int hashdist = HASHDIST_DEFAULT;
7287 
7288 static int __init set_hashdist(char *str)
7289 {
7290 	if (!str)
7291 		return 0;
7292 	hashdist = simple_strtoul(str, &str, 0);
7293 	return 1;
7294 }
7295 __setup("hashdist=", set_hashdist);
7296 #endif
7297 
7298 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7299 /*
7300  * Returns the number of pages that arch has reserved but
7301  * is not known to alloc_large_system_hash().
7302  */
7303 static unsigned long __init arch_reserved_kernel_pages(void)
7304 {
7305 	return 0;
7306 }
7307 #endif
7308 
7309 /*
7310  * Adaptive scale is meant to reduce sizes of hash tables on large memory
7311  * machines. As memory size is increased the scale is also increased but at
7312  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
7313  * quadruples the scale is increased by one, which means the size of hash table
7314  * only doubles, instead of quadrupling as well.
7315  * Because 32-bit systems cannot have large physical memory, where this scaling
7316  * makes sense, it is disabled on such platforms.
7317  */
7318 #if __BITS_PER_LONG > 32
7319 #define ADAPT_SCALE_BASE	(64ul << 30)
7320 #define ADAPT_SCALE_SHIFT	2
7321 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
7322 #endif
7323 
7324 /*
7325  * allocate a large system hash table from bootmem
7326  * - it is assumed that the hash table must contain an exact power-of-2
7327  *   quantity of entries
7328  * - limit is the number of hash buckets, not the total allocation size
7329  */
7330 void *__init alloc_large_system_hash(const char *tablename,
7331 				     unsigned long bucketsize,
7332 				     unsigned long numentries,
7333 				     int scale,
7334 				     int flags,
7335 				     unsigned int *_hash_shift,
7336 				     unsigned int *_hash_mask,
7337 				     unsigned long low_limit,
7338 				     unsigned long high_limit)
7339 {
7340 	unsigned long long max = high_limit;
7341 	unsigned long log2qty, size;
7342 	void *table = NULL;
7343 	gfp_t gfp_flags;
7344 
7345 	/* allow the kernel cmdline to have a say */
7346 	if (!numentries) {
7347 		/* round applicable memory size up to nearest megabyte */
7348 		numentries = nr_kernel_pages;
7349 		numentries -= arch_reserved_kernel_pages();
7350 
7351 		/* It isn't necessary when PAGE_SIZE >= 1MB */
7352 		if (PAGE_SHIFT < 20)
7353 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7354 
7355 #if __BITS_PER_LONG > 32
7356 		if (!high_limit) {
7357 			unsigned long adapt;
7358 
7359 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7360 			     adapt <<= ADAPT_SCALE_SHIFT)
7361 				scale++;
7362 		}
7363 #endif
7364 
7365 		/* limit to 1 bucket per 2^scale bytes of low memory */
7366 		if (scale > PAGE_SHIFT)
7367 			numentries >>= (scale - PAGE_SHIFT);
7368 		else
7369 			numentries <<= (PAGE_SHIFT - scale);
7370 
7371 		/* Make sure we've got at least a 0-order allocation.. */
7372 		if (unlikely(flags & HASH_SMALL)) {
7373 			/* Makes no sense without HASH_EARLY */
7374 			WARN_ON(!(flags & HASH_EARLY));
7375 			if (!(numentries >> *_hash_shift)) {
7376 				numentries = 1UL << *_hash_shift;
7377 				BUG_ON(!numentries);
7378 			}
7379 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7380 			numentries = PAGE_SIZE / bucketsize;
7381 	}
7382 	numentries = roundup_pow_of_two(numentries);
7383 
7384 	/* limit allocation size to 1/16 total memory by default */
7385 	if (max == 0) {
7386 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7387 		do_div(max, bucketsize);
7388 	}
7389 	max = min(max, 0x80000000ULL);
7390 
7391 	if (numentries < low_limit)
7392 		numentries = low_limit;
7393 	if (numentries > max)
7394 		numentries = max;
7395 
7396 	log2qty = ilog2(numentries);
7397 
7398 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
7399 	do {
7400 		size = bucketsize << log2qty;
7401 		if (flags & HASH_EARLY) {
7402 			if (flags & HASH_ZERO)
7403 				table = memblock_virt_alloc_nopanic(size, 0);
7404 			else
7405 				table = memblock_virt_alloc_raw(size, 0);
7406 		} else if (hashdist) {
7407 			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7408 		} else {
7409 			/*
7410 			 * If bucketsize is not a power-of-two, we may free
7411 			 * some pages at the end of hash table which
7412 			 * alloc_pages_exact() automatically does
7413 			 */
7414 			if (get_order(size) < MAX_ORDER) {
7415 				table = alloc_pages_exact(size, gfp_flags);
7416 				kmemleak_alloc(table, size, 1, gfp_flags);
7417 			}
7418 		}
7419 	} while (!table && size > PAGE_SIZE && --log2qty);
7420 
7421 	if (!table)
7422 		panic("Failed to allocate %s hash table\n", tablename);
7423 
7424 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7425 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7426 
7427 	if (_hash_shift)
7428 		*_hash_shift = log2qty;
7429 	if (_hash_mask)
7430 		*_hash_mask = (1 << log2qty) - 1;
7431 
7432 	return table;
7433 }
7434 
7435 /*
7436  * This function checks whether pageblock includes unmovable pages or not.
7437  * If @count is not zero, it is okay to include less @count unmovable pages
7438  *
7439  * PageLRU check without isolation or lru_lock could race so that
7440  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7441  * check without lock_page also may miss some movable non-lru pages at
7442  * race condition. So you can't expect this function should be exact.
7443  */
7444 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7445 			 int migratetype,
7446 			 bool skip_hwpoisoned_pages)
7447 {
7448 	unsigned long pfn, iter, found;
7449 
7450 	/*
7451 	 * For avoiding noise data, lru_add_drain_all() should be called
7452 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
7453 	 */
7454 	if (zone_idx(zone) == ZONE_MOVABLE)
7455 		return false;
7456 
7457 	/*
7458 	 * CMA allocations (alloc_contig_range) really need to mark isolate
7459 	 * CMA pageblocks even when they are not movable in fact so consider
7460 	 * them movable here.
7461 	 */
7462 	if (is_migrate_cma(migratetype) &&
7463 			is_migrate_cma(get_pageblock_migratetype(page)))
7464 		return false;
7465 
7466 	pfn = page_to_pfn(page);
7467 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7468 		unsigned long check = pfn + iter;
7469 
7470 		if (!pfn_valid_within(check))
7471 			continue;
7472 
7473 		page = pfn_to_page(check);
7474 
7475 		if (PageReserved(page))
7476 			return true;
7477 
7478 		/*
7479 		 * Hugepages are not in LRU lists, but they're movable.
7480 		 * We need not scan over tail pages bacause we don't
7481 		 * handle each tail page individually in migration.
7482 		 */
7483 		if (PageHuge(page)) {
7484 			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7485 			continue;
7486 		}
7487 
7488 		/*
7489 		 * We can't use page_count without pin a page
7490 		 * because another CPU can free compound page.
7491 		 * This check already skips compound tails of THP
7492 		 * because their page->_refcount is zero at all time.
7493 		 */
7494 		if (!page_ref_count(page)) {
7495 			if (PageBuddy(page))
7496 				iter += (1 << page_order(page)) - 1;
7497 			continue;
7498 		}
7499 
7500 		/*
7501 		 * The HWPoisoned page may be not in buddy system, and
7502 		 * page_count() is not 0.
7503 		 */
7504 		if (skip_hwpoisoned_pages && PageHWPoison(page))
7505 			continue;
7506 
7507 		if (__PageMovable(page))
7508 			continue;
7509 
7510 		if (!PageLRU(page))
7511 			found++;
7512 		/*
7513 		 * If there are RECLAIMABLE pages, we need to check
7514 		 * it.  But now, memory offline itself doesn't call
7515 		 * shrink_node_slabs() and it still to be fixed.
7516 		 */
7517 		/*
7518 		 * If the page is not RAM, page_count()should be 0.
7519 		 * we don't need more check. This is an _used_ not-movable page.
7520 		 *
7521 		 * The problematic thing here is PG_reserved pages. PG_reserved
7522 		 * is set to both of a memory hole page and a _used_ kernel
7523 		 * page at boot.
7524 		 */
7525 		if (found > count)
7526 			return true;
7527 	}
7528 	return false;
7529 }
7530 
7531 bool is_pageblock_removable_nolock(struct page *page)
7532 {
7533 	struct zone *zone;
7534 	unsigned long pfn;
7535 
7536 	/*
7537 	 * We have to be careful here because we are iterating over memory
7538 	 * sections which are not zone aware so we might end up outside of
7539 	 * the zone but still within the section.
7540 	 * We have to take care about the node as well. If the node is offline
7541 	 * its NODE_DATA will be NULL - see page_zone.
7542 	 */
7543 	if (!node_online(page_to_nid(page)))
7544 		return false;
7545 
7546 	zone = page_zone(page);
7547 	pfn = page_to_pfn(page);
7548 	if (!zone_spans_pfn(zone, pfn))
7549 		return false;
7550 
7551 	return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, true);
7552 }
7553 
7554 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7555 
7556 static unsigned long pfn_max_align_down(unsigned long pfn)
7557 {
7558 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7559 			     pageblock_nr_pages) - 1);
7560 }
7561 
7562 static unsigned long pfn_max_align_up(unsigned long pfn)
7563 {
7564 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7565 				pageblock_nr_pages));
7566 }
7567 
7568 /* [start, end) must belong to a single zone. */
7569 static int __alloc_contig_migrate_range(struct compact_control *cc,
7570 					unsigned long start, unsigned long end)
7571 {
7572 	/* This function is based on compact_zone() from compaction.c. */
7573 	unsigned long nr_reclaimed;
7574 	unsigned long pfn = start;
7575 	unsigned int tries = 0;
7576 	int ret = 0;
7577 
7578 	migrate_prep();
7579 
7580 	while (pfn < end || !list_empty(&cc->migratepages)) {
7581 		if (fatal_signal_pending(current)) {
7582 			ret = -EINTR;
7583 			break;
7584 		}
7585 
7586 		if (list_empty(&cc->migratepages)) {
7587 			cc->nr_migratepages = 0;
7588 			pfn = isolate_migratepages_range(cc, pfn, end);
7589 			if (!pfn) {
7590 				ret = -EINTR;
7591 				break;
7592 			}
7593 			tries = 0;
7594 		} else if (++tries == 5) {
7595 			ret = ret < 0 ? ret : -EBUSY;
7596 			break;
7597 		}
7598 
7599 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7600 							&cc->migratepages);
7601 		cc->nr_migratepages -= nr_reclaimed;
7602 
7603 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7604 				    NULL, 0, cc->mode, MR_CMA);
7605 	}
7606 	if (ret < 0) {
7607 		putback_movable_pages(&cc->migratepages);
7608 		return ret;
7609 	}
7610 	return 0;
7611 }
7612 
7613 /**
7614  * alloc_contig_range() -- tries to allocate given range of pages
7615  * @start:	start PFN to allocate
7616  * @end:	one-past-the-last PFN to allocate
7617  * @migratetype:	migratetype of the underlaying pageblocks (either
7618  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
7619  *			in range must have the same migratetype and it must
7620  *			be either of the two.
7621  * @gfp_mask:	GFP mask to use during compaction
7622  *
7623  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7624  * aligned, however it's the caller's responsibility to guarantee that
7625  * we are the only thread that changes migrate type of pageblocks the
7626  * pages fall in.
7627  *
7628  * The PFN range must belong to a single zone.
7629  *
7630  * Returns zero on success or negative error code.  On success all
7631  * pages which PFN is in [start, end) are allocated for the caller and
7632  * need to be freed with free_contig_range().
7633  */
7634 int alloc_contig_range(unsigned long start, unsigned long end,
7635 		       unsigned migratetype, gfp_t gfp_mask)
7636 {
7637 	unsigned long outer_start, outer_end;
7638 	unsigned int order;
7639 	int ret = 0;
7640 
7641 	struct compact_control cc = {
7642 		.nr_migratepages = 0,
7643 		.order = -1,
7644 		.zone = page_zone(pfn_to_page(start)),
7645 		.mode = MIGRATE_SYNC,
7646 		.ignore_skip_hint = true,
7647 		.no_set_skip_hint = true,
7648 		.gfp_mask = current_gfp_context(gfp_mask),
7649 	};
7650 	INIT_LIST_HEAD(&cc.migratepages);
7651 
7652 	/*
7653 	 * What we do here is we mark all pageblocks in range as
7654 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
7655 	 * have different sizes, and due to the way page allocator
7656 	 * work, we align the range to biggest of the two pages so
7657 	 * that page allocator won't try to merge buddies from
7658 	 * different pageblocks and change MIGRATE_ISOLATE to some
7659 	 * other migration type.
7660 	 *
7661 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7662 	 * migrate the pages from an unaligned range (ie. pages that
7663 	 * we are interested in).  This will put all the pages in
7664 	 * range back to page allocator as MIGRATE_ISOLATE.
7665 	 *
7666 	 * When this is done, we take the pages in range from page
7667 	 * allocator removing them from the buddy system.  This way
7668 	 * page allocator will never consider using them.
7669 	 *
7670 	 * This lets us mark the pageblocks back as
7671 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7672 	 * aligned range but not in the unaligned, original range are
7673 	 * put back to page allocator so that buddy can use them.
7674 	 */
7675 
7676 	ret = start_isolate_page_range(pfn_max_align_down(start),
7677 				       pfn_max_align_up(end), migratetype,
7678 				       false);
7679 	if (ret)
7680 		return ret;
7681 
7682 	/*
7683 	 * In case of -EBUSY, we'd like to know which page causes problem.
7684 	 * So, just fall through. test_pages_isolated() has a tracepoint
7685 	 * which will report the busy page.
7686 	 *
7687 	 * It is possible that busy pages could become available before
7688 	 * the call to test_pages_isolated, and the range will actually be
7689 	 * allocated.  So, if we fall through be sure to clear ret so that
7690 	 * -EBUSY is not accidentally used or returned to caller.
7691 	 */
7692 	ret = __alloc_contig_migrate_range(&cc, start, end);
7693 	if (ret && ret != -EBUSY)
7694 		goto done;
7695 	ret =0;
7696 
7697 	/*
7698 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7699 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
7700 	 * more, all pages in [start, end) are free in page allocator.
7701 	 * What we are going to do is to allocate all pages from
7702 	 * [start, end) (that is remove them from page allocator).
7703 	 *
7704 	 * The only problem is that pages at the beginning and at the
7705 	 * end of interesting range may be not aligned with pages that
7706 	 * page allocator holds, ie. they can be part of higher order
7707 	 * pages.  Because of this, we reserve the bigger range and
7708 	 * once this is done free the pages we are not interested in.
7709 	 *
7710 	 * We don't have to hold zone->lock here because the pages are
7711 	 * isolated thus they won't get removed from buddy.
7712 	 */
7713 
7714 	lru_add_drain_all();
7715 	drain_all_pages(cc.zone);
7716 
7717 	order = 0;
7718 	outer_start = start;
7719 	while (!PageBuddy(pfn_to_page(outer_start))) {
7720 		if (++order >= MAX_ORDER) {
7721 			outer_start = start;
7722 			break;
7723 		}
7724 		outer_start &= ~0UL << order;
7725 	}
7726 
7727 	if (outer_start != start) {
7728 		order = page_order(pfn_to_page(outer_start));
7729 
7730 		/*
7731 		 * outer_start page could be small order buddy page and
7732 		 * it doesn't include start page. Adjust outer_start
7733 		 * in this case to report failed page properly
7734 		 * on tracepoint in test_pages_isolated()
7735 		 */
7736 		if (outer_start + (1UL << order) <= start)
7737 			outer_start = start;
7738 	}
7739 
7740 	/* Make sure the range is really isolated. */
7741 	if (test_pages_isolated(outer_start, end, false)) {
7742 		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7743 			__func__, outer_start, end);
7744 		ret = -EBUSY;
7745 		goto done;
7746 	}
7747 
7748 	/* Grab isolated pages from freelists. */
7749 	outer_end = isolate_freepages_range(&cc, outer_start, end);
7750 	if (!outer_end) {
7751 		ret = -EBUSY;
7752 		goto done;
7753 	}
7754 
7755 	/* Free head and tail (if any) */
7756 	if (start != outer_start)
7757 		free_contig_range(outer_start, start - outer_start);
7758 	if (end != outer_end)
7759 		free_contig_range(end, outer_end - end);
7760 
7761 done:
7762 	undo_isolate_page_range(pfn_max_align_down(start),
7763 				pfn_max_align_up(end), migratetype);
7764 	return ret;
7765 }
7766 
7767 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7768 {
7769 	unsigned int count = 0;
7770 
7771 	for (; nr_pages--; pfn++) {
7772 		struct page *page = pfn_to_page(pfn);
7773 
7774 		count += page_count(page) != 1;
7775 		__free_page(page);
7776 	}
7777 	WARN(count != 0, "%d pages are still in use!\n", count);
7778 }
7779 #endif
7780 
7781 #ifdef CONFIG_MEMORY_HOTPLUG
7782 /*
7783  * The zone indicated has a new number of managed_pages; batch sizes and percpu
7784  * page high values need to be recalulated.
7785  */
7786 void __meminit zone_pcp_update(struct zone *zone)
7787 {
7788 	unsigned cpu;
7789 	mutex_lock(&pcp_batch_high_lock);
7790 	for_each_possible_cpu(cpu)
7791 		pageset_set_high_and_batch(zone,
7792 				per_cpu_ptr(zone->pageset, cpu));
7793 	mutex_unlock(&pcp_batch_high_lock);
7794 }
7795 #endif
7796 
7797 void zone_pcp_reset(struct zone *zone)
7798 {
7799 	unsigned long flags;
7800 	int cpu;
7801 	struct per_cpu_pageset *pset;
7802 
7803 	/* avoid races with drain_pages()  */
7804 	local_irq_save(flags);
7805 	if (zone->pageset != &boot_pageset) {
7806 		for_each_online_cpu(cpu) {
7807 			pset = per_cpu_ptr(zone->pageset, cpu);
7808 			drain_zonestat(zone, pset);
7809 		}
7810 		free_percpu(zone->pageset);
7811 		zone->pageset = &boot_pageset;
7812 	}
7813 	local_irq_restore(flags);
7814 }
7815 
7816 #ifdef CONFIG_MEMORY_HOTREMOVE
7817 /*
7818  * All pages in the range must be in a single zone and isolated
7819  * before calling this.
7820  */
7821 void
7822 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7823 {
7824 	struct page *page;
7825 	struct zone *zone;
7826 	unsigned int order, i;
7827 	unsigned long pfn;
7828 	unsigned long flags;
7829 	/* find the first valid pfn */
7830 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
7831 		if (pfn_valid(pfn))
7832 			break;
7833 	if (pfn == end_pfn)
7834 		return;
7835 	offline_mem_sections(pfn, end_pfn);
7836 	zone = page_zone(pfn_to_page(pfn));
7837 	spin_lock_irqsave(&zone->lock, flags);
7838 	pfn = start_pfn;
7839 	while (pfn < end_pfn) {
7840 		if (!pfn_valid(pfn)) {
7841 			pfn++;
7842 			continue;
7843 		}
7844 		page = pfn_to_page(pfn);
7845 		/*
7846 		 * The HWPoisoned page may be not in buddy system, and
7847 		 * page_count() is not 0.
7848 		 */
7849 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7850 			pfn++;
7851 			SetPageReserved(page);
7852 			continue;
7853 		}
7854 
7855 		BUG_ON(page_count(page));
7856 		BUG_ON(!PageBuddy(page));
7857 		order = page_order(page);
7858 #ifdef CONFIG_DEBUG_VM
7859 		pr_info("remove from free list %lx %d %lx\n",
7860 			pfn, 1 << order, end_pfn);
7861 #endif
7862 		list_del(&page->lru);
7863 		rmv_page_order(page);
7864 		zone->free_area[order].nr_free--;
7865 		for (i = 0; i < (1 << order); i++)
7866 			SetPageReserved((page+i));
7867 		pfn += (1 << order);
7868 	}
7869 	spin_unlock_irqrestore(&zone->lock, flags);
7870 }
7871 #endif
7872 
7873 bool is_free_buddy_page(struct page *page)
7874 {
7875 	struct zone *zone = page_zone(page);
7876 	unsigned long pfn = page_to_pfn(page);
7877 	unsigned long flags;
7878 	unsigned int order;
7879 
7880 	spin_lock_irqsave(&zone->lock, flags);
7881 	for (order = 0; order < MAX_ORDER; order++) {
7882 		struct page *page_head = page - (pfn & ((1 << order) - 1));
7883 
7884 		if (PageBuddy(page_head) && page_order(page_head) >= order)
7885 			break;
7886 	}
7887 	spin_unlock_irqrestore(&zone->lock, flags);
7888 
7889 	return order < MAX_ORDER;
7890 }
7891