xref: /openbmc/linux/mm/page_alloc.c (revision 81113b04)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
70 #include <linux/psi.h>
71 #include <linux/padata.h>
72 #include <linux/khugepaged.h>
73 
74 #include <asm/sections.h>
75 #include <asm/tlbflush.h>
76 #include <asm/div64.h>
77 #include "internal.h"
78 #include "shuffle.h"
79 #include "page_reporting.h"
80 
81 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
82 typedef int __bitwise fpi_t;
83 
84 /* No special request */
85 #define FPI_NONE		((__force fpi_t)0)
86 
87 /*
88  * Skip free page reporting notification for the (possibly merged) page.
89  * This does not hinder free page reporting from grabbing the page,
90  * reporting it and marking it "reported" -  it only skips notifying
91  * the free page reporting infrastructure about a newly freed page. For
92  * example, used when temporarily pulling a page from a freelist and
93  * putting it back unmodified.
94  */
95 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
96 
97 /*
98  * Place the (possibly merged) page to the tail of the freelist. Will ignore
99  * page shuffling (relevant code - e.g., memory onlining - is expected to
100  * shuffle the whole zone).
101  *
102  * Note: No code should rely on this flag for correctness - it's purely
103  *       to allow for optimizations when handing back either fresh pages
104  *       (memory onlining) or untouched pages (page isolation, free page
105  *       reporting).
106  */
107 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
108 
109 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
110 static DEFINE_MUTEX(pcp_batch_high_lock);
111 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
112 
113 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
114 DEFINE_PER_CPU(int, numa_node);
115 EXPORT_PER_CPU_SYMBOL(numa_node);
116 #endif
117 
118 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
119 
120 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
121 /*
122  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
123  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
124  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
125  * defined in <linux/topology.h>.
126  */
127 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
128 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
129 #endif
130 
131 /* work_structs for global per-cpu drains */
132 struct pcpu_drain {
133 	struct zone *zone;
134 	struct work_struct work;
135 };
136 static DEFINE_MUTEX(pcpu_drain_mutex);
137 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
138 
139 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
140 volatile unsigned long latent_entropy __latent_entropy;
141 EXPORT_SYMBOL(latent_entropy);
142 #endif
143 
144 /*
145  * Array of node states.
146  */
147 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
148 	[N_POSSIBLE] = NODE_MASK_ALL,
149 	[N_ONLINE] = { { [0] = 1UL } },
150 #ifndef CONFIG_NUMA
151 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
152 #ifdef CONFIG_HIGHMEM
153 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
154 #endif
155 	[N_MEMORY] = { { [0] = 1UL } },
156 	[N_CPU] = { { [0] = 1UL } },
157 #endif	/* NUMA */
158 };
159 EXPORT_SYMBOL(node_states);
160 
161 atomic_long_t _totalram_pages __read_mostly;
162 EXPORT_SYMBOL(_totalram_pages);
163 unsigned long totalreserve_pages __read_mostly;
164 unsigned long totalcma_pages __read_mostly;
165 
166 int percpu_pagelist_fraction;
167 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
168 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
169 DEFINE_STATIC_KEY_TRUE(init_on_alloc);
170 #else
171 DEFINE_STATIC_KEY_FALSE(init_on_alloc);
172 #endif
173 EXPORT_SYMBOL(init_on_alloc);
174 
175 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
176 DEFINE_STATIC_KEY_TRUE(init_on_free);
177 #else
178 DEFINE_STATIC_KEY_FALSE(init_on_free);
179 #endif
180 EXPORT_SYMBOL(init_on_free);
181 
182 static int __init early_init_on_alloc(char *buf)
183 {
184 	int ret;
185 	bool bool_result;
186 
187 	ret = kstrtobool(buf, &bool_result);
188 	if (ret)
189 		return ret;
190 	if (bool_result && page_poisoning_enabled())
191 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
192 	if (bool_result)
193 		static_branch_enable(&init_on_alloc);
194 	else
195 		static_branch_disable(&init_on_alloc);
196 	return 0;
197 }
198 early_param("init_on_alloc", early_init_on_alloc);
199 
200 static int __init early_init_on_free(char *buf)
201 {
202 	int ret;
203 	bool bool_result;
204 
205 	ret = kstrtobool(buf, &bool_result);
206 	if (ret)
207 		return ret;
208 	if (bool_result && page_poisoning_enabled())
209 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
210 	if (bool_result)
211 		static_branch_enable(&init_on_free);
212 	else
213 		static_branch_disable(&init_on_free);
214 	return 0;
215 }
216 early_param("init_on_free", early_init_on_free);
217 
218 /*
219  * A cached value of the page's pageblock's migratetype, used when the page is
220  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
221  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
222  * Also the migratetype set in the page does not necessarily match the pcplist
223  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
224  * other index - this ensures that it will be put on the correct CMA freelist.
225  */
226 static inline int get_pcppage_migratetype(struct page *page)
227 {
228 	return page->index;
229 }
230 
231 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
232 {
233 	page->index = migratetype;
234 }
235 
236 #ifdef CONFIG_PM_SLEEP
237 /*
238  * The following functions are used by the suspend/hibernate code to temporarily
239  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
240  * while devices are suspended.  To avoid races with the suspend/hibernate code,
241  * they should always be called with system_transition_mutex held
242  * (gfp_allowed_mask also should only be modified with system_transition_mutex
243  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
244  * with that modification).
245  */
246 
247 static gfp_t saved_gfp_mask;
248 
249 void pm_restore_gfp_mask(void)
250 {
251 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
252 	if (saved_gfp_mask) {
253 		gfp_allowed_mask = saved_gfp_mask;
254 		saved_gfp_mask = 0;
255 	}
256 }
257 
258 void pm_restrict_gfp_mask(void)
259 {
260 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
261 	WARN_ON(saved_gfp_mask);
262 	saved_gfp_mask = gfp_allowed_mask;
263 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
264 }
265 
266 bool pm_suspended_storage(void)
267 {
268 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
269 		return false;
270 	return true;
271 }
272 #endif /* CONFIG_PM_SLEEP */
273 
274 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
275 unsigned int pageblock_order __read_mostly;
276 #endif
277 
278 static void __free_pages_ok(struct page *page, unsigned int order,
279 			    fpi_t fpi_flags);
280 
281 /*
282  * results with 256, 32 in the lowmem_reserve sysctl:
283  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
284  *	1G machine -> (16M dma, 784M normal, 224M high)
285  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
286  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
287  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
288  *
289  * TBD: should special case ZONE_DMA32 machines here - in those we normally
290  * don't need any ZONE_NORMAL reservation
291  */
292 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
293 #ifdef CONFIG_ZONE_DMA
294 	[ZONE_DMA] = 256,
295 #endif
296 #ifdef CONFIG_ZONE_DMA32
297 	[ZONE_DMA32] = 256,
298 #endif
299 	[ZONE_NORMAL] = 32,
300 #ifdef CONFIG_HIGHMEM
301 	[ZONE_HIGHMEM] = 0,
302 #endif
303 	[ZONE_MOVABLE] = 0,
304 };
305 
306 static char * const zone_names[MAX_NR_ZONES] = {
307 #ifdef CONFIG_ZONE_DMA
308 	 "DMA",
309 #endif
310 #ifdef CONFIG_ZONE_DMA32
311 	 "DMA32",
312 #endif
313 	 "Normal",
314 #ifdef CONFIG_HIGHMEM
315 	 "HighMem",
316 #endif
317 	 "Movable",
318 #ifdef CONFIG_ZONE_DEVICE
319 	 "Device",
320 #endif
321 };
322 
323 const char * const migratetype_names[MIGRATE_TYPES] = {
324 	"Unmovable",
325 	"Movable",
326 	"Reclaimable",
327 	"HighAtomic",
328 #ifdef CONFIG_CMA
329 	"CMA",
330 #endif
331 #ifdef CONFIG_MEMORY_ISOLATION
332 	"Isolate",
333 #endif
334 };
335 
336 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
337 	[NULL_COMPOUND_DTOR] = NULL,
338 	[COMPOUND_PAGE_DTOR] = free_compound_page,
339 #ifdef CONFIG_HUGETLB_PAGE
340 	[HUGETLB_PAGE_DTOR] = free_huge_page,
341 #endif
342 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
343 	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
344 #endif
345 };
346 
347 int min_free_kbytes = 1024;
348 int user_min_free_kbytes = -1;
349 #ifdef CONFIG_DISCONTIGMEM
350 /*
351  * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
352  * are not on separate NUMA nodes. Functionally this works but with
353  * watermark_boost_factor, it can reclaim prematurely as the ranges can be
354  * quite small. By default, do not boost watermarks on discontigmem as in
355  * many cases very high-order allocations like THP are likely to be
356  * unsupported and the premature reclaim offsets the advantage of long-term
357  * fragmentation avoidance.
358  */
359 int watermark_boost_factor __read_mostly;
360 #else
361 int watermark_boost_factor __read_mostly = 15000;
362 #endif
363 int watermark_scale_factor = 10;
364 
365 static unsigned long nr_kernel_pages __initdata;
366 static unsigned long nr_all_pages __initdata;
367 static unsigned long dma_reserve __initdata;
368 
369 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
370 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
371 static unsigned long required_kernelcore __initdata;
372 static unsigned long required_kernelcore_percent __initdata;
373 static unsigned long required_movablecore __initdata;
374 static unsigned long required_movablecore_percent __initdata;
375 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
376 static bool mirrored_kernelcore __meminitdata;
377 
378 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
379 int movable_zone;
380 EXPORT_SYMBOL(movable_zone);
381 
382 #if MAX_NUMNODES > 1
383 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
384 unsigned int nr_online_nodes __read_mostly = 1;
385 EXPORT_SYMBOL(nr_node_ids);
386 EXPORT_SYMBOL(nr_online_nodes);
387 #endif
388 
389 int page_group_by_mobility_disabled __read_mostly;
390 
391 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
392 /*
393  * During boot we initialize deferred pages on-demand, as needed, but once
394  * page_alloc_init_late() has finished, the deferred pages are all initialized,
395  * and we can permanently disable that path.
396  */
397 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
398 
399 /*
400  * Calling kasan_free_pages() only after deferred memory initialization
401  * has completed. Poisoning pages during deferred memory init will greatly
402  * lengthen the process and cause problem in large memory systems as the
403  * deferred pages initialization is done with interrupt disabled.
404  *
405  * Assuming that there will be no reference to those newly initialized
406  * pages before they are ever allocated, this should have no effect on
407  * KASAN memory tracking as the poison will be properly inserted at page
408  * allocation time. The only corner case is when pages are allocated by
409  * on-demand allocation and then freed again before the deferred pages
410  * initialization is done, but this is not likely to happen.
411  */
412 static inline void kasan_free_nondeferred_pages(struct page *page, int order)
413 {
414 	if (!static_branch_unlikely(&deferred_pages))
415 		kasan_free_pages(page, order);
416 }
417 
418 /* Returns true if the struct page for the pfn is uninitialised */
419 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
420 {
421 	int nid = early_pfn_to_nid(pfn);
422 
423 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
424 		return true;
425 
426 	return false;
427 }
428 
429 /*
430  * Returns true when the remaining initialisation should be deferred until
431  * later in the boot cycle when it can be parallelised.
432  */
433 static bool __meminit
434 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
435 {
436 	static unsigned long prev_end_pfn, nr_initialised;
437 
438 	/*
439 	 * prev_end_pfn static that contains the end of previous zone
440 	 * No need to protect because called very early in boot before smp_init.
441 	 */
442 	if (prev_end_pfn != end_pfn) {
443 		prev_end_pfn = end_pfn;
444 		nr_initialised = 0;
445 	}
446 
447 	/* Always populate low zones for address-constrained allocations */
448 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
449 		return false;
450 
451 	/*
452 	 * We start only with one section of pages, more pages are added as
453 	 * needed until the rest of deferred pages are initialized.
454 	 */
455 	nr_initialised++;
456 	if ((nr_initialised > PAGES_PER_SECTION) &&
457 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
458 		NODE_DATA(nid)->first_deferred_pfn = pfn;
459 		return true;
460 	}
461 	return false;
462 }
463 #else
464 #define kasan_free_nondeferred_pages(p, o)	kasan_free_pages(p, o)
465 
466 static inline bool early_page_uninitialised(unsigned long pfn)
467 {
468 	return false;
469 }
470 
471 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
472 {
473 	return false;
474 }
475 #endif
476 
477 /* Return a pointer to the bitmap storing bits affecting a block of pages */
478 static inline unsigned long *get_pageblock_bitmap(struct page *page,
479 							unsigned long pfn)
480 {
481 #ifdef CONFIG_SPARSEMEM
482 	return section_to_usemap(__pfn_to_section(pfn));
483 #else
484 	return page_zone(page)->pageblock_flags;
485 #endif /* CONFIG_SPARSEMEM */
486 }
487 
488 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
489 {
490 #ifdef CONFIG_SPARSEMEM
491 	pfn &= (PAGES_PER_SECTION-1);
492 #else
493 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
494 #endif /* CONFIG_SPARSEMEM */
495 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
496 }
497 
498 /**
499  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
500  * @page: The page within the block of interest
501  * @pfn: The target page frame number
502  * @mask: mask of bits that the caller is interested in
503  *
504  * Return: pageblock_bits flags
505  */
506 static __always_inline
507 unsigned long __get_pfnblock_flags_mask(struct page *page,
508 					unsigned long pfn,
509 					unsigned long mask)
510 {
511 	unsigned long *bitmap;
512 	unsigned long bitidx, word_bitidx;
513 	unsigned long word;
514 
515 	bitmap = get_pageblock_bitmap(page, pfn);
516 	bitidx = pfn_to_bitidx(page, pfn);
517 	word_bitidx = bitidx / BITS_PER_LONG;
518 	bitidx &= (BITS_PER_LONG-1);
519 
520 	word = bitmap[word_bitidx];
521 	return (word >> bitidx) & mask;
522 }
523 
524 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
525 					unsigned long mask)
526 {
527 	return __get_pfnblock_flags_mask(page, pfn, mask);
528 }
529 
530 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
531 {
532 	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
533 }
534 
535 /**
536  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
537  * @page: The page within the block of interest
538  * @flags: The flags to set
539  * @pfn: The target page frame number
540  * @mask: mask of bits that the caller is interested in
541  */
542 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
543 					unsigned long pfn,
544 					unsigned long mask)
545 {
546 	unsigned long *bitmap;
547 	unsigned long bitidx, word_bitidx;
548 	unsigned long old_word, word;
549 
550 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
551 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
552 
553 	bitmap = get_pageblock_bitmap(page, pfn);
554 	bitidx = pfn_to_bitidx(page, pfn);
555 	word_bitidx = bitidx / BITS_PER_LONG;
556 	bitidx &= (BITS_PER_LONG-1);
557 
558 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
559 
560 	mask <<= bitidx;
561 	flags <<= bitidx;
562 
563 	word = READ_ONCE(bitmap[word_bitidx]);
564 	for (;;) {
565 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
566 		if (word == old_word)
567 			break;
568 		word = old_word;
569 	}
570 }
571 
572 void set_pageblock_migratetype(struct page *page, int migratetype)
573 {
574 	if (unlikely(page_group_by_mobility_disabled &&
575 		     migratetype < MIGRATE_PCPTYPES))
576 		migratetype = MIGRATE_UNMOVABLE;
577 
578 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
579 				page_to_pfn(page), MIGRATETYPE_MASK);
580 }
581 
582 #ifdef CONFIG_DEBUG_VM
583 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
584 {
585 	int ret = 0;
586 	unsigned seq;
587 	unsigned long pfn = page_to_pfn(page);
588 	unsigned long sp, start_pfn;
589 
590 	do {
591 		seq = zone_span_seqbegin(zone);
592 		start_pfn = zone->zone_start_pfn;
593 		sp = zone->spanned_pages;
594 		if (!zone_spans_pfn(zone, pfn))
595 			ret = 1;
596 	} while (zone_span_seqretry(zone, seq));
597 
598 	if (ret)
599 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
600 			pfn, zone_to_nid(zone), zone->name,
601 			start_pfn, start_pfn + sp);
602 
603 	return ret;
604 }
605 
606 static int page_is_consistent(struct zone *zone, struct page *page)
607 {
608 	if (!pfn_valid_within(page_to_pfn(page)))
609 		return 0;
610 	if (zone != page_zone(page))
611 		return 0;
612 
613 	return 1;
614 }
615 /*
616  * Temporary debugging check for pages not lying within a given zone.
617  */
618 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
619 {
620 	if (page_outside_zone_boundaries(zone, page))
621 		return 1;
622 	if (!page_is_consistent(zone, page))
623 		return 1;
624 
625 	return 0;
626 }
627 #else
628 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
629 {
630 	return 0;
631 }
632 #endif
633 
634 static void bad_page(struct page *page, const char *reason)
635 {
636 	static unsigned long resume;
637 	static unsigned long nr_shown;
638 	static unsigned long nr_unshown;
639 
640 	/*
641 	 * Allow a burst of 60 reports, then keep quiet for that minute;
642 	 * or allow a steady drip of one report per second.
643 	 */
644 	if (nr_shown == 60) {
645 		if (time_before(jiffies, resume)) {
646 			nr_unshown++;
647 			goto out;
648 		}
649 		if (nr_unshown) {
650 			pr_alert(
651 			      "BUG: Bad page state: %lu messages suppressed\n",
652 				nr_unshown);
653 			nr_unshown = 0;
654 		}
655 		nr_shown = 0;
656 	}
657 	if (nr_shown++ == 0)
658 		resume = jiffies + 60 * HZ;
659 
660 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
661 		current->comm, page_to_pfn(page));
662 	__dump_page(page, reason);
663 	dump_page_owner(page);
664 
665 	print_modules();
666 	dump_stack();
667 out:
668 	/* Leave bad fields for debug, except PageBuddy could make trouble */
669 	page_mapcount_reset(page); /* remove PageBuddy */
670 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
671 }
672 
673 /*
674  * Higher-order pages are called "compound pages".  They are structured thusly:
675  *
676  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
677  *
678  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
679  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
680  *
681  * The first tail page's ->compound_dtor holds the offset in array of compound
682  * page destructors. See compound_page_dtors.
683  *
684  * The first tail page's ->compound_order holds the order of allocation.
685  * This usage means that zero-order pages may not be compound.
686  */
687 
688 void free_compound_page(struct page *page)
689 {
690 	mem_cgroup_uncharge(page);
691 	__free_pages_ok(page, compound_order(page), FPI_NONE);
692 }
693 
694 void prep_compound_page(struct page *page, unsigned int order)
695 {
696 	int i;
697 	int nr_pages = 1 << order;
698 
699 	__SetPageHead(page);
700 	for (i = 1; i < nr_pages; i++) {
701 		struct page *p = page + i;
702 		set_page_count(p, 0);
703 		p->mapping = TAIL_MAPPING;
704 		set_compound_head(p, page);
705 	}
706 
707 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
708 	set_compound_order(page, order);
709 	atomic_set(compound_mapcount_ptr(page), -1);
710 	if (hpage_pincount_available(page))
711 		atomic_set(compound_pincount_ptr(page), 0);
712 }
713 
714 #ifdef CONFIG_DEBUG_PAGEALLOC
715 unsigned int _debug_guardpage_minorder;
716 
717 bool _debug_pagealloc_enabled_early __read_mostly
718 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
719 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
720 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
721 EXPORT_SYMBOL(_debug_pagealloc_enabled);
722 
723 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
724 
725 static int __init early_debug_pagealloc(char *buf)
726 {
727 	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
728 }
729 early_param("debug_pagealloc", early_debug_pagealloc);
730 
731 void init_debug_pagealloc(void)
732 {
733 	if (!debug_pagealloc_enabled())
734 		return;
735 
736 	static_branch_enable(&_debug_pagealloc_enabled);
737 
738 	if (!debug_guardpage_minorder())
739 		return;
740 
741 	static_branch_enable(&_debug_guardpage_enabled);
742 }
743 
744 static int __init debug_guardpage_minorder_setup(char *buf)
745 {
746 	unsigned long res;
747 
748 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
749 		pr_err("Bad debug_guardpage_minorder value\n");
750 		return 0;
751 	}
752 	_debug_guardpage_minorder = res;
753 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
754 	return 0;
755 }
756 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
757 
758 static inline bool set_page_guard(struct zone *zone, struct page *page,
759 				unsigned int order, int migratetype)
760 {
761 	if (!debug_guardpage_enabled())
762 		return false;
763 
764 	if (order >= debug_guardpage_minorder())
765 		return false;
766 
767 	__SetPageGuard(page);
768 	INIT_LIST_HEAD(&page->lru);
769 	set_page_private(page, order);
770 	/* Guard pages are not available for any usage */
771 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
772 
773 	return true;
774 }
775 
776 static inline void clear_page_guard(struct zone *zone, struct page *page,
777 				unsigned int order, int migratetype)
778 {
779 	if (!debug_guardpage_enabled())
780 		return;
781 
782 	__ClearPageGuard(page);
783 
784 	set_page_private(page, 0);
785 	if (!is_migrate_isolate(migratetype))
786 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
787 }
788 #else
789 static inline bool set_page_guard(struct zone *zone, struct page *page,
790 			unsigned int order, int migratetype) { return false; }
791 static inline void clear_page_guard(struct zone *zone, struct page *page,
792 				unsigned int order, int migratetype) {}
793 #endif
794 
795 static inline void set_buddy_order(struct page *page, unsigned int order)
796 {
797 	set_page_private(page, order);
798 	__SetPageBuddy(page);
799 }
800 
801 /*
802  * This function checks whether a page is free && is the buddy
803  * we can coalesce a page and its buddy if
804  * (a) the buddy is not in a hole (check before calling!) &&
805  * (b) the buddy is in the buddy system &&
806  * (c) a page and its buddy have the same order &&
807  * (d) a page and its buddy are in the same zone.
808  *
809  * For recording whether a page is in the buddy system, we set PageBuddy.
810  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
811  *
812  * For recording page's order, we use page_private(page).
813  */
814 static inline bool page_is_buddy(struct page *page, struct page *buddy,
815 							unsigned int order)
816 {
817 	if (!page_is_guard(buddy) && !PageBuddy(buddy))
818 		return false;
819 
820 	if (buddy_order(buddy) != order)
821 		return false;
822 
823 	/*
824 	 * zone check is done late to avoid uselessly calculating
825 	 * zone/node ids for pages that could never merge.
826 	 */
827 	if (page_zone_id(page) != page_zone_id(buddy))
828 		return false;
829 
830 	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
831 
832 	return true;
833 }
834 
835 #ifdef CONFIG_COMPACTION
836 static inline struct capture_control *task_capc(struct zone *zone)
837 {
838 	struct capture_control *capc = current->capture_control;
839 
840 	return unlikely(capc) &&
841 		!(current->flags & PF_KTHREAD) &&
842 		!capc->page &&
843 		capc->cc->zone == zone ? capc : NULL;
844 }
845 
846 static inline bool
847 compaction_capture(struct capture_control *capc, struct page *page,
848 		   int order, int migratetype)
849 {
850 	if (!capc || order != capc->cc->order)
851 		return false;
852 
853 	/* Do not accidentally pollute CMA or isolated regions*/
854 	if (is_migrate_cma(migratetype) ||
855 	    is_migrate_isolate(migratetype))
856 		return false;
857 
858 	/*
859 	 * Do not let lower order allocations polluate a movable pageblock.
860 	 * This might let an unmovable request use a reclaimable pageblock
861 	 * and vice-versa but no more than normal fallback logic which can
862 	 * have trouble finding a high-order free page.
863 	 */
864 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
865 		return false;
866 
867 	capc->page = page;
868 	return true;
869 }
870 
871 #else
872 static inline struct capture_control *task_capc(struct zone *zone)
873 {
874 	return NULL;
875 }
876 
877 static inline bool
878 compaction_capture(struct capture_control *capc, struct page *page,
879 		   int order, int migratetype)
880 {
881 	return false;
882 }
883 #endif /* CONFIG_COMPACTION */
884 
885 /* Used for pages not on another list */
886 static inline void add_to_free_list(struct page *page, struct zone *zone,
887 				    unsigned int order, int migratetype)
888 {
889 	struct free_area *area = &zone->free_area[order];
890 
891 	list_add(&page->lru, &area->free_list[migratetype]);
892 	area->nr_free++;
893 }
894 
895 /* Used for pages not on another list */
896 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
897 					 unsigned int order, int migratetype)
898 {
899 	struct free_area *area = &zone->free_area[order];
900 
901 	list_add_tail(&page->lru, &area->free_list[migratetype]);
902 	area->nr_free++;
903 }
904 
905 /*
906  * Used for pages which are on another list. Move the pages to the tail
907  * of the list - so the moved pages won't immediately be considered for
908  * allocation again (e.g., optimization for memory onlining).
909  */
910 static inline void move_to_free_list(struct page *page, struct zone *zone,
911 				     unsigned int order, int migratetype)
912 {
913 	struct free_area *area = &zone->free_area[order];
914 
915 	list_move_tail(&page->lru, &area->free_list[migratetype]);
916 }
917 
918 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
919 					   unsigned int order)
920 {
921 	/* clear reported state and update reported page count */
922 	if (page_reported(page))
923 		__ClearPageReported(page);
924 
925 	list_del(&page->lru);
926 	__ClearPageBuddy(page);
927 	set_page_private(page, 0);
928 	zone->free_area[order].nr_free--;
929 }
930 
931 /*
932  * If this is not the largest possible page, check if the buddy
933  * of the next-highest order is free. If it is, it's possible
934  * that pages are being freed that will coalesce soon. In case,
935  * that is happening, add the free page to the tail of the list
936  * so it's less likely to be used soon and more likely to be merged
937  * as a higher order page
938  */
939 static inline bool
940 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
941 		   struct page *page, unsigned int order)
942 {
943 	struct page *higher_page, *higher_buddy;
944 	unsigned long combined_pfn;
945 
946 	if (order >= MAX_ORDER - 2)
947 		return false;
948 
949 	if (!pfn_valid_within(buddy_pfn))
950 		return false;
951 
952 	combined_pfn = buddy_pfn & pfn;
953 	higher_page = page + (combined_pfn - pfn);
954 	buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
955 	higher_buddy = higher_page + (buddy_pfn - combined_pfn);
956 
957 	return pfn_valid_within(buddy_pfn) &&
958 	       page_is_buddy(higher_page, higher_buddy, order + 1);
959 }
960 
961 /*
962  * Freeing function for a buddy system allocator.
963  *
964  * The concept of a buddy system is to maintain direct-mapped table
965  * (containing bit values) for memory blocks of various "orders".
966  * The bottom level table contains the map for the smallest allocatable
967  * units of memory (here, pages), and each level above it describes
968  * pairs of units from the levels below, hence, "buddies".
969  * At a high level, all that happens here is marking the table entry
970  * at the bottom level available, and propagating the changes upward
971  * as necessary, plus some accounting needed to play nicely with other
972  * parts of the VM system.
973  * At each level, we keep a list of pages, which are heads of continuous
974  * free pages of length of (1 << order) and marked with PageBuddy.
975  * Page's order is recorded in page_private(page) field.
976  * So when we are allocating or freeing one, we can derive the state of the
977  * other.  That is, if we allocate a small block, and both were
978  * free, the remainder of the region must be split into blocks.
979  * If a block is freed, and its buddy is also free, then this
980  * triggers coalescing into a block of larger size.
981  *
982  * -- nyc
983  */
984 
985 static inline void __free_one_page(struct page *page,
986 		unsigned long pfn,
987 		struct zone *zone, unsigned int order,
988 		int migratetype, fpi_t fpi_flags)
989 {
990 	struct capture_control *capc = task_capc(zone);
991 	unsigned long buddy_pfn;
992 	unsigned long combined_pfn;
993 	unsigned int max_order;
994 	struct page *buddy;
995 	bool to_tail;
996 
997 	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
998 
999 	VM_BUG_ON(!zone_is_initialized(zone));
1000 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1001 
1002 	VM_BUG_ON(migratetype == -1);
1003 	if (likely(!is_migrate_isolate(migratetype)))
1004 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
1005 
1006 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1007 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1008 
1009 continue_merging:
1010 	while (order < max_order - 1) {
1011 		if (compaction_capture(capc, page, order, migratetype)) {
1012 			__mod_zone_freepage_state(zone, -(1 << order),
1013 								migratetype);
1014 			return;
1015 		}
1016 		buddy_pfn = __find_buddy_pfn(pfn, order);
1017 		buddy = page + (buddy_pfn - pfn);
1018 
1019 		if (!pfn_valid_within(buddy_pfn))
1020 			goto done_merging;
1021 		if (!page_is_buddy(page, buddy, order))
1022 			goto done_merging;
1023 		/*
1024 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1025 		 * merge with it and move up one order.
1026 		 */
1027 		if (page_is_guard(buddy))
1028 			clear_page_guard(zone, buddy, order, migratetype);
1029 		else
1030 			del_page_from_free_list(buddy, zone, order);
1031 		combined_pfn = buddy_pfn & pfn;
1032 		page = page + (combined_pfn - pfn);
1033 		pfn = combined_pfn;
1034 		order++;
1035 	}
1036 	if (max_order < MAX_ORDER) {
1037 		/* If we are here, it means order is >= pageblock_order.
1038 		 * We want to prevent merge between freepages on isolate
1039 		 * pageblock and normal pageblock. Without this, pageblock
1040 		 * isolation could cause incorrect freepage or CMA accounting.
1041 		 *
1042 		 * We don't want to hit this code for the more frequent
1043 		 * low-order merging.
1044 		 */
1045 		if (unlikely(has_isolate_pageblock(zone))) {
1046 			int buddy_mt;
1047 
1048 			buddy_pfn = __find_buddy_pfn(pfn, order);
1049 			buddy = page + (buddy_pfn - pfn);
1050 			buddy_mt = get_pageblock_migratetype(buddy);
1051 
1052 			if (migratetype != buddy_mt
1053 					&& (is_migrate_isolate(migratetype) ||
1054 						is_migrate_isolate(buddy_mt)))
1055 				goto done_merging;
1056 		}
1057 		max_order++;
1058 		goto continue_merging;
1059 	}
1060 
1061 done_merging:
1062 	set_buddy_order(page, order);
1063 
1064 	if (fpi_flags & FPI_TO_TAIL)
1065 		to_tail = true;
1066 	else if (is_shuffle_order(order))
1067 		to_tail = shuffle_pick_tail();
1068 	else
1069 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1070 
1071 	if (to_tail)
1072 		add_to_free_list_tail(page, zone, order, migratetype);
1073 	else
1074 		add_to_free_list(page, zone, order, migratetype);
1075 
1076 	/* Notify page reporting subsystem of freed page */
1077 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1078 		page_reporting_notify_free(order);
1079 }
1080 
1081 /*
1082  * A bad page could be due to a number of fields. Instead of multiple branches,
1083  * try and check multiple fields with one check. The caller must do a detailed
1084  * check if necessary.
1085  */
1086 static inline bool page_expected_state(struct page *page,
1087 					unsigned long check_flags)
1088 {
1089 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1090 		return false;
1091 
1092 	if (unlikely((unsigned long)page->mapping |
1093 			page_ref_count(page) |
1094 #ifdef CONFIG_MEMCG
1095 			(unsigned long)page->mem_cgroup |
1096 #endif
1097 			(page->flags & check_flags)))
1098 		return false;
1099 
1100 	return true;
1101 }
1102 
1103 static const char *page_bad_reason(struct page *page, unsigned long flags)
1104 {
1105 	const char *bad_reason = NULL;
1106 
1107 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1108 		bad_reason = "nonzero mapcount";
1109 	if (unlikely(page->mapping != NULL))
1110 		bad_reason = "non-NULL mapping";
1111 	if (unlikely(page_ref_count(page) != 0))
1112 		bad_reason = "nonzero _refcount";
1113 	if (unlikely(page->flags & flags)) {
1114 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1115 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1116 		else
1117 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1118 	}
1119 #ifdef CONFIG_MEMCG
1120 	if (unlikely(page->mem_cgroup))
1121 		bad_reason = "page still charged to cgroup";
1122 #endif
1123 	return bad_reason;
1124 }
1125 
1126 static void check_free_page_bad(struct page *page)
1127 {
1128 	bad_page(page,
1129 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1130 }
1131 
1132 static inline int check_free_page(struct page *page)
1133 {
1134 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1135 		return 0;
1136 
1137 	/* Something has gone sideways, find it */
1138 	check_free_page_bad(page);
1139 	return 1;
1140 }
1141 
1142 static int free_tail_pages_check(struct page *head_page, struct page *page)
1143 {
1144 	int ret = 1;
1145 
1146 	/*
1147 	 * We rely page->lru.next never has bit 0 set, unless the page
1148 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1149 	 */
1150 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1151 
1152 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1153 		ret = 0;
1154 		goto out;
1155 	}
1156 	switch (page - head_page) {
1157 	case 1:
1158 		/* the first tail page: ->mapping may be compound_mapcount() */
1159 		if (unlikely(compound_mapcount(page))) {
1160 			bad_page(page, "nonzero compound_mapcount");
1161 			goto out;
1162 		}
1163 		break;
1164 	case 2:
1165 		/*
1166 		 * the second tail page: ->mapping is
1167 		 * deferred_list.next -- ignore value.
1168 		 */
1169 		break;
1170 	default:
1171 		if (page->mapping != TAIL_MAPPING) {
1172 			bad_page(page, "corrupted mapping in tail page");
1173 			goto out;
1174 		}
1175 		break;
1176 	}
1177 	if (unlikely(!PageTail(page))) {
1178 		bad_page(page, "PageTail not set");
1179 		goto out;
1180 	}
1181 	if (unlikely(compound_head(page) != head_page)) {
1182 		bad_page(page, "compound_head not consistent");
1183 		goto out;
1184 	}
1185 	ret = 0;
1186 out:
1187 	page->mapping = NULL;
1188 	clear_compound_head(page);
1189 	return ret;
1190 }
1191 
1192 static void kernel_init_free_pages(struct page *page, int numpages)
1193 {
1194 	int i;
1195 
1196 	/* s390's use of memset() could override KASAN redzones. */
1197 	kasan_disable_current();
1198 	for (i = 0; i < numpages; i++)
1199 		clear_highpage(page + i);
1200 	kasan_enable_current();
1201 }
1202 
1203 static __always_inline bool free_pages_prepare(struct page *page,
1204 					unsigned int order, bool check_free)
1205 {
1206 	int bad = 0;
1207 
1208 	VM_BUG_ON_PAGE(PageTail(page), page);
1209 
1210 	trace_mm_page_free(page, order);
1211 
1212 	if (unlikely(PageHWPoison(page)) && !order) {
1213 		/*
1214 		 * Do not let hwpoison pages hit pcplists/buddy
1215 		 * Untie memcg state and reset page's owner
1216 		 */
1217 		if (memcg_kmem_enabled() && PageKmemcg(page))
1218 			__memcg_kmem_uncharge_page(page, order);
1219 		reset_page_owner(page, order);
1220 		return false;
1221 	}
1222 
1223 	/*
1224 	 * Check tail pages before head page information is cleared to
1225 	 * avoid checking PageCompound for order-0 pages.
1226 	 */
1227 	if (unlikely(order)) {
1228 		bool compound = PageCompound(page);
1229 		int i;
1230 
1231 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1232 
1233 		if (compound)
1234 			ClearPageDoubleMap(page);
1235 		for (i = 1; i < (1 << order); i++) {
1236 			if (compound)
1237 				bad += free_tail_pages_check(page, page + i);
1238 			if (unlikely(check_free_page(page + i))) {
1239 				bad++;
1240 				continue;
1241 			}
1242 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1243 		}
1244 	}
1245 	if (PageMappingFlags(page))
1246 		page->mapping = NULL;
1247 	if (memcg_kmem_enabled() && PageKmemcg(page))
1248 		__memcg_kmem_uncharge_page(page, order);
1249 	if (check_free)
1250 		bad += check_free_page(page);
1251 	if (bad)
1252 		return false;
1253 
1254 	page_cpupid_reset_last(page);
1255 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1256 	reset_page_owner(page, order);
1257 
1258 	if (!PageHighMem(page)) {
1259 		debug_check_no_locks_freed(page_address(page),
1260 					   PAGE_SIZE << order);
1261 		debug_check_no_obj_freed(page_address(page),
1262 					   PAGE_SIZE << order);
1263 	}
1264 	if (want_init_on_free())
1265 		kernel_init_free_pages(page, 1 << order);
1266 
1267 	kernel_poison_pages(page, 1 << order, 0);
1268 	/*
1269 	 * arch_free_page() can make the page's contents inaccessible.  s390
1270 	 * does this.  So nothing which can access the page's contents should
1271 	 * happen after this.
1272 	 */
1273 	arch_free_page(page, order);
1274 
1275 	if (debug_pagealloc_enabled_static())
1276 		kernel_map_pages(page, 1 << order, 0);
1277 
1278 	kasan_free_nondeferred_pages(page, order);
1279 
1280 	return true;
1281 }
1282 
1283 #ifdef CONFIG_DEBUG_VM
1284 /*
1285  * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1286  * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1287  * moved from pcp lists to free lists.
1288  */
1289 static bool free_pcp_prepare(struct page *page)
1290 {
1291 	return free_pages_prepare(page, 0, true);
1292 }
1293 
1294 static bool bulkfree_pcp_prepare(struct page *page)
1295 {
1296 	if (debug_pagealloc_enabled_static())
1297 		return check_free_page(page);
1298 	else
1299 		return false;
1300 }
1301 #else
1302 /*
1303  * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1304  * moving from pcp lists to free list in order to reduce overhead. With
1305  * debug_pagealloc enabled, they are checked also immediately when being freed
1306  * to the pcp lists.
1307  */
1308 static bool free_pcp_prepare(struct page *page)
1309 {
1310 	if (debug_pagealloc_enabled_static())
1311 		return free_pages_prepare(page, 0, true);
1312 	else
1313 		return free_pages_prepare(page, 0, false);
1314 }
1315 
1316 static bool bulkfree_pcp_prepare(struct page *page)
1317 {
1318 	return check_free_page(page);
1319 }
1320 #endif /* CONFIG_DEBUG_VM */
1321 
1322 static inline void prefetch_buddy(struct page *page)
1323 {
1324 	unsigned long pfn = page_to_pfn(page);
1325 	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1326 	struct page *buddy = page + (buddy_pfn - pfn);
1327 
1328 	prefetch(buddy);
1329 }
1330 
1331 /*
1332  * Frees a number of pages from the PCP lists
1333  * Assumes all pages on list are in same zone, and of same order.
1334  * count is the number of pages to free.
1335  *
1336  * If the zone was previously in an "all pages pinned" state then look to
1337  * see if this freeing clears that state.
1338  *
1339  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1340  * pinned" detection logic.
1341  */
1342 static void free_pcppages_bulk(struct zone *zone, int count,
1343 					struct per_cpu_pages *pcp)
1344 {
1345 	int migratetype = 0;
1346 	int batch_free = 0;
1347 	int prefetch_nr = 0;
1348 	bool isolated_pageblocks;
1349 	struct page *page, *tmp;
1350 	LIST_HEAD(head);
1351 
1352 	/*
1353 	 * Ensure proper count is passed which otherwise would stuck in the
1354 	 * below while (list_empty(list)) loop.
1355 	 */
1356 	count = min(pcp->count, count);
1357 	while (count) {
1358 		struct list_head *list;
1359 
1360 		/*
1361 		 * Remove pages from lists in a round-robin fashion. A
1362 		 * batch_free count is maintained that is incremented when an
1363 		 * empty list is encountered.  This is so more pages are freed
1364 		 * off fuller lists instead of spinning excessively around empty
1365 		 * lists
1366 		 */
1367 		do {
1368 			batch_free++;
1369 			if (++migratetype == MIGRATE_PCPTYPES)
1370 				migratetype = 0;
1371 			list = &pcp->lists[migratetype];
1372 		} while (list_empty(list));
1373 
1374 		/* This is the only non-empty list. Free them all. */
1375 		if (batch_free == MIGRATE_PCPTYPES)
1376 			batch_free = count;
1377 
1378 		do {
1379 			page = list_last_entry(list, struct page, lru);
1380 			/* must delete to avoid corrupting pcp list */
1381 			list_del(&page->lru);
1382 			pcp->count--;
1383 
1384 			if (bulkfree_pcp_prepare(page))
1385 				continue;
1386 
1387 			list_add_tail(&page->lru, &head);
1388 
1389 			/*
1390 			 * We are going to put the page back to the global
1391 			 * pool, prefetch its buddy to speed up later access
1392 			 * under zone->lock. It is believed the overhead of
1393 			 * an additional test and calculating buddy_pfn here
1394 			 * can be offset by reduced memory latency later. To
1395 			 * avoid excessive prefetching due to large count, only
1396 			 * prefetch buddy for the first pcp->batch nr of pages.
1397 			 */
1398 			if (prefetch_nr++ < pcp->batch)
1399 				prefetch_buddy(page);
1400 		} while (--count && --batch_free && !list_empty(list));
1401 	}
1402 
1403 	spin_lock(&zone->lock);
1404 	isolated_pageblocks = has_isolate_pageblock(zone);
1405 
1406 	/*
1407 	 * Use safe version since after __free_one_page(),
1408 	 * page->lru.next will not point to original list.
1409 	 */
1410 	list_for_each_entry_safe(page, tmp, &head, lru) {
1411 		int mt = get_pcppage_migratetype(page);
1412 		/* MIGRATE_ISOLATE page should not go to pcplists */
1413 		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1414 		/* Pageblock could have been isolated meanwhile */
1415 		if (unlikely(isolated_pageblocks))
1416 			mt = get_pageblock_migratetype(page);
1417 
1418 		__free_one_page(page, page_to_pfn(page), zone, 0, mt, FPI_NONE);
1419 		trace_mm_page_pcpu_drain(page, 0, mt);
1420 	}
1421 	spin_unlock(&zone->lock);
1422 }
1423 
1424 static void free_one_page(struct zone *zone,
1425 				struct page *page, unsigned long pfn,
1426 				unsigned int order,
1427 				int migratetype, fpi_t fpi_flags)
1428 {
1429 	spin_lock(&zone->lock);
1430 	if (unlikely(has_isolate_pageblock(zone) ||
1431 		is_migrate_isolate(migratetype))) {
1432 		migratetype = get_pfnblock_migratetype(page, pfn);
1433 	}
1434 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1435 	spin_unlock(&zone->lock);
1436 }
1437 
1438 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1439 				unsigned long zone, int nid)
1440 {
1441 	mm_zero_struct_page(page);
1442 	set_page_links(page, zone, nid, pfn);
1443 	init_page_count(page);
1444 	page_mapcount_reset(page);
1445 	page_cpupid_reset_last(page);
1446 	page_kasan_tag_reset(page);
1447 
1448 	INIT_LIST_HEAD(&page->lru);
1449 #ifdef WANT_PAGE_VIRTUAL
1450 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1451 	if (!is_highmem_idx(zone))
1452 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1453 #endif
1454 }
1455 
1456 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1457 static void __meminit init_reserved_page(unsigned long pfn)
1458 {
1459 	pg_data_t *pgdat;
1460 	int nid, zid;
1461 
1462 	if (!early_page_uninitialised(pfn))
1463 		return;
1464 
1465 	nid = early_pfn_to_nid(pfn);
1466 	pgdat = NODE_DATA(nid);
1467 
1468 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1469 		struct zone *zone = &pgdat->node_zones[zid];
1470 
1471 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1472 			break;
1473 	}
1474 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1475 }
1476 #else
1477 static inline void init_reserved_page(unsigned long pfn)
1478 {
1479 }
1480 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1481 
1482 /*
1483  * Initialised pages do not have PageReserved set. This function is
1484  * called for each range allocated by the bootmem allocator and
1485  * marks the pages PageReserved. The remaining valid pages are later
1486  * sent to the buddy page allocator.
1487  */
1488 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1489 {
1490 	unsigned long start_pfn = PFN_DOWN(start);
1491 	unsigned long end_pfn = PFN_UP(end);
1492 
1493 	for (; start_pfn < end_pfn; start_pfn++) {
1494 		if (pfn_valid(start_pfn)) {
1495 			struct page *page = pfn_to_page(start_pfn);
1496 
1497 			init_reserved_page(start_pfn);
1498 
1499 			/* Avoid false-positive PageTail() */
1500 			INIT_LIST_HEAD(&page->lru);
1501 
1502 			/*
1503 			 * no need for atomic set_bit because the struct
1504 			 * page is not visible yet so nobody should
1505 			 * access it yet.
1506 			 */
1507 			__SetPageReserved(page);
1508 		}
1509 	}
1510 }
1511 
1512 static void __free_pages_ok(struct page *page, unsigned int order,
1513 			    fpi_t fpi_flags)
1514 {
1515 	unsigned long flags;
1516 	int migratetype;
1517 	unsigned long pfn = page_to_pfn(page);
1518 
1519 	if (!free_pages_prepare(page, order, true))
1520 		return;
1521 
1522 	migratetype = get_pfnblock_migratetype(page, pfn);
1523 	local_irq_save(flags);
1524 	__count_vm_events(PGFREE, 1 << order);
1525 	free_one_page(page_zone(page), page, pfn, order, migratetype,
1526 		      fpi_flags);
1527 	local_irq_restore(flags);
1528 }
1529 
1530 void __free_pages_core(struct page *page, unsigned int order)
1531 {
1532 	unsigned int nr_pages = 1 << order;
1533 	struct page *p = page;
1534 	unsigned int loop;
1535 
1536 	/*
1537 	 * When initializing the memmap, __init_single_page() sets the refcount
1538 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1539 	 * refcount of all involved pages to 0.
1540 	 */
1541 	prefetchw(p);
1542 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1543 		prefetchw(p + 1);
1544 		__ClearPageReserved(p);
1545 		set_page_count(p, 0);
1546 	}
1547 	__ClearPageReserved(p);
1548 	set_page_count(p, 0);
1549 
1550 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1551 
1552 	/*
1553 	 * Bypass PCP and place fresh pages right to the tail, primarily
1554 	 * relevant for memory onlining.
1555 	 */
1556 	__free_pages_ok(page, order, FPI_TO_TAIL);
1557 }
1558 
1559 #ifdef CONFIG_NEED_MULTIPLE_NODES
1560 
1561 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1562 
1563 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1564 
1565 /*
1566  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1567  */
1568 int __meminit __early_pfn_to_nid(unsigned long pfn,
1569 					struct mminit_pfnnid_cache *state)
1570 {
1571 	unsigned long start_pfn, end_pfn;
1572 	int nid;
1573 
1574 	if (state->last_start <= pfn && pfn < state->last_end)
1575 		return state->last_nid;
1576 
1577 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1578 	if (nid != NUMA_NO_NODE) {
1579 		state->last_start = start_pfn;
1580 		state->last_end = end_pfn;
1581 		state->last_nid = nid;
1582 	}
1583 
1584 	return nid;
1585 }
1586 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1587 
1588 int __meminit early_pfn_to_nid(unsigned long pfn)
1589 {
1590 	static DEFINE_SPINLOCK(early_pfn_lock);
1591 	int nid;
1592 
1593 	spin_lock(&early_pfn_lock);
1594 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1595 	if (nid < 0)
1596 		nid = first_online_node;
1597 	spin_unlock(&early_pfn_lock);
1598 
1599 	return nid;
1600 }
1601 #endif /* CONFIG_NEED_MULTIPLE_NODES */
1602 
1603 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1604 							unsigned int order)
1605 {
1606 	if (early_page_uninitialised(pfn))
1607 		return;
1608 	__free_pages_core(page, order);
1609 }
1610 
1611 /*
1612  * Check that the whole (or subset of) a pageblock given by the interval of
1613  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1614  * with the migration of free compaction scanner. The scanners then need to
1615  * use only pfn_valid_within() check for arches that allow holes within
1616  * pageblocks.
1617  *
1618  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1619  *
1620  * It's possible on some configurations to have a setup like node0 node1 node0
1621  * i.e. it's possible that all pages within a zones range of pages do not
1622  * belong to a single zone. We assume that a border between node0 and node1
1623  * can occur within a single pageblock, but not a node0 node1 node0
1624  * interleaving within a single pageblock. It is therefore sufficient to check
1625  * the first and last page of a pageblock and avoid checking each individual
1626  * page in a pageblock.
1627  */
1628 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1629 				     unsigned long end_pfn, struct zone *zone)
1630 {
1631 	struct page *start_page;
1632 	struct page *end_page;
1633 
1634 	/* end_pfn is one past the range we are checking */
1635 	end_pfn--;
1636 
1637 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1638 		return NULL;
1639 
1640 	start_page = pfn_to_online_page(start_pfn);
1641 	if (!start_page)
1642 		return NULL;
1643 
1644 	if (page_zone(start_page) != zone)
1645 		return NULL;
1646 
1647 	end_page = pfn_to_page(end_pfn);
1648 
1649 	/* This gives a shorter code than deriving page_zone(end_page) */
1650 	if (page_zone_id(start_page) != page_zone_id(end_page))
1651 		return NULL;
1652 
1653 	return start_page;
1654 }
1655 
1656 void set_zone_contiguous(struct zone *zone)
1657 {
1658 	unsigned long block_start_pfn = zone->zone_start_pfn;
1659 	unsigned long block_end_pfn;
1660 
1661 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1662 	for (; block_start_pfn < zone_end_pfn(zone);
1663 			block_start_pfn = block_end_pfn,
1664 			 block_end_pfn += pageblock_nr_pages) {
1665 
1666 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1667 
1668 		if (!__pageblock_pfn_to_page(block_start_pfn,
1669 					     block_end_pfn, zone))
1670 			return;
1671 		cond_resched();
1672 	}
1673 
1674 	/* We confirm that there is no hole */
1675 	zone->contiguous = true;
1676 }
1677 
1678 void clear_zone_contiguous(struct zone *zone)
1679 {
1680 	zone->contiguous = false;
1681 }
1682 
1683 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1684 static void __init deferred_free_range(unsigned long pfn,
1685 				       unsigned long nr_pages)
1686 {
1687 	struct page *page;
1688 	unsigned long i;
1689 
1690 	if (!nr_pages)
1691 		return;
1692 
1693 	page = pfn_to_page(pfn);
1694 
1695 	/* Free a large naturally-aligned chunk if possible */
1696 	if (nr_pages == pageblock_nr_pages &&
1697 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1698 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1699 		__free_pages_core(page, pageblock_order);
1700 		return;
1701 	}
1702 
1703 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1704 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1705 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1706 		__free_pages_core(page, 0);
1707 	}
1708 }
1709 
1710 /* Completion tracking for deferred_init_memmap() threads */
1711 static atomic_t pgdat_init_n_undone __initdata;
1712 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1713 
1714 static inline void __init pgdat_init_report_one_done(void)
1715 {
1716 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1717 		complete(&pgdat_init_all_done_comp);
1718 }
1719 
1720 /*
1721  * Returns true if page needs to be initialized or freed to buddy allocator.
1722  *
1723  * First we check if pfn is valid on architectures where it is possible to have
1724  * holes within pageblock_nr_pages. On systems where it is not possible, this
1725  * function is optimized out.
1726  *
1727  * Then, we check if a current large page is valid by only checking the validity
1728  * of the head pfn.
1729  */
1730 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1731 {
1732 	if (!pfn_valid_within(pfn))
1733 		return false;
1734 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1735 		return false;
1736 	return true;
1737 }
1738 
1739 /*
1740  * Free pages to buddy allocator. Try to free aligned pages in
1741  * pageblock_nr_pages sizes.
1742  */
1743 static void __init deferred_free_pages(unsigned long pfn,
1744 				       unsigned long end_pfn)
1745 {
1746 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1747 	unsigned long nr_free = 0;
1748 
1749 	for (; pfn < end_pfn; pfn++) {
1750 		if (!deferred_pfn_valid(pfn)) {
1751 			deferred_free_range(pfn - nr_free, nr_free);
1752 			nr_free = 0;
1753 		} else if (!(pfn & nr_pgmask)) {
1754 			deferred_free_range(pfn - nr_free, nr_free);
1755 			nr_free = 1;
1756 		} else {
1757 			nr_free++;
1758 		}
1759 	}
1760 	/* Free the last block of pages to allocator */
1761 	deferred_free_range(pfn - nr_free, nr_free);
1762 }
1763 
1764 /*
1765  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1766  * by performing it only once every pageblock_nr_pages.
1767  * Return number of pages initialized.
1768  */
1769 static unsigned long  __init deferred_init_pages(struct zone *zone,
1770 						 unsigned long pfn,
1771 						 unsigned long end_pfn)
1772 {
1773 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1774 	int nid = zone_to_nid(zone);
1775 	unsigned long nr_pages = 0;
1776 	int zid = zone_idx(zone);
1777 	struct page *page = NULL;
1778 
1779 	for (; pfn < end_pfn; pfn++) {
1780 		if (!deferred_pfn_valid(pfn)) {
1781 			page = NULL;
1782 			continue;
1783 		} else if (!page || !(pfn & nr_pgmask)) {
1784 			page = pfn_to_page(pfn);
1785 		} else {
1786 			page++;
1787 		}
1788 		__init_single_page(page, pfn, zid, nid);
1789 		nr_pages++;
1790 	}
1791 	return (nr_pages);
1792 }
1793 
1794 /*
1795  * This function is meant to pre-load the iterator for the zone init.
1796  * Specifically it walks through the ranges until we are caught up to the
1797  * first_init_pfn value and exits there. If we never encounter the value we
1798  * return false indicating there are no valid ranges left.
1799  */
1800 static bool __init
1801 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1802 				    unsigned long *spfn, unsigned long *epfn,
1803 				    unsigned long first_init_pfn)
1804 {
1805 	u64 j;
1806 
1807 	/*
1808 	 * Start out by walking through the ranges in this zone that have
1809 	 * already been initialized. We don't need to do anything with them
1810 	 * so we just need to flush them out of the system.
1811 	 */
1812 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1813 		if (*epfn <= first_init_pfn)
1814 			continue;
1815 		if (*spfn < first_init_pfn)
1816 			*spfn = first_init_pfn;
1817 		*i = j;
1818 		return true;
1819 	}
1820 
1821 	return false;
1822 }
1823 
1824 /*
1825  * Initialize and free pages. We do it in two loops: first we initialize
1826  * struct page, then free to buddy allocator, because while we are
1827  * freeing pages we can access pages that are ahead (computing buddy
1828  * page in __free_one_page()).
1829  *
1830  * In order to try and keep some memory in the cache we have the loop
1831  * broken along max page order boundaries. This way we will not cause
1832  * any issues with the buddy page computation.
1833  */
1834 static unsigned long __init
1835 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1836 		       unsigned long *end_pfn)
1837 {
1838 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1839 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
1840 	unsigned long nr_pages = 0;
1841 	u64 j = *i;
1842 
1843 	/* First we loop through and initialize the page values */
1844 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1845 		unsigned long t;
1846 
1847 		if (mo_pfn <= *start_pfn)
1848 			break;
1849 
1850 		t = min(mo_pfn, *end_pfn);
1851 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
1852 
1853 		if (mo_pfn < *end_pfn) {
1854 			*start_pfn = mo_pfn;
1855 			break;
1856 		}
1857 	}
1858 
1859 	/* Reset values and now loop through freeing pages as needed */
1860 	swap(j, *i);
1861 
1862 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1863 		unsigned long t;
1864 
1865 		if (mo_pfn <= spfn)
1866 			break;
1867 
1868 		t = min(mo_pfn, epfn);
1869 		deferred_free_pages(spfn, t);
1870 
1871 		if (mo_pfn <= epfn)
1872 			break;
1873 	}
1874 
1875 	return nr_pages;
1876 }
1877 
1878 static void __init
1879 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1880 			   void *arg)
1881 {
1882 	unsigned long spfn, epfn;
1883 	struct zone *zone = arg;
1884 	u64 i;
1885 
1886 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1887 
1888 	/*
1889 	 * Initialize and free pages in MAX_ORDER sized increments so that we
1890 	 * can avoid introducing any issues with the buddy allocator.
1891 	 */
1892 	while (spfn < end_pfn) {
1893 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
1894 		cond_resched();
1895 	}
1896 }
1897 
1898 /* An arch may override for more concurrency. */
1899 __weak int __init
1900 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1901 {
1902 	return 1;
1903 }
1904 
1905 /* Initialise remaining memory on a node */
1906 static int __init deferred_init_memmap(void *data)
1907 {
1908 	pg_data_t *pgdat = data;
1909 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1910 	unsigned long spfn = 0, epfn = 0;
1911 	unsigned long first_init_pfn, flags;
1912 	unsigned long start = jiffies;
1913 	struct zone *zone;
1914 	int zid, max_threads;
1915 	u64 i;
1916 
1917 	/* Bind memory initialisation thread to a local node if possible */
1918 	if (!cpumask_empty(cpumask))
1919 		set_cpus_allowed_ptr(current, cpumask);
1920 
1921 	pgdat_resize_lock(pgdat, &flags);
1922 	first_init_pfn = pgdat->first_deferred_pfn;
1923 	if (first_init_pfn == ULONG_MAX) {
1924 		pgdat_resize_unlock(pgdat, &flags);
1925 		pgdat_init_report_one_done();
1926 		return 0;
1927 	}
1928 
1929 	/* Sanity check boundaries */
1930 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1931 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1932 	pgdat->first_deferred_pfn = ULONG_MAX;
1933 
1934 	/*
1935 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
1936 	 * interrupt thread must allocate this early in boot, zone must be
1937 	 * pre-grown prior to start of deferred page initialization.
1938 	 */
1939 	pgdat_resize_unlock(pgdat, &flags);
1940 
1941 	/* Only the highest zone is deferred so find it */
1942 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1943 		zone = pgdat->node_zones + zid;
1944 		if (first_init_pfn < zone_end_pfn(zone))
1945 			break;
1946 	}
1947 
1948 	/* If the zone is empty somebody else may have cleared out the zone */
1949 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1950 						 first_init_pfn))
1951 		goto zone_empty;
1952 
1953 	max_threads = deferred_page_init_max_threads(cpumask);
1954 
1955 	while (spfn < epfn) {
1956 		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
1957 		struct padata_mt_job job = {
1958 			.thread_fn   = deferred_init_memmap_chunk,
1959 			.fn_arg      = zone,
1960 			.start       = spfn,
1961 			.size        = epfn_align - spfn,
1962 			.align       = PAGES_PER_SECTION,
1963 			.min_chunk   = PAGES_PER_SECTION,
1964 			.max_threads = max_threads,
1965 		};
1966 
1967 		padata_do_multithreaded(&job);
1968 		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1969 						    epfn_align);
1970 	}
1971 zone_empty:
1972 	/* Sanity check that the next zone really is unpopulated */
1973 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1974 
1975 	pr_info("node %d deferred pages initialised in %ums\n",
1976 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
1977 
1978 	pgdat_init_report_one_done();
1979 	return 0;
1980 }
1981 
1982 /*
1983  * If this zone has deferred pages, try to grow it by initializing enough
1984  * deferred pages to satisfy the allocation specified by order, rounded up to
1985  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
1986  * of SECTION_SIZE bytes by initializing struct pages in increments of
1987  * PAGES_PER_SECTION * sizeof(struct page) bytes.
1988  *
1989  * Return true when zone was grown, otherwise return false. We return true even
1990  * when we grow less than requested, to let the caller decide if there are
1991  * enough pages to satisfy the allocation.
1992  *
1993  * Note: We use noinline because this function is needed only during boot, and
1994  * it is called from a __ref function _deferred_grow_zone. This way we are
1995  * making sure that it is not inlined into permanent text section.
1996  */
1997 static noinline bool __init
1998 deferred_grow_zone(struct zone *zone, unsigned int order)
1999 {
2000 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2001 	pg_data_t *pgdat = zone->zone_pgdat;
2002 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2003 	unsigned long spfn, epfn, flags;
2004 	unsigned long nr_pages = 0;
2005 	u64 i;
2006 
2007 	/* Only the last zone may have deferred pages */
2008 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2009 		return false;
2010 
2011 	pgdat_resize_lock(pgdat, &flags);
2012 
2013 	/*
2014 	 * If someone grew this zone while we were waiting for spinlock, return
2015 	 * true, as there might be enough pages already.
2016 	 */
2017 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2018 		pgdat_resize_unlock(pgdat, &flags);
2019 		return true;
2020 	}
2021 
2022 	/* If the zone is empty somebody else may have cleared out the zone */
2023 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2024 						 first_deferred_pfn)) {
2025 		pgdat->first_deferred_pfn = ULONG_MAX;
2026 		pgdat_resize_unlock(pgdat, &flags);
2027 		/* Retry only once. */
2028 		return first_deferred_pfn != ULONG_MAX;
2029 	}
2030 
2031 	/*
2032 	 * Initialize and free pages in MAX_ORDER sized increments so
2033 	 * that we can avoid introducing any issues with the buddy
2034 	 * allocator.
2035 	 */
2036 	while (spfn < epfn) {
2037 		/* update our first deferred PFN for this section */
2038 		first_deferred_pfn = spfn;
2039 
2040 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2041 		touch_nmi_watchdog();
2042 
2043 		/* We should only stop along section boundaries */
2044 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2045 			continue;
2046 
2047 		/* If our quota has been met we can stop here */
2048 		if (nr_pages >= nr_pages_needed)
2049 			break;
2050 	}
2051 
2052 	pgdat->first_deferred_pfn = spfn;
2053 	pgdat_resize_unlock(pgdat, &flags);
2054 
2055 	return nr_pages > 0;
2056 }
2057 
2058 /*
2059  * deferred_grow_zone() is __init, but it is called from
2060  * get_page_from_freelist() during early boot until deferred_pages permanently
2061  * disables this call. This is why we have refdata wrapper to avoid warning,
2062  * and to ensure that the function body gets unloaded.
2063  */
2064 static bool __ref
2065 _deferred_grow_zone(struct zone *zone, unsigned int order)
2066 {
2067 	return deferred_grow_zone(zone, order);
2068 }
2069 
2070 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2071 
2072 void __init page_alloc_init_late(void)
2073 {
2074 	struct zone *zone;
2075 	int nid;
2076 
2077 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2078 
2079 	/* There will be num_node_state(N_MEMORY) threads */
2080 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2081 	for_each_node_state(nid, N_MEMORY) {
2082 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2083 	}
2084 
2085 	/* Block until all are initialised */
2086 	wait_for_completion(&pgdat_init_all_done_comp);
2087 
2088 	/*
2089 	 * The number of managed pages has changed due to the initialisation
2090 	 * so the pcpu batch and high limits needs to be updated or the limits
2091 	 * will be artificially small.
2092 	 */
2093 	for_each_populated_zone(zone)
2094 		zone_pcp_update(zone);
2095 
2096 	/*
2097 	 * We initialized the rest of the deferred pages.  Permanently disable
2098 	 * on-demand struct page initialization.
2099 	 */
2100 	static_branch_disable(&deferred_pages);
2101 
2102 	/* Reinit limits that are based on free pages after the kernel is up */
2103 	files_maxfiles_init();
2104 #endif
2105 
2106 	/* Discard memblock private memory */
2107 	memblock_discard();
2108 
2109 	for_each_node_state(nid, N_MEMORY)
2110 		shuffle_free_memory(NODE_DATA(nid));
2111 
2112 	for_each_populated_zone(zone)
2113 		set_zone_contiguous(zone);
2114 }
2115 
2116 #ifdef CONFIG_CMA
2117 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2118 void __init init_cma_reserved_pageblock(struct page *page)
2119 {
2120 	unsigned i = pageblock_nr_pages;
2121 	struct page *p = page;
2122 
2123 	do {
2124 		__ClearPageReserved(p);
2125 		set_page_count(p, 0);
2126 	} while (++p, --i);
2127 
2128 	set_pageblock_migratetype(page, MIGRATE_CMA);
2129 
2130 	if (pageblock_order >= MAX_ORDER) {
2131 		i = pageblock_nr_pages;
2132 		p = page;
2133 		do {
2134 			set_page_refcounted(p);
2135 			__free_pages(p, MAX_ORDER - 1);
2136 			p += MAX_ORDER_NR_PAGES;
2137 		} while (i -= MAX_ORDER_NR_PAGES);
2138 	} else {
2139 		set_page_refcounted(page);
2140 		__free_pages(page, pageblock_order);
2141 	}
2142 
2143 	adjust_managed_page_count(page, pageblock_nr_pages);
2144 }
2145 #endif
2146 
2147 /*
2148  * The order of subdivision here is critical for the IO subsystem.
2149  * Please do not alter this order without good reasons and regression
2150  * testing. Specifically, as large blocks of memory are subdivided,
2151  * the order in which smaller blocks are delivered depends on the order
2152  * they're subdivided in this function. This is the primary factor
2153  * influencing the order in which pages are delivered to the IO
2154  * subsystem according to empirical testing, and this is also justified
2155  * by considering the behavior of a buddy system containing a single
2156  * large block of memory acted on by a series of small allocations.
2157  * This behavior is a critical factor in sglist merging's success.
2158  *
2159  * -- nyc
2160  */
2161 static inline void expand(struct zone *zone, struct page *page,
2162 	int low, int high, int migratetype)
2163 {
2164 	unsigned long size = 1 << high;
2165 
2166 	while (high > low) {
2167 		high--;
2168 		size >>= 1;
2169 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2170 
2171 		/*
2172 		 * Mark as guard pages (or page), that will allow to
2173 		 * merge back to allocator when buddy will be freed.
2174 		 * Corresponding page table entries will not be touched,
2175 		 * pages will stay not present in virtual address space
2176 		 */
2177 		if (set_page_guard(zone, &page[size], high, migratetype))
2178 			continue;
2179 
2180 		add_to_free_list(&page[size], zone, high, migratetype);
2181 		set_buddy_order(&page[size], high);
2182 	}
2183 }
2184 
2185 static void check_new_page_bad(struct page *page)
2186 {
2187 	if (unlikely(page->flags & __PG_HWPOISON)) {
2188 		/* Don't complain about hwpoisoned pages */
2189 		page_mapcount_reset(page); /* remove PageBuddy */
2190 		return;
2191 	}
2192 
2193 	bad_page(page,
2194 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2195 }
2196 
2197 /*
2198  * This page is about to be returned from the page allocator
2199  */
2200 static inline int check_new_page(struct page *page)
2201 {
2202 	if (likely(page_expected_state(page,
2203 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2204 		return 0;
2205 
2206 	check_new_page_bad(page);
2207 	return 1;
2208 }
2209 
2210 static inline bool free_pages_prezeroed(void)
2211 {
2212 	return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2213 		page_poisoning_enabled()) || want_init_on_free();
2214 }
2215 
2216 #ifdef CONFIG_DEBUG_VM
2217 /*
2218  * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2219  * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2220  * also checked when pcp lists are refilled from the free lists.
2221  */
2222 static inline bool check_pcp_refill(struct page *page)
2223 {
2224 	if (debug_pagealloc_enabled_static())
2225 		return check_new_page(page);
2226 	else
2227 		return false;
2228 }
2229 
2230 static inline bool check_new_pcp(struct page *page)
2231 {
2232 	return check_new_page(page);
2233 }
2234 #else
2235 /*
2236  * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2237  * when pcp lists are being refilled from the free lists. With debug_pagealloc
2238  * enabled, they are also checked when being allocated from the pcp lists.
2239  */
2240 static inline bool check_pcp_refill(struct page *page)
2241 {
2242 	return check_new_page(page);
2243 }
2244 static inline bool check_new_pcp(struct page *page)
2245 {
2246 	if (debug_pagealloc_enabled_static())
2247 		return check_new_page(page);
2248 	else
2249 		return false;
2250 }
2251 #endif /* CONFIG_DEBUG_VM */
2252 
2253 static bool check_new_pages(struct page *page, unsigned int order)
2254 {
2255 	int i;
2256 	for (i = 0; i < (1 << order); i++) {
2257 		struct page *p = page + i;
2258 
2259 		if (unlikely(check_new_page(p)))
2260 			return true;
2261 	}
2262 
2263 	return false;
2264 }
2265 
2266 inline void post_alloc_hook(struct page *page, unsigned int order,
2267 				gfp_t gfp_flags)
2268 {
2269 	set_page_private(page, 0);
2270 	set_page_refcounted(page);
2271 
2272 	arch_alloc_page(page, order);
2273 	if (debug_pagealloc_enabled_static())
2274 		kernel_map_pages(page, 1 << order, 1);
2275 	kasan_alloc_pages(page, order);
2276 	kernel_poison_pages(page, 1 << order, 1);
2277 	set_page_owner(page, order, gfp_flags);
2278 }
2279 
2280 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2281 							unsigned int alloc_flags)
2282 {
2283 	post_alloc_hook(page, order, gfp_flags);
2284 
2285 	if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2286 		kernel_init_free_pages(page, 1 << order);
2287 
2288 	if (order && (gfp_flags & __GFP_COMP))
2289 		prep_compound_page(page, order);
2290 
2291 	/*
2292 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2293 	 * allocate the page. The expectation is that the caller is taking
2294 	 * steps that will free more memory. The caller should avoid the page
2295 	 * being used for !PFMEMALLOC purposes.
2296 	 */
2297 	if (alloc_flags & ALLOC_NO_WATERMARKS)
2298 		set_page_pfmemalloc(page);
2299 	else
2300 		clear_page_pfmemalloc(page);
2301 }
2302 
2303 /*
2304  * Go through the free lists for the given migratetype and remove
2305  * the smallest available page from the freelists
2306  */
2307 static __always_inline
2308 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2309 						int migratetype)
2310 {
2311 	unsigned int current_order;
2312 	struct free_area *area;
2313 	struct page *page;
2314 
2315 	/* Find a page of the appropriate size in the preferred list */
2316 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2317 		area = &(zone->free_area[current_order]);
2318 		page = get_page_from_free_area(area, migratetype);
2319 		if (!page)
2320 			continue;
2321 		del_page_from_free_list(page, zone, current_order);
2322 		expand(zone, page, order, current_order, migratetype);
2323 		set_pcppage_migratetype(page, migratetype);
2324 		return page;
2325 	}
2326 
2327 	return NULL;
2328 }
2329 
2330 
2331 /*
2332  * This array describes the order lists are fallen back to when
2333  * the free lists for the desirable migrate type are depleted
2334  */
2335 static int fallbacks[MIGRATE_TYPES][3] = {
2336 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2337 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2338 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2339 #ifdef CONFIG_CMA
2340 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2341 #endif
2342 #ifdef CONFIG_MEMORY_ISOLATION
2343 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2344 #endif
2345 };
2346 
2347 #ifdef CONFIG_CMA
2348 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2349 					unsigned int order)
2350 {
2351 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2352 }
2353 #else
2354 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2355 					unsigned int order) { return NULL; }
2356 #endif
2357 
2358 /*
2359  * Move the free pages in a range to the freelist tail of the requested type.
2360  * Note that start_page and end_pages are not aligned on a pageblock
2361  * boundary. If alignment is required, use move_freepages_block()
2362  */
2363 static int move_freepages(struct zone *zone,
2364 			  struct page *start_page, struct page *end_page,
2365 			  int migratetype, int *num_movable)
2366 {
2367 	struct page *page;
2368 	unsigned int order;
2369 	int pages_moved = 0;
2370 
2371 	for (page = start_page; page <= end_page;) {
2372 		if (!pfn_valid_within(page_to_pfn(page))) {
2373 			page++;
2374 			continue;
2375 		}
2376 
2377 		if (!PageBuddy(page)) {
2378 			/*
2379 			 * We assume that pages that could be isolated for
2380 			 * migration are movable. But we don't actually try
2381 			 * isolating, as that would be expensive.
2382 			 */
2383 			if (num_movable &&
2384 					(PageLRU(page) || __PageMovable(page)))
2385 				(*num_movable)++;
2386 
2387 			page++;
2388 			continue;
2389 		}
2390 
2391 		/* Make sure we are not inadvertently changing nodes */
2392 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2393 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2394 
2395 		order = buddy_order(page);
2396 		move_to_free_list(page, zone, order, migratetype);
2397 		page += 1 << order;
2398 		pages_moved += 1 << order;
2399 	}
2400 
2401 	return pages_moved;
2402 }
2403 
2404 int move_freepages_block(struct zone *zone, struct page *page,
2405 				int migratetype, int *num_movable)
2406 {
2407 	unsigned long start_pfn, end_pfn;
2408 	struct page *start_page, *end_page;
2409 
2410 	if (num_movable)
2411 		*num_movable = 0;
2412 
2413 	start_pfn = page_to_pfn(page);
2414 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2415 	start_page = pfn_to_page(start_pfn);
2416 	end_page = start_page + pageblock_nr_pages - 1;
2417 	end_pfn = start_pfn + pageblock_nr_pages - 1;
2418 
2419 	/* Do not cross zone boundaries */
2420 	if (!zone_spans_pfn(zone, start_pfn))
2421 		start_page = page;
2422 	if (!zone_spans_pfn(zone, end_pfn))
2423 		return 0;
2424 
2425 	return move_freepages(zone, start_page, end_page, migratetype,
2426 								num_movable);
2427 }
2428 
2429 static void change_pageblock_range(struct page *pageblock_page,
2430 					int start_order, int migratetype)
2431 {
2432 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2433 
2434 	while (nr_pageblocks--) {
2435 		set_pageblock_migratetype(pageblock_page, migratetype);
2436 		pageblock_page += pageblock_nr_pages;
2437 	}
2438 }
2439 
2440 /*
2441  * When we are falling back to another migratetype during allocation, try to
2442  * steal extra free pages from the same pageblocks to satisfy further
2443  * allocations, instead of polluting multiple pageblocks.
2444  *
2445  * If we are stealing a relatively large buddy page, it is likely there will
2446  * be more free pages in the pageblock, so try to steal them all. For
2447  * reclaimable and unmovable allocations, we steal regardless of page size,
2448  * as fragmentation caused by those allocations polluting movable pageblocks
2449  * is worse than movable allocations stealing from unmovable and reclaimable
2450  * pageblocks.
2451  */
2452 static bool can_steal_fallback(unsigned int order, int start_mt)
2453 {
2454 	/*
2455 	 * Leaving this order check is intended, although there is
2456 	 * relaxed order check in next check. The reason is that
2457 	 * we can actually steal whole pageblock if this condition met,
2458 	 * but, below check doesn't guarantee it and that is just heuristic
2459 	 * so could be changed anytime.
2460 	 */
2461 	if (order >= pageblock_order)
2462 		return true;
2463 
2464 	if (order >= pageblock_order / 2 ||
2465 		start_mt == MIGRATE_RECLAIMABLE ||
2466 		start_mt == MIGRATE_UNMOVABLE ||
2467 		page_group_by_mobility_disabled)
2468 		return true;
2469 
2470 	return false;
2471 }
2472 
2473 static inline void boost_watermark(struct zone *zone)
2474 {
2475 	unsigned long max_boost;
2476 
2477 	if (!watermark_boost_factor)
2478 		return;
2479 	/*
2480 	 * Don't bother in zones that are unlikely to produce results.
2481 	 * On small machines, including kdump capture kernels running
2482 	 * in a small area, boosting the watermark can cause an out of
2483 	 * memory situation immediately.
2484 	 */
2485 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2486 		return;
2487 
2488 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2489 			watermark_boost_factor, 10000);
2490 
2491 	/*
2492 	 * high watermark may be uninitialised if fragmentation occurs
2493 	 * very early in boot so do not boost. We do not fall
2494 	 * through and boost by pageblock_nr_pages as failing
2495 	 * allocations that early means that reclaim is not going
2496 	 * to help and it may even be impossible to reclaim the
2497 	 * boosted watermark resulting in a hang.
2498 	 */
2499 	if (!max_boost)
2500 		return;
2501 
2502 	max_boost = max(pageblock_nr_pages, max_boost);
2503 
2504 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2505 		max_boost);
2506 }
2507 
2508 /*
2509  * This function implements actual steal behaviour. If order is large enough,
2510  * we can steal whole pageblock. If not, we first move freepages in this
2511  * pageblock to our migratetype and determine how many already-allocated pages
2512  * are there in the pageblock with a compatible migratetype. If at least half
2513  * of pages are free or compatible, we can change migratetype of the pageblock
2514  * itself, so pages freed in the future will be put on the correct free list.
2515  */
2516 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2517 		unsigned int alloc_flags, int start_type, bool whole_block)
2518 {
2519 	unsigned int current_order = buddy_order(page);
2520 	int free_pages, movable_pages, alike_pages;
2521 	int old_block_type;
2522 
2523 	old_block_type = get_pageblock_migratetype(page);
2524 
2525 	/*
2526 	 * This can happen due to races and we want to prevent broken
2527 	 * highatomic accounting.
2528 	 */
2529 	if (is_migrate_highatomic(old_block_type))
2530 		goto single_page;
2531 
2532 	/* Take ownership for orders >= pageblock_order */
2533 	if (current_order >= pageblock_order) {
2534 		change_pageblock_range(page, current_order, start_type);
2535 		goto single_page;
2536 	}
2537 
2538 	/*
2539 	 * Boost watermarks to increase reclaim pressure to reduce the
2540 	 * likelihood of future fallbacks. Wake kswapd now as the node
2541 	 * may be balanced overall and kswapd will not wake naturally.
2542 	 */
2543 	boost_watermark(zone);
2544 	if (alloc_flags & ALLOC_KSWAPD)
2545 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2546 
2547 	/* We are not allowed to try stealing from the whole block */
2548 	if (!whole_block)
2549 		goto single_page;
2550 
2551 	free_pages = move_freepages_block(zone, page, start_type,
2552 						&movable_pages);
2553 	/*
2554 	 * Determine how many pages are compatible with our allocation.
2555 	 * For movable allocation, it's the number of movable pages which
2556 	 * we just obtained. For other types it's a bit more tricky.
2557 	 */
2558 	if (start_type == MIGRATE_MOVABLE) {
2559 		alike_pages = movable_pages;
2560 	} else {
2561 		/*
2562 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2563 		 * to MOVABLE pageblock, consider all non-movable pages as
2564 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2565 		 * vice versa, be conservative since we can't distinguish the
2566 		 * exact migratetype of non-movable pages.
2567 		 */
2568 		if (old_block_type == MIGRATE_MOVABLE)
2569 			alike_pages = pageblock_nr_pages
2570 						- (free_pages + movable_pages);
2571 		else
2572 			alike_pages = 0;
2573 	}
2574 
2575 	/* moving whole block can fail due to zone boundary conditions */
2576 	if (!free_pages)
2577 		goto single_page;
2578 
2579 	/*
2580 	 * If a sufficient number of pages in the block are either free or of
2581 	 * comparable migratability as our allocation, claim the whole block.
2582 	 */
2583 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2584 			page_group_by_mobility_disabled)
2585 		set_pageblock_migratetype(page, start_type);
2586 
2587 	return;
2588 
2589 single_page:
2590 	move_to_free_list(page, zone, current_order, start_type);
2591 }
2592 
2593 /*
2594  * Check whether there is a suitable fallback freepage with requested order.
2595  * If only_stealable is true, this function returns fallback_mt only if
2596  * we can steal other freepages all together. This would help to reduce
2597  * fragmentation due to mixed migratetype pages in one pageblock.
2598  */
2599 int find_suitable_fallback(struct free_area *area, unsigned int order,
2600 			int migratetype, bool only_stealable, bool *can_steal)
2601 {
2602 	int i;
2603 	int fallback_mt;
2604 
2605 	if (area->nr_free == 0)
2606 		return -1;
2607 
2608 	*can_steal = false;
2609 	for (i = 0;; i++) {
2610 		fallback_mt = fallbacks[migratetype][i];
2611 		if (fallback_mt == MIGRATE_TYPES)
2612 			break;
2613 
2614 		if (free_area_empty(area, fallback_mt))
2615 			continue;
2616 
2617 		if (can_steal_fallback(order, migratetype))
2618 			*can_steal = true;
2619 
2620 		if (!only_stealable)
2621 			return fallback_mt;
2622 
2623 		if (*can_steal)
2624 			return fallback_mt;
2625 	}
2626 
2627 	return -1;
2628 }
2629 
2630 /*
2631  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2632  * there are no empty page blocks that contain a page with a suitable order
2633  */
2634 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2635 				unsigned int alloc_order)
2636 {
2637 	int mt;
2638 	unsigned long max_managed, flags;
2639 
2640 	/*
2641 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2642 	 * Check is race-prone but harmless.
2643 	 */
2644 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2645 	if (zone->nr_reserved_highatomic >= max_managed)
2646 		return;
2647 
2648 	spin_lock_irqsave(&zone->lock, flags);
2649 
2650 	/* Recheck the nr_reserved_highatomic limit under the lock */
2651 	if (zone->nr_reserved_highatomic >= max_managed)
2652 		goto out_unlock;
2653 
2654 	/* Yoink! */
2655 	mt = get_pageblock_migratetype(page);
2656 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2657 	    && !is_migrate_cma(mt)) {
2658 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2659 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2660 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2661 	}
2662 
2663 out_unlock:
2664 	spin_unlock_irqrestore(&zone->lock, flags);
2665 }
2666 
2667 /*
2668  * Used when an allocation is about to fail under memory pressure. This
2669  * potentially hurts the reliability of high-order allocations when under
2670  * intense memory pressure but failed atomic allocations should be easier
2671  * to recover from than an OOM.
2672  *
2673  * If @force is true, try to unreserve a pageblock even though highatomic
2674  * pageblock is exhausted.
2675  */
2676 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2677 						bool force)
2678 {
2679 	struct zonelist *zonelist = ac->zonelist;
2680 	unsigned long flags;
2681 	struct zoneref *z;
2682 	struct zone *zone;
2683 	struct page *page;
2684 	int order;
2685 	bool ret;
2686 
2687 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2688 								ac->nodemask) {
2689 		/*
2690 		 * Preserve at least one pageblock unless memory pressure
2691 		 * is really high.
2692 		 */
2693 		if (!force && zone->nr_reserved_highatomic <=
2694 					pageblock_nr_pages)
2695 			continue;
2696 
2697 		spin_lock_irqsave(&zone->lock, flags);
2698 		for (order = 0; order < MAX_ORDER; order++) {
2699 			struct free_area *area = &(zone->free_area[order]);
2700 
2701 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2702 			if (!page)
2703 				continue;
2704 
2705 			/*
2706 			 * In page freeing path, migratetype change is racy so
2707 			 * we can counter several free pages in a pageblock
2708 			 * in this loop althoug we changed the pageblock type
2709 			 * from highatomic to ac->migratetype. So we should
2710 			 * adjust the count once.
2711 			 */
2712 			if (is_migrate_highatomic_page(page)) {
2713 				/*
2714 				 * It should never happen but changes to
2715 				 * locking could inadvertently allow a per-cpu
2716 				 * drain to add pages to MIGRATE_HIGHATOMIC
2717 				 * while unreserving so be safe and watch for
2718 				 * underflows.
2719 				 */
2720 				zone->nr_reserved_highatomic -= min(
2721 						pageblock_nr_pages,
2722 						zone->nr_reserved_highatomic);
2723 			}
2724 
2725 			/*
2726 			 * Convert to ac->migratetype and avoid the normal
2727 			 * pageblock stealing heuristics. Minimally, the caller
2728 			 * is doing the work and needs the pages. More
2729 			 * importantly, if the block was always converted to
2730 			 * MIGRATE_UNMOVABLE or another type then the number
2731 			 * of pageblocks that cannot be completely freed
2732 			 * may increase.
2733 			 */
2734 			set_pageblock_migratetype(page, ac->migratetype);
2735 			ret = move_freepages_block(zone, page, ac->migratetype,
2736 									NULL);
2737 			if (ret) {
2738 				spin_unlock_irqrestore(&zone->lock, flags);
2739 				return ret;
2740 			}
2741 		}
2742 		spin_unlock_irqrestore(&zone->lock, flags);
2743 	}
2744 
2745 	return false;
2746 }
2747 
2748 /*
2749  * Try finding a free buddy page on the fallback list and put it on the free
2750  * list of requested migratetype, possibly along with other pages from the same
2751  * block, depending on fragmentation avoidance heuristics. Returns true if
2752  * fallback was found so that __rmqueue_smallest() can grab it.
2753  *
2754  * The use of signed ints for order and current_order is a deliberate
2755  * deviation from the rest of this file, to make the for loop
2756  * condition simpler.
2757  */
2758 static __always_inline bool
2759 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2760 						unsigned int alloc_flags)
2761 {
2762 	struct free_area *area;
2763 	int current_order;
2764 	int min_order = order;
2765 	struct page *page;
2766 	int fallback_mt;
2767 	bool can_steal;
2768 
2769 	/*
2770 	 * Do not steal pages from freelists belonging to other pageblocks
2771 	 * i.e. orders < pageblock_order. If there are no local zones free,
2772 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2773 	 */
2774 	if (alloc_flags & ALLOC_NOFRAGMENT)
2775 		min_order = pageblock_order;
2776 
2777 	/*
2778 	 * Find the largest available free page in the other list. This roughly
2779 	 * approximates finding the pageblock with the most free pages, which
2780 	 * would be too costly to do exactly.
2781 	 */
2782 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2783 				--current_order) {
2784 		area = &(zone->free_area[current_order]);
2785 		fallback_mt = find_suitable_fallback(area, current_order,
2786 				start_migratetype, false, &can_steal);
2787 		if (fallback_mt == -1)
2788 			continue;
2789 
2790 		/*
2791 		 * We cannot steal all free pages from the pageblock and the
2792 		 * requested migratetype is movable. In that case it's better to
2793 		 * steal and split the smallest available page instead of the
2794 		 * largest available page, because even if the next movable
2795 		 * allocation falls back into a different pageblock than this
2796 		 * one, it won't cause permanent fragmentation.
2797 		 */
2798 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2799 					&& current_order > order)
2800 			goto find_smallest;
2801 
2802 		goto do_steal;
2803 	}
2804 
2805 	return false;
2806 
2807 find_smallest:
2808 	for (current_order = order; current_order < MAX_ORDER;
2809 							current_order++) {
2810 		area = &(zone->free_area[current_order]);
2811 		fallback_mt = find_suitable_fallback(area, current_order,
2812 				start_migratetype, false, &can_steal);
2813 		if (fallback_mt != -1)
2814 			break;
2815 	}
2816 
2817 	/*
2818 	 * This should not happen - we already found a suitable fallback
2819 	 * when looking for the largest page.
2820 	 */
2821 	VM_BUG_ON(current_order == MAX_ORDER);
2822 
2823 do_steal:
2824 	page = get_page_from_free_area(area, fallback_mt);
2825 
2826 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2827 								can_steal);
2828 
2829 	trace_mm_page_alloc_extfrag(page, order, current_order,
2830 		start_migratetype, fallback_mt);
2831 
2832 	return true;
2833 
2834 }
2835 
2836 /*
2837  * Do the hard work of removing an element from the buddy allocator.
2838  * Call me with the zone->lock already held.
2839  */
2840 static __always_inline struct page *
2841 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2842 						unsigned int alloc_flags)
2843 {
2844 	struct page *page;
2845 
2846 #ifdef CONFIG_CMA
2847 	/*
2848 	 * Balance movable allocations between regular and CMA areas by
2849 	 * allocating from CMA when over half of the zone's free memory
2850 	 * is in the CMA area.
2851 	 */
2852 	if (alloc_flags & ALLOC_CMA &&
2853 	    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2854 	    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2855 		page = __rmqueue_cma_fallback(zone, order);
2856 		if (page)
2857 			return page;
2858 	}
2859 #endif
2860 retry:
2861 	page = __rmqueue_smallest(zone, order, migratetype);
2862 	if (unlikely(!page)) {
2863 		if (alloc_flags & ALLOC_CMA)
2864 			page = __rmqueue_cma_fallback(zone, order);
2865 
2866 		if (!page && __rmqueue_fallback(zone, order, migratetype,
2867 								alloc_flags))
2868 			goto retry;
2869 	}
2870 
2871 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2872 	return page;
2873 }
2874 
2875 /*
2876  * Obtain a specified number of elements from the buddy allocator, all under
2877  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2878  * Returns the number of new pages which were placed at *list.
2879  */
2880 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2881 			unsigned long count, struct list_head *list,
2882 			int migratetype, unsigned int alloc_flags)
2883 {
2884 	int i, alloced = 0;
2885 
2886 	spin_lock(&zone->lock);
2887 	for (i = 0; i < count; ++i) {
2888 		struct page *page = __rmqueue(zone, order, migratetype,
2889 								alloc_flags);
2890 		if (unlikely(page == NULL))
2891 			break;
2892 
2893 		if (unlikely(check_pcp_refill(page)))
2894 			continue;
2895 
2896 		/*
2897 		 * Split buddy pages returned by expand() are received here in
2898 		 * physical page order. The page is added to the tail of
2899 		 * caller's list. From the callers perspective, the linked list
2900 		 * is ordered by page number under some conditions. This is
2901 		 * useful for IO devices that can forward direction from the
2902 		 * head, thus also in the physical page order. This is useful
2903 		 * for IO devices that can merge IO requests if the physical
2904 		 * pages are ordered properly.
2905 		 */
2906 		list_add_tail(&page->lru, list);
2907 		alloced++;
2908 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2909 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2910 					      -(1 << order));
2911 	}
2912 
2913 	/*
2914 	 * i pages were removed from the buddy list even if some leak due
2915 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2916 	 * on i. Do not confuse with 'alloced' which is the number of
2917 	 * pages added to the pcp list.
2918 	 */
2919 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2920 	spin_unlock(&zone->lock);
2921 	return alloced;
2922 }
2923 
2924 #ifdef CONFIG_NUMA
2925 /*
2926  * Called from the vmstat counter updater to drain pagesets of this
2927  * currently executing processor on remote nodes after they have
2928  * expired.
2929  *
2930  * Note that this function must be called with the thread pinned to
2931  * a single processor.
2932  */
2933 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2934 {
2935 	unsigned long flags;
2936 	int to_drain, batch;
2937 
2938 	local_irq_save(flags);
2939 	batch = READ_ONCE(pcp->batch);
2940 	to_drain = min(pcp->count, batch);
2941 	if (to_drain > 0)
2942 		free_pcppages_bulk(zone, to_drain, pcp);
2943 	local_irq_restore(flags);
2944 }
2945 #endif
2946 
2947 /*
2948  * Drain pcplists of the indicated processor and zone.
2949  *
2950  * The processor must either be the current processor and the
2951  * thread pinned to the current processor or a processor that
2952  * is not online.
2953  */
2954 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2955 {
2956 	unsigned long flags;
2957 	struct per_cpu_pageset *pset;
2958 	struct per_cpu_pages *pcp;
2959 
2960 	local_irq_save(flags);
2961 	pset = per_cpu_ptr(zone->pageset, cpu);
2962 
2963 	pcp = &pset->pcp;
2964 	if (pcp->count)
2965 		free_pcppages_bulk(zone, pcp->count, pcp);
2966 	local_irq_restore(flags);
2967 }
2968 
2969 /*
2970  * Drain pcplists of all zones on the indicated processor.
2971  *
2972  * The processor must either be the current processor and the
2973  * thread pinned to the current processor or a processor that
2974  * is not online.
2975  */
2976 static void drain_pages(unsigned int cpu)
2977 {
2978 	struct zone *zone;
2979 
2980 	for_each_populated_zone(zone) {
2981 		drain_pages_zone(cpu, zone);
2982 	}
2983 }
2984 
2985 /*
2986  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2987  *
2988  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2989  * the single zone's pages.
2990  */
2991 void drain_local_pages(struct zone *zone)
2992 {
2993 	int cpu = smp_processor_id();
2994 
2995 	if (zone)
2996 		drain_pages_zone(cpu, zone);
2997 	else
2998 		drain_pages(cpu);
2999 }
3000 
3001 static void drain_local_pages_wq(struct work_struct *work)
3002 {
3003 	struct pcpu_drain *drain;
3004 
3005 	drain = container_of(work, struct pcpu_drain, work);
3006 
3007 	/*
3008 	 * drain_all_pages doesn't use proper cpu hotplug protection so
3009 	 * we can race with cpu offline when the WQ can move this from
3010 	 * a cpu pinned worker to an unbound one. We can operate on a different
3011 	 * cpu which is allright but we also have to make sure to not move to
3012 	 * a different one.
3013 	 */
3014 	preempt_disable();
3015 	drain_local_pages(drain->zone);
3016 	preempt_enable();
3017 }
3018 
3019 /*
3020  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3021  *
3022  * When zone parameter is non-NULL, spill just the single zone's pages.
3023  *
3024  * Note that this can be extremely slow as the draining happens in a workqueue.
3025  */
3026 void drain_all_pages(struct zone *zone)
3027 {
3028 	int cpu;
3029 
3030 	/*
3031 	 * Allocate in the BSS so we wont require allocation in
3032 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3033 	 */
3034 	static cpumask_t cpus_with_pcps;
3035 
3036 	/*
3037 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
3038 	 * initialized.
3039 	 */
3040 	if (WARN_ON_ONCE(!mm_percpu_wq))
3041 		return;
3042 
3043 	/*
3044 	 * Do not drain if one is already in progress unless it's specific to
3045 	 * a zone. Such callers are primarily CMA and memory hotplug and need
3046 	 * the drain to be complete when the call returns.
3047 	 */
3048 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3049 		if (!zone)
3050 			return;
3051 		mutex_lock(&pcpu_drain_mutex);
3052 	}
3053 
3054 	/*
3055 	 * We don't care about racing with CPU hotplug event
3056 	 * as offline notification will cause the notified
3057 	 * cpu to drain that CPU pcps and on_each_cpu_mask
3058 	 * disables preemption as part of its processing
3059 	 */
3060 	for_each_online_cpu(cpu) {
3061 		struct per_cpu_pageset *pcp;
3062 		struct zone *z;
3063 		bool has_pcps = false;
3064 
3065 		if (zone) {
3066 			pcp = per_cpu_ptr(zone->pageset, cpu);
3067 			if (pcp->pcp.count)
3068 				has_pcps = true;
3069 		} else {
3070 			for_each_populated_zone(z) {
3071 				pcp = per_cpu_ptr(z->pageset, cpu);
3072 				if (pcp->pcp.count) {
3073 					has_pcps = true;
3074 					break;
3075 				}
3076 			}
3077 		}
3078 
3079 		if (has_pcps)
3080 			cpumask_set_cpu(cpu, &cpus_with_pcps);
3081 		else
3082 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
3083 	}
3084 
3085 	for_each_cpu(cpu, &cpus_with_pcps) {
3086 		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3087 
3088 		drain->zone = zone;
3089 		INIT_WORK(&drain->work, drain_local_pages_wq);
3090 		queue_work_on(cpu, mm_percpu_wq, &drain->work);
3091 	}
3092 	for_each_cpu(cpu, &cpus_with_pcps)
3093 		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3094 
3095 	mutex_unlock(&pcpu_drain_mutex);
3096 }
3097 
3098 #ifdef CONFIG_HIBERNATION
3099 
3100 /*
3101  * Touch the watchdog for every WD_PAGE_COUNT pages.
3102  */
3103 #define WD_PAGE_COUNT	(128*1024)
3104 
3105 void mark_free_pages(struct zone *zone)
3106 {
3107 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3108 	unsigned long flags;
3109 	unsigned int order, t;
3110 	struct page *page;
3111 
3112 	if (zone_is_empty(zone))
3113 		return;
3114 
3115 	spin_lock_irqsave(&zone->lock, flags);
3116 
3117 	max_zone_pfn = zone_end_pfn(zone);
3118 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3119 		if (pfn_valid(pfn)) {
3120 			page = pfn_to_page(pfn);
3121 
3122 			if (!--page_count) {
3123 				touch_nmi_watchdog();
3124 				page_count = WD_PAGE_COUNT;
3125 			}
3126 
3127 			if (page_zone(page) != zone)
3128 				continue;
3129 
3130 			if (!swsusp_page_is_forbidden(page))
3131 				swsusp_unset_page_free(page);
3132 		}
3133 
3134 	for_each_migratetype_order(order, t) {
3135 		list_for_each_entry(page,
3136 				&zone->free_area[order].free_list[t], lru) {
3137 			unsigned long i;
3138 
3139 			pfn = page_to_pfn(page);
3140 			for (i = 0; i < (1UL << order); i++) {
3141 				if (!--page_count) {
3142 					touch_nmi_watchdog();
3143 					page_count = WD_PAGE_COUNT;
3144 				}
3145 				swsusp_set_page_free(pfn_to_page(pfn + i));
3146 			}
3147 		}
3148 	}
3149 	spin_unlock_irqrestore(&zone->lock, flags);
3150 }
3151 #endif /* CONFIG_PM */
3152 
3153 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
3154 {
3155 	int migratetype;
3156 
3157 	if (!free_pcp_prepare(page))
3158 		return false;
3159 
3160 	migratetype = get_pfnblock_migratetype(page, pfn);
3161 	set_pcppage_migratetype(page, migratetype);
3162 	return true;
3163 }
3164 
3165 static void free_unref_page_commit(struct page *page, unsigned long pfn)
3166 {
3167 	struct zone *zone = page_zone(page);
3168 	struct per_cpu_pages *pcp;
3169 	int migratetype;
3170 
3171 	migratetype = get_pcppage_migratetype(page);
3172 	__count_vm_event(PGFREE);
3173 
3174 	/*
3175 	 * We only track unmovable, reclaimable and movable on pcp lists.
3176 	 * Free ISOLATE pages back to the allocator because they are being
3177 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3178 	 * areas back if necessary. Otherwise, we may have to free
3179 	 * excessively into the page allocator
3180 	 */
3181 	if (migratetype >= MIGRATE_PCPTYPES) {
3182 		if (unlikely(is_migrate_isolate(migratetype))) {
3183 			free_one_page(zone, page, pfn, 0, migratetype,
3184 				      FPI_NONE);
3185 			return;
3186 		}
3187 		migratetype = MIGRATE_MOVABLE;
3188 	}
3189 
3190 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3191 	list_add(&page->lru, &pcp->lists[migratetype]);
3192 	pcp->count++;
3193 	if (pcp->count >= pcp->high) {
3194 		unsigned long batch = READ_ONCE(pcp->batch);
3195 		free_pcppages_bulk(zone, batch, pcp);
3196 	}
3197 }
3198 
3199 /*
3200  * Free a 0-order page
3201  */
3202 void free_unref_page(struct page *page)
3203 {
3204 	unsigned long flags;
3205 	unsigned long pfn = page_to_pfn(page);
3206 
3207 	if (!free_unref_page_prepare(page, pfn))
3208 		return;
3209 
3210 	local_irq_save(flags);
3211 	free_unref_page_commit(page, pfn);
3212 	local_irq_restore(flags);
3213 }
3214 
3215 /*
3216  * Free a list of 0-order pages
3217  */
3218 void free_unref_page_list(struct list_head *list)
3219 {
3220 	struct page *page, *next;
3221 	unsigned long flags, pfn;
3222 	int batch_count = 0;
3223 
3224 	/* Prepare pages for freeing */
3225 	list_for_each_entry_safe(page, next, list, lru) {
3226 		pfn = page_to_pfn(page);
3227 		if (!free_unref_page_prepare(page, pfn))
3228 			list_del(&page->lru);
3229 		set_page_private(page, pfn);
3230 	}
3231 
3232 	local_irq_save(flags);
3233 	list_for_each_entry_safe(page, next, list, lru) {
3234 		unsigned long pfn = page_private(page);
3235 
3236 		set_page_private(page, 0);
3237 		trace_mm_page_free_batched(page);
3238 		free_unref_page_commit(page, pfn);
3239 
3240 		/*
3241 		 * Guard against excessive IRQ disabled times when we get
3242 		 * a large list of pages to free.
3243 		 */
3244 		if (++batch_count == SWAP_CLUSTER_MAX) {
3245 			local_irq_restore(flags);
3246 			batch_count = 0;
3247 			local_irq_save(flags);
3248 		}
3249 	}
3250 	local_irq_restore(flags);
3251 }
3252 
3253 /*
3254  * split_page takes a non-compound higher-order page, and splits it into
3255  * n (1<<order) sub-pages: page[0..n]
3256  * Each sub-page must be freed individually.
3257  *
3258  * Note: this is probably too low level an operation for use in drivers.
3259  * Please consult with lkml before using this in your driver.
3260  */
3261 void split_page(struct page *page, unsigned int order)
3262 {
3263 	int i;
3264 
3265 	VM_BUG_ON_PAGE(PageCompound(page), page);
3266 	VM_BUG_ON_PAGE(!page_count(page), page);
3267 
3268 	for (i = 1; i < (1 << order); i++)
3269 		set_page_refcounted(page + i);
3270 	split_page_owner(page, 1 << order);
3271 }
3272 EXPORT_SYMBOL_GPL(split_page);
3273 
3274 int __isolate_free_page(struct page *page, unsigned int order)
3275 {
3276 	unsigned long watermark;
3277 	struct zone *zone;
3278 	int mt;
3279 
3280 	BUG_ON(!PageBuddy(page));
3281 
3282 	zone = page_zone(page);
3283 	mt = get_pageblock_migratetype(page);
3284 
3285 	if (!is_migrate_isolate(mt)) {
3286 		/*
3287 		 * Obey watermarks as if the page was being allocated. We can
3288 		 * emulate a high-order watermark check with a raised order-0
3289 		 * watermark, because we already know our high-order page
3290 		 * exists.
3291 		 */
3292 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3293 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3294 			return 0;
3295 
3296 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3297 	}
3298 
3299 	/* Remove page from free list */
3300 
3301 	del_page_from_free_list(page, zone, order);
3302 
3303 	/*
3304 	 * Set the pageblock if the isolated page is at least half of a
3305 	 * pageblock
3306 	 */
3307 	if (order >= pageblock_order - 1) {
3308 		struct page *endpage = page + (1 << order) - 1;
3309 		for (; page < endpage; page += pageblock_nr_pages) {
3310 			int mt = get_pageblock_migratetype(page);
3311 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3312 			    && !is_migrate_highatomic(mt))
3313 				set_pageblock_migratetype(page,
3314 							  MIGRATE_MOVABLE);
3315 		}
3316 	}
3317 
3318 
3319 	return 1UL << order;
3320 }
3321 
3322 /**
3323  * __putback_isolated_page - Return a now-isolated page back where we got it
3324  * @page: Page that was isolated
3325  * @order: Order of the isolated page
3326  * @mt: The page's pageblock's migratetype
3327  *
3328  * This function is meant to return a page pulled from the free lists via
3329  * __isolate_free_page back to the free lists they were pulled from.
3330  */
3331 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3332 {
3333 	struct zone *zone = page_zone(page);
3334 
3335 	/* zone lock should be held when this function is called */
3336 	lockdep_assert_held(&zone->lock);
3337 
3338 	/* Return isolated page to tail of freelist. */
3339 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
3340 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3341 }
3342 
3343 /*
3344  * Update NUMA hit/miss statistics
3345  *
3346  * Must be called with interrupts disabled.
3347  */
3348 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3349 {
3350 #ifdef CONFIG_NUMA
3351 	enum numa_stat_item local_stat = NUMA_LOCAL;
3352 
3353 	/* skip numa counters update if numa stats is disabled */
3354 	if (!static_branch_likely(&vm_numa_stat_key))
3355 		return;
3356 
3357 	if (zone_to_nid(z) != numa_node_id())
3358 		local_stat = NUMA_OTHER;
3359 
3360 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3361 		__inc_numa_state(z, NUMA_HIT);
3362 	else {
3363 		__inc_numa_state(z, NUMA_MISS);
3364 		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
3365 	}
3366 	__inc_numa_state(z, local_stat);
3367 #endif
3368 }
3369 
3370 /* Remove page from the per-cpu list, caller must protect the list */
3371 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3372 			unsigned int alloc_flags,
3373 			struct per_cpu_pages *pcp,
3374 			struct list_head *list)
3375 {
3376 	struct page *page;
3377 
3378 	do {
3379 		if (list_empty(list)) {
3380 			pcp->count += rmqueue_bulk(zone, 0,
3381 					pcp->batch, list,
3382 					migratetype, alloc_flags);
3383 			if (unlikely(list_empty(list)))
3384 				return NULL;
3385 		}
3386 
3387 		page = list_first_entry(list, struct page, lru);
3388 		list_del(&page->lru);
3389 		pcp->count--;
3390 	} while (check_new_pcp(page));
3391 
3392 	return page;
3393 }
3394 
3395 /* Lock and remove page from the per-cpu list */
3396 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3397 			struct zone *zone, gfp_t gfp_flags,
3398 			int migratetype, unsigned int alloc_flags)
3399 {
3400 	struct per_cpu_pages *pcp;
3401 	struct list_head *list;
3402 	struct page *page;
3403 	unsigned long flags;
3404 
3405 	local_irq_save(flags);
3406 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3407 	list = &pcp->lists[migratetype];
3408 	page = __rmqueue_pcplist(zone,  migratetype, alloc_flags, pcp, list);
3409 	if (page) {
3410 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3411 		zone_statistics(preferred_zone, zone);
3412 	}
3413 	local_irq_restore(flags);
3414 	return page;
3415 }
3416 
3417 /*
3418  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3419  */
3420 static inline
3421 struct page *rmqueue(struct zone *preferred_zone,
3422 			struct zone *zone, unsigned int order,
3423 			gfp_t gfp_flags, unsigned int alloc_flags,
3424 			int migratetype)
3425 {
3426 	unsigned long flags;
3427 	struct page *page;
3428 
3429 	if (likely(order == 0)) {
3430 		/*
3431 		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3432 		 * we need to skip it when CMA area isn't allowed.
3433 		 */
3434 		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3435 				migratetype != MIGRATE_MOVABLE) {
3436 			page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3437 					migratetype, alloc_flags);
3438 			goto out;
3439 		}
3440 	}
3441 
3442 	/*
3443 	 * We most definitely don't want callers attempting to
3444 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3445 	 */
3446 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3447 	spin_lock_irqsave(&zone->lock, flags);
3448 
3449 	do {
3450 		page = NULL;
3451 		/*
3452 		 * order-0 request can reach here when the pcplist is skipped
3453 		 * due to non-CMA allocation context. HIGHATOMIC area is
3454 		 * reserved for high-order atomic allocation, so order-0
3455 		 * request should skip it.
3456 		 */
3457 		if (order > 0 && alloc_flags & ALLOC_HARDER) {
3458 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3459 			if (page)
3460 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3461 		}
3462 		if (!page)
3463 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3464 	} while (page && check_new_pages(page, order));
3465 	spin_unlock(&zone->lock);
3466 	if (!page)
3467 		goto failed;
3468 	__mod_zone_freepage_state(zone, -(1 << order),
3469 				  get_pcppage_migratetype(page));
3470 
3471 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3472 	zone_statistics(preferred_zone, zone);
3473 	local_irq_restore(flags);
3474 
3475 out:
3476 	/* Separate test+clear to avoid unnecessary atomics */
3477 	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3478 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3479 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3480 	}
3481 
3482 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3483 	return page;
3484 
3485 failed:
3486 	local_irq_restore(flags);
3487 	return NULL;
3488 }
3489 
3490 #ifdef CONFIG_FAIL_PAGE_ALLOC
3491 
3492 static struct {
3493 	struct fault_attr attr;
3494 
3495 	bool ignore_gfp_highmem;
3496 	bool ignore_gfp_reclaim;
3497 	u32 min_order;
3498 } fail_page_alloc = {
3499 	.attr = FAULT_ATTR_INITIALIZER,
3500 	.ignore_gfp_reclaim = true,
3501 	.ignore_gfp_highmem = true,
3502 	.min_order = 1,
3503 };
3504 
3505 static int __init setup_fail_page_alloc(char *str)
3506 {
3507 	return setup_fault_attr(&fail_page_alloc.attr, str);
3508 }
3509 __setup("fail_page_alloc=", setup_fail_page_alloc);
3510 
3511 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3512 {
3513 	if (order < fail_page_alloc.min_order)
3514 		return false;
3515 	if (gfp_mask & __GFP_NOFAIL)
3516 		return false;
3517 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3518 		return false;
3519 	if (fail_page_alloc.ignore_gfp_reclaim &&
3520 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3521 		return false;
3522 
3523 	return should_fail(&fail_page_alloc.attr, 1 << order);
3524 }
3525 
3526 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3527 
3528 static int __init fail_page_alloc_debugfs(void)
3529 {
3530 	umode_t mode = S_IFREG | 0600;
3531 	struct dentry *dir;
3532 
3533 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3534 					&fail_page_alloc.attr);
3535 
3536 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3537 			    &fail_page_alloc.ignore_gfp_reclaim);
3538 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3539 			    &fail_page_alloc.ignore_gfp_highmem);
3540 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3541 
3542 	return 0;
3543 }
3544 
3545 late_initcall(fail_page_alloc_debugfs);
3546 
3547 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3548 
3549 #else /* CONFIG_FAIL_PAGE_ALLOC */
3550 
3551 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3552 {
3553 	return false;
3554 }
3555 
3556 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3557 
3558 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3559 {
3560 	return __should_fail_alloc_page(gfp_mask, order);
3561 }
3562 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3563 
3564 static inline long __zone_watermark_unusable_free(struct zone *z,
3565 				unsigned int order, unsigned int alloc_flags)
3566 {
3567 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3568 	long unusable_free = (1 << order) - 1;
3569 
3570 	/*
3571 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3572 	 * the high-atomic reserves. This will over-estimate the size of the
3573 	 * atomic reserve but it avoids a search.
3574 	 */
3575 	if (likely(!alloc_harder))
3576 		unusable_free += z->nr_reserved_highatomic;
3577 
3578 #ifdef CONFIG_CMA
3579 	/* If allocation can't use CMA areas don't use free CMA pages */
3580 	if (!(alloc_flags & ALLOC_CMA))
3581 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3582 #endif
3583 
3584 	return unusable_free;
3585 }
3586 
3587 /*
3588  * Return true if free base pages are above 'mark'. For high-order checks it
3589  * will return true of the order-0 watermark is reached and there is at least
3590  * one free page of a suitable size. Checking now avoids taking the zone lock
3591  * to check in the allocation paths if no pages are free.
3592  */
3593 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3594 			 int highest_zoneidx, unsigned int alloc_flags,
3595 			 long free_pages)
3596 {
3597 	long min = mark;
3598 	int o;
3599 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3600 
3601 	/* free_pages may go negative - that's OK */
3602 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3603 
3604 	if (alloc_flags & ALLOC_HIGH)
3605 		min -= min / 2;
3606 
3607 	if (unlikely(alloc_harder)) {
3608 		/*
3609 		 * OOM victims can try even harder than normal ALLOC_HARDER
3610 		 * users on the grounds that it's definitely going to be in
3611 		 * the exit path shortly and free memory. Any allocation it
3612 		 * makes during the free path will be small and short-lived.
3613 		 */
3614 		if (alloc_flags & ALLOC_OOM)
3615 			min -= min / 2;
3616 		else
3617 			min -= min / 4;
3618 	}
3619 
3620 	/*
3621 	 * Check watermarks for an order-0 allocation request. If these
3622 	 * are not met, then a high-order request also cannot go ahead
3623 	 * even if a suitable page happened to be free.
3624 	 */
3625 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3626 		return false;
3627 
3628 	/* If this is an order-0 request then the watermark is fine */
3629 	if (!order)
3630 		return true;
3631 
3632 	/* For a high-order request, check at least one suitable page is free */
3633 	for (o = order; o < MAX_ORDER; o++) {
3634 		struct free_area *area = &z->free_area[o];
3635 		int mt;
3636 
3637 		if (!area->nr_free)
3638 			continue;
3639 
3640 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3641 			if (!free_area_empty(area, mt))
3642 				return true;
3643 		}
3644 
3645 #ifdef CONFIG_CMA
3646 		if ((alloc_flags & ALLOC_CMA) &&
3647 		    !free_area_empty(area, MIGRATE_CMA)) {
3648 			return true;
3649 		}
3650 #endif
3651 		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3652 			return true;
3653 	}
3654 	return false;
3655 }
3656 
3657 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3658 		      int highest_zoneidx, unsigned int alloc_flags)
3659 {
3660 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3661 					zone_page_state(z, NR_FREE_PAGES));
3662 }
3663 
3664 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3665 				unsigned long mark, int highest_zoneidx,
3666 				unsigned int alloc_flags, gfp_t gfp_mask)
3667 {
3668 	long free_pages;
3669 
3670 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3671 
3672 	/*
3673 	 * Fast check for order-0 only. If this fails then the reserves
3674 	 * need to be calculated.
3675 	 */
3676 	if (!order) {
3677 		long fast_free;
3678 
3679 		fast_free = free_pages;
3680 		fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3681 		if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3682 			return true;
3683 	}
3684 
3685 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3686 					free_pages))
3687 		return true;
3688 	/*
3689 	 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3690 	 * when checking the min watermark. The min watermark is the
3691 	 * point where boosting is ignored so that kswapd is woken up
3692 	 * when below the low watermark.
3693 	 */
3694 	if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3695 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3696 		mark = z->_watermark[WMARK_MIN];
3697 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3698 					alloc_flags, free_pages);
3699 	}
3700 
3701 	return false;
3702 }
3703 
3704 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3705 			unsigned long mark, int highest_zoneidx)
3706 {
3707 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3708 
3709 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3710 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3711 
3712 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3713 								free_pages);
3714 }
3715 
3716 #ifdef CONFIG_NUMA
3717 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3718 {
3719 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3720 				node_reclaim_distance;
3721 }
3722 #else	/* CONFIG_NUMA */
3723 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3724 {
3725 	return true;
3726 }
3727 #endif	/* CONFIG_NUMA */
3728 
3729 /*
3730  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3731  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3732  * premature use of a lower zone may cause lowmem pressure problems that
3733  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3734  * probably too small. It only makes sense to spread allocations to avoid
3735  * fragmentation between the Normal and DMA32 zones.
3736  */
3737 static inline unsigned int
3738 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3739 {
3740 	unsigned int alloc_flags;
3741 
3742 	/*
3743 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3744 	 * to save a branch.
3745 	 */
3746 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3747 
3748 #ifdef CONFIG_ZONE_DMA32
3749 	if (!zone)
3750 		return alloc_flags;
3751 
3752 	if (zone_idx(zone) != ZONE_NORMAL)
3753 		return alloc_flags;
3754 
3755 	/*
3756 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3757 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3758 	 * on UMA that if Normal is populated then so is DMA32.
3759 	 */
3760 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3761 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3762 		return alloc_flags;
3763 
3764 	alloc_flags |= ALLOC_NOFRAGMENT;
3765 #endif /* CONFIG_ZONE_DMA32 */
3766 	return alloc_flags;
3767 }
3768 
3769 static inline unsigned int current_alloc_flags(gfp_t gfp_mask,
3770 					unsigned int alloc_flags)
3771 {
3772 #ifdef CONFIG_CMA
3773 	unsigned int pflags = current->flags;
3774 
3775 	if (!(pflags & PF_MEMALLOC_NOCMA) &&
3776 			gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3777 		alloc_flags |= ALLOC_CMA;
3778 
3779 #endif
3780 	return alloc_flags;
3781 }
3782 
3783 /*
3784  * get_page_from_freelist goes through the zonelist trying to allocate
3785  * a page.
3786  */
3787 static struct page *
3788 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3789 						const struct alloc_context *ac)
3790 {
3791 	struct zoneref *z;
3792 	struct zone *zone;
3793 	struct pglist_data *last_pgdat_dirty_limit = NULL;
3794 	bool no_fallback;
3795 
3796 retry:
3797 	/*
3798 	 * Scan zonelist, looking for a zone with enough free.
3799 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3800 	 */
3801 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3802 	z = ac->preferred_zoneref;
3803 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3804 					ac->nodemask) {
3805 		struct page *page;
3806 		unsigned long mark;
3807 
3808 		if (cpusets_enabled() &&
3809 			(alloc_flags & ALLOC_CPUSET) &&
3810 			!__cpuset_zone_allowed(zone, gfp_mask))
3811 				continue;
3812 		/*
3813 		 * When allocating a page cache page for writing, we
3814 		 * want to get it from a node that is within its dirty
3815 		 * limit, such that no single node holds more than its
3816 		 * proportional share of globally allowed dirty pages.
3817 		 * The dirty limits take into account the node's
3818 		 * lowmem reserves and high watermark so that kswapd
3819 		 * should be able to balance it without having to
3820 		 * write pages from its LRU list.
3821 		 *
3822 		 * XXX: For now, allow allocations to potentially
3823 		 * exceed the per-node dirty limit in the slowpath
3824 		 * (spread_dirty_pages unset) before going into reclaim,
3825 		 * which is important when on a NUMA setup the allowed
3826 		 * nodes are together not big enough to reach the
3827 		 * global limit.  The proper fix for these situations
3828 		 * will require awareness of nodes in the
3829 		 * dirty-throttling and the flusher threads.
3830 		 */
3831 		if (ac->spread_dirty_pages) {
3832 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3833 				continue;
3834 
3835 			if (!node_dirty_ok(zone->zone_pgdat)) {
3836 				last_pgdat_dirty_limit = zone->zone_pgdat;
3837 				continue;
3838 			}
3839 		}
3840 
3841 		if (no_fallback && nr_online_nodes > 1 &&
3842 		    zone != ac->preferred_zoneref->zone) {
3843 			int local_nid;
3844 
3845 			/*
3846 			 * If moving to a remote node, retry but allow
3847 			 * fragmenting fallbacks. Locality is more important
3848 			 * than fragmentation avoidance.
3849 			 */
3850 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3851 			if (zone_to_nid(zone) != local_nid) {
3852 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3853 				goto retry;
3854 			}
3855 		}
3856 
3857 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3858 		if (!zone_watermark_fast(zone, order, mark,
3859 				       ac->highest_zoneidx, alloc_flags,
3860 				       gfp_mask)) {
3861 			int ret;
3862 
3863 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3864 			/*
3865 			 * Watermark failed for this zone, but see if we can
3866 			 * grow this zone if it contains deferred pages.
3867 			 */
3868 			if (static_branch_unlikely(&deferred_pages)) {
3869 				if (_deferred_grow_zone(zone, order))
3870 					goto try_this_zone;
3871 			}
3872 #endif
3873 			/* Checked here to keep the fast path fast */
3874 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3875 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3876 				goto try_this_zone;
3877 
3878 			if (node_reclaim_mode == 0 ||
3879 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3880 				continue;
3881 
3882 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3883 			switch (ret) {
3884 			case NODE_RECLAIM_NOSCAN:
3885 				/* did not scan */
3886 				continue;
3887 			case NODE_RECLAIM_FULL:
3888 				/* scanned but unreclaimable */
3889 				continue;
3890 			default:
3891 				/* did we reclaim enough */
3892 				if (zone_watermark_ok(zone, order, mark,
3893 					ac->highest_zoneidx, alloc_flags))
3894 					goto try_this_zone;
3895 
3896 				continue;
3897 			}
3898 		}
3899 
3900 try_this_zone:
3901 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3902 				gfp_mask, alloc_flags, ac->migratetype);
3903 		if (page) {
3904 			prep_new_page(page, order, gfp_mask, alloc_flags);
3905 
3906 			/*
3907 			 * If this is a high-order atomic allocation then check
3908 			 * if the pageblock should be reserved for the future
3909 			 */
3910 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3911 				reserve_highatomic_pageblock(page, zone, order);
3912 
3913 			return page;
3914 		} else {
3915 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3916 			/* Try again if zone has deferred pages */
3917 			if (static_branch_unlikely(&deferred_pages)) {
3918 				if (_deferred_grow_zone(zone, order))
3919 					goto try_this_zone;
3920 			}
3921 #endif
3922 		}
3923 	}
3924 
3925 	/*
3926 	 * It's possible on a UMA machine to get through all zones that are
3927 	 * fragmented. If avoiding fragmentation, reset and try again.
3928 	 */
3929 	if (no_fallback) {
3930 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3931 		goto retry;
3932 	}
3933 
3934 	return NULL;
3935 }
3936 
3937 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3938 {
3939 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3940 
3941 	/*
3942 	 * This documents exceptions given to allocations in certain
3943 	 * contexts that are allowed to allocate outside current's set
3944 	 * of allowed nodes.
3945 	 */
3946 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3947 		if (tsk_is_oom_victim(current) ||
3948 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3949 			filter &= ~SHOW_MEM_FILTER_NODES;
3950 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3951 		filter &= ~SHOW_MEM_FILTER_NODES;
3952 
3953 	show_mem(filter, nodemask);
3954 }
3955 
3956 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3957 {
3958 	struct va_format vaf;
3959 	va_list args;
3960 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3961 
3962 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3963 		return;
3964 
3965 	va_start(args, fmt);
3966 	vaf.fmt = fmt;
3967 	vaf.va = &args;
3968 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3969 			current->comm, &vaf, gfp_mask, &gfp_mask,
3970 			nodemask_pr_args(nodemask));
3971 	va_end(args);
3972 
3973 	cpuset_print_current_mems_allowed();
3974 	pr_cont("\n");
3975 	dump_stack();
3976 	warn_alloc_show_mem(gfp_mask, nodemask);
3977 }
3978 
3979 static inline struct page *
3980 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3981 			      unsigned int alloc_flags,
3982 			      const struct alloc_context *ac)
3983 {
3984 	struct page *page;
3985 
3986 	page = get_page_from_freelist(gfp_mask, order,
3987 			alloc_flags|ALLOC_CPUSET, ac);
3988 	/*
3989 	 * fallback to ignore cpuset restriction if our nodes
3990 	 * are depleted
3991 	 */
3992 	if (!page)
3993 		page = get_page_from_freelist(gfp_mask, order,
3994 				alloc_flags, ac);
3995 
3996 	return page;
3997 }
3998 
3999 static inline struct page *
4000 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4001 	const struct alloc_context *ac, unsigned long *did_some_progress)
4002 {
4003 	struct oom_control oc = {
4004 		.zonelist = ac->zonelist,
4005 		.nodemask = ac->nodemask,
4006 		.memcg = NULL,
4007 		.gfp_mask = gfp_mask,
4008 		.order = order,
4009 	};
4010 	struct page *page;
4011 
4012 	*did_some_progress = 0;
4013 
4014 	/*
4015 	 * Acquire the oom lock.  If that fails, somebody else is
4016 	 * making progress for us.
4017 	 */
4018 	if (!mutex_trylock(&oom_lock)) {
4019 		*did_some_progress = 1;
4020 		schedule_timeout_uninterruptible(1);
4021 		return NULL;
4022 	}
4023 
4024 	/*
4025 	 * Go through the zonelist yet one more time, keep very high watermark
4026 	 * here, this is only to catch a parallel oom killing, we must fail if
4027 	 * we're still under heavy pressure. But make sure that this reclaim
4028 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4029 	 * allocation which will never fail due to oom_lock already held.
4030 	 */
4031 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4032 				      ~__GFP_DIRECT_RECLAIM, order,
4033 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4034 	if (page)
4035 		goto out;
4036 
4037 	/* Coredumps can quickly deplete all memory reserves */
4038 	if (current->flags & PF_DUMPCORE)
4039 		goto out;
4040 	/* The OOM killer will not help higher order allocs */
4041 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4042 		goto out;
4043 	/*
4044 	 * We have already exhausted all our reclaim opportunities without any
4045 	 * success so it is time to admit defeat. We will skip the OOM killer
4046 	 * because it is very likely that the caller has a more reasonable
4047 	 * fallback than shooting a random task.
4048 	 *
4049 	 * The OOM killer may not free memory on a specific node.
4050 	 */
4051 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4052 		goto out;
4053 	/* The OOM killer does not needlessly kill tasks for lowmem */
4054 	if (ac->highest_zoneidx < ZONE_NORMAL)
4055 		goto out;
4056 	if (pm_suspended_storage())
4057 		goto out;
4058 	/*
4059 	 * XXX: GFP_NOFS allocations should rather fail than rely on
4060 	 * other request to make a forward progress.
4061 	 * We are in an unfortunate situation where out_of_memory cannot
4062 	 * do much for this context but let's try it to at least get
4063 	 * access to memory reserved if the current task is killed (see
4064 	 * out_of_memory). Once filesystems are ready to handle allocation
4065 	 * failures more gracefully we should just bail out here.
4066 	 */
4067 
4068 	/* Exhausted what can be done so it's blame time */
4069 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4070 		*did_some_progress = 1;
4071 
4072 		/*
4073 		 * Help non-failing allocations by giving them access to memory
4074 		 * reserves
4075 		 */
4076 		if (gfp_mask & __GFP_NOFAIL)
4077 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4078 					ALLOC_NO_WATERMARKS, ac);
4079 	}
4080 out:
4081 	mutex_unlock(&oom_lock);
4082 	return page;
4083 }
4084 
4085 /*
4086  * Maximum number of compaction retries wit a progress before OOM
4087  * killer is consider as the only way to move forward.
4088  */
4089 #define MAX_COMPACT_RETRIES 16
4090 
4091 #ifdef CONFIG_COMPACTION
4092 /* Try memory compaction for high-order allocations before reclaim */
4093 static struct page *
4094 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4095 		unsigned int alloc_flags, const struct alloc_context *ac,
4096 		enum compact_priority prio, enum compact_result *compact_result)
4097 {
4098 	struct page *page = NULL;
4099 	unsigned long pflags;
4100 	unsigned int noreclaim_flag;
4101 
4102 	if (!order)
4103 		return NULL;
4104 
4105 	psi_memstall_enter(&pflags);
4106 	noreclaim_flag = memalloc_noreclaim_save();
4107 
4108 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4109 								prio, &page);
4110 
4111 	memalloc_noreclaim_restore(noreclaim_flag);
4112 	psi_memstall_leave(&pflags);
4113 
4114 	/*
4115 	 * At least in one zone compaction wasn't deferred or skipped, so let's
4116 	 * count a compaction stall
4117 	 */
4118 	count_vm_event(COMPACTSTALL);
4119 
4120 	/* Prep a captured page if available */
4121 	if (page)
4122 		prep_new_page(page, order, gfp_mask, alloc_flags);
4123 
4124 	/* Try get a page from the freelist if available */
4125 	if (!page)
4126 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4127 
4128 	if (page) {
4129 		struct zone *zone = page_zone(page);
4130 
4131 		zone->compact_blockskip_flush = false;
4132 		compaction_defer_reset(zone, order, true);
4133 		count_vm_event(COMPACTSUCCESS);
4134 		return page;
4135 	}
4136 
4137 	/*
4138 	 * It's bad if compaction run occurs and fails. The most likely reason
4139 	 * is that pages exist, but not enough to satisfy watermarks.
4140 	 */
4141 	count_vm_event(COMPACTFAIL);
4142 
4143 	cond_resched();
4144 
4145 	return NULL;
4146 }
4147 
4148 static inline bool
4149 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4150 		     enum compact_result compact_result,
4151 		     enum compact_priority *compact_priority,
4152 		     int *compaction_retries)
4153 {
4154 	int max_retries = MAX_COMPACT_RETRIES;
4155 	int min_priority;
4156 	bool ret = false;
4157 	int retries = *compaction_retries;
4158 	enum compact_priority priority = *compact_priority;
4159 
4160 	if (!order)
4161 		return false;
4162 
4163 	if (compaction_made_progress(compact_result))
4164 		(*compaction_retries)++;
4165 
4166 	/*
4167 	 * compaction considers all the zone as desperately out of memory
4168 	 * so it doesn't really make much sense to retry except when the
4169 	 * failure could be caused by insufficient priority
4170 	 */
4171 	if (compaction_failed(compact_result))
4172 		goto check_priority;
4173 
4174 	/*
4175 	 * compaction was skipped because there are not enough order-0 pages
4176 	 * to work with, so we retry only if it looks like reclaim can help.
4177 	 */
4178 	if (compaction_needs_reclaim(compact_result)) {
4179 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4180 		goto out;
4181 	}
4182 
4183 	/*
4184 	 * make sure the compaction wasn't deferred or didn't bail out early
4185 	 * due to locks contention before we declare that we should give up.
4186 	 * But the next retry should use a higher priority if allowed, so
4187 	 * we don't just keep bailing out endlessly.
4188 	 */
4189 	if (compaction_withdrawn(compact_result)) {
4190 		goto check_priority;
4191 	}
4192 
4193 	/*
4194 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4195 	 * costly ones because they are de facto nofail and invoke OOM
4196 	 * killer to move on while costly can fail and users are ready
4197 	 * to cope with that. 1/4 retries is rather arbitrary but we
4198 	 * would need much more detailed feedback from compaction to
4199 	 * make a better decision.
4200 	 */
4201 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4202 		max_retries /= 4;
4203 	if (*compaction_retries <= max_retries) {
4204 		ret = true;
4205 		goto out;
4206 	}
4207 
4208 	/*
4209 	 * Make sure there are attempts at the highest priority if we exhausted
4210 	 * all retries or failed at the lower priorities.
4211 	 */
4212 check_priority:
4213 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4214 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4215 
4216 	if (*compact_priority > min_priority) {
4217 		(*compact_priority)--;
4218 		*compaction_retries = 0;
4219 		ret = true;
4220 	}
4221 out:
4222 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4223 	return ret;
4224 }
4225 #else
4226 static inline struct page *
4227 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4228 		unsigned int alloc_flags, const struct alloc_context *ac,
4229 		enum compact_priority prio, enum compact_result *compact_result)
4230 {
4231 	*compact_result = COMPACT_SKIPPED;
4232 	return NULL;
4233 }
4234 
4235 static inline bool
4236 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4237 		     enum compact_result compact_result,
4238 		     enum compact_priority *compact_priority,
4239 		     int *compaction_retries)
4240 {
4241 	struct zone *zone;
4242 	struct zoneref *z;
4243 
4244 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4245 		return false;
4246 
4247 	/*
4248 	 * There are setups with compaction disabled which would prefer to loop
4249 	 * inside the allocator rather than hit the oom killer prematurely.
4250 	 * Let's give them a good hope and keep retrying while the order-0
4251 	 * watermarks are OK.
4252 	 */
4253 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4254 				ac->highest_zoneidx, ac->nodemask) {
4255 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4256 					ac->highest_zoneidx, alloc_flags))
4257 			return true;
4258 	}
4259 	return false;
4260 }
4261 #endif /* CONFIG_COMPACTION */
4262 
4263 #ifdef CONFIG_LOCKDEP
4264 static struct lockdep_map __fs_reclaim_map =
4265 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4266 
4267 static bool __need_fs_reclaim(gfp_t gfp_mask)
4268 {
4269 	gfp_mask = current_gfp_context(gfp_mask);
4270 
4271 	/* no reclaim without waiting on it */
4272 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4273 		return false;
4274 
4275 	/* this guy won't enter reclaim */
4276 	if (current->flags & PF_MEMALLOC)
4277 		return false;
4278 
4279 	/* We're only interested __GFP_FS allocations for now */
4280 	if (!(gfp_mask & __GFP_FS))
4281 		return false;
4282 
4283 	if (gfp_mask & __GFP_NOLOCKDEP)
4284 		return false;
4285 
4286 	return true;
4287 }
4288 
4289 void __fs_reclaim_acquire(void)
4290 {
4291 	lock_map_acquire(&__fs_reclaim_map);
4292 }
4293 
4294 void __fs_reclaim_release(void)
4295 {
4296 	lock_map_release(&__fs_reclaim_map);
4297 }
4298 
4299 void fs_reclaim_acquire(gfp_t gfp_mask)
4300 {
4301 	if (__need_fs_reclaim(gfp_mask))
4302 		__fs_reclaim_acquire();
4303 }
4304 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4305 
4306 void fs_reclaim_release(gfp_t gfp_mask)
4307 {
4308 	if (__need_fs_reclaim(gfp_mask))
4309 		__fs_reclaim_release();
4310 }
4311 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4312 #endif
4313 
4314 /* Perform direct synchronous page reclaim */
4315 static unsigned long
4316 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4317 					const struct alloc_context *ac)
4318 {
4319 	unsigned int noreclaim_flag;
4320 	unsigned long pflags, progress;
4321 
4322 	cond_resched();
4323 
4324 	/* We now go into synchronous reclaim */
4325 	cpuset_memory_pressure_bump();
4326 	psi_memstall_enter(&pflags);
4327 	fs_reclaim_acquire(gfp_mask);
4328 	noreclaim_flag = memalloc_noreclaim_save();
4329 
4330 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4331 								ac->nodemask);
4332 
4333 	memalloc_noreclaim_restore(noreclaim_flag);
4334 	fs_reclaim_release(gfp_mask);
4335 	psi_memstall_leave(&pflags);
4336 
4337 	cond_resched();
4338 
4339 	return progress;
4340 }
4341 
4342 /* The really slow allocator path where we enter direct reclaim */
4343 static inline struct page *
4344 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4345 		unsigned int alloc_flags, const struct alloc_context *ac,
4346 		unsigned long *did_some_progress)
4347 {
4348 	struct page *page = NULL;
4349 	bool drained = false;
4350 
4351 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4352 	if (unlikely(!(*did_some_progress)))
4353 		return NULL;
4354 
4355 retry:
4356 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4357 
4358 	/*
4359 	 * If an allocation failed after direct reclaim, it could be because
4360 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4361 	 * Shrink them and try again
4362 	 */
4363 	if (!page && !drained) {
4364 		unreserve_highatomic_pageblock(ac, false);
4365 		drain_all_pages(NULL);
4366 		drained = true;
4367 		goto retry;
4368 	}
4369 
4370 	return page;
4371 }
4372 
4373 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4374 			     const struct alloc_context *ac)
4375 {
4376 	struct zoneref *z;
4377 	struct zone *zone;
4378 	pg_data_t *last_pgdat = NULL;
4379 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4380 
4381 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4382 					ac->nodemask) {
4383 		if (last_pgdat != zone->zone_pgdat)
4384 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4385 		last_pgdat = zone->zone_pgdat;
4386 	}
4387 }
4388 
4389 static inline unsigned int
4390 gfp_to_alloc_flags(gfp_t gfp_mask)
4391 {
4392 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4393 
4394 	/*
4395 	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4396 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4397 	 * to save two branches.
4398 	 */
4399 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4400 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4401 
4402 	/*
4403 	 * The caller may dip into page reserves a bit more if the caller
4404 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4405 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4406 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4407 	 */
4408 	alloc_flags |= (__force int)
4409 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4410 
4411 	if (gfp_mask & __GFP_ATOMIC) {
4412 		/*
4413 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4414 		 * if it can't schedule.
4415 		 */
4416 		if (!(gfp_mask & __GFP_NOMEMALLOC))
4417 			alloc_flags |= ALLOC_HARDER;
4418 		/*
4419 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4420 		 * comment for __cpuset_node_allowed().
4421 		 */
4422 		alloc_flags &= ~ALLOC_CPUSET;
4423 	} else if (unlikely(rt_task(current)) && !in_interrupt())
4424 		alloc_flags |= ALLOC_HARDER;
4425 
4426 	alloc_flags = current_alloc_flags(gfp_mask, alloc_flags);
4427 
4428 	return alloc_flags;
4429 }
4430 
4431 static bool oom_reserves_allowed(struct task_struct *tsk)
4432 {
4433 	if (!tsk_is_oom_victim(tsk))
4434 		return false;
4435 
4436 	/*
4437 	 * !MMU doesn't have oom reaper so give access to memory reserves
4438 	 * only to the thread with TIF_MEMDIE set
4439 	 */
4440 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4441 		return false;
4442 
4443 	return true;
4444 }
4445 
4446 /*
4447  * Distinguish requests which really need access to full memory
4448  * reserves from oom victims which can live with a portion of it
4449  */
4450 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4451 {
4452 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4453 		return 0;
4454 	if (gfp_mask & __GFP_MEMALLOC)
4455 		return ALLOC_NO_WATERMARKS;
4456 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4457 		return ALLOC_NO_WATERMARKS;
4458 	if (!in_interrupt()) {
4459 		if (current->flags & PF_MEMALLOC)
4460 			return ALLOC_NO_WATERMARKS;
4461 		else if (oom_reserves_allowed(current))
4462 			return ALLOC_OOM;
4463 	}
4464 
4465 	return 0;
4466 }
4467 
4468 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4469 {
4470 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4471 }
4472 
4473 /*
4474  * Checks whether it makes sense to retry the reclaim to make a forward progress
4475  * for the given allocation request.
4476  *
4477  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4478  * without success, or when we couldn't even meet the watermark if we
4479  * reclaimed all remaining pages on the LRU lists.
4480  *
4481  * Returns true if a retry is viable or false to enter the oom path.
4482  */
4483 static inline bool
4484 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4485 		     struct alloc_context *ac, int alloc_flags,
4486 		     bool did_some_progress, int *no_progress_loops)
4487 {
4488 	struct zone *zone;
4489 	struct zoneref *z;
4490 	bool ret = false;
4491 
4492 	/*
4493 	 * Costly allocations might have made a progress but this doesn't mean
4494 	 * their order will become available due to high fragmentation so
4495 	 * always increment the no progress counter for them
4496 	 */
4497 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4498 		*no_progress_loops = 0;
4499 	else
4500 		(*no_progress_loops)++;
4501 
4502 	/*
4503 	 * Make sure we converge to OOM if we cannot make any progress
4504 	 * several times in the row.
4505 	 */
4506 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4507 		/* Before OOM, exhaust highatomic_reserve */
4508 		return unreserve_highatomic_pageblock(ac, true);
4509 	}
4510 
4511 	/*
4512 	 * Keep reclaiming pages while there is a chance this will lead
4513 	 * somewhere.  If none of the target zones can satisfy our allocation
4514 	 * request even if all reclaimable pages are considered then we are
4515 	 * screwed and have to go OOM.
4516 	 */
4517 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4518 				ac->highest_zoneidx, ac->nodemask) {
4519 		unsigned long available;
4520 		unsigned long reclaimable;
4521 		unsigned long min_wmark = min_wmark_pages(zone);
4522 		bool wmark;
4523 
4524 		available = reclaimable = zone_reclaimable_pages(zone);
4525 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4526 
4527 		/*
4528 		 * Would the allocation succeed if we reclaimed all
4529 		 * reclaimable pages?
4530 		 */
4531 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4532 				ac->highest_zoneidx, alloc_flags, available);
4533 		trace_reclaim_retry_zone(z, order, reclaimable,
4534 				available, min_wmark, *no_progress_loops, wmark);
4535 		if (wmark) {
4536 			/*
4537 			 * If we didn't make any progress and have a lot of
4538 			 * dirty + writeback pages then we should wait for
4539 			 * an IO to complete to slow down the reclaim and
4540 			 * prevent from pre mature OOM
4541 			 */
4542 			if (!did_some_progress) {
4543 				unsigned long write_pending;
4544 
4545 				write_pending = zone_page_state_snapshot(zone,
4546 							NR_ZONE_WRITE_PENDING);
4547 
4548 				if (2 * write_pending > reclaimable) {
4549 					congestion_wait(BLK_RW_ASYNC, HZ/10);
4550 					return true;
4551 				}
4552 			}
4553 
4554 			ret = true;
4555 			goto out;
4556 		}
4557 	}
4558 
4559 out:
4560 	/*
4561 	 * Memory allocation/reclaim might be called from a WQ context and the
4562 	 * current implementation of the WQ concurrency control doesn't
4563 	 * recognize that a particular WQ is congested if the worker thread is
4564 	 * looping without ever sleeping. Therefore we have to do a short sleep
4565 	 * here rather than calling cond_resched().
4566 	 */
4567 	if (current->flags & PF_WQ_WORKER)
4568 		schedule_timeout_uninterruptible(1);
4569 	else
4570 		cond_resched();
4571 	return ret;
4572 }
4573 
4574 static inline bool
4575 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4576 {
4577 	/*
4578 	 * It's possible that cpuset's mems_allowed and the nodemask from
4579 	 * mempolicy don't intersect. This should be normally dealt with by
4580 	 * policy_nodemask(), but it's possible to race with cpuset update in
4581 	 * such a way the check therein was true, and then it became false
4582 	 * before we got our cpuset_mems_cookie here.
4583 	 * This assumes that for all allocations, ac->nodemask can come only
4584 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4585 	 * when it does not intersect with the cpuset restrictions) or the
4586 	 * caller can deal with a violated nodemask.
4587 	 */
4588 	if (cpusets_enabled() && ac->nodemask &&
4589 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4590 		ac->nodemask = NULL;
4591 		return true;
4592 	}
4593 
4594 	/*
4595 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4596 	 * possible to race with parallel threads in such a way that our
4597 	 * allocation can fail while the mask is being updated. If we are about
4598 	 * to fail, check if the cpuset changed during allocation and if so,
4599 	 * retry.
4600 	 */
4601 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4602 		return true;
4603 
4604 	return false;
4605 }
4606 
4607 static inline struct page *
4608 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4609 						struct alloc_context *ac)
4610 {
4611 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4612 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4613 	struct page *page = NULL;
4614 	unsigned int alloc_flags;
4615 	unsigned long did_some_progress;
4616 	enum compact_priority compact_priority;
4617 	enum compact_result compact_result;
4618 	int compaction_retries;
4619 	int no_progress_loops;
4620 	unsigned int cpuset_mems_cookie;
4621 	int reserve_flags;
4622 
4623 	/*
4624 	 * We also sanity check to catch abuse of atomic reserves being used by
4625 	 * callers that are not in atomic context.
4626 	 */
4627 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4628 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4629 		gfp_mask &= ~__GFP_ATOMIC;
4630 
4631 retry_cpuset:
4632 	compaction_retries = 0;
4633 	no_progress_loops = 0;
4634 	compact_priority = DEF_COMPACT_PRIORITY;
4635 	cpuset_mems_cookie = read_mems_allowed_begin();
4636 
4637 	/*
4638 	 * The fast path uses conservative alloc_flags to succeed only until
4639 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4640 	 * alloc_flags precisely. So we do that now.
4641 	 */
4642 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4643 
4644 	/*
4645 	 * We need to recalculate the starting point for the zonelist iterator
4646 	 * because we might have used different nodemask in the fast path, or
4647 	 * there was a cpuset modification and we are retrying - otherwise we
4648 	 * could end up iterating over non-eligible zones endlessly.
4649 	 */
4650 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4651 					ac->highest_zoneidx, ac->nodemask);
4652 	if (!ac->preferred_zoneref->zone)
4653 		goto nopage;
4654 
4655 	if (alloc_flags & ALLOC_KSWAPD)
4656 		wake_all_kswapds(order, gfp_mask, ac);
4657 
4658 	/*
4659 	 * The adjusted alloc_flags might result in immediate success, so try
4660 	 * that first
4661 	 */
4662 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4663 	if (page)
4664 		goto got_pg;
4665 
4666 	/*
4667 	 * For costly allocations, try direct compaction first, as it's likely
4668 	 * that we have enough base pages and don't need to reclaim. For non-
4669 	 * movable high-order allocations, do that as well, as compaction will
4670 	 * try prevent permanent fragmentation by migrating from blocks of the
4671 	 * same migratetype.
4672 	 * Don't try this for allocations that are allowed to ignore
4673 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4674 	 */
4675 	if (can_direct_reclaim &&
4676 			(costly_order ||
4677 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4678 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4679 		page = __alloc_pages_direct_compact(gfp_mask, order,
4680 						alloc_flags, ac,
4681 						INIT_COMPACT_PRIORITY,
4682 						&compact_result);
4683 		if (page)
4684 			goto got_pg;
4685 
4686 		/*
4687 		 * Checks for costly allocations with __GFP_NORETRY, which
4688 		 * includes some THP page fault allocations
4689 		 */
4690 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4691 			/*
4692 			 * If allocating entire pageblock(s) and compaction
4693 			 * failed because all zones are below low watermarks
4694 			 * or is prohibited because it recently failed at this
4695 			 * order, fail immediately unless the allocator has
4696 			 * requested compaction and reclaim retry.
4697 			 *
4698 			 * Reclaim is
4699 			 *  - potentially very expensive because zones are far
4700 			 *    below their low watermarks or this is part of very
4701 			 *    bursty high order allocations,
4702 			 *  - not guaranteed to help because isolate_freepages()
4703 			 *    may not iterate over freed pages as part of its
4704 			 *    linear scan, and
4705 			 *  - unlikely to make entire pageblocks free on its
4706 			 *    own.
4707 			 */
4708 			if (compact_result == COMPACT_SKIPPED ||
4709 			    compact_result == COMPACT_DEFERRED)
4710 				goto nopage;
4711 
4712 			/*
4713 			 * Looks like reclaim/compaction is worth trying, but
4714 			 * sync compaction could be very expensive, so keep
4715 			 * using async compaction.
4716 			 */
4717 			compact_priority = INIT_COMPACT_PRIORITY;
4718 		}
4719 	}
4720 
4721 retry:
4722 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4723 	if (alloc_flags & ALLOC_KSWAPD)
4724 		wake_all_kswapds(order, gfp_mask, ac);
4725 
4726 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4727 	if (reserve_flags)
4728 		alloc_flags = current_alloc_flags(gfp_mask, reserve_flags);
4729 
4730 	/*
4731 	 * Reset the nodemask and zonelist iterators if memory policies can be
4732 	 * ignored. These allocations are high priority and system rather than
4733 	 * user oriented.
4734 	 */
4735 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4736 		ac->nodemask = NULL;
4737 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4738 					ac->highest_zoneidx, ac->nodemask);
4739 	}
4740 
4741 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4742 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4743 	if (page)
4744 		goto got_pg;
4745 
4746 	/* Caller is not willing to reclaim, we can't balance anything */
4747 	if (!can_direct_reclaim)
4748 		goto nopage;
4749 
4750 	/* Avoid recursion of direct reclaim */
4751 	if (current->flags & PF_MEMALLOC)
4752 		goto nopage;
4753 
4754 	/* Try direct reclaim and then allocating */
4755 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4756 							&did_some_progress);
4757 	if (page)
4758 		goto got_pg;
4759 
4760 	/* Try direct compaction and then allocating */
4761 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4762 					compact_priority, &compact_result);
4763 	if (page)
4764 		goto got_pg;
4765 
4766 	/* Do not loop if specifically requested */
4767 	if (gfp_mask & __GFP_NORETRY)
4768 		goto nopage;
4769 
4770 	/*
4771 	 * Do not retry costly high order allocations unless they are
4772 	 * __GFP_RETRY_MAYFAIL
4773 	 */
4774 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4775 		goto nopage;
4776 
4777 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4778 				 did_some_progress > 0, &no_progress_loops))
4779 		goto retry;
4780 
4781 	/*
4782 	 * It doesn't make any sense to retry for the compaction if the order-0
4783 	 * reclaim is not able to make any progress because the current
4784 	 * implementation of the compaction depends on the sufficient amount
4785 	 * of free memory (see __compaction_suitable)
4786 	 */
4787 	if (did_some_progress > 0 &&
4788 			should_compact_retry(ac, order, alloc_flags,
4789 				compact_result, &compact_priority,
4790 				&compaction_retries))
4791 		goto retry;
4792 
4793 
4794 	/* Deal with possible cpuset update races before we start OOM killing */
4795 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4796 		goto retry_cpuset;
4797 
4798 	/* Reclaim has failed us, start killing things */
4799 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4800 	if (page)
4801 		goto got_pg;
4802 
4803 	/* Avoid allocations with no watermarks from looping endlessly */
4804 	if (tsk_is_oom_victim(current) &&
4805 	    (alloc_flags & ALLOC_OOM ||
4806 	     (gfp_mask & __GFP_NOMEMALLOC)))
4807 		goto nopage;
4808 
4809 	/* Retry as long as the OOM killer is making progress */
4810 	if (did_some_progress) {
4811 		no_progress_loops = 0;
4812 		goto retry;
4813 	}
4814 
4815 nopage:
4816 	/* Deal with possible cpuset update races before we fail */
4817 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4818 		goto retry_cpuset;
4819 
4820 	/*
4821 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4822 	 * we always retry
4823 	 */
4824 	if (gfp_mask & __GFP_NOFAIL) {
4825 		/*
4826 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4827 		 * of any new users that actually require GFP_NOWAIT
4828 		 */
4829 		if (WARN_ON_ONCE(!can_direct_reclaim))
4830 			goto fail;
4831 
4832 		/*
4833 		 * PF_MEMALLOC request from this context is rather bizarre
4834 		 * because we cannot reclaim anything and only can loop waiting
4835 		 * for somebody to do a work for us
4836 		 */
4837 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4838 
4839 		/*
4840 		 * non failing costly orders are a hard requirement which we
4841 		 * are not prepared for much so let's warn about these users
4842 		 * so that we can identify them and convert them to something
4843 		 * else.
4844 		 */
4845 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4846 
4847 		/*
4848 		 * Help non-failing allocations by giving them access to memory
4849 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
4850 		 * could deplete whole memory reserves which would just make
4851 		 * the situation worse
4852 		 */
4853 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4854 		if (page)
4855 			goto got_pg;
4856 
4857 		cond_resched();
4858 		goto retry;
4859 	}
4860 fail:
4861 	warn_alloc(gfp_mask, ac->nodemask,
4862 			"page allocation failure: order:%u", order);
4863 got_pg:
4864 	return page;
4865 }
4866 
4867 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4868 		int preferred_nid, nodemask_t *nodemask,
4869 		struct alloc_context *ac, gfp_t *alloc_mask,
4870 		unsigned int *alloc_flags)
4871 {
4872 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4873 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4874 	ac->nodemask = nodemask;
4875 	ac->migratetype = gfp_migratetype(gfp_mask);
4876 
4877 	if (cpusets_enabled()) {
4878 		*alloc_mask |= __GFP_HARDWALL;
4879 		/*
4880 		 * When we are in the interrupt context, it is irrelevant
4881 		 * to the current task context. It means that any node ok.
4882 		 */
4883 		if (!in_interrupt() && !ac->nodemask)
4884 			ac->nodemask = &cpuset_current_mems_allowed;
4885 		else
4886 			*alloc_flags |= ALLOC_CPUSET;
4887 	}
4888 
4889 	fs_reclaim_acquire(gfp_mask);
4890 	fs_reclaim_release(gfp_mask);
4891 
4892 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4893 
4894 	if (should_fail_alloc_page(gfp_mask, order))
4895 		return false;
4896 
4897 	*alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags);
4898 
4899 	/* Dirty zone balancing only done in the fast path */
4900 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4901 
4902 	/*
4903 	 * The preferred zone is used for statistics but crucially it is
4904 	 * also used as the starting point for the zonelist iterator. It
4905 	 * may get reset for allocations that ignore memory policies.
4906 	 */
4907 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4908 					ac->highest_zoneidx, ac->nodemask);
4909 
4910 	return true;
4911 }
4912 
4913 /*
4914  * This is the 'heart' of the zoned buddy allocator.
4915  */
4916 struct page *
4917 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4918 							nodemask_t *nodemask)
4919 {
4920 	struct page *page;
4921 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4922 	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4923 	struct alloc_context ac = { };
4924 
4925 	/*
4926 	 * There are several places where we assume that the order value is sane
4927 	 * so bail out early if the request is out of bound.
4928 	 */
4929 	if (unlikely(order >= MAX_ORDER)) {
4930 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4931 		return NULL;
4932 	}
4933 
4934 	gfp_mask &= gfp_allowed_mask;
4935 	alloc_mask = gfp_mask;
4936 	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4937 		return NULL;
4938 
4939 	/*
4940 	 * Forbid the first pass from falling back to types that fragment
4941 	 * memory until all local zones are considered.
4942 	 */
4943 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4944 
4945 	/* First allocation attempt */
4946 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4947 	if (likely(page))
4948 		goto out;
4949 
4950 	/*
4951 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4952 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4953 	 * from a particular context which has been marked by
4954 	 * memalloc_no{fs,io}_{save,restore}.
4955 	 */
4956 	alloc_mask = current_gfp_context(gfp_mask);
4957 	ac.spread_dirty_pages = false;
4958 
4959 	/*
4960 	 * Restore the original nodemask if it was potentially replaced with
4961 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4962 	 */
4963 	ac.nodemask = nodemask;
4964 
4965 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4966 
4967 out:
4968 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4969 	    unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
4970 		__free_pages(page, order);
4971 		page = NULL;
4972 	}
4973 
4974 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4975 
4976 	return page;
4977 }
4978 EXPORT_SYMBOL(__alloc_pages_nodemask);
4979 
4980 /*
4981  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4982  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4983  * you need to access high mem.
4984  */
4985 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4986 {
4987 	struct page *page;
4988 
4989 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4990 	if (!page)
4991 		return 0;
4992 	return (unsigned long) page_address(page);
4993 }
4994 EXPORT_SYMBOL(__get_free_pages);
4995 
4996 unsigned long get_zeroed_page(gfp_t gfp_mask)
4997 {
4998 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4999 }
5000 EXPORT_SYMBOL(get_zeroed_page);
5001 
5002 static inline void free_the_page(struct page *page, unsigned int order)
5003 {
5004 	if (order == 0)		/* Via pcp? */
5005 		free_unref_page(page);
5006 	else
5007 		__free_pages_ok(page, order, FPI_NONE);
5008 }
5009 
5010 void __free_pages(struct page *page, unsigned int order)
5011 {
5012 	if (put_page_testzero(page))
5013 		free_the_page(page, order);
5014 	else if (!PageHead(page))
5015 		while (order-- > 0)
5016 			free_the_page(page + (1 << order), order);
5017 }
5018 EXPORT_SYMBOL(__free_pages);
5019 
5020 void free_pages(unsigned long addr, unsigned int order)
5021 {
5022 	if (addr != 0) {
5023 		VM_BUG_ON(!virt_addr_valid((void *)addr));
5024 		__free_pages(virt_to_page((void *)addr), order);
5025 	}
5026 }
5027 
5028 EXPORT_SYMBOL(free_pages);
5029 
5030 /*
5031  * Page Fragment:
5032  *  An arbitrary-length arbitrary-offset area of memory which resides
5033  *  within a 0 or higher order page.  Multiple fragments within that page
5034  *  are individually refcounted, in the page's reference counter.
5035  *
5036  * The page_frag functions below provide a simple allocation framework for
5037  * page fragments.  This is used by the network stack and network device
5038  * drivers to provide a backing region of memory for use as either an
5039  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5040  */
5041 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5042 					     gfp_t gfp_mask)
5043 {
5044 	struct page *page = NULL;
5045 	gfp_t gfp = gfp_mask;
5046 
5047 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5048 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5049 		    __GFP_NOMEMALLOC;
5050 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5051 				PAGE_FRAG_CACHE_MAX_ORDER);
5052 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5053 #endif
5054 	if (unlikely(!page))
5055 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5056 
5057 	nc->va = page ? page_address(page) : NULL;
5058 
5059 	return page;
5060 }
5061 
5062 void __page_frag_cache_drain(struct page *page, unsigned int count)
5063 {
5064 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5065 
5066 	if (page_ref_sub_and_test(page, count))
5067 		free_the_page(page, compound_order(page));
5068 }
5069 EXPORT_SYMBOL(__page_frag_cache_drain);
5070 
5071 void *page_frag_alloc(struct page_frag_cache *nc,
5072 		      unsigned int fragsz, gfp_t gfp_mask)
5073 {
5074 	unsigned int size = PAGE_SIZE;
5075 	struct page *page;
5076 	int offset;
5077 
5078 	if (unlikely(!nc->va)) {
5079 refill:
5080 		page = __page_frag_cache_refill(nc, gfp_mask);
5081 		if (!page)
5082 			return NULL;
5083 
5084 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5085 		/* if size can vary use size else just use PAGE_SIZE */
5086 		size = nc->size;
5087 #endif
5088 		/* Even if we own the page, we do not use atomic_set().
5089 		 * This would break get_page_unless_zero() users.
5090 		 */
5091 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5092 
5093 		/* reset page count bias and offset to start of new frag */
5094 		nc->pfmemalloc = page_is_pfmemalloc(page);
5095 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5096 		nc->offset = size;
5097 	}
5098 
5099 	offset = nc->offset - fragsz;
5100 	if (unlikely(offset < 0)) {
5101 		page = virt_to_page(nc->va);
5102 
5103 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5104 			goto refill;
5105 
5106 		if (unlikely(nc->pfmemalloc)) {
5107 			free_the_page(page, compound_order(page));
5108 			goto refill;
5109 		}
5110 
5111 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5112 		/* if size can vary use size else just use PAGE_SIZE */
5113 		size = nc->size;
5114 #endif
5115 		/* OK, page count is 0, we can safely set it */
5116 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5117 
5118 		/* reset page count bias and offset to start of new frag */
5119 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5120 		offset = size - fragsz;
5121 	}
5122 
5123 	nc->pagecnt_bias--;
5124 	nc->offset = offset;
5125 
5126 	return nc->va + offset;
5127 }
5128 EXPORT_SYMBOL(page_frag_alloc);
5129 
5130 /*
5131  * Frees a page fragment allocated out of either a compound or order 0 page.
5132  */
5133 void page_frag_free(void *addr)
5134 {
5135 	struct page *page = virt_to_head_page(addr);
5136 
5137 	if (unlikely(put_page_testzero(page)))
5138 		free_the_page(page, compound_order(page));
5139 }
5140 EXPORT_SYMBOL(page_frag_free);
5141 
5142 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5143 		size_t size)
5144 {
5145 	if (addr) {
5146 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
5147 		unsigned long used = addr + PAGE_ALIGN(size);
5148 
5149 		split_page(virt_to_page((void *)addr), order);
5150 		while (used < alloc_end) {
5151 			free_page(used);
5152 			used += PAGE_SIZE;
5153 		}
5154 	}
5155 	return (void *)addr;
5156 }
5157 
5158 /**
5159  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5160  * @size: the number of bytes to allocate
5161  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5162  *
5163  * This function is similar to alloc_pages(), except that it allocates the
5164  * minimum number of pages to satisfy the request.  alloc_pages() can only
5165  * allocate memory in power-of-two pages.
5166  *
5167  * This function is also limited by MAX_ORDER.
5168  *
5169  * Memory allocated by this function must be released by free_pages_exact().
5170  *
5171  * Return: pointer to the allocated area or %NULL in case of error.
5172  */
5173 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5174 {
5175 	unsigned int order = get_order(size);
5176 	unsigned long addr;
5177 
5178 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5179 		gfp_mask &= ~__GFP_COMP;
5180 
5181 	addr = __get_free_pages(gfp_mask, order);
5182 	return make_alloc_exact(addr, order, size);
5183 }
5184 EXPORT_SYMBOL(alloc_pages_exact);
5185 
5186 /**
5187  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5188  *			   pages on a node.
5189  * @nid: the preferred node ID where memory should be allocated
5190  * @size: the number of bytes to allocate
5191  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5192  *
5193  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5194  * back.
5195  *
5196  * Return: pointer to the allocated area or %NULL in case of error.
5197  */
5198 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5199 {
5200 	unsigned int order = get_order(size);
5201 	struct page *p;
5202 
5203 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5204 		gfp_mask &= ~__GFP_COMP;
5205 
5206 	p = alloc_pages_node(nid, gfp_mask, order);
5207 	if (!p)
5208 		return NULL;
5209 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5210 }
5211 
5212 /**
5213  * free_pages_exact - release memory allocated via alloc_pages_exact()
5214  * @virt: the value returned by alloc_pages_exact.
5215  * @size: size of allocation, same value as passed to alloc_pages_exact().
5216  *
5217  * Release the memory allocated by a previous call to alloc_pages_exact.
5218  */
5219 void free_pages_exact(void *virt, size_t size)
5220 {
5221 	unsigned long addr = (unsigned long)virt;
5222 	unsigned long end = addr + PAGE_ALIGN(size);
5223 
5224 	while (addr < end) {
5225 		free_page(addr);
5226 		addr += PAGE_SIZE;
5227 	}
5228 }
5229 EXPORT_SYMBOL(free_pages_exact);
5230 
5231 /**
5232  * nr_free_zone_pages - count number of pages beyond high watermark
5233  * @offset: The zone index of the highest zone
5234  *
5235  * nr_free_zone_pages() counts the number of pages which are beyond the
5236  * high watermark within all zones at or below a given zone index.  For each
5237  * zone, the number of pages is calculated as:
5238  *
5239  *     nr_free_zone_pages = managed_pages - high_pages
5240  *
5241  * Return: number of pages beyond high watermark.
5242  */
5243 static unsigned long nr_free_zone_pages(int offset)
5244 {
5245 	struct zoneref *z;
5246 	struct zone *zone;
5247 
5248 	/* Just pick one node, since fallback list is circular */
5249 	unsigned long sum = 0;
5250 
5251 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5252 
5253 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5254 		unsigned long size = zone_managed_pages(zone);
5255 		unsigned long high = high_wmark_pages(zone);
5256 		if (size > high)
5257 			sum += size - high;
5258 	}
5259 
5260 	return sum;
5261 }
5262 
5263 /**
5264  * nr_free_buffer_pages - count number of pages beyond high watermark
5265  *
5266  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5267  * watermark within ZONE_DMA and ZONE_NORMAL.
5268  *
5269  * Return: number of pages beyond high watermark within ZONE_DMA and
5270  * ZONE_NORMAL.
5271  */
5272 unsigned long nr_free_buffer_pages(void)
5273 {
5274 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5275 }
5276 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5277 
5278 static inline void show_node(struct zone *zone)
5279 {
5280 	if (IS_ENABLED(CONFIG_NUMA))
5281 		printk("Node %d ", zone_to_nid(zone));
5282 }
5283 
5284 long si_mem_available(void)
5285 {
5286 	long available;
5287 	unsigned long pagecache;
5288 	unsigned long wmark_low = 0;
5289 	unsigned long pages[NR_LRU_LISTS];
5290 	unsigned long reclaimable;
5291 	struct zone *zone;
5292 	int lru;
5293 
5294 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5295 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5296 
5297 	for_each_zone(zone)
5298 		wmark_low += low_wmark_pages(zone);
5299 
5300 	/*
5301 	 * Estimate the amount of memory available for userspace allocations,
5302 	 * without causing swapping.
5303 	 */
5304 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5305 
5306 	/*
5307 	 * Not all the page cache can be freed, otherwise the system will
5308 	 * start swapping. Assume at least half of the page cache, or the
5309 	 * low watermark worth of cache, needs to stay.
5310 	 */
5311 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5312 	pagecache -= min(pagecache / 2, wmark_low);
5313 	available += pagecache;
5314 
5315 	/*
5316 	 * Part of the reclaimable slab and other kernel memory consists of
5317 	 * items that are in use, and cannot be freed. Cap this estimate at the
5318 	 * low watermark.
5319 	 */
5320 	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5321 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5322 	available += reclaimable - min(reclaimable / 2, wmark_low);
5323 
5324 	if (available < 0)
5325 		available = 0;
5326 	return available;
5327 }
5328 EXPORT_SYMBOL_GPL(si_mem_available);
5329 
5330 void si_meminfo(struct sysinfo *val)
5331 {
5332 	val->totalram = totalram_pages();
5333 	val->sharedram = global_node_page_state(NR_SHMEM);
5334 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5335 	val->bufferram = nr_blockdev_pages();
5336 	val->totalhigh = totalhigh_pages();
5337 	val->freehigh = nr_free_highpages();
5338 	val->mem_unit = PAGE_SIZE;
5339 }
5340 
5341 EXPORT_SYMBOL(si_meminfo);
5342 
5343 #ifdef CONFIG_NUMA
5344 void si_meminfo_node(struct sysinfo *val, int nid)
5345 {
5346 	int zone_type;		/* needs to be signed */
5347 	unsigned long managed_pages = 0;
5348 	unsigned long managed_highpages = 0;
5349 	unsigned long free_highpages = 0;
5350 	pg_data_t *pgdat = NODE_DATA(nid);
5351 
5352 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5353 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5354 	val->totalram = managed_pages;
5355 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5356 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5357 #ifdef CONFIG_HIGHMEM
5358 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5359 		struct zone *zone = &pgdat->node_zones[zone_type];
5360 
5361 		if (is_highmem(zone)) {
5362 			managed_highpages += zone_managed_pages(zone);
5363 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5364 		}
5365 	}
5366 	val->totalhigh = managed_highpages;
5367 	val->freehigh = free_highpages;
5368 #else
5369 	val->totalhigh = managed_highpages;
5370 	val->freehigh = free_highpages;
5371 #endif
5372 	val->mem_unit = PAGE_SIZE;
5373 }
5374 #endif
5375 
5376 /*
5377  * Determine whether the node should be displayed or not, depending on whether
5378  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5379  */
5380 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5381 {
5382 	if (!(flags & SHOW_MEM_FILTER_NODES))
5383 		return false;
5384 
5385 	/*
5386 	 * no node mask - aka implicit memory numa policy. Do not bother with
5387 	 * the synchronization - read_mems_allowed_begin - because we do not
5388 	 * have to be precise here.
5389 	 */
5390 	if (!nodemask)
5391 		nodemask = &cpuset_current_mems_allowed;
5392 
5393 	return !node_isset(nid, *nodemask);
5394 }
5395 
5396 #define K(x) ((x) << (PAGE_SHIFT-10))
5397 
5398 static void show_migration_types(unsigned char type)
5399 {
5400 	static const char types[MIGRATE_TYPES] = {
5401 		[MIGRATE_UNMOVABLE]	= 'U',
5402 		[MIGRATE_MOVABLE]	= 'M',
5403 		[MIGRATE_RECLAIMABLE]	= 'E',
5404 		[MIGRATE_HIGHATOMIC]	= 'H',
5405 #ifdef CONFIG_CMA
5406 		[MIGRATE_CMA]		= 'C',
5407 #endif
5408 #ifdef CONFIG_MEMORY_ISOLATION
5409 		[MIGRATE_ISOLATE]	= 'I',
5410 #endif
5411 	};
5412 	char tmp[MIGRATE_TYPES + 1];
5413 	char *p = tmp;
5414 	int i;
5415 
5416 	for (i = 0; i < MIGRATE_TYPES; i++) {
5417 		if (type & (1 << i))
5418 			*p++ = types[i];
5419 	}
5420 
5421 	*p = '\0';
5422 	printk(KERN_CONT "(%s) ", tmp);
5423 }
5424 
5425 /*
5426  * Show free area list (used inside shift_scroll-lock stuff)
5427  * We also calculate the percentage fragmentation. We do this by counting the
5428  * memory on each free list with the exception of the first item on the list.
5429  *
5430  * Bits in @filter:
5431  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5432  *   cpuset.
5433  */
5434 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5435 {
5436 	unsigned long free_pcp = 0;
5437 	int cpu;
5438 	struct zone *zone;
5439 	pg_data_t *pgdat;
5440 
5441 	for_each_populated_zone(zone) {
5442 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5443 			continue;
5444 
5445 		for_each_online_cpu(cpu)
5446 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5447 	}
5448 
5449 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5450 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5451 		" unevictable:%lu dirty:%lu writeback:%lu\n"
5452 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5453 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5454 		" free:%lu free_pcp:%lu free_cma:%lu\n",
5455 		global_node_page_state(NR_ACTIVE_ANON),
5456 		global_node_page_state(NR_INACTIVE_ANON),
5457 		global_node_page_state(NR_ISOLATED_ANON),
5458 		global_node_page_state(NR_ACTIVE_FILE),
5459 		global_node_page_state(NR_INACTIVE_FILE),
5460 		global_node_page_state(NR_ISOLATED_FILE),
5461 		global_node_page_state(NR_UNEVICTABLE),
5462 		global_node_page_state(NR_FILE_DIRTY),
5463 		global_node_page_state(NR_WRITEBACK),
5464 		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5465 		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5466 		global_node_page_state(NR_FILE_MAPPED),
5467 		global_node_page_state(NR_SHMEM),
5468 		global_zone_page_state(NR_PAGETABLE),
5469 		global_zone_page_state(NR_BOUNCE),
5470 		global_zone_page_state(NR_FREE_PAGES),
5471 		free_pcp,
5472 		global_zone_page_state(NR_FREE_CMA_PAGES));
5473 
5474 	for_each_online_pgdat(pgdat) {
5475 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5476 			continue;
5477 
5478 		printk("Node %d"
5479 			" active_anon:%lukB"
5480 			" inactive_anon:%lukB"
5481 			" active_file:%lukB"
5482 			" inactive_file:%lukB"
5483 			" unevictable:%lukB"
5484 			" isolated(anon):%lukB"
5485 			" isolated(file):%lukB"
5486 			" mapped:%lukB"
5487 			" dirty:%lukB"
5488 			" writeback:%lukB"
5489 			" shmem:%lukB"
5490 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5491 			" shmem_thp: %lukB"
5492 			" shmem_pmdmapped: %lukB"
5493 			" anon_thp: %lukB"
5494 #endif
5495 			" writeback_tmp:%lukB"
5496 			" kernel_stack:%lukB"
5497 #ifdef CONFIG_SHADOW_CALL_STACK
5498 			" shadow_call_stack:%lukB"
5499 #endif
5500 			" all_unreclaimable? %s"
5501 			"\n",
5502 			pgdat->node_id,
5503 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5504 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5505 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5506 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5507 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
5508 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5509 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5510 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5511 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
5512 			K(node_page_state(pgdat, NR_WRITEBACK)),
5513 			K(node_page_state(pgdat, NR_SHMEM)),
5514 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5515 			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5516 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5517 					* HPAGE_PMD_NR),
5518 			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5519 #endif
5520 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5521 			node_page_state(pgdat, NR_KERNEL_STACK_KB),
5522 #ifdef CONFIG_SHADOW_CALL_STACK
5523 			node_page_state(pgdat, NR_KERNEL_SCS_KB),
5524 #endif
5525 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5526 				"yes" : "no");
5527 	}
5528 
5529 	for_each_populated_zone(zone) {
5530 		int i;
5531 
5532 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5533 			continue;
5534 
5535 		free_pcp = 0;
5536 		for_each_online_cpu(cpu)
5537 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5538 
5539 		show_node(zone);
5540 		printk(KERN_CONT
5541 			"%s"
5542 			" free:%lukB"
5543 			" min:%lukB"
5544 			" low:%lukB"
5545 			" high:%lukB"
5546 			" reserved_highatomic:%luKB"
5547 			" active_anon:%lukB"
5548 			" inactive_anon:%lukB"
5549 			" active_file:%lukB"
5550 			" inactive_file:%lukB"
5551 			" unevictable:%lukB"
5552 			" writepending:%lukB"
5553 			" present:%lukB"
5554 			" managed:%lukB"
5555 			" mlocked:%lukB"
5556 			" pagetables:%lukB"
5557 			" bounce:%lukB"
5558 			" free_pcp:%lukB"
5559 			" local_pcp:%ukB"
5560 			" free_cma:%lukB"
5561 			"\n",
5562 			zone->name,
5563 			K(zone_page_state(zone, NR_FREE_PAGES)),
5564 			K(min_wmark_pages(zone)),
5565 			K(low_wmark_pages(zone)),
5566 			K(high_wmark_pages(zone)),
5567 			K(zone->nr_reserved_highatomic),
5568 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5569 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5570 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5571 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5572 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5573 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5574 			K(zone->present_pages),
5575 			K(zone_managed_pages(zone)),
5576 			K(zone_page_state(zone, NR_MLOCK)),
5577 			K(zone_page_state(zone, NR_PAGETABLE)),
5578 			K(zone_page_state(zone, NR_BOUNCE)),
5579 			K(free_pcp),
5580 			K(this_cpu_read(zone->pageset->pcp.count)),
5581 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5582 		printk("lowmem_reserve[]:");
5583 		for (i = 0; i < MAX_NR_ZONES; i++)
5584 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5585 		printk(KERN_CONT "\n");
5586 	}
5587 
5588 	for_each_populated_zone(zone) {
5589 		unsigned int order;
5590 		unsigned long nr[MAX_ORDER], flags, total = 0;
5591 		unsigned char types[MAX_ORDER];
5592 
5593 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5594 			continue;
5595 		show_node(zone);
5596 		printk(KERN_CONT "%s: ", zone->name);
5597 
5598 		spin_lock_irqsave(&zone->lock, flags);
5599 		for (order = 0; order < MAX_ORDER; order++) {
5600 			struct free_area *area = &zone->free_area[order];
5601 			int type;
5602 
5603 			nr[order] = area->nr_free;
5604 			total += nr[order] << order;
5605 
5606 			types[order] = 0;
5607 			for (type = 0; type < MIGRATE_TYPES; type++) {
5608 				if (!free_area_empty(area, type))
5609 					types[order] |= 1 << type;
5610 			}
5611 		}
5612 		spin_unlock_irqrestore(&zone->lock, flags);
5613 		for (order = 0; order < MAX_ORDER; order++) {
5614 			printk(KERN_CONT "%lu*%lukB ",
5615 			       nr[order], K(1UL) << order);
5616 			if (nr[order])
5617 				show_migration_types(types[order]);
5618 		}
5619 		printk(KERN_CONT "= %lukB\n", K(total));
5620 	}
5621 
5622 	hugetlb_show_meminfo();
5623 
5624 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5625 
5626 	show_swap_cache_info();
5627 }
5628 
5629 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5630 {
5631 	zoneref->zone = zone;
5632 	zoneref->zone_idx = zone_idx(zone);
5633 }
5634 
5635 /*
5636  * Builds allocation fallback zone lists.
5637  *
5638  * Add all populated zones of a node to the zonelist.
5639  */
5640 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5641 {
5642 	struct zone *zone;
5643 	enum zone_type zone_type = MAX_NR_ZONES;
5644 	int nr_zones = 0;
5645 
5646 	do {
5647 		zone_type--;
5648 		zone = pgdat->node_zones + zone_type;
5649 		if (managed_zone(zone)) {
5650 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5651 			check_highest_zone(zone_type);
5652 		}
5653 	} while (zone_type);
5654 
5655 	return nr_zones;
5656 }
5657 
5658 #ifdef CONFIG_NUMA
5659 
5660 static int __parse_numa_zonelist_order(char *s)
5661 {
5662 	/*
5663 	 * We used to support different zonlists modes but they turned
5664 	 * out to be just not useful. Let's keep the warning in place
5665 	 * if somebody still use the cmd line parameter so that we do
5666 	 * not fail it silently
5667 	 */
5668 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5669 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5670 		return -EINVAL;
5671 	}
5672 	return 0;
5673 }
5674 
5675 char numa_zonelist_order[] = "Node";
5676 
5677 /*
5678  * sysctl handler for numa_zonelist_order
5679  */
5680 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5681 		void *buffer, size_t *length, loff_t *ppos)
5682 {
5683 	if (write)
5684 		return __parse_numa_zonelist_order(buffer);
5685 	return proc_dostring(table, write, buffer, length, ppos);
5686 }
5687 
5688 
5689 #define MAX_NODE_LOAD (nr_online_nodes)
5690 static int node_load[MAX_NUMNODES];
5691 
5692 /**
5693  * find_next_best_node - find the next node that should appear in a given node's fallback list
5694  * @node: node whose fallback list we're appending
5695  * @used_node_mask: nodemask_t of already used nodes
5696  *
5697  * We use a number of factors to determine which is the next node that should
5698  * appear on a given node's fallback list.  The node should not have appeared
5699  * already in @node's fallback list, and it should be the next closest node
5700  * according to the distance array (which contains arbitrary distance values
5701  * from each node to each node in the system), and should also prefer nodes
5702  * with no CPUs, since presumably they'll have very little allocation pressure
5703  * on them otherwise.
5704  *
5705  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5706  */
5707 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5708 {
5709 	int n, val;
5710 	int min_val = INT_MAX;
5711 	int best_node = NUMA_NO_NODE;
5712 
5713 	/* Use the local node if we haven't already */
5714 	if (!node_isset(node, *used_node_mask)) {
5715 		node_set(node, *used_node_mask);
5716 		return node;
5717 	}
5718 
5719 	for_each_node_state(n, N_MEMORY) {
5720 
5721 		/* Don't want a node to appear more than once */
5722 		if (node_isset(n, *used_node_mask))
5723 			continue;
5724 
5725 		/* Use the distance array to find the distance */
5726 		val = node_distance(node, n);
5727 
5728 		/* Penalize nodes under us ("prefer the next node") */
5729 		val += (n < node);
5730 
5731 		/* Give preference to headless and unused nodes */
5732 		if (!cpumask_empty(cpumask_of_node(n)))
5733 			val += PENALTY_FOR_NODE_WITH_CPUS;
5734 
5735 		/* Slight preference for less loaded node */
5736 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5737 		val += node_load[n];
5738 
5739 		if (val < min_val) {
5740 			min_val = val;
5741 			best_node = n;
5742 		}
5743 	}
5744 
5745 	if (best_node >= 0)
5746 		node_set(best_node, *used_node_mask);
5747 
5748 	return best_node;
5749 }
5750 
5751 
5752 /*
5753  * Build zonelists ordered by node and zones within node.
5754  * This results in maximum locality--normal zone overflows into local
5755  * DMA zone, if any--but risks exhausting DMA zone.
5756  */
5757 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5758 		unsigned nr_nodes)
5759 {
5760 	struct zoneref *zonerefs;
5761 	int i;
5762 
5763 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5764 
5765 	for (i = 0; i < nr_nodes; i++) {
5766 		int nr_zones;
5767 
5768 		pg_data_t *node = NODE_DATA(node_order[i]);
5769 
5770 		nr_zones = build_zonerefs_node(node, zonerefs);
5771 		zonerefs += nr_zones;
5772 	}
5773 	zonerefs->zone = NULL;
5774 	zonerefs->zone_idx = 0;
5775 }
5776 
5777 /*
5778  * Build gfp_thisnode zonelists
5779  */
5780 static void build_thisnode_zonelists(pg_data_t *pgdat)
5781 {
5782 	struct zoneref *zonerefs;
5783 	int nr_zones;
5784 
5785 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5786 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5787 	zonerefs += nr_zones;
5788 	zonerefs->zone = NULL;
5789 	zonerefs->zone_idx = 0;
5790 }
5791 
5792 /*
5793  * Build zonelists ordered by zone and nodes within zones.
5794  * This results in conserving DMA zone[s] until all Normal memory is
5795  * exhausted, but results in overflowing to remote node while memory
5796  * may still exist in local DMA zone.
5797  */
5798 
5799 static void build_zonelists(pg_data_t *pgdat)
5800 {
5801 	static int node_order[MAX_NUMNODES];
5802 	int node, load, nr_nodes = 0;
5803 	nodemask_t used_mask = NODE_MASK_NONE;
5804 	int local_node, prev_node;
5805 
5806 	/* NUMA-aware ordering of nodes */
5807 	local_node = pgdat->node_id;
5808 	load = nr_online_nodes;
5809 	prev_node = local_node;
5810 
5811 	memset(node_order, 0, sizeof(node_order));
5812 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5813 		/*
5814 		 * We don't want to pressure a particular node.
5815 		 * So adding penalty to the first node in same
5816 		 * distance group to make it round-robin.
5817 		 */
5818 		if (node_distance(local_node, node) !=
5819 		    node_distance(local_node, prev_node))
5820 			node_load[node] = load;
5821 
5822 		node_order[nr_nodes++] = node;
5823 		prev_node = node;
5824 		load--;
5825 	}
5826 
5827 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5828 	build_thisnode_zonelists(pgdat);
5829 }
5830 
5831 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5832 /*
5833  * Return node id of node used for "local" allocations.
5834  * I.e., first node id of first zone in arg node's generic zonelist.
5835  * Used for initializing percpu 'numa_mem', which is used primarily
5836  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5837  */
5838 int local_memory_node(int node)
5839 {
5840 	struct zoneref *z;
5841 
5842 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5843 				   gfp_zone(GFP_KERNEL),
5844 				   NULL);
5845 	return zone_to_nid(z->zone);
5846 }
5847 #endif
5848 
5849 static void setup_min_unmapped_ratio(void);
5850 static void setup_min_slab_ratio(void);
5851 #else	/* CONFIG_NUMA */
5852 
5853 static void build_zonelists(pg_data_t *pgdat)
5854 {
5855 	int node, local_node;
5856 	struct zoneref *zonerefs;
5857 	int nr_zones;
5858 
5859 	local_node = pgdat->node_id;
5860 
5861 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5862 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5863 	zonerefs += nr_zones;
5864 
5865 	/*
5866 	 * Now we build the zonelist so that it contains the zones
5867 	 * of all the other nodes.
5868 	 * We don't want to pressure a particular node, so when
5869 	 * building the zones for node N, we make sure that the
5870 	 * zones coming right after the local ones are those from
5871 	 * node N+1 (modulo N)
5872 	 */
5873 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5874 		if (!node_online(node))
5875 			continue;
5876 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5877 		zonerefs += nr_zones;
5878 	}
5879 	for (node = 0; node < local_node; node++) {
5880 		if (!node_online(node))
5881 			continue;
5882 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5883 		zonerefs += nr_zones;
5884 	}
5885 
5886 	zonerefs->zone = NULL;
5887 	zonerefs->zone_idx = 0;
5888 }
5889 
5890 #endif	/* CONFIG_NUMA */
5891 
5892 /*
5893  * Boot pageset table. One per cpu which is going to be used for all
5894  * zones and all nodes. The parameters will be set in such a way
5895  * that an item put on a list will immediately be handed over to
5896  * the buddy list. This is safe since pageset manipulation is done
5897  * with interrupts disabled.
5898  *
5899  * The boot_pagesets must be kept even after bootup is complete for
5900  * unused processors and/or zones. They do play a role for bootstrapping
5901  * hotplugged processors.
5902  *
5903  * zoneinfo_show() and maybe other functions do
5904  * not check if the processor is online before following the pageset pointer.
5905  * Other parts of the kernel may not check if the zone is available.
5906  */
5907 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5908 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5909 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5910 
5911 static void __build_all_zonelists(void *data)
5912 {
5913 	int nid;
5914 	int __maybe_unused cpu;
5915 	pg_data_t *self = data;
5916 	static DEFINE_SPINLOCK(lock);
5917 
5918 	spin_lock(&lock);
5919 
5920 #ifdef CONFIG_NUMA
5921 	memset(node_load, 0, sizeof(node_load));
5922 #endif
5923 
5924 	/*
5925 	 * This node is hotadded and no memory is yet present.   So just
5926 	 * building zonelists is fine - no need to touch other nodes.
5927 	 */
5928 	if (self && !node_online(self->node_id)) {
5929 		build_zonelists(self);
5930 	} else {
5931 		for_each_online_node(nid) {
5932 			pg_data_t *pgdat = NODE_DATA(nid);
5933 
5934 			build_zonelists(pgdat);
5935 		}
5936 
5937 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5938 		/*
5939 		 * We now know the "local memory node" for each node--
5940 		 * i.e., the node of the first zone in the generic zonelist.
5941 		 * Set up numa_mem percpu variable for on-line cpus.  During
5942 		 * boot, only the boot cpu should be on-line;  we'll init the
5943 		 * secondary cpus' numa_mem as they come on-line.  During
5944 		 * node/memory hotplug, we'll fixup all on-line cpus.
5945 		 */
5946 		for_each_online_cpu(cpu)
5947 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5948 #endif
5949 	}
5950 
5951 	spin_unlock(&lock);
5952 }
5953 
5954 static noinline void __init
5955 build_all_zonelists_init(void)
5956 {
5957 	int cpu;
5958 
5959 	__build_all_zonelists(NULL);
5960 
5961 	/*
5962 	 * Initialize the boot_pagesets that are going to be used
5963 	 * for bootstrapping processors. The real pagesets for
5964 	 * each zone will be allocated later when the per cpu
5965 	 * allocator is available.
5966 	 *
5967 	 * boot_pagesets are used also for bootstrapping offline
5968 	 * cpus if the system is already booted because the pagesets
5969 	 * are needed to initialize allocators on a specific cpu too.
5970 	 * F.e. the percpu allocator needs the page allocator which
5971 	 * needs the percpu allocator in order to allocate its pagesets
5972 	 * (a chicken-egg dilemma).
5973 	 */
5974 	for_each_possible_cpu(cpu)
5975 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5976 
5977 	mminit_verify_zonelist();
5978 	cpuset_init_current_mems_allowed();
5979 }
5980 
5981 /*
5982  * unless system_state == SYSTEM_BOOTING.
5983  *
5984  * __ref due to call of __init annotated helper build_all_zonelists_init
5985  * [protected by SYSTEM_BOOTING].
5986  */
5987 void __ref build_all_zonelists(pg_data_t *pgdat)
5988 {
5989 	unsigned long vm_total_pages;
5990 
5991 	if (system_state == SYSTEM_BOOTING) {
5992 		build_all_zonelists_init();
5993 	} else {
5994 		__build_all_zonelists(pgdat);
5995 		/* cpuset refresh routine should be here */
5996 	}
5997 	/* Get the number of free pages beyond high watermark in all zones. */
5998 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5999 	/*
6000 	 * Disable grouping by mobility if the number of pages in the
6001 	 * system is too low to allow the mechanism to work. It would be
6002 	 * more accurate, but expensive to check per-zone. This check is
6003 	 * made on memory-hotadd so a system can start with mobility
6004 	 * disabled and enable it later
6005 	 */
6006 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6007 		page_group_by_mobility_disabled = 1;
6008 	else
6009 		page_group_by_mobility_disabled = 0;
6010 
6011 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
6012 		nr_online_nodes,
6013 		page_group_by_mobility_disabled ? "off" : "on",
6014 		vm_total_pages);
6015 #ifdef CONFIG_NUMA
6016 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6017 #endif
6018 }
6019 
6020 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6021 static bool __meminit
6022 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6023 {
6024 	static struct memblock_region *r;
6025 
6026 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6027 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6028 			for_each_mem_region(r) {
6029 				if (*pfn < memblock_region_memory_end_pfn(r))
6030 					break;
6031 			}
6032 		}
6033 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
6034 		    memblock_is_mirror(r)) {
6035 			*pfn = memblock_region_memory_end_pfn(r);
6036 			return true;
6037 		}
6038 	}
6039 	return false;
6040 }
6041 
6042 /*
6043  * Initially all pages are reserved - free ones are freed
6044  * up by memblock_free_all() once the early boot process is
6045  * done. Non-atomic initialization, single-pass.
6046  *
6047  * All aligned pageblocks are initialized to the specified migratetype
6048  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6049  * zone stats (e.g., nr_isolate_pageblock) are touched.
6050  */
6051 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
6052 		unsigned long start_pfn,
6053 		enum meminit_context context,
6054 		struct vmem_altmap *altmap, int migratetype)
6055 {
6056 	unsigned long pfn, end_pfn = start_pfn + size;
6057 	struct page *page;
6058 
6059 	if (highest_memmap_pfn < end_pfn - 1)
6060 		highest_memmap_pfn = end_pfn - 1;
6061 
6062 #ifdef CONFIG_ZONE_DEVICE
6063 	/*
6064 	 * Honor reservation requested by the driver for this ZONE_DEVICE
6065 	 * memory. We limit the total number of pages to initialize to just
6066 	 * those that might contain the memory mapping. We will defer the
6067 	 * ZONE_DEVICE page initialization until after we have released
6068 	 * the hotplug lock.
6069 	 */
6070 	if (zone == ZONE_DEVICE) {
6071 		if (!altmap)
6072 			return;
6073 
6074 		if (start_pfn == altmap->base_pfn)
6075 			start_pfn += altmap->reserve;
6076 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6077 	}
6078 #endif
6079 
6080 	for (pfn = start_pfn; pfn < end_pfn; ) {
6081 		/*
6082 		 * There can be holes in boot-time mem_map[]s handed to this
6083 		 * function.  They do not exist on hotplugged memory.
6084 		 */
6085 		if (context == MEMINIT_EARLY) {
6086 			if (overlap_memmap_init(zone, &pfn))
6087 				continue;
6088 			if (defer_init(nid, pfn, end_pfn))
6089 				break;
6090 		}
6091 
6092 		page = pfn_to_page(pfn);
6093 		__init_single_page(page, pfn, zone, nid);
6094 		if (context == MEMINIT_HOTPLUG)
6095 			__SetPageReserved(page);
6096 
6097 		/*
6098 		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6099 		 * such that unmovable allocations won't be scattered all
6100 		 * over the place during system boot.
6101 		 */
6102 		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6103 			set_pageblock_migratetype(page, migratetype);
6104 			cond_resched();
6105 		}
6106 		pfn++;
6107 	}
6108 }
6109 
6110 #ifdef CONFIG_ZONE_DEVICE
6111 void __ref memmap_init_zone_device(struct zone *zone,
6112 				   unsigned long start_pfn,
6113 				   unsigned long nr_pages,
6114 				   struct dev_pagemap *pgmap)
6115 {
6116 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6117 	struct pglist_data *pgdat = zone->zone_pgdat;
6118 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6119 	unsigned long zone_idx = zone_idx(zone);
6120 	unsigned long start = jiffies;
6121 	int nid = pgdat->node_id;
6122 
6123 	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6124 		return;
6125 
6126 	/*
6127 	 * The call to memmap_init_zone should have already taken care
6128 	 * of the pages reserved for the memmap, so we can just jump to
6129 	 * the end of that region and start processing the device pages.
6130 	 */
6131 	if (altmap) {
6132 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6133 		nr_pages = end_pfn - start_pfn;
6134 	}
6135 
6136 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6137 		struct page *page = pfn_to_page(pfn);
6138 
6139 		__init_single_page(page, pfn, zone_idx, nid);
6140 
6141 		/*
6142 		 * Mark page reserved as it will need to wait for onlining
6143 		 * phase for it to be fully associated with a zone.
6144 		 *
6145 		 * We can use the non-atomic __set_bit operation for setting
6146 		 * the flag as we are still initializing the pages.
6147 		 */
6148 		__SetPageReserved(page);
6149 
6150 		/*
6151 		 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6152 		 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
6153 		 * ever freed or placed on a driver-private list.
6154 		 */
6155 		page->pgmap = pgmap;
6156 		page->zone_device_data = NULL;
6157 
6158 		/*
6159 		 * Mark the block movable so that blocks are reserved for
6160 		 * movable at startup. This will force kernel allocations
6161 		 * to reserve their blocks rather than leaking throughout
6162 		 * the address space during boot when many long-lived
6163 		 * kernel allocations are made.
6164 		 *
6165 		 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6166 		 * because this is done early in section_activate()
6167 		 */
6168 		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6169 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6170 			cond_resched();
6171 		}
6172 	}
6173 
6174 	pr_info("%s initialised %lu pages in %ums\n", __func__,
6175 		nr_pages, jiffies_to_msecs(jiffies - start));
6176 }
6177 
6178 #endif
6179 static void __meminit zone_init_free_lists(struct zone *zone)
6180 {
6181 	unsigned int order, t;
6182 	for_each_migratetype_order(order, t) {
6183 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6184 		zone->free_area[order].nr_free = 0;
6185 	}
6186 }
6187 
6188 void __meminit __weak memmap_init(unsigned long size, int nid,
6189 				  unsigned long zone,
6190 				  unsigned long range_start_pfn)
6191 {
6192 	unsigned long start_pfn, end_pfn;
6193 	unsigned long range_end_pfn = range_start_pfn + size;
6194 	int i;
6195 
6196 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6197 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6198 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6199 
6200 		if (end_pfn > start_pfn) {
6201 			size = end_pfn - start_pfn;
6202 			memmap_init_zone(size, nid, zone, start_pfn,
6203 					 MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6204 		}
6205 	}
6206 }
6207 
6208 static int zone_batchsize(struct zone *zone)
6209 {
6210 #ifdef CONFIG_MMU
6211 	int batch;
6212 
6213 	/*
6214 	 * The per-cpu-pages pools are set to around 1000th of the
6215 	 * size of the zone.
6216 	 */
6217 	batch = zone_managed_pages(zone) / 1024;
6218 	/* But no more than a meg. */
6219 	if (batch * PAGE_SIZE > 1024 * 1024)
6220 		batch = (1024 * 1024) / PAGE_SIZE;
6221 	batch /= 4;		/* We effectively *= 4 below */
6222 	if (batch < 1)
6223 		batch = 1;
6224 
6225 	/*
6226 	 * Clamp the batch to a 2^n - 1 value. Having a power
6227 	 * of 2 value was found to be more likely to have
6228 	 * suboptimal cache aliasing properties in some cases.
6229 	 *
6230 	 * For example if 2 tasks are alternately allocating
6231 	 * batches of pages, one task can end up with a lot
6232 	 * of pages of one half of the possible page colors
6233 	 * and the other with pages of the other colors.
6234 	 */
6235 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
6236 
6237 	return batch;
6238 
6239 #else
6240 	/* The deferral and batching of frees should be suppressed under NOMMU
6241 	 * conditions.
6242 	 *
6243 	 * The problem is that NOMMU needs to be able to allocate large chunks
6244 	 * of contiguous memory as there's no hardware page translation to
6245 	 * assemble apparent contiguous memory from discontiguous pages.
6246 	 *
6247 	 * Queueing large contiguous runs of pages for batching, however,
6248 	 * causes the pages to actually be freed in smaller chunks.  As there
6249 	 * can be a significant delay between the individual batches being
6250 	 * recycled, this leads to the once large chunks of space being
6251 	 * fragmented and becoming unavailable for high-order allocations.
6252 	 */
6253 	return 0;
6254 #endif
6255 }
6256 
6257 /*
6258  * pcp->high and pcp->batch values are related and dependent on one another:
6259  * ->batch must never be higher then ->high.
6260  * The following function updates them in a safe manner without read side
6261  * locking.
6262  *
6263  * Any new users of pcp->batch and pcp->high should ensure they can cope with
6264  * those fields changing asynchronously (acording to the above rule).
6265  *
6266  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6267  * outside of boot time (or some other assurance that no concurrent updaters
6268  * exist).
6269  */
6270 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6271 		unsigned long batch)
6272 {
6273        /* start with a fail safe value for batch */
6274 	pcp->batch = 1;
6275 	smp_wmb();
6276 
6277        /* Update high, then batch, in order */
6278 	pcp->high = high;
6279 	smp_wmb();
6280 
6281 	pcp->batch = batch;
6282 }
6283 
6284 /* a companion to pageset_set_high() */
6285 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6286 {
6287 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6288 }
6289 
6290 static void pageset_init(struct per_cpu_pageset *p)
6291 {
6292 	struct per_cpu_pages *pcp;
6293 	int migratetype;
6294 
6295 	memset(p, 0, sizeof(*p));
6296 
6297 	pcp = &p->pcp;
6298 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6299 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
6300 }
6301 
6302 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6303 {
6304 	pageset_init(p);
6305 	pageset_set_batch(p, batch);
6306 }
6307 
6308 /*
6309  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6310  * to the value high for the pageset p.
6311  */
6312 static void pageset_set_high(struct per_cpu_pageset *p,
6313 				unsigned long high)
6314 {
6315 	unsigned long batch = max(1UL, high / 4);
6316 	if ((high / 4) > (PAGE_SHIFT * 8))
6317 		batch = PAGE_SHIFT * 8;
6318 
6319 	pageset_update(&p->pcp, high, batch);
6320 }
6321 
6322 static void pageset_set_high_and_batch(struct zone *zone,
6323 				       struct per_cpu_pageset *pcp)
6324 {
6325 	if (percpu_pagelist_fraction)
6326 		pageset_set_high(pcp,
6327 			(zone_managed_pages(zone) /
6328 				percpu_pagelist_fraction));
6329 	else
6330 		pageset_set_batch(pcp, zone_batchsize(zone));
6331 }
6332 
6333 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6334 {
6335 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6336 
6337 	pageset_init(pcp);
6338 	pageset_set_high_and_batch(zone, pcp);
6339 }
6340 
6341 void __meminit setup_zone_pageset(struct zone *zone)
6342 {
6343 	int cpu;
6344 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
6345 	for_each_possible_cpu(cpu)
6346 		zone_pageset_init(zone, cpu);
6347 }
6348 
6349 /*
6350  * Allocate per cpu pagesets and initialize them.
6351  * Before this call only boot pagesets were available.
6352  */
6353 void __init setup_per_cpu_pageset(void)
6354 {
6355 	struct pglist_data *pgdat;
6356 	struct zone *zone;
6357 	int __maybe_unused cpu;
6358 
6359 	for_each_populated_zone(zone)
6360 		setup_zone_pageset(zone);
6361 
6362 #ifdef CONFIG_NUMA
6363 	/*
6364 	 * Unpopulated zones continue using the boot pagesets.
6365 	 * The numa stats for these pagesets need to be reset.
6366 	 * Otherwise, they will end up skewing the stats of
6367 	 * the nodes these zones are associated with.
6368 	 */
6369 	for_each_possible_cpu(cpu) {
6370 		struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
6371 		memset(pcp->vm_numa_stat_diff, 0,
6372 		       sizeof(pcp->vm_numa_stat_diff));
6373 	}
6374 #endif
6375 
6376 	for_each_online_pgdat(pgdat)
6377 		pgdat->per_cpu_nodestats =
6378 			alloc_percpu(struct per_cpu_nodestat);
6379 }
6380 
6381 static __meminit void zone_pcp_init(struct zone *zone)
6382 {
6383 	/*
6384 	 * per cpu subsystem is not up at this point. The following code
6385 	 * relies on the ability of the linker to provide the
6386 	 * offset of a (static) per cpu variable into the per cpu area.
6387 	 */
6388 	zone->pageset = &boot_pageset;
6389 
6390 	if (populated_zone(zone))
6391 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
6392 			zone->name, zone->present_pages,
6393 					 zone_batchsize(zone));
6394 }
6395 
6396 void __meminit init_currently_empty_zone(struct zone *zone,
6397 					unsigned long zone_start_pfn,
6398 					unsigned long size)
6399 {
6400 	struct pglist_data *pgdat = zone->zone_pgdat;
6401 	int zone_idx = zone_idx(zone) + 1;
6402 
6403 	if (zone_idx > pgdat->nr_zones)
6404 		pgdat->nr_zones = zone_idx;
6405 
6406 	zone->zone_start_pfn = zone_start_pfn;
6407 
6408 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
6409 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
6410 			pgdat->node_id,
6411 			(unsigned long)zone_idx(zone),
6412 			zone_start_pfn, (zone_start_pfn + size));
6413 
6414 	zone_init_free_lists(zone);
6415 	zone->initialized = 1;
6416 }
6417 
6418 /**
6419  * get_pfn_range_for_nid - Return the start and end page frames for a node
6420  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6421  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6422  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6423  *
6424  * It returns the start and end page frame of a node based on information
6425  * provided by memblock_set_node(). If called for a node
6426  * with no available memory, a warning is printed and the start and end
6427  * PFNs will be 0.
6428  */
6429 void __init get_pfn_range_for_nid(unsigned int nid,
6430 			unsigned long *start_pfn, unsigned long *end_pfn)
6431 {
6432 	unsigned long this_start_pfn, this_end_pfn;
6433 	int i;
6434 
6435 	*start_pfn = -1UL;
6436 	*end_pfn = 0;
6437 
6438 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6439 		*start_pfn = min(*start_pfn, this_start_pfn);
6440 		*end_pfn = max(*end_pfn, this_end_pfn);
6441 	}
6442 
6443 	if (*start_pfn == -1UL)
6444 		*start_pfn = 0;
6445 }
6446 
6447 /*
6448  * This finds a zone that can be used for ZONE_MOVABLE pages. The
6449  * assumption is made that zones within a node are ordered in monotonic
6450  * increasing memory addresses so that the "highest" populated zone is used
6451  */
6452 static void __init find_usable_zone_for_movable(void)
6453 {
6454 	int zone_index;
6455 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6456 		if (zone_index == ZONE_MOVABLE)
6457 			continue;
6458 
6459 		if (arch_zone_highest_possible_pfn[zone_index] >
6460 				arch_zone_lowest_possible_pfn[zone_index])
6461 			break;
6462 	}
6463 
6464 	VM_BUG_ON(zone_index == -1);
6465 	movable_zone = zone_index;
6466 }
6467 
6468 /*
6469  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6470  * because it is sized independent of architecture. Unlike the other zones,
6471  * the starting point for ZONE_MOVABLE is not fixed. It may be different
6472  * in each node depending on the size of each node and how evenly kernelcore
6473  * is distributed. This helper function adjusts the zone ranges
6474  * provided by the architecture for a given node by using the end of the
6475  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6476  * zones within a node are in order of monotonic increases memory addresses
6477  */
6478 static void __init adjust_zone_range_for_zone_movable(int nid,
6479 					unsigned long zone_type,
6480 					unsigned long node_start_pfn,
6481 					unsigned long node_end_pfn,
6482 					unsigned long *zone_start_pfn,
6483 					unsigned long *zone_end_pfn)
6484 {
6485 	/* Only adjust if ZONE_MOVABLE is on this node */
6486 	if (zone_movable_pfn[nid]) {
6487 		/* Size ZONE_MOVABLE */
6488 		if (zone_type == ZONE_MOVABLE) {
6489 			*zone_start_pfn = zone_movable_pfn[nid];
6490 			*zone_end_pfn = min(node_end_pfn,
6491 				arch_zone_highest_possible_pfn[movable_zone]);
6492 
6493 		/* Adjust for ZONE_MOVABLE starting within this range */
6494 		} else if (!mirrored_kernelcore &&
6495 			*zone_start_pfn < zone_movable_pfn[nid] &&
6496 			*zone_end_pfn > zone_movable_pfn[nid]) {
6497 			*zone_end_pfn = zone_movable_pfn[nid];
6498 
6499 		/* Check if this whole range is within ZONE_MOVABLE */
6500 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
6501 			*zone_start_pfn = *zone_end_pfn;
6502 	}
6503 }
6504 
6505 /*
6506  * Return the number of pages a zone spans in a node, including holes
6507  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6508  */
6509 static unsigned long __init zone_spanned_pages_in_node(int nid,
6510 					unsigned long zone_type,
6511 					unsigned long node_start_pfn,
6512 					unsigned long node_end_pfn,
6513 					unsigned long *zone_start_pfn,
6514 					unsigned long *zone_end_pfn)
6515 {
6516 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6517 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6518 	/* When hotadd a new node from cpu_up(), the node should be empty */
6519 	if (!node_start_pfn && !node_end_pfn)
6520 		return 0;
6521 
6522 	/* Get the start and end of the zone */
6523 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6524 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6525 	adjust_zone_range_for_zone_movable(nid, zone_type,
6526 				node_start_pfn, node_end_pfn,
6527 				zone_start_pfn, zone_end_pfn);
6528 
6529 	/* Check that this node has pages within the zone's required range */
6530 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6531 		return 0;
6532 
6533 	/* Move the zone boundaries inside the node if necessary */
6534 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6535 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6536 
6537 	/* Return the spanned pages */
6538 	return *zone_end_pfn - *zone_start_pfn;
6539 }
6540 
6541 /*
6542  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6543  * then all holes in the requested range will be accounted for.
6544  */
6545 unsigned long __init __absent_pages_in_range(int nid,
6546 				unsigned long range_start_pfn,
6547 				unsigned long range_end_pfn)
6548 {
6549 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
6550 	unsigned long start_pfn, end_pfn;
6551 	int i;
6552 
6553 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6554 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6555 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6556 		nr_absent -= end_pfn - start_pfn;
6557 	}
6558 	return nr_absent;
6559 }
6560 
6561 /**
6562  * absent_pages_in_range - Return number of page frames in holes within a range
6563  * @start_pfn: The start PFN to start searching for holes
6564  * @end_pfn: The end PFN to stop searching for holes
6565  *
6566  * Return: the number of pages frames in memory holes within a range.
6567  */
6568 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6569 							unsigned long end_pfn)
6570 {
6571 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6572 }
6573 
6574 /* Return the number of page frames in holes in a zone on a node */
6575 static unsigned long __init zone_absent_pages_in_node(int nid,
6576 					unsigned long zone_type,
6577 					unsigned long node_start_pfn,
6578 					unsigned long node_end_pfn)
6579 {
6580 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6581 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6582 	unsigned long zone_start_pfn, zone_end_pfn;
6583 	unsigned long nr_absent;
6584 
6585 	/* When hotadd a new node from cpu_up(), the node should be empty */
6586 	if (!node_start_pfn && !node_end_pfn)
6587 		return 0;
6588 
6589 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6590 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6591 
6592 	adjust_zone_range_for_zone_movable(nid, zone_type,
6593 			node_start_pfn, node_end_pfn,
6594 			&zone_start_pfn, &zone_end_pfn);
6595 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6596 
6597 	/*
6598 	 * ZONE_MOVABLE handling.
6599 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6600 	 * and vice versa.
6601 	 */
6602 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6603 		unsigned long start_pfn, end_pfn;
6604 		struct memblock_region *r;
6605 
6606 		for_each_mem_region(r) {
6607 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
6608 					  zone_start_pfn, zone_end_pfn);
6609 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
6610 					zone_start_pfn, zone_end_pfn);
6611 
6612 			if (zone_type == ZONE_MOVABLE &&
6613 			    memblock_is_mirror(r))
6614 				nr_absent += end_pfn - start_pfn;
6615 
6616 			if (zone_type == ZONE_NORMAL &&
6617 			    !memblock_is_mirror(r))
6618 				nr_absent += end_pfn - start_pfn;
6619 		}
6620 	}
6621 
6622 	return nr_absent;
6623 }
6624 
6625 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6626 						unsigned long node_start_pfn,
6627 						unsigned long node_end_pfn)
6628 {
6629 	unsigned long realtotalpages = 0, totalpages = 0;
6630 	enum zone_type i;
6631 
6632 	for (i = 0; i < MAX_NR_ZONES; i++) {
6633 		struct zone *zone = pgdat->node_zones + i;
6634 		unsigned long zone_start_pfn, zone_end_pfn;
6635 		unsigned long spanned, absent;
6636 		unsigned long size, real_size;
6637 
6638 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
6639 						     node_start_pfn,
6640 						     node_end_pfn,
6641 						     &zone_start_pfn,
6642 						     &zone_end_pfn);
6643 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
6644 						   node_start_pfn,
6645 						   node_end_pfn);
6646 
6647 		size = spanned;
6648 		real_size = size - absent;
6649 
6650 		if (size)
6651 			zone->zone_start_pfn = zone_start_pfn;
6652 		else
6653 			zone->zone_start_pfn = 0;
6654 		zone->spanned_pages = size;
6655 		zone->present_pages = real_size;
6656 
6657 		totalpages += size;
6658 		realtotalpages += real_size;
6659 	}
6660 
6661 	pgdat->node_spanned_pages = totalpages;
6662 	pgdat->node_present_pages = realtotalpages;
6663 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6664 							realtotalpages);
6665 }
6666 
6667 #ifndef CONFIG_SPARSEMEM
6668 /*
6669  * Calculate the size of the zone->blockflags rounded to an unsigned long
6670  * Start by making sure zonesize is a multiple of pageblock_order by rounding
6671  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6672  * round what is now in bits to nearest long in bits, then return it in
6673  * bytes.
6674  */
6675 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6676 {
6677 	unsigned long usemapsize;
6678 
6679 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6680 	usemapsize = roundup(zonesize, pageblock_nr_pages);
6681 	usemapsize = usemapsize >> pageblock_order;
6682 	usemapsize *= NR_PAGEBLOCK_BITS;
6683 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6684 
6685 	return usemapsize / 8;
6686 }
6687 
6688 static void __ref setup_usemap(struct pglist_data *pgdat,
6689 				struct zone *zone,
6690 				unsigned long zone_start_pfn,
6691 				unsigned long zonesize)
6692 {
6693 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6694 	zone->pageblock_flags = NULL;
6695 	if (usemapsize) {
6696 		zone->pageblock_flags =
6697 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6698 					    pgdat->node_id);
6699 		if (!zone->pageblock_flags)
6700 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6701 			      usemapsize, zone->name, pgdat->node_id);
6702 	}
6703 }
6704 #else
6705 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6706 				unsigned long zone_start_pfn, unsigned long zonesize) {}
6707 #endif /* CONFIG_SPARSEMEM */
6708 
6709 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6710 
6711 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6712 void __init set_pageblock_order(void)
6713 {
6714 	unsigned int order;
6715 
6716 	/* Check that pageblock_nr_pages has not already been setup */
6717 	if (pageblock_order)
6718 		return;
6719 
6720 	if (HPAGE_SHIFT > PAGE_SHIFT)
6721 		order = HUGETLB_PAGE_ORDER;
6722 	else
6723 		order = MAX_ORDER - 1;
6724 
6725 	/*
6726 	 * Assume the largest contiguous order of interest is a huge page.
6727 	 * This value may be variable depending on boot parameters on IA64 and
6728 	 * powerpc.
6729 	 */
6730 	pageblock_order = order;
6731 }
6732 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6733 
6734 /*
6735  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6736  * is unused as pageblock_order is set at compile-time. See
6737  * include/linux/pageblock-flags.h for the values of pageblock_order based on
6738  * the kernel config
6739  */
6740 void __init set_pageblock_order(void)
6741 {
6742 }
6743 
6744 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6745 
6746 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6747 						unsigned long present_pages)
6748 {
6749 	unsigned long pages = spanned_pages;
6750 
6751 	/*
6752 	 * Provide a more accurate estimation if there are holes within
6753 	 * the zone and SPARSEMEM is in use. If there are holes within the
6754 	 * zone, each populated memory region may cost us one or two extra
6755 	 * memmap pages due to alignment because memmap pages for each
6756 	 * populated regions may not be naturally aligned on page boundary.
6757 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6758 	 */
6759 	if (spanned_pages > present_pages + (present_pages >> 4) &&
6760 	    IS_ENABLED(CONFIG_SPARSEMEM))
6761 		pages = present_pages;
6762 
6763 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6764 }
6765 
6766 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6767 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6768 {
6769 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6770 
6771 	spin_lock_init(&ds_queue->split_queue_lock);
6772 	INIT_LIST_HEAD(&ds_queue->split_queue);
6773 	ds_queue->split_queue_len = 0;
6774 }
6775 #else
6776 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6777 #endif
6778 
6779 #ifdef CONFIG_COMPACTION
6780 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6781 {
6782 	init_waitqueue_head(&pgdat->kcompactd_wait);
6783 }
6784 #else
6785 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6786 #endif
6787 
6788 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6789 {
6790 	pgdat_resize_init(pgdat);
6791 
6792 	pgdat_init_split_queue(pgdat);
6793 	pgdat_init_kcompactd(pgdat);
6794 
6795 	init_waitqueue_head(&pgdat->kswapd_wait);
6796 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6797 
6798 	pgdat_page_ext_init(pgdat);
6799 	spin_lock_init(&pgdat->lru_lock);
6800 	lruvec_init(&pgdat->__lruvec);
6801 }
6802 
6803 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6804 							unsigned long remaining_pages)
6805 {
6806 	atomic_long_set(&zone->managed_pages, remaining_pages);
6807 	zone_set_nid(zone, nid);
6808 	zone->name = zone_names[idx];
6809 	zone->zone_pgdat = NODE_DATA(nid);
6810 	spin_lock_init(&zone->lock);
6811 	zone_seqlock_init(zone);
6812 	zone_pcp_init(zone);
6813 }
6814 
6815 /*
6816  * Set up the zone data structures
6817  * - init pgdat internals
6818  * - init all zones belonging to this node
6819  *
6820  * NOTE: this function is only called during memory hotplug
6821  */
6822 #ifdef CONFIG_MEMORY_HOTPLUG
6823 void __ref free_area_init_core_hotplug(int nid)
6824 {
6825 	enum zone_type z;
6826 	pg_data_t *pgdat = NODE_DATA(nid);
6827 
6828 	pgdat_init_internals(pgdat);
6829 	for (z = 0; z < MAX_NR_ZONES; z++)
6830 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6831 }
6832 #endif
6833 
6834 /*
6835  * Set up the zone data structures:
6836  *   - mark all pages reserved
6837  *   - mark all memory queues empty
6838  *   - clear the memory bitmaps
6839  *
6840  * NOTE: pgdat should get zeroed by caller.
6841  * NOTE: this function is only called during early init.
6842  */
6843 static void __init free_area_init_core(struct pglist_data *pgdat)
6844 {
6845 	enum zone_type j;
6846 	int nid = pgdat->node_id;
6847 
6848 	pgdat_init_internals(pgdat);
6849 	pgdat->per_cpu_nodestats = &boot_nodestats;
6850 
6851 	for (j = 0; j < MAX_NR_ZONES; j++) {
6852 		struct zone *zone = pgdat->node_zones + j;
6853 		unsigned long size, freesize, memmap_pages;
6854 		unsigned long zone_start_pfn = zone->zone_start_pfn;
6855 
6856 		size = zone->spanned_pages;
6857 		freesize = zone->present_pages;
6858 
6859 		/*
6860 		 * Adjust freesize so that it accounts for how much memory
6861 		 * is used by this zone for memmap. This affects the watermark
6862 		 * and per-cpu initialisations
6863 		 */
6864 		memmap_pages = calc_memmap_size(size, freesize);
6865 		if (!is_highmem_idx(j)) {
6866 			if (freesize >= memmap_pages) {
6867 				freesize -= memmap_pages;
6868 				if (memmap_pages)
6869 					printk(KERN_DEBUG
6870 					       "  %s zone: %lu pages used for memmap\n",
6871 					       zone_names[j], memmap_pages);
6872 			} else
6873 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6874 					zone_names[j], memmap_pages, freesize);
6875 		}
6876 
6877 		/* Account for reserved pages */
6878 		if (j == 0 && freesize > dma_reserve) {
6879 			freesize -= dma_reserve;
6880 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6881 					zone_names[0], dma_reserve);
6882 		}
6883 
6884 		if (!is_highmem_idx(j))
6885 			nr_kernel_pages += freesize;
6886 		/* Charge for highmem memmap if there are enough kernel pages */
6887 		else if (nr_kernel_pages > memmap_pages * 2)
6888 			nr_kernel_pages -= memmap_pages;
6889 		nr_all_pages += freesize;
6890 
6891 		/*
6892 		 * Set an approximate value for lowmem here, it will be adjusted
6893 		 * when the bootmem allocator frees pages into the buddy system.
6894 		 * And all highmem pages will be managed by the buddy system.
6895 		 */
6896 		zone_init_internals(zone, j, nid, freesize);
6897 
6898 		if (!size)
6899 			continue;
6900 
6901 		set_pageblock_order();
6902 		setup_usemap(pgdat, zone, zone_start_pfn, size);
6903 		init_currently_empty_zone(zone, zone_start_pfn, size);
6904 		memmap_init(size, nid, j, zone_start_pfn);
6905 	}
6906 }
6907 
6908 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6909 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6910 {
6911 	unsigned long __maybe_unused start = 0;
6912 	unsigned long __maybe_unused offset = 0;
6913 
6914 	/* Skip empty nodes */
6915 	if (!pgdat->node_spanned_pages)
6916 		return;
6917 
6918 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6919 	offset = pgdat->node_start_pfn - start;
6920 	/* ia64 gets its own node_mem_map, before this, without bootmem */
6921 	if (!pgdat->node_mem_map) {
6922 		unsigned long size, end;
6923 		struct page *map;
6924 
6925 		/*
6926 		 * The zone's endpoints aren't required to be MAX_ORDER
6927 		 * aligned but the node_mem_map endpoints must be in order
6928 		 * for the buddy allocator to function correctly.
6929 		 */
6930 		end = pgdat_end_pfn(pgdat);
6931 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
6932 		size =  (end - start) * sizeof(struct page);
6933 		map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6934 					  pgdat->node_id);
6935 		if (!map)
6936 			panic("Failed to allocate %ld bytes for node %d memory map\n",
6937 			      size, pgdat->node_id);
6938 		pgdat->node_mem_map = map + offset;
6939 	}
6940 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6941 				__func__, pgdat->node_id, (unsigned long)pgdat,
6942 				(unsigned long)pgdat->node_mem_map);
6943 #ifndef CONFIG_NEED_MULTIPLE_NODES
6944 	/*
6945 	 * With no DISCONTIG, the global mem_map is just set as node 0's
6946 	 */
6947 	if (pgdat == NODE_DATA(0)) {
6948 		mem_map = NODE_DATA(0)->node_mem_map;
6949 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6950 			mem_map -= offset;
6951 	}
6952 #endif
6953 }
6954 #else
6955 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6956 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6957 
6958 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6959 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6960 {
6961 	pgdat->first_deferred_pfn = ULONG_MAX;
6962 }
6963 #else
6964 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6965 #endif
6966 
6967 static void __init free_area_init_node(int nid)
6968 {
6969 	pg_data_t *pgdat = NODE_DATA(nid);
6970 	unsigned long start_pfn = 0;
6971 	unsigned long end_pfn = 0;
6972 
6973 	/* pg_data_t should be reset to zero when it's allocated */
6974 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
6975 
6976 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6977 
6978 	pgdat->node_id = nid;
6979 	pgdat->node_start_pfn = start_pfn;
6980 	pgdat->per_cpu_nodestats = NULL;
6981 
6982 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6983 		(u64)start_pfn << PAGE_SHIFT,
6984 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6985 	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
6986 
6987 	alloc_node_mem_map(pgdat);
6988 	pgdat_set_deferred_range(pgdat);
6989 
6990 	free_area_init_core(pgdat);
6991 }
6992 
6993 void __init free_area_init_memoryless_node(int nid)
6994 {
6995 	free_area_init_node(nid);
6996 }
6997 
6998 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6999 /*
7000  * Initialize all valid struct pages in the range [spfn, epfn) and mark them
7001  * PageReserved(). Return the number of struct pages that were initialized.
7002  */
7003 static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn)
7004 {
7005 	unsigned long pfn;
7006 	u64 pgcnt = 0;
7007 
7008 	for (pfn = spfn; pfn < epfn; pfn++) {
7009 		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
7010 			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
7011 				+ pageblock_nr_pages - 1;
7012 			continue;
7013 		}
7014 		/*
7015 		 * Use a fake node/zone (0) for now. Some of these pages
7016 		 * (in memblock.reserved but not in memblock.memory) will
7017 		 * get re-initialized via reserve_bootmem_region() later.
7018 		 */
7019 		__init_single_page(pfn_to_page(pfn), pfn, 0, 0);
7020 		__SetPageReserved(pfn_to_page(pfn));
7021 		pgcnt++;
7022 	}
7023 
7024 	return pgcnt;
7025 }
7026 
7027 /*
7028  * Only struct pages that are backed by physical memory are zeroed and
7029  * initialized by going through __init_single_page(). But, there are some
7030  * struct pages which are reserved in memblock allocator and their fields
7031  * may be accessed (for example page_to_pfn() on some configuration accesses
7032  * flags). We must explicitly initialize those struct pages.
7033  *
7034  * This function also addresses a similar issue where struct pages are left
7035  * uninitialized because the physical address range is not covered by
7036  * memblock.memory or memblock.reserved. That could happen when memblock
7037  * layout is manually configured via memmap=, or when the highest physical
7038  * address (max_pfn) does not end on a section boundary.
7039  */
7040 static void __init init_unavailable_mem(void)
7041 {
7042 	phys_addr_t start, end;
7043 	u64 i, pgcnt;
7044 	phys_addr_t next = 0;
7045 
7046 	/*
7047 	 * Loop through unavailable ranges not covered by memblock.memory.
7048 	 */
7049 	pgcnt = 0;
7050 	for_each_mem_range(i, &start, &end) {
7051 		if (next < start)
7052 			pgcnt += init_unavailable_range(PFN_DOWN(next),
7053 							PFN_UP(start));
7054 		next = end;
7055 	}
7056 
7057 	/*
7058 	 * Early sections always have a fully populated memmap for the whole
7059 	 * section - see pfn_valid(). If the last section has holes at the
7060 	 * end and that section is marked "online", the memmap will be
7061 	 * considered initialized. Make sure that memmap has a well defined
7062 	 * state.
7063 	 */
7064 	pgcnt += init_unavailable_range(PFN_DOWN(next),
7065 					round_up(max_pfn, PAGES_PER_SECTION));
7066 
7067 	/*
7068 	 * Struct pages that do not have backing memory. This could be because
7069 	 * firmware is using some of this memory, or for some other reasons.
7070 	 */
7071 	if (pgcnt)
7072 		pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
7073 }
7074 #else
7075 static inline void __init init_unavailable_mem(void)
7076 {
7077 }
7078 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
7079 
7080 #if MAX_NUMNODES > 1
7081 /*
7082  * Figure out the number of possible node ids.
7083  */
7084 void __init setup_nr_node_ids(void)
7085 {
7086 	unsigned int highest;
7087 
7088 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7089 	nr_node_ids = highest + 1;
7090 }
7091 #endif
7092 
7093 /**
7094  * node_map_pfn_alignment - determine the maximum internode alignment
7095  *
7096  * This function should be called after node map is populated and sorted.
7097  * It calculates the maximum power of two alignment which can distinguish
7098  * all the nodes.
7099  *
7100  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7101  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7102  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7103  * shifted, 1GiB is enough and this function will indicate so.
7104  *
7105  * This is used to test whether pfn -> nid mapping of the chosen memory
7106  * model has fine enough granularity to avoid incorrect mapping for the
7107  * populated node map.
7108  *
7109  * Return: the determined alignment in pfn's.  0 if there is no alignment
7110  * requirement (single node).
7111  */
7112 unsigned long __init node_map_pfn_alignment(void)
7113 {
7114 	unsigned long accl_mask = 0, last_end = 0;
7115 	unsigned long start, end, mask;
7116 	int last_nid = NUMA_NO_NODE;
7117 	int i, nid;
7118 
7119 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7120 		if (!start || last_nid < 0 || last_nid == nid) {
7121 			last_nid = nid;
7122 			last_end = end;
7123 			continue;
7124 		}
7125 
7126 		/*
7127 		 * Start with a mask granular enough to pin-point to the
7128 		 * start pfn and tick off bits one-by-one until it becomes
7129 		 * too coarse to separate the current node from the last.
7130 		 */
7131 		mask = ~((1 << __ffs(start)) - 1);
7132 		while (mask && last_end <= (start & (mask << 1)))
7133 			mask <<= 1;
7134 
7135 		/* accumulate all internode masks */
7136 		accl_mask |= mask;
7137 	}
7138 
7139 	/* convert mask to number of pages */
7140 	return ~accl_mask + 1;
7141 }
7142 
7143 /**
7144  * find_min_pfn_with_active_regions - Find the minimum PFN registered
7145  *
7146  * Return: the minimum PFN based on information provided via
7147  * memblock_set_node().
7148  */
7149 unsigned long __init find_min_pfn_with_active_regions(void)
7150 {
7151 	return PHYS_PFN(memblock_start_of_DRAM());
7152 }
7153 
7154 /*
7155  * early_calculate_totalpages()
7156  * Sum pages in active regions for movable zone.
7157  * Populate N_MEMORY for calculating usable_nodes.
7158  */
7159 static unsigned long __init early_calculate_totalpages(void)
7160 {
7161 	unsigned long totalpages = 0;
7162 	unsigned long start_pfn, end_pfn;
7163 	int i, nid;
7164 
7165 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7166 		unsigned long pages = end_pfn - start_pfn;
7167 
7168 		totalpages += pages;
7169 		if (pages)
7170 			node_set_state(nid, N_MEMORY);
7171 	}
7172 	return totalpages;
7173 }
7174 
7175 /*
7176  * Find the PFN the Movable zone begins in each node. Kernel memory
7177  * is spread evenly between nodes as long as the nodes have enough
7178  * memory. When they don't, some nodes will have more kernelcore than
7179  * others
7180  */
7181 static void __init find_zone_movable_pfns_for_nodes(void)
7182 {
7183 	int i, nid;
7184 	unsigned long usable_startpfn;
7185 	unsigned long kernelcore_node, kernelcore_remaining;
7186 	/* save the state before borrow the nodemask */
7187 	nodemask_t saved_node_state = node_states[N_MEMORY];
7188 	unsigned long totalpages = early_calculate_totalpages();
7189 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7190 	struct memblock_region *r;
7191 
7192 	/* Need to find movable_zone earlier when movable_node is specified. */
7193 	find_usable_zone_for_movable();
7194 
7195 	/*
7196 	 * If movable_node is specified, ignore kernelcore and movablecore
7197 	 * options.
7198 	 */
7199 	if (movable_node_is_enabled()) {
7200 		for_each_mem_region(r) {
7201 			if (!memblock_is_hotpluggable(r))
7202 				continue;
7203 
7204 			nid = memblock_get_region_node(r);
7205 
7206 			usable_startpfn = PFN_DOWN(r->base);
7207 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7208 				min(usable_startpfn, zone_movable_pfn[nid]) :
7209 				usable_startpfn;
7210 		}
7211 
7212 		goto out2;
7213 	}
7214 
7215 	/*
7216 	 * If kernelcore=mirror is specified, ignore movablecore option
7217 	 */
7218 	if (mirrored_kernelcore) {
7219 		bool mem_below_4gb_not_mirrored = false;
7220 
7221 		for_each_mem_region(r) {
7222 			if (memblock_is_mirror(r))
7223 				continue;
7224 
7225 			nid = memblock_get_region_node(r);
7226 
7227 			usable_startpfn = memblock_region_memory_base_pfn(r);
7228 
7229 			if (usable_startpfn < 0x100000) {
7230 				mem_below_4gb_not_mirrored = true;
7231 				continue;
7232 			}
7233 
7234 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7235 				min(usable_startpfn, zone_movable_pfn[nid]) :
7236 				usable_startpfn;
7237 		}
7238 
7239 		if (mem_below_4gb_not_mirrored)
7240 			pr_warn("This configuration results in unmirrored kernel memory.\n");
7241 
7242 		goto out2;
7243 	}
7244 
7245 	/*
7246 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7247 	 * amount of necessary memory.
7248 	 */
7249 	if (required_kernelcore_percent)
7250 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7251 				       10000UL;
7252 	if (required_movablecore_percent)
7253 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7254 					10000UL;
7255 
7256 	/*
7257 	 * If movablecore= was specified, calculate what size of
7258 	 * kernelcore that corresponds so that memory usable for
7259 	 * any allocation type is evenly spread. If both kernelcore
7260 	 * and movablecore are specified, then the value of kernelcore
7261 	 * will be used for required_kernelcore if it's greater than
7262 	 * what movablecore would have allowed.
7263 	 */
7264 	if (required_movablecore) {
7265 		unsigned long corepages;
7266 
7267 		/*
7268 		 * Round-up so that ZONE_MOVABLE is at least as large as what
7269 		 * was requested by the user
7270 		 */
7271 		required_movablecore =
7272 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7273 		required_movablecore = min(totalpages, required_movablecore);
7274 		corepages = totalpages - required_movablecore;
7275 
7276 		required_kernelcore = max(required_kernelcore, corepages);
7277 	}
7278 
7279 	/*
7280 	 * If kernelcore was not specified or kernelcore size is larger
7281 	 * than totalpages, there is no ZONE_MOVABLE.
7282 	 */
7283 	if (!required_kernelcore || required_kernelcore >= totalpages)
7284 		goto out;
7285 
7286 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7287 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7288 
7289 restart:
7290 	/* Spread kernelcore memory as evenly as possible throughout nodes */
7291 	kernelcore_node = required_kernelcore / usable_nodes;
7292 	for_each_node_state(nid, N_MEMORY) {
7293 		unsigned long start_pfn, end_pfn;
7294 
7295 		/*
7296 		 * Recalculate kernelcore_node if the division per node
7297 		 * now exceeds what is necessary to satisfy the requested
7298 		 * amount of memory for the kernel
7299 		 */
7300 		if (required_kernelcore < kernelcore_node)
7301 			kernelcore_node = required_kernelcore / usable_nodes;
7302 
7303 		/*
7304 		 * As the map is walked, we track how much memory is usable
7305 		 * by the kernel using kernelcore_remaining. When it is
7306 		 * 0, the rest of the node is usable by ZONE_MOVABLE
7307 		 */
7308 		kernelcore_remaining = kernelcore_node;
7309 
7310 		/* Go through each range of PFNs within this node */
7311 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7312 			unsigned long size_pages;
7313 
7314 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7315 			if (start_pfn >= end_pfn)
7316 				continue;
7317 
7318 			/* Account for what is only usable for kernelcore */
7319 			if (start_pfn < usable_startpfn) {
7320 				unsigned long kernel_pages;
7321 				kernel_pages = min(end_pfn, usable_startpfn)
7322 								- start_pfn;
7323 
7324 				kernelcore_remaining -= min(kernel_pages,
7325 							kernelcore_remaining);
7326 				required_kernelcore -= min(kernel_pages,
7327 							required_kernelcore);
7328 
7329 				/* Continue if range is now fully accounted */
7330 				if (end_pfn <= usable_startpfn) {
7331 
7332 					/*
7333 					 * Push zone_movable_pfn to the end so
7334 					 * that if we have to rebalance
7335 					 * kernelcore across nodes, we will
7336 					 * not double account here
7337 					 */
7338 					zone_movable_pfn[nid] = end_pfn;
7339 					continue;
7340 				}
7341 				start_pfn = usable_startpfn;
7342 			}
7343 
7344 			/*
7345 			 * The usable PFN range for ZONE_MOVABLE is from
7346 			 * start_pfn->end_pfn. Calculate size_pages as the
7347 			 * number of pages used as kernelcore
7348 			 */
7349 			size_pages = end_pfn - start_pfn;
7350 			if (size_pages > kernelcore_remaining)
7351 				size_pages = kernelcore_remaining;
7352 			zone_movable_pfn[nid] = start_pfn + size_pages;
7353 
7354 			/*
7355 			 * Some kernelcore has been met, update counts and
7356 			 * break if the kernelcore for this node has been
7357 			 * satisfied
7358 			 */
7359 			required_kernelcore -= min(required_kernelcore,
7360 								size_pages);
7361 			kernelcore_remaining -= size_pages;
7362 			if (!kernelcore_remaining)
7363 				break;
7364 		}
7365 	}
7366 
7367 	/*
7368 	 * If there is still required_kernelcore, we do another pass with one
7369 	 * less node in the count. This will push zone_movable_pfn[nid] further
7370 	 * along on the nodes that still have memory until kernelcore is
7371 	 * satisfied
7372 	 */
7373 	usable_nodes--;
7374 	if (usable_nodes && required_kernelcore > usable_nodes)
7375 		goto restart;
7376 
7377 out2:
7378 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7379 	for (nid = 0; nid < MAX_NUMNODES; nid++)
7380 		zone_movable_pfn[nid] =
7381 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7382 
7383 out:
7384 	/* restore the node_state */
7385 	node_states[N_MEMORY] = saved_node_state;
7386 }
7387 
7388 /* Any regular or high memory on that node ? */
7389 static void check_for_memory(pg_data_t *pgdat, int nid)
7390 {
7391 	enum zone_type zone_type;
7392 
7393 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7394 		struct zone *zone = &pgdat->node_zones[zone_type];
7395 		if (populated_zone(zone)) {
7396 			if (IS_ENABLED(CONFIG_HIGHMEM))
7397 				node_set_state(nid, N_HIGH_MEMORY);
7398 			if (zone_type <= ZONE_NORMAL)
7399 				node_set_state(nid, N_NORMAL_MEMORY);
7400 			break;
7401 		}
7402 	}
7403 }
7404 
7405 /*
7406  * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7407  * such cases we allow max_zone_pfn sorted in the descending order
7408  */
7409 bool __weak arch_has_descending_max_zone_pfns(void)
7410 {
7411 	return false;
7412 }
7413 
7414 /**
7415  * free_area_init - Initialise all pg_data_t and zone data
7416  * @max_zone_pfn: an array of max PFNs for each zone
7417  *
7418  * This will call free_area_init_node() for each active node in the system.
7419  * Using the page ranges provided by memblock_set_node(), the size of each
7420  * zone in each node and their holes is calculated. If the maximum PFN
7421  * between two adjacent zones match, it is assumed that the zone is empty.
7422  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7423  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7424  * starts where the previous one ended. For example, ZONE_DMA32 starts
7425  * at arch_max_dma_pfn.
7426  */
7427 void __init free_area_init(unsigned long *max_zone_pfn)
7428 {
7429 	unsigned long start_pfn, end_pfn;
7430 	int i, nid, zone;
7431 	bool descending;
7432 
7433 	/* Record where the zone boundaries are */
7434 	memset(arch_zone_lowest_possible_pfn, 0,
7435 				sizeof(arch_zone_lowest_possible_pfn));
7436 	memset(arch_zone_highest_possible_pfn, 0,
7437 				sizeof(arch_zone_highest_possible_pfn));
7438 
7439 	start_pfn = find_min_pfn_with_active_regions();
7440 	descending = arch_has_descending_max_zone_pfns();
7441 
7442 	for (i = 0; i < MAX_NR_ZONES; i++) {
7443 		if (descending)
7444 			zone = MAX_NR_ZONES - i - 1;
7445 		else
7446 			zone = i;
7447 
7448 		if (zone == ZONE_MOVABLE)
7449 			continue;
7450 
7451 		end_pfn = max(max_zone_pfn[zone], start_pfn);
7452 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
7453 		arch_zone_highest_possible_pfn[zone] = end_pfn;
7454 
7455 		start_pfn = end_pfn;
7456 	}
7457 
7458 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
7459 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7460 	find_zone_movable_pfns_for_nodes();
7461 
7462 	/* Print out the zone ranges */
7463 	pr_info("Zone ranges:\n");
7464 	for (i = 0; i < MAX_NR_ZONES; i++) {
7465 		if (i == ZONE_MOVABLE)
7466 			continue;
7467 		pr_info("  %-8s ", zone_names[i]);
7468 		if (arch_zone_lowest_possible_pfn[i] ==
7469 				arch_zone_highest_possible_pfn[i])
7470 			pr_cont("empty\n");
7471 		else
7472 			pr_cont("[mem %#018Lx-%#018Lx]\n",
7473 				(u64)arch_zone_lowest_possible_pfn[i]
7474 					<< PAGE_SHIFT,
7475 				((u64)arch_zone_highest_possible_pfn[i]
7476 					<< PAGE_SHIFT) - 1);
7477 	}
7478 
7479 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7480 	pr_info("Movable zone start for each node\n");
7481 	for (i = 0; i < MAX_NUMNODES; i++) {
7482 		if (zone_movable_pfn[i])
7483 			pr_info("  Node %d: %#018Lx\n", i,
7484 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7485 	}
7486 
7487 	/*
7488 	 * Print out the early node map, and initialize the
7489 	 * subsection-map relative to active online memory ranges to
7490 	 * enable future "sub-section" extensions of the memory map.
7491 	 */
7492 	pr_info("Early memory node ranges\n");
7493 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7494 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7495 			(u64)start_pfn << PAGE_SHIFT,
7496 			((u64)end_pfn << PAGE_SHIFT) - 1);
7497 		subsection_map_init(start_pfn, end_pfn - start_pfn);
7498 	}
7499 
7500 	/* Initialise every node */
7501 	mminit_verify_pageflags_layout();
7502 	setup_nr_node_ids();
7503 	init_unavailable_mem();
7504 	for_each_online_node(nid) {
7505 		pg_data_t *pgdat = NODE_DATA(nid);
7506 		free_area_init_node(nid);
7507 
7508 		/* Any memory on that node */
7509 		if (pgdat->node_present_pages)
7510 			node_set_state(nid, N_MEMORY);
7511 		check_for_memory(pgdat, nid);
7512 	}
7513 }
7514 
7515 static int __init cmdline_parse_core(char *p, unsigned long *core,
7516 				     unsigned long *percent)
7517 {
7518 	unsigned long long coremem;
7519 	char *endptr;
7520 
7521 	if (!p)
7522 		return -EINVAL;
7523 
7524 	/* Value may be a percentage of total memory, otherwise bytes */
7525 	coremem = simple_strtoull(p, &endptr, 0);
7526 	if (*endptr == '%') {
7527 		/* Paranoid check for percent values greater than 100 */
7528 		WARN_ON(coremem > 100);
7529 
7530 		*percent = coremem;
7531 	} else {
7532 		coremem = memparse(p, &p);
7533 		/* Paranoid check that UL is enough for the coremem value */
7534 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7535 
7536 		*core = coremem >> PAGE_SHIFT;
7537 		*percent = 0UL;
7538 	}
7539 	return 0;
7540 }
7541 
7542 /*
7543  * kernelcore=size sets the amount of memory for use for allocations that
7544  * cannot be reclaimed or migrated.
7545  */
7546 static int __init cmdline_parse_kernelcore(char *p)
7547 {
7548 	/* parse kernelcore=mirror */
7549 	if (parse_option_str(p, "mirror")) {
7550 		mirrored_kernelcore = true;
7551 		return 0;
7552 	}
7553 
7554 	return cmdline_parse_core(p, &required_kernelcore,
7555 				  &required_kernelcore_percent);
7556 }
7557 
7558 /*
7559  * movablecore=size sets the amount of memory for use for allocations that
7560  * can be reclaimed or migrated.
7561  */
7562 static int __init cmdline_parse_movablecore(char *p)
7563 {
7564 	return cmdline_parse_core(p, &required_movablecore,
7565 				  &required_movablecore_percent);
7566 }
7567 
7568 early_param("kernelcore", cmdline_parse_kernelcore);
7569 early_param("movablecore", cmdline_parse_movablecore);
7570 
7571 void adjust_managed_page_count(struct page *page, long count)
7572 {
7573 	atomic_long_add(count, &page_zone(page)->managed_pages);
7574 	totalram_pages_add(count);
7575 #ifdef CONFIG_HIGHMEM
7576 	if (PageHighMem(page))
7577 		totalhigh_pages_add(count);
7578 #endif
7579 }
7580 EXPORT_SYMBOL(adjust_managed_page_count);
7581 
7582 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7583 {
7584 	void *pos;
7585 	unsigned long pages = 0;
7586 
7587 	start = (void *)PAGE_ALIGN((unsigned long)start);
7588 	end = (void *)((unsigned long)end & PAGE_MASK);
7589 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7590 		struct page *page = virt_to_page(pos);
7591 		void *direct_map_addr;
7592 
7593 		/*
7594 		 * 'direct_map_addr' might be different from 'pos'
7595 		 * because some architectures' virt_to_page()
7596 		 * work with aliases.  Getting the direct map
7597 		 * address ensures that we get a _writeable_
7598 		 * alias for the memset().
7599 		 */
7600 		direct_map_addr = page_address(page);
7601 		if ((unsigned int)poison <= 0xFF)
7602 			memset(direct_map_addr, poison, PAGE_SIZE);
7603 
7604 		free_reserved_page(page);
7605 	}
7606 
7607 	if (pages && s)
7608 		pr_info("Freeing %s memory: %ldK\n",
7609 			s, pages << (PAGE_SHIFT - 10));
7610 
7611 	return pages;
7612 }
7613 
7614 #ifdef	CONFIG_HIGHMEM
7615 void free_highmem_page(struct page *page)
7616 {
7617 	__free_reserved_page(page);
7618 	totalram_pages_inc();
7619 	atomic_long_inc(&page_zone(page)->managed_pages);
7620 	totalhigh_pages_inc();
7621 }
7622 #endif
7623 
7624 
7625 void __init mem_init_print_info(const char *str)
7626 {
7627 	unsigned long physpages, codesize, datasize, rosize, bss_size;
7628 	unsigned long init_code_size, init_data_size;
7629 
7630 	physpages = get_num_physpages();
7631 	codesize = _etext - _stext;
7632 	datasize = _edata - _sdata;
7633 	rosize = __end_rodata - __start_rodata;
7634 	bss_size = __bss_stop - __bss_start;
7635 	init_data_size = __init_end - __init_begin;
7636 	init_code_size = _einittext - _sinittext;
7637 
7638 	/*
7639 	 * Detect special cases and adjust section sizes accordingly:
7640 	 * 1) .init.* may be embedded into .data sections
7641 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
7642 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
7643 	 * 3) .rodata.* may be embedded into .text or .data sections.
7644 	 */
7645 #define adj_init_size(start, end, size, pos, adj) \
7646 	do { \
7647 		if (start <= pos && pos < end && size > adj) \
7648 			size -= adj; \
7649 	} while (0)
7650 
7651 	adj_init_size(__init_begin, __init_end, init_data_size,
7652 		     _sinittext, init_code_size);
7653 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7654 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7655 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7656 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7657 
7658 #undef	adj_init_size
7659 
7660 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7661 #ifdef	CONFIG_HIGHMEM
7662 		", %luK highmem"
7663 #endif
7664 		"%s%s)\n",
7665 		nr_free_pages() << (PAGE_SHIFT - 10),
7666 		physpages << (PAGE_SHIFT - 10),
7667 		codesize >> 10, datasize >> 10, rosize >> 10,
7668 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7669 		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7670 		totalcma_pages << (PAGE_SHIFT - 10),
7671 #ifdef	CONFIG_HIGHMEM
7672 		totalhigh_pages() << (PAGE_SHIFT - 10),
7673 #endif
7674 		str ? ", " : "", str ? str : "");
7675 }
7676 
7677 /**
7678  * set_dma_reserve - set the specified number of pages reserved in the first zone
7679  * @new_dma_reserve: The number of pages to mark reserved
7680  *
7681  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7682  * In the DMA zone, a significant percentage may be consumed by kernel image
7683  * and other unfreeable allocations which can skew the watermarks badly. This
7684  * function may optionally be used to account for unfreeable pages in the
7685  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7686  * smaller per-cpu batchsize.
7687  */
7688 void __init set_dma_reserve(unsigned long new_dma_reserve)
7689 {
7690 	dma_reserve = new_dma_reserve;
7691 }
7692 
7693 static int page_alloc_cpu_dead(unsigned int cpu)
7694 {
7695 
7696 	lru_add_drain_cpu(cpu);
7697 	drain_pages(cpu);
7698 
7699 	/*
7700 	 * Spill the event counters of the dead processor
7701 	 * into the current processors event counters.
7702 	 * This artificially elevates the count of the current
7703 	 * processor.
7704 	 */
7705 	vm_events_fold_cpu(cpu);
7706 
7707 	/*
7708 	 * Zero the differential counters of the dead processor
7709 	 * so that the vm statistics are consistent.
7710 	 *
7711 	 * This is only okay since the processor is dead and cannot
7712 	 * race with what we are doing.
7713 	 */
7714 	cpu_vm_stats_fold(cpu);
7715 	return 0;
7716 }
7717 
7718 #ifdef CONFIG_NUMA
7719 int hashdist = HASHDIST_DEFAULT;
7720 
7721 static int __init set_hashdist(char *str)
7722 {
7723 	if (!str)
7724 		return 0;
7725 	hashdist = simple_strtoul(str, &str, 0);
7726 	return 1;
7727 }
7728 __setup("hashdist=", set_hashdist);
7729 #endif
7730 
7731 void __init page_alloc_init(void)
7732 {
7733 	int ret;
7734 
7735 #ifdef CONFIG_NUMA
7736 	if (num_node_state(N_MEMORY) == 1)
7737 		hashdist = 0;
7738 #endif
7739 
7740 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7741 					"mm/page_alloc:dead", NULL,
7742 					page_alloc_cpu_dead);
7743 	WARN_ON(ret < 0);
7744 }
7745 
7746 /*
7747  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7748  *	or min_free_kbytes changes.
7749  */
7750 static void calculate_totalreserve_pages(void)
7751 {
7752 	struct pglist_data *pgdat;
7753 	unsigned long reserve_pages = 0;
7754 	enum zone_type i, j;
7755 
7756 	for_each_online_pgdat(pgdat) {
7757 
7758 		pgdat->totalreserve_pages = 0;
7759 
7760 		for (i = 0; i < MAX_NR_ZONES; i++) {
7761 			struct zone *zone = pgdat->node_zones + i;
7762 			long max = 0;
7763 			unsigned long managed_pages = zone_managed_pages(zone);
7764 
7765 			/* Find valid and maximum lowmem_reserve in the zone */
7766 			for (j = i; j < MAX_NR_ZONES; j++) {
7767 				if (zone->lowmem_reserve[j] > max)
7768 					max = zone->lowmem_reserve[j];
7769 			}
7770 
7771 			/* we treat the high watermark as reserved pages. */
7772 			max += high_wmark_pages(zone);
7773 
7774 			if (max > managed_pages)
7775 				max = managed_pages;
7776 
7777 			pgdat->totalreserve_pages += max;
7778 
7779 			reserve_pages += max;
7780 		}
7781 	}
7782 	totalreserve_pages = reserve_pages;
7783 }
7784 
7785 /*
7786  * setup_per_zone_lowmem_reserve - called whenever
7787  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
7788  *	has a correct pages reserved value, so an adequate number of
7789  *	pages are left in the zone after a successful __alloc_pages().
7790  */
7791 static void setup_per_zone_lowmem_reserve(void)
7792 {
7793 	struct pglist_data *pgdat;
7794 	enum zone_type j, idx;
7795 
7796 	for_each_online_pgdat(pgdat) {
7797 		for (j = 0; j < MAX_NR_ZONES; j++) {
7798 			struct zone *zone = pgdat->node_zones + j;
7799 			unsigned long managed_pages = zone_managed_pages(zone);
7800 
7801 			zone->lowmem_reserve[j] = 0;
7802 
7803 			idx = j;
7804 			while (idx) {
7805 				struct zone *lower_zone;
7806 
7807 				idx--;
7808 				lower_zone = pgdat->node_zones + idx;
7809 
7810 				if (!sysctl_lowmem_reserve_ratio[idx] ||
7811 				    !zone_managed_pages(lower_zone)) {
7812 					lower_zone->lowmem_reserve[j] = 0;
7813 					continue;
7814 				} else {
7815 					lower_zone->lowmem_reserve[j] =
7816 						managed_pages / sysctl_lowmem_reserve_ratio[idx];
7817 				}
7818 				managed_pages += zone_managed_pages(lower_zone);
7819 			}
7820 		}
7821 	}
7822 
7823 	/* update totalreserve_pages */
7824 	calculate_totalreserve_pages();
7825 }
7826 
7827 static void __setup_per_zone_wmarks(void)
7828 {
7829 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7830 	unsigned long lowmem_pages = 0;
7831 	struct zone *zone;
7832 	unsigned long flags;
7833 
7834 	/* Calculate total number of !ZONE_HIGHMEM pages */
7835 	for_each_zone(zone) {
7836 		if (!is_highmem(zone))
7837 			lowmem_pages += zone_managed_pages(zone);
7838 	}
7839 
7840 	for_each_zone(zone) {
7841 		u64 tmp;
7842 
7843 		spin_lock_irqsave(&zone->lock, flags);
7844 		tmp = (u64)pages_min * zone_managed_pages(zone);
7845 		do_div(tmp, lowmem_pages);
7846 		if (is_highmem(zone)) {
7847 			/*
7848 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7849 			 * need highmem pages, so cap pages_min to a small
7850 			 * value here.
7851 			 *
7852 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7853 			 * deltas control async page reclaim, and so should
7854 			 * not be capped for highmem.
7855 			 */
7856 			unsigned long min_pages;
7857 
7858 			min_pages = zone_managed_pages(zone) / 1024;
7859 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7860 			zone->_watermark[WMARK_MIN] = min_pages;
7861 		} else {
7862 			/*
7863 			 * If it's a lowmem zone, reserve a number of pages
7864 			 * proportionate to the zone's size.
7865 			 */
7866 			zone->_watermark[WMARK_MIN] = tmp;
7867 		}
7868 
7869 		/*
7870 		 * Set the kswapd watermarks distance according to the
7871 		 * scale factor in proportion to available memory, but
7872 		 * ensure a minimum size on small systems.
7873 		 */
7874 		tmp = max_t(u64, tmp >> 2,
7875 			    mult_frac(zone_managed_pages(zone),
7876 				      watermark_scale_factor, 10000));
7877 
7878 		zone->watermark_boost = 0;
7879 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
7880 		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7881 
7882 		spin_unlock_irqrestore(&zone->lock, flags);
7883 	}
7884 
7885 	/* update totalreserve_pages */
7886 	calculate_totalreserve_pages();
7887 }
7888 
7889 /**
7890  * setup_per_zone_wmarks - called when min_free_kbytes changes
7891  * or when memory is hot-{added|removed}
7892  *
7893  * Ensures that the watermark[min,low,high] values for each zone are set
7894  * correctly with respect to min_free_kbytes.
7895  */
7896 void setup_per_zone_wmarks(void)
7897 {
7898 	static DEFINE_SPINLOCK(lock);
7899 
7900 	spin_lock(&lock);
7901 	__setup_per_zone_wmarks();
7902 	spin_unlock(&lock);
7903 }
7904 
7905 /*
7906  * Initialise min_free_kbytes.
7907  *
7908  * For small machines we want it small (128k min).  For large machines
7909  * we want it large (256MB max).  But it is not linear, because network
7910  * bandwidth does not increase linearly with machine size.  We use
7911  *
7912  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7913  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
7914  *
7915  * which yields
7916  *
7917  * 16MB:	512k
7918  * 32MB:	724k
7919  * 64MB:	1024k
7920  * 128MB:	1448k
7921  * 256MB:	2048k
7922  * 512MB:	2896k
7923  * 1024MB:	4096k
7924  * 2048MB:	5792k
7925  * 4096MB:	8192k
7926  * 8192MB:	11584k
7927  * 16384MB:	16384k
7928  */
7929 int __meminit init_per_zone_wmark_min(void)
7930 {
7931 	unsigned long lowmem_kbytes;
7932 	int new_min_free_kbytes;
7933 
7934 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7935 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7936 
7937 	if (new_min_free_kbytes > user_min_free_kbytes) {
7938 		min_free_kbytes = new_min_free_kbytes;
7939 		if (min_free_kbytes < 128)
7940 			min_free_kbytes = 128;
7941 		if (min_free_kbytes > 262144)
7942 			min_free_kbytes = 262144;
7943 	} else {
7944 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7945 				new_min_free_kbytes, user_min_free_kbytes);
7946 	}
7947 	setup_per_zone_wmarks();
7948 	refresh_zone_stat_thresholds();
7949 	setup_per_zone_lowmem_reserve();
7950 
7951 #ifdef CONFIG_NUMA
7952 	setup_min_unmapped_ratio();
7953 	setup_min_slab_ratio();
7954 #endif
7955 
7956 	khugepaged_min_free_kbytes_update();
7957 
7958 	return 0;
7959 }
7960 postcore_initcall(init_per_zone_wmark_min)
7961 
7962 /*
7963  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7964  *	that we can call two helper functions whenever min_free_kbytes
7965  *	changes.
7966  */
7967 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7968 		void *buffer, size_t *length, loff_t *ppos)
7969 {
7970 	int rc;
7971 
7972 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7973 	if (rc)
7974 		return rc;
7975 
7976 	if (write) {
7977 		user_min_free_kbytes = min_free_kbytes;
7978 		setup_per_zone_wmarks();
7979 	}
7980 	return 0;
7981 }
7982 
7983 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7984 		void *buffer, size_t *length, loff_t *ppos)
7985 {
7986 	int rc;
7987 
7988 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7989 	if (rc)
7990 		return rc;
7991 
7992 	if (write)
7993 		setup_per_zone_wmarks();
7994 
7995 	return 0;
7996 }
7997 
7998 #ifdef CONFIG_NUMA
7999 static void setup_min_unmapped_ratio(void)
8000 {
8001 	pg_data_t *pgdat;
8002 	struct zone *zone;
8003 
8004 	for_each_online_pgdat(pgdat)
8005 		pgdat->min_unmapped_pages = 0;
8006 
8007 	for_each_zone(zone)
8008 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8009 						         sysctl_min_unmapped_ratio) / 100;
8010 }
8011 
8012 
8013 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8014 		void *buffer, size_t *length, loff_t *ppos)
8015 {
8016 	int rc;
8017 
8018 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8019 	if (rc)
8020 		return rc;
8021 
8022 	setup_min_unmapped_ratio();
8023 
8024 	return 0;
8025 }
8026 
8027 static void setup_min_slab_ratio(void)
8028 {
8029 	pg_data_t *pgdat;
8030 	struct zone *zone;
8031 
8032 	for_each_online_pgdat(pgdat)
8033 		pgdat->min_slab_pages = 0;
8034 
8035 	for_each_zone(zone)
8036 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8037 						     sysctl_min_slab_ratio) / 100;
8038 }
8039 
8040 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8041 		void *buffer, size_t *length, loff_t *ppos)
8042 {
8043 	int rc;
8044 
8045 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8046 	if (rc)
8047 		return rc;
8048 
8049 	setup_min_slab_ratio();
8050 
8051 	return 0;
8052 }
8053 #endif
8054 
8055 /*
8056  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8057  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8058  *	whenever sysctl_lowmem_reserve_ratio changes.
8059  *
8060  * The reserve ratio obviously has absolutely no relation with the
8061  * minimum watermarks. The lowmem reserve ratio can only make sense
8062  * if in function of the boot time zone sizes.
8063  */
8064 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8065 		void *buffer, size_t *length, loff_t *ppos)
8066 {
8067 	int i;
8068 
8069 	proc_dointvec_minmax(table, write, buffer, length, ppos);
8070 
8071 	for (i = 0; i < MAX_NR_ZONES; i++) {
8072 		if (sysctl_lowmem_reserve_ratio[i] < 1)
8073 			sysctl_lowmem_reserve_ratio[i] = 0;
8074 	}
8075 
8076 	setup_per_zone_lowmem_reserve();
8077 	return 0;
8078 }
8079 
8080 static void __zone_pcp_update(struct zone *zone)
8081 {
8082 	unsigned int cpu;
8083 
8084 	for_each_possible_cpu(cpu)
8085 		pageset_set_high_and_batch(zone,
8086 				per_cpu_ptr(zone->pageset, cpu));
8087 }
8088 
8089 /*
8090  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8091  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
8092  * pagelist can have before it gets flushed back to buddy allocator.
8093  */
8094 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8095 		void *buffer, size_t *length, loff_t *ppos)
8096 {
8097 	struct zone *zone;
8098 	int old_percpu_pagelist_fraction;
8099 	int ret;
8100 
8101 	mutex_lock(&pcp_batch_high_lock);
8102 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8103 
8104 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8105 	if (!write || ret < 0)
8106 		goto out;
8107 
8108 	/* Sanity checking to avoid pcp imbalance */
8109 	if (percpu_pagelist_fraction &&
8110 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8111 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8112 		ret = -EINVAL;
8113 		goto out;
8114 	}
8115 
8116 	/* No change? */
8117 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8118 		goto out;
8119 
8120 	for_each_populated_zone(zone)
8121 		__zone_pcp_update(zone);
8122 out:
8123 	mutex_unlock(&pcp_batch_high_lock);
8124 	return ret;
8125 }
8126 
8127 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8128 /*
8129  * Returns the number of pages that arch has reserved but
8130  * is not known to alloc_large_system_hash().
8131  */
8132 static unsigned long __init arch_reserved_kernel_pages(void)
8133 {
8134 	return 0;
8135 }
8136 #endif
8137 
8138 /*
8139  * Adaptive scale is meant to reduce sizes of hash tables on large memory
8140  * machines. As memory size is increased the scale is also increased but at
8141  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
8142  * quadruples the scale is increased by one, which means the size of hash table
8143  * only doubles, instead of quadrupling as well.
8144  * Because 32-bit systems cannot have large physical memory, where this scaling
8145  * makes sense, it is disabled on such platforms.
8146  */
8147 #if __BITS_PER_LONG > 32
8148 #define ADAPT_SCALE_BASE	(64ul << 30)
8149 #define ADAPT_SCALE_SHIFT	2
8150 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
8151 #endif
8152 
8153 /*
8154  * allocate a large system hash table from bootmem
8155  * - it is assumed that the hash table must contain an exact power-of-2
8156  *   quantity of entries
8157  * - limit is the number of hash buckets, not the total allocation size
8158  */
8159 void *__init alloc_large_system_hash(const char *tablename,
8160 				     unsigned long bucketsize,
8161 				     unsigned long numentries,
8162 				     int scale,
8163 				     int flags,
8164 				     unsigned int *_hash_shift,
8165 				     unsigned int *_hash_mask,
8166 				     unsigned long low_limit,
8167 				     unsigned long high_limit)
8168 {
8169 	unsigned long long max = high_limit;
8170 	unsigned long log2qty, size;
8171 	void *table = NULL;
8172 	gfp_t gfp_flags;
8173 	bool virt;
8174 
8175 	/* allow the kernel cmdline to have a say */
8176 	if (!numentries) {
8177 		/* round applicable memory size up to nearest megabyte */
8178 		numentries = nr_kernel_pages;
8179 		numentries -= arch_reserved_kernel_pages();
8180 
8181 		/* It isn't necessary when PAGE_SIZE >= 1MB */
8182 		if (PAGE_SHIFT < 20)
8183 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8184 
8185 #if __BITS_PER_LONG > 32
8186 		if (!high_limit) {
8187 			unsigned long adapt;
8188 
8189 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8190 			     adapt <<= ADAPT_SCALE_SHIFT)
8191 				scale++;
8192 		}
8193 #endif
8194 
8195 		/* limit to 1 bucket per 2^scale bytes of low memory */
8196 		if (scale > PAGE_SHIFT)
8197 			numentries >>= (scale - PAGE_SHIFT);
8198 		else
8199 			numentries <<= (PAGE_SHIFT - scale);
8200 
8201 		/* Make sure we've got at least a 0-order allocation.. */
8202 		if (unlikely(flags & HASH_SMALL)) {
8203 			/* Makes no sense without HASH_EARLY */
8204 			WARN_ON(!(flags & HASH_EARLY));
8205 			if (!(numentries >> *_hash_shift)) {
8206 				numentries = 1UL << *_hash_shift;
8207 				BUG_ON(!numentries);
8208 			}
8209 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8210 			numentries = PAGE_SIZE / bucketsize;
8211 	}
8212 	numentries = roundup_pow_of_two(numentries);
8213 
8214 	/* limit allocation size to 1/16 total memory by default */
8215 	if (max == 0) {
8216 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8217 		do_div(max, bucketsize);
8218 	}
8219 	max = min(max, 0x80000000ULL);
8220 
8221 	if (numentries < low_limit)
8222 		numentries = low_limit;
8223 	if (numentries > max)
8224 		numentries = max;
8225 
8226 	log2qty = ilog2(numentries);
8227 
8228 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8229 	do {
8230 		virt = false;
8231 		size = bucketsize << log2qty;
8232 		if (flags & HASH_EARLY) {
8233 			if (flags & HASH_ZERO)
8234 				table = memblock_alloc(size, SMP_CACHE_BYTES);
8235 			else
8236 				table = memblock_alloc_raw(size,
8237 							   SMP_CACHE_BYTES);
8238 		} else if (get_order(size) >= MAX_ORDER || hashdist) {
8239 			table = __vmalloc(size, gfp_flags);
8240 			virt = true;
8241 		} else {
8242 			/*
8243 			 * If bucketsize is not a power-of-two, we may free
8244 			 * some pages at the end of hash table which
8245 			 * alloc_pages_exact() automatically does
8246 			 */
8247 			table = alloc_pages_exact(size, gfp_flags);
8248 			kmemleak_alloc(table, size, 1, gfp_flags);
8249 		}
8250 	} while (!table && size > PAGE_SIZE && --log2qty);
8251 
8252 	if (!table)
8253 		panic("Failed to allocate %s hash table\n", tablename);
8254 
8255 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8256 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8257 		virt ? "vmalloc" : "linear");
8258 
8259 	if (_hash_shift)
8260 		*_hash_shift = log2qty;
8261 	if (_hash_mask)
8262 		*_hash_mask = (1 << log2qty) - 1;
8263 
8264 	return table;
8265 }
8266 
8267 /*
8268  * This function checks whether pageblock includes unmovable pages or not.
8269  *
8270  * PageLRU check without isolation or lru_lock could race so that
8271  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8272  * check without lock_page also may miss some movable non-lru pages at
8273  * race condition. So you can't expect this function should be exact.
8274  *
8275  * Returns a page without holding a reference. If the caller wants to
8276  * dereference that page (e.g., dumping), it has to make sure that it
8277  * cannot get removed (e.g., via memory unplug) concurrently.
8278  *
8279  */
8280 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8281 				 int migratetype, int flags)
8282 {
8283 	unsigned long iter = 0;
8284 	unsigned long pfn = page_to_pfn(page);
8285 	unsigned long offset = pfn % pageblock_nr_pages;
8286 
8287 	if (is_migrate_cma_page(page)) {
8288 		/*
8289 		 * CMA allocations (alloc_contig_range) really need to mark
8290 		 * isolate CMA pageblocks even when they are not movable in fact
8291 		 * so consider them movable here.
8292 		 */
8293 		if (is_migrate_cma(migratetype))
8294 			return NULL;
8295 
8296 		return page;
8297 	}
8298 
8299 	for (; iter < pageblock_nr_pages - offset; iter++) {
8300 		if (!pfn_valid_within(pfn + iter))
8301 			continue;
8302 
8303 		page = pfn_to_page(pfn + iter);
8304 
8305 		/*
8306 		 * Both, bootmem allocations and memory holes are marked
8307 		 * PG_reserved and are unmovable. We can even have unmovable
8308 		 * allocations inside ZONE_MOVABLE, for example when
8309 		 * specifying "movablecore".
8310 		 */
8311 		if (PageReserved(page))
8312 			return page;
8313 
8314 		/*
8315 		 * If the zone is movable and we have ruled out all reserved
8316 		 * pages then it should be reasonably safe to assume the rest
8317 		 * is movable.
8318 		 */
8319 		if (zone_idx(zone) == ZONE_MOVABLE)
8320 			continue;
8321 
8322 		/*
8323 		 * Hugepages are not in LRU lists, but they're movable.
8324 		 * THPs are on the LRU, but need to be counted as #small pages.
8325 		 * We need not scan over tail pages because we don't
8326 		 * handle each tail page individually in migration.
8327 		 */
8328 		if (PageHuge(page) || PageTransCompound(page)) {
8329 			struct page *head = compound_head(page);
8330 			unsigned int skip_pages;
8331 
8332 			if (PageHuge(page)) {
8333 				if (!hugepage_migration_supported(page_hstate(head)))
8334 					return page;
8335 			} else if (!PageLRU(head) && !__PageMovable(head)) {
8336 				return page;
8337 			}
8338 
8339 			skip_pages = compound_nr(head) - (page - head);
8340 			iter += skip_pages - 1;
8341 			continue;
8342 		}
8343 
8344 		/*
8345 		 * We can't use page_count without pin a page
8346 		 * because another CPU can free compound page.
8347 		 * This check already skips compound tails of THP
8348 		 * because their page->_refcount is zero at all time.
8349 		 */
8350 		if (!page_ref_count(page)) {
8351 			if (PageBuddy(page))
8352 				iter += (1 << buddy_order(page)) - 1;
8353 			continue;
8354 		}
8355 
8356 		/*
8357 		 * The HWPoisoned page may be not in buddy system, and
8358 		 * page_count() is not 0.
8359 		 */
8360 		if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8361 			continue;
8362 
8363 		/*
8364 		 * We treat all PageOffline() pages as movable when offlining
8365 		 * to give drivers a chance to decrement their reference count
8366 		 * in MEM_GOING_OFFLINE in order to indicate that these pages
8367 		 * can be offlined as there are no direct references anymore.
8368 		 * For actually unmovable PageOffline() where the driver does
8369 		 * not support this, we will fail later when trying to actually
8370 		 * move these pages that still have a reference count > 0.
8371 		 * (false negatives in this function only)
8372 		 */
8373 		if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8374 			continue;
8375 
8376 		if (__PageMovable(page) || PageLRU(page))
8377 			continue;
8378 
8379 		/*
8380 		 * If there are RECLAIMABLE pages, we need to check
8381 		 * it.  But now, memory offline itself doesn't call
8382 		 * shrink_node_slabs() and it still to be fixed.
8383 		 */
8384 		return page;
8385 	}
8386 	return NULL;
8387 }
8388 
8389 #ifdef CONFIG_CONTIG_ALLOC
8390 static unsigned long pfn_max_align_down(unsigned long pfn)
8391 {
8392 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8393 			     pageblock_nr_pages) - 1);
8394 }
8395 
8396 static unsigned long pfn_max_align_up(unsigned long pfn)
8397 {
8398 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8399 				pageblock_nr_pages));
8400 }
8401 
8402 /* [start, end) must belong to a single zone. */
8403 static int __alloc_contig_migrate_range(struct compact_control *cc,
8404 					unsigned long start, unsigned long end)
8405 {
8406 	/* This function is based on compact_zone() from compaction.c. */
8407 	unsigned int nr_reclaimed;
8408 	unsigned long pfn = start;
8409 	unsigned int tries = 0;
8410 	int ret = 0;
8411 	struct migration_target_control mtc = {
8412 		.nid = zone_to_nid(cc->zone),
8413 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8414 	};
8415 
8416 	migrate_prep();
8417 
8418 	while (pfn < end || !list_empty(&cc->migratepages)) {
8419 		if (fatal_signal_pending(current)) {
8420 			ret = -EINTR;
8421 			break;
8422 		}
8423 
8424 		if (list_empty(&cc->migratepages)) {
8425 			cc->nr_migratepages = 0;
8426 			pfn = isolate_migratepages_range(cc, pfn, end);
8427 			if (!pfn) {
8428 				ret = -EINTR;
8429 				break;
8430 			}
8431 			tries = 0;
8432 		} else if (++tries == 5) {
8433 			ret = ret < 0 ? ret : -EBUSY;
8434 			break;
8435 		}
8436 
8437 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8438 							&cc->migratepages);
8439 		cc->nr_migratepages -= nr_reclaimed;
8440 
8441 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8442 				NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
8443 	}
8444 	if (ret < 0) {
8445 		putback_movable_pages(&cc->migratepages);
8446 		return ret;
8447 	}
8448 	return 0;
8449 }
8450 
8451 /**
8452  * alloc_contig_range() -- tries to allocate given range of pages
8453  * @start:	start PFN to allocate
8454  * @end:	one-past-the-last PFN to allocate
8455  * @migratetype:	migratetype of the underlaying pageblocks (either
8456  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
8457  *			in range must have the same migratetype and it must
8458  *			be either of the two.
8459  * @gfp_mask:	GFP mask to use during compaction
8460  *
8461  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8462  * aligned.  The PFN range must belong to a single zone.
8463  *
8464  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8465  * pageblocks in the range.  Once isolated, the pageblocks should not
8466  * be modified by others.
8467  *
8468  * Return: zero on success or negative error code.  On success all
8469  * pages which PFN is in [start, end) are allocated for the caller and
8470  * need to be freed with free_contig_range().
8471  */
8472 int alloc_contig_range(unsigned long start, unsigned long end,
8473 		       unsigned migratetype, gfp_t gfp_mask)
8474 {
8475 	unsigned long outer_start, outer_end;
8476 	unsigned int order;
8477 	int ret = 0;
8478 
8479 	struct compact_control cc = {
8480 		.nr_migratepages = 0,
8481 		.order = -1,
8482 		.zone = page_zone(pfn_to_page(start)),
8483 		.mode = MIGRATE_SYNC,
8484 		.ignore_skip_hint = true,
8485 		.no_set_skip_hint = true,
8486 		.gfp_mask = current_gfp_context(gfp_mask),
8487 		.alloc_contig = true,
8488 	};
8489 	INIT_LIST_HEAD(&cc.migratepages);
8490 
8491 	/*
8492 	 * What we do here is we mark all pageblocks in range as
8493 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
8494 	 * have different sizes, and due to the way page allocator
8495 	 * work, we align the range to biggest of the two pages so
8496 	 * that page allocator won't try to merge buddies from
8497 	 * different pageblocks and change MIGRATE_ISOLATE to some
8498 	 * other migration type.
8499 	 *
8500 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8501 	 * migrate the pages from an unaligned range (ie. pages that
8502 	 * we are interested in).  This will put all the pages in
8503 	 * range back to page allocator as MIGRATE_ISOLATE.
8504 	 *
8505 	 * When this is done, we take the pages in range from page
8506 	 * allocator removing them from the buddy system.  This way
8507 	 * page allocator will never consider using them.
8508 	 *
8509 	 * This lets us mark the pageblocks back as
8510 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8511 	 * aligned range but not in the unaligned, original range are
8512 	 * put back to page allocator so that buddy can use them.
8513 	 */
8514 
8515 	ret = start_isolate_page_range(pfn_max_align_down(start),
8516 				       pfn_max_align_up(end), migratetype, 0);
8517 	if (ret)
8518 		return ret;
8519 
8520 	/*
8521 	 * In case of -EBUSY, we'd like to know which page causes problem.
8522 	 * So, just fall through. test_pages_isolated() has a tracepoint
8523 	 * which will report the busy page.
8524 	 *
8525 	 * It is possible that busy pages could become available before
8526 	 * the call to test_pages_isolated, and the range will actually be
8527 	 * allocated.  So, if we fall through be sure to clear ret so that
8528 	 * -EBUSY is not accidentally used or returned to caller.
8529 	 */
8530 	ret = __alloc_contig_migrate_range(&cc, start, end);
8531 	if (ret && ret != -EBUSY)
8532 		goto done;
8533 	ret =0;
8534 
8535 	/*
8536 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8537 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
8538 	 * more, all pages in [start, end) are free in page allocator.
8539 	 * What we are going to do is to allocate all pages from
8540 	 * [start, end) (that is remove them from page allocator).
8541 	 *
8542 	 * The only problem is that pages at the beginning and at the
8543 	 * end of interesting range may be not aligned with pages that
8544 	 * page allocator holds, ie. they can be part of higher order
8545 	 * pages.  Because of this, we reserve the bigger range and
8546 	 * once this is done free the pages we are not interested in.
8547 	 *
8548 	 * We don't have to hold zone->lock here because the pages are
8549 	 * isolated thus they won't get removed from buddy.
8550 	 */
8551 
8552 	lru_add_drain_all();
8553 
8554 	order = 0;
8555 	outer_start = start;
8556 	while (!PageBuddy(pfn_to_page(outer_start))) {
8557 		if (++order >= MAX_ORDER) {
8558 			outer_start = start;
8559 			break;
8560 		}
8561 		outer_start &= ~0UL << order;
8562 	}
8563 
8564 	if (outer_start != start) {
8565 		order = buddy_order(pfn_to_page(outer_start));
8566 
8567 		/*
8568 		 * outer_start page could be small order buddy page and
8569 		 * it doesn't include start page. Adjust outer_start
8570 		 * in this case to report failed page properly
8571 		 * on tracepoint in test_pages_isolated()
8572 		 */
8573 		if (outer_start + (1UL << order) <= start)
8574 			outer_start = start;
8575 	}
8576 
8577 	/* Make sure the range is really isolated. */
8578 	if (test_pages_isolated(outer_start, end, 0)) {
8579 		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8580 			__func__, outer_start, end);
8581 		ret = -EBUSY;
8582 		goto done;
8583 	}
8584 
8585 	/* Grab isolated pages from freelists. */
8586 	outer_end = isolate_freepages_range(&cc, outer_start, end);
8587 	if (!outer_end) {
8588 		ret = -EBUSY;
8589 		goto done;
8590 	}
8591 
8592 	/* Free head and tail (if any) */
8593 	if (start != outer_start)
8594 		free_contig_range(outer_start, start - outer_start);
8595 	if (end != outer_end)
8596 		free_contig_range(end, outer_end - end);
8597 
8598 done:
8599 	undo_isolate_page_range(pfn_max_align_down(start),
8600 				pfn_max_align_up(end), migratetype);
8601 	return ret;
8602 }
8603 EXPORT_SYMBOL(alloc_contig_range);
8604 
8605 static int __alloc_contig_pages(unsigned long start_pfn,
8606 				unsigned long nr_pages, gfp_t gfp_mask)
8607 {
8608 	unsigned long end_pfn = start_pfn + nr_pages;
8609 
8610 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8611 				  gfp_mask);
8612 }
8613 
8614 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8615 				   unsigned long nr_pages)
8616 {
8617 	unsigned long i, end_pfn = start_pfn + nr_pages;
8618 	struct page *page;
8619 
8620 	for (i = start_pfn; i < end_pfn; i++) {
8621 		page = pfn_to_online_page(i);
8622 		if (!page)
8623 			return false;
8624 
8625 		if (page_zone(page) != z)
8626 			return false;
8627 
8628 		if (PageReserved(page))
8629 			return false;
8630 
8631 		if (page_count(page) > 0)
8632 			return false;
8633 
8634 		if (PageHuge(page))
8635 			return false;
8636 	}
8637 	return true;
8638 }
8639 
8640 static bool zone_spans_last_pfn(const struct zone *zone,
8641 				unsigned long start_pfn, unsigned long nr_pages)
8642 {
8643 	unsigned long last_pfn = start_pfn + nr_pages - 1;
8644 
8645 	return zone_spans_pfn(zone, last_pfn);
8646 }
8647 
8648 /**
8649  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8650  * @nr_pages:	Number of contiguous pages to allocate
8651  * @gfp_mask:	GFP mask to limit search and used during compaction
8652  * @nid:	Target node
8653  * @nodemask:	Mask for other possible nodes
8654  *
8655  * This routine is a wrapper around alloc_contig_range(). It scans over zones
8656  * on an applicable zonelist to find a contiguous pfn range which can then be
8657  * tried for allocation with alloc_contig_range(). This routine is intended
8658  * for allocation requests which can not be fulfilled with the buddy allocator.
8659  *
8660  * The allocated memory is always aligned to a page boundary. If nr_pages is a
8661  * power of two then the alignment is guaranteed to be to the given nr_pages
8662  * (e.g. 1GB request would be aligned to 1GB).
8663  *
8664  * Allocated pages can be freed with free_contig_range() or by manually calling
8665  * __free_page() on each allocated page.
8666  *
8667  * Return: pointer to contiguous pages on success, or NULL if not successful.
8668  */
8669 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8670 				int nid, nodemask_t *nodemask)
8671 {
8672 	unsigned long ret, pfn, flags;
8673 	struct zonelist *zonelist;
8674 	struct zone *zone;
8675 	struct zoneref *z;
8676 
8677 	zonelist = node_zonelist(nid, gfp_mask);
8678 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
8679 					gfp_zone(gfp_mask), nodemask) {
8680 		spin_lock_irqsave(&zone->lock, flags);
8681 
8682 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8683 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8684 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8685 				/*
8686 				 * We release the zone lock here because
8687 				 * alloc_contig_range() will also lock the zone
8688 				 * at some point. If there's an allocation
8689 				 * spinning on this lock, it may win the race
8690 				 * and cause alloc_contig_range() to fail...
8691 				 */
8692 				spin_unlock_irqrestore(&zone->lock, flags);
8693 				ret = __alloc_contig_pages(pfn, nr_pages,
8694 							gfp_mask);
8695 				if (!ret)
8696 					return pfn_to_page(pfn);
8697 				spin_lock_irqsave(&zone->lock, flags);
8698 			}
8699 			pfn += nr_pages;
8700 		}
8701 		spin_unlock_irqrestore(&zone->lock, flags);
8702 	}
8703 	return NULL;
8704 }
8705 #endif /* CONFIG_CONTIG_ALLOC */
8706 
8707 void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8708 {
8709 	unsigned int count = 0;
8710 
8711 	for (; nr_pages--; pfn++) {
8712 		struct page *page = pfn_to_page(pfn);
8713 
8714 		count += page_count(page) != 1;
8715 		__free_page(page);
8716 	}
8717 	WARN(count != 0, "%d pages are still in use!\n", count);
8718 }
8719 EXPORT_SYMBOL(free_contig_range);
8720 
8721 /*
8722  * The zone indicated has a new number of managed_pages; batch sizes and percpu
8723  * page high values need to be recalulated.
8724  */
8725 void __meminit zone_pcp_update(struct zone *zone)
8726 {
8727 	mutex_lock(&pcp_batch_high_lock);
8728 	__zone_pcp_update(zone);
8729 	mutex_unlock(&pcp_batch_high_lock);
8730 }
8731 
8732 void zone_pcp_reset(struct zone *zone)
8733 {
8734 	unsigned long flags;
8735 	int cpu;
8736 	struct per_cpu_pageset *pset;
8737 
8738 	/* avoid races with drain_pages()  */
8739 	local_irq_save(flags);
8740 	if (zone->pageset != &boot_pageset) {
8741 		for_each_online_cpu(cpu) {
8742 			pset = per_cpu_ptr(zone->pageset, cpu);
8743 			drain_zonestat(zone, pset);
8744 		}
8745 		free_percpu(zone->pageset);
8746 		zone->pageset = &boot_pageset;
8747 	}
8748 	local_irq_restore(flags);
8749 }
8750 
8751 #ifdef CONFIG_MEMORY_HOTREMOVE
8752 /*
8753  * All pages in the range must be in a single zone, must not contain holes,
8754  * must span full sections, and must be isolated before calling this function.
8755  */
8756 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8757 {
8758 	unsigned long pfn = start_pfn;
8759 	struct page *page;
8760 	struct zone *zone;
8761 	unsigned int order;
8762 	unsigned long flags;
8763 
8764 	offline_mem_sections(pfn, end_pfn);
8765 	zone = page_zone(pfn_to_page(pfn));
8766 	spin_lock_irqsave(&zone->lock, flags);
8767 	while (pfn < end_pfn) {
8768 		page = pfn_to_page(pfn);
8769 		/*
8770 		 * The HWPoisoned page may be not in buddy system, and
8771 		 * page_count() is not 0.
8772 		 */
8773 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8774 			pfn++;
8775 			continue;
8776 		}
8777 		/*
8778 		 * At this point all remaining PageOffline() pages have a
8779 		 * reference count of 0 and can simply be skipped.
8780 		 */
8781 		if (PageOffline(page)) {
8782 			BUG_ON(page_count(page));
8783 			BUG_ON(PageBuddy(page));
8784 			pfn++;
8785 			continue;
8786 		}
8787 
8788 		BUG_ON(page_count(page));
8789 		BUG_ON(!PageBuddy(page));
8790 		order = buddy_order(page);
8791 		del_page_from_free_list(page, zone, order);
8792 		pfn += (1 << order);
8793 	}
8794 	spin_unlock_irqrestore(&zone->lock, flags);
8795 }
8796 #endif
8797 
8798 bool is_free_buddy_page(struct page *page)
8799 {
8800 	struct zone *zone = page_zone(page);
8801 	unsigned long pfn = page_to_pfn(page);
8802 	unsigned long flags;
8803 	unsigned int order;
8804 
8805 	spin_lock_irqsave(&zone->lock, flags);
8806 	for (order = 0; order < MAX_ORDER; order++) {
8807 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8808 
8809 		if (PageBuddy(page_head) && buddy_order(page_head) >= order)
8810 			break;
8811 	}
8812 	spin_unlock_irqrestore(&zone->lock, flags);
8813 
8814 	return order < MAX_ORDER;
8815 }
8816 
8817 #ifdef CONFIG_MEMORY_FAILURE
8818 /*
8819  * Break down a higher-order page in sub-pages, and keep our target out of
8820  * buddy allocator.
8821  */
8822 static void break_down_buddy_pages(struct zone *zone, struct page *page,
8823 				   struct page *target, int low, int high,
8824 				   int migratetype)
8825 {
8826 	unsigned long size = 1 << high;
8827 	struct page *current_buddy, *next_page;
8828 
8829 	while (high > low) {
8830 		high--;
8831 		size >>= 1;
8832 
8833 		if (target >= &page[size]) {
8834 			next_page = page + size;
8835 			current_buddy = page;
8836 		} else {
8837 			next_page = page;
8838 			current_buddy = page + size;
8839 		}
8840 
8841 		if (set_page_guard(zone, current_buddy, high, migratetype))
8842 			continue;
8843 
8844 		if (current_buddy != target) {
8845 			add_to_free_list(current_buddy, zone, high, migratetype);
8846 			set_buddy_order(current_buddy, high);
8847 			page = next_page;
8848 		}
8849 	}
8850 }
8851 
8852 /*
8853  * Take a page that will be marked as poisoned off the buddy allocator.
8854  */
8855 bool take_page_off_buddy(struct page *page)
8856 {
8857 	struct zone *zone = page_zone(page);
8858 	unsigned long pfn = page_to_pfn(page);
8859 	unsigned long flags;
8860 	unsigned int order;
8861 	bool ret = false;
8862 
8863 	spin_lock_irqsave(&zone->lock, flags);
8864 	for (order = 0; order < MAX_ORDER; order++) {
8865 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8866 		int page_order = buddy_order(page_head);
8867 
8868 		if (PageBuddy(page_head) && page_order >= order) {
8869 			unsigned long pfn_head = page_to_pfn(page_head);
8870 			int migratetype = get_pfnblock_migratetype(page_head,
8871 								   pfn_head);
8872 
8873 			del_page_from_free_list(page_head, zone, page_order);
8874 			break_down_buddy_pages(zone, page_head, page, 0,
8875 						page_order, migratetype);
8876 			ret = true;
8877 			break;
8878 		}
8879 		if (page_count(page_head) > 0)
8880 			break;
8881 	}
8882 	spin_unlock_irqrestore(&zone->lock, flags);
8883 	return ret;
8884 }
8885 #endif
8886