1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/interrupt.h> 22 #include <linux/jiffies.h> 23 #include <linux/compiler.h> 24 #include <linux/kernel.h> 25 #include <linux/kasan.h> 26 #include <linux/kmsan.h> 27 #include <linux/module.h> 28 #include <linux/suspend.h> 29 #include <linux/ratelimit.h> 30 #include <linux/oom.h> 31 #include <linux/topology.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/memory_hotplug.h> 36 #include <linux/nodemask.h> 37 #include <linux/vmstat.h> 38 #include <linux/fault-inject.h> 39 #include <linux/compaction.h> 40 #include <trace/events/kmem.h> 41 #include <trace/events/oom.h> 42 #include <linux/prefetch.h> 43 #include <linux/mm_inline.h> 44 #include <linux/mmu_notifier.h> 45 #include <linux/migrate.h> 46 #include <linux/sched/mm.h> 47 #include <linux/page_owner.h> 48 #include <linux/page_table_check.h> 49 #include <linux/memcontrol.h> 50 #include <linux/ftrace.h> 51 #include <linux/lockdep.h> 52 #include <linux/psi.h> 53 #include <linux/khugepaged.h> 54 #include <linux/delayacct.h> 55 #include <asm/div64.h> 56 #include "internal.h" 57 #include "shuffle.h" 58 #include "page_reporting.h" 59 60 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 61 typedef int __bitwise fpi_t; 62 63 /* No special request */ 64 #define FPI_NONE ((__force fpi_t)0) 65 66 /* 67 * Skip free page reporting notification for the (possibly merged) page. 68 * This does not hinder free page reporting from grabbing the page, 69 * reporting it and marking it "reported" - it only skips notifying 70 * the free page reporting infrastructure about a newly freed page. For 71 * example, used when temporarily pulling a page from a freelist and 72 * putting it back unmodified. 73 */ 74 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 75 76 /* 77 * Place the (possibly merged) page to the tail of the freelist. Will ignore 78 * page shuffling (relevant code - e.g., memory onlining - is expected to 79 * shuffle the whole zone). 80 * 81 * Note: No code should rely on this flag for correctness - it's purely 82 * to allow for optimizations when handing back either fresh pages 83 * (memory onlining) or untouched pages (page isolation, free page 84 * reporting). 85 */ 86 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 87 88 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 89 static DEFINE_MUTEX(pcp_batch_high_lock); 90 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) 91 92 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT) 93 /* 94 * On SMP, spin_trylock is sufficient protection. 95 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP. 96 */ 97 #define pcp_trylock_prepare(flags) do { } while (0) 98 #define pcp_trylock_finish(flag) do { } while (0) 99 #else 100 101 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */ 102 #define pcp_trylock_prepare(flags) local_irq_save(flags) 103 #define pcp_trylock_finish(flags) local_irq_restore(flags) 104 #endif 105 106 /* 107 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid 108 * a migration causing the wrong PCP to be locked and remote memory being 109 * potentially allocated, pin the task to the CPU for the lookup+lock. 110 * preempt_disable is used on !RT because it is faster than migrate_disable. 111 * migrate_disable is used on RT because otherwise RT spinlock usage is 112 * interfered with and a high priority task cannot preempt the allocator. 113 */ 114 #ifndef CONFIG_PREEMPT_RT 115 #define pcpu_task_pin() preempt_disable() 116 #define pcpu_task_unpin() preempt_enable() 117 #else 118 #define pcpu_task_pin() migrate_disable() 119 #define pcpu_task_unpin() migrate_enable() 120 #endif 121 122 /* 123 * Generic helper to lookup and a per-cpu variable with an embedded spinlock. 124 * Return value should be used with equivalent unlock helper. 125 */ 126 #define pcpu_spin_lock(type, member, ptr) \ 127 ({ \ 128 type *_ret; \ 129 pcpu_task_pin(); \ 130 _ret = this_cpu_ptr(ptr); \ 131 spin_lock(&_ret->member); \ 132 _ret; \ 133 }) 134 135 #define pcpu_spin_trylock(type, member, ptr) \ 136 ({ \ 137 type *_ret; \ 138 pcpu_task_pin(); \ 139 _ret = this_cpu_ptr(ptr); \ 140 if (!spin_trylock(&_ret->member)) { \ 141 pcpu_task_unpin(); \ 142 _ret = NULL; \ 143 } \ 144 _ret; \ 145 }) 146 147 #define pcpu_spin_unlock(member, ptr) \ 148 ({ \ 149 spin_unlock(&ptr->member); \ 150 pcpu_task_unpin(); \ 151 }) 152 153 /* struct per_cpu_pages specific helpers. */ 154 #define pcp_spin_lock(ptr) \ 155 pcpu_spin_lock(struct per_cpu_pages, lock, ptr) 156 157 #define pcp_spin_trylock(ptr) \ 158 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr) 159 160 #define pcp_spin_unlock(ptr) \ 161 pcpu_spin_unlock(lock, ptr) 162 163 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 164 DEFINE_PER_CPU(int, numa_node); 165 EXPORT_PER_CPU_SYMBOL(numa_node); 166 #endif 167 168 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 169 170 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 171 /* 172 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 173 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 174 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 175 * defined in <linux/topology.h>. 176 */ 177 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 178 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 179 #endif 180 181 static DEFINE_MUTEX(pcpu_drain_mutex); 182 183 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 184 volatile unsigned long latent_entropy __latent_entropy; 185 EXPORT_SYMBOL(latent_entropy); 186 #endif 187 188 /* 189 * Array of node states. 190 */ 191 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 192 [N_POSSIBLE] = NODE_MASK_ALL, 193 [N_ONLINE] = { { [0] = 1UL } }, 194 #ifndef CONFIG_NUMA 195 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 196 #ifdef CONFIG_HIGHMEM 197 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 198 #endif 199 [N_MEMORY] = { { [0] = 1UL } }, 200 [N_CPU] = { { [0] = 1UL } }, 201 #endif /* NUMA */ 202 }; 203 EXPORT_SYMBOL(node_states); 204 205 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 206 207 /* 208 * A cached value of the page's pageblock's migratetype, used when the page is 209 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 210 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 211 * Also the migratetype set in the page does not necessarily match the pcplist 212 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 213 * other index - this ensures that it will be put on the correct CMA freelist. 214 */ 215 static inline int get_pcppage_migratetype(struct page *page) 216 { 217 return page->index; 218 } 219 220 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 221 { 222 page->index = migratetype; 223 } 224 225 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 226 unsigned int pageblock_order __read_mostly; 227 #endif 228 229 static void __free_pages_ok(struct page *page, unsigned int order, 230 fpi_t fpi_flags); 231 232 /* 233 * results with 256, 32 in the lowmem_reserve sysctl: 234 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 235 * 1G machine -> (16M dma, 784M normal, 224M high) 236 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 237 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 238 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 239 * 240 * TBD: should special case ZONE_DMA32 machines here - in those we normally 241 * don't need any ZONE_NORMAL reservation 242 */ 243 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 244 #ifdef CONFIG_ZONE_DMA 245 [ZONE_DMA] = 256, 246 #endif 247 #ifdef CONFIG_ZONE_DMA32 248 [ZONE_DMA32] = 256, 249 #endif 250 [ZONE_NORMAL] = 32, 251 #ifdef CONFIG_HIGHMEM 252 [ZONE_HIGHMEM] = 0, 253 #endif 254 [ZONE_MOVABLE] = 0, 255 }; 256 257 char * const zone_names[MAX_NR_ZONES] = { 258 #ifdef CONFIG_ZONE_DMA 259 "DMA", 260 #endif 261 #ifdef CONFIG_ZONE_DMA32 262 "DMA32", 263 #endif 264 "Normal", 265 #ifdef CONFIG_HIGHMEM 266 "HighMem", 267 #endif 268 "Movable", 269 #ifdef CONFIG_ZONE_DEVICE 270 "Device", 271 #endif 272 }; 273 274 const char * const migratetype_names[MIGRATE_TYPES] = { 275 "Unmovable", 276 "Movable", 277 "Reclaimable", 278 "HighAtomic", 279 #ifdef CONFIG_CMA 280 "CMA", 281 #endif 282 #ifdef CONFIG_MEMORY_ISOLATION 283 "Isolate", 284 #endif 285 }; 286 287 int min_free_kbytes = 1024; 288 int user_min_free_kbytes = -1; 289 static int watermark_boost_factor __read_mostly = 15000; 290 static int watermark_scale_factor = 10; 291 292 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 293 int movable_zone; 294 EXPORT_SYMBOL(movable_zone); 295 296 #if MAX_NUMNODES > 1 297 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 298 unsigned int nr_online_nodes __read_mostly = 1; 299 EXPORT_SYMBOL(nr_node_ids); 300 EXPORT_SYMBOL(nr_online_nodes); 301 #endif 302 303 static bool page_contains_unaccepted(struct page *page, unsigned int order); 304 static void accept_page(struct page *page, unsigned int order); 305 static bool try_to_accept_memory(struct zone *zone, unsigned int order); 306 static inline bool has_unaccepted_memory(void); 307 static bool __free_unaccepted(struct page *page); 308 309 int page_group_by_mobility_disabled __read_mostly; 310 311 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 312 /* 313 * During boot we initialize deferred pages on-demand, as needed, but once 314 * page_alloc_init_late() has finished, the deferred pages are all initialized, 315 * and we can permanently disable that path. 316 */ 317 DEFINE_STATIC_KEY_TRUE(deferred_pages); 318 319 static inline bool deferred_pages_enabled(void) 320 { 321 return static_branch_unlikely(&deferred_pages); 322 } 323 324 /* 325 * deferred_grow_zone() is __init, but it is called from 326 * get_page_from_freelist() during early boot until deferred_pages permanently 327 * disables this call. This is why we have refdata wrapper to avoid warning, 328 * and to ensure that the function body gets unloaded. 329 */ 330 static bool __ref 331 _deferred_grow_zone(struct zone *zone, unsigned int order) 332 { 333 return deferred_grow_zone(zone, order); 334 } 335 #else 336 static inline bool deferred_pages_enabled(void) 337 { 338 return false; 339 } 340 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 341 342 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 343 static inline unsigned long *get_pageblock_bitmap(const struct page *page, 344 unsigned long pfn) 345 { 346 #ifdef CONFIG_SPARSEMEM 347 return section_to_usemap(__pfn_to_section(pfn)); 348 #else 349 return page_zone(page)->pageblock_flags; 350 #endif /* CONFIG_SPARSEMEM */ 351 } 352 353 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) 354 { 355 #ifdef CONFIG_SPARSEMEM 356 pfn &= (PAGES_PER_SECTION-1); 357 #else 358 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn); 359 #endif /* CONFIG_SPARSEMEM */ 360 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 361 } 362 363 /** 364 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 365 * @page: The page within the block of interest 366 * @pfn: The target page frame number 367 * @mask: mask of bits that the caller is interested in 368 * 369 * Return: pageblock_bits flags 370 */ 371 unsigned long get_pfnblock_flags_mask(const struct page *page, 372 unsigned long pfn, unsigned long mask) 373 { 374 unsigned long *bitmap; 375 unsigned long bitidx, word_bitidx; 376 unsigned long word; 377 378 bitmap = get_pageblock_bitmap(page, pfn); 379 bitidx = pfn_to_bitidx(page, pfn); 380 word_bitidx = bitidx / BITS_PER_LONG; 381 bitidx &= (BITS_PER_LONG-1); 382 /* 383 * This races, without locks, with set_pfnblock_flags_mask(). Ensure 384 * a consistent read of the memory array, so that results, even though 385 * racy, are not corrupted. 386 */ 387 word = READ_ONCE(bitmap[word_bitidx]); 388 return (word >> bitidx) & mask; 389 } 390 391 static __always_inline int get_pfnblock_migratetype(const struct page *page, 392 unsigned long pfn) 393 { 394 return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 395 } 396 397 /** 398 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 399 * @page: The page within the block of interest 400 * @flags: The flags to set 401 * @pfn: The target page frame number 402 * @mask: mask of bits that the caller is interested in 403 */ 404 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 405 unsigned long pfn, 406 unsigned long mask) 407 { 408 unsigned long *bitmap; 409 unsigned long bitidx, word_bitidx; 410 unsigned long word; 411 412 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 413 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 414 415 bitmap = get_pageblock_bitmap(page, pfn); 416 bitidx = pfn_to_bitidx(page, pfn); 417 word_bitidx = bitidx / BITS_PER_LONG; 418 bitidx &= (BITS_PER_LONG-1); 419 420 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 421 422 mask <<= bitidx; 423 flags <<= bitidx; 424 425 word = READ_ONCE(bitmap[word_bitidx]); 426 do { 427 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags)); 428 } 429 430 void set_pageblock_migratetype(struct page *page, int migratetype) 431 { 432 if (unlikely(page_group_by_mobility_disabled && 433 migratetype < MIGRATE_PCPTYPES)) 434 migratetype = MIGRATE_UNMOVABLE; 435 436 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 437 page_to_pfn(page), MIGRATETYPE_MASK); 438 } 439 440 #ifdef CONFIG_DEBUG_VM 441 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 442 { 443 int ret; 444 unsigned seq; 445 unsigned long pfn = page_to_pfn(page); 446 unsigned long sp, start_pfn; 447 448 do { 449 seq = zone_span_seqbegin(zone); 450 start_pfn = zone->zone_start_pfn; 451 sp = zone->spanned_pages; 452 ret = !zone_spans_pfn(zone, pfn); 453 } while (zone_span_seqretry(zone, seq)); 454 455 if (ret) 456 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 457 pfn, zone_to_nid(zone), zone->name, 458 start_pfn, start_pfn + sp); 459 460 return ret; 461 } 462 463 /* 464 * Temporary debugging check for pages not lying within a given zone. 465 */ 466 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 467 { 468 if (page_outside_zone_boundaries(zone, page)) 469 return 1; 470 if (zone != page_zone(page)) 471 return 1; 472 473 return 0; 474 } 475 #else 476 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 477 { 478 return 0; 479 } 480 #endif 481 482 static void bad_page(struct page *page, const char *reason) 483 { 484 static unsigned long resume; 485 static unsigned long nr_shown; 486 static unsigned long nr_unshown; 487 488 /* 489 * Allow a burst of 60 reports, then keep quiet for that minute; 490 * or allow a steady drip of one report per second. 491 */ 492 if (nr_shown == 60) { 493 if (time_before(jiffies, resume)) { 494 nr_unshown++; 495 goto out; 496 } 497 if (nr_unshown) { 498 pr_alert( 499 "BUG: Bad page state: %lu messages suppressed\n", 500 nr_unshown); 501 nr_unshown = 0; 502 } 503 nr_shown = 0; 504 } 505 if (nr_shown++ == 0) 506 resume = jiffies + 60 * HZ; 507 508 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 509 current->comm, page_to_pfn(page)); 510 dump_page(page, reason); 511 512 print_modules(); 513 dump_stack(); 514 out: 515 /* Leave bad fields for debug, except PageBuddy could make trouble */ 516 page_mapcount_reset(page); /* remove PageBuddy */ 517 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 518 } 519 520 static inline unsigned int order_to_pindex(int migratetype, int order) 521 { 522 bool __maybe_unused movable; 523 524 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 525 if (order > PAGE_ALLOC_COSTLY_ORDER) { 526 VM_BUG_ON(order != pageblock_order); 527 528 movable = migratetype == MIGRATE_MOVABLE; 529 530 return NR_LOWORDER_PCP_LISTS + movable; 531 } 532 #else 533 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 534 #endif 535 536 return (MIGRATE_PCPTYPES * order) + migratetype; 537 } 538 539 static inline int pindex_to_order(unsigned int pindex) 540 { 541 int order = pindex / MIGRATE_PCPTYPES; 542 543 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 544 if (pindex >= NR_LOWORDER_PCP_LISTS) 545 order = pageblock_order; 546 #else 547 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 548 #endif 549 550 return order; 551 } 552 553 static inline bool pcp_allowed_order(unsigned int order) 554 { 555 if (order <= PAGE_ALLOC_COSTLY_ORDER) 556 return true; 557 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 558 if (order == pageblock_order) 559 return true; 560 #endif 561 return false; 562 } 563 564 static inline void free_the_page(struct page *page, unsigned int order) 565 { 566 if (pcp_allowed_order(order)) /* Via pcp? */ 567 free_unref_page(page, order); 568 else 569 __free_pages_ok(page, order, FPI_NONE); 570 } 571 572 /* 573 * Higher-order pages are called "compound pages". They are structured thusly: 574 * 575 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 576 * 577 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 578 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 579 * 580 * The first tail page's ->compound_order holds the order of allocation. 581 * This usage means that zero-order pages may not be compound. 582 */ 583 584 void prep_compound_page(struct page *page, unsigned int order) 585 { 586 int i; 587 int nr_pages = 1 << order; 588 589 __SetPageHead(page); 590 for (i = 1; i < nr_pages; i++) 591 prep_compound_tail(page, i); 592 593 prep_compound_head(page, order); 594 } 595 596 void destroy_large_folio(struct folio *folio) 597 { 598 if (folio_test_hugetlb(folio)) { 599 free_huge_folio(folio); 600 return; 601 } 602 603 if (folio_test_large_rmappable(folio)) 604 folio_undo_large_rmappable(folio); 605 606 mem_cgroup_uncharge(folio); 607 free_the_page(&folio->page, folio_order(folio)); 608 } 609 610 static inline void set_buddy_order(struct page *page, unsigned int order) 611 { 612 set_page_private(page, order); 613 __SetPageBuddy(page); 614 } 615 616 #ifdef CONFIG_COMPACTION 617 static inline struct capture_control *task_capc(struct zone *zone) 618 { 619 struct capture_control *capc = current->capture_control; 620 621 return unlikely(capc) && 622 !(current->flags & PF_KTHREAD) && 623 !capc->page && 624 capc->cc->zone == zone ? capc : NULL; 625 } 626 627 static inline bool 628 compaction_capture(struct capture_control *capc, struct page *page, 629 int order, int migratetype) 630 { 631 if (!capc || order != capc->cc->order) 632 return false; 633 634 /* Do not accidentally pollute CMA or isolated regions*/ 635 if (is_migrate_cma(migratetype) || 636 is_migrate_isolate(migratetype)) 637 return false; 638 639 /* 640 * Do not let lower order allocations pollute a movable pageblock. 641 * This might let an unmovable request use a reclaimable pageblock 642 * and vice-versa but no more than normal fallback logic which can 643 * have trouble finding a high-order free page. 644 */ 645 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 646 return false; 647 648 capc->page = page; 649 return true; 650 } 651 652 #else 653 static inline struct capture_control *task_capc(struct zone *zone) 654 { 655 return NULL; 656 } 657 658 static inline bool 659 compaction_capture(struct capture_control *capc, struct page *page, 660 int order, int migratetype) 661 { 662 return false; 663 } 664 #endif /* CONFIG_COMPACTION */ 665 666 /* Used for pages not on another list */ 667 static inline void add_to_free_list(struct page *page, struct zone *zone, 668 unsigned int order, int migratetype) 669 { 670 struct free_area *area = &zone->free_area[order]; 671 672 list_add(&page->buddy_list, &area->free_list[migratetype]); 673 area->nr_free++; 674 } 675 676 /* Used for pages not on another list */ 677 static inline void add_to_free_list_tail(struct page *page, struct zone *zone, 678 unsigned int order, int migratetype) 679 { 680 struct free_area *area = &zone->free_area[order]; 681 682 list_add_tail(&page->buddy_list, &area->free_list[migratetype]); 683 area->nr_free++; 684 } 685 686 /* 687 * Used for pages which are on another list. Move the pages to the tail 688 * of the list - so the moved pages won't immediately be considered for 689 * allocation again (e.g., optimization for memory onlining). 690 */ 691 static inline void move_to_free_list(struct page *page, struct zone *zone, 692 unsigned int order, int migratetype) 693 { 694 struct free_area *area = &zone->free_area[order]; 695 696 list_move_tail(&page->buddy_list, &area->free_list[migratetype]); 697 } 698 699 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 700 unsigned int order) 701 { 702 /* clear reported state and update reported page count */ 703 if (page_reported(page)) 704 __ClearPageReported(page); 705 706 list_del(&page->buddy_list); 707 __ClearPageBuddy(page); 708 set_page_private(page, 0); 709 zone->free_area[order].nr_free--; 710 } 711 712 static inline struct page *get_page_from_free_area(struct free_area *area, 713 int migratetype) 714 { 715 return list_first_entry_or_null(&area->free_list[migratetype], 716 struct page, buddy_list); 717 } 718 719 /* 720 * If this is not the largest possible page, check if the buddy 721 * of the next-highest order is free. If it is, it's possible 722 * that pages are being freed that will coalesce soon. In case, 723 * that is happening, add the free page to the tail of the list 724 * so it's less likely to be used soon and more likely to be merged 725 * as a higher order page 726 */ 727 static inline bool 728 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 729 struct page *page, unsigned int order) 730 { 731 unsigned long higher_page_pfn; 732 struct page *higher_page; 733 734 if (order >= MAX_ORDER - 1) 735 return false; 736 737 higher_page_pfn = buddy_pfn & pfn; 738 higher_page = page + (higher_page_pfn - pfn); 739 740 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1, 741 NULL) != NULL; 742 } 743 744 /* 745 * Freeing function for a buddy system allocator. 746 * 747 * The concept of a buddy system is to maintain direct-mapped table 748 * (containing bit values) for memory blocks of various "orders". 749 * The bottom level table contains the map for the smallest allocatable 750 * units of memory (here, pages), and each level above it describes 751 * pairs of units from the levels below, hence, "buddies". 752 * At a high level, all that happens here is marking the table entry 753 * at the bottom level available, and propagating the changes upward 754 * as necessary, plus some accounting needed to play nicely with other 755 * parts of the VM system. 756 * At each level, we keep a list of pages, which are heads of continuous 757 * free pages of length of (1 << order) and marked with PageBuddy. 758 * Page's order is recorded in page_private(page) field. 759 * So when we are allocating or freeing one, we can derive the state of the 760 * other. That is, if we allocate a small block, and both were 761 * free, the remainder of the region must be split into blocks. 762 * If a block is freed, and its buddy is also free, then this 763 * triggers coalescing into a block of larger size. 764 * 765 * -- nyc 766 */ 767 768 static inline void __free_one_page(struct page *page, 769 unsigned long pfn, 770 struct zone *zone, unsigned int order, 771 int migratetype, fpi_t fpi_flags) 772 { 773 struct capture_control *capc = task_capc(zone); 774 unsigned long buddy_pfn = 0; 775 unsigned long combined_pfn; 776 struct page *buddy; 777 bool to_tail; 778 779 VM_BUG_ON(!zone_is_initialized(zone)); 780 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 781 782 VM_BUG_ON(migratetype == -1); 783 if (likely(!is_migrate_isolate(migratetype))) 784 __mod_zone_freepage_state(zone, 1 << order, migratetype); 785 786 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 787 VM_BUG_ON_PAGE(bad_range(zone, page), page); 788 789 while (order < MAX_ORDER) { 790 if (compaction_capture(capc, page, order, migratetype)) { 791 __mod_zone_freepage_state(zone, -(1 << order), 792 migratetype); 793 return; 794 } 795 796 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn); 797 if (!buddy) 798 goto done_merging; 799 800 if (unlikely(order >= pageblock_order)) { 801 /* 802 * We want to prevent merge between freepages on pageblock 803 * without fallbacks and normal pageblock. Without this, 804 * pageblock isolation could cause incorrect freepage or CMA 805 * accounting or HIGHATOMIC accounting. 806 */ 807 int buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn); 808 809 if (migratetype != buddy_mt 810 && (!migratetype_is_mergeable(migratetype) || 811 !migratetype_is_mergeable(buddy_mt))) 812 goto done_merging; 813 } 814 815 /* 816 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 817 * merge with it and move up one order. 818 */ 819 if (page_is_guard(buddy)) 820 clear_page_guard(zone, buddy, order, migratetype); 821 else 822 del_page_from_free_list(buddy, zone, order); 823 combined_pfn = buddy_pfn & pfn; 824 page = page + (combined_pfn - pfn); 825 pfn = combined_pfn; 826 order++; 827 } 828 829 done_merging: 830 set_buddy_order(page, order); 831 832 if (fpi_flags & FPI_TO_TAIL) 833 to_tail = true; 834 else if (is_shuffle_order(order)) 835 to_tail = shuffle_pick_tail(); 836 else 837 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 838 839 if (to_tail) 840 add_to_free_list_tail(page, zone, order, migratetype); 841 else 842 add_to_free_list(page, zone, order, migratetype); 843 844 /* Notify page reporting subsystem of freed page */ 845 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 846 page_reporting_notify_free(order); 847 } 848 849 /** 850 * split_free_page() -- split a free page at split_pfn_offset 851 * @free_page: the original free page 852 * @order: the order of the page 853 * @split_pfn_offset: split offset within the page 854 * 855 * Return -ENOENT if the free page is changed, otherwise 0 856 * 857 * It is used when the free page crosses two pageblocks with different migratetypes 858 * at split_pfn_offset within the page. The split free page will be put into 859 * separate migratetype lists afterwards. Otherwise, the function achieves 860 * nothing. 861 */ 862 int split_free_page(struct page *free_page, 863 unsigned int order, unsigned long split_pfn_offset) 864 { 865 struct zone *zone = page_zone(free_page); 866 unsigned long free_page_pfn = page_to_pfn(free_page); 867 unsigned long pfn; 868 unsigned long flags; 869 int free_page_order; 870 int mt; 871 int ret = 0; 872 873 if (split_pfn_offset == 0) 874 return ret; 875 876 spin_lock_irqsave(&zone->lock, flags); 877 878 if (!PageBuddy(free_page) || buddy_order(free_page) != order) { 879 ret = -ENOENT; 880 goto out; 881 } 882 883 mt = get_pfnblock_migratetype(free_page, free_page_pfn); 884 if (likely(!is_migrate_isolate(mt))) 885 __mod_zone_freepage_state(zone, -(1UL << order), mt); 886 887 del_page_from_free_list(free_page, zone, order); 888 for (pfn = free_page_pfn; 889 pfn < free_page_pfn + (1UL << order);) { 890 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn); 891 892 free_page_order = min_t(unsigned int, 893 pfn ? __ffs(pfn) : order, 894 __fls(split_pfn_offset)); 895 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order, 896 mt, FPI_NONE); 897 pfn += 1UL << free_page_order; 898 split_pfn_offset -= (1UL << free_page_order); 899 /* we have done the first part, now switch to second part */ 900 if (split_pfn_offset == 0) 901 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn); 902 } 903 out: 904 spin_unlock_irqrestore(&zone->lock, flags); 905 return ret; 906 } 907 /* 908 * A bad page could be due to a number of fields. Instead of multiple branches, 909 * try and check multiple fields with one check. The caller must do a detailed 910 * check if necessary. 911 */ 912 static inline bool page_expected_state(struct page *page, 913 unsigned long check_flags) 914 { 915 if (unlikely(atomic_read(&page->_mapcount) != -1)) 916 return false; 917 918 if (unlikely((unsigned long)page->mapping | 919 page_ref_count(page) | 920 #ifdef CONFIG_MEMCG 921 page->memcg_data | 922 #endif 923 (page->flags & check_flags))) 924 return false; 925 926 return true; 927 } 928 929 static const char *page_bad_reason(struct page *page, unsigned long flags) 930 { 931 const char *bad_reason = NULL; 932 933 if (unlikely(atomic_read(&page->_mapcount) != -1)) 934 bad_reason = "nonzero mapcount"; 935 if (unlikely(page->mapping != NULL)) 936 bad_reason = "non-NULL mapping"; 937 if (unlikely(page_ref_count(page) != 0)) 938 bad_reason = "nonzero _refcount"; 939 if (unlikely(page->flags & flags)) { 940 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 941 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 942 else 943 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 944 } 945 #ifdef CONFIG_MEMCG 946 if (unlikely(page->memcg_data)) 947 bad_reason = "page still charged to cgroup"; 948 #endif 949 return bad_reason; 950 } 951 952 static void free_page_is_bad_report(struct page *page) 953 { 954 bad_page(page, 955 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 956 } 957 958 static inline bool free_page_is_bad(struct page *page) 959 { 960 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 961 return false; 962 963 /* Something has gone sideways, find it */ 964 free_page_is_bad_report(page); 965 return true; 966 } 967 968 static inline bool is_check_pages_enabled(void) 969 { 970 return static_branch_unlikely(&check_pages_enabled); 971 } 972 973 static int free_tail_page_prepare(struct page *head_page, struct page *page) 974 { 975 struct folio *folio = (struct folio *)head_page; 976 int ret = 1; 977 978 /* 979 * We rely page->lru.next never has bit 0 set, unless the page 980 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 981 */ 982 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 983 984 if (!is_check_pages_enabled()) { 985 ret = 0; 986 goto out; 987 } 988 switch (page - head_page) { 989 case 1: 990 /* the first tail page: these may be in place of ->mapping */ 991 if (unlikely(folio_entire_mapcount(folio))) { 992 bad_page(page, "nonzero entire_mapcount"); 993 goto out; 994 } 995 if (unlikely(atomic_read(&folio->_nr_pages_mapped))) { 996 bad_page(page, "nonzero nr_pages_mapped"); 997 goto out; 998 } 999 if (unlikely(atomic_read(&folio->_pincount))) { 1000 bad_page(page, "nonzero pincount"); 1001 goto out; 1002 } 1003 break; 1004 case 2: 1005 /* 1006 * the second tail page: ->mapping is 1007 * deferred_list.next -- ignore value. 1008 */ 1009 break; 1010 default: 1011 if (page->mapping != TAIL_MAPPING) { 1012 bad_page(page, "corrupted mapping in tail page"); 1013 goto out; 1014 } 1015 break; 1016 } 1017 if (unlikely(!PageTail(page))) { 1018 bad_page(page, "PageTail not set"); 1019 goto out; 1020 } 1021 if (unlikely(compound_head(page) != head_page)) { 1022 bad_page(page, "compound_head not consistent"); 1023 goto out; 1024 } 1025 ret = 0; 1026 out: 1027 page->mapping = NULL; 1028 clear_compound_head(page); 1029 return ret; 1030 } 1031 1032 /* 1033 * Skip KASAN memory poisoning when either: 1034 * 1035 * 1. For generic KASAN: deferred memory initialization has not yet completed. 1036 * Tag-based KASAN modes skip pages freed via deferred memory initialization 1037 * using page tags instead (see below). 1038 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating 1039 * that error detection is disabled for accesses via the page address. 1040 * 1041 * Pages will have match-all tags in the following circumstances: 1042 * 1043 * 1. Pages are being initialized for the first time, including during deferred 1044 * memory init; see the call to page_kasan_tag_reset in __init_single_page. 1045 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the 1046 * exception of pages unpoisoned by kasan_unpoison_vmalloc. 1047 * 3. The allocation was excluded from being checked due to sampling, 1048 * see the call to kasan_unpoison_pages. 1049 * 1050 * Poisoning pages during deferred memory init will greatly lengthen the 1051 * process and cause problem in large memory systems as the deferred pages 1052 * initialization is done with interrupt disabled. 1053 * 1054 * Assuming that there will be no reference to those newly initialized 1055 * pages before they are ever allocated, this should have no effect on 1056 * KASAN memory tracking as the poison will be properly inserted at page 1057 * allocation time. The only corner case is when pages are allocated by 1058 * on-demand allocation and then freed again before the deferred pages 1059 * initialization is done, but this is not likely to happen. 1060 */ 1061 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags) 1062 { 1063 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 1064 return deferred_pages_enabled(); 1065 1066 return page_kasan_tag(page) == 0xff; 1067 } 1068 1069 static void kernel_init_pages(struct page *page, int numpages) 1070 { 1071 int i; 1072 1073 /* s390's use of memset() could override KASAN redzones. */ 1074 kasan_disable_current(); 1075 for (i = 0; i < numpages; i++) 1076 clear_highpage_kasan_tagged(page + i); 1077 kasan_enable_current(); 1078 } 1079 1080 static __always_inline bool free_pages_prepare(struct page *page, 1081 unsigned int order, fpi_t fpi_flags) 1082 { 1083 int bad = 0; 1084 bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags); 1085 bool init = want_init_on_free(); 1086 1087 VM_BUG_ON_PAGE(PageTail(page), page); 1088 1089 trace_mm_page_free(page, order); 1090 kmsan_free_page(page, order); 1091 1092 if (unlikely(PageHWPoison(page)) && !order) { 1093 /* 1094 * Do not let hwpoison pages hit pcplists/buddy 1095 * Untie memcg state and reset page's owner 1096 */ 1097 if (memcg_kmem_online() && PageMemcgKmem(page)) 1098 __memcg_kmem_uncharge_page(page, order); 1099 reset_page_owner(page, order); 1100 page_table_check_free(page, order); 1101 return false; 1102 } 1103 1104 /* 1105 * Check tail pages before head page information is cleared to 1106 * avoid checking PageCompound for order-0 pages. 1107 */ 1108 if (unlikely(order)) { 1109 bool compound = PageCompound(page); 1110 int i; 1111 1112 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1113 1114 if (compound) 1115 page[1].flags &= ~PAGE_FLAGS_SECOND; 1116 for (i = 1; i < (1 << order); i++) { 1117 if (compound) 1118 bad += free_tail_page_prepare(page, page + i); 1119 if (is_check_pages_enabled()) { 1120 if (free_page_is_bad(page + i)) { 1121 bad++; 1122 continue; 1123 } 1124 } 1125 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1126 } 1127 } 1128 if (PageMappingFlags(page)) 1129 page->mapping = NULL; 1130 if (memcg_kmem_online() && PageMemcgKmem(page)) 1131 __memcg_kmem_uncharge_page(page, order); 1132 if (is_check_pages_enabled()) { 1133 if (free_page_is_bad(page)) 1134 bad++; 1135 if (bad) 1136 return false; 1137 } 1138 1139 page_cpupid_reset_last(page); 1140 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1141 reset_page_owner(page, order); 1142 page_table_check_free(page, order); 1143 1144 if (!PageHighMem(page)) { 1145 debug_check_no_locks_freed(page_address(page), 1146 PAGE_SIZE << order); 1147 debug_check_no_obj_freed(page_address(page), 1148 PAGE_SIZE << order); 1149 } 1150 1151 kernel_poison_pages(page, 1 << order); 1152 1153 /* 1154 * As memory initialization might be integrated into KASAN, 1155 * KASAN poisoning and memory initialization code must be 1156 * kept together to avoid discrepancies in behavior. 1157 * 1158 * With hardware tag-based KASAN, memory tags must be set before the 1159 * page becomes unavailable via debug_pagealloc or arch_free_page. 1160 */ 1161 if (!skip_kasan_poison) { 1162 kasan_poison_pages(page, order, init); 1163 1164 /* Memory is already initialized if KASAN did it internally. */ 1165 if (kasan_has_integrated_init()) 1166 init = false; 1167 } 1168 if (init) 1169 kernel_init_pages(page, 1 << order); 1170 1171 /* 1172 * arch_free_page() can make the page's contents inaccessible. s390 1173 * does this. So nothing which can access the page's contents should 1174 * happen after this. 1175 */ 1176 arch_free_page(page, order); 1177 1178 debug_pagealloc_unmap_pages(page, 1 << order); 1179 1180 return true; 1181 } 1182 1183 /* 1184 * Frees a number of pages from the PCP lists 1185 * Assumes all pages on list are in same zone. 1186 * count is the number of pages to free. 1187 */ 1188 static void free_pcppages_bulk(struct zone *zone, int count, 1189 struct per_cpu_pages *pcp, 1190 int pindex) 1191 { 1192 unsigned long flags; 1193 unsigned int order; 1194 bool isolated_pageblocks; 1195 struct page *page; 1196 1197 /* 1198 * Ensure proper count is passed which otherwise would stuck in the 1199 * below while (list_empty(list)) loop. 1200 */ 1201 count = min(pcp->count, count); 1202 1203 /* Ensure requested pindex is drained first. */ 1204 pindex = pindex - 1; 1205 1206 spin_lock_irqsave(&zone->lock, flags); 1207 isolated_pageblocks = has_isolate_pageblock(zone); 1208 1209 while (count > 0) { 1210 struct list_head *list; 1211 int nr_pages; 1212 1213 /* Remove pages from lists in a round-robin fashion. */ 1214 do { 1215 if (++pindex > NR_PCP_LISTS - 1) 1216 pindex = 0; 1217 list = &pcp->lists[pindex]; 1218 } while (list_empty(list)); 1219 1220 order = pindex_to_order(pindex); 1221 nr_pages = 1 << order; 1222 do { 1223 int mt; 1224 1225 page = list_last_entry(list, struct page, pcp_list); 1226 mt = get_pcppage_migratetype(page); 1227 1228 /* must delete to avoid corrupting pcp list */ 1229 list_del(&page->pcp_list); 1230 count -= nr_pages; 1231 pcp->count -= nr_pages; 1232 1233 /* MIGRATE_ISOLATE page should not go to pcplists */ 1234 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1235 /* Pageblock could have been isolated meanwhile */ 1236 if (unlikely(isolated_pageblocks)) 1237 mt = get_pageblock_migratetype(page); 1238 1239 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE); 1240 trace_mm_page_pcpu_drain(page, order, mt); 1241 } while (count > 0 && !list_empty(list)); 1242 } 1243 1244 spin_unlock_irqrestore(&zone->lock, flags); 1245 } 1246 1247 static void free_one_page(struct zone *zone, 1248 struct page *page, unsigned long pfn, 1249 unsigned int order, 1250 int migratetype, fpi_t fpi_flags) 1251 { 1252 unsigned long flags; 1253 1254 spin_lock_irqsave(&zone->lock, flags); 1255 if (unlikely(has_isolate_pageblock(zone) || 1256 is_migrate_isolate(migratetype))) { 1257 migratetype = get_pfnblock_migratetype(page, pfn); 1258 } 1259 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1260 spin_unlock_irqrestore(&zone->lock, flags); 1261 } 1262 1263 static void __free_pages_ok(struct page *page, unsigned int order, 1264 fpi_t fpi_flags) 1265 { 1266 unsigned long flags; 1267 int migratetype; 1268 unsigned long pfn = page_to_pfn(page); 1269 struct zone *zone = page_zone(page); 1270 1271 if (!free_pages_prepare(page, order, fpi_flags)) 1272 return; 1273 1274 /* 1275 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here 1276 * is used to avoid calling get_pfnblock_migratetype() under the lock. 1277 * This will reduce the lock holding time. 1278 */ 1279 migratetype = get_pfnblock_migratetype(page, pfn); 1280 1281 spin_lock_irqsave(&zone->lock, flags); 1282 if (unlikely(has_isolate_pageblock(zone) || 1283 is_migrate_isolate(migratetype))) { 1284 migratetype = get_pfnblock_migratetype(page, pfn); 1285 } 1286 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1287 spin_unlock_irqrestore(&zone->lock, flags); 1288 1289 __count_vm_events(PGFREE, 1 << order); 1290 } 1291 1292 void __free_pages_core(struct page *page, unsigned int order) 1293 { 1294 unsigned int nr_pages = 1 << order; 1295 struct page *p = page; 1296 unsigned int loop; 1297 1298 /* 1299 * When initializing the memmap, __init_single_page() sets the refcount 1300 * of all pages to 1 ("allocated"/"not free"). We have to set the 1301 * refcount of all involved pages to 0. 1302 */ 1303 prefetchw(p); 1304 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1305 prefetchw(p + 1); 1306 __ClearPageReserved(p); 1307 set_page_count(p, 0); 1308 } 1309 __ClearPageReserved(p); 1310 set_page_count(p, 0); 1311 1312 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1313 1314 if (page_contains_unaccepted(page, order)) { 1315 if (order == MAX_ORDER && __free_unaccepted(page)) 1316 return; 1317 1318 accept_page(page, order); 1319 } 1320 1321 /* 1322 * Bypass PCP and place fresh pages right to the tail, primarily 1323 * relevant for memory onlining. 1324 */ 1325 __free_pages_ok(page, order, FPI_TO_TAIL); 1326 } 1327 1328 /* 1329 * Check that the whole (or subset of) a pageblock given by the interval of 1330 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1331 * with the migration of free compaction scanner. 1332 * 1333 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1334 * 1335 * It's possible on some configurations to have a setup like node0 node1 node0 1336 * i.e. it's possible that all pages within a zones range of pages do not 1337 * belong to a single zone. We assume that a border between node0 and node1 1338 * can occur within a single pageblock, but not a node0 node1 node0 1339 * interleaving within a single pageblock. It is therefore sufficient to check 1340 * the first and last page of a pageblock and avoid checking each individual 1341 * page in a pageblock. 1342 * 1343 * Note: the function may return non-NULL struct page even for a page block 1344 * which contains a memory hole (i.e. there is no physical memory for a subset 1345 * of the pfn range). For example, if the pageblock order is MAX_ORDER, which 1346 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole 1347 * even though the start pfn is online and valid. This should be safe most of 1348 * the time because struct pages are still initialized via init_unavailable_range() 1349 * and pfn walkers shouldn't touch any physical memory range for which they do 1350 * not recognize any specific metadata in struct pages. 1351 */ 1352 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1353 unsigned long end_pfn, struct zone *zone) 1354 { 1355 struct page *start_page; 1356 struct page *end_page; 1357 1358 /* end_pfn is one past the range we are checking */ 1359 end_pfn--; 1360 1361 if (!pfn_valid(end_pfn)) 1362 return NULL; 1363 1364 start_page = pfn_to_online_page(start_pfn); 1365 if (!start_page) 1366 return NULL; 1367 1368 if (page_zone(start_page) != zone) 1369 return NULL; 1370 1371 end_page = pfn_to_page(end_pfn); 1372 1373 /* This gives a shorter code than deriving page_zone(end_page) */ 1374 if (page_zone_id(start_page) != page_zone_id(end_page)) 1375 return NULL; 1376 1377 return start_page; 1378 } 1379 1380 /* 1381 * The order of subdivision here is critical for the IO subsystem. 1382 * Please do not alter this order without good reasons and regression 1383 * testing. Specifically, as large blocks of memory are subdivided, 1384 * the order in which smaller blocks are delivered depends on the order 1385 * they're subdivided in this function. This is the primary factor 1386 * influencing the order in which pages are delivered to the IO 1387 * subsystem according to empirical testing, and this is also justified 1388 * by considering the behavior of a buddy system containing a single 1389 * large block of memory acted on by a series of small allocations. 1390 * This behavior is a critical factor in sglist merging's success. 1391 * 1392 * -- nyc 1393 */ 1394 static inline void expand(struct zone *zone, struct page *page, 1395 int low, int high, int migratetype) 1396 { 1397 unsigned long size = 1 << high; 1398 1399 while (high > low) { 1400 high--; 1401 size >>= 1; 1402 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1403 1404 /* 1405 * Mark as guard pages (or page), that will allow to 1406 * merge back to allocator when buddy will be freed. 1407 * Corresponding page table entries will not be touched, 1408 * pages will stay not present in virtual address space 1409 */ 1410 if (set_page_guard(zone, &page[size], high, migratetype)) 1411 continue; 1412 1413 add_to_free_list(&page[size], zone, high, migratetype); 1414 set_buddy_order(&page[size], high); 1415 } 1416 } 1417 1418 static void check_new_page_bad(struct page *page) 1419 { 1420 if (unlikely(page->flags & __PG_HWPOISON)) { 1421 /* Don't complain about hwpoisoned pages */ 1422 page_mapcount_reset(page); /* remove PageBuddy */ 1423 return; 1424 } 1425 1426 bad_page(page, 1427 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 1428 } 1429 1430 /* 1431 * This page is about to be returned from the page allocator 1432 */ 1433 static int check_new_page(struct page *page) 1434 { 1435 if (likely(page_expected_state(page, 1436 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 1437 return 0; 1438 1439 check_new_page_bad(page); 1440 return 1; 1441 } 1442 1443 static inline bool check_new_pages(struct page *page, unsigned int order) 1444 { 1445 if (is_check_pages_enabled()) { 1446 for (int i = 0; i < (1 << order); i++) { 1447 struct page *p = page + i; 1448 1449 if (check_new_page(p)) 1450 return true; 1451 } 1452 } 1453 1454 return false; 1455 } 1456 1457 static inline bool should_skip_kasan_unpoison(gfp_t flags) 1458 { 1459 /* Don't skip if a software KASAN mode is enabled. */ 1460 if (IS_ENABLED(CONFIG_KASAN_GENERIC) || 1461 IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 1462 return false; 1463 1464 /* Skip, if hardware tag-based KASAN is not enabled. */ 1465 if (!kasan_hw_tags_enabled()) 1466 return true; 1467 1468 /* 1469 * With hardware tag-based KASAN enabled, skip if this has been 1470 * requested via __GFP_SKIP_KASAN. 1471 */ 1472 return flags & __GFP_SKIP_KASAN; 1473 } 1474 1475 static inline bool should_skip_init(gfp_t flags) 1476 { 1477 /* Don't skip, if hardware tag-based KASAN is not enabled. */ 1478 if (!kasan_hw_tags_enabled()) 1479 return false; 1480 1481 /* For hardware tag-based KASAN, skip if requested. */ 1482 return (flags & __GFP_SKIP_ZERO); 1483 } 1484 1485 inline void post_alloc_hook(struct page *page, unsigned int order, 1486 gfp_t gfp_flags) 1487 { 1488 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) && 1489 !should_skip_init(gfp_flags); 1490 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS); 1491 int i; 1492 1493 set_page_private(page, 0); 1494 set_page_refcounted(page); 1495 1496 arch_alloc_page(page, order); 1497 debug_pagealloc_map_pages(page, 1 << order); 1498 1499 /* 1500 * Page unpoisoning must happen before memory initialization. 1501 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 1502 * allocations and the page unpoisoning code will complain. 1503 */ 1504 kernel_unpoison_pages(page, 1 << order); 1505 1506 /* 1507 * As memory initialization might be integrated into KASAN, 1508 * KASAN unpoisoning and memory initializion code must be 1509 * kept together to avoid discrepancies in behavior. 1510 */ 1511 1512 /* 1513 * If memory tags should be zeroed 1514 * (which happens only when memory should be initialized as well). 1515 */ 1516 if (zero_tags) { 1517 /* Initialize both memory and memory tags. */ 1518 for (i = 0; i != 1 << order; ++i) 1519 tag_clear_highpage(page + i); 1520 1521 /* Take note that memory was initialized by the loop above. */ 1522 init = false; 1523 } 1524 if (!should_skip_kasan_unpoison(gfp_flags) && 1525 kasan_unpoison_pages(page, order, init)) { 1526 /* Take note that memory was initialized by KASAN. */ 1527 if (kasan_has_integrated_init()) 1528 init = false; 1529 } else { 1530 /* 1531 * If memory tags have not been set by KASAN, reset the page 1532 * tags to ensure page_address() dereferencing does not fault. 1533 */ 1534 for (i = 0; i != 1 << order; ++i) 1535 page_kasan_tag_reset(page + i); 1536 } 1537 /* If memory is still not initialized, initialize it now. */ 1538 if (init) 1539 kernel_init_pages(page, 1 << order); 1540 1541 set_page_owner(page, order, gfp_flags); 1542 page_table_check_alloc(page, order); 1543 } 1544 1545 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1546 unsigned int alloc_flags) 1547 { 1548 post_alloc_hook(page, order, gfp_flags); 1549 1550 if (order && (gfp_flags & __GFP_COMP)) 1551 prep_compound_page(page, order); 1552 1553 /* 1554 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1555 * allocate the page. The expectation is that the caller is taking 1556 * steps that will free more memory. The caller should avoid the page 1557 * being used for !PFMEMALLOC purposes. 1558 */ 1559 if (alloc_flags & ALLOC_NO_WATERMARKS) 1560 set_page_pfmemalloc(page); 1561 else 1562 clear_page_pfmemalloc(page); 1563 } 1564 1565 /* 1566 * Go through the free lists for the given migratetype and remove 1567 * the smallest available page from the freelists 1568 */ 1569 static __always_inline 1570 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1571 int migratetype) 1572 { 1573 unsigned int current_order; 1574 struct free_area *area; 1575 struct page *page; 1576 1577 /* Find a page of the appropriate size in the preferred list */ 1578 for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) { 1579 area = &(zone->free_area[current_order]); 1580 page = get_page_from_free_area(area, migratetype); 1581 if (!page) 1582 continue; 1583 del_page_from_free_list(page, zone, current_order); 1584 expand(zone, page, order, current_order, migratetype); 1585 set_pcppage_migratetype(page, migratetype); 1586 trace_mm_page_alloc_zone_locked(page, order, migratetype, 1587 pcp_allowed_order(order) && 1588 migratetype < MIGRATE_PCPTYPES); 1589 return page; 1590 } 1591 1592 return NULL; 1593 } 1594 1595 1596 /* 1597 * This array describes the order lists are fallen back to when 1598 * the free lists for the desirable migrate type are depleted 1599 * 1600 * The other migratetypes do not have fallbacks. 1601 */ 1602 static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = { 1603 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE }, 1604 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE }, 1605 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE }, 1606 }; 1607 1608 #ifdef CONFIG_CMA 1609 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1610 unsigned int order) 1611 { 1612 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1613 } 1614 #else 1615 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1616 unsigned int order) { return NULL; } 1617 #endif 1618 1619 /* 1620 * Move the free pages in a range to the freelist tail of the requested type. 1621 * Note that start_page and end_pages are not aligned on a pageblock 1622 * boundary. If alignment is required, use move_freepages_block() 1623 */ 1624 static int move_freepages(struct zone *zone, 1625 unsigned long start_pfn, unsigned long end_pfn, 1626 int migratetype, int *num_movable) 1627 { 1628 struct page *page; 1629 unsigned long pfn; 1630 unsigned int order; 1631 int pages_moved = 0; 1632 1633 for (pfn = start_pfn; pfn <= end_pfn;) { 1634 page = pfn_to_page(pfn); 1635 if (!PageBuddy(page)) { 1636 /* 1637 * We assume that pages that could be isolated for 1638 * migration are movable. But we don't actually try 1639 * isolating, as that would be expensive. 1640 */ 1641 if (num_movable && 1642 (PageLRU(page) || __PageMovable(page))) 1643 (*num_movable)++; 1644 pfn++; 1645 continue; 1646 } 1647 1648 /* Make sure we are not inadvertently changing nodes */ 1649 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1650 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 1651 1652 order = buddy_order(page); 1653 move_to_free_list(page, zone, order, migratetype); 1654 pfn += 1 << order; 1655 pages_moved += 1 << order; 1656 } 1657 1658 return pages_moved; 1659 } 1660 1661 int move_freepages_block(struct zone *zone, struct page *page, 1662 int migratetype, int *num_movable) 1663 { 1664 unsigned long start_pfn, end_pfn, pfn; 1665 1666 if (num_movable) 1667 *num_movable = 0; 1668 1669 pfn = page_to_pfn(page); 1670 start_pfn = pageblock_start_pfn(pfn); 1671 end_pfn = pageblock_end_pfn(pfn) - 1; 1672 1673 /* Do not cross zone boundaries */ 1674 if (!zone_spans_pfn(zone, start_pfn)) 1675 start_pfn = pfn; 1676 if (!zone_spans_pfn(zone, end_pfn)) 1677 return 0; 1678 1679 return move_freepages(zone, start_pfn, end_pfn, migratetype, 1680 num_movable); 1681 } 1682 1683 static void change_pageblock_range(struct page *pageblock_page, 1684 int start_order, int migratetype) 1685 { 1686 int nr_pageblocks = 1 << (start_order - pageblock_order); 1687 1688 while (nr_pageblocks--) { 1689 set_pageblock_migratetype(pageblock_page, migratetype); 1690 pageblock_page += pageblock_nr_pages; 1691 } 1692 } 1693 1694 /* 1695 * When we are falling back to another migratetype during allocation, try to 1696 * steal extra free pages from the same pageblocks to satisfy further 1697 * allocations, instead of polluting multiple pageblocks. 1698 * 1699 * If we are stealing a relatively large buddy page, it is likely there will 1700 * be more free pages in the pageblock, so try to steal them all. For 1701 * reclaimable and unmovable allocations, we steal regardless of page size, 1702 * as fragmentation caused by those allocations polluting movable pageblocks 1703 * is worse than movable allocations stealing from unmovable and reclaimable 1704 * pageblocks. 1705 */ 1706 static bool can_steal_fallback(unsigned int order, int start_mt) 1707 { 1708 /* 1709 * Leaving this order check is intended, although there is 1710 * relaxed order check in next check. The reason is that 1711 * we can actually steal whole pageblock if this condition met, 1712 * but, below check doesn't guarantee it and that is just heuristic 1713 * so could be changed anytime. 1714 */ 1715 if (order >= pageblock_order) 1716 return true; 1717 1718 if (order >= pageblock_order / 2 || 1719 start_mt == MIGRATE_RECLAIMABLE || 1720 start_mt == MIGRATE_UNMOVABLE || 1721 page_group_by_mobility_disabled) 1722 return true; 1723 1724 return false; 1725 } 1726 1727 static inline bool boost_watermark(struct zone *zone) 1728 { 1729 unsigned long max_boost; 1730 1731 if (!watermark_boost_factor) 1732 return false; 1733 /* 1734 * Don't bother in zones that are unlikely to produce results. 1735 * On small machines, including kdump capture kernels running 1736 * in a small area, boosting the watermark can cause an out of 1737 * memory situation immediately. 1738 */ 1739 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 1740 return false; 1741 1742 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 1743 watermark_boost_factor, 10000); 1744 1745 /* 1746 * high watermark may be uninitialised if fragmentation occurs 1747 * very early in boot so do not boost. We do not fall 1748 * through and boost by pageblock_nr_pages as failing 1749 * allocations that early means that reclaim is not going 1750 * to help and it may even be impossible to reclaim the 1751 * boosted watermark resulting in a hang. 1752 */ 1753 if (!max_boost) 1754 return false; 1755 1756 max_boost = max(pageblock_nr_pages, max_boost); 1757 1758 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 1759 max_boost); 1760 1761 return true; 1762 } 1763 1764 /* 1765 * This function implements actual steal behaviour. If order is large enough, 1766 * we can steal whole pageblock. If not, we first move freepages in this 1767 * pageblock to our migratetype and determine how many already-allocated pages 1768 * are there in the pageblock with a compatible migratetype. If at least half 1769 * of pages are free or compatible, we can change migratetype of the pageblock 1770 * itself, so pages freed in the future will be put on the correct free list. 1771 */ 1772 static void steal_suitable_fallback(struct zone *zone, struct page *page, 1773 unsigned int alloc_flags, int start_type, bool whole_block) 1774 { 1775 unsigned int current_order = buddy_order(page); 1776 int free_pages, movable_pages, alike_pages; 1777 int old_block_type; 1778 1779 old_block_type = get_pageblock_migratetype(page); 1780 1781 /* 1782 * This can happen due to races and we want to prevent broken 1783 * highatomic accounting. 1784 */ 1785 if (is_migrate_highatomic(old_block_type)) 1786 goto single_page; 1787 1788 /* Take ownership for orders >= pageblock_order */ 1789 if (current_order >= pageblock_order) { 1790 change_pageblock_range(page, current_order, start_type); 1791 goto single_page; 1792 } 1793 1794 /* 1795 * Boost watermarks to increase reclaim pressure to reduce the 1796 * likelihood of future fallbacks. Wake kswapd now as the node 1797 * may be balanced overall and kswapd will not wake naturally. 1798 */ 1799 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 1800 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 1801 1802 /* We are not allowed to try stealing from the whole block */ 1803 if (!whole_block) 1804 goto single_page; 1805 1806 free_pages = move_freepages_block(zone, page, start_type, 1807 &movable_pages); 1808 /* moving whole block can fail due to zone boundary conditions */ 1809 if (!free_pages) 1810 goto single_page; 1811 1812 /* 1813 * Determine how many pages are compatible with our allocation. 1814 * For movable allocation, it's the number of movable pages which 1815 * we just obtained. For other types it's a bit more tricky. 1816 */ 1817 if (start_type == MIGRATE_MOVABLE) { 1818 alike_pages = movable_pages; 1819 } else { 1820 /* 1821 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 1822 * to MOVABLE pageblock, consider all non-movable pages as 1823 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 1824 * vice versa, be conservative since we can't distinguish the 1825 * exact migratetype of non-movable pages. 1826 */ 1827 if (old_block_type == MIGRATE_MOVABLE) 1828 alike_pages = pageblock_nr_pages 1829 - (free_pages + movable_pages); 1830 else 1831 alike_pages = 0; 1832 } 1833 /* 1834 * If a sufficient number of pages in the block are either free or of 1835 * compatible migratability as our allocation, claim the whole block. 1836 */ 1837 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 1838 page_group_by_mobility_disabled) 1839 set_pageblock_migratetype(page, start_type); 1840 1841 return; 1842 1843 single_page: 1844 move_to_free_list(page, zone, current_order, start_type); 1845 } 1846 1847 /* 1848 * Check whether there is a suitable fallback freepage with requested order. 1849 * If only_stealable is true, this function returns fallback_mt only if 1850 * we can steal other freepages all together. This would help to reduce 1851 * fragmentation due to mixed migratetype pages in one pageblock. 1852 */ 1853 int find_suitable_fallback(struct free_area *area, unsigned int order, 1854 int migratetype, bool only_stealable, bool *can_steal) 1855 { 1856 int i; 1857 int fallback_mt; 1858 1859 if (area->nr_free == 0) 1860 return -1; 1861 1862 *can_steal = false; 1863 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) { 1864 fallback_mt = fallbacks[migratetype][i]; 1865 if (free_area_empty(area, fallback_mt)) 1866 continue; 1867 1868 if (can_steal_fallback(order, migratetype)) 1869 *can_steal = true; 1870 1871 if (!only_stealable) 1872 return fallback_mt; 1873 1874 if (*can_steal) 1875 return fallback_mt; 1876 } 1877 1878 return -1; 1879 } 1880 1881 /* 1882 * Reserve a pageblock for exclusive use of high-order atomic allocations if 1883 * there are no empty page blocks that contain a page with a suitable order 1884 */ 1885 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone) 1886 { 1887 int mt; 1888 unsigned long max_managed, flags; 1889 1890 /* 1891 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 1892 * Check is race-prone but harmless. 1893 */ 1894 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 1895 if (zone->nr_reserved_highatomic >= max_managed) 1896 return; 1897 1898 spin_lock_irqsave(&zone->lock, flags); 1899 1900 /* Recheck the nr_reserved_highatomic limit under the lock */ 1901 if (zone->nr_reserved_highatomic >= max_managed) 1902 goto out_unlock; 1903 1904 /* Yoink! */ 1905 mt = get_pageblock_migratetype(page); 1906 /* Only reserve normal pageblocks (i.e., they can merge with others) */ 1907 if (migratetype_is_mergeable(mt)) { 1908 zone->nr_reserved_highatomic += pageblock_nr_pages; 1909 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 1910 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 1911 } 1912 1913 out_unlock: 1914 spin_unlock_irqrestore(&zone->lock, flags); 1915 } 1916 1917 /* 1918 * Used when an allocation is about to fail under memory pressure. This 1919 * potentially hurts the reliability of high-order allocations when under 1920 * intense memory pressure but failed atomic allocations should be easier 1921 * to recover from than an OOM. 1922 * 1923 * If @force is true, try to unreserve a pageblock even though highatomic 1924 * pageblock is exhausted. 1925 */ 1926 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 1927 bool force) 1928 { 1929 struct zonelist *zonelist = ac->zonelist; 1930 unsigned long flags; 1931 struct zoneref *z; 1932 struct zone *zone; 1933 struct page *page; 1934 int order; 1935 bool ret; 1936 1937 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 1938 ac->nodemask) { 1939 /* 1940 * Preserve at least one pageblock unless memory pressure 1941 * is really high. 1942 */ 1943 if (!force && zone->nr_reserved_highatomic <= 1944 pageblock_nr_pages) 1945 continue; 1946 1947 spin_lock_irqsave(&zone->lock, flags); 1948 for (order = 0; order < NR_PAGE_ORDERS; order++) { 1949 struct free_area *area = &(zone->free_area[order]); 1950 1951 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 1952 if (!page) 1953 continue; 1954 1955 /* 1956 * In page freeing path, migratetype change is racy so 1957 * we can counter several free pages in a pageblock 1958 * in this loop although we changed the pageblock type 1959 * from highatomic to ac->migratetype. So we should 1960 * adjust the count once. 1961 */ 1962 if (is_migrate_highatomic_page(page)) { 1963 /* 1964 * It should never happen but changes to 1965 * locking could inadvertently allow a per-cpu 1966 * drain to add pages to MIGRATE_HIGHATOMIC 1967 * while unreserving so be safe and watch for 1968 * underflows. 1969 */ 1970 zone->nr_reserved_highatomic -= min( 1971 pageblock_nr_pages, 1972 zone->nr_reserved_highatomic); 1973 } 1974 1975 /* 1976 * Convert to ac->migratetype and avoid the normal 1977 * pageblock stealing heuristics. Minimally, the caller 1978 * is doing the work and needs the pages. More 1979 * importantly, if the block was always converted to 1980 * MIGRATE_UNMOVABLE or another type then the number 1981 * of pageblocks that cannot be completely freed 1982 * may increase. 1983 */ 1984 set_pageblock_migratetype(page, ac->migratetype); 1985 ret = move_freepages_block(zone, page, ac->migratetype, 1986 NULL); 1987 if (ret) { 1988 spin_unlock_irqrestore(&zone->lock, flags); 1989 return ret; 1990 } 1991 } 1992 spin_unlock_irqrestore(&zone->lock, flags); 1993 } 1994 1995 return false; 1996 } 1997 1998 /* 1999 * Try finding a free buddy page on the fallback list and put it on the free 2000 * list of requested migratetype, possibly along with other pages from the same 2001 * block, depending on fragmentation avoidance heuristics. Returns true if 2002 * fallback was found so that __rmqueue_smallest() can grab it. 2003 * 2004 * The use of signed ints for order and current_order is a deliberate 2005 * deviation from the rest of this file, to make the for loop 2006 * condition simpler. 2007 */ 2008 static __always_inline bool 2009 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2010 unsigned int alloc_flags) 2011 { 2012 struct free_area *area; 2013 int current_order; 2014 int min_order = order; 2015 struct page *page; 2016 int fallback_mt; 2017 bool can_steal; 2018 2019 /* 2020 * Do not steal pages from freelists belonging to other pageblocks 2021 * i.e. orders < pageblock_order. If there are no local zones free, 2022 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2023 */ 2024 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT) 2025 min_order = pageblock_order; 2026 2027 /* 2028 * Find the largest available free page in the other list. This roughly 2029 * approximates finding the pageblock with the most free pages, which 2030 * would be too costly to do exactly. 2031 */ 2032 for (current_order = MAX_ORDER; current_order >= min_order; 2033 --current_order) { 2034 area = &(zone->free_area[current_order]); 2035 fallback_mt = find_suitable_fallback(area, current_order, 2036 start_migratetype, false, &can_steal); 2037 if (fallback_mt == -1) 2038 continue; 2039 2040 /* 2041 * We cannot steal all free pages from the pageblock and the 2042 * requested migratetype is movable. In that case it's better to 2043 * steal and split the smallest available page instead of the 2044 * largest available page, because even if the next movable 2045 * allocation falls back into a different pageblock than this 2046 * one, it won't cause permanent fragmentation. 2047 */ 2048 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2049 && current_order > order) 2050 goto find_smallest; 2051 2052 goto do_steal; 2053 } 2054 2055 return false; 2056 2057 find_smallest: 2058 for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) { 2059 area = &(zone->free_area[current_order]); 2060 fallback_mt = find_suitable_fallback(area, current_order, 2061 start_migratetype, false, &can_steal); 2062 if (fallback_mt != -1) 2063 break; 2064 } 2065 2066 /* 2067 * This should not happen - we already found a suitable fallback 2068 * when looking for the largest page. 2069 */ 2070 VM_BUG_ON(current_order > MAX_ORDER); 2071 2072 do_steal: 2073 page = get_page_from_free_area(area, fallback_mt); 2074 2075 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 2076 can_steal); 2077 2078 trace_mm_page_alloc_extfrag(page, order, current_order, 2079 start_migratetype, fallback_mt); 2080 2081 return true; 2082 2083 } 2084 2085 /* 2086 * Do the hard work of removing an element from the buddy allocator. 2087 * Call me with the zone->lock already held. 2088 */ 2089 static __always_inline struct page * 2090 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2091 unsigned int alloc_flags) 2092 { 2093 struct page *page; 2094 2095 if (IS_ENABLED(CONFIG_CMA)) { 2096 /* 2097 * Balance movable allocations between regular and CMA areas by 2098 * allocating from CMA when over half of the zone's free memory 2099 * is in the CMA area. 2100 */ 2101 if (alloc_flags & ALLOC_CMA && 2102 zone_page_state(zone, NR_FREE_CMA_PAGES) > 2103 zone_page_state(zone, NR_FREE_PAGES) / 2) { 2104 page = __rmqueue_cma_fallback(zone, order); 2105 if (page) 2106 return page; 2107 } 2108 } 2109 retry: 2110 page = __rmqueue_smallest(zone, order, migratetype); 2111 if (unlikely(!page)) { 2112 if (alloc_flags & ALLOC_CMA) 2113 page = __rmqueue_cma_fallback(zone, order); 2114 2115 if (!page && __rmqueue_fallback(zone, order, migratetype, 2116 alloc_flags)) 2117 goto retry; 2118 } 2119 return page; 2120 } 2121 2122 /* 2123 * Obtain a specified number of elements from the buddy allocator, all under 2124 * a single hold of the lock, for efficiency. Add them to the supplied list. 2125 * Returns the number of new pages which were placed at *list. 2126 */ 2127 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2128 unsigned long count, struct list_head *list, 2129 int migratetype, unsigned int alloc_flags) 2130 { 2131 unsigned long flags; 2132 int i; 2133 2134 spin_lock_irqsave(&zone->lock, flags); 2135 for (i = 0; i < count; ++i) { 2136 struct page *page = __rmqueue(zone, order, migratetype, 2137 alloc_flags); 2138 if (unlikely(page == NULL)) 2139 break; 2140 2141 /* 2142 * Split buddy pages returned by expand() are received here in 2143 * physical page order. The page is added to the tail of 2144 * caller's list. From the callers perspective, the linked list 2145 * is ordered by page number under some conditions. This is 2146 * useful for IO devices that can forward direction from the 2147 * head, thus also in the physical page order. This is useful 2148 * for IO devices that can merge IO requests if the physical 2149 * pages are ordered properly. 2150 */ 2151 list_add_tail(&page->pcp_list, list); 2152 if (is_migrate_cma(get_pcppage_migratetype(page))) 2153 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2154 -(1 << order)); 2155 } 2156 2157 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2158 spin_unlock_irqrestore(&zone->lock, flags); 2159 2160 return i; 2161 } 2162 2163 #ifdef CONFIG_NUMA 2164 /* 2165 * Called from the vmstat counter updater to drain pagesets of this 2166 * currently executing processor on remote nodes after they have 2167 * expired. 2168 */ 2169 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2170 { 2171 int to_drain, batch; 2172 2173 batch = READ_ONCE(pcp->batch); 2174 to_drain = min(pcp->count, batch); 2175 if (to_drain > 0) { 2176 spin_lock(&pcp->lock); 2177 free_pcppages_bulk(zone, to_drain, pcp, 0); 2178 spin_unlock(&pcp->lock); 2179 } 2180 } 2181 #endif 2182 2183 /* 2184 * Drain pcplists of the indicated processor and zone. 2185 */ 2186 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2187 { 2188 struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2189 int count; 2190 2191 do { 2192 spin_lock(&pcp->lock); 2193 count = pcp->count; 2194 if (count) { 2195 int to_drain = min(count, 2196 pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX); 2197 2198 free_pcppages_bulk(zone, to_drain, pcp, 0); 2199 count -= to_drain; 2200 } 2201 spin_unlock(&pcp->lock); 2202 } while (count); 2203 } 2204 2205 /* 2206 * Drain pcplists of all zones on the indicated processor. 2207 */ 2208 static void drain_pages(unsigned int cpu) 2209 { 2210 struct zone *zone; 2211 2212 for_each_populated_zone(zone) { 2213 drain_pages_zone(cpu, zone); 2214 } 2215 } 2216 2217 /* 2218 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2219 */ 2220 void drain_local_pages(struct zone *zone) 2221 { 2222 int cpu = smp_processor_id(); 2223 2224 if (zone) 2225 drain_pages_zone(cpu, zone); 2226 else 2227 drain_pages(cpu); 2228 } 2229 2230 /* 2231 * The implementation of drain_all_pages(), exposing an extra parameter to 2232 * drain on all cpus. 2233 * 2234 * drain_all_pages() is optimized to only execute on cpus where pcplists are 2235 * not empty. The check for non-emptiness can however race with a free to 2236 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 2237 * that need the guarantee that every CPU has drained can disable the 2238 * optimizing racy check. 2239 */ 2240 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 2241 { 2242 int cpu; 2243 2244 /* 2245 * Allocate in the BSS so we won't require allocation in 2246 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2247 */ 2248 static cpumask_t cpus_with_pcps; 2249 2250 /* 2251 * Do not drain if one is already in progress unless it's specific to 2252 * a zone. Such callers are primarily CMA and memory hotplug and need 2253 * the drain to be complete when the call returns. 2254 */ 2255 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2256 if (!zone) 2257 return; 2258 mutex_lock(&pcpu_drain_mutex); 2259 } 2260 2261 /* 2262 * We don't care about racing with CPU hotplug event 2263 * as offline notification will cause the notified 2264 * cpu to drain that CPU pcps and on_each_cpu_mask 2265 * disables preemption as part of its processing 2266 */ 2267 for_each_online_cpu(cpu) { 2268 struct per_cpu_pages *pcp; 2269 struct zone *z; 2270 bool has_pcps = false; 2271 2272 if (force_all_cpus) { 2273 /* 2274 * The pcp.count check is racy, some callers need a 2275 * guarantee that no cpu is missed. 2276 */ 2277 has_pcps = true; 2278 } else if (zone) { 2279 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2280 if (pcp->count) 2281 has_pcps = true; 2282 } else { 2283 for_each_populated_zone(z) { 2284 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); 2285 if (pcp->count) { 2286 has_pcps = true; 2287 break; 2288 } 2289 } 2290 } 2291 2292 if (has_pcps) 2293 cpumask_set_cpu(cpu, &cpus_with_pcps); 2294 else 2295 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2296 } 2297 2298 for_each_cpu(cpu, &cpus_with_pcps) { 2299 if (zone) 2300 drain_pages_zone(cpu, zone); 2301 else 2302 drain_pages(cpu); 2303 } 2304 2305 mutex_unlock(&pcpu_drain_mutex); 2306 } 2307 2308 /* 2309 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2310 * 2311 * When zone parameter is non-NULL, spill just the single zone's pages. 2312 */ 2313 void drain_all_pages(struct zone *zone) 2314 { 2315 __drain_all_pages(zone, false); 2316 } 2317 2318 static bool free_unref_page_prepare(struct page *page, unsigned long pfn, 2319 unsigned int order) 2320 { 2321 int migratetype; 2322 2323 if (!free_pages_prepare(page, order, FPI_NONE)) 2324 return false; 2325 2326 migratetype = get_pfnblock_migratetype(page, pfn); 2327 set_pcppage_migratetype(page, migratetype); 2328 return true; 2329 } 2330 2331 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, bool free_high) 2332 { 2333 int min_nr_free, max_nr_free; 2334 int batch = READ_ONCE(pcp->batch); 2335 2336 /* Free everything if batch freeing high-order pages. */ 2337 if (unlikely(free_high)) 2338 return pcp->count; 2339 2340 /* Check for PCP disabled or boot pageset */ 2341 if (unlikely(high < batch)) 2342 return 1; 2343 2344 /* Leave at least pcp->batch pages on the list */ 2345 min_nr_free = batch; 2346 max_nr_free = high - batch; 2347 2348 /* 2349 * Double the number of pages freed each time there is subsequent 2350 * freeing of pages without any allocation. 2351 */ 2352 batch <<= pcp->free_factor; 2353 if (batch < max_nr_free && pcp->free_factor < CONFIG_PCP_BATCH_SCALE_MAX) 2354 pcp->free_factor++; 2355 batch = clamp(batch, min_nr_free, max_nr_free); 2356 2357 return batch; 2358 } 2359 2360 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone, 2361 bool free_high) 2362 { 2363 int high = READ_ONCE(pcp->high); 2364 2365 if (unlikely(!high || free_high)) 2366 return 0; 2367 2368 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) 2369 return high; 2370 2371 /* 2372 * If reclaim is active, limit the number of pages that can be 2373 * stored on pcp lists 2374 */ 2375 return min(READ_ONCE(pcp->batch) << 2, high); 2376 } 2377 2378 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp, 2379 struct page *page, int migratetype, 2380 unsigned int order) 2381 { 2382 int high; 2383 int pindex; 2384 bool free_high; 2385 2386 __count_vm_events(PGFREE, 1 << order); 2387 pindex = order_to_pindex(migratetype, order); 2388 list_add(&page->pcp_list, &pcp->lists[pindex]); 2389 pcp->count += 1 << order; 2390 2391 /* 2392 * As high-order pages other than THP's stored on PCP can contribute 2393 * to fragmentation, limit the number stored when PCP is heavily 2394 * freeing without allocation. The remainder after bulk freeing 2395 * stops will be drained from vmstat refresh context. 2396 */ 2397 free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER); 2398 2399 high = nr_pcp_high(pcp, zone, free_high); 2400 if (pcp->count >= high) { 2401 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, free_high), pcp, pindex); 2402 } 2403 } 2404 2405 /* 2406 * Free a pcp page 2407 */ 2408 void free_unref_page(struct page *page, unsigned int order) 2409 { 2410 unsigned long __maybe_unused UP_flags; 2411 struct per_cpu_pages *pcp; 2412 struct zone *zone; 2413 unsigned long pfn = page_to_pfn(page); 2414 int migratetype, pcpmigratetype; 2415 2416 if (!free_unref_page_prepare(page, pfn, order)) 2417 return; 2418 2419 /* 2420 * We only track unmovable, reclaimable and movable on pcp lists. 2421 * Place ISOLATE pages on the isolated list because they are being 2422 * offlined but treat HIGHATOMIC and CMA as movable pages so we can 2423 * get those areas back if necessary. Otherwise, we may have to free 2424 * excessively into the page allocator 2425 */ 2426 migratetype = pcpmigratetype = get_pcppage_migratetype(page); 2427 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 2428 if (unlikely(is_migrate_isolate(migratetype))) { 2429 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE); 2430 return; 2431 } 2432 pcpmigratetype = MIGRATE_MOVABLE; 2433 } 2434 2435 zone = page_zone(page); 2436 pcp_trylock_prepare(UP_flags); 2437 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2438 if (pcp) { 2439 free_unref_page_commit(zone, pcp, page, pcpmigratetype, order); 2440 pcp_spin_unlock(pcp); 2441 } else { 2442 free_one_page(zone, page, pfn, order, migratetype, FPI_NONE); 2443 } 2444 pcp_trylock_finish(UP_flags); 2445 } 2446 2447 /* 2448 * Free a list of 0-order pages 2449 */ 2450 void free_unref_page_list(struct list_head *list) 2451 { 2452 unsigned long __maybe_unused UP_flags; 2453 struct page *page, *next; 2454 struct per_cpu_pages *pcp = NULL; 2455 struct zone *locked_zone = NULL; 2456 int batch_count = 0; 2457 int migratetype; 2458 2459 /* Prepare pages for freeing */ 2460 list_for_each_entry_safe(page, next, list, lru) { 2461 unsigned long pfn = page_to_pfn(page); 2462 if (!free_unref_page_prepare(page, pfn, 0)) { 2463 list_del(&page->lru); 2464 continue; 2465 } 2466 2467 /* 2468 * Free isolated pages directly to the allocator, see 2469 * comment in free_unref_page. 2470 */ 2471 migratetype = get_pcppage_migratetype(page); 2472 if (unlikely(is_migrate_isolate(migratetype))) { 2473 list_del(&page->lru); 2474 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE); 2475 continue; 2476 } 2477 } 2478 2479 list_for_each_entry_safe(page, next, list, lru) { 2480 struct zone *zone = page_zone(page); 2481 2482 list_del(&page->lru); 2483 migratetype = get_pcppage_migratetype(page); 2484 2485 /* 2486 * Either different zone requiring a different pcp lock or 2487 * excessive lock hold times when freeing a large list of 2488 * pages. 2489 */ 2490 if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) { 2491 if (pcp) { 2492 pcp_spin_unlock(pcp); 2493 pcp_trylock_finish(UP_flags); 2494 } 2495 2496 batch_count = 0; 2497 2498 /* 2499 * trylock is necessary as pages may be getting freed 2500 * from IRQ or SoftIRQ context after an IO completion. 2501 */ 2502 pcp_trylock_prepare(UP_flags); 2503 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2504 if (unlikely(!pcp)) { 2505 pcp_trylock_finish(UP_flags); 2506 free_one_page(zone, page, page_to_pfn(page), 2507 0, migratetype, FPI_NONE); 2508 locked_zone = NULL; 2509 continue; 2510 } 2511 locked_zone = zone; 2512 } 2513 2514 /* 2515 * Non-isolated types over MIGRATE_PCPTYPES get added 2516 * to the MIGRATE_MOVABLE pcp list. 2517 */ 2518 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) 2519 migratetype = MIGRATE_MOVABLE; 2520 2521 trace_mm_page_free_batched(page); 2522 free_unref_page_commit(zone, pcp, page, migratetype, 0); 2523 batch_count++; 2524 } 2525 2526 if (pcp) { 2527 pcp_spin_unlock(pcp); 2528 pcp_trylock_finish(UP_flags); 2529 } 2530 } 2531 2532 /* 2533 * split_page takes a non-compound higher-order page, and splits it into 2534 * n (1<<order) sub-pages: page[0..n] 2535 * Each sub-page must be freed individually. 2536 * 2537 * Note: this is probably too low level an operation for use in drivers. 2538 * Please consult with lkml before using this in your driver. 2539 */ 2540 void split_page(struct page *page, unsigned int order) 2541 { 2542 int i; 2543 2544 VM_BUG_ON_PAGE(PageCompound(page), page); 2545 VM_BUG_ON_PAGE(!page_count(page), page); 2546 2547 for (i = 1; i < (1 << order); i++) 2548 set_page_refcounted(page + i); 2549 split_page_owner(page, 1 << order); 2550 split_page_memcg(page, 1 << order); 2551 } 2552 EXPORT_SYMBOL_GPL(split_page); 2553 2554 int __isolate_free_page(struct page *page, unsigned int order) 2555 { 2556 struct zone *zone = page_zone(page); 2557 int mt = get_pageblock_migratetype(page); 2558 2559 if (!is_migrate_isolate(mt)) { 2560 unsigned long watermark; 2561 /* 2562 * Obey watermarks as if the page was being allocated. We can 2563 * emulate a high-order watermark check with a raised order-0 2564 * watermark, because we already know our high-order page 2565 * exists. 2566 */ 2567 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 2568 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 2569 return 0; 2570 2571 __mod_zone_freepage_state(zone, -(1UL << order), mt); 2572 } 2573 2574 del_page_from_free_list(page, zone, order); 2575 2576 /* 2577 * Set the pageblock if the isolated page is at least half of a 2578 * pageblock 2579 */ 2580 if (order >= pageblock_order - 1) { 2581 struct page *endpage = page + (1 << order) - 1; 2582 for (; page < endpage; page += pageblock_nr_pages) { 2583 int mt = get_pageblock_migratetype(page); 2584 /* 2585 * Only change normal pageblocks (i.e., they can merge 2586 * with others) 2587 */ 2588 if (migratetype_is_mergeable(mt)) 2589 set_pageblock_migratetype(page, 2590 MIGRATE_MOVABLE); 2591 } 2592 } 2593 2594 return 1UL << order; 2595 } 2596 2597 /** 2598 * __putback_isolated_page - Return a now-isolated page back where we got it 2599 * @page: Page that was isolated 2600 * @order: Order of the isolated page 2601 * @mt: The page's pageblock's migratetype 2602 * 2603 * This function is meant to return a page pulled from the free lists via 2604 * __isolate_free_page back to the free lists they were pulled from. 2605 */ 2606 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 2607 { 2608 struct zone *zone = page_zone(page); 2609 2610 /* zone lock should be held when this function is called */ 2611 lockdep_assert_held(&zone->lock); 2612 2613 /* Return isolated page to tail of freelist. */ 2614 __free_one_page(page, page_to_pfn(page), zone, order, mt, 2615 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 2616 } 2617 2618 /* 2619 * Update NUMA hit/miss statistics 2620 */ 2621 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 2622 long nr_account) 2623 { 2624 #ifdef CONFIG_NUMA 2625 enum numa_stat_item local_stat = NUMA_LOCAL; 2626 2627 /* skip numa counters update if numa stats is disabled */ 2628 if (!static_branch_likely(&vm_numa_stat_key)) 2629 return; 2630 2631 if (zone_to_nid(z) != numa_node_id()) 2632 local_stat = NUMA_OTHER; 2633 2634 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 2635 __count_numa_events(z, NUMA_HIT, nr_account); 2636 else { 2637 __count_numa_events(z, NUMA_MISS, nr_account); 2638 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); 2639 } 2640 __count_numa_events(z, local_stat, nr_account); 2641 #endif 2642 } 2643 2644 static __always_inline 2645 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone, 2646 unsigned int order, unsigned int alloc_flags, 2647 int migratetype) 2648 { 2649 struct page *page; 2650 unsigned long flags; 2651 2652 do { 2653 page = NULL; 2654 spin_lock_irqsave(&zone->lock, flags); 2655 if (alloc_flags & ALLOC_HIGHATOMIC) 2656 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2657 if (!page) { 2658 page = __rmqueue(zone, order, migratetype, alloc_flags); 2659 2660 /* 2661 * If the allocation fails, allow OOM handling access 2662 * to HIGHATOMIC reserves as failing now is worse than 2663 * failing a high-order atomic allocation in the 2664 * future. 2665 */ 2666 if (!page && (alloc_flags & ALLOC_OOM)) 2667 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2668 2669 if (!page) { 2670 spin_unlock_irqrestore(&zone->lock, flags); 2671 return NULL; 2672 } 2673 } 2674 __mod_zone_freepage_state(zone, -(1 << order), 2675 get_pcppage_migratetype(page)); 2676 spin_unlock_irqrestore(&zone->lock, flags); 2677 } while (check_new_pages(page, order)); 2678 2679 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2680 zone_statistics(preferred_zone, zone, 1); 2681 2682 return page; 2683 } 2684 2685 /* Remove page from the per-cpu list, caller must protect the list */ 2686 static inline 2687 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, 2688 int migratetype, 2689 unsigned int alloc_flags, 2690 struct per_cpu_pages *pcp, 2691 struct list_head *list) 2692 { 2693 struct page *page; 2694 2695 do { 2696 if (list_empty(list)) { 2697 int batch = READ_ONCE(pcp->batch); 2698 int alloced; 2699 2700 /* 2701 * Scale batch relative to order if batch implies 2702 * free pages can be stored on the PCP. Batch can 2703 * be 1 for small zones or for boot pagesets which 2704 * should never store free pages as the pages may 2705 * belong to arbitrary zones. 2706 */ 2707 if (batch > 1) 2708 batch = max(batch >> order, 2); 2709 alloced = rmqueue_bulk(zone, order, 2710 batch, list, 2711 migratetype, alloc_flags); 2712 2713 pcp->count += alloced << order; 2714 if (unlikely(list_empty(list))) 2715 return NULL; 2716 } 2717 2718 page = list_first_entry(list, struct page, pcp_list); 2719 list_del(&page->pcp_list); 2720 pcp->count -= 1 << order; 2721 } while (check_new_pages(page, order)); 2722 2723 return page; 2724 } 2725 2726 /* Lock and remove page from the per-cpu list */ 2727 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 2728 struct zone *zone, unsigned int order, 2729 int migratetype, unsigned int alloc_flags) 2730 { 2731 struct per_cpu_pages *pcp; 2732 struct list_head *list; 2733 struct page *page; 2734 unsigned long __maybe_unused UP_flags; 2735 2736 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 2737 pcp_trylock_prepare(UP_flags); 2738 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2739 if (!pcp) { 2740 pcp_trylock_finish(UP_flags); 2741 return NULL; 2742 } 2743 2744 /* 2745 * On allocation, reduce the number of pages that are batch freed. 2746 * See nr_pcp_free() where free_factor is increased for subsequent 2747 * frees. 2748 */ 2749 pcp->free_factor >>= 1; 2750 list = &pcp->lists[order_to_pindex(migratetype, order)]; 2751 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); 2752 pcp_spin_unlock(pcp); 2753 pcp_trylock_finish(UP_flags); 2754 if (page) { 2755 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2756 zone_statistics(preferred_zone, zone, 1); 2757 } 2758 return page; 2759 } 2760 2761 /* 2762 * Allocate a page from the given zone. 2763 * Use pcplists for THP or "cheap" high-order allocations. 2764 */ 2765 2766 /* 2767 * Do not instrument rmqueue() with KMSAN. This function may call 2768 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask(). 2769 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it 2770 * may call rmqueue() again, which will result in a deadlock. 2771 */ 2772 __no_sanitize_memory 2773 static inline 2774 struct page *rmqueue(struct zone *preferred_zone, 2775 struct zone *zone, unsigned int order, 2776 gfp_t gfp_flags, unsigned int alloc_flags, 2777 int migratetype) 2778 { 2779 struct page *page; 2780 2781 /* 2782 * We most definitely don't want callers attempting to 2783 * allocate greater than order-1 page units with __GFP_NOFAIL. 2784 */ 2785 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 2786 2787 if (likely(pcp_allowed_order(order))) { 2788 page = rmqueue_pcplist(preferred_zone, zone, order, 2789 migratetype, alloc_flags); 2790 if (likely(page)) 2791 goto out; 2792 } 2793 2794 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags, 2795 migratetype); 2796 2797 out: 2798 /* Separate test+clear to avoid unnecessary atomics */ 2799 if ((alloc_flags & ALLOC_KSWAPD) && 2800 unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) { 2801 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2802 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 2803 } 2804 2805 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 2806 return page; 2807 } 2808 2809 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 2810 { 2811 return __should_fail_alloc_page(gfp_mask, order); 2812 } 2813 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 2814 2815 static inline long __zone_watermark_unusable_free(struct zone *z, 2816 unsigned int order, unsigned int alloc_flags) 2817 { 2818 long unusable_free = (1 << order) - 1; 2819 2820 /* 2821 * If the caller does not have rights to reserves below the min 2822 * watermark then subtract the high-atomic reserves. This will 2823 * over-estimate the size of the atomic reserve but it avoids a search. 2824 */ 2825 if (likely(!(alloc_flags & ALLOC_RESERVES))) 2826 unusable_free += z->nr_reserved_highatomic; 2827 2828 #ifdef CONFIG_CMA 2829 /* If allocation can't use CMA areas don't use free CMA pages */ 2830 if (!(alloc_flags & ALLOC_CMA)) 2831 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 2832 #endif 2833 #ifdef CONFIG_UNACCEPTED_MEMORY 2834 unusable_free += zone_page_state(z, NR_UNACCEPTED); 2835 #endif 2836 2837 return unusable_free; 2838 } 2839 2840 /* 2841 * Return true if free base pages are above 'mark'. For high-order checks it 2842 * will return true of the order-0 watermark is reached and there is at least 2843 * one free page of a suitable size. Checking now avoids taking the zone lock 2844 * to check in the allocation paths if no pages are free. 2845 */ 2846 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 2847 int highest_zoneidx, unsigned int alloc_flags, 2848 long free_pages) 2849 { 2850 long min = mark; 2851 int o; 2852 2853 /* free_pages may go negative - that's OK */ 2854 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 2855 2856 if (unlikely(alloc_flags & ALLOC_RESERVES)) { 2857 /* 2858 * __GFP_HIGH allows access to 50% of the min reserve as well 2859 * as OOM. 2860 */ 2861 if (alloc_flags & ALLOC_MIN_RESERVE) { 2862 min -= min / 2; 2863 2864 /* 2865 * Non-blocking allocations (e.g. GFP_ATOMIC) can 2866 * access more reserves than just __GFP_HIGH. Other 2867 * non-blocking allocations requests such as GFP_NOWAIT 2868 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get 2869 * access to the min reserve. 2870 */ 2871 if (alloc_flags & ALLOC_NON_BLOCK) 2872 min -= min / 4; 2873 } 2874 2875 /* 2876 * OOM victims can try even harder than the normal reserve 2877 * users on the grounds that it's definitely going to be in 2878 * the exit path shortly and free memory. Any allocation it 2879 * makes during the free path will be small and short-lived. 2880 */ 2881 if (alloc_flags & ALLOC_OOM) 2882 min -= min / 2; 2883 } 2884 2885 /* 2886 * Check watermarks for an order-0 allocation request. If these 2887 * are not met, then a high-order request also cannot go ahead 2888 * even if a suitable page happened to be free. 2889 */ 2890 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 2891 return false; 2892 2893 /* If this is an order-0 request then the watermark is fine */ 2894 if (!order) 2895 return true; 2896 2897 /* For a high-order request, check at least one suitable page is free */ 2898 for (o = order; o < NR_PAGE_ORDERS; o++) { 2899 struct free_area *area = &z->free_area[o]; 2900 int mt; 2901 2902 if (!area->nr_free) 2903 continue; 2904 2905 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 2906 if (!free_area_empty(area, mt)) 2907 return true; 2908 } 2909 2910 #ifdef CONFIG_CMA 2911 if ((alloc_flags & ALLOC_CMA) && 2912 !free_area_empty(area, MIGRATE_CMA)) { 2913 return true; 2914 } 2915 #endif 2916 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) && 2917 !free_area_empty(area, MIGRATE_HIGHATOMIC)) { 2918 return true; 2919 } 2920 } 2921 return false; 2922 } 2923 2924 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 2925 int highest_zoneidx, unsigned int alloc_flags) 2926 { 2927 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 2928 zone_page_state(z, NR_FREE_PAGES)); 2929 } 2930 2931 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 2932 unsigned long mark, int highest_zoneidx, 2933 unsigned int alloc_flags, gfp_t gfp_mask) 2934 { 2935 long free_pages; 2936 2937 free_pages = zone_page_state(z, NR_FREE_PAGES); 2938 2939 /* 2940 * Fast check for order-0 only. If this fails then the reserves 2941 * need to be calculated. 2942 */ 2943 if (!order) { 2944 long usable_free; 2945 long reserved; 2946 2947 usable_free = free_pages; 2948 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags); 2949 2950 /* reserved may over estimate high-atomic reserves. */ 2951 usable_free -= min(usable_free, reserved); 2952 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx]) 2953 return true; 2954 } 2955 2956 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 2957 free_pages)) 2958 return true; 2959 2960 /* 2961 * Ignore watermark boosting for __GFP_HIGH order-0 allocations 2962 * when checking the min watermark. The min watermark is the 2963 * point where boosting is ignored so that kswapd is woken up 2964 * when below the low watermark. 2965 */ 2966 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost 2967 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 2968 mark = z->_watermark[WMARK_MIN]; 2969 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 2970 alloc_flags, free_pages); 2971 } 2972 2973 return false; 2974 } 2975 2976 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 2977 unsigned long mark, int highest_zoneidx) 2978 { 2979 long free_pages = zone_page_state(z, NR_FREE_PAGES); 2980 2981 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 2982 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 2983 2984 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 2985 free_pages); 2986 } 2987 2988 #ifdef CONFIG_NUMA 2989 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 2990 2991 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 2992 { 2993 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 2994 node_reclaim_distance; 2995 } 2996 #else /* CONFIG_NUMA */ 2997 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 2998 { 2999 return true; 3000 } 3001 #endif /* CONFIG_NUMA */ 3002 3003 /* 3004 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3005 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3006 * premature use of a lower zone may cause lowmem pressure problems that 3007 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3008 * probably too small. It only makes sense to spread allocations to avoid 3009 * fragmentation between the Normal and DMA32 zones. 3010 */ 3011 static inline unsigned int 3012 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3013 { 3014 unsigned int alloc_flags; 3015 3016 /* 3017 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3018 * to save a branch. 3019 */ 3020 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 3021 3022 #ifdef CONFIG_ZONE_DMA32 3023 if (!zone) 3024 return alloc_flags; 3025 3026 if (zone_idx(zone) != ZONE_NORMAL) 3027 return alloc_flags; 3028 3029 /* 3030 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3031 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3032 * on UMA that if Normal is populated then so is DMA32. 3033 */ 3034 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3035 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3036 return alloc_flags; 3037 3038 alloc_flags |= ALLOC_NOFRAGMENT; 3039 #endif /* CONFIG_ZONE_DMA32 */ 3040 return alloc_flags; 3041 } 3042 3043 /* Must be called after current_gfp_context() which can change gfp_mask */ 3044 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 3045 unsigned int alloc_flags) 3046 { 3047 #ifdef CONFIG_CMA 3048 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3049 alloc_flags |= ALLOC_CMA; 3050 #endif 3051 return alloc_flags; 3052 } 3053 3054 /* 3055 * get_page_from_freelist goes through the zonelist trying to allocate 3056 * a page. 3057 */ 3058 static struct page * 3059 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3060 const struct alloc_context *ac) 3061 { 3062 struct zoneref *z; 3063 struct zone *zone; 3064 struct pglist_data *last_pgdat = NULL; 3065 bool last_pgdat_dirty_ok = false; 3066 bool no_fallback; 3067 3068 retry: 3069 /* 3070 * Scan zonelist, looking for a zone with enough free. 3071 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c. 3072 */ 3073 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3074 z = ac->preferred_zoneref; 3075 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 3076 ac->nodemask) { 3077 struct page *page; 3078 unsigned long mark; 3079 3080 if (cpusets_enabled() && 3081 (alloc_flags & ALLOC_CPUSET) && 3082 !__cpuset_zone_allowed(zone, gfp_mask)) 3083 continue; 3084 /* 3085 * When allocating a page cache page for writing, we 3086 * want to get it from a node that is within its dirty 3087 * limit, such that no single node holds more than its 3088 * proportional share of globally allowed dirty pages. 3089 * The dirty limits take into account the node's 3090 * lowmem reserves and high watermark so that kswapd 3091 * should be able to balance it without having to 3092 * write pages from its LRU list. 3093 * 3094 * XXX: For now, allow allocations to potentially 3095 * exceed the per-node dirty limit in the slowpath 3096 * (spread_dirty_pages unset) before going into reclaim, 3097 * which is important when on a NUMA setup the allowed 3098 * nodes are together not big enough to reach the 3099 * global limit. The proper fix for these situations 3100 * will require awareness of nodes in the 3101 * dirty-throttling and the flusher threads. 3102 */ 3103 if (ac->spread_dirty_pages) { 3104 if (last_pgdat != zone->zone_pgdat) { 3105 last_pgdat = zone->zone_pgdat; 3106 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat); 3107 } 3108 3109 if (!last_pgdat_dirty_ok) 3110 continue; 3111 } 3112 3113 if (no_fallback && nr_online_nodes > 1 && 3114 zone != ac->preferred_zoneref->zone) { 3115 int local_nid; 3116 3117 /* 3118 * If moving to a remote node, retry but allow 3119 * fragmenting fallbacks. Locality is more important 3120 * than fragmentation avoidance. 3121 */ 3122 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 3123 if (zone_to_nid(zone) != local_nid) { 3124 alloc_flags &= ~ALLOC_NOFRAGMENT; 3125 goto retry; 3126 } 3127 } 3128 3129 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3130 if (!zone_watermark_fast(zone, order, mark, 3131 ac->highest_zoneidx, alloc_flags, 3132 gfp_mask)) { 3133 int ret; 3134 3135 if (has_unaccepted_memory()) { 3136 if (try_to_accept_memory(zone, order)) 3137 goto try_this_zone; 3138 } 3139 3140 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3141 /* 3142 * Watermark failed for this zone, but see if we can 3143 * grow this zone if it contains deferred pages. 3144 */ 3145 if (deferred_pages_enabled()) { 3146 if (_deferred_grow_zone(zone, order)) 3147 goto try_this_zone; 3148 } 3149 #endif 3150 /* Checked here to keep the fast path fast */ 3151 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3152 if (alloc_flags & ALLOC_NO_WATERMARKS) 3153 goto try_this_zone; 3154 3155 if (!node_reclaim_enabled() || 3156 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3157 continue; 3158 3159 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3160 switch (ret) { 3161 case NODE_RECLAIM_NOSCAN: 3162 /* did not scan */ 3163 continue; 3164 case NODE_RECLAIM_FULL: 3165 /* scanned but unreclaimable */ 3166 continue; 3167 default: 3168 /* did we reclaim enough */ 3169 if (zone_watermark_ok(zone, order, mark, 3170 ac->highest_zoneidx, alloc_flags)) 3171 goto try_this_zone; 3172 3173 continue; 3174 } 3175 } 3176 3177 try_this_zone: 3178 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3179 gfp_mask, alloc_flags, ac->migratetype); 3180 if (page) { 3181 prep_new_page(page, order, gfp_mask, alloc_flags); 3182 3183 /* 3184 * If this is a high-order atomic allocation then check 3185 * if the pageblock should be reserved for the future 3186 */ 3187 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC)) 3188 reserve_highatomic_pageblock(page, zone); 3189 3190 return page; 3191 } else { 3192 if (has_unaccepted_memory()) { 3193 if (try_to_accept_memory(zone, order)) 3194 goto try_this_zone; 3195 } 3196 3197 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3198 /* Try again if zone has deferred pages */ 3199 if (deferred_pages_enabled()) { 3200 if (_deferred_grow_zone(zone, order)) 3201 goto try_this_zone; 3202 } 3203 #endif 3204 } 3205 } 3206 3207 /* 3208 * It's possible on a UMA machine to get through all zones that are 3209 * fragmented. If avoiding fragmentation, reset and try again. 3210 */ 3211 if (no_fallback) { 3212 alloc_flags &= ~ALLOC_NOFRAGMENT; 3213 goto retry; 3214 } 3215 3216 return NULL; 3217 } 3218 3219 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3220 { 3221 unsigned int filter = SHOW_MEM_FILTER_NODES; 3222 3223 /* 3224 * This documents exceptions given to allocations in certain 3225 * contexts that are allowed to allocate outside current's set 3226 * of allowed nodes. 3227 */ 3228 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3229 if (tsk_is_oom_victim(current) || 3230 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3231 filter &= ~SHOW_MEM_FILTER_NODES; 3232 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3233 filter &= ~SHOW_MEM_FILTER_NODES; 3234 3235 __show_mem(filter, nodemask, gfp_zone(gfp_mask)); 3236 } 3237 3238 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3239 { 3240 struct va_format vaf; 3241 va_list args; 3242 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 3243 3244 if ((gfp_mask & __GFP_NOWARN) || 3245 !__ratelimit(&nopage_rs) || 3246 ((gfp_mask & __GFP_DMA) && !has_managed_dma())) 3247 return; 3248 3249 va_start(args, fmt); 3250 vaf.fmt = fmt; 3251 vaf.va = &args; 3252 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 3253 current->comm, &vaf, gfp_mask, &gfp_mask, 3254 nodemask_pr_args(nodemask)); 3255 va_end(args); 3256 3257 cpuset_print_current_mems_allowed(); 3258 pr_cont("\n"); 3259 dump_stack(); 3260 warn_alloc_show_mem(gfp_mask, nodemask); 3261 } 3262 3263 static inline struct page * 3264 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3265 unsigned int alloc_flags, 3266 const struct alloc_context *ac) 3267 { 3268 struct page *page; 3269 3270 page = get_page_from_freelist(gfp_mask, order, 3271 alloc_flags|ALLOC_CPUSET, ac); 3272 /* 3273 * fallback to ignore cpuset restriction if our nodes 3274 * are depleted 3275 */ 3276 if (!page) 3277 page = get_page_from_freelist(gfp_mask, order, 3278 alloc_flags, ac); 3279 3280 return page; 3281 } 3282 3283 static inline struct page * 3284 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3285 const struct alloc_context *ac, unsigned long *did_some_progress) 3286 { 3287 struct oom_control oc = { 3288 .zonelist = ac->zonelist, 3289 .nodemask = ac->nodemask, 3290 .memcg = NULL, 3291 .gfp_mask = gfp_mask, 3292 .order = order, 3293 }; 3294 struct page *page; 3295 3296 *did_some_progress = 0; 3297 3298 /* 3299 * Acquire the oom lock. If that fails, somebody else is 3300 * making progress for us. 3301 */ 3302 if (!mutex_trylock(&oom_lock)) { 3303 *did_some_progress = 1; 3304 schedule_timeout_uninterruptible(1); 3305 return NULL; 3306 } 3307 3308 /* 3309 * Go through the zonelist yet one more time, keep very high watermark 3310 * here, this is only to catch a parallel oom killing, we must fail if 3311 * we're still under heavy pressure. But make sure that this reclaim 3312 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3313 * allocation which will never fail due to oom_lock already held. 3314 */ 3315 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3316 ~__GFP_DIRECT_RECLAIM, order, 3317 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3318 if (page) 3319 goto out; 3320 3321 /* Coredumps can quickly deplete all memory reserves */ 3322 if (current->flags & PF_DUMPCORE) 3323 goto out; 3324 /* The OOM killer will not help higher order allocs */ 3325 if (order > PAGE_ALLOC_COSTLY_ORDER) 3326 goto out; 3327 /* 3328 * We have already exhausted all our reclaim opportunities without any 3329 * success so it is time to admit defeat. We will skip the OOM killer 3330 * because it is very likely that the caller has a more reasonable 3331 * fallback than shooting a random task. 3332 * 3333 * The OOM killer may not free memory on a specific node. 3334 */ 3335 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 3336 goto out; 3337 /* The OOM killer does not needlessly kill tasks for lowmem */ 3338 if (ac->highest_zoneidx < ZONE_NORMAL) 3339 goto out; 3340 if (pm_suspended_storage()) 3341 goto out; 3342 /* 3343 * XXX: GFP_NOFS allocations should rather fail than rely on 3344 * other request to make a forward progress. 3345 * We are in an unfortunate situation where out_of_memory cannot 3346 * do much for this context but let's try it to at least get 3347 * access to memory reserved if the current task is killed (see 3348 * out_of_memory). Once filesystems are ready to handle allocation 3349 * failures more gracefully we should just bail out here. 3350 */ 3351 3352 /* Exhausted what can be done so it's blame time */ 3353 if (out_of_memory(&oc) || 3354 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) { 3355 *did_some_progress = 1; 3356 3357 /* 3358 * Help non-failing allocations by giving them access to memory 3359 * reserves 3360 */ 3361 if (gfp_mask & __GFP_NOFAIL) 3362 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3363 ALLOC_NO_WATERMARKS, ac); 3364 } 3365 out: 3366 mutex_unlock(&oom_lock); 3367 return page; 3368 } 3369 3370 /* 3371 * Maximum number of compaction retries with a progress before OOM 3372 * killer is consider as the only way to move forward. 3373 */ 3374 #define MAX_COMPACT_RETRIES 16 3375 3376 #ifdef CONFIG_COMPACTION 3377 /* Try memory compaction for high-order allocations before reclaim */ 3378 static struct page * 3379 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3380 unsigned int alloc_flags, const struct alloc_context *ac, 3381 enum compact_priority prio, enum compact_result *compact_result) 3382 { 3383 struct page *page = NULL; 3384 unsigned long pflags; 3385 unsigned int noreclaim_flag; 3386 3387 if (!order) 3388 return NULL; 3389 3390 psi_memstall_enter(&pflags); 3391 delayacct_compact_start(); 3392 noreclaim_flag = memalloc_noreclaim_save(); 3393 3394 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3395 prio, &page); 3396 3397 memalloc_noreclaim_restore(noreclaim_flag); 3398 psi_memstall_leave(&pflags); 3399 delayacct_compact_end(); 3400 3401 if (*compact_result == COMPACT_SKIPPED) 3402 return NULL; 3403 /* 3404 * At least in one zone compaction wasn't deferred or skipped, so let's 3405 * count a compaction stall 3406 */ 3407 count_vm_event(COMPACTSTALL); 3408 3409 /* Prep a captured page if available */ 3410 if (page) 3411 prep_new_page(page, order, gfp_mask, alloc_flags); 3412 3413 /* Try get a page from the freelist if available */ 3414 if (!page) 3415 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3416 3417 if (page) { 3418 struct zone *zone = page_zone(page); 3419 3420 zone->compact_blockskip_flush = false; 3421 compaction_defer_reset(zone, order, true); 3422 count_vm_event(COMPACTSUCCESS); 3423 return page; 3424 } 3425 3426 /* 3427 * It's bad if compaction run occurs and fails. The most likely reason 3428 * is that pages exist, but not enough to satisfy watermarks. 3429 */ 3430 count_vm_event(COMPACTFAIL); 3431 3432 cond_resched(); 3433 3434 return NULL; 3435 } 3436 3437 static inline bool 3438 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3439 enum compact_result compact_result, 3440 enum compact_priority *compact_priority, 3441 int *compaction_retries) 3442 { 3443 int max_retries = MAX_COMPACT_RETRIES; 3444 int min_priority; 3445 bool ret = false; 3446 int retries = *compaction_retries; 3447 enum compact_priority priority = *compact_priority; 3448 3449 if (!order) 3450 return false; 3451 3452 if (fatal_signal_pending(current)) 3453 return false; 3454 3455 /* 3456 * Compaction was skipped due to a lack of free order-0 3457 * migration targets. Continue if reclaim can help. 3458 */ 3459 if (compact_result == COMPACT_SKIPPED) { 3460 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 3461 goto out; 3462 } 3463 3464 /* 3465 * Compaction managed to coalesce some page blocks, but the 3466 * allocation failed presumably due to a race. Retry some. 3467 */ 3468 if (compact_result == COMPACT_SUCCESS) { 3469 /* 3470 * !costly requests are much more important than 3471 * __GFP_RETRY_MAYFAIL costly ones because they are de 3472 * facto nofail and invoke OOM killer to move on while 3473 * costly can fail and users are ready to cope with 3474 * that. 1/4 retries is rather arbitrary but we would 3475 * need much more detailed feedback from compaction to 3476 * make a better decision. 3477 */ 3478 if (order > PAGE_ALLOC_COSTLY_ORDER) 3479 max_retries /= 4; 3480 3481 if (++(*compaction_retries) <= max_retries) { 3482 ret = true; 3483 goto out; 3484 } 3485 } 3486 3487 /* 3488 * Compaction failed. Retry with increasing priority. 3489 */ 3490 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 3491 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 3492 3493 if (*compact_priority > min_priority) { 3494 (*compact_priority)--; 3495 *compaction_retries = 0; 3496 ret = true; 3497 } 3498 out: 3499 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 3500 return ret; 3501 } 3502 #else 3503 static inline struct page * 3504 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3505 unsigned int alloc_flags, const struct alloc_context *ac, 3506 enum compact_priority prio, enum compact_result *compact_result) 3507 { 3508 *compact_result = COMPACT_SKIPPED; 3509 return NULL; 3510 } 3511 3512 static inline bool 3513 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 3514 enum compact_result compact_result, 3515 enum compact_priority *compact_priority, 3516 int *compaction_retries) 3517 { 3518 struct zone *zone; 3519 struct zoneref *z; 3520 3521 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 3522 return false; 3523 3524 /* 3525 * There are setups with compaction disabled which would prefer to loop 3526 * inside the allocator rather than hit the oom killer prematurely. 3527 * Let's give them a good hope and keep retrying while the order-0 3528 * watermarks are OK. 3529 */ 3530 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 3531 ac->highest_zoneidx, ac->nodemask) { 3532 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 3533 ac->highest_zoneidx, alloc_flags)) 3534 return true; 3535 } 3536 return false; 3537 } 3538 #endif /* CONFIG_COMPACTION */ 3539 3540 #ifdef CONFIG_LOCKDEP 3541 static struct lockdep_map __fs_reclaim_map = 3542 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 3543 3544 static bool __need_reclaim(gfp_t gfp_mask) 3545 { 3546 /* no reclaim without waiting on it */ 3547 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 3548 return false; 3549 3550 /* this guy won't enter reclaim */ 3551 if (current->flags & PF_MEMALLOC) 3552 return false; 3553 3554 if (gfp_mask & __GFP_NOLOCKDEP) 3555 return false; 3556 3557 return true; 3558 } 3559 3560 void __fs_reclaim_acquire(unsigned long ip) 3561 { 3562 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); 3563 } 3564 3565 void __fs_reclaim_release(unsigned long ip) 3566 { 3567 lock_release(&__fs_reclaim_map, ip); 3568 } 3569 3570 void fs_reclaim_acquire(gfp_t gfp_mask) 3571 { 3572 gfp_mask = current_gfp_context(gfp_mask); 3573 3574 if (__need_reclaim(gfp_mask)) { 3575 if (gfp_mask & __GFP_FS) 3576 __fs_reclaim_acquire(_RET_IP_); 3577 3578 #ifdef CONFIG_MMU_NOTIFIER 3579 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 3580 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 3581 #endif 3582 3583 } 3584 } 3585 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 3586 3587 void fs_reclaim_release(gfp_t gfp_mask) 3588 { 3589 gfp_mask = current_gfp_context(gfp_mask); 3590 3591 if (__need_reclaim(gfp_mask)) { 3592 if (gfp_mask & __GFP_FS) 3593 __fs_reclaim_release(_RET_IP_); 3594 } 3595 } 3596 EXPORT_SYMBOL_GPL(fs_reclaim_release); 3597 #endif 3598 3599 /* 3600 * Zonelists may change due to hotplug during allocation. Detect when zonelists 3601 * have been rebuilt so allocation retries. Reader side does not lock and 3602 * retries the allocation if zonelist changes. Writer side is protected by the 3603 * embedded spin_lock. 3604 */ 3605 static DEFINE_SEQLOCK(zonelist_update_seq); 3606 3607 static unsigned int zonelist_iter_begin(void) 3608 { 3609 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 3610 return read_seqbegin(&zonelist_update_seq); 3611 3612 return 0; 3613 } 3614 3615 static unsigned int check_retry_zonelist(unsigned int seq) 3616 { 3617 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 3618 return read_seqretry(&zonelist_update_seq, seq); 3619 3620 return seq; 3621 } 3622 3623 /* Perform direct synchronous page reclaim */ 3624 static unsigned long 3625 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 3626 const struct alloc_context *ac) 3627 { 3628 unsigned int noreclaim_flag; 3629 unsigned long progress; 3630 3631 cond_resched(); 3632 3633 /* We now go into synchronous reclaim */ 3634 cpuset_memory_pressure_bump(); 3635 fs_reclaim_acquire(gfp_mask); 3636 noreclaim_flag = memalloc_noreclaim_save(); 3637 3638 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 3639 ac->nodemask); 3640 3641 memalloc_noreclaim_restore(noreclaim_flag); 3642 fs_reclaim_release(gfp_mask); 3643 3644 cond_resched(); 3645 3646 return progress; 3647 } 3648 3649 /* The really slow allocator path where we enter direct reclaim */ 3650 static inline struct page * 3651 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 3652 unsigned int alloc_flags, const struct alloc_context *ac, 3653 unsigned long *did_some_progress) 3654 { 3655 struct page *page = NULL; 3656 unsigned long pflags; 3657 bool drained = false; 3658 3659 psi_memstall_enter(&pflags); 3660 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 3661 if (unlikely(!(*did_some_progress))) 3662 goto out; 3663 3664 retry: 3665 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3666 3667 /* 3668 * If an allocation failed after direct reclaim, it could be because 3669 * pages are pinned on the per-cpu lists or in high alloc reserves. 3670 * Shrink them and try again 3671 */ 3672 if (!page && !drained) { 3673 unreserve_highatomic_pageblock(ac, false); 3674 drain_all_pages(NULL); 3675 drained = true; 3676 goto retry; 3677 } 3678 out: 3679 psi_memstall_leave(&pflags); 3680 3681 return page; 3682 } 3683 3684 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 3685 const struct alloc_context *ac) 3686 { 3687 struct zoneref *z; 3688 struct zone *zone; 3689 pg_data_t *last_pgdat = NULL; 3690 enum zone_type highest_zoneidx = ac->highest_zoneidx; 3691 3692 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 3693 ac->nodemask) { 3694 if (!managed_zone(zone)) 3695 continue; 3696 if (last_pgdat != zone->zone_pgdat) { 3697 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); 3698 last_pgdat = zone->zone_pgdat; 3699 } 3700 } 3701 } 3702 3703 static inline unsigned int 3704 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order) 3705 { 3706 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 3707 3708 /* 3709 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE 3710 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3711 * to save two branches. 3712 */ 3713 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE); 3714 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 3715 3716 /* 3717 * The caller may dip into page reserves a bit more if the caller 3718 * cannot run direct reclaim, or if the caller has realtime scheduling 3719 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 3720 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH). 3721 */ 3722 alloc_flags |= (__force int) 3723 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 3724 3725 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) { 3726 /* 3727 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 3728 * if it can't schedule. 3729 */ 3730 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 3731 alloc_flags |= ALLOC_NON_BLOCK; 3732 3733 if (order > 0) 3734 alloc_flags |= ALLOC_HIGHATOMIC; 3735 } 3736 3737 /* 3738 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably 3739 * GFP_ATOMIC) rather than fail, see the comment for 3740 * cpuset_node_allowed(). 3741 */ 3742 if (alloc_flags & ALLOC_MIN_RESERVE) 3743 alloc_flags &= ~ALLOC_CPUSET; 3744 } else if (unlikely(rt_task(current)) && in_task()) 3745 alloc_flags |= ALLOC_MIN_RESERVE; 3746 3747 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 3748 3749 return alloc_flags; 3750 } 3751 3752 static bool oom_reserves_allowed(struct task_struct *tsk) 3753 { 3754 if (!tsk_is_oom_victim(tsk)) 3755 return false; 3756 3757 /* 3758 * !MMU doesn't have oom reaper so give access to memory reserves 3759 * only to the thread with TIF_MEMDIE set 3760 */ 3761 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 3762 return false; 3763 3764 return true; 3765 } 3766 3767 /* 3768 * Distinguish requests which really need access to full memory 3769 * reserves from oom victims which can live with a portion of it 3770 */ 3771 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 3772 { 3773 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 3774 return 0; 3775 if (gfp_mask & __GFP_MEMALLOC) 3776 return ALLOC_NO_WATERMARKS; 3777 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 3778 return ALLOC_NO_WATERMARKS; 3779 if (!in_interrupt()) { 3780 if (current->flags & PF_MEMALLOC) 3781 return ALLOC_NO_WATERMARKS; 3782 else if (oom_reserves_allowed(current)) 3783 return ALLOC_OOM; 3784 } 3785 3786 return 0; 3787 } 3788 3789 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 3790 { 3791 return !!__gfp_pfmemalloc_flags(gfp_mask); 3792 } 3793 3794 /* 3795 * Checks whether it makes sense to retry the reclaim to make a forward progress 3796 * for the given allocation request. 3797 * 3798 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 3799 * without success, or when we couldn't even meet the watermark if we 3800 * reclaimed all remaining pages on the LRU lists. 3801 * 3802 * Returns true if a retry is viable or false to enter the oom path. 3803 */ 3804 static inline bool 3805 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 3806 struct alloc_context *ac, int alloc_flags, 3807 bool did_some_progress, int *no_progress_loops) 3808 { 3809 struct zone *zone; 3810 struct zoneref *z; 3811 bool ret = false; 3812 3813 /* 3814 * Costly allocations might have made a progress but this doesn't mean 3815 * their order will become available due to high fragmentation so 3816 * always increment the no progress counter for them 3817 */ 3818 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 3819 *no_progress_loops = 0; 3820 else 3821 (*no_progress_loops)++; 3822 3823 if (*no_progress_loops > MAX_RECLAIM_RETRIES) 3824 goto out; 3825 3826 3827 /* 3828 * Keep reclaiming pages while there is a chance this will lead 3829 * somewhere. If none of the target zones can satisfy our allocation 3830 * request even if all reclaimable pages are considered then we are 3831 * screwed and have to go OOM. 3832 */ 3833 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 3834 ac->highest_zoneidx, ac->nodemask) { 3835 unsigned long available; 3836 unsigned long reclaimable; 3837 unsigned long min_wmark = min_wmark_pages(zone); 3838 bool wmark; 3839 3840 available = reclaimable = zone_reclaimable_pages(zone); 3841 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 3842 3843 /* 3844 * Would the allocation succeed if we reclaimed all 3845 * reclaimable pages? 3846 */ 3847 wmark = __zone_watermark_ok(zone, order, min_wmark, 3848 ac->highest_zoneidx, alloc_flags, available); 3849 trace_reclaim_retry_zone(z, order, reclaimable, 3850 available, min_wmark, *no_progress_loops, wmark); 3851 if (wmark) { 3852 ret = true; 3853 break; 3854 } 3855 } 3856 3857 /* 3858 * Memory allocation/reclaim might be called from a WQ context and the 3859 * current implementation of the WQ concurrency control doesn't 3860 * recognize that a particular WQ is congested if the worker thread is 3861 * looping without ever sleeping. Therefore we have to do a short sleep 3862 * here rather than calling cond_resched(). 3863 */ 3864 if (current->flags & PF_WQ_WORKER) 3865 schedule_timeout_uninterruptible(1); 3866 else 3867 cond_resched(); 3868 out: 3869 /* Before OOM, exhaust highatomic_reserve */ 3870 if (!ret) 3871 return unreserve_highatomic_pageblock(ac, true); 3872 3873 return ret; 3874 } 3875 3876 static inline bool 3877 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 3878 { 3879 /* 3880 * It's possible that cpuset's mems_allowed and the nodemask from 3881 * mempolicy don't intersect. This should be normally dealt with by 3882 * policy_nodemask(), but it's possible to race with cpuset update in 3883 * such a way the check therein was true, and then it became false 3884 * before we got our cpuset_mems_cookie here. 3885 * This assumes that for all allocations, ac->nodemask can come only 3886 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 3887 * when it does not intersect with the cpuset restrictions) or the 3888 * caller can deal with a violated nodemask. 3889 */ 3890 if (cpusets_enabled() && ac->nodemask && 3891 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 3892 ac->nodemask = NULL; 3893 return true; 3894 } 3895 3896 /* 3897 * When updating a task's mems_allowed or mempolicy nodemask, it is 3898 * possible to race with parallel threads in such a way that our 3899 * allocation can fail while the mask is being updated. If we are about 3900 * to fail, check if the cpuset changed during allocation and if so, 3901 * retry. 3902 */ 3903 if (read_mems_allowed_retry(cpuset_mems_cookie)) 3904 return true; 3905 3906 return false; 3907 } 3908 3909 static inline struct page * 3910 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 3911 struct alloc_context *ac) 3912 { 3913 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 3914 bool can_compact = gfp_compaction_allowed(gfp_mask); 3915 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 3916 struct page *page = NULL; 3917 unsigned int alloc_flags; 3918 unsigned long did_some_progress; 3919 enum compact_priority compact_priority; 3920 enum compact_result compact_result; 3921 int compaction_retries; 3922 int no_progress_loops; 3923 unsigned int cpuset_mems_cookie; 3924 unsigned int zonelist_iter_cookie; 3925 int reserve_flags; 3926 3927 restart: 3928 compaction_retries = 0; 3929 no_progress_loops = 0; 3930 compact_priority = DEF_COMPACT_PRIORITY; 3931 cpuset_mems_cookie = read_mems_allowed_begin(); 3932 zonelist_iter_cookie = zonelist_iter_begin(); 3933 3934 /* 3935 * The fast path uses conservative alloc_flags to succeed only until 3936 * kswapd needs to be woken up, and to avoid the cost of setting up 3937 * alloc_flags precisely. So we do that now. 3938 */ 3939 alloc_flags = gfp_to_alloc_flags(gfp_mask, order); 3940 3941 /* 3942 * We need to recalculate the starting point for the zonelist iterator 3943 * because we might have used different nodemask in the fast path, or 3944 * there was a cpuset modification and we are retrying - otherwise we 3945 * could end up iterating over non-eligible zones endlessly. 3946 */ 3947 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 3948 ac->highest_zoneidx, ac->nodemask); 3949 if (!ac->preferred_zoneref->zone) 3950 goto nopage; 3951 3952 /* 3953 * Check for insane configurations where the cpuset doesn't contain 3954 * any suitable zone to satisfy the request - e.g. non-movable 3955 * GFP_HIGHUSER allocations from MOVABLE nodes only. 3956 */ 3957 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { 3958 struct zoneref *z = first_zones_zonelist(ac->zonelist, 3959 ac->highest_zoneidx, 3960 &cpuset_current_mems_allowed); 3961 if (!z->zone) 3962 goto nopage; 3963 } 3964 3965 if (alloc_flags & ALLOC_KSWAPD) 3966 wake_all_kswapds(order, gfp_mask, ac); 3967 3968 /* 3969 * The adjusted alloc_flags might result in immediate success, so try 3970 * that first 3971 */ 3972 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3973 if (page) 3974 goto got_pg; 3975 3976 /* 3977 * For costly allocations, try direct compaction first, as it's likely 3978 * that we have enough base pages and don't need to reclaim. For non- 3979 * movable high-order allocations, do that as well, as compaction will 3980 * try prevent permanent fragmentation by migrating from blocks of the 3981 * same migratetype. 3982 * Don't try this for allocations that are allowed to ignore 3983 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 3984 */ 3985 if (can_direct_reclaim && can_compact && 3986 (costly_order || 3987 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 3988 && !gfp_pfmemalloc_allowed(gfp_mask)) { 3989 page = __alloc_pages_direct_compact(gfp_mask, order, 3990 alloc_flags, ac, 3991 INIT_COMPACT_PRIORITY, 3992 &compact_result); 3993 if (page) 3994 goto got_pg; 3995 3996 /* 3997 * Checks for costly allocations with __GFP_NORETRY, which 3998 * includes some THP page fault allocations 3999 */ 4000 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4001 /* 4002 * If allocating entire pageblock(s) and compaction 4003 * failed because all zones are below low watermarks 4004 * or is prohibited because it recently failed at this 4005 * order, fail immediately unless the allocator has 4006 * requested compaction and reclaim retry. 4007 * 4008 * Reclaim is 4009 * - potentially very expensive because zones are far 4010 * below their low watermarks or this is part of very 4011 * bursty high order allocations, 4012 * - not guaranteed to help because isolate_freepages() 4013 * may not iterate over freed pages as part of its 4014 * linear scan, and 4015 * - unlikely to make entire pageblocks free on its 4016 * own. 4017 */ 4018 if (compact_result == COMPACT_SKIPPED || 4019 compact_result == COMPACT_DEFERRED) 4020 goto nopage; 4021 4022 /* 4023 * Looks like reclaim/compaction is worth trying, but 4024 * sync compaction could be very expensive, so keep 4025 * using async compaction. 4026 */ 4027 compact_priority = INIT_COMPACT_PRIORITY; 4028 } 4029 } 4030 4031 retry: 4032 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4033 if (alloc_flags & ALLOC_KSWAPD) 4034 wake_all_kswapds(order, gfp_mask, ac); 4035 4036 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4037 if (reserve_flags) 4038 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) | 4039 (alloc_flags & ALLOC_KSWAPD); 4040 4041 /* 4042 * Reset the nodemask and zonelist iterators if memory policies can be 4043 * ignored. These allocations are high priority and system rather than 4044 * user oriented. 4045 */ 4046 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4047 ac->nodemask = NULL; 4048 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4049 ac->highest_zoneidx, ac->nodemask); 4050 } 4051 4052 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4053 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4054 if (page) 4055 goto got_pg; 4056 4057 /* Caller is not willing to reclaim, we can't balance anything */ 4058 if (!can_direct_reclaim) 4059 goto nopage; 4060 4061 /* Avoid recursion of direct reclaim */ 4062 if (current->flags & PF_MEMALLOC) 4063 goto nopage; 4064 4065 /* Try direct reclaim and then allocating */ 4066 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4067 &did_some_progress); 4068 if (page) 4069 goto got_pg; 4070 4071 /* Try direct compaction and then allocating */ 4072 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4073 compact_priority, &compact_result); 4074 if (page) 4075 goto got_pg; 4076 4077 /* Do not loop if specifically requested */ 4078 if (gfp_mask & __GFP_NORETRY) 4079 goto nopage; 4080 4081 /* 4082 * Do not retry costly high order allocations unless they are 4083 * __GFP_RETRY_MAYFAIL and we can compact 4084 */ 4085 if (costly_order && (!can_compact || 4086 !(gfp_mask & __GFP_RETRY_MAYFAIL))) 4087 goto nopage; 4088 4089 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4090 did_some_progress > 0, &no_progress_loops)) 4091 goto retry; 4092 4093 /* 4094 * It doesn't make any sense to retry for the compaction if the order-0 4095 * reclaim is not able to make any progress because the current 4096 * implementation of the compaction depends on the sufficient amount 4097 * of free memory (see __compaction_suitable) 4098 */ 4099 if (did_some_progress > 0 && can_compact && 4100 should_compact_retry(ac, order, alloc_flags, 4101 compact_result, &compact_priority, 4102 &compaction_retries)) 4103 goto retry; 4104 4105 4106 /* 4107 * Deal with possible cpuset update races or zonelist updates to avoid 4108 * a unnecessary OOM kill. 4109 */ 4110 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4111 check_retry_zonelist(zonelist_iter_cookie)) 4112 goto restart; 4113 4114 /* Reclaim has failed us, start killing things */ 4115 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4116 if (page) 4117 goto got_pg; 4118 4119 /* Avoid allocations with no watermarks from looping endlessly */ 4120 if (tsk_is_oom_victim(current) && 4121 (alloc_flags & ALLOC_OOM || 4122 (gfp_mask & __GFP_NOMEMALLOC))) 4123 goto nopage; 4124 4125 /* Retry as long as the OOM killer is making progress */ 4126 if (did_some_progress) { 4127 no_progress_loops = 0; 4128 goto retry; 4129 } 4130 4131 nopage: 4132 /* 4133 * Deal with possible cpuset update races or zonelist updates to avoid 4134 * a unnecessary OOM kill. 4135 */ 4136 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4137 check_retry_zonelist(zonelist_iter_cookie)) 4138 goto restart; 4139 4140 /* 4141 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4142 * we always retry 4143 */ 4144 if (gfp_mask & __GFP_NOFAIL) { 4145 /* 4146 * All existing users of the __GFP_NOFAIL are blockable, so warn 4147 * of any new users that actually require GFP_NOWAIT 4148 */ 4149 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask)) 4150 goto fail; 4151 4152 /* 4153 * PF_MEMALLOC request from this context is rather bizarre 4154 * because we cannot reclaim anything and only can loop waiting 4155 * for somebody to do a work for us 4156 */ 4157 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask); 4158 4159 /* 4160 * non failing costly orders are a hard requirement which we 4161 * are not prepared for much so let's warn about these users 4162 * so that we can identify them and convert them to something 4163 * else. 4164 */ 4165 WARN_ON_ONCE_GFP(costly_order, gfp_mask); 4166 4167 /* 4168 * Help non-failing allocations by giving some access to memory 4169 * reserves normally used for high priority non-blocking 4170 * allocations but do not use ALLOC_NO_WATERMARKS because this 4171 * could deplete whole memory reserves which would just make 4172 * the situation worse. 4173 */ 4174 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac); 4175 if (page) 4176 goto got_pg; 4177 4178 cond_resched(); 4179 goto retry; 4180 } 4181 fail: 4182 warn_alloc(gfp_mask, ac->nodemask, 4183 "page allocation failure: order:%u", order); 4184 got_pg: 4185 return page; 4186 } 4187 4188 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4189 int preferred_nid, nodemask_t *nodemask, 4190 struct alloc_context *ac, gfp_t *alloc_gfp, 4191 unsigned int *alloc_flags) 4192 { 4193 ac->highest_zoneidx = gfp_zone(gfp_mask); 4194 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4195 ac->nodemask = nodemask; 4196 ac->migratetype = gfp_migratetype(gfp_mask); 4197 4198 if (cpusets_enabled()) { 4199 *alloc_gfp |= __GFP_HARDWALL; 4200 /* 4201 * When we are in the interrupt context, it is irrelevant 4202 * to the current task context. It means that any node ok. 4203 */ 4204 if (in_task() && !ac->nodemask) 4205 ac->nodemask = &cpuset_current_mems_allowed; 4206 else 4207 *alloc_flags |= ALLOC_CPUSET; 4208 } 4209 4210 might_alloc(gfp_mask); 4211 4212 if (should_fail_alloc_page(gfp_mask, order)) 4213 return false; 4214 4215 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 4216 4217 /* Dirty zone balancing only done in the fast path */ 4218 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4219 4220 /* 4221 * The preferred zone is used for statistics but crucially it is 4222 * also used as the starting point for the zonelist iterator. It 4223 * may get reset for allocations that ignore memory policies. 4224 */ 4225 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4226 ac->highest_zoneidx, ac->nodemask); 4227 4228 return true; 4229 } 4230 4231 /* 4232 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array 4233 * @gfp: GFP flags for the allocation 4234 * @preferred_nid: The preferred NUMA node ID to allocate from 4235 * @nodemask: Set of nodes to allocate from, may be NULL 4236 * @nr_pages: The number of pages desired on the list or array 4237 * @page_list: Optional list to store the allocated pages 4238 * @page_array: Optional array to store the pages 4239 * 4240 * This is a batched version of the page allocator that attempts to 4241 * allocate nr_pages quickly. Pages are added to page_list if page_list 4242 * is not NULL, otherwise it is assumed that the page_array is valid. 4243 * 4244 * For lists, nr_pages is the number of pages that should be allocated. 4245 * 4246 * For arrays, only NULL elements are populated with pages and nr_pages 4247 * is the maximum number of pages that will be stored in the array. 4248 * 4249 * Returns the number of pages on the list or array. 4250 */ 4251 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid, 4252 nodemask_t *nodemask, int nr_pages, 4253 struct list_head *page_list, 4254 struct page **page_array) 4255 { 4256 struct page *page; 4257 unsigned long __maybe_unused UP_flags; 4258 struct zone *zone; 4259 struct zoneref *z; 4260 struct per_cpu_pages *pcp; 4261 struct list_head *pcp_list; 4262 struct alloc_context ac; 4263 gfp_t alloc_gfp; 4264 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4265 int nr_populated = 0, nr_account = 0; 4266 4267 /* 4268 * Skip populated array elements to determine if any pages need 4269 * to be allocated before disabling IRQs. 4270 */ 4271 while (page_array && nr_populated < nr_pages && page_array[nr_populated]) 4272 nr_populated++; 4273 4274 /* No pages requested? */ 4275 if (unlikely(nr_pages <= 0)) 4276 goto out; 4277 4278 /* Already populated array? */ 4279 if (unlikely(page_array && nr_pages - nr_populated == 0)) 4280 goto out; 4281 4282 /* Bulk allocator does not support memcg accounting. */ 4283 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT)) 4284 goto failed; 4285 4286 /* Use the single page allocator for one page. */ 4287 if (nr_pages - nr_populated == 1) 4288 goto failed; 4289 4290 #ifdef CONFIG_PAGE_OWNER 4291 /* 4292 * PAGE_OWNER may recurse into the allocator to allocate space to 4293 * save the stack with pagesets.lock held. Releasing/reacquiring 4294 * removes much of the performance benefit of bulk allocation so 4295 * force the caller to allocate one page at a time as it'll have 4296 * similar performance to added complexity to the bulk allocator. 4297 */ 4298 if (static_branch_unlikely(&page_owner_inited)) 4299 goto failed; 4300 #endif 4301 4302 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 4303 gfp &= gfp_allowed_mask; 4304 alloc_gfp = gfp; 4305 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 4306 goto out; 4307 gfp = alloc_gfp; 4308 4309 /* Find an allowed local zone that meets the low watermark. */ 4310 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) { 4311 unsigned long mark; 4312 4313 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 4314 !__cpuset_zone_allowed(zone, gfp)) { 4315 continue; 4316 } 4317 4318 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone && 4319 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) { 4320 goto failed; 4321 } 4322 4323 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 4324 if (zone_watermark_fast(zone, 0, mark, 4325 zonelist_zone_idx(ac.preferred_zoneref), 4326 alloc_flags, gfp)) { 4327 break; 4328 } 4329 } 4330 4331 /* 4332 * If there are no allowed local zones that meets the watermarks then 4333 * try to allocate a single page and reclaim if necessary. 4334 */ 4335 if (unlikely(!zone)) 4336 goto failed; 4337 4338 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 4339 pcp_trylock_prepare(UP_flags); 4340 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 4341 if (!pcp) 4342 goto failed_irq; 4343 4344 /* Attempt the batch allocation */ 4345 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; 4346 while (nr_populated < nr_pages) { 4347 4348 /* Skip existing pages */ 4349 if (page_array && page_array[nr_populated]) { 4350 nr_populated++; 4351 continue; 4352 } 4353 4354 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, 4355 pcp, pcp_list); 4356 if (unlikely(!page)) { 4357 /* Try and allocate at least one page */ 4358 if (!nr_account) { 4359 pcp_spin_unlock(pcp); 4360 goto failed_irq; 4361 } 4362 break; 4363 } 4364 nr_account++; 4365 4366 prep_new_page(page, 0, gfp, 0); 4367 if (page_list) 4368 list_add(&page->lru, page_list); 4369 else 4370 page_array[nr_populated] = page; 4371 nr_populated++; 4372 } 4373 4374 pcp_spin_unlock(pcp); 4375 pcp_trylock_finish(UP_flags); 4376 4377 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); 4378 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account); 4379 4380 out: 4381 return nr_populated; 4382 4383 failed_irq: 4384 pcp_trylock_finish(UP_flags); 4385 4386 failed: 4387 page = __alloc_pages(gfp, 0, preferred_nid, nodemask); 4388 if (page) { 4389 if (page_list) 4390 list_add(&page->lru, page_list); 4391 else 4392 page_array[nr_populated] = page; 4393 nr_populated++; 4394 } 4395 4396 goto out; 4397 } 4398 EXPORT_SYMBOL_GPL(__alloc_pages_bulk); 4399 4400 /* 4401 * This is the 'heart' of the zoned buddy allocator. 4402 */ 4403 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid, 4404 nodemask_t *nodemask) 4405 { 4406 struct page *page; 4407 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4408 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 4409 struct alloc_context ac = { }; 4410 4411 /* 4412 * There are several places where we assume that the order value is sane 4413 * so bail out early if the request is out of bound. 4414 */ 4415 if (WARN_ON_ONCE_GFP(order > MAX_ORDER, gfp)) 4416 return NULL; 4417 4418 gfp &= gfp_allowed_mask; 4419 /* 4420 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4421 * resp. GFP_NOIO which has to be inherited for all allocation requests 4422 * from a particular context which has been marked by 4423 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 4424 * movable zones are not used during allocation. 4425 */ 4426 gfp = current_gfp_context(gfp); 4427 alloc_gfp = gfp; 4428 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 4429 &alloc_gfp, &alloc_flags)) 4430 return NULL; 4431 4432 /* 4433 * Forbid the first pass from falling back to types that fragment 4434 * memory until all local zones are considered. 4435 */ 4436 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp); 4437 4438 /* First allocation attempt */ 4439 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 4440 if (likely(page)) 4441 goto out; 4442 4443 alloc_gfp = gfp; 4444 ac.spread_dirty_pages = false; 4445 4446 /* 4447 * Restore the original nodemask if it was potentially replaced with 4448 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4449 */ 4450 ac.nodemask = nodemask; 4451 4452 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 4453 4454 out: 4455 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page && 4456 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 4457 __free_pages(page, order); 4458 page = NULL; 4459 } 4460 4461 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 4462 kmsan_alloc_page(page, order, alloc_gfp); 4463 4464 return page; 4465 } 4466 EXPORT_SYMBOL(__alloc_pages); 4467 4468 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid, 4469 nodemask_t *nodemask) 4470 { 4471 struct page *page = __alloc_pages(gfp | __GFP_COMP, order, 4472 preferred_nid, nodemask); 4473 struct folio *folio = (struct folio *)page; 4474 4475 if (folio && order > 1) 4476 folio_prep_large_rmappable(folio); 4477 return folio; 4478 } 4479 EXPORT_SYMBOL(__folio_alloc); 4480 4481 /* 4482 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 4483 * address cannot represent highmem pages. Use alloc_pages and then kmap if 4484 * you need to access high mem. 4485 */ 4486 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 4487 { 4488 struct page *page; 4489 4490 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 4491 if (!page) 4492 return 0; 4493 return (unsigned long) page_address(page); 4494 } 4495 EXPORT_SYMBOL(__get_free_pages); 4496 4497 unsigned long get_zeroed_page(gfp_t gfp_mask) 4498 { 4499 return __get_free_page(gfp_mask | __GFP_ZERO); 4500 } 4501 EXPORT_SYMBOL(get_zeroed_page); 4502 4503 /** 4504 * __free_pages - Free pages allocated with alloc_pages(). 4505 * @page: The page pointer returned from alloc_pages(). 4506 * @order: The order of the allocation. 4507 * 4508 * This function can free multi-page allocations that are not compound 4509 * pages. It does not check that the @order passed in matches that of 4510 * the allocation, so it is easy to leak memory. Freeing more memory 4511 * than was allocated will probably emit a warning. 4512 * 4513 * If the last reference to this page is speculative, it will be released 4514 * by put_page() which only frees the first page of a non-compound 4515 * allocation. To prevent the remaining pages from being leaked, we free 4516 * the subsequent pages here. If you want to use the page's reference 4517 * count to decide when to free the allocation, you should allocate a 4518 * compound page, and use put_page() instead of __free_pages(). 4519 * 4520 * Context: May be called in interrupt context or while holding a normal 4521 * spinlock, but not in NMI context or while holding a raw spinlock. 4522 */ 4523 void __free_pages(struct page *page, unsigned int order) 4524 { 4525 /* get PageHead before we drop reference */ 4526 int head = PageHead(page); 4527 4528 if (put_page_testzero(page)) 4529 free_the_page(page, order); 4530 else if (!head) 4531 while (order-- > 0) 4532 free_the_page(page + (1 << order), order); 4533 } 4534 EXPORT_SYMBOL(__free_pages); 4535 4536 void free_pages(unsigned long addr, unsigned int order) 4537 { 4538 if (addr != 0) { 4539 VM_BUG_ON(!virt_addr_valid((void *)addr)); 4540 __free_pages(virt_to_page((void *)addr), order); 4541 } 4542 } 4543 4544 EXPORT_SYMBOL(free_pages); 4545 4546 /* 4547 * Page Fragment: 4548 * An arbitrary-length arbitrary-offset area of memory which resides 4549 * within a 0 or higher order page. Multiple fragments within that page 4550 * are individually refcounted, in the page's reference counter. 4551 * 4552 * The page_frag functions below provide a simple allocation framework for 4553 * page fragments. This is used by the network stack and network device 4554 * drivers to provide a backing region of memory for use as either an 4555 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 4556 */ 4557 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 4558 gfp_t gfp_mask) 4559 { 4560 struct page *page = NULL; 4561 gfp_t gfp = gfp_mask; 4562 4563 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4564 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 4565 __GFP_NOMEMALLOC; 4566 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 4567 PAGE_FRAG_CACHE_MAX_ORDER); 4568 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 4569 #endif 4570 if (unlikely(!page)) 4571 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 4572 4573 nc->va = page ? page_address(page) : NULL; 4574 4575 return page; 4576 } 4577 4578 void __page_frag_cache_drain(struct page *page, unsigned int count) 4579 { 4580 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 4581 4582 if (page_ref_sub_and_test(page, count)) 4583 free_the_page(page, compound_order(page)); 4584 } 4585 EXPORT_SYMBOL(__page_frag_cache_drain); 4586 4587 void *page_frag_alloc_align(struct page_frag_cache *nc, 4588 unsigned int fragsz, gfp_t gfp_mask, 4589 unsigned int align_mask) 4590 { 4591 unsigned int size = PAGE_SIZE; 4592 struct page *page; 4593 int offset; 4594 4595 if (unlikely(!nc->va)) { 4596 refill: 4597 page = __page_frag_cache_refill(nc, gfp_mask); 4598 if (!page) 4599 return NULL; 4600 4601 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4602 /* if size can vary use size else just use PAGE_SIZE */ 4603 size = nc->size; 4604 #endif 4605 /* Even if we own the page, we do not use atomic_set(). 4606 * This would break get_page_unless_zero() users. 4607 */ 4608 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 4609 4610 /* reset page count bias and offset to start of new frag */ 4611 nc->pfmemalloc = page_is_pfmemalloc(page); 4612 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4613 nc->offset = size; 4614 } 4615 4616 offset = nc->offset - fragsz; 4617 if (unlikely(offset < 0)) { 4618 page = virt_to_page(nc->va); 4619 4620 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 4621 goto refill; 4622 4623 if (unlikely(nc->pfmemalloc)) { 4624 free_the_page(page, compound_order(page)); 4625 goto refill; 4626 } 4627 4628 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4629 /* if size can vary use size else just use PAGE_SIZE */ 4630 size = nc->size; 4631 #endif 4632 /* OK, page count is 0, we can safely set it */ 4633 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 4634 4635 /* reset page count bias and offset to start of new frag */ 4636 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4637 offset = size - fragsz; 4638 if (unlikely(offset < 0)) { 4639 /* 4640 * The caller is trying to allocate a fragment 4641 * with fragsz > PAGE_SIZE but the cache isn't big 4642 * enough to satisfy the request, this may 4643 * happen in low memory conditions. 4644 * We don't release the cache page because 4645 * it could make memory pressure worse 4646 * so we simply return NULL here. 4647 */ 4648 return NULL; 4649 } 4650 } 4651 4652 nc->pagecnt_bias--; 4653 offset &= align_mask; 4654 nc->offset = offset; 4655 4656 return nc->va + offset; 4657 } 4658 EXPORT_SYMBOL(page_frag_alloc_align); 4659 4660 /* 4661 * Frees a page fragment allocated out of either a compound or order 0 page. 4662 */ 4663 void page_frag_free(void *addr) 4664 { 4665 struct page *page = virt_to_head_page(addr); 4666 4667 if (unlikely(put_page_testzero(page))) 4668 free_the_page(page, compound_order(page)); 4669 } 4670 EXPORT_SYMBOL(page_frag_free); 4671 4672 static void *make_alloc_exact(unsigned long addr, unsigned int order, 4673 size_t size) 4674 { 4675 if (addr) { 4676 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE); 4677 struct page *page = virt_to_page((void *)addr); 4678 struct page *last = page + nr; 4679 4680 split_page_owner(page, 1 << order); 4681 split_page_memcg(page, 1 << order); 4682 while (page < --last) 4683 set_page_refcounted(last); 4684 4685 last = page + (1UL << order); 4686 for (page += nr; page < last; page++) 4687 __free_pages_ok(page, 0, FPI_TO_TAIL); 4688 } 4689 return (void *)addr; 4690 } 4691 4692 /** 4693 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 4694 * @size: the number of bytes to allocate 4695 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 4696 * 4697 * This function is similar to alloc_pages(), except that it allocates the 4698 * minimum number of pages to satisfy the request. alloc_pages() can only 4699 * allocate memory in power-of-two pages. 4700 * 4701 * This function is also limited by MAX_ORDER. 4702 * 4703 * Memory allocated by this function must be released by free_pages_exact(). 4704 * 4705 * Return: pointer to the allocated area or %NULL in case of error. 4706 */ 4707 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 4708 { 4709 unsigned int order = get_order(size); 4710 unsigned long addr; 4711 4712 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 4713 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 4714 4715 addr = __get_free_pages(gfp_mask, order); 4716 return make_alloc_exact(addr, order, size); 4717 } 4718 EXPORT_SYMBOL(alloc_pages_exact); 4719 4720 /** 4721 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 4722 * pages on a node. 4723 * @nid: the preferred node ID where memory should be allocated 4724 * @size: the number of bytes to allocate 4725 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 4726 * 4727 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 4728 * back. 4729 * 4730 * Return: pointer to the allocated area or %NULL in case of error. 4731 */ 4732 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 4733 { 4734 unsigned int order = get_order(size); 4735 struct page *p; 4736 4737 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 4738 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 4739 4740 p = alloc_pages_node(nid, gfp_mask, order); 4741 if (!p) 4742 return NULL; 4743 return make_alloc_exact((unsigned long)page_address(p), order, size); 4744 } 4745 4746 /** 4747 * free_pages_exact - release memory allocated via alloc_pages_exact() 4748 * @virt: the value returned by alloc_pages_exact. 4749 * @size: size of allocation, same value as passed to alloc_pages_exact(). 4750 * 4751 * Release the memory allocated by a previous call to alloc_pages_exact. 4752 */ 4753 void free_pages_exact(void *virt, size_t size) 4754 { 4755 unsigned long addr = (unsigned long)virt; 4756 unsigned long end = addr + PAGE_ALIGN(size); 4757 4758 while (addr < end) { 4759 free_page(addr); 4760 addr += PAGE_SIZE; 4761 } 4762 } 4763 EXPORT_SYMBOL(free_pages_exact); 4764 4765 /** 4766 * nr_free_zone_pages - count number of pages beyond high watermark 4767 * @offset: The zone index of the highest zone 4768 * 4769 * nr_free_zone_pages() counts the number of pages which are beyond the 4770 * high watermark within all zones at or below a given zone index. For each 4771 * zone, the number of pages is calculated as: 4772 * 4773 * nr_free_zone_pages = managed_pages - high_pages 4774 * 4775 * Return: number of pages beyond high watermark. 4776 */ 4777 static unsigned long nr_free_zone_pages(int offset) 4778 { 4779 struct zoneref *z; 4780 struct zone *zone; 4781 4782 /* Just pick one node, since fallback list is circular */ 4783 unsigned long sum = 0; 4784 4785 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 4786 4787 for_each_zone_zonelist(zone, z, zonelist, offset) { 4788 unsigned long size = zone_managed_pages(zone); 4789 unsigned long high = high_wmark_pages(zone); 4790 if (size > high) 4791 sum += size - high; 4792 } 4793 4794 return sum; 4795 } 4796 4797 /** 4798 * nr_free_buffer_pages - count number of pages beyond high watermark 4799 * 4800 * nr_free_buffer_pages() counts the number of pages which are beyond the high 4801 * watermark within ZONE_DMA and ZONE_NORMAL. 4802 * 4803 * Return: number of pages beyond high watermark within ZONE_DMA and 4804 * ZONE_NORMAL. 4805 */ 4806 unsigned long nr_free_buffer_pages(void) 4807 { 4808 return nr_free_zone_pages(gfp_zone(GFP_USER)); 4809 } 4810 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 4811 4812 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 4813 { 4814 zoneref->zone = zone; 4815 zoneref->zone_idx = zone_idx(zone); 4816 } 4817 4818 /* 4819 * Builds allocation fallback zone lists. 4820 * 4821 * Add all populated zones of a node to the zonelist. 4822 */ 4823 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 4824 { 4825 struct zone *zone; 4826 enum zone_type zone_type = MAX_NR_ZONES; 4827 int nr_zones = 0; 4828 4829 do { 4830 zone_type--; 4831 zone = pgdat->node_zones + zone_type; 4832 if (populated_zone(zone)) { 4833 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 4834 check_highest_zone(zone_type); 4835 } 4836 } while (zone_type); 4837 4838 return nr_zones; 4839 } 4840 4841 #ifdef CONFIG_NUMA 4842 4843 static int __parse_numa_zonelist_order(char *s) 4844 { 4845 /* 4846 * We used to support different zonelists modes but they turned 4847 * out to be just not useful. Let's keep the warning in place 4848 * if somebody still use the cmd line parameter so that we do 4849 * not fail it silently 4850 */ 4851 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 4852 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 4853 return -EINVAL; 4854 } 4855 return 0; 4856 } 4857 4858 static char numa_zonelist_order[] = "Node"; 4859 #define NUMA_ZONELIST_ORDER_LEN 16 4860 /* 4861 * sysctl handler for numa_zonelist_order 4862 */ 4863 static int numa_zonelist_order_handler(struct ctl_table *table, int write, 4864 void *buffer, size_t *length, loff_t *ppos) 4865 { 4866 if (write) 4867 return __parse_numa_zonelist_order(buffer); 4868 return proc_dostring(table, write, buffer, length, ppos); 4869 } 4870 4871 static int node_load[MAX_NUMNODES]; 4872 4873 /** 4874 * find_next_best_node - find the next node that should appear in a given node's fallback list 4875 * @node: node whose fallback list we're appending 4876 * @used_node_mask: nodemask_t of already used nodes 4877 * 4878 * We use a number of factors to determine which is the next node that should 4879 * appear on a given node's fallback list. The node should not have appeared 4880 * already in @node's fallback list, and it should be the next closest node 4881 * according to the distance array (which contains arbitrary distance values 4882 * from each node to each node in the system), and should also prefer nodes 4883 * with no CPUs, since presumably they'll have very little allocation pressure 4884 * on them otherwise. 4885 * 4886 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 4887 */ 4888 int find_next_best_node(int node, nodemask_t *used_node_mask) 4889 { 4890 int n, val; 4891 int min_val = INT_MAX; 4892 int best_node = NUMA_NO_NODE; 4893 4894 /* Use the local node if we haven't already */ 4895 if (!node_isset(node, *used_node_mask)) { 4896 node_set(node, *used_node_mask); 4897 return node; 4898 } 4899 4900 for_each_node_state(n, N_MEMORY) { 4901 4902 /* Don't want a node to appear more than once */ 4903 if (node_isset(n, *used_node_mask)) 4904 continue; 4905 4906 /* Use the distance array to find the distance */ 4907 val = node_distance(node, n); 4908 4909 /* Penalize nodes under us ("prefer the next node") */ 4910 val += (n < node); 4911 4912 /* Give preference to headless and unused nodes */ 4913 if (!cpumask_empty(cpumask_of_node(n))) 4914 val += PENALTY_FOR_NODE_WITH_CPUS; 4915 4916 /* Slight preference for less loaded node */ 4917 val *= MAX_NUMNODES; 4918 val += node_load[n]; 4919 4920 if (val < min_val) { 4921 min_val = val; 4922 best_node = n; 4923 } 4924 } 4925 4926 if (best_node >= 0) 4927 node_set(best_node, *used_node_mask); 4928 4929 return best_node; 4930 } 4931 4932 4933 /* 4934 * Build zonelists ordered by node and zones within node. 4935 * This results in maximum locality--normal zone overflows into local 4936 * DMA zone, if any--but risks exhausting DMA zone. 4937 */ 4938 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 4939 unsigned nr_nodes) 4940 { 4941 struct zoneref *zonerefs; 4942 int i; 4943 4944 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 4945 4946 for (i = 0; i < nr_nodes; i++) { 4947 int nr_zones; 4948 4949 pg_data_t *node = NODE_DATA(node_order[i]); 4950 4951 nr_zones = build_zonerefs_node(node, zonerefs); 4952 zonerefs += nr_zones; 4953 } 4954 zonerefs->zone = NULL; 4955 zonerefs->zone_idx = 0; 4956 } 4957 4958 /* 4959 * Build gfp_thisnode zonelists 4960 */ 4961 static void build_thisnode_zonelists(pg_data_t *pgdat) 4962 { 4963 struct zoneref *zonerefs; 4964 int nr_zones; 4965 4966 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 4967 nr_zones = build_zonerefs_node(pgdat, zonerefs); 4968 zonerefs += nr_zones; 4969 zonerefs->zone = NULL; 4970 zonerefs->zone_idx = 0; 4971 } 4972 4973 /* 4974 * Build zonelists ordered by zone and nodes within zones. 4975 * This results in conserving DMA zone[s] until all Normal memory is 4976 * exhausted, but results in overflowing to remote node while memory 4977 * may still exist in local DMA zone. 4978 */ 4979 4980 static void build_zonelists(pg_data_t *pgdat) 4981 { 4982 static int node_order[MAX_NUMNODES]; 4983 int node, nr_nodes = 0; 4984 nodemask_t used_mask = NODE_MASK_NONE; 4985 int local_node, prev_node; 4986 4987 /* NUMA-aware ordering of nodes */ 4988 local_node = pgdat->node_id; 4989 prev_node = local_node; 4990 4991 memset(node_order, 0, sizeof(node_order)); 4992 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 4993 /* 4994 * We don't want to pressure a particular node. 4995 * So adding penalty to the first node in same 4996 * distance group to make it round-robin. 4997 */ 4998 if (node_distance(local_node, node) != 4999 node_distance(local_node, prev_node)) 5000 node_load[node] += 1; 5001 5002 node_order[nr_nodes++] = node; 5003 prev_node = node; 5004 } 5005 5006 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5007 build_thisnode_zonelists(pgdat); 5008 pr_info("Fallback order for Node %d: ", local_node); 5009 for (node = 0; node < nr_nodes; node++) 5010 pr_cont("%d ", node_order[node]); 5011 pr_cont("\n"); 5012 } 5013 5014 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5015 /* 5016 * Return node id of node used for "local" allocations. 5017 * I.e., first node id of first zone in arg node's generic zonelist. 5018 * Used for initializing percpu 'numa_mem', which is used primarily 5019 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5020 */ 5021 int local_memory_node(int node) 5022 { 5023 struct zoneref *z; 5024 5025 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5026 gfp_zone(GFP_KERNEL), 5027 NULL); 5028 return zone_to_nid(z->zone); 5029 } 5030 #endif 5031 5032 static void setup_min_unmapped_ratio(void); 5033 static void setup_min_slab_ratio(void); 5034 #else /* CONFIG_NUMA */ 5035 5036 static void build_zonelists(pg_data_t *pgdat) 5037 { 5038 int node, local_node; 5039 struct zoneref *zonerefs; 5040 int nr_zones; 5041 5042 local_node = pgdat->node_id; 5043 5044 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5045 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5046 zonerefs += nr_zones; 5047 5048 /* 5049 * Now we build the zonelist so that it contains the zones 5050 * of all the other nodes. 5051 * We don't want to pressure a particular node, so when 5052 * building the zones for node N, we make sure that the 5053 * zones coming right after the local ones are those from 5054 * node N+1 (modulo N) 5055 */ 5056 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 5057 if (!node_online(node)) 5058 continue; 5059 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5060 zonerefs += nr_zones; 5061 } 5062 for (node = 0; node < local_node; node++) { 5063 if (!node_online(node)) 5064 continue; 5065 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5066 zonerefs += nr_zones; 5067 } 5068 5069 zonerefs->zone = NULL; 5070 zonerefs->zone_idx = 0; 5071 } 5072 5073 #endif /* CONFIG_NUMA */ 5074 5075 /* 5076 * Boot pageset table. One per cpu which is going to be used for all 5077 * zones and all nodes. The parameters will be set in such a way 5078 * that an item put on a list will immediately be handed over to 5079 * the buddy list. This is safe since pageset manipulation is done 5080 * with interrupts disabled. 5081 * 5082 * The boot_pagesets must be kept even after bootup is complete for 5083 * unused processors and/or zones. They do play a role for bootstrapping 5084 * hotplugged processors. 5085 * 5086 * zoneinfo_show() and maybe other functions do 5087 * not check if the processor is online before following the pageset pointer. 5088 * Other parts of the kernel may not check if the zone is available. 5089 */ 5090 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); 5091 /* These effectively disable the pcplists in the boot pageset completely */ 5092 #define BOOT_PAGESET_HIGH 0 5093 #define BOOT_PAGESET_BATCH 1 5094 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); 5095 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); 5096 5097 static void __build_all_zonelists(void *data) 5098 { 5099 int nid; 5100 int __maybe_unused cpu; 5101 pg_data_t *self = data; 5102 unsigned long flags; 5103 5104 /* 5105 * The zonelist_update_seq must be acquired with irqsave because the 5106 * reader can be invoked from IRQ with GFP_ATOMIC. 5107 */ 5108 write_seqlock_irqsave(&zonelist_update_seq, flags); 5109 /* 5110 * Also disable synchronous printk() to prevent any printk() from 5111 * trying to hold port->lock, for 5112 * tty_insert_flip_string_and_push_buffer() on other CPU might be 5113 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held. 5114 */ 5115 printk_deferred_enter(); 5116 5117 #ifdef CONFIG_NUMA 5118 memset(node_load, 0, sizeof(node_load)); 5119 #endif 5120 5121 /* 5122 * This node is hotadded and no memory is yet present. So just 5123 * building zonelists is fine - no need to touch other nodes. 5124 */ 5125 if (self && !node_online(self->node_id)) { 5126 build_zonelists(self); 5127 } else { 5128 /* 5129 * All possible nodes have pgdat preallocated 5130 * in free_area_init 5131 */ 5132 for_each_node(nid) { 5133 pg_data_t *pgdat = NODE_DATA(nid); 5134 5135 build_zonelists(pgdat); 5136 } 5137 5138 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5139 /* 5140 * We now know the "local memory node" for each node-- 5141 * i.e., the node of the first zone in the generic zonelist. 5142 * Set up numa_mem percpu variable for on-line cpus. During 5143 * boot, only the boot cpu should be on-line; we'll init the 5144 * secondary cpus' numa_mem as they come on-line. During 5145 * node/memory hotplug, we'll fixup all on-line cpus. 5146 */ 5147 for_each_online_cpu(cpu) 5148 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5149 #endif 5150 } 5151 5152 printk_deferred_exit(); 5153 write_sequnlock_irqrestore(&zonelist_update_seq, flags); 5154 } 5155 5156 static noinline void __init 5157 build_all_zonelists_init(void) 5158 { 5159 int cpu; 5160 5161 __build_all_zonelists(NULL); 5162 5163 /* 5164 * Initialize the boot_pagesets that are going to be used 5165 * for bootstrapping processors. The real pagesets for 5166 * each zone will be allocated later when the per cpu 5167 * allocator is available. 5168 * 5169 * boot_pagesets are used also for bootstrapping offline 5170 * cpus if the system is already booted because the pagesets 5171 * are needed to initialize allocators on a specific cpu too. 5172 * F.e. the percpu allocator needs the page allocator which 5173 * needs the percpu allocator in order to allocate its pagesets 5174 * (a chicken-egg dilemma). 5175 */ 5176 for_each_possible_cpu(cpu) 5177 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); 5178 5179 mminit_verify_zonelist(); 5180 cpuset_init_current_mems_allowed(); 5181 } 5182 5183 /* 5184 * unless system_state == SYSTEM_BOOTING. 5185 * 5186 * __ref due to call of __init annotated helper build_all_zonelists_init 5187 * [protected by SYSTEM_BOOTING]. 5188 */ 5189 void __ref build_all_zonelists(pg_data_t *pgdat) 5190 { 5191 unsigned long vm_total_pages; 5192 5193 if (system_state == SYSTEM_BOOTING) { 5194 build_all_zonelists_init(); 5195 } else { 5196 __build_all_zonelists(pgdat); 5197 /* cpuset refresh routine should be here */ 5198 } 5199 /* Get the number of free pages beyond high watermark in all zones. */ 5200 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 5201 /* 5202 * Disable grouping by mobility if the number of pages in the 5203 * system is too low to allow the mechanism to work. It would be 5204 * more accurate, but expensive to check per-zone. This check is 5205 * made on memory-hotadd so a system can start with mobility 5206 * disabled and enable it later 5207 */ 5208 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5209 page_group_by_mobility_disabled = 1; 5210 else 5211 page_group_by_mobility_disabled = 0; 5212 5213 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 5214 nr_online_nodes, 5215 page_group_by_mobility_disabled ? "off" : "on", 5216 vm_total_pages); 5217 #ifdef CONFIG_NUMA 5218 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5219 #endif 5220 } 5221 5222 static int zone_batchsize(struct zone *zone) 5223 { 5224 #ifdef CONFIG_MMU 5225 int batch; 5226 5227 /* 5228 * The number of pages to batch allocate is either ~0.1% 5229 * of the zone or 1MB, whichever is smaller. The batch 5230 * size is striking a balance between allocation latency 5231 * and zone lock contention. 5232 */ 5233 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE); 5234 batch /= 4; /* We effectively *= 4 below */ 5235 if (batch < 1) 5236 batch = 1; 5237 5238 /* 5239 * Clamp the batch to a 2^n - 1 value. Having a power 5240 * of 2 value was found to be more likely to have 5241 * suboptimal cache aliasing properties in some cases. 5242 * 5243 * For example if 2 tasks are alternately allocating 5244 * batches of pages, one task can end up with a lot 5245 * of pages of one half of the possible page colors 5246 * and the other with pages of the other colors. 5247 */ 5248 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5249 5250 return batch; 5251 5252 #else 5253 /* The deferral and batching of frees should be suppressed under NOMMU 5254 * conditions. 5255 * 5256 * The problem is that NOMMU needs to be able to allocate large chunks 5257 * of contiguous memory as there's no hardware page translation to 5258 * assemble apparent contiguous memory from discontiguous pages. 5259 * 5260 * Queueing large contiguous runs of pages for batching, however, 5261 * causes the pages to actually be freed in smaller chunks. As there 5262 * can be a significant delay between the individual batches being 5263 * recycled, this leads to the once large chunks of space being 5264 * fragmented and becoming unavailable for high-order allocations. 5265 */ 5266 return 0; 5267 #endif 5268 } 5269 5270 static int percpu_pagelist_high_fraction; 5271 static int zone_highsize(struct zone *zone, int batch, int cpu_online) 5272 { 5273 #ifdef CONFIG_MMU 5274 int high; 5275 int nr_split_cpus; 5276 unsigned long total_pages; 5277 5278 if (!percpu_pagelist_high_fraction) { 5279 /* 5280 * By default, the high value of the pcp is based on the zone 5281 * low watermark so that if they are full then background 5282 * reclaim will not be started prematurely. 5283 */ 5284 total_pages = low_wmark_pages(zone); 5285 } else { 5286 /* 5287 * If percpu_pagelist_high_fraction is configured, the high 5288 * value is based on a fraction of the managed pages in the 5289 * zone. 5290 */ 5291 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction; 5292 } 5293 5294 /* 5295 * Split the high value across all online CPUs local to the zone. Note 5296 * that early in boot that CPUs may not be online yet and that during 5297 * CPU hotplug that the cpumask is not yet updated when a CPU is being 5298 * onlined. For memory nodes that have no CPUs, split pcp->high across 5299 * all online CPUs to mitigate the risk that reclaim is triggered 5300 * prematurely due to pages stored on pcp lists. 5301 */ 5302 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; 5303 if (!nr_split_cpus) 5304 nr_split_cpus = num_online_cpus(); 5305 high = total_pages / nr_split_cpus; 5306 5307 /* 5308 * Ensure high is at least batch*4. The multiple is based on the 5309 * historical relationship between high and batch. 5310 */ 5311 high = max(high, batch << 2); 5312 5313 return high; 5314 #else 5315 return 0; 5316 #endif 5317 } 5318 5319 /* 5320 * pcp->high and pcp->batch values are related and generally batch is lower 5321 * than high. They are also related to pcp->count such that count is lower 5322 * than high, and as soon as it reaches high, the pcplist is flushed. 5323 * 5324 * However, guaranteeing these relations at all times would require e.g. write 5325 * barriers here but also careful usage of read barriers at the read side, and 5326 * thus be prone to error and bad for performance. Thus the update only prevents 5327 * store tearing. Any new users of pcp->batch and pcp->high should ensure they 5328 * can cope with those fields changing asynchronously, and fully trust only the 5329 * pcp->count field on the local CPU with interrupts disabled. 5330 * 5331 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 5332 * outside of boot time (or some other assurance that no concurrent updaters 5333 * exist). 5334 */ 5335 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 5336 unsigned long batch) 5337 { 5338 WRITE_ONCE(pcp->batch, batch); 5339 WRITE_ONCE(pcp->high, high); 5340 } 5341 5342 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) 5343 { 5344 int pindex; 5345 5346 memset(pcp, 0, sizeof(*pcp)); 5347 memset(pzstats, 0, sizeof(*pzstats)); 5348 5349 spin_lock_init(&pcp->lock); 5350 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) 5351 INIT_LIST_HEAD(&pcp->lists[pindex]); 5352 5353 /* 5354 * Set batch and high values safe for a boot pageset. A true percpu 5355 * pageset's initialization will update them subsequently. Here we don't 5356 * need to be as careful as pageset_update() as nobody can access the 5357 * pageset yet. 5358 */ 5359 pcp->high = BOOT_PAGESET_HIGH; 5360 pcp->batch = BOOT_PAGESET_BATCH; 5361 pcp->free_factor = 0; 5362 } 5363 5364 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high, 5365 unsigned long batch) 5366 { 5367 struct per_cpu_pages *pcp; 5368 int cpu; 5369 5370 for_each_possible_cpu(cpu) { 5371 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5372 pageset_update(pcp, high, batch); 5373 } 5374 } 5375 5376 /* 5377 * Calculate and set new high and batch values for all per-cpu pagesets of a 5378 * zone based on the zone's size. 5379 */ 5380 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) 5381 { 5382 int new_high, new_batch; 5383 5384 new_batch = max(1, zone_batchsize(zone)); 5385 new_high = zone_highsize(zone, new_batch, cpu_online); 5386 5387 if (zone->pageset_high == new_high && 5388 zone->pageset_batch == new_batch) 5389 return; 5390 5391 zone->pageset_high = new_high; 5392 zone->pageset_batch = new_batch; 5393 5394 __zone_set_pageset_high_and_batch(zone, new_high, new_batch); 5395 } 5396 5397 void __meminit setup_zone_pageset(struct zone *zone) 5398 { 5399 int cpu; 5400 5401 /* Size may be 0 on !SMP && !NUMA */ 5402 if (sizeof(struct per_cpu_zonestat) > 0) 5403 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); 5404 5405 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); 5406 for_each_possible_cpu(cpu) { 5407 struct per_cpu_pages *pcp; 5408 struct per_cpu_zonestat *pzstats; 5409 5410 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5411 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 5412 per_cpu_pages_init(pcp, pzstats); 5413 } 5414 5415 zone_set_pageset_high_and_batch(zone, 0); 5416 } 5417 5418 /* 5419 * The zone indicated has a new number of managed_pages; batch sizes and percpu 5420 * page high values need to be recalculated. 5421 */ 5422 static void zone_pcp_update(struct zone *zone, int cpu_online) 5423 { 5424 mutex_lock(&pcp_batch_high_lock); 5425 zone_set_pageset_high_and_batch(zone, cpu_online); 5426 mutex_unlock(&pcp_batch_high_lock); 5427 } 5428 5429 /* 5430 * Allocate per cpu pagesets and initialize them. 5431 * Before this call only boot pagesets were available. 5432 */ 5433 void __init setup_per_cpu_pageset(void) 5434 { 5435 struct pglist_data *pgdat; 5436 struct zone *zone; 5437 int __maybe_unused cpu; 5438 5439 for_each_populated_zone(zone) 5440 setup_zone_pageset(zone); 5441 5442 #ifdef CONFIG_NUMA 5443 /* 5444 * Unpopulated zones continue using the boot pagesets. 5445 * The numa stats for these pagesets need to be reset. 5446 * Otherwise, they will end up skewing the stats of 5447 * the nodes these zones are associated with. 5448 */ 5449 for_each_possible_cpu(cpu) { 5450 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); 5451 memset(pzstats->vm_numa_event, 0, 5452 sizeof(pzstats->vm_numa_event)); 5453 } 5454 #endif 5455 5456 for_each_online_pgdat(pgdat) 5457 pgdat->per_cpu_nodestats = 5458 alloc_percpu(struct per_cpu_nodestat); 5459 } 5460 5461 __meminit void zone_pcp_init(struct zone *zone) 5462 { 5463 /* 5464 * per cpu subsystem is not up at this point. The following code 5465 * relies on the ability of the linker to provide the 5466 * offset of a (static) per cpu variable into the per cpu area. 5467 */ 5468 zone->per_cpu_pageset = &boot_pageset; 5469 zone->per_cpu_zonestats = &boot_zonestats; 5470 zone->pageset_high = BOOT_PAGESET_HIGH; 5471 zone->pageset_batch = BOOT_PAGESET_BATCH; 5472 5473 if (populated_zone(zone)) 5474 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, 5475 zone->present_pages, zone_batchsize(zone)); 5476 } 5477 5478 void adjust_managed_page_count(struct page *page, long count) 5479 { 5480 atomic_long_add(count, &page_zone(page)->managed_pages); 5481 totalram_pages_add(count); 5482 #ifdef CONFIG_HIGHMEM 5483 if (PageHighMem(page)) 5484 totalhigh_pages_add(count); 5485 #endif 5486 } 5487 EXPORT_SYMBOL(adjust_managed_page_count); 5488 5489 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 5490 { 5491 void *pos; 5492 unsigned long pages = 0; 5493 5494 start = (void *)PAGE_ALIGN((unsigned long)start); 5495 end = (void *)((unsigned long)end & PAGE_MASK); 5496 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 5497 struct page *page = virt_to_page(pos); 5498 void *direct_map_addr; 5499 5500 /* 5501 * 'direct_map_addr' might be different from 'pos' 5502 * because some architectures' virt_to_page() 5503 * work with aliases. Getting the direct map 5504 * address ensures that we get a _writeable_ 5505 * alias for the memset(). 5506 */ 5507 direct_map_addr = page_address(page); 5508 /* 5509 * Perform a kasan-unchecked memset() since this memory 5510 * has not been initialized. 5511 */ 5512 direct_map_addr = kasan_reset_tag(direct_map_addr); 5513 if ((unsigned int)poison <= 0xFF) 5514 memset(direct_map_addr, poison, PAGE_SIZE); 5515 5516 free_reserved_page(page); 5517 } 5518 5519 if (pages && s) 5520 pr_info("Freeing %s memory: %ldK\n", s, K(pages)); 5521 5522 return pages; 5523 } 5524 5525 static int page_alloc_cpu_dead(unsigned int cpu) 5526 { 5527 struct zone *zone; 5528 5529 lru_add_drain_cpu(cpu); 5530 mlock_drain_remote(cpu); 5531 drain_pages(cpu); 5532 5533 /* 5534 * Spill the event counters of the dead processor 5535 * into the current processors event counters. 5536 * This artificially elevates the count of the current 5537 * processor. 5538 */ 5539 vm_events_fold_cpu(cpu); 5540 5541 /* 5542 * Zero the differential counters of the dead processor 5543 * so that the vm statistics are consistent. 5544 * 5545 * This is only okay since the processor is dead and cannot 5546 * race with what we are doing. 5547 */ 5548 cpu_vm_stats_fold(cpu); 5549 5550 for_each_populated_zone(zone) 5551 zone_pcp_update(zone, 0); 5552 5553 return 0; 5554 } 5555 5556 static int page_alloc_cpu_online(unsigned int cpu) 5557 { 5558 struct zone *zone; 5559 5560 for_each_populated_zone(zone) 5561 zone_pcp_update(zone, 1); 5562 return 0; 5563 } 5564 5565 void __init page_alloc_init_cpuhp(void) 5566 { 5567 int ret; 5568 5569 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, 5570 "mm/page_alloc:pcp", 5571 page_alloc_cpu_online, 5572 page_alloc_cpu_dead); 5573 WARN_ON(ret < 0); 5574 } 5575 5576 /* 5577 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 5578 * or min_free_kbytes changes. 5579 */ 5580 static void calculate_totalreserve_pages(void) 5581 { 5582 struct pglist_data *pgdat; 5583 unsigned long reserve_pages = 0; 5584 enum zone_type i, j; 5585 5586 for_each_online_pgdat(pgdat) { 5587 5588 pgdat->totalreserve_pages = 0; 5589 5590 for (i = 0; i < MAX_NR_ZONES; i++) { 5591 struct zone *zone = pgdat->node_zones + i; 5592 long max = 0; 5593 unsigned long managed_pages = zone_managed_pages(zone); 5594 5595 /* Find valid and maximum lowmem_reserve in the zone */ 5596 for (j = i; j < MAX_NR_ZONES; j++) { 5597 if (zone->lowmem_reserve[j] > max) 5598 max = zone->lowmem_reserve[j]; 5599 } 5600 5601 /* we treat the high watermark as reserved pages. */ 5602 max += high_wmark_pages(zone); 5603 5604 if (max > managed_pages) 5605 max = managed_pages; 5606 5607 pgdat->totalreserve_pages += max; 5608 5609 reserve_pages += max; 5610 } 5611 } 5612 totalreserve_pages = reserve_pages; 5613 } 5614 5615 /* 5616 * setup_per_zone_lowmem_reserve - called whenever 5617 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 5618 * has a correct pages reserved value, so an adequate number of 5619 * pages are left in the zone after a successful __alloc_pages(). 5620 */ 5621 static void setup_per_zone_lowmem_reserve(void) 5622 { 5623 struct pglist_data *pgdat; 5624 enum zone_type i, j; 5625 5626 for_each_online_pgdat(pgdat) { 5627 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 5628 struct zone *zone = &pgdat->node_zones[i]; 5629 int ratio = sysctl_lowmem_reserve_ratio[i]; 5630 bool clear = !ratio || !zone_managed_pages(zone); 5631 unsigned long managed_pages = 0; 5632 5633 for (j = i + 1; j < MAX_NR_ZONES; j++) { 5634 struct zone *upper_zone = &pgdat->node_zones[j]; 5635 5636 managed_pages += zone_managed_pages(upper_zone); 5637 5638 if (clear) 5639 zone->lowmem_reserve[j] = 0; 5640 else 5641 zone->lowmem_reserve[j] = managed_pages / ratio; 5642 } 5643 } 5644 } 5645 5646 /* update totalreserve_pages */ 5647 calculate_totalreserve_pages(); 5648 } 5649 5650 static void __setup_per_zone_wmarks(void) 5651 { 5652 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 5653 unsigned long lowmem_pages = 0; 5654 struct zone *zone; 5655 unsigned long flags; 5656 5657 /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */ 5658 for_each_zone(zone) { 5659 if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE) 5660 lowmem_pages += zone_managed_pages(zone); 5661 } 5662 5663 for_each_zone(zone) { 5664 u64 tmp; 5665 5666 spin_lock_irqsave(&zone->lock, flags); 5667 tmp = (u64)pages_min * zone_managed_pages(zone); 5668 do_div(tmp, lowmem_pages); 5669 if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) { 5670 /* 5671 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 5672 * need highmem and movable zones pages, so cap pages_min 5673 * to a small value here. 5674 * 5675 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 5676 * deltas control async page reclaim, and so should 5677 * not be capped for highmem and movable zones. 5678 */ 5679 unsigned long min_pages; 5680 5681 min_pages = zone_managed_pages(zone) / 1024; 5682 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 5683 zone->_watermark[WMARK_MIN] = min_pages; 5684 } else { 5685 /* 5686 * If it's a lowmem zone, reserve a number of pages 5687 * proportionate to the zone's size. 5688 */ 5689 zone->_watermark[WMARK_MIN] = tmp; 5690 } 5691 5692 /* 5693 * Set the kswapd watermarks distance according to the 5694 * scale factor in proportion to available memory, but 5695 * ensure a minimum size on small systems. 5696 */ 5697 tmp = max_t(u64, tmp >> 2, 5698 mult_frac(zone_managed_pages(zone), 5699 watermark_scale_factor, 10000)); 5700 5701 zone->watermark_boost = 0; 5702 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 5703 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp; 5704 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp; 5705 5706 spin_unlock_irqrestore(&zone->lock, flags); 5707 } 5708 5709 /* update totalreserve_pages */ 5710 calculate_totalreserve_pages(); 5711 } 5712 5713 /** 5714 * setup_per_zone_wmarks - called when min_free_kbytes changes 5715 * or when memory is hot-{added|removed} 5716 * 5717 * Ensures that the watermark[min,low,high] values for each zone are set 5718 * correctly with respect to min_free_kbytes. 5719 */ 5720 void setup_per_zone_wmarks(void) 5721 { 5722 struct zone *zone; 5723 static DEFINE_SPINLOCK(lock); 5724 5725 spin_lock(&lock); 5726 __setup_per_zone_wmarks(); 5727 spin_unlock(&lock); 5728 5729 /* 5730 * The watermark size have changed so update the pcpu batch 5731 * and high limits or the limits may be inappropriate. 5732 */ 5733 for_each_zone(zone) 5734 zone_pcp_update(zone, 0); 5735 } 5736 5737 /* 5738 * Initialise min_free_kbytes. 5739 * 5740 * For small machines we want it small (128k min). For large machines 5741 * we want it large (256MB max). But it is not linear, because network 5742 * bandwidth does not increase linearly with machine size. We use 5743 * 5744 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 5745 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 5746 * 5747 * which yields 5748 * 5749 * 16MB: 512k 5750 * 32MB: 724k 5751 * 64MB: 1024k 5752 * 128MB: 1448k 5753 * 256MB: 2048k 5754 * 512MB: 2896k 5755 * 1024MB: 4096k 5756 * 2048MB: 5792k 5757 * 4096MB: 8192k 5758 * 8192MB: 11584k 5759 * 16384MB: 16384k 5760 */ 5761 void calculate_min_free_kbytes(void) 5762 { 5763 unsigned long lowmem_kbytes; 5764 int new_min_free_kbytes; 5765 5766 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 5767 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 5768 5769 if (new_min_free_kbytes > user_min_free_kbytes) 5770 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144); 5771 else 5772 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 5773 new_min_free_kbytes, user_min_free_kbytes); 5774 5775 } 5776 5777 int __meminit init_per_zone_wmark_min(void) 5778 { 5779 calculate_min_free_kbytes(); 5780 setup_per_zone_wmarks(); 5781 refresh_zone_stat_thresholds(); 5782 setup_per_zone_lowmem_reserve(); 5783 5784 #ifdef CONFIG_NUMA 5785 setup_min_unmapped_ratio(); 5786 setup_min_slab_ratio(); 5787 #endif 5788 5789 khugepaged_min_free_kbytes_update(); 5790 5791 return 0; 5792 } 5793 postcore_initcall(init_per_zone_wmark_min) 5794 5795 /* 5796 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 5797 * that we can call two helper functions whenever min_free_kbytes 5798 * changes. 5799 */ 5800 static int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 5801 void *buffer, size_t *length, loff_t *ppos) 5802 { 5803 int rc; 5804 5805 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5806 if (rc) 5807 return rc; 5808 5809 if (write) { 5810 user_min_free_kbytes = min_free_kbytes; 5811 setup_per_zone_wmarks(); 5812 } 5813 return 0; 5814 } 5815 5816 static int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 5817 void *buffer, size_t *length, loff_t *ppos) 5818 { 5819 int rc; 5820 5821 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5822 if (rc) 5823 return rc; 5824 5825 if (write) 5826 setup_per_zone_wmarks(); 5827 5828 return 0; 5829 } 5830 5831 #ifdef CONFIG_NUMA 5832 static void setup_min_unmapped_ratio(void) 5833 { 5834 pg_data_t *pgdat; 5835 struct zone *zone; 5836 5837 for_each_online_pgdat(pgdat) 5838 pgdat->min_unmapped_pages = 0; 5839 5840 for_each_zone(zone) 5841 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 5842 sysctl_min_unmapped_ratio) / 100; 5843 } 5844 5845 5846 static int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 5847 void *buffer, size_t *length, loff_t *ppos) 5848 { 5849 int rc; 5850 5851 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5852 if (rc) 5853 return rc; 5854 5855 setup_min_unmapped_ratio(); 5856 5857 return 0; 5858 } 5859 5860 static void setup_min_slab_ratio(void) 5861 { 5862 pg_data_t *pgdat; 5863 struct zone *zone; 5864 5865 for_each_online_pgdat(pgdat) 5866 pgdat->min_slab_pages = 0; 5867 5868 for_each_zone(zone) 5869 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 5870 sysctl_min_slab_ratio) / 100; 5871 } 5872 5873 static int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 5874 void *buffer, size_t *length, loff_t *ppos) 5875 { 5876 int rc; 5877 5878 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5879 if (rc) 5880 return rc; 5881 5882 setup_min_slab_ratio(); 5883 5884 return 0; 5885 } 5886 #endif 5887 5888 /* 5889 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 5890 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 5891 * whenever sysctl_lowmem_reserve_ratio changes. 5892 * 5893 * The reserve ratio obviously has absolutely no relation with the 5894 * minimum watermarks. The lowmem reserve ratio can only make sense 5895 * if in function of the boot time zone sizes. 5896 */ 5897 static int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, 5898 int write, void *buffer, size_t *length, loff_t *ppos) 5899 { 5900 int i; 5901 5902 proc_dointvec_minmax(table, write, buffer, length, ppos); 5903 5904 for (i = 0; i < MAX_NR_ZONES; i++) { 5905 if (sysctl_lowmem_reserve_ratio[i] < 1) 5906 sysctl_lowmem_reserve_ratio[i] = 0; 5907 } 5908 5909 setup_per_zone_lowmem_reserve(); 5910 return 0; 5911 } 5912 5913 /* 5914 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each 5915 * cpu. It is the fraction of total pages in each zone that a hot per cpu 5916 * pagelist can have before it gets flushed back to buddy allocator. 5917 */ 5918 static int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table, 5919 int write, void *buffer, size_t *length, loff_t *ppos) 5920 { 5921 struct zone *zone; 5922 int old_percpu_pagelist_high_fraction; 5923 int ret; 5924 5925 mutex_lock(&pcp_batch_high_lock); 5926 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; 5927 5928 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 5929 if (!write || ret < 0) 5930 goto out; 5931 5932 /* Sanity checking to avoid pcp imbalance */ 5933 if (percpu_pagelist_high_fraction && 5934 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { 5935 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; 5936 ret = -EINVAL; 5937 goto out; 5938 } 5939 5940 /* No change? */ 5941 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) 5942 goto out; 5943 5944 for_each_populated_zone(zone) 5945 zone_set_pageset_high_and_batch(zone, 0); 5946 out: 5947 mutex_unlock(&pcp_batch_high_lock); 5948 return ret; 5949 } 5950 5951 static struct ctl_table page_alloc_sysctl_table[] = { 5952 { 5953 .procname = "min_free_kbytes", 5954 .data = &min_free_kbytes, 5955 .maxlen = sizeof(min_free_kbytes), 5956 .mode = 0644, 5957 .proc_handler = min_free_kbytes_sysctl_handler, 5958 .extra1 = SYSCTL_ZERO, 5959 }, 5960 { 5961 .procname = "watermark_boost_factor", 5962 .data = &watermark_boost_factor, 5963 .maxlen = sizeof(watermark_boost_factor), 5964 .mode = 0644, 5965 .proc_handler = proc_dointvec_minmax, 5966 .extra1 = SYSCTL_ZERO, 5967 }, 5968 { 5969 .procname = "watermark_scale_factor", 5970 .data = &watermark_scale_factor, 5971 .maxlen = sizeof(watermark_scale_factor), 5972 .mode = 0644, 5973 .proc_handler = watermark_scale_factor_sysctl_handler, 5974 .extra1 = SYSCTL_ONE, 5975 .extra2 = SYSCTL_THREE_THOUSAND, 5976 }, 5977 { 5978 .procname = "percpu_pagelist_high_fraction", 5979 .data = &percpu_pagelist_high_fraction, 5980 .maxlen = sizeof(percpu_pagelist_high_fraction), 5981 .mode = 0644, 5982 .proc_handler = percpu_pagelist_high_fraction_sysctl_handler, 5983 .extra1 = SYSCTL_ZERO, 5984 }, 5985 { 5986 .procname = "lowmem_reserve_ratio", 5987 .data = &sysctl_lowmem_reserve_ratio, 5988 .maxlen = sizeof(sysctl_lowmem_reserve_ratio), 5989 .mode = 0644, 5990 .proc_handler = lowmem_reserve_ratio_sysctl_handler, 5991 }, 5992 #ifdef CONFIG_NUMA 5993 { 5994 .procname = "numa_zonelist_order", 5995 .data = &numa_zonelist_order, 5996 .maxlen = NUMA_ZONELIST_ORDER_LEN, 5997 .mode = 0644, 5998 .proc_handler = numa_zonelist_order_handler, 5999 }, 6000 { 6001 .procname = "min_unmapped_ratio", 6002 .data = &sysctl_min_unmapped_ratio, 6003 .maxlen = sizeof(sysctl_min_unmapped_ratio), 6004 .mode = 0644, 6005 .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler, 6006 .extra1 = SYSCTL_ZERO, 6007 .extra2 = SYSCTL_ONE_HUNDRED, 6008 }, 6009 { 6010 .procname = "min_slab_ratio", 6011 .data = &sysctl_min_slab_ratio, 6012 .maxlen = sizeof(sysctl_min_slab_ratio), 6013 .mode = 0644, 6014 .proc_handler = sysctl_min_slab_ratio_sysctl_handler, 6015 .extra1 = SYSCTL_ZERO, 6016 .extra2 = SYSCTL_ONE_HUNDRED, 6017 }, 6018 #endif 6019 {} 6020 }; 6021 6022 void __init page_alloc_sysctl_init(void) 6023 { 6024 register_sysctl_init("vm", page_alloc_sysctl_table); 6025 } 6026 6027 #ifdef CONFIG_CONTIG_ALLOC 6028 /* Usage: See admin-guide/dynamic-debug-howto.rst */ 6029 static void alloc_contig_dump_pages(struct list_head *page_list) 6030 { 6031 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 6032 6033 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 6034 struct page *page; 6035 6036 dump_stack(); 6037 list_for_each_entry(page, page_list, lru) 6038 dump_page(page, "migration failure"); 6039 } 6040 } 6041 6042 /* [start, end) must belong to a single zone. */ 6043 int __alloc_contig_migrate_range(struct compact_control *cc, 6044 unsigned long start, unsigned long end) 6045 { 6046 /* This function is based on compact_zone() from compaction.c. */ 6047 unsigned int nr_reclaimed; 6048 unsigned long pfn = start; 6049 unsigned int tries = 0; 6050 int ret = 0; 6051 struct migration_target_control mtc = { 6052 .nid = zone_to_nid(cc->zone), 6053 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 6054 }; 6055 6056 lru_cache_disable(); 6057 6058 while (pfn < end || !list_empty(&cc->migratepages)) { 6059 if (fatal_signal_pending(current)) { 6060 ret = -EINTR; 6061 break; 6062 } 6063 6064 if (list_empty(&cc->migratepages)) { 6065 cc->nr_migratepages = 0; 6066 ret = isolate_migratepages_range(cc, pfn, end); 6067 if (ret && ret != -EAGAIN) 6068 break; 6069 pfn = cc->migrate_pfn; 6070 tries = 0; 6071 } else if (++tries == 5) { 6072 ret = -EBUSY; 6073 break; 6074 } 6075 6076 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 6077 &cc->migratepages); 6078 cc->nr_migratepages -= nr_reclaimed; 6079 6080 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 6081 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); 6082 6083 /* 6084 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 6085 * to retry again over this error, so do the same here. 6086 */ 6087 if (ret == -ENOMEM) 6088 break; 6089 } 6090 6091 lru_cache_enable(); 6092 if (ret < 0) { 6093 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY) 6094 alloc_contig_dump_pages(&cc->migratepages); 6095 putback_movable_pages(&cc->migratepages); 6096 return ret; 6097 } 6098 return 0; 6099 } 6100 6101 /** 6102 * alloc_contig_range() -- tries to allocate given range of pages 6103 * @start: start PFN to allocate 6104 * @end: one-past-the-last PFN to allocate 6105 * @migratetype: migratetype of the underlying pageblocks (either 6106 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 6107 * in range must have the same migratetype and it must 6108 * be either of the two. 6109 * @gfp_mask: GFP mask to use during compaction 6110 * 6111 * The PFN range does not have to be pageblock aligned. The PFN range must 6112 * belong to a single zone. 6113 * 6114 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 6115 * pageblocks in the range. Once isolated, the pageblocks should not 6116 * be modified by others. 6117 * 6118 * Return: zero on success or negative error code. On success all 6119 * pages which PFN is in [start, end) are allocated for the caller and 6120 * need to be freed with free_contig_range(). 6121 */ 6122 int alloc_contig_range(unsigned long start, unsigned long end, 6123 unsigned migratetype, gfp_t gfp_mask) 6124 { 6125 unsigned long outer_start, outer_end; 6126 int order; 6127 int ret = 0; 6128 6129 struct compact_control cc = { 6130 .nr_migratepages = 0, 6131 .order = -1, 6132 .zone = page_zone(pfn_to_page(start)), 6133 .mode = MIGRATE_SYNC, 6134 .ignore_skip_hint = true, 6135 .no_set_skip_hint = true, 6136 .gfp_mask = current_gfp_context(gfp_mask), 6137 .alloc_contig = true, 6138 }; 6139 INIT_LIST_HEAD(&cc.migratepages); 6140 6141 /* 6142 * What we do here is we mark all pageblocks in range as 6143 * MIGRATE_ISOLATE. Because pageblock and max order pages may 6144 * have different sizes, and due to the way page allocator 6145 * work, start_isolate_page_range() has special handlings for this. 6146 * 6147 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 6148 * migrate the pages from an unaligned range (ie. pages that 6149 * we are interested in). This will put all the pages in 6150 * range back to page allocator as MIGRATE_ISOLATE. 6151 * 6152 * When this is done, we take the pages in range from page 6153 * allocator removing them from the buddy system. This way 6154 * page allocator will never consider using them. 6155 * 6156 * This lets us mark the pageblocks back as 6157 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 6158 * aligned range but not in the unaligned, original range are 6159 * put back to page allocator so that buddy can use them. 6160 */ 6161 6162 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask); 6163 if (ret) 6164 goto done; 6165 6166 drain_all_pages(cc.zone); 6167 6168 /* 6169 * In case of -EBUSY, we'd like to know which page causes problem. 6170 * So, just fall through. test_pages_isolated() has a tracepoint 6171 * which will report the busy page. 6172 * 6173 * It is possible that busy pages could become available before 6174 * the call to test_pages_isolated, and the range will actually be 6175 * allocated. So, if we fall through be sure to clear ret so that 6176 * -EBUSY is not accidentally used or returned to caller. 6177 */ 6178 ret = __alloc_contig_migrate_range(&cc, start, end); 6179 if (ret && ret != -EBUSY) 6180 goto done; 6181 ret = 0; 6182 6183 /* 6184 * Pages from [start, end) are within a pageblock_nr_pages 6185 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 6186 * more, all pages in [start, end) are free in page allocator. 6187 * What we are going to do is to allocate all pages from 6188 * [start, end) (that is remove them from page allocator). 6189 * 6190 * The only problem is that pages at the beginning and at the 6191 * end of interesting range may be not aligned with pages that 6192 * page allocator holds, ie. they can be part of higher order 6193 * pages. Because of this, we reserve the bigger range and 6194 * once this is done free the pages we are not interested in. 6195 * 6196 * We don't have to hold zone->lock here because the pages are 6197 * isolated thus they won't get removed from buddy. 6198 */ 6199 6200 order = 0; 6201 outer_start = start; 6202 while (!PageBuddy(pfn_to_page(outer_start))) { 6203 if (++order > MAX_ORDER) { 6204 outer_start = start; 6205 break; 6206 } 6207 outer_start &= ~0UL << order; 6208 } 6209 6210 if (outer_start != start) { 6211 order = buddy_order(pfn_to_page(outer_start)); 6212 6213 /* 6214 * outer_start page could be small order buddy page and 6215 * it doesn't include start page. Adjust outer_start 6216 * in this case to report failed page properly 6217 * on tracepoint in test_pages_isolated() 6218 */ 6219 if (outer_start + (1UL << order) <= start) 6220 outer_start = start; 6221 } 6222 6223 /* Make sure the range is really isolated. */ 6224 if (test_pages_isolated(outer_start, end, 0)) { 6225 ret = -EBUSY; 6226 goto done; 6227 } 6228 6229 /* Grab isolated pages from freelists. */ 6230 outer_end = isolate_freepages_range(&cc, outer_start, end); 6231 if (!outer_end) { 6232 ret = -EBUSY; 6233 goto done; 6234 } 6235 6236 /* Free head and tail (if any) */ 6237 if (start != outer_start) 6238 free_contig_range(outer_start, start - outer_start); 6239 if (end != outer_end) 6240 free_contig_range(end, outer_end - end); 6241 6242 done: 6243 undo_isolate_page_range(start, end, migratetype); 6244 return ret; 6245 } 6246 EXPORT_SYMBOL(alloc_contig_range); 6247 6248 static int __alloc_contig_pages(unsigned long start_pfn, 6249 unsigned long nr_pages, gfp_t gfp_mask) 6250 { 6251 unsigned long end_pfn = start_pfn + nr_pages; 6252 6253 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 6254 gfp_mask); 6255 } 6256 6257 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 6258 unsigned long nr_pages) 6259 { 6260 unsigned long i, end_pfn = start_pfn + nr_pages; 6261 struct page *page; 6262 6263 for (i = start_pfn; i < end_pfn; i++) { 6264 page = pfn_to_online_page(i); 6265 if (!page) 6266 return false; 6267 6268 if (page_zone(page) != z) 6269 return false; 6270 6271 if (PageReserved(page)) 6272 return false; 6273 6274 if (PageHuge(page)) 6275 return false; 6276 } 6277 return true; 6278 } 6279 6280 static bool zone_spans_last_pfn(const struct zone *zone, 6281 unsigned long start_pfn, unsigned long nr_pages) 6282 { 6283 unsigned long last_pfn = start_pfn + nr_pages - 1; 6284 6285 return zone_spans_pfn(zone, last_pfn); 6286 } 6287 6288 /** 6289 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 6290 * @nr_pages: Number of contiguous pages to allocate 6291 * @gfp_mask: GFP mask to limit search and used during compaction 6292 * @nid: Target node 6293 * @nodemask: Mask for other possible nodes 6294 * 6295 * This routine is a wrapper around alloc_contig_range(). It scans over zones 6296 * on an applicable zonelist to find a contiguous pfn range which can then be 6297 * tried for allocation with alloc_contig_range(). This routine is intended 6298 * for allocation requests which can not be fulfilled with the buddy allocator. 6299 * 6300 * The allocated memory is always aligned to a page boundary. If nr_pages is a 6301 * power of two, then allocated range is also guaranteed to be aligned to same 6302 * nr_pages (e.g. 1GB request would be aligned to 1GB). 6303 * 6304 * Allocated pages can be freed with free_contig_range() or by manually calling 6305 * __free_page() on each allocated page. 6306 * 6307 * Return: pointer to contiguous pages on success, or NULL if not successful. 6308 */ 6309 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, 6310 int nid, nodemask_t *nodemask) 6311 { 6312 unsigned long ret, pfn, flags; 6313 struct zonelist *zonelist; 6314 struct zone *zone; 6315 struct zoneref *z; 6316 6317 zonelist = node_zonelist(nid, gfp_mask); 6318 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6319 gfp_zone(gfp_mask), nodemask) { 6320 spin_lock_irqsave(&zone->lock, flags); 6321 6322 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 6323 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 6324 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 6325 /* 6326 * We release the zone lock here because 6327 * alloc_contig_range() will also lock the zone 6328 * at some point. If there's an allocation 6329 * spinning on this lock, it may win the race 6330 * and cause alloc_contig_range() to fail... 6331 */ 6332 spin_unlock_irqrestore(&zone->lock, flags); 6333 ret = __alloc_contig_pages(pfn, nr_pages, 6334 gfp_mask); 6335 if (!ret) 6336 return pfn_to_page(pfn); 6337 spin_lock_irqsave(&zone->lock, flags); 6338 } 6339 pfn += nr_pages; 6340 } 6341 spin_unlock_irqrestore(&zone->lock, flags); 6342 } 6343 return NULL; 6344 } 6345 #endif /* CONFIG_CONTIG_ALLOC */ 6346 6347 void free_contig_range(unsigned long pfn, unsigned long nr_pages) 6348 { 6349 unsigned long count = 0; 6350 6351 for (; nr_pages--; pfn++) { 6352 struct page *page = pfn_to_page(pfn); 6353 6354 count += page_count(page) != 1; 6355 __free_page(page); 6356 } 6357 WARN(count != 0, "%lu pages are still in use!\n", count); 6358 } 6359 EXPORT_SYMBOL(free_contig_range); 6360 6361 /* 6362 * Effectively disable pcplists for the zone by setting the high limit to 0 6363 * and draining all cpus. A concurrent page freeing on another CPU that's about 6364 * to put the page on pcplist will either finish before the drain and the page 6365 * will be drained, or observe the new high limit and skip the pcplist. 6366 * 6367 * Must be paired with a call to zone_pcp_enable(). 6368 */ 6369 void zone_pcp_disable(struct zone *zone) 6370 { 6371 mutex_lock(&pcp_batch_high_lock); 6372 __zone_set_pageset_high_and_batch(zone, 0, 1); 6373 __drain_all_pages(zone, true); 6374 } 6375 6376 void zone_pcp_enable(struct zone *zone) 6377 { 6378 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch); 6379 mutex_unlock(&pcp_batch_high_lock); 6380 } 6381 6382 void zone_pcp_reset(struct zone *zone) 6383 { 6384 int cpu; 6385 struct per_cpu_zonestat *pzstats; 6386 6387 if (zone->per_cpu_pageset != &boot_pageset) { 6388 for_each_online_cpu(cpu) { 6389 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 6390 drain_zonestat(zone, pzstats); 6391 } 6392 free_percpu(zone->per_cpu_pageset); 6393 zone->per_cpu_pageset = &boot_pageset; 6394 if (zone->per_cpu_zonestats != &boot_zonestats) { 6395 free_percpu(zone->per_cpu_zonestats); 6396 zone->per_cpu_zonestats = &boot_zonestats; 6397 } 6398 } 6399 } 6400 6401 #ifdef CONFIG_MEMORY_HOTREMOVE 6402 /* 6403 * All pages in the range must be in a single zone, must not contain holes, 6404 * must span full sections, and must be isolated before calling this function. 6405 */ 6406 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 6407 { 6408 unsigned long pfn = start_pfn; 6409 struct page *page; 6410 struct zone *zone; 6411 unsigned int order; 6412 unsigned long flags; 6413 6414 offline_mem_sections(pfn, end_pfn); 6415 zone = page_zone(pfn_to_page(pfn)); 6416 spin_lock_irqsave(&zone->lock, flags); 6417 while (pfn < end_pfn) { 6418 page = pfn_to_page(pfn); 6419 /* 6420 * The HWPoisoned page may be not in buddy system, and 6421 * page_count() is not 0. 6422 */ 6423 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 6424 pfn++; 6425 continue; 6426 } 6427 /* 6428 * At this point all remaining PageOffline() pages have a 6429 * reference count of 0 and can simply be skipped. 6430 */ 6431 if (PageOffline(page)) { 6432 BUG_ON(page_count(page)); 6433 BUG_ON(PageBuddy(page)); 6434 pfn++; 6435 continue; 6436 } 6437 6438 BUG_ON(page_count(page)); 6439 BUG_ON(!PageBuddy(page)); 6440 order = buddy_order(page); 6441 del_page_from_free_list(page, zone, order); 6442 pfn += (1 << order); 6443 } 6444 spin_unlock_irqrestore(&zone->lock, flags); 6445 } 6446 #endif 6447 6448 /* 6449 * This function returns a stable result only if called under zone lock. 6450 */ 6451 bool is_free_buddy_page(struct page *page) 6452 { 6453 unsigned long pfn = page_to_pfn(page); 6454 unsigned int order; 6455 6456 for (order = 0; order < NR_PAGE_ORDERS; order++) { 6457 struct page *page_head = page - (pfn & ((1 << order) - 1)); 6458 6459 if (PageBuddy(page_head) && 6460 buddy_order_unsafe(page_head) >= order) 6461 break; 6462 } 6463 6464 return order <= MAX_ORDER; 6465 } 6466 EXPORT_SYMBOL(is_free_buddy_page); 6467 6468 #ifdef CONFIG_MEMORY_FAILURE 6469 /* 6470 * Break down a higher-order page in sub-pages, and keep our target out of 6471 * buddy allocator. 6472 */ 6473 static void break_down_buddy_pages(struct zone *zone, struct page *page, 6474 struct page *target, int low, int high, 6475 int migratetype) 6476 { 6477 unsigned long size = 1 << high; 6478 struct page *current_buddy, *next_page; 6479 6480 while (high > low) { 6481 high--; 6482 size >>= 1; 6483 6484 if (target >= &page[size]) { 6485 next_page = page + size; 6486 current_buddy = page; 6487 } else { 6488 next_page = page; 6489 current_buddy = page + size; 6490 } 6491 page = next_page; 6492 6493 if (set_page_guard(zone, current_buddy, high, migratetype)) 6494 continue; 6495 6496 if (current_buddy != target) { 6497 add_to_free_list(current_buddy, zone, high, migratetype); 6498 set_buddy_order(current_buddy, high); 6499 } 6500 } 6501 } 6502 6503 /* 6504 * Take a page that will be marked as poisoned off the buddy allocator. 6505 */ 6506 bool take_page_off_buddy(struct page *page) 6507 { 6508 struct zone *zone = page_zone(page); 6509 unsigned long pfn = page_to_pfn(page); 6510 unsigned long flags; 6511 unsigned int order; 6512 bool ret = false; 6513 6514 spin_lock_irqsave(&zone->lock, flags); 6515 for (order = 0; order < NR_PAGE_ORDERS; order++) { 6516 struct page *page_head = page - (pfn & ((1 << order) - 1)); 6517 int page_order = buddy_order(page_head); 6518 6519 if (PageBuddy(page_head) && page_order >= order) { 6520 unsigned long pfn_head = page_to_pfn(page_head); 6521 int migratetype = get_pfnblock_migratetype(page_head, 6522 pfn_head); 6523 6524 del_page_from_free_list(page_head, zone, page_order); 6525 break_down_buddy_pages(zone, page_head, page, 0, 6526 page_order, migratetype); 6527 SetPageHWPoisonTakenOff(page); 6528 if (!is_migrate_isolate(migratetype)) 6529 __mod_zone_freepage_state(zone, -1, migratetype); 6530 ret = true; 6531 break; 6532 } 6533 if (page_count(page_head) > 0) 6534 break; 6535 } 6536 spin_unlock_irqrestore(&zone->lock, flags); 6537 return ret; 6538 } 6539 6540 /* 6541 * Cancel takeoff done by take_page_off_buddy(). 6542 */ 6543 bool put_page_back_buddy(struct page *page) 6544 { 6545 struct zone *zone = page_zone(page); 6546 unsigned long pfn = page_to_pfn(page); 6547 unsigned long flags; 6548 int migratetype = get_pfnblock_migratetype(page, pfn); 6549 bool ret = false; 6550 6551 spin_lock_irqsave(&zone->lock, flags); 6552 if (put_page_testzero(page)) { 6553 ClearPageHWPoisonTakenOff(page); 6554 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE); 6555 if (TestClearPageHWPoison(page)) { 6556 ret = true; 6557 } 6558 } 6559 spin_unlock_irqrestore(&zone->lock, flags); 6560 6561 return ret; 6562 } 6563 #endif 6564 6565 #ifdef CONFIG_ZONE_DMA 6566 bool has_managed_dma(void) 6567 { 6568 struct pglist_data *pgdat; 6569 6570 for_each_online_pgdat(pgdat) { 6571 struct zone *zone = &pgdat->node_zones[ZONE_DMA]; 6572 6573 if (managed_zone(zone)) 6574 return true; 6575 } 6576 return false; 6577 } 6578 #endif /* CONFIG_ZONE_DMA */ 6579 6580 #ifdef CONFIG_UNACCEPTED_MEMORY 6581 6582 /* Counts number of zones with unaccepted pages. */ 6583 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages); 6584 6585 static bool lazy_accept = true; 6586 6587 static int __init accept_memory_parse(char *p) 6588 { 6589 if (!strcmp(p, "lazy")) { 6590 lazy_accept = true; 6591 return 0; 6592 } else if (!strcmp(p, "eager")) { 6593 lazy_accept = false; 6594 return 0; 6595 } else { 6596 return -EINVAL; 6597 } 6598 } 6599 early_param("accept_memory", accept_memory_parse); 6600 6601 static bool page_contains_unaccepted(struct page *page, unsigned int order) 6602 { 6603 phys_addr_t start = page_to_phys(page); 6604 phys_addr_t end = start + (PAGE_SIZE << order); 6605 6606 return range_contains_unaccepted_memory(start, end); 6607 } 6608 6609 static void accept_page(struct page *page, unsigned int order) 6610 { 6611 phys_addr_t start = page_to_phys(page); 6612 6613 accept_memory(start, start + (PAGE_SIZE << order)); 6614 } 6615 6616 static bool try_to_accept_memory_one(struct zone *zone) 6617 { 6618 unsigned long flags; 6619 struct page *page; 6620 bool last; 6621 6622 if (list_empty(&zone->unaccepted_pages)) 6623 return false; 6624 6625 spin_lock_irqsave(&zone->lock, flags); 6626 page = list_first_entry_or_null(&zone->unaccepted_pages, 6627 struct page, lru); 6628 if (!page) { 6629 spin_unlock_irqrestore(&zone->lock, flags); 6630 return false; 6631 } 6632 6633 list_del(&page->lru); 6634 last = list_empty(&zone->unaccepted_pages); 6635 6636 __mod_zone_freepage_state(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 6637 __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES); 6638 spin_unlock_irqrestore(&zone->lock, flags); 6639 6640 accept_page(page, MAX_ORDER); 6641 6642 __free_pages_ok(page, MAX_ORDER, FPI_TO_TAIL); 6643 6644 if (last) 6645 static_branch_dec(&zones_with_unaccepted_pages); 6646 6647 return true; 6648 } 6649 6650 static bool try_to_accept_memory(struct zone *zone, unsigned int order) 6651 { 6652 long to_accept; 6653 int ret = false; 6654 6655 /* How much to accept to get to high watermark? */ 6656 to_accept = high_wmark_pages(zone) - 6657 (zone_page_state(zone, NR_FREE_PAGES) - 6658 __zone_watermark_unusable_free(zone, order, 0)); 6659 6660 /* Accept at least one page */ 6661 do { 6662 if (!try_to_accept_memory_one(zone)) 6663 break; 6664 ret = true; 6665 to_accept -= MAX_ORDER_NR_PAGES; 6666 } while (to_accept > 0); 6667 6668 return ret; 6669 } 6670 6671 static inline bool has_unaccepted_memory(void) 6672 { 6673 return static_branch_unlikely(&zones_with_unaccepted_pages); 6674 } 6675 6676 static bool __free_unaccepted(struct page *page) 6677 { 6678 struct zone *zone = page_zone(page); 6679 unsigned long flags; 6680 bool first = false; 6681 6682 if (!lazy_accept) 6683 return false; 6684 6685 spin_lock_irqsave(&zone->lock, flags); 6686 first = list_empty(&zone->unaccepted_pages); 6687 list_add_tail(&page->lru, &zone->unaccepted_pages); 6688 __mod_zone_freepage_state(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 6689 __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES); 6690 spin_unlock_irqrestore(&zone->lock, flags); 6691 6692 if (first) 6693 static_branch_inc(&zones_with_unaccepted_pages); 6694 6695 return true; 6696 } 6697 6698 #else 6699 6700 static bool page_contains_unaccepted(struct page *page, unsigned int order) 6701 { 6702 return false; 6703 } 6704 6705 static void accept_page(struct page *page, unsigned int order) 6706 { 6707 } 6708 6709 static bool try_to_accept_memory(struct zone *zone, unsigned int order) 6710 { 6711 return false; 6712 } 6713 6714 static inline bool has_unaccepted_memory(void) 6715 { 6716 return false; 6717 } 6718 6719 static bool __free_unaccepted(struct page *page) 6720 { 6721 BUILD_BUG(); 6722 return false; 6723 } 6724 6725 #endif /* CONFIG_UNACCEPTED_MEMORY */ 6726