xref: /openbmc/linux/mm/page_alloc.c (revision 80d0624d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmstat.h>
38 #include <linux/fault-inject.h>
39 #include <linux/compaction.h>
40 #include <trace/events/kmem.h>
41 #include <trace/events/oom.h>
42 #include <linux/prefetch.h>
43 #include <linux/mm_inline.h>
44 #include <linux/mmu_notifier.h>
45 #include <linux/migrate.h>
46 #include <linux/sched/mm.h>
47 #include <linux/page_owner.h>
48 #include <linux/page_table_check.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/lockdep.h>
52 #include <linux/psi.h>
53 #include <linux/khugepaged.h>
54 #include <linux/delayacct.h>
55 #include <asm/div64.h>
56 #include "internal.h"
57 #include "shuffle.h"
58 #include "page_reporting.h"
59 
60 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
61 typedef int __bitwise fpi_t;
62 
63 /* No special request */
64 #define FPI_NONE		((__force fpi_t)0)
65 
66 /*
67  * Skip free page reporting notification for the (possibly merged) page.
68  * This does not hinder free page reporting from grabbing the page,
69  * reporting it and marking it "reported" -  it only skips notifying
70  * the free page reporting infrastructure about a newly freed page. For
71  * example, used when temporarily pulling a page from a freelist and
72  * putting it back unmodified.
73  */
74 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
75 
76 /*
77  * Place the (possibly merged) page to the tail of the freelist. Will ignore
78  * page shuffling (relevant code - e.g., memory onlining - is expected to
79  * shuffle the whole zone).
80  *
81  * Note: No code should rely on this flag for correctness - it's purely
82  *       to allow for optimizations when handing back either fresh pages
83  *       (memory onlining) or untouched pages (page isolation, free page
84  *       reporting).
85  */
86 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
87 
88 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
89 static DEFINE_MUTEX(pcp_batch_high_lock);
90 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
91 
92 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
93 /*
94  * On SMP, spin_trylock is sufficient protection.
95  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
96  */
97 #define pcp_trylock_prepare(flags)	do { } while (0)
98 #define pcp_trylock_finish(flag)	do { } while (0)
99 #else
100 
101 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
102 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
103 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
104 #endif
105 
106 /*
107  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
108  * a migration causing the wrong PCP to be locked and remote memory being
109  * potentially allocated, pin the task to the CPU for the lookup+lock.
110  * preempt_disable is used on !RT because it is faster than migrate_disable.
111  * migrate_disable is used on RT because otherwise RT spinlock usage is
112  * interfered with and a high priority task cannot preempt the allocator.
113  */
114 #ifndef CONFIG_PREEMPT_RT
115 #define pcpu_task_pin()		preempt_disable()
116 #define pcpu_task_unpin()	preempt_enable()
117 #else
118 #define pcpu_task_pin()		migrate_disable()
119 #define pcpu_task_unpin()	migrate_enable()
120 #endif
121 
122 /*
123  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
124  * Return value should be used with equivalent unlock helper.
125  */
126 #define pcpu_spin_lock(type, member, ptr)				\
127 ({									\
128 	type *_ret;							\
129 	pcpu_task_pin();						\
130 	_ret = this_cpu_ptr(ptr);					\
131 	spin_lock(&_ret->member);					\
132 	_ret;								\
133 })
134 
135 #define pcpu_spin_trylock(type, member, ptr)				\
136 ({									\
137 	type *_ret;							\
138 	pcpu_task_pin();						\
139 	_ret = this_cpu_ptr(ptr);					\
140 	if (!spin_trylock(&_ret->member)) {				\
141 		pcpu_task_unpin();					\
142 		_ret = NULL;						\
143 	}								\
144 	_ret;								\
145 })
146 
147 #define pcpu_spin_unlock(member, ptr)					\
148 ({									\
149 	spin_unlock(&ptr->member);					\
150 	pcpu_task_unpin();						\
151 })
152 
153 /* struct per_cpu_pages specific helpers. */
154 #define pcp_spin_lock(ptr)						\
155 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
156 
157 #define pcp_spin_trylock(ptr)						\
158 	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
159 
160 #define pcp_spin_unlock(ptr)						\
161 	pcpu_spin_unlock(lock, ptr)
162 
163 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
164 DEFINE_PER_CPU(int, numa_node);
165 EXPORT_PER_CPU_SYMBOL(numa_node);
166 #endif
167 
168 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
169 
170 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
171 /*
172  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
173  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
174  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
175  * defined in <linux/topology.h>.
176  */
177 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
178 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
179 #endif
180 
181 static DEFINE_MUTEX(pcpu_drain_mutex);
182 
183 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
184 volatile unsigned long latent_entropy __latent_entropy;
185 EXPORT_SYMBOL(latent_entropy);
186 #endif
187 
188 /*
189  * Array of node states.
190  */
191 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
192 	[N_POSSIBLE] = NODE_MASK_ALL,
193 	[N_ONLINE] = { { [0] = 1UL } },
194 #ifndef CONFIG_NUMA
195 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
196 #ifdef CONFIG_HIGHMEM
197 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
198 #endif
199 	[N_MEMORY] = { { [0] = 1UL } },
200 	[N_CPU] = { { [0] = 1UL } },
201 #endif	/* NUMA */
202 };
203 EXPORT_SYMBOL(node_states);
204 
205 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
206 
207 /*
208  * A cached value of the page's pageblock's migratetype, used when the page is
209  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
210  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
211  * Also the migratetype set in the page does not necessarily match the pcplist
212  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
213  * other index - this ensures that it will be put on the correct CMA freelist.
214  */
215 static inline int get_pcppage_migratetype(struct page *page)
216 {
217 	return page->index;
218 }
219 
220 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
221 {
222 	page->index = migratetype;
223 }
224 
225 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
226 unsigned int pageblock_order __read_mostly;
227 #endif
228 
229 static void __free_pages_ok(struct page *page, unsigned int order,
230 			    fpi_t fpi_flags);
231 
232 /*
233  * results with 256, 32 in the lowmem_reserve sysctl:
234  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
235  *	1G machine -> (16M dma, 784M normal, 224M high)
236  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
237  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
238  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
239  *
240  * TBD: should special case ZONE_DMA32 machines here - in those we normally
241  * don't need any ZONE_NORMAL reservation
242  */
243 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
244 #ifdef CONFIG_ZONE_DMA
245 	[ZONE_DMA] = 256,
246 #endif
247 #ifdef CONFIG_ZONE_DMA32
248 	[ZONE_DMA32] = 256,
249 #endif
250 	[ZONE_NORMAL] = 32,
251 #ifdef CONFIG_HIGHMEM
252 	[ZONE_HIGHMEM] = 0,
253 #endif
254 	[ZONE_MOVABLE] = 0,
255 };
256 
257 char * const zone_names[MAX_NR_ZONES] = {
258 #ifdef CONFIG_ZONE_DMA
259 	 "DMA",
260 #endif
261 #ifdef CONFIG_ZONE_DMA32
262 	 "DMA32",
263 #endif
264 	 "Normal",
265 #ifdef CONFIG_HIGHMEM
266 	 "HighMem",
267 #endif
268 	 "Movable",
269 #ifdef CONFIG_ZONE_DEVICE
270 	 "Device",
271 #endif
272 };
273 
274 const char * const migratetype_names[MIGRATE_TYPES] = {
275 	"Unmovable",
276 	"Movable",
277 	"Reclaimable",
278 	"HighAtomic",
279 #ifdef CONFIG_CMA
280 	"CMA",
281 #endif
282 #ifdef CONFIG_MEMORY_ISOLATION
283 	"Isolate",
284 #endif
285 };
286 
287 int min_free_kbytes = 1024;
288 int user_min_free_kbytes = -1;
289 static int watermark_boost_factor __read_mostly = 15000;
290 static int watermark_scale_factor = 10;
291 
292 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
293 int movable_zone;
294 EXPORT_SYMBOL(movable_zone);
295 
296 #if MAX_NUMNODES > 1
297 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
298 unsigned int nr_online_nodes __read_mostly = 1;
299 EXPORT_SYMBOL(nr_node_ids);
300 EXPORT_SYMBOL(nr_online_nodes);
301 #endif
302 
303 static bool page_contains_unaccepted(struct page *page, unsigned int order);
304 static void accept_page(struct page *page, unsigned int order);
305 static bool try_to_accept_memory(struct zone *zone, unsigned int order);
306 static inline bool has_unaccepted_memory(void);
307 static bool __free_unaccepted(struct page *page);
308 
309 int page_group_by_mobility_disabled __read_mostly;
310 
311 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
312 /*
313  * During boot we initialize deferred pages on-demand, as needed, but once
314  * page_alloc_init_late() has finished, the deferred pages are all initialized,
315  * and we can permanently disable that path.
316  */
317 DEFINE_STATIC_KEY_TRUE(deferred_pages);
318 
319 static inline bool deferred_pages_enabled(void)
320 {
321 	return static_branch_unlikely(&deferred_pages);
322 }
323 
324 /*
325  * deferred_grow_zone() is __init, but it is called from
326  * get_page_from_freelist() during early boot until deferred_pages permanently
327  * disables this call. This is why we have refdata wrapper to avoid warning,
328  * and to ensure that the function body gets unloaded.
329  */
330 static bool __ref
331 _deferred_grow_zone(struct zone *zone, unsigned int order)
332 {
333        return deferred_grow_zone(zone, order);
334 }
335 #else
336 static inline bool deferred_pages_enabled(void)
337 {
338 	return false;
339 }
340 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
341 
342 /* Return a pointer to the bitmap storing bits affecting a block of pages */
343 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
344 							unsigned long pfn)
345 {
346 #ifdef CONFIG_SPARSEMEM
347 	return section_to_usemap(__pfn_to_section(pfn));
348 #else
349 	return page_zone(page)->pageblock_flags;
350 #endif /* CONFIG_SPARSEMEM */
351 }
352 
353 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
354 {
355 #ifdef CONFIG_SPARSEMEM
356 	pfn &= (PAGES_PER_SECTION-1);
357 #else
358 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
359 #endif /* CONFIG_SPARSEMEM */
360 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
361 }
362 
363 /**
364  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
365  * @page: The page within the block of interest
366  * @pfn: The target page frame number
367  * @mask: mask of bits that the caller is interested in
368  *
369  * Return: pageblock_bits flags
370  */
371 unsigned long get_pfnblock_flags_mask(const struct page *page,
372 					unsigned long pfn, unsigned long mask)
373 {
374 	unsigned long *bitmap;
375 	unsigned long bitidx, word_bitidx;
376 	unsigned long word;
377 
378 	bitmap = get_pageblock_bitmap(page, pfn);
379 	bitidx = pfn_to_bitidx(page, pfn);
380 	word_bitidx = bitidx / BITS_PER_LONG;
381 	bitidx &= (BITS_PER_LONG-1);
382 	/*
383 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
384 	 * a consistent read of the memory array, so that results, even though
385 	 * racy, are not corrupted.
386 	 */
387 	word = READ_ONCE(bitmap[word_bitidx]);
388 	return (word >> bitidx) & mask;
389 }
390 
391 static __always_inline int get_pfnblock_migratetype(const struct page *page,
392 					unsigned long pfn)
393 {
394 	return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
395 }
396 
397 /**
398  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
399  * @page: The page within the block of interest
400  * @flags: The flags to set
401  * @pfn: The target page frame number
402  * @mask: mask of bits that the caller is interested in
403  */
404 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
405 					unsigned long pfn,
406 					unsigned long mask)
407 {
408 	unsigned long *bitmap;
409 	unsigned long bitidx, word_bitidx;
410 	unsigned long word;
411 
412 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
413 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
414 
415 	bitmap = get_pageblock_bitmap(page, pfn);
416 	bitidx = pfn_to_bitidx(page, pfn);
417 	word_bitidx = bitidx / BITS_PER_LONG;
418 	bitidx &= (BITS_PER_LONG-1);
419 
420 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
421 
422 	mask <<= bitidx;
423 	flags <<= bitidx;
424 
425 	word = READ_ONCE(bitmap[word_bitidx]);
426 	do {
427 	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
428 }
429 
430 void set_pageblock_migratetype(struct page *page, int migratetype)
431 {
432 	if (unlikely(page_group_by_mobility_disabled &&
433 		     migratetype < MIGRATE_PCPTYPES))
434 		migratetype = MIGRATE_UNMOVABLE;
435 
436 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
437 				page_to_pfn(page), MIGRATETYPE_MASK);
438 }
439 
440 #ifdef CONFIG_DEBUG_VM
441 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
442 {
443 	int ret;
444 	unsigned seq;
445 	unsigned long pfn = page_to_pfn(page);
446 	unsigned long sp, start_pfn;
447 
448 	do {
449 		seq = zone_span_seqbegin(zone);
450 		start_pfn = zone->zone_start_pfn;
451 		sp = zone->spanned_pages;
452 		ret = !zone_spans_pfn(zone, pfn);
453 	} while (zone_span_seqretry(zone, seq));
454 
455 	if (ret)
456 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
457 			pfn, zone_to_nid(zone), zone->name,
458 			start_pfn, start_pfn + sp);
459 
460 	return ret;
461 }
462 
463 /*
464  * Temporary debugging check for pages not lying within a given zone.
465  */
466 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
467 {
468 	if (page_outside_zone_boundaries(zone, page))
469 		return 1;
470 	if (zone != page_zone(page))
471 		return 1;
472 
473 	return 0;
474 }
475 #else
476 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
477 {
478 	return 0;
479 }
480 #endif
481 
482 static void bad_page(struct page *page, const char *reason)
483 {
484 	static unsigned long resume;
485 	static unsigned long nr_shown;
486 	static unsigned long nr_unshown;
487 
488 	/*
489 	 * Allow a burst of 60 reports, then keep quiet for that minute;
490 	 * or allow a steady drip of one report per second.
491 	 */
492 	if (nr_shown == 60) {
493 		if (time_before(jiffies, resume)) {
494 			nr_unshown++;
495 			goto out;
496 		}
497 		if (nr_unshown) {
498 			pr_alert(
499 			      "BUG: Bad page state: %lu messages suppressed\n",
500 				nr_unshown);
501 			nr_unshown = 0;
502 		}
503 		nr_shown = 0;
504 	}
505 	if (nr_shown++ == 0)
506 		resume = jiffies + 60 * HZ;
507 
508 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
509 		current->comm, page_to_pfn(page));
510 	dump_page(page, reason);
511 
512 	print_modules();
513 	dump_stack();
514 out:
515 	/* Leave bad fields for debug, except PageBuddy could make trouble */
516 	page_mapcount_reset(page); /* remove PageBuddy */
517 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
518 }
519 
520 static inline unsigned int order_to_pindex(int migratetype, int order)
521 {
522 	bool __maybe_unused movable;
523 
524 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
525 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
526 		VM_BUG_ON(order != pageblock_order);
527 
528 		movable = migratetype == MIGRATE_MOVABLE;
529 
530 		return NR_LOWORDER_PCP_LISTS + movable;
531 	}
532 #else
533 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
534 #endif
535 
536 	return (MIGRATE_PCPTYPES * order) + migratetype;
537 }
538 
539 static inline int pindex_to_order(unsigned int pindex)
540 {
541 	int order = pindex / MIGRATE_PCPTYPES;
542 
543 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
544 	if (pindex >= NR_LOWORDER_PCP_LISTS)
545 		order = pageblock_order;
546 #else
547 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
548 #endif
549 
550 	return order;
551 }
552 
553 static inline bool pcp_allowed_order(unsigned int order)
554 {
555 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
556 		return true;
557 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
558 	if (order == pageblock_order)
559 		return true;
560 #endif
561 	return false;
562 }
563 
564 static inline void free_the_page(struct page *page, unsigned int order)
565 {
566 	if (pcp_allowed_order(order))		/* Via pcp? */
567 		free_unref_page(page, order);
568 	else
569 		__free_pages_ok(page, order, FPI_NONE);
570 }
571 
572 /*
573  * Higher-order pages are called "compound pages".  They are structured thusly:
574  *
575  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
576  *
577  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
578  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
579  *
580  * The first tail page's ->compound_order holds the order of allocation.
581  * This usage means that zero-order pages may not be compound.
582  */
583 
584 void prep_compound_page(struct page *page, unsigned int order)
585 {
586 	int i;
587 	int nr_pages = 1 << order;
588 
589 	__SetPageHead(page);
590 	for (i = 1; i < nr_pages; i++)
591 		prep_compound_tail(page, i);
592 
593 	prep_compound_head(page, order);
594 }
595 
596 void destroy_large_folio(struct folio *folio)
597 {
598 	if (folio_test_hugetlb(folio)) {
599 		free_huge_folio(folio);
600 		return;
601 	}
602 
603 	if (folio_test_large_rmappable(folio))
604 		folio_undo_large_rmappable(folio);
605 
606 	mem_cgroup_uncharge(folio);
607 	free_the_page(&folio->page, folio_order(folio));
608 }
609 
610 static inline void set_buddy_order(struct page *page, unsigned int order)
611 {
612 	set_page_private(page, order);
613 	__SetPageBuddy(page);
614 }
615 
616 #ifdef CONFIG_COMPACTION
617 static inline struct capture_control *task_capc(struct zone *zone)
618 {
619 	struct capture_control *capc = current->capture_control;
620 
621 	return unlikely(capc) &&
622 		!(current->flags & PF_KTHREAD) &&
623 		!capc->page &&
624 		capc->cc->zone == zone ? capc : NULL;
625 }
626 
627 static inline bool
628 compaction_capture(struct capture_control *capc, struct page *page,
629 		   int order, int migratetype)
630 {
631 	if (!capc || order != capc->cc->order)
632 		return false;
633 
634 	/* Do not accidentally pollute CMA or isolated regions*/
635 	if (is_migrate_cma(migratetype) ||
636 	    is_migrate_isolate(migratetype))
637 		return false;
638 
639 	/*
640 	 * Do not let lower order allocations pollute a movable pageblock.
641 	 * This might let an unmovable request use a reclaimable pageblock
642 	 * and vice-versa but no more than normal fallback logic which can
643 	 * have trouble finding a high-order free page.
644 	 */
645 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
646 		return false;
647 
648 	capc->page = page;
649 	return true;
650 }
651 
652 #else
653 static inline struct capture_control *task_capc(struct zone *zone)
654 {
655 	return NULL;
656 }
657 
658 static inline bool
659 compaction_capture(struct capture_control *capc, struct page *page,
660 		   int order, int migratetype)
661 {
662 	return false;
663 }
664 #endif /* CONFIG_COMPACTION */
665 
666 /* Used for pages not on another list */
667 static inline void add_to_free_list(struct page *page, struct zone *zone,
668 				    unsigned int order, int migratetype)
669 {
670 	struct free_area *area = &zone->free_area[order];
671 
672 	list_add(&page->buddy_list, &area->free_list[migratetype]);
673 	area->nr_free++;
674 }
675 
676 /* Used for pages not on another list */
677 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
678 					 unsigned int order, int migratetype)
679 {
680 	struct free_area *area = &zone->free_area[order];
681 
682 	list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
683 	area->nr_free++;
684 }
685 
686 /*
687  * Used for pages which are on another list. Move the pages to the tail
688  * of the list - so the moved pages won't immediately be considered for
689  * allocation again (e.g., optimization for memory onlining).
690  */
691 static inline void move_to_free_list(struct page *page, struct zone *zone,
692 				     unsigned int order, int migratetype)
693 {
694 	struct free_area *area = &zone->free_area[order];
695 
696 	list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
697 }
698 
699 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
700 					   unsigned int order)
701 {
702 	/* clear reported state and update reported page count */
703 	if (page_reported(page))
704 		__ClearPageReported(page);
705 
706 	list_del(&page->buddy_list);
707 	__ClearPageBuddy(page);
708 	set_page_private(page, 0);
709 	zone->free_area[order].nr_free--;
710 }
711 
712 static inline struct page *get_page_from_free_area(struct free_area *area,
713 					    int migratetype)
714 {
715 	return list_first_entry_or_null(&area->free_list[migratetype],
716 					struct page, buddy_list);
717 }
718 
719 /*
720  * If this is not the largest possible page, check if the buddy
721  * of the next-highest order is free. If it is, it's possible
722  * that pages are being freed that will coalesce soon. In case,
723  * that is happening, add the free page to the tail of the list
724  * so it's less likely to be used soon and more likely to be merged
725  * as a higher order page
726  */
727 static inline bool
728 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
729 		   struct page *page, unsigned int order)
730 {
731 	unsigned long higher_page_pfn;
732 	struct page *higher_page;
733 
734 	if (order >= MAX_ORDER - 1)
735 		return false;
736 
737 	higher_page_pfn = buddy_pfn & pfn;
738 	higher_page = page + (higher_page_pfn - pfn);
739 
740 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
741 			NULL) != NULL;
742 }
743 
744 /*
745  * Freeing function for a buddy system allocator.
746  *
747  * The concept of a buddy system is to maintain direct-mapped table
748  * (containing bit values) for memory blocks of various "orders".
749  * The bottom level table contains the map for the smallest allocatable
750  * units of memory (here, pages), and each level above it describes
751  * pairs of units from the levels below, hence, "buddies".
752  * At a high level, all that happens here is marking the table entry
753  * at the bottom level available, and propagating the changes upward
754  * as necessary, plus some accounting needed to play nicely with other
755  * parts of the VM system.
756  * At each level, we keep a list of pages, which are heads of continuous
757  * free pages of length of (1 << order) and marked with PageBuddy.
758  * Page's order is recorded in page_private(page) field.
759  * So when we are allocating or freeing one, we can derive the state of the
760  * other.  That is, if we allocate a small block, and both were
761  * free, the remainder of the region must be split into blocks.
762  * If a block is freed, and its buddy is also free, then this
763  * triggers coalescing into a block of larger size.
764  *
765  * -- nyc
766  */
767 
768 static inline void __free_one_page(struct page *page,
769 		unsigned long pfn,
770 		struct zone *zone, unsigned int order,
771 		int migratetype, fpi_t fpi_flags)
772 {
773 	struct capture_control *capc = task_capc(zone);
774 	unsigned long buddy_pfn = 0;
775 	unsigned long combined_pfn;
776 	struct page *buddy;
777 	bool to_tail;
778 
779 	VM_BUG_ON(!zone_is_initialized(zone));
780 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
781 
782 	VM_BUG_ON(migratetype == -1);
783 	if (likely(!is_migrate_isolate(migratetype)))
784 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
785 
786 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
787 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
788 
789 	while (order < MAX_ORDER) {
790 		if (compaction_capture(capc, page, order, migratetype)) {
791 			__mod_zone_freepage_state(zone, -(1 << order),
792 								migratetype);
793 			return;
794 		}
795 
796 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
797 		if (!buddy)
798 			goto done_merging;
799 
800 		if (unlikely(order >= pageblock_order)) {
801 			/*
802 			 * We want to prevent merge between freepages on pageblock
803 			 * without fallbacks and normal pageblock. Without this,
804 			 * pageblock isolation could cause incorrect freepage or CMA
805 			 * accounting or HIGHATOMIC accounting.
806 			 */
807 			int buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
808 
809 			if (migratetype != buddy_mt
810 					&& (!migratetype_is_mergeable(migratetype) ||
811 						!migratetype_is_mergeable(buddy_mt)))
812 				goto done_merging;
813 		}
814 
815 		/*
816 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
817 		 * merge with it and move up one order.
818 		 */
819 		if (page_is_guard(buddy))
820 			clear_page_guard(zone, buddy, order, migratetype);
821 		else
822 			del_page_from_free_list(buddy, zone, order);
823 		combined_pfn = buddy_pfn & pfn;
824 		page = page + (combined_pfn - pfn);
825 		pfn = combined_pfn;
826 		order++;
827 	}
828 
829 done_merging:
830 	set_buddy_order(page, order);
831 
832 	if (fpi_flags & FPI_TO_TAIL)
833 		to_tail = true;
834 	else if (is_shuffle_order(order))
835 		to_tail = shuffle_pick_tail();
836 	else
837 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
838 
839 	if (to_tail)
840 		add_to_free_list_tail(page, zone, order, migratetype);
841 	else
842 		add_to_free_list(page, zone, order, migratetype);
843 
844 	/* Notify page reporting subsystem of freed page */
845 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
846 		page_reporting_notify_free(order);
847 }
848 
849 /**
850  * split_free_page() -- split a free page at split_pfn_offset
851  * @free_page:		the original free page
852  * @order:		the order of the page
853  * @split_pfn_offset:	split offset within the page
854  *
855  * Return -ENOENT if the free page is changed, otherwise 0
856  *
857  * It is used when the free page crosses two pageblocks with different migratetypes
858  * at split_pfn_offset within the page. The split free page will be put into
859  * separate migratetype lists afterwards. Otherwise, the function achieves
860  * nothing.
861  */
862 int split_free_page(struct page *free_page,
863 			unsigned int order, unsigned long split_pfn_offset)
864 {
865 	struct zone *zone = page_zone(free_page);
866 	unsigned long free_page_pfn = page_to_pfn(free_page);
867 	unsigned long pfn;
868 	unsigned long flags;
869 	int free_page_order;
870 	int mt;
871 	int ret = 0;
872 
873 	if (split_pfn_offset == 0)
874 		return ret;
875 
876 	spin_lock_irqsave(&zone->lock, flags);
877 
878 	if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
879 		ret = -ENOENT;
880 		goto out;
881 	}
882 
883 	mt = get_pfnblock_migratetype(free_page, free_page_pfn);
884 	if (likely(!is_migrate_isolate(mt)))
885 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
886 
887 	del_page_from_free_list(free_page, zone, order);
888 	for (pfn = free_page_pfn;
889 	     pfn < free_page_pfn + (1UL << order);) {
890 		int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
891 
892 		free_page_order = min_t(unsigned int,
893 					pfn ? __ffs(pfn) : order,
894 					__fls(split_pfn_offset));
895 		__free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
896 				mt, FPI_NONE);
897 		pfn += 1UL << free_page_order;
898 		split_pfn_offset -= (1UL << free_page_order);
899 		/* we have done the first part, now switch to second part */
900 		if (split_pfn_offset == 0)
901 			split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
902 	}
903 out:
904 	spin_unlock_irqrestore(&zone->lock, flags);
905 	return ret;
906 }
907 /*
908  * A bad page could be due to a number of fields. Instead of multiple branches,
909  * try and check multiple fields with one check. The caller must do a detailed
910  * check if necessary.
911  */
912 static inline bool page_expected_state(struct page *page,
913 					unsigned long check_flags)
914 {
915 	if (unlikely(atomic_read(&page->_mapcount) != -1))
916 		return false;
917 
918 	if (unlikely((unsigned long)page->mapping |
919 			page_ref_count(page) |
920 #ifdef CONFIG_MEMCG
921 			page->memcg_data |
922 #endif
923 			(page->flags & check_flags)))
924 		return false;
925 
926 	return true;
927 }
928 
929 static const char *page_bad_reason(struct page *page, unsigned long flags)
930 {
931 	const char *bad_reason = NULL;
932 
933 	if (unlikely(atomic_read(&page->_mapcount) != -1))
934 		bad_reason = "nonzero mapcount";
935 	if (unlikely(page->mapping != NULL))
936 		bad_reason = "non-NULL mapping";
937 	if (unlikely(page_ref_count(page) != 0))
938 		bad_reason = "nonzero _refcount";
939 	if (unlikely(page->flags & flags)) {
940 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
941 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
942 		else
943 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
944 	}
945 #ifdef CONFIG_MEMCG
946 	if (unlikely(page->memcg_data))
947 		bad_reason = "page still charged to cgroup";
948 #endif
949 	return bad_reason;
950 }
951 
952 static void free_page_is_bad_report(struct page *page)
953 {
954 	bad_page(page,
955 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
956 }
957 
958 static inline bool free_page_is_bad(struct page *page)
959 {
960 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
961 		return false;
962 
963 	/* Something has gone sideways, find it */
964 	free_page_is_bad_report(page);
965 	return true;
966 }
967 
968 static inline bool is_check_pages_enabled(void)
969 {
970 	return static_branch_unlikely(&check_pages_enabled);
971 }
972 
973 static int free_tail_page_prepare(struct page *head_page, struct page *page)
974 {
975 	struct folio *folio = (struct folio *)head_page;
976 	int ret = 1;
977 
978 	/*
979 	 * We rely page->lru.next never has bit 0 set, unless the page
980 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
981 	 */
982 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
983 
984 	if (!is_check_pages_enabled()) {
985 		ret = 0;
986 		goto out;
987 	}
988 	switch (page - head_page) {
989 	case 1:
990 		/* the first tail page: these may be in place of ->mapping */
991 		if (unlikely(folio_entire_mapcount(folio))) {
992 			bad_page(page, "nonzero entire_mapcount");
993 			goto out;
994 		}
995 		if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
996 			bad_page(page, "nonzero nr_pages_mapped");
997 			goto out;
998 		}
999 		if (unlikely(atomic_read(&folio->_pincount))) {
1000 			bad_page(page, "nonzero pincount");
1001 			goto out;
1002 		}
1003 		break;
1004 	case 2:
1005 		/*
1006 		 * the second tail page: ->mapping is
1007 		 * deferred_list.next -- ignore value.
1008 		 */
1009 		break;
1010 	default:
1011 		if (page->mapping != TAIL_MAPPING) {
1012 			bad_page(page, "corrupted mapping in tail page");
1013 			goto out;
1014 		}
1015 		break;
1016 	}
1017 	if (unlikely(!PageTail(page))) {
1018 		bad_page(page, "PageTail not set");
1019 		goto out;
1020 	}
1021 	if (unlikely(compound_head(page) != head_page)) {
1022 		bad_page(page, "compound_head not consistent");
1023 		goto out;
1024 	}
1025 	ret = 0;
1026 out:
1027 	page->mapping = NULL;
1028 	clear_compound_head(page);
1029 	return ret;
1030 }
1031 
1032 /*
1033  * Skip KASAN memory poisoning when either:
1034  *
1035  * 1. For generic KASAN: deferred memory initialization has not yet completed.
1036  *    Tag-based KASAN modes skip pages freed via deferred memory initialization
1037  *    using page tags instead (see below).
1038  * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1039  *    that error detection is disabled for accesses via the page address.
1040  *
1041  * Pages will have match-all tags in the following circumstances:
1042  *
1043  * 1. Pages are being initialized for the first time, including during deferred
1044  *    memory init; see the call to page_kasan_tag_reset in __init_single_page.
1045  * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1046  *    exception of pages unpoisoned by kasan_unpoison_vmalloc.
1047  * 3. The allocation was excluded from being checked due to sampling,
1048  *    see the call to kasan_unpoison_pages.
1049  *
1050  * Poisoning pages during deferred memory init will greatly lengthen the
1051  * process and cause problem in large memory systems as the deferred pages
1052  * initialization is done with interrupt disabled.
1053  *
1054  * Assuming that there will be no reference to those newly initialized
1055  * pages before they are ever allocated, this should have no effect on
1056  * KASAN memory tracking as the poison will be properly inserted at page
1057  * allocation time. The only corner case is when pages are allocated by
1058  * on-demand allocation and then freed again before the deferred pages
1059  * initialization is done, but this is not likely to happen.
1060  */
1061 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1062 {
1063 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1064 		return deferred_pages_enabled();
1065 
1066 	return page_kasan_tag(page) == 0xff;
1067 }
1068 
1069 static void kernel_init_pages(struct page *page, int numpages)
1070 {
1071 	int i;
1072 
1073 	/* s390's use of memset() could override KASAN redzones. */
1074 	kasan_disable_current();
1075 	for (i = 0; i < numpages; i++)
1076 		clear_highpage_kasan_tagged(page + i);
1077 	kasan_enable_current();
1078 }
1079 
1080 static __always_inline bool free_pages_prepare(struct page *page,
1081 			unsigned int order, fpi_t fpi_flags)
1082 {
1083 	int bad = 0;
1084 	bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1085 	bool init = want_init_on_free();
1086 
1087 	VM_BUG_ON_PAGE(PageTail(page), page);
1088 
1089 	trace_mm_page_free(page, order);
1090 	kmsan_free_page(page, order);
1091 
1092 	if (unlikely(PageHWPoison(page)) && !order) {
1093 		/*
1094 		 * Do not let hwpoison pages hit pcplists/buddy
1095 		 * Untie memcg state and reset page's owner
1096 		 */
1097 		if (memcg_kmem_online() && PageMemcgKmem(page))
1098 			__memcg_kmem_uncharge_page(page, order);
1099 		reset_page_owner(page, order);
1100 		page_table_check_free(page, order);
1101 		return false;
1102 	}
1103 
1104 	/*
1105 	 * Check tail pages before head page information is cleared to
1106 	 * avoid checking PageCompound for order-0 pages.
1107 	 */
1108 	if (unlikely(order)) {
1109 		bool compound = PageCompound(page);
1110 		int i;
1111 
1112 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1113 
1114 		if (compound)
1115 			page[1].flags &= ~PAGE_FLAGS_SECOND;
1116 		for (i = 1; i < (1 << order); i++) {
1117 			if (compound)
1118 				bad += free_tail_page_prepare(page, page + i);
1119 			if (is_check_pages_enabled()) {
1120 				if (free_page_is_bad(page + i)) {
1121 					bad++;
1122 					continue;
1123 				}
1124 			}
1125 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1126 		}
1127 	}
1128 	if (PageMappingFlags(page))
1129 		page->mapping = NULL;
1130 	if (memcg_kmem_online() && PageMemcgKmem(page))
1131 		__memcg_kmem_uncharge_page(page, order);
1132 	if (is_check_pages_enabled()) {
1133 		if (free_page_is_bad(page))
1134 			bad++;
1135 		if (bad)
1136 			return false;
1137 	}
1138 
1139 	page_cpupid_reset_last(page);
1140 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1141 	reset_page_owner(page, order);
1142 	page_table_check_free(page, order);
1143 
1144 	if (!PageHighMem(page)) {
1145 		debug_check_no_locks_freed(page_address(page),
1146 					   PAGE_SIZE << order);
1147 		debug_check_no_obj_freed(page_address(page),
1148 					   PAGE_SIZE << order);
1149 	}
1150 
1151 	kernel_poison_pages(page, 1 << order);
1152 
1153 	/*
1154 	 * As memory initialization might be integrated into KASAN,
1155 	 * KASAN poisoning and memory initialization code must be
1156 	 * kept together to avoid discrepancies in behavior.
1157 	 *
1158 	 * With hardware tag-based KASAN, memory tags must be set before the
1159 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1160 	 */
1161 	if (!skip_kasan_poison) {
1162 		kasan_poison_pages(page, order, init);
1163 
1164 		/* Memory is already initialized if KASAN did it internally. */
1165 		if (kasan_has_integrated_init())
1166 			init = false;
1167 	}
1168 	if (init)
1169 		kernel_init_pages(page, 1 << order);
1170 
1171 	/*
1172 	 * arch_free_page() can make the page's contents inaccessible.  s390
1173 	 * does this.  So nothing which can access the page's contents should
1174 	 * happen after this.
1175 	 */
1176 	arch_free_page(page, order);
1177 
1178 	debug_pagealloc_unmap_pages(page, 1 << order);
1179 
1180 	return true;
1181 }
1182 
1183 /*
1184  * Frees a number of pages from the PCP lists
1185  * Assumes all pages on list are in same zone.
1186  * count is the number of pages to free.
1187  */
1188 static void free_pcppages_bulk(struct zone *zone, int count,
1189 					struct per_cpu_pages *pcp,
1190 					int pindex)
1191 {
1192 	unsigned long flags;
1193 	unsigned int order;
1194 	bool isolated_pageblocks;
1195 	struct page *page;
1196 
1197 	/*
1198 	 * Ensure proper count is passed which otherwise would stuck in the
1199 	 * below while (list_empty(list)) loop.
1200 	 */
1201 	count = min(pcp->count, count);
1202 
1203 	/* Ensure requested pindex is drained first. */
1204 	pindex = pindex - 1;
1205 
1206 	spin_lock_irqsave(&zone->lock, flags);
1207 	isolated_pageblocks = has_isolate_pageblock(zone);
1208 
1209 	while (count > 0) {
1210 		struct list_head *list;
1211 		int nr_pages;
1212 
1213 		/* Remove pages from lists in a round-robin fashion. */
1214 		do {
1215 			if (++pindex > NR_PCP_LISTS - 1)
1216 				pindex = 0;
1217 			list = &pcp->lists[pindex];
1218 		} while (list_empty(list));
1219 
1220 		order = pindex_to_order(pindex);
1221 		nr_pages = 1 << order;
1222 		do {
1223 			int mt;
1224 
1225 			page = list_last_entry(list, struct page, pcp_list);
1226 			mt = get_pcppage_migratetype(page);
1227 
1228 			/* must delete to avoid corrupting pcp list */
1229 			list_del(&page->pcp_list);
1230 			count -= nr_pages;
1231 			pcp->count -= nr_pages;
1232 
1233 			/* MIGRATE_ISOLATE page should not go to pcplists */
1234 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1235 			/* Pageblock could have been isolated meanwhile */
1236 			if (unlikely(isolated_pageblocks))
1237 				mt = get_pageblock_migratetype(page);
1238 
1239 			__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1240 			trace_mm_page_pcpu_drain(page, order, mt);
1241 		} while (count > 0 && !list_empty(list));
1242 	}
1243 
1244 	spin_unlock_irqrestore(&zone->lock, flags);
1245 }
1246 
1247 static void free_one_page(struct zone *zone,
1248 				struct page *page, unsigned long pfn,
1249 				unsigned int order,
1250 				int migratetype, fpi_t fpi_flags)
1251 {
1252 	unsigned long flags;
1253 
1254 	spin_lock_irqsave(&zone->lock, flags);
1255 	if (unlikely(has_isolate_pageblock(zone) ||
1256 		is_migrate_isolate(migratetype))) {
1257 		migratetype = get_pfnblock_migratetype(page, pfn);
1258 	}
1259 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1260 	spin_unlock_irqrestore(&zone->lock, flags);
1261 }
1262 
1263 static void __free_pages_ok(struct page *page, unsigned int order,
1264 			    fpi_t fpi_flags)
1265 {
1266 	unsigned long flags;
1267 	int migratetype;
1268 	unsigned long pfn = page_to_pfn(page);
1269 	struct zone *zone = page_zone(page);
1270 
1271 	if (!free_pages_prepare(page, order, fpi_flags))
1272 		return;
1273 
1274 	/*
1275 	 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here
1276 	 * is used to avoid calling get_pfnblock_migratetype() under the lock.
1277 	 * This will reduce the lock holding time.
1278 	 */
1279 	migratetype = get_pfnblock_migratetype(page, pfn);
1280 
1281 	spin_lock_irqsave(&zone->lock, flags);
1282 	if (unlikely(has_isolate_pageblock(zone) ||
1283 		is_migrate_isolate(migratetype))) {
1284 		migratetype = get_pfnblock_migratetype(page, pfn);
1285 	}
1286 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1287 	spin_unlock_irqrestore(&zone->lock, flags);
1288 
1289 	__count_vm_events(PGFREE, 1 << order);
1290 }
1291 
1292 void __free_pages_core(struct page *page, unsigned int order)
1293 {
1294 	unsigned int nr_pages = 1 << order;
1295 	struct page *p = page;
1296 	unsigned int loop;
1297 
1298 	/*
1299 	 * When initializing the memmap, __init_single_page() sets the refcount
1300 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1301 	 * refcount of all involved pages to 0.
1302 	 */
1303 	prefetchw(p);
1304 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1305 		prefetchw(p + 1);
1306 		__ClearPageReserved(p);
1307 		set_page_count(p, 0);
1308 	}
1309 	__ClearPageReserved(p);
1310 	set_page_count(p, 0);
1311 
1312 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1313 
1314 	if (page_contains_unaccepted(page, order)) {
1315 		if (order == MAX_ORDER && __free_unaccepted(page))
1316 			return;
1317 
1318 		accept_page(page, order);
1319 	}
1320 
1321 	/*
1322 	 * Bypass PCP and place fresh pages right to the tail, primarily
1323 	 * relevant for memory onlining.
1324 	 */
1325 	__free_pages_ok(page, order, FPI_TO_TAIL);
1326 }
1327 
1328 /*
1329  * Check that the whole (or subset of) a pageblock given by the interval of
1330  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1331  * with the migration of free compaction scanner.
1332  *
1333  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1334  *
1335  * It's possible on some configurations to have a setup like node0 node1 node0
1336  * i.e. it's possible that all pages within a zones range of pages do not
1337  * belong to a single zone. We assume that a border between node0 and node1
1338  * can occur within a single pageblock, but not a node0 node1 node0
1339  * interleaving within a single pageblock. It is therefore sufficient to check
1340  * the first and last page of a pageblock and avoid checking each individual
1341  * page in a pageblock.
1342  *
1343  * Note: the function may return non-NULL struct page even for a page block
1344  * which contains a memory hole (i.e. there is no physical memory for a subset
1345  * of the pfn range). For example, if the pageblock order is MAX_ORDER, which
1346  * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1347  * even though the start pfn is online and valid. This should be safe most of
1348  * the time because struct pages are still initialized via init_unavailable_range()
1349  * and pfn walkers shouldn't touch any physical memory range for which they do
1350  * not recognize any specific metadata in struct pages.
1351  */
1352 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1353 				     unsigned long end_pfn, struct zone *zone)
1354 {
1355 	struct page *start_page;
1356 	struct page *end_page;
1357 
1358 	/* end_pfn is one past the range we are checking */
1359 	end_pfn--;
1360 
1361 	if (!pfn_valid(end_pfn))
1362 		return NULL;
1363 
1364 	start_page = pfn_to_online_page(start_pfn);
1365 	if (!start_page)
1366 		return NULL;
1367 
1368 	if (page_zone(start_page) != zone)
1369 		return NULL;
1370 
1371 	end_page = pfn_to_page(end_pfn);
1372 
1373 	/* This gives a shorter code than deriving page_zone(end_page) */
1374 	if (page_zone_id(start_page) != page_zone_id(end_page))
1375 		return NULL;
1376 
1377 	return start_page;
1378 }
1379 
1380 /*
1381  * The order of subdivision here is critical for the IO subsystem.
1382  * Please do not alter this order without good reasons and regression
1383  * testing. Specifically, as large blocks of memory are subdivided,
1384  * the order in which smaller blocks are delivered depends on the order
1385  * they're subdivided in this function. This is the primary factor
1386  * influencing the order in which pages are delivered to the IO
1387  * subsystem according to empirical testing, and this is also justified
1388  * by considering the behavior of a buddy system containing a single
1389  * large block of memory acted on by a series of small allocations.
1390  * This behavior is a critical factor in sglist merging's success.
1391  *
1392  * -- nyc
1393  */
1394 static inline void expand(struct zone *zone, struct page *page,
1395 	int low, int high, int migratetype)
1396 {
1397 	unsigned long size = 1 << high;
1398 
1399 	while (high > low) {
1400 		high--;
1401 		size >>= 1;
1402 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1403 
1404 		/*
1405 		 * Mark as guard pages (or page), that will allow to
1406 		 * merge back to allocator when buddy will be freed.
1407 		 * Corresponding page table entries will not be touched,
1408 		 * pages will stay not present in virtual address space
1409 		 */
1410 		if (set_page_guard(zone, &page[size], high, migratetype))
1411 			continue;
1412 
1413 		add_to_free_list(&page[size], zone, high, migratetype);
1414 		set_buddy_order(&page[size], high);
1415 	}
1416 }
1417 
1418 static void check_new_page_bad(struct page *page)
1419 {
1420 	if (unlikely(page->flags & __PG_HWPOISON)) {
1421 		/* Don't complain about hwpoisoned pages */
1422 		page_mapcount_reset(page); /* remove PageBuddy */
1423 		return;
1424 	}
1425 
1426 	bad_page(page,
1427 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1428 }
1429 
1430 /*
1431  * This page is about to be returned from the page allocator
1432  */
1433 static int check_new_page(struct page *page)
1434 {
1435 	if (likely(page_expected_state(page,
1436 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1437 		return 0;
1438 
1439 	check_new_page_bad(page);
1440 	return 1;
1441 }
1442 
1443 static inline bool check_new_pages(struct page *page, unsigned int order)
1444 {
1445 	if (is_check_pages_enabled()) {
1446 		for (int i = 0; i < (1 << order); i++) {
1447 			struct page *p = page + i;
1448 
1449 			if (check_new_page(p))
1450 				return true;
1451 		}
1452 	}
1453 
1454 	return false;
1455 }
1456 
1457 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1458 {
1459 	/* Don't skip if a software KASAN mode is enabled. */
1460 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1461 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1462 		return false;
1463 
1464 	/* Skip, if hardware tag-based KASAN is not enabled. */
1465 	if (!kasan_hw_tags_enabled())
1466 		return true;
1467 
1468 	/*
1469 	 * With hardware tag-based KASAN enabled, skip if this has been
1470 	 * requested via __GFP_SKIP_KASAN.
1471 	 */
1472 	return flags & __GFP_SKIP_KASAN;
1473 }
1474 
1475 static inline bool should_skip_init(gfp_t flags)
1476 {
1477 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
1478 	if (!kasan_hw_tags_enabled())
1479 		return false;
1480 
1481 	/* For hardware tag-based KASAN, skip if requested. */
1482 	return (flags & __GFP_SKIP_ZERO);
1483 }
1484 
1485 inline void post_alloc_hook(struct page *page, unsigned int order,
1486 				gfp_t gfp_flags)
1487 {
1488 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1489 			!should_skip_init(gfp_flags);
1490 	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1491 	int i;
1492 
1493 	set_page_private(page, 0);
1494 	set_page_refcounted(page);
1495 
1496 	arch_alloc_page(page, order);
1497 	debug_pagealloc_map_pages(page, 1 << order);
1498 
1499 	/*
1500 	 * Page unpoisoning must happen before memory initialization.
1501 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1502 	 * allocations and the page unpoisoning code will complain.
1503 	 */
1504 	kernel_unpoison_pages(page, 1 << order);
1505 
1506 	/*
1507 	 * As memory initialization might be integrated into KASAN,
1508 	 * KASAN unpoisoning and memory initializion code must be
1509 	 * kept together to avoid discrepancies in behavior.
1510 	 */
1511 
1512 	/*
1513 	 * If memory tags should be zeroed
1514 	 * (which happens only when memory should be initialized as well).
1515 	 */
1516 	if (zero_tags) {
1517 		/* Initialize both memory and memory tags. */
1518 		for (i = 0; i != 1 << order; ++i)
1519 			tag_clear_highpage(page + i);
1520 
1521 		/* Take note that memory was initialized by the loop above. */
1522 		init = false;
1523 	}
1524 	if (!should_skip_kasan_unpoison(gfp_flags) &&
1525 	    kasan_unpoison_pages(page, order, init)) {
1526 		/* Take note that memory was initialized by KASAN. */
1527 		if (kasan_has_integrated_init())
1528 			init = false;
1529 	} else {
1530 		/*
1531 		 * If memory tags have not been set by KASAN, reset the page
1532 		 * tags to ensure page_address() dereferencing does not fault.
1533 		 */
1534 		for (i = 0; i != 1 << order; ++i)
1535 			page_kasan_tag_reset(page + i);
1536 	}
1537 	/* If memory is still not initialized, initialize it now. */
1538 	if (init)
1539 		kernel_init_pages(page, 1 << order);
1540 
1541 	set_page_owner(page, order, gfp_flags);
1542 	page_table_check_alloc(page, order);
1543 }
1544 
1545 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1546 							unsigned int alloc_flags)
1547 {
1548 	post_alloc_hook(page, order, gfp_flags);
1549 
1550 	if (order && (gfp_flags & __GFP_COMP))
1551 		prep_compound_page(page, order);
1552 
1553 	/*
1554 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1555 	 * allocate the page. The expectation is that the caller is taking
1556 	 * steps that will free more memory. The caller should avoid the page
1557 	 * being used for !PFMEMALLOC purposes.
1558 	 */
1559 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1560 		set_page_pfmemalloc(page);
1561 	else
1562 		clear_page_pfmemalloc(page);
1563 }
1564 
1565 /*
1566  * Go through the free lists for the given migratetype and remove
1567  * the smallest available page from the freelists
1568  */
1569 static __always_inline
1570 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1571 						int migratetype)
1572 {
1573 	unsigned int current_order;
1574 	struct free_area *area;
1575 	struct page *page;
1576 
1577 	/* Find a page of the appropriate size in the preferred list */
1578 	for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
1579 		area = &(zone->free_area[current_order]);
1580 		page = get_page_from_free_area(area, migratetype);
1581 		if (!page)
1582 			continue;
1583 		del_page_from_free_list(page, zone, current_order);
1584 		expand(zone, page, order, current_order, migratetype);
1585 		set_pcppage_migratetype(page, migratetype);
1586 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
1587 				pcp_allowed_order(order) &&
1588 				migratetype < MIGRATE_PCPTYPES);
1589 		return page;
1590 	}
1591 
1592 	return NULL;
1593 }
1594 
1595 
1596 /*
1597  * This array describes the order lists are fallen back to when
1598  * the free lists for the desirable migrate type are depleted
1599  *
1600  * The other migratetypes do not have fallbacks.
1601  */
1602 static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = {
1603 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
1604 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1605 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
1606 };
1607 
1608 #ifdef CONFIG_CMA
1609 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1610 					unsigned int order)
1611 {
1612 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1613 }
1614 #else
1615 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1616 					unsigned int order) { return NULL; }
1617 #endif
1618 
1619 /*
1620  * Move the free pages in a range to the freelist tail of the requested type.
1621  * Note that start_page and end_pages are not aligned on a pageblock
1622  * boundary. If alignment is required, use move_freepages_block()
1623  */
1624 static int move_freepages(struct zone *zone,
1625 			  unsigned long start_pfn, unsigned long end_pfn,
1626 			  int migratetype, int *num_movable)
1627 {
1628 	struct page *page;
1629 	unsigned long pfn;
1630 	unsigned int order;
1631 	int pages_moved = 0;
1632 
1633 	for (pfn = start_pfn; pfn <= end_pfn;) {
1634 		page = pfn_to_page(pfn);
1635 		if (!PageBuddy(page)) {
1636 			/*
1637 			 * We assume that pages that could be isolated for
1638 			 * migration are movable. But we don't actually try
1639 			 * isolating, as that would be expensive.
1640 			 */
1641 			if (num_movable &&
1642 					(PageLRU(page) || __PageMovable(page)))
1643 				(*num_movable)++;
1644 			pfn++;
1645 			continue;
1646 		}
1647 
1648 		/* Make sure we are not inadvertently changing nodes */
1649 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1650 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1651 
1652 		order = buddy_order(page);
1653 		move_to_free_list(page, zone, order, migratetype);
1654 		pfn += 1 << order;
1655 		pages_moved += 1 << order;
1656 	}
1657 
1658 	return pages_moved;
1659 }
1660 
1661 int move_freepages_block(struct zone *zone, struct page *page,
1662 				int migratetype, int *num_movable)
1663 {
1664 	unsigned long start_pfn, end_pfn, pfn;
1665 
1666 	if (num_movable)
1667 		*num_movable = 0;
1668 
1669 	pfn = page_to_pfn(page);
1670 	start_pfn = pageblock_start_pfn(pfn);
1671 	end_pfn = pageblock_end_pfn(pfn) - 1;
1672 
1673 	/* Do not cross zone boundaries */
1674 	if (!zone_spans_pfn(zone, start_pfn))
1675 		start_pfn = pfn;
1676 	if (!zone_spans_pfn(zone, end_pfn))
1677 		return 0;
1678 
1679 	return move_freepages(zone, start_pfn, end_pfn, migratetype,
1680 								num_movable);
1681 }
1682 
1683 static void change_pageblock_range(struct page *pageblock_page,
1684 					int start_order, int migratetype)
1685 {
1686 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1687 
1688 	while (nr_pageblocks--) {
1689 		set_pageblock_migratetype(pageblock_page, migratetype);
1690 		pageblock_page += pageblock_nr_pages;
1691 	}
1692 }
1693 
1694 /*
1695  * When we are falling back to another migratetype during allocation, try to
1696  * steal extra free pages from the same pageblocks to satisfy further
1697  * allocations, instead of polluting multiple pageblocks.
1698  *
1699  * If we are stealing a relatively large buddy page, it is likely there will
1700  * be more free pages in the pageblock, so try to steal them all. For
1701  * reclaimable and unmovable allocations, we steal regardless of page size,
1702  * as fragmentation caused by those allocations polluting movable pageblocks
1703  * is worse than movable allocations stealing from unmovable and reclaimable
1704  * pageblocks.
1705  */
1706 static bool can_steal_fallback(unsigned int order, int start_mt)
1707 {
1708 	/*
1709 	 * Leaving this order check is intended, although there is
1710 	 * relaxed order check in next check. The reason is that
1711 	 * we can actually steal whole pageblock if this condition met,
1712 	 * but, below check doesn't guarantee it and that is just heuristic
1713 	 * so could be changed anytime.
1714 	 */
1715 	if (order >= pageblock_order)
1716 		return true;
1717 
1718 	if (order >= pageblock_order / 2 ||
1719 		start_mt == MIGRATE_RECLAIMABLE ||
1720 		start_mt == MIGRATE_UNMOVABLE ||
1721 		page_group_by_mobility_disabled)
1722 		return true;
1723 
1724 	return false;
1725 }
1726 
1727 static inline bool boost_watermark(struct zone *zone)
1728 {
1729 	unsigned long max_boost;
1730 
1731 	if (!watermark_boost_factor)
1732 		return false;
1733 	/*
1734 	 * Don't bother in zones that are unlikely to produce results.
1735 	 * On small machines, including kdump capture kernels running
1736 	 * in a small area, boosting the watermark can cause an out of
1737 	 * memory situation immediately.
1738 	 */
1739 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1740 		return false;
1741 
1742 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1743 			watermark_boost_factor, 10000);
1744 
1745 	/*
1746 	 * high watermark may be uninitialised if fragmentation occurs
1747 	 * very early in boot so do not boost. We do not fall
1748 	 * through and boost by pageblock_nr_pages as failing
1749 	 * allocations that early means that reclaim is not going
1750 	 * to help and it may even be impossible to reclaim the
1751 	 * boosted watermark resulting in a hang.
1752 	 */
1753 	if (!max_boost)
1754 		return false;
1755 
1756 	max_boost = max(pageblock_nr_pages, max_boost);
1757 
1758 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1759 		max_boost);
1760 
1761 	return true;
1762 }
1763 
1764 /*
1765  * This function implements actual steal behaviour. If order is large enough,
1766  * we can steal whole pageblock. If not, we first move freepages in this
1767  * pageblock to our migratetype and determine how many already-allocated pages
1768  * are there in the pageblock with a compatible migratetype. If at least half
1769  * of pages are free or compatible, we can change migratetype of the pageblock
1770  * itself, so pages freed in the future will be put on the correct free list.
1771  */
1772 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1773 		unsigned int alloc_flags, int start_type, bool whole_block)
1774 {
1775 	unsigned int current_order = buddy_order(page);
1776 	int free_pages, movable_pages, alike_pages;
1777 	int old_block_type;
1778 
1779 	old_block_type = get_pageblock_migratetype(page);
1780 
1781 	/*
1782 	 * This can happen due to races and we want to prevent broken
1783 	 * highatomic accounting.
1784 	 */
1785 	if (is_migrate_highatomic(old_block_type))
1786 		goto single_page;
1787 
1788 	/* Take ownership for orders >= pageblock_order */
1789 	if (current_order >= pageblock_order) {
1790 		change_pageblock_range(page, current_order, start_type);
1791 		goto single_page;
1792 	}
1793 
1794 	/*
1795 	 * Boost watermarks to increase reclaim pressure to reduce the
1796 	 * likelihood of future fallbacks. Wake kswapd now as the node
1797 	 * may be balanced overall and kswapd will not wake naturally.
1798 	 */
1799 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1800 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1801 
1802 	/* We are not allowed to try stealing from the whole block */
1803 	if (!whole_block)
1804 		goto single_page;
1805 
1806 	free_pages = move_freepages_block(zone, page, start_type,
1807 						&movable_pages);
1808 	/* moving whole block can fail due to zone boundary conditions */
1809 	if (!free_pages)
1810 		goto single_page;
1811 
1812 	/*
1813 	 * Determine how many pages are compatible with our allocation.
1814 	 * For movable allocation, it's the number of movable pages which
1815 	 * we just obtained. For other types it's a bit more tricky.
1816 	 */
1817 	if (start_type == MIGRATE_MOVABLE) {
1818 		alike_pages = movable_pages;
1819 	} else {
1820 		/*
1821 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1822 		 * to MOVABLE pageblock, consider all non-movable pages as
1823 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1824 		 * vice versa, be conservative since we can't distinguish the
1825 		 * exact migratetype of non-movable pages.
1826 		 */
1827 		if (old_block_type == MIGRATE_MOVABLE)
1828 			alike_pages = pageblock_nr_pages
1829 						- (free_pages + movable_pages);
1830 		else
1831 			alike_pages = 0;
1832 	}
1833 	/*
1834 	 * If a sufficient number of pages in the block are either free or of
1835 	 * compatible migratability as our allocation, claim the whole block.
1836 	 */
1837 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
1838 			page_group_by_mobility_disabled)
1839 		set_pageblock_migratetype(page, start_type);
1840 
1841 	return;
1842 
1843 single_page:
1844 	move_to_free_list(page, zone, current_order, start_type);
1845 }
1846 
1847 /*
1848  * Check whether there is a suitable fallback freepage with requested order.
1849  * If only_stealable is true, this function returns fallback_mt only if
1850  * we can steal other freepages all together. This would help to reduce
1851  * fragmentation due to mixed migratetype pages in one pageblock.
1852  */
1853 int find_suitable_fallback(struct free_area *area, unsigned int order,
1854 			int migratetype, bool only_stealable, bool *can_steal)
1855 {
1856 	int i;
1857 	int fallback_mt;
1858 
1859 	if (area->nr_free == 0)
1860 		return -1;
1861 
1862 	*can_steal = false;
1863 	for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
1864 		fallback_mt = fallbacks[migratetype][i];
1865 		if (free_area_empty(area, fallback_mt))
1866 			continue;
1867 
1868 		if (can_steal_fallback(order, migratetype))
1869 			*can_steal = true;
1870 
1871 		if (!only_stealable)
1872 			return fallback_mt;
1873 
1874 		if (*can_steal)
1875 			return fallback_mt;
1876 	}
1877 
1878 	return -1;
1879 }
1880 
1881 /*
1882  * Reserve a pageblock for exclusive use of high-order atomic allocations if
1883  * there are no empty page blocks that contain a page with a suitable order
1884  */
1885 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone)
1886 {
1887 	int mt;
1888 	unsigned long max_managed, flags;
1889 
1890 	/*
1891 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1892 	 * Check is race-prone but harmless.
1893 	 */
1894 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
1895 	if (zone->nr_reserved_highatomic >= max_managed)
1896 		return;
1897 
1898 	spin_lock_irqsave(&zone->lock, flags);
1899 
1900 	/* Recheck the nr_reserved_highatomic limit under the lock */
1901 	if (zone->nr_reserved_highatomic >= max_managed)
1902 		goto out_unlock;
1903 
1904 	/* Yoink! */
1905 	mt = get_pageblock_migratetype(page);
1906 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
1907 	if (migratetype_is_mergeable(mt)) {
1908 		zone->nr_reserved_highatomic += pageblock_nr_pages;
1909 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1910 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
1911 	}
1912 
1913 out_unlock:
1914 	spin_unlock_irqrestore(&zone->lock, flags);
1915 }
1916 
1917 /*
1918  * Used when an allocation is about to fail under memory pressure. This
1919  * potentially hurts the reliability of high-order allocations when under
1920  * intense memory pressure but failed atomic allocations should be easier
1921  * to recover from than an OOM.
1922  *
1923  * If @force is true, try to unreserve a pageblock even though highatomic
1924  * pageblock is exhausted.
1925  */
1926 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
1927 						bool force)
1928 {
1929 	struct zonelist *zonelist = ac->zonelist;
1930 	unsigned long flags;
1931 	struct zoneref *z;
1932 	struct zone *zone;
1933 	struct page *page;
1934 	int order;
1935 	bool ret;
1936 
1937 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
1938 								ac->nodemask) {
1939 		/*
1940 		 * Preserve at least one pageblock unless memory pressure
1941 		 * is really high.
1942 		 */
1943 		if (!force && zone->nr_reserved_highatomic <=
1944 					pageblock_nr_pages)
1945 			continue;
1946 
1947 		spin_lock_irqsave(&zone->lock, flags);
1948 		for (order = 0; order < NR_PAGE_ORDERS; order++) {
1949 			struct free_area *area = &(zone->free_area[order]);
1950 
1951 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
1952 			if (!page)
1953 				continue;
1954 
1955 			/*
1956 			 * In page freeing path, migratetype change is racy so
1957 			 * we can counter several free pages in a pageblock
1958 			 * in this loop although we changed the pageblock type
1959 			 * from highatomic to ac->migratetype. So we should
1960 			 * adjust the count once.
1961 			 */
1962 			if (is_migrate_highatomic_page(page)) {
1963 				/*
1964 				 * It should never happen but changes to
1965 				 * locking could inadvertently allow a per-cpu
1966 				 * drain to add pages to MIGRATE_HIGHATOMIC
1967 				 * while unreserving so be safe and watch for
1968 				 * underflows.
1969 				 */
1970 				zone->nr_reserved_highatomic -= min(
1971 						pageblock_nr_pages,
1972 						zone->nr_reserved_highatomic);
1973 			}
1974 
1975 			/*
1976 			 * Convert to ac->migratetype and avoid the normal
1977 			 * pageblock stealing heuristics. Minimally, the caller
1978 			 * is doing the work and needs the pages. More
1979 			 * importantly, if the block was always converted to
1980 			 * MIGRATE_UNMOVABLE or another type then the number
1981 			 * of pageblocks that cannot be completely freed
1982 			 * may increase.
1983 			 */
1984 			set_pageblock_migratetype(page, ac->migratetype);
1985 			ret = move_freepages_block(zone, page, ac->migratetype,
1986 									NULL);
1987 			if (ret) {
1988 				spin_unlock_irqrestore(&zone->lock, flags);
1989 				return ret;
1990 			}
1991 		}
1992 		spin_unlock_irqrestore(&zone->lock, flags);
1993 	}
1994 
1995 	return false;
1996 }
1997 
1998 /*
1999  * Try finding a free buddy page on the fallback list and put it on the free
2000  * list of requested migratetype, possibly along with other pages from the same
2001  * block, depending on fragmentation avoidance heuristics. Returns true if
2002  * fallback was found so that __rmqueue_smallest() can grab it.
2003  *
2004  * The use of signed ints for order and current_order is a deliberate
2005  * deviation from the rest of this file, to make the for loop
2006  * condition simpler.
2007  */
2008 static __always_inline bool
2009 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2010 						unsigned int alloc_flags)
2011 {
2012 	struct free_area *area;
2013 	int current_order;
2014 	int min_order = order;
2015 	struct page *page;
2016 	int fallback_mt;
2017 	bool can_steal;
2018 
2019 	/*
2020 	 * Do not steal pages from freelists belonging to other pageblocks
2021 	 * i.e. orders < pageblock_order. If there are no local zones free,
2022 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2023 	 */
2024 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2025 		min_order = pageblock_order;
2026 
2027 	/*
2028 	 * Find the largest available free page in the other list. This roughly
2029 	 * approximates finding the pageblock with the most free pages, which
2030 	 * would be too costly to do exactly.
2031 	 */
2032 	for (current_order = MAX_ORDER; current_order >= min_order;
2033 				--current_order) {
2034 		area = &(zone->free_area[current_order]);
2035 		fallback_mt = find_suitable_fallback(area, current_order,
2036 				start_migratetype, false, &can_steal);
2037 		if (fallback_mt == -1)
2038 			continue;
2039 
2040 		/*
2041 		 * We cannot steal all free pages from the pageblock and the
2042 		 * requested migratetype is movable. In that case it's better to
2043 		 * steal and split the smallest available page instead of the
2044 		 * largest available page, because even if the next movable
2045 		 * allocation falls back into a different pageblock than this
2046 		 * one, it won't cause permanent fragmentation.
2047 		 */
2048 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2049 					&& current_order > order)
2050 			goto find_smallest;
2051 
2052 		goto do_steal;
2053 	}
2054 
2055 	return false;
2056 
2057 find_smallest:
2058 	for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
2059 		area = &(zone->free_area[current_order]);
2060 		fallback_mt = find_suitable_fallback(area, current_order,
2061 				start_migratetype, false, &can_steal);
2062 		if (fallback_mt != -1)
2063 			break;
2064 	}
2065 
2066 	/*
2067 	 * This should not happen - we already found a suitable fallback
2068 	 * when looking for the largest page.
2069 	 */
2070 	VM_BUG_ON(current_order > MAX_ORDER);
2071 
2072 do_steal:
2073 	page = get_page_from_free_area(area, fallback_mt);
2074 
2075 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2076 								can_steal);
2077 
2078 	trace_mm_page_alloc_extfrag(page, order, current_order,
2079 		start_migratetype, fallback_mt);
2080 
2081 	return true;
2082 
2083 }
2084 
2085 /*
2086  * Do the hard work of removing an element from the buddy allocator.
2087  * Call me with the zone->lock already held.
2088  */
2089 static __always_inline struct page *
2090 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2091 						unsigned int alloc_flags)
2092 {
2093 	struct page *page;
2094 
2095 	if (IS_ENABLED(CONFIG_CMA)) {
2096 		/*
2097 		 * Balance movable allocations between regular and CMA areas by
2098 		 * allocating from CMA when over half of the zone's free memory
2099 		 * is in the CMA area.
2100 		 */
2101 		if (alloc_flags & ALLOC_CMA &&
2102 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2103 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2104 			page = __rmqueue_cma_fallback(zone, order);
2105 			if (page)
2106 				return page;
2107 		}
2108 	}
2109 retry:
2110 	page = __rmqueue_smallest(zone, order, migratetype);
2111 	if (unlikely(!page)) {
2112 		if (alloc_flags & ALLOC_CMA)
2113 			page = __rmqueue_cma_fallback(zone, order);
2114 
2115 		if (!page && __rmqueue_fallback(zone, order, migratetype,
2116 								alloc_flags))
2117 			goto retry;
2118 	}
2119 	return page;
2120 }
2121 
2122 /*
2123  * Obtain a specified number of elements from the buddy allocator, all under
2124  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2125  * Returns the number of new pages which were placed at *list.
2126  */
2127 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2128 			unsigned long count, struct list_head *list,
2129 			int migratetype, unsigned int alloc_flags)
2130 {
2131 	unsigned long flags;
2132 	int i;
2133 
2134 	spin_lock_irqsave(&zone->lock, flags);
2135 	for (i = 0; i < count; ++i) {
2136 		struct page *page = __rmqueue(zone, order, migratetype,
2137 								alloc_flags);
2138 		if (unlikely(page == NULL))
2139 			break;
2140 
2141 		/*
2142 		 * Split buddy pages returned by expand() are received here in
2143 		 * physical page order. The page is added to the tail of
2144 		 * caller's list. From the callers perspective, the linked list
2145 		 * is ordered by page number under some conditions. This is
2146 		 * useful for IO devices that can forward direction from the
2147 		 * head, thus also in the physical page order. This is useful
2148 		 * for IO devices that can merge IO requests if the physical
2149 		 * pages are ordered properly.
2150 		 */
2151 		list_add_tail(&page->pcp_list, list);
2152 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2153 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2154 					      -(1 << order));
2155 	}
2156 
2157 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2158 	spin_unlock_irqrestore(&zone->lock, flags);
2159 
2160 	return i;
2161 }
2162 
2163 #ifdef CONFIG_NUMA
2164 /*
2165  * Called from the vmstat counter updater to drain pagesets of this
2166  * currently executing processor on remote nodes after they have
2167  * expired.
2168  */
2169 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2170 {
2171 	int to_drain, batch;
2172 
2173 	batch = READ_ONCE(pcp->batch);
2174 	to_drain = min(pcp->count, batch);
2175 	if (to_drain > 0) {
2176 		spin_lock(&pcp->lock);
2177 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2178 		spin_unlock(&pcp->lock);
2179 	}
2180 }
2181 #endif
2182 
2183 /*
2184  * Drain pcplists of the indicated processor and zone.
2185  */
2186 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2187 {
2188 	struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2189 	int count;
2190 
2191 	do {
2192 		spin_lock(&pcp->lock);
2193 		count = pcp->count;
2194 		if (count) {
2195 			int to_drain = min(count,
2196 				pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX);
2197 
2198 			free_pcppages_bulk(zone, to_drain, pcp, 0);
2199 			count -= to_drain;
2200 		}
2201 		spin_unlock(&pcp->lock);
2202 	} while (count);
2203 }
2204 
2205 /*
2206  * Drain pcplists of all zones on the indicated processor.
2207  */
2208 static void drain_pages(unsigned int cpu)
2209 {
2210 	struct zone *zone;
2211 
2212 	for_each_populated_zone(zone) {
2213 		drain_pages_zone(cpu, zone);
2214 	}
2215 }
2216 
2217 /*
2218  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2219  */
2220 void drain_local_pages(struct zone *zone)
2221 {
2222 	int cpu = smp_processor_id();
2223 
2224 	if (zone)
2225 		drain_pages_zone(cpu, zone);
2226 	else
2227 		drain_pages(cpu);
2228 }
2229 
2230 /*
2231  * The implementation of drain_all_pages(), exposing an extra parameter to
2232  * drain on all cpus.
2233  *
2234  * drain_all_pages() is optimized to only execute on cpus where pcplists are
2235  * not empty. The check for non-emptiness can however race with a free to
2236  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2237  * that need the guarantee that every CPU has drained can disable the
2238  * optimizing racy check.
2239  */
2240 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2241 {
2242 	int cpu;
2243 
2244 	/*
2245 	 * Allocate in the BSS so we won't require allocation in
2246 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2247 	 */
2248 	static cpumask_t cpus_with_pcps;
2249 
2250 	/*
2251 	 * Do not drain if one is already in progress unless it's specific to
2252 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2253 	 * the drain to be complete when the call returns.
2254 	 */
2255 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2256 		if (!zone)
2257 			return;
2258 		mutex_lock(&pcpu_drain_mutex);
2259 	}
2260 
2261 	/*
2262 	 * We don't care about racing with CPU hotplug event
2263 	 * as offline notification will cause the notified
2264 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2265 	 * disables preemption as part of its processing
2266 	 */
2267 	for_each_online_cpu(cpu) {
2268 		struct per_cpu_pages *pcp;
2269 		struct zone *z;
2270 		bool has_pcps = false;
2271 
2272 		if (force_all_cpus) {
2273 			/*
2274 			 * The pcp.count check is racy, some callers need a
2275 			 * guarantee that no cpu is missed.
2276 			 */
2277 			has_pcps = true;
2278 		} else if (zone) {
2279 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2280 			if (pcp->count)
2281 				has_pcps = true;
2282 		} else {
2283 			for_each_populated_zone(z) {
2284 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2285 				if (pcp->count) {
2286 					has_pcps = true;
2287 					break;
2288 				}
2289 			}
2290 		}
2291 
2292 		if (has_pcps)
2293 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2294 		else
2295 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2296 	}
2297 
2298 	for_each_cpu(cpu, &cpus_with_pcps) {
2299 		if (zone)
2300 			drain_pages_zone(cpu, zone);
2301 		else
2302 			drain_pages(cpu);
2303 	}
2304 
2305 	mutex_unlock(&pcpu_drain_mutex);
2306 }
2307 
2308 /*
2309  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2310  *
2311  * When zone parameter is non-NULL, spill just the single zone's pages.
2312  */
2313 void drain_all_pages(struct zone *zone)
2314 {
2315 	__drain_all_pages(zone, false);
2316 }
2317 
2318 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
2319 							unsigned int order)
2320 {
2321 	int migratetype;
2322 
2323 	if (!free_pages_prepare(page, order, FPI_NONE))
2324 		return false;
2325 
2326 	migratetype = get_pfnblock_migratetype(page, pfn);
2327 	set_pcppage_migratetype(page, migratetype);
2328 	return true;
2329 }
2330 
2331 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, bool free_high)
2332 {
2333 	int min_nr_free, max_nr_free;
2334 	int batch = READ_ONCE(pcp->batch);
2335 
2336 	/* Free everything if batch freeing high-order pages. */
2337 	if (unlikely(free_high))
2338 		return pcp->count;
2339 
2340 	/* Check for PCP disabled or boot pageset */
2341 	if (unlikely(high < batch))
2342 		return 1;
2343 
2344 	/* Leave at least pcp->batch pages on the list */
2345 	min_nr_free = batch;
2346 	max_nr_free = high - batch;
2347 
2348 	/*
2349 	 * Double the number of pages freed each time there is subsequent
2350 	 * freeing of pages without any allocation.
2351 	 */
2352 	batch <<= pcp->free_factor;
2353 	if (batch < max_nr_free && pcp->free_factor < CONFIG_PCP_BATCH_SCALE_MAX)
2354 		pcp->free_factor++;
2355 	batch = clamp(batch, min_nr_free, max_nr_free);
2356 
2357 	return batch;
2358 }
2359 
2360 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2361 		       bool free_high)
2362 {
2363 	int high = READ_ONCE(pcp->high);
2364 
2365 	if (unlikely(!high || free_high))
2366 		return 0;
2367 
2368 	if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
2369 		return high;
2370 
2371 	/*
2372 	 * If reclaim is active, limit the number of pages that can be
2373 	 * stored on pcp lists
2374 	 */
2375 	return min(READ_ONCE(pcp->batch) << 2, high);
2376 }
2377 
2378 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2379 				   struct page *page, int migratetype,
2380 				   unsigned int order)
2381 {
2382 	int high;
2383 	int pindex;
2384 	bool free_high;
2385 
2386 	__count_vm_events(PGFREE, 1 << order);
2387 	pindex = order_to_pindex(migratetype, order);
2388 	list_add(&page->pcp_list, &pcp->lists[pindex]);
2389 	pcp->count += 1 << order;
2390 
2391 	/*
2392 	 * As high-order pages other than THP's stored on PCP can contribute
2393 	 * to fragmentation, limit the number stored when PCP is heavily
2394 	 * freeing without allocation. The remainder after bulk freeing
2395 	 * stops will be drained from vmstat refresh context.
2396 	 */
2397 	free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
2398 
2399 	high = nr_pcp_high(pcp, zone, free_high);
2400 	if (pcp->count >= high) {
2401 		free_pcppages_bulk(zone, nr_pcp_free(pcp, high, free_high), pcp, pindex);
2402 	}
2403 }
2404 
2405 /*
2406  * Free a pcp page
2407  */
2408 void free_unref_page(struct page *page, unsigned int order)
2409 {
2410 	unsigned long __maybe_unused UP_flags;
2411 	struct per_cpu_pages *pcp;
2412 	struct zone *zone;
2413 	unsigned long pfn = page_to_pfn(page);
2414 	int migratetype, pcpmigratetype;
2415 
2416 	if (!free_unref_page_prepare(page, pfn, order))
2417 		return;
2418 
2419 	/*
2420 	 * We only track unmovable, reclaimable and movable on pcp lists.
2421 	 * Place ISOLATE pages on the isolated list because they are being
2422 	 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2423 	 * get those areas back if necessary. Otherwise, we may have to free
2424 	 * excessively into the page allocator
2425 	 */
2426 	migratetype = pcpmigratetype = get_pcppage_migratetype(page);
2427 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2428 		if (unlikely(is_migrate_isolate(migratetype))) {
2429 			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
2430 			return;
2431 		}
2432 		pcpmigratetype = MIGRATE_MOVABLE;
2433 	}
2434 
2435 	zone = page_zone(page);
2436 	pcp_trylock_prepare(UP_flags);
2437 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2438 	if (pcp) {
2439 		free_unref_page_commit(zone, pcp, page, pcpmigratetype, order);
2440 		pcp_spin_unlock(pcp);
2441 	} else {
2442 		free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
2443 	}
2444 	pcp_trylock_finish(UP_flags);
2445 }
2446 
2447 /*
2448  * Free a list of 0-order pages
2449  */
2450 void free_unref_page_list(struct list_head *list)
2451 {
2452 	unsigned long __maybe_unused UP_flags;
2453 	struct page *page, *next;
2454 	struct per_cpu_pages *pcp = NULL;
2455 	struct zone *locked_zone = NULL;
2456 	int batch_count = 0;
2457 	int migratetype;
2458 
2459 	/* Prepare pages for freeing */
2460 	list_for_each_entry_safe(page, next, list, lru) {
2461 		unsigned long pfn = page_to_pfn(page);
2462 		if (!free_unref_page_prepare(page, pfn, 0)) {
2463 			list_del(&page->lru);
2464 			continue;
2465 		}
2466 
2467 		/*
2468 		 * Free isolated pages directly to the allocator, see
2469 		 * comment in free_unref_page.
2470 		 */
2471 		migratetype = get_pcppage_migratetype(page);
2472 		if (unlikely(is_migrate_isolate(migratetype))) {
2473 			list_del(&page->lru);
2474 			free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
2475 			continue;
2476 		}
2477 	}
2478 
2479 	list_for_each_entry_safe(page, next, list, lru) {
2480 		struct zone *zone = page_zone(page);
2481 
2482 		list_del(&page->lru);
2483 		migratetype = get_pcppage_migratetype(page);
2484 
2485 		/*
2486 		 * Either different zone requiring a different pcp lock or
2487 		 * excessive lock hold times when freeing a large list of
2488 		 * pages.
2489 		 */
2490 		if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) {
2491 			if (pcp) {
2492 				pcp_spin_unlock(pcp);
2493 				pcp_trylock_finish(UP_flags);
2494 			}
2495 
2496 			batch_count = 0;
2497 
2498 			/*
2499 			 * trylock is necessary as pages may be getting freed
2500 			 * from IRQ or SoftIRQ context after an IO completion.
2501 			 */
2502 			pcp_trylock_prepare(UP_flags);
2503 			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2504 			if (unlikely(!pcp)) {
2505 				pcp_trylock_finish(UP_flags);
2506 				free_one_page(zone, page, page_to_pfn(page),
2507 					      0, migratetype, FPI_NONE);
2508 				locked_zone = NULL;
2509 				continue;
2510 			}
2511 			locked_zone = zone;
2512 		}
2513 
2514 		/*
2515 		 * Non-isolated types over MIGRATE_PCPTYPES get added
2516 		 * to the MIGRATE_MOVABLE pcp list.
2517 		 */
2518 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2519 			migratetype = MIGRATE_MOVABLE;
2520 
2521 		trace_mm_page_free_batched(page);
2522 		free_unref_page_commit(zone, pcp, page, migratetype, 0);
2523 		batch_count++;
2524 	}
2525 
2526 	if (pcp) {
2527 		pcp_spin_unlock(pcp);
2528 		pcp_trylock_finish(UP_flags);
2529 	}
2530 }
2531 
2532 /*
2533  * split_page takes a non-compound higher-order page, and splits it into
2534  * n (1<<order) sub-pages: page[0..n]
2535  * Each sub-page must be freed individually.
2536  *
2537  * Note: this is probably too low level an operation for use in drivers.
2538  * Please consult with lkml before using this in your driver.
2539  */
2540 void split_page(struct page *page, unsigned int order)
2541 {
2542 	int i;
2543 
2544 	VM_BUG_ON_PAGE(PageCompound(page), page);
2545 	VM_BUG_ON_PAGE(!page_count(page), page);
2546 
2547 	for (i = 1; i < (1 << order); i++)
2548 		set_page_refcounted(page + i);
2549 	split_page_owner(page, 1 << order);
2550 	split_page_memcg(page, 1 << order);
2551 }
2552 EXPORT_SYMBOL_GPL(split_page);
2553 
2554 int __isolate_free_page(struct page *page, unsigned int order)
2555 {
2556 	struct zone *zone = page_zone(page);
2557 	int mt = get_pageblock_migratetype(page);
2558 
2559 	if (!is_migrate_isolate(mt)) {
2560 		unsigned long watermark;
2561 		/*
2562 		 * Obey watermarks as if the page was being allocated. We can
2563 		 * emulate a high-order watermark check with a raised order-0
2564 		 * watermark, because we already know our high-order page
2565 		 * exists.
2566 		 */
2567 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2568 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2569 			return 0;
2570 
2571 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2572 	}
2573 
2574 	del_page_from_free_list(page, zone, order);
2575 
2576 	/*
2577 	 * Set the pageblock if the isolated page is at least half of a
2578 	 * pageblock
2579 	 */
2580 	if (order >= pageblock_order - 1) {
2581 		struct page *endpage = page + (1 << order) - 1;
2582 		for (; page < endpage; page += pageblock_nr_pages) {
2583 			int mt = get_pageblock_migratetype(page);
2584 			/*
2585 			 * Only change normal pageblocks (i.e., they can merge
2586 			 * with others)
2587 			 */
2588 			if (migratetype_is_mergeable(mt))
2589 				set_pageblock_migratetype(page,
2590 							  MIGRATE_MOVABLE);
2591 		}
2592 	}
2593 
2594 	return 1UL << order;
2595 }
2596 
2597 /**
2598  * __putback_isolated_page - Return a now-isolated page back where we got it
2599  * @page: Page that was isolated
2600  * @order: Order of the isolated page
2601  * @mt: The page's pageblock's migratetype
2602  *
2603  * This function is meant to return a page pulled from the free lists via
2604  * __isolate_free_page back to the free lists they were pulled from.
2605  */
2606 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2607 {
2608 	struct zone *zone = page_zone(page);
2609 
2610 	/* zone lock should be held when this function is called */
2611 	lockdep_assert_held(&zone->lock);
2612 
2613 	/* Return isolated page to tail of freelist. */
2614 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
2615 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2616 }
2617 
2618 /*
2619  * Update NUMA hit/miss statistics
2620  */
2621 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2622 				   long nr_account)
2623 {
2624 #ifdef CONFIG_NUMA
2625 	enum numa_stat_item local_stat = NUMA_LOCAL;
2626 
2627 	/* skip numa counters update if numa stats is disabled */
2628 	if (!static_branch_likely(&vm_numa_stat_key))
2629 		return;
2630 
2631 	if (zone_to_nid(z) != numa_node_id())
2632 		local_stat = NUMA_OTHER;
2633 
2634 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2635 		__count_numa_events(z, NUMA_HIT, nr_account);
2636 	else {
2637 		__count_numa_events(z, NUMA_MISS, nr_account);
2638 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2639 	}
2640 	__count_numa_events(z, local_stat, nr_account);
2641 #endif
2642 }
2643 
2644 static __always_inline
2645 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2646 			   unsigned int order, unsigned int alloc_flags,
2647 			   int migratetype)
2648 {
2649 	struct page *page;
2650 	unsigned long flags;
2651 
2652 	do {
2653 		page = NULL;
2654 		spin_lock_irqsave(&zone->lock, flags);
2655 		if (alloc_flags & ALLOC_HIGHATOMIC)
2656 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2657 		if (!page) {
2658 			page = __rmqueue(zone, order, migratetype, alloc_flags);
2659 
2660 			/*
2661 			 * If the allocation fails, allow OOM handling access
2662 			 * to HIGHATOMIC reserves as failing now is worse than
2663 			 * failing a high-order atomic allocation in the
2664 			 * future.
2665 			 */
2666 			if (!page && (alloc_flags & ALLOC_OOM))
2667 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2668 
2669 			if (!page) {
2670 				spin_unlock_irqrestore(&zone->lock, flags);
2671 				return NULL;
2672 			}
2673 		}
2674 		__mod_zone_freepage_state(zone, -(1 << order),
2675 					  get_pcppage_migratetype(page));
2676 		spin_unlock_irqrestore(&zone->lock, flags);
2677 	} while (check_new_pages(page, order));
2678 
2679 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2680 	zone_statistics(preferred_zone, zone, 1);
2681 
2682 	return page;
2683 }
2684 
2685 /* Remove page from the per-cpu list, caller must protect the list */
2686 static inline
2687 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2688 			int migratetype,
2689 			unsigned int alloc_flags,
2690 			struct per_cpu_pages *pcp,
2691 			struct list_head *list)
2692 {
2693 	struct page *page;
2694 
2695 	do {
2696 		if (list_empty(list)) {
2697 			int batch = READ_ONCE(pcp->batch);
2698 			int alloced;
2699 
2700 			/*
2701 			 * Scale batch relative to order if batch implies
2702 			 * free pages can be stored on the PCP. Batch can
2703 			 * be 1 for small zones or for boot pagesets which
2704 			 * should never store free pages as the pages may
2705 			 * belong to arbitrary zones.
2706 			 */
2707 			if (batch > 1)
2708 				batch = max(batch >> order, 2);
2709 			alloced = rmqueue_bulk(zone, order,
2710 					batch, list,
2711 					migratetype, alloc_flags);
2712 
2713 			pcp->count += alloced << order;
2714 			if (unlikely(list_empty(list)))
2715 				return NULL;
2716 		}
2717 
2718 		page = list_first_entry(list, struct page, pcp_list);
2719 		list_del(&page->pcp_list);
2720 		pcp->count -= 1 << order;
2721 	} while (check_new_pages(page, order));
2722 
2723 	return page;
2724 }
2725 
2726 /* Lock and remove page from the per-cpu list */
2727 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2728 			struct zone *zone, unsigned int order,
2729 			int migratetype, unsigned int alloc_flags)
2730 {
2731 	struct per_cpu_pages *pcp;
2732 	struct list_head *list;
2733 	struct page *page;
2734 	unsigned long __maybe_unused UP_flags;
2735 
2736 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
2737 	pcp_trylock_prepare(UP_flags);
2738 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2739 	if (!pcp) {
2740 		pcp_trylock_finish(UP_flags);
2741 		return NULL;
2742 	}
2743 
2744 	/*
2745 	 * On allocation, reduce the number of pages that are batch freed.
2746 	 * See nr_pcp_free() where free_factor is increased for subsequent
2747 	 * frees.
2748 	 */
2749 	pcp->free_factor >>= 1;
2750 	list = &pcp->lists[order_to_pindex(migratetype, order)];
2751 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
2752 	pcp_spin_unlock(pcp);
2753 	pcp_trylock_finish(UP_flags);
2754 	if (page) {
2755 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2756 		zone_statistics(preferred_zone, zone, 1);
2757 	}
2758 	return page;
2759 }
2760 
2761 /*
2762  * Allocate a page from the given zone.
2763  * Use pcplists for THP or "cheap" high-order allocations.
2764  */
2765 
2766 /*
2767  * Do not instrument rmqueue() with KMSAN. This function may call
2768  * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
2769  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
2770  * may call rmqueue() again, which will result in a deadlock.
2771  */
2772 __no_sanitize_memory
2773 static inline
2774 struct page *rmqueue(struct zone *preferred_zone,
2775 			struct zone *zone, unsigned int order,
2776 			gfp_t gfp_flags, unsigned int alloc_flags,
2777 			int migratetype)
2778 {
2779 	struct page *page;
2780 
2781 	/*
2782 	 * We most definitely don't want callers attempting to
2783 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
2784 	 */
2785 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2786 
2787 	if (likely(pcp_allowed_order(order))) {
2788 		page = rmqueue_pcplist(preferred_zone, zone, order,
2789 				       migratetype, alloc_flags);
2790 		if (likely(page))
2791 			goto out;
2792 	}
2793 
2794 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
2795 							migratetype);
2796 
2797 out:
2798 	/* Separate test+clear to avoid unnecessary atomics */
2799 	if ((alloc_flags & ALLOC_KSWAPD) &&
2800 	    unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
2801 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2802 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
2803 	}
2804 
2805 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2806 	return page;
2807 }
2808 
2809 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2810 {
2811 	return __should_fail_alloc_page(gfp_mask, order);
2812 }
2813 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
2814 
2815 static inline long __zone_watermark_unusable_free(struct zone *z,
2816 				unsigned int order, unsigned int alloc_flags)
2817 {
2818 	long unusable_free = (1 << order) - 1;
2819 
2820 	/*
2821 	 * If the caller does not have rights to reserves below the min
2822 	 * watermark then subtract the high-atomic reserves. This will
2823 	 * over-estimate the size of the atomic reserve but it avoids a search.
2824 	 */
2825 	if (likely(!(alloc_flags & ALLOC_RESERVES)))
2826 		unusable_free += z->nr_reserved_highatomic;
2827 
2828 #ifdef CONFIG_CMA
2829 	/* If allocation can't use CMA areas don't use free CMA pages */
2830 	if (!(alloc_flags & ALLOC_CMA))
2831 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
2832 #endif
2833 #ifdef CONFIG_UNACCEPTED_MEMORY
2834 	unusable_free += zone_page_state(z, NR_UNACCEPTED);
2835 #endif
2836 
2837 	return unusable_free;
2838 }
2839 
2840 /*
2841  * Return true if free base pages are above 'mark'. For high-order checks it
2842  * will return true of the order-0 watermark is reached and there is at least
2843  * one free page of a suitable size. Checking now avoids taking the zone lock
2844  * to check in the allocation paths if no pages are free.
2845  */
2846 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2847 			 int highest_zoneidx, unsigned int alloc_flags,
2848 			 long free_pages)
2849 {
2850 	long min = mark;
2851 	int o;
2852 
2853 	/* free_pages may go negative - that's OK */
2854 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
2855 
2856 	if (unlikely(alloc_flags & ALLOC_RESERVES)) {
2857 		/*
2858 		 * __GFP_HIGH allows access to 50% of the min reserve as well
2859 		 * as OOM.
2860 		 */
2861 		if (alloc_flags & ALLOC_MIN_RESERVE) {
2862 			min -= min / 2;
2863 
2864 			/*
2865 			 * Non-blocking allocations (e.g. GFP_ATOMIC) can
2866 			 * access more reserves than just __GFP_HIGH. Other
2867 			 * non-blocking allocations requests such as GFP_NOWAIT
2868 			 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
2869 			 * access to the min reserve.
2870 			 */
2871 			if (alloc_flags & ALLOC_NON_BLOCK)
2872 				min -= min / 4;
2873 		}
2874 
2875 		/*
2876 		 * OOM victims can try even harder than the normal reserve
2877 		 * users on the grounds that it's definitely going to be in
2878 		 * the exit path shortly and free memory. Any allocation it
2879 		 * makes during the free path will be small and short-lived.
2880 		 */
2881 		if (alloc_flags & ALLOC_OOM)
2882 			min -= min / 2;
2883 	}
2884 
2885 	/*
2886 	 * Check watermarks for an order-0 allocation request. If these
2887 	 * are not met, then a high-order request also cannot go ahead
2888 	 * even if a suitable page happened to be free.
2889 	 */
2890 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
2891 		return false;
2892 
2893 	/* If this is an order-0 request then the watermark is fine */
2894 	if (!order)
2895 		return true;
2896 
2897 	/* For a high-order request, check at least one suitable page is free */
2898 	for (o = order; o < NR_PAGE_ORDERS; o++) {
2899 		struct free_area *area = &z->free_area[o];
2900 		int mt;
2901 
2902 		if (!area->nr_free)
2903 			continue;
2904 
2905 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2906 			if (!free_area_empty(area, mt))
2907 				return true;
2908 		}
2909 
2910 #ifdef CONFIG_CMA
2911 		if ((alloc_flags & ALLOC_CMA) &&
2912 		    !free_area_empty(area, MIGRATE_CMA)) {
2913 			return true;
2914 		}
2915 #endif
2916 		if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
2917 		    !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
2918 			return true;
2919 		}
2920 	}
2921 	return false;
2922 }
2923 
2924 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2925 		      int highest_zoneidx, unsigned int alloc_flags)
2926 {
2927 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
2928 					zone_page_state(z, NR_FREE_PAGES));
2929 }
2930 
2931 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2932 				unsigned long mark, int highest_zoneidx,
2933 				unsigned int alloc_flags, gfp_t gfp_mask)
2934 {
2935 	long free_pages;
2936 
2937 	free_pages = zone_page_state(z, NR_FREE_PAGES);
2938 
2939 	/*
2940 	 * Fast check for order-0 only. If this fails then the reserves
2941 	 * need to be calculated.
2942 	 */
2943 	if (!order) {
2944 		long usable_free;
2945 		long reserved;
2946 
2947 		usable_free = free_pages;
2948 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
2949 
2950 		/* reserved may over estimate high-atomic reserves. */
2951 		usable_free -= min(usable_free, reserved);
2952 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
2953 			return true;
2954 	}
2955 
2956 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
2957 					free_pages))
2958 		return true;
2959 
2960 	/*
2961 	 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
2962 	 * when checking the min watermark. The min watermark is the
2963 	 * point where boosting is ignored so that kswapd is woken up
2964 	 * when below the low watermark.
2965 	 */
2966 	if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
2967 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
2968 		mark = z->_watermark[WMARK_MIN];
2969 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
2970 					alloc_flags, free_pages);
2971 	}
2972 
2973 	return false;
2974 }
2975 
2976 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2977 			unsigned long mark, int highest_zoneidx)
2978 {
2979 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
2980 
2981 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2982 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2983 
2984 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
2985 								free_pages);
2986 }
2987 
2988 #ifdef CONFIG_NUMA
2989 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
2990 
2991 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2992 {
2993 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
2994 				node_reclaim_distance;
2995 }
2996 #else	/* CONFIG_NUMA */
2997 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2998 {
2999 	return true;
3000 }
3001 #endif	/* CONFIG_NUMA */
3002 
3003 /*
3004  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3005  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3006  * premature use of a lower zone may cause lowmem pressure problems that
3007  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3008  * probably too small. It only makes sense to spread allocations to avoid
3009  * fragmentation between the Normal and DMA32 zones.
3010  */
3011 static inline unsigned int
3012 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3013 {
3014 	unsigned int alloc_flags;
3015 
3016 	/*
3017 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3018 	 * to save a branch.
3019 	 */
3020 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3021 
3022 #ifdef CONFIG_ZONE_DMA32
3023 	if (!zone)
3024 		return alloc_flags;
3025 
3026 	if (zone_idx(zone) != ZONE_NORMAL)
3027 		return alloc_flags;
3028 
3029 	/*
3030 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3031 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3032 	 * on UMA that if Normal is populated then so is DMA32.
3033 	 */
3034 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3035 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3036 		return alloc_flags;
3037 
3038 	alloc_flags |= ALLOC_NOFRAGMENT;
3039 #endif /* CONFIG_ZONE_DMA32 */
3040 	return alloc_flags;
3041 }
3042 
3043 /* Must be called after current_gfp_context() which can change gfp_mask */
3044 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3045 						  unsigned int alloc_flags)
3046 {
3047 #ifdef CONFIG_CMA
3048 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3049 		alloc_flags |= ALLOC_CMA;
3050 #endif
3051 	return alloc_flags;
3052 }
3053 
3054 /*
3055  * get_page_from_freelist goes through the zonelist trying to allocate
3056  * a page.
3057  */
3058 static struct page *
3059 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3060 						const struct alloc_context *ac)
3061 {
3062 	struct zoneref *z;
3063 	struct zone *zone;
3064 	struct pglist_data *last_pgdat = NULL;
3065 	bool last_pgdat_dirty_ok = false;
3066 	bool no_fallback;
3067 
3068 retry:
3069 	/*
3070 	 * Scan zonelist, looking for a zone with enough free.
3071 	 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3072 	 */
3073 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3074 	z = ac->preferred_zoneref;
3075 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3076 					ac->nodemask) {
3077 		struct page *page;
3078 		unsigned long mark;
3079 
3080 		if (cpusets_enabled() &&
3081 			(alloc_flags & ALLOC_CPUSET) &&
3082 			!__cpuset_zone_allowed(zone, gfp_mask))
3083 				continue;
3084 		/*
3085 		 * When allocating a page cache page for writing, we
3086 		 * want to get it from a node that is within its dirty
3087 		 * limit, such that no single node holds more than its
3088 		 * proportional share of globally allowed dirty pages.
3089 		 * The dirty limits take into account the node's
3090 		 * lowmem reserves and high watermark so that kswapd
3091 		 * should be able to balance it without having to
3092 		 * write pages from its LRU list.
3093 		 *
3094 		 * XXX: For now, allow allocations to potentially
3095 		 * exceed the per-node dirty limit in the slowpath
3096 		 * (spread_dirty_pages unset) before going into reclaim,
3097 		 * which is important when on a NUMA setup the allowed
3098 		 * nodes are together not big enough to reach the
3099 		 * global limit.  The proper fix for these situations
3100 		 * will require awareness of nodes in the
3101 		 * dirty-throttling and the flusher threads.
3102 		 */
3103 		if (ac->spread_dirty_pages) {
3104 			if (last_pgdat != zone->zone_pgdat) {
3105 				last_pgdat = zone->zone_pgdat;
3106 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3107 			}
3108 
3109 			if (!last_pgdat_dirty_ok)
3110 				continue;
3111 		}
3112 
3113 		if (no_fallback && nr_online_nodes > 1 &&
3114 		    zone != ac->preferred_zoneref->zone) {
3115 			int local_nid;
3116 
3117 			/*
3118 			 * If moving to a remote node, retry but allow
3119 			 * fragmenting fallbacks. Locality is more important
3120 			 * than fragmentation avoidance.
3121 			 */
3122 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3123 			if (zone_to_nid(zone) != local_nid) {
3124 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3125 				goto retry;
3126 			}
3127 		}
3128 
3129 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3130 		if (!zone_watermark_fast(zone, order, mark,
3131 				       ac->highest_zoneidx, alloc_flags,
3132 				       gfp_mask)) {
3133 			int ret;
3134 
3135 			if (has_unaccepted_memory()) {
3136 				if (try_to_accept_memory(zone, order))
3137 					goto try_this_zone;
3138 			}
3139 
3140 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3141 			/*
3142 			 * Watermark failed for this zone, but see if we can
3143 			 * grow this zone if it contains deferred pages.
3144 			 */
3145 			if (deferred_pages_enabled()) {
3146 				if (_deferred_grow_zone(zone, order))
3147 					goto try_this_zone;
3148 			}
3149 #endif
3150 			/* Checked here to keep the fast path fast */
3151 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3152 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3153 				goto try_this_zone;
3154 
3155 			if (!node_reclaim_enabled() ||
3156 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3157 				continue;
3158 
3159 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3160 			switch (ret) {
3161 			case NODE_RECLAIM_NOSCAN:
3162 				/* did not scan */
3163 				continue;
3164 			case NODE_RECLAIM_FULL:
3165 				/* scanned but unreclaimable */
3166 				continue;
3167 			default:
3168 				/* did we reclaim enough */
3169 				if (zone_watermark_ok(zone, order, mark,
3170 					ac->highest_zoneidx, alloc_flags))
3171 					goto try_this_zone;
3172 
3173 				continue;
3174 			}
3175 		}
3176 
3177 try_this_zone:
3178 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3179 				gfp_mask, alloc_flags, ac->migratetype);
3180 		if (page) {
3181 			prep_new_page(page, order, gfp_mask, alloc_flags);
3182 
3183 			/*
3184 			 * If this is a high-order atomic allocation then check
3185 			 * if the pageblock should be reserved for the future
3186 			 */
3187 			if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3188 				reserve_highatomic_pageblock(page, zone);
3189 
3190 			return page;
3191 		} else {
3192 			if (has_unaccepted_memory()) {
3193 				if (try_to_accept_memory(zone, order))
3194 					goto try_this_zone;
3195 			}
3196 
3197 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3198 			/* Try again if zone has deferred pages */
3199 			if (deferred_pages_enabled()) {
3200 				if (_deferred_grow_zone(zone, order))
3201 					goto try_this_zone;
3202 			}
3203 #endif
3204 		}
3205 	}
3206 
3207 	/*
3208 	 * It's possible on a UMA machine to get through all zones that are
3209 	 * fragmented. If avoiding fragmentation, reset and try again.
3210 	 */
3211 	if (no_fallback) {
3212 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3213 		goto retry;
3214 	}
3215 
3216 	return NULL;
3217 }
3218 
3219 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3220 {
3221 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3222 
3223 	/*
3224 	 * This documents exceptions given to allocations in certain
3225 	 * contexts that are allowed to allocate outside current's set
3226 	 * of allowed nodes.
3227 	 */
3228 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3229 		if (tsk_is_oom_victim(current) ||
3230 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3231 			filter &= ~SHOW_MEM_FILTER_NODES;
3232 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3233 		filter &= ~SHOW_MEM_FILTER_NODES;
3234 
3235 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
3236 }
3237 
3238 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3239 {
3240 	struct va_format vaf;
3241 	va_list args;
3242 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3243 
3244 	if ((gfp_mask & __GFP_NOWARN) ||
3245 	     !__ratelimit(&nopage_rs) ||
3246 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3247 		return;
3248 
3249 	va_start(args, fmt);
3250 	vaf.fmt = fmt;
3251 	vaf.va = &args;
3252 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3253 			current->comm, &vaf, gfp_mask, &gfp_mask,
3254 			nodemask_pr_args(nodemask));
3255 	va_end(args);
3256 
3257 	cpuset_print_current_mems_allowed();
3258 	pr_cont("\n");
3259 	dump_stack();
3260 	warn_alloc_show_mem(gfp_mask, nodemask);
3261 }
3262 
3263 static inline struct page *
3264 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3265 			      unsigned int alloc_flags,
3266 			      const struct alloc_context *ac)
3267 {
3268 	struct page *page;
3269 
3270 	page = get_page_from_freelist(gfp_mask, order,
3271 			alloc_flags|ALLOC_CPUSET, ac);
3272 	/*
3273 	 * fallback to ignore cpuset restriction if our nodes
3274 	 * are depleted
3275 	 */
3276 	if (!page)
3277 		page = get_page_from_freelist(gfp_mask, order,
3278 				alloc_flags, ac);
3279 
3280 	return page;
3281 }
3282 
3283 static inline struct page *
3284 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3285 	const struct alloc_context *ac, unsigned long *did_some_progress)
3286 {
3287 	struct oom_control oc = {
3288 		.zonelist = ac->zonelist,
3289 		.nodemask = ac->nodemask,
3290 		.memcg = NULL,
3291 		.gfp_mask = gfp_mask,
3292 		.order = order,
3293 	};
3294 	struct page *page;
3295 
3296 	*did_some_progress = 0;
3297 
3298 	/*
3299 	 * Acquire the oom lock.  If that fails, somebody else is
3300 	 * making progress for us.
3301 	 */
3302 	if (!mutex_trylock(&oom_lock)) {
3303 		*did_some_progress = 1;
3304 		schedule_timeout_uninterruptible(1);
3305 		return NULL;
3306 	}
3307 
3308 	/*
3309 	 * Go through the zonelist yet one more time, keep very high watermark
3310 	 * here, this is only to catch a parallel oom killing, we must fail if
3311 	 * we're still under heavy pressure. But make sure that this reclaim
3312 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3313 	 * allocation which will never fail due to oom_lock already held.
3314 	 */
3315 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3316 				      ~__GFP_DIRECT_RECLAIM, order,
3317 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3318 	if (page)
3319 		goto out;
3320 
3321 	/* Coredumps can quickly deplete all memory reserves */
3322 	if (current->flags & PF_DUMPCORE)
3323 		goto out;
3324 	/* The OOM killer will not help higher order allocs */
3325 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3326 		goto out;
3327 	/*
3328 	 * We have already exhausted all our reclaim opportunities without any
3329 	 * success so it is time to admit defeat. We will skip the OOM killer
3330 	 * because it is very likely that the caller has a more reasonable
3331 	 * fallback than shooting a random task.
3332 	 *
3333 	 * The OOM killer may not free memory on a specific node.
3334 	 */
3335 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3336 		goto out;
3337 	/* The OOM killer does not needlessly kill tasks for lowmem */
3338 	if (ac->highest_zoneidx < ZONE_NORMAL)
3339 		goto out;
3340 	if (pm_suspended_storage())
3341 		goto out;
3342 	/*
3343 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3344 	 * other request to make a forward progress.
3345 	 * We are in an unfortunate situation where out_of_memory cannot
3346 	 * do much for this context but let's try it to at least get
3347 	 * access to memory reserved if the current task is killed (see
3348 	 * out_of_memory). Once filesystems are ready to handle allocation
3349 	 * failures more gracefully we should just bail out here.
3350 	 */
3351 
3352 	/* Exhausted what can be done so it's blame time */
3353 	if (out_of_memory(&oc) ||
3354 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3355 		*did_some_progress = 1;
3356 
3357 		/*
3358 		 * Help non-failing allocations by giving them access to memory
3359 		 * reserves
3360 		 */
3361 		if (gfp_mask & __GFP_NOFAIL)
3362 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3363 					ALLOC_NO_WATERMARKS, ac);
3364 	}
3365 out:
3366 	mutex_unlock(&oom_lock);
3367 	return page;
3368 }
3369 
3370 /*
3371  * Maximum number of compaction retries with a progress before OOM
3372  * killer is consider as the only way to move forward.
3373  */
3374 #define MAX_COMPACT_RETRIES 16
3375 
3376 #ifdef CONFIG_COMPACTION
3377 /* Try memory compaction for high-order allocations before reclaim */
3378 static struct page *
3379 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3380 		unsigned int alloc_flags, const struct alloc_context *ac,
3381 		enum compact_priority prio, enum compact_result *compact_result)
3382 {
3383 	struct page *page = NULL;
3384 	unsigned long pflags;
3385 	unsigned int noreclaim_flag;
3386 
3387 	if (!order)
3388 		return NULL;
3389 
3390 	psi_memstall_enter(&pflags);
3391 	delayacct_compact_start();
3392 	noreclaim_flag = memalloc_noreclaim_save();
3393 
3394 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3395 								prio, &page);
3396 
3397 	memalloc_noreclaim_restore(noreclaim_flag);
3398 	psi_memstall_leave(&pflags);
3399 	delayacct_compact_end();
3400 
3401 	if (*compact_result == COMPACT_SKIPPED)
3402 		return NULL;
3403 	/*
3404 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3405 	 * count a compaction stall
3406 	 */
3407 	count_vm_event(COMPACTSTALL);
3408 
3409 	/* Prep a captured page if available */
3410 	if (page)
3411 		prep_new_page(page, order, gfp_mask, alloc_flags);
3412 
3413 	/* Try get a page from the freelist if available */
3414 	if (!page)
3415 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3416 
3417 	if (page) {
3418 		struct zone *zone = page_zone(page);
3419 
3420 		zone->compact_blockskip_flush = false;
3421 		compaction_defer_reset(zone, order, true);
3422 		count_vm_event(COMPACTSUCCESS);
3423 		return page;
3424 	}
3425 
3426 	/*
3427 	 * It's bad if compaction run occurs and fails. The most likely reason
3428 	 * is that pages exist, but not enough to satisfy watermarks.
3429 	 */
3430 	count_vm_event(COMPACTFAIL);
3431 
3432 	cond_resched();
3433 
3434 	return NULL;
3435 }
3436 
3437 static inline bool
3438 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3439 		     enum compact_result compact_result,
3440 		     enum compact_priority *compact_priority,
3441 		     int *compaction_retries)
3442 {
3443 	int max_retries = MAX_COMPACT_RETRIES;
3444 	int min_priority;
3445 	bool ret = false;
3446 	int retries = *compaction_retries;
3447 	enum compact_priority priority = *compact_priority;
3448 
3449 	if (!order)
3450 		return false;
3451 
3452 	if (fatal_signal_pending(current))
3453 		return false;
3454 
3455 	/*
3456 	 * Compaction was skipped due to a lack of free order-0
3457 	 * migration targets. Continue if reclaim can help.
3458 	 */
3459 	if (compact_result == COMPACT_SKIPPED) {
3460 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3461 		goto out;
3462 	}
3463 
3464 	/*
3465 	 * Compaction managed to coalesce some page blocks, but the
3466 	 * allocation failed presumably due to a race. Retry some.
3467 	 */
3468 	if (compact_result == COMPACT_SUCCESS) {
3469 		/*
3470 		 * !costly requests are much more important than
3471 		 * __GFP_RETRY_MAYFAIL costly ones because they are de
3472 		 * facto nofail and invoke OOM killer to move on while
3473 		 * costly can fail and users are ready to cope with
3474 		 * that. 1/4 retries is rather arbitrary but we would
3475 		 * need much more detailed feedback from compaction to
3476 		 * make a better decision.
3477 		 */
3478 		if (order > PAGE_ALLOC_COSTLY_ORDER)
3479 			max_retries /= 4;
3480 
3481 		if (++(*compaction_retries) <= max_retries) {
3482 			ret = true;
3483 			goto out;
3484 		}
3485 	}
3486 
3487 	/*
3488 	 * Compaction failed. Retry with increasing priority.
3489 	 */
3490 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3491 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3492 
3493 	if (*compact_priority > min_priority) {
3494 		(*compact_priority)--;
3495 		*compaction_retries = 0;
3496 		ret = true;
3497 	}
3498 out:
3499 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3500 	return ret;
3501 }
3502 #else
3503 static inline struct page *
3504 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3505 		unsigned int alloc_flags, const struct alloc_context *ac,
3506 		enum compact_priority prio, enum compact_result *compact_result)
3507 {
3508 	*compact_result = COMPACT_SKIPPED;
3509 	return NULL;
3510 }
3511 
3512 static inline bool
3513 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3514 		     enum compact_result compact_result,
3515 		     enum compact_priority *compact_priority,
3516 		     int *compaction_retries)
3517 {
3518 	struct zone *zone;
3519 	struct zoneref *z;
3520 
3521 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3522 		return false;
3523 
3524 	/*
3525 	 * There are setups with compaction disabled which would prefer to loop
3526 	 * inside the allocator rather than hit the oom killer prematurely.
3527 	 * Let's give them a good hope and keep retrying while the order-0
3528 	 * watermarks are OK.
3529 	 */
3530 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3531 				ac->highest_zoneidx, ac->nodemask) {
3532 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3533 					ac->highest_zoneidx, alloc_flags))
3534 			return true;
3535 	}
3536 	return false;
3537 }
3538 #endif /* CONFIG_COMPACTION */
3539 
3540 #ifdef CONFIG_LOCKDEP
3541 static struct lockdep_map __fs_reclaim_map =
3542 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3543 
3544 static bool __need_reclaim(gfp_t gfp_mask)
3545 {
3546 	/* no reclaim without waiting on it */
3547 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3548 		return false;
3549 
3550 	/* this guy won't enter reclaim */
3551 	if (current->flags & PF_MEMALLOC)
3552 		return false;
3553 
3554 	if (gfp_mask & __GFP_NOLOCKDEP)
3555 		return false;
3556 
3557 	return true;
3558 }
3559 
3560 void __fs_reclaim_acquire(unsigned long ip)
3561 {
3562 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3563 }
3564 
3565 void __fs_reclaim_release(unsigned long ip)
3566 {
3567 	lock_release(&__fs_reclaim_map, ip);
3568 }
3569 
3570 void fs_reclaim_acquire(gfp_t gfp_mask)
3571 {
3572 	gfp_mask = current_gfp_context(gfp_mask);
3573 
3574 	if (__need_reclaim(gfp_mask)) {
3575 		if (gfp_mask & __GFP_FS)
3576 			__fs_reclaim_acquire(_RET_IP_);
3577 
3578 #ifdef CONFIG_MMU_NOTIFIER
3579 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3580 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3581 #endif
3582 
3583 	}
3584 }
3585 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3586 
3587 void fs_reclaim_release(gfp_t gfp_mask)
3588 {
3589 	gfp_mask = current_gfp_context(gfp_mask);
3590 
3591 	if (__need_reclaim(gfp_mask)) {
3592 		if (gfp_mask & __GFP_FS)
3593 			__fs_reclaim_release(_RET_IP_);
3594 	}
3595 }
3596 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3597 #endif
3598 
3599 /*
3600  * Zonelists may change due to hotplug during allocation. Detect when zonelists
3601  * have been rebuilt so allocation retries. Reader side does not lock and
3602  * retries the allocation if zonelist changes. Writer side is protected by the
3603  * embedded spin_lock.
3604  */
3605 static DEFINE_SEQLOCK(zonelist_update_seq);
3606 
3607 static unsigned int zonelist_iter_begin(void)
3608 {
3609 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3610 		return read_seqbegin(&zonelist_update_seq);
3611 
3612 	return 0;
3613 }
3614 
3615 static unsigned int check_retry_zonelist(unsigned int seq)
3616 {
3617 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3618 		return read_seqretry(&zonelist_update_seq, seq);
3619 
3620 	return seq;
3621 }
3622 
3623 /* Perform direct synchronous page reclaim */
3624 static unsigned long
3625 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3626 					const struct alloc_context *ac)
3627 {
3628 	unsigned int noreclaim_flag;
3629 	unsigned long progress;
3630 
3631 	cond_resched();
3632 
3633 	/* We now go into synchronous reclaim */
3634 	cpuset_memory_pressure_bump();
3635 	fs_reclaim_acquire(gfp_mask);
3636 	noreclaim_flag = memalloc_noreclaim_save();
3637 
3638 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3639 								ac->nodemask);
3640 
3641 	memalloc_noreclaim_restore(noreclaim_flag);
3642 	fs_reclaim_release(gfp_mask);
3643 
3644 	cond_resched();
3645 
3646 	return progress;
3647 }
3648 
3649 /* The really slow allocator path where we enter direct reclaim */
3650 static inline struct page *
3651 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3652 		unsigned int alloc_flags, const struct alloc_context *ac,
3653 		unsigned long *did_some_progress)
3654 {
3655 	struct page *page = NULL;
3656 	unsigned long pflags;
3657 	bool drained = false;
3658 
3659 	psi_memstall_enter(&pflags);
3660 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3661 	if (unlikely(!(*did_some_progress)))
3662 		goto out;
3663 
3664 retry:
3665 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3666 
3667 	/*
3668 	 * If an allocation failed after direct reclaim, it could be because
3669 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3670 	 * Shrink them and try again
3671 	 */
3672 	if (!page && !drained) {
3673 		unreserve_highatomic_pageblock(ac, false);
3674 		drain_all_pages(NULL);
3675 		drained = true;
3676 		goto retry;
3677 	}
3678 out:
3679 	psi_memstall_leave(&pflags);
3680 
3681 	return page;
3682 }
3683 
3684 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3685 			     const struct alloc_context *ac)
3686 {
3687 	struct zoneref *z;
3688 	struct zone *zone;
3689 	pg_data_t *last_pgdat = NULL;
3690 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
3691 
3692 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
3693 					ac->nodemask) {
3694 		if (!managed_zone(zone))
3695 			continue;
3696 		if (last_pgdat != zone->zone_pgdat) {
3697 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
3698 			last_pgdat = zone->zone_pgdat;
3699 		}
3700 	}
3701 }
3702 
3703 static inline unsigned int
3704 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
3705 {
3706 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3707 
3708 	/*
3709 	 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
3710 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3711 	 * to save two branches.
3712 	 */
3713 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
3714 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
3715 
3716 	/*
3717 	 * The caller may dip into page reserves a bit more if the caller
3718 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3719 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3720 	 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
3721 	 */
3722 	alloc_flags |= (__force int)
3723 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
3724 
3725 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
3726 		/*
3727 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3728 		 * if it can't schedule.
3729 		 */
3730 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
3731 			alloc_flags |= ALLOC_NON_BLOCK;
3732 
3733 			if (order > 0)
3734 				alloc_flags |= ALLOC_HIGHATOMIC;
3735 		}
3736 
3737 		/*
3738 		 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
3739 		 * GFP_ATOMIC) rather than fail, see the comment for
3740 		 * cpuset_node_allowed().
3741 		 */
3742 		if (alloc_flags & ALLOC_MIN_RESERVE)
3743 			alloc_flags &= ~ALLOC_CPUSET;
3744 	} else if (unlikely(rt_task(current)) && in_task())
3745 		alloc_flags |= ALLOC_MIN_RESERVE;
3746 
3747 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
3748 
3749 	return alloc_flags;
3750 }
3751 
3752 static bool oom_reserves_allowed(struct task_struct *tsk)
3753 {
3754 	if (!tsk_is_oom_victim(tsk))
3755 		return false;
3756 
3757 	/*
3758 	 * !MMU doesn't have oom reaper so give access to memory reserves
3759 	 * only to the thread with TIF_MEMDIE set
3760 	 */
3761 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3762 		return false;
3763 
3764 	return true;
3765 }
3766 
3767 /*
3768  * Distinguish requests which really need access to full memory
3769  * reserves from oom victims which can live with a portion of it
3770  */
3771 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3772 {
3773 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3774 		return 0;
3775 	if (gfp_mask & __GFP_MEMALLOC)
3776 		return ALLOC_NO_WATERMARKS;
3777 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3778 		return ALLOC_NO_WATERMARKS;
3779 	if (!in_interrupt()) {
3780 		if (current->flags & PF_MEMALLOC)
3781 			return ALLOC_NO_WATERMARKS;
3782 		else if (oom_reserves_allowed(current))
3783 			return ALLOC_OOM;
3784 	}
3785 
3786 	return 0;
3787 }
3788 
3789 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3790 {
3791 	return !!__gfp_pfmemalloc_flags(gfp_mask);
3792 }
3793 
3794 /*
3795  * Checks whether it makes sense to retry the reclaim to make a forward progress
3796  * for the given allocation request.
3797  *
3798  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3799  * without success, or when we couldn't even meet the watermark if we
3800  * reclaimed all remaining pages on the LRU lists.
3801  *
3802  * Returns true if a retry is viable or false to enter the oom path.
3803  */
3804 static inline bool
3805 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3806 		     struct alloc_context *ac, int alloc_flags,
3807 		     bool did_some_progress, int *no_progress_loops)
3808 {
3809 	struct zone *zone;
3810 	struct zoneref *z;
3811 	bool ret = false;
3812 
3813 	/*
3814 	 * Costly allocations might have made a progress but this doesn't mean
3815 	 * their order will become available due to high fragmentation so
3816 	 * always increment the no progress counter for them
3817 	 */
3818 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3819 		*no_progress_loops = 0;
3820 	else
3821 		(*no_progress_loops)++;
3822 
3823 	if (*no_progress_loops > MAX_RECLAIM_RETRIES)
3824 		goto out;
3825 
3826 
3827 	/*
3828 	 * Keep reclaiming pages while there is a chance this will lead
3829 	 * somewhere.  If none of the target zones can satisfy our allocation
3830 	 * request even if all reclaimable pages are considered then we are
3831 	 * screwed and have to go OOM.
3832 	 */
3833 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3834 				ac->highest_zoneidx, ac->nodemask) {
3835 		unsigned long available;
3836 		unsigned long reclaimable;
3837 		unsigned long min_wmark = min_wmark_pages(zone);
3838 		bool wmark;
3839 
3840 		available = reclaimable = zone_reclaimable_pages(zone);
3841 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3842 
3843 		/*
3844 		 * Would the allocation succeed if we reclaimed all
3845 		 * reclaimable pages?
3846 		 */
3847 		wmark = __zone_watermark_ok(zone, order, min_wmark,
3848 				ac->highest_zoneidx, alloc_flags, available);
3849 		trace_reclaim_retry_zone(z, order, reclaimable,
3850 				available, min_wmark, *no_progress_loops, wmark);
3851 		if (wmark) {
3852 			ret = true;
3853 			break;
3854 		}
3855 	}
3856 
3857 	/*
3858 	 * Memory allocation/reclaim might be called from a WQ context and the
3859 	 * current implementation of the WQ concurrency control doesn't
3860 	 * recognize that a particular WQ is congested if the worker thread is
3861 	 * looping without ever sleeping. Therefore we have to do a short sleep
3862 	 * here rather than calling cond_resched().
3863 	 */
3864 	if (current->flags & PF_WQ_WORKER)
3865 		schedule_timeout_uninterruptible(1);
3866 	else
3867 		cond_resched();
3868 out:
3869 	/* Before OOM, exhaust highatomic_reserve */
3870 	if (!ret)
3871 		return unreserve_highatomic_pageblock(ac, true);
3872 
3873 	return ret;
3874 }
3875 
3876 static inline bool
3877 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3878 {
3879 	/*
3880 	 * It's possible that cpuset's mems_allowed and the nodemask from
3881 	 * mempolicy don't intersect. This should be normally dealt with by
3882 	 * policy_nodemask(), but it's possible to race with cpuset update in
3883 	 * such a way the check therein was true, and then it became false
3884 	 * before we got our cpuset_mems_cookie here.
3885 	 * This assumes that for all allocations, ac->nodemask can come only
3886 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3887 	 * when it does not intersect with the cpuset restrictions) or the
3888 	 * caller can deal with a violated nodemask.
3889 	 */
3890 	if (cpusets_enabled() && ac->nodemask &&
3891 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3892 		ac->nodemask = NULL;
3893 		return true;
3894 	}
3895 
3896 	/*
3897 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
3898 	 * possible to race with parallel threads in such a way that our
3899 	 * allocation can fail while the mask is being updated. If we are about
3900 	 * to fail, check if the cpuset changed during allocation and if so,
3901 	 * retry.
3902 	 */
3903 	if (read_mems_allowed_retry(cpuset_mems_cookie))
3904 		return true;
3905 
3906 	return false;
3907 }
3908 
3909 static inline struct page *
3910 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3911 						struct alloc_context *ac)
3912 {
3913 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3914 	bool can_compact = gfp_compaction_allowed(gfp_mask);
3915 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3916 	struct page *page = NULL;
3917 	unsigned int alloc_flags;
3918 	unsigned long did_some_progress;
3919 	enum compact_priority compact_priority;
3920 	enum compact_result compact_result;
3921 	int compaction_retries;
3922 	int no_progress_loops;
3923 	unsigned int cpuset_mems_cookie;
3924 	unsigned int zonelist_iter_cookie;
3925 	int reserve_flags;
3926 
3927 restart:
3928 	compaction_retries = 0;
3929 	no_progress_loops = 0;
3930 	compact_priority = DEF_COMPACT_PRIORITY;
3931 	cpuset_mems_cookie = read_mems_allowed_begin();
3932 	zonelist_iter_cookie = zonelist_iter_begin();
3933 
3934 	/*
3935 	 * The fast path uses conservative alloc_flags to succeed only until
3936 	 * kswapd needs to be woken up, and to avoid the cost of setting up
3937 	 * alloc_flags precisely. So we do that now.
3938 	 */
3939 	alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
3940 
3941 	/*
3942 	 * We need to recalculate the starting point for the zonelist iterator
3943 	 * because we might have used different nodemask in the fast path, or
3944 	 * there was a cpuset modification and we are retrying - otherwise we
3945 	 * could end up iterating over non-eligible zones endlessly.
3946 	 */
3947 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3948 					ac->highest_zoneidx, ac->nodemask);
3949 	if (!ac->preferred_zoneref->zone)
3950 		goto nopage;
3951 
3952 	/*
3953 	 * Check for insane configurations where the cpuset doesn't contain
3954 	 * any suitable zone to satisfy the request - e.g. non-movable
3955 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
3956 	 */
3957 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
3958 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
3959 					ac->highest_zoneidx,
3960 					&cpuset_current_mems_allowed);
3961 		if (!z->zone)
3962 			goto nopage;
3963 	}
3964 
3965 	if (alloc_flags & ALLOC_KSWAPD)
3966 		wake_all_kswapds(order, gfp_mask, ac);
3967 
3968 	/*
3969 	 * The adjusted alloc_flags might result in immediate success, so try
3970 	 * that first
3971 	 */
3972 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3973 	if (page)
3974 		goto got_pg;
3975 
3976 	/*
3977 	 * For costly allocations, try direct compaction first, as it's likely
3978 	 * that we have enough base pages and don't need to reclaim. For non-
3979 	 * movable high-order allocations, do that as well, as compaction will
3980 	 * try prevent permanent fragmentation by migrating from blocks of the
3981 	 * same migratetype.
3982 	 * Don't try this for allocations that are allowed to ignore
3983 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
3984 	 */
3985 	if (can_direct_reclaim && can_compact &&
3986 			(costly_order ||
3987 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
3988 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
3989 		page = __alloc_pages_direct_compact(gfp_mask, order,
3990 						alloc_flags, ac,
3991 						INIT_COMPACT_PRIORITY,
3992 						&compact_result);
3993 		if (page)
3994 			goto got_pg;
3995 
3996 		/*
3997 		 * Checks for costly allocations with __GFP_NORETRY, which
3998 		 * includes some THP page fault allocations
3999 		 */
4000 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4001 			/*
4002 			 * If allocating entire pageblock(s) and compaction
4003 			 * failed because all zones are below low watermarks
4004 			 * or is prohibited because it recently failed at this
4005 			 * order, fail immediately unless the allocator has
4006 			 * requested compaction and reclaim retry.
4007 			 *
4008 			 * Reclaim is
4009 			 *  - potentially very expensive because zones are far
4010 			 *    below their low watermarks or this is part of very
4011 			 *    bursty high order allocations,
4012 			 *  - not guaranteed to help because isolate_freepages()
4013 			 *    may not iterate over freed pages as part of its
4014 			 *    linear scan, and
4015 			 *  - unlikely to make entire pageblocks free on its
4016 			 *    own.
4017 			 */
4018 			if (compact_result == COMPACT_SKIPPED ||
4019 			    compact_result == COMPACT_DEFERRED)
4020 				goto nopage;
4021 
4022 			/*
4023 			 * Looks like reclaim/compaction is worth trying, but
4024 			 * sync compaction could be very expensive, so keep
4025 			 * using async compaction.
4026 			 */
4027 			compact_priority = INIT_COMPACT_PRIORITY;
4028 		}
4029 	}
4030 
4031 retry:
4032 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4033 	if (alloc_flags & ALLOC_KSWAPD)
4034 		wake_all_kswapds(order, gfp_mask, ac);
4035 
4036 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4037 	if (reserve_flags)
4038 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4039 					  (alloc_flags & ALLOC_KSWAPD);
4040 
4041 	/*
4042 	 * Reset the nodemask and zonelist iterators if memory policies can be
4043 	 * ignored. These allocations are high priority and system rather than
4044 	 * user oriented.
4045 	 */
4046 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4047 		ac->nodemask = NULL;
4048 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4049 					ac->highest_zoneidx, ac->nodemask);
4050 	}
4051 
4052 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4053 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4054 	if (page)
4055 		goto got_pg;
4056 
4057 	/* Caller is not willing to reclaim, we can't balance anything */
4058 	if (!can_direct_reclaim)
4059 		goto nopage;
4060 
4061 	/* Avoid recursion of direct reclaim */
4062 	if (current->flags & PF_MEMALLOC)
4063 		goto nopage;
4064 
4065 	/* Try direct reclaim and then allocating */
4066 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4067 							&did_some_progress);
4068 	if (page)
4069 		goto got_pg;
4070 
4071 	/* Try direct compaction and then allocating */
4072 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4073 					compact_priority, &compact_result);
4074 	if (page)
4075 		goto got_pg;
4076 
4077 	/* Do not loop if specifically requested */
4078 	if (gfp_mask & __GFP_NORETRY)
4079 		goto nopage;
4080 
4081 	/*
4082 	 * Do not retry costly high order allocations unless they are
4083 	 * __GFP_RETRY_MAYFAIL and we can compact
4084 	 */
4085 	if (costly_order && (!can_compact ||
4086 			     !(gfp_mask & __GFP_RETRY_MAYFAIL)))
4087 		goto nopage;
4088 
4089 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4090 				 did_some_progress > 0, &no_progress_loops))
4091 		goto retry;
4092 
4093 	/*
4094 	 * It doesn't make any sense to retry for the compaction if the order-0
4095 	 * reclaim is not able to make any progress because the current
4096 	 * implementation of the compaction depends on the sufficient amount
4097 	 * of free memory (see __compaction_suitable)
4098 	 */
4099 	if (did_some_progress > 0 && can_compact &&
4100 			should_compact_retry(ac, order, alloc_flags,
4101 				compact_result, &compact_priority,
4102 				&compaction_retries))
4103 		goto retry;
4104 
4105 
4106 	/*
4107 	 * Deal with possible cpuset update races or zonelist updates to avoid
4108 	 * a unnecessary OOM kill.
4109 	 */
4110 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4111 	    check_retry_zonelist(zonelist_iter_cookie))
4112 		goto restart;
4113 
4114 	/* Reclaim has failed us, start killing things */
4115 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4116 	if (page)
4117 		goto got_pg;
4118 
4119 	/* Avoid allocations with no watermarks from looping endlessly */
4120 	if (tsk_is_oom_victim(current) &&
4121 	    (alloc_flags & ALLOC_OOM ||
4122 	     (gfp_mask & __GFP_NOMEMALLOC)))
4123 		goto nopage;
4124 
4125 	/* Retry as long as the OOM killer is making progress */
4126 	if (did_some_progress) {
4127 		no_progress_loops = 0;
4128 		goto retry;
4129 	}
4130 
4131 nopage:
4132 	/*
4133 	 * Deal with possible cpuset update races or zonelist updates to avoid
4134 	 * a unnecessary OOM kill.
4135 	 */
4136 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4137 	    check_retry_zonelist(zonelist_iter_cookie))
4138 		goto restart;
4139 
4140 	/*
4141 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4142 	 * we always retry
4143 	 */
4144 	if (gfp_mask & __GFP_NOFAIL) {
4145 		/*
4146 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4147 		 * of any new users that actually require GFP_NOWAIT
4148 		 */
4149 		if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
4150 			goto fail;
4151 
4152 		/*
4153 		 * PF_MEMALLOC request from this context is rather bizarre
4154 		 * because we cannot reclaim anything and only can loop waiting
4155 		 * for somebody to do a work for us
4156 		 */
4157 		WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
4158 
4159 		/*
4160 		 * non failing costly orders are a hard requirement which we
4161 		 * are not prepared for much so let's warn about these users
4162 		 * so that we can identify them and convert them to something
4163 		 * else.
4164 		 */
4165 		WARN_ON_ONCE_GFP(costly_order, gfp_mask);
4166 
4167 		/*
4168 		 * Help non-failing allocations by giving some access to memory
4169 		 * reserves normally used for high priority non-blocking
4170 		 * allocations but do not use ALLOC_NO_WATERMARKS because this
4171 		 * could deplete whole memory reserves which would just make
4172 		 * the situation worse.
4173 		 */
4174 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4175 		if (page)
4176 			goto got_pg;
4177 
4178 		cond_resched();
4179 		goto retry;
4180 	}
4181 fail:
4182 	warn_alloc(gfp_mask, ac->nodemask,
4183 			"page allocation failure: order:%u", order);
4184 got_pg:
4185 	return page;
4186 }
4187 
4188 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4189 		int preferred_nid, nodemask_t *nodemask,
4190 		struct alloc_context *ac, gfp_t *alloc_gfp,
4191 		unsigned int *alloc_flags)
4192 {
4193 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4194 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4195 	ac->nodemask = nodemask;
4196 	ac->migratetype = gfp_migratetype(gfp_mask);
4197 
4198 	if (cpusets_enabled()) {
4199 		*alloc_gfp |= __GFP_HARDWALL;
4200 		/*
4201 		 * When we are in the interrupt context, it is irrelevant
4202 		 * to the current task context. It means that any node ok.
4203 		 */
4204 		if (in_task() && !ac->nodemask)
4205 			ac->nodemask = &cpuset_current_mems_allowed;
4206 		else
4207 			*alloc_flags |= ALLOC_CPUSET;
4208 	}
4209 
4210 	might_alloc(gfp_mask);
4211 
4212 	if (should_fail_alloc_page(gfp_mask, order))
4213 		return false;
4214 
4215 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4216 
4217 	/* Dirty zone balancing only done in the fast path */
4218 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4219 
4220 	/*
4221 	 * The preferred zone is used for statistics but crucially it is
4222 	 * also used as the starting point for the zonelist iterator. It
4223 	 * may get reset for allocations that ignore memory policies.
4224 	 */
4225 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4226 					ac->highest_zoneidx, ac->nodemask);
4227 
4228 	return true;
4229 }
4230 
4231 /*
4232  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4233  * @gfp: GFP flags for the allocation
4234  * @preferred_nid: The preferred NUMA node ID to allocate from
4235  * @nodemask: Set of nodes to allocate from, may be NULL
4236  * @nr_pages: The number of pages desired on the list or array
4237  * @page_list: Optional list to store the allocated pages
4238  * @page_array: Optional array to store the pages
4239  *
4240  * This is a batched version of the page allocator that attempts to
4241  * allocate nr_pages quickly. Pages are added to page_list if page_list
4242  * is not NULL, otherwise it is assumed that the page_array is valid.
4243  *
4244  * For lists, nr_pages is the number of pages that should be allocated.
4245  *
4246  * For arrays, only NULL elements are populated with pages and nr_pages
4247  * is the maximum number of pages that will be stored in the array.
4248  *
4249  * Returns the number of pages on the list or array.
4250  */
4251 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
4252 			nodemask_t *nodemask, int nr_pages,
4253 			struct list_head *page_list,
4254 			struct page **page_array)
4255 {
4256 	struct page *page;
4257 	unsigned long __maybe_unused UP_flags;
4258 	struct zone *zone;
4259 	struct zoneref *z;
4260 	struct per_cpu_pages *pcp;
4261 	struct list_head *pcp_list;
4262 	struct alloc_context ac;
4263 	gfp_t alloc_gfp;
4264 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4265 	int nr_populated = 0, nr_account = 0;
4266 
4267 	/*
4268 	 * Skip populated array elements to determine if any pages need
4269 	 * to be allocated before disabling IRQs.
4270 	 */
4271 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4272 		nr_populated++;
4273 
4274 	/* No pages requested? */
4275 	if (unlikely(nr_pages <= 0))
4276 		goto out;
4277 
4278 	/* Already populated array? */
4279 	if (unlikely(page_array && nr_pages - nr_populated == 0))
4280 		goto out;
4281 
4282 	/* Bulk allocator does not support memcg accounting. */
4283 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4284 		goto failed;
4285 
4286 	/* Use the single page allocator for one page. */
4287 	if (nr_pages - nr_populated == 1)
4288 		goto failed;
4289 
4290 #ifdef CONFIG_PAGE_OWNER
4291 	/*
4292 	 * PAGE_OWNER may recurse into the allocator to allocate space to
4293 	 * save the stack with pagesets.lock held. Releasing/reacquiring
4294 	 * removes much of the performance benefit of bulk allocation so
4295 	 * force the caller to allocate one page at a time as it'll have
4296 	 * similar performance to added complexity to the bulk allocator.
4297 	 */
4298 	if (static_branch_unlikely(&page_owner_inited))
4299 		goto failed;
4300 #endif
4301 
4302 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4303 	gfp &= gfp_allowed_mask;
4304 	alloc_gfp = gfp;
4305 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4306 		goto out;
4307 	gfp = alloc_gfp;
4308 
4309 	/* Find an allowed local zone that meets the low watermark. */
4310 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
4311 		unsigned long mark;
4312 
4313 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4314 		    !__cpuset_zone_allowed(zone, gfp)) {
4315 			continue;
4316 		}
4317 
4318 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
4319 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
4320 			goto failed;
4321 		}
4322 
4323 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4324 		if (zone_watermark_fast(zone, 0,  mark,
4325 				zonelist_zone_idx(ac.preferred_zoneref),
4326 				alloc_flags, gfp)) {
4327 			break;
4328 		}
4329 	}
4330 
4331 	/*
4332 	 * If there are no allowed local zones that meets the watermarks then
4333 	 * try to allocate a single page and reclaim if necessary.
4334 	 */
4335 	if (unlikely(!zone))
4336 		goto failed;
4337 
4338 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4339 	pcp_trylock_prepare(UP_flags);
4340 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4341 	if (!pcp)
4342 		goto failed_irq;
4343 
4344 	/* Attempt the batch allocation */
4345 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4346 	while (nr_populated < nr_pages) {
4347 
4348 		/* Skip existing pages */
4349 		if (page_array && page_array[nr_populated]) {
4350 			nr_populated++;
4351 			continue;
4352 		}
4353 
4354 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4355 								pcp, pcp_list);
4356 		if (unlikely(!page)) {
4357 			/* Try and allocate at least one page */
4358 			if (!nr_account) {
4359 				pcp_spin_unlock(pcp);
4360 				goto failed_irq;
4361 			}
4362 			break;
4363 		}
4364 		nr_account++;
4365 
4366 		prep_new_page(page, 0, gfp, 0);
4367 		if (page_list)
4368 			list_add(&page->lru, page_list);
4369 		else
4370 			page_array[nr_populated] = page;
4371 		nr_populated++;
4372 	}
4373 
4374 	pcp_spin_unlock(pcp);
4375 	pcp_trylock_finish(UP_flags);
4376 
4377 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4378 	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
4379 
4380 out:
4381 	return nr_populated;
4382 
4383 failed_irq:
4384 	pcp_trylock_finish(UP_flags);
4385 
4386 failed:
4387 	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
4388 	if (page) {
4389 		if (page_list)
4390 			list_add(&page->lru, page_list);
4391 		else
4392 			page_array[nr_populated] = page;
4393 		nr_populated++;
4394 	}
4395 
4396 	goto out;
4397 }
4398 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
4399 
4400 /*
4401  * This is the 'heart' of the zoned buddy allocator.
4402  */
4403 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
4404 							nodemask_t *nodemask)
4405 {
4406 	struct page *page;
4407 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4408 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4409 	struct alloc_context ac = { };
4410 
4411 	/*
4412 	 * There are several places where we assume that the order value is sane
4413 	 * so bail out early if the request is out of bound.
4414 	 */
4415 	if (WARN_ON_ONCE_GFP(order > MAX_ORDER, gfp))
4416 		return NULL;
4417 
4418 	gfp &= gfp_allowed_mask;
4419 	/*
4420 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4421 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4422 	 * from a particular context which has been marked by
4423 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4424 	 * movable zones are not used during allocation.
4425 	 */
4426 	gfp = current_gfp_context(gfp);
4427 	alloc_gfp = gfp;
4428 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4429 			&alloc_gfp, &alloc_flags))
4430 		return NULL;
4431 
4432 	/*
4433 	 * Forbid the first pass from falling back to types that fragment
4434 	 * memory until all local zones are considered.
4435 	 */
4436 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
4437 
4438 	/* First allocation attempt */
4439 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4440 	if (likely(page))
4441 		goto out;
4442 
4443 	alloc_gfp = gfp;
4444 	ac.spread_dirty_pages = false;
4445 
4446 	/*
4447 	 * Restore the original nodemask if it was potentially replaced with
4448 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4449 	 */
4450 	ac.nodemask = nodemask;
4451 
4452 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4453 
4454 out:
4455 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4456 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4457 		__free_pages(page, order);
4458 		page = NULL;
4459 	}
4460 
4461 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4462 	kmsan_alloc_page(page, order, alloc_gfp);
4463 
4464 	return page;
4465 }
4466 EXPORT_SYMBOL(__alloc_pages);
4467 
4468 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
4469 		nodemask_t *nodemask)
4470 {
4471 	struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
4472 			preferred_nid, nodemask);
4473 	struct folio *folio = (struct folio *)page;
4474 
4475 	if (folio && order > 1)
4476 		folio_prep_large_rmappable(folio);
4477 	return folio;
4478 }
4479 EXPORT_SYMBOL(__folio_alloc);
4480 
4481 /*
4482  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4483  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4484  * you need to access high mem.
4485  */
4486 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4487 {
4488 	struct page *page;
4489 
4490 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4491 	if (!page)
4492 		return 0;
4493 	return (unsigned long) page_address(page);
4494 }
4495 EXPORT_SYMBOL(__get_free_pages);
4496 
4497 unsigned long get_zeroed_page(gfp_t gfp_mask)
4498 {
4499 	return __get_free_page(gfp_mask | __GFP_ZERO);
4500 }
4501 EXPORT_SYMBOL(get_zeroed_page);
4502 
4503 /**
4504  * __free_pages - Free pages allocated with alloc_pages().
4505  * @page: The page pointer returned from alloc_pages().
4506  * @order: The order of the allocation.
4507  *
4508  * This function can free multi-page allocations that are not compound
4509  * pages.  It does not check that the @order passed in matches that of
4510  * the allocation, so it is easy to leak memory.  Freeing more memory
4511  * than was allocated will probably emit a warning.
4512  *
4513  * If the last reference to this page is speculative, it will be released
4514  * by put_page() which only frees the first page of a non-compound
4515  * allocation.  To prevent the remaining pages from being leaked, we free
4516  * the subsequent pages here.  If you want to use the page's reference
4517  * count to decide when to free the allocation, you should allocate a
4518  * compound page, and use put_page() instead of __free_pages().
4519  *
4520  * Context: May be called in interrupt context or while holding a normal
4521  * spinlock, but not in NMI context or while holding a raw spinlock.
4522  */
4523 void __free_pages(struct page *page, unsigned int order)
4524 {
4525 	/* get PageHead before we drop reference */
4526 	int head = PageHead(page);
4527 
4528 	if (put_page_testzero(page))
4529 		free_the_page(page, order);
4530 	else if (!head)
4531 		while (order-- > 0)
4532 			free_the_page(page + (1 << order), order);
4533 }
4534 EXPORT_SYMBOL(__free_pages);
4535 
4536 void free_pages(unsigned long addr, unsigned int order)
4537 {
4538 	if (addr != 0) {
4539 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4540 		__free_pages(virt_to_page((void *)addr), order);
4541 	}
4542 }
4543 
4544 EXPORT_SYMBOL(free_pages);
4545 
4546 /*
4547  * Page Fragment:
4548  *  An arbitrary-length arbitrary-offset area of memory which resides
4549  *  within a 0 or higher order page.  Multiple fragments within that page
4550  *  are individually refcounted, in the page's reference counter.
4551  *
4552  * The page_frag functions below provide a simple allocation framework for
4553  * page fragments.  This is used by the network stack and network device
4554  * drivers to provide a backing region of memory for use as either an
4555  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4556  */
4557 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4558 					     gfp_t gfp_mask)
4559 {
4560 	struct page *page = NULL;
4561 	gfp_t gfp = gfp_mask;
4562 
4563 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4564 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4565 		    __GFP_NOMEMALLOC;
4566 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4567 				PAGE_FRAG_CACHE_MAX_ORDER);
4568 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4569 #endif
4570 	if (unlikely(!page))
4571 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4572 
4573 	nc->va = page ? page_address(page) : NULL;
4574 
4575 	return page;
4576 }
4577 
4578 void __page_frag_cache_drain(struct page *page, unsigned int count)
4579 {
4580 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4581 
4582 	if (page_ref_sub_and_test(page, count))
4583 		free_the_page(page, compound_order(page));
4584 }
4585 EXPORT_SYMBOL(__page_frag_cache_drain);
4586 
4587 void *page_frag_alloc_align(struct page_frag_cache *nc,
4588 		      unsigned int fragsz, gfp_t gfp_mask,
4589 		      unsigned int align_mask)
4590 {
4591 	unsigned int size = PAGE_SIZE;
4592 	struct page *page;
4593 	int offset;
4594 
4595 	if (unlikely(!nc->va)) {
4596 refill:
4597 		page = __page_frag_cache_refill(nc, gfp_mask);
4598 		if (!page)
4599 			return NULL;
4600 
4601 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4602 		/* if size can vary use size else just use PAGE_SIZE */
4603 		size = nc->size;
4604 #endif
4605 		/* Even if we own the page, we do not use atomic_set().
4606 		 * This would break get_page_unless_zero() users.
4607 		 */
4608 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4609 
4610 		/* reset page count bias and offset to start of new frag */
4611 		nc->pfmemalloc = page_is_pfmemalloc(page);
4612 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4613 		nc->offset = size;
4614 	}
4615 
4616 	offset = nc->offset - fragsz;
4617 	if (unlikely(offset < 0)) {
4618 		page = virt_to_page(nc->va);
4619 
4620 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4621 			goto refill;
4622 
4623 		if (unlikely(nc->pfmemalloc)) {
4624 			free_the_page(page, compound_order(page));
4625 			goto refill;
4626 		}
4627 
4628 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4629 		/* if size can vary use size else just use PAGE_SIZE */
4630 		size = nc->size;
4631 #endif
4632 		/* OK, page count is 0, we can safely set it */
4633 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4634 
4635 		/* reset page count bias and offset to start of new frag */
4636 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4637 		offset = size - fragsz;
4638 		if (unlikely(offset < 0)) {
4639 			/*
4640 			 * The caller is trying to allocate a fragment
4641 			 * with fragsz > PAGE_SIZE but the cache isn't big
4642 			 * enough to satisfy the request, this may
4643 			 * happen in low memory conditions.
4644 			 * We don't release the cache page because
4645 			 * it could make memory pressure worse
4646 			 * so we simply return NULL here.
4647 			 */
4648 			return NULL;
4649 		}
4650 	}
4651 
4652 	nc->pagecnt_bias--;
4653 	offset &= align_mask;
4654 	nc->offset = offset;
4655 
4656 	return nc->va + offset;
4657 }
4658 EXPORT_SYMBOL(page_frag_alloc_align);
4659 
4660 /*
4661  * Frees a page fragment allocated out of either a compound or order 0 page.
4662  */
4663 void page_frag_free(void *addr)
4664 {
4665 	struct page *page = virt_to_head_page(addr);
4666 
4667 	if (unlikely(put_page_testzero(page)))
4668 		free_the_page(page, compound_order(page));
4669 }
4670 EXPORT_SYMBOL(page_frag_free);
4671 
4672 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4673 		size_t size)
4674 {
4675 	if (addr) {
4676 		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4677 		struct page *page = virt_to_page((void *)addr);
4678 		struct page *last = page + nr;
4679 
4680 		split_page_owner(page, 1 << order);
4681 		split_page_memcg(page, 1 << order);
4682 		while (page < --last)
4683 			set_page_refcounted(last);
4684 
4685 		last = page + (1UL << order);
4686 		for (page += nr; page < last; page++)
4687 			__free_pages_ok(page, 0, FPI_TO_TAIL);
4688 	}
4689 	return (void *)addr;
4690 }
4691 
4692 /**
4693  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4694  * @size: the number of bytes to allocate
4695  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4696  *
4697  * This function is similar to alloc_pages(), except that it allocates the
4698  * minimum number of pages to satisfy the request.  alloc_pages() can only
4699  * allocate memory in power-of-two pages.
4700  *
4701  * This function is also limited by MAX_ORDER.
4702  *
4703  * Memory allocated by this function must be released by free_pages_exact().
4704  *
4705  * Return: pointer to the allocated area or %NULL in case of error.
4706  */
4707 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4708 {
4709 	unsigned int order = get_order(size);
4710 	unsigned long addr;
4711 
4712 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4713 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4714 
4715 	addr = __get_free_pages(gfp_mask, order);
4716 	return make_alloc_exact(addr, order, size);
4717 }
4718 EXPORT_SYMBOL(alloc_pages_exact);
4719 
4720 /**
4721  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4722  *			   pages on a node.
4723  * @nid: the preferred node ID where memory should be allocated
4724  * @size: the number of bytes to allocate
4725  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4726  *
4727  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4728  * back.
4729  *
4730  * Return: pointer to the allocated area or %NULL in case of error.
4731  */
4732 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4733 {
4734 	unsigned int order = get_order(size);
4735 	struct page *p;
4736 
4737 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4738 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4739 
4740 	p = alloc_pages_node(nid, gfp_mask, order);
4741 	if (!p)
4742 		return NULL;
4743 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4744 }
4745 
4746 /**
4747  * free_pages_exact - release memory allocated via alloc_pages_exact()
4748  * @virt: the value returned by alloc_pages_exact.
4749  * @size: size of allocation, same value as passed to alloc_pages_exact().
4750  *
4751  * Release the memory allocated by a previous call to alloc_pages_exact.
4752  */
4753 void free_pages_exact(void *virt, size_t size)
4754 {
4755 	unsigned long addr = (unsigned long)virt;
4756 	unsigned long end = addr + PAGE_ALIGN(size);
4757 
4758 	while (addr < end) {
4759 		free_page(addr);
4760 		addr += PAGE_SIZE;
4761 	}
4762 }
4763 EXPORT_SYMBOL(free_pages_exact);
4764 
4765 /**
4766  * nr_free_zone_pages - count number of pages beyond high watermark
4767  * @offset: The zone index of the highest zone
4768  *
4769  * nr_free_zone_pages() counts the number of pages which are beyond the
4770  * high watermark within all zones at or below a given zone index.  For each
4771  * zone, the number of pages is calculated as:
4772  *
4773  *     nr_free_zone_pages = managed_pages - high_pages
4774  *
4775  * Return: number of pages beyond high watermark.
4776  */
4777 static unsigned long nr_free_zone_pages(int offset)
4778 {
4779 	struct zoneref *z;
4780 	struct zone *zone;
4781 
4782 	/* Just pick one node, since fallback list is circular */
4783 	unsigned long sum = 0;
4784 
4785 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4786 
4787 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4788 		unsigned long size = zone_managed_pages(zone);
4789 		unsigned long high = high_wmark_pages(zone);
4790 		if (size > high)
4791 			sum += size - high;
4792 	}
4793 
4794 	return sum;
4795 }
4796 
4797 /**
4798  * nr_free_buffer_pages - count number of pages beyond high watermark
4799  *
4800  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4801  * watermark within ZONE_DMA and ZONE_NORMAL.
4802  *
4803  * Return: number of pages beyond high watermark within ZONE_DMA and
4804  * ZONE_NORMAL.
4805  */
4806 unsigned long nr_free_buffer_pages(void)
4807 {
4808 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4809 }
4810 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4811 
4812 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4813 {
4814 	zoneref->zone = zone;
4815 	zoneref->zone_idx = zone_idx(zone);
4816 }
4817 
4818 /*
4819  * Builds allocation fallback zone lists.
4820  *
4821  * Add all populated zones of a node to the zonelist.
4822  */
4823 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
4824 {
4825 	struct zone *zone;
4826 	enum zone_type zone_type = MAX_NR_ZONES;
4827 	int nr_zones = 0;
4828 
4829 	do {
4830 		zone_type--;
4831 		zone = pgdat->node_zones + zone_type;
4832 		if (populated_zone(zone)) {
4833 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
4834 			check_highest_zone(zone_type);
4835 		}
4836 	} while (zone_type);
4837 
4838 	return nr_zones;
4839 }
4840 
4841 #ifdef CONFIG_NUMA
4842 
4843 static int __parse_numa_zonelist_order(char *s)
4844 {
4845 	/*
4846 	 * We used to support different zonelists modes but they turned
4847 	 * out to be just not useful. Let's keep the warning in place
4848 	 * if somebody still use the cmd line parameter so that we do
4849 	 * not fail it silently
4850 	 */
4851 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4852 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
4853 		return -EINVAL;
4854 	}
4855 	return 0;
4856 }
4857 
4858 static char numa_zonelist_order[] = "Node";
4859 #define NUMA_ZONELIST_ORDER_LEN	16
4860 /*
4861  * sysctl handler for numa_zonelist_order
4862  */
4863 static int numa_zonelist_order_handler(struct ctl_table *table, int write,
4864 		void *buffer, size_t *length, loff_t *ppos)
4865 {
4866 	if (write)
4867 		return __parse_numa_zonelist_order(buffer);
4868 	return proc_dostring(table, write, buffer, length, ppos);
4869 }
4870 
4871 static int node_load[MAX_NUMNODES];
4872 
4873 /**
4874  * find_next_best_node - find the next node that should appear in a given node's fallback list
4875  * @node: node whose fallback list we're appending
4876  * @used_node_mask: nodemask_t of already used nodes
4877  *
4878  * We use a number of factors to determine which is the next node that should
4879  * appear on a given node's fallback list.  The node should not have appeared
4880  * already in @node's fallback list, and it should be the next closest node
4881  * according to the distance array (which contains arbitrary distance values
4882  * from each node to each node in the system), and should also prefer nodes
4883  * with no CPUs, since presumably they'll have very little allocation pressure
4884  * on them otherwise.
4885  *
4886  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
4887  */
4888 int find_next_best_node(int node, nodemask_t *used_node_mask)
4889 {
4890 	int n, val;
4891 	int min_val = INT_MAX;
4892 	int best_node = NUMA_NO_NODE;
4893 
4894 	/* Use the local node if we haven't already */
4895 	if (!node_isset(node, *used_node_mask)) {
4896 		node_set(node, *used_node_mask);
4897 		return node;
4898 	}
4899 
4900 	for_each_node_state(n, N_MEMORY) {
4901 
4902 		/* Don't want a node to appear more than once */
4903 		if (node_isset(n, *used_node_mask))
4904 			continue;
4905 
4906 		/* Use the distance array to find the distance */
4907 		val = node_distance(node, n);
4908 
4909 		/* Penalize nodes under us ("prefer the next node") */
4910 		val += (n < node);
4911 
4912 		/* Give preference to headless and unused nodes */
4913 		if (!cpumask_empty(cpumask_of_node(n)))
4914 			val += PENALTY_FOR_NODE_WITH_CPUS;
4915 
4916 		/* Slight preference for less loaded node */
4917 		val *= MAX_NUMNODES;
4918 		val += node_load[n];
4919 
4920 		if (val < min_val) {
4921 			min_val = val;
4922 			best_node = n;
4923 		}
4924 	}
4925 
4926 	if (best_node >= 0)
4927 		node_set(best_node, *used_node_mask);
4928 
4929 	return best_node;
4930 }
4931 
4932 
4933 /*
4934  * Build zonelists ordered by node and zones within node.
4935  * This results in maximum locality--normal zone overflows into local
4936  * DMA zone, if any--but risks exhausting DMA zone.
4937  */
4938 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
4939 		unsigned nr_nodes)
4940 {
4941 	struct zoneref *zonerefs;
4942 	int i;
4943 
4944 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
4945 
4946 	for (i = 0; i < nr_nodes; i++) {
4947 		int nr_zones;
4948 
4949 		pg_data_t *node = NODE_DATA(node_order[i]);
4950 
4951 		nr_zones = build_zonerefs_node(node, zonerefs);
4952 		zonerefs += nr_zones;
4953 	}
4954 	zonerefs->zone = NULL;
4955 	zonerefs->zone_idx = 0;
4956 }
4957 
4958 /*
4959  * Build gfp_thisnode zonelists
4960  */
4961 static void build_thisnode_zonelists(pg_data_t *pgdat)
4962 {
4963 	struct zoneref *zonerefs;
4964 	int nr_zones;
4965 
4966 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
4967 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
4968 	zonerefs += nr_zones;
4969 	zonerefs->zone = NULL;
4970 	zonerefs->zone_idx = 0;
4971 }
4972 
4973 /*
4974  * Build zonelists ordered by zone and nodes within zones.
4975  * This results in conserving DMA zone[s] until all Normal memory is
4976  * exhausted, but results in overflowing to remote node while memory
4977  * may still exist in local DMA zone.
4978  */
4979 
4980 static void build_zonelists(pg_data_t *pgdat)
4981 {
4982 	static int node_order[MAX_NUMNODES];
4983 	int node, nr_nodes = 0;
4984 	nodemask_t used_mask = NODE_MASK_NONE;
4985 	int local_node, prev_node;
4986 
4987 	/* NUMA-aware ordering of nodes */
4988 	local_node = pgdat->node_id;
4989 	prev_node = local_node;
4990 
4991 	memset(node_order, 0, sizeof(node_order));
4992 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4993 		/*
4994 		 * We don't want to pressure a particular node.
4995 		 * So adding penalty to the first node in same
4996 		 * distance group to make it round-robin.
4997 		 */
4998 		if (node_distance(local_node, node) !=
4999 		    node_distance(local_node, prev_node))
5000 			node_load[node] += 1;
5001 
5002 		node_order[nr_nodes++] = node;
5003 		prev_node = node;
5004 	}
5005 
5006 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5007 	build_thisnode_zonelists(pgdat);
5008 	pr_info("Fallback order for Node %d: ", local_node);
5009 	for (node = 0; node < nr_nodes; node++)
5010 		pr_cont("%d ", node_order[node]);
5011 	pr_cont("\n");
5012 }
5013 
5014 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5015 /*
5016  * Return node id of node used for "local" allocations.
5017  * I.e., first node id of first zone in arg node's generic zonelist.
5018  * Used for initializing percpu 'numa_mem', which is used primarily
5019  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5020  */
5021 int local_memory_node(int node)
5022 {
5023 	struct zoneref *z;
5024 
5025 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5026 				   gfp_zone(GFP_KERNEL),
5027 				   NULL);
5028 	return zone_to_nid(z->zone);
5029 }
5030 #endif
5031 
5032 static void setup_min_unmapped_ratio(void);
5033 static void setup_min_slab_ratio(void);
5034 #else	/* CONFIG_NUMA */
5035 
5036 static void build_zonelists(pg_data_t *pgdat)
5037 {
5038 	int node, local_node;
5039 	struct zoneref *zonerefs;
5040 	int nr_zones;
5041 
5042 	local_node = pgdat->node_id;
5043 
5044 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5045 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5046 	zonerefs += nr_zones;
5047 
5048 	/*
5049 	 * Now we build the zonelist so that it contains the zones
5050 	 * of all the other nodes.
5051 	 * We don't want to pressure a particular node, so when
5052 	 * building the zones for node N, we make sure that the
5053 	 * zones coming right after the local ones are those from
5054 	 * node N+1 (modulo N)
5055 	 */
5056 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5057 		if (!node_online(node))
5058 			continue;
5059 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5060 		zonerefs += nr_zones;
5061 	}
5062 	for (node = 0; node < local_node; node++) {
5063 		if (!node_online(node))
5064 			continue;
5065 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5066 		zonerefs += nr_zones;
5067 	}
5068 
5069 	zonerefs->zone = NULL;
5070 	zonerefs->zone_idx = 0;
5071 }
5072 
5073 #endif	/* CONFIG_NUMA */
5074 
5075 /*
5076  * Boot pageset table. One per cpu which is going to be used for all
5077  * zones and all nodes. The parameters will be set in such a way
5078  * that an item put on a list will immediately be handed over to
5079  * the buddy list. This is safe since pageset manipulation is done
5080  * with interrupts disabled.
5081  *
5082  * The boot_pagesets must be kept even after bootup is complete for
5083  * unused processors and/or zones. They do play a role for bootstrapping
5084  * hotplugged processors.
5085  *
5086  * zoneinfo_show() and maybe other functions do
5087  * not check if the processor is online before following the pageset pointer.
5088  * Other parts of the kernel may not check if the zone is available.
5089  */
5090 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5091 /* These effectively disable the pcplists in the boot pageset completely */
5092 #define BOOT_PAGESET_HIGH	0
5093 #define BOOT_PAGESET_BATCH	1
5094 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5095 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5096 
5097 static void __build_all_zonelists(void *data)
5098 {
5099 	int nid;
5100 	int __maybe_unused cpu;
5101 	pg_data_t *self = data;
5102 	unsigned long flags;
5103 
5104 	/*
5105 	 * The zonelist_update_seq must be acquired with irqsave because the
5106 	 * reader can be invoked from IRQ with GFP_ATOMIC.
5107 	 */
5108 	write_seqlock_irqsave(&zonelist_update_seq, flags);
5109 	/*
5110 	 * Also disable synchronous printk() to prevent any printk() from
5111 	 * trying to hold port->lock, for
5112 	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5113 	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5114 	 */
5115 	printk_deferred_enter();
5116 
5117 #ifdef CONFIG_NUMA
5118 	memset(node_load, 0, sizeof(node_load));
5119 #endif
5120 
5121 	/*
5122 	 * This node is hotadded and no memory is yet present.   So just
5123 	 * building zonelists is fine - no need to touch other nodes.
5124 	 */
5125 	if (self && !node_online(self->node_id)) {
5126 		build_zonelists(self);
5127 	} else {
5128 		/*
5129 		 * All possible nodes have pgdat preallocated
5130 		 * in free_area_init
5131 		 */
5132 		for_each_node(nid) {
5133 			pg_data_t *pgdat = NODE_DATA(nid);
5134 
5135 			build_zonelists(pgdat);
5136 		}
5137 
5138 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5139 		/*
5140 		 * We now know the "local memory node" for each node--
5141 		 * i.e., the node of the first zone in the generic zonelist.
5142 		 * Set up numa_mem percpu variable for on-line cpus.  During
5143 		 * boot, only the boot cpu should be on-line;  we'll init the
5144 		 * secondary cpus' numa_mem as they come on-line.  During
5145 		 * node/memory hotplug, we'll fixup all on-line cpus.
5146 		 */
5147 		for_each_online_cpu(cpu)
5148 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5149 #endif
5150 	}
5151 
5152 	printk_deferred_exit();
5153 	write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5154 }
5155 
5156 static noinline void __init
5157 build_all_zonelists_init(void)
5158 {
5159 	int cpu;
5160 
5161 	__build_all_zonelists(NULL);
5162 
5163 	/*
5164 	 * Initialize the boot_pagesets that are going to be used
5165 	 * for bootstrapping processors. The real pagesets for
5166 	 * each zone will be allocated later when the per cpu
5167 	 * allocator is available.
5168 	 *
5169 	 * boot_pagesets are used also for bootstrapping offline
5170 	 * cpus if the system is already booted because the pagesets
5171 	 * are needed to initialize allocators on a specific cpu too.
5172 	 * F.e. the percpu allocator needs the page allocator which
5173 	 * needs the percpu allocator in order to allocate its pagesets
5174 	 * (a chicken-egg dilemma).
5175 	 */
5176 	for_each_possible_cpu(cpu)
5177 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5178 
5179 	mminit_verify_zonelist();
5180 	cpuset_init_current_mems_allowed();
5181 }
5182 
5183 /*
5184  * unless system_state == SYSTEM_BOOTING.
5185  *
5186  * __ref due to call of __init annotated helper build_all_zonelists_init
5187  * [protected by SYSTEM_BOOTING].
5188  */
5189 void __ref build_all_zonelists(pg_data_t *pgdat)
5190 {
5191 	unsigned long vm_total_pages;
5192 
5193 	if (system_state == SYSTEM_BOOTING) {
5194 		build_all_zonelists_init();
5195 	} else {
5196 		__build_all_zonelists(pgdat);
5197 		/* cpuset refresh routine should be here */
5198 	}
5199 	/* Get the number of free pages beyond high watermark in all zones. */
5200 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5201 	/*
5202 	 * Disable grouping by mobility if the number of pages in the
5203 	 * system is too low to allow the mechanism to work. It would be
5204 	 * more accurate, but expensive to check per-zone. This check is
5205 	 * made on memory-hotadd so a system can start with mobility
5206 	 * disabled and enable it later
5207 	 */
5208 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5209 		page_group_by_mobility_disabled = 1;
5210 	else
5211 		page_group_by_mobility_disabled = 0;
5212 
5213 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5214 		nr_online_nodes,
5215 		page_group_by_mobility_disabled ? "off" : "on",
5216 		vm_total_pages);
5217 #ifdef CONFIG_NUMA
5218 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5219 #endif
5220 }
5221 
5222 static int zone_batchsize(struct zone *zone)
5223 {
5224 #ifdef CONFIG_MMU
5225 	int batch;
5226 
5227 	/*
5228 	 * The number of pages to batch allocate is either ~0.1%
5229 	 * of the zone or 1MB, whichever is smaller. The batch
5230 	 * size is striking a balance between allocation latency
5231 	 * and zone lock contention.
5232 	 */
5233 	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5234 	batch /= 4;		/* We effectively *= 4 below */
5235 	if (batch < 1)
5236 		batch = 1;
5237 
5238 	/*
5239 	 * Clamp the batch to a 2^n - 1 value. Having a power
5240 	 * of 2 value was found to be more likely to have
5241 	 * suboptimal cache aliasing properties in some cases.
5242 	 *
5243 	 * For example if 2 tasks are alternately allocating
5244 	 * batches of pages, one task can end up with a lot
5245 	 * of pages of one half of the possible page colors
5246 	 * and the other with pages of the other colors.
5247 	 */
5248 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5249 
5250 	return batch;
5251 
5252 #else
5253 	/* The deferral and batching of frees should be suppressed under NOMMU
5254 	 * conditions.
5255 	 *
5256 	 * The problem is that NOMMU needs to be able to allocate large chunks
5257 	 * of contiguous memory as there's no hardware page translation to
5258 	 * assemble apparent contiguous memory from discontiguous pages.
5259 	 *
5260 	 * Queueing large contiguous runs of pages for batching, however,
5261 	 * causes the pages to actually be freed in smaller chunks.  As there
5262 	 * can be a significant delay between the individual batches being
5263 	 * recycled, this leads to the once large chunks of space being
5264 	 * fragmented and becoming unavailable for high-order allocations.
5265 	 */
5266 	return 0;
5267 #endif
5268 }
5269 
5270 static int percpu_pagelist_high_fraction;
5271 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
5272 {
5273 #ifdef CONFIG_MMU
5274 	int high;
5275 	int nr_split_cpus;
5276 	unsigned long total_pages;
5277 
5278 	if (!percpu_pagelist_high_fraction) {
5279 		/*
5280 		 * By default, the high value of the pcp is based on the zone
5281 		 * low watermark so that if they are full then background
5282 		 * reclaim will not be started prematurely.
5283 		 */
5284 		total_pages = low_wmark_pages(zone);
5285 	} else {
5286 		/*
5287 		 * If percpu_pagelist_high_fraction is configured, the high
5288 		 * value is based on a fraction of the managed pages in the
5289 		 * zone.
5290 		 */
5291 		total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
5292 	}
5293 
5294 	/*
5295 	 * Split the high value across all online CPUs local to the zone. Note
5296 	 * that early in boot that CPUs may not be online yet and that during
5297 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5298 	 * onlined. For memory nodes that have no CPUs, split pcp->high across
5299 	 * all online CPUs to mitigate the risk that reclaim is triggered
5300 	 * prematurely due to pages stored on pcp lists.
5301 	 */
5302 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5303 	if (!nr_split_cpus)
5304 		nr_split_cpus = num_online_cpus();
5305 	high = total_pages / nr_split_cpus;
5306 
5307 	/*
5308 	 * Ensure high is at least batch*4. The multiple is based on the
5309 	 * historical relationship between high and batch.
5310 	 */
5311 	high = max(high, batch << 2);
5312 
5313 	return high;
5314 #else
5315 	return 0;
5316 #endif
5317 }
5318 
5319 /*
5320  * pcp->high and pcp->batch values are related and generally batch is lower
5321  * than high. They are also related to pcp->count such that count is lower
5322  * than high, and as soon as it reaches high, the pcplist is flushed.
5323  *
5324  * However, guaranteeing these relations at all times would require e.g. write
5325  * barriers here but also careful usage of read barriers at the read side, and
5326  * thus be prone to error and bad for performance. Thus the update only prevents
5327  * store tearing. Any new users of pcp->batch and pcp->high should ensure they
5328  * can cope with those fields changing asynchronously, and fully trust only the
5329  * pcp->count field on the local CPU with interrupts disabled.
5330  *
5331  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5332  * outside of boot time (or some other assurance that no concurrent updaters
5333  * exist).
5334  */
5335 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5336 		unsigned long batch)
5337 {
5338 	WRITE_ONCE(pcp->batch, batch);
5339 	WRITE_ONCE(pcp->high, high);
5340 }
5341 
5342 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5343 {
5344 	int pindex;
5345 
5346 	memset(pcp, 0, sizeof(*pcp));
5347 	memset(pzstats, 0, sizeof(*pzstats));
5348 
5349 	spin_lock_init(&pcp->lock);
5350 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5351 		INIT_LIST_HEAD(&pcp->lists[pindex]);
5352 
5353 	/*
5354 	 * Set batch and high values safe for a boot pageset. A true percpu
5355 	 * pageset's initialization will update them subsequently. Here we don't
5356 	 * need to be as careful as pageset_update() as nobody can access the
5357 	 * pageset yet.
5358 	 */
5359 	pcp->high = BOOT_PAGESET_HIGH;
5360 	pcp->batch = BOOT_PAGESET_BATCH;
5361 	pcp->free_factor = 0;
5362 }
5363 
5364 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
5365 		unsigned long batch)
5366 {
5367 	struct per_cpu_pages *pcp;
5368 	int cpu;
5369 
5370 	for_each_possible_cpu(cpu) {
5371 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5372 		pageset_update(pcp, high, batch);
5373 	}
5374 }
5375 
5376 /*
5377  * Calculate and set new high and batch values for all per-cpu pagesets of a
5378  * zone based on the zone's size.
5379  */
5380 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5381 {
5382 	int new_high, new_batch;
5383 
5384 	new_batch = max(1, zone_batchsize(zone));
5385 	new_high = zone_highsize(zone, new_batch, cpu_online);
5386 
5387 	if (zone->pageset_high == new_high &&
5388 	    zone->pageset_batch == new_batch)
5389 		return;
5390 
5391 	zone->pageset_high = new_high;
5392 	zone->pageset_batch = new_batch;
5393 
5394 	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
5395 }
5396 
5397 void __meminit setup_zone_pageset(struct zone *zone)
5398 {
5399 	int cpu;
5400 
5401 	/* Size may be 0 on !SMP && !NUMA */
5402 	if (sizeof(struct per_cpu_zonestat) > 0)
5403 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5404 
5405 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5406 	for_each_possible_cpu(cpu) {
5407 		struct per_cpu_pages *pcp;
5408 		struct per_cpu_zonestat *pzstats;
5409 
5410 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5411 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5412 		per_cpu_pages_init(pcp, pzstats);
5413 	}
5414 
5415 	zone_set_pageset_high_and_batch(zone, 0);
5416 }
5417 
5418 /*
5419  * The zone indicated has a new number of managed_pages; batch sizes and percpu
5420  * page high values need to be recalculated.
5421  */
5422 static void zone_pcp_update(struct zone *zone, int cpu_online)
5423 {
5424 	mutex_lock(&pcp_batch_high_lock);
5425 	zone_set_pageset_high_and_batch(zone, cpu_online);
5426 	mutex_unlock(&pcp_batch_high_lock);
5427 }
5428 
5429 /*
5430  * Allocate per cpu pagesets and initialize them.
5431  * Before this call only boot pagesets were available.
5432  */
5433 void __init setup_per_cpu_pageset(void)
5434 {
5435 	struct pglist_data *pgdat;
5436 	struct zone *zone;
5437 	int __maybe_unused cpu;
5438 
5439 	for_each_populated_zone(zone)
5440 		setup_zone_pageset(zone);
5441 
5442 #ifdef CONFIG_NUMA
5443 	/*
5444 	 * Unpopulated zones continue using the boot pagesets.
5445 	 * The numa stats for these pagesets need to be reset.
5446 	 * Otherwise, they will end up skewing the stats of
5447 	 * the nodes these zones are associated with.
5448 	 */
5449 	for_each_possible_cpu(cpu) {
5450 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5451 		memset(pzstats->vm_numa_event, 0,
5452 		       sizeof(pzstats->vm_numa_event));
5453 	}
5454 #endif
5455 
5456 	for_each_online_pgdat(pgdat)
5457 		pgdat->per_cpu_nodestats =
5458 			alloc_percpu(struct per_cpu_nodestat);
5459 }
5460 
5461 __meminit void zone_pcp_init(struct zone *zone)
5462 {
5463 	/*
5464 	 * per cpu subsystem is not up at this point. The following code
5465 	 * relies on the ability of the linker to provide the
5466 	 * offset of a (static) per cpu variable into the per cpu area.
5467 	 */
5468 	zone->per_cpu_pageset = &boot_pageset;
5469 	zone->per_cpu_zonestats = &boot_zonestats;
5470 	zone->pageset_high = BOOT_PAGESET_HIGH;
5471 	zone->pageset_batch = BOOT_PAGESET_BATCH;
5472 
5473 	if (populated_zone(zone))
5474 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5475 			 zone->present_pages, zone_batchsize(zone));
5476 }
5477 
5478 void adjust_managed_page_count(struct page *page, long count)
5479 {
5480 	atomic_long_add(count, &page_zone(page)->managed_pages);
5481 	totalram_pages_add(count);
5482 #ifdef CONFIG_HIGHMEM
5483 	if (PageHighMem(page))
5484 		totalhigh_pages_add(count);
5485 #endif
5486 }
5487 EXPORT_SYMBOL(adjust_managed_page_count);
5488 
5489 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5490 {
5491 	void *pos;
5492 	unsigned long pages = 0;
5493 
5494 	start = (void *)PAGE_ALIGN((unsigned long)start);
5495 	end = (void *)((unsigned long)end & PAGE_MASK);
5496 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5497 		struct page *page = virt_to_page(pos);
5498 		void *direct_map_addr;
5499 
5500 		/*
5501 		 * 'direct_map_addr' might be different from 'pos'
5502 		 * because some architectures' virt_to_page()
5503 		 * work with aliases.  Getting the direct map
5504 		 * address ensures that we get a _writeable_
5505 		 * alias for the memset().
5506 		 */
5507 		direct_map_addr = page_address(page);
5508 		/*
5509 		 * Perform a kasan-unchecked memset() since this memory
5510 		 * has not been initialized.
5511 		 */
5512 		direct_map_addr = kasan_reset_tag(direct_map_addr);
5513 		if ((unsigned int)poison <= 0xFF)
5514 			memset(direct_map_addr, poison, PAGE_SIZE);
5515 
5516 		free_reserved_page(page);
5517 	}
5518 
5519 	if (pages && s)
5520 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5521 
5522 	return pages;
5523 }
5524 
5525 static int page_alloc_cpu_dead(unsigned int cpu)
5526 {
5527 	struct zone *zone;
5528 
5529 	lru_add_drain_cpu(cpu);
5530 	mlock_drain_remote(cpu);
5531 	drain_pages(cpu);
5532 
5533 	/*
5534 	 * Spill the event counters of the dead processor
5535 	 * into the current processors event counters.
5536 	 * This artificially elevates the count of the current
5537 	 * processor.
5538 	 */
5539 	vm_events_fold_cpu(cpu);
5540 
5541 	/*
5542 	 * Zero the differential counters of the dead processor
5543 	 * so that the vm statistics are consistent.
5544 	 *
5545 	 * This is only okay since the processor is dead and cannot
5546 	 * race with what we are doing.
5547 	 */
5548 	cpu_vm_stats_fold(cpu);
5549 
5550 	for_each_populated_zone(zone)
5551 		zone_pcp_update(zone, 0);
5552 
5553 	return 0;
5554 }
5555 
5556 static int page_alloc_cpu_online(unsigned int cpu)
5557 {
5558 	struct zone *zone;
5559 
5560 	for_each_populated_zone(zone)
5561 		zone_pcp_update(zone, 1);
5562 	return 0;
5563 }
5564 
5565 void __init page_alloc_init_cpuhp(void)
5566 {
5567 	int ret;
5568 
5569 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5570 					"mm/page_alloc:pcp",
5571 					page_alloc_cpu_online,
5572 					page_alloc_cpu_dead);
5573 	WARN_ON(ret < 0);
5574 }
5575 
5576 /*
5577  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5578  *	or min_free_kbytes changes.
5579  */
5580 static void calculate_totalreserve_pages(void)
5581 {
5582 	struct pglist_data *pgdat;
5583 	unsigned long reserve_pages = 0;
5584 	enum zone_type i, j;
5585 
5586 	for_each_online_pgdat(pgdat) {
5587 
5588 		pgdat->totalreserve_pages = 0;
5589 
5590 		for (i = 0; i < MAX_NR_ZONES; i++) {
5591 			struct zone *zone = pgdat->node_zones + i;
5592 			long max = 0;
5593 			unsigned long managed_pages = zone_managed_pages(zone);
5594 
5595 			/* Find valid and maximum lowmem_reserve in the zone */
5596 			for (j = i; j < MAX_NR_ZONES; j++) {
5597 				if (zone->lowmem_reserve[j] > max)
5598 					max = zone->lowmem_reserve[j];
5599 			}
5600 
5601 			/* we treat the high watermark as reserved pages. */
5602 			max += high_wmark_pages(zone);
5603 
5604 			if (max > managed_pages)
5605 				max = managed_pages;
5606 
5607 			pgdat->totalreserve_pages += max;
5608 
5609 			reserve_pages += max;
5610 		}
5611 	}
5612 	totalreserve_pages = reserve_pages;
5613 }
5614 
5615 /*
5616  * setup_per_zone_lowmem_reserve - called whenever
5617  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
5618  *	has a correct pages reserved value, so an adequate number of
5619  *	pages are left in the zone after a successful __alloc_pages().
5620  */
5621 static void setup_per_zone_lowmem_reserve(void)
5622 {
5623 	struct pglist_data *pgdat;
5624 	enum zone_type i, j;
5625 
5626 	for_each_online_pgdat(pgdat) {
5627 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5628 			struct zone *zone = &pgdat->node_zones[i];
5629 			int ratio = sysctl_lowmem_reserve_ratio[i];
5630 			bool clear = !ratio || !zone_managed_pages(zone);
5631 			unsigned long managed_pages = 0;
5632 
5633 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
5634 				struct zone *upper_zone = &pgdat->node_zones[j];
5635 
5636 				managed_pages += zone_managed_pages(upper_zone);
5637 
5638 				if (clear)
5639 					zone->lowmem_reserve[j] = 0;
5640 				else
5641 					zone->lowmem_reserve[j] = managed_pages / ratio;
5642 			}
5643 		}
5644 	}
5645 
5646 	/* update totalreserve_pages */
5647 	calculate_totalreserve_pages();
5648 }
5649 
5650 static void __setup_per_zone_wmarks(void)
5651 {
5652 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5653 	unsigned long lowmem_pages = 0;
5654 	struct zone *zone;
5655 	unsigned long flags;
5656 
5657 	/* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
5658 	for_each_zone(zone) {
5659 		if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
5660 			lowmem_pages += zone_managed_pages(zone);
5661 	}
5662 
5663 	for_each_zone(zone) {
5664 		u64 tmp;
5665 
5666 		spin_lock_irqsave(&zone->lock, flags);
5667 		tmp = (u64)pages_min * zone_managed_pages(zone);
5668 		do_div(tmp, lowmem_pages);
5669 		if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
5670 			/*
5671 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5672 			 * need highmem and movable zones pages, so cap pages_min
5673 			 * to a small  value here.
5674 			 *
5675 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5676 			 * deltas control async page reclaim, and so should
5677 			 * not be capped for highmem and movable zones.
5678 			 */
5679 			unsigned long min_pages;
5680 
5681 			min_pages = zone_managed_pages(zone) / 1024;
5682 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5683 			zone->_watermark[WMARK_MIN] = min_pages;
5684 		} else {
5685 			/*
5686 			 * If it's a lowmem zone, reserve a number of pages
5687 			 * proportionate to the zone's size.
5688 			 */
5689 			zone->_watermark[WMARK_MIN] = tmp;
5690 		}
5691 
5692 		/*
5693 		 * Set the kswapd watermarks distance according to the
5694 		 * scale factor in proportion to available memory, but
5695 		 * ensure a minimum size on small systems.
5696 		 */
5697 		tmp = max_t(u64, tmp >> 2,
5698 			    mult_frac(zone_managed_pages(zone),
5699 				      watermark_scale_factor, 10000));
5700 
5701 		zone->watermark_boost = 0;
5702 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
5703 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
5704 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
5705 
5706 		spin_unlock_irqrestore(&zone->lock, flags);
5707 	}
5708 
5709 	/* update totalreserve_pages */
5710 	calculate_totalreserve_pages();
5711 }
5712 
5713 /**
5714  * setup_per_zone_wmarks - called when min_free_kbytes changes
5715  * or when memory is hot-{added|removed}
5716  *
5717  * Ensures that the watermark[min,low,high] values for each zone are set
5718  * correctly with respect to min_free_kbytes.
5719  */
5720 void setup_per_zone_wmarks(void)
5721 {
5722 	struct zone *zone;
5723 	static DEFINE_SPINLOCK(lock);
5724 
5725 	spin_lock(&lock);
5726 	__setup_per_zone_wmarks();
5727 	spin_unlock(&lock);
5728 
5729 	/*
5730 	 * The watermark size have changed so update the pcpu batch
5731 	 * and high limits or the limits may be inappropriate.
5732 	 */
5733 	for_each_zone(zone)
5734 		zone_pcp_update(zone, 0);
5735 }
5736 
5737 /*
5738  * Initialise min_free_kbytes.
5739  *
5740  * For small machines we want it small (128k min).  For large machines
5741  * we want it large (256MB max).  But it is not linear, because network
5742  * bandwidth does not increase linearly with machine size.  We use
5743  *
5744  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5745  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5746  *
5747  * which yields
5748  *
5749  * 16MB:	512k
5750  * 32MB:	724k
5751  * 64MB:	1024k
5752  * 128MB:	1448k
5753  * 256MB:	2048k
5754  * 512MB:	2896k
5755  * 1024MB:	4096k
5756  * 2048MB:	5792k
5757  * 4096MB:	8192k
5758  * 8192MB:	11584k
5759  * 16384MB:	16384k
5760  */
5761 void calculate_min_free_kbytes(void)
5762 {
5763 	unsigned long lowmem_kbytes;
5764 	int new_min_free_kbytes;
5765 
5766 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5767 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5768 
5769 	if (new_min_free_kbytes > user_min_free_kbytes)
5770 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
5771 	else
5772 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5773 				new_min_free_kbytes, user_min_free_kbytes);
5774 
5775 }
5776 
5777 int __meminit init_per_zone_wmark_min(void)
5778 {
5779 	calculate_min_free_kbytes();
5780 	setup_per_zone_wmarks();
5781 	refresh_zone_stat_thresholds();
5782 	setup_per_zone_lowmem_reserve();
5783 
5784 #ifdef CONFIG_NUMA
5785 	setup_min_unmapped_ratio();
5786 	setup_min_slab_ratio();
5787 #endif
5788 
5789 	khugepaged_min_free_kbytes_update();
5790 
5791 	return 0;
5792 }
5793 postcore_initcall(init_per_zone_wmark_min)
5794 
5795 /*
5796  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5797  *	that we can call two helper functions whenever min_free_kbytes
5798  *	changes.
5799  */
5800 static int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5801 		void *buffer, size_t *length, loff_t *ppos)
5802 {
5803 	int rc;
5804 
5805 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5806 	if (rc)
5807 		return rc;
5808 
5809 	if (write) {
5810 		user_min_free_kbytes = min_free_kbytes;
5811 		setup_per_zone_wmarks();
5812 	}
5813 	return 0;
5814 }
5815 
5816 static int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
5817 		void *buffer, size_t *length, loff_t *ppos)
5818 {
5819 	int rc;
5820 
5821 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5822 	if (rc)
5823 		return rc;
5824 
5825 	if (write)
5826 		setup_per_zone_wmarks();
5827 
5828 	return 0;
5829 }
5830 
5831 #ifdef CONFIG_NUMA
5832 static void setup_min_unmapped_ratio(void)
5833 {
5834 	pg_data_t *pgdat;
5835 	struct zone *zone;
5836 
5837 	for_each_online_pgdat(pgdat)
5838 		pgdat->min_unmapped_pages = 0;
5839 
5840 	for_each_zone(zone)
5841 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
5842 						         sysctl_min_unmapped_ratio) / 100;
5843 }
5844 
5845 
5846 static int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
5847 		void *buffer, size_t *length, loff_t *ppos)
5848 {
5849 	int rc;
5850 
5851 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5852 	if (rc)
5853 		return rc;
5854 
5855 	setup_min_unmapped_ratio();
5856 
5857 	return 0;
5858 }
5859 
5860 static void setup_min_slab_ratio(void)
5861 {
5862 	pg_data_t *pgdat;
5863 	struct zone *zone;
5864 
5865 	for_each_online_pgdat(pgdat)
5866 		pgdat->min_slab_pages = 0;
5867 
5868 	for_each_zone(zone)
5869 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
5870 						     sysctl_min_slab_ratio) / 100;
5871 }
5872 
5873 static int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
5874 		void *buffer, size_t *length, loff_t *ppos)
5875 {
5876 	int rc;
5877 
5878 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5879 	if (rc)
5880 		return rc;
5881 
5882 	setup_min_slab_ratio();
5883 
5884 	return 0;
5885 }
5886 #endif
5887 
5888 /*
5889  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5890  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5891  *	whenever sysctl_lowmem_reserve_ratio changes.
5892  *
5893  * The reserve ratio obviously has absolutely no relation with the
5894  * minimum watermarks. The lowmem reserve ratio can only make sense
5895  * if in function of the boot time zone sizes.
5896  */
5897 static int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table,
5898 		int write, void *buffer, size_t *length, loff_t *ppos)
5899 {
5900 	int i;
5901 
5902 	proc_dointvec_minmax(table, write, buffer, length, ppos);
5903 
5904 	for (i = 0; i < MAX_NR_ZONES; i++) {
5905 		if (sysctl_lowmem_reserve_ratio[i] < 1)
5906 			sysctl_lowmem_reserve_ratio[i] = 0;
5907 	}
5908 
5909 	setup_per_zone_lowmem_reserve();
5910 	return 0;
5911 }
5912 
5913 /*
5914  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
5915  * cpu. It is the fraction of total pages in each zone that a hot per cpu
5916  * pagelist can have before it gets flushed back to buddy allocator.
5917  */
5918 static int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
5919 		int write, void *buffer, size_t *length, loff_t *ppos)
5920 {
5921 	struct zone *zone;
5922 	int old_percpu_pagelist_high_fraction;
5923 	int ret;
5924 
5925 	mutex_lock(&pcp_batch_high_lock);
5926 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
5927 
5928 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5929 	if (!write || ret < 0)
5930 		goto out;
5931 
5932 	/* Sanity checking to avoid pcp imbalance */
5933 	if (percpu_pagelist_high_fraction &&
5934 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
5935 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
5936 		ret = -EINVAL;
5937 		goto out;
5938 	}
5939 
5940 	/* No change? */
5941 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
5942 		goto out;
5943 
5944 	for_each_populated_zone(zone)
5945 		zone_set_pageset_high_and_batch(zone, 0);
5946 out:
5947 	mutex_unlock(&pcp_batch_high_lock);
5948 	return ret;
5949 }
5950 
5951 static struct ctl_table page_alloc_sysctl_table[] = {
5952 	{
5953 		.procname	= "min_free_kbytes",
5954 		.data		= &min_free_kbytes,
5955 		.maxlen		= sizeof(min_free_kbytes),
5956 		.mode		= 0644,
5957 		.proc_handler	= min_free_kbytes_sysctl_handler,
5958 		.extra1		= SYSCTL_ZERO,
5959 	},
5960 	{
5961 		.procname	= "watermark_boost_factor",
5962 		.data		= &watermark_boost_factor,
5963 		.maxlen		= sizeof(watermark_boost_factor),
5964 		.mode		= 0644,
5965 		.proc_handler	= proc_dointvec_minmax,
5966 		.extra1		= SYSCTL_ZERO,
5967 	},
5968 	{
5969 		.procname	= "watermark_scale_factor",
5970 		.data		= &watermark_scale_factor,
5971 		.maxlen		= sizeof(watermark_scale_factor),
5972 		.mode		= 0644,
5973 		.proc_handler	= watermark_scale_factor_sysctl_handler,
5974 		.extra1		= SYSCTL_ONE,
5975 		.extra2		= SYSCTL_THREE_THOUSAND,
5976 	},
5977 	{
5978 		.procname	= "percpu_pagelist_high_fraction",
5979 		.data		= &percpu_pagelist_high_fraction,
5980 		.maxlen		= sizeof(percpu_pagelist_high_fraction),
5981 		.mode		= 0644,
5982 		.proc_handler	= percpu_pagelist_high_fraction_sysctl_handler,
5983 		.extra1		= SYSCTL_ZERO,
5984 	},
5985 	{
5986 		.procname	= "lowmem_reserve_ratio",
5987 		.data		= &sysctl_lowmem_reserve_ratio,
5988 		.maxlen		= sizeof(sysctl_lowmem_reserve_ratio),
5989 		.mode		= 0644,
5990 		.proc_handler	= lowmem_reserve_ratio_sysctl_handler,
5991 	},
5992 #ifdef CONFIG_NUMA
5993 	{
5994 		.procname	= "numa_zonelist_order",
5995 		.data		= &numa_zonelist_order,
5996 		.maxlen		= NUMA_ZONELIST_ORDER_LEN,
5997 		.mode		= 0644,
5998 		.proc_handler	= numa_zonelist_order_handler,
5999 	},
6000 	{
6001 		.procname	= "min_unmapped_ratio",
6002 		.data		= &sysctl_min_unmapped_ratio,
6003 		.maxlen		= sizeof(sysctl_min_unmapped_ratio),
6004 		.mode		= 0644,
6005 		.proc_handler	= sysctl_min_unmapped_ratio_sysctl_handler,
6006 		.extra1		= SYSCTL_ZERO,
6007 		.extra2		= SYSCTL_ONE_HUNDRED,
6008 	},
6009 	{
6010 		.procname	= "min_slab_ratio",
6011 		.data		= &sysctl_min_slab_ratio,
6012 		.maxlen		= sizeof(sysctl_min_slab_ratio),
6013 		.mode		= 0644,
6014 		.proc_handler	= sysctl_min_slab_ratio_sysctl_handler,
6015 		.extra1		= SYSCTL_ZERO,
6016 		.extra2		= SYSCTL_ONE_HUNDRED,
6017 	},
6018 #endif
6019 	{}
6020 };
6021 
6022 void __init page_alloc_sysctl_init(void)
6023 {
6024 	register_sysctl_init("vm", page_alloc_sysctl_table);
6025 }
6026 
6027 #ifdef CONFIG_CONTIG_ALLOC
6028 /* Usage: See admin-guide/dynamic-debug-howto.rst */
6029 static void alloc_contig_dump_pages(struct list_head *page_list)
6030 {
6031 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6032 
6033 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6034 		struct page *page;
6035 
6036 		dump_stack();
6037 		list_for_each_entry(page, page_list, lru)
6038 			dump_page(page, "migration failure");
6039 	}
6040 }
6041 
6042 /* [start, end) must belong to a single zone. */
6043 int __alloc_contig_migrate_range(struct compact_control *cc,
6044 					unsigned long start, unsigned long end)
6045 {
6046 	/* This function is based on compact_zone() from compaction.c. */
6047 	unsigned int nr_reclaimed;
6048 	unsigned long pfn = start;
6049 	unsigned int tries = 0;
6050 	int ret = 0;
6051 	struct migration_target_control mtc = {
6052 		.nid = zone_to_nid(cc->zone),
6053 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6054 	};
6055 
6056 	lru_cache_disable();
6057 
6058 	while (pfn < end || !list_empty(&cc->migratepages)) {
6059 		if (fatal_signal_pending(current)) {
6060 			ret = -EINTR;
6061 			break;
6062 		}
6063 
6064 		if (list_empty(&cc->migratepages)) {
6065 			cc->nr_migratepages = 0;
6066 			ret = isolate_migratepages_range(cc, pfn, end);
6067 			if (ret && ret != -EAGAIN)
6068 				break;
6069 			pfn = cc->migrate_pfn;
6070 			tries = 0;
6071 		} else if (++tries == 5) {
6072 			ret = -EBUSY;
6073 			break;
6074 		}
6075 
6076 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6077 							&cc->migratepages);
6078 		cc->nr_migratepages -= nr_reclaimed;
6079 
6080 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6081 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6082 
6083 		/*
6084 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6085 		 * to retry again over this error, so do the same here.
6086 		 */
6087 		if (ret == -ENOMEM)
6088 			break;
6089 	}
6090 
6091 	lru_cache_enable();
6092 	if (ret < 0) {
6093 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6094 			alloc_contig_dump_pages(&cc->migratepages);
6095 		putback_movable_pages(&cc->migratepages);
6096 		return ret;
6097 	}
6098 	return 0;
6099 }
6100 
6101 /**
6102  * alloc_contig_range() -- tries to allocate given range of pages
6103  * @start:	start PFN to allocate
6104  * @end:	one-past-the-last PFN to allocate
6105  * @migratetype:	migratetype of the underlying pageblocks (either
6106  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6107  *			in range must have the same migratetype and it must
6108  *			be either of the two.
6109  * @gfp_mask:	GFP mask to use during compaction
6110  *
6111  * The PFN range does not have to be pageblock aligned. The PFN range must
6112  * belong to a single zone.
6113  *
6114  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6115  * pageblocks in the range.  Once isolated, the pageblocks should not
6116  * be modified by others.
6117  *
6118  * Return: zero on success or negative error code.  On success all
6119  * pages which PFN is in [start, end) are allocated for the caller and
6120  * need to be freed with free_contig_range().
6121  */
6122 int alloc_contig_range(unsigned long start, unsigned long end,
6123 		       unsigned migratetype, gfp_t gfp_mask)
6124 {
6125 	unsigned long outer_start, outer_end;
6126 	int order;
6127 	int ret = 0;
6128 
6129 	struct compact_control cc = {
6130 		.nr_migratepages = 0,
6131 		.order = -1,
6132 		.zone = page_zone(pfn_to_page(start)),
6133 		.mode = MIGRATE_SYNC,
6134 		.ignore_skip_hint = true,
6135 		.no_set_skip_hint = true,
6136 		.gfp_mask = current_gfp_context(gfp_mask),
6137 		.alloc_contig = true,
6138 	};
6139 	INIT_LIST_HEAD(&cc.migratepages);
6140 
6141 	/*
6142 	 * What we do here is we mark all pageblocks in range as
6143 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6144 	 * have different sizes, and due to the way page allocator
6145 	 * work, start_isolate_page_range() has special handlings for this.
6146 	 *
6147 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6148 	 * migrate the pages from an unaligned range (ie. pages that
6149 	 * we are interested in). This will put all the pages in
6150 	 * range back to page allocator as MIGRATE_ISOLATE.
6151 	 *
6152 	 * When this is done, we take the pages in range from page
6153 	 * allocator removing them from the buddy system.  This way
6154 	 * page allocator will never consider using them.
6155 	 *
6156 	 * This lets us mark the pageblocks back as
6157 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6158 	 * aligned range but not in the unaligned, original range are
6159 	 * put back to page allocator so that buddy can use them.
6160 	 */
6161 
6162 	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
6163 	if (ret)
6164 		goto done;
6165 
6166 	drain_all_pages(cc.zone);
6167 
6168 	/*
6169 	 * In case of -EBUSY, we'd like to know which page causes problem.
6170 	 * So, just fall through. test_pages_isolated() has a tracepoint
6171 	 * which will report the busy page.
6172 	 *
6173 	 * It is possible that busy pages could become available before
6174 	 * the call to test_pages_isolated, and the range will actually be
6175 	 * allocated.  So, if we fall through be sure to clear ret so that
6176 	 * -EBUSY is not accidentally used or returned to caller.
6177 	 */
6178 	ret = __alloc_contig_migrate_range(&cc, start, end);
6179 	if (ret && ret != -EBUSY)
6180 		goto done;
6181 	ret = 0;
6182 
6183 	/*
6184 	 * Pages from [start, end) are within a pageblock_nr_pages
6185 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6186 	 * more, all pages in [start, end) are free in page allocator.
6187 	 * What we are going to do is to allocate all pages from
6188 	 * [start, end) (that is remove them from page allocator).
6189 	 *
6190 	 * The only problem is that pages at the beginning and at the
6191 	 * end of interesting range may be not aligned with pages that
6192 	 * page allocator holds, ie. they can be part of higher order
6193 	 * pages.  Because of this, we reserve the bigger range and
6194 	 * once this is done free the pages we are not interested in.
6195 	 *
6196 	 * We don't have to hold zone->lock here because the pages are
6197 	 * isolated thus they won't get removed from buddy.
6198 	 */
6199 
6200 	order = 0;
6201 	outer_start = start;
6202 	while (!PageBuddy(pfn_to_page(outer_start))) {
6203 		if (++order > MAX_ORDER) {
6204 			outer_start = start;
6205 			break;
6206 		}
6207 		outer_start &= ~0UL << order;
6208 	}
6209 
6210 	if (outer_start != start) {
6211 		order = buddy_order(pfn_to_page(outer_start));
6212 
6213 		/*
6214 		 * outer_start page could be small order buddy page and
6215 		 * it doesn't include start page. Adjust outer_start
6216 		 * in this case to report failed page properly
6217 		 * on tracepoint in test_pages_isolated()
6218 		 */
6219 		if (outer_start + (1UL << order) <= start)
6220 			outer_start = start;
6221 	}
6222 
6223 	/* Make sure the range is really isolated. */
6224 	if (test_pages_isolated(outer_start, end, 0)) {
6225 		ret = -EBUSY;
6226 		goto done;
6227 	}
6228 
6229 	/* Grab isolated pages from freelists. */
6230 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6231 	if (!outer_end) {
6232 		ret = -EBUSY;
6233 		goto done;
6234 	}
6235 
6236 	/* Free head and tail (if any) */
6237 	if (start != outer_start)
6238 		free_contig_range(outer_start, start - outer_start);
6239 	if (end != outer_end)
6240 		free_contig_range(end, outer_end - end);
6241 
6242 done:
6243 	undo_isolate_page_range(start, end, migratetype);
6244 	return ret;
6245 }
6246 EXPORT_SYMBOL(alloc_contig_range);
6247 
6248 static int __alloc_contig_pages(unsigned long start_pfn,
6249 				unsigned long nr_pages, gfp_t gfp_mask)
6250 {
6251 	unsigned long end_pfn = start_pfn + nr_pages;
6252 
6253 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
6254 				  gfp_mask);
6255 }
6256 
6257 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6258 				   unsigned long nr_pages)
6259 {
6260 	unsigned long i, end_pfn = start_pfn + nr_pages;
6261 	struct page *page;
6262 
6263 	for (i = start_pfn; i < end_pfn; i++) {
6264 		page = pfn_to_online_page(i);
6265 		if (!page)
6266 			return false;
6267 
6268 		if (page_zone(page) != z)
6269 			return false;
6270 
6271 		if (PageReserved(page))
6272 			return false;
6273 
6274 		if (PageHuge(page))
6275 			return false;
6276 	}
6277 	return true;
6278 }
6279 
6280 static bool zone_spans_last_pfn(const struct zone *zone,
6281 				unsigned long start_pfn, unsigned long nr_pages)
6282 {
6283 	unsigned long last_pfn = start_pfn + nr_pages - 1;
6284 
6285 	return zone_spans_pfn(zone, last_pfn);
6286 }
6287 
6288 /**
6289  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6290  * @nr_pages:	Number of contiguous pages to allocate
6291  * @gfp_mask:	GFP mask to limit search and used during compaction
6292  * @nid:	Target node
6293  * @nodemask:	Mask for other possible nodes
6294  *
6295  * This routine is a wrapper around alloc_contig_range(). It scans over zones
6296  * on an applicable zonelist to find a contiguous pfn range which can then be
6297  * tried for allocation with alloc_contig_range(). This routine is intended
6298  * for allocation requests which can not be fulfilled with the buddy allocator.
6299  *
6300  * The allocated memory is always aligned to a page boundary. If nr_pages is a
6301  * power of two, then allocated range is also guaranteed to be aligned to same
6302  * nr_pages (e.g. 1GB request would be aligned to 1GB).
6303  *
6304  * Allocated pages can be freed with free_contig_range() or by manually calling
6305  * __free_page() on each allocated page.
6306  *
6307  * Return: pointer to contiguous pages on success, or NULL if not successful.
6308  */
6309 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
6310 				int nid, nodemask_t *nodemask)
6311 {
6312 	unsigned long ret, pfn, flags;
6313 	struct zonelist *zonelist;
6314 	struct zone *zone;
6315 	struct zoneref *z;
6316 
6317 	zonelist = node_zonelist(nid, gfp_mask);
6318 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6319 					gfp_zone(gfp_mask), nodemask) {
6320 		spin_lock_irqsave(&zone->lock, flags);
6321 
6322 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6323 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6324 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6325 				/*
6326 				 * We release the zone lock here because
6327 				 * alloc_contig_range() will also lock the zone
6328 				 * at some point. If there's an allocation
6329 				 * spinning on this lock, it may win the race
6330 				 * and cause alloc_contig_range() to fail...
6331 				 */
6332 				spin_unlock_irqrestore(&zone->lock, flags);
6333 				ret = __alloc_contig_pages(pfn, nr_pages,
6334 							gfp_mask);
6335 				if (!ret)
6336 					return pfn_to_page(pfn);
6337 				spin_lock_irqsave(&zone->lock, flags);
6338 			}
6339 			pfn += nr_pages;
6340 		}
6341 		spin_unlock_irqrestore(&zone->lock, flags);
6342 	}
6343 	return NULL;
6344 }
6345 #endif /* CONFIG_CONTIG_ALLOC */
6346 
6347 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6348 {
6349 	unsigned long count = 0;
6350 
6351 	for (; nr_pages--; pfn++) {
6352 		struct page *page = pfn_to_page(pfn);
6353 
6354 		count += page_count(page) != 1;
6355 		__free_page(page);
6356 	}
6357 	WARN(count != 0, "%lu pages are still in use!\n", count);
6358 }
6359 EXPORT_SYMBOL(free_contig_range);
6360 
6361 /*
6362  * Effectively disable pcplists for the zone by setting the high limit to 0
6363  * and draining all cpus. A concurrent page freeing on another CPU that's about
6364  * to put the page on pcplist will either finish before the drain and the page
6365  * will be drained, or observe the new high limit and skip the pcplist.
6366  *
6367  * Must be paired with a call to zone_pcp_enable().
6368  */
6369 void zone_pcp_disable(struct zone *zone)
6370 {
6371 	mutex_lock(&pcp_batch_high_lock);
6372 	__zone_set_pageset_high_and_batch(zone, 0, 1);
6373 	__drain_all_pages(zone, true);
6374 }
6375 
6376 void zone_pcp_enable(struct zone *zone)
6377 {
6378 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
6379 	mutex_unlock(&pcp_batch_high_lock);
6380 }
6381 
6382 void zone_pcp_reset(struct zone *zone)
6383 {
6384 	int cpu;
6385 	struct per_cpu_zonestat *pzstats;
6386 
6387 	if (zone->per_cpu_pageset != &boot_pageset) {
6388 		for_each_online_cpu(cpu) {
6389 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6390 			drain_zonestat(zone, pzstats);
6391 		}
6392 		free_percpu(zone->per_cpu_pageset);
6393 		zone->per_cpu_pageset = &boot_pageset;
6394 		if (zone->per_cpu_zonestats != &boot_zonestats) {
6395 			free_percpu(zone->per_cpu_zonestats);
6396 			zone->per_cpu_zonestats = &boot_zonestats;
6397 		}
6398 	}
6399 }
6400 
6401 #ifdef CONFIG_MEMORY_HOTREMOVE
6402 /*
6403  * All pages in the range must be in a single zone, must not contain holes,
6404  * must span full sections, and must be isolated before calling this function.
6405  */
6406 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6407 {
6408 	unsigned long pfn = start_pfn;
6409 	struct page *page;
6410 	struct zone *zone;
6411 	unsigned int order;
6412 	unsigned long flags;
6413 
6414 	offline_mem_sections(pfn, end_pfn);
6415 	zone = page_zone(pfn_to_page(pfn));
6416 	spin_lock_irqsave(&zone->lock, flags);
6417 	while (pfn < end_pfn) {
6418 		page = pfn_to_page(pfn);
6419 		/*
6420 		 * The HWPoisoned page may be not in buddy system, and
6421 		 * page_count() is not 0.
6422 		 */
6423 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6424 			pfn++;
6425 			continue;
6426 		}
6427 		/*
6428 		 * At this point all remaining PageOffline() pages have a
6429 		 * reference count of 0 and can simply be skipped.
6430 		 */
6431 		if (PageOffline(page)) {
6432 			BUG_ON(page_count(page));
6433 			BUG_ON(PageBuddy(page));
6434 			pfn++;
6435 			continue;
6436 		}
6437 
6438 		BUG_ON(page_count(page));
6439 		BUG_ON(!PageBuddy(page));
6440 		order = buddy_order(page);
6441 		del_page_from_free_list(page, zone, order);
6442 		pfn += (1 << order);
6443 	}
6444 	spin_unlock_irqrestore(&zone->lock, flags);
6445 }
6446 #endif
6447 
6448 /*
6449  * This function returns a stable result only if called under zone lock.
6450  */
6451 bool is_free_buddy_page(struct page *page)
6452 {
6453 	unsigned long pfn = page_to_pfn(page);
6454 	unsigned int order;
6455 
6456 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6457 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6458 
6459 		if (PageBuddy(page_head) &&
6460 		    buddy_order_unsafe(page_head) >= order)
6461 			break;
6462 	}
6463 
6464 	return order <= MAX_ORDER;
6465 }
6466 EXPORT_SYMBOL(is_free_buddy_page);
6467 
6468 #ifdef CONFIG_MEMORY_FAILURE
6469 /*
6470  * Break down a higher-order page in sub-pages, and keep our target out of
6471  * buddy allocator.
6472  */
6473 static void break_down_buddy_pages(struct zone *zone, struct page *page,
6474 				   struct page *target, int low, int high,
6475 				   int migratetype)
6476 {
6477 	unsigned long size = 1 << high;
6478 	struct page *current_buddy, *next_page;
6479 
6480 	while (high > low) {
6481 		high--;
6482 		size >>= 1;
6483 
6484 		if (target >= &page[size]) {
6485 			next_page = page + size;
6486 			current_buddy = page;
6487 		} else {
6488 			next_page = page;
6489 			current_buddy = page + size;
6490 		}
6491 		page = next_page;
6492 
6493 		if (set_page_guard(zone, current_buddy, high, migratetype))
6494 			continue;
6495 
6496 		if (current_buddy != target) {
6497 			add_to_free_list(current_buddy, zone, high, migratetype);
6498 			set_buddy_order(current_buddy, high);
6499 		}
6500 	}
6501 }
6502 
6503 /*
6504  * Take a page that will be marked as poisoned off the buddy allocator.
6505  */
6506 bool take_page_off_buddy(struct page *page)
6507 {
6508 	struct zone *zone = page_zone(page);
6509 	unsigned long pfn = page_to_pfn(page);
6510 	unsigned long flags;
6511 	unsigned int order;
6512 	bool ret = false;
6513 
6514 	spin_lock_irqsave(&zone->lock, flags);
6515 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6516 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6517 		int page_order = buddy_order(page_head);
6518 
6519 		if (PageBuddy(page_head) && page_order >= order) {
6520 			unsigned long pfn_head = page_to_pfn(page_head);
6521 			int migratetype = get_pfnblock_migratetype(page_head,
6522 								   pfn_head);
6523 
6524 			del_page_from_free_list(page_head, zone, page_order);
6525 			break_down_buddy_pages(zone, page_head, page, 0,
6526 						page_order, migratetype);
6527 			SetPageHWPoisonTakenOff(page);
6528 			if (!is_migrate_isolate(migratetype))
6529 				__mod_zone_freepage_state(zone, -1, migratetype);
6530 			ret = true;
6531 			break;
6532 		}
6533 		if (page_count(page_head) > 0)
6534 			break;
6535 	}
6536 	spin_unlock_irqrestore(&zone->lock, flags);
6537 	return ret;
6538 }
6539 
6540 /*
6541  * Cancel takeoff done by take_page_off_buddy().
6542  */
6543 bool put_page_back_buddy(struct page *page)
6544 {
6545 	struct zone *zone = page_zone(page);
6546 	unsigned long pfn = page_to_pfn(page);
6547 	unsigned long flags;
6548 	int migratetype = get_pfnblock_migratetype(page, pfn);
6549 	bool ret = false;
6550 
6551 	spin_lock_irqsave(&zone->lock, flags);
6552 	if (put_page_testzero(page)) {
6553 		ClearPageHWPoisonTakenOff(page);
6554 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6555 		if (TestClearPageHWPoison(page)) {
6556 			ret = true;
6557 		}
6558 	}
6559 	spin_unlock_irqrestore(&zone->lock, flags);
6560 
6561 	return ret;
6562 }
6563 #endif
6564 
6565 #ifdef CONFIG_ZONE_DMA
6566 bool has_managed_dma(void)
6567 {
6568 	struct pglist_data *pgdat;
6569 
6570 	for_each_online_pgdat(pgdat) {
6571 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6572 
6573 		if (managed_zone(zone))
6574 			return true;
6575 	}
6576 	return false;
6577 }
6578 #endif /* CONFIG_ZONE_DMA */
6579 
6580 #ifdef CONFIG_UNACCEPTED_MEMORY
6581 
6582 /* Counts number of zones with unaccepted pages. */
6583 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
6584 
6585 static bool lazy_accept = true;
6586 
6587 static int __init accept_memory_parse(char *p)
6588 {
6589 	if (!strcmp(p, "lazy")) {
6590 		lazy_accept = true;
6591 		return 0;
6592 	} else if (!strcmp(p, "eager")) {
6593 		lazy_accept = false;
6594 		return 0;
6595 	} else {
6596 		return -EINVAL;
6597 	}
6598 }
6599 early_param("accept_memory", accept_memory_parse);
6600 
6601 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6602 {
6603 	phys_addr_t start = page_to_phys(page);
6604 	phys_addr_t end = start + (PAGE_SIZE << order);
6605 
6606 	return range_contains_unaccepted_memory(start, end);
6607 }
6608 
6609 static void accept_page(struct page *page, unsigned int order)
6610 {
6611 	phys_addr_t start = page_to_phys(page);
6612 
6613 	accept_memory(start, start + (PAGE_SIZE << order));
6614 }
6615 
6616 static bool try_to_accept_memory_one(struct zone *zone)
6617 {
6618 	unsigned long flags;
6619 	struct page *page;
6620 	bool last;
6621 
6622 	if (list_empty(&zone->unaccepted_pages))
6623 		return false;
6624 
6625 	spin_lock_irqsave(&zone->lock, flags);
6626 	page = list_first_entry_or_null(&zone->unaccepted_pages,
6627 					struct page, lru);
6628 	if (!page) {
6629 		spin_unlock_irqrestore(&zone->lock, flags);
6630 		return false;
6631 	}
6632 
6633 	list_del(&page->lru);
6634 	last = list_empty(&zone->unaccepted_pages);
6635 
6636 	__mod_zone_freepage_state(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6637 	__mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
6638 	spin_unlock_irqrestore(&zone->lock, flags);
6639 
6640 	accept_page(page, MAX_ORDER);
6641 
6642 	__free_pages_ok(page, MAX_ORDER, FPI_TO_TAIL);
6643 
6644 	if (last)
6645 		static_branch_dec(&zones_with_unaccepted_pages);
6646 
6647 	return true;
6648 }
6649 
6650 static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6651 {
6652 	long to_accept;
6653 	int ret = false;
6654 
6655 	/* How much to accept to get to high watermark? */
6656 	to_accept = high_wmark_pages(zone) -
6657 		    (zone_page_state(zone, NR_FREE_PAGES) -
6658 		    __zone_watermark_unusable_free(zone, order, 0));
6659 
6660 	/* Accept at least one page */
6661 	do {
6662 		if (!try_to_accept_memory_one(zone))
6663 			break;
6664 		ret = true;
6665 		to_accept -= MAX_ORDER_NR_PAGES;
6666 	} while (to_accept > 0);
6667 
6668 	return ret;
6669 }
6670 
6671 static inline bool has_unaccepted_memory(void)
6672 {
6673 	return static_branch_unlikely(&zones_with_unaccepted_pages);
6674 }
6675 
6676 static bool __free_unaccepted(struct page *page)
6677 {
6678 	struct zone *zone = page_zone(page);
6679 	unsigned long flags;
6680 	bool first = false;
6681 
6682 	if (!lazy_accept)
6683 		return false;
6684 
6685 	spin_lock_irqsave(&zone->lock, flags);
6686 	first = list_empty(&zone->unaccepted_pages);
6687 	list_add_tail(&page->lru, &zone->unaccepted_pages);
6688 	__mod_zone_freepage_state(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6689 	__mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
6690 	spin_unlock_irqrestore(&zone->lock, flags);
6691 
6692 	if (first)
6693 		static_branch_inc(&zones_with_unaccepted_pages);
6694 
6695 	return true;
6696 }
6697 
6698 #else
6699 
6700 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6701 {
6702 	return false;
6703 }
6704 
6705 static void accept_page(struct page *page, unsigned int order)
6706 {
6707 }
6708 
6709 static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6710 {
6711 	return false;
6712 }
6713 
6714 static inline bool has_unaccepted_memory(void)
6715 {
6716 	return false;
6717 }
6718 
6719 static bool __free_unaccepted(struct page *page)
6720 {
6721 	BUILD_BUG();
6722 	return false;
6723 }
6724 
6725 #endif /* CONFIG_UNACCEPTED_MEMORY */
6726