xref: /openbmc/linux/mm/page_alloc.c (revision 7bcae826)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <trace/events/oom.h>
59 #include <linux/prefetch.h>
60 #include <linux/mm_inline.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 
68 #include <asm/sections.h>
69 #include <asm/tlbflush.h>
70 #include <asm/div64.h>
71 #include "internal.h"
72 
73 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
74 static DEFINE_MUTEX(pcp_batch_high_lock);
75 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
76 
77 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
78 DEFINE_PER_CPU(int, numa_node);
79 EXPORT_PER_CPU_SYMBOL(numa_node);
80 #endif
81 
82 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
83 /*
84  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
85  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
86  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
87  * defined in <linux/topology.h>.
88  */
89 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
90 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
91 int _node_numa_mem_[MAX_NUMNODES];
92 #endif
93 
94 /* work_structs for global per-cpu drains */
95 DEFINE_MUTEX(pcpu_drain_mutex);
96 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
97 
98 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
99 volatile unsigned long latent_entropy __latent_entropy;
100 EXPORT_SYMBOL(latent_entropy);
101 #endif
102 
103 /*
104  * Array of node states.
105  */
106 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
107 	[N_POSSIBLE] = NODE_MASK_ALL,
108 	[N_ONLINE] = { { [0] = 1UL } },
109 #ifndef CONFIG_NUMA
110 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
111 #ifdef CONFIG_HIGHMEM
112 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
113 #endif
114 #ifdef CONFIG_MOVABLE_NODE
115 	[N_MEMORY] = { { [0] = 1UL } },
116 #endif
117 	[N_CPU] = { { [0] = 1UL } },
118 #endif	/* NUMA */
119 };
120 EXPORT_SYMBOL(node_states);
121 
122 /* Protect totalram_pages and zone->managed_pages */
123 static DEFINE_SPINLOCK(managed_page_count_lock);
124 
125 unsigned long totalram_pages __read_mostly;
126 unsigned long totalreserve_pages __read_mostly;
127 unsigned long totalcma_pages __read_mostly;
128 
129 int percpu_pagelist_fraction;
130 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
131 
132 /*
133  * A cached value of the page's pageblock's migratetype, used when the page is
134  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
135  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
136  * Also the migratetype set in the page does not necessarily match the pcplist
137  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
138  * other index - this ensures that it will be put on the correct CMA freelist.
139  */
140 static inline int get_pcppage_migratetype(struct page *page)
141 {
142 	return page->index;
143 }
144 
145 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
146 {
147 	page->index = migratetype;
148 }
149 
150 #ifdef CONFIG_PM_SLEEP
151 /*
152  * The following functions are used by the suspend/hibernate code to temporarily
153  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
154  * while devices are suspended.  To avoid races with the suspend/hibernate code,
155  * they should always be called with pm_mutex held (gfp_allowed_mask also should
156  * only be modified with pm_mutex held, unless the suspend/hibernate code is
157  * guaranteed not to run in parallel with that modification).
158  */
159 
160 static gfp_t saved_gfp_mask;
161 
162 void pm_restore_gfp_mask(void)
163 {
164 	WARN_ON(!mutex_is_locked(&pm_mutex));
165 	if (saved_gfp_mask) {
166 		gfp_allowed_mask = saved_gfp_mask;
167 		saved_gfp_mask = 0;
168 	}
169 }
170 
171 void pm_restrict_gfp_mask(void)
172 {
173 	WARN_ON(!mutex_is_locked(&pm_mutex));
174 	WARN_ON(saved_gfp_mask);
175 	saved_gfp_mask = gfp_allowed_mask;
176 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
177 }
178 
179 bool pm_suspended_storage(void)
180 {
181 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
182 		return false;
183 	return true;
184 }
185 #endif /* CONFIG_PM_SLEEP */
186 
187 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
188 unsigned int pageblock_order __read_mostly;
189 #endif
190 
191 static void __free_pages_ok(struct page *page, unsigned int order);
192 
193 /*
194  * results with 256, 32 in the lowmem_reserve sysctl:
195  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
196  *	1G machine -> (16M dma, 784M normal, 224M high)
197  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
198  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
199  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
200  *
201  * TBD: should special case ZONE_DMA32 machines here - in those we normally
202  * don't need any ZONE_NORMAL reservation
203  */
204 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
205 #ifdef CONFIG_ZONE_DMA
206 	 256,
207 #endif
208 #ifdef CONFIG_ZONE_DMA32
209 	 256,
210 #endif
211 #ifdef CONFIG_HIGHMEM
212 	 32,
213 #endif
214 	 32,
215 };
216 
217 EXPORT_SYMBOL(totalram_pages);
218 
219 static char * const zone_names[MAX_NR_ZONES] = {
220 #ifdef CONFIG_ZONE_DMA
221 	 "DMA",
222 #endif
223 #ifdef CONFIG_ZONE_DMA32
224 	 "DMA32",
225 #endif
226 	 "Normal",
227 #ifdef CONFIG_HIGHMEM
228 	 "HighMem",
229 #endif
230 	 "Movable",
231 #ifdef CONFIG_ZONE_DEVICE
232 	 "Device",
233 #endif
234 };
235 
236 char * const migratetype_names[MIGRATE_TYPES] = {
237 	"Unmovable",
238 	"Movable",
239 	"Reclaimable",
240 	"HighAtomic",
241 #ifdef CONFIG_CMA
242 	"CMA",
243 #endif
244 #ifdef CONFIG_MEMORY_ISOLATION
245 	"Isolate",
246 #endif
247 };
248 
249 compound_page_dtor * const compound_page_dtors[] = {
250 	NULL,
251 	free_compound_page,
252 #ifdef CONFIG_HUGETLB_PAGE
253 	free_huge_page,
254 #endif
255 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
256 	free_transhuge_page,
257 #endif
258 };
259 
260 int min_free_kbytes = 1024;
261 int user_min_free_kbytes = -1;
262 int watermark_scale_factor = 10;
263 
264 static unsigned long __meminitdata nr_kernel_pages;
265 static unsigned long __meminitdata nr_all_pages;
266 static unsigned long __meminitdata dma_reserve;
267 
268 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
269 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
270 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
271 static unsigned long __initdata required_kernelcore;
272 static unsigned long __initdata required_movablecore;
273 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
274 static bool mirrored_kernelcore;
275 
276 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
277 int movable_zone;
278 EXPORT_SYMBOL(movable_zone);
279 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
280 
281 #if MAX_NUMNODES > 1
282 int nr_node_ids __read_mostly = MAX_NUMNODES;
283 int nr_online_nodes __read_mostly = 1;
284 EXPORT_SYMBOL(nr_node_ids);
285 EXPORT_SYMBOL(nr_online_nodes);
286 #endif
287 
288 int page_group_by_mobility_disabled __read_mostly;
289 
290 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
291 static inline void reset_deferred_meminit(pg_data_t *pgdat)
292 {
293 	pgdat->first_deferred_pfn = ULONG_MAX;
294 }
295 
296 /* Returns true if the struct page for the pfn is uninitialised */
297 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
298 {
299 	int nid = early_pfn_to_nid(pfn);
300 
301 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
302 		return true;
303 
304 	return false;
305 }
306 
307 /*
308  * Returns false when the remaining initialisation should be deferred until
309  * later in the boot cycle when it can be parallelised.
310  */
311 static inline bool update_defer_init(pg_data_t *pgdat,
312 				unsigned long pfn, unsigned long zone_end,
313 				unsigned long *nr_initialised)
314 {
315 	unsigned long max_initialise;
316 
317 	/* Always populate low zones for address-contrained allocations */
318 	if (zone_end < pgdat_end_pfn(pgdat))
319 		return true;
320 	/*
321 	 * Initialise at least 2G of a node but also take into account that
322 	 * two large system hashes that can take up 1GB for 0.25TB/node.
323 	 */
324 	max_initialise = max(2UL << (30 - PAGE_SHIFT),
325 		(pgdat->node_spanned_pages >> 8));
326 
327 	(*nr_initialised)++;
328 	if ((*nr_initialised > max_initialise) &&
329 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
330 		pgdat->first_deferred_pfn = pfn;
331 		return false;
332 	}
333 
334 	return true;
335 }
336 #else
337 static inline void reset_deferred_meminit(pg_data_t *pgdat)
338 {
339 }
340 
341 static inline bool early_page_uninitialised(unsigned long pfn)
342 {
343 	return false;
344 }
345 
346 static inline bool update_defer_init(pg_data_t *pgdat,
347 				unsigned long pfn, unsigned long zone_end,
348 				unsigned long *nr_initialised)
349 {
350 	return true;
351 }
352 #endif
353 
354 /* Return a pointer to the bitmap storing bits affecting a block of pages */
355 static inline unsigned long *get_pageblock_bitmap(struct page *page,
356 							unsigned long pfn)
357 {
358 #ifdef CONFIG_SPARSEMEM
359 	return __pfn_to_section(pfn)->pageblock_flags;
360 #else
361 	return page_zone(page)->pageblock_flags;
362 #endif /* CONFIG_SPARSEMEM */
363 }
364 
365 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
366 {
367 #ifdef CONFIG_SPARSEMEM
368 	pfn &= (PAGES_PER_SECTION-1);
369 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
370 #else
371 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
372 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
373 #endif /* CONFIG_SPARSEMEM */
374 }
375 
376 /**
377  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
378  * @page: The page within the block of interest
379  * @pfn: The target page frame number
380  * @end_bitidx: The last bit of interest to retrieve
381  * @mask: mask of bits that the caller is interested in
382  *
383  * Return: pageblock_bits flags
384  */
385 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
386 					unsigned long pfn,
387 					unsigned long end_bitidx,
388 					unsigned long mask)
389 {
390 	unsigned long *bitmap;
391 	unsigned long bitidx, word_bitidx;
392 	unsigned long word;
393 
394 	bitmap = get_pageblock_bitmap(page, pfn);
395 	bitidx = pfn_to_bitidx(page, pfn);
396 	word_bitidx = bitidx / BITS_PER_LONG;
397 	bitidx &= (BITS_PER_LONG-1);
398 
399 	word = bitmap[word_bitidx];
400 	bitidx += end_bitidx;
401 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
402 }
403 
404 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
405 					unsigned long end_bitidx,
406 					unsigned long mask)
407 {
408 	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
409 }
410 
411 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
412 {
413 	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
414 }
415 
416 /**
417  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
418  * @page: The page within the block of interest
419  * @flags: The flags to set
420  * @pfn: The target page frame number
421  * @end_bitidx: The last bit of interest
422  * @mask: mask of bits that the caller is interested in
423  */
424 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
425 					unsigned long pfn,
426 					unsigned long end_bitidx,
427 					unsigned long mask)
428 {
429 	unsigned long *bitmap;
430 	unsigned long bitidx, word_bitidx;
431 	unsigned long old_word, word;
432 
433 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
434 
435 	bitmap = get_pageblock_bitmap(page, pfn);
436 	bitidx = pfn_to_bitidx(page, pfn);
437 	word_bitidx = bitidx / BITS_PER_LONG;
438 	bitidx &= (BITS_PER_LONG-1);
439 
440 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
441 
442 	bitidx += end_bitidx;
443 	mask <<= (BITS_PER_LONG - bitidx - 1);
444 	flags <<= (BITS_PER_LONG - bitidx - 1);
445 
446 	word = READ_ONCE(bitmap[word_bitidx]);
447 	for (;;) {
448 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
449 		if (word == old_word)
450 			break;
451 		word = old_word;
452 	}
453 }
454 
455 void set_pageblock_migratetype(struct page *page, int migratetype)
456 {
457 	if (unlikely(page_group_by_mobility_disabled &&
458 		     migratetype < MIGRATE_PCPTYPES))
459 		migratetype = MIGRATE_UNMOVABLE;
460 
461 	set_pageblock_flags_group(page, (unsigned long)migratetype,
462 					PB_migrate, PB_migrate_end);
463 }
464 
465 #ifdef CONFIG_DEBUG_VM
466 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
467 {
468 	int ret = 0;
469 	unsigned seq;
470 	unsigned long pfn = page_to_pfn(page);
471 	unsigned long sp, start_pfn;
472 
473 	do {
474 		seq = zone_span_seqbegin(zone);
475 		start_pfn = zone->zone_start_pfn;
476 		sp = zone->spanned_pages;
477 		if (!zone_spans_pfn(zone, pfn))
478 			ret = 1;
479 	} while (zone_span_seqretry(zone, seq));
480 
481 	if (ret)
482 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
483 			pfn, zone_to_nid(zone), zone->name,
484 			start_pfn, start_pfn + sp);
485 
486 	return ret;
487 }
488 
489 static int page_is_consistent(struct zone *zone, struct page *page)
490 {
491 	if (!pfn_valid_within(page_to_pfn(page)))
492 		return 0;
493 	if (zone != page_zone(page))
494 		return 0;
495 
496 	return 1;
497 }
498 /*
499  * Temporary debugging check for pages not lying within a given zone.
500  */
501 static int bad_range(struct zone *zone, struct page *page)
502 {
503 	if (page_outside_zone_boundaries(zone, page))
504 		return 1;
505 	if (!page_is_consistent(zone, page))
506 		return 1;
507 
508 	return 0;
509 }
510 #else
511 static inline int bad_range(struct zone *zone, struct page *page)
512 {
513 	return 0;
514 }
515 #endif
516 
517 static void bad_page(struct page *page, const char *reason,
518 		unsigned long bad_flags)
519 {
520 	static unsigned long resume;
521 	static unsigned long nr_shown;
522 	static unsigned long nr_unshown;
523 
524 	/*
525 	 * Allow a burst of 60 reports, then keep quiet for that minute;
526 	 * or allow a steady drip of one report per second.
527 	 */
528 	if (nr_shown == 60) {
529 		if (time_before(jiffies, resume)) {
530 			nr_unshown++;
531 			goto out;
532 		}
533 		if (nr_unshown) {
534 			pr_alert(
535 			      "BUG: Bad page state: %lu messages suppressed\n",
536 				nr_unshown);
537 			nr_unshown = 0;
538 		}
539 		nr_shown = 0;
540 	}
541 	if (nr_shown++ == 0)
542 		resume = jiffies + 60 * HZ;
543 
544 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
545 		current->comm, page_to_pfn(page));
546 	__dump_page(page, reason);
547 	bad_flags &= page->flags;
548 	if (bad_flags)
549 		pr_alert("bad because of flags: %#lx(%pGp)\n",
550 						bad_flags, &bad_flags);
551 	dump_page_owner(page);
552 
553 	print_modules();
554 	dump_stack();
555 out:
556 	/* Leave bad fields for debug, except PageBuddy could make trouble */
557 	page_mapcount_reset(page); /* remove PageBuddy */
558 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
559 }
560 
561 /*
562  * Higher-order pages are called "compound pages".  They are structured thusly:
563  *
564  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
565  *
566  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
567  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
568  *
569  * The first tail page's ->compound_dtor holds the offset in array of compound
570  * page destructors. See compound_page_dtors.
571  *
572  * The first tail page's ->compound_order holds the order of allocation.
573  * This usage means that zero-order pages may not be compound.
574  */
575 
576 void free_compound_page(struct page *page)
577 {
578 	__free_pages_ok(page, compound_order(page));
579 }
580 
581 void prep_compound_page(struct page *page, unsigned int order)
582 {
583 	int i;
584 	int nr_pages = 1 << order;
585 
586 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
587 	set_compound_order(page, order);
588 	__SetPageHead(page);
589 	for (i = 1; i < nr_pages; i++) {
590 		struct page *p = page + i;
591 		set_page_count(p, 0);
592 		p->mapping = TAIL_MAPPING;
593 		set_compound_head(p, page);
594 	}
595 	atomic_set(compound_mapcount_ptr(page), -1);
596 }
597 
598 #ifdef CONFIG_DEBUG_PAGEALLOC
599 unsigned int _debug_guardpage_minorder;
600 bool _debug_pagealloc_enabled __read_mostly
601 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
602 EXPORT_SYMBOL(_debug_pagealloc_enabled);
603 bool _debug_guardpage_enabled __read_mostly;
604 
605 static int __init early_debug_pagealloc(char *buf)
606 {
607 	if (!buf)
608 		return -EINVAL;
609 	return kstrtobool(buf, &_debug_pagealloc_enabled);
610 }
611 early_param("debug_pagealloc", early_debug_pagealloc);
612 
613 static bool need_debug_guardpage(void)
614 {
615 	/* If we don't use debug_pagealloc, we don't need guard page */
616 	if (!debug_pagealloc_enabled())
617 		return false;
618 
619 	if (!debug_guardpage_minorder())
620 		return false;
621 
622 	return true;
623 }
624 
625 static void init_debug_guardpage(void)
626 {
627 	if (!debug_pagealloc_enabled())
628 		return;
629 
630 	if (!debug_guardpage_minorder())
631 		return;
632 
633 	_debug_guardpage_enabled = true;
634 }
635 
636 struct page_ext_operations debug_guardpage_ops = {
637 	.need = need_debug_guardpage,
638 	.init = init_debug_guardpage,
639 };
640 
641 static int __init debug_guardpage_minorder_setup(char *buf)
642 {
643 	unsigned long res;
644 
645 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
646 		pr_err("Bad debug_guardpage_minorder value\n");
647 		return 0;
648 	}
649 	_debug_guardpage_minorder = res;
650 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
651 	return 0;
652 }
653 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
654 
655 static inline bool set_page_guard(struct zone *zone, struct page *page,
656 				unsigned int order, int migratetype)
657 {
658 	struct page_ext *page_ext;
659 
660 	if (!debug_guardpage_enabled())
661 		return false;
662 
663 	if (order >= debug_guardpage_minorder())
664 		return false;
665 
666 	page_ext = lookup_page_ext(page);
667 	if (unlikely(!page_ext))
668 		return false;
669 
670 	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
671 
672 	INIT_LIST_HEAD(&page->lru);
673 	set_page_private(page, order);
674 	/* Guard pages are not available for any usage */
675 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
676 
677 	return true;
678 }
679 
680 static inline void clear_page_guard(struct zone *zone, struct page *page,
681 				unsigned int order, int migratetype)
682 {
683 	struct page_ext *page_ext;
684 
685 	if (!debug_guardpage_enabled())
686 		return;
687 
688 	page_ext = lookup_page_ext(page);
689 	if (unlikely(!page_ext))
690 		return;
691 
692 	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
693 
694 	set_page_private(page, 0);
695 	if (!is_migrate_isolate(migratetype))
696 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
697 }
698 #else
699 struct page_ext_operations debug_guardpage_ops;
700 static inline bool set_page_guard(struct zone *zone, struct page *page,
701 			unsigned int order, int migratetype) { return false; }
702 static inline void clear_page_guard(struct zone *zone, struct page *page,
703 				unsigned int order, int migratetype) {}
704 #endif
705 
706 static inline void set_page_order(struct page *page, unsigned int order)
707 {
708 	set_page_private(page, order);
709 	__SetPageBuddy(page);
710 }
711 
712 static inline void rmv_page_order(struct page *page)
713 {
714 	__ClearPageBuddy(page);
715 	set_page_private(page, 0);
716 }
717 
718 /*
719  * This function checks whether a page is free && is the buddy
720  * we can do coalesce a page and its buddy if
721  * (a) the buddy is not in a hole (check before calling!) &&
722  * (b) the buddy is in the buddy system &&
723  * (c) a page and its buddy have the same order &&
724  * (d) a page and its buddy are in the same zone.
725  *
726  * For recording whether a page is in the buddy system, we set ->_mapcount
727  * PAGE_BUDDY_MAPCOUNT_VALUE.
728  * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
729  * serialized by zone->lock.
730  *
731  * For recording page's order, we use page_private(page).
732  */
733 static inline int page_is_buddy(struct page *page, struct page *buddy,
734 							unsigned int order)
735 {
736 	if (page_is_guard(buddy) && page_order(buddy) == order) {
737 		if (page_zone_id(page) != page_zone_id(buddy))
738 			return 0;
739 
740 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
741 
742 		return 1;
743 	}
744 
745 	if (PageBuddy(buddy) && page_order(buddy) == order) {
746 		/*
747 		 * zone check is done late to avoid uselessly
748 		 * calculating zone/node ids for pages that could
749 		 * never merge.
750 		 */
751 		if (page_zone_id(page) != page_zone_id(buddy))
752 			return 0;
753 
754 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
755 
756 		return 1;
757 	}
758 	return 0;
759 }
760 
761 /*
762  * Freeing function for a buddy system allocator.
763  *
764  * The concept of a buddy system is to maintain direct-mapped table
765  * (containing bit values) for memory blocks of various "orders".
766  * The bottom level table contains the map for the smallest allocatable
767  * units of memory (here, pages), and each level above it describes
768  * pairs of units from the levels below, hence, "buddies".
769  * At a high level, all that happens here is marking the table entry
770  * at the bottom level available, and propagating the changes upward
771  * as necessary, plus some accounting needed to play nicely with other
772  * parts of the VM system.
773  * At each level, we keep a list of pages, which are heads of continuous
774  * free pages of length of (1 << order) and marked with _mapcount
775  * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
776  * field.
777  * So when we are allocating or freeing one, we can derive the state of the
778  * other.  That is, if we allocate a small block, and both were
779  * free, the remainder of the region must be split into blocks.
780  * If a block is freed, and its buddy is also free, then this
781  * triggers coalescing into a block of larger size.
782  *
783  * -- nyc
784  */
785 
786 static inline void __free_one_page(struct page *page,
787 		unsigned long pfn,
788 		struct zone *zone, unsigned int order,
789 		int migratetype)
790 {
791 	unsigned long combined_pfn;
792 	unsigned long uninitialized_var(buddy_pfn);
793 	struct page *buddy;
794 	unsigned int max_order;
795 
796 	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
797 
798 	VM_BUG_ON(!zone_is_initialized(zone));
799 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
800 
801 	VM_BUG_ON(migratetype == -1);
802 	if (likely(!is_migrate_isolate(migratetype)))
803 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
804 
805 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
806 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
807 
808 continue_merging:
809 	while (order < max_order - 1) {
810 		buddy_pfn = __find_buddy_pfn(pfn, order);
811 		buddy = page + (buddy_pfn - pfn);
812 
813 		if (!pfn_valid_within(buddy_pfn))
814 			goto done_merging;
815 		if (!page_is_buddy(page, buddy, order))
816 			goto done_merging;
817 		/*
818 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
819 		 * merge with it and move up one order.
820 		 */
821 		if (page_is_guard(buddy)) {
822 			clear_page_guard(zone, buddy, order, migratetype);
823 		} else {
824 			list_del(&buddy->lru);
825 			zone->free_area[order].nr_free--;
826 			rmv_page_order(buddy);
827 		}
828 		combined_pfn = buddy_pfn & pfn;
829 		page = page + (combined_pfn - pfn);
830 		pfn = combined_pfn;
831 		order++;
832 	}
833 	if (max_order < MAX_ORDER) {
834 		/* If we are here, it means order is >= pageblock_order.
835 		 * We want to prevent merge between freepages on isolate
836 		 * pageblock and normal pageblock. Without this, pageblock
837 		 * isolation could cause incorrect freepage or CMA accounting.
838 		 *
839 		 * We don't want to hit this code for the more frequent
840 		 * low-order merging.
841 		 */
842 		if (unlikely(has_isolate_pageblock(zone))) {
843 			int buddy_mt;
844 
845 			buddy_pfn = __find_buddy_pfn(pfn, order);
846 			buddy = page + (buddy_pfn - pfn);
847 			buddy_mt = get_pageblock_migratetype(buddy);
848 
849 			if (migratetype != buddy_mt
850 					&& (is_migrate_isolate(migratetype) ||
851 						is_migrate_isolate(buddy_mt)))
852 				goto done_merging;
853 		}
854 		max_order++;
855 		goto continue_merging;
856 	}
857 
858 done_merging:
859 	set_page_order(page, order);
860 
861 	/*
862 	 * If this is not the largest possible page, check if the buddy
863 	 * of the next-highest order is free. If it is, it's possible
864 	 * that pages are being freed that will coalesce soon. In case,
865 	 * that is happening, add the free page to the tail of the list
866 	 * so it's less likely to be used soon and more likely to be merged
867 	 * as a higher order page
868 	 */
869 	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
870 		struct page *higher_page, *higher_buddy;
871 		combined_pfn = buddy_pfn & pfn;
872 		higher_page = page + (combined_pfn - pfn);
873 		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
874 		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
875 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
876 			list_add_tail(&page->lru,
877 				&zone->free_area[order].free_list[migratetype]);
878 			goto out;
879 		}
880 	}
881 
882 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
883 out:
884 	zone->free_area[order].nr_free++;
885 }
886 
887 /*
888  * A bad page could be due to a number of fields. Instead of multiple branches,
889  * try and check multiple fields with one check. The caller must do a detailed
890  * check if necessary.
891  */
892 static inline bool page_expected_state(struct page *page,
893 					unsigned long check_flags)
894 {
895 	if (unlikely(atomic_read(&page->_mapcount) != -1))
896 		return false;
897 
898 	if (unlikely((unsigned long)page->mapping |
899 			page_ref_count(page) |
900 #ifdef CONFIG_MEMCG
901 			(unsigned long)page->mem_cgroup |
902 #endif
903 			(page->flags & check_flags)))
904 		return false;
905 
906 	return true;
907 }
908 
909 static void free_pages_check_bad(struct page *page)
910 {
911 	const char *bad_reason;
912 	unsigned long bad_flags;
913 
914 	bad_reason = NULL;
915 	bad_flags = 0;
916 
917 	if (unlikely(atomic_read(&page->_mapcount) != -1))
918 		bad_reason = "nonzero mapcount";
919 	if (unlikely(page->mapping != NULL))
920 		bad_reason = "non-NULL mapping";
921 	if (unlikely(page_ref_count(page) != 0))
922 		bad_reason = "nonzero _refcount";
923 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
924 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
925 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
926 	}
927 #ifdef CONFIG_MEMCG
928 	if (unlikely(page->mem_cgroup))
929 		bad_reason = "page still charged to cgroup";
930 #endif
931 	bad_page(page, bad_reason, bad_flags);
932 }
933 
934 static inline int free_pages_check(struct page *page)
935 {
936 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
937 		return 0;
938 
939 	/* Something has gone sideways, find it */
940 	free_pages_check_bad(page);
941 	return 1;
942 }
943 
944 static int free_tail_pages_check(struct page *head_page, struct page *page)
945 {
946 	int ret = 1;
947 
948 	/*
949 	 * We rely page->lru.next never has bit 0 set, unless the page
950 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
951 	 */
952 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
953 
954 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
955 		ret = 0;
956 		goto out;
957 	}
958 	switch (page - head_page) {
959 	case 1:
960 		/* the first tail page: ->mapping is compound_mapcount() */
961 		if (unlikely(compound_mapcount(page))) {
962 			bad_page(page, "nonzero compound_mapcount", 0);
963 			goto out;
964 		}
965 		break;
966 	case 2:
967 		/*
968 		 * the second tail page: ->mapping is
969 		 * page_deferred_list().next -- ignore value.
970 		 */
971 		break;
972 	default:
973 		if (page->mapping != TAIL_MAPPING) {
974 			bad_page(page, "corrupted mapping in tail page", 0);
975 			goto out;
976 		}
977 		break;
978 	}
979 	if (unlikely(!PageTail(page))) {
980 		bad_page(page, "PageTail not set", 0);
981 		goto out;
982 	}
983 	if (unlikely(compound_head(page) != head_page)) {
984 		bad_page(page, "compound_head not consistent", 0);
985 		goto out;
986 	}
987 	ret = 0;
988 out:
989 	page->mapping = NULL;
990 	clear_compound_head(page);
991 	return ret;
992 }
993 
994 static __always_inline bool free_pages_prepare(struct page *page,
995 					unsigned int order, bool check_free)
996 {
997 	int bad = 0;
998 
999 	VM_BUG_ON_PAGE(PageTail(page), page);
1000 
1001 	trace_mm_page_free(page, order);
1002 	kmemcheck_free_shadow(page, order);
1003 
1004 	/*
1005 	 * Check tail pages before head page information is cleared to
1006 	 * avoid checking PageCompound for order-0 pages.
1007 	 */
1008 	if (unlikely(order)) {
1009 		bool compound = PageCompound(page);
1010 		int i;
1011 
1012 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1013 
1014 		if (compound)
1015 			ClearPageDoubleMap(page);
1016 		for (i = 1; i < (1 << order); i++) {
1017 			if (compound)
1018 				bad += free_tail_pages_check(page, page + i);
1019 			if (unlikely(free_pages_check(page + i))) {
1020 				bad++;
1021 				continue;
1022 			}
1023 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1024 		}
1025 	}
1026 	if (PageMappingFlags(page))
1027 		page->mapping = NULL;
1028 	if (memcg_kmem_enabled() && PageKmemcg(page))
1029 		memcg_kmem_uncharge(page, order);
1030 	if (check_free)
1031 		bad += free_pages_check(page);
1032 	if (bad)
1033 		return false;
1034 
1035 	page_cpupid_reset_last(page);
1036 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1037 	reset_page_owner(page, order);
1038 
1039 	if (!PageHighMem(page)) {
1040 		debug_check_no_locks_freed(page_address(page),
1041 					   PAGE_SIZE << order);
1042 		debug_check_no_obj_freed(page_address(page),
1043 					   PAGE_SIZE << order);
1044 	}
1045 	arch_free_page(page, order);
1046 	kernel_poison_pages(page, 1 << order, 0);
1047 	kernel_map_pages(page, 1 << order, 0);
1048 	kasan_free_pages(page, order);
1049 
1050 	return true;
1051 }
1052 
1053 #ifdef CONFIG_DEBUG_VM
1054 static inline bool free_pcp_prepare(struct page *page)
1055 {
1056 	return free_pages_prepare(page, 0, true);
1057 }
1058 
1059 static inline bool bulkfree_pcp_prepare(struct page *page)
1060 {
1061 	return false;
1062 }
1063 #else
1064 static bool free_pcp_prepare(struct page *page)
1065 {
1066 	return free_pages_prepare(page, 0, false);
1067 }
1068 
1069 static bool bulkfree_pcp_prepare(struct page *page)
1070 {
1071 	return free_pages_check(page);
1072 }
1073 #endif /* CONFIG_DEBUG_VM */
1074 
1075 /*
1076  * Frees a number of pages from the PCP lists
1077  * Assumes all pages on list are in same zone, and of same order.
1078  * count is the number of pages to free.
1079  *
1080  * If the zone was previously in an "all pages pinned" state then look to
1081  * see if this freeing clears that state.
1082  *
1083  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1084  * pinned" detection logic.
1085  */
1086 static void free_pcppages_bulk(struct zone *zone, int count,
1087 					struct per_cpu_pages *pcp)
1088 {
1089 	int migratetype = 0;
1090 	int batch_free = 0;
1091 	unsigned long nr_scanned, flags;
1092 	bool isolated_pageblocks;
1093 
1094 	spin_lock_irqsave(&zone->lock, flags);
1095 	isolated_pageblocks = has_isolate_pageblock(zone);
1096 	nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1097 	if (nr_scanned)
1098 		__mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1099 
1100 	while (count) {
1101 		struct page *page;
1102 		struct list_head *list;
1103 
1104 		/*
1105 		 * Remove pages from lists in a round-robin fashion. A
1106 		 * batch_free count is maintained that is incremented when an
1107 		 * empty list is encountered.  This is so more pages are freed
1108 		 * off fuller lists instead of spinning excessively around empty
1109 		 * lists
1110 		 */
1111 		do {
1112 			batch_free++;
1113 			if (++migratetype == MIGRATE_PCPTYPES)
1114 				migratetype = 0;
1115 			list = &pcp->lists[migratetype];
1116 		} while (list_empty(list));
1117 
1118 		/* This is the only non-empty list. Free them all. */
1119 		if (batch_free == MIGRATE_PCPTYPES)
1120 			batch_free = count;
1121 
1122 		do {
1123 			int mt;	/* migratetype of the to-be-freed page */
1124 
1125 			page = list_last_entry(list, struct page, lru);
1126 			/* must delete as __free_one_page list manipulates */
1127 			list_del(&page->lru);
1128 
1129 			mt = get_pcppage_migratetype(page);
1130 			/* MIGRATE_ISOLATE page should not go to pcplists */
1131 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1132 			/* Pageblock could have been isolated meanwhile */
1133 			if (unlikely(isolated_pageblocks))
1134 				mt = get_pageblock_migratetype(page);
1135 
1136 			if (bulkfree_pcp_prepare(page))
1137 				continue;
1138 
1139 			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1140 			trace_mm_page_pcpu_drain(page, 0, mt);
1141 		} while (--count && --batch_free && !list_empty(list));
1142 	}
1143 	spin_unlock_irqrestore(&zone->lock, flags);
1144 }
1145 
1146 static void free_one_page(struct zone *zone,
1147 				struct page *page, unsigned long pfn,
1148 				unsigned int order,
1149 				int migratetype)
1150 {
1151 	unsigned long nr_scanned, flags;
1152 	spin_lock_irqsave(&zone->lock, flags);
1153 	__count_vm_events(PGFREE, 1 << order);
1154 	nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1155 	if (nr_scanned)
1156 		__mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1157 
1158 	if (unlikely(has_isolate_pageblock(zone) ||
1159 		is_migrate_isolate(migratetype))) {
1160 		migratetype = get_pfnblock_migratetype(page, pfn);
1161 	}
1162 	__free_one_page(page, pfn, zone, order, migratetype);
1163 	spin_unlock_irqrestore(&zone->lock, flags);
1164 }
1165 
1166 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1167 				unsigned long zone, int nid)
1168 {
1169 	set_page_links(page, zone, nid, pfn);
1170 	init_page_count(page);
1171 	page_mapcount_reset(page);
1172 	page_cpupid_reset_last(page);
1173 
1174 	INIT_LIST_HEAD(&page->lru);
1175 #ifdef WANT_PAGE_VIRTUAL
1176 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1177 	if (!is_highmem_idx(zone))
1178 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1179 #endif
1180 }
1181 
1182 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1183 					int nid)
1184 {
1185 	return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1186 }
1187 
1188 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1189 static void init_reserved_page(unsigned long pfn)
1190 {
1191 	pg_data_t *pgdat;
1192 	int nid, zid;
1193 
1194 	if (!early_page_uninitialised(pfn))
1195 		return;
1196 
1197 	nid = early_pfn_to_nid(pfn);
1198 	pgdat = NODE_DATA(nid);
1199 
1200 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1201 		struct zone *zone = &pgdat->node_zones[zid];
1202 
1203 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1204 			break;
1205 	}
1206 	__init_single_pfn(pfn, zid, nid);
1207 }
1208 #else
1209 static inline void init_reserved_page(unsigned long pfn)
1210 {
1211 }
1212 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1213 
1214 /*
1215  * Initialised pages do not have PageReserved set. This function is
1216  * called for each range allocated by the bootmem allocator and
1217  * marks the pages PageReserved. The remaining valid pages are later
1218  * sent to the buddy page allocator.
1219  */
1220 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1221 {
1222 	unsigned long start_pfn = PFN_DOWN(start);
1223 	unsigned long end_pfn = PFN_UP(end);
1224 
1225 	for (; start_pfn < end_pfn; start_pfn++) {
1226 		if (pfn_valid(start_pfn)) {
1227 			struct page *page = pfn_to_page(start_pfn);
1228 
1229 			init_reserved_page(start_pfn);
1230 
1231 			/* Avoid false-positive PageTail() */
1232 			INIT_LIST_HEAD(&page->lru);
1233 
1234 			SetPageReserved(page);
1235 		}
1236 	}
1237 }
1238 
1239 static void __free_pages_ok(struct page *page, unsigned int order)
1240 {
1241 	int migratetype;
1242 	unsigned long pfn = page_to_pfn(page);
1243 
1244 	if (!free_pages_prepare(page, order, true))
1245 		return;
1246 
1247 	migratetype = get_pfnblock_migratetype(page, pfn);
1248 	free_one_page(page_zone(page), page, pfn, order, migratetype);
1249 }
1250 
1251 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1252 {
1253 	unsigned int nr_pages = 1 << order;
1254 	struct page *p = page;
1255 	unsigned int loop;
1256 
1257 	prefetchw(p);
1258 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1259 		prefetchw(p + 1);
1260 		__ClearPageReserved(p);
1261 		set_page_count(p, 0);
1262 	}
1263 	__ClearPageReserved(p);
1264 	set_page_count(p, 0);
1265 
1266 	page_zone(page)->managed_pages += nr_pages;
1267 	set_page_refcounted(page);
1268 	__free_pages(page, order);
1269 }
1270 
1271 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1272 	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1273 
1274 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1275 
1276 int __meminit early_pfn_to_nid(unsigned long pfn)
1277 {
1278 	static DEFINE_SPINLOCK(early_pfn_lock);
1279 	int nid;
1280 
1281 	spin_lock(&early_pfn_lock);
1282 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1283 	if (nid < 0)
1284 		nid = first_online_node;
1285 	spin_unlock(&early_pfn_lock);
1286 
1287 	return nid;
1288 }
1289 #endif
1290 
1291 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1292 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1293 					struct mminit_pfnnid_cache *state)
1294 {
1295 	int nid;
1296 
1297 	nid = __early_pfn_to_nid(pfn, state);
1298 	if (nid >= 0 && nid != node)
1299 		return false;
1300 	return true;
1301 }
1302 
1303 /* Only safe to use early in boot when initialisation is single-threaded */
1304 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1305 {
1306 	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1307 }
1308 
1309 #else
1310 
1311 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1312 {
1313 	return true;
1314 }
1315 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1316 					struct mminit_pfnnid_cache *state)
1317 {
1318 	return true;
1319 }
1320 #endif
1321 
1322 
1323 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1324 							unsigned int order)
1325 {
1326 	if (early_page_uninitialised(pfn))
1327 		return;
1328 	return __free_pages_boot_core(page, order);
1329 }
1330 
1331 /*
1332  * Check that the whole (or subset of) a pageblock given by the interval of
1333  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1334  * with the migration of free compaction scanner. The scanners then need to
1335  * use only pfn_valid_within() check for arches that allow holes within
1336  * pageblocks.
1337  *
1338  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1339  *
1340  * It's possible on some configurations to have a setup like node0 node1 node0
1341  * i.e. it's possible that all pages within a zones range of pages do not
1342  * belong to a single zone. We assume that a border between node0 and node1
1343  * can occur within a single pageblock, but not a node0 node1 node0
1344  * interleaving within a single pageblock. It is therefore sufficient to check
1345  * the first and last page of a pageblock and avoid checking each individual
1346  * page in a pageblock.
1347  */
1348 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1349 				     unsigned long end_pfn, struct zone *zone)
1350 {
1351 	struct page *start_page;
1352 	struct page *end_page;
1353 
1354 	/* end_pfn is one past the range we are checking */
1355 	end_pfn--;
1356 
1357 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1358 		return NULL;
1359 
1360 	start_page = pfn_to_page(start_pfn);
1361 
1362 	if (page_zone(start_page) != zone)
1363 		return NULL;
1364 
1365 	end_page = pfn_to_page(end_pfn);
1366 
1367 	/* This gives a shorter code than deriving page_zone(end_page) */
1368 	if (page_zone_id(start_page) != page_zone_id(end_page))
1369 		return NULL;
1370 
1371 	return start_page;
1372 }
1373 
1374 void set_zone_contiguous(struct zone *zone)
1375 {
1376 	unsigned long block_start_pfn = zone->zone_start_pfn;
1377 	unsigned long block_end_pfn;
1378 
1379 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1380 	for (; block_start_pfn < zone_end_pfn(zone);
1381 			block_start_pfn = block_end_pfn,
1382 			 block_end_pfn += pageblock_nr_pages) {
1383 
1384 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1385 
1386 		if (!__pageblock_pfn_to_page(block_start_pfn,
1387 					     block_end_pfn, zone))
1388 			return;
1389 	}
1390 
1391 	/* We confirm that there is no hole */
1392 	zone->contiguous = true;
1393 }
1394 
1395 void clear_zone_contiguous(struct zone *zone)
1396 {
1397 	zone->contiguous = false;
1398 }
1399 
1400 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1401 static void __init deferred_free_range(struct page *page,
1402 					unsigned long pfn, int nr_pages)
1403 {
1404 	int i;
1405 
1406 	if (!page)
1407 		return;
1408 
1409 	/* Free a large naturally-aligned chunk if possible */
1410 	if (nr_pages == pageblock_nr_pages &&
1411 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1412 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1413 		__free_pages_boot_core(page, pageblock_order);
1414 		return;
1415 	}
1416 
1417 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1418 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1419 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1420 		__free_pages_boot_core(page, 0);
1421 	}
1422 }
1423 
1424 /* Completion tracking for deferred_init_memmap() threads */
1425 static atomic_t pgdat_init_n_undone __initdata;
1426 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1427 
1428 static inline void __init pgdat_init_report_one_done(void)
1429 {
1430 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1431 		complete(&pgdat_init_all_done_comp);
1432 }
1433 
1434 /* Initialise remaining memory on a node */
1435 static int __init deferred_init_memmap(void *data)
1436 {
1437 	pg_data_t *pgdat = data;
1438 	int nid = pgdat->node_id;
1439 	struct mminit_pfnnid_cache nid_init_state = { };
1440 	unsigned long start = jiffies;
1441 	unsigned long nr_pages = 0;
1442 	unsigned long walk_start, walk_end;
1443 	int i, zid;
1444 	struct zone *zone;
1445 	unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1446 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1447 
1448 	if (first_init_pfn == ULONG_MAX) {
1449 		pgdat_init_report_one_done();
1450 		return 0;
1451 	}
1452 
1453 	/* Bind memory initialisation thread to a local node if possible */
1454 	if (!cpumask_empty(cpumask))
1455 		set_cpus_allowed_ptr(current, cpumask);
1456 
1457 	/* Sanity check boundaries */
1458 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1459 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1460 	pgdat->first_deferred_pfn = ULONG_MAX;
1461 
1462 	/* Only the highest zone is deferred so find it */
1463 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1464 		zone = pgdat->node_zones + zid;
1465 		if (first_init_pfn < zone_end_pfn(zone))
1466 			break;
1467 	}
1468 
1469 	for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1470 		unsigned long pfn, end_pfn;
1471 		struct page *page = NULL;
1472 		struct page *free_base_page = NULL;
1473 		unsigned long free_base_pfn = 0;
1474 		int nr_to_free = 0;
1475 
1476 		end_pfn = min(walk_end, zone_end_pfn(zone));
1477 		pfn = first_init_pfn;
1478 		if (pfn < walk_start)
1479 			pfn = walk_start;
1480 		if (pfn < zone->zone_start_pfn)
1481 			pfn = zone->zone_start_pfn;
1482 
1483 		for (; pfn < end_pfn; pfn++) {
1484 			if (!pfn_valid_within(pfn))
1485 				goto free_range;
1486 
1487 			/*
1488 			 * Ensure pfn_valid is checked every
1489 			 * pageblock_nr_pages for memory holes
1490 			 */
1491 			if ((pfn & (pageblock_nr_pages - 1)) == 0) {
1492 				if (!pfn_valid(pfn)) {
1493 					page = NULL;
1494 					goto free_range;
1495 				}
1496 			}
1497 
1498 			if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1499 				page = NULL;
1500 				goto free_range;
1501 			}
1502 
1503 			/* Minimise pfn page lookups and scheduler checks */
1504 			if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
1505 				page++;
1506 			} else {
1507 				nr_pages += nr_to_free;
1508 				deferred_free_range(free_base_page,
1509 						free_base_pfn, nr_to_free);
1510 				free_base_page = NULL;
1511 				free_base_pfn = nr_to_free = 0;
1512 
1513 				page = pfn_to_page(pfn);
1514 				cond_resched();
1515 			}
1516 
1517 			if (page->flags) {
1518 				VM_BUG_ON(page_zone(page) != zone);
1519 				goto free_range;
1520 			}
1521 
1522 			__init_single_page(page, pfn, zid, nid);
1523 			if (!free_base_page) {
1524 				free_base_page = page;
1525 				free_base_pfn = pfn;
1526 				nr_to_free = 0;
1527 			}
1528 			nr_to_free++;
1529 
1530 			/* Where possible, batch up pages for a single free */
1531 			continue;
1532 free_range:
1533 			/* Free the current block of pages to allocator */
1534 			nr_pages += nr_to_free;
1535 			deferred_free_range(free_base_page, free_base_pfn,
1536 								nr_to_free);
1537 			free_base_page = NULL;
1538 			free_base_pfn = nr_to_free = 0;
1539 		}
1540 		/* Free the last block of pages to allocator */
1541 		nr_pages += nr_to_free;
1542 		deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
1543 
1544 		first_init_pfn = max(end_pfn, first_init_pfn);
1545 	}
1546 
1547 	/* Sanity check that the next zone really is unpopulated */
1548 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1549 
1550 	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1551 					jiffies_to_msecs(jiffies - start));
1552 
1553 	pgdat_init_report_one_done();
1554 	return 0;
1555 }
1556 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1557 
1558 void __init page_alloc_init_late(void)
1559 {
1560 	struct zone *zone;
1561 
1562 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1563 	int nid;
1564 
1565 	/* There will be num_node_state(N_MEMORY) threads */
1566 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1567 	for_each_node_state(nid, N_MEMORY) {
1568 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1569 	}
1570 
1571 	/* Block until all are initialised */
1572 	wait_for_completion(&pgdat_init_all_done_comp);
1573 
1574 	/* Reinit limits that are based on free pages after the kernel is up */
1575 	files_maxfiles_init();
1576 #endif
1577 
1578 	for_each_populated_zone(zone)
1579 		set_zone_contiguous(zone);
1580 }
1581 
1582 #ifdef CONFIG_CMA
1583 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1584 void __init init_cma_reserved_pageblock(struct page *page)
1585 {
1586 	unsigned i = pageblock_nr_pages;
1587 	struct page *p = page;
1588 
1589 	do {
1590 		__ClearPageReserved(p);
1591 		set_page_count(p, 0);
1592 	} while (++p, --i);
1593 
1594 	set_pageblock_migratetype(page, MIGRATE_CMA);
1595 
1596 	if (pageblock_order >= MAX_ORDER) {
1597 		i = pageblock_nr_pages;
1598 		p = page;
1599 		do {
1600 			set_page_refcounted(p);
1601 			__free_pages(p, MAX_ORDER - 1);
1602 			p += MAX_ORDER_NR_PAGES;
1603 		} while (i -= MAX_ORDER_NR_PAGES);
1604 	} else {
1605 		set_page_refcounted(page);
1606 		__free_pages(page, pageblock_order);
1607 	}
1608 
1609 	adjust_managed_page_count(page, pageblock_nr_pages);
1610 }
1611 #endif
1612 
1613 /*
1614  * The order of subdivision here is critical for the IO subsystem.
1615  * Please do not alter this order without good reasons and regression
1616  * testing. Specifically, as large blocks of memory are subdivided,
1617  * the order in which smaller blocks are delivered depends on the order
1618  * they're subdivided in this function. This is the primary factor
1619  * influencing the order in which pages are delivered to the IO
1620  * subsystem according to empirical testing, and this is also justified
1621  * by considering the behavior of a buddy system containing a single
1622  * large block of memory acted on by a series of small allocations.
1623  * This behavior is a critical factor in sglist merging's success.
1624  *
1625  * -- nyc
1626  */
1627 static inline void expand(struct zone *zone, struct page *page,
1628 	int low, int high, struct free_area *area,
1629 	int migratetype)
1630 {
1631 	unsigned long size = 1 << high;
1632 
1633 	while (high > low) {
1634 		area--;
1635 		high--;
1636 		size >>= 1;
1637 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1638 
1639 		/*
1640 		 * Mark as guard pages (or page), that will allow to
1641 		 * merge back to allocator when buddy will be freed.
1642 		 * Corresponding page table entries will not be touched,
1643 		 * pages will stay not present in virtual address space
1644 		 */
1645 		if (set_page_guard(zone, &page[size], high, migratetype))
1646 			continue;
1647 
1648 		list_add(&page[size].lru, &area->free_list[migratetype]);
1649 		area->nr_free++;
1650 		set_page_order(&page[size], high);
1651 	}
1652 }
1653 
1654 static void check_new_page_bad(struct page *page)
1655 {
1656 	const char *bad_reason = NULL;
1657 	unsigned long bad_flags = 0;
1658 
1659 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1660 		bad_reason = "nonzero mapcount";
1661 	if (unlikely(page->mapping != NULL))
1662 		bad_reason = "non-NULL mapping";
1663 	if (unlikely(page_ref_count(page) != 0))
1664 		bad_reason = "nonzero _count";
1665 	if (unlikely(page->flags & __PG_HWPOISON)) {
1666 		bad_reason = "HWPoisoned (hardware-corrupted)";
1667 		bad_flags = __PG_HWPOISON;
1668 		/* Don't complain about hwpoisoned pages */
1669 		page_mapcount_reset(page); /* remove PageBuddy */
1670 		return;
1671 	}
1672 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1673 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1674 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1675 	}
1676 #ifdef CONFIG_MEMCG
1677 	if (unlikely(page->mem_cgroup))
1678 		bad_reason = "page still charged to cgroup";
1679 #endif
1680 	bad_page(page, bad_reason, bad_flags);
1681 }
1682 
1683 /*
1684  * This page is about to be returned from the page allocator
1685  */
1686 static inline int check_new_page(struct page *page)
1687 {
1688 	if (likely(page_expected_state(page,
1689 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1690 		return 0;
1691 
1692 	check_new_page_bad(page);
1693 	return 1;
1694 }
1695 
1696 static inline bool free_pages_prezeroed(bool poisoned)
1697 {
1698 	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1699 		page_poisoning_enabled() && poisoned;
1700 }
1701 
1702 #ifdef CONFIG_DEBUG_VM
1703 static bool check_pcp_refill(struct page *page)
1704 {
1705 	return false;
1706 }
1707 
1708 static bool check_new_pcp(struct page *page)
1709 {
1710 	return check_new_page(page);
1711 }
1712 #else
1713 static bool check_pcp_refill(struct page *page)
1714 {
1715 	return check_new_page(page);
1716 }
1717 static bool check_new_pcp(struct page *page)
1718 {
1719 	return false;
1720 }
1721 #endif /* CONFIG_DEBUG_VM */
1722 
1723 static bool check_new_pages(struct page *page, unsigned int order)
1724 {
1725 	int i;
1726 	for (i = 0; i < (1 << order); i++) {
1727 		struct page *p = page + i;
1728 
1729 		if (unlikely(check_new_page(p)))
1730 			return true;
1731 	}
1732 
1733 	return false;
1734 }
1735 
1736 inline void post_alloc_hook(struct page *page, unsigned int order,
1737 				gfp_t gfp_flags)
1738 {
1739 	set_page_private(page, 0);
1740 	set_page_refcounted(page);
1741 
1742 	arch_alloc_page(page, order);
1743 	kernel_map_pages(page, 1 << order, 1);
1744 	kernel_poison_pages(page, 1 << order, 1);
1745 	kasan_alloc_pages(page, order);
1746 	set_page_owner(page, order, gfp_flags);
1747 }
1748 
1749 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1750 							unsigned int alloc_flags)
1751 {
1752 	int i;
1753 	bool poisoned = true;
1754 
1755 	for (i = 0; i < (1 << order); i++) {
1756 		struct page *p = page + i;
1757 		if (poisoned)
1758 			poisoned &= page_is_poisoned(p);
1759 	}
1760 
1761 	post_alloc_hook(page, order, gfp_flags);
1762 
1763 	if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
1764 		for (i = 0; i < (1 << order); i++)
1765 			clear_highpage(page + i);
1766 
1767 	if (order && (gfp_flags & __GFP_COMP))
1768 		prep_compound_page(page, order);
1769 
1770 	/*
1771 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1772 	 * allocate the page. The expectation is that the caller is taking
1773 	 * steps that will free more memory. The caller should avoid the page
1774 	 * being used for !PFMEMALLOC purposes.
1775 	 */
1776 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1777 		set_page_pfmemalloc(page);
1778 	else
1779 		clear_page_pfmemalloc(page);
1780 }
1781 
1782 /*
1783  * Go through the free lists for the given migratetype and remove
1784  * the smallest available page from the freelists
1785  */
1786 static inline
1787 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1788 						int migratetype)
1789 {
1790 	unsigned int current_order;
1791 	struct free_area *area;
1792 	struct page *page;
1793 
1794 	/* Find a page of the appropriate size in the preferred list */
1795 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1796 		area = &(zone->free_area[current_order]);
1797 		page = list_first_entry_or_null(&area->free_list[migratetype],
1798 							struct page, lru);
1799 		if (!page)
1800 			continue;
1801 		list_del(&page->lru);
1802 		rmv_page_order(page);
1803 		area->nr_free--;
1804 		expand(zone, page, order, current_order, area, migratetype);
1805 		set_pcppage_migratetype(page, migratetype);
1806 		return page;
1807 	}
1808 
1809 	return NULL;
1810 }
1811 
1812 
1813 /*
1814  * This array describes the order lists are fallen back to when
1815  * the free lists for the desirable migrate type are depleted
1816  */
1817 static int fallbacks[MIGRATE_TYPES][4] = {
1818 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
1819 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
1820 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1821 #ifdef CONFIG_CMA
1822 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1823 #endif
1824 #ifdef CONFIG_MEMORY_ISOLATION
1825 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1826 #endif
1827 };
1828 
1829 #ifdef CONFIG_CMA
1830 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1831 					unsigned int order)
1832 {
1833 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1834 }
1835 #else
1836 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1837 					unsigned int order) { return NULL; }
1838 #endif
1839 
1840 /*
1841  * Move the free pages in a range to the free lists of the requested type.
1842  * Note that start_page and end_pages are not aligned on a pageblock
1843  * boundary. If alignment is required, use move_freepages_block()
1844  */
1845 int move_freepages(struct zone *zone,
1846 			  struct page *start_page, struct page *end_page,
1847 			  int migratetype)
1848 {
1849 	struct page *page;
1850 	unsigned int order;
1851 	int pages_moved = 0;
1852 
1853 #ifndef CONFIG_HOLES_IN_ZONE
1854 	/*
1855 	 * page_zone is not safe to call in this context when
1856 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1857 	 * anyway as we check zone boundaries in move_freepages_block().
1858 	 * Remove at a later date when no bug reports exist related to
1859 	 * grouping pages by mobility
1860 	 */
1861 	VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1862 #endif
1863 
1864 	for (page = start_page; page <= end_page;) {
1865 		if (!pfn_valid_within(page_to_pfn(page))) {
1866 			page++;
1867 			continue;
1868 		}
1869 
1870 		/* Make sure we are not inadvertently changing nodes */
1871 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1872 
1873 		if (!PageBuddy(page)) {
1874 			page++;
1875 			continue;
1876 		}
1877 
1878 		order = page_order(page);
1879 		list_move(&page->lru,
1880 			  &zone->free_area[order].free_list[migratetype]);
1881 		page += 1 << order;
1882 		pages_moved += 1 << order;
1883 	}
1884 
1885 	return pages_moved;
1886 }
1887 
1888 int move_freepages_block(struct zone *zone, struct page *page,
1889 				int migratetype)
1890 {
1891 	unsigned long start_pfn, end_pfn;
1892 	struct page *start_page, *end_page;
1893 
1894 	start_pfn = page_to_pfn(page);
1895 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1896 	start_page = pfn_to_page(start_pfn);
1897 	end_page = start_page + pageblock_nr_pages - 1;
1898 	end_pfn = start_pfn + pageblock_nr_pages - 1;
1899 
1900 	/* Do not cross zone boundaries */
1901 	if (!zone_spans_pfn(zone, start_pfn))
1902 		start_page = page;
1903 	if (!zone_spans_pfn(zone, end_pfn))
1904 		return 0;
1905 
1906 	return move_freepages(zone, start_page, end_page, migratetype);
1907 }
1908 
1909 static void change_pageblock_range(struct page *pageblock_page,
1910 					int start_order, int migratetype)
1911 {
1912 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1913 
1914 	while (nr_pageblocks--) {
1915 		set_pageblock_migratetype(pageblock_page, migratetype);
1916 		pageblock_page += pageblock_nr_pages;
1917 	}
1918 }
1919 
1920 /*
1921  * When we are falling back to another migratetype during allocation, try to
1922  * steal extra free pages from the same pageblocks to satisfy further
1923  * allocations, instead of polluting multiple pageblocks.
1924  *
1925  * If we are stealing a relatively large buddy page, it is likely there will
1926  * be more free pages in the pageblock, so try to steal them all. For
1927  * reclaimable and unmovable allocations, we steal regardless of page size,
1928  * as fragmentation caused by those allocations polluting movable pageblocks
1929  * is worse than movable allocations stealing from unmovable and reclaimable
1930  * pageblocks.
1931  */
1932 static bool can_steal_fallback(unsigned int order, int start_mt)
1933 {
1934 	/*
1935 	 * Leaving this order check is intended, although there is
1936 	 * relaxed order check in next check. The reason is that
1937 	 * we can actually steal whole pageblock if this condition met,
1938 	 * but, below check doesn't guarantee it and that is just heuristic
1939 	 * so could be changed anytime.
1940 	 */
1941 	if (order >= pageblock_order)
1942 		return true;
1943 
1944 	if (order >= pageblock_order / 2 ||
1945 		start_mt == MIGRATE_RECLAIMABLE ||
1946 		start_mt == MIGRATE_UNMOVABLE ||
1947 		page_group_by_mobility_disabled)
1948 		return true;
1949 
1950 	return false;
1951 }
1952 
1953 /*
1954  * This function implements actual steal behaviour. If order is large enough,
1955  * we can steal whole pageblock. If not, we first move freepages in this
1956  * pageblock and check whether half of pages are moved or not. If half of
1957  * pages are moved, we can change migratetype of pageblock and permanently
1958  * use it's pages as requested migratetype in the future.
1959  */
1960 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1961 							  int start_type)
1962 {
1963 	unsigned int current_order = page_order(page);
1964 	int pages;
1965 
1966 	/* Take ownership for orders >= pageblock_order */
1967 	if (current_order >= pageblock_order) {
1968 		change_pageblock_range(page, current_order, start_type);
1969 		return;
1970 	}
1971 
1972 	pages = move_freepages_block(zone, page, start_type);
1973 
1974 	/* Claim the whole block if over half of it is free */
1975 	if (pages >= (1 << (pageblock_order-1)) ||
1976 			page_group_by_mobility_disabled)
1977 		set_pageblock_migratetype(page, start_type);
1978 }
1979 
1980 /*
1981  * Check whether there is a suitable fallback freepage with requested order.
1982  * If only_stealable is true, this function returns fallback_mt only if
1983  * we can steal other freepages all together. This would help to reduce
1984  * fragmentation due to mixed migratetype pages in one pageblock.
1985  */
1986 int find_suitable_fallback(struct free_area *area, unsigned int order,
1987 			int migratetype, bool only_stealable, bool *can_steal)
1988 {
1989 	int i;
1990 	int fallback_mt;
1991 
1992 	if (area->nr_free == 0)
1993 		return -1;
1994 
1995 	*can_steal = false;
1996 	for (i = 0;; i++) {
1997 		fallback_mt = fallbacks[migratetype][i];
1998 		if (fallback_mt == MIGRATE_TYPES)
1999 			break;
2000 
2001 		if (list_empty(&area->free_list[fallback_mt]))
2002 			continue;
2003 
2004 		if (can_steal_fallback(order, migratetype))
2005 			*can_steal = true;
2006 
2007 		if (!only_stealable)
2008 			return fallback_mt;
2009 
2010 		if (*can_steal)
2011 			return fallback_mt;
2012 	}
2013 
2014 	return -1;
2015 }
2016 
2017 /*
2018  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2019  * there are no empty page blocks that contain a page with a suitable order
2020  */
2021 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2022 				unsigned int alloc_order)
2023 {
2024 	int mt;
2025 	unsigned long max_managed, flags;
2026 
2027 	/*
2028 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2029 	 * Check is race-prone but harmless.
2030 	 */
2031 	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2032 	if (zone->nr_reserved_highatomic >= max_managed)
2033 		return;
2034 
2035 	spin_lock_irqsave(&zone->lock, flags);
2036 
2037 	/* Recheck the nr_reserved_highatomic limit under the lock */
2038 	if (zone->nr_reserved_highatomic >= max_managed)
2039 		goto out_unlock;
2040 
2041 	/* Yoink! */
2042 	mt = get_pageblock_migratetype(page);
2043 	if (mt != MIGRATE_HIGHATOMIC &&
2044 			!is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2045 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2046 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2047 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2048 	}
2049 
2050 out_unlock:
2051 	spin_unlock_irqrestore(&zone->lock, flags);
2052 }
2053 
2054 /*
2055  * Used when an allocation is about to fail under memory pressure. This
2056  * potentially hurts the reliability of high-order allocations when under
2057  * intense memory pressure but failed atomic allocations should be easier
2058  * to recover from than an OOM.
2059  *
2060  * If @force is true, try to unreserve a pageblock even though highatomic
2061  * pageblock is exhausted.
2062  */
2063 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2064 						bool force)
2065 {
2066 	struct zonelist *zonelist = ac->zonelist;
2067 	unsigned long flags;
2068 	struct zoneref *z;
2069 	struct zone *zone;
2070 	struct page *page;
2071 	int order;
2072 	bool ret;
2073 
2074 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2075 								ac->nodemask) {
2076 		/*
2077 		 * Preserve at least one pageblock unless memory pressure
2078 		 * is really high.
2079 		 */
2080 		if (!force && zone->nr_reserved_highatomic <=
2081 					pageblock_nr_pages)
2082 			continue;
2083 
2084 		spin_lock_irqsave(&zone->lock, flags);
2085 		for (order = 0; order < MAX_ORDER; order++) {
2086 			struct free_area *area = &(zone->free_area[order]);
2087 
2088 			page = list_first_entry_or_null(
2089 					&area->free_list[MIGRATE_HIGHATOMIC],
2090 					struct page, lru);
2091 			if (!page)
2092 				continue;
2093 
2094 			/*
2095 			 * In page freeing path, migratetype change is racy so
2096 			 * we can counter several free pages in a pageblock
2097 			 * in this loop althoug we changed the pageblock type
2098 			 * from highatomic to ac->migratetype. So we should
2099 			 * adjust the count once.
2100 			 */
2101 			if (get_pageblock_migratetype(page) ==
2102 							MIGRATE_HIGHATOMIC) {
2103 				/*
2104 				 * It should never happen but changes to
2105 				 * locking could inadvertently allow a per-cpu
2106 				 * drain to add pages to MIGRATE_HIGHATOMIC
2107 				 * while unreserving so be safe and watch for
2108 				 * underflows.
2109 				 */
2110 				zone->nr_reserved_highatomic -= min(
2111 						pageblock_nr_pages,
2112 						zone->nr_reserved_highatomic);
2113 			}
2114 
2115 			/*
2116 			 * Convert to ac->migratetype and avoid the normal
2117 			 * pageblock stealing heuristics. Minimally, the caller
2118 			 * is doing the work and needs the pages. More
2119 			 * importantly, if the block was always converted to
2120 			 * MIGRATE_UNMOVABLE or another type then the number
2121 			 * of pageblocks that cannot be completely freed
2122 			 * may increase.
2123 			 */
2124 			set_pageblock_migratetype(page, ac->migratetype);
2125 			ret = move_freepages_block(zone, page, ac->migratetype);
2126 			if (ret) {
2127 				spin_unlock_irqrestore(&zone->lock, flags);
2128 				return ret;
2129 			}
2130 		}
2131 		spin_unlock_irqrestore(&zone->lock, flags);
2132 	}
2133 
2134 	return false;
2135 }
2136 
2137 /* Remove an element from the buddy allocator from the fallback list */
2138 static inline struct page *
2139 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
2140 {
2141 	struct free_area *area;
2142 	unsigned int current_order;
2143 	struct page *page;
2144 	int fallback_mt;
2145 	bool can_steal;
2146 
2147 	/* Find the largest possible block of pages in the other list */
2148 	for (current_order = MAX_ORDER-1;
2149 				current_order >= order && current_order <= MAX_ORDER-1;
2150 				--current_order) {
2151 		area = &(zone->free_area[current_order]);
2152 		fallback_mt = find_suitable_fallback(area, current_order,
2153 				start_migratetype, false, &can_steal);
2154 		if (fallback_mt == -1)
2155 			continue;
2156 
2157 		page = list_first_entry(&area->free_list[fallback_mt],
2158 						struct page, lru);
2159 		if (can_steal &&
2160 			get_pageblock_migratetype(page) != MIGRATE_HIGHATOMIC)
2161 			steal_suitable_fallback(zone, page, start_migratetype);
2162 
2163 		/* Remove the page from the freelists */
2164 		area->nr_free--;
2165 		list_del(&page->lru);
2166 		rmv_page_order(page);
2167 
2168 		expand(zone, page, order, current_order, area,
2169 					start_migratetype);
2170 		/*
2171 		 * The pcppage_migratetype may differ from pageblock's
2172 		 * migratetype depending on the decisions in
2173 		 * find_suitable_fallback(). This is OK as long as it does not
2174 		 * differ for MIGRATE_CMA pageblocks. Those can be used as
2175 		 * fallback only via special __rmqueue_cma_fallback() function
2176 		 */
2177 		set_pcppage_migratetype(page, start_migratetype);
2178 
2179 		trace_mm_page_alloc_extfrag(page, order, current_order,
2180 			start_migratetype, fallback_mt);
2181 
2182 		return page;
2183 	}
2184 
2185 	return NULL;
2186 }
2187 
2188 /*
2189  * Do the hard work of removing an element from the buddy allocator.
2190  * Call me with the zone->lock already held.
2191  */
2192 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2193 				int migratetype)
2194 {
2195 	struct page *page;
2196 
2197 	page = __rmqueue_smallest(zone, order, migratetype);
2198 	if (unlikely(!page)) {
2199 		if (migratetype == MIGRATE_MOVABLE)
2200 			page = __rmqueue_cma_fallback(zone, order);
2201 
2202 		if (!page)
2203 			page = __rmqueue_fallback(zone, order, migratetype);
2204 	}
2205 
2206 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2207 	return page;
2208 }
2209 
2210 /*
2211  * Obtain a specified number of elements from the buddy allocator, all under
2212  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2213  * Returns the number of new pages which were placed at *list.
2214  */
2215 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2216 			unsigned long count, struct list_head *list,
2217 			int migratetype, bool cold)
2218 {
2219 	int i, alloced = 0;
2220 	unsigned long flags;
2221 
2222 	spin_lock_irqsave(&zone->lock, flags);
2223 	for (i = 0; i < count; ++i) {
2224 		struct page *page = __rmqueue(zone, order, migratetype);
2225 		if (unlikely(page == NULL))
2226 			break;
2227 
2228 		if (unlikely(check_pcp_refill(page)))
2229 			continue;
2230 
2231 		/*
2232 		 * Split buddy pages returned by expand() are received here
2233 		 * in physical page order. The page is added to the callers and
2234 		 * list and the list head then moves forward. From the callers
2235 		 * perspective, the linked list is ordered by page number in
2236 		 * some conditions. This is useful for IO devices that can
2237 		 * merge IO requests if the physical pages are ordered
2238 		 * properly.
2239 		 */
2240 		if (likely(!cold))
2241 			list_add(&page->lru, list);
2242 		else
2243 			list_add_tail(&page->lru, list);
2244 		list = &page->lru;
2245 		alloced++;
2246 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2247 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2248 					      -(1 << order));
2249 	}
2250 
2251 	/*
2252 	 * i pages were removed from the buddy list even if some leak due
2253 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2254 	 * on i. Do not confuse with 'alloced' which is the number of
2255 	 * pages added to the pcp list.
2256 	 */
2257 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2258 	spin_unlock_irqrestore(&zone->lock, flags);
2259 	return alloced;
2260 }
2261 
2262 #ifdef CONFIG_NUMA
2263 /*
2264  * Called from the vmstat counter updater to drain pagesets of this
2265  * currently executing processor on remote nodes after they have
2266  * expired.
2267  *
2268  * Note that this function must be called with the thread pinned to
2269  * a single processor.
2270  */
2271 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2272 {
2273 	unsigned long flags;
2274 	int to_drain, batch;
2275 
2276 	local_irq_save(flags);
2277 	batch = READ_ONCE(pcp->batch);
2278 	to_drain = min(pcp->count, batch);
2279 	if (to_drain > 0) {
2280 		free_pcppages_bulk(zone, to_drain, pcp);
2281 		pcp->count -= to_drain;
2282 	}
2283 	local_irq_restore(flags);
2284 }
2285 #endif
2286 
2287 /*
2288  * Drain pcplists of the indicated processor and zone.
2289  *
2290  * The processor must either be the current processor and the
2291  * thread pinned to the current processor or a processor that
2292  * is not online.
2293  */
2294 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2295 {
2296 	unsigned long flags;
2297 	struct per_cpu_pageset *pset;
2298 	struct per_cpu_pages *pcp;
2299 
2300 	local_irq_save(flags);
2301 	pset = per_cpu_ptr(zone->pageset, cpu);
2302 
2303 	pcp = &pset->pcp;
2304 	if (pcp->count) {
2305 		free_pcppages_bulk(zone, pcp->count, pcp);
2306 		pcp->count = 0;
2307 	}
2308 	local_irq_restore(flags);
2309 }
2310 
2311 /*
2312  * Drain pcplists of all zones on the indicated processor.
2313  *
2314  * The processor must either be the current processor and the
2315  * thread pinned to the current processor or a processor that
2316  * is not online.
2317  */
2318 static void drain_pages(unsigned int cpu)
2319 {
2320 	struct zone *zone;
2321 
2322 	for_each_populated_zone(zone) {
2323 		drain_pages_zone(cpu, zone);
2324 	}
2325 }
2326 
2327 /*
2328  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2329  *
2330  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2331  * the single zone's pages.
2332  */
2333 void drain_local_pages(struct zone *zone)
2334 {
2335 	int cpu = smp_processor_id();
2336 
2337 	if (zone)
2338 		drain_pages_zone(cpu, zone);
2339 	else
2340 		drain_pages(cpu);
2341 }
2342 
2343 static void drain_local_pages_wq(struct work_struct *work)
2344 {
2345 	/*
2346 	 * drain_all_pages doesn't use proper cpu hotplug protection so
2347 	 * we can race with cpu offline when the WQ can move this from
2348 	 * a cpu pinned worker to an unbound one. We can operate on a different
2349 	 * cpu which is allright but we also have to make sure to not move to
2350 	 * a different one.
2351 	 */
2352 	preempt_disable();
2353 	drain_local_pages(NULL);
2354 	preempt_enable();
2355 }
2356 
2357 /*
2358  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2359  *
2360  * When zone parameter is non-NULL, spill just the single zone's pages.
2361  *
2362  * Note that this can be extremely slow as the draining happens in a workqueue.
2363  */
2364 void drain_all_pages(struct zone *zone)
2365 {
2366 	int cpu;
2367 
2368 	/*
2369 	 * Allocate in the BSS so we wont require allocation in
2370 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2371 	 */
2372 	static cpumask_t cpus_with_pcps;
2373 
2374 	/* Workqueues cannot recurse */
2375 	if (current->flags & PF_WQ_WORKER)
2376 		return;
2377 
2378 	/*
2379 	 * Do not drain if one is already in progress unless it's specific to
2380 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2381 	 * the drain to be complete when the call returns.
2382 	 */
2383 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2384 		if (!zone)
2385 			return;
2386 		mutex_lock(&pcpu_drain_mutex);
2387 	}
2388 
2389 	/*
2390 	 * We don't care about racing with CPU hotplug event
2391 	 * as offline notification will cause the notified
2392 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2393 	 * disables preemption as part of its processing
2394 	 */
2395 	for_each_online_cpu(cpu) {
2396 		struct per_cpu_pageset *pcp;
2397 		struct zone *z;
2398 		bool has_pcps = false;
2399 
2400 		if (zone) {
2401 			pcp = per_cpu_ptr(zone->pageset, cpu);
2402 			if (pcp->pcp.count)
2403 				has_pcps = true;
2404 		} else {
2405 			for_each_populated_zone(z) {
2406 				pcp = per_cpu_ptr(z->pageset, cpu);
2407 				if (pcp->pcp.count) {
2408 					has_pcps = true;
2409 					break;
2410 				}
2411 			}
2412 		}
2413 
2414 		if (has_pcps)
2415 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2416 		else
2417 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2418 	}
2419 
2420 	for_each_cpu(cpu, &cpus_with_pcps) {
2421 		struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2422 		INIT_WORK(work, drain_local_pages_wq);
2423 		schedule_work_on(cpu, work);
2424 	}
2425 	for_each_cpu(cpu, &cpus_with_pcps)
2426 		flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2427 
2428 	mutex_unlock(&pcpu_drain_mutex);
2429 }
2430 
2431 #ifdef CONFIG_HIBERNATION
2432 
2433 void mark_free_pages(struct zone *zone)
2434 {
2435 	unsigned long pfn, max_zone_pfn;
2436 	unsigned long flags;
2437 	unsigned int order, t;
2438 	struct page *page;
2439 
2440 	if (zone_is_empty(zone))
2441 		return;
2442 
2443 	spin_lock_irqsave(&zone->lock, flags);
2444 
2445 	max_zone_pfn = zone_end_pfn(zone);
2446 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2447 		if (pfn_valid(pfn)) {
2448 			page = pfn_to_page(pfn);
2449 
2450 			if (page_zone(page) != zone)
2451 				continue;
2452 
2453 			if (!swsusp_page_is_forbidden(page))
2454 				swsusp_unset_page_free(page);
2455 		}
2456 
2457 	for_each_migratetype_order(order, t) {
2458 		list_for_each_entry(page,
2459 				&zone->free_area[order].free_list[t], lru) {
2460 			unsigned long i;
2461 
2462 			pfn = page_to_pfn(page);
2463 			for (i = 0; i < (1UL << order); i++)
2464 				swsusp_set_page_free(pfn_to_page(pfn + i));
2465 		}
2466 	}
2467 	spin_unlock_irqrestore(&zone->lock, flags);
2468 }
2469 #endif /* CONFIG_PM */
2470 
2471 /*
2472  * Free a 0-order page
2473  * cold == true ? free a cold page : free a hot page
2474  */
2475 void free_hot_cold_page(struct page *page, bool cold)
2476 {
2477 	struct zone *zone = page_zone(page);
2478 	struct per_cpu_pages *pcp;
2479 	unsigned long pfn = page_to_pfn(page);
2480 	int migratetype;
2481 
2482 	if (in_interrupt()) {
2483 		__free_pages_ok(page, 0);
2484 		return;
2485 	}
2486 
2487 	if (!free_pcp_prepare(page))
2488 		return;
2489 
2490 	migratetype = get_pfnblock_migratetype(page, pfn);
2491 	set_pcppage_migratetype(page, migratetype);
2492 	preempt_disable();
2493 
2494 	/*
2495 	 * We only track unmovable, reclaimable and movable on pcp lists.
2496 	 * Free ISOLATE pages back to the allocator because they are being
2497 	 * offlined but treat RESERVE as movable pages so we can get those
2498 	 * areas back if necessary. Otherwise, we may have to free
2499 	 * excessively into the page allocator
2500 	 */
2501 	if (migratetype >= MIGRATE_PCPTYPES) {
2502 		if (unlikely(is_migrate_isolate(migratetype))) {
2503 			free_one_page(zone, page, pfn, 0, migratetype);
2504 			goto out;
2505 		}
2506 		migratetype = MIGRATE_MOVABLE;
2507 	}
2508 
2509 	__count_vm_event(PGFREE);
2510 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2511 	if (!cold)
2512 		list_add(&page->lru, &pcp->lists[migratetype]);
2513 	else
2514 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
2515 	pcp->count++;
2516 	if (pcp->count >= pcp->high) {
2517 		unsigned long batch = READ_ONCE(pcp->batch);
2518 		free_pcppages_bulk(zone, batch, pcp);
2519 		pcp->count -= batch;
2520 	}
2521 
2522 out:
2523 	preempt_enable();
2524 }
2525 
2526 /*
2527  * Free a list of 0-order pages
2528  */
2529 void free_hot_cold_page_list(struct list_head *list, bool cold)
2530 {
2531 	struct page *page, *next;
2532 
2533 	list_for_each_entry_safe(page, next, list, lru) {
2534 		trace_mm_page_free_batched(page, cold);
2535 		free_hot_cold_page(page, cold);
2536 	}
2537 }
2538 
2539 /*
2540  * split_page takes a non-compound higher-order page, and splits it into
2541  * n (1<<order) sub-pages: page[0..n]
2542  * Each sub-page must be freed individually.
2543  *
2544  * Note: this is probably too low level an operation for use in drivers.
2545  * Please consult with lkml before using this in your driver.
2546  */
2547 void split_page(struct page *page, unsigned int order)
2548 {
2549 	int i;
2550 
2551 	VM_BUG_ON_PAGE(PageCompound(page), page);
2552 	VM_BUG_ON_PAGE(!page_count(page), page);
2553 
2554 #ifdef CONFIG_KMEMCHECK
2555 	/*
2556 	 * Split shadow pages too, because free(page[0]) would
2557 	 * otherwise free the whole shadow.
2558 	 */
2559 	if (kmemcheck_page_is_tracked(page))
2560 		split_page(virt_to_page(page[0].shadow), order);
2561 #endif
2562 
2563 	for (i = 1; i < (1 << order); i++)
2564 		set_page_refcounted(page + i);
2565 	split_page_owner(page, order);
2566 }
2567 EXPORT_SYMBOL_GPL(split_page);
2568 
2569 int __isolate_free_page(struct page *page, unsigned int order)
2570 {
2571 	unsigned long watermark;
2572 	struct zone *zone;
2573 	int mt;
2574 
2575 	BUG_ON(!PageBuddy(page));
2576 
2577 	zone = page_zone(page);
2578 	mt = get_pageblock_migratetype(page);
2579 
2580 	if (!is_migrate_isolate(mt)) {
2581 		/*
2582 		 * Obey watermarks as if the page was being allocated. We can
2583 		 * emulate a high-order watermark check with a raised order-0
2584 		 * watermark, because we already know our high-order page
2585 		 * exists.
2586 		 */
2587 		watermark = min_wmark_pages(zone) + (1UL << order);
2588 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2589 			return 0;
2590 
2591 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2592 	}
2593 
2594 	/* Remove page from free list */
2595 	list_del(&page->lru);
2596 	zone->free_area[order].nr_free--;
2597 	rmv_page_order(page);
2598 
2599 	/*
2600 	 * Set the pageblock if the isolated page is at least half of a
2601 	 * pageblock
2602 	 */
2603 	if (order >= pageblock_order - 1) {
2604 		struct page *endpage = page + (1 << order) - 1;
2605 		for (; page < endpage; page += pageblock_nr_pages) {
2606 			int mt = get_pageblock_migratetype(page);
2607 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2608 				&& mt != MIGRATE_HIGHATOMIC)
2609 				set_pageblock_migratetype(page,
2610 							  MIGRATE_MOVABLE);
2611 		}
2612 	}
2613 
2614 
2615 	return 1UL << order;
2616 }
2617 
2618 /*
2619  * Update NUMA hit/miss statistics
2620  *
2621  * Must be called with interrupts disabled.
2622  */
2623 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2624 {
2625 #ifdef CONFIG_NUMA
2626 	enum zone_stat_item local_stat = NUMA_LOCAL;
2627 
2628 	if (z->node != numa_node_id())
2629 		local_stat = NUMA_OTHER;
2630 
2631 	if (z->node == preferred_zone->node)
2632 		__inc_zone_state(z, NUMA_HIT);
2633 	else {
2634 		__inc_zone_state(z, NUMA_MISS);
2635 		__inc_zone_state(preferred_zone, NUMA_FOREIGN);
2636 	}
2637 	__inc_zone_state(z, local_stat);
2638 #endif
2639 }
2640 
2641 /* Remove page from the per-cpu list, caller must protect the list */
2642 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2643 			bool cold, struct per_cpu_pages *pcp,
2644 			struct list_head *list)
2645 {
2646 	struct page *page;
2647 
2648 	VM_BUG_ON(in_interrupt());
2649 
2650 	do {
2651 		if (list_empty(list)) {
2652 			pcp->count += rmqueue_bulk(zone, 0,
2653 					pcp->batch, list,
2654 					migratetype, cold);
2655 			if (unlikely(list_empty(list)))
2656 				return NULL;
2657 		}
2658 
2659 		if (cold)
2660 			page = list_last_entry(list, struct page, lru);
2661 		else
2662 			page = list_first_entry(list, struct page, lru);
2663 
2664 		list_del(&page->lru);
2665 		pcp->count--;
2666 	} while (check_new_pcp(page));
2667 
2668 	return page;
2669 }
2670 
2671 /* Lock and remove page from the per-cpu list */
2672 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2673 			struct zone *zone, unsigned int order,
2674 			gfp_t gfp_flags, int migratetype)
2675 {
2676 	struct per_cpu_pages *pcp;
2677 	struct list_head *list;
2678 	bool cold = ((gfp_flags & __GFP_COLD) != 0);
2679 	struct page *page;
2680 
2681 	preempt_disable();
2682 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2683 	list = &pcp->lists[migratetype];
2684 	page = __rmqueue_pcplist(zone,  migratetype, cold, pcp, list);
2685 	if (page) {
2686 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2687 		zone_statistics(preferred_zone, zone);
2688 	}
2689 	preempt_enable();
2690 	return page;
2691 }
2692 
2693 /*
2694  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2695  */
2696 static inline
2697 struct page *rmqueue(struct zone *preferred_zone,
2698 			struct zone *zone, unsigned int order,
2699 			gfp_t gfp_flags, unsigned int alloc_flags,
2700 			int migratetype)
2701 {
2702 	unsigned long flags;
2703 	struct page *page;
2704 
2705 	if (likely(order == 0) && !in_interrupt()) {
2706 		page = rmqueue_pcplist(preferred_zone, zone, order,
2707 				gfp_flags, migratetype);
2708 		goto out;
2709 	}
2710 
2711 	/*
2712 	 * We most definitely don't want callers attempting to
2713 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
2714 	 */
2715 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2716 	spin_lock_irqsave(&zone->lock, flags);
2717 
2718 	do {
2719 		page = NULL;
2720 		if (alloc_flags & ALLOC_HARDER) {
2721 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2722 			if (page)
2723 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
2724 		}
2725 		if (!page)
2726 			page = __rmqueue(zone, order, migratetype);
2727 	} while (page && check_new_pages(page, order));
2728 	spin_unlock(&zone->lock);
2729 	if (!page)
2730 		goto failed;
2731 	__mod_zone_freepage_state(zone, -(1 << order),
2732 				  get_pcppage_migratetype(page));
2733 
2734 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2735 	zone_statistics(preferred_zone, zone);
2736 	local_irq_restore(flags);
2737 
2738 out:
2739 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2740 	return page;
2741 
2742 failed:
2743 	local_irq_restore(flags);
2744 	return NULL;
2745 }
2746 
2747 #ifdef CONFIG_FAIL_PAGE_ALLOC
2748 
2749 static struct {
2750 	struct fault_attr attr;
2751 
2752 	bool ignore_gfp_highmem;
2753 	bool ignore_gfp_reclaim;
2754 	u32 min_order;
2755 } fail_page_alloc = {
2756 	.attr = FAULT_ATTR_INITIALIZER,
2757 	.ignore_gfp_reclaim = true,
2758 	.ignore_gfp_highmem = true,
2759 	.min_order = 1,
2760 };
2761 
2762 static int __init setup_fail_page_alloc(char *str)
2763 {
2764 	return setup_fault_attr(&fail_page_alloc.attr, str);
2765 }
2766 __setup("fail_page_alloc=", setup_fail_page_alloc);
2767 
2768 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2769 {
2770 	if (order < fail_page_alloc.min_order)
2771 		return false;
2772 	if (gfp_mask & __GFP_NOFAIL)
2773 		return false;
2774 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2775 		return false;
2776 	if (fail_page_alloc.ignore_gfp_reclaim &&
2777 			(gfp_mask & __GFP_DIRECT_RECLAIM))
2778 		return false;
2779 
2780 	return should_fail(&fail_page_alloc.attr, 1 << order);
2781 }
2782 
2783 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2784 
2785 static int __init fail_page_alloc_debugfs(void)
2786 {
2787 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2788 	struct dentry *dir;
2789 
2790 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2791 					&fail_page_alloc.attr);
2792 	if (IS_ERR(dir))
2793 		return PTR_ERR(dir);
2794 
2795 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2796 				&fail_page_alloc.ignore_gfp_reclaim))
2797 		goto fail;
2798 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2799 				&fail_page_alloc.ignore_gfp_highmem))
2800 		goto fail;
2801 	if (!debugfs_create_u32("min-order", mode, dir,
2802 				&fail_page_alloc.min_order))
2803 		goto fail;
2804 
2805 	return 0;
2806 fail:
2807 	debugfs_remove_recursive(dir);
2808 
2809 	return -ENOMEM;
2810 }
2811 
2812 late_initcall(fail_page_alloc_debugfs);
2813 
2814 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2815 
2816 #else /* CONFIG_FAIL_PAGE_ALLOC */
2817 
2818 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2819 {
2820 	return false;
2821 }
2822 
2823 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2824 
2825 /*
2826  * Return true if free base pages are above 'mark'. For high-order checks it
2827  * will return true of the order-0 watermark is reached and there is at least
2828  * one free page of a suitable size. Checking now avoids taking the zone lock
2829  * to check in the allocation paths if no pages are free.
2830  */
2831 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2832 			 int classzone_idx, unsigned int alloc_flags,
2833 			 long free_pages)
2834 {
2835 	long min = mark;
2836 	int o;
2837 	const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2838 
2839 	/* free_pages may go negative - that's OK */
2840 	free_pages -= (1 << order) - 1;
2841 
2842 	if (alloc_flags & ALLOC_HIGH)
2843 		min -= min / 2;
2844 
2845 	/*
2846 	 * If the caller does not have rights to ALLOC_HARDER then subtract
2847 	 * the high-atomic reserves. This will over-estimate the size of the
2848 	 * atomic reserve but it avoids a search.
2849 	 */
2850 	if (likely(!alloc_harder))
2851 		free_pages -= z->nr_reserved_highatomic;
2852 	else
2853 		min -= min / 4;
2854 
2855 #ifdef CONFIG_CMA
2856 	/* If allocation can't use CMA areas don't use free CMA pages */
2857 	if (!(alloc_flags & ALLOC_CMA))
2858 		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2859 #endif
2860 
2861 	/*
2862 	 * Check watermarks for an order-0 allocation request. If these
2863 	 * are not met, then a high-order request also cannot go ahead
2864 	 * even if a suitable page happened to be free.
2865 	 */
2866 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2867 		return false;
2868 
2869 	/* If this is an order-0 request then the watermark is fine */
2870 	if (!order)
2871 		return true;
2872 
2873 	/* For a high-order request, check at least one suitable page is free */
2874 	for (o = order; o < MAX_ORDER; o++) {
2875 		struct free_area *area = &z->free_area[o];
2876 		int mt;
2877 
2878 		if (!area->nr_free)
2879 			continue;
2880 
2881 		if (alloc_harder)
2882 			return true;
2883 
2884 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2885 			if (!list_empty(&area->free_list[mt]))
2886 				return true;
2887 		}
2888 
2889 #ifdef CONFIG_CMA
2890 		if ((alloc_flags & ALLOC_CMA) &&
2891 		    !list_empty(&area->free_list[MIGRATE_CMA])) {
2892 			return true;
2893 		}
2894 #endif
2895 	}
2896 	return false;
2897 }
2898 
2899 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2900 		      int classzone_idx, unsigned int alloc_flags)
2901 {
2902 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2903 					zone_page_state(z, NR_FREE_PAGES));
2904 }
2905 
2906 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2907 		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2908 {
2909 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
2910 	long cma_pages = 0;
2911 
2912 #ifdef CONFIG_CMA
2913 	/* If allocation can't use CMA areas don't use free CMA pages */
2914 	if (!(alloc_flags & ALLOC_CMA))
2915 		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2916 #endif
2917 
2918 	/*
2919 	 * Fast check for order-0 only. If this fails then the reserves
2920 	 * need to be calculated. There is a corner case where the check
2921 	 * passes but only the high-order atomic reserve are free. If
2922 	 * the caller is !atomic then it'll uselessly search the free
2923 	 * list. That corner case is then slower but it is harmless.
2924 	 */
2925 	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2926 		return true;
2927 
2928 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2929 					free_pages);
2930 }
2931 
2932 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2933 			unsigned long mark, int classzone_idx)
2934 {
2935 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
2936 
2937 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2938 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2939 
2940 	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2941 								free_pages);
2942 }
2943 
2944 #ifdef CONFIG_NUMA
2945 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2946 {
2947 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
2948 				RECLAIM_DISTANCE;
2949 }
2950 #else	/* CONFIG_NUMA */
2951 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2952 {
2953 	return true;
2954 }
2955 #endif	/* CONFIG_NUMA */
2956 
2957 /*
2958  * get_page_from_freelist goes through the zonelist trying to allocate
2959  * a page.
2960  */
2961 static struct page *
2962 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2963 						const struct alloc_context *ac)
2964 {
2965 	struct zoneref *z = ac->preferred_zoneref;
2966 	struct zone *zone;
2967 	struct pglist_data *last_pgdat_dirty_limit = NULL;
2968 
2969 	/*
2970 	 * Scan zonelist, looking for a zone with enough free.
2971 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2972 	 */
2973 	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2974 								ac->nodemask) {
2975 		struct page *page;
2976 		unsigned long mark;
2977 
2978 		if (cpusets_enabled() &&
2979 			(alloc_flags & ALLOC_CPUSET) &&
2980 			!__cpuset_zone_allowed(zone, gfp_mask))
2981 				continue;
2982 		/*
2983 		 * When allocating a page cache page for writing, we
2984 		 * want to get it from a node that is within its dirty
2985 		 * limit, such that no single node holds more than its
2986 		 * proportional share of globally allowed dirty pages.
2987 		 * The dirty limits take into account the node's
2988 		 * lowmem reserves and high watermark so that kswapd
2989 		 * should be able to balance it without having to
2990 		 * write pages from its LRU list.
2991 		 *
2992 		 * XXX: For now, allow allocations to potentially
2993 		 * exceed the per-node dirty limit in the slowpath
2994 		 * (spread_dirty_pages unset) before going into reclaim,
2995 		 * which is important when on a NUMA setup the allowed
2996 		 * nodes are together not big enough to reach the
2997 		 * global limit.  The proper fix for these situations
2998 		 * will require awareness of nodes in the
2999 		 * dirty-throttling and the flusher threads.
3000 		 */
3001 		if (ac->spread_dirty_pages) {
3002 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3003 				continue;
3004 
3005 			if (!node_dirty_ok(zone->zone_pgdat)) {
3006 				last_pgdat_dirty_limit = zone->zone_pgdat;
3007 				continue;
3008 			}
3009 		}
3010 
3011 		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3012 		if (!zone_watermark_fast(zone, order, mark,
3013 				       ac_classzone_idx(ac), alloc_flags)) {
3014 			int ret;
3015 
3016 			/* Checked here to keep the fast path fast */
3017 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3018 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3019 				goto try_this_zone;
3020 
3021 			if (node_reclaim_mode == 0 ||
3022 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3023 				continue;
3024 
3025 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3026 			switch (ret) {
3027 			case NODE_RECLAIM_NOSCAN:
3028 				/* did not scan */
3029 				continue;
3030 			case NODE_RECLAIM_FULL:
3031 				/* scanned but unreclaimable */
3032 				continue;
3033 			default:
3034 				/* did we reclaim enough */
3035 				if (zone_watermark_ok(zone, order, mark,
3036 						ac_classzone_idx(ac), alloc_flags))
3037 					goto try_this_zone;
3038 
3039 				continue;
3040 			}
3041 		}
3042 
3043 try_this_zone:
3044 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3045 				gfp_mask, alloc_flags, ac->migratetype);
3046 		if (page) {
3047 			prep_new_page(page, order, gfp_mask, alloc_flags);
3048 
3049 			/*
3050 			 * If this is a high-order atomic allocation then check
3051 			 * if the pageblock should be reserved for the future
3052 			 */
3053 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3054 				reserve_highatomic_pageblock(page, zone, order);
3055 
3056 			return page;
3057 		}
3058 	}
3059 
3060 	return NULL;
3061 }
3062 
3063 /*
3064  * Large machines with many possible nodes should not always dump per-node
3065  * meminfo in irq context.
3066  */
3067 static inline bool should_suppress_show_mem(void)
3068 {
3069 	bool ret = false;
3070 
3071 #if NODES_SHIFT > 8
3072 	ret = in_interrupt();
3073 #endif
3074 	return ret;
3075 }
3076 
3077 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3078 {
3079 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3080 	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3081 
3082 	if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3083 		return;
3084 
3085 	/*
3086 	 * This documents exceptions given to allocations in certain
3087 	 * contexts that are allowed to allocate outside current's set
3088 	 * of allowed nodes.
3089 	 */
3090 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3091 		if (test_thread_flag(TIF_MEMDIE) ||
3092 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3093 			filter &= ~SHOW_MEM_FILTER_NODES;
3094 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3095 		filter &= ~SHOW_MEM_FILTER_NODES;
3096 
3097 	show_mem(filter, nodemask);
3098 }
3099 
3100 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3101 {
3102 	struct va_format vaf;
3103 	va_list args;
3104 	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3105 				      DEFAULT_RATELIMIT_BURST);
3106 
3107 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
3108 	    debug_guardpage_minorder() > 0)
3109 		return;
3110 
3111 	pr_warn("%s: ", current->comm);
3112 
3113 	va_start(args, fmt);
3114 	vaf.fmt = fmt;
3115 	vaf.va = &args;
3116 	pr_cont("%pV", &vaf);
3117 	va_end(args);
3118 
3119 	pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
3120 	if (nodemask)
3121 		pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
3122 	else
3123 		pr_cont("(null)\n");
3124 
3125 	cpuset_print_current_mems_allowed();
3126 
3127 	dump_stack();
3128 	warn_alloc_show_mem(gfp_mask, nodemask);
3129 }
3130 
3131 static inline struct page *
3132 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3133 			      unsigned int alloc_flags,
3134 			      const struct alloc_context *ac)
3135 {
3136 	struct page *page;
3137 
3138 	page = get_page_from_freelist(gfp_mask, order,
3139 			alloc_flags|ALLOC_CPUSET, ac);
3140 	/*
3141 	 * fallback to ignore cpuset restriction if our nodes
3142 	 * are depleted
3143 	 */
3144 	if (!page)
3145 		page = get_page_from_freelist(gfp_mask, order,
3146 				alloc_flags, ac);
3147 
3148 	return page;
3149 }
3150 
3151 static inline struct page *
3152 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3153 	const struct alloc_context *ac, unsigned long *did_some_progress)
3154 {
3155 	struct oom_control oc = {
3156 		.zonelist = ac->zonelist,
3157 		.nodemask = ac->nodemask,
3158 		.memcg = NULL,
3159 		.gfp_mask = gfp_mask,
3160 		.order = order,
3161 	};
3162 	struct page *page;
3163 
3164 	*did_some_progress = 0;
3165 
3166 	/*
3167 	 * Acquire the oom lock.  If that fails, somebody else is
3168 	 * making progress for us.
3169 	 */
3170 	if (!mutex_trylock(&oom_lock)) {
3171 		*did_some_progress = 1;
3172 		schedule_timeout_uninterruptible(1);
3173 		return NULL;
3174 	}
3175 
3176 	/*
3177 	 * Go through the zonelist yet one more time, keep very high watermark
3178 	 * here, this is only to catch a parallel oom killing, we must fail if
3179 	 * we're still under heavy pressure.
3180 	 */
3181 	page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3182 					ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3183 	if (page)
3184 		goto out;
3185 
3186 	/* Coredumps can quickly deplete all memory reserves */
3187 	if (current->flags & PF_DUMPCORE)
3188 		goto out;
3189 	/* The OOM killer will not help higher order allocs */
3190 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3191 		goto out;
3192 	/* The OOM killer does not needlessly kill tasks for lowmem */
3193 	if (ac->high_zoneidx < ZONE_NORMAL)
3194 		goto out;
3195 	if (pm_suspended_storage())
3196 		goto out;
3197 	/*
3198 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3199 	 * other request to make a forward progress.
3200 	 * We are in an unfortunate situation where out_of_memory cannot
3201 	 * do much for this context but let's try it to at least get
3202 	 * access to memory reserved if the current task is killed (see
3203 	 * out_of_memory). Once filesystems are ready to handle allocation
3204 	 * failures more gracefully we should just bail out here.
3205 	 */
3206 
3207 	/* The OOM killer may not free memory on a specific node */
3208 	if (gfp_mask & __GFP_THISNODE)
3209 		goto out;
3210 
3211 	/* Exhausted what can be done so it's blamo time */
3212 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3213 		*did_some_progress = 1;
3214 
3215 		/*
3216 		 * Help non-failing allocations by giving them access to memory
3217 		 * reserves
3218 		 */
3219 		if (gfp_mask & __GFP_NOFAIL)
3220 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3221 					ALLOC_NO_WATERMARKS, ac);
3222 	}
3223 out:
3224 	mutex_unlock(&oom_lock);
3225 	return page;
3226 }
3227 
3228 /*
3229  * Maximum number of compaction retries wit a progress before OOM
3230  * killer is consider as the only way to move forward.
3231  */
3232 #define MAX_COMPACT_RETRIES 16
3233 
3234 #ifdef CONFIG_COMPACTION
3235 /* Try memory compaction for high-order allocations before reclaim */
3236 static struct page *
3237 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3238 		unsigned int alloc_flags, const struct alloc_context *ac,
3239 		enum compact_priority prio, enum compact_result *compact_result)
3240 {
3241 	struct page *page;
3242 
3243 	if (!order)
3244 		return NULL;
3245 
3246 	current->flags |= PF_MEMALLOC;
3247 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3248 									prio);
3249 	current->flags &= ~PF_MEMALLOC;
3250 
3251 	if (*compact_result <= COMPACT_INACTIVE)
3252 		return NULL;
3253 
3254 	/*
3255 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3256 	 * count a compaction stall
3257 	 */
3258 	count_vm_event(COMPACTSTALL);
3259 
3260 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3261 
3262 	if (page) {
3263 		struct zone *zone = page_zone(page);
3264 
3265 		zone->compact_blockskip_flush = false;
3266 		compaction_defer_reset(zone, order, true);
3267 		count_vm_event(COMPACTSUCCESS);
3268 		return page;
3269 	}
3270 
3271 	/*
3272 	 * It's bad if compaction run occurs and fails. The most likely reason
3273 	 * is that pages exist, but not enough to satisfy watermarks.
3274 	 */
3275 	count_vm_event(COMPACTFAIL);
3276 
3277 	cond_resched();
3278 
3279 	return NULL;
3280 }
3281 
3282 static inline bool
3283 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3284 		     enum compact_result compact_result,
3285 		     enum compact_priority *compact_priority,
3286 		     int *compaction_retries)
3287 {
3288 	int max_retries = MAX_COMPACT_RETRIES;
3289 	int min_priority;
3290 	bool ret = false;
3291 	int retries = *compaction_retries;
3292 	enum compact_priority priority = *compact_priority;
3293 
3294 	if (!order)
3295 		return false;
3296 
3297 	if (compaction_made_progress(compact_result))
3298 		(*compaction_retries)++;
3299 
3300 	/*
3301 	 * compaction considers all the zone as desperately out of memory
3302 	 * so it doesn't really make much sense to retry except when the
3303 	 * failure could be caused by insufficient priority
3304 	 */
3305 	if (compaction_failed(compact_result))
3306 		goto check_priority;
3307 
3308 	/*
3309 	 * make sure the compaction wasn't deferred or didn't bail out early
3310 	 * due to locks contention before we declare that we should give up.
3311 	 * But do not retry if the given zonelist is not suitable for
3312 	 * compaction.
3313 	 */
3314 	if (compaction_withdrawn(compact_result)) {
3315 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3316 		goto out;
3317 	}
3318 
3319 	/*
3320 	 * !costly requests are much more important than __GFP_REPEAT
3321 	 * costly ones because they are de facto nofail and invoke OOM
3322 	 * killer to move on while costly can fail and users are ready
3323 	 * to cope with that. 1/4 retries is rather arbitrary but we
3324 	 * would need much more detailed feedback from compaction to
3325 	 * make a better decision.
3326 	 */
3327 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3328 		max_retries /= 4;
3329 	if (*compaction_retries <= max_retries) {
3330 		ret = true;
3331 		goto out;
3332 	}
3333 
3334 	/*
3335 	 * Make sure there are attempts at the highest priority if we exhausted
3336 	 * all retries or failed at the lower priorities.
3337 	 */
3338 check_priority:
3339 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3340 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3341 
3342 	if (*compact_priority > min_priority) {
3343 		(*compact_priority)--;
3344 		*compaction_retries = 0;
3345 		ret = true;
3346 	}
3347 out:
3348 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3349 	return ret;
3350 }
3351 #else
3352 static inline struct page *
3353 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3354 		unsigned int alloc_flags, const struct alloc_context *ac,
3355 		enum compact_priority prio, enum compact_result *compact_result)
3356 {
3357 	*compact_result = COMPACT_SKIPPED;
3358 	return NULL;
3359 }
3360 
3361 static inline bool
3362 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3363 		     enum compact_result compact_result,
3364 		     enum compact_priority *compact_priority,
3365 		     int *compaction_retries)
3366 {
3367 	struct zone *zone;
3368 	struct zoneref *z;
3369 
3370 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3371 		return false;
3372 
3373 	/*
3374 	 * There are setups with compaction disabled which would prefer to loop
3375 	 * inside the allocator rather than hit the oom killer prematurely.
3376 	 * Let's give them a good hope and keep retrying while the order-0
3377 	 * watermarks are OK.
3378 	 */
3379 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3380 					ac->nodemask) {
3381 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3382 					ac_classzone_idx(ac), alloc_flags))
3383 			return true;
3384 	}
3385 	return false;
3386 }
3387 #endif /* CONFIG_COMPACTION */
3388 
3389 /* Perform direct synchronous page reclaim */
3390 static int
3391 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3392 					const struct alloc_context *ac)
3393 {
3394 	struct reclaim_state reclaim_state;
3395 	int progress;
3396 
3397 	cond_resched();
3398 
3399 	/* We now go into synchronous reclaim */
3400 	cpuset_memory_pressure_bump();
3401 	current->flags |= PF_MEMALLOC;
3402 	lockdep_set_current_reclaim_state(gfp_mask);
3403 	reclaim_state.reclaimed_slab = 0;
3404 	current->reclaim_state = &reclaim_state;
3405 
3406 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3407 								ac->nodemask);
3408 
3409 	current->reclaim_state = NULL;
3410 	lockdep_clear_current_reclaim_state();
3411 	current->flags &= ~PF_MEMALLOC;
3412 
3413 	cond_resched();
3414 
3415 	return progress;
3416 }
3417 
3418 /* The really slow allocator path where we enter direct reclaim */
3419 static inline struct page *
3420 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3421 		unsigned int alloc_flags, const struct alloc_context *ac,
3422 		unsigned long *did_some_progress)
3423 {
3424 	struct page *page = NULL;
3425 	bool drained = false;
3426 
3427 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3428 	if (unlikely(!(*did_some_progress)))
3429 		return NULL;
3430 
3431 retry:
3432 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3433 
3434 	/*
3435 	 * If an allocation failed after direct reclaim, it could be because
3436 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3437 	 * Shrink them them and try again
3438 	 */
3439 	if (!page && !drained) {
3440 		unreserve_highatomic_pageblock(ac, false);
3441 		drain_all_pages(NULL);
3442 		drained = true;
3443 		goto retry;
3444 	}
3445 
3446 	return page;
3447 }
3448 
3449 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3450 {
3451 	struct zoneref *z;
3452 	struct zone *zone;
3453 	pg_data_t *last_pgdat = NULL;
3454 
3455 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3456 					ac->high_zoneidx, ac->nodemask) {
3457 		if (last_pgdat != zone->zone_pgdat)
3458 			wakeup_kswapd(zone, order, ac->high_zoneidx);
3459 		last_pgdat = zone->zone_pgdat;
3460 	}
3461 }
3462 
3463 static inline unsigned int
3464 gfp_to_alloc_flags(gfp_t gfp_mask)
3465 {
3466 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3467 
3468 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3469 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3470 
3471 	/*
3472 	 * The caller may dip into page reserves a bit more if the caller
3473 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3474 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3475 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3476 	 */
3477 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3478 
3479 	if (gfp_mask & __GFP_ATOMIC) {
3480 		/*
3481 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3482 		 * if it can't schedule.
3483 		 */
3484 		if (!(gfp_mask & __GFP_NOMEMALLOC))
3485 			alloc_flags |= ALLOC_HARDER;
3486 		/*
3487 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3488 		 * comment for __cpuset_node_allowed().
3489 		 */
3490 		alloc_flags &= ~ALLOC_CPUSET;
3491 	} else if (unlikely(rt_task(current)) && !in_interrupt())
3492 		alloc_flags |= ALLOC_HARDER;
3493 
3494 #ifdef CONFIG_CMA
3495 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3496 		alloc_flags |= ALLOC_CMA;
3497 #endif
3498 	return alloc_flags;
3499 }
3500 
3501 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3502 {
3503 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3504 		return false;
3505 
3506 	if (gfp_mask & __GFP_MEMALLOC)
3507 		return true;
3508 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3509 		return true;
3510 	if (!in_interrupt() &&
3511 			((current->flags & PF_MEMALLOC) ||
3512 			 unlikely(test_thread_flag(TIF_MEMDIE))))
3513 		return true;
3514 
3515 	return false;
3516 }
3517 
3518 /*
3519  * Maximum number of reclaim retries without any progress before OOM killer
3520  * is consider as the only way to move forward.
3521  */
3522 #define MAX_RECLAIM_RETRIES 16
3523 
3524 /*
3525  * Checks whether it makes sense to retry the reclaim to make a forward progress
3526  * for the given allocation request.
3527  * The reclaim feedback represented by did_some_progress (any progress during
3528  * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3529  * any progress in a row) is considered as well as the reclaimable pages on the
3530  * applicable zone list (with a backoff mechanism which is a function of
3531  * no_progress_loops).
3532  *
3533  * Returns true if a retry is viable or false to enter the oom path.
3534  */
3535 static inline bool
3536 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3537 		     struct alloc_context *ac, int alloc_flags,
3538 		     bool did_some_progress, int *no_progress_loops)
3539 {
3540 	struct zone *zone;
3541 	struct zoneref *z;
3542 
3543 	/*
3544 	 * Costly allocations might have made a progress but this doesn't mean
3545 	 * their order will become available due to high fragmentation so
3546 	 * always increment the no progress counter for them
3547 	 */
3548 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3549 		*no_progress_loops = 0;
3550 	else
3551 		(*no_progress_loops)++;
3552 
3553 	/*
3554 	 * Make sure we converge to OOM if we cannot make any progress
3555 	 * several times in the row.
3556 	 */
3557 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3558 		/* Before OOM, exhaust highatomic_reserve */
3559 		return unreserve_highatomic_pageblock(ac, true);
3560 	}
3561 
3562 	/*
3563 	 * Keep reclaiming pages while there is a chance this will lead
3564 	 * somewhere.  If none of the target zones can satisfy our allocation
3565 	 * request even if all reclaimable pages are considered then we are
3566 	 * screwed and have to go OOM.
3567 	 */
3568 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3569 					ac->nodemask) {
3570 		unsigned long available;
3571 		unsigned long reclaimable;
3572 		unsigned long min_wmark = min_wmark_pages(zone);
3573 		bool wmark;
3574 
3575 		available = reclaimable = zone_reclaimable_pages(zone);
3576 		available -= DIV_ROUND_UP((*no_progress_loops) * available,
3577 					  MAX_RECLAIM_RETRIES);
3578 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3579 
3580 		/*
3581 		 * Would the allocation succeed if we reclaimed the whole
3582 		 * available?
3583 		 */
3584 		wmark = __zone_watermark_ok(zone, order, min_wmark,
3585 				ac_classzone_idx(ac), alloc_flags, available);
3586 		trace_reclaim_retry_zone(z, order, reclaimable,
3587 				available, min_wmark, *no_progress_loops, wmark);
3588 		if (wmark) {
3589 			/*
3590 			 * If we didn't make any progress and have a lot of
3591 			 * dirty + writeback pages then we should wait for
3592 			 * an IO to complete to slow down the reclaim and
3593 			 * prevent from pre mature OOM
3594 			 */
3595 			if (!did_some_progress) {
3596 				unsigned long write_pending;
3597 
3598 				write_pending = zone_page_state_snapshot(zone,
3599 							NR_ZONE_WRITE_PENDING);
3600 
3601 				if (2 * write_pending > reclaimable) {
3602 					congestion_wait(BLK_RW_ASYNC, HZ/10);
3603 					return true;
3604 				}
3605 			}
3606 
3607 			/*
3608 			 * Memory allocation/reclaim might be called from a WQ
3609 			 * context and the current implementation of the WQ
3610 			 * concurrency control doesn't recognize that
3611 			 * a particular WQ is congested if the worker thread is
3612 			 * looping without ever sleeping. Therefore we have to
3613 			 * do a short sleep here rather than calling
3614 			 * cond_resched().
3615 			 */
3616 			if (current->flags & PF_WQ_WORKER)
3617 				schedule_timeout_uninterruptible(1);
3618 			else
3619 				cond_resched();
3620 
3621 			return true;
3622 		}
3623 	}
3624 
3625 	return false;
3626 }
3627 
3628 static inline struct page *
3629 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3630 						struct alloc_context *ac)
3631 {
3632 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3633 	struct page *page = NULL;
3634 	unsigned int alloc_flags;
3635 	unsigned long did_some_progress;
3636 	enum compact_priority compact_priority;
3637 	enum compact_result compact_result;
3638 	int compaction_retries;
3639 	int no_progress_loops;
3640 	unsigned long alloc_start = jiffies;
3641 	unsigned int stall_timeout = 10 * HZ;
3642 	unsigned int cpuset_mems_cookie;
3643 
3644 	/*
3645 	 * In the slowpath, we sanity check order to avoid ever trying to
3646 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3647 	 * be using allocators in order of preference for an area that is
3648 	 * too large.
3649 	 */
3650 	if (order >= MAX_ORDER) {
3651 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3652 		return NULL;
3653 	}
3654 
3655 	/*
3656 	 * We also sanity check to catch abuse of atomic reserves being used by
3657 	 * callers that are not in atomic context.
3658 	 */
3659 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3660 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3661 		gfp_mask &= ~__GFP_ATOMIC;
3662 
3663 retry_cpuset:
3664 	compaction_retries = 0;
3665 	no_progress_loops = 0;
3666 	compact_priority = DEF_COMPACT_PRIORITY;
3667 	cpuset_mems_cookie = read_mems_allowed_begin();
3668 
3669 	/*
3670 	 * The fast path uses conservative alloc_flags to succeed only until
3671 	 * kswapd needs to be woken up, and to avoid the cost of setting up
3672 	 * alloc_flags precisely. So we do that now.
3673 	 */
3674 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
3675 
3676 	/*
3677 	 * We need to recalculate the starting point for the zonelist iterator
3678 	 * because we might have used different nodemask in the fast path, or
3679 	 * there was a cpuset modification and we are retrying - otherwise we
3680 	 * could end up iterating over non-eligible zones endlessly.
3681 	 */
3682 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3683 					ac->high_zoneidx, ac->nodemask);
3684 	if (!ac->preferred_zoneref->zone)
3685 		goto nopage;
3686 
3687 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3688 		wake_all_kswapds(order, ac);
3689 
3690 	/*
3691 	 * The adjusted alloc_flags might result in immediate success, so try
3692 	 * that first
3693 	 */
3694 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3695 	if (page)
3696 		goto got_pg;
3697 
3698 	/*
3699 	 * For costly allocations, try direct compaction first, as it's likely
3700 	 * that we have enough base pages and don't need to reclaim. Don't try
3701 	 * that for allocations that are allowed to ignore watermarks, as the
3702 	 * ALLOC_NO_WATERMARKS attempt didn't yet happen.
3703 	 */
3704 	if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
3705 		!gfp_pfmemalloc_allowed(gfp_mask)) {
3706 		page = __alloc_pages_direct_compact(gfp_mask, order,
3707 						alloc_flags, ac,
3708 						INIT_COMPACT_PRIORITY,
3709 						&compact_result);
3710 		if (page)
3711 			goto got_pg;
3712 
3713 		/*
3714 		 * Checks for costly allocations with __GFP_NORETRY, which
3715 		 * includes THP page fault allocations
3716 		 */
3717 		if (gfp_mask & __GFP_NORETRY) {
3718 			/*
3719 			 * If compaction is deferred for high-order allocations,
3720 			 * it is because sync compaction recently failed. If
3721 			 * this is the case and the caller requested a THP
3722 			 * allocation, we do not want to heavily disrupt the
3723 			 * system, so we fail the allocation instead of entering
3724 			 * direct reclaim.
3725 			 */
3726 			if (compact_result == COMPACT_DEFERRED)
3727 				goto nopage;
3728 
3729 			/*
3730 			 * Looks like reclaim/compaction is worth trying, but
3731 			 * sync compaction could be very expensive, so keep
3732 			 * using async compaction.
3733 			 */
3734 			compact_priority = INIT_COMPACT_PRIORITY;
3735 		}
3736 	}
3737 
3738 retry:
3739 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3740 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3741 		wake_all_kswapds(order, ac);
3742 
3743 	if (gfp_pfmemalloc_allowed(gfp_mask))
3744 		alloc_flags = ALLOC_NO_WATERMARKS;
3745 
3746 	/*
3747 	 * Reset the zonelist iterators if memory policies can be ignored.
3748 	 * These allocations are high priority and system rather than user
3749 	 * orientated.
3750 	 */
3751 	if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
3752 		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3753 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3754 					ac->high_zoneidx, ac->nodemask);
3755 	}
3756 
3757 	/* Attempt with potentially adjusted zonelist and alloc_flags */
3758 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3759 	if (page)
3760 		goto got_pg;
3761 
3762 	/* Caller is not willing to reclaim, we can't balance anything */
3763 	if (!can_direct_reclaim)
3764 		goto nopage;
3765 
3766 	/* Make sure we know about allocations which stall for too long */
3767 	if (time_after(jiffies, alloc_start + stall_timeout)) {
3768 		warn_alloc(gfp_mask, ac->nodemask,
3769 			"page allocation stalls for %ums, order:%u",
3770 			jiffies_to_msecs(jiffies-alloc_start), order);
3771 		stall_timeout += 10 * HZ;
3772 	}
3773 
3774 	/* Avoid recursion of direct reclaim */
3775 	if (current->flags & PF_MEMALLOC)
3776 		goto nopage;
3777 
3778 	/* Try direct reclaim and then allocating */
3779 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3780 							&did_some_progress);
3781 	if (page)
3782 		goto got_pg;
3783 
3784 	/* Try direct compaction and then allocating */
3785 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3786 					compact_priority, &compact_result);
3787 	if (page)
3788 		goto got_pg;
3789 
3790 	/* Do not loop if specifically requested */
3791 	if (gfp_mask & __GFP_NORETRY)
3792 		goto nopage;
3793 
3794 	/*
3795 	 * Do not retry costly high order allocations unless they are
3796 	 * __GFP_REPEAT
3797 	 */
3798 	if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
3799 		goto nopage;
3800 
3801 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3802 				 did_some_progress > 0, &no_progress_loops))
3803 		goto retry;
3804 
3805 	/*
3806 	 * It doesn't make any sense to retry for the compaction if the order-0
3807 	 * reclaim is not able to make any progress because the current
3808 	 * implementation of the compaction depends on the sufficient amount
3809 	 * of free memory (see __compaction_suitable)
3810 	 */
3811 	if (did_some_progress > 0 &&
3812 			should_compact_retry(ac, order, alloc_flags,
3813 				compact_result, &compact_priority,
3814 				&compaction_retries))
3815 		goto retry;
3816 
3817 	/*
3818 	 * It's possible we raced with cpuset update so the OOM would be
3819 	 * premature (see below the nopage: label for full explanation).
3820 	 */
3821 	if (read_mems_allowed_retry(cpuset_mems_cookie))
3822 		goto retry_cpuset;
3823 
3824 	/* Reclaim has failed us, start killing things */
3825 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3826 	if (page)
3827 		goto got_pg;
3828 
3829 	/* Avoid allocations with no watermarks from looping endlessly */
3830 	if (test_thread_flag(TIF_MEMDIE))
3831 		goto nopage;
3832 
3833 	/* Retry as long as the OOM killer is making progress */
3834 	if (did_some_progress) {
3835 		no_progress_loops = 0;
3836 		goto retry;
3837 	}
3838 
3839 nopage:
3840 	/*
3841 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
3842 	 * possible to race with parallel threads in such a way that our
3843 	 * allocation can fail while the mask is being updated. If we are about
3844 	 * to fail, check if the cpuset changed during allocation and if so,
3845 	 * retry.
3846 	 */
3847 	if (read_mems_allowed_retry(cpuset_mems_cookie))
3848 		goto retry_cpuset;
3849 
3850 	/*
3851 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
3852 	 * we always retry
3853 	 */
3854 	if (gfp_mask & __GFP_NOFAIL) {
3855 		/*
3856 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
3857 		 * of any new users that actually require GFP_NOWAIT
3858 		 */
3859 		if (WARN_ON_ONCE(!can_direct_reclaim))
3860 			goto fail;
3861 
3862 		/*
3863 		 * PF_MEMALLOC request from this context is rather bizarre
3864 		 * because we cannot reclaim anything and only can loop waiting
3865 		 * for somebody to do a work for us
3866 		 */
3867 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
3868 
3869 		/*
3870 		 * non failing costly orders are a hard requirement which we
3871 		 * are not prepared for much so let's warn about these users
3872 		 * so that we can identify them and convert them to something
3873 		 * else.
3874 		 */
3875 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
3876 
3877 		/*
3878 		 * Help non-failing allocations by giving them access to memory
3879 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
3880 		 * could deplete whole memory reserves which would just make
3881 		 * the situation worse
3882 		 */
3883 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
3884 		if (page)
3885 			goto got_pg;
3886 
3887 		cond_resched();
3888 		goto retry;
3889 	}
3890 fail:
3891 	warn_alloc(gfp_mask, ac->nodemask,
3892 			"page allocation failure: order:%u", order);
3893 got_pg:
3894 	return page;
3895 }
3896 
3897 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
3898 		struct zonelist *zonelist, nodemask_t *nodemask,
3899 		struct alloc_context *ac, gfp_t *alloc_mask,
3900 		unsigned int *alloc_flags)
3901 {
3902 	ac->high_zoneidx = gfp_zone(gfp_mask);
3903 	ac->zonelist = zonelist;
3904 	ac->nodemask = nodemask;
3905 	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
3906 
3907 	if (cpusets_enabled()) {
3908 		*alloc_mask |= __GFP_HARDWALL;
3909 		if (!ac->nodemask)
3910 			ac->nodemask = &cpuset_current_mems_allowed;
3911 		else
3912 			*alloc_flags |= ALLOC_CPUSET;
3913 	}
3914 
3915 	lockdep_trace_alloc(gfp_mask);
3916 
3917 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3918 
3919 	if (should_fail_alloc_page(gfp_mask, order))
3920 		return false;
3921 
3922 	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
3923 		*alloc_flags |= ALLOC_CMA;
3924 
3925 	return true;
3926 }
3927 
3928 /* Determine whether to spread dirty pages and what the first usable zone */
3929 static inline void finalise_ac(gfp_t gfp_mask,
3930 		unsigned int order, struct alloc_context *ac)
3931 {
3932 	/* Dirty zone balancing only done in the fast path */
3933 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3934 
3935 	/*
3936 	 * The preferred zone is used for statistics but crucially it is
3937 	 * also used as the starting point for the zonelist iterator. It
3938 	 * may get reset for allocations that ignore memory policies.
3939 	 */
3940 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3941 					ac->high_zoneidx, ac->nodemask);
3942 }
3943 
3944 /*
3945  * This is the 'heart' of the zoned buddy allocator.
3946  */
3947 struct page *
3948 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3949 			struct zonelist *zonelist, nodemask_t *nodemask)
3950 {
3951 	struct page *page;
3952 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
3953 	gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
3954 	struct alloc_context ac = { };
3955 
3956 	gfp_mask &= gfp_allowed_mask;
3957 	if (!prepare_alloc_pages(gfp_mask, order, zonelist, nodemask, &ac, &alloc_mask, &alloc_flags))
3958 		return NULL;
3959 
3960 	finalise_ac(gfp_mask, order, &ac);
3961 
3962 	/* First allocation attempt */
3963 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3964 	if (likely(page))
3965 		goto out;
3966 
3967 	/*
3968 	 * Runtime PM, block IO and its error handling path can deadlock
3969 	 * because I/O on the device might not complete.
3970 	 */
3971 	alloc_mask = memalloc_noio_flags(gfp_mask);
3972 	ac.spread_dirty_pages = false;
3973 
3974 	/*
3975 	 * Restore the original nodemask if it was potentially replaced with
3976 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3977 	 */
3978 	if (unlikely(ac.nodemask != nodemask))
3979 		ac.nodemask = nodemask;
3980 
3981 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3982 
3983 out:
3984 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
3985 	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
3986 		__free_pages(page, order);
3987 		page = NULL;
3988 	}
3989 
3990 	if (kmemcheck_enabled && page)
3991 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3992 
3993 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3994 
3995 	return page;
3996 }
3997 EXPORT_SYMBOL(__alloc_pages_nodemask);
3998 
3999 /*
4000  * Common helper functions.
4001  */
4002 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4003 {
4004 	struct page *page;
4005 
4006 	/*
4007 	 * __get_free_pages() returns a 32-bit address, which cannot represent
4008 	 * a highmem page
4009 	 */
4010 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4011 
4012 	page = alloc_pages(gfp_mask, order);
4013 	if (!page)
4014 		return 0;
4015 	return (unsigned long) page_address(page);
4016 }
4017 EXPORT_SYMBOL(__get_free_pages);
4018 
4019 unsigned long get_zeroed_page(gfp_t gfp_mask)
4020 {
4021 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4022 }
4023 EXPORT_SYMBOL(get_zeroed_page);
4024 
4025 void __free_pages(struct page *page, unsigned int order)
4026 {
4027 	if (put_page_testzero(page)) {
4028 		if (order == 0)
4029 			free_hot_cold_page(page, false);
4030 		else
4031 			__free_pages_ok(page, order);
4032 	}
4033 }
4034 
4035 EXPORT_SYMBOL(__free_pages);
4036 
4037 void free_pages(unsigned long addr, unsigned int order)
4038 {
4039 	if (addr != 0) {
4040 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4041 		__free_pages(virt_to_page((void *)addr), order);
4042 	}
4043 }
4044 
4045 EXPORT_SYMBOL(free_pages);
4046 
4047 /*
4048  * Page Fragment:
4049  *  An arbitrary-length arbitrary-offset area of memory which resides
4050  *  within a 0 or higher order page.  Multiple fragments within that page
4051  *  are individually refcounted, in the page's reference counter.
4052  *
4053  * The page_frag functions below provide a simple allocation framework for
4054  * page fragments.  This is used by the network stack and network device
4055  * drivers to provide a backing region of memory for use as either an
4056  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4057  */
4058 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4059 					     gfp_t gfp_mask)
4060 {
4061 	struct page *page = NULL;
4062 	gfp_t gfp = gfp_mask;
4063 
4064 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4065 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4066 		    __GFP_NOMEMALLOC;
4067 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4068 				PAGE_FRAG_CACHE_MAX_ORDER);
4069 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4070 #endif
4071 	if (unlikely(!page))
4072 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4073 
4074 	nc->va = page ? page_address(page) : NULL;
4075 
4076 	return page;
4077 }
4078 
4079 void __page_frag_cache_drain(struct page *page, unsigned int count)
4080 {
4081 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4082 
4083 	if (page_ref_sub_and_test(page, count)) {
4084 		unsigned int order = compound_order(page);
4085 
4086 		if (order == 0)
4087 			free_hot_cold_page(page, false);
4088 		else
4089 			__free_pages_ok(page, order);
4090 	}
4091 }
4092 EXPORT_SYMBOL(__page_frag_cache_drain);
4093 
4094 void *page_frag_alloc(struct page_frag_cache *nc,
4095 		      unsigned int fragsz, gfp_t gfp_mask)
4096 {
4097 	unsigned int size = PAGE_SIZE;
4098 	struct page *page;
4099 	int offset;
4100 
4101 	if (unlikely(!nc->va)) {
4102 refill:
4103 		page = __page_frag_cache_refill(nc, gfp_mask);
4104 		if (!page)
4105 			return NULL;
4106 
4107 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4108 		/* if size can vary use size else just use PAGE_SIZE */
4109 		size = nc->size;
4110 #endif
4111 		/* Even if we own the page, we do not use atomic_set().
4112 		 * This would break get_page_unless_zero() users.
4113 		 */
4114 		page_ref_add(page, size - 1);
4115 
4116 		/* reset page count bias and offset to start of new frag */
4117 		nc->pfmemalloc = page_is_pfmemalloc(page);
4118 		nc->pagecnt_bias = size;
4119 		nc->offset = size;
4120 	}
4121 
4122 	offset = nc->offset - fragsz;
4123 	if (unlikely(offset < 0)) {
4124 		page = virt_to_page(nc->va);
4125 
4126 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4127 			goto refill;
4128 
4129 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4130 		/* if size can vary use size else just use PAGE_SIZE */
4131 		size = nc->size;
4132 #endif
4133 		/* OK, page count is 0, we can safely set it */
4134 		set_page_count(page, size);
4135 
4136 		/* reset page count bias and offset to start of new frag */
4137 		nc->pagecnt_bias = size;
4138 		offset = size - fragsz;
4139 	}
4140 
4141 	nc->pagecnt_bias--;
4142 	nc->offset = offset;
4143 
4144 	return nc->va + offset;
4145 }
4146 EXPORT_SYMBOL(page_frag_alloc);
4147 
4148 /*
4149  * Frees a page fragment allocated out of either a compound or order 0 page.
4150  */
4151 void page_frag_free(void *addr)
4152 {
4153 	struct page *page = virt_to_head_page(addr);
4154 
4155 	if (unlikely(put_page_testzero(page)))
4156 		__free_pages_ok(page, compound_order(page));
4157 }
4158 EXPORT_SYMBOL(page_frag_free);
4159 
4160 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4161 		size_t size)
4162 {
4163 	if (addr) {
4164 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
4165 		unsigned long used = addr + PAGE_ALIGN(size);
4166 
4167 		split_page(virt_to_page((void *)addr), order);
4168 		while (used < alloc_end) {
4169 			free_page(used);
4170 			used += PAGE_SIZE;
4171 		}
4172 	}
4173 	return (void *)addr;
4174 }
4175 
4176 /**
4177  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4178  * @size: the number of bytes to allocate
4179  * @gfp_mask: GFP flags for the allocation
4180  *
4181  * This function is similar to alloc_pages(), except that it allocates the
4182  * minimum number of pages to satisfy the request.  alloc_pages() can only
4183  * allocate memory in power-of-two pages.
4184  *
4185  * This function is also limited by MAX_ORDER.
4186  *
4187  * Memory allocated by this function must be released by free_pages_exact().
4188  */
4189 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4190 {
4191 	unsigned int order = get_order(size);
4192 	unsigned long addr;
4193 
4194 	addr = __get_free_pages(gfp_mask, order);
4195 	return make_alloc_exact(addr, order, size);
4196 }
4197 EXPORT_SYMBOL(alloc_pages_exact);
4198 
4199 /**
4200  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4201  *			   pages on a node.
4202  * @nid: the preferred node ID where memory should be allocated
4203  * @size: the number of bytes to allocate
4204  * @gfp_mask: GFP flags for the allocation
4205  *
4206  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4207  * back.
4208  */
4209 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4210 {
4211 	unsigned int order = get_order(size);
4212 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
4213 	if (!p)
4214 		return NULL;
4215 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4216 }
4217 
4218 /**
4219  * free_pages_exact - release memory allocated via alloc_pages_exact()
4220  * @virt: the value returned by alloc_pages_exact.
4221  * @size: size of allocation, same value as passed to alloc_pages_exact().
4222  *
4223  * Release the memory allocated by a previous call to alloc_pages_exact.
4224  */
4225 void free_pages_exact(void *virt, size_t size)
4226 {
4227 	unsigned long addr = (unsigned long)virt;
4228 	unsigned long end = addr + PAGE_ALIGN(size);
4229 
4230 	while (addr < end) {
4231 		free_page(addr);
4232 		addr += PAGE_SIZE;
4233 	}
4234 }
4235 EXPORT_SYMBOL(free_pages_exact);
4236 
4237 /**
4238  * nr_free_zone_pages - count number of pages beyond high watermark
4239  * @offset: The zone index of the highest zone
4240  *
4241  * nr_free_zone_pages() counts the number of counts pages which are beyond the
4242  * high watermark within all zones at or below a given zone index.  For each
4243  * zone, the number of pages is calculated as:
4244  *     managed_pages - high_pages
4245  */
4246 static unsigned long nr_free_zone_pages(int offset)
4247 {
4248 	struct zoneref *z;
4249 	struct zone *zone;
4250 
4251 	/* Just pick one node, since fallback list is circular */
4252 	unsigned long sum = 0;
4253 
4254 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4255 
4256 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4257 		unsigned long size = zone->managed_pages;
4258 		unsigned long high = high_wmark_pages(zone);
4259 		if (size > high)
4260 			sum += size - high;
4261 	}
4262 
4263 	return sum;
4264 }
4265 
4266 /**
4267  * nr_free_buffer_pages - count number of pages beyond high watermark
4268  *
4269  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4270  * watermark within ZONE_DMA and ZONE_NORMAL.
4271  */
4272 unsigned long nr_free_buffer_pages(void)
4273 {
4274 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4275 }
4276 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4277 
4278 /**
4279  * nr_free_pagecache_pages - count number of pages beyond high watermark
4280  *
4281  * nr_free_pagecache_pages() counts the number of pages which are beyond the
4282  * high watermark within all zones.
4283  */
4284 unsigned long nr_free_pagecache_pages(void)
4285 {
4286 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4287 }
4288 
4289 static inline void show_node(struct zone *zone)
4290 {
4291 	if (IS_ENABLED(CONFIG_NUMA))
4292 		printk("Node %d ", zone_to_nid(zone));
4293 }
4294 
4295 long si_mem_available(void)
4296 {
4297 	long available;
4298 	unsigned long pagecache;
4299 	unsigned long wmark_low = 0;
4300 	unsigned long pages[NR_LRU_LISTS];
4301 	struct zone *zone;
4302 	int lru;
4303 
4304 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4305 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4306 
4307 	for_each_zone(zone)
4308 		wmark_low += zone->watermark[WMARK_LOW];
4309 
4310 	/*
4311 	 * Estimate the amount of memory available for userspace allocations,
4312 	 * without causing swapping.
4313 	 */
4314 	available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4315 
4316 	/*
4317 	 * Not all the page cache can be freed, otherwise the system will
4318 	 * start swapping. Assume at least half of the page cache, or the
4319 	 * low watermark worth of cache, needs to stay.
4320 	 */
4321 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4322 	pagecache -= min(pagecache / 2, wmark_low);
4323 	available += pagecache;
4324 
4325 	/*
4326 	 * Part of the reclaimable slab consists of items that are in use,
4327 	 * and cannot be freed. Cap this estimate at the low watermark.
4328 	 */
4329 	available += global_page_state(NR_SLAB_RECLAIMABLE) -
4330 		     min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4331 
4332 	if (available < 0)
4333 		available = 0;
4334 	return available;
4335 }
4336 EXPORT_SYMBOL_GPL(si_mem_available);
4337 
4338 void si_meminfo(struct sysinfo *val)
4339 {
4340 	val->totalram = totalram_pages;
4341 	val->sharedram = global_node_page_state(NR_SHMEM);
4342 	val->freeram = global_page_state(NR_FREE_PAGES);
4343 	val->bufferram = nr_blockdev_pages();
4344 	val->totalhigh = totalhigh_pages;
4345 	val->freehigh = nr_free_highpages();
4346 	val->mem_unit = PAGE_SIZE;
4347 }
4348 
4349 EXPORT_SYMBOL(si_meminfo);
4350 
4351 #ifdef CONFIG_NUMA
4352 void si_meminfo_node(struct sysinfo *val, int nid)
4353 {
4354 	int zone_type;		/* needs to be signed */
4355 	unsigned long managed_pages = 0;
4356 	unsigned long managed_highpages = 0;
4357 	unsigned long free_highpages = 0;
4358 	pg_data_t *pgdat = NODE_DATA(nid);
4359 
4360 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4361 		managed_pages += pgdat->node_zones[zone_type].managed_pages;
4362 	val->totalram = managed_pages;
4363 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
4364 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4365 #ifdef CONFIG_HIGHMEM
4366 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4367 		struct zone *zone = &pgdat->node_zones[zone_type];
4368 
4369 		if (is_highmem(zone)) {
4370 			managed_highpages += zone->managed_pages;
4371 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4372 		}
4373 	}
4374 	val->totalhigh = managed_highpages;
4375 	val->freehigh = free_highpages;
4376 #else
4377 	val->totalhigh = managed_highpages;
4378 	val->freehigh = free_highpages;
4379 #endif
4380 	val->mem_unit = PAGE_SIZE;
4381 }
4382 #endif
4383 
4384 /*
4385  * Determine whether the node should be displayed or not, depending on whether
4386  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4387  */
4388 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4389 {
4390 	if (!(flags & SHOW_MEM_FILTER_NODES))
4391 		return false;
4392 
4393 	/*
4394 	 * no node mask - aka implicit memory numa policy. Do not bother with
4395 	 * the synchronization - read_mems_allowed_begin - because we do not
4396 	 * have to be precise here.
4397 	 */
4398 	if (!nodemask)
4399 		nodemask = &cpuset_current_mems_allowed;
4400 
4401 	return !node_isset(nid, *nodemask);
4402 }
4403 
4404 #define K(x) ((x) << (PAGE_SHIFT-10))
4405 
4406 static void show_migration_types(unsigned char type)
4407 {
4408 	static const char types[MIGRATE_TYPES] = {
4409 		[MIGRATE_UNMOVABLE]	= 'U',
4410 		[MIGRATE_MOVABLE]	= 'M',
4411 		[MIGRATE_RECLAIMABLE]	= 'E',
4412 		[MIGRATE_HIGHATOMIC]	= 'H',
4413 #ifdef CONFIG_CMA
4414 		[MIGRATE_CMA]		= 'C',
4415 #endif
4416 #ifdef CONFIG_MEMORY_ISOLATION
4417 		[MIGRATE_ISOLATE]	= 'I',
4418 #endif
4419 	};
4420 	char tmp[MIGRATE_TYPES + 1];
4421 	char *p = tmp;
4422 	int i;
4423 
4424 	for (i = 0; i < MIGRATE_TYPES; i++) {
4425 		if (type & (1 << i))
4426 			*p++ = types[i];
4427 	}
4428 
4429 	*p = '\0';
4430 	printk(KERN_CONT "(%s) ", tmp);
4431 }
4432 
4433 /*
4434  * Show free area list (used inside shift_scroll-lock stuff)
4435  * We also calculate the percentage fragmentation. We do this by counting the
4436  * memory on each free list with the exception of the first item on the list.
4437  *
4438  * Bits in @filter:
4439  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4440  *   cpuset.
4441  */
4442 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4443 {
4444 	unsigned long free_pcp = 0;
4445 	int cpu;
4446 	struct zone *zone;
4447 	pg_data_t *pgdat;
4448 
4449 	for_each_populated_zone(zone) {
4450 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4451 			continue;
4452 
4453 		for_each_online_cpu(cpu)
4454 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4455 	}
4456 
4457 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4458 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4459 		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4460 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4461 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4462 		" free:%lu free_pcp:%lu free_cma:%lu\n",
4463 		global_node_page_state(NR_ACTIVE_ANON),
4464 		global_node_page_state(NR_INACTIVE_ANON),
4465 		global_node_page_state(NR_ISOLATED_ANON),
4466 		global_node_page_state(NR_ACTIVE_FILE),
4467 		global_node_page_state(NR_INACTIVE_FILE),
4468 		global_node_page_state(NR_ISOLATED_FILE),
4469 		global_node_page_state(NR_UNEVICTABLE),
4470 		global_node_page_state(NR_FILE_DIRTY),
4471 		global_node_page_state(NR_WRITEBACK),
4472 		global_node_page_state(NR_UNSTABLE_NFS),
4473 		global_page_state(NR_SLAB_RECLAIMABLE),
4474 		global_page_state(NR_SLAB_UNRECLAIMABLE),
4475 		global_node_page_state(NR_FILE_MAPPED),
4476 		global_node_page_state(NR_SHMEM),
4477 		global_page_state(NR_PAGETABLE),
4478 		global_page_state(NR_BOUNCE),
4479 		global_page_state(NR_FREE_PAGES),
4480 		free_pcp,
4481 		global_page_state(NR_FREE_CMA_PAGES));
4482 
4483 	for_each_online_pgdat(pgdat) {
4484 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4485 			continue;
4486 
4487 		printk("Node %d"
4488 			" active_anon:%lukB"
4489 			" inactive_anon:%lukB"
4490 			" active_file:%lukB"
4491 			" inactive_file:%lukB"
4492 			" unevictable:%lukB"
4493 			" isolated(anon):%lukB"
4494 			" isolated(file):%lukB"
4495 			" mapped:%lukB"
4496 			" dirty:%lukB"
4497 			" writeback:%lukB"
4498 			" shmem:%lukB"
4499 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4500 			" shmem_thp: %lukB"
4501 			" shmem_pmdmapped: %lukB"
4502 			" anon_thp: %lukB"
4503 #endif
4504 			" writeback_tmp:%lukB"
4505 			" unstable:%lukB"
4506 			" pages_scanned:%lu"
4507 			" all_unreclaimable? %s"
4508 			"\n",
4509 			pgdat->node_id,
4510 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4511 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4512 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4513 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4514 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
4515 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4516 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4517 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
4518 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
4519 			K(node_page_state(pgdat, NR_WRITEBACK)),
4520 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4521 			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4522 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4523 					* HPAGE_PMD_NR),
4524 			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4525 #endif
4526 			K(node_page_state(pgdat, NR_SHMEM)),
4527 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4528 			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4529 			node_page_state(pgdat, NR_PAGES_SCANNED),
4530 			!pgdat_reclaimable(pgdat) ? "yes" : "no");
4531 	}
4532 
4533 	for_each_populated_zone(zone) {
4534 		int i;
4535 
4536 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4537 			continue;
4538 
4539 		free_pcp = 0;
4540 		for_each_online_cpu(cpu)
4541 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4542 
4543 		show_node(zone);
4544 		printk(KERN_CONT
4545 			"%s"
4546 			" free:%lukB"
4547 			" min:%lukB"
4548 			" low:%lukB"
4549 			" high:%lukB"
4550 			" active_anon:%lukB"
4551 			" inactive_anon:%lukB"
4552 			" active_file:%lukB"
4553 			" inactive_file:%lukB"
4554 			" unevictable:%lukB"
4555 			" writepending:%lukB"
4556 			" present:%lukB"
4557 			" managed:%lukB"
4558 			" mlocked:%lukB"
4559 			" slab_reclaimable:%lukB"
4560 			" slab_unreclaimable:%lukB"
4561 			" kernel_stack:%lukB"
4562 			" pagetables:%lukB"
4563 			" bounce:%lukB"
4564 			" free_pcp:%lukB"
4565 			" local_pcp:%ukB"
4566 			" free_cma:%lukB"
4567 			"\n",
4568 			zone->name,
4569 			K(zone_page_state(zone, NR_FREE_PAGES)),
4570 			K(min_wmark_pages(zone)),
4571 			K(low_wmark_pages(zone)),
4572 			K(high_wmark_pages(zone)),
4573 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4574 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4575 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4576 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4577 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4578 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4579 			K(zone->present_pages),
4580 			K(zone->managed_pages),
4581 			K(zone_page_state(zone, NR_MLOCK)),
4582 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4583 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
4584 			zone_page_state(zone, NR_KERNEL_STACK_KB),
4585 			K(zone_page_state(zone, NR_PAGETABLE)),
4586 			K(zone_page_state(zone, NR_BOUNCE)),
4587 			K(free_pcp),
4588 			K(this_cpu_read(zone->pageset->pcp.count)),
4589 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4590 		printk("lowmem_reserve[]:");
4591 		for (i = 0; i < MAX_NR_ZONES; i++)
4592 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4593 		printk(KERN_CONT "\n");
4594 	}
4595 
4596 	for_each_populated_zone(zone) {
4597 		unsigned int order;
4598 		unsigned long nr[MAX_ORDER], flags, total = 0;
4599 		unsigned char types[MAX_ORDER];
4600 
4601 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4602 			continue;
4603 		show_node(zone);
4604 		printk(KERN_CONT "%s: ", zone->name);
4605 
4606 		spin_lock_irqsave(&zone->lock, flags);
4607 		for (order = 0; order < MAX_ORDER; order++) {
4608 			struct free_area *area = &zone->free_area[order];
4609 			int type;
4610 
4611 			nr[order] = area->nr_free;
4612 			total += nr[order] << order;
4613 
4614 			types[order] = 0;
4615 			for (type = 0; type < MIGRATE_TYPES; type++) {
4616 				if (!list_empty(&area->free_list[type]))
4617 					types[order] |= 1 << type;
4618 			}
4619 		}
4620 		spin_unlock_irqrestore(&zone->lock, flags);
4621 		for (order = 0; order < MAX_ORDER; order++) {
4622 			printk(KERN_CONT "%lu*%lukB ",
4623 			       nr[order], K(1UL) << order);
4624 			if (nr[order])
4625 				show_migration_types(types[order]);
4626 		}
4627 		printk(KERN_CONT "= %lukB\n", K(total));
4628 	}
4629 
4630 	hugetlb_show_meminfo();
4631 
4632 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4633 
4634 	show_swap_cache_info();
4635 }
4636 
4637 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4638 {
4639 	zoneref->zone = zone;
4640 	zoneref->zone_idx = zone_idx(zone);
4641 }
4642 
4643 /*
4644  * Builds allocation fallback zone lists.
4645  *
4646  * Add all populated zones of a node to the zonelist.
4647  */
4648 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4649 				int nr_zones)
4650 {
4651 	struct zone *zone;
4652 	enum zone_type zone_type = MAX_NR_ZONES;
4653 
4654 	do {
4655 		zone_type--;
4656 		zone = pgdat->node_zones + zone_type;
4657 		if (managed_zone(zone)) {
4658 			zoneref_set_zone(zone,
4659 				&zonelist->_zonerefs[nr_zones++]);
4660 			check_highest_zone(zone_type);
4661 		}
4662 	} while (zone_type);
4663 
4664 	return nr_zones;
4665 }
4666 
4667 
4668 /*
4669  *  zonelist_order:
4670  *  0 = automatic detection of better ordering.
4671  *  1 = order by ([node] distance, -zonetype)
4672  *  2 = order by (-zonetype, [node] distance)
4673  *
4674  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4675  *  the same zonelist. So only NUMA can configure this param.
4676  */
4677 #define ZONELIST_ORDER_DEFAULT  0
4678 #define ZONELIST_ORDER_NODE     1
4679 #define ZONELIST_ORDER_ZONE     2
4680 
4681 /* zonelist order in the kernel.
4682  * set_zonelist_order() will set this to NODE or ZONE.
4683  */
4684 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4685 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4686 
4687 
4688 #ifdef CONFIG_NUMA
4689 /* The value user specified ....changed by config */
4690 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4691 /* string for sysctl */
4692 #define NUMA_ZONELIST_ORDER_LEN	16
4693 char numa_zonelist_order[16] = "default";
4694 
4695 /*
4696  * interface for configure zonelist ordering.
4697  * command line option "numa_zonelist_order"
4698  *	= "[dD]efault	- default, automatic configuration.
4699  *	= "[nN]ode 	- order by node locality, then by zone within node
4700  *	= "[zZ]one      - order by zone, then by locality within zone
4701  */
4702 
4703 static int __parse_numa_zonelist_order(char *s)
4704 {
4705 	if (*s == 'd' || *s == 'D') {
4706 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4707 	} else if (*s == 'n' || *s == 'N') {
4708 		user_zonelist_order = ZONELIST_ORDER_NODE;
4709 	} else if (*s == 'z' || *s == 'Z') {
4710 		user_zonelist_order = ZONELIST_ORDER_ZONE;
4711 	} else {
4712 		pr_warn("Ignoring invalid numa_zonelist_order value:  %s\n", s);
4713 		return -EINVAL;
4714 	}
4715 	return 0;
4716 }
4717 
4718 static __init int setup_numa_zonelist_order(char *s)
4719 {
4720 	int ret;
4721 
4722 	if (!s)
4723 		return 0;
4724 
4725 	ret = __parse_numa_zonelist_order(s);
4726 	if (ret == 0)
4727 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4728 
4729 	return ret;
4730 }
4731 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4732 
4733 /*
4734  * sysctl handler for numa_zonelist_order
4735  */
4736 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4737 		void __user *buffer, size_t *length,
4738 		loff_t *ppos)
4739 {
4740 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
4741 	int ret;
4742 	static DEFINE_MUTEX(zl_order_mutex);
4743 
4744 	mutex_lock(&zl_order_mutex);
4745 	if (write) {
4746 		if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4747 			ret = -EINVAL;
4748 			goto out;
4749 		}
4750 		strcpy(saved_string, (char *)table->data);
4751 	}
4752 	ret = proc_dostring(table, write, buffer, length, ppos);
4753 	if (ret)
4754 		goto out;
4755 	if (write) {
4756 		int oldval = user_zonelist_order;
4757 
4758 		ret = __parse_numa_zonelist_order((char *)table->data);
4759 		if (ret) {
4760 			/*
4761 			 * bogus value.  restore saved string
4762 			 */
4763 			strncpy((char *)table->data, saved_string,
4764 				NUMA_ZONELIST_ORDER_LEN);
4765 			user_zonelist_order = oldval;
4766 		} else if (oldval != user_zonelist_order) {
4767 			mutex_lock(&zonelists_mutex);
4768 			build_all_zonelists(NULL, NULL);
4769 			mutex_unlock(&zonelists_mutex);
4770 		}
4771 	}
4772 out:
4773 	mutex_unlock(&zl_order_mutex);
4774 	return ret;
4775 }
4776 
4777 
4778 #define MAX_NODE_LOAD (nr_online_nodes)
4779 static int node_load[MAX_NUMNODES];
4780 
4781 /**
4782  * find_next_best_node - find the next node that should appear in a given node's fallback list
4783  * @node: node whose fallback list we're appending
4784  * @used_node_mask: nodemask_t of already used nodes
4785  *
4786  * We use a number of factors to determine which is the next node that should
4787  * appear on a given node's fallback list.  The node should not have appeared
4788  * already in @node's fallback list, and it should be the next closest node
4789  * according to the distance array (which contains arbitrary distance values
4790  * from each node to each node in the system), and should also prefer nodes
4791  * with no CPUs, since presumably they'll have very little allocation pressure
4792  * on them otherwise.
4793  * It returns -1 if no node is found.
4794  */
4795 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4796 {
4797 	int n, val;
4798 	int min_val = INT_MAX;
4799 	int best_node = NUMA_NO_NODE;
4800 	const struct cpumask *tmp = cpumask_of_node(0);
4801 
4802 	/* Use the local node if we haven't already */
4803 	if (!node_isset(node, *used_node_mask)) {
4804 		node_set(node, *used_node_mask);
4805 		return node;
4806 	}
4807 
4808 	for_each_node_state(n, N_MEMORY) {
4809 
4810 		/* Don't want a node to appear more than once */
4811 		if (node_isset(n, *used_node_mask))
4812 			continue;
4813 
4814 		/* Use the distance array to find the distance */
4815 		val = node_distance(node, n);
4816 
4817 		/* Penalize nodes under us ("prefer the next node") */
4818 		val += (n < node);
4819 
4820 		/* Give preference to headless and unused nodes */
4821 		tmp = cpumask_of_node(n);
4822 		if (!cpumask_empty(tmp))
4823 			val += PENALTY_FOR_NODE_WITH_CPUS;
4824 
4825 		/* Slight preference for less loaded node */
4826 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4827 		val += node_load[n];
4828 
4829 		if (val < min_val) {
4830 			min_val = val;
4831 			best_node = n;
4832 		}
4833 	}
4834 
4835 	if (best_node >= 0)
4836 		node_set(best_node, *used_node_mask);
4837 
4838 	return best_node;
4839 }
4840 
4841 
4842 /*
4843  * Build zonelists ordered by node and zones within node.
4844  * This results in maximum locality--normal zone overflows into local
4845  * DMA zone, if any--but risks exhausting DMA zone.
4846  */
4847 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4848 {
4849 	int j;
4850 	struct zonelist *zonelist;
4851 
4852 	zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4853 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4854 		;
4855 	j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4856 	zonelist->_zonerefs[j].zone = NULL;
4857 	zonelist->_zonerefs[j].zone_idx = 0;
4858 }
4859 
4860 /*
4861  * Build gfp_thisnode zonelists
4862  */
4863 static void build_thisnode_zonelists(pg_data_t *pgdat)
4864 {
4865 	int j;
4866 	struct zonelist *zonelist;
4867 
4868 	zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
4869 	j = build_zonelists_node(pgdat, zonelist, 0);
4870 	zonelist->_zonerefs[j].zone = NULL;
4871 	zonelist->_zonerefs[j].zone_idx = 0;
4872 }
4873 
4874 /*
4875  * Build zonelists ordered by zone and nodes within zones.
4876  * This results in conserving DMA zone[s] until all Normal memory is
4877  * exhausted, but results in overflowing to remote node while memory
4878  * may still exist in local DMA zone.
4879  */
4880 static int node_order[MAX_NUMNODES];
4881 
4882 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4883 {
4884 	int pos, j, node;
4885 	int zone_type;		/* needs to be signed */
4886 	struct zone *z;
4887 	struct zonelist *zonelist;
4888 
4889 	zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4890 	pos = 0;
4891 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4892 		for (j = 0; j < nr_nodes; j++) {
4893 			node = node_order[j];
4894 			z = &NODE_DATA(node)->node_zones[zone_type];
4895 			if (managed_zone(z)) {
4896 				zoneref_set_zone(z,
4897 					&zonelist->_zonerefs[pos++]);
4898 				check_highest_zone(zone_type);
4899 			}
4900 		}
4901 	}
4902 	zonelist->_zonerefs[pos].zone = NULL;
4903 	zonelist->_zonerefs[pos].zone_idx = 0;
4904 }
4905 
4906 #if defined(CONFIG_64BIT)
4907 /*
4908  * Devices that require DMA32/DMA are relatively rare and do not justify a
4909  * penalty to every machine in case the specialised case applies. Default
4910  * to Node-ordering on 64-bit NUMA machines
4911  */
4912 static int default_zonelist_order(void)
4913 {
4914 	return ZONELIST_ORDER_NODE;
4915 }
4916 #else
4917 /*
4918  * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4919  * by the kernel. If processes running on node 0 deplete the low memory zone
4920  * then reclaim will occur more frequency increasing stalls and potentially
4921  * be easier to OOM if a large percentage of the zone is under writeback or
4922  * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4923  * Hence, default to zone ordering on 32-bit.
4924  */
4925 static int default_zonelist_order(void)
4926 {
4927 	return ZONELIST_ORDER_ZONE;
4928 }
4929 #endif /* CONFIG_64BIT */
4930 
4931 static void set_zonelist_order(void)
4932 {
4933 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4934 		current_zonelist_order = default_zonelist_order();
4935 	else
4936 		current_zonelist_order = user_zonelist_order;
4937 }
4938 
4939 static void build_zonelists(pg_data_t *pgdat)
4940 {
4941 	int i, node, load;
4942 	nodemask_t used_mask;
4943 	int local_node, prev_node;
4944 	struct zonelist *zonelist;
4945 	unsigned int order = current_zonelist_order;
4946 
4947 	/* initialize zonelists */
4948 	for (i = 0; i < MAX_ZONELISTS; i++) {
4949 		zonelist = pgdat->node_zonelists + i;
4950 		zonelist->_zonerefs[0].zone = NULL;
4951 		zonelist->_zonerefs[0].zone_idx = 0;
4952 	}
4953 
4954 	/* NUMA-aware ordering of nodes */
4955 	local_node = pgdat->node_id;
4956 	load = nr_online_nodes;
4957 	prev_node = local_node;
4958 	nodes_clear(used_mask);
4959 
4960 	memset(node_order, 0, sizeof(node_order));
4961 	i = 0;
4962 
4963 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4964 		/*
4965 		 * We don't want to pressure a particular node.
4966 		 * So adding penalty to the first node in same
4967 		 * distance group to make it round-robin.
4968 		 */
4969 		if (node_distance(local_node, node) !=
4970 		    node_distance(local_node, prev_node))
4971 			node_load[node] = load;
4972 
4973 		prev_node = node;
4974 		load--;
4975 		if (order == ZONELIST_ORDER_NODE)
4976 			build_zonelists_in_node_order(pgdat, node);
4977 		else
4978 			node_order[i++] = node;	/* remember order */
4979 	}
4980 
4981 	if (order == ZONELIST_ORDER_ZONE) {
4982 		/* calculate node order -- i.e., DMA last! */
4983 		build_zonelists_in_zone_order(pgdat, i);
4984 	}
4985 
4986 	build_thisnode_zonelists(pgdat);
4987 }
4988 
4989 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4990 /*
4991  * Return node id of node used for "local" allocations.
4992  * I.e., first node id of first zone in arg node's generic zonelist.
4993  * Used for initializing percpu 'numa_mem', which is used primarily
4994  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4995  */
4996 int local_memory_node(int node)
4997 {
4998 	struct zoneref *z;
4999 
5000 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5001 				   gfp_zone(GFP_KERNEL),
5002 				   NULL);
5003 	return z->zone->node;
5004 }
5005 #endif
5006 
5007 static void setup_min_unmapped_ratio(void);
5008 static void setup_min_slab_ratio(void);
5009 #else	/* CONFIG_NUMA */
5010 
5011 static void set_zonelist_order(void)
5012 {
5013 	current_zonelist_order = ZONELIST_ORDER_ZONE;
5014 }
5015 
5016 static void build_zonelists(pg_data_t *pgdat)
5017 {
5018 	int node, local_node;
5019 	enum zone_type j;
5020 	struct zonelist *zonelist;
5021 
5022 	local_node = pgdat->node_id;
5023 
5024 	zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
5025 	j = build_zonelists_node(pgdat, zonelist, 0);
5026 
5027 	/*
5028 	 * Now we build the zonelist so that it contains the zones
5029 	 * of all the other nodes.
5030 	 * We don't want to pressure a particular node, so when
5031 	 * building the zones for node N, we make sure that the
5032 	 * zones coming right after the local ones are those from
5033 	 * node N+1 (modulo N)
5034 	 */
5035 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5036 		if (!node_online(node))
5037 			continue;
5038 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
5039 	}
5040 	for (node = 0; node < local_node; node++) {
5041 		if (!node_online(node))
5042 			continue;
5043 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
5044 	}
5045 
5046 	zonelist->_zonerefs[j].zone = NULL;
5047 	zonelist->_zonerefs[j].zone_idx = 0;
5048 }
5049 
5050 #endif	/* CONFIG_NUMA */
5051 
5052 /*
5053  * Boot pageset table. One per cpu which is going to be used for all
5054  * zones and all nodes. The parameters will be set in such a way
5055  * that an item put on a list will immediately be handed over to
5056  * the buddy list. This is safe since pageset manipulation is done
5057  * with interrupts disabled.
5058  *
5059  * The boot_pagesets must be kept even after bootup is complete for
5060  * unused processors and/or zones. They do play a role for bootstrapping
5061  * hotplugged processors.
5062  *
5063  * zoneinfo_show() and maybe other functions do
5064  * not check if the processor is online before following the pageset pointer.
5065  * Other parts of the kernel may not check if the zone is available.
5066  */
5067 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5068 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5069 static void setup_zone_pageset(struct zone *zone);
5070 
5071 /*
5072  * Global mutex to protect against size modification of zonelists
5073  * as well as to serialize pageset setup for the new populated zone.
5074  */
5075 DEFINE_MUTEX(zonelists_mutex);
5076 
5077 /* return values int ....just for stop_machine() */
5078 static int __build_all_zonelists(void *data)
5079 {
5080 	int nid;
5081 	int cpu;
5082 	pg_data_t *self = data;
5083 
5084 #ifdef CONFIG_NUMA
5085 	memset(node_load, 0, sizeof(node_load));
5086 #endif
5087 
5088 	if (self && !node_online(self->node_id)) {
5089 		build_zonelists(self);
5090 	}
5091 
5092 	for_each_online_node(nid) {
5093 		pg_data_t *pgdat = NODE_DATA(nid);
5094 
5095 		build_zonelists(pgdat);
5096 	}
5097 
5098 	/*
5099 	 * Initialize the boot_pagesets that are going to be used
5100 	 * for bootstrapping processors. The real pagesets for
5101 	 * each zone will be allocated later when the per cpu
5102 	 * allocator is available.
5103 	 *
5104 	 * boot_pagesets are used also for bootstrapping offline
5105 	 * cpus if the system is already booted because the pagesets
5106 	 * are needed to initialize allocators on a specific cpu too.
5107 	 * F.e. the percpu allocator needs the page allocator which
5108 	 * needs the percpu allocator in order to allocate its pagesets
5109 	 * (a chicken-egg dilemma).
5110 	 */
5111 	for_each_possible_cpu(cpu) {
5112 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5113 
5114 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5115 		/*
5116 		 * We now know the "local memory node" for each node--
5117 		 * i.e., the node of the first zone in the generic zonelist.
5118 		 * Set up numa_mem percpu variable for on-line cpus.  During
5119 		 * boot, only the boot cpu should be on-line;  we'll init the
5120 		 * secondary cpus' numa_mem as they come on-line.  During
5121 		 * node/memory hotplug, we'll fixup all on-line cpus.
5122 		 */
5123 		if (cpu_online(cpu))
5124 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5125 #endif
5126 	}
5127 
5128 	return 0;
5129 }
5130 
5131 static noinline void __init
5132 build_all_zonelists_init(void)
5133 {
5134 	__build_all_zonelists(NULL);
5135 	mminit_verify_zonelist();
5136 	cpuset_init_current_mems_allowed();
5137 }
5138 
5139 /*
5140  * Called with zonelists_mutex held always
5141  * unless system_state == SYSTEM_BOOTING.
5142  *
5143  * __ref due to (1) call of __meminit annotated setup_zone_pageset
5144  * [we're only called with non-NULL zone through __meminit paths] and
5145  * (2) call of __init annotated helper build_all_zonelists_init
5146  * [protected by SYSTEM_BOOTING].
5147  */
5148 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
5149 {
5150 	set_zonelist_order();
5151 
5152 	if (system_state == SYSTEM_BOOTING) {
5153 		build_all_zonelists_init();
5154 	} else {
5155 #ifdef CONFIG_MEMORY_HOTPLUG
5156 		if (zone)
5157 			setup_zone_pageset(zone);
5158 #endif
5159 		/* we have to stop all cpus to guarantee there is no user
5160 		   of zonelist */
5161 		stop_machine(__build_all_zonelists, pgdat, NULL);
5162 		/* cpuset refresh routine should be here */
5163 	}
5164 	vm_total_pages = nr_free_pagecache_pages();
5165 	/*
5166 	 * Disable grouping by mobility if the number of pages in the
5167 	 * system is too low to allow the mechanism to work. It would be
5168 	 * more accurate, but expensive to check per-zone. This check is
5169 	 * made on memory-hotadd so a system can start with mobility
5170 	 * disabled and enable it later
5171 	 */
5172 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5173 		page_group_by_mobility_disabled = 1;
5174 	else
5175 		page_group_by_mobility_disabled = 0;
5176 
5177 	pr_info("Built %i zonelists in %s order, mobility grouping %s.  Total pages: %ld\n",
5178 		nr_online_nodes,
5179 		zonelist_order_name[current_zonelist_order],
5180 		page_group_by_mobility_disabled ? "off" : "on",
5181 		vm_total_pages);
5182 #ifdef CONFIG_NUMA
5183 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5184 #endif
5185 }
5186 
5187 /*
5188  * Initially all pages are reserved - free ones are freed
5189  * up by free_all_bootmem() once the early boot process is
5190  * done. Non-atomic initialization, single-pass.
5191  */
5192 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5193 		unsigned long start_pfn, enum memmap_context context)
5194 {
5195 	struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5196 	unsigned long end_pfn = start_pfn + size;
5197 	pg_data_t *pgdat = NODE_DATA(nid);
5198 	unsigned long pfn;
5199 	unsigned long nr_initialised = 0;
5200 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5201 	struct memblock_region *r = NULL, *tmp;
5202 #endif
5203 
5204 	if (highest_memmap_pfn < end_pfn - 1)
5205 		highest_memmap_pfn = end_pfn - 1;
5206 
5207 	/*
5208 	 * Honor reservation requested by the driver for this ZONE_DEVICE
5209 	 * memory
5210 	 */
5211 	if (altmap && start_pfn == altmap->base_pfn)
5212 		start_pfn += altmap->reserve;
5213 
5214 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5215 		/*
5216 		 * There can be holes in boot-time mem_map[]s handed to this
5217 		 * function.  They do not exist on hotplugged memory.
5218 		 */
5219 		if (context != MEMMAP_EARLY)
5220 			goto not_early;
5221 
5222 		if (!early_pfn_valid(pfn)) {
5223 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5224 			/*
5225 			 * Skip to the pfn preceding the next valid one (or
5226 			 * end_pfn), such that we hit a valid pfn (or end_pfn)
5227 			 * on our next iteration of the loop.
5228 			 */
5229 			pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
5230 #endif
5231 			continue;
5232 		}
5233 		if (!early_pfn_in_nid(pfn, nid))
5234 			continue;
5235 		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5236 			break;
5237 
5238 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5239 		/*
5240 		 * Check given memblock attribute by firmware which can affect
5241 		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
5242 		 * mirrored, it's an overlapped memmap init. skip it.
5243 		 */
5244 		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5245 			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5246 				for_each_memblock(memory, tmp)
5247 					if (pfn < memblock_region_memory_end_pfn(tmp))
5248 						break;
5249 				r = tmp;
5250 			}
5251 			if (pfn >= memblock_region_memory_base_pfn(r) &&
5252 			    memblock_is_mirror(r)) {
5253 				/* already initialized as NORMAL */
5254 				pfn = memblock_region_memory_end_pfn(r);
5255 				continue;
5256 			}
5257 		}
5258 #endif
5259 
5260 not_early:
5261 		/*
5262 		 * Mark the block movable so that blocks are reserved for
5263 		 * movable at startup. This will force kernel allocations
5264 		 * to reserve their blocks rather than leaking throughout
5265 		 * the address space during boot when many long-lived
5266 		 * kernel allocations are made.
5267 		 *
5268 		 * bitmap is created for zone's valid pfn range. but memmap
5269 		 * can be created for invalid pages (for alignment)
5270 		 * check here not to call set_pageblock_migratetype() against
5271 		 * pfn out of zone.
5272 		 */
5273 		if (!(pfn & (pageblock_nr_pages - 1))) {
5274 			struct page *page = pfn_to_page(pfn);
5275 
5276 			__init_single_page(page, pfn, zone, nid);
5277 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5278 		} else {
5279 			__init_single_pfn(pfn, zone, nid);
5280 		}
5281 	}
5282 }
5283 
5284 static void __meminit zone_init_free_lists(struct zone *zone)
5285 {
5286 	unsigned int order, t;
5287 	for_each_migratetype_order(order, t) {
5288 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5289 		zone->free_area[order].nr_free = 0;
5290 	}
5291 }
5292 
5293 #ifndef __HAVE_ARCH_MEMMAP_INIT
5294 #define memmap_init(size, nid, zone, start_pfn) \
5295 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5296 #endif
5297 
5298 static int zone_batchsize(struct zone *zone)
5299 {
5300 #ifdef CONFIG_MMU
5301 	int batch;
5302 
5303 	/*
5304 	 * The per-cpu-pages pools are set to around 1000th of the
5305 	 * size of the zone.  But no more than 1/2 of a meg.
5306 	 *
5307 	 * OK, so we don't know how big the cache is.  So guess.
5308 	 */
5309 	batch = zone->managed_pages / 1024;
5310 	if (batch * PAGE_SIZE > 512 * 1024)
5311 		batch = (512 * 1024) / PAGE_SIZE;
5312 	batch /= 4;		/* We effectively *= 4 below */
5313 	if (batch < 1)
5314 		batch = 1;
5315 
5316 	/*
5317 	 * Clamp the batch to a 2^n - 1 value. Having a power
5318 	 * of 2 value was found to be more likely to have
5319 	 * suboptimal cache aliasing properties in some cases.
5320 	 *
5321 	 * For example if 2 tasks are alternately allocating
5322 	 * batches of pages, one task can end up with a lot
5323 	 * of pages of one half of the possible page colors
5324 	 * and the other with pages of the other colors.
5325 	 */
5326 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5327 
5328 	return batch;
5329 
5330 #else
5331 	/* The deferral and batching of frees should be suppressed under NOMMU
5332 	 * conditions.
5333 	 *
5334 	 * The problem is that NOMMU needs to be able to allocate large chunks
5335 	 * of contiguous memory as there's no hardware page translation to
5336 	 * assemble apparent contiguous memory from discontiguous pages.
5337 	 *
5338 	 * Queueing large contiguous runs of pages for batching, however,
5339 	 * causes the pages to actually be freed in smaller chunks.  As there
5340 	 * can be a significant delay between the individual batches being
5341 	 * recycled, this leads to the once large chunks of space being
5342 	 * fragmented and becoming unavailable for high-order allocations.
5343 	 */
5344 	return 0;
5345 #endif
5346 }
5347 
5348 /*
5349  * pcp->high and pcp->batch values are related and dependent on one another:
5350  * ->batch must never be higher then ->high.
5351  * The following function updates them in a safe manner without read side
5352  * locking.
5353  *
5354  * Any new users of pcp->batch and pcp->high should ensure they can cope with
5355  * those fields changing asynchronously (acording the the above rule).
5356  *
5357  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5358  * outside of boot time (or some other assurance that no concurrent updaters
5359  * exist).
5360  */
5361 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5362 		unsigned long batch)
5363 {
5364        /* start with a fail safe value for batch */
5365 	pcp->batch = 1;
5366 	smp_wmb();
5367 
5368        /* Update high, then batch, in order */
5369 	pcp->high = high;
5370 	smp_wmb();
5371 
5372 	pcp->batch = batch;
5373 }
5374 
5375 /* a companion to pageset_set_high() */
5376 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5377 {
5378 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5379 }
5380 
5381 static void pageset_init(struct per_cpu_pageset *p)
5382 {
5383 	struct per_cpu_pages *pcp;
5384 	int migratetype;
5385 
5386 	memset(p, 0, sizeof(*p));
5387 
5388 	pcp = &p->pcp;
5389 	pcp->count = 0;
5390 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5391 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5392 }
5393 
5394 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5395 {
5396 	pageset_init(p);
5397 	pageset_set_batch(p, batch);
5398 }
5399 
5400 /*
5401  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5402  * to the value high for the pageset p.
5403  */
5404 static void pageset_set_high(struct per_cpu_pageset *p,
5405 				unsigned long high)
5406 {
5407 	unsigned long batch = max(1UL, high / 4);
5408 	if ((high / 4) > (PAGE_SHIFT * 8))
5409 		batch = PAGE_SHIFT * 8;
5410 
5411 	pageset_update(&p->pcp, high, batch);
5412 }
5413 
5414 static void pageset_set_high_and_batch(struct zone *zone,
5415 				       struct per_cpu_pageset *pcp)
5416 {
5417 	if (percpu_pagelist_fraction)
5418 		pageset_set_high(pcp,
5419 			(zone->managed_pages /
5420 				percpu_pagelist_fraction));
5421 	else
5422 		pageset_set_batch(pcp, zone_batchsize(zone));
5423 }
5424 
5425 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5426 {
5427 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5428 
5429 	pageset_init(pcp);
5430 	pageset_set_high_and_batch(zone, pcp);
5431 }
5432 
5433 static void __meminit setup_zone_pageset(struct zone *zone)
5434 {
5435 	int cpu;
5436 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5437 	for_each_possible_cpu(cpu)
5438 		zone_pageset_init(zone, cpu);
5439 }
5440 
5441 /*
5442  * Allocate per cpu pagesets and initialize them.
5443  * Before this call only boot pagesets were available.
5444  */
5445 void __init setup_per_cpu_pageset(void)
5446 {
5447 	struct pglist_data *pgdat;
5448 	struct zone *zone;
5449 
5450 	for_each_populated_zone(zone)
5451 		setup_zone_pageset(zone);
5452 
5453 	for_each_online_pgdat(pgdat)
5454 		pgdat->per_cpu_nodestats =
5455 			alloc_percpu(struct per_cpu_nodestat);
5456 }
5457 
5458 static __meminit void zone_pcp_init(struct zone *zone)
5459 {
5460 	/*
5461 	 * per cpu subsystem is not up at this point. The following code
5462 	 * relies on the ability of the linker to provide the
5463 	 * offset of a (static) per cpu variable into the per cpu area.
5464 	 */
5465 	zone->pageset = &boot_pageset;
5466 
5467 	if (populated_zone(zone))
5468 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
5469 			zone->name, zone->present_pages,
5470 					 zone_batchsize(zone));
5471 }
5472 
5473 int __meminit init_currently_empty_zone(struct zone *zone,
5474 					unsigned long zone_start_pfn,
5475 					unsigned long size)
5476 {
5477 	struct pglist_data *pgdat = zone->zone_pgdat;
5478 
5479 	pgdat->nr_zones = zone_idx(zone) + 1;
5480 
5481 	zone->zone_start_pfn = zone_start_pfn;
5482 
5483 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
5484 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
5485 			pgdat->node_id,
5486 			(unsigned long)zone_idx(zone),
5487 			zone_start_pfn, (zone_start_pfn + size));
5488 
5489 	zone_init_free_lists(zone);
5490 	zone->initialized = 1;
5491 
5492 	return 0;
5493 }
5494 
5495 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5496 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5497 
5498 /*
5499  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5500  */
5501 int __meminit __early_pfn_to_nid(unsigned long pfn,
5502 					struct mminit_pfnnid_cache *state)
5503 {
5504 	unsigned long start_pfn, end_pfn;
5505 	int nid;
5506 
5507 	if (state->last_start <= pfn && pfn < state->last_end)
5508 		return state->last_nid;
5509 
5510 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5511 	if (nid != -1) {
5512 		state->last_start = start_pfn;
5513 		state->last_end = end_pfn;
5514 		state->last_nid = nid;
5515 	}
5516 
5517 	return nid;
5518 }
5519 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5520 
5521 /**
5522  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5523  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5524  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5525  *
5526  * If an architecture guarantees that all ranges registered contain no holes
5527  * and may be freed, this this function may be used instead of calling
5528  * memblock_free_early_nid() manually.
5529  */
5530 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5531 {
5532 	unsigned long start_pfn, end_pfn;
5533 	int i, this_nid;
5534 
5535 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5536 		start_pfn = min(start_pfn, max_low_pfn);
5537 		end_pfn = min(end_pfn, max_low_pfn);
5538 
5539 		if (start_pfn < end_pfn)
5540 			memblock_free_early_nid(PFN_PHYS(start_pfn),
5541 					(end_pfn - start_pfn) << PAGE_SHIFT,
5542 					this_nid);
5543 	}
5544 }
5545 
5546 /**
5547  * sparse_memory_present_with_active_regions - Call memory_present for each active range
5548  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5549  *
5550  * If an architecture guarantees that all ranges registered contain no holes and may
5551  * be freed, this function may be used instead of calling memory_present() manually.
5552  */
5553 void __init sparse_memory_present_with_active_regions(int nid)
5554 {
5555 	unsigned long start_pfn, end_pfn;
5556 	int i, this_nid;
5557 
5558 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5559 		memory_present(this_nid, start_pfn, end_pfn);
5560 }
5561 
5562 /**
5563  * get_pfn_range_for_nid - Return the start and end page frames for a node
5564  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5565  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5566  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5567  *
5568  * It returns the start and end page frame of a node based on information
5569  * provided by memblock_set_node(). If called for a node
5570  * with no available memory, a warning is printed and the start and end
5571  * PFNs will be 0.
5572  */
5573 void __meminit get_pfn_range_for_nid(unsigned int nid,
5574 			unsigned long *start_pfn, unsigned long *end_pfn)
5575 {
5576 	unsigned long this_start_pfn, this_end_pfn;
5577 	int i;
5578 
5579 	*start_pfn = -1UL;
5580 	*end_pfn = 0;
5581 
5582 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5583 		*start_pfn = min(*start_pfn, this_start_pfn);
5584 		*end_pfn = max(*end_pfn, this_end_pfn);
5585 	}
5586 
5587 	if (*start_pfn == -1UL)
5588 		*start_pfn = 0;
5589 }
5590 
5591 /*
5592  * This finds a zone that can be used for ZONE_MOVABLE pages. The
5593  * assumption is made that zones within a node are ordered in monotonic
5594  * increasing memory addresses so that the "highest" populated zone is used
5595  */
5596 static void __init find_usable_zone_for_movable(void)
5597 {
5598 	int zone_index;
5599 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5600 		if (zone_index == ZONE_MOVABLE)
5601 			continue;
5602 
5603 		if (arch_zone_highest_possible_pfn[zone_index] >
5604 				arch_zone_lowest_possible_pfn[zone_index])
5605 			break;
5606 	}
5607 
5608 	VM_BUG_ON(zone_index == -1);
5609 	movable_zone = zone_index;
5610 }
5611 
5612 /*
5613  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5614  * because it is sized independent of architecture. Unlike the other zones,
5615  * the starting point for ZONE_MOVABLE is not fixed. It may be different
5616  * in each node depending on the size of each node and how evenly kernelcore
5617  * is distributed. This helper function adjusts the zone ranges
5618  * provided by the architecture for a given node by using the end of the
5619  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5620  * zones within a node are in order of monotonic increases memory addresses
5621  */
5622 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5623 					unsigned long zone_type,
5624 					unsigned long node_start_pfn,
5625 					unsigned long node_end_pfn,
5626 					unsigned long *zone_start_pfn,
5627 					unsigned long *zone_end_pfn)
5628 {
5629 	/* Only adjust if ZONE_MOVABLE is on this node */
5630 	if (zone_movable_pfn[nid]) {
5631 		/* Size ZONE_MOVABLE */
5632 		if (zone_type == ZONE_MOVABLE) {
5633 			*zone_start_pfn = zone_movable_pfn[nid];
5634 			*zone_end_pfn = min(node_end_pfn,
5635 				arch_zone_highest_possible_pfn[movable_zone]);
5636 
5637 		/* Adjust for ZONE_MOVABLE starting within this range */
5638 		} else if (!mirrored_kernelcore &&
5639 			*zone_start_pfn < zone_movable_pfn[nid] &&
5640 			*zone_end_pfn > zone_movable_pfn[nid]) {
5641 			*zone_end_pfn = zone_movable_pfn[nid];
5642 
5643 		/* Check if this whole range is within ZONE_MOVABLE */
5644 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
5645 			*zone_start_pfn = *zone_end_pfn;
5646 	}
5647 }
5648 
5649 /*
5650  * Return the number of pages a zone spans in a node, including holes
5651  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5652  */
5653 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5654 					unsigned long zone_type,
5655 					unsigned long node_start_pfn,
5656 					unsigned long node_end_pfn,
5657 					unsigned long *zone_start_pfn,
5658 					unsigned long *zone_end_pfn,
5659 					unsigned long *ignored)
5660 {
5661 	/* When hotadd a new node from cpu_up(), the node should be empty */
5662 	if (!node_start_pfn && !node_end_pfn)
5663 		return 0;
5664 
5665 	/* Get the start and end of the zone */
5666 	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5667 	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5668 	adjust_zone_range_for_zone_movable(nid, zone_type,
5669 				node_start_pfn, node_end_pfn,
5670 				zone_start_pfn, zone_end_pfn);
5671 
5672 	/* Check that this node has pages within the zone's required range */
5673 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5674 		return 0;
5675 
5676 	/* Move the zone boundaries inside the node if necessary */
5677 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5678 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5679 
5680 	/* Return the spanned pages */
5681 	return *zone_end_pfn - *zone_start_pfn;
5682 }
5683 
5684 /*
5685  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5686  * then all holes in the requested range will be accounted for.
5687  */
5688 unsigned long __meminit __absent_pages_in_range(int nid,
5689 				unsigned long range_start_pfn,
5690 				unsigned long range_end_pfn)
5691 {
5692 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
5693 	unsigned long start_pfn, end_pfn;
5694 	int i;
5695 
5696 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5697 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5698 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5699 		nr_absent -= end_pfn - start_pfn;
5700 	}
5701 	return nr_absent;
5702 }
5703 
5704 /**
5705  * absent_pages_in_range - Return number of page frames in holes within a range
5706  * @start_pfn: The start PFN to start searching for holes
5707  * @end_pfn: The end PFN to stop searching for holes
5708  *
5709  * It returns the number of pages frames in memory holes within a range.
5710  */
5711 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5712 							unsigned long end_pfn)
5713 {
5714 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5715 }
5716 
5717 /* Return the number of page frames in holes in a zone on a node */
5718 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5719 					unsigned long zone_type,
5720 					unsigned long node_start_pfn,
5721 					unsigned long node_end_pfn,
5722 					unsigned long *ignored)
5723 {
5724 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5725 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5726 	unsigned long zone_start_pfn, zone_end_pfn;
5727 	unsigned long nr_absent;
5728 
5729 	/* When hotadd a new node from cpu_up(), the node should be empty */
5730 	if (!node_start_pfn && !node_end_pfn)
5731 		return 0;
5732 
5733 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5734 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5735 
5736 	adjust_zone_range_for_zone_movable(nid, zone_type,
5737 			node_start_pfn, node_end_pfn,
5738 			&zone_start_pfn, &zone_end_pfn);
5739 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5740 
5741 	/*
5742 	 * ZONE_MOVABLE handling.
5743 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5744 	 * and vice versa.
5745 	 */
5746 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5747 		unsigned long start_pfn, end_pfn;
5748 		struct memblock_region *r;
5749 
5750 		for_each_memblock(memory, r) {
5751 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
5752 					  zone_start_pfn, zone_end_pfn);
5753 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
5754 					zone_start_pfn, zone_end_pfn);
5755 
5756 			if (zone_type == ZONE_MOVABLE &&
5757 			    memblock_is_mirror(r))
5758 				nr_absent += end_pfn - start_pfn;
5759 
5760 			if (zone_type == ZONE_NORMAL &&
5761 			    !memblock_is_mirror(r))
5762 				nr_absent += end_pfn - start_pfn;
5763 		}
5764 	}
5765 
5766 	return nr_absent;
5767 }
5768 
5769 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5770 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5771 					unsigned long zone_type,
5772 					unsigned long node_start_pfn,
5773 					unsigned long node_end_pfn,
5774 					unsigned long *zone_start_pfn,
5775 					unsigned long *zone_end_pfn,
5776 					unsigned long *zones_size)
5777 {
5778 	unsigned int zone;
5779 
5780 	*zone_start_pfn = node_start_pfn;
5781 	for (zone = 0; zone < zone_type; zone++)
5782 		*zone_start_pfn += zones_size[zone];
5783 
5784 	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5785 
5786 	return zones_size[zone_type];
5787 }
5788 
5789 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5790 						unsigned long zone_type,
5791 						unsigned long node_start_pfn,
5792 						unsigned long node_end_pfn,
5793 						unsigned long *zholes_size)
5794 {
5795 	if (!zholes_size)
5796 		return 0;
5797 
5798 	return zholes_size[zone_type];
5799 }
5800 
5801 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5802 
5803 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5804 						unsigned long node_start_pfn,
5805 						unsigned long node_end_pfn,
5806 						unsigned long *zones_size,
5807 						unsigned long *zholes_size)
5808 {
5809 	unsigned long realtotalpages = 0, totalpages = 0;
5810 	enum zone_type i;
5811 
5812 	for (i = 0; i < MAX_NR_ZONES; i++) {
5813 		struct zone *zone = pgdat->node_zones + i;
5814 		unsigned long zone_start_pfn, zone_end_pfn;
5815 		unsigned long size, real_size;
5816 
5817 		size = zone_spanned_pages_in_node(pgdat->node_id, i,
5818 						  node_start_pfn,
5819 						  node_end_pfn,
5820 						  &zone_start_pfn,
5821 						  &zone_end_pfn,
5822 						  zones_size);
5823 		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5824 						  node_start_pfn, node_end_pfn,
5825 						  zholes_size);
5826 		if (size)
5827 			zone->zone_start_pfn = zone_start_pfn;
5828 		else
5829 			zone->zone_start_pfn = 0;
5830 		zone->spanned_pages = size;
5831 		zone->present_pages = real_size;
5832 
5833 		totalpages += size;
5834 		realtotalpages += real_size;
5835 	}
5836 
5837 	pgdat->node_spanned_pages = totalpages;
5838 	pgdat->node_present_pages = realtotalpages;
5839 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5840 							realtotalpages);
5841 }
5842 
5843 #ifndef CONFIG_SPARSEMEM
5844 /*
5845  * Calculate the size of the zone->blockflags rounded to an unsigned long
5846  * Start by making sure zonesize is a multiple of pageblock_order by rounding
5847  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5848  * round what is now in bits to nearest long in bits, then return it in
5849  * bytes.
5850  */
5851 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5852 {
5853 	unsigned long usemapsize;
5854 
5855 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5856 	usemapsize = roundup(zonesize, pageblock_nr_pages);
5857 	usemapsize = usemapsize >> pageblock_order;
5858 	usemapsize *= NR_PAGEBLOCK_BITS;
5859 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5860 
5861 	return usemapsize / 8;
5862 }
5863 
5864 static void __init setup_usemap(struct pglist_data *pgdat,
5865 				struct zone *zone,
5866 				unsigned long zone_start_pfn,
5867 				unsigned long zonesize)
5868 {
5869 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5870 	zone->pageblock_flags = NULL;
5871 	if (usemapsize)
5872 		zone->pageblock_flags =
5873 			memblock_virt_alloc_node_nopanic(usemapsize,
5874 							 pgdat->node_id);
5875 }
5876 #else
5877 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5878 				unsigned long zone_start_pfn, unsigned long zonesize) {}
5879 #endif /* CONFIG_SPARSEMEM */
5880 
5881 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5882 
5883 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5884 void __paginginit set_pageblock_order(void)
5885 {
5886 	unsigned int order;
5887 
5888 	/* Check that pageblock_nr_pages has not already been setup */
5889 	if (pageblock_order)
5890 		return;
5891 
5892 	if (HPAGE_SHIFT > PAGE_SHIFT)
5893 		order = HUGETLB_PAGE_ORDER;
5894 	else
5895 		order = MAX_ORDER - 1;
5896 
5897 	/*
5898 	 * Assume the largest contiguous order of interest is a huge page.
5899 	 * This value may be variable depending on boot parameters on IA64 and
5900 	 * powerpc.
5901 	 */
5902 	pageblock_order = order;
5903 }
5904 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5905 
5906 /*
5907  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5908  * is unused as pageblock_order is set at compile-time. See
5909  * include/linux/pageblock-flags.h for the values of pageblock_order based on
5910  * the kernel config
5911  */
5912 void __paginginit set_pageblock_order(void)
5913 {
5914 }
5915 
5916 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5917 
5918 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5919 						   unsigned long present_pages)
5920 {
5921 	unsigned long pages = spanned_pages;
5922 
5923 	/*
5924 	 * Provide a more accurate estimation if there are holes within
5925 	 * the zone and SPARSEMEM is in use. If there are holes within the
5926 	 * zone, each populated memory region may cost us one or two extra
5927 	 * memmap pages due to alignment because memmap pages for each
5928 	 * populated regions may not naturally algined on page boundary.
5929 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5930 	 */
5931 	if (spanned_pages > present_pages + (present_pages >> 4) &&
5932 	    IS_ENABLED(CONFIG_SPARSEMEM))
5933 		pages = present_pages;
5934 
5935 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5936 }
5937 
5938 /*
5939  * Set up the zone data structures:
5940  *   - mark all pages reserved
5941  *   - mark all memory queues empty
5942  *   - clear the memory bitmaps
5943  *
5944  * NOTE: pgdat should get zeroed by caller.
5945  */
5946 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5947 {
5948 	enum zone_type j;
5949 	int nid = pgdat->node_id;
5950 	int ret;
5951 
5952 	pgdat_resize_init(pgdat);
5953 #ifdef CONFIG_NUMA_BALANCING
5954 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
5955 	pgdat->numabalancing_migrate_nr_pages = 0;
5956 	pgdat->numabalancing_migrate_next_window = jiffies;
5957 #endif
5958 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5959 	spin_lock_init(&pgdat->split_queue_lock);
5960 	INIT_LIST_HEAD(&pgdat->split_queue);
5961 	pgdat->split_queue_len = 0;
5962 #endif
5963 	init_waitqueue_head(&pgdat->kswapd_wait);
5964 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
5965 #ifdef CONFIG_COMPACTION
5966 	init_waitqueue_head(&pgdat->kcompactd_wait);
5967 #endif
5968 	pgdat_page_ext_init(pgdat);
5969 	spin_lock_init(&pgdat->lru_lock);
5970 	lruvec_init(node_lruvec(pgdat));
5971 
5972 	for (j = 0; j < MAX_NR_ZONES; j++) {
5973 		struct zone *zone = pgdat->node_zones + j;
5974 		unsigned long size, realsize, freesize, memmap_pages;
5975 		unsigned long zone_start_pfn = zone->zone_start_pfn;
5976 
5977 		size = zone->spanned_pages;
5978 		realsize = freesize = zone->present_pages;
5979 
5980 		/*
5981 		 * Adjust freesize so that it accounts for how much memory
5982 		 * is used by this zone for memmap. This affects the watermark
5983 		 * and per-cpu initialisations
5984 		 */
5985 		memmap_pages = calc_memmap_size(size, realsize);
5986 		if (!is_highmem_idx(j)) {
5987 			if (freesize >= memmap_pages) {
5988 				freesize -= memmap_pages;
5989 				if (memmap_pages)
5990 					printk(KERN_DEBUG
5991 					       "  %s zone: %lu pages used for memmap\n",
5992 					       zone_names[j], memmap_pages);
5993 			} else
5994 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
5995 					zone_names[j], memmap_pages, freesize);
5996 		}
5997 
5998 		/* Account for reserved pages */
5999 		if (j == 0 && freesize > dma_reserve) {
6000 			freesize -= dma_reserve;
6001 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6002 					zone_names[0], dma_reserve);
6003 		}
6004 
6005 		if (!is_highmem_idx(j))
6006 			nr_kernel_pages += freesize;
6007 		/* Charge for highmem memmap if there are enough kernel pages */
6008 		else if (nr_kernel_pages > memmap_pages * 2)
6009 			nr_kernel_pages -= memmap_pages;
6010 		nr_all_pages += freesize;
6011 
6012 		/*
6013 		 * Set an approximate value for lowmem here, it will be adjusted
6014 		 * when the bootmem allocator frees pages into the buddy system.
6015 		 * And all highmem pages will be managed by the buddy system.
6016 		 */
6017 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6018 #ifdef CONFIG_NUMA
6019 		zone->node = nid;
6020 #endif
6021 		zone->name = zone_names[j];
6022 		zone->zone_pgdat = pgdat;
6023 		spin_lock_init(&zone->lock);
6024 		zone_seqlock_init(zone);
6025 		zone_pcp_init(zone);
6026 
6027 		if (!size)
6028 			continue;
6029 
6030 		set_pageblock_order();
6031 		setup_usemap(pgdat, zone, zone_start_pfn, size);
6032 		ret = init_currently_empty_zone(zone, zone_start_pfn, size);
6033 		BUG_ON(ret);
6034 		memmap_init(size, nid, j, zone_start_pfn);
6035 	}
6036 }
6037 
6038 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6039 {
6040 	unsigned long __maybe_unused start = 0;
6041 	unsigned long __maybe_unused offset = 0;
6042 
6043 	/* Skip empty nodes */
6044 	if (!pgdat->node_spanned_pages)
6045 		return;
6046 
6047 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6048 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6049 	offset = pgdat->node_start_pfn - start;
6050 	/* ia64 gets its own node_mem_map, before this, without bootmem */
6051 	if (!pgdat->node_mem_map) {
6052 		unsigned long size, end;
6053 		struct page *map;
6054 
6055 		/*
6056 		 * The zone's endpoints aren't required to be MAX_ORDER
6057 		 * aligned but the node_mem_map endpoints must be in order
6058 		 * for the buddy allocator to function correctly.
6059 		 */
6060 		end = pgdat_end_pfn(pgdat);
6061 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
6062 		size =  (end - start) * sizeof(struct page);
6063 		map = alloc_remap(pgdat->node_id, size);
6064 		if (!map)
6065 			map = memblock_virt_alloc_node_nopanic(size,
6066 							       pgdat->node_id);
6067 		pgdat->node_mem_map = map + offset;
6068 	}
6069 #ifndef CONFIG_NEED_MULTIPLE_NODES
6070 	/*
6071 	 * With no DISCONTIG, the global mem_map is just set as node 0's
6072 	 */
6073 	if (pgdat == NODE_DATA(0)) {
6074 		mem_map = NODE_DATA(0)->node_mem_map;
6075 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6076 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6077 			mem_map -= offset;
6078 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6079 	}
6080 #endif
6081 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6082 }
6083 
6084 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6085 		unsigned long node_start_pfn, unsigned long *zholes_size)
6086 {
6087 	pg_data_t *pgdat = NODE_DATA(nid);
6088 	unsigned long start_pfn = 0;
6089 	unsigned long end_pfn = 0;
6090 
6091 	/* pg_data_t should be reset to zero when it's allocated */
6092 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6093 
6094 	reset_deferred_meminit(pgdat);
6095 	pgdat->node_id = nid;
6096 	pgdat->node_start_pfn = node_start_pfn;
6097 	pgdat->per_cpu_nodestats = NULL;
6098 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6099 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6100 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6101 		(u64)start_pfn << PAGE_SHIFT,
6102 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6103 #else
6104 	start_pfn = node_start_pfn;
6105 #endif
6106 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6107 				  zones_size, zholes_size);
6108 
6109 	alloc_node_mem_map(pgdat);
6110 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6111 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6112 		nid, (unsigned long)pgdat,
6113 		(unsigned long)pgdat->node_mem_map);
6114 #endif
6115 
6116 	free_area_init_core(pgdat);
6117 }
6118 
6119 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6120 
6121 #if MAX_NUMNODES > 1
6122 /*
6123  * Figure out the number of possible node ids.
6124  */
6125 void __init setup_nr_node_ids(void)
6126 {
6127 	unsigned int highest;
6128 
6129 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6130 	nr_node_ids = highest + 1;
6131 }
6132 #endif
6133 
6134 /**
6135  * node_map_pfn_alignment - determine the maximum internode alignment
6136  *
6137  * This function should be called after node map is populated and sorted.
6138  * It calculates the maximum power of two alignment which can distinguish
6139  * all the nodes.
6140  *
6141  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6142  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
6143  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
6144  * shifted, 1GiB is enough and this function will indicate so.
6145  *
6146  * This is used to test whether pfn -> nid mapping of the chosen memory
6147  * model has fine enough granularity to avoid incorrect mapping for the
6148  * populated node map.
6149  *
6150  * Returns the determined alignment in pfn's.  0 if there is no alignment
6151  * requirement (single node).
6152  */
6153 unsigned long __init node_map_pfn_alignment(void)
6154 {
6155 	unsigned long accl_mask = 0, last_end = 0;
6156 	unsigned long start, end, mask;
6157 	int last_nid = -1;
6158 	int i, nid;
6159 
6160 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6161 		if (!start || last_nid < 0 || last_nid == nid) {
6162 			last_nid = nid;
6163 			last_end = end;
6164 			continue;
6165 		}
6166 
6167 		/*
6168 		 * Start with a mask granular enough to pin-point to the
6169 		 * start pfn and tick off bits one-by-one until it becomes
6170 		 * too coarse to separate the current node from the last.
6171 		 */
6172 		mask = ~((1 << __ffs(start)) - 1);
6173 		while (mask && last_end <= (start & (mask << 1)))
6174 			mask <<= 1;
6175 
6176 		/* accumulate all internode masks */
6177 		accl_mask |= mask;
6178 	}
6179 
6180 	/* convert mask to number of pages */
6181 	return ~accl_mask + 1;
6182 }
6183 
6184 /* Find the lowest pfn for a node */
6185 static unsigned long __init find_min_pfn_for_node(int nid)
6186 {
6187 	unsigned long min_pfn = ULONG_MAX;
6188 	unsigned long start_pfn;
6189 	int i;
6190 
6191 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6192 		min_pfn = min(min_pfn, start_pfn);
6193 
6194 	if (min_pfn == ULONG_MAX) {
6195 		pr_warn("Could not find start_pfn for node %d\n", nid);
6196 		return 0;
6197 	}
6198 
6199 	return min_pfn;
6200 }
6201 
6202 /**
6203  * find_min_pfn_with_active_regions - Find the minimum PFN registered
6204  *
6205  * It returns the minimum PFN based on information provided via
6206  * memblock_set_node().
6207  */
6208 unsigned long __init find_min_pfn_with_active_regions(void)
6209 {
6210 	return find_min_pfn_for_node(MAX_NUMNODES);
6211 }
6212 
6213 /*
6214  * early_calculate_totalpages()
6215  * Sum pages in active regions for movable zone.
6216  * Populate N_MEMORY for calculating usable_nodes.
6217  */
6218 static unsigned long __init early_calculate_totalpages(void)
6219 {
6220 	unsigned long totalpages = 0;
6221 	unsigned long start_pfn, end_pfn;
6222 	int i, nid;
6223 
6224 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6225 		unsigned long pages = end_pfn - start_pfn;
6226 
6227 		totalpages += pages;
6228 		if (pages)
6229 			node_set_state(nid, N_MEMORY);
6230 	}
6231 	return totalpages;
6232 }
6233 
6234 /*
6235  * Find the PFN the Movable zone begins in each node. Kernel memory
6236  * is spread evenly between nodes as long as the nodes have enough
6237  * memory. When they don't, some nodes will have more kernelcore than
6238  * others
6239  */
6240 static void __init find_zone_movable_pfns_for_nodes(void)
6241 {
6242 	int i, nid;
6243 	unsigned long usable_startpfn;
6244 	unsigned long kernelcore_node, kernelcore_remaining;
6245 	/* save the state before borrow the nodemask */
6246 	nodemask_t saved_node_state = node_states[N_MEMORY];
6247 	unsigned long totalpages = early_calculate_totalpages();
6248 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6249 	struct memblock_region *r;
6250 
6251 	/* Need to find movable_zone earlier when movable_node is specified. */
6252 	find_usable_zone_for_movable();
6253 
6254 	/*
6255 	 * If movable_node is specified, ignore kernelcore and movablecore
6256 	 * options.
6257 	 */
6258 	if (movable_node_is_enabled()) {
6259 		for_each_memblock(memory, r) {
6260 			if (!memblock_is_hotpluggable(r))
6261 				continue;
6262 
6263 			nid = r->nid;
6264 
6265 			usable_startpfn = PFN_DOWN(r->base);
6266 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6267 				min(usable_startpfn, zone_movable_pfn[nid]) :
6268 				usable_startpfn;
6269 		}
6270 
6271 		goto out2;
6272 	}
6273 
6274 	/*
6275 	 * If kernelcore=mirror is specified, ignore movablecore option
6276 	 */
6277 	if (mirrored_kernelcore) {
6278 		bool mem_below_4gb_not_mirrored = false;
6279 
6280 		for_each_memblock(memory, r) {
6281 			if (memblock_is_mirror(r))
6282 				continue;
6283 
6284 			nid = r->nid;
6285 
6286 			usable_startpfn = memblock_region_memory_base_pfn(r);
6287 
6288 			if (usable_startpfn < 0x100000) {
6289 				mem_below_4gb_not_mirrored = true;
6290 				continue;
6291 			}
6292 
6293 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6294 				min(usable_startpfn, zone_movable_pfn[nid]) :
6295 				usable_startpfn;
6296 		}
6297 
6298 		if (mem_below_4gb_not_mirrored)
6299 			pr_warn("This configuration results in unmirrored kernel memory.");
6300 
6301 		goto out2;
6302 	}
6303 
6304 	/*
6305 	 * If movablecore=nn[KMG] was specified, calculate what size of
6306 	 * kernelcore that corresponds so that memory usable for
6307 	 * any allocation type is evenly spread. If both kernelcore
6308 	 * and movablecore are specified, then the value of kernelcore
6309 	 * will be used for required_kernelcore if it's greater than
6310 	 * what movablecore would have allowed.
6311 	 */
6312 	if (required_movablecore) {
6313 		unsigned long corepages;
6314 
6315 		/*
6316 		 * Round-up so that ZONE_MOVABLE is at least as large as what
6317 		 * was requested by the user
6318 		 */
6319 		required_movablecore =
6320 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6321 		required_movablecore = min(totalpages, required_movablecore);
6322 		corepages = totalpages - required_movablecore;
6323 
6324 		required_kernelcore = max(required_kernelcore, corepages);
6325 	}
6326 
6327 	/*
6328 	 * If kernelcore was not specified or kernelcore size is larger
6329 	 * than totalpages, there is no ZONE_MOVABLE.
6330 	 */
6331 	if (!required_kernelcore || required_kernelcore >= totalpages)
6332 		goto out;
6333 
6334 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6335 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6336 
6337 restart:
6338 	/* Spread kernelcore memory as evenly as possible throughout nodes */
6339 	kernelcore_node = required_kernelcore / usable_nodes;
6340 	for_each_node_state(nid, N_MEMORY) {
6341 		unsigned long start_pfn, end_pfn;
6342 
6343 		/*
6344 		 * Recalculate kernelcore_node if the division per node
6345 		 * now exceeds what is necessary to satisfy the requested
6346 		 * amount of memory for the kernel
6347 		 */
6348 		if (required_kernelcore < kernelcore_node)
6349 			kernelcore_node = required_kernelcore / usable_nodes;
6350 
6351 		/*
6352 		 * As the map is walked, we track how much memory is usable
6353 		 * by the kernel using kernelcore_remaining. When it is
6354 		 * 0, the rest of the node is usable by ZONE_MOVABLE
6355 		 */
6356 		kernelcore_remaining = kernelcore_node;
6357 
6358 		/* Go through each range of PFNs within this node */
6359 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6360 			unsigned long size_pages;
6361 
6362 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6363 			if (start_pfn >= end_pfn)
6364 				continue;
6365 
6366 			/* Account for what is only usable for kernelcore */
6367 			if (start_pfn < usable_startpfn) {
6368 				unsigned long kernel_pages;
6369 				kernel_pages = min(end_pfn, usable_startpfn)
6370 								- start_pfn;
6371 
6372 				kernelcore_remaining -= min(kernel_pages,
6373 							kernelcore_remaining);
6374 				required_kernelcore -= min(kernel_pages,
6375 							required_kernelcore);
6376 
6377 				/* Continue if range is now fully accounted */
6378 				if (end_pfn <= usable_startpfn) {
6379 
6380 					/*
6381 					 * Push zone_movable_pfn to the end so
6382 					 * that if we have to rebalance
6383 					 * kernelcore across nodes, we will
6384 					 * not double account here
6385 					 */
6386 					zone_movable_pfn[nid] = end_pfn;
6387 					continue;
6388 				}
6389 				start_pfn = usable_startpfn;
6390 			}
6391 
6392 			/*
6393 			 * The usable PFN range for ZONE_MOVABLE is from
6394 			 * start_pfn->end_pfn. Calculate size_pages as the
6395 			 * number of pages used as kernelcore
6396 			 */
6397 			size_pages = end_pfn - start_pfn;
6398 			if (size_pages > kernelcore_remaining)
6399 				size_pages = kernelcore_remaining;
6400 			zone_movable_pfn[nid] = start_pfn + size_pages;
6401 
6402 			/*
6403 			 * Some kernelcore has been met, update counts and
6404 			 * break if the kernelcore for this node has been
6405 			 * satisfied
6406 			 */
6407 			required_kernelcore -= min(required_kernelcore,
6408 								size_pages);
6409 			kernelcore_remaining -= size_pages;
6410 			if (!kernelcore_remaining)
6411 				break;
6412 		}
6413 	}
6414 
6415 	/*
6416 	 * If there is still required_kernelcore, we do another pass with one
6417 	 * less node in the count. This will push zone_movable_pfn[nid] further
6418 	 * along on the nodes that still have memory until kernelcore is
6419 	 * satisfied
6420 	 */
6421 	usable_nodes--;
6422 	if (usable_nodes && required_kernelcore > usable_nodes)
6423 		goto restart;
6424 
6425 out2:
6426 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6427 	for (nid = 0; nid < MAX_NUMNODES; nid++)
6428 		zone_movable_pfn[nid] =
6429 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6430 
6431 out:
6432 	/* restore the node_state */
6433 	node_states[N_MEMORY] = saved_node_state;
6434 }
6435 
6436 /* Any regular or high memory on that node ? */
6437 static void check_for_memory(pg_data_t *pgdat, int nid)
6438 {
6439 	enum zone_type zone_type;
6440 
6441 	if (N_MEMORY == N_NORMAL_MEMORY)
6442 		return;
6443 
6444 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6445 		struct zone *zone = &pgdat->node_zones[zone_type];
6446 		if (populated_zone(zone)) {
6447 			node_set_state(nid, N_HIGH_MEMORY);
6448 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6449 			    zone_type <= ZONE_NORMAL)
6450 				node_set_state(nid, N_NORMAL_MEMORY);
6451 			break;
6452 		}
6453 	}
6454 }
6455 
6456 /**
6457  * free_area_init_nodes - Initialise all pg_data_t and zone data
6458  * @max_zone_pfn: an array of max PFNs for each zone
6459  *
6460  * This will call free_area_init_node() for each active node in the system.
6461  * Using the page ranges provided by memblock_set_node(), the size of each
6462  * zone in each node and their holes is calculated. If the maximum PFN
6463  * between two adjacent zones match, it is assumed that the zone is empty.
6464  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6465  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6466  * starts where the previous one ended. For example, ZONE_DMA32 starts
6467  * at arch_max_dma_pfn.
6468  */
6469 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6470 {
6471 	unsigned long start_pfn, end_pfn;
6472 	int i, nid;
6473 
6474 	/* Record where the zone boundaries are */
6475 	memset(arch_zone_lowest_possible_pfn, 0,
6476 				sizeof(arch_zone_lowest_possible_pfn));
6477 	memset(arch_zone_highest_possible_pfn, 0,
6478 				sizeof(arch_zone_highest_possible_pfn));
6479 
6480 	start_pfn = find_min_pfn_with_active_regions();
6481 
6482 	for (i = 0; i < MAX_NR_ZONES; i++) {
6483 		if (i == ZONE_MOVABLE)
6484 			continue;
6485 
6486 		end_pfn = max(max_zone_pfn[i], start_pfn);
6487 		arch_zone_lowest_possible_pfn[i] = start_pfn;
6488 		arch_zone_highest_possible_pfn[i] = end_pfn;
6489 
6490 		start_pfn = end_pfn;
6491 	}
6492 
6493 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
6494 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6495 	find_zone_movable_pfns_for_nodes();
6496 
6497 	/* Print out the zone ranges */
6498 	pr_info("Zone ranges:\n");
6499 	for (i = 0; i < MAX_NR_ZONES; i++) {
6500 		if (i == ZONE_MOVABLE)
6501 			continue;
6502 		pr_info("  %-8s ", zone_names[i]);
6503 		if (arch_zone_lowest_possible_pfn[i] ==
6504 				arch_zone_highest_possible_pfn[i])
6505 			pr_cont("empty\n");
6506 		else
6507 			pr_cont("[mem %#018Lx-%#018Lx]\n",
6508 				(u64)arch_zone_lowest_possible_pfn[i]
6509 					<< PAGE_SHIFT,
6510 				((u64)arch_zone_highest_possible_pfn[i]
6511 					<< PAGE_SHIFT) - 1);
6512 	}
6513 
6514 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6515 	pr_info("Movable zone start for each node\n");
6516 	for (i = 0; i < MAX_NUMNODES; i++) {
6517 		if (zone_movable_pfn[i])
6518 			pr_info("  Node %d: %#018Lx\n", i,
6519 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6520 	}
6521 
6522 	/* Print out the early node map */
6523 	pr_info("Early memory node ranges\n");
6524 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6525 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6526 			(u64)start_pfn << PAGE_SHIFT,
6527 			((u64)end_pfn << PAGE_SHIFT) - 1);
6528 
6529 	/* Initialise every node */
6530 	mminit_verify_pageflags_layout();
6531 	setup_nr_node_ids();
6532 	for_each_online_node(nid) {
6533 		pg_data_t *pgdat = NODE_DATA(nid);
6534 		free_area_init_node(nid, NULL,
6535 				find_min_pfn_for_node(nid), NULL);
6536 
6537 		/* Any memory on that node */
6538 		if (pgdat->node_present_pages)
6539 			node_set_state(nid, N_MEMORY);
6540 		check_for_memory(pgdat, nid);
6541 	}
6542 }
6543 
6544 static int __init cmdline_parse_core(char *p, unsigned long *core)
6545 {
6546 	unsigned long long coremem;
6547 	if (!p)
6548 		return -EINVAL;
6549 
6550 	coremem = memparse(p, &p);
6551 	*core = coremem >> PAGE_SHIFT;
6552 
6553 	/* Paranoid check that UL is enough for the coremem value */
6554 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6555 
6556 	return 0;
6557 }
6558 
6559 /*
6560  * kernelcore=size sets the amount of memory for use for allocations that
6561  * cannot be reclaimed or migrated.
6562  */
6563 static int __init cmdline_parse_kernelcore(char *p)
6564 {
6565 	/* parse kernelcore=mirror */
6566 	if (parse_option_str(p, "mirror")) {
6567 		mirrored_kernelcore = true;
6568 		return 0;
6569 	}
6570 
6571 	return cmdline_parse_core(p, &required_kernelcore);
6572 }
6573 
6574 /*
6575  * movablecore=size sets the amount of memory for use for allocations that
6576  * can be reclaimed or migrated.
6577  */
6578 static int __init cmdline_parse_movablecore(char *p)
6579 {
6580 	return cmdline_parse_core(p, &required_movablecore);
6581 }
6582 
6583 early_param("kernelcore", cmdline_parse_kernelcore);
6584 early_param("movablecore", cmdline_parse_movablecore);
6585 
6586 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6587 
6588 void adjust_managed_page_count(struct page *page, long count)
6589 {
6590 	spin_lock(&managed_page_count_lock);
6591 	page_zone(page)->managed_pages += count;
6592 	totalram_pages += count;
6593 #ifdef CONFIG_HIGHMEM
6594 	if (PageHighMem(page))
6595 		totalhigh_pages += count;
6596 #endif
6597 	spin_unlock(&managed_page_count_lock);
6598 }
6599 EXPORT_SYMBOL(adjust_managed_page_count);
6600 
6601 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6602 {
6603 	void *pos;
6604 	unsigned long pages = 0;
6605 
6606 	start = (void *)PAGE_ALIGN((unsigned long)start);
6607 	end = (void *)((unsigned long)end & PAGE_MASK);
6608 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6609 		if ((unsigned int)poison <= 0xFF)
6610 			memset(pos, poison, PAGE_SIZE);
6611 		free_reserved_page(virt_to_page(pos));
6612 	}
6613 
6614 	if (pages && s)
6615 		pr_info("Freeing %s memory: %ldK\n",
6616 			s, pages << (PAGE_SHIFT - 10));
6617 
6618 	return pages;
6619 }
6620 EXPORT_SYMBOL(free_reserved_area);
6621 
6622 #ifdef	CONFIG_HIGHMEM
6623 void free_highmem_page(struct page *page)
6624 {
6625 	__free_reserved_page(page);
6626 	totalram_pages++;
6627 	page_zone(page)->managed_pages++;
6628 	totalhigh_pages++;
6629 }
6630 #endif
6631 
6632 
6633 void __init mem_init_print_info(const char *str)
6634 {
6635 	unsigned long physpages, codesize, datasize, rosize, bss_size;
6636 	unsigned long init_code_size, init_data_size;
6637 
6638 	physpages = get_num_physpages();
6639 	codesize = _etext - _stext;
6640 	datasize = _edata - _sdata;
6641 	rosize = __end_rodata - __start_rodata;
6642 	bss_size = __bss_stop - __bss_start;
6643 	init_data_size = __init_end - __init_begin;
6644 	init_code_size = _einittext - _sinittext;
6645 
6646 	/*
6647 	 * Detect special cases and adjust section sizes accordingly:
6648 	 * 1) .init.* may be embedded into .data sections
6649 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
6650 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
6651 	 * 3) .rodata.* may be embedded into .text or .data sections.
6652 	 */
6653 #define adj_init_size(start, end, size, pos, adj) \
6654 	do { \
6655 		if (start <= pos && pos < end && size > adj) \
6656 			size -= adj; \
6657 	} while (0)
6658 
6659 	adj_init_size(__init_begin, __init_end, init_data_size,
6660 		     _sinittext, init_code_size);
6661 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6662 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6663 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6664 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6665 
6666 #undef	adj_init_size
6667 
6668 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6669 #ifdef	CONFIG_HIGHMEM
6670 		", %luK highmem"
6671 #endif
6672 		"%s%s)\n",
6673 		nr_free_pages() << (PAGE_SHIFT - 10),
6674 		physpages << (PAGE_SHIFT - 10),
6675 		codesize >> 10, datasize >> 10, rosize >> 10,
6676 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
6677 		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6678 		totalcma_pages << (PAGE_SHIFT - 10),
6679 #ifdef	CONFIG_HIGHMEM
6680 		totalhigh_pages << (PAGE_SHIFT - 10),
6681 #endif
6682 		str ? ", " : "", str ? str : "");
6683 }
6684 
6685 /**
6686  * set_dma_reserve - set the specified number of pages reserved in the first zone
6687  * @new_dma_reserve: The number of pages to mark reserved
6688  *
6689  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6690  * In the DMA zone, a significant percentage may be consumed by kernel image
6691  * and other unfreeable allocations which can skew the watermarks badly. This
6692  * function may optionally be used to account for unfreeable pages in the
6693  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6694  * smaller per-cpu batchsize.
6695  */
6696 void __init set_dma_reserve(unsigned long new_dma_reserve)
6697 {
6698 	dma_reserve = new_dma_reserve;
6699 }
6700 
6701 void __init free_area_init(unsigned long *zones_size)
6702 {
6703 	free_area_init_node(0, zones_size,
6704 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6705 }
6706 
6707 static int page_alloc_cpu_dead(unsigned int cpu)
6708 {
6709 
6710 	lru_add_drain_cpu(cpu);
6711 	drain_pages(cpu);
6712 
6713 	/*
6714 	 * Spill the event counters of the dead processor
6715 	 * into the current processors event counters.
6716 	 * This artificially elevates the count of the current
6717 	 * processor.
6718 	 */
6719 	vm_events_fold_cpu(cpu);
6720 
6721 	/*
6722 	 * Zero the differential counters of the dead processor
6723 	 * so that the vm statistics are consistent.
6724 	 *
6725 	 * This is only okay since the processor is dead and cannot
6726 	 * race with what we are doing.
6727 	 */
6728 	cpu_vm_stats_fold(cpu);
6729 	return 0;
6730 }
6731 
6732 void __init page_alloc_init(void)
6733 {
6734 	int ret;
6735 
6736 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6737 					"mm/page_alloc:dead", NULL,
6738 					page_alloc_cpu_dead);
6739 	WARN_ON(ret < 0);
6740 }
6741 
6742 /*
6743  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6744  *	or min_free_kbytes changes.
6745  */
6746 static void calculate_totalreserve_pages(void)
6747 {
6748 	struct pglist_data *pgdat;
6749 	unsigned long reserve_pages = 0;
6750 	enum zone_type i, j;
6751 
6752 	for_each_online_pgdat(pgdat) {
6753 
6754 		pgdat->totalreserve_pages = 0;
6755 
6756 		for (i = 0; i < MAX_NR_ZONES; i++) {
6757 			struct zone *zone = pgdat->node_zones + i;
6758 			long max = 0;
6759 
6760 			/* Find valid and maximum lowmem_reserve in the zone */
6761 			for (j = i; j < MAX_NR_ZONES; j++) {
6762 				if (zone->lowmem_reserve[j] > max)
6763 					max = zone->lowmem_reserve[j];
6764 			}
6765 
6766 			/* we treat the high watermark as reserved pages. */
6767 			max += high_wmark_pages(zone);
6768 
6769 			if (max > zone->managed_pages)
6770 				max = zone->managed_pages;
6771 
6772 			pgdat->totalreserve_pages += max;
6773 
6774 			reserve_pages += max;
6775 		}
6776 	}
6777 	totalreserve_pages = reserve_pages;
6778 }
6779 
6780 /*
6781  * setup_per_zone_lowmem_reserve - called whenever
6782  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
6783  *	has a correct pages reserved value, so an adequate number of
6784  *	pages are left in the zone after a successful __alloc_pages().
6785  */
6786 static void setup_per_zone_lowmem_reserve(void)
6787 {
6788 	struct pglist_data *pgdat;
6789 	enum zone_type j, idx;
6790 
6791 	for_each_online_pgdat(pgdat) {
6792 		for (j = 0; j < MAX_NR_ZONES; j++) {
6793 			struct zone *zone = pgdat->node_zones + j;
6794 			unsigned long managed_pages = zone->managed_pages;
6795 
6796 			zone->lowmem_reserve[j] = 0;
6797 
6798 			idx = j;
6799 			while (idx) {
6800 				struct zone *lower_zone;
6801 
6802 				idx--;
6803 
6804 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
6805 					sysctl_lowmem_reserve_ratio[idx] = 1;
6806 
6807 				lower_zone = pgdat->node_zones + idx;
6808 				lower_zone->lowmem_reserve[j] = managed_pages /
6809 					sysctl_lowmem_reserve_ratio[idx];
6810 				managed_pages += lower_zone->managed_pages;
6811 			}
6812 		}
6813 	}
6814 
6815 	/* update totalreserve_pages */
6816 	calculate_totalreserve_pages();
6817 }
6818 
6819 static void __setup_per_zone_wmarks(void)
6820 {
6821 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6822 	unsigned long lowmem_pages = 0;
6823 	struct zone *zone;
6824 	unsigned long flags;
6825 
6826 	/* Calculate total number of !ZONE_HIGHMEM pages */
6827 	for_each_zone(zone) {
6828 		if (!is_highmem(zone))
6829 			lowmem_pages += zone->managed_pages;
6830 	}
6831 
6832 	for_each_zone(zone) {
6833 		u64 tmp;
6834 
6835 		spin_lock_irqsave(&zone->lock, flags);
6836 		tmp = (u64)pages_min * zone->managed_pages;
6837 		do_div(tmp, lowmem_pages);
6838 		if (is_highmem(zone)) {
6839 			/*
6840 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6841 			 * need highmem pages, so cap pages_min to a small
6842 			 * value here.
6843 			 *
6844 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6845 			 * deltas control asynch page reclaim, and so should
6846 			 * not be capped for highmem.
6847 			 */
6848 			unsigned long min_pages;
6849 
6850 			min_pages = zone->managed_pages / 1024;
6851 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6852 			zone->watermark[WMARK_MIN] = min_pages;
6853 		} else {
6854 			/*
6855 			 * If it's a lowmem zone, reserve a number of pages
6856 			 * proportionate to the zone's size.
6857 			 */
6858 			zone->watermark[WMARK_MIN] = tmp;
6859 		}
6860 
6861 		/*
6862 		 * Set the kswapd watermarks distance according to the
6863 		 * scale factor in proportion to available memory, but
6864 		 * ensure a minimum size on small systems.
6865 		 */
6866 		tmp = max_t(u64, tmp >> 2,
6867 			    mult_frac(zone->managed_pages,
6868 				      watermark_scale_factor, 10000));
6869 
6870 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
6871 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6872 
6873 		spin_unlock_irqrestore(&zone->lock, flags);
6874 	}
6875 
6876 	/* update totalreserve_pages */
6877 	calculate_totalreserve_pages();
6878 }
6879 
6880 /**
6881  * setup_per_zone_wmarks - called when min_free_kbytes changes
6882  * or when memory is hot-{added|removed}
6883  *
6884  * Ensures that the watermark[min,low,high] values for each zone are set
6885  * correctly with respect to min_free_kbytes.
6886  */
6887 void setup_per_zone_wmarks(void)
6888 {
6889 	mutex_lock(&zonelists_mutex);
6890 	__setup_per_zone_wmarks();
6891 	mutex_unlock(&zonelists_mutex);
6892 }
6893 
6894 /*
6895  * Initialise min_free_kbytes.
6896  *
6897  * For small machines we want it small (128k min).  For large machines
6898  * we want it large (64MB max).  But it is not linear, because network
6899  * bandwidth does not increase linearly with machine size.  We use
6900  *
6901  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6902  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
6903  *
6904  * which yields
6905  *
6906  * 16MB:	512k
6907  * 32MB:	724k
6908  * 64MB:	1024k
6909  * 128MB:	1448k
6910  * 256MB:	2048k
6911  * 512MB:	2896k
6912  * 1024MB:	4096k
6913  * 2048MB:	5792k
6914  * 4096MB:	8192k
6915  * 8192MB:	11584k
6916  * 16384MB:	16384k
6917  */
6918 int __meminit init_per_zone_wmark_min(void)
6919 {
6920 	unsigned long lowmem_kbytes;
6921 	int new_min_free_kbytes;
6922 
6923 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6924 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6925 
6926 	if (new_min_free_kbytes > user_min_free_kbytes) {
6927 		min_free_kbytes = new_min_free_kbytes;
6928 		if (min_free_kbytes < 128)
6929 			min_free_kbytes = 128;
6930 		if (min_free_kbytes > 65536)
6931 			min_free_kbytes = 65536;
6932 	} else {
6933 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6934 				new_min_free_kbytes, user_min_free_kbytes);
6935 	}
6936 	setup_per_zone_wmarks();
6937 	refresh_zone_stat_thresholds();
6938 	setup_per_zone_lowmem_reserve();
6939 
6940 #ifdef CONFIG_NUMA
6941 	setup_min_unmapped_ratio();
6942 	setup_min_slab_ratio();
6943 #endif
6944 
6945 	return 0;
6946 }
6947 core_initcall(init_per_zone_wmark_min)
6948 
6949 /*
6950  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6951  *	that we can call two helper functions whenever min_free_kbytes
6952  *	changes.
6953  */
6954 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6955 	void __user *buffer, size_t *length, loff_t *ppos)
6956 {
6957 	int rc;
6958 
6959 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6960 	if (rc)
6961 		return rc;
6962 
6963 	if (write) {
6964 		user_min_free_kbytes = min_free_kbytes;
6965 		setup_per_zone_wmarks();
6966 	}
6967 	return 0;
6968 }
6969 
6970 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6971 	void __user *buffer, size_t *length, loff_t *ppos)
6972 {
6973 	int rc;
6974 
6975 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6976 	if (rc)
6977 		return rc;
6978 
6979 	if (write)
6980 		setup_per_zone_wmarks();
6981 
6982 	return 0;
6983 }
6984 
6985 #ifdef CONFIG_NUMA
6986 static void setup_min_unmapped_ratio(void)
6987 {
6988 	pg_data_t *pgdat;
6989 	struct zone *zone;
6990 
6991 	for_each_online_pgdat(pgdat)
6992 		pgdat->min_unmapped_pages = 0;
6993 
6994 	for_each_zone(zone)
6995 		zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
6996 				sysctl_min_unmapped_ratio) / 100;
6997 }
6998 
6999 
7000 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7001 	void __user *buffer, size_t *length, loff_t *ppos)
7002 {
7003 	int rc;
7004 
7005 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7006 	if (rc)
7007 		return rc;
7008 
7009 	setup_min_unmapped_ratio();
7010 
7011 	return 0;
7012 }
7013 
7014 static void setup_min_slab_ratio(void)
7015 {
7016 	pg_data_t *pgdat;
7017 	struct zone *zone;
7018 
7019 	for_each_online_pgdat(pgdat)
7020 		pgdat->min_slab_pages = 0;
7021 
7022 	for_each_zone(zone)
7023 		zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7024 				sysctl_min_slab_ratio) / 100;
7025 }
7026 
7027 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7028 	void __user *buffer, size_t *length, loff_t *ppos)
7029 {
7030 	int rc;
7031 
7032 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7033 	if (rc)
7034 		return rc;
7035 
7036 	setup_min_slab_ratio();
7037 
7038 	return 0;
7039 }
7040 #endif
7041 
7042 /*
7043  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7044  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7045  *	whenever sysctl_lowmem_reserve_ratio changes.
7046  *
7047  * The reserve ratio obviously has absolutely no relation with the
7048  * minimum watermarks. The lowmem reserve ratio can only make sense
7049  * if in function of the boot time zone sizes.
7050  */
7051 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7052 	void __user *buffer, size_t *length, loff_t *ppos)
7053 {
7054 	proc_dointvec_minmax(table, write, buffer, length, ppos);
7055 	setup_per_zone_lowmem_reserve();
7056 	return 0;
7057 }
7058 
7059 /*
7060  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7061  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
7062  * pagelist can have before it gets flushed back to buddy allocator.
7063  */
7064 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7065 	void __user *buffer, size_t *length, loff_t *ppos)
7066 {
7067 	struct zone *zone;
7068 	int old_percpu_pagelist_fraction;
7069 	int ret;
7070 
7071 	mutex_lock(&pcp_batch_high_lock);
7072 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7073 
7074 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7075 	if (!write || ret < 0)
7076 		goto out;
7077 
7078 	/* Sanity checking to avoid pcp imbalance */
7079 	if (percpu_pagelist_fraction &&
7080 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7081 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7082 		ret = -EINVAL;
7083 		goto out;
7084 	}
7085 
7086 	/* No change? */
7087 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7088 		goto out;
7089 
7090 	for_each_populated_zone(zone) {
7091 		unsigned int cpu;
7092 
7093 		for_each_possible_cpu(cpu)
7094 			pageset_set_high_and_batch(zone,
7095 					per_cpu_ptr(zone->pageset, cpu));
7096 	}
7097 out:
7098 	mutex_unlock(&pcp_batch_high_lock);
7099 	return ret;
7100 }
7101 
7102 #ifdef CONFIG_NUMA
7103 int hashdist = HASHDIST_DEFAULT;
7104 
7105 static int __init set_hashdist(char *str)
7106 {
7107 	if (!str)
7108 		return 0;
7109 	hashdist = simple_strtoul(str, &str, 0);
7110 	return 1;
7111 }
7112 __setup("hashdist=", set_hashdist);
7113 #endif
7114 
7115 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7116 /*
7117  * Returns the number of pages that arch has reserved but
7118  * is not known to alloc_large_system_hash().
7119  */
7120 static unsigned long __init arch_reserved_kernel_pages(void)
7121 {
7122 	return 0;
7123 }
7124 #endif
7125 
7126 /*
7127  * allocate a large system hash table from bootmem
7128  * - it is assumed that the hash table must contain an exact power-of-2
7129  *   quantity of entries
7130  * - limit is the number of hash buckets, not the total allocation size
7131  */
7132 void *__init alloc_large_system_hash(const char *tablename,
7133 				     unsigned long bucketsize,
7134 				     unsigned long numentries,
7135 				     int scale,
7136 				     int flags,
7137 				     unsigned int *_hash_shift,
7138 				     unsigned int *_hash_mask,
7139 				     unsigned long low_limit,
7140 				     unsigned long high_limit)
7141 {
7142 	unsigned long long max = high_limit;
7143 	unsigned long log2qty, size;
7144 	void *table = NULL;
7145 
7146 	/* allow the kernel cmdline to have a say */
7147 	if (!numentries) {
7148 		/* round applicable memory size up to nearest megabyte */
7149 		numentries = nr_kernel_pages;
7150 		numentries -= arch_reserved_kernel_pages();
7151 
7152 		/* It isn't necessary when PAGE_SIZE >= 1MB */
7153 		if (PAGE_SHIFT < 20)
7154 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7155 
7156 		/* limit to 1 bucket per 2^scale bytes of low memory */
7157 		if (scale > PAGE_SHIFT)
7158 			numentries >>= (scale - PAGE_SHIFT);
7159 		else
7160 			numentries <<= (PAGE_SHIFT - scale);
7161 
7162 		/* Make sure we've got at least a 0-order allocation.. */
7163 		if (unlikely(flags & HASH_SMALL)) {
7164 			/* Makes no sense without HASH_EARLY */
7165 			WARN_ON(!(flags & HASH_EARLY));
7166 			if (!(numentries >> *_hash_shift)) {
7167 				numentries = 1UL << *_hash_shift;
7168 				BUG_ON(!numentries);
7169 			}
7170 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7171 			numentries = PAGE_SIZE / bucketsize;
7172 	}
7173 	numentries = roundup_pow_of_two(numentries);
7174 
7175 	/* limit allocation size to 1/16 total memory by default */
7176 	if (max == 0) {
7177 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7178 		do_div(max, bucketsize);
7179 	}
7180 	max = min(max, 0x80000000ULL);
7181 
7182 	if (numentries < low_limit)
7183 		numentries = low_limit;
7184 	if (numentries > max)
7185 		numentries = max;
7186 
7187 	log2qty = ilog2(numentries);
7188 
7189 	do {
7190 		size = bucketsize << log2qty;
7191 		if (flags & HASH_EARLY)
7192 			table = memblock_virt_alloc_nopanic(size, 0);
7193 		else if (hashdist)
7194 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7195 		else {
7196 			/*
7197 			 * If bucketsize is not a power-of-two, we may free
7198 			 * some pages at the end of hash table which
7199 			 * alloc_pages_exact() automatically does
7200 			 */
7201 			if (get_order(size) < MAX_ORDER) {
7202 				table = alloc_pages_exact(size, GFP_ATOMIC);
7203 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7204 			}
7205 		}
7206 	} while (!table && size > PAGE_SIZE && --log2qty);
7207 
7208 	if (!table)
7209 		panic("Failed to allocate %s hash table\n", tablename);
7210 
7211 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7212 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7213 
7214 	if (_hash_shift)
7215 		*_hash_shift = log2qty;
7216 	if (_hash_mask)
7217 		*_hash_mask = (1 << log2qty) - 1;
7218 
7219 	return table;
7220 }
7221 
7222 /*
7223  * This function checks whether pageblock includes unmovable pages or not.
7224  * If @count is not zero, it is okay to include less @count unmovable pages
7225  *
7226  * PageLRU check without isolation or lru_lock could race so that
7227  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7228  * check without lock_page also may miss some movable non-lru pages at
7229  * race condition. So you can't expect this function should be exact.
7230  */
7231 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7232 			 bool skip_hwpoisoned_pages)
7233 {
7234 	unsigned long pfn, iter, found;
7235 	int mt;
7236 
7237 	/*
7238 	 * For avoiding noise data, lru_add_drain_all() should be called
7239 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
7240 	 */
7241 	if (zone_idx(zone) == ZONE_MOVABLE)
7242 		return false;
7243 	mt = get_pageblock_migratetype(page);
7244 	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7245 		return false;
7246 
7247 	pfn = page_to_pfn(page);
7248 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7249 		unsigned long check = pfn + iter;
7250 
7251 		if (!pfn_valid_within(check))
7252 			continue;
7253 
7254 		page = pfn_to_page(check);
7255 
7256 		/*
7257 		 * Hugepages are not in LRU lists, but they're movable.
7258 		 * We need not scan over tail pages bacause we don't
7259 		 * handle each tail page individually in migration.
7260 		 */
7261 		if (PageHuge(page)) {
7262 			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7263 			continue;
7264 		}
7265 
7266 		/*
7267 		 * We can't use page_count without pin a page
7268 		 * because another CPU can free compound page.
7269 		 * This check already skips compound tails of THP
7270 		 * because their page->_refcount is zero at all time.
7271 		 */
7272 		if (!page_ref_count(page)) {
7273 			if (PageBuddy(page))
7274 				iter += (1 << page_order(page)) - 1;
7275 			continue;
7276 		}
7277 
7278 		/*
7279 		 * The HWPoisoned page may be not in buddy system, and
7280 		 * page_count() is not 0.
7281 		 */
7282 		if (skip_hwpoisoned_pages && PageHWPoison(page))
7283 			continue;
7284 
7285 		if (__PageMovable(page))
7286 			continue;
7287 
7288 		if (!PageLRU(page))
7289 			found++;
7290 		/*
7291 		 * If there are RECLAIMABLE pages, we need to check
7292 		 * it.  But now, memory offline itself doesn't call
7293 		 * shrink_node_slabs() and it still to be fixed.
7294 		 */
7295 		/*
7296 		 * If the page is not RAM, page_count()should be 0.
7297 		 * we don't need more check. This is an _used_ not-movable page.
7298 		 *
7299 		 * The problematic thing here is PG_reserved pages. PG_reserved
7300 		 * is set to both of a memory hole page and a _used_ kernel
7301 		 * page at boot.
7302 		 */
7303 		if (found > count)
7304 			return true;
7305 	}
7306 	return false;
7307 }
7308 
7309 bool is_pageblock_removable_nolock(struct page *page)
7310 {
7311 	struct zone *zone;
7312 	unsigned long pfn;
7313 
7314 	/*
7315 	 * We have to be careful here because we are iterating over memory
7316 	 * sections which are not zone aware so we might end up outside of
7317 	 * the zone but still within the section.
7318 	 * We have to take care about the node as well. If the node is offline
7319 	 * its NODE_DATA will be NULL - see page_zone.
7320 	 */
7321 	if (!node_online(page_to_nid(page)))
7322 		return false;
7323 
7324 	zone = page_zone(page);
7325 	pfn = page_to_pfn(page);
7326 	if (!zone_spans_pfn(zone, pfn))
7327 		return false;
7328 
7329 	return !has_unmovable_pages(zone, page, 0, true);
7330 }
7331 
7332 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7333 
7334 static unsigned long pfn_max_align_down(unsigned long pfn)
7335 {
7336 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7337 			     pageblock_nr_pages) - 1);
7338 }
7339 
7340 static unsigned long pfn_max_align_up(unsigned long pfn)
7341 {
7342 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7343 				pageblock_nr_pages));
7344 }
7345 
7346 /* [start, end) must belong to a single zone. */
7347 static int __alloc_contig_migrate_range(struct compact_control *cc,
7348 					unsigned long start, unsigned long end)
7349 {
7350 	/* This function is based on compact_zone() from compaction.c. */
7351 	unsigned long nr_reclaimed;
7352 	unsigned long pfn = start;
7353 	unsigned int tries = 0;
7354 	int ret = 0;
7355 
7356 	migrate_prep();
7357 
7358 	while (pfn < end || !list_empty(&cc->migratepages)) {
7359 		if (fatal_signal_pending(current)) {
7360 			ret = -EINTR;
7361 			break;
7362 		}
7363 
7364 		if (list_empty(&cc->migratepages)) {
7365 			cc->nr_migratepages = 0;
7366 			pfn = isolate_migratepages_range(cc, pfn, end);
7367 			if (!pfn) {
7368 				ret = -EINTR;
7369 				break;
7370 			}
7371 			tries = 0;
7372 		} else if (++tries == 5) {
7373 			ret = ret < 0 ? ret : -EBUSY;
7374 			break;
7375 		}
7376 
7377 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7378 							&cc->migratepages);
7379 		cc->nr_migratepages -= nr_reclaimed;
7380 
7381 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7382 				    NULL, 0, cc->mode, MR_CMA);
7383 	}
7384 	if (ret < 0) {
7385 		putback_movable_pages(&cc->migratepages);
7386 		return ret;
7387 	}
7388 	return 0;
7389 }
7390 
7391 /**
7392  * alloc_contig_range() -- tries to allocate given range of pages
7393  * @start:	start PFN to allocate
7394  * @end:	one-past-the-last PFN to allocate
7395  * @migratetype:	migratetype of the underlaying pageblocks (either
7396  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
7397  *			in range must have the same migratetype and it must
7398  *			be either of the two.
7399  * @gfp_mask:	GFP mask to use during compaction
7400  *
7401  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7402  * aligned, however it's the caller's responsibility to guarantee that
7403  * we are the only thread that changes migrate type of pageblocks the
7404  * pages fall in.
7405  *
7406  * The PFN range must belong to a single zone.
7407  *
7408  * Returns zero on success or negative error code.  On success all
7409  * pages which PFN is in [start, end) are allocated for the caller and
7410  * need to be freed with free_contig_range().
7411  */
7412 int alloc_contig_range(unsigned long start, unsigned long end,
7413 		       unsigned migratetype, gfp_t gfp_mask)
7414 {
7415 	unsigned long outer_start, outer_end;
7416 	unsigned int order;
7417 	int ret = 0;
7418 
7419 	struct compact_control cc = {
7420 		.nr_migratepages = 0,
7421 		.order = -1,
7422 		.zone = page_zone(pfn_to_page(start)),
7423 		.mode = MIGRATE_SYNC,
7424 		.ignore_skip_hint = true,
7425 		.gfp_mask = memalloc_noio_flags(gfp_mask),
7426 	};
7427 	INIT_LIST_HEAD(&cc.migratepages);
7428 
7429 	/*
7430 	 * What we do here is we mark all pageblocks in range as
7431 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
7432 	 * have different sizes, and due to the way page allocator
7433 	 * work, we align the range to biggest of the two pages so
7434 	 * that page allocator won't try to merge buddies from
7435 	 * different pageblocks and change MIGRATE_ISOLATE to some
7436 	 * other migration type.
7437 	 *
7438 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7439 	 * migrate the pages from an unaligned range (ie. pages that
7440 	 * we are interested in).  This will put all the pages in
7441 	 * range back to page allocator as MIGRATE_ISOLATE.
7442 	 *
7443 	 * When this is done, we take the pages in range from page
7444 	 * allocator removing them from the buddy system.  This way
7445 	 * page allocator will never consider using them.
7446 	 *
7447 	 * This lets us mark the pageblocks back as
7448 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7449 	 * aligned range but not in the unaligned, original range are
7450 	 * put back to page allocator so that buddy can use them.
7451 	 */
7452 
7453 	ret = start_isolate_page_range(pfn_max_align_down(start),
7454 				       pfn_max_align_up(end), migratetype,
7455 				       false);
7456 	if (ret)
7457 		return ret;
7458 
7459 	/*
7460 	 * In case of -EBUSY, we'd like to know which page causes problem.
7461 	 * So, just fall through. We will check it in test_pages_isolated().
7462 	 */
7463 	ret = __alloc_contig_migrate_range(&cc, start, end);
7464 	if (ret && ret != -EBUSY)
7465 		goto done;
7466 
7467 	/*
7468 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7469 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
7470 	 * more, all pages in [start, end) are free in page allocator.
7471 	 * What we are going to do is to allocate all pages from
7472 	 * [start, end) (that is remove them from page allocator).
7473 	 *
7474 	 * The only problem is that pages at the beginning and at the
7475 	 * end of interesting range may be not aligned with pages that
7476 	 * page allocator holds, ie. they can be part of higher order
7477 	 * pages.  Because of this, we reserve the bigger range and
7478 	 * once this is done free the pages we are not interested in.
7479 	 *
7480 	 * We don't have to hold zone->lock here because the pages are
7481 	 * isolated thus they won't get removed from buddy.
7482 	 */
7483 
7484 	lru_add_drain_all();
7485 	drain_all_pages(cc.zone);
7486 
7487 	order = 0;
7488 	outer_start = start;
7489 	while (!PageBuddy(pfn_to_page(outer_start))) {
7490 		if (++order >= MAX_ORDER) {
7491 			outer_start = start;
7492 			break;
7493 		}
7494 		outer_start &= ~0UL << order;
7495 	}
7496 
7497 	if (outer_start != start) {
7498 		order = page_order(pfn_to_page(outer_start));
7499 
7500 		/*
7501 		 * outer_start page could be small order buddy page and
7502 		 * it doesn't include start page. Adjust outer_start
7503 		 * in this case to report failed page properly
7504 		 * on tracepoint in test_pages_isolated()
7505 		 */
7506 		if (outer_start + (1UL << order) <= start)
7507 			outer_start = start;
7508 	}
7509 
7510 	/* Make sure the range is really isolated. */
7511 	if (test_pages_isolated(outer_start, end, false)) {
7512 		pr_info("%s: [%lx, %lx) PFNs busy\n",
7513 			__func__, outer_start, end);
7514 		ret = -EBUSY;
7515 		goto done;
7516 	}
7517 
7518 	/* Grab isolated pages from freelists. */
7519 	outer_end = isolate_freepages_range(&cc, outer_start, end);
7520 	if (!outer_end) {
7521 		ret = -EBUSY;
7522 		goto done;
7523 	}
7524 
7525 	/* Free head and tail (if any) */
7526 	if (start != outer_start)
7527 		free_contig_range(outer_start, start - outer_start);
7528 	if (end != outer_end)
7529 		free_contig_range(end, outer_end - end);
7530 
7531 done:
7532 	undo_isolate_page_range(pfn_max_align_down(start),
7533 				pfn_max_align_up(end), migratetype);
7534 	return ret;
7535 }
7536 
7537 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7538 {
7539 	unsigned int count = 0;
7540 
7541 	for (; nr_pages--; pfn++) {
7542 		struct page *page = pfn_to_page(pfn);
7543 
7544 		count += page_count(page) != 1;
7545 		__free_page(page);
7546 	}
7547 	WARN(count != 0, "%d pages are still in use!\n", count);
7548 }
7549 #endif
7550 
7551 #ifdef CONFIG_MEMORY_HOTPLUG
7552 /*
7553  * The zone indicated has a new number of managed_pages; batch sizes and percpu
7554  * page high values need to be recalulated.
7555  */
7556 void __meminit zone_pcp_update(struct zone *zone)
7557 {
7558 	unsigned cpu;
7559 	mutex_lock(&pcp_batch_high_lock);
7560 	for_each_possible_cpu(cpu)
7561 		pageset_set_high_and_batch(zone,
7562 				per_cpu_ptr(zone->pageset, cpu));
7563 	mutex_unlock(&pcp_batch_high_lock);
7564 }
7565 #endif
7566 
7567 void zone_pcp_reset(struct zone *zone)
7568 {
7569 	unsigned long flags;
7570 	int cpu;
7571 	struct per_cpu_pageset *pset;
7572 
7573 	/* avoid races with drain_pages()  */
7574 	local_irq_save(flags);
7575 	if (zone->pageset != &boot_pageset) {
7576 		for_each_online_cpu(cpu) {
7577 			pset = per_cpu_ptr(zone->pageset, cpu);
7578 			drain_zonestat(zone, pset);
7579 		}
7580 		free_percpu(zone->pageset);
7581 		zone->pageset = &boot_pageset;
7582 	}
7583 	local_irq_restore(flags);
7584 }
7585 
7586 #ifdef CONFIG_MEMORY_HOTREMOVE
7587 /*
7588  * All pages in the range must be in a single zone and isolated
7589  * before calling this.
7590  */
7591 void
7592 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7593 {
7594 	struct page *page;
7595 	struct zone *zone;
7596 	unsigned int order, i;
7597 	unsigned long pfn;
7598 	unsigned long flags;
7599 	/* find the first valid pfn */
7600 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
7601 		if (pfn_valid(pfn))
7602 			break;
7603 	if (pfn == end_pfn)
7604 		return;
7605 	zone = page_zone(pfn_to_page(pfn));
7606 	spin_lock_irqsave(&zone->lock, flags);
7607 	pfn = start_pfn;
7608 	while (pfn < end_pfn) {
7609 		if (!pfn_valid(pfn)) {
7610 			pfn++;
7611 			continue;
7612 		}
7613 		page = pfn_to_page(pfn);
7614 		/*
7615 		 * The HWPoisoned page may be not in buddy system, and
7616 		 * page_count() is not 0.
7617 		 */
7618 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7619 			pfn++;
7620 			SetPageReserved(page);
7621 			continue;
7622 		}
7623 
7624 		BUG_ON(page_count(page));
7625 		BUG_ON(!PageBuddy(page));
7626 		order = page_order(page);
7627 #ifdef CONFIG_DEBUG_VM
7628 		pr_info("remove from free list %lx %d %lx\n",
7629 			pfn, 1 << order, end_pfn);
7630 #endif
7631 		list_del(&page->lru);
7632 		rmv_page_order(page);
7633 		zone->free_area[order].nr_free--;
7634 		for (i = 0; i < (1 << order); i++)
7635 			SetPageReserved((page+i));
7636 		pfn += (1 << order);
7637 	}
7638 	spin_unlock_irqrestore(&zone->lock, flags);
7639 }
7640 #endif
7641 
7642 bool is_free_buddy_page(struct page *page)
7643 {
7644 	struct zone *zone = page_zone(page);
7645 	unsigned long pfn = page_to_pfn(page);
7646 	unsigned long flags;
7647 	unsigned int order;
7648 
7649 	spin_lock_irqsave(&zone->lock, flags);
7650 	for (order = 0; order < MAX_ORDER; order++) {
7651 		struct page *page_head = page - (pfn & ((1 << order) - 1));
7652 
7653 		if (PageBuddy(page_head) && page_order(page_head) >= order)
7654 			break;
7655 	}
7656 	spin_unlock_irqrestore(&zone->lock, flags);
7657 
7658 	return order < MAX_ORDER;
7659 }
7660