1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kmemcheck.h> 28 #include <linux/kasan.h> 29 #include <linux/module.h> 30 #include <linux/suspend.h> 31 #include <linux/pagevec.h> 32 #include <linux/blkdev.h> 33 #include <linux/slab.h> 34 #include <linux/ratelimit.h> 35 #include <linux/oom.h> 36 #include <linux/notifier.h> 37 #include <linux/topology.h> 38 #include <linux/sysctl.h> 39 #include <linux/cpu.h> 40 #include <linux/cpuset.h> 41 #include <linux/memory_hotplug.h> 42 #include <linux/nodemask.h> 43 #include <linux/vmalloc.h> 44 #include <linux/vmstat.h> 45 #include <linux/mempolicy.h> 46 #include <linux/memremap.h> 47 #include <linux/stop_machine.h> 48 #include <linux/sort.h> 49 #include <linux/pfn.h> 50 #include <linux/backing-dev.h> 51 #include <linux/fault-inject.h> 52 #include <linux/page-isolation.h> 53 #include <linux/page_ext.h> 54 #include <linux/debugobjects.h> 55 #include <linux/kmemleak.h> 56 #include <linux/compaction.h> 57 #include <trace/events/kmem.h> 58 #include <trace/events/oom.h> 59 #include <linux/prefetch.h> 60 #include <linux/mm_inline.h> 61 #include <linux/migrate.h> 62 #include <linux/hugetlb.h> 63 #include <linux/sched/rt.h> 64 #include <linux/page_owner.h> 65 #include <linux/kthread.h> 66 #include <linux/memcontrol.h> 67 68 #include <asm/sections.h> 69 #include <asm/tlbflush.h> 70 #include <asm/div64.h> 71 #include "internal.h" 72 73 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 74 static DEFINE_MUTEX(pcp_batch_high_lock); 75 #define MIN_PERCPU_PAGELIST_FRACTION (8) 76 77 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 78 DEFINE_PER_CPU(int, numa_node); 79 EXPORT_PER_CPU_SYMBOL(numa_node); 80 #endif 81 82 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 83 /* 84 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 85 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 86 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 87 * defined in <linux/topology.h>. 88 */ 89 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 90 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 91 int _node_numa_mem_[MAX_NUMNODES]; 92 #endif 93 94 /* work_structs for global per-cpu drains */ 95 DEFINE_MUTEX(pcpu_drain_mutex); 96 DEFINE_PER_CPU(struct work_struct, pcpu_drain); 97 98 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 99 volatile unsigned long latent_entropy __latent_entropy; 100 EXPORT_SYMBOL(latent_entropy); 101 #endif 102 103 /* 104 * Array of node states. 105 */ 106 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 107 [N_POSSIBLE] = NODE_MASK_ALL, 108 [N_ONLINE] = { { [0] = 1UL } }, 109 #ifndef CONFIG_NUMA 110 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 111 #ifdef CONFIG_HIGHMEM 112 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 113 #endif 114 #ifdef CONFIG_MOVABLE_NODE 115 [N_MEMORY] = { { [0] = 1UL } }, 116 #endif 117 [N_CPU] = { { [0] = 1UL } }, 118 #endif /* NUMA */ 119 }; 120 EXPORT_SYMBOL(node_states); 121 122 /* Protect totalram_pages and zone->managed_pages */ 123 static DEFINE_SPINLOCK(managed_page_count_lock); 124 125 unsigned long totalram_pages __read_mostly; 126 unsigned long totalreserve_pages __read_mostly; 127 unsigned long totalcma_pages __read_mostly; 128 129 int percpu_pagelist_fraction; 130 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 131 132 /* 133 * A cached value of the page's pageblock's migratetype, used when the page is 134 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 135 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 136 * Also the migratetype set in the page does not necessarily match the pcplist 137 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 138 * other index - this ensures that it will be put on the correct CMA freelist. 139 */ 140 static inline int get_pcppage_migratetype(struct page *page) 141 { 142 return page->index; 143 } 144 145 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 146 { 147 page->index = migratetype; 148 } 149 150 #ifdef CONFIG_PM_SLEEP 151 /* 152 * The following functions are used by the suspend/hibernate code to temporarily 153 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 154 * while devices are suspended. To avoid races with the suspend/hibernate code, 155 * they should always be called with pm_mutex held (gfp_allowed_mask also should 156 * only be modified with pm_mutex held, unless the suspend/hibernate code is 157 * guaranteed not to run in parallel with that modification). 158 */ 159 160 static gfp_t saved_gfp_mask; 161 162 void pm_restore_gfp_mask(void) 163 { 164 WARN_ON(!mutex_is_locked(&pm_mutex)); 165 if (saved_gfp_mask) { 166 gfp_allowed_mask = saved_gfp_mask; 167 saved_gfp_mask = 0; 168 } 169 } 170 171 void pm_restrict_gfp_mask(void) 172 { 173 WARN_ON(!mutex_is_locked(&pm_mutex)); 174 WARN_ON(saved_gfp_mask); 175 saved_gfp_mask = gfp_allowed_mask; 176 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 177 } 178 179 bool pm_suspended_storage(void) 180 { 181 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 182 return false; 183 return true; 184 } 185 #endif /* CONFIG_PM_SLEEP */ 186 187 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 188 unsigned int pageblock_order __read_mostly; 189 #endif 190 191 static void __free_pages_ok(struct page *page, unsigned int order); 192 193 /* 194 * results with 256, 32 in the lowmem_reserve sysctl: 195 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 196 * 1G machine -> (16M dma, 784M normal, 224M high) 197 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 198 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 199 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 200 * 201 * TBD: should special case ZONE_DMA32 machines here - in those we normally 202 * don't need any ZONE_NORMAL reservation 203 */ 204 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 205 #ifdef CONFIG_ZONE_DMA 206 256, 207 #endif 208 #ifdef CONFIG_ZONE_DMA32 209 256, 210 #endif 211 #ifdef CONFIG_HIGHMEM 212 32, 213 #endif 214 32, 215 }; 216 217 EXPORT_SYMBOL(totalram_pages); 218 219 static char * const zone_names[MAX_NR_ZONES] = { 220 #ifdef CONFIG_ZONE_DMA 221 "DMA", 222 #endif 223 #ifdef CONFIG_ZONE_DMA32 224 "DMA32", 225 #endif 226 "Normal", 227 #ifdef CONFIG_HIGHMEM 228 "HighMem", 229 #endif 230 "Movable", 231 #ifdef CONFIG_ZONE_DEVICE 232 "Device", 233 #endif 234 }; 235 236 char * const migratetype_names[MIGRATE_TYPES] = { 237 "Unmovable", 238 "Movable", 239 "Reclaimable", 240 "HighAtomic", 241 #ifdef CONFIG_CMA 242 "CMA", 243 #endif 244 #ifdef CONFIG_MEMORY_ISOLATION 245 "Isolate", 246 #endif 247 }; 248 249 compound_page_dtor * const compound_page_dtors[] = { 250 NULL, 251 free_compound_page, 252 #ifdef CONFIG_HUGETLB_PAGE 253 free_huge_page, 254 #endif 255 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 256 free_transhuge_page, 257 #endif 258 }; 259 260 int min_free_kbytes = 1024; 261 int user_min_free_kbytes = -1; 262 int watermark_scale_factor = 10; 263 264 static unsigned long __meminitdata nr_kernel_pages; 265 static unsigned long __meminitdata nr_all_pages; 266 static unsigned long __meminitdata dma_reserve; 267 268 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 269 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 270 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 271 static unsigned long __initdata required_kernelcore; 272 static unsigned long __initdata required_movablecore; 273 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 274 static bool mirrored_kernelcore; 275 276 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 277 int movable_zone; 278 EXPORT_SYMBOL(movable_zone); 279 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 280 281 #if MAX_NUMNODES > 1 282 int nr_node_ids __read_mostly = MAX_NUMNODES; 283 int nr_online_nodes __read_mostly = 1; 284 EXPORT_SYMBOL(nr_node_ids); 285 EXPORT_SYMBOL(nr_online_nodes); 286 #endif 287 288 int page_group_by_mobility_disabled __read_mostly; 289 290 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 291 static inline void reset_deferred_meminit(pg_data_t *pgdat) 292 { 293 pgdat->first_deferred_pfn = ULONG_MAX; 294 } 295 296 /* Returns true if the struct page for the pfn is uninitialised */ 297 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 298 { 299 int nid = early_pfn_to_nid(pfn); 300 301 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 302 return true; 303 304 return false; 305 } 306 307 /* 308 * Returns false when the remaining initialisation should be deferred until 309 * later in the boot cycle when it can be parallelised. 310 */ 311 static inline bool update_defer_init(pg_data_t *pgdat, 312 unsigned long pfn, unsigned long zone_end, 313 unsigned long *nr_initialised) 314 { 315 unsigned long max_initialise; 316 317 /* Always populate low zones for address-contrained allocations */ 318 if (zone_end < pgdat_end_pfn(pgdat)) 319 return true; 320 /* 321 * Initialise at least 2G of a node but also take into account that 322 * two large system hashes that can take up 1GB for 0.25TB/node. 323 */ 324 max_initialise = max(2UL << (30 - PAGE_SHIFT), 325 (pgdat->node_spanned_pages >> 8)); 326 327 (*nr_initialised)++; 328 if ((*nr_initialised > max_initialise) && 329 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 330 pgdat->first_deferred_pfn = pfn; 331 return false; 332 } 333 334 return true; 335 } 336 #else 337 static inline void reset_deferred_meminit(pg_data_t *pgdat) 338 { 339 } 340 341 static inline bool early_page_uninitialised(unsigned long pfn) 342 { 343 return false; 344 } 345 346 static inline bool update_defer_init(pg_data_t *pgdat, 347 unsigned long pfn, unsigned long zone_end, 348 unsigned long *nr_initialised) 349 { 350 return true; 351 } 352 #endif 353 354 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 355 static inline unsigned long *get_pageblock_bitmap(struct page *page, 356 unsigned long pfn) 357 { 358 #ifdef CONFIG_SPARSEMEM 359 return __pfn_to_section(pfn)->pageblock_flags; 360 #else 361 return page_zone(page)->pageblock_flags; 362 #endif /* CONFIG_SPARSEMEM */ 363 } 364 365 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn) 366 { 367 #ifdef CONFIG_SPARSEMEM 368 pfn &= (PAGES_PER_SECTION-1); 369 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 370 #else 371 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 372 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 373 #endif /* CONFIG_SPARSEMEM */ 374 } 375 376 /** 377 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 378 * @page: The page within the block of interest 379 * @pfn: The target page frame number 380 * @end_bitidx: The last bit of interest to retrieve 381 * @mask: mask of bits that the caller is interested in 382 * 383 * Return: pageblock_bits flags 384 */ 385 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page, 386 unsigned long pfn, 387 unsigned long end_bitidx, 388 unsigned long mask) 389 { 390 unsigned long *bitmap; 391 unsigned long bitidx, word_bitidx; 392 unsigned long word; 393 394 bitmap = get_pageblock_bitmap(page, pfn); 395 bitidx = pfn_to_bitidx(page, pfn); 396 word_bitidx = bitidx / BITS_PER_LONG; 397 bitidx &= (BITS_PER_LONG-1); 398 399 word = bitmap[word_bitidx]; 400 bitidx += end_bitidx; 401 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; 402 } 403 404 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 405 unsigned long end_bitidx, 406 unsigned long mask) 407 { 408 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask); 409 } 410 411 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) 412 { 413 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK); 414 } 415 416 /** 417 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 418 * @page: The page within the block of interest 419 * @flags: The flags to set 420 * @pfn: The target page frame number 421 * @end_bitidx: The last bit of interest 422 * @mask: mask of bits that the caller is interested in 423 */ 424 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 425 unsigned long pfn, 426 unsigned long end_bitidx, 427 unsigned long mask) 428 { 429 unsigned long *bitmap; 430 unsigned long bitidx, word_bitidx; 431 unsigned long old_word, word; 432 433 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 434 435 bitmap = get_pageblock_bitmap(page, pfn); 436 bitidx = pfn_to_bitidx(page, pfn); 437 word_bitidx = bitidx / BITS_PER_LONG; 438 bitidx &= (BITS_PER_LONG-1); 439 440 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 441 442 bitidx += end_bitidx; 443 mask <<= (BITS_PER_LONG - bitidx - 1); 444 flags <<= (BITS_PER_LONG - bitidx - 1); 445 446 word = READ_ONCE(bitmap[word_bitidx]); 447 for (;;) { 448 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 449 if (word == old_word) 450 break; 451 word = old_word; 452 } 453 } 454 455 void set_pageblock_migratetype(struct page *page, int migratetype) 456 { 457 if (unlikely(page_group_by_mobility_disabled && 458 migratetype < MIGRATE_PCPTYPES)) 459 migratetype = MIGRATE_UNMOVABLE; 460 461 set_pageblock_flags_group(page, (unsigned long)migratetype, 462 PB_migrate, PB_migrate_end); 463 } 464 465 #ifdef CONFIG_DEBUG_VM 466 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 467 { 468 int ret = 0; 469 unsigned seq; 470 unsigned long pfn = page_to_pfn(page); 471 unsigned long sp, start_pfn; 472 473 do { 474 seq = zone_span_seqbegin(zone); 475 start_pfn = zone->zone_start_pfn; 476 sp = zone->spanned_pages; 477 if (!zone_spans_pfn(zone, pfn)) 478 ret = 1; 479 } while (zone_span_seqretry(zone, seq)); 480 481 if (ret) 482 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 483 pfn, zone_to_nid(zone), zone->name, 484 start_pfn, start_pfn + sp); 485 486 return ret; 487 } 488 489 static int page_is_consistent(struct zone *zone, struct page *page) 490 { 491 if (!pfn_valid_within(page_to_pfn(page))) 492 return 0; 493 if (zone != page_zone(page)) 494 return 0; 495 496 return 1; 497 } 498 /* 499 * Temporary debugging check for pages not lying within a given zone. 500 */ 501 static int bad_range(struct zone *zone, struct page *page) 502 { 503 if (page_outside_zone_boundaries(zone, page)) 504 return 1; 505 if (!page_is_consistent(zone, page)) 506 return 1; 507 508 return 0; 509 } 510 #else 511 static inline int bad_range(struct zone *zone, struct page *page) 512 { 513 return 0; 514 } 515 #endif 516 517 static void bad_page(struct page *page, const char *reason, 518 unsigned long bad_flags) 519 { 520 static unsigned long resume; 521 static unsigned long nr_shown; 522 static unsigned long nr_unshown; 523 524 /* 525 * Allow a burst of 60 reports, then keep quiet for that minute; 526 * or allow a steady drip of one report per second. 527 */ 528 if (nr_shown == 60) { 529 if (time_before(jiffies, resume)) { 530 nr_unshown++; 531 goto out; 532 } 533 if (nr_unshown) { 534 pr_alert( 535 "BUG: Bad page state: %lu messages suppressed\n", 536 nr_unshown); 537 nr_unshown = 0; 538 } 539 nr_shown = 0; 540 } 541 if (nr_shown++ == 0) 542 resume = jiffies + 60 * HZ; 543 544 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 545 current->comm, page_to_pfn(page)); 546 __dump_page(page, reason); 547 bad_flags &= page->flags; 548 if (bad_flags) 549 pr_alert("bad because of flags: %#lx(%pGp)\n", 550 bad_flags, &bad_flags); 551 dump_page_owner(page); 552 553 print_modules(); 554 dump_stack(); 555 out: 556 /* Leave bad fields for debug, except PageBuddy could make trouble */ 557 page_mapcount_reset(page); /* remove PageBuddy */ 558 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 559 } 560 561 /* 562 * Higher-order pages are called "compound pages". They are structured thusly: 563 * 564 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 565 * 566 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 567 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 568 * 569 * The first tail page's ->compound_dtor holds the offset in array of compound 570 * page destructors. See compound_page_dtors. 571 * 572 * The first tail page's ->compound_order holds the order of allocation. 573 * This usage means that zero-order pages may not be compound. 574 */ 575 576 void free_compound_page(struct page *page) 577 { 578 __free_pages_ok(page, compound_order(page)); 579 } 580 581 void prep_compound_page(struct page *page, unsigned int order) 582 { 583 int i; 584 int nr_pages = 1 << order; 585 586 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 587 set_compound_order(page, order); 588 __SetPageHead(page); 589 for (i = 1; i < nr_pages; i++) { 590 struct page *p = page + i; 591 set_page_count(p, 0); 592 p->mapping = TAIL_MAPPING; 593 set_compound_head(p, page); 594 } 595 atomic_set(compound_mapcount_ptr(page), -1); 596 } 597 598 #ifdef CONFIG_DEBUG_PAGEALLOC 599 unsigned int _debug_guardpage_minorder; 600 bool _debug_pagealloc_enabled __read_mostly 601 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 602 EXPORT_SYMBOL(_debug_pagealloc_enabled); 603 bool _debug_guardpage_enabled __read_mostly; 604 605 static int __init early_debug_pagealloc(char *buf) 606 { 607 if (!buf) 608 return -EINVAL; 609 return kstrtobool(buf, &_debug_pagealloc_enabled); 610 } 611 early_param("debug_pagealloc", early_debug_pagealloc); 612 613 static bool need_debug_guardpage(void) 614 { 615 /* If we don't use debug_pagealloc, we don't need guard page */ 616 if (!debug_pagealloc_enabled()) 617 return false; 618 619 if (!debug_guardpage_minorder()) 620 return false; 621 622 return true; 623 } 624 625 static void init_debug_guardpage(void) 626 { 627 if (!debug_pagealloc_enabled()) 628 return; 629 630 if (!debug_guardpage_minorder()) 631 return; 632 633 _debug_guardpage_enabled = true; 634 } 635 636 struct page_ext_operations debug_guardpage_ops = { 637 .need = need_debug_guardpage, 638 .init = init_debug_guardpage, 639 }; 640 641 static int __init debug_guardpage_minorder_setup(char *buf) 642 { 643 unsigned long res; 644 645 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 646 pr_err("Bad debug_guardpage_minorder value\n"); 647 return 0; 648 } 649 _debug_guardpage_minorder = res; 650 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 651 return 0; 652 } 653 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 654 655 static inline bool set_page_guard(struct zone *zone, struct page *page, 656 unsigned int order, int migratetype) 657 { 658 struct page_ext *page_ext; 659 660 if (!debug_guardpage_enabled()) 661 return false; 662 663 if (order >= debug_guardpage_minorder()) 664 return false; 665 666 page_ext = lookup_page_ext(page); 667 if (unlikely(!page_ext)) 668 return false; 669 670 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 671 672 INIT_LIST_HEAD(&page->lru); 673 set_page_private(page, order); 674 /* Guard pages are not available for any usage */ 675 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 676 677 return true; 678 } 679 680 static inline void clear_page_guard(struct zone *zone, struct page *page, 681 unsigned int order, int migratetype) 682 { 683 struct page_ext *page_ext; 684 685 if (!debug_guardpage_enabled()) 686 return; 687 688 page_ext = lookup_page_ext(page); 689 if (unlikely(!page_ext)) 690 return; 691 692 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 693 694 set_page_private(page, 0); 695 if (!is_migrate_isolate(migratetype)) 696 __mod_zone_freepage_state(zone, (1 << order), migratetype); 697 } 698 #else 699 struct page_ext_operations debug_guardpage_ops; 700 static inline bool set_page_guard(struct zone *zone, struct page *page, 701 unsigned int order, int migratetype) { return false; } 702 static inline void clear_page_guard(struct zone *zone, struct page *page, 703 unsigned int order, int migratetype) {} 704 #endif 705 706 static inline void set_page_order(struct page *page, unsigned int order) 707 { 708 set_page_private(page, order); 709 __SetPageBuddy(page); 710 } 711 712 static inline void rmv_page_order(struct page *page) 713 { 714 __ClearPageBuddy(page); 715 set_page_private(page, 0); 716 } 717 718 /* 719 * This function checks whether a page is free && is the buddy 720 * we can do coalesce a page and its buddy if 721 * (a) the buddy is not in a hole (check before calling!) && 722 * (b) the buddy is in the buddy system && 723 * (c) a page and its buddy have the same order && 724 * (d) a page and its buddy are in the same zone. 725 * 726 * For recording whether a page is in the buddy system, we set ->_mapcount 727 * PAGE_BUDDY_MAPCOUNT_VALUE. 728 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is 729 * serialized by zone->lock. 730 * 731 * For recording page's order, we use page_private(page). 732 */ 733 static inline int page_is_buddy(struct page *page, struct page *buddy, 734 unsigned int order) 735 { 736 if (page_is_guard(buddy) && page_order(buddy) == order) { 737 if (page_zone_id(page) != page_zone_id(buddy)) 738 return 0; 739 740 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 741 742 return 1; 743 } 744 745 if (PageBuddy(buddy) && page_order(buddy) == order) { 746 /* 747 * zone check is done late to avoid uselessly 748 * calculating zone/node ids for pages that could 749 * never merge. 750 */ 751 if (page_zone_id(page) != page_zone_id(buddy)) 752 return 0; 753 754 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 755 756 return 1; 757 } 758 return 0; 759 } 760 761 /* 762 * Freeing function for a buddy system allocator. 763 * 764 * The concept of a buddy system is to maintain direct-mapped table 765 * (containing bit values) for memory blocks of various "orders". 766 * The bottom level table contains the map for the smallest allocatable 767 * units of memory (here, pages), and each level above it describes 768 * pairs of units from the levels below, hence, "buddies". 769 * At a high level, all that happens here is marking the table entry 770 * at the bottom level available, and propagating the changes upward 771 * as necessary, plus some accounting needed to play nicely with other 772 * parts of the VM system. 773 * At each level, we keep a list of pages, which are heads of continuous 774 * free pages of length of (1 << order) and marked with _mapcount 775 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page) 776 * field. 777 * So when we are allocating or freeing one, we can derive the state of the 778 * other. That is, if we allocate a small block, and both were 779 * free, the remainder of the region must be split into blocks. 780 * If a block is freed, and its buddy is also free, then this 781 * triggers coalescing into a block of larger size. 782 * 783 * -- nyc 784 */ 785 786 static inline void __free_one_page(struct page *page, 787 unsigned long pfn, 788 struct zone *zone, unsigned int order, 789 int migratetype) 790 { 791 unsigned long combined_pfn; 792 unsigned long uninitialized_var(buddy_pfn); 793 struct page *buddy; 794 unsigned int max_order; 795 796 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1); 797 798 VM_BUG_ON(!zone_is_initialized(zone)); 799 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 800 801 VM_BUG_ON(migratetype == -1); 802 if (likely(!is_migrate_isolate(migratetype))) 803 __mod_zone_freepage_state(zone, 1 << order, migratetype); 804 805 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 806 VM_BUG_ON_PAGE(bad_range(zone, page), page); 807 808 continue_merging: 809 while (order < max_order - 1) { 810 buddy_pfn = __find_buddy_pfn(pfn, order); 811 buddy = page + (buddy_pfn - pfn); 812 813 if (!pfn_valid_within(buddy_pfn)) 814 goto done_merging; 815 if (!page_is_buddy(page, buddy, order)) 816 goto done_merging; 817 /* 818 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 819 * merge with it and move up one order. 820 */ 821 if (page_is_guard(buddy)) { 822 clear_page_guard(zone, buddy, order, migratetype); 823 } else { 824 list_del(&buddy->lru); 825 zone->free_area[order].nr_free--; 826 rmv_page_order(buddy); 827 } 828 combined_pfn = buddy_pfn & pfn; 829 page = page + (combined_pfn - pfn); 830 pfn = combined_pfn; 831 order++; 832 } 833 if (max_order < MAX_ORDER) { 834 /* If we are here, it means order is >= pageblock_order. 835 * We want to prevent merge between freepages on isolate 836 * pageblock and normal pageblock. Without this, pageblock 837 * isolation could cause incorrect freepage or CMA accounting. 838 * 839 * We don't want to hit this code for the more frequent 840 * low-order merging. 841 */ 842 if (unlikely(has_isolate_pageblock(zone))) { 843 int buddy_mt; 844 845 buddy_pfn = __find_buddy_pfn(pfn, order); 846 buddy = page + (buddy_pfn - pfn); 847 buddy_mt = get_pageblock_migratetype(buddy); 848 849 if (migratetype != buddy_mt 850 && (is_migrate_isolate(migratetype) || 851 is_migrate_isolate(buddy_mt))) 852 goto done_merging; 853 } 854 max_order++; 855 goto continue_merging; 856 } 857 858 done_merging: 859 set_page_order(page, order); 860 861 /* 862 * If this is not the largest possible page, check if the buddy 863 * of the next-highest order is free. If it is, it's possible 864 * that pages are being freed that will coalesce soon. In case, 865 * that is happening, add the free page to the tail of the list 866 * so it's less likely to be used soon and more likely to be merged 867 * as a higher order page 868 */ 869 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) { 870 struct page *higher_page, *higher_buddy; 871 combined_pfn = buddy_pfn & pfn; 872 higher_page = page + (combined_pfn - pfn); 873 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); 874 higher_buddy = higher_page + (buddy_pfn - combined_pfn); 875 if (page_is_buddy(higher_page, higher_buddy, order + 1)) { 876 list_add_tail(&page->lru, 877 &zone->free_area[order].free_list[migratetype]); 878 goto out; 879 } 880 } 881 882 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 883 out: 884 zone->free_area[order].nr_free++; 885 } 886 887 /* 888 * A bad page could be due to a number of fields. Instead of multiple branches, 889 * try and check multiple fields with one check. The caller must do a detailed 890 * check if necessary. 891 */ 892 static inline bool page_expected_state(struct page *page, 893 unsigned long check_flags) 894 { 895 if (unlikely(atomic_read(&page->_mapcount) != -1)) 896 return false; 897 898 if (unlikely((unsigned long)page->mapping | 899 page_ref_count(page) | 900 #ifdef CONFIG_MEMCG 901 (unsigned long)page->mem_cgroup | 902 #endif 903 (page->flags & check_flags))) 904 return false; 905 906 return true; 907 } 908 909 static void free_pages_check_bad(struct page *page) 910 { 911 const char *bad_reason; 912 unsigned long bad_flags; 913 914 bad_reason = NULL; 915 bad_flags = 0; 916 917 if (unlikely(atomic_read(&page->_mapcount) != -1)) 918 bad_reason = "nonzero mapcount"; 919 if (unlikely(page->mapping != NULL)) 920 bad_reason = "non-NULL mapping"; 921 if (unlikely(page_ref_count(page) != 0)) 922 bad_reason = "nonzero _refcount"; 923 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { 924 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 925 bad_flags = PAGE_FLAGS_CHECK_AT_FREE; 926 } 927 #ifdef CONFIG_MEMCG 928 if (unlikely(page->mem_cgroup)) 929 bad_reason = "page still charged to cgroup"; 930 #endif 931 bad_page(page, bad_reason, bad_flags); 932 } 933 934 static inline int free_pages_check(struct page *page) 935 { 936 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 937 return 0; 938 939 /* Something has gone sideways, find it */ 940 free_pages_check_bad(page); 941 return 1; 942 } 943 944 static int free_tail_pages_check(struct page *head_page, struct page *page) 945 { 946 int ret = 1; 947 948 /* 949 * We rely page->lru.next never has bit 0 set, unless the page 950 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 951 */ 952 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 953 954 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 955 ret = 0; 956 goto out; 957 } 958 switch (page - head_page) { 959 case 1: 960 /* the first tail page: ->mapping is compound_mapcount() */ 961 if (unlikely(compound_mapcount(page))) { 962 bad_page(page, "nonzero compound_mapcount", 0); 963 goto out; 964 } 965 break; 966 case 2: 967 /* 968 * the second tail page: ->mapping is 969 * page_deferred_list().next -- ignore value. 970 */ 971 break; 972 default: 973 if (page->mapping != TAIL_MAPPING) { 974 bad_page(page, "corrupted mapping in tail page", 0); 975 goto out; 976 } 977 break; 978 } 979 if (unlikely(!PageTail(page))) { 980 bad_page(page, "PageTail not set", 0); 981 goto out; 982 } 983 if (unlikely(compound_head(page) != head_page)) { 984 bad_page(page, "compound_head not consistent", 0); 985 goto out; 986 } 987 ret = 0; 988 out: 989 page->mapping = NULL; 990 clear_compound_head(page); 991 return ret; 992 } 993 994 static __always_inline bool free_pages_prepare(struct page *page, 995 unsigned int order, bool check_free) 996 { 997 int bad = 0; 998 999 VM_BUG_ON_PAGE(PageTail(page), page); 1000 1001 trace_mm_page_free(page, order); 1002 kmemcheck_free_shadow(page, order); 1003 1004 /* 1005 * Check tail pages before head page information is cleared to 1006 * avoid checking PageCompound for order-0 pages. 1007 */ 1008 if (unlikely(order)) { 1009 bool compound = PageCompound(page); 1010 int i; 1011 1012 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1013 1014 if (compound) 1015 ClearPageDoubleMap(page); 1016 for (i = 1; i < (1 << order); i++) { 1017 if (compound) 1018 bad += free_tail_pages_check(page, page + i); 1019 if (unlikely(free_pages_check(page + i))) { 1020 bad++; 1021 continue; 1022 } 1023 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1024 } 1025 } 1026 if (PageMappingFlags(page)) 1027 page->mapping = NULL; 1028 if (memcg_kmem_enabled() && PageKmemcg(page)) 1029 memcg_kmem_uncharge(page, order); 1030 if (check_free) 1031 bad += free_pages_check(page); 1032 if (bad) 1033 return false; 1034 1035 page_cpupid_reset_last(page); 1036 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1037 reset_page_owner(page, order); 1038 1039 if (!PageHighMem(page)) { 1040 debug_check_no_locks_freed(page_address(page), 1041 PAGE_SIZE << order); 1042 debug_check_no_obj_freed(page_address(page), 1043 PAGE_SIZE << order); 1044 } 1045 arch_free_page(page, order); 1046 kernel_poison_pages(page, 1 << order, 0); 1047 kernel_map_pages(page, 1 << order, 0); 1048 kasan_free_pages(page, order); 1049 1050 return true; 1051 } 1052 1053 #ifdef CONFIG_DEBUG_VM 1054 static inline bool free_pcp_prepare(struct page *page) 1055 { 1056 return free_pages_prepare(page, 0, true); 1057 } 1058 1059 static inline bool bulkfree_pcp_prepare(struct page *page) 1060 { 1061 return false; 1062 } 1063 #else 1064 static bool free_pcp_prepare(struct page *page) 1065 { 1066 return free_pages_prepare(page, 0, false); 1067 } 1068 1069 static bool bulkfree_pcp_prepare(struct page *page) 1070 { 1071 return free_pages_check(page); 1072 } 1073 #endif /* CONFIG_DEBUG_VM */ 1074 1075 /* 1076 * Frees a number of pages from the PCP lists 1077 * Assumes all pages on list are in same zone, and of same order. 1078 * count is the number of pages to free. 1079 * 1080 * If the zone was previously in an "all pages pinned" state then look to 1081 * see if this freeing clears that state. 1082 * 1083 * And clear the zone's pages_scanned counter, to hold off the "all pages are 1084 * pinned" detection logic. 1085 */ 1086 static void free_pcppages_bulk(struct zone *zone, int count, 1087 struct per_cpu_pages *pcp) 1088 { 1089 int migratetype = 0; 1090 int batch_free = 0; 1091 unsigned long nr_scanned, flags; 1092 bool isolated_pageblocks; 1093 1094 spin_lock_irqsave(&zone->lock, flags); 1095 isolated_pageblocks = has_isolate_pageblock(zone); 1096 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED); 1097 if (nr_scanned) 1098 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned); 1099 1100 while (count) { 1101 struct page *page; 1102 struct list_head *list; 1103 1104 /* 1105 * Remove pages from lists in a round-robin fashion. A 1106 * batch_free count is maintained that is incremented when an 1107 * empty list is encountered. This is so more pages are freed 1108 * off fuller lists instead of spinning excessively around empty 1109 * lists 1110 */ 1111 do { 1112 batch_free++; 1113 if (++migratetype == MIGRATE_PCPTYPES) 1114 migratetype = 0; 1115 list = &pcp->lists[migratetype]; 1116 } while (list_empty(list)); 1117 1118 /* This is the only non-empty list. Free them all. */ 1119 if (batch_free == MIGRATE_PCPTYPES) 1120 batch_free = count; 1121 1122 do { 1123 int mt; /* migratetype of the to-be-freed page */ 1124 1125 page = list_last_entry(list, struct page, lru); 1126 /* must delete as __free_one_page list manipulates */ 1127 list_del(&page->lru); 1128 1129 mt = get_pcppage_migratetype(page); 1130 /* MIGRATE_ISOLATE page should not go to pcplists */ 1131 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1132 /* Pageblock could have been isolated meanwhile */ 1133 if (unlikely(isolated_pageblocks)) 1134 mt = get_pageblock_migratetype(page); 1135 1136 if (bulkfree_pcp_prepare(page)) 1137 continue; 1138 1139 __free_one_page(page, page_to_pfn(page), zone, 0, mt); 1140 trace_mm_page_pcpu_drain(page, 0, mt); 1141 } while (--count && --batch_free && !list_empty(list)); 1142 } 1143 spin_unlock_irqrestore(&zone->lock, flags); 1144 } 1145 1146 static void free_one_page(struct zone *zone, 1147 struct page *page, unsigned long pfn, 1148 unsigned int order, 1149 int migratetype) 1150 { 1151 unsigned long nr_scanned, flags; 1152 spin_lock_irqsave(&zone->lock, flags); 1153 __count_vm_events(PGFREE, 1 << order); 1154 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED); 1155 if (nr_scanned) 1156 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned); 1157 1158 if (unlikely(has_isolate_pageblock(zone) || 1159 is_migrate_isolate(migratetype))) { 1160 migratetype = get_pfnblock_migratetype(page, pfn); 1161 } 1162 __free_one_page(page, pfn, zone, order, migratetype); 1163 spin_unlock_irqrestore(&zone->lock, flags); 1164 } 1165 1166 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1167 unsigned long zone, int nid) 1168 { 1169 set_page_links(page, zone, nid, pfn); 1170 init_page_count(page); 1171 page_mapcount_reset(page); 1172 page_cpupid_reset_last(page); 1173 1174 INIT_LIST_HEAD(&page->lru); 1175 #ifdef WANT_PAGE_VIRTUAL 1176 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1177 if (!is_highmem_idx(zone)) 1178 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1179 #endif 1180 } 1181 1182 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone, 1183 int nid) 1184 { 1185 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid); 1186 } 1187 1188 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1189 static void init_reserved_page(unsigned long pfn) 1190 { 1191 pg_data_t *pgdat; 1192 int nid, zid; 1193 1194 if (!early_page_uninitialised(pfn)) 1195 return; 1196 1197 nid = early_pfn_to_nid(pfn); 1198 pgdat = NODE_DATA(nid); 1199 1200 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1201 struct zone *zone = &pgdat->node_zones[zid]; 1202 1203 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) 1204 break; 1205 } 1206 __init_single_pfn(pfn, zid, nid); 1207 } 1208 #else 1209 static inline void init_reserved_page(unsigned long pfn) 1210 { 1211 } 1212 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1213 1214 /* 1215 * Initialised pages do not have PageReserved set. This function is 1216 * called for each range allocated by the bootmem allocator and 1217 * marks the pages PageReserved. The remaining valid pages are later 1218 * sent to the buddy page allocator. 1219 */ 1220 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1221 { 1222 unsigned long start_pfn = PFN_DOWN(start); 1223 unsigned long end_pfn = PFN_UP(end); 1224 1225 for (; start_pfn < end_pfn; start_pfn++) { 1226 if (pfn_valid(start_pfn)) { 1227 struct page *page = pfn_to_page(start_pfn); 1228 1229 init_reserved_page(start_pfn); 1230 1231 /* Avoid false-positive PageTail() */ 1232 INIT_LIST_HEAD(&page->lru); 1233 1234 SetPageReserved(page); 1235 } 1236 } 1237 } 1238 1239 static void __free_pages_ok(struct page *page, unsigned int order) 1240 { 1241 int migratetype; 1242 unsigned long pfn = page_to_pfn(page); 1243 1244 if (!free_pages_prepare(page, order, true)) 1245 return; 1246 1247 migratetype = get_pfnblock_migratetype(page, pfn); 1248 free_one_page(page_zone(page), page, pfn, order, migratetype); 1249 } 1250 1251 static void __init __free_pages_boot_core(struct page *page, unsigned int order) 1252 { 1253 unsigned int nr_pages = 1 << order; 1254 struct page *p = page; 1255 unsigned int loop; 1256 1257 prefetchw(p); 1258 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1259 prefetchw(p + 1); 1260 __ClearPageReserved(p); 1261 set_page_count(p, 0); 1262 } 1263 __ClearPageReserved(p); 1264 set_page_count(p, 0); 1265 1266 page_zone(page)->managed_pages += nr_pages; 1267 set_page_refcounted(page); 1268 __free_pages(page, order); 1269 } 1270 1271 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \ 1272 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 1273 1274 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1275 1276 int __meminit early_pfn_to_nid(unsigned long pfn) 1277 { 1278 static DEFINE_SPINLOCK(early_pfn_lock); 1279 int nid; 1280 1281 spin_lock(&early_pfn_lock); 1282 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1283 if (nid < 0) 1284 nid = first_online_node; 1285 spin_unlock(&early_pfn_lock); 1286 1287 return nid; 1288 } 1289 #endif 1290 1291 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 1292 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node, 1293 struct mminit_pfnnid_cache *state) 1294 { 1295 int nid; 1296 1297 nid = __early_pfn_to_nid(pfn, state); 1298 if (nid >= 0 && nid != node) 1299 return false; 1300 return true; 1301 } 1302 1303 /* Only safe to use early in boot when initialisation is single-threaded */ 1304 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1305 { 1306 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache); 1307 } 1308 1309 #else 1310 1311 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1312 { 1313 return true; 1314 } 1315 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node, 1316 struct mminit_pfnnid_cache *state) 1317 { 1318 return true; 1319 } 1320 #endif 1321 1322 1323 void __init __free_pages_bootmem(struct page *page, unsigned long pfn, 1324 unsigned int order) 1325 { 1326 if (early_page_uninitialised(pfn)) 1327 return; 1328 return __free_pages_boot_core(page, order); 1329 } 1330 1331 /* 1332 * Check that the whole (or subset of) a pageblock given by the interval of 1333 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1334 * with the migration of free compaction scanner. The scanners then need to 1335 * use only pfn_valid_within() check for arches that allow holes within 1336 * pageblocks. 1337 * 1338 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1339 * 1340 * It's possible on some configurations to have a setup like node0 node1 node0 1341 * i.e. it's possible that all pages within a zones range of pages do not 1342 * belong to a single zone. We assume that a border between node0 and node1 1343 * can occur within a single pageblock, but not a node0 node1 node0 1344 * interleaving within a single pageblock. It is therefore sufficient to check 1345 * the first and last page of a pageblock and avoid checking each individual 1346 * page in a pageblock. 1347 */ 1348 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1349 unsigned long end_pfn, struct zone *zone) 1350 { 1351 struct page *start_page; 1352 struct page *end_page; 1353 1354 /* end_pfn is one past the range we are checking */ 1355 end_pfn--; 1356 1357 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1358 return NULL; 1359 1360 start_page = pfn_to_page(start_pfn); 1361 1362 if (page_zone(start_page) != zone) 1363 return NULL; 1364 1365 end_page = pfn_to_page(end_pfn); 1366 1367 /* This gives a shorter code than deriving page_zone(end_page) */ 1368 if (page_zone_id(start_page) != page_zone_id(end_page)) 1369 return NULL; 1370 1371 return start_page; 1372 } 1373 1374 void set_zone_contiguous(struct zone *zone) 1375 { 1376 unsigned long block_start_pfn = zone->zone_start_pfn; 1377 unsigned long block_end_pfn; 1378 1379 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1380 for (; block_start_pfn < zone_end_pfn(zone); 1381 block_start_pfn = block_end_pfn, 1382 block_end_pfn += pageblock_nr_pages) { 1383 1384 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1385 1386 if (!__pageblock_pfn_to_page(block_start_pfn, 1387 block_end_pfn, zone)) 1388 return; 1389 } 1390 1391 /* We confirm that there is no hole */ 1392 zone->contiguous = true; 1393 } 1394 1395 void clear_zone_contiguous(struct zone *zone) 1396 { 1397 zone->contiguous = false; 1398 } 1399 1400 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1401 static void __init deferred_free_range(struct page *page, 1402 unsigned long pfn, int nr_pages) 1403 { 1404 int i; 1405 1406 if (!page) 1407 return; 1408 1409 /* Free a large naturally-aligned chunk if possible */ 1410 if (nr_pages == pageblock_nr_pages && 1411 (pfn & (pageblock_nr_pages - 1)) == 0) { 1412 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1413 __free_pages_boot_core(page, pageblock_order); 1414 return; 1415 } 1416 1417 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1418 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1419 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1420 __free_pages_boot_core(page, 0); 1421 } 1422 } 1423 1424 /* Completion tracking for deferred_init_memmap() threads */ 1425 static atomic_t pgdat_init_n_undone __initdata; 1426 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1427 1428 static inline void __init pgdat_init_report_one_done(void) 1429 { 1430 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1431 complete(&pgdat_init_all_done_comp); 1432 } 1433 1434 /* Initialise remaining memory on a node */ 1435 static int __init deferred_init_memmap(void *data) 1436 { 1437 pg_data_t *pgdat = data; 1438 int nid = pgdat->node_id; 1439 struct mminit_pfnnid_cache nid_init_state = { }; 1440 unsigned long start = jiffies; 1441 unsigned long nr_pages = 0; 1442 unsigned long walk_start, walk_end; 1443 int i, zid; 1444 struct zone *zone; 1445 unsigned long first_init_pfn = pgdat->first_deferred_pfn; 1446 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1447 1448 if (first_init_pfn == ULONG_MAX) { 1449 pgdat_init_report_one_done(); 1450 return 0; 1451 } 1452 1453 /* Bind memory initialisation thread to a local node if possible */ 1454 if (!cpumask_empty(cpumask)) 1455 set_cpus_allowed_ptr(current, cpumask); 1456 1457 /* Sanity check boundaries */ 1458 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 1459 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 1460 pgdat->first_deferred_pfn = ULONG_MAX; 1461 1462 /* Only the highest zone is deferred so find it */ 1463 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1464 zone = pgdat->node_zones + zid; 1465 if (first_init_pfn < zone_end_pfn(zone)) 1466 break; 1467 } 1468 1469 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) { 1470 unsigned long pfn, end_pfn; 1471 struct page *page = NULL; 1472 struct page *free_base_page = NULL; 1473 unsigned long free_base_pfn = 0; 1474 int nr_to_free = 0; 1475 1476 end_pfn = min(walk_end, zone_end_pfn(zone)); 1477 pfn = first_init_pfn; 1478 if (pfn < walk_start) 1479 pfn = walk_start; 1480 if (pfn < zone->zone_start_pfn) 1481 pfn = zone->zone_start_pfn; 1482 1483 for (; pfn < end_pfn; pfn++) { 1484 if (!pfn_valid_within(pfn)) 1485 goto free_range; 1486 1487 /* 1488 * Ensure pfn_valid is checked every 1489 * pageblock_nr_pages for memory holes 1490 */ 1491 if ((pfn & (pageblock_nr_pages - 1)) == 0) { 1492 if (!pfn_valid(pfn)) { 1493 page = NULL; 1494 goto free_range; 1495 } 1496 } 1497 1498 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) { 1499 page = NULL; 1500 goto free_range; 1501 } 1502 1503 /* Minimise pfn page lookups and scheduler checks */ 1504 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) { 1505 page++; 1506 } else { 1507 nr_pages += nr_to_free; 1508 deferred_free_range(free_base_page, 1509 free_base_pfn, nr_to_free); 1510 free_base_page = NULL; 1511 free_base_pfn = nr_to_free = 0; 1512 1513 page = pfn_to_page(pfn); 1514 cond_resched(); 1515 } 1516 1517 if (page->flags) { 1518 VM_BUG_ON(page_zone(page) != zone); 1519 goto free_range; 1520 } 1521 1522 __init_single_page(page, pfn, zid, nid); 1523 if (!free_base_page) { 1524 free_base_page = page; 1525 free_base_pfn = pfn; 1526 nr_to_free = 0; 1527 } 1528 nr_to_free++; 1529 1530 /* Where possible, batch up pages for a single free */ 1531 continue; 1532 free_range: 1533 /* Free the current block of pages to allocator */ 1534 nr_pages += nr_to_free; 1535 deferred_free_range(free_base_page, free_base_pfn, 1536 nr_to_free); 1537 free_base_page = NULL; 1538 free_base_pfn = nr_to_free = 0; 1539 } 1540 /* Free the last block of pages to allocator */ 1541 nr_pages += nr_to_free; 1542 deferred_free_range(free_base_page, free_base_pfn, nr_to_free); 1543 1544 first_init_pfn = max(end_pfn, first_init_pfn); 1545 } 1546 1547 /* Sanity check that the next zone really is unpopulated */ 1548 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 1549 1550 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages, 1551 jiffies_to_msecs(jiffies - start)); 1552 1553 pgdat_init_report_one_done(); 1554 return 0; 1555 } 1556 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1557 1558 void __init page_alloc_init_late(void) 1559 { 1560 struct zone *zone; 1561 1562 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1563 int nid; 1564 1565 /* There will be num_node_state(N_MEMORY) threads */ 1566 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 1567 for_each_node_state(nid, N_MEMORY) { 1568 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 1569 } 1570 1571 /* Block until all are initialised */ 1572 wait_for_completion(&pgdat_init_all_done_comp); 1573 1574 /* Reinit limits that are based on free pages after the kernel is up */ 1575 files_maxfiles_init(); 1576 #endif 1577 1578 for_each_populated_zone(zone) 1579 set_zone_contiguous(zone); 1580 } 1581 1582 #ifdef CONFIG_CMA 1583 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 1584 void __init init_cma_reserved_pageblock(struct page *page) 1585 { 1586 unsigned i = pageblock_nr_pages; 1587 struct page *p = page; 1588 1589 do { 1590 __ClearPageReserved(p); 1591 set_page_count(p, 0); 1592 } while (++p, --i); 1593 1594 set_pageblock_migratetype(page, MIGRATE_CMA); 1595 1596 if (pageblock_order >= MAX_ORDER) { 1597 i = pageblock_nr_pages; 1598 p = page; 1599 do { 1600 set_page_refcounted(p); 1601 __free_pages(p, MAX_ORDER - 1); 1602 p += MAX_ORDER_NR_PAGES; 1603 } while (i -= MAX_ORDER_NR_PAGES); 1604 } else { 1605 set_page_refcounted(page); 1606 __free_pages(page, pageblock_order); 1607 } 1608 1609 adjust_managed_page_count(page, pageblock_nr_pages); 1610 } 1611 #endif 1612 1613 /* 1614 * The order of subdivision here is critical for the IO subsystem. 1615 * Please do not alter this order without good reasons and regression 1616 * testing. Specifically, as large blocks of memory are subdivided, 1617 * the order in which smaller blocks are delivered depends on the order 1618 * they're subdivided in this function. This is the primary factor 1619 * influencing the order in which pages are delivered to the IO 1620 * subsystem according to empirical testing, and this is also justified 1621 * by considering the behavior of a buddy system containing a single 1622 * large block of memory acted on by a series of small allocations. 1623 * This behavior is a critical factor in sglist merging's success. 1624 * 1625 * -- nyc 1626 */ 1627 static inline void expand(struct zone *zone, struct page *page, 1628 int low, int high, struct free_area *area, 1629 int migratetype) 1630 { 1631 unsigned long size = 1 << high; 1632 1633 while (high > low) { 1634 area--; 1635 high--; 1636 size >>= 1; 1637 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1638 1639 /* 1640 * Mark as guard pages (or page), that will allow to 1641 * merge back to allocator when buddy will be freed. 1642 * Corresponding page table entries will not be touched, 1643 * pages will stay not present in virtual address space 1644 */ 1645 if (set_page_guard(zone, &page[size], high, migratetype)) 1646 continue; 1647 1648 list_add(&page[size].lru, &area->free_list[migratetype]); 1649 area->nr_free++; 1650 set_page_order(&page[size], high); 1651 } 1652 } 1653 1654 static void check_new_page_bad(struct page *page) 1655 { 1656 const char *bad_reason = NULL; 1657 unsigned long bad_flags = 0; 1658 1659 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1660 bad_reason = "nonzero mapcount"; 1661 if (unlikely(page->mapping != NULL)) 1662 bad_reason = "non-NULL mapping"; 1663 if (unlikely(page_ref_count(page) != 0)) 1664 bad_reason = "nonzero _count"; 1665 if (unlikely(page->flags & __PG_HWPOISON)) { 1666 bad_reason = "HWPoisoned (hardware-corrupted)"; 1667 bad_flags = __PG_HWPOISON; 1668 /* Don't complain about hwpoisoned pages */ 1669 page_mapcount_reset(page); /* remove PageBuddy */ 1670 return; 1671 } 1672 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { 1673 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; 1674 bad_flags = PAGE_FLAGS_CHECK_AT_PREP; 1675 } 1676 #ifdef CONFIG_MEMCG 1677 if (unlikely(page->mem_cgroup)) 1678 bad_reason = "page still charged to cgroup"; 1679 #endif 1680 bad_page(page, bad_reason, bad_flags); 1681 } 1682 1683 /* 1684 * This page is about to be returned from the page allocator 1685 */ 1686 static inline int check_new_page(struct page *page) 1687 { 1688 if (likely(page_expected_state(page, 1689 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 1690 return 0; 1691 1692 check_new_page_bad(page); 1693 return 1; 1694 } 1695 1696 static inline bool free_pages_prezeroed(bool poisoned) 1697 { 1698 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) && 1699 page_poisoning_enabled() && poisoned; 1700 } 1701 1702 #ifdef CONFIG_DEBUG_VM 1703 static bool check_pcp_refill(struct page *page) 1704 { 1705 return false; 1706 } 1707 1708 static bool check_new_pcp(struct page *page) 1709 { 1710 return check_new_page(page); 1711 } 1712 #else 1713 static bool check_pcp_refill(struct page *page) 1714 { 1715 return check_new_page(page); 1716 } 1717 static bool check_new_pcp(struct page *page) 1718 { 1719 return false; 1720 } 1721 #endif /* CONFIG_DEBUG_VM */ 1722 1723 static bool check_new_pages(struct page *page, unsigned int order) 1724 { 1725 int i; 1726 for (i = 0; i < (1 << order); i++) { 1727 struct page *p = page + i; 1728 1729 if (unlikely(check_new_page(p))) 1730 return true; 1731 } 1732 1733 return false; 1734 } 1735 1736 inline void post_alloc_hook(struct page *page, unsigned int order, 1737 gfp_t gfp_flags) 1738 { 1739 set_page_private(page, 0); 1740 set_page_refcounted(page); 1741 1742 arch_alloc_page(page, order); 1743 kernel_map_pages(page, 1 << order, 1); 1744 kernel_poison_pages(page, 1 << order, 1); 1745 kasan_alloc_pages(page, order); 1746 set_page_owner(page, order, gfp_flags); 1747 } 1748 1749 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1750 unsigned int alloc_flags) 1751 { 1752 int i; 1753 bool poisoned = true; 1754 1755 for (i = 0; i < (1 << order); i++) { 1756 struct page *p = page + i; 1757 if (poisoned) 1758 poisoned &= page_is_poisoned(p); 1759 } 1760 1761 post_alloc_hook(page, order, gfp_flags); 1762 1763 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO)) 1764 for (i = 0; i < (1 << order); i++) 1765 clear_highpage(page + i); 1766 1767 if (order && (gfp_flags & __GFP_COMP)) 1768 prep_compound_page(page, order); 1769 1770 /* 1771 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1772 * allocate the page. The expectation is that the caller is taking 1773 * steps that will free more memory. The caller should avoid the page 1774 * being used for !PFMEMALLOC purposes. 1775 */ 1776 if (alloc_flags & ALLOC_NO_WATERMARKS) 1777 set_page_pfmemalloc(page); 1778 else 1779 clear_page_pfmemalloc(page); 1780 } 1781 1782 /* 1783 * Go through the free lists for the given migratetype and remove 1784 * the smallest available page from the freelists 1785 */ 1786 static inline 1787 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1788 int migratetype) 1789 { 1790 unsigned int current_order; 1791 struct free_area *area; 1792 struct page *page; 1793 1794 /* Find a page of the appropriate size in the preferred list */ 1795 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 1796 area = &(zone->free_area[current_order]); 1797 page = list_first_entry_or_null(&area->free_list[migratetype], 1798 struct page, lru); 1799 if (!page) 1800 continue; 1801 list_del(&page->lru); 1802 rmv_page_order(page); 1803 area->nr_free--; 1804 expand(zone, page, order, current_order, area, migratetype); 1805 set_pcppage_migratetype(page, migratetype); 1806 return page; 1807 } 1808 1809 return NULL; 1810 } 1811 1812 1813 /* 1814 * This array describes the order lists are fallen back to when 1815 * the free lists for the desirable migrate type are depleted 1816 */ 1817 static int fallbacks[MIGRATE_TYPES][4] = { 1818 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 1819 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 1820 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 1821 #ifdef CONFIG_CMA 1822 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 1823 #endif 1824 #ifdef CONFIG_MEMORY_ISOLATION 1825 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 1826 #endif 1827 }; 1828 1829 #ifdef CONFIG_CMA 1830 static struct page *__rmqueue_cma_fallback(struct zone *zone, 1831 unsigned int order) 1832 { 1833 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1834 } 1835 #else 1836 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1837 unsigned int order) { return NULL; } 1838 #endif 1839 1840 /* 1841 * Move the free pages in a range to the free lists of the requested type. 1842 * Note that start_page and end_pages are not aligned on a pageblock 1843 * boundary. If alignment is required, use move_freepages_block() 1844 */ 1845 int move_freepages(struct zone *zone, 1846 struct page *start_page, struct page *end_page, 1847 int migratetype) 1848 { 1849 struct page *page; 1850 unsigned int order; 1851 int pages_moved = 0; 1852 1853 #ifndef CONFIG_HOLES_IN_ZONE 1854 /* 1855 * page_zone is not safe to call in this context when 1856 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 1857 * anyway as we check zone boundaries in move_freepages_block(). 1858 * Remove at a later date when no bug reports exist related to 1859 * grouping pages by mobility 1860 */ 1861 VM_BUG_ON(page_zone(start_page) != page_zone(end_page)); 1862 #endif 1863 1864 for (page = start_page; page <= end_page;) { 1865 if (!pfn_valid_within(page_to_pfn(page))) { 1866 page++; 1867 continue; 1868 } 1869 1870 /* Make sure we are not inadvertently changing nodes */ 1871 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1872 1873 if (!PageBuddy(page)) { 1874 page++; 1875 continue; 1876 } 1877 1878 order = page_order(page); 1879 list_move(&page->lru, 1880 &zone->free_area[order].free_list[migratetype]); 1881 page += 1 << order; 1882 pages_moved += 1 << order; 1883 } 1884 1885 return pages_moved; 1886 } 1887 1888 int move_freepages_block(struct zone *zone, struct page *page, 1889 int migratetype) 1890 { 1891 unsigned long start_pfn, end_pfn; 1892 struct page *start_page, *end_page; 1893 1894 start_pfn = page_to_pfn(page); 1895 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 1896 start_page = pfn_to_page(start_pfn); 1897 end_page = start_page + pageblock_nr_pages - 1; 1898 end_pfn = start_pfn + pageblock_nr_pages - 1; 1899 1900 /* Do not cross zone boundaries */ 1901 if (!zone_spans_pfn(zone, start_pfn)) 1902 start_page = page; 1903 if (!zone_spans_pfn(zone, end_pfn)) 1904 return 0; 1905 1906 return move_freepages(zone, start_page, end_page, migratetype); 1907 } 1908 1909 static void change_pageblock_range(struct page *pageblock_page, 1910 int start_order, int migratetype) 1911 { 1912 int nr_pageblocks = 1 << (start_order - pageblock_order); 1913 1914 while (nr_pageblocks--) { 1915 set_pageblock_migratetype(pageblock_page, migratetype); 1916 pageblock_page += pageblock_nr_pages; 1917 } 1918 } 1919 1920 /* 1921 * When we are falling back to another migratetype during allocation, try to 1922 * steal extra free pages from the same pageblocks to satisfy further 1923 * allocations, instead of polluting multiple pageblocks. 1924 * 1925 * If we are stealing a relatively large buddy page, it is likely there will 1926 * be more free pages in the pageblock, so try to steal them all. For 1927 * reclaimable and unmovable allocations, we steal regardless of page size, 1928 * as fragmentation caused by those allocations polluting movable pageblocks 1929 * is worse than movable allocations stealing from unmovable and reclaimable 1930 * pageblocks. 1931 */ 1932 static bool can_steal_fallback(unsigned int order, int start_mt) 1933 { 1934 /* 1935 * Leaving this order check is intended, although there is 1936 * relaxed order check in next check. The reason is that 1937 * we can actually steal whole pageblock if this condition met, 1938 * but, below check doesn't guarantee it and that is just heuristic 1939 * so could be changed anytime. 1940 */ 1941 if (order >= pageblock_order) 1942 return true; 1943 1944 if (order >= pageblock_order / 2 || 1945 start_mt == MIGRATE_RECLAIMABLE || 1946 start_mt == MIGRATE_UNMOVABLE || 1947 page_group_by_mobility_disabled) 1948 return true; 1949 1950 return false; 1951 } 1952 1953 /* 1954 * This function implements actual steal behaviour. If order is large enough, 1955 * we can steal whole pageblock. If not, we first move freepages in this 1956 * pageblock and check whether half of pages are moved or not. If half of 1957 * pages are moved, we can change migratetype of pageblock and permanently 1958 * use it's pages as requested migratetype in the future. 1959 */ 1960 static void steal_suitable_fallback(struct zone *zone, struct page *page, 1961 int start_type) 1962 { 1963 unsigned int current_order = page_order(page); 1964 int pages; 1965 1966 /* Take ownership for orders >= pageblock_order */ 1967 if (current_order >= pageblock_order) { 1968 change_pageblock_range(page, current_order, start_type); 1969 return; 1970 } 1971 1972 pages = move_freepages_block(zone, page, start_type); 1973 1974 /* Claim the whole block if over half of it is free */ 1975 if (pages >= (1 << (pageblock_order-1)) || 1976 page_group_by_mobility_disabled) 1977 set_pageblock_migratetype(page, start_type); 1978 } 1979 1980 /* 1981 * Check whether there is a suitable fallback freepage with requested order. 1982 * If only_stealable is true, this function returns fallback_mt only if 1983 * we can steal other freepages all together. This would help to reduce 1984 * fragmentation due to mixed migratetype pages in one pageblock. 1985 */ 1986 int find_suitable_fallback(struct free_area *area, unsigned int order, 1987 int migratetype, bool only_stealable, bool *can_steal) 1988 { 1989 int i; 1990 int fallback_mt; 1991 1992 if (area->nr_free == 0) 1993 return -1; 1994 1995 *can_steal = false; 1996 for (i = 0;; i++) { 1997 fallback_mt = fallbacks[migratetype][i]; 1998 if (fallback_mt == MIGRATE_TYPES) 1999 break; 2000 2001 if (list_empty(&area->free_list[fallback_mt])) 2002 continue; 2003 2004 if (can_steal_fallback(order, migratetype)) 2005 *can_steal = true; 2006 2007 if (!only_stealable) 2008 return fallback_mt; 2009 2010 if (*can_steal) 2011 return fallback_mt; 2012 } 2013 2014 return -1; 2015 } 2016 2017 /* 2018 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2019 * there are no empty page blocks that contain a page with a suitable order 2020 */ 2021 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2022 unsigned int alloc_order) 2023 { 2024 int mt; 2025 unsigned long max_managed, flags; 2026 2027 /* 2028 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2029 * Check is race-prone but harmless. 2030 */ 2031 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages; 2032 if (zone->nr_reserved_highatomic >= max_managed) 2033 return; 2034 2035 spin_lock_irqsave(&zone->lock, flags); 2036 2037 /* Recheck the nr_reserved_highatomic limit under the lock */ 2038 if (zone->nr_reserved_highatomic >= max_managed) 2039 goto out_unlock; 2040 2041 /* Yoink! */ 2042 mt = get_pageblock_migratetype(page); 2043 if (mt != MIGRATE_HIGHATOMIC && 2044 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) { 2045 zone->nr_reserved_highatomic += pageblock_nr_pages; 2046 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2047 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC); 2048 } 2049 2050 out_unlock: 2051 spin_unlock_irqrestore(&zone->lock, flags); 2052 } 2053 2054 /* 2055 * Used when an allocation is about to fail under memory pressure. This 2056 * potentially hurts the reliability of high-order allocations when under 2057 * intense memory pressure but failed atomic allocations should be easier 2058 * to recover from than an OOM. 2059 * 2060 * If @force is true, try to unreserve a pageblock even though highatomic 2061 * pageblock is exhausted. 2062 */ 2063 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2064 bool force) 2065 { 2066 struct zonelist *zonelist = ac->zonelist; 2067 unsigned long flags; 2068 struct zoneref *z; 2069 struct zone *zone; 2070 struct page *page; 2071 int order; 2072 bool ret; 2073 2074 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx, 2075 ac->nodemask) { 2076 /* 2077 * Preserve at least one pageblock unless memory pressure 2078 * is really high. 2079 */ 2080 if (!force && zone->nr_reserved_highatomic <= 2081 pageblock_nr_pages) 2082 continue; 2083 2084 spin_lock_irqsave(&zone->lock, flags); 2085 for (order = 0; order < MAX_ORDER; order++) { 2086 struct free_area *area = &(zone->free_area[order]); 2087 2088 page = list_first_entry_or_null( 2089 &area->free_list[MIGRATE_HIGHATOMIC], 2090 struct page, lru); 2091 if (!page) 2092 continue; 2093 2094 /* 2095 * In page freeing path, migratetype change is racy so 2096 * we can counter several free pages in a pageblock 2097 * in this loop althoug we changed the pageblock type 2098 * from highatomic to ac->migratetype. So we should 2099 * adjust the count once. 2100 */ 2101 if (get_pageblock_migratetype(page) == 2102 MIGRATE_HIGHATOMIC) { 2103 /* 2104 * It should never happen but changes to 2105 * locking could inadvertently allow a per-cpu 2106 * drain to add pages to MIGRATE_HIGHATOMIC 2107 * while unreserving so be safe and watch for 2108 * underflows. 2109 */ 2110 zone->nr_reserved_highatomic -= min( 2111 pageblock_nr_pages, 2112 zone->nr_reserved_highatomic); 2113 } 2114 2115 /* 2116 * Convert to ac->migratetype and avoid the normal 2117 * pageblock stealing heuristics. Minimally, the caller 2118 * is doing the work and needs the pages. More 2119 * importantly, if the block was always converted to 2120 * MIGRATE_UNMOVABLE or another type then the number 2121 * of pageblocks that cannot be completely freed 2122 * may increase. 2123 */ 2124 set_pageblock_migratetype(page, ac->migratetype); 2125 ret = move_freepages_block(zone, page, ac->migratetype); 2126 if (ret) { 2127 spin_unlock_irqrestore(&zone->lock, flags); 2128 return ret; 2129 } 2130 } 2131 spin_unlock_irqrestore(&zone->lock, flags); 2132 } 2133 2134 return false; 2135 } 2136 2137 /* Remove an element from the buddy allocator from the fallback list */ 2138 static inline struct page * 2139 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype) 2140 { 2141 struct free_area *area; 2142 unsigned int current_order; 2143 struct page *page; 2144 int fallback_mt; 2145 bool can_steal; 2146 2147 /* Find the largest possible block of pages in the other list */ 2148 for (current_order = MAX_ORDER-1; 2149 current_order >= order && current_order <= MAX_ORDER-1; 2150 --current_order) { 2151 area = &(zone->free_area[current_order]); 2152 fallback_mt = find_suitable_fallback(area, current_order, 2153 start_migratetype, false, &can_steal); 2154 if (fallback_mt == -1) 2155 continue; 2156 2157 page = list_first_entry(&area->free_list[fallback_mt], 2158 struct page, lru); 2159 if (can_steal && 2160 get_pageblock_migratetype(page) != MIGRATE_HIGHATOMIC) 2161 steal_suitable_fallback(zone, page, start_migratetype); 2162 2163 /* Remove the page from the freelists */ 2164 area->nr_free--; 2165 list_del(&page->lru); 2166 rmv_page_order(page); 2167 2168 expand(zone, page, order, current_order, area, 2169 start_migratetype); 2170 /* 2171 * The pcppage_migratetype may differ from pageblock's 2172 * migratetype depending on the decisions in 2173 * find_suitable_fallback(). This is OK as long as it does not 2174 * differ for MIGRATE_CMA pageblocks. Those can be used as 2175 * fallback only via special __rmqueue_cma_fallback() function 2176 */ 2177 set_pcppage_migratetype(page, start_migratetype); 2178 2179 trace_mm_page_alloc_extfrag(page, order, current_order, 2180 start_migratetype, fallback_mt); 2181 2182 return page; 2183 } 2184 2185 return NULL; 2186 } 2187 2188 /* 2189 * Do the hard work of removing an element from the buddy allocator. 2190 * Call me with the zone->lock already held. 2191 */ 2192 static struct page *__rmqueue(struct zone *zone, unsigned int order, 2193 int migratetype) 2194 { 2195 struct page *page; 2196 2197 page = __rmqueue_smallest(zone, order, migratetype); 2198 if (unlikely(!page)) { 2199 if (migratetype == MIGRATE_MOVABLE) 2200 page = __rmqueue_cma_fallback(zone, order); 2201 2202 if (!page) 2203 page = __rmqueue_fallback(zone, order, migratetype); 2204 } 2205 2206 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2207 return page; 2208 } 2209 2210 /* 2211 * Obtain a specified number of elements from the buddy allocator, all under 2212 * a single hold of the lock, for efficiency. Add them to the supplied list. 2213 * Returns the number of new pages which were placed at *list. 2214 */ 2215 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2216 unsigned long count, struct list_head *list, 2217 int migratetype, bool cold) 2218 { 2219 int i, alloced = 0; 2220 unsigned long flags; 2221 2222 spin_lock_irqsave(&zone->lock, flags); 2223 for (i = 0; i < count; ++i) { 2224 struct page *page = __rmqueue(zone, order, migratetype); 2225 if (unlikely(page == NULL)) 2226 break; 2227 2228 if (unlikely(check_pcp_refill(page))) 2229 continue; 2230 2231 /* 2232 * Split buddy pages returned by expand() are received here 2233 * in physical page order. The page is added to the callers and 2234 * list and the list head then moves forward. From the callers 2235 * perspective, the linked list is ordered by page number in 2236 * some conditions. This is useful for IO devices that can 2237 * merge IO requests if the physical pages are ordered 2238 * properly. 2239 */ 2240 if (likely(!cold)) 2241 list_add(&page->lru, list); 2242 else 2243 list_add_tail(&page->lru, list); 2244 list = &page->lru; 2245 alloced++; 2246 if (is_migrate_cma(get_pcppage_migratetype(page))) 2247 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2248 -(1 << order)); 2249 } 2250 2251 /* 2252 * i pages were removed from the buddy list even if some leak due 2253 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 2254 * on i. Do not confuse with 'alloced' which is the number of 2255 * pages added to the pcp list. 2256 */ 2257 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2258 spin_unlock_irqrestore(&zone->lock, flags); 2259 return alloced; 2260 } 2261 2262 #ifdef CONFIG_NUMA 2263 /* 2264 * Called from the vmstat counter updater to drain pagesets of this 2265 * currently executing processor on remote nodes after they have 2266 * expired. 2267 * 2268 * Note that this function must be called with the thread pinned to 2269 * a single processor. 2270 */ 2271 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2272 { 2273 unsigned long flags; 2274 int to_drain, batch; 2275 2276 local_irq_save(flags); 2277 batch = READ_ONCE(pcp->batch); 2278 to_drain = min(pcp->count, batch); 2279 if (to_drain > 0) { 2280 free_pcppages_bulk(zone, to_drain, pcp); 2281 pcp->count -= to_drain; 2282 } 2283 local_irq_restore(flags); 2284 } 2285 #endif 2286 2287 /* 2288 * Drain pcplists of the indicated processor and zone. 2289 * 2290 * The processor must either be the current processor and the 2291 * thread pinned to the current processor or a processor that 2292 * is not online. 2293 */ 2294 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2295 { 2296 unsigned long flags; 2297 struct per_cpu_pageset *pset; 2298 struct per_cpu_pages *pcp; 2299 2300 local_irq_save(flags); 2301 pset = per_cpu_ptr(zone->pageset, cpu); 2302 2303 pcp = &pset->pcp; 2304 if (pcp->count) { 2305 free_pcppages_bulk(zone, pcp->count, pcp); 2306 pcp->count = 0; 2307 } 2308 local_irq_restore(flags); 2309 } 2310 2311 /* 2312 * Drain pcplists of all zones on the indicated processor. 2313 * 2314 * The processor must either be the current processor and the 2315 * thread pinned to the current processor or a processor that 2316 * is not online. 2317 */ 2318 static void drain_pages(unsigned int cpu) 2319 { 2320 struct zone *zone; 2321 2322 for_each_populated_zone(zone) { 2323 drain_pages_zone(cpu, zone); 2324 } 2325 } 2326 2327 /* 2328 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2329 * 2330 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 2331 * the single zone's pages. 2332 */ 2333 void drain_local_pages(struct zone *zone) 2334 { 2335 int cpu = smp_processor_id(); 2336 2337 if (zone) 2338 drain_pages_zone(cpu, zone); 2339 else 2340 drain_pages(cpu); 2341 } 2342 2343 static void drain_local_pages_wq(struct work_struct *work) 2344 { 2345 /* 2346 * drain_all_pages doesn't use proper cpu hotplug protection so 2347 * we can race with cpu offline when the WQ can move this from 2348 * a cpu pinned worker to an unbound one. We can operate on a different 2349 * cpu which is allright but we also have to make sure to not move to 2350 * a different one. 2351 */ 2352 preempt_disable(); 2353 drain_local_pages(NULL); 2354 preempt_enable(); 2355 } 2356 2357 /* 2358 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2359 * 2360 * When zone parameter is non-NULL, spill just the single zone's pages. 2361 * 2362 * Note that this can be extremely slow as the draining happens in a workqueue. 2363 */ 2364 void drain_all_pages(struct zone *zone) 2365 { 2366 int cpu; 2367 2368 /* 2369 * Allocate in the BSS so we wont require allocation in 2370 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2371 */ 2372 static cpumask_t cpus_with_pcps; 2373 2374 /* Workqueues cannot recurse */ 2375 if (current->flags & PF_WQ_WORKER) 2376 return; 2377 2378 /* 2379 * Do not drain if one is already in progress unless it's specific to 2380 * a zone. Such callers are primarily CMA and memory hotplug and need 2381 * the drain to be complete when the call returns. 2382 */ 2383 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2384 if (!zone) 2385 return; 2386 mutex_lock(&pcpu_drain_mutex); 2387 } 2388 2389 /* 2390 * We don't care about racing with CPU hotplug event 2391 * as offline notification will cause the notified 2392 * cpu to drain that CPU pcps and on_each_cpu_mask 2393 * disables preemption as part of its processing 2394 */ 2395 for_each_online_cpu(cpu) { 2396 struct per_cpu_pageset *pcp; 2397 struct zone *z; 2398 bool has_pcps = false; 2399 2400 if (zone) { 2401 pcp = per_cpu_ptr(zone->pageset, cpu); 2402 if (pcp->pcp.count) 2403 has_pcps = true; 2404 } else { 2405 for_each_populated_zone(z) { 2406 pcp = per_cpu_ptr(z->pageset, cpu); 2407 if (pcp->pcp.count) { 2408 has_pcps = true; 2409 break; 2410 } 2411 } 2412 } 2413 2414 if (has_pcps) 2415 cpumask_set_cpu(cpu, &cpus_with_pcps); 2416 else 2417 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2418 } 2419 2420 for_each_cpu(cpu, &cpus_with_pcps) { 2421 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu); 2422 INIT_WORK(work, drain_local_pages_wq); 2423 schedule_work_on(cpu, work); 2424 } 2425 for_each_cpu(cpu, &cpus_with_pcps) 2426 flush_work(per_cpu_ptr(&pcpu_drain, cpu)); 2427 2428 mutex_unlock(&pcpu_drain_mutex); 2429 } 2430 2431 #ifdef CONFIG_HIBERNATION 2432 2433 void mark_free_pages(struct zone *zone) 2434 { 2435 unsigned long pfn, max_zone_pfn; 2436 unsigned long flags; 2437 unsigned int order, t; 2438 struct page *page; 2439 2440 if (zone_is_empty(zone)) 2441 return; 2442 2443 spin_lock_irqsave(&zone->lock, flags); 2444 2445 max_zone_pfn = zone_end_pfn(zone); 2446 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 2447 if (pfn_valid(pfn)) { 2448 page = pfn_to_page(pfn); 2449 2450 if (page_zone(page) != zone) 2451 continue; 2452 2453 if (!swsusp_page_is_forbidden(page)) 2454 swsusp_unset_page_free(page); 2455 } 2456 2457 for_each_migratetype_order(order, t) { 2458 list_for_each_entry(page, 2459 &zone->free_area[order].free_list[t], lru) { 2460 unsigned long i; 2461 2462 pfn = page_to_pfn(page); 2463 for (i = 0; i < (1UL << order); i++) 2464 swsusp_set_page_free(pfn_to_page(pfn + i)); 2465 } 2466 } 2467 spin_unlock_irqrestore(&zone->lock, flags); 2468 } 2469 #endif /* CONFIG_PM */ 2470 2471 /* 2472 * Free a 0-order page 2473 * cold == true ? free a cold page : free a hot page 2474 */ 2475 void free_hot_cold_page(struct page *page, bool cold) 2476 { 2477 struct zone *zone = page_zone(page); 2478 struct per_cpu_pages *pcp; 2479 unsigned long pfn = page_to_pfn(page); 2480 int migratetype; 2481 2482 if (in_interrupt()) { 2483 __free_pages_ok(page, 0); 2484 return; 2485 } 2486 2487 if (!free_pcp_prepare(page)) 2488 return; 2489 2490 migratetype = get_pfnblock_migratetype(page, pfn); 2491 set_pcppage_migratetype(page, migratetype); 2492 preempt_disable(); 2493 2494 /* 2495 * We only track unmovable, reclaimable and movable on pcp lists. 2496 * Free ISOLATE pages back to the allocator because they are being 2497 * offlined but treat RESERVE as movable pages so we can get those 2498 * areas back if necessary. Otherwise, we may have to free 2499 * excessively into the page allocator 2500 */ 2501 if (migratetype >= MIGRATE_PCPTYPES) { 2502 if (unlikely(is_migrate_isolate(migratetype))) { 2503 free_one_page(zone, page, pfn, 0, migratetype); 2504 goto out; 2505 } 2506 migratetype = MIGRATE_MOVABLE; 2507 } 2508 2509 __count_vm_event(PGFREE); 2510 pcp = &this_cpu_ptr(zone->pageset)->pcp; 2511 if (!cold) 2512 list_add(&page->lru, &pcp->lists[migratetype]); 2513 else 2514 list_add_tail(&page->lru, &pcp->lists[migratetype]); 2515 pcp->count++; 2516 if (pcp->count >= pcp->high) { 2517 unsigned long batch = READ_ONCE(pcp->batch); 2518 free_pcppages_bulk(zone, batch, pcp); 2519 pcp->count -= batch; 2520 } 2521 2522 out: 2523 preempt_enable(); 2524 } 2525 2526 /* 2527 * Free a list of 0-order pages 2528 */ 2529 void free_hot_cold_page_list(struct list_head *list, bool cold) 2530 { 2531 struct page *page, *next; 2532 2533 list_for_each_entry_safe(page, next, list, lru) { 2534 trace_mm_page_free_batched(page, cold); 2535 free_hot_cold_page(page, cold); 2536 } 2537 } 2538 2539 /* 2540 * split_page takes a non-compound higher-order page, and splits it into 2541 * n (1<<order) sub-pages: page[0..n] 2542 * Each sub-page must be freed individually. 2543 * 2544 * Note: this is probably too low level an operation for use in drivers. 2545 * Please consult with lkml before using this in your driver. 2546 */ 2547 void split_page(struct page *page, unsigned int order) 2548 { 2549 int i; 2550 2551 VM_BUG_ON_PAGE(PageCompound(page), page); 2552 VM_BUG_ON_PAGE(!page_count(page), page); 2553 2554 #ifdef CONFIG_KMEMCHECK 2555 /* 2556 * Split shadow pages too, because free(page[0]) would 2557 * otherwise free the whole shadow. 2558 */ 2559 if (kmemcheck_page_is_tracked(page)) 2560 split_page(virt_to_page(page[0].shadow), order); 2561 #endif 2562 2563 for (i = 1; i < (1 << order); i++) 2564 set_page_refcounted(page + i); 2565 split_page_owner(page, order); 2566 } 2567 EXPORT_SYMBOL_GPL(split_page); 2568 2569 int __isolate_free_page(struct page *page, unsigned int order) 2570 { 2571 unsigned long watermark; 2572 struct zone *zone; 2573 int mt; 2574 2575 BUG_ON(!PageBuddy(page)); 2576 2577 zone = page_zone(page); 2578 mt = get_pageblock_migratetype(page); 2579 2580 if (!is_migrate_isolate(mt)) { 2581 /* 2582 * Obey watermarks as if the page was being allocated. We can 2583 * emulate a high-order watermark check with a raised order-0 2584 * watermark, because we already know our high-order page 2585 * exists. 2586 */ 2587 watermark = min_wmark_pages(zone) + (1UL << order); 2588 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 2589 return 0; 2590 2591 __mod_zone_freepage_state(zone, -(1UL << order), mt); 2592 } 2593 2594 /* Remove page from free list */ 2595 list_del(&page->lru); 2596 zone->free_area[order].nr_free--; 2597 rmv_page_order(page); 2598 2599 /* 2600 * Set the pageblock if the isolated page is at least half of a 2601 * pageblock 2602 */ 2603 if (order >= pageblock_order - 1) { 2604 struct page *endpage = page + (1 << order) - 1; 2605 for (; page < endpage; page += pageblock_nr_pages) { 2606 int mt = get_pageblock_migratetype(page); 2607 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt) 2608 && mt != MIGRATE_HIGHATOMIC) 2609 set_pageblock_migratetype(page, 2610 MIGRATE_MOVABLE); 2611 } 2612 } 2613 2614 2615 return 1UL << order; 2616 } 2617 2618 /* 2619 * Update NUMA hit/miss statistics 2620 * 2621 * Must be called with interrupts disabled. 2622 */ 2623 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z) 2624 { 2625 #ifdef CONFIG_NUMA 2626 enum zone_stat_item local_stat = NUMA_LOCAL; 2627 2628 if (z->node != numa_node_id()) 2629 local_stat = NUMA_OTHER; 2630 2631 if (z->node == preferred_zone->node) 2632 __inc_zone_state(z, NUMA_HIT); 2633 else { 2634 __inc_zone_state(z, NUMA_MISS); 2635 __inc_zone_state(preferred_zone, NUMA_FOREIGN); 2636 } 2637 __inc_zone_state(z, local_stat); 2638 #endif 2639 } 2640 2641 /* Remove page from the per-cpu list, caller must protect the list */ 2642 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype, 2643 bool cold, struct per_cpu_pages *pcp, 2644 struct list_head *list) 2645 { 2646 struct page *page; 2647 2648 VM_BUG_ON(in_interrupt()); 2649 2650 do { 2651 if (list_empty(list)) { 2652 pcp->count += rmqueue_bulk(zone, 0, 2653 pcp->batch, list, 2654 migratetype, cold); 2655 if (unlikely(list_empty(list))) 2656 return NULL; 2657 } 2658 2659 if (cold) 2660 page = list_last_entry(list, struct page, lru); 2661 else 2662 page = list_first_entry(list, struct page, lru); 2663 2664 list_del(&page->lru); 2665 pcp->count--; 2666 } while (check_new_pcp(page)); 2667 2668 return page; 2669 } 2670 2671 /* Lock and remove page from the per-cpu list */ 2672 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 2673 struct zone *zone, unsigned int order, 2674 gfp_t gfp_flags, int migratetype) 2675 { 2676 struct per_cpu_pages *pcp; 2677 struct list_head *list; 2678 bool cold = ((gfp_flags & __GFP_COLD) != 0); 2679 struct page *page; 2680 2681 preempt_disable(); 2682 pcp = &this_cpu_ptr(zone->pageset)->pcp; 2683 list = &pcp->lists[migratetype]; 2684 page = __rmqueue_pcplist(zone, migratetype, cold, pcp, list); 2685 if (page) { 2686 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2687 zone_statistics(preferred_zone, zone); 2688 } 2689 preempt_enable(); 2690 return page; 2691 } 2692 2693 /* 2694 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 2695 */ 2696 static inline 2697 struct page *rmqueue(struct zone *preferred_zone, 2698 struct zone *zone, unsigned int order, 2699 gfp_t gfp_flags, unsigned int alloc_flags, 2700 int migratetype) 2701 { 2702 unsigned long flags; 2703 struct page *page; 2704 2705 if (likely(order == 0) && !in_interrupt()) { 2706 page = rmqueue_pcplist(preferred_zone, zone, order, 2707 gfp_flags, migratetype); 2708 goto out; 2709 } 2710 2711 /* 2712 * We most definitely don't want callers attempting to 2713 * allocate greater than order-1 page units with __GFP_NOFAIL. 2714 */ 2715 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 2716 spin_lock_irqsave(&zone->lock, flags); 2717 2718 do { 2719 page = NULL; 2720 if (alloc_flags & ALLOC_HARDER) { 2721 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2722 if (page) 2723 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2724 } 2725 if (!page) 2726 page = __rmqueue(zone, order, migratetype); 2727 } while (page && check_new_pages(page, order)); 2728 spin_unlock(&zone->lock); 2729 if (!page) 2730 goto failed; 2731 __mod_zone_freepage_state(zone, -(1 << order), 2732 get_pcppage_migratetype(page)); 2733 2734 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2735 zone_statistics(preferred_zone, zone); 2736 local_irq_restore(flags); 2737 2738 out: 2739 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 2740 return page; 2741 2742 failed: 2743 local_irq_restore(flags); 2744 return NULL; 2745 } 2746 2747 #ifdef CONFIG_FAIL_PAGE_ALLOC 2748 2749 static struct { 2750 struct fault_attr attr; 2751 2752 bool ignore_gfp_highmem; 2753 bool ignore_gfp_reclaim; 2754 u32 min_order; 2755 } fail_page_alloc = { 2756 .attr = FAULT_ATTR_INITIALIZER, 2757 .ignore_gfp_reclaim = true, 2758 .ignore_gfp_highmem = true, 2759 .min_order = 1, 2760 }; 2761 2762 static int __init setup_fail_page_alloc(char *str) 2763 { 2764 return setup_fault_attr(&fail_page_alloc.attr, str); 2765 } 2766 __setup("fail_page_alloc=", setup_fail_page_alloc); 2767 2768 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 2769 { 2770 if (order < fail_page_alloc.min_order) 2771 return false; 2772 if (gfp_mask & __GFP_NOFAIL) 2773 return false; 2774 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 2775 return false; 2776 if (fail_page_alloc.ignore_gfp_reclaim && 2777 (gfp_mask & __GFP_DIRECT_RECLAIM)) 2778 return false; 2779 2780 return should_fail(&fail_page_alloc.attr, 1 << order); 2781 } 2782 2783 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 2784 2785 static int __init fail_page_alloc_debugfs(void) 2786 { 2787 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 2788 struct dentry *dir; 2789 2790 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 2791 &fail_page_alloc.attr); 2792 if (IS_ERR(dir)) 2793 return PTR_ERR(dir); 2794 2795 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 2796 &fail_page_alloc.ignore_gfp_reclaim)) 2797 goto fail; 2798 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 2799 &fail_page_alloc.ignore_gfp_highmem)) 2800 goto fail; 2801 if (!debugfs_create_u32("min-order", mode, dir, 2802 &fail_page_alloc.min_order)) 2803 goto fail; 2804 2805 return 0; 2806 fail: 2807 debugfs_remove_recursive(dir); 2808 2809 return -ENOMEM; 2810 } 2811 2812 late_initcall(fail_page_alloc_debugfs); 2813 2814 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 2815 2816 #else /* CONFIG_FAIL_PAGE_ALLOC */ 2817 2818 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 2819 { 2820 return false; 2821 } 2822 2823 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 2824 2825 /* 2826 * Return true if free base pages are above 'mark'. For high-order checks it 2827 * will return true of the order-0 watermark is reached and there is at least 2828 * one free page of a suitable size. Checking now avoids taking the zone lock 2829 * to check in the allocation paths if no pages are free. 2830 */ 2831 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 2832 int classzone_idx, unsigned int alloc_flags, 2833 long free_pages) 2834 { 2835 long min = mark; 2836 int o; 2837 const bool alloc_harder = (alloc_flags & ALLOC_HARDER); 2838 2839 /* free_pages may go negative - that's OK */ 2840 free_pages -= (1 << order) - 1; 2841 2842 if (alloc_flags & ALLOC_HIGH) 2843 min -= min / 2; 2844 2845 /* 2846 * If the caller does not have rights to ALLOC_HARDER then subtract 2847 * the high-atomic reserves. This will over-estimate the size of the 2848 * atomic reserve but it avoids a search. 2849 */ 2850 if (likely(!alloc_harder)) 2851 free_pages -= z->nr_reserved_highatomic; 2852 else 2853 min -= min / 4; 2854 2855 #ifdef CONFIG_CMA 2856 /* If allocation can't use CMA areas don't use free CMA pages */ 2857 if (!(alloc_flags & ALLOC_CMA)) 2858 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES); 2859 #endif 2860 2861 /* 2862 * Check watermarks for an order-0 allocation request. If these 2863 * are not met, then a high-order request also cannot go ahead 2864 * even if a suitable page happened to be free. 2865 */ 2866 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 2867 return false; 2868 2869 /* If this is an order-0 request then the watermark is fine */ 2870 if (!order) 2871 return true; 2872 2873 /* For a high-order request, check at least one suitable page is free */ 2874 for (o = order; o < MAX_ORDER; o++) { 2875 struct free_area *area = &z->free_area[o]; 2876 int mt; 2877 2878 if (!area->nr_free) 2879 continue; 2880 2881 if (alloc_harder) 2882 return true; 2883 2884 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 2885 if (!list_empty(&area->free_list[mt])) 2886 return true; 2887 } 2888 2889 #ifdef CONFIG_CMA 2890 if ((alloc_flags & ALLOC_CMA) && 2891 !list_empty(&area->free_list[MIGRATE_CMA])) { 2892 return true; 2893 } 2894 #endif 2895 } 2896 return false; 2897 } 2898 2899 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 2900 int classzone_idx, unsigned int alloc_flags) 2901 { 2902 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 2903 zone_page_state(z, NR_FREE_PAGES)); 2904 } 2905 2906 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 2907 unsigned long mark, int classzone_idx, unsigned int alloc_flags) 2908 { 2909 long free_pages = zone_page_state(z, NR_FREE_PAGES); 2910 long cma_pages = 0; 2911 2912 #ifdef CONFIG_CMA 2913 /* If allocation can't use CMA areas don't use free CMA pages */ 2914 if (!(alloc_flags & ALLOC_CMA)) 2915 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES); 2916 #endif 2917 2918 /* 2919 * Fast check for order-0 only. If this fails then the reserves 2920 * need to be calculated. There is a corner case where the check 2921 * passes but only the high-order atomic reserve are free. If 2922 * the caller is !atomic then it'll uselessly search the free 2923 * list. That corner case is then slower but it is harmless. 2924 */ 2925 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx]) 2926 return true; 2927 2928 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 2929 free_pages); 2930 } 2931 2932 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 2933 unsigned long mark, int classzone_idx) 2934 { 2935 long free_pages = zone_page_state(z, NR_FREE_PAGES); 2936 2937 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 2938 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 2939 2940 return __zone_watermark_ok(z, order, mark, classzone_idx, 0, 2941 free_pages); 2942 } 2943 2944 #ifdef CONFIG_NUMA 2945 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 2946 { 2947 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 2948 RECLAIM_DISTANCE; 2949 } 2950 #else /* CONFIG_NUMA */ 2951 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 2952 { 2953 return true; 2954 } 2955 #endif /* CONFIG_NUMA */ 2956 2957 /* 2958 * get_page_from_freelist goes through the zonelist trying to allocate 2959 * a page. 2960 */ 2961 static struct page * 2962 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 2963 const struct alloc_context *ac) 2964 { 2965 struct zoneref *z = ac->preferred_zoneref; 2966 struct zone *zone; 2967 struct pglist_data *last_pgdat_dirty_limit = NULL; 2968 2969 /* 2970 * Scan zonelist, looking for a zone with enough free. 2971 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 2972 */ 2973 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 2974 ac->nodemask) { 2975 struct page *page; 2976 unsigned long mark; 2977 2978 if (cpusets_enabled() && 2979 (alloc_flags & ALLOC_CPUSET) && 2980 !__cpuset_zone_allowed(zone, gfp_mask)) 2981 continue; 2982 /* 2983 * When allocating a page cache page for writing, we 2984 * want to get it from a node that is within its dirty 2985 * limit, such that no single node holds more than its 2986 * proportional share of globally allowed dirty pages. 2987 * The dirty limits take into account the node's 2988 * lowmem reserves and high watermark so that kswapd 2989 * should be able to balance it without having to 2990 * write pages from its LRU list. 2991 * 2992 * XXX: For now, allow allocations to potentially 2993 * exceed the per-node dirty limit in the slowpath 2994 * (spread_dirty_pages unset) before going into reclaim, 2995 * which is important when on a NUMA setup the allowed 2996 * nodes are together not big enough to reach the 2997 * global limit. The proper fix for these situations 2998 * will require awareness of nodes in the 2999 * dirty-throttling and the flusher threads. 3000 */ 3001 if (ac->spread_dirty_pages) { 3002 if (last_pgdat_dirty_limit == zone->zone_pgdat) 3003 continue; 3004 3005 if (!node_dirty_ok(zone->zone_pgdat)) { 3006 last_pgdat_dirty_limit = zone->zone_pgdat; 3007 continue; 3008 } 3009 } 3010 3011 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 3012 if (!zone_watermark_fast(zone, order, mark, 3013 ac_classzone_idx(ac), alloc_flags)) { 3014 int ret; 3015 3016 /* Checked here to keep the fast path fast */ 3017 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3018 if (alloc_flags & ALLOC_NO_WATERMARKS) 3019 goto try_this_zone; 3020 3021 if (node_reclaim_mode == 0 || 3022 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3023 continue; 3024 3025 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3026 switch (ret) { 3027 case NODE_RECLAIM_NOSCAN: 3028 /* did not scan */ 3029 continue; 3030 case NODE_RECLAIM_FULL: 3031 /* scanned but unreclaimable */ 3032 continue; 3033 default: 3034 /* did we reclaim enough */ 3035 if (zone_watermark_ok(zone, order, mark, 3036 ac_classzone_idx(ac), alloc_flags)) 3037 goto try_this_zone; 3038 3039 continue; 3040 } 3041 } 3042 3043 try_this_zone: 3044 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3045 gfp_mask, alloc_flags, ac->migratetype); 3046 if (page) { 3047 prep_new_page(page, order, gfp_mask, alloc_flags); 3048 3049 /* 3050 * If this is a high-order atomic allocation then check 3051 * if the pageblock should be reserved for the future 3052 */ 3053 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 3054 reserve_highatomic_pageblock(page, zone, order); 3055 3056 return page; 3057 } 3058 } 3059 3060 return NULL; 3061 } 3062 3063 /* 3064 * Large machines with many possible nodes should not always dump per-node 3065 * meminfo in irq context. 3066 */ 3067 static inline bool should_suppress_show_mem(void) 3068 { 3069 bool ret = false; 3070 3071 #if NODES_SHIFT > 8 3072 ret = in_interrupt(); 3073 #endif 3074 return ret; 3075 } 3076 3077 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3078 { 3079 unsigned int filter = SHOW_MEM_FILTER_NODES; 3080 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1); 3081 3082 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs)) 3083 return; 3084 3085 /* 3086 * This documents exceptions given to allocations in certain 3087 * contexts that are allowed to allocate outside current's set 3088 * of allowed nodes. 3089 */ 3090 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3091 if (test_thread_flag(TIF_MEMDIE) || 3092 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3093 filter &= ~SHOW_MEM_FILTER_NODES; 3094 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3095 filter &= ~SHOW_MEM_FILTER_NODES; 3096 3097 show_mem(filter, nodemask); 3098 } 3099 3100 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3101 { 3102 struct va_format vaf; 3103 va_list args; 3104 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL, 3105 DEFAULT_RATELIMIT_BURST); 3106 3107 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) || 3108 debug_guardpage_minorder() > 0) 3109 return; 3110 3111 pr_warn("%s: ", current->comm); 3112 3113 va_start(args, fmt); 3114 vaf.fmt = fmt; 3115 vaf.va = &args; 3116 pr_cont("%pV", &vaf); 3117 va_end(args); 3118 3119 pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask); 3120 if (nodemask) 3121 pr_cont("%*pbl\n", nodemask_pr_args(nodemask)); 3122 else 3123 pr_cont("(null)\n"); 3124 3125 cpuset_print_current_mems_allowed(); 3126 3127 dump_stack(); 3128 warn_alloc_show_mem(gfp_mask, nodemask); 3129 } 3130 3131 static inline struct page * 3132 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3133 unsigned int alloc_flags, 3134 const struct alloc_context *ac) 3135 { 3136 struct page *page; 3137 3138 page = get_page_from_freelist(gfp_mask, order, 3139 alloc_flags|ALLOC_CPUSET, ac); 3140 /* 3141 * fallback to ignore cpuset restriction if our nodes 3142 * are depleted 3143 */ 3144 if (!page) 3145 page = get_page_from_freelist(gfp_mask, order, 3146 alloc_flags, ac); 3147 3148 return page; 3149 } 3150 3151 static inline struct page * 3152 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3153 const struct alloc_context *ac, unsigned long *did_some_progress) 3154 { 3155 struct oom_control oc = { 3156 .zonelist = ac->zonelist, 3157 .nodemask = ac->nodemask, 3158 .memcg = NULL, 3159 .gfp_mask = gfp_mask, 3160 .order = order, 3161 }; 3162 struct page *page; 3163 3164 *did_some_progress = 0; 3165 3166 /* 3167 * Acquire the oom lock. If that fails, somebody else is 3168 * making progress for us. 3169 */ 3170 if (!mutex_trylock(&oom_lock)) { 3171 *did_some_progress = 1; 3172 schedule_timeout_uninterruptible(1); 3173 return NULL; 3174 } 3175 3176 /* 3177 * Go through the zonelist yet one more time, keep very high watermark 3178 * here, this is only to catch a parallel oom killing, we must fail if 3179 * we're still under heavy pressure. 3180 */ 3181 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order, 3182 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3183 if (page) 3184 goto out; 3185 3186 /* Coredumps can quickly deplete all memory reserves */ 3187 if (current->flags & PF_DUMPCORE) 3188 goto out; 3189 /* The OOM killer will not help higher order allocs */ 3190 if (order > PAGE_ALLOC_COSTLY_ORDER) 3191 goto out; 3192 /* The OOM killer does not needlessly kill tasks for lowmem */ 3193 if (ac->high_zoneidx < ZONE_NORMAL) 3194 goto out; 3195 if (pm_suspended_storage()) 3196 goto out; 3197 /* 3198 * XXX: GFP_NOFS allocations should rather fail than rely on 3199 * other request to make a forward progress. 3200 * We are in an unfortunate situation where out_of_memory cannot 3201 * do much for this context but let's try it to at least get 3202 * access to memory reserved if the current task is killed (see 3203 * out_of_memory). Once filesystems are ready to handle allocation 3204 * failures more gracefully we should just bail out here. 3205 */ 3206 3207 /* The OOM killer may not free memory on a specific node */ 3208 if (gfp_mask & __GFP_THISNODE) 3209 goto out; 3210 3211 /* Exhausted what can be done so it's blamo time */ 3212 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 3213 *did_some_progress = 1; 3214 3215 /* 3216 * Help non-failing allocations by giving them access to memory 3217 * reserves 3218 */ 3219 if (gfp_mask & __GFP_NOFAIL) 3220 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3221 ALLOC_NO_WATERMARKS, ac); 3222 } 3223 out: 3224 mutex_unlock(&oom_lock); 3225 return page; 3226 } 3227 3228 /* 3229 * Maximum number of compaction retries wit a progress before OOM 3230 * killer is consider as the only way to move forward. 3231 */ 3232 #define MAX_COMPACT_RETRIES 16 3233 3234 #ifdef CONFIG_COMPACTION 3235 /* Try memory compaction for high-order allocations before reclaim */ 3236 static struct page * 3237 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3238 unsigned int alloc_flags, const struct alloc_context *ac, 3239 enum compact_priority prio, enum compact_result *compact_result) 3240 { 3241 struct page *page; 3242 3243 if (!order) 3244 return NULL; 3245 3246 current->flags |= PF_MEMALLOC; 3247 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3248 prio); 3249 current->flags &= ~PF_MEMALLOC; 3250 3251 if (*compact_result <= COMPACT_INACTIVE) 3252 return NULL; 3253 3254 /* 3255 * At least in one zone compaction wasn't deferred or skipped, so let's 3256 * count a compaction stall 3257 */ 3258 count_vm_event(COMPACTSTALL); 3259 3260 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3261 3262 if (page) { 3263 struct zone *zone = page_zone(page); 3264 3265 zone->compact_blockskip_flush = false; 3266 compaction_defer_reset(zone, order, true); 3267 count_vm_event(COMPACTSUCCESS); 3268 return page; 3269 } 3270 3271 /* 3272 * It's bad if compaction run occurs and fails. The most likely reason 3273 * is that pages exist, but not enough to satisfy watermarks. 3274 */ 3275 count_vm_event(COMPACTFAIL); 3276 3277 cond_resched(); 3278 3279 return NULL; 3280 } 3281 3282 static inline bool 3283 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3284 enum compact_result compact_result, 3285 enum compact_priority *compact_priority, 3286 int *compaction_retries) 3287 { 3288 int max_retries = MAX_COMPACT_RETRIES; 3289 int min_priority; 3290 bool ret = false; 3291 int retries = *compaction_retries; 3292 enum compact_priority priority = *compact_priority; 3293 3294 if (!order) 3295 return false; 3296 3297 if (compaction_made_progress(compact_result)) 3298 (*compaction_retries)++; 3299 3300 /* 3301 * compaction considers all the zone as desperately out of memory 3302 * so it doesn't really make much sense to retry except when the 3303 * failure could be caused by insufficient priority 3304 */ 3305 if (compaction_failed(compact_result)) 3306 goto check_priority; 3307 3308 /* 3309 * make sure the compaction wasn't deferred or didn't bail out early 3310 * due to locks contention before we declare that we should give up. 3311 * But do not retry if the given zonelist is not suitable for 3312 * compaction. 3313 */ 3314 if (compaction_withdrawn(compact_result)) { 3315 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 3316 goto out; 3317 } 3318 3319 /* 3320 * !costly requests are much more important than __GFP_REPEAT 3321 * costly ones because they are de facto nofail and invoke OOM 3322 * killer to move on while costly can fail and users are ready 3323 * to cope with that. 1/4 retries is rather arbitrary but we 3324 * would need much more detailed feedback from compaction to 3325 * make a better decision. 3326 */ 3327 if (order > PAGE_ALLOC_COSTLY_ORDER) 3328 max_retries /= 4; 3329 if (*compaction_retries <= max_retries) { 3330 ret = true; 3331 goto out; 3332 } 3333 3334 /* 3335 * Make sure there are attempts at the highest priority if we exhausted 3336 * all retries or failed at the lower priorities. 3337 */ 3338 check_priority: 3339 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 3340 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 3341 3342 if (*compact_priority > min_priority) { 3343 (*compact_priority)--; 3344 *compaction_retries = 0; 3345 ret = true; 3346 } 3347 out: 3348 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 3349 return ret; 3350 } 3351 #else 3352 static inline struct page * 3353 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3354 unsigned int alloc_flags, const struct alloc_context *ac, 3355 enum compact_priority prio, enum compact_result *compact_result) 3356 { 3357 *compact_result = COMPACT_SKIPPED; 3358 return NULL; 3359 } 3360 3361 static inline bool 3362 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 3363 enum compact_result compact_result, 3364 enum compact_priority *compact_priority, 3365 int *compaction_retries) 3366 { 3367 struct zone *zone; 3368 struct zoneref *z; 3369 3370 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 3371 return false; 3372 3373 /* 3374 * There are setups with compaction disabled which would prefer to loop 3375 * inside the allocator rather than hit the oom killer prematurely. 3376 * Let's give them a good hope and keep retrying while the order-0 3377 * watermarks are OK. 3378 */ 3379 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3380 ac->nodemask) { 3381 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 3382 ac_classzone_idx(ac), alloc_flags)) 3383 return true; 3384 } 3385 return false; 3386 } 3387 #endif /* CONFIG_COMPACTION */ 3388 3389 /* Perform direct synchronous page reclaim */ 3390 static int 3391 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 3392 const struct alloc_context *ac) 3393 { 3394 struct reclaim_state reclaim_state; 3395 int progress; 3396 3397 cond_resched(); 3398 3399 /* We now go into synchronous reclaim */ 3400 cpuset_memory_pressure_bump(); 3401 current->flags |= PF_MEMALLOC; 3402 lockdep_set_current_reclaim_state(gfp_mask); 3403 reclaim_state.reclaimed_slab = 0; 3404 current->reclaim_state = &reclaim_state; 3405 3406 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 3407 ac->nodemask); 3408 3409 current->reclaim_state = NULL; 3410 lockdep_clear_current_reclaim_state(); 3411 current->flags &= ~PF_MEMALLOC; 3412 3413 cond_resched(); 3414 3415 return progress; 3416 } 3417 3418 /* The really slow allocator path where we enter direct reclaim */ 3419 static inline struct page * 3420 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 3421 unsigned int alloc_flags, const struct alloc_context *ac, 3422 unsigned long *did_some_progress) 3423 { 3424 struct page *page = NULL; 3425 bool drained = false; 3426 3427 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 3428 if (unlikely(!(*did_some_progress))) 3429 return NULL; 3430 3431 retry: 3432 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3433 3434 /* 3435 * If an allocation failed after direct reclaim, it could be because 3436 * pages are pinned on the per-cpu lists or in high alloc reserves. 3437 * Shrink them them and try again 3438 */ 3439 if (!page && !drained) { 3440 unreserve_highatomic_pageblock(ac, false); 3441 drain_all_pages(NULL); 3442 drained = true; 3443 goto retry; 3444 } 3445 3446 return page; 3447 } 3448 3449 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac) 3450 { 3451 struct zoneref *z; 3452 struct zone *zone; 3453 pg_data_t *last_pgdat = NULL; 3454 3455 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 3456 ac->high_zoneidx, ac->nodemask) { 3457 if (last_pgdat != zone->zone_pgdat) 3458 wakeup_kswapd(zone, order, ac->high_zoneidx); 3459 last_pgdat = zone->zone_pgdat; 3460 } 3461 } 3462 3463 static inline unsigned int 3464 gfp_to_alloc_flags(gfp_t gfp_mask) 3465 { 3466 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 3467 3468 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 3469 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 3470 3471 /* 3472 * The caller may dip into page reserves a bit more if the caller 3473 * cannot run direct reclaim, or if the caller has realtime scheduling 3474 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 3475 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 3476 */ 3477 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 3478 3479 if (gfp_mask & __GFP_ATOMIC) { 3480 /* 3481 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 3482 * if it can't schedule. 3483 */ 3484 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3485 alloc_flags |= ALLOC_HARDER; 3486 /* 3487 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 3488 * comment for __cpuset_node_allowed(). 3489 */ 3490 alloc_flags &= ~ALLOC_CPUSET; 3491 } else if (unlikely(rt_task(current)) && !in_interrupt()) 3492 alloc_flags |= ALLOC_HARDER; 3493 3494 #ifdef CONFIG_CMA 3495 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3496 alloc_flags |= ALLOC_CMA; 3497 #endif 3498 return alloc_flags; 3499 } 3500 3501 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 3502 { 3503 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 3504 return false; 3505 3506 if (gfp_mask & __GFP_MEMALLOC) 3507 return true; 3508 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 3509 return true; 3510 if (!in_interrupt() && 3511 ((current->flags & PF_MEMALLOC) || 3512 unlikely(test_thread_flag(TIF_MEMDIE)))) 3513 return true; 3514 3515 return false; 3516 } 3517 3518 /* 3519 * Maximum number of reclaim retries without any progress before OOM killer 3520 * is consider as the only way to move forward. 3521 */ 3522 #define MAX_RECLAIM_RETRIES 16 3523 3524 /* 3525 * Checks whether it makes sense to retry the reclaim to make a forward progress 3526 * for the given allocation request. 3527 * The reclaim feedback represented by did_some_progress (any progress during 3528 * the last reclaim round) and no_progress_loops (number of reclaim rounds without 3529 * any progress in a row) is considered as well as the reclaimable pages on the 3530 * applicable zone list (with a backoff mechanism which is a function of 3531 * no_progress_loops). 3532 * 3533 * Returns true if a retry is viable or false to enter the oom path. 3534 */ 3535 static inline bool 3536 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 3537 struct alloc_context *ac, int alloc_flags, 3538 bool did_some_progress, int *no_progress_loops) 3539 { 3540 struct zone *zone; 3541 struct zoneref *z; 3542 3543 /* 3544 * Costly allocations might have made a progress but this doesn't mean 3545 * their order will become available due to high fragmentation so 3546 * always increment the no progress counter for them 3547 */ 3548 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 3549 *no_progress_loops = 0; 3550 else 3551 (*no_progress_loops)++; 3552 3553 /* 3554 * Make sure we converge to OOM if we cannot make any progress 3555 * several times in the row. 3556 */ 3557 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 3558 /* Before OOM, exhaust highatomic_reserve */ 3559 return unreserve_highatomic_pageblock(ac, true); 3560 } 3561 3562 /* 3563 * Keep reclaiming pages while there is a chance this will lead 3564 * somewhere. If none of the target zones can satisfy our allocation 3565 * request even if all reclaimable pages are considered then we are 3566 * screwed and have to go OOM. 3567 */ 3568 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3569 ac->nodemask) { 3570 unsigned long available; 3571 unsigned long reclaimable; 3572 unsigned long min_wmark = min_wmark_pages(zone); 3573 bool wmark; 3574 3575 available = reclaimable = zone_reclaimable_pages(zone); 3576 available -= DIV_ROUND_UP((*no_progress_loops) * available, 3577 MAX_RECLAIM_RETRIES); 3578 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 3579 3580 /* 3581 * Would the allocation succeed if we reclaimed the whole 3582 * available? 3583 */ 3584 wmark = __zone_watermark_ok(zone, order, min_wmark, 3585 ac_classzone_idx(ac), alloc_flags, available); 3586 trace_reclaim_retry_zone(z, order, reclaimable, 3587 available, min_wmark, *no_progress_loops, wmark); 3588 if (wmark) { 3589 /* 3590 * If we didn't make any progress and have a lot of 3591 * dirty + writeback pages then we should wait for 3592 * an IO to complete to slow down the reclaim and 3593 * prevent from pre mature OOM 3594 */ 3595 if (!did_some_progress) { 3596 unsigned long write_pending; 3597 3598 write_pending = zone_page_state_snapshot(zone, 3599 NR_ZONE_WRITE_PENDING); 3600 3601 if (2 * write_pending > reclaimable) { 3602 congestion_wait(BLK_RW_ASYNC, HZ/10); 3603 return true; 3604 } 3605 } 3606 3607 /* 3608 * Memory allocation/reclaim might be called from a WQ 3609 * context and the current implementation of the WQ 3610 * concurrency control doesn't recognize that 3611 * a particular WQ is congested if the worker thread is 3612 * looping without ever sleeping. Therefore we have to 3613 * do a short sleep here rather than calling 3614 * cond_resched(). 3615 */ 3616 if (current->flags & PF_WQ_WORKER) 3617 schedule_timeout_uninterruptible(1); 3618 else 3619 cond_resched(); 3620 3621 return true; 3622 } 3623 } 3624 3625 return false; 3626 } 3627 3628 static inline struct page * 3629 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 3630 struct alloc_context *ac) 3631 { 3632 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 3633 struct page *page = NULL; 3634 unsigned int alloc_flags; 3635 unsigned long did_some_progress; 3636 enum compact_priority compact_priority; 3637 enum compact_result compact_result; 3638 int compaction_retries; 3639 int no_progress_loops; 3640 unsigned long alloc_start = jiffies; 3641 unsigned int stall_timeout = 10 * HZ; 3642 unsigned int cpuset_mems_cookie; 3643 3644 /* 3645 * In the slowpath, we sanity check order to avoid ever trying to 3646 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 3647 * be using allocators in order of preference for an area that is 3648 * too large. 3649 */ 3650 if (order >= MAX_ORDER) { 3651 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 3652 return NULL; 3653 } 3654 3655 /* 3656 * We also sanity check to catch abuse of atomic reserves being used by 3657 * callers that are not in atomic context. 3658 */ 3659 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 3660 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 3661 gfp_mask &= ~__GFP_ATOMIC; 3662 3663 retry_cpuset: 3664 compaction_retries = 0; 3665 no_progress_loops = 0; 3666 compact_priority = DEF_COMPACT_PRIORITY; 3667 cpuset_mems_cookie = read_mems_allowed_begin(); 3668 3669 /* 3670 * The fast path uses conservative alloc_flags to succeed only until 3671 * kswapd needs to be woken up, and to avoid the cost of setting up 3672 * alloc_flags precisely. So we do that now. 3673 */ 3674 alloc_flags = gfp_to_alloc_flags(gfp_mask); 3675 3676 /* 3677 * We need to recalculate the starting point for the zonelist iterator 3678 * because we might have used different nodemask in the fast path, or 3679 * there was a cpuset modification and we are retrying - otherwise we 3680 * could end up iterating over non-eligible zones endlessly. 3681 */ 3682 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 3683 ac->high_zoneidx, ac->nodemask); 3684 if (!ac->preferred_zoneref->zone) 3685 goto nopage; 3686 3687 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 3688 wake_all_kswapds(order, ac); 3689 3690 /* 3691 * The adjusted alloc_flags might result in immediate success, so try 3692 * that first 3693 */ 3694 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3695 if (page) 3696 goto got_pg; 3697 3698 /* 3699 * For costly allocations, try direct compaction first, as it's likely 3700 * that we have enough base pages and don't need to reclaim. Don't try 3701 * that for allocations that are allowed to ignore watermarks, as the 3702 * ALLOC_NO_WATERMARKS attempt didn't yet happen. 3703 */ 3704 if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER && 3705 !gfp_pfmemalloc_allowed(gfp_mask)) { 3706 page = __alloc_pages_direct_compact(gfp_mask, order, 3707 alloc_flags, ac, 3708 INIT_COMPACT_PRIORITY, 3709 &compact_result); 3710 if (page) 3711 goto got_pg; 3712 3713 /* 3714 * Checks for costly allocations with __GFP_NORETRY, which 3715 * includes THP page fault allocations 3716 */ 3717 if (gfp_mask & __GFP_NORETRY) { 3718 /* 3719 * If compaction is deferred for high-order allocations, 3720 * it is because sync compaction recently failed. If 3721 * this is the case and the caller requested a THP 3722 * allocation, we do not want to heavily disrupt the 3723 * system, so we fail the allocation instead of entering 3724 * direct reclaim. 3725 */ 3726 if (compact_result == COMPACT_DEFERRED) 3727 goto nopage; 3728 3729 /* 3730 * Looks like reclaim/compaction is worth trying, but 3731 * sync compaction could be very expensive, so keep 3732 * using async compaction. 3733 */ 3734 compact_priority = INIT_COMPACT_PRIORITY; 3735 } 3736 } 3737 3738 retry: 3739 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 3740 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 3741 wake_all_kswapds(order, ac); 3742 3743 if (gfp_pfmemalloc_allowed(gfp_mask)) 3744 alloc_flags = ALLOC_NO_WATERMARKS; 3745 3746 /* 3747 * Reset the zonelist iterators if memory policies can be ignored. 3748 * These allocations are high priority and system rather than user 3749 * orientated. 3750 */ 3751 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) { 3752 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask); 3753 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 3754 ac->high_zoneidx, ac->nodemask); 3755 } 3756 3757 /* Attempt with potentially adjusted zonelist and alloc_flags */ 3758 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3759 if (page) 3760 goto got_pg; 3761 3762 /* Caller is not willing to reclaim, we can't balance anything */ 3763 if (!can_direct_reclaim) 3764 goto nopage; 3765 3766 /* Make sure we know about allocations which stall for too long */ 3767 if (time_after(jiffies, alloc_start + stall_timeout)) { 3768 warn_alloc(gfp_mask, ac->nodemask, 3769 "page allocation stalls for %ums, order:%u", 3770 jiffies_to_msecs(jiffies-alloc_start), order); 3771 stall_timeout += 10 * HZ; 3772 } 3773 3774 /* Avoid recursion of direct reclaim */ 3775 if (current->flags & PF_MEMALLOC) 3776 goto nopage; 3777 3778 /* Try direct reclaim and then allocating */ 3779 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 3780 &did_some_progress); 3781 if (page) 3782 goto got_pg; 3783 3784 /* Try direct compaction and then allocating */ 3785 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 3786 compact_priority, &compact_result); 3787 if (page) 3788 goto got_pg; 3789 3790 /* Do not loop if specifically requested */ 3791 if (gfp_mask & __GFP_NORETRY) 3792 goto nopage; 3793 3794 /* 3795 * Do not retry costly high order allocations unless they are 3796 * __GFP_REPEAT 3797 */ 3798 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT)) 3799 goto nopage; 3800 3801 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 3802 did_some_progress > 0, &no_progress_loops)) 3803 goto retry; 3804 3805 /* 3806 * It doesn't make any sense to retry for the compaction if the order-0 3807 * reclaim is not able to make any progress because the current 3808 * implementation of the compaction depends on the sufficient amount 3809 * of free memory (see __compaction_suitable) 3810 */ 3811 if (did_some_progress > 0 && 3812 should_compact_retry(ac, order, alloc_flags, 3813 compact_result, &compact_priority, 3814 &compaction_retries)) 3815 goto retry; 3816 3817 /* 3818 * It's possible we raced with cpuset update so the OOM would be 3819 * premature (see below the nopage: label for full explanation). 3820 */ 3821 if (read_mems_allowed_retry(cpuset_mems_cookie)) 3822 goto retry_cpuset; 3823 3824 /* Reclaim has failed us, start killing things */ 3825 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 3826 if (page) 3827 goto got_pg; 3828 3829 /* Avoid allocations with no watermarks from looping endlessly */ 3830 if (test_thread_flag(TIF_MEMDIE)) 3831 goto nopage; 3832 3833 /* Retry as long as the OOM killer is making progress */ 3834 if (did_some_progress) { 3835 no_progress_loops = 0; 3836 goto retry; 3837 } 3838 3839 nopage: 3840 /* 3841 * When updating a task's mems_allowed or mempolicy nodemask, it is 3842 * possible to race with parallel threads in such a way that our 3843 * allocation can fail while the mask is being updated. If we are about 3844 * to fail, check if the cpuset changed during allocation and if so, 3845 * retry. 3846 */ 3847 if (read_mems_allowed_retry(cpuset_mems_cookie)) 3848 goto retry_cpuset; 3849 3850 /* 3851 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 3852 * we always retry 3853 */ 3854 if (gfp_mask & __GFP_NOFAIL) { 3855 /* 3856 * All existing users of the __GFP_NOFAIL are blockable, so warn 3857 * of any new users that actually require GFP_NOWAIT 3858 */ 3859 if (WARN_ON_ONCE(!can_direct_reclaim)) 3860 goto fail; 3861 3862 /* 3863 * PF_MEMALLOC request from this context is rather bizarre 3864 * because we cannot reclaim anything and only can loop waiting 3865 * for somebody to do a work for us 3866 */ 3867 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 3868 3869 /* 3870 * non failing costly orders are a hard requirement which we 3871 * are not prepared for much so let's warn about these users 3872 * so that we can identify them and convert them to something 3873 * else. 3874 */ 3875 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); 3876 3877 /* 3878 * Help non-failing allocations by giving them access to memory 3879 * reserves but do not use ALLOC_NO_WATERMARKS because this 3880 * could deplete whole memory reserves which would just make 3881 * the situation worse 3882 */ 3883 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 3884 if (page) 3885 goto got_pg; 3886 3887 cond_resched(); 3888 goto retry; 3889 } 3890 fail: 3891 warn_alloc(gfp_mask, ac->nodemask, 3892 "page allocation failure: order:%u", order); 3893 got_pg: 3894 return page; 3895 } 3896 3897 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 3898 struct zonelist *zonelist, nodemask_t *nodemask, 3899 struct alloc_context *ac, gfp_t *alloc_mask, 3900 unsigned int *alloc_flags) 3901 { 3902 ac->high_zoneidx = gfp_zone(gfp_mask); 3903 ac->zonelist = zonelist; 3904 ac->nodemask = nodemask; 3905 ac->migratetype = gfpflags_to_migratetype(gfp_mask); 3906 3907 if (cpusets_enabled()) { 3908 *alloc_mask |= __GFP_HARDWALL; 3909 if (!ac->nodemask) 3910 ac->nodemask = &cpuset_current_mems_allowed; 3911 else 3912 *alloc_flags |= ALLOC_CPUSET; 3913 } 3914 3915 lockdep_trace_alloc(gfp_mask); 3916 3917 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 3918 3919 if (should_fail_alloc_page(gfp_mask, order)) 3920 return false; 3921 3922 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE) 3923 *alloc_flags |= ALLOC_CMA; 3924 3925 return true; 3926 } 3927 3928 /* Determine whether to spread dirty pages and what the first usable zone */ 3929 static inline void finalise_ac(gfp_t gfp_mask, 3930 unsigned int order, struct alloc_context *ac) 3931 { 3932 /* Dirty zone balancing only done in the fast path */ 3933 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 3934 3935 /* 3936 * The preferred zone is used for statistics but crucially it is 3937 * also used as the starting point for the zonelist iterator. It 3938 * may get reset for allocations that ignore memory policies. 3939 */ 3940 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 3941 ac->high_zoneidx, ac->nodemask); 3942 } 3943 3944 /* 3945 * This is the 'heart' of the zoned buddy allocator. 3946 */ 3947 struct page * 3948 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 3949 struct zonelist *zonelist, nodemask_t *nodemask) 3950 { 3951 struct page *page; 3952 unsigned int alloc_flags = ALLOC_WMARK_LOW; 3953 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */ 3954 struct alloc_context ac = { }; 3955 3956 gfp_mask &= gfp_allowed_mask; 3957 if (!prepare_alloc_pages(gfp_mask, order, zonelist, nodemask, &ac, &alloc_mask, &alloc_flags)) 3958 return NULL; 3959 3960 finalise_ac(gfp_mask, order, &ac); 3961 3962 /* First allocation attempt */ 3963 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); 3964 if (likely(page)) 3965 goto out; 3966 3967 /* 3968 * Runtime PM, block IO and its error handling path can deadlock 3969 * because I/O on the device might not complete. 3970 */ 3971 alloc_mask = memalloc_noio_flags(gfp_mask); 3972 ac.spread_dirty_pages = false; 3973 3974 /* 3975 * Restore the original nodemask if it was potentially replaced with 3976 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 3977 */ 3978 if (unlikely(ac.nodemask != nodemask)) 3979 ac.nodemask = nodemask; 3980 3981 page = __alloc_pages_slowpath(alloc_mask, order, &ac); 3982 3983 out: 3984 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page && 3985 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) { 3986 __free_pages(page, order); 3987 page = NULL; 3988 } 3989 3990 if (kmemcheck_enabled && page) 3991 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 3992 3993 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); 3994 3995 return page; 3996 } 3997 EXPORT_SYMBOL(__alloc_pages_nodemask); 3998 3999 /* 4000 * Common helper functions. 4001 */ 4002 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 4003 { 4004 struct page *page; 4005 4006 /* 4007 * __get_free_pages() returns a 32-bit address, which cannot represent 4008 * a highmem page 4009 */ 4010 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 4011 4012 page = alloc_pages(gfp_mask, order); 4013 if (!page) 4014 return 0; 4015 return (unsigned long) page_address(page); 4016 } 4017 EXPORT_SYMBOL(__get_free_pages); 4018 4019 unsigned long get_zeroed_page(gfp_t gfp_mask) 4020 { 4021 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 4022 } 4023 EXPORT_SYMBOL(get_zeroed_page); 4024 4025 void __free_pages(struct page *page, unsigned int order) 4026 { 4027 if (put_page_testzero(page)) { 4028 if (order == 0) 4029 free_hot_cold_page(page, false); 4030 else 4031 __free_pages_ok(page, order); 4032 } 4033 } 4034 4035 EXPORT_SYMBOL(__free_pages); 4036 4037 void free_pages(unsigned long addr, unsigned int order) 4038 { 4039 if (addr != 0) { 4040 VM_BUG_ON(!virt_addr_valid((void *)addr)); 4041 __free_pages(virt_to_page((void *)addr), order); 4042 } 4043 } 4044 4045 EXPORT_SYMBOL(free_pages); 4046 4047 /* 4048 * Page Fragment: 4049 * An arbitrary-length arbitrary-offset area of memory which resides 4050 * within a 0 or higher order page. Multiple fragments within that page 4051 * are individually refcounted, in the page's reference counter. 4052 * 4053 * The page_frag functions below provide a simple allocation framework for 4054 * page fragments. This is used by the network stack and network device 4055 * drivers to provide a backing region of memory for use as either an 4056 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 4057 */ 4058 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 4059 gfp_t gfp_mask) 4060 { 4061 struct page *page = NULL; 4062 gfp_t gfp = gfp_mask; 4063 4064 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4065 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 4066 __GFP_NOMEMALLOC; 4067 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 4068 PAGE_FRAG_CACHE_MAX_ORDER); 4069 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 4070 #endif 4071 if (unlikely(!page)) 4072 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 4073 4074 nc->va = page ? page_address(page) : NULL; 4075 4076 return page; 4077 } 4078 4079 void __page_frag_cache_drain(struct page *page, unsigned int count) 4080 { 4081 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 4082 4083 if (page_ref_sub_and_test(page, count)) { 4084 unsigned int order = compound_order(page); 4085 4086 if (order == 0) 4087 free_hot_cold_page(page, false); 4088 else 4089 __free_pages_ok(page, order); 4090 } 4091 } 4092 EXPORT_SYMBOL(__page_frag_cache_drain); 4093 4094 void *page_frag_alloc(struct page_frag_cache *nc, 4095 unsigned int fragsz, gfp_t gfp_mask) 4096 { 4097 unsigned int size = PAGE_SIZE; 4098 struct page *page; 4099 int offset; 4100 4101 if (unlikely(!nc->va)) { 4102 refill: 4103 page = __page_frag_cache_refill(nc, gfp_mask); 4104 if (!page) 4105 return NULL; 4106 4107 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4108 /* if size can vary use size else just use PAGE_SIZE */ 4109 size = nc->size; 4110 #endif 4111 /* Even if we own the page, we do not use atomic_set(). 4112 * This would break get_page_unless_zero() users. 4113 */ 4114 page_ref_add(page, size - 1); 4115 4116 /* reset page count bias and offset to start of new frag */ 4117 nc->pfmemalloc = page_is_pfmemalloc(page); 4118 nc->pagecnt_bias = size; 4119 nc->offset = size; 4120 } 4121 4122 offset = nc->offset - fragsz; 4123 if (unlikely(offset < 0)) { 4124 page = virt_to_page(nc->va); 4125 4126 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 4127 goto refill; 4128 4129 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4130 /* if size can vary use size else just use PAGE_SIZE */ 4131 size = nc->size; 4132 #endif 4133 /* OK, page count is 0, we can safely set it */ 4134 set_page_count(page, size); 4135 4136 /* reset page count bias and offset to start of new frag */ 4137 nc->pagecnt_bias = size; 4138 offset = size - fragsz; 4139 } 4140 4141 nc->pagecnt_bias--; 4142 nc->offset = offset; 4143 4144 return nc->va + offset; 4145 } 4146 EXPORT_SYMBOL(page_frag_alloc); 4147 4148 /* 4149 * Frees a page fragment allocated out of either a compound or order 0 page. 4150 */ 4151 void page_frag_free(void *addr) 4152 { 4153 struct page *page = virt_to_head_page(addr); 4154 4155 if (unlikely(put_page_testzero(page))) 4156 __free_pages_ok(page, compound_order(page)); 4157 } 4158 EXPORT_SYMBOL(page_frag_free); 4159 4160 static void *make_alloc_exact(unsigned long addr, unsigned int order, 4161 size_t size) 4162 { 4163 if (addr) { 4164 unsigned long alloc_end = addr + (PAGE_SIZE << order); 4165 unsigned long used = addr + PAGE_ALIGN(size); 4166 4167 split_page(virt_to_page((void *)addr), order); 4168 while (used < alloc_end) { 4169 free_page(used); 4170 used += PAGE_SIZE; 4171 } 4172 } 4173 return (void *)addr; 4174 } 4175 4176 /** 4177 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 4178 * @size: the number of bytes to allocate 4179 * @gfp_mask: GFP flags for the allocation 4180 * 4181 * This function is similar to alloc_pages(), except that it allocates the 4182 * minimum number of pages to satisfy the request. alloc_pages() can only 4183 * allocate memory in power-of-two pages. 4184 * 4185 * This function is also limited by MAX_ORDER. 4186 * 4187 * Memory allocated by this function must be released by free_pages_exact(). 4188 */ 4189 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 4190 { 4191 unsigned int order = get_order(size); 4192 unsigned long addr; 4193 4194 addr = __get_free_pages(gfp_mask, order); 4195 return make_alloc_exact(addr, order, size); 4196 } 4197 EXPORT_SYMBOL(alloc_pages_exact); 4198 4199 /** 4200 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 4201 * pages on a node. 4202 * @nid: the preferred node ID where memory should be allocated 4203 * @size: the number of bytes to allocate 4204 * @gfp_mask: GFP flags for the allocation 4205 * 4206 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 4207 * back. 4208 */ 4209 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 4210 { 4211 unsigned int order = get_order(size); 4212 struct page *p = alloc_pages_node(nid, gfp_mask, order); 4213 if (!p) 4214 return NULL; 4215 return make_alloc_exact((unsigned long)page_address(p), order, size); 4216 } 4217 4218 /** 4219 * free_pages_exact - release memory allocated via alloc_pages_exact() 4220 * @virt: the value returned by alloc_pages_exact. 4221 * @size: size of allocation, same value as passed to alloc_pages_exact(). 4222 * 4223 * Release the memory allocated by a previous call to alloc_pages_exact. 4224 */ 4225 void free_pages_exact(void *virt, size_t size) 4226 { 4227 unsigned long addr = (unsigned long)virt; 4228 unsigned long end = addr + PAGE_ALIGN(size); 4229 4230 while (addr < end) { 4231 free_page(addr); 4232 addr += PAGE_SIZE; 4233 } 4234 } 4235 EXPORT_SYMBOL(free_pages_exact); 4236 4237 /** 4238 * nr_free_zone_pages - count number of pages beyond high watermark 4239 * @offset: The zone index of the highest zone 4240 * 4241 * nr_free_zone_pages() counts the number of counts pages which are beyond the 4242 * high watermark within all zones at or below a given zone index. For each 4243 * zone, the number of pages is calculated as: 4244 * managed_pages - high_pages 4245 */ 4246 static unsigned long nr_free_zone_pages(int offset) 4247 { 4248 struct zoneref *z; 4249 struct zone *zone; 4250 4251 /* Just pick one node, since fallback list is circular */ 4252 unsigned long sum = 0; 4253 4254 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 4255 4256 for_each_zone_zonelist(zone, z, zonelist, offset) { 4257 unsigned long size = zone->managed_pages; 4258 unsigned long high = high_wmark_pages(zone); 4259 if (size > high) 4260 sum += size - high; 4261 } 4262 4263 return sum; 4264 } 4265 4266 /** 4267 * nr_free_buffer_pages - count number of pages beyond high watermark 4268 * 4269 * nr_free_buffer_pages() counts the number of pages which are beyond the high 4270 * watermark within ZONE_DMA and ZONE_NORMAL. 4271 */ 4272 unsigned long nr_free_buffer_pages(void) 4273 { 4274 return nr_free_zone_pages(gfp_zone(GFP_USER)); 4275 } 4276 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 4277 4278 /** 4279 * nr_free_pagecache_pages - count number of pages beyond high watermark 4280 * 4281 * nr_free_pagecache_pages() counts the number of pages which are beyond the 4282 * high watermark within all zones. 4283 */ 4284 unsigned long nr_free_pagecache_pages(void) 4285 { 4286 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 4287 } 4288 4289 static inline void show_node(struct zone *zone) 4290 { 4291 if (IS_ENABLED(CONFIG_NUMA)) 4292 printk("Node %d ", zone_to_nid(zone)); 4293 } 4294 4295 long si_mem_available(void) 4296 { 4297 long available; 4298 unsigned long pagecache; 4299 unsigned long wmark_low = 0; 4300 unsigned long pages[NR_LRU_LISTS]; 4301 struct zone *zone; 4302 int lru; 4303 4304 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 4305 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 4306 4307 for_each_zone(zone) 4308 wmark_low += zone->watermark[WMARK_LOW]; 4309 4310 /* 4311 * Estimate the amount of memory available for userspace allocations, 4312 * without causing swapping. 4313 */ 4314 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages; 4315 4316 /* 4317 * Not all the page cache can be freed, otherwise the system will 4318 * start swapping. Assume at least half of the page cache, or the 4319 * low watermark worth of cache, needs to stay. 4320 */ 4321 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 4322 pagecache -= min(pagecache / 2, wmark_low); 4323 available += pagecache; 4324 4325 /* 4326 * Part of the reclaimable slab consists of items that are in use, 4327 * and cannot be freed. Cap this estimate at the low watermark. 4328 */ 4329 available += global_page_state(NR_SLAB_RECLAIMABLE) - 4330 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low); 4331 4332 if (available < 0) 4333 available = 0; 4334 return available; 4335 } 4336 EXPORT_SYMBOL_GPL(si_mem_available); 4337 4338 void si_meminfo(struct sysinfo *val) 4339 { 4340 val->totalram = totalram_pages; 4341 val->sharedram = global_node_page_state(NR_SHMEM); 4342 val->freeram = global_page_state(NR_FREE_PAGES); 4343 val->bufferram = nr_blockdev_pages(); 4344 val->totalhigh = totalhigh_pages; 4345 val->freehigh = nr_free_highpages(); 4346 val->mem_unit = PAGE_SIZE; 4347 } 4348 4349 EXPORT_SYMBOL(si_meminfo); 4350 4351 #ifdef CONFIG_NUMA 4352 void si_meminfo_node(struct sysinfo *val, int nid) 4353 { 4354 int zone_type; /* needs to be signed */ 4355 unsigned long managed_pages = 0; 4356 unsigned long managed_highpages = 0; 4357 unsigned long free_highpages = 0; 4358 pg_data_t *pgdat = NODE_DATA(nid); 4359 4360 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 4361 managed_pages += pgdat->node_zones[zone_type].managed_pages; 4362 val->totalram = managed_pages; 4363 val->sharedram = node_page_state(pgdat, NR_SHMEM); 4364 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 4365 #ifdef CONFIG_HIGHMEM 4366 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 4367 struct zone *zone = &pgdat->node_zones[zone_type]; 4368 4369 if (is_highmem(zone)) { 4370 managed_highpages += zone->managed_pages; 4371 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 4372 } 4373 } 4374 val->totalhigh = managed_highpages; 4375 val->freehigh = free_highpages; 4376 #else 4377 val->totalhigh = managed_highpages; 4378 val->freehigh = free_highpages; 4379 #endif 4380 val->mem_unit = PAGE_SIZE; 4381 } 4382 #endif 4383 4384 /* 4385 * Determine whether the node should be displayed or not, depending on whether 4386 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 4387 */ 4388 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 4389 { 4390 if (!(flags & SHOW_MEM_FILTER_NODES)) 4391 return false; 4392 4393 /* 4394 * no node mask - aka implicit memory numa policy. Do not bother with 4395 * the synchronization - read_mems_allowed_begin - because we do not 4396 * have to be precise here. 4397 */ 4398 if (!nodemask) 4399 nodemask = &cpuset_current_mems_allowed; 4400 4401 return !node_isset(nid, *nodemask); 4402 } 4403 4404 #define K(x) ((x) << (PAGE_SHIFT-10)) 4405 4406 static void show_migration_types(unsigned char type) 4407 { 4408 static const char types[MIGRATE_TYPES] = { 4409 [MIGRATE_UNMOVABLE] = 'U', 4410 [MIGRATE_MOVABLE] = 'M', 4411 [MIGRATE_RECLAIMABLE] = 'E', 4412 [MIGRATE_HIGHATOMIC] = 'H', 4413 #ifdef CONFIG_CMA 4414 [MIGRATE_CMA] = 'C', 4415 #endif 4416 #ifdef CONFIG_MEMORY_ISOLATION 4417 [MIGRATE_ISOLATE] = 'I', 4418 #endif 4419 }; 4420 char tmp[MIGRATE_TYPES + 1]; 4421 char *p = tmp; 4422 int i; 4423 4424 for (i = 0; i < MIGRATE_TYPES; i++) { 4425 if (type & (1 << i)) 4426 *p++ = types[i]; 4427 } 4428 4429 *p = '\0'; 4430 printk(KERN_CONT "(%s) ", tmp); 4431 } 4432 4433 /* 4434 * Show free area list (used inside shift_scroll-lock stuff) 4435 * We also calculate the percentage fragmentation. We do this by counting the 4436 * memory on each free list with the exception of the first item on the list. 4437 * 4438 * Bits in @filter: 4439 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 4440 * cpuset. 4441 */ 4442 void show_free_areas(unsigned int filter, nodemask_t *nodemask) 4443 { 4444 unsigned long free_pcp = 0; 4445 int cpu; 4446 struct zone *zone; 4447 pg_data_t *pgdat; 4448 4449 for_each_populated_zone(zone) { 4450 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 4451 continue; 4452 4453 for_each_online_cpu(cpu) 4454 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 4455 } 4456 4457 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 4458 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 4459 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n" 4460 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 4461 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 4462 " free:%lu free_pcp:%lu free_cma:%lu\n", 4463 global_node_page_state(NR_ACTIVE_ANON), 4464 global_node_page_state(NR_INACTIVE_ANON), 4465 global_node_page_state(NR_ISOLATED_ANON), 4466 global_node_page_state(NR_ACTIVE_FILE), 4467 global_node_page_state(NR_INACTIVE_FILE), 4468 global_node_page_state(NR_ISOLATED_FILE), 4469 global_node_page_state(NR_UNEVICTABLE), 4470 global_node_page_state(NR_FILE_DIRTY), 4471 global_node_page_state(NR_WRITEBACK), 4472 global_node_page_state(NR_UNSTABLE_NFS), 4473 global_page_state(NR_SLAB_RECLAIMABLE), 4474 global_page_state(NR_SLAB_UNRECLAIMABLE), 4475 global_node_page_state(NR_FILE_MAPPED), 4476 global_node_page_state(NR_SHMEM), 4477 global_page_state(NR_PAGETABLE), 4478 global_page_state(NR_BOUNCE), 4479 global_page_state(NR_FREE_PAGES), 4480 free_pcp, 4481 global_page_state(NR_FREE_CMA_PAGES)); 4482 4483 for_each_online_pgdat(pgdat) { 4484 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 4485 continue; 4486 4487 printk("Node %d" 4488 " active_anon:%lukB" 4489 " inactive_anon:%lukB" 4490 " active_file:%lukB" 4491 " inactive_file:%lukB" 4492 " unevictable:%lukB" 4493 " isolated(anon):%lukB" 4494 " isolated(file):%lukB" 4495 " mapped:%lukB" 4496 " dirty:%lukB" 4497 " writeback:%lukB" 4498 " shmem:%lukB" 4499 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4500 " shmem_thp: %lukB" 4501 " shmem_pmdmapped: %lukB" 4502 " anon_thp: %lukB" 4503 #endif 4504 " writeback_tmp:%lukB" 4505 " unstable:%lukB" 4506 " pages_scanned:%lu" 4507 " all_unreclaimable? %s" 4508 "\n", 4509 pgdat->node_id, 4510 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 4511 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 4512 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 4513 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 4514 K(node_page_state(pgdat, NR_UNEVICTABLE)), 4515 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 4516 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 4517 K(node_page_state(pgdat, NR_FILE_MAPPED)), 4518 K(node_page_state(pgdat, NR_FILE_DIRTY)), 4519 K(node_page_state(pgdat, NR_WRITEBACK)), 4520 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4521 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR), 4522 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED) 4523 * HPAGE_PMD_NR), 4524 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR), 4525 #endif 4526 K(node_page_state(pgdat, NR_SHMEM)), 4527 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 4528 K(node_page_state(pgdat, NR_UNSTABLE_NFS)), 4529 node_page_state(pgdat, NR_PAGES_SCANNED), 4530 !pgdat_reclaimable(pgdat) ? "yes" : "no"); 4531 } 4532 4533 for_each_populated_zone(zone) { 4534 int i; 4535 4536 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 4537 continue; 4538 4539 free_pcp = 0; 4540 for_each_online_cpu(cpu) 4541 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 4542 4543 show_node(zone); 4544 printk(KERN_CONT 4545 "%s" 4546 " free:%lukB" 4547 " min:%lukB" 4548 " low:%lukB" 4549 " high:%lukB" 4550 " active_anon:%lukB" 4551 " inactive_anon:%lukB" 4552 " active_file:%lukB" 4553 " inactive_file:%lukB" 4554 " unevictable:%lukB" 4555 " writepending:%lukB" 4556 " present:%lukB" 4557 " managed:%lukB" 4558 " mlocked:%lukB" 4559 " slab_reclaimable:%lukB" 4560 " slab_unreclaimable:%lukB" 4561 " kernel_stack:%lukB" 4562 " pagetables:%lukB" 4563 " bounce:%lukB" 4564 " free_pcp:%lukB" 4565 " local_pcp:%ukB" 4566 " free_cma:%lukB" 4567 "\n", 4568 zone->name, 4569 K(zone_page_state(zone, NR_FREE_PAGES)), 4570 K(min_wmark_pages(zone)), 4571 K(low_wmark_pages(zone)), 4572 K(high_wmark_pages(zone)), 4573 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 4574 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 4575 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 4576 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 4577 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 4578 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 4579 K(zone->present_pages), 4580 K(zone->managed_pages), 4581 K(zone_page_state(zone, NR_MLOCK)), 4582 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 4583 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 4584 zone_page_state(zone, NR_KERNEL_STACK_KB), 4585 K(zone_page_state(zone, NR_PAGETABLE)), 4586 K(zone_page_state(zone, NR_BOUNCE)), 4587 K(free_pcp), 4588 K(this_cpu_read(zone->pageset->pcp.count)), 4589 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 4590 printk("lowmem_reserve[]:"); 4591 for (i = 0; i < MAX_NR_ZONES; i++) 4592 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 4593 printk(KERN_CONT "\n"); 4594 } 4595 4596 for_each_populated_zone(zone) { 4597 unsigned int order; 4598 unsigned long nr[MAX_ORDER], flags, total = 0; 4599 unsigned char types[MAX_ORDER]; 4600 4601 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 4602 continue; 4603 show_node(zone); 4604 printk(KERN_CONT "%s: ", zone->name); 4605 4606 spin_lock_irqsave(&zone->lock, flags); 4607 for (order = 0; order < MAX_ORDER; order++) { 4608 struct free_area *area = &zone->free_area[order]; 4609 int type; 4610 4611 nr[order] = area->nr_free; 4612 total += nr[order] << order; 4613 4614 types[order] = 0; 4615 for (type = 0; type < MIGRATE_TYPES; type++) { 4616 if (!list_empty(&area->free_list[type])) 4617 types[order] |= 1 << type; 4618 } 4619 } 4620 spin_unlock_irqrestore(&zone->lock, flags); 4621 for (order = 0; order < MAX_ORDER; order++) { 4622 printk(KERN_CONT "%lu*%lukB ", 4623 nr[order], K(1UL) << order); 4624 if (nr[order]) 4625 show_migration_types(types[order]); 4626 } 4627 printk(KERN_CONT "= %lukB\n", K(total)); 4628 } 4629 4630 hugetlb_show_meminfo(); 4631 4632 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 4633 4634 show_swap_cache_info(); 4635 } 4636 4637 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 4638 { 4639 zoneref->zone = zone; 4640 zoneref->zone_idx = zone_idx(zone); 4641 } 4642 4643 /* 4644 * Builds allocation fallback zone lists. 4645 * 4646 * Add all populated zones of a node to the zonelist. 4647 */ 4648 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 4649 int nr_zones) 4650 { 4651 struct zone *zone; 4652 enum zone_type zone_type = MAX_NR_ZONES; 4653 4654 do { 4655 zone_type--; 4656 zone = pgdat->node_zones + zone_type; 4657 if (managed_zone(zone)) { 4658 zoneref_set_zone(zone, 4659 &zonelist->_zonerefs[nr_zones++]); 4660 check_highest_zone(zone_type); 4661 } 4662 } while (zone_type); 4663 4664 return nr_zones; 4665 } 4666 4667 4668 /* 4669 * zonelist_order: 4670 * 0 = automatic detection of better ordering. 4671 * 1 = order by ([node] distance, -zonetype) 4672 * 2 = order by (-zonetype, [node] distance) 4673 * 4674 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 4675 * the same zonelist. So only NUMA can configure this param. 4676 */ 4677 #define ZONELIST_ORDER_DEFAULT 0 4678 #define ZONELIST_ORDER_NODE 1 4679 #define ZONELIST_ORDER_ZONE 2 4680 4681 /* zonelist order in the kernel. 4682 * set_zonelist_order() will set this to NODE or ZONE. 4683 */ 4684 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 4685 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 4686 4687 4688 #ifdef CONFIG_NUMA 4689 /* The value user specified ....changed by config */ 4690 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 4691 /* string for sysctl */ 4692 #define NUMA_ZONELIST_ORDER_LEN 16 4693 char numa_zonelist_order[16] = "default"; 4694 4695 /* 4696 * interface for configure zonelist ordering. 4697 * command line option "numa_zonelist_order" 4698 * = "[dD]efault - default, automatic configuration. 4699 * = "[nN]ode - order by node locality, then by zone within node 4700 * = "[zZ]one - order by zone, then by locality within zone 4701 */ 4702 4703 static int __parse_numa_zonelist_order(char *s) 4704 { 4705 if (*s == 'd' || *s == 'D') { 4706 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 4707 } else if (*s == 'n' || *s == 'N') { 4708 user_zonelist_order = ZONELIST_ORDER_NODE; 4709 } else if (*s == 'z' || *s == 'Z') { 4710 user_zonelist_order = ZONELIST_ORDER_ZONE; 4711 } else { 4712 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s); 4713 return -EINVAL; 4714 } 4715 return 0; 4716 } 4717 4718 static __init int setup_numa_zonelist_order(char *s) 4719 { 4720 int ret; 4721 4722 if (!s) 4723 return 0; 4724 4725 ret = __parse_numa_zonelist_order(s); 4726 if (ret == 0) 4727 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); 4728 4729 return ret; 4730 } 4731 early_param("numa_zonelist_order", setup_numa_zonelist_order); 4732 4733 /* 4734 * sysctl handler for numa_zonelist_order 4735 */ 4736 int numa_zonelist_order_handler(struct ctl_table *table, int write, 4737 void __user *buffer, size_t *length, 4738 loff_t *ppos) 4739 { 4740 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 4741 int ret; 4742 static DEFINE_MUTEX(zl_order_mutex); 4743 4744 mutex_lock(&zl_order_mutex); 4745 if (write) { 4746 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) { 4747 ret = -EINVAL; 4748 goto out; 4749 } 4750 strcpy(saved_string, (char *)table->data); 4751 } 4752 ret = proc_dostring(table, write, buffer, length, ppos); 4753 if (ret) 4754 goto out; 4755 if (write) { 4756 int oldval = user_zonelist_order; 4757 4758 ret = __parse_numa_zonelist_order((char *)table->data); 4759 if (ret) { 4760 /* 4761 * bogus value. restore saved string 4762 */ 4763 strncpy((char *)table->data, saved_string, 4764 NUMA_ZONELIST_ORDER_LEN); 4765 user_zonelist_order = oldval; 4766 } else if (oldval != user_zonelist_order) { 4767 mutex_lock(&zonelists_mutex); 4768 build_all_zonelists(NULL, NULL); 4769 mutex_unlock(&zonelists_mutex); 4770 } 4771 } 4772 out: 4773 mutex_unlock(&zl_order_mutex); 4774 return ret; 4775 } 4776 4777 4778 #define MAX_NODE_LOAD (nr_online_nodes) 4779 static int node_load[MAX_NUMNODES]; 4780 4781 /** 4782 * find_next_best_node - find the next node that should appear in a given node's fallback list 4783 * @node: node whose fallback list we're appending 4784 * @used_node_mask: nodemask_t of already used nodes 4785 * 4786 * We use a number of factors to determine which is the next node that should 4787 * appear on a given node's fallback list. The node should not have appeared 4788 * already in @node's fallback list, and it should be the next closest node 4789 * according to the distance array (which contains arbitrary distance values 4790 * from each node to each node in the system), and should also prefer nodes 4791 * with no CPUs, since presumably they'll have very little allocation pressure 4792 * on them otherwise. 4793 * It returns -1 if no node is found. 4794 */ 4795 static int find_next_best_node(int node, nodemask_t *used_node_mask) 4796 { 4797 int n, val; 4798 int min_val = INT_MAX; 4799 int best_node = NUMA_NO_NODE; 4800 const struct cpumask *tmp = cpumask_of_node(0); 4801 4802 /* Use the local node if we haven't already */ 4803 if (!node_isset(node, *used_node_mask)) { 4804 node_set(node, *used_node_mask); 4805 return node; 4806 } 4807 4808 for_each_node_state(n, N_MEMORY) { 4809 4810 /* Don't want a node to appear more than once */ 4811 if (node_isset(n, *used_node_mask)) 4812 continue; 4813 4814 /* Use the distance array to find the distance */ 4815 val = node_distance(node, n); 4816 4817 /* Penalize nodes under us ("prefer the next node") */ 4818 val += (n < node); 4819 4820 /* Give preference to headless and unused nodes */ 4821 tmp = cpumask_of_node(n); 4822 if (!cpumask_empty(tmp)) 4823 val += PENALTY_FOR_NODE_WITH_CPUS; 4824 4825 /* Slight preference for less loaded node */ 4826 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 4827 val += node_load[n]; 4828 4829 if (val < min_val) { 4830 min_val = val; 4831 best_node = n; 4832 } 4833 } 4834 4835 if (best_node >= 0) 4836 node_set(best_node, *used_node_mask); 4837 4838 return best_node; 4839 } 4840 4841 4842 /* 4843 * Build zonelists ordered by node and zones within node. 4844 * This results in maximum locality--normal zone overflows into local 4845 * DMA zone, if any--but risks exhausting DMA zone. 4846 */ 4847 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 4848 { 4849 int j; 4850 struct zonelist *zonelist; 4851 4852 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK]; 4853 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 4854 ; 4855 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 4856 zonelist->_zonerefs[j].zone = NULL; 4857 zonelist->_zonerefs[j].zone_idx = 0; 4858 } 4859 4860 /* 4861 * Build gfp_thisnode zonelists 4862 */ 4863 static void build_thisnode_zonelists(pg_data_t *pgdat) 4864 { 4865 int j; 4866 struct zonelist *zonelist; 4867 4868 zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK]; 4869 j = build_zonelists_node(pgdat, zonelist, 0); 4870 zonelist->_zonerefs[j].zone = NULL; 4871 zonelist->_zonerefs[j].zone_idx = 0; 4872 } 4873 4874 /* 4875 * Build zonelists ordered by zone and nodes within zones. 4876 * This results in conserving DMA zone[s] until all Normal memory is 4877 * exhausted, but results in overflowing to remote node while memory 4878 * may still exist in local DMA zone. 4879 */ 4880 static int node_order[MAX_NUMNODES]; 4881 4882 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 4883 { 4884 int pos, j, node; 4885 int zone_type; /* needs to be signed */ 4886 struct zone *z; 4887 struct zonelist *zonelist; 4888 4889 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK]; 4890 pos = 0; 4891 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 4892 for (j = 0; j < nr_nodes; j++) { 4893 node = node_order[j]; 4894 z = &NODE_DATA(node)->node_zones[zone_type]; 4895 if (managed_zone(z)) { 4896 zoneref_set_zone(z, 4897 &zonelist->_zonerefs[pos++]); 4898 check_highest_zone(zone_type); 4899 } 4900 } 4901 } 4902 zonelist->_zonerefs[pos].zone = NULL; 4903 zonelist->_zonerefs[pos].zone_idx = 0; 4904 } 4905 4906 #if defined(CONFIG_64BIT) 4907 /* 4908 * Devices that require DMA32/DMA are relatively rare and do not justify a 4909 * penalty to every machine in case the specialised case applies. Default 4910 * to Node-ordering on 64-bit NUMA machines 4911 */ 4912 static int default_zonelist_order(void) 4913 { 4914 return ZONELIST_ORDER_NODE; 4915 } 4916 #else 4917 /* 4918 * On 32-bit, the Normal zone needs to be preserved for allocations accessible 4919 * by the kernel. If processes running on node 0 deplete the low memory zone 4920 * then reclaim will occur more frequency increasing stalls and potentially 4921 * be easier to OOM if a large percentage of the zone is under writeback or 4922 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set. 4923 * Hence, default to zone ordering on 32-bit. 4924 */ 4925 static int default_zonelist_order(void) 4926 { 4927 return ZONELIST_ORDER_ZONE; 4928 } 4929 #endif /* CONFIG_64BIT */ 4930 4931 static void set_zonelist_order(void) 4932 { 4933 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 4934 current_zonelist_order = default_zonelist_order(); 4935 else 4936 current_zonelist_order = user_zonelist_order; 4937 } 4938 4939 static void build_zonelists(pg_data_t *pgdat) 4940 { 4941 int i, node, load; 4942 nodemask_t used_mask; 4943 int local_node, prev_node; 4944 struct zonelist *zonelist; 4945 unsigned int order = current_zonelist_order; 4946 4947 /* initialize zonelists */ 4948 for (i = 0; i < MAX_ZONELISTS; i++) { 4949 zonelist = pgdat->node_zonelists + i; 4950 zonelist->_zonerefs[0].zone = NULL; 4951 zonelist->_zonerefs[0].zone_idx = 0; 4952 } 4953 4954 /* NUMA-aware ordering of nodes */ 4955 local_node = pgdat->node_id; 4956 load = nr_online_nodes; 4957 prev_node = local_node; 4958 nodes_clear(used_mask); 4959 4960 memset(node_order, 0, sizeof(node_order)); 4961 i = 0; 4962 4963 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 4964 /* 4965 * We don't want to pressure a particular node. 4966 * So adding penalty to the first node in same 4967 * distance group to make it round-robin. 4968 */ 4969 if (node_distance(local_node, node) != 4970 node_distance(local_node, prev_node)) 4971 node_load[node] = load; 4972 4973 prev_node = node; 4974 load--; 4975 if (order == ZONELIST_ORDER_NODE) 4976 build_zonelists_in_node_order(pgdat, node); 4977 else 4978 node_order[i++] = node; /* remember order */ 4979 } 4980 4981 if (order == ZONELIST_ORDER_ZONE) { 4982 /* calculate node order -- i.e., DMA last! */ 4983 build_zonelists_in_zone_order(pgdat, i); 4984 } 4985 4986 build_thisnode_zonelists(pgdat); 4987 } 4988 4989 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 4990 /* 4991 * Return node id of node used for "local" allocations. 4992 * I.e., first node id of first zone in arg node's generic zonelist. 4993 * Used for initializing percpu 'numa_mem', which is used primarily 4994 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 4995 */ 4996 int local_memory_node(int node) 4997 { 4998 struct zoneref *z; 4999 5000 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5001 gfp_zone(GFP_KERNEL), 5002 NULL); 5003 return z->zone->node; 5004 } 5005 #endif 5006 5007 static void setup_min_unmapped_ratio(void); 5008 static void setup_min_slab_ratio(void); 5009 #else /* CONFIG_NUMA */ 5010 5011 static void set_zonelist_order(void) 5012 { 5013 current_zonelist_order = ZONELIST_ORDER_ZONE; 5014 } 5015 5016 static void build_zonelists(pg_data_t *pgdat) 5017 { 5018 int node, local_node; 5019 enum zone_type j; 5020 struct zonelist *zonelist; 5021 5022 local_node = pgdat->node_id; 5023 5024 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK]; 5025 j = build_zonelists_node(pgdat, zonelist, 0); 5026 5027 /* 5028 * Now we build the zonelist so that it contains the zones 5029 * of all the other nodes. 5030 * We don't want to pressure a particular node, so when 5031 * building the zones for node N, we make sure that the 5032 * zones coming right after the local ones are those from 5033 * node N+1 (modulo N) 5034 */ 5035 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 5036 if (!node_online(node)) 5037 continue; 5038 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 5039 } 5040 for (node = 0; node < local_node; node++) { 5041 if (!node_online(node)) 5042 continue; 5043 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 5044 } 5045 5046 zonelist->_zonerefs[j].zone = NULL; 5047 zonelist->_zonerefs[j].zone_idx = 0; 5048 } 5049 5050 #endif /* CONFIG_NUMA */ 5051 5052 /* 5053 * Boot pageset table. One per cpu which is going to be used for all 5054 * zones and all nodes. The parameters will be set in such a way 5055 * that an item put on a list will immediately be handed over to 5056 * the buddy list. This is safe since pageset manipulation is done 5057 * with interrupts disabled. 5058 * 5059 * The boot_pagesets must be kept even after bootup is complete for 5060 * unused processors and/or zones. They do play a role for bootstrapping 5061 * hotplugged processors. 5062 * 5063 * zoneinfo_show() and maybe other functions do 5064 * not check if the processor is online before following the pageset pointer. 5065 * Other parts of the kernel may not check if the zone is available. 5066 */ 5067 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 5068 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 5069 static void setup_zone_pageset(struct zone *zone); 5070 5071 /* 5072 * Global mutex to protect against size modification of zonelists 5073 * as well as to serialize pageset setup for the new populated zone. 5074 */ 5075 DEFINE_MUTEX(zonelists_mutex); 5076 5077 /* return values int ....just for stop_machine() */ 5078 static int __build_all_zonelists(void *data) 5079 { 5080 int nid; 5081 int cpu; 5082 pg_data_t *self = data; 5083 5084 #ifdef CONFIG_NUMA 5085 memset(node_load, 0, sizeof(node_load)); 5086 #endif 5087 5088 if (self && !node_online(self->node_id)) { 5089 build_zonelists(self); 5090 } 5091 5092 for_each_online_node(nid) { 5093 pg_data_t *pgdat = NODE_DATA(nid); 5094 5095 build_zonelists(pgdat); 5096 } 5097 5098 /* 5099 * Initialize the boot_pagesets that are going to be used 5100 * for bootstrapping processors. The real pagesets for 5101 * each zone will be allocated later when the per cpu 5102 * allocator is available. 5103 * 5104 * boot_pagesets are used also for bootstrapping offline 5105 * cpus if the system is already booted because the pagesets 5106 * are needed to initialize allocators on a specific cpu too. 5107 * F.e. the percpu allocator needs the page allocator which 5108 * needs the percpu allocator in order to allocate its pagesets 5109 * (a chicken-egg dilemma). 5110 */ 5111 for_each_possible_cpu(cpu) { 5112 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 5113 5114 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5115 /* 5116 * We now know the "local memory node" for each node-- 5117 * i.e., the node of the first zone in the generic zonelist. 5118 * Set up numa_mem percpu variable for on-line cpus. During 5119 * boot, only the boot cpu should be on-line; we'll init the 5120 * secondary cpus' numa_mem as they come on-line. During 5121 * node/memory hotplug, we'll fixup all on-line cpus. 5122 */ 5123 if (cpu_online(cpu)) 5124 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5125 #endif 5126 } 5127 5128 return 0; 5129 } 5130 5131 static noinline void __init 5132 build_all_zonelists_init(void) 5133 { 5134 __build_all_zonelists(NULL); 5135 mminit_verify_zonelist(); 5136 cpuset_init_current_mems_allowed(); 5137 } 5138 5139 /* 5140 * Called with zonelists_mutex held always 5141 * unless system_state == SYSTEM_BOOTING. 5142 * 5143 * __ref due to (1) call of __meminit annotated setup_zone_pageset 5144 * [we're only called with non-NULL zone through __meminit paths] and 5145 * (2) call of __init annotated helper build_all_zonelists_init 5146 * [protected by SYSTEM_BOOTING]. 5147 */ 5148 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone) 5149 { 5150 set_zonelist_order(); 5151 5152 if (system_state == SYSTEM_BOOTING) { 5153 build_all_zonelists_init(); 5154 } else { 5155 #ifdef CONFIG_MEMORY_HOTPLUG 5156 if (zone) 5157 setup_zone_pageset(zone); 5158 #endif 5159 /* we have to stop all cpus to guarantee there is no user 5160 of zonelist */ 5161 stop_machine(__build_all_zonelists, pgdat, NULL); 5162 /* cpuset refresh routine should be here */ 5163 } 5164 vm_total_pages = nr_free_pagecache_pages(); 5165 /* 5166 * Disable grouping by mobility if the number of pages in the 5167 * system is too low to allow the mechanism to work. It would be 5168 * more accurate, but expensive to check per-zone. This check is 5169 * made on memory-hotadd so a system can start with mobility 5170 * disabled and enable it later 5171 */ 5172 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5173 page_group_by_mobility_disabled = 1; 5174 else 5175 page_group_by_mobility_disabled = 0; 5176 5177 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n", 5178 nr_online_nodes, 5179 zonelist_order_name[current_zonelist_order], 5180 page_group_by_mobility_disabled ? "off" : "on", 5181 vm_total_pages); 5182 #ifdef CONFIG_NUMA 5183 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5184 #endif 5185 } 5186 5187 /* 5188 * Initially all pages are reserved - free ones are freed 5189 * up by free_all_bootmem() once the early boot process is 5190 * done. Non-atomic initialization, single-pass. 5191 */ 5192 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 5193 unsigned long start_pfn, enum memmap_context context) 5194 { 5195 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn)); 5196 unsigned long end_pfn = start_pfn + size; 5197 pg_data_t *pgdat = NODE_DATA(nid); 5198 unsigned long pfn; 5199 unsigned long nr_initialised = 0; 5200 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5201 struct memblock_region *r = NULL, *tmp; 5202 #endif 5203 5204 if (highest_memmap_pfn < end_pfn - 1) 5205 highest_memmap_pfn = end_pfn - 1; 5206 5207 /* 5208 * Honor reservation requested by the driver for this ZONE_DEVICE 5209 * memory 5210 */ 5211 if (altmap && start_pfn == altmap->base_pfn) 5212 start_pfn += altmap->reserve; 5213 5214 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 5215 /* 5216 * There can be holes in boot-time mem_map[]s handed to this 5217 * function. They do not exist on hotplugged memory. 5218 */ 5219 if (context != MEMMAP_EARLY) 5220 goto not_early; 5221 5222 if (!early_pfn_valid(pfn)) { 5223 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5224 /* 5225 * Skip to the pfn preceding the next valid one (or 5226 * end_pfn), such that we hit a valid pfn (or end_pfn) 5227 * on our next iteration of the loop. 5228 */ 5229 pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1; 5230 #endif 5231 continue; 5232 } 5233 if (!early_pfn_in_nid(pfn, nid)) 5234 continue; 5235 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised)) 5236 break; 5237 5238 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5239 /* 5240 * Check given memblock attribute by firmware which can affect 5241 * kernel memory layout. If zone==ZONE_MOVABLE but memory is 5242 * mirrored, it's an overlapped memmap init. skip it. 5243 */ 5244 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 5245 if (!r || pfn >= memblock_region_memory_end_pfn(r)) { 5246 for_each_memblock(memory, tmp) 5247 if (pfn < memblock_region_memory_end_pfn(tmp)) 5248 break; 5249 r = tmp; 5250 } 5251 if (pfn >= memblock_region_memory_base_pfn(r) && 5252 memblock_is_mirror(r)) { 5253 /* already initialized as NORMAL */ 5254 pfn = memblock_region_memory_end_pfn(r); 5255 continue; 5256 } 5257 } 5258 #endif 5259 5260 not_early: 5261 /* 5262 * Mark the block movable so that blocks are reserved for 5263 * movable at startup. This will force kernel allocations 5264 * to reserve their blocks rather than leaking throughout 5265 * the address space during boot when many long-lived 5266 * kernel allocations are made. 5267 * 5268 * bitmap is created for zone's valid pfn range. but memmap 5269 * can be created for invalid pages (for alignment) 5270 * check here not to call set_pageblock_migratetype() against 5271 * pfn out of zone. 5272 */ 5273 if (!(pfn & (pageblock_nr_pages - 1))) { 5274 struct page *page = pfn_to_page(pfn); 5275 5276 __init_single_page(page, pfn, zone, nid); 5277 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5278 } else { 5279 __init_single_pfn(pfn, zone, nid); 5280 } 5281 } 5282 } 5283 5284 static void __meminit zone_init_free_lists(struct zone *zone) 5285 { 5286 unsigned int order, t; 5287 for_each_migratetype_order(order, t) { 5288 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 5289 zone->free_area[order].nr_free = 0; 5290 } 5291 } 5292 5293 #ifndef __HAVE_ARCH_MEMMAP_INIT 5294 #define memmap_init(size, nid, zone, start_pfn) \ 5295 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 5296 #endif 5297 5298 static int zone_batchsize(struct zone *zone) 5299 { 5300 #ifdef CONFIG_MMU 5301 int batch; 5302 5303 /* 5304 * The per-cpu-pages pools are set to around 1000th of the 5305 * size of the zone. But no more than 1/2 of a meg. 5306 * 5307 * OK, so we don't know how big the cache is. So guess. 5308 */ 5309 batch = zone->managed_pages / 1024; 5310 if (batch * PAGE_SIZE > 512 * 1024) 5311 batch = (512 * 1024) / PAGE_SIZE; 5312 batch /= 4; /* We effectively *= 4 below */ 5313 if (batch < 1) 5314 batch = 1; 5315 5316 /* 5317 * Clamp the batch to a 2^n - 1 value. Having a power 5318 * of 2 value was found to be more likely to have 5319 * suboptimal cache aliasing properties in some cases. 5320 * 5321 * For example if 2 tasks are alternately allocating 5322 * batches of pages, one task can end up with a lot 5323 * of pages of one half of the possible page colors 5324 * and the other with pages of the other colors. 5325 */ 5326 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5327 5328 return batch; 5329 5330 #else 5331 /* The deferral and batching of frees should be suppressed under NOMMU 5332 * conditions. 5333 * 5334 * The problem is that NOMMU needs to be able to allocate large chunks 5335 * of contiguous memory as there's no hardware page translation to 5336 * assemble apparent contiguous memory from discontiguous pages. 5337 * 5338 * Queueing large contiguous runs of pages for batching, however, 5339 * causes the pages to actually be freed in smaller chunks. As there 5340 * can be a significant delay between the individual batches being 5341 * recycled, this leads to the once large chunks of space being 5342 * fragmented and becoming unavailable for high-order allocations. 5343 */ 5344 return 0; 5345 #endif 5346 } 5347 5348 /* 5349 * pcp->high and pcp->batch values are related and dependent on one another: 5350 * ->batch must never be higher then ->high. 5351 * The following function updates them in a safe manner without read side 5352 * locking. 5353 * 5354 * Any new users of pcp->batch and pcp->high should ensure they can cope with 5355 * those fields changing asynchronously (acording the the above rule). 5356 * 5357 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 5358 * outside of boot time (or some other assurance that no concurrent updaters 5359 * exist). 5360 */ 5361 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 5362 unsigned long batch) 5363 { 5364 /* start with a fail safe value for batch */ 5365 pcp->batch = 1; 5366 smp_wmb(); 5367 5368 /* Update high, then batch, in order */ 5369 pcp->high = high; 5370 smp_wmb(); 5371 5372 pcp->batch = batch; 5373 } 5374 5375 /* a companion to pageset_set_high() */ 5376 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 5377 { 5378 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 5379 } 5380 5381 static void pageset_init(struct per_cpu_pageset *p) 5382 { 5383 struct per_cpu_pages *pcp; 5384 int migratetype; 5385 5386 memset(p, 0, sizeof(*p)); 5387 5388 pcp = &p->pcp; 5389 pcp->count = 0; 5390 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 5391 INIT_LIST_HEAD(&pcp->lists[migratetype]); 5392 } 5393 5394 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 5395 { 5396 pageset_init(p); 5397 pageset_set_batch(p, batch); 5398 } 5399 5400 /* 5401 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 5402 * to the value high for the pageset p. 5403 */ 5404 static void pageset_set_high(struct per_cpu_pageset *p, 5405 unsigned long high) 5406 { 5407 unsigned long batch = max(1UL, high / 4); 5408 if ((high / 4) > (PAGE_SHIFT * 8)) 5409 batch = PAGE_SHIFT * 8; 5410 5411 pageset_update(&p->pcp, high, batch); 5412 } 5413 5414 static void pageset_set_high_and_batch(struct zone *zone, 5415 struct per_cpu_pageset *pcp) 5416 { 5417 if (percpu_pagelist_fraction) 5418 pageset_set_high(pcp, 5419 (zone->managed_pages / 5420 percpu_pagelist_fraction)); 5421 else 5422 pageset_set_batch(pcp, zone_batchsize(zone)); 5423 } 5424 5425 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 5426 { 5427 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 5428 5429 pageset_init(pcp); 5430 pageset_set_high_and_batch(zone, pcp); 5431 } 5432 5433 static void __meminit setup_zone_pageset(struct zone *zone) 5434 { 5435 int cpu; 5436 zone->pageset = alloc_percpu(struct per_cpu_pageset); 5437 for_each_possible_cpu(cpu) 5438 zone_pageset_init(zone, cpu); 5439 } 5440 5441 /* 5442 * Allocate per cpu pagesets and initialize them. 5443 * Before this call only boot pagesets were available. 5444 */ 5445 void __init setup_per_cpu_pageset(void) 5446 { 5447 struct pglist_data *pgdat; 5448 struct zone *zone; 5449 5450 for_each_populated_zone(zone) 5451 setup_zone_pageset(zone); 5452 5453 for_each_online_pgdat(pgdat) 5454 pgdat->per_cpu_nodestats = 5455 alloc_percpu(struct per_cpu_nodestat); 5456 } 5457 5458 static __meminit void zone_pcp_init(struct zone *zone) 5459 { 5460 /* 5461 * per cpu subsystem is not up at this point. The following code 5462 * relies on the ability of the linker to provide the 5463 * offset of a (static) per cpu variable into the per cpu area. 5464 */ 5465 zone->pageset = &boot_pageset; 5466 5467 if (populated_zone(zone)) 5468 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 5469 zone->name, zone->present_pages, 5470 zone_batchsize(zone)); 5471 } 5472 5473 int __meminit init_currently_empty_zone(struct zone *zone, 5474 unsigned long zone_start_pfn, 5475 unsigned long size) 5476 { 5477 struct pglist_data *pgdat = zone->zone_pgdat; 5478 5479 pgdat->nr_zones = zone_idx(zone) + 1; 5480 5481 zone->zone_start_pfn = zone_start_pfn; 5482 5483 mminit_dprintk(MMINIT_TRACE, "memmap_init", 5484 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 5485 pgdat->node_id, 5486 (unsigned long)zone_idx(zone), 5487 zone_start_pfn, (zone_start_pfn + size)); 5488 5489 zone_init_free_lists(zone); 5490 zone->initialized = 1; 5491 5492 return 0; 5493 } 5494 5495 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5496 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 5497 5498 /* 5499 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 5500 */ 5501 int __meminit __early_pfn_to_nid(unsigned long pfn, 5502 struct mminit_pfnnid_cache *state) 5503 { 5504 unsigned long start_pfn, end_pfn; 5505 int nid; 5506 5507 if (state->last_start <= pfn && pfn < state->last_end) 5508 return state->last_nid; 5509 5510 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 5511 if (nid != -1) { 5512 state->last_start = start_pfn; 5513 state->last_end = end_pfn; 5514 state->last_nid = nid; 5515 } 5516 5517 return nid; 5518 } 5519 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 5520 5521 /** 5522 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range 5523 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 5524 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid 5525 * 5526 * If an architecture guarantees that all ranges registered contain no holes 5527 * and may be freed, this this function may be used instead of calling 5528 * memblock_free_early_nid() manually. 5529 */ 5530 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 5531 { 5532 unsigned long start_pfn, end_pfn; 5533 int i, this_nid; 5534 5535 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 5536 start_pfn = min(start_pfn, max_low_pfn); 5537 end_pfn = min(end_pfn, max_low_pfn); 5538 5539 if (start_pfn < end_pfn) 5540 memblock_free_early_nid(PFN_PHYS(start_pfn), 5541 (end_pfn - start_pfn) << PAGE_SHIFT, 5542 this_nid); 5543 } 5544 } 5545 5546 /** 5547 * sparse_memory_present_with_active_regions - Call memory_present for each active range 5548 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 5549 * 5550 * If an architecture guarantees that all ranges registered contain no holes and may 5551 * be freed, this function may be used instead of calling memory_present() manually. 5552 */ 5553 void __init sparse_memory_present_with_active_regions(int nid) 5554 { 5555 unsigned long start_pfn, end_pfn; 5556 int i, this_nid; 5557 5558 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 5559 memory_present(this_nid, start_pfn, end_pfn); 5560 } 5561 5562 /** 5563 * get_pfn_range_for_nid - Return the start and end page frames for a node 5564 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 5565 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 5566 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 5567 * 5568 * It returns the start and end page frame of a node based on information 5569 * provided by memblock_set_node(). If called for a node 5570 * with no available memory, a warning is printed and the start and end 5571 * PFNs will be 0. 5572 */ 5573 void __meminit get_pfn_range_for_nid(unsigned int nid, 5574 unsigned long *start_pfn, unsigned long *end_pfn) 5575 { 5576 unsigned long this_start_pfn, this_end_pfn; 5577 int i; 5578 5579 *start_pfn = -1UL; 5580 *end_pfn = 0; 5581 5582 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 5583 *start_pfn = min(*start_pfn, this_start_pfn); 5584 *end_pfn = max(*end_pfn, this_end_pfn); 5585 } 5586 5587 if (*start_pfn == -1UL) 5588 *start_pfn = 0; 5589 } 5590 5591 /* 5592 * This finds a zone that can be used for ZONE_MOVABLE pages. The 5593 * assumption is made that zones within a node are ordered in monotonic 5594 * increasing memory addresses so that the "highest" populated zone is used 5595 */ 5596 static void __init find_usable_zone_for_movable(void) 5597 { 5598 int zone_index; 5599 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 5600 if (zone_index == ZONE_MOVABLE) 5601 continue; 5602 5603 if (arch_zone_highest_possible_pfn[zone_index] > 5604 arch_zone_lowest_possible_pfn[zone_index]) 5605 break; 5606 } 5607 5608 VM_BUG_ON(zone_index == -1); 5609 movable_zone = zone_index; 5610 } 5611 5612 /* 5613 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 5614 * because it is sized independent of architecture. Unlike the other zones, 5615 * the starting point for ZONE_MOVABLE is not fixed. It may be different 5616 * in each node depending on the size of each node and how evenly kernelcore 5617 * is distributed. This helper function adjusts the zone ranges 5618 * provided by the architecture for a given node by using the end of the 5619 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 5620 * zones within a node are in order of monotonic increases memory addresses 5621 */ 5622 static void __meminit adjust_zone_range_for_zone_movable(int nid, 5623 unsigned long zone_type, 5624 unsigned long node_start_pfn, 5625 unsigned long node_end_pfn, 5626 unsigned long *zone_start_pfn, 5627 unsigned long *zone_end_pfn) 5628 { 5629 /* Only adjust if ZONE_MOVABLE is on this node */ 5630 if (zone_movable_pfn[nid]) { 5631 /* Size ZONE_MOVABLE */ 5632 if (zone_type == ZONE_MOVABLE) { 5633 *zone_start_pfn = zone_movable_pfn[nid]; 5634 *zone_end_pfn = min(node_end_pfn, 5635 arch_zone_highest_possible_pfn[movable_zone]); 5636 5637 /* Adjust for ZONE_MOVABLE starting within this range */ 5638 } else if (!mirrored_kernelcore && 5639 *zone_start_pfn < zone_movable_pfn[nid] && 5640 *zone_end_pfn > zone_movable_pfn[nid]) { 5641 *zone_end_pfn = zone_movable_pfn[nid]; 5642 5643 /* Check if this whole range is within ZONE_MOVABLE */ 5644 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 5645 *zone_start_pfn = *zone_end_pfn; 5646 } 5647 } 5648 5649 /* 5650 * Return the number of pages a zone spans in a node, including holes 5651 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 5652 */ 5653 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 5654 unsigned long zone_type, 5655 unsigned long node_start_pfn, 5656 unsigned long node_end_pfn, 5657 unsigned long *zone_start_pfn, 5658 unsigned long *zone_end_pfn, 5659 unsigned long *ignored) 5660 { 5661 /* When hotadd a new node from cpu_up(), the node should be empty */ 5662 if (!node_start_pfn && !node_end_pfn) 5663 return 0; 5664 5665 /* Get the start and end of the zone */ 5666 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 5667 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 5668 adjust_zone_range_for_zone_movable(nid, zone_type, 5669 node_start_pfn, node_end_pfn, 5670 zone_start_pfn, zone_end_pfn); 5671 5672 /* Check that this node has pages within the zone's required range */ 5673 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 5674 return 0; 5675 5676 /* Move the zone boundaries inside the node if necessary */ 5677 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 5678 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 5679 5680 /* Return the spanned pages */ 5681 return *zone_end_pfn - *zone_start_pfn; 5682 } 5683 5684 /* 5685 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 5686 * then all holes in the requested range will be accounted for. 5687 */ 5688 unsigned long __meminit __absent_pages_in_range(int nid, 5689 unsigned long range_start_pfn, 5690 unsigned long range_end_pfn) 5691 { 5692 unsigned long nr_absent = range_end_pfn - range_start_pfn; 5693 unsigned long start_pfn, end_pfn; 5694 int i; 5695 5696 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 5697 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 5698 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 5699 nr_absent -= end_pfn - start_pfn; 5700 } 5701 return nr_absent; 5702 } 5703 5704 /** 5705 * absent_pages_in_range - Return number of page frames in holes within a range 5706 * @start_pfn: The start PFN to start searching for holes 5707 * @end_pfn: The end PFN to stop searching for holes 5708 * 5709 * It returns the number of pages frames in memory holes within a range. 5710 */ 5711 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 5712 unsigned long end_pfn) 5713 { 5714 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 5715 } 5716 5717 /* Return the number of page frames in holes in a zone on a node */ 5718 static unsigned long __meminit zone_absent_pages_in_node(int nid, 5719 unsigned long zone_type, 5720 unsigned long node_start_pfn, 5721 unsigned long node_end_pfn, 5722 unsigned long *ignored) 5723 { 5724 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 5725 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 5726 unsigned long zone_start_pfn, zone_end_pfn; 5727 unsigned long nr_absent; 5728 5729 /* When hotadd a new node from cpu_up(), the node should be empty */ 5730 if (!node_start_pfn && !node_end_pfn) 5731 return 0; 5732 5733 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 5734 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 5735 5736 adjust_zone_range_for_zone_movable(nid, zone_type, 5737 node_start_pfn, node_end_pfn, 5738 &zone_start_pfn, &zone_end_pfn); 5739 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 5740 5741 /* 5742 * ZONE_MOVABLE handling. 5743 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 5744 * and vice versa. 5745 */ 5746 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 5747 unsigned long start_pfn, end_pfn; 5748 struct memblock_region *r; 5749 5750 for_each_memblock(memory, r) { 5751 start_pfn = clamp(memblock_region_memory_base_pfn(r), 5752 zone_start_pfn, zone_end_pfn); 5753 end_pfn = clamp(memblock_region_memory_end_pfn(r), 5754 zone_start_pfn, zone_end_pfn); 5755 5756 if (zone_type == ZONE_MOVABLE && 5757 memblock_is_mirror(r)) 5758 nr_absent += end_pfn - start_pfn; 5759 5760 if (zone_type == ZONE_NORMAL && 5761 !memblock_is_mirror(r)) 5762 nr_absent += end_pfn - start_pfn; 5763 } 5764 } 5765 5766 return nr_absent; 5767 } 5768 5769 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5770 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 5771 unsigned long zone_type, 5772 unsigned long node_start_pfn, 5773 unsigned long node_end_pfn, 5774 unsigned long *zone_start_pfn, 5775 unsigned long *zone_end_pfn, 5776 unsigned long *zones_size) 5777 { 5778 unsigned int zone; 5779 5780 *zone_start_pfn = node_start_pfn; 5781 for (zone = 0; zone < zone_type; zone++) 5782 *zone_start_pfn += zones_size[zone]; 5783 5784 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type]; 5785 5786 return zones_size[zone_type]; 5787 } 5788 5789 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 5790 unsigned long zone_type, 5791 unsigned long node_start_pfn, 5792 unsigned long node_end_pfn, 5793 unsigned long *zholes_size) 5794 { 5795 if (!zholes_size) 5796 return 0; 5797 5798 return zholes_size[zone_type]; 5799 } 5800 5801 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5802 5803 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 5804 unsigned long node_start_pfn, 5805 unsigned long node_end_pfn, 5806 unsigned long *zones_size, 5807 unsigned long *zholes_size) 5808 { 5809 unsigned long realtotalpages = 0, totalpages = 0; 5810 enum zone_type i; 5811 5812 for (i = 0; i < MAX_NR_ZONES; i++) { 5813 struct zone *zone = pgdat->node_zones + i; 5814 unsigned long zone_start_pfn, zone_end_pfn; 5815 unsigned long size, real_size; 5816 5817 size = zone_spanned_pages_in_node(pgdat->node_id, i, 5818 node_start_pfn, 5819 node_end_pfn, 5820 &zone_start_pfn, 5821 &zone_end_pfn, 5822 zones_size); 5823 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i, 5824 node_start_pfn, node_end_pfn, 5825 zholes_size); 5826 if (size) 5827 zone->zone_start_pfn = zone_start_pfn; 5828 else 5829 zone->zone_start_pfn = 0; 5830 zone->spanned_pages = size; 5831 zone->present_pages = real_size; 5832 5833 totalpages += size; 5834 realtotalpages += real_size; 5835 } 5836 5837 pgdat->node_spanned_pages = totalpages; 5838 pgdat->node_present_pages = realtotalpages; 5839 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 5840 realtotalpages); 5841 } 5842 5843 #ifndef CONFIG_SPARSEMEM 5844 /* 5845 * Calculate the size of the zone->blockflags rounded to an unsigned long 5846 * Start by making sure zonesize is a multiple of pageblock_order by rounding 5847 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 5848 * round what is now in bits to nearest long in bits, then return it in 5849 * bytes. 5850 */ 5851 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 5852 { 5853 unsigned long usemapsize; 5854 5855 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 5856 usemapsize = roundup(zonesize, pageblock_nr_pages); 5857 usemapsize = usemapsize >> pageblock_order; 5858 usemapsize *= NR_PAGEBLOCK_BITS; 5859 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 5860 5861 return usemapsize / 8; 5862 } 5863 5864 static void __init setup_usemap(struct pglist_data *pgdat, 5865 struct zone *zone, 5866 unsigned long zone_start_pfn, 5867 unsigned long zonesize) 5868 { 5869 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 5870 zone->pageblock_flags = NULL; 5871 if (usemapsize) 5872 zone->pageblock_flags = 5873 memblock_virt_alloc_node_nopanic(usemapsize, 5874 pgdat->node_id); 5875 } 5876 #else 5877 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 5878 unsigned long zone_start_pfn, unsigned long zonesize) {} 5879 #endif /* CONFIG_SPARSEMEM */ 5880 5881 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 5882 5883 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 5884 void __paginginit set_pageblock_order(void) 5885 { 5886 unsigned int order; 5887 5888 /* Check that pageblock_nr_pages has not already been setup */ 5889 if (pageblock_order) 5890 return; 5891 5892 if (HPAGE_SHIFT > PAGE_SHIFT) 5893 order = HUGETLB_PAGE_ORDER; 5894 else 5895 order = MAX_ORDER - 1; 5896 5897 /* 5898 * Assume the largest contiguous order of interest is a huge page. 5899 * This value may be variable depending on boot parameters on IA64 and 5900 * powerpc. 5901 */ 5902 pageblock_order = order; 5903 } 5904 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 5905 5906 /* 5907 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 5908 * is unused as pageblock_order is set at compile-time. See 5909 * include/linux/pageblock-flags.h for the values of pageblock_order based on 5910 * the kernel config 5911 */ 5912 void __paginginit set_pageblock_order(void) 5913 { 5914 } 5915 5916 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 5917 5918 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages, 5919 unsigned long present_pages) 5920 { 5921 unsigned long pages = spanned_pages; 5922 5923 /* 5924 * Provide a more accurate estimation if there are holes within 5925 * the zone and SPARSEMEM is in use. If there are holes within the 5926 * zone, each populated memory region may cost us one or two extra 5927 * memmap pages due to alignment because memmap pages for each 5928 * populated regions may not naturally algined on page boundary. 5929 * So the (present_pages >> 4) heuristic is a tradeoff for that. 5930 */ 5931 if (spanned_pages > present_pages + (present_pages >> 4) && 5932 IS_ENABLED(CONFIG_SPARSEMEM)) 5933 pages = present_pages; 5934 5935 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 5936 } 5937 5938 /* 5939 * Set up the zone data structures: 5940 * - mark all pages reserved 5941 * - mark all memory queues empty 5942 * - clear the memory bitmaps 5943 * 5944 * NOTE: pgdat should get zeroed by caller. 5945 */ 5946 static void __paginginit free_area_init_core(struct pglist_data *pgdat) 5947 { 5948 enum zone_type j; 5949 int nid = pgdat->node_id; 5950 int ret; 5951 5952 pgdat_resize_init(pgdat); 5953 #ifdef CONFIG_NUMA_BALANCING 5954 spin_lock_init(&pgdat->numabalancing_migrate_lock); 5955 pgdat->numabalancing_migrate_nr_pages = 0; 5956 pgdat->numabalancing_migrate_next_window = jiffies; 5957 #endif 5958 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5959 spin_lock_init(&pgdat->split_queue_lock); 5960 INIT_LIST_HEAD(&pgdat->split_queue); 5961 pgdat->split_queue_len = 0; 5962 #endif 5963 init_waitqueue_head(&pgdat->kswapd_wait); 5964 init_waitqueue_head(&pgdat->pfmemalloc_wait); 5965 #ifdef CONFIG_COMPACTION 5966 init_waitqueue_head(&pgdat->kcompactd_wait); 5967 #endif 5968 pgdat_page_ext_init(pgdat); 5969 spin_lock_init(&pgdat->lru_lock); 5970 lruvec_init(node_lruvec(pgdat)); 5971 5972 for (j = 0; j < MAX_NR_ZONES; j++) { 5973 struct zone *zone = pgdat->node_zones + j; 5974 unsigned long size, realsize, freesize, memmap_pages; 5975 unsigned long zone_start_pfn = zone->zone_start_pfn; 5976 5977 size = zone->spanned_pages; 5978 realsize = freesize = zone->present_pages; 5979 5980 /* 5981 * Adjust freesize so that it accounts for how much memory 5982 * is used by this zone for memmap. This affects the watermark 5983 * and per-cpu initialisations 5984 */ 5985 memmap_pages = calc_memmap_size(size, realsize); 5986 if (!is_highmem_idx(j)) { 5987 if (freesize >= memmap_pages) { 5988 freesize -= memmap_pages; 5989 if (memmap_pages) 5990 printk(KERN_DEBUG 5991 " %s zone: %lu pages used for memmap\n", 5992 zone_names[j], memmap_pages); 5993 } else 5994 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n", 5995 zone_names[j], memmap_pages, freesize); 5996 } 5997 5998 /* Account for reserved pages */ 5999 if (j == 0 && freesize > dma_reserve) { 6000 freesize -= dma_reserve; 6001 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 6002 zone_names[0], dma_reserve); 6003 } 6004 6005 if (!is_highmem_idx(j)) 6006 nr_kernel_pages += freesize; 6007 /* Charge for highmem memmap if there are enough kernel pages */ 6008 else if (nr_kernel_pages > memmap_pages * 2) 6009 nr_kernel_pages -= memmap_pages; 6010 nr_all_pages += freesize; 6011 6012 /* 6013 * Set an approximate value for lowmem here, it will be adjusted 6014 * when the bootmem allocator frees pages into the buddy system. 6015 * And all highmem pages will be managed by the buddy system. 6016 */ 6017 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize; 6018 #ifdef CONFIG_NUMA 6019 zone->node = nid; 6020 #endif 6021 zone->name = zone_names[j]; 6022 zone->zone_pgdat = pgdat; 6023 spin_lock_init(&zone->lock); 6024 zone_seqlock_init(zone); 6025 zone_pcp_init(zone); 6026 6027 if (!size) 6028 continue; 6029 6030 set_pageblock_order(); 6031 setup_usemap(pgdat, zone, zone_start_pfn, size); 6032 ret = init_currently_empty_zone(zone, zone_start_pfn, size); 6033 BUG_ON(ret); 6034 memmap_init(size, nid, j, zone_start_pfn); 6035 } 6036 } 6037 6038 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) 6039 { 6040 unsigned long __maybe_unused start = 0; 6041 unsigned long __maybe_unused offset = 0; 6042 6043 /* Skip empty nodes */ 6044 if (!pgdat->node_spanned_pages) 6045 return; 6046 6047 #ifdef CONFIG_FLAT_NODE_MEM_MAP 6048 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 6049 offset = pgdat->node_start_pfn - start; 6050 /* ia64 gets its own node_mem_map, before this, without bootmem */ 6051 if (!pgdat->node_mem_map) { 6052 unsigned long size, end; 6053 struct page *map; 6054 6055 /* 6056 * The zone's endpoints aren't required to be MAX_ORDER 6057 * aligned but the node_mem_map endpoints must be in order 6058 * for the buddy allocator to function correctly. 6059 */ 6060 end = pgdat_end_pfn(pgdat); 6061 end = ALIGN(end, MAX_ORDER_NR_PAGES); 6062 size = (end - start) * sizeof(struct page); 6063 map = alloc_remap(pgdat->node_id, size); 6064 if (!map) 6065 map = memblock_virt_alloc_node_nopanic(size, 6066 pgdat->node_id); 6067 pgdat->node_mem_map = map + offset; 6068 } 6069 #ifndef CONFIG_NEED_MULTIPLE_NODES 6070 /* 6071 * With no DISCONTIG, the global mem_map is just set as node 0's 6072 */ 6073 if (pgdat == NODE_DATA(0)) { 6074 mem_map = NODE_DATA(0)->node_mem_map; 6075 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM) 6076 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 6077 mem_map -= offset; 6078 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6079 } 6080 #endif 6081 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 6082 } 6083 6084 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 6085 unsigned long node_start_pfn, unsigned long *zholes_size) 6086 { 6087 pg_data_t *pgdat = NODE_DATA(nid); 6088 unsigned long start_pfn = 0; 6089 unsigned long end_pfn = 0; 6090 6091 /* pg_data_t should be reset to zero when it's allocated */ 6092 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx); 6093 6094 reset_deferred_meminit(pgdat); 6095 pgdat->node_id = nid; 6096 pgdat->node_start_pfn = node_start_pfn; 6097 pgdat->per_cpu_nodestats = NULL; 6098 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6099 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 6100 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 6101 (u64)start_pfn << PAGE_SHIFT, 6102 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 6103 #else 6104 start_pfn = node_start_pfn; 6105 #endif 6106 calculate_node_totalpages(pgdat, start_pfn, end_pfn, 6107 zones_size, zholes_size); 6108 6109 alloc_node_mem_map(pgdat); 6110 #ifdef CONFIG_FLAT_NODE_MEM_MAP 6111 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 6112 nid, (unsigned long)pgdat, 6113 (unsigned long)pgdat->node_mem_map); 6114 #endif 6115 6116 free_area_init_core(pgdat); 6117 } 6118 6119 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6120 6121 #if MAX_NUMNODES > 1 6122 /* 6123 * Figure out the number of possible node ids. 6124 */ 6125 void __init setup_nr_node_ids(void) 6126 { 6127 unsigned int highest; 6128 6129 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 6130 nr_node_ids = highest + 1; 6131 } 6132 #endif 6133 6134 /** 6135 * node_map_pfn_alignment - determine the maximum internode alignment 6136 * 6137 * This function should be called after node map is populated and sorted. 6138 * It calculates the maximum power of two alignment which can distinguish 6139 * all the nodes. 6140 * 6141 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 6142 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 6143 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 6144 * shifted, 1GiB is enough and this function will indicate so. 6145 * 6146 * This is used to test whether pfn -> nid mapping of the chosen memory 6147 * model has fine enough granularity to avoid incorrect mapping for the 6148 * populated node map. 6149 * 6150 * Returns the determined alignment in pfn's. 0 if there is no alignment 6151 * requirement (single node). 6152 */ 6153 unsigned long __init node_map_pfn_alignment(void) 6154 { 6155 unsigned long accl_mask = 0, last_end = 0; 6156 unsigned long start, end, mask; 6157 int last_nid = -1; 6158 int i, nid; 6159 6160 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 6161 if (!start || last_nid < 0 || last_nid == nid) { 6162 last_nid = nid; 6163 last_end = end; 6164 continue; 6165 } 6166 6167 /* 6168 * Start with a mask granular enough to pin-point to the 6169 * start pfn and tick off bits one-by-one until it becomes 6170 * too coarse to separate the current node from the last. 6171 */ 6172 mask = ~((1 << __ffs(start)) - 1); 6173 while (mask && last_end <= (start & (mask << 1))) 6174 mask <<= 1; 6175 6176 /* accumulate all internode masks */ 6177 accl_mask |= mask; 6178 } 6179 6180 /* convert mask to number of pages */ 6181 return ~accl_mask + 1; 6182 } 6183 6184 /* Find the lowest pfn for a node */ 6185 static unsigned long __init find_min_pfn_for_node(int nid) 6186 { 6187 unsigned long min_pfn = ULONG_MAX; 6188 unsigned long start_pfn; 6189 int i; 6190 6191 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 6192 min_pfn = min(min_pfn, start_pfn); 6193 6194 if (min_pfn == ULONG_MAX) { 6195 pr_warn("Could not find start_pfn for node %d\n", nid); 6196 return 0; 6197 } 6198 6199 return min_pfn; 6200 } 6201 6202 /** 6203 * find_min_pfn_with_active_regions - Find the minimum PFN registered 6204 * 6205 * It returns the minimum PFN based on information provided via 6206 * memblock_set_node(). 6207 */ 6208 unsigned long __init find_min_pfn_with_active_regions(void) 6209 { 6210 return find_min_pfn_for_node(MAX_NUMNODES); 6211 } 6212 6213 /* 6214 * early_calculate_totalpages() 6215 * Sum pages in active regions for movable zone. 6216 * Populate N_MEMORY for calculating usable_nodes. 6217 */ 6218 static unsigned long __init early_calculate_totalpages(void) 6219 { 6220 unsigned long totalpages = 0; 6221 unsigned long start_pfn, end_pfn; 6222 int i, nid; 6223 6224 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 6225 unsigned long pages = end_pfn - start_pfn; 6226 6227 totalpages += pages; 6228 if (pages) 6229 node_set_state(nid, N_MEMORY); 6230 } 6231 return totalpages; 6232 } 6233 6234 /* 6235 * Find the PFN the Movable zone begins in each node. Kernel memory 6236 * is spread evenly between nodes as long as the nodes have enough 6237 * memory. When they don't, some nodes will have more kernelcore than 6238 * others 6239 */ 6240 static void __init find_zone_movable_pfns_for_nodes(void) 6241 { 6242 int i, nid; 6243 unsigned long usable_startpfn; 6244 unsigned long kernelcore_node, kernelcore_remaining; 6245 /* save the state before borrow the nodemask */ 6246 nodemask_t saved_node_state = node_states[N_MEMORY]; 6247 unsigned long totalpages = early_calculate_totalpages(); 6248 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 6249 struct memblock_region *r; 6250 6251 /* Need to find movable_zone earlier when movable_node is specified. */ 6252 find_usable_zone_for_movable(); 6253 6254 /* 6255 * If movable_node is specified, ignore kernelcore and movablecore 6256 * options. 6257 */ 6258 if (movable_node_is_enabled()) { 6259 for_each_memblock(memory, r) { 6260 if (!memblock_is_hotpluggable(r)) 6261 continue; 6262 6263 nid = r->nid; 6264 6265 usable_startpfn = PFN_DOWN(r->base); 6266 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 6267 min(usable_startpfn, zone_movable_pfn[nid]) : 6268 usable_startpfn; 6269 } 6270 6271 goto out2; 6272 } 6273 6274 /* 6275 * If kernelcore=mirror is specified, ignore movablecore option 6276 */ 6277 if (mirrored_kernelcore) { 6278 bool mem_below_4gb_not_mirrored = false; 6279 6280 for_each_memblock(memory, r) { 6281 if (memblock_is_mirror(r)) 6282 continue; 6283 6284 nid = r->nid; 6285 6286 usable_startpfn = memblock_region_memory_base_pfn(r); 6287 6288 if (usable_startpfn < 0x100000) { 6289 mem_below_4gb_not_mirrored = true; 6290 continue; 6291 } 6292 6293 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 6294 min(usable_startpfn, zone_movable_pfn[nid]) : 6295 usable_startpfn; 6296 } 6297 6298 if (mem_below_4gb_not_mirrored) 6299 pr_warn("This configuration results in unmirrored kernel memory."); 6300 6301 goto out2; 6302 } 6303 6304 /* 6305 * If movablecore=nn[KMG] was specified, calculate what size of 6306 * kernelcore that corresponds so that memory usable for 6307 * any allocation type is evenly spread. If both kernelcore 6308 * and movablecore are specified, then the value of kernelcore 6309 * will be used for required_kernelcore if it's greater than 6310 * what movablecore would have allowed. 6311 */ 6312 if (required_movablecore) { 6313 unsigned long corepages; 6314 6315 /* 6316 * Round-up so that ZONE_MOVABLE is at least as large as what 6317 * was requested by the user 6318 */ 6319 required_movablecore = 6320 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 6321 required_movablecore = min(totalpages, required_movablecore); 6322 corepages = totalpages - required_movablecore; 6323 6324 required_kernelcore = max(required_kernelcore, corepages); 6325 } 6326 6327 /* 6328 * If kernelcore was not specified or kernelcore size is larger 6329 * than totalpages, there is no ZONE_MOVABLE. 6330 */ 6331 if (!required_kernelcore || required_kernelcore >= totalpages) 6332 goto out; 6333 6334 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 6335 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 6336 6337 restart: 6338 /* Spread kernelcore memory as evenly as possible throughout nodes */ 6339 kernelcore_node = required_kernelcore / usable_nodes; 6340 for_each_node_state(nid, N_MEMORY) { 6341 unsigned long start_pfn, end_pfn; 6342 6343 /* 6344 * Recalculate kernelcore_node if the division per node 6345 * now exceeds what is necessary to satisfy the requested 6346 * amount of memory for the kernel 6347 */ 6348 if (required_kernelcore < kernelcore_node) 6349 kernelcore_node = required_kernelcore / usable_nodes; 6350 6351 /* 6352 * As the map is walked, we track how much memory is usable 6353 * by the kernel using kernelcore_remaining. When it is 6354 * 0, the rest of the node is usable by ZONE_MOVABLE 6355 */ 6356 kernelcore_remaining = kernelcore_node; 6357 6358 /* Go through each range of PFNs within this node */ 6359 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6360 unsigned long size_pages; 6361 6362 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 6363 if (start_pfn >= end_pfn) 6364 continue; 6365 6366 /* Account for what is only usable for kernelcore */ 6367 if (start_pfn < usable_startpfn) { 6368 unsigned long kernel_pages; 6369 kernel_pages = min(end_pfn, usable_startpfn) 6370 - start_pfn; 6371 6372 kernelcore_remaining -= min(kernel_pages, 6373 kernelcore_remaining); 6374 required_kernelcore -= min(kernel_pages, 6375 required_kernelcore); 6376 6377 /* Continue if range is now fully accounted */ 6378 if (end_pfn <= usable_startpfn) { 6379 6380 /* 6381 * Push zone_movable_pfn to the end so 6382 * that if we have to rebalance 6383 * kernelcore across nodes, we will 6384 * not double account here 6385 */ 6386 zone_movable_pfn[nid] = end_pfn; 6387 continue; 6388 } 6389 start_pfn = usable_startpfn; 6390 } 6391 6392 /* 6393 * The usable PFN range for ZONE_MOVABLE is from 6394 * start_pfn->end_pfn. Calculate size_pages as the 6395 * number of pages used as kernelcore 6396 */ 6397 size_pages = end_pfn - start_pfn; 6398 if (size_pages > kernelcore_remaining) 6399 size_pages = kernelcore_remaining; 6400 zone_movable_pfn[nid] = start_pfn + size_pages; 6401 6402 /* 6403 * Some kernelcore has been met, update counts and 6404 * break if the kernelcore for this node has been 6405 * satisfied 6406 */ 6407 required_kernelcore -= min(required_kernelcore, 6408 size_pages); 6409 kernelcore_remaining -= size_pages; 6410 if (!kernelcore_remaining) 6411 break; 6412 } 6413 } 6414 6415 /* 6416 * If there is still required_kernelcore, we do another pass with one 6417 * less node in the count. This will push zone_movable_pfn[nid] further 6418 * along on the nodes that still have memory until kernelcore is 6419 * satisfied 6420 */ 6421 usable_nodes--; 6422 if (usable_nodes && required_kernelcore > usable_nodes) 6423 goto restart; 6424 6425 out2: 6426 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 6427 for (nid = 0; nid < MAX_NUMNODES; nid++) 6428 zone_movable_pfn[nid] = 6429 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 6430 6431 out: 6432 /* restore the node_state */ 6433 node_states[N_MEMORY] = saved_node_state; 6434 } 6435 6436 /* Any regular or high memory on that node ? */ 6437 static void check_for_memory(pg_data_t *pgdat, int nid) 6438 { 6439 enum zone_type zone_type; 6440 6441 if (N_MEMORY == N_NORMAL_MEMORY) 6442 return; 6443 6444 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 6445 struct zone *zone = &pgdat->node_zones[zone_type]; 6446 if (populated_zone(zone)) { 6447 node_set_state(nid, N_HIGH_MEMORY); 6448 if (N_NORMAL_MEMORY != N_HIGH_MEMORY && 6449 zone_type <= ZONE_NORMAL) 6450 node_set_state(nid, N_NORMAL_MEMORY); 6451 break; 6452 } 6453 } 6454 } 6455 6456 /** 6457 * free_area_init_nodes - Initialise all pg_data_t and zone data 6458 * @max_zone_pfn: an array of max PFNs for each zone 6459 * 6460 * This will call free_area_init_node() for each active node in the system. 6461 * Using the page ranges provided by memblock_set_node(), the size of each 6462 * zone in each node and their holes is calculated. If the maximum PFN 6463 * between two adjacent zones match, it is assumed that the zone is empty. 6464 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 6465 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 6466 * starts where the previous one ended. For example, ZONE_DMA32 starts 6467 * at arch_max_dma_pfn. 6468 */ 6469 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 6470 { 6471 unsigned long start_pfn, end_pfn; 6472 int i, nid; 6473 6474 /* Record where the zone boundaries are */ 6475 memset(arch_zone_lowest_possible_pfn, 0, 6476 sizeof(arch_zone_lowest_possible_pfn)); 6477 memset(arch_zone_highest_possible_pfn, 0, 6478 sizeof(arch_zone_highest_possible_pfn)); 6479 6480 start_pfn = find_min_pfn_with_active_regions(); 6481 6482 for (i = 0; i < MAX_NR_ZONES; i++) { 6483 if (i == ZONE_MOVABLE) 6484 continue; 6485 6486 end_pfn = max(max_zone_pfn[i], start_pfn); 6487 arch_zone_lowest_possible_pfn[i] = start_pfn; 6488 arch_zone_highest_possible_pfn[i] = end_pfn; 6489 6490 start_pfn = end_pfn; 6491 } 6492 6493 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 6494 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 6495 find_zone_movable_pfns_for_nodes(); 6496 6497 /* Print out the zone ranges */ 6498 pr_info("Zone ranges:\n"); 6499 for (i = 0; i < MAX_NR_ZONES; i++) { 6500 if (i == ZONE_MOVABLE) 6501 continue; 6502 pr_info(" %-8s ", zone_names[i]); 6503 if (arch_zone_lowest_possible_pfn[i] == 6504 arch_zone_highest_possible_pfn[i]) 6505 pr_cont("empty\n"); 6506 else 6507 pr_cont("[mem %#018Lx-%#018Lx]\n", 6508 (u64)arch_zone_lowest_possible_pfn[i] 6509 << PAGE_SHIFT, 6510 ((u64)arch_zone_highest_possible_pfn[i] 6511 << PAGE_SHIFT) - 1); 6512 } 6513 6514 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 6515 pr_info("Movable zone start for each node\n"); 6516 for (i = 0; i < MAX_NUMNODES; i++) { 6517 if (zone_movable_pfn[i]) 6518 pr_info(" Node %d: %#018Lx\n", i, 6519 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 6520 } 6521 6522 /* Print out the early node map */ 6523 pr_info("Early memory node ranges\n"); 6524 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 6525 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 6526 (u64)start_pfn << PAGE_SHIFT, 6527 ((u64)end_pfn << PAGE_SHIFT) - 1); 6528 6529 /* Initialise every node */ 6530 mminit_verify_pageflags_layout(); 6531 setup_nr_node_ids(); 6532 for_each_online_node(nid) { 6533 pg_data_t *pgdat = NODE_DATA(nid); 6534 free_area_init_node(nid, NULL, 6535 find_min_pfn_for_node(nid), NULL); 6536 6537 /* Any memory on that node */ 6538 if (pgdat->node_present_pages) 6539 node_set_state(nid, N_MEMORY); 6540 check_for_memory(pgdat, nid); 6541 } 6542 } 6543 6544 static int __init cmdline_parse_core(char *p, unsigned long *core) 6545 { 6546 unsigned long long coremem; 6547 if (!p) 6548 return -EINVAL; 6549 6550 coremem = memparse(p, &p); 6551 *core = coremem >> PAGE_SHIFT; 6552 6553 /* Paranoid check that UL is enough for the coremem value */ 6554 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 6555 6556 return 0; 6557 } 6558 6559 /* 6560 * kernelcore=size sets the amount of memory for use for allocations that 6561 * cannot be reclaimed or migrated. 6562 */ 6563 static int __init cmdline_parse_kernelcore(char *p) 6564 { 6565 /* parse kernelcore=mirror */ 6566 if (parse_option_str(p, "mirror")) { 6567 mirrored_kernelcore = true; 6568 return 0; 6569 } 6570 6571 return cmdline_parse_core(p, &required_kernelcore); 6572 } 6573 6574 /* 6575 * movablecore=size sets the amount of memory for use for allocations that 6576 * can be reclaimed or migrated. 6577 */ 6578 static int __init cmdline_parse_movablecore(char *p) 6579 { 6580 return cmdline_parse_core(p, &required_movablecore); 6581 } 6582 6583 early_param("kernelcore", cmdline_parse_kernelcore); 6584 early_param("movablecore", cmdline_parse_movablecore); 6585 6586 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6587 6588 void adjust_managed_page_count(struct page *page, long count) 6589 { 6590 spin_lock(&managed_page_count_lock); 6591 page_zone(page)->managed_pages += count; 6592 totalram_pages += count; 6593 #ifdef CONFIG_HIGHMEM 6594 if (PageHighMem(page)) 6595 totalhigh_pages += count; 6596 #endif 6597 spin_unlock(&managed_page_count_lock); 6598 } 6599 EXPORT_SYMBOL(adjust_managed_page_count); 6600 6601 unsigned long free_reserved_area(void *start, void *end, int poison, char *s) 6602 { 6603 void *pos; 6604 unsigned long pages = 0; 6605 6606 start = (void *)PAGE_ALIGN((unsigned long)start); 6607 end = (void *)((unsigned long)end & PAGE_MASK); 6608 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 6609 if ((unsigned int)poison <= 0xFF) 6610 memset(pos, poison, PAGE_SIZE); 6611 free_reserved_page(virt_to_page(pos)); 6612 } 6613 6614 if (pages && s) 6615 pr_info("Freeing %s memory: %ldK\n", 6616 s, pages << (PAGE_SHIFT - 10)); 6617 6618 return pages; 6619 } 6620 EXPORT_SYMBOL(free_reserved_area); 6621 6622 #ifdef CONFIG_HIGHMEM 6623 void free_highmem_page(struct page *page) 6624 { 6625 __free_reserved_page(page); 6626 totalram_pages++; 6627 page_zone(page)->managed_pages++; 6628 totalhigh_pages++; 6629 } 6630 #endif 6631 6632 6633 void __init mem_init_print_info(const char *str) 6634 { 6635 unsigned long physpages, codesize, datasize, rosize, bss_size; 6636 unsigned long init_code_size, init_data_size; 6637 6638 physpages = get_num_physpages(); 6639 codesize = _etext - _stext; 6640 datasize = _edata - _sdata; 6641 rosize = __end_rodata - __start_rodata; 6642 bss_size = __bss_stop - __bss_start; 6643 init_data_size = __init_end - __init_begin; 6644 init_code_size = _einittext - _sinittext; 6645 6646 /* 6647 * Detect special cases and adjust section sizes accordingly: 6648 * 1) .init.* may be embedded into .data sections 6649 * 2) .init.text.* may be out of [__init_begin, __init_end], 6650 * please refer to arch/tile/kernel/vmlinux.lds.S. 6651 * 3) .rodata.* may be embedded into .text or .data sections. 6652 */ 6653 #define adj_init_size(start, end, size, pos, adj) \ 6654 do { \ 6655 if (start <= pos && pos < end && size > adj) \ 6656 size -= adj; \ 6657 } while (0) 6658 6659 adj_init_size(__init_begin, __init_end, init_data_size, 6660 _sinittext, init_code_size); 6661 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 6662 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 6663 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 6664 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 6665 6666 #undef adj_init_size 6667 6668 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 6669 #ifdef CONFIG_HIGHMEM 6670 ", %luK highmem" 6671 #endif 6672 "%s%s)\n", 6673 nr_free_pages() << (PAGE_SHIFT - 10), 6674 physpages << (PAGE_SHIFT - 10), 6675 codesize >> 10, datasize >> 10, rosize >> 10, 6676 (init_data_size + init_code_size) >> 10, bss_size >> 10, 6677 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10), 6678 totalcma_pages << (PAGE_SHIFT - 10), 6679 #ifdef CONFIG_HIGHMEM 6680 totalhigh_pages << (PAGE_SHIFT - 10), 6681 #endif 6682 str ? ", " : "", str ? str : ""); 6683 } 6684 6685 /** 6686 * set_dma_reserve - set the specified number of pages reserved in the first zone 6687 * @new_dma_reserve: The number of pages to mark reserved 6688 * 6689 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 6690 * In the DMA zone, a significant percentage may be consumed by kernel image 6691 * and other unfreeable allocations which can skew the watermarks badly. This 6692 * function may optionally be used to account for unfreeable pages in the 6693 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 6694 * smaller per-cpu batchsize. 6695 */ 6696 void __init set_dma_reserve(unsigned long new_dma_reserve) 6697 { 6698 dma_reserve = new_dma_reserve; 6699 } 6700 6701 void __init free_area_init(unsigned long *zones_size) 6702 { 6703 free_area_init_node(0, zones_size, 6704 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 6705 } 6706 6707 static int page_alloc_cpu_dead(unsigned int cpu) 6708 { 6709 6710 lru_add_drain_cpu(cpu); 6711 drain_pages(cpu); 6712 6713 /* 6714 * Spill the event counters of the dead processor 6715 * into the current processors event counters. 6716 * This artificially elevates the count of the current 6717 * processor. 6718 */ 6719 vm_events_fold_cpu(cpu); 6720 6721 /* 6722 * Zero the differential counters of the dead processor 6723 * so that the vm statistics are consistent. 6724 * 6725 * This is only okay since the processor is dead and cannot 6726 * race with what we are doing. 6727 */ 6728 cpu_vm_stats_fold(cpu); 6729 return 0; 6730 } 6731 6732 void __init page_alloc_init(void) 6733 { 6734 int ret; 6735 6736 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD, 6737 "mm/page_alloc:dead", NULL, 6738 page_alloc_cpu_dead); 6739 WARN_ON(ret < 0); 6740 } 6741 6742 /* 6743 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 6744 * or min_free_kbytes changes. 6745 */ 6746 static void calculate_totalreserve_pages(void) 6747 { 6748 struct pglist_data *pgdat; 6749 unsigned long reserve_pages = 0; 6750 enum zone_type i, j; 6751 6752 for_each_online_pgdat(pgdat) { 6753 6754 pgdat->totalreserve_pages = 0; 6755 6756 for (i = 0; i < MAX_NR_ZONES; i++) { 6757 struct zone *zone = pgdat->node_zones + i; 6758 long max = 0; 6759 6760 /* Find valid and maximum lowmem_reserve in the zone */ 6761 for (j = i; j < MAX_NR_ZONES; j++) { 6762 if (zone->lowmem_reserve[j] > max) 6763 max = zone->lowmem_reserve[j]; 6764 } 6765 6766 /* we treat the high watermark as reserved pages. */ 6767 max += high_wmark_pages(zone); 6768 6769 if (max > zone->managed_pages) 6770 max = zone->managed_pages; 6771 6772 pgdat->totalreserve_pages += max; 6773 6774 reserve_pages += max; 6775 } 6776 } 6777 totalreserve_pages = reserve_pages; 6778 } 6779 6780 /* 6781 * setup_per_zone_lowmem_reserve - called whenever 6782 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 6783 * has a correct pages reserved value, so an adequate number of 6784 * pages are left in the zone after a successful __alloc_pages(). 6785 */ 6786 static void setup_per_zone_lowmem_reserve(void) 6787 { 6788 struct pglist_data *pgdat; 6789 enum zone_type j, idx; 6790 6791 for_each_online_pgdat(pgdat) { 6792 for (j = 0; j < MAX_NR_ZONES; j++) { 6793 struct zone *zone = pgdat->node_zones + j; 6794 unsigned long managed_pages = zone->managed_pages; 6795 6796 zone->lowmem_reserve[j] = 0; 6797 6798 idx = j; 6799 while (idx) { 6800 struct zone *lower_zone; 6801 6802 idx--; 6803 6804 if (sysctl_lowmem_reserve_ratio[idx] < 1) 6805 sysctl_lowmem_reserve_ratio[idx] = 1; 6806 6807 lower_zone = pgdat->node_zones + idx; 6808 lower_zone->lowmem_reserve[j] = managed_pages / 6809 sysctl_lowmem_reserve_ratio[idx]; 6810 managed_pages += lower_zone->managed_pages; 6811 } 6812 } 6813 } 6814 6815 /* update totalreserve_pages */ 6816 calculate_totalreserve_pages(); 6817 } 6818 6819 static void __setup_per_zone_wmarks(void) 6820 { 6821 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 6822 unsigned long lowmem_pages = 0; 6823 struct zone *zone; 6824 unsigned long flags; 6825 6826 /* Calculate total number of !ZONE_HIGHMEM pages */ 6827 for_each_zone(zone) { 6828 if (!is_highmem(zone)) 6829 lowmem_pages += zone->managed_pages; 6830 } 6831 6832 for_each_zone(zone) { 6833 u64 tmp; 6834 6835 spin_lock_irqsave(&zone->lock, flags); 6836 tmp = (u64)pages_min * zone->managed_pages; 6837 do_div(tmp, lowmem_pages); 6838 if (is_highmem(zone)) { 6839 /* 6840 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 6841 * need highmem pages, so cap pages_min to a small 6842 * value here. 6843 * 6844 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 6845 * deltas control asynch page reclaim, and so should 6846 * not be capped for highmem. 6847 */ 6848 unsigned long min_pages; 6849 6850 min_pages = zone->managed_pages / 1024; 6851 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 6852 zone->watermark[WMARK_MIN] = min_pages; 6853 } else { 6854 /* 6855 * If it's a lowmem zone, reserve a number of pages 6856 * proportionate to the zone's size. 6857 */ 6858 zone->watermark[WMARK_MIN] = tmp; 6859 } 6860 6861 /* 6862 * Set the kswapd watermarks distance according to the 6863 * scale factor in proportion to available memory, but 6864 * ensure a minimum size on small systems. 6865 */ 6866 tmp = max_t(u64, tmp >> 2, 6867 mult_frac(zone->managed_pages, 6868 watermark_scale_factor, 10000)); 6869 6870 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 6871 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; 6872 6873 spin_unlock_irqrestore(&zone->lock, flags); 6874 } 6875 6876 /* update totalreserve_pages */ 6877 calculate_totalreserve_pages(); 6878 } 6879 6880 /** 6881 * setup_per_zone_wmarks - called when min_free_kbytes changes 6882 * or when memory is hot-{added|removed} 6883 * 6884 * Ensures that the watermark[min,low,high] values for each zone are set 6885 * correctly with respect to min_free_kbytes. 6886 */ 6887 void setup_per_zone_wmarks(void) 6888 { 6889 mutex_lock(&zonelists_mutex); 6890 __setup_per_zone_wmarks(); 6891 mutex_unlock(&zonelists_mutex); 6892 } 6893 6894 /* 6895 * Initialise min_free_kbytes. 6896 * 6897 * For small machines we want it small (128k min). For large machines 6898 * we want it large (64MB max). But it is not linear, because network 6899 * bandwidth does not increase linearly with machine size. We use 6900 * 6901 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 6902 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 6903 * 6904 * which yields 6905 * 6906 * 16MB: 512k 6907 * 32MB: 724k 6908 * 64MB: 1024k 6909 * 128MB: 1448k 6910 * 256MB: 2048k 6911 * 512MB: 2896k 6912 * 1024MB: 4096k 6913 * 2048MB: 5792k 6914 * 4096MB: 8192k 6915 * 8192MB: 11584k 6916 * 16384MB: 16384k 6917 */ 6918 int __meminit init_per_zone_wmark_min(void) 6919 { 6920 unsigned long lowmem_kbytes; 6921 int new_min_free_kbytes; 6922 6923 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 6924 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 6925 6926 if (new_min_free_kbytes > user_min_free_kbytes) { 6927 min_free_kbytes = new_min_free_kbytes; 6928 if (min_free_kbytes < 128) 6929 min_free_kbytes = 128; 6930 if (min_free_kbytes > 65536) 6931 min_free_kbytes = 65536; 6932 } else { 6933 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 6934 new_min_free_kbytes, user_min_free_kbytes); 6935 } 6936 setup_per_zone_wmarks(); 6937 refresh_zone_stat_thresholds(); 6938 setup_per_zone_lowmem_reserve(); 6939 6940 #ifdef CONFIG_NUMA 6941 setup_min_unmapped_ratio(); 6942 setup_min_slab_ratio(); 6943 #endif 6944 6945 return 0; 6946 } 6947 core_initcall(init_per_zone_wmark_min) 6948 6949 /* 6950 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 6951 * that we can call two helper functions whenever min_free_kbytes 6952 * changes. 6953 */ 6954 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 6955 void __user *buffer, size_t *length, loff_t *ppos) 6956 { 6957 int rc; 6958 6959 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6960 if (rc) 6961 return rc; 6962 6963 if (write) { 6964 user_min_free_kbytes = min_free_kbytes; 6965 setup_per_zone_wmarks(); 6966 } 6967 return 0; 6968 } 6969 6970 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 6971 void __user *buffer, size_t *length, loff_t *ppos) 6972 { 6973 int rc; 6974 6975 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6976 if (rc) 6977 return rc; 6978 6979 if (write) 6980 setup_per_zone_wmarks(); 6981 6982 return 0; 6983 } 6984 6985 #ifdef CONFIG_NUMA 6986 static void setup_min_unmapped_ratio(void) 6987 { 6988 pg_data_t *pgdat; 6989 struct zone *zone; 6990 6991 for_each_online_pgdat(pgdat) 6992 pgdat->min_unmapped_pages = 0; 6993 6994 for_each_zone(zone) 6995 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages * 6996 sysctl_min_unmapped_ratio) / 100; 6997 } 6998 6999 7000 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 7001 void __user *buffer, size_t *length, loff_t *ppos) 7002 { 7003 int rc; 7004 7005 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7006 if (rc) 7007 return rc; 7008 7009 setup_min_unmapped_ratio(); 7010 7011 return 0; 7012 } 7013 7014 static void setup_min_slab_ratio(void) 7015 { 7016 pg_data_t *pgdat; 7017 struct zone *zone; 7018 7019 for_each_online_pgdat(pgdat) 7020 pgdat->min_slab_pages = 0; 7021 7022 for_each_zone(zone) 7023 zone->zone_pgdat->min_slab_pages += (zone->managed_pages * 7024 sysctl_min_slab_ratio) / 100; 7025 } 7026 7027 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 7028 void __user *buffer, size_t *length, loff_t *ppos) 7029 { 7030 int rc; 7031 7032 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7033 if (rc) 7034 return rc; 7035 7036 setup_min_slab_ratio(); 7037 7038 return 0; 7039 } 7040 #endif 7041 7042 /* 7043 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 7044 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 7045 * whenever sysctl_lowmem_reserve_ratio changes. 7046 * 7047 * The reserve ratio obviously has absolutely no relation with the 7048 * minimum watermarks. The lowmem reserve ratio can only make sense 7049 * if in function of the boot time zone sizes. 7050 */ 7051 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 7052 void __user *buffer, size_t *length, loff_t *ppos) 7053 { 7054 proc_dointvec_minmax(table, write, buffer, length, ppos); 7055 setup_per_zone_lowmem_reserve(); 7056 return 0; 7057 } 7058 7059 /* 7060 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 7061 * cpu. It is the fraction of total pages in each zone that a hot per cpu 7062 * pagelist can have before it gets flushed back to buddy allocator. 7063 */ 7064 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 7065 void __user *buffer, size_t *length, loff_t *ppos) 7066 { 7067 struct zone *zone; 7068 int old_percpu_pagelist_fraction; 7069 int ret; 7070 7071 mutex_lock(&pcp_batch_high_lock); 7072 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 7073 7074 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 7075 if (!write || ret < 0) 7076 goto out; 7077 7078 /* Sanity checking to avoid pcp imbalance */ 7079 if (percpu_pagelist_fraction && 7080 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 7081 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 7082 ret = -EINVAL; 7083 goto out; 7084 } 7085 7086 /* No change? */ 7087 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 7088 goto out; 7089 7090 for_each_populated_zone(zone) { 7091 unsigned int cpu; 7092 7093 for_each_possible_cpu(cpu) 7094 pageset_set_high_and_batch(zone, 7095 per_cpu_ptr(zone->pageset, cpu)); 7096 } 7097 out: 7098 mutex_unlock(&pcp_batch_high_lock); 7099 return ret; 7100 } 7101 7102 #ifdef CONFIG_NUMA 7103 int hashdist = HASHDIST_DEFAULT; 7104 7105 static int __init set_hashdist(char *str) 7106 { 7107 if (!str) 7108 return 0; 7109 hashdist = simple_strtoul(str, &str, 0); 7110 return 1; 7111 } 7112 __setup("hashdist=", set_hashdist); 7113 #endif 7114 7115 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 7116 /* 7117 * Returns the number of pages that arch has reserved but 7118 * is not known to alloc_large_system_hash(). 7119 */ 7120 static unsigned long __init arch_reserved_kernel_pages(void) 7121 { 7122 return 0; 7123 } 7124 #endif 7125 7126 /* 7127 * allocate a large system hash table from bootmem 7128 * - it is assumed that the hash table must contain an exact power-of-2 7129 * quantity of entries 7130 * - limit is the number of hash buckets, not the total allocation size 7131 */ 7132 void *__init alloc_large_system_hash(const char *tablename, 7133 unsigned long bucketsize, 7134 unsigned long numentries, 7135 int scale, 7136 int flags, 7137 unsigned int *_hash_shift, 7138 unsigned int *_hash_mask, 7139 unsigned long low_limit, 7140 unsigned long high_limit) 7141 { 7142 unsigned long long max = high_limit; 7143 unsigned long log2qty, size; 7144 void *table = NULL; 7145 7146 /* allow the kernel cmdline to have a say */ 7147 if (!numentries) { 7148 /* round applicable memory size up to nearest megabyte */ 7149 numentries = nr_kernel_pages; 7150 numentries -= arch_reserved_kernel_pages(); 7151 7152 /* It isn't necessary when PAGE_SIZE >= 1MB */ 7153 if (PAGE_SHIFT < 20) 7154 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 7155 7156 /* limit to 1 bucket per 2^scale bytes of low memory */ 7157 if (scale > PAGE_SHIFT) 7158 numentries >>= (scale - PAGE_SHIFT); 7159 else 7160 numentries <<= (PAGE_SHIFT - scale); 7161 7162 /* Make sure we've got at least a 0-order allocation.. */ 7163 if (unlikely(flags & HASH_SMALL)) { 7164 /* Makes no sense without HASH_EARLY */ 7165 WARN_ON(!(flags & HASH_EARLY)); 7166 if (!(numentries >> *_hash_shift)) { 7167 numentries = 1UL << *_hash_shift; 7168 BUG_ON(!numentries); 7169 } 7170 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 7171 numentries = PAGE_SIZE / bucketsize; 7172 } 7173 numentries = roundup_pow_of_two(numentries); 7174 7175 /* limit allocation size to 1/16 total memory by default */ 7176 if (max == 0) { 7177 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 7178 do_div(max, bucketsize); 7179 } 7180 max = min(max, 0x80000000ULL); 7181 7182 if (numentries < low_limit) 7183 numentries = low_limit; 7184 if (numentries > max) 7185 numentries = max; 7186 7187 log2qty = ilog2(numentries); 7188 7189 do { 7190 size = bucketsize << log2qty; 7191 if (flags & HASH_EARLY) 7192 table = memblock_virt_alloc_nopanic(size, 0); 7193 else if (hashdist) 7194 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 7195 else { 7196 /* 7197 * If bucketsize is not a power-of-two, we may free 7198 * some pages at the end of hash table which 7199 * alloc_pages_exact() automatically does 7200 */ 7201 if (get_order(size) < MAX_ORDER) { 7202 table = alloc_pages_exact(size, GFP_ATOMIC); 7203 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 7204 } 7205 } 7206 } while (!table && size > PAGE_SIZE && --log2qty); 7207 7208 if (!table) 7209 panic("Failed to allocate %s hash table\n", tablename); 7210 7211 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n", 7212 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size); 7213 7214 if (_hash_shift) 7215 *_hash_shift = log2qty; 7216 if (_hash_mask) 7217 *_hash_mask = (1 << log2qty) - 1; 7218 7219 return table; 7220 } 7221 7222 /* 7223 * This function checks whether pageblock includes unmovable pages or not. 7224 * If @count is not zero, it is okay to include less @count unmovable pages 7225 * 7226 * PageLRU check without isolation or lru_lock could race so that 7227 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable 7228 * check without lock_page also may miss some movable non-lru pages at 7229 * race condition. So you can't expect this function should be exact. 7230 */ 7231 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 7232 bool skip_hwpoisoned_pages) 7233 { 7234 unsigned long pfn, iter, found; 7235 int mt; 7236 7237 /* 7238 * For avoiding noise data, lru_add_drain_all() should be called 7239 * If ZONE_MOVABLE, the zone never contains unmovable pages 7240 */ 7241 if (zone_idx(zone) == ZONE_MOVABLE) 7242 return false; 7243 mt = get_pageblock_migratetype(page); 7244 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt)) 7245 return false; 7246 7247 pfn = page_to_pfn(page); 7248 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 7249 unsigned long check = pfn + iter; 7250 7251 if (!pfn_valid_within(check)) 7252 continue; 7253 7254 page = pfn_to_page(check); 7255 7256 /* 7257 * Hugepages are not in LRU lists, but they're movable. 7258 * We need not scan over tail pages bacause we don't 7259 * handle each tail page individually in migration. 7260 */ 7261 if (PageHuge(page)) { 7262 iter = round_up(iter + 1, 1<<compound_order(page)) - 1; 7263 continue; 7264 } 7265 7266 /* 7267 * We can't use page_count without pin a page 7268 * because another CPU can free compound page. 7269 * This check already skips compound tails of THP 7270 * because their page->_refcount is zero at all time. 7271 */ 7272 if (!page_ref_count(page)) { 7273 if (PageBuddy(page)) 7274 iter += (1 << page_order(page)) - 1; 7275 continue; 7276 } 7277 7278 /* 7279 * The HWPoisoned page may be not in buddy system, and 7280 * page_count() is not 0. 7281 */ 7282 if (skip_hwpoisoned_pages && PageHWPoison(page)) 7283 continue; 7284 7285 if (__PageMovable(page)) 7286 continue; 7287 7288 if (!PageLRU(page)) 7289 found++; 7290 /* 7291 * If there are RECLAIMABLE pages, we need to check 7292 * it. But now, memory offline itself doesn't call 7293 * shrink_node_slabs() and it still to be fixed. 7294 */ 7295 /* 7296 * If the page is not RAM, page_count()should be 0. 7297 * we don't need more check. This is an _used_ not-movable page. 7298 * 7299 * The problematic thing here is PG_reserved pages. PG_reserved 7300 * is set to both of a memory hole page and a _used_ kernel 7301 * page at boot. 7302 */ 7303 if (found > count) 7304 return true; 7305 } 7306 return false; 7307 } 7308 7309 bool is_pageblock_removable_nolock(struct page *page) 7310 { 7311 struct zone *zone; 7312 unsigned long pfn; 7313 7314 /* 7315 * We have to be careful here because we are iterating over memory 7316 * sections which are not zone aware so we might end up outside of 7317 * the zone but still within the section. 7318 * We have to take care about the node as well. If the node is offline 7319 * its NODE_DATA will be NULL - see page_zone. 7320 */ 7321 if (!node_online(page_to_nid(page))) 7322 return false; 7323 7324 zone = page_zone(page); 7325 pfn = page_to_pfn(page); 7326 if (!zone_spans_pfn(zone, pfn)) 7327 return false; 7328 7329 return !has_unmovable_pages(zone, page, 0, true); 7330 } 7331 7332 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA) 7333 7334 static unsigned long pfn_max_align_down(unsigned long pfn) 7335 { 7336 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 7337 pageblock_nr_pages) - 1); 7338 } 7339 7340 static unsigned long pfn_max_align_up(unsigned long pfn) 7341 { 7342 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 7343 pageblock_nr_pages)); 7344 } 7345 7346 /* [start, end) must belong to a single zone. */ 7347 static int __alloc_contig_migrate_range(struct compact_control *cc, 7348 unsigned long start, unsigned long end) 7349 { 7350 /* This function is based on compact_zone() from compaction.c. */ 7351 unsigned long nr_reclaimed; 7352 unsigned long pfn = start; 7353 unsigned int tries = 0; 7354 int ret = 0; 7355 7356 migrate_prep(); 7357 7358 while (pfn < end || !list_empty(&cc->migratepages)) { 7359 if (fatal_signal_pending(current)) { 7360 ret = -EINTR; 7361 break; 7362 } 7363 7364 if (list_empty(&cc->migratepages)) { 7365 cc->nr_migratepages = 0; 7366 pfn = isolate_migratepages_range(cc, pfn, end); 7367 if (!pfn) { 7368 ret = -EINTR; 7369 break; 7370 } 7371 tries = 0; 7372 } else if (++tries == 5) { 7373 ret = ret < 0 ? ret : -EBUSY; 7374 break; 7375 } 7376 7377 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 7378 &cc->migratepages); 7379 cc->nr_migratepages -= nr_reclaimed; 7380 7381 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 7382 NULL, 0, cc->mode, MR_CMA); 7383 } 7384 if (ret < 0) { 7385 putback_movable_pages(&cc->migratepages); 7386 return ret; 7387 } 7388 return 0; 7389 } 7390 7391 /** 7392 * alloc_contig_range() -- tries to allocate given range of pages 7393 * @start: start PFN to allocate 7394 * @end: one-past-the-last PFN to allocate 7395 * @migratetype: migratetype of the underlaying pageblocks (either 7396 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 7397 * in range must have the same migratetype and it must 7398 * be either of the two. 7399 * @gfp_mask: GFP mask to use during compaction 7400 * 7401 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 7402 * aligned, however it's the caller's responsibility to guarantee that 7403 * we are the only thread that changes migrate type of pageblocks the 7404 * pages fall in. 7405 * 7406 * The PFN range must belong to a single zone. 7407 * 7408 * Returns zero on success or negative error code. On success all 7409 * pages which PFN is in [start, end) are allocated for the caller and 7410 * need to be freed with free_contig_range(). 7411 */ 7412 int alloc_contig_range(unsigned long start, unsigned long end, 7413 unsigned migratetype, gfp_t gfp_mask) 7414 { 7415 unsigned long outer_start, outer_end; 7416 unsigned int order; 7417 int ret = 0; 7418 7419 struct compact_control cc = { 7420 .nr_migratepages = 0, 7421 .order = -1, 7422 .zone = page_zone(pfn_to_page(start)), 7423 .mode = MIGRATE_SYNC, 7424 .ignore_skip_hint = true, 7425 .gfp_mask = memalloc_noio_flags(gfp_mask), 7426 }; 7427 INIT_LIST_HEAD(&cc.migratepages); 7428 7429 /* 7430 * What we do here is we mark all pageblocks in range as 7431 * MIGRATE_ISOLATE. Because pageblock and max order pages may 7432 * have different sizes, and due to the way page allocator 7433 * work, we align the range to biggest of the two pages so 7434 * that page allocator won't try to merge buddies from 7435 * different pageblocks and change MIGRATE_ISOLATE to some 7436 * other migration type. 7437 * 7438 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 7439 * migrate the pages from an unaligned range (ie. pages that 7440 * we are interested in). This will put all the pages in 7441 * range back to page allocator as MIGRATE_ISOLATE. 7442 * 7443 * When this is done, we take the pages in range from page 7444 * allocator removing them from the buddy system. This way 7445 * page allocator will never consider using them. 7446 * 7447 * This lets us mark the pageblocks back as 7448 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 7449 * aligned range but not in the unaligned, original range are 7450 * put back to page allocator so that buddy can use them. 7451 */ 7452 7453 ret = start_isolate_page_range(pfn_max_align_down(start), 7454 pfn_max_align_up(end), migratetype, 7455 false); 7456 if (ret) 7457 return ret; 7458 7459 /* 7460 * In case of -EBUSY, we'd like to know which page causes problem. 7461 * So, just fall through. We will check it in test_pages_isolated(). 7462 */ 7463 ret = __alloc_contig_migrate_range(&cc, start, end); 7464 if (ret && ret != -EBUSY) 7465 goto done; 7466 7467 /* 7468 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 7469 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 7470 * more, all pages in [start, end) are free in page allocator. 7471 * What we are going to do is to allocate all pages from 7472 * [start, end) (that is remove them from page allocator). 7473 * 7474 * The only problem is that pages at the beginning and at the 7475 * end of interesting range may be not aligned with pages that 7476 * page allocator holds, ie. they can be part of higher order 7477 * pages. Because of this, we reserve the bigger range and 7478 * once this is done free the pages we are not interested in. 7479 * 7480 * We don't have to hold zone->lock here because the pages are 7481 * isolated thus they won't get removed from buddy. 7482 */ 7483 7484 lru_add_drain_all(); 7485 drain_all_pages(cc.zone); 7486 7487 order = 0; 7488 outer_start = start; 7489 while (!PageBuddy(pfn_to_page(outer_start))) { 7490 if (++order >= MAX_ORDER) { 7491 outer_start = start; 7492 break; 7493 } 7494 outer_start &= ~0UL << order; 7495 } 7496 7497 if (outer_start != start) { 7498 order = page_order(pfn_to_page(outer_start)); 7499 7500 /* 7501 * outer_start page could be small order buddy page and 7502 * it doesn't include start page. Adjust outer_start 7503 * in this case to report failed page properly 7504 * on tracepoint in test_pages_isolated() 7505 */ 7506 if (outer_start + (1UL << order) <= start) 7507 outer_start = start; 7508 } 7509 7510 /* Make sure the range is really isolated. */ 7511 if (test_pages_isolated(outer_start, end, false)) { 7512 pr_info("%s: [%lx, %lx) PFNs busy\n", 7513 __func__, outer_start, end); 7514 ret = -EBUSY; 7515 goto done; 7516 } 7517 7518 /* Grab isolated pages from freelists. */ 7519 outer_end = isolate_freepages_range(&cc, outer_start, end); 7520 if (!outer_end) { 7521 ret = -EBUSY; 7522 goto done; 7523 } 7524 7525 /* Free head and tail (if any) */ 7526 if (start != outer_start) 7527 free_contig_range(outer_start, start - outer_start); 7528 if (end != outer_end) 7529 free_contig_range(end, outer_end - end); 7530 7531 done: 7532 undo_isolate_page_range(pfn_max_align_down(start), 7533 pfn_max_align_up(end), migratetype); 7534 return ret; 7535 } 7536 7537 void free_contig_range(unsigned long pfn, unsigned nr_pages) 7538 { 7539 unsigned int count = 0; 7540 7541 for (; nr_pages--; pfn++) { 7542 struct page *page = pfn_to_page(pfn); 7543 7544 count += page_count(page) != 1; 7545 __free_page(page); 7546 } 7547 WARN(count != 0, "%d pages are still in use!\n", count); 7548 } 7549 #endif 7550 7551 #ifdef CONFIG_MEMORY_HOTPLUG 7552 /* 7553 * The zone indicated has a new number of managed_pages; batch sizes and percpu 7554 * page high values need to be recalulated. 7555 */ 7556 void __meminit zone_pcp_update(struct zone *zone) 7557 { 7558 unsigned cpu; 7559 mutex_lock(&pcp_batch_high_lock); 7560 for_each_possible_cpu(cpu) 7561 pageset_set_high_and_batch(zone, 7562 per_cpu_ptr(zone->pageset, cpu)); 7563 mutex_unlock(&pcp_batch_high_lock); 7564 } 7565 #endif 7566 7567 void zone_pcp_reset(struct zone *zone) 7568 { 7569 unsigned long flags; 7570 int cpu; 7571 struct per_cpu_pageset *pset; 7572 7573 /* avoid races with drain_pages() */ 7574 local_irq_save(flags); 7575 if (zone->pageset != &boot_pageset) { 7576 for_each_online_cpu(cpu) { 7577 pset = per_cpu_ptr(zone->pageset, cpu); 7578 drain_zonestat(zone, pset); 7579 } 7580 free_percpu(zone->pageset); 7581 zone->pageset = &boot_pageset; 7582 } 7583 local_irq_restore(flags); 7584 } 7585 7586 #ifdef CONFIG_MEMORY_HOTREMOVE 7587 /* 7588 * All pages in the range must be in a single zone and isolated 7589 * before calling this. 7590 */ 7591 void 7592 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 7593 { 7594 struct page *page; 7595 struct zone *zone; 7596 unsigned int order, i; 7597 unsigned long pfn; 7598 unsigned long flags; 7599 /* find the first valid pfn */ 7600 for (pfn = start_pfn; pfn < end_pfn; pfn++) 7601 if (pfn_valid(pfn)) 7602 break; 7603 if (pfn == end_pfn) 7604 return; 7605 zone = page_zone(pfn_to_page(pfn)); 7606 spin_lock_irqsave(&zone->lock, flags); 7607 pfn = start_pfn; 7608 while (pfn < end_pfn) { 7609 if (!pfn_valid(pfn)) { 7610 pfn++; 7611 continue; 7612 } 7613 page = pfn_to_page(pfn); 7614 /* 7615 * The HWPoisoned page may be not in buddy system, and 7616 * page_count() is not 0. 7617 */ 7618 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 7619 pfn++; 7620 SetPageReserved(page); 7621 continue; 7622 } 7623 7624 BUG_ON(page_count(page)); 7625 BUG_ON(!PageBuddy(page)); 7626 order = page_order(page); 7627 #ifdef CONFIG_DEBUG_VM 7628 pr_info("remove from free list %lx %d %lx\n", 7629 pfn, 1 << order, end_pfn); 7630 #endif 7631 list_del(&page->lru); 7632 rmv_page_order(page); 7633 zone->free_area[order].nr_free--; 7634 for (i = 0; i < (1 << order); i++) 7635 SetPageReserved((page+i)); 7636 pfn += (1 << order); 7637 } 7638 spin_unlock_irqrestore(&zone->lock, flags); 7639 } 7640 #endif 7641 7642 bool is_free_buddy_page(struct page *page) 7643 { 7644 struct zone *zone = page_zone(page); 7645 unsigned long pfn = page_to_pfn(page); 7646 unsigned long flags; 7647 unsigned int order; 7648 7649 spin_lock_irqsave(&zone->lock, flags); 7650 for (order = 0; order < MAX_ORDER; order++) { 7651 struct page *page_head = page - (pfn & ((1 << order) - 1)); 7652 7653 if (PageBuddy(page_head) && page_order(page_head) >= order) 7654 break; 7655 } 7656 spin_unlock_irqrestore(&zone->lock, flags); 7657 7658 return order < MAX_ORDER; 7659 } 7660