1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/compiler.h> 25 #include <linux/kernel.h> 26 #include <linux/module.h> 27 #include <linux/suspend.h> 28 #include <linux/pagevec.h> 29 #include <linux/blkdev.h> 30 #include <linux/slab.h> 31 #include <linux/oom.h> 32 #include <linux/notifier.h> 33 #include <linux/topology.h> 34 #include <linux/sysctl.h> 35 #include <linux/cpu.h> 36 #include <linux/cpuset.h> 37 #include <linux/memory_hotplug.h> 38 #include <linux/nodemask.h> 39 #include <linux/vmalloc.h> 40 #include <linux/mempolicy.h> 41 #include <linux/stop_machine.h> 42 #include <linux/sort.h> 43 #include <linux/pfn.h> 44 #include <linux/backing-dev.h> 45 #include <linux/fault-inject.h> 46 #include <linux/page-isolation.h> 47 #include <linux/page_cgroup.h> 48 #include <linux/debugobjects.h> 49 #include <linux/kmemleak.h> 50 51 #include <asm/tlbflush.h> 52 #include <asm/div64.h> 53 #include "internal.h" 54 55 /* 56 * Array of node states. 57 */ 58 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 59 [N_POSSIBLE] = NODE_MASK_ALL, 60 [N_ONLINE] = { { [0] = 1UL } }, 61 #ifndef CONFIG_NUMA 62 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 63 #ifdef CONFIG_HIGHMEM 64 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 65 #endif 66 [N_CPU] = { { [0] = 1UL } }, 67 #endif /* NUMA */ 68 }; 69 EXPORT_SYMBOL(node_states); 70 71 unsigned long totalram_pages __read_mostly; 72 unsigned long totalreserve_pages __read_mostly; 73 unsigned long highest_memmap_pfn __read_mostly; 74 int percpu_pagelist_fraction; 75 76 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 77 int pageblock_order __read_mostly; 78 #endif 79 80 static void __free_pages_ok(struct page *page, unsigned int order); 81 82 /* 83 * results with 256, 32 in the lowmem_reserve sysctl: 84 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 85 * 1G machine -> (16M dma, 784M normal, 224M high) 86 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 87 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 88 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 89 * 90 * TBD: should special case ZONE_DMA32 machines here - in those we normally 91 * don't need any ZONE_NORMAL reservation 92 */ 93 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 94 #ifdef CONFIG_ZONE_DMA 95 256, 96 #endif 97 #ifdef CONFIG_ZONE_DMA32 98 256, 99 #endif 100 #ifdef CONFIG_HIGHMEM 101 32, 102 #endif 103 32, 104 }; 105 106 EXPORT_SYMBOL(totalram_pages); 107 108 static char * const zone_names[MAX_NR_ZONES] = { 109 #ifdef CONFIG_ZONE_DMA 110 "DMA", 111 #endif 112 #ifdef CONFIG_ZONE_DMA32 113 "DMA32", 114 #endif 115 "Normal", 116 #ifdef CONFIG_HIGHMEM 117 "HighMem", 118 #endif 119 "Movable", 120 }; 121 122 int min_free_kbytes = 1024; 123 124 unsigned long __meminitdata nr_kernel_pages; 125 unsigned long __meminitdata nr_all_pages; 126 static unsigned long __meminitdata dma_reserve; 127 128 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 129 /* 130 * MAX_ACTIVE_REGIONS determines the maximum number of distinct 131 * ranges of memory (RAM) that may be registered with add_active_range(). 132 * Ranges passed to add_active_range() will be merged if possible 133 * so the number of times add_active_range() can be called is 134 * related to the number of nodes and the number of holes 135 */ 136 #ifdef CONFIG_MAX_ACTIVE_REGIONS 137 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */ 138 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS 139 #else 140 #if MAX_NUMNODES >= 32 141 /* If there can be many nodes, allow up to 50 holes per node */ 142 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50) 143 #else 144 /* By default, allow up to 256 distinct regions */ 145 #define MAX_ACTIVE_REGIONS 256 146 #endif 147 #endif 148 149 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS]; 150 static int __meminitdata nr_nodemap_entries; 151 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 152 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 153 static unsigned long __initdata required_kernelcore; 154 static unsigned long __initdata required_movablecore; 155 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 156 157 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 158 int movable_zone; 159 EXPORT_SYMBOL(movable_zone); 160 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 161 162 #if MAX_NUMNODES > 1 163 int nr_node_ids __read_mostly = MAX_NUMNODES; 164 EXPORT_SYMBOL(nr_node_ids); 165 #endif 166 167 int page_group_by_mobility_disabled __read_mostly; 168 169 static void set_pageblock_migratetype(struct page *page, int migratetype) 170 { 171 set_pageblock_flags_group(page, (unsigned long)migratetype, 172 PB_migrate, PB_migrate_end); 173 } 174 175 #ifdef CONFIG_DEBUG_VM 176 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 177 { 178 int ret = 0; 179 unsigned seq; 180 unsigned long pfn = page_to_pfn(page); 181 182 do { 183 seq = zone_span_seqbegin(zone); 184 if (pfn >= zone->zone_start_pfn + zone->spanned_pages) 185 ret = 1; 186 else if (pfn < zone->zone_start_pfn) 187 ret = 1; 188 } while (zone_span_seqretry(zone, seq)); 189 190 return ret; 191 } 192 193 static int page_is_consistent(struct zone *zone, struct page *page) 194 { 195 if (!pfn_valid_within(page_to_pfn(page))) 196 return 0; 197 if (zone != page_zone(page)) 198 return 0; 199 200 return 1; 201 } 202 /* 203 * Temporary debugging check for pages not lying within a given zone. 204 */ 205 static int bad_range(struct zone *zone, struct page *page) 206 { 207 if (page_outside_zone_boundaries(zone, page)) 208 return 1; 209 if (!page_is_consistent(zone, page)) 210 return 1; 211 212 return 0; 213 } 214 #else 215 static inline int bad_range(struct zone *zone, struct page *page) 216 { 217 return 0; 218 } 219 #endif 220 221 static void bad_page(struct page *page) 222 { 223 static unsigned long resume; 224 static unsigned long nr_shown; 225 static unsigned long nr_unshown; 226 227 /* 228 * Allow a burst of 60 reports, then keep quiet for that minute; 229 * or allow a steady drip of one report per second. 230 */ 231 if (nr_shown == 60) { 232 if (time_before(jiffies, resume)) { 233 nr_unshown++; 234 goto out; 235 } 236 if (nr_unshown) { 237 printk(KERN_ALERT 238 "BUG: Bad page state: %lu messages suppressed\n", 239 nr_unshown); 240 nr_unshown = 0; 241 } 242 nr_shown = 0; 243 } 244 if (nr_shown++ == 0) 245 resume = jiffies + 60 * HZ; 246 247 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", 248 current->comm, page_to_pfn(page)); 249 printk(KERN_ALERT 250 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n", 251 page, (void *)page->flags, page_count(page), 252 page_mapcount(page), page->mapping, page->index); 253 254 dump_stack(); 255 out: 256 /* Leave bad fields for debug, except PageBuddy could make trouble */ 257 __ClearPageBuddy(page); 258 add_taint(TAINT_BAD_PAGE); 259 } 260 261 /* 262 * Higher-order pages are called "compound pages". They are structured thusly: 263 * 264 * The first PAGE_SIZE page is called the "head page". 265 * 266 * The remaining PAGE_SIZE pages are called "tail pages". 267 * 268 * All pages have PG_compound set. All pages have their ->private pointing at 269 * the head page (even the head page has this). 270 * 271 * The first tail page's ->lru.next holds the address of the compound page's 272 * put_page() function. Its ->lru.prev holds the order of allocation. 273 * This usage means that zero-order pages may not be compound. 274 */ 275 276 static void free_compound_page(struct page *page) 277 { 278 __free_pages_ok(page, compound_order(page)); 279 } 280 281 void prep_compound_page(struct page *page, unsigned long order) 282 { 283 int i; 284 int nr_pages = 1 << order; 285 286 set_compound_page_dtor(page, free_compound_page); 287 set_compound_order(page, order); 288 __SetPageHead(page); 289 for (i = 1; i < nr_pages; i++) { 290 struct page *p = page + i; 291 292 __SetPageTail(p); 293 p->first_page = page; 294 } 295 } 296 297 #ifdef CONFIG_HUGETLBFS 298 void prep_compound_gigantic_page(struct page *page, unsigned long order) 299 { 300 int i; 301 int nr_pages = 1 << order; 302 struct page *p = page + 1; 303 304 set_compound_page_dtor(page, free_compound_page); 305 set_compound_order(page, order); 306 __SetPageHead(page); 307 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 308 __SetPageTail(p); 309 p->first_page = page; 310 } 311 } 312 #endif 313 314 static int destroy_compound_page(struct page *page, unsigned long order) 315 { 316 int i; 317 int nr_pages = 1 << order; 318 int bad = 0; 319 320 if (unlikely(compound_order(page) != order) || 321 unlikely(!PageHead(page))) { 322 bad_page(page); 323 bad++; 324 } 325 326 __ClearPageHead(page); 327 328 for (i = 1; i < nr_pages; i++) { 329 struct page *p = page + i; 330 331 if (unlikely(!PageTail(p) || (p->first_page != page))) { 332 bad_page(page); 333 bad++; 334 } 335 __ClearPageTail(p); 336 } 337 338 return bad; 339 } 340 341 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 342 { 343 int i; 344 345 /* 346 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 347 * and __GFP_HIGHMEM from hard or soft interrupt context. 348 */ 349 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 350 for (i = 0; i < (1 << order); i++) 351 clear_highpage(page + i); 352 } 353 354 static inline void set_page_order(struct page *page, int order) 355 { 356 set_page_private(page, order); 357 __SetPageBuddy(page); 358 } 359 360 static inline void rmv_page_order(struct page *page) 361 { 362 __ClearPageBuddy(page); 363 set_page_private(page, 0); 364 } 365 366 /* 367 * Locate the struct page for both the matching buddy in our 368 * pair (buddy1) and the combined O(n+1) page they form (page). 369 * 370 * 1) Any buddy B1 will have an order O twin B2 which satisfies 371 * the following equation: 372 * B2 = B1 ^ (1 << O) 373 * For example, if the starting buddy (buddy2) is #8 its order 374 * 1 buddy is #10: 375 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 376 * 377 * 2) Any buddy B will have an order O+1 parent P which 378 * satisfies the following equation: 379 * P = B & ~(1 << O) 380 * 381 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 382 */ 383 static inline struct page * 384 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order) 385 { 386 unsigned long buddy_idx = page_idx ^ (1 << order); 387 388 return page + (buddy_idx - page_idx); 389 } 390 391 static inline unsigned long 392 __find_combined_index(unsigned long page_idx, unsigned int order) 393 { 394 return (page_idx & ~(1 << order)); 395 } 396 397 /* 398 * This function checks whether a page is free && is the buddy 399 * we can do coalesce a page and its buddy if 400 * (a) the buddy is not in a hole && 401 * (b) the buddy is in the buddy system && 402 * (c) a page and its buddy have the same order && 403 * (d) a page and its buddy are in the same zone. 404 * 405 * For recording whether a page is in the buddy system, we use PG_buddy. 406 * Setting, clearing, and testing PG_buddy is serialized by zone->lock. 407 * 408 * For recording page's order, we use page_private(page). 409 */ 410 static inline int page_is_buddy(struct page *page, struct page *buddy, 411 int order) 412 { 413 if (!pfn_valid_within(page_to_pfn(buddy))) 414 return 0; 415 416 if (page_zone_id(page) != page_zone_id(buddy)) 417 return 0; 418 419 if (PageBuddy(buddy) && page_order(buddy) == order) { 420 BUG_ON(page_count(buddy) != 0); 421 return 1; 422 } 423 return 0; 424 } 425 426 /* 427 * Freeing function for a buddy system allocator. 428 * 429 * The concept of a buddy system is to maintain direct-mapped table 430 * (containing bit values) for memory blocks of various "orders". 431 * The bottom level table contains the map for the smallest allocatable 432 * units of memory (here, pages), and each level above it describes 433 * pairs of units from the levels below, hence, "buddies". 434 * At a high level, all that happens here is marking the table entry 435 * at the bottom level available, and propagating the changes upward 436 * as necessary, plus some accounting needed to play nicely with other 437 * parts of the VM system. 438 * At each level, we keep a list of pages, which are heads of continuous 439 * free pages of length of (1 << order) and marked with PG_buddy. Page's 440 * order is recorded in page_private(page) field. 441 * So when we are allocating or freeing one, we can derive the state of the 442 * other. That is, if we allocate a small block, and both were 443 * free, the remainder of the region must be split into blocks. 444 * If a block is freed, and its buddy is also free, then this 445 * triggers coalescing into a block of larger size. 446 * 447 * -- wli 448 */ 449 450 static inline void __free_one_page(struct page *page, 451 struct zone *zone, unsigned int order) 452 { 453 unsigned long page_idx; 454 int order_size = 1 << order; 455 int migratetype = get_pageblock_migratetype(page); 456 457 if (unlikely(PageCompound(page))) 458 if (unlikely(destroy_compound_page(page, order))) 459 return; 460 461 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 462 463 VM_BUG_ON(page_idx & (order_size - 1)); 464 VM_BUG_ON(bad_range(zone, page)); 465 466 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size); 467 while (order < MAX_ORDER-1) { 468 unsigned long combined_idx; 469 struct page *buddy; 470 471 buddy = __page_find_buddy(page, page_idx, order); 472 if (!page_is_buddy(page, buddy, order)) 473 break; 474 475 /* Our buddy is free, merge with it and move up one order. */ 476 list_del(&buddy->lru); 477 zone->free_area[order].nr_free--; 478 rmv_page_order(buddy); 479 combined_idx = __find_combined_index(page_idx, order); 480 page = page + (combined_idx - page_idx); 481 page_idx = combined_idx; 482 order++; 483 } 484 set_page_order(page, order); 485 list_add(&page->lru, 486 &zone->free_area[order].free_list[migratetype]); 487 zone->free_area[order].nr_free++; 488 } 489 490 static inline int free_pages_check(struct page *page) 491 { 492 free_page_mlock(page); 493 if (unlikely(page_mapcount(page) | 494 (page->mapping != NULL) | 495 (page_count(page) != 0) | 496 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) { 497 bad_page(page); 498 return 1; 499 } 500 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 501 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 502 return 0; 503 } 504 505 /* 506 * Frees a list of pages. 507 * Assumes all pages on list are in same zone, and of same order. 508 * count is the number of pages to free. 509 * 510 * If the zone was previously in an "all pages pinned" state then look to 511 * see if this freeing clears that state. 512 * 513 * And clear the zone's pages_scanned counter, to hold off the "all pages are 514 * pinned" detection logic. 515 */ 516 static void free_pages_bulk(struct zone *zone, int count, 517 struct list_head *list, int order) 518 { 519 spin_lock(&zone->lock); 520 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE); 521 zone->pages_scanned = 0; 522 while (count--) { 523 struct page *page; 524 525 VM_BUG_ON(list_empty(list)); 526 page = list_entry(list->prev, struct page, lru); 527 /* have to delete it as __free_one_page list manipulates */ 528 list_del(&page->lru); 529 __free_one_page(page, zone, order); 530 } 531 spin_unlock(&zone->lock); 532 } 533 534 static void free_one_page(struct zone *zone, struct page *page, int order) 535 { 536 spin_lock(&zone->lock); 537 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE); 538 zone->pages_scanned = 0; 539 __free_one_page(page, zone, order); 540 spin_unlock(&zone->lock); 541 } 542 543 static void __free_pages_ok(struct page *page, unsigned int order) 544 { 545 unsigned long flags; 546 int i; 547 int bad = 0; 548 549 for (i = 0 ; i < (1 << order) ; ++i) 550 bad += free_pages_check(page + i); 551 if (bad) 552 return; 553 554 if (!PageHighMem(page)) { 555 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); 556 debug_check_no_obj_freed(page_address(page), 557 PAGE_SIZE << order); 558 } 559 arch_free_page(page, order); 560 kernel_map_pages(page, 1 << order, 0); 561 562 local_irq_save(flags); 563 __count_vm_events(PGFREE, 1 << order); 564 free_one_page(page_zone(page), page, order); 565 local_irq_restore(flags); 566 } 567 568 /* 569 * permit the bootmem allocator to evade page validation on high-order frees 570 */ 571 void __meminit __free_pages_bootmem(struct page *page, unsigned int order) 572 { 573 if (order == 0) { 574 __ClearPageReserved(page); 575 set_page_count(page, 0); 576 set_page_refcounted(page); 577 __free_page(page); 578 } else { 579 int loop; 580 581 prefetchw(page); 582 for (loop = 0; loop < BITS_PER_LONG; loop++) { 583 struct page *p = &page[loop]; 584 585 if (loop + 1 < BITS_PER_LONG) 586 prefetchw(p + 1); 587 __ClearPageReserved(p); 588 set_page_count(p, 0); 589 } 590 591 set_page_refcounted(page); 592 __free_pages(page, order); 593 } 594 } 595 596 597 /* 598 * The order of subdivision here is critical for the IO subsystem. 599 * Please do not alter this order without good reasons and regression 600 * testing. Specifically, as large blocks of memory are subdivided, 601 * the order in which smaller blocks are delivered depends on the order 602 * they're subdivided in this function. This is the primary factor 603 * influencing the order in which pages are delivered to the IO 604 * subsystem according to empirical testing, and this is also justified 605 * by considering the behavior of a buddy system containing a single 606 * large block of memory acted on by a series of small allocations. 607 * This behavior is a critical factor in sglist merging's success. 608 * 609 * -- wli 610 */ 611 static inline void expand(struct zone *zone, struct page *page, 612 int low, int high, struct free_area *area, 613 int migratetype) 614 { 615 unsigned long size = 1 << high; 616 617 while (high > low) { 618 area--; 619 high--; 620 size >>= 1; 621 VM_BUG_ON(bad_range(zone, &page[size])); 622 list_add(&page[size].lru, &area->free_list[migratetype]); 623 area->nr_free++; 624 set_page_order(&page[size], high); 625 } 626 } 627 628 /* 629 * This page is about to be returned from the page allocator 630 */ 631 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 632 { 633 if (unlikely(page_mapcount(page) | 634 (page->mapping != NULL) | 635 (page_count(page) != 0) | 636 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) { 637 bad_page(page); 638 return 1; 639 } 640 641 set_page_private(page, 0); 642 set_page_refcounted(page); 643 644 arch_alloc_page(page, order); 645 kernel_map_pages(page, 1 << order, 1); 646 647 if (gfp_flags & __GFP_ZERO) 648 prep_zero_page(page, order, gfp_flags); 649 650 if (order && (gfp_flags & __GFP_COMP)) 651 prep_compound_page(page, order); 652 653 return 0; 654 } 655 656 /* 657 * Go through the free lists for the given migratetype and remove 658 * the smallest available page from the freelists 659 */ 660 static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 661 int migratetype) 662 { 663 unsigned int current_order; 664 struct free_area * area; 665 struct page *page; 666 667 /* Find a page of the appropriate size in the preferred list */ 668 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 669 area = &(zone->free_area[current_order]); 670 if (list_empty(&area->free_list[migratetype])) 671 continue; 672 673 page = list_entry(area->free_list[migratetype].next, 674 struct page, lru); 675 list_del(&page->lru); 676 rmv_page_order(page); 677 area->nr_free--; 678 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order)); 679 expand(zone, page, order, current_order, area, migratetype); 680 return page; 681 } 682 683 return NULL; 684 } 685 686 687 /* 688 * This array describes the order lists are fallen back to when 689 * the free lists for the desirable migrate type are depleted 690 */ 691 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = { 692 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 693 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 694 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 695 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */ 696 }; 697 698 /* 699 * Move the free pages in a range to the free lists of the requested type. 700 * Note that start_page and end_pages are not aligned on a pageblock 701 * boundary. If alignment is required, use move_freepages_block() 702 */ 703 static int move_freepages(struct zone *zone, 704 struct page *start_page, struct page *end_page, 705 int migratetype) 706 { 707 struct page *page; 708 unsigned long order; 709 int pages_moved = 0; 710 711 #ifndef CONFIG_HOLES_IN_ZONE 712 /* 713 * page_zone is not safe to call in this context when 714 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 715 * anyway as we check zone boundaries in move_freepages_block(). 716 * Remove at a later date when no bug reports exist related to 717 * grouping pages by mobility 718 */ 719 BUG_ON(page_zone(start_page) != page_zone(end_page)); 720 #endif 721 722 for (page = start_page; page <= end_page;) { 723 /* Make sure we are not inadvertently changing nodes */ 724 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone)); 725 726 if (!pfn_valid_within(page_to_pfn(page))) { 727 page++; 728 continue; 729 } 730 731 if (!PageBuddy(page)) { 732 page++; 733 continue; 734 } 735 736 order = page_order(page); 737 list_del(&page->lru); 738 list_add(&page->lru, 739 &zone->free_area[order].free_list[migratetype]); 740 page += 1 << order; 741 pages_moved += 1 << order; 742 } 743 744 return pages_moved; 745 } 746 747 static int move_freepages_block(struct zone *zone, struct page *page, 748 int migratetype) 749 { 750 unsigned long start_pfn, end_pfn; 751 struct page *start_page, *end_page; 752 753 start_pfn = page_to_pfn(page); 754 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 755 start_page = pfn_to_page(start_pfn); 756 end_page = start_page + pageblock_nr_pages - 1; 757 end_pfn = start_pfn + pageblock_nr_pages - 1; 758 759 /* Do not cross zone boundaries */ 760 if (start_pfn < zone->zone_start_pfn) 761 start_page = page; 762 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages) 763 return 0; 764 765 return move_freepages(zone, start_page, end_page, migratetype); 766 } 767 768 /* Remove an element from the buddy allocator from the fallback list */ 769 static struct page *__rmqueue_fallback(struct zone *zone, int order, 770 int start_migratetype) 771 { 772 struct free_area * area; 773 int current_order; 774 struct page *page; 775 int migratetype, i; 776 777 /* Find the largest possible block of pages in the other list */ 778 for (current_order = MAX_ORDER-1; current_order >= order; 779 --current_order) { 780 for (i = 0; i < MIGRATE_TYPES - 1; i++) { 781 migratetype = fallbacks[start_migratetype][i]; 782 783 /* MIGRATE_RESERVE handled later if necessary */ 784 if (migratetype == MIGRATE_RESERVE) 785 continue; 786 787 area = &(zone->free_area[current_order]); 788 if (list_empty(&area->free_list[migratetype])) 789 continue; 790 791 page = list_entry(area->free_list[migratetype].next, 792 struct page, lru); 793 area->nr_free--; 794 795 /* 796 * If breaking a large block of pages, move all free 797 * pages to the preferred allocation list. If falling 798 * back for a reclaimable kernel allocation, be more 799 * agressive about taking ownership of free pages 800 */ 801 if (unlikely(current_order >= (pageblock_order >> 1)) || 802 start_migratetype == MIGRATE_RECLAIMABLE) { 803 unsigned long pages; 804 pages = move_freepages_block(zone, page, 805 start_migratetype); 806 807 /* Claim the whole block if over half of it is free */ 808 if (pages >= (1 << (pageblock_order-1))) 809 set_pageblock_migratetype(page, 810 start_migratetype); 811 812 migratetype = start_migratetype; 813 } 814 815 /* Remove the page from the freelists */ 816 list_del(&page->lru); 817 rmv_page_order(page); 818 __mod_zone_page_state(zone, NR_FREE_PAGES, 819 -(1UL << order)); 820 821 if (current_order == pageblock_order) 822 set_pageblock_migratetype(page, 823 start_migratetype); 824 825 expand(zone, page, order, current_order, area, migratetype); 826 return page; 827 } 828 } 829 830 /* Use MIGRATE_RESERVE rather than fail an allocation */ 831 return __rmqueue_smallest(zone, order, MIGRATE_RESERVE); 832 } 833 834 /* 835 * Do the hard work of removing an element from the buddy allocator. 836 * Call me with the zone->lock already held. 837 */ 838 static struct page *__rmqueue(struct zone *zone, unsigned int order, 839 int migratetype) 840 { 841 struct page *page; 842 843 page = __rmqueue_smallest(zone, order, migratetype); 844 845 if (unlikely(!page)) 846 page = __rmqueue_fallback(zone, order, migratetype); 847 848 return page; 849 } 850 851 /* 852 * Obtain a specified number of elements from the buddy allocator, all under 853 * a single hold of the lock, for efficiency. Add them to the supplied list. 854 * Returns the number of new pages which were placed at *list. 855 */ 856 static int rmqueue_bulk(struct zone *zone, unsigned int order, 857 unsigned long count, struct list_head *list, 858 int migratetype) 859 { 860 int i; 861 862 spin_lock(&zone->lock); 863 for (i = 0; i < count; ++i) { 864 struct page *page = __rmqueue(zone, order, migratetype); 865 if (unlikely(page == NULL)) 866 break; 867 868 /* 869 * Split buddy pages returned by expand() are received here 870 * in physical page order. The page is added to the callers and 871 * list and the list head then moves forward. From the callers 872 * perspective, the linked list is ordered by page number in 873 * some conditions. This is useful for IO devices that can 874 * merge IO requests if the physical pages are ordered 875 * properly. 876 */ 877 list_add(&page->lru, list); 878 set_page_private(page, migratetype); 879 list = &page->lru; 880 } 881 spin_unlock(&zone->lock); 882 return i; 883 } 884 885 #ifdef CONFIG_NUMA 886 /* 887 * Called from the vmstat counter updater to drain pagesets of this 888 * currently executing processor on remote nodes after they have 889 * expired. 890 * 891 * Note that this function must be called with the thread pinned to 892 * a single processor. 893 */ 894 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 895 { 896 unsigned long flags; 897 int to_drain; 898 899 local_irq_save(flags); 900 if (pcp->count >= pcp->batch) 901 to_drain = pcp->batch; 902 else 903 to_drain = pcp->count; 904 free_pages_bulk(zone, to_drain, &pcp->list, 0); 905 pcp->count -= to_drain; 906 local_irq_restore(flags); 907 } 908 #endif 909 910 /* 911 * Drain pages of the indicated processor. 912 * 913 * The processor must either be the current processor and the 914 * thread pinned to the current processor or a processor that 915 * is not online. 916 */ 917 static void drain_pages(unsigned int cpu) 918 { 919 unsigned long flags; 920 struct zone *zone; 921 922 for_each_populated_zone(zone) { 923 struct per_cpu_pageset *pset; 924 struct per_cpu_pages *pcp; 925 926 pset = zone_pcp(zone, cpu); 927 928 pcp = &pset->pcp; 929 local_irq_save(flags); 930 free_pages_bulk(zone, pcp->count, &pcp->list, 0); 931 pcp->count = 0; 932 local_irq_restore(flags); 933 } 934 } 935 936 /* 937 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 938 */ 939 void drain_local_pages(void *arg) 940 { 941 drain_pages(smp_processor_id()); 942 } 943 944 /* 945 * Spill all the per-cpu pages from all CPUs back into the buddy allocator 946 */ 947 void drain_all_pages(void) 948 { 949 on_each_cpu(drain_local_pages, NULL, 1); 950 } 951 952 #ifdef CONFIG_HIBERNATION 953 954 void mark_free_pages(struct zone *zone) 955 { 956 unsigned long pfn, max_zone_pfn; 957 unsigned long flags; 958 int order, t; 959 struct list_head *curr; 960 961 if (!zone->spanned_pages) 962 return; 963 964 spin_lock_irqsave(&zone->lock, flags); 965 966 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 967 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 968 if (pfn_valid(pfn)) { 969 struct page *page = pfn_to_page(pfn); 970 971 if (!swsusp_page_is_forbidden(page)) 972 swsusp_unset_page_free(page); 973 } 974 975 for_each_migratetype_order(order, t) { 976 list_for_each(curr, &zone->free_area[order].free_list[t]) { 977 unsigned long i; 978 979 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 980 for (i = 0; i < (1UL << order); i++) 981 swsusp_set_page_free(pfn_to_page(pfn + i)); 982 } 983 } 984 spin_unlock_irqrestore(&zone->lock, flags); 985 } 986 #endif /* CONFIG_PM */ 987 988 /* 989 * Free a 0-order page 990 */ 991 static void free_hot_cold_page(struct page *page, int cold) 992 { 993 struct zone *zone = page_zone(page); 994 struct per_cpu_pages *pcp; 995 unsigned long flags; 996 997 if (PageAnon(page)) 998 page->mapping = NULL; 999 if (free_pages_check(page)) 1000 return; 1001 1002 if (!PageHighMem(page)) { 1003 debug_check_no_locks_freed(page_address(page), PAGE_SIZE); 1004 debug_check_no_obj_freed(page_address(page), PAGE_SIZE); 1005 } 1006 arch_free_page(page, 0); 1007 kernel_map_pages(page, 1, 0); 1008 1009 pcp = &zone_pcp(zone, get_cpu())->pcp; 1010 local_irq_save(flags); 1011 __count_vm_event(PGFREE); 1012 if (cold) 1013 list_add_tail(&page->lru, &pcp->list); 1014 else 1015 list_add(&page->lru, &pcp->list); 1016 set_page_private(page, get_pageblock_migratetype(page)); 1017 pcp->count++; 1018 if (pcp->count >= pcp->high) { 1019 free_pages_bulk(zone, pcp->batch, &pcp->list, 0); 1020 pcp->count -= pcp->batch; 1021 } 1022 local_irq_restore(flags); 1023 put_cpu(); 1024 } 1025 1026 void free_hot_page(struct page *page) 1027 { 1028 free_hot_cold_page(page, 0); 1029 } 1030 1031 void free_cold_page(struct page *page) 1032 { 1033 free_hot_cold_page(page, 1); 1034 } 1035 1036 /* 1037 * split_page takes a non-compound higher-order page, and splits it into 1038 * n (1<<order) sub-pages: page[0..n] 1039 * Each sub-page must be freed individually. 1040 * 1041 * Note: this is probably too low level an operation for use in drivers. 1042 * Please consult with lkml before using this in your driver. 1043 */ 1044 void split_page(struct page *page, unsigned int order) 1045 { 1046 int i; 1047 1048 VM_BUG_ON(PageCompound(page)); 1049 VM_BUG_ON(!page_count(page)); 1050 for (i = 1; i < (1 << order); i++) 1051 set_page_refcounted(page + i); 1052 } 1053 1054 /* 1055 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 1056 * we cheat by calling it from here, in the order > 0 path. Saves a branch 1057 * or two. 1058 */ 1059 static struct page *buffered_rmqueue(struct zone *preferred_zone, 1060 struct zone *zone, int order, gfp_t gfp_flags) 1061 { 1062 unsigned long flags; 1063 struct page *page; 1064 int cold = !!(gfp_flags & __GFP_COLD); 1065 int cpu; 1066 int migratetype = allocflags_to_migratetype(gfp_flags); 1067 1068 again: 1069 cpu = get_cpu(); 1070 if (likely(order == 0)) { 1071 struct per_cpu_pages *pcp; 1072 1073 pcp = &zone_pcp(zone, cpu)->pcp; 1074 local_irq_save(flags); 1075 if (!pcp->count) { 1076 pcp->count = rmqueue_bulk(zone, 0, 1077 pcp->batch, &pcp->list, migratetype); 1078 if (unlikely(!pcp->count)) 1079 goto failed; 1080 } 1081 1082 /* Find a page of the appropriate migrate type */ 1083 if (cold) { 1084 list_for_each_entry_reverse(page, &pcp->list, lru) 1085 if (page_private(page) == migratetype) 1086 break; 1087 } else { 1088 list_for_each_entry(page, &pcp->list, lru) 1089 if (page_private(page) == migratetype) 1090 break; 1091 } 1092 1093 /* Allocate more to the pcp list if necessary */ 1094 if (unlikely(&page->lru == &pcp->list)) { 1095 pcp->count += rmqueue_bulk(zone, 0, 1096 pcp->batch, &pcp->list, migratetype); 1097 page = list_entry(pcp->list.next, struct page, lru); 1098 } 1099 1100 list_del(&page->lru); 1101 pcp->count--; 1102 } else { 1103 spin_lock_irqsave(&zone->lock, flags); 1104 page = __rmqueue(zone, order, migratetype); 1105 spin_unlock(&zone->lock); 1106 if (!page) 1107 goto failed; 1108 } 1109 1110 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1111 zone_statistics(preferred_zone, zone); 1112 local_irq_restore(flags); 1113 put_cpu(); 1114 1115 VM_BUG_ON(bad_range(zone, page)); 1116 if (prep_new_page(page, order, gfp_flags)) 1117 goto again; 1118 return page; 1119 1120 failed: 1121 local_irq_restore(flags); 1122 put_cpu(); 1123 return NULL; 1124 } 1125 1126 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */ 1127 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */ 1128 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */ 1129 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */ 1130 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 1131 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 1132 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 1133 1134 #ifdef CONFIG_FAIL_PAGE_ALLOC 1135 1136 static struct fail_page_alloc_attr { 1137 struct fault_attr attr; 1138 1139 u32 ignore_gfp_highmem; 1140 u32 ignore_gfp_wait; 1141 u32 min_order; 1142 1143 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1144 1145 struct dentry *ignore_gfp_highmem_file; 1146 struct dentry *ignore_gfp_wait_file; 1147 struct dentry *min_order_file; 1148 1149 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1150 1151 } fail_page_alloc = { 1152 .attr = FAULT_ATTR_INITIALIZER, 1153 .ignore_gfp_wait = 1, 1154 .ignore_gfp_highmem = 1, 1155 .min_order = 1, 1156 }; 1157 1158 static int __init setup_fail_page_alloc(char *str) 1159 { 1160 return setup_fault_attr(&fail_page_alloc.attr, str); 1161 } 1162 __setup("fail_page_alloc=", setup_fail_page_alloc); 1163 1164 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1165 { 1166 if (order < fail_page_alloc.min_order) 1167 return 0; 1168 if (gfp_mask & __GFP_NOFAIL) 1169 return 0; 1170 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1171 return 0; 1172 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1173 return 0; 1174 1175 return should_fail(&fail_page_alloc.attr, 1 << order); 1176 } 1177 1178 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1179 1180 static int __init fail_page_alloc_debugfs(void) 1181 { 1182 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1183 struct dentry *dir; 1184 int err; 1185 1186 err = init_fault_attr_dentries(&fail_page_alloc.attr, 1187 "fail_page_alloc"); 1188 if (err) 1189 return err; 1190 dir = fail_page_alloc.attr.dentries.dir; 1191 1192 fail_page_alloc.ignore_gfp_wait_file = 1193 debugfs_create_bool("ignore-gfp-wait", mode, dir, 1194 &fail_page_alloc.ignore_gfp_wait); 1195 1196 fail_page_alloc.ignore_gfp_highmem_file = 1197 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1198 &fail_page_alloc.ignore_gfp_highmem); 1199 fail_page_alloc.min_order_file = 1200 debugfs_create_u32("min-order", mode, dir, 1201 &fail_page_alloc.min_order); 1202 1203 if (!fail_page_alloc.ignore_gfp_wait_file || 1204 !fail_page_alloc.ignore_gfp_highmem_file || 1205 !fail_page_alloc.min_order_file) { 1206 err = -ENOMEM; 1207 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file); 1208 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file); 1209 debugfs_remove(fail_page_alloc.min_order_file); 1210 cleanup_fault_attr_dentries(&fail_page_alloc.attr); 1211 } 1212 1213 return err; 1214 } 1215 1216 late_initcall(fail_page_alloc_debugfs); 1217 1218 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1219 1220 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1221 1222 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1223 { 1224 return 0; 1225 } 1226 1227 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1228 1229 /* 1230 * Return 1 if free pages are above 'mark'. This takes into account the order 1231 * of the allocation. 1232 */ 1233 int zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1234 int classzone_idx, int alloc_flags) 1235 { 1236 /* free_pages my go negative - that's OK */ 1237 long min = mark; 1238 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1; 1239 int o; 1240 1241 if (alloc_flags & ALLOC_HIGH) 1242 min -= min / 2; 1243 if (alloc_flags & ALLOC_HARDER) 1244 min -= min / 4; 1245 1246 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 1247 return 0; 1248 for (o = 0; o < order; o++) { 1249 /* At the next order, this order's pages become unavailable */ 1250 free_pages -= z->free_area[o].nr_free << o; 1251 1252 /* Require fewer higher order pages to be free */ 1253 min >>= 1; 1254 1255 if (free_pages <= min) 1256 return 0; 1257 } 1258 return 1; 1259 } 1260 1261 #ifdef CONFIG_NUMA 1262 /* 1263 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1264 * skip over zones that are not allowed by the cpuset, or that have 1265 * been recently (in last second) found to be nearly full. See further 1266 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1267 * that have to skip over a lot of full or unallowed zones. 1268 * 1269 * If the zonelist cache is present in the passed in zonelist, then 1270 * returns a pointer to the allowed node mask (either the current 1271 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].) 1272 * 1273 * If the zonelist cache is not available for this zonelist, does 1274 * nothing and returns NULL. 1275 * 1276 * If the fullzones BITMAP in the zonelist cache is stale (more than 1277 * a second since last zap'd) then we zap it out (clear its bits.) 1278 * 1279 * We hold off even calling zlc_setup, until after we've checked the 1280 * first zone in the zonelist, on the theory that most allocations will 1281 * be satisfied from that first zone, so best to examine that zone as 1282 * quickly as we can. 1283 */ 1284 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1285 { 1286 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1287 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1288 1289 zlc = zonelist->zlcache_ptr; 1290 if (!zlc) 1291 return NULL; 1292 1293 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1294 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1295 zlc->last_full_zap = jiffies; 1296 } 1297 1298 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1299 &cpuset_current_mems_allowed : 1300 &node_states[N_HIGH_MEMORY]; 1301 return allowednodes; 1302 } 1303 1304 /* 1305 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1306 * if it is worth looking at further for free memory: 1307 * 1) Check that the zone isn't thought to be full (doesn't have its 1308 * bit set in the zonelist_cache fullzones BITMAP). 1309 * 2) Check that the zones node (obtained from the zonelist_cache 1310 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1311 * Return true (non-zero) if zone is worth looking at further, or 1312 * else return false (zero) if it is not. 1313 * 1314 * This check -ignores- the distinction between various watermarks, 1315 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1316 * found to be full for any variation of these watermarks, it will 1317 * be considered full for up to one second by all requests, unless 1318 * we are so low on memory on all allowed nodes that we are forced 1319 * into the second scan of the zonelist. 1320 * 1321 * In the second scan we ignore this zonelist cache and exactly 1322 * apply the watermarks to all zones, even it is slower to do so. 1323 * We are low on memory in the second scan, and should leave no stone 1324 * unturned looking for a free page. 1325 */ 1326 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1327 nodemask_t *allowednodes) 1328 { 1329 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1330 int i; /* index of *z in zonelist zones */ 1331 int n; /* node that zone *z is on */ 1332 1333 zlc = zonelist->zlcache_ptr; 1334 if (!zlc) 1335 return 1; 1336 1337 i = z - zonelist->_zonerefs; 1338 n = zlc->z_to_n[i]; 1339 1340 /* This zone is worth trying if it is allowed but not full */ 1341 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1342 } 1343 1344 /* 1345 * Given 'z' scanning a zonelist, set the corresponding bit in 1346 * zlc->fullzones, so that subsequent attempts to allocate a page 1347 * from that zone don't waste time re-examining it. 1348 */ 1349 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1350 { 1351 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1352 int i; /* index of *z in zonelist zones */ 1353 1354 zlc = zonelist->zlcache_ptr; 1355 if (!zlc) 1356 return; 1357 1358 i = z - zonelist->_zonerefs; 1359 1360 set_bit(i, zlc->fullzones); 1361 } 1362 1363 #else /* CONFIG_NUMA */ 1364 1365 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1366 { 1367 return NULL; 1368 } 1369 1370 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1371 nodemask_t *allowednodes) 1372 { 1373 return 1; 1374 } 1375 1376 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1377 { 1378 } 1379 #endif /* CONFIG_NUMA */ 1380 1381 /* 1382 * get_page_from_freelist goes through the zonelist trying to allocate 1383 * a page. 1384 */ 1385 static struct page * 1386 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, 1387 struct zonelist *zonelist, int high_zoneidx, int alloc_flags) 1388 { 1389 struct zoneref *z; 1390 struct page *page = NULL; 1391 int classzone_idx; 1392 struct zone *zone, *preferred_zone; 1393 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1394 int zlc_active = 0; /* set if using zonelist_cache */ 1395 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1396 1397 (void)first_zones_zonelist(zonelist, high_zoneidx, nodemask, 1398 &preferred_zone); 1399 if (!preferred_zone) 1400 return NULL; 1401 1402 classzone_idx = zone_idx(preferred_zone); 1403 1404 zonelist_scan: 1405 /* 1406 * Scan zonelist, looking for a zone with enough free. 1407 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1408 */ 1409 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1410 high_zoneidx, nodemask) { 1411 if (NUMA_BUILD && zlc_active && 1412 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1413 continue; 1414 if ((alloc_flags & ALLOC_CPUSET) && 1415 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1416 goto try_next_zone; 1417 1418 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 1419 unsigned long mark; 1420 if (alloc_flags & ALLOC_WMARK_MIN) 1421 mark = zone->pages_min; 1422 else if (alloc_flags & ALLOC_WMARK_LOW) 1423 mark = zone->pages_low; 1424 else 1425 mark = zone->pages_high; 1426 if (!zone_watermark_ok(zone, order, mark, 1427 classzone_idx, alloc_flags)) { 1428 if (!zone_reclaim_mode || 1429 !zone_reclaim(zone, gfp_mask, order)) 1430 goto this_zone_full; 1431 } 1432 } 1433 1434 page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask); 1435 if (page) 1436 break; 1437 this_zone_full: 1438 if (NUMA_BUILD) 1439 zlc_mark_zone_full(zonelist, z); 1440 try_next_zone: 1441 if (NUMA_BUILD && !did_zlc_setup) { 1442 /* we do zlc_setup after the first zone is tried */ 1443 allowednodes = zlc_setup(zonelist, alloc_flags); 1444 zlc_active = 1; 1445 did_zlc_setup = 1; 1446 } 1447 } 1448 1449 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) { 1450 /* Disable zlc cache for second zonelist scan */ 1451 zlc_active = 0; 1452 goto zonelist_scan; 1453 } 1454 return page; 1455 } 1456 1457 /* 1458 * This is the 'heart' of the zoned buddy allocator. 1459 */ 1460 struct page * 1461 __alloc_pages_internal(gfp_t gfp_mask, unsigned int order, 1462 struct zonelist *zonelist, nodemask_t *nodemask) 1463 { 1464 const gfp_t wait = gfp_mask & __GFP_WAIT; 1465 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 1466 struct zoneref *z; 1467 struct zone *zone; 1468 struct page *page; 1469 struct reclaim_state reclaim_state; 1470 struct task_struct *p = current; 1471 int do_retry; 1472 int alloc_flags; 1473 unsigned long did_some_progress; 1474 unsigned long pages_reclaimed = 0; 1475 1476 lockdep_trace_alloc(gfp_mask); 1477 1478 might_sleep_if(wait); 1479 1480 if (should_fail_alloc_page(gfp_mask, order)) 1481 return NULL; 1482 1483 restart: 1484 z = zonelist->_zonerefs; /* the list of zones suitable for gfp_mask */ 1485 1486 if (unlikely(!z->zone)) { 1487 /* 1488 * Happens if we have an empty zonelist as a result of 1489 * GFP_THISNODE being used on a memoryless node 1490 */ 1491 return NULL; 1492 } 1493 1494 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, 1495 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET); 1496 if (page) 1497 goto got_pg; 1498 1499 /* 1500 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 1501 * __GFP_NOWARN set) should not cause reclaim since the subsystem 1502 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 1503 * using a larger set of nodes after it has established that the 1504 * allowed per node queues are empty and that nodes are 1505 * over allocated. 1506 */ 1507 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 1508 goto nopage; 1509 1510 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) 1511 wakeup_kswapd(zone, order); 1512 1513 /* 1514 * OK, we're below the kswapd watermark and have kicked background 1515 * reclaim. Now things get more complex, so set up alloc_flags according 1516 * to how we want to proceed. 1517 * 1518 * The caller may dip into page reserves a bit more if the caller 1519 * cannot run direct reclaim, or if the caller has realtime scheduling 1520 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 1521 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 1522 */ 1523 alloc_flags = ALLOC_WMARK_MIN; 1524 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait) 1525 alloc_flags |= ALLOC_HARDER; 1526 if (gfp_mask & __GFP_HIGH) 1527 alloc_flags |= ALLOC_HIGH; 1528 if (wait) 1529 alloc_flags |= ALLOC_CPUSET; 1530 1531 /* 1532 * Go through the zonelist again. Let __GFP_HIGH and allocations 1533 * coming from realtime tasks go deeper into reserves. 1534 * 1535 * This is the last chance, in general, before the goto nopage. 1536 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 1537 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1538 */ 1539 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, 1540 high_zoneidx, alloc_flags); 1541 if (page) 1542 goto got_pg; 1543 1544 /* This allocation should allow future memory freeing. */ 1545 1546 rebalance: 1547 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE))) 1548 && !in_interrupt()) { 1549 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 1550 nofail_alloc: 1551 /* go through the zonelist yet again, ignoring mins */ 1552 page = get_page_from_freelist(gfp_mask, nodemask, order, 1553 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS); 1554 if (page) 1555 goto got_pg; 1556 if (gfp_mask & __GFP_NOFAIL) { 1557 congestion_wait(WRITE, HZ/50); 1558 goto nofail_alloc; 1559 } 1560 } 1561 goto nopage; 1562 } 1563 1564 /* Atomic allocations - we can't balance anything */ 1565 if (!wait) 1566 goto nopage; 1567 1568 cond_resched(); 1569 1570 /* We now go into synchronous reclaim */ 1571 cpuset_memory_pressure_bump(); 1572 /* 1573 * The task's cpuset might have expanded its set of allowable nodes 1574 */ 1575 cpuset_update_task_memory_state(); 1576 p->flags |= PF_MEMALLOC; 1577 1578 lockdep_set_current_reclaim_state(gfp_mask); 1579 reclaim_state.reclaimed_slab = 0; 1580 p->reclaim_state = &reclaim_state; 1581 1582 did_some_progress = try_to_free_pages(zonelist, order, 1583 gfp_mask, nodemask); 1584 1585 p->reclaim_state = NULL; 1586 lockdep_clear_current_reclaim_state(); 1587 p->flags &= ~PF_MEMALLOC; 1588 1589 cond_resched(); 1590 1591 if (order != 0) 1592 drain_all_pages(); 1593 1594 if (likely(did_some_progress)) { 1595 page = get_page_from_freelist(gfp_mask, nodemask, order, 1596 zonelist, high_zoneidx, alloc_flags); 1597 if (page) 1598 goto got_pg; 1599 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 1600 if (!try_set_zone_oom(zonelist, gfp_mask)) { 1601 schedule_timeout_uninterruptible(1); 1602 goto restart; 1603 } 1604 1605 /* 1606 * Go through the zonelist yet one more time, keep 1607 * very high watermark here, this is only to catch 1608 * a parallel oom killing, we must fail if we're still 1609 * under heavy pressure. 1610 */ 1611 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, 1612 order, zonelist, high_zoneidx, 1613 ALLOC_WMARK_HIGH|ALLOC_CPUSET); 1614 if (page) { 1615 clear_zonelist_oom(zonelist, gfp_mask); 1616 goto got_pg; 1617 } 1618 1619 /* The OOM killer will not help higher order allocs so fail */ 1620 if (order > PAGE_ALLOC_COSTLY_ORDER) { 1621 clear_zonelist_oom(zonelist, gfp_mask); 1622 goto nopage; 1623 } 1624 1625 out_of_memory(zonelist, gfp_mask, order); 1626 clear_zonelist_oom(zonelist, gfp_mask); 1627 goto restart; 1628 } 1629 1630 /* 1631 * Don't let big-order allocations loop unless the caller explicitly 1632 * requests that. Wait for some write requests to complete then retry. 1633 * 1634 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 1635 * means __GFP_NOFAIL, but that may not be true in other 1636 * implementations. 1637 * 1638 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 1639 * specified, then we retry until we no longer reclaim any pages 1640 * (above), or we've reclaimed an order of pages at least as 1641 * large as the allocation's order. In both cases, if the 1642 * allocation still fails, we stop retrying. 1643 */ 1644 pages_reclaimed += did_some_progress; 1645 do_retry = 0; 1646 if (!(gfp_mask & __GFP_NORETRY)) { 1647 if (order <= PAGE_ALLOC_COSTLY_ORDER) { 1648 do_retry = 1; 1649 } else { 1650 if (gfp_mask & __GFP_REPEAT && 1651 pages_reclaimed < (1 << order)) 1652 do_retry = 1; 1653 } 1654 if (gfp_mask & __GFP_NOFAIL) 1655 do_retry = 1; 1656 } 1657 if (do_retry) { 1658 congestion_wait(WRITE, HZ/50); 1659 goto rebalance; 1660 } 1661 1662 nopage: 1663 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) { 1664 printk(KERN_WARNING "%s: page allocation failure." 1665 " order:%d, mode:0x%x\n", 1666 p->comm, order, gfp_mask); 1667 dump_stack(); 1668 show_mem(); 1669 } 1670 got_pg: 1671 return page; 1672 } 1673 EXPORT_SYMBOL(__alloc_pages_internal); 1674 1675 /* 1676 * Common helper functions. 1677 */ 1678 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 1679 { 1680 struct page * page; 1681 page = alloc_pages(gfp_mask, order); 1682 if (!page) 1683 return 0; 1684 return (unsigned long) page_address(page); 1685 } 1686 1687 EXPORT_SYMBOL(__get_free_pages); 1688 1689 unsigned long get_zeroed_page(gfp_t gfp_mask) 1690 { 1691 struct page * page; 1692 1693 /* 1694 * get_zeroed_page() returns a 32-bit address, which cannot represent 1695 * a highmem page 1696 */ 1697 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 1698 1699 page = alloc_pages(gfp_mask | __GFP_ZERO, 0); 1700 if (page) 1701 return (unsigned long) page_address(page); 1702 return 0; 1703 } 1704 1705 EXPORT_SYMBOL(get_zeroed_page); 1706 1707 void __pagevec_free(struct pagevec *pvec) 1708 { 1709 int i = pagevec_count(pvec); 1710 1711 while (--i >= 0) 1712 free_hot_cold_page(pvec->pages[i], pvec->cold); 1713 } 1714 1715 void __free_pages(struct page *page, unsigned int order) 1716 { 1717 if (put_page_testzero(page)) { 1718 if (order == 0) 1719 free_hot_page(page); 1720 else 1721 __free_pages_ok(page, order); 1722 } 1723 } 1724 1725 EXPORT_SYMBOL(__free_pages); 1726 1727 void free_pages(unsigned long addr, unsigned int order) 1728 { 1729 if (addr != 0) { 1730 VM_BUG_ON(!virt_addr_valid((void *)addr)); 1731 __free_pages(virt_to_page((void *)addr), order); 1732 } 1733 } 1734 1735 EXPORT_SYMBOL(free_pages); 1736 1737 /** 1738 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 1739 * @size: the number of bytes to allocate 1740 * @gfp_mask: GFP flags for the allocation 1741 * 1742 * This function is similar to alloc_pages(), except that it allocates the 1743 * minimum number of pages to satisfy the request. alloc_pages() can only 1744 * allocate memory in power-of-two pages. 1745 * 1746 * This function is also limited by MAX_ORDER. 1747 * 1748 * Memory allocated by this function must be released by free_pages_exact(). 1749 */ 1750 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 1751 { 1752 unsigned int order = get_order(size); 1753 unsigned long addr; 1754 1755 addr = __get_free_pages(gfp_mask, order); 1756 if (addr) { 1757 unsigned long alloc_end = addr + (PAGE_SIZE << order); 1758 unsigned long used = addr + PAGE_ALIGN(size); 1759 1760 split_page(virt_to_page(addr), order); 1761 while (used < alloc_end) { 1762 free_page(used); 1763 used += PAGE_SIZE; 1764 } 1765 } 1766 1767 return (void *)addr; 1768 } 1769 EXPORT_SYMBOL(alloc_pages_exact); 1770 1771 /** 1772 * free_pages_exact - release memory allocated via alloc_pages_exact() 1773 * @virt: the value returned by alloc_pages_exact. 1774 * @size: size of allocation, same value as passed to alloc_pages_exact(). 1775 * 1776 * Release the memory allocated by a previous call to alloc_pages_exact. 1777 */ 1778 void free_pages_exact(void *virt, size_t size) 1779 { 1780 unsigned long addr = (unsigned long)virt; 1781 unsigned long end = addr + PAGE_ALIGN(size); 1782 1783 while (addr < end) { 1784 free_page(addr); 1785 addr += PAGE_SIZE; 1786 } 1787 } 1788 EXPORT_SYMBOL(free_pages_exact); 1789 1790 static unsigned int nr_free_zone_pages(int offset) 1791 { 1792 struct zoneref *z; 1793 struct zone *zone; 1794 1795 /* Just pick one node, since fallback list is circular */ 1796 unsigned int sum = 0; 1797 1798 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 1799 1800 for_each_zone_zonelist(zone, z, zonelist, offset) { 1801 unsigned long size = zone->present_pages; 1802 unsigned long high = zone->pages_high; 1803 if (size > high) 1804 sum += size - high; 1805 } 1806 1807 return sum; 1808 } 1809 1810 /* 1811 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 1812 */ 1813 unsigned int nr_free_buffer_pages(void) 1814 { 1815 return nr_free_zone_pages(gfp_zone(GFP_USER)); 1816 } 1817 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 1818 1819 /* 1820 * Amount of free RAM allocatable within all zones 1821 */ 1822 unsigned int nr_free_pagecache_pages(void) 1823 { 1824 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 1825 } 1826 1827 static inline void show_node(struct zone *zone) 1828 { 1829 if (NUMA_BUILD) 1830 printk("Node %d ", zone_to_nid(zone)); 1831 } 1832 1833 void si_meminfo(struct sysinfo *val) 1834 { 1835 val->totalram = totalram_pages; 1836 val->sharedram = 0; 1837 val->freeram = global_page_state(NR_FREE_PAGES); 1838 val->bufferram = nr_blockdev_pages(); 1839 val->totalhigh = totalhigh_pages; 1840 val->freehigh = nr_free_highpages(); 1841 val->mem_unit = PAGE_SIZE; 1842 } 1843 1844 EXPORT_SYMBOL(si_meminfo); 1845 1846 #ifdef CONFIG_NUMA 1847 void si_meminfo_node(struct sysinfo *val, int nid) 1848 { 1849 pg_data_t *pgdat = NODE_DATA(nid); 1850 1851 val->totalram = pgdat->node_present_pages; 1852 val->freeram = node_page_state(nid, NR_FREE_PAGES); 1853 #ifdef CONFIG_HIGHMEM 1854 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 1855 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 1856 NR_FREE_PAGES); 1857 #else 1858 val->totalhigh = 0; 1859 val->freehigh = 0; 1860 #endif 1861 val->mem_unit = PAGE_SIZE; 1862 } 1863 #endif 1864 1865 #define K(x) ((x) << (PAGE_SHIFT-10)) 1866 1867 /* 1868 * Show free area list (used inside shift_scroll-lock stuff) 1869 * We also calculate the percentage fragmentation. We do this by counting the 1870 * memory on each free list with the exception of the first item on the list. 1871 */ 1872 void show_free_areas(void) 1873 { 1874 int cpu; 1875 struct zone *zone; 1876 1877 for_each_populated_zone(zone) { 1878 show_node(zone); 1879 printk("%s per-cpu:\n", zone->name); 1880 1881 for_each_online_cpu(cpu) { 1882 struct per_cpu_pageset *pageset; 1883 1884 pageset = zone_pcp(zone, cpu); 1885 1886 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", 1887 cpu, pageset->pcp.high, 1888 pageset->pcp.batch, pageset->pcp.count); 1889 } 1890 } 1891 1892 printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n" 1893 " inactive_file:%lu" 1894 //TODO: check/adjust line lengths 1895 #ifdef CONFIG_UNEVICTABLE_LRU 1896 " unevictable:%lu" 1897 #endif 1898 " dirty:%lu writeback:%lu unstable:%lu\n" 1899 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n", 1900 global_page_state(NR_ACTIVE_ANON), 1901 global_page_state(NR_ACTIVE_FILE), 1902 global_page_state(NR_INACTIVE_ANON), 1903 global_page_state(NR_INACTIVE_FILE), 1904 #ifdef CONFIG_UNEVICTABLE_LRU 1905 global_page_state(NR_UNEVICTABLE), 1906 #endif 1907 global_page_state(NR_FILE_DIRTY), 1908 global_page_state(NR_WRITEBACK), 1909 global_page_state(NR_UNSTABLE_NFS), 1910 global_page_state(NR_FREE_PAGES), 1911 global_page_state(NR_SLAB_RECLAIMABLE) + 1912 global_page_state(NR_SLAB_UNRECLAIMABLE), 1913 global_page_state(NR_FILE_MAPPED), 1914 global_page_state(NR_PAGETABLE), 1915 global_page_state(NR_BOUNCE)); 1916 1917 for_each_populated_zone(zone) { 1918 int i; 1919 1920 show_node(zone); 1921 printk("%s" 1922 " free:%lukB" 1923 " min:%lukB" 1924 " low:%lukB" 1925 " high:%lukB" 1926 " active_anon:%lukB" 1927 " inactive_anon:%lukB" 1928 " active_file:%lukB" 1929 " inactive_file:%lukB" 1930 #ifdef CONFIG_UNEVICTABLE_LRU 1931 " unevictable:%lukB" 1932 #endif 1933 " present:%lukB" 1934 " pages_scanned:%lu" 1935 " all_unreclaimable? %s" 1936 "\n", 1937 zone->name, 1938 K(zone_page_state(zone, NR_FREE_PAGES)), 1939 K(zone->pages_min), 1940 K(zone->pages_low), 1941 K(zone->pages_high), 1942 K(zone_page_state(zone, NR_ACTIVE_ANON)), 1943 K(zone_page_state(zone, NR_INACTIVE_ANON)), 1944 K(zone_page_state(zone, NR_ACTIVE_FILE)), 1945 K(zone_page_state(zone, NR_INACTIVE_FILE)), 1946 #ifdef CONFIG_UNEVICTABLE_LRU 1947 K(zone_page_state(zone, NR_UNEVICTABLE)), 1948 #endif 1949 K(zone->present_pages), 1950 zone->pages_scanned, 1951 (zone_is_all_unreclaimable(zone) ? "yes" : "no") 1952 ); 1953 printk("lowmem_reserve[]:"); 1954 for (i = 0; i < MAX_NR_ZONES; i++) 1955 printk(" %lu", zone->lowmem_reserve[i]); 1956 printk("\n"); 1957 } 1958 1959 for_each_populated_zone(zone) { 1960 unsigned long nr[MAX_ORDER], flags, order, total = 0; 1961 1962 show_node(zone); 1963 printk("%s: ", zone->name); 1964 1965 spin_lock_irqsave(&zone->lock, flags); 1966 for (order = 0; order < MAX_ORDER; order++) { 1967 nr[order] = zone->free_area[order].nr_free; 1968 total += nr[order] << order; 1969 } 1970 spin_unlock_irqrestore(&zone->lock, flags); 1971 for (order = 0; order < MAX_ORDER; order++) 1972 printk("%lu*%lukB ", nr[order], K(1UL) << order); 1973 printk("= %lukB\n", K(total)); 1974 } 1975 1976 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 1977 1978 show_swap_cache_info(); 1979 } 1980 1981 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 1982 { 1983 zoneref->zone = zone; 1984 zoneref->zone_idx = zone_idx(zone); 1985 } 1986 1987 /* 1988 * Builds allocation fallback zone lists. 1989 * 1990 * Add all populated zones of a node to the zonelist. 1991 */ 1992 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 1993 int nr_zones, enum zone_type zone_type) 1994 { 1995 struct zone *zone; 1996 1997 BUG_ON(zone_type >= MAX_NR_ZONES); 1998 zone_type++; 1999 2000 do { 2001 zone_type--; 2002 zone = pgdat->node_zones + zone_type; 2003 if (populated_zone(zone)) { 2004 zoneref_set_zone(zone, 2005 &zonelist->_zonerefs[nr_zones++]); 2006 check_highest_zone(zone_type); 2007 } 2008 2009 } while (zone_type); 2010 return nr_zones; 2011 } 2012 2013 2014 /* 2015 * zonelist_order: 2016 * 0 = automatic detection of better ordering. 2017 * 1 = order by ([node] distance, -zonetype) 2018 * 2 = order by (-zonetype, [node] distance) 2019 * 2020 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 2021 * the same zonelist. So only NUMA can configure this param. 2022 */ 2023 #define ZONELIST_ORDER_DEFAULT 0 2024 #define ZONELIST_ORDER_NODE 1 2025 #define ZONELIST_ORDER_ZONE 2 2026 2027 /* zonelist order in the kernel. 2028 * set_zonelist_order() will set this to NODE or ZONE. 2029 */ 2030 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 2031 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 2032 2033 2034 #ifdef CONFIG_NUMA 2035 /* The value user specified ....changed by config */ 2036 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 2037 /* string for sysctl */ 2038 #define NUMA_ZONELIST_ORDER_LEN 16 2039 char numa_zonelist_order[16] = "default"; 2040 2041 /* 2042 * interface for configure zonelist ordering. 2043 * command line option "numa_zonelist_order" 2044 * = "[dD]efault - default, automatic configuration. 2045 * = "[nN]ode - order by node locality, then by zone within node 2046 * = "[zZ]one - order by zone, then by locality within zone 2047 */ 2048 2049 static int __parse_numa_zonelist_order(char *s) 2050 { 2051 if (*s == 'd' || *s == 'D') { 2052 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 2053 } else if (*s == 'n' || *s == 'N') { 2054 user_zonelist_order = ZONELIST_ORDER_NODE; 2055 } else if (*s == 'z' || *s == 'Z') { 2056 user_zonelist_order = ZONELIST_ORDER_ZONE; 2057 } else { 2058 printk(KERN_WARNING 2059 "Ignoring invalid numa_zonelist_order value: " 2060 "%s\n", s); 2061 return -EINVAL; 2062 } 2063 return 0; 2064 } 2065 2066 static __init int setup_numa_zonelist_order(char *s) 2067 { 2068 if (s) 2069 return __parse_numa_zonelist_order(s); 2070 return 0; 2071 } 2072 early_param("numa_zonelist_order", setup_numa_zonelist_order); 2073 2074 /* 2075 * sysctl handler for numa_zonelist_order 2076 */ 2077 int numa_zonelist_order_handler(ctl_table *table, int write, 2078 struct file *file, void __user *buffer, size_t *length, 2079 loff_t *ppos) 2080 { 2081 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 2082 int ret; 2083 2084 if (write) 2085 strncpy(saved_string, (char*)table->data, 2086 NUMA_ZONELIST_ORDER_LEN); 2087 ret = proc_dostring(table, write, file, buffer, length, ppos); 2088 if (ret) 2089 return ret; 2090 if (write) { 2091 int oldval = user_zonelist_order; 2092 if (__parse_numa_zonelist_order((char*)table->data)) { 2093 /* 2094 * bogus value. restore saved string 2095 */ 2096 strncpy((char*)table->data, saved_string, 2097 NUMA_ZONELIST_ORDER_LEN); 2098 user_zonelist_order = oldval; 2099 } else if (oldval != user_zonelist_order) 2100 build_all_zonelists(); 2101 } 2102 return 0; 2103 } 2104 2105 2106 #define MAX_NODE_LOAD (num_online_nodes()) 2107 static int node_load[MAX_NUMNODES]; 2108 2109 /** 2110 * find_next_best_node - find the next node that should appear in a given node's fallback list 2111 * @node: node whose fallback list we're appending 2112 * @used_node_mask: nodemask_t of already used nodes 2113 * 2114 * We use a number of factors to determine which is the next node that should 2115 * appear on a given node's fallback list. The node should not have appeared 2116 * already in @node's fallback list, and it should be the next closest node 2117 * according to the distance array (which contains arbitrary distance values 2118 * from each node to each node in the system), and should also prefer nodes 2119 * with no CPUs, since presumably they'll have very little allocation pressure 2120 * on them otherwise. 2121 * It returns -1 if no node is found. 2122 */ 2123 static int find_next_best_node(int node, nodemask_t *used_node_mask) 2124 { 2125 int n, val; 2126 int min_val = INT_MAX; 2127 int best_node = -1; 2128 const struct cpumask *tmp = cpumask_of_node(0); 2129 2130 /* Use the local node if we haven't already */ 2131 if (!node_isset(node, *used_node_mask)) { 2132 node_set(node, *used_node_mask); 2133 return node; 2134 } 2135 2136 for_each_node_state(n, N_HIGH_MEMORY) { 2137 2138 /* Don't want a node to appear more than once */ 2139 if (node_isset(n, *used_node_mask)) 2140 continue; 2141 2142 /* Use the distance array to find the distance */ 2143 val = node_distance(node, n); 2144 2145 /* Penalize nodes under us ("prefer the next node") */ 2146 val += (n < node); 2147 2148 /* Give preference to headless and unused nodes */ 2149 tmp = cpumask_of_node(n); 2150 if (!cpumask_empty(tmp)) 2151 val += PENALTY_FOR_NODE_WITH_CPUS; 2152 2153 /* Slight preference for less loaded node */ 2154 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 2155 val += node_load[n]; 2156 2157 if (val < min_val) { 2158 min_val = val; 2159 best_node = n; 2160 } 2161 } 2162 2163 if (best_node >= 0) 2164 node_set(best_node, *used_node_mask); 2165 2166 return best_node; 2167 } 2168 2169 2170 /* 2171 * Build zonelists ordered by node and zones within node. 2172 * This results in maximum locality--normal zone overflows into local 2173 * DMA zone, if any--but risks exhausting DMA zone. 2174 */ 2175 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 2176 { 2177 int j; 2178 struct zonelist *zonelist; 2179 2180 zonelist = &pgdat->node_zonelists[0]; 2181 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 2182 ; 2183 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2184 MAX_NR_ZONES - 1); 2185 zonelist->_zonerefs[j].zone = NULL; 2186 zonelist->_zonerefs[j].zone_idx = 0; 2187 } 2188 2189 /* 2190 * Build gfp_thisnode zonelists 2191 */ 2192 static void build_thisnode_zonelists(pg_data_t *pgdat) 2193 { 2194 int j; 2195 struct zonelist *zonelist; 2196 2197 zonelist = &pgdat->node_zonelists[1]; 2198 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 2199 zonelist->_zonerefs[j].zone = NULL; 2200 zonelist->_zonerefs[j].zone_idx = 0; 2201 } 2202 2203 /* 2204 * Build zonelists ordered by zone and nodes within zones. 2205 * This results in conserving DMA zone[s] until all Normal memory is 2206 * exhausted, but results in overflowing to remote node while memory 2207 * may still exist in local DMA zone. 2208 */ 2209 static int node_order[MAX_NUMNODES]; 2210 2211 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 2212 { 2213 int pos, j, node; 2214 int zone_type; /* needs to be signed */ 2215 struct zone *z; 2216 struct zonelist *zonelist; 2217 2218 zonelist = &pgdat->node_zonelists[0]; 2219 pos = 0; 2220 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 2221 for (j = 0; j < nr_nodes; j++) { 2222 node = node_order[j]; 2223 z = &NODE_DATA(node)->node_zones[zone_type]; 2224 if (populated_zone(z)) { 2225 zoneref_set_zone(z, 2226 &zonelist->_zonerefs[pos++]); 2227 check_highest_zone(zone_type); 2228 } 2229 } 2230 } 2231 zonelist->_zonerefs[pos].zone = NULL; 2232 zonelist->_zonerefs[pos].zone_idx = 0; 2233 } 2234 2235 static int default_zonelist_order(void) 2236 { 2237 int nid, zone_type; 2238 unsigned long low_kmem_size,total_size; 2239 struct zone *z; 2240 int average_size; 2241 /* 2242 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem. 2243 * If they are really small and used heavily, the system can fall 2244 * into OOM very easily. 2245 * This function detect ZONE_DMA/DMA32 size and confgigures zone order. 2246 */ 2247 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ 2248 low_kmem_size = 0; 2249 total_size = 0; 2250 for_each_online_node(nid) { 2251 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 2252 z = &NODE_DATA(nid)->node_zones[zone_type]; 2253 if (populated_zone(z)) { 2254 if (zone_type < ZONE_NORMAL) 2255 low_kmem_size += z->present_pages; 2256 total_size += z->present_pages; 2257 } 2258 } 2259 } 2260 if (!low_kmem_size || /* there are no DMA area. */ 2261 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ 2262 return ZONELIST_ORDER_NODE; 2263 /* 2264 * look into each node's config. 2265 * If there is a node whose DMA/DMA32 memory is very big area on 2266 * local memory, NODE_ORDER may be suitable. 2267 */ 2268 average_size = total_size / 2269 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1); 2270 for_each_online_node(nid) { 2271 low_kmem_size = 0; 2272 total_size = 0; 2273 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 2274 z = &NODE_DATA(nid)->node_zones[zone_type]; 2275 if (populated_zone(z)) { 2276 if (zone_type < ZONE_NORMAL) 2277 low_kmem_size += z->present_pages; 2278 total_size += z->present_pages; 2279 } 2280 } 2281 if (low_kmem_size && 2282 total_size > average_size && /* ignore small node */ 2283 low_kmem_size > total_size * 70/100) 2284 return ZONELIST_ORDER_NODE; 2285 } 2286 return ZONELIST_ORDER_ZONE; 2287 } 2288 2289 static void set_zonelist_order(void) 2290 { 2291 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 2292 current_zonelist_order = default_zonelist_order(); 2293 else 2294 current_zonelist_order = user_zonelist_order; 2295 } 2296 2297 static void build_zonelists(pg_data_t *pgdat) 2298 { 2299 int j, node, load; 2300 enum zone_type i; 2301 nodemask_t used_mask; 2302 int local_node, prev_node; 2303 struct zonelist *zonelist; 2304 int order = current_zonelist_order; 2305 2306 /* initialize zonelists */ 2307 for (i = 0; i < MAX_ZONELISTS; i++) { 2308 zonelist = pgdat->node_zonelists + i; 2309 zonelist->_zonerefs[0].zone = NULL; 2310 zonelist->_zonerefs[0].zone_idx = 0; 2311 } 2312 2313 /* NUMA-aware ordering of nodes */ 2314 local_node = pgdat->node_id; 2315 load = num_online_nodes(); 2316 prev_node = local_node; 2317 nodes_clear(used_mask); 2318 2319 memset(node_load, 0, sizeof(node_load)); 2320 memset(node_order, 0, sizeof(node_order)); 2321 j = 0; 2322 2323 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 2324 int distance = node_distance(local_node, node); 2325 2326 /* 2327 * If another node is sufficiently far away then it is better 2328 * to reclaim pages in a zone before going off node. 2329 */ 2330 if (distance > RECLAIM_DISTANCE) 2331 zone_reclaim_mode = 1; 2332 2333 /* 2334 * We don't want to pressure a particular node. 2335 * So adding penalty to the first node in same 2336 * distance group to make it round-robin. 2337 */ 2338 if (distance != node_distance(local_node, prev_node)) 2339 node_load[node] = load; 2340 2341 prev_node = node; 2342 load--; 2343 if (order == ZONELIST_ORDER_NODE) 2344 build_zonelists_in_node_order(pgdat, node); 2345 else 2346 node_order[j++] = node; /* remember order */ 2347 } 2348 2349 if (order == ZONELIST_ORDER_ZONE) { 2350 /* calculate node order -- i.e., DMA last! */ 2351 build_zonelists_in_zone_order(pgdat, j); 2352 } 2353 2354 build_thisnode_zonelists(pgdat); 2355 } 2356 2357 /* Construct the zonelist performance cache - see further mmzone.h */ 2358 static void build_zonelist_cache(pg_data_t *pgdat) 2359 { 2360 struct zonelist *zonelist; 2361 struct zonelist_cache *zlc; 2362 struct zoneref *z; 2363 2364 zonelist = &pgdat->node_zonelists[0]; 2365 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 2366 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 2367 for (z = zonelist->_zonerefs; z->zone; z++) 2368 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 2369 } 2370 2371 2372 #else /* CONFIG_NUMA */ 2373 2374 static void set_zonelist_order(void) 2375 { 2376 current_zonelist_order = ZONELIST_ORDER_ZONE; 2377 } 2378 2379 static void build_zonelists(pg_data_t *pgdat) 2380 { 2381 int node, local_node; 2382 enum zone_type j; 2383 struct zonelist *zonelist; 2384 2385 local_node = pgdat->node_id; 2386 2387 zonelist = &pgdat->node_zonelists[0]; 2388 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 2389 2390 /* 2391 * Now we build the zonelist so that it contains the zones 2392 * of all the other nodes. 2393 * We don't want to pressure a particular node, so when 2394 * building the zones for node N, we make sure that the 2395 * zones coming right after the local ones are those from 2396 * node N+1 (modulo N) 2397 */ 2398 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 2399 if (!node_online(node)) 2400 continue; 2401 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2402 MAX_NR_ZONES - 1); 2403 } 2404 for (node = 0; node < local_node; node++) { 2405 if (!node_online(node)) 2406 continue; 2407 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2408 MAX_NR_ZONES - 1); 2409 } 2410 2411 zonelist->_zonerefs[j].zone = NULL; 2412 zonelist->_zonerefs[j].zone_idx = 0; 2413 } 2414 2415 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 2416 static void build_zonelist_cache(pg_data_t *pgdat) 2417 { 2418 pgdat->node_zonelists[0].zlcache_ptr = NULL; 2419 } 2420 2421 #endif /* CONFIG_NUMA */ 2422 2423 /* return values int ....just for stop_machine() */ 2424 static int __build_all_zonelists(void *dummy) 2425 { 2426 int nid; 2427 2428 for_each_online_node(nid) { 2429 pg_data_t *pgdat = NODE_DATA(nid); 2430 2431 build_zonelists(pgdat); 2432 build_zonelist_cache(pgdat); 2433 } 2434 return 0; 2435 } 2436 2437 void build_all_zonelists(void) 2438 { 2439 set_zonelist_order(); 2440 2441 if (system_state == SYSTEM_BOOTING) { 2442 __build_all_zonelists(NULL); 2443 mminit_verify_zonelist(); 2444 cpuset_init_current_mems_allowed(); 2445 } else { 2446 /* we have to stop all cpus to guarantee there is no user 2447 of zonelist */ 2448 stop_machine(__build_all_zonelists, NULL, NULL); 2449 /* cpuset refresh routine should be here */ 2450 } 2451 vm_total_pages = nr_free_pagecache_pages(); 2452 /* 2453 * Disable grouping by mobility if the number of pages in the 2454 * system is too low to allow the mechanism to work. It would be 2455 * more accurate, but expensive to check per-zone. This check is 2456 * made on memory-hotadd so a system can start with mobility 2457 * disabled and enable it later 2458 */ 2459 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 2460 page_group_by_mobility_disabled = 1; 2461 else 2462 page_group_by_mobility_disabled = 0; 2463 2464 printk("Built %i zonelists in %s order, mobility grouping %s. " 2465 "Total pages: %ld\n", 2466 num_online_nodes(), 2467 zonelist_order_name[current_zonelist_order], 2468 page_group_by_mobility_disabled ? "off" : "on", 2469 vm_total_pages); 2470 #ifdef CONFIG_NUMA 2471 printk("Policy zone: %s\n", zone_names[policy_zone]); 2472 #endif 2473 } 2474 2475 /* 2476 * Helper functions to size the waitqueue hash table. 2477 * Essentially these want to choose hash table sizes sufficiently 2478 * large so that collisions trying to wait on pages are rare. 2479 * But in fact, the number of active page waitqueues on typical 2480 * systems is ridiculously low, less than 200. So this is even 2481 * conservative, even though it seems large. 2482 * 2483 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 2484 * waitqueues, i.e. the size of the waitq table given the number of pages. 2485 */ 2486 #define PAGES_PER_WAITQUEUE 256 2487 2488 #ifndef CONFIG_MEMORY_HOTPLUG 2489 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 2490 { 2491 unsigned long size = 1; 2492 2493 pages /= PAGES_PER_WAITQUEUE; 2494 2495 while (size < pages) 2496 size <<= 1; 2497 2498 /* 2499 * Once we have dozens or even hundreds of threads sleeping 2500 * on IO we've got bigger problems than wait queue collision. 2501 * Limit the size of the wait table to a reasonable size. 2502 */ 2503 size = min(size, 4096UL); 2504 2505 return max(size, 4UL); 2506 } 2507 #else 2508 /* 2509 * A zone's size might be changed by hot-add, so it is not possible to determine 2510 * a suitable size for its wait_table. So we use the maximum size now. 2511 * 2512 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 2513 * 2514 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 2515 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 2516 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 2517 * 2518 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 2519 * or more by the traditional way. (See above). It equals: 2520 * 2521 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 2522 * ia64(16K page size) : = ( 8G + 4M)byte. 2523 * powerpc (64K page size) : = (32G +16M)byte. 2524 */ 2525 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 2526 { 2527 return 4096UL; 2528 } 2529 #endif 2530 2531 /* 2532 * This is an integer logarithm so that shifts can be used later 2533 * to extract the more random high bits from the multiplicative 2534 * hash function before the remainder is taken. 2535 */ 2536 static inline unsigned long wait_table_bits(unsigned long size) 2537 { 2538 return ffz(~size); 2539 } 2540 2541 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 2542 2543 /* 2544 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 2545 * of blocks reserved is based on zone->pages_min. The memory within the 2546 * reserve will tend to store contiguous free pages. Setting min_free_kbytes 2547 * higher will lead to a bigger reserve which will get freed as contiguous 2548 * blocks as reclaim kicks in 2549 */ 2550 static void setup_zone_migrate_reserve(struct zone *zone) 2551 { 2552 unsigned long start_pfn, pfn, end_pfn; 2553 struct page *page; 2554 unsigned long reserve, block_migratetype; 2555 2556 /* Get the start pfn, end pfn and the number of blocks to reserve */ 2557 start_pfn = zone->zone_start_pfn; 2558 end_pfn = start_pfn + zone->spanned_pages; 2559 reserve = roundup(zone->pages_min, pageblock_nr_pages) >> 2560 pageblock_order; 2561 2562 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 2563 if (!pfn_valid(pfn)) 2564 continue; 2565 page = pfn_to_page(pfn); 2566 2567 /* Watch out for overlapping nodes */ 2568 if (page_to_nid(page) != zone_to_nid(zone)) 2569 continue; 2570 2571 /* Blocks with reserved pages will never free, skip them. */ 2572 if (PageReserved(page)) 2573 continue; 2574 2575 block_migratetype = get_pageblock_migratetype(page); 2576 2577 /* If this block is reserved, account for it */ 2578 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) { 2579 reserve--; 2580 continue; 2581 } 2582 2583 /* Suitable for reserving if this block is movable */ 2584 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) { 2585 set_pageblock_migratetype(page, MIGRATE_RESERVE); 2586 move_freepages_block(zone, page, MIGRATE_RESERVE); 2587 reserve--; 2588 continue; 2589 } 2590 2591 /* 2592 * If the reserve is met and this is a previous reserved block, 2593 * take it back 2594 */ 2595 if (block_migratetype == MIGRATE_RESERVE) { 2596 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 2597 move_freepages_block(zone, page, MIGRATE_MOVABLE); 2598 } 2599 } 2600 } 2601 2602 /* 2603 * Initially all pages are reserved - free ones are freed 2604 * up by free_all_bootmem() once the early boot process is 2605 * done. Non-atomic initialization, single-pass. 2606 */ 2607 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 2608 unsigned long start_pfn, enum memmap_context context) 2609 { 2610 struct page *page; 2611 unsigned long end_pfn = start_pfn + size; 2612 unsigned long pfn; 2613 struct zone *z; 2614 2615 if (highest_memmap_pfn < end_pfn - 1) 2616 highest_memmap_pfn = end_pfn - 1; 2617 2618 z = &NODE_DATA(nid)->node_zones[zone]; 2619 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 2620 /* 2621 * There can be holes in boot-time mem_map[]s 2622 * handed to this function. They do not 2623 * exist on hotplugged memory. 2624 */ 2625 if (context == MEMMAP_EARLY) { 2626 if (!early_pfn_valid(pfn)) 2627 continue; 2628 if (!early_pfn_in_nid(pfn, nid)) 2629 continue; 2630 } 2631 page = pfn_to_page(pfn); 2632 set_page_links(page, zone, nid, pfn); 2633 mminit_verify_page_links(page, zone, nid, pfn); 2634 init_page_count(page); 2635 reset_page_mapcount(page); 2636 SetPageReserved(page); 2637 /* 2638 * Mark the block movable so that blocks are reserved for 2639 * movable at startup. This will force kernel allocations 2640 * to reserve their blocks rather than leaking throughout 2641 * the address space during boot when many long-lived 2642 * kernel allocations are made. Later some blocks near 2643 * the start are marked MIGRATE_RESERVE by 2644 * setup_zone_migrate_reserve() 2645 * 2646 * bitmap is created for zone's valid pfn range. but memmap 2647 * can be created for invalid pages (for alignment) 2648 * check here not to call set_pageblock_migratetype() against 2649 * pfn out of zone. 2650 */ 2651 if ((z->zone_start_pfn <= pfn) 2652 && (pfn < z->zone_start_pfn + z->spanned_pages) 2653 && !(pfn & (pageblock_nr_pages - 1))) 2654 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 2655 2656 INIT_LIST_HEAD(&page->lru); 2657 #ifdef WANT_PAGE_VIRTUAL 2658 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 2659 if (!is_highmem_idx(zone)) 2660 set_page_address(page, __va(pfn << PAGE_SHIFT)); 2661 #endif 2662 } 2663 } 2664 2665 static void __meminit zone_init_free_lists(struct zone *zone) 2666 { 2667 int order, t; 2668 for_each_migratetype_order(order, t) { 2669 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 2670 zone->free_area[order].nr_free = 0; 2671 } 2672 } 2673 2674 #ifndef __HAVE_ARCH_MEMMAP_INIT 2675 #define memmap_init(size, nid, zone, start_pfn) \ 2676 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 2677 #endif 2678 2679 static int zone_batchsize(struct zone *zone) 2680 { 2681 #ifdef CONFIG_MMU 2682 int batch; 2683 2684 /* 2685 * The per-cpu-pages pools are set to around 1000th of the 2686 * size of the zone. But no more than 1/2 of a meg. 2687 * 2688 * OK, so we don't know how big the cache is. So guess. 2689 */ 2690 batch = zone->present_pages / 1024; 2691 if (batch * PAGE_SIZE > 512 * 1024) 2692 batch = (512 * 1024) / PAGE_SIZE; 2693 batch /= 4; /* We effectively *= 4 below */ 2694 if (batch < 1) 2695 batch = 1; 2696 2697 /* 2698 * Clamp the batch to a 2^n - 1 value. Having a power 2699 * of 2 value was found to be more likely to have 2700 * suboptimal cache aliasing properties in some cases. 2701 * 2702 * For example if 2 tasks are alternately allocating 2703 * batches of pages, one task can end up with a lot 2704 * of pages of one half of the possible page colors 2705 * and the other with pages of the other colors. 2706 */ 2707 batch = rounddown_pow_of_two(batch + batch/2) - 1; 2708 2709 return batch; 2710 2711 #else 2712 /* The deferral and batching of frees should be suppressed under NOMMU 2713 * conditions. 2714 * 2715 * The problem is that NOMMU needs to be able to allocate large chunks 2716 * of contiguous memory as there's no hardware page translation to 2717 * assemble apparent contiguous memory from discontiguous pages. 2718 * 2719 * Queueing large contiguous runs of pages for batching, however, 2720 * causes the pages to actually be freed in smaller chunks. As there 2721 * can be a significant delay between the individual batches being 2722 * recycled, this leads to the once large chunks of space being 2723 * fragmented and becoming unavailable for high-order allocations. 2724 */ 2725 return 0; 2726 #endif 2727 } 2728 2729 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 2730 { 2731 struct per_cpu_pages *pcp; 2732 2733 memset(p, 0, sizeof(*p)); 2734 2735 pcp = &p->pcp; 2736 pcp->count = 0; 2737 pcp->high = 6 * batch; 2738 pcp->batch = max(1UL, 1 * batch); 2739 INIT_LIST_HEAD(&pcp->list); 2740 } 2741 2742 /* 2743 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 2744 * to the value high for the pageset p. 2745 */ 2746 2747 static void setup_pagelist_highmark(struct per_cpu_pageset *p, 2748 unsigned long high) 2749 { 2750 struct per_cpu_pages *pcp; 2751 2752 pcp = &p->pcp; 2753 pcp->high = high; 2754 pcp->batch = max(1UL, high/4); 2755 if ((high/4) > (PAGE_SHIFT * 8)) 2756 pcp->batch = PAGE_SHIFT * 8; 2757 } 2758 2759 2760 #ifdef CONFIG_NUMA 2761 /* 2762 * Boot pageset table. One per cpu which is going to be used for all 2763 * zones and all nodes. The parameters will be set in such a way 2764 * that an item put on a list will immediately be handed over to 2765 * the buddy list. This is safe since pageset manipulation is done 2766 * with interrupts disabled. 2767 * 2768 * Some NUMA counter updates may also be caught by the boot pagesets. 2769 * 2770 * The boot_pagesets must be kept even after bootup is complete for 2771 * unused processors and/or zones. They do play a role for bootstrapping 2772 * hotplugged processors. 2773 * 2774 * zoneinfo_show() and maybe other functions do 2775 * not check if the processor is online before following the pageset pointer. 2776 * Other parts of the kernel may not check if the zone is available. 2777 */ 2778 static struct per_cpu_pageset boot_pageset[NR_CPUS]; 2779 2780 /* 2781 * Dynamically allocate memory for the 2782 * per cpu pageset array in struct zone. 2783 */ 2784 static int __cpuinit process_zones(int cpu) 2785 { 2786 struct zone *zone, *dzone; 2787 int node = cpu_to_node(cpu); 2788 2789 node_set_state(node, N_CPU); /* this node has a cpu */ 2790 2791 for_each_populated_zone(zone) { 2792 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset), 2793 GFP_KERNEL, node); 2794 if (!zone_pcp(zone, cpu)) 2795 goto bad; 2796 2797 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone)); 2798 2799 if (percpu_pagelist_fraction) 2800 setup_pagelist_highmark(zone_pcp(zone, cpu), 2801 (zone->present_pages / percpu_pagelist_fraction)); 2802 } 2803 2804 return 0; 2805 bad: 2806 for_each_zone(dzone) { 2807 if (!populated_zone(dzone)) 2808 continue; 2809 if (dzone == zone) 2810 break; 2811 kfree(zone_pcp(dzone, cpu)); 2812 zone_pcp(dzone, cpu) = NULL; 2813 } 2814 return -ENOMEM; 2815 } 2816 2817 static inline void free_zone_pagesets(int cpu) 2818 { 2819 struct zone *zone; 2820 2821 for_each_zone(zone) { 2822 struct per_cpu_pageset *pset = zone_pcp(zone, cpu); 2823 2824 /* Free per_cpu_pageset if it is slab allocated */ 2825 if (pset != &boot_pageset[cpu]) 2826 kfree(pset); 2827 zone_pcp(zone, cpu) = NULL; 2828 } 2829 } 2830 2831 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb, 2832 unsigned long action, 2833 void *hcpu) 2834 { 2835 int cpu = (long)hcpu; 2836 int ret = NOTIFY_OK; 2837 2838 switch (action) { 2839 case CPU_UP_PREPARE: 2840 case CPU_UP_PREPARE_FROZEN: 2841 if (process_zones(cpu)) 2842 ret = NOTIFY_BAD; 2843 break; 2844 case CPU_UP_CANCELED: 2845 case CPU_UP_CANCELED_FROZEN: 2846 case CPU_DEAD: 2847 case CPU_DEAD_FROZEN: 2848 free_zone_pagesets(cpu); 2849 break; 2850 default: 2851 break; 2852 } 2853 return ret; 2854 } 2855 2856 static struct notifier_block __cpuinitdata pageset_notifier = 2857 { &pageset_cpuup_callback, NULL, 0 }; 2858 2859 void __init setup_per_cpu_pageset(void) 2860 { 2861 int err; 2862 2863 /* Initialize per_cpu_pageset for cpu 0. 2864 * A cpuup callback will do this for every cpu 2865 * as it comes online 2866 */ 2867 err = process_zones(smp_processor_id()); 2868 BUG_ON(err); 2869 register_cpu_notifier(&pageset_notifier); 2870 } 2871 2872 #endif 2873 2874 static noinline __init_refok 2875 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 2876 { 2877 int i; 2878 struct pglist_data *pgdat = zone->zone_pgdat; 2879 size_t alloc_size; 2880 2881 /* 2882 * The per-page waitqueue mechanism uses hashed waitqueues 2883 * per zone. 2884 */ 2885 zone->wait_table_hash_nr_entries = 2886 wait_table_hash_nr_entries(zone_size_pages); 2887 zone->wait_table_bits = 2888 wait_table_bits(zone->wait_table_hash_nr_entries); 2889 alloc_size = zone->wait_table_hash_nr_entries 2890 * sizeof(wait_queue_head_t); 2891 2892 if (!slab_is_available()) { 2893 zone->wait_table = (wait_queue_head_t *) 2894 alloc_bootmem_node(pgdat, alloc_size); 2895 } else { 2896 /* 2897 * This case means that a zone whose size was 0 gets new memory 2898 * via memory hot-add. 2899 * But it may be the case that a new node was hot-added. In 2900 * this case vmalloc() will not be able to use this new node's 2901 * memory - this wait_table must be initialized to use this new 2902 * node itself as well. 2903 * To use this new node's memory, further consideration will be 2904 * necessary. 2905 */ 2906 zone->wait_table = vmalloc(alloc_size); 2907 } 2908 if (!zone->wait_table) 2909 return -ENOMEM; 2910 2911 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) 2912 init_waitqueue_head(zone->wait_table + i); 2913 2914 return 0; 2915 } 2916 2917 static __meminit void zone_pcp_init(struct zone *zone) 2918 { 2919 int cpu; 2920 unsigned long batch = zone_batchsize(zone); 2921 2922 for (cpu = 0; cpu < NR_CPUS; cpu++) { 2923 #ifdef CONFIG_NUMA 2924 /* Early boot. Slab allocator not functional yet */ 2925 zone_pcp(zone, cpu) = &boot_pageset[cpu]; 2926 setup_pageset(&boot_pageset[cpu],0); 2927 #else 2928 setup_pageset(zone_pcp(zone,cpu), batch); 2929 #endif 2930 } 2931 if (zone->present_pages) 2932 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n", 2933 zone->name, zone->present_pages, batch); 2934 } 2935 2936 __meminit int init_currently_empty_zone(struct zone *zone, 2937 unsigned long zone_start_pfn, 2938 unsigned long size, 2939 enum memmap_context context) 2940 { 2941 struct pglist_data *pgdat = zone->zone_pgdat; 2942 int ret; 2943 ret = zone_wait_table_init(zone, size); 2944 if (ret) 2945 return ret; 2946 pgdat->nr_zones = zone_idx(zone) + 1; 2947 2948 zone->zone_start_pfn = zone_start_pfn; 2949 2950 mminit_dprintk(MMINIT_TRACE, "memmap_init", 2951 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 2952 pgdat->node_id, 2953 (unsigned long)zone_idx(zone), 2954 zone_start_pfn, (zone_start_pfn + size)); 2955 2956 zone_init_free_lists(zone); 2957 2958 return 0; 2959 } 2960 2961 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 2962 /* 2963 * Basic iterator support. Return the first range of PFNs for a node 2964 * Note: nid == MAX_NUMNODES returns first region regardless of node 2965 */ 2966 static int __meminit first_active_region_index_in_nid(int nid) 2967 { 2968 int i; 2969 2970 for (i = 0; i < nr_nodemap_entries; i++) 2971 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid) 2972 return i; 2973 2974 return -1; 2975 } 2976 2977 /* 2978 * Basic iterator support. Return the next active range of PFNs for a node 2979 * Note: nid == MAX_NUMNODES returns next region regardless of node 2980 */ 2981 static int __meminit next_active_region_index_in_nid(int index, int nid) 2982 { 2983 for (index = index + 1; index < nr_nodemap_entries; index++) 2984 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid) 2985 return index; 2986 2987 return -1; 2988 } 2989 2990 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 2991 /* 2992 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 2993 * Architectures may implement their own version but if add_active_range() 2994 * was used and there are no special requirements, this is a convenient 2995 * alternative 2996 */ 2997 int __meminit __early_pfn_to_nid(unsigned long pfn) 2998 { 2999 int i; 3000 3001 for (i = 0; i < nr_nodemap_entries; i++) { 3002 unsigned long start_pfn = early_node_map[i].start_pfn; 3003 unsigned long end_pfn = early_node_map[i].end_pfn; 3004 3005 if (start_pfn <= pfn && pfn < end_pfn) 3006 return early_node_map[i].nid; 3007 } 3008 /* This is a memory hole */ 3009 return -1; 3010 } 3011 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 3012 3013 int __meminit early_pfn_to_nid(unsigned long pfn) 3014 { 3015 int nid; 3016 3017 nid = __early_pfn_to_nid(pfn); 3018 if (nid >= 0) 3019 return nid; 3020 /* just returns 0 */ 3021 return 0; 3022 } 3023 3024 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 3025 bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 3026 { 3027 int nid; 3028 3029 nid = __early_pfn_to_nid(pfn); 3030 if (nid >= 0 && nid != node) 3031 return false; 3032 return true; 3033 } 3034 #endif 3035 3036 /* Basic iterator support to walk early_node_map[] */ 3037 #define for_each_active_range_index_in_nid(i, nid) \ 3038 for (i = first_active_region_index_in_nid(nid); i != -1; \ 3039 i = next_active_region_index_in_nid(i, nid)) 3040 3041 /** 3042 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range 3043 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 3044 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node 3045 * 3046 * If an architecture guarantees that all ranges registered with 3047 * add_active_ranges() contain no holes and may be freed, this 3048 * this function may be used instead of calling free_bootmem() manually. 3049 */ 3050 void __init free_bootmem_with_active_regions(int nid, 3051 unsigned long max_low_pfn) 3052 { 3053 int i; 3054 3055 for_each_active_range_index_in_nid(i, nid) { 3056 unsigned long size_pages = 0; 3057 unsigned long end_pfn = early_node_map[i].end_pfn; 3058 3059 if (early_node_map[i].start_pfn >= max_low_pfn) 3060 continue; 3061 3062 if (end_pfn > max_low_pfn) 3063 end_pfn = max_low_pfn; 3064 3065 size_pages = end_pfn - early_node_map[i].start_pfn; 3066 free_bootmem_node(NODE_DATA(early_node_map[i].nid), 3067 PFN_PHYS(early_node_map[i].start_pfn), 3068 size_pages << PAGE_SHIFT); 3069 } 3070 } 3071 3072 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data) 3073 { 3074 int i; 3075 int ret; 3076 3077 for_each_active_range_index_in_nid(i, nid) { 3078 ret = work_fn(early_node_map[i].start_pfn, 3079 early_node_map[i].end_pfn, data); 3080 if (ret) 3081 break; 3082 } 3083 } 3084 /** 3085 * sparse_memory_present_with_active_regions - Call memory_present for each active range 3086 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 3087 * 3088 * If an architecture guarantees that all ranges registered with 3089 * add_active_ranges() contain no holes and may be freed, this 3090 * function may be used instead of calling memory_present() manually. 3091 */ 3092 void __init sparse_memory_present_with_active_regions(int nid) 3093 { 3094 int i; 3095 3096 for_each_active_range_index_in_nid(i, nid) 3097 memory_present(early_node_map[i].nid, 3098 early_node_map[i].start_pfn, 3099 early_node_map[i].end_pfn); 3100 } 3101 3102 /** 3103 * get_pfn_range_for_nid - Return the start and end page frames for a node 3104 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 3105 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 3106 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 3107 * 3108 * It returns the start and end page frame of a node based on information 3109 * provided by an arch calling add_active_range(). If called for a node 3110 * with no available memory, a warning is printed and the start and end 3111 * PFNs will be 0. 3112 */ 3113 void __meminit get_pfn_range_for_nid(unsigned int nid, 3114 unsigned long *start_pfn, unsigned long *end_pfn) 3115 { 3116 int i; 3117 *start_pfn = -1UL; 3118 *end_pfn = 0; 3119 3120 for_each_active_range_index_in_nid(i, nid) { 3121 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn); 3122 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn); 3123 } 3124 3125 if (*start_pfn == -1UL) 3126 *start_pfn = 0; 3127 } 3128 3129 /* 3130 * This finds a zone that can be used for ZONE_MOVABLE pages. The 3131 * assumption is made that zones within a node are ordered in monotonic 3132 * increasing memory addresses so that the "highest" populated zone is used 3133 */ 3134 static void __init find_usable_zone_for_movable(void) 3135 { 3136 int zone_index; 3137 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 3138 if (zone_index == ZONE_MOVABLE) 3139 continue; 3140 3141 if (arch_zone_highest_possible_pfn[zone_index] > 3142 arch_zone_lowest_possible_pfn[zone_index]) 3143 break; 3144 } 3145 3146 VM_BUG_ON(zone_index == -1); 3147 movable_zone = zone_index; 3148 } 3149 3150 /* 3151 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 3152 * because it is sized independant of architecture. Unlike the other zones, 3153 * the starting point for ZONE_MOVABLE is not fixed. It may be different 3154 * in each node depending on the size of each node and how evenly kernelcore 3155 * is distributed. This helper function adjusts the zone ranges 3156 * provided by the architecture for a given node by using the end of the 3157 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 3158 * zones within a node are in order of monotonic increases memory addresses 3159 */ 3160 static void __meminit adjust_zone_range_for_zone_movable(int nid, 3161 unsigned long zone_type, 3162 unsigned long node_start_pfn, 3163 unsigned long node_end_pfn, 3164 unsigned long *zone_start_pfn, 3165 unsigned long *zone_end_pfn) 3166 { 3167 /* Only adjust if ZONE_MOVABLE is on this node */ 3168 if (zone_movable_pfn[nid]) { 3169 /* Size ZONE_MOVABLE */ 3170 if (zone_type == ZONE_MOVABLE) { 3171 *zone_start_pfn = zone_movable_pfn[nid]; 3172 *zone_end_pfn = min(node_end_pfn, 3173 arch_zone_highest_possible_pfn[movable_zone]); 3174 3175 /* Adjust for ZONE_MOVABLE starting within this range */ 3176 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 3177 *zone_end_pfn > zone_movable_pfn[nid]) { 3178 *zone_end_pfn = zone_movable_pfn[nid]; 3179 3180 /* Check if this whole range is within ZONE_MOVABLE */ 3181 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 3182 *zone_start_pfn = *zone_end_pfn; 3183 } 3184 } 3185 3186 /* 3187 * Return the number of pages a zone spans in a node, including holes 3188 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 3189 */ 3190 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 3191 unsigned long zone_type, 3192 unsigned long *ignored) 3193 { 3194 unsigned long node_start_pfn, node_end_pfn; 3195 unsigned long zone_start_pfn, zone_end_pfn; 3196 3197 /* Get the start and end of the node and zone */ 3198 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 3199 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 3200 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 3201 adjust_zone_range_for_zone_movable(nid, zone_type, 3202 node_start_pfn, node_end_pfn, 3203 &zone_start_pfn, &zone_end_pfn); 3204 3205 /* Check that this node has pages within the zone's required range */ 3206 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 3207 return 0; 3208 3209 /* Move the zone boundaries inside the node if necessary */ 3210 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 3211 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 3212 3213 /* Return the spanned pages */ 3214 return zone_end_pfn - zone_start_pfn; 3215 } 3216 3217 /* 3218 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 3219 * then all holes in the requested range will be accounted for. 3220 */ 3221 static unsigned long __meminit __absent_pages_in_range(int nid, 3222 unsigned long range_start_pfn, 3223 unsigned long range_end_pfn) 3224 { 3225 int i = 0; 3226 unsigned long prev_end_pfn = 0, hole_pages = 0; 3227 unsigned long start_pfn; 3228 3229 /* Find the end_pfn of the first active range of pfns in the node */ 3230 i = first_active_region_index_in_nid(nid); 3231 if (i == -1) 3232 return 0; 3233 3234 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 3235 3236 /* Account for ranges before physical memory on this node */ 3237 if (early_node_map[i].start_pfn > range_start_pfn) 3238 hole_pages = prev_end_pfn - range_start_pfn; 3239 3240 /* Find all holes for the zone within the node */ 3241 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) { 3242 3243 /* No need to continue if prev_end_pfn is outside the zone */ 3244 if (prev_end_pfn >= range_end_pfn) 3245 break; 3246 3247 /* Make sure the end of the zone is not within the hole */ 3248 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 3249 prev_end_pfn = max(prev_end_pfn, range_start_pfn); 3250 3251 /* Update the hole size cound and move on */ 3252 if (start_pfn > range_start_pfn) { 3253 BUG_ON(prev_end_pfn > start_pfn); 3254 hole_pages += start_pfn - prev_end_pfn; 3255 } 3256 prev_end_pfn = early_node_map[i].end_pfn; 3257 } 3258 3259 /* Account for ranges past physical memory on this node */ 3260 if (range_end_pfn > prev_end_pfn) 3261 hole_pages += range_end_pfn - 3262 max(range_start_pfn, prev_end_pfn); 3263 3264 return hole_pages; 3265 } 3266 3267 /** 3268 * absent_pages_in_range - Return number of page frames in holes within a range 3269 * @start_pfn: The start PFN to start searching for holes 3270 * @end_pfn: The end PFN to stop searching for holes 3271 * 3272 * It returns the number of pages frames in memory holes within a range. 3273 */ 3274 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 3275 unsigned long end_pfn) 3276 { 3277 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 3278 } 3279 3280 /* Return the number of page frames in holes in a zone on a node */ 3281 static unsigned long __meminit zone_absent_pages_in_node(int nid, 3282 unsigned long zone_type, 3283 unsigned long *ignored) 3284 { 3285 unsigned long node_start_pfn, node_end_pfn; 3286 unsigned long zone_start_pfn, zone_end_pfn; 3287 3288 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 3289 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type], 3290 node_start_pfn); 3291 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type], 3292 node_end_pfn); 3293 3294 adjust_zone_range_for_zone_movable(nid, zone_type, 3295 node_start_pfn, node_end_pfn, 3296 &zone_start_pfn, &zone_end_pfn); 3297 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 3298 } 3299 3300 #else 3301 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 3302 unsigned long zone_type, 3303 unsigned long *zones_size) 3304 { 3305 return zones_size[zone_type]; 3306 } 3307 3308 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 3309 unsigned long zone_type, 3310 unsigned long *zholes_size) 3311 { 3312 if (!zholes_size) 3313 return 0; 3314 3315 return zholes_size[zone_type]; 3316 } 3317 3318 #endif 3319 3320 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 3321 unsigned long *zones_size, unsigned long *zholes_size) 3322 { 3323 unsigned long realtotalpages, totalpages = 0; 3324 enum zone_type i; 3325 3326 for (i = 0; i < MAX_NR_ZONES; i++) 3327 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 3328 zones_size); 3329 pgdat->node_spanned_pages = totalpages; 3330 3331 realtotalpages = totalpages; 3332 for (i = 0; i < MAX_NR_ZONES; i++) 3333 realtotalpages -= 3334 zone_absent_pages_in_node(pgdat->node_id, i, 3335 zholes_size); 3336 pgdat->node_present_pages = realtotalpages; 3337 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 3338 realtotalpages); 3339 } 3340 3341 #ifndef CONFIG_SPARSEMEM 3342 /* 3343 * Calculate the size of the zone->blockflags rounded to an unsigned long 3344 * Start by making sure zonesize is a multiple of pageblock_order by rounding 3345 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 3346 * round what is now in bits to nearest long in bits, then return it in 3347 * bytes. 3348 */ 3349 static unsigned long __init usemap_size(unsigned long zonesize) 3350 { 3351 unsigned long usemapsize; 3352 3353 usemapsize = roundup(zonesize, pageblock_nr_pages); 3354 usemapsize = usemapsize >> pageblock_order; 3355 usemapsize *= NR_PAGEBLOCK_BITS; 3356 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 3357 3358 return usemapsize / 8; 3359 } 3360 3361 static void __init setup_usemap(struct pglist_data *pgdat, 3362 struct zone *zone, unsigned long zonesize) 3363 { 3364 unsigned long usemapsize = usemap_size(zonesize); 3365 zone->pageblock_flags = NULL; 3366 if (usemapsize) 3367 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize); 3368 } 3369 #else 3370 static void inline setup_usemap(struct pglist_data *pgdat, 3371 struct zone *zone, unsigned long zonesize) {} 3372 #endif /* CONFIG_SPARSEMEM */ 3373 3374 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 3375 3376 /* Return a sensible default order for the pageblock size. */ 3377 static inline int pageblock_default_order(void) 3378 { 3379 if (HPAGE_SHIFT > PAGE_SHIFT) 3380 return HUGETLB_PAGE_ORDER; 3381 3382 return MAX_ORDER-1; 3383 } 3384 3385 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 3386 static inline void __init set_pageblock_order(unsigned int order) 3387 { 3388 /* Check that pageblock_nr_pages has not already been setup */ 3389 if (pageblock_order) 3390 return; 3391 3392 /* 3393 * Assume the largest contiguous order of interest is a huge page. 3394 * This value may be variable depending on boot parameters on IA64 3395 */ 3396 pageblock_order = order; 3397 } 3398 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 3399 3400 /* 3401 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 3402 * and pageblock_default_order() are unused as pageblock_order is set 3403 * at compile-time. See include/linux/pageblock-flags.h for the values of 3404 * pageblock_order based on the kernel config 3405 */ 3406 static inline int pageblock_default_order(unsigned int order) 3407 { 3408 return MAX_ORDER-1; 3409 } 3410 #define set_pageblock_order(x) do {} while (0) 3411 3412 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 3413 3414 /* 3415 * Set up the zone data structures: 3416 * - mark all pages reserved 3417 * - mark all memory queues empty 3418 * - clear the memory bitmaps 3419 */ 3420 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 3421 unsigned long *zones_size, unsigned long *zholes_size) 3422 { 3423 enum zone_type j; 3424 int nid = pgdat->node_id; 3425 unsigned long zone_start_pfn = pgdat->node_start_pfn; 3426 int ret; 3427 3428 pgdat_resize_init(pgdat); 3429 pgdat->nr_zones = 0; 3430 init_waitqueue_head(&pgdat->kswapd_wait); 3431 pgdat->kswapd_max_order = 0; 3432 pgdat_page_cgroup_init(pgdat); 3433 3434 for (j = 0; j < MAX_NR_ZONES; j++) { 3435 struct zone *zone = pgdat->node_zones + j; 3436 unsigned long size, realsize, memmap_pages; 3437 enum lru_list l; 3438 3439 size = zone_spanned_pages_in_node(nid, j, zones_size); 3440 realsize = size - zone_absent_pages_in_node(nid, j, 3441 zholes_size); 3442 3443 /* 3444 * Adjust realsize so that it accounts for how much memory 3445 * is used by this zone for memmap. This affects the watermark 3446 * and per-cpu initialisations 3447 */ 3448 memmap_pages = 3449 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT; 3450 if (realsize >= memmap_pages) { 3451 realsize -= memmap_pages; 3452 if (memmap_pages) 3453 printk(KERN_DEBUG 3454 " %s zone: %lu pages used for memmap\n", 3455 zone_names[j], memmap_pages); 3456 } else 3457 printk(KERN_WARNING 3458 " %s zone: %lu pages exceeds realsize %lu\n", 3459 zone_names[j], memmap_pages, realsize); 3460 3461 /* Account for reserved pages */ 3462 if (j == 0 && realsize > dma_reserve) { 3463 realsize -= dma_reserve; 3464 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 3465 zone_names[0], dma_reserve); 3466 } 3467 3468 if (!is_highmem_idx(j)) 3469 nr_kernel_pages += realsize; 3470 nr_all_pages += realsize; 3471 3472 zone->spanned_pages = size; 3473 zone->present_pages = realsize; 3474 #ifdef CONFIG_NUMA 3475 zone->node = nid; 3476 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio) 3477 / 100; 3478 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100; 3479 #endif 3480 zone->name = zone_names[j]; 3481 spin_lock_init(&zone->lock); 3482 spin_lock_init(&zone->lru_lock); 3483 zone_seqlock_init(zone); 3484 zone->zone_pgdat = pgdat; 3485 3486 zone->prev_priority = DEF_PRIORITY; 3487 3488 zone_pcp_init(zone); 3489 for_each_lru(l) { 3490 INIT_LIST_HEAD(&zone->lru[l].list); 3491 zone->lru[l].nr_scan = 0; 3492 } 3493 zone->reclaim_stat.recent_rotated[0] = 0; 3494 zone->reclaim_stat.recent_rotated[1] = 0; 3495 zone->reclaim_stat.recent_scanned[0] = 0; 3496 zone->reclaim_stat.recent_scanned[1] = 0; 3497 zap_zone_vm_stats(zone); 3498 zone->flags = 0; 3499 if (!size) 3500 continue; 3501 3502 set_pageblock_order(pageblock_default_order()); 3503 setup_usemap(pgdat, zone, size); 3504 ret = init_currently_empty_zone(zone, zone_start_pfn, 3505 size, MEMMAP_EARLY); 3506 BUG_ON(ret); 3507 memmap_init(size, nid, j, zone_start_pfn); 3508 zone_start_pfn += size; 3509 } 3510 } 3511 3512 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 3513 { 3514 /* Skip empty nodes */ 3515 if (!pgdat->node_spanned_pages) 3516 return; 3517 3518 #ifdef CONFIG_FLAT_NODE_MEM_MAP 3519 /* ia64 gets its own node_mem_map, before this, without bootmem */ 3520 if (!pgdat->node_mem_map) { 3521 unsigned long size, start, end; 3522 struct page *map; 3523 3524 /* 3525 * The zone's endpoints aren't required to be MAX_ORDER 3526 * aligned but the node_mem_map endpoints must be in order 3527 * for the buddy allocator to function correctly. 3528 */ 3529 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 3530 end = pgdat->node_start_pfn + pgdat->node_spanned_pages; 3531 end = ALIGN(end, MAX_ORDER_NR_PAGES); 3532 size = (end - start) * sizeof(struct page); 3533 map = alloc_remap(pgdat->node_id, size); 3534 if (!map) 3535 map = alloc_bootmem_node(pgdat, size); 3536 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 3537 } 3538 #ifndef CONFIG_NEED_MULTIPLE_NODES 3539 /* 3540 * With no DISCONTIG, the global mem_map is just set as node 0's 3541 */ 3542 if (pgdat == NODE_DATA(0)) { 3543 mem_map = NODE_DATA(0)->node_mem_map; 3544 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 3545 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 3546 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 3547 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 3548 } 3549 #endif 3550 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 3551 } 3552 3553 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 3554 unsigned long node_start_pfn, unsigned long *zholes_size) 3555 { 3556 pg_data_t *pgdat = NODE_DATA(nid); 3557 3558 pgdat->node_id = nid; 3559 pgdat->node_start_pfn = node_start_pfn; 3560 calculate_node_totalpages(pgdat, zones_size, zholes_size); 3561 3562 alloc_node_mem_map(pgdat); 3563 #ifdef CONFIG_FLAT_NODE_MEM_MAP 3564 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 3565 nid, (unsigned long)pgdat, 3566 (unsigned long)pgdat->node_mem_map); 3567 #endif 3568 3569 free_area_init_core(pgdat, zones_size, zholes_size); 3570 } 3571 3572 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 3573 3574 #if MAX_NUMNODES > 1 3575 /* 3576 * Figure out the number of possible node ids. 3577 */ 3578 static void __init setup_nr_node_ids(void) 3579 { 3580 unsigned int node; 3581 unsigned int highest = 0; 3582 3583 for_each_node_mask(node, node_possible_map) 3584 highest = node; 3585 nr_node_ids = highest + 1; 3586 } 3587 #else 3588 static inline void setup_nr_node_ids(void) 3589 { 3590 } 3591 #endif 3592 3593 /** 3594 * add_active_range - Register a range of PFNs backed by physical memory 3595 * @nid: The node ID the range resides on 3596 * @start_pfn: The start PFN of the available physical memory 3597 * @end_pfn: The end PFN of the available physical memory 3598 * 3599 * These ranges are stored in an early_node_map[] and later used by 3600 * free_area_init_nodes() to calculate zone sizes and holes. If the 3601 * range spans a memory hole, it is up to the architecture to ensure 3602 * the memory is not freed by the bootmem allocator. If possible 3603 * the range being registered will be merged with existing ranges. 3604 */ 3605 void __init add_active_range(unsigned int nid, unsigned long start_pfn, 3606 unsigned long end_pfn) 3607 { 3608 int i; 3609 3610 mminit_dprintk(MMINIT_TRACE, "memory_register", 3611 "Entering add_active_range(%d, %#lx, %#lx) " 3612 "%d entries of %d used\n", 3613 nid, start_pfn, end_pfn, 3614 nr_nodemap_entries, MAX_ACTIVE_REGIONS); 3615 3616 mminit_validate_memmodel_limits(&start_pfn, &end_pfn); 3617 3618 /* Merge with existing active regions if possible */ 3619 for (i = 0; i < nr_nodemap_entries; i++) { 3620 if (early_node_map[i].nid != nid) 3621 continue; 3622 3623 /* Skip if an existing region covers this new one */ 3624 if (start_pfn >= early_node_map[i].start_pfn && 3625 end_pfn <= early_node_map[i].end_pfn) 3626 return; 3627 3628 /* Merge forward if suitable */ 3629 if (start_pfn <= early_node_map[i].end_pfn && 3630 end_pfn > early_node_map[i].end_pfn) { 3631 early_node_map[i].end_pfn = end_pfn; 3632 return; 3633 } 3634 3635 /* Merge backward if suitable */ 3636 if (start_pfn < early_node_map[i].end_pfn && 3637 end_pfn >= early_node_map[i].start_pfn) { 3638 early_node_map[i].start_pfn = start_pfn; 3639 return; 3640 } 3641 } 3642 3643 /* Check that early_node_map is large enough */ 3644 if (i >= MAX_ACTIVE_REGIONS) { 3645 printk(KERN_CRIT "More than %d memory regions, truncating\n", 3646 MAX_ACTIVE_REGIONS); 3647 return; 3648 } 3649 3650 early_node_map[i].nid = nid; 3651 early_node_map[i].start_pfn = start_pfn; 3652 early_node_map[i].end_pfn = end_pfn; 3653 nr_nodemap_entries = i + 1; 3654 } 3655 3656 /** 3657 * remove_active_range - Shrink an existing registered range of PFNs 3658 * @nid: The node id the range is on that should be shrunk 3659 * @start_pfn: The new PFN of the range 3660 * @end_pfn: The new PFN of the range 3661 * 3662 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node. 3663 * The map is kept near the end physical page range that has already been 3664 * registered. This function allows an arch to shrink an existing registered 3665 * range. 3666 */ 3667 void __init remove_active_range(unsigned int nid, unsigned long start_pfn, 3668 unsigned long end_pfn) 3669 { 3670 int i, j; 3671 int removed = 0; 3672 3673 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n", 3674 nid, start_pfn, end_pfn); 3675 3676 /* Find the old active region end and shrink */ 3677 for_each_active_range_index_in_nid(i, nid) { 3678 if (early_node_map[i].start_pfn >= start_pfn && 3679 early_node_map[i].end_pfn <= end_pfn) { 3680 /* clear it */ 3681 early_node_map[i].start_pfn = 0; 3682 early_node_map[i].end_pfn = 0; 3683 removed = 1; 3684 continue; 3685 } 3686 if (early_node_map[i].start_pfn < start_pfn && 3687 early_node_map[i].end_pfn > start_pfn) { 3688 unsigned long temp_end_pfn = early_node_map[i].end_pfn; 3689 early_node_map[i].end_pfn = start_pfn; 3690 if (temp_end_pfn > end_pfn) 3691 add_active_range(nid, end_pfn, temp_end_pfn); 3692 continue; 3693 } 3694 if (early_node_map[i].start_pfn >= start_pfn && 3695 early_node_map[i].end_pfn > end_pfn && 3696 early_node_map[i].start_pfn < end_pfn) { 3697 early_node_map[i].start_pfn = end_pfn; 3698 continue; 3699 } 3700 } 3701 3702 if (!removed) 3703 return; 3704 3705 /* remove the blank ones */ 3706 for (i = nr_nodemap_entries - 1; i > 0; i--) { 3707 if (early_node_map[i].nid != nid) 3708 continue; 3709 if (early_node_map[i].end_pfn) 3710 continue; 3711 /* we found it, get rid of it */ 3712 for (j = i; j < nr_nodemap_entries - 1; j++) 3713 memcpy(&early_node_map[j], &early_node_map[j+1], 3714 sizeof(early_node_map[j])); 3715 j = nr_nodemap_entries - 1; 3716 memset(&early_node_map[j], 0, sizeof(early_node_map[j])); 3717 nr_nodemap_entries--; 3718 } 3719 } 3720 3721 /** 3722 * remove_all_active_ranges - Remove all currently registered regions 3723 * 3724 * During discovery, it may be found that a table like SRAT is invalid 3725 * and an alternative discovery method must be used. This function removes 3726 * all currently registered regions. 3727 */ 3728 void __init remove_all_active_ranges(void) 3729 { 3730 memset(early_node_map, 0, sizeof(early_node_map)); 3731 nr_nodemap_entries = 0; 3732 } 3733 3734 /* Compare two active node_active_regions */ 3735 static int __init cmp_node_active_region(const void *a, const void *b) 3736 { 3737 struct node_active_region *arange = (struct node_active_region *)a; 3738 struct node_active_region *brange = (struct node_active_region *)b; 3739 3740 /* Done this way to avoid overflows */ 3741 if (arange->start_pfn > brange->start_pfn) 3742 return 1; 3743 if (arange->start_pfn < brange->start_pfn) 3744 return -1; 3745 3746 return 0; 3747 } 3748 3749 /* sort the node_map by start_pfn */ 3750 static void __init sort_node_map(void) 3751 { 3752 sort(early_node_map, (size_t)nr_nodemap_entries, 3753 sizeof(struct node_active_region), 3754 cmp_node_active_region, NULL); 3755 } 3756 3757 /* Find the lowest pfn for a node */ 3758 static unsigned long __init find_min_pfn_for_node(int nid) 3759 { 3760 int i; 3761 unsigned long min_pfn = ULONG_MAX; 3762 3763 /* Assuming a sorted map, the first range found has the starting pfn */ 3764 for_each_active_range_index_in_nid(i, nid) 3765 min_pfn = min(min_pfn, early_node_map[i].start_pfn); 3766 3767 if (min_pfn == ULONG_MAX) { 3768 printk(KERN_WARNING 3769 "Could not find start_pfn for node %d\n", nid); 3770 return 0; 3771 } 3772 3773 return min_pfn; 3774 } 3775 3776 /** 3777 * find_min_pfn_with_active_regions - Find the minimum PFN registered 3778 * 3779 * It returns the minimum PFN based on information provided via 3780 * add_active_range(). 3781 */ 3782 unsigned long __init find_min_pfn_with_active_regions(void) 3783 { 3784 return find_min_pfn_for_node(MAX_NUMNODES); 3785 } 3786 3787 /* 3788 * early_calculate_totalpages() 3789 * Sum pages in active regions for movable zone. 3790 * Populate N_HIGH_MEMORY for calculating usable_nodes. 3791 */ 3792 static unsigned long __init early_calculate_totalpages(void) 3793 { 3794 int i; 3795 unsigned long totalpages = 0; 3796 3797 for (i = 0; i < nr_nodemap_entries; i++) { 3798 unsigned long pages = early_node_map[i].end_pfn - 3799 early_node_map[i].start_pfn; 3800 totalpages += pages; 3801 if (pages) 3802 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY); 3803 } 3804 return totalpages; 3805 } 3806 3807 /* 3808 * Find the PFN the Movable zone begins in each node. Kernel memory 3809 * is spread evenly between nodes as long as the nodes have enough 3810 * memory. When they don't, some nodes will have more kernelcore than 3811 * others 3812 */ 3813 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn) 3814 { 3815 int i, nid; 3816 unsigned long usable_startpfn; 3817 unsigned long kernelcore_node, kernelcore_remaining; 3818 unsigned long totalpages = early_calculate_totalpages(); 3819 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]); 3820 3821 /* 3822 * If movablecore was specified, calculate what size of 3823 * kernelcore that corresponds so that memory usable for 3824 * any allocation type is evenly spread. If both kernelcore 3825 * and movablecore are specified, then the value of kernelcore 3826 * will be used for required_kernelcore if it's greater than 3827 * what movablecore would have allowed. 3828 */ 3829 if (required_movablecore) { 3830 unsigned long corepages; 3831 3832 /* 3833 * Round-up so that ZONE_MOVABLE is at least as large as what 3834 * was requested by the user 3835 */ 3836 required_movablecore = 3837 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 3838 corepages = totalpages - required_movablecore; 3839 3840 required_kernelcore = max(required_kernelcore, corepages); 3841 } 3842 3843 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 3844 if (!required_kernelcore) 3845 return; 3846 3847 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 3848 find_usable_zone_for_movable(); 3849 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 3850 3851 restart: 3852 /* Spread kernelcore memory as evenly as possible throughout nodes */ 3853 kernelcore_node = required_kernelcore / usable_nodes; 3854 for_each_node_state(nid, N_HIGH_MEMORY) { 3855 /* 3856 * Recalculate kernelcore_node if the division per node 3857 * now exceeds what is necessary to satisfy the requested 3858 * amount of memory for the kernel 3859 */ 3860 if (required_kernelcore < kernelcore_node) 3861 kernelcore_node = required_kernelcore / usable_nodes; 3862 3863 /* 3864 * As the map is walked, we track how much memory is usable 3865 * by the kernel using kernelcore_remaining. When it is 3866 * 0, the rest of the node is usable by ZONE_MOVABLE 3867 */ 3868 kernelcore_remaining = kernelcore_node; 3869 3870 /* Go through each range of PFNs within this node */ 3871 for_each_active_range_index_in_nid(i, nid) { 3872 unsigned long start_pfn, end_pfn; 3873 unsigned long size_pages; 3874 3875 start_pfn = max(early_node_map[i].start_pfn, 3876 zone_movable_pfn[nid]); 3877 end_pfn = early_node_map[i].end_pfn; 3878 if (start_pfn >= end_pfn) 3879 continue; 3880 3881 /* Account for what is only usable for kernelcore */ 3882 if (start_pfn < usable_startpfn) { 3883 unsigned long kernel_pages; 3884 kernel_pages = min(end_pfn, usable_startpfn) 3885 - start_pfn; 3886 3887 kernelcore_remaining -= min(kernel_pages, 3888 kernelcore_remaining); 3889 required_kernelcore -= min(kernel_pages, 3890 required_kernelcore); 3891 3892 /* Continue if range is now fully accounted */ 3893 if (end_pfn <= usable_startpfn) { 3894 3895 /* 3896 * Push zone_movable_pfn to the end so 3897 * that if we have to rebalance 3898 * kernelcore across nodes, we will 3899 * not double account here 3900 */ 3901 zone_movable_pfn[nid] = end_pfn; 3902 continue; 3903 } 3904 start_pfn = usable_startpfn; 3905 } 3906 3907 /* 3908 * The usable PFN range for ZONE_MOVABLE is from 3909 * start_pfn->end_pfn. Calculate size_pages as the 3910 * number of pages used as kernelcore 3911 */ 3912 size_pages = end_pfn - start_pfn; 3913 if (size_pages > kernelcore_remaining) 3914 size_pages = kernelcore_remaining; 3915 zone_movable_pfn[nid] = start_pfn + size_pages; 3916 3917 /* 3918 * Some kernelcore has been met, update counts and 3919 * break if the kernelcore for this node has been 3920 * satisified 3921 */ 3922 required_kernelcore -= min(required_kernelcore, 3923 size_pages); 3924 kernelcore_remaining -= size_pages; 3925 if (!kernelcore_remaining) 3926 break; 3927 } 3928 } 3929 3930 /* 3931 * If there is still required_kernelcore, we do another pass with one 3932 * less node in the count. This will push zone_movable_pfn[nid] further 3933 * along on the nodes that still have memory until kernelcore is 3934 * satisified 3935 */ 3936 usable_nodes--; 3937 if (usable_nodes && required_kernelcore > usable_nodes) 3938 goto restart; 3939 3940 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 3941 for (nid = 0; nid < MAX_NUMNODES; nid++) 3942 zone_movable_pfn[nid] = 3943 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 3944 } 3945 3946 /* Any regular memory on that node ? */ 3947 static void check_for_regular_memory(pg_data_t *pgdat) 3948 { 3949 #ifdef CONFIG_HIGHMEM 3950 enum zone_type zone_type; 3951 3952 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) { 3953 struct zone *zone = &pgdat->node_zones[zone_type]; 3954 if (zone->present_pages) 3955 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY); 3956 } 3957 #endif 3958 } 3959 3960 /** 3961 * free_area_init_nodes - Initialise all pg_data_t and zone data 3962 * @max_zone_pfn: an array of max PFNs for each zone 3963 * 3964 * This will call free_area_init_node() for each active node in the system. 3965 * Using the page ranges provided by add_active_range(), the size of each 3966 * zone in each node and their holes is calculated. If the maximum PFN 3967 * between two adjacent zones match, it is assumed that the zone is empty. 3968 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 3969 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 3970 * starts where the previous one ended. For example, ZONE_DMA32 starts 3971 * at arch_max_dma_pfn. 3972 */ 3973 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 3974 { 3975 unsigned long nid; 3976 int i; 3977 3978 /* Sort early_node_map as initialisation assumes it is sorted */ 3979 sort_node_map(); 3980 3981 /* Record where the zone boundaries are */ 3982 memset(arch_zone_lowest_possible_pfn, 0, 3983 sizeof(arch_zone_lowest_possible_pfn)); 3984 memset(arch_zone_highest_possible_pfn, 0, 3985 sizeof(arch_zone_highest_possible_pfn)); 3986 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 3987 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 3988 for (i = 1; i < MAX_NR_ZONES; i++) { 3989 if (i == ZONE_MOVABLE) 3990 continue; 3991 arch_zone_lowest_possible_pfn[i] = 3992 arch_zone_highest_possible_pfn[i-1]; 3993 arch_zone_highest_possible_pfn[i] = 3994 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 3995 } 3996 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 3997 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 3998 3999 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 4000 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 4001 find_zone_movable_pfns_for_nodes(zone_movable_pfn); 4002 4003 /* Print out the zone ranges */ 4004 printk("Zone PFN ranges:\n"); 4005 for (i = 0; i < MAX_NR_ZONES; i++) { 4006 if (i == ZONE_MOVABLE) 4007 continue; 4008 printk(" %-8s %0#10lx -> %0#10lx\n", 4009 zone_names[i], 4010 arch_zone_lowest_possible_pfn[i], 4011 arch_zone_highest_possible_pfn[i]); 4012 } 4013 4014 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 4015 printk("Movable zone start PFN for each node\n"); 4016 for (i = 0; i < MAX_NUMNODES; i++) { 4017 if (zone_movable_pfn[i]) 4018 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]); 4019 } 4020 4021 /* Print out the early_node_map[] */ 4022 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries); 4023 for (i = 0; i < nr_nodemap_entries; i++) 4024 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid, 4025 early_node_map[i].start_pfn, 4026 early_node_map[i].end_pfn); 4027 4028 /* Initialise every node */ 4029 mminit_verify_pageflags_layout(); 4030 setup_nr_node_ids(); 4031 for_each_online_node(nid) { 4032 pg_data_t *pgdat = NODE_DATA(nid); 4033 free_area_init_node(nid, NULL, 4034 find_min_pfn_for_node(nid), NULL); 4035 4036 /* Any memory on that node */ 4037 if (pgdat->node_present_pages) 4038 node_set_state(nid, N_HIGH_MEMORY); 4039 check_for_regular_memory(pgdat); 4040 } 4041 } 4042 4043 static int __init cmdline_parse_core(char *p, unsigned long *core) 4044 { 4045 unsigned long long coremem; 4046 if (!p) 4047 return -EINVAL; 4048 4049 coremem = memparse(p, &p); 4050 *core = coremem >> PAGE_SHIFT; 4051 4052 /* Paranoid check that UL is enough for the coremem value */ 4053 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 4054 4055 return 0; 4056 } 4057 4058 /* 4059 * kernelcore=size sets the amount of memory for use for allocations that 4060 * cannot be reclaimed or migrated. 4061 */ 4062 static int __init cmdline_parse_kernelcore(char *p) 4063 { 4064 return cmdline_parse_core(p, &required_kernelcore); 4065 } 4066 4067 /* 4068 * movablecore=size sets the amount of memory for use for allocations that 4069 * can be reclaimed or migrated. 4070 */ 4071 static int __init cmdline_parse_movablecore(char *p) 4072 { 4073 return cmdline_parse_core(p, &required_movablecore); 4074 } 4075 4076 early_param("kernelcore", cmdline_parse_kernelcore); 4077 early_param("movablecore", cmdline_parse_movablecore); 4078 4079 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 4080 4081 /** 4082 * set_dma_reserve - set the specified number of pages reserved in the first zone 4083 * @new_dma_reserve: The number of pages to mark reserved 4084 * 4085 * The per-cpu batchsize and zone watermarks are determined by present_pages. 4086 * In the DMA zone, a significant percentage may be consumed by kernel image 4087 * and other unfreeable allocations which can skew the watermarks badly. This 4088 * function may optionally be used to account for unfreeable pages in the 4089 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 4090 * smaller per-cpu batchsize. 4091 */ 4092 void __init set_dma_reserve(unsigned long new_dma_reserve) 4093 { 4094 dma_reserve = new_dma_reserve; 4095 } 4096 4097 #ifndef CONFIG_NEED_MULTIPLE_NODES 4098 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] }; 4099 EXPORT_SYMBOL(contig_page_data); 4100 #endif 4101 4102 void __init free_area_init(unsigned long *zones_size) 4103 { 4104 free_area_init_node(0, zones_size, 4105 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 4106 } 4107 4108 static int page_alloc_cpu_notify(struct notifier_block *self, 4109 unsigned long action, void *hcpu) 4110 { 4111 int cpu = (unsigned long)hcpu; 4112 4113 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 4114 drain_pages(cpu); 4115 4116 /* 4117 * Spill the event counters of the dead processor 4118 * into the current processors event counters. 4119 * This artificially elevates the count of the current 4120 * processor. 4121 */ 4122 vm_events_fold_cpu(cpu); 4123 4124 /* 4125 * Zero the differential counters of the dead processor 4126 * so that the vm statistics are consistent. 4127 * 4128 * This is only okay since the processor is dead and cannot 4129 * race with what we are doing. 4130 */ 4131 refresh_cpu_vm_stats(cpu); 4132 } 4133 return NOTIFY_OK; 4134 } 4135 4136 void __init page_alloc_init(void) 4137 { 4138 hotcpu_notifier(page_alloc_cpu_notify, 0); 4139 } 4140 4141 /* 4142 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 4143 * or min_free_kbytes changes. 4144 */ 4145 static void calculate_totalreserve_pages(void) 4146 { 4147 struct pglist_data *pgdat; 4148 unsigned long reserve_pages = 0; 4149 enum zone_type i, j; 4150 4151 for_each_online_pgdat(pgdat) { 4152 for (i = 0; i < MAX_NR_ZONES; i++) { 4153 struct zone *zone = pgdat->node_zones + i; 4154 unsigned long max = 0; 4155 4156 /* Find valid and maximum lowmem_reserve in the zone */ 4157 for (j = i; j < MAX_NR_ZONES; j++) { 4158 if (zone->lowmem_reserve[j] > max) 4159 max = zone->lowmem_reserve[j]; 4160 } 4161 4162 /* we treat pages_high as reserved pages. */ 4163 max += zone->pages_high; 4164 4165 if (max > zone->present_pages) 4166 max = zone->present_pages; 4167 reserve_pages += max; 4168 } 4169 } 4170 totalreserve_pages = reserve_pages; 4171 } 4172 4173 /* 4174 * setup_per_zone_lowmem_reserve - called whenever 4175 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 4176 * has a correct pages reserved value, so an adequate number of 4177 * pages are left in the zone after a successful __alloc_pages(). 4178 */ 4179 static void setup_per_zone_lowmem_reserve(void) 4180 { 4181 struct pglist_data *pgdat; 4182 enum zone_type j, idx; 4183 4184 for_each_online_pgdat(pgdat) { 4185 for (j = 0; j < MAX_NR_ZONES; j++) { 4186 struct zone *zone = pgdat->node_zones + j; 4187 unsigned long present_pages = zone->present_pages; 4188 4189 zone->lowmem_reserve[j] = 0; 4190 4191 idx = j; 4192 while (idx) { 4193 struct zone *lower_zone; 4194 4195 idx--; 4196 4197 if (sysctl_lowmem_reserve_ratio[idx] < 1) 4198 sysctl_lowmem_reserve_ratio[idx] = 1; 4199 4200 lower_zone = pgdat->node_zones + idx; 4201 lower_zone->lowmem_reserve[j] = present_pages / 4202 sysctl_lowmem_reserve_ratio[idx]; 4203 present_pages += lower_zone->present_pages; 4204 } 4205 } 4206 } 4207 4208 /* update totalreserve_pages */ 4209 calculate_totalreserve_pages(); 4210 } 4211 4212 /** 4213 * setup_per_zone_pages_min - called when min_free_kbytes changes. 4214 * 4215 * Ensures that the pages_{min,low,high} values for each zone are set correctly 4216 * with respect to min_free_kbytes. 4217 */ 4218 void setup_per_zone_pages_min(void) 4219 { 4220 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 4221 unsigned long lowmem_pages = 0; 4222 struct zone *zone; 4223 unsigned long flags; 4224 4225 /* Calculate total number of !ZONE_HIGHMEM pages */ 4226 for_each_zone(zone) { 4227 if (!is_highmem(zone)) 4228 lowmem_pages += zone->present_pages; 4229 } 4230 4231 for_each_zone(zone) { 4232 u64 tmp; 4233 4234 spin_lock_irqsave(&zone->lock, flags); 4235 tmp = (u64)pages_min * zone->present_pages; 4236 do_div(tmp, lowmem_pages); 4237 if (is_highmem(zone)) { 4238 /* 4239 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 4240 * need highmem pages, so cap pages_min to a small 4241 * value here. 4242 * 4243 * The (pages_high-pages_low) and (pages_low-pages_min) 4244 * deltas controls asynch page reclaim, and so should 4245 * not be capped for highmem. 4246 */ 4247 int min_pages; 4248 4249 min_pages = zone->present_pages / 1024; 4250 if (min_pages < SWAP_CLUSTER_MAX) 4251 min_pages = SWAP_CLUSTER_MAX; 4252 if (min_pages > 128) 4253 min_pages = 128; 4254 zone->pages_min = min_pages; 4255 } else { 4256 /* 4257 * If it's a lowmem zone, reserve a number of pages 4258 * proportionate to the zone's size. 4259 */ 4260 zone->pages_min = tmp; 4261 } 4262 4263 zone->pages_low = zone->pages_min + (tmp >> 2); 4264 zone->pages_high = zone->pages_min + (tmp >> 1); 4265 setup_zone_migrate_reserve(zone); 4266 spin_unlock_irqrestore(&zone->lock, flags); 4267 } 4268 4269 /* update totalreserve_pages */ 4270 calculate_totalreserve_pages(); 4271 } 4272 4273 /** 4274 * setup_per_zone_inactive_ratio - called when min_free_kbytes changes. 4275 * 4276 * The inactive anon list should be small enough that the VM never has to 4277 * do too much work, but large enough that each inactive page has a chance 4278 * to be referenced again before it is swapped out. 4279 * 4280 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 4281 * INACTIVE_ANON pages on this zone's LRU, maintained by the 4282 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 4283 * the anonymous pages are kept on the inactive list. 4284 * 4285 * total target max 4286 * memory ratio inactive anon 4287 * ------------------------------------- 4288 * 10MB 1 5MB 4289 * 100MB 1 50MB 4290 * 1GB 3 250MB 4291 * 10GB 10 0.9GB 4292 * 100GB 31 3GB 4293 * 1TB 101 10GB 4294 * 10TB 320 32GB 4295 */ 4296 static void setup_per_zone_inactive_ratio(void) 4297 { 4298 struct zone *zone; 4299 4300 for_each_zone(zone) { 4301 unsigned int gb, ratio; 4302 4303 /* Zone size in gigabytes */ 4304 gb = zone->present_pages >> (30 - PAGE_SHIFT); 4305 ratio = int_sqrt(10 * gb); 4306 if (!ratio) 4307 ratio = 1; 4308 4309 zone->inactive_ratio = ratio; 4310 } 4311 } 4312 4313 /* 4314 * Initialise min_free_kbytes. 4315 * 4316 * For small machines we want it small (128k min). For large machines 4317 * we want it large (64MB max). But it is not linear, because network 4318 * bandwidth does not increase linearly with machine size. We use 4319 * 4320 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 4321 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 4322 * 4323 * which yields 4324 * 4325 * 16MB: 512k 4326 * 32MB: 724k 4327 * 64MB: 1024k 4328 * 128MB: 1448k 4329 * 256MB: 2048k 4330 * 512MB: 2896k 4331 * 1024MB: 4096k 4332 * 2048MB: 5792k 4333 * 4096MB: 8192k 4334 * 8192MB: 11584k 4335 * 16384MB: 16384k 4336 */ 4337 static int __init init_per_zone_pages_min(void) 4338 { 4339 unsigned long lowmem_kbytes; 4340 4341 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 4342 4343 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 4344 if (min_free_kbytes < 128) 4345 min_free_kbytes = 128; 4346 if (min_free_kbytes > 65536) 4347 min_free_kbytes = 65536; 4348 setup_per_zone_pages_min(); 4349 setup_per_zone_lowmem_reserve(); 4350 setup_per_zone_inactive_ratio(); 4351 return 0; 4352 } 4353 module_init(init_per_zone_pages_min) 4354 4355 /* 4356 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 4357 * that we can call two helper functions whenever min_free_kbytes 4358 * changes. 4359 */ 4360 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 4361 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4362 { 4363 proc_dointvec(table, write, file, buffer, length, ppos); 4364 if (write) 4365 setup_per_zone_pages_min(); 4366 return 0; 4367 } 4368 4369 #ifdef CONFIG_NUMA 4370 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, 4371 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4372 { 4373 struct zone *zone; 4374 int rc; 4375 4376 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 4377 if (rc) 4378 return rc; 4379 4380 for_each_zone(zone) 4381 zone->min_unmapped_pages = (zone->present_pages * 4382 sysctl_min_unmapped_ratio) / 100; 4383 return 0; 4384 } 4385 4386 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, 4387 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4388 { 4389 struct zone *zone; 4390 int rc; 4391 4392 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 4393 if (rc) 4394 return rc; 4395 4396 for_each_zone(zone) 4397 zone->min_slab_pages = (zone->present_pages * 4398 sysctl_min_slab_ratio) / 100; 4399 return 0; 4400 } 4401 #endif 4402 4403 /* 4404 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 4405 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 4406 * whenever sysctl_lowmem_reserve_ratio changes. 4407 * 4408 * The reserve ratio obviously has absolutely no relation with the 4409 * pages_min watermarks. The lowmem reserve ratio can only make sense 4410 * if in function of the boot time zone sizes. 4411 */ 4412 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 4413 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4414 { 4415 proc_dointvec_minmax(table, write, file, buffer, length, ppos); 4416 setup_per_zone_lowmem_reserve(); 4417 return 0; 4418 } 4419 4420 /* 4421 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 4422 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 4423 * can have before it gets flushed back to buddy allocator. 4424 */ 4425 4426 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 4427 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4428 { 4429 struct zone *zone; 4430 unsigned int cpu; 4431 int ret; 4432 4433 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 4434 if (!write || (ret == -EINVAL)) 4435 return ret; 4436 for_each_zone(zone) { 4437 for_each_online_cpu(cpu) { 4438 unsigned long high; 4439 high = zone->present_pages / percpu_pagelist_fraction; 4440 setup_pagelist_highmark(zone_pcp(zone, cpu), high); 4441 } 4442 } 4443 return 0; 4444 } 4445 4446 int hashdist = HASHDIST_DEFAULT; 4447 4448 #ifdef CONFIG_NUMA 4449 static int __init set_hashdist(char *str) 4450 { 4451 if (!str) 4452 return 0; 4453 hashdist = simple_strtoul(str, &str, 0); 4454 return 1; 4455 } 4456 __setup("hashdist=", set_hashdist); 4457 #endif 4458 4459 /* 4460 * allocate a large system hash table from bootmem 4461 * - it is assumed that the hash table must contain an exact power-of-2 4462 * quantity of entries 4463 * - limit is the number of hash buckets, not the total allocation size 4464 */ 4465 void *__init alloc_large_system_hash(const char *tablename, 4466 unsigned long bucketsize, 4467 unsigned long numentries, 4468 int scale, 4469 int flags, 4470 unsigned int *_hash_shift, 4471 unsigned int *_hash_mask, 4472 unsigned long limit) 4473 { 4474 unsigned long long max = limit; 4475 unsigned long log2qty, size; 4476 void *table = NULL; 4477 4478 /* allow the kernel cmdline to have a say */ 4479 if (!numentries) { 4480 /* round applicable memory size up to nearest megabyte */ 4481 numentries = nr_kernel_pages; 4482 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 4483 numentries >>= 20 - PAGE_SHIFT; 4484 numentries <<= 20 - PAGE_SHIFT; 4485 4486 /* limit to 1 bucket per 2^scale bytes of low memory */ 4487 if (scale > PAGE_SHIFT) 4488 numentries >>= (scale - PAGE_SHIFT); 4489 else 4490 numentries <<= (PAGE_SHIFT - scale); 4491 4492 /* Make sure we've got at least a 0-order allocation.. */ 4493 if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 4494 numentries = PAGE_SIZE / bucketsize; 4495 } 4496 numentries = roundup_pow_of_two(numentries); 4497 4498 /* limit allocation size to 1/16 total memory by default */ 4499 if (max == 0) { 4500 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 4501 do_div(max, bucketsize); 4502 } 4503 4504 if (numentries > max) 4505 numentries = max; 4506 4507 log2qty = ilog2(numentries); 4508 4509 do { 4510 size = bucketsize << log2qty; 4511 if (flags & HASH_EARLY) 4512 table = alloc_bootmem_nopanic(size); 4513 else if (hashdist) 4514 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 4515 else { 4516 unsigned long order = get_order(size); 4517 table = (void*) __get_free_pages(GFP_ATOMIC, order); 4518 /* 4519 * If bucketsize is not a power-of-two, we may free 4520 * some pages at the end of hash table. 4521 */ 4522 if (table) { 4523 unsigned long alloc_end = (unsigned long)table + 4524 (PAGE_SIZE << order); 4525 unsigned long used = (unsigned long)table + 4526 PAGE_ALIGN(size); 4527 split_page(virt_to_page(table), order); 4528 while (used < alloc_end) { 4529 free_page(used); 4530 used += PAGE_SIZE; 4531 } 4532 } 4533 } 4534 } while (!table && size > PAGE_SIZE && --log2qty); 4535 4536 if (!table) 4537 panic("Failed to allocate %s hash table\n", tablename); 4538 4539 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n", 4540 tablename, 4541 (1U << log2qty), 4542 ilog2(size) - PAGE_SHIFT, 4543 size); 4544 4545 if (_hash_shift) 4546 *_hash_shift = log2qty; 4547 if (_hash_mask) 4548 *_hash_mask = (1 << log2qty) - 1; 4549 4550 /* 4551 * If hashdist is set, the table allocation is done with __vmalloc() 4552 * which invokes the kmemleak_alloc() callback. This function may also 4553 * be called before the slab and kmemleak are initialised when 4554 * kmemleak simply buffers the request to be executed later 4555 * (GFP_ATOMIC flag ignored in this case). 4556 */ 4557 if (!hashdist) 4558 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 4559 4560 return table; 4561 } 4562 4563 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 4564 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 4565 unsigned long pfn) 4566 { 4567 #ifdef CONFIG_SPARSEMEM 4568 return __pfn_to_section(pfn)->pageblock_flags; 4569 #else 4570 return zone->pageblock_flags; 4571 #endif /* CONFIG_SPARSEMEM */ 4572 } 4573 4574 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 4575 { 4576 #ifdef CONFIG_SPARSEMEM 4577 pfn &= (PAGES_PER_SECTION-1); 4578 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 4579 #else 4580 pfn = pfn - zone->zone_start_pfn; 4581 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 4582 #endif /* CONFIG_SPARSEMEM */ 4583 } 4584 4585 /** 4586 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages 4587 * @page: The page within the block of interest 4588 * @start_bitidx: The first bit of interest to retrieve 4589 * @end_bitidx: The last bit of interest 4590 * returns pageblock_bits flags 4591 */ 4592 unsigned long get_pageblock_flags_group(struct page *page, 4593 int start_bitidx, int end_bitidx) 4594 { 4595 struct zone *zone; 4596 unsigned long *bitmap; 4597 unsigned long pfn, bitidx; 4598 unsigned long flags = 0; 4599 unsigned long value = 1; 4600 4601 zone = page_zone(page); 4602 pfn = page_to_pfn(page); 4603 bitmap = get_pageblock_bitmap(zone, pfn); 4604 bitidx = pfn_to_bitidx(zone, pfn); 4605 4606 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 4607 if (test_bit(bitidx + start_bitidx, bitmap)) 4608 flags |= value; 4609 4610 return flags; 4611 } 4612 4613 /** 4614 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages 4615 * @page: The page within the block of interest 4616 * @start_bitidx: The first bit of interest 4617 * @end_bitidx: The last bit of interest 4618 * @flags: The flags to set 4619 */ 4620 void set_pageblock_flags_group(struct page *page, unsigned long flags, 4621 int start_bitidx, int end_bitidx) 4622 { 4623 struct zone *zone; 4624 unsigned long *bitmap; 4625 unsigned long pfn, bitidx; 4626 unsigned long value = 1; 4627 4628 zone = page_zone(page); 4629 pfn = page_to_pfn(page); 4630 bitmap = get_pageblock_bitmap(zone, pfn); 4631 bitidx = pfn_to_bitidx(zone, pfn); 4632 VM_BUG_ON(pfn < zone->zone_start_pfn); 4633 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages); 4634 4635 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 4636 if (flags & value) 4637 __set_bit(bitidx + start_bitidx, bitmap); 4638 else 4639 __clear_bit(bitidx + start_bitidx, bitmap); 4640 } 4641 4642 /* 4643 * This is designed as sub function...plz see page_isolation.c also. 4644 * set/clear page block's type to be ISOLATE. 4645 * page allocater never alloc memory from ISOLATE block. 4646 */ 4647 4648 int set_migratetype_isolate(struct page *page) 4649 { 4650 struct zone *zone; 4651 unsigned long flags; 4652 int ret = -EBUSY; 4653 4654 zone = page_zone(page); 4655 spin_lock_irqsave(&zone->lock, flags); 4656 /* 4657 * In future, more migrate types will be able to be isolation target. 4658 */ 4659 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE) 4660 goto out; 4661 set_pageblock_migratetype(page, MIGRATE_ISOLATE); 4662 move_freepages_block(zone, page, MIGRATE_ISOLATE); 4663 ret = 0; 4664 out: 4665 spin_unlock_irqrestore(&zone->lock, flags); 4666 if (!ret) 4667 drain_all_pages(); 4668 return ret; 4669 } 4670 4671 void unset_migratetype_isolate(struct page *page) 4672 { 4673 struct zone *zone; 4674 unsigned long flags; 4675 zone = page_zone(page); 4676 spin_lock_irqsave(&zone->lock, flags); 4677 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE) 4678 goto out; 4679 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 4680 move_freepages_block(zone, page, MIGRATE_MOVABLE); 4681 out: 4682 spin_unlock_irqrestore(&zone->lock, flags); 4683 } 4684 4685 #ifdef CONFIG_MEMORY_HOTREMOVE 4686 /* 4687 * All pages in the range must be isolated before calling this. 4688 */ 4689 void 4690 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 4691 { 4692 struct page *page; 4693 struct zone *zone; 4694 int order, i; 4695 unsigned long pfn; 4696 unsigned long flags; 4697 /* find the first valid pfn */ 4698 for (pfn = start_pfn; pfn < end_pfn; pfn++) 4699 if (pfn_valid(pfn)) 4700 break; 4701 if (pfn == end_pfn) 4702 return; 4703 zone = page_zone(pfn_to_page(pfn)); 4704 spin_lock_irqsave(&zone->lock, flags); 4705 pfn = start_pfn; 4706 while (pfn < end_pfn) { 4707 if (!pfn_valid(pfn)) { 4708 pfn++; 4709 continue; 4710 } 4711 page = pfn_to_page(pfn); 4712 BUG_ON(page_count(page)); 4713 BUG_ON(!PageBuddy(page)); 4714 order = page_order(page); 4715 #ifdef CONFIG_DEBUG_VM 4716 printk(KERN_INFO "remove from free list %lx %d %lx\n", 4717 pfn, 1 << order, end_pfn); 4718 #endif 4719 list_del(&page->lru); 4720 rmv_page_order(page); 4721 zone->free_area[order].nr_free--; 4722 __mod_zone_page_state(zone, NR_FREE_PAGES, 4723 - (1UL << order)); 4724 for (i = 0; i < (1 << order); i++) 4725 SetPageReserved((page+i)); 4726 pfn += (1 << order); 4727 } 4728 spin_unlock_irqrestore(&zone->lock, flags); 4729 } 4730 #endif 4731