1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kmemcheck.h> 28 #include <linux/kasan.h> 29 #include <linux/module.h> 30 #include <linux/suspend.h> 31 #include <linux/pagevec.h> 32 #include <linux/blkdev.h> 33 #include <linux/slab.h> 34 #include <linux/ratelimit.h> 35 #include <linux/oom.h> 36 #include <linux/notifier.h> 37 #include <linux/topology.h> 38 #include <linux/sysctl.h> 39 #include <linux/cpu.h> 40 #include <linux/cpuset.h> 41 #include <linux/memory_hotplug.h> 42 #include <linux/nodemask.h> 43 #include <linux/vmalloc.h> 44 #include <linux/vmstat.h> 45 #include <linux/mempolicy.h> 46 #include <linux/memremap.h> 47 #include <linux/stop_machine.h> 48 #include <linux/sort.h> 49 #include <linux/pfn.h> 50 #include <linux/backing-dev.h> 51 #include <linux/fault-inject.h> 52 #include <linux/page-isolation.h> 53 #include <linux/page_ext.h> 54 #include <linux/debugobjects.h> 55 #include <linux/kmemleak.h> 56 #include <linux/compaction.h> 57 #include <trace/events/kmem.h> 58 #include <linux/prefetch.h> 59 #include <linux/mm_inline.h> 60 #include <linux/migrate.h> 61 #include <linux/page_ext.h> 62 #include <linux/hugetlb.h> 63 #include <linux/sched/rt.h> 64 #include <linux/page_owner.h> 65 #include <linux/kthread.h> 66 #include <linux/memcontrol.h> 67 68 #include <asm/sections.h> 69 #include <asm/tlbflush.h> 70 #include <asm/div64.h> 71 #include "internal.h" 72 73 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 74 static DEFINE_MUTEX(pcp_batch_high_lock); 75 #define MIN_PERCPU_PAGELIST_FRACTION (8) 76 77 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 78 DEFINE_PER_CPU(int, numa_node); 79 EXPORT_PER_CPU_SYMBOL(numa_node); 80 #endif 81 82 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 83 /* 84 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 85 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 86 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 87 * defined in <linux/topology.h>. 88 */ 89 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 90 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 91 int _node_numa_mem_[MAX_NUMNODES]; 92 #endif 93 94 /* 95 * Array of node states. 96 */ 97 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 98 [N_POSSIBLE] = NODE_MASK_ALL, 99 [N_ONLINE] = { { [0] = 1UL } }, 100 #ifndef CONFIG_NUMA 101 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 102 #ifdef CONFIG_HIGHMEM 103 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 104 #endif 105 #ifdef CONFIG_MOVABLE_NODE 106 [N_MEMORY] = { { [0] = 1UL } }, 107 #endif 108 [N_CPU] = { { [0] = 1UL } }, 109 #endif /* NUMA */ 110 }; 111 EXPORT_SYMBOL(node_states); 112 113 /* Protect totalram_pages and zone->managed_pages */ 114 static DEFINE_SPINLOCK(managed_page_count_lock); 115 116 unsigned long totalram_pages __read_mostly; 117 unsigned long totalreserve_pages __read_mostly; 118 unsigned long totalcma_pages __read_mostly; 119 120 int percpu_pagelist_fraction; 121 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 122 123 /* 124 * A cached value of the page's pageblock's migratetype, used when the page is 125 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 126 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 127 * Also the migratetype set in the page does not necessarily match the pcplist 128 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 129 * other index - this ensures that it will be put on the correct CMA freelist. 130 */ 131 static inline int get_pcppage_migratetype(struct page *page) 132 { 133 return page->index; 134 } 135 136 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 137 { 138 page->index = migratetype; 139 } 140 141 #ifdef CONFIG_PM_SLEEP 142 /* 143 * The following functions are used by the suspend/hibernate code to temporarily 144 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 145 * while devices are suspended. To avoid races with the suspend/hibernate code, 146 * they should always be called with pm_mutex held (gfp_allowed_mask also should 147 * only be modified with pm_mutex held, unless the suspend/hibernate code is 148 * guaranteed not to run in parallel with that modification). 149 */ 150 151 static gfp_t saved_gfp_mask; 152 153 void pm_restore_gfp_mask(void) 154 { 155 WARN_ON(!mutex_is_locked(&pm_mutex)); 156 if (saved_gfp_mask) { 157 gfp_allowed_mask = saved_gfp_mask; 158 saved_gfp_mask = 0; 159 } 160 } 161 162 void pm_restrict_gfp_mask(void) 163 { 164 WARN_ON(!mutex_is_locked(&pm_mutex)); 165 WARN_ON(saved_gfp_mask); 166 saved_gfp_mask = gfp_allowed_mask; 167 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 168 } 169 170 bool pm_suspended_storage(void) 171 { 172 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 173 return false; 174 return true; 175 } 176 #endif /* CONFIG_PM_SLEEP */ 177 178 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 179 unsigned int pageblock_order __read_mostly; 180 #endif 181 182 static void __free_pages_ok(struct page *page, unsigned int order); 183 184 /* 185 * results with 256, 32 in the lowmem_reserve sysctl: 186 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 187 * 1G machine -> (16M dma, 784M normal, 224M high) 188 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 189 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 190 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 191 * 192 * TBD: should special case ZONE_DMA32 machines here - in those we normally 193 * don't need any ZONE_NORMAL reservation 194 */ 195 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 196 #ifdef CONFIG_ZONE_DMA 197 256, 198 #endif 199 #ifdef CONFIG_ZONE_DMA32 200 256, 201 #endif 202 #ifdef CONFIG_HIGHMEM 203 32, 204 #endif 205 32, 206 }; 207 208 EXPORT_SYMBOL(totalram_pages); 209 210 static char * const zone_names[MAX_NR_ZONES] = { 211 #ifdef CONFIG_ZONE_DMA 212 "DMA", 213 #endif 214 #ifdef CONFIG_ZONE_DMA32 215 "DMA32", 216 #endif 217 "Normal", 218 #ifdef CONFIG_HIGHMEM 219 "HighMem", 220 #endif 221 "Movable", 222 #ifdef CONFIG_ZONE_DEVICE 223 "Device", 224 #endif 225 }; 226 227 char * const migratetype_names[MIGRATE_TYPES] = { 228 "Unmovable", 229 "Movable", 230 "Reclaimable", 231 "HighAtomic", 232 #ifdef CONFIG_CMA 233 "CMA", 234 #endif 235 #ifdef CONFIG_MEMORY_ISOLATION 236 "Isolate", 237 #endif 238 }; 239 240 compound_page_dtor * const compound_page_dtors[] = { 241 NULL, 242 free_compound_page, 243 #ifdef CONFIG_HUGETLB_PAGE 244 free_huge_page, 245 #endif 246 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 247 free_transhuge_page, 248 #endif 249 }; 250 251 int min_free_kbytes = 1024; 252 int user_min_free_kbytes = -1; 253 int watermark_scale_factor = 10; 254 255 static unsigned long __meminitdata nr_kernel_pages; 256 static unsigned long __meminitdata nr_all_pages; 257 static unsigned long __meminitdata dma_reserve; 258 259 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 260 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 261 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 262 static unsigned long __initdata required_kernelcore; 263 static unsigned long __initdata required_movablecore; 264 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 265 static bool mirrored_kernelcore; 266 267 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 268 int movable_zone; 269 EXPORT_SYMBOL(movable_zone); 270 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 271 272 #if MAX_NUMNODES > 1 273 int nr_node_ids __read_mostly = MAX_NUMNODES; 274 int nr_online_nodes __read_mostly = 1; 275 EXPORT_SYMBOL(nr_node_ids); 276 EXPORT_SYMBOL(nr_online_nodes); 277 #endif 278 279 int page_group_by_mobility_disabled __read_mostly; 280 281 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 282 static inline void reset_deferred_meminit(pg_data_t *pgdat) 283 { 284 pgdat->first_deferred_pfn = ULONG_MAX; 285 } 286 287 /* Returns true if the struct page for the pfn is uninitialised */ 288 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 289 { 290 int nid = early_pfn_to_nid(pfn); 291 292 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 293 return true; 294 295 return false; 296 } 297 298 /* 299 * Returns false when the remaining initialisation should be deferred until 300 * later in the boot cycle when it can be parallelised. 301 */ 302 static inline bool update_defer_init(pg_data_t *pgdat, 303 unsigned long pfn, unsigned long zone_end, 304 unsigned long *nr_initialised) 305 { 306 unsigned long max_initialise; 307 308 /* Always populate low zones for address-contrained allocations */ 309 if (zone_end < pgdat_end_pfn(pgdat)) 310 return true; 311 /* 312 * Initialise at least 2G of a node but also take into account that 313 * two large system hashes that can take up 1GB for 0.25TB/node. 314 */ 315 max_initialise = max(2UL << (30 - PAGE_SHIFT), 316 (pgdat->node_spanned_pages >> 8)); 317 318 (*nr_initialised)++; 319 if ((*nr_initialised > max_initialise) && 320 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 321 pgdat->first_deferred_pfn = pfn; 322 return false; 323 } 324 325 return true; 326 } 327 #else 328 static inline void reset_deferred_meminit(pg_data_t *pgdat) 329 { 330 } 331 332 static inline bool early_page_uninitialised(unsigned long pfn) 333 { 334 return false; 335 } 336 337 static inline bool update_defer_init(pg_data_t *pgdat, 338 unsigned long pfn, unsigned long zone_end, 339 unsigned long *nr_initialised) 340 { 341 return true; 342 } 343 #endif 344 345 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 346 static inline unsigned long *get_pageblock_bitmap(struct page *page, 347 unsigned long pfn) 348 { 349 #ifdef CONFIG_SPARSEMEM 350 return __pfn_to_section(pfn)->pageblock_flags; 351 #else 352 return page_zone(page)->pageblock_flags; 353 #endif /* CONFIG_SPARSEMEM */ 354 } 355 356 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn) 357 { 358 #ifdef CONFIG_SPARSEMEM 359 pfn &= (PAGES_PER_SECTION-1); 360 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 361 #else 362 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 363 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 364 #endif /* CONFIG_SPARSEMEM */ 365 } 366 367 /** 368 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 369 * @page: The page within the block of interest 370 * @pfn: The target page frame number 371 * @end_bitidx: The last bit of interest to retrieve 372 * @mask: mask of bits that the caller is interested in 373 * 374 * Return: pageblock_bits flags 375 */ 376 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page, 377 unsigned long pfn, 378 unsigned long end_bitidx, 379 unsigned long mask) 380 { 381 unsigned long *bitmap; 382 unsigned long bitidx, word_bitidx; 383 unsigned long word; 384 385 bitmap = get_pageblock_bitmap(page, pfn); 386 bitidx = pfn_to_bitidx(page, pfn); 387 word_bitidx = bitidx / BITS_PER_LONG; 388 bitidx &= (BITS_PER_LONG-1); 389 390 word = bitmap[word_bitidx]; 391 bitidx += end_bitidx; 392 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; 393 } 394 395 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 396 unsigned long end_bitidx, 397 unsigned long mask) 398 { 399 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask); 400 } 401 402 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) 403 { 404 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK); 405 } 406 407 /** 408 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 409 * @page: The page within the block of interest 410 * @flags: The flags to set 411 * @pfn: The target page frame number 412 * @end_bitidx: The last bit of interest 413 * @mask: mask of bits that the caller is interested in 414 */ 415 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 416 unsigned long pfn, 417 unsigned long end_bitidx, 418 unsigned long mask) 419 { 420 unsigned long *bitmap; 421 unsigned long bitidx, word_bitidx; 422 unsigned long old_word, word; 423 424 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 425 426 bitmap = get_pageblock_bitmap(page, pfn); 427 bitidx = pfn_to_bitidx(page, pfn); 428 word_bitidx = bitidx / BITS_PER_LONG; 429 bitidx &= (BITS_PER_LONG-1); 430 431 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 432 433 bitidx += end_bitidx; 434 mask <<= (BITS_PER_LONG - bitidx - 1); 435 flags <<= (BITS_PER_LONG - bitidx - 1); 436 437 word = READ_ONCE(bitmap[word_bitidx]); 438 for (;;) { 439 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 440 if (word == old_word) 441 break; 442 word = old_word; 443 } 444 } 445 446 void set_pageblock_migratetype(struct page *page, int migratetype) 447 { 448 if (unlikely(page_group_by_mobility_disabled && 449 migratetype < MIGRATE_PCPTYPES)) 450 migratetype = MIGRATE_UNMOVABLE; 451 452 set_pageblock_flags_group(page, (unsigned long)migratetype, 453 PB_migrate, PB_migrate_end); 454 } 455 456 #ifdef CONFIG_DEBUG_VM 457 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 458 { 459 int ret = 0; 460 unsigned seq; 461 unsigned long pfn = page_to_pfn(page); 462 unsigned long sp, start_pfn; 463 464 do { 465 seq = zone_span_seqbegin(zone); 466 start_pfn = zone->zone_start_pfn; 467 sp = zone->spanned_pages; 468 if (!zone_spans_pfn(zone, pfn)) 469 ret = 1; 470 } while (zone_span_seqretry(zone, seq)); 471 472 if (ret) 473 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 474 pfn, zone_to_nid(zone), zone->name, 475 start_pfn, start_pfn + sp); 476 477 return ret; 478 } 479 480 static int page_is_consistent(struct zone *zone, struct page *page) 481 { 482 if (!pfn_valid_within(page_to_pfn(page))) 483 return 0; 484 if (zone != page_zone(page)) 485 return 0; 486 487 return 1; 488 } 489 /* 490 * Temporary debugging check for pages not lying within a given zone. 491 */ 492 static int bad_range(struct zone *zone, struct page *page) 493 { 494 if (page_outside_zone_boundaries(zone, page)) 495 return 1; 496 if (!page_is_consistent(zone, page)) 497 return 1; 498 499 return 0; 500 } 501 #else 502 static inline int bad_range(struct zone *zone, struct page *page) 503 { 504 return 0; 505 } 506 #endif 507 508 static void bad_page(struct page *page, const char *reason, 509 unsigned long bad_flags) 510 { 511 static unsigned long resume; 512 static unsigned long nr_shown; 513 static unsigned long nr_unshown; 514 515 /* 516 * Allow a burst of 60 reports, then keep quiet for that minute; 517 * or allow a steady drip of one report per second. 518 */ 519 if (nr_shown == 60) { 520 if (time_before(jiffies, resume)) { 521 nr_unshown++; 522 goto out; 523 } 524 if (nr_unshown) { 525 pr_alert( 526 "BUG: Bad page state: %lu messages suppressed\n", 527 nr_unshown); 528 nr_unshown = 0; 529 } 530 nr_shown = 0; 531 } 532 if (nr_shown++ == 0) 533 resume = jiffies + 60 * HZ; 534 535 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 536 current->comm, page_to_pfn(page)); 537 __dump_page(page, reason); 538 bad_flags &= page->flags; 539 if (bad_flags) 540 pr_alert("bad because of flags: %#lx(%pGp)\n", 541 bad_flags, &bad_flags); 542 dump_page_owner(page); 543 544 print_modules(); 545 dump_stack(); 546 out: 547 /* Leave bad fields for debug, except PageBuddy could make trouble */ 548 page_mapcount_reset(page); /* remove PageBuddy */ 549 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 550 } 551 552 /* 553 * Higher-order pages are called "compound pages". They are structured thusly: 554 * 555 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 556 * 557 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 558 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 559 * 560 * The first tail page's ->compound_dtor holds the offset in array of compound 561 * page destructors. See compound_page_dtors. 562 * 563 * The first tail page's ->compound_order holds the order of allocation. 564 * This usage means that zero-order pages may not be compound. 565 */ 566 567 void free_compound_page(struct page *page) 568 { 569 __free_pages_ok(page, compound_order(page)); 570 } 571 572 void prep_compound_page(struct page *page, unsigned int order) 573 { 574 int i; 575 int nr_pages = 1 << order; 576 577 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 578 set_compound_order(page, order); 579 __SetPageHead(page); 580 for (i = 1; i < nr_pages; i++) { 581 struct page *p = page + i; 582 set_page_count(p, 0); 583 p->mapping = TAIL_MAPPING; 584 set_compound_head(p, page); 585 } 586 atomic_set(compound_mapcount_ptr(page), -1); 587 } 588 589 #ifdef CONFIG_DEBUG_PAGEALLOC 590 unsigned int _debug_guardpage_minorder; 591 bool _debug_pagealloc_enabled __read_mostly 592 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 593 EXPORT_SYMBOL(_debug_pagealloc_enabled); 594 bool _debug_guardpage_enabled __read_mostly; 595 596 static int __init early_debug_pagealloc(char *buf) 597 { 598 if (!buf) 599 return -EINVAL; 600 return kstrtobool(buf, &_debug_pagealloc_enabled); 601 } 602 early_param("debug_pagealloc", early_debug_pagealloc); 603 604 static bool need_debug_guardpage(void) 605 { 606 /* If we don't use debug_pagealloc, we don't need guard page */ 607 if (!debug_pagealloc_enabled()) 608 return false; 609 610 return true; 611 } 612 613 static void init_debug_guardpage(void) 614 { 615 if (!debug_pagealloc_enabled()) 616 return; 617 618 _debug_guardpage_enabled = true; 619 } 620 621 struct page_ext_operations debug_guardpage_ops = { 622 .need = need_debug_guardpage, 623 .init = init_debug_guardpage, 624 }; 625 626 static int __init debug_guardpage_minorder_setup(char *buf) 627 { 628 unsigned long res; 629 630 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 631 pr_err("Bad debug_guardpage_minorder value\n"); 632 return 0; 633 } 634 _debug_guardpage_minorder = res; 635 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 636 return 0; 637 } 638 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup); 639 640 static inline void set_page_guard(struct zone *zone, struct page *page, 641 unsigned int order, int migratetype) 642 { 643 struct page_ext *page_ext; 644 645 if (!debug_guardpage_enabled()) 646 return; 647 648 page_ext = lookup_page_ext(page); 649 if (unlikely(!page_ext)) 650 return; 651 652 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 653 654 INIT_LIST_HEAD(&page->lru); 655 set_page_private(page, order); 656 /* Guard pages are not available for any usage */ 657 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 658 } 659 660 static inline void clear_page_guard(struct zone *zone, struct page *page, 661 unsigned int order, int migratetype) 662 { 663 struct page_ext *page_ext; 664 665 if (!debug_guardpage_enabled()) 666 return; 667 668 page_ext = lookup_page_ext(page); 669 if (unlikely(!page_ext)) 670 return; 671 672 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 673 674 set_page_private(page, 0); 675 if (!is_migrate_isolate(migratetype)) 676 __mod_zone_freepage_state(zone, (1 << order), migratetype); 677 } 678 #else 679 struct page_ext_operations debug_guardpage_ops = { NULL, }; 680 static inline void set_page_guard(struct zone *zone, struct page *page, 681 unsigned int order, int migratetype) {} 682 static inline void clear_page_guard(struct zone *zone, struct page *page, 683 unsigned int order, int migratetype) {} 684 #endif 685 686 static inline void set_page_order(struct page *page, unsigned int order) 687 { 688 set_page_private(page, order); 689 __SetPageBuddy(page); 690 } 691 692 static inline void rmv_page_order(struct page *page) 693 { 694 __ClearPageBuddy(page); 695 set_page_private(page, 0); 696 } 697 698 /* 699 * This function checks whether a page is free && is the buddy 700 * we can do coalesce a page and its buddy if 701 * (a) the buddy is not in a hole && 702 * (b) the buddy is in the buddy system && 703 * (c) a page and its buddy have the same order && 704 * (d) a page and its buddy are in the same zone. 705 * 706 * For recording whether a page is in the buddy system, we set ->_mapcount 707 * PAGE_BUDDY_MAPCOUNT_VALUE. 708 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is 709 * serialized by zone->lock. 710 * 711 * For recording page's order, we use page_private(page). 712 */ 713 static inline int page_is_buddy(struct page *page, struct page *buddy, 714 unsigned int order) 715 { 716 if (!pfn_valid_within(page_to_pfn(buddy))) 717 return 0; 718 719 if (page_is_guard(buddy) && page_order(buddy) == order) { 720 if (page_zone_id(page) != page_zone_id(buddy)) 721 return 0; 722 723 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 724 725 return 1; 726 } 727 728 if (PageBuddy(buddy) && page_order(buddy) == order) { 729 /* 730 * zone check is done late to avoid uselessly 731 * calculating zone/node ids for pages that could 732 * never merge. 733 */ 734 if (page_zone_id(page) != page_zone_id(buddy)) 735 return 0; 736 737 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 738 739 return 1; 740 } 741 return 0; 742 } 743 744 /* 745 * Freeing function for a buddy system allocator. 746 * 747 * The concept of a buddy system is to maintain direct-mapped table 748 * (containing bit values) for memory blocks of various "orders". 749 * The bottom level table contains the map for the smallest allocatable 750 * units of memory (here, pages), and each level above it describes 751 * pairs of units from the levels below, hence, "buddies". 752 * At a high level, all that happens here is marking the table entry 753 * at the bottom level available, and propagating the changes upward 754 * as necessary, plus some accounting needed to play nicely with other 755 * parts of the VM system. 756 * At each level, we keep a list of pages, which are heads of continuous 757 * free pages of length of (1 << order) and marked with _mapcount 758 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page) 759 * field. 760 * So when we are allocating or freeing one, we can derive the state of the 761 * other. That is, if we allocate a small block, and both were 762 * free, the remainder of the region must be split into blocks. 763 * If a block is freed, and its buddy is also free, then this 764 * triggers coalescing into a block of larger size. 765 * 766 * -- nyc 767 */ 768 769 static inline void __free_one_page(struct page *page, 770 unsigned long pfn, 771 struct zone *zone, unsigned int order, 772 int migratetype) 773 { 774 unsigned long page_idx; 775 unsigned long combined_idx; 776 unsigned long uninitialized_var(buddy_idx); 777 struct page *buddy; 778 unsigned int max_order; 779 780 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1); 781 782 VM_BUG_ON(!zone_is_initialized(zone)); 783 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 784 785 VM_BUG_ON(migratetype == -1); 786 if (likely(!is_migrate_isolate(migratetype))) 787 __mod_zone_freepage_state(zone, 1 << order, migratetype); 788 789 page_idx = pfn & ((1 << MAX_ORDER) - 1); 790 791 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page); 792 VM_BUG_ON_PAGE(bad_range(zone, page), page); 793 794 continue_merging: 795 while (order < max_order - 1) { 796 buddy_idx = __find_buddy_index(page_idx, order); 797 buddy = page + (buddy_idx - page_idx); 798 if (!page_is_buddy(page, buddy, order)) 799 goto done_merging; 800 /* 801 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 802 * merge with it and move up one order. 803 */ 804 if (page_is_guard(buddy)) { 805 clear_page_guard(zone, buddy, order, migratetype); 806 } else { 807 list_del(&buddy->lru); 808 zone->free_area[order].nr_free--; 809 rmv_page_order(buddy); 810 } 811 combined_idx = buddy_idx & page_idx; 812 page = page + (combined_idx - page_idx); 813 page_idx = combined_idx; 814 order++; 815 } 816 if (max_order < MAX_ORDER) { 817 /* If we are here, it means order is >= pageblock_order. 818 * We want to prevent merge between freepages on isolate 819 * pageblock and normal pageblock. Without this, pageblock 820 * isolation could cause incorrect freepage or CMA accounting. 821 * 822 * We don't want to hit this code for the more frequent 823 * low-order merging. 824 */ 825 if (unlikely(has_isolate_pageblock(zone))) { 826 int buddy_mt; 827 828 buddy_idx = __find_buddy_index(page_idx, order); 829 buddy = page + (buddy_idx - page_idx); 830 buddy_mt = get_pageblock_migratetype(buddy); 831 832 if (migratetype != buddy_mt 833 && (is_migrate_isolate(migratetype) || 834 is_migrate_isolate(buddy_mt))) 835 goto done_merging; 836 } 837 max_order++; 838 goto continue_merging; 839 } 840 841 done_merging: 842 set_page_order(page, order); 843 844 /* 845 * If this is not the largest possible page, check if the buddy 846 * of the next-highest order is free. If it is, it's possible 847 * that pages are being freed that will coalesce soon. In case, 848 * that is happening, add the free page to the tail of the list 849 * so it's less likely to be used soon and more likely to be merged 850 * as a higher order page 851 */ 852 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { 853 struct page *higher_page, *higher_buddy; 854 combined_idx = buddy_idx & page_idx; 855 higher_page = page + (combined_idx - page_idx); 856 buddy_idx = __find_buddy_index(combined_idx, order + 1); 857 higher_buddy = higher_page + (buddy_idx - combined_idx); 858 if (page_is_buddy(higher_page, higher_buddy, order + 1)) { 859 list_add_tail(&page->lru, 860 &zone->free_area[order].free_list[migratetype]); 861 goto out; 862 } 863 } 864 865 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 866 out: 867 zone->free_area[order].nr_free++; 868 } 869 870 /* 871 * A bad page could be due to a number of fields. Instead of multiple branches, 872 * try and check multiple fields with one check. The caller must do a detailed 873 * check if necessary. 874 */ 875 static inline bool page_expected_state(struct page *page, 876 unsigned long check_flags) 877 { 878 if (unlikely(atomic_read(&page->_mapcount) != -1)) 879 return false; 880 881 if (unlikely((unsigned long)page->mapping | 882 page_ref_count(page) | 883 #ifdef CONFIG_MEMCG 884 (unsigned long)page->mem_cgroup | 885 #endif 886 (page->flags & check_flags))) 887 return false; 888 889 return true; 890 } 891 892 static void free_pages_check_bad(struct page *page) 893 { 894 const char *bad_reason; 895 unsigned long bad_flags; 896 897 bad_reason = NULL; 898 bad_flags = 0; 899 900 if (unlikely(atomic_read(&page->_mapcount) != -1)) 901 bad_reason = "nonzero mapcount"; 902 if (unlikely(page->mapping != NULL)) 903 bad_reason = "non-NULL mapping"; 904 if (unlikely(page_ref_count(page) != 0)) 905 bad_reason = "nonzero _refcount"; 906 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { 907 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 908 bad_flags = PAGE_FLAGS_CHECK_AT_FREE; 909 } 910 #ifdef CONFIG_MEMCG 911 if (unlikely(page->mem_cgroup)) 912 bad_reason = "page still charged to cgroup"; 913 #endif 914 bad_page(page, bad_reason, bad_flags); 915 } 916 917 static inline int free_pages_check(struct page *page) 918 { 919 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 920 return 0; 921 922 /* Something has gone sideways, find it */ 923 free_pages_check_bad(page); 924 return 1; 925 } 926 927 static int free_tail_pages_check(struct page *head_page, struct page *page) 928 { 929 int ret = 1; 930 931 /* 932 * We rely page->lru.next never has bit 0 set, unless the page 933 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 934 */ 935 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 936 937 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 938 ret = 0; 939 goto out; 940 } 941 switch (page - head_page) { 942 case 1: 943 /* the first tail page: ->mapping is compound_mapcount() */ 944 if (unlikely(compound_mapcount(page))) { 945 bad_page(page, "nonzero compound_mapcount", 0); 946 goto out; 947 } 948 break; 949 case 2: 950 /* 951 * the second tail page: ->mapping is 952 * page_deferred_list().next -- ignore value. 953 */ 954 break; 955 default: 956 if (page->mapping != TAIL_MAPPING) { 957 bad_page(page, "corrupted mapping in tail page", 0); 958 goto out; 959 } 960 break; 961 } 962 if (unlikely(!PageTail(page))) { 963 bad_page(page, "PageTail not set", 0); 964 goto out; 965 } 966 if (unlikely(compound_head(page) != head_page)) { 967 bad_page(page, "compound_head not consistent", 0); 968 goto out; 969 } 970 ret = 0; 971 out: 972 page->mapping = NULL; 973 clear_compound_head(page); 974 return ret; 975 } 976 977 static __always_inline bool free_pages_prepare(struct page *page, 978 unsigned int order, bool check_free) 979 { 980 int bad = 0; 981 982 VM_BUG_ON_PAGE(PageTail(page), page); 983 984 trace_mm_page_free(page, order); 985 kmemcheck_free_shadow(page, order); 986 987 /* 988 * Check tail pages before head page information is cleared to 989 * avoid checking PageCompound for order-0 pages. 990 */ 991 if (unlikely(order)) { 992 bool compound = PageCompound(page); 993 int i; 994 995 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 996 997 if (compound) 998 ClearPageDoubleMap(page); 999 for (i = 1; i < (1 << order); i++) { 1000 if (compound) 1001 bad += free_tail_pages_check(page, page + i); 1002 if (unlikely(free_pages_check(page + i))) { 1003 bad++; 1004 continue; 1005 } 1006 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1007 } 1008 } 1009 if (PageMappingFlags(page)) 1010 page->mapping = NULL; 1011 if (memcg_kmem_enabled() && PageKmemcg(page)) { 1012 memcg_kmem_uncharge(page, order); 1013 __ClearPageKmemcg(page); 1014 } 1015 if (check_free) 1016 bad += free_pages_check(page); 1017 if (bad) 1018 return false; 1019 1020 page_cpupid_reset_last(page); 1021 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1022 reset_page_owner(page, order); 1023 1024 if (!PageHighMem(page)) { 1025 debug_check_no_locks_freed(page_address(page), 1026 PAGE_SIZE << order); 1027 debug_check_no_obj_freed(page_address(page), 1028 PAGE_SIZE << order); 1029 } 1030 arch_free_page(page, order); 1031 kernel_poison_pages(page, 1 << order, 0); 1032 kernel_map_pages(page, 1 << order, 0); 1033 kasan_free_pages(page, order); 1034 1035 return true; 1036 } 1037 1038 #ifdef CONFIG_DEBUG_VM 1039 static inline bool free_pcp_prepare(struct page *page) 1040 { 1041 return free_pages_prepare(page, 0, true); 1042 } 1043 1044 static inline bool bulkfree_pcp_prepare(struct page *page) 1045 { 1046 return false; 1047 } 1048 #else 1049 static bool free_pcp_prepare(struct page *page) 1050 { 1051 return free_pages_prepare(page, 0, false); 1052 } 1053 1054 static bool bulkfree_pcp_prepare(struct page *page) 1055 { 1056 return free_pages_check(page); 1057 } 1058 #endif /* CONFIG_DEBUG_VM */ 1059 1060 /* 1061 * Frees a number of pages from the PCP lists 1062 * Assumes all pages on list are in same zone, and of same order. 1063 * count is the number of pages to free. 1064 * 1065 * If the zone was previously in an "all pages pinned" state then look to 1066 * see if this freeing clears that state. 1067 * 1068 * And clear the zone's pages_scanned counter, to hold off the "all pages are 1069 * pinned" detection logic. 1070 */ 1071 static void free_pcppages_bulk(struct zone *zone, int count, 1072 struct per_cpu_pages *pcp) 1073 { 1074 int migratetype = 0; 1075 int batch_free = 0; 1076 unsigned long nr_scanned; 1077 bool isolated_pageblocks; 1078 1079 spin_lock(&zone->lock); 1080 isolated_pageblocks = has_isolate_pageblock(zone); 1081 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED); 1082 if (nr_scanned) 1083 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned); 1084 1085 while (count) { 1086 struct page *page; 1087 struct list_head *list; 1088 1089 /* 1090 * Remove pages from lists in a round-robin fashion. A 1091 * batch_free count is maintained that is incremented when an 1092 * empty list is encountered. This is so more pages are freed 1093 * off fuller lists instead of spinning excessively around empty 1094 * lists 1095 */ 1096 do { 1097 batch_free++; 1098 if (++migratetype == MIGRATE_PCPTYPES) 1099 migratetype = 0; 1100 list = &pcp->lists[migratetype]; 1101 } while (list_empty(list)); 1102 1103 /* This is the only non-empty list. Free them all. */ 1104 if (batch_free == MIGRATE_PCPTYPES) 1105 batch_free = count; 1106 1107 do { 1108 int mt; /* migratetype of the to-be-freed page */ 1109 1110 page = list_last_entry(list, struct page, lru); 1111 /* must delete as __free_one_page list manipulates */ 1112 list_del(&page->lru); 1113 1114 mt = get_pcppage_migratetype(page); 1115 /* MIGRATE_ISOLATE page should not go to pcplists */ 1116 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1117 /* Pageblock could have been isolated meanwhile */ 1118 if (unlikely(isolated_pageblocks)) 1119 mt = get_pageblock_migratetype(page); 1120 1121 if (bulkfree_pcp_prepare(page)) 1122 continue; 1123 1124 __free_one_page(page, page_to_pfn(page), zone, 0, mt); 1125 trace_mm_page_pcpu_drain(page, 0, mt); 1126 } while (--count && --batch_free && !list_empty(list)); 1127 } 1128 spin_unlock(&zone->lock); 1129 } 1130 1131 static void free_one_page(struct zone *zone, 1132 struct page *page, unsigned long pfn, 1133 unsigned int order, 1134 int migratetype) 1135 { 1136 unsigned long nr_scanned; 1137 spin_lock(&zone->lock); 1138 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED); 1139 if (nr_scanned) 1140 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned); 1141 1142 if (unlikely(has_isolate_pageblock(zone) || 1143 is_migrate_isolate(migratetype))) { 1144 migratetype = get_pfnblock_migratetype(page, pfn); 1145 } 1146 __free_one_page(page, pfn, zone, order, migratetype); 1147 spin_unlock(&zone->lock); 1148 } 1149 1150 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1151 unsigned long zone, int nid) 1152 { 1153 set_page_links(page, zone, nid, pfn); 1154 init_page_count(page); 1155 page_mapcount_reset(page); 1156 page_cpupid_reset_last(page); 1157 1158 INIT_LIST_HEAD(&page->lru); 1159 #ifdef WANT_PAGE_VIRTUAL 1160 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1161 if (!is_highmem_idx(zone)) 1162 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1163 #endif 1164 } 1165 1166 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone, 1167 int nid) 1168 { 1169 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid); 1170 } 1171 1172 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1173 static void init_reserved_page(unsigned long pfn) 1174 { 1175 pg_data_t *pgdat; 1176 int nid, zid; 1177 1178 if (!early_page_uninitialised(pfn)) 1179 return; 1180 1181 nid = early_pfn_to_nid(pfn); 1182 pgdat = NODE_DATA(nid); 1183 1184 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1185 struct zone *zone = &pgdat->node_zones[zid]; 1186 1187 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) 1188 break; 1189 } 1190 __init_single_pfn(pfn, zid, nid); 1191 } 1192 #else 1193 static inline void init_reserved_page(unsigned long pfn) 1194 { 1195 } 1196 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1197 1198 /* 1199 * Initialised pages do not have PageReserved set. This function is 1200 * called for each range allocated by the bootmem allocator and 1201 * marks the pages PageReserved. The remaining valid pages are later 1202 * sent to the buddy page allocator. 1203 */ 1204 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1205 { 1206 unsigned long start_pfn = PFN_DOWN(start); 1207 unsigned long end_pfn = PFN_UP(end); 1208 1209 for (; start_pfn < end_pfn; start_pfn++) { 1210 if (pfn_valid(start_pfn)) { 1211 struct page *page = pfn_to_page(start_pfn); 1212 1213 init_reserved_page(start_pfn); 1214 1215 /* Avoid false-positive PageTail() */ 1216 INIT_LIST_HEAD(&page->lru); 1217 1218 SetPageReserved(page); 1219 } 1220 } 1221 } 1222 1223 static void __free_pages_ok(struct page *page, unsigned int order) 1224 { 1225 unsigned long flags; 1226 int migratetype; 1227 unsigned long pfn = page_to_pfn(page); 1228 1229 if (!free_pages_prepare(page, order, true)) 1230 return; 1231 1232 migratetype = get_pfnblock_migratetype(page, pfn); 1233 local_irq_save(flags); 1234 __count_vm_events(PGFREE, 1 << order); 1235 free_one_page(page_zone(page), page, pfn, order, migratetype); 1236 local_irq_restore(flags); 1237 } 1238 1239 static void __init __free_pages_boot_core(struct page *page, unsigned int order) 1240 { 1241 unsigned int nr_pages = 1 << order; 1242 struct page *p = page; 1243 unsigned int loop; 1244 1245 prefetchw(p); 1246 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1247 prefetchw(p + 1); 1248 __ClearPageReserved(p); 1249 set_page_count(p, 0); 1250 } 1251 __ClearPageReserved(p); 1252 set_page_count(p, 0); 1253 1254 page_zone(page)->managed_pages += nr_pages; 1255 set_page_refcounted(page); 1256 __free_pages(page, order); 1257 } 1258 1259 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \ 1260 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 1261 1262 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1263 1264 int __meminit early_pfn_to_nid(unsigned long pfn) 1265 { 1266 static DEFINE_SPINLOCK(early_pfn_lock); 1267 int nid; 1268 1269 spin_lock(&early_pfn_lock); 1270 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1271 if (nid < 0) 1272 nid = first_online_node; 1273 spin_unlock(&early_pfn_lock); 1274 1275 return nid; 1276 } 1277 #endif 1278 1279 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 1280 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node, 1281 struct mminit_pfnnid_cache *state) 1282 { 1283 int nid; 1284 1285 nid = __early_pfn_to_nid(pfn, state); 1286 if (nid >= 0 && nid != node) 1287 return false; 1288 return true; 1289 } 1290 1291 /* Only safe to use early in boot when initialisation is single-threaded */ 1292 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1293 { 1294 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache); 1295 } 1296 1297 #else 1298 1299 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1300 { 1301 return true; 1302 } 1303 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node, 1304 struct mminit_pfnnid_cache *state) 1305 { 1306 return true; 1307 } 1308 #endif 1309 1310 1311 void __init __free_pages_bootmem(struct page *page, unsigned long pfn, 1312 unsigned int order) 1313 { 1314 if (early_page_uninitialised(pfn)) 1315 return; 1316 return __free_pages_boot_core(page, order); 1317 } 1318 1319 /* 1320 * Check that the whole (or subset of) a pageblock given by the interval of 1321 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1322 * with the migration of free compaction scanner. The scanners then need to 1323 * use only pfn_valid_within() check for arches that allow holes within 1324 * pageblocks. 1325 * 1326 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1327 * 1328 * It's possible on some configurations to have a setup like node0 node1 node0 1329 * i.e. it's possible that all pages within a zones range of pages do not 1330 * belong to a single zone. We assume that a border between node0 and node1 1331 * can occur within a single pageblock, but not a node0 node1 node0 1332 * interleaving within a single pageblock. It is therefore sufficient to check 1333 * the first and last page of a pageblock and avoid checking each individual 1334 * page in a pageblock. 1335 */ 1336 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1337 unsigned long end_pfn, struct zone *zone) 1338 { 1339 struct page *start_page; 1340 struct page *end_page; 1341 1342 /* end_pfn is one past the range we are checking */ 1343 end_pfn--; 1344 1345 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1346 return NULL; 1347 1348 start_page = pfn_to_page(start_pfn); 1349 1350 if (page_zone(start_page) != zone) 1351 return NULL; 1352 1353 end_page = pfn_to_page(end_pfn); 1354 1355 /* This gives a shorter code than deriving page_zone(end_page) */ 1356 if (page_zone_id(start_page) != page_zone_id(end_page)) 1357 return NULL; 1358 1359 return start_page; 1360 } 1361 1362 void set_zone_contiguous(struct zone *zone) 1363 { 1364 unsigned long block_start_pfn = zone->zone_start_pfn; 1365 unsigned long block_end_pfn; 1366 1367 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1368 for (; block_start_pfn < zone_end_pfn(zone); 1369 block_start_pfn = block_end_pfn, 1370 block_end_pfn += pageblock_nr_pages) { 1371 1372 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1373 1374 if (!__pageblock_pfn_to_page(block_start_pfn, 1375 block_end_pfn, zone)) 1376 return; 1377 } 1378 1379 /* We confirm that there is no hole */ 1380 zone->contiguous = true; 1381 } 1382 1383 void clear_zone_contiguous(struct zone *zone) 1384 { 1385 zone->contiguous = false; 1386 } 1387 1388 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1389 static void __init deferred_free_range(struct page *page, 1390 unsigned long pfn, int nr_pages) 1391 { 1392 int i; 1393 1394 if (!page) 1395 return; 1396 1397 /* Free a large naturally-aligned chunk if possible */ 1398 if (nr_pages == MAX_ORDER_NR_PAGES && 1399 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) { 1400 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1401 __free_pages_boot_core(page, MAX_ORDER-1); 1402 return; 1403 } 1404 1405 for (i = 0; i < nr_pages; i++, page++) 1406 __free_pages_boot_core(page, 0); 1407 } 1408 1409 /* Completion tracking for deferred_init_memmap() threads */ 1410 static atomic_t pgdat_init_n_undone __initdata; 1411 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1412 1413 static inline void __init pgdat_init_report_one_done(void) 1414 { 1415 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1416 complete(&pgdat_init_all_done_comp); 1417 } 1418 1419 /* Initialise remaining memory on a node */ 1420 static int __init deferred_init_memmap(void *data) 1421 { 1422 pg_data_t *pgdat = data; 1423 int nid = pgdat->node_id; 1424 struct mminit_pfnnid_cache nid_init_state = { }; 1425 unsigned long start = jiffies; 1426 unsigned long nr_pages = 0; 1427 unsigned long walk_start, walk_end; 1428 int i, zid; 1429 struct zone *zone; 1430 unsigned long first_init_pfn = pgdat->first_deferred_pfn; 1431 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1432 1433 if (first_init_pfn == ULONG_MAX) { 1434 pgdat_init_report_one_done(); 1435 return 0; 1436 } 1437 1438 /* Bind memory initialisation thread to a local node if possible */ 1439 if (!cpumask_empty(cpumask)) 1440 set_cpus_allowed_ptr(current, cpumask); 1441 1442 /* Sanity check boundaries */ 1443 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 1444 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 1445 pgdat->first_deferred_pfn = ULONG_MAX; 1446 1447 /* Only the highest zone is deferred so find it */ 1448 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1449 zone = pgdat->node_zones + zid; 1450 if (first_init_pfn < zone_end_pfn(zone)) 1451 break; 1452 } 1453 1454 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) { 1455 unsigned long pfn, end_pfn; 1456 struct page *page = NULL; 1457 struct page *free_base_page = NULL; 1458 unsigned long free_base_pfn = 0; 1459 int nr_to_free = 0; 1460 1461 end_pfn = min(walk_end, zone_end_pfn(zone)); 1462 pfn = first_init_pfn; 1463 if (pfn < walk_start) 1464 pfn = walk_start; 1465 if (pfn < zone->zone_start_pfn) 1466 pfn = zone->zone_start_pfn; 1467 1468 for (; pfn < end_pfn; pfn++) { 1469 if (!pfn_valid_within(pfn)) 1470 goto free_range; 1471 1472 /* 1473 * Ensure pfn_valid is checked every 1474 * MAX_ORDER_NR_PAGES for memory holes 1475 */ 1476 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) { 1477 if (!pfn_valid(pfn)) { 1478 page = NULL; 1479 goto free_range; 1480 } 1481 } 1482 1483 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) { 1484 page = NULL; 1485 goto free_range; 1486 } 1487 1488 /* Minimise pfn page lookups and scheduler checks */ 1489 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) { 1490 page++; 1491 } else { 1492 nr_pages += nr_to_free; 1493 deferred_free_range(free_base_page, 1494 free_base_pfn, nr_to_free); 1495 free_base_page = NULL; 1496 free_base_pfn = nr_to_free = 0; 1497 1498 page = pfn_to_page(pfn); 1499 cond_resched(); 1500 } 1501 1502 if (page->flags) { 1503 VM_BUG_ON(page_zone(page) != zone); 1504 goto free_range; 1505 } 1506 1507 __init_single_page(page, pfn, zid, nid); 1508 if (!free_base_page) { 1509 free_base_page = page; 1510 free_base_pfn = pfn; 1511 nr_to_free = 0; 1512 } 1513 nr_to_free++; 1514 1515 /* Where possible, batch up pages for a single free */ 1516 continue; 1517 free_range: 1518 /* Free the current block of pages to allocator */ 1519 nr_pages += nr_to_free; 1520 deferred_free_range(free_base_page, free_base_pfn, 1521 nr_to_free); 1522 free_base_page = NULL; 1523 free_base_pfn = nr_to_free = 0; 1524 } 1525 1526 first_init_pfn = max(end_pfn, first_init_pfn); 1527 } 1528 1529 /* Sanity check that the next zone really is unpopulated */ 1530 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 1531 1532 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages, 1533 jiffies_to_msecs(jiffies - start)); 1534 1535 pgdat_init_report_one_done(); 1536 return 0; 1537 } 1538 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1539 1540 void __init page_alloc_init_late(void) 1541 { 1542 struct zone *zone; 1543 1544 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1545 int nid; 1546 1547 /* There will be num_node_state(N_MEMORY) threads */ 1548 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 1549 for_each_node_state(nid, N_MEMORY) { 1550 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 1551 } 1552 1553 /* Block until all are initialised */ 1554 wait_for_completion(&pgdat_init_all_done_comp); 1555 1556 /* Reinit limits that are based on free pages after the kernel is up */ 1557 files_maxfiles_init(); 1558 #endif 1559 1560 for_each_populated_zone(zone) 1561 set_zone_contiguous(zone); 1562 } 1563 1564 #ifdef CONFIG_CMA 1565 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 1566 void __init init_cma_reserved_pageblock(struct page *page) 1567 { 1568 unsigned i = pageblock_nr_pages; 1569 struct page *p = page; 1570 1571 do { 1572 __ClearPageReserved(p); 1573 set_page_count(p, 0); 1574 } while (++p, --i); 1575 1576 set_pageblock_migratetype(page, MIGRATE_CMA); 1577 1578 if (pageblock_order >= MAX_ORDER) { 1579 i = pageblock_nr_pages; 1580 p = page; 1581 do { 1582 set_page_refcounted(p); 1583 __free_pages(p, MAX_ORDER - 1); 1584 p += MAX_ORDER_NR_PAGES; 1585 } while (i -= MAX_ORDER_NR_PAGES); 1586 } else { 1587 set_page_refcounted(page); 1588 __free_pages(page, pageblock_order); 1589 } 1590 1591 adjust_managed_page_count(page, pageblock_nr_pages); 1592 } 1593 #endif 1594 1595 /* 1596 * The order of subdivision here is critical for the IO subsystem. 1597 * Please do not alter this order without good reasons and regression 1598 * testing. Specifically, as large blocks of memory are subdivided, 1599 * the order in which smaller blocks are delivered depends on the order 1600 * they're subdivided in this function. This is the primary factor 1601 * influencing the order in which pages are delivered to the IO 1602 * subsystem according to empirical testing, and this is also justified 1603 * by considering the behavior of a buddy system containing a single 1604 * large block of memory acted on by a series of small allocations. 1605 * This behavior is a critical factor in sglist merging's success. 1606 * 1607 * -- nyc 1608 */ 1609 static inline void expand(struct zone *zone, struct page *page, 1610 int low, int high, struct free_area *area, 1611 int migratetype) 1612 { 1613 unsigned long size = 1 << high; 1614 1615 while (high > low) { 1616 area--; 1617 high--; 1618 size >>= 1; 1619 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1620 1621 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 1622 debug_guardpage_enabled() && 1623 high < debug_guardpage_minorder()) { 1624 /* 1625 * Mark as guard pages (or page), that will allow to 1626 * merge back to allocator when buddy will be freed. 1627 * Corresponding page table entries will not be touched, 1628 * pages will stay not present in virtual address space 1629 */ 1630 set_page_guard(zone, &page[size], high, migratetype); 1631 continue; 1632 } 1633 list_add(&page[size].lru, &area->free_list[migratetype]); 1634 area->nr_free++; 1635 set_page_order(&page[size], high); 1636 } 1637 } 1638 1639 static void check_new_page_bad(struct page *page) 1640 { 1641 const char *bad_reason = NULL; 1642 unsigned long bad_flags = 0; 1643 1644 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1645 bad_reason = "nonzero mapcount"; 1646 if (unlikely(page->mapping != NULL)) 1647 bad_reason = "non-NULL mapping"; 1648 if (unlikely(page_ref_count(page) != 0)) 1649 bad_reason = "nonzero _count"; 1650 if (unlikely(page->flags & __PG_HWPOISON)) { 1651 bad_reason = "HWPoisoned (hardware-corrupted)"; 1652 bad_flags = __PG_HWPOISON; 1653 /* Don't complain about hwpoisoned pages */ 1654 page_mapcount_reset(page); /* remove PageBuddy */ 1655 return; 1656 } 1657 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { 1658 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; 1659 bad_flags = PAGE_FLAGS_CHECK_AT_PREP; 1660 } 1661 #ifdef CONFIG_MEMCG 1662 if (unlikely(page->mem_cgroup)) 1663 bad_reason = "page still charged to cgroup"; 1664 #endif 1665 bad_page(page, bad_reason, bad_flags); 1666 } 1667 1668 /* 1669 * This page is about to be returned from the page allocator 1670 */ 1671 static inline int check_new_page(struct page *page) 1672 { 1673 if (likely(page_expected_state(page, 1674 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 1675 return 0; 1676 1677 check_new_page_bad(page); 1678 return 1; 1679 } 1680 1681 static inline bool free_pages_prezeroed(bool poisoned) 1682 { 1683 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) && 1684 page_poisoning_enabled() && poisoned; 1685 } 1686 1687 #ifdef CONFIG_DEBUG_VM 1688 static bool check_pcp_refill(struct page *page) 1689 { 1690 return false; 1691 } 1692 1693 static bool check_new_pcp(struct page *page) 1694 { 1695 return check_new_page(page); 1696 } 1697 #else 1698 static bool check_pcp_refill(struct page *page) 1699 { 1700 return check_new_page(page); 1701 } 1702 static bool check_new_pcp(struct page *page) 1703 { 1704 return false; 1705 } 1706 #endif /* CONFIG_DEBUG_VM */ 1707 1708 static bool check_new_pages(struct page *page, unsigned int order) 1709 { 1710 int i; 1711 for (i = 0; i < (1 << order); i++) { 1712 struct page *p = page + i; 1713 1714 if (unlikely(check_new_page(p))) 1715 return true; 1716 } 1717 1718 return false; 1719 } 1720 1721 inline void post_alloc_hook(struct page *page, unsigned int order, 1722 gfp_t gfp_flags) 1723 { 1724 set_page_private(page, 0); 1725 set_page_refcounted(page); 1726 1727 arch_alloc_page(page, order); 1728 kernel_map_pages(page, 1 << order, 1); 1729 kernel_poison_pages(page, 1 << order, 1); 1730 kasan_alloc_pages(page, order); 1731 set_page_owner(page, order, gfp_flags); 1732 } 1733 1734 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1735 unsigned int alloc_flags) 1736 { 1737 int i; 1738 bool poisoned = true; 1739 1740 for (i = 0; i < (1 << order); i++) { 1741 struct page *p = page + i; 1742 if (poisoned) 1743 poisoned &= page_is_poisoned(p); 1744 } 1745 1746 post_alloc_hook(page, order, gfp_flags); 1747 1748 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO)) 1749 for (i = 0; i < (1 << order); i++) 1750 clear_highpage(page + i); 1751 1752 if (order && (gfp_flags & __GFP_COMP)) 1753 prep_compound_page(page, order); 1754 1755 /* 1756 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1757 * allocate the page. The expectation is that the caller is taking 1758 * steps that will free more memory. The caller should avoid the page 1759 * being used for !PFMEMALLOC purposes. 1760 */ 1761 if (alloc_flags & ALLOC_NO_WATERMARKS) 1762 set_page_pfmemalloc(page); 1763 else 1764 clear_page_pfmemalloc(page); 1765 } 1766 1767 /* 1768 * Go through the free lists for the given migratetype and remove 1769 * the smallest available page from the freelists 1770 */ 1771 static inline 1772 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1773 int migratetype) 1774 { 1775 unsigned int current_order; 1776 struct free_area *area; 1777 struct page *page; 1778 1779 /* Find a page of the appropriate size in the preferred list */ 1780 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 1781 area = &(zone->free_area[current_order]); 1782 page = list_first_entry_or_null(&area->free_list[migratetype], 1783 struct page, lru); 1784 if (!page) 1785 continue; 1786 list_del(&page->lru); 1787 rmv_page_order(page); 1788 area->nr_free--; 1789 expand(zone, page, order, current_order, area, migratetype); 1790 set_pcppage_migratetype(page, migratetype); 1791 return page; 1792 } 1793 1794 return NULL; 1795 } 1796 1797 1798 /* 1799 * This array describes the order lists are fallen back to when 1800 * the free lists for the desirable migrate type are depleted 1801 */ 1802 static int fallbacks[MIGRATE_TYPES][4] = { 1803 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 1804 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 1805 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 1806 #ifdef CONFIG_CMA 1807 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 1808 #endif 1809 #ifdef CONFIG_MEMORY_ISOLATION 1810 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 1811 #endif 1812 }; 1813 1814 #ifdef CONFIG_CMA 1815 static struct page *__rmqueue_cma_fallback(struct zone *zone, 1816 unsigned int order) 1817 { 1818 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1819 } 1820 #else 1821 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1822 unsigned int order) { return NULL; } 1823 #endif 1824 1825 /* 1826 * Move the free pages in a range to the free lists of the requested type. 1827 * Note that start_page and end_pages are not aligned on a pageblock 1828 * boundary. If alignment is required, use move_freepages_block() 1829 */ 1830 int move_freepages(struct zone *zone, 1831 struct page *start_page, struct page *end_page, 1832 int migratetype) 1833 { 1834 struct page *page; 1835 unsigned int order; 1836 int pages_moved = 0; 1837 1838 #ifndef CONFIG_HOLES_IN_ZONE 1839 /* 1840 * page_zone is not safe to call in this context when 1841 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 1842 * anyway as we check zone boundaries in move_freepages_block(). 1843 * Remove at a later date when no bug reports exist related to 1844 * grouping pages by mobility 1845 */ 1846 VM_BUG_ON(page_zone(start_page) != page_zone(end_page)); 1847 #endif 1848 1849 for (page = start_page; page <= end_page;) { 1850 /* Make sure we are not inadvertently changing nodes */ 1851 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1852 1853 if (!pfn_valid_within(page_to_pfn(page))) { 1854 page++; 1855 continue; 1856 } 1857 1858 if (!PageBuddy(page)) { 1859 page++; 1860 continue; 1861 } 1862 1863 order = page_order(page); 1864 list_move(&page->lru, 1865 &zone->free_area[order].free_list[migratetype]); 1866 page += 1 << order; 1867 pages_moved += 1 << order; 1868 } 1869 1870 return pages_moved; 1871 } 1872 1873 int move_freepages_block(struct zone *zone, struct page *page, 1874 int migratetype) 1875 { 1876 unsigned long start_pfn, end_pfn; 1877 struct page *start_page, *end_page; 1878 1879 start_pfn = page_to_pfn(page); 1880 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 1881 start_page = pfn_to_page(start_pfn); 1882 end_page = start_page + pageblock_nr_pages - 1; 1883 end_pfn = start_pfn + pageblock_nr_pages - 1; 1884 1885 /* Do not cross zone boundaries */ 1886 if (!zone_spans_pfn(zone, start_pfn)) 1887 start_page = page; 1888 if (!zone_spans_pfn(zone, end_pfn)) 1889 return 0; 1890 1891 return move_freepages(zone, start_page, end_page, migratetype); 1892 } 1893 1894 static void change_pageblock_range(struct page *pageblock_page, 1895 int start_order, int migratetype) 1896 { 1897 int nr_pageblocks = 1 << (start_order - pageblock_order); 1898 1899 while (nr_pageblocks--) { 1900 set_pageblock_migratetype(pageblock_page, migratetype); 1901 pageblock_page += pageblock_nr_pages; 1902 } 1903 } 1904 1905 /* 1906 * When we are falling back to another migratetype during allocation, try to 1907 * steal extra free pages from the same pageblocks to satisfy further 1908 * allocations, instead of polluting multiple pageblocks. 1909 * 1910 * If we are stealing a relatively large buddy page, it is likely there will 1911 * be more free pages in the pageblock, so try to steal them all. For 1912 * reclaimable and unmovable allocations, we steal regardless of page size, 1913 * as fragmentation caused by those allocations polluting movable pageblocks 1914 * is worse than movable allocations stealing from unmovable and reclaimable 1915 * pageblocks. 1916 */ 1917 static bool can_steal_fallback(unsigned int order, int start_mt) 1918 { 1919 /* 1920 * Leaving this order check is intended, although there is 1921 * relaxed order check in next check. The reason is that 1922 * we can actually steal whole pageblock if this condition met, 1923 * but, below check doesn't guarantee it and that is just heuristic 1924 * so could be changed anytime. 1925 */ 1926 if (order >= pageblock_order) 1927 return true; 1928 1929 if (order >= pageblock_order / 2 || 1930 start_mt == MIGRATE_RECLAIMABLE || 1931 start_mt == MIGRATE_UNMOVABLE || 1932 page_group_by_mobility_disabled) 1933 return true; 1934 1935 return false; 1936 } 1937 1938 /* 1939 * This function implements actual steal behaviour. If order is large enough, 1940 * we can steal whole pageblock. If not, we first move freepages in this 1941 * pageblock and check whether half of pages are moved or not. If half of 1942 * pages are moved, we can change migratetype of pageblock and permanently 1943 * use it's pages as requested migratetype in the future. 1944 */ 1945 static void steal_suitable_fallback(struct zone *zone, struct page *page, 1946 int start_type) 1947 { 1948 unsigned int current_order = page_order(page); 1949 int pages; 1950 1951 /* Take ownership for orders >= pageblock_order */ 1952 if (current_order >= pageblock_order) { 1953 change_pageblock_range(page, current_order, start_type); 1954 return; 1955 } 1956 1957 pages = move_freepages_block(zone, page, start_type); 1958 1959 /* Claim the whole block if over half of it is free */ 1960 if (pages >= (1 << (pageblock_order-1)) || 1961 page_group_by_mobility_disabled) 1962 set_pageblock_migratetype(page, start_type); 1963 } 1964 1965 /* 1966 * Check whether there is a suitable fallback freepage with requested order. 1967 * If only_stealable is true, this function returns fallback_mt only if 1968 * we can steal other freepages all together. This would help to reduce 1969 * fragmentation due to mixed migratetype pages in one pageblock. 1970 */ 1971 int find_suitable_fallback(struct free_area *area, unsigned int order, 1972 int migratetype, bool only_stealable, bool *can_steal) 1973 { 1974 int i; 1975 int fallback_mt; 1976 1977 if (area->nr_free == 0) 1978 return -1; 1979 1980 *can_steal = false; 1981 for (i = 0;; i++) { 1982 fallback_mt = fallbacks[migratetype][i]; 1983 if (fallback_mt == MIGRATE_TYPES) 1984 break; 1985 1986 if (list_empty(&area->free_list[fallback_mt])) 1987 continue; 1988 1989 if (can_steal_fallback(order, migratetype)) 1990 *can_steal = true; 1991 1992 if (!only_stealable) 1993 return fallback_mt; 1994 1995 if (*can_steal) 1996 return fallback_mt; 1997 } 1998 1999 return -1; 2000 } 2001 2002 /* 2003 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2004 * there are no empty page blocks that contain a page with a suitable order 2005 */ 2006 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2007 unsigned int alloc_order) 2008 { 2009 int mt; 2010 unsigned long max_managed, flags; 2011 2012 /* 2013 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2014 * Check is race-prone but harmless. 2015 */ 2016 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages; 2017 if (zone->nr_reserved_highatomic >= max_managed) 2018 return; 2019 2020 spin_lock_irqsave(&zone->lock, flags); 2021 2022 /* Recheck the nr_reserved_highatomic limit under the lock */ 2023 if (zone->nr_reserved_highatomic >= max_managed) 2024 goto out_unlock; 2025 2026 /* Yoink! */ 2027 mt = get_pageblock_migratetype(page); 2028 if (mt != MIGRATE_HIGHATOMIC && 2029 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) { 2030 zone->nr_reserved_highatomic += pageblock_nr_pages; 2031 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2032 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC); 2033 } 2034 2035 out_unlock: 2036 spin_unlock_irqrestore(&zone->lock, flags); 2037 } 2038 2039 /* 2040 * Used when an allocation is about to fail under memory pressure. This 2041 * potentially hurts the reliability of high-order allocations when under 2042 * intense memory pressure but failed atomic allocations should be easier 2043 * to recover from than an OOM. 2044 */ 2045 static void unreserve_highatomic_pageblock(const struct alloc_context *ac) 2046 { 2047 struct zonelist *zonelist = ac->zonelist; 2048 unsigned long flags; 2049 struct zoneref *z; 2050 struct zone *zone; 2051 struct page *page; 2052 int order; 2053 2054 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx, 2055 ac->nodemask) { 2056 /* Preserve at least one pageblock */ 2057 if (zone->nr_reserved_highatomic <= pageblock_nr_pages) 2058 continue; 2059 2060 spin_lock_irqsave(&zone->lock, flags); 2061 for (order = 0; order < MAX_ORDER; order++) { 2062 struct free_area *area = &(zone->free_area[order]); 2063 2064 page = list_first_entry_or_null( 2065 &area->free_list[MIGRATE_HIGHATOMIC], 2066 struct page, lru); 2067 if (!page) 2068 continue; 2069 2070 /* 2071 * It should never happen but changes to locking could 2072 * inadvertently allow a per-cpu drain to add pages 2073 * to MIGRATE_HIGHATOMIC while unreserving so be safe 2074 * and watch for underflows. 2075 */ 2076 zone->nr_reserved_highatomic -= min(pageblock_nr_pages, 2077 zone->nr_reserved_highatomic); 2078 2079 /* 2080 * Convert to ac->migratetype and avoid the normal 2081 * pageblock stealing heuristics. Minimally, the caller 2082 * is doing the work and needs the pages. More 2083 * importantly, if the block was always converted to 2084 * MIGRATE_UNMOVABLE or another type then the number 2085 * of pageblocks that cannot be completely freed 2086 * may increase. 2087 */ 2088 set_pageblock_migratetype(page, ac->migratetype); 2089 move_freepages_block(zone, page, ac->migratetype); 2090 spin_unlock_irqrestore(&zone->lock, flags); 2091 return; 2092 } 2093 spin_unlock_irqrestore(&zone->lock, flags); 2094 } 2095 } 2096 2097 /* Remove an element from the buddy allocator from the fallback list */ 2098 static inline struct page * 2099 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype) 2100 { 2101 struct free_area *area; 2102 unsigned int current_order; 2103 struct page *page; 2104 int fallback_mt; 2105 bool can_steal; 2106 2107 /* Find the largest possible block of pages in the other list */ 2108 for (current_order = MAX_ORDER-1; 2109 current_order >= order && current_order <= MAX_ORDER-1; 2110 --current_order) { 2111 area = &(zone->free_area[current_order]); 2112 fallback_mt = find_suitable_fallback(area, current_order, 2113 start_migratetype, false, &can_steal); 2114 if (fallback_mt == -1) 2115 continue; 2116 2117 page = list_first_entry(&area->free_list[fallback_mt], 2118 struct page, lru); 2119 if (can_steal) 2120 steal_suitable_fallback(zone, page, start_migratetype); 2121 2122 /* Remove the page from the freelists */ 2123 area->nr_free--; 2124 list_del(&page->lru); 2125 rmv_page_order(page); 2126 2127 expand(zone, page, order, current_order, area, 2128 start_migratetype); 2129 /* 2130 * The pcppage_migratetype may differ from pageblock's 2131 * migratetype depending on the decisions in 2132 * find_suitable_fallback(). This is OK as long as it does not 2133 * differ for MIGRATE_CMA pageblocks. Those can be used as 2134 * fallback only via special __rmqueue_cma_fallback() function 2135 */ 2136 set_pcppage_migratetype(page, start_migratetype); 2137 2138 trace_mm_page_alloc_extfrag(page, order, current_order, 2139 start_migratetype, fallback_mt); 2140 2141 return page; 2142 } 2143 2144 return NULL; 2145 } 2146 2147 /* 2148 * Do the hard work of removing an element from the buddy allocator. 2149 * Call me with the zone->lock already held. 2150 */ 2151 static struct page *__rmqueue(struct zone *zone, unsigned int order, 2152 int migratetype) 2153 { 2154 struct page *page; 2155 2156 page = __rmqueue_smallest(zone, order, migratetype); 2157 if (unlikely(!page)) { 2158 if (migratetype == MIGRATE_MOVABLE) 2159 page = __rmqueue_cma_fallback(zone, order); 2160 2161 if (!page) 2162 page = __rmqueue_fallback(zone, order, migratetype); 2163 } 2164 2165 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2166 return page; 2167 } 2168 2169 /* 2170 * Obtain a specified number of elements from the buddy allocator, all under 2171 * a single hold of the lock, for efficiency. Add them to the supplied list. 2172 * Returns the number of new pages which were placed at *list. 2173 */ 2174 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2175 unsigned long count, struct list_head *list, 2176 int migratetype, bool cold) 2177 { 2178 int i; 2179 2180 spin_lock(&zone->lock); 2181 for (i = 0; i < count; ++i) { 2182 struct page *page = __rmqueue(zone, order, migratetype); 2183 if (unlikely(page == NULL)) 2184 break; 2185 2186 if (unlikely(check_pcp_refill(page))) 2187 continue; 2188 2189 /* 2190 * Split buddy pages returned by expand() are received here 2191 * in physical page order. The page is added to the callers and 2192 * list and the list head then moves forward. From the callers 2193 * perspective, the linked list is ordered by page number in 2194 * some conditions. This is useful for IO devices that can 2195 * merge IO requests if the physical pages are ordered 2196 * properly. 2197 */ 2198 if (likely(!cold)) 2199 list_add(&page->lru, list); 2200 else 2201 list_add_tail(&page->lru, list); 2202 list = &page->lru; 2203 if (is_migrate_cma(get_pcppage_migratetype(page))) 2204 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2205 -(1 << order)); 2206 } 2207 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2208 spin_unlock(&zone->lock); 2209 return i; 2210 } 2211 2212 #ifdef CONFIG_NUMA 2213 /* 2214 * Called from the vmstat counter updater to drain pagesets of this 2215 * currently executing processor on remote nodes after they have 2216 * expired. 2217 * 2218 * Note that this function must be called with the thread pinned to 2219 * a single processor. 2220 */ 2221 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2222 { 2223 unsigned long flags; 2224 int to_drain, batch; 2225 2226 local_irq_save(flags); 2227 batch = READ_ONCE(pcp->batch); 2228 to_drain = min(pcp->count, batch); 2229 if (to_drain > 0) { 2230 free_pcppages_bulk(zone, to_drain, pcp); 2231 pcp->count -= to_drain; 2232 } 2233 local_irq_restore(flags); 2234 } 2235 #endif 2236 2237 /* 2238 * Drain pcplists of the indicated processor and zone. 2239 * 2240 * The processor must either be the current processor and the 2241 * thread pinned to the current processor or a processor that 2242 * is not online. 2243 */ 2244 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2245 { 2246 unsigned long flags; 2247 struct per_cpu_pageset *pset; 2248 struct per_cpu_pages *pcp; 2249 2250 local_irq_save(flags); 2251 pset = per_cpu_ptr(zone->pageset, cpu); 2252 2253 pcp = &pset->pcp; 2254 if (pcp->count) { 2255 free_pcppages_bulk(zone, pcp->count, pcp); 2256 pcp->count = 0; 2257 } 2258 local_irq_restore(flags); 2259 } 2260 2261 /* 2262 * Drain pcplists of all zones on the indicated processor. 2263 * 2264 * The processor must either be the current processor and the 2265 * thread pinned to the current processor or a processor that 2266 * is not online. 2267 */ 2268 static void drain_pages(unsigned int cpu) 2269 { 2270 struct zone *zone; 2271 2272 for_each_populated_zone(zone) { 2273 drain_pages_zone(cpu, zone); 2274 } 2275 } 2276 2277 /* 2278 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2279 * 2280 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 2281 * the single zone's pages. 2282 */ 2283 void drain_local_pages(struct zone *zone) 2284 { 2285 int cpu = smp_processor_id(); 2286 2287 if (zone) 2288 drain_pages_zone(cpu, zone); 2289 else 2290 drain_pages(cpu); 2291 } 2292 2293 /* 2294 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2295 * 2296 * When zone parameter is non-NULL, spill just the single zone's pages. 2297 * 2298 * Note that this code is protected against sending an IPI to an offline 2299 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs: 2300 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but 2301 * nothing keeps CPUs from showing up after we populated the cpumask and 2302 * before the call to on_each_cpu_mask(). 2303 */ 2304 void drain_all_pages(struct zone *zone) 2305 { 2306 int cpu; 2307 2308 /* 2309 * Allocate in the BSS so we wont require allocation in 2310 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2311 */ 2312 static cpumask_t cpus_with_pcps; 2313 2314 /* 2315 * We don't care about racing with CPU hotplug event 2316 * as offline notification will cause the notified 2317 * cpu to drain that CPU pcps and on_each_cpu_mask 2318 * disables preemption as part of its processing 2319 */ 2320 for_each_online_cpu(cpu) { 2321 struct per_cpu_pageset *pcp; 2322 struct zone *z; 2323 bool has_pcps = false; 2324 2325 if (zone) { 2326 pcp = per_cpu_ptr(zone->pageset, cpu); 2327 if (pcp->pcp.count) 2328 has_pcps = true; 2329 } else { 2330 for_each_populated_zone(z) { 2331 pcp = per_cpu_ptr(z->pageset, cpu); 2332 if (pcp->pcp.count) { 2333 has_pcps = true; 2334 break; 2335 } 2336 } 2337 } 2338 2339 if (has_pcps) 2340 cpumask_set_cpu(cpu, &cpus_with_pcps); 2341 else 2342 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2343 } 2344 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages, 2345 zone, 1); 2346 } 2347 2348 #ifdef CONFIG_HIBERNATION 2349 2350 void mark_free_pages(struct zone *zone) 2351 { 2352 unsigned long pfn, max_zone_pfn; 2353 unsigned long flags; 2354 unsigned int order, t; 2355 struct page *page; 2356 2357 if (zone_is_empty(zone)) 2358 return; 2359 2360 spin_lock_irqsave(&zone->lock, flags); 2361 2362 max_zone_pfn = zone_end_pfn(zone); 2363 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 2364 if (pfn_valid(pfn)) { 2365 page = pfn_to_page(pfn); 2366 2367 if (page_zone(page) != zone) 2368 continue; 2369 2370 if (!swsusp_page_is_forbidden(page)) 2371 swsusp_unset_page_free(page); 2372 } 2373 2374 for_each_migratetype_order(order, t) { 2375 list_for_each_entry(page, 2376 &zone->free_area[order].free_list[t], lru) { 2377 unsigned long i; 2378 2379 pfn = page_to_pfn(page); 2380 for (i = 0; i < (1UL << order); i++) 2381 swsusp_set_page_free(pfn_to_page(pfn + i)); 2382 } 2383 } 2384 spin_unlock_irqrestore(&zone->lock, flags); 2385 } 2386 #endif /* CONFIG_PM */ 2387 2388 /* 2389 * Free a 0-order page 2390 * cold == true ? free a cold page : free a hot page 2391 */ 2392 void free_hot_cold_page(struct page *page, bool cold) 2393 { 2394 struct zone *zone = page_zone(page); 2395 struct per_cpu_pages *pcp; 2396 unsigned long flags; 2397 unsigned long pfn = page_to_pfn(page); 2398 int migratetype; 2399 2400 if (!free_pcp_prepare(page)) 2401 return; 2402 2403 migratetype = get_pfnblock_migratetype(page, pfn); 2404 set_pcppage_migratetype(page, migratetype); 2405 local_irq_save(flags); 2406 __count_vm_event(PGFREE); 2407 2408 /* 2409 * We only track unmovable, reclaimable and movable on pcp lists. 2410 * Free ISOLATE pages back to the allocator because they are being 2411 * offlined but treat RESERVE as movable pages so we can get those 2412 * areas back if necessary. Otherwise, we may have to free 2413 * excessively into the page allocator 2414 */ 2415 if (migratetype >= MIGRATE_PCPTYPES) { 2416 if (unlikely(is_migrate_isolate(migratetype))) { 2417 free_one_page(zone, page, pfn, 0, migratetype); 2418 goto out; 2419 } 2420 migratetype = MIGRATE_MOVABLE; 2421 } 2422 2423 pcp = &this_cpu_ptr(zone->pageset)->pcp; 2424 if (!cold) 2425 list_add(&page->lru, &pcp->lists[migratetype]); 2426 else 2427 list_add_tail(&page->lru, &pcp->lists[migratetype]); 2428 pcp->count++; 2429 if (pcp->count >= pcp->high) { 2430 unsigned long batch = READ_ONCE(pcp->batch); 2431 free_pcppages_bulk(zone, batch, pcp); 2432 pcp->count -= batch; 2433 } 2434 2435 out: 2436 local_irq_restore(flags); 2437 } 2438 2439 /* 2440 * Free a list of 0-order pages 2441 */ 2442 void free_hot_cold_page_list(struct list_head *list, bool cold) 2443 { 2444 struct page *page, *next; 2445 2446 list_for_each_entry_safe(page, next, list, lru) { 2447 trace_mm_page_free_batched(page, cold); 2448 free_hot_cold_page(page, cold); 2449 } 2450 } 2451 2452 /* 2453 * split_page takes a non-compound higher-order page, and splits it into 2454 * n (1<<order) sub-pages: page[0..n] 2455 * Each sub-page must be freed individually. 2456 * 2457 * Note: this is probably too low level an operation for use in drivers. 2458 * Please consult with lkml before using this in your driver. 2459 */ 2460 void split_page(struct page *page, unsigned int order) 2461 { 2462 int i; 2463 2464 VM_BUG_ON_PAGE(PageCompound(page), page); 2465 VM_BUG_ON_PAGE(!page_count(page), page); 2466 2467 #ifdef CONFIG_KMEMCHECK 2468 /* 2469 * Split shadow pages too, because free(page[0]) would 2470 * otherwise free the whole shadow. 2471 */ 2472 if (kmemcheck_page_is_tracked(page)) 2473 split_page(virt_to_page(page[0].shadow), order); 2474 #endif 2475 2476 for (i = 1; i < (1 << order); i++) 2477 set_page_refcounted(page + i); 2478 split_page_owner(page, order); 2479 } 2480 EXPORT_SYMBOL_GPL(split_page); 2481 2482 int __isolate_free_page(struct page *page, unsigned int order) 2483 { 2484 unsigned long watermark; 2485 struct zone *zone; 2486 int mt; 2487 2488 BUG_ON(!PageBuddy(page)); 2489 2490 zone = page_zone(page); 2491 mt = get_pageblock_migratetype(page); 2492 2493 if (!is_migrate_isolate(mt)) { 2494 /* Obey watermarks as if the page was being allocated */ 2495 watermark = low_wmark_pages(zone) + (1 << order); 2496 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 2497 return 0; 2498 2499 __mod_zone_freepage_state(zone, -(1UL << order), mt); 2500 } 2501 2502 /* Remove page from free list */ 2503 list_del(&page->lru); 2504 zone->free_area[order].nr_free--; 2505 rmv_page_order(page); 2506 2507 /* 2508 * Set the pageblock if the isolated page is at least half of a 2509 * pageblock 2510 */ 2511 if (order >= pageblock_order - 1) { 2512 struct page *endpage = page + (1 << order) - 1; 2513 for (; page < endpage; page += pageblock_nr_pages) { 2514 int mt = get_pageblock_migratetype(page); 2515 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)) 2516 set_pageblock_migratetype(page, 2517 MIGRATE_MOVABLE); 2518 } 2519 } 2520 2521 2522 return 1UL << order; 2523 } 2524 2525 /* 2526 * Update NUMA hit/miss statistics 2527 * 2528 * Must be called with interrupts disabled. 2529 * 2530 * When __GFP_OTHER_NODE is set assume the node of the preferred 2531 * zone is the local node. This is useful for daemons who allocate 2532 * memory on behalf of other processes. 2533 */ 2534 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 2535 gfp_t flags) 2536 { 2537 #ifdef CONFIG_NUMA 2538 int local_nid = numa_node_id(); 2539 enum zone_stat_item local_stat = NUMA_LOCAL; 2540 2541 if (unlikely(flags & __GFP_OTHER_NODE)) { 2542 local_stat = NUMA_OTHER; 2543 local_nid = preferred_zone->node; 2544 } 2545 2546 if (z->node == local_nid) { 2547 __inc_zone_state(z, NUMA_HIT); 2548 __inc_zone_state(z, local_stat); 2549 } else { 2550 __inc_zone_state(z, NUMA_MISS); 2551 __inc_zone_state(preferred_zone, NUMA_FOREIGN); 2552 } 2553 #endif 2554 } 2555 2556 /* 2557 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 2558 */ 2559 static inline 2560 struct page *buffered_rmqueue(struct zone *preferred_zone, 2561 struct zone *zone, unsigned int order, 2562 gfp_t gfp_flags, unsigned int alloc_flags, 2563 int migratetype) 2564 { 2565 unsigned long flags; 2566 struct page *page; 2567 bool cold = ((gfp_flags & __GFP_COLD) != 0); 2568 2569 if (likely(order == 0)) { 2570 struct per_cpu_pages *pcp; 2571 struct list_head *list; 2572 2573 local_irq_save(flags); 2574 do { 2575 pcp = &this_cpu_ptr(zone->pageset)->pcp; 2576 list = &pcp->lists[migratetype]; 2577 if (list_empty(list)) { 2578 pcp->count += rmqueue_bulk(zone, 0, 2579 pcp->batch, list, 2580 migratetype, cold); 2581 if (unlikely(list_empty(list))) 2582 goto failed; 2583 } 2584 2585 if (cold) 2586 page = list_last_entry(list, struct page, lru); 2587 else 2588 page = list_first_entry(list, struct page, lru); 2589 2590 list_del(&page->lru); 2591 pcp->count--; 2592 2593 } while (check_new_pcp(page)); 2594 } else { 2595 /* 2596 * We most definitely don't want callers attempting to 2597 * allocate greater than order-1 page units with __GFP_NOFAIL. 2598 */ 2599 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 2600 spin_lock_irqsave(&zone->lock, flags); 2601 2602 do { 2603 page = NULL; 2604 if (alloc_flags & ALLOC_HARDER) { 2605 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2606 if (page) 2607 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2608 } 2609 if (!page) 2610 page = __rmqueue(zone, order, migratetype); 2611 } while (page && check_new_pages(page, order)); 2612 spin_unlock(&zone->lock); 2613 if (!page) 2614 goto failed; 2615 __mod_zone_freepage_state(zone, -(1 << order), 2616 get_pcppage_migratetype(page)); 2617 } 2618 2619 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2620 zone_statistics(preferred_zone, zone, gfp_flags); 2621 local_irq_restore(flags); 2622 2623 VM_BUG_ON_PAGE(bad_range(zone, page), page); 2624 return page; 2625 2626 failed: 2627 local_irq_restore(flags); 2628 return NULL; 2629 } 2630 2631 #ifdef CONFIG_FAIL_PAGE_ALLOC 2632 2633 static struct { 2634 struct fault_attr attr; 2635 2636 bool ignore_gfp_highmem; 2637 bool ignore_gfp_reclaim; 2638 u32 min_order; 2639 } fail_page_alloc = { 2640 .attr = FAULT_ATTR_INITIALIZER, 2641 .ignore_gfp_reclaim = true, 2642 .ignore_gfp_highmem = true, 2643 .min_order = 1, 2644 }; 2645 2646 static int __init setup_fail_page_alloc(char *str) 2647 { 2648 return setup_fault_attr(&fail_page_alloc.attr, str); 2649 } 2650 __setup("fail_page_alloc=", setup_fail_page_alloc); 2651 2652 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 2653 { 2654 if (order < fail_page_alloc.min_order) 2655 return false; 2656 if (gfp_mask & __GFP_NOFAIL) 2657 return false; 2658 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 2659 return false; 2660 if (fail_page_alloc.ignore_gfp_reclaim && 2661 (gfp_mask & __GFP_DIRECT_RECLAIM)) 2662 return false; 2663 2664 return should_fail(&fail_page_alloc.attr, 1 << order); 2665 } 2666 2667 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 2668 2669 static int __init fail_page_alloc_debugfs(void) 2670 { 2671 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 2672 struct dentry *dir; 2673 2674 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 2675 &fail_page_alloc.attr); 2676 if (IS_ERR(dir)) 2677 return PTR_ERR(dir); 2678 2679 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 2680 &fail_page_alloc.ignore_gfp_reclaim)) 2681 goto fail; 2682 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 2683 &fail_page_alloc.ignore_gfp_highmem)) 2684 goto fail; 2685 if (!debugfs_create_u32("min-order", mode, dir, 2686 &fail_page_alloc.min_order)) 2687 goto fail; 2688 2689 return 0; 2690 fail: 2691 debugfs_remove_recursive(dir); 2692 2693 return -ENOMEM; 2694 } 2695 2696 late_initcall(fail_page_alloc_debugfs); 2697 2698 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 2699 2700 #else /* CONFIG_FAIL_PAGE_ALLOC */ 2701 2702 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 2703 { 2704 return false; 2705 } 2706 2707 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 2708 2709 /* 2710 * Return true if free base pages are above 'mark'. For high-order checks it 2711 * will return true of the order-0 watermark is reached and there is at least 2712 * one free page of a suitable size. Checking now avoids taking the zone lock 2713 * to check in the allocation paths if no pages are free. 2714 */ 2715 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 2716 int classzone_idx, unsigned int alloc_flags, 2717 long free_pages) 2718 { 2719 long min = mark; 2720 int o; 2721 const bool alloc_harder = (alloc_flags & ALLOC_HARDER); 2722 2723 /* free_pages may go negative - that's OK */ 2724 free_pages -= (1 << order) - 1; 2725 2726 if (alloc_flags & ALLOC_HIGH) 2727 min -= min / 2; 2728 2729 /* 2730 * If the caller does not have rights to ALLOC_HARDER then subtract 2731 * the high-atomic reserves. This will over-estimate the size of the 2732 * atomic reserve but it avoids a search. 2733 */ 2734 if (likely(!alloc_harder)) 2735 free_pages -= z->nr_reserved_highatomic; 2736 else 2737 min -= min / 4; 2738 2739 #ifdef CONFIG_CMA 2740 /* If allocation can't use CMA areas don't use free CMA pages */ 2741 if (!(alloc_flags & ALLOC_CMA)) 2742 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES); 2743 #endif 2744 2745 /* 2746 * Check watermarks for an order-0 allocation request. If these 2747 * are not met, then a high-order request also cannot go ahead 2748 * even if a suitable page happened to be free. 2749 */ 2750 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 2751 return false; 2752 2753 /* If this is an order-0 request then the watermark is fine */ 2754 if (!order) 2755 return true; 2756 2757 /* For a high-order request, check at least one suitable page is free */ 2758 for (o = order; o < MAX_ORDER; o++) { 2759 struct free_area *area = &z->free_area[o]; 2760 int mt; 2761 2762 if (!area->nr_free) 2763 continue; 2764 2765 if (alloc_harder) 2766 return true; 2767 2768 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 2769 if (!list_empty(&area->free_list[mt])) 2770 return true; 2771 } 2772 2773 #ifdef CONFIG_CMA 2774 if ((alloc_flags & ALLOC_CMA) && 2775 !list_empty(&area->free_list[MIGRATE_CMA])) { 2776 return true; 2777 } 2778 #endif 2779 } 2780 return false; 2781 } 2782 2783 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 2784 int classzone_idx, unsigned int alloc_flags) 2785 { 2786 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 2787 zone_page_state(z, NR_FREE_PAGES)); 2788 } 2789 2790 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 2791 unsigned long mark, int classzone_idx, unsigned int alloc_flags) 2792 { 2793 long free_pages = zone_page_state(z, NR_FREE_PAGES); 2794 long cma_pages = 0; 2795 2796 #ifdef CONFIG_CMA 2797 /* If allocation can't use CMA areas don't use free CMA pages */ 2798 if (!(alloc_flags & ALLOC_CMA)) 2799 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES); 2800 #endif 2801 2802 /* 2803 * Fast check for order-0 only. If this fails then the reserves 2804 * need to be calculated. There is a corner case where the check 2805 * passes but only the high-order atomic reserve are free. If 2806 * the caller is !atomic then it'll uselessly search the free 2807 * list. That corner case is then slower but it is harmless. 2808 */ 2809 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx]) 2810 return true; 2811 2812 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 2813 free_pages); 2814 } 2815 2816 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 2817 unsigned long mark, int classzone_idx) 2818 { 2819 long free_pages = zone_page_state(z, NR_FREE_PAGES); 2820 2821 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 2822 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 2823 2824 return __zone_watermark_ok(z, order, mark, classzone_idx, 0, 2825 free_pages); 2826 } 2827 2828 #ifdef CONFIG_NUMA 2829 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 2830 { 2831 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) < 2832 RECLAIM_DISTANCE; 2833 } 2834 #else /* CONFIG_NUMA */ 2835 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 2836 { 2837 return true; 2838 } 2839 #endif /* CONFIG_NUMA */ 2840 2841 /* 2842 * get_page_from_freelist goes through the zonelist trying to allocate 2843 * a page. 2844 */ 2845 static struct page * 2846 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 2847 const struct alloc_context *ac) 2848 { 2849 struct zoneref *z = ac->preferred_zoneref; 2850 struct zone *zone; 2851 struct pglist_data *last_pgdat_dirty_limit = NULL; 2852 2853 /* 2854 * Scan zonelist, looking for a zone with enough free. 2855 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 2856 */ 2857 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 2858 ac->nodemask) { 2859 struct page *page; 2860 unsigned long mark; 2861 2862 if (cpusets_enabled() && 2863 (alloc_flags & ALLOC_CPUSET) && 2864 !__cpuset_zone_allowed(zone, gfp_mask)) 2865 continue; 2866 /* 2867 * When allocating a page cache page for writing, we 2868 * want to get it from a node that is within its dirty 2869 * limit, such that no single node holds more than its 2870 * proportional share of globally allowed dirty pages. 2871 * The dirty limits take into account the node's 2872 * lowmem reserves and high watermark so that kswapd 2873 * should be able to balance it without having to 2874 * write pages from its LRU list. 2875 * 2876 * XXX: For now, allow allocations to potentially 2877 * exceed the per-node dirty limit in the slowpath 2878 * (spread_dirty_pages unset) before going into reclaim, 2879 * which is important when on a NUMA setup the allowed 2880 * nodes are together not big enough to reach the 2881 * global limit. The proper fix for these situations 2882 * will require awareness of nodes in the 2883 * dirty-throttling and the flusher threads. 2884 */ 2885 if (ac->spread_dirty_pages) { 2886 if (last_pgdat_dirty_limit == zone->zone_pgdat) 2887 continue; 2888 2889 if (!node_dirty_ok(zone->zone_pgdat)) { 2890 last_pgdat_dirty_limit = zone->zone_pgdat; 2891 continue; 2892 } 2893 } 2894 2895 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 2896 if (!zone_watermark_fast(zone, order, mark, 2897 ac_classzone_idx(ac), alloc_flags)) { 2898 int ret; 2899 2900 /* Checked here to keep the fast path fast */ 2901 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 2902 if (alloc_flags & ALLOC_NO_WATERMARKS) 2903 goto try_this_zone; 2904 2905 if (node_reclaim_mode == 0 || 2906 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 2907 continue; 2908 2909 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 2910 switch (ret) { 2911 case NODE_RECLAIM_NOSCAN: 2912 /* did not scan */ 2913 continue; 2914 case NODE_RECLAIM_FULL: 2915 /* scanned but unreclaimable */ 2916 continue; 2917 default: 2918 /* did we reclaim enough */ 2919 if (zone_watermark_ok(zone, order, mark, 2920 ac_classzone_idx(ac), alloc_flags)) 2921 goto try_this_zone; 2922 2923 continue; 2924 } 2925 } 2926 2927 try_this_zone: 2928 page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order, 2929 gfp_mask, alloc_flags, ac->migratetype); 2930 if (page) { 2931 prep_new_page(page, order, gfp_mask, alloc_flags); 2932 2933 /* 2934 * If this is a high-order atomic allocation then check 2935 * if the pageblock should be reserved for the future 2936 */ 2937 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 2938 reserve_highatomic_pageblock(page, zone, order); 2939 2940 return page; 2941 } 2942 } 2943 2944 return NULL; 2945 } 2946 2947 /* 2948 * Large machines with many possible nodes should not always dump per-node 2949 * meminfo in irq context. 2950 */ 2951 static inline bool should_suppress_show_mem(void) 2952 { 2953 bool ret = false; 2954 2955 #if NODES_SHIFT > 8 2956 ret = in_interrupt(); 2957 #endif 2958 return ret; 2959 } 2960 2961 static DEFINE_RATELIMIT_STATE(nopage_rs, 2962 DEFAULT_RATELIMIT_INTERVAL, 2963 DEFAULT_RATELIMIT_BURST); 2964 2965 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...) 2966 { 2967 unsigned int filter = SHOW_MEM_FILTER_NODES; 2968 2969 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) || 2970 debug_guardpage_minorder() > 0) 2971 return; 2972 2973 /* 2974 * This documents exceptions given to allocations in certain 2975 * contexts that are allowed to allocate outside current's set 2976 * of allowed nodes. 2977 */ 2978 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2979 if (test_thread_flag(TIF_MEMDIE) || 2980 (current->flags & (PF_MEMALLOC | PF_EXITING))) 2981 filter &= ~SHOW_MEM_FILTER_NODES; 2982 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 2983 filter &= ~SHOW_MEM_FILTER_NODES; 2984 2985 if (fmt) { 2986 struct va_format vaf; 2987 va_list args; 2988 2989 va_start(args, fmt); 2990 2991 vaf.fmt = fmt; 2992 vaf.va = &args; 2993 2994 pr_warn("%pV", &vaf); 2995 2996 va_end(args); 2997 } 2998 2999 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n", 3000 current->comm, order, gfp_mask, &gfp_mask); 3001 dump_stack(); 3002 if (!should_suppress_show_mem()) 3003 show_mem(filter); 3004 } 3005 3006 static inline struct page * 3007 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3008 const struct alloc_context *ac, unsigned long *did_some_progress) 3009 { 3010 struct oom_control oc = { 3011 .zonelist = ac->zonelist, 3012 .nodemask = ac->nodemask, 3013 .memcg = NULL, 3014 .gfp_mask = gfp_mask, 3015 .order = order, 3016 }; 3017 struct page *page; 3018 3019 *did_some_progress = 0; 3020 3021 /* 3022 * Acquire the oom lock. If that fails, somebody else is 3023 * making progress for us. 3024 */ 3025 if (!mutex_trylock(&oom_lock)) { 3026 *did_some_progress = 1; 3027 schedule_timeout_uninterruptible(1); 3028 return NULL; 3029 } 3030 3031 /* 3032 * Go through the zonelist yet one more time, keep very high watermark 3033 * here, this is only to catch a parallel oom killing, we must fail if 3034 * we're still under heavy pressure. 3035 */ 3036 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order, 3037 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3038 if (page) 3039 goto out; 3040 3041 if (!(gfp_mask & __GFP_NOFAIL)) { 3042 /* Coredumps can quickly deplete all memory reserves */ 3043 if (current->flags & PF_DUMPCORE) 3044 goto out; 3045 /* The OOM killer will not help higher order allocs */ 3046 if (order > PAGE_ALLOC_COSTLY_ORDER) 3047 goto out; 3048 /* The OOM killer does not needlessly kill tasks for lowmem */ 3049 if (ac->high_zoneidx < ZONE_NORMAL) 3050 goto out; 3051 if (pm_suspended_storage()) 3052 goto out; 3053 /* 3054 * XXX: GFP_NOFS allocations should rather fail than rely on 3055 * other request to make a forward progress. 3056 * We are in an unfortunate situation where out_of_memory cannot 3057 * do much for this context but let's try it to at least get 3058 * access to memory reserved if the current task is killed (see 3059 * out_of_memory). Once filesystems are ready to handle allocation 3060 * failures more gracefully we should just bail out here. 3061 */ 3062 3063 /* The OOM killer may not free memory on a specific node */ 3064 if (gfp_mask & __GFP_THISNODE) 3065 goto out; 3066 } 3067 /* Exhausted what can be done so it's blamo time */ 3068 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 3069 *did_some_progress = 1; 3070 3071 if (gfp_mask & __GFP_NOFAIL) { 3072 page = get_page_from_freelist(gfp_mask, order, 3073 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac); 3074 /* 3075 * fallback to ignore cpuset restriction if our nodes 3076 * are depleted 3077 */ 3078 if (!page) 3079 page = get_page_from_freelist(gfp_mask, order, 3080 ALLOC_NO_WATERMARKS, ac); 3081 } 3082 } 3083 out: 3084 mutex_unlock(&oom_lock); 3085 return page; 3086 } 3087 3088 /* 3089 * Maximum number of compaction retries wit a progress before OOM 3090 * killer is consider as the only way to move forward. 3091 */ 3092 #define MAX_COMPACT_RETRIES 16 3093 3094 #ifdef CONFIG_COMPACTION 3095 /* Try memory compaction for high-order allocations before reclaim */ 3096 static struct page * 3097 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3098 unsigned int alloc_flags, const struct alloc_context *ac, 3099 enum compact_priority prio, enum compact_result *compact_result) 3100 { 3101 struct page *page; 3102 3103 if (!order) 3104 return NULL; 3105 3106 current->flags |= PF_MEMALLOC; 3107 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3108 prio); 3109 current->flags &= ~PF_MEMALLOC; 3110 3111 if (*compact_result <= COMPACT_INACTIVE) 3112 return NULL; 3113 3114 /* 3115 * At least in one zone compaction wasn't deferred or skipped, so let's 3116 * count a compaction stall 3117 */ 3118 count_vm_event(COMPACTSTALL); 3119 3120 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3121 3122 if (page) { 3123 struct zone *zone = page_zone(page); 3124 3125 zone->compact_blockskip_flush = false; 3126 compaction_defer_reset(zone, order, true); 3127 count_vm_event(COMPACTSUCCESS); 3128 return page; 3129 } 3130 3131 /* 3132 * It's bad if compaction run occurs and fails. The most likely reason 3133 * is that pages exist, but not enough to satisfy watermarks. 3134 */ 3135 count_vm_event(COMPACTFAIL); 3136 3137 cond_resched(); 3138 3139 return NULL; 3140 } 3141 3142 static inline bool 3143 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3144 enum compact_result compact_result, 3145 enum compact_priority *compact_priority, 3146 int compaction_retries) 3147 { 3148 int max_retries = MAX_COMPACT_RETRIES; 3149 3150 if (!order) 3151 return false; 3152 3153 /* 3154 * compaction considers all the zone as desperately out of memory 3155 * so it doesn't really make much sense to retry except when the 3156 * failure could be caused by insufficient priority 3157 */ 3158 if (compaction_failed(compact_result)) { 3159 if (*compact_priority > MIN_COMPACT_PRIORITY) { 3160 (*compact_priority)--; 3161 return true; 3162 } 3163 return false; 3164 } 3165 3166 /* 3167 * make sure the compaction wasn't deferred or didn't bail out early 3168 * due to locks contention before we declare that we should give up. 3169 * But do not retry if the given zonelist is not suitable for 3170 * compaction. 3171 */ 3172 if (compaction_withdrawn(compact_result)) 3173 return compaction_zonelist_suitable(ac, order, alloc_flags); 3174 3175 /* 3176 * !costly requests are much more important than __GFP_REPEAT 3177 * costly ones because they are de facto nofail and invoke OOM 3178 * killer to move on while costly can fail and users are ready 3179 * to cope with that. 1/4 retries is rather arbitrary but we 3180 * would need much more detailed feedback from compaction to 3181 * make a better decision. 3182 */ 3183 if (order > PAGE_ALLOC_COSTLY_ORDER) 3184 max_retries /= 4; 3185 if (compaction_retries <= max_retries) 3186 return true; 3187 3188 return false; 3189 } 3190 #else 3191 static inline struct page * 3192 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3193 unsigned int alloc_flags, const struct alloc_context *ac, 3194 enum compact_priority prio, enum compact_result *compact_result) 3195 { 3196 *compact_result = COMPACT_SKIPPED; 3197 return NULL; 3198 } 3199 3200 static inline bool 3201 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 3202 enum compact_result compact_result, 3203 enum compact_priority *compact_priority, 3204 int compaction_retries) 3205 { 3206 struct zone *zone; 3207 struct zoneref *z; 3208 3209 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 3210 return false; 3211 3212 /* 3213 * There are setups with compaction disabled which would prefer to loop 3214 * inside the allocator rather than hit the oom killer prematurely. 3215 * Let's give them a good hope and keep retrying while the order-0 3216 * watermarks are OK. 3217 */ 3218 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3219 ac->nodemask) { 3220 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 3221 ac_classzone_idx(ac), alloc_flags)) 3222 return true; 3223 } 3224 return false; 3225 } 3226 #endif /* CONFIG_COMPACTION */ 3227 3228 /* Perform direct synchronous page reclaim */ 3229 static int 3230 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 3231 const struct alloc_context *ac) 3232 { 3233 struct reclaim_state reclaim_state; 3234 int progress; 3235 3236 cond_resched(); 3237 3238 /* We now go into synchronous reclaim */ 3239 cpuset_memory_pressure_bump(); 3240 current->flags |= PF_MEMALLOC; 3241 lockdep_set_current_reclaim_state(gfp_mask); 3242 reclaim_state.reclaimed_slab = 0; 3243 current->reclaim_state = &reclaim_state; 3244 3245 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 3246 ac->nodemask); 3247 3248 current->reclaim_state = NULL; 3249 lockdep_clear_current_reclaim_state(); 3250 current->flags &= ~PF_MEMALLOC; 3251 3252 cond_resched(); 3253 3254 return progress; 3255 } 3256 3257 /* The really slow allocator path where we enter direct reclaim */ 3258 static inline struct page * 3259 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 3260 unsigned int alloc_flags, const struct alloc_context *ac, 3261 unsigned long *did_some_progress) 3262 { 3263 struct page *page = NULL; 3264 bool drained = false; 3265 3266 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 3267 if (unlikely(!(*did_some_progress))) 3268 return NULL; 3269 3270 retry: 3271 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3272 3273 /* 3274 * If an allocation failed after direct reclaim, it could be because 3275 * pages are pinned on the per-cpu lists or in high alloc reserves. 3276 * Shrink them them and try again 3277 */ 3278 if (!page && !drained) { 3279 unreserve_highatomic_pageblock(ac); 3280 drain_all_pages(NULL); 3281 drained = true; 3282 goto retry; 3283 } 3284 3285 return page; 3286 } 3287 3288 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac) 3289 { 3290 struct zoneref *z; 3291 struct zone *zone; 3292 pg_data_t *last_pgdat = NULL; 3293 3294 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 3295 ac->high_zoneidx, ac->nodemask) { 3296 if (last_pgdat != zone->zone_pgdat) 3297 wakeup_kswapd(zone, order, ac->high_zoneidx); 3298 last_pgdat = zone->zone_pgdat; 3299 } 3300 } 3301 3302 static inline unsigned int 3303 gfp_to_alloc_flags(gfp_t gfp_mask) 3304 { 3305 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 3306 3307 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 3308 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 3309 3310 /* 3311 * The caller may dip into page reserves a bit more if the caller 3312 * cannot run direct reclaim, or if the caller has realtime scheduling 3313 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 3314 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 3315 */ 3316 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 3317 3318 if (gfp_mask & __GFP_ATOMIC) { 3319 /* 3320 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 3321 * if it can't schedule. 3322 */ 3323 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3324 alloc_flags |= ALLOC_HARDER; 3325 /* 3326 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 3327 * comment for __cpuset_node_allowed(). 3328 */ 3329 alloc_flags &= ~ALLOC_CPUSET; 3330 } else if (unlikely(rt_task(current)) && !in_interrupt()) 3331 alloc_flags |= ALLOC_HARDER; 3332 3333 #ifdef CONFIG_CMA 3334 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3335 alloc_flags |= ALLOC_CMA; 3336 #endif 3337 return alloc_flags; 3338 } 3339 3340 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 3341 { 3342 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 3343 return false; 3344 3345 if (gfp_mask & __GFP_MEMALLOC) 3346 return true; 3347 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 3348 return true; 3349 if (!in_interrupt() && 3350 ((current->flags & PF_MEMALLOC) || 3351 unlikely(test_thread_flag(TIF_MEMDIE)))) 3352 return true; 3353 3354 return false; 3355 } 3356 3357 /* 3358 * Maximum number of reclaim retries without any progress before OOM killer 3359 * is consider as the only way to move forward. 3360 */ 3361 #define MAX_RECLAIM_RETRIES 16 3362 3363 /* 3364 * Checks whether it makes sense to retry the reclaim to make a forward progress 3365 * for the given allocation request. 3366 * The reclaim feedback represented by did_some_progress (any progress during 3367 * the last reclaim round) and no_progress_loops (number of reclaim rounds without 3368 * any progress in a row) is considered as well as the reclaimable pages on the 3369 * applicable zone list (with a backoff mechanism which is a function of 3370 * no_progress_loops). 3371 * 3372 * Returns true if a retry is viable or false to enter the oom path. 3373 */ 3374 static inline bool 3375 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 3376 struct alloc_context *ac, int alloc_flags, 3377 bool did_some_progress, int no_progress_loops) 3378 { 3379 struct zone *zone; 3380 struct zoneref *z; 3381 3382 /* 3383 * Make sure we converge to OOM if we cannot make any progress 3384 * several times in the row. 3385 */ 3386 if (no_progress_loops > MAX_RECLAIM_RETRIES) 3387 return false; 3388 3389 /* 3390 * Keep reclaiming pages while there is a chance this will lead 3391 * somewhere. If none of the target zones can satisfy our allocation 3392 * request even if all reclaimable pages are considered then we are 3393 * screwed and have to go OOM. 3394 */ 3395 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3396 ac->nodemask) { 3397 unsigned long available; 3398 unsigned long reclaimable; 3399 3400 available = reclaimable = zone_reclaimable_pages(zone); 3401 available -= DIV_ROUND_UP(no_progress_loops * available, 3402 MAX_RECLAIM_RETRIES); 3403 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 3404 3405 /* 3406 * Would the allocation succeed if we reclaimed the whole 3407 * available? 3408 */ 3409 if (__zone_watermark_ok(zone, order, min_wmark_pages(zone), 3410 ac_classzone_idx(ac), alloc_flags, available)) { 3411 /* 3412 * If we didn't make any progress and have a lot of 3413 * dirty + writeback pages then we should wait for 3414 * an IO to complete to slow down the reclaim and 3415 * prevent from pre mature OOM 3416 */ 3417 if (!did_some_progress) { 3418 unsigned long write_pending; 3419 3420 write_pending = zone_page_state_snapshot(zone, 3421 NR_ZONE_WRITE_PENDING); 3422 3423 if (2 * write_pending > reclaimable) { 3424 congestion_wait(BLK_RW_ASYNC, HZ/10); 3425 return true; 3426 } 3427 } 3428 3429 /* 3430 * Memory allocation/reclaim might be called from a WQ 3431 * context and the current implementation of the WQ 3432 * concurrency control doesn't recognize that 3433 * a particular WQ is congested if the worker thread is 3434 * looping without ever sleeping. Therefore we have to 3435 * do a short sleep here rather than calling 3436 * cond_resched(). 3437 */ 3438 if (current->flags & PF_WQ_WORKER) 3439 schedule_timeout_uninterruptible(1); 3440 else 3441 cond_resched(); 3442 3443 return true; 3444 } 3445 } 3446 3447 return false; 3448 } 3449 3450 static inline struct page * 3451 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 3452 struct alloc_context *ac) 3453 { 3454 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 3455 struct page *page = NULL; 3456 unsigned int alloc_flags; 3457 unsigned long did_some_progress; 3458 enum compact_priority compact_priority = DEF_COMPACT_PRIORITY; 3459 enum compact_result compact_result; 3460 int compaction_retries = 0; 3461 int no_progress_loops = 0; 3462 3463 /* 3464 * In the slowpath, we sanity check order to avoid ever trying to 3465 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 3466 * be using allocators in order of preference for an area that is 3467 * too large. 3468 */ 3469 if (order >= MAX_ORDER) { 3470 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 3471 return NULL; 3472 } 3473 3474 /* 3475 * We also sanity check to catch abuse of atomic reserves being used by 3476 * callers that are not in atomic context. 3477 */ 3478 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 3479 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 3480 gfp_mask &= ~__GFP_ATOMIC; 3481 3482 /* 3483 * The fast path uses conservative alloc_flags to succeed only until 3484 * kswapd needs to be woken up, and to avoid the cost of setting up 3485 * alloc_flags precisely. So we do that now. 3486 */ 3487 alloc_flags = gfp_to_alloc_flags(gfp_mask); 3488 3489 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 3490 wake_all_kswapds(order, ac); 3491 3492 /* 3493 * The adjusted alloc_flags might result in immediate success, so try 3494 * that first 3495 */ 3496 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3497 if (page) 3498 goto got_pg; 3499 3500 /* 3501 * For costly allocations, try direct compaction first, as it's likely 3502 * that we have enough base pages and don't need to reclaim. Don't try 3503 * that for allocations that are allowed to ignore watermarks, as the 3504 * ALLOC_NO_WATERMARKS attempt didn't yet happen. 3505 */ 3506 if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER && 3507 !gfp_pfmemalloc_allowed(gfp_mask)) { 3508 page = __alloc_pages_direct_compact(gfp_mask, order, 3509 alloc_flags, ac, 3510 INIT_COMPACT_PRIORITY, 3511 &compact_result); 3512 if (page) 3513 goto got_pg; 3514 3515 /* 3516 * Checks for costly allocations with __GFP_NORETRY, which 3517 * includes THP page fault allocations 3518 */ 3519 if (gfp_mask & __GFP_NORETRY) { 3520 /* 3521 * If compaction is deferred for high-order allocations, 3522 * it is because sync compaction recently failed. If 3523 * this is the case and the caller requested a THP 3524 * allocation, we do not want to heavily disrupt the 3525 * system, so we fail the allocation instead of entering 3526 * direct reclaim. 3527 */ 3528 if (compact_result == COMPACT_DEFERRED) 3529 goto nopage; 3530 3531 /* 3532 * Looks like reclaim/compaction is worth trying, but 3533 * sync compaction could be very expensive, so keep 3534 * using async compaction. 3535 */ 3536 compact_priority = INIT_COMPACT_PRIORITY; 3537 } 3538 } 3539 3540 retry: 3541 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 3542 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 3543 wake_all_kswapds(order, ac); 3544 3545 if (gfp_pfmemalloc_allowed(gfp_mask)) 3546 alloc_flags = ALLOC_NO_WATERMARKS; 3547 3548 /* 3549 * Reset the zonelist iterators if memory policies can be ignored. 3550 * These allocations are high priority and system rather than user 3551 * orientated. 3552 */ 3553 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) { 3554 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask); 3555 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 3556 ac->high_zoneidx, ac->nodemask); 3557 } 3558 3559 /* Attempt with potentially adjusted zonelist and alloc_flags */ 3560 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3561 if (page) 3562 goto got_pg; 3563 3564 /* Caller is not willing to reclaim, we can't balance anything */ 3565 if (!can_direct_reclaim) { 3566 /* 3567 * All existing users of the __GFP_NOFAIL are blockable, so warn 3568 * of any new users that actually allow this type of allocation 3569 * to fail. 3570 */ 3571 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL); 3572 goto nopage; 3573 } 3574 3575 /* Avoid recursion of direct reclaim */ 3576 if (current->flags & PF_MEMALLOC) { 3577 /* 3578 * __GFP_NOFAIL request from this context is rather bizarre 3579 * because we cannot reclaim anything and only can loop waiting 3580 * for somebody to do a work for us. 3581 */ 3582 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 3583 cond_resched(); 3584 goto retry; 3585 } 3586 goto nopage; 3587 } 3588 3589 /* Avoid allocations with no watermarks from looping endlessly */ 3590 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) 3591 goto nopage; 3592 3593 3594 /* Try direct reclaim and then allocating */ 3595 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 3596 &did_some_progress); 3597 if (page) 3598 goto got_pg; 3599 3600 /* Try direct compaction and then allocating */ 3601 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 3602 compact_priority, &compact_result); 3603 if (page) 3604 goto got_pg; 3605 3606 if (order && compaction_made_progress(compact_result)) 3607 compaction_retries++; 3608 3609 /* Do not loop if specifically requested */ 3610 if (gfp_mask & __GFP_NORETRY) 3611 goto nopage; 3612 3613 /* 3614 * Do not retry costly high order allocations unless they are 3615 * __GFP_REPEAT 3616 */ 3617 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT)) 3618 goto nopage; 3619 3620 /* 3621 * Costly allocations might have made a progress but this doesn't mean 3622 * their order will become available due to high fragmentation so 3623 * always increment the no progress counter for them 3624 */ 3625 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 3626 no_progress_loops = 0; 3627 else 3628 no_progress_loops++; 3629 3630 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 3631 did_some_progress > 0, no_progress_loops)) 3632 goto retry; 3633 3634 /* 3635 * It doesn't make any sense to retry for the compaction if the order-0 3636 * reclaim is not able to make any progress because the current 3637 * implementation of the compaction depends on the sufficient amount 3638 * of free memory (see __compaction_suitable) 3639 */ 3640 if (did_some_progress > 0 && 3641 should_compact_retry(ac, order, alloc_flags, 3642 compact_result, &compact_priority, 3643 compaction_retries)) 3644 goto retry; 3645 3646 /* Reclaim has failed us, start killing things */ 3647 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 3648 if (page) 3649 goto got_pg; 3650 3651 /* Retry as long as the OOM killer is making progress */ 3652 if (did_some_progress) { 3653 no_progress_loops = 0; 3654 goto retry; 3655 } 3656 3657 nopage: 3658 warn_alloc_failed(gfp_mask, order, NULL); 3659 got_pg: 3660 return page; 3661 } 3662 3663 /* 3664 * This is the 'heart' of the zoned buddy allocator. 3665 */ 3666 struct page * 3667 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 3668 struct zonelist *zonelist, nodemask_t *nodemask) 3669 { 3670 struct page *page; 3671 unsigned int cpuset_mems_cookie; 3672 unsigned int alloc_flags = ALLOC_WMARK_LOW; 3673 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */ 3674 struct alloc_context ac = { 3675 .high_zoneidx = gfp_zone(gfp_mask), 3676 .zonelist = zonelist, 3677 .nodemask = nodemask, 3678 .migratetype = gfpflags_to_migratetype(gfp_mask), 3679 }; 3680 3681 if (cpusets_enabled()) { 3682 alloc_mask |= __GFP_HARDWALL; 3683 alloc_flags |= ALLOC_CPUSET; 3684 if (!ac.nodemask) 3685 ac.nodemask = &cpuset_current_mems_allowed; 3686 } 3687 3688 gfp_mask &= gfp_allowed_mask; 3689 3690 lockdep_trace_alloc(gfp_mask); 3691 3692 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 3693 3694 if (should_fail_alloc_page(gfp_mask, order)) 3695 return NULL; 3696 3697 /* 3698 * Check the zones suitable for the gfp_mask contain at least one 3699 * valid zone. It's possible to have an empty zonelist as a result 3700 * of __GFP_THISNODE and a memoryless node 3701 */ 3702 if (unlikely(!zonelist->_zonerefs->zone)) 3703 return NULL; 3704 3705 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE) 3706 alloc_flags |= ALLOC_CMA; 3707 3708 retry_cpuset: 3709 cpuset_mems_cookie = read_mems_allowed_begin(); 3710 3711 /* Dirty zone balancing only done in the fast path */ 3712 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE); 3713 3714 /* 3715 * The preferred zone is used for statistics but crucially it is 3716 * also used as the starting point for the zonelist iterator. It 3717 * may get reset for allocations that ignore memory policies. 3718 */ 3719 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist, 3720 ac.high_zoneidx, ac.nodemask); 3721 if (!ac.preferred_zoneref) { 3722 page = NULL; 3723 goto no_zone; 3724 } 3725 3726 /* First allocation attempt */ 3727 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); 3728 if (likely(page)) 3729 goto out; 3730 3731 /* 3732 * Runtime PM, block IO and its error handling path can deadlock 3733 * because I/O on the device might not complete. 3734 */ 3735 alloc_mask = memalloc_noio_flags(gfp_mask); 3736 ac.spread_dirty_pages = false; 3737 3738 /* 3739 * Restore the original nodemask if it was potentially replaced with 3740 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 3741 */ 3742 if (cpusets_enabled()) 3743 ac.nodemask = nodemask; 3744 page = __alloc_pages_slowpath(alloc_mask, order, &ac); 3745 3746 no_zone: 3747 /* 3748 * When updating a task's mems_allowed, it is possible to race with 3749 * parallel threads in such a way that an allocation can fail while 3750 * the mask is being updated. If a page allocation is about to fail, 3751 * check if the cpuset changed during allocation and if so, retry. 3752 */ 3753 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) { 3754 alloc_mask = gfp_mask; 3755 goto retry_cpuset; 3756 } 3757 3758 out: 3759 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page) { 3760 if (unlikely(memcg_kmem_charge(page, gfp_mask, order))) { 3761 __free_pages(page, order); 3762 page = NULL; 3763 } else 3764 __SetPageKmemcg(page); 3765 } 3766 3767 if (kmemcheck_enabled && page) 3768 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 3769 3770 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); 3771 3772 return page; 3773 } 3774 EXPORT_SYMBOL(__alloc_pages_nodemask); 3775 3776 /* 3777 * Common helper functions. 3778 */ 3779 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 3780 { 3781 struct page *page; 3782 3783 /* 3784 * __get_free_pages() returns a 32-bit address, which cannot represent 3785 * a highmem page 3786 */ 3787 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 3788 3789 page = alloc_pages(gfp_mask, order); 3790 if (!page) 3791 return 0; 3792 return (unsigned long) page_address(page); 3793 } 3794 EXPORT_SYMBOL(__get_free_pages); 3795 3796 unsigned long get_zeroed_page(gfp_t gfp_mask) 3797 { 3798 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 3799 } 3800 EXPORT_SYMBOL(get_zeroed_page); 3801 3802 void __free_pages(struct page *page, unsigned int order) 3803 { 3804 if (put_page_testzero(page)) { 3805 if (order == 0) 3806 free_hot_cold_page(page, false); 3807 else 3808 __free_pages_ok(page, order); 3809 } 3810 } 3811 3812 EXPORT_SYMBOL(__free_pages); 3813 3814 void free_pages(unsigned long addr, unsigned int order) 3815 { 3816 if (addr != 0) { 3817 VM_BUG_ON(!virt_addr_valid((void *)addr)); 3818 __free_pages(virt_to_page((void *)addr), order); 3819 } 3820 } 3821 3822 EXPORT_SYMBOL(free_pages); 3823 3824 /* 3825 * Page Fragment: 3826 * An arbitrary-length arbitrary-offset area of memory which resides 3827 * within a 0 or higher order page. Multiple fragments within that page 3828 * are individually refcounted, in the page's reference counter. 3829 * 3830 * The page_frag functions below provide a simple allocation framework for 3831 * page fragments. This is used by the network stack and network device 3832 * drivers to provide a backing region of memory for use as either an 3833 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 3834 */ 3835 static struct page *__page_frag_refill(struct page_frag_cache *nc, 3836 gfp_t gfp_mask) 3837 { 3838 struct page *page = NULL; 3839 gfp_t gfp = gfp_mask; 3840 3841 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 3842 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 3843 __GFP_NOMEMALLOC; 3844 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 3845 PAGE_FRAG_CACHE_MAX_ORDER); 3846 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 3847 #endif 3848 if (unlikely(!page)) 3849 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 3850 3851 nc->va = page ? page_address(page) : NULL; 3852 3853 return page; 3854 } 3855 3856 void *__alloc_page_frag(struct page_frag_cache *nc, 3857 unsigned int fragsz, gfp_t gfp_mask) 3858 { 3859 unsigned int size = PAGE_SIZE; 3860 struct page *page; 3861 int offset; 3862 3863 if (unlikely(!nc->va)) { 3864 refill: 3865 page = __page_frag_refill(nc, gfp_mask); 3866 if (!page) 3867 return NULL; 3868 3869 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 3870 /* if size can vary use size else just use PAGE_SIZE */ 3871 size = nc->size; 3872 #endif 3873 /* Even if we own the page, we do not use atomic_set(). 3874 * This would break get_page_unless_zero() users. 3875 */ 3876 page_ref_add(page, size - 1); 3877 3878 /* reset page count bias and offset to start of new frag */ 3879 nc->pfmemalloc = page_is_pfmemalloc(page); 3880 nc->pagecnt_bias = size; 3881 nc->offset = size; 3882 } 3883 3884 offset = nc->offset - fragsz; 3885 if (unlikely(offset < 0)) { 3886 page = virt_to_page(nc->va); 3887 3888 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 3889 goto refill; 3890 3891 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 3892 /* if size can vary use size else just use PAGE_SIZE */ 3893 size = nc->size; 3894 #endif 3895 /* OK, page count is 0, we can safely set it */ 3896 set_page_count(page, size); 3897 3898 /* reset page count bias and offset to start of new frag */ 3899 nc->pagecnt_bias = size; 3900 offset = size - fragsz; 3901 } 3902 3903 nc->pagecnt_bias--; 3904 nc->offset = offset; 3905 3906 return nc->va + offset; 3907 } 3908 EXPORT_SYMBOL(__alloc_page_frag); 3909 3910 /* 3911 * Frees a page fragment allocated out of either a compound or order 0 page. 3912 */ 3913 void __free_page_frag(void *addr) 3914 { 3915 struct page *page = virt_to_head_page(addr); 3916 3917 if (unlikely(put_page_testzero(page))) 3918 __free_pages_ok(page, compound_order(page)); 3919 } 3920 EXPORT_SYMBOL(__free_page_frag); 3921 3922 static void *make_alloc_exact(unsigned long addr, unsigned int order, 3923 size_t size) 3924 { 3925 if (addr) { 3926 unsigned long alloc_end = addr + (PAGE_SIZE << order); 3927 unsigned long used = addr + PAGE_ALIGN(size); 3928 3929 split_page(virt_to_page((void *)addr), order); 3930 while (used < alloc_end) { 3931 free_page(used); 3932 used += PAGE_SIZE; 3933 } 3934 } 3935 return (void *)addr; 3936 } 3937 3938 /** 3939 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 3940 * @size: the number of bytes to allocate 3941 * @gfp_mask: GFP flags for the allocation 3942 * 3943 * This function is similar to alloc_pages(), except that it allocates the 3944 * minimum number of pages to satisfy the request. alloc_pages() can only 3945 * allocate memory in power-of-two pages. 3946 * 3947 * This function is also limited by MAX_ORDER. 3948 * 3949 * Memory allocated by this function must be released by free_pages_exact(). 3950 */ 3951 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 3952 { 3953 unsigned int order = get_order(size); 3954 unsigned long addr; 3955 3956 addr = __get_free_pages(gfp_mask, order); 3957 return make_alloc_exact(addr, order, size); 3958 } 3959 EXPORT_SYMBOL(alloc_pages_exact); 3960 3961 /** 3962 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 3963 * pages on a node. 3964 * @nid: the preferred node ID where memory should be allocated 3965 * @size: the number of bytes to allocate 3966 * @gfp_mask: GFP flags for the allocation 3967 * 3968 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 3969 * back. 3970 */ 3971 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 3972 { 3973 unsigned int order = get_order(size); 3974 struct page *p = alloc_pages_node(nid, gfp_mask, order); 3975 if (!p) 3976 return NULL; 3977 return make_alloc_exact((unsigned long)page_address(p), order, size); 3978 } 3979 3980 /** 3981 * free_pages_exact - release memory allocated via alloc_pages_exact() 3982 * @virt: the value returned by alloc_pages_exact. 3983 * @size: size of allocation, same value as passed to alloc_pages_exact(). 3984 * 3985 * Release the memory allocated by a previous call to alloc_pages_exact. 3986 */ 3987 void free_pages_exact(void *virt, size_t size) 3988 { 3989 unsigned long addr = (unsigned long)virt; 3990 unsigned long end = addr + PAGE_ALIGN(size); 3991 3992 while (addr < end) { 3993 free_page(addr); 3994 addr += PAGE_SIZE; 3995 } 3996 } 3997 EXPORT_SYMBOL(free_pages_exact); 3998 3999 /** 4000 * nr_free_zone_pages - count number of pages beyond high watermark 4001 * @offset: The zone index of the highest zone 4002 * 4003 * nr_free_zone_pages() counts the number of counts pages which are beyond the 4004 * high watermark within all zones at or below a given zone index. For each 4005 * zone, the number of pages is calculated as: 4006 * managed_pages - high_pages 4007 */ 4008 static unsigned long nr_free_zone_pages(int offset) 4009 { 4010 struct zoneref *z; 4011 struct zone *zone; 4012 4013 /* Just pick one node, since fallback list is circular */ 4014 unsigned long sum = 0; 4015 4016 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 4017 4018 for_each_zone_zonelist(zone, z, zonelist, offset) { 4019 unsigned long size = zone->managed_pages; 4020 unsigned long high = high_wmark_pages(zone); 4021 if (size > high) 4022 sum += size - high; 4023 } 4024 4025 return sum; 4026 } 4027 4028 /** 4029 * nr_free_buffer_pages - count number of pages beyond high watermark 4030 * 4031 * nr_free_buffer_pages() counts the number of pages which are beyond the high 4032 * watermark within ZONE_DMA and ZONE_NORMAL. 4033 */ 4034 unsigned long nr_free_buffer_pages(void) 4035 { 4036 return nr_free_zone_pages(gfp_zone(GFP_USER)); 4037 } 4038 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 4039 4040 /** 4041 * nr_free_pagecache_pages - count number of pages beyond high watermark 4042 * 4043 * nr_free_pagecache_pages() counts the number of pages which are beyond the 4044 * high watermark within all zones. 4045 */ 4046 unsigned long nr_free_pagecache_pages(void) 4047 { 4048 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 4049 } 4050 4051 static inline void show_node(struct zone *zone) 4052 { 4053 if (IS_ENABLED(CONFIG_NUMA)) 4054 printk("Node %d ", zone_to_nid(zone)); 4055 } 4056 4057 long si_mem_available(void) 4058 { 4059 long available; 4060 unsigned long pagecache; 4061 unsigned long wmark_low = 0; 4062 unsigned long pages[NR_LRU_LISTS]; 4063 struct zone *zone; 4064 int lru; 4065 4066 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 4067 pages[lru] = global_page_state(NR_LRU_BASE + lru); 4068 4069 for_each_zone(zone) 4070 wmark_low += zone->watermark[WMARK_LOW]; 4071 4072 /* 4073 * Estimate the amount of memory available for userspace allocations, 4074 * without causing swapping. 4075 */ 4076 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages; 4077 4078 /* 4079 * Not all the page cache can be freed, otherwise the system will 4080 * start swapping. Assume at least half of the page cache, or the 4081 * low watermark worth of cache, needs to stay. 4082 */ 4083 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 4084 pagecache -= min(pagecache / 2, wmark_low); 4085 available += pagecache; 4086 4087 /* 4088 * Part of the reclaimable slab consists of items that are in use, 4089 * and cannot be freed. Cap this estimate at the low watermark. 4090 */ 4091 available += global_page_state(NR_SLAB_RECLAIMABLE) - 4092 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low); 4093 4094 if (available < 0) 4095 available = 0; 4096 return available; 4097 } 4098 EXPORT_SYMBOL_GPL(si_mem_available); 4099 4100 void si_meminfo(struct sysinfo *val) 4101 { 4102 val->totalram = totalram_pages; 4103 val->sharedram = global_node_page_state(NR_SHMEM); 4104 val->freeram = global_page_state(NR_FREE_PAGES); 4105 val->bufferram = nr_blockdev_pages(); 4106 val->totalhigh = totalhigh_pages; 4107 val->freehigh = nr_free_highpages(); 4108 val->mem_unit = PAGE_SIZE; 4109 } 4110 4111 EXPORT_SYMBOL(si_meminfo); 4112 4113 #ifdef CONFIG_NUMA 4114 void si_meminfo_node(struct sysinfo *val, int nid) 4115 { 4116 int zone_type; /* needs to be signed */ 4117 unsigned long managed_pages = 0; 4118 unsigned long managed_highpages = 0; 4119 unsigned long free_highpages = 0; 4120 pg_data_t *pgdat = NODE_DATA(nid); 4121 4122 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 4123 managed_pages += pgdat->node_zones[zone_type].managed_pages; 4124 val->totalram = managed_pages; 4125 val->sharedram = node_page_state(pgdat, NR_SHMEM); 4126 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 4127 #ifdef CONFIG_HIGHMEM 4128 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 4129 struct zone *zone = &pgdat->node_zones[zone_type]; 4130 4131 if (is_highmem(zone)) { 4132 managed_highpages += zone->managed_pages; 4133 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 4134 } 4135 } 4136 val->totalhigh = managed_highpages; 4137 val->freehigh = free_highpages; 4138 #else 4139 val->totalhigh = managed_highpages; 4140 val->freehigh = free_highpages; 4141 #endif 4142 val->mem_unit = PAGE_SIZE; 4143 } 4144 #endif 4145 4146 /* 4147 * Determine whether the node should be displayed or not, depending on whether 4148 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 4149 */ 4150 bool skip_free_areas_node(unsigned int flags, int nid) 4151 { 4152 bool ret = false; 4153 unsigned int cpuset_mems_cookie; 4154 4155 if (!(flags & SHOW_MEM_FILTER_NODES)) 4156 goto out; 4157 4158 do { 4159 cpuset_mems_cookie = read_mems_allowed_begin(); 4160 ret = !node_isset(nid, cpuset_current_mems_allowed); 4161 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 4162 out: 4163 return ret; 4164 } 4165 4166 #define K(x) ((x) << (PAGE_SHIFT-10)) 4167 4168 static void show_migration_types(unsigned char type) 4169 { 4170 static const char types[MIGRATE_TYPES] = { 4171 [MIGRATE_UNMOVABLE] = 'U', 4172 [MIGRATE_MOVABLE] = 'M', 4173 [MIGRATE_RECLAIMABLE] = 'E', 4174 [MIGRATE_HIGHATOMIC] = 'H', 4175 #ifdef CONFIG_CMA 4176 [MIGRATE_CMA] = 'C', 4177 #endif 4178 #ifdef CONFIG_MEMORY_ISOLATION 4179 [MIGRATE_ISOLATE] = 'I', 4180 #endif 4181 }; 4182 char tmp[MIGRATE_TYPES + 1]; 4183 char *p = tmp; 4184 int i; 4185 4186 for (i = 0; i < MIGRATE_TYPES; i++) { 4187 if (type & (1 << i)) 4188 *p++ = types[i]; 4189 } 4190 4191 *p = '\0'; 4192 printk("(%s) ", tmp); 4193 } 4194 4195 /* 4196 * Show free area list (used inside shift_scroll-lock stuff) 4197 * We also calculate the percentage fragmentation. We do this by counting the 4198 * memory on each free list with the exception of the first item on the list. 4199 * 4200 * Bits in @filter: 4201 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 4202 * cpuset. 4203 */ 4204 void show_free_areas(unsigned int filter) 4205 { 4206 unsigned long free_pcp = 0; 4207 int cpu; 4208 struct zone *zone; 4209 pg_data_t *pgdat; 4210 4211 for_each_populated_zone(zone) { 4212 if (skip_free_areas_node(filter, zone_to_nid(zone))) 4213 continue; 4214 4215 for_each_online_cpu(cpu) 4216 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 4217 } 4218 4219 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 4220 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 4221 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n" 4222 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 4223 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 4224 " free:%lu free_pcp:%lu free_cma:%lu\n", 4225 global_node_page_state(NR_ACTIVE_ANON), 4226 global_node_page_state(NR_INACTIVE_ANON), 4227 global_node_page_state(NR_ISOLATED_ANON), 4228 global_node_page_state(NR_ACTIVE_FILE), 4229 global_node_page_state(NR_INACTIVE_FILE), 4230 global_node_page_state(NR_ISOLATED_FILE), 4231 global_node_page_state(NR_UNEVICTABLE), 4232 global_node_page_state(NR_FILE_DIRTY), 4233 global_node_page_state(NR_WRITEBACK), 4234 global_node_page_state(NR_UNSTABLE_NFS), 4235 global_page_state(NR_SLAB_RECLAIMABLE), 4236 global_page_state(NR_SLAB_UNRECLAIMABLE), 4237 global_node_page_state(NR_FILE_MAPPED), 4238 global_node_page_state(NR_SHMEM), 4239 global_page_state(NR_PAGETABLE), 4240 global_page_state(NR_BOUNCE), 4241 global_page_state(NR_FREE_PAGES), 4242 free_pcp, 4243 global_page_state(NR_FREE_CMA_PAGES)); 4244 4245 for_each_online_pgdat(pgdat) { 4246 printk("Node %d" 4247 " active_anon:%lukB" 4248 " inactive_anon:%lukB" 4249 " active_file:%lukB" 4250 " inactive_file:%lukB" 4251 " unevictable:%lukB" 4252 " isolated(anon):%lukB" 4253 " isolated(file):%lukB" 4254 " mapped:%lukB" 4255 " dirty:%lukB" 4256 " writeback:%lukB" 4257 " shmem:%lukB" 4258 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4259 " shmem_thp: %lukB" 4260 " shmem_pmdmapped: %lukB" 4261 " anon_thp: %lukB" 4262 #endif 4263 " writeback_tmp:%lukB" 4264 " unstable:%lukB" 4265 " pages_scanned:%lu" 4266 " all_unreclaimable? %s" 4267 "\n", 4268 pgdat->node_id, 4269 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 4270 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 4271 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 4272 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 4273 K(node_page_state(pgdat, NR_UNEVICTABLE)), 4274 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 4275 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 4276 K(node_page_state(pgdat, NR_FILE_MAPPED)), 4277 K(node_page_state(pgdat, NR_FILE_DIRTY)), 4278 K(node_page_state(pgdat, NR_WRITEBACK)), 4279 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4280 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR), 4281 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED) 4282 * HPAGE_PMD_NR), 4283 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR), 4284 #endif 4285 K(node_page_state(pgdat, NR_SHMEM)), 4286 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 4287 K(node_page_state(pgdat, NR_UNSTABLE_NFS)), 4288 node_page_state(pgdat, NR_PAGES_SCANNED), 4289 !pgdat_reclaimable(pgdat) ? "yes" : "no"); 4290 } 4291 4292 for_each_populated_zone(zone) { 4293 int i; 4294 4295 if (skip_free_areas_node(filter, zone_to_nid(zone))) 4296 continue; 4297 4298 free_pcp = 0; 4299 for_each_online_cpu(cpu) 4300 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 4301 4302 show_node(zone); 4303 printk("%s" 4304 " free:%lukB" 4305 " min:%lukB" 4306 " low:%lukB" 4307 " high:%lukB" 4308 " active_anon:%lukB" 4309 " inactive_anon:%lukB" 4310 " active_file:%lukB" 4311 " inactive_file:%lukB" 4312 " unevictable:%lukB" 4313 " writepending:%lukB" 4314 " present:%lukB" 4315 " managed:%lukB" 4316 " mlocked:%lukB" 4317 " slab_reclaimable:%lukB" 4318 " slab_unreclaimable:%lukB" 4319 " kernel_stack:%lukB" 4320 " pagetables:%lukB" 4321 " bounce:%lukB" 4322 " free_pcp:%lukB" 4323 " local_pcp:%ukB" 4324 " free_cma:%lukB" 4325 "\n", 4326 zone->name, 4327 K(zone_page_state(zone, NR_FREE_PAGES)), 4328 K(min_wmark_pages(zone)), 4329 K(low_wmark_pages(zone)), 4330 K(high_wmark_pages(zone)), 4331 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 4332 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 4333 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 4334 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 4335 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 4336 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 4337 K(zone->present_pages), 4338 K(zone->managed_pages), 4339 K(zone_page_state(zone, NR_MLOCK)), 4340 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 4341 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 4342 zone_page_state(zone, NR_KERNEL_STACK_KB), 4343 K(zone_page_state(zone, NR_PAGETABLE)), 4344 K(zone_page_state(zone, NR_BOUNCE)), 4345 K(free_pcp), 4346 K(this_cpu_read(zone->pageset->pcp.count)), 4347 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 4348 printk("lowmem_reserve[]:"); 4349 for (i = 0; i < MAX_NR_ZONES; i++) 4350 printk(" %ld", zone->lowmem_reserve[i]); 4351 printk("\n"); 4352 } 4353 4354 for_each_populated_zone(zone) { 4355 unsigned int order; 4356 unsigned long nr[MAX_ORDER], flags, total = 0; 4357 unsigned char types[MAX_ORDER]; 4358 4359 if (skip_free_areas_node(filter, zone_to_nid(zone))) 4360 continue; 4361 show_node(zone); 4362 printk("%s: ", zone->name); 4363 4364 spin_lock_irqsave(&zone->lock, flags); 4365 for (order = 0; order < MAX_ORDER; order++) { 4366 struct free_area *area = &zone->free_area[order]; 4367 int type; 4368 4369 nr[order] = area->nr_free; 4370 total += nr[order] << order; 4371 4372 types[order] = 0; 4373 for (type = 0; type < MIGRATE_TYPES; type++) { 4374 if (!list_empty(&area->free_list[type])) 4375 types[order] |= 1 << type; 4376 } 4377 } 4378 spin_unlock_irqrestore(&zone->lock, flags); 4379 for (order = 0; order < MAX_ORDER; order++) { 4380 printk("%lu*%lukB ", nr[order], K(1UL) << order); 4381 if (nr[order]) 4382 show_migration_types(types[order]); 4383 } 4384 printk("= %lukB\n", K(total)); 4385 } 4386 4387 hugetlb_show_meminfo(); 4388 4389 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 4390 4391 show_swap_cache_info(); 4392 } 4393 4394 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 4395 { 4396 zoneref->zone = zone; 4397 zoneref->zone_idx = zone_idx(zone); 4398 } 4399 4400 /* 4401 * Builds allocation fallback zone lists. 4402 * 4403 * Add all populated zones of a node to the zonelist. 4404 */ 4405 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 4406 int nr_zones) 4407 { 4408 struct zone *zone; 4409 enum zone_type zone_type = MAX_NR_ZONES; 4410 4411 do { 4412 zone_type--; 4413 zone = pgdat->node_zones + zone_type; 4414 if (populated_zone(zone)) { 4415 zoneref_set_zone(zone, 4416 &zonelist->_zonerefs[nr_zones++]); 4417 check_highest_zone(zone_type); 4418 } 4419 } while (zone_type); 4420 4421 return nr_zones; 4422 } 4423 4424 4425 /* 4426 * zonelist_order: 4427 * 0 = automatic detection of better ordering. 4428 * 1 = order by ([node] distance, -zonetype) 4429 * 2 = order by (-zonetype, [node] distance) 4430 * 4431 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 4432 * the same zonelist. So only NUMA can configure this param. 4433 */ 4434 #define ZONELIST_ORDER_DEFAULT 0 4435 #define ZONELIST_ORDER_NODE 1 4436 #define ZONELIST_ORDER_ZONE 2 4437 4438 /* zonelist order in the kernel. 4439 * set_zonelist_order() will set this to NODE or ZONE. 4440 */ 4441 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 4442 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 4443 4444 4445 #ifdef CONFIG_NUMA 4446 /* The value user specified ....changed by config */ 4447 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 4448 /* string for sysctl */ 4449 #define NUMA_ZONELIST_ORDER_LEN 16 4450 char numa_zonelist_order[16] = "default"; 4451 4452 /* 4453 * interface for configure zonelist ordering. 4454 * command line option "numa_zonelist_order" 4455 * = "[dD]efault - default, automatic configuration. 4456 * = "[nN]ode - order by node locality, then by zone within node 4457 * = "[zZ]one - order by zone, then by locality within zone 4458 */ 4459 4460 static int __parse_numa_zonelist_order(char *s) 4461 { 4462 if (*s == 'd' || *s == 'D') { 4463 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 4464 } else if (*s == 'n' || *s == 'N') { 4465 user_zonelist_order = ZONELIST_ORDER_NODE; 4466 } else if (*s == 'z' || *s == 'Z') { 4467 user_zonelist_order = ZONELIST_ORDER_ZONE; 4468 } else { 4469 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s); 4470 return -EINVAL; 4471 } 4472 return 0; 4473 } 4474 4475 static __init int setup_numa_zonelist_order(char *s) 4476 { 4477 int ret; 4478 4479 if (!s) 4480 return 0; 4481 4482 ret = __parse_numa_zonelist_order(s); 4483 if (ret == 0) 4484 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); 4485 4486 return ret; 4487 } 4488 early_param("numa_zonelist_order", setup_numa_zonelist_order); 4489 4490 /* 4491 * sysctl handler for numa_zonelist_order 4492 */ 4493 int numa_zonelist_order_handler(struct ctl_table *table, int write, 4494 void __user *buffer, size_t *length, 4495 loff_t *ppos) 4496 { 4497 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 4498 int ret; 4499 static DEFINE_MUTEX(zl_order_mutex); 4500 4501 mutex_lock(&zl_order_mutex); 4502 if (write) { 4503 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) { 4504 ret = -EINVAL; 4505 goto out; 4506 } 4507 strcpy(saved_string, (char *)table->data); 4508 } 4509 ret = proc_dostring(table, write, buffer, length, ppos); 4510 if (ret) 4511 goto out; 4512 if (write) { 4513 int oldval = user_zonelist_order; 4514 4515 ret = __parse_numa_zonelist_order((char *)table->data); 4516 if (ret) { 4517 /* 4518 * bogus value. restore saved string 4519 */ 4520 strncpy((char *)table->data, saved_string, 4521 NUMA_ZONELIST_ORDER_LEN); 4522 user_zonelist_order = oldval; 4523 } else if (oldval != user_zonelist_order) { 4524 mutex_lock(&zonelists_mutex); 4525 build_all_zonelists(NULL, NULL); 4526 mutex_unlock(&zonelists_mutex); 4527 } 4528 } 4529 out: 4530 mutex_unlock(&zl_order_mutex); 4531 return ret; 4532 } 4533 4534 4535 #define MAX_NODE_LOAD (nr_online_nodes) 4536 static int node_load[MAX_NUMNODES]; 4537 4538 /** 4539 * find_next_best_node - find the next node that should appear in a given node's fallback list 4540 * @node: node whose fallback list we're appending 4541 * @used_node_mask: nodemask_t of already used nodes 4542 * 4543 * We use a number of factors to determine which is the next node that should 4544 * appear on a given node's fallback list. The node should not have appeared 4545 * already in @node's fallback list, and it should be the next closest node 4546 * according to the distance array (which contains arbitrary distance values 4547 * from each node to each node in the system), and should also prefer nodes 4548 * with no CPUs, since presumably they'll have very little allocation pressure 4549 * on them otherwise. 4550 * It returns -1 if no node is found. 4551 */ 4552 static int find_next_best_node(int node, nodemask_t *used_node_mask) 4553 { 4554 int n, val; 4555 int min_val = INT_MAX; 4556 int best_node = NUMA_NO_NODE; 4557 const struct cpumask *tmp = cpumask_of_node(0); 4558 4559 /* Use the local node if we haven't already */ 4560 if (!node_isset(node, *used_node_mask)) { 4561 node_set(node, *used_node_mask); 4562 return node; 4563 } 4564 4565 for_each_node_state(n, N_MEMORY) { 4566 4567 /* Don't want a node to appear more than once */ 4568 if (node_isset(n, *used_node_mask)) 4569 continue; 4570 4571 /* Use the distance array to find the distance */ 4572 val = node_distance(node, n); 4573 4574 /* Penalize nodes under us ("prefer the next node") */ 4575 val += (n < node); 4576 4577 /* Give preference to headless and unused nodes */ 4578 tmp = cpumask_of_node(n); 4579 if (!cpumask_empty(tmp)) 4580 val += PENALTY_FOR_NODE_WITH_CPUS; 4581 4582 /* Slight preference for less loaded node */ 4583 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 4584 val += node_load[n]; 4585 4586 if (val < min_val) { 4587 min_val = val; 4588 best_node = n; 4589 } 4590 } 4591 4592 if (best_node >= 0) 4593 node_set(best_node, *used_node_mask); 4594 4595 return best_node; 4596 } 4597 4598 4599 /* 4600 * Build zonelists ordered by node and zones within node. 4601 * This results in maximum locality--normal zone overflows into local 4602 * DMA zone, if any--but risks exhausting DMA zone. 4603 */ 4604 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 4605 { 4606 int j; 4607 struct zonelist *zonelist; 4608 4609 zonelist = &pgdat->node_zonelists[0]; 4610 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 4611 ; 4612 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 4613 zonelist->_zonerefs[j].zone = NULL; 4614 zonelist->_zonerefs[j].zone_idx = 0; 4615 } 4616 4617 /* 4618 * Build gfp_thisnode zonelists 4619 */ 4620 static void build_thisnode_zonelists(pg_data_t *pgdat) 4621 { 4622 int j; 4623 struct zonelist *zonelist; 4624 4625 zonelist = &pgdat->node_zonelists[1]; 4626 j = build_zonelists_node(pgdat, zonelist, 0); 4627 zonelist->_zonerefs[j].zone = NULL; 4628 zonelist->_zonerefs[j].zone_idx = 0; 4629 } 4630 4631 /* 4632 * Build zonelists ordered by zone and nodes within zones. 4633 * This results in conserving DMA zone[s] until all Normal memory is 4634 * exhausted, but results in overflowing to remote node while memory 4635 * may still exist in local DMA zone. 4636 */ 4637 static int node_order[MAX_NUMNODES]; 4638 4639 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 4640 { 4641 int pos, j, node; 4642 int zone_type; /* needs to be signed */ 4643 struct zone *z; 4644 struct zonelist *zonelist; 4645 4646 zonelist = &pgdat->node_zonelists[0]; 4647 pos = 0; 4648 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 4649 for (j = 0; j < nr_nodes; j++) { 4650 node = node_order[j]; 4651 z = &NODE_DATA(node)->node_zones[zone_type]; 4652 if (populated_zone(z)) { 4653 zoneref_set_zone(z, 4654 &zonelist->_zonerefs[pos++]); 4655 check_highest_zone(zone_type); 4656 } 4657 } 4658 } 4659 zonelist->_zonerefs[pos].zone = NULL; 4660 zonelist->_zonerefs[pos].zone_idx = 0; 4661 } 4662 4663 #if defined(CONFIG_64BIT) 4664 /* 4665 * Devices that require DMA32/DMA are relatively rare and do not justify a 4666 * penalty to every machine in case the specialised case applies. Default 4667 * to Node-ordering on 64-bit NUMA machines 4668 */ 4669 static int default_zonelist_order(void) 4670 { 4671 return ZONELIST_ORDER_NODE; 4672 } 4673 #else 4674 /* 4675 * On 32-bit, the Normal zone needs to be preserved for allocations accessible 4676 * by the kernel. If processes running on node 0 deplete the low memory zone 4677 * then reclaim will occur more frequency increasing stalls and potentially 4678 * be easier to OOM if a large percentage of the zone is under writeback or 4679 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set. 4680 * Hence, default to zone ordering on 32-bit. 4681 */ 4682 static int default_zonelist_order(void) 4683 { 4684 return ZONELIST_ORDER_ZONE; 4685 } 4686 #endif /* CONFIG_64BIT */ 4687 4688 static void set_zonelist_order(void) 4689 { 4690 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 4691 current_zonelist_order = default_zonelist_order(); 4692 else 4693 current_zonelist_order = user_zonelist_order; 4694 } 4695 4696 static void build_zonelists(pg_data_t *pgdat) 4697 { 4698 int i, node, load; 4699 nodemask_t used_mask; 4700 int local_node, prev_node; 4701 struct zonelist *zonelist; 4702 unsigned int order = current_zonelist_order; 4703 4704 /* initialize zonelists */ 4705 for (i = 0; i < MAX_ZONELISTS; i++) { 4706 zonelist = pgdat->node_zonelists + i; 4707 zonelist->_zonerefs[0].zone = NULL; 4708 zonelist->_zonerefs[0].zone_idx = 0; 4709 } 4710 4711 /* NUMA-aware ordering of nodes */ 4712 local_node = pgdat->node_id; 4713 load = nr_online_nodes; 4714 prev_node = local_node; 4715 nodes_clear(used_mask); 4716 4717 memset(node_order, 0, sizeof(node_order)); 4718 i = 0; 4719 4720 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 4721 /* 4722 * We don't want to pressure a particular node. 4723 * So adding penalty to the first node in same 4724 * distance group to make it round-robin. 4725 */ 4726 if (node_distance(local_node, node) != 4727 node_distance(local_node, prev_node)) 4728 node_load[node] = load; 4729 4730 prev_node = node; 4731 load--; 4732 if (order == ZONELIST_ORDER_NODE) 4733 build_zonelists_in_node_order(pgdat, node); 4734 else 4735 node_order[i++] = node; /* remember order */ 4736 } 4737 4738 if (order == ZONELIST_ORDER_ZONE) { 4739 /* calculate node order -- i.e., DMA last! */ 4740 build_zonelists_in_zone_order(pgdat, i); 4741 } 4742 4743 build_thisnode_zonelists(pgdat); 4744 } 4745 4746 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 4747 /* 4748 * Return node id of node used for "local" allocations. 4749 * I.e., first node id of first zone in arg node's generic zonelist. 4750 * Used for initializing percpu 'numa_mem', which is used primarily 4751 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 4752 */ 4753 int local_memory_node(int node) 4754 { 4755 struct zoneref *z; 4756 4757 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 4758 gfp_zone(GFP_KERNEL), 4759 NULL); 4760 return z->zone->node; 4761 } 4762 #endif 4763 4764 #else /* CONFIG_NUMA */ 4765 4766 static void set_zonelist_order(void) 4767 { 4768 current_zonelist_order = ZONELIST_ORDER_ZONE; 4769 } 4770 4771 static void build_zonelists(pg_data_t *pgdat) 4772 { 4773 int node, local_node; 4774 enum zone_type j; 4775 struct zonelist *zonelist; 4776 4777 local_node = pgdat->node_id; 4778 4779 zonelist = &pgdat->node_zonelists[0]; 4780 j = build_zonelists_node(pgdat, zonelist, 0); 4781 4782 /* 4783 * Now we build the zonelist so that it contains the zones 4784 * of all the other nodes. 4785 * We don't want to pressure a particular node, so when 4786 * building the zones for node N, we make sure that the 4787 * zones coming right after the local ones are those from 4788 * node N+1 (modulo N) 4789 */ 4790 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 4791 if (!node_online(node)) 4792 continue; 4793 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 4794 } 4795 for (node = 0; node < local_node; node++) { 4796 if (!node_online(node)) 4797 continue; 4798 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 4799 } 4800 4801 zonelist->_zonerefs[j].zone = NULL; 4802 zonelist->_zonerefs[j].zone_idx = 0; 4803 } 4804 4805 #endif /* CONFIG_NUMA */ 4806 4807 /* 4808 * Boot pageset table. One per cpu which is going to be used for all 4809 * zones and all nodes. The parameters will be set in such a way 4810 * that an item put on a list will immediately be handed over to 4811 * the buddy list. This is safe since pageset manipulation is done 4812 * with interrupts disabled. 4813 * 4814 * The boot_pagesets must be kept even after bootup is complete for 4815 * unused processors and/or zones. They do play a role for bootstrapping 4816 * hotplugged processors. 4817 * 4818 * zoneinfo_show() and maybe other functions do 4819 * not check if the processor is online before following the pageset pointer. 4820 * Other parts of the kernel may not check if the zone is available. 4821 */ 4822 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 4823 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 4824 static void setup_zone_pageset(struct zone *zone); 4825 4826 /* 4827 * Global mutex to protect against size modification of zonelists 4828 * as well as to serialize pageset setup for the new populated zone. 4829 */ 4830 DEFINE_MUTEX(zonelists_mutex); 4831 4832 /* return values int ....just for stop_machine() */ 4833 static int __build_all_zonelists(void *data) 4834 { 4835 int nid; 4836 int cpu; 4837 pg_data_t *self = data; 4838 4839 #ifdef CONFIG_NUMA 4840 memset(node_load, 0, sizeof(node_load)); 4841 #endif 4842 4843 if (self && !node_online(self->node_id)) { 4844 build_zonelists(self); 4845 } 4846 4847 for_each_online_node(nid) { 4848 pg_data_t *pgdat = NODE_DATA(nid); 4849 4850 build_zonelists(pgdat); 4851 } 4852 4853 /* 4854 * Initialize the boot_pagesets that are going to be used 4855 * for bootstrapping processors. The real pagesets for 4856 * each zone will be allocated later when the per cpu 4857 * allocator is available. 4858 * 4859 * boot_pagesets are used also for bootstrapping offline 4860 * cpus if the system is already booted because the pagesets 4861 * are needed to initialize allocators on a specific cpu too. 4862 * F.e. the percpu allocator needs the page allocator which 4863 * needs the percpu allocator in order to allocate its pagesets 4864 * (a chicken-egg dilemma). 4865 */ 4866 for_each_possible_cpu(cpu) { 4867 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 4868 4869 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 4870 /* 4871 * We now know the "local memory node" for each node-- 4872 * i.e., the node of the first zone in the generic zonelist. 4873 * Set up numa_mem percpu variable for on-line cpus. During 4874 * boot, only the boot cpu should be on-line; we'll init the 4875 * secondary cpus' numa_mem as they come on-line. During 4876 * node/memory hotplug, we'll fixup all on-line cpus. 4877 */ 4878 if (cpu_online(cpu)) 4879 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 4880 #endif 4881 } 4882 4883 return 0; 4884 } 4885 4886 static noinline void __init 4887 build_all_zonelists_init(void) 4888 { 4889 __build_all_zonelists(NULL); 4890 mminit_verify_zonelist(); 4891 cpuset_init_current_mems_allowed(); 4892 } 4893 4894 /* 4895 * Called with zonelists_mutex held always 4896 * unless system_state == SYSTEM_BOOTING. 4897 * 4898 * __ref due to (1) call of __meminit annotated setup_zone_pageset 4899 * [we're only called with non-NULL zone through __meminit paths] and 4900 * (2) call of __init annotated helper build_all_zonelists_init 4901 * [protected by SYSTEM_BOOTING]. 4902 */ 4903 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone) 4904 { 4905 set_zonelist_order(); 4906 4907 if (system_state == SYSTEM_BOOTING) { 4908 build_all_zonelists_init(); 4909 } else { 4910 #ifdef CONFIG_MEMORY_HOTPLUG 4911 if (zone) 4912 setup_zone_pageset(zone); 4913 #endif 4914 /* we have to stop all cpus to guarantee there is no user 4915 of zonelist */ 4916 stop_machine(__build_all_zonelists, pgdat, NULL); 4917 /* cpuset refresh routine should be here */ 4918 } 4919 vm_total_pages = nr_free_pagecache_pages(); 4920 /* 4921 * Disable grouping by mobility if the number of pages in the 4922 * system is too low to allow the mechanism to work. It would be 4923 * more accurate, but expensive to check per-zone. This check is 4924 * made on memory-hotadd so a system can start with mobility 4925 * disabled and enable it later 4926 */ 4927 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 4928 page_group_by_mobility_disabled = 1; 4929 else 4930 page_group_by_mobility_disabled = 0; 4931 4932 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n", 4933 nr_online_nodes, 4934 zonelist_order_name[current_zonelist_order], 4935 page_group_by_mobility_disabled ? "off" : "on", 4936 vm_total_pages); 4937 #ifdef CONFIG_NUMA 4938 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 4939 #endif 4940 } 4941 4942 /* 4943 * Helper functions to size the waitqueue hash table. 4944 * Essentially these want to choose hash table sizes sufficiently 4945 * large so that collisions trying to wait on pages are rare. 4946 * But in fact, the number of active page waitqueues on typical 4947 * systems is ridiculously low, less than 200. So this is even 4948 * conservative, even though it seems large. 4949 * 4950 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 4951 * waitqueues, i.e. the size of the waitq table given the number of pages. 4952 */ 4953 #define PAGES_PER_WAITQUEUE 256 4954 4955 #ifndef CONFIG_MEMORY_HOTPLUG 4956 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 4957 { 4958 unsigned long size = 1; 4959 4960 pages /= PAGES_PER_WAITQUEUE; 4961 4962 while (size < pages) 4963 size <<= 1; 4964 4965 /* 4966 * Once we have dozens or even hundreds of threads sleeping 4967 * on IO we've got bigger problems than wait queue collision. 4968 * Limit the size of the wait table to a reasonable size. 4969 */ 4970 size = min(size, 4096UL); 4971 4972 return max(size, 4UL); 4973 } 4974 #else 4975 /* 4976 * A zone's size might be changed by hot-add, so it is not possible to determine 4977 * a suitable size for its wait_table. So we use the maximum size now. 4978 * 4979 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 4980 * 4981 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 4982 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 4983 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 4984 * 4985 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 4986 * or more by the traditional way. (See above). It equals: 4987 * 4988 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 4989 * ia64(16K page size) : = ( 8G + 4M)byte. 4990 * powerpc (64K page size) : = (32G +16M)byte. 4991 */ 4992 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 4993 { 4994 return 4096UL; 4995 } 4996 #endif 4997 4998 /* 4999 * This is an integer logarithm so that shifts can be used later 5000 * to extract the more random high bits from the multiplicative 5001 * hash function before the remainder is taken. 5002 */ 5003 static inline unsigned long wait_table_bits(unsigned long size) 5004 { 5005 return ffz(~size); 5006 } 5007 5008 /* 5009 * Initially all pages are reserved - free ones are freed 5010 * up by free_all_bootmem() once the early boot process is 5011 * done. Non-atomic initialization, single-pass. 5012 */ 5013 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 5014 unsigned long start_pfn, enum memmap_context context) 5015 { 5016 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn)); 5017 unsigned long end_pfn = start_pfn + size; 5018 pg_data_t *pgdat = NODE_DATA(nid); 5019 unsigned long pfn; 5020 unsigned long nr_initialised = 0; 5021 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5022 struct memblock_region *r = NULL, *tmp; 5023 #endif 5024 5025 if (highest_memmap_pfn < end_pfn - 1) 5026 highest_memmap_pfn = end_pfn - 1; 5027 5028 /* 5029 * Honor reservation requested by the driver for this ZONE_DEVICE 5030 * memory 5031 */ 5032 if (altmap && start_pfn == altmap->base_pfn) 5033 start_pfn += altmap->reserve; 5034 5035 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 5036 /* 5037 * There can be holes in boot-time mem_map[]s handed to this 5038 * function. They do not exist on hotplugged memory. 5039 */ 5040 if (context != MEMMAP_EARLY) 5041 goto not_early; 5042 5043 if (!early_pfn_valid(pfn)) 5044 continue; 5045 if (!early_pfn_in_nid(pfn, nid)) 5046 continue; 5047 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised)) 5048 break; 5049 5050 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5051 /* 5052 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range 5053 * from zone_movable_pfn[nid] to end of each node should be 5054 * ZONE_MOVABLE not ZONE_NORMAL. skip it. 5055 */ 5056 if (!mirrored_kernelcore && zone_movable_pfn[nid]) 5057 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid]) 5058 continue; 5059 5060 /* 5061 * Check given memblock attribute by firmware which can affect 5062 * kernel memory layout. If zone==ZONE_MOVABLE but memory is 5063 * mirrored, it's an overlapped memmap init. skip it. 5064 */ 5065 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 5066 if (!r || pfn >= memblock_region_memory_end_pfn(r)) { 5067 for_each_memblock(memory, tmp) 5068 if (pfn < memblock_region_memory_end_pfn(tmp)) 5069 break; 5070 r = tmp; 5071 } 5072 if (pfn >= memblock_region_memory_base_pfn(r) && 5073 memblock_is_mirror(r)) { 5074 /* already initialized as NORMAL */ 5075 pfn = memblock_region_memory_end_pfn(r); 5076 continue; 5077 } 5078 } 5079 #endif 5080 5081 not_early: 5082 /* 5083 * Mark the block movable so that blocks are reserved for 5084 * movable at startup. This will force kernel allocations 5085 * to reserve their blocks rather than leaking throughout 5086 * the address space during boot when many long-lived 5087 * kernel allocations are made. 5088 * 5089 * bitmap is created for zone's valid pfn range. but memmap 5090 * can be created for invalid pages (for alignment) 5091 * check here not to call set_pageblock_migratetype() against 5092 * pfn out of zone. 5093 */ 5094 if (!(pfn & (pageblock_nr_pages - 1))) { 5095 struct page *page = pfn_to_page(pfn); 5096 5097 __init_single_page(page, pfn, zone, nid); 5098 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5099 } else { 5100 __init_single_pfn(pfn, zone, nid); 5101 } 5102 } 5103 } 5104 5105 static void __meminit zone_init_free_lists(struct zone *zone) 5106 { 5107 unsigned int order, t; 5108 for_each_migratetype_order(order, t) { 5109 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 5110 zone->free_area[order].nr_free = 0; 5111 } 5112 } 5113 5114 #ifndef __HAVE_ARCH_MEMMAP_INIT 5115 #define memmap_init(size, nid, zone, start_pfn) \ 5116 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 5117 #endif 5118 5119 static int zone_batchsize(struct zone *zone) 5120 { 5121 #ifdef CONFIG_MMU 5122 int batch; 5123 5124 /* 5125 * The per-cpu-pages pools are set to around 1000th of the 5126 * size of the zone. But no more than 1/2 of a meg. 5127 * 5128 * OK, so we don't know how big the cache is. So guess. 5129 */ 5130 batch = zone->managed_pages / 1024; 5131 if (batch * PAGE_SIZE > 512 * 1024) 5132 batch = (512 * 1024) / PAGE_SIZE; 5133 batch /= 4; /* We effectively *= 4 below */ 5134 if (batch < 1) 5135 batch = 1; 5136 5137 /* 5138 * Clamp the batch to a 2^n - 1 value. Having a power 5139 * of 2 value was found to be more likely to have 5140 * suboptimal cache aliasing properties in some cases. 5141 * 5142 * For example if 2 tasks are alternately allocating 5143 * batches of pages, one task can end up with a lot 5144 * of pages of one half of the possible page colors 5145 * and the other with pages of the other colors. 5146 */ 5147 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5148 5149 return batch; 5150 5151 #else 5152 /* The deferral and batching of frees should be suppressed under NOMMU 5153 * conditions. 5154 * 5155 * The problem is that NOMMU needs to be able to allocate large chunks 5156 * of contiguous memory as there's no hardware page translation to 5157 * assemble apparent contiguous memory from discontiguous pages. 5158 * 5159 * Queueing large contiguous runs of pages for batching, however, 5160 * causes the pages to actually be freed in smaller chunks. As there 5161 * can be a significant delay between the individual batches being 5162 * recycled, this leads to the once large chunks of space being 5163 * fragmented and becoming unavailable for high-order allocations. 5164 */ 5165 return 0; 5166 #endif 5167 } 5168 5169 /* 5170 * pcp->high and pcp->batch values are related and dependent on one another: 5171 * ->batch must never be higher then ->high. 5172 * The following function updates them in a safe manner without read side 5173 * locking. 5174 * 5175 * Any new users of pcp->batch and pcp->high should ensure they can cope with 5176 * those fields changing asynchronously (acording the the above rule). 5177 * 5178 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 5179 * outside of boot time (or some other assurance that no concurrent updaters 5180 * exist). 5181 */ 5182 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 5183 unsigned long batch) 5184 { 5185 /* start with a fail safe value for batch */ 5186 pcp->batch = 1; 5187 smp_wmb(); 5188 5189 /* Update high, then batch, in order */ 5190 pcp->high = high; 5191 smp_wmb(); 5192 5193 pcp->batch = batch; 5194 } 5195 5196 /* a companion to pageset_set_high() */ 5197 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 5198 { 5199 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 5200 } 5201 5202 static void pageset_init(struct per_cpu_pageset *p) 5203 { 5204 struct per_cpu_pages *pcp; 5205 int migratetype; 5206 5207 memset(p, 0, sizeof(*p)); 5208 5209 pcp = &p->pcp; 5210 pcp->count = 0; 5211 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 5212 INIT_LIST_HEAD(&pcp->lists[migratetype]); 5213 } 5214 5215 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 5216 { 5217 pageset_init(p); 5218 pageset_set_batch(p, batch); 5219 } 5220 5221 /* 5222 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 5223 * to the value high for the pageset p. 5224 */ 5225 static void pageset_set_high(struct per_cpu_pageset *p, 5226 unsigned long high) 5227 { 5228 unsigned long batch = max(1UL, high / 4); 5229 if ((high / 4) > (PAGE_SHIFT * 8)) 5230 batch = PAGE_SHIFT * 8; 5231 5232 pageset_update(&p->pcp, high, batch); 5233 } 5234 5235 static void pageset_set_high_and_batch(struct zone *zone, 5236 struct per_cpu_pageset *pcp) 5237 { 5238 if (percpu_pagelist_fraction) 5239 pageset_set_high(pcp, 5240 (zone->managed_pages / 5241 percpu_pagelist_fraction)); 5242 else 5243 pageset_set_batch(pcp, zone_batchsize(zone)); 5244 } 5245 5246 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 5247 { 5248 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 5249 5250 pageset_init(pcp); 5251 pageset_set_high_and_batch(zone, pcp); 5252 } 5253 5254 static void __meminit setup_zone_pageset(struct zone *zone) 5255 { 5256 int cpu; 5257 zone->pageset = alloc_percpu(struct per_cpu_pageset); 5258 for_each_possible_cpu(cpu) 5259 zone_pageset_init(zone, cpu); 5260 5261 if (!zone->zone_pgdat->per_cpu_nodestats) { 5262 zone->zone_pgdat->per_cpu_nodestats = 5263 alloc_percpu(struct per_cpu_nodestat); 5264 } 5265 } 5266 5267 /* 5268 * Allocate per cpu pagesets and initialize them. 5269 * Before this call only boot pagesets were available. 5270 */ 5271 void __init setup_per_cpu_pageset(void) 5272 { 5273 struct zone *zone; 5274 5275 for_each_populated_zone(zone) 5276 setup_zone_pageset(zone); 5277 } 5278 5279 static noinline __init_refok 5280 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 5281 { 5282 int i; 5283 size_t alloc_size; 5284 5285 /* 5286 * The per-page waitqueue mechanism uses hashed waitqueues 5287 * per zone. 5288 */ 5289 zone->wait_table_hash_nr_entries = 5290 wait_table_hash_nr_entries(zone_size_pages); 5291 zone->wait_table_bits = 5292 wait_table_bits(zone->wait_table_hash_nr_entries); 5293 alloc_size = zone->wait_table_hash_nr_entries 5294 * sizeof(wait_queue_head_t); 5295 5296 if (!slab_is_available()) { 5297 zone->wait_table = (wait_queue_head_t *) 5298 memblock_virt_alloc_node_nopanic( 5299 alloc_size, zone->zone_pgdat->node_id); 5300 } else { 5301 /* 5302 * This case means that a zone whose size was 0 gets new memory 5303 * via memory hot-add. 5304 * But it may be the case that a new node was hot-added. In 5305 * this case vmalloc() will not be able to use this new node's 5306 * memory - this wait_table must be initialized to use this new 5307 * node itself as well. 5308 * To use this new node's memory, further consideration will be 5309 * necessary. 5310 */ 5311 zone->wait_table = vmalloc(alloc_size); 5312 } 5313 if (!zone->wait_table) 5314 return -ENOMEM; 5315 5316 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i) 5317 init_waitqueue_head(zone->wait_table + i); 5318 5319 return 0; 5320 } 5321 5322 static __meminit void zone_pcp_init(struct zone *zone) 5323 { 5324 /* 5325 * per cpu subsystem is not up at this point. The following code 5326 * relies on the ability of the linker to provide the 5327 * offset of a (static) per cpu variable into the per cpu area. 5328 */ 5329 zone->pageset = &boot_pageset; 5330 5331 if (populated_zone(zone)) 5332 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 5333 zone->name, zone->present_pages, 5334 zone_batchsize(zone)); 5335 } 5336 5337 int __meminit init_currently_empty_zone(struct zone *zone, 5338 unsigned long zone_start_pfn, 5339 unsigned long size) 5340 { 5341 struct pglist_data *pgdat = zone->zone_pgdat; 5342 int ret; 5343 ret = zone_wait_table_init(zone, size); 5344 if (ret) 5345 return ret; 5346 pgdat->nr_zones = zone_idx(zone) + 1; 5347 5348 zone->zone_start_pfn = zone_start_pfn; 5349 5350 mminit_dprintk(MMINIT_TRACE, "memmap_init", 5351 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 5352 pgdat->node_id, 5353 (unsigned long)zone_idx(zone), 5354 zone_start_pfn, (zone_start_pfn + size)); 5355 5356 zone_init_free_lists(zone); 5357 5358 return 0; 5359 } 5360 5361 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5362 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 5363 5364 /* 5365 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 5366 */ 5367 int __meminit __early_pfn_to_nid(unsigned long pfn, 5368 struct mminit_pfnnid_cache *state) 5369 { 5370 unsigned long start_pfn, end_pfn; 5371 int nid; 5372 5373 if (state->last_start <= pfn && pfn < state->last_end) 5374 return state->last_nid; 5375 5376 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 5377 if (nid != -1) { 5378 state->last_start = start_pfn; 5379 state->last_end = end_pfn; 5380 state->last_nid = nid; 5381 } 5382 5383 return nid; 5384 } 5385 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 5386 5387 /** 5388 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range 5389 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 5390 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid 5391 * 5392 * If an architecture guarantees that all ranges registered contain no holes 5393 * and may be freed, this this function may be used instead of calling 5394 * memblock_free_early_nid() manually. 5395 */ 5396 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 5397 { 5398 unsigned long start_pfn, end_pfn; 5399 int i, this_nid; 5400 5401 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 5402 start_pfn = min(start_pfn, max_low_pfn); 5403 end_pfn = min(end_pfn, max_low_pfn); 5404 5405 if (start_pfn < end_pfn) 5406 memblock_free_early_nid(PFN_PHYS(start_pfn), 5407 (end_pfn - start_pfn) << PAGE_SHIFT, 5408 this_nid); 5409 } 5410 } 5411 5412 /** 5413 * sparse_memory_present_with_active_regions - Call memory_present for each active range 5414 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 5415 * 5416 * If an architecture guarantees that all ranges registered contain no holes and may 5417 * be freed, this function may be used instead of calling memory_present() manually. 5418 */ 5419 void __init sparse_memory_present_with_active_regions(int nid) 5420 { 5421 unsigned long start_pfn, end_pfn; 5422 int i, this_nid; 5423 5424 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 5425 memory_present(this_nid, start_pfn, end_pfn); 5426 } 5427 5428 /** 5429 * get_pfn_range_for_nid - Return the start and end page frames for a node 5430 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 5431 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 5432 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 5433 * 5434 * It returns the start and end page frame of a node based on information 5435 * provided by memblock_set_node(). If called for a node 5436 * with no available memory, a warning is printed and the start and end 5437 * PFNs will be 0. 5438 */ 5439 void __meminit get_pfn_range_for_nid(unsigned int nid, 5440 unsigned long *start_pfn, unsigned long *end_pfn) 5441 { 5442 unsigned long this_start_pfn, this_end_pfn; 5443 int i; 5444 5445 *start_pfn = -1UL; 5446 *end_pfn = 0; 5447 5448 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 5449 *start_pfn = min(*start_pfn, this_start_pfn); 5450 *end_pfn = max(*end_pfn, this_end_pfn); 5451 } 5452 5453 if (*start_pfn == -1UL) 5454 *start_pfn = 0; 5455 } 5456 5457 /* 5458 * This finds a zone that can be used for ZONE_MOVABLE pages. The 5459 * assumption is made that zones within a node are ordered in monotonic 5460 * increasing memory addresses so that the "highest" populated zone is used 5461 */ 5462 static void __init find_usable_zone_for_movable(void) 5463 { 5464 int zone_index; 5465 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 5466 if (zone_index == ZONE_MOVABLE) 5467 continue; 5468 5469 if (arch_zone_highest_possible_pfn[zone_index] > 5470 arch_zone_lowest_possible_pfn[zone_index]) 5471 break; 5472 } 5473 5474 VM_BUG_ON(zone_index == -1); 5475 movable_zone = zone_index; 5476 } 5477 5478 /* 5479 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 5480 * because it is sized independent of architecture. Unlike the other zones, 5481 * the starting point for ZONE_MOVABLE is not fixed. It may be different 5482 * in each node depending on the size of each node and how evenly kernelcore 5483 * is distributed. This helper function adjusts the zone ranges 5484 * provided by the architecture for a given node by using the end of the 5485 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 5486 * zones within a node are in order of monotonic increases memory addresses 5487 */ 5488 static void __meminit adjust_zone_range_for_zone_movable(int nid, 5489 unsigned long zone_type, 5490 unsigned long node_start_pfn, 5491 unsigned long node_end_pfn, 5492 unsigned long *zone_start_pfn, 5493 unsigned long *zone_end_pfn) 5494 { 5495 /* Only adjust if ZONE_MOVABLE is on this node */ 5496 if (zone_movable_pfn[nid]) { 5497 /* Size ZONE_MOVABLE */ 5498 if (zone_type == ZONE_MOVABLE) { 5499 *zone_start_pfn = zone_movable_pfn[nid]; 5500 *zone_end_pfn = min(node_end_pfn, 5501 arch_zone_highest_possible_pfn[movable_zone]); 5502 5503 /* Check if this whole range is within ZONE_MOVABLE */ 5504 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 5505 *zone_start_pfn = *zone_end_pfn; 5506 } 5507 } 5508 5509 /* 5510 * Return the number of pages a zone spans in a node, including holes 5511 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 5512 */ 5513 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 5514 unsigned long zone_type, 5515 unsigned long node_start_pfn, 5516 unsigned long node_end_pfn, 5517 unsigned long *zone_start_pfn, 5518 unsigned long *zone_end_pfn, 5519 unsigned long *ignored) 5520 { 5521 /* When hotadd a new node from cpu_up(), the node should be empty */ 5522 if (!node_start_pfn && !node_end_pfn) 5523 return 0; 5524 5525 /* Get the start and end of the zone */ 5526 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 5527 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 5528 adjust_zone_range_for_zone_movable(nid, zone_type, 5529 node_start_pfn, node_end_pfn, 5530 zone_start_pfn, zone_end_pfn); 5531 5532 /* Check that this node has pages within the zone's required range */ 5533 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 5534 return 0; 5535 5536 /* Move the zone boundaries inside the node if necessary */ 5537 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 5538 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 5539 5540 /* Return the spanned pages */ 5541 return *zone_end_pfn - *zone_start_pfn; 5542 } 5543 5544 /* 5545 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 5546 * then all holes in the requested range will be accounted for. 5547 */ 5548 unsigned long __meminit __absent_pages_in_range(int nid, 5549 unsigned long range_start_pfn, 5550 unsigned long range_end_pfn) 5551 { 5552 unsigned long nr_absent = range_end_pfn - range_start_pfn; 5553 unsigned long start_pfn, end_pfn; 5554 int i; 5555 5556 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 5557 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 5558 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 5559 nr_absent -= end_pfn - start_pfn; 5560 } 5561 return nr_absent; 5562 } 5563 5564 /** 5565 * absent_pages_in_range - Return number of page frames in holes within a range 5566 * @start_pfn: The start PFN to start searching for holes 5567 * @end_pfn: The end PFN to stop searching for holes 5568 * 5569 * It returns the number of pages frames in memory holes within a range. 5570 */ 5571 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 5572 unsigned long end_pfn) 5573 { 5574 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 5575 } 5576 5577 /* Return the number of page frames in holes in a zone on a node */ 5578 static unsigned long __meminit zone_absent_pages_in_node(int nid, 5579 unsigned long zone_type, 5580 unsigned long node_start_pfn, 5581 unsigned long node_end_pfn, 5582 unsigned long *ignored) 5583 { 5584 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 5585 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 5586 unsigned long zone_start_pfn, zone_end_pfn; 5587 unsigned long nr_absent; 5588 5589 /* When hotadd a new node from cpu_up(), the node should be empty */ 5590 if (!node_start_pfn && !node_end_pfn) 5591 return 0; 5592 5593 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 5594 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 5595 5596 adjust_zone_range_for_zone_movable(nid, zone_type, 5597 node_start_pfn, node_end_pfn, 5598 &zone_start_pfn, &zone_end_pfn); 5599 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 5600 5601 /* 5602 * ZONE_MOVABLE handling. 5603 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 5604 * and vice versa. 5605 */ 5606 if (zone_movable_pfn[nid]) { 5607 if (mirrored_kernelcore) { 5608 unsigned long start_pfn, end_pfn; 5609 struct memblock_region *r; 5610 5611 for_each_memblock(memory, r) { 5612 start_pfn = clamp(memblock_region_memory_base_pfn(r), 5613 zone_start_pfn, zone_end_pfn); 5614 end_pfn = clamp(memblock_region_memory_end_pfn(r), 5615 zone_start_pfn, zone_end_pfn); 5616 5617 if (zone_type == ZONE_MOVABLE && 5618 memblock_is_mirror(r)) 5619 nr_absent += end_pfn - start_pfn; 5620 5621 if (zone_type == ZONE_NORMAL && 5622 !memblock_is_mirror(r)) 5623 nr_absent += end_pfn - start_pfn; 5624 } 5625 } else { 5626 if (zone_type == ZONE_NORMAL) 5627 nr_absent += node_end_pfn - zone_movable_pfn[nid]; 5628 } 5629 } 5630 5631 return nr_absent; 5632 } 5633 5634 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5635 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 5636 unsigned long zone_type, 5637 unsigned long node_start_pfn, 5638 unsigned long node_end_pfn, 5639 unsigned long *zone_start_pfn, 5640 unsigned long *zone_end_pfn, 5641 unsigned long *zones_size) 5642 { 5643 unsigned int zone; 5644 5645 *zone_start_pfn = node_start_pfn; 5646 for (zone = 0; zone < zone_type; zone++) 5647 *zone_start_pfn += zones_size[zone]; 5648 5649 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type]; 5650 5651 return zones_size[zone_type]; 5652 } 5653 5654 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 5655 unsigned long zone_type, 5656 unsigned long node_start_pfn, 5657 unsigned long node_end_pfn, 5658 unsigned long *zholes_size) 5659 { 5660 if (!zholes_size) 5661 return 0; 5662 5663 return zholes_size[zone_type]; 5664 } 5665 5666 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5667 5668 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 5669 unsigned long node_start_pfn, 5670 unsigned long node_end_pfn, 5671 unsigned long *zones_size, 5672 unsigned long *zholes_size) 5673 { 5674 unsigned long realtotalpages = 0, totalpages = 0; 5675 enum zone_type i; 5676 5677 for (i = 0; i < MAX_NR_ZONES; i++) { 5678 struct zone *zone = pgdat->node_zones + i; 5679 unsigned long zone_start_pfn, zone_end_pfn; 5680 unsigned long size, real_size; 5681 5682 size = zone_spanned_pages_in_node(pgdat->node_id, i, 5683 node_start_pfn, 5684 node_end_pfn, 5685 &zone_start_pfn, 5686 &zone_end_pfn, 5687 zones_size); 5688 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i, 5689 node_start_pfn, node_end_pfn, 5690 zholes_size); 5691 if (size) 5692 zone->zone_start_pfn = zone_start_pfn; 5693 else 5694 zone->zone_start_pfn = 0; 5695 zone->spanned_pages = size; 5696 zone->present_pages = real_size; 5697 5698 totalpages += size; 5699 realtotalpages += real_size; 5700 } 5701 5702 pgdat->node_spanned_pages = totalpages; 5703 pgdat->node_present_pages = realtotalpages; 5704 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 5705 realtotalpages); 5706 } 5707 5708 #ifndef CONFIG_SPARSEMEM 5709 /* 5710 * Calculate the size of the zone->blockflags rounded to an unsigned long 5711 * Start by making sure zonesize is a multiple of pageblock_order by rounding 5712 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 5713 * round what is now in bits to nearest long in bits, then return it in 5714 * bytes. 5715 */ 5716 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 5717 { 5718 unsigned long usemapsize; 5719 5720 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 5721 usemapsize = roundup(zonesize, pageblock_nr_pages); 5722 usemapsize = usemapsize >> pageblock_order; 5723 usemapsize *= NR_PAGEBLOCK_BITS; 5724 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 5725 5726 return usemapsize / 8; 5727 } 5728 5729 static void __init setup_usemap(struct pglist_data *pgdat, 5730 struct zone *zone, 5731 unsigned long zone_start_pfn, 5732 unsigned long zonesize) 5733 { 5734 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 5735 zone->pageblock_flags = NULL; 5736 if (usemapsize) 5737 zone->pageblock_flags = 5738 memblock_virt_alloc_node_nopanic(usemapsize, 5739 pgdat->node_id); 5740 } 5741 #else 5742 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 5743 unsigned long zone_start_pfn, unsigned long zonesize) {} 5744 #endif /* CONFIG_SPARSEMEM */ 5745 5746 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 5747 5748 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 5749 void __paginginit set_pageblock_order(void) 5750 { 5751 unsigned int order; 5752 5753 /* Check that pageblock_nr_pages has not already been setup */ 5754 if (pageblock_order) 5755 return; 5756 5757 if (HPAGE_SHIFT > PAGE_SHIFT) 5758 order = HUGETLB_PAGE_ORDER; 5759 else 5760 order = MAX_ORDER - 1; 5761 5762 /* 5763 * Assume the largest contiguous order of interest is a huge page. 5764 * This value may be variable depending on boot parameters on IA64 and 5765 * powerpc. 5766 */ 5767 pageblock_order = order; 5768 } 5769 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 5770 5771 /* 5772 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 5773 * is unused as pageblock_order is set at compile-time. See 5774 * include/linux/pageblock-flags.h for the values of pageblock_order based on 5775 * the kernel config 5776 */ 5777 void __paginginit set_pageblock_order(void) 5778 { 5779 } 5780 5781 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 5782 5783 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages, 5784 unsigned long present_pages) 5785 { 5786 unsigned long pages = spanned_pages; 5787 5788 /* 5789 * Provide a more accurate estimation if there are holes within 5790 * the zone and SPARSEMEM is in use. If there are holes within the 5791 * zone, each populated memory region may cost us one or two extra 5792 * memmap pages due to alignment because memmap pages for each 5793 * populated regions may not naturally algined on page boundary. 5794 * So the (present_pages >> 4) heuristic is a tradeoff for that. 5795 */ 5796 if (spanned_pages > present_pages + (present_pages >> 4) && 5797 IS_ENABLED(CONFIG_SPARSEMEM)) 5798 pages = present_pages; 5799 5800 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 5801 } 5802 5803 /* 5804 * Set up the zone data structures: 5805 * - mark all pages reserved 5806 * - mark all memory queues empty 5807 * - clear the memory bitmaps 5808 * 5809 * NOTE: pgdat should get zeroed by caller. 5810 */ 5811 static void __paginginit free_area_init_core(struct pglist_data *pgdat) 5812 { 5813 enum zone_type j; 5814 int nid = pgdat->node_id; 5815 int ret; 5816 5817 pgdat_resize_init(pgdat); 5818 #ifdef CONFIG_NUMA_BALANCING 5819 spin_lock_init(&pgdat->numabalancing_migrate_lock); 5820 pgdat->numabalancing_migrate_nr_pages = 0; 5821 pgdat->numabalancing_migrate_next_window = jiffies; 5822 #endif 5823 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5824 spin_lock_init(&pgdat->split_queue_lock); 5825 INIT_LIST_HEAD(&pgdat->split_queue); 5826 pgdat->split_queue_len = 0; 5827 #endif 5828 init_waitqueue_head(&pgdat->kswapd_wait); 5829 init_waitqueue_head(&pgdat->pfmemalloc_wait); 5830 #ifdef CONFIG_COMPACTION 5831 init_waitqueue_head(&pgdat->kcompactd_wait); 5832 #endif 5833 pgdat_page_ext_init(pgdat); 5834 spin_lock_init(&pgdat->lru_lock); 5835 lruvec_init(node_lruvec(pgdat)); 5836 5837 for (j = 0; j < MAX_NR_ZONES; j++) { 5838 struct zone *zone = pgdat->node_zones + j; 5839 unsigned long size, realsize, freesize, memmap_pages; 5840 unsigned long zone_start_pfn = zone->zone_start_pfn; 5841 5842 size = zone->spanned_pages; 5843 realsize = freesize = zone->present_pages; 5844 5845 /* 5846 * Adjust freesize so that it accounts for how much memory 5847 * is used by this zone for memmap. This affects the watermark 5848 * and per-cpu initialisations 5849 */ 5850 memmap_pages = calc_memmap_size(size, realsize); 5851 if (!is_highmem_idx(j)) { 5852 if (freesize >= memmap_pages) { 5853 freesize -= memmap_pages; 5854 if (memmap_pages) 5855 printk(KERN_DEBUG 5856 " %s zone: %lu pages used for memmap\n", 5857 zone_names[j], memmap_pages); 5858 } else 5859 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n", 5860 zone_names[j], memmap_pages, freesize); 5861 } 5862 5863 /* Account for reserved pages */ 5864 if (j == 0 && freesize > dma_reserve) { 5865 freesize -= dma_reserve; 5866 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 5867 zone_names[0], dma_reserve); 5868 } 5869 5870 if (!is_highmem_idx(j)) 5871 nr_kernel_pages += freesize; 5872 /* Charge for highmem memmap if there are enough kernel pages */ 5873 else if (nr_kernel_pages > memmap_pages * 2) 5874 nr_kernel_pages -= memmap_pages; 5875 nr_all_pages += freesize; 5876 5877 /* 5878 * Set an approximate value for lowmem here, it will be adjusted 5879 * when the bootmem allocator frees pages into the buddy system. 5880 * And all highmem pages will be managed by the buddy system. 5881 */ 5882 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize; 5883 #ifdef CONFIG_NUMA 5884 zone->node = nid; 5885 pgdat->min_unmapped_pages += (freesize*sysctl_min_unmapped_ratio) 5886 / 100; 5887 pgdat->min_slab_pages += (freesize * sysctl_min_slab_ratio) / 100; 5888 #endif 5889 zone->name = zone_names[j]; 5890 zone->zone_pgdat = pgdat; 5891 spin_lock_init(&zone->lock); 5892 zone_seqlock_init(zone); 5893 zone_pcp_init(zone); 5894 5895 if (!size) 5896 continue; 5897 5898 set_pageblock_order(); 5899 setup_usemap(pgdat, zone, zone_start_pfn, size); 5900 ret = init_currently_empty_zone(zone, zone_start_pfn, size); 5901 BUG_ON(ret); 5902 memmap_init(size, nid, j, zone_start_pfn); 5903 } 5904 } 5905 5906 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 5907 { 5908 unsigned long __maybe_unused start = 0; 5909 unsigned long __maybe_unused offset = 0; 5910 5911 /* Skip empty nodes */ 5912 if (!pgdat->node_spanned_pages) 5913 return; 5914 5915 #ifdef CONFIG_FLAT_NODE_MEM_MAP 5916 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 5917 offset = pgdat->node_start_pfn - start; 5918 /* ia64 gets its own node_mem_map, before this, without bootmem */ 5919 if (!pgdat->node_mem_map) { 5920 unsigned long size, end; 5921 struct page *map; 5922 5923 /* 5924 * The zone's endpoints aren't required to be MAX_ORDER 5925 * aligned but the node_mem_map endpoints must be in order 5926 * for the buddy allocator to function correctly. 5927 */ 5928 end = pgdat_end_pfn(pgdat); 5929 end = ALIGN(end, MAX_ORDER_NR_PAGES); 5930 size = (end - start) * sizeof(struct page); 5931 map = alloc_remap(pgdat->node_id, size); 5932 if (!map) 5933 map = memblock_virt_alloc_node_nopanic(size, 5934 pgdat->node_id); 5935 pgdat->node_mem_map = map + offset; 5936 } 5937 #ifndef CONFIG_NEED_MULTIPLE_NODES 5938 /* 5939 * With no DISCONTIG, the global mem_map is just set as node 0's 5940 */ 5941 if (pgdat == NODE_DATA(0)) { 5942 mem_map = NODE_DATA(0)->node_mem_map; 5943 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM) 5944 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 5945 mem_map -= offset; 5946 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5947 } 5948 #endif 5949 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 5950 } 5951 5952 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 5953 unsigned long node_start_pfn, unsigned long *zholes_size) 5954 { 5955 pg_data_t *pgdat = NODE_DATA(nid); 5956 unsigned long start_pfn = 0; 5957 unsigned long end_pfn = 0; 5958 5959 /* pg_data_t should be reset to zero when it's allocated */ 5960 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx); 5961 5962 reset_deferred_meminit(pgdat); 5963 pgdat->node_id = nid; 5964 pgdat->node_start_pfn = node_start_pfn; 5965 pgdat->per_cpu_nodestats = NULL; 5966 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5967 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 5968 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 5969 (u64)start_pfn << PAGE_SHIFT, 5970 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 5971 #else 5972 start_pfn = node_start_pfn; 5973 #endif 5974 calculate_node_totalpages(pgdat, start_pfn, end_pfn, 5975 zones_size, zholes_size); 5976 5977 alloc_node_mem_map(pgdat); 5978 #ifdef CONFIG_FLAT_NODE_MEM_MAP 5979 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 5980 nid, (unsigned long)pgdat, 5981 (unsigned long)pgdat->node_mem_map); 5982 #endif 5983 5984 free_area_init_core(pgdat); 5985 } 5986 5987 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5988 5989 #if MAX_NUMNODES > 1 5990 /* 5991 * Figure out the number of possible node ids. 5992 */ 5993 void __init setup_nr_node_ids(void) 5994 { 5995 unsigned int highest; 5996 5997 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 5998 nr_node_ids = highest + 1; 5999 } 6000 #endif 6001 6002 /** 6003 * node_map_pfn_alignment - determine the maximum internode alignment 6004 * 6005 * This function should be called after node map is populated and sorted. 6006 * It calculates the maximum power of two alignment which can distinguish 6007 * all the nodes. 6008 * 6009 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 6010 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 6011 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 6012 * shifted, 1GiB is enough and this function will indicate so. 6013 * 6014 * This is used to test whether pfn -> nid mapping of the chosen memory 6015 * model has fine enough granularity to avoid incorrect mapping for the 6016 * populated node map. 6017 * 6018 * Returns the determined alignment in pfn's. 0 if there is no alignment 6019 * requirement (single node). 6020 */ 6021 unsigned long __init node_map_pfn_alignment(void) 6022 { 6023 unsigned long accl_mask = 0, last_end = 0; 6024 unsigned long start, end, mask; 6025 int last_nid = -1; 6026 int i, nid; 6027 6028 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 6029 if (!start || last_nid < 0 || last_nid == nid) { 6030 last_nid = nid; 6031 last_end = end; 6032 continue; 6033 } 6034 6035 /* 6036 * Start with a mask granular enough to pin-point to the 6037 * start pfn and tick off bits one-by-one until it becomes 6038 * too coarse to separate the current node from the last. 6039 */ 6040 mask = ~((1 << __ffs(start)) - 1); 6041 while (mask && last_end <= (start & (mask << 1))) 6042 mask <<= 1; 6043 6044 /* accumulate all internode masks */ 6045 accl_mask |= mask; 6046 } 6047 6048 /* convert mask to number of pages */ 6049 return ~accl_mask + 1; 6050 } 6051 6052 /* Find the lowest pfn for a node */ 6053 static unsigned long __init find_min_pfn_for_node(int nid) 6054 { 6055 unsigned long min_pfn = ULONG_MAX; 6056 unsigned long start_pfn; 6057 int i; 6058 6059 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 6060 min_pfn = min(min_pfn, start_pfn); 6061 6062 if (min_pfn == ULONG_MAX) { 6063 pr_warn("Could not find start_pfn for node %d\n", nid); 6064 return 0; 6065 } 6066 6067 return min_pfn; 6068 } 6069 6070 /** 6071 * find_min_pfn_with_active_regions - Find the minimum PFN registered 6072 * 6073 * It returns the minimum PFN based on information provided via 6074 * memblock_set_node(). 6075 */ 6076 unsigned long __init find_min_pfn_with_active_regions(void) 6077 { 6078 return find_min_pfn_for_node(MAX_NUMNODES); 6079 } 6080 6081 /* 6082 * early_calculate_totalpages() 6083 * Sum pages in active regions for movable zone. 6084 * Populate N_MEMORY for calculating usable_nodes. 6085 */ 6086 static unsigned long __init early_calculate_totalpages(void) 6087 { 6088 unsigned long totalpages = 0; 6089 unsigned long start_pfn, end_pfn; 6090 int i, nid; 6091 6092 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 6093 unsigned long pages = end_pfn - start_pfn; 6094 6095 totalpages += pages; 6096 if (pages) 6097 node_set_state(nid, N_MEMORY); 6098 } 6099 return totalpages; 6100 } 6101 6102 /* 6103 * Find the PFN the Movable zone begins in each node. Kernel memory 6104 * is spread evenly between nodes as long as the nodes have enough 6105 * memory. When they don't, some nodes will have more kernelcore than 6106 * others 6107 */ 6108 static void __init find_zone_movable_pfns_for_nodes(void) 6109 { 6110 int i, nid; 6111 unsigned long usable_startpfn; 6112 unsigned long kernelcore_node, kernelcore_remaining; 6113 /* save the state before borrow the nodemask */ 6114 nodemask_t saved_node_state = node_states[N_MEMORY]; 6115 unsigned long totalpages = early_calculate_totalpages(); 6116 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 6117 struct memblock_region *r; 6118 6119 /* Need to find movable_zone earlier when movable_node is specified. */ 6120 find_usable_zone_for_movable(); 6121 6122 /* 6123 * If movable_node is specified, ignore kernelcore and movablecore 6124 * options. 6125 */ 6126 if (movable_node_is_enabled()) { 6127 for_each_memblock(memory, r) { 6128 if (!memblock_is_hotpluggable(r)) 6129 continue; 6130 6131 nid = r->nid; 6132 6133 usable_startpfn = PFN_DOWN(r->base); 6134 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 6135 min(usable_startpfn, zone_movable_pfn[nid]) : 6136 usable_startpfn; 6137 } 6138 6139 goto out2; 6140 } 6141 6142 /* 6143 * If kernelcore=mirror is specified, ignore movablecore option 6144 */ 6145 if (mirrored_kernelcore) { 6146 bool mem_below_4gb_not_mirrored = false; 6147 6148 for_each_memblock(memory, r) { 6149 if (memblock_is_mirror(r)) 6150 continue; 6151 6152 nid = r->nid; 6153 6154 usable_startpfn = memblock_region_memory_base_pfn(r); 6155 6156 if (usable_startpfn < 0x100000) { 6157 mem_below_4gb_not_mirrored = true; 6158 continue; 6159 } 6160 6161 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 6162 min(usable_startpfn, zone_movable_pfn[nid]) : 6163 usable_startpfn; 6164 } 6165 6166 if (mem_below_4gb_not_mirrored) 6167 pr_warn("This configuration results in unmirrored kernel memory."); 6168 6169 goto out2; 6170 } 6171 6172 /* 6173 * If movablecore=nn[KMG] was specified, calculate what size of 6174 * kernelcore that corresponds so that memory usable for 6175 * any allocation type is evenly spread. If both kernelcore 6176 * and movablecore are specified, then the value of kernelcore 6177 * will be used for required_kernelcore if it's greater than 6178 * what movablecore would have allowed. 6179 */ 6180 if (required_movablecore) { 6181 unsigned long corepages; 6182 6183 /* 6184 * Round-up so that ZONE_MOVABLE is at least as large as what 6185 * was requested by the user 6186 */ 6187 required_movablecore = 6188 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 6189 required_movablecore = min(totalpages, required_movablecore); 6190 corepages = totalpages - required_movablecore; 6191 6192 required_kernelcore = max(required_kernelcore, corepages); 6193 } 6194 6195 /* 6196 * If kernelcore was not specified or kernelcore size is larger 6197 * than totalpages, there is no ZONE_MOVABLE. 6198 */ 6199 if (!required_kernelcore || required_kernelcore >= totalpages) 6200 goto out; 6201 6202 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 6203 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 6204 6205 restart: 6206 /* Spread kernelcore memory as evenly as possible throughout nodes */ 6207 kernelcore_node = required_kernelcore / usable_nodes; 6208 for_each_node_state(nid, N_MEMORY) { 6209 unsigned long start_pfn, end_pfn; 6210 6211 /* 6212 * Recalculate kernelcore_node if the division per node 6213 * now exceeds what is necessary to satisfy the requested 6214 * amount of memory for the kernel 6215 */ 6216 if (required_kernelcore < kernelcore_node) 6217 kernelcore_node = required_kernelcore / usable_nodes; 6218 6219 /* 6220 * As the map is walked, we track how much memory is usable 6221 * by the kernel using kernelcore_remaining. When it is 6222 * 0, the rest of the node is usable by ZONE_MOVABLE 6223 */ 6224 kernelcore_remaining = kernelcore_node; 6225 6226 /* Go through each range of PFNs within this node */ 6227 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6228 unsigned long size_pages; 6229 6230 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 6231 if (start_pfn >= end_pfn) 6232 continue; 6233 6234 /* Account for what is only usable for kernelcore */ 6235 if (start_pfn < usable_startpfn) { 6236 unsigned long kernel_pages; 6237 kernel_pages = min(end_pfn, usable_startpfn) 6238 - start_pfn; 6239 6240 kernelcore_remaining -= min(kernel_pages, 6241 kernelcore_remaining); 6242 required_kernelcore -= min(kernel_pages, 6243 required_kernelcore); 6244 6245 /* Continue if range is now fully accounted */ 6246 if (end_pfn <= usable_startpfn) { 6247 6248 /* 6249 * Push zone_movable_pfn to the end so 6250 * that if we have to rebalance 6251 * kernelcore across nodes, we will 6252 * not double account here 6253 */ 6254 zone_movable_pfn[nid] = end_pfn; 6255 continue; 6256 } 6257 start_pfn = usable_startpfn; 6258 } 6259 6260 /* 6261 * The usable PFN range for ZONE_MOVABLE is from 6262 * start_pfn->end_pfn. Calculate size_pages as the 6263 * number of pages used as kernelcore 6264 */ 6265 size_pages = end_pfn - start_pfn; 6266 if (size_pages > kernelcore_remaining) 6267 size_pages = kernelcore_remaining; 6268 zone_movable_pfn[nid] = start_pfn + size_pages; 6269 6270 /* 6271 * Some kernelcore has been met, update counts and 6272 * break if the kernelcore for this node has been 6273 * satisfied 6274 */ 6275 required_kernelcore -= min(required_kernelcore, 6276 size_pages); 6277 kernelcore_remaining -= size_pages; 6278 if (!kernelcore_remaining) 6279 break; 6280 } 6281 } 6282 6283 /* 6284 * If there is still required_kernelcore, we do another pass with one 6285 * less node in the count. This will push zone_movable_pfn[nid] further 6286 * along on the nodes that still have memory until kernelcore is 6287 * satisfied 6288 */ 6289 usable_nodes--; 6290 if (usable_nodes && required_kernelcore > usable_nodes) 6291 goto restart; 6292 6293 out2: 6294 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 6295 for (nid = 0; nid < MAX_NUMNODES; nid++) 6296 zone_movable_pfn[nid] = 6297 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 6298 6299 out: 6300 /* restore the node_state */ 6301 node_states[N_MEMORY] = saved_node_state; 6302 } 6303 6304 /* Any regular or high memory on that node ? */ 6305 static void check_for_memory(pg_data_t *pgdat, int nid) 6306 { 6307 enum zone_type zone_type; 6308 6309 if (N_MEMORY == N_NORMAL_MEMORY) 6310 return; 6311 6312 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 6313 struct zone *zone = &pgdat->node_zones[zone_type]; 6314 if (populated_zone(zone)) { 6315 node_set_state(nid, N_HIGH_MEMORY); 6316 if (N_NORMAL_MEMORY != N_HIGH_MEMORY && 6317 zone_type <= ZONE_NORMAL) 6318 node_set_state(nid, N_NORMAL_MEMORY); 6319 break; 6320 } 6321 } 6322 } 6323 6324 /** 6325 * free_area_init_nodes - Initialise all pg_data_t and zone data 6326 * @max_zone_pfn: an array of max PFNs for each zone 6327 * 6328 * This will call free_area_init_node() for each active node in the system. 6329 * Using the page ranges provided by memblock_set_node(), the size of each 6330 * zone in each node and their holes is calculated. If the maximum PFN 6331 * between two adjacent zones match, it is assumed that the zone is empty. 6332 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 6333 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 6334 * starts where the previous one ended. For example, ZONE_DMA32 starts 6335 * at arch_max_dma_pfn. 6336 */ 6337 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 6338 { 6339 unsigned long start_pfn, end_pfn; 6340 int i, nid; 6341 6342 /* Record where the zone boundaries are */ 6343 memset(arch_zone_lowest_possible_pfn, 0, 6344 sizeof(arch_zone_lowest_possible_pfn)); 6345 memset(arch_zone_highest_possible_pfn, 0, 6346 sizeof(arch_zone_highest_possible_pfn)); 6347 6348 start_pfn = find_min_pfn_with_active_regions(); 6349 6350 for (i = 0; i < MAX_NR_ZONES; i++) { 6351 if (i == ZONE_MOVABLE) 6352 continue; 6353 6354 end_pfn = max(max_zone_pfn[i], start_pfn); 6355 arch_zone_lowest_possible_pfn[i] = start_pfn; 6356 arch_zone_highest_possible_pfn[i] = end_pfn; 6357 6358 start_pfn = end_pfn; 6359 } 6360 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 6361 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 6362 6363 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 6364 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 6365 find_zone_movable_pfns_for_nodes(); 6366 6367 /* Print out the zone ranges */ 6368 pr_info("Zone ranges:\n"); 6369 for (i = 0; i < MAX_NR_ZONES; i++) { 6370 if (i == ZONE_MOVABLE) 6371 continue; 6372 pr_info(" %-8s ", zone_names[i]); 6373 if (arch_zone_lowest_possible_pfn[i] == 6374 arch_zone_highest_possible_pfn[i]) 6375 pr_cont("empty\n"); 6376 else 6377 pr_cont("[mem %#018Lx-%#018Lx]\n", 6378 (u64)arch_zone_lowest_possible_pfn[i] 6379 << PAGE_SHIFT, 6380 ((u64)arch_zone_highest_possible_pfn[i] 6381 << PAGE_SHIFT) - 1); 6382 } 6383 6384 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 6385 pr_info("Movable zone start for each node\n"); 6386 for (i = 0; i < MAX_NUMNODES; i++) { 6387 if (zone_movable_pfn[i]) 6388 pr_info(" Node %d: %#018Lx\n", i, 6389 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 6390 } 6391 6392 /* Print out the early node map */ 6393 pr_info("Early memory node ranges\n"); 6394 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 6395 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 6396 (u64)start_pfn << PAGE_SHIFT, 6397 ((u64)end_pfn << PAGE_SHIFT) - 1); 6398 6399 /* Initialise every node */ 6400 mminit_verify_pageflags_layout(); 6401 setup_nr_node_ids(); 6402 for_each_online_node(nid) { 6403 pg_data_t *pgdat = NODE_DATA(nid); 6404 free_area_init_node(nid, NULL, 6405 find_min_pfn_for_node(nid), NULL); 6406 6407 /* Any memory on that node */ 6408 if (pgdat->node_present_pages) 6409 node_set_state(nid, N_MEMORY); 6410 check_for_memory(pgdat, nid); 6411 } 6412 } 6413 6414 static int __init cmdline_parse_core(char *p, unsigned long *core) 6415 { 6416 unsigned long long coremem; 6417 if (!p) 6418 return -EINVAL; 6419 6420 coremem = memparse(p, &p); 6421 *core = coremem >> PAGE_SHIFT; 6422 6423 /* Paranoid check that UL is enough for the coremem value */ 6424 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 6425 6426 return 0; 6427 } 6428 6429 /* 6430 * kernelcore=size sets the amount of memory for use for allocations that 6431 * cannot be reclaimed or migrated. 6432 */ 6433 static int __init cmdline_parse_kernelcore(char *p) 6434 { 6435 /* parse kernelcore=mirror */ 6436 if (parse_option_str(p, "mirror")) { 6437 mirrored_kernelcore = true; 6438 return 0; 6439 } 6440 6441 return cmdline_parse_core(p, &required_kernelcore); 6442 } 6443 6444 /* 6445 * movablecore=size sets the amount of memory for use for allocations that 6446 * can be reclaimed or migrated. 6447 */ 6448 static int __init cmdline_parse_movablecore(char *p) 6449 { 6450 return cmdline_parse_core(p, &required_movablecore); 6451 } 6452 6453 early_param("kernelcore", cmdline_parse_kernelcore); 6454 early_param("movablecore", cmdline_parse_movablecore); 6455 6456 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6457 6458 void adjust_managed_page_count(struct page *page, long count) 6459 { 6460 spin_lock(&managed_page_count_lock); 6461 page_zone(page)->managed_pages += count; 6462 totalram_pages += count; 6463 #ifdef CONFIG_HIGHMEM 6464 if (PageHighMem(page)) 6465 totalhigh_pages += count; 6466 #endif 6467 spin_unlock(&managed_page_count_lock); 6468 } 6469 EXPORT_SYMBOL(adjust_managed_page_count); 6470 6471 unsigned long free_reserved_area(void *start, void *end, int poison, char *s) 6472 { 6473 void *pos; 6474 unsigned long pages = 0; 6475 6476 start = (void *)PAGE_ALIGN((unsigned long)start); 6477 end = (void *)((unsigned long)end & PAGE_MASK); 6478 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 6479 if ((unsigned int)poison <= 0xFF) 6480 memset(pos, poison, PAGE_SIZE); 6481 free_reserved_page(virt_to_page(pos)); 6482 } 6483 6484 if (pages && s) 6485 pr_info("Freeing %s memory: %ldK (%p - %p)\n", 6486 s, pages << (PAGE_SHIFT - 10), start, end); 6487 6488 return pages; 6489 } 6490 EXPORT_SYMBOL(free_reserved_area); 6491 6492 #ifdef CONFIG_HIGHMEM 6493 void free_highmem_page(struct page *page) 6494 { 6495 __free_reserved_page(page); 6496 totalram_pages++; 6497 page_zone(page)->managed_pages++; 6498 totalhigh_pages++; 6499 } 6500 #endif 6501 6502 6503 void __init mem_init_print_info(const char *str) 6504 { 6505 unsigned long physpages, codesize, datasize, rosize, bss_size; 6506 unsigned long init_code_size, init_data_size; 6507 6508 physpages = get_num_physpages(); 6509 codesize = _etext - _stext; 6510 datasize = _edata - _sdata; 6511 rosize = __end_rodata - __start_rodata; 6512 bss_size = __bss_stop - __bss_start; 6513 init_data_size = __init_end - __init_begin; 6514 init_code_size = _einittext - _sinittext; 6515 6516 /* 6517 * Detect special cases and adjust section sizes accordingly: 6518 * 1) .init.* may be embedded into .data sections 6519 * 2) .init.text.* may be out of [__init_begin, __init_end], 6520 * please refer to arch/tile/kernel/vmlinux.lds.S. 6521 * 3) .rodata.* may be embedded into .text or .data sections. 6522 */ 6523 #define adj_init_size(start, end, size, pos, adj) \ 6524 do { \ 6525 if (start <= pos && pos < end && size > adj) \ 6526 size -= adj; \ 6527 } while (0) 6528 6529 adj_init_size(__init_begin, __init_end, init_data_size, 6530 _sinittext, init_code_size); 6531 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 6532 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 6533 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 6534 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 6535 6536 #undef adj_init_size 6537 6538 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 6539 #ifdef CONFIG_HIGHMEM 6540 ", %luK highmem" 6541 #endif 6542 "%s%s)\n", 6543 nr_free_pages() << (PAGE_SHIFT - 10), 6544 physpages << (PAGE_SHIFT - 10), 6545 codesize >> 10, datasize >> 10, rosize >> 10, 6546 (init_data_size + init_code_size) >> 10, bss_size >> 10, 6547 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10), 6548 totalcma_pages << (PAGE_SHIFT - 10), 6549 #ifdef CONFIG_HIGHMEM 6550 totalhigh_pages << (PAGE_SHIFT - 10), 6551 #endif 6552 str ? ", " : "", str ? str : ""); 6553 } 6554 6555 /** 6556 * set_dma_reserve - set the specified number of pages reserved in the first zone 6557 * @new_dma_reserve: The number of pages to mark reserved 6558 * 6559 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 6560 * In the DMA zone, a significant percentage may be consumed by kernel image 6561 * and other unfreeable allocations which can skew the watermarks badly. This 6562 * function may optionally be used to account for unfreeable pages in the 6563 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 6564 * smaller per-cpu batchsize. 6565 */ 6566 void __init set_dma_reserve(unsigned long new_dma_reserve) 6567 { 6568 dma_reserve = new_dma_reserve; 6569 } 6570 6571 void __init free_area_init(unsigned long *zones_size) 6572 { 6573 free_area_init_node(0, zones_size, 6574 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 6575 } 6576 6577 static int page_alloc_cpu_notify(struct notifier_block *self, 6578 unsigned long action, void *hcpu) 6579 { 6580 int cpu = (unsigned long)hcpu; 6581 6582 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 6583 lru_add_drain_cpu(cpu); 6584 drain_pages(cpu); 6585 6586 /* 6587 * Spill the event counters of the dead processor 6588 * into the current processors event counters. 6589 * This artificially elevates the count of the current 6590 * processor. 6591 */ 6592 vm_events_fold_cpu(cpu); 6593 6594 /* 6595 * Zero the differential counters of the dead processor 6596 * so that the vm statistics are consistent. 6597 * 6598 * This is only okay since the processor is dead and cannot 6599 * race with what we are doing. 6600 */ 6601 cpu_vm_stats_fold(cpu); 6602 } 6603 return NOTIFY_OK; 6604 } 6605 6606 void __init page_alloc_init(void) 6607 { 6608 hotcpu_notifier(page_alloc_cpu_notify, 0); 6609 } 6610 6611 /* 6612 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 6613 * or min_free_kbytes changes. 6614 */ 6615 static void calculate_totalreserve_pages(void) 6616 { 6617 struct pglist_data *pgdat; 6618 unsigned long reserve_pages = 0; 6619 enum zone_type i, j; 6620 6621 for_each_online_pgdat(pgdat) { 6622 6623 pgdat->totalreserve_pages = 0; 6624 6625 for (i = 0; i < MAX_NR_ZONES; i++) { 6626 struct zone *zone = pgdat->node_zones + i; 6627 long max = 0; 6628 6629 /* Find valid and maximum lowmem_reserve in the zone */ 6630 for (j = i; j < MAX_NR_ZONES; j++) { 6631 if (zone->lowmem_reserve[j] > max) 6632 max = zone->lowmem_reserve[j]; 6633 } 6634 6635 /* we treat the high watermark as reserved pages. */ 6636 max += high_wmark_pages(zone); 6637 6638 if (max > zone->managed_pages) 6639 max = zone->managed_pages; 6640 6641 pgdat->totalreserve_pages += max; 6642 6643 reserve_pages += max; 6644 } 6645 } 6646 totalreserve_pages = reserve_pages; 6647 } 6648 6649 /* 6650 * setup_per_zone_lowmem_reserve - called whenever 6651 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 6652 * has a correct pages reserved value, so an adequate number of 6653 * pages are left in the zone after a successful __alloc_pages(). 6654 */ 6655 static void setup_per_zone_lowmem_reserve(void) 6656 { 6657 struct pglist_data *pgdat; 6658 enum zone_type j, idx; 6659 6660 for_each_online_pgdat(pgdat) { 6661 for (j = 0; j < MAX_NR_ZONES; j++) { 6662 struct zone *zone = pgdat->node_zones + j; 6663 unsigned long managed_pages = zone->managed_pages; 6664 6665 zone->lowmem_reserve[j] = 0; 6666 6667 idx = j; 6668 while (idx) { 6669 struct zone *lower_zone; 6670 6671 idx--; 6672 6673 if (sysctl_lowmem_reserve_ratio[idx] < 1) 6674 sysctl_lowmem_reserve_ratio[idx] = 1; 6675 6676 lower_zone = pgdat->node_zones + idx; 6677 lower_zone->lowmem_reserve[j] = managed_pages / 6678 sysctl_lowmem_reserve_ratio[idx]; 6679 managed_pages += lower_zone->managed_pages; 6680 } 6681 } 6682 } 6683 6684 /* update totalreserve_pages */ 6685 calculate_totalreserve_pages(); 6686 } 6687 6688 static void __setup_per_zone_wmarks(void) 6689 { 6690 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 6691 unsigned long lowmem_pages = 0; 6692 struct zone *zone; 6693 unsigned long flags; 6694 6695 /* Calculate total number of !ZONE_HIGHMEM pages */ 6696 for_each_zone(zone) { 6697 if (!is_highmem(zone)) 6698 lowmem_pages += zone->managed_pages; 6699 } 6700 6701 for_each_zone(zone) { 6702 u64 tmp; 6703 6704 spin_lock_irqsave(&zone->lock, flags); 6705 tmp = (u64)pages_min * zone->managed_pages; 6706 do_div(tmp, lowmem_pages); 6707 if (is_highmem(zone)) { 6708 /* 6709 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 6710 * need highmem pages, so cap pages_min to a small 6711 * value here. 6712 * 6713 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 6714 * deltas control asynch page reclaim, and so should 6715 * not be capped for highmem. 6716 */ 6717 unsigned long min_pages; 6718 6719 min_pages = zone->managed_pages / 1024; 6720 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 6721 zone->watermark[WMARK_MIN] = min_pages; 6722 } else { 6723 /* 6724 * If it's a lowmem zone, reserve a number of pages 6725 * proportionate to the zone's size. 6726 */ 6727 zone->watermark[WMARK_MIN] = tmp; 6728 } 6729 6730 /* 6731 * Set the kswapd watermarks distance according to the 6732 * scale factor in proportion to available memory, but 6733 * ensure a minimum size on small systems. 6734 */ 6735 tmp = max_t(u64, tmp >> 2, 6736 mult_frac(zone->managed_pages, 6737 watermark_scale_factor, 10000)); 6738 6739 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 6740 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; 6741 6742 spin_unlock_irqrestore(&zone->lock, flags); 6743 } 6744 6745 /* update totalreserve_pages */ 6746 calculate_totalreserve_pages(); 6747 } 6748 6749 /** 6750 * setup_per_zone_wmarks - called when min_free_kbytes changes 6751 * or when memory is hot-{added|removed} 6752 * 6753 * Ensures that the watermark[min,low,high] values for each zone are set 6754 * correctly with respect to min_free_kbytes. 6755 */ 6756 void setup_per_zone_wmarks(void) 6757 { 6758 mutex_lock(&zonelists_mutex); 6759 __setup_per_zone_wmarks(); 6760 mutex_unlock(&zonelists_mutex); 6761 } 6762 6763 /* 6764 * Initialise min_free_kbytes. 6765 * 6766 * For small machines we want it small (128k min). For large machines 6767 * we want it large (64MB max). But it is not linear, because network 6768 * bandwidth does not increase linearly with machine size. We use 6769 * 6770 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 6771 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 6772 * 6773 * which yields 6774 * 6775 * 16MB: 512k 6776 * 32MB: 724k 6777 * 64MB: 1024k 6778 * 128MB: 1448k 6779 * 256MB: 2048k 6780 * 512MB: 2896k 6781 * 1024MB: 4096k 6782 * 2048MB: 5792k 6783 * 4096MB: 8192k 6784 * 8192MB: 11584k 6785 * 16384MB: 16384k 6786 */ 6787 int __meminit init_per_zone_wmark_min(void) 6788 { 6789 unsigned long lowmem_kbytes; 6790 int new_min_free_kbytes; 6791 6792 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 6793 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 6794 6795 if (new_min_free_kbytes > user_min_free_kbytes) { 6796 min_free_kbytes = new_min_free_kbytes; 6797 if (min_free_kbytes < 128) 6798 min_free_kbytes = 128; 6799 if (min_free_kbytes > 65536) 6800 min_free_kbytes = 65536; 6801 } else { 6802 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 6803 new_min_free_kbytes, user_min_free_kbytes); 6804 } 6805 setup_per_zone_wmarks(); 6806 refresh_zone_stat_thresholds(); 6807 setup_per_zone_lowmem_reserve(); 6808 return 0; 6809 } 6810 core_initcall(init_per_zone_wmark_min) 6811 6812 /* 6813 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 6814 * that we can call two helper functions whenever min_free_kbytes 6815 * changes. 6816 */ 6817 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 6818 void __user *buffer, size_t *length, loff_t *ppos) 6819 { 6820 int rc; 6821 6822 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6823 if (rc) 6824 return rc; 6825 6826 if (write) { 6827 user_min_free_kbytes = min_free_kbytes; 6828 setup_per_zone_wmarks(); 6829 } 6830 return 0; 6831 } 6832 6833 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 6834 void __user *buffer, size_t *length, loff_t *ppos) 6835 { 6836 int rc; 6837 6838 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6839 if (rc) 6840 return rc; 6841 6842 if (write) 6843 setup_per_zone_wmarks(); 6844 6845 return 0; 6846 } 6847 6848 #ifdef CONFIG_NUMA 6849 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 6850 void __user *buffer, size_t *length, loff_t *ppos) 6851 { 6852 struct pglist_data *pgdat; 6853 struct zone *zone; 6854 int rc; 6855 6856 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6857 if (rc) 6858 return rc; 6859 6860 for_each_online_pgdat(pgdat) 6861 pgdat->min_slab_pages = 0; 6862 6863 for_each_zone(zone) 6864 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages * 6865 sysctl_min_unmapped_ratio) / 100; 6866 return 0; 6867 } 6868 6869 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 6870 void __user *buffer, size_t *length, loff_t *ppos) 6871 { 6872 struct pglist_data *pgdat; 6873 struct zone *zone; 6874 int rc; 6875 6876 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6877 if (rc) 6878 return rc; 6879 6880 for_each_online_pgdat(pgdat) 6881 pgdat->min_slab_pages = 0; 6882 6883 for_each_zone(zone) 6884 zone->zone_pgdat->min_slab_pages += (zone->managed_pages * 6885 sysctl_min_slab_ratio) / 100; 6886 return 0; 6887 } 6888 #endif 6889 6890 /* 6891 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 6892 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 6893 * whenever sysctl_lowmem_reserve_ratio changes. 6894 * 6895 * The reserve ratio obviously has absolutely no relation with the 6896 * minimum watermarks. The lowmem reserve ratio can only make sense 6897 * if in function of the boot time zone sizes. 6898 */ 6899 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 6900 void __user *buffer, size_t *length, loff_t *ppos) 6901 { 6902 proc_dointvec_minmax(table, write, buffer, length, ppos); 6903 setup_per_zone_lowmem_reserve(); 6904 return 0; 6905 } 6906 6907 /* 6908 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 6909 * cpu. It is the fraction of total pages in each zone that a hot per cpu 6910 * pagelist can have before it gets flushed back to buddy allocator. 6911 */ 6912 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 6913 void __user *buffer, size_t *length, loff_t *ppos) 6914 { 6915 struct zone *zone; 6916 int old_percpu_pagelist_fraction; 6917 int ret; 6918 6919 mutex_lock(&pcp_batch_high_lock); 6920 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 6921 6922 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 6923 if (!write || ret < 0) 6924 goto out; 6925 6926 /* Sanity checking to avoid pcp imbalance */ 6927 if (percpu_pagelist_fraction && 6928 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 6929 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 6930 ret = -EINVAL; 6931 goto out; 6932 } 6933 6934 /* No change? */ 6935 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 6936 goto out; 6937 6938 for_each_populated_zone(zone) { 6939 unsigned int cpu; 6940 6941 for_each_possible_cpu(cpu) 6942 pageset_set_high_and_batch(zone, 6943 per_cpu_ptr(zone->pageset, cpu)); 6944 } 6945 out: 6946 mutex_unlock(&pcp_batch_high_lock); 6947 return ret; 6948 } 6949 6950 #ifdef CONFIG_NUMA 6951 int hashdist = HASHDIST_DEFAULT; 6952 6953 static int __init set_hashdist(char *str) 6954 { 6955 if (!str) 6956 return 0; 6957 hashdist = simple_strtoul(str, &str, 0); 6958 return 1; 6959 } 6960 __setup("hashdist=", set_hashdist); 6961 #endif 6962 6963 /* 6964 * allocate a large system hash table from bootmem 6965 * - it is assumed that the hash table must contain an exact power-of-2 6966 * quantity of entries 6967 * - limit is the number of hash buckets, not the total allocation size 6968 */ 6969 void *__init alloc_large_system_hash(const char *tablename, 6970 unsigned long bucketsize, 6971 unsigned long numentries, 6972 int scale, 6973 int flags, 6974 unsigned int *_hash_shift, 6975 unsigned int *_hash_mask, 6976 unsigned long low_limit, 6977 unsigned long high_limit) 6978 { 6979 unsigned long long max = high_limit; 6980 unsigned long log2qty, size; 6981 void *table = NULL; 6982 6983 /* allow the kernel cmdline to have a say */ 6984 if (!numentries) { 6985 /* round applicable memory size up to nearest megabyte */ 6986 numentries = nr_kernel_pages; 6987 6988 /* It isn't necessary when PAGE_SIZE >= 1MB */ 6989 if (PAGE_SHIFT < 20) 6990 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 6991 6992 /* limit to 1 bucket per 2^scale bytes of low memory */ 6993 if (scale > PAGE_SHIFT) 6994 numentries >>= (scale - PAGE_SHIFT); 6995 else 6996 numentries <<= (PAGE_SHIFT - scale); 6997 6998 /* Make sure we've got at least a 0-order allocation.. */ 6999 if (unlikely(flags & HASH_SMALL)) { 7000 /* Makes no sense without HASH_EARLY */ 7001 WARN_ON(!(flags & HASH_EARLY)); 7002 if (!(numentries >> *_hash_shift)) { 7003 numentries = 1UL << *_hash_shift; 7004 BUG_ON(!numentries); 7005 } 7006 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 7007 numentries = PAGE_SIZE / bucketsize; 7008 } 7009 numentries = roundup_pow_of_two(numentries); 7010 7011 /* limit allocation size to 1/16 total memory by default */ 7012 if (max == 0) { 7013 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 7014 do_div(max, bucketsize); 7015 } 7016 max = min(max, 0x80000000ULL); 7017 7018 if (numentries < low_limit) 7019 numentries = low_limit; 7020 if (numentries > max) 7021 numentries = max; 7022 7023 log2qty = ilog2(numentries); 7024 7025 do { 7026 size = bucketsize << log2qty; 7027 if (flags & HASH_EARLY) 7028 table = memblock_virt_alloc_nopanic(size, 0); 7029 else if (hashdist) 7030 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 7031 else { 7032 /* 7033 * If bucketsize is not a power-of-two, we may free 7034 * some pages at the end of hash table which 7035 * alloc_pages_exact() automatically does 7036 */ 7037 if (get_order(size) < MAX_ORDER) { 7038 table = alloc_pages_exact(size, GFP_ATOMIC); 7039 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 7040 } 7041 } 7042 } while (!table && size > PAGE_SIZE && --log2qty); 7043 7044 if (!table) 7045 panic("Failed to allocate %s hash table\n", tablename); 7046 7047 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n", 7048 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size); 7049 7050 if (_hash_shift) 7051 *_hash_shift = log2qty; 7052 if (_hash_mask) 7053 *_hash_mask = (1 << log2qty) - 1; 7054 7055 return table; 7056 } 7057 7058 /* 7059 * This function checks whether pageblock includes unmovable pages or not. 7060 * If @count is not zero, it is okay to include less @count unmovable pages 7061 * 7062 * PageLRU check without isolation or lru_lock could race so that 7063 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't 7064 * expect this function should be exact. 7065 */ 7066 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 7067 bool skip_hwpoisoned_pages) 7068 { 7069 unsigned long pfn, iter, found; 7070 int mt; 7071 7072 /* 7073 * For avoiding noise data, lru_add_drain_all() should be called 7074 * If ZONE_MOVABLE, the zone never contains unmovable pages 7075 */ 7076 if (zone_idx(zone) == ZONE_MOVABLE) 7077 return false; 7078 mt = get_pageblock_migratetype(page); 7079 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt)) 7080 return false; 7081 7082 pfn = page_to_pfn(page); 7083 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 7084 unsigned long check = pfn + iter; 7085 7086 if (!pfn_valid_within(check)) 7087 continue; 7088 7089 page = pfn_to_page(check); 7090 7091 /* 7092 * Hugepages are not in LRU lists, but they're movable. 7093 * We need not scan over tail pages bacause we don't 7094 * handle each tail page individually in migration. 7095 */ 7096 if (PageHuge(page)) { 7097 iter = round_up(iter + 1, 1<<compound_order(page)) - 1; 7098 continue; 7099 } 7100 7101 /* 7102 * We can't use page_count without pin a page 7103 * because another CPU can free compound page. 7104 * This check already skips compound tails of THP 7105 * because their page->_refcount is zero at all time. 7106 */ 7107 if (!page_ref_count(page)) { 7108 if (PageBuddy(page)) 7109 iter += (1 << page_order(page)) - 1; 7110 continue; 7111 } 7112 7113 /* 7114 * The HWPoisoned page may be not in buddy system, and 7115 * page_count() is not 0. 7116 */ 7117 if (skip_hwpoisoned_pages && PageHWPoison(page)) 7118 continue; 7119 7120 if (!PageLRU(page)) 7121 found++; 7122 /* 7123 * If there are RECLAIMABLE pages, we need to check 7124 * it. But now, memory offline itself doesn't call 7125 * shrink_node_slabs() and it still to be fixed. 7126 */ 7127 /* 7128 * If the page is not RAM, page_count()should be 0. 7129 * we don't need more check. This is an _used_ not-movable page. 7130 * 7131 * The problematic thing here is PG_reserved pages. PG_reserved 7132 * is set to both of a memory hole page and a _used_ kernel 7133 * page at boot. 7134 */ 7135 if (found > count) 7136 return true; 7137 } 7138 return false; 7139 } 7140 7141 bool is_pageblock_removable_nolock(struct page *page) 7142 { 7143 struct zone *zone; 7144 unsigned long pfn; 7145 7146 /* 7147 * We have to be careful here because we are iterating over memory 7148 * sections which are not zone aware so we might end up outside of 7149 * the zone but still within the section. 7150 * We have to take care about the node as well. If the node is offline 7151 * its NODE_DATA will be NULL - see page_zone. 7152 */ 7153 if (!node_online(page_to_nid(page))) 7154 return false; 7155 7156 zone = page_zone(page); 7157 pfn = page_to_pfn(page); 7158 if (!zone_spans_pfn(zone, pfn)) 7159 return false; 7160 7161 return !has_unmovable_pages(zone, page, 0, true); 7162 } 7163 7164 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA) 7165 7166 static unsigned long pfn_max_align_down(unsigned long pfn) 7167 { 7168 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 7169 pageblock_nr_pages) - 1); 7170 } 7171 7172 static unsigned long pfn_max_align_up(unsigned long pfn) 7173 { 7174 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 7175 pageblock_nr_pages)); 7176 } 7177 7178 /* [start, end) must belong to a single zone. */ 7179 static int __alloc_contig_migrate_range(struct compact_control *cc, 7180 unsigned long start, unsigned long end) 7181 { 7182 /* This function is based on compact_zone() from compaction.c. */ 7183 unsigned long nr_reclaimed; 7184 unsigned long pfn = start; 7185 unsigned int tries = 0; 7186 int ret = 0; 7187 7188 migrate_prep(); 7189 7190 while (pfn < end || !list_empty(&cc->migratepages)) { 7191 if (fatal_signal_pending(current)) { 7192 ret = -EINTR; 7193 break; 7194 } 7195 7196 if (list_empty(&cc->migratepages)) { 7197 cc->nr_migratepages = 0; 7198 pfn = isolate_migratepages_range(cc, pfn, end); 7199 if (!pfn) { 7200 ret = -EINTR; 7201 break; 7202 } 7203 tries = 0; 7204 } else if (++tries == 5) { 7205 ret = ret < 0 ? ret : -EBUSY; 7206 break; 7207 } 7208 7209 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 7210 &cc->migratepages); 7211 cc->nr_migratepages -= nr_reclaimed; 7212 7213 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 7214 NULL, 0, cc->mode, MR_CMA); 7215 } 7216 if (ret < 0) { 7217 putback_movable_pages(&cc->migratepages); 7218 return ret; 7219 } 7220 return 0; 7221 } 7222 7223 /** 7224 * alloc_contig_range() -- tries to allocate given range of pages 7225 * @start: start PFN to allocate 7226 * @end: one-past-the-last PFN to allocate 7227 * @migratetype: migratetype of the underlaying pageblocks (either 7228 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 7229 * in range must have the same migratetype and it must 7230 * be either of the two. 7231 * 7232 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 7233 * aligned, however it's the caller's responsibility to guarantee that 7234 * we are the only thread that changes migrate type of pageblocks the 7235 * pages fall in. 7236 * 7237 * The PFN range must belong to a single zone. 7238 * 7239 * Returns zero on success or negative error code. On success all 7240 * pages which PFN is in [start, end) are allocated for the caller and 7241 * need to be freed with free_contig_range(). 7242 */ 7243 int alloc_contig_range(unsigned long start, unsigned long end, 7244 unsigned migratetype) 7245 { 7246 unsigned long outer_start, outer_end; 7247 unsigned int order; 7248 int ret = 0; 7249 7250 struct compact_control cc = { 7251 .nr_migratepages = 0, 7252 .order = -1, 7253 .zone = page_zone(pfn_to_page(start)), 7254 .mode = MIGRATE_SYNC, 7255 .ignore_skip_hint = true, 7256 }; 7257 INIT_LIST_HEAD(&cc.migratepages); 7258 7259 /* 7260 * What we do here is we mark all pageblocks in range as 7261 * MIGRATE_ISOLATE. Because pageblock and max order pages may 7262 * have different sizes, and due to the way page allocator 7263 * work, we align the range to biggest of the two pages so 7264 * that page allocator won't try to merge buddies from 7265 * different pageblocks and change MIGRATE_ISOLATE to some 7266 * other migration type. 7267 * 7268 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 7269 * migrate the pages from an unaligned range (ie. pages that 7270 * we are interested in). This will put all the pages in 7271 * range back to page allocator as MIGRATE_ISOLATE. 7272 * 7273 * When this is done, we take the pages in range from page 7274 * allocator removing them from the buddy system. This way 7275 * page allocator will never consider using them. 7276 * 7277 * This lets us mark the pageblocks back as 7278 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 7279 * aligned range but not in the unaligned, original range are 7280 * put back to page allocator so that buddy can use them. 7281 */ 7282 7283 ret = start_isolate_page_range(pfn_max_align_down(start), 7284 pfn_max_align_up(end), migratetype, 7285 false); 7286 if (ret) 7287 return ret; 7288 7289 /* 7290 * In case of -EBUSY, we'd like to know which page causes problem. 7291 * So, just fall through. We will check it in test_pages_isolated(). 7292 */ 7293 ret = __alloc_contig_migrate_range(&cc, start, end); 7294 if (ret && ret != -EBUSY) 7295 goto done; 7296 7297 /* 7298 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 7299 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 7300 * more, all pages in [start, end) are free in page allocator. 7301 * What we are going to do is to allocate all pages from 7302 * [start, end) (that is remove them from page allocator). 7303 * 7304 * The only problem is that pages at the beginning and at the 7305 * end of interesting range may be not aligned with pages that 7306 * page allocator holds, ie. they can be part of higher order 7307 * pages. Because of this, we reserve the bigger range and 7308 * once this is done free the pages we are not interested in. 7309 * 7310 * We don't have to hold zone->lock here because the pages are 7311 * isolated thus they won't get removed from buddy. 7312 */ 7313 7314 lru_add_drain_all(); 7315 drain_all_pages(cc.zone); 7316 7317 order = 0; 7318 outer_start = start; 7319 while (!PageBuddy(pfn_to_page(outer_start))) { 7320 if (++order >= MAX_ORDER) { 7321 outer_start = start; 7322 break; 7323 } 7324 outer_start &= ~0UL << order; 7325 } 7326 7327 if (outer_start != start) { 7328 order = page_order(pfn_to_page(outer_start)); 7329 7330 /* 7331 * outer_start page could be small order buddy page and 7332 * it doesn't include start page. Adjust outer_start 7333 * in this case to report failed page properly 7334 * on tracepoint in test_pages_isolated() 7335 */ 7336 if (outer_start + (1UL << order) <= start) 7337 outer_start = start; 7338 } 7339 7340 /* Make sure the range is really isolated. */ 7341 if (test_pages_isolated(outer_start, end, false)) { 7342 pr_info("%s: [%lx, %lx) PFNs busy\n", 7343 __func__, outer_start, end); 7344 ret = -EBUSY; 7345 goto done; 7346 } 7347 7348 /* Grab isolated pages from freelists. */ 7349 outer_end = isolate_freepages_range(&cc, outer_start, end); 7350 if (!outer_end) { 7351 ret = -EBUSY; 7352 goto done; 7353 } 7354 7355 /* Free head and tail (if any) */ 7356 if (start != outer_start) 7357 free_contig_range(outer_start, start - outer_start); 7358 if (end != outer_end) 7359 free_contig_range(end, outer_end - end); 7360 7361 done: 7362 undo_isolate_page_range(pfn_max_align_down(start), 7363 pfn_max_align_up(end), migratetype); 7364 return ret; 7365 } 7366 7367 void free_contig_range(unsigned long pfn, unsigned nr_pages) 7368 { 7369 unsigned int count = 0; 7370 7371 for (; nr_pages--; pfn++) { 7372 struct page *page = pfn_to_page(pfn); 7373 7374 count += page_count(page) != 1; 7375 __free_page(page); 7376 } 7377 WARN(count != 0, "%d pages are still in use!\n", count); 7378 } 7379 #endif 7380 7381 #ifdef CONFIG_MEMORY_HOTPLUG 7382 /* 7383 * The zone indicated has a new number of managed_pages; batch sizes and percpu 7384 * page high values need to be recalulated. 7385 */ 7386 void __meminit zone_pcp_update(struct zone *zone) 7387 { 7388 unsigned cpu; 7389 mutex_lock(&pcp_batch_high_lock); 7390 for_each_possible_cpu(cpu) 7391 pageset_set_high_and_batch(zone, 7392 per_cpu_ptr(zone->pageset, cpu)); 7393 mutex_unlock(&pcp_batch_high_lock); 7394 } 7395 #endif 7396 7397 void zone_pcp_reset(struct zone *zone) 7398 { 7399 unsigned long flags; 7400 int cpu; 7401 struct per_cpu_pageset *pset; 7402 7403 /* avoid races with drain_pages() */ 7404 local_irq_save(flags); 7405 if (zone->pageset != &boot_pageset) { 7406 for_each_online_cpu(cpu) { 7407 pset = per_cpu_ptr(zone->pageset, cpu); 7408 drain_zonestat(zone, pset); 7409 } 7410 free_percpu(zone->pageset); 7411 zone->pageset = &boot_pageset; 7412 } 7413 local_irq_restore(flags); 7414 } 7415 7416 #ifdef CONFIG_MEMORY_HOTREMOVE 7417 /* 7418 * All pages in the range must be in a single zone and isolated 7419 * before calling this. 7420 */ 7421 void 7422 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 7423 { 7424 struct page *page; 7425 struct zone *zone; 7426 unsigned int order, i; 7427 unsigned long pfn; 7428 unsigned long flags; 7429 /* find the first valid pfn */ 7430 for (pfn = start_pfn; pfn < end_pfn; pfn++) 7431 if (pfn_valid(pfn)) 7432 break; 7433 if (pfn == end_pfn) 7434 return; 7435 zone = page_zone(pfn_to_page(pfn)); 7436 spin_lock_irqsave(&zone->lock, flags); 7437 pfn = start_pfn; 7438 while (pfn < end_pfn) { 7439 if (!pfn_valid(pfn)) { 7440 pfn++; 7441 continue; 7442 } 7443 page = pfn_to_page(pfn); 7444 /* 7445 * The HWPoisoned page may be not in buddy system, and 7446 * page_count() is not 0. 7447 */ 7448 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 7449 pfn++; 7450 SetPageReserved(page); 7451 continue; 7452 } 7453 7454 BUG_ON(page_count(page)); 7455 BUG_ON(!PageBuddy(page)); 7456 order = page_order(page); 7457 #ifdef CONFIG_DEBUG_VM 7458 pr_info("remove from free list %lx %d %lx\n", 7459 pfn, 1 << order, end_pfn); 7460 #endif 7461 list_del(&page->lru); 7462 rmv_page_order(page); 7463 zone->free_area[order].nr_free--; 7464 for (i = 0; i < (1 << order); i++) 7465 SetPageReserved((page+i)); 7466 pfn += (1 << order); 7467 } 7468 spin_unlock_irqrestore(&zone->lock, flags); 7469 } 7470 #endif 7471 7472 bool is_free_buddy_page(struct page *page) 7473 { 7474 struct zone *zone = page_zone(page); 7475 unsigned long pfn = page_to_pfn(page); 7476 unsigned long flags; 7477 unsigned int order; 7478 7479 spin_lock_irqsave(&zone->lock, flags); 7480 for (order = 0; order < MAX_ORDER; order++) { 7481 struct page *page_head = page - (pfn & ((1 << order) - 1)); 7482 7483 if (PageBuddy(page_head) && page_order(page_head) >= order) 7484 break; 7485 } 7486 spin_unlock_irqrestore(&zone->lock, flags); 7487 7488 return order < MAX_ORDER; 7489 } 7490