xref: /openbmc/linux/mm/page_alloc.c (revision 77a87824)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page_ext.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 
68 #include <asm/sections.h>
69 #include <asm/tlbflush.h>
70 #include <asm/div64.h>
71 #include "internal.h"
72 
73 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
74 static DEFINE_MUTEX(pcp_batch_high_lock);
75 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
76 
77 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
78 DEFINE_PER_CPU(int, numa_node);
79 EXPORT_PER_CPU_SYMBOL(numa_node);
80 #endif
81 
82 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
83 /*
84  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
85  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
86  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
87  * defined in <linux/topology.h>.
88  */
89 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
90 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
91 int _node_numa_mem_[MAX_NUMNODES];
92 #endif
93 
94 /*
95  * Array of node states.
96  */
97 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
98 	[N_POSSIBLE] = NODE_MASK_ALL,
99 	[N_ONLINE] = { { [0] = 1UL } },
100 #ifndef CONFIG_NUMA
101 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
102 #ifdef CONFIG_HIGHMEM
103 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
104 #endif
105 #ifdef CONFIG_MOVABLE_NODE
106 	[N_MEMORY] = { { [0] = 1UL } },
107 #endif
108 	[N_CPU] = { { [0] = 1UL } },
109 #endif	/* NUMA */
110 };
111 EXPORT_SYMBOL(node_states);
112 
113 /* Protect totalram_pages and zone->managed_pages */
114 static DEFINE_SPINLOCK(managed_page_count_lock);
115 
116 unsigned long totalram_pages __read_mostly;
117 unsigned long totalreserve_pages __read_mostly;
118 unsigned long totalcma_pages __read_mostly;
119 
120 int percpu_pagelist_fraction;
121 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
122 
123 /*
124  * A cached value of the page's pageblock's migratetype, used when the page is
125  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
126  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
127  * Also the migratetype set in the page does not necessarily match the pcplist
128  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
129  * other index - this ensures that it will be put on the correct CMA freelist.
130  */
131 static inline int get_pcppage_migratetype(struct page *page)
132 {
133 	return page->index;
134 }
135 
136 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
137 {
138 	page->index = migratetype;
139 }
140 
141 #ifdef CONFIG_PM_SLEEP
142 /*
143  * The following functions are used by the suspend/hibernate code to temporarily
144  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
145  * while devices are suspended.  To avoid races with the suspend/hibernate code,
146  * they should always be called with pm_mutex held (gfp_allowed_mask also should
147  * only be modified with pm_mutex held, unless the suspend/hibernate code is
148  * guaranteed not to run in parallel with that modification).
149  */
150 
151 static gfp_t saved_gfp_mask;
152 
153 void pm_restore_gfp_mask(void)
154 {
155 	WARN_ON(!mutex_is_locked(&pm_mutex));
156 	if (saved_gfp_mask) {
157 		gfp_allowed_mask = saved_gfp_mask;
158 		saved_gfp_mask = 0;
159 	}
160 }
161 
162 void pm_restrict_gfp_mask(void)
163 {
164 	WARN_ON(!mutex_is_locked(&pm_mutex));
165 	WARN_ON(saved_gfp_mask);
166 	saved_gfp_mask = gfp_allowed_mask;
167 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
168 }
169 
170 bool pm_suspended_storage(void)
171 {
172 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
173 		return false;
174 	return true;
175 }
176 #endif /* CONFIG_PM_SLEEP */
177 
178 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
179 unsigned int pageblock_order __read_mostly;
180 #endif
181 
182 static void __free_pages_ok(struct page *page, unsigned int order);
183 
184 /*
185  * results with 256, 32 in the lowmem_reserve sysctl:
186  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
187  *	1G machine -> (16M dma, 784M normal, 224M high)
188  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
189  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
190  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
191  *
192  * TBD: should special case ZONE_DMA32 machines here - in those we normally
193  * don't need any ZONE_NORMAL reservation
194  */
195 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
196 #ifdef CONFIG_ZONE_DMA
197 	 256,
198 #endif
199 #ifdef CONFIG_ZONE_DMA32
200 	 256,
201 #endif
202 #ifdef CONFIG_HIGHMEM
203 	 32,
204 #endif
205 	 32,
206 };
207 
208 EXPORT_SYMBOL(totalram_pages);
209 
210 static char * const zone_names[MAX_NR_ZONES] = {
211 #ifdef CONFIG_ZONE_DMA
212 	 "DMA",
213 #endif
214 #ifdef CONFIG_ZONE_DMA32
215 	 "DMA32",
216 #endif
217 	 "Normal",
218 #ifdef CONFIG_HIGHMEM
219 	 "HighMem",
220 #endif
221 	 "Movable",
222 #ifdef CONFIG_ZONE_DEVICE
223 	 "Device",
224 #endif
225 };
226 
227 char * const migratetype_names[MIGRATE_TYPES] = {
228 	"Unmovable",
229 	"Movable",
230 	"Reclaimable",
231 	"HighAtomic",
232 #ifdef CONFIG_CMA
233 	"CMA",
234 #endif
235 #ifdef CONFIG_MEMORY_ISOLATION
236 	"Isolate",
237 #endif
238 };
239 
240 compound_page_dtor * const compound_page_dtors[] = {
241 	NULL,
242 	free_compound_page,
243 #ifdef CONFIG_HUGETLB_PAGE
244 	free_huge_page,
245 #endif
246 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
247 	free_transhuge_page,
248 #endif
249 };
250 
251 int min_free_kbytes = 1024;
252 int user_min_free_kbytes = -1;
253 int watermark_scale_factor = 10;
254 
255 static unsigned long __meminitdata nr_kernel_pages;
256 static unsigned long __meminitdata nr_all_pages;
257 static unsigned long __meminitdata dma_reserve;
258 
259 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
260 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
261 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
262 static unsigned long __initdata required_kernelcore;
263 static unsigned long __initdata required_movablecore;
264 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
265 static bool mirrored_kernelcore;
266 
267 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
268 int movable_zone;
269 EXPORT_SYMBOL(movable_zone);
270 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
271 
272 #if MAX_NUMNODES > 1
273 int nr_node_ids __read_mostly = MAX_NUMNODES;
274 int nr_online_nodes __read_mostly = 1;
275 EXPORT_SYMBOL(nr_node_ids);
276 EXPORT_SYMBOL(nr_online_nodes);
277 #endif
278 
279 int page_group_by_mobility_disabled __read_mostly;
280 
281 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
282 static inline void reset_deferred_meminit(pg_data_t *pgdat)
283 {
284 	pgdat->first_deferred_pfn = ULONG_MAX;
285 }
286 
287 /* Returns true if the struct page for the pfn is uninitialised */
288 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
289 {
290 	int nid = early_pfn_to_nid(pfn);
291 
292 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
293 		return true;
294 
295 	return false;
296 }
297 
298 /*
299  * Returns false when the remaining initialisation should be deferred until
300  * later in the boot cycle when it can be parallelised.
301  */
302 static inline bool update_defer_init(pg_data_t *pgdat,
303 				unsigned long pfn, unsigned long zone_end,
304 				unsigned long *nr_initialised)
305 {
306 	unsigned long max_initialise;
307 
308 	/* Always populate low zones for address-contrained allocations */
309 	if (zone_end < pgdat_end_pfn(pgdat))
310 		return true;
311 	/*
312 	 * Initialise at least 2G of a node but also take into account that
313 	 * two large system hashes that can take up 1GB for 0.25TB/node.
314 	 */
315 	max_initialise = max(2UL << (30 - PAGE_SHIFT),
316 		(pgdat->node_spanned_pages >> 8));
317 
318 	(*nr_initialised)++;
319 	if ((*nr_initialised > max_initialise) &&
320 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
321 		pgdat->first_deferred_pfn = pfn;
322 		return false;
323 	}
324 
325 	return true;
326 }
327 #else
328 static inline void reset_deferred_meminit(pg_data_t *pgdat)
329 {
330 }
331 
332 static inline bool early_page_uninitialised(unsigned long pfn)
333 {
334 	return false;
335 }
336 
337 static inline bool update_defer_init(pg_data_t *pgdat,
338 				unsigned long pfn, unsigned long zone_end,
339 				unsigned long *nr_initialised)
340 {
341 	return true;
342 }
343 #endif
344 
345 /* Return a pointer to the bitmap storing bits affecting a block of pages */
346 static inline unsigned long *get_pageblock_bitmap(struct page *page,
347 							unsigned long pfn)
348 {
349 #ifdef CONFIG_SPARSEMEM
350 	return __pfn_to_section(pfn)->pageblock_flags;
351 #else
352 	return page_zone(page)->pageblock_flags;
353 #endif /* CONFIG_SPARSEMEM */
354 }
355 
356 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
357 {
358 #ifdef CONFIG_SPARSEMEM
359 	pfn &= (PAGES_PER_SECTION-1);
360 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
361 #else
362 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
363 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
364 #endif /* CONFIG_SPARSEMEM */
365 }
366 
367 /**
368  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
369  * @page: The page within the block of interest
370  * @pfn: The target page frame number
371  * @end_bitidx: The last bit of interest to retrieve
372  * @mask: mask of bits that the caller is interested in
373  *
374  * Return: pageblock_bits flags
375  */
376 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
377 					unsigned long pfn,
378 					unsigned long end_bitidx,
379 					unsigned long mask)
380 {
381 	unsigned long *bitmap;
382 	unsigned long bitidx, word_bitidx;
383 	unsigned long word;
384 
385 	bitmap = get_pageblock_bitmap(page, pfn);
386 	bitidx = pfn_to_bitidx(page, pfn);
387 	word_bitidx = bitidx / BITS_PER_LONG;
388 	bitidx &= (BITS_PER_LONG-1);
389 
390 	word = bitmap[word_bitidx];
391 	bitidx += end_bitidx;
392 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
393 }
394 
395 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
396 					unsigned long end_bitidx,
397 					unsigned long mask)
398 {
399 	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
400 }
401 
402 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
403 {
404 	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
405 }
406 
407 /**
408  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
409  * @page: The page within the block of interest
410  * @flags: The flags to set
411  * @pfn: The target page frame number
412  * @end_bitidx: The last bit of interest
413  * @mask: mask of bits that the caller is interested in
414  */
415 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
416 					unsigned long pfn,
417 					unsigned long end_bitidx,
418 					unsigned long mask)
419 {
420 	unsigned long *bitmap;
421 	unsigned long bitidx, word_bitidx;
422 	unsigned long old_word, word;
423 
424 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
425 
426 	bitmap = get_pageblock_bitmap(page, pfn);
427 	bitidx = pfn_to_bitidx(page, pfn);
428 	word_bitidx = bitidx / BITS_PER_LONG;
429 	bitidx &= (BITS_PER_LONG-1);
430 
431 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
432 
433 	bitidx += end_bitidx;
434 	mask <<= (BITS_PER_LONG - bitidx - 1);
435 	flags <<= (BITS_PER_LONG - bitidx - 1);
436 
437 	word = READ_ONCE(bitmap[word_bitidx]);
438 	for (;;) {
439 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
440 		if (word == old_word)
441 			break;
442 		word = old_word;
443 	}
444 }
445 
446 void set_pageblock_migratetype(struct page *page, int migratetype)
447 {
448 	if (unlikely(page_group_by_mobility_disabled &&
449 		     migratetype < MIGRATE_PCPTYPES))
450 		migratetype = MIGRATE_UNMOVABLE;
451 
452 	set_pageblock_flags_group(page, (unsigned long)migratetype,
453 					PB_migrate, PB_migrate_end);
454 }
455 
456 #ifdef CONFIG_DEBUG_VM
457 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
458 {
459 	int ret = 0;
460 	unsigned seq;
461 	unsigned long pfn = page_to_pfn(page);
462 	unsigned long sp, start_pfn;
463 
464 	do {
465 		seq = zone_span_seqbegin(zone);
466 		start_pfn = zone->zone_start_pfn;
467 		sp = zone->spanned_pages;
468 		if (!zone_spans_pfn(zone, pfn))
469 			ret = 1;
470 	} while (zone_span_seqretry(zone, seq));
471 
472 	if (ret)
473 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
474 			pfn, zone_to_nid(zone), zone->name,
475 			start_pfn, start_pfn + sp);
476 
477 	return ret;
478 }
479 
480 static int page_is_consistent(struct zone *zone, struct page *page)
481 {
482 	if (!pfn_valid_within(page_to_pfn(page)))
483 		return 0;
484 	if (zone != page_zone(page))
485 		return 0;
486 
487 	return 1;
488 }
489 /*
490  * Temporary debugging check for pages not lying within a given zone.
491  */
492 static int bad_range(struct zone *zone, struct page *page)
493 {
494 	if (page_outside_zone_boundaries(zone, page))
495 		return 1;
496 	if (!page_is_consistent(zone, page))
497 		return 1;
498 
499 	return 0;
500 }
501 #else
502 static inline int bad_range(struct zone *zone, struct page *page)
503 {
504 	return 0;
505 }
506 #endif
507 
508 static void bad_page(struct page *page, const char *reason,
509 		unsigned long bad_flags)
510 {
511 	static unsigned long resume;
512 	static unsigned long nr_shown;
513 	static unsigned long nr_unshown;
514 
515 	/*
516 	 * Allow a burst of 60 reports, then keep quiet for that minute;
517 	 * or allow a steady drip of one report per second.
518 	 */
519 	if (nr_shown == 60) {
520 		if (time_before(jiffies, resume)) {
521 			nr_unshown++;
522 			goto out;
523 		}
524 		if (nr_unshown) {
525 			pr_alert(
526 			      "BUG: Bad page state: %lu messages suppressed\n",
527 				nr_unshown);
528 			nr_unshown = 0;
529 		}
530 		nr_shown = 0;
531 	}
532 	if (nr_shown++ == 0)
533 		resume = jiffies + 60 * HZ;
534 
535 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
536 		current->comm, page_to_pfn(page));
537 	__dump_page(page, reason);
538 	bad_flags &= page->flags;
539 	if (bad_flags)
540 		pr_alert("bad because of flags: %#lx(%pGp)\n",
541 						bad_flags, &bad_flags);
542 	dump_page_owner(page);
543 
544 	print_modules();
545 	dump_stack();
546 out:
547 	/* Leave bad fields for debug, except PageBuddy could make trouble */
548 	page_mapcount_reset(page); /* remove PageBuddy */
549 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
550 }
551 
552 /*
553  * Higher-order pages are called "compound pages".  They are structured thusly:
554  *
555  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
556  *
557  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
558  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
559  *
560  * The first tail page's ->compound_dtor holds the offset in array of compound
561  * page destructors. See compound_page_dtors.
562  *
563  * The first tail page's ->compound_order holds the order of allocation.
564  * This usage means that zero-order pages may not be compound.
565  */
566 
567 void free_compound_page(struct page *page)
568 {
569 	__free_pages_ok(page, compound_order(page));
570 }
571 
572 void prep_compound_page(struct page *page, unsigned int order)
573 {
574 	int i;
575 	int nr_pages = 1 << order;
576 
577 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
578 	set_compound_order(page, order);
579 	__SetPageHead(page);
580 	for (i = 1; i < nr_pages; i++) {
581 		struct page *p = page + i;
582 		set_page_count(p, 0);
583 		p->mapping = TAIL_MAPPING;
584 		set_compound_head(p, page);
585 	}
586 	atomic_set(compound_mapcount_ptr(page), -1);
587 }
588 
589 #ifdef CONFIG_DEBUG_PAGEALLOC
590 unsigned int _debug_guardpage_minorder;
591 bool _debug_pagealloc_enabled __read_mostly
592 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
593 EXPORT_SYMBOL(_debug_pagealloc_enabled);
594 bool _debug_guardpage_enabled __read_mostly;
595 
596 static int __init early_debug_pagealloc(char *buf)
597 {
598 	if (!buf)
599 		return -EINVAL;
600 	return kstrtobool(buf, &_debug_pagealloc_enabled);
601 }
602 early_param("debug_pagealloc", early_debug_pagealloc);
603 
604 static bool need_debug_guardpage(void)
605 {
606 	/* If we don't use debug_pagealloc, we don't need guard page */
607 	if (!debug_pagealloc_enabled())
608 		return false;
609 
610 	return true;
611 }
612 
613 static void init_debug_guardpage(void)
614 {
615 	if (!debug_pagealloc_enabled())
616 		return;
617 
618 	_debug_guardpage_enabled = true;
619 }
620 
621 struct page_ext_operations debug_guardpage_ops = {
622 	.need = need_debug_guardpage,
623 	.init = init_debug_guardpage,
624 };
625 
626 static int __init debug_guardpage_minorder_setup(char *buf)
627 {
628 	unsigned long res;
629 
630 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
631 		pr_err("Bad debug_guardpage_minorder value\n");
632 		return 0;
633 	}
634 	_debug_guardpage_minorder = res;
635 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
636 	return 0;
637 }
638 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
639 
640 static inline void set_page_guard(struct zone *zone, struct page *page,
641 				unsigned int order, int migratetype)
642 {
643 	struct page_ext *page_ext;
644 
645 	if (!debug_guardpage_enabled())
646 		return;
647 
648 	page_ext = lookup_page_ext(page);
649 	if (unlikely(!page_ext))
650 		return;
651 
652 	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
653 
654 	INIT_LIST_HEAD(&page->lru);
655 	set_page_private(page, order);
656 	/* Guard pages are not available for any usage */
657 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
658 }
659 
660 static inline void clear_page_guard(struct zone *zone, struct page *page,
661 				unsigned int order, int migratetype)
662 {
663 	struct page_ext *page_ext;
664 
665 	if (!debug_guardpage_enabled())
666 		return;
667 
668 	page_ext = lookup_page_ext(page);
669 	if (unlikely(!page_ext))
670 		return;
671 
672 	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
673 
674 	set_page_private(page, 0);
675 	if (!is_migrate_isolate(migratetype))
676 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
677 }
678 #else
679 struct page_ext_operations debug_guardpage_ops = { NULL, };
680 static inline void set_page_guard(struct zone *zone, struct page *page,
681 				unsigned int order, int migratetype) {}
682 static inline void clear_page_guard(struct zone *zone, struct page *page,
683 				unsigned int order, int migratetype) {}
684 #endif
685 
686 static inline void set_page_order(struct page *page, unsigned int order)
687 {
688 	set_page_private(page, order);
689 	__SetPageBuddy(page);
690 }
691 
692 static inline void rmv_page_order(struct page *page)
693 {
694 	__ClearPageBuddy(page);
695 	set_page_private(page, 0);
696 }
697 
698 /*
699  * This function checks whether a page is free && is the buddy
700  * we can do coalesce a page and its buddy if
701  * (a) the buddy is not in a hole &&
702  * (b) the buddy is in the buddy system &&
703  * (c) a page and its buddy have the same order &&
704  * (d) a page and its buddy are in the same zone.
705  *
706  * For recording whether a page is in the buddy system, we set ->_mapcount
707  * PAGE_BUDDY_MAPCOUNT_VALUE.
708  * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
709  * serialized by zone->lock.
710  *
711  * For recording page's order, we use page_private(page).
712  */
713 static inline int page_is_buddy(struct page *page, struct page *buddy,
714 							unsigned int order)
715 {
716 	if (!pfn_valid_within(page_to_pfn(buddy)))
717 		return 0;
718 
719 	if (page_is_guard(buddy) && page_order(buddy) == order) {
720 		if (page_zone_id(page) != page_zone_id(buddy))
721 			return 0;
722 
723 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
724 
725 		return 1;
726 	}
727 
728 	if (PageBuddy(buddy) && page_order(buddy) == order) {
729 		/*
730 		 * zone check is done late to avoid uselessly
731 		 * calculating zone/node ids for pages that could
732 		 * never merge.
733 		 */
734 		if (page_zone_id(page) != page_zone_id(buddy))
735 			return 0;
736 
737 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
738 
739 		return 1;
740 	}
741 	return 0;
742 }
743 
744 /*
745  * Freeing function for a buddy system allocator.
746  *
747  * The concept of a buddy system is to maintain direct-mapped table
748  * (containing bit values) for memory blocks of various "orders".
749  * The bottom level table contains the map for the smallest allocatable
750  * units of memory (here, pages), and each level above it describes
751  * pairs of units from the levels below, hence, "buddies".
752  * At a high level, all that happens here is marking the table entry
753  * at the bottom level available, and propagating the changes upward
754  * as necessary, plus some accounting needed to play nicely with other
755  * parts of the VM system.
756  * At each level, we keep a list of pages, which are heads of continuous
757  * free pages of length of (1 << order) and marked with _mapcount
758  * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
759  * field.
760  * So when we are allocating or freeing one, we can derive the state of the
761  * other.  That is, if we allocate a small block, and both were
762  * free, the remainder of the region must be split into blocks.
763  * If a block is freed, and its buddy is also free, then this
764  * triggers coalescing into a block of larger size.
765  *
766  * -- nyc
767  */
768 
769 static inline void __free_one_page(struct page *page,
770 		unsigned long pfn,
771 		struct zone *zone, unsigned int order,
772 		int migratetype)
773 {
774 	unsigned long page_idx;
775 	unsigned long combined_idx;
776 	unsigned long uninitialized_var(buddy_idx);
777 	struct page *buddy;
778 	unsigned int max_order;
779 
780 	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
781 
782 	VM_BUG_ON(!zone_is_initialized(zone));
783 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
784 
785 	VM_BUG_ON(migratetype == -1);
786 	if (likely(!is_migrate_isolate(migratetype)))
787 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
788 
789 	page_idx = pfn & ((1 << MAX_ORDER) - 1);
790 
791 	VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
792 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
793 
794 continue_merging:
795 	while (order < max_order - 1) {
796 		buddy_idx = __find_buddy_index(page_idx, order);
797 		buddy = page + (buddy_idx - page_idx);
798 		if (!page_is_buddy(page, buddy, order))
799 			goto done_merging;
800 		/*
801 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
802 		 * merge with it and move up one order.
803 		 */
804 		if (page_is_guard(buddy)) {
805 			clear_page_guard(zone, buddy, order, migratetype);
806 		} else {
807 			list_del(&buddy->lru);
808 			zone->free_area[order].nr_free--;
809 			rmv_page_order(buddy);
810 		}
811 		combined_idx = buddy_idx & page_idx;
812 		page = page + (combined_idx - page_idx);
813 		page_idx = combined_idx;
814 		order++;
815 	}
816 	if (max_order < MAX_ORDER) {
817 		/* If we are here, it means order is >= pageblock_order.
818 		 * We want to prevent merge between freepages on isolate
819 		 * pageblock and normal pageblock. Without this, pageblock
820 		 * isolation could cause incorrect freepage or CMA accounting.
821 		 *
822 		 * We don't want to hit this code for the more frequent
823 		 * low-order merging.
824 		 */
825 		if (unlikely(has_isolate_pageblock(zone))) {
826 			int buddy_mt;
827 
828 			buddy_idx = __find_buddy_index(page_idx, order);
829 			buddy = page + (buddy_idx - page_idx);
830 			buddy_mt = get_pageblock_migratetype(buddy);
831 
832 			if (migratetype != buddy_mt
833 					&& (is_migrate_isolate(migratetype) ||
834 						is_migrate_isolate(buddy_mt)))
835 				goto done_merging;
836 		}
837 		max_order++;
838 		goto continue_merging;
839 	}
840 
841 done_merging:
842 	set_page_order(page, order);
843 
844 	/*
845 	 * If this is not the largest possible page, check if the buddy
846 	 * of the next-highest order is free. If it is, it's possible
847 	 * that pages are being freed that will coalesce soon. In case,
848 	 * that is happening, add the free page to the tail of the list
849 	 * so it's less likely to be used soon and more likely to be merged
850 	 * as a higher order page
851 	 */
852 	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
853 		struct page *higher_page, *higher_buddy;
854 		combined_idx = buddy_idx & page_idx;
855 		higher_page = page + (combined_idx - page_idx);
856 		buddy_idx = __find_buddy_index(combined_idx, order + 1);
857 		higher_buddy = higher_page + (buddy_idx - combined_idx);
858 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
859 			list_add_tail(&page->lru,
860 				&zone->free_area[order].free_list[migratetype]);
861 			goto out;
862 		}
863 	}
864 
865 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
866 out:
867 	zone->free_area[order].nr_free++;
868 }
869 
870 /*
871  * A bad page could be due to a number of fields. Instead of multiple branches,
872  * try and check multiple fields with one check. The caller must do a detailed
873  * check if necessary.
874  */
875 static inline bool page_expected_state(struct page *page,
876 					unsigned long check_flags)
877 {
878 	if (unlikely(atomic_read(&page->_mapcount) != -1))
879 		return false;
880 
881 	if (unlikely((unsigned long)page->mapping |
882 			page_ref_count(page) |
883 #ifdef CONFIG_MEMCG
884 			(unsigned long)page->mem_cgroup |
885 #endif
886 			(page->flags & check_flags)))
887 		return false;
888 
889 	return true;
890 }
891 
892 static void free_pages_check_bad(struct page *page)
893 {
894 	const char *bad_reason;
895 	unsigned long bad_flags;
896 
897 	bad_reason = NULL;
898 	bad_flags = 0;
899 
900 	if (unlikely(atomic_read(&page->_mapcount) != -1))
901 		bad_reason = "nonzero mapcount";
902 	if (unlikely(page->mapping != NULL))
903 		bad_reason = "non-NULL mapping";
904 	if (unlikely(page_ref_count(page) != 0))
905 		bad_reason = "nonzero _refcount";
906 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
907 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
908 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
909 	}
910 #ifdef CONFIG_MEMCG
911 	if (unlikely(page->mem_cgroup))
912 		bad_reason = "page still charged to cgroup";
913 #endif
914 	bad_page(page, bad_reason, bad_flags);
915 }
916 
917 static inline int free_pages_check(struct page *page)
918 {
919 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
920 		return 0;
921 
922 	/* Something has gone sideways, find it */
923 	free_pages_check_bad(page);
924 	return 1;
925 }
926 
927 static int free_tail_pages_check(struct page *head_page, struct page *page)
928 {
929 	int ret = 1;
930 
931 	/*
932 	 * We rely page->lru.next never has bit 0 set, unless the page
933 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
934 	 */
935 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
936 
937 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
938 		ret = 0;
939 		goto out;
940 	}
941 	switch (page - head_page) {
942 	case 1:
943 		/* the first tail page: ->mapping is compound_mapcount() */
944 		if (unlikely(compound_mapcount(page))) {
945 			bad_page(page, "nonzero compound_mapcount", 0);
946 			goto out;
947 		}
948 		break;
949 	case 2:
950 		/*
951 		 * the second tail page: ->mapping is
952 		 * page_deferred_list().next -- ignore value.
953 		 */
954 		break;
955 	default:
956 		if (page->mapping != TAIL_MAPPING) {
957 			bad_page(page, "corrupted mapping in tail page", 0);
958 			goto out;
959 		}
960 		break;
961 	}
962 	if (unlikely(!PageTail(page))) {
963 		bad_page(page, "PageTail not set", 0);
964 		goto out;
965 	}
966 	if (unlikely(compound_head(page) != head_page)) {
967 		bad_page(page, "compound_head not consistent", 0);
968 		goto out;
969 	}
970 	ret = 0;
971 out:
972 	page->mapping = NULL;
973 	clear_compound_head(page);
974 	return ret;
975 }
976 
977 static __always_inline bool free_pages_prepare(struct page *page,
978 					unsigned int order, bool check_free)
979 {
980 	int bad = 0;
981 
982 	VM_BUG_ON_PAGE(PageTail(page), page);
983 
984 	trace_mm_page_free(page, order);
985 	kmemcheck_free_shadow(page, order);
986 
987 	/*
988 	 * Check tail pages before head page information is cleared to
989 	 * avoid checking PageCompound for order-0 pages.
990 	 */
991 	if (unlikely(order)) {
992 		bool compound = PageCompound(page);
993 		int i;
994 
995 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
996 
997 		if (compound)
998 			ClearPageDoubleMap(page);
999 		for (i = 1; i < (1 << order); i++) {
1000 			if (compound)
1001 				bad += free_tail_pages_check(page, page + i);
1002 			if (unlikely(free_pages_check(page + i))) {
1003 				bad++;
1004 				continue;
1005 			}
1006 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1007 		}
1008 	}
1009 	if (PageMappingFlags(page))
1010 		page->mapping = NULL;
1011 	if (memcg_kmem_enabled() && PageKmemcg(page)) {
1012 		memcg_kmem_uncharge(page, order);
1013 		__ClearPageKmemcg(page);
1014 	}
1015 	if (check_free)
1016 		bad += free_pages_check(page);
1017 	if (bad)
1018 		return false;
1019 
1020 	page_cpupid_reset_last(page);
1021 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1022 	reset_page_owner(page, order);
1023 
1024 	if (!PageHighMem(page)) {
1025 		debug_check_no_locks_freed(page_address(page),
1026 					   PAGE_SIZE << order);
1027 		debug_check_no_obj_freed(page_address(page),
1028 					   PAGE_SIZE << order);
1029 	}
1030 	arch_free_page(page, order);
1031 	kernel_poison_pages(page, 1 << order, 0);
1032 	kernel_map_pages(page, 1 << order, 0);
1033 	kasan_free_pages(page, order);
1034 
1035 	return true;
1036 }
1037 
1038 #ifdef CONFIG_DEBUG_VM
1039 static inline bool free_pcp_prepare(struct page *page)
1040 {
1041 	return free_pages_prepare(page, 0, true);
1042 }
1043 
1044 static inline bool bulkfree_pcp_prepare(struct page *page)
1045 {
1046 	return false;
1047 }
1048 #else
1049 static bool free_pcp_prepare(struct page *page)
1050 {
1051 	return free_pages_prepare(page, 0, false);
1052 }
1053 
1054 static bool bulkfree_pcp_prepare(struct page *page)
1055 {
1056 	return free_pages_check(page);
1057 }
1058 #endif /* CONFIG_DEBUG_VM */
1059 
1060 /*
1061  * Frees a number of pages from the PCP lists
1062  * Assumes all pages on list are in same zone, and of same order.
1063  * count is the number of pages to free.
1064  *
1065  * If the zone was previously in an "all pages pinned" state then look to
1066  * see if this freeing clears that state.
1067  *
1068  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1069  * pinned" detection logic.
1070  */
1071 static void free_pcppages_bulk(struct zone *zone, int count,
1072 					struct per_cpu_pages *pcp)
1073 {
1074 	int migratetype = 0;
1075 	int batch_free = 0;
1076 	unsigned long nr_scanned;
1077 	bool isolated_pageblocks;
1078 
1079 	spin_lock(&zone->lock);
1080 	isolated_pageblocks = has_isolate_pageblock(zone);
1081 	nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1082 	if (nr_scanned)
1083 		__mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1084 
1085 	while (count) {
1086 		struct page *page;
1087 		struct list_head *list;
1088 
1089 		/*
1090 		 * Remove pages from lists in a round-robin fashion. A
1091 		 * batch_free count is maintained that is incremented when an
1092 		 * empty list is encountered.  This is so more pages are freed
1093 		 * off fuller lists instead of spinning excessively around empty
1094 		 * lists
1095 		 */
1096 		do {
1097 			batch_free++;
1098 			if (++migratetype == MIGRATE_PCPTYPES)
1099 				migratetype = 0;
1100 			list = &pcp->lists[migratetype];
1101 		} while (list_empty(list));
1102 
1103 		/* This is the only non-empty list. Free them all. */
1104 		if (batch_free == MIGRATE_PCPTYPES)
1105 			batch_free = count;
1106 
1107 		do {
1108 			int mt;	/* migratetype of the to-be-freed page */
1109 
1110 			page = list_last_entry(list, struct page, lru);
1111 			/* must delete as __free_one_page list manipulates */
1112 			list_del(&page->lru);
1113 
1114 			mt = get_pcppage_migratetype(page);
1115 			/* MIGRATE_ISOLATE page should not go to pcplists */
1116 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1117 			/* Pageblock could have been isolated meanwhile */
1118 			if (unlikely(isolated_pageblocks))
1119 				mt = get_pageblock_migratetype(page);
1120 
1121 			if (bulkfree_pcp_prepare(page))
1122 				continue;
1123 
1124 			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1125 			trace_mm_page_pcpu_drain(page, 0, mt);
1126 		} while (--count && --batch_free && !list_empty(list));
1127 	}
1128 	spin_unlock(&zone->lock);
1129 }
1130 
1131 static void free_one_page(struct zone *zone,
1132 				struct page *page, unsigned long pfn,
1133 				unsigned int order,
1134 				int migratetype)
1135 {
1136 	unsigned long nr_scanned;
1137 	spin_lock(&zone->lock);
1138 	nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1139 	if (nr_scanned)
1140 		__mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1141 
1142 	if (unlikely(has_isolate_pageblock(zone) ||
1143 		is_migrate_isolate(migratetype))) {
1144 		migratetype = get_pfnblock_migratetype(page, pfn);
1145 	}
1146 	__free_one_page(page, pfn, zone, order, migratetype);
1147 	spin_unlock(&zone->lock);
1148 }
1149 
1150 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1151 				unsigned long zone, int nid)
1152 {
1153 	set_page_links(page, zone, nid, pfn);
1154 	init_page_count(page);
1155 	page_mapcount_reset(page);
1156 	page_cpupid_reset_last(page);
1157 
1158 	INIT_LIST_HEAD(&page->lru);
1159 #ifdef WANT_PAGE_VIRTUAL
1160 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1161 	if (!is_highmem_idx(zone))
1162 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1163 #endif
1164 }
1165 
1166 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1167 					int nid)
1168 {
1169 	return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1170 }
1171 
1172 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1173 static void init_reserved_page(unsigned long pfn)
1174 {
1175 	pg_data_t *pgdat;
1176 	int nid, zid;
1177 
1178 	if (!early_page_uninitialised(pfn))
1179 		return;
1180 
1181 	nid = early_pfn_to_nid(pfn);
1182 	pgdat = NODE_DATA(nid);
1183 
1184 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1185 		struct zone *zone = &pgdat->node_zones[zid];
1186 
1187 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1188 			break;
1189 	}
1190 	__init_single_pfn(pfn, zid, nid);
1191 }
1192 #else
1193 static inline void init_reserved_page(unsigned long pfn)
1194 {
1195 }
1196 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1197 
1198 /*
1199  * Initialised pages do not have PageReserved set. This function is
1200  * called for each range allocated by the bootmem allocator and
1201  * marks the pages PageReserved. The remaining valid pages are later
1202  * sent to the buddy page allocator.
1203  */
1204 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1205 {
1206 	unsigned long start_pfn = PFN_DOWN(start);
1207 	unsigned long end_pfn = PFN_UP(end);
1208 
1209 	for (; start_pfn < end_pfn; start_pfn++) {
1210 		if (pfn_valid(start_pfn)) {
1211 			struct page *page = pfn_to_page(start_pfn);
1212 
1213 			init_reserved_page(start_pfn);
1214 
1215 			/* Avoid false-positive PageTail() */
1216 			INIT_LIST_HEAD(&page->lru);
1217 
1218 			SetPageReserved(page);
1219 		}
1220 	}
1221 }
1222 
1223 static void __free_pages_ok(struct page *page, unsigned int order)
1224 {
1225 	unsigned long flags;
1226 	int migratetype;
1227 	unsigned long pfn = page_to_pfn(page);
1228 
1229 	if (!free_pages_prepare(page, order, true))
1230 		return;
1231 
1232 	migratetype = get_pfnblock_migratetype(page, pfn);
1233 	local_irq_save(flags);
1234 	__count_vm_events(PGFREE, 1 << order);
1235 	free_one_page(page_zone(page), page, pfn, order, migratetype);
1236 	local_irq_restore(flags);
1237 }
1238 
1239 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1240 {
1241 	unsigned int nr_pages = 1 << order;
1242 	struct page *p = page;
1243 	unsigned int loop;
1244 
1245 	prefetchw(p);
1246 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1247 		prefetchw(p + 1);
1248 		__ClearPageReserved(p);
1249 		set_page_count(p, 0);
1250 	}
1251 	__ClearPageReserved(p);
1252 	set_page_count(p, 0);
1253 
1254 	page_zone(page)->managed_pages += nr_pages;
1255 	set_page_refcounted(page);
1256 	__free_pages(page, order);
1257 }
1258 
1259 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1260 	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1261 
1262 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1263 
1264 int __meminit early_pfn_to_nid(unsigned long pfn)
1265 {
1266 	static DEFINE_SPINLOCK(early_pfn_lock);
1267 	int nid;
1268 
1269 	spin_lock(&early_pfn_lock);
1270 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1271 	if (nid < 0)
1272 		nid = first_online_node;
1273 	spin_unlock(&early_pfn_lock);
1274 
1275 	return nid;
1276 }
1277 #endif
1278 
1279 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1280 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1281 					struct mminit_pfnnid_cache *state)
1282 {
1283 	int nid;
1284 
1285 	nid = __early_pfn_to_nid(pfn, state);
1286 	if (nid >= 0 && nid != node)
1287 		return false;
1288 	return true;
1289 }
1290 
1291 /* Only safe to use early in boot when initialisation is single-threaded */
1292 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1293 {
1294 	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1295 }
1296 
1297 #else
1298 
1299 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1300 {
1301 	return true;
1302 }
1303 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1304 					struct mminit_pfnnid_cache *state)
1305 {
1306 	return true;
1307 }
1308 #endif
1309 
1310 
1311 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1312 							unsigned int order)
1313 {
1314 	if (early_page_uninitialised(pfn))
1315 		return;
1316 	return __free_pages_boot_core(page, order);
1317 }
1318 
1319 /*
1320  * Check that the whole (or subset of) a pageblock given by the interval of
1321  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1322  * with the migration of free compaction scanner. The scanners then need to
1323  * use only pfn_valid_within() check for arches that allow holes within
1324  * pageblocks.
1325  *
1326  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1327  *
1328  * It's possible on some configurations to have a setup like node0 node1 node0
1329  * i.e. it's possible that all pages within a zones range of pages do not
1330  * belong to a single zone. We assume that a border between node0 and node1
1331  * can occur within a single pageblock, but not a node0 node1 node0
1332  * interleaving within a single pageblock. It is therefore sufficient to check
1333  * the first and last page of a pageblock and avoid checking each individual
1334  * page in a pageblock.
1335  */
1336 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1337 				     unsigned long end_pfn, struct zone *zone)
1338 {
1339 	struct page *start_page;
1340 	struct page *end_page;
1341 
1342 	/* end_pfn is one past the range we are checking */
1343 	end_pfn--;
1344 
1345 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1346 		return NULL;
1347 
1348 	start_page = pfn_to_page(start_pfn);
1349 
1350 	if (page_zone(start_page) != zone)
1351 		return NULL;
1352 
1353 	end_page = pfn_to_page(end_pfn);
1354 
1355 	/* This gives a shorter code than deriving page_zone(end_page) */
1356 	if (page_zone_id(start_page) != page_zone_id(end_page))
1357 		return NULL;
1358 
1359 	return start_page;
1360 }
1361 
1362 void set_zone_contiguous(struct zone *zone)
1363 {
1364 	unsigned long block_start_pfn = zone->zone_start_pfn;
1365 	unsigned long block_end_pfn;
1366 
1367 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1368 	for (; block_start_pfn < zone_end_pfn(zone);
1369 			block_start_pfn = block_end_pfn,
1370 			 block_end_pfn += pageblock_nr_pages) {
1371 
1372 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1373 
1374 		if (!__pageblock_pfn_to_page(block_start_pfn,
1375 					     block_end_pfn, zone))
1376 			return;
1377 	}
1378 
1379 	/* We confirm that there is no hole */
1380 	zone->contiguous = true;
1381 }
1382 
1383 void clear_zone_contiguous(struct zone *zone)
1384 {
1385 	zone->contiguous = false;
1386 }
1387 
1388 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1389 static void __init deferred_free_range(struct page *page,
1390 					unsigned long pfn, int nr_pages)
1391 {
1392 	int i;
1393 
1394 	if (!page)
1395 		return;
1396 
1397 	/* Free a large naturally-aligned chunk if possible */
1398 	if (nr_pages == MAX_ORDER_NR_PAGES &&
1399 	    (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
1400 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1401 		__free_pages_boot_core(page, MAX_ORDER-1);
1402 		return;
1403 	}
1404 
1405 	for (i = 0; i < nr_pages; i++, page++)
1406 		__free_pages_boot_core(page, 0);
1407 }
1408 
1409 /* Completion tracking for deferred_init_memmap() threads */
1410 static atomic_t pgdat_init_n_undone __initdata;
1411 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1412 
1413 static inline void __init pgdat_init_report_one_done(void)
1414 {
1415 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1416 		complete(&pgdat_init_all_done_comp);
1417 }
1418 
1419 /* Initialise remaining memory on a node */
1420 static int __init deferred_init_memmap(void *data)
1421 {
1422 	pg_data_t *pgdat = data;
1423 	int nid = pgdat->node_id;
1424 	struct mminit_pfnnid_cache nid_init_state = { };
1425 	unsigned long start = jiffies;
1426 	unsigned long nr_pages = 0;
1427 	unsigned long walk_start, walk_end;
1428 	int i, zid;
1429 	struct zone *zone;
1430 	unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1431 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1432 
1433 	if (first_init_pfn == ULONG_MAX) {
1434 		pgdat_init_report_one_done();
1435 		return 0;
1436 	}
1437 
1438 	/* Bind memory initialisation thread to a local node if possible */
1439 	if (!cpumask_empty(cpumask))
1440 		set_cpus_allowed_ptr(current, cpumask);
1441 
1442 	/* Sanity check boundaries */
1443 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1444 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1445 	pgdat->first_deferred_pfn = ULONG_MAX;
1446 
1447 	/* Only the highest zone is deferred so find it */
1448 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1449 		zone = pgdat->node_zones + zid;
1450 		if (first_init_pfn < zone_end_pfn(zone))
1451 			break;
1452 	}
1453 
1454 	for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1455 		unsigned long pfn, end_pfn;
1456 		struct page *page = NULL;
1457 		struct page *free_base_page = NULL;
1458 		unsigned long free_base_pfn = 0;
1459 		int nr_to_free = 0;
1460 
1461 		end_pfn = min(walk_end, zone_end_pfn(zone));
1462 		pfn = first_init_pfn;
1463 		if (pfn < walk_start)
1464 			pfn = walk_start;
1465 		if (pfn < zone->zone_start_pfn)
1466 			pfn = zone->zone_start_pfn;
1467 
1468 		for (; pfn < end_pfn; pfn++) {
1469 			if (!pfn_valid_within(pfn))
1470 				goto free_range;
1471 
1472 			/*
1473 			 * Ensure pfn_valid is checked every
1474 			 * MAX_ORDER_NR_PAGES for memory holes
1475 			 */
1476 			if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1477 				if (!pfn_valid(pfn)) {
1478 					page = NULL;
1479 					goto free_range;
1480 				}
1481 			}
1482 
1483 			if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1484 				page = NULL;
1485 				goto free_range;
1486 			}
1487 
1488 			/* Minimise pfn page lookups and scheduler checks */
1489 			if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1490 				page++;
1491 			} else {
1492 				nr_pages += nr_to_free;
1493 				deferred_free_range(free_base_page,
1494 						free_base_pfn, nr_to_free);
1495 				free_base_page = NULL;
1496 				free_base_pfn = nr_to_free = 0;
1497 
1498 				page = pfn_to_page(pfn);
1499 				cond_resched();
1500 			}
1501 
1502 			if (page->flags) {
1503 				VM_BUG_ON(page_zone(page) != zone);
1504 				goto free_range;
1505 			}
1506 
1507 			__init_single_page(page, pfn, zid, nid);
1508 			if (!free_base_page) {
1509 				free_base_page = page;
1510 				free_base_pfn = pfn;
1511 				nr_to_free = 0;
1512 			}
1513 			nr_to_free++;
1514 
1515 			/* Where possible, batch up pages for a single free */
1516 			continue;
1517 free_range:
1518 			/* Free the current block of pages to allocator */
1519 			nr_pages += nr_to_free;
1520 			deferred_free_range(free_base_page, free_base_pfn,
1521 								nr_to_free);
1522 			free_base_page = NULL;
1523 			free_base_pfn = nr_to_free = 0;
1524 		}
1525 
1526 		first_init_pfn = max(end_pfn, first_init_pfn);
1527 	}
1528 
1529 	/* Sanity check that the next zone really is unpopulated */
1530 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1531 
1532 	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1533 					jiffies_to_msecs(jiffies - start));
1534 
1535 	pgdat_init_report_one_done();
1536 	return 0;
1537 }
1538 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1539 
1540 void __init page_alloc_init_late(void)
1541 {
1542 	struct zone *zone;
1543 
1544 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1545 	int nid;
1546 
1547 	/* There will be num_node_state(N_MEMORY) threads */
1548 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1549 	for_each_node_state(nid, N_MEMORY) {
1550 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1551 	}
1552 
1553 	/* Block until all are initialised */
1554 	wait_for_completion(&pgdat_init_all_done_comp);
1555 
1556 	/* Reinit limits that are based on free pages after the kernel is up */
1557 	files_maxfiles_init();
1558 #endif
1559 
1560 	for_each_populated_zone(zone)
1561 		set_zone_contiguous(zone);
1562 }
1563 
1564 #ifdef CONFIG_CMA
1565 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1566 void __init init_cma_reserved_pageblock(struct page *page)
1567 {
1568 	unsigned i = pageblock_nr_pages;
1569 	struct page *p = page;
1570 
1571 	do {
1572 		__ClearPageReserved(p);
1573 		set_page_count(p, 0);
1574 	} while (++p, --i);
1575 
1576 	set_pageblock_migratetype(page, MIGRATE_CMA);
1577 
1578 	if (pageblock_order >= MAX_ORDER) {
1579 		i = pageblock_nr_pages;
1580 		p = page;
1581 		do {
1582 			set_page_refcounted(p);
1583 			__free_pages(p, MAX_ORDER - 1);
1584 			p += MAX_ORDER_NR_PAGES;
1585 		} while (i -= MAX_ORDER_NR_PAGES);
1586 	} else {
1587 		set_page_refcounted(page);
1588 		__free_pages(page, pageblock_order);
1589 	}
1590 
1591 	adjust_managed_page_count(page, pageblock_nr_pages);
1592 }
1593 #endif
1594 
1595 /*
1596  * The order of subdivision here is critical for the IO subsystem.
1597  * Please do not alter this order without good reasons and regression
1598  * testing. Specifically, as large blocks of memory are subdivided,
1599  * the order in which smaller blocks are delivered depends on the order
1600  * they're subdivided in this function. This is the primary factor
1601  * influencing the order in which pages are delivered to the IO
1602  * subsystem according to empirical testing, and this is also justified
1603  * by considering the behavior of a buddy system containing a single
1604  * large block of memory acted on by a series of small allocations.
1605  * This behavior is a critical factor in sglist merging's success.
1606  *
1607  * -- nyc
1608  */
1609 static inline void expand(struct zone *zone, struct page *page,
1610 	int low, int high, struct free_area *area,
1611 	int migratetype)
1612 {
1613 	unsigned long size = 1 << high;
1614 
1615 	while (high > low) {
1616 		area--;
1617 		high--;
1618 		size >>= 1;
1619 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1620 
1621 		if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
1622 			debug_guardpage_enabled() &&
1623 			high < debug_guardpage_minorder()) {
1624 			/*
1625 			 * Mark as guard pages (or page), that will allow to
1626 			 * merge back to allocator when buddy will be freed.
1627 			 * Corresponding page table entries will not be touched,
1628 			 * pages will stay not present in virtual address space
1629 			 */
1630 			set_page_guard(zone, &page[size], high, migratetype);
1631 			continue;
1632 		}
1633 		list_add(&page[size].lru, &area->free_list[migratetype]);
1634 		area->nr_free++;
1635 		set_page_order(&page[size], high);
1636 	}
1637 }
1638 
1639 static void check_new_page_bad(struct page *page)
1640 {
1641 	const char *bad_reason = NULL;
1642 	unsigned long bad_flags = 0;
1643 
1644 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1645 		bad_reason = "nonzero mapcount";
1646 	if (unlikely(page->mapping != NULL))
1647 		bad_reason = "non-NULL mapping";
1648 	if (unlikely(page_ref_count(page) != 0))
1649 		bad_reason = "nonzero _count";
1650 	if (unlikely(page->flags & __PG_HWPOISON)) {
1651 		bad_reason = "HWPoisoned (hardware-corrupted)";
1652 		bad_flags = __PG_HWPOISON;
1653 		/* Don't complain about hwpoisoned pages */
1654 		page_mapcount_reset(page); /* remove PageBuddy */
1655 		return;
1656 	}
1657 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1658 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1659 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1660 	}
1661 #ifdef CONFIG_MEMCG
1662 	if (unlikely(page->mem_cgroup))
1663 		bad_reason = "page still charged to cgroup";
1664 #endif
1665 	bad_page(page, bad_reason, bad_flags);
1666 }
1667 
1668 /*
1669  * This page is about to be returned from the page allocator
1670  */
1671 static inline int check_new_page(struct page *page)
1672 {
1673 	if (likely(page_expected_state(page,
1674 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1675 		return 0;
1676 
1677 	check_new_page_bad(page);
1678 	return 1;
1679 }
1680 
1681 static inline bool free_pages_prezeroed(bool poisoned)
1682 {
1683 	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1684 		page_poisoning_enabled() && poisoned;
1685 }
1686 
1687 #ifdef CONFIG_DEBUG_VM
1688 static bool check_pcp_refill(struct page *page)
1689 {
1690 	return false;
1691 }
1692 
1693 static bool check_new_pcp(struct page *page)
1694 {
1695 	return check_new_page(page);
1696 }
1697 #else
1698 static bool check_pcp_refill(struct page *page)
1699 {
1700 	return check_new_page(page);
1701 }
1702 static bool check_new_pcp(struct page *page)
1703 {
1704 	return false;
1705 }
1706 #endif /* CONFIG_DEBUG_VM */
1707 
1708 static bool check_new_pages(struct page *page, unsigned int order)
1709 {
1710 	int i;
1711 	for (i = 0; i < (1 << order); i++) {
1712 		struct page *p = page + i;
1713 
1714 		if (unlikely(check_new_page(p)))
1715 			return true;
1716 	}
1717 
1718 	return false;
1719 }
1720 
1721 inline void post_alloc_hook(struct page *page, unsigned int order,
1722 				gfp_t gfp_flags)
1723 {
1724 	set_page_private(page, 0);
1725 	set_page_refcounted(page);
1726 
1727 	arch_alloc_page(page, order);
1728 	kernel_map_pages(page, 1 << order, 1);
1729 	kernel_poison_pages(page, 1 << order, 1);
1730 	kasan_alloc_pages(page, order);
1731 	set_page_owner(page, order, gfp_flags);
1732 }
1733 
1734 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1735 							unsigned int alloc_flags)
1736 {
1737 	int i;
1738 	bool poisoned = true;
1739 
1740 	for (i = 0; i < (1 << order); i++) {
1741 		struct page *p = page + i;
1742 		if (poisoned)
1743 			poisoned &= page_is_poisoned(p);
1744 	}
1745 
1746 	post_alloc_hook(page, order, gfp_flags);
1747 
1748 	if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
1749 		for (i = 0; i < (1 << order); i++)
1750 			clear_highpage(page + i);
1751 
1752 	if (order && (gfp_flags & __GFP_COMP))
1753 		prep_compound_page(page, order);
1754 
1755 	/*
1756 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1757 	 * allocate the page. The expectation is that the caller is taking
1758 	 * steps that will free more memory. The caller should avoid the page
1759 	 * being used for !PFMEMALLOC purposes.
1760 	 */
1761 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1762 		set_page_pfmemalloc(page);
1763 	else
1764 		clear_page_pfmemalloc(page);
1765 }
1766 
1767 /*
1768  * Go through the free lists for the given migratetype and remove
1769  * the smallest available page from the freelists
1770  */
1771 static inline
1772 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1773 						int migratetype)
1774 {
1775 	unsigned int current_order;
1776 	struct free_area *area;
1777 	struct page *page;
1778 
1779 	/* Find a page of the appropriate size in the preferred list */
1780 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1781 		area = &(zone->free_area[current_order]);
1782 		page = list_first_entry_or_null(&area->free_list[migratetype],
1783 							struct page, lru);
1784 		if (!page)
1785 			continue;
1786 		list_del(&page->lru);
1787 		rmv_page_order(page);
1788 		area->nr_free--;
1789 		expand(zone, page, order, current_order, area, migratetype);
1790 		set_pcppage_migratetype(page, migratetype);
1791 		return page;
1792 	}
1793 
1794 	return NULL;
1795 }
1796 
1797 
1798 /*
1799  * This array describes the order lists are fallen back to when
1800  * the free lists for the desirable migrate type are depleted
1801  */
1802 static int fallbacks[MIGRATE_TYPES][4] = {
1803 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
1804 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
1805 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1806 #ifdef CONFIG_CMA
1807 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1808 #endif
1809 #ifdef CONFIG_MEMORY_ISOLATION
1810 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1811 #endif
1812 };
1813 
1814 #ifdef CONFIG_CMA
1815 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1816 					unsigned int order)
1817 {
1818 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1819 }
1820 #else
1821 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1822 					unsigned int order) { return NULL; }
1823 #endif
1824 
1825 /*
1826  * Move the free pages in a range to the free lists of the requested type.
1827  * Note that start_page and end_pages are not aligned on a pageblock
1828  * boundary. If alignment is required, use move_freepages_block()
1829  */
1830 int move_freepages(struct zone *zone,
1831 			  struct page *start_page, struct page *end_page,
1832 			  int migratetype)
1833 {
1834 	struct page *page;
1835 	unsigned int order;
1836 	int pages_moved = 0;
1837 
1838 #ifndef CONFIG_HOLES_IN_ZONE
1839 	/*
1840 	 * page_zone is not safe to call in this context when
1841 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1842 	 * anyway as we check zone boundaries in move_freepages_block().
1843 	 * Remove at a later date when no bug reports exist related to
1844 	 * grouping pages by mobility
1845 	 */
1846 	VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1847 #endif
1848 
1849 	for (page = start_page; page <= end_page;) {
1850 		/* Make sure we are not inadvertently changing nodes */
1851 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1852 
1853 		if (!pfn_valid_within(page_to_pfn(page))) {
1854 			page++;
1855 			continue;
1856 		}
1857 
1858 		if (!PageBuddy(page)) {
1859 			page++;
1860 			continue;
1861 		}
1862 
1863 		order = page_order(page);
1864 		list_move(&page->lru,
1865 			  &zone->free_area[order].free_list[migratetype]);
1866 		page += 1 << order;
1867 		pages_moved += 1 << order;
1868 	}
1869 
1870 	return pages_moved;
1871 }
1872 
1873 int move_freepages_block(struct zone *zone, struct page *page,
1874 				int migratetype)
1875 {
1876 	unsigned long start_pfn, end_pfn;
1877 	struct page *start_page, *end_page;
1878 
1879 	start_pfn = page_to_pfn(page);
1880 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1881 	start_page = pfn_to_page(start_pfn);
1882 	end_page = start_page + pageblock_nr_pages - 1;
1883 	end_pfn = start_pfn + pageblock_nr_pages - 1;
1884 
1885 	/* Do not cross zone boundaries */
1886 	if (!zone_spans_pfn(zone, start_pfn))
1887 		start_page = page;
1888 	if (!zone_spans_pfn(zone, end_pfn))
1889 		return 0;
1890 
1891 	return move_freepages(zone, start_page, end_page, migratetype);
1892 }
1893 
1894 static void change_pageblock_range(struct page *pageblock_page,
1895 					int start_order, int migratetype)
1896 {
1897 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1898 
1899 	while (nr_pageblocks--) {
1900 		set_pageblock_migratetype(pageblock_page, migratetype);
1901 		pageblock_page += pageblock_nr_pages;
1902 	}
1903 }
1904 
1905 /*
1906  * When we are falling back to another migratetype during allocation, try to
1907  * steal extra free pages from the same pageblocks to satisfy further
1908  * allocations, instead of polluting multiple pageblocks.
1909  *
1910  * If we are stealing a relatively large buddy page, it is likely there will
1911  * be more free pages in the pageblock, so try to steal them all. For
1912  * reclaimable and unmovable allocations, we steal regardless of page size,
1913  * as fragmentation caused by those allocations polluting movable pageblocks
1914  * is worse than movable allocations stealing from unmovable and reclaimable
1915  * pageblocks.
1916  */
1917 static bool can_steal_fallback(unsigned int order, int start_mt)
1918 {
1919 	/*
1920 	 * Leaving this order check is intended, although there is
1921 	 * relaxed order check in next check. The reason is that
1922 	 * we can actually steal whole pageblock if this condition met,
1923 	 * but, below check doesn't guarantee it and that is just heuristic
1924 	 * so could be changed anytime.
1925 	 */
1926 	if (order >= pageblock_order)
1927 		return true;
1928 
1929 	if (order >= pageblock_order / 2 ||
1930 		start_mt == MIGRATE_RECLAIMABLE ||
1931 		start_mt == MIGRATE_UNMOVABLE ||
1932 		page_group_by_mobility_disabled)
1933 		return true;
1934 
1935 	return false;
1936 }
1937 
1938 /*
1939  * This function implements actual steal behaviour. If order is large enough,
1940  * we can steal whole pageblock. If not, we first move freepages in this
1941  * pageblock and check whether half of pages are moved or not. If half of
1942  * pages are moved, we can change migratetype of pageblock and permanently
1943  * use it's pages as requested migratetype in the future.
1944  */
1945 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1946 							  int start_type)
1947 {
1948 	unsigned int current_order = page_order(page);
1949 	int pages;
1950 
1951 	/* Take ownership for orders >= pageblock_order */
1952 	if (current_order >= pageblock_order) {
1953 		change_pageblock_range(page, current_order, start_type);
1954 		return;
1955 	}
1956 
1957 	pages = move_freepages_block(zone, page, start_type);
1958 
1959 	/* Claim the whole block if over half of it is free */
1960 	if (pages >= (1 << (pageblock_order-1)) ||
1961 			page_group_by_mobility_disabled)
1962 		set_pageblock_migratetype(page, start_type);
1963 }
1964 
1965 /*
1966  * Check whether there is a suitable fallback freepage with requested order.
1967  * If only_stealable is true, this function returns fallback_mt only if
1968  * we can steal other freepages all together. This would help to reduce
1969  * fragmentation due to mixed migratetype pages in one pageblock.
1970  */
1971 int find_suitable_fallback(struct free_area *area, unsigned int order,
1972 			int migratetype, bool only_stealable, bool *can_steal)
1973 {
1974 	int i;
1975 	int fallback_mt;
1976 
1977 	if (area->nr_free == 0)
1978 		return -1;
1979 
1980 	*can_steal = false;
1981 	for (i = 0;; i++) {
1982 		fallback_mt = fallbacks[migratetype][i];
1983 		if (fallback_mt == MIGRATE_TYPES)
1984 			break;
1985 
1986 		if (list_empty(&area->free_list[fallback_mt]))
1987 			continue;
1988 
1989 		if (can_steal_fallback(order, migratetype))
1990 			*can_steal = true;
1991 
1992 		if (!only_stealable)
1993 			return fallback_mt;
1994 
1995 		if (*can_steal)
1996 			return fallback_mt;
1997 	}
1998 
1999 	return -1;
2000 }
2001 
2002 /*
2003  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2004  * there are no empty page blocks that contain a page with a suitable order
2005  */
2006 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2007 				unsigned int alloc_order)
2008 {
2009 	int mt;
2010 	unsigned long max_managed, flags;
2011 
2012 	/*
2013 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2014 	 * Check is race-prone but harmless.
2015 	 */
2016 	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2017 	if (zone->nr_reserved_highatomic >= max_managed)
2018 		return;
2019 
2020 	spin_lock_irqsave(&zone->lock, flags);
2021 
2022 	/* Recheck the nr_reserved_highatomic limit under the lock */
2023 	if (zone->nr_reserved_highatomic >= max_managed)
2024 		goto out_unlock;
2025 
2026 	/* Yoink! */
2027 	mt = get_pageblock_migratetype(page);
2028 	if (mt != MIGRATE_HIGHATOMIC &&
2029 			!is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2030 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2031 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2032 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2033 	}
2034 
2035 out_unlock:
2036 	spin_unlock_irqrestore(&zone->lock, flags);
2037 }
2038 
2039 /*
2040  * Used when an allocation is about to fail under memory pressure. This
2041  * potentially hurts the reliability of high-order allocations when under
2042  * intense memory pressure but failed atomic allocations should be easier
2043  * to recover from than an OOM.
2044  */
2045 static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
2046 {
2047 	struct zonelist *zonelist = ac->zonelist;
2048 	unsigned long flags;
2049 	struct zoneref *z;
2050 	struct zone *zone;
2051 	struct page *page;
2052 	int order;
2053 
2054 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2055 								ac->nodemask) {
2056 		/* Preserve at least one pageblock */
2057 		if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
2058 			continue;
2059 
2060 		spin_lock_irqsave(&zone->lock, flags);
2061 		for (order = 0; order < MAX_ORDER; order++) {
2062 			struct free_area *area = &(zone->free_area[order]);
2063 
2064 			page = list_first_entry_or_null(
2065 					&area->free_list[MIGRATE_HIGHATOMIC],
2066 					struct page, lru);
2067 			if (!page)
2068 				continue;
2069 
2070 			/*
2071 			 * It should never happen but changes to locking could
2072 			 * inadvertently allow a per-cpu drain to add pages
2073 			 * to MIGRATE_HIGHATOMIC while unreserving so be safe
2074 			 * and watch for underflows.
2075 			 */
2076 			zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
2077 				zone->nr_reserved_highatomic);
2078 
2079 			/*
2080 			 * Convert to ac->migratetype and avoid the normal
2081 			 * pageblock stealing heuristics. Minimally, the caller
2082 			 * is doing the work and needs the pages. More
2083 			 * importantly, if the block was always converted to
2084 			 * MIGRATE_UNMOVABLE or another type then the number
2085 			 * of pageblocks that cannot be completely freed
2086 			 * may increase.
2087 			 */
2088 			set_pageblock_migratetype(page, ac->migratetype);
2089 			move_freepages_block(zone, page, ac->migratetype);
2090 			spin_unlock_irqrestore(&zone->lock, flags);
2091 			return;
2092 		}
2093 		spin_unlock_irqrestore(&zone->lock, flags);
2094 	}
2095 }
2096 
2097 /* Remove an element from the buddy allocator from the fallback list */
2098 static inline struct page *
2099 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
2100 {
2101 	struct free_area *area;
2102 	unsigned int current_order;
2103 	struct page *page;
2104 	int fallback_mt;
2105 	bool can_steal;
2106 
2107 	/* Find the largest possible block of pages in the other list */
2108 	for (current_order = MAX_ORDER-1;
2109 				current_order >= order && current_order <= MAX_ORDER-1;
2110 				--current_order) {
2111 		area = &(zone->free_area[current_order]);
2112 		fallback_mt = find_suitable_fallback(area, current_order,
2113 				start_migratetype, false, &can_steal);
2114 		if (fallback_mt == -1)
2115 			continue;
2116 
2117 		page = list_first_entry(&area->free_list[fallback_mt],
2118 						struct page, lru);
2119 		if (can_steal)
2120 			steal_suitable_fallback(zone, page, start_migratetype);
2121 
2122 		/* Remove the page from the freelists */
2123 		area->nr_free--;
2124 		list_del(&page->lru);
2125 		rmv_page_order(page);
2126 
2127 		expand(zone, page, order, current_order, area,
2128 					start_migratetype);
2129 		/*
2130 		 * The pcppage_migratetype may differ from pageblock's
2131 		 * migratetype depending on the decisions in
2132 		 * find_suitable_fallback(). This is OK as long as it does not
2133 		 * differ for MIGRATE_CMA pageblocks. Those can be used as
2134 		 * fallback only via special __rmqueue_cma_fallback() function
2135 		 */
2136 		set_pcppage_migratetype(page, start_migratetype);
2137 
2138 		trace_mm_page_alloc_extfrag(page, order, current_order,
2139 			start_migratetype, fallback_mt);
2140 
2141 		return page;
2142 	}
2143 
2144 	return NULL;
2145 }
2146 
2147 /*
2148  * Do the hard work of removing an element from the buddy allocator.
2149  * Call me with the zone->lock already held.
2150  */
2151 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2152 				int migratetype)
2153 {
2154 	struct page *page;
2155 
2156 	page = __rmqueue_smallest(zone, order, migratetype);
2157 	if (unlikely(!page)) {
2158 		if (migratetype == MIGRATE_MOVABLE)
2159 			page = __rmqueue_cma_fallback(zone, order);
2160 
2161 		if (!page)
2162 			page = __rmqueue_fallback(zone, order, migratetype);
2163 	}
2164 
2165 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2166 	return page;
2167 }
2168 
2169 /*
2170  * Obtain a specified number of elements from the buddy allocator, all under
2171  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2172  * Returns the number of new pages which were placed at *list.
2173  */
2174 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2175 			unsigned long count, struct list_head *list,
2176 			int migratetype, bool cold)
2177 {
2178 	int i;
2179 
2180 	spin_lock(&zone->lock);
2181 	for (i = 0; i < count; ++i) {
2182 		struct page *page = __rmqueue(zone, order, migratetype);
2183 		if (unlikely(page == NULL))
2184 			break;
2185 
2186 		if (unlikely(check_pcp_refill(page)))
2187 			continue;
2188 
2189 		/*
2190 		 * Split buddy pages returned by expand() are received here
2191 		 * in physical page order. The page is added to the callers and
2192 		 * list and the list head then moves forward. From the callers
2193 		 * perspective, the linked list is ordered by page number in
2194 		 * some conditions. This is useful for IO devices that can
2195 		 * merge IO requests if the physical pages are ordered
2196 		 * properly.
2197 		 */
2198 		if (likely(!cold))
2199 			list_add(&page->lru, list);
2200 		else
2201 			list_add_tail(&page->lru, list);
2202 		list = &page->lru;
2203 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2204 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2205 					      -(1 << order));
2206 	}
2207 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2208 	spin_unlock(&zone->lock);
2209 	return i;
2210 }
2211 
2212 #ifdef CONFIG_NUMA
2213 /*
2214  * Called from the vmstat counter updater to drain pagesets of this
2215  * currently executing processor on remote nodes after they have
2216  * expired.
2217  *
2218  * Note that this function must be called with the thread pinned to
2219  * a single processor.
2220  */
2221 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2222 {
2223 	unsigned long flags;
2224 	int to_drain, batch;
2225 
2226 	local_irq_save(flags);
2227 	batch = READ_ONCE(pcp->batch);
2228 	to_drain = min(pcp->count, batch);
2229 	if (to_drain > 0) {
2230 		free_pcppages_bulk(zone, to_drain, pcp);
2231 		pcp->count -= to_drain;
2232 	}
2233 	local_irq_restore(flags);
2234 }
2235 #endif
2236 
2237 /*
2238  * Drain pcplists of the indicated processor and zone.
2239  *
2240  * The processor must either be the current processor and the
2241  * thread pinned to the current processor or a processor that
2242  * is not online.
2243  */
2244 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2245 {
2246 	unsigned long flags;
2247 	struct per_cpu_pageset *pset;
2248 	struct per_cpu_pages *pcp;
2249 
2250 	local_irq_save(flags);
2251 	pset = per_cpu_ptr(zone->pageset, cpu);
2252 
2253 	pcp = &pset->pcp;
2254 	if (pcp->count) {
2255 		free_pcppages_bulk(zone, pcp->count, pcp);
2256 		pcp->count = 0;
2257 	}
2258 	local_irq_restore(flags);
2259 }
2260 
2261 /*
2262  * Drain pcplists of all zones on the indicated processor.
2263  *
2264  * The processor must either be the current processor and the
2265  * thread pinned to the current processor or a processor that
2266  * is not online.
2267  */
2268 static void drain_pages(unsigned int cpu)
2269 {
2270 	struct zone *zone;
2271 
2272 	for_each_populated_zone(zone) {
2273 		drain_pages_zone(cpu, zone);
2274 	}
2275 }
2276 
2277 /*
2278  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2279  *
2280  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2281  * the single zone's pages.
2282  */
2283 void drain_local_pages(struct zone *zone)
2284 {
2285 	int cpu = smp_processor_id();
2286 
2287 	if (zone)
2288 		drain_pages_zone(cpu, zone);
2289 	else
2290 		drain_pages(cpu);
2291 }
2292 
2293 /*
2294  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2295  *
2296  * When zone parameter is non-NULL, spill just the single zone's pages.
2297  *
2298  * Note that this code is protected against sending an IPI to an offline
2299  * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2300  * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2301  * nothing keeps CPUs from showing up after we populated the cpumask and
2302  * before the call to on_each_cpu_mask().
2303  */
2304 void drain_all_pages(struct zone *zone)
2305 {
2306 	int cpu;
2307 
2308 	/*
2309 	 * Allocate in the BSS so we wont require allocation in
2310 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2311 	 */
2312 	static cpumask_t cpus_with_pcps;
2313 
2314 	/*
2315 	 * We don't care about racing with CPU hotplug event
2316 	 * as offline notification will cause the notified
2317 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2318 	 * disables preemption as part of its processing
2319 	 */
2320 	for_each_online_cpu(cpu) {
2321 		struct per_cpu_pageset *pcp;
2322 		struct zone *z;
2323 		bool has_pcps = false;
2324 
2325 		if (zone) {
2326 			pcp = per_cpu_ptr(zone->pageset, cpu);
2327 			if (pcp->pcp.count)
2328 				has_pcps = true;
2329 		} else {
2330 			for_each_populated_zone(z) {
2331 				pcp = per_cpu_ptr(z->pageset, cpu);
2332 				if (pcp->pcp.count) {
2333 					has_pcps = true;
2334 					break;
2335 				}
2336 			}
2337 		}
2338 
2339 		if (has_pcps)
2340 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2341 		else
2342 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2343 	}
2344 	on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2345 								zone, 1);
2346 }
2347 
2348 #ifdef CONFIG_HIBERNATION
2349 
2350 void mark_free_pages(struct zone *zone)
2351 {
2352 	unsigned long pfn, max_zone_pfn;
2353 	unsigned long flags;
2354 	unsigned int order, t;
2355 	struct page *page;
2356 
2357 	if (zone_is_empty(zone))
2358 		return;
2359 
2360 	spin_lock_irqsave(&zone->lock, flags);
2361 
2362 	max_zone_pfn = zone_end_pfn(zone);
2363 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2364 		if (pfn_valid(pfn)) {
2365 			page = pfn_to_page(pfn);
2366 
2367 			if (page_zone(page) != zone)
2368 				continue;
2369 
2370 			if (!swsusp_page_is_forbidden(page))
2371 				swsusp_unset_page_free(page);
2372 		}
2373 
2374 	for_each_migratetype_order(order, t) {
2375 		list_for_each_entry(page,
2376 				&zone->free_area[order].free_list[t], lru) {
2377 			unsigned long i;
2378 
2379 			pfn = page_to_pfn(page);
2380 			for (i = 0; i < (1UL << order); i++)
2381 				swsusp_set_page_free(pfn_to_page(pfn + i));
2382 		}
2383 	}
2384 	spin_unlock_irqrestore(&zone->lock, flags);
2385 }
2386 #endif /* CONFIG_PM */
2387 
2388 /*
2389  * Free a 0-order page
2390  * cold == true ? free a cold page : free a hot page
2391  */
2392 void free_hot_cold_page(struct page *page, bool cold)
2393 {
2394 	struct zone *zone = page_zone(page);
2395 	struct per_cpu_pages *pcp;
2396 	unsigned long flags;
2397 	unsigned long pfn = page_to_pfn(page);
2398 	int migratetype;
2399 
2400 	if (!free_pcp_prepare(page))
2401 		return;
2402 
2403 	migratetype = get_pfnblock_migratetype(page, pfn);
2404 	set_pcppage_migratetype(page, migratetype);
2405 	local_irq_save(flags);
2406 	__count_vm_event(PGFREE);
2407 
2408 	/*
2409 	 * We only track unmovable, reclaimable and movable on pcp lists.
2410 	 * Free ISOLATE pages back to the allocator because they are being
2411 	 * offlined but treat RESERVE as movable pages so we can get those
2412 	 * areas back if necessary. Otherwise, we may have to free
2413 	 * excessively into the page allocator
2414 	 */
2415 	if (migratetype >= MIGRATE_PCPTYPES) {
2416 		if (unlikely(is_migrate_isolate(migratetype))) {
2417 			free_one_page(zone, page, pfn, 0, migratetype);
2418 			goto out;
2419 		}
2420 		migratetype = MIGRATE_MOVABLE;
2421 	}
2422 
2423 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2424 	if (!cold)
2425 		list_add(&page->lru, &pcp->lists[migratetype]);
2426 	else
2427 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
2428 	pcp->count++;
2429 	if (pcp->count >= pcp->high) {
2430 		unsigned long batch = READ_ONCE(pcp->batch);
2431 		free_pcppages_bulk(zone, batch, pcp);
2432 		pcp->count -= batch;
2433 	}
2434 
2435 out:
2436 	local_irq_restore(flags);
2437 }
2438 
2439 /*
2440  * Free a list of 0-order pages
2441  */
2442 void free_hot_cold_page_list(struct list_head *list, bool cold)
2443 {
2444 	struct page *page, *next;
2445 
2446 	list_for_each_entry_safe(page, next, list, lru) {
2447 		trace_mm_page_free_batched(page, cold);
2448 		free_hot_cold_page(page, cold);
2449 	}
2450 }
2451 
2452 /*
2453  * split_page takes a non-compound higher-order page, and splits it into
2454  * n (1<<order) sub-pages: page[0..n]
2455  * Each sub-page must be freed individually.
2456  *
2457  * Note: this is probably too low level an operation for use in drivers.
2458  * Please consult with lkml before using this in your driver.
2459  */
2460 void split_page(struct page *page, unsigned int order)
2461 {
2462 	int i;
2463 
2464 	VM_BUG_ON_PAGE(PageCompound(page), page);
2465 	VM_BUG_ON_PAGE(!page_count(page), page);
2466 
2467 #ifdef CONFIG_KMEMCHECK
2468 	/*
2469 	 * Split shadow pages too, because free(page[0]) would
2470 	 * otherwise free the whole shadow.
2471 	 */
2472 	if (kmemcheck_page_is_tracked(page))
2473 		split_page(virt_to_page(page[0].shadow), order);
2474 #endif
2475 
2476 	for (i = 1; i < (1 << order); i++)
2477 		set_page_refcounted(page + i);
2478 	split_page_owner(page, order);
2479 }
2480 EXPORT_SYMBOL_GPL(split_page);
2481 
2482 int __isolate_free_page(struct page *page, unsigned int order)
2483 {
2484 	unsigned long watermark;
2485 	struct zone *zone;
2486 	int mt;
2487 
2488 	BUG_ON(!PageBuddy(page));
2489 
2490 	zone = page_zone(page);
2491 	mt = get_pageblock_migratetype(page);
2492 
2493 	if (!is_migrate_isolate(mt)) {
2494 		/* Obey watermarks as if the page was being allocated */
2495 		watermark = low_wmark_pages(zone) + (1 << order);
2496 		if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2497 			return 0;
2498 
2499 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2500 	}
2501 
2502 	/* Remove page from free list */
2503 	list_del(&page->lru);
2504 	zone->free_area[order].nr_free--;
2505 	rmv_page_order(page);
2506 
2507 	/*
2508 	 * Set the pageblock if the isolated page is at least half of a
2509 	 * pageblock
2510 	 */
2511 	if (order >= pageblock_order - 1) {
2512 		struct page *endpage = page + (1 << order) - 1;
2513 		for (; page < endpage; page += pageblock_nr_pages) {
2514 			int mt = get_pageblock_migratetype(page);
2515 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
2516 				set_pageblock_migratetype(page,
2517 							  MIGRATE_MOVABLE);
2518 		}
2519 	}
2520 
2521 
2522 	return 1UL << order;
2523 }
2524 
2525 /*
2526  * Update NUMA hit/miss statistics
2527  *
2528  * Must be called with interrupts disabled.
2529  *
2530  * When __GFP_OTHER_NODE is set assume the node of the preferred
2531  * zone is the local node. This is useful for daemons who allocate
2532  * memory on behalf of other processes.
2533  */
2534 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2535 								gfp_t flags)
2536 {
2537 #ifdef CONFIG_NUMA
2538 	int local_nid = numa_node_id();
2539 	enum zone_stat_item local_stat = NUMA_LOCAL;
2540 
2541 	if (unlikely(flags & __GFP_OTHER_NODE)) {
2542 		local_stat = NUMA_OTHER;
2543 		local_nid = preferred_zone->node;
2544 	}
2545 
2546 	if (z->node == local_nid) {
2547 		__inc_zone_state(z, NUMA_HIT);
2548 		__inc_zone_state(z, local_stat);
2549 	} else {
2550 		__inc_zone_state(z, NUMA_MISS);
2551 		__inc_zone_state(preferred_zone, NUMA_FOREIGN);
2552 	}
2553 #endif
2554 }
2555 
2556 /*
2557  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2558  */
2559 static inline
2560 struct page *buffered_rmqueue(struct zone *preferred_zone,
2561 			struct zone *zone, unsigned int order,
2562 			gfp_t gfp_flags, unsigned int alloc_flags,
2563 			int migratetype)
2564 {
2565 	unsigned long flags;
2566 	struct page *page;
2567 	bool cold = ((gfp_flags & __GFP_COLD) != 0);
2568 
2569 	if (likely(order == 0)) {
2570 		struct per_cpu_pages *pcp;
2571 		struct list_head *list;
2572 
2573 		local_irq_save(flags);
2574 		do {
2575 			pcp = &this_cpu_ptr(zone->pageset)->pcp;
2576 			list = &pcp->lists[migratetype];
2577 			if (list_empty(list)) {
2578 				pcp->count += rmqueue_bulk(zone, 0,
2579 						pcp->batch, list,
2580 						migratetype, cold);
2581 				if (unlikely(list_empty(list)))
2582 					goto failed;
2583 			}
2584 
2585 			if (cold)
2586 				page = list_last_entry(list, struct page, lru);
2587 			else
2588 				page = list_first_entry(list, struct page, lru);
2589 
2590 			list_del(&page->lru);
2591 			pcp->count--;
2592 
2593 		} while (check_new_pcp(page));
2594 	} else {
2595 		/*
2596 		 * We most definitely don't want callers attempting to
2597 		 * allocate greater than order-1 page units with __GFP_NOFAIL.
2598 		 */
2599 		WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2600 		spin_lock_irqsave(&zone->lock, flags);
2601 
2602 		do {
2603 			page = NULL;
2604 			if (alloc_flags & ALLOC_HARDER) {
2605 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2606 				if (page)
2607 					trace_mm_page_alloc_zone_locked(page, order, migratetype);
2608 			}
2609 			if (!page)
2610 				page = __rmqueue(zone, order, migratetype);
2611 		} while (page && check_new_pages(page, order));
2612 		spin_unlock(&zone->lock);
2613 		if (!page)
2614 			goto failed;
2615 		__mod_zone_freepage_state(zone, -(1 << order),
2616 					  get_pcppage_migratetype(page));
2617 	}
2618 
2619 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2620 	zone_statistics(preferred_zone, zone, gfp_flags);
2621 	local_irq_restore(flags);
2622 
2623 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
2624 	return page;
2625 
2626 failed:
2627 	local_irq_restore(flags);
2628 	return NULL;
2629 }
2630 
2631 #ifdef CONFIG_FAIL_PAGE_ALLOC
2632 
2633 static struct {
2634 	struct fault_attr attr;
2635 
2636 	bool ignore_gfp_highmem;
2637 	bool ignore_gfp_reclaim;
2638 	u32 min_order;
2639 } fail_page_alloc = {
2640 	.attr = FAULT_ATTR_INITIALIZER,
2641 	.ignore_gfp_reclaim = true,
2642 	.ignore_gfp_highmem = true,
2643 	.min_order = 1,
2644 };
2645 
2646 static int __init setup_fail_page_alloc(char *str)
2647 {
2648 	return setup_fault_attr(&fail_page_alloc.attr, str);
2649 }
2650 __setup("fail_page_alloc=", setup_fail_page_alloc);
2651 
2652 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2653 {
2654 	if (order < fail_page_alloc.min_order)
2655 		return false;
2656 	if (gfp_mask & __GFP_NOFAIL)
2657 		return false;
2658 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2659 		return false;
2660 	if (fail_page_alloc.ignore_gfp_reclaim &&
2661 			(gfp_mask & __GFP_DIRECT_RECLAIM))
2662 		return false;
2663 
2664 	return should_fail(&fail_page_alloc.attr, 1 << order);
2665 }
2666 
2667 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2668 
2669 static int __init fail_page_alloc_debugfs(void)
2670 {
2671 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2672 	struct dentry *dir;
2673 
2674 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2675 					&fail_page_alloc.attr);
2676 	if (IS_ERR(dir))
2677 		return PTR_ERR(dir);
2678 
2679 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2680 				&fail_page_alloc.ignore_gfp_reclaim))
2681 		goto fail;
2682 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2683 				&fail_page_alloc.ignore_gfp_highmem))
2684 		goto fail;
2685 	if (!debugfs_create_u32("min-order", mode, dir,
2686 				&fail_page_alloc.min_order))
2687 		goto fail;
2688 
2689 	return 0;
2690 fail:
2691 	debugfs_remove_recursive(dir);
2692 
2693 	return -ENOMEM;
2694 }
2695 
2696 late_initcall(fail_page_alloc_debugfs);
2697 
2698 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2699 
2700 #else /* CONFIG_FAIL_PAGE_ALLOC */
2701 
2702 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2703 {
2704 	return false;
2705 }
2706 
2707 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2708 
2709 /*
2710  * Return true if free base pages are above 'mark'. For high-order checks it
2711  * will return true of the order-0 watermark is reached and there is at least
2712  * one free page of a suitable size. Checking now avoids taking the zone lock
2713  * to check in the allocation paths if no pages are free.
2714  */
2715 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2716 			 int classzone_idx, unsigned int alloc_flags,
2717 			 long free_pages)
2718 {
2719 	long min = mark;
2720 	int o;
2721 	const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2722 
2723 	/* free_pages may go negative - that's OK */
2724 	free_pages -= (1 << order) - 1;
2725 
2726 	if (alloc_flags & ALLOC_HIGH)
2727 		min -= min / 2;
2728 
2729 	/*
2730 	 * If the caller does not have rights to ALLOC_HARDER then subtract
2731 	 * the high-atomic reserves. This will over-estimate the size of the
2732 	 * atomic reserve but it avoids a search.
2733 	 */
2734 	if (likely(!alloc_harder))
2735 		free_pages -= z->nr_reserved_highatomic;
2736 	else
2737 		min -= min / 4;
2738 
2739 #ifdef CONFIG_CMA
2740 	/* If allocation can't use CMA areas don't use free CMA pages */
2741 	if (!(alloc_flags & ALLOC_CMA))
2742 		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2743 #endif
2744 
2745 	/*
2746 	 * Check watermarks for an order-0 allocation request. If these
2747 	 * are not met, then a high-order request also cannot go ahead
2748 	 * even if a suitable page happened to be free.
2749 	 */
2750 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2751 		return false;
2752 
2753 	/* If this is an order-0 request then the watermark is fine */
2754 	if (!order)
2755 		return true;
2756 
2757 	/* For a high-order request, check at least one suitable page is free */
2758 	for (o = order; o < MAX_ORDER; o++) {
2759 		struct free_area *area = &z->free_area[o];
2760 		int mt;
2761 
2762 		if (!area->nr_free)
2763 			continue;
2764 
2765 		if (alloc_harder)
2766 			return true;
2767 
2768 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2769 			if (!list_empty(&area->free_list[mt]))
2770 				return true;
2771 		}
2772 
2773 #ifdef CONFIG_CMA
2774 		if ((alloc_flags & ALLOC_CMA) &&
2775 		    !list_empty(&area->free_list[MIGRATE_CMA])) {
2776 			return true;
2777 		}
2778 #endif
2779 	}
2780 	return false;
2781 }
2782 
2783 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2784 		      int classzone_idx, unsigned int alloc_flags)
2785 {
2786 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2787 					zone_page_state(z, NR_FREE_PAGES));
2788 }
2789 
2790 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2791 		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2792 {
2793 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
2794 	long cma_pages = 0;
2795 
2796 #ifdef CONFIG_CMA
2797 	/* If allocation can't use CMA areas don't use free CMA pages */
2798 	if (!(alloc_flags & ALLOC_CMA))
2799 		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2800 #endif
2801 
2802 	/*
2803 	 * Fast check for order-0 only. If this fails then the reserves
2804 	 * need to be calculated. There is a corner case where the check
2805 	 * passes but only the high-order atomic reserve are free. If
2806 	 * the caller is !atomic then it'll uselessly search the free
2807 	 * list. That corner case is then slower but it is harmless.
2808 	 */
2809 	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2810 		return true;
2811 
2812 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2813 					free_pages);
2814 }
2815 
2816 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2817 			unsigned long mark, int classzone_idx)
2818 {
2819 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
2820 
2821 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2822 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2823 
2824 	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2825 								free_pages);
2826 }
2827 
2828 #ifdef CONFIG_NUMA
2829 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2830 {
2831 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2832 				RECLAIM_DISTANCE;
2833 }
2834 #else	/* CONFIG_NUMA */
2835 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2836 {
2837 	return true;
2838 }
2839 #endif	/* CONFIG_NUMA */
2840 
2841 /*
2842  * get_page_from_freelist goes through the zonelist trying to allocate
2843  * a page.
2844  */
2845 static struct page *
2846 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2847 						const struct alloc_context *ac)
2848 {
2849 	struct zoneref *z = ac->preferred_zoneref;
2850 	struct zone *zone;
2851 	struct pglist_data *last_pgdat_dirty_limit = NULL;
2852 
2853 	/*
2854 	 * Scan zonelist, looking for a zone with enough free.
2855 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2856 	 */
2857 	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2858 								ac->nodemask) {
2859 		struct page *page;
2860 		unsigned long mark;
2861 
2862 		if (cpusets_enabled() &&
2863 			(alloc_flags & ALLOC_CPUSET) &&
2864 			!__cpuset_zone_allowed(zone, gfp_mask))
2865 				continue;
2866 		/*
2867 		 * When allocating a page cache page for writing, we
2868 		 * want to get it from a node that is within its dirty
2869 		 * limit, such that no single node holds more than its
2870 		 * proportional share of globally allowed dirty pages.
2871 		 * The dirty limits take into account the node's
2872 		 * lowmem reserves and high watermark so that kswapd
2873 		 * should be able to balance it without having to
2874 		 * write pages from its LRU list.
2875 		 *
2876 		 * XXX: For now, allow allocations to potentially
2877 		 * exceed the per-node dirty limit in the slowpath
2878 		 * (spread_dirty_pages unset) before going into reclaim,
2879 		 * which is important when on a NUMA setup the allowed
2880 		 * nodes are together not big enough to reach the
2881 		 * global limit.  The proper fix for these situations
2882 		 * will require awareness of nodes in the
2883 		 * dirty-throttling and the flusher threads.
2884 		 */
2885 		if (ac->spread_dirty_pages) {
2886 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
2887 				continue;
2888 
2889 			if (!node_dirty_ok(zone->zone_pgdat)) {
2890 				last_pgdat_dirty_limit = zone->zone_pgdat;
2891 				continue;
2892 			}
2893 		}
2894 
2895 		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2896 		if (!zone_watermark_fast(zone, order, mark,
2897 				       ac_classzone_idx(ac), alloc_flags)) {
2898 			int ret;
2899 
2900 			/* Checked here to keep the fast path fast */
2901 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2902 			if (alloc_flags & ALLOC_NO_WATERMARKS)
2903 				goto try_this_zone;
2904 
2905 			if (node_reclaim_mode == 0 ||
2906 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
2907 				continue;
2908 
2909 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
2910 			switch (ret) {
2911 			case NODE_RECLAIM_NOSCAN:
2912 				/* did not scan */
2913 				continue;
2914 			case NODE_RECLAIM_FULL:
2915 				/* scanned but unreclaimable */
2916 				continue;
2917 			default:
2918 				/* did we reclaim enough */
2919 				if (zone_watermark_ok(zone, order, mark,
2920 						ac_classzone_idx(ac), alloc_flags))
2921 					goto try_this_zone;
2922 
2923 				continue;
2924 			}
2925 		}
2926 
2927 try_this_zone:
2928 		page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
2929 				gfp_mask, alloc_flags, ac->migratetype);
2930 		if (page) {
2931 			prep_new_page(page, order, gfp_mask, alloc_flags);
2932 
2933 			/*
2934 			 * If this is a high-order atomic allocation then check
2935 			 * if the pageblock should be reserved for the future
2936 			 */
2937 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2938 				reserve_highatomic_pageblock(page, zone, order);
2939 
2940 			return page;
2941 		}
2942 	}
2943 
2944 	return NULL;
2945 }
2946 
2947 /*
2948  * Large machines with many possible nodes should not always dump per-node
2949  * meminfo in irq context.
2950  */
2951 static inline bool should_suppress_show_mem(void)
2952 {
2953 	bool ret = false;
2954 
2955 #if NODES_SHIFT > 8
2956 	ret = in_interrupt();
2957 #endif
2958 	return ret;
2959 }
2960 
2961 static DEFINE_RATELIMIT_STATE(nopage_rs,
2962 		DEFAULT_RATELIMIT_INTERVAL,
2963 		DEFAULT_RATELIMIT_BURST);
2964 
2965 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
2966 {
2967 	unsigned int filter = SHOW_MEM_FILTER_NODES;
2968 
2969 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2970 	    debug_guardpage_minorder() > 0)
2971 		return;
2972 
2973 	/*
2974 	 * This documents exceptions given to allocations in certain
2975 	 * contexts that are allowed to allocate outside current's set
2976 	 * of allowed nodes.
2977 	 */
2978 	if (!(gfp_mask & __GFP_NOMEMALLOC))
2979 		if (test_thread_flag(TIF_MEMDIE) ||
2980 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
2981 			filter &= ~SHOW_MEM_FILTER_NODES;
2982 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
2983 		filter &= ~SHOW_MEM_FILTER_NODES;
2984 
2985 	if (fmt) {
2986 		struct va_format vaf;
2987 		va_list args;
2988 
2989 		va_start(args, fmt);
2990 
2991 		vaf.fmt = fmt;
2992 		vaf.va = &args;
2993 
2994 		pr_warn("%pV", &vaf);
2995 
2996 		va_end(args);
2997 	}
2998 
2999 	pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
3000 		current->comm, order, gfp_mask, &gfp_mask);
3001 	dump_stack();
3002 	if (!should_suppress_show_mem())
3003 		show_mem(filter);
3004 }
3005 
3006 static inline struct page *
3007 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3008 	const struct alloc_context *ac, unsigned long *did_some_progress)
3009 {
3010 	struct oom_control oc = {
3011 		.zonelist = ac->zonelist,
3012 		.nodemask = ac->nodemask,
3013 		.memcg = NULL,
3014 		.gfp_mask = gfp_mask,
3015 		.order = order,
3016 	};
3017 	struct page *page;
3018 
3019 	*did_some_progress = 0;
3020 
3021 	/*
3022 	 * Acquire the oom lock.  If that fails, somebody else is
3023 	 * making progress for us.
3024 	 */
3025 	if (!mutex_trylock(&oom_lock)) {
3026 		*did_some_progress = 1;
3027 		schedule_timeout_uninterruptible(1);
3028 		return NULL;
3029 	}
3030 
3031 	/*
3032 	 * Go through the zonelist yet one more time, keep very high watermark
3033 	 * here, this is only to catch a parallel oom killing, we must fail if
3034 	 * we're still under heavy pressure.
3035 	 */
3036 	page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3037 					ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3038 	if (page)
3039 		goto out;
3040 
3041 	if (!(gfp_mask & __GFP_NOFAIL)) {
3042 		/* Coredumps can quickly deplete all memory reserves */
3043 		if (current->flags & PF_DUMPCORE)
3044 			goto out;
3045 		/* The OOM killer will not help higher order allocs */
3046 		if (order > PAGE_ALLOC_COSTLY_ORDER)
3047 			goto out;
3048 		/* The OOM killer does not needlessly kill tasks for lowmem */
3049 		if (ac->high_zoneidx < ZONE_NORMAL)
3050 			goto out;
3051 		if (pm_suspended_storage())
3052 			goto out;
3053 		/*
3054 		 * XXX: GFP_NOFS allocations should rather fail than rely on
3055 		 * other request to make a forward progress.
3056 		 * We are in an unfortunate situation where out_of_memory cannot
3057 		 * do much for this context but let's try it to at least get
3058 		 * access to memory reserved if the current task is killed (see
3059 		 * out_of_memory). Once filesystems are ready to handle allocation
3060 		 * failures more gracefully we should just bail out here.
3061 		 */
3062 
3063 		/* The OOM killer may not free memory on a specific node */
3064 		if (gfp_mask & __GFP_THISNODE)
3065 			goto out;
3066 	}
3067 	/* Exhausted what can be done so it's blamo time */
3068 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3069 		*did_some_progress = 1;
3070 
3071 		if (gfp_mask & __GFP_NOFAIL) {
3072 			page = get_page_from_freelist(gfp_mask, order,
3073 					ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3074 			/*
3075 			 * fallback to ignore cpuset restriction if our nodes
3076 			 * are depleted
3077 			 */
3078 			if (!page)
3079 				page = get_page_from_freelist(gfp_mask, order,
3080 					ALLOC_NO_WATERMARKS, ac);
3081 		}
3082 	}
3083 out:
3084 	mutex_unlock(&oom_lock);
3085 	return page;
3086 }
3087 
3088 /*
3089  * Maximum number of compaction retries wit a progress before OOM
3090  * killer is consider as the only way to move forward.
3091  */
3092 #define MAX_COMPACT_RETRIES 16
3093 
3094 #ifdef CONFIG_COMPACTION
3095 /* Try memory compaction for high-order allocations before reclaim */
3096 static struct page *
3097 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3098 		unsigned int alloc_flags, const struct alloc_context *ac,
3099 		enum compact_priority prio, enum compact_result *compact_result)
3100 {
3101 	struct page *page;
3102 
3103 	if (!order)
3104 		return NULL;
3105 
3106 	current->flags |= PF_MEMALLOC;
3107 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3108 									prio);
3109 	current->flags &= ~PF_MEMALLOC;
3110 
3111 	if (*compact_result <= COMPACT_INACTIVE)
3112 		return NULL;
3113 
3114 	/*
3115 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3116 	 * count a compaction stall
3117 	 */
3118 	count_vm_event(COMPACTSTALL);
3119 
3120 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3121 
3122 	if (page) {
3123 		struct zone *zone = page_zone(page);
3124 
3125 		zone->compact_blockskip_flush = false;
3126 		compaction_defer_reset(zone, order, true);
3127 		count_vm_event(COMPACTSUCCESS);
3128 		return page;
3129 	}
3130 
3131 	/*
3132 	 * It's bad if compaction run occurs and fails. The most likely reason
3133 	 * is that pages exist, but not enough to satisfy watermarks.
3134 	 */
3135 	count_vm_event(COMPACTFAIL);
3136 
3137 	cond_resched();
3138 
3139 	return NULL;
3140 }
3141 
3142 static inline bool
3143 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3144 		     enum compact_result compact_result,
3145 		     enum compact_priority *compact_priority,
3146 		     int compaction_retries)
3147 {
3148 	int max_retries = MAX_COMPACT_RETRIES;
3149 
3150 	if (!order)
3151 		return false;
3152 
3153 	/*
3154 	 * compaction considers all the zone as desperately out of memory
3155 	 * so it doesn't really make much sense to retry except when the
3156 	 * failure could be caused by insufficient priority
3157 	 */
3158 	if (compaction_failed(compact_result)) {
3159 		if (*compact_priority > MIN_COMPACT_PRIORITY) {
3160 			(*compact_priority)--;
3161 			return true;
3162 		}
3163 		return false;
3164 	}
3165 
3166 	/*
3167 	 * make sure the compaction wasn't deferred or didn't bail out early
3168 	 * due to locks contention before we declare that we should give up.
3169 	 * But do not retry if the given zonelist is not suitable for
3170 	 * compaction.
3171 	 */
3172 	if (compaction_withdrawn(compact_result))
3173 		return compaction_zonelist_suitable(ac, order, alloc_flags);
3174 
3175 	/*
3176 	 * !costly requests are much more important than __GFP_REPEAT
3177 	 * costly ones because they are de facto nofail and invoke OOM
3178 	 * killer to move on while costly can fail and users are ready
3179 	 * to cope with that. 1/4 retries is rather arbitrary but we
3180 	 * would need much more detailed feedback from compaction to
3181 	 * make a better decision.
3182 	 */
3183 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3184 		max_retries /= 4;
3185 	if (compaction_retries <= max_retries)
3186 		return true;
3187 
3188 	return false;
3189 }
3190 #else
3191 static inline struct page *
3192 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3193 		unsigned int alloc_flags, const struct alloc_context *ac,
3194 		enum compact_priority prio, enum compact_result *compact_result)
3195 {
3196 	*compact_result = COMPACT_SKIPPED;
3197 	return NULL;
3198 }
3199 
3200 static inline bool
3201 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3202 		     enum compact_result compact_result,
3203 		     enum compact_priority *compact_priority,
3204 		     int compaction_retries)
3205 {
3206 	struct zone *zone;
3207 	struct zoneref *z;
3208 
3209 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3210 		return false;
3211 
3212 	/*
3213 	 * There are setups with compaction disabled which would prefer to loop
3214 	 * inside the allocator rather than hit the oom killer prematurely.
3215 	 * Let's give them a good hope and keep retrying while the order-0
3216 	 * watermarks are OK.
3217 	 */
3218 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3219 					ac->nodemask) {
3220 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3221 					ac_classzone_idx(ac), alloc_flags))
3222 			return true;
3223 	}
3224 	return false;
3225 }
3226 #endif /* CONFIG_COMPACTION */
3227 
3228 /* Perform direct synchronous page reclaim */
3229 static int
3230 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3231 					const struct alloc_context *ac)
3232 {
3233 	struct reclaim_state reclaim_state;
3234 	int progress;
3235 
3236 	cond_resched();
3237 
3238 	/* We now go into synchronous reclaim */
3239 	cpuset_memory_pressure_bump();
3240 	current->flags |= PF_MEMALLOC;
3241 	lockdep_set_current_reclaim_state(gfp_mask);
3242 	reclaim_state.reclaimed_slab = 0;
3243 	current->reclaim_state = &reclaim_state;
3244 
3245 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3246 								ac->nodemask);
3247 
3248 	current->reclaim_state = NULL;
3249 	lockdep_clear_current_reclaim_state();
3250 	current->flags &= ~PF_MEMALLOC;
3251 
3252 	cond_resched();
3253 
3254 	return progress;
3255 }
3256 
3257 /* The really slow allocator path where we enter direct reclaim */
3258 static inline struct page *
3259 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3260 		unsigned int alloc_flags, const struct alloc_context *ac,
3261 		unsigned long *did_some_progress)
3262 {
3263 	struct page *page = NULL;
3264 	bool drained = false;
3265 
3266 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3267 	if (unlikely(!(*did_some_progress)))
3268 		return NULL;
3269 
3270 retry:
3271 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3272 
3273 	/*
3274 	 * If an allocation failed after direct reclaim, it could be because
3275 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3276 	 * Shrink them them and try again
3277 	 */
3278 	if (!page && !drained) {
3279 		unreserve_highatomic_pageblock(ac);
3280 		drain_all_pages(NULL);
3281 		drained = true;
3282 		goto retry;
3283 	}
3284 
3285 	return page;
3286 }
3287 
3288 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3289 {
3290 	struct zoneref *z;
3291 	struct zone *zone;
3292 	pg_data_t *last_pgdat = NULL;
3293 
3294 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3295 					ac->high_zoneidx, ac->nodemask) {
3296 		if (last_pgdat != zone->zone_pgdat)
3297 			wakeup_kswapd(zone, order, ac->high_zoneidx);
3298 		last_pgdat = zone->zone_pgdat;
3299 	}
3300 }
3301 
3302 static inline unsigned int
3303 gfp_to_alloc_flags(gfp_t gfp_mask)
3304 {
3305 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3306 
3307 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3308 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3309 
3310 	/*
3311 	 * The caller may dip into page reserves a bit more if the caller
3312 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3313 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3314 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3315 	 */
3316 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3317 
3318 	if (gfp_mask & __GFP_ATOMIC) {
3319 		/*
3320 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3321 		 * if it can't schedule.
3322 		 */
3323 		if (!(gfp_mask & __GFP_NOMEMALLOC))
3324 			alloc_flags |= ALLOC_HARDER;
3325 		/*
3326 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3327 		 * comment for __cpuset_node_allowed().
3328 		 */
3329 		alloc_flags &= ~ALLOC_CPUSET;
3330 	} else if (unlikely(rt_task(current)) && !in_interrupt())
3331 		alloc_flags |= ALLOC_HARDER;
3332 
3333 #ifdef CONFIG_CMA
3334 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3335 		alloc_flags |= ALLOC_CMA;
3336 #endif
3337 	return alloc_flags;
3338 }
3339 
3340 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3341 {
3342 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3343 		return false;
3344 
3345 	if (gfp_mask & __GFP_MEMALLOC)
3346 		return true;
3347 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3348 		return true;
3349 	if (!in_interrupt() &&
3350 			((current->flags & PF_MEMALLOC) ||
3351 			 unlikely(test_thread_flag(TIF_MEMDIE))))
3352 		return true;
3353 
3354 	return false;
3355 }
3356 
3357 /*
3358  * Maximum number of reclaim retries without any progress before OOM killer
3359  * is consider as the only way to move forward.
3360  */
3361 #define MAX_RECLAIM_RETRIES 16
3362 
3363 /*
3364  * Checks whether it makes sense to retry the reclaim to make a forward progress
3365  * for the given allocation request.
3366  * The reclaim feedback represented by did_some_progress (any progress during
3367  * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3368  * any progress in a row) is considered as well as the reclaimable pages on the
3369  * applicable zone list (with a backoff mechanism which is a function of
3370  * no_progress_loops).
3371  *
3372  * Returns true if a retry is viable or false to enter the oom path.
3373  */
3374 static inline bool
3375 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3376 		     struct alloc_context *ac, int alloc_flags,
3377 		     bool did_some_progress, int no_progress_loops)
3378 {
3379 	struct zone *zone;
3380 	struct zoneref *z;
3381 
3382 	/*
3383 	 * Make sure we converge to OOM if we cannot make any progress
3384 	 * several times in the row.
3385 	 */
3386 	if (no_progress_loops > MAX_RECLAIM_RETRIES)
3387 		return false;
3388 
3389 	/*
3390 	 * Keep reclaiming pages while there is a chance this will lead
3391 	 * somewhere.  If none of the target zones can satisfy our allocation
3392 	 * request even if all reclaimable pages are considered then we are
3393 	 * screwed and have to go OOM.
3394 	 */
3395 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3396 					ac->nodemask) {
3397 		unsigned long available;
3398 		unsigned long reclaimable;
3399 
3400 		available = reclaimable = zone_reclaimable_pages(zone);
3401 		available -= DIV_ROUND_UP(no_progress_loops * available,
3402 					  MAX_RECLAIM_RETRIES);
3403 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3404 
3405 		/*
3406 		 * Would the allocation succeed if we reclaimed the whole
3407 		 * available?
3408 		 */
3409 		if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
3410 				ac_classzone_idx(ac), alloc_flags, available)) {
3411 			/*
3412 			 * If we didn't make any progress and have a lot of
3413 			 * dirty + writeback pages then we should wait for
3414 			 * an IO to complete to slow down the reclaim and
3415 			 * prevent from pre mature OOM
3416 			 */
3417 			if (!did_some_progress) {
3418 				unsigned long write_pending;
3419 
3420 				write_pending = zone_page_state_snapshot(zone,
3421 							NR_ZONE_WRITE_PENDING);
3422 
3423 				if (2 * write_pending > reclaimable) {
3424 					congestion_wait(BLK_RW_ASYNC, HZ/10);
3425 					return true;
3426 				}
3427 			}
3428 
3429 			/*
3430 			 * Memory allocation/reclaim might be called from a WQ
3431 			 * context and the current implementation of the WQ
3432 			 * concurrency control doesn't recognize that
3433 			 * a particular WQ is congested if the worker thread is
3434 			 * looping without ever sleeping. Therefore we have to
3435 			 * do a short sleep here rather than calling
3436 			 * cond_resched().
3437 			 */
3438 			if (current->flags & PF_WQ_WORKER)
3439 				schedule_timeout_uninterruptible(1);
3440 			else
3441 				cond_resched();
3442 
3443 			return true;
3444 		}
3445 	}
3446 
3447 	return false;
3448 }
3449 
3450 static inline struct page *
3451 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3452 						struct alloc_context *ac)
3453 {
3454 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3455 	struct page *page = NULL;
3456 	unsigned int alloc_flags;
3457 	unsigned long did_some_progress;
3458 	enum compact_priority compact_priority = DEF_COMPACT_PRIORITY;
3459 	enum compact_result compact_result;
3460 	int compaction_retries = 0;
3461 	int no_progress_loops = 0;
3462 
3463 	/*
3464 	 * In the slowpath, we sanity check order to avoid ever trying to
3465 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3466 	 * be using allocators in order of preference for an area that is
3467 	 * too large.
3468 	 */
3469 	if (order >= MAX_ORDER) {
3470 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3471 		return NULL;
3472 	}
3473 
3474 	/*
3475 	 * We also sanity check to catch abuse of atomic reserves being used by
3476 	 * callers that are not in atomic context.
3477 	 */
3478 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3479 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3480 		gfp_mask &= ~__GFP_ATOMIC;
3481 
3482 	/*
3483 	 * The fast path uses conservative alloc_flags to succeed only until
3484 	 * kswapd needs to be woken up, and to avoid the cost of setting up
3485 	 * alloc_flags precisely. So we do that now.
3486 	 */
3487 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
3488 
3489 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3490 		wake_all_kswapds(order, ac);
3491 
3492 	/*
3493 	 * The adjusted alloc_flags might result in immediate success, so try
3494 	 * that first
3495 	 */
3496 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3497 	if (page)
3498 		goto got_pg;
3499 
3500 	/*
3501 	 * For costly allocations, try direct compaction first, as it's likely
3502 	 * that we have enough base pages and don't need to reclaim. Don't try
3503 	 * that for allocations that are allowed to ignore watermarks, as the
3504 	 * ALLOC_NO_WATERMARKS attempt didn't yet happen.
3505 	 */
3506 	if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
3507 		!gfp_pfmemalloc_allowed(gfp_mask)) {
3508 		page = __alloc_pages_direct_compact(gfp_mask, order,
3509 						alloc_flags, ac,
3510 						INIT_COMPACT_PRIORITY,
3511 						&compact_result);
3512 		if (page)
3513 			goto got_pg;
3514 
3515 		/*
3516 		 * Checks for costly allocations with __GFP_NORETRY, which
3517 		 * includes THP page fault allocations
3518 		 */
3519 		if (gfp_mask & __GFP_NORETRY) {
3520 			/*
3521 			 * If compaction is deferred for high-order allocations,
3522 			 * it is because sync compaction recently failed. If
3523 			 * this is the case and the caller requested a THP
3524 			 * allocation, we do not want to heavily disrupt the
3525 			 * system, so we fail the allocation instead of entering
3526 			 * direct reclaim.
3527 			 */
3528 			if (compact_result == COMPACT_DEFERRED)
3529 				goto nopage;
3530 
3531 			/*
3532 			 * Looks like reclaim/compaction is worth trying, but
3533 			 * sync compaction could be very expensive, so keep
3534 			 * using async compaction.
3535 			 */
3536 			compact_priority = INIT_COMPACT_PRIORITY;
3537 		}
3538 	}
3539 
3540 retry:
3541 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3542 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3543 		wake_all_kswapds(order, ac);
3544 
3545 	if (gfp_pfmemalloc_allowed(gfp_mask))
3546 		alloc_flags = ALLOC_NO_WATERMARKS;
3547 
3548 	/*
3549 	 * Reset the zonelist iterators if memory policies can be ignored.
3550 	 * These allocations are high priority and system rather than user
3551 	 * orientated.
3552 	 */
3553 	if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
3554 		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3555 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3556 					ac->high_zoneidx, ac->nodemask);
3557 	}
3558 
3559 	/* Attempt with potentially adjusted zonelist and alloc_flags */
3560 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3561 	if (page)
3562 		goto got_pg;
3563 
3564 	/* Caller is not willing to reclaim, we can't balance anything */
3565 	if (!can_direct_reclaim) {
3566 		/*
3567 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
3568 		 * of any new users that actually allow this type of allocation
3569 		 * to fail.
3570 		 */
3571 		WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3572 		goto nopage;
3573 	}
3574 
3575 	/* Avoid recursion of direct reclaim */
3576 	if (current->flags & PF_MEMALLOC) {
3577 		/*
3578 		 * __GFP_NOFAIL request from this context is rather bizarre
3579 		 * because we cannot reclaim anything and only can loop waiting
3580 		 * for somebody to do a work for us.
3581 		 */
3582 		if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3583 			cond_resched();
3584 			goto retry;
3585 		}
3586 		goto nopage;
3587 	}
3588 
3589 	/* Avoid allocations with no watermarks from looping endlessly */
3590 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3591 		goto nopage;
3592 
3593 
3594 	/* Try direct reclaim and then allocating */
3595 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3596 							&did_some_progress);
3597 	if (page)
3598 		goto got_pg;
3599 
3600 	/* Try direct compaction and then allocating */
3601 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3602 					compact_priority, &compact_result);
3603 	if (page)
3604 		goto got_pg;
3605 
3606 	if (order && compaction_made_progress(compact_result))
3607 		compaction_retries++;
3608 
3609 	/* Do not loop if specifically requested */
3610 	if (gfp_mask & __GFP_NORETRY)
3611 		goto nopage;
3612 
3613 	/*
3614 	 * Do not retry costly high order allocations unless they are
3615 	 * __GFP_REPEAT
3616 	 */
3617 	if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
3618 		goto nopage;
3619 
3620 	/*
3621 	 * Costly allocations might have made a progress but this doesn't mean
3622 	 * their order will become available due to high fragmentation so
3623 	 * always increment the no progress counter for them
3624 	 */
3625 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3626 		no_progress_loops = 0;
3627 	else
3628 		no_progress_loops++;
3629 
3630 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3631 				 did_some_progress > 0, no_progress_loops))
3632 		goto retry;
3633 
3634 	/*
3635 	 * It doesn't make any sense to retry for the compaction if the order-0
3636 	 * reclaim is not able to make any progress because the current
3637 	 * implementation of the compaction depends on the sufficient amount
3638 	 * of free memory (see __compaction_suitable)
3639 	 */
3640 	if (did_some_progress > 0 &&
3641 			should_compact_retry(ac, order, alloc_flags,
3642 				compact_result, &compact_priority,
3643 				compaction_retries))
3644 		goto retry;
3645 
3646 	/* Reclaim has failed us, start killing things */
3647 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3648 	if (page)
3649 		goto got_pg;
3650 
3651 	/* Retry as long as the OOM killer is making progress */
3652 	if (did_some_progress) {
3653 		no_progress_loops = 0;
3654 		goto retry;
3655 	}
3656 
3657 nopage:
3658 	warn_alloc_failed(gfp_mask, order, NULL);
3659 got_pg:
3660 	return page;
3661 }
3662 
3663 /*
3664  * This is the 'heart' of the zoned buddy allocator.
3665  */
3666 struct page *
3667 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3668 			struct zonelist *zonelist, nodemask_t *nodemask)
3669 {
3670 	struct page *page;
3671 	unsigned int cpuset_mems_cookie;
3672 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
3673 	gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
3674 	struct alloc_context ac = {
3675 		.high_zoneidx = gfp_zone(gfp_mask),
3676 		.zonelist = zonelist,
3677 		.nodemask = nodemask,
3678 		.migratetype = gfpflags_to_migratetype(gfp_mask),
3679 	};
3680 
3681 	if (cpusets_enabled()) {
3682 		alloc_mask |= __GFP_HARDWALL;
3683 		alloc_flags |= ALLOC_CPUSET;
3684 		if (!ac.nodemask)
3685 			ac.nodemask = &cpuset_current_mems_allowed;
3686 	}
3687 
3688 	gfp_mask &= gfp_allowed_mask;
3689 
3690 	lockdep_trace_alloc(gfp_mask);
3691 
3692 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3693 
3694 	if (should_fail_alloc_page(gfp_mask, order))
3695 		return NULL;
3696 
3697 	/*
3698 	 * Check the zones suitable for the gfp_mask contain at least one
3699 	 * valid zone. It's possible to have an empty zonelist as a result
3700 	 * of __GFP_THISNODE and a memoryless node
3701 	 */
3702 	if (unlikely(!zonelist->_zonerefs->zone))
3703 		return NULL;
3704 
3705 	if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3706 		alloc_flags |= ALLOC_CMA;
3707 
3708 retry_cpuset:
3709 	cpuset_mems_cookie = read_mems_allowed_begin();
3710 
3711 	/* Dirty zone balancing only done in the fast path */
3712 	ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3713 
3714 	/*
3715 	 * The preferred zone is used for statistics but crucially it is
3716 	 * also used as the starting point for the zonelist iterator. It
3717 	 * may get reset for allocations that ignore memory policies.
3718 	 */
3719 	ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3720 					ac.high_zoneidx, ac.nodemask);
3721 	if (!ac.preferred_zoneref) {
3722 		page = NULL;
3723 		goto no_zone;
3724 	}
3725 
3726 	/* First allocation attempt */
3727 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3728 	if (likely(page))
3729 		goto out;
3730 
3731 	/*
3732 	 * Runtime PM, block IO and its error handling path can deadlock
3733 	 * because I/O on the device might not complete.
3734 	 */
3735 	alloc_mask = memalloc_noio_flags(gfp_mask);
3736 	ac.spread_dirty_pages = false;
3737 
3738 	/*
3739 	 * Restore the original nodemask if it was potentially replaced with
3740 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3741 	 */
3742 	if (cpusets_enabled())
3743 		ac.nodemask = nodemask;
3744 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3745 
3746 no_zone:
3747 	/*
3748 	 * When updating a task's mems_allowed, it is possible to race with
3749 	 * parallel threads in such a way that an allocation can fail while
3750 	 * the mask is being updated. If a page allocation is about to fail,
3751 	 * check if the cpuset changed during allocation and if so, retry.
3752 	 */
3753 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3754 		alloc_mask = gfp_mask;
3755 		goto retry_cpuset;
3756 	}
3757 
3758 out:
3759 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page) {
3760 		if (unlikely(memcg_kmem_charge(page, gfp_mask, order))) {
3761 			__free_pages(page, order);
3762 			page = NULL;
3763 		} else
3764 			__SetPageKmemcg(page);
3765 	}
3766 
3767 	if (kmemcheck_enabled && page)
3768 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3769 
3770 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3771 
3772 	return page;
3773 }
3774 EXPORT_SYMBOL(__alloc_pages_nodemask);
3775 
3776 /*
3777  * Common helper functions.
3778  */
3779 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3780 {
3781 	struct page *page;
3782 
3783 	/*
3784 	 * __get_free_pages() returns a 32-bit address, which cannot represent
3785 	 * a highmem page
3786 	 */
3787 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3788 
3789 	page = alloc_pages(gfp_mask, order);
3790 	if (!page)
3791 		return 0;
3792 	return (unsigned long) page_address(page);
3793 }
3794 EXPORT_SYMBOL(__get_free_pages);
3795 
3796 unsigned long get_zeroed_page(gfp_t gfp_mask)
3797 {
3798 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3799 }
3800 EXPORT_SYMBOL(get_zeroed_page);
3801 
3802 void __free_pages(struct page *page, unsigned int order)
3803 {
3804 	if (put_page_testzero(page)) {
3805 		if (order == 0)
3806 			free_hot_cold_page(page, false);
3807 		else
3808 			__free_pages_ok(page, order);
3809 	}
3810 }
3811 
3812 EXPORT_SYMBOL(__free_pages);
3813 
3814 void free_pages(unsigned long addr, unsigned int order)
3815 {
3816 	if (addr != 0) {
3817 		VM_BUG_ON(!virt_addr_valid((void *)addr));
3818 		__free_pages(virt_to_page((void *)addr), order);
3819 	}
3820 }
3821 
3822 EXPORT_SYMBOL(free_pages);
3823 
3824 /*
3825  * Page Fragment:
3826  *  An arbitrary-length arbitrary-offset area of memory which resides
3827  *  within a 0 or higher order page.  Multiple fragments within that page
3828  *  are individually refcounted, in the page's reference counter.
3829  *
3830  * The page_frag functions below provide a simple allocation framework for
3831  * page fragments.  This is used by the network stack and network device
3832  * drivers to provide a backing region of memory for use as either an
3833  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3834  */
3835 static struct page *__page_frag_refill(struct page_frag_cache *nc,
3836 				       gfp_t gfp_mask)
3837 {
3838 	struct page *page = NULL;
3839 	gfp_t gfp = gfp_mask;
3840 
3841 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3842 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3843 		    __GFP_NOMEMALLOC;
3844 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3845 				PAGE_FRAG_CACHE_MAX_ORDER);
3846 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3847 #endif
3848 	if (unlikely(!page))
3849 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3850 
3851 	nc->va = page ? page_address(page) : NULL;
3852 
3853 	return page;
3854 }
3855 
3856 void *__alloc_page_frag(struct page_frag_cache *nc,
3857 			unsigned int fragsz, gfp_t gfp_mask)
3858 {
3859 	unsigned int size = PAGE_SIZE;
3860 	struct page *page;
3861 	int offset;
3862 
3863 	if (unlikely(!nc->va)) {
3864 refill:
3865 		page = __page_frag_refill(nc, gfp_mask);
3866 		if (!page)
3867 			return NULL;
3868 
3869 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3870 		/* if size can vary use size else just use PAGE_SIZE */
3871 		size = nc->size;
3872 #endif
3873 		/* Even if we own the page, we do not use atomic_set().
3874 		 * This would break get_page_unless_zero() users.
3875 		 */
3876 		page_ref_add(page, size - 1);
3877 
3878 		/* reset page count bias and offset to start of new frag */
3879 		nc->pfmemalloc = page_is_pfmemalloc(page);
3880 		nc->pagecnt_bias = size;
3881 		nc->offset = size;
3882 	}
3883 
3884 	offset = nc->offset - fragsz;
3885 	if (unlikely(offset < 0)) {
3886 		page = virt_to_page(nc->va);
3887 
3888 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
3889 			goto refill;
3890 
3891 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3892 		/* if size can vary use size else just use PAGE_SIZE */
3893 		size = nc->size;
3894 #endif
3895 		/* OK, page count is 0, we can safely set it */
3896 		set_page_count(page, size);
3897 
3898 		/* reset page count bias and offset to start of new frag */
3899 		nc->pagecnt_bias = size;
3900 		offset = size - fragsz;
3901 	}
3902 
3903 	nc->pagecnt_bias--;
3904 	nc->offset = offset;
3905 
3906 	return nc->va + offset;
3907 }
3908 EXPORT_SYMBOL(__alloc_page_frag);
3909 
3910 /*
3911  * Frees a page fragment allocated out of either a compound or order 0 page.
3912  */
3913 void __free_page_frag(void *addr)
3914 {
3915 	struct page *page = virt_to_head_page(addr);
3916 
3917 	if (unlikely(put_page_testzero(page)))
3918 		__free_pages_ok(page, compound_order(page));
3919 }
3920 EXPORT_SYMBOL(__free_page_frag);
3921 
3922 static void *make_alloc_exact(unsigned long addr, unsigned int order,
3923 		size_t size)
3924 {
3925 	if (addr) {
3926 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
3927 		unsigned long used = addr + PAGE_ALIGN(size);
3928 
3929 		split_page(virt_to_page((void *)addr), order);
3930 		while (used < alloc_end) {
3931 			free_page(used);
3932 			used += PAGE_SIZE;
3933 		}
3934 	}
3935 	return (void *)addr;
3936 }
3937 
3938 /**
3939  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3940  * @size: the number of bytes to allocate
3941  * @gfp_mask: GFP flags for the allocation
3942  *
3943  * This function is similar to alloc_pages(), except that it allocates the
3944  * minimum number of pages to satisfy the request.  alloc_pages() can only
3945  * allocate memory in power-of-two pages.
3946  *
3947  * This function is also limited by MAX_ORDER.
3948  *
3949  * Memory allocated by this function must be released by free_pages_exact().
3950  */
3951 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3952 {
3953 	unsigned int order = get_order(size);
3954 	unsigned long addr;
3955 
3956 	addr = __get_free_pages(gfp_mask, order);
3957 	return make_alloc_exact(addr, order, size);
3958 }
3959 EXPORT_SYMBOL(alloc_pages_exact);
3960 
3961 /**
3962  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3963  *			   pages on a node.
3964  * @nid: the preferred node ID where memory should be allocated
3965  * @size: the number of bytes to allocate
3966  * @gfp_mask: GFP flags for the allocation
3967  *
3968  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3969  * back.
3970  */
3971 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3972 {
3973 	unsigned int order = get_order(size);
3974 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
3975 	if (!p)
3976 		return NULL;
3977 	return make_alloc_exact((unsigned long)page_address(p), order, size);
3978 }
3979 
3980 /**
3981  * free_pages_exact - release memory allocated via alloc_pages_exact()
3982  * @virt: the value returned by alloc_pages_exact.
3983  * @size: size of allocation, same value as passed to alloc_pages_exact().
3984  *
3985  * Release the memory allocated by a previous call to alloc_pages_exact.
3986  */
3987 void free_pages_exact(void *virt, size_t size)
3988 {
3989 	unsigned long addr = (unsigned long)virt;
3990 	unsigned long end = addr + PAGE_ALIGN(size);
3991 
3992 	while (addr < end) {
3993 		free_page(addr);
3994 		addr += PAGE_SIZE;
3995 	}
3996 }
3997 EXPORT_SYMBOL(free_pages_exact);
3998 
3999 /**
4000  * nr_free_zone_pages - count number of pages beyond high watermark
4001  * @offset: The zone index of the highest zone
4002  *
4003  * nr_free_zone_pages() counts the number of counts pages which are beyond the
4004  * high watermark within all zones at or below a given zone index.  For each
4005  * zone, the number of pages is calculated as:
4006  *     managed_pages - high_pages
4007  */
4008 static unsigned long nr_free_zone_pages(int offset)
4009 {
4010 	struct zoneref *z;
4011 	struct zone *zone;
4012 
4013 	/* Just pick one node, since fallback list is circular */
4014 	unsigned long sum = 0;
4015 
4016 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4017 
4018 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4019 		unsigned long size = zone->managed_pages;
4020 		unsigned long high = high_wmark_pages(zone);
4021 		if (size > high)
4022 			sum += size - high;
4023 	}
4024 
4025 	return sum;
4026 }
4027 
4028 /**
4029  * nr_free_buffer_pages - count number of pages beyond high watermark
4030  *
4031  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4032  * watermark within ZONE_DMA and ZONE_NORMAL.
4033  */
4034 unsigned long nr_free_buffer_pages(void)
4035 {
4036 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4037 }
4038 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4039 
4040 /**
4041  * nr_free_pagecache_pages - count number of pages beyond high watermark
4042  *
4043  * nr_free_pagecache_pages() counts the number of pages which are beyond the
4044  * high watermark within all zones.
4045  */
4046 unsigned long nr_free_pagecache_pages(void)
4047 {
4048 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4049 }
4050 
4051 static inline void show_node(struct zone *zone)
4052 {
4053 	if (IS_ENABLED(CONFIG_NUMA))
4054 		printk("Node %d ", zone_to_nid(zone));
4055 }
4056 
4057 long si_mem_available(void)
4058 {
4059 	long available;
4060 	unsigned long pagecache;
4061 	unsigned long wmark_low = 0;
4062 	unsigned long pages[NR_LRU_LISTS];
4063 	struct zone *zone;
4064 	int lru;
4065 
4066 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4067 		pages[lru] = global_page_state(NR_LRU_BASE + lru);
4068 
4069 	for_each_zone(zone)
4070 		wmark_low += zone->watermark[WMARK_LOW];
4071 
4072 	/*
4073 	 * Estimate the amount of memory available for userspace allocations,
4074 	 * without causing swapping.
4075 	 */
4076 	available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4077 
4078 	/*
4079 	 * Not all the page cache can be freed, otherwise the system will
4080 	 * start swapping. Assume at least half of the page cache, or the
4081 	 * low watermark worth of cache, needs to stay.
4082 	 */
4083 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4084 	pagecache -= min(pagecache / 2, wmark_low);
4085 	available += pagecache;
4086 
4087 	/*
4088 	 * Part of the reclaimable slab consists of items that are in use,
4089 	 * and cannot be freed. Cap this estimate at the low watermark.
4090 	 */
4091 	available += global_page_state(NR_SLAB_RECLAIMABLE) -
4092 		     min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4093 
4094 	if (available < 0)
4095 		available = 0;
4096 	return available;
4097 }
4098 EXPORT_SYMBOL_GPL(si_mem_available);
4099 
4100 void si_meminfo(struct sysinfo *val)
4101 {
4102 	val->totalram = totalram_pages;
4103 	val->sharedram = global_node_page_state(NR_SHMEM);
4104 	val->freeram = global_page_state(NR_FREE_PAGES);
4105 	val->bufferram = nr_blockdev_pages();
4106 	val->totalhigh = totalhigh_pages;
4107 	val->freehigh = nr_free_highpages();
4108 	val->mem_unit = PAGE_SIZE;
4109 }
4110 
4111 EXPORT_SYMBOL(si_meminfo);
4112 
4113 #ifdef CONFIG_NUMA
4114 void si_meminfo_node(struct sysinfo *val, int nid)
4115 {
4116 	int zone_type;		/* needs to be signed */
4117 	unsigned long managed_pages = 0;
4118 	unsigned long managed_highpages = 0;
4119 	unsigned long free_highpages = 0;
4120 	pg_data_t *pgdat = NODE_DATA(nid);
4121 
4122 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4123 		managed_pages += pgdat->node_zones[zone_type].managed_pages;
4124 	val->totalram = managed_pages;
4125 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
4126 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4127 #ifdef CONFIG_HIGHMEM
4128 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4129 		struct zone *zone = &pgdat->node_zones[zone_type];
4130 
4131 		if (is_highmem(zone)) {
4132 			managed_highpages += zone->managed_pages;
4133 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4134 		}
4135 	}
4136 	val->totalhigh = managed_highpages;
4137 	val->freehigh = free_highpages;
4138 #else
4139 	val->totalhigh = managed_highpages;
4140 	val->freehigh = free_highpages;
4141 #endif
4142 	val->mem_unit = PAGE_SIZE;
4143 }
4144 #endif
4145 
4146 /*
4147  * Determine whether the node should be displayed or not, depending on whether
4148  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4149  */
4150 bool skip_free_areas_node(unsigned int flags, int nid)
4151 {
4152 	bool ret = false;
4153 	unsigned int cpuset_mems_cookie;
4154 
4155 	if (!(flags & SHOW_MEM_FILTER_NODES))
4156 		goto out;
4157 
4158 	do {
4159 		cpuset_mems_cookie = read_mems_allowed_begin();
4160 		ret = !node_isset(nid, cpuset_current_mems_allowed);
4161 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
4162 out:
4163 	return ret;
4164 }
4165 
4166 #define K(x) ((x) << (PAGE_SHIFT-10))
4167 
4168 static void show_migration_types(unsigned char type)
4169 {
4170 	static const char types[MIGRATE_TYPES] = {
4171 		[MIGRATE_UNMOVABLE]	= 'U',
4172 		[MIGRATE_MOVABLE]	= 'M',
4173 		[MIGRATE_RECLAIMABLE]	= 'E',
4174 		[MIGRATE_HIGHATOMIC]	= 'H',
4175 #ifdef CONFIG_CMA
4176 		[MIGRATE_CMA]		= 'C',
4177 #endif
4178 #ifdef CONFIG_MEMORY_ISOLATION
4179 		[MIGRATE_ISOLATE]	= 'I',
4180 #endif
4181 	};
4182 	char tmp[MIGRATE_TYPES + 1];
4183 	char *p = tmp;
4184 	int i;
4185 
4186 	for (i = 0; i < MIGRATE_TYPES; i++) {
4187 		if (type & (1 << i))
4188 			*p++ = types[i];
4189 	}
4190 
4191 	*p = '\0';
4192 	printk("(%s) ", tmp);
4193 }
4194 
4195 /*
4196  * Show free area list (used inside shift_scroll-lock stuff)
4197  * We also calculate the percentage fragmentation. We do this by counting the
4198  * memory on each free list with the exception of the first item on the list.
4199  *
4200  * Bits in @filter:
4201  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4202  *   cpuset.
4203  */
4204 void show_free_areas(unsigned int filter)
4205 {
4206 	unsigned long free_pcp = 0;
4207 	int cpu;
4208 	struct zone *zone;
4209 	pg_data_t *pgdat;
4210 
4211 	for_each_populated_zone(zone) {
4212 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
4213 			continue;
4214 
4215 		for_each_online_cpu(cpu)
4216 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4217 	}
4218 
4219 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4220 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4221 		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4222 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4223 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4224 		" free:%lu free_pcp:%lu free_cma:%lu\n",
4225 		global_node_page_state(NR_ACTIVE_ANON),
4226 		global_node_page_state(NR_INACTIVE_ANON),
4227 		global_node_page_state(NR_ISOLATED_ANON),
4228 		global_node_page_state(NR_ACTIVE_FILE),
4229 		global_node_page_state(NR_INACTIVE_FILE),
4230 		global_node_page_state(NR_ISOLATED_FILE),
4231 		global_node_page_state(NR_UNEVICTABLE),
4232 		global_node_page_state(NR_FILE_DIRTY),
4233 		global_node_page_state(NR_WRITEBACK),
4234 		global_node_page_state(NR_UNSTABLE_NFS),
4235 		global_page_state(NR_SLAB_RECLAIMABLE),
4236 		global_page_state(NR_SLAB_UNRECLAIMABLE),
4237 		global_node_page_state(NR_FILE_MAPPED),
4238 		global_node_page_state(NR_SHMEM),
4239 		global_page_state(NR_PAGETABLE),
4240 		global_page_state(NR_BOUNCE),
4241 		global_page_state(NR_FREE_PAGES),
4242 		free_pcp,
4243 		global_page_state(NR_FREE_CMA_PAGES));
4244 
4245 	for_each_online_pgdat(pgdat) {
4246 		printk("Node %d"
4247 			" active_anon:%lukB"
4248 			" inactive_anon:%lukB"
4249 			" active_file:%lukB"
4250 			" inactive_file:%lukB"
4251 			" unevictable:%lukB"
4252 			" isolated(anon):%lukB"
4253 			" isolated(file):%lukB"
4254 			" mapped:%lukB"
4255 			" dirty:%lukB"
4256 			" writeback:%lukB"
4257 			" shmem:%lukB"
4258 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4259 			" shmem_thp: %lukB"
4260 			" shmem_pmdmapped: %lukB"
4261 			" anon_thp: %lukB"
4262 #endif
4263 			" writeback_tmp:%lukB"
4264 			" unstable:%lukB"
4265 			" pages_scanned:%lu"
4266 			" all_unreclaimable? %s"
4267 			"\n",
4268 			pgdat->node_id,
4269 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4270 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4271 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4272 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4273 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
4274 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4275 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4276 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
4277 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
4278 			K(node_page_state(pgdat, NR_WRITEBACK)),
4279 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4280 			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4281 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4282 					* HPAGE_PMD_NR),
4283 			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4284 #endif
4285 			K(node_page_state(pgdat, NR_SHMEM)),
4286 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4287 			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4288 			node_page_state(pgdat, NR_PAGES_SCANNED),
4289 			!pgdat_reclaimable(pgdat) ? "yes" : "no");
4290 	}
4291 
4292 	for_each_populated_zone(zone) {
4293 		int i;
4294 
4295 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
4296 			continue;
4297 
4298 		free_pcp = 0;
4299 		for_each_online_cpu(cpu)
4300 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4301 
4302 		show_node(zone);
4303 		printk("%s"
4304 			" free:%lukB"
4305 			" min:%lukB"
4306 			" low:%lukB"
4307 			" high:%lukB"
4308 			" active_anon:%lukB"
4309 			" inactive_anon:%lukB"
4310 			" active_file:%lukB"
4311 			" inactive_file:%lukB"
4312 			" unevictable:%lukB"
4313 			" writepending:%lukB"
4314 			" present:%lukB"
4315 			" managed:%lukB"
4316 			" mlocked:%lukB"
4317 			" slab_reclaimable:%lukB"
4318 			" slab_unreclaimable:%lukB"
4319 			" kernel_stack:%lukB"
4320 			" pagetables:%lukB"
4321 			" bounce:%lukB"
4322 			" free_pcp:%lukB"
4323 			" local_pcp:%ukB"
4324 			" free_cma:%lukB"
4325 			"\n",
4326 			zone->name,
4327 			K(zone_page_state(zone, NR_FREE_PAGES)),
4328 			K(min_wmark_pages(zone)),
4329 			K(low_wmark_pages(zone)),
4330 			K(high_wmark_pages(zone)),
4331 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4332 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4333 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4334 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4335 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4336 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4337 			K(zone->present_pages),
4338 			K(zone->managed_pages),
4339 			K(zone_page_state(zone, NR_MLOCK)),
4340 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4341 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
4342 			zone_page_state(zone, NR_KERNEL_STACK_KB),
4343 			K(zone_page_state(zone, NR_PAGETABLE)),
4344 			K(zone_page_state(zone, NR_BOUNCE)),
4345 			K(free_pcp),
4346 			K(this_cpu_read(zone->pageset->pcp.count)),
4347 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4348 		printk("lowmem_reserve[]:");
4349 		for (i = 0; i < MAX_NR_ZONES; i++)
4350 			printk(" %ld", zone->lowmem_reserve[i]);
4351 		printk("\n");
4352 	}
4353 
4354 	for_each_populated_zone(zone) {
4355 		unsigned int order;
4356 		unsigned long nr[MAX_ORDER], flags, total = 0;
4357 		unsigned char types[MAX_ORDER];
4358 
4359 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
4360 			continue;
4361 		show_node(zone);
4362 		printk("%s: ", zone->name);
4363 
4364 		spin_lock_irqsave(&zone->lock, flags);
4365 		for (order = 0; order < MAX_ORDER; order++) {
4366 			struct free_area *area = &zone->free_area[order];
4367 			int type;
4368 
4369 			nr[order] = area->nr_free;
4370 			total += nr[order] << order;
4371 
4372 			types[order] = 0;
4373 			for (type = 0; type < MIGRATE_TYPES; type++) {
4374 				if (!list_empty(&area->free_list[type]))
4375 					types[order] |= 1 << type;
4376 			}
4377 		}
4378 		spin_unlock_irqrestore(&zone->lock, flags);
4379 		for (order = 0; order < MAX_ORDER; order++) {
4380 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
4381 			if (nr[order])
4382 				show_migration_types(types[order]);
4383 		}
4384 		printk("= %lukB\n", K(total));
4385 	}
4386 
4387 	hugetlb_show_meminfo();
4388 
4389 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4390 
4391 	show_swap_cache_info();
4392 }
4393 
4394 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4395 {
4396 	zoneref->zone = zone;
4397 	zoneref->zone_idx = zone_idx(zone);
4398 }
4399 
4400 /*
4401  * Builds allocation fallback zone lists.
4402  *
4403  * Add all populated zones of a node to the zonelist.
4404  */
4405 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4406 				int nr_zones)
4407 {
4408 	struct zone *zone;
4409 	enum zone_type zone_type = MAX_NR_ZONES;
4410 
4411 	do {
4412 		zone_type--;
4413 		zone = pgdat->node_zones + zone_type;
4414 		if (populated_zone(zone)) {
4415 			zoneref_set_zone(zone,
4416 				&zonelist->_zonerefs[nr_zones++]);
4417 			check_highest_zone(zone_type);
4418 		}
4419 	} while (zone_type);
4420 
4421 	return nr_zones;
4422 }
4423 
4424 
4425 /*
4426  *  zonelist_order:
4427  *  0 = automatic detection of better ordering.
4428  *  1 = order by ([node] distance, -zonetype)
4429  *  2 = order by (-zonetype, [node] distance)
4430  *
4431  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4432  *  the same zonelist. So only NUMA can configure this param.
4433  */
4434 #define ZONELIST_ORDER_DEFAULT  0
4435 #define ZONELIST_ORDER_NODE     1
4436 #define ZONELIST_ORDER_ZONE     2
4437 
4438 /* zonelist order in the kernel.
4439  * set_zonelist_order() will set this to NODE or ZONE.
4440  */
4441 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4442 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4443 
4444 
4445 #ifdef CONFIG_NUMA
4446 /* The value user specified ....changed by config */
4447 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4448 /* string for sysctl */
4449 #define NUMA_ZONELIST_ORDER_LEN	16
4450 char numa_zonelist_order[16] = "default";
4451 
4452 /*
4453  * interface for configure zonelist ordering.
4454  * command line option "numa_zonelist_order"
4455  *	= "[dD]efault	- default, automatic configuration.
4456  *	= "[nN]ode 	- order by node locality, then by zone within node
4457  *	= "[zZ]one      - order by zone, then by locality within zone
4458  */
4459 
4460 static int __parse_numa_zonelist_order(char *s)
4461 {
4462 	if (*s == 'd' || *s == 'D') {
4463 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4464 	} else if (*s == 'n' || *s == 'N') {
4465 		user_zonelist_order = ZONELIST_ORDER_NODE;
4466 	} else if (*s == 'z' || *s == 'Z') {
4467 		user_zonelist_order = ZONELIST_ORDER_ZONE;
4468 	} else {
4469 		pr_warn("Ignoring invalid numa_zonelist_order value:  %s\n", s);
4470 		return -EINVAL;
4471 	}
4472 	return 0;
4473 }
4474 
4475 static __init int setup_numa_zonelist_order(char *s)
4476 {
4477 	int ret;
4478 
4479 	if (!s)
4480 		return 0;
4481 
4482 	ret = __parse_numa_zonelist_order(s);
4483 	if (ret == 0)
4484 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4485 
4486 	return ret;
4487 }
4488 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4489 
4490 /*
4491  * sysctl handler for numa_zonelist_order
4492  */
4493 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4494 		void __user *buffer, size_t *length,
4495 		loff_t *ppos)
4496 {
4497 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
4498 	int ret;
4499 	static DEFINE_MUTEX(zl_order_mutex);
4500 
4501 	mutex_lock(&zl_order_mutex);
4502 	if (write) {
4503 		if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4504 			ret = -EINVAL;
4505 			goto out;
4506 		}
4507 		strcpy(saved_string, (char *)table->data);
4508 	}
4509 	ret = proc_dostring(table, write, buffer, length, ppos);
4510 	if (ret)
4511 		goto out;
4512 	if (write) {
4513 		int oldval = user_zonelist_order;
4514 
4515 		ret = __parse_numa_zonelist_order((char *)table->data);
4516 		if (ret) {
4517 			/*
4518 			 * bogus value.  restore saved string
4519 			 */
4520 			strncpy((char *)table->data, saved_string,
4521 				NUMA_ZONELIST_ORDER_LEN);
4522 			user_zonelist_order = oldval;
4523 		} else if (oldval != user_zonelist_order) {
4524 			mutex_lock(&zonelists_mutex);
4525 			build_all_zonelists(NULL, NULL);
4526 			mutex_unlock(&zonelists_mutex);
4527 		}
4528 	}
4529 out:
4530 	mutex_unlock(&zl_order_mutex);
4531 	return ret;
4532 }
4533 
4534 
4535 #define MAX_NODE_LOAD (nr_online_nodes)
4536 static int node_load[MAX_NUMNODES];
4537 
4538 /**
4539  * find_next_best_node - find the next node that should appear in a given node's fallback list
4540  * @node: node whose fallback list we're appending
4541  * @used_node_mask: nodemask_t of already used nodes
4542  *
4543  * We use a number of factors to determine which is the next node that should
4544  * appear on a given node's fallback list.  The node should not have appeared
4545  * already in @node's fallback list, and it should be the next closest node
4546  * according to the distance array (which contains arbitrary distance values
4547  * from each node to each node in the system), and should also prefer nodes
4548  * with no CPUs, since presumably they'll have very little allocation pressure
4549  * on them otherwise.
4550  * It returns -1 if no node is found.
4551  */
4552 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4553 {
4554 	int n, val;
4555 	int min_val = INT_MAX;
4556 	int best_node = NUMA_NO_NODE;
4557 	const struct cpumask *tmp = cpumask_of_node(0);
4558 
4559 	/* Use the local node if we haven't already */
4560 	if (!node_isset(node, *used_node_mask)) {
4561 		node_set(node, *used_node_mask);
4562 		return node;
4563 	}
4564 
4565 	for_each_node_state(n, N_MEMORY) {
4566 
4567 		/* Don't want a node to appear more than once */
4568 		if (node_isset(n, *used_node_mask))
4569 			continue;
4570 
4571 		/* Use the distance array to find the distance */
4572 		val = node_distance(node, n);
4573 
4574 		/* Penalize nodes under us ("prefer the next node") */
4575 		val += (n < node);
4576 
4577 		/* Give preference to headless and unused nodes */
4578 		tmp = cpumask_of_node(n);
4579 		if (!cpumask_empty(tmp))
4580 			val += PENALTY_FOR_NODE_WITH_CPUS;
4581 
4582 		/* Slight preference for less loaded node */
4583 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4584 		val += node_load[n];
4585 
4586 		if (val < min_val) {
4587 			min_val = val;
4588 			best_node = n;
4589 		}
4590 	}
4591 
4592 	if (best_node >= 0)
4593 		node_set(best_node, *used_node_mask);
4594 
4595 	return best_node;
4596 }
4597 
4598 
4599 /*
4600  * Build zonelists ordered by node and zones within node.
4601  * This results in maximum locality--normal zone overflows into local
4602  * DMA zone, if any--but risks exhausting DMA zone.
4603  */
4604 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4605 {
4606 	int j;
4607 	struct zonelist *zonelist;
4608 
4609 	zonelist = &pgdat->node_zonelists[0];
4610 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4611 		;
4612 	j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4613 	zonelist->_zonerefs[j].zone = NULL;
4614 	zonelist->_zonerefs[j].zone_idx = 0;
4615 }
4616 
4617 /*
4618  * Build gfp_thisnode zonelists
4619  */
4620 static void build_thisnode_zonelists(pg_data_t *pgdat)
4621 {
4622 	int j;
4623 	struct zonelist *zonelist;
4624 
4625 	zonelist = &pgdat->node_zonelists[1];
4626 	j = build_zonelists_node(pgdat, zonelist, 0);
4627 	zonelist->_zonerefs[j].zone = NULL;
4628 	zonelist->_zonerefs[j].zone_idx = 0;
4629 }
4630 
4631 /*
4632  * Build zonelists ordered by zone and nodes within zones.
4633  * This results in conserving DMA zone[s] until all Normal memory is
4634  * exhausted, but results in overflowing to remote node while memory
4635  * may still exist in local DMA zone.
4636  */
4637 static int node_order[MAX_NUMNODES];
4638 
4639 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4640 {
4641 	int pos, j, node;
4642 	int zone_type;		/* needs to be signed */
4643 	struct zone *z;
4644 	struct zonelist *zonelist;
4645 
4646 	zonelist = &pgdat->node_zonelists[0];
4647 	pos = 0;
4648 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4649 		for (j = 0; j < nr_nodes; j++) {
4650 			node = node_order[j];
4651 			z = &NODE_DATA(node)->node_zones[zone_type];
4652 			if (populated_zone(z)) {
4653 				zoneref_set_zone(z,
4654 					&zonelist->_zonerefs[pos++]);
4655 				check_highest_zone(zone_type);
4656 			}
4657 		}
4658 	}
4659 	zonelist->_zonerefs[pos].zone = NULL;
4660 	zonelist->_zonerefs[pos].zone_idx = 0;
4661 }
4662 
4663 #if defined(CONFIG_64BIT)
4664 /*
4665  * Devices that require DMA32/DMA are relatively rare and do not justify a
4666  * penalty to every machine in case the specialised case applies. Default
4667  * to Node-ordering on 64-bit NUMA machines
4668  */
4669 static int default_zonelist_order(void)
4670 {
4671 	return ZONELIST_ORDER_NODE;
4672 }
4673 #else
4674 /*
4675  * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4676  * by the kernel. If processes running on node 0 deplete the low memory zone
4677  * then reclaim will occur more frequency increasing stalls and potentially
4678  * be easier to OOM if a large percentage of the zone is under writeback or
4679  * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4680  * Hence, default to zone ordering on 32-bit.
4681  */
4682 static int default_zonelist_order(void)
4683 {
4684 	return ZONELIST_ORDER_ZONE;
4685 }
4686 #endif /* CONFIG_64BIT */
4687 
4688 static void set_zonelist_order(void)
4689 {
4690 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4691 		current_zonelist_order = default_zonelist_order();
4692 	else
4693 		current_zonelist_order = user_zonelist_order;
4694 }
4695 
4696 static void build_zonelists(pg_data_t *pgdat)
4697 {
4698 	int i, node, load;
4699 	nodemask_t used_mask;
4700 	int local_node, prev_node;
4701 	struct zonelist *zonelist;
4702 	unsigned int order = current_zonelist_order;
4703 
4704 	/* initialize zonelists */
4705 	for (i = 0; i < MAX_ZONELISTS; i++) {
4706 		zonelist = pgdat->node_zonelists + i;
4707 		zonelist->_zonerefs[0].zone = NULL;
4708 		zonelist->_zonerefs[0].zone_idx = 0;
4709 	}
4710 
4711 	/* NUMA-aware ordering of nodes */
4712 	local_node = pgdat->node_id;
4713 	load = nr_online_nodes;
4714 	prev_node = local_node;
4715 	nodes_clear(used_mask);
4716 
4717 	memset(node_order, 0, sizeof(node_order));
4718 	i = 0;
4719 
4720 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4721 		/*
4722 		 * We don't want to pressure a particular node.
4723 		 * So adding penalty to the first node in same
4724 		 * distance group to make it round-robin.
4725 		 */
4726 		if (node_distance(local_node, node) !=
4727 		    node_distance(local_node, prev_node))
4728 			node_load[node] = load;
4729 
4730 		prev_node = node;
4731 		load--;
4732 		if (order == ZONELIST_ORDER_NODE)
4733 			build_zonelists_in_node_order(pgdat, node);
4734 		else
4735 			node_order[i++] = node;	/* remember order */
4736 	}
4737 
4738 	if (order == ZONELIST_ORDER_ZONE) {
4739 		/* calculate node order -- i.e., DMA last! */
4740 		build_zonelists_in_zone_order(pgdat, i);
4741 	}
4742 
4743 	build_thisnode_zonelists(pgdat);
4744 }
4745 
4746 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4747 /*
4748  * Return node id of node used for "local" allocations.
4749  * I.e., first node id of first zone in arg node's generic zonelist.
4750  * Used for initializing percpu 'numa_mem', which is used primarily
4751  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4752  */
4753 int local_memory_node(int node)
4754 {
4755 	struct zoneref *z;
4756 
4757 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4758 				   gfp_zone(GFP_KERNEL),
4759 				   NULL);
4760 	return z->zone->node;
4761 }
4762 #endif
4763 
4764 #else	/* CONFIG_NUMA */
4765 
4766 static void set_zonelist_order(void)
4767 {
4768 	current_zonelist_order = ZONELIST_ORDER_ZONE;
4769 }
4770 
4771 static void build_zonelists(pg_data_t *pgdat)
4772 {
4773 	int node, local_node;
4774 	enum zone_type j;
4775 	struct zonelist *zonelist;
4776 
4777 	local_node = pgdat->node_id;
4778 
4779 	zonelist = &pgdat->node_zonelists[0];
4780 	j = build_zonelists_node(pgdat, zonelist, 0);
4781 
4782 	/*
4783 	 * Now we build the zonelist so that it contains the zones
4784 	 * of all the other nodes.
4785 	 * We don't want to pressure a particular node, so when
4786 	 * building the zones for node N, we make sure that the
4787 	 * zones coming right after the local ones are those from
4788 	 * node N+1 (modulo N)
4789 	 */
4790 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4791 		if (!node_online(node))
4792 			continue;
4793 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4794 	}
4795 	for (node = 0; node < local_node; node++) {
4796 		if (!node_online(node))
4797 			continue;
4798 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4799 	}
4800 
4801 	zonelist->_zonerefs[j].zone = NULL;
4802 	zonelist->_zonerefs[j].zone_idx = 0;
4803 }
4804 
4805 #endif	/* CONFIG_NUMA */
4806 
4807 /*
4808  * Boot pageset table. One per cpu which is going to be used for all
4809  * zones and all nodes. The parameters will be set in such a way
4810  * that an item put on a list will immediately be handed over to
4811  * the buddy list. This is safe since pageset manipulation is done
4812  * with interrupts disabled.
4813  *
4814  * The boot_pagesets must be kept even after bootup is complete for
4815  * unused processors and/or zones. They do play a role for bootstrapping
4816  * hotplugged processors.
4817  *
4818  * zoneinfo_show() and maybe other functions do
4819  * not check if the processor is online before following the pageset pointer.
4820  * Other parts of the kernel may not check if the zone is available.
4821  */
4822 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4823 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4824 static void setup_zone_pageset(struct zone *zone);
4825 
4826 /*
4827  * Global mutex to protect against size modification of zonelists
4828  * as well as to serialize pageset setup for the new populated zone.
4829  */
4830 DEFINE_MUTEX(zonelists_mutex);
4831 
4832 /* return values int ....just for stop_machine() */
4833 static int __build_all_zonelists(void *data)
4834 {
4835 	int nid;
4836 	int cpu;
4837 	pg_data_t *self = data;
4838 
4839 #ifdef CONFIG_NUMA
4840 	memset(node_load, 0, sizeof(node_load));
4841 #endif
4842 
4843 	if (self && !node_online(self->node_id)) {
4844 		build_zonelists(self);
4845 	}
4846 
4847 	for_each_online_node(nid) {
4848 		pg_data_t *pgdat = NODE_DATA(nid);
4849 
4850 		build_zonelists(pgdat);
4851 	}
4852 
4853 	/*
4854 	 * Initialize the boot_pagesets that are going to be used
4855 	 * for bootstrapping processors. The real pagesets for
4856 	 * each zone will be allocated later when the per cpu
4857 	 * allocator is available.
4858 	 *
4859 	 * boot_pagesets are used also for bootstrapping offline
4860 	 * cpus if the system is already booted because the pagesets
4861 	 * are needed to initialize allocators on a specific cpu too.
4862 	 * F.e. the percpu allocator needs the page allocator which
4863 	 * needs the percpu allocator in order to allocate its pagesets
4864 	 * (a chicken-egg dilemma).
4865 	 */
4866 	for_each_possible_cpu(cpu) {
4867 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4868 
4869 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4870 		/*
4871 		 * We now know the "local memory node" for each node--
4872 		 * i.e., the node of the first zone in the generic zonelist.
4873 		 * Set up numa_mem percpu variable for on-line cpus.  During
4874 		 * boot, only the boot cpu should be on-line;  we'll init the
4875 		 * secondary cpus' numa_mem as they come on-line.  During
4876 		 * node/memory hotplug, we'll fixup all on-line cpus.
4877 		 */
4878 		if (cpu_online(cpu))
4879 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4880 #endif
4881 	}
4882 
4883 	return 0;
4884 }
4885 
4886 static noinline void __init
4887 build_all_zonelists_init(void)
4888 {
4889 	__build_all_zonelists(NULL);
4890 	mminit_verify_zonelist();
4891 	cpuset_init_current_mems_allowed();
4892 }
4893 
4894 /*
4895  * Called with zonelists_mutex held always
4896  * unless system_state == SYSTEM_BOOTING.
4897  *
4898  * __ref due to (1) call of __meminit annotated setup_zone_pageset
4899  * [we're only called with non-NULL zone through __meminit paths] and
4900  * (2) call of __init annotated helper build_all_zonelists_init
4901  * [protected by SYSTEM_BOOTING].
4902  */
4903 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
4904 {
4905 	set_zonelist_order();
4906 
4907 	if (system_state == SYSTEM_BOOTING) {
4908 		build_all_zonelists_init();
4909 	} else {
4910 #ifdef CONFIG_MEMORY_HOTPLUG
4911 		if (zone)
4912 			setup_zone_pageset(zone);
4913 #endif
4914 		/* we have to stop all cpus to guarantee there is no user
4915 		   of zonelist */
4916 		stop_machine(__build_all_zonelists, pgdat, NULL);
4917 		/* cpuset refresh routine should be here */
4918 	}
4919 	vm_total_pages = nr_free_pagecache_pages();
4920 	/*
4921 	 * Disable grouping by mobility if the number of pages in the
4922 	 * system is too low to allow the mechanism to work. It would be
4923 	 * more accurate, but expensive to check per-zone. This check is
4924 	 * made on memory-hotadd so a system can start with mobility
4925 	 * disabled and enable it later
4926 	 */
4927 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
4928 		page_group_by_mobility_disabled = 1;
4929 	else
4930 		page_group_by_mobility_disabled = 0;
4931 
4932 	pr_info("Built %i zonelists in %s order, mobility grouping %s.  Total pages: %ld\n",
4933 		nr_online_nodes,
4934 		zonelist_order_name[current_zonelist_order],
4935 		page_group_by_mobility_disabled ? "off" : "on",
4936 		vm_total_pages);
4937 #ifdef CONFIG_NUMA
4938 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
4939 #endif
4940 }
4941 
4942 /*
4943  * Helper functions to size the waitqueue hash table.
4944  * Essentially these want to choose hash table sizes sufficiently
4945  * large so that collisions trying to wait on pages are rare.
4946  * But in fact, the number of active page waitqueues on typical
4947  * systems is ridiculously low, less than 200. So this is even
4948  * conservative, even though it seems large.
4949  *
4950  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4951  * waitqueues, i.e. the size of the waitq table given the number of pages.
4952  */
4953 #define PAGES_PER_WAITQUEUE	256
4954 
4955 #ifndef CONFIG_MEMORY_HOTPLUG
4956 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4957 {
4958 	unsigned long size = 1;
4959 
4960 	pages /= PAGES_PER_WAITQUEUE;
4961 
4962 	while (size < pages)
4963 		size <<= 1;
4964 
4965 	/*
4966 	 * Once we have dozens or even hundreds of threads sleeping
4967 	 * on IO we've got bigger problems than wait queue collision.
4968 	 * Limit the size of the wait table to a reasonable size.
4969 	 */
4970 	size = min(size, 4096UL);
4971 
4972 	return max(size, 4UL);
4973 }
4974 #else
4975 /*
4976  * A zone's size might be changed by hot-add, so it is not possible to determine
4977  * a suitable size for its wait_table.  So we use the maximum size now.
4978  *
4979  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
4980  *
4981  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
4982  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4983  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
4984  *
4985  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4986  * or more by the traditional way. (See above).  It equals:
4987  *
4988  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
4989  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
4990  *    powerpc (64K page size)             : =  (32G +16M)byte.
4991  */
4992 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4993 {
4994 	return 4096UL;
4995 }
4996 #endif
4997 
4998 /*
4999  * This is an integer logarithm so that shifts can be used later
5000  * to extract the more random high bits from the multiplicative
5001  * hash function before the remainder is taken.
5002  */
5003 static inline unsigned long wait_table_bits(unsigned long size)
5004 {
5005 	return ffz(~size);
5006 }
5007 
5008 /*
5009  * Initially all pages are reserved - free ones are freed
5010  * up by free_all_bootmem() once the early boot process is
5011  * done. Non-atomic initialization, single-pass.
5012  */
5013 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5014 		unsigned long start_pfn, enum memmap_context context)
5015 {
5016 	struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5017 	unsigned long end_pfn = start_pfn + size;
5018 	pg_data_t *pgdat = NODE_DATA(nid);
5019 	unsigned long pfn;
5020 	unsigned long nr_initialised = 0;
5021 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5022 	struct memblock_region *r = NULL, *tmp;
5023 #endif
5024 
5025 	if (highest_memmap_pfn < end_pfn - 1)
5026 		highest_memmap_pfn = end_pfn - 1;
5027 
5028 	/*
5029 	 * Honor reservation requested by the driver for this ZONE_DEVICE
5030 	 * memory
5031 	 */
5032 	if (altmap && start_pfn == altmap->base_pfn)
5033 		start_pfn += altmap->reserve;
5034 
5035 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5036 		/*
5037 		 * There can be holes in boot-time mem_map[]s handed to this
5038 		 * function.  They do not exist on hotplugged memory.
5039 		 */
5040 		if (context != MEMMAP_EARLY)
5041 			goto not_early;
5042 
5043 		if (!early_pfn_valid(pfn))
5044 			continue;
5045 		if (!early_pfn_in_nid(pfn, nid))
5046 			continue;
5047 		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5048 			break;
5049 
5050 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5051 		/*
5052 		 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
5053 		 * from zone_movable_pfn[nid] to end of each node should be
5054 		 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
5055 		 */
5056 		if (!mirrored_kernelcore && zone_movable_pfn[nid])
5057 			if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
5058 				continue;
5059 
5060 		/*
5061 		 * Check given memblock attribute by firmware which can affect
5062 		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
5063 		 * mirrored, it's an overlapped memmap init. skip it.
5064 		 */
5065 		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5066 			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5067 				for_each_memblock(memory, tmp)
5068 					if (pfn < memblock_region_memory_end_pfn(tmp))
5069 						break;
5070 				r = tmp;
5071 			}
5072 			if (pfn >= memblock_region_memory_base_pfn(r) &&
5073 			    memblock_is_mirror(r)) {
5074 				/* already initialized as NORMAL */
5075 				pfn = memblock_region_memory_end_pfn(r);
5076 				continue;
5077 			}
5078 		}
5079 #endif
5080 
5081 not_early:
5082 		/*
5083 		 * Mark the block movable so that blocks are reserved for
5084 		 * movable at startup. This will force kernel allocations
5085 		 * to reserve their blocks rather than leaking throughout
5086 		 * the address space during boot when many long-lived
5087 		 * kernel allocations are made.
5088 		 *
5089 		 * bitmap is created for zone's valid pfn range. but memmap
5090 		 * can be created for invalid pages (for alignment)
5091 		 * check here not to call set_pageblock_migratetype() against
5092 		 * pfn out of zone.
5093 		 */
5094 		if (!(pfn & (pageblock_nr_pages - 1))) {
5095 			struct page *page = pfn_to_page(pfn);
5096 
5097 			__init_single_page(page, pfn, zone, nid);
5098 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5099 		} else {
5100 			__init_single_pfn(pfn, zone, nid);
5101 		}
5102 	}
5103 }
5104 
5105 static void __meminit zone_init_free_lists(struct zone *zone)
5106 {
5107 	unsigned int order, t;
5108 	for_each_migratetype_order(order, t) {
5109 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5110 		zone->free_area[order].nr_free = 0;
5111 	}
5112 }
5113 
5114 #ifndef __HAVE_ARCH_MEMMAP_INIT
5115 #define memmap_init(size, nid, zone, start_pfn) \
5116 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5117 #endif
5118 
5119 static int zone_batchsize(struct zone *zone)
5120 {
5121 #ifdef CONFIG_MMU
5122 	int batch;
5123 
5124 	/*
5125 	 * The per-cpu-pages pools are set to around 1000th of the
5126 	 * size of the zone.  But no more than 1/2 of a meg.
5127 	 *
5128 	 * OK, so we don't know how big the cache is.  So guess.
5129 	 */
5130 	batch = zone->managed_pages / 1024;
5131 	if (batch * PAGE_SIZE > 512 * 1024)
5132 		batch = (512 * 1024) / PAGE_SIZE;
5133 	batch /= 4;		/* We effectively *= 4 below */
5134 	if (batch < 1)
5135 		batch = 1;
5136 
5137 	/*
5138 	 * Clamp the batch to a 2^n - 1 value. Having a power
5139 	 * of 2 value was found to be more likely to have
5140 	 * suboptimal cache aliasing properties in some cases.
5141 	 *
5142 	 * For example if 2 tasks are alternately allocating
5143 	 * batches of pages, one task can end up with a lot
5144 	 * of pages of one half of the possible page colors
5145 	 * and the other with pages of the other colors.
5146 	 */
5147 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5148 
5149 	return batch;
5150 
5151 #else
5152 	/* The deferral and batching of frees should be suppressed under NOMMU
5153 	 * conditions.
5154 	 *
5155 	 * The problem is that NOMMU needs to be able to allocate large chunks
5156 	 * of contiguous memory as there's no hardware page translation to
5157 	 * assemble apparent contiguous memory from discontiguous pages.
5158 	 *
5159 	 * Queueing large contiguous runs of pages for batching, however,
5160 	 * causes the pages to actually be freed in smaller chunks.  As there
5161 	 * can be a significant delay between the individual batches being
5162 	 * recycled, this leads to the once large chunks of space being
5163 	 * fragmented and becoming unavailable for high-order allocations.
5164 	 */
5165 	return 0;
5166 #endif
5167 }
5168 
5169 /*
5170  * pcp->high and pcp->batch values are related and dependent on one another:
5171  * ->batch must never be higher then ->high.
5172  * The following function updates them in a safe manner without read side
5173  * locking.
5174  *
5175  * Any new users of pcp->batch and pcp->high should ensure they can cope with
5176  * those fields changing asynchronously (acording the the above rule).
5177  *
5178  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5179  * outside of boot time (or some other assurance that no concurrent updaters
5180  * exist).
5181  */
5182 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5183 		unsigned long batch)
5184 {
5185        /* start with a fail safe value for batch */
5186 	pcp->batch = 1;
5187 	smp_wmb();
5188 
5189        /* Update high, then batch, in order */
5190 	pcp->high = high;
5191 	smp_wmb();
5192 
5193 	pcp->batch = batch;
5194 }
5195 
5196 /* a companion to pageset_set_high() */
5197 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5198 {
5199 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5200 }
5201 
5202 static void pageset_init(struct per_cpu_pageset *p)
5203 {
5204 	struct per_cpu_pages *pcp;
5205 	int migratetype;
5206 
5207 	memset(p, 0, sizeof(*p));
5208 
5209 	pcp = &p->pcp;
5210 	pcp->count = 0;
5211 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5212 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5213 }
5214 
5215 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5216 {
5217 	pageset_init(p);
5218 	pageset_set_batch(p, batch);
5219 }
5220 
5221 /*
5222  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5223  * to the value high for the pageset p.
5224  */
5225 static void pageset_set_high(struct per_cpu_pageset *p,
5226 				unsigned long high)
5227 {
5228 	unsigned long batch = max(1UL, high / 4);
5229 	if ((high / 4) > (PAGE_SHIFT * 8))
5230 		batch = PAGE_SHIFT * 8;
5231 
5232 	pageset_update(&p->pcp, high, batch);
5233 }
5234 
5235 static void pageset_set_high_and_batch(struct zone *zone,
5236 				       struct per_cpu_pageset *pcp)
5237 {
5238 	if (percpu_pagelist_fraction)
5239 		pageset_set_high(pcp,
5240 			(zone->managed_pages /
5241 				percpu_pagelist_fraction));
5242 	else
5243 		pageset_set_batch(pcp, zone_batchsize(zone));
5244 }
5245 
5246 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5247 {
5248 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5249 
5250 	pageset_init(pcp);
5251 	pageset_set_high_and_batch(zone, pcp);
5252 }
5253 
5254 static void __meminit setup_zone_pageset(struct zone *zone)
5255 {
5256 	int cpu;
5257 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5258 	for_each_possible_cpu(cpu)
5259 		zone_pageset_init(zone, cpu);
5260 
5261 	if (!zone->zone_pgdat->per_cpu_nodestats) {
5262 		zone->zone_pgdat->per_cpu_nodestats =
5263 			alloc_percpu(struct per_cpu_nodestat);
5264 	}
5265 }
5266 
5267 /*
5268  * Allocate per cpu pagesets and initialize them.
5269  * Before this call only boot pagesets were available.
5270  */
5271 void __init setup_per_cpu_pageset(void)
5272 {
5273 	struct zone *zone;
5274 
5275 	for_each_populated_zone(zone)
5276 		setup_zone_pageset(zone);
5277 }
5278 
5279 static noinline __init_refok
5280 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
5281 {
5282 	int i;
5283 	size_t alloc_size;
5284 
5285 	/*
5286 	 * The per-page waitqueue mechanism uses hashed waitqueues
5287 	 * per zone.
5288 	 */
5289 	zone->wait_table_hash_nr_entries =
5290 		 wait_table_hash_nr_entries(zone_size_pages);
5291 	zone->wait_table_bits =
5292 		wait_table_bits(zone->wait_table_hash_nr_entries);
5293 	alloc_size = zone->wait_table_hash_nr_entries
5294 					* sizeof(wait_queue_head_t);
5295 
5296 	if (!slab_is_available()) {
5297 		zone->wait_table = (wait_queue_head_t *)
5298 			memblock_virt_alloc_node_nopanic(
5299 				alloc_size, zone->zone_pgdat->node_id);
5300 	} else {
5301 		/*
5302 		 * This case means that a zone whose size was 0 gets new memory
5303 		 * via memory hot-add.
5304 		 * But it may be the case that a new node was hot-added.  In
5305 		 * this case vmalloc() will not be able to use this new node's
5306 		 * memory - this wait_table must be initialized to use this new
5307 		 * node itself as well.
5308 		 * To use this new node's memory, further consideration will be
5309 		 * necessary.
5310 		 */
5311 		zone->wait_table = vmalloc(alloc_size);
5312 	}
5313 	if (!zone->wait_table)
5314 		return -ENOMEM;
5315 
5316 	for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
5317 		init_waitqueue_head(zone->wait_table + i);
5318 
5319 	return 0;
5320 }
5321 
5322 static __meminit void zone_pcp_init(struct zone *zone)
5323 {
5324 	/*
5325 	 * per cpu subsystem is not up at this point. The following code
5326 	 * relies on the ability of the linker to provide the
5327 	 * offset of a (static) per cpu variable into the per cpu area.
5328 	 */
5329 	zone->pageset = &boot_pageset;
5330 
5331 	if (populated_zone(zone))
5332 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
5333 			zone->name, zone->present_pages,
5334 					 zone_batchsize(zone));
5335 }
5336 
5337 int __meminit init_currently_empty_zone(struct zone *zone,
5338 					unsigned long zone_start_pfn,
5339 					unsigned long size)
5340 {
5341 	struct pglist_data *pgdat = zone->zone_pgdat;
5342 	int ret;
5343 	ret = zone_wait_table_init(zone, size);
5344 	if (ret)
5345 		return ret;
5346 	pgdat->nr_zones = zone_idx(zone) + 1;
5347 
5348 	zone->zone_start_pfn = zone_start_pfn;
5349 
5350 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
5351 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
5352 			pgdat->node_id,
5353 			(unsigned long)zone_idx(zone),
5354 			zone_start_pfn, (zone_start_pfn + size));
5355 
5356 	zone_init_free_lists(zone);
5357 
5358 	return 0;
5359 }
5360 
5361 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5362 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5363 
5364 /*
5365  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5366  */
5367 int __meminit __early_pfn_to_nid(unsigned long pfn,
5368 					struct mminit_pfnnid_cache *state)
5369 {
5370 	unsigned long start_pfn, end_pfn;
5371 	int nid;
5372 
5373 	if (state->last_start <= pfn && pfn < state->last_end)
5374 		return state->last_nid;
5375 
5376 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5377 	if (nid != -1) {
5378 		state->last_start = start_pfn;
5379 		state->last_end = end_pfn;
5380 		state->last_nid = nid;
5381 	}
5382 
5383 	return nid;
5384 }
5385 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5386 
5387 /**
5388  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5389  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5390  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5391  *
5392  * If an architecture guarantees that all ranges registered contain no holes
5393  * and may be freed, this this function may be used instead of calling
5394  * memblock_free_early_nid() manually.
5395  */
5396 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5397 {
5398 	unsigned long start_pfn, end_pfn;
5399 	int i, this_nid;
5400 
5401 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5402 		start_pfn = min(start_pfn, max_low_pfn);
5403 		end_pfn = min(end_pfn, max_low_pfn);
5404 
5405 		if (start_pfn < end_pfn)
5406 			memblock_free_early_nid(PFN_PHYS(start_pfn),
5407 					(end_pfn - start_pfn) << PAGE_SHIFT,
5408 					this_nid);
5409 	}
5410 }
5411 
5412 /**
5413  * sparse_memory_present_with_active_regions - Call memory_present for each active range
5414  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5415  *
5416  * If an architecture guarantees that all ranges registered contain no holes and may
5417  * be freed, this function may be used instead of calling memory_present() manually.
5418  */
5419 void __init sparse_memory_present_with_active_regions(int nid)
5420 {
5421 	unsigned long start_pfn, end_pfn;
5422 	int i, this_nid;
5423 
5424 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5425 		memory_present(this_nid, start_pfn, end_pfn);
5426 }
5427 
5428 /**
5429  * get_pfn_range_for_nid - Return the start and end page frames for a node
5430  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5431  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5432  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5433  *
5434  * It returns the start and end page frame of a node based on information
5435  * provided by memblock_set_node(). If called for a node
5436  * with no available memory, a warning is printed and the start and end
5437  * PFNs will be 0.
5438  */
5439 void __meminit get_pfn_range_for_nid(unsigned int nid,
5440 			unsigned long *start_pfn, unsigned long *end_pfn)
5441 {
5442 	unsigned long this_start_pfn, this_end_pfn;
5443 	int i;
5444 
5445 	*start_pfn = -1UL;
5446 	*end_pfn = 0;
5447 
5448 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5449 		*start_pfn = min(*start_pfn, this_start_pfn);
5450 		*end_pfn = max(*end_pfn, this_end_pfn);
5451 	}
5452 
5453 	if (*start_pfn == -1UL)
5454 		*start_pfn = 0;
5455 }
5456 
5457 /*
5458  * This finds a zone that can be used for ZONE_MOVABLE pages. The
5459  * assumption is made that zones within a node are ordered in monotonic
5460  * increasing memory addresses so that the "highest" populated zone is used
5461  */
5462 static void __init find_usable_zone_for_movable(void)
5463 {
5464 	int zone_index;
5465 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5466 		if (zone_index == ZONE_MOVABLE)
5467 			continue;
5468 
5469 		if (arch_zone_highest_possible_pfn[zone_index] >
5470 				arch_zone_lowest_possible_pfn[zone_index])
5471 			break;
5472 	}
5473 
5474 	VM_BUG_ON(zone_index == -1);
5475 	movable_zone = zone_index;
5476 }
5477 
5478 /*
5479  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5480  * because it is sized independent of architecture. Unlike the other zones,
5481  * the starting point for ZONE_MOVABLE is not fixed. It may be different
5482  * in each node depending on the size of each node and how evenly kernelcore
5483  * is distributed. This helper function adjusts the zone ranges
5484  * provided by the architecture for a given node by using the end of the
5485  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5486  * zones within a node are in order of monotonic increases memory addresses
5487  */
5488 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5489 					unsigned long zone_type,
5490 					unsigned long node_start_pfn,
5491 					unsigned long node_end_pfn,
5492 					unsigned long *zone_start_pfn,
5493 					unsigned long *zone_end_pfn)
5494 {
5495 	/* Only adjust if ZONE_MOVABLE is on this node */
5496 	if (zone_movable_pfn[nid]) {
5497 		/* Size ZONE_MOVABLE */
5498 		if (zone_type == ZONE_MOVABLE) {
5499 			*zone_start_pfn = zone_movable_pfn[nid];
5500 			*zone_end_pfn = min(node_end_pfn,
5501 				arch_zone_highest_possible_pfn[movable_zone]);
5502 
5503 		/* Check if this whole range is within ZONE_MOVABLE */
5504 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
5505 			*zone_start_pfn = *zone_end_pfn;
5506 	}
5507 }
5508 
5509 /*
5510  * Return the number of pages a zone spans in a node, including holes
5511  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5512  */
5513 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5514 					unsigned long zone_type,
5515 					unsigned long node_start_pfn,
5516 					unsigned long node_end_pfn,
5517 					unsigned long *zone_start_pfn,
5518 					unsigned long *zone_end_pfn,
5519 					unsigned long *ignored)
5520 {
5521 	/* When hotadd a new node from cpu_up(), the node should be empty */
5522 	if (!node_start_pfn && !node_end_pfn)
5523 		return 0;
5524 
5525 	/* Get the start and end of the zone */
5526 	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5527 	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5528 	adjust_zone_range_for_zone_movable(nid, zone_type,
5529 				node_start_pfn, node_end_pfn,
5530 				zone_start_pfn, zone_end_pfn);
5531 
5532 	/* Check that this node has pages within the zone's required range */
5533 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5534 		return 0;
5535 
5536 	/* Move the zone boundaries inside the node if necessary */
5537 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5538 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5539 
5540 	/* Return the spanned pages */
5541 	return *zone_end_pfn - *zone_start_pfn;
5542 }
5543 
5544 /*
5545  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5546  * then all holes in the requested range will be accounted for.
5547  */
5548 unsigned long __meminit __absent_pages_in_range(int nid,
5549 				unsigned long range_start_pfn,
5550 				unsigned long range_end_pfn)
5551 {
5552 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
5553 	unsigned long start_pfn, end_pfn;
5554 	int i;
5555 
5556 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5557 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5558 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5559 		nr_absent -= end_pfn - start_pfn;
5560 	}
5561 	return nr_absent;
5562 }
5563 
5564 /**
5565  * absent_pages_in_range - Return number of page frames in holes within a range
5566  * @start_pfn: The start PFN to start searching for holes
5567  * @end_pfn: The end PFN to stop searching for holes
5568  *
5569  * It returns the number of pages frames in memory holes within a range.
5570  */
5571 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5572 							unsigned long end_pfn)
5573 {
5574 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5575 }
5576 
5577 /* Return the number of page frames in holes in a zone on a node */
5578 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5579 					unsigned long zone_type,
5580 					unsigned long node_start_pfn,
5581 					unsigned long node_end_pfn,
5582 					unsigned long *ignored)
5583 {
5584 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5585 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5586 	unsigned long zone_start_pfn, zone_end_pfn;
5587 	unsigned long nr_absent;
5588 
5589 	/* When hotadd a new node from cpu_up(), the node should be empty */
5590 	if (!node_start_pfn && !node_end_pfn)
5591 		return 0;
5592 
5593 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5594 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5595 
5596 	adjust_zone_range_for_zone_movable(nid, zone_type,
5597 			node_start_pfn, node_end_pfn,
5598 			&zone_start_pfn, &zone_end_pfn);
5599 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5600 
5601 	/*
5602 	 * ZONE_MOVABLE handling.
5603 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5604 	 * and vice versa.
5605 	 */
5606 	if (zone_movable_pfn[nid]) {
5607 		if (mirrored_kernelcore) {
5608 			unsigned long start_pfn, end_pfn;
5609 			struct memblock_region *r;
5610 
5611 			for_each_memblock(memory, r) {
5612 				start_pfn = clamp(memblock_region_memory_base_pfn(r),
5613 						  zone_start_pfn, zone_end_pfn);
5614 				end_pfn = clamp(memblock_region_memory_end_pfn(r),
5615 						zone_start_pfn, zone_end_pfn);
5616 
5617 				if (zone_type == ZONE_MOVABLE &&
5618 				    memblock_is_mirror(r))
5619 					nr_absent += end_pfn - start_pfn;
5620 
5621 				if (zone_type == ZONE_NORMAL &&
5622 				    !memblock_is_mirror(r))
5623 					nr_absent += end_pfn - start_pfn;
5624 			}
5625 		} else {
5626 			if (zone_type == ZONE_NORMAL)
5627 				nr_absent += node_end_pfn - zone_movable_pfn[nid];
5628 		}
5629 	}
5630 
5631 	return nr_absent;
5632 }
5633 
5634 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5635 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5636 					unsigned long zone_type,
5637 					unsigned long node_start_pfn,
5638 					unsigned long node_end_pfn,
5639 					unsigned long *zone_start_pfn,
5640 					unsigned long *zone_end_pfn,
5641 					unsigned long *zones_size)
5642 {
5643 	unsigned int zone;
5644 
5645 	*zone_start_pfn = node_start_pfn;
5646 	for (zone = 0; zone < zone_type; zone++)
5647 		*zone_start_pfn += zones_size[zone];
5648 
5649 	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5650 
5651 	return zones_size[zone_type];
5652 }
5653 
5654 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5655 						unsigned long zone_type,
5656 						unsigned long node_start_pfn,
5657 						unsigned long node_end_pfn,
5658 						unsigned long *zholes_size)
5659 {
5660 	if (!zholes_size)
5661 		return 0;
5662 
5663 	return zholes_size[zone_type];
5664 }
5665 
5666 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5667 
5668 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5669 						unsigned long node_start_pfn,
5670 						unsigned long node_end_pfn,
5671 						unsigned long *zones_size,
5672 						unsigned long *zholes_size)
5673 {
5674 	unsigned long realtotalpages = 0, totalpages = 0;
5675 	enum zone_type i;
5676 
5677 	for (i = 0; i < MAX_NR_ZONES; i++) {
5678 		struct zone *zone = pgdat->node_zones + i;
5679 		unsigned long zone_start_pfn, zone_end_pfn;
5680 		unsigned long size, real_size;
5681 
5682 		size = zone_spanned_pages_in_node(pgdat->node_id, i,
5683 						  node_start_pfn,
5684 						  node_end_pfn,
5685 						  &zone_start_pfn,
5686 						  &zone_end_pfn,
5687 						  zones_size);
5688 		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5689 						  node_start_pfn, node_end_pfn,
5690 						  zholes_size);
5691 		if (size)
5692 			zone->zone_start_pfn = zone_start_pfn;
5693 		else
5694 			zone->zone_start_pfn = 0;
5695 		zone->spanned_pages = size;
5696 		zone->present_pages = real_size;
5697 
5698 		totalpages += size;
5699 		realtotalpages += real_size;
5700 	}
5701 
5702 	pgdat->node_spanned_pages = totalpages;
5703 	pgdat->node_present_pages = realtotalpages;
5704 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5705 							realtotalpages);
5706 }
5707 
5708 #ifndef CONFIG_SPARSEMEM
5709 /*
5710  * Calculate the size of the zone->blockflags rounded to an unsigned long
5711  * Start by making sure zonesize is a multiple of pageblock_order by rounding
5712  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5713  * round what is now in bits to nearest long in bits, then return it in
5714  * bytes.
5715  */
5716 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5717 {
5718 	unsigned long usemapsize;
5719 
5720 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5721 	usemapsize = roundup(zonesize, pageblock_nr_pages);
5722 	usemapsize = usemapsize >> pageblock_order;
5723 	usemapsize *= NR_PAGEBLOCK_BITS;
5724 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5725 
5726 	return usemapsize / 8;
5727 }
5728 
5729 static void __init setup_usemap(struct pglist_data *pgdat,
5730 				struct zone *zone,
5731 				unsigned long zone_start_pfn,
5732 				unsigned long zonesize)
5733 {
5734 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5735 	zone->pageblock_flags = NULL;
5736 	if (usemapsize)
5737 		zone->pageblock_flags =
5738 			memblock_virt_alloc_node_nopanic(usemapsize,
5739 							 pgdat->node_id);
5740 }
5741 #else
5742 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5743 				unsigned long zone_start_pfn, unsigned long zonesize) {}
5744 #endif /* CONFIG_SPARSEMEM */
5745 
5746 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5747 
5748 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5749 void __paginginit set_pageblock_order(void)
5750 {
5751 	unsigned int order;
5752 
5753 	/* Check that pageblock_nr_pages has not already been setup */
5754 	if (pageblock_order)
5755 		return;
5756 
5757 	if (HPAGE_SHIFT > PAGE_SHIFT)
5758 		order = HUGETLB_PAGE_ORDER;
5759 	else
5760 		order = MAX_ORDER - 1;
5761 
5762 	/*
5763 	 * Assume the largest contiguous order of interest is a huge page.
5764 	 * This value may be variable depending on boot parameters on IA64 and
5765 	 * powerpc.
5766 	 */
5767 	pageblock_order = order;
5768 }
5769 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5770 
5771 /*
5772  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5773  * is unused as pageblock_order is set at compile-time. See
5774  * include/linux/pageblock-flags.h for the values of pageblock_order based on
5775  * the kernel config
5776  */
5777 void __paginginit set_pageblock_order(void)
5778 {
5779 }
5780 
5781 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5782 
5783 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5784 						   unsigned long present_pages)
5785 {
5786 	unsigned long pages = spanned_pages;
5787 
5788 	/*
5789 	 * Provide a more accurate estimation if there are holes within
5790 	 * the zone and SPARSEMEM is in use. If there are holes within the
5791 	 * zone, each populated memory region may cost us one or two extra
5792 	 * memmap pages due to alignment because memmap pages for each
5793 	 * populated regions may not naturally algined on page boundary.
5794 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5795 	 */
5796 	if (spanned_pages > present_pages + (present_pages >> 4) &&
5797 	    IS_ENABLED(CONFIG_SPARSEMEM))
5798 		pages = present_pages;
5799 
5800 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5801 }
5802 
5803 /*
5804  * Set up the zone data structures:
5805  *   - mark all pages reserved
5806  *   - mark all memory queues empty
5807  *   - clear the memory bitmaps
5808  *
5809  * NOTE: pgdat should get zeroed by caller.
5810  */
5811 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5812 {
5813 	enum zone_type j;
5814 	int nid = pgdat->node_id;
5815 	int ret;
5816 
5817 	pgdat_resize_init(pgdat);
5818 #ifdef CONFIG_NUMA_BALANCING
5819 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
5820 	pgdat->numabalancing_migrate_nr_pages = 0;
5821 	pgdat->numabalancing_migrate_next_window = jiffies;
5822 #endif
5823 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5824 	spin_lock_init(&pgdat->split_queue_lock);
5825 	INIT_LIST_HEAD(&pgdat->split_queue);
5826 	pgdat->split_queue_len = 0;
5827 #endif
5828 	init_waitqueue_head(&pgdat->kswapd_wait);
5829 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
5830 #ifdef CONFIG_COMPACTION
5831 	init_waitqueue_head(&pgdat->kcompactd_wait);
5832 #endif
5833 	pgdat_page_ext_init(pgdat);
5834 	spin_lock_init(&pgdat->lru_lock);
5835 	lruvec_init(node_lruvec(pgdat));
5836 
5837 	for (j = 0; j < MAX_NR_ZONES; j++) {
5838 		struct zone *zone = pgdat->node_zones + j;
5839 		unsigned long size, realsize, freesize, memmap_pages;
5840 		unsigned long zone_start_pfn = zone->zone_start_pfn;
5841 
5842 		size = zone->spanned_pages;
5843 		realsize = freesize = zone->present_pages;
5844 
5845 		/*
5846 		 * Adjust freesize so that it accounts for how much memory
5847 		 * is used by this zone for memmap. This affects the watermark
5848 		 * and per-cpu initialisations
5849 		 */
5850 		memmap_pages = calc_memmap_size(size, realsize);
5851 		if (!is_highmem_idx(j)) {
5852 			if (freesize >= memmap_pages) {
5853 				freesize -= memmap_pages;
5854 				if (memmap_pages)
5855 					printk(KERN_DEBUG
5856 					       "  %s zone: %lu pages used for memmap\n",
5857 					       zone_names[j], memmap_pages);
5858 			} else
5859 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
5860 					zone_names[j], memmap_pages, freesize);
5861 		}
5862 
5863 		/* Account for reserved pages */
5864 		if (j == 0 && freesize > dma_reserve) {
5865 			freesize -= dma_reserve;
5866 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
5867 					zone_names[0], dma_reserve);
5868 		}
5869 
5870 		if (!is_highmem_idx(j))
5871 			nr_kernel_pages += freesize;
5872 		/* Charge for highmem memmap if there are enough kernel pages */
5873 		else if (nr_kernel_pages > memmap_pages * 2)
5874 			nr_kernel_pages -= memmap_pages;
5875 		nr_all_pages += freesize;
5876 
5877 		/*
5878 		 * Set an approximate value for lowmem here, it will be adjusted
5879 		 * when the bootmem allocator frees pages into the buddy system.
5880 		 * And all highmem pages will be managed by the buddy system.
5881 		 */
5882 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5883 #ifdef CONFIG_NUMA
5884 		zone->node = nid;
5885 		pgdat->min_unmapped_pages += (freesize*sysctl_min_unmapped_ratio)
5886 						/ 100;
5887 		pgdat->min_slab_pages += (freesize * sysctl_min_slab_ratio) / 100;
5888 #endif
5889 		zone->name = zone_names[j];
5890 		zone->zone_pgdat = pgdat;
5891 		spin_lock_init(&zone->lock);
5892 		zone_seqlock_init(zone);
5893 		zone_pcp_init(zone);
5894 
5895 		if (!size)
5896 			continue;
5897 
5898 		set_pageblock_order();
5899 		setup_usemap(pgdat, zone, zone_start_pfn, size);
5900 		ret = init_currently_empty_zone(zone, zone_start_pfn, size);
5901 		BUG_ON(ret);
5902 		memmap_init(size, nid, j, zone_start_pfn);
5903 	}
5904 }
5905 
5906 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
5907 {
5908 	unsigned long __maybe_unused start = 0;
5909 	unsigned long __maybe_unused offset = 0;
5910 
5911 	/* Skip empty nodes */
5912 	if (!pgdat->node_spanned_pages)
5913 		return;
5914 
5915 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5916 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5917 	offset = pgdat->node_start_pfn - start;
5918 	/* ia64 gets its own node_mem_map, before this, without bootmem */
5919 	if (!pgdat->node_mem_map) {
5920 		unsigned long size, end;
5921 		struct page *map;
5922 
5923 		/*
5924 		 * The zone's endpoints aren't required to be MAX_ORDER
5925 		 * aligned but the node_mem_map endpoints must be in order
5926 		 * for the buddy allocator to function correctly.
5927 		 */
5928 		end = pgdat_end_pfn(pgdat);
5929 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
5930 		size =  (end - start) * sizeof(struct page);
5931 		map = alloc_remap(pgdat->node_id, size);
5932 		if (!map)
5933 			map = memblock_virt_alloc_node_nopanic(size,
5934 							       pgdat->node_id);
5935 		pgdat->node_mem_map = map + offset;
5936 	}
5937 #ifndef CONFIG_NEED_MULTIPLE_NODES
5938 	/*
5939 	 * With no DISCONTIG, the global mem_map is just set as node 0's
5940 	 */
5941 	if (pgdat == NODE_DATA(0)) {
5942 		mem_map = NODE_DATA(0)->node_mem_map;
5943 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
5944 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5945 			mem_map -= offset;
5946 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5947 	}
5948 #endif
5949 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5950 }
5951 
5952 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5953 		unsigned long node_start_pfn, unsigned long *zholes_size)
5954 {
5955 	pg_data_t *pgdat = NODE_DATA(nid);
5956 	unsigned long start_pfn = 0;
5957 	unsigned long end_pfn = 0;
5958 
5959 	/* pg_data_t should be reset to zero when it's allocated */
5960 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
5961 
5962 	reset_deferred_meminit(pgdat);
5963 	pgdat->node_id = nid;
5964 	pgdat->node_start_pfn = node_start_pfn;
5965 	pgdat->per_cpu_nodestats = NULL;
5966 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5967 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5968 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5969 		(u64)start_pfn << PAGE_SHIFT,
5970 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
5971 #else
5972 	start_pfn = node_start_pfn;
5973 #endif
5974 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5975 				  zones_size, zholes_size);
5976 
5977 	alloc_node_mem_map(pgdat);
5978 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5979 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5980 		nid, (unsigned long)pgdat,
5981 		(unsigned long)pgdat->node_mem_map);
5982 #endif
5983 
5984 	free_area_init_core(pgdat);
5985 }
5986 
5987 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5988 
5989 #if MAX_NUMNODES > 1
5990 /*
5991  * Figure out the number of possible node ids.
5992  */
5993 void __init setup_nr_node_ids(void)
5994 {
5995 	unsigned int highest;
5996 
5997 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
5998 	nr_node_ids = highest + 1;
5999 }
6000 #endif
6001 
6002 /**
6003  * node_map_pfn_alignment - determine the maximum internode alignment
6004  *
6005  * This function should be called after node map is populated and sorted.
6006  * It calculates the maximum power of two alignment which can distinguish
6007  * all the nodes.
6008  *
6009  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6010  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
6011  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
6012  * shifted, 1GiB is enough and this function will indicate so.
6013  *
6014  * This is used to test whether pfn -> nid mapping of the chosen memory
6015  * model has fine enough granularity to avoid incorrect mapping for the
6016  * populated node map.
6017  *
6018  * Returns the determined alignment in pfn's.  0 if there is no alignment
6019  * requirement (single node).
6020  */
6021 unsigned long __init node_map_pfn_alignment(void)
6022 {
6023 	unsigned long accl_mask = 0, last_end = 0;
6024 	unsigned long start, end, mask;
6025 	int last_nid = -1;
6026 	int i, nid;
6027 
6028 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6029 		if (!start || last_nid < 0 || last_nid == nid) {
6030 			last_nid = nid;
6031 			last_end = end;
6032 			continue;
6033 		}
6034 
6035 		/*
6036 		 * Start with a mask granular enough to pin-point to the
6037 		 * start pfn and tick off bits one-by-one until it becomes
6038 		 * too coarse to separate the current node from the last.
6039 		 */
6040 		mask = ~((1 << __ffs(start)) - 1);
6041 		while (mask && last_end <= (start & (mask << 1)))
6042 			mask <<= 1;
6043 
6044 		/* accumulate all internode masks */
6045 		accl_mask |= mask;
6046 	}
6047 
6048 	/* convert mask to number of pages */
6049 	return ~accl_mask + 1;
6050 }
6051 
6052 /* Find the lowest pfn for a node */
6053 static unsigned long __init find_min_pfn_for_node(int nid)
6054 {
6055 	unsigned long min_pfn = ULONG_MAX;
6056 	unsigned long start_pfn;
6057 	int i;
6058 
6059 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6060 		min_pfn = min(min_pfn, start_pfn);
6061 
6062 	if (min_pfn == ULONG_MAX) {
6063 		pr_warn("Could not find start_pfn for node %d\n", nid);
6064 		return 0;
6065 	}
6066 
6067 	return min_pfn;
6068 }
6069 
6070 /**
6071  * find_min_pfn_with_active_regions - Find the minimum PFN registered
6072  *
6073  * It returns the minimum PFN based on information provided via
6074  * memblock_set_node().
6075  */
6076 unsigned long __init find_min_pfn_with_active_regions(void)
6077 {
6078 	return find_min_pfn_for_node(MAX_NUMNODES);
6079 }
6080 
6081 /*
6082  * early_calculate_totalpages()
6083  * Sum pages in active regions for movable zone.
6084  * Populate N_MEMORY for calculating usable_nodes.
6085  */
6086 static unsigned long __init early_calculate_totalpages(void)
6087 {
6088 	unsigned long totalpages = 0;
6089 	unsigned long start_pfn, end_pfn;
6090 	int i, nid;
6091 
6092 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6093 		unsigned long pages = end_pfn - start_pfn;
6094 
6095 		totalpages += pages;
6096 		if (pages)
6097 			node_set_state(nid, N_MEMORY);
6098 	}
6099 	return totalpages;
6100 }
6101 
6102 /*
6103  * Find the PFN the Movable zone begins in each node. Kernel memory
6104  * is spread evenly between nodes as long as the nodes have enough
6105  * memory. When they don't, some nodes will have more kernelcore than
6106  * others
6107  */
6108 static void __init find_zone_movable_pfns_for_nodes(void)
6109 {
6110 	int i, nid;
6111 	unsigned long usable_startpfn;
6112 	unsigned long kernelcore_node, kernelcore_remaining;
6113 	/* save the state before borrow the nodemask */
6114 	nodemask_t saved_node_state = node_states[N_MEMORY];
6115 	unsigned long totalpages = early_calculate_totalpages();
6116 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6117 	struct memblock_region *r;
6118 
6119 	/* Need to find movable_zone earlier when movable_node is specified. */
6120 	find_usable_zone_for_movable();
6121 
6122 	/*
6123 	 * If movable_node is specified, ignore kernelcore and movablecore
6124 	 * options.
6125 	 */
6126 	if (movable_node_is_enabled()) {
6127 		for_each_memblock(memory, r) {
6128 			if (!memblock_is_hotpluggable(r))
6129 				continue;
6130 
6131 			nid = r->nid;
6132 
6133 			usable_startpfn = PFN_DOWN(r->base);
6134 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6135 				min(usable_startpfn, zone_movable_pfn[nid]) :
6136 				usable_startpfn;
6137 		}
6138 
6139 		goto out2;
6140 	}
6141 
6142 	/*
6143 	 * If kernelcore=mirror is specified, ignore movablecore option
6144 	 */
6145 	if (mirrored_kernelcore) {
6146 		bool mem_below_4gb_not_mirrored = false;
6147 
6148 		for_each_memblock(memory, r) {
6149 			if (memblock_is_mirror(r))
6150 				continue;
6151 
6152 			nid = r->nid;
6153 
6154 			usable_startpfn = memblock_region_memory_base_pfn(r);
6155 
6156 			if (usable_startpfn < 0x100000) {
6157 				mem_below_4gb_not_mirrored = true;
6158 				continue;
6159 			}
6160 
6161 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6162 				min(usable_startpfn, zone_movable_pfn[nid]) :
6163 				usable_startpfn;
6164 		}
6165 
6166 		if (mem_below_4gb_not_mirrored)
6167 			pr_warn("This configuration results in unmirrored kernel memory.");
6168 
6169 		goto out2;
6170 	}
6171 
6172 	/*
6173 	 * If movablecore=nn[KMG] was specified, calculate what size of
6174 	 * kernelcore that corresponds so that memory usable for
6175 	 * any allocation type is evenly spread. If both kernelcore
6176 	 * and movablecore are specified, then the value of kernelcore
6177 	 * will be used for required_kernelcore if it's greater than
6178 	 * what movablecore would have allowed.
6179 	 */
6180 	if (required_movablecore) {
6181 		unsigned long corepages;
6182 
6183 		/*
6184 		 * Round-up so that ZONE_MOVABLE is at least as large as what
6185 		 * was requested by the user
6186 		 */
6187 		required_movablecore =
6188 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6189 		required_movablecore = min(totalpages, required_movablecore);
6190 		corepages = totalpages - required_movablecore;
6191 
6192 		required_kernelcore = max(required_kernelcore, corepages);
6193 	}
6194 
6195 	/*
6196 	 * If kernelcore was not specified or kernelcore size is larger
6197 	 * than totalpages, there is no ZONE_MOVABLE.
6198 	 */
6199 	if (!required_kernelcore || required_kernelcore >= totalpages)
6200 		goto out;
6201 
6202 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6203 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6204 
6205 restart:
6206 	/* Spread kernelcore memory as evenly as possible throughout nodes */
6207 	kernelcore_node = required_kernelcore / usable_nodes;
6208 	for_each_node_state(nid, N_MEMORY) {
6209 		unsigned long start_pfn, end_pfn;
6210 
6211 		/*
6212 		 * Recalculate kernelcore_node if the division per node
6213 		 * now exceeds what is necessary to satisfy the requested
6214 		 * amount of memory for the kernel
6215 		 */
6216 		if (required_kernelcore < kernelcore_node)
6217 			kernelcore_node = required_kernelcore / usable_nodes;
6218 
6219 		/*
6220 		 * As the map is walked, we track how much memory is usable
6221 		 * by the kernel using kernelcore_remaining. When it is
6222 		 * 0, the rest of the node is usable by ZONE_MOVABLE
6223 		 */
6224 		kernelcore_remaining = kernelcore_node;
6225 
6226 		/* Go through each range of PFNs within this node */
6227 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6228 			unsigned long size_pages;
6229 
6230 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6231 			if (start_pfn >= end_pfn)
6232 				continue;
6233 
6234 			/* Account for what is only usable for kernelcore */
6235 			if (start_pfn < usable_startpfn) {
6236 				unsigned long kernel_pages;
6237 				kernel_pages = min(end_pfn, usable_startpfn)
6238 								- start_pfn;
6239 
6240 				kernelcore_remaining -= min(kernel_pages,
6241 							kernelcore_remaining);
6242 				required_kernelcore -= min(kernel_pages,
6243 							required_kernelcore);
6244 
6245 				/* Continue if range is now fully accounted */
6246 				if (end_pfn <= usable_startpfn) {
6247 
6248 					/*
6249 					 * Push zone_movable_pfn to the end so
6250 					 * that if we have to rebalance
6251 					 * kernelcore across nodes, we will
6252 					 * not double account here
6253 					 */
6254 					zone_movable_pfn[nid] = end_pfn;
6255 					continue;
6256 				}
6257 				start_pfn = usable_startpfn;
6258 			}
6259 
6260 			/*
6261 			 * The usable PFN range for ZONE_MOVABLE is from
6262 			 * start_pfn->end_pfn. Calculate size_pages as the
6263 			 * number of pages used as kernelcore
6264 			 */
6265 			size_pages = end_pfn - start_pfn;
6266 			if (size_pages > kernelcore_remaining)
6267 				size_pages = kernelcore_remaining;
6268 			zone_movable_pfn[nid] = start_pfn + size_pages;
6269 
6270 			/*
6271 			 * Some kernelcore has been met, update counts and
6272 			 * break if the kernelcore for this node has been
6273 			 * satisfied
6274 			 */
6275 			required_kernelcore -= min(required_kernelcore,
6276 								size_pages);
6277 			kernelcore_remaining -= size_pages;
6278 			if (!kernelcore_remaining)
6279 				break;
6280 		}
6281 	}
6282 
6283 	/*
6284 	 * If there is still required_kernelcore, we do another pass with one
6285 	 * less node in the count. This will push zone_movable_pfn[nid] further
6286 	 * along on the nodes that still have memory until kernelcore is
6287 	 * satisfied
6288 	 */
6289 	usable_nodes--;
6290 	if (usable_nodes && required_kernelcore > usable_nodes)
6291 		goto restart;
6292 
6293 out2:
6294 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6295 	for (nid = 0; nid < MAX_NUMNODES; nid++)
6296 		zone_movable_pfn[nid] =
6297 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6298 
6299 out:
6300 	/* restore the node_state */
6301 	node_states[N_MEMORY] = saved_node_state;
6302 }
6303 
6304 /* Any regular or high memory on that node ? */
6305 static void check_for_memory(pg_data_t *pgdat, int nid)
6306 {
6307 	enum zone_type zone_type;
6308 
6309 	if (N_MEMORY == N_NORMAL_MEMORY)
6310 		return;
6311 
6312 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6313 		struct zone *zone = &pgdat->node_zones[zone_type];
6314 		if (populated_zone(zone)) {
6315 			node_set_state(nid, N_HIGH_MEMORY);
6316 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6317 			    zone_type <= ZONE_NORMAL)
6318 				node_set_state(nid, N_NORMAL_MEMORY);
6319 			break;
6320 		}
6321 	}
6322 }
6323 
6324 /**
6325  * free_area_init_nodes - Initialise all pg_data_t and zone data
6326  * @max_zone_pfn: an array of max PFNs for each zone
6327  *
6328  * This will call free_area_init_node() for each active node in the system.
6329  * Using the page ranges provided by memblock_set_node(), the size of each
6330  * zone in each node and their holes is calculated. If the maximum PFN
6331  * between two adjacent zones match, it is assumed that the zone is empty.
6332  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6333  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6334  * starts where the previous one ended. For example, ZONE_DMA32 starts
6335  * at arch_max_dma_pfn.
6336  */
6337 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6338 {
6339 	unsigned long start_pfn, end_pfn;
6340 	int i, nid;
6341 
6342 	/* Record where the zone boundaries are */
6343 	memset(arch_zone_lowest_possible_pfn, 0,
6344 				sizeof(arch_zone_lowest_possible_pfn));
6345 	memset(arch_zone_highest_possible_pfn, 0,
6346 				sizeof(arch_zone_highest_possible_pfn));
6347 
6348 	start_pfn = find_min_pfn_with_active_regions();
6349 
6350 	for (i = 0; i < MAX_NR_ZONES; i++) {
6351 		if (i == ZONE_MOVABLE)
6352 			continue;
6353 
6354 		end_pfn = max(max_zone_pfn[i], start_pfn);
6355 		arch_zone_lowest_possible_pfn[i] = start_pfn;
6356 		arch_zone_highest_possible_pfn[i] = end_pfn;
6357 
6358 		start_pfn = end_pfn;
6359 	}
6360 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6361 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6362 
6363 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
6364 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6365 	find_zone_movable_pfns_for_nodes();
6366 
6367 	/* Print out the zone ranges */
6368 	pr_info("Zone ranges:\n");
6369 	for (i = 0; i < MAX_NR_ZONES; i++) {
6370 		if (i == ZONE_MOVABLE)
6371 			continue;
6372 		pr_info("  %-8s ", zone_names[i]);
6373 		if (arch_zone_lowest_possible_pfn[i] ==
6374 				arch_zone_highest_possible_pfn[i])
6375 			pr_cont("empty\n");
6376 		else
6377 			pr_cont("[mem %#018Lx-%#018Lx]\n",
6378 				(u64)arch_zone_lowest_possible_pfn[i]
6379 					<< PAGE_SHIFT,
6380 				((u64)arch_zone_highest_possible_pfn[i]
6381 					<< PAGE_SHIFT) - 1);
6382 	}
6383 
6384 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6385 	pr_info("Movable zone start for each node\n");
6386 	for (i = 0; i < MAX_NUMNODES; i++) {
6387 		if (zone_movable_pfn[i])
6388 			pr_info("  Node %d: %#018Lx\n", i,
6389 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6390 	}
6391 
6392 	/* Print out the early node map */
6393 	pr_info("Early memory node ranges\n");
6394 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6395 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6396 			(u64)start_pfn << PAGE_SHIFT,
6397 			((u64)end_pfn << PAGE_SHIFT) - 1);
6398 
6399 	/* Initialise every node */
6400 	mminit_verify_pageflags_layout();
6401 	setup_nr_node_ids();
6402 	for_each_online_node(nid) {
6403 		pg_data_t *pgdat = NODE_DATA(nid);
6404 		free_area_init_node(nid, NULL,
6405 				find_min_pfn_for_node(nid), NULL);
6406 
6407 		/* Any memory on that node */
6408 		if (pgdat->node_present_pages)
6409 			node_set_state(nid, N_MEMORY);
6410 		check_for_memory(pgdat, nid);
6411 	}
6412 }
6413 
6414 static int __init cmdline_parse_core(char *p, unsigned long *core)
6415 {
6416 	unsigned long long coremem;
6417 	if (!p)
6418 		return -EINVAL;
6419 
6420 	coremem = memparse(p, &p);
6421 	*core = coremem >> PAGE_SHIFT;
6422 
6423 	/* Paranoid check that UL is enough for the coremem value */
6424 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6425 
6426 	return 0;
6427 }
6428 
6429 /*
6430  * kernelcore=size sets the amount of memory for use for allocations that
6431  * cannot be reclaimed or migrated.
6432  */
6433 static int __init cmdline_parse_kernelcore(char *p)
6434 {
6435 	/* parse kernelcore=mirror */
6436 	if (parse_option_str(p, "mirror")) {
6437 		mirrored_kernelcore = true;
6438 		return 0;
6439 	}
6440 
6441 	return cmdline_parse_core(p, &required_kernelcore);
6442 }
6443 
6444 /*
6445  * movablecore=size sets the amount of memory for use for allocations that
6446  * can be reclaimed or migrated.
6447  */
6448 static int __init cmdline_parse_movablecore(char *p)
6449 {
6450 	return cmdline_parse_core(p, &required_movablecore);
6451 }
6452 
6453 early_param("kernelcore", cmdline_parse_kernelcore);
6454 early_param("movablecore", cmdline_parse_movablecore);
6455 
6456 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6457 
6458 void adjust_managed_page_count(struct page *page, long count)
6459 {
6460 	spin_lock(&managed_page_count_lock);
6461 	page_zone(page)->managed_pages += count;
6462 	totalram_pages += count;
6463 #ifdef CONFIG_HIGHMEM
6464 	if (PageHighMem(page))
6465 		totalhigh_pages += count;
6466 #endif
6467 	spin_unlock(&managed_page_count_lock);
6468 }
6469 EXPORT_SYMBOL(adjust_managed_page_count);
6470 
6471 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6472 {
6473 	void *pos;
6474 	unsigned long pages = 0;
6475 
6476 	start = (void *)PAGE_ALIGN((unsigned long)start);
6477 	end = (void *)((unsigned long)end & PAGE_MASK);
6478 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6479 		if ((unsigned int)poison <= 0xFF)
6480 			memset(pos, poison, PAGE_SIZE);
6481 		free_reserved_page(virt_to_page(pos));
6482 	}
6483 
6484 	if (pages && s)
6485 		pr_info("Freeing %s memory: %ldK (%p - %p)\n",
6486 			s, pages << (PAGE_SHIFT - 10), start, end);
6487 
6488 	return pages;
6489 }
6490 EXPORT_SYMBOL(free_reserved_area);
6491 
6492 #ifdef	CONFIG_HIGHMEM
6493 void free_highmem_page(struct page *page)
6494 {
6495 	__free_reserved_page(page);
6496 	totalram_pages++;
6497 	page_zone(page)->managed_pages++;
6498 	totalhigh_pages++;
6499 }
6500 #endif
6501 
6502 
6503 void __init mem_init_print_info(const char *str)
6504 {
6505 	unsigned long physpages, codesize, datasize, rosize, bss_size;
6506 	unsigned long init_code_size, init_data_size;
6507 
6508 	physpages = get_num_physpages();
6509 	codesize = _etext - _stext;
6510 	datasize = _edata - _sdata;
6511 	rosize = __end_rodata - __start_rodata;
6512 	bss_size = __bss_stop - __bss_start;
6513 	init_data_size = __init_end - __init_begin;
6514 	init_code_size = _einittext - _sinittext;
6515 
6516 	/*
6517 	 * Detect special cases and adjust section sizes accordingly:
6518 	 * 1) .init.* may be embedded into .data sections
6519 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
6520 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
6521 	 * 3) .rodata.* may be embedded into .text or .data sections.
6522 	 */
6523 #define adj_init_size(start, end, size, pos, adj) \
6524 	do { \
6525 		if (start <= pos && pos < end && size > adj) \
6526 			size -= adj; \
6527 	} while (0)
6528 
6529 	adj_init_size(__init_begin, __init_end, init_data_size,
6530 		     _sinittext, init_code_size);
6531 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6532 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6533 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6534 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6535 
6536 #undef	adj_init_size
6537 
6538 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6539 #ifdef	CONFIG_HIGHMEM
6540 		", %luK highmem"
6541 #endif
6542 		"%s%s)\n",
6543 		nr_free_pages() << (PAGE_SHIFT - 10),
6544 		physpages << (PAGE_SHIFT - 10),
6545 		codesize >> 10, datasize >> 10, rosize >> 10,
6546 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
6547 		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6548 		totalcma_pages << (PAGE_SHIFT - 10),
6549 #ifdef	CONFIG_HIGHMEM
6550 		totalhigh_pages << (PAGE_SHIFT - 10),
6551 #endif
6552 		str ? ", " : "", str ? str : "");
6553 }
6554 
6555 /**
6556  * set_dma_reserve - set the specified number of pages reserved in the first zone
6557  * @new_dma_reserve: The number of pages to mark reserved
6558  *
6559  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6560  * In the DMA zone, a significant percentage may be consumed by kernel image
6561  * and other unfreeable allocations which can skew the watermarks badly. This
6562  * function may optionally be used to account for unfreeable pages in the
6563  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6564  * smaller per-cpu batchsize.
6565  */
6566 void __init set_dma_reserve(unsigned long new_dma_reserve)
6567 {
6568 	dma_reserve = new_dma_reserve;
6569 }
6570 
6571 void __init free_area_init(unsigned long *zones_size)
6572 {
6573 	free_area_init_node(0, zones_size,
6574 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6575 }
6576 
6577 static int page_alloc_cpu_notify(struct notifier_block *self,
6578 				 unsigned long action, void *hcpu)
6579 {
6580 	int cpu = (unsigned long)hcpu;
6581 
6582 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
6583 		lru_add_drain_cpu(cpu);
6584 		drain_pages(cpu);
6585 
6586 		/*
6587 		 * Spill the event counters of the dead processor
6588 		 * into the current processors event counters.
6589 		 * This artificially elevates the count of the current
6590 		 * processor.
6591 		 */
6592 		vm_events_fold_cpu(cpu);
6593 
6594 		/*
6595 		 * Zero the differential counters of the dead processor
6596 		 * so that the vm statistics are consistent.
6597 		 *
6598 		 * This is only okay since the processor is dead and cannot
6599 		 * race with what we are doing.
6600 		 */
6601 		cpu_vm_stats_fold(cpu);
6602 	}
6603 	return NOTIFY_OK;
6604 }
6605 
6606 void __init page_alloc_init(void)
6607 {
6608 	hotcpu_notifier(page_alloc_cpu_notify, 0);
6609 }
6610 
6611 /*
6612  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6613  *	or min_free_kbytes changes.
6614  */
6615 static void calculate_totalreserve_pages(void)
6616 {
6617 	struct pglist_data *pgdat;
6618 	unsigned long reserve_pages = 0;
6619 	enum zone_type i, j;
6620 
6621 	for_each_online_pgdat(pgdat) {
6622 
6623 		pgdat->totalreserve_pages = 0;
6624 
6625 		for (i = 0; i < MAX_NR_ZONES; i++) {
6626 			struct zone *zone = pgdat->node_zones + i;
6627 			long max = 0;
6628 
6629 			/* Find valid and maximum lowmem_reserve in the zone */
6630 			for (j = i; j < MAX_NR_ZONES; j++) {
6631 				if (zone->lowmem_reserve[j] > max)
6632 					max = zone->lowmem_reserve[j];
6633 			}
6634 
6635 			/* we treat the high watermark as reserved pages. */
6636 			max += high_wmark_pages(zone);
6637 
6638 			if (max > zone->managed_pages)
6639 				max = zone->managed_pages;
6640 
6641 			pgdat->totalreserve_pages += max;
6642 
6643 			reserve_pages += max;
6644 		}
6645 	}
6646 	totalreserve_pages = reserve_pages;
6647 }
6648 
6649 /*
6650  * setup_per_zone_lowmem_reserve - called whenever
6651  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
6652  *	has a correct pages reserved value, so an adequate number of
6653  *	pages are left in the zone after a successful __alloc_pages().
6654  */
6655 static void setup_per_zone_lowmem_reserve(void)
6656 {
6657 	struct pglist_data *pgdat;
6658 	enum zone_type j, idx;
6659 
6660 	for_each_online_pgdat(pgdat) {
6661 		for (j = 0; j < MAX_NR_ZONES; j++) {
6662 			struct zone *zone = pgdat->node_zones + j;
6663 			unsigned long managed_pages = zone->managed_pages;
6664 
6665 			zone->lowmem_reserve[j] = 0;
6666 
6667 			idx = j;
6668 			while (idx) {
6669 				struct zone *lower_zone;
6670 
6671 				idx--;
6672 
6673 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
6674 					sysctl_lowmem_reserve_ratio[idx] = 1;
6675 
6676 				lower_zone = pgdat->node_zones + idx;
6677 				lower_zone->lowmem_reserve[j] = managed_pages /
6678 					sysctl_lowmem_reserve_ratio[idx];
6679 				managed_pages += lower_zone->managed_pages;
6680 			}
6681 		}
6682 	}
6683 
6684 	/* update totalreserve_pages */
6685 	calculate_totalreserve_pages();
6686 }
6687 
6688 static void __setup_per_zone_wmarks(void)
6689 {
6690 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6691 	unsigned long lowmem_pages = 0;
6692 	struct zone *zone;
6693 	unsigned long flags;
6694 
6695 	/* Calculate total number of !ZONE_HIGHMEM pages */
6696 	for_each_zone(zone) {
6697 		if (!is_highmem(zone))
6698 			lowmem_pages += zone->managed_pages;
6699 	}
6700 
6701 	for_each_zone(zone) {
6702 		u64 tmp;
6703 
6704 		spin_lock_irqsave(&zone->lock, flags);
6705 		tmp = (u64)pages_min * zone->managed_pages;
6706 		do_div(tmp, lowmem_pages);
6707 		if (is_highmem(zone)) {
6708 			/*
6709 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6710 			 * need highmem pages, so cap pages_min to a small
6711 			 * value here.
6712 			 *
6713 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6714 			 * deltas control asynch page reclaim, and so should
6715 			 * not be capped for highmem.
6716 			 */
6717 			unsigned long min_pages;
6718 
6719 			min_pages = zone->managed_pages / 1024;
6720 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6721 			zone->watermark[WMARK_MIN] = min_pages;
6722 		} else {
6723 			/*
6724 			 * If it's a lowmem zone, reserve a number of pages
6725 			 * proportionate to the zone's size.
6726 			 */
6727 			zone->watermark[WMARK_MIN] = tmp;
6728 		}
6729 
6730 		/*
6731 		 * Set the kswapd watermarks distance according to the
6732 		 * scale factor in proportion to available memory, but
6733 		 * ensure a minimum size on small systems.
6734 		 */
6735 		tmp = max_t(u64, tmp >> 2,
6736 			    mult_frac(zone->managed_pages,
6737 				      watermark_scale_factor, 10000));
6738 
6739 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
6740 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6741 
6742 		spin_unlock_irqrestore(&zone->lock, flags);
6743 	}
6744 
6745 	/* update totalreserve_pages */
6746 	calculate_totalreserve_pages();
6747 }
6748 
6749 /**
6750  * setup_per_zone_wmarks - called when min_free_kbytes changes
6751  * or when memory is hot-{added|removed}
6752  *
6753  * Ensures that the watermark[min,low,high] values for each zone are set
6754  * correctly with respect to min_free_kbytes.
6755  */
6756 void setup_per_zone_wmarks(void)
6757 {
6758 	mutex_lock(&zonelists_mutex);
6759 	__setup_per_zone_wmarks();
6760 	mutex_unlock(&zonelists_mutex);
6761 }
6762 
6763 /*
6764  * Initialise min_free_kbytes.
6765  *
6766  * For small machines we want it small (128k min).  For large machines
6767  * we want it large (64MB max).  But it is not linear, because network
6768  * bandwidth does not increase linearly with machine size.  We use
6769  *
6770  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6771  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
6772  *
6773  * which yields
6774  *
6775  * 16MB:	512k
6776  * 32MB:	724k
6777  * 64MB:	1024k
6778  * 128MB:	1448k
6779  * 256MB:	2048k
6780  * 512MB:	2896k
6781  * 1024MB:	4096k
6782  * 2048MB:	5792k
6783  * 4096MB:	8192k
6784  * 8192MB:	11584k
6785  * 16384MB:	16384k
6786  */
6787 int __meminit init_per_zone_wmark_min(void)
6788 {
6789 	unsigned long lowmem_kbytes;
6790 	int new_min_free_kbytes;
6791 
6792 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6793 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6794 
6795 	if (new_min_free_kbytes > user_min_free_kbytes) {
6796 		min_free_kbytes = new_min_free_kbytes;
6797 		if (min_free_kbytes < 128)
6798 			min_free_kbytes = 128;
6799 		if (min_free_kbytes > 65536)
6800 			min_free_kbytes = 65536;
6801 	} else {
6802 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6803 				new_min_free_kbytes, user_min_free_kbytes);
6804 	}
6805 	setup_per_zone_wmarks();
6806 	refresh_zone_stat_thresholds();
6807 	setup_per_zone_lowmem_reserve();
6808 	return 0;
6809 }
6810 core_initcall(init_per_zone_wmark_min)
6811 
6812 /*
6813  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6814  *	that we can call two helper functions whenever min_free_kbytes
6815  *	changes.
6816  */
6817 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6818 	void __user *buffer, size_t *length, loff_t *ppos)
6819 {
6820 	int rc;
6821 
6822 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6823 	if (rc)
6824 		return rc;
6825 
6826 	if (write) {
6827 		user_min_free_kbytes = min_free_kbytes;
6828 		setup_per_zone_wmarks();
6829 	}
6830 	return 0;
6831 }
6832 
6833 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6834 	void __user *buffer, size_t *length, loff_t *ppos)
6835 {
6836 	int rc;
6837 
6838 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6839 	if (rc)
6840 		return rc;
6841 
6842 	if (write)
6843 		setup_per_zone_wmarks();
6844 
6845 	return 0;
6846 }
6847 
6848 #ifdef CONFIG_NUMA
6849 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6850 	void __user *buffer, size_t *length, loff_t *ppos)
6851 {
6852 	struct pglist_data *pgdat;
6853 	struct zone *zone;
6854 	int rc;
6855 
6856 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6857 	if (rc)
6858 		return rc;
6859 
6860 	for_each_online_pgdat(pgdat)
6861 		pgdat->min_slab_pages = 0;
6862 
6863 	for_each_zone(zone)
6864 		zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
6865 				sysctl_min_unmapped_ratio) / 100;
6866 	return 0;
6867 }
6868 
6869 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6870 	void __user *buffer, size_t *length, loff_t *ppos)
6871 {
6872 	struct pglist_data *pgdat;
6873 	struct zone *zone;
6874 	int rc;
6875 
6876 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6877 	if (rc)
6878 		return rc;
6879 
6880 	for_each_online_pgdat(pgdat)
6881 		pgdat->min_slab_pages = 0;
6882 
6883 	for_each_zone(zone)
6884 		zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
6885 				sysctl_min_slab_ratio) / 100;
6886 	return 0;
6887 }
6888 #endif
6889 
6890 /*
6891  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6892  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6893  *	whenever sysctl_lowmem_reserve_ratio changes.
6894  *
6895  * The reserve ratio obviously has absolutely no relation with the
6896  * minimum watermarks. The lowmem reserve ratio can only make sense
6897  * if in function of the boot time zone sizes.
6898  */
6899 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6900 	void __user *buffer, size_t *length, loff_t *ppos)
6901 {
6902 	proc_dointvec_minmax(table, write, buffer, length, ppos);
6903 	setup_per_zone_lowmem_reserve();
6904 	return 0;
6905 }
6906 
6907 /*
6908  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6909  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
6910  * pagelist can have before it gets flushed back to buddy allocator.
6911  */
6912 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6913 	void __user *buffer, size_t *length, loff_t *ppos)
6914 {
6915 	struct zone *zone;
6916 	int old_percpu_pagelist_fraction;
6917 	int ret;
6918 
6919 	mutex_lock(&pcp_batch_high_lock);
6920 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6921 
6922 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6923 	if (!write || ret < 0)
6924 		goto out;
6925 
6926 	/* Sanity checking to avoid pcp imbalance */
6927 	if (percpu_pagelist_fraction &&
6928 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6929 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6930 		ret = -EINVAL;
6931 		goto out;
6932 	}
6933 
6934 	/* No change? */
6935 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6936 		goto out;
6937 
6938 	for_each_populated_zone(zone) {
6939 		unsigned int cpu;
6940 
6941 		for_each_possible_cpu(cpu)
6942 			pageset_set_high_and_batch(zone,
6943 					per_cpu_ptr(zone->pageset, cpu));
6944 	}
6945 out:
6946 	mutex_unlock(&pcp_batch_high_lock);
6947 	return ret;
6948 }
6949 
6950 #ifdef CONFIG_NUMA
6951 int hashdist = HASHDIST_DEFAULT;
6952 
6953 static int __init set_hashdist(char *str)
6954 {
6955 	if (!str)
6956 		return 0;
6957 	hashdist = simple_strtoul(str, &str, 0);
6958 	return 1;
6959 }
6960 __setup("hashdist=", set_hashdist);
6961 #endif
6962 
6963 /*
6964  * allocate a large system hash table from bootmem
6965  * - it is assumed that the hash table must contain an exact power-of-2
6966  *   quantity of entries
6967  * - limit is the number of hash buckets, not the total allocation size
6968  */
6969 void *__init alloc_large_system_hash(const char *tablename,
6970 				     unsigned long bucketsize,
6971 				     unsigned long numentries,
6972 				     int scale,
6973 				     int flags,
6974 				     unsigned int *_hash_shift,
6975 				     unsigned int *_hash_mask,
6976 				     unsigned long low_limit,
6977 				     unsigned long high_limit)
6978 {
6979 	unsigned long long max = high_limit;
6980 	unsigned long log2qty, size;
6981 	void *table = NULL;
6982 
6983 	/* allow the kernel cmdline to have a say */
6984 	if (!numentries) {
6985 		/* round applicable memory size up to nearest megabyte */
6986 		numentries = nr_kernel_pages;
6987 
6988 		/* It isn't necessary when PAGE_SIZE >= 1MB */
6989 		if (PAGE_SHIFT < 20)
6990 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6991 
6992 		/* limit to 1 bucket per 2^scale bytes of low memory */
6993 		if (scale > PAGE_SHIFT)
6994 			numentries >>= (scale - PAGE_SHIFT);
6995 		else
6996 			numentries <<= (PAGE_SHIFT - scale);
6997 
6998 		/* Make sure we've got at least a 0-order allocation.. */
6999 		if (unlikely(flags & HASH_SMALL)) {
7000 			/* Makes no sense without HASH_EARLY */
7001 			WARN_ON(!(flags & HASH_EARLY));
7002 			if (!(numentries >> *_hash_shift)) {
7003 				numentries = 1UL << *_hash_shift;
7004 				BUG_ON(!numentries);
7005 			}
7006 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7007 			numentries = PAGE_SIZE / bucketsize;
7008 	}
7009 	numentries = roundup_pow_of_two(numentries);
7010 
7011 	/* limit allocation size to 1/16 total memory by default */
7012 	if (max == 0) {
7013 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7014 		do_div(max, bucketsize);
7015 	}
7016 	max = min(max, 0x80000000ULL);
7017 
7018 	if (numentries < low_limit)
7019 		numentries = low_limit;
7020 	if (numentries > max)
7021 		numentries = max;
7022 
7023 	log2qty = ilog2(numentries);
7024 
7025 	do {
7026 		size = bucketsize << log2qty;
7027 		if (flags & HASH_EARLY)
7028 			table = memblock_virt_alloc_nopanic(size, 0);
7029 		else if (hashdist)
7030 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7031 		else {
7032 			/*
7033 			 * If bucketsize is not a power-of-two, we may free
7034 			 * some pages at the end of hash table which
7035 			 * alloc_pages_exact() automatically does
7036 			 */
7037 			if (get_order(size) < MAX_ORDER) {
7038 				table = alloc_pages_exact(size, GFP_ATOMIC);
7039 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7040 			}
7041 		}
7042 	} while (!table && size > PAGE_SIZE && --log2qty);
7043 
7044 	if (!table)
7045 		panic("Failed to allocate %s hash table\n", tablename);
7046 
7047 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7048 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7049 
7050 	if (_hash_shift)
7051 		*_hash_shift = log2qty;
7052 	if (_hash_mask)
7053 		*_hash_mask = (1 << log2qty) - 1;
7054 
7055 	return table;
7056 }
7057 
7058 /*
7059  * This function checks whether pageblock includes unmovable pages or not.
7060  * If @count is not zero, it is okay to include less @count unmovable pages
7061  *
7062  * PageLRU check without isolation or lru_lock could race so that
7063  * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7064  * expect this function should be exact.
7065  */
7066 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7067 			 bool skip_hwpoisoned_pages)
7068 {
7069 	unsigned long pfn, iter, found;
7070 	int mt;
7071 
7072 	/*
7073 	 * For avoiding noise data, lru_add_drain_all() should be called
7074 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
7075 	 */
7076 	if (zone_idx(zone) == ZONE_MOVABLE)
7077 		return false;
7078 	mt = get_pageblock_migratetype(page);
7079 	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7080 		return false;
7081 
7082 	pfn = page_to_pfn(page);
7083 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7084 		unsigned long check = pfn + iter;
7085 
7086 		if (!pfn_valid_within(check))
7087 			continue;
7088 
7089 		page = pfn_to_page(check);
7090 
7091 		/*
7092 		 * Hugepages are not in LRU lists, but they're movable.
7093 		 * We need not scan over tail pages bacause we don't
7094 		 * handle each tail page individually in migration.
7095 		 */
7096 		if (PageHuge(page)) {
7097 			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7098 			continue;
7099 		}
7100 
7101 		/*
7102 		 * We can't use page_count without pin a page
7103 		 * because another CPU can free compound page.
7104 		 * This check already skips compound tails of THP
7105 		 * because their page->_refcount is zero at all time.
7106 		 */
7107 		if (!page_ref_count(page)) {
7108 			if (PageBuddy(page))
7109 				iter += (1 << page_order(page)) - 1;
7110 			continue;
7111 		}
7112 
7113 		/*
7114 		 * The HWPoisoned page may be not in buddy system, and
7115 		 * page_count() is not 0.
7116 		 */
7117 		if (skip_hwpoisoned_pages && PageHWPoison(page))
7118 			continue;
7119 
7120 		if (!PageLRU(page))
7121 			found++;
7122 		/*
7123 		 * If there are RECLAIMABLE pages, we need to check
7124 		 * it.  But now, memory offline itself doesn't call
7125 		 * shrink_node_slabs() and it still to be fixed.
7126 		 */
7127 		/*
7128 		 * If the page is not RAM, page_count()should be 0.
7129 		 * we don't need more check. This is an _used_ not-movable page.
7130 		 *
7131 		 * The problematic thing here is PG_reserved pages. PG_reserved
7132 		 * is set to both of a memory hole page and a _used_ kernel
7133 		 * page at boot.
7134 		 */
7135 		if (found > count)
7136 			return true;
7137 	}
7138 	return false;
7139 }
7140 
7141 bool is_pageblock_removable_nolock(struct page *page)
7142 {
7143 	struct zone *zone;
7144 	unsigned long pfn;
7145 
7146 	/*
7147 	 * We have to be careful here because we are iterating over memory
7148 	 * sections which are not zone aware so we might end up outside of
7149 	 * the zone but still within the section.
7150 	 * We have to take care about the node as well. If the node is offline
7151 	 * its NODE_DATA will be NULL - see page_zone.
7152 	 */
7153 	if (!node_online(page_to_nid(page)))
7154 		return false;
7155 
7156 	zone = page_zone(page);
7157 	pfn = page_to_pfn(page);
7158 	if (!zone_spans_pfn(zone, pfn))
7159 		return false;
7160 
7161 	return !has_unmovable_pages(zone, page, 0, true);
7162 }
7163 
7164 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7165 
7166 static unsigned long pfn_max_align_down(unsigned long pfn)
7167 {
7168 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7169 			     pageblock_nr_pages) - 1);
7170 }
7171 
7172 static unsigned long pfn_max_align_up(unsigned long pfn)
7173 {
7174 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7175 				pageblock_nr_pages));
7176 }
7177 
7178 /* [start, end) must belong to a single zone. */
7179 static int __alloc_contig_migrate_range(struct compact_control *cc,
7180 					unsigned long start, unsigned long end)
7181 {
7182 	/* This function is based on compact_zone() from compaction.c. */
7183 	unsigned long nr_reclaimed;
7184 	unsigned long pfn = start;
7185 	unsigned int tries = 0;
7186 	int ret = 0;
7187 
7188 	migrate_prep();
7189 
7190 	while (pfn < end || !list_empty(&cc->migratepages)) {
7191 		if (fatal_signal_pending(current)) {
7192 			ret = -EINTR;
7193 			break;
7194 		}
7195 
7196 		if (list_empty(&cc->migratepages)) {
7197 			cc->nr_migratepages = 0;
7198 			pfn = isolate_migratepages_range(cc, pfn, end);
7199 			if (!pfn) {
7200 				ret = -EINTR;
7201 				break;
7202 			}
7203 			tries = 0;
7204 		} else if (++tries == 5) {
7205 			ret = ret < 0 ? ret : -EBUSY;
7206 			break;
7207 		}
7208 
7209 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7210 							&cc->migratepages);
7211 		cc->nr_migratepages -= nr_reclaimed;
7212 
7213 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7214 				    NULL, 0, cc->mode, MR_CMA);
7215 	}
7216 	if (ret < 0) {
7217 		putback_movable_pages(&cc->migratepages);
7218 		return ret;
7219 	}
7220 	return 0;
7221 }
7222 
7223 /**
7224  * alloc_contig_range() -- tries to allocate given range of pages
7225  * @start:	start PFN to allocate
7226  * @end:	one-past-the-last PFN to allocate
7227  * @migratetype:	migratetype of the underlaying pageblocks (either
7228  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
7229  *			in range must have the same migratetype and it must
7230  *			be either of the two.
7231  *
7232  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7233  * aligned, however it's the caller's responsibility to guarantee that
7234  * we are the only thread that changes migrate type of pageblocks the
7235  * pages fall in.
7236  *
7237  * The PFN range must belong to a single zone.
7238  *
7239  * Returns zero on success or negative error code.  On success all
7240  * pages which PFN is in [start, end) are allocated for the caller and
7241  * need to be freed with free_contig_range().
7242  */
7243 int alloc_contig_range(unsigned long start, unsigned long end,
7244 		       unsigned migratetype)
7245 {
7246 	unsigned long outer_start, outer_end;
7247 	unsigned int order;
7248 	int ret = 0;
7249 
7250 	struct compact_control cc = {
7251 		.nr_migratepages = 0,
7252 		.order = -1,
7253 		.zone = page_zone(pfn_to_page(start)),
7254 		.mode = MIGRATE_SYNC,
7255 		.ignore_skip_hint = true,
7256 	};
7257 	INIT_LIST_HEAD(&cc.migratepages);
7258 
7259 	/*
7260 	 * What we do here is we mark all pageblocks in range as
7261 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
7262 	 * have different sizes, and due to the way page allocator
7263 	 * work, we align the range to biggest of the two pages so
7264 	 * that page allocator won't try to merge buddies from
7265 	 * different pageblocks and change MIGRATE_ISOLATE to some
7266 	 * other migration type.
7267 	 *
7268 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7269 	 * migrate the pages from an unaligned range (ie. pages that
7270 	 * we are interested in).  This will put all the pages in
7271 	 * range back to page allocator as MIGRATE_ISOLATE.
7272 	 *
7273 	 * When this is done, we take the pages in range from page
7274 	 * allocator removing them from the buddy system.  This way
7275 	 * page allocator will never consider using them.
7276 	 *
7277 	 * This lets us mark the pageblocks back as
7278 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7279 	 * aligned range but not in the unaligned, original range are
7280 	 * put back to page allocator so that buddy can use them.
7281 	 */
7282 
7283 	ret = start_isolate_page_range(pfn_max_align_down(start),
7284 				       pfn_max_align_up(end), migratetype,
7285 				       false);
7286 	if (ret)
7287 		return ret;
7288 
7289 	/*
7290 	 * In case of -EBUSY, we'd like to know which page causes problem.
7291 	 * So, just fall through. We will check it in test_pages_isolated().
7292 	 */
7293 	ret = __alloc_contig_migrate_range(&cc, start, end);
7294 	if (ret && ret != -EBUSY)
7295 		goto done;
7296 
7297 	/*
7298 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7299 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
7300 	 * more, all pages in [start, end) are free in page allocator.
7301 	 * What we are going to do is to allocate all pages from
7302 	 * [start, end) (that is remove them from page allocator).
7303 	 *
7304 	 * The only problem is that pages at the beginning and at the
7305 	 * end of interesting range may be not aligned with pages that
7306 	 * page allocator holds, ie. they can be part of higher order
7307 	 * pages.  Because of this, we reserve the bigger range and
7308 	 * once this is done free the pages we are not interested in.
7309 	 *
7310 	 * We don't have to hold zone->lock here because the pages are
7311 	 * isolated thus they won't get removed from buddy.
7312 	 */
7313 
7314 	lru_add_drain_all();
7315 	drain_all_pages(cc.zone);
7316 
7317 	order = 0;
7318 	outer_start = start;
7319 	while (!PageBuddy(pfn_to_page(outer_start))) {
7320 		if (++order >= MAX_ORDER) {
7321 			outer_start = start;
7322 			break;
7323 		}
7324 		outer_start &= ~0UL << order;
7325 	}
7326 
7327 	if (outer_start != start) {
7328 		order = page_order(pfn_to_page(outer_start));
7329 
7330 		/*
7331 		 * outer_start page could be small order buddy page and
7332 		 * it doesn't include start page. Adjust outer_start
7333 		 * in this case to report failed page properly
7334 		 * on tracepoint in test_pages_isolated()
7335 		 */
7336 		if (outer_start + (1UL << order) <= start)
7337 			outer_start = start;
7338 	}
7339 
7340 	/* Make sure the range is really isolated. */
7341 	if (test_pages_isolated(outer_start, end, false)) {
7342 		pr_info("%s: [%lx, %lx) PFNs busy\n",
7343 			__func__, outer_start, end);
7344 		ret = -EBUSY;
7345 		goto done;
7346 	}
7347 
7348 	/* Grab isolated pages from freelists. */
7349 	outer_end = isolate_freepages_range(&cc, outer_start, end);
7350 	if (!outer_end) {
7351 		ret = -EBUSY;
7352 		goto done;
7353 	}
7354 
7355 	/* Free head and tail (if any) */
7356 	if (start != outer_start)
7357 		free_contig_range(outer_start, start - outer_start);
7358 	if (end != outer_end)
7359 		free_contig_range(end, outer_end - end);
7360 
7361 done:
7362 	undo_isolate_page_range(pfn_max_align_down(start),
7363 				pfn_max_align_up(end), migratetype);
7364 	return ret;
7365 }
7366 
7367 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7368 {
7369 	unsigned int count = 0;
7370 
7371 	for (; nr_pages--; pfn++) {
7372 		struct page *page = pfn_to_page(pfn);
7373 
7374 		count += page_count(page) != 1;
7375 		__free_page(page);
7376 	}
7377 	WARN(count != 0, "%d pages are still in use!\n", count);
7378 }
7379 #endif
7380 
7381 #ifdef CONFIG_MEMORY_HOTPLUG
7382 /*
7383  * The zone indicated has a new number of managed_pages; batch sizes and percpu
7384  * page high values need to be recalulated.
7385  */
7386 void __meminit zone_pcp_update(struct zone *zone)
7387 {
7388 	unsigned cpu;
7389 	mutex_lock(&pcp_batch_high_lock);
7390 	for_each_possible_cpu(cpu)
7391 		pageset_set_high_and_batch(zone,
7392 				per_cpu_ptr(zone->pageset, cpu));
7393 	mutex_unlock(&pcp_batch_high_lock);
7394 }
7395 #endif
7396 
7397 void zone_pcp_reset(struct zone *zone)
7398 {
7399 	unsigned long flags;
7400 	int cpu;
7401 	struct per_cpu_pageset *pset;
7402 
7403 	/* avoid races with drain_pages()  */
7404 	local_irq_save(flags);
7405 	if (zone->pageset != &boot_pageset) {
7406 		for_each_online_cpu(cpu) {
7407 			pset = per_cpu_ptr(zone->pageset, cpu);
7408 			drain_zonestat(zone, pset);
7409 		}
7410 		free_percpu(zone->pageset);
7411 		zone->pageset = &boot_pageset;
7412 	}
7413 	local_irq_restore(flags);
7414 }
7415 
7416 #ifdef CONFIG_MEMORY_HOTREMOVE
7417 /*
7418  * All pages in the range must be in a single zone and isolated
7419  * before calling this.
7420  */
7421 void
7422 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7423 {
7424 	struct page *page;
7425 	struct zone *zone;
7426 	unsigned int order, i;
7427 	unsigned long pfn;
7428 	unsigned long flags;
7429 	/* find the first valid pfn */
7430 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
7431 		if (pfn_valid(pfn))
7432 			break;
7433 	if (pfn == end_pfn)
7434 		return;
7435 	zone = page_zone(pfn_to_page(pfn));
7436 	spin_lock_irqsave(&zone->lock, flags);
7437 	pfn = start_pfn;
7438 	while (pfn < end_pfn) {
7439 		if (!pfn_valid(pfn)) {
7440 			pfn++;
7441 			continue;
7442 		}
7443 		page = pfn_to_page(pfn);
7444 		/*
7445 		 * The HWPoisoned page may be not in buddy system, and
7446 		 * page_count() is not 0.
7447 		 */
7448 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7449 			pfn++;
7450 			SetPageReserved(page);
7451 			continue;
7452 		}
7453 
7454 		BUG_ON(page_count(page));
7455 		BUG_ON(!PageBuddy(page));
7456 		order = page_order(page);
7457 #ifdef CONFIG_DEBUG_VM
7458 		pr_info("remove from free list %lx %d %lx\n",
7459 			pfn, 1 << order, end_pfn);
7460 #endif
7461 		list_del(&page->lru);
7462 		rmv_page_order(page);
7463 		zone->free_area[order].nr_free--;
7464 		for (i = 0; i < (1 << order); i++)
7465 			SetPageReserved((page+i));
7466 		pfn += (1 << order);
7467 	}
7468 	spin_unlock_irqrestore(&zone->lock, flags);
7469 }
7470 #endif
7471 
7472 bool is_free_buddy_page(struct page *page)
7473 {
7474 	struct zone *zone = page_zone(page);
7475 	unsigned long pfn = page_to_pfn(page);
7476 	unsigned long flags;
7477 	unsigned int order;
7478 
7479 	spin_lock_irqsave(&zone->lock, flags);
7480 	for (order = 0; order < MAX_ORDER; order++) {
7481 		struct page *page_head = page - (pfn & ((1 << order) - 1));
7482 
7483 		if (PageBuddy(page_head) && page_order(page_head) >= order)
7484 			break;
7485 	}
7486 	spin_unlock_irqrestore(&zone->lock, flags);
7487 
7488 	return order < MAX_ORDER;
7489 }
7490