xref: /openbmc/linux/mm/page_alloc.c (revision 7507f099)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/swapops.h>
23 #include <linux/interrupt.h>
24 #include <linux/pagemap.h>
25 #include <linux/jiffies.h>
26 #include <linux/memblock.h>
27 #include <linux/compiler.h>
28 #include <linux/kernel.h>
29 #include <linux/kasan.h>
30 #include <linux/module.h>
31 #include <linux/suspend.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/slab.h>
35 #include <linux/ratelimit.h>
36 #include <linux/oom.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/random.h>
49 #include <linux/sort.h>
50 #include <linux/pfn.h>
51 #include <linux/backing-dev.h>
52 #include <linux/fault-inject.h>
53 #include <linux/page-isolation.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <trace/events/oom.h>
59 #include <linux/prefetch.h>
60 #include <linux/mm_inline.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/migrate.h>
63 #include <linux/hugetlb.h>
64 #include <linux/sched/rt.h>
65 #include <linux/sched/mm.h>
66 #include <linux/page_owner.h>
67 #include <linux/page_table_check.h>
68 #include <linux/kthread.h>
69 #include <linux/memcontrol.h>
70 #include <linux/ftrace.h>
71 #include <linux/lockdep.h>
72 #include <linux/nmi.h>
73 #include <linux/psi.h>
74 #include <linux/padata.h>
75 #include <linux/khugepaged.h>
76 #include <linux/buffer_head.h>
77 #include <linux/delayacct.h>
78 #include <asm/sections.h>
79 #include <asm/tlbflush.h>
80 #include <asm/div64.h>
81 #include "internal.h"
82 #include "shuffle.h"
83 #include "page_reporting.h"
84 #include "swap.h"
85 
86 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
87 typedef int __bitwise fpi_t;
88 
89 /* No special request */
90 #define FPI_NONE		((__force fpi_t)0)
91 
92 /*
93  * Skip free page reporting notification for the (possibly merged) page.
94  * This does not hinder free page reporting from grabbing the page,
95  * reporting it and marking it "reported" -  it only skips notifying
96  * the free page reporting infrastructure about a newly freed page. For
97  * example, used when temporarily pulling a page from a freelist and
98  * putting it back unmodified.
99  */
100 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
101 
102 /*
103  * Place the (possibly merged) page to the tail of the freelist. Will ignore
104  * page shuffling (relevant code - e.g., memory onlining - is expected to
105  * shuffle the whole zone).
106  *
107  * Note: No code should rely on this flag for correctness - it's purely
108  *       to allow for optimizations when handing back either fresh pages
109  *       (memory onlining) or untouched pages (page isolation, free page
110  *       reporting).
111  */
112 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
113 
114 /*
115  * Don't poison memory with KASAN (only for the tag-based modes).
116  * During boot, all non-reserved memblock memory is exposed to page_alloc.
117  * Poisoning all that memory lengthens boot time, especially on systems with
118  * large amount of RAM. This flag is used to skip that poisoning.
119  * This is only done for the tag-based KASAN modes, as those are able to
120  * detect memory corruptions with the memory tags assigned by default.
121  * All memory allocated normally after boot gets poisoned as usual.
122  */
123 #define FPI_SKIP_KASAN_POISON	((__force fpi_t)BIT(2))
124 
125 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
126 static DEFINE_MUTEX(pcp_batch_high_lock);
127 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
128 
129 struct pagesets {
130 	local_lock_t lock;
131 };
132 static DEFINE_PER_CPU(struct pagesets, pagesets) = {
133 	.lock = INIT_LOCAL_LOCK(lock),
134 };
135 
136 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
137 DEFINE_PER_CPU(int, numa_node);
138 EXPORT_PER_CPU_SYMBOL(numa_node);
139 #endif
140 
141 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
142 
143 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
144 /*
145  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
146  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
147  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
148  * defined in <linux/topology.h>.
149  */
150 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
151 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
152 #endif
153 
154 /* work_structs for global per-cpu drains */
155 struct pcpu_drain {
156 	struct zone *zone;
157 	struct work_struct work;
158 };
159 static DEFINE_MUTEX(pcpu_drain_mutex);
160 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
161 
162 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
163 volatile unsigned long latent_entropy __latent_entropy;
164 EXPORT_SYMBOL(latent_entropy);
165 #endif
166 
167 /*
168  * Array of node states.
169  */
170 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
171 	[N_POSSIBLE] = NODE_MASK_ALL,
172 	[N_ONLINE] = { { [0] = 1UL } },
173 #ifndef CONFIG_NUMA
174 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
175 #ifdef CONFIG_HIGHMEM
176 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
177 #endif
178 	[N_MEMORY] = { { [0] = 1UL } },
179 	[N_CPU] = { { [0] = 1UL } },
180 #endif	/* NUMA */
181 };
182 EXPORT_SYMBOL(node_states);
183 
184 atomic_long_t _totalram_pages __read_mostly;
185 EXPORT_SYMBOL(_totalram_pages);
186 unsigned long totalreserve_pages __read_mostly;
187 unsigned long totalcma_pages __read_mostly;
188 
189 int percpu_pagelist_high_fraction;
190 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
191 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
192 EXPORT_SYMBOL(init_on_alloc);
193 
194 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
195 EXPORT_SYMBOL(init_on_free);
196 
197 static bool _init_on_alloc_enabled_early __read_mostly
198 				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
199 static int __init early_init_on_alloc(char *buf)
200 {
201 
202 	return kstrtobool(buf, &_init_on_alloc_enabled_early);
203 }
204 early_param("init_on_alloc", early_init_on_alloc);
205 
206 static bool _init_on_free_enabled_early __read_mostly
207 				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
208 static int __init early_init_on_free(char *buf)
209 {
210 	return kstrtobool(buf, &_init_on_free_enabled_early);
211 }
212 early_param("init_on_free", early_init_on_free);
213 
214 /*
215  * A cached value of the page's pageblock's migratetype, used when the page is
216  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
217  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
218  * Also the migratetype set in the page does not necessarily match the pcplist
219  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
220  * other index - this ensures that it will be put on the correct CMA freelist.
221  */
222 static inline int get_pcppage_migratetype(struct page *page)
223 {
224 	return page->index;
225 }
226 
227 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
228 {
229 	page->index = migratetype;
230 }
231 
232 #ifdef CONFIG_PM_SLEEP
233 /*
234  * The following functions are used by the suspend/hibernate code to temporarily
235  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
236  * while devices are suspended.  To avoid races with the suspend/hibernate code,
237  * they should always be called with system_transition_mutex held
238  * (gfp_allowed_mask also should only be modified with system_transition_mutex
239  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
240  * with that modification).
241  */
242 
243 static gfp_t saved_gfp_mask;
244 
245 void pm_restore_gfp_mask(void)
246 {
247 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
248 	if (saved_gfp_mask) {
249 		gfp_allowed_mask = saved_gfp_mask;
250 		saved_gfp_mask = 0;
251 	}
252 }
253 
254 void pm_restrict_gfp_mask(void)
255 {
256 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
257 	WARN_ON(saved_gfp_mask);
258 	saved_gfp_mask = gfp_allowed_mask;
259 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
260 }
261 
262 bool pm_suspended_storage(void)
263 {
264 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
265 		return false;
266 	return true;
267 }
268 #endif /* CONFIG_PM_SLEEP */
269 
270 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
271 unsigned int pageblock_order __read_mostly;
272 #endif
273 
274 static void __free_pages_ok(struct page *page, unsigned int order,
275 			    fpi_t fpi_flags);
276 
277 /*
278  * results with 256, 32 in the lowmem_reserve sysctl:
279  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
280  *	1G machine -> (16M dma, 784M normal, 224M high)
281  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
282  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
283  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
284  *
285  * TBD: should special case ZONE_DMA32 machines here - in those we normally
286  * don't need any ZONE_NORMAL reservation
287  */
288 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
289 #ifdef CONFIG_ZONE_DMA
290 	[ZONE_DMA] = 256,
291 #endif
292 #ifdef CONFIG_ZONE_DMA32
293 	[ZONE_DMA32] = 256,
294 #endif
295 	[ZONE_NORMAL] = 32,
296 #ifdef CONFIG_HIGHMEM
297 	[ZONE_HIGHMEM] = 0,
298 #endif
299 	[ZONE_MOVABLE] = 0,
300 };
301 
302 static char * const zone_names[MAX_NR_ZONES] = {
303 #ifdef CONFIG_ZONE_DMA
304 	 "DMA",
305 #endif
306 #ifdef CONFIG_ZONE_DMA32
307 	 "DMA32",
308 #endif
309 	 "Normal",
310 #ifdef CONFIG_HIGHMEM
311 	 "HighMem",
312 #endif
313 	 "Movable",
314 #ifdef CONFIG_ZONE_DEVICE
315 	 "Device",
316 #endif
317 };
318 
319 const char * const migratetype_names[MIGRATE_TYPES] = {
320 	"Unmovable",
321 	"Movable",
322 	"Reclaimable",
323 	"HighAtomic",
324 #ifdef CONFIG_CMA
325 	"CMA",
326 #endif
327 #ifdef CONFIG_MEMORY_ISOLATION
328 	"Isolate",
329 #endif
330 };
331 
332 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
333 	[NULL_COMPOUND_DTOR] = NULL,
334 	[COMPOUND_PAGE_DTOR] = free_compound_page,
335 #ifdef CONFIG_HUGETLB_PAGE
336 	[HUGETLB_PAGE_DTOR] = free_huge_page,
337 #endif
338 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
339 	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
340 #endif
341 };
342 
343 int min_free_kbytes = 1024;
344 int user_min_free_kbytes = -1;
345 int watermark_boost_factor __read_mostly = 15000;
346 int watermark_scale_factor = 10;
347 
348 static unsigned long nr_kernel_pages __initdata;
349 static unsigned long nr_all_pages __initdata;
350 static unsigned long dma_reserve __initdata;
351 
352 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
353 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
354 static unsigned long required_kernelcore __initdata;
355 static unsigned long required_kernelcore_percent __initdata;
356 static unsigned long required_movablecore __initdata;
357 static unsigned long required_movablecore_percent __initdata;
358 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
359 static bool mirrored_kernelcore __meminitdata;
360 
361 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
362 int movable_zone;
363 EXPORT_SYMBOL(movable_zone);
364 
365 #if MAX_NUMNODES > 1
366 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
367 unsigned int nr_online_nodes __read_mostly = 1;
368 EXPORT_SYMBOL(nr_node_ids);
369 EXPORT_SYMBOL(nr_online_nodes);
370 #endif
371 
372 int page_group_by_mobility_disabled __read_mostly;
373 
374 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
375 /*
376  * During boot we initialize deferred pages on-demand, as needed, but once
377  * page_alloc_init_late() has finished, the deferred pages are all initialized,
378  * and we can permanently disable that path.
379  */
380 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
381 
382 static inline bool deferred_pages_enabled(void)
383 {
384 	return static_branch_unlikely(&deferred_pages);
385 }
386 
387 /* Returns true if the struct page for the pfn is uninitialised */
388 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
389 {
390 	int nid = early_pfn_to_nid(pfn);
391 
392 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
393 		return true;
394 
395 	return false;
396 }
397 
398 /*
399  * Returns true when the remaining initialisation should be deferred until
400  * later in the boot cycle when it can be parallelised.
401  */
402 static bool __meminit
403 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
404 {
405 	static unsigned long prev_end_pfn, nr_initialised;
406 
407 	/*
408 	 * prev_end_pfn static that contains the end of previous zone
409 	 * No need to protect because called very early in boot before smp_init.
410 	 */
411 	if (prev_end_pfn != end_pfn) {
412 		prev_end_pfn = end_pfn;
413 		nr_initialised = 0;
414 	}
415 
416 	/* Always populate low zones for address-constrained allocations */
417 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
418 		return false;
419 
420 	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
421 		return true;
422 	/*
423 	 * We start only with one section of pages, more pages are added as
424 	 * needed until the rest of deferred pages are initialized.
425 	 */
426 	nr_initialised++;
427 	if ((nr_initialised > PAGES_PER_SECTION) &&
428 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
429 		NODE_DATA(nid)->first_deferred_pfn = pfn;
430 		return true;
431 	}
432 	return false;
433 }
434 #else
435 static inline bool deferred_pages_enabled(void)
436 {
437 	return false;
438 }
439 
440 static inline bool early_page_uninitialised(unsigned long pfn)
441 {
442 	return false;
443 }
444 
445 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
446 {
447 	return false;
448 }
449 #endif
450 
451 /* Return a pointer to the bitmap storing bits affecting a block of pages */
452 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
453 							unsigned long pfn)
454 {
455 #ifdef CONFIG_SPARSEMEM
456 	return section_to_usemap(__pfn_to_section(pfn));
457 #else
458 	return page_zone(page)->pageblock_flags;
459 #endif /* CONFIG_SPARSEMEM */
460 }
461 
462 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
463 {
464 #ifdef CONFIG_SPARSEMEM
465 	pfn &= (PAGES_PER_SECTION-1);
466 #else
467 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
468 #endif /* CONFIG_SPARSEMEM */
469 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
470 }
471 
472 static __always_inline
473 unsigned long __get_pfnblock_flags_mask(const struct page *page,
474 					unsigned long pfn,
475 					unsigned long mask)
476 {
477 	unsigned long *bitmap;
478 	unsigned long bitidx, word_bitidx;
479 	unsigned long word;
480 
481 	bitmap = get_pageblock_bitmap(page, pfn);
482 	bitidx = pfn_to_bitidx(page, pfn);
483 	word_bitidx = bitidx / BITS_PER_LONG;
484 	bitidx &= (BITS_PER_LONG-1);
485 	/*
486 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
487 	 * a consistent read of the memory array, so that results, even though
488 	 * racy, are not corrupted.
489 	 */
490 	word = READ_ONCE(bitmap[word_bitidx]);
491 	return (word >> bitidx) & mask;
492 }
493 
494 /**
495  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
496  * @page: The page within the block of interest
497  * @pfn: The target page frame number
498  * @mask: mask of bits that the caller is interested in
499  *
500  * Return: pageblock_bits flags
501  */
502 unsigned long get_pfnblock_flags_mask(const struct page *page,
503 					unsigned long pfn, unsigned long mask)
504 {
505 	return __get_pfnblock_flags_mask(page, pfn, mask);
506 }
507 
508 static __always_inline int get_pfnblock_migratetype(const struct page *page,
509 					unsigned long pfn)
510 {
511 	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
512 }
513 
514 /**
515  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
516  * @page: The page within the block of interest
517  * @flags: The flags to set
518  * @pfn: The target page frame number
519  * @mask: mask of bits that the caller is interested in
520  */
521 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
522 					unsigned long pfn,
523 					unsigned long mask)
524 {
525 	unsigned long *bitmap;
526 	unsigned long bitidx, word_bitidx;
527 	unsigned long old_word, word;
528 
529 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
530 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
531 
532 	bitmap = get_pageblock_bitmap(page, pfn);
533 	bitidx = pfn_to_bitidx(page, pfn);
534 	word_bitidx = bitidx / BITS_PER_LONG;
535 	bitidx &= (BITS_PER_LONG-1);
536 
537 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
538 
539 	mask <<= bitidx;
540 	flags <<= bitidx;
541 
542 	word = READ_ONCE(bitmap[word_bitidx]);
543 	for (;;) {
544 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
545 		if (word == old_word)
546 			break;
547 		word = old_word;
548 	}
549 }
550 
551 void set_pageblock_migratetype(struct page *page, int migratetype)
552 {
553 	if (unlikely(page_group_by_mobility_disabled &&
554 		     migratetype < MIGRATE_PCPTYPES))
555 		migratetype = MIGRATE_UNMOVABLE;
556 
557 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
558 				page_to_pfn(page), MIGRATETYPE_MASK);
559 }
560 
561 #ifdef CONFIG_DEBUG_VM
562 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
563 {
564 	int ret = 0;
565 	unsigned seq;
566 	unsigned long pfn = page_to_pfn(page);
567 	unsigned long sp, start_pfn;
568 
569 	do {
570 		seq = zone_span_seqbegin(zone);
571 		start_pfn = zone->zone_start_pfn;
572 		sp = zone->spanned_pages;
573 		if (!zone_spans_pfn(zone, pfn))
574 			ret = 1;
575 	} while (zone_span_seqretry(zone, seq));
576 
577 	if (ret)
578 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
579 			pfn, zone_to_nid(zone), zone->name,
580 			start_pfn, start_pfn + sp);
581 
582 	return ret;
583 }
584 
585 static int page_is_consistent(struct zone *zone, struct page *page)
586 {
587 	if (zone != page_zone(page))
588 		return 0;
589 
590 	return 1;
591 }
592 /*
593  * Temporary debugging check for pages not lying within a given zone.
594  */
595 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
596 {
597 	if (page_outside_zone_boundaries(zone, page))
598 		return 1;
599 	if (!page_is_consistent(zone, page))
600 		return 1;
601 
602 	return 0;
603 }
604 #else
605 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
606 {
607 	return 0;
608 }
609 #endif
610 
611 static void bad_page(struct page *page, const char *reason)
612 {
613 	static unsigned long resume;
614 	static unsigned long nr_shown;
615 	static unsigned long nr_unshown;
616 
617 	/*
618 	 * Allow a burst of 60 reports, then keep quiet for that minute;
619 	 * or allow a steady drip of one report per second.
620 	 */
621 	if (nr_shown == 60) {
622 		if (time_before(jiffies, resume)) {
623 			nr_unshown++;
624 			goto out;
625 		}
626 		if (nr_unshown) {
627 			pr_alert(
628 			      "BUG: Bad page state: %lu messages suppressed\n",
629 				nr_unshown);
630 			nr_unshown = 0;
631 		}
632 		nr_shown = 0;
633 	}
634 	if (nr_shown++ == 0)
635 		resume = jiffies + 60 * HZ;
636 
637 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
638 		current->comm, page_to_pfn(page));
639 	dump_page(page, reason);
640 
641 	print_modules();
642 	dump_stack();
643 out:
644 	/* Leave bad fields for debug, except PageBuddy could make trouble */
645 	page_mapcount_reset(page); /* remove PageBuddy */
646 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
647 }
648 
649 static inline unsigned int order_to_pindex(int migratetype, int order)
650 {
651 	int base = order;
652 
653 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
654 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
655 		VM_BUG_ON(order != pageblock_order);
656 		base = PAGE_ALLOC_COSTLY_ORDER + 1;
657 	}
658 #else
659 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
660 #endif
661 
662 	return (MIGRATE_PCPTYPES * base) + migratetype;
663 }
664 
665 static inline int pindex_to_order(unsigned int pindex)
666 {
667 	int order = pindex / MIGRATE_PCPTYPES;
668 
669 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
670 	if (order > PAGE_ALLOC_COSTLY_ORDER)
671 		order = pageblock_order;
672 #else
673 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
674 #endif
675 
676 	return order;
677 }
678 
679 static inline bool pcp_allowed_order(unsigned int order)
680 {
681 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
682 		return true;
683 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
684 	if (order == pageblock_order)
685 		return true;
686 #endif
687 	return false;
688 }
689 
690 static inline void free_the_page(struct page *page, unsigned int order)
691 {
692 	if (pcp_allowed_order(order))		/* Via pcp? */
693 		free_unref_page(page, order);
694 	else
695 		__free_pages_ok(page, order, FPI_NONE);
696 }
697 
698 /*
699  * Higher-order pages are called "compound pages".  They are structured thusly:
700  *
701  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
702  *
703  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
704  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
705  *
706  * The first tail page's ->compound_dtor holds the offset in array of compound
707  * page destructors. See compound_page_dtors.
708  *
709  * The first tail page's ->compound_order holds the order of allocation.
710  * This usage means that zero-order pages may not be compound.
711  */
712 
713 void free_compound_page(struct page *page)
714 {
715 	mem_cgroup_uncharge(page_folio(page));
716 	free_the_page(page, compound_order(page));
717 }
718 
719 static void prep_compound_head(struct page *page, unsigned int order)
720 {
721 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
722 	set_compound_order(page, order);
723 	atomic_set(compound_mapcount_ptr(page), -1);
724 	atomic_set(compound_pincount_ptr(page), 0);
725 }
726 
727 static void prep_compound_tail(struct page *head, int tail_idx)
728 {
729 	struct page *p = head + tail_idx;
730 
731 	p->mapping = TAIL_MAPPING;
732 	set_compound_head(p, head);
733 }
734 
735 void prep_compound_page(struct page *page, unsigned int order)
736 {
737 	int i;
738 	int nr_pages = 1 << order;
739 
740 	__SetPageHead(page);
741 	for (i = 1; i < nr_pages; i++)
742 		prep_compound_tail(page, i);
743 
744 	prep_compound_head(page, order);
745 }
746 
747 #ifdef CONFIG_DEBUG_PAGEALLOC
748 unsigned int _debug_guardpage_minorder;
749 
750 bool _debug_pagealloc_enabled_early __read_mostly
751 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
752 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
753 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
754 EXPORT_SYMBOL(_debug_pagealloc_enabled);
755 
756 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
757 
758 static int __init early_debug_pagealloc(char *buf)
759 {
760 	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
761 }
762 early_param("debug_pagealloc", early_debug_pagealloc);
763 
764 static int __init debug_guardpage_minorder_setup(char *buf)
765 {
766 	unsigned long res;
767 
768 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
769 		pr_err("Bad debug_guardpage_minorder value\n");
770 		return 0;
771 	}
772 	_debug_guardpage_minorder = res;
773 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
774 	return 0;
775 }
776 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
777 
778 static inline bool set_page_guard(struct zone *zone, struct page *page,
779 				unsigned int order, int migratetype)
780 {
781 	if (!debug_guardpage_enabled())
782 		return false;
783 
784 	if (order >= debug_guardpage_minorder())
785 		return false;
786 
787 	__SetPageGuard(page);
788 	INIT_LIST_HEAD(&page->lru);
789 	set_page_private(page, order);
790 	/* Guard pages are not available for any usage */
791 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
792 
793 	return true;
794 }
795 
796 static inline void clear_page_guard(struct zone *zone, struct page *page,
797 				unsigned int order, int migratetype)
798 {
799 	if (!debug_guardpage_enabled())
800 		return;
801 
802 	__ClearPageGuard(page);
803 
804 	set_page_private(page, 0);
805 	if (!is_migrate_isolate(migratetype))
806 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
807 }
808 #else
809 static inline bool set_page_guard(struct zone *zone, struct page *page,
810 			unsigned int order, int migratetype) { return false; }
811 static inline void clear_page_guard(struct zone *zone, struct page *page,
812 				unsigned int order, int migratetype) {}
813 #endif
814 
815 /*
816  * Enable static keys related to various memory debugging and hardening options.
817  * Some override others, and depend on early params that are evaluated in the
818  * order of appearance. So we need to first gather the full picture of what was
819  * enabled, and then make decisions.
820  */
821 void init_mem_debugging_and_hardening(void)
822 {
823 	bool page_poisoning_requested = false;
824 
825 #ifdef CONFIG_PAGE_POISONING
826 	/*
827 	 * Page poisoning is debug page alloc for some arches. If
828 	 * either of those options are enabled, enable poisoning.
829 	 */
830 	if (page_poisoning_enabled() ||
831 	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
832 	      debug_pagealloc_enabled())) {
833 		static_branch_enable(&_page_poisoning_enabled);
834 		page_poisoning_requested = true;
835 	}
836 #endif
837 
838 	if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
839 	    page_poisoning_requested) {
840 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
841 			"will take precedence over init_on_alloc and init_on_free\n");
842 		_init_on_alloc_enabled_early = false;
843 		_init_on_free_enabled_early = false;
844 	}
845 
846 	if (_init_on_alloc_enabled_early)
847 		static_branch_enable(&init_on_alloc);
848 	else
849 		static_branch_disable(&init_on_alloc);
850 
851 	if (_init_on_free_enabled_early)
852 		static_branch_enable(&init_on_free);
853 	else
854 		static_branch_disable(&init_on_free);
855 
856 #ifdef CONFIG_DEBUG_PAGEALLOC
857 	if (!debug_pagealloc_enabled())
858 		return;
859 
860 	static_branch_enable(&_debug_pagealloc_enabled);
861 
862 	if (!debug_guardpage_minorder())
863 		return;
864 
865 	static_branch_enable(&_debug_guardpage_enabled);
866 #endif
867 }
868 
869 static inline void set_buddy_order(struct page *page, unsigned int order)
870 {
871 	set_page_private(page, order);
872 	__SetPageBuddy(page);
873 }
874 
875 #ifdef CONFIG_COMPACTION
876 static inline struct capture_control *task_capc(struct zone *zone)
877 {
878 	struct capture_control *capc = current->capture_control;
879 
880 	return unlikely(capc) &&
881 		!(current->flags & PF_KTHREAD) &&
882 		!capc->page &&
883 		capc->cc->zone == zone ? capc : NULL;
884 }
885 
886 static inline bool
887 compaction_capture(struct capture_control *capc, struct page *page,
888 		   int order, int migratetype)
889 {
890 	if (!capc || order != capc->cc->order)
891 		return false;
892 
893 	/* Do not accidentally pollute CMA or isolated regions*/
894 	if (is_migrate_cma(migratetype) ||
895 	    is_migrate_isolate(migratetype))
896 		return false;
897 
898 	/*
899 	 * Do not let lower order allocations pollute a movable pageblock.
900 	 * This might let an unmovable request use a reclaimable pageblock
901 	 * and vice-versa but no more than normal fallback logic which can
902 	 * have trouble finding a high-order free page.
903 	 */
904 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
905 		return false;
906 
907 	capc->page = page;
908 	return true;
909 }
910 
911 #else
912 static inline struct capture_control *task_capc(struct zone *zone)
913 {
914 	return NULL;
915 }
916 
917 static inline bool
918 compaction_capture(struct capture_control *capc, struct page *page,
919 		   int order, int migratetype)
920 {
921 	return false;
922 }
923 #endif /* CONFIG_COMPACTION */
924 
925 /* Used for pages not on another list */
926 static inline void add_to_free_list(struct page *page, struct zone *zone,
927 				    unsigned int order, int migratetype)
928 {
929 	struct free_area *area = &zone->free_area[order];
930 
931 	list_add(&page->lru, &area->free_list[migratetype]);
932 	area->nr_free++;
933 }
934 
935 /* Used for pages not on another list */
936 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
937 					 unsigned int order, int migratetype)
938 {
939 	struct free_area *area = &zone->free_area[order];
940 
941 	list_add_tail(&page->lru, &area->free_list[migratetype]);
942 	area->nr_free++;
943 }
944 
945 /*
946  * Used for pages which are on another list. Move the pages to the tail
947  * of the list - so the moved pages won't immediately be considered for
948  * allocation again (e.g., optimization for memory onlining).
949  */
950 static inline void move_to_free_list(struct page *page, struct zone *zone,
951 				     unsigned int order, int migratetype)
952 {
953 	struct free_area *area = &zone->free_area[order];
954 
955 	list_move_tail(&page->lru, &area->free_list[migratetype]);
956 }
957 
958 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
959 					   unsigned int order)
960 {
961 	/* clear reported state and update reported page count */
962 	if (page_reported(page))
963 		__ClearPageReported(page);
964 
965 	list_del(&page->lru);
966 	__ClearPageBuddy(page);
967 	set_page_private(page, 0);
968 	zone->free_area[order].nr_free--;
969 }
970 
971 /*
972  * If this is not the largest possible page, check if the buddy
973  * of the next-highest order is free. If it is, it's possible
974  * that pages are being freed that will coalesce soon. In case,
975  * that is happening, add the free page to the tail of the list
976  * so it's less likely to be used soon and more likely to be merged
977  * as a higher order page
978  */
979 static inline bool
980 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
981 		   struct page *page, unsigned int order)
982 {
983 	unsigned long higher_page_pfn;
984 	struct page *higher_page;
985 
986 	if (order >= MAX_ORDER - 2)
987 		return false;
988 
989 	higher_page_pfn = buddy_pfn & pfn;
990 	higher_page = page + (higher_page_pfn - pfn);
991 
992 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
993 			NULL) != NULL;
994 }
995 
996 /*
997  * Freeing function for a buddy system allocator.
998  *
999  * The concept of a buddy system is to maintain direct-mapped table
1000  * (containing bit values) for memory blocks of various "orders".
1001  * The bottom level table contains the map for the smallest allocatable
1002  * units of memory (here, pages), and each level above it describes
1003  * pairs of units from the levels below, hence, "buddies".
1004  * At a high level, all that happens here is marking the table entry
1005  * at the bottom level available, and propagating the changes upward
1006  * as necessary, plus some accounting needed to play nicely with other
1007  * parts of the VM system.
1008  * At each level, we keep a list of pages, which are heads of continuous
1009  * free pages of length of (1 << order) and marked with PageBuddy.
1010  * Page's order is recorded in page_private(page) field.
1011  * So when we are allocating or freeing one, we can derive the state of the
1012  * other.  That is, if we allocate a small block, and both were
1013  * free, the remainder of the region must be split into blocks.
1014  * If a block is freed, and its buddy is also free, then this
1015  * triggers coalescing into a block of larger size.
1016  *
1017  * -- nyc
1018  */
1019 
1020 static inline void __free_one_page(struct page *page,
1021 		unsigned long pfn,
1022 		struct zone *zone, unsigned int order,
1023 		int migratetype, fpi_t fpi_flags)
1024 {
1025 	struct capture_control *capc = task_capc(zone);
1026 	unsigned long buddy_pfn;
1027 	unsigned long combined_pfn;
1028 	struct page *buddy;
1029 	bool to_tail;
1030 
1031 	VM_BUG_ON(!zone_is_initialized(zone));
1032 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1033 
1034 	VM_BUG_ON(migratetype == -1);
1035 	if (likely(!is_migrate_isolate(migratetype)))
1036 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
1037 
1038 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1039 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1040 
1041 	while (order < MAX_ORDER - 1) {
1042 		if (compaction_capture(capc, page, order, migratetype)) {
1043 			__mod_zone_freepage_state(zone, -(1 << order),
1044 								migratetype);
1045 			return;
1046 		}
1047 
1048 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
1049 		if (!buddy)
1050 			goto done_merging;
1051 
1052 		if (unlikely(order >= pageblock_order)) {
1053 			/*
1054 			 * We want to prevent merge between freepages on pageblock
1055 			 * without fallbacks and normal pageblock. Without this,
1056 			 * pageblock isolation could cause incorrect freepage or CMA
1057 			 * accounting or HIGHATOMIC accounting.
1058 			 */
1059 			int buddy_mt = get_pageblock_migratetype(buddy);
1060 
1061 			if (migratetype != buddy_mt
1062 					&& (!migratetype_is_mergeable(migratetype) ||
1063 						!migratetype_is_mergeable(buddy_mt)))
1064 				goto done_merging;
1065 		}
1066 
1067 		/*
1068 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1069 		 * merge with it and move up one order.
1070 		 */
1071 		if (page_is_guard(buddy))
1072 			clear_page_guard(zone, buddy, order, migratetype);
1073 		else
1074 			del_page_from_free_list(buddy, zone, order);
1075 		combined_pfn = buddy_pfn & pfn;
1076 		page = page + (combined_pfn - pfn);
1077 		pfn = combined_pfn;
1078 		order++;
1079 	}
1080 
1081 done_merging:
1082 	set_buddy_order(page, order);
1083 
1084 	if (fpi_flags & FPI_TO_TAIL)
1085 		to_tail = true;
1086 	else if (is_shuffle_order(order))
1087 		to_tail = shuffle_pick_tail();
1088 	else
1089 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1090 
1091 	if (to_tail)
1092 		add_to_free_list_tail(page, zone, order, migratetype);
1093 	else
1094 		add_to_free_list(page, zone, order, migratetype);
1095 
1096 	/* Notify page reporting subsystem of freed page */
1097 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1098 		page_reporting_notify_free(order);
1099 }
1100 
1101 /**
1102  * split_free_page() -- split a free page at split_pfn_offset
1103  * @free_page:		the original free page
1104  * @order:		the order of the page
1105  * @split_pfn_offset:	split offset within the page
1106  *
1107  * Return -ENOENT if the free page is changed, otherwise 0
1108  *
1109  * It is used when the free page crosses two pageblocks with different migratetypes
1110  * at split_pfn_offset within the page. The split free page will be put into
1111  * separate migratetype lists afterwards. Otherwise, the function achieves
1112  * nothing.
1113  */
1114 int split_free_page(struct page *free_page,
1115 			unsigned int order, unsigned long split_pfn_offset)
1116 {
1117 	struct zone *zone = page_zone(free_page);
1118 	unsigned long free_page_pfn = page_to_pfn(free_page);
1119 	unsigned long pfn;
1120 	unsigned long flags;
1121 	int free_page_order;
1122 	int mt;
1123 	int ret = 0;
1124 
1125 	if (split_pfn_offset == 0)
1126 		return ret;
1127 
1128 	spin_lock_irqsave(&zone->lock, flags);
1129 
1130 	if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
1131 		ret = -ENOENT;
1132 		goto out;
1133 	}
1134 
1135 	mt = get_pageblock_migratetype(free_page);
1136 	if (likely(!is_migrate_isolate(mt)))
1137 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
1138 
1139 	del_page_from_free_list(free_page, zone, order);
1140 	for (pfn = free_page_pfn;
1141 	     pfn < free_page_pfn + (1UL << order);) {
1142 		int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
1143 
1144 		free_page_order = min_t(unsigned int,
1145 					pfn ? __ffs(pfn) : order,
1146 					__fls(split_pfn_offset));
1147 		__free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
1148 				mt, FPI_NONE);
1149 		pfn += 1UL << free_page_order;
1150 		split_pfn_offset -= (1UL << free_page_order);
1151 		/* we have done the first part, now switch to second part */
1152 		if (split_pfn_offset == 0)
1153 			split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
1154 	}
1155 out:
1156 	spin_unlock_irqrestore(&zone->lock, flags);
1157 	return ret;
1158 }
1159 /*
1160  * A bad page could be due to a number of fields. Instead of multiple branches,
1161  * try and check multiple fields with one check. The caller must do a detailed
1162  * check if necessary.
1163  */
1164 static inline bool page_expected_state(struct page *page,
1165 					unsigned long check_flags)
1166 {
1167 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1168 		return false;
1169 
1170 	if (unlikely((unsigned long)page->mapping |
1171 			page_ref_count(page) |
1172 #ifdef CONFIG_MEMCG
1173 			page->memcg_data |
1174 #endif
1175 			(page->flags & check_flags)))
1176 		return false;
1177 
1178 	return true;
1179 }
1180 
1181 static const char *page_bad_reason(struct page *page, unsigned long flags)
1182 {
1183 	const char *bad_reason = NULL;
1184 
1185 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1186 		bad_reason = "nonzero mapcount";
1187 	if (unlikely(page->mapping != NULL))
1188 		bad_reason = "non-NULL mapping";
1189 	if (unlikely(page_ref_count(page) != 0))
1190 		bad_reason = "nonzero _refcount";
1191 	if (unlikely(page->flags & flags)) {
1192 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1193 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1194 		else
1195 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1196 	}
1197 #ifdef CONFIG_MEMCG
1198 	if (unlikely(page->memcg_data))
1199 		bad_reason = "page still charged to cgroup";
1200 #endif
1201 	return bad_reason;
1202 }
1203 
1204 static void check_free_page_bad(struct page *page)
1205 {
1206 	bad_page(page,
1207 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1208 }
1209 
1210 static inline int check_free_page(struct page *page)
1211 {
1212 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1213 		return 0;
1214 
1215 	/* Something has gone sideways, find it */
1216 	check_free_page_bad(page);
1217 	return 1;
1218 }
1219 
1220 static int free_tail_pages_check(struct page *head_page, struct page *page)
1221 {
1222 	int ret = 1;
1223 
1224 	/*
1225 	 * We rely page->lru.next never has bit 0 set, unless the page
1226 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1227 	 */
1228 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1229 
1230 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1231 		ret = 0;
1232 		goto out;
1233 	}
1234 	switch (page - head_page) {
1235 	case 1:
1236 		/* the first tail page: ->mapping may be compound_mapcount() */
1237 		if (unlikely(compound_mapcount(page))) {
1238 			bad_page(page, "nonzero compound_mapcount");
1239 			goto out;
1240 		}
1241 		break;
1242 	case 2:
1243 		/*
1244 		 * the second tail page: ->mapping is
1245 		 * deferred_list.next -- ignore value.
1246 		 */
1247 		break;
1248 	default:
1249 		if (page->mapping != TAIL_MAPPING) {
1250 			bad_page(page, "corrupted mapping in tail page");
1251 			goto out;
1252 		}
1253 		break;
1254 	}
1255 	if (unlikely(!PageTail(page))) {
1256 		bad_page(page, "PageTail not set");
1257 		goto out;
1258 	}
1259 	if (unlikely(compound_head(page) != head_page)) {
1260 		bad_page(page, "compound_head not consistent");
1261 		goto out;
1262 	}
1263 	ret = 0;
1264 out:
1265 	page->mapping = NULL;
1266 	clear_compound_head(page);
1267 	return ret;
1268 }
1269 
1270 /*
1271  * Skip KASAN memory poisoning when either:
1272  *
1273  * 1. Deferred memory initialization has not yet completed,
1274  *    see the explanation below.
1275  * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON,
1276  *    see the comment next to it.
1277  * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON,
1278  *    see the comment next to it.
1279  *
1280  * Poisoning pages during deferred memory init will greatly lengthen the
1281  * process and cause problem in large memory systems as the deferred pages
1282  * initialization is done with interrupt disabled.
1283  *
1284  * Assuming that there will be no reference to those newly initialized
1285  * pages before they are ever allocated, this should have no effect on
1286  * KASAN memory tracking as the poison will be properly inserted at page
1287  * allocation time. The only corner case is when pages are allocated by
1288  * on-demand allocation and then freed again before the deferred pages
1289  * initialization is done, but this is not likely to happen.
1290  */
1291 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1292 {
1293 	return deferred_pages_enabled() ||
1294 	       (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
1295 		(fpi_flags & FPI_SKIP_KASAN_POISON)) ||
1296 	       PageSkipKASanPoison(page);
1297 }
1298 
1299 static void kernel_init_pages(struct page *page, int numpages)
1300 {
1301 	int i;
1302 
1303 	/* s390's use of memset() could override KASAN redzones. */
1304 	kasan_disable_current();
1305 	for (i = 0; i < numpages; i++)
1306 		clear_highpage_kasan_tagged(page + i);
1307 	kasan_enable_current();
1308 }
1309 
1310 static __always_inline bool free_pages_prepare(struct page *page,
1311 			unsigned int order, bool check_free, fpi_t fpi_flags)
1312 {
1313 	int bad = 0;
1314 	bool init = want_init_on_free();
1315 
1316 	VM_BUG_ON_PAGE(PageTail(page), page);
1317 
1318 	trace_mm_page_free(page, order);
1319 
1320 	if (unlikely(PageHWPoison(page)) && !order) {
1321 		/*
1322 		 * Do not let hwpoison pages hit pcplists/buddy
1323 		 * Untie memcg state and reset page's owner
1324 		 */
1325 		if (memcg_kmem_enabled() && PageMemcgKmem(page))
1326 			__memcg_kmem_uncharge_page(page, order);
1327 		reset_page_owner(page, order);
1328 		page_table_check_free(page, order);
1329 		return false;
1330 	}
1331 
1332 	/*
1333 	 * Check tail pages before head page information is cleared to
1334 	 * avoid checking PageCompound for order-0 pages.
1335 	 */
1336 	if (unlikely(order)) {
1337 		bool compound = PageCompound(page);
1338 		int i;
1339 
1340 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1341 
1342 		if (compound) {
1343 			ClearPageDoubleMap(page);
1344 			ClearPageHasHWPoisoned(page);
1345 		}
1346 		for (i = 1; i < (1 << order); i++) {
1347 			if (compound)
1348 				bad += free_tail_pages_check(page, page + i);
1349 			if (unlikely(check_free_page(page + i))) {
1350 				bad++;
1351 				continue;
1352 			}
1353 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1354 		}
1355 	}
1356 	if (PageMappingFlags(page))
1357 		page->mapping = NULL;
1358 	if (memcg_kmem_enabled() && PageMemcgKmem(page))
1359 		__memcg_kmem_uncharge_page(page, order);
1360 	if (check_free)
1361 		bad += check_free_page(page);
1362 	if (bad)
1363 		return false;
1364 
1365 	page_cpupid_reset_last(page);
1366 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1367 	reset_page_owner(page, order);
1368 	page_table_check_free(page, order);
1369 
1370 	if (!PageHighMem(page)) {
1371 		debug_check_no_locks_freed(page_address(page),
1372 					   PAGE_SIZE << order);
1373 		debug_check_no_obj_freed(page_address(page),
1374 					   PAGE_SIZE << order);
1375 	}
1376 
1377 	kernel_poison_pages(page, 1 << order);
1378 
1379 	/*
1380 	 * As memory initialization might be integrated into KASAN,
1381 	 * KASAN poisoning and memory initialization code must be
1382 	 * kept together to avoid discrepancies in behavior.
1383 	 *
1384 	 * With hardware tag-based KASAN, memory tags must be set before the
1385 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1386 	 */
1387 	if (!should_skip_kasan_poison(page, fpi_flags)) {
1388 		kasan_poison_pages(page, order, init);
1389 
1390 		/* Memory is already initialized if KASAN did it internally. */
1391 		if (kasan_has_integrated_init())
1392 			init = false;
1393 	}
1394 	if (init)
1395 		kernel_init_pages(page, 1 << order);
1396 
1397 	/*
1398 	 * arch_free_page() can make the page's contents inaccessible.  s390
1399 	 * does this.  So nothing which can access the page's contents should
1400 	 * happen after this.
1401 	 */
1402 	arch_free_page(page, order);
1403 
1404 	debug_pagealloc_unmap_pages(page, 1 << order);
1405 
1406 	return true;
1407 }
1408 
1409 #ifdef CONFIG_DEBUG_VM
1410 /*
1411  * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1412  * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1413  * moved from pcp lists to free lists.
1414  */
1415 static bool free_pcp_prepare(struct page *page, unsigned int order)
1416 {
1417 	return free_pages_prepare(page, order, true, FPI_NONE);
1418 }
1419 
1420 static bool bulkfree_pcp_prepare(struct page *page)
1421 {
1422 	if (debug_pagealloc_enabled_static())
1423 		return check_free_page(page);
1424 	else
1425 		return false;
1426 }
1427 #else
1428 /*
1429  * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1430  * moving from pcp lists to free list in order to reduce overhead. With
1431  * debug_pagealloc enabled, they are checked also immediately when being freed
1432  * to the pcp lists.
1433  */
1434 static bool free_pcp_prepare(struct page *page, unsigned int order)
1435 {
1436 	if (debug_pagealloc_enabled_static())
1437 		return free_pages_prepare(page, order, true, FPI_NONE);
1438 	else
1439 		return free_pages_prepare(page, order, false, FPI_NONE);
1440 }
1441 
1442 static bool bulkfree_pcp_prepare(struct page *page)
1443 {
1444 	return check_free_page(page);
1445 }
1446 #endif /* CONFIG_DEBUG_VM */
1447 
1448 /*
1449  * Frees a number of pages from the PCP lists
1450  * Assumes all pages on list are in same zone.
1451  * count is the number of pages to free.
1452  */
1453 static void free_pcppages_bulk(struct zone *zone, int count,
1454 					struct per_cpu_pages *pcp,
1455 					int pindex)
1456 {
1457 	int min_pindex = 0;
1458 	int max_pindex = NR_PCP_LISTS - 1;
1459 	unsigned int order;
1460 	bool isolated_pageblocks;
1461 	struct page *page;
1462 
1463 	/*
1464 	 * Ensure proper count is passed which otherwise would stuck in the
1465 	 * below while (list_empty(list)) loop.
1466 	 */
1467 	count = min(pcp->count, count);
1468 
1469 	/* Ensure requested pindex is drained first. */
1470 	pindex = pindex - 1;
1471 
1472 	/*
1473 	 * local_lock_irq held so equivalent to spin_lock_irqsave for
1474 	 * both PREEMPT_RT and non-PREEMPT_RT configurations.
1475 	 */
1476 	spin_lock(&zone->lock);
1477 	isolated_pageblocks = has_isolate_pageblock(zone);
1478 
1479 	while (count > 0) {
1480 		struct list_head *list;
1481 		int nr_pages;
1482 
1483 		/* Remove pages from lists in a round-robin fashion. */
1484 		do {
1485 			if (++pindex > max_pindex)
1486 				pindex = min_pindex;
1487 			list = &pcp->lists[pindex];
1488 			if (!list_empty(list))
1489 				break;
1490 
1491 			if (pindex == max_pindex)
1492 				max_pindex--;
1493 			if (pindex == min_pindex)
1494 				min_pindex++;
1495 		} while (1);
1496 
1497 		order = pindex_to_order(pindex);
1498 		nr_pages = 1 << order;
1499 		BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH));
1500 		do {
1501 			int mt;
1502 
1503 			page = list_last_entry(list, struct page, lru);
1504 			mt = get_pcppage_migratetype(page);
1505 
1506 			/* must delete to avoid corrupting pcp list */
1507 			list_del(&page->lru);
1508 			count -= nr_pages;
1509 			pcp->count -= nr_pages;
1510 
1511 			if (bulkfree_pcp_prepare(page))
1512 				continue;
1513 
1514 			/* MIGRATE_ISOLATE page should not go to pcplists */
1515 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1516 			/* Pageblock could have been isolated meanwhile */
1517 			if (unlikely(isolated_pageblocks))
1518 				mt = get_pageblock_migratetype(page);
1519 
1520 			__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1521 			trace_mm_page_pcpu_drain(page, order, mt);
1522 		} while (count > 0 && !list_empty(list));
1523 	}
1524 
1525 	spin_unlock(&zone->lock);
1526 }
1527 
1528 static void free_one_page(struct zone *zone,
1529 				struct page *page, unsigned long pfn,
1530 				unsigned int order,
1531 				int migratetype, fpi_t fpi_flags)
1532 {
1533 	unsigned long flags;
1534 
1535 	spin_lock_irqsave(&zone->lock, flags);
1536 	if (unlikely(has_isolate_pageblock(zone) ||
1537 		is_migrate_isolate(migratetype))) {
1538 		migratetype = get_pfnblock_migratetype(page, pfn);
1539 	}
1540 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1541 	spin_unlock_irqrestore(&zone->lock, flags);
1542 }
1543 
1544 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1545 				unsigned long zone, int nid)
1546 {
1547 	mm_zero_struct_page(page);
1548 	set_page_links(page, zone, nid, pfn);
1549 	init_page_count(page);
1550 	page_mapcount_reset(page);
1551 	page_cpupid_reset_last(page);
1552 	page_kasan_tag_reset(page);
1553 
1554 	INIT_LIST_HEAD(&page->lru);
1555 #ifdef WANT_PAGE_VIRTUAL
1556 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1557 	if (!is_highmem_idx(zone))
1558 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1559 #endif
1560 }
1561 
1562 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1563 static void __meminit init_reserved_page(unsigned long pfn)
1564 {
1565 	pg_data_t *pgdat;
1566 	int nid, zid;
1567 
1568 	if (!early_page_uninitialised(pfn))
1569 		return;
1570 
1571 	nid = early_pfn_to_nid(pfn);
1572 	pgdat = NODE_DATA(nid);
1573 
1574 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1575 		struct zone *zone = &pgdat->node_zones[zid];
1576 
1577 		if (zone_spans_pfn(zone, pfn))
1578 			break;
1579 	}
1580 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1581 }
1582 #else
1583 static inline void init_reserved_page(unsigned long pfn)
1584 {
1585 }
1586 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1587 
1588 /*
1589  * Initialised pages do not have PageReserved set. This function is
1590  * called for each range allocated by the bootmem allocator and
1591  * marks the pages PageReserved. The remaining valid pages are later
1592  * sent to the buddy page allocator.
1593  */
1594 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1595 {
1596 	unsigned long start_pfn = PFN_DOWN(start);
1597 	unsigned long end_pfn = PFN_UP(end);
1598 
1599 	for (; start_pfn < end_pfn; start_pfn++) {
1600 		if (pfn_valid(start_pfn)) {
1601 			struct page *page = pfn_to_page(start_pfn);
1602 
1603 			init_reserved_page(start_pfn);
1604 
1605 			/* Avoid false-positive PageTail() */
1606 			INIT_LIST_HEAD(&page->lru);
1607 
1608 			/*
1609 			 * no need for atomic set_bit because the struct
1610 			 * page is not visible yet so nobody should
1611 			 * access it yet.
1612 			 */
1613 			__SetPageReserved(page);
1614 		}
1615 	}
1616 }
1617 
1618 static void __free_pages_ok(struct page *page, unsigned int order,
1619 			    fpi_t fpi_flags)
1620 {
1621 	unsigned long flags;
1622 	int migratetype;
1623 	unsigned long pfn = page_to_pfn(page);
1624 	struct zone *zone = page_zone(page);
1625 
1626 	if (!free_pages_prepare(page, order, true, fpi_flags))
1627 		return;
1628 
1629 	migratetype = get_pfnblock_migratetype(page, pfn);
1630 
1631 	spin_lock_irqsave(&zone->lock, flags);
1632 	if (unlikely(has_isolate_pageblock(zone) ||
1633 		is_migrate_isolate(migratetype))) {
1634 		migratetype = get_pfnblock_migratetype(page, pfn);
1635 	}
1636 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1637 	spin_unlock_irqrestore(&zone->lock, flags);
1638 
1639 	__count_vm_events(PGFREE, 1 << order);
1640 }
1641 
1642 void __free_pages_core(struct page *page, unsigned int order)
1643 {
1644 	unsigned int nr_pages = 1 << order;
1645 	struct page *p = page;
1646 	unsigned int loop;
1647 
1648 	/*
1649 	 * When initializing the memmap, __init_single_page() sets the refcount
1650 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1651 	 * refcount of all involved pages to 0.
1652 	 */
1653 	prefetchw(p);
1654 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1655 		prefetchw(p + 1);
1656 		__ClearPageReserved(p);
1657 		set_page_count(p, 0);
1658 	}
1659 	__ClearPageReserved(p);
1660 	set_page_count(p, 0);
1661 
1662 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1663 
1664 	/*
1665 	 * Bypass PCP and place fresh pages right to the tail, primarily
1666 	 * relevant for memory onlining.
1667 	 */
1668 	__free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1669 }
1670 
1671 #ifdef CONFIG_NUMA
1672 
1673 /*
1674  * During memory init memblocks map pfns to nids. The search is expensive and
1675  * this caches recent lookups. The implementation of __early_pfn_to_nid
1676  * treats start/end as pfns.
1677  */
1678 struct mminit_pfnnid_cache {
1679 	unsigned long last_start;
1680 	unsigned long last_end;
1681 	int last_nid;
1682 };
1683 
1684 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1685 
1686 /*
1687  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1688  */
1689 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1690 					struct mminit_pfnnid_cache *state)
1691 {
1692 	unsigned long start_pfn, end_pfn;
1693 	int nid;
1694 
1695 	if (state->last_start <= pfn && pfn < state->last_end)
1696 		return state->last_nid;
1697 
1698 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1699 	if (nid != NUMA_NO_NODE) {
1700 		state->last_start = start_pfn;
1701 		state->last_end = end_pfn;
1702 		state->last_nid = nid;
1703 	}
1704 
1705 	return nid;
1706 }
1707 
1708 int __meminit early_pfn_to_nid(unsigned long pfn)
1709 {
1710 	static DEFINE_SPINLOCK(early_pfn_lock);
1711 	int nid;
1712 
1713 	spin_lock(&early_pfn_lock);
1714 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1715 	if (nid < 0)
1716 		nid = first_online_node;
1717 	spin_unlock(&early_pfn_lock);
1718 
1719 	return nid;
1720 }
1721 #endif /* CONFIG_NUMA */
1722 
1723 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1724 							unsigned int order)
1725 {
1726 	if (early_page_uninitialised(pfn))
1727 		return;
1728 	__free_pages_core(page, order);
1729 }
1730 
1731 /*
1732  * Check that the whole (or subset of) a pageblock given by the interval of
1733  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1734  * with the migration of free compaction scanner.
1735  *
1736  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1737  *
1738  * It's possible on some configurations to have a setup like node0 node1 node0
1739  * i.e. it's possible that all pages within a zones range of pages do not
1740  * belong to a single zone. We assume that a border between node0 and node1
1741  * can occur within a single pageblock, but not a node0 node1 node0
1742  * interleaving within a single pageblock. It is therefore sufficient to check
1743  * the first and last page of a pageblock and avoid checking each individual
1744  * page in a pageblock.
1745  */
1746 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1747 				     unsigned long end_pfn, struct zone *zone)
1748 {
1749 	struct page *start_page;
1750 	struct page *end_page;
1751 
1752 	/* end_pfn is one past the range we are checking */
1753 	end_pfn--;
1754 
1755 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1756 		return NULL;
1757 
1758 	start_page = pfn_to_online_page(start_pfn);
1759 	if (!start_page)
1760 		return NULL;
1761 
1762 	if (page_zone(start_page) != zone)
1763 		return NULL;
1764 
1765 	end_page = pfn_to_page(end_pfn);
1766 
1767 	/* This gives a shorter code than deriving page_zone(end_page) */
1768 	if (page_zone_id(start_page) != page_zone_id(end_page))
1769 		return NULL;
1770 
1771 	return start_page;
1772 }
1773 
1774 void set_zone_contiguous(struct zone *zone)
1775 {
1776 	unsigned long block_start_pfn = zone->zone_start_pfn;
1777 	unsigned long block_end_pfn;
1778 
1779 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1780 	for (; block_start_pfn < zone_end_pfn(zone);
1781 			block_start_pfn = block_end_pfn,
1782 			 block_end_pfn += pageblock_nr_pages) {
1783 
1784 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1785 
1786 		if (!__pageblock_pfn_to_page(block_start_pfn,
1787 					     block_end_pfn, zone))
1788 			return;
1789 		cond_resched();
1790 	}
1791 
1792 	/* We confirm that there is no hole */
1793 	zone->contiguous = true;
1794 }
1795 
1796 void clear_zone_contiguous(struct zone *zone)
1797 {
1798 	zone->contiguous = false;
1799 }
1800 
1801 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1802 static void __init deferred_free_range(unsigned long pfn,
1803 				       unsigned long nr_pages)
1804 {
1805 	struct page *page;
1806 	unsigned long i;
1807 
1808 	if (!nr_pages)
1809 		return;
1810 
1811 	page = pfn_to_page(pfn);
1812 
1813 	/* Free a large naturally-aligned chunk if possible */
1814 	if (nr_pages == pageblock_nr_pages &&
1815 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1816 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1817 		__free_pages_core(page, pageblock_order);
1818 		return;
1819 	}
1820 
1821 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1822 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1823 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1824 		__free_pages_core(page, 0);
1825 	}
1826 }
1827 
1828 /* Completion tracking for deferred_init_memmap() threads */
1829 static atomic_t pgdat_init_n_undone __initdata;
1830 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1831 
1832 static inline void __init pgdat_init_report_one_done(void)
1833 {
1834 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1835 		complete(&pgdat_init_all_done_comp);
1836 }
1837 
1838 /*
1839  * Returns true if page needs to be initialized or freed to buddy allocator.
1840  *
1841  * First we check if pfn is valid on architectures where it is possible to have
1842  * holes within pageblock_nr_pages. On systems where it is not possible, this
1843  * function is optimized out.
1844  *
1845  * Then, we check if a current large page is valid by only checking the validity
1846  * of the head pfn.
1847  */
1848 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1849 {
1850 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1851 		return false;
1852 	return true;
1853 }
1854 
1855 /*
1856  * Free pages to buddy allocator. Try to free aligned pages in
1857  * pageblock_nr_pages sizes.
1858  */
1859 static void __init deferred_free_pages(unsigned long pfn,
1860 				       unsigned long end_pfn)
1861 {
1862 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1863 	unsigned long nr_free = 0;
1864 
1865 	for (; pfn < end_pfn; pfn++) {
1866 		if (!deferred_pfn_valid(pfn)) {
1867 			deferred_free_range(pfn - nr_free, nr_free);
1868 			nr_free = 0;
1869 		} else if (!(pfn & nr_pgmask)) {
1870 			deferred_free_range(pfn - nr_free, nr_free);
1871 			nr_free = 1;
1872 		} else {
1873 			nr_free++;
1874 		}
1875 	}
1876 	/* Free the last block of pages to allocator */
1877 	deferred_free_range(pfn - nr_free, nr_free);
1878 }
1879 
1880 /*
1881  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1882  * by performing it only once every pageblock_nr_pages.
1883  * Return number of pages initialized.
1884  */
1885 static unsigned long  __init deferred_init_pages(struct zone *zone,
1886 						 unsigned long pfn,
1887 						 unsigned long end_pfn)
1888 {
1889 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1890 	int nid = zone_to_nid(zone);
1891 	unsigned long nr_pages = 0;
1892 	int zid = zone_idx(zone);
1893 	struct page *page = NULL;
1894 
1895 	for (; pfn < end_pfn; pfn++) {
1896 		if (!deferred_pfn_valid(pfn)) {
1897 			page = NULL;
1898 			continue;
1899 		} else if (!page || !(pfn & nr_pgmask)) {
1900 			page = pfn_to_page(pfn);
1901 		} else {
1902 			page++;
1903 		}
1904 		__init_single_page(page, pfn, zid, nid);
1905 		nr_pages++;
1906 	}
1907 	return (nr_pages);
1908 }
1909 
1910 /*
1911  * This function is meant to pre-load the iterator for the zone init.
1912  * Specifically it walks through the ranges until we are caught up to the
1913  * first_init_pfn value and exits there. If we never encounter the value we
1914  * return false indicating there are no valid ranges left.
1915  */
1916 static bool __init
1917 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1918 				    unsigned long *spfn, unsigned long *epfn,
1919 				    unsigned long first_init_pfn)
1920 {
1921 	u64 j;
1922 
1923 	/*
1924 	 * Start out by walking through the ranges in this zone that have
1925 	 * already been initialized. We don't need to do anything with them
1926 	 * so we just need to flush them out of the system.
1927 	 */
1928 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1929 		if (*epfn <= first_init_pfn)
1930 			continue;
1931 		if (*spfn < first_init_pfn)
1932 			*spfn = first_init_pfn;
1933 		*i = j;
1934 		return true;
1935 	}
1936 
1937 	return false;
1938 }
1939 
1940 /*
1941  * Initialize and free pages. We do it in two loops: first we initialize
1942  * struct page, then free to buddy allocator, because while we are
1943  * freeing pages we can access pages that are ahead (computing buddy
1944  * page in __free_one_page()).
1945  *
1946  * In order to try and keep some memory in the cache we have the loop
1947  * broken along max page order boundaries. This way we will not cause
1948  * any issues with the buddy page computation.
1949  */
1950 static unsigned long __init
1951 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1952 		       unsigned long *end_pfn)
1953 {
1954 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1955 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
1956 	unsigned long nr_pages = 0;
1957 	u64 j = *i;
1958 
1959 	/* First we loop through and initialize the page values */
1960 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1961 		unsigned long t;
1962 
1963 		if (mo_pfn <= *start_pfn)
1964 			break;
1965 
1966 		t = min(mo_pfn, *end_pfn);
1967 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
1968 
1969 		if (mo_pfn < *end_pfn) {
1970 			*start_pfn = mo_pfn;
1971 			break;
1972 		}
1973 	}
1974 
1975 	/* Reset values and now loop through freeing pages as needed */
1976 	swap(j, *i);
1977 
1978 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1979 		unsigned long t;
1980 
1981 		if (mo_pfn <= spfn)
1982 			break;
1983 
1984 		t = min(mo_pfn, epfn);
1985 		deferred_free_pages(spfn, t);
1986 
1987 		if (mo_pfn <= epfn)
1988 			break;
1989 	}
1990 
1991 	return nr_pages;
1992 }
1993 
1994 static void __init
1995 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1996 			   void *arg)
1997 {
1998 	unsigned long spfn, epfn;
1999 	struct zone *zone = arg;
2000 	u64 i;
2001 
2002 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2003 
2004 	/*
2005 	 * Initialize and free pages in MAX_ORDER sized increments so that we
2006 	 * can avoid introducing any issues with the buddy allocator.
2007 	 */
2008 	while (spfn < end_pfn) {
2009 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
2010 		cond_resched();
2011 	}
2012 }
2013 
2014 /* An arch may override for more concurrency. */
2015 __weak int __init
2016 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2017 {
2018 	return 1;
2019 }
2020 
2021 /* Initialise remaining memory on a node */
2022 static int __init deferred_init_memmap(void *data)
2023 {
2024 	pg_data_t *pgdat = data;
2025 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2026 	unsigned long spfn = 0, epfn = 0;
2027 	unsigned long first_init_pfn, flags;
2028 	unsigned long start = jiffies;
2029 	struct zone *zone;
2030 	int zid, max_threads;
2031 	u64 i;
2032 
2033 	/* Bind memory initialisation thread to a local node if possible */
2034 	if (!cpumask_empty(cpumask))
2035 		set_cpus_allowed_ptr(current, cpumask);
2036 
2037 	pgdat_resize_lock(pgdat, &flags);
2038 	first_init_pfn = pgdat->first_deferred_pfn;
2039 	if (first_init_pfn == ULONG_MAX) {
2040 		pgdat_resize_unlock(pgdat, &flags);
2041 		pgdat_init_report_one_done();
2042 		return 0;
2043 	}
2044 
2045 	/* Sanity check boundaries */
2046 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2047 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2048 	pgdat->first_deferred_pfn = ULONG_MAX;
2049 
2050 	/*
2051 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
2052 	 * interrupt thread must allocate this early in boot, zone must be
2053 	 * pre-grown prior to start of deferred page initialization.
2054 	 */
2055 	pgdat_resize_unlock(pgdat, &flags);
2056 
2057 	/* Only the highest zone is deferred so find it */
2058 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2059 		zone = pgdat->node_zones + zid;
2060 		if (first_init_pfn < zone_end_pfn(zone))
2061 			break;
2062 	}
2063 
2064 	/* If the zone is empty somebody else may have cleared out the zone */
2065 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2066 						 first_init_pfn))
2067 		goto zone_empty;
2068 
2069 	max_threads = deferred_page_init_max_threads(cpumask);
2070 
2071 	while (spfn < epfn) {
2072 		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2073 		struct padata_mt_job job = {
2074 			.thread_fn   = deferred_init_memmap_chunk,
2075 			.fn_arg      = zone,
2076 			.start       = spfn,
2077 			.size        = epfn_align - spfn,
2078 			.align       = PAGES_PER_SECTION,
2079 			.min_chunk   = PAGES_PER_SECTION,
2080 			.max_threads = max_threads,
2081 		};
2082 
2083 		padata_do_multithreaded(&job);
2084 		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2085 						    epfn_align);
2086 	}
2087 zone_empty:
2088 	/* Sanity check that the next zone really is unpopulated */
2089 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2090 
2091 	pr_info("node %d deferred pages initialised in %ums\n",
2092 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
2093 
2094 	pgdat_init_report_one_done();
2095 	return 0;
2096 }
2097 
2098 /*
2099  * If this zone has deferred pages, try to grow it by initializing enough
2100  * deferred pages to satisfy the allocation specified by order, rounded up to
2101  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2102  * of SECTION_SIZE bytes by initializing struct pages in increments of
2103  * PAGES_PER_SECTION * sizeof(struct page) bytes.
2104  *
2105  * Return true when zone was grown, otherwise return false. We return true even
2106  * when we grow less than requested, to let the caller decide if there are
2107  * enough pages to satisfy the allocation.
2108  *
2109  * Note: We use noinline because this function is needed only during boot, and
2110  * it is called from a __ref function _deferred_grow_zone. This way we are
2111  * making sure that it is not inlined into permanent text section.
2112  */
2113 static noinline bool __init
2114 deferred_grow_zone(struct zone *zone, unsigned int order)
2115 {
2116 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2117 	pg_data_t *pgdat = zone->zone_pgdat;
2118 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2119 	unsigned long spfn, epfn, flags;
2120 	unsigned long nr_pages = 0;
2121 	u64 i;
2122 
2123 	/* Only the last zone may have deferred pages */
2124 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2125 		return false;
2126 
2127 	pgdat_resize_lock(pgdat, &flags);
2128 
2129 	/*
2130 	 * If someone grew this zone while we were waiting for spinlock, return
2131 	 * true, as there might be enough pages already.
2132 	 */
2133 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2134 		pgdat_resize_unlock(pgdat, &flags);
2135 		return true;
2136 	}
2137 
2138 	/* If the zone is empty somebody else may have cleared out the zone */
2139 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2140 						 first_deferred_pfn)) {
2141 		pgdat->first_deferred_pfn = ULONG_MAX;
2142 		pgdat_resize_unlock(pgdat, &flags);
2143 		/* Retry only once. */
2144 		return first_deferred_pfn != ULONG_MAX;
2145 	}
2146 
2147 	/*
2148 	 * Initialize and free pages in MAX_ORDER sized increments so
2149 	 * that we can avoid introducing any issues with the buddy
2150 	 * allocator.
2151 	 */
2152 	while (spfn < epfn) {
2153 		/* update our first deferred PFN for this section */
2154 		first_deferred_pfn = spfn;
2155 
2156 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2157 		touch_nmi_watchdog();
2158 
2159 		/* We should only stop along section boundaries */
2160 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2161 			continue;
2162 
2163 		/* If our quota has been met we can stop here */
2164 		if (nr_pages >= nr_pages_needed)
2165 			break;
2166 	}
2167 
2168 	pgdat->first_deferred_pfn = spfn;
2169 	pgdat_resize_unlock(pgdat, &flags);
2170 
2171 	return nr_pages > 0;
2172 }
2173 
2174 /*
2175  * deferred_grow_zone() is __init, but it is called from
2176  * get_page_from_freelist() during early boot until deferred_pages permanently
2177  * disables this call. This is why we have refdata wrapper to avoid warning,
2178  * and to ensure that the function body gets unloaded.
2179  */
2180 static bool __ref
2181 _deferred_grow_zone(struct zone *zone, unsigned int order)
2182 {
2183 	return deferred_grow_zone(zone, order);
2184 }
2185 
2186 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2187 
2188 void __init page_alloc_init_late(void)
2189 {
2190 	struct zone *zone;
2191 	int nid;
2192 
2193 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2194 
2195 	/* There will be num_node_state(N_MEMORY) threads */
2196 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2197 	for_each_node_state(nid, N_MEMORY) {
2198 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2199 	}
2200 
2201 	/* Block until all are initialised */
2202 	wait_for_completion(&pgdat_init_all_done_comp);
2203 
2204 	/*
2205 	 * We initialized the rest of the deferred pages.  Permanently disable
2206 	 * on-demand struct page initialization.
2207 	 */
2208 	static_branch_disable(&deferred_pages);
2209 
2210 	/* Reinit limits that are based on free pages after the kernel is up */
2211 	files_maxfiles_init();
2212 #endif
2213 
2214 	buffer_init();
2215 
2216 	/* Discard memblock private memory */
2217 	memblock_discard();
2218 
2219 	for_each_node_state(nid, N_MEMORY)
2220 		shuffle_free_memory(NODE_DATA(nid));
2221 
2222 	for_each_populated_zone(zone)
2223 		set_zone_contiguous(zone);
2224 }
2225 
2226 #ifdef CONFIG_CMA
2227 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2228 void __init init_cma_reserved_pageblock(struct page *page)
2229 {
2230 	unsigned i = pageblock_nr_pages;
2231 	struct page *p = page;
2232 
2233 	do {
2234 		__ClearPageReserved(p);
2235 		set_page_count(p, 0);
2236 	} while (++p, --i);
2237 
2238 	set_pageblock_migratetype(page, MIGRATE_CMA);
2239 	set_page_refcounted(page);
2240 	__free_pages(page, pageblock_order);
2241 
2242 	adjust_managed_page_count(page, pageblock_nr_pages);
2243 	page_zone(page)->cma_pages += pageblock_nr_pages;
2244 }
2245 #endif
2246 
2247 /*
2248  * The order of subdivision here is critical for the IO subsystem.
2249  * Please do not alter this order without good reasons and regression
2250  * testing. Specifically, as large blocks of memory are subdivided,
2251  * the order in which smaller blocks are delivered depends on the order
2252  * they're subdivided in this function. This is the primary factor
2253  * influencing the order in which pages are delivered to the IO
2254  * subsystem according to empirical testing, and this is also justified
2255  * by considering the behavior of a buddy system containing a single
2256  * large block of memory acted on by a series of small allocations.
2257  * This behavior is a critical factor in sglist merging's success.
2258  *
2259  * -- nyc
2260  */
2261 static inline void expand(struct zone *zone, struct page *page,
2262 	int low, int high, int migratetype)
2263 {
2264 	unsigned long size = 1 << high;
2265 
2266 	while (high > low) {
2267 		high--;
2268 		size >>= 1;
2269 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2270 
2271 		/*
2272 		 * Mark as guard pages (or page), that will allow to
2273 		 * merge back to allocator when buddy will be freed.
2274 		 * Corresponding page table entries will not be touched,
2275 		 * pages will stay not present in virtual address space
2276 		 */
2277 		if (set_page_guard(zone, &page[size], high, migratetype))
2278 			continue;
2279 
2280 		add_to_free_list(&page[size], zone, high, migratetype);
2281 		set_buddy_order(&page[size], high);
2282 	}
2283 }
2284 
2285 static void check_new_page_bad(struct page *page)
2286 {
2287 	if (unlikely(page->flags & __PG_HWPOISON)) {
2288 		/* Don't complain about hwpoisoned pages */
2289 		page_mapcount_reset(page); /* remove PageBuddy */
2290 		return;
2291 	}
2292 
2293 	bad_page(page,
2294 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2295 }
2296 
2297 /*
2298  * This page is about to be returned from the page allocator
2299  */
2300 static inline int check_new_page(struct page *page)
2301 {
2302 	if (likely(page_expected_state(page,
2303 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2304 		return 0;
2305 
2306 	check_new_page_bad(page);
2307 	return 1;
2308 }
2309 
2310 static bool check_new_pages(struct page *page, unsigned int order)
2311 {
2312 	int i;
2313 	for (i = 0; i < (1 << order); i++) {
2314 		struct page *p = page + i;
2315 
2316 		if (unlikely(check_new_page(p)))
2317 			return true;
2318 	}
2319 
2320 	return false;
2321 }
2322 
2323 #ifdef CONFIG_DEBUG_VM
2324 /*
2325  * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2326  * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2327  * also checked when pcp lists are refilled from the free lists.
2328  */
2329 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2330 {
2331 	if (debug_pagealloc_enabled_static())
2332 		return check_new_pages(page, order);
2333 	else
2334 		return false;
2335 }
2336 
2337 static inline bool check_new_pcp(struct page *page, unsigned int order)
2338 {
2339 	return check_new_pages(page, order);
2340 }
2341 #else
2342 /*
2343  * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2344  * when pcp lists are being refilled from the free lists. With debug_pagealloc
2345  * enabled, they are also checked when being allocated from the pcp lists.
2346  */
2347 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2348 {
2349 	return check_new_pages(page, order);
2350 }
2351 static inline bool check_new_pcp(struct page *page, unsigned int order)
2352 {
2353 	if (debug_pagealloc_enabled_static())
2354 		return check_new_pages(page, order);
2355 	else
2356 		return false;
2357 }
2358 #endif /* CONFIG_DEBUG_VM */
2359 
2360 static inline bool should_skip_kasan_unpoison(gfp_t flags, bool init_tags)
2361 {
2362 	/* Don't skip if a software KASAN mode is enabled. */
2363 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
2364 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
2365 		return false;
2366 
2367 	/* Skip, if hardware tag-based KASAN is not enabled. */
2368 	if (!kasan_hw_tags_enabled())
2369 		return true;
2370 
2371 	/*
2372 	 * With hardware tag-based KASAN enabled, skip if either:
2373 	 *
2374 	 * 1. Memory tags have already been cleared via tag_clear_highpage().
2375 	 * 2. Skipping has been requested via __GFP_SKIP_KASAN_UNPOISON.
2376 	 */
2377 	return init_tags || (flags & __GFP_SKIP_KASAN_UNPOISON);
2378 }
2379 
2380 static inline bool should_skip_init(gfp_t flags)
2381 {
2382 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
2383 	if (!kasan_hw_tags_enabled())
2384 		return false;
2385 
2386 	/* For hardware tag-based KASAN, skip if requested. */
2387 	return (flags & __GFP_SKIP_ZERO);
2388 }
2389 
2390 inline void post_alloc_hook(struct page *page, unsigned int order,
2391 				gfp_t gfp_flags)
2392 {
2393 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
2394 			!should_skip_init(gfp_flags);
2395 	bool init_tags = init && (gfp_flags & __GFP_ZEROTAGS);
2396 
2397 	set_page_private(page, 0);
2398 	set_page_refcounted(page);
2399 
2400 	arch_alloc_page(page, order);
2401 	debug_pagealloc_map_pages(page, 1 << order);
2402 
2403 	/*
2404 	 * Page unpoisoning must happen before memory initialization.
2405 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2406 	 * allocations and the page unpoisoning code will complain.
2407 	 */
2408 	kernel_unpoison_pages(page, 1 << order);
2409 
2410 	/*
2411 	 * As memory initialization might be integrated into KASAN,
2412 	 * KASAN unpoisoning and memory initializion code must be
2413 	 * kept together to avoid discrepancies in behavior.
2414 	 */
2415 
2416 	/*
2417 	 * If memory tags should be zeroed (which happens only when memory
2418 	 * should be initialized as well).
2419 	 */
2420 	if (init_tags) {
2421 		int i;
2422 
2423 		/* Initialize both memory and tags. */
2424 		for (i = 0; i != 1 << order; ++i)
2425 			tag_clear_highpage(page + i);
2426 
2427 		/* Note that memory is already initialized by the loop above. */
2428 		init = false;
2429 	}
2430 	if (!should_skip_kasan_unpoison(gfp_flags, init_tags)) {
2431 		/* Unpoison shadow memory or set memory tags. */
2432 		kasan_unpoison_pages(page, order, init);
2433 
2434 		/* Note that memory is already initialized by KASAN. */
2435 		if (kasan_has_integrated_init())
2436 			init = false;
2437 	}
2438 	/* If memory is still not initialized, do it now. */
2439 	if (init)
2440 		kernel_init_pages(page, 1 << order);
2441 	/* Propagate __GFP_SKIP_KASAN_POISON to page flags. */
2442 	if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON))
2443 		SetPageSkipKASanPoison(page);
2444 
2445 	set_page_owner(page, order, gfp_flags);
2446 	page_table_check_alloc(page, order);
2447 }
2448 
2449 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2450 							unsigned int alloc_flags)
2451 {
2452 	post_alloc_hook(page, order, gfp_flags);
2453 
2454 	if (order && (gfp_flags & __GFP_COMP))
2455 		prep_compound_page(page, order);
2456 
2457 	/*
2458 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2459 	 * allocate the page. The expectation is that the caller is taking
2460 	 * steps that will free more memory. The caller should avoid the page
2461 	 * being used for !PFMEMALLOC purposes.
2462 	 */
2463 	if (alloc_flags & ALLOC_NO_WATERMARKS)
2464 		set_page_pfmemalloc(page);
2465 	else
2466 		clear_page_pfmemalloc(page);
2467 }
2468 
2469 /*
2470  * Go through the free lists for the given migratetype and remove
2471  * the smallest available page from the freelists
2472  */
2473 static __always_inline
2474 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2475 						int migratetype)
2476 {
2477 	unsigned int current_order;
2478 	struct free_area *area;
2479 	struct page *page;
2480 
2481 	/* Find a page of the appropriate size in the preferred list */
2482 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2483 		area = &(zone->free_area[current_order]);
2484 		page = get_page_from_free_area(area, migratetype);
2485 		if (!page)
2486 			continue;
2487 		del_page_from_free_list(page, zone, current_order);
2488 		expand(zone, page, order, current_order, migratetype);
2489 		set_pcppage_migratetype(page, migratetype);
2490 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
2491 				pcp_allowed_order(order) &&
2492 				migratetype < MIGRATE_PCPTYPES);
2493 		return page;
2494 	}
2495 
2496 	return NULL;
2497 }
2498 
2499 
2500 /*
2501  * This array describes the order lists are fallen back to when
2502  * the free lists for the desirable migrate type are depleted
2503  *
2504  * The other migratetypes do not have fallbacks.
2505  */
2506 static int fallbacks[MIGRATE_TYPES][3] = {
2507 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2508 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2509 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2510 };
2511 
2512 #ifdef CONFIG_CMA
2513 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2514 					unsigned int order)
2515 {
2516 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2517 }
2518 #else
2519 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2520 					unsigned int order) { return NULL; }
2521 #endif
2522 
2523 /*
2524  * Move the free pages in a range to the freelist tail of the requested type.
2525  * Note that start_page and end_pages are not aligned on a pageblock
2526  * boundary. If alignment is required, use move_freepages_block()
2527  */
2528 static int move_freepages(struct zone *zone,
2529 			  unsigned long start_pfn, unsigned long end_pfn,
2530 			  int migratetype, int *num_movable)
2531 {
2532 	struct page *page;
2533 	unsigned long pfn;
2534 	unsigned int order;
2535 	int pages_moved = 0;
2536 
2537 	for (pfn = start_pfn; pfn <= end_pfn;) {
2538 		page = pfn_to_page(pfn);
2539 		if (!PageBuddy(page)) {
2540 			/*
2541 			 * We assume that pages that could be isolated for
2542 			 * migration are movable. But we don't actually try
2543 			 * isolating, as that would be expensive.
2544 			 */
2545 			if (num_movable &&
2546 					(PageLRU(page) || __PageMovable(page)))
2547 				(*num_movable)++;
2548 			pfn++;
2549 			continue;
2550 		}
2551 
2552 		/* Make sure we are not inadvertently changing nodes */
2553 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2554 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2555 
2556 		order = buddy_order(page);
2557 		move_to_free_list(page, zone, order, migratetype);
2558 		pfn += 1 << order;
2559 		pages_moved += 1 << order;
2560 	}
2561 
2562 	return pages_moved;
2563 }
2564 
2565 int move_freepages_block(struct zone *zone, struct page *page,
2566 				int migratetype, int *num_movable)
2567 {
2568 	unsigned long start_pfn, end_pfn, pfn;
2569 
2570 	if (num_movable)
2571 		*num_movable = 0;
2572 
2573 	pfn = page_to_pfn(page);
2574 	start_pfn = pfn & ~(pageblock_nr_pages - 1);
2575 	end_pfn = start_pfn + pageblock_nr_pages - 1;
2576 
2577 	/* Do not cross zone boundaries */
2578 	if (!zone_spans_pfn(zone, start_pfn))
2579 		start_pfn = pfn;
2580 	if (!zone_spans_pfn(zone, end_pfn))
2581 		return 0;
2582 
2583 	return move_freepages(zone, start_pfn, end_pfn, migratetype,
2584 								num_movable);
2585 }
2586 
2587 static void change_pageblock_range(struct page *pageblock_page,
2588 					int start_order, int migratetype)
2589 {
2590 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2591 
2592 	while (nr_pageblocks--) {
2593 		set_pageblock_migratetype(pageblock_page, migratetype);
2594 		pageblock_page += pageblock_nr_pages;
2595 	}
2596 }
2597 
2598 /*
2599  * When we are falling back to another migratetype during allocation, try to
2600  * steal extra free pages from the same pageblocks to satisfy further
2601  * allocations, instead of polluting multiple pageblocks.
2602  *
2603  * If we are stealing a relatively large buddy page, it is likely there will
2604  * be more free pages in the pageblock, so try to steal them all. For
2605  * reclaimable and unmovable allocations, we steal regardless of page size,
2606  * as fragmentation caused by those allocations polluting movable pageblocks
2607  * is worse than movable allocations stealing from unmovable and reclaimable
2608  * pageblocks.
2609  */
2610 static bool can_steal_fallback(unsigned int order, int start_mt)
2611 {
2612 	/*
2613 	 * Leaving this order check is intended, although there is
2614 	 * relaxed order check in next check. The reason is that
2615 	 * we can actually steal whole pageblock if this condition met,
2616 	 * but, below check doesn't guarantee it and that is just heuristic
2617 	 * so could be changed anytime.
2618 	 */
2619 	if (order >= pageblock_order)
2620 		return true;
2621 
2622 	if (order >= pageblock_order / 2 ||
2623 		start_mt == MIGRATE_RECLAIMABLE ||
2624 		start_mt == MIGRATE_UNMOVABLE ||
2625 		page_group_by_mobility_disabled)
2626 		return true;
2627 
2628 	return false;
2629 }
2630 
2631 static inline bool boost_watermark(struct zone *zone)
2632 {
2633 	unsigned long max_boost;
2634 
2635 	if (!watermark_boost_factor)
2636 		return false;
2637 	/*
2638 	 * Don't bother in zones that are unlikely to produce results.
2639 	 * On small machines, including kdump capture kernels running
2640 	 * in a small area, boosting the watermark can cause an out of
2641 	 * memory situation immediately.
2642 	 */
2643 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2644 		return false;
2645 
2646 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2647 			watermark_boost_factor, 10000);
2648 
2649 	/*
2650 	 * high watermark may be uninitialised if fragmentation occurs
2651 	 * very early in boot so do not boost. We do not fall
2652 	 * through and boost by pageblock_nr_pages as failing
2653 	 * allocations that early means that reclaim is not going
2654 	 * to help and it may even be impossible to reclaim the
2655 	 * boosted watermark resulting in a hang.
2656 	 */
2657 	if (!max_boost)
2658 		return false;
2659 
2660 	max_boost = max(pageblock_nr_pages, max_boost);
2661 
2662 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2663 		max_boost);
2664 
2665 	return true;
2666 }
2667 
2668 /*
2669  * This function implements actual steal behaviour. If order is large enough,
2670  * we can steal whole pageblock. If not, we first move freepages in this
2671  * pageblock to our migratetype and determine how many already-allocated pages
2672  * are there in the pageblock with a compatible migratetype. If at least half
2673  * of pages are free or compatible, we can change migratetype of the pageblock
2674  * itself, so pages freed in the future will be put on the correct free list.
2675  */
2676 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2677 		unsigned int alloc_flags, int start_type, bool whole_block)
2678 {
2679 	unsigned int current_order = buddy_order(page);
2680 	int free_pages, movable_pages, alike_pages;
2681 	int old_block_type;
2682 
2683 	old_block_type = get_pageblock_migratetype(page);
2684 
2685 	/*
2686 	 * This can happen due to races and we want to prevent broken
2687 	 * highatomic accounting.
2688 	 */
2689 	if (is_migrate_highatomic(old_block_type))
2690 		goto single_page;
2691 
2692 	/* Take ownership for orders >= pageblock_order */
2693 	if (current_order >= pageblock_order) {
2694 		change_pageblock_range(page, current_order, start_type);
2695 		goto single_page;
2696 	}
2697 
2698 	/*
2699 	 * Boost watermarks to increase reclaim pressure to reduce the
2700 	 * likelihood of future fallbacks. Wake kswapd now as the node
2701 	 * may be balanced overall and kswapd will not wake naturally.
2702 	 */
2703 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2704 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2705 
2706 	/* We are not allowed to try stealing from the whole block */
2707 	if (!whole_block)
2708 		goto single_page;
2709 
2710 	free_pages = move_freepages_block(zone, page, start_type,
2711 						&movable_pages);
2712 	/*
2713 	 * Determine how many pages are compatible with our allocation.
2714 	 * For movable allocation, it's the number of movable pages which
2715 	 * we just obtained. For other types it's a bit more tricky.
2716 	 */
2717 	if (start_type == MIGRATE_MOVABLE) {
2718 		alike_pages = movable_pages;
2719 	} else {
2720 		/*
2721 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2722 		 * to MOVABLE pageblock, consider all non-movable pages as
2723 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2724 		 * vice versa, be conservative since we can't distinguish the
2725 		 * exact migratetype of non-movable pages.
2726 		 */
2727 		if (old_block_type == MIGRATE_MOVABLE)
2728 			alike_pages = pageblock_nr_pages
2729 						- (free_pages + movable_pages);
2730 		else
2731 			alike_pages = 0;
2732 	}
2733 
2734 	/* moving whole block can fail due to zone boundary conditions */
2735 	if (!free_pages)
2736 		goto single_page;
2737 
2738 	/*
2739 	 * If a sufficient number of pages in the block are either free or of
2740 	 * comparable migratability as our allocation, claim the whole block.
2741 	 */
2742 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2743 			page_group_by_mobility_disabled)
2744 		set_pageblock_migratetype(page, start_type);
2745 
2746 	return;
2747 
2748 single_page:
2749 	move_to_free_list(page, zone, current_order, start_type);
2750 }
2751 
2752 /*
2753  * Check whether there is a suitable fallback freepage with requested order.
2754  * If only_stealable is true, this function returns fallback_mt only if
2755  * we can steal other freepages all together. This would help to reduce
2756  * fragmentation due to mixed migratetype pages in one pageblock.
2757  */
2758 int find_suitable_fallback(struct free_area *area, unsigned int order,
2759 			int migratetype, bool only_stealable, bool *can_steal)
2760 {
2761 	int i;
2762 	int fallback_mt;
2763 
2764 	if (area->nr_free == 0)
2765 		return -1;
2766 
2767 	*can_steal = false;
2768 	for (i = 0;; i++) {
2769 		fallback_mt = fallbacks[migratetype][i];
2770 		if (fallback_mt == MIGRATE_TYPES)
2771 			break;
2772 
2773 		if (free_area_empty(area, fallback_mt))
2774 			continue;
2775 
2776 		if (can_steal_fallback(order, migratetype))
2777 			*can_steal = true;
2778 
2779 		if (!only_stealable)
2780 			return fallback_mt;
2781 
2782 		if (*can_steal)
2783 			return fallback_mt;
2784 	}
2785 
2786 	return -1;
2787 }
2788 
2789 /*
2790  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2791  * there are no empty page blocks that contain a page with a suitable order
2792  */
2793 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2794 				unsigned int alloc_order)
2795 {
2796 	int mt;
2797 	unsigned long max_managed, flags;
2798 
2799 	/*
2800 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2801 	 * Check is race-prone but harmless.
2802 	 */
2803 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2804 	if (zone->nr_reserved_highatomic >= max_managed)
2805 		return;
2806 
2807 	spin_lock_irqsave(&zone->lock, flags);
2808 
2809 	/* Recheck the nr_reserved_highatomic limit under the lock */
2810 	if (zone->nr_reserved_highatomic >= max_managed)
2811 		goto out_unlock;
2812 
2813 	/* Yoink! */
2814 	mt = get_pageblock_migratetype(page);
2815 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
2816 	if (migratetype_is_mergeable(mt)) {
2817 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2818 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2819 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2820 	}
2821 
2822 out_unlock:
2823 	spin_unlock_irqrestore(&zone->lock, flags);
2824 }
2825 
2826 /*
2827  * Used when an allocation is about to fail under memory pressure. This
2828  * potentially hurts the reliability of high-order allocations when under
2829  * intense memory pressure but failed atomic allocations should be easier
2830  * to recover from than an OOM.
2831  *
2832  * If @force is true, try to unreserve a pageblock even though highatomic
2833  * pageblock is exhausted.
2834  */
2835 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2836 						bool force)
2837 {
2838 	struct zonelist *zonelist = ac->zonelist;
2839 	unsigned long flags;
2840 	struct zoneref *z;
2841 	struct zone *zone;
2842 	struct page *page;
2843 	int order;
2844 	bool ret;
2845 
2846 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2847 								ac->nodemask) {
2848 		/*
2849 		 * Preserve at least one pageblock unless memory pressure
2850 		 * is really high.
2851 		 */
2852 		if (!force && zone->nr_reserved_highatomic <=
2853 					pageblock_nr_pages)
2854 			continue;
2855 
2856 		spin_lock_irqsave(&zone->lock, flags);
2857 		for (order = 0; order < MAX_ORDER; order++) {
2858 			struct free_area *area = &(zone->free_area[order]);
2859 
2860 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2861 			if (!page)
2862 				continue;
2863 
2864 			/*
2865 			 * In page freeing path, migratetype change is racy so
2866 			 * we can counter several free pages in a pageblock
2867 			 * in this loop although we changed the pageblock type
2868 			 * from highatomic to ac->migratetype. So we should
2869 			 * adjust the count once.
2870 			 */
2871 			if (is_migrate_highatomic_page(page)) {
2872 				/*
2873 				 * It should never happen but changes to
2874 				 * locking could inadvertently allow a per-cpu
2875 				 * drain to add pages to MIGRATE_HIGHATOMIC
2876 				 * while unreserving so be safe and watch for
2877 				 * underflows.
2878 				 */
2879 				zone->nr_reserved_highatomic -= min(
2880 						pageblock_nr_pages,
2881 						zone->nr_reserved_highatomic);
2882 			}
2883 
2884 			/*
2885 			 * Convert to ac->migratetype and avoid the normal
2886 			 * pageblock stealing heuristics. Minimally, the caller
2887 			 * is doing the work and needs the pages. More
2888 			 * importantly, if the block was always converted to
2889 			 * MIGRATE_UNMOVABLE or another type then the number
2890 			 * of pageblocks that cannot be completely freed
2891 			 * may increase.
2892 			 */
2893 			set_pageblock_migratetype(page, ac->migratetype);
2894 			ret = move_freepages_block(zone, page, ac->migratetype,
2895 									NULL);
2896 			if (ret) {
2897 				spin_unlock_irqrestore(&zone->lock, flags);
2898 				return ret;
2899 			}
2900 		}
2901 		spin_unlock_irqrestore(&zone->lock, flags);
2902 	}
2903 
2904 	return false;
2905 }
2906 
2907 /*
2908  * Try finding a free buddy page on the fallback list and put it on the free
2909  * list of requested migratetype, possibly along with other pages from the same
2910  * block, depending on fragmentation avoidance heuristics. Returns true if
2911  * fallback was found so that __rmqueue_smallest() can grab it.
2912  *
2913  * The use of signed ints for order and current_order is a deliberate
2914  * deviation from the rest of this file, to make the for loop
2915  * condition simpler.
2916  */
2917 static __always_inline bool
2918 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2919 						unsigned int alloc_flags)
2920 {
2921 	struct free_area *area;
2922 	int current_order;
2923 	int min_order = order;
2924 	struct page *page;
2925 	int fallback_mt;
2926 	bool can_steal;
2927 
2928 	/*
2929 	 * Do not steal pages from freelists belonging to other pageblocks
2930 	 * i.e. orders < pageblock_order. If there are no local zones free,
2931 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2932 	 */
2933 	if (alloc_flags & ALLOC_NOFRAGMENT)
2934 		min_order = pageblock_order;
2935 
2936 	/*
2937 	 * Find the largest available free page in the other list. This roughly
2938 	 * approximates finding the pageblock with the most free pages, which
2939 	 * would be too costly to do exactly.
2940 	 */
2941 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2942 				--current_order) {
2943 		area = &(zone->free_area[current_order]);
2944 		fallback_mt = find_suitable_fallback(area, current_order,
2945 				start_migratetype, false, &can_steal);
2946 		if (fallback_mt == -1)
2947 			continue;
2948 
2949 		/*
2950 		 * We cannot steal all free pages from the pageblock and the
2951 		 * requested migratetype is movable. In that case it's better to
2952 		 * steal and split the smallest available page instead of the
2953 		 * largest available page, because even if the next movable
2954 		 * allocation falls back into a different pageblock than this
2955 		 * one, it won't cause permanent fragmentation.
2956 		 */
2957 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2958 					&& current_order > order)
2959 			goto find_smallest;
2960 
2961 		goto do_steal;
2962 	}
2963 
2964 	return false;
2965 
2966 find_smallest:
2967 	for (current_order = order; current_order < MAX_ORDER;
2968 							current_order++) {
2969 		area = &(zone->free_area[current_order]);
2970 		fallback_mt = find_suitable_fallback(area, current_order,
2971 				start_migratetype, false, &can_steal);
2972 		if (fallback_mt != -1)
2973 			break;
2974 	}
2975 
2976 	/*
2977 	 * This should not happen - we already found a suitable fallback
2978 	 * when looking for the largest page.
2979 	 */
2980 	VM_BUG_ON(current_order == MAX_ORDER);
2981 
2982 do_steal:
2983 	page = get_page_from_free_area(area, fallback_mt);
2984 
2985 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2986 								can_steal);
2987 
2988 	trace_mm_page_alloc_extfrag(page, order, current_order,
2989 		start_migratetype, fallback_mt);
2990 
2991 	return true;
2992 
2993 }
2994 
2995 /*
2996  * Do the hard work of removing an element from the buddy allocator.
2997  * Call me with the zone->lock already held.
2998  */
2999 static __always_inline struct page *
3000 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
3001 						unsigned int alloc_flags)
3002 {
3003 	struct page *page;
3004 
3005 	if (IS_ENABLED(CONFIG_CMA)) {
3006 		/*
3007 		 * Balance movable allocations between regular and CMA areas by
3008 		 * allocating from CMA when over half of the zone's free memory
3009 		 * is in the CMA area.
3010 		 */
3011 		if (alloc_flags & ALLOC_CMA &&
3012 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
3013 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
3014 			page = __rmqueue_cma_fallback(zone, order);
3015 			if (page)
3016 				return page;
3017 		}
3018 	}
3019 retry:
3020 	page = __rmqueue_smallest(zone, order, migratetype);
3021 	if (unlikely(!page)) {
3022 		if (alloc_flags & ALLOC_CMA)
3023 			page = __rmqueue_cma_fallback(zone, order);
3024 
3025 		if (!page && __rmqueue_fallback(zone, order, migratetype,
3026 								alloc_flags))
3027 			goto retry;
3028 	}
3029 	return page;
3030 }
3031 
3032 /*
3033  * Obtain a specified number of elements from the buddy allocator, all under
3034  * a single hold of the lock, for efficiency.  Add them to the supplied list.
3035  * Returns the number of new pages which were placed at *list.
3036  */
3037 static int rmqueue_bulk(struct zone *zone, unsigned int order,
3038 			unsigned long count, struct list_head *list,
3039 			int migratetype, unsigned int alloc_flags)
3040 {
3041 	int i, allocated = 0;
3042 
3043 	/*
3044 	 * local_lock_irq held so equivalent to spin_lock_irqsave for
3045 	 * both PREEMPT_RT and non-PREEMPT_RT configurations.
3046 	 */
3047 	spin_lock(&zone->lock);
3048 	for (i = 0; i < count; ++i) {
3049 		struct page *page = __rmqueue(zone, order, migratetype,
3050 								alloc_flags);
3051 		if (unlikely(page == NULL))
3052 			break;
3053 
3054 		if (unlikely(check_pcp_refill(page, order)))
3055 			continue;
3056 
3057 		/*
3058 		 * Split buddy pages returned by expand() are received here in
3059 		 * physical page order. The page is added to the tail of
3060 		 * caller's list. From the callers perspective, the linked list
3061 		 * is ordered by page number under some conditions. This is
3062 		 * useful for IO devices that can forward direction from the
3063 		 * head, thus also in the physical page order. This is useful
3064 		 * for IO devices that can merge IO requests if the physical
3065 		 * pages are ordered properly.
3066 		 */
3067 		list_add_tail(&page->lru, list);
3068 		allocated++;
3069 		if (is_migrate_cma(get_pcppage_migratetype(page)))
3070 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3071 					      -(1 << order));
3072 	}
3073 
3074 	/*
3075 	 * i pages were removed from the buddy list even if some leak due
3076 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3077 	 * on i. Do not confuse with 'allocated' which is the number of
3078 	 * pages added to the pcp list.
3079 	 */
3080 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3081 	spin_unlock(&zone->lock);
3082 	return allocated;
3083 }
3084 
3085 #ifdef CONFIG_NUMA
3086 /*
3087  * Called from the vmstat counter updater to drain pagesets of this
3088  * currently executing processor on remote nodes after they have
3089  * expired.
3090  *
3091  * Note that this function must be called with the thread pinned to
3092  * a single processor.
3093  */
3094 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3095 {
3096 	unsigned long flags;
3097 	int to_drain, batch;
3098 
3099 	local_lock_irqsave(&pagesets.lock, flags);
3100 	batch = READ_ONCE(pcp->batch);
3101 	to_drain = min(pcp->count, batch);
3102 	if (to_drain > 0)
3103 		free_pcppages_bulk(zone, to_drain, pcp, 0);
3104 	local_unlock_irqrestore(&pagesets.lock, flags);
3105 }
3106 #endif
3107 
3108 /*
3109  * Drain pcplists of the indicated processor and zone.
3110  *
3111  * The processor must either be the current processor and the
3112  * thread pinned to the current processor or a processor that
3113  * is not online.
3114  */
3115 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3116 {
3117 	unsigned long flags;
3118 	struct per_cpu_pages *pcp;
3119 
3120 	local_lock_irqsave(&pagesets.lock, flags);
3121 
3122 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3123 	if (pcp->count)
3124 		free_pcppages_bulk(zone, pcp->count, pcp, 0);
3125 
3126 	local_unlock_irqrestore(&pagesets.lock, flags);
3127 }
3128 
3129 /*
3130  * Drain pcplists of all zones on the indicated processor.
3131  *
3132  * The processor must either be the current processor and the
3133  * thread pinned to the current processor or a processor that
3134  * is not online.
3135  */
3136 static void drain_pages(unsigned int cpu)
3137 {
3138 	struct zone *zone;
3139 
3140 	for_each_populated_zone(zone) {
3141 		drain_pages_zone(cpu, zone);
3142 	}
3143 }
3144 
3145 /*
3146  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3147  *
3148  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3149  * the single zone's pages.
3150  */
3151 void drain_local_pages(struct zone *zone)
3152 {
3153 	int cpu = smp_processor_id();
3154 
3155 	if (zone)
3156 		drain_pages_zone(cpu, zone);
3157 	else
3158 		drain_pages(cpu);
3159 }
3160 
3161 static void drain_local_pages_wq(struct work_struct *work)
3162 {
3163 	struct pcpu_drain *drain;
3164 
3165 	drain = container_of(work, struct pcpu_drain, work);
3166 
3167 	/*
3168 	 * drain_all_pages doesn't use proper cpu hotplug protection so
3169 	 * we can race with cpu offline when the WQ can move this from
3170 	 * a cpu pinned worker to an unbound one. We can operate on a different
3171 	 * cpu which is alright but we also have to make sure to not move to
3172 	 * a different one.
3173 	 */
3174 	migrate_disable();
3175 	drain_local_pages(drain->zone);
3176 	migrate_enable();
3177 }
3178 
3179 /*
3180  * The implementation of drain_all_pages(), exposing an extra parameter to
3181  * drain on all cpus.
3182  *
3183  * drain_all_pages() is optimized to only execute on cpus where pcplists are
3184  * not empty. The check for non-emptiness can however race with a free to
3185  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3186  * that need the guarantee that every CPU has drained can disable the
3187  * optimizing racy check.
3188  */
3189 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3190 {
3191 	int cpu;
3192 
3193 	/*
3194 	 * Allocate in the BSS so we won't require allocation in
3195 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3196 	 */
3197 	static cpumask_t cpus_with_pcps;
3198 
3199 	/*
3200 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
3201 	 * initialized.
3202 	 */
3203 	if (WARN_ON_ONCE(!mm_percpu_wq))
3204 		return;
3205 
3206 	/*
3207 	 * Do not drain if one is already in progress unless it's specific to
3208 	 * a zone. Such callers are primarily CMA and memory hotplug and need
3209 	 * the drain to be complete when the call returns.
3210 	 */
3211 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3212 		if (!zone)
3213 			return;
3214 		mutex_lock(&pcpu_drain_mutex);
3215 	}
3216 
3217 	/*
3218 	 * We don't care about racing with CPU hotplug event
3219 	 * as offline notification will cause the notified
3220 	 * cpu to drain that CPU pcps and on_each_cpu_mask
3221 	 * disables preemption as part of its processing
3222 	 */
3223 	for_each_online_cpu(cpu) {
3224 		struct per_cpu_pages *pcp;
3225 		struct zone *z;
3226 		bool has_pcps = false;
3227 
3228 		if (force_all_cpus) {
3229 			/*
3230 			 * The pcp.count check is racy, some callers need a
3231 			 * guarantee that no cpu is missed.
3232 			 */
3233 			has_pcps = true;
3234 		} else if (zone) {
3235 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3236 			if (pcp->count)
3237 				has_pcps = true;
3238 		} else {
3239 			for_each_populated_zone(z) {
3240 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3241 				if (pcp->count) {
3242 					has_pcps = true;
3243 					break;
3244 				}
3245 			}
3246 		}
3247 
3248 		if (has_pcps)
3249 			cpumask_set_cpu(cpu, &cpus_with_pcps);
3250 		else
3251 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
3252 	}
3253 
3254 	for_each_cpu(cpu, &cpus_with_pcps) {
3255 		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3256 
3257 		drain->zone = zone;
3258 		INIT_WORK(&drain->work, drain_local_pages_wq);
3259 		queue_work_on(cpu, mm_percpu_wq, &drain->work);
3260 	}
3261 	for_each_cpu(cpu, &cpus_with_pcps)
3262 		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3263 
3264 	mutex_unlock(&pcpu_drain_mutex);
3265 }
3266 
3267 /*
3268  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3269  *
3270  * When zone parameter is non-NULL, spill just the single zone's pages.
3271  *
3272  * Note that this can be extremely slow as the draining happens in a workqueue.
3273  */
3274 void drain_all_pages(struct zone *zone)
3275 {
3276 	__drain_all_pages(zone, false);
3277 }
3278 
3279 #ifdef CONFIG_HIBERNATION
3280 
3281 /*
3282  * Touch the watchdog for every WD_PAGE_COUNT pages.
3283  */
3284 #define WD_PAGE_COUNT	(128*1024)
3285 
3286 void mark_free_pages(struct zone *zone)
3287 {
3288 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3289 	unsigned long flags;
3290 	unsigned int order, t;
3291 	struct page *page;
3292 
3293 	if (zone_is_empty(zone))
3294 		return;
3295 
3296 	spin_lock_irqsave(&zone->lock, flags);
3297 
3298 	max_zone_pfn = zone_end_pfn(zone);
3299 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3300 		if (pfn_valid(pfn)) {
3301 			page = pfn_to_page(pfn);
3302 
3303 			if (!--page_count) {
3304 				touch_nmi_watchdog();
3305 				page_count = WD_PAGE_COUNT;
3306 			}
3307 
3308 			if (page_zone(page) != zone)
3309 				continue;
3310 
3311 			if (!swsusp_page_is_forbidden(page))
3312 				swsusp_unset_page_free(page);
3313 		}
3314 
3315 	for_each_migratetype_order(order, t) {
3316 		list_for_each_entry(page,
3317 				&zone->free_area[order].free_list[t], lru) {
3318 			unsigned long i;
3319 
3320 			pfn = page_to_pfn(page);
3321 			for (i = 0; i < (1UL << order); i++) {
3322 				if (!--page_count) {
3323 					touch_nmi_watchdog();
3324 					page_count = WD_PAGE_COUNT;
3325 				}
3326 				swsusp_set_page_free(pfn_to_page(pfn + i));
3327 			}
3328 		}
3329 	}
3330 	spin_unlock_irqrestore(&zone->lock, flags);
3331 }
3332 #endif /* CONFIG_PM */
3333 
3334 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3335 							unsigned int order)
3336 {
3337 	int migratetype;
3338 
3339 	if (!free_pcp_prepare(page, order))
3340 		return false;
3341 
3342 	migratetype = get_pfnblock_migratetype(page, pfn);
3343 	set_pcppage_migratetype(page, migratetype);
3344 	return true;
3345 }
3346 
3347 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch,
3348 		       bool free_high)
3349 {
3350 	int min_nr_free, max_nr_free;
3351 
3352 	/* Free everything if batch freeing high-order pages. */
3353 	if (unlikely(free_high))
3354 		return pcp->count;
3355 
3356 	/* Check for PCP disabled or boot pageset */
3357 	if (unlikely(high < batch))
3358 		return 1;
3359 
3360 	/* Leave at least pcp->batch pages on the list */
3361 	min_nr_free = batch;
3362 	max_nr_free = high - batch;
3363 
3364 	/*
3365 	 * Double the number of pages freed each time there is subsequent
3366 	 * freeing of pages without any allocation.
3367 	 */
3368 	batch <<= pcp->free_factor;
3369 	if (batch < max_nr_free)
3370 		pcp->free_factor++;
3371 	batch = clamp(batch, min_nr_free, max_nr_free);
3372 
3373 	return batch;
3374 }
3375 
3376 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
3377 		       bool free_high)
3378 {
3379 	int high = READ_ONCE(pcp->high);
3380 
3381 	if (unlikely(!high || free_high))
3382 		return 0;
3383 
3384 	if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3385 		return high;
3386 
3387 	/*
3388 	 * If reclaim is active, limit the number of pages that can be
3389 	 * stored on pcp lists
3390 	 */
3391 	return min(READ_ONCE(pcp->batch) << 2, high);
3392 }
3393 
3394 static void free_unref_page_commit(struct page *page, int migratetype,
3395 				   unsigned int order)
3396 {
3397 	struct zone *zone = page_zone(page);
3398 	struct per_cpu_pages *pcp;
3399 	int high;
3400 	int pindex;
3401 	bool free_high;
3402 
3403 	__count_vm_event(PGFREE);
3404 	pcp = this_cpu_ptr(zone->per_cpu_pageset);
3405 	pindex = order_to_pindex(migratetype, order);
3406 	list_add(&page->lru, &pcp->lists[pindex]);
3407 	pcp->count += 1 << order;
3408 
3409 	/*
3410 	 * As high-order pages other than THP's stored on PCP can contribute
3411 	 * to fragmentation, limit the number stored when PCP is heavily
3412 	 * freeing without allocation. The remainder after bulk freeing
3413 	 * stops will be drained from vmstat refresh context.
3414 	 */
3415 	free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
3416 
3417 	high = nr_pcp_high(pcp, zone, free_high);
3418 	if (pcp->count >= high) {
3419 		int batch = READ_ONCE(pcp->batch);
3420 
3421 		free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex);
3422 	}
3423 }
3424 
3425 /*
3426  * Free a pcp page
3427  */
3428 void free_unref_page(struct page *page, unsigned int order)
3429 {
3430 	unsigned long flags;
3431 	unsigned long pfn = page_to_pfn(page);
3432 	int migratetype;
3433 
3434 	if (!free_unref_page_prepare(page, pfn, order))
3435 		return;
3436 
3437 	/*
3438 	 * We only track unmovable, reclaimable and movable on pcp lists.
3439 	 * Place ISOLATE pages on the isolated list because they are being
3440 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3441 	 * areas back if necessary. Otherwise, we may have to free
3442 	 * excessively into the page allocator
3443 	 */
3444 	migratetype = get_pcppage_migratetype(page);
3445 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3446 		if (unlikely(is_migrate_isolate(migratetype))) {
3447 			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3448 			return;
3449 		}
3450 		migratetype = MIGRATE_MOVABLE;
3451 	}
3452 
3453 	local_lock_irqsave(&pagesets.lock, flags);
3454 	free_unref_page_commit(page, migratetype, order);
3455 	local_unlock_irqrestore(&pagesets.lock, flags);
3456 }
3457 
3458 /*
3459  * Free a list of 0-order pages
3460  */
3461 void free_unref_page_list(struct list_head *list)
3462 {
3463 	struct page *page, *next;
3464 	unsigned long flags;
3465 	int batch_count = 0;
3466 	int migratetype;
3467 
3468 	/* Prepare pages for freeing */
3469 	list_for_each_entry_safe(page, next, list, lru) {
3470 		unsigned long pfn = page_to_pfn(page);
3471 		if (!free_unref_page_prepare(page, pfn, 0)) {
3472 			list_del(&page->lru);
3473 			continue;
3474 		}
3475 
3476 		/*
3477 		 * Free isolated pages directly to the allocator, see
3478 		 * comment in free_unref_page.
3479 		 */
3480 		migratetype = get_pcppage_migratetype(page);
3481 		if (unlikely(is_migrate_isolate(migratetype))) {
3482 			list_del(&page->lru);
3483 			free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3484 			continue;
3485 		}
3486 	}
3487 
3488 	local_lock_irqsave(&pagesets.lock, flags);
3489 	list_for_each_entry_safe(page, next, list, lru) {
3490 		/*
3491 		 * Non-isolated types over MIGRATE_PCPTYPES get added
3492 		 * to the MIGRATE_MOVABLE pcp list.
3493 		 */
3494 		migratetype = get_pcppage_migratetype(page);
3495 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3496 			migratetype = MIGRATE_MOVABLE;
3497 
3498 		trace_mm_page_free_batched(page);
3499 		free_unref_page_commit(page, migratetype, 0);
3500 
3501 		/*
3502 		 * Guard against excessive IRQ disabled times when we get
3503 		 * a large list of pages to free.
3504 		 */
3505 		if (++batch_count == SWAP_CLUSTER_MAX) {
3506 			local_unlock_irqrestore(&pagesets.lock, flags);
3507 			batch_count = 0;
3508 			local_lock_irqsave(&pagesets.lock, flags);
3509 		}
3510 	}
3511 	local_unlock_irqrestore(&pagesets.lock, flags);
3512 }
3513 
3514 /*
3515  * split_page takes a non-compound higher-order page, and splits it into
3516  * n (1<<order) sub-pages: page[0..n]
3517  * Each sub-page must be freed individually.
3518  *
3519  * Note: this is probably too low level an operation for use in drivers.
3520  * Please consult with lkml before using this in your driver.
3521  */
3522 void split_page(struct page *page, unsigned int order)
3523 {
3524 	int i;
3525 
3526 	VM_BUG_ON_PAGE(PageCompound(page), page);
3527 	VM_BUG_ON_PAGE(!page_count(page), page);
3528 
3529 	for (i = 1; i < (1 << order); i++)
3530 		set_page_refcounted(page + i);
3531 	split_page_owner(page, 1 << order);
3532 	split_page_memcg(page, 1 << order);
3533 }
3534 EXPORT_SYMBOL_GPL(split_page);
3535 
3536 int __isolate_free_page(struct page *page, unsigned int order)
3537 {
3538 	unsigned long watermark;
3539 	struct zone *zone;
3540 	int mt;
3541 
3542 	BUG_ON(!PageBuddy(page));
3543 
3544 	zone = page_zone(page);
3545 	mt = get_pageblock_migratetype(page);
3546 
3547 	if (!is_migrate_isolate(mt)) {
3548 		/*
3549 		 * Obey watermarks as if the page was being allocated. We can
3550 		 * emulate a high-order watermark check with a raised order-0
3551 		 * watermark, because we already know our high-order page
3552 		 * exists.
3553 		 */
3554 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3555 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3556 			return 0;
3557 
3558 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3559 	}
3560 
3561 	/* Remove page from free list */
3562 
3563 	del_page_from_free_list(page, zone, order);
3564 
3565 	/*
3566 	 * Set the pageblock if the isolated page is at least half of a
3567 	 * pageblock
3568 	 */
3569 	if (order >= pageblock_order - 1) {
3570 		struct page *endpage = page + (1 << order) - 1;
3571 		for (; page < endpage; page += pageblock_nr_pages) {
3572 			int mt = get_pageblock_migratetype(page);
3573 			/*
3574 			 * Only change normal pageblocks (i.e., they can merge
3575 			 * with others)
3576 			 */
3577 			if (migratetype_is_mergeable(mt))
3578 				set_pageblock_migratetype(page,
3579 							  MIGRATE_MOVABLE);
3580 		}
3581 	}
3582 
3583 
3584 	return 1UL << order;
3585 }
3586 
3587 /**
3588  * __putback_isolated_page - Return a now-isolated page back where we got it
3589  * @page: Page that was isolated
3590  * @order: Order of the isolated page
3591  * @mt: The page's pageblock's migratetype
3592  *
3593  * This function is meant to return a page pulled from the free lists via
3594  * __isolate_free_page back to the free lists they were pulled from.
3595  */
3596 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3597 {
3598 	struct zone *zone = page_zone(page);
3599 
3600 	/* zone lock should be held when this function is called */
3601 	lockdep_assert_held(&zone->lock);
3602 
3603 	/* Return isolated page to tail of freelist. */
3604 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
3605 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3606 }
3607 
3608 /*
3609  * Update NUMA hit/miss statistics
3610  *
3611  * Must be called with interrupts disabled.
3612  */
3613 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3614 				   long nr_account)
3615 {
3616 #ifdef CONFIG_NUMA
3617 	enum numa_stat_item local_stat = NUMA_LOCAL;
3618 
3619 	/* skip numa counters update if numa stats is disabled */
3620 	if (!static_branch_likely(&vm_numa_stat_key))
3621 		return;
3622 
3623 	if (zone_to_nid(z) != numa_node_id())
3624 		local_stat = NUMA_OTHER;
3625 
3626 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3627 		__count_numa_events(z, NUMA_HIT, nr_account);
3628 	else {
3629 		__count_numa_events(z, NUMA_MISS, nr_account);
3630 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3631 	}
3632 	__count_numa_events(z, local_stat, nr_account);
3633 #endif
3634 }
3635 
3636 /* Remove page from the per-cpu list, caller must protect the list */
3637 static inline
3638 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3639 			int migratetype,
3640 			unsigned int alloc_flags,
3641 			struct per_cpu_pages *pcp,
3642 			struct list_head *list)
3643 {
3644 	struct page *page;
3645 
3646 	do {
3647 		if (list_empty(list)) {
3648 			int batch = READ_ONCE(pcp->batch);
3649 			int alloced;
3650 
3651 			/*
3652 			 * Scale batch relative to order if batch implies
3653 			 * free pages can be stored on the PCP. Batch can
3654 			 * be 1 for small zones or for boot pagesets which
3655 			 * should never store free pages as the pages may
3656 			 * belong to arbitrary zones.
3657 			 */
3658 			if (batch > 1)
3659 				batch = max(batch >> order, 2);
3660 			alloced = rmqueue_bulk(zone, order,
3661 					batch, list,
3662 					migratetype, alloc_flags);
3663 
3664 			pcp->count += alloced << order;
3665 			if (unlikely(list_empty(list)))
3666 				return NULL;
3667 		}
3668 
3669 		page = list_first_entry(list, struct page, lru);
3670 		list_del(&page->lru);
3671 		pcp->count -= 1 << order;
3672 	} while (check_new_pcp(page, order));
3673 
3674 	return page;
3675 }
3676 
3677 /* Lock and remove page from the per-cpu list */
3678 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3679 			struct zone *zone, unsigned int order,
3680 			gfp_t gfp_flags, int migratetype,
3681 			unsigned int alloc_flags)
3682 {
3683 	struct per_cpu_pages *pcp;
3684 	struct list_head *list;
3685 	struct page *page;
3686 	unsigned long flags;
3687 
3688 	local_lock_irqsave(&pagesets.lock, flags);
3689 
3690 	/*
3691 	 * On allocation, reduce the number of pages that are batch freed.
3692 	 * See nr_pcp_free() where free_factor is increased for subsequent
3693 	 * frees.
3694 	 */
3695 	pcp = this_cpu_ptr(zone->per_cpu_pageset);
3696 	pcp->free_factor >>= 1;
3697 	list = &pcp->lists[order_to_pindex(migratetype, order)];
3698 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3699 	local_unlock_irqrestore(&pagesets.lock, flags);
3700 	if (page) {
3701 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3702 		zone_statistics(preferred_zone, zone, 1);
3703 	}
3704 	return page;
3705 }
3706 
3707 /*
3708  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3709  */
3710 static inline
3711 struct page *rmqueue(struct zone *preferred_zone,
3712 			struct zone *zone, unsigned int order,
3713 			gfp_t gfp_flags, unsigned int alloc_flags,
3714 			int migratetype)
3715 {
3716 	unsigned long flags;
3717 	struct page *page;
3718 
3719 	if (likely(pcp_allowed_order(order))) {
3720 		/*
3721 		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3722 		 * we need to skip it when CMA area isn't allowed.
3723 		 */
3724 		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3725 				migratetype != MIGRATE_MOVABLE) {
3726 			page = rmqueue_pcplist(preferred_zone, zone, order,
3727 					gfp_flags, migratetype, alloc_flags);
3728 			goto out;
3729 		}
3730 	}
3731 
3732 	/*
3733 	 * We most definitely don't want callers attempting to
3734 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3735 	 */
3736 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3737 
3738 	do {
3739 		page = NULL;
3740 		spin_lock_irqsave(&zone->lock, flags);
3741 		/*
3742 		 * order-0 request can reach here when the pcplist is skipped
3743 		 * due to non-CMA allocation context. HIGHATOMIC area is
3744 		 * reserved for high-order atomic allocation, so order-0
3745 		 * request should skip it.
3746 		 */
3747 		if (order > 0 && alloc_flags & ALLOC_HARDER)
3748 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3749 		if (!page) {
3750 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3751 			if (!page)
3752 				goto failed;
3753 		}
3754 		__mod_zone_freepage_state(zone, -(1 << order),
3755 					  get_pcppage_migratetype(page));
3756 		spin_unlock_irqrestore(&zone->lock, flags);
3757 	} while (check_new_pages(page, order));
3758 
3759 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3760 	zone_statistics(preferred_zone, zone, 1);
3761 
3762 out:
3763 	/* Separate test+clear to avoid unnecessary atomics */
3764 	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3765 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3766 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3767 	}
3768 
3769 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3770 	return page;
3771 
3772 failed:
3773 	spin_unlock_irqrestore(&zone->lock, flags);
3774 	return NULL;
3775 }
3776 
3777 #ifdef CONFIG_FAIL_PAGE_ALLOC
3778 
3779 static struct {
3780 	struct fault_attr attr;
3781 
3782 	bool ignore_gfp_highmem;
3783 	bool ignore_gfp_reclaim;
3784 	u32 min_order;
3785 } fail_page_alloc = {
3786 	.attr = FAULT_ATTR_INITIALIZER,
3787 	.ignore_gfp_reclaim = true,
3788 	.ignore_gfp_highmem = true,
3789 	.min_order = 1,
3790 };
3791 
3792 static int __init setup_fail_page_alloc(char *str)
3793 {
3794 	return setup_fault_attr(&fail_page_alloc.attr, str);
3795 }
3796 __setup("fail_page_alloc=", setup_fail_page_alloc);
3797 
3798 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3799 {
3800 	if (order < fail_page_alloc.min_order)
3801 		return false;
3802 	if (gfp_mask & __GFP_NOFAIL)
3803 		return false;
3804 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3805 		return false;
3806 	if (fail_page_alloc.ignore_gfp_reclaim &&
3807 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3808 		return false;
3809 
3810 	if (gfp_mask & __GFP_NOWARN)
3811 		fail_page_alloc.attr.no_warn = true;
3812 
3813 	return should_fail(&fail_page_alloc.attr, 1 << order);
3814 }
3815 
3816 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3817 
3818 static int __init fail_page_alloc_debugfs(void)
3819 {
3820 	umode_t mode = S_IFREG | 0600;
3821 	struct dentry *dir;
3822 
3823 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3824 					&fail_page_alloc.attr);
3825 
3826 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3827 			    &fail_page_alloc.ignore_gfp_reclaim);
3828 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3829 			    &fail_page_alloc.ignore_gfp_highmem);
3830 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3831 
3832 	return 0;
3833 }
3834 
3835 late_initcall(fail_page_alloc_debugfs);
3836 
3837 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3838 
3839 #else /* CONFIG_FAIL_PAGE_ALLOC */
3840 
3841 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3842 {
3843 	return false;
3844 }
3845 
3846 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3847 
3848 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3849 {
3850 	return __should_fail_alloc_page(gfp_mask, order);
3851 }
3852 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3853 
3854 static inline long __zone_watermark_unusable_free(struct zone *z,
3855 				unsigned int order, unsigned int alloc_flags)
3856 {
3857 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3858 	long unusable_free = (1 << order) - 1;
3859 
3860 	/*
3861 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3862 	 * the high-atomic reserves. This will over-estimate the size of the
3863 	 * atomic reserve but it avoids a search.
3864 	 */
3865 	if (likely(!alloc_harder))
3866 		unusable_free += z->nr_reserved_highatomic;
3867 
3868 #ifdef CONFIG_CMA
3869 	/* If allocation can't use CMA areas don't use free CMA pages */
3870 	if (!(alloc_flags & ALLOC_CMA))
3871 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3872 #endif
3873 
3874 	return unusable_free;
3875 }
3876 
3877 /*
3878  * Return true if free base pages are above 'mark'. For high-order checks it
3879  * will return true of the order-0 watermark is reached and there is at least
3880  * one free page of a suitable size. Checking now avoids taking the zone lock
3881  * to check in the allocation paths if no pages are free.
3882  */
3883 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3884 			 int highest_zoneidx, unsigned int alloc_flags,
3885 			 long free_pages)
3886 {
3887 	long min = mark;
3888 	int o;
3889 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3890 
3891 	/* free_pages may go negative - that's OK */
3892 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3893 
3894 	if (alloc_flags & ALLOC_HIGH)
3895 		min -= min / 2;
3896 
3897 	if (unlikely(alloc_harder)) {
3898 		/*
3899 		 * OOM victims can try even harder than normal ALLOC_HARDER
3900 		 * users on the grounds that it's definitely going to be in
3901 		 * the exit path shortly and free memory. Any allocation it
3902 		 * makes during the free path will be small and short-lived.
3903 		 */
3904 		if (alloc_flags & ALLOC_OOM)
3905 			min -= min / 2;
3906 		else
3907 			min -= min / 4;
3908 	}
3909 
3910 	/*
3911 	 * Check watermarks for an order-0 allocation request. If these
3912 	 * are not met, then a high-order request also cannot go ahead
3913 	 * even if a suitable page happened to be free.
3914 	 */
3915 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3916 		return false;
3917 
3918 	/* If this is an order-0 request then the watermark is fine */
3919 	if (!order)
3920 		return true;
3921 
3922 	/* For a high-order request, check at least one suitable page is free */
3923 	for (o = order; o < MAX_ORDER; o++) {
3924 		struct free_area *area = &z->free_area[o];
3925 		int mt;
3926 
3927 		if (!area->nr_free)
3928 			continue;
3929 
3930 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3931 			if (!free_area_empty(area, mt))
3932 				return true;
3933 		}
3934 
3935 #ifdef CONFIG_CMA
3936 		if ((alloc_flags & ALLOC_CMA) &&
3937 		    !free_area_empty(area, MIGRATE_CMA)) {
3938 			return true;
3939 		}
3940 #endif
3941 		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3942 			return true;
3943 	}
3944 	return false;
3945 }
3946 
3947 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3948 		      int highest_zoneidx, unsigned int alloc_flags)
3949 {
3950 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3951 					zone_page_state(z, NR_FREE_PAGES));
3952 }
3953 
3954 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3955 				unsigned long mark, int highest_zoneidx,
3956 				unsigned int alloc_flags, gfp_t gfp_mask)
3957 {
3958 	long free_pages;
3959 
3960 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3961 
3962 	/*
3963 	 * Fast check for order-0 only. If this fails then the reserves
3964 	 * need to be calculated.
3965 	 */
3966 	if (!order) {
3967 		long fast_free;
3968 
3969 		fast_free = free_pages;
3970 		fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3971 		if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3972 			return true;
3973 	}
3974 
3975 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3976 					free_pages))
3977 		return true;
3978 	/*
3979 	 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3980 	 * when checking the min watermark. The min watermark is the
3981 	 * point where boosting is ignored so that kswapd is woken up
3982 	 * when below the low watermark.
3983 	 */
3984 	if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3985 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3986 		mark = z->_watermark[WMARK_MIN];
3987 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3988 					alloc_flags, free_pages);
3989 	}
3990 
3991 	return false;
3992 }
3993 
3994 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3995 			unsigned long mark, int highest_zoneidx)
3996 {
3997 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3998 
3999 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
4000 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
4001 
4002 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
4003 								free_pages);
4004 }
4005 
4006 #ifdef CONFIG_NUMA
4007 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
4008 
4009 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4010 {
4011 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
4012 				node_reclaim_distance;
4013 }
4014 #else	/* CONFIG_NUMA */
4015 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4016 {
4017 	return true;
4018 }
4019 #endif	/* CONFIG_NUMA */
4020 
4021 /*
4022  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
4023  * fragmentation is subtle. If the preferred zone was HIGHMEM then
4024  * premature use of a lower zone may cause lowmem pressure problems that
4025  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
4026  * probably too small. It only makes sense to spread allocations to avoid
4027  * fragmentation between the Normal and DMA32 zones.
4028  */
4029 static inline unsigned int
4030 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
4031 {
4032 	unsigned int alloc_flags;
4033 
4034 	/*
4035 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4036 	 * to save a branch.
4037 	 */
4038 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
4039 
4040 #ifdef CONFIG_ZONE_DMA32
4041 	if (!zone)
4042 		return alloc_flags;
4043 
4044 	if (zone_idx(zone) != ZONE_NORMAL)
4045 		return alloc_flags;
4046 
4047 	/*
4048 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4049 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4050 	 * on UMA that if Normal is populated then so is DMA32.
4051 	 */
4052 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4053 	if (nr_online_nodes > 1 && !populated_zone(--zone))
4054 		return alloc_flags;
4055 
4056 	alloc_flags |= ALLOC_NOFRAGMENT;
4057 #endif /* CONFIG_ZONE_DMA32 */
4058 	return alloc_flags;
4059 }
4060 
4061 /* Must be called after current_gfp_context() which can change gfp_mask */
4062 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4063 						  unsigned int alloc_flags)
4064 {
4065 #ifdef CONFIG_CMA
4066 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4067 		alloc_flags |= ALLOC_CMA;
4068 #endif
4069 	return alloc_flags;
4070 }
4071 
4072 /*
4073  * get_page_from_freelist goes through the zonelist trying to allocate
4074  * a page.
4075  */
4076 static struct page *
4077 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4078 						const struct alloc_context *ac)
4079 {
4080 	struct zoneref *z;
4081 	struct zone *zone;
4082 	struct pglist_data *last_pgdat = NULL;
4083 	bool last_pgdat_dirty_ok = false;
4084 	bool no_fallback;
4085 
4086 retry:
4087 	/*
4088 	 * Scan zonelist, looking for a zone with enough free.
4089 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
4090 	 */
4091 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4092 	z = ac->preferred_zoneref;
4093 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4094 					ac->nodemask) {
4095 		struct page *page;
4096 		unsigned long mark;
4097 
4098 		if (cpusets_enabled() &&
4099 			(alloc_flags & ALLOC_CPUSET) &&
4100 			!__cpuset_zone_allowed(zone, gfp_mask))
4101 				continue;
4102 		/*
4103 		 * When allocating a page cache page for writing, we
4104 		 * want to get it from a node that is within its dirty
4105 		 * limit, such that no single node holds more than its
4106 		 * proportional share of globally allowed dirty pages.
4107 		 * The dirty limits take into account the node's
4108 		 * lowmem reserves and high watermark so that kswapd
4109 		 * should be able to balance it without having to
4110 		 * write pages from its LRU list.
4111 		 *
4112 		 * XXX: For now, allow allocations to potentially
4113 		 * exceed the per-node dirty limit in the slowpath
4114 		 * (spread_dirty_pages unset) before going into reclaim,
4115 		 * which is important when on a NUMA setup the allowed
4116 		 * nodes are together not big enough to reach the
4117 		 * global limit.  The proper fix for these situations
4118 		 * will require awareness of nodes in the
4119 		 * dirty-throttling and the flusher threads.
4120 		 */
4121 		if (ac->spread_dirty_pages) {
4122 			if (last_pgdat != zone->zone_pgdat) {
4123 				last_pgdat = zone->zone_pgdat;
4124 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
4125 			}
4126 
4127 			if (!last_pgdat_dirty_ok)
4128 				continue;
4129 		}
4130 
4131 		if (no_fallback && nr_online_nodes > 1 &&
4132 		    zone != ac->preferred_zoneref->zone) {
4133 			int local_nid;
4134 
4135 			/*
4136 			 * If moving to a remote node, retry but allow
4137 			 * fragmenting fallbacks. Locality is more important
4138 			 * than fragmentation avoidance.
4139 			 */
4140 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4141 			if (zone_to_nid(zone) != local_nid) {
4142 				alloc_flags &= ~ALLOC_NOFRAGMENT;
4143 				goto retry;
4144 			}
4145 		}
4146 
4147 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4148 		if (!zone_watermark_fast(zone, order, mark,
4149 				       ac->highest_zoneidx, alloc_flags,
4150 				       gfp_mask)) {
4151 			int ret;
4152 
4153 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4154 			/*
4155 			 * Watermark failed for this zone, but see if we can
4156 			 * grow this zone if it contains deferred pages.
4157 			 */
4158 			if (static_branch_unlikely(&deferred_pages)) {
4159 				if (_deferred_grow_zone(zone, order))
4160 					goto try_this_zone;
4161 			}
4162 #endif
4163 			/* Checked here to keep the fast path fast */
4164 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4165 			if (alloc_flags & ALLOC_NO_WATERMARKS)
4166 				goto try_this_zone;
4167 
4168 			if (!node_reclaim_enabled() ||
4169 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4170 				continue;
4171 
4172 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4173 			switch (ret) {
4174 			case NODE_RECLAIM_NOSCAN:
4175 				/* did not scan */
4176 				continue;
4177 			case NODE_RECLAIM_FULL:
4178 				/* scanned but unreclaimable */
4179 				continue;
4180 			default:
4181 				/* did we reclaim enough */
4182 				if (zone_watermark_ok(zone, order, mark,
4183 					ac->highest_zoneidx, alloc_flags))
4184 					goto try_this_zone;
4185 
4186 				continue;
4187 			}
4188 		}
4189 
4190 try_this_zone:
4191 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4192 				gfp_mask, alloc_flags, ac->migratetype);
4193 		if (page) {
4194 			prep_new_page(page, order, gfp_mask, alloc_flags);
4195 
4196 			/*
4197 			 * If this is a high-order atomic allocation then check
4198 			 * if the pageblock should be reserved for the future
4199 			 */
4200 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4201 				reserve_highatomic_pageblock(page, zone, order);
4202 
4203 			return page;
4204 		} else {
4205 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4206 			/* Try again if zone has deferred pages */
4207 			if (static_branch_unlikely(&deferred_pages)) {
4208 				if (_deferred_grow_zone(zone, order))
4209 					goto try_this_zone;
4210 			}
4211 #endif
4212 		}
4213 	}
4214 
4215 	/*
4216 	 * It's possible on a UMA machine to get through all zones that are
4217 	 * fragmented. If avoiding fragmentation, reset and try again.
4218 	 */
4219 	if (no_fallback) {
4220 		alloc_flags &= ~ALLOC_NOFRAGMENT;
4221 		goto retry;
4222 	}
4223 
4224 	return NULL;
4225 }
4226 
4227 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4228 {
4229 	unsigned int filter = SHOW_MEM_FILTER_NODES;
4230 
4231 	/*
4232 	 * This documents exceptions given to allocations in certain
4233 	 * contexts that are allowed to allocate outside current's set
4234 	 * of allowed nodes.
4235 	 */
4236 	if (!(gfp_mask & __GFP_NOMEMALLOC))
4237 		if (tsk_is_oom_victim(current) ||
4238 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
4239 			filter &= ~SHOW_MEM_FILTER_NODES;
4240 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4241 		filter &= ~SHOW_MEM_FILTER_NODES;
4242 
4243 	show_mem(filter, nodemask);
4244 }
4245 
4246 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4247 {
4248 	struct va_format vaf;
4249 	va_list args;
4250 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4251 
4252 	if ((gfp_mask & __GFP_NOWARN) ||
4253 	     !__ratelimit(&nopage_rs) ||
4254 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
4255 		return;
4256 
4257 	va_start(args, fmt);
4258 	vaf.fmt = fmt;
4259 	vaf.va = &args;
4260 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4261 			current->comm, &vaf, gfp_mask, &gfp_mask,
4262 			nodemask_pr_args(nodemask));
4263 	va_end(args);
4264 
4265 	cpuset_print_current_mems_allowed();
4266 	pr_cont("\n");
4267 	dump_stack();
4268 	warn_alloc_show_mem(gfp_mask, nodemask);
4269 }
4270 
4271 static inline struct page *
4272 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4273 			      unsigned int alloc_flags,
4274 			      const struct alloc_context *ac)
4275 {
4276 	struct page *page;
4277 
4278 	page = get_page_from_freelist(gfp_mask, order,
4279 			alloc_flags|ALLOC_CPUSET, ac);
4280 	/*
4281 	 * fallback to ignore cpuset restriction if our nodes
4282 	 * are depleted
4283 	 */
4284 	if (!page)
4285 		page = get_page_from_freelist(gfp_mask, order,
4286 				alloc_flags, ac);
4287 
4288 	return page;
4289 }
4290 
4291 static inline struct page *
4292 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4293 	const struct alloc_context *ac, unsigned long *did_some_progress)
4294 {
4295 	struct oom_control oc = {
4296 		.zonelist = ac->zonelist,
4297 		.nodemask = ac->nodemask,
4298 		.memcg = NULL,
4299 		.gfp_mask = gfp_mask,
4300 		.order = order,
4301 	};
4302 	struct page *page;
4303 
4304 	*did_some_progress = 0;
4305 
4306 	/*
4307 	 * Acquire the oom lock.  If that fails, somebody else is
4308 	 * making progress for us.
4309 	 */
4310 	if (!mutex_trylock(&oom_lock)) {
4311 		*did_some_progress = 1;
4312 		schedule_timeout_uninterruptible(1);
4313 		return NULL;
4314 	}
4315 
4316 	/*
4317 	 * Go through the zonelist yet one more time, keep very high watermark
4318 	 * here, this is only to catch a parallel oom killing, we must fail if
4319 	 * we're still under heavy pressure. But make sure that this reclaim
4320 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4321 	 * allocation which will never fail due to oom_lock already held.
4322 	 */
4323 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4324 				      ~__GFP_DIRECT_RECLAIM, order,
4325 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4326 	if (page)
4327 		goto out;
4328 
4329 	/* Coredumps can quickly deplete all memory reserves */
4330 	if (current->flags & PF_DUMPCORE)
4331 		goto out;
4332 	/* The OOM killer will not help higher order allocs */
4333 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4334 		goto out;
4335 	/*
4336 	 * We have already exhausted all our reclaim opportunities without any
4337 	 * success so it is time to admit defeat. We will skip the OOM killer
4338 	 * because it is very likely that the caller has a more reasonable
4339 	 * fallback than shooting a random task.
4340 	 *
4341 	 * The OOM killer may not free memory on a specific node.
4342 	 */
4343 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4344 		goto out;
4345 	/* The OOM killer does not needlessly kill tasks for lowmem */
4346 	if (ac->highest_zoneidx < ZONE_NORMAL)
4347 		goto out;
4348 	if (pm_suspended_storage())
4349 		goto out;
4350 	/*
4351 	 * XXX: GFP_NOFS allocations should rather fail than rely on
4352 	 * other request to make a forward progress.
4353 	 * We are in an unfortunate situation where out_of_memory cannot
4354 	 * do much for this context but let's try it to at least get
4355 	 * access to memory reserved if the current task is killed (see
4356 	 * out_of_memory). Once filesystems are ready to handle allocation
4357 	 * failures more gracefully we should just bail out here.
4358 	 */
4359 
4360 	/* Exhausted what can be done so it's blame time */
4361 	if (out_of_memory(&oc) ||
4362 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
4363 		*did_some_progress = 1;
4364 
4365 		/*
4366 		 * Help non-failing allocations by giving them access to memory
4367 		 * reserves
4368 		 */
4369 		if (gfp_mask & __GFP_NOFAIL)
4370 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4371 					ALLOC_NO_WATERMARKS, ac);
4372 	}
4373 out:
4374 	mutex_unlock(&oom_lock);
4375 	return page;
4376 }
4377 
4378 /*
4379  * Maximum number of compaction retries with a progress before OOM
4380  * killer is consider as the only way to move forward.
4381  */
4382 #define MAX_COMPACT_RETRIES 16
4383 
4384 #ifdef CONFIG_COMPACTION
4385 /* Try memory compaction for high-order allocations before reclaim */
4386 static struct page *
4387 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4388 		unsigned int alloc_flags, const struct alloc_context *ac,
4389 		enum compact_priority prio, enum compact_result *compact_result)
4390 {
4391 	struct page *page = NULL;
4392 	unsigned long pflags;
4393 	unsigned int noreclaim_flag;
4394 
4395 	if (!order)
4396 		return NULL;
4397 
4398 	psi_memstall_enter(&pflags);
4399 	delayacct_compact_start();
4400 	noreclaim_flag = memalloc_noreclaim_save();
4401 
4402 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4403 								prio, &page);
4404 
4405 	memalloc_noreclaim_restore(noreclaim_flag);
4406 	psi_memstall_leave(&pflags);
4407 	delayacct_compact_end();
4408 
4409 	if (*compact_result == COMPACT_SKIPPED)
4410 		return NULL;
4411 	/*
4412 	 * At least in one zone compaction wasn't deferred or skipped, so let's
4413 	 * count a compaction stall
4414 	 */
4415 	count_vm_event(COMPACTSTALL);
4416 
4417 	/* Prep a captured page if available */
4418 	if (page)
4419 		prep_new_page(page, order, gfp_mask, alloc_flags);
4420 
4421 	/* Try get a page from the freelist if available */
4422 	if (!page)
4423 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4424 
4425 	if (page) {
4426 		struct zone *zone = page_zone(page);
4427 
4428 		zone->compact_blockskip_flush = false;
4429 		compaction_defer_reset(zone, order, true);
4430 		count_vm_event(COMPACTSUCCESS);
4431 		return page;
4432 	}
4433 
4434 	/*
4435 	 * It's bad if compaction run occurs and fails. The most likely reason
4436 	 * is that pages exist, but not enough to satisfy watermarks.
4437 	 */
4438 	count_vm_event(COMPACTFAIL);
4439 
4440 	cond_resched();
4441 
4442 	return NULL;
4443 }
4444 
4445 static inline bool
4446 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4447 		     enum compact_result compact_result,
4448 		     enum compact_priority *compact_priority,
4449 		     int *compaction_retries)
4450 {
4451 	int max_retries = MAX_COMPACT_RETRIES;
4452 	int min_priority;
4453 	bool ret = false;
4454 	int retries = *compaction_retries;
4455 	enum compact_priority priority = *compact_priority;
4456 
4457 	if (!order)
4458 		return false;
4459 
4460 	if (fatal_signal_pending(current))
4461 		return false;
4462 
4463 	if (compaction_made_progress(compact_result))
4464 		(*compaction_retries)++;
4465 
4466 	/*
4467 	 * compaction considers all the zone as desperately out of memory
4468 	 * so it doesn't really make much sense to retry except when the
4469 	 * failure could be caused by insufficient priority
4470 	 */
4471 	if (compaction_failed(compact_result))
4472 		goto check_priority;
4473 
4474 	/*
4475 	 * compaction was skipped because there are not enough order-0 pages
4476 	 * to work with, so we retry only if it looks like reclaim can help.
4477 	 */
4478 	if (compaction_needs_reclaim(compact_result)) {
4479 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4480 		goto out;
4481 	}
4482 
4483 	/*
4484 	 * make sure the compaction wasn't deferred or didn't bail out early
4485 	 * due to locks contention before we declare that we should give up.
4486 	 * But the next retry should use a higher priority if allowed, so
4487 	 * we don't just keep bailing out endlessly.
4488 	 */
4489 	if (compaction_withdrawn(compact_result)) {
4490 		goto check_priority;
4491 	}
4492 
4493 	/*
4494 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4495 	 * costly ones because they are de facto nofail and invoke OOM
4496 	 * killer to move on while costly can fail and users are ready
4497 	 * to cope with that. 1/4 retries is rather arbitrary but we
4498 	 * would need much more detailed feedback from compaction to
4499 	 * make a better decision.
4500 	 */
4501 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4502 		max_retries /= 4;
4503 	if (*compaction_retries <= max_retries) {
4504 		ret = true;
4505 		goto out;
4506 	}
4507 
4508 	/*
4509 	 * Make sure there are attempts at the highest priority if we exhausted
4510 	 * all retries or failed at the lower priorities.
4511 	 */
4512 check_priority:
4513 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4514 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4515 
4516 	if (*compact_priority > min_priority) {
4517 		(*compact_priority)--;
4518 		*compaction_retries = 0;
4519 		ret = true;
4520 	}
4521 out:
4522 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4523 	return ret;
4524 }
4525 #else
4526 static inline struct page *
4527 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4528 		unsigned int alloc_flags, const struct alloc_context *ac,
4529 		enum compact_priority prio, enum compact_result *compact_result)
4530 {
4531 	*compact_result = COMPACT_SKIPPED;
4532 	return NULL;
4533 }
4534 
4535 static inline bool
4536 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4537 		     enum compact_result compact_result,
4538 		     enum compact_priority *compact_priority,
4539 		     int *compaction_retries)
4540 {
4541 	struct zone *zone;
4542 	struct zoneref *z;
4543 
4544 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4545 		return false;
4546 
4547 	/*
4548 	 * There are setups with compaction disabled which would prefer to loop
4549 	 * inside the allocator rather than hit the oom killer prematurely.
4550 	 * Let's give them a good hope and keep retrying while the order-0
4551 	 * watermarks are OK.
4552 	 */
4553 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4554 				ac->highest_zoneidx, ac->nodemask) {
4555 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4556 					ac->highest_zoneidx, alloc_flags))
4557 			return true;
4558 	}
4559 	return false;
4560 }
4561 #endif /* CONFIG_COMPACTION */
4562 
4563 #ifdef CONFIG_LOCKDEP
4564 static struct lockdep_map __fs_reclaim_map =
4565 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4566 
4567 static bool __need_reclaim(gfp_t gfp_mask)
4568 {
4569 	/* no reclaim without waiting on it */
4570 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4571 		return false;
4572 
4573 	/* this guy won't enter reclaim */
4574 	if (current->flags & PF_MEMALLOC)
4575 		return false;
4576 
4577 	if (gfp_mask & __GFP_NOLOCKDEP)
4578 		return false;
4579 
4580 	return true;
4581 }
4582 
4583 void __fs_reclaim_acquire(unsigned long ip)
4584 {
4585 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4586 }
4587 
4588 void __fs_reclaim_release(unsigned long ip)
4589 {
4590 	lock_release(&__fs_reclaim_map, ip);
4591 }
4592 
4593 void fs_reclaim_acquire(gfp_t gfp_mask)
4594 {
4595 	gfp_mask = current_gfp_context(gfp_mask);
4596 
4597 	if (__need_reclaim(gfp_mask)) {
4598 		if (gfp_mask & __GFP_FS)
4599 			__fs_reclaim_acquire(_RET_IP_);
4600 
4601 #ifdef CONFIG_MMU_NOTIFIER
4602 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4603 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4604 #endif
4605 
4606 	}
4607 }
4608 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4609 
4610 void fs_reclaim_release(gfp_t gfp_mask)
4611 {
4612 	gfp_mask = current_gfp_context(gfp_mask);
4613 
4614 	if (__need_reclaim(gfp_mask)) {
4615 		if (gfp_mask & __GFP_FS)
4616 			__fs_reclaim_release(_RET_IP_);
4617 	}
4618 }
4619 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4620 #endif
4621 
4622 /* Perform direct synchronous page reclaim */
4623 static unsigned long
4624 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4625 					const struct alloc_context *ac)
4626 {
4627 	unsigned int noreclaim_flag;
4628 	unsigned long progress;
4629 
4630 	cond_resched();
4631 
4632 	/* We now go into synchronous reclaim */
4633 	cpuset_memory_pressure_bump();
4634 	fs_reclaim_acquire(gfp_mask);
4635 	noreclaim_flag = memalloc_noreclaim_save();
4636 
4637 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4638 								ac->nodemask);
4639 
4640 	memalloc_noreclaim_restore(noreclaim_flag);
4641 	fs_reclaim_release(gfp_mask);
4642 
4643 	cond_resched();
4644 
4645 	return progress;
4646 }
4647 
4648 /* The really slow allocator path where we enter direct reclaim */
4649 static inline struct page *
4650 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4651 		unsigned int alloc_flags, const struct alloc_context *ac,
4652 		unsigned long *did_some_progress)
4653 {
4654 	struct page *page = NULL;
4655 	unsigned long pflags;
4656 	bool drained = false;
4657 
4658 	psi_memstall_enter(&pflags);
4659 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4660 	if (unlikely(!(*did_some_progress)))
4661 		goto out;
4662 
4663 retry:
4664 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4665 
4666 	/*
4667 	 * If an allocation failed after direct reclaim, it could be because
4668 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4669 	 * Shrink them and try again
4670 	 */
4671 	if (!page && !drained) {
4672 		unreserve_highatomic_pageblock(ac, false);
4673 		drain_all_pages(NULL);
4674 		drained = true;
4675 		goto retry;
4676 	}
4677 out:
4678 	psi_memstall_leave(&pflags);
4679 
4680 	return page;
4681 }
4682 
4683 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4684 			     const struct alloc_context *ac)
4685 {
4686 	struct zoneref *z;
4687 	struct zone *zone;
4688 	pg_data_t *last_pgdat = NULL;
4689 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4690 
4691 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4692 					ac->nodemask) {
4693 		if (!managed_zone(zone))
4694 			continue;
4695 		if (last_pgdat != zone->zone_pgdat) {
4696 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4697 			last_pgdat = zone->zone_pgdat;
4698 		}
4699 	}
4700 }
4701 
4702 static inline unsigned int
4703 gfp_to_alloc_flags(gfp_t gfp_mask)
4704 {
4705 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4706 
4707 	/*
4708 	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4709 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4710 	 * to save two branches.
4711 	 */
4712 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4713 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4714 
4715 	/*
4716 	 * The caller may dip into page reserves a bit more if the caller
4717 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4718 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4719 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4720 	 */
4721 	alloc_flags |= (__force int)
4722 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4723 
4724 	if (gfp_mask & __GFP_ATOMIC) {
4725 		/*
4726 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4727 		 * if it can't schedule.
4728 		 */
4729 		if (!(gfp_mask & __GFP_NOMEMALLOC))
4730 			alloc_flags |= ALLOC_HARDER;
4731 		/*
4732 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4733 		 * comment for __cpuset_node_allowed().
4734 		 */
4735 		alloc_flags &= ~ALLOC_CPUSET;
4736 	} else if (unlikely(rt_task(current)) && in_task())
4737 		alloc_flags |= ALLOC_HARDER;
4738 
4739 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4740 
4741 	return alloc_flags;
4742 }
4743 
4744 static bool oom_reserves_allowed(struct task_struct *tsk)
4745 {
4746 	if (!tsk_is_oom_victim(tsk))
4747 		return false;
4748 
4749 	/*
4750 	 * !MMU doesn't have oom reaper so give access to memory reserves
4751 	 * only to the thread with TIF_MEMDIE set
4752 	 */
4753 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4754 		return false;
4755 
4756 	return true;
4757 }
4758 
4759 /*
4760  * Distinguish requests which really need access to full memory
4761  * reserves from oom victims which can live with a portion of it
4762  */
4763 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4764 {
4765 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4766 		return 0;
4767 	if (gfp_mask & __GFP_MEMALLOC)
4768 		return ALLOC_NO_WATERMARKS;
4769 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4770 		return ALLOC_NO_WATERMARKS;
4771 	if (!in_interrupt()) {
4772 		if (current->flags & PF_MEMALLOC)
4773 			return ALLOC_NO_WATERMARKS;
4774 		else if (oom_reserves_allowed(current))
4775 			return ALLOC_OOM;
4776 	}
4777 
4778 	return 0;
4779 }
4780 
4781 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4782 {
4783 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4784 }
4785 
4786 /*
4787  * Checks whether it makes sense to retry the reclaim to make a forward progress
4788  * for the given allocation request.
4789  *
4790  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4791  * without success, or when we couldn't even meet the watermark if we
4792  * reclaimed all remaining pages on the LRU lists.
4793  *
4794  * Returns true if a retry is viable or false to enter the oom path.
4795  */
4796 static inline bool
4797 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4798 		     struct alloc_context *ac, int alloc_flags,
4799 		     bool did_some_progress, int *no_progress_loops)
4800 {
4801 	struct zone *zone;
4802 	struct zoneref *z;
4803 	bool ret = false;
4804 
4805 	/*
4806 	 * Costly allocations might have made a progress but this doesn't mean
4807 	 * their order will become available due to high fragmentation so
4808 	 * always increment the no progress counter for them
4809 	 */
4810 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4811 		*no_progress_loops = 0;
4812 	else
4813 		(*no_progress_loops)++;
4814 
4815 	/*
4816 	 * Make sure we converge to OOM if we cannot make any progress
4817 	 * several times in the row.
4818 	 */
4819 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4820 		/* Before OOM, exhaust highatomic_reserve */
4821 		return unreserve_highatomic_pageblock(ac, true);
4822 	}
4823 
4824 	/*
4825 	 * Keep reclaiming pages while there is a chance this will lead
4826 	 * somewhere.  If none of the target zones can satisfy our allocation
4827 	 * request even if all reclaimable pages are considered then we are
4828 	 * screwed and have to go OOM.
4829 	 */
4830 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4831 				ac->highest_zoneidx, ac->nodemask) {
4832 		unsigned long available;
4833 		unsigned long reclaimable;
4834 		unsigned long min_wmark = min_wmark_pages(zone);
4835 		bool wmark;
4836 
4837 		available = reclaimable = zone_reclaimable_pages(zone);
4838 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4839 
4840 		/*
4841 		 * Would the allocation succeed if we reclaimed all
4842 		 * reclaimable pages?
4843 		 */
4844 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4845 				ac->highest_zoneidx, alloc_flags, available);
4846 		trace_reclaim_retry_zone(z, order, reclaimable,
4847 				available, min_wmark, *no_progress_loops, wmark);
4848 		if (wmark) {
4849 			ret = true;
4850 			break;
4851 		}
4852 	}
4853 
4854 	/*
4855 	 * Memory allocation/reclaim might be called from a WQ context and the
4856 	 * current implementation of the WQ concurrency control doesn't
4857 	 * recognize that a particular WQ is congested if the worker thread is
4858 	 * looping without ever sleeping. Therefore we have to do a short sleep
4859 	 * here rather than calling cond_resched().
4860 	 */
4861 	if (current->flags & PF_WQ_WORKER)
4862 		schedule_timeout_uninterruptible(1);
4863 	else
4864 		cond_resched();
4865 	return ret;
4866 }
4867 
4868 static inline bool
4869 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4870 {
4871 	/*
4872 	 * It's possible that cpuset's mems_allowed and the nodemask from
4873 	 * mempolicy don't intersect. This should be normally dealt with by
4874 	 * policy_nodemask(), but it's possible to race with cpuset update in
4875 	 * such a way the check therein was true, and then it became false
4876 	 * before we got our cpuset_mems_cookie here.
4877 	 * This assumes that for all allocations, ac->nodemask can come only
4878 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4879 	 * when it does not intersect with the cpuset restrictions) or the
4880 	 * caller can deal with a violated nodemask.
4881 	 */
4882 	if (cpusets_enabled() && ac->nodemask &&
4883 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4884 		ac->nodemask = NULL;
4885 		return true;
4886 	}
4887 
4888 	/*
4889 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4890 	 * possible to race with parallel threads in such a way that our
4891 	 * allocation can fail while the mask is being updated. If we are about
4892 	 * to fail, check if the cpuset changed during allocation and if so,
4893 	 * retry.
4894 	 */
4895 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4896 		return true;
4897 
4898 	return false;
4899 }
4900 
4901 static inline struct page *
4902 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4903 						struct alloc_context *ac)
4904 {
4905 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4906 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4907 	struct page *page = NULL;
4908 	unsigned int alloc_flags;
4909 	unsigned long did_some_progress;
4910 	enum compact_priority compact_priority;
4911 	enum compact_result compact_result;
4912 	int compaction_retries;
4913 	int no_progress_loops;
4914 	unsigned int cpuset_mems_cookie;
4915 	int reserve_flags;
4916 
4917 	/*
4918 	 * We also sanity check to catch abuse of atomic reserves being used by
4919 	 * callers that are not in atomic context.
4920 	 */
4921 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4922 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4923 		gfp_mask &= ~__GFP_ATOMIC;
4924 
4925 retry_cpuset:
4926 	compaction_retries = 0;
4927 	no_progress_loops = 0;
4928 	compact_priority = DEF_COMPACT_PRIORITY;
4929 	cpuset_mems_cookie = read_mems_allowed_begin();
4930 
4931 	/*
4932 	 * The fast path uses conservative alloc_flags to succeed only until
4933 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4934 	 * alloc_flags precisely. So we do that now.
4935 	 */
4936 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4937 
4938 	/*
4939 	 * We need to recalculate the starting point for the zonelist iterator
4940 	 * because we might have used different nodemask in the fast path, or
4941 	 * there was a cpuset modification and we are retrying - otherwise we
4942 	 * could end up iterating over non-eligible zones endlessly.
4943 	 */
4944 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4945 					ac->highest_zoneidx, ac->nodemask);
4946 	if (!ac->preferred_zoneref->zone)
4947 		goto nopage;
4948 
4949 	/*
4950 	 * Check for insane configurations where the cpuset doesn't contain
4951 	 * any suitable zone to satisfy the request - e.g. non-movable
4952 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4953 	 */
4954 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4955 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
4956 					ac->highest_zoneidx,
4957 					&cpuset_current_mems_allowed);
4958 		if (!z->zone)
4959 			goto nopage;
4960 	}
4961 
4962 	if (alloc_flags & ALLOC_KSWAPD)
4963 		wake_all_kswapds(order, gfp_mask, ac);
4964 
4965 	/*
4966 	 * The adjusted alloc_flags might result in immediate success, so try
4967 	 * that first
4968 	 */
4969 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4970 	if (page)
4971 		goto got_pg;
4972 
4973 	/*
4974 	 * For costly allocations, try direct compaction first, as it's likely
4975 	 * that we have enough base pages and don't need to reclaim. For non-
4976 	 * movable high-order allocations, do that as well, as compaction will
4977 	 * try prevent permanent fragmentation by migrating from blocks of the
4978 	 * same migratetype.
4979 	 * Don't try this for allocations that are allowed to ignore
4980 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4981 	 */
4982 	if (can_direct_reclaim &&
4983 			(costly_order ||
4984 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4985 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4986 		page = __alloc_pages_direct_compact(gfp_mask, order,
4987 						alloc_flags, ac,
4988 						INIT_COMPACT_PRIORITY,
4989 						&compact_result);
4990 		if (page)
4991 			goto got_pg;
4992 
4993 		/*
4994 		 * Checks for costly allocations with __GFP_NORETRY, which
4995 		 * includes some THP page fault allocations
4996 		 */
4997 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4998 			/*
4999 			 * If allocating entire pageblock(s) and compaction
5000 			 * failed because all zones are below low watermarks
5001 			 * or is prohibited because it recently failed at this
5002 			 * order, fail immediately unless the allocator has
5003 			 * requested compaction and reclaim retry.
5004 			 *
5005 			 * Reclaim is
5006 			 *  - potentially very expensive because zones are far
5007 			 *    below their low watermarks or this is part of very
5008 			 *    bursty high order allocations,
5009 			 *  - not guaranteed to help because isolate_freepages()
5010 			 *    may not iterate over freed pages as part of its
5011 			 *    linear scan, and
5012 			 *  - unlikely to make entire pageblocks free on its
5013 			 *    own.
5014 			 */
5015 			if (compact_result == COMPACT_SKIPPED ||
5016 			    compact_result == COMPACT_DEFERRED)
5017 				goto nopage;
5018 
5019 			/*
5020 			 * Looks like reclaim/compaction is worth trying, but
5021 			 * sync compaction could be very expensive, so keep
5022 			 * using async compaction.
5023 			 */
5024 			compact_priority = INIT_COMPACT_PRIORITY;
5025 		}
5026 	}
5027 
5028 retry:
5029 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
5030 	if (alloc_flags & ALLOC_KSWAPD)
5031 		wake_all_kswapds(order, gfp_mask, ac);
5032 
5033 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
5034 	if (reserve_flags)
5035 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
5036 
5037 	/*
5038 	 * Reset the nodemask and zonelist iterators if memory policies can be
5039 	 * ignored. These allocations are high priority and system rather than
5040 	 * user oriented.
5041 	 */
5042 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
5043 		ac->nodemask = NULL;
5044 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5045 					ac->highest_zoneidx, ac->nodemask);
5046 	}
5047 
5048 	/* Attempt with potentially adjusted zonelist and alloc_flags */
5049 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5050 	if (page)
5051 		goto got_pg;
5052 
5053 	/* Caller is not willing to reclaim, we can't balance anything */
5054 	if (!can_direct_reclaim)
5055 		goto nopage;
5056 
5057 	/* Avoid recursion of direct reclaim */
5058 	if (current->flags & PF_MEMALLOC)
5059 		goto nopage;
5060 
5061 	/* Try direct reclaim and then allocating */
5062 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5063 							&did_some_progress);
5064 	if (page)
5065 		goto got_pg;
5066 
5067 	/* Try direct compaction and then allocating */
5068 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5069 					compact_priority, &compact_result);
5070 	if (page)
5071 		goto got_pg;
5072 
5073 	/* Do not loop if specifically requested */
5074 	if (gfp_mask & __GFP_NORETRY)
5075 		goto nopage;
5076 
5077 	/*
5078 	 * Do not retry costly high order allocations unless they are
5079 	 * __GFP_RETRY_MAYFAIL
5080 	 */
5081 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5082 		goto nopage;
5083 
5084 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5085 				 did_some_progress > 0, &no_progress_loops))
5086 		goto retry;
5087 
5088 	/*
5089 	 * It doesn't make any sense to retry for the compaction if the order-0
5090 	 * reclaim is not able to make any progress because the current
5091 	 * implementation of the compaction depends on the sufficient amount
5092 	 * of free memory (see __compaction_suitable)
5093 	 */
5094 	if (did_some_progress > 0 &&
5095 			should_compact_retry(ac, order, alloc_flags,
5096 				compact_result, &compact_priority,
5097 				&compaction_retries))
5098 		goto retry;
5099 
5100 
5101 	/* Deal with possible cpuset update races before we start OOM killing */
5102 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
5103 		goto retry_cpuset;
5104 
5105 	/* Reclaim has failed us, start killing things */
5106 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5107 	if (page)
5108 		goto got_pg;
5109 
5110 	/* Avoid allocations with no watermarks from looping endlessly */
5111 	if (tsk_is_oom_victim(current) &&
5112 	    (alloc_flags & ALLOC_OOM ||
5113 	     (gfp_mask & __GFP_NOMEMALLOC)))
5114 		goto nopage;
5115 
5116 	/* Retry as long as the OOM killer is making progress */
5117 	if (did_some_progress) {
5118 		no_progress_loops = 0;
5119 		goto retry;
5120 	}
5121 
5122 nopage:
5123 	/* Deal with possible cpuset update races before we fail */
5124 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
5125 		goto retry_cpuset;
5126 
5127 	/*
5128 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5129 	 * we always retry
5130 	 */
5131 	if (gfp_mask & __GFP_NOFAIL) {
5132 		/*
5133 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
5134 		 * of any new users that actually require GFP_NOWAIT
5135 		 */
5136 		if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
5137 			goto fail;
5138 
5139 		/*
5140 		 * PF_MEMALLOC request from this context is rather bizarre
5141 		 * because we cannot reclaim anything and only can loop waiting
5142 		 * for somebody to do a work for us
5143 		 */
5144 		WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
5145 
5146 		/*
5147 		 * non failing costly orders are a hard requirement which we
5148 		 * are not prepared for much so let's warn about these users
5149 		 * so that we can identify them and convert them to something
5150 		 * else.
5151 		 */
5152 		WARN_ON_ONCE_GFP(order > PAGE_ALLOC_COSTLY_ORDER, gfp_mask);
5153 
5154 		/*
5155 		 * Help non-failing allocations by giving them access to memory
5156 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
5157 		 * could deplete whole memory reserves which would just make
5158 		 * the situation worse
5159 		 */
5160 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5161 		if (page)
5162 			goto got_pg;
5163 
5164 		cond_resched();
5165 		goto retry;
5166 	}
5167 fail:
5168 	warn_alloc(gfp_mask, ac->nodemask,
5169 			"page allocation failure: order:%u", order);
5170 got_pg:
5171 	return page;
5172 }
5173 
5174 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5175 		int preferred_nid, nodemask_t *nodemask,
5176 		struct alloc_context *ac, gfp_t *alloc_gfp,
5177 		unsigned int *alloc_flags)
5178 {
5179 	ac->highest_zoneidx = gfp_zone(gfp_mask);
5180 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5181 	ac->nodemask = nodemask;
5182 	ac->migratetype = gfp_migratetype(gfp_mask);
5183 
5184 	if (cpusets_enabled()) {
5185 		*alloc_gfp |= __GFP_HARDWALL;
5186 		/*
5187 		 * When we are in the interrupt context, it is irrelevant
5188 		 * to the current task context. It means that any node ok.
5189 		 */
5190 		if (in_task() && !ac->nodemask)
5191 			ac->nodemask = &cpuset_current_mems_allowed;
5192 		else
5193 			*alloc_flags |= ALLOC_CPUSET;
5194 	}
5195 
5196 	might_alloc(gfp_mask);
5197 
5198 	if (should_fail_alloc_page(gfp_mask, order))
5199 		return false;
5200 
5201 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5202 
5203 	/* Dirty zone balancing only done in the fast path */
5204 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5205 
5206 	/*
5207 	 * The preferred zone is used for statistics but crucially it is
5208 	 * also used as the starting point for the zonelist iterator. It
5209 	 * may get reset for allocations that ignore memory policies.
5210 	 */
5211 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5212 					ac->highest_zoneidx, ac->nodemask);
5213 
5214 	return true;
5215 }
5216 
5217 /*
5218  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5219  * @gfp: GFP flags for the allocation
5220  * @preferred_nid: The preferred NUMA node ID to allocate from
5221  * @nodemask: Set of nodes to allocate from, may be NULL
5222  * @nr_pages: The number of pages desired on the list or array
5223  * @page_list: Optional list to store the allocated pages
5224  * @page_array: Optional array to store the pages
5225  *
5226  * This is a batched version of the page allocator that attempts to
5227  * allocate nr_pages quickly. Pages are added to page_list if page_list
5228  * is not NULL, otherwise it is assumed that the page_array is valid.
5229  *
5230  * For lists, nr_pages is the number of pages that should be allocated.
5231  *
5232  * For arrays, only NULL elements are populated with pages and nr_pages
5233  * is the maximum number of pages that will be stored in the array.
5234  *
5235  * Returns the number of pages on the list or array.
5236  */
5237 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5238 			nodemask_t *nodemask, int nr_pages,
5239 			struct list_head *page_list,
5240 			struct page **page_array)
5241 {
5242 	struct page *page;
5243 	unsigned long flags;
5244 	struct zone *zone;
5245 	struct zoneref *z;
5246 	struct per_cpu_pages *pcp;
5247 	struct list_head *pcp_list;
5248 	struct alloc_context ac;
5249 	gfp_t alloc_gfp;
5250 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5251 	int nr_populated = 0, nr_account = 0;
5252 
5253 	/*
5254 	 * Skip populated array elements to determine if any pages need
5255 	 * to be allocated before disabling IRQs.
5256 	 */
5257 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5258 		nr_populated++;
5259 
5260 	/* No pages requested? */
5261 	if (unlikely(nr_pages <= 0))
5262 		goto out;
5263 
5264 	/* Already populated array? */
5265 	if (unlikely(page_array && nr_pages - nr_populated == 0))
5266 		goto out;
5267 
5268 	/* Bulk allocator does not support memcg accounting. */
5269 	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT))
5270 		goto failed;
5271 
5272 	/* Use the single page allocator for one page. */
5273 	if (nr_pages - nr_populated == 1)
5274 		goto failed;
5275 
5276 #ifdef CONFIG_PAGE_OWNER
5277 	/*
5278 	 * PAGE_OWNER may recurse into the allocator to allocate space to
5279 	 * save the stack with pagesets.lock held. Releasing/reacquiring
5280 	 * removes much of the performance benefit of bulk allocation so
5281 	 * force the caller to allocate one page at a time as it'll have
5282 	 * similar performance to added complexity to the bulk allocator.
5283 	 */
5284 	if (static_branch_unlikely(&page_owner_inited))
5285 		goto failed;
5286 #endif
5287 
5288 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5289 	gfp &= gfp_allowed_mask;
5290 	alloc_gfp = gfp;
5291 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5292 		goto out;
5293 	gfp = alloc_gfp;
5294 
5295 	/* Find an allowed local zone that meets the low watermark. */
5296 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5297 		unsigned long mark;
5298 
5299 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5300 		    !__cpuset_zone_allowed(zone, gfp)) {
5301 			continue;
5302 		}
5303 
5304 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5305 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5306 			goto failed;
5307 		}
5308 
5309 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5310 		if (zone_watermark_fast(zone, 0,  mark,
5311 				zonelist_zone_idx(ac.preferred_zoneref),
5312 				alloc_flags, gfp)) {
5313 			break;
5314 		}
5315 	}
5316 
5317 	/*
5318 	 * If there are no allowed local zones that meets the watermarks then
5319 	 * try to allocate a single page and reclaim if necessary.
5320 	 */
5321 	if (unlikely(!zone))
5322 		goto failed;
5323 
5324 	/* Attempt the batch allocation */
5325 	local_lock_irqsave(&pagesets.lock, flags);
5326 	pcp = this_cpu_ptr(zone->per_cpu_pageset);
5327 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5328 
5329 	while (nr_populated < nr_pages) {
5330 
5331 		/* Skip existing pages */
5332 		if (page_array && page_array[nr_populated]) {
5333 			nr_populated++;
5334 			continue;
5335 		}
5336 
5337 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5338 								pcp, pcp_list);
5339 		if (unlikely(!page)) {
5340 			/* Try and allocate at least one page */
5341 			if (!nr_account)
5342 				goto failed_irq;
5343 			break;
5344 		}
5345 		nr_account++;
5346 
5347 		prep_new_page(page, 0, gfp, 0);
5348 		if (page_list)
5349 			list_add(&page->lru, page_list);
5350 		else
5351 			page_array[nr_populated] = page;
5352 		nr_populated++;
5353 	}
5354 
5355 	local_unlock_irqrestore(&pagesets.lock, flags);
5356 
5357 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5358 	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5359 
5360 out:
5361 	return nr_populated;
5362 
5363 failed_irq:
5364 	local_unlock_irqrestore(&pagesets.lock, flags);
5365 
5366 failed:
5367 	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5368 	if (page) {
5369 		if (page_list)
5370 			list_add(&page->lru, page_list);
5371 		else
5372 			page_array[nr_populated] = page;
5373 		nr_populated++;
5374 	}
5375 
5376 	goto out;
5377 }
5378 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5379 
5380 /*
5381  * This is the 'heart' of the zoned buddy allocator.
5382  */
5383 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5384 							nodemask_t *nodemask)
5385 {
5386 	struct page *page;
5387 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5388 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5389 	struct alloc_context ac = { };
5390 
5391 	/*
5392 	 * There are several places where we assume that the order value is sane
5393 	 * so bail out early if the request is out of bound.
5394 	 */
5395 	if (WARN_ON_ONCE_GFP(order >= MAX_ORDER, gfp))
5396 		return NULL;
5397 
5398 	gfp &= gfp_allowed_mask;
5399 	/*
5400 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5401 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
5402 	 * from a particular context which has been marked by
5403 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5404 	 * movable zones are not used during allocation.
5405 	 */
5406 	gfp = current_gfp_context(gfp);
5407 	alloc_gfp = gfp;
5408 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5409 			&alloc_gfp, &alloc_flags))
5410 		return NULL;
5411 
5412 	/*
5413 	 * Forbid the first pass from falling back to types that fragment
5414 	 * memory until all local zones are considered.
5415 	 */
5416 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5417 
5418 	/* First allocation attempt */
5419 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5420 	if (likely(page))
5421 		goto out;
5422 
5423 	alloc_gfp = gfp;
5424 	ac.spread_dirty_pages = false;
5425 
5426 	/*
5427 	 * Restore the original nodemask if it was potentially replaced with
5428 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5429 	 */
5430 	ac.nodemask = nodemask;
5431 
5432 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5433 
5434 out:
5435 	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5436 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5437 		__free_pages(page, order);
5438 		page = NULL;
5439 	}
5440 
5441 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5442 
5443 	return page;
5444 }
5445 EXPORT_SYMBOL(__alloc_pages);
5446 
5447 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
5448 		nodemask_t *nodemask)
5449 {
5450 	struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
5451 			preferred_nid, nodemask);
5452 
5453 	if (page && order > 1)
5454 		prep_transhuge_page(page);
5455 	return (struct folio *)page;
5456 }
5457 EXPORT_SYMBOL(__folio_alloc);
5458 
5459 /*
5460  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5461  * address cannot represent highmem pages. Use alloc_pages and then kmap if
5462  * you need to access high mem.
5463  */
5464 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5465 {
5466 	struct page *page;
5467 
5468 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5469 	if (!page)
5470 		return 0;
5471 	return (unsigned long) page_address(page);
5472 }
5473 EXPORT_SYMBOL(__get_free_pages);
5474 
5475 unsigned long get_zeroed_page(gfp_t gfp_mask)
5476 {
5477 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5478 }
5479 EXPORT_SYMBOL(get_zeroed_page);
5480 
5481 /**
5482  * __free_pages - Free pages allocated with alloc_pages().
5483  * @page: The page pointer returned from alloc_pages().
5484  * @order: The order of the allocation.
5485  *
5486  * This function can free multi-page allocations that are not compound
5487  * pages.  It does not check that the @order passed in matches that of
5488  * the allocation, so it is easy to leak memory.  Freeing more memory
5489  * than was allocated will probably emit a warning.
5490  *
5491  * If the last reference to this page is speculative, it will be released
5492  * by put_page() which only frees the first page of a non-compound
5493  * allocation.  To prevent the remaining pages from being leaked, we free
5494  * the subsequent pages here.  If you want to use the page's reference
5495  * count to decide when to free the allocation, you should allocate a
5496  * compound page, and use put_page() instead of __free_pages().
5497  *
5498  * Context: May be called in interrupt context or while holding a normal
5499  * spinlock, but not in NMI context or while holding a raw spinlock.
5500  */
5501 void __free_pages(struct page *page, unsigned int order)
5502 {
5503 	if (put_page_testzero(page))
5504 		free_the_page(page, order);
5505 	else if (!PageHead(page))
5506 		while (order-- > 0)
5507 			free_the_page(page + (1 << order), order);
5508 }
5509 EXPORT_SYMBOL(__free_pages);
5510 
5511 void free_pages(unsigned long addr, unsigned int order)
5512 {
5513 	if (addr != 0) {
5514 		VM_BUG_ON(!virt_addr_valid((void *)addr));
5515 		__free_pages(virt_to_page((void *)addr), order);
5516 	}
5517 }
5518 
5519 EXPORT_SYMBOL(free_pages);
5520 
5521 /*
5522  * Page Fragment:
5523  *  An arbitrary-length arbitrary-offset area of memory which resides
5524  *  within a 0 or higher order page.  Multiple fragments within that page
5525  *  are individually refcounted, in the page's reference counter.
5526  *
5527  * The page_frag functions below provide a simple allocation framework for
5528  * page fragments.  This is used by the network stack and network device
5529  * drivers to provide a backing region of memory for use as either an
5530  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5531  */
5532 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5533 					     gfp_t gfp_mask)
5534 {
5535 	struct page *page = NULL;
5536 	gfp_t gfp = gfp_mask;
5537 
5538 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5539 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5540 		    __GFP_NOMEMALLOC;
5541 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5542 				PAGE_FRAG_CACHE_MAX_ORDER);
5543 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5544 #endif
5545 	if (unlikely(!page))
5546 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5547 
5548 	nc->va = page ? page_address(page) : NULL;
5549 
5550 	return page;
5551 }
5552 
5553 void __page_frag_cache_drain(struct page *page, unsigned int count)
5554 {
5555 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5556 
5557 	if (page_ref_sub_and_test(page, count))
5558 		free_the_page(page, compound_order(page));
5559 }
5560 EXPORT_SYMBOL(__page_frag_cache_drain);
5561 
5562 void *page_frag_alloc_align(struct page_frag_cache *nc,
5563 		      unsigned int fragsz, gfp_t gfp_mask,
5564 		      unsigned int align_mask)
5565 {
5566 	unsigned int size = PAGE_SIZE;
5567 	struct page *page;
5568 	int offset;
5569 
5570 	if (unlikely(!nc->va)) {
5571 refill:
5572 		page = __page_frag_cache_refill(nc, gfp_mask);
5573 		if (!page)
5574 			return NULL;
5575 
5576 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5577 		/* if size can vary use size else just use PAGE_SIZE */
5578 		size = nc->size;
5579 #endif
5580 		/* Even if we own the page, we do not use atomic_set().
5581 		 * This would break get_page_unless_zero() users.
5582 		 */
5583 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5584 
5585 		/* reset page count bias and offset to start of new frag */
5586 		nc->pfmemalloc = page_is_pfmemalloc(page);
5587 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5588 		nc->offset = size;
5589 	}
5590 
5591 	offset = nc->offset - fragsz;
5592 	if (unlikely(offset < 0)) {
5593 		page = virt_to_page(nc->va);
5594 
5595 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5596 			goto refill;
5597 
5598 		if (unlikely(nc->pfmemalloc)) {
5599 			free_the_page(page, compound_order(page));
5600 			goto refill;
5601 		}
5602 
5603 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5604 		/* if size can vary use size else just use PAGE_SIZE */
5605 		size = nc->size;
5606 #endif
5607 		/* OK, page count is 0, we can safely set it */
5608 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5609 
5610 		/* reset page count bias and offset to start of new frag */
5611 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5612 		offset = size - fragsz;
5613 	}
5614 
5615 	nc->pagecnt_bias--;
5616 	offset &= align_mask;
5617 	nc->offset = offset;
5618 
5619 	return nc->va + offset;
5620 }
5621 EXPORT_SYMBOL(page_frag_alloc_align);
5622 
5623 /*
5624  * Frees a page fragment allocated out of either a compound or order 0 page.
5625  */
5626 void page_frag_free(void *addr)
5627 {
5628 	struct page *page = virt_to_head_page(addr);
5629 
5630 	if (unlikely(put_page_testzero(page)))
5631 		free_the_page(page, compound_order(page));
5632 }
5633 EXPORT_SYMBOL(page_frag_free);
5634 
5635 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5636 		size_t size)
5637 {
5638 	if (addr) {
5639 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
5640 		unsigned long used = addr + PAGE_ALIGN(size);
5641 
5642 		split_page(virt_to_page((void *)addr), order);
5643 		while (used < alloc_end) {
5644 			free_page(used);
5645 			used += PAGE_SIZE;
5646 		}
5647 	}
5648 	return (void *)addr;
5649 }
5650 
5651 /**
5652  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5653  * @size: the number of bytes to allocate
5654  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5655  *
5656  * This function is similar to alloc_pages(), except that it allocates the
5657  * minimum number of pages to satisfy the request.  alloc_pages() can only
5658  * allocate memory in power-of-two pages.
5659  *
5660  * This function is also limited by MAX_ORDER.
5661  *
5662  * Memory allocated by this function must be released by free_pages_exact().
5663  *
5664  * Return: pointer to the allocated area or %NULL in case of error.
5665  */
5666 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5667 {
5668 	unsigned int order = get_order(size);
5669 	unsigned long addr;
5670 
5671 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5672 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5673 
5674 	addr = __get_free_pages(gfp_mask, order);
5675 	return make_alloc_exact(addr, order, size);
5676 }
5677 EXPORT_SYMBOL(alloc_pages_exact);
5678 
5679 /**
5680  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5681  *			   pages on a node.
5682  * @nid: the preferred node ID where memory should be allocated
5683  * @size: the number of bytes to allocate
5684  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5685  *
5686  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5687  * back.
5688  *
5689  * Return: pointer to the allocated area or %NULL in case of error.
5690  */
5691 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5692 {
5693 	unsigned int order = get_order(size);
5694 	struct page *p;
5695 
5696 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5697 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5698 
5699 	p = alloc_pages_node(nid, gfp_mask, order);
5700 	if (!p)
5701 		return NULL;
5702 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5703 }
5704 
5705 /**
5706  * free_pages_exact - release memory allocated via alloc_pages_exact()
5707  * @virt: the value returned by alloc_pages_exact.
5708  * @size: size of allocation, same value as passed to alloc_pages_exact().
5709  *
5710  * Release the memory allocated by a previous call to alloc_pages_exact.
5711  */
5712 void free_pages_exact(void *virt, size_t size)
5713 {
5714 	unsigned long addr = (unsigned long)virt;
5715 	unsigned long end = addr + PAGE_ALIGN(size);
5716 
5717 	while (addr < end) {
5718 		free_page(addr);
5719 		addr += PAGE_SIZE;
5720 	}
5721 }
5722 EXPORT_SYMBOL(free_pages_exact);
5723 
5724 /**
5725  * nr_free_zone_pages - count number of pages beyond high watermark
5726  * @offset: The zone index of the highest zone
5727  *
5728  * nr_free_zone_pages() counts the number of pages which are beyond the
5729  * high watermark within all zones at or below a given zone index.  For each
5730  * zone, the number of pages is calculated as:
5731  *
5732  *     nr_free_zone_pages = managed_pages - high_pages
5733  *
5734  * Return: number of pages beyond high watermark.
5735  */
5736 static unsigned long nr_free_zone_pages(int offset)
5737 {
5738 	struct zoneref *z;
5739 	struct zone *zone;
5740 
5741 	/* Just pick one node, since fallback list is circular */
5742 	unsigned long sum = 0;
5743 
5744 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5745 
5746 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5747 		unsigned long size = zone_managed_pages(zone);
5748 		unsigned long high = high_wmark_pages(zone);
5749 		if (size > high)
5750 			sum += size - high;
5751 	}
5752 
5753 	return sum;
5754 }
5755 
5756 /**
5757  * nr_free_buffer_pages - count number of pages beyond high watermark
5758  *
5759  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5760  * watermark within ZONE_DMA and ZONE_NORMAL.
5761  *
5762  * Return: number of pages beyond high watermark within ZONE_DMA and
5763  * ZONE_NORMAL.
5764  */
5765 unsigned long nr_free_buffer_pages(void)
5766 {
5767 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5768 }
5769 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5770 
5771 static inline void show_node(struct zone *zone)
5772 {
5773 	if (IS_ENABLED(CONFIG_NUMA))
5774 		printk("Node %d ", zone_to_nid(zone));
5775 }
5776 
5777 long si_mem_available(void)
5778 {
5779 	long available;
5780 	unsigned long pagecache;
5781 	unsigned long wmark_low = 0;
5782 	unsigned long pages[NR_LRU_LISTS];
5783 	unsigned long reclaimable;
5784 	struct zone *zone;
5785 	int lru;
5786 
5787 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5788 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5789 
5790 	for_each_zone(zone)
5791 		wmark_low += low_wmark_pages(zone);
5792 
5793 	/*
5794 	 * Estimate the amount of memory available for userspace allocations,
5795 	 * without causing swapping.
5796 	 */
5797 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5798 
5799 	/*
5800 	 * Not all the page cache can be freed, otherwise the system will
5801 	 * start swapping. Assume at least half of the page cache, or the
5802 	 * low watermark worth of cache, needs to stay.
5803 	 */
5804 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5805 	pagecache -= min(pagecache / 2, wmark_low);
5806 	available += pagecache;
5807 
5808 	/*
5809 	 * Part of the reclaimable slab and other kernel memory consists of
5810 	 * items that are in use, and cannot be freed. Cap this estimate at the
5811 	 * low watermark.
5812 	 */
5813 	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5814 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5815 	available += reclaimable - min(reclaimable / 2, wmark_low);
5816 
5817 	if (available < 0)
5818 		available = 0;
5819 	return available;
5820 }
5821 EXPORT_SYMBOL_GPL(si_mem_available);
5822 
5823 void si_meminfo(struct sysinfo *val)
5824 {
5825 	val->totalram = totalram_pages();
5826 	val->sharedram = global_node_page_state(NR_SHMEM);
5827 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5828 	val->bufferram = nr_blockdev_pages();
5829 	val->totalhigh = totalhigh_pages();
5830 	val->freehigh = nr_free_highpages();
5831 	val->mem_unit = PAGE_SIZE;
5832 }
5833 
5834 EXPORT_SYMBOL(si_meminfo);
5835 
5836 #ifdef CONFIG_NUMA
5837 void si_meminfo_node(struct sysinfo *val, int nid)
5838 {
5839 	int zone_type;		/* needs to be signed */
5840 	unsigned long managed_pages = 0;
5841 	unsigned long managed_highpages = 0;
5842 	unsigned long free_highpages = 0;
5843 	pg_data_t *pgdat = NODE_DATA(nid);
5844 
5845 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5846 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5847 	val->totalram = managed_pages;
5848 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5849 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5850 #ifdef CONFIG_HIGHMEM
5851 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5852 		struct zone *zone = &pgdat->node_zones[zone_type];
5853 
5854 		if (is_highmem(zone)) {
5855 			managed_highpages += zone_managed_pages(zone);
5856 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5857 		}
5858 	}
5859 	val->totalhigh = managed_highpages;
5860 	val->freehigh = free_highpages;
5861 #else
5862 	val->totalhigh = managed_highpages;
5863 	val->freehigh = free_highpages;
5864 #endif
5865 	val->mem_unit = PAGE_SIZE;
5866 }
5867 #endif
5868 
5869 /*
5870  * Determine whether the node should be displayed or not, depending on whether
5871  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5872  */
5873 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5874 {
5875 	if (!(flags & SHOW_MEM_FILTER_NODES))
5876 		return false;
5877 
5878 	/*
5879 	 * no node mask - aka implicit memory numa policy. Do not bother with
5880 	 * the synchronization - read_mems_allowed_begin - because we do not
5881 	 * have to be precise here.
5882 	 */
5883 	if (!nodemask)
5884 		nodemask = &cpuset_current_mems_allowed;
5885 
5886 	return !node_isset(nid, *nodemask);
5887 }
5888 
5889 #define K(x) ((x) << (PAGE_SHIFT-10))
5890 
5891 static void show_migration_types(unsigned char type)
5892 {
5893 	static const char types[MIGRATE_TYPES] = {
5894 		[MIGRATE_UNMOVABLE]	= 'U',
5895 		[MIGRATE_MOVABLE]	= 'M',
5896 		[MIGRATE_RECLAIMABLE]	= 'E',
5897 		[MIGRATE_HIGHATOMIC]	= 'H',
5898 #ifdef CONFIG_CMA
5899 		[MIGRATE_CMA]		= 'C',
5900 #endif
5901 #ifdef CONFIG_MEMORY_ISOLATION
5902 		[MIGRATE_ISOLATE]	= 'I',
5903 #endif
5904 	};
5905 	char tmp[MIGRATE_TYPES + 1];
5906 	char *p = tmp;
5907 	int i;
5908 
5909 	for (i = 0; i < MIGRATE_TYPES; i++) {
5910 		if (type & (1 << i))
5911 			*p++ = types[i];
5912 	}
5913 
5914 	*p = '\0';
5915 	printk(KERN_CONT "(%s) ", tmp);
5916 }
5917 
5918 /*
5919  * Show free area list (used inside shift_scroll-lock stuff)
5920  * We also calculate the percentage fragmentation. We do this by counting the
5921  * memory on each free list with the exception of the first item on the list.
5922  *
5923  * Bits in @filter:
5924  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5925  *   cpuset.
5926  */
5927 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5928 {
5929 	unsigned long free_pcp = 0;
5930 	int cpu;
5931 	struct zone *zone;
5932 	pg_data_t *pgdat;
5933 
5934 	for_each_populated_zone(zone) {
5935 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5936 			continue;
5937 
5938 		for_each_online_cpu(cpu)
5939 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5940 	}
5941 
5942 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5943 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5944 		" unevictable:%lu dirty:%lu writeback:%lu\n"
5945 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5946 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5947 		" kernel_misc_reclaimable:%lu\n"
5948 		" free:%lu free_pcp:%lu free_cma:%lu\n",
5949 		global_node_page_state(NR_ACTIVE_ANON),
5950 		global_node_page_state(NR_INACTIVE_ANON),
5951 		global_node_page_state(NR_ISOLATED_ANON),
5952 		global_node_page_state(NR_ACTIVE_FILE),
5953 		global_node_page_state(NR_INACTIVE_FILE),
5954 		global_node_page_state(NR_ISOLATED_FILE),
5955 		global_node_page_state(NR_UNEVICTABLE),
5956 		global_node_page_state(NR_FILE_DIRTY),
5957 		global_node_page_state(NR_WRITEBACK),
5958 		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5959 		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5960 		global_node_page_state(NR_FILE_MAPPED),
5961 		global_node_page_state(NR_SHMEM),
5962 		global_node_page_state(NR_PAGETABLE),
5963 		global_zone_page_state(NR_BOUNCE),
5964 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
5965 		global_zone_page_state(NR_FREE_PAGES),
5966 		free_pcp,
5967 		global_zone_page_state(NR_FREE_CMA_PAGES));
5968 
5969 	for_each_online_pgdat(pgdat) {
5970 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5971 			continue;
5972 
5973 		printk("Node %d"
5974 			" active_anon:%lukB"
5975 			" inactive_anon:%lukB"
5976 			" active_file:%lukB"
5977 			" inactive_file:%lukB"
5978 			" unevictable:%lukB"
5979 			" isolated(anon):%lukB"
5980 			" isolated(file):%lukB"
5981 			" mapped:%lukB"
5982 			" dirty:%lukB"
5983 			" writeback:%lukB"
5984 			" shmem:%lukB"
5985 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5986 			" shmem_thp: %lukB"
5987 			" shmem_pmdmapped: %lukB"
5988 			" anon_thp: %lukB"
5989 #endif
5990 			" writeback_tmp:%lukB"
5991 			" kernel_stack:%lukB"
5992 #ifdef CONFIG_SHADOW_CALL_STACK
5993 			" shadow_call_stack:%lukB"
5994 #endif
5995 			" pagetables:%lukB"
5996 			" all_unreclaimable? %s"
5997 			"\n",
5998 			pgdat->node_id,
5999 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
6000 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
6001 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
6002 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
6003 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
6004 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
6005 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
6006 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
6007 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
6008 			K(node_page_state(pgdat, NR_WRITEBACK)),
6009 			K(node_page_state(pgdat, NR_SHMEM)),
6010 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6011 			K(node_page_state(pgdat, NR_SHMEM_THPS)),
6012 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
6013 			K(node_page_state(pgdat, NR_ANON_THPS)),
6014 #endif
6015 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
6016 			node_page_state(pgdat, NR_KERNEL_STACK_KB),
6017 #ifdef CONFIG_SHADOW_CALL_STACK
6018 			node_page_state(pgdat, NR_KERNEL_SCS_KB),
6019 #endif
6020 			K(node_page_state(pgdat, NR_PAGETABLE)),
6021 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
6022 				"yes" : "no");
6023 	}
6024 
6025 	for_each_populated_zone(zone) {
6026 		int i;
6027 
6028 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6029 			continue;
6030 
6031 		free_pcp = 0;
6032 		for_each_online_cpu(cpu)
6033 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6034 
6035 		show_node(zone);
6036 		printk(KERN_CONT
6037 			"%s"
6038 			" free:%lukB"
6039 			" boost:%lukB"
6040 			" min:%lukB"
6041 			" low:%lukB"
6042 			" high:%lukB"
6043 			" reserved_highatomic:%luKB"
6044 			" active_anon:%lukB"
6045 			" inactive_anon:%lukB"
6046 			" active_file:%lukB"
6047 			" inactive_file:%lukB"
6048 			" unevictable:%lukB"
6049 			" writepending:%lukB"
6050 			" present:%lukB"
6051 			" managed:%lukB"
6052 			" mlocked:%lukB"
6053 			" bounce:%lukB"
6054 			" free_pcp:%lukB"
6055 			" local_pcp:%ukB"
6056 			" free_cma:%lukB"
6057 			"\n",
6058 			zone->name,
6059 			K(zone_page_state(zone, NR_FREE_PAGES)),
6060 			K(zone->watermark_boost),
6061 			K(min_wmark_pages(zone)),
6062 			K(low_wmark_pages(zone)),
6063 			K(high_wmark_pages(zone)),
6064 			K(zone->nr_reserved_highatomic),
6065 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6066 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6067 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6068 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6069 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6070 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6071 			K(zone->present_pages),
6072 			K(zone_managed_pages(zone)),
6073 			K(zone_page_state(zone, NR_MLOCK)),
6074 			K(zone_page_state(zone, NR_BOUNCE)),
6075 			K(free_pcp),
6076 			K(this_cpu_read(zone->per_cpu_pageset->count)),
6077 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6078 		printk("lowmem_reserve[]:");
6079 		for (i = 0; i < MAX_NR_ZONES; i++)
6080 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6081 		printk(KERN_CONT "\n");
6082 	}
6083 
6084 	for_each_populated_zone(zone) {
6085 		unsigned int order;
6086 		unsigned long nr[MAX_ORDER], flags, total = 0;
6087 		unsigned char types[MAX_ORDER];
6088 
6089 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6090 			continue;
6091 		show_node(zone);
6092 		printk(KERN_CONT "%s: ", zone->name);
6093 
6094 		spin_lock_irqsave(&zone->lock, flags);
6095 		for (order = 0; order < MAX_ORDER; order++) {
6096 			struct free_area *area = &zone->free_area[order];
6097 			int type;
6098 
6099 			nr[order] = area->nr_free;
6100 			total += nr[order] << order;
6101 
6102 			types[order] = 0;
6103 			for (type = 0; type < MIGRATE_TYPES; type++) {
6104 				if (!free_area_empty(area, type))
6105 					types[order] |= 1 << type;
6106 			}
6107 		}
6108 		spin_unlock_irqrestore(&zone->lock, flags);
6109 		for (order = 0; order < MAX_ORDER; order++) {
6110 			printk(KERN_CONT "%lu*%lukB ",
6111 			       nr[order], K(1UL) << order);
6112 			if (nr[order])
6113 				show_migration_types(types[order]);
6114 		}
6115 		printk(KERN_CONT "= %lukB\n", K(total));
6116 	}
6117 
6118 	hugetlb_show_meminfo();
6119 
6120 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6121 
6122 	show_swap_cache_info();
6123 }
6124 
6125 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6126 {
6127 	zoneref->zone = zone;
6128 	zoneref->zone_idx = zone_idx(zone);
6129 }
6130 
6131 /*
6132  * Builds allocation fallback zone lists.
6133  *
6134  * Add all populated zones of a node to the zonelist.
6135  */
6136 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6137 {
6138 	struct zone *zone;
6139 	enum zone_type zone_type = MAX_NR_ZONES;
6140 	int nr_zones = 0;
6141 
6142 	do {
6143 		zone_type--;
6144 		zone = pgdat->node_zones + zone_type;
6145 		if (populated_zone(zone)) {
6146 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6147 			check_highest_zone(zone_type);
6148 		}
6149 	} while (zone_type);
6150 
6151 	return nr_zones;
6152 }
6153 
6154 #ifdef CONFIG_NUMA
6155 
6156 static int __parse_numa_zonelist_order(char *s)
6157 {
6158 	/*
6159 	 * We used to support different zonelists modes but they turned
6160 	 * out to be just not useful. Let's keep the warning in place
6161 	 * if somebody still use the cmd line parameter so that we do
6162 	 * not fail it silently
6163 	 */
6164 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6165 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
6166 		return -EINVAL;
6167 	}
6168 	return 0;
6169 }
6170 
6171 char numa_zonelist_order[] = "Node";
6172 
6173 /*
6174  * sysctl handler for numa_zonelist_order
6175  */
6176 int numa_zonelist_order_handler(struct ctl_table *table, int write,
6177 		void *buffer, size_t *length, loff_t *ppos)
6178 {
6179 	if (write)
6180 		return __parse_numa_zonelist_order(buffer);
6181 	return proc_dostring(table, write, buffer, length, ppos);
6182 }
6183 
6184 
6185 static int node_load[MAX_NUMNODES];
6186 
6187 /**
6188  * find_next_best_node - find the next node that should appear in a given node's fallback list
6189  * @node: node whose fallback list we're appending
6190  * @used_node_mask: nodemask_t of already used nodes
6191  *
6192  * We use a number of factors to determine which is the next node that should
6193  * appear on a given node's fallback list.  The node should not have appeared
6194  * already in @node's fallback list, and it should be the next closest node
6195  * according to the distance array (which contains arbitrary distance values
6196  * from each node to each node in the system), and should also prefer nodes
6197  * with no CPUs, since presumably they'll have very little allocation pressure
6198  * on them otherwise.
6199  *
6200  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6201  */
6202 int find_next_best_node(int node, nodemask_t *used_node_mask)
6203 {
6204 	int n, val;
6205 	int min_val = INT_MAX;
6206 	int best_node = NUMA_NO_NODE;
6207 
6208 	/* Use the local node if we haven't already */
6209 	if (!node_isset(node, *used_node_mask)) {
6210 		node_set(node, *used_node_mask);
6211 		return node;
6212 	}
6213 
6214 	for_each_node_state(n, N_MEMORY) {
6215 
6216 		/* Don't want a node to appear more than once */
6217 		if (node_isset(n, *used_node_mask))
6218 			continue;
6219 
6220 		/* Use the distance array to find the distance */
6221 		val = node_distance(node, n);
6222 
6223 		/* Penalize nodes under us ("prefer the next node") */
6224 		val += (n < node);
6225 
6226 		/* Give preference to headless and unused nodes */
6227 		if (!cpumask_empty(cpumask_of_node(n)))
6228 			val += PENALTY_FOR_NODE_WITH_CPUS;
6229 
6230 		/* Slight preference for less loaded node */
6231 		val *= MAX_NUMNODES;
6232 		val += node_load[n];
6233 
6234 		if (val < min_val) {
6235 			min_val = val;
6236 			best_node = n;
6237 		}
6238 	}
6239 
6240 	if (best_node >= 0)
6241 		node_set(best_node, *used_node_mask);
6242 
6243 	return best_node;
6244 }
6245 
6246 
6247 /*
6248  * Build zonelists ordered by node and zones within node.
6249  * This results in maximum locality--normal zone overflows into local
6250  * DMA zone, if any--but risks exhausting DMA zone.
6251  */
6252 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6253 		unsigned nr_nodes)
6254 {
6255 	struct zoneref *zonerefs;
6256 	int i;
6257 
6258 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6259 
6260 	for (i = 0; i < nr_nodes; i++) {
6261 		int nr_zones;
6262 
6263 		pg_data_t *node = NODE_DATA(node_order[i]);
6264 
6265 		nr_zones = build_zonerefs_node(node, zonerefs);
6266 		zonerefs += nr_zones;
6267 	}
6268 	zonerefs->zone = NULL;
6269 	zonerefs->zone_idx = 0;
6270 }
6271 
6272 /*
6273  * Build gfp_thisnode zonelists
6274  */
6275 static void build_thisnode_zonelists(pg_data_t *pgdat)
6276 {
6277 	struct zoneref *zonerefs;
6278 	int nr_zones;
6279 
6280 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6281 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6282 	zonerefs += nr_zones;
6283 	zonerefs->zone = NULL;
6284 	zonerefs->zone_idx = 0;
6285 }
6286 
6287 /*
6288  * Build zonelists ordered by zone and nodes within zones.
6289  * This results in conserving DMA zone[s] until all Normal memory is
6290  * exhausted, but results in overflowing to remote node while memory
6291  * may still exist in local DMA zone.
6292  */
6293 
6294 static void build_zonelists(pg_data_t *pgdat)
6295 {
6296 	static int node_order[MAX_NUMNODES];
6297 	int node, nr_nodes = 0;
6298 	nodemask_t used_mask = NODE_MASK_NONE;
6299 	int local_node, prev_node;
6300 
6301 	/* NUMA-aware ordering of nodes */
6302 	local_node = pgdat->node_id;
6303 	prev_node = local_node;
6304 
6305 	memset(node_order, 0, sizeof(node_order));
6306 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6307 		/*
6308 		 * We don't want to pressure a particular node.
6309 		 * So adding penalty to the first node in same
6310 		 * distance group to make it round-robin.
6311 		 */
6312 		if (node_distance(local_node, node) !=
6313 		    node_distance(local_node, prev_node))
6314 			node_load[node] += 1;
6315 
6316 		node_order[nr_nodes++] = node;
6317 		prev_node = node;
6318 	}
6319 
6320 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6321 	build_thisnode_zonelists(pgdat);
6322 	pr_info("Fallback order for Node %d: ", local_node);
6323 	for (node = 0; node < nr_nodes; node++)
6324 		pr_cont("%d ", node_order[node]);
6325 	pr_cont("\n");
6326 }
6327 
6328 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6329 /*
6330  * Return node id of node used for "local" allocations.
6331  * I.e., first node id of first zone in arg node's generic zonelist.
6332  * Used for initializing percpu 'numa_mem', which is used primarily
6333  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6334  */
6335 int local_memory_node(int node)
6336 {
6337 	struct zoneref *z;
6338 
6339 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6340 				   gfp_zone(GFP_KERNEL),
6341 				   NULL);
6342 	return zone_to_nid(z->zone);
6343 }
6344 #endif
6345 
6346 static void setup_min_unmapped_ratio(void);
6347 static void setup_min_slab_ratio(void);
6348 #else	/* CONFIG_NUMA */
6349 
6350 static void build_zonelists(pg_data_t *pgdat)
6351 {
6352 	int node, local_node;
6353 	struct zoneref *zonerefs;
6354 	int nr_zones;
6355 
6356 	local_node = pgdat->node_id;
6357 
6358 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6359 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6360 	zonerefs += nr_zones;
6361 
6362 	/*
6363 	 * Now we build the zonelist so that it contains the zones
6364 	 * of all the other nodes.
6365 	 * We don't want to pressure a particular node, so when
6366 	 * building the zones for node N, we make sure that the
6367 	 * zones coming right after the local ones are those from
6368 	 * node N+1 (modulo N)
6369 	 */
6370 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6371 		if (!node_online(node))
6372 			continue;
6373 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6374 		zonerefs += nr_zones;
6375 	}
6376 	for (node = 0; node < local_node; node++) {
6377 		if (!node_online(node))
6378 			continue;
6379 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6380 		zonerefs += nr_zones;
6381 	}
6382 
6383 	zonerefs->zone = NULL;
6384 	zonerefs->zone_idx = 0;
6385 }
6386 
6387 #endif	/* CONFIG_NUMA */
6388 
6389 /*
6390  * Boot pageset table. One per cpu which is going to be used for all
6391  * zones and all nodes. The parameters will be set in such a way
6392  * that an item put on a list will immediately be handed over to
6393  * the buddy list. This is safe since pageset manipulation is done
6394  * with interrupts disabled.
6395  *
6396  * The boot_pagesets must be kept even after bootup is complete for
6397  * unused processors and/or zones. They do play a role for bootstrapping
6398  * hotplugged processors.
6399  *
6400  * zoneinfo_show() and maybe other functions do
6401  * not check if the processor is online before following the pageset pointer.
6402  * Other parts of the kernel may not check if the zone is available.
6403  */
6404 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6405 /* These effectively disable the pcplists in the boot pageset completely */
6406 #define BOOT_PAGESET_HIGH	0
6407 #define BOOT_PAGESET_BATCH	1
6408 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6409 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6410 DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6411 
6412 static void __build_all_zonelists(void *data)
6413 {
6414 	int nid;
6415 	int __maybe_unused cpu;
6416 	pg_data_t *self = data;
6417 	static DEFINE_SPINLOCK(lock);
6418 
6419 	spin_lock(&lock);
6420 
6421 #ifdef CONFIG_NUMA
6422 	memset(node_load, 0, sizeof(node_load));
6423 #endif
6424 
6425 	/*
6426 	 * This node is hotadded and no memory is yet present.   So just
6427 	 * building zonelists is fine - no need to touch other nodes.
6428 	 */
6429 	if (self && !node_online(self->node_id)) {
6430 		build_zonelists(self);
6431 	} else {
6432 		/*
6433 		 * All possible nodes have pgdat preallocated
6434 		 * in free_area_init
6435 		 */
6436 		for_each_node(nid) {
6437 			pg_data_t *pgdat = NODE_DATA(nid);
6438 
6439 			build_zonelists(pgdat);
6440 		}
6441 
6442 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6443 		/*
6444 		 * We now know the "local memory node" for each node--
6445 		 * i.e., the node of the first zone in the generic zonelist.
6446 		 * Set up numa_mem percpu variable for on-line cpus.  During
6447 		 * boot, only the boot cpu should be on-line;  we'll init the
6448 		 * secondary cpus' numa_mem as they come on-line.  During
6449 		 * node/memory hotplug, we'll fixup all on-line cpus.
6450 		 */
6451 		for_each_online_cpu(cpu)
6452 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6453 #endif
6454 	}
6455 
6456 	spin_unlock(&lock);
6457 }
6458 
6459 static noinline void __init
6460 build_all_zonelists_init(void)
6461 {
6462 	int cpu;
6463 
6464 	__build_all_zonelists(NULL);
6465 
6466 	/*
6467 	 * Initialize the boot_pagesets that are going to be used
6468 	 * for bootstrapping processors. The real pagesets for
6469 	 * each zone will be allocated later when the per cpu
6470 	 * allocator is available.
6471 	 *
6472 	 * boot_pagesets are used also for bootstrapping offline
6473 	 * cpus if the system is already booted because the pagesets
6474 	 * are needed to initialize allocators on a specific cpu too.
6475 	 * F.e. the percpu allocator needs the page allocator which
6476 	 * needs the percpu allocator in order to allocate its pagesets
6477 	 * (a chicken-egg dilemma).
6478 	 */
6479 	for_each_possible_cpu(cpu)
6480 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6481 
6482 	mminit_verify_zonelist();
6483 	cpuset_init_current_mems_allowed();
6484 }
6485 
6486 /*
6487  * unless system_state == SYSTEM_BOOTING.
6488  *
6489  * __ref due to call of __init annotated helper build_all_zonelists_init
6490  * [protected by SYSTEM_BOOTING].
6491  */
6492 void __ref build_all_zonelists(pg_data_t *pgdat)
6493 {
6494 	unsigned long vm_total_pages;
6495 
6496 	if (system_state == SYSTEM_BOOTING) {
6497 		build_all_zonelists_init();
6498 	} else {
6499 		__build_all_zonelists(pgdat);
6500 		/* cpuset refresh routine should be here */
6501 	}
6502 	/* Get the number of free pages beyond high watermark in all zones. */
6503 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6504 	/*
6505 	 * Disable grouping by mobility if the number of pages in the
6506 	 * system is too low to allow the mechanism to work. It would be
6507 	 * more accurate, but expensive to check per-zone. This check is
6508 	 * made on memory-hotadd so a system can start with mobility
6509 	 * disabled and enable it later
6510 	 */
6511 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6512 		page_group_by_mobility_disabled = 1;
6513 	else
6514 		page_group_by_mobility_disabled = 0;
6515 
6516 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
6517 		nr_online_nodes,
6518 		page_group_by_mobility_disabled ? "off" : "on",
6519 		vm_total_pages);
6520 #ifdef CONFIG_NUMA
6521 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6522 #endif
6523 }
6524 
6525 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6526 static bool __meminit
6527 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6528 {
6529 	static struct memblock_region *r;
6530 
6531 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6532 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6533 			for_each_mem_region(r) {
6534 				if (*pfn < memblock_region_memory_end_pfn(r))
6535 					break;
6536 			}
6537 		}
6538 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
6539 		    memblock_is_mirror(r)) {
6540 			*pfn = memblock_region_memory_end_pfn(r);
6541 			return true;
6542 		}
6543 	}
6544 	return false;
6545 }
6546 
6547 /*
6548  * Initially all pages are reserved - free ones are freed
6549  * up by memblock_free_all() once the early boot process is
6550  * done. Non-atomic initialization, single-pass.
6551  *
6552  * All aligned pageblocks are initialized to the specified migratetype
6553  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6554  * zone stats (e.g., nr_isolate_pageblock) are touched.
6555  */
6556 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6557 		unsigned long start_pfn, unsigned long zone_end_pfn,
6558 		enum meminit_context context,
6559 		struct vmem_altmap *altmap, int migratetype)
6560 {
6561 	unsigned long pfn, end_pfn = start_pfn + size;
6562 	struct page *page;
6563 
6564 	if (highest_memmap_pfn < end_pfn - 1)
6565 		highest_memmap_pfn = end_pfn - 1;
6566 
6567 #ifdef CONFIG_ZONE_DEVICE
6568 	/*
6569 	 * Honor reservation requested by the driver for this ZONE_DEVICE
6570 	 * memory. We limit the total number of pages to initialize to just
6571 	 * those that might contain the memory mapping. We will defer the
6572 	 * ZONE_DEVICE page initialization until after we have released
6573 	 * the hotplug lock.
6574 	 */
6575 	if (zone == ZONE_DEVICE) {
6576 		if (!altmap)
6577 			return;
6578 
6579 		if (start_pfn == altmap->base_pfn)
6580 			start_pfn += altmap->reserve;
6581 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6582 	}
6583 #endif
6584 
6585 	for (pfn = start_pfn; pfn < end_pfn; ) {
6586 		/*
6587 		 * There can be holes in boot-time mem_map[]s handed to this
6588 		 * function.  They do not exist on hotplugged memory.
6589 		 */
6590 		if (context == MEMINIT_EARLY) {
6591 			if (overlap_memmap_init(zone, &pfn))
6592 				continue;
6593 			if (defer_init(nid, pfn, zone_end_pfn))
6594 				break;
6595 		}
6596 
6597 		page = pfn_to_page(pfn);
6598 		__init_single_page(page, pfn, zone, nid);
6599 		if (context == MEMINIT_HOTPLUG)
6600 			__SetPageReserved(page);
6601 
6602 		/*
6603 		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6604 		 * such that unmovable allocations won't be scattered all
6605 		 * over the place during system boot.
6606 		 */
6607 		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6608 			set_pageblock_migratetype(page, migratetype);
6609 			cond_resched();
6610 		}
6611 		pfn++;
6612 	}
6613 }
6614 
6615 #ifdef CONFIG_ZONE_DEVICE
6616 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
6617 					  unsigned long zone_idx, int nid,
6618 					  struct dev_pagemap *pgmap)
6619 {
6620 
6621 	__init_single_page(page, pfn, zone_idx, nid);
6622 
6623 	/*
6624 	 * Mark page reserved as it will need to wait for onlining
6625 	 * phase for it to be fully associated with a zone.
6626 	 *
6627 	 * We can use the non-atomic __set_bit operation for setting
6628 	 * the flag as we are still initializing the pages.
6629 	 */
6630 	__SetPageReserved(page);
6631 
6632 	/*
6633 	 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6634 	 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
6635 	 * ever freed or placed on a driver-private list.
6636 	 */
6637 	page->pgmap = pgmap;
6638 	page->zone_device_data = NULL;
6639 
6640 	/*
6641 	 * Mark the block movable so that blocks are reserved for
6642 	 * movable at startup. This will force kernel allocations
6643 	 * to reserve their blocks rather than leaking throughout
6644 	 * the address space during boot when many long-lived
6645 	 * kernel allocations are made.
6646 	 *
6647 	 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6648 	 * because this is done early in section_activate()
6649 	 */
6650 	if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6651 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6652 		cond_resched();
6653 	}
6654 }
6655 
6656 /*
6657  * With compound page geometry and when struct pages are stored in ram most
6658  * tail pages are reused. Consequently, the amount of unique struct pages to
6659  * initialize is a lot smaller that the total amount of struct pages being
6660  * mapped. This is a paired / mild layering violation with explicit knowledge
6661  * of how the sparse_vmemmap internals handle compound pages in the lack
6662  * of an altmap. See vmemmap_populate_compound_pages().
6663  */
6664 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
6665 					      unsigned long nr_pages)
6666 {
6667 	return is_power_of_2(sizeof(struct page)) &&
6668 		!altmap ? 2 * (PAGE_SIZE / sizeof(struct page)) : nr_pages;
6669 }
6670 
6671 static void __ref memmap_init_compound(struct page *head,
6672 				       unsigned long head_pfn,
6673 				       unsigned long zone_idx, int nid,
6674 				       struct dev_pagemap *pgmap,
6675 				       unsigned long nr_pages)
6676 {
6677 	unsigned long pfn, end_pfn = head_pfn + nr_pages;
6678 	unsigned int order = pgmap->vmemmap_shift;
6679 
6680 	__SetPageHead(head);
6681 	for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
6682 		struct page *page = pfn_to_page(pfn);
6683 
6684 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6685 		prep_compound_tail(head, pfn - head_pfn);
6686 		set_page_count(page, 0);
6687 
6688 		/*
6689 		 * The first tail page stores compound_mapcount_ptr() and
6690 		 * compound_order() and the second tail page stores
6691 		 * compound_pincount_ptr(). Call prep_compound_head() after
6692 		 * the first and second tail pages have been initialized to
6693 		 * not have the data overwritten.
6694 		 */
6695 		if (pfn == head_pfn + 2)
6696 			prep_compound_head(head, order);
6697 	}
6698 }
6699 
6700 void __ref memmap_init_zone_device(struct zone *zone,
6701 				   unsigned long start_pfn,
6702 				   unsigned long nr_pages,
6703 				   struct dev_pagemap *pgmap)
6704 {
6705 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6706 	struct pglist_data *pgdat = zone->zone_pgdat;
6707 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6708 	unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
6709 	unsigned long zone_idx = zone_idx(zone);
6710 	unsigned long start = jiffies;
6711 	int nid = pgdat->node_id;
6712 
6713 	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6714 		return;
6715 
6716 	/*
6717 	 * The call to memmap_init should have already taken care
6718 	 * of the pages reserved for the memmap, so we can just jump to
6719 	 * the end of that region and start processing the device pages.
6720 	 */
6721 	if (altmap) {
6722 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6723 		nr_pages = end_pfn - start_pfn;
6724 	}
6725 
6726 	for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
6727 		struct page *page = pfn_to_page(pfn);
6728 
6729 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6730 
6731 		if (pfns_per_compound == 1)
6732 			continue;
6733 
6734 		memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
6735 				     compound_nr_pages(altmap, pfns_per_compound));
6736 	}
6737 
6738 	pr_info("%s initialised %lu pages in %ums\n", __func__,
6739 		nr_pages, jiffies_to_msecs(jiffies - start));
6740 }
6741 
6742 #endif
6743 static void __meminit zone_init_free_lists(struct zone *zone)
6744 {
6745 	unsigned int order, t;
6746 	for_each_migratetype_order(order, t) {
6747 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6748 		zone->free_area[order].nr_free = 0;
6749 	}
6750 }
6751 
6752 /*
6753  * Only struct pages that correspond to ranges defined by memblock.memory
6754  * are zeroed and initialized by going through __init_single_page() during
6755  * memmap_init_zone_range().
6756  *
6757  * But, there could be struct pages that correspond to holes in
6758  * memblock.memory. This can happen because of the following reasons:
6759  * - physical memory bank size is not necessarily the exact multiple of the
6760  *   arbitrary section size
6761  * - early reserved memory may not be listed in memblock.memory
6762  * - memory layouts defined with memmap= kernel parameter may not align
6763  *   nicely with memmap sections
6764  *
6765  * Explicitly initialize those struct pages so that:
6766  * - PG_Reserved is set
6767  * - zone and node links point to zone and node that span the page if the
6768  *   hole is in the middle of a zone
6769  * - zone and node links point to adjacent zone/node if the hole falls on
6770  *   the zone boundary; the pages in such holes will be prepended to the
6771  *   zone/node above the hole except for the trailing pages in the last
6772  *   section that will be appended to the zone/node below.
6773  */
6774 static void __init init_unavailable_range(unsigned long spfn,
6775 					  unsigned long epfn,
6776 					  int zone, int node)
6777 {
6778 	unsigned long pfn;
6779 	u64 pgcnt = 0;
6780 
6781 	for (pfn = spfn; pfn < epfn; pfn++) {
6782 		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6783 			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6784 				+ pageblock_nr_pages - 1;
6785 			continue;
6786 		}
6787 		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
6788 		__SetPageReserved(pfn_to_page(pfn));
6789 		pgcnt++;
6790 	}
6791 
6792 	if (pgcnt)
6793 		pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6794 			node, zone_names[zone], pgcnt);
6795 }
6796 
6797 static void __init memmap_init_zone_range(struct zone *zone,
6798 					  unsigned long start_pfn,
6799 					  unsigned long end_pfn,
6800 					  unsigned long *hole_pfn)
6801 {
6802 	unsigned long zone_start_pfn = zone->zone_start_pfn;
6803 	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6804 	int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6805 
6806 	start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6807 	end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6808 
6809 	if (start_pfn >= end_pfn)
6810 		return;
6811 
6812 	memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6813 			  zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6814 
6815 	if (*hole_pfn < start_pfn)
6816 		init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6817 
6818 	*hole_pfn = end_pfn;
6819 }
6820 
6821 static void __init memmap_init(void)
6822 {
6823 	unsigned long start_pfn, end_pfn;
6824 	unsigned long hole_pfn = 0;
6825 	int i, j, zone_id = 0, nid;
6826 
6827 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6828 		struct pglist_data *node = NODE_DATA(nid);
6829 
6830 		for (j = 0; j < MAX_NR_ZONES; j++) {
6831 			struct zone *zone = node->node_zones + j;
6832 
6833 			if (!populated_zone(zone))
6834 				continue;
6835 
6836 			memmap_init_zone_range(zone, start_pfn, end_pfn,
6837 					       &hole_pfn);
6838 			zone_id = j;
6839 		}
6840 	}
6841 
6842 #ifdef CONFIG_SPARSEMEM
6843 	/*
6844 	 * Initialize the memory map for hole in the range [memory_end,
6845 	 * section_end].
6846 	 * Append the pages in this hole to the highest zone in the last
6847 	 * node.
6848 	 * The call to init_unavailable_range() is outside the ifdef to
6849 	 * silence the compiler warining about zone_id set but not used;
6850 	 * for FLATMEM it is a nop anyway
6851 	 */
6852 	end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
6853 	if (hole_pfn < end_pfn)
6854 #endif
6855 		init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
6856 }
6857 
6858 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
6859 			  phys_addr_t min_addr, int nid, bool exact_nid)
6860 {
6861 	void *ptr;
6862 
6863 	if (exact_nid)
6864 		ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
6865 						   MEMBLOCK_ALLOC_ACCESSIBLE,
6866 						   nid);
6867 	else
6868 		ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
6869 						 MEMBLOCK_ALLOC_ACCESSIBLE,
6870 						 nid);
6871 
6872 	if (ptr && size > 0)
6873 		page_init_poison(ptr, size);
6874 
6875 	return ptr;
6876 }
6877 
6878 static int zone_batchsize(struct zone *zone)
6879 {
6880 #ifdef CONFIG_MMU
6881 	int batch;
6882 
6883 	/*
6884 	 * The number of pages to batch allocate is either ~0.1%
6885 	 * of the zone or 1MB, whichever is smaller. The batch
6886 	 * size is striking a balance between allocation latency
6887 	 * and zone lock contention.
6888 	 */
6889 	batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE);
6890 	batch /= 4;		/* We effectively *= 4 below */
6891 	if (batch < 1)
6892 		batch = 1;
6893 
6894 	/*
6895 	 * Clamp the batch to a 2^n - 1 value. Having a power
6896 	 * of 2 value was found to be more likely to have
6897 	 * suboptimal cache aliasing properties in some cases.
6898 	 *
6899 	 * For example if 2 tasks are alternately allocating
6900 	 * batches of pages, one task can end up with a lot
6901 	 * of pages of one half of the possible page colors
6902 	 * and the other with pages of the other colors.
6903 	 */
6904 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
6905 
6906 	return batch;
6907 
6908 #else
6909 	/* The deferral and batching of frees should be suppressed under NOMMU
6910 	 * conditions.
6911 	 *
6912 	 * The problem is that NOMMU needs to be able to allocate large chunks
6913 	 * of contiguous memory as there's no hardware page translation to
6914 	 * assemble apparent contiguous memory from discontiguous pages.
6915 	 *
6916 	 * Queueing large contiguous runs of pages for batching, however,
6917 	 * causes the pages to actually be freed in smaller chunks.  As there
6918 	 * can be a significant delay between the individual batches being
6919 	 * recycled, this leads to the once large chunks of space being
6920 	 * fragmented and becoming unavailable for high-order allocations.
6921 	 */
6922 	return 0;
6923 #endif
6924 }
6925 
6926 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
6927 {
6928 #ifdef CONFIG_MMU
6929 	int high;
6930 	int nr_split_cpus;
6931 	unsigned long total_pages;
6932 
6933 	if (!percpu_pagelist_high_fraction) {
6934 		/*
6935 		 * By default, the high value of the pcp is based on the zone
6936 		 * low watermark so that if they are full then background
6937 		 * reclaim will not be started prematurely.
6938 		 */
6939 		total_pages = low_wmark_pages(zone);
6940 	} else {
6941 		/*
6942 		 * If percpu_pagelist_high_fraction is configured, the high
6943 		 * value is based on a fraction of the managed pages in the
6944 		 * zone.
6945 		 */
6946 		total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
6947 	}
6948 
6949 	/*
6950 	 * Split the high value across all online CPUs local to the zone. Note
6951 	 * that early in boot that CPUs may not be online yet and that during
6952 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
6953 	 * onlined. For memory nodes that have no CPUs, split pcp->high across
6954 	 * all online CPUs to mitigate the risk that reclaim is triggered
6955 	 * prematurely due to pages stored on pcp lists.
6956 	 */
6957 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
6958 	if (!nr_split_cpus)
6959 		nr_split_cpus = num_online_cpus();
6960 	high = total_pages / nr_split_cpus;
6961 
6962 	/*
6963 	 * Ensure high is at least batch*4. The multiple is based on the
6964 	 * historical relationship between high and batch.
6965 	 */
6966 	high = max(high, batch << 2);
6967 
6968 	return high;
6969 #else
6970 	return 0;
6971 #endif
6972 }
6973 
6974 /*
6975  * pcp->high and pcp->batch values are related and generally batch is lower
6976  * than high. They are also related to pcp->count such that count is lower
6977  * than high, and as soon as it reaches high, the pcplist is flushed.
6978  *
6979  * However, guaranteeing these relations at all times would require e.g. write
6980  * barriers here but also careful usage of read barriers at the read side, and
6981  * thus be prone to error and bad for performance. Thus the update only prevents
6982  * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6983  * can cope with those fields changing asynchronously, and fully trust only the
6984  * pcp->count field on the local CPU with interrupts disabled.
6985  *
6986  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6987  * outside of boot time (or some other assurance that no concurrent updaters
6988  * exist).
6989  */
6990 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6991 		unsigned long batch)
6992 {
6993 	WRITE_ONCE(pcp->batch, batch);
6994 	WRITE_ONCE(pcp->high, high);
6995 }
6996 
6997 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
6998 {
6999 	int pindex;
7000 
7001 	memset(pcp, 0, sizeof(*pcp));
7002 	memset(pzstats, 0, sizeof(*pzstats));
7003 
7004 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
7005 		INIT_LIST_HEAD(&pcp->lists[pindex]);
7006 
7007 	/*
7008 	 * Set batch and high values safe for a boot pageset. A true percpu
7009 	 * pageset's initialization will update them subsequently. Here we don't
7010 	 * need to be as careful as pageset_update() as nobody can access the
7011 	 * pageset yet.
7012 	 */
7013 	pcp->high = BOOT_PAGESET_HIGH;
7014 	pcp->batch = BOOT_PAGESET_BATCH;
7015 	pcp->free_factor = 0;
7016 }
7017 
7018 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
7019 		unsigned long batch)
7020 {
7021 	struct per_cpu_pages *pcp;
7022 	int cpu;
7023 
7024 	for_each_possible_cpu(cpu) {
7025 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7026 		pageset_update(pcp, high, batch);
7027 	}
7028 }
7029 
7030 /*
7031  * Calculate and set new high and batch values for all per-cpu pagesets of a
7032  * zone based on the zone's size.
7033  */
7034 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
7035 {
7036 	int new_high, new_batch;
7037 
7038 	new_batch = max(1, zone_batchsize(zone));
7039 	new_high = zone_highsize(zone, new_batch, cpu_online);
7040 
7041 	if (zone->pageset_high == new_high &&
7042 	    zone->pageset_batch == new_batch)
7043 		return;
7044 
7045 	zone->pageset_high = new_high;
7046 	zone->pageset_batch = new_batch;
7047 
7048 	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
7049 }
7050 
7051 void __meminit setup_zone_pageset(struct zone *zone)
7052 {
7053 	int cpu;
7054 
7055 	/* Size may be 0 on !SMP && !NUMA */
7056 	if (sizeof(struct per_cpu_zonestat) > 0)
7057 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
7058 
7059 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
7060 	for_each_possible_cpu(cpu) {
7061 		struct per_cpu_pages *pcp;
7062 		struct per_cpu_zonestat *pzstats;
7063 
7064 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7065 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7066 		per_cpu_pages_init(pcp, pzstats);
7067 	}
7068 
7069 	zone_set_pageset_high_and_batch(zone, 0);
7070 }
7071 
7072 /*
7073  * Allocate per cpu pagesets and initialize them.
7074  * Before this call only boot pagesets were available.
7075  */
7076 void __init setup_per_cpu_pageset(void)
7077 {
7078 	struct pglist_data *pgdat;
7079 	struct zone *zone;
7080 	int __maybe_unused cpu;
7081 
7082 	for_each_populated_zone(zone)
7083 		setup_zone_pageset(zone);
7084 
7085 #ifdef CONFIG_NUMA
7086 	/*
7087 	 * Unpopulated zones continue using the boot pagesets.
7088 	 * The numa stats for these pagesets need to be reset.
7089 	 * Otherwise, they will end up skewing the stats of
7090 	 * the nodes these zones are associated with.
7091 	 */
7092 	for_each_possible_cpu(cpu) {
7093 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
7094 		memset(pzstats->vm_numa_event, 0,
7095 		       sizeof(pzstats->vm_numa_event));
7096 	}
7097 #endif
7098 
7099 	for_each_online_pgdat(pgdat)
7100 		pgdat->per_cpu_nodestats =
7101 			alloc_percpu(struct per_cpu_nodestat);
7102 }
7103 
7104 static __meminit void zone_pcp_init(struct zone *zone)
7105 {
7106 	/*
7107 	 * per cpu subsystem is not up at this point. The following code
7108 	 * relies on the ability of the linker to provide the
7109 	 * offset of a (static) per cpu variable into the per cpu area.
7110 	 */
7111 	zone->per_cpu_pageset = &boot_pageset;
7112 	zone->per_cpu_zonestats = &boot_zonestats;
7113 	zone->pageset_high = BOOT_PAGESET_HIGH;
7114 	zone->pageset_batch = BOOT_PAGESET_BATCH;
7115 
7116 	if (populated_zone(zone))
7117 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7118 			 zone->present_pages, zone_batchsize(zone));
7119 }
7120 
7121 void __meminit init_currently_empty_zone(struct zone *zone,
7122 					unsigned long zone_start_pfn,
7123 					unsigned long size)
7124 {
7125 	struct pglist_data *pgdat = zone->zone_pgdat;
7126 	int zone_idx = zone_idx(zone) + 1;
7127 
7128 	if (zone_idx > pgdat->nr_zones)
7129 		pgdat->nr_zones = zone_idx;
7130 
7131 	zone->zone_start_pfn = zone_start_pfn;
7132 
7133 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
7134 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
7135 			pgdat->node_id,
7136 			(unsigned long)zone_idx(zone),
7137 			zone_start_pfn, (zone_start_pfn + size));
7138 
7139 	zone_init_free_lists(zone);
7140 	zone->initialized = 1;
7141 }
7142 
7143 /**
7144  * get_pfn_range_for_nid - Return the start and end page frames for a node
7145  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7146  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7147  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7148  *
7149  * It returns the start and end page frame of a node based on information
7150  * provided by memblock_set_node(). If called for a node
7151  * with no available memory, a warning is printed and the start and end
7152  * PFNs will be 0.
7153  */
7154 void __init get_pfn_range_for_nid(unsigned int nid,
7155 			unsigned long *start_pfn, unsigned long *end_pfn)
7156 {
7157 	unsigned long this_start_pfn, this_end_pfn;
7158 	int i;
7159 
7160 	*start_pfn = -1UL;
7161 	*end_pfn = 0;
7162 
7163 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7164 		*start_pfn = min(*start_pfn, this_start_pfn);
7165 		*end_pfn = max(*end_pfn, this_end_pfn);
7166 	}
7167 
7168 	if (*start_pfn == -1UL)
7169 		*start_pfn = 0;
7170 }
7171 
7172 /*
7173  * This finds a zone that can be used for ZONE_MOVABLE pages. The
7174  * assumption is made that zones within a node are ordered in monotonic
7175  * increasing memory addresses so that the "highest" populated zone is used
7176  */
7177 static void __init find_usable_zone_for_movable(void)
7178 {
7179 	int zone_index;
7180 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7181 		if (zone_index == ZONE_MOVABLE)
7182 			continue;
7183 
7184 		if (arch_zone_highest_possible_pfn[zone_index] >
7185 				arch_zone_lowest_possible_pfn[zone_index])
7186 			break;
7187 	}
7188 
7189 	VM_BUG_ON(zone_index == -1);
7190 	movable_zone = zone_index;
7191 }
7192 
7193 /*
7194  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7195  * because it is sized independent of architecture. Unlike the other zones,
7196  * the starting point for ZONE_MOVABLE is not fixed. It may be different
7197  * in each node depending on the size of each node and how evenly kernelcore
7198  * is distributed. This helper function adjusts the zone ranges
7199  * provided by the architecture for a given node by using the end of the
7200  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7201  * zones within a node are in order of monotonic increases memory addresses
7202  */
7203 static void __init adjust_zone_range_for_zone_movable(int nid,
7204 					unsigned long zone_type,
7205 					unsigned long node_start_pfn,
7206 					unsigned long node_end_pfn,
7207 					unsigned long *zone_start_pfn,
7208 					unsigned long *zone_end_pfn)
7209 {
7210 	/* Only adjust if ZONE_MOVABLE is on this node */
7211 	if (zone_movable_pfn[nid]) {
7212 		/* Size ZONE_MOVABLE */
7213 		if (zone_type == ZONE_MOVABLE) {
7214 			*zone_start_pfn = zone_movable_pfn[nid];
7215 			*zone_end_pfn = min(node_end_pfn,
7216 				arch_zone_highest_possible_pfn[movable_zone]);
7217 
7218 		/* Adjust for ZONE_MOVABLE starting within this range */
7219 		} else if (!mirrored_kernelcore &&
7220 			*zone_start_pfn < zone_movable_pfn[nid] &&
7221 			*zone_end_pfn > zone_movable_pfn[nid]) {
7222 			*zone_end_pfn = zone_movable_pfn[nid];
7223 
7224 		/* Check if this whole range is within ZONE_MOVABLE */
7225 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
7226 			*zone_start_pfn = *zone_end_pfn;
7227 	}
7228 }
7229 
7230 /*
7231  * Return the number of pages a zone spans in a node, including holes
7232  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7233  */
7234 static unsigned long __init zone_spanned_pages_in_node(int nid,
7235 					unsigned long zone_type,
7236 					unsigned long node_start_pfn,
7237 					unsigned long node_end_pfn,
7238 					unsigned long *zone_start_pfn,
7239 					unsigned long *zone_end_pfn)
7240 {
7241 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7242 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7243 	/* When hotadd a new node from cpu_up(), the node should be empty */
7244 	if (!node_start_pfn && !node_end_pfn)
7245 		return 0;
7246 
7247 	/* Get the start and end of the zone */
7248 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7249 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7250 	adjust_zone_range_for_zone_movable(nid, zone_type,
7251 				node_start_pfn, node_end_pfn,
7252 				zone_start_pfn, zone_end_pfn);
7253 
7254 	/* Check that this node has pages within the zone's required range */
7255 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7256 		return 0;
7257 
7258 	/* Move the zone boundaries inside the node if necessary */
7259 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7260 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7261 
7262 	/* Return the spanned pages */
7263 	return *zone_end_pfn - *zone_start_pfn;
7264 }
7265 
7266 /*
7267  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7268  * then all holes in the requested range will be accounted for.
7269  */
7270 unsigned long __init __absent_pages_in_range(int nid,
7271 				unsigned long range_start_pfn,
7272 				unsigned long range_end_pfn)
7273 {
7274 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
7275 	unsigned long start_pfn, end_pfn;
7276 	int i;
7277 
7278 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7279 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7280 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7281 		nr_absent -= end_pfn - start_pfn;
7282 	}
7283 	return nr_absent;
7284 }
7285 
7286 /**
7287  * absent_pages_in_range - Return number of page frames in holes within a range
7288  * @start_pfn: The start PFN to start searching for holes
7289  * @end_pfn: The end PFN to stop searching for holes
7290  *
7291  * Return: the number of pages frames in memory holes within a range.
7292  */
7293 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7294 							unsigned long end_pfn)
7295 {
7296 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7297 }
7298 
7299 /* Return the number of page frames in holes in a zone on a node */
7300 static unsigned long __init zone_absent_pages_in_node(int nid,
7301 					unsigned long zone_type,
7302 					unsigned long node_start_pfn,
7303 					unsigned long node_end_pfn)
7304 {
7305 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7306 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7307 	unsigned long zone_start_pfn, zone_end_pfn;
7308 	unsigned long nr_absent;
7309 
7310 	/* When hotadd a new node from cpu_up(), the node should be empty */
7311 	if (!node_start_pfn && !node_end_pfn)
7312 		return 0;
7313 
7314 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7315 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7316 
7317 	adjust_zone_range_for_zone_movable(nid, zone_type,
7318 			node_start_pfn, node_end_pfn,
7319 			&zone_start_pfn, &zone_end_pfn);
7320 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7321 
7322 	/*
7323 	 * ZONE_MOVABLE handling.
7324 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7325 	 * and vice versa.
7326 	 */
7327 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7328 		unsigned long start_pfn, end_pfn;
7329 		struct memblock_region *r;
7330 
7331 		for_each_mem_region(r) {
7332 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
7333 					  zone_start_pfn, zone_end_pfn);
7334 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
7335 					zone_start_pfn, zone_end_pfn);
7336 
7337 			if (zone_type == ZONE_MOVABLE &&
7338 			    memblock_is_mirror(r))
7339 				nr_absent += end_pfn - start_pfn;
7340 
7341 			if (zone_type == ZONE_NORMAL &&
7342 			    !memblock_is_mirror(r))
7343 				nr_absent += end_pfn - start_pfn;
7344 		}
7345 	}
7346 
7347 	return nr_absent;
7348 }
7349 
7350 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7351 						unsigned long node_start_pfn,
7352 						unsigned long node_end_pfn)
7353 {
7354 	unsigned long realtotalpages = 0, totalpages = 0;
7355 	enum zone_type i;
7356 
7357 	for (i = 0; i < MAX_NR_ZONES; i++) {
7358 		struct zone *zone = pgdat->node_zones + i;
7359 		unsigned long zone_start_pfn, zone_end_pfn;
7360 		unsigned long spanned, absent;
7361 		unsigned long size, real_size;
7362 
7363 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7364 						     node_start_pfn,
7365 						     node_end_pfn,
7366 						     &zone_start_pfn,
7367 						     &zone_end_pfn);
7368 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
7369 						   node_start_pfn,
7370 						   node_end_pfn);
7371 
7372 		size = spanned;
7373 		real_size = size - absent;
7374 
7375 		if (size)
7376 			zone->zone_start_pfn = zone_start_pfn;
7377 		else
7378 			zone->zone_start_pfn = 0;
7379 		zone->spanned_pages = size;
7380 		zone->present_pages = real_size;
7381 #if defined(CONFIG_MEMORY_HOTPLUG)
7382 		zone->present_early_pages = real_size;
7383 #endif
7384 
7385 		totalpages += size;
7386 		realtotalpages += real_size;
7387 	}
7388 
7389 	pgdat->node_spanned_pages = totalpages;
7390 	pgdat->node_present_pages = realtotalpages;
7391 	pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7392 }
7393 
7394 #ifndef CONFIG_SPARSEMEM
7395 /*
7396  * Calculate the size of the zone->blockflags rounded to an unsigned long
7397  * Start by making sure zonesize is a multiple of pageblock_order by rounding
7398  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7399  * round what is now in bits to nearest long in bits, then return it in
7400  * bytes.
7401  */
7402 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7403 {
7404 	unsigned long usemapsize;
7405 
7406 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7407 	usemapsize = roundup(zonesize, pageblock_nr_pages);
7408 	usemapsize = usemapsize >> pageblock_order;
7409 	usemapsize *= NR_PAGEBLOCK_BITS;
7410 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7411 
7412 	return usemapsize / 8;
7413 }
7414 
7415 static void __ref setup_usemap(struct zone *zone)
7416 {
7417 	unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7418 					       zone->spanned_pages);
7419 	zone->pageblock_flags = NULL;
7420 	if (usemapsize) {
7421 		zone->pageblock_flags =
7422 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7423 					    zone_to_nid(zone));
7424 		if (!zone->pageblock_flags)
7425 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7426 			      usemapsize, zone->name, zone_to_nid(zone));
7427 	}
7428 }
7429 #else
7430 static inline void setup_usemap(struct zone *zone) {}
7431 #endif /* CONFIG_SPARSEMEM */
7432 
7433 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7434 
7435 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7436 void __init set_pageblock_order(void)
7437 {
7438 	unsigned int order = MAX_ORDER - 1;
7439 
7440 	/* Check that pageblock_nr_pages has not already been setup */
7441 	if (pageblock_order)
7442 		return;
7443 
7444 	/* Don't let pageblocks exceed the maximum allocation granularity. */
7445 	if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
7446 		order = HUGETLB_PAGE_ORDER;
7447 
7448 	/*
7449 	 * Assume the largest contiguous order of interest is a huge page.
7450 	 * This value may be variable depending on boot parameters on IA64 and
7451 	 * powerpc.
7452 	 */
7453 	pageblock_order = order;
7454 }
7455 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7456 
7457 /*
7458  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7459  * is unused as pageblock_order is set at compile-time. See
7460  * include/linux/pageblock-flags.h for the values of pageblock_order based on
7461  * the kernel config
7462  */
7463 void __init set_pageblock_order(void)
7464 {
7465 }
7466 
7467 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7468 
7469 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7470 						unsigned long present_pages)
7471 {
7472 	unsigned long pages = spanned_pages;
7473 
7474 	/*
7475 	 * Provide a more accurate estimation if there are holes within
7476 	 * the zone and SPARSEMEM is in use. If there are holes within the
7477 	 * zone, each populated memory region may cost us one or two extra
7478 	 * memmap pages due to alignment because memmap pages for each
7479 	 * populated regions may not be naturally aligned on page boundary.
7480 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7481 	 */
7482 	if (spanned_pages > present_pages + (present_pages >> 4) &&
7483 	    IS_ENABLED(CONFIG_SPARSEMEM))
7484 		pages = present_pages;
7485 
7486 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7487 }
7488 
7489 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
7490 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7491 {
7492 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7493 
7494 	spin_lock_init(&ds_queue->split_queue_lock);
7495 	INIT_LIST_HEAD(&ds_queue->split_queue);
7496 	ds_queue->split_queue_len = 0;
7497 }
7498 #else
7499 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7500 #endif
7501 
7502 #ifdef CONFIG_COMPACTION
7503 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7504 {
7505 	init_waitqueue_head(&pgdat->kcompactd_wait);
7506 }
7507 #else
7508 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7509 #endif
7510 
7511 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7512 {
7513 	int i;
7514 
7515 	pgdat_resize_init(pgdat);
7516 
7517 	pgdat_init_split_queue(pgdat);
7518 	pgdat_init_kcompactd(pgdat);
7519 
7520 	init_waitqueue_head(&pgdat->kswapd_wait);
7521 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
7522 
7523 	for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
7524 		init_waitqueue_head(&pgdat->reclaim_wait[i]);
7525 
7526 	pgdat_page_ext_init(pgdat);
7527 	lruvec_init(&pgdat->__lruvec);
7528 }
7529 
7530 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7531 							unsigned long remaining_pages)
7532 {
7533 	atomic_long_set(&zone->managed_pages, remaining_pages);
7534 	zone_set_nid(zone, nid);
7535 	zone->name = zone_names[idx];
7536 	zone->zone_pgdat = NODE_DATA(nid);
7537 	spin_lock_init(&zone->lock);
7538 	zone_seqlock_init(zone);
7539 	zone_pcp_init(zone);
7540 }
7541 
7542 /*
7543  * Set up the zone data structures
7544  * - init pgdat internals
7545  * - init all zones belonging to this node
7546  *
7547  * NOTE: this function is only called during memory hotplug
7548  */
7549 #ifdef CONFIG_MEMORY_HOTPLUG
7550 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
7551 {
7552 	int nid = pgdat->node_id;
7553 	enum zone_type z;
7554 	int cpu;
7555 
7556 	pgdat_init_internals(pgdat);
7557 
7558 	if (pgdat->per_cpu_nodestats == &boot_nodestats)
7559 		pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
7560 
7561 	/*
7562 	 * Reset the nr_zones, order and highest_zoneidx before reuse.
7563 	 * Note that kswapd will init kswapd_highest_zoneidx properly
7564 	 * when it starts in the near future.
7565 	 */
7566 	pgdat->nr_zones = 0;
7567 	pgdat->kswapd_order = 0;
7568 	pgdat->kswapd_highest_zoneidx = 0;
7569 	pgdat->node_start_pfn = 0;
7570 	for_each_online_cpu(cpu) {
7571 		struct per_cpu_nodestat *p;
7572 
7573 		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
7574 		memset(p, 0, sizeof(*p));
7575 	}
7576 
7577 	for (z = 0; z < MAX_NR_ZONES; z++)
7578 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7579 }
7580 #endif
7581 
7582 /*
7583  * Set up the zone data structures:
7584  *   - mark all pages reserved
7585  *   - mark all memory queues empty
7586  *   - clear the memory bitmaps
7587  *
7588  * NOTE: pgdat should get zeroed by caller.
7589  * NOTE: this function is only called during early init.
7590  */
7591 static void __init free_area_init_core(struct pglist_data *pgdat)
7592 {
7593 	enum zone_type j;
7594 	int nid = pgdat->node_id;
7595 
7596 	pgdat_init_internals(pgdat);
7597 	pgdat->per_cpu_nodestats = &boot_nodestats;
7598 
7599 	for (j = 0; j < MAX_NR_ZONES; j++) {
7600 		struct zone *zone = pgdat->node_zones + j;
7601 		unsigned long size, freesize, memmap_pages;
7602 
7603 		size = zone->spanned_pages;
7604 		freesize = zone->present_pages;
7605 
7606 		/*
7607 		 * Adjust freesize so that it accounts for how much memory
7608 		 * is used by this zone for memmap. This affects the watermark
7609 		 * and per-cpu initialisations
7610 		 */
7611 		memmap_pages = calc_memmap_size(size, freesize);
7612 		if (!is_highmem_idx(j)) {
7613 			if (freesize >= memmap_pages) {
7614 				freesize -= memmap_pages;
7615 				if (memmap_pages)
7616 					pr_debug("  %s zone: %lu pages used for memmap\n",
7617 						 zone_names[j], memmap_pages);
7618 			} else
7619 				pr_warn("  %s zone: %lu memmap pages exceeds freesize %lu\n",
7620 					zone_names[j], memmap_pages, freesize);
7621 		}
7622 
7623 		/* Account for reserved pages */
7624 		if (j == 0 && freesize > dma_reserve) {
7625 			freesize -= dma_reserve;
7626 			pr_debug("  %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7627 		}
7628 
7629 		if (!is_highmem_idx(j))
7630 			nr_kernel_pages += freesize;
7631 		/* Charge for highmem memmap if there are enough kernel pages */
7632 		else if (nr_kernel_pages > memmap_pages * 2)
7633 			nr_kernel_pages -= memmap_pages;
7634 		nr_all_pages += freesize;
7635 
7636 		/*
7637 		 * Set an approximate value for lowmem here, it will be adjusted
7638 		 * when the bootmem allocator frees pages into the buddy system.
7639 		 * And all highmem pages will be managed by the buddy system.
7640 		 */
7641 		zone_init_internals(zone, j, nid, freesize);
7642 
7643 		if (!size)
7644 			continue;
7645 
7646 		set_pageblock_order();
7647 		setup_usemap(zone);
7648 		init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7649 	}
7650 }
7651 
7652 #ifdef CONFIG_FLATMEM
7653 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
7654 {
7655 	unsigned long __maybe_unused start = 0;
7656 	unsigned long __maybe_unused offset = 0;
7657 
7658 	/* Skip empty nodes */
7659 	if (!pgdat->node_spanned_pages)
7660 		return;
7661 
7662 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7663 	offset = pgdat->node_start_pfn - start;
7664 	/* ia64 gets its own node_mem_map, before this, without bootmem */
7665 	if (!pgdat->node_mem_map) {
7666 		unsigned long size, end;
7667 		struct page *map;
7668 
7669 		/*
7670 		 * The zone's endpoints aren't required to be MAX_ORDER
7671 		 * aligned but the node_mem_map endpoints must be in order
7672 		 * for the buddy allocator to function correctly.
7673 		 */
7674 		end = pgdat_end_pfn(pgdat);
7675 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
7676 		size =  (end - start) * sizeof(struct page);
7677 		map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7678 				   pgdat->node_id, false);
7679 		if (!map)
7680 			panic("Failed to allocate %ld bytes for node %d memory map\n",
7681 			      size, pgdat->node_id);
7682 		pgdat->node_mem_map = map + offset;
7683 	}
7684 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7685 				__func__, pgdat->node_id, (unsigned long)pgdat,
7686 				(unsigned long)pgdat->node_mem_map);
7687 #ifndef CONFIG_NUMA
7688 	/*
7689 	 * With no DISCONTIG, the global mem_map is just set as node 0's
7690 	 */
7691 	if (pgdat == NODE_DATA(0)) {
7692 		mem_map = NODE_DATA(0)->node_mem_map;
7693 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7694 			mem_map -= offset;
7695 	}
7696 #endif
7697 }
7698 #else
7699 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
7700 #endif /* CONFIG_FLATMEM */
7701 
7702 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7703 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7704 {
7705 	pgdat->first_deferred_pfn = ULONG_MAX;
7706 }
7707 #else
7708 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7709 #endif
7710 
7711 static void __init free_area_init_node(int nid)
7712 {
7713 	pg_data_t *pgdat = NODE_DATA(nid);
7714 	unsigned long start_pfn = 0;
7715 	unsigned long end_pfn = 0;
7716 
7717 	/* pg_data_t should be reset to zero when it's allocated */
7718 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7719 
7720 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7721 
7722 	pgdat->node_id = nid;
7723 	pgdat->node_start_pfn = start_pfn;
7724 	pgdat->per_cpu_nodestats = NULL;
7725 
7726 	if (start_pfn != end_pfn) {
7727 		pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7728 			(u64)start_pfn << PAGE_SHIFT,
7729 			end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7730 	} else {
7731 		pr_info("Initmem setup node %d as memoryless\n", nid);
7732 	}
7733 
7734 	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7735 
7736 	alloc_node_mem_map(pgdat);
7737 	pgdat_set_deferred_range(pgdat);
7738 
7739 	free_area_init_core(pgdat);
7740 }
7741 
7742 static void __init free_area_init_memoryless_node(int nid)
7743 {
7744 	free_area_init_node(nid);
7745 }
7746 
7747 #if MAX_NUMNODES > 1
7748 /*
7749  * Figure out the number of possible node ids.
7750  */
7751 void __init setup_nr_node_ids(void)
7752 {
7753 	unsigned int highest;
7754 
7755 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7756 	nr_node_ids = highest + 1;
7757 }
7758 #endif
7759 
7760 /**
7761  * node_map_pfn_alignment - determine the maximum internode alignment
7762  *
7763  * This function should be called after node map is populated and sorted.
7764  * It calculates the maximum power of two alignment which can distinguish
7765  * all the nodes.
7766  *
7767  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7768  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7769  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7770  * shifted, 1GiB is enough and this function will indicate so.
7771  *
7772  * This is used to test whether pfn -> nid mapping of the chosen memory
7773  * model has fine enough granularity to avoid incorrect mapping for the
7774  * populated node map.
7775  *
7776  * Return: the determined alignment in pfn's.  0 if there is no alignment
7777  * requirement (single node).
7778  */
7779 unsigned long __init node_map_pfn_alignment(void)
7780 {
7781 	unsigned long accl_mask = 0, last_end = 0;
7782 	unsigned long start, end, mask;
7783 	int last_nid = NUMA_NO_NODE;
7784 	int i, nid;
7785 
7786 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7787 		if (!start || last_nid < 0 || last_nid == nid) {
7788 			last_nid = nid;
7789 			last_end = end;
7790 			continue;
7791 		}
7792 
7793 		/*
7794 		 * Start with a mask granular enough to pin-point to the
7795 		 * start pfn and tick off bits one-by-one until it becomes
7796 		 * too coarse to separate the current node from the last.
7797 		 */
7798 		mask = ~((1 << __ffs(start)) - 1);
7799 		while (mask && last_end <= (start & (mask << 1)))
7800 			mask <<= 1;
7801 
7802 		/* accumulate all internode masks */
7803 		accl_mask |= mask;
7804 	}
7805 
7806 	/* convert mask to number of pages */
7807 	return ~accl_mask + 1;
7808 }
7809 
7810 /**
7811  * find_min_pfn_with_active_regions - Find the minimum PFN registered
7812  *
7813  * Return: the minimum PFN based on information provided via
7814  * memblock_set_node().
7815  */
7816 unsigned long __init find_min_pfn_with_active_regions(void)
7817 {
7818 	return PHYS_PFN(memblock_start_of_DRAM());
7819 }
7820 
7821 /*
7822  * early_calculate_totalpages()
7823  * Sum pages in active regions for movable zone.
7824  * Populate N_MEMORY for calculating usable_nodes.
7825  */
7826 static unsigned long __init early_calculate_totalpages(void)
7827 {
7828 	unsigned long totalpages = 0;
7829 	unsigned long start_pfn, end_pfn;
7830 	int i, nid;
7831 
7832 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7833 		unsigned long pages = end_pfn - start_pfn;
7834 
7835 		totalpages += pages;
7836 		if (pages)
7837 			node_set_state(nid, N_MEMORY);
7838 	}
7839 	return totalpages;
7840 }
7841 
7842 /*
7843  * Find the PFN the Movable zone begins in each node. Kernel memory
7844  * is spread evenly between nodes as long as the nodes have enough
7845  * memory. When they don't, some nodes will have more kernelcore than
7846  * others
7847  */
7848 static void __init find_zone_movable_pfns_for_nodes(void)
7849 {
7850 	int i, nid;
7851 	unsigned long usable_startpfn;
7852 	unsigned long kernelcore_node, kernelcore_remaining;
7853 	/* save the state before borrow the nodemask */
7854 	nodemask_t saved_node_state = node_states[N_MEMORY];
7855 	unsigned long totalpages = early_calculate_totalpages();
7856 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7857 	struct memblock_region *r;
7858 
7859 	/* Need to find movable_zone earlier when movable_node is specified. */
7860 	find_usable_zone_for_movable();
7861 
7862 	/*
7863 	 * If movable_node is specified, ignore kernelcore and movablecore
7864 	 * options.
7865 	 */
7866 	if (movable_node_is_enabled()) {
7867 		for_each_mem_region(r) {
7868 			if (!memblock_is_hotpluggable(r))
7869 				continue;
7870 
7871 			nid = memblock_get_region_node(r);
7872 
7873 			usable_startpfn = PFN_DOWN(r->base);
7874 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7875 				min(usable_startpfn, zone_movable_pfn[nid]) :
7876 				usable_startpfn;
7877 		}
7878 
7879 		goto out2;
7880 	}
7881 
7882 	/*
7883 	 * If kernelcore=mirror is specified, ignore movablecore option
7884 	 */
7885 	if (mirrored_kernelcore) {
7886 		bool mem_below_4gb_not_mirrored = false;
7887 
7888 		for_each_mem_region(r) {
7889 			if (memblock_is_mirror(r))
7890 				continue;
7891 
7892 			nid = memblock_get_region_node(r);
7893 
7894 			usable_startpfn = memblock_region_memory_base_pfn(r);
7895 
7896 			if (usable_startpfn < PHYS_PFN(SZ_4G)) {
7897 				mem_below_4gb_not_mirrored = true;
7898 				continue;
7899 			}
7900 
7901 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7902 				min(usable_startpfn, zone_movable_pfn[nid]) :
7903 				usable_startpfn;
7904 		}
7905 
7906 		if (mem_below_4gb_not_mirrored)
7907 			pr_warn("This configuration results in unmirrored kernel memory.\n");
7908 
7909 		goto out2;
7910 	}
7911 
7912 	/*
7913 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7914 	 * amount of necessary memory.
7915 	 */
7916 	if (required_kernelcore_percent)
7917 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7918 				       10000UL;
7919 	if (required_movablecore_percent)
7920 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7921 					10000UL;
7922 
7923 	/*
7924 	 * If movablecore= was specified, calculate what size of
7925 	 * kernelcore that corresponds so that memory usable for
7926 	 * any allocation type is evenly spread. If both kernelcore
7927 	 * and movablecore are specified, then the value of kernelcore
7928 	 * will be used for required_kernelcore if it's greater than
7929 	 * what movablecore would have allowed.
7930 	 */
7931 	if (required_movablecore) {
7932 		unsigned long corepages;
7933 
7934 		/*
7935 		 * Round-up so that ZONE_MOVABLE is at least as large as what
7936 		 * was requested by the user
7937 		 */
7938 		required_movablecore =
7939 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7940 		required_movablecore = min(totalpages, required_movablecore);
7941 		corepages = totalpages - required_movablecore;
7942 
7943 		required_kernelcore = max(required_kernelcore, corepages);
7944 	}
7945 
7946 	/*
7947 	 * If kernelcore was not specified or kernelcore size is larger
7948 	 * than totalpages, there is no ZONE_MOVABLE.
7949 	 */
7950 	if (!required_kernelcore || required_kernelcore >= totalpages)
7951 		goto out;
7952 
7953 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7954 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7955 
7956 restart:
7957 	/* Spread kernelcore memory as evenly as possible throughout nodes */
7958 	kernelcore_node = required_kernelcore / usable_nodes;
7959 	for_each_node_state(nid, N_MEMORY) {
7960 		unsigned long start_pfn, end_pfn;
7961 
7962 		/*
7963 		 * Recalculate kernelcore_node if the division per node
7964 		 * now exceeds what is necessary to satisfy the requested
7965 		 * amount of memory for the kernel
7966 		 */
7967 		if (required_kernelcore < kernelcore_node)
7968 			kernelcore_node = required_kernelcore / usable_nodes;
7969 
7970 		/*
7971 		 * As the map is walked, we track how much memory is usable
7972 		 * by the kernel using kernelcore_remaining. When it is
7973 		 * 0, the rest of the node is usable by ZONE_MOVABLE
7974 		 */
7975 		kernelcore_remaining = kernelcore_node;
7976 
7977 		/* Go through each range of PFNs within this node */
7978 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7979 			unsigned long size_pages;
7980 
7981 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7982 			if (start_pfn >= end_pfn)
7983 				continue;
7984 
7985 			/* Account for what is only usable for kernelcore */
7986 			if (start_pfn < usable_startpfn) {
7987 				unsigned long kernel_pages;
7988 				kernel_pages = min(end_pfn, usable_startpfn)
7989 								- start_pfn;
7990 
7991 				kernelcore_remaining -= min(kernel_pages,
7992 							kernelcore_remaining);
7993 				required_kernelcore -= min(kernel_pages,
7994 							required_kernelcore);
7995 
7996 				/* Continue if range is now fully accounted */
7997 				if (end_pfn <= usable_startpfn) {
7998 
7999 					/*
8000 					 * Push zone_movable_pfn to the end so
8001 					 * that if we have to rebalance
8002 					 * kernelcore across nodes, we will
8003 					 * not double account here
8004 					 */
8005 					zone_movable_pfn[nid] = end_pfn;
8006 					continue;
8007 				}
8008 				start_pfn = usable_startpfn;
8009 			}
8010 
8011 			/*
8012 			 * The usable PFN range for ZONE_MOVABLE is from
8013 			 * start_pfn->end_pfn. Calculate size_pages as the
8014 			 * number of pages used as kernelcore
8015 			 */
8016 			size_pages = end_pfn - start_pfn;
8017 			if (size_pages > kernelcore_remaining)
8018 				size_pages = kernelcore_remaining;
8019 			zone_movable_pfn[nid] = start_pfn + size_pages;
8020 
8021 			/*
8022 			 * Some kernelcore has been met, update counts and
8023 			 * break if the kernelcore for this node has been
8024 			 * satisfied
8025 			 */
8026 			required_kernelcore -= min(required_kernelcore,
8027 								size_pages);
8028 			kernelcore_remaining -= size_pages;
8029 			if (!kernelcore_remaining)
8030 				break;
8031 		}
8032 	}
8033 
8034 	/*
8035 	 * If there is still required_kernelcore, we do another pass with one
8036 	 * less node in the count. This will push zone_movable_pfn[nid] further
8037 	 * along on the nodes that still have memory until kernelcore is
8038 	 * satisfied
8039 	 */
8040 	usable_nodes--;
8041 	if (usable_nodes && required_kernelcore > usable_nodes)
8042 		goto restart;
8043 
8044 out2:
8045 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
8046 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
8047 		unsigned long start_pfn, end_pfn;
8048 
8049 		zone_movable_pfn[nid] =
8050 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
8051 
8052 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8053 		if (zone_movable_pfn[nid] >= end_pfn)
8054 			zone_movable_pfn[nid] = 0;
8055 	}
8056 
8057 out:
8058 	/* restore the node_state */
8059 	node_states[N_MEMORY] = saved_node_state;
8060 }
8061 
8062 /* Any regular or high memory on that node ? */
8063 static void check_for_memory(pg_data_t *pgdat, int nid)
8064 {
8065 	enum zone_type zone_type;
8066 
8067 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
8068 		struct zone *zone = &pgdat->node_zones[zone_type];
8069 		if (populated_zone(zone)) {
8070 			if (IS_ENABLED(CONFIG_HIGHMEM))
8071 				node_set_state(nid, N_HIGH_MEMORY);
8072 			if (zone_type <= ZONE_NORMAL)
8073 				node_set_state(nid, N_NORMAL_MEMORY);
8074 			break;
8075 		}
8076 	}
8077 }
8078 
8079 /*
8080  * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
8081  * such cases we allow max_zone_pfn sorted in the descending order
8082  */
8083 bool __weak arch_has_descending_max_zone_pfns(void)
8084 {
8085 	return false;
8086 }
8087 
8088 /**
8089  * free_area_init - Initialise all pg_data_t and zone data
8090  * @max_zone_pfn: an array of max PFNs for each zone
8091  *
8092  * This will call free_area_init_node() for each active node in the system.
8093  * Using the page ranges provided by memblock_set_node(), the size of each
8094  * zone in each node and their holes is calculated. If the maximum PFN
8095  * between two adjacent zones match, it is assumed that the zone is empty.
8096  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
8097  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
8098  * starts where the previous one ended. For example, ZONE_DMA32 starts
8099  * at arch_max_dma_pfn.
8100  */
8101 void __init free_area_init(unsigned long *max_zone_pfn)
8102 {
8103 	unsigned long start_pfn, end_pfn;
8104 	int i, nid, zone;
8105 	bool descending;
8106 
8107 	/* Record where the zone boundaries are */
8108 	memset(arch_zone_lowest_possible_pfn, 0,
8109 				sizeof(arch_zone_lowest_possible_pfn));
8110 	memset(arch_zone_highest_possible_pfn, 0,
8111 				sizeof(arch_zone_highest_possible_pfn));
8112 
8113 	start_pfn = find_min_pfn_with_active_regions();
8114 	descending = arch_has_descending_max_zone_pfns();
8115 
8116 	for (i = 0; i < MAX_NR_ZONES; i++) {
8117 		if (descending)
8118 			zone = MAX_NR_ZONES - i - 1;
8119 		else
8120 			zone = i;
8121 
8122 		if (zone == ZONE_MOVABLE)
8123 			continue;
8124 
8125 		end_pfn = max(max_zone_pfn[zone], start_pfn);
8126 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
8127 		arch_zone_highest_possible_pfn[zone] = end_pfn;
8128 
8129 		start_pfn = end_pfn;
8130 	}
8131 
8132 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
8133 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
8134 	find_zone_movable_pfns_for_nodes();
8135 
8136 	/* Print out the zone ranges */
8137 	pr_info("Zone ranges:\n");
8138 	for (i = 0; i < MAX_NR_ZONES; i++) {
8139 		if (i == ZONE_MOVABLE)
8140 			continue;
8141 		pr_info("  %-8s ", zone_names[i]);
8142 		if (arch_zone_lowest_possible_pfn[i] ==
8143 				arch_zone_highest_possible_pfn[i])
8144 			pr_cont("empty\n");
8145 		else
8146 			pr_cont("[mem %#018Lx-%#018Lx]\n",
8147 				(u64)arch_zone_lowest_possible_pfn[i]
8148 					<< PAGE_SHIFT,
8149 				((u64)arch_zone_highest_possible_pfn[i]
8150 					<< PAGE_SHIFT) - 1);
8151 	}
8152 
8153 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
8154 	pr_info("Movable zone start for each node\n");
8155 	for (i = 0; i < MAX_NUMNODES; i++) {
8156 		if (zone_movable_pfn[i])
8157 			pr_info("  Node %d: %#018Lx\n", i,
8158 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
8159 	}
8160 
8161 	/*
8162 	 * Print out the early node map, and initialize the
8163 	 * subsection-map relative to active online memory ranges to
8164 	 * enable future "sub-section" extensions of the memory map.
8165 	 */
8166 	pr_info("Early memory node ranges\n");
8167 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8168 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8169 			(u64)start_pfn << PAGE_SHIFT,
8170 			((u64)end_pfn << PAGE_SHIFT) - 1);
8171 		subsection_map_init(start_pfn, end_pfn - start_pfn);
8172 	}
8173 
8174 	/* Initialise every node */
8175 	mminit_verify_pageflags_layout();
8176 	setup_nr_node_ids();
8177 	for_each_node(nid) {
8178 		pg_data_t *pgdat;
8179 
8180 		if (!node_online(nid)) {
8181 			pr_info("Initializing node %d as memoryless\n", nid);
8182 
8183 			/* Allocator not initialized yet */
8184 			pgdat = arch_alloc_nodedata(nid);
8185 			if (!pgdat) {
8186 				pr_err("Cannot allocate %zuB for node %d.\n",
8187 						sizeof(*pgdat), nid);
8188 				continue;
8189 			}
8190 			arch_refresh_nodedata(nid, pgdat);
8191 			free_area_init_memoryless_node(nid);
8192 
8193 			/*
8194 			 * We do not want to confuse userspace by sysfs
8195 			 * files/directories for node without any memory
8196 			 * attached to it, so this node is not marked as
8197 			 * N_MEMORY and not marked online so that no sysfs
8198 			 * hierarchy will be created via register_one_node for
8199 			 * it. The pgdat will get fully initialized by
8200 			 * hotadd_init_pgdat() when memory is hotplugged into
8201 			 * this node.
8202 			 */
8203 			continue;
8204 		}
8205 
8206 		pgdat = NODE_DATA(nid);
8207 		free_area_init_node(nid);
8208 
8209 		/* Any memory on that node */
8210 		if (pgdat->node_present_pages)
8211 			node_set_state(nid, N_MEMORY);
8212 		check_for_memory(pgdat, nid);
8213 	}
8214 
8215 	memmap_init();
8216 }
8217 
8218 static int __init cmdline_parse_core(char *p, unsigned long *core,
8219 				     unsigned long *percent)
8220 {
8221 	unsigned long long coremem;
8222 	char *endptr;
8223 
8224 	if (!p)
8225 		return -EINVAL;
8226 
8227 	/* Value may be a percentage of total memory, otherwise bytes */
8228 	coremem = simple_strtoull(p, &endptr, 0);
8229 	if (*endptr == '%') {
8230 		/* Paranoid check for percent values greater than 100 */
8231 		WARN_ON(coremem > 100);
8232 
8233 		*percent = coremem;
8234 	} else {
8235 		coremem = memparse(p, &p);
8236 		/* Paranoid check that UL is enough for the coremem value */
8237 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8238 
8239 		*core = coremem >> PAGE_SHIFT;
8240 		*percent = 0UL;
8241 	}
8242 	return 0;
8243 }
8244 
8245 /*
8246  * kernelcore=size sets the amount of memory for use for allocations that
8247  * cannot be reclaimed or migrated.
8248  */
8249 static int __init cmdline_parse_kernelcore(char *p)
8250 {
8251 	/* parse kernelcore=mirror */
8252 	if (parse_option_str(p, "mirror")) {
8253 		mirrored_kernelcore = true;
8254 		return 0;
8255 	}
8256 
8257 	return cmdline_parse_core(p, &required_kernelcore,
8258 				  &required_kernelcore_percent);
8259 }
8260 
8261 /*
8262  * movablecore=size sets the amount of memory for use for allocations that
8263  * can be reclaimed or migrated.
8264  */
8265 static int __init cmdline_parse_movablecore(char *p)
8266 {
8267 	return cmdline_parse_core(p, &required_movablecore,
8268 				  &required_movablecore_percent);
8269 }
8270 
8271 early_param("kernelcore", cmdline_parse_kernelcore);
8272 early_param("movablecore", cmdline_parse_movablecore);
8273 
8274 void adjust_managed_page_count(struct page *page, long count)
8275 {
8276 	atomic_long_add(count, &page_zone(page)->managed_pages);
8277 	totalram_pages_add(count);
8278 #ifdef CONFIG_HIGHMEM
8279 	if (PageHighMem(page))
8280 		totalhigh_pages_add(count);
8281 #endif
8282 }
8283 EXPORT_SYMBOL(adjust_managed_page_count);
8284 
8285 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8286 {
8287 	void *pos;
8288 	unsigned long pages = 0;
8289 
8290 	start = (void *)PAGE_ALIGN((unsigned long)start);
8291 	end = (void *)((unsigned long)end & PAGE_MASK);
8292 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8293 		struct page *page = virt_to_page(pos);
8294 		void *direct_map_addr;
8295 
8296 		/*
8297 		 * 'direct_map_addr' might be different from 'pos'
8298 		 * because some architectures' virt_to_page()
8299 		 * work with aliases.  Getting the direct map
8300 		 * address ensures that we get a _writeable_
8301 		 * alias for the memset().
8302 		 */
8303 		direct_map_addr = page_address(page);
8304 		/*
8305 		 * Perform a kasan-unchecked memset() since this memory
8306 		 * has not been initialized.
8307 		 */
8308 		direct_map_addr = kasan_reset_tag(direct_map_addr);
8309 		if ((unsigned int)poison <= 0xFF)
8310 			memset(direct_map_addr, poison, PAGE_SIZE);
8311 
8312 		free_reserved_page(page);
8313 	}
8314 
8315 	if (pages && s)
8316 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
8317 
8318 	return pages;
8319 }
8320 
8321 void __init mem_init_print_info(void)
8322 {
8323 	unsigned long physpages, codesize, datasize, rosize, bss_size;
8324 	unsigned long init_code_size, init_data_size;
8325 
8326 	physpages = get_num_physpages();
8327 	codesize = _etext - _stext;
8328 	datasize = _edata - _sdata;
8329 	rosize = __end_rodata - __start_rodata;
8330 	bss_size = __bss_stop - __bss_start;
8331 	init_data_size = __init_end - __init_begin;
8332 	init_code_size = _einittext - _sinittext;
8333 
8334 	/*
8335 	 * Detect special cases and adjust section sizes accordingly:
8336 	 * 1) .init.* may be embedded into .data sections
8337 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
8338 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
8339 	 * 3) .rodata.* may be embedded into .text or .data sections.
8340 	 */
8341 #define adj_init_size(start, end, size, pos, adj) \
8342 	do { \
8343 		if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
8344 			size -= adj; \
8345 	} while (0)
8346 
8347 	adj_init_size(__init_begin, __init_end, init_data_size,
8348 		     _sinittext, init_code_size);
8349 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8350 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8351 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8352 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8353 
8354 #undef	adj_init_size
8355 
8356 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8357 #ifdef	CONFIG_HIGHMEM
8358 		", %luK highmem"
8359 #endif
8360 		")\n",
8361 		K(nr_free_pages()), K(physpages),
8362 		codesize >> 10, datasize >> 10, rosize >> 10,
8363 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
8364 		K(physpages - totalram_pages() - totalcma_pages),
8365 		K(totalcma_pages)
8366 #ifdef	CONFIG_HIGHMEM
8367 		, K(totalhigh_pages())
8368 #endif
8369 		);
8370 }
8371 
8372 /**
8373  * set_dma_reserve - set the specified number of pages reserved in the first zone
8374  * @new_dma_reserve: The number of pages to mark reserved
8375  *
8376  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8377  * In the DMA zone, a significant percentage may be consumed by kernel image
8378  * and other unfreeable allocations which can skew the watermarks badly. This
8379  * function may optionally be used to account for unfreeable pages in the
8380  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8381  * smaller per-cpu batchsize.
8382  */
8383 void __init set_dma_reserve(unsigned long new_dma_reserve)
8384 {
8385 	dma_reserve = new_dma_reserve;
8386 }
8387 
8388 static int page_alloc_cpu_dead(unsigned int cpu)
8389 {
8390 	struct zone *zone;
8391 
8392 	lru_add_drain_cpu(cpu);
8393 	mlock_page_drain_remote(cpu);
8394 	drain_pages(cpu);
8395 
8396 	/*
8397 	 * Spill the event counters of the dead processor
8398 	 * into the current processors event counters.
8399 	 * This artificially elevates the count of the current
8400 	 * processor.
8401 	 */
8402 	vm_events_fold_cpu(cpu);
8403 
8404 	/*
8405 	 * Zero the differential counters of the dead processor
8406 	 * so that the vm statistics are consistent.
8407 	 *
8408 	 * This is only okay since the processor is dead and cannot
8409 	 * race with what we are doing.
8410 	 */
8411 	cpu_vm_stats_fold(cpu);
8412 
8413 	for_each_populated_zone(zone)
8414 		zone_pcp_update(zone, 0);
8415 
8416 	return 0;
8417 }
8418 
8419 static int page_alloc_cpu_online(unsigned int cpu)
8420 {
8421 	struct zone *zone;
8422 
8423 	for_each_populated_zone(zone)
8424 		zone_pcp_update(zone, 1);
8425 	return 0;
8426 }
8427 
8428 #ifdef CONFIG_NUMA
8429 int hashdist = HASHDIST_DEFAULT;
8430 
8431 static int __init set_hashdist(char *str)
8432 {
8433 	if (!str)
8434 		return 0;
8435 	hashdist = simple_strtoul(str, &str, 0);
8436 	return 1;
8437 }
8438 __setup("hashdist=", set_hashdist);
8439 #endif
8440 
8441 void __init page_alloc_init(void)
8442 {
8443 	int ret;
8444 
8445 #ifdef CONFIG_NUMA
8446 	if (num_node_state(N_MEMORY) == 1)
8447 		hashdist = 0;
8448 #endif
8449 
8450 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8451 					"mm/page_alloc:pcp",
8452 					page_alloc_cpu_online,
8453 					page_alloc_cpu_dead);
8454 	WARN_ON(ret < 0);
8455 }
8456 
8457 /*
8458  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8459  *	or min_free_kbytes changes.
8460  */
8461 static void calculate_totalreserve_pages(void)
8462 {
8463 	struct pglist_data *pgdat;
8464 	unsigned long reserve_pages = 0;
8465 	enum zone_type i, j;
8466 
8467 	for_each_online_pgdat(pgdat) {
8468 
8469 		pgdat->totalreserve_pages = 0;
8470 
8471 		for (i = 0; i < MAX_NR_ZONES; i++) {
8472 			struct zone *zone = pgdat->node_zones + i;
8473 			long max = 0;
8474 			unsigned long managed_pages = zone_managed_pages(zone);
8475 
8476 			/* Find valid and maximum lowmem_reserve in the zone */
8477 			for (j = i; j < MAX_NR_ZONES; j++) {
8478 				if (zone->lowmem_reserve[j] > max)
8479 					max = zone->lowmem_reserve[j];
8480 			}
8481 
8482 			/* we treat the high watermark as reserved pages. */
8483 			max += high_wmark_pages(zone);
8484 
8485 			if (max > managed_pages)
8486 				max = managed_pages;
8487 
8488 			pgdat->totalreserve_pages += max;
8489 
8490 			reserve_pages += max;
8491 		}
8492 	}
8493 	totalreserve_pages = reserve_pages;
8494 }
8495 
8496 /*
8497  * setup_per_zone_lowmem_reserve - called whenever
8498  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
8499  *	has a correct pages reserved value, so an adequate number of
8500  *	pages are left in the zone after a successful __alloc_pages().
8501  */
8502 static void setup_per_zone_lowmem_reserve(void)
8503 {
8504 	struct pglist_data *pgdat;
8505 	enum zone_type i, j;
8506 
8507 	for_each_online_pgdat(pgdat) {
8508 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8509 			struct zone *zone = &pgdat->node_zones[i];
8510 			int ratio = sysctl_lowmem_reserve_ratio[i];
8511 			bool clear = !ratio || !zone_managed_pages(zone);
8512 			unsigned long managed_pages = 0;
8513 
8514 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
8515 				struct zone *upper_zone = &pgdat->node_zones[j];
8516 
8517 				managed_pages += zone_managed_pages(upper_zone);
8518 
8519 				if (clear)
8520 					zone->lowmem_reserve[j] = 0;
8521 				else
8522 					zone->lowmem_reserve[j] = managed_pages / ratio;
8523 			}
8524 		}
8525 	}
8526 
8527 	/* update totalreserve_pages */
8528 	calculate_totalreserve_pages();
8529 }
8530 
8531 static void __setup_per_zone_wmarks(void)
8532 {
8533 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8534 	unsigned long lowmem_pages = 0;
8535 	struct zone *zone;
8536 	unsigned long flags;
8537 
8538 	/* Calculate total number of !ZONE_HIGHMEM pages */
8539 	for_each_zone(zone) {
8540 		if (!is_highmem(zone))
8541 			lowmem_pages += zone_managed_pages(zone);
8542 	}
8543 
8544 	for_each_zone(zone) {
8545 		u64 tmp;
8546 
8547 		spin_lock_irqsave(&zone->lock, flags);
8548 		tmp = (u64)pages_min * zone_managed_pages(zone);
8549 		do_div(tmp, lowmem_pages);
8550 		if (is_highmem(zone)) {
8551 			/*
8552 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8553 			 * need highmem pages, so cap pages_min to a small
8554 			 * value here.
8555 			 *
8556 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8557 			 * deltas control async page reclaim, and so should
8558 			 * not be capped for highmem.
8559 			 */
8560 			unsigned long min_pages;
8561 
8562 			min_pages = zone_managed_pages(zone) / 1024;
8563 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8564 			zone->_watermark[WMARK_MIN] = min_pages;
8565 		} else {
8566 			/*
8567 			 * If it's a lowmem zone, reserve a number of pages
8568 			 * proportionate to the zone's size.
8569 			 */
8570 			zone->_watermark[WMARK_MIN] = tmp;
8571 		}
8572 
8573 		/*
8574 		 * Set the kswapd watermarks distance according to the
8575 		 * scale factor in proportion to available memory, but
8576 		 * ensure a minimum size on small systems.
8577 		 */
8578 		tmp = max_t(u64, tmp >> 2,
8579 			    mult_frac(zone_managed_pages(zone),
8580 				      watermark_scale_factor, 10000));
8581 
8582 		zone->watermark_boost = 0;
8583 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
8584 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
8585 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
8586 
8587 		spin_unlock_irqrestore(&zone->lock, flags);
8588 	}
8589 
8590 	/* update totalreserve_pages */
8591 	calculate_totalreserve_pages();
8592 }
8593 
8594 /**
8595  * setup_per_zone_wmarks - called when min_free_kbytes changes
8596  * or when memory is hot-{added|removed}
8597  *
8598  * Ensures that the watermark[min,low,high] values for each zone are set
8599  * correctly with respect to min_free_kbytes.
8600  */
8601 void setup_per_zone_wmarks(void)
8602 {
8603 	struct zone *zone;
8604 	static DEFINE_SPINLOCK(lock);
8605 
8606 	spin_lock(&lock);
8607 	__setup_per_zone_wmarks();
8608 	spin_unlock(&lock);
8609 
8610 	/*
8611 	 * The watermark size have changed so update the pcpu batch
8612 	 * and high limits or the limits may be inappropriate.
8613 	 */
8614 	for_each_zone(zone)
8615 		zone_pcp_update(zone, 0);
8616 }
8617 
8618 /*
8619  * Initialise min_free_kbytes.
8620  *
8621  * For small machines we want it small (128k min).  For large machines
8622  * we want it large (256MB max).  But it is not linear, because network
8623  * bandwidth does not increase linearly with machine size.  We use
8624  *
8625  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8626  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
8627  *
8628  * which yields
8629  *
8630  * 16MB:	512k
8631  * 32MB:	724k
8632  * 64MB:	1024k
8633  * 128MB:	1448k
8634  * 256MB:	2048k
8635  * 512MB:	2896k
8636  * 1024MB:	4096k
8637  * 2048MB:	5792k
8638  * 4096MB:	8192k
8639  * 8192MB:	11584k
8640  * 16384MB:	16384k
8641  */
8642 void calculate_min_free_kbytes(void)
8643 {
8644 	unsigned long lowmem_kbytes;
8645 	int new_min_free_kbytes;
8646 
8647 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8648 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8649 
8650 	if (new_min_free_kbytes > user_min_free_kbytes)
8651 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
8652 	else
8653 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8654 				new_min_free_kbytes, user_min_free_kbytes);
8655 
8656 }
8657 
8658 int __meminit init_per_zone_wmark_min(void)
8659 {
8660 	calculate_min_free_kbytes();
8661 	setup_per_zone_wmarks();
8662 	refresh_zone_stat_thresholds();
8663 	setup_per_zone_lowmem_reserve();
8664 
8665 #ifdef CONFIG_NUMA
8666 	setup_min_unmapped_ratio();
8667 	setup_min_slab_ratio();
8668 #endif
8669 
8670 	khugepaged_min_free_kbytes_update();
8671 
8672 	return 0;
8673 }
8674 postcore_initcall(init_per_zone_wmark_min)
8675 
8676 /*
8677  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8678  *	that we can call two helper functions whenever min_free_kbytes
8679  *	changes.
8680  */
8681 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8682 		void *buffer, size_t *length, loff_t *ppos)
8683 {
8684 	int rc;
8685 
8686 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8687 	if (rc)
8688 		return rc;
8689 
8690 	if (write) {
8691 		user_min_free_kbytes = min_free_kbytes;
8692 		setup_per_zone_wmarks();
8693 	}
8694 	return 0;
8695 }
8696 
8697 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8698 		void *buffer, size_t *length, loff_t *ppos)
8699 {
8700 	int rc;
8701 
8702 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8703 	if (rc)
8704 		return rc;
8705 
8706 	if (write)
8707 		setup_per_zone_wmarks();
8708 
8709 	return 0;
8710 }
8711 
8712 #ifdef CONFIG_NUMA
8713 static void setup_min_unmapped_ratio(void)
8714 {
8715 	pg_data_t *pgdat;
8716 	struct zone *zone;
8717 
8718 	for_each_online_pgdat(pgdat)
8719 		pgdat->min_unmapped_pages = 0;
8720 
8721 	for_each_zone(zone)
8722 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8723 						         sysctl_min_unmapped_ratio) / 100;
8724 }
8725 
8726 
8727 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8728 		void *buffer, size_t *length, loff_t *ppos)
8729 {
8730 	int rc;
8731 
8732 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8733 	if (rc)
8734 		return rc;
8735 
8736 	setup_min_unmapped_ratio();
8737 
8738 	return 0;
8739 }
8740 
8741 static void setup_min_slab_ratio(void)
8742 {
8743 	pg_data_t *pgdat;
8744 	struct zone *zone;
8745 
8746 	for_each_online_pgdat(pgdat)
8747 		pgdat->min_slab_pages = 0;
8748 
8749 	for_each_zone(zone)
8750 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8751 						     sysctl_min_slab_ratio) / 100;
8752 }
8753 
8754 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8755 		void *buffer, size_t *length, loff_t *ppos)
8756 {
8757 	int rc;
8758 
8759 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8760 	if (rc)
8761 		return rc;
8762 
8763 	setup_min_slab_ratio();
8764 
8765 	return 0;
8766 }
8767 #endif
8768 
8769 /*
8770  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8771  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8772  *	whenever sysctl_lowmem_reserve_ratio changes.
8773  *
8774  * The reserve ratio obviously has absolutely no relation with the
8775  * minimum watermarks. The lowmem reserve ratio can only make sense
8776  * if in function of the boot time zone sizes.
8777  */
8778 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8779 		void *buffer, size_t *length, loff_t *ppos)
8780 {
8781 	int i;
8782 
8783 	proc_dointvec_minmax(table, write, buffer, length, ppos);
8784 
8785 	for (i = 0; i < MAX_NR_ZONES; i++) {
8786 		if (sysctl_lowmem_reserve_ratio[i] < 1)
8787 			sysctl_lowmem_reserve_ratio[i] = 0;
8788 	}
8789 
8790 	setup_per_zone_lowmem_reserve();
8791 	return 0;
8792 }
8793 
8794 /*
8795  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8796  * cpu. It is the fraction of total pages in each zone that a hot per cpu
8797  * pagelist can have before it gets flushed back to buddy allocator.
8798  */
8799 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8800 		int write, void *buffer, size_t *length, loff_t *ppos)
8801 {
8802 	struct zone *zone;
8803 	int old_percpu_pagelist_high_fraction;
8804 	int ret;
8805 
8806 	mutex_lock(&pcp_batch_high_lock);
8807 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
8808 
8809 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8810 	if (!write || ret < 0)
8811 		goto out;
8812 
8813 	/* Sanity checking to avoid pcp imbalance */
8814 	if (percpu_pagelist_high_fraction &&
8815 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8816 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
8817 		ret = -EINVAL;
8818 		goto out;
8819 	}
8820 
8821 	/* No change? */
8822 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
8823 		goto out;
8824 
8825 	for_each_populated_zone(zone)
8826 		zone_set_pageset_high_and_batch(zone, 0);
8827 out:
8828 	mutex_unlock(&pcp_batch_high_lock);
8829 	return ret;
8830 }
8831 
8832 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8833 /*
8834  * Returns the number of pages that arch has reserved but
8835  * is not known to alloc_large_system_hash().
8836  */
8837 static unsigned long __init arch_reserved_kernel_pages(void)
8838 {
8839 	return 0;
8840 }
8841 #endif
8842 
8843 /*
8844  * Adaptive scale is meant to reduce sizes of hash tables on large memory
8845  * machines. As memory size is increased the scale is also increased but at
8846  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
8847  * quadruples the scale is increased by one, which means the size of hash table
8848  * only doubles, instead of quadrupling as well.
8849  * Because 32-bit systems cannot have large physical memory, where this scaling
8850  * makes sense, it is disabled on such platforms.
8851  */
8852 #if __BITS_PER_LONG > 32
8853 #define ADAPT_SCALE_BASE	(64ul << 30)
8854 #define ADAPT_SCALE_SHIFT	2
8855 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
8856 #endif
8857 
8858 /*
8859  * allocate a large system hash table from bootmem
8860  * - it is assumed that the hash table must contain an exact power-of-2
8861  *   quantity of entries
8862  * - limit is the number of hash buckets, not the total allocation size
8863  */
8864 void *__init alloc_large_system_hash(const char *tablename,
8865 				     unsigned long bucketsize,
8866 				     unsigned long numentries,
8867 				     int scale,
8868 				     int flags,
8869 				     unsigned int *_hash_shift,
8870 				     unsigned int *_hash_mask,
8871 				     unsigned long low_limit,
8872 				     unsigned long high_limit)
8873 {
8874 	unsigned long long max = high_limit;
8875 	unsigned long log2qty, size;
8876 	void *table = NULL;
8877 	gfp_t gfp_flags;
8878 	bool virt;
8879 	bool huge;
8880 
8881 	/* allow the kernel cmdline to have a say */
8882 	if (!numentries) {
8883 		/* round applicable memory size up to nearest megabyte */
8884 		numentries = nr_kernel_pages;
8885 		numentries -= arch_reserved_kernel_pages();
8886 
8887 		/* It isn't necessary when PAGE_SIZE >= 1MB */
8888 		if (PAGE_SHIFT < 20)
8889 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8890 
8891 #if __BITS_PER_LONG > 32
8892 		if (!high_limit) {
8893 			unsigned long adapt;
8894 
8895 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8896 			     adapt <<= ADAPT_SCALE_SHIFT)
8897 				scale++;
8898 		}
8899 #endif
8900 
8901 		/* limit to 1 bucket per 2^scale bytes of low memory */
8902 		if (scale > PAGE_SHIFT)
8903 			numentries >>= (scale - PAGE_SHIFT);
8904 		else
8905 			numentries <<= (PAGE_SHIFT - scale);
8906 
8907 		/* Make sure we've got at least a 0-order allocation.. */
8908 		if (unlikely(flags & HASH_SMALL)) {
8909 			/* Makes no sense without HASH_EARLY */
8910 			WARN_ON(!(flags & HASH_EARLY));
8911 			if (!(numentries >> *_hash_shift)) {
8912 				numentries = 1UL << *_hash_shift;
8913 				BUG_ON(!numentries);
8914 			}
8915 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8916 			numentries = PAGE_SIZE / bucketsize;
8917 	}
8918 	numentries = roundup_pow_of_two(numentries);
8919 
8920 	/* limit allocation size to 1/16 total memory by default */
8921 	if (max == 0) {
8922 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8923 		do_div(max, bucketsize);
8924 	}
8925 	max = min(max, 0x80000000ULL);
8926 
8927 	if (numentries < low_limit)
8928 		numentries = low_limit;
8929 	if (numentries > max)
8930 		numentries = max;
8931 
8932 	log2qty = ilog2(numentries);
8933 
8934 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8935 	do {
8936 		virt = false;
8937 		size = bucketsize << log2qty;
8938 		if (flags & HASH_EARLY) {
8939 			if (flags & HASH_ZERO)
8940 				table = memblock_alloc(size, SMP_CACHE_BYTES);
8941 			else
8942 				table = memblock_alloc_raw(size,
8943 							   SMP_CACHE_BYTES);
8944 		} else if (get_order(size) >= MAX_ORDER || hashdist) {
8945 			table = vmalloc_huge(size, gfp_flags);
8946 			virt = true;
8947 			if (table)
8948 				huge = is_vm_area_hugepages(table);
8949 		} else {
8950 			/*
8951 			 * If bucketsize is not a power-of-two, we may free
8952 			 * some pages at the end of hash table which
8953 			 * alloc_pages_exact() automatically does
8954 			 */
8955 			table = alloc_pages_exact(size, gfp_flags);
8956 			kmemleak_alloc(table, size, 1, gfp_flags);
8957 		}
8958 	} while (!table && size > PAGE_SIZE && --log2qty);
8959 
8960 	if (!table)
8961 		panic("Failed to allocate %s hash table\n", tablename);
8962 
8963 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8964 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8965 		virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
8966 
8967 	if (_hash_shift)
8968 		*_hash_shift = log2qty;
8969 	if (_hash_mask)
8970 		*_hash_mask = (1 << log2qty) - 1;
8971 
8972 	return table;
8973 }
8974 
8975 #ifdef CONFIG_CONTIG_ALLOC
8976 #if defined(CONFIG_DYNAMIC_DEBUG) || \
8977 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
8978 /* Usage: See admin-guide/dynamic-debug-howto.rst */
8979 static void alloc_contig_dump_pages(struct list_head *page_list)
8980 {
8981 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
8982 
8983 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
8984 		struct page *page;
8985 
8986 		dump_stack();
8987 		list_for_each_entry(page, page_list, lru)
8988 			dump_page(page, "migration failure");
8989 	}
8990 }
8991 #else
8992 static inline void alloc_contig_dump_pages(struct list_head *page_list)
8993 {
8994 }
8995 #endif
8996 
8997 /* [start, end) must belong to a single zone. */
8998 int __alloc_contig_migrate_range(struct compact_control *cc,
8999 					unsigned long start, unsigned long end)
9000 {
9001 	/* This function is based on compact_zone() from compaction.c. */
9002 	unsigned int nr_reclaimed;
9003 	unsigned long pfn = start;
9004 	unsigned int tries = 0;
9005 	int ret = 0;
9006 	struct migration_target_control mtc = {
9007 		.nid = zone_to_nid(cc->zone),
9008 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
9009 	};
9010 
9011 	lru_cache_disable();
9012 
9013 	while (pfn < end || !list_empty(&cc->migratepages)) {
9014 		if (fatal_signal_pending(current)) {
9015 			ret = -EINTR;
9016 			break;
9017 		}
9018 
9019 		if (list_empty(&cc->migratepages)) {
9020 			cc->nr_migratepages = 0;
9021 			ret = isolate_migratepages_range(cc, pfn, end);
9022 			if (ret && ret != -EAGAIN)
9023 				break;
9024 			pfn = cc->migrate_pfn;
9025 			tries = 0;
9026 		} else if (++tries == 5) {
9027 			ret = -EBUSY;
9028 			break;
9029 		}
9030 
9031 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
9032 							&cc->migratepages);
9033 		cc->nr_migratepages -= nr_reclaimed;
9034 
9035 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
9036 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
9037 
9038 		/*
9039 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
9040 		 * to retry again over this error, so do the same here.
9041 		 */
9042 		if (ret == -ENOMEM)
9043 			break;
9044 	}
9045 
9046 	lru_cache_enable();
9047 	if (ret < 0) {
9048 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
9049 			alloc_contig_dump_pages(&cc->migratepages);
9050 		putback_movable_pages(&cc->migratepages);
9051 		return ret;
9052 	}
9053 	return 0;
9054 }
9055 
9056 /**
9057  * alloc_contig_range() -- tries to allocate given range of pages
9058  * @start:	start PFN to allocate
9059  * @end:	one-past-the-last PFN to allocate
9060  * @migratetype:	migratetype of the underlying pageblocks (either
9061  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
9062  *			in range must have the same migratetype and it must
9063  *			be either of the two.
9064  * @gfp_mask:	GFP mask to use during compaction
9065  *
9066  * The PFN range does not have to be pageblock aligned. The PFN range must
9067  * belong to a single zone.
9068  *
9069  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9070  * pageblocks in the range.  Once isolated, the pageblocks should not
9071  * be modified by others.
9072  *
9073  * Return: zero on success or negative error code.  On success all
9074  * pages which PFN is in [start, end) are allocated for the caller and
9075  * need to be freed with free_contig_range().
9076  */
9077 int alloc_contig_range(unsigned long start, unsigned long end,
9078 		       unsigned migratetype, gfp_t gfp_mask)
9079 {
9080 	unsigned long outer_start, outer_end;
9081 	int order;
9082 	int ret = 0;
9083 
9084 	struct compact_control cc = {
9085 		.nr_migratepages = 0,
9086 		.order = -1,
9087 		.zone = page_zone(pfn_to_page(start)),
9088 		.mode = MIGRATE_SYNC,
9089 		.ignore_skip_hint = true,
9090 		.no_set_skip_hint = true,
9091 		.gfp_mask = current_gfp_context(gfp_mask),
9092 		.alloc_contig = true,
9093 	};
9094 	INIT_LIST_HEAD(&cc.migratepages);
9095 
9096 	/*
9097 	 * What we do here is we mark all pageblocks in range as
9098 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
9099 	 * have different sizes, and due to the way page allocator
9100 	 * work, start_isolate_page_range() has special handlings for this.
9101 	 *
9102 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9103 	 * migrate the pages from an unaligned range (ie. pages that
9104 	 * we are interested in). This will put all the pages in
9105 	 * range back to page allocator as MIGRATE_ISOLATE.
9106 	 *
9107 	 * When this is done, we take the pages in range from page
9108 	 * allocator removing them from the buddy system.  This way
9109 	 * page allocator will never consider using them.
9110 	 *
9111 	 * This lets us mark the pageblocks back as
9112 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9113 	 * aligned range but not in the unaligned, original range are
9114 	 * put back to page allocator so that buddy can use them.
9115 	 */
9116 
9117 	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
9118 	if (ret)
9119 		goto done;
9120 
9121 	drain_all_pages(cc.zone);
9122 
9123 	/*
9124 	 * In case of -EBUSY, we'd like to know which page causes problem.
9125 	 * So, just fall through. test_pages_isolated() has a tracepoint
9126 	 * which will report the busy page.
9127 	 *
9128 	 * It is possible that busy pages could become available before
9129 	 * the call to test_pages_isolated, and the range will actually be
9130 	 * allocated.  So, if we fall through be sure to clear ret so that
9131 	 * -EBUSY is not accidentally used or returned to caller.
9132 	 */
9133 	ret = __alloc_contig_migrate_range(&cc, start, end);
9134 	if (ret && ret != -EBUSY)
9135 		goto done;
9136 	ret = 0;
9137 
9138 	/*
9139 	 * Pages from [start, end) are within a pageblock_nr_pages
9140 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
9141 	 * more, all pages in [start, end) are free in page allocator.
9142 	 * What we are going to do is to allocate all pages from
9143 	 * [start, end) (that is remove them from page allocator).
9144 	 *
9145 	 * The only problem is that pages at the beginning and at the
9146 	 * end of interesting range may be not aligned with pages that
9147 	 * page allocator holds, ie. they can be part of higher order
9148 	 * pages.  Because of this, we reserve the bigger range and
9149 	 * once this is done free the pages we are not interested in.
9150 	 *
9151 	 * We don't have to hold zone->lock here because the pages are
9152 	 * isolated thus they won't get removed from buddy.
9153 	 */
9154 
9155 	order = 0;
9156 	outer_start = start;
9157 	while (!PageBuddy(pfn_to_page(outer_start))) {
9158 		if (++order >= MAX_ORDER) {
9159 			outer_start = start;
9160 			break;
9161 		}
9162 		outer_start &= ~0UL << order;
9163 	}
9164 
9165 	if (outer_start != start) {
9166 		order = buddy_order(pfn_to_page(outer_start));
9167 
9168 		/*
9169 		 * outer_start page could be small order buddy page and
9170 		 * it doesn't include start page. Adjust outer_start
9171 		 * in this case to report failed page properly
9172 		 * on tracepoint in test_pages_isolated()
9173 		 */
9174 		if (outer_start + (1UL << order) <= start)
9175 			outer_start = start;
9176 	}
9177 
9178 	/* Make sure the range is really isolated. */
9179 	if (test_pages_isolated(outer_start, end, 0)) {
9180 		ret = -EBUSY;
9181 		goto done;
9182 	}
9183 
9184 	/* Grab isolated pages from freelists. */
9185 	outer_end = isolate_freepages_range(&cc, outer_start, end);
9186 	if (!outer_end) {
9187 		ret = -EBUSY;
9188 		goto done;
9189 	}
9190 
9191 	/* Free head and tail (if any) */
9192 	if (start != outer_start)
9193 		free_contig_range(outer_start, start - outer_start);
9194 	if (end != outer_end)
9195 		free_contig_range(end, outer_end - end);
9196 
9197 done:
9198 	undo_isolate_page_range(start, end, migratetype);
9199 	return ret;
9200 }
9201 EXPORT_SYMBOL(alloc_contig_range);
9202 
9203 static int __alloc_contig_pages(unsigned long start_pfn,
9204 				unsigned long nr_pages, gfp_t gfp_mask)
9205 {
9206 	unsigned long end_pfn = start_pfn + nr_pages;
9207 
9208 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9209 				  gfp_mask);
9210 }
9211 
9212 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9213 				   unsigned long nr_pages)
9214 {
9215 	unsigned long i, end_pfn = start_pfn + nr_pages;
9216 	struct page *page;
9217 
9218 	for (i = start_pfn; i < end_pfn; i++) {
9219 		page = pfn_to_online_page(i);
9220 		if (!page)
9221 			return false;
9222 
9223 		if (page_zone(page) != z)
9224 			return false;
9225 
9226 		if (PageReserved(page))
9227 			return false;
9228 	}
9229 	return true;
9230 }
9231 
9232 static bool zone_spans_last_pfn(const struct zone *zone,
9233 				unsigned long start_pfn, unsigned long nr_pages)
9234 {
9235 	unsigned long last_pfn = start_pfn + nr_pages - 1;
9236 
9237 	return zone_spans_pfn(zone, last_pfn);
9238 }
9239 
9240 /**
9241  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9242  * @nr_pages:	Number of contiguous pages to allocate
9243  * @gfp_mask:	GFP mask to limit search and used during compaction
9244  * @nid:	Target node
9245  * @nodemask:	Mask for other possible nodes
9246  *
9247  * This routine is a wrapper around alloc_contig_range(). It scans over zones
9248  * on an applicable zonelist to find a contiguous pfn range which can then be
9249  * tried for allocation with alloc_contig_range(). This routine is intended
9250  * for allocation requests which can not be fulfilled with the buddy allocator.
9251  *
9252  * The allocated memory is always aligned to a page boundary. If nr_pages is a
9253  * power of two, then allocated range is also guaranteed to be aligned to same
9254  * nr_pages (e.g. 1GB request would be aligned to 1GB).
9255  *
9256  * Allocated pages can be freed with free_contig_range() or by manually calling
9257  * __free_page() on each allocated page.
9258  *
9259  * Return: pointer to contiguous pages on success, or NULL if not successful.
9260  */
9261 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9262 				int nid, nodemask_t *nodemask)
9263 {
9264 	unsigned long ret, pfn, flags;
9265 	struct zonelist *zonelist;
9266 	struct zone *zone;
9267 	struct zoneref *z;
9268 
9269 	zonelist = node_zonelist(nid, gfp_mask);
9270 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
9271 					gfp_zone(gfp_mask), nodemask) {
9272 		spin_lock_irqsave(&zone->lock, flags);
9273 
9274 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9275 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9276 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9277 				/*
9278 				 * We release the zone lock here because
9279 				 * alloc_contig_range() will also lock the zone
9280 				 * at some point. If there's an allocation
9281 				 * spinning on this lock, it may win the race
9282 				 * and cause alloc_contig_range() to fail...
9283 				 */
9284 				spin_unlock_irqrestore(&zone->lock, flags);
9285 				ret = __alloc_contig_pages(pfn, nr_pages,
9286 							gfp_mask);
9287 				if (!ret)
9288 					return pfn_to_page(pfn);
9289 				spin_lock_irqsave(&zone->lock, flags);
9290 			}
9291 			pfn += nr_pages;
9292 		}
9293 		spin_unlock_irqrestore(&zone->lock, flags);
9294 	}
9295 	return NULL;
9296 }
9297 #endif /* CONFIG_CONTIG_ALLOC */
9298 
9299 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9300 {
9301 	unsigned long count = 0;
9302 
9303 	for (; nr_pages--; pfn++) {
9304 		struct page *page = pfn_to_page(pfn);
9305 
9306 		count += page_count(page) != 1;
9307 		__free_page(page);
9308 	}
9309 	WARN(count != 0, "%lu pages are still in use!\n", count);
9310 }
9311 EXPORT_SYMBOL(free_contig_range);
9312 
9313 /*
9314  * The zone indicated has a new number of managed_pages; batch sizes and percpu
9315  * page high values need to be recalculated.
9316  */
9317 void zone_pcp_update(struct zone *zone, int cpu_online)
9318 {
9319 	mutex_lock(&pcp_batch_high_lock);
9320 	zone_set_pageset_high_and_batch(zone, cpu_online);
9321 	mutex_unlock(&pcp_batch_high_lock);
9322 }
9323 
9324 /*
9325  * Effectively disable pcplists for the zone by setting the high limit to 0
9326  * and draining all cpus. A concurrent page freeing on another CPU that's about
9327  * to put the page on pcplist will either finish before the drain and the page
9328  * will be drained, or observe the new high limit and skip the pcplist.
9329  *
9330  * Must be paired with a call to zone_pcp_enable().
9331  */
9332 void zone_pcp_disable(struct zone *zone)
9333 {
9334 	mutex_lock(&pcp_batch_high_lock);
9335 	__zone_set_pageset_high_and_batch(zone, 0, 1);
9336 	__drain_all_pages(zone, true);
9337 }
9338 
9339 void zone_pcp_enable(struct zone *zone)
9340 {
9341 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9342 	mutex_unlock(&pcp_batch_high_lock);
9343 }
9344 
9345 void zone_pcp_reset(struct zone *zone)
9346 {
9347 	int cpu;
9348 	struct per_cpu_zonestat *pzstats;
9349 
9350 	if (zone->per_cpu_pageset != &boot_pageset) {
9351 		for_each_online_cpu(cpu) {
9352 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9353 			drain_zonestat(zone, pzstats);
9354 		}
9355 		free_percpu(zone->per_cpu_pageset);
9356 		free_percpu(zone->per_cpu_zonestats);
9357 		zone->per_cpu_pageset = &boot_pageset;
9358 		zone->per_cpu_zonestats = &boot_zonestats;
9359 	}
9360 }
9361 
9362 #ifdef CONFIG_MEMORY_HOTREMOVE
9363 /*
9364  * All pages in the range must be in a single zone, must not contain holes,
9365  * must span full sections, and must be isolated before calling this function.
9366  */
9367 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9368 {
9369 	unsigned long pfn = start_pfn;
9370 	struct page *page;
9371 	struct zone *zone;
9372 	unsigned int order;
9373 	unsigned long flags;
9374 
9375 	offline_mem_sections(pfn, end_pfn);
9376 	zone = page_zone(pfn_to_page(pfn));
9377 	spin_lock_irqsave(&zone->lock, flags);
9378 	while (pfn < end_pfn) {
9379 		page = pfn_to_page(pfn);
9380 		/*
9381 		 * The HWPoisoned page may be not in buddy system, and
9382 		 * page_count() is not 0.
9383 		 */
9384 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9385 			pfn++;
9386 			continue;
9387 		}
9388 		/*
9389 		 * At this point all remaining PageOffline() pages have a
9390 		 * reference count of 0 and can simply be skipped.
9391 		 */
9392 		if (PageOffline(page)) {
9393 			BUG_ON(page_count(page));
9394 			BUG_ON(PageBuddy(page));
9395 			pfn++;
9396 			continue;
9397 		}
9398 
9399 		BUG_ON(page_count(page));
9400 		BUG_ON(!PageBuddy(page));
9401 		order = buddy_order(page);
9402 		del_page_from_free_list(page, zone, order);
9403 		pfn += (1 << order);
9404 	}
9405 	spin_unlock_irqrestore(&zone->lock, flags);
9406 }
9407 #endif
9408 
9409 /*
9410  * This function returns a stable result only if called under zone lock.
9411  */
9412 bool is_free_buddy_page(struct page *page)
9413 {
9414 	unsigned long pfn = page_to_pfn(page);
9415 	unsigned int order;
9416 
9417 	for (order = 0; order < MAX_ORDER; order++) {
9418 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9419 
9420 		if (PageBuddy(page_head) &&
9421 		    buddy_order_unsafe(page_head) >= order)
9422 			break;
9423 	}
9424 
9425 	return order < MAX_ORDER;
9426 }
9427 EXPORT_SYMBOL(is_free_buddy_page);
9428 
9429 #ifdef CONFIG_MEMORY_FAILURE
9430 /*
9431  * Break down a higher-order page in sub-pages, and keep our target out of
9432  * buddy allocator.
9433  */
9434 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9435 				   struct page *target, int low, int high,
9436 				   int migratetype)
9437 {
9438 	unsigned long size = 1 << high;
9439 	struct page *current_buddy, *next_page;
9440 
9441 	while (high > low) {
9442 		high--;
9443 		size >>= 1;
9444 
9445 		if (target >= &page[size]) {
9446 			next_page = page + size;
9447 			current_buddy = page;
9448 		} else {
9449 			next_page = page;
9450 			current_buddy = page + size;
9451 		}
9452 
9453 		if (set_page_guard(zone, current_buddy, high, migratetype))
9454 			continue;
9455 
9456 		if (current_buddy != target) {
9457 			add_to_free_list(current_buddy, zone, high, migratetype);
9458 			set_buddy_order(current_buddy, high);
9459 			page = next_page;
9460 		}
9461 	}
9462 }
9463 
9464 /*
9465  * Take a page that will be marked as poisoned off the buddy allocator.
9466  */
9467 bool take_page_off_buddy(struct page *page)
9468 {
9469 	struct zone *zone = page_zone(page);
9470 	unsigned long pfn = page_to_pfn(page);
9471 	unsigned long flags;
9472 	unsigned int order;
9473 	bool ret = false;
9474 
9475 	spin_lock_irqsave(&zone->lock, flags);
9476 	for (order = 0; order < MAX_ORDER; order++) {
9477 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9478 		int page_order = buddy_order(page_head);
9479 
9480 		if (PageBuddy(page_head) && page_order >= order) {
9481 			unsigned long pfn_head = page_to_pfn(page_head);
9482 			int migratetype = get_pfnblock_migratetype(page_head,
9483 								   pfn_head);
9484 
9485 			del_page_from_free_list(page_head, zone, page_order);
9486 			break_down_buddy_pages(zone, page_head, page, 0,
9487 						page_order, migratetype);
9488 			SetPageHWPoisonTakenOff(page);
9489 			if (!is_migrate_isolate(migratetype))
9490 				__mod_zone_freepage_state(zone, -1, migratetype);
9491 			ret = true;
9492 			break;
9493 		}
9494 		if (page_count(page_head) > 0)
9495 			break;
9496 	}
9497 	spin_unlock_irqrestore(&zone->lock, flags);
9498 	return ret;
9499 }
9500 
9501 /*
9502  * Cancel takeoff done by take_page_off_buddy().
9503  */
9504 bool put_page_back_buddy(struct page *page)
9505 {
9506 	struct zone *zone = page_zone(page);
9507 	unsigned long pfn = page_to_pfn(page);
9508 	unsigned long flags;
9509 	int migratetype = get_pfnblock_migratetype(page, pfn);
9510 	bool ret = false;
9511 
9512 	spin_lock_irqsave(&zone->lock, flags);
9513 	if (put_page_testzero(page)) {
9514 		ClearPageHWPoisonTakenOff(page);
9515 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
9516 		if (TestClearPageHWPoison(page)) {
9517 			ret = true;
9518 		}
9519 	}
9520 	spin_unlock_irqrestore(&zone->lock, flags);
9521 
9522 	return ret;
9523 }
9524 #endif
9525 
9526 #ifdef CONFIG_ZONE_DMA
9527 bool has_managed_dma(void)
9528 {
9529 	struct pglist_data *pgdat;
9530 
9531 	for_each_online_pgdat(pgdat) {
9532 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9533 
9534 		if (managed_zone(zone))
9535 			return true;
9536 	}
9537 	return false;
9538 }
9539 #endif /* CONFIG_ZONE_DMA */
9540