1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/swap.h> 22 #include <linux/swapops.h> 23 #include <linux/interrupt.h> 24 #include <linux/pagemap.h> 25 #include <linux/jiffies.h> 26 #include <linux/memblock.h> 27 #include <linux/compiler.h> 28 #include <linux/kernel.h> 29 #include <linux/kasan.h> 30 #include <linux/module.h> 31 #include <linux/suspend.h> 32 #include <linux/pagevec.h> 33 #include <linux/blkdev.h> 34 #include <linux/slab.h> 35 #include <linux/ratelimit.h> 36 #include <linux/oom.h> 37 #include <linux/topology.h> 38 #include <linux/sysctl.h> 39 #include <linux/cpu.h> 40 #include <linux/cpuset.h> 41 #include <linux/memory_hotplug.h> 42 #include <linux/nodemask.h> 43 #include <linux/vmalloc.h> 44 #include <linux/vmstat.h> 45 #include <linux/mempolicy.h> 46 #include <linux/memremap.h> 47 #include <linux/stop_machine.h> 48 #include <linux/random.h> 49 #include <linux/sort.h> 50 #include <linux/pfn.h> 51 #include <linux/backing-dev.h> 52 #include <linux/fault-inject.h> 53 #include <linux/page-isolation.h> 54 #include <linux/debugobjects.h> 55 #include <linux/kmemleak.h> 56 #include <linux/compaction.h> 57 #include <trace/events/kmem.h> 58 #include <trace/events/oom.h> 59 #include <linux/prefetch.h> 60 #include <linux/mm_inline.h> 61 #include <linux/mmu_notifier.h> 62 #include <linux/migrate.h> 63 #include <linux/hugetlb.h> 64 #include <linux/sched/rt.h> 65 #include <linux/sched/mm.h> 66 #include <linux/page_owner.h> 67 #include <linux/page_table_check.h> 68 #include <linux/kthread.h> 69 #include <linux/memcontrol.h> 70 #include <linux/ftrace.h> 71 #include <linux/lockdep.h> 72 #include <linux/nmi.h> 73 #include <linux/psi.h> 74 #include <linux/padata.h> 75 #include <linux/khugepaged.h> 76 #include <linux/buffer_head.h> 77 #include <linux/delayacct.h> 78 #include <asm/sections.h> 79 #include <asm/tlbflush.h> 80 #include <asm/div64.h> 81 #include "internal.h" 82 #include "shuffle.h" 83 #include "page_reporting.h" 84 #include "swap.h" 85 86 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 87 typedef int __bitwise fpi_t; 88 89 /* No special request */ 90 #define FPI_NONE ((__force fpi_t)0) 91 92 /* 93 * Skip free page reporting notification for the (possibly merged) page. 94 * This does not hinder free page reporting from grabbing the page, 95 * reporting it and marking it "reported" - it only skips notifying 96 * the free page reporting infrastructure about a newly freed page. For 97 * example, used when temporarily pulling a page from a freelist and 98 * putting it back unmodified. 99 */ 100 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 101 102 /* 103 * Place the (possibly merged) page to the tail of the freelist. Will ignore 104 * page shuffling (relevant code - e.g., memory onlining - is expected to 105 * shuffle the whole zone). 106 * 107 * Note: No code should rely on this flag for correctness - it's purely 108 * to allow for optimizations when handing back either fresh pages 109 * (memory onlining) or untouched pages (page isolation, free page 110 * reporting). 111 */ 112 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 113 114 /* 115 * Don't poison memory with KASAN (only for the tag-based modes). 116 * During boot, all non-reserved memblock memory is exposed to page_alloc. 117 * Poisoning all that memory lengthens boot time, especially on systems with 118 * large amount of RAM. This flag is used to skip that poisoning. 119 * This is only done for the tag-based KASAN modes, as those are able to 120 * detect memory corruptions with the memory tags assigned by default. 121 * All memory allocated normally after boot gets poisoned as usual. 122 */ 123 #define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2)) 124 125 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 126 static DEFINE_MUTEX(pcp_batch_high_lock); 127 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) 128 129 struct pagesets { 130 local_lock_t lock; 131 }; 132 static DEFINE_PER_CPU(struct pagesets, pagesets) = { 133 .lock = INIT_LOCAL_LOCK(lock), 134 }; 135 136 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 137 DEFINE_PER_CPU(int, numa_node); 138 EXPORT_PER_CPU_SYMBOL(numa_node); 139 #endif 140 141 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 142 143 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 144 /* 145 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 146 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 147 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 148 * defined in <linux/topology.h>. 149 */ 150 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 151 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 152 #endif 153 154 /* work_structs for global per-cpu drains */ 155 struct pcpu_drain { 156 struct zone *zone; 157 struct work_struct work; 158 }; 159 static DEFINE_MUTEX(pcpu_drain_mutex); 160 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain); 161 162 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 163 volatile unsigned long latent_entropy __latent_entropy; 164 EXPORT_SYMBOL(latent_entropy); 165 #endif 166 167 /* 168 * Array of node states. 169 */ 170 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 171 [N_POSSIBLE] = NODE_MASK_ALL, 172 [N_ONLINE] = { { [0] = 1UL } }, 173 #ifndef CONFIG_NUMA 174 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 175 #ifdef CONFIG_HIGHMEM 176 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 177 #endif 178 [N_MEMORY] = { { [0] = 1UL } }, 179 [N_CPU] = { { [0] = 1UL } }, 180 #endif /* NUMA */ 181 }; 182 EXPORT_SYMBOL(node_states); 183 184 atomic_long_t _totalram_pages __read_mostly; 185 EXPORT_SYMBOL(_totalram_pages); 186 unsigned long totalreserve_pages __read_mostly; 187 unsigned long totalcma_pages __read_mostly; 188 189 int percpu_pagelist_high_fraction; 190 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 191 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 192 EXPORT_SYMBOL(init_on_alloc); 193 194 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 195 EXPORT_SYMBOL(init_on_free); 196 197 static bool _init_on_alloc_enabled_early __read_mostly 198 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON); 199 static int __init early_init_on_alloc(char *buf) 200 { 201 202 return kstrtobool(buf, &_init_on_alloc_enabled_early); 203 } 204 early_param("init_on_alloc", early_init_on_alloc); 205 206 static bool _init_on_free_enabled_early __read_mostly 207 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON); 208 static int __init early_init_on_free(char *buf) 209 { 210 return kstrtobool(buf, &_init_on_free_enabled_early); 211 } 212 early_param("init_on_free", early_init_on_free); 213 214 /* 215 * A cached value of the page's pageblock's migratetype, used when the page is 216 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 217 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 218 * Also the migratetype set in the page does not necessarily match the pcplist 219 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 220 * other index - this ensures that it will be put on the correct CMA freelist. 221 */ 222 static inline int get_pcppage_migratetype(struct page *page) 223 { 224 return page->index; 225 } 226 227 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 228 { 229 page->index = migratetype; 230 } 231 232 #ifdef CONFIG_PM_SLEEP 233 /* 234 * The following functions are used by the suspend/hibernate code to temporarily 235 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 236 * while devices are suspended. To avoid races with the suspend/hibernate code, 237 * they should always be called with system_transition_mutex held 238 * (gfp_allowed_mask also should only be modified with system_transition_mutex 239 * held, unless the suspend/hibernate code is guaranteed not to run in parallel 240 * with that modification). 241 */ 242 243 static gfp_t saved_gfp_mask; 244 245 void pm_restore_gfp_mask(void) 246 { 247 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 248 if (saved_gfp_mask) { 249 gfp_allowed_mask = saved_gfp_mask; 250 saved_gfp_mask = 0; 251 } 252 } 253 254 void pm_restrict_gfp_mask(void) 255 { 256 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 257 WARN_ON(saved_gfp_mask); 258 saved_gfp_mask = gfp_allowed_mask; 259 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 260 } 261 262 bool pm_suspended_storage(void) 263 { 264 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 265 return false; 266 return true; 267 } 268 #endif /* CONFIG_PM_SLEEP */ 269 270 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 271 unsigned int pageblock_order __read_mostly; 272 #endif 273 274 static void __free_pages_ok(struct page *page, unsigned int order, 275 fpi_t fpi_flags); 276 277 /* 278 * results with 256, 32 in the lowmem_reserve sysctl: 279 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 280 * 1G machine -> (16M dma, 784M normal, 224M high) 281 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 282 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 283 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 284 * 285 * TBD: should special case ZONE_DMA32 machines here - in those we normally 286 * don't need any ZONE_NORMAL reservation 287 */ 288 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 289 #ifdef CONFIG_ZONE_DMA 290 [ZONE_DMA] = 256, 291 #endif 292 #ifdef CONFIG_ZONE_DMA32 293 [ZONE_DMA32] = 256, 294 #endif 295 [ZONE_NORMAL] = 32, 296 #ifdef CONFIG_HIGHMEM 297 [ZONE_HIGHMEM] = 0, 298 #endif 299 [ZONE_MOVABLE] = 0, 300 }; 301 302 static char * const zone_names[MAX_NR_ZONES] = { 303 #ifdef CONFIG_ZONE_DMA 304 "DMA", 305 #endif 306 #ifdef CONFIG_ZONE_DMA32 307 "DMA32", 308 #endif 309 "Normal", 310 #ifdef CONFIG_HIGHMEM 311 "HighMem", 312 #endif 313 "Movable", 314 #ifdef CONFIG_ZONE_DEVICE 315 "Device", 316 #endif 317 }; 318 319 const char * const migratetype_names[MIGRATE_TYPES] = { 320 "Unmovable", 321 "Movable", 322 "Reclaimable", 323 "HighAtomic", 324 #ifdef CONFIG_CMA 325 "CMA", 326 #endif 327 #ifdef CONFIG_MEMORY_ISOLATION 328 "Isolate", 329 #endif 330 }; 331 332 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = { 333 [NULL_COMPOUND_DTOR] = NULL, 334 [COMPOUND_PAGE_DTOR] = free_compound_page, 335 #ifdef CONFIG_HUGETLB_PAGE 336 [HUGETLB_PAGE_DTOR] = free_huge_page, 337 #endif 338 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 339 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page, 340 #endif 341 }; 342 343 int min_free_kbytes = 1024; 344 int user_min_free_kbytes = -1; 345 int watermark_boost_factor __read_mostly = 15000; 346 int watermark_scale_factor = 10; 347 348 static unsigned long nr_kernel_pages __initdata; 349 static unsigned long nr_all_pages __initdata; 350 static unsigned long dma_reserve __initdata; 351 352 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 353 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 354 static unsigned long required_kernelcore __initdata; 355 static unsigned long required_kernelcore_percent __initdata; 356 static unsigned long required_movablecore __initdata; 357 static unsigned long required_movablecore_percent __initdata; 358 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 359 static bool mirrored_kernelcore __meminitdata; 360 361 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 362 int movable_zone; 363 EXPORT_SYMBOL(movable_zone); 364 365 #if MAX_NUMNODES > 1 366 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 367 unsigned int nr_online_nodes __read_mostly = 1; 368 EXPORT_SYMBOL(nr_node_ids); 369 EXPORT_SYMBOL(nr_online_nodes); 370 #endif 371 372 int page_group_by_mobility_disabled __read_mostly; 373 374 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 375 /* 376 * During boot we initialize deferred pages on-demand, as needed, but once 377 * page_alloc_init_late() has finished, the deferred pages are all initialized, 378 * and we can permanently disable that path. 379 */ 380 static DEFINE_STATIC_KEY_TRUE(deferred_pages); 381 382 static inline bool deferred_pages_enabled(void) 383 { 384 return static_branch_unlikely(&deferred_pages); 385 } 386 387 /* Returns true if the struct page for the pfn is uninitialised */ 388 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 389 { 390 int nid = early_pfn_to_nid(pfn); 391 392 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 393 return true; 394 395 return false; 396 } 397 398 /* 399 * Returns true when the remaining initialisation should be deferred until 400 * later in the boot cycle when it can be parallelised. 401 */ 402 static bool __meminit 403 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 404 { 405 static unsigned long prev_end_pfn, nr_initialised; 406 407 /* 408 * prev_end_pfn static that contains the end of previous zone 409 * No need to protect because called very early in boot before smp_init. 410 */ 411 if (prev_end_pfn != end_pfn) { 412 prev_end_pfn = end_pfn; 413 nr_initialised = 0; 414 } 415 416 /* Always populate low zones for address-constrained allocations */ 417 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 418 return false; 419 420 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX) 421 return true; 422 /* 423 * We start only with one section of pages, more pages are added as 424 * needed until the rest of deferred pages are initialized. 425 */ 426 nr_initialised++; 427 if ((nr_initialised > PAGES_PER_SECTION) && 428 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 429 NODE_DATA(nid)->first_deferred_pfn = pfn; 430 return true; 431 } 432 return false; 433 } 434 #else 435 static inline bool deferred_pages_enabled(void) 436 { 437 return false; 438 } 439 440 static inline bool early_page_uninitialised(unsigned long pfn) 441 { 442 return false; 443 } 444 445 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 446 { 447 return false; 448 } 449 #endif 450 451 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 452 static inline unsigned long *get_pageblock_bitmap(const struct page *page, 453 unsigned long pfn) 454 { 455 #ifdef CONFIG_SPARSEMEM 456 return section_to_usemap(__pfn_to_section(pfn)); 457 #else 458 return page_zone(page)->pageblock_flags; 459 #endif /* CONFIG_SPARSEMEM */ 460 } 461 462 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) 463 { 464 #ifdef CONFIG_SPARSEMEM 465 pfn &= (PAGES_PER_SECTION-1); 466 #else 467 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 468 #endif /* CONFIG_SPARSEMEM */ 469 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 470 } 471 472 static __always_inline 473 unsigned long __get_pfnblock_flags_mask(const struct page *page, 474 unsigned long pfn, 475 unsigned long mask) 476 { 477 unsigned long *bitmap; 478 unsigned long bitidx, word_bitidx; 479 unsigned long word; 480 481 bitmap = get_pageblock_bitmap(page, pfn); 482 bitidx = pfn_to_bitidx(page, pfn); 483 word_bitidx = bitidx / BITS_PER_LONG; 484 bitidx &= (BITS_PER_LONG-1); 485 /* 486 * This races, without locks, with set_pfnblock_flags_mask(). Ensure 487 * a consistent read of the memory array, so that results, even though 488 * racy, are not corrupted. 489 */ 490 word = READ_ONCE(bitmap[word_bitidx]); 491 return (word >> bitidx) & mask; 492 } 493 494 /** 495 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 496 * @page: The page within the block of interest 497 * @pfn: The target page frame number 498 * @mask: mask of bits that the caller is interested in 499 * 500 * Return: pageblock_bits flags 501 */ 502 unsigned long get_pfnblock_flags_mask(const struct page *page, 503 unsigned long pfn, unsigned long mask) 504 { 505 return __get_pfnblock_flags_mask(page, pfn, mask); 506 } 507 508 static __always_inline int get_pfnblock_migratetype(const struct page *page, 509 unsigned long pfn) 510 { 511 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 512 } 513 514 /** 515 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 516 * @page: The page within the block of interest 517 * @flags: The flags to set 518 * @pfn: The target page frame number 519 * @mask: mask of bits that the caller is interested in 520 */ 521 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 522 unsigned long pfn, 523 unsigned long mask) 524 { 525 unsigned long *bitmap; 526 unsigned long bitidx, word_bitidx; 527 unsigned long old_word, word; 528 529 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 530 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 531 532 bitmap = get_pageblock_bitmap(page, pfn); 533 bitidx = pfn_to_bitidx(page, pfn); 534 word_bitidx = bitidx / BITS_PER_LONG; 535 bitidx &= (BITS_PER_LONG-1); 536 537 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 538 539 mask <<= bitidx; 540 flags <<= bitidx; 541 542 word = READ_ONCE(bitmap[word_bitidx]); 543 for (;;) { 544 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 545 if (word == old_word) 546 break; 547 word = old_word; 548 } 549 } 550 551 void set_pageblock_migratetype(struct page *page, int migratetype) 552 { 553 if (unlikely(page_group_by_mobility_disabled && 554 migratetype < MIGRATE_PCPTYPES)) 555 migratetype = MIGRATE_UNMOVABLE; 556 557 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 558 page_to_pfn(page), MIGRATETYPE_MASK); 559 } 560 561 #ifdef CONFIG_DEBUG_VM 562 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 563 { 564 int ret = 0; 565 unsigned seq; 566 unsigned long pfn = page_to_pfn(page); 567 unsigned long sp, start_pfn; 568 569 do { 570 seq = zone_span_seqbegin(zone); 571 start_pfn = zone->zone_start_pfn; 572 sp = zone->spanned_pages; 573 if (!zone_spans_pfn(zone, pfn)) 574 ret = 1; 575 } while (zone_span_seqretry(zone, seq)); 576 577 if (ret) 578 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 579 pfn, zone_to_nid(zone), zone->name, 580 start_pfn, start_pfn + sp); 581 582 return ret; 583 } 584 585 static int page_is_consistent(struct zone *zone, struct page *page) 586 { 587 if (zone != page_zone(page)) 588 return 0; 589 590 return 1; 591 } 592 /* 593 * Temporary debugging check for pages not lying within a given zone. 594 */ 595 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 596 { 597 if (page_outside_zone_boundaries(zone, page)) 598 return 1; 599 if (!page_is_consistent(zone, page)) 600 return 1; 601 602 return 0; 603 } 604 #else 605 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 606 { 607 return 0; 608 } 609 #endif 610 611 static void bad_page(struct page *page, const char *reason) 612 { 613 static unsigned long resume; 614 static unsigned long nr_shown; 615 static unsigned long nr_unshown; 616 617 /* 618 * Allow a burst of 60 reports, then keep quiet for that minute; 619 * or allow a steady drip of one report per second. 620 */ 621 if (nr_shown == 60) { 622 if (time_before(jiffies, resume)) { 623 nr_unshown++; 624 goto out; 625 } 626 if (nr_unshown) { 627 pr_alert( 628 "BUG: Bad page state: %lu messages suppressed\n", 629 nr_unshown); 630 nr_unshown = 0; 631 } 632 nr_shown = 0; 633 } 634 if (nr_shown++ == 0) 635 resume = jiffies + 60 * HZ; 636 637 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 638 current->comm, page_to_pfn(page)); 639 dump_page(page, reason); 640 641 print_modules(); 642 dump_stack(); 643 out: 644 /* Leave bad fields for debug, except PageBuddy could make trouble */ 645 page_mapcount_reset(page); /* remove PageBuddy */ 646 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 647 } 648 649 static inline unsigned int order_to_pindex(int migratetype, int order) 650 { 651 int base = order; 652 653 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 654 if (order > PAGE_ALLOC_COSTLY_ORDER) { 655 VM_BUG_ON(order != pageblock_order); 656 base = PAGE_ALLOC_COSTLY_ORDER + 1; 657 } 658 #else 659 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 660 #endif 661 662 return (MIGRATE_PCPTYPES * base) + migratetype; 663 } 664 665 static inline int pindex_to_order(unsigned int pindex) 666 { 667 int order = pindex / MIGRATE_PCPTYPES; 668 669 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 670 if (order > PAGE_ALLOC_COSTLY_ORDER) 671 order = pageblock_order; 672 #else 673 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 674 #endif 675 676 return order; 677 } 678 679 static inline bool pcp_allowed_order(unsigned int order) 680 { 681 if (order <= PAGE_ALLOC_COSTLY_ORDER) 682 return true; 683 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 684 if (order == pageblock_order) 685 return true; 686 #endif 687 return false; 688 } 689 690 static inline void free_the_page(struct page *page, unsigned int order) 691 { 692 if (pcp_allowed_order(order)) /* Via pcp? */ 693 free_unref_page(page, order); 694 else 695 __free_pages_ok(page, order, FPI_NONE); 696 } 697 698 /* 699 * Higher-order pages are called "compound pages". They are structured thusly: 700 * 701 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 702 * 703 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 704 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 705 * 706 * The first tail page's ->compound_dtor holds the offset in array of compound 707 * page destructors. See compound_page_dtors. 708 * 709 * The first tail page's ->compound_order holds the order of allocation. 710 * This usage means that zero-order pages may not be compound. 711 */ 712 713 void free_compound_page(struct page *page) 714 { 715 mem_cgroup_uncharge(page_folio(page)); 716 free_the_page(page, compound_order(page)); 717 } 718 719 static void prep_compound_head(struct page *page, unsigned int order) 720 { 721 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 722 set_compound_order(page, order); 723 atomic_set(compound_mapcount_ptr(page), -1); 724 atomic_set(compound_pincount_ptr(page), 0); 725 } 726 727 static void prep_compound_tail(struct page *head, int tail_idx) 728 { 729 struct page *p = head + tail_idx; 730 731 p->mapping = TAIL_MAPPING; 732 set_compound_head(p, head); 733 } 734 735 void prep_compound_page(struct page *page, unsigned int order) 736 { 737 int i; 738 int nr_pages = 1 << order; 739 740 __SetPageHead(page); 741 for (i = 1; i < nr_pages; i++) 742 prep_compound_tail(page, i); 743 744 prep_compound_head(page, order); 745 } 746 747 #ifdef CONFIG_DEBUG_PAGEALLOC 748 unsigned int _debug_guardpage_minorder; 749 750 bool _debug_pagealloc_enabled_early __read_mostly 751 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 752 EXPORT_SYMBOL(_debug_pagealloc_enabled_early); 753 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 754 EXPORT_SYMBOL(_debug_pagealloc_enabled); 755 756 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 757 758 static int __init early_debug_pagealloc(char *buf) 759 { 760 return kstrtobool(buf, &_debug_pagealloc_enabled_early); 761 } 762 early_param("debug_pagealloc", early_debug_pagealloc); 763 764 static int __init debug_guardpage_minorder_setup(char *buf) 765 { 766 unsigned long res; 767 768 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 769 pr_err("Bad debug_guardpage_minorder value\n"); 770 return 0; 771 } 772 _debug_guardpage_minorder = res; 773 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 774 return 0; 775 } 776 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 777 778 static inline bool set_page_guard(struct zone *zone, struct page *page, 779 unsigned int order, int migratetype) 780 { 781 if (!debug_guardpage_enabled()) 782 return false; 783 784 if (order >= debug_guardpage_minorder()) 785 return false; 786 787 __SetPageGuard(page); 788 INIT_LIST_HEAD(&page->lru); 789 set_page_private(page, order); 790 /* Guard pages are not available for any usage */ 791 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 792 793 return true; 794 } 795 796 static inline void clear_page_guard(struct zone *zone, struct page *page, 797 unsigned int order, int migratetype) 798 { 799 if (!debug_guardpage_enabled()) 800 return; 801 802 __ClearPageGuard(page); 803 804 set_page_private(page, 0); 805 if (!is_migrate_isolate(migratetype)) 806 __mod_zone_freepage_state(zone, (1 << order), migratetype); 807 } 808 #else 809 static inline bool set_page_guard(struct zone *zone, struct page *page, 810 unsigned int order, int migratetype) { return false; } 811 static inline void clear_page_guard(struct zone *zone, struct page *page, 812 unsigned int order, int migratetype) {} 813 #endif 814 815 /* 816 * Enable static keys related to various memory debugging and hardening options. 817 * Some override others, and depend on early params that are evaluated in the 818 * order of appearance. So we need to first gather the full picture of what was 819 * enabled, and then make decisions. 820 */ 821 void init_mem_debugging_and_hardening(void) 822 { 823 bool page_poisoning_requested = false; 824 825 #ifdef CONFIG_PAGE_POISONING 826 /* 827 * Page poisoning is debug page alloc for some arches. If 828 * either of those options are enabled, enable poisoning. 829 */ 830 if (page_poisoning_enabled() || 831 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) && 832 debug_pagealloc_enabled())) { 833 static_branch_enable(&_page_poisoning_enabled); 834 page_poisoning_requested = true; 835 } 836 #endif 837 838 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) && 839 page_poisoning_requested) { 840 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, " 841 "will take precedence over init_on_alloc and init_on_free\n"); 842 _init_on_alloc_enabled_early = false; 843 _init_on_free_enabled_early = false; 844 } 845 846 if (_init_on_alloc_enabled_early) 847 static_branch_enable(&init_on_alloc); 848 else 849 static_branch_disable(&init_on_alloc); 850 851 if (_init_on_free_enabled_early) 852 static_branch_enable(&init_on_free); 853 else 854 static_branch_disable(&init_on_free); 855 856 #ifdef CONFIG_DEBUG_PAGEALLOC 857 if (!debug_pagealloc_enabled()) 858 return; 859 860 static_branch_enable(&_debug_pagealloc_enabled); 861 862 if (!debug_guardpage_minorder()) 863 return; 864 865 static_branch_enable(&_debug_guardpage_enabled); 866 #endif 867 } 868 869 static inline void set_buddy_order(struct page *page, unsigned int order) 870 { 871 set_page_private(page, order); 872 __SetPageBuddy(page); 873 } 874 875 #ifdef CONFIG_COMPACTION 876 static inline struct capture_control *task_capc(struct zone *zone) 877 { 878 struct capture_control *capc = current->capture_control; 879 880 return unlikely(capc) && 881 !(current->flags & PF_KTHREAD) && 882 !capc->page && 883 capc->cc->zone == zone ? capc : NULL; 884 } 885 886 static inline bool 887 compaction_capture(struct capture_control *capc, struct page *page, 888 int order, int migratetype) 889 { 890 if (!capc || order != capc->cc->order) 891 return false; 892 893 /* Do not accidentally pollute CMA or isolated regions*/ 894 if (is_migrate_cma(migratetype) || 895 is_migrate_isolate(migratetype)) 896 return false; 897 898 /* 899 * Do not let lower order allocations pollute a movable pageblock. 900 * This might let an unmovable request use a reclaimable pageblock 901 * and vice-versa but no more than normal fallback logic which can 902 * have trouble finding a high-order free page. 903 */ 904 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 905 return false; 906 907 capc->page = page; 908 return true; 909 } 910 911 #else 912 static inline struct capture_control *task_capc(struct zone *zone) 913 { 914 return NULL; 915 } 916 917 static inline bool 918 compaction_capture(struct capture_control *capc, struct page *page, 919 int order, int migratetype) 920 { 921 return false; 922 } 923 #endif /* CONFIG_COMPACTION */ 924 925 /* Used for pages not on another list */ 926 static inline void add_to_free_list(struct page *page, struct zone *zone, 927 unsigned int order, int migratetype) 928 { 929 struct free_area *area = &zone->free_area[order]; 930 931 list_add(&page->lru, &area->free_list[migratetype]); 932 area->nr_free++; 933 } 934 935 /* Used for pages not on another list */ 936 static inline void add_to_free_list_tail(struct page *page, struct zone *zone, 937 unsigned int order, int migratetype) 938 { 939 struct free_area *area = &zone->free_area[order]; 940 941 list_add_tail(&page->lru, &area->free_list[migratetype]); 942 area->nr_free++; 943 } 944 945 /* 946 * Used for pages which are on another list. Move the pages to the tail 947 * of the list - so the moved pages won't immediately be considered for 948 * allocation again (e.g., optimization for memory onlining). 949 */ 950 static inline void move_to_free_list(struct page *page, struct zone *zone, 951 unsigned int order, int migratetype) 952 { 953 struct free_area *area = &zone->free_area[order]; 954 955 list_move_tail(&page->lru, &area->free_list[migratetype]); 956 } 957 958 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 959 unsigned int order) 960 { 961 /* clear reported state and update reported page count */ 962 if (page_reported(page)) 963 __ClearPageReported(page); 964 965 list_del(&page->lru); 966 __ClearPageBuddy(page); 967 set_page_private(page, 0); 968 zone->free_area[order].nr_free--; 969 } 970 971 /* 972 * If this is not the largest possible page, check if the buddy 973 * of the next-highest order is free. If it is, it's possible 974 * that pages are being freed that will coalesce soon. In case, 975 * that is happening, add the free page to the tail of the list 976 * so it's less likely to be used soon and more likely to be merged 977 * as a higher order page 978 */ 979 static inline bool 980 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 981 struct page *page, unsigned int order) 982 { 983 unsigned long higher_page_pfn; 984 struct page *higher_page; 985 986 if (order >= MAX_ORDER - 2) 987 return false; 988 989 higher_page_pfn = buddy_pfn & pfn; 990 higher_page = page + (higher_page_pfn - pfn); 991 992 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1, 993 NULL) != NULL; 994 } 995 996 /* 997 * Freeing function for a buddy system allocator. 998 * 999 * The concept of a buddy system is to maintain direct-mapped table 1000 * (containing bit values) for memory blocks of various "orders". 1001 * The bottom level table contains the map for the smallest allocatable 1002 * units of memory (here, pages), and each level above it describes 1003 * pairs of units from the levels below, hence, "buddies". 1004 * At a high level, all that happens here is marking the table entry 1005 * at the bottom level available, and propagating the changes upward 1006 * as necessary, plus some accounting needed to play nicely with other 1007 * parts of the VM system. 1008 * At each level, we keep a list of pages, which are heads of continuous 1009 * free pages of length of (1 << order) and marked with PageBuddy. 1010 * Page's order is recorded in page_private(page) field. 1011 * So when we are allocating or freeing one, we can derive the state of the 1012 * other. That is, if we allocate a small block, and both were 1013 * free, the remainder of the region must be split into blocks. 1014 * If a block is freed, and its buddy is also free, then this 1015 * triggers coalescing into a block of larger size. 1016 * 1017 * -- nyc 1018 */ 1019 1020 static inline void __free_one_page(struct page *page, 1021 unsigned long pfn, 1022 struct zone *zone, unsigned int order, 1023 int migratetype, fpi_t fpi_flags) 1024 { 1025 struct capture_control *capc = task_capc(zone); 1026 unsigned long buddy_pfn; 1027 unsigned long combined_pfn; 1028 struct page *buddy; 1029 bool to_tail; 1030 1031 VM_BUG_ON(!zone_is_initialized(zone)); 1032 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 1033 1034 VM_BUG_ON(migratetype == -1); 1035 if (likely(!is_migrate_isolate(migratetype))) 1036 __mod_zone_freepage_state(zone, 1 << order, migratetype); 1037 1038 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 1039 VM_BUG_ON_PAGE(bad_range(zone, page), page); 1040 1041 while (order < MAX_ORDER - 1) { 1042 if (compaction_capture(capc, page, order, migratetype)) { 1043 __mod_zone_freepage_state(zone, -(1 << order), 1044 migratetype); 1045 return; 1046 } 1047 1048 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn); 1049 if (!buddy) 1050 goto done_merging; 1051 1052 if (unlikely(order >= pageblock_order)) { 1053 /* 1054 * We want to prevent merge between freepages on pageblock 1055 * without fallbacks and normal pageblock. Without this, 1056 * pageblock isolation could cause incorrect freepage or CMA 1057 * accounting or HIGHATOMIC accounting. 1058 */ 1059 int buddy_mt = get_pageblock_migratetype(buddy); 1060 1061 if (migratetype != buddy_mt 1062 && (!migratetype_is_mergeable(migratetype) || 1063 !migratetype_is_mergeable(buddy_mt))) 1064 goto done_merging; 1065 } 1066 1067 /* 1068 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 1069 * merge with it and move up one order. 1070 */ 1071 if (page_is_guard(buddy)) 1072 clear_page_guard(zone, buddy, order, migratetype); 1073 else 1074 del_page_from_free_list(buddy, zone, order); 1075 combined_pfn = buddy_pfn & pfn; 1076 page = page + (combined_pfn - pfn); 1077 pfn = combined_pfn; 1078 order++; 1079 } 1080 1081 done_merging: 1082 set_buddy_order(page, order); 1083 1084 if (fpi_flags & FPI_TO_TAIL) 1085 to_tail = true; 1086 else if (is_shuffle_order(order)) 1087 to_tail = shuffle_pick_tail(); 1088 else 1089 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 1090 1091 if (to_tail) 1092 add_to_free_list_tail(page, zone, order, migratetype); 1093 else 1094 add_to_free_list(page, zone, order, migratetype); 1095 1096 /* Notify page reporting subsystem of freed page */ 1097 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 1098 page_reporting_notify_free(order); 1099 } 1100 1101 /** 1102 * split_free_page() -- split a free page at split_pfn_offset 1103 * @free_page: the original free page 1104 * @order: the order of the page 1105 * @split_pfn_offset: split offset within the page 1106 * 1107 * Return -ENOENT if the free page is changed, otherwise 0 1108 * 1109 * It is used when the free page crosses two pageblocks with different migratetypes 1110 * at split_pfn_offset within the page. The split free page will be put into 1111 * separate migratetype lists afterwards. Otherwise, the function achieves 1112 * nothing. 1113 */ 1114 int split_free_page(struct page *free_page, 1115 unsigned int order, unsigned long split_pfn_offset) 1116 { 1117 struct zone *zone = page_zone(free_page); 1118 unsigned long free_page_pfn = page_to_pfn(free_page); 1119 unsigned long pfn; 1120 unsigned long flags; 1121 int free_page_order; 1122 int mt; 1123 int ret = 0; 1124 1125 if (split_pfn_offset == 0) 1126 return ret; 1127 1128 spin_lock_irqsave(&zone->lock, flags); 1129 1130 if (!PageBuddy(free_page) || buddy_order(free_page) != order) { 1131 ret = -ENOENT; 1132 goto out; 1133 } 1134 1135 mt = get_pageblock_migratetype(free_page); 1136 if (likely(!is_migrate_isolate(mt))) 1137 __mod_zone_freepage_state(zone, -(1UL << order), mt); 1138 1139 del_page_from_free_list(free_page, zone, order); 1140 for (pfn = free_page_pfn; 1141 pfn < free_page_pfn + (1UL << order);) { 1142 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn); 1143 1144 free_page_order = min_t(unsigned int, 1145 pfn ? __ffs(pfn) : order, 1146 __fls(split_pfn_offset)); 1147 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order, 1148 mt, FPI_NONE); 1149 pfn += 1UL << free_page_order; 1150 split_pfn_offset -= (1UL << free_page_order); 1151 /* we have done the first part, now switch to second part */ 1152 if (split_pfn_offset == 0) 1153 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn); 1154 } 1155 out: 1156 spin_unlock_irqrestore(&zone->lock, flags); 1157 return ret; 1158 } 1159 /* 1160 * A bad page could be due to a number of fields. Instead of multiple branches, 1161 * try and check multiple fields with one check. The caller must do a detailed 1162 * check if necessary. 1163 */ 1164 static inline bool page_expected_state(struct page *page, 1165 unsigned long check_flags) 1166 { 1167 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1168 return false; 1169 1170 if (unlikely((unsigned long)page->mapping | 1171 page_ref_count(page) | 1172 #ifdef CONFIG_MEMCG 1173 page->memcg_data | 1174 #endif 1175 (page->flags & check_flags))) 1176 return false; 1177 1178 return true; 1179 } 1180 1181 static const char *page_bad_reason(struct page *page, unsigned long flags) 1182 { 1183 const char *bad_reason = NULL; 1184 1185 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1186 bad_reason = "nonzero mapcount"; 1187 if (unlikely(page->mapping != NULL)) 1188 bad_reason = "non-NULL mapping"; 1189 if (unlikely(page_ref_count(page) != 0)) 1190 bad_reason = "nonzero _refcount"; 1191 if (unlikely(page->flags & flags)) { 1192 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 1193 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 1194 else 1195 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 1196 } 1197 #ifdef CONFIG_MEMCG 1198 if (unlikely(page->memcg_data)) 1199 bad_reason = "page still charged to cgroup"; 1200 #endif 1201 return bad_reason; 1202 } 1203 1204 static void check_free_page_bad(struct page *page) 1205 { 1206 bad_page(page, 1207 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 1208 } 1209 1210 static inline int check_free_page(struct page *page) 1211 { 1212 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 1213 return 0; 1214 1215 /* Something has gone sideways, find it */ 1216 check_free_page_bad(page); 1217 return 1; 1218 } 1219 1220 static int free_tail_pages_check(struct page *head_page, struct page *page) 1221 { 1222 int ret = 1; 1223 1224 /* 1225 * We rely page->lru.next never has bit 0 set, unless the page 1226 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 1227 */ 1228 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1229 1230 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 1231 ret = 0; 1232 goto out; 1233 } 1234 switch (page - head_page) { 1235 case 1: 1236 /* the first tail page: ->mapping may be compound_mapcount() */ 1237 if (unlikely(compound_mapcount(page))) { 1238 bad_page(page, "nonzero compound_mapcount"); 1239 goto out; 1240 } 1241 break; 1242 case 2: 1243 /* 1244 * the second tail page: ->mapping is 1245 * deferred_list.next -- ignore value. 1246 */ 1247 break; 1248 default: 1249 if (page->mapping != TAIL_MAPPING) { 1250 bad_page(page, "corrupted mapping in tail page"); 1251 goto out; 1252 } 1253 break; 1254 } 1255 if (unlikely(!PageTail(page))) { 1256 bad_page(page, "PageTail not set"); 1257 goto out; 1258 } 1259 if (unlikely(compound_head(page) != head_page)) { 1260 bad_page(page, "compound_head not consistent"); 1261 goto out; 1262 } 1263 ret = 0; 1264 out: 1265 page->mapping = NULL; 1266 clear_compound_head(page); 1267 return ret; 1268 } 1269 1270 /* 1271 * Skip KASAN memory poisoning when either: 1272 * 1273 * 1. Deferred memory initialization has not yet completed, 1274 * see the explanation below. 1275 * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON, 1276 * see the comment next to it. 1277 * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON, 1278 * see the comment next to it. 1279 * 1280 * Poisoning pages during deferred memory init will greatly lengthen the 1281 * process and cause problem in large memory systems as the deferred pages 1282 * initialization is done with interrupt disabled. 1283 * 1284 * Assuming that there will be no reference to those newly initialized 1285 * pages before they are ever allocated, this should have no effect on 1286 * KASAN memory tracking as the poison will be properly inserted at page 1287 * allocation time. The only corner case is when pages are allocated by 1288 * on-demand allocation and then freed again before the deferred pages 1289 * initialization is done, but this is not likely to happen. 1290 */ 1291 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags) 1292 { 1293 return deferred_pages_enabled() || 1294 (!IS_ENABLED(CONFIG_KASAN_GENERIC) && 1295 (fpi_flags & FPI_SKIP_KASAN_POISON)) || 1296 PageSkipKASanPoison(page); 1297 } 1298 1299 static void kernel_init_pages(struct page *page, int numpages) 1300 { 1301 int i; 1302 1303 /* s390's use of memset() could override KASAN redzones. */ 1304 kasan_disable_current(); 1305 for (i = 0; i < numpages; i++) 1306 clear_highpage_kasan_tagged(page + i); 1307 kasan_enable_current(); 1308 } 1309 1310 static __always_inline bool free_pages_prepare(struct page *page, 1311 unsigned int order, bool check_free, fpi_t fpi_flags) 1312 { 1313 int bad = 0; 1314 bool init = want_init_on_free(); 1315 1316 VM_BUG_ON_PAGE(PageTail(page), page); 1317 1318 trace_mm_page_free(page, order); 1319 1320 if (unlikely(PageHWPoison(page)) && !order) { 1321 /* 1322 * Do not let hwpoison pages hit pcplists/buddy 1323 * Untie memcg state and reset page's owner 1324 */ 1325 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1326 __memcg_kmem_uncharge_page(page, order); 1327 reset_page_owner(page, order); 1328 page_table_check_free(page, order); 1329 return false; 1330 } 1331 1332 /* 1333 * Check tail pages before head page information is cleared to 1334 * avoid checking PageCompound for order-0 pages. 1335 */ 1336 if (unlikely(order)) { 1337 bool compound = PageCompound(page); 1338 int i; 1339 1340 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1341 1342 if (compound) { 1343 ClearPageDoubleMap(page); 1344 ClearPageHasHWPoisoned(page); 1345 } 1346 for (i = 1; i < (1 << order); i++) { 1347 if (compound) 1348 bad += free_tail_pages_check(page, page + i); 1349 if (unlikely(check_free_page(page + i))) { 1350 bad++; 1351 continue; 1352 } 1353 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1354 } 1355 } 1356 if (PageMappingFlags(page)) 1357 page->mapping = NULL; 1358 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1359 __memcg_kmem_uncharge_page(page, order); 1360 if (check_free) 1361 bad += check_free_page(page); 1362 if (bad) 1363 return false; 1364 1365 page_cpupid_reset_last(page); 1366 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1367 reset_page_owner(page, order); 1368 page_table_check_free(page, order); 1369 1370 if (!PageHighMem(page)) { 1371 debug_check_no_locks_freed(page_address(page), 1372 PAGE_SIZE << order); 1373 debug_check_no_obj_freed(page_address(page), 1374 PAGE_SIZE << order); 1375 } 1376 1377 kernel_poison_pages(page, 1 << order); 1378 1379 /* 1380 * As memory initialization might be integrated into KASAN, 1381 * KASAN poisoning and memory initialization code must be 1382 * kept together to avoid discrepancies in behavior. 1383 * 1384 * With hardware tag-based KASAN, memory tags must be set before the 1385 * page becomes unavailable via debug_pagealloc or arch_free_page. 1386 */ 1387 if (!should_skip_kasan_poison(page, fpi_flags)) { 1388 kasan_poison_pages(page, order, init); 1389 1390 /* Memory is already initialized if KASAN did it internally. */ 1391 if (kasan_has_integrated_init()) 1392 init = false; 1393 } 1394 if (init) 1395 kernel_init_pages(page, 1 << order); 1396 1397 /* 1398 * arch_free_page() can make the page's contents inaccessible. s390 1399 * does this. So nothing which can access the page's contents should 1400 * happen after this. 1401 */ 1402 arch_free_page(page, order); 1403 1404 debug_pagealloc_unmap_pages(page, 1 << order); 1405 1406 return true; 1407 } 1408 1409 #ifdef CONFIG_DEBUG_VM 1410 /* 1411 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed 1412 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when 1413 * moved from pcp lists to free lists. 1414 */ 1415 static bool free_pcp_prepare(struct page *page, unsigned int order) 1416 { 1417 return free_pages_prepare(page, order, true, FPI_NONE); 1418 } 1419 1420 static bool bulkfree_pcp_prepare(struct page *page) 1421 { 1422 if (debug_pagealloc_enabled_static()) 1423 return check_free_page(page); 1424 else 1425 return false; 1426 } 1427 #else 1428 /* 1429 * With DEBUG_VM disabled, order-0 pages being freed are checked only when 1430 * moving from pcp lists to free list in order to reduce overhead. With 1431 * debug_pagealloc enabled, they are checked also immediately when being freed 1432 * to the pcp lists. 1433 */ 1434 static bool free_pcp_prepare(struct page *page, unsigned int order) 1435 { 1436 if (debug_pagealloc_enabled_static()) 1437 return free_pages_prepare(page, order, true, FPI_NONE); 1438 else 1439 return free_pages_prepare(page, order, false, FPI_NONE); 1440 } 1441 1442 static bool bulkfree_pcp_prepare(struct page *page) 1443 { 1444 return check_free_page(page); 1445 } 1446 #endif /* CONFIG_DEBUG_VM */ 1447 1448 /* 1449 * Frees a number of pages from the PCP lists 1450 * Assumes all pages on list are in same zone. 1451 * count is the number of pages to free. 1452 */ 1453 static void free_pcppages_bulk(struct zone *zone, int count, 1454 struct per_cpu_pages *pcp, 1455 int pindex) 1456 { 1457 int min_pindex = 0; 1458 int max_pindex = NR_PCP_LISTS - 1; 1459 unsigned int order; 1460 bool isolated_pageblocks; 1461 struct page *page; 1462 1463 /* 1464 * Ensure proper count is passed which otherwise would stuck in the 1465 * below while (list_empty(list)) loop. 1466 */ 1467 count = min(pcp->count, count); 1468 1469 /* Ensure requested pindex is drained first. */ 1470 pindex = pindex - 1; 1471 1472 /* 1473 * local_lock_irq held so equivalent to spin_lock_irqsave for 1474 * both PREEMPT_RT and non-PREEMPT_RT configurations. 1475 */ 1476 spin_lock(&zone->lock); 1477 isolated_pageblocks = has_isolate_pageblock(zone); 1478 1479 while (count > 0) { 1480 struct list_head *list; 1481 int nr_pages; 1482 1483 /* Remove pages from lists in a round-robin fashion. */ 1484 do { 1485 if (++pindex > max_pindex) 1486 pindex = min_pindex; 1487 list = &pcp->lists[pindex]; 1488 if (!list_empty(list)) 1489 break; 1490 1491 if (pindex == max_pindex) 1492 max_pindex--; 1493 if (pindex == min_pindex) 1494 min_pindex++; 1495 } while (1); 1496 1497 order = pindex_to_order(pindex); 1498 nr_pages = 1 << order; 1499 BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH)); 1500 do { 1501 int mt; 1502 1503 page = list_last_entry(list, struct page, lru); 1504 mt = get_pcppage_migratetype(page); 1505 1506 /* must delete to avoid corrupting pcp list */ 1507 list_del(&page->lru); 1508 count -= nr_pages; 1509 pcp->count -= nr_pages; 1510 1511 if (bulkfree_pcp_prepare(page)) 1512 continue; 1513 1514 /* MIGRATE_ISOLATE page should not go to pcplists */ 1515 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1516 /* Pageblock could have been isolated meanwhile */ 1517 if (unlikely(isolated_pageblocks)) 1518 mt = get_pageblock_migratetype(page); 1519 1520 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE); 1521 trace_mm_page_pcpu_drain(page, order, mt); 1522 } while (count > 0 && !list_empty(list)); 1523 } 1524 1525 spin_unlock(&zone->lock); 1526 } 1527 1528 static void free_one_page(struct zone *zone, 1529 struct page *page, unsigned long pfn, 1530 unsigned int order, 1531 int migratetype, fpi_t fpi_flags) 1532 { 1533 unsigned long flags; 1534 1535 spin_lock_irqsave(&zone->lock, flags); 1536 if (unlikely(has_isolate_pageblock(zone) || 1537 is_migrate_isolate(migratetype))) { 1538 migratetype = get_pfnblock_migratetype(page, pfn); 1539 } 1540 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1541 spin_unlock_irqrestore(&zone->lock, flags); 1542 } 1543 1544 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1545 unsigned long zone, int nid) 1546 { 1547 mm_zero_struct_page(page); 1548 set_page_links(page, zone, nid, pfn); 1549 init_page_count(page); 1550 page_mapcount_reset(page); 1551 page_cpupid_reset_last(page); 1552 page_kasan_tag_reset(page); 1553 1554 INIT_LIST_HEAD(&page->lru); 1555 #ifdef WANT_PAGE_VIRTUAL 1556 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1557 if (!is_highmem_idx(zone)) 1558 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1559 #endif 1560 } 1561 1562 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1563 static void __meminit init_reserved_page(unsigned long pfn) 1564 { 1565 pg_data_t *pgdat; 1566 int nid, zid; 1567 1568 if (!early_page_uninitialised(pfn)) 1569 return; 1570 1571 nid = early_pfn_to_nid(pfn); 1572 pgdat = NODE_DATA(nid); 1573 1574 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1575 struct zone *zone = &pgdat->node_zones[zid]; 1576 1577 if (zone_spans_pfn(zone, pfn)) 1578 break; 1579 } 1580 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 1581 } 1582 #else 1583 static inline void init_reserved_page(unsigned long pfn) 1584 { 1585 } 1586 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1587 1588 /* 1589 * Initialised pages do not have PageReserved set. This function is 1590 * called for each range allocated by the bootmem allocator and 1591 * marks the pages PageReserved. The remaining valid pages are later 1592 * sent to the buddy page allocator. 1593 */ 1594 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1595 { 1596 unsigned long start_pfn = PFN_DOWN(start); 1597 unsigned long end_pfn = PFN_UP(end); 1598 1599 for (; start_pfn < end_pfn; start_pfn++) { 1600 if (pfn_valid(start_pfn)) { 1601 struct page *page = pfn_to_page(start_pfn); 1602 1603 init_reserved_page(start_pfn); 1604 1605 /* Avoid false-positive PageTail() */ 1606 INIT_LIST_HEAD(&page->lru); 1607 1608 /* 1609 * no need for atomic set_bit because the struct 1610 * page is not visible yet so nobody should 1611 * access it yet. 1612 */ 1613 __SetPageReserved(page); 1614 } 1615 } 1616 } 1617 1618 static void __free_pages_ok(struct page *page, unsigned int order, 1619 fpi_t fpi_flags) 1620 { 1621 unsigned long flags; 1622 int migratetype; 1623 unsigned long pfn = page_to_pfn(page); 1624 struct zone *zone = page_zone(page); 1625 1626 if (!free_pages_prepare(page, order, true, fpi_flags)) 1627 return; 1628 1629 migratetype = get_pfnblock_migratetype(page, pfn); 1630 1631 spin_lock_irqsave(&zone->lock, flags); 1632 if (unlikely(has_isolate_pageblock(zone) || 1633 is_migrate_isolate(migratetype))) { 1634 migratetype = get_pfnblock_migratetype(page, pfn); 1635 } 1636 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1637 spin_unlock_irqrestore(&zone->lock, flags); 1638 1639 __count_vm_events(PGFREE, 1 << order); 1640 } 1641 1642 void __free_pages_core(struct page *page, unsigned int order) 1643 { 1644 unsigned int nr_pages = 1 << order; 1645 struct page *p = page; 1646 unsigned int loop; 1647 1648 /* 1649 * When initializing the memmap, __init_single_page() sets the refcount 1650 * of all pages to 1 ("allocated"/"not free"). We have to set the 1651 * refcount of all involved pages to 0. 1652 */ 1653 prefetchw(p); 1654 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1655 prefetchw(p + 1); 1656 __ClearPageReserved(p); 1657 set_page_count(p, 0); 1658 } 1659 __ClearPageReserved(p); 1660 set_page_count(p, 0); 1661 1662 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1663 1664 /* 1665 * Bypass PCP and place fresh pages right to the tail, primarily 1666 * relevant for memory onlining. 1667 */ 1668 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON); 1669 } 1670 1671 #ifdef CONFIG_NUMA 1672 1673 /* 1674 * During memory init memblocks map pfns to nids. The search is expensive and 1675 * this caches recent lookups. The implementation of __early_pfn_to_nid 1676 * treats start/end as pfns. 1677 */ 1678 struct mminit_pfnnid_cache { 1679 unsigned long last_start; 1680 unsigned long last_end; 1681 int last_nid; 1682 }; 1683 1684 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1685 1686 /* 1687 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 1688 */ 1689 static int __meminit __early_pfn_to_nid(unsigned long pfn, 1690 struct mminit_pfnnid_cache *state) 1691 { 1692 unsigned long start_pfn, end_pfn; 1693 int nid; 1694 1695 if (state->last_start <= pfn && pfn < state->last_end) 1696 return state->last_nid; 1697 1698 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 1699 if (nid != NUMA_NO_NODE) { 1700 state->last_start = start_pfn; 1701 state->last_end = end_pfn; 1702 state->last_nid = nid; 1703 } 1704 1705 return nid; 1706 } 1707 1708 int __meminit early_pfn_to_nid(unsigned long pfn) 1709 { 1710 static DEFINE_SPINLOCK(early_pfn_lock); 1711 int nid; 1712 1713 spin_lock(&early_pfn_lock); 1714 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1715 if (nid < 0) 1716 nid = first_online_node; 1717 spin_unlock(&early_pfn_lock); 1718 1719 return nid; 1720 } 1721 #endif /* CONFIG_NUMA */ 1722 1723 void __init memblock_free_pages(struct page *page, unsigned long pfn, 1724 unsigned int order) 1725 { 1726 if (early_page_uninitialised(pfn)) 1727 return; 1728 __free_pages_core(page, order); 1729 } 1730 1731 /* 1732 * Check that the whole (or subset of) a pageblock given by the interval of 1733 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1734 * with the migration of free compaction scanner. 1735 * 1736 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1737 * 1738 * It's possible on some configurations to have a setup like node0 node1 node0 1739 * i.e. it's possible that all pages within a zones range of pages do not 1740 * belong to a single zone. We assume that a border between node0 and node1 1741 * can occur within a single pageblock, but not a node0 node1 node0 1742 * interleaving within a single pageblock. It is therefore sufficient to check 1743 * the first and last page of a pageblock and avoid checking each individual 1744 * page in a pageblock. 1745 */ 1746 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1747 unsigned long end_pfn, struct zone *zone) 1748 { 1749 struct page *start_page; 1750 struct page *end_page; 1751 1752 /* end_pfn is one past the range we are checking */ 1753 end_pfn--; 1754 1755 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1756 return NULL; 1757 1758 start_page = pfn_to_online_page(start_pfn); 1759 if (!start_page) 1760 return NULL; 1761 1762 if (page_zone(start_page) != zone) 1763 return NULL; 1764 1765 end_page = pfn_to_page(end_pfn); 1766 1767 /* This gives a shorter code than deriving page_zone(end_page) */ 1768 if (page_zone_id(start_page) != page_zone_id(end_page)) 1769 return NULL; 1770 1771 return start_page; 1772 } 1773 1774 void set_zone_contiguous(struct zone *zone) 1775 { 1776 unsigned long block_start_pfn = zone->zone_start_pfn; 1777 unsigned long block_end_pfn; 1778 1779 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1780 for (; block_start_pfn < zone_end_pfn(zone); 1781 block_start_pfn = block_end_pfn, 1782 block_end_pfn += pageblock_nr_pages) { 1783 1784 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1785 1786 if (!__pageblock_pfn_to_page(block_start_pfn, 1787 block_end_pfn, zone)) 1788 return; 1789 cond_resched(); 1790 } 1791 1792 /* We confirm that there is no hole */ 1793 zone->contiguous = true; 1794 } 1795 1796 void clear_zone_contiguous(struct zone *zone) 1797 { 1798 zone->contiguous = false; 1799 } 1800 1801 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1802 static void __init deferred_free_range(unsigned long pfn, 1803 unsigned long nr_pages) 1804 { 1805 struct page *page; 1806 unsigned long i; 1807 1808 if (!nr_pages) 1809 return; 1810 1811 page = pfn_to_page(pfn); 1812 1813 /* Free a large naturally-aligned chunk if possible */ 1814 if (nr_pages == pageblock_nr_pages && 1815 (pfn & (pageblock_nr_pages - 1)) == 0) { 1816 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1817 __free_pages_core(page, pageblock_order); 1818 return; 1819 } 1820 1821 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1822 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1823 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1824 __free_pages_core(page, 0); 1825 } 1826 } 1827 1828 /* Completion tracking for deferred_init_memmap() threads */ 1829 static atomic_t pgdat_init_n_undone __initdata; 1830 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1831 1832 static inline void __init pgdat_init_report_one_done(void) 1833 { 1834 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1835 complete(&pgdat_init_all_done_comp); 1836 } 1837 1838 /* 1839 * Returns true if page needs to be initialized or freed to buddy allocator. 1840 * 1841 * First we check if pfn is valid on architectures where it is possible to have 1842 * holes within pageblock_nr_pages. On systems where it is not possible, this 1843 * function is optimized out. 1844 * 1845 * Then, we check if a current large page is valid by only checking the validity 1846 * of the head pfn. 1847 */ 1848 static inline bool __init deferred_pfn_valid(unsigned long pfn) 1849 { 1850 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn)) 1851 return false; 1852 return true; 1853 } 1854 1855 /* 1856 * Free pages to buddy allocator. Try to free aligned pages in 1857 * pageblock_nr_pages sizes. 1858 */ 1859 static void __init deferred_free_pages(unsigned long pfn, 1860 unsigned long end_pfn) 1861 { 1862 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1863 unsigned long nr_free = 0; 1864 1865 for (; pfn < end_pfn; pfn++) { 1866 if (!deferred_pfn_valid(pfn)) { 1867 deferred_free_range(pfn - nr_free, nr_free); 1868 nr_free = 0; 1869 } else if (!(pfn & nr_pgmask)) { 1870 deferred_free_range(pfn - nr_free, nr_free); 1871 nr_free = 1; 1872 } else { 1873 nr_free++; 1874 } 1875 } 1876 /* Free the last block of pages to allocator */ 1877 deferred_free_range(pfn - nr_free, nr_free); 1878 } 1879 1880 /* 1881 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1882 * by performing it only once every pageblock_nr_pages. 1883 * Return number of pages initialized. 1884 */ 1885 static unsigned long __init deferred_init_pages(struct zone *zone, 1886 unsigned long pfn, 1887 unsigned long end_pfn) 1888 { 1889 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1890 int nid = zone_to_nid(zone); 1891 unsigned long nr_pages = 0; 1892 int zid = zone_idx(zone); 1893 struct page *page = NULL; 1894 1895 for (; pfn < end_pfn; pfn++) { 1896 if (!deferred_pfn_valid(pfn)) { 1897 page = NULL; 1898 continue; 1899 } else if (!page || !(pfn & nr_pgmask)) { 1900 page = pfn_to_page(pfn); 1901 } else { 1902 page++; 1903 } 1904 __init_single_page(page, pfn, zid, nid); 1905 nr_pages++; 1906 } 1907 return (nr_pages); 1908 } 1909 1910 /* 1911 * This function is meant to pre-load the iterator for the zone init. 1912 * Specifically it walks through the ranges until we are caught up to the 1913 * first_init_pfn value and exits there. If we never encounter the value we 1914 * return false indicating there are no valid ranges left. 1915 */ 1916 static bool __init 1917 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, 1918 unsigned long *spfn, unsigned long *epfn, 1919 unsigned long first_init_pfn) 1920 { 1921 u64 j; 1922 1923 /* 1924 * Start out by walking through the ranges in this zone that have 1925 * already been initialized. We don't need to do anything with them 1926 * so we just need to flush them out of the system. 1927 */ 1928 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { 1929 if (*epfn <= first_init_pfn) 1930 continue; 1931 if (*spfn < first_init_pfn) 1932 *spfn = first_init_pfn; 1933 *i = j; 1934 return true; 1935 } 1936 1937 return false; 1938 } 1939 1940 /* 1941 * Initialize and free pages. We do it in two loops: first we initialize 1942 * struct page, then free to buddy allocator, because while we are 1943 * freeing pages we can access pages that are ahead (computing buddy 1944 * page in __free_one_page()). 1945 * 1946 * In order to try and keep some memory in the cache we have the loop 1947 * broken along max page order boundaries. This way we will not cause 1948 * any issues with the buddy page computation. 1949 */ 1950 static unsigned long __init 1951 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, 1952 unsigned long *end_pfn) 1953 { 1954 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); 1955 unsigned long spfn = *start_pfn, epfn = *end_pfn; 1956 unsigned long nr_pages = 0; 1957 u64 j = *i; 1958 1959 /* First we loop through and initialize the page values */ 1960 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { 1961 unsigned long t; 1962 1963 if (mo_pfn <= *start_pfn) 1964 break; 1965 1966 t = min(mo_pfn, *end_pfn); 1967 nr_pages += deferred_init_pages(zone, *start_pfn, t); 1968 1969 if (mo_pfn < *end_pfn) { 1970 *start_pfn = mo_pfn; 1971 break; 1972 } 1973 } 1974 1975 /* Reset values and now loop through freeing pages as needed */ 1976 swap(j, *i); 1977 1978 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { 1979 unsigned long t; 1980 1981 if (mo_pfn <= spfn) 1982 break; 1983 1984 t = min(mo_pfn, epfn); 1985 deferred_free_pages(spfn, t); 1986 1987 if (mo_pfn <= epfn) 1988 break; 1989 } 1990 1991 return nr_pages; 1992 } 1993 1994 static void __init 1995 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn, 1996 void *arg) 1997 { 1998 unsigned long spfn, epfn; 1999 struct zone *zone = arg; 2000 u64 i; 2001 2002 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn); 2003 2004 /* 2005 * Initialize and free pages in MAX_ORDER sized increments so that we 2006 * can avoid introducing any issues with the buddy allocator. 2007 */ 2008 while (spfn < end_pfn) { 2009 deferred_init_maxorder(&i, zone, &spfn, &epfn); 2010 cond_resched(); 2011 } 2012 } 2013 2014 /* An arch may override for more concurrency. */ 2015 __weak int __init 2016 deferred_page_init_max_threads(const struct cpumask *node_cpumask) 2017 { 2018 return 1; 2019 } 2020 2021 /* Initialise remaining memory on a node */ 2022 static int __init deferred_init_memmap(void *data) 2023 { 2024 pg_data_t *pgdat = data; 2025 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2026 unsigned long spfn = 0, epfn = 0; 2027 unsigned long first_init_pfn, flags; 2028 unsigned long start = jiffies; 2029 struct zone *zone; 2030 int zid, max_threads; 2031 u64 i; 2032 2033 /* Bind memory initialisation thread to a local node if possible */ 2034 if (!cpumask_empty(cpumask)) 2035 set_cpus_allowed_ptr(current, cpumask); 2036 2037 pgdat_resize_lock(pgdat, &flags); 2038 first_init_pfn = pgdat->first_deferred_pfn; 2039 if (first_init_pfn == ULONG_MAX) { 2040 pgdat_resize_unlock(pgdat, &flags); 2041 pgdat_init_report_one_done(); 2042 return 0; 2043 } 2044 2045 /* Sanity check boundaries */ 2046 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 2047 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 2048 pgdat->first_deferred_pfn = ULONG_MAX; 2049 2050 /* 2051 * Once we unlock here, the zone cannot be grown anymore, thus if an 2052 * interrupt thread must allocate this early in boot, zone must be 2053 * pre-grown prior to start of deferred page initialization. 2054 */ 2055 pgdat_resize_unlock(pgdat, &flags); 2056 2057 /* Only the highest zone is deferred so find it */ 2058 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2059 zone = pgdat->node_zones + zid; 2060 if (first_init_pfn < zone_end_pfn(zone)) 2061 break; 2062 } 2063 2064 /* If the zone is empty somebody else may have cleared out the zone */ 2065 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2066 first_init_pfn)) 2067 goto zone_empty; 2068 2069 max_threads = deferred_page_init_max_threads(cpumask); 2070 2071 while (spfn < epfn) { 2072 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION); 2073 struct padata_mt_job job = { 2074 .thread_fn = deferred_init_memmap_chunk, 2075 .fn_arg = zone, 2076 .start = spfn, 2077 .size = epfn_align - spfn, 2078 .align = PAGES_PER_SECTION, 2079 .min_chunk = PAGES_PER_SECTION, 2080 .max_threads = max_threads, 2081 }; 2082 2083 padata_do_multithreaded(&job); 2084 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2085 epfn_align); 2086 } 2087 zone_empty: 2088 /* Sanity check that the next zone really is unpopulated */ 2089 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 2090 2091 pr_info("node %d deferred pages initialised in %ums\n", 2092 pgdat->node_id, jiffies_to_msecs(jiffies - start)); 2093 2094 pgdat_init_report_one_done(); 2095 return 0; 2096 } 2097 2098 /* 2099 * If this zone has deferred pages, try to grow it by initializing enough 2100 * deferred pages to satisfy the allocation specified by order, rounded up to 2101 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 2102 * of SECTION_SIZE bytes by initializing struct pages in increments of 2103 * PAGES_PER_SECTION * sizeof(struct page) bytes. 2104 * 2105 * Return true when zone was grown, otherwise return false. We return true even 2106 * when we grow less than requested, to let the caller decide if there are 2107 * enough pages to satisfy the allocation. 2108 * 2109 * Note: We use noinline because this function is needed only during boot, and 2110 * it is called from a __ref function _deferred_grow_zone. This way we are 2111 * making sure that it is not inlined into permanent text section. 2112 */ 2113 static noinline bool __init 2114 deferred_grow_zone(struct zone *zone, unsigned int order) 2115 { 2116 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 2117 pg_data_t *pgdat = zone->zone_pgdat; 2118 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 2119 unsigned long spfn, epfn, flags; 2120 unsigned long nr_pages = 0; 2121 u64 i; 2122 2123 /* Only the last zone may have deferred pages */ 2124 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 2125 return false; 2126 2127 pgdat_resize_lock(pgdat, &flags); 2128 2129 /* 2130 * If someone grew this zone while we were waiting for spinlock, return 2131 * true, as there might be enough pages already. 2132 */ 2133 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 2134 pgdat_resize_unlock(pgdat, &flags); 2135 return true; 2136 } 2137 2138 /* If the zone is empty somebody else may have cleared out the zone */ 2139 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2140 first_deferred_pfn)) { 2141 pgdat->first_deferred_pfn = ULONG_MAX; 2142 pgdat_resize_unlock(pgdat, &flags); 2143 /* Retry only once. */ 2144 return first_deferred_pfn != ULONG_MAX; 2145 } 2146 2147 /* 2148 * Initialize and free pages in MAX_ORDER sized increments so 2149 * that we can avoid introducing any issues with the buddy 2150 * allocator. 2151 */ 2152 while (spfn < epfn) { 2153 /* update our first deferred PFN for this section */ 2154 first_deferred_pfn = spfn; 2155 2156 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 2157 touch_nmi_watchdog(); 2158 2159 /* We should only stop along section boundaries */ 2160 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) 2161 continue; 2162 2163 /* If our quota has been met we can stop here */ 2164 if (nr_pages >= nr_pages_needed) 2165 break; 2166 } 2167 2168 pgdat->first_deferred_pfn = spfn; 2169 pgdat_resize_unlock(pgdat, &flags); 2170 2171 return nr_pages > 0; 2172 } 2173 2174 /* 2175 * deferred_grow_zone() is __init, but it is called from 2176 * get_page_from_freelist() during early boot until deferred_pages permanently 2177 * disables this call. This is why we have refdata wrapper to avoid warning, 2178 * and to ensure that the function body gets unloaded. 2179 */ 2180 static bool __ref 2181 _deferred_grow_zone(struct zone *zone, unsigned int order) 2182 { 2183 return deferred_grow_zone(zone, order); 2184 } 2185 2186 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 2187 2188 void __init page_alloc_init_late(void) 2189 { 2190 struct zone *zone; 2191 int nid; 2192 2193 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 2194 2195 /* There will be num_node_state(N_MEMORY) threads */ 2196 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 2197 for_each_node_state(nid, N_MEMORY) { 2198 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 2199 } 2200 2201 /* Block until all are initialised */ 2202 wait_for_completion(&pgdat_init_all_done_comp); 2203 2204 /* 2205 * We initialized the rest of the deferred pages. Permanently disable 2206 * on-demand struct page initialization. 2207 */ 2208 static_branch_disable(&deferred_pages); 2209 2210 /* Reinit limits that are based on free pages after the kernel is up */ 2211 files_maxfiles_init(); 2212 #endif 2213 2214 buffer_init(); 2215 2216 /* Discard memblock private memory */ 2217 memblock_discard(); 2218 2219 for_each_node_state(nid, N_MEMORY) 2220 shuffle_free_memory(NODE_DATA(nid)); 2221 2222 for_each_populated_zone(zone) 2223 set_zone_contiguous(zone); 2224 } 2225 2226 #ifdef CONFIG_CMA 2227 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 2228 void __init init_cma_reserved_pageblock(struct page *page) 2229 { 2230 unsigned i = pageblock_nr_pages; 2231 struct page *p = page; 2232 2233 do { 2234 __ClearPageReserved(p); 2235 set_page_count(p, 0); 2236 } while (++p, --i); 2237 2238 set_pageblock_migratetype(page, MIGRATE_CMA); 2239 set_page_refcounted(page); 2240 __free_pages(page, pageblock_order); 2241 2242 adjust_managed_page_count(page, pageblock_nr_pages); 2243 page_zone(page)->cma_pages += pageblock_nr_pages; 2244 } 2245 #endif 2246 2247 /* 2248 * The order of subdivision here is critical for the IO subsystem. 2249 * Please do not alter this order without good reasons and regression 2250 * testing. Specifically, as large blocks of memory are subdivided, 2251 * the order in which smaller blocks are delivered depends on the order 2252 * they're subdivided in this function. This is the primary factor 2253 * influencing the order in which pages are delivered to the IO 2254 * subsystem according to empirical testing, and this is also justified 2255 * by considering the behavior of a buddy system containing a single 2256 * large block of memory acted on by a series of small allocations. 2257 * This behavior is a critical factor in sglist merging's success. 2258 * 2259 * -- nyc 2260 */ 2261 static inline void expand(struct zone *zone, struct page *page, 2262 int low, int high, int migratetype) 2263 { 2264 unsigned long size = 1 << high; 2265 2266 while (high > low) { 2267 high--; 2268 size >>= 1; 2269 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 2270 2271 /* 2272 * Mark as guard pages (or page), that will allow to 2273 * merge back to allocator when buddy will be freed. 2274 * Corresponding page table entries will not be touched, 2275 * pages will stay not present in virtual address space 2276 */ 2277 if (set_page_guard(zone, &page[size], high, migratetype)) 2278 continue; 2279 2280 add_to_free_list(&page[size], zone, high, migratetype); 2281 set_buddy_order(&page[size], high); 2282 } 2283 } 2284 2285 static void check_new_page_bad(struct page *page) 2286 { 2287 if (unlikely(page->flags & __PG_HWPOISON)) { 2288 /* Don't complain about hwpoisoned pages */ 2289 page_mapcount_reset(page); /* remove PageBuddy */ 2290 return; 2291 } 2292 2293 bad_page(page, 2294 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 2295 } 2296 2297 /* 2298 * This page is about to be returned from the page allocator 2299 */ 2300 static inline int check_new_page(struct page *page) 2301 { 2302 if (likely(page_expected_state(page, 2303 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 2304 return 0; 2305 2306 check_new_page_bad(page); 2307 return 1; 2308 } 2309 2310 static bool check_new_pages(struct page *page, unsigned int order) 2311 { 2312 int i; 2313 for (i = 0; i < (1 << order); i++) { 2314 struct page *p = page + i; 2315 2316 if (unlikely(check_new_page(p))) 2317 return true; 2318 } 2319 2320 return false; 2321 } 2322 2323 #ifdef CONFIG_DEBUG_VM 2324 /* 2325 * With DEBUG_VM enabled, order-0 pages are checked for expected state when 2326 * being allocated from pcp lists. With debug_pagealloc also enabled, they are 2327 * also checked when pcp lists are refilled from the free lists. 2328 */ 2329 static inline bool check_pcp_refill(struct page *page, unsigned int order) 2330 { 2331 if (debug_pagealloc_enabled_static()) 2332 return check_new_pages(page, order); 2333 else 2334 return false; 2335 } 2336 2337 static inline bool check_new_pcp(struct page *page, unsigned int order) 2338 { 2339 return check_new_pages(page, order); 2340 } 2341 #else 2342 /* 2343 * With DEBUG_VM disabled, free order-0 pages are checked for expected state 2344 * when pcp lists are being refilled from the free lists. With debug_pagealloc 2345 * enabled, they are also checked when being allocated from the pcp lists. 2346 */ 2347 static inline bool check_pcp_refill(struct page *page, unsigned int order) 2348 { 2349 return check_new_pages(page, order); 2350 } 2351 static inline bool check_new_pcp(struct page *page, unsigned int order) 2352 { 2353 if (debug_pagealloc_enabled_static()) 2354 return check_new_pages(page, order); 2355 else 2356 return false; 2357 } 2358 #endif /* CONFIG_DEBUG_VM */ 2359 2360 static inline bool should_skip_kasan_unpoison(gfp_t flags, bool init_tags) 2361 { 2362 /* Don't skip if a software KASAN mode is enabled. */ 2363 if (IS_ENABLED(CONFIG_KASAN_GENERIC) || 2364 IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 2365 return false; 2366 2367 /* Skip, if hardware tag-based KASAN is not enabled. */ 2368 if (!kasan_hw_tags_enabled()) 2369 return true; 2370 2371 /* 2372 * With hardware tag-based KASAN enabled, skip if either: 2373 * 2374 * 1. Memory tags have already been cleared via tag_clear_highpage(). 2375 * 2. Skipping has been requested via __GFP_SKIP_KASAN_UNPOISON. 2376 */ 2377 return init_tags || (flags & __GFP_SKIP_KASAN_UNPOISON); 2378 } 2379 2380 static inline bool should_skip_init(gfp_t flags) 2381 { 2382 /* Don't skip, if hardware tag-based KASAN is not enabled. */ 2383 if (!kasan_hw_tags_enabled()) 2384 return false; 2385 2386 /* For hardware tag-based KASAN, skip if requested. */ 2387 return (flags & __GFP_SKIP_ZERO); 2388 } 2389 2390 inline void post_alloc_hook(struct page *page, unsigned int order, 2391 gfp_t gfp_flags) 2392 { 2393 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) && 2394 !should_skip_init(gfp_flags); 2395 bool init_tags = init && (gfp_flags & __GFP_ZEROTAGS); 2396 2397 set_page_private(page, 0); 2398 set_page_refcounted(page); 2399 2400 arch_alloc_page(page, order); 2401 debug_pagealloc_map_pages(page, 1 << order); 2402 2403 /* 2404 * Page unpoisoning must happen before memory initialization. 2405 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 2406 * allocations and the page unpoisoning code will complain. 2407 */ 2408 kernel_unpoison_pages(page, 1 << order); 2409 2410 /* 2411 * As memory initialization might be integrated into KASAN, 2412 * KASAN unpoisoning and memory initializion code must be 2413 * kept together to avoid discrepancies in behavior. 2414 */ 2415 2416 /* 2417 * If memory tags should be zeroed (which happens only when memory 2418 * should be initialized as well). 2419 */ 2420 if (init_tags) { 2421 int i; 2422 2423 /* Initialize both memory and tags. */ 2424 for (i = 0; i != 1 << order; ++i) 2425 tag_clear_highpage(page + i); 2426 2427 /* Note that memory is already initialized by the loop above. */ 2428 init = false; 2429 } 2430 if (!should_skip_kasan_unpoison(gfp_flags, init_tags)) { 2431 /* Unpoison shadow memory or set memory tags. */ 2432 kasan_unpoison_pages(page, order, init); 2433 2434 /* Note that memory is already initialized by KASAN. */ 2435 if (kasan_has_integrated_init()) 2436 init = false; 2437 } 2438 /* If memory is still not initialized, do it now. */ 2439 if (init) 2440 kernel_init_pages(page, 1 << order); 2441 /* Propagate __GFP_SKIP_KASAN_POISON to page flags. */ 2442 if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON)) 2443 SetPageSkipKASanPoison(page); 2444 2445 set_page_owner(page, order, gfp_flags); 2446 page_table_check_alloc(page, order); 2447 } 2448 2449 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 2450 unsigned int alloc_flags) 2451 { 2452 post_alloc_hook(page, order, gfp_flags); 2453 2454 if (order && (gfp_flags & __GFP_COMP)) 2455 prep_compound_page(page, order); 2456 2457 /* 2458 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 2459 * allocate the page. The expectation is that the caller is taking 2460 * steps that will free more memory. The caller should avoid the page 2461 * being used for !PFMEMALLOC purposes. 2462 */ 2463 if (alloc_flags & ALLOC_NO_WATERMARKS) 2464 set_page_pfmemalloc(page); 2465 else 2466 clear_page_pfmemalloc(page); 2467 } 2468 2469 /* 2470 * Go through the free lists for the given migratetype and remove 2471 * the smallest available page from the freelists 2472 */ 2473 static __always_inline 2474 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 2475 int migratetype) 2476 { 2477 unsigned int current_order; 2478 struct free_area *area; 2479 struct page *page; 2480 2481 /* Find a page of the appropriate size in the preferred list */ 2482 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 2483 area = &(zone->free_area[current_order]); 2484 page = get_page_from_free_area(area, migratetype); 2485 if (!page) 2486 continue; 2487 del_page_from_free_list(page, zone, current_order); 2488 expand(zone, page, order, current_order, migratetype); 2489 set_pcppage_migratetype(page, migratetype); 2490 trace_mm_page_alloc_zone_locked(page, order, migratetype, 2491 pcp_allowed_order(order) && 2492 migratetype < MIGRATE_PCPTYPES); 2493 return page; 2494 } 2495 2496 return NULL; 2497 } 2498 2499 2500 /* 2501 * This array describes the order lists are fallen back to when 2502 * the free lists for the desirable migrate type are depleted 2503 * 2504 * The other migratetypes do not have fallbacks. 2505 */ 2506 static int fallbacks[MIGRATE_TYPES][3] = { 2507 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2508 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 2509 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2510 }; 2511 2512 #ifdef CONFIG_CMA 2513 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2514 unsigned int order) 2515 { 2516 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 2517 } 2518 #else 2519 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2520 unsigned int order) { return NULL; } 2521 #endif 2522 2523 /* 2524 * Move the free pages in a range to the freelist tail of the requested type. 2525 * Note that start_page and end_pages are not aligned on a pageblock 2526 * boundary. If alignment is required, use move_freepages_block() 2527 */ 2528 static int move_freepages(struct zone *zone, 2529 unsigned long start_pfn, unsigned long end_pfn, 2530 int migratetype, int *num_movable) 2531 { 2532 struct page *page; 2533 unsigned long pfn; 2534 unsigned int order; 2535 int pages_moved = 0; 2536 2537 for (pfn = start_pfn; pfn <= end_pfn;) { 2538 page = pfn_to_page(pfn); 2539 if (!PageBuddy(page)) { 2540 /* 2541 * We assume that pages that could be isolated for 2542 * migration are movable. But we don't actually try 2543 * isolating, as that would be expensive. 2544 */ 2545 if (num_movable && 2546 (PageLRU(page) || __PageMovable(page))) 2547 (*num_movable)++; 2548 pfn++; 2549 continue; 2550 } 2551 2552 /* Make sure we are not inadvertently changing nodes */ 2553 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 2554 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 2555 2556 order = buddy_order(page); 2557 move_to_free_list(page, zone, order, migratetype); 2558 pfn += 1 << order; 2559 pages_moved += 1 << order; 2560 } 2561 2562 return pages_moved; 2563 } 2564 2565 int move_freepages_block(struct zone *zone, struct page *page, 2566 int migratetype, int *num_movable) 2567 { 2568 unsigned long start_pfn, end_pfn, pfn; 2569 2570 if (num_movable) 2571 *num_movable = 0; 2572 2573 pfn = page_to_pfn(page); 2574 start_pfn = pfn & ~(pageblock_nr_pages - 1); 2575 end_pfn = start_pfn + pageblock_nr_pages - 1; 2576 2577 /* Do not cross zone boundaries */ 2578 if (!zone_spans_pfn(zone, start_pfn)) 2579 start_pfn = pfn; 2580 if (!zone_spans_pfn(zone, end_pfn)) 2581 return 0; 2582 2583 return move_freepages(zone, start_pfn, end_pfn, migratetype, 2584 num_movable); 2585 } 2586 2587 static void change_pageblock_range(struct page *pageblock_page, 2588 int start_order, int migratetype) 2589 { 2590 int nr_pageblocks = 1 << (start_order - pageblock_order); 2591 2592 while (nr_pageblocks--) { 2593 set_pageblock_migratetype(pageblock_page, migratetype); 2594 pageblock_page += pageblock_nr_pages; 2595 } 2596 } 2597 2598 /* 2599 * When we are falling back to another migratetype during allocation, try to 2600 * steal extra free pages from the same pageblocks to satisfy further 2601 * allocations, instead of polluting multiple pageblocks. 2602 * 2603 * If we are stealing a relatively large buddy page, it is likely there will 2604 * be more free pages in the pageblock, so try to steal them all. For 2605 * reclaimable and unmovable allocations, we steal regardless of page size, 2606 * as fragmentation caused by those allocations polluting movable pageblocks 2607 * is worse than movable allocations stealing from unmovable and reclaimable 2608 * pageblocks. 2609 */ 2610 static bool can_steal_fallback(unsigned int order, int start_mt) 2611 { 2612 /* 2613 * Leaving this order check is intended, although there is 2614 * relaxed order check in next check. The reason is that 2615 * we can actually steal whole pageblock if this condition met, 2616 * but, below check doesn't guarantee it and that is just heuristic 2617 * so could be changed anytime. 2618 */ 2619 if (order >= pageblock_order) 2620 return true; 2621 2622 if (order >= pageblock_order / 2 || 2623 start_mt == MIGRATE_RECLAIMABLE || 2624 start_mt == MIGRATE_UNMOVABLE || 2625 page_group_by_mobility_disabled) 2626 return true; 2627 2628 return false; 2629 } 2630 2631 static inline bool boost_watermark(struct zone *zone) 2632 { 2633 unsigned long max_boost; 2634 2635 if (!watermark_boost_factor) 2636 return false; 2637 /* 2638 * Don't bother in zones that are unlikely to produce results. 2639 * On small machines, including kdump capture kernels running 2640 * in a small area, boosting the watermark can cause an out of 2641 * memory situation immediately. 2642 */ 2643 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 2644 return false; 2645 2646 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2647 watermark_boost_factor, 10000); 2648 2649 /* 2650 * high watermark may be uninitialised if fragmentation occurs 2651 * very early in boot so do not boost. We do not fall 2652 * through and boost by pageblock_nr_pages as failing 2653 * allocations that early means that reclaim is not going 2654 * to help and it may even be impossible to reclaim the 2655 * boosted watermark resulting in a hang. 2656 */ 2657 if (!max_boost) 2658 return false; 2659 2660 max_boost = max(pageblock_nr_pages, max_boost); 2661 2662 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2663 max_boost); 2664 2665 return true; 2666 } 2667 2668 /* 2669 * This function implements actual steal behaviour. If order is large enough, 2670 * we can steal whole pageblock. If not, we first move freepages in this 2671 * pageblock to our migratetype and determine how many already-allocated pages 2672 * are there in the pageblock with a compatible migratetype. If at least half 2673 * of pages are free or compatible, we can change migratetype of the pageblock 2674 * itself, so pages freed in the future will be put on the correct free list. 2675 */ 2676 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2677 unsigned int alloc_flags, int start_type, bool whole_block) 2678 { 2679 unsigned int current_order = buddy_order(page); 2680 int free_pages, movable_pages, alike_pages; 2681 int old_block_type; 2682 2683 old_block_type = get_pageblock_migratetype(page); 2684 2685 /* 2686 * This can happen due to races and we want to prevent broken 2687 * highatomic accounting. 2688 */ 2689 if (is_migrate_highatomic(old_block_type)) 2690 goto single_page; 2691 2692 /* Take ownership for orders >= pageblock_order */ 2693 if (current_order >= pageblock_order) { 2694 change_pageblock_range(page, current_order, start_type); 2695 goto single_page; 2696 } 2697 2698 /* 2699 * Boost watermarks to increase reclaim pressure to reduce the 2700 * likelihood of future fallbacks. Wake kswapd now as the node 2701 * may be balanced overall and kswapd will not wake naturally. 2702 */ 2703 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 2704 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2705 2706 /* We are not allowed to try stealing from the whole block */ 2707 if (!whole_block) 2708 goto single_page; 2709 2710 free_pages = move_freepages_block(zone, page, start_type, 2711 &movable_pages); 2712 /* 2713 * Determine how many pages are compatible with our allocation. 2714 * For movable allocation, it's the number of movable pages which 2715 * we just obtained. For other types it's a bit more tricky. 2716 */ 2717 if (start_type == MIGRATE_MOVABLE) { 2718 alike_pages = movable_pages; 2719 } else { 2720 /* 2721 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2722 * to MOVABLE pageblock, consider all non-movable pages as 2723 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2724 * vice versa, be conservative since we can't distinguish the 2725 * exact migratetype of non-movable pages. 2726 */ 2727 if (old_block_type == MIGRATE_MOVABLE) 2728 alike_pages = pageblock_nr_pages 2729 - (free_pages + movable_pages); 2730 else 2731 alike_pages = 0; 2732 } 2733 2734 /* moving whole block can fail due to zone boundary conditions */ 2735 if (!free_pages) 2736 goto single_page; 2737 2738 /* 2739 * If a sufficient number of pages in the block are either free or of 2740 * comparable migratability as our allocation, claim the whole block. 2741 */ 2742 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2743 page_group_by_mobility_disabled) 2744 set_pageblock_migratetype(page, start_type); 2745 2746 return; 2747 2748 single_page: 2749 move_to_free_list(page, zone, current_order, start_type); 2750 } 2751 2752 /* 2753 * Check whether there is a suitable fallback freepage with requested order. 2754 * If only_stealable is true, this function returns fallback_mt only if 2755 * we can steal other freepages all together. This would help to reduce 2756 * fragmentation due to mixed migratetype pages in one pageblock. 2757 */ 2758 int find_suitable_fallback(struct free_area *area, unsigned int order, 2759 int migratetype, bool only_stealable, bool *can_steal) 2760 { 2761 int i; 2762 int fallback_mt; 2763 2764 if (area->nr_free == 0) 2765 return -1; 2766 2767 *can_steal = false; 2768 for (i = 0;; i++) { 2769 fallback_mt = fallbacks[migratetype][i]; 2770 if (fallback_mt == MIGRATE_TYPES) 2771 break; 2772 2773 if (free_area_empty(area, fallback_mt)) 2774 continue; 2775 2776 if (can_steal_fallback(order, migratetype)) 2777 *can_steal = true; 2778 2779 if (!only_stealable) 2780 return fallback_mt; 2781 2782 if (*can_steal) 2783 return fallback_mt; 2784 } 2785 2786 return -1; 2787 } 2788 2789 /* 2790 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2791 * there are no empty page blocks that contain a page with a suitable order 2792 */ 2793 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2794 unsigned int alloc_order) 2795 { 2796 int mt; 2797 unsigned long max_managed, flags; 2798 2799 /* 2800 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2801 * Check is race-prone but harmless. 2802 */ 2803 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 2804 if (zone->nr_reserved_highatomic >= max_managed) 2805 return; 2806 2807 spin_lock_irqsave(&zone->lock, flags); 2808 2809 /* Recheck the nr_reserved_highatomic limit under the lock */ 2810 if (zone->nr_reserved_highatomic >= max_managed) 2811 goto out_unlock; 2812 2813 /* Yoink! */ 2814 mt = get_pageblock_migratetype(page); 2815 /* Only reserve normal pageblocks (i.e., they can merge with others) */ 2816 if (migratetype_is_mergeable(mt)) { 2817 zone->nr_reserved_highatomic += pageblock_nr_pages; 2818 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2819 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2820 } 2821 2822 out_unlock: 2823 spin_unlock_irqrestore(&zone->lock, flags); 2824 } 2825 2826 /* 2827 * Used when an allocation is about to fail under memory pressure. This 2828 * potentially hurts the reliability of high-order allocations when under 2829 * intense memory pressure but failed atomic allocations should be easier 2830 * to recover from than an OOM. 2831 * 2832 * If @force is true, try to unreserve a pageblock even though highatomic 2833 * pageblock is exhausted. 2834 */ 2835 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2836 bool force) 2837 { 2838 struct zonelist *zonelist = ac->zonelist; 2839 unsigned long flags; 2840 struct zoneref *z; 2841 struct zone *zone; 2842 struct page *page; 2843 int order; 2844 bool ret; 2845 2846 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 2847 ac->nodemask) { 2848 /* 2849 * Preserve at least one pageblock unless memory pressure 2850 * is really high. 2851 */ 2852 if (!force && zone->nr_reserved_highatomic <= 2853 pageblock_nr_pages) 2854 continue; 2855 2856 spin_lock_irqsave(&zone->lock, flags); 2857 for (order = 0; order < MAX_ORDER; order++) { 2858 struct free_area *area = &(zone->free_area[order]); 2859 2860 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2861 if (!page) 2862 continue; 2863 2864 /* 2865 * In page freeing path, migratetype change is racy so 2866 * we can counter several free pages in a pageblock 2867 * in this loop although we changed the pageblock type 2868 * from highatomic to ac->migratetype. So we should 2869 * adjust the count once. 2870 */ 2871 if (is_migrate_highatomic_page(page)) { 2872 /* 2873 * It should never happen but changes to 2874 * locking could inadvertently allow a per-cpu 2875 * drain to add pages to MIGRATE_HIGHATOMIC 2876 * while unreserving so be safe and watch for 2877 * underflows. 2878 */ 2879 zone->nr_reserved_highatomic -= min( 2880 pageblock_nr_pages, 2881 zone->nr_reserved_highatomic); 2882 } 2883 2884 /* 2885 * Convert to ac->migratetype and avoid the normal 2886 * pageblock stealing heuristics. Minimally, the caller 2887 * is doing the work and needs the pages. More 2888 * importantly, if the block was always converted to 2889 * MIGRATE_UNMOVABLE or another type then the number 2890 * of pageblocks that cannot be completely freed 2891 * may increase. 2892 */ 2893 set_pageblock_migratetype(page, ac->migratetype); 2894 ret = move_freepages_block(zone, page, ac->migratetype, 2895 NULL); 2896 if (ret) { 2897 spin_unlock_irqrestore(&zone->lock, flags); 2898 return ret; 2899 } 2900 } 2901 spin_unlock_irqrestore(&zone->lock, flags); 2902 } 2903 2904 return false; 2905 } 2906 2907 /* 2908 * Try finding a free buddy page on the fallback list and put it on the free 2909 * list of requested migratetype, possibly along with other pages from the same 2910 * block, depending on fragmentation avoidance heuristics. Returns true if 2911 * fallback was found so that __rmqueue_smallest() can grab it. 2912 * 2913 * The use of signed ints for order and current_order is a deliberate 2914 * deviation from the rest of this file, to make the for loop 2915 * condition simpler. 2916 */ 2917 static __always_inline bool 2918 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2919 unsigned int alloc_flags) 2920 { 2921 struct free_area *area; 2922 int current_order; 2923 int min_order = order; 2924 struct page *page; 2925 int fallback_mt; 2926 bool can_steal; 2927 2928 /* 2929 * Do not steal pages from freelists belonging to other pageblocks 2930 * i.e. orders < pageblock_order. If there are no local zones free, 2931 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2932 */ 2933 if (alloc_flags & ALLOC_NOFRAGMENT) 2934 min_order = pageblock_order; 2935 2936 /* 2937 * Find the largest available free page in the other list. This roughly 2938 * approximates finding the pageblock with the most free pages, which 2939 * would be too costly to do exactly. 2940 */ 2941 for (current_order = MAX_ORDER - 1; current_order >= min_order; 2942 --current_order) { 2943 area = &(zone->free_area[current_order]); 2944 fallback_mt = find_suitable_fallback(area, current_order, 2945 start_migratetype, false, &can_steal); 2946 if (fallback_mt == -1) 2947 continue; 2948 2949 /* 2950 * We cannot steal all free pages from the pageblock and the 2951 * requested migratetype is movable. In that case it's better to 2952 * steal and split the smallest available page instead of the 2953 * largest available page, because even if the next movable 2954 * allocation falls back into a different pageblock than this 2955 * one, it won't cause permanent fragmentation. 2956 */ 2957 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2958 && current_order > order) 2959 goto find_smallest; 2960 2961 goto do_steal; 2962 } 2963 2964 return false; 2965 2966 find_smallest: 2967 for (current_order = order; current_order < MAX_ORDER; 2968 current_order++) { 2969 area = &(zone->free_area[current_order]); 2970 fallback_mt = find_suitable_fallback(area, current_order, 2971 start_migratetype, false, &can_steal); 2972 if (fallback_mt != -1) 2973 break; 2974 } 2975 2976 /* 2977 * This should not happen - we already found a suitable fallback 2978 * when looking for the largest page. 2979 */ 2980 VM_BUG_ON(current_order == MAX_ORDER); 2981 2982 do_steal: 2983 page = get_page_from_free_area(area, fallback_mt); 2984 2985 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 2986 can_steal); 2987 2988 trace_mm_page_alloc_extfrag(page, order, current_order, 2989 start_migratetype, fallback_mt); 2990 2991 return true; 2992 2993 } 2994 2995 /* 2996 * Do the hard work of removing an element from the buddy allocator. 2997 * Call me with the zone->lock already held. 2998 */ 2999 static __always_inline struct page * 3000 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 3001 unsigned int alloc_flags) 3002 { 3003 struct page *page; 3004 3005 if (IS_ENABLED(CONFIG_CMA)) { 3006 /* 3007 * Balance movable allocations between regular and CMA areas by 3008 * allocating from CMA when over half of the zone's free memory 3009 * is in the CMA area. 3010 */ 3011 if (alloc_flags & ALLOC_CMA && 3012 zone_page_state(zone, NR_FREE_CMA_PAGES) > 3013 zone_page_state(zone, NR_FREE_PAGES) / 2) { 3014 page = __rmqueue_cma_fallback(zone, order); 3015 if (page) 3016 return page; 3017 } 3018 } 3019 retry: 3020 page = __rmqueue_smallest(zone, order, migratetype); 3021 if (unlikely(!page)) { 3022 if (alloc_flags & ALLOC_CMA) 3023 page = __rmqueue_cma_fallback(zone, order); 3024 3025 if (!page && __rmqueue_fallback(zone, order, migratetype, 3026 alloc_flags)) 3027 goto retry; 3028 } 3029 return page; 3030 } 3031 3032 /* 3033 * Obtain a specified number of elements from the buddy allocator, all under 3034 * a single hold of the lock, for efficiency. Add them to the supplied list. 3035 * Returns the number of new pages which were placed at *list. 3036 */ 3037 static int rmqueue_bulk(struct zone *zone, unsigned int order, 3038 unsigned long count, struct list_head *list, 3039 int migratetype, unsigned int alloc_flags) 3040 { 3041 int i, allocated = 0; 3042 3043 /* 3044 * local_lock_irq held so equivalent to spin_lock_irqsave for 3045 * both PREEMPT_RT and non-PREEMPT_RT configurations. 3046 */ 3047 spin_lock(&zone->lock); 3048 for (i = 0; i < count; ++i) { 3049 struct page *page = __rmqueue(zone, order, migratetype, 3050 alloc_flags); 3051 if (unlikely(page == NULL)) 3052 break; 3053 3054 if (unlikely(check_pcp_refill(page, order))) 3055 continue; 3056 3057 /* 3058 * Split buddy pages returned by expand() are received here in 3059 * physical page order. The page is added to the tail of 3060 * caller's list. From the callers perspective, the linked list 3061 * is ordered by page number under some conditions. This is 3062 * useful for IO devices that can forward direction from the 3063 * head, thus also in the physical page order. This is useful 3064 * for IO devices that can merge IO requests if the physical 3065 * pages are ordered properly. 3066 */ 3067 list_add_tail(&page->lru, list); 3068 allocated++; 3069 if (is_migrate_cma(get_pcppage_migratetype(page))) 3070 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 3071 -(1 << order)); 3072 } 3073 3074 /* 3075 * i pages were removed from the buddy list even if some leak due 3076 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 3077 * on i. Do not confuse with 'allocated' which is the number of 3078 * pages added to the pcp list. 3079 */ 3080 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 3081 spin_unlock(&zone->lock); 3082 return allocated; 3083 } 3084 3085 #ifdef CONFIG_NUMA 3086 /* 3087 * Called from the vmstat counter updater to drain pagesets of this 3088 * currently executing processor on remote nodes after they have 3089 * expired. 3090 * 3091 * Note that this function must be called with the thread pinned to 3092 * a single processor. 3093 */ 3094 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 3095 { 3096 unsigned long flags; 3097 int to_drain, batch; 3098 3099 local_lock_irqsave(&pagesets.lock, flags); 3100 batch = READ_ONCE(pcp->batch); 3101 to_drain = min(pcp->count, batch); 3102 if (to_drain > 0) 3103 free_pcppages_bulk(zone, to_drain, pcp, 0); 3104 local_unlock_irqrestore(&pagesets.lock, flags); 3105 } 3106 #endif 3107 3108 /* 3109 * Drain pcplists of the indicated processor and zone. 3110 * 3111 * The processor must either be the current processor and the 3112 * thread pinned to the current processor or a processor that 3113 * is not online. 3114 */ 3115 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 3116 { 3117 unsigned long flags; 3118 struct per_cpu_pages *pcp; 3119 3120 local_lock_irqsave(&pagesets.lock, flags); 3121 3122 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 3123 if (pcp->count) 3124 free_pcppages_bulk(zone, pcp->count, pcp, 0); 3125 3126 local_unlock_irqrestore(&pagesets.lock, flags); 3127 } 3128 3129 /* 3130 * Drain pcplists of all zones on the indicated processor. 3131 * 3132 * The processor must either be the current processor and the 3133 * thread pinned to the current processor or a processor that 3134 * is not online. 3135 */ 3136 static void drain_pages(unsigned int cpu) 3137 { 3138 struct zone *zone; 3139 3140 for_each_populated_zone(zone) { 3141 drain_pages_zone(cpu, zone); 3142 } 3143 } 3144 3145 /* 3146 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 3147 * 3148 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 3149 * the single zone's pages. 3150 */ 3151 void drain_local_pages(struct zone *zone) 3152 { 3153 int cpu = smp_processor_id(); 3154 3155 if (zone) 3156 drain_pages_zone(cpu, zone); 3157 else 3158 drain_pages(cpu); 3159 } 3160 3161 static void drain_local_pages_wq(struct work_struct *work) 3162 { 3163 struct pcpu_drain *drain; 3164 3165 drain = container_of(work, struct pcpu_drain, work); 3166 3167 /* 3168 * drain_all_pages doesn't use proper cpu hotplug protection so 3169 * we can race with cpu offline when the WQ can move this from 3170 * a cpu pinned worker to an unbound one. We can operate on a different 3171 * cpu which is alright but we also have to make sure to not move to 3172 * a different one. 3173 */ 3174 migrate_disable(); 3175 drain_local_pages(drain->zone); 3176 migrate_enable(); 3177 } 3178 3179 /* 3180 * The implementation of drain_all_pages(), exposing an extra parameter to 3181 * drain on all cpus. 3182 * 3183 * drain_all_pages() is optimized to only execute on cpus where pcplists are 3184 * not empty. The check for non-emptiness can however race with a free to 3185 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 3186 * that need the guarantee that every CPU has drained can disable the 3187 * optimizing racy check. 3188 */ 3189 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 3190 { 3191 int cpu; 3192 3193 /* 3194 * Allocate in the BSS so we won't require allocation in 3195 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 3196 */ 3197 static cpumask_t cpus_with_pcps; 3198 3199 /* 3200 * Make sure nobody triggers this path before mm_percpu_wq is fully 3201 * initialized. 3202 */ 3203 if (WARN_ON_ONCE(!mm_percpu_wq)) 3204 return; 3205 3206 /* 3207 * Do not drain if one is already in progress unless it's specific to 3208 * a zone. Such callers are primarily CMA and memory hotplug and need 3209 * the drain to be complete when the call returns. 3210 */ 3211 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 3212 if (!zone) 3213 return; 3214 mutex_lock(&pcpu_drain_mutex); 3215 } 3216 3217 /* 3218 * We don't care about racing with CPU hotplug event 3219 * as offline notification will cause the notified 3220 * cpu to drain that CPU pcps and on_each_cpu_mask 3221 * disables preemption as part of its processing 3222 */ 3223 for_each_online_cpu(cpu) { 3224 struct per_cpu_pages *pcp; 3225 struct zone *z; 3226 bool has_pcps = false; 3227 3228 if (force_all_cpus) { 3229 /* 3230 * The pcp.count check is racy, some callers need a 3231 * guarantee that no cpu is missed. 3232 */ 3233 has_pcps = true; 3234 } else if (zone) { 3235 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 3236 if (pcp->count) 3237 has_pcps = true; 3238 } else { 3239 for_each_populated_zone(z) { 3240 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); 3241 if (pcp->count) { 3242 has_pcps = true; 3243 break; 3244 } 3245 } 3246 } 3247 3248 if (has_pcps) 3249 cpumask_set_cpu(cpu, &cpus_with_pcps); 3250 else 3251 cpumask_clear_cpu(cpu, &cpus_with_pcps); 3252 } 3253 3254 for_each_cpu(cpu, &cpus_with_pcps) { 3255 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu); 3256 3257 drain->zone = zone; 3258 INIT_WORK(&drain->work, drain_local_pages_wq); 3259 queue_work_on(cpu, mm_percpu_wq, &drain->work); 3260 } 3261 for_each_cpu(cpu, &cpus_with_pcps) 3262 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work); 3263 3264 mutex_unlock(&pcpu_drain_mutex); 3265 } 3266 3267 /* 3268 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 3269 * 3270 * When zone parameter is non-NULL, spill just the single zone's pages. 3271 * 3272 * Note that this can be extremely slow as the draining happens in a workqueue. 3273 */ 3274 void drain_all_pages(struct zone *zone) 3275 { 3276 __drain_all_pages(zone, false); 3277 } 3278 3279 #ifdef CONFIG_HIBERNATION 3280 3281 /* 3282 * Touch the watchdog for every WD_PAGE_COUNT pages. 3283 */ 3284 #define WD_PAGE_COUNT (128*1024) 3285 3286 void mark_free_pages(struct zone *zone) 3287 { 3288 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 3289 unsigned long flags; 3290 unsigned int order, t; 3291 struct page *page; 3292 3293 if (zone_is_empty(zone)) 3294 return; 3295 3296 spin_lock_irqsave(&zone->lock, flags); 3297 3298 max_zone_pfn = zone_end_pfn(zone); 3299 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 3300 if (pfn_valid(pfn)) { 3301 page = pfn_to_page(pfn); 3302 3303 if (!--page_count) { 3304 touch_nmi_watchdog(); 3305 page_count = WD_PAGE_COUNT; 3306 } 3307 3308 if (page_zone(page) != zone) 3309 continue; 3310 3311 if (!swsusp_page_is_forbidden(page)) 3312 swsusp_unset_page_free(page); 3313 } 3314 3315 for_each_migratetype_order(order, t) { 3316 list_for_each_entry(page, 3317 &zone->free_area[order].free_list[t], lru) { 3318 unsigned long i; 3319 3320 pfn = page_to_pfn(page); 3321 for (i = 0; i < (1UL << order); i++) { 3322 if (!--page_count) { 3323 touch_nmi_watchdog(); 3324 page_count = WD_PAGE_COUNT; 3325 } 3326 swsusp_set_page_free(pfn_to_page(pfn + i)); 3327 } 3328 } 3329 } 3330 spin_unlock_irqrestore(&zone->lock, flags); 3331 } 3332 #endif /* CONFIG_PM */ 3333 3334 static bool free_unref_page_prepare(struct page *page, unsigned long pfn, 3335 unsigned int order) 3336 { 3337 int migratetype; 3338 3339 if (!free_pcp_prepare(page, order)) 3340 return false; 3341 3342 migratetype = get_pfnblock_migratetype(page, pfn); 3343 set_pcppage_migratetype(page, migratetype); 3344 return true; 3345 } 3346 3347 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch, 3348 bool free_high) 3349 { 3350 int min_nr_free, max_nr_free; 3351 3352 /* Free everything if batch freeing high-order pages. */ 3353 if (unlikely(free_high)) 3354 return pcp->count; 3355 3356 /* Check for PCP disabled or boot pageset */ 3357 if (unlikely(high < batch)) 3358 return 1; 3359 3360 /* Leave at least pcp->batch pages on the list */ 3361 min_nr_free = batch; 3362 max_nr_free = high - batch; 3363 3364 /* 3365 * Double the number of pages freed each time there is subsequent 3366 * freeing of pages without any allocation. 3367 */ 3368 batch <<= pcp->free_factor; 3369 if (batch < max_nr_free) 3370 pcp->free_factor++; 3371 batch = clamp(batch, min_nr_free, max_nr_free); 3372 3373 return batch; 3374 } 3375 3376 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone, 3377 bool free_high) 3378 { 3379 int high = READ_ONCE(pcp->high); 3380 3381 if (unlikely(!high || free_high)) 3382 return 0; 3383 3384 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) 3385 return high; 3386 3387 /* 3388 * If reclaim is active, limit the number of pages that can be 3389 * stored on pcp lists 3390 */ 3391 return min(READ_ONCE(pcp->batch) << 2, high); 3392 } 3393 3394 static void free_unref_page_commit(struct page *page, int migratetype, 3395 unsigned int order) 3396 { 3397 struct zone *zone = page_zone(page); 3398 struct per_cpu_pages *pcp; 3399 int high; 3400 int pindex; 3401 bool free_high; 3402 3403 __count_vm_event(PGFREE); 3404 pcp = this_cpu_ptr(zone->per_cpu_pageset); 3405 pindex = order_to_pindex(migratetype, order); 3406 list_add(&page->lru, &pcp->lists[pindex]); 3407 pcp->count += 1 << order; 3408 3409 /* 3410 * As high-order pages other than THP's stored on PCP can contribute 3411 * to fragmentation, limit the number stored when PCP is heavily 3412 * freeing without allocation. The remainder after bulk freeing 3413 * stops will be drained from vmstat refresh context. 3414 */ 3415 free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER); 3416 3417 high = nr_pcp_high(pcp, zone, free_high); 3418 if (pcp->count >= high) { 3419 int batch = READ_ONCE(pcp->batch); 3420 3421 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex); 3422 } 3423 } 3424 3425 /* 3426 * Free a pcp page 3427 */ 3428 void free_unref_page(struct page *page, unsigned int order) 3429 { 3430 unsigned long flags; 3431 unsigned long pfn = page_to_pfn(page); 3432 int migratetype; 3433 3434 if (!free_unref_page_prepare(page, pfn, order)) 3435 return; 3436 3437 /* 3438 * We only track unmovable, reclaimable and movable on pcp lists. 3439 * Place ISOLATE pages on the isolated list because they are being 3440 * offlined but treat HIGHATOMIC as movable pages so we can get those 3441 * areas back if necessary. Otherwise, we may have to free 3442 * excessively into the page allocator 3443 */ 3444 migratetype = get_pcppage_migratetype(page); 3445 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 3446 if (unlikely(is_migrate_isolate(migratetype))) { 3447 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE); 3448 return; 3449 } 3450 migratetype = MIGRATE_MOVABLE; 3451 } 3452 3453 local_lock_irqsave(&pagesets.lock, flags); 3454 free_unref_page_commit(page, migratetype, order); 3455 local_unlock_irqrestore(&pagesets.lock, flags); 3456 } 3457 3458 /* 3459 * Free a list of 0-order pages 3460 */ 3461 void free_unref_page_list(struct list_head *list) 3462 { 3463 struct page *page, *next; 3464 unsigned long flags; 3465 int batch_count = 0; 3466 int migratetype; 3467 3468 /* Prepare pages for freeing */ 3469 list_for_each_entry_safe(page, next, list, lru) { 3470 unsigned long pfn = page_to_pfn(page); 3471 if (!free_unref_page_prepare(page, pfn, 0)) { 3472 list_del(&page->lru); 3473 continue; 3474 } 3475 3476 /* 3477 * Free isolated pages directly to the allocator, see 3478 * comment in free_unref_page. 3479 */ 3480 migratetype = get_pcppage_migratetype(page); 3481 if (unlikely(is_migrate_isolate(migratetype))) { 3482 list_del(&page->lru); 3483 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE); 3484 continue; 3485 } 3486 } 3487 3488 local_lock_irqsave(&pagesets.lock, flags); 3489 list_for_each_entry_safe(page, next, list, lru) { 3490 /* 3491 * Non-isolated types over MIGRATE_PCPTYPES get added 3492 * to the MIGRATE_MOVABLE pcp list. 3493 */ 3494 migratetype = get_pcppage_migratetype(page); 3495 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) 3496 migratetype = MIGRATE_MOVABLE; 3497 3498 trace_mm_page_free_batched(page); 3499 free_unref_page_commit(page, migratetype, 0); 3500 3501 /* 3502 * Guard against excessive IRQ disabled times when we get 3503 * a large list of pages to free. 3504 */ 3505 if (++batch_count == SWAP_CLUSTER_MAX) { 3506 local_unlock_irqrestore(&pagesets.lock, flags); 3507 batch_count = 0; 3508 local_lock_irqsave(&pagesets.lock, flags); 3509 } 3510 } 3511 local_unlock_irqrestore(&pagesets.lock, flags); 3512 } 3513 3514 /* 3515 * split_page takes a non-compound higher-order page, and splits it into 3516 * n (1<<order) sub-pages: page[0..n] 3517 * Each sub-page must be freed individually. 3518 * 3519 * Note: this is probably too low level an operation for use in drivers. 3520 * Please consult with lkml before using this in your driver. 3521 */ 3522 void split_page(struct page *page, unsigned int order) 3523 { 3524 int i; 3525 3526 VM_BUG_ON_PAGE(PageCompound(page), page); 3527 VM_BUG_ON_PAGE(!page_count(page), page); 3528 3529 for (i = 1; i < (1 << order); i++) 3530 set_page_refcounted(page + i); 3531 split_page_owner(page, 1 << order); 3532 split_page_memcg(page, 1 << order); 3533 } 3534 EXPORT_SYMBOL_GPL(split_page); 3535 3536 int __isolate_free_page(struct page *page, unsigned int order) 3537 { 3538 unsigned long watermark; 3539 struct zone *zone; 3540 int mt; 3541 3542 BUG_ON(!PageBuddy(page)); 3543 3544 zone = page_zone(page); 3545 mt = get_pageblock_migratetype(page); 3546 3547 if (!is_migrate_isolate(mt)) { 3548 /* 3549 * Obey watermarks as if the page was being allocated. We can 3550 * emulate a high-order watermark check with a raised order-0 3551 * watermark, because we already know our high-order page 3552 * exists. 3553 */ 3554 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 3555 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 3556 return 0; 3557 3558 __mod_zone_freepage_state(zone, -(1UL << order), mt); 3559 } 3560 3561 /* Remove page from free list */ 3562 3563 del_page_from_free_list(page, zone, order); 3564 3565 /* 3566 * Set the pageblock if the isolated page is at least half of a 3567 * pageblock 3568 */ 3569 if (order >= pageblock_order - 1) { 3570 struct page *endpage = page + (1 << order) - 1; 3571 for (; page < endpage; page += pageblock_nr_pages) { 3572 int mt = get_pageblock_migratetype(page); 3573 /* 3574 * Only change normal pageblocks (i.e., they can merge 3575 * with others) 3576 */ 3577 if (migratetype_is_mergeable(mt)) 3578 set_pageblock_migratetype(page, 3579 MIGRATE_MOVABLE); 3580 } 3581 } 3582 3583 3584 return 1UL << order; 3585 } 3586 3587 /** 3588 * __putback_isolated_page - Return a now-isolated page back where we got it 3589 * @page: Page that was isolated 3590 * @order: Order of the isolated page 3591 * @mt: The page's pageblock's migratetype 3592 * 3593 * This function is meant to return a page pulled from the free lists via 3594 * __isolate_free_page back to the free lists they were pulled from. 3595 */ 3596 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 3597 { 3598 struct zone *zone = page_zone(page); 3599 3600 /* zone lock should be held when this function is called */ 3601 lockdep_assert_held(&zone->lock); 3602 3603 /* Return isolated page to tail of freelist. */ 3604 __free_one_page(page, page_to_pfn(page), zone, order, mt, 3605 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 3606 } 3607 3608 /* 3609 * Update NUMA hit/miss statistics 3610 * 3611 * Must be called with interrupts disabled. 3612 */ 3613 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 3614 long nr_account) 3615 { 3616 #ifdef CONFIG_NUMA 3617 enum numa_stat_item local_stat = NUMA_LOCAL; 3618 3619 /* skip numa counters update if numa stats is disabled */ 3620 if (!static_branch_likely(&vm_numa_stat_key)) 3621 return; 3622 3623 if (zone_to_nid(z) != numa_node_id()) 3624 local_stat = NUMA_OTHER; 3625 3626 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 3627 __count_numa_events(z, NUMA_HIT, nr_account); 3628 else { 3629 __count_numa_events(z, NUMA_MISS, nr_account); 3630 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); 3631 } 3632 __count_numa_events(z, local_stat, nr_account); 3633 #endif 3634 } 3635 3636 /* Remove page from the per-cpu list, caller must protect the list */ 3637 static inline 3638 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, 3639 int migratetype, 3640 unsigned int alloc_flags, 3641 struct per_cpu_pages *pcp, 3642 struct list_head *list) 3643 { 3644 struct page *page; 3645 3646 do { 3647 if (list_empty(list)) { 3648 int batch = READ_ONCE(pcp->batch); 3649 int alloced; 3650 3651 /* 3652 * Scale batch relative to order if batch implies 3653 * free pages can be stored on the PCP. Batch can 3654 * be 1 for small zones or for boot pagesets which 3655 * should never store free pages as the pages may 3656 * belong to arbitrary zones. 3657 */ 3658 if (batch > 1) 3659 batch = max(batch >> order, 2); 3660 alloced = rmqueue_bulk(zone, order, 3661 batch, list, 3662 migratetype, alloc_flags); 3663 3664 pcp->count += alloced << order; 3665 if (unlikely(list_empty(list))) 3666 return NULL; 3667 } 3668 3669 page = list_first_entry(list, struct page, lru); 3670 list_del(&page->lru); 3671 pcp->count -= 1 << order; 3672 } while (check_new_pcp(page, order)); 3673 3674 return page; 3675 } 3676 3677 /* Lock and remove page from the per-cpu list */ 3678 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3679 struct zone *zone, unsigned int order, 3680 gfp_t gfp_flags, int migratetype, 3681 unsigned int alloc_flags) 3682 { 3683 struct per_cpu_pages *pcp; 3684 struct list_head *list; 3685 struct page *page; 3686 unsigned long flags; 3687 3688 local_lock_irqsave(&pagesets.lock, flags); 3689 3690 /* 3691 * On allocation, reduce the number of pages that are batch freed. 3692 * See nr_pcp_free() where free_factor is increased for subsequent 3693 * frees. 3694 */ 3695 pcp = this_cpu_ptr(zone->per_cpu_pageset); 3696 pcp->free_factor >>= 1; 3697 list = &pcp->lists[order_to_pindex(migratetype, order)]; 3698 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); 3699 local_unlock_irqrestore(&pagesets.lock, flags); 3700 if (page) { 3701 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1); 3702 zone_statistics(preferred_zone, zone, 1); 3703 } 3704 return page; 3705 } 3706 3707 /* 3708 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 3709 */ 3710 static inline 3711 struct page *rmqueue(struct zone *preferred_zone, 3712 struct zone *zone, unsigned int order, 3713 gfp_t gfp_flags, unsigned int alloc_flags, 3714 int migratetype) 3715 { 3716 unsigned long flags; 3717 struct page *page; 3718 3719 if (likely(pcp_allowed_order(order))) { 3720 /* 3721 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and 3722 * we need to skip it when CMA area isn't allowed. 3723 */ 3724 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA || 3725 migratetype != MIGRATE_MOVABLE) { 3726 page = rmqueue_pcplist(preferred_zone, zone, order, 3727 gfp_flags, migratetype, alloc_flags); 3728 goto out; 3729 } 3730 } 3731 3732 /* 3733 * We most definitely don't want callers attempting to 3734 * allocate greater than order-1 page units with __GFP_NOFAIL. 3735 */ 3736 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3737 3738 do { 3739 page = NULL; 3740 spin_lock_irqsave(&zone->lock, flags); 3741 /* 3742 * order-0 request can reach here when the pcplist is skipped 3743 * due to non-CMA allocation context. HIGHATOMIC area is 3744 * reserved for high-order atomic allocation, so order-0 3745 * request should skip it. 3746 */ 3747 if (order > 0 && alloc_flags & ALLOC_HARDER) 3748 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3749 if (!page) { 3750 page = __rmqueue(zone, order, migratetype, alloc_flags); 3751 if (!page) 3752 goto failed; 3753 } 3754 __mod_zone_freepage_state(zone, -(1 << order), 3755 get_pcppage_migratetype(page)); 3756 spin_unlock_irqrestore(&zone->lock, flags); 3757 } while (check_new_pages(page, order)); 3758 3759 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3760 zone_statistics(preferred_zone, zone, 1); 3761 3762 out: 3763 /* Separate test+clear to avoid unnecessary atomics */ 3764 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) { 3765 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3766 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3767 } 3768 3769 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3770 return page; 3771 3772 failed: 3773 spin_unlock_irqrestore(&zone->lock, flags); 3774 return NULL; 3775 } 3776 3777 #ifdef CONFIG_FAIL_PAGE_ALLOC 3778 3779 static struct { 3780 struct fault_attr attr; 3781 3782 bool ignore_gfp_highmem; 3783 bool ignore_gfp_reclaim; 3784 u32 min_order; 3785 } fail_page_alloc = { 3786 .attr = FAULT_ATTR_INITIALIZER, 3787 .ignore_gfp_reclaim = true, 3788 .ignore_gfp_highmem = true, 3789 .min_order = 1, 3790 }; 3791 3792 static int __init setup_fail_page_alloc(char *str) 3793 { 3794 return setup_fault_attr(&fail_page_alloc.attr, str); 3795 } 3796 __setup("fail_page_alloc=", setup_fail_page_alloc); 3797 3798 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3799 { 3800 if (order < fail_page_alloc.min_order) 3801 return false; 3802 if (gfp_mask & __GFP_NOFAIL) 3803 return false; 3804 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3805 return false; 3806 if (fail_page_alloc.ignore_gfp_reclaim && 3807 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3808 return false; 3809 3810 if (gfp_mask & __GFP_NOWARN) 3811 fail_page_alloc.attr.no_warn = true; 3812 3813 return should_fail(&fail_page_alloc.attr, 1 << order); 3814 } 3815 3816 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3817 3818 static int __init fail_page_alloc_debugfs(void) 3819 { 3820 umode_t mode = S_IFREG | 0600; 3821 struct dentry *dir; 3822 3823 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3824 &fail_page_alloc.attr); 3825 3826 debugfs_create_bool("ignore-gfp-wait", mode, dir, 3827 &fail_page_alloc.ignore_gfp_reclaim); 3828 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3829 &fail_page_alloc.ignore_gfp_highmem); 3830 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order); 3831 3832 return 0; 3833 } 3834 3835 late_initcall(fail_page_alloc_debugfs); 3836 3837 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3838 3839 #else /* CONFIG_FAIL_PAGE_ALLOC */ 3840 3841 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3842 { 3843 return false; 3844 } 3845 3846 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3847 3848 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3849 { 3850 return __should_fail_alloc_page(gfp_mask, order); 3851 } 3852 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 3853 3854 static inline long __zone_watermark_unusable_free(struct zone *z, 3855 unsigned int order, unsigned int alloc_flags) 3856 { 3857 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3858 long unusable_free = (1 << order) - 1; 3859 3860 /* 3861 * If the caller does not have rights to ALLOC_HARDER then subtract 3862 * the high-atomic reserves. This will over-estimate the size of the 3863 * atomic reserve but it avoids a search. 3864 */ 3865 if (likely(!alloc_harder)) 3866 unusable_free += z->nr_reserved_highatomic; 3867 3868 #ifdef CONFIG_CMA 3869 /* If allocation can't use CMA areas don't use free CMA pages */ 3870 if (!(alloc_flags & ALLOC_CMA)) 3871 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3872 #endif 3873 3874 return unusable_free; 3875 } 3876 3877 /* 3878 * Return true if free base pages are above 'mark'. For high-order checks it 3879 * will return true of the order-0 watermark is reached and there is at least 3880 * one free page of a suitable size. Checking now avoids taking the zone lock 3881 * to check in the allocation paths if no pages are free. 3882 */ 3883 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3884 int highest_zoneidx, unsigned int alloc_flags, 3885 long free_pages) 3886 { 3887 long min = mark; 3888 int o; 3889 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3890 3891 /* free_pages may go negative - that's OK */ 3892 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3893 3894 if (alloc_flags & ALLOC_HIGH) 3895 min -= min / 2; 3896 3897 if (unlikely(alloc_harder)) { 3898 /* 3899 * OOM victims can try even harder than normal ALLOC_HARDER 3900 * users on the grounds that it's definitely going to be in 3901 * the exit path shortly and free memory. Any allocation it 3902 * makes during the free path will be small and short-lived. 3903 */ 3904 if (alloc_flags & ALLOC_OOM) 3905 min -= min / 2; 3906 else 3907 min -= min / 4; 3908 } 3909 3910 /* 3911 * Check watermarks for an order-0 allocation request. If these 3912 * are not met, then a high-order request also cannot go ahead 3913 * even if a suitable page happened to be free. 3914 */ 3915 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 3916 return false; 3917 3918 /* If this is an order-0 request then the watermark is fine */ 3919 if (!order) 3920 return true; 3921 3922 /* For a high-order request, check at least one suitable page is free */ 3923 for (o = order; o < MAX_ORDER; o++) { 3924 struct free_area *area = &z->free_area[o]; 3925 int mt; 3926 3927 if (!area->nr_free) 3928 continue; 3929 3930 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3931 if (!free_area_empty(area, mt)) 3932 return true; 3933 } 3934 3935 #ifdef CONFIG_CMA 3936 if ((alloc_flags & ALLOC_CMA) && 3937 !free_area_empty(area, MIGRATE_CMA)) { 3938 return true; 3939 } 3940 #endif 3941 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC)) 3942 return true; 3943 } 3944 return false; 3945 } 3946 3947 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3948 int highest_zoneidx, unsigned int alloc_flags) 3949 { 3950 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3951 zone_page_state(z, NR_FREE_PAGES)); 3952 } 3953 3954 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3955 unsigned long mark, int highest_zoneidx, 3956 unsigned int alloc_flags, gfp_t gfp_mask) 3957 { 3958 long free_pages; 3959 3960 free_pages = zone_page_state(z, NR_FREE_PAGES); 3961 3962 /* 3963 * Fast check for order-0 only. If this fails then the reserves 3964 * need to be calculated. 3965 */ 3966 if (!order) { 3967 long fast_free; 3968 3969 fast_free = free_pages; 3970 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags); 3971 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx]) 3972 return true; 3973 } 3974 3975 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3976 free_pages)) 3977 return true; 3978 /* 3979 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations 3980 * when checking the min watermark. The min watermark is the 3981 * point where boosting is ignored so that kswapd is woken up 3982 * when below the low watermark. 3983 */ 3984 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost 3985 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 3986 mark = z->_watermark[WMARK_MIN]; 3987 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 3988 alloc_flags, free_pages); 3989 } 3990 3991 return false; 3992 } 3993 3994 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3995 unsigned long mark, int highest_zoneidx) 3996 { 3997 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3998 3999 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 4000 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 4001 4002 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 4003 free_pages); 4004 } 4005 4006 #ifdef CONFIG_NUMA 4007 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 4008 4009 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 4010 { 4011 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 4012 node_reclaim_distance; 4013 } 4014 #else /* CONFIG_NUMA */ 4015 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 4016 { 4017 return true; 4018 } 4019 #endif /* CONFIG_NUMA */ 4020 4021 /* 4022 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 4023 * fragmentation is subtle. If the preferred zone was HIGHMEM then 4024 * premature use of a lower zone may cause lowmem pressure problems that 4025 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 4026 * probably too small. It only makes sense to spread allocations to avoid 4027 * fragmentation between the Normal and DMA32 zones. 4028 */ 4029 static inline unsigned int 4030 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 4031 { 4032 unsigned int alloc_flags; 4033 4034 /* 4035 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4036 * to save a branch. 4037 */ 4038 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 4039 4040 #ifdef CONFIG_ZONE_DMA32 4041 if (!zone) 4042 return alloc_flags; 4043 4044 if (zone_idx(zone) != ZONE_NORMAL) 4045 return alloc_flags; 4046 4047 /* 4048 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 4049 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 4050 * on UMA that if Normal is populated then so is DMA32. 4051 */ 4052 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 4053 if (nr_online_nodes > 1 && !populated_zone(--zone)) 4054 return alloc_flags; 4055 4056 alloc_flags |= ALLOC_NOFRAGMENT; 4057 #endif /* CONFIG_ZONE_DMA32 */ 4058 return alloc_flags; 4059 } 4060 4061 /* Must be called after current_gfp_context() which can change gfp_mask */ 4062 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 4063 unsigned int alloc_flags) 4064 { 4065 #ifdef CONFIG_CMA 4066 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 4067 alloc_flags |= ALLOC_CMA; 4068 #endif 4069 return alloc_flags; 4070 } 4071 4072 /* 4073 * get_page_from_freelist goes through the zonelist trying to allocate 4074 * a page. 4075 */ 4076 static struct page * 4077 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 4078 const struct alloc_context *ac) 4079 { 4080 struct zoneref *z; 4081 struct zone *zone; 4082 struct pglist_data *last_pgdat = NULL; 4083 bool last_pgdat_dirty_ok = false; 4084 bool no_fallback; 4085 4086 retry: 4087 /* 4088 * Scan zonelist, looking for a zone with enough free. 4089 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 4090 */ 4091 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 4092 z = ac->preferred_zoneref; 4093 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 4094 ac->nodemask) { 4095 struct page *page; 4096 unsigned long mark; 4097 4098 if (cpusets_enabled() && 4099 (alloc_flags & ALLOC_CPUSET) && 4100 !__cpuset_zone_allowed(zone, gfp_mask)) 4101 continue; 4102 /* 4103 * When allocating a page cache page for writing, we 4104 * want to get it from a node that is within its dirty 4105 * limit, such that no single node holds more than its 4106 * proportional share of globally allowed dirty pages. 4107 * The dirty limits take into account the node's 4108 * lowmem reserves and high watermark so that kswapd 4109 * should be able to balance it without having to 4110 * write pages from its LRU list. 4111 * 4112 * XXX: For now, allow allocations to potentially 4113 * exceed the per-node dirty limit in the slowpath 4114 * (spread_dirty_pages unset) before going into reclaim, 4115 * which is important when on a NUMA setup the allowed 4116 * nodes are together not big enough to reach the 4117 * global limit. The proper fix for these situations 4118 * will require awareness of nodes in the 4119 * dirty-throttling and the flusher threads. 4120 */ 4121 if (ac->spread_dirty_pages) { 4122 if (last_pgdat != zone->zone_pgdat) { 4123 last_pgdat = zone->zone_pgdat; 4124 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat); 4125 } 4126 4127 if (!last_pgdat_dirty_ok) 4128 continue; 4129 } 4130 4131 if (no_fallback && nr_online_nodes > 1 && 4132 zone != ac->preferred_zoneref->zone) { 4133 int local_nid; 4134 4135 /* 4136 * If moving to a remote node, retry but allow 4137 * fragmenting fallbacks. Locality is more important 4138 * than fragmentation avoidance. 4139 */ 4140 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 4141 if (zone_to_nid(zone) != local_nid) { 4142 alloc_flags &= ~ALLOC_NOFRAGMENT; 4143 goto retry; 4144 } 4145 } 4146 4147 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 4148 if (!zone_watermark_fast(zone, order, mark, 4149 ac->highest_zoneidx, alloc_flags, 4150 gfp_mask)) { 4151 int ret; 4152 4153 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 4154 /* 4155 * Watermark failed for this zone, but see if we can 4156 * grow this zone if it contains deferred pages. 4157 */ 4158 if (static_branch_unlikely(&deferred_pages)) { 4159 if (_deferred_grow_zone(zone, order)) 4160 goto try_this_zone; 4161 } 4162 #endif 4163 /* Checked here to keep the fast path fast */ 4164 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 4165 if (alloc_flags & ALLOC_NO_WATERMARKS) 4166 goto try_this_zone; 4167 4168 if (!node_reclaim_enabled() || 4169 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 4170 continue; 4171 4172 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 4173 switch (ret) { 4174 case NODE_RECLAIM_NOSCAN: 4175 /* did not scan */ 4176 continue; 4177 case NODE_RECLAIM_FULL: 4178 /* scanned but unreclaimable */ 4179 continue; 4180 default: 4181 /* did we reclaim enough */ 4182 if (zone_watermark_ok(zone, order, mark, 4183 ac->highest_zoneidx, alloc_flags)) 4184 goto try_this_zone; 4185 4186 continue; 4187 } 4188 } 4189 4190 try_this_zone: 4191 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 4192 gfp_mask, alloc_flags, ac->migratetype); 4193 if (page) { 4194 prep_new_page(page, order, gfp_mask, alloc_flags); 4195 4196 /* 4197 * If this is a high-order atomic allocation then check 4198 * if the pageblock should be reserved for the future 4199 */ 4200 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 4201 reserve_highatomic_pageblock(page, zone, order); 4202 4203 return page; 4204 } else { 4205 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 4206 /* Try again if zone has deferred pages */ 4207 if (static_branch_unlikely(&deferred_pages)) { 4208 if (_deferred_grow_zone(zone, order)) 4209 goto try_this_zone; 4210 } 4211 #endif 4212 } 4213 } 4214 4215 /* 4216 * It's possible on a UMA machine to get through all zones that are 4217 * fragmented. If avoiding fragmentation, reset and try again. 4218 */ 4219 if (no_fallback) { 4220 alloc_flags &= ~ALLOC_NOFRAGMENT; 4221 goto retry; 4222 } 4223 4224 return NULL; 4225 } 4226 4227 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 4228 { 4229 unsigned int filter = SHOW_MEM_FILTER_NODES; 4230 4231 /* 4232 * This documents exceptions given to allocations in certain 4233 * contexts that are allowed to allocate outside current's set 4234 * of allowed nodes. 4235 */ 4236 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4237 if (tsk_is_oom_victim(current) || 4238 (current->flags & (PF_MEMALLOC | PF_EXITING))) 4239 filter &= ~SHOW_MEM_FILTER_NODES; 4240 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 4241 filter &= ~SHOW_MEM_FILTER_NODES; 4242 4243 show_mem(filter, nodemask); 4244 } 4245 4246 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 4247 { 4248 struct va_format vaf; 4249 va_list args; 4250 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 4251 4252 if ((gfp_mask & __GFP_NOWARN) || 4253 !__ratelimit(&nopage_rs) || 4254 ((gfp_mask & __GFP_DMA) && !has_managed_dma())) 4255 return; 4256 4257 va_start(args, fmt); 4258 vaf.fmt = fmt; 4259 vaf.va = &args; 4260 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 4261 current->comm, &vaf, gfp_mask, &gfp_mask, 4262 nodemask_pr_args(nodemask)); 4263 va_end(args); 4264 4265 cpuset_print_current_mems_allowed(); 4266 pr_cont("\n"); 4267 dump_stack(); 4268 warn_alloc_show_mem(gfp_mask, nodemask); 4269 } 4270 4271 static inline struct page * 4272 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 4273 unsigned int alloc_flags, 4274 const struct alloc_context *ac) 4275 { 4276 struct page *page; 4277 4278 page = get_page_from_freelist(gfp_mask, order, 4279 alloc_flags|ALLOC_CPUSET, ac); 4280 /* 4281 * fallback to ignore cpuset restriction if our nodes 4282 * are depleted 4283 */ 4284 if (!page) 4285 page = get_page_from_freelist(gfp_mask, order, 4286 alloc_flags, ac); 4287 4288 return page; 4289 } 4290 4291 static inline struct page * 4292 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 4293 const struct alloc_context *ac, unsigned long *did_some_progress) 4294 { 4295 struct oom_control oc = { 4296 .zonelist = ac->zonelist, 4297 .nodemask = ac->nodemask, 4298 .memcg = NULL, 4299 .gfp_mask = gfp_mask, 4300 .order = order, 4301 }; 4302 struct page *page; 4303 4304 *did_some_progress = 0; 4305 4306 /* 4307 * Acquire the oom lock. If that fails, somebody else is 4308 * making progress for us. 4309 */ 4310 if (!mutex_trylock(&oom_lock)) { 4311 *did_some_progress = 1; 4312 schedule_timeout_uninterruptible(1); 4313 return NULL; 4314 } 4315 4316 /* 4317 * Go through the zonelist yet one more time, keep very high watermark 4318 * here, this is only to catch a parallel oom killing, we must fail if 4319 * we're still under heavy pressure. But make sure that this reclaim 4320 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 4321 * allocation which will never fail due to oom_lock already held. 4322 */ 4323 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 4324 ~__GFP_DIRECT_RECLAIM, order, 4325 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 4326 if (page) 4327 goto out; 4328 4329 /* Coredumps can quickly deplete all memory reserves */ 4330 if (current->flags & PF_DUMPCORE) 4331 goto out; 4332 /* The OOM killer will not help higher order allocs */ 4333 if (order > PAGE_ALLOC_COSTLY_ORDER) 4334 goto out; 4335 /* 4336 * We have already exhausted all our reclaim opportunities without any 4337 * success so it is time to admit defeat. We will skip the OOM killer 4338 * because it is very likely that the caller has a more reasonable 4339 * fallback than shooting a random task. 4340 * 4341 * The OOM killer may not free memory on a specific node. 4342 */ 4343 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 4344 goto out; 4345 /* The OOM killer does not needlessly kill tasks for lowmem */ 4346 if (ac->highest_zoneidx < ZONE_NORMAL) 4347 goto out; 4348 if (pm_suspended_storage()) 4349 goto out; 4350 /* 4351 * XXX: GFP_NOFS allocations should rather fail than rely on 4352 * other request to make a forward progress. 4353 * We are in an unfortunate situation where out_of_memory cannot 4354 * do much for this context but let's try it to at least get 4355 * access to memory reserved if the current task is killed (see 4356 * out_of_memory). Once filesystems are ready to handle allocation 4357 * failures more gracefully we should just bail out here. 4358 */ 4359 4360 /* Exhausted what can be done so it's blame time */ 4361 if (out_of_memory(&oc) || 4362 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) { 4363 *did_some_progress = 1; 4364 4365 /* 4366 * Help non-failing allocations by giving them access to memory 4367 * reserves 4368 */ 4369 if (gfp_mask & __GFP_NOFAIL) 4370 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 4371 ALLOC_NO_WATERMARKS, ac); 4372 } 4373 out: 4374 mutex_unlock(&oom_lock); 4375 return page; 4376 } 4377 4378 /* 4379 * Maximum number of compaction retries with a progress before OOM 4380 * killer is consider as the only way to move forward. 4381 */ 4382 #define MAX_COMPACT_RETRIES 16 4383 4384 #ifdef CONFIG_COMPACTION 4385 /* Try memory compaction for high-order allocations before reclaim */ 4386 static struct page * 4387 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4388 unsigned int alloc_flags, const struct alloc_context *ac, 4389 enum compact_priority prio, enum compact_result *compact_result) 4390 { 4391 struct page *page = NULL; 4392 unsigned long pflags; 4393 unsigned int noreclaim_flag; 4394 4395 if (!order) 4396 return NULL; 4397 4398 psi_memstall_enter(&pflags); 4399 delayacct_compact_start(); 4400 noreclaim_flag = memalloc_noreclaim_save(); 4401 4402 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 4403 prio, &page); 4404 4405 memalloc_noreclaim_restore(noreclaim_flag); 4406 psi_memstall_leave(&pflags); 4407 delayacct_compact_end(); 4408 4409 if (*compact_result == COMPACT_SKIPPED) 4410 return NULL; 4411 /* 4412 * At least in one zone compaction wasn't deferred or skipped, so let's 4413 * count a compaction stall 4414 */ 4415 count_vm_event(COMPACTSTALL); 4416 4417 /* Prep a captured page if available */ 4418 if (page) 4419 prep_new_page(page, order, gfp_mask, alloc_flags); 4420 4421 /* Try get a page from the freelist if available */ 4422 if (!page) 4423 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4424 4425 if (page) { 4426 struct zone *zone = page_zone(page); 4427 4428 zone->compact_blockskip_flush = false; 4429 compaction_defer_reset(zone, order, true); 4430 count_vm_event(COMPACTSUCCESS); 4431 return page; 4432 } 4433 4434 /* 4435 * It's bad if compaction run occurs and fails. The most likely reason 4436 * is that pages exist, but not enough to satisfy watermarks. 4437 */ 4438 count_vm_event(COMPACTFAIL); 4439 4440 cond_resched(); 4441 4442 return NULL; 4443 } 4444 4445 static inline bool 4446 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 4447 enum compact_result compact_result, 4448 enum compact_priority *compact_priority, 4449 int *compaction_retries) 4450 { 4451 int max_retries = MAX_COMPACT_RETRIES; 4452 int min_priority; 4453 bool ret = false; 4454 int retries = *compaction_retries; 4455 enum compact_priority priority = *compact_priority; 4456 4457 if (!order) 4458 return false; 4459 4460 if (fatal_signal_pending(current)) 4461 return false; 4462 4463 if (compaction_made_progress(compact_result)) 4464 (*compaction_retries)++; 4465 4466 /* 4467 * compaction considers all the zone as desperately out of memory 4468 * so it doesn't really make much sense to retry except when the 4469 * failure could be caused by insufficient priority 4470 */ 4471 if (compaction_failed(compact_result)) 4472 goto check_priority; 4473 4474 /* 4475 * compaction was skipped because there are not enough order-0 pages 4476 * to work with, so we retry only if it looks like reclaim can help. 4477 */ 4478 if (compaction_needs_reclaim(compact_result)) { 4479 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 4480 goto out; 4481 } 4482 4483 /* 4484 * make sure the compaction wasn't deferred or didn't bail out early 4485 * due to locks contention before we declare that we should give up. 4486 * But the next retry should use a higher priority if allowed, so 4487 * we don't just keep bailing out endlessly. 4488 */ 4489 if (compaction_withdrawn(compact_result)) { 4490 goto check_priority; 4491 } 4492 4493 /* 4494 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 4495 * costly ones because they are de facto nofail and invoke OOM 4496 * killer to move on while costly can fail and users are ready 4497 * to cope with that. 1/4 retries is rather arbitrary but we 4498 * would need much more detailed feedback from compaction to 4499 * make a better decision. 4500 */ 4501 if (order > PAGE_ALLOC_COSTLY_ORDER) 4502 max_retries /= 4; 4503 if (*compaction_retries <= max_retries) { 4504 ret = true; 4505 goto out; 4506 } 4507 4508 /* 4509 * Make sure there are attempts at the highest priority if we exhausted 4510 * all retries or failed at the lower priorities. 4511 */ 4512 check_priority: 4513 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 4514 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 4515 4516 if (*compact_priority > min_priority) { 4517 (*compact_priority)--; 4518 *compaction_retries = 0; 4519 ret = true; 4520 } 4521 out: 4522 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 4523 return ret; 4524 } 4525 #else 4526 static inline struct page * 4527 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4528 unsigned int alloc_flags, const struct alloc_context *ac, 4529 enum compact_priority prio, enum compact_result *compact_result) 4530 { 4531 *compact_result = COMPACT_SKIPPED; 4532 return NULL; 4533 } 4534 4535 static inline bool 4536 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 4537 enum compact_result compact_result, 4538 enum compact_priority *compact_priority, 4539 int *compaction_retries) 4540 { 4541 struct zone *zone; 4542 struct zoneref *z; 4543 4544 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 4545 return false; 4546 4547 /* 4548 * There are setups with compaction disabled which would prefer to loop 4549 * inside the allocator rather than hit the oom killer prematurely. 4550 * Let's give them a good hope and keep retrying while the order-0 4551 * watermarks are OK. 4552 */ 4553 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4554 ac->highest_zoneidx, ac->nodemask) { 4555 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 4556 ac->highest_zoneidx, alloc_flags)) 4557 return true; 4558 } 4559 return false; 4560 } 4561 #endif /* CONFIG_COMPACTION */ 4562 4563 #ifdef CONFIG_LOCKDEP 4564 static struct lockdep_map __fs_reclaim_map = 4565 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 4566 4567 static bool __need_reclaim(gfp_t gfp_mask) 4568 { 4569 /* no reclaim without waiting on it */ 4570 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 4571 return false; 4572 4573 /* this guy won't enter reclaim */ 4574 if (current->flags & PF_MEMALLOC) 4575 return false; 4576 4577 if (gfp_mask & __GFP_NOLOCKDEP) 4578 return false; 4579 4580 return true; 4581 } 4582 4583 void __fs_reclaim_acquire(unsigned long ip) 4584 { 4585 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); 4586 } 4587 4588 void __fs_reclaim_release(unsigned long ip) 4589 { 4590 lock_release(&__fs_reclaim_map, ip); 4591 } 4592 4593 void fs_reclaim_acquire(gfp_t gfp_mask) 4594 { 4595 gfp_mask = current_gfp_context(gfp_mask); 4596 4597 if (__need_reclaim(gfp_mask)) { 4598 if (gfp_mask & __GFP_FS) 4599 __fs_reclaim_acquire(_RET_IP_); 4600 4601 #ifdef CONFIG_MMU_NOTIFIER 4602 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 4603 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 4604 #endif 4605 4606 } 4607 } 4608 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4609 4610 void fs_reclaim_release(gfp_t gfp_mask) 4611 { 4612 gfp_mask = current_gfp_context(gfp_mask); 4613 4614 if (__need_reclaim(gfp_mask)) { 4615 if (gfp_mask & __GFP_FS) 4616 __fs_reclaim_release(_RET_IP_); 4617 } 4618 } 4619 EXPORT_SYMBOL_GPL(fs_reclaim_release); 4620 #endif 4621 4622 /* Perform direct synchronous page reclaim */ 4623 static unsigned long 4624 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 4625 const struct alloc_context *ac) 4626 { 4627 unsigned int noreclaim_flag; 4628 unsigned long progress; 4629 4630 cond_resched(); 4631 4632 /* We now go into synchronous reclaim */ 4633 cpuset_memory_pressure_bump(); 4634 fs_reclaim_acquire(gfp_mask); 4635 noreclaim_flag = memalloc_noreclaim_save(); 4636 4637 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4638 ac->nodemask); 4639 4640 memalloc_noreclaim_restore(noreclaim_flag); 4641 fs_reclaim_release(gfp_mask); 4642 4643 cond_resched(); 4644 4645 return progress; 4646 } 4647 4648 /* The really slow allocator path where we enter direct reclaim */ 4649 static inline struct page * 4650 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4651 unsigned int alloc_flags, const struct alloc_context *ac, 4652 unsigned long *did_some_progress) 4653 { 4654 struct page *page = NULL; 4655 unsigned long pflags; 4656 bool drained = false; 4657 4658 psi_memstall_enter(&pflags); 4659 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4660 if (unlikely(!(*did_some_progress))) 4661 goto out; 4662 4663 retry: 4664 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4665 4666 /* 4667 * If an allocation failed after direct reclaim, it could be because 4668 * pages are pinned on the per-cpu lists or in high alloc reserves. 4669 * Shrink them and try again 4670 */ 4671 if (!page && !drained) { 4672 unreserve_highatomic_pageblock(ac, false); 4673 drain_all_pages(NULL); 4674 drained = true; 4675 goto retry; 4676 } 4677 out: 4678 psi_memstall_leave(&pflags); 4679 4680 return page; 4681 } 4682 4683 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4684 const struct alloc_context *ac) 4685 { 4686 struct zoneref *z; 4687 struct zone *zone; 4688 pg_data_t *last_pgdat = NULL; 4689 enum zone_type highest_zoneidx = ac->highest_zoneidx; 4690 4691 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 4692 ac->nodemask) { 4693 if (!managed_zone(zone)) 4694 continue; 4695 if (last_pgdat != zone->zone_pgdat) { 4696 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); 4697 last_pgdat = zone->zone_pgdat; 4698 } 4699 } 4700 } 4701 4702 static inline unsigned int 4703 gfp_to_alloc_flags(gfp_t gfp_mask) 4704 { 4705 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4706 4707 /* 4708 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH 4709 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4710 * to save two branches. 4711 */ 4712 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 4713 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 4714 4715 /* 4716 * The caller may dip into page reserves a bit more if the caller 4717 * cannot run direct reclaim, or if the caller has realtime scheduling 4718 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4719 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 4720 */ 4721 alloc_flags |= (__force int) 4722 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 4723 4724 if (gfp_mask & __GFP_ATOMIC) { 4725 /* 4726 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4727 * if it can't schedule. 4728 */ 4729 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4730 alloc_flags |= ALLOC_HARDER; 4731 /* 4732 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 4733 * comment for __cpuset_node_allowed(). 4734 */ 4735 alloc_flags &= ~ALLOC_CPUSET; 4736 } else if (unlikely(rt_task(current)) && in_task()) 4737 alloc_flags |= ALLOC_HARDER; 4738 4739 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 4740 4741 return alloc_flags; 4742 } 4743 4744 static bool oom_reserves_allowed(struct task_struct *tsk) 4745 { 4746 if (!tsk_is_oom_victim(tsk)) 4747 return false; 4748 4749 /* 4750 * !MMU doesn't have oom reaper so give access to memory reserves 4751 * only to the thread with TIF_MEMDIE set 4752 */ 4753 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4754 return false; 4755 4756 return true; 4757 } 4758 4759 /* 4760 * Distinguish requests which really need access to full memory 4761 * reserves from oom victims which can live with a portion of it 4762 */ 4763 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4764 { 4765 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4766 return 0; 4767 if (gfp_mask & __GFP_MEMALLOC) 4768 return ALLOC_NO_WATERMARKS; 4769 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4770 return ALLOC_NO_WATERMARKS; 4771 if (!in_interrupt()) { 4772 if (current->flags & PF_MEMALLOC) 4773 return ALLOC_NO_WATERMARKS; 4774 else if (oom_reserves_allowed(current)) 4775 return ALLOC_OOM; 4776 } 4777 4778 return 0; 4779 } 4780 4781 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4782 { 4783 return !!__gfp_pfmemalloc_flags(gfp_mask); 4784 } 4785 4786 /* 4787 * Checks whether it makes sense to retry the reclaim to make a forward progress 4788 * for the given allocation request. 4789 * 4790 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4791 * without success, or when we couldn't even meet the watermark if we 4792 * reclaimed all remaining pages on the LRU lists. 4793 * 4794 * Returns true if a retry is viable or false to enter the oom path. 4795 */ 4796 static inline bool 4797 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4798 struct alloc_context *ac, int alloc_flags, 4799 bool did_some_progress, int *no_progress_loops) 4800 { 4801 struct zone *zone; 4802 struct zoneref *z; 4803 bool ret = false; 4804 4805 /* 4806 * Costly allocations might have made a progress but this doesn't mean 4807 * their order will become available due to high fragmentation so 4808 * always increment the no progress counter for them 4809 */ 4810 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4811 *no_progress_loops = 0; 4812 else 4813 (*no_progress_loops)++; 4814 4815 /* 4816 * Make sure we converge to OOM if we cannot make any progress 4817 * several times in the row. 4818 */ 4819 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 4820 /* Before OOM, exhaust highatomic_reserve */ 4821 return unreserve_highatomic_pageblock(ac, true); 4822 } 4823 4824 /* 4825 * Keep reclaiming pages while there is a chance this will lead 4826 * somewhere. If none of the target zones can satisfy our allocation 4827 * request even if all reclaimable pages are considered then we are 4828 * screwed and have to go OOM. 4829 */ 4830 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4831 ac->highest_zoneidx, ac->nodemask) { 4832 unsigned long available; 4833 unsigned long reclaimable; 4834 unsigned long min_wmark = min_wmark_pages(zone); 4835 bool wmark; 4836 4837 available = reclaimable = zone_reclaimable_pages(zone); 4838 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4839 4840 /* 4841 * Would the allocation succeed if we reclaimed all 4842 * reclaimable pages? 4843 */ 4844 wmark = __zone_watermark_ok(zone, order, min_wmark, 4845 ac->highest_zoneidx, alloc_flags, available); 4846 trace_reclaim_retry_zone(z, order, reclaimable, 4847 available, min_wmark, *no_progress_loops, wmark); 4848 if (wmark) { 4849 ret = true; 4850 break; 4851 } 4852 } 4853 4854 /* 4855 * Memory allocation/reclaim might be called from a WQ context and the 4856 * current implementation of the WQ concurrency control doesn't 4857 * recognize that a particular WQ is congested if the worker thread is 4858 * looping without ever sleeping. Therefore we have to do a short sleep 4859 * here rather than calling cond_resched(). 4860 */ 4861 if (current->flags & PF_WQ_WORKER) 4862 schedule_timeout_uninterruptible(1); 4863 else 4864 cond_resched(); 4865 return ret; 4866 } 4867 4868 static inline bool 4869 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4870 { 4871 /* 4872 * It's possible that cpuset's mems_allowed and the nodemask from 4873 * mempolicy don't intersect. This should be normally dealt with by 4874 * policy_nodemask(), but it's possible to race with cpuset update in 4875 * such a way the check therein was true, and then it became false 4876 * before we got our cpuset_mems_cookie here. 4877 * This assumes that for all allocations, ac->nodemask can come only 4878 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4879 * when it does not intersect with the cpuset restrictions) or the 4880 * caller can deal with a violated nodemask. 4881 */ 4882 if (cpusets_enabled() && ac->nodemask && 4883 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4884 ac->nodemask = NULL; 4885 return true; 4886 } 4887 4888 /* 4889 * When updating a task's mems_allowed or mempolicy nodemask, it is 4890 * possible to race with parallel threads in such a way that our 4891 * allocation can fail while the mask is being updated. If we are about 4892 * to fail, check if the cpuset changed during allocation and if so, 4893 * retry. 4894 */ 4895 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4896 return true; 4897 4898 return false; 4899 } 4900 4901 static inline struct page * 4902 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4903 struct alloc_context *ac) 4904 { 4905 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4906 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4907 struct page *page = NULL; 4908 unsigned int alloc_flags; 4909 unsigned long did_some_progress; 4910 enum compact_priority compact_priority; 4911 enum compact_result compact_result; 4912 int compaction_retries; 4913 int no_progress_loops; 4914 unsigned int cpuset_mems_cookie; 4915 int reserve_flags; 4916 4917 /* 4918 * We also sanity check to catch abuse of atomic reserves being used by 4919 * callers that are not in atomic context. 4920 */ 4921 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 4922 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 4923 gfp_mask &= ~__GFP_ATOMIC; 4924 4925 retry_cpuset: 4926 compaction_retries = 0; 4927 no_progress_loops = 0; 4928 compact_priority = DEF_COMPACT_PRIORITY; 4929 cpuset_mems_cookie = read_mems_allowed_begin(); 4930 4931 /* 4932 * The fast path uses conservative alloc_flags to succeed only until 4933 * kswapd needs to be woken up, and to avoid the cost of setting up 4934 * alloc_flags precisely. So we do that now. 4935 */ 4936 alloc_flags = gfp_to_alloc_flags(gfp_mask); 4937 4938 /* 4939 * We need to recalculate the starting point for the zonelist iterator 4940 * because we might have used different nodemask in the fast path, or 4941 * there was a cpuset modification and we are retrying - otherwise we 4942 * could end up iterating over non-eligible zones endlessly. 4943 */ 4944 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4945 ac->highest_zoneidx, ac->nodemask); 4946 if (!ac->preferred_zoneref->zone) 4947 goto nopage; 4948 4949 /* 4950 * Check for insane configurations where the cpuset doesn't contain 4951 * any suitable zone to satisfy the request - e.g. non-movable 4952 * GFP_HIGHUSER allocations from MOVABLE nodes only. 4953 */ 4954 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { 4955 struct zoneref *z = first_zones_zonelist(ac->zonelist, 4956 ac->highest_zoneidx, 4957 &cpuset_current_mems_allowed); 4958 if (!z->zone) 4959 goto nopage; 4960 } 4961 4962 if (alloc_flags & ALLOC_KSWAPD) 4963 wake_all_kswapds(order, gfp_mask, ac); 4964 4965 /* 4966 * The adjusted alloc_flags might result in immediate success, so try 4967 * that first 4968 */ 4969 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4970 if (page) 4971 goto got_pg; 4972 4973 /* 4974 * For costly allocations, try direct compaction first, as it's likely 4975 * that we have enough base pages and don't need to reclaim. For non- 4976 * movable high-order allocations, do that as well, as compaction will 4977 * try prevent permanent fragmentation by migrating from blocks of the 4978 * same migratetype. 4979 * Don't try this for allocations that are allowed to ignore 4980 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4981 */ 4982 if (can_direct_reclaim && 4983 (costly_order || 4984 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4985 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4986 page = __alloc_pages_direct_compact(gfp_mask, order, 4987 alloc_flags, ac, 4988 INIT_COMPACT_PRIORITY, 4989 &compact_result); 4990 if (page) 4991 goto got_pg; 4992 4993 /* 4994 * Checks for costly allocations with __GFP_NORETRY, which 4995 * includes some THP page fault allocations 4996 */ 4997 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4998 /* 4999 * If allocating entire pageblock(s) and compaction 5000 * failed because all zones are below low watermarks 5001 * or is prohibited because it recently failed at this 5002 * order, fail immediately unless the allocator has 5003 * requested compaction and reclaim retry. 5004 * 5005 * Reclaim is 5006 * - potentially very expensive because zones are far 5007 * below their low watermarks or this is part of very 5008 * bursty high order allocations, 5009 * - not guaranteed to help because isolate_freepages() 5010 * may not iterate over freed pages as part of its 5011 * linear scan, and 5012 * - unlikely to make entire pageblocks free on its 5013 * own. 5014 */ 5015 if (compact_result == COMPACT_SKIPPED || 5016 compact_result == COMPACT_DEFERRED) 5017 goto nopage; 5018 5019 /* 5020 * Looks like reclaim/compaction is worth trying, but 5021 * sync compaction could be very expensive, so keep 5022 * using async compaction. 5023 */ 5024 compact_priority = INIT_COMPACT_PRIORITY; 5025 } 5026 } 5027 5028 retry: 5029 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 5030 if (alloc_flags & ALLOC_KSWAPD) 5031 wake_all_kswapds(order, gfp_mask, ac); 5032 5033 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 5034 if (reserve_flags) 5035 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags); 5036 5037 /* 5038 * Reset the nodemask and zonelist iterators if memory policies can be 5039 * ignored. These allocations are high priority and system rather than 5040 * user oriented. 5041 */ 5042 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 5043 ac->nodemask = NULL; 5044 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5045 ac->highest_zoneidx, ac->nodemask); 5046 } 5047 5048 /* Attempt with potentially adjusted zonelist and alloc_flags */ 5049 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 5050 if (page) 5051 goto got_pg; 5052 5053 /* Caller is not willing to reclaim, we can't balance anything */ 5054 if (!can_direct_reclaim) 5055 goto nopage; 5056 5057 /* Avoid recursion of direct reclaim */ 5058 if (current->flags & PF_MEMALLOC) 5059 goto nopage; 5060 5061 /* Try direct reclaim and then allocating */ 5062 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 5063 &did_some_progress); 5064 if (page) 5065 goto got_pg; 5066 5067 /* Try direct compaction and then allocating */ 5068 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 5069 compact_priority, &compact_result); 5070 if (page) 5071 goto got_pg; 5072 5073 /* Do not loop if specifically requested */ 5074 if (gfp_mask & __GFP_NORETRY) 5075 goto nopage; 5076 5077 /* 5078 * Do not retry costly high order allocations unless they are 5079 * __GFP_RETRY_MAYFAIL 5080 */ 5081 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 5082 goto nopage; 5083 5084 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 5085 did_some_progress > 0, &no_progress_loops)) 5086 goto retry; 5087 5088 /* 5089 * It doesn't make any sense to retry for the compaction if the order-0 5090 * reclaim is not able to make any progress because the current 5091 * implementation of the compaction depends on the sufficient amount 5092 * of free memory (see __compaction_suitable) 5093 */ 5094 if (did_some_progress > 0 && 5095 should_compact_retry(ac, order, alloc_flags, 5096 compact_result, &compact_priority, 5097 &compaction_retries)) 5098 goto retry; 5099 5100 5101 /* Deal with possible cpuset update races before we start OOM killing */ 5102 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 5103 goto retry_cpuset; 5104 5105 /* Reclaim has failed us, start killing things */ 5106 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 5107 if (page) 5108 goto got_pg; 5109 5110 /* Avoid allocations with no watermarks from looping endlessly */ 5111 if (tsk_is_oom_victim(current) && 5112 (alloc_flags & ALLOC_OOM || 5113 (gfp_mask & __GFP_NOMEMALLOC))) 5114 goto nopage; 5115 5116 /* Retry as long as the OOM killer is making progress */ 5117 if (did_some_progress) { 5118 no_progress_loops = 0; 5119 goto retry; 5120 } 5121 5122 nopage: 5123 /* Deal with possible cpuset update races before we fail */ 5124 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 5125 goto retry_cpuset; 5126 5127 /* 5128 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 5129 * we always retry 5130 */ 5131 if (gfp_mask & __GFP_NOFAIL) { 5132 /* 5133 * All existing users of the __GFP_NOFAIL are blockable, so warn 5134 * of any new users that actually require GFP_NOWAIT 5135 */ 5136 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask)) 5137 goto fail; 5138 5139 /* 5140 * PF_MEMALLOC request from this context is rather bizarre 5141 * because we cannot reclaim anything and only can loop waiting 5142 * for somebody to do a work for us 5143 */ 5144 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask); 5145 5146 /* 5147 * non failing costly orders are a hard requirement which we 5148 * are not prepared for much so let's warn about these users 5149 * so that we can identify them and convert them to something 5150 * else. 5151 */ 5152 WARN_ON_ONCE_GFP(order > PAGE_ALLOC_COSTLY_ORDER, gfp_mask); 5153 5154 /* 5155 * Help non-failing allocations by giving them access to memory 5156 * reserves but do not use ALLOC_NO_WATERMARKS because this 5157 * could deplete whole memory reserves which would just make 5158 * the situation worse 5159 */ 5160 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 5161 if (page) 5162 goto got_pg; 5163 5164 cond_resched(); 5165 goto retry; 5166 } 5167 fail: 5168 warn_alloc(gfp_mask, ac->nodemask, 5169 "page allocation failure: order:%u", order); 5170 got_pg: 5171 return page; 5172 } 5173 5174 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 5175 int preferred_nid, nodemask_t *nodemask, 5176 struct alloc_context *ac, gfp_t *alloc_gfp, 5177 unsigned int *alloc_flags) 5178 { 5179 ac->highest_zoneidx = gfp_zone(gfp_mask); 5180 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 5181 ac->nodemask = nodemask; 5182 ac->migratetype = gfp_migratetype(gfp_mask); 5183 5184 if (cpusets_enabled()) { 5185 *alloc_gfp |= __GFP_HARDWALL; 5186 /* 5187 * When we are in the interrupt context, it is irrelevant 5188 * to the current task context. It means that any node ok. 5189 */ 5190 if (in_task() && !ac->nodemask) 5191 ac->nodemask = &cpuset_current_mems_allowed; 5192 else 5193 *alloc_flags |= ALLOC_CPUSET; 5194 } 5195 5196 might_alloc(gfp_mask); 5197 5198 if (should_fail_alloc_page(gfp_mask, order)) 5199 return false; 5200 5201 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 5202 5203 /* Dirty zone balancing only done in the fast path */ 5204 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 5205 5206 /* 5207 * The preferred zone is used for statistics but crucially it is 5208 * also used as the starting point for the zonelist iterator. It 5209 * may get reset for allocations that ignore memory policies. 5210 */ 5211 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5212 ac->highest_zoneidx, ac->nodemask); 5213 5214 return true; 5215 } 5216 5217 /* 5218 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array 5219 * @gfp: GFP flags for the allocation 5220 * @preferred_nid: The preferred NUMA node ID to allocate from 5221 * @nodemask: Set of nodes to allocate from, may be NULL 5222 * @nr_pages: The number of pages desired on the list or array 5223 * @page_list: Optional list to store the allocated pages 5224 * @page_array: Optional array to store the pages 5225 * 5226 * This is a batched version of the page allocator that attempts to 5227 * allocate nr_pages quickly. Pages are added to page_list if page_list 5228 * is not NULL, otherwise it is assumed that the page_array is valid. 5229 * 5230 * For lists, nr_pages is the number of pages that should be allocated. 5231 * 5232 * For arrays, only NULL elements are populated with pages and nr_pages 5233 * is the maximum number of pages that will be stored in the array. 5234 * 5235 * Returns the number of pages on the list or array. 5236 */ 5237 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid, 5238 nodemask_t *nodemask, int nr_pages, 5239 struct list_head *page_list, 5240 struct page **page_array) 5241 { 5242 struct page *page; 5243 unsigned long flags; 5244 struct zone *zone; 5245 struct zoneref *z; 5246 struct per_cpu_pages *pcp; 5247 struct list_head *pcp_list; 5248 struct alloc_context ac; 5249 gfp_t alloc_gfp; 5250 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5251 int nr_populated = 0, nr_account = 0; 5252 5253 /* 5254 * Skip populated array elements to determine if any pages need 5255 * to be allocated before disabling IRQs. 5256 */ 5257 while (page_array && nr_populated < nr_pages && page_array[nr_populated]) 5258 nr_populated++; 5259 5260 /* No pages requested? */ 5261 if (unlikely(nr_pages <= 0)) 5262 goto out; 5263 5264 /* Already populated array? */ 5265 if (unlikely(page_array && nr_pages - nr_populated == 0)) 5266 goto out; 5267 5268 /* Bulk allocator does not support memcg accounting. */ 5269 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT)) 5270 goto failed; 5271 5272 /* Use the single page allocator for one page. */ 5273 if (nr_pages - nr_populated == 1) 5274 goto failed; 5275 5276 #ifdef CONFIG_PAGE_OWNER 5277 /* 5278 * PAGE_OWNER may recurse into the allocator to allocate space to 5279 * save the stack with pagesets.lock held. Releasing/reacquiring 5280 * removes much of the performance benefit of bulk allocation so 5281 * force the caller to allocate one page at a time as it'll have 5282 * similar performance to added complexity to the bulk allocator. 5283 */ 5284 if (static_branch_unlikely(&page_owner_inited)) 5285 goto failed; 5286 #endif 5287 5288 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 5289 gfp &= gfp_allowed_mask; 5290 alloc_gfp = gfp; 5291 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 5292 goto out; 5293 gfp = alloc_gfp; 5294 5295 /* Find an allowed local zone that meets the low watermark. */ 5296 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) { 5297 unsigned long mark; 5298 5299 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 5300 !__cpuset_zone_allowed(zone, gfp)) { 5301 continue; 5302 } 5303 5304 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone && 5305 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) { 5306 goto failed; 5307 } 5308 5309 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 5310 if (zone_watermark_fast(zone, 0, mark, 5311 zonelist_zone_idx(ac.preferred_zoneref), 5312 alloc_flags, gfp)) { 5313 break; 5314 } 5315 } 5316 5317 /* 5318 * If there are no allowed local zones that meets the watermarks then 5319 * try to allocate a single page and reclaim if necessary. 5320 */ 5321 if (unlikely(!zone)) 5322 goto failed; 5323 5324 /* Attempt the batch allocation */ 5325 local_lock_irqsave(&pagesets.lock, flags); 5326 pcp = this_cpu_ptr(zone->per_cpu_pageset); 5327 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; 5328 5329 while (nr_populated < nr_pages) { 5330 5331 /* Skip existing pages */ 5332 if (page_array && page_array[nr_populated]) { 5333 nr_populated++; 5334 continue; 5335 } 5336 5337 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, 5338 pcp, pcp_list); 5339 if (unlikely(!page)) { 5340 /* Try and allocate at least one page */ 5341 if (!nr_account) 5342 goto failed_irq; 5343 break; 5344 } 5345 nr_account++; 5346 5347 prep_new_page(page, 0, gfp, 0); 5348 if (page_list) 5349 list_add(&page->lru, page_list); 5350 else 5351 page_array[nr_populated] = page; 5352 nr_populated++; 5353 } 5354 5355 local_unlock_irqrestore(&pagesets.lock, flags); 5356 5357 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); 5358 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account); 5359 5360 out: 5361 return nr_populated; 5362 5363 failed_irq: 5364 local_unlock_irqrestore(&pagesets.lock, flags); 5365 5366 failed: 5367 page = __alloc_pages(gfp, 0, preferred_nid, nodemask); 5368 if (page) { 5369 if (page_list) 5370 list_add(&page->lru, page_list); 5371 else 5372 page_array[nr_populated] = page; 5373 nr_populated++; 5374 } 5375 5376 goto out; 5377 } 5378 EXPORT_SYMBOL_GPL(__alloc_pages_bulk); 5379 5380 /* 5381 * This is the 'heart' of the zoned buddy allocator. 5382 */ 5383 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid, 5384 nodemask_t *nodemask) 5385 { 5386 struct page *page; 5387 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5388 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 5389 struct alloc_context ac = { }; 5390 5391 /* 5392 * There are several places where we assume that the order value is sane 5393 * so bail out early if the request is out of bound. 5394 */ 5395 if (WARN_ON_ONCE_GFP(order >= MAX_ORDER, gfp)) 5396 return NULL; 5397 5398 gfp &= gfp_allowed_mask; 5399 /* 5400 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 5401 * resp. GFP_NOIO which has to be inherited for all allocation requests 5402 * from a particular context which has been marked by 5403 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 5404 * movable zones are not used during allocation. 5405 */ 5406 gfp = current_gfp_context(gfp); 5407 alloc_gfp = gfp; 5408 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 5409 &alloc_gfp, &alloc_flags)) 5410 return NULL; 5411 5412 /* 5413 * Forbid the first pass from falling back to types that fragment 5414 * memory until all local zones are considered. 5415 */ 5416 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp); 5417 5418 /* First allocation attempt */ 5419 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 5420 if (likely(page)) 5421 goto out; 5422 5423 alloc_gfp = gfp; 5424 ac.spread_dirty_pages = false; 5425 5426 /* 5427 * Restore the original nodemask if it was potentially replaced with 5428 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 5429 */ 5430 ac.nodemask = nodemask; 5431 5432 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 5433 5434 out: 5435 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page && 5436 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 5437 __free_pages(page, order); 5438 page = NULL; 5439 } 5440 5441 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 5442 5443 return page; 5444 } 5445 EXPORT_SYMBOL(__alloc_pages); 5446 5447 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid, 5448 nodemask_t *nodemask) 5449 { 5450 struct page *page = __alloc_pages(gfp | __GFP_COMP, order, 5451 preferred_nid, nodemask); 5452 5453 if (page && order > 1) 5454 prep_transhuge_page(page); 5455 return (struct folio *)page; 5456 } 5457 EXPORT_SYMBOL(__folio_alloc); 5458 5459 /* 5460 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 5461 * address cannot represent highmem pages. Use alloc_pages and then kmap if 5462 * you need to access high mem. 5463 */ 5464 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 5465 { 5466 struct page *page; 5467 5468 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 5469 if (!page) 5470 return 0; 5471 return (unsigned long) page_address(page); 5472 } 5473 EXPORT_SYMBOL(__get_free_pages); 5474 5475 unsigned long get_zeroed_page(gfp_t gfp_mask) 5476 { 5477 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 5478 } 5479 EXPORT_SYMBOL(get_zeroed_page); 5480 5481 /** 5482 * __free_pages - Free pages allocated with alloc_pages(). 5483 * @page: The page pointer returned from alloc_pages(). 5484 * @order: The order of the allocation. 5485 * 5486 * This function can free multi-page allocations that are not compound 5487 * pages. It does not check that the @order passed in matches that of 5488 * the allocation, so it is easy to leak memory. Freeing more memory 5489 * than was allocated will probably emit a warning. 5490 * 5491 * If the last reference to this page is speculative, it will be released 5492 * by put_page() which only frees the first page of a non-compound 5493 * allocation. To prevent the remaining pages from being leaked, we free 5494 * the subsequent pages here. If you want to use the page's reference 5495 * count to decide when to free the allocation, you should allocate a 5496 * compound page, and use put_page() instead of __free_pages(). 5497 * 5498 * Context: May be called in interrupt context or while holding a normal 5499 * spinlock, but not in NMI context or while holding a raw spinlock. 5500 */ 5501 void __free_pages(struct page *page, unsigned int order) 5502 { 5503 if (put_page_testzero(page)) 5504 free_the_page(page, order); 5505 else if (!PageHead(page)) 5506 while (order-- > 0) 5507 free_the_page(page + (1 << order), order); 5508 } 5509 EXPORT_SYMBOL(__free_pages); 5510 5511 void free_pages(unsigned long addr, unsigned int order) 5512 { 5513 if (addr != 0) { 5514 VM_BUG_ON(!virt_addr_valid((void *)addr)); 5515 __free_pages(virt_to_page((void *)addr), order); 5516 } 5517 } 5518 5519 EXPORT_SYMBOL(free_pages); 5520 5521 /* 5522 * Page Fragment: 5523 * An arbitrary-length arbitrary-offset area of memory which resides 5524 * within a 0 or higher order page. Multiple fragments within that page 5525 * are individually refcounted, in the page's reference counter. 5526 * 5527 * The page_frag functions below provide a simple allocation framework for 5528 * page fragments. This is used by the network stack and network device 5529 * drivers to provide a backing region of memory for use as either an 5530 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 5531 */ 5532 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 5533 gfp_t gfp_mask) 5534 { 5535 struct page *page = NULL; 5536 gfp_t gfp = gfp_mask; 5537 5538 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5539 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 5540 __GFP_NOMEMALLOC; 5541 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 5542 PAGE_FRAG_CACHE_MAX_ORDER); 5543 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 5544 #endif 5545 if (unlikely(!page)) 5546 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 5547 5548 nc->va = page ? page_address(page) : NULL; 5549 5550 return page; 5551 } 5552 5553 void __page_frag_cache_drain(struct page *page, unsigned int count) 5554 { 5555 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 5556 5557 if (page_ref_sub_and_test(page, count)) 5558 free_the_page(page, compound_order(page)); 5559 } 5560 EXPORT_SYMBOL(__page_frag_cache_drain); 5561 5562 void *page_frag_alloc_align(struct page_frag_cache *nc, 5563 unsigned int fragsz, gfp_t gfp_mask, 5564 unsigned int align_mask) 5565 { 5566 unsigned int size = PAGE_SIZE; 5567 struct page *page; 5568 int offset; 5569 5570 if (unlikely(!nc->va)) { 5571 refill: 5572 page = __page_frag_cache_refill(nc, gfp_mask); 5573 if (!page) 5574 return NULL; 5575 5576 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5577 /* if size can vary use size else just use PAGE_SIZE */ 5578 size = nc->size; 5579 #endif 5580 /* Even if we own the page, we do not use atomic_set(). 5581 * This would break get_page_unless_zero() users. 5582 */ 5583 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 5584 5585 /* reset page count bias and offset to start of new frag */ 5586 nc->pfmemalloc = page_is_pfmemalloc(page); 5587 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5588 nc->offset = size; 5589 } 5590 5591 offset = nc->offset - fragsz; 5592 if (unlikely(offset < 0)) { 5593 page = virt_to_page(nc->va); 5594 5595 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 5596 goto refill; 5597 5598 if (unlikely(nc->pfmemalloc)) { 5599 free_the_page(page, compound_order(page)); 5600 goto refill; 5601 } 5602 5603 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5604 /* if size can vary use size else just use PAGE_SIZE */ 5605 size = nc->size; 5606 #endif 5607 /* OK, page count is 0, we can safely set it */ 5608 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 5609 5610 /* reset page count bias and offset to start of new frag */ 5611 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5612 offset = size - fragsz; 5613 } 5614 5615 nc->pagecnt_bias--; 5616 offset &= align_mask; 5617 nc->offset = offset; 5618 5619 return nc->va + offset; 5620 } 5621 EXPORT_SYMBOL(page_frag_alloc_align); 5622 5623 /* 5624 * Frees a page fragment allocated out of either a compound or order 0 page. 5625 */ 5626 void page_frag_free(void *addr) 5627 { 5628 struct page *page = virt_to_head_page(addr); 5629 5630 if (unlikely(put_page_testzero(page))) 5631 free_the_page(page, compound_order(page)); 5632 } 5633 EXPORT_SYMBOL(page_frag_free); 5634 5635 static void *make_alloc_exact(unsigned long addr, unsigned int order, 5636 size_t size) 5637 { 5638 if (addr) { 5639 unsigned long alloc_end = addr + (PAGE_SIZE << order); 5640 unsigned long used = addr + PAGE_ALIGN(size); 5641 5642 split_page(virt_to_page((void *)addr), order); 5643 while (used < alloc_end) { 5644 free_page(used); 5645 used += PAGE_SIZE; 5646 } 5647 } 5648 return (void *)addr; 5649 } 5650 5651 /** 5652 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 5653 * @size: the number of bytes to allocate 5654 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5655 * 5656 * This function is similar to alloc_pages(), except that it allocates the 5657 * minimum number of pages to satisfy the request. alloc_pages() can only 5658 * allocate memory in power-of-two pages. 5659 * 5660 * This function is also limited by MAX_ORDER. 5661 * 5662 * Memory allocated by this function must be released by free_pages_exact(). 5663 * 5664 * Return: pointer to the allocated area or %NULL in case of error. 5665 */ 5666 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 5667 { 5668 unsigned int order = get_order(size); 5669 unsigned long addr; 5670 5671 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5672 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5673 5674 addr = __get_free_pages(gfp_mask, order); 5675 return make_alloc_exact(addr, order, size); 5676 } 5677 EXPORT_SYMBOL(alloc_pages_exact); 5678 5679 /** 5680 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 5681 * pages on a node. 5682 * @nid: the preferred node ID where memory should be allocated 5683 * @size: the number of bytes to allocate 5684 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5685 * 5686 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 5687 * back. 5688 * 5689 * Return: pointer to the allocated area or %NULL in case of error. 5690 */ 5691 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 5692 { 5693 unsigned int order = get_order(size); 5694 struct page *p; 5695 5696 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5697 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5698 5699 p = alloc_pages_node(nid, gfp_mask, order); 5700 if (!p) 5701 return NULL; 5702 return make_alloc_exact((unsigned long)page_address(p), order, size); 5703 } 5704 5705 /** 5706 * free_pages_exact - release memory allocated via alloc_pages_exact() 5707 * @virt: the value returned by alloc_pages_exact. 5708 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5709 * 5710 * Release the memory allocated by a previous call to alloc_pages_exact. 5711 */ 5712 void free_pages_exact(void *virt, size_t size) 5713 { 5714 unsigned long addr = (unsigned long)virt; 5715 unsigned long end = addr + PAGE_ALIGN(size); 5716 5717 while (addr < end) { 5718 free_page(addr); 5719 addr += PAGE_SIZE; 5720 } 5721 } 5722 EXPORT_SYMBOL(free_pages_exact); 5723 5724 /** 5725 * nr_free_zone_pages - count number of pages beyond high watermark 5726 * @offset: The zone index of the highest zone 5727 * 5728 * nr_free_zone_pages() counts the number of pages which are beyond the 5729 * high watermark within all zones at or below a given zone index. For each 5730 * zone, the number of pages is calculated as: 5731 * 5732 * nr_free_zone_pages = managed_pages - high_pages 5733 * 5734 * Return: number of pages beyond high watermark. 5735 */ 5736 static unsigned long nr_free_zone_pages(int offset) 5737 { 5738 struct zoneref *z; 5739 struct zone *zone; 5740 5741 /* Just pick one node, since fallback list is circular */ 5742 unsigned long sum = 0; 5743 5744 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5745 5746 for_each_zone_zonelist(zone, z, zonelist, offset) { 5747 unsigned long size = zone_managed_pages(zone); 5748 unsigned long high = high_wmark_pages(zone); 5749 if (size > high) 5750 sum += size - high; 5751 } 5752 5753 return sum; 5754 } 5755 5756 /** 5757 * nr_free_buffer_pages - count number of pages beyond high watermark 5758 * 5759 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5760 * watermark within ZONE_DMA and ZONE_NORMAL. 5761 * 5762 * Return: number of pages beyond high watermark within ZONE_DMA and 5763 * ZONE_NORMAL. 5764 */ 5765 unsigned long nr_free_buffer_pages(void) 5766 { 5767 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5768 } 5769 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5770 5771 static inline void show_node(struct zone *zone) 5772 { 5773 if (IS_ENABLED(CONFIG_NUMA)) 5774 printk("Node %d ", zone_to_nid(zone)); 5775 } 5776 5777 long si_mem_available(void) 5778 { 5779 long available; 5780 unsigned long pagecache; 5781 unsigned long wmark_low = 0; 5782 unsigned long pages[NR_LRU_LISTS]; 5783 unsigned long reclaimable; 5784 struct zone *zone; 5785 int lru; 5786 5787 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 5788 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 5789 5790 for_each_zone(zone) 5791 wmark_low += low_wmark_pages(zone); 5792 5793 /* 5794 * Estimate the amount of memory available for userspace allocations, 5795 * without causing swapping. 5796 */ 5797 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 5798 5799 /* 5800 * Not all the page cache can be freed, otherwise the system will 5801 * start swapping. Assume at least half of the page cache, or the 5802 * low watermark worth of cache, needs to stay. 5803 */ 5804 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 5805 pagecache -= min(pagecache / 2, wmark_low); 5806 available += pagecache; 5807 5808 /* 5809 * Part of the reclaimable slab and other kernel memory consists of 5810 * items that are in use, and cannot be freed. Cap this estimate at the 5811 * low watermark. 5812 */ 5813 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) + 5814 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); 5815 available += reclaimable - min(reclaimable / 2, wmark_low); 5816 5817 if (available < 0) 5818 available = 0; 5819 return available; 5820 } 5821 EXPORT_SYMBOL_GPL(si_mem_available); 5822 5823 void si_meminfo(struct sysinfo *val) 5824 { 5825 val->totalram = totalram_pages(); 5826 val->sharedram = global_node_page_state(NR_SHMEM); 5827 val->freeram = global_zone_page_state(NR_FREE_PAGES); 5828 val->bufferram = nr_blockdev_pages(); 5829 val->totalhigh = totalhigh_pages(); 5830 val->freehigh = nr_free_highpages(); 5831 val->mem_unit = PAGE_SIZE; 5832 } 5833 5834 EXPORT_SYMBOL(si_meminfo); 5835 5836 #ifdef CONFIG_NUMA 5837 void si_meminfo_node(struct sysinfo *val, int nid) 5838 { 5839 int zone_type; /* needs to be signed */ 5840 unsigned long managed_pages = 0; 5841 unsigned long managed_highpages = 0; 5842 unsigned long free_highpages = 0; 5843 pg_data_t *pgdat = NODE_DATA(nid); 5844 5845 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 5846 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]); 5847 val->totalram = managed_pages; 5848 val->sharedram = node_page_state(pgdat, NR_SHMEM); 5849 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 5850 #ifdef CONFIG_HIGHMEM 5851 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 5852 struct zone *zone = &pgdat->node_zones[zone_type]; 5853 5854 if (is_highmem(zone)) { 5855 managed_highpages += zone_managed_pages(zone); 5856 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 5857 } 5858 } 5859 val->totalhigh = managed_highpages; 5860 val->freehigh = free_highpages; 5861 #else 5862 val->totalhigh = managed_highpages; 5863 val->freehigh = free_highpages; 5864 #endif 5865 val->mem_unit = PAGE_SIZE; 5866 } 5867 #endif 5868 5869 /* 5870 * Determine whether the node should be displayed or not, depending on whether 5871 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 5872 */ 5873 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 5874 { 5875 if (!(flags & SHOW_MEM_FILTER_NODES)) 5876 return false; 5877 5878 /* 5879 * no node mask - aka implicit memory numa policy. Do not bother with 5880 * the synchronization - read_mems_allowed_begin - because we do not 5881 * have to be precise here. 5882 */ 5883 if (!nodemask) 5884 nodemask = &cpuset_current_mems_allowed; 5885 5886 return !node_isset(nid, *nodemask); 5887 } 5888 5889 #define K(x) ((x) << (PAGE_SHIFT-10)) 5890 5891 static void show_migration_types(unsigned char type) 5892 { 5893 static const char types[MIGRATE_TYPES] = { 5894 [MIGRATE_UNMOVABLE] = 'U', 5895 [MIGRATE_MOVABLE] = 'M', 5896 [MIGRATE_RECLAIMABLE] = 'E', 5897 [MIGRATE_HIGHATOMIC] = 'H', 5898 #ifdef CONFIG_CMA 5899 [MIGRATE_CMA] = 'C', 5900 #endif 5901 #ifdef CONFIG_MEMORY_ISOLATION 5902 [MIGRATE_ISOLATE] = 'I', 5903 #endif 5904 }; 5905 char tmp[MIGRATE_TYPES + 1]; 5906 char *p = tmp; 5907 int i; 5908 5909 for (i = 0; i < MIGRATE_TYPES; i++) { 5910 if (type & (1 << i)) 5911 *p++ = types[i]; 5912 } 5913 5914 *p = '\0'; 5915 printk(KERN_CONT "(%s) ", tmp); 5916 } 5917 5918 /* 5919 * Show free area list (used inside shift_scroll-lock stuff) 5920 * We also calculate the percentage fragmentation. We do this by counting the 5921 * memory on each free list with the exception of the first item on the list. 5922 * 5923 * Bits in @filter: 5924 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 5925 * cpuset. 5926 */ 5927 void show_free_areas(unsigned int filter, nodemask_t *nodemask) 5928 { 5929 unsigned long free_pcp = 0; 5930 int cpu; 5931 struct zone *zone; 5932 pg_data_t *pgdat; 5933 5934 for_each_populated_zone(zone) { 5935 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5936 continue; 5937 5938 for_each_online_cpu(cpu) 5939 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count; 5940 } 5941 5942 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 5943 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 5944 " unevictable:%lu dirty:%lu writeback:%lu\n" 5945 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 5946 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 5947 " kernel_misc_reclaimable:%lu\n" 5948 " free:%lu free_pcp:%lu free_cma:%lu\n", 5949 global_node_page_state(NR_ACTIVE_ANON), 5950 global_node_page_state(NR_INACTIVE_ANON), 5951 global_node_page_state(NR_ISOLATED_ANON), 5952 global_node_page_state(NR_ACTIVE_FILE), 5953 global_node_page_state(NR_INACTIVE_FILE), 5954 global_node_page_state(NR_ISOLATED_FILE), 5955 global_node_page_state(NR_UNEVICTABLE), 5956 global_node_page_state(NR_FILE_DIRTY), 5957 global_node_page_state(NR_WRITEBACK), 5958 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B), 5959 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B), 5960 global_node_page_state(NR_FILE_MAPPED), 5961 global_node_page_state(NR_SHMEM), 5962 global_node_page_state(NR_PAGETABLE), 5963 global_zone_page_state(NR_BOUNCE), 5964 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE), 5965 global_zone_page_state(NR_FREE_PAGES), 5966 free_pcp, 5967 global_zone_page_state(NR_FREE_CMA_PAGES)); 5968 5969 for_each_online_pgdat(pgdat) { 5970 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 5971 continue; 5972 5973 printk("Node %d" 5974 " active_anon:%lukB" 5975 " inactive_anon:%lukB" 5976 " active_file:%lukB" 5977 " inactive_file:%lukB" 5978 " unevictable:%lukB" 5979 " isolated(anon):%lukB" 5980 " isolated(file):%lukB" 5981 " mapped:%lukB" 5982 " dirty:%lukB" 5983 " writeback:%lukB" 5984 " shmem:%lukB" 5985 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5986 " shmem_thp: %lukB" 5987 " shmem_pmdmapped: %lukB" 5988 " anon_thp: %lukB" 5989 #endif 5990 " writeback_tmp:%lukB" 5991 " kernel_stack:%lukB" 5992 #ifdef CONFIG_SHADOW_CALL_STACK 5993 " shadow_call_stack:%lukB" 5994 #endif 5995 " pagetables:%lukB" 5996 " all_unreclaimable? %s" 5997 "\n", 5998 pgdat->node_id, 5999 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 6000 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 6001 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 6002 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 6003 K(node_page_state(pgdat, NR_UNEVICTABLE)), 6004 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 6005 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 6006 K(node_page_state(pgdat, NR_FILE_MAPPED)), 6007 K(node_page_state(pgdat, NR_FILE_DIRTY)), 6008 K(node_page_state(pgdat, NR_WRITEBACK)), 6009 K(node_page_state(pgdat, NR_SHMEM)), 6010 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6011 K(node_page_state(pgdat, NR_SHMEM_THPS)), 6012 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)), 6013 K(node_page_state(pgdat, NR_ANON_THPS)), 6014 #endif 6015 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 6016 node_page_state(pgdat, NR_KERNEL_STACK_KB), 6017 #ifdef CONFIG_SHADOW_CALL_STACK 6018 node_page_state(pgdat, NR_KERNEL_SCS_KB), 6019 #endif 6020 K(node_page_state(pgdat, NR_PAGETABLE)), 6021 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 6022 "yes" : "no"); 6023 } 6024 6025 for_each_populated_zone(zone) { 6026 int i; 6027 6028 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 6029 continue; 6030 6031 free_pcp = 0; 6032 for_each_online_cpu(cpu) 6033 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count; 6034 6035 show_node(zone); 6036 printk(KERN_CONT 6037 "%s" 6038 " free:%lukB" 6039 " boost:%lukB" 6040 " min:%lukB" 6041 " low:%lukB" 6042 " high:%lukB" 6043 " reserved_highatomic:%luKB" 6044 " active_anon:%lukB" 6045 " inactive_anon:%lukB" 6046 " active_file:%lukB" 6047 " inactive_file:%lukB" 6048 " unevictable:%lukB" 6049 " writepending:%lukB" 6050 " present:%lukB" 6051 " managed:%lukB" 6052 " mlocked:%lukB" 6053 " bounce:%lukB" 6054 " free_pcp:%lukB" 6055 " local_pcp:%ukB" 6056 " free_cma:%lukB" 6057 "\n", 6058 zone->name, 6059 K(zone_page_state(zone, NR_FREE_PAGES)), 6060 K(zone->watermark_boost), 6061 K(min_wmark_pages(zone)), 6062 K(low_wmark_pages(zone)), 6063 K(high_wmark_pages(zone)), 6064 K(zone->nr_reserved_highatomic), 6065 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 6066 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 6067 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 6068 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 6069 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 6070 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 6071 K(zone->present_pages), 6072 K(zone_managed_pages(zone)), 6073 K(zone_page_state(zone, NR_MLOCK)), 6074 K(zone_page_state(zone, NR_BOUNCE)), 6075 K(free_pcp), 6076 K(this_cpu_read(zone->per_cpu_pageset->count)), 6077 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 6078 printk("lowmem_reserve[]:"); 6079 for (i = 0; i < MAX_NR_ZONES; i++) 6080 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 6081 printk(KERN_CONT "\n"); 6082 } 6083 6084 for_each_populated_zone(zone) { 6085 unsigned int order; 6086 unsigned long nr[MAX_ORDER], flags, total = 0; 6087 unsigned char types[MAX_ORDER]; 6088 6089 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 6090 continue; 6091 show_node(zone); 6092 printk(KERN_CONT "%s: ", zone->name); 6093 6094 spin_lock_irqsave(&zone->lock, flags); 6095 for (order = 0; order < MAX_ORDER; order++) { 6096 struct free_area *area = &zone->free_area[order]; 6097 int type; 6098 6099 nr[order] = area->nr_free; 6100 total += nr[order] << order; 6101 6102 types[order] = 0; 6103 for (type = 0; type < MIGRATE_TYPES; type++) { 6104 if (!free_area_empty(area, type)) 6105 types[order] |= 1 << type; 6106 } 6107 } 6108 spin_unlock_irqrestore(&zone->lock, flags); 6109 for (order = 0; order < MAX_ORDER; order++) { 6110 printk(KERN_CONT "%lu*%lukB ", 6111 nr[order], K(1UL) << order); 6112 if (nr[order]) 6113 show_migration_types(types[order]); 6114 } 6115 printk(KERN_CONT "= %lukB\n", K(total)); 6116 } 6117 6118 hugetlb_show_meminfo(); 6119 6120 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 6121 6122 show_swap_cache_info(); 6123 } 6124 6125 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 6126 { 6127 zoneref->zone = zone; 6128 zoneref->zone_idx = zone_idx(zone); 6129 } 6130 6131 /* 6132 * Builds allocation fallback zone lists. 6133 * 6134 * Add all populated zones of a node to the zonelist. 6135 */ 6136 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 6137 { 6138 struct zone *zone; 6139 enum zone_type zone_type = MAX_NR_ZONES; 6140 int nr_zones = 0; 6141 6142 do { 6143 zone_type--; 6144 zone = pgdat->node_zones + zone_type; 6145 if (populated_zone(zone)) { 6146 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 6147 check_highest_zone(zone_type); 6148 } 6149 } while (zone_type); 6150 6151 return nr_zones; 6152 } 6153 6154 #ifdef CONFIG_NUMA 6155 6156 static int __parse_numa_zonelist_order(char *s) 6157 { 6158 /* 6159 * We used to support different zonelists modes but they turned 6160 * out to be just not useful. Let's keep the warning in place 6161 * if somebody still use the cmd line parameter so that we do 6162 * not fail it silently 6163 */ 6164 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 6165 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 6166 return -EINVAL; 6167 } 6168 return 0; 6169 } 6170 6171 char numa_zonelist_order[] = "Node"; 6172 6173 /* 6174 * sysctl handler for numa_zonelist_order 6175 */ 6176 int numa_zonelist_order_handler(struct ctl_table *table, int write, 6177 void *buffer, size_t *length, loff_t *ppos) 6178 { 6179 if (write) 6180 return __parse_numa_zonelist_order(buffer); 6181 return proc_dostring(table, write, buffer, length, ppos); 6182 } 6183 6184 6185 static int node_load[MAX_NUMNODES]; 6186 6187 /** 6188 * find_next_best_node - find the next node that should appear in a given node's fallback list 6189 * @node: node whose fallback list we're appending 6190 * @used_node_mask: nodemask_t of already used nodes 6191 * 6192 * We use a number of factors to determine which is the next node that should 6193 * appear on a given node's fallback list. The node should not have appeared 6194 * already in @node's fallback list, and it should be the next closest node 6195 * according to the distance array (which contains arbitrary distance values 6196 * from each node to each node in the system), and should also prefer nodes 6197 * with no CPUs, since presumably they'll have very little allocation pressure 6198 * on them otherwise. 6199 * 6200 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 6201 */ 6202 int find_next_best_node(int node, nodemask_t *used_node_mask) 6203 { 6204 int n, val; 6205 int min_val = INT_MAX; 6206 int best_node = NUMA_NO_NODE; 6207 6208 /* Use the local node if we haven't already */ 6209 if (!node_isset(node, *used_node_mask)) { 6210 node_set(node, *used_node_mask); 6211 return node; 6212 } 6213 6214 for_each_node_state(n, N_MEMORY) { 6215 6216 /* Don't want a node to appear more than once */ 6217 if (node_isset(n, *used_node_mask)) 6218 continue; 6219 6220 /* Use the distance array to find the distance */ 6221 val = node_distance(node, n); 6222 6223 /* Penalize nodes under us ("prefer the next node") */ 6224 val += (n < node); 6225 6226 /* Give preference to headless and unused nodes */ 6227 if (!cpumask_empty(cpumask_of_node(n))) 6228 val += PENALTY_FOR_NODE_WITH_CPUS; 6229 6230 /* Slight preference for less loaded node */ 6231 val *= MAX_NUMNODES; 6232 val += node_load[n]; 6233 6234 if (val < min_val) { 6235 min_val = val; 6236 best_node = n; 6237 } 6238 } 6239 6240 if (best_node >= 0) 6241 node_set(best_node, *used_node_mask); 6242 6243 return best_node; 6244 } 6245 6246 6247 /* 6248 * Build zonelists ordered by node and zones within node. 6249 * This results in maximum locality--normal zone overflows into local 6250 * DMA zone, if any--but risks exhausting DMA zone. 6251 */ 6252 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 6253 unsigned nr_nodes) 6254 { 6255 struct zoneref *zonerefs; 6256 int i; 6257 6258 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 6259 6260 for (i = 0; i < nr_nodes; i++) { 6261 int nr_zones; 6262 6263 pg_data_t *node = NODE_DATA(node_order[i]); 6264 6265 nr_zones = build_zonerefs_node(node, zonerefs); 6266 zonerefs += nr_zones; 6267 } 6268 zonerefs->zone = NULL; 6269 zonerefs->zone_idx = 0; 6270 } 6271 6272 /* 6273 * Build gfp_thisnode zonelists 6274 */ 6275 static void build_thisnode_zonelists(pg_data_t *pgdat) 6276 { 6277 struct zoneref *zonerefs; 6278 int nr_zones; 6279 6280 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 6281 nr_zones = build_zonerefs_node(pgdat, zonerefs); 6282 zonerefs += nr_zones; 6283 zonerefs->zone = NULL; 6284 zonerefs->zone_idx = 0; 6285 } 6286 6287 /* 6288 * Build zonelists ordered by zone and nodes within zones. 6289 * This results in conserving DMA zone[s] until all Normal memory is 6290 * exhausted, but results in overflowing to remote node while memory 6291 * may still exist in local DMA zone. 6292 */ 6293 6294 static void build_zonelists(pg_data_t *pgdat) 6295 { 6296 static int node_order[MAX_NUMNODES]; 6297 int node, nr_nodes = 0; 6298 nodemask_t used_mask = NODE_MASK_NONE; 6299 int local_node, prev_node; 6300 6301 /* NUMA-aware ordering of nodes */ 6302 local_node = pgdat->node_id; 6303 prev_node = local_node; 6304 6305 memset(node_order, 0, sizeof(node_order)); 6306 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 6307 /* 6308 * We don't want to pressure a particular node. 6309 * So adding penalty to the first node in same 6310 * distance group to make it round-robin. 6311 */ 6312 if (node_distance(local_node, node) != 6313 node_distance(local_node, prev_node)) 6314 node_load[node] += 1; 6315 6316 node_order[nr_nodes++] = node; 6317 prev_node = node; 6318 } 6319 6320 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 6321 build_thisnode_zonelists(pgdat); 6322 pr_info("Fallback order for Node %d: ", local_node); 6323 for (node = 0; node < nr_nodes; node++) 6324 pr_cont("%d ", node_order[node]); 6325 pr_cont("\n"); 6326 } 6327 6328 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 6329 /* 6330 * Return node id of node used for "local" allocations. 6331 * I.e., first node id of first zone in arg node's generic zonelist. 6332 * Used for initializing percpu 'numa_mem', which is used primarily 6333 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 6334 */ 6335 int local_memory_node(int node) 6336 { 6337 struct zoneref *z; 6338 6339 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 6340 gfp_zone(GFP_KERNEL), 6341 NULL); 6342 return zone_to_nid(z->zone); 6343 } 6344 #endif 6345 6346 static void setup_min_unmapped_ratio(void); 6347 static void setup_min_slab_ratio(void); 6348 #else /* CONFIG_NUMA */ 6349 6350 static void build_zonelists(pg_data_t *pgdat) 6351 { 6352 int node, local_node; 6353 struct zoneref *zonerefs; 6354 int nr_zones; 6355 6356 local_node = pgdat->node_id; 6357 6358 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 6359 nr_zones = build_zonerefs_node(pgdat, zonerefs); 6360 zonerefs += nr_zones; 6361 6362 /* 6363 * Now we build the zonelist so that it contains the zones 6364 * of all the other nodes. 6365 * We don't want to pressure a particular node, so when 6366 * building the zones for node N, we make sure that the 6367 * zones coming right after the local ones are those from 6368 * node N+1 (modulo N) 6369 */ 6370 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 6371 if (!node_online(node)) 6372 continue; 6373 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 6374 zonerefs += nr_zones; 6375 } 6376 for (node = 0; node < local_node; node++) { 6377 if (!node_online(node)) 6378 continue; 6379 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 6380 zonerefs += nr_zones; 6381 } 6382 6383 zonerefs->zone = NULL; 6384 zonerefs->zone_idx = 0; 6385 } 6386 6387 #endif /* CONFIG_NUMA */ 6388 6389 /* 6390 * Boot pageset table. One per cpu which is going to be used for all 6391 * zones and all nodes. The parameters will be set in such a way 6392 * that an item put on a list will immediately be handed over to 6393 * the buddy list. This is safe since pageset manipulation is done 6394 * with interrupts disabled. 6395 * 6396 * The boot_pagesets must be kept even after bootup is complete for 6397 * unused processors and/or zones. They do play a role for bootstrapping 6398 * hotplugged processors. 6399 * 6400 * zoneinfo_show() and maybe other functions do 6401 * not check if the processor is online before following the pageset pointer. 6402 * Other parts of the kernel may not check if the zone is available. 6403 */ 6404 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); 6405 /* These effectively disable the pcplists in the boot pageset completely */ 6406 #define BOOT_PAGESET_HIGH 0 6407 #define BOOT_PAGESET_BATCH 1 6408 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); 6409 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); 6410 DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 6411 6412 static void __build_all_zonelists(void *data) 6413 { 6414 int nid; 6415 int __maybe_unused cpu; 6416 pg_data_t *self = data; 6417 static DEFINE_SPINLOCK(lock); 6418 6419 spin_lock(&lock); 6420 6421 #ifdef CONFIG_NUMA 6422 memset(node_load, 0, sizeof(node_load)); 6423 #endif 6424 6425 /* 6426 * This node is hotadded and no memory is yet present. So just 6427 * building zonelists is fine - no need to touch other nodes. 6428 */ 6429 if (self && !node_online(self->node_id)) { 6430 build_zonelists(self); 6431 } else { 6432 /* 6433 * All possible nodes have pgdat preallocated 6434 * in free_area_init 6435 */ 6436 for_each_node(nid) { 6437 pg_data_t *pgdat = NODE_DATA(nid); 6438 6439 build_zonelists(pgdat); 6440 } 6441 6442 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 6443 /* 6444 * We now know the "local memory node" for each node-- 6445 * i.e., the node of the first zone in the generic zonelist. 6446 * Set up numa_mem percpu variable for on-line cpus. During 6447 * boot, only the boot cpu should be on-line; we'll init the 6448 * secondary cpus' numa_mem as they come on-line. During 6449 * node/memory hotplug, we'll fixup all on-line cpus. 6450 */ 6451 for_each_online_cpu(cpu) 6452 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 6453 #endif 6454 } 6455 6456 spin_unlock(&lock); 6457 } 6458 6459 static noinline void __init 6460 build_all_zonelists_init(void) 6461 { 6462 int cpu; 6463 6464 __build_all_zonelists(NULL); 6465 6466 /* 6467 * Initialize the boot_pagesets that are going to be used 6468 * for bootstrapping processors. The real pagesets for 6469 * each zone will be allocated later when the per cpu 6470 * allocator is available. 6471 * 6472 * boot_pagesets are used also for bootstrapping offline 6473 * cpus if the system is already booted because the pagesets 6474 * are needed to initialize allocators on a specific cpu too. 6475 * F.e. the percpu allocator needs the page allocator which 6476 * needs the percpu allocator in order to allocate its pagesets 6477 * (a chicken-egg dilemma). 6478 */ 6479 for_each_possible_cpu(cpu) 6480 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); 6481 6482 mminit_verify_zonelist(); 6483 cpuset_init_current_mems_allowed(); 6484 } 6485 6486 /* 6487 * unless system_state == SYSTEM_BOOTING. 6488 * 6489 * __ref due to call of __init annotated helper build_all_zonelists_init 6490 * [protected by SYSTEM_BOOTING]. 6491 */ 6492 void __ref build_all_zonelists(pg_data_t *pgdat) 6493 { 6494 unsigned long vm_total_pages; 6495 6496 if (system_state == SYSTEM_BOOTING) { 6497 build_all_zonelists_init(); 6498 } else { 6499 __build_all_zonelists(pgdat); 6500 /* cpuset refresh routine should be here */ 6501 } 6502 /* Get the number of free pages beyond high watermark in all zones. */ 6503 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 6504 /* 6505 * Disable grouping by mobility if the number of pages in the 6506 * system is too low to allow the mechanism to work. It would be 6507 * more accurate, but expensive to check per-zone. This check is 6508 * made on memory-hotadd so a system can start with mobility 6509 * disabled and enable it later 6510 */ 6511 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 6512 page_group_by_mobility_disabled = 1; 6513 else 6514 page_group_by_mobility_disabled = 0; 6515 6516 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 6517 nr_online_nodes, 6518 page_group_by_mobility_disabled ? "off" : "on", 6519 vm_total_pages); 6520 #ifdef CONFIG_NUMA 6521 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 6522 #endif 6523 } 6524 6525 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 6526 static bool __meminit 6527 overlap_memmap_init(unsigned long zone, unsigned long *pfn) 6528 { 6529 static struct memblock_region *r; 6530 6531 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 6532 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 6533 for_each_mem_region(r) { 6534 if (*pfn < memblock_region_memory_end_pfn(r)) 6535 break; 6536 } 6537 } 6538 if (*pfn >= memblock_region_memory_base_pfn(r) && 6539 memblock_is_mirror(r)) { 6540 *pfn = memblock_region_memory_end_pfn(r); 6541 return true; 6542 } 6543 } 6544 return false; 6545 } 6546 6547 /* 6548 * Initially all pages are reserved - free ones are freed 6549 * up by memblock_free_all() once the early boot process is 6550 * done. Non-atomic initialization, single-pass. 6551 * 6552 * All aligned pageblocks are initialized to the specified migratetype 6553 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related 6554 * zone stats (e.g., nr_isolate_pageblock) are touched. 6555 */ 6556 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone, 6557 unsigned long start_pfn, unsigned long zone_end_pfn, 6558 enum meminit_context context, 6559 struct vmem_altmap *altmap, int migratetype) 6560 { 6561 unsigned long pfn, end_pfn = start_pfn + size; 6562 struct page *page; 6563 6564 if (highest_memmap_pfn < end_pfn - 1) 6565 highest_memmap_pfn = end_pfn - 1; 6566 6567 #ifdef CONFIG_ZONE_DEVICE 6568 /* 6569 * Honor reservation requested by the driver for this ZONE_DEVICE 6570 * memory. We limit the total number of pages to initialize to just 6571 * those that might contain the memory mapping. We will defer the 6572 * ZONE_DEVICE page initialization until after we have released 6573 * the hotplug lock. 6574 */ 6575 if (zone == ZONE_DEVICE) { 6576 if (!altmap) 6577 return; 6578 6579 if (start_pfn == altmap->base_pfn) 6580 start_pfn += altmap->reserve; 6581 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6582 } 6583 #endif 6584 6585 for (pfn = start_pfn; pfn < end_pfn; ) { 6586 /* 6587 * There can be holes in boot-time mem_map[]s handed to this 6588 * function. They do not exist on hotplugged memory. 6589 */ 6590 if (context == MEMINIT_EARLY) { 6591 if (overlap_memmap_init(zone, &pfn)) 6592 continue; 6593 if (defer_init(nid, pfn, zone_end_pfn)) 6594 break; 6595 } 6596 6597 page = pfn_to_page(pfn); 6598 __init_single_page(page, pfn, zone, nid); 6599 if (context == MEMINIT_HOTPLUG) 6600 __SetPageReserved(page); 6601 6602 /* 6603 * Usually, we want to mark the pageblock MIGRATE_MOVABLE, 6604 * such that unmovable allocations won't be scattered all 6605 * over the place during system boot. 6606 */ 6607 if (IS_ALIGNED(pfn, pageblock_nr_pages)) { 6608 set_pageblock_migratetype(page, migratetype); 6609 cond_resched(); 6610 } 6611 pfn++; 6612 } 6613 } 6614 6615 #ifdef CONFIG_ZONE_DEVICE 6616 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn, 6617 unsigned long zone_idx, int nid, 6618 struct dev_pagemap *pgmap) 6619 { 6620 6621 __init_single_page(page, pfn, zone_idx, nid); 6622 6623 /* 6624 * Mark page reserved as it will need to wait for onlining 6625 * phase for it to be fully associated with a zone. 6626 * 6627 * We can use the non-atomic __set_bit operation for setting 6628 * the flag as we are still initializing the pages. 6629 */ 6630 __SetPageReserved(page); 6631 6632 /* 6633 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer 6634 * and zone_device_data. It is a bug if a ZONE_DEVICE page is 6635 * ever freed or placed on a driver-private list. 6636 */ 6637 page->pgmap = pgmap; 6638 page->zone_device_data = NULL; 6639 6640 /* 6641 * Mark the block movable so that blocks are reserved for 6642 * movable at startup. This will force kernel allocations 6643 * to reserve their blocks rather than leaking throughout 6644 * the address space during boot when many long-lived 6645 * kernel allocations are made. 6646 * 6647 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap 6648 * because this is done early in section_activate() 6649 */ 6650 if (IS_ALIGNED(pfn, pageblock_nr_pages)) { 6651 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 6652 cond_resched(); 6653 } 6654 } 6655 6656 /* 6657 * With compound page geometry and when struct pages are stored in ram most 6658 * tail pages are reused. Consequently, the amount of unique struct pages to 6659 * initialize is a lot smaller that the total amount of struct pages being 6660 * mapped. This is a paired / mild layering violation with explicit knowledge 6661 * of how the sparse_vmemmap internals handle compound pages in the lack 6662 * of an altmap. See vmemmap_populate_compound_pages(). 6663 */ 6664 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap, 6665 unsigned long nr_pages) 6666 { 6667 return is_power_of_2(sizeof(struct page)) && 6668 !altmap ? 2 * (PAGE_SIZE / sizeof(struct page)) : nr_pages; 6669 } 6670 6671 static void __ref memmap_init_compound(struct page *head, 6672 unsigned long head_pfn, 6673 unsigned long zone_idx, int nid, 6674 struct dev_pagemap *pgmap, 6675 unsigned long nr_pages) 6676 { 6677 unsigned long pfn, end_pfn = head_pfn + nr_pages; 6678 unsigned int order = pgmap->vmemmap_shift; 6679 6680 __SetPageHead(head); 6681 for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) { 6682 struct page *page = pfn_to_page(pfn); 6683 6684 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); 6685 prep_compound_tail(head, pfn - head_pfn); 6686 set_page_count(page, 0); 6687 6688 /* 6689 * The first tail page stores compound_mapcount_ptr() and 6690 * compound_order() and the second tail page stores 6691 * compound_pincount_ptr(). Call prep_compound_head() after 6692 * the first and second tail pages have been initialized to 6693 * not have the data overwritten. 6694 */ 6695 if (pfn == head_pfn + 2) 6696 prep_compound_head(head, order); 6697 } 6698 } 6699 6700 void __ref memmap_init_zone_device(struct zone *zone, 6701 unsigned long start_pfn, 6702 unsigned long nr_pages, 6703 struct dev_pagemap *pgmap) 6704 { 6705 unsigned long pfn, end_pfn = start_pfn + nr_pages; 6706 struct pglist_data *pgdat = zone->zone_pgdat; 6707 struct vmem_altmap *altmap = pgmap_altmap(pgmap); 6708 unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap); 6709 unsigned long zone_idx = zone_idx(zone); 6710 unsigned long start = jiffies; 6711 int nid = pgdat->node_id; 6712 6713 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE)) 6714 return; 6715 6716 /* 6717 * The call to memmap_init should have already taken care 6718 * of the pages reserved for the memmap, so we can just jump to 6719 * the end of that region and start processing the device pages. 6720 */ 6721 if (altmap) { 6722 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6723 nr_pages = end_pfn - start_pfn; 6724 } 6725 6726 for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) { 6727 struct page *page = pfn_to_page(pfn); 6728 6729 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); 6730 6731 if (pfns_per_compound == 1) 6732 continue; 6733 6734 memmap_init_compound(page, pfn, zone_idx, nid, pgmap, 6735 compound_nr_pages(altmap, pfns_per_compound)); 6736 } 6737 6738 pr_info("%s initialised %lu pages in %ums\n", __func__, 6739 nr_pages, jiffies_to_msecs(jiffies - start)); 6740 } 6741 6742 #endif 6743 static void __meminit zone_init_free_lists(struct zone *zone) 6744 { 6745 unsigned int order, t; 6746 for_each_migratetype_order(order, t) { 6747 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 6748 zone->free_area[order].nr_free = 0; 6749 } 6750 } 6751 6752 /* 6753 * Only struct pages that correspond to ranges defined by memblock.memory 6754 * are zeroed and initialized by going through __init_single_page() during 6755 * memmap_init_zone_range(). 6756 * 6757 * But, there could be struct pages that correspond to holes in 6758 * memblock.memory. This can happen because of the following reasons: 6759 * - physical memory bank size is not necessarily the exact multiple of the 6760 * arbitrary section size 6761 * - early reserved memory may not be listed in memblock.memory 6762 * - memory layouts defined with memmap= kernel parameter may not align 6763 * nicely with memmap sections 6764 * 6765 * Explicitly initialize those struct pages so that: 6766 * - PG_Reserved is set 6767 * - zone and node links point to zone and node that span the page if the 6768 * hole is in the middle of a zone 6769 * - zone and node links point to adjacent zone/node if the hole falls on 6770 * the zone boundary; the pages in such holes will be prepended to the 6771 * zone/node above the hole except for the trailing pages in the last 6772 * section that will be appended to the zone/node below. 6773 */ 6774 static void __init init_unavailable_range(unsigned long spfn, 6775 unsigned long epfn, 6776 int zone, int node) 6777 { 6778 unsigned long pfn; 6779 u64 pgcnt = 0; 6780 6781 for (pfn = spfn; pfn < epfn; pfn++) { 6782 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) { 6783 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages) 6784 + pageblock_nr_pages - 1; 6785 continue; 6786 } 6787 __init_single_page(pfn_to_page(pfn), pfn, zone, node); 6788 __SetPageReserved(pfn_to_page(pfn)); 6789 pgcnt++; 6790 } 6791 6792 if (pgcnt) 6793 pr_info("On node %d, zone %s: %lld pages in unavailable ranges", 6794 node, zone_names[zone], pgcnt); 6795 } 6796 6797 static void __init memmap_init_zone_range(struct zone *zone, 6798 unsigned long start_pfn, 6799 unsigned long end_pfn, 6800 unsigned long *hole_pfn) 6801 { 6802 unsigned long zone_start_pfn = zone->zone_start_pfn; 6803 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages; 6804 int nid = zone_to_nid(zone), zone_id = zone_idx(zone); 6805 6806 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn); 6807 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn); 6808 6809 if (start_pfn >= end_pfn) 6810 return; 6811 6812 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn, 6813 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE); 6814 6815 if (*hole_pfn < start_pfn) 6816 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid); 6817 6818 *hole_pfn = end_pfn; 6819 } 6820 6821 static void __init memmap_init(void) 6822 { 6823 unsigned long start_pfn, end_pfn; 6824 unsigned long hole_pfn = 0; 6825 int i, j, zone_id = 0, nid; 6826 6827 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 6828 struct pglist_data *node = NODE_DATA(nid); 6829 6830 for (j = 0; j < MAX_NR_ZONES; j++) { 6831 struct zone *zone = node->node_zones + j; 6832 6833 if (!populated_zone(zone)) 6834 continue; 6835 6836 memmap_init_zone_range(zone, start_pfn, end_pfn, 6837 &hole_pfn); 6838 zone_id = j; 6839 } 6840 } 6841 6842 #ifdef CONFIG_SPARSEMEM 6843 /* 6844 * Initialize the memory map for hole in the range [memory_end, 6845 * section_end]. 6846 * Append the pages in this hole to the highest zone in the last 6847 * node. 6848 * The call to init_unavailable_range() is outside the ifdef to 6849 * silence the compiler warining about zone_id set but not used; 6850 * for FLATMEM it is a nop anyway 6851 */ 6852 end_pfn = round_up(end_pfn, PAGES_PER_SECTION); 6853 if (hole_pfn < end_pfn) 6854 #endif 6855 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid); 6856 } 6857 6858 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align, 6859 phys_addr_t min_addr, int nid, bool exact_nid) 6860 { 6861 void *ptr; 6862 6863 if (exact_nid) 6864 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr, 6865 MEMBLOCK_ALLOC_ACCESSIBLE, 6866 nid); 6867 else 6868 ptr = memblock_alloc_try_nid_raw(size, align, min_addr, 6869 MEMBLOCK_ALLOC_ACCESSIBLE, 6870 nid); 6871 6872 if (ptr && size > 0) 6873 page_init_poison(ptr, size); 6874 6875 return ptr; 6876 } 6877 6878 static int zone_batchsize(struct zone *zone) 6879 { 6880 #ifdef CONFIG_MMU 6881 int batch; 6882 6883 /* 6884 * The number of pages to batch allocate is either ~0.1% 6885 * of the zone or 1MB, whichever is smaller. The batch 6886 * size is striking a balance between allocation latency 6887 * and zone lock contention. 6888 */ 6889 batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE); 6890 batch /= 4; /* We effectively *= 4 below */ 6891 if (batch < 1) 6892 batch = 1; 6893 6894 /* 6895 * Clamp the batch to a 2^n - 1 value. Having a power 6896 * of 2 value was found to be more likely to have 6897 * suboptimal cache aliasing properties in some cases. 6898 * 6899 * For example if 2 tasks are alternately allocating 6900 * batches of pages, one task can end up with a lot 6901 * of pages of one half of the possible page colors 6902 * and the other with pages of the other colors. 6903 */ 6904 batch = rounddown_pow_of_two(batch + batch/2) - 1; 6905 6906 return batch; 6907 6908 #else 6909 /* The deferral and batching of frees should be suppressed under NOMMU 6910 * conditions. 6911 * 6912 * The problem is that NOMMU needs to be able to allocate large chunks 6913 * of contiguous memory as there's no hardware page translation to 6914 * assemble apparent contiguous memory from discontiguous pages. 6915 * 6916 * Queueing large contiguous runs of pages for batching, however, 6917 * causes the pages to actually be freed in smaller chunks. As there 6918 * can be a significant delay between the individual batches being 6919 * recycled, this leads to the once large chunks of space being 6920 * fragmented and becoming unavailable for high-order allocations. 6921 */ 6922 return 0; 6923 #endif 6924 } 6925 6926 static int zone_highsize(struct zone *zone, int batch, int cpu_online) 6927 { 6928 #ifdef CONFIG_MMU 6929 int high; 6930 int nr_split_cpus; 6931 unsigned long total_pages; 6932 6933 if (!percpu_pagelist_high_fraction) { 6934 /* 6935 * By default, the high value of the pcp is based on the zone 6936 * low watermark so that if they are full then background 6937 * reclaim will not be started prematurely. 6938 */ 6939 total_pages = low_wmark_pages(zone); 6940 } else { 6941 /* 6942 * If percpu_pagelist_high_fraction is configured, the high 6943 * value is based on a fraction of the managed pages in the 6944 * zone. 6945 */ 6946 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction; 6947 } 6948 6949 /* 6950 * Split the high value across all online CPUs local to the zone. Note 6951 * that early in boot that CPUs may not be online yet and that during 6952 * CPU hotplug that the cpumask is not yet updated when a CPU is being 6953 * onlined. For memory nodes that have no CPUs, split pcp->high across 6954 * all online CPUs to mitigate the risk that reclaim is triggered 6955 * prematurely due to pages stored on pcp lists. 6956 */ 6957 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; 6958 if (!nr_split_cpus) 6959 nr_split_cpus = num_online_cpus(); 6960 high = total_pages / nr_split_cpus; 6961 6962 /* 6963 * Ensure high is at least batch*4. The multiple is based on the 6964 * historical relationship between high and batch. 6965 */ 6966 high = max(high, batch << 2); 6967 6968 return high; 6969 #else 6970 return 0; 6971 #endif 6972 } 6973 6974 /* 6975 * pcp->high and pcp->batch values are related and generally batch is lower 6976 * than high. They are also related to pcp->count such that count is lower 6977 * than high, and as soon as it reaches high, the pcplist is flushed. 6978 * 6979 * However, guaranteeing these relations at all times would require e.g. write 6980 * barriers here but also careful usage of read barriers at the read side, and 6981 * thus be prone to error and bad for performance. Thus the update only prevents 6982 * store tearing. Any new users of pcp->batch and pcp->high should ensure they 6983 * can cope with those fields changing asynchronously, and fully trust only the 6984 * pcp->count field on the local CPU with interrupts disabled. 6985 * 6986 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 6987 * outside of boot time (or some other assurance that no concurrent updaters 6988 * exist). 6989 */ 6990 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 6991 unsigned long batch) 6992 { 6993 WRITE_ONCE(pcp->batch, batch); 6994 WRITE_ONCE(pcp->high, high); 6995 } 6996 6997 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) 6998 { 6999 int pindex; 7000 7001 memset(pcp, 0, sizeof(*pcp)); 7002 memset(pzstats, 0, sizeof(*pzstats)); 7003 7004 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) 7005 INIT_LIST_HEAD(&pcp->lists[pindex]); 7006 7007 /* 7008 * Set batch and high values safe for a boot pageset. A true percpu 7009 * pageset's initialization will update them subsequently. Here we don't 7010 * need to be as careful as pageset_update() as nobody can access the 7011 * pageset yet. 7012 */ 7013 pcp->high = BOOT_PAGESET_HIGH; 7014 pcp->batch = BOOT_PAGESET_BATCH; 7015 pcp->free_factor = 0; 7016 } 7017 7018 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high, 7019 unsigned long batch) 7020 { 7021 struct per_cpu_pages *pcp; 7022 int cpu; 7023 7024 for_each_possible_cpu(cpu) { 7025 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 7026 pageset_update(pcp, high, batch); 7027 } 7028 } 7029 7030 /* 7031 * Calculate and set new high and batch values for all per-cpu pagesets of a 7032 * zone based on the zone's size. 7033 */ 7034 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) 7035 { 7036 int new_high, new_batch; 7037 7038 new_batch = max(1, zone_batchsize(zone)); 7039 new_high = zone_highsize(zone, new_batch, cpu_online); 7040 7041 if (zone->pageset_high == new_high && 7042 zone->pageset_batch == new_batch) 7043 return; 7044 7045 zone->pageset_high = new_high; 7046 zone->pageset_batch = new_batch; 7047 7048 __zone_set_pageset_high_and_batch(zone, new_high, new_batch); 7049 } 7050 7051 void __meminit setup_zone_pageset(struct zone *zone) 7052 { 7053 int cpu; 7054 7055 /* Size may be 0 on !SMP && !NUMA */ 7056 if (sizeof(struct per_cpu_zonestat) > 0) 7057 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); 7058 7059 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); 7060 for_each_possible_cpu(cpu) { 7061 struct per_cpu_pages *pcp; 7062 struct per_cpu_zonestat *pzstats; 7063 7064 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 7065 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 7066 per_cpu_pages_init(pcp, pzstats); 7067 } 7068 7069 zone_set_pageset_high_and_batch(zone, 0); 7070 } 7071 7072 /* 7073 * Allocate per cpu pagesets and initialize them. 7074 * Before this call only boot pagesets were available. 7075 */ 7076 void __init setup_per_cpu_pageset(void) 7077 { 7078 struct pglist_data *pgdat; 7079 struct zone *zone; 7080 int __maybe_unused cpu; 7081 7082 for_each_populated_zone(zone) 7083 setup_zone_pageset(zone); 7084 7085 #ifdef CONFIG_NUMA 7086 /* 7087 * Unpopulated zones continue using the boot pagesets. 7088 * The numa stats for these pagesets need to be reset. 7089 * Otherwise, they will end up skewing the stats of 7090 * the nodes these zones are associated with. 7091 */ 7092 for_each_possible_cpu(cpu) { 7093 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); 7094 memset(pzstats->vm_numa_event, 0, 7095 sizeof(pzstats->vm_numa_event)); 7096 } 7097 #endif 7098 7099 for_each_online_pgdat(pgdat) 7100 pgdat->per_cpu_nodestats = 7101 alloc_percpu(struct per_cpu_nodestat); 7102 } 7103 7104 static __meminit void zone_pcp_init(struct zone *zone) 7105 { 7106 /* 7107 * per cpu subsystem is not up at this point. The following code 7108 * relies on the ability of the linker to provide the 7109 * offset of a (static) per cpu variable into the per cpu area. 7110 */ 7111 zone->per_cpu_pageset = &boot_pageset; 7112 zone->per_cpu_zonestats = &boot_zonestats; 7113 zone->pageset_high = BOOT_PAGESET_HIGH; 7114 zone->pageset_batch = BOOT_PAGESET_BATCH; 7115 7116 if (populated_zone(zone)) 7117 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, 7118 zone->present_pages, zone_batchsize(zone)); 7119 } 7120 7121 void __meminit init_currently_empty_zone(struct zone *zone, 7122 unsigned long zone_start_pfn, 7123 unsigned long size) 7124 { 7125 struct pglist_data *pgdat = zone->zone_pgdat; 7126 int zone_idx = zone_idx(zone) + 1; 7127 7128 if (zone_idx > pgdat->nr_zones) 7129 pgdat->nr_zones = zone_idx; 7130 7131 zone->zone_start_pfn = zone_start_pfn; 7132 7133 mminit_dprintk(MMINIT_TRACE, "memmap_init", 7134 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 7135 pgdat->node_id, 7136 (unsigned long)zone_idx(zone), 7137 zone_start_pfn, (zone_start_pfn + size)); 7138 7139 zone_init_free_lists(zone); 7140 zone->initialized = 1; 7141 } 7142 7143 /** 7144 * get_pfn_range_for_nid - Return the start and end page frames for a node 7145 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 7146 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 7147 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 7148 * 7149 * It returns the start and end page frame of a node based on information 7150 * provided by memblock_set_node(). If called for a node 7151 * with no available memory, a warning is printed and the start and end 7152 * PFNs will be 0. 7153 */ 7154 void __init get_pfn_range_for_nid(unsigned int nid, 7155 unsigned long *start_pfn, unsigned long *end_pfn) 7156 { 7157 unsigned long this_start_pfn, this_end_pfn; 7158 int i; 7159 7160 *start_pfn = -1UL; 7161 *end_pfn = 0; 7162 7163 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 7164 *start_pfn = min(*start_pfn, this_start_pfn); 7165 *end_pfn = max(*end_pfn, this_end_pfn); 7166 } 7167 7168 if (*start_pfn == -1UL) 7169 *start_pfn = 0; 7170 } 7171 7172 /* 7173 * This finds a zone that can be used for ZONE_MOVABLE pages. The 7174 * assumption is made that zones within a node are ordered in monotonic 7175 * increasing memory addresses so that the "highest" populated zone is used 7176 */ 7177 static void __init find_usable_zone_for_movable(void) 7178 { 7179 int zone_index; 7180 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 7181 if (zone_index == ZONE_MOVABLE) 7182 continue; 7183 7184 if (arch_zone_highest_possible_pfn[zone_index] > 7185 arch_zone_lowest_possible_pfn[zone_index]) 7186 break; 7187 } 7188 7189 VM_BUG_ON(zone_index == -1); 7190 movable_zone = zone_index; 7191 } 7192 7193 /* 7194 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 7195 * because it is sized independent of architecture. Unlike the other zones, 7196 * the starting point for ZONE_MOVABLE is not fixed. It may be different 7197 * in each node depending on the size of each node and how evenly kernelcore 7198 * is distributed. This helper function adjusts the zone ranges 7199 * provided by the architecture for a given node by using the end of the 7200 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 7201 * zones within a node are in order of monotonic increases memory addresses 7202 */ 7203 static void __init adjust_zone_range_for_zone_movable(int nid, 7204 unsigned long zone_type, 7205 unsigned long node_start_pfn, 7206 unsigned long node_end_pfn, 7207 unsigned long *zone_start_pfn, 7208 unsigned long *zone_end_pfn) 7209 { 7210 /* Only adjust if ZONE_MOVABLE is on this node */ 7211 if (zone_movable_pfn[nid]) { 7212 /* Size ZONE_MOVABLE */ 7213 if (zone_type == ZONE_MOVABLE) { 7214 *zone_start_pfn = zone_movable_pfn[nid]; 7215 *zone_end_pfn = min(node_end_pfn, 7216 arch_zone_highest_possible_pfn[movable_zone]); 7217 7218 /* Adjust for ZONE_MOVABLE starting within this range */ 7219 } else if (!mirrored_kernelcore && 7220 *zone_start_pfn < zone_movable_pfn[nid] && 7221 *zone_end_pfn > zone_movable_pfn[nid]) { 7222 *zone_end_pfn = zone_movable_pfn[nid]; 7223 7224 /* Check if this whole range is within ZONE_MOVABLE */ 7225 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 7226 *zone_start_pfn = *zone_end_pfn; 7227 } 7228 } 7229 7230 /* 7231 * Return the number of pages a zone spans in a node, including holes 7232 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 7233 */ 7234 static unsigned long __init zone_spanned_pages_in_node(int nid, 7235 unsigned long zone_type, 7236 unsigned long node_start_pfn, 7237 unsigned long node_end_pfn, 7238 unsigned long *zone_start_pfn, 7239 unsigned long *zone_end_pfn) 7240 { 7241 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 7242 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 7243 /* When hotadd a new node from cpu_up(), the node should be empty */ 7244 if (!node_start_pfn && !node_end_pfn) 7245 return 0; 7246 7247 /* Get the start and end of the zone */ 7248 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 7249 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 7250 adjust_zone_range_for_zone_movable(nid, zone_type, 7251 node_start_pfn, node_end_pfn, 7252 zone_start_pfn, zone_end_pfn); 7253 7254 /* Check that this node has pages within the zone's required range */ 7255 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 7256 return 0; 7257 7258 /* Move the zone boundaries inside the node if necessary */ 7259 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 7260 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 7261 7262 /* Return the spanned pages */ 7263 return *zone_end_pfn - *zone_start_pfn; 7264 } 7265 7266 /* 7267 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 7268 * then all holes in the requested range will be accounted for. 7269 */ 7270 unsigned long __init __absent_pages_in_range(int nid, 7271 unsigned long range_start_pfn, 7272 unsigned long range_end_pfn) 7273 { 7274 unsigned long nr_absent = range_end_pfn - range_start_pfn; 7275 unsigned long start_pfn, end_pfn; 7276 int i; 7277 7278 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7279 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 7280 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 7281 nr_absent -= end_pfn - start_pfn; 7282 } 7283 return nr_absent; 7284 } 7285 7286 /** 7287 * absent_pages_in_range - Return number of page frames in holes within a range 7288 * @start_pfn: The start PFN to start searching for holes 7289 * @end_pfn: The end PFN to stop searching for holes 7290 * 7291 * Return: the number of pages frames in memory holes within a range. 7292 */ 7293 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 7294 unsigned long end_pfn) 7295 { 7296 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 7297 } 7298 7299 /* Return the number of page frames in holes in a zone on a node */ 7300 static unsigned long __init zone_absent_pages_in_node(int nid, 7301 unsigned long zone_type, 7302 unsigned long node_start_pfn, 7303 unsigned long node_end_pfn) 7304 { 7305 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 7306 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 7307 unsigned long zone_start_pfn, zone_end_pfn; 7308 unsigned long nr_absent; 7309 7310 /* When hotadd a new node from cpu_up(), the node should be empty */ 7311 if (!node_start_pfn && !node_end_pfn) 7312 return 0; 7313 7314 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 7315 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 7316 7317 adjust_zone_range_for_zone_movable(nid, zone_type, 7318 node_start_pfn, node_end_pfn, 7319 &zone_start_pfn, &zone_end_pfn); 7320 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 7321 7322 /* 7323 * ZONE_MOVABLE handling. 7324 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 7325 * and vice versa. 7326 */ 7327 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 7328 unsigned long start_pfn, end_pfn; 7329 struct memblock_region *r; 7330 7331 for_each_mem_region(r) { 7332 start_pfn = clamp(memblock_region_memory_base_pfn(r), 7333 zone_start_pfn, zone_end_pfn); 7334 end_pfn = clamp(memblock_region_memory_end_pfn(r), 7335 zone_start_pfn, zone_end_pfn); 7336 7337 if (zone_type == ZONE_MOVABLE && 7338 memblock_is_mirror(r)) 7339 nr_absent += end_pfn - start_pfn; 7340 7341 if (zone_type == ZONE_NORMAL && 7342 !memblock_is_mirror(r)) 7343 nr_absent += end_pfn - start_pfn; 7344 } 7345 } 7346 7347 return nr_absent; 7348 } 7349 7350 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 7351 unsigned long node_start_pfn, 7352 unsigned long node_end_pfn) 7353 { 7354 unsigned long realtotalpages = 0, totalpages = 0; 7355 enum zone_type i; 7356 7357 for (i = 0; i < MAX_NR_ZONES; i++) { 7358 struct zone *zone = pgdat->node_zones + i; 7359 unsigned long zone_start_pfn, zone_end_pfn; 7360 unsigned long spanned, absent; 7361 unsigned long size, real_size; 7362 7363 spanned = zone_spanned_pages_in_node(pgdat->node_id, i, 7364 node_start_pfn, 7365 node_end_pfn, 7366 &zone_start_pfn, 7367 &zone_end_pfn); 7368 absent = zone_absent_pages_in_node(pgdat->node_id, i, 7369 node_start_pfn, 7370 node_end_pfn); 7371 7372 size = spanned; 7373 real_size = size - absent; 7374 7375 if (size) 7376 zone->zone_start_pfn = zone_start_pfn; 7377 else 7378 zone->zone_start_pfn = 0; 7379 zone->spanned_pages = size; 7380 zone->present_pages = real_size; 7381 #if defined(CONFIG_MEMORY_HOTPLUG) 7382 zone->present_early_pages = real_size; 7383 #endif 7384 7385 totalpages += size; 7386 realtotalpages += real_size; 7387 } 7388 7389 pgdat->node_spanned_pages = totalpages; 7390 pgdat->node_present_pages = realtotalpages; 7391 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); 7392 } 7393 7394 #ifndef CONFIG_SPARSEMEM 7395 /* 7396 * Calculate the size of the zone->blockflags rounded to an unsigned long 7397 * Start by making sure zonesize is a multiple of pageblock_order by rounding 7398 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 7399 * round what is now in bits to nearest long in bits, then return it in 7400 * bytes. 7401 */ 7402 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 7403 { 7404 unsigned long usemapsize; 7405 7406 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 7407 usemapsize = roundup(zonesize, pageblock_nr_pages); 7408 usemapsize = usemapsize >> pageblock_order; 7409 usemapsize *= NR_PAGEBLOCK_BITS; 7410 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 7411 7412 return usemapsize / 8; 7413 } 7414 7415 static void __ref setup_usemap(struct zone *zone) 7416 { 7417 unsigned long usemapsize = usemap_size(zone->zone_start_pfn, 7418 zone->spanned_pages); 7419 zone->pageblock_flags = NULL; 7420 if (usemapsize) { 7421 zone->pageblock_flags = 7422 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, 7423 zone_to_nid(zone)); 7424 if (!zone->pageblock_flags) 7425 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", 7426 usemapsize, zone->name, zone_to_nid(zone)); 7427 } 7428 } 7429 #else 7430 static inline void setup_usemap(struct zone *zone) {} 7431 #endif /* CONFIG_SPARSEMEM */ 7432 7433 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 7434 7435 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 7436 void __init set_pageblock_order(void) 7437 { 7438 unsigned int order = MAX_ORDER - 1; 7439 7440 /* Check that pageblock_nr_pages has not already been setup */ 7441 if (pageblock_order) 7442 return; 7443 7444 /* Don't let pageblocks exceed the maximum allocation granularity. */ 7445 if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order) 7446 order = HUGETLB_PAGE_ORDER; 7447 7448 /* 7449 * Assume the largest contiguous order of interest is a huge page. 7450 * This value may be variable depending on boot parameters on IA64 and 7451 * powerpc. 7452 */ 7453 pageblock_order = order; 7454 } 7455 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 7456 7457 /* 7458 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 7459 * is unused as pageblock_order is set at compile-time. See 7460 * include/linux/pageblock-flags.h for the values of pageblock_order based on 7461 * the kernel config 7462 */ 7463 void __init set_pageblock_order(void) 7464 { 7465 } 7466 7467 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 7468 7469 static unsigned long __init calc_memmap_size(unsigned long spanned_pages, 7470 unsigned long present_pages) 7471 { 7472 unsigned long pages = spanned_pages; 7473 7474 /* 7475 * Provide a more accurate estimation if there are holes within 7476 * the zone and SPARSEMEM is in use. If there are holes within the 7477 * zone, each populated memory region may cost us one or two extra 7478 * memmap pages due to alignment because memmap pages for each 7479 * populated regions may not be naturally aligned on page boundary. 7480 * So the (present_pages >> 4) heuristic is a tradeoff for that. 7481 */ 7482 if (spanned_pages > present_pages + (present_pages >> 4) && 7483 IS_ENABLED(CONFIG_SPARSEMEM)) 7484 pages = present_pages; 7485 7486 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 7487 } 7488 7489 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 7490 static void pgdat_init_split_queue(struct pglist_data *pgdat) 7491 { 7492 struct deferred_split *ds_queue = &pgdat->deferred_split_queue; 7493 7494 spin_lock_init(&ds_queue->split_queue_lock); 7495 INIT_LIST_HEAD(&ds_queue->split_queue); 7496 ds_queue->split_queue_len = 0; 7497 } 7498 #else 7499 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 7500 #endif 7501 7502 #ifdef CONFIG_COMPACTION 7503 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 7504 { 7505 init_waitqueue_head(&pgdat->kcompactd_wait); 7506 } 7507 #else 7508 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 7509 #endif 7510 7511 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 7512 { 7513 int i; 7514 7515 pgdat_resize_init(pgdat); 7516 7517 pgdat_init_split_queue(pgdat); 7518 pgdat_init_kcompactd(pgdat); 7519 7520 init_waitqueue_head(&pgdat->kswapd_wait); 7521 init_waitqueue_head(&pgdat->pfmemalloc_wait); 7522 7523 for (i = 0; i < NR_VMSCAN_THROTTLE; i++) 7524 init_waitqueue_head(&pgdat->reclaim_wait[i]); 7525 7526 pgdat_page_ext_init(pgdat); 7527 lruvec_init(&pgdat->__lruvec); 7528 } 7529 7530 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 7531 unsigned long remaining_pages) 7532 { 7533 atomic_long_set(&zone->managed_pages, remaining_pages); 7534 zone_set_nid(zone, nid); 7535 zone->name = zone_names[idx]; 7536 zone->zone_pgdat = NODE_DATA(nid); 7537 spin_lock_init(&zone->lock); 7538 zone_seqlock_init(zone); 7539 zone_pcp_init(zone); 7540 } 7541 7542 /* 7543 * Set up the zone data structures 7544 * - init pgdat internals 7545 * - init all zones belonging to this node 7546 * 7547 * NOTE: this function is only called during memory hotplug 7548 */ 7549 #ifdef CONFIG_MEMORY_HOTPLUG 7550 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat) 7551 { 7552 int nid = pgdat->node_id; 7553 enum zone_type z; 7554 int cpu; 7555 7556 pgdat_init_internals(pgdat); 7557 7558 if (pgdat->per_cpu_nodestats == &boot_nodestats) 7559 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat); 7560 7561 /* 7562 * Reset the nr_zones, order and highest_zoneidx before reuse. 7563 * Note that kswapd will init kswapd_highest_zoneidx properly 7564 * when it starts in the near future. 7565 */ 7566 pgdat->nr_zones = 0; 7567 pgdat->kswapd_order = 0; 7568 pgdat->kswapd_highest_zoneidx = 0; 7569 pgdat->node_start_pfn = 0; 7570 for_each_online_cpu(cpu) { 7571 struct per_cpu_nodestat *p; 7572 7573 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); 7574 memset(p, 0, sizeof(*p)); 7575 } 7576 7577 for (z = 0; z < MAX_NR_ZONES; z++) 7578 zone_init_internals(&pgdat->node_zones[z], z, nid, 0); 7579 } 7580 #endif 7581 7582 /* 7583 * Set up the zone data structures: 7584 * - mark all pages reserved 7585 * - mark all memory queues empty 7586 * - clear the memory bitmaps 7587 * 7588 * NOTE: pgdat should get zeroed by caller. 7589 * NOTE: this function is only called during early init. 7590 */ 7591 static void __init free_area_init_core(struct pglist_data *pgdat) 7592 { 7593 enum zone_type j; 7594 int nid = pgdat->node_id; 7595 7596 pgdat_init_internals(pgdat); 7597 pgdat->per_cpu_nodestats = &boot_nodestats; 7598 7599 for (j = 0; j < MAX_NR_ZONES; j++) { 7600 struct zone *zone = pgdat->node_zones + j; 7601 unsigned long size, freesize, memmap_pages; 7602 7603 size = zone->spanned_pages; 7604 freesize = zone->present_pages; 7605 7606 /* 7607 * Adjust freesize so that it accounts for how much memory 7608 * is used by this zone for memmap. This affects the watermark 7609 * and per-cpu initialisations 7610 */ 7611 memmap_pages = calc_memmap_size(size, freesize); 7612 if (!is_highmem_idx(j)) { 7613 if (freesize >= memmap_pages) { 7614 freesize -= memmap_pages; 7615 if (memmap_pages) 7616 pr_debug(" %s zone: %lu pages used for memmap\n", 7617 zone_names[j], memmap_pages); 7618 } else 7619 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n", 7620 zone_names[j], memmap_pages, freesize); 7621 } 7622 7623 /* Account for reserved pages */ 7624 if (j == 0 && freesize > dma_reserve) { 7625 freesize -= dma_reserve; 7626 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve); 7627 } 7628 7629 if (!is_highmem_idx(j)) 7630 nr_kernel_pages += freesize; 7631 /* Charge for highmem memmap if there are enough kernel pages */ 7632 else if (nr_kernel_pages > memmap_pages * 2) 7633 nr_kernel_pages -= memmap_pages; 7634 nr_all_pages += freesize; 7635 7636 /* 7637 * Set an approximate value for lowmem here, it will be adjusted 7638 * when the bootmem allocator frees pages into the buddy system. 7639 * And all highmem pages will be managed by the buddy system. 7640 */ 7641 zone_init_internals(zone, j, nid, freesize); 7642 7643 if (!size) 7644 continue; 7645 7646 set_pageblock_order(); 7647 setup_usemap(zone); 7648 init_currently_empty_zone(zone, zone->zone_start_pfn, size); 7649 } 7650 } 7651 7652 #ifdef CONFIG_FLATMEM 7653 static void __init alloc_node_mem_map(struct pglist_data *pgdat) 7654 { 7655 unsigned long __maybe_unused start = 0; 7656 unsigned long __maybe_unused offset = 0; 7657 7658 /* Skip empty nodes */ 7659 if (!pgdat->node_spanned_pages) 7660 return; 7661 7662 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 7663 offset = pgdat->node_start_pfn - start; 7664 /* ia64 gets its own node_mem_map, before this, without bootmem */ 7665 if (!pgdat->node_mem_map) { 7666 unsigned long size, end; 7667 struct page *map; 7668 7669 /* 7670 * The zone's endpoints aren't required to be MAX_ORDER 7671 * aligned but the node_mem_map endpoints must be in order 7672 * for the buddy allocator to function correctly. 7673 */ 7674 end = pgdat_end_pfn(pgdat); 7675 end = ALIGN(end, MAX_ORDER_NR_PAGES); 7676 size = (end - start) * sizeof(struct page); 7677 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT, 7678 pgdat->node_id, false); 7679 if (!map) 7680 panic("Failed to allocate %ld bytes for node %d memory map\n", 7681 size, pgdat->node_id); 7682 pgdat->node_mem_map = map + offset; 7683 } 7684 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 7685 __func__, pgdat->node_id, (unsigned long)pgdat, 7686 (unsigned long)pgdat->node_mem_map); 7687 #ifndef CONFIG_NUMA 7688 /* 7689 * With no DISCONTIG, the global mem_map is just set as node 0's 7690 */ 7691 if (pgdat == NODE_DATA(0)) { 7692 mem_map = NODE_DATA(0)->node_mem_map; 7693 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 7694 mem_map -= offset; 7695 } 7696 #endif 7697 } 7698 #else 7699 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { } 7700 #endif /* CONFIG_FLATMEM */ 7701 7702 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 7703 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 7704 { 7705 pgdat->first_deferred_pfn = ULONG_MAX; 7706 } 7707 #else 7708 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 7709 #endif 7710 7711 static void __init free_area_init_node(int nid) 7712 { 7713 pg_data_t *pgdat = NODE_DATA(nid); 7714 unsigned long start_pfn = 0; 7715 unsigned long end_pfn = 0; 7716 7717 /* pg_data_t should be reset to zero when it's allocated */ 7718 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx); 7719 7720 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 7721 7722 pgdat->node_id = nid; 7723 pgdat->node_start_pfn = start_pfn; 7724 pgdat->per_cpu_nodestats = NULL; 7725 7726 if (start_pfn != end_pfn) { 7727 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 7728 (u64)start_pfn << PAGE_SHIFT, 7729 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 7730 } else { 7731 pr_info("Initmem setup node %d as memoryless\n", nid); 7732 } 7733 7734 calculate_node_totalpages(pgdat, start_pfn, end_pfn); 7735 7736 alloc_node_mem_map(pgdat); 7737 pgdat_set_deferred_range(pgdat); 7738 7739 free_area_init_core(pgdat); 7740 } 7741 7742 static void __init free_area_init_memoryless_node(int nid) 7743 { 7744 free_area_init_node(nid); 7745 } 7746 7747 #if MAX_NUMNODES > 1 7748 /* 7749 * Figure out the number of possible node ids. 7750 */ 7751 void __init setup_nr_node_ids(void) 7752 { 7753 unsigned int highest; 7754 7755 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 7756 nr_node_ids = highest + 1; 7757 } 7758 #endif 7759 7760 /** 7761 * node_map_pfn_alignment - determine the maximum internode alignment 7762 * 7763 * This function should be called after node map is populated and sorted. 7764 * It calculates the maximum power of two alignment which can distinguish 7765 * all the nodes. 7766 * 7767 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 7768 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 7769 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 7770 * shifted, 1GiB is enough and this function will indicate so. 7771 * 7772 * This is used to test whether pfn -> nid mapping of the chosen memory 7773 * model has fine enough granularity to avoid incorrect mapping for the 7774 * populated node map. 7775 * 7776 * Return: the determined alignment in pfn's. 0 if there is no alignment 7777 * requirement (single node). 7778 */ 7779 unsigned long __init node_map_pfn_alignment(void) 7780 { 7781 unsigned long accl_mask = 0, last_end = 0; 7782 unsigned long start, end, mask; 7783 int last_nid = NUMA_NO_NODE; 7784 int i, nid; 7785 7786 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 7787 if (!start || last_nid < 0 || last_nid == nid) { 7788 last_nid = nid; 7789 last_end = end; 7790 continue; 7791 } 7792 7793 /* 7794 * Start with a mask granular enough to pin-point to the 7795 * start pfn and tick off bits one-by-one until it becomes 7796 * too coarse to separate the current node from the last. 7797 */ 7798 mask = ~((1 << __ffs(start)) - 1); 7799 while (mask && last_end <= (start & (mask << 1))) 7800 mask <<= 1; 7801 7802 /* accumulate all internode masks */ 7803 accl_mask |= mask; 7804 } 7805 7806 /* convert mask to number of pages */ 7807 return ~accl_mask + 1; 7808 } 7809 7810 /** 7811 * find_min_pfn_with_active_regions - Find the minimum PFN registered 7812 * 7813 * Return: the minimum PFN based on information provided via 7814 * memblock_set_node(). 7815 */ 7816 unsigned long __init find_min_pfn_with_active_regions(void) 7817 { 7818 return PHYS_PFN(memblock_start_of_DRAM()); 7819 } 7820 7821 /* 7822 * early_calculate_totalpages() 7823 * Sum pages in active regions for movable zone. 7824 * Populate N_MEMORY for calculating usable_nodes. 7825 */ 7826 static unsigned long __init early_calculate_totalpages(void) 7827 { 7828 unsigned long totalpages = 0; 7829 unsigned long start_pfn, end_pfn; 7830 int i, nid; 7831 7832 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7833 unsigned long pages = end_pfn - start_pfn; 7834 7835 totalpages += pages; 7836 if (pages) 7837 node_set_state(nid, N_MEMORY); 7838 } 7839 return totalpages; 7840 } 7841 7842 /* 7843 * Find the PFN the Movable zone begins in each node. Kernel memory 7844 * is spread evenly between nodes as long as the nodes have enough 7845 * memory. When they don't, some nodes will have more kernelcore than 7846 * others 7847 */ 7848 static void __init find_zone_movable_pfns_for_nodes(void) 7849 { 7850 int i, nid; 7851 unsigned long usable_startpfn; 7852 unsigned long kernelcore_node, kernelcore_remaining; 7853 /* save the state before borrow the nodemask */ 7854 nodemask_t saved_node_state = node_states[N_MEMORY]; 7855 unsigned long totalpages = early_calculate_totalpages(); 7856 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 7857 struct memblock_region *r; 7858 7859 /* Need to find movable_zone earlier when movable_node is specified. */ 7860 find_usable_zone_for_movable(); 7861 7862 /* 7863 * If movable_node is specified, ignore kernelcore and movablecore 7864 * options. 7865 */ 7866 if (movable_node_is_enabled()) { 7867 for_each_mem_region(r) { 7868 if (!memblock_is_hotpluggable(r)) 7869 continue; 7870 7871 nid = memblock_get_region_node(r); 7872 7873 usable_startpfn = PFN_DOWN(r->base); 7874 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7875 min(usable_startpfn, zone_movable_pfn[nid]) : 7876 usable_startpfn; 7877 } 7878 7879 goto out2; 7880 } 7881 7882 /* 7883 * If kernelcore=mirror is specified, ignore movablecore option 7884 */ 7885 if (mirrored_kernelcore) { 7886 bool mem_below_4gb_not_mirrored = false; 7887 7888 for_each_mem_region(r) { 7889 if (memblock_is_mirror(r)) 7890 continue; 7891 7892 nid = memblock_get_region_node(r); 7893 7894 usable_startpfn = memblock_region_memory_base_pfn(r); 7895 7896 if (usable_startpfn < PHYS_PFN(SZ_4G)) { 7897 mem_below_4gb_not_mirrored = true; 7898 continue; 7899 } 7900 7901 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7902 min(usable_startpfn, zone_movable_pfn[nid]) : 7903 usable_startpfn; 7904 } 7905 7906 if (mem_below_4gb_not_mirrored) 7907 pr_warn("This configuration results in unmirrored kernel memory.\n"); 7908 7909 goto out2; 7910 } 7911 7912 /* 7913 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 7914 * amount of necessary memory. 7915 */ 7916 if (required_kernelcore_percent) 7917 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 7918 10000UL; 7919 if (required_movablecore_percent) 7920 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 7921 10000UL; 7922 7923 /* 7924 * If movablecore= was specified, calculate what size of 7925 * kernelcore that corresponds so that memory usable for 7926 * any allocation type is evenly spread. If both kernelcore 7927 * and movablecore are specified, then the value of kernelcore 7928 * will be used for required_kernelcore if it's greater than 7929 * what movablecore would have allowed. 7930 */ 7931 if (required_movablecore) { 7932 unsigned long corepages; 7933 7934 /* 7935 * Round-up so that ZONE_MOVABLE is at least as large as what 7936 * was requested by the user 7937 */ 7938 required_movablecore = 7939 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 7940 required_movablecore = min(totalpages, required_movablecore); 7941 corepages = totalpages - required_movablecore; 7942 7943 required_kernelcore = max(required_kernelcore, corepages); 7944 } 7945 7946 /* 7947 * If kernelcore was not specified or kernelcore size is larger 7948 * than totalpages, there is no ZONE_MOVABLE. 7949 */ 7950 if (!required_kernelcore || required_kernelcore >= totalpages) 7951 goto out; 7952 7953 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 7954 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 7955 7956 restart: 7957 /* Spread kernelcore memory as evenly as possible throughout nodes */ 7958 kernelcore_node = required_kernelcore / usable_nodes; 7959 for_each_node_state(nid, N_MEMORY) { 7960 unsigned long start_pfn, end_pfn; 7961 7962 /* 7963 * Recalculate kernelcore_node if the division per node 7964 * now exceeds what is necessary to satisfy the requested 7965 * amount of memory for the kernel 7966 */ 7967 if (required_kernelcore < kernelcore_node) 7968 kernelcore_node = required_kernelcore / usable_nodes; 7969 7970 /* 7971 * As the map is walked, we track how much memory is usable 7972 * by the kernel using kernelcore_remaining. When it is 7973 * 0, the rest of the node is usable by ZONE_MOVABLE 7974 */ 7975 kernelcore_remaining = kernelcore_node; 7976 7977 /* Go through each range of PFNs within this node */ 7978 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7979 unsigned long size_pages; 7980 7981 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 7982 if (start_pfn >= end_pfn) 7983 continue; 7984 7985 /* Account for what is only usable for kernelcore */ 7986 if (start_pfn < usable_startpfn) { 7987 unsigned long kernel_pages; 7988 kernel_pages = min(end_pfn, usable_startpfn) 7989 - start_pfn; 7990 7991 kernelcore_remaining -= min(kernel_pages, 7992 kernelcore_remaining); 7993 required_kernelcore -= min(kernel_pages, 7994 required_kernelcore); 7995 7996 /* Continue if range is now fully accounted */ 7997 if (end_pfn <= usable_startpfn) { 7998 7999 /* 8000 * Push zone_movable_pfn to the end so 8001 * that if we have to rebalance 8002 * kernelcore across nodes, we will 8003 * not double account here 8004 */ 8005 zone_movable_pfn[nid] = end_pfn; 8006 continue; 8007 } 8008 start_pfn = usable_startpfn; 8009 } 8010 8011 /* 8012 * The usable PFN range for ZONE_MOVABLE is from 8013 * start_pfn->end_pfn. Calculate size_pages as the 8014 * number of pages used as kernelcore 8015 */ 8016 size_pages = end_pfn - start_pfn; 8017 if (size_pages > kernelcore_remaining) 8018 size_pages = kernelcore_remaining; 8019 zone_movable_pfn[nid] = start_pfn + size_pages; 8020 8021 /* 8022 * Some kernelcore has been met, update counts and 8023 * break if the kernelcore for this node has been 8024 * satisfied 8025 */ 8026 required_kernelcore -= min(required_kernelcore, 8027 size_pages); 8028 kernelcore_remaining -= size_pages; 8029 if (!kernelcore_remaining) 8030 break; 8031 } 8032 } 8033 8034 /* 8035 * If there is still required_kernelcore, we do another pass with one 8036 * less node in the count. This will push zone_movable_pfn[nid] further 8037 * along on the nodes that still have memory until kernelcore is 8038 * satisfied 8039 */ 8040 usable_nodes--; 8041 if (usable_nodes && required_kernelcore > usable_nodes) 8042 goto restart; 8043 8044 out2: 8045 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 8046 for (nid = 0; nid < MAX_NUMNODES; nid++) { 8047 unsigned long start_pfn, end_pfn; 8048 8049 zone_movable_pfn[nid] = 8050 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 8051 8052 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 8053 if (zone_movable_pfn[nid] >= end_pfn) 8054 zone_movable_pfn[nid] = 0; 8055 } 8056 8057 out: 8058 /* restore the node_state */ 8059 node_states[N_MEMORY] = saved_node_state; 8060 } 8061 8062 /* Any regular or high memory on that node ? */ 8063 static void check_for_memory(pg_data_t *pgdat, int nid) 8064 { 8065 enum zone_type zone_type; 8066 8067 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 8068 struct zone *zone = &pgdat->node_zones[zone_type]; 8069 if (populated_zone(zone)) { 8070 if (IS_ENABLED(CONFIG_HIGHMEM)) 8071 node_set_state(nid, N_HIGH_MEMORY); 8072 if (zone_type <= ZONE_NORMAL) 8073 node_set_state(nid, N_NORMAL_MEMORY); 8074 break; 8075 } 8076 } 8077 } 8078 8079 /* 8080 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For 8081 * such cases we allow max_zone_pfn sorted in the descending order 8082 */ 8083 bool __weak arch_has_descending_max_zone_pfns(void) 8084 { 8085 return false; 8086 } 8087 8088 /** 8089 * free_area_init - Initialise all pg_data_t and zone data 8090 * @max_zone_pfn: an array of max PFNs for each zone 8091 * 8092 * This will call free_area_init_node() for each active node in the system. 8093 * Using the page ranges provided by memblock_set_node(), the size of each 8094 * zone in each node and their holes is calculated. If the maximum PFN 8095 * between two adjacent zones match, it is assumed that the zone is empty. 8096 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 8097 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 8098 * starts where the previous one ended. For example, ZONE_DMA32 starts 8099 * at arch_max_dma_pfn. 8100 */ 8101 void __init free_area_init(unsigned long *max_zone_pfn) 8102 { 8103 unsigned long start_pfn, end_pfn; 8104 int i, nid, zone; 8105 bool descending; 8106 8107 /* Record where the zone boundaries are */ 8108 memset(arch_zone_lowest_possible_pfn, 0, 8109 sizeof(arch_zone_lowest_possible_pfn)); 8110 memset(arch_zone_highest_possible_pfn, 0, 8111 sizeof(arch_zone_highest_possible_pfn)); 8112 8113 start_pfn = find_min_pfn_with_active_regions(); 8114 descending = arch_has_descending_max_zone_pfns(); 8115 8116 for (i = 0; i < MAX_NR_ZONES; i++) { 8117 if (descending) 8118 zone = MAX_NR_ZONES - i - 1; 8119 else 8120 zone = i; 8121 8122 if (zone == ZONE_MOVABLE) 8123 continue; 8124 8125 end_pfn = max(max_zone_pfn[zone], start_pfn); 8126 arch_zone_lowest_possible_pfn[zone] = start_pfn; 8127 arch_zone_highest_possible_pfn[zone] = end_pfn; 8128 8129 start_pfn = end_pfn; 8130 } 8131 8132 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 8133 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 8134 find_zone_movable_pfns_for_nodes(); 8135 8136 /* Print out the zone ranges */ 8137 pr_info("Zone ranges:\n"); 8138 for (i = 0; i < MAX_NR_ZONES; i++) { 8139 if (i == ZONE_MOVABLE) 8140 continue; 8141 pr_info(" %-8s ", zone_names[i]); 8142 if (arch_zone_lowest_possible_pfn[i] == 8143 arch_zone_highest_possible_pfn[i]) 8144 pr_cont("empty\n"); 8145 else 8146 pr_cont("[mem %#018Lx-%#018Lx]\n", 8147 (u64)arch_zone_lowest_possible_pfn[i] 8148 << PAGE_SHIFT, 8149 ((u64)arch_zone_highest_possible_pfn[i] 8150 << PAGE_SHIFT) - 1); 8151 } 8152 8153 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 8154 pr_info("Movable zone start for each node\n"); 8155 for (i = 0; i < MAX_NUMNODES; i++) { 8156 if (zone_movable_pfn[i]) 8157 pr_info(" Node %d: %#018Lx\n", i, 8158 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 8159 } 8160 8161 /* 8162 * Print out the early node map, and initialize the 8163 * subsection-map relative to active online memory ranges to 8164 * enable future "sub-section" extensions of the memory map. 8165 */ 8166 pr_info("Early memory node ranges\n"); 8167 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 8168 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 8169 (u64)start_pfn << PAGE_SHIFT, 8170 ((u64)end_pfn << PAGE_SHIFT) - 1); 8171 subsection_map_init(start_pfn, end_pfn - start_pfn); 8172 } 8173 8174 /* Initialise every node */ 8175 mminit_verify_pageflags_layout(); 8176 setup_nr_node_ids(); 8177 for_each_node(nid) { 8178 pg_data_t *pgdat; 8179 8180 if (!node_online(nid)) { 8181 pr_info("Initializing node %d as memoryless\n", nid); 8182 8183 /* Allocator not initialized yet */ 8184 pgdat = arch_alloc_nodedata(nid); 8185 if (!pgdat) { 8186 pr_err("Cannot allocate %zuB for node %d.\n", 8187 sizeof(*pgdat), nid); 8188 continue; 8189 } 8190 arch_refresh_nodedata(nid, pgdat); 8191 free_area_init_memoryless_node(nid); 8192 8193 /* 8194 * We do not want to confuse userspace by sysfs 8195 * files/directories for node without any memory 8196 * attached to it, so this node is not marked as 8197 * N_MEMORY and not marked online so that no sysfs 8198 * hierarchy will be created via register_one_node for 8199 * it. The pgdat will get fully initialized by 8200 * hotadd_init_pgdat() when memory is hotplugged into 8201 * this node. 8202 */ 8203 continue; 8204 } 8205 8206 pgdat = NODE_DATA(nid); 8207 free_area_init_node(nid); 8208 8209 /* Any memory on that node */ 8210 if (pgdat->node_present_pages) 8211 node_set_state(nid, N_MEMORY); 8212 check_for_memory(pgdat, nid); 8213 } 8214 8215 memmap_init(); 8216 } 8217 8218 static int __init cmdline_parse_core(char *p, unsigned long *core, 8219 unsigned long *percent) 8220 { 8221 unsigned long long coremem; 8222 char *endptr; 8223 8224 if (!p) 8225 return -EINVAL; 8226 8227 /* Value may be a percentage of total memory, otherwise bytes */ 8228 coremem = simple_strtoull(p, &endptr, 0); 8229 if (*endptr == '%') { 8230 /* Paranoid check for percent values greater than 100 */ 8231 WARN_ON(coremem > 100); 8232 8233 *percent = coremem; 8234 } else { 8235 coremem = memparse(p, &p); 8236 /* Paranoid check that UL is enough for the coremem value */ 8237 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 8238 8239 *core = coremem >> PAGE_SHIFT; 8240 *percent = 0UL; 8241 } 8242 return 0; 8243 } 8244 8245 /* 8246 * kernelcore=size sets the amount of memory for use for allocations that 8247 * cannot be reclaimed or migrated. 8248 */ 8249 static int __init cmdline_parse_kernelcore(char *p) 8250 { 8251 /* parse kernelcore=mirror */ 8252 if (parse_option_str(p, "mirror")) { 8253 mirrored_kernelcore = true; 8254 return 0; 8255 } 8256 8257 return cmdline_parse_core(p, &required_kernelcore, 8258 &required_kernelcore_percent); 8259 } 8260 8261 /* 8262 * movablecore=size sets the amount of memory for use for allocations that 8263 * can be reclaimed or migrated. 8264 */ 8265 static int __init cmdline_parse_movablecore(char *p) 8266 { 8267 return cmdline_parse_core(p, &required_movablecore, 8268 &required_movablecore_percent); 8269 } 8270 8271 early_param("kernelcore", cmdline_parse_kernelcore); 8272 early_param("movablecore", cmdline_parse_movablecore); 8273 8274 void adjust_managed_page_count(struct page *page, long count) 8275 { 8276 atomic_long_add(count, &page_zone(page)->managed_pages); 8277 totalram_pages_add(count); 8278 #ifdef CONFIG_HIGHMEM 8279 if (PageHighMem(page)) 8280 totalhigh_pages_add(count); 8281 #endif 8282 } 8283 EXPORT_SYMBOL(adjust_managed_page_count); 8284 8285 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 8286 { 8287 void *pos; 8288 unsigned long pages = 0; 8289 8290 start = (void *)PAGE_ALIGN((unsigned long)start); 8291 end = (void *)((unsigned long)end & PAGE_MASK); 8292 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 8293 struct page *page = virt_to_page(pos); 8294 void *direct_map_addr; 8295 8296 /* 8297 * 'direct_map_addr' might be different from 'pos' 8298 * because some architectures' virt_to_page() 8299 * work with aliases. Getting the direct map 8300 * address ensures that we get a _writeable_ 8301 * alias for the memset(). 8302 */ 8303 direct_map_addr = page_address(page); 8304 /* 8305 * Perform a kasan-unchecked memset() since this memory 8306 * has not been initialized. 8307 */ 8308 direct_map_addr = kasan_reset_tag(direct_map_addr); 8309 if ((unsigned int)poison <= 0xFF) 8310 memset(direct_map_addr, poison, PAGE_SIZE); 8311 8312 free_reserved_page(page); 8313 } 8314 8315 if (pages && s) 8316 pr_info("Freeing %s memory: %ldK\n", s, K(pages)); 8317 8318 return pages; 8319 } 8320 8321 void __init mem_init_print_info(void) 8322 { 8323 unsigned long physpages, codesize, datasize, rosize, bss_size; 8324 unsigned long init_code_size, init_data_size; 8325 8326 physpages = get_num_physpages(); 8327 codesize = _etext - _stext; 8328 datasize = _edata - _sdata; 8329 rosize = __end_rodata - __start_rodata; 8330 bss_size = __bss_stop - __bss_start; 8331 init_data_size = __init_end - __init_begin; 8332 init_code_size = _einittext - _sinittext; 8333 8334 /* 8335 * Detect special cases and adjust section sizes accordingly: 8336 * 1) .init.* may be embedded into .data sections 8337 * 2) .init.text.* may be out of [__init_begin, __init_end], 8338 * please refer to arch/tile/kernel/vmlinux.lds.S. 8339 * 3) .rodata.* may be embedded into .text or .data sections. 8340 */ 8341 #define adj_init_size(start, end, size, pos, adj) \ 8342 do { \ 8343 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \ 8344 size -= adj; \ 8345 } while (0) 8346 8347 adj_init_size(__init_begin, __init_end, init_data_size, 8348 _sinittext, init_code_size); 8349 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 8350 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 8351 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 8352 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 8353 8354 #undef adj_init_size 8355 8356 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 8357 #ifdef CONFIG_HIGHMEM 8358 ", %luK highmem" 8359 #endif 8360 ")\n", 8361 K(nr_free_pages()), K(physpages), 8362 codesize >> 10, datasize >> 10, rosize >> 10, 8363 (init_data_size + init_code_size) >> 10, bss_size >> 10, 8364 K(physpages - totalram_pages() - totalcma_pages), 8365 K(totalcma_pages) 8366 #ifdef CONFIG_HIGHMEM 8367 , K(totalhigh_pages()) 8368 #endif 8369 ); 8370 } 8371 8372 /** 8373 * set_dma_reserve - set the specified number of pages reserved in the first zone 8374 * @new_dma_reserve: The number of pages to mark reserved 8375 * 8376 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 8377 * In the DMA zone, a significant percentage may be consumed by kernel image 8378 * and other unfreeable allocations which can skew the watermarks badly. This 8379 * function may optionally be used to account for unfreeable pages in the 8380 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 8381 * smaller per-cpu batchsize. 8382 */ 8383 void __init set_dma_reserve(unsigned long new_dma_reserve) 8384 { 8385 dma_reserve = new_dma_reserve; 8386 } 8387 8388 static int page_alloc_cpu_dead(unsigned int cpu) 8389 { 8390 struct zone *zone; 8391 8392 lru_add_drain_cpu(cpu); 8393 mlock_page_drain_remote(cpu); 8394 drain_pages(cpu); 8395 8396 /* 8397 * Spill the event counters of the dead processor 8398 * into the current processors event counters. 8399 * This artificially elevates the count of the current 8400 * processor. 8401 */ 8402 vm_events_fold_cpu(cpu); 8403 8404 /* 8405 * Zero the differential counters of the dead processor 8406 * so that the vm statistics are consistent. 8407 * 8408 * This is only okay since the processor is dead and cannot 8409 * race with what we are doing. 8410 */ 8411 cpu_vm_stats_fold(cpu); 8412 8413 for_each_populated_zone(zone) 8414 zone_pcp_update(zone, 0); 8415 8416 return 0; 8417 } 8418 8419 static int page_alloc_cpu_online(unsigned int cpu) 8420 { 8421 struct zone *zone; 8422 8423 for_each_populated_zone(zone) 8424 zone_pcp_update(zone, 1); 8425 return 0; 8426 } 8427 8428 #ifdef CONFIG_NUMA 8429 int hashdist = HASHDIST_DEFAULT; 8430 8431 static int __init set_hashdist(char *str) 8432 { 8433 if (!str) 8434 return 0; 8435 hashdist = simple_strtoul(str, &str, 0); 8436 return 1; 8437 } 8438 __setup("hashdist=", set_hashdist); 8439 #endif 8440 8441 void __init page_alloc_init(void) 8442 { 8443 int ret; 8444 8445 #ifdef CONFIG_NUMA 8446 if (num_node_state(N_MEMORY) == 1) 8447 hashdist = 0; 8448 #endif 8449 8450 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, 8451 "mm/page_alloc:pcp", 8452 page_alloc_cpu_online, 8453 page_alloc_cpu_dead); 8454 WARN_ON(ret < 0); 8455 } 8456 8457 /* 8458 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 8459 * or min_free_kbytes changes. 8460 */ 8461 static void calculate_totalreserve_pages(void) 8462 { 8463 struct pglist_data *pgdat; 8464 unsigned long reserve_pages = 0; 8465 enum zone_type i, j; 8466 8467 for_each_online_pgdat(pgdat) { 8468 8469 pgdat->totalreserve_pages = 0; 8470 8471 for (i = 0; i < MAX_NR_ZONES; i++) { 8472 struct zone *zone = pgdat->node_zones + i; 8473 long max = 0; 8474 unsigned long managed_pages = zone_managed_pages(zone); 8475 8476 /* Find valid and maximum lowmem_reserve in the zone */ 8477 for (j = i; j < MAX_NR_ZONES; j++) { 8478 if (zone->lowmem_reserve[j] > max) 8479 max = zone->lowmem_reserve[j]; 8480 } 8481 8482 /* we treat the high watermark as reserved pages. */ 8483 max += high_wmark_pages(zone); 8484 8485 if (max > managed_pages) 8486 max = managed_pages; 8487 8488 pgdat->totalreserve_pages += max; 8489 8490 reserve_pages += max; 8491 } 8492 } 8493 totalreserve_pages = reserve_pages; 8494 } 8495 8496 /* 8497 * setup_per_zone_lowmem_reserve - called whenever 8498 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 8499 * has a correct pages reserved value, so an adequate number of 8500 * pages are left in the zone after a successful __alloc_pages(). 8501 */ 8502 static void setup_per_zone_lowmem_reserve(void) 8503 { 8504 struct pglist_data *pgdat; 8505 enum zone_type i, j; 8506 8507 for_each_online_pgdat(pgdat) { 8508 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 8509 struct zone *zone = &pgdat->node_zones[i]; 8510 int ratio = sysctl_lowmem_reserve_ratio[i]; 8511 bool clear = !ratio || !zone_managed_pages(zone); 8512 unsigned long managed_pages = 0; 8513 8514 for (j = i + 1; j < MAX_NR_ZONES; j++) { 8515 struct zone *upper_zone = &pgdat->node_zones[j]; 8516 8517 managed_pages += zone_managed_pages(upper_zone); 8518 8519 if (clear) 8520 zone->lowmem_reserve[j] = 0; 8521 else 8522 zone->lowmem_reserve[j] = managed_pages / ratio; 8523 } 8524 } 8525 } 8526 8527 /* update totalreserve_pages */ 8528 calculate_totalreserve_pages(); 8529 } 8530 8531 static void __setup_per_zone_wmarks(void) 8532 { 8533 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 8534 unsigned long lowmem_pages = 0; 8535 struct zone *zone; 8536 unsigned long flags; 8537 8538 /* Calculate total number of !ZONE_HIGHMEM pages */ 8539 for_each_zone(zone) { 8540 if (!is_highmem(zone)) 8541 lowmem_pages += zone_managed_pages(zone); 8542 } 8543 8544 for_each_zone(zone) { 8545 u64 tmp; 8546 8547 spin_lock_irqsave(&zone->lock, flags); 8548 tmp = (u64)pages_min * zone_managed_pages(zone); 8549 do_div(tmp, lowmem_pages); 8550 if (is_highmem(zone)) { 8551 /* 8552 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 8553 * need highmem pages, so cap pages_min to a small 8554 * value here. 8555 * 8556 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 8557 * deltas control async page reclaim, and so should 8558 * not be capped for highmem. 8559 */ 8560 unsigned long min_pages; 8561 8562 min_pages = zone_managed_pages(zone) / 1024; 8563 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 8564 zone->_watermark[WMARK_MIN] = min_pages; 8565 } else { 8566 /* 8567 * If it's a lowmem zone, reserve a number of pages 8568 * proportionate to the zone's size. 8569 */ 8570 zone->_watermark[WMARK_MIN] = tmp; 8571 } 8572 8573 /* 8574 * Set the kswapd watermarks distance according to the 8575 * scale factor in proportion to available memory, but 8576 * ensure a minimum size on small systems. 8577 */ 8578 tmp = max_t(u64, tmp >> 2, 8579 mult_frac(zone_managed_pages(zone), 8580 watermark_scale_factor, 10000)); 8581 8582 zone->watermark_boost = 0; 8583 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 8584 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp; 8585 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp; 8586 8587 spin_unlock_irqrestore(&zone->lock, flags); 8588 } 8589 8590 /* update totalreserve_pages */ 8591 calculate_totalreserve_pages(); 8592 } 8593 8594 /** 8595 * setup_per_zone_wmarks - called when min_free_kbytes changes 8596 * or when memory is hot-{added|removed} 8597 * 8598 * Ensures that the watermark[min,low,high] values for each zone are set 8599 * correctly with respect to min_free_kbytes. 8600 */ 8601 void setup_per_zone_wmarks(void) 8602 { 8603 struct zone *zone; 8604 static DEFINE_SPINLOCK(lock); 8605 8606 spin_lock(&lock); 8607 __setup_per_zone_wmarks(); 8608 spin_unlock(&lock); 8609 8610 /* 8611 * The watermark size have changed so update the pcpu batch 8612 * and high limits or the limits may be inappropriate. 8613 */ 8614 for_each_zone(zone) 8615 zone_pcp_update(zone, 0); 8616 } 8617 8618 /* 8619 * Initialise min_free_kbytes. 8620 * 8621 * For small machines we want it small (128k min). For large machines 8622 * we want it large (256MB max). But it is not linear, because network 8623 * bandwidth does not increase linearly with machine size. We use 8624 * 8625 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 8626 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 8627 * 8628 * which yields 8629 * 8630 * 16MB: 512k 8631 * 32MB: 724k 8632 * 64MB: 1024k 8633 * 128MB: 1448k 8634 * 256MB: 2048k 8635 * 512MB: 2896k 8636 * 1024MB: 4096k 8637 * 2048MB: 5792k 8638 * 4096MB: 8192k 8639 * 8192MB: 11584k 8640 * 16384MB: 16384k 8641 */ 8642 void calculate_min_free_kbytes(void) 8643 { 8644 unsigned long lowmem_kbytes; 8645 int new_min_free_kbytes; 8646 8647 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 8648 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 8649 8650 if (new_min_free_kbytes > user_min_free_kbytes) 8651 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144); 8652 else 8653 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 8654 new_min_free_kbytes, user_min_free_kbytes); 8655 8656 } 8657 8658 int __meminit init_per_zone_wmark_min(void) 8659 { 8660 calculate_min_free_kbytes(); 8661 setup_per_zone_wmarks(); 8662 refresh_zone_stat_thresholds(); 8663 setup_per_zone_lowmem_reserve(); 8664 8665 #ifdef CONFIG_NUMA 8666 setup_min_unmapped_ratio(); 8667 setup_min_slab_ratio(); 8668 #endif 8669 8670 khugepaged_min_free_kbytes_update(); 8671 8672 return 0; 8673 } 8674 postcore_initcall(init_per_zone_wmark_min) 8675 8676 /* 8677 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 8678 * that we can call two helper functions whenever min_free_kbytes 8679 * changes. 8680 */ 8681 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 8682 void *buffer, size_t *length, loff_t *ppos) 8683 { 8684 int rc; 8685 8686 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8687 if (rc) 8688 return rc; 8689 8690 if (write) { 8691 user_min_free_kbytes = min_free_kbytes; 8692 setup_per_zone_wmarks(); 8693 } 8694 return 0; 8695 } 8696 8697 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 8698 void *buffer, size_t *length, loff_t *ppos) 8699 { 8700 int rc; 8701 8702 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8703 if (rc) 8704 return rc; 8705 8706 if (write) 8707 setup_per_zone_wmarks(); 8708 8709 return 0; 8710 } 8711 8712 #ifdef CONFIG_NUMA 8713 static void setup_min_unmapped_ratio(void) 8714 { 8715 pg_data_t *pgdat; 8716 struct zone *zone; 8717 8718 for_each_online_pgdat(pgdat) 8719 pgdat->min_unmapped_pages = 0; 8720 8721 for_each_zone(zone) 8722 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 8723 sysctl_min_unmapped_ratio) / 100; 8724 } 8725 8726 8727 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 8728 void *buffer, size_t *length, loff_t *ppos) 8729 { 8730 int rc; 8731 8732 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8733 if (rc) 8734 return rc; 8735 8736 setup_min_unmapped_ratio(); 8737 8738 return 0; 8739 } 8740 8741 static void setup_min_slab_ratio(void) 8742 { 8743 pg_data_t *pgdat; 8744 struct zone *zone; 8745 8746 for_each_online_pgdat(pgdat) 8747 pgdat->min_slab_pages = 0; 8748 8749 for_each_zone(zone) 8750 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 8751 sysctl_min_slab_ratio) / 100; 8752 } 8753 8754 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 8755 void *buffer, size_t *length, loff_t *ppos) 8756 { 8757 int rc; 8758 8759 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8760 if (rc) 8761 return rc; 8762 8763 setup_min_slab_ratio(); 8764 8765 return 0; 8766 } 8767 #endif 8768 8769 /* 8770 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 8771 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 8772 * whenever sysctl_lowmem_reserve_ratio changes. 8773 * 8774 * The reserve ratio obviously has absolutely no relation with the 8775 * minimum watermarks. The lowmem reserve ratio can only make sense 8776 * if in function of the boot time zone sizes. 8777 */ 8778 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 8779 void *buffer, size_t *length, loff_t *ppos) 8780 { 8781 int i; 8782 8783 proc_dointvec_minmax(table, write, buffer, length, ppos); 8784 8785 for (i = 0; i < MAX_NR_ZONES; i++) { 8786 if (sysctl_lowmem_reserve_ratio[i] < 1) 8787 sysctl_lowmem_reserve_ratio[i] = 0; 8788 } 8789 8790 setup_per_zone_lowmem_reserve(); 8791 return 0; 8792 } 8793 8794 /* 8795 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each 8796 * cpu. It is the fraction of total pages in each zone that a hot per cpu 8797 * pagelist can have before it gets flushed back to buddy allocator. 8798 */ 8799 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table, 8800 int write, void *buffer, size_t *length, loff_t *ppos) 8801 { 8802 struct zone *zone; 8803 int old_percpu_pagelist_high_fraction; 8804 int ret; 8805 8806 mutex_lock(&pcp_batch_high_lock); 8807 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; 8808 8809 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 8810 if (!write || ret < 0) 8811 goto out; 8812 8813 /* Sanity checking to avoid pcp imbalance */ 8814 if (percpu_pagelist_high_fraction && 8815 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { 8816 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; 8817 ret = -EINVAL; 8818 goto out; 8819 } 8820 8821 /* No change? */ 8822 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) 8823 goto out; 8824 8825 for_each_populated_zone(zone) 8826 zone_set_pageset_high_and_batch(zone, 0); 8827 out: 8828 mutex_unlock(&pcp_batch_high_lock); 8829 return ret; 8830 } 8831 8832 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 8833 /* 8834 * Returns the number of pages that arch has reserved but 8835 * is not known to alloc_large_system_hash(). 8836 */ 8837 static unsigned long __init arch_reserved_kernel_pages(void) 8838 { 8839 return 0; 8840 } 8841 #endif 8842 8843 /* 8844 * Adaptive scale is meant to reduce sizes of hash tables on large memory 8845 * machines. As memory size is increased the scale is also increased but at 8846 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 8847 * quadruples the scale is increased by one, which means the size of hash table 8848 * only doubles, instead of quadrupling as well. 8849 * Because 32-bit systems cannot have large physical memory, where this scaling 8850 * makes sense, it is disabled on such platforms. 8851 */ 8852 #if __BITS_PER_LONG > 32 8853 #define ADAPT_SCALE_BASE (64ul << 30) 8854 #define ADAPT_SCALE_SHIFT 2 8855 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 8856 #endif 8857 8858 /* 8859 * allocate a large system hash table from bootmem 8860 * - it is assumed that the hash table must contain an exact power-of-2 8861 * quantity of entries 8862 * - limit is the number of hash buckets, not the total allocation size 8863 */ 8864 void *__init alloc_large_system_hash(const char *tablename, 8865 unsigned long bucketsize, 8866 unsigned long numentries, 8867 int scale, 8868 int flags, 8869 unsigned int *_hash_shift, 8870 unsigned int *_hash_mask, 8871 unsigned long low_limit, 8872 unsigned long high_limit) 8873 { 8874 unsigned long long max = high_limit; 8875 unsigned long log2qty, size; 8876 void *table = NULL; 8877 gfp_t gfp_flags; 8878 bool virt; 8879 bool huge; 8880 8881 /* allow the kernel cmdline to have a say */ 8882 if (!numentries) { 8883 /* round applicable memory size up to nearest megabyte */ 8884 numentries = nr_kernel_pages; 8885 numentries -= arch_reserved_kernel_pages(); 8886 8887 /* It isn't necessary when PAGE_SIZE >= 1MB */ 8888 if (PAGE_SHIFT < 20) 8889 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 8890 8891 #if __BITS_PER_LONG > 32 8892 if (!high_limit) { 8893 unsigned long adapt; 8894 8895 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 8896 adapt <<= ADAPT_SCALE_SHIFT) 8897 scale++; 8898 } 8899 #endif 8900 8901 /* limit to 1 bucket per 2^scale bytes of low memory */ 8902 if (scale > PAGE_SHIFT) 8903 numentries >>= (scale - PAGE_SHIFT); 8904 else 8905 numentries <<= (PAGE_SHIFT - scale); 8906 8907 /* Make sure we've got at least a 0-order allocation.. */ 8908 if (unlikely(flags & HASH_SMALL)) { 8909 /* Makes no sense without HASH_EARLY */ 8910 WARN_ON(!(flags & HASH_EARLY)); 8911 if (!(numentries >> *_hash_shift)) { 8912 numentries = 1UL << *_hash_shift; 8913 BUG_ON(!numentries); 8914 } 8915 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 8916 numentries = PAGE_SIZE / bucketsize; 8917 } 8918 numentries = roundup_pow_of_two(numentries); 8919 8920 /* limit allocation size to 1/16 total memory by default */ 8921 if (max == 0) { 8922 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 8923 do_div(max, bucketsize); 8924 } 8925 max = min(max, 0x80000000ULL); 8926 8927 if (numentries < low_limit) 8928 numentries = low_limit; 8929 if (numentries > max) 8930 numentries = max; 8931 8932 log2qty = ilog2(numentries); 8933 8934 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 8935 do { 8936 virt = false; 8937 size = bucketsize << log2qty; 8938 if (flags & HASH_EARLY) { 8939 if (flags & HASH_ZERO) 8940 table = memblock_alloc(size, SMP_CACHE_BYTES); 8941 else 8942 table = memblock_alloc_raw(size, 8943 SMP_CACHE_BYTES); 8944 } else if (get_order(size) >= MAX_ORDER || hashdist) { 8945 table = vmalloc_huge(size, gfp_flags); 8946 virt = true; 8947 if (table) 8948 huge = is_vm_area_hugepages(table); 8949 } else { 8950 /* 8951 * If bucketsize is not a power-of-two, we may free 8952 * some pages at the end of hash table which 8953 * alloc_pages_exact() automatically does 8954 */ 8955 table = alloc_pages_exact(size, gfp_flags); 8956 kmemleak_alloc(table, size, 1, gfp_flags); 8957 } 8958 } while (!table && size > PAGE_SIZE && --log2qty); 8959 8960 if (!table) 8961 panic("Failed to allocate %s hash table\n", tablename); 8962 8963 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", 8964 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, 8965 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear"); 8966 8967 if (_hash_shift) 8968 *_hash_shift = log2qty; 8969 if (_hash_mask) 8970 *_hash_mask = (1 << log2qty) - 1; 8971 8972 return table; 8973 } 8974 8975 #ifdef CONFIG_CONTIG_ALLOC 8976 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 8977 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 8978 /* Usage: See admin-guide/dynamic-debug-howto.rst */ 8979 static void alloc_contig_dump_pages(struct list_head *page_list) 8980 { 8981 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 8982 8983 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 8984 struct page *page; 8985 8986 dump_stack(); 8987 list_for_each_entry(page, page_list, lru) 8988 dump_page(page, "migration failure"); 8989 } 8990 } 8991 #else 8992 static inline void alloc_contig_dump_pages(struct list_head *page_list) 8993 { 8994 } 8995 #endif 8996 8997 /* [start, end) must belong to a single zone. */ 8998 int __alloc_contig_migrate_range(struct compact_control *cc, 8999 unsigned long start, unsigned long end) 9000 { 9001 /* This function is based on compact_zone() from compaction.c. */ 9002 unsigned int nr_reclaimed; 9003 unsigned long pfn = start; 9004 unsigned int tries = 0; 9005 int ret = 0; 9006 struct migration_target_control mtc = { 9007 .nid = zone_to_nid(cc->zone), 9008 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 9009 }; 9010 9011 lru_cache_disable(); 9012 9013 while (pfn < end || !list_empty(&cc->migratepages)) { 9014 if (fatal_signal_pending(current)) { 9015 ret = -EINTR; 9016 break; 9017 } 9018 9019 if (list_empty(&cc->migratepages)) { 9020 cc->nr_migratepages = 0; 9021 ret = isolate_migratepages_range(cc, pfn, end); 9022 if (ret && ret != -EAGAIN) 9023 break; 9024 pfn = cc->migrate_pfn; 9025 tries = 0; 9026 } else if (++tries == 5) { 9027 ret = -EBUSY; 9028 break; 9029 } 9030 9031 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 9032 &cc->migratepages); 9033 cc->nr_migratepages -= nr_reclaimed; 9034 9035 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 9036 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); 9037 9038 /* 9039 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 9040 * to retry again over this error, so do the same here. 9041 */ 9042 if (ret == -ENOMEM) 9043 break; 9044 } 9045 9046 lru_cache_enable(); 9047 if (ret < 0) { 9048 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY) 9049 alloc_contig_dump_pages(&cc->migratepages); 9050 putback_movable_pages(&cc->migratepages); 9051 return ret; 9052 } 9053 return 0; 9054 } 9055 9056 /** 9057 * alloc_contig_range() -- tries to allocate given range of pages 9058 * @start: start PFN to allocate 9059 * @end: one-past-the-last PFN to allocate 9060 * @migratetype: migratetype of the underlying pageblocks (either 9061 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 9062 * in range must have the same migratetype and it must 9063 * be either of the two. 9064 * @gfp_mask: GFP mask to use during compaction 9065 * 9066 * The PFN range does not have to be pageblock aligned. The PFN range must 9067 * belong to a single zone. 9068 * 9069 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 9070 * pageblocks in the range. Once isolated, the pageblocks should not 9071 * be modified by others. 9072 * 9073 * Return: zero on success or negative error code. On success all 9074 * pages which PFN is in [start, end) are allocated for the caller and 9075 * need to be freed with free_contig_range(). 9076 */ 9077 int alloc_contig_range(unsigned long start, unsigned long end, 9078 unsigned migratetype, gfp_t gfp_mask) 9079 { 9080 unsigned long outer_start, outer_end; 9081 int order; 9082 int ret = 0; 9083 9084 struct compact_control cc = { 9085 .nr_migratepages = 0, 9086 .order = -1, 9087 .zone = page_zone(pfn_to_page(start)), 9088 .mode = MIGRATE_SYNC, 9089 .ignore_skip_hint = true, 9090 .no_set_skip_hint = true, 9091 .gfp_mask = current_gfp_context(gfp_mask), 9092 .alloc_contig = true, 9093 }; 9094 INIT_LIST_HEAD(&cc.migratepages); 9095 9096 /* 9097 * What we do here is we mark all pageblocks in range as 9098 * MIGRATE_ISOLATE. Because pageblock and max order pages may 9099 * have different sizes, and due to the way page allocator 9100 * work, start_isolate_page_range() has special handlings for this. 9101 * 9102 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 9103 * migrate the pages from an unaligned range (ie. pages that 9104 * we are interested in). This will put all the pages in 9105 * range back to page allocator as MIGRATE_ISOLATE. 9106 * 9107 * When this is done, we take the pages in range from page 9108 * allocator removing them from the buddy system. This way 9109 * page allocator will never consider using them. 9110 * 9111 * This lets us mark the pageblocks back as 9112 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 9113 * aligned range but not in the unaligned, original range are 9114 * put back to page allocator so that buddy can use them. 9115 */ 9116 9117 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask); 9118 if (ret) 9119 goto done; 9120 9121 drain_all_pages(cc.zone); 9122 9123 /* 9124 * In case of -EBUSY, we'd like to know which page causes problem. 9125 * So, just fall through. test_pages_isolated() has a tracepoint 9126 * which will report the busy page. 9127 * 9128 * It is possible that busy pages could become available before 9129 * the call to test_pages_isolated, and the range will actually be 9130 * allocated. So, if we fall through be sure to clear ret so that 9131 * -EBUSY is not accidentally used or returned to caller. 9132 */ 9133 ret = __alloc_contig_migrate_range(&cc, start, end); 9134 if (ret && ret != -EBUSY) 9135 goto done; 9136 ret = 0; 9137 9138 /* 9139 * Pages from [start, end) are within a pageblock_nr_pages 9140 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 9141 * more, all pages in [start, end) are free in page allocator. 9142 * What we are going to do is to allocate all pages from 9143 * [start, end) (that is remove them from page allocator). 9144 * 9145 * The only problem is that pages at the beginning and at the 9146 * end of interesting range may be not aligned with pages that 9147 * page allocator holds, ie. they can be part of higher order 9148 * pages. Because of this, we reserve the bigger range and 9149 * once this is done free the pages we are not interested in. 9150 * 9151 * We don't have to hold zone->lock here because the pages are 9152 * isolated thus they won't get removed from buddy. 9153 */ 9154 9155 order = 0; 9156 outer_start = start; 9157 while (!PageBuddy(pfn_to_page(outer_start))) { 9158 if (++order >= MAX_ORDER) { 9159 outer_start = start; 9160 break; 9161 } 9162 outer_start &= ~0UL << order; 9163 } 9164 9165 if (outer_start != start) { 9166 order = buddy_order(pfn_to_page(outer_start)); 9167 9168 /* 9169 * outer_start page could be small order buddy page and 9170 * it doesn't include start page. Adjust outer_start 9171 * in this case to report failed page properly 9172 * on tracepoint in test_pages_isolated() 9173 */ 9174 if (outer_start + (1UL << order) <= start) 9175 outer_start = start; 9176 } 9177 9178 /* Make sure the range is really isolated. */ 9179 if (test_pages_isolated(outer_start, end, 0)) { 9180 ret = -EBUSY; 9181 goto done; 9182 } 9183 9184 /* Grab isolated pages from freelists. */ 9185 outer_end = isolate_freepages_range(&cc, outer_start, end); 9186 if (!outer_end) { 9187 ret = -EBUSY; 9188 goto done; 9189 } 9190 9191 /* Free head and tail (if any) */ 9192 if (start != outer_start) 9193 free_contig_range(outer_start, start - outer_start); 9194 if (end != outer_end) 9195 free_contig_range(end, outer_end - end); 9196 9197 done: 9198 undo_isolate_page_range(start, end, migratetype); 9199 return ret; 9200 } 9201 EXPORT_SYMBOL(alloc_contig_range); 9202 9203 static int __alloc_contig_pages(unsigned long start_pfn, 9204 unsigned long nr_pages, gfp_t gfp_mask) 9205 { 9206 unsigned long end_pfn = start_pfn + nr_pages; 9207 9208 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 9209 gfp_mask); 9210 } 9211 9212 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 9213 unsigned long nr_pages) 9214 { 9215 unsigned long i, end_pfn = start_pfn + nr_pages; 9216 struct page *page; 9217 9218 for (i = start_pfn; i < end_pfn; i++) { 9219 page = pfn_to_online_page(i); 9220 if (!page) 9221 return false; 9222 9223 if (page_zone(page) != z) 9224 return false; 9225 9226 if (PageReserved(page)) 9227 return false; 9228 } 9229 return true; 9230 } 9231 9232 static bool zone_spans_last_pfn(const struct zone *zone, 9233 unsigned long start_pfn, unsigned long nr_pages) 9234 { 9235 unsigned long last_pfn = start_pfn + nr_pages - 1; 9236 9237 return zone_spans_pfn(zone, last_pfn); 9238 } 9239 9240 /** 9241 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 9242 * @nr_pages: Number of contiguous pages to allocate 9243 * @gfp_mask: GFP mask to limit search and used during compaction 9244 * @nid: Target node 9245 * @nodemask: Mask for other possible nodes 9246 * 9247 * This routine is a wrapper around alloc_contig_range(). It scans over zones 9248 * on an applicable zonelist to find a contiguous pfn range which can then be 9249 * tried for allocation with alloc_contig_range(). This routine is intended 9250 * for allocation requests which can not be fulfilled with the buddy allocator. 9251 * 9252 * The allocated memory is always aligned to a page boundary. If nr_pages is a 9253 * power of two, then allocated range is also guaranteed to be aligned to same 9254 * nr_pages (e.g. 1GB request would be aligned to 1GB). 9255 * 9256 * Allocated pages can be freed with free_contig_range() or by manually calling 9257 * __free_page() on each allocated page. 9258 * 9259 * Return: pointer to contiguous pages on success, or NULL if not successful. 9260 */ 9261 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, 9262 int nid, nodemask_t *nodemask) 9263 { 9264 unsigned long ret, pfn, flags; 9265 struct zonelist *zonelist; 9266 struct zone *zone; 9267 struct zoneref *z; 9268 9269 zonelist = node_zonelist(nid, gfp_mask); 9270 for_each_zone_zonelist_nodemask(zone, z, zonelist, 9271 gfp_zone(gfp_mask), nodemask) { 9272 spin_lock_irqsave(&zone->lock, flags); 9273 9274 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 9275 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 9276 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 9277 /* 9278 * We release the zone lock here because 9279 * alloc_contig_range() will also lock the zone 9280 * at some point. If there's an allocation 9281 * spinning on this lock, it may win the race 9282 * and cause alloc_contig_range() to fail... 9283 */ 9284 spin_unlock_irqrestore(&zone->lock, flags); 9285 ret = __alloc_contig_pages(pfn, nr_pages, 9286 gfp_mask); 9287 if (!ret) 9288 return pfn_to_page(pfn); 9289 spin_lock_irqsave(&zone->lock, flags); 9290 } 9291 pfn += nr_pages; 9292 } 9293 spin_unlock_irqrestore(&zone->lock, flags); 9294 } 9295 return NULL; 9296 } 9297 #endif /* CONFIG_CONTIG_ALLOC */ 9298 9299 void free_contig_range(unsigned long pfn, unsigned long nr_pages) 9300 { 9301 unsigned long count = 0; 9302 9303 for (; nr_pages--; pfn++) { 9304 struct page *page = pfn_to_page(pfn); 9305 9306 count += page_count(page) != 1; 9307 __free_page(page); 9308 } 9309 WARN(count != 0, "%lu pages are still in use!\n", count); 9310 } 9311 EXPORT_SYMBOL(free_contig_range); 9312 9313 /* 9314 * The zone indicated has a new number of managed_pages; batch sizes and percpu 9315 * page high values need to be recalculated. 9316 */ 9317 void zone_pcp_update(struct zone *zone, int cpu_online) 9318 { 9319 mutex_lock(&pcp_batch_high_lock); 9320 zone_set_pageset_high_and_batch(zone, cpu_online); 9321 mutex_unlock(&pcp_batch_high_lock); 9322 } 9323 9324 /* 9325 * Effectively disable pcplists for the zone by setting the high limit to 0 9326 * and draining all cpus. A concurrent page freeing on another CPU that's about 9327 * to put the page on pcplist will either finish before the drain and the page 9328 * will be drained, or observe the new high limit and skip the pcplist. 9329 * 9330 * Must be paired with a call to zone_pcp_enable(). 9331 */ 9332 void zone_pcp_disable(struct zone *zone) 9333 { 9334 mutex_lock(&pcp_batch_high_lock); 9335 __zone_set_pageset_high_and_batch(zone, 0, 1); 9336 __drain_all_pages(zone, true); 9337 } 9338 9339 void zone_pcp_enable(struct zone *zone) 9340 { 9341 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch); 9342 mutex_unlock(&pcp_batch_high_lock); 9343 } 9344 9345 void zone_pcp_reset(struct zone *zone) 9346 { 9347 int cpu; 9348 struct per_cpu_zonestat *pzstats; 9349 9350 if (zone->per_cpu_pageset != &boot_pageset) { 9351 for_each_online_cpu(cpu) { 9352 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 9353 drain_zonestat(zone, pzstats); 9354 } 9355 free_percpu(zone->per_cpu_pageset); 9356 free_percpu(zone->per_cpu_zonestats); 9357 zone->per_cpu_pageset = &boot_pageset; 9358 zone->per_cpu_zonestats = &boot_zonestats; 9359 } 9360 } 9361 9362 #ifdef CONFIG_MEMORY_HOTREMOVE 9363 /* 9364 * All pages in the range must be in a single zone, must not contain holes, 9365 * must span full sections, and must be isolated before calling this function. 9366 */ 9367 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 9368 { 9369 unsigned long pfn = start_pfn; 9370 struct page *page; 9371 struct zone *zone; 9372 unsigned int order; 9373 unsigned long flags; 9374 9375 offline_mem_sections(pfn, end_pfn); 9376 zone = page_zone(pfn_to_page(pfn)); 9377 spin_lock_irqsave(&zone->lock, flags); 9378 while (pfn < end_pfn) { 9379 page = pfn_to_page(pfn); 9380 /* 9381 * The HWPoisoned page may be not in buddy system, and 9382 * page_count() is not 0. 9383 */ 9384 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 9385 pfn++; 9386 continue; 9387 } 9388 /* 9389 * At this point all remaining PageOffline() pages have a 9390 * reference count of 0 and can simply be skipped. 9391 */ 9392 if (PageOffline(page)) { 9393 BUG_ON(page_count(page)); 9394 BUG_ON(PageBuddy(page)); 9395 pfn++; 9396 continue; 9397 } 9398 9399 BUG_ON(page_count(page)); 9400 BUG_ON(!PageBuddy(page)); 9401 order = buddy_order(page); 9402 del_page_from_free_list(page, zone, order); 9403 pfn += (1 << order); 9404 } 9405 spin_unlock_irqrestore(&zone->lock, flags); 9406 } 9407 #endif 9408 9409 /* 9410 * This function returns a stable result only if called under zone lock. 9411 */ 9412 bool is_free_buddy_page(struct page *page) 9413 { 9414 unsigned long pfn = page_to_pfn(page); 9415 unsigned int order; 9416 9417 for (order = 0; order < MAX_ORDER; order++) { 9418 struct page *page_head = page - (pfn & ((1 << order) - 1)); 9419 9420 if (PageBuddy(page_head) && 9421 buddy_order_unsafe(page_head) >= order) 9422 break; 9423 } 9424 9425 return order < MAX_ORDER; 9426 } 9427 EXPORT_SYMBOL(is_free_buddy_page); 9428 9429 #ifdef CONFIG_MEMORY_FAILURE 9430 /* 9431 * Break down a higher-order page in sub-pages, and keep our target out of 9432 * buddy allocator. 9433 */ 9434 static void break_down_buddy_pages(struct zone *zone, struct page *page, 9435 struct page *target, int low, int high, 9436 int migratetype) 9437 { 9438 unsigned long size = 1 << high; 9439 struct page *current_buddy, *next_page; 9440 9441 while (high > low) { 9442 high--; 9443 size >>= 1; 9444 9445 if (target >= &page[size]) { 9446 next_page = page + size; 9447 current_buddy = page; 9448 } else { 9449 next_page = page; 9450 current_buddy = page + size; 9451 } 9452 9453 if (set_page_guard(zone, current_buddy, high, migratetype)) 9454 continue; 9455 9456 if (current_buddy != target) { 9457 add_to_free_list(current_buddy, zone, high, migratetype); 9458 set_buddy_order(current_buddy, high); 9459 page = next_page; 9460 } 9461 } 9462 } 9463 9464 /* 9465 * Take a page that will be marked as poisoned off the buddy allocator. 9466 */ 9467 bool take_page_off_buddy(struct page *page) 9468 { 9469 struct zone *zone = page_zone(page); 9470 unsigned long pfn = page_to_pfn(page); 9471 unsigned long flags; 9472 unsigned int order; 9473 bool ret = false; 9474 9475 spin_lock_irqsave(&zone->lock, flags); 9476 for (order = 0; order < MAX_ORDER; order++) { 9477 struct page *page_head = page - (pfn & ((1 << order) - 1)); 9478 int page_order = buddy_order(page_head); 9479 9480 if (PageBuddy(page_head) && page_order >= order) { 9481 unsigned long pfn_head = page_to_pfn(page_head); 9482 int migratetype = get_pfnblock_migratetype(page_head, 9483 pfn_head); 9484 9485 del_page_from_free_list(page_head, zone, page_order); 9486 break_down_buddy_pages(zone, page_head, page, 0, 9487 page_order, migratetype); 9488 SetPageHWPoisonTakenOff(page); 9489 if (!is_migrate_isolate(migratetype)) 9490 __mod_zone_freepage_state(zone, -1, migratetype); 9491 ret = true; 9492 break; 9493 } 9494 if (page_count(page_head) > 0) 9495 break; 9496 } 9497 spin_unlock_irqrestore(&zone->lock, flags); 9498 return ret; 9499 } 9500 9501 /* 9502 * Cancel takeoff done by take_page_off_buddy(). 9503 */ 9504 bool put_page_back_buddy(struct page *page) 9505 { 9506 struct zone *zone = page_zone(page); 9507 unsigned long pfn = page_to_pfn(page); 9508 unsigned long flags; 9509 int migratetype = get_pfnblock_migratetype(page, pfn); 9510 bool ret = false; 9511 9512 spin_lock_irqsave(&zone->lock, flags); 9513 if (put_page_testzero(page)) { 9514 ClearPageHWPoisonTakenOff(page); 9515 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE); 9516 if (TestClearPageHWPoison(page)) { 9517 ret = true; 9518 } 9519 } 9520 spin_unlock_irqrestore(&zone->lock, flags); 9521 9522 return ret; 9523 } 9524 #endif 9525 9526 #ifdef CONFIG_ZONE_DMA 9527 bool has_managed_dma(void) 9528 { 9529 struct pglist_data *pgdat; 9530 9531 for_each_online_pgdat(pgdat) { 9532 struct zone *zone = &pgdat->node_zones[ZONE_DMA]; 9533 9534 if (managed_zone(zone)) 9535 return true; 9536 } 9537 return false; 9538 } 9539 #endif /* CONFIG_ZONE_DMA */ 9540