xref: /openbmc/linux/mm/page_alloc.c (revision 6e9b7cd6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/swapops.h>
23 #include <linux/interrupt.h>
24 #include <linux/pagemap.h>
25 #include <linux/jiffies.h>
26 #include <linux/memblock.h>
27 #include <linux/compiler.h>
28 #include <linux/kernel.h>
29 #include <linux/kasan.h>
30 #include <linux/kmsan.h>
31 #include <linux/module.h>
32 #include <linux/suspend.h>
33 #include <linux/pagevec.h>
34 #include <linux/blkdev.h>
35 #include <linux/slab.h>
36 #include <linux/ratelimit.h>
37 #include <linux/oom.h>
38 #include <linux/topology.h>
39 #include <linux/sysctl.h>
40 #include <linux/cpu.h>
41 #include <linux/cpuset.h>
42 #include <linux/memory_hotplug.h>
43 #include <linux/nodemask.h>
44 #include <linux/vmalloc.h>
45 #include <linux/vmstat.h>
46 #include <linux/mempolicy.h>
47 #include <linux/memremap.h>
48 #include <linux/stop_machine.h>
49 #include <linux/random.h>
50 #include <linux/sort.h>
51 #include <linux/pfn.h>
52 #include <linux/backing-dev.h>
53 #include <linux/fault-inject.h>
54 #include <linux/page-isolation.h>
55 #include <linux/debugobjects.h>
56 #include <linux/kmemleak.h>
57 #include <linux/compaction.h>
58 #include <trace/events/kmem.h>
59 #include <trace/events/oom.h>
60 #include <linux/prefetch.h>
61 #include <linux/mm_inline.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/migrate.h>
64 #include <linux/hugetlb.h>
65 #include <linux/sched/rt.h>
66 #include <linux/sched/mm.h>
67 #include <linux/page_owner.h>
68 #include <linux/page_table_check.h>
69 #include <linux/kthread.h>
70 #include <linux/memcontrol.h>
71 #include <linux/ftrace.h>
72 #include <linux/lockdep.h>
73 #include <linux/nmi.h>
74 #include <linux/psi.h>
75 #include <linux/khugepaged.h>
76 #include <linux/delayacct.h>
77 #include <asm/sections.h>
78 #include <asm/tlbflush.h>
79 #include <asm/div64.h>
80 #include "internal.h"
81 #include "shuffle.h"
82 #include "page_reporting.h"
83 #include "swap.h"
84 
85 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
86 typedef int __bitwise fpi_t;
87 
88 /* No special request */
89 #define FPI_NONE		((__force fpi_t)0)
90 
91 /*
92  * Skip free page reporting notification for the (possibly merged) page.
93  * This does not hinder free page reporting from grabbing the page,
94  * reporting it and marking it "reported" -  it only skips notifying
95  * the free page reporting infrastructure about a newly freed page. For
96  * example, used when temporarily pulling a page from a freelist and
97  * putting it back unmodified.
98  */
99 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
100 
101 /*
102  * Place the (possibly merged) page to the tail of the freelist. Will ignore
103  * page shuffling (relevant code - e.g., memory onlining - is expected to
104  * shuffle the whole zone).
105  *
106  * Note: No code should rely on this flag for correctness - it's purely
107  *       to allow for optimizations when handing back either fresh pages
108  *       (memory onlining) or untouched pages (page isolation, free page
109  *       reporting).
110  */
111 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
112 
113 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
114 static DEFINE_MUTEX(pcp_batch_high_lock);
115 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
116 
117 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
118 /*
119  * On SMP, spin_trylock is sufficient protection.
120  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
121  */
122 #define pcp_trylock_prepare(flags)	do { } while (0)
123 #define pcp_trylock_finish(flag)	do { } while (0)
124 #else
125 
126 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
127 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
128 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
129 #endif
130 
131 /*
132  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
133  * a migration causing the wrong PCP to be locked and remote memory being
134  * potentially allocated, pin the task to the CPU for the lookup+lock.
135  * preempt_disable is used on !RT because it is faster than migrate_disable.
136  * migrate_disable is used on RT because otherwise RT spinlock usage is
137  * interfered with and a high priority task cannot preempt the allocator.
138  */
139 #ifndef CONFIG_PREEMPT_RT
140 #define pcpu_task_pin()		preempt_disable()
141 #define pcpu_task_unpin()	preempt_enable()
142 #else
143 #define pcpu_task_pin()		migrate_disable()
144 #define pcpu_task_unpin()	migrate_enable()
145 #endif
146 
147 /*
148  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
149  * Return value should be used with equivalent unlock helper.
150  */
151 #define pcpu_spin_lock(type, member, ptr)				\
152 ({									\
153 	type *_ret;							\
154 	pcpu_task_pin();						\
155 	_ret = this_cpu_ptr(ptr);					\
156 	spin_lock(&_ret->member);					\
157 	_ret;								\
158 })
159 
160 #define pcpu_spin_trylock(type, member, ptr)				\
161 ({									\
162 	type *_ret;							\
163 	pcpu_task_pin();						\
164 	_ret = this_cpu_ptr(ptr);					\
165 	if (!spin_trylock(&_ret->member)) {				\
166 		pcpu_task_unpin();					\
167 		_ret = NULL;						\
168 	}								\
169 	_ret;								\
170 })
171 
172 #define pcpu_spin_unlock(member, ptr)					\
173 ({									\
174 	spin_unlock(&ptr->member);					\
175 	pcpu_task_unpin();						\
176 })
177 
178 /* struct per_cpu_pages specific helpers. */
179 #define pcp_spin_lock(ptr)						\
180 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
181 
182 #define pcp_spin_trylock(ptr)						\
183 	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
184 
185 #define pcp_spin_unlock(ptr)						\
186 	pcpu_spin_unlock(lock, ptr)
187 
188 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
189 DEFINE_PER_CPU(int, numa_node);
190 EXPORT_PER_CPU_SYMBOL(numa_node);
191 #endif
192 
193 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
194 
195 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
196 /*
197  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
198  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
199  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
200  * defined in <linux/topology.h>.
201  */
202 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
203 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
204 #endif
205 
206 static DEFINE_MUTEX(pcpu_drain_mutex);
207 
208 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
209 volatile unsigned long latent_entropy __latent_entropy;
210 EXPORT_SYMBOL(latent_entropy);
211 #endif
212 
213 /*
214  * Array of node states.
215  */
216 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
217 	[N_POSSIBLE] = NODE_MASK_ALL,
218 	[N_ONLINE] = { { [0] = 1UL } },
219 #ifndef CONFIG_NUMA
220 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
221 #ifdef CONFIG_HIGHMEM
222 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
223 #endif
224 	[N_MEMORY] = { { [0] = 1UL } },
225 	[N_CPU] = { { [0] = 1UL } },
226 #endif	/* NUMA */
227 };
228 EXPORT_SYMBOL(node_states);
229 
230 atomic_long_t _totalram_pages __read_mostly;
231 EXPORT_SYMBOL(_totalram_pages);
232 unsigned long totalreserve_pages __read_mostly;
233 unsigned long totalcma_pages __read_mostly;
234 
235 int percpu_pagelist_high_fraction;
236 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
237 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
238 EXPORT_SYMBOL(init_on_alloc);
239 
240 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
241 EXPORT_SYMBOL(init_on_free);
242 
243 /*
244  * A cached value of the page's pageblock's migratetype, used when the page is
245  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
246  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
247  * Also the migratetype set in the page does not necessarily match the pcplist
248  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
249  * other index - this ensures that it will be put on the correct CMA freelist.
250  */
251 static inline int get_pcppage_migratetype(struct page *page)
252 {
253 	return page->index;
254 }
255 
256 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
257 {
258 	page->index = migratetype;
259 }
260 
261 #ifdef CONFIG_PM_SLEEP
262 /*
263  * The following functions are used by the suspend/hibernate code to temporarily
264  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
265  * while devices are suspended.  To avoid races with the suspend/hibernate code,
266  * they should always be called with system_transition_mutex held
267  * (gfp_allowed_mask also should only be modified with system_transition_mutex
268  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
269  * with that modification).
270  */
271 
272 static gfp_t saved_gfp_mask;
273 
274 void pm_restore_gfp_mask(void)
275 {
276 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
277 	if (saved_gfp_mask) {
278 		gfp_allowed_mask = saved_gfp_mask;
279 		saved_gfp_mask = 0;
280 	}
281 }
282 
283 void pm_restrict_gfp_mask(void)
284 {
285 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
286 	WARN_ON(saved_gfp_mask);
287 	saved_gfp_mask = gfp_allowed_mask;
288 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
289 }
290 
291 bool pm_suspended_storage(void)
292 {
293 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
294 		return false;
295 	return true;
296 }
297 #endif /* CONFIG_PM_SLEEP */
298 
299 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
300 unsigned int pageblock_order __read_mostly;
301 #endif
302 
303 static void __free_pages_ok(struct page *page, unsigned int order,
304 			    fpi_t fpi_flags);
305 
306 /*
307  * results with 256, 32 in the lowmem_reserve sysctl:
308  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
309  *	1G machine -> (16M dma, 784M normal, 224M high)
310  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
311  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
312  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
313  *
314  * TBD: should special case ZONE_DMA32 machines here - in those we normally
315  * don't need any ZONE_NORMAL reservation
316  */
317 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
318 #ifdef CONFIG_ZONE_DMA
319 	[ZONE_DMA] = 256,
320 #endif
321 #ifdef CONFIG_ZONE_DMA32
322 	[ZONE_DMA32] = 256,
323 #endif
324 	[ZONE_NORMAL] = 32,
325 #ifdef CONFIG_HIGHMEM
326 	[ZONE_HIGHMEM] = 0,
327 #endif
328 	[ZONE_MOVABLE] = 0,
329 };
330 
331 char * const zone_names[MAX_NR_ZONES] = {
332 #ifdef CONFIG_ZONE_DMA
333 	 "DMA",
334 #endif
335 #ifdef CONFIG_ZONE_DMA32
336 	 "DMA32",
337 #endif
338 	 "Normal",
339 #ifdef CONFIG_HIGHMEM
340 	 "HighMem",
341 #endif
342 	 "Movable",
343 #ifdef CONFIG_ZONE_DEVICE
344 	 "Device",
345 #endif
346 };
347 
348 const char * const migratetype_names[MIGRATE_TYPES] = {
349 	"Unmovable",
350 	"Movable",
351 	"Reclaimable",
352 	"HighAtomic",
353 #ifdef CONFIG_CMA
354 	"CMA",
355 #endif
356 #ifdef CONFIG_MEMORY_ISOLATION
357 	"Isolate",
358 #endif
359 };
360 
361 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
362 	[NULL_COMPOUND_DTOR] = NULL,
363 	[COMPOUND_PAGE_DTOR] = free_compound_page,
364 #ifdef CONFIG_HUGETLB_PAGE
365 	[HUGETLB_PAGE_DTOR] = free_huge_page,
366 #endif
367 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
368 	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
369 #endif
370 };
371 
372 int min_free_kbytes = 1024;
373 int user_min_free_kbytes = -1;
374 int watermark_boost_factor __read_mostly = 15000;
375 int watermark_scale_factor = 10;
376 
377 bool mirrored_kernelcore __initdata_memblock;
378 
379 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
380 int movable_zone;
381 EXPORT_SYMBOL(movable_zone);
382 
383 #if MAX_NUMNODES > 1
384 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
385 unsigned int nr_online_nodes __read_mostly = 1;
386 EXPORT_SYMBOL(nr_node_ids);
387 EXPORT_SYMBOL(nr_online_nodes);
388 #endif
389 
390 int page_group_by_mobility_disabled __read_mostly;
391 
392 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
393 /*
394  * During boot we initialize deferred pages on-demand, as needed, but once
395  * page_alloc_init_late() has finished, the deferred pages are all initialized,
396  * and we can permanently disable that path.
397  */
398 DEFINE_STATIC_KEY_TRUE(deferred_pages);
399 
400 static inline bool deferred_pages_enabled(void)
401 {
402 	return static_branch_unlikely(&deferred_pages);
403 }
404 
405 /*
406  * deferred_grow_zone() is __init, but it is called from
407  * get_page_from_freelist() during early boot until deferred_pages permanently
408  * disables this call. This is why we have refdata wrapper to avoid warning,
409  * and to ensure that the function body gets unloaded.
410  */
411 static bool __ref
412 _deferred_grow_zone(struct zone *zone, unsigned int order)
413 {
414        return deferred_grow_zone(zone, order);
415 }
416 #else
417 static inline bool deferred_pages_enabled(void)
418 {
419 	return false;
420 }
421 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
422 
423 /* Return a pointer to the bitmap storing bits affecting a block of pages */
424 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
425 							unsigned long pfn)
426 {
427 #ifdef CONFIG_SPARSEMEM
428 	return section_to_usemap(__pfn_to_section(pfn));
429 #else
430 	return page_zone(page)->pageblock_flags;
431 #endif /* CONFIG_SPARSEMEM */
432 }
433 
434 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
435 {
436 #ifdef CONFIG_SPARSEMEM
437 	pfn &= (PAGES_PER_SECTION-1);
438 #else
439 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
440 #endif /* CONFIG_SPARSEMEM */
441 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
442 }
443 
444 static __always_inline
445 unsigned long __get_pfnblock_flags_mask(const struct page *page,
446 					unsigned long pfn,
447 					unsigned long mask)
448 {
449 	unsigned long *bitmap;
450 	unsigned long bitidx, word_bitidx;
451 	unsigned long word;
452 
453 	bitmap = get_pageblock_bitmap(page, pfn);
454 	bitidx = pfn_to_bitidx(page, pfn);
455 	word_bitidx = bitidx / BITS_PER_LONG;
456 	bitidx &= (BITS_PER_LONG-1);
457 	/*
458 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
459 	 * a consistent read of the memory array, so that results, even though
460 	 * racy, are not corrupted.
461 	 */
462 	word = READ_ONCE(bitmap[word_bitidx]);
463 	return (word >> bitidx) & mask;
464 }
465 
466 /**
467  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
468  * @page: The page within the block of interest
469  * @pfn: The target page frame number
470  * @mask: mask of bits that the caller is interested in
471  *
472  * Return: pageblock_bits flags
473  */
474 unsigned long get_pfnblock_flags_mask(const struct page *page,
475 					unsigned long pfn, unsigned long mask)
476 {
477 	return __get_pfnblock_flags_mask(page, pfn, mask);
478 }
479 
480 static __always_inline int get_pfnblock_migratetype(const struct page *page,
481 					unsigned long pfn)
482 {
483 	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
484 }
485 
486 /**
487  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
488  * @page: The page within the block of interest
489  * @flags: The flags to set
490  * @pfn: The target page frame number
491  * @mask: mask of bits that the caller is interested in
492  */
493 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
494 					unsigned long pfn,
495 					unsigned long mask)
496 {
497 	unsigned long *bitmap;
498 	unsigned long bitidx, word_bitidx;
499 	unsigned long word;
500 
501 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
502 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
503 
504 	bitmap = get_pageblock_bitmap(page, pfn);
505 	bitidx = pfn_to_bitidx(page, pfn);
506 	word_bitidx = bitidx / BITS_PER_LONG;
507 	bitidx &= (BITS_PER_LONG-1);
508 
509 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
510 
511 	mask <<= bitidx;
512 	flags <<= bitidx;
513 
514 	word = READ_ONCE(bitmap[word_bitidx]);
515 	do {
516 	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
517 }
518 
519 void set_pageblock_migratetype(struct page *page, int migratetype)
520 {
521 	if (unlikely(page_group_by_mobility_disabled &&
522 		     migratetype < MIGRATE_PCPTYPES))
523 		migratetype = MIGRATE_UNMOVABLE;
524 
525 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
526 				page_to_pfn(page), MIGRATETYPE_MASK);
527 }
528 
529 #ifdef CONFIG_DEBUG_VM
530 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
531 {
532 	int ret = 0;
533 	unsigned seq;
534 	unsigned long pfn = page_to_pfn(page);
535 	unsigned long sp, start_pfn;
536 
537 	do {
538 		seq = zone_span_seqbegin(zone);
539 		start_pfn = zone->zone_start_pfn;
540 		sp = zone->spanned_pages;
541 		if (!zone_spans_pfn(zone, pfn))
542 			ret = 1;
543 	} while (zone_span_seqretry(zone, seq));
544 
545 	if (ret)
546 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
547 			pfn, zone_to_nid(zone), zone->name,
548 			start_pfn, start_pfn + sp);
549 
550 	return ret;
551 }
552 
553 static int page_is_consistent(struct zone *zone, struct page *page)
554 {
555 	if (zone != page_zone(page))
556 		return 0;
557 
558 	return 1;
559 }
560 /*
561  * Temporary debugging check for pages not lying within a given zone.
562  */
563 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
564 {
565 	if (page_outside_zone_boundaries(zone, page))
566 		return 1;
567 	if (!page_is_consistent(zone, page))
568 		return 1;
569 
570 	return 0;
571 }
572 #else
573 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
574 {
575 	return 0;
576 }
577 #endif
578 
579 static void bad_page(struct page *page, const char *reason)
580 {
581 	static unsigned long resume;
582 	static unsigned long nr_shown;
583 	static unsigned long nr_unshown;
584 
585 	/*
586 	 * Allow a burst of 60 reports, then keep quiet for that minute;
587 	 * or allow a steady drip of one report per second.
588 	 */
589 	if (nr_shown == 60) {
590 		if (time_before(jiffies, resume)) {
591 			nr_unshown++;
592 			goto out;
593 		}
594 		if (nr_unshown) {
595 			pr_alert(
596 			      "BUG: Bad page state: %lu messages suppressed\n",
597 				nr_unshown);
598 			nr_unshown = 0;
599 		}
600 		nr_shown = 0;
601 	}
602 	if (nr_shown++ == 0)
603 		resume = jiffies + 60 * HZ;
604 
605 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
606 		current->comm, page_to_pfn(page));
607 	dump_page(page, reason);
608 
609 	print_modules();
610 	dump_stack();
611 out:
612 	/* Leave bad fields for debug, except PageBuddy could make trouble */
613 	page_mapcount_reset(page); /* remove PageBuddy */
614 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
615 }
616 
617 static inline unsigned int order_to_pindex(int migratetype, int order)
618 {
619 	int base = order;
620 
621 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
622 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
623 		VM_BUG_ON(order != pageblock_order);
624 		return NR_LOWORDER_PCP_LISTS;
625 	}
626 #else
627 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
628 #endif
629 
630 	return (MIGRATE_PCPTYPES * base) + migratetype;
631 }
632 
633 static inline int pindex_to_order(unsigned int pindex)
634 {
635 	int order = pindex / MIGRATE_PCPTYPES;
636 
637 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
638 	if (pindex == NR_LOWORDER_PCP_LISTS)
639 		order = pageblock_order;
640 #else
641 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
642 #endif
643 
644 	return order;
645 }
646 
647 static inline bool pcp_allowed_order(unsigned int order)
648 {
649 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
650 		return true;
651 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
652 	if (order == pageblock_order)
653 		return true;
654 #endif
655 	return false;
656 }
657 
658 static inline void free_the_page(struct page *page, unsigned int order)
659 {
660 	if (pcp_allowed_order(order))		/* Via pcp? */
661 		free_unref_page(page, order);
662 	else
663 		__free_pages_ok(page, order, FPI_NONE);
664 }
665 
666 /*
667  * Higher-order pages are called "compound pages".  They are structured thusly:
668  *
669  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
670  *
671  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
672  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
673  *
674  * The first tail page's ->compound_dtor holds the offset in array of compound
675  * page destructors. See compound_page_dtors.
676  *
677  * The first tail page's ->compound_order holds the order of allocation.
678  * This usage means that zero-order pages may not be compound.
679  */
680 
681 void free_compound_page(struct page *page)
682 {
683 	mem_cgroup_uncharge(page_folio(page));
684 	free_the_page(page, compound_order(page));
685 }
686 
687 void prep_compound_page(struct page *page, unsigned int order)
688 {
689 	int i;
690 	int nr_pages = 1 << order;
691 
692 	__SetPageHead(page);
693 	for (i = 1; i < nr_pages; i++)
694 		prep_compound_tail(page, i);
695 
696 	prep_compound_head(page, order);
697 }
698 
699 void destroy_large_folio(struct folio *folio)
700 {
701 	enum compound_dtor_id dtor = folio->_folio_dtor;
702 
703 	VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio);
704 	compound_page_dtors[dtor](&folio->page);
705 }
706 
707 #ifdef CONFIG_DEBUG_PAGEALLOC
708 unsigned int _debug_guardpage_minorder;
709 
710 bool _debug_pagealloc_enabled_early __read_mostly
711 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
712 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
713 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
714 EXPORT_SYMBOL(_debug_pagealloc_enabled);
715 
716 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
717 
718 static int __init early_debug_pagealloc(char *buf)
719 {
720 	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
721 }
722 early_param("debug_pagealloc", early_debug_pagealloc);
723 
724 static int __init debug_guardpage_minorder_setup(char *buf)
725 {
726 	unsigned long res;
727 
728 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
729 		pr_err("Bad debug_guardpage_minorder value\n");
730 		return 0;
731 	}
732 	_debug_guardpage_minorder = res;
733 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
734 	return 0;
735 }
736 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
737 
738 static inline bool set_page_guard(struct zone *zone, struct page *page,
739 				unsigned int order, int migratetype)
740 {
741 	if (!debug_guardpage_enabled())
742 		return false;
743 
744 	if (order >= debug_guardpage_minorder())
745 		return false;
746 
747 	__SetPageGuard(page);
748 	INIT_LIST_HEAD(&page->buddy_list);
749 	set_page_private(page, order);
750 	/* Guard pages are not available for any usage */
751 	if (!is_migrate_isolate(migratetype))
752 		__mod_zone_freepage_state(zone, -(1 << order), migratetype);
753 
754 	return true;
755 }
756 
757 static inline void clear_page_guard(struct zone *zone, struct page *page,
758 				unsigned int order, int migratetype)
759 {
760 	if (!debug_guardpage_enabled())
761 		return;
762 
763 	__ClearPageGuard(page);
764 
765 	set_page_private(page, 0);
766 	if (!is_migrate_isolate(migratetype))
767 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
768 }
769 #else
770 static inline bool set_page_guard(struct zone *zone, struct page *page,
771 			unsigned int order, int migratetype) { return false; }
772 static inline void clear_page_guard(struct zone *zone, struct page *page,
773 				unsigned int order, int migratetype) {}
774 #endif
775 
776 static inline void set_buddy_order(struct page *page, unsigned int order)
777 {
778 	set_page_private(page, order);
779 	__SetPageBuddy(page);
780 }
781 
782 #ifdef CONFIG_COMPACTION
783 static inline struct capture_control *task_capc(struct zone *zone)
784 {
785 	struct capture_control *capc = current->capture_control;
786 
787 	return unlikely(capc) &&
788 		!(current->flags & PF_KTHREAD) &&
789 		!capc->page &&
790 		capc->cc->zone == zone ? capc : NULL;
791 }
792 
793 static inline bool
794 compaction_capture(struct capture_control *capc, struct page *page,
795 		   int order, int migratetype)
796 {
797 	if (!capc || order != capc->cc->order)
798 		return false;
799 
800 	/* Do not accidentally pollute CMA or isolated regions*/
801 	if (is_migrate_cma(migratetype) ||
802 	    is_migrate_isolate(migratetype))
803 		return false;
804 
805 	/*
806 	 * Do not let lower order allocations pollute a movable pageblock.
807 	 * This might let an unmovable request use a reclaimable pageblock
808 	 * and vice-versa but no more than normal fallback logic which can
809 	 * have trouble finding a high-order free page.
810 	 */
811 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
812 		return false;
813 
814 	capc->page = page;
815 	return true;
816 }
817 
818 #else
819 static inline struct capture_control *task_capc(struct zone *zone)
820 {
821 	return NULL;
822 }
823 
824 static inline bool
825 compaction_capture(struct capture_control *capc, struct page *page,
826 		   int order, int migratetype)
827 {
828 	return false;
829 }
830 #endif /* CONFIG_COMPACTION */
831 
832 /* Used for pages not on another list */
833 static inline void add_to_free_list(struct page *page, struct zone *zone,
834 				    unsigned int order, int migratetype)
835 {
836 	struct free_area *area = &zone->free_area[order];
837 
838 	list_add(&page->buddy_list, &area->free_list[migratetype]);
839 	area->nr_free++;
840 }
841 
842 /* Used for pages not on another list */
843 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
844 					 unsigned int order, int migratetype)
845 {
846 	struct free_area *area = &zone->free_area[order];
847 
848 	list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
849 	area->nr_free++;
850 }
851 
852 /*
853  * Used for pages which are on another list. Move the pages to the tail
854  * of the list - so the moved pages won't immediately be considered for
855  * allocation again (e.g., optimization for memory onlining).
856  */
857 static inline void move_to_free_list(struct page *page, struct zone *zone,
858 				     unsigned int order, int migratetype)
859 {
860 	struct free_area *area = &zone->free_area[order];
861 
862 	list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
863 }
864 
865 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
866 					   unsigned int order)
867 {
868 	/* clear reported state and update reported page count */
869 	if (page_reported(page))
870 		__ClearPageReported(page);
871 
872 	list_del(&page->buddy_list);
873 	__ClearPageBuddy(page);
874 	set_page_private(page, 0);
875 	zone->free_area[order].nr_free--;
876 }
877 
878 static inline struct page *get_page_from_free_area(struct free_area *area,
879 					    int migratetype)
880 {
881 	return list_first_entry_or_null(&area->free_list[migratetype],
882 					struct page, lru);
883 }
884 
885 /*
886  * If this is not the largest possible page, check if the buddy
887  * of the next-highest order is free. If it is, it's possible
888  * that pages are being freed that will coalesce soon. In case,
889  * that is happening, add the free page to the tail of the list
890  * so it's less likely to be used soon and more likely to be merged
891  * as a higher order page
892  */
893 static inline bool
894 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
895 		   struct page *page, unsigned int order)
896 {
897 	unsigned long higher_page_pfn;
898 	struct page *higher_page;
899 
900 	if (order >= MAX_ORDER - 1)
901 		return false;
902 
903 	higher_page_pfn = buddy_pfn & pfn;
904 	higher_page = page + (higher_page_pfn - pfn);
905 
906 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
907 			NULL) != NULL;
908 }
909 
910 /*
911  * Freeing function for a buddy system allocator.
912  *
913  * The concept of a buddy system is to maintain direct-mapped table
914  * (containing bit values) for memory blocks of various "orders".
915  * The bottom level table contains the map for the smallest allocatable
916  * units of memory (here, pages), and each level above it describes
917  * pairs of units from the levels below, hence, "buddies".
918  * At a high level, all that happens here is marking the table entry
919  * at the bottom level available, and propagating the changes upward
920  * as necessary, plus some accounting needed to play nicely with other
921  * parts of the VM system.
922  * At each level, we keep a list of pages, which are heads of continuous
923  * free pages of length of (1 << order) and marked with PageBuddy.
924  * Page's order is recorded in page_private(page) field.
925  * So when we are allocating or freeing one, we can derive the state of the
926  * other.  That is, if we allocate a small block, and both were
927  * free, the remainder of the region must be split into blocks.
928  * If a block is freed, and its buddy is also free, then this
929  * triggers coalescing into a block of larger size.
930  *
931  * -- nyc
932  */
933 
934 static inline void __free_one_page(struct page *page,
935 		unsigned long pfn,
936 		struct zone *zone, unsigned int order,
937 		int migratetype, fpi_t fpi_flags)
938 {
939 	struct capture_control *capc = task_capc(zone);
940 	unsigned long buddy_pfn = 0;
941 	unsigned long combined_pfn;
942 	struct page *buddy;
943 	bool to_tail;
944 
945 	VM_BUG_ON(!zone_is_initialized(zone));
946 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
947 
948 	VM_BUG_ON(migratetype == -1);
949 	if (likely(!is_migrate_isolate(migratetype)))
950 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
951 
952 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
953 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
954 
955 	while (order < MAX_ORDER) {
956 		if (compaction_capture(capc, page, order, migratetype)) {
957 			__mod_zone_freepage_state(zone, -(1 << order),
958 								migratetype);
959 			return;
960 		}
961 
962 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
963 		if (!buddy)
964 			goto done_merging;
965 
966 		if (unlikely(order >= pageblock_order)) {
967 			/*
968 			 * We want to prevent merge between freepages on pageblock
969 			 * without fallbacks and normal pageblock. Without this,
970 			 * pageblock isolation could cause incorrect freepage or CMA
971 			 * accounting or HIGHATOMIC accounting.
972 			 */
973 			int buddy_mt = get_pageblock_migratetype(buddy);
974 
975 			if (migratetype != buddy_mt
976 					&& (!migratetype_is_mergeable(migratetype) ||
977 						!migratetype_is_mergeable(buddy_mt)))
978 				goto done_merging;
979 		}
980 
981 		/*
982 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
983 		 * merge with it and move up one order.
984 		 */
985 		if (page_is_guard(buddy))
986 			clear_page_guard(zone, buddy, order, migratetype);
987 		else
988 			del_page_from_free_list(buddy, zone, order);
989 		combined_pfn = buddy_pfn & pfn;
990 		page = page + (combined_pfn - pfn);
991 		pfn = combined_pfn;
992 		order++;
993 	}
994 
995 done_merging:
996 	set_buddy_order(page, order);
997 
998 	if (fpi_flags & FPI_TO_TAIL)
999 		to_tail = true;
1000 	else if (is_shuffle_order(order))
1001 		to_tail = shuffle_pick_tail();
1002 	else
1003 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1004 
1005 	if (to_tail)
1006 		add_to_free_list_tail(page, zone, order, migratetype);
1007 	else
1008 		add_to_free_list(page, zone, order, migratetype);
1009 
1010 	/* Notify page reporting subsystem of freed page */
1011 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1012 		page_reporting_notify_free(order);
1013 }
1014 
1015 /**
1016  * split_free_page() -- split a free page at split_pfn_offset
1017  * @free_page:		the original free page
1018  * @order:		the order of the page
1019  * @split_pfn_offset:	split offset within the page
1020  *
1021  * Return -ENOENT if the free page is changed, otherwise 0
1022  *
1023  * It is used when the free page crosses two pageblocks with different migratetypes
1024  * at split_pfn_offset within the page. The split free page will be put into
1025  * separate migratetype lists afterwards. Otherwise, the function achieves
1026  * nothing.
1027  */
1028 int split_free_page(struct page *free_page,
1029 			unsigned int order, unsigned long split_pfn_offset)
1030 {
1031 	struct zone *zone = page_zone(free_page);
1032 	unsigned long free_page_pfn = page_to_pfn(free_page);
1033 	unsigned long pfn;
1034 	unsigned long flags;
1035 	int free_page_order;
1036 	int mt;
1037 	int ret = 0;
1038 
1039 	if (split_pfn_offset == 0)
1040 		return ret;
1041 
1042 	spin_lock_irqsave(&zone->lock, flags);
1043 
1044 	if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
1045 		ret = -ENOENT;
1046 		goto out;
1047 	}
1048 
1049 	mt = get_pageblock_migratetype(free_page);
1050 	if (likely(!is_migrate_isolate(mt)))
1051 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
1052 
1053 	del_page_from_free_list(free_page, zone, order);
1054 	for (pfn = free_page_pfn;
1055 	     pfn < free_page_pfn + (1UL << order);) {
1056 		int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
1057 
1058 		free_page_order = min_t(unsigned int,
1059 					pfn ? __ffs(pfn) : order,
1060 					__fls(split_pfn_offset));
1061 		__free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
1062 				mt, FPI_NONE);
1063 		pfn += 1UL << free_page_order;
1064 		split_pfn_offset -= (1UL << free_page_order);
1065 		/* we have done the first part, now switch to second part */
1066 		if (split_pfn_offset == 0)
1067 			split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
1068 	}
1069 out:
1070 	spin_unlock_irqrestore(&zone->lock, flags);
1071 	return ret;
1072 }
1073 /*
1074  * A bad page could be due to a number of fields. Instead of multiple branches,
1075  * try and check multiple fields with one check. The caller must do a detailed
1076  * check if necessary.
1077  */
1078 static inline bool page_expected_state(struct page *page,
1079 					unsigned long check_flags)
1080 {
1081 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1082 		return false;
1083 
1084 	if (unlikely((unsigned long)page->mapping |
1085 			page_ref_count(page) |
1086 #ifdef CONFIG_MEMCG
1087 			page->memcg_data |
1088 #endif
1089 			(page->flags & check_flags)))
1090 		return false;
1091 
1092 	return true;
1093 }
1094 
1095 static const char *page_bad_reason(struct page *page, unsigned long flags)
1096 {
1097 	const char *bad_reason = NULL;
1098 
1099 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1100 		bad_reason = "nonzero mapcount";
1101 	if (unlikely(page->mapping != NULL))
1102 		bad_reason = "non-NULL mapping";
1103 	if (unlikely(page_ref_count(page) != 0))
1104 		bad_reason = "nonzero _refcount";
1105 	if (unlikely(page->flags & flags)) {
1106 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1107 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1108 		else
1109 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1110 	}
1111 #ifdef CONFIG_MEMCG
1112 	if (unlikely(page->memcg_data))
1113 		bad_reason = "page still charged to cgroup";
1114 #endif
1115 	return bad_reason;
1116 }
1117 
1118 static void free_page_is_bad_report(struct page *page)
1119 {
1120 	bad_page(page,
1121 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1122 }
1123 
1124 static inline bool free_page_is_bad(struct page *page)
1125 {
1126 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1127 		return false;
1128 
1129 	/* Something has gone sideways, find it */
1130 	free_page_is_bad_report(page);
1131 	return true;
1132 }
1133 
1134 static int free_tail_page_prepare(struct page *head_page, struct page *page)
1135 {
1136 	struct folio *folio = (struct folio *)head_page;
1137 	int ret = 1;
1138 
1139 	/*
1140 	 * We rely page->lru.next never has bit 0 set, unless the page
1141 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1142 	 */
1143 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1144 
1145 	if (!static_branch_unlikely(&check_pages_enabled)) {
1146 		ret = 0;
1147 		goto out;
1148 	}
1149 	switch (page - head_page) {
1150 	case 1:
1151 		/* the first tail page: these may be in place of ->mapping */
1152 		if (unlikely(folio_entire_mapcount(folio))) {
1153 			bad_page(page, "nonzero entire_mapcount");
1154 			goto out;
1155 		}
1156 		if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
1157 			bad_page(page, "nonzero nr_pages_mapped");
1158 			goto out;
1159 		}
1160 		if (unlikely(atomic_read(&folio->_pincount))) {
1161 			bad_page(page, "nonzero pincount");
1162 			goto out;
1163 		}
1164 		break;
1165 	case 2:
1166 		/*
1167 		 * the second tail page: ->mapping is
1168 		 * deferred_list.next -- ignore value.
1169 		 */
1170 		break;
1171 	default:
1172 		if (page->mapping != TAIL_MAPPING) {
1173 			bad_page(page, "corrupted mapping in tail page");
1174 			goto out;
1175 		}
1176 		break;
1177 	}
1178 	if (unlikely(!PageTail(page))) {
1179 		bad_page(page, "PageTail not set");
1180 		goto out;
1181 	}
1182 	if (unlikely(compound_head(page) != head_page)) {
1183 		bad_page(page, "compound_head not consistent");
1184 		goto out;
1185 	}
1186 	ret = 0;
1187 out:
1188 	page->mapping = NULL;
1189 	clear_compound_head(page);
1190 	return ret;
1191 }
1192 
1193 /*
1194  * Skip KASAN memory poisoning when either:
1195  *
1196  * 1. For generic KASAN: deferred memory initialization has not yet completed.
1197  *    Tag-based KASAN modes skip pages freed via deferred memory initialization
1198  *    using page tags instead (see below).
1199  * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1200  *    that error detection is disabled for accesses via the page address.
1201  *
1202  * Pages will have match-all tags in the following circumstances:
1203  *
1204  * 1. Pages are being initialized for the first time, including during deferred
1205  *    memory init; see the call to page_kasan_tag_reset in __init_single_page.
1206  * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1207  *    exception of pages unpoisoned by kasan_unpoison_vmalloc.
1208  * 3. The allocation was excluded from being checked due to sampling,
1209  *    see the call to kasan_unpoison_pages.
1210  *
1211  * Poisoning pages during deferred memory init will greatly lengthen the
1212  * process and cause problem in large memory systems as the deferred pages
1213  * initialization is done with interrupt disabled.
1214  *
1215  * Assuming that there will be no reference to those newly initialized
1216  * pages before they are ever allocated, this should have no effect on
1217  * KASAN memory tracking as the poison will be properly inserted at page
1218  * allocation time. The only corner case is when pages are allocated by
1219  * on-demand allocation and then freed again before the deferred pages
1220  * initialization is done, but this is not likely to happen.
1221  */
1222 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1223 {
1224 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1225 		return deferred_pages_enabled();
1226 
1227 	return page_kasan_tag(page) == 0xff;
1228 }
1229 
1230 static void kernel_init_pages(struct page *page, int numpages)
1231 {
1232 	int i;
1233 
1234 	/* s390's use of memset() could override KASAN redzones. */
1235 	kasan_disable_current();
1236 	for (i = 0; i < numpages; i++)
1237 		clear_highpage_kasan_tagged(page + i);
1238 	kasan_enable_current();
1239 }
1240 
1241 static __always_inline bool free_pages_prepare(struct page *page,
1242 			unsigned int order, fpi_t fpi_flags)
1243 {
1244 	int bad = 0;
1245 	bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1246 	bool init = want_init_on_free();
1247 
1248 	VM_BUG_ON_PAGE(PageTail(page), page);
1249 
1250 	trace_mm_page_free(page, order);
1251 	kmsan_free_page(page, order);
1252 
1253 	if (unlikely(PageHWPoison(page)) && !order) {
1254 		/*
1255 		 * Do not let hwpoison pages hit pcplists/buddy
1256 		 * Untie memcg state and reset page's owner
1257 		 */
1258 		if (memcg_kmem_online() && PageMemcgKmem(page))
1259 			__memcg_kmem_uncharge_page(page, order);
1260 		reset_page_owner(page, order);
1261 		page_table_check_free(page, order);
1262 		return false;
1263 	}
1264 
1265 	/*
1266 	 * Check tail pages before head page information is cleared to
1267 	 * avoid checking PageCompound for order-0 pages.
1268 	 */
1269 	if (unlikely(order)) {
1270 		bool compound = PageCompound(page);
1271 		int i;
1272 
1273 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1274 
1275 		if (compound)
1276 			ClearPageHasHWPoisoned(page);
1277 		for (i = 1; i < (1 << order); i++) {
1278 			if (compound)
1279 				bad += free_tail_page_prepare(page, page + i);
1280 			if (is_check_pages_enabled()) {
1281 				if (free_page_is_bad(page + i)) {
1282 					bad++;
1283 					continue;
1284 				}
1285 			}
1286 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1287 		}
1288 	}
1289 	if (PageMappingFlags(page))
1290 		page->mapping = NULL;
1291 	if (memcg_kmem_online() && PageMemcgKmem(page))
1292 		__memcg_kmem_uncharge_page(page, order);
1293 	if (is_check_pages_enabled()) {
1294 		if (free_page_is_bad(page))
1295 			bad++;
1296 		if (bad)
1297 			return false;
1298 	}
1299 
1300 	page_cpupid_reset_last(page);
1301 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1302 	reset_page_owner(page, order);
1303 	page_table_check_free(page, order);
1304 
1305 	if (!PageHighMem(page)) {
1306 		debug_check_no_locks_freed(page_address(page),
1307 					   PAGE_SIZE << order);
1308 		debug_check_no_obj_freed(page_address(page),
1309 					   PAGE_SIZE << order);
1310 	}
1311 
1312 	kernel_poison_pages(page, 1 << order);
1313 
1314 	/*
1315 	 * As memory initialization might be integrated into KASAN,
1316 	 * KASAN poisoning and memory initialization code must be
1317 	 * kept together to avoid discrepancies in behavior.
1318 	 *
1319 	 * With hardware tag-based KASAN, memory tags must be set before the
1320 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1321 	 */
1322 	if (!skip_kasan_poison) {
1323 		kasan_poison_pages(page, order, init);
1324 
1325 		/* Memory is already initialized if KASAN did it internally. */
1326 		if (kasan_has_integrated_init())
1327 			init = false;
1328 	}
1329 	if (init)
1330 		kernel_init_pages(page, 1 << order);
1331 
1332 	/*
1333 	 * arch_free_page() can make the page's contents inaccessible.  s390
1334 	 * does this.  So nothing which can access the page's contents should
1335 	 * happen after this.
1336 	 */
1337 	arch_free_page(page, order);
1338 
1339 	debug_pagealloc_unmap_pages(page, 1 << order);
1340 
1341 	return true;
1342 }
1343 
1344 /*
1345  * Frees a number of pages from the PCP lists
1346  * Assumes all pages on list are in same zone.
1347  * count is the number of pages to free.
1348  */
1349 static void free_pcppages_bulk(struct zone *zone, int count,
1350 					struct per_cpu_pages *pcp,
1351 					int pindex)
1352 {
1353 	unsigned long flags;
1354 	int min_pindex = 0;
1355 	int max_pindex = NR_PCP_LISTS - 1;
1356 	unsigned int order;
1357 	bool isolated_pageblocks;
1358 	struct page *page;
1359 
1360 	/*
1361 	 * Ensure proper count is passed which otherwise would stuck in the
1362 	 * below while (list_empty(list)) loop.
1363 	 */
1364 	count = min(pcp->count, count);
1365 
1366 	/* Ensure requested pindex is drained first. */
1367 	pindex = pindex - 1;
1368 
1369 	spin_lock_irqsave(&zone->lock, flags);
1370 	isolated_pageblocks = has_isolate_pageblock(zone);
1371 
1372 	while (count > 0) {
1373 		struct list_head *list;
1374 		int nr_pages;
1375 
1376 		/* Remove pages from lists in a round-robin fashion. */
1377 		do {
1378 			if (++pindex > max_pindex)
1379 				pindex = min_pindex;
1380 			list = &pcp->lists[pindex];
1381 			if (!list_empty(list))
1382 				break;
1383 
1384 			if (pindex == max_pindex)
1385 				max_pindex--;
1386 			if (pindex == min_pindex)
1387 				min_pindex++;
1388 		} while (1);
1389 
1390 		order = pindex_to_order(pindex);
1391 		nr_pages = 1 << order;
1392 		do {
1393 			int mt;
1394 
1395 			page = list_last_entry(list, struct page, pcp_list);
1396 			mt = get_pcppage_migratetype(page);
1397 
1398 			/* must delete to avoid corrupting pcp list */
1399 			list_del(&page->pcp_list);
1400 			count -= nr_pages;
1401 			pcp->count -= nr_pages;
1402 
1403 			/* MIGRATE_ISOLATE page should not go to pcplists */
1404 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1405 			/* Pageblock could have been isolated meanwhile */
1406 			if (unlikely(isolated_pageblocks))
1407 				mt = get_pageblock_migratetype(page);
1408 
1409 			__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1410 			trace_mm_page_pcpu_drain(page, order, mt);
1411 		} while (count > 0 && !list_empty(list));
1412 	}
1413 
1414 	spin_unlock_irqrestore(&zone->lock, flags);
1415 }
1416 
1417 static void free_one_page(struct zone *zone,
1418 				struct page *page, unsigned long pfn,
1419 				unsigned int order,
1420 				int migratetype, fpi_t fpi_flags)
1421 {
1422 	unsigned long flags;
1423 
1424 	spin_lock_irqsave(&zone->lock, flags);
1425 	if (unlikely(has_isolate_pageblock(zone) ||
1426 		is_migrate_isolate(migratetype))) {
1427 		migratetype = get_pfnblock_migratetype(page, pfn);
1428 	}
1429 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1430 	spin_unlock_irqrestore(&zone->lock, flags);
1431 }
1432 
1433 static void __free_pages_ok(struct page *page, unsigned int order,
1434 			    fpi_t fpi_flags)
1435 {
1436 	unsigned long flags;
1437 	int migratetype;
1438 	unsigned long pfn = page_to_pfn(page);
1439 	struct zone *zone = page_zone(page);
1440 
1441 	if (!free_pages_prepare(page, order, fpi_flags))
1442 		return;
1443 
1444 	/*
1445 	 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here
1446 	 * is used to avoid calling get_pfnblock_migratetype() under the lock.
1447 	 * This will reduce the lock holding time.
1448 	 */
1449 	migratetype = get_pfnblock_migratetype(page, pfn);
1450 
1451 	spin_lock_irqsave(&zone->lock, flags);
1452 	if (unlikely(has_isolate_pageblock(zone) ||
1453 		is_migrate_isolate(migratetype))) {
1454 		migratetype = get_pfnblock_migratetype(page, pfn);
1455 	}
1456 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1457 	spin_unlock_irqrestore(&zone->lock, flags);
1458 
1459 	__count_vm_events(PGFREE, 1 << order);
1460 }
1461 
1462 void __free_pages_core(struct page *page, unsigned int order)
1463 {
1464 	unsigned int nr_pages = 1 << order;
1465 	struct page *p = page;
1466 	unsigned int loop;
1467 
1468 	/*
1469 	 * When initializing the memmap, __init_single_page() sets the refcount
1470 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1471 	 * refcount of all involved pages to 0.
1472 	 */
1473 	prefetchw(p);
1474 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1475 		prefetchw(p + 1);
1476 		__ClearPageReserved(p);
1477 		set_page_count(p, 0);
1478 	}
1479 	__ClearPageReserved(p);
1480 	set_page_count(p, 0);
1481 
1482 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1483 
1484 	/*
1485 	 * Bypass PCP and place fresh pages right to the tail, primarily
1486 	 * relevant for memory onlining.
1487 	 */
1488 	__free_pages_ok(page, order, FPI_TO_TAIL);
1489 }
1490 
1491 /*
1492  * Check that the whole (or subset of) a pageblock given by the interval of
1493  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1494  * with the migration of free compaction scanner.
1495  *
1496  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1497  *
1498  * It's possible on some configurations to have a setup like node0 node1 node0
1499  * i.e. it's possible that all pages within a zones range of pages do not
1500  * belong to a single zone. We assume that a border between node0 and node1
1501  * can occur within a single pageblock, but not a node0 node1 node0
1502  * interleaving within a single pageblock. It is therefore sufficient to check
1503  * the first and last page of a pageblock and avoid checking each individual
1504  * page in a pageblock.
1505  *
1506  * Note: the function may return non-NULL struct page even for a page block
1507  * which contains a memory hole (i.e. there is no physical memory for a subset
1508  * of the pfn range). For example, if the pageblock order is MAX_ORDER, which
1509  * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1510  * even though the start pfn is online and valid. This should be safe most of
1511  * the time because struct pages are still initialized via init_unavailable_range()
1512  * and pfn walkers shouldn't touch any physical memory range for which they do
1513  * not recognize any specific metadata in struct pages.
1514  */
1515 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1516 				     unsigned long end_pfn, struct zone *zone)
1517 {
1518 	struct page *start_page;
1519 	struct page *end_page;
1520 
1521 	/* end_pfn is one past the range we are checking */
1522 	end_pfn--;
1523 
1524 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1525 		return NULL;
1526 
1527 	start_page = pfn_to_online_page(start_pfn);
1528 	if (!start_page)
1529 		return NULL;
1530 
1531 	if (page_zone(start_page) != zone)
1532 		return NULL;
1533 
1534 	end_page = pfn_to_page(end_pfn);
1535 
1536 	/* This gives a shorter code than deriving page_zone(end_page) */
1537 	if (page_zone_id(start_page) != page_zone_id(end_page))
1538 		return NULL;
1539 
1540 	return start_page;
1541 }
1542 
1543 void set_zone_contiguous(struct zone *zone)
1544 {
1545 	unsigned long block_start_pfn = zone->zone_start_pfn;
1546 	unsigned long block_end_pfn;
1547 
1548 	block_end_pfn = pageblock_end_pfn(block_start_pfn);
1549 	for (; block_start_pfn < zone_end_pfn(zone);
1550 			block_start_pfn = block_end_pfn,
1551 			 block_end_pfn += pageblock_nr_pages) {
1552 
1553 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1554 
1555 		if (!__pageblock_pfn_to_page(block_start_pfn,
1556 					     block_end_pfn, zone))
1557 			return;
1558 		cond_resched();
1559 	}
1560 
1561 	/* We confirm that there is no hole */
1562 	zone->contiguous = true;
1563 }
1564 
1565 void clear_zone_contiguous(struct zone *zone)
1566 {
1567 	zone->contiguous = false;
1568 }
1569 
1570 /*
1571  * The order of subdivision here is critical for the IO subsystem.
1572  * Please do not alter this order without good reasons and regression
1573  * testing. Specifically, as large blocks of memory are subdivided,
1574  * the order in which smaller blocks are delivered depends on the order
1575  * they're subdivided in this function. This is the primary factor
1576  * influencing the order in which pages are delivered to the IO
1577  * subsystem according to empirical testing, and this is also justified
1578  * by considering the behavior of a buddy system containing a single
1579  * large block of memory acted on by a series of small allocations.
1580  * This behavior is a critical factor in sglist merging's success.
1581  *
1582  * -- nyc
1583  */
1584 static inline void expand(struct zone *zone, struct page *page,
1585 	int low, int high, int migratetype)
1586 {
1587 	unsigned long size = 1 << high;
1588 
1589 	while (high > low) {
1590 		high--;
1591 		size >>= 1;
1592 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1593 
1594 		/*
1595 		 * Mark as guard pages (or page), that will allow to
1596 		 * merge back to allocator when buddy will be freed.
1597 		 * Corresponding page table entries will not be touched,
1598 		 * pages will stay not present in virtual address space
1599 		 */
1600 		if (set_page_guard(zone, &page[size], high, migratetype))
1601 			continue;
1602 
1603 		add_to_free_list(&page[size], zone, high, migratetype);
1604 		set_buddy_order(&page[size], high);
1605 	}
1606 }
1607 
1608 static void check_new_page_bad(struct page *page)
1609 {
1610 	if (unlikely(page->flags & __PG_HWPOISON)) {
1611 		/* Don't complain about hwpoisoned pages */
1612 		page_mapcount_reset(page); /* remove PageBuddy */
1613 		return;
1614 	}
1615 
1616 	bad_page(page,
1617 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1618 }
1619 
1620 /*
1621  * This page is about to be returned from the page allocator
1622  */
1623 static int check_new_page(struct page *page)
1624 {
1625 	if (likely(page_expected_state(page,
1626 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1627 		return 0;
1628 
1629 	check_new_page_bad(page);
1630 	return 1;
1631 }
1632 
1633 static inline bool check_new_pages(struct page *page, unsigned int order)
1634 {
1635 	if (is_check_pages_enabled()) {
1636 		for (int i = 0; i < (1 << order); i++) {
1637 			struct page *p = page + i;
1638 
1639 			if (check_new_page(p))
1640 				return true;
1641 		}
1642 	}
1643 
1644 	return false;
1645 }
1646 
1647 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1648 {
1649 	/* Don't skip if a software KASAN mode is enabled. */
1650 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1651 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1652 		return false;
1653 
1654 	/* Skip, if hardware tag-based KASAN is not enabled. */
1655 	if (!kasan_hw_tags_enabled())
1656 		return true;
1657 
1658 	/*
1659 	 * With hardware tag-based KASAN enabled, skip if this has been
1660 	 * requested via __GFP_SKIP_KASAN.
1661 	 */
1662 	return flags & __GFP_SKIP_KASAN;
1663 }
1664 
1665 static inline bool should_skip_init(gfp_t flags)
1666 {
1667 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
1668 	if (!kasan_hw_tags_enabled())
1669 		return false;
1670 
1671 	/* For hardware tag-based KASAN, skip if requested. */
1672 	return (flags & __GFP_SKIP_ZERO);
1673 }
1674 
1675 inline void post_alloc_hook(struct page *page, unsigned int order,
1676 				gfp_t gfp_flags)
1677 {
1678 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1679 			!should_skip_init(gfp_flags);
1680 	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1681 	int i;
1682 
1683 	set_page_private(page, 0);
1684 	set_page_refcounted(page);
1685 
1686 	arch_alloc_page(page, order);
1687 	debug_pagealloc_map_pages(page, 1 << order);
1688 
1689 	/*
1690 	 * Page unpoisoning must happen before memory initialization.
1691 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1692 	 * allocations and the page unpoisoning code will complain.
1693 	 */
1694 	kernel_unpoison_pages(page, 1 << order);
1695 
1696 	/*
1697 	 * As memory initialization might be integrated into KASAN,
1698 	 * KASAN unpoisoning and memory initializion code must be
1699 	 * kept together to avoid discrepancies in behavior.
1700 	 */
1701 
1702 	/*
1703 	 * If memory tags should be zeroed
1704 	 * (which happens only when memory should be initialized as well).
1705 	 */
1706 	if (zero_tags) {
1707 		/* Initialize both memory and memory tags. */
1708 		for (i = 0; i != 1 << order; ++i)
1709 			tag_clear_highpage(page + i);
1710 
1711 		/* Take note that memory was initialized by the loop above. */
1712 		init = false;
1713 	}
1714 	if (!should_skip_kasan_unpoison(gfp_flags) &&
1715 	    kasan_unpoison_pages(page, order, init)) {
1716 		/* Take note that memory was initialized by KASAN. */
1717 		if (kasan_has_integrated_init())
1718 			init = false;
1719 	} else {
1720 		/*
1721 		 * If memory tags have not been set by KASAN, reset the page
1722 		 * tags to ensure page_address() dereferencing does not fault.
1723 		 */
1724 		for (i = 0; i != 1 << order; ++i)
1725 			page_kasan_tag_reset(page + i);
1726 	}
1727 	/* If memory is still not initialized, initialize it now. */
1728 	if (init)
1729 		kernel_init_pages(page, 1 << order);
1730 
1731 	set_page_owner(page, order, gfp_flags);
1732 	page_table_check_alloc(page, order);
1733 }
1734 
1735 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1736 							unsigned int alloc_flags)
1737 {
1738 	post_alloc_hook(page, order, gfp_flags);
1739 
1740 	if (order && (gfp_flags & __GFP_COMP))
1741 		prep_compound_page(page, order);
1742 
1743 	/*
1744 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1745 	 * allocate the page. The expectation is that the caller is taking
1746 	 * steps that will free more memory. The caller should avoid the page
1747 	 * being used for !PFMEMALLOC purposes.
1748 	 */
1749 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1750 		set_page_pfmemalloc(page);
1751 	else
1752 		clear_page_pfmemalloc(page);
1753 }
1754 
1755 /*
1756  * Go through the free lists for the given migratetype and remove
1757  * the smallest available page from the freelists
1758  */
1759 static __always_inline
1760 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1761 						int migratetype)
1762 {
1763 	unsigned int current_order;
1764 	struct free_area *area;
1765 	struct page *page;
1766 
1767 	/* Find a page of the appropriate size in the preferred list */
1768 	for (current_order = order; current_order <= MAX_ORDER; ++current_order) {
1769 		area = &(zone->free_area[current_order]);
1770 		page = get_page_from_free_area(area, migratetype);
1771 		if (!page)
1772 			continue;
1773 		del_page_from_free_list(page, zone, current_order);
1774 		expand(zone, page, order, current_order, migratetype);
1775 		set_pcppage_migratetype(page, migratetype);
1776 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
1777 				pcp_allowed_order(order) &&
1778 				migratetype < MIGRATE_PCPTYPES);
1779 		return page;
1780 	}
1781 
1782 	return NULL;
1783 }
1784 
1785 
1786 /*
1787  * This array describes the order lists are fallen back to when
1788  * the free lists for the desirable migrate type are depleted
1789  *
1790  * The other migratetypes do not have fallbacks.
1791  */
1792 static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = {
1793 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
1794 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1795 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
1796 };
1797 
1798 #ifdef CONFIG_CMA
1799 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1800 					unsigned int order)
1801 {
1802 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1803 }
1804 #else
1805 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1806 					unsigned int order) { return NULL; }
1807 #endif
1808 
1809 /*
1810  * Move the free pages in a range to the freelist tail of the requested type.
1811  * Note that start_page and end_pages are not aligned on a pageblock
1812  * boundary. If alignment is required, use move_freepages_block()
1813  */
1814 static int move_freepages(struct zone *zone,
1815 			  unsigned long start_pfn, unsigned long end_pfn,
1816 			  int migratetype, int *num_movable)
1817 {
1818 	struct page *page;
1819 	unsigned long pfn;
1820 	unsigned int order;
1821 	int pages_moved = 0;
1822 
1823 	for (pfn = start_pfn; pfn <= end_pfn;) {
1824 		page = pfn_to_page(pfn);
1825 		if (!PageBuddy(page)) {
1826 			/*
1827 			 * We assume that pages that could be isolated for
1828 			 * migration are movable. But we don't actually try
1829 			 * isolating, as that would be expensive.
1830 			 */
1831 			if (num_movable &&
1832 					(PageLRU(page) || __PageMovable(page)))
1833 				(*num_movable)++;
1834 			pfn++;
1835 			continue;
1836 		}
1837 
1838 		/* Make sure we are not inadvertently changing nodes */
1839 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1840 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1841 
1842 		order = buddy_order(page);
1843 		move_to_free_list(page, zone, order, migratetype);
1844 		pfn += 1 << order;
1845 		pages_moved += 1 << order;
1846 	}
1847 
1848 	return pages_moved;
1849 }
1850 
1851 int move_freepages_block(struct zone *zone, struct page *page,
1852 				int migratetype, int *num_movable)
1853 {
1854 	unsigned long start_pfn, end_pfn, pfn;
1855 
1856 	if (num_movable)
1857 		*num_movable = 0;
1858 
1859 	pfn = page_to_pfn(page);
1860 	start_pfn = pageblock_start_pfn(pfn);
1861 	end_pfn = pageblock_end_pfn(pfn) - 1;
1862 
1863 	/* Do not cross zone boundaries */
1864 	if (!zone_spans_pfn(zone, start_pfn))
1865 		start_pfn = pfn;
1866 	if (!zone_spans_pfn(zone, end_pfn))
1867 		return 0;
1868 
1869 	return move_freepages(zone, start_pfn, end_pfn, migratetype,
1870 								num_movable);
1871 }
1872 
1873 static void change_pageblock_range(struct page *pageblock_page,
1874 					int start_order, int migratetype)
1875 {
1876 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1877 
1878 	while (nr_pageblocks--) {
1879 		set_pageblock_migratetype(pageblock_page, migratetype);
1880 		pageblock_page += pageblock_nr_pages;
1881 	}
1882 }
1883 
1884 /*
1885  * When we are falling back to another migratetype during allocation, try to
1886  * steal extra free pages from the same pageblocks to satisfy further
1887  * allocations, instead of polluting multiple pageblocks.
1888  *
1889  * If we are stealing a relatively large buddy page, it is likely there will
1890  * be more free pages in the pageblock, so try to steal them all. For
1891  * reclaimable and unmovable allocations, we steal regardless of page size,
1892  * as fragmentation caused by those allocations polluting movable pageblocks
1893  * is worse than movable allocations stealing from unmovable and reclaimable
1894  * pageblocks.
1895  */
1896 static bool can_steal_fallback(unsigned int order, int start_mt)
1897 {
1898 	/*
1899 	 * Leaving this order check is intended, although there is
1900 	 * relaxed order check in next check. The reason is that
1901 	 * we can actually steal whole pageblock if this condition met,
1902 	 * but, below check doesn't guarantee it and that is just heuristic
1903 	 * so could be changed anytime.
1904 	 */
1905 	if (order >= pageblock_order)
1906 		return true;
1907 
1908 	if (order >= pageblock_order / 2 ||
1909 		start_mt == MIGRATE_RECLAIMABLE ||
1910 		start_mt == MIGRATE_UNMOVABLE ||
1911 		page_group_by_mobility_disabled)
1912 		return true;
1913 
1914 	return false;
1915 }
1916 
1917 static inline bool boost_watermark(struct zone *zone)
1918 {
1919 	unsigned long max_boost;
1920 
1921 	if (!watermark_boost_factor)
1922 		return false;
1923 	/*
1924 	 * Don't bother in zones that are unlikely to produce results.
1925 	 * On small machines, including kdump capture kernels running
1926 	 * in a small area, boosting the watermark can cause an out of
1927 	 * memory situation immediately.
1928 	 */
1929 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1930 		return false;
1931 
1932 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1933 			watermark_boost_factor, 10000);
1934 
1935 	/*
1936 	 * high watermark may be uninitialised if fragmentation occurs
1937 	 * very early in boot so do not boost. We do not fall
1938 	 * through and boost by pageblock_nr_pages as failing
1939 	 * allocations that early means that reclaim is not going
1940 	 * to help and it may even be impossible to reclaim the
1941 	 * boosted watermark resulting in a hang.
1942 	 */
1943 	if (!max_boost)
1944 		return false;
1945 
1946 	max_boost = max(pageblock_nr_pages, max_boost);
1947 
1948 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1949 		max_boost);
1950 
1951 	return true;
1952 }
1953 
1954 /*
1955  * This function implements actual steal behaviour. If order is large enough,
1956  * we can steal whole pageblock. If not, we first move freepages in this
1957  * pageblock to our migratetype and determine how many already-allocated pages
1958  * are there in the pageblock with a compatible migratetype. If at least half
1959  * of pages are free or compatible, we can change migratetype of the pageblock
1960  * itself, so pages freed in the future will be put on the correct free list.
1961  */
1962 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1963 		unsigned int alloc_flags, int start_type, bool whole_block)
1964 {
1965 	unsigned int current_order = buddy_order(page);
1966 	int free_pages, movable_pages, alike_pages;
1967 	int old_block_type;
1968 
1969 	old_block_type = get_pageblock_migratetype(page);
1970 
1971 	/*
1972 	 * This can happen due to races and we want to prevent broken
1973 	 * highatomic accounting.
1974 	 */
1975 	if (is_migrate_highatomic(old_block_type))
1976 		goto single_page;
1977 
1978 	/* Take ownership for orders >= pageblock_order */
1979 	if (current_order >= pageblock_order) {
1980 		change_pageblock_range(page, current_order, start_type);
1981 		goto single_page;
1982 	}
1983 
1984 	/*
1985 	 * Boost watermarks to increase reclaim pressure to reduce the
1986 	 * likelihood of future fallbacks. Wake kswapd now as the node
1987 	 * may be balanced overall and kswapd will not wake naturally.
1988 	 */
1989 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1990 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1991 
1992 	/* We are not allowed to try stealing from the whole block */
1993 	if (!whole_block)
1994 		goto single_page;
1995 
1996 	free_pages = move_freepages_block(zone, page, start_type,
1997 						&movable_pages);
1998 	/*
1999 	 * Determine how many pages are compatible with our allocation.
2000 	 * For movable allocation, it's the number of movable pages which
2001 	 * we just obtained. For other types it's a bit more tricky.
2002 	 */
2003 	if (start_type == MIGRATE_MOVABLE) {
2004 		alike_pages = movable_pages;
2005 	} else {
2006 		/*
2007 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2008 		 * to MOVABLE pageblock, consider all non-movable pages as
2009 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2010 		 * vice versa, be conservative since we can't distinguish the
2011 		 * exact migratetype of non-movable pages.
2012 		 */
2013 		if (old_block_type == MIGRATE_MOVABLE)
2014 			alike_pages = pageblock_nr_pages
2015 						- (free_pages + movable_pages);
2016 		else
2017 			alike_pages = 0;
2018 	}
2019 
2020 	/* moving whole block can fail due to zone boundary conditions */
2021 	if (!free_pages)
2022 		goto single_page;
2023 
2024 	/*
2025 	 * If a sufficient number of pages in the block are either free or of
2026 	 * comparable migratability as our allocation, claim the whole block.
2027 	 */
2028 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2029 			page_group_by_mobility_disabled)
2030 		set_pageblock_migratetype(page, start_type);
2031 
2032 	return;
2033 
2034 single_page:
2035 	move_to_free_list(page, zone, current_order, start_type);
2036 }
2037 
2038 /*
2039  * Check whether there is a suitable fallback freepage with requested order.
2040  * If only_stealable is true, this function returns fallback_mt only if
2041  * we can steal other freepages all together. This would help to reduce
2042  * fragmentation due to mixed migratetype pages in one pageblock.
2043  */
2044 int find_suitable_fallback(struct free_area *area, unsigned int order,
2045 			int migratetype, bool only_stealable, bool *can_steal)
2046 {
2047 	int i;
2048 	int fallback_mt;
2049 
2050 	if (area->nr_free == 0)
2051 		return -1;
2052 
2053 	*can_steal = false;
2054 	for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
2055 		fallback_mt = fallbacks[migratetype][i];
2056 		if (free_area_empty(area, fallback_mt))
2057 			continue;
2058 
2059 		if (can_steal_fallback(order, migratetype))
2060 			*can_steal = true;
2061 
2062 		if (!only_stealable)
2063 			return fallback_mt;
2064 
2065 		if (*can_steal)
2066 			return fallback_mt;
2067 	}
2068 
2069 	return -1;
2070 }
2071 
2072 /*
2073  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2074  * there are no empty page blocks that contain a page with a suitable order
2075  */
2076 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2077 				unsigned int alloc_order)
2078 {
2079 	int mt;
2080 	unsigned long max_managed, flags;
2081 
2082 	/*
2083 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2084 	 * Check is race-prone but harmless.
2085 	 */
2086 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2087 	if (zone->nr_reserved_highatomic >= max_managed)
2088 		return;
2089 
2090 	spin_lock_irqsave(&zone->lock, flags);
2091 
2092 	/* Recheck the nr_reserved_highatomic limit under the lock */
2093 	if (zone->nr_reserved_highatomic >= max_managed)
2094 		goto out_unlock;
2095 
2096 	/* Yoink! */
2097 	mt = get_pageblock_migratetype(page);
2098 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
2099 	if (migratetype_is_mergeable(mt)) {
2100 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2101 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2102 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2103 	}
2104 
2105 out_unlock:
2106 	spin_unlock_irqrestore(&zone->lock, flags);
2107 }
2108 
2109 /*
2110  * Used when an allocation is about to fail under memory pressure. This
2111  * potentially hurts the reliability of high-order allocations when under
2112  * intense memory pressure but failed atomic allocations should be easier
2113  * to recover from than an OOM.
2114  *
2115  * If @force is true, try to unreserve a pageblock even though highatomic
2116  * pageblock is exhausted.
2117  */
2118 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2119 						bool force)
2120 {
2121 	struct zonelist *zonelist = ac->zonelist;
2122 	unsigned long flags;
2123 	struct zoneref *z;
2124 	struct zone *zone;
2125 	struct page *page;
2126 	int order;
2127 	bool ret;
2128 
2129 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2130 								ac->nodemask) {
2131 		/*
2132 		 * Preserve at least one pageblock unless memory pressure
2133 		 * is really high.
2134 		 */
2135 		if (!force && zone->nr_reserved_highatomic <=
2136 					pageblock_nr_pages)
2137 			continue;
2138 
2139 		spin_lock_irqsave(&zone->lock, flags);
2140 		for (order = 0; order <= MAX_ORDER; order++) {
2141 			struct free_area *area = &(zone->free_area[order]);
2142 
2143 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2144 			if (!page)
2145 				continue;
2146 
2147 			/*
2148 			 * In page freeing path, migratetype change is racy so
2149 			 * we can counter several free pages in a pageblock
2150 			 * in this loop although we changed the pageblock type
2151 			 * from highatomic to ac->migratetype. So we should
2152 			 * adjust the count once.
2153 			 */
2154 			if (is_migrate_highatomic_page(page)) {
2155 				/*
2156 				 * It should never happen but changes to
2157 				 * locking could inadvertently allow a per-cpu
2158 				 * drain to add pages to MIGRATE_HIGHATOMIC
2159 				 * while unreserving so be safe and watch for
2160 				 * underflows.
2161 				 */
2162 				zone->nr_reserved_highatomic -= min(
2163 						pageblock_nr_pages,
2164 						zone->nr_reserved_highatomic);
2165 			}
2166 
2167 			/*
2168 			 * Convert to ac->migratetype and avoid the normal
2169 			 * pageblock stealing heuristics. Minimally, the caller
2170 			 * is doing the work and needs the pages. More
2171 			 * importantly, if the block was always converted to
2172 			 * MIGRATE_UNMOVABLE or another type then the number
2173 			 * of pageblocks that cannot be completely freed
2174 			 * may increase.
2175 			 */
2176 			set_pageblock_migratetype(page, ac->migratetype);
2177 			ret = move_freepages_block(zone, page, ac->migratetype,
2178 									NULL);
2179 			if (ret) {
2180 				spin_unlock_irqrestore(&zone->lock, flags);
2181 				return ret;
2182 			}
2183 		}
2184 		spin_unlock_irqrestore(&zone->lock, flags);
2185 	}
2186 
2187 	return false;
2188 }
2189 
2190 /*
2191  * Try finding a free buddy page on the fallback list and put it on the free
2192  * list of requested migratetype, possibly along with other pages from the same
2193  * block, depending on fragmentation avoidance heuristics. Returns true if
2194  * fallback was found so that __rmqueue_smallest() can grab it.
2195  *
2196  * The use of signed ints for order and current_order is a deliberate
2197  * deviation from the rest of this file, to make the for loop
2198  * condition simpler.
2199  */
2200 static __always_inline bool
2201 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2202 						unsigned int alloc_flags)
2203 {
2204 	struct free_area *area;
2205 	int current_order;
2206 	int min_order = order;
2207 	struct page *page;
2208 	int fallback_mt;
2209 	bool can_steal;
2210 
2211 	/*
2212 	 * Do not steal pages from freelists belonging to other pageblocks
2213 	 * i.e. orders < pageblock_order. If there are no local zones free,
2214 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2215 	 */
2216 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2217 		min_order = pageblock_order;
2218 
2219 	/*
2220 	 * Find the largest available free page in the other list. This roughly
2221 	 * approximates finding the pageblock with the most free pages, which
2222 	 * would be too costly to do exactly.
2223 	 */
2224 	for (current_order = MAX_ORDER; current_order >= min_order;
2225 				--current_order) {
2226 		area = &(zone->free_area[current_order]);
2227 		fallback_mt = find_suitable_fallback(area, current_order,
2228 				start_migratetype, false, &can_steal);
2229 		if (fallback_mt == -1)
2230 			continue;
2231 
2232 		/*
2233 		 * We cannot steal all free pages from the pageblock and the
2234 		 * requested migratetype is movable. In that case it's better to
2235 		 * steal and split the smallest available page instead of the
2236 		 * largest available page, because even if the next movable
2237 		 * allocation falls back into a different pageblock than this
2238 		 * one, it won't cause permanent fragmentation.
2239 		 */
2240 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2241 					&& current_order > order)
2242 			goto find_smallest;
2243 
2244 		goto do_steal;
2245 	}
2246 
2247 	return false;
2248 
2249 find_smallest:
2250 	for (current_order = order; current_order <= MAX_ORDER;
2251 							current_order++) {
2252 		area = &(zone->free_area[current_order]);
2253 		fallback_mt = find_suitable_fallback(area, current_order,
2254 				start_migratetype, false, &can_steal);
2255 		if (fallback_mt != -1)
2256 			break;
2257 	}
2258 
2259 	/*
2260 	 * This should not happen - we already found a suitable fallback
2261 	 * when looking for the largest page.
2262 	 */
2263 	VM_BUG_ON(current_order > MAX_ORDER);
2264 
2265 do_steal:
2266 	page = get_page_from_free_area(area, fallback_mt);
2267 
2268 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2269 								can_steal);
2270 
2271 	trace_mm_page_alloc_extfrag(page, order, current_order,
2272 		start_migratetype, fallback_mt);
2273 
2274 	return true;
2275 
2276 }
2277 
2278 /*
2279  * Do the hard work of removing an element from the buddy allocator.
2280  * Call me with the zone->lock already held.
2281  */
2282 static __always_inline struct page *
2283 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2284 						unsigned int alloc_flags)
2285 {
2286 	struct page *page;
2287 
2288 	if (IS_ENABLED(CONFIG_CMA)) {
2289 		/*
2290 		 * Balance movable allocations between regular and CMA areas by
2291 		 * allocating from CMA when over half of the zone's free memory
2292 		 * is in the CMA area.
2293 		 */
2294 		if (alloc_flags & ALLOC_CMA &&
2295 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2296 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2297 			page = __rmqueue_cma_fallback(zone, order);
2298 			if (page)
2299 				return page;
2300 		}
2301 	}
2302 retry:
2303 	page = __rmqueue_smallest(zone, order, migratetype);
2304 	if (unlikely(!page)) {
2305 		if (alloc_flags & ALLOC_CMA)
2306 			page = __rmqueue_cma_fallback(zone, order);
2307 
2308 		if (!page && __rmqueue_fallback(zone, order, migratetype,
2309 								alloc_flags))
2310 			goto retry;
2311 	}
2312 	return page;
2313 }
2314 
2315 /*
2316  * Obtain a specified number of elements from the buddy allocator, all under
2317  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2318  * Returns the number of new pages which were placed at *list.
2319  */
2320 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2321 			unsigned long count, struct list_head *list,
2322 			int migratetype, unsigned int alloc_flags)
2323 {
2324 	unsigned long flags;
2325 	int i;
2326 
2327 	spin_lock_irqsave(&zone->lock, flags);
2328 	for (i = 0; i < count; ++i) {
2329 		struct page *page = __rmqueue(zone, order, migratetype,
2330 								alloc_flags);
2331 		if (unlikely(page == NULL))
2332 			break;
2333 
2334 		/*
2335 		 * Split buddy pages returned by expand() are received here in
2336 		 * physical page order. The page is added to the tail of
2337 		 * caller's list. From the callers perspective, the linked list
2338 		 * is ordered by page number under some conditions. This is
2339 		 * useful for IO devices that can forward direction from the
2340 		 * head, thus also in the physical page order. This is useful
2341 		 * for IO devices that can merge IO requests if the physical
2342 		 * pages are ordered properly.
2343 		 */
2344 		list_add_tail(&page->pcp_list, list);
2345 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2346 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2347 					      -(1 << order));
2348 	}
2349 
2350 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2351 	spin_unlock_irqrestore(&zone->lock, flags);
2352 
2353 	return i;
2354 }
2355 
2356 #ifdef CONFIG_NUMA
2357 /*
2358  * Called from the vmstat counter updater to drain pagesets of this
2359  * currently executing processor on remote nodes after they have
2360  * expired.
2361  */
2362 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2363 {
2364 	int to_drain, batch;
2365 
2366 	batch = READ_ONCE(pcp->batch);
2367 	to_drain = min(pcp->count, batch);
2368 	if (to_drain > 0) {
2369 		spin_lock(&pcp->lock);
2370 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2371 		spin_unlock(&pcp->lock);
2372 	}
2373 }
2374 #endif
2375 
2376 /*
2377  * Drain pcplists of the indicated processor and zone.
2378  */
2379 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2380 {
2381 	struct per_cpu_pages *pcp;
2382 
2383 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2384 	if (pcp->count) {
2385 		spin_lock(&pcp->lock);
2386 		free_pcppages_bulk(zone, pcp->count, pcp, 0);
2387 		spin_unlock(&pcp->lock);
2388 	}
2389 }
2390 
2391 /*
2392  * Drain pcplists of all zones on the indicated processor.
2393  */
2394 static void drain_pages(unsigned int cpu)
2395 {
2396 	struct zone *zone;
2397 
2398 	for_each_populated_zone(zone) {
2399 		drain_pages_zone(cpu, zone);
2400 	}
2401 }
2402 
2403 /*
2404  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2405  */
2406 void drain_local_pages(struct zone *zone)
2407 {
2408 	int cpu = smp_processor_id();
2409 
2410 	if (zone)
2411 		drain_pages_zone(cpu, zone);
2412 	else
2413 		drain_pages(cpu);
2414 }
2415 
2416 /*
2417  * The implementation of drain_all_pages(), exposing an extra parameter to
2418  * drain on all cpus.
2419  *
2420  * drain_all_pages() is optimized to only execute on cpus where pcplists are
2421  * not empty. The check for non-emptiness can however race with a free to
2422  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2423  * that need the guarantee that every CPU has drained can disable the
2424  * optimizing racy check.
2425  */
2426 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2427 {
2428 	int cpu;
2429 
2430 	/*
2431 	 * Allocate in the BSS so we won't require allocation in
2432 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2433 	 */
2434 	static cpumask_t cpus_with_pcps;
2435 
2436 	/*
2437 	 * Do not drain if one is already in progress unless it's specific to
2438 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2439 	 * the drain to be complete when the call returns.
2440 	 */
2441 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2442 		if (!zone)
2443 			return;
2444 		mutex_lock(&pcpu_drain_mutex);
2445 	}
2446 
2447 	/*
2448 	 * We don't care about racing with CPU hotplug event
2449 	 * as offline notification will cause the notified
2450 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2451 	 * disables preemption as part of its processing
2452 	 */
2453 	for_each_online_cpu(cpu) {
2454 		struct per_cpu_pages *pcp;
2455 		struct zone *z;
2456 		bool has_pcps = false;
2457 
2458 		if (force_all_cpus) {
2459 			/*
2460 			 * The pcp.count check is racy, some callers need a
2461 			 * guarantee that no cpu is missed.
2462 			 */
2463 			has_pcps = true;
2464 		} else if (zone) {
2465 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2466 			if (pcp->count)
2467 				has_pcps = true;
2468 		} else {
2469 			for_each_populated_zone(z) {
2470 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2471 				if (pcp->count) {
2472 					has_pcps = true;
2473 					break;
2474 				}
2475 			}
2476 		}
2477 
2478 		if (has_pcps)
2479 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2480 		else
2481 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2482 	}
2483 
2484 	for_each_cpu(cpu, &cpus_with_pcps) {
2485 		if (zone)
2486 			drain_pages_zone(cpu, zone);
2487 		else
2488 			drain_pages(cpu);
2489 	}
2490 
2491 	mutex_unlock(&pcpu_drain_mutex);
2492 }
2493 
2494 /*
2495  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2496  *
2497  * When zone parameter is non-NULL, spill just the single zone's pages.
2498  */
2499 void drain_all_pages(struct zone *zone)
2500 {
2501 	__drain_all_pages(zone, false);
2502 }
2503 
2504 #ifdef CONFIG_HIBERNATION
2505 
2506 /*
2507  * Touch the watchdog for every WD_PAGE_COUNT pages.
2508  */
2509 #define WD_PAGE_COUNT	(128*1024)
2510 
2511 void mark_free_pages(struct zone *zone)
2512 {
2513 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2514 	unsigned long flags;
2515 	unsigned int order, t;
2516 	struct page *page;
2517 
2518 	if (zone_is_empty(zone))
2519 		return;
2520 
2521 	spin_lock_irqsave(&zone->lock, flags);
2522 
2523 	max_zone_pfn = zone_end_pfn(zone);
2524 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2525 		if (pfn_valid(pfn)) {
2526 			page = pfn_to_page(pfn);
2527 
2528 			if (!--page_count) {
2529 				touch_nmi_watchdog();
2530 				page_count = WD_PAGE_COUNT;
2531 			}
2532 
2533 			if (page_zone(page) != zone)
2534 				continue;
2535 
2536 			if (!swsusp_page_is_forbidden(page))
2537 				swsusp_unset_page_free(page);
2538 		}
2539 
2540 	for_each_migratetype_order(order, t) {
2541 		list_for_each_entry(page,
2542 				&zone->free_area[order].free_list[t], buddy_list) {
2543 			unsigned long i;
2544 
2545 			pfn = page_to_pfn(page);
2546 			for (i = 0; i < (1UL << order); i++) {
2547 				if (!--page_count) {
2548 					touch_nmi_watchdog();
2549 					page_count = WD_PAGE_COUNT;
2550 				}
2551 				swsusp_set_page_free(pfn_to_page(pfn + i));
2552 			}
2553 		}
2554 	}
2555 	spin_unlock_irqrestore(&zone->lock, flags);
2556 }
2557 #endif /* CONFIG_PM */
2558 
2559 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
2560 							unsigned int order)
2561 {
2562 	int migratetype;
2563 
2564 	if (!free_pages_prepare(page, order, FPI_NONE))
2565 		return false;
2566 
2567 	migratetype = get_pfnblock_migratetype(page, pfn);
2568 	set_pcppage_migratetype(page, migratetype);
2569 	return true;
2570 }
2571 
2572 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch,
2573 		       bool free_high)
2574 {
2575 	int min_nr_free, max_nr_free;
2576 
2577 	/* Free everything if batch freeing high-order pages. */
2578 	if (unlikely(free_high))
2579 		return pcp->count;
2580 
2581 	/* Check for PCP disabled or boot pageset */
2582 	if (unlikely(high < batch))
2583 		return 1;
2584 
2585 	/* Leave at least pcp->batch pages on the list */
2586 	min_nr_free = batch;
2587 	max_nr_free = high - batch;
2588 
2589 	/*
2590 	 * Double the number of pages freed each time there is subsequent
2591 	 * freeing of pages without any allocation.
2592 	 */
2593 	batch <<= pcp->free_factor;
2594 	if (batch < max_nr_free)
2595 		pcp->free_factor++;
2596 	batch = clamp(batch, min_nr_free, max_nr_free);
2597 
2598 	return batch;
2599 }
2600 
2601 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2602 		       bool free_high)
2603 {
2604 	int high = READ_ONCE(pcp->high);
2605 
2606 	if (unlikely(!high || free_high))
2607 		return 0;
2608 
2609 	if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
2610 		return high;
2611 
2612 	/*
2613 	 * If reclaim is active, limit the number of pages that can be
2614 	 * stored on pcp lists
2615 	 */
2616 	return min(READ_ONCE(pcp->batch) << 2, high);
2617 }
2618 
2619 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2620 				   struct page *page, int migratetype,
2621 				   unsigned int order)
2622 {
2623 	int high;
2624 	int pindex;
2625 	bool free_high;
2626 
2627 	__count_vm_events(PGFREE, 1 << order);
2628 	pindex = order_to_pindex(migratetype, order);
2629 	list_add(&page->pcp_list, &pcp->lists[pindex]);
2630 	pcp->count += 1 << order;
2631 
2632 	/*
2633 	 * As high-order pages other than THP's stored on PCP can contribute
2634 	 * to fragmentation, limit the number stored when PCP is heavily
2635 	 * freeing without allocation. The remainder after bulk freeing
2636 	 * stops will be drained from vmstat refresh context.
2637 	 */
2638 	free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
2639 
2640 	high = nr_pcp_high(pcp, zone, free_high);
2641 	if (pcp->count >= high) {
2642 		int batch = READ_ONCE(pcp->batch);
2643 
2644 		free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex);
2645 	}
2646 }
2647 
2648 /*
2649  * Free a pcp page
2650  */
2651 void free_unref_page(struct page *page, unsigned int order)
2652 {
2653 	unsigned long __maybe_unused UP_flags;
2654 	struct per_cpu_pages *pcp;
2655 	struct zone *zone;
2656 	unsigned long pfn = page_to_pfn(page);
2657 	int migratetype;
2658 
2659 	if (!free_unref_page_prepare(page, pfn, order))
2660 		return;
2661 
2662 	/*
2663 	 * We only track unmovable, reclaimable and movable on pcp lists.
2664 	 * Place ISOLATE pages on the isolated list because they are being
2665 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2666 	 * areas back if necessary. Otherwise, we may have to free
2667 	 * excessively into the page allocator
2668 	 */
2669 	migratetype = get_pcppage_migratetype(page);
2670 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2671 		if (unlikely(is_migrate_isolate(migratetype))) {
2672 			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
2673 			return;
2674 		}
2675 		migratetype = MIGRATE_MOVABLE;
2676 	}
2677 
2678 	zone = page_zone(page);
2679 	pcp_trylock_prepare(UP_flags);
2680 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2681 	if (pcp) {
2682 		free_unref_page_commit(zone, pcp, page, migratetype, order);
2683 		pcp_spin_unlock(pcp);
2684 	} else {
2685 		free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
2686 	}
2687 	pcp_trylock_finish(UP_flags);
2688 }
2689 
2690 /*
2691  * Free a list of 0-order pages
2692  */
2693 void free_unref_page_list(struct list_head *list)
2694 {
2695 	unsigned long __maybe_unused UP_flags;
2696 	struct page *page, *next;
2697 	struct per_cpu_pages *pcp = NULL;
2698 	struct zone *locked_zone = NULL;
2699 	int batch_count = 0;
2700 	int migratetype;
2701 
2702 	/* Prepare pages for freeing */
2703 	list_for_each_entry_safe(page, next, list, lru) {
2704 		unsigned long pfn = page_to_pfn(page);
2705 		if (!free_unref_page_prepare(page, pfn, 0)) {
2706 			list_del(&page->lru);
2707 			continue;
2708 		}
2709 
2710 		/*
2711 		 * Free isolated pages directly to the allocator, see
2712 		 * comment in free_unref_page.
2713 		 */
2714 		migratetype = get_pcppage_migratetype(page);
2715 		if (unlikely(is_migrate_isolate(migratetype))) {
2716 			list_del(&page->lru);
2717 			free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
2718 			continue;
2719 		}
2720 	}
2721 
2722 	list_for_each_entry_safe(page, next, list, lru) {
2723 		struct zone *zone = page_zone(page);
2724 
2725 		list_del(&page->lru);
2726 		migratetype = get_pcppage_migratetype(page);
2727 
2728 		/*
2729 		 * Either different zone requiring a different pcp lock or
2730 		 * excessive lock hold times when freeing a large list of
2731 		 * pages.
2732 		 */
2733 		if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) {
2734 			if (pcp) {
2735 				pcp_spin_unlock(pcp);
2736 				pcp_trylock_finish(UP_flags);
2737 			}
2738 
2739 			batch_count = 0;
2740 
2741 			/*
2742 			 * trylock is necessary as pages may be getting freed
2743 			 * from IRQ or SoftIRQ context after an IO completion.
2744 			 */
2745 			pcp_trylock_prepare(UP_flags);
2746 			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2747 			if (unlikely(!pcp)) {
2748 				pcp_trylock_finish(UP_flags);
2749 				free_one_page(zone, page, page_to_pfn(page),
2750 					      0, migratetype, FPI_NONE);
2751 				locked_zone = NULL;
2752 				continue;
2753 			}
2754 			locked_zone = zone;
2755 		}
2756 
2757 		/*
2758 		 * Non-isolated types over MIGRATE_PCPTYPES get added
2759 		 * to the MIGRATE_MOVABLE pcp list.
2760 		 */
2761 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2762 			migratetype = MIGRATE_MOVABLE;
2763 
2764 		trace_mm_page_free_batched(page);
2765 		free_unref_page_commit(zone, pcp, page, migratetype, 0);
2766 		batch_count++;
2767 	}
2768 
2769 	if (pcp) {
2770 		pcp_spin_unlock(pcp);
2771 		pcp_trylock_finish(UP_flags);
2772 	}
2773 }
2774 
2775 /*
2776  * split_page takes a non-compound higher-order page, and splits it into
2777  * n (1<<order) sub-pages: page[0..n]
2778  * Each sub-page must be freed individually.
2779  *
2780  * Note: this is probably too low level an operation for use in drivers.
2781  * Please consult with lkml before using this in your driver.
2782  */
2783 void split_page(struct page *page, unsigned int order)
2784 {
2785 	int i;
2786 
2787 	VM_BUG_ON_PAGE(PageCompound(page), page);
2788 	VM_BUG_ON_PAGE(!page_count(page), page);
2789 
2790 	for (i = 1; i < (1 << order); i++)
2791 		set_page_refcounted(page + i);
2792 	split_page_owner(page, 1 << order);
2793 	split_page_memcg(page, 1 << order);
2794 }
2795 EXPORT_SYMBOL_GPL(split_page);
2796 
2797 int __isolate_free_page(struct page *page, unsigned int order)
2798 {
2799 	struct zone *zone = page_zone(page);
2800 	int mt = get_pageblock_migratetype(page);
2801 
2802 	if (!is_migrate_isolate(mt)) {
2803 		unsigned long watermark;
2804 		/*
2805 		 * Obey watermarks as if the page was being allocated. We can
2806 		 * emulate a high-order watermark check with a raised order-0
2807 		 * watermark, because we already know our high-order page
2808 		 * exists.
2809 		 */
2810 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2811 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2812 			return 0;
2813 
2814 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2815 	}
2816 
2817 	del_page_from_free_list(page, zone, order);
2818 
2819 	/*
2820 	 * Set the pageblock if the isolated page is at least half of a
2821 	 * pageblock
2822 	 */
2823 	if (order >= pageblock_order - 1) {
2824 		struct page *endpage = page + (1 << order) - 1;
2825 		for (; page < endpage; page += pageblock_nr_pages) {
2826 			int mt = get_pageblock_migratetype(page);
2827 			/*
2828 			 * Only change normal pageblocks (i.e., they can merge
2829 			 * with others)
2830 			 */
2831 			if (migratetype_is_mergeable(mt))
2832 				set_pageblock_migratetype(page,
2833 							  MIGRATE_MOVABLE);
2834 		}
2835 	}
2836 
2837 	return 1UL << order;
2838 }
2839 
2840 /**
2841  * __putback_isolated_page - Return a now-isolated page back where we got it
2842  * @page: Page that was isolated
2843  * @order: Order of the isolated page
2844  * @mt: The page's pageblock's migratetype
2845  *
2846  * This function is meant to return a page pulled from the free lists via
2847  * __isolate_free_page back to the free lists they were pulled from.
2848  */
2849 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2850 {
2851 	struct zone *zone = page_zone(page);
2852 
2853 	/* zone lock should be held when this function is called */
2854 	lockdep_assert_held(&zone->lock);
2855 
2856 	/* Return isolated page to tail of freelist. */
2857 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
2858 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2859 }
2860 
2861 /*
2862  * Update NUMA hit/miss statistics
2863  */
2864 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2865 				   long nr_account)
2866 {
2867 #ifdef CONFIG_NUMA
2868 	enum numa_stat_item local_stat = NUMA_LOCAL;
2869 
2870 	/* skip numa counters update if numa stats is disabled */
2871 	if (!static_branch_likely(&vm_numa_stat_key))
2872 		return;
2873 
2874 	if (zone_to_nid(z) != numa_node_id())
2875 		local_stat = NUMA_OTHER;
2876 
2877 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2878 		__count_numa_events(z, NUMA_HIT, nr_account);
2879 	else {
2880 		__count_numa_events(z, NUMA_MISS, nr_account);
2881 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2882 	}
2883 	__count_numa_events(z, local_stat, nr_account);
2884 #endif
2885 }
2886 
2887 static __always_inline
2888 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2889 			   unsigned int order, unsigned int alloc_flags,
2890 			   int migratetype)
2891 {
2892 	struct page *page;
2893 	unsigned long flags;
2894 
2895 	do {
2896 		page = NULL;
2897 		spin_lock_irqsave(&zone->lock, flags);
2898 		/*
2899 		 * order-0 request can reach here when the pcplist is skipped
2900 		 * due to non-CMA allocation context. HIGHATOMIC area is
2901 		 * reserved for high-order atomic allocation, so order-0
2902 		 * request should skip it.
2903 		 */
2904 		if (alloc_flags & ALLOC_HIGHATOMIC)
2905 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2906 		if (!page) {
2907 			page = __rmqueue(zone, order, migratetype, alloc_flags);
2908 
2909 			/*
2910 			 * If the allocation fails, allow OOM handling access
2911 			 * to HIGHATOMIC reserves as failing now is worse than
2912 			 * failing a high-order atomic allocation in the
2913 			 * future.
2914 			 */
2915 			if (!page && (alloc_flags & ALLOC_OOM))
2916 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2917 
2918 			if (!page) {
2919 				spin_unlock_irqrestore(&zone->lock, flags);
2920 				return NULL;
2921 			}
2922 		}
2923 		__mod_zone_freepage_state(zone, -(1 << order),
2924 					  get_pcppage_migratetype(page));
2925 		spin_unlock_irqrestore(&zone->lock, flags);
2926 	} while (check_new_pages(page, order));
2927 
2928 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2929 	zone_statistics(preferred_zone, zone, 1);
2930 
2931 	return page;
2932 }
2933 
2934 /* Remove page from the per-cpu list, caller must protect the list */
2935 static inline
2936 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2937 			int migratetype,
2938 			unsigned int alloc_flags,
2939 			struct per_cpu_pages *pcp,
2940 			struct list_head *list)
2941 {
2942 	struct page *page;
2943 
2944 	do {
2945 		if (list_empty(list)) {
2946 			int batch = READ_ONCE(pcp->batch);
2947 			int alloced;
2948 
2949 			/*
2950 			 * Scale batch relative to order if batch implies
2951 			 * free pages can be stored on the PCP. Batch can
2952 			 * be 1 for small zones or for boot pagesets which
2953 			 * should never store free pages as the pages may
2954 			 * belong to arbitrary zones.
2955 			 */
2956 			if (batch > 1)
2957 				batch = max(batch >> order, 2);
2958 			alloced = rmqueue_bulk(zone, order,
2959 					batch, list,
2960 					migratetype, alloc_flags);
2961 
2962 			pcp->count += alloced << order;
2963 			if (unlikely(list_empty(list)))
2964 				return NULL;
2965 		}
2966 
2967 		page = list_first_entry(list, struct page, pcp_list);
2968 		list_del(&page->pcp_list);
2969 		pcp->count -= 1 << order;
2970 	} while (check_new_pages(page, order));
2971 
2972 	return page;
2973 }
2974 
2975 /* Lock and remove page from the per-cpu list */
2976 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2977 			struct zone *zone, unsigned int order,
2978 			int migratetype, unsigned int alloc_flags)
2979 {
2980 	struct per_cpu_pages *pcp;
2981 	struct list_head *list;
2982 	struct page *page;
2983 	unsigned long __maybe_unused UP_flags;
2984 
2985 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
2986 	pcp_trylock_prepare(UP_flags);
2987 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2988 	if (!pcp) {
2989 		pcp_trylock_finish(UP_flags);
2990 		return NULL;
2991 	}
2992 
2993 	/*
2994 	 * On allocation, reduce the number of pages that are batch freed.
2995 	 * See nr_pcp_free() where free_factor is increased for subsequent
2996 	 * frees.
2997 	 */
2998 	pcp->free_factor >>= 1;
2999 	list = &pcp->lists[order_to_pindex(migratetype, order)];
3000 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3001 	pcp_spin_unlock(pcp);
3002 	pcp_trylock_finish(UP_flags);
3003 	if (page) {
3004 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3005 		zone_statistics(preferred_zone, zone, 1);
3006 	}
3007 	return page;
3008 }
3009 
3010 /*
3011  * Allocate a page from the given zone.
3012  * Use pcplists for THP or "cheap" high-order allocations.
3013  */
3014 
3015 /*
3016  * Do not instrument rmqueue() with KMSAN. This function may call
3017  * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
3018  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3019  * may call rmqueue() again, which will result in a deadlock.
3020  */
3021 __no_sanitize_memory
3022 static inline
3023 struct page *rmqueue(struct zone *preferred_zone,
3024 			struct zone *zone, unsigned int order,
3025 			gfp_t gfp_flags, unsigned int alloc_flags,
3026 			int migratetype)
3027 {
3028 	struct page *page;
3029 
3030 	/*
3031 	 * We most definitely don't want callers attempting to
3032 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3033 	 */
3034 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3035 
3036 	if (likely(pcp_allowed_order(order))) {
3037 		/*
3038 		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3039 		 * we need to skip it when CMA area isn't allowed.
3040 		 */
3041 		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3042 				migratetype != MIGRATE_MOVABLE) {
3043 			page = rmqueue_pcplist(preferred_zone, zone, order,
3044 					migratetype, alloc_flags);
3045 			if (likely(page))
3046 				goto out;
3047 		}
3048 	}
3049 
3050 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3051 							migratetype);
3052 
3053 out:
3054 	/* Separate test+clear to avoid unnecessary atomics */
3055 	if (unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3056 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3057 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3058 	}
3059 
3060 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3061 	return page;
3062 }
3063 
3064 #ifdef CONFIG_FAIL_PAGE_ALLOC
3065 
3066 static struct {
3067 	struct fault_attr attr;
3068 
3069 	bool ignore_gfp_highmem;
3070 	bool ignore_gfp_reclaim;
3071 	u32 min_order;
3072 } fail_page_alloc = {
3073 	.attr = FAULT_ATTR_INITIALIZER,
3074 	.ignore_gfp_reclaim = true,
3075 	.ignore_gfp_highmem = true,
3076 	.min_order = 1,
3077 };
3078 
3079 static int __init setup_fail_page_alloc(char *str)
3080 {
3081 	return setup_fault_attr(&fail_page_alloc.attr, str);
3082 }
3083 __setup("fail_page_alloc=", setup_fail_page_alloc);
3084 
3085 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3086 {
3087 	int flags = 0;
3088 
3089 	if (order < fail_page_alloc.min_order)
3090 		return false;
3091 	if (gfp_mask & __GFP_NOFAIL)
3092 		return false;
3093 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3094 		return false;
3095 	if (fail_page_alloc.ignore_gfp_reclaim &&
3096 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3097 		return false;
3098 
3099 	/* See comment in __should_failslab() */
3100 	if (gfp_mask & __GFP_NOWARN)
3101 		flags |= FAULT_NOWARN;
3102 
3103 	return should_fail_ex(&fail_page_alloc.attr, 1 << order, flags);
3104 }
3105 
3106 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3107 
3108 static int __init fail_page_alloc_debugfs(void)
3109 {
3110 	umode_t mode = S_IFREG | 0600;
3111 	struct dentry *dir;
3112 
3113 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3114 					&fail_page_alloc.attr);
3115 
3116 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3117 			    &fail_page_alloc.ignore_gfp_reclaim);
3118 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3119 			    &fail_page_alloc.ignore_gfp_highmem);
3120 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3121 
3122 	return 0;
3123 }
3124 
3125 late_initcall(fail_page_alloc_debugfs);
3126 
3127 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3128 
3129 #else /* CONFIG_FAIL_PAGE_ALLOC */
3130 
3131 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3132 {
3133 	return false;
3134 }
3135 
3136 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3137 
3138 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3139 {
3140 	return __should_fail_alloc_page(gfp_mask, order);
3141 }
3142 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3143 
3144 static inline long __zone_watermark_unusable_free(struct zone *z,
3145 				unsigned int order, unsigned int alloc_flags)
3146 {
3147 	long unusable_free = (1 << order) - 1;
3148 
3149 	/*
3150 	 * If the caller does not have rights to reserves below the min
3151 	 * watermark then subtract the high-atomic reserves. This will
3152 	 * over-estimate the size of the atomic reserve but it avoids a search.
3153 	 */
3154 	if (likely(!(alloc_flags & ALLOC_RESERVES)))
3155 		unusable_free += z->nr_reserved_highatomic;
3156 
3157 #ifdef CONFIG_CMA
3158 	/* If allocation can't use CMA areas don't use free CMA pages */
3159 	if (!(alloc_flags & ALLOC_CMA))
3160 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3161 #endif
3162 
3163 	return unusable_free;
3164 }
3165 
3166 /*
3167  * Return true if free base pages are above 'mark'. For high-order checks it
3168  * will return true of the order-0 watermark is reached and there is at least
3169  * one free page of a suitable size. Checking now avoids taking the zone lock
3170  * to check in the allocation paths if no pages are free.
3171  */
3172 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3173 			 int highest_zoneidx, unsigned int alloc_flags,
3174 			 long free_pages)
3175 {
3176 	long min = mark;
3177 	int o;
3178 
3179 	/* free_pages may go negative - that's OK */
3180 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3181 
3182 	if (unlikely(alloc_flags & ALLOC_RESERVES)) {
3183 		/*
3184 		 * __GFP_HIGH allows access to 50% of the min reserve as well
3185 		 * as OOM.
3186 		 */
3187 		if (alloc_flags & ALLOC_MIN_RESERVE) {
3188 			min -= min / 2;
3189 
3190 			/*
3191 			 * Non-blocking allocations (e.g. GFP_ATOMIC) can
3192 			 * access more reserves than just __GFP_HIGH. Other
3193 			 * non-blocking allocations requests such as GFP_NOWAIT
3194 			 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
3195 			 * access to the min reserve.
3196 			 */
3197 			if (alloc_flags & ALLOC_NON_BLOCK)
3198 				min -= min / 4;
3199 		}
3200 
3201 		/*
3202 		 * OOM victims can try even harder than the normal reserve
3203 		 * users on the grounds that it's definitely going to be in
3204 		 * the exit path shortly and free memory. Any allocation it
3205 		 * makes during the free path will be small and short-lived.
3206 		 */
3207 		if (alloc_flags & ALLOC_OOM)
3208 			min -= min / 2;
3209 	}
3210 
3211 	/*
3212 	 * Check watermarks for an order-0 allocation request. If these
3213 	 * are not met, then a high-order request also cannot go ahead
3214 	 * even if a suitable page happened to be free.
3215 	 */
3216 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3217 		return false;
3218 
3219 	/* If this is an order-0 request then the watermark is fine */
3220 	if (!order)
3221 		return true;
3222 
3223 	/* For a high-order request, check at least one suitable page is free */
3224 	for (o = order; o <= MAX_ORDER; o++) {
3225 		struct free_area *area = &z->free_area[o];
3226 		int mt;
3227 
3228 		if (!area->nr_free)
3229 			continue;
3230 
3231 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3232 			if (!free_area_empty(area, mt))
3233 				return true;
3234 		}
3235 
3236 #ifdef CONFIG_CMA
3237 		if ((alloc_flags & ALLOC_CMA) &&
3238 		    !free_area_empty(area, MIGRATE_CMA)) {
3239 			return true;
3240 		}
3241 #endif
3242 		if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3243 		    !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
3244 			return true;
3245 		}
3246 	}
3247 	return false;
3248 }
3249 
3250 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3251 		      int highest_zoneidx, unsigned int alloc_flags)
3252 {
3253 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3254 					zone_page_state(z, NR_FREE_PAGES));
3255 }
3256 
3257 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3258 				unsigned long mark, int highest_zoneidx,
3259 				unsigned int alloc_flags, gfp_t gfp_mask)
3260 {
3261 	long free_pages;
3262 
3263 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3264 
3265 	/*
3266 	 * Fast check for order-0 only. If this fails then the reserves
3267 	 * need to be calculated.
3268 	 */
3269 	if (!order) {
3270 		long usable_free;
3271 		long reserved;
3272 
3273 		usable_free = free_pages;
3274 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3275 
3276 		/* reserved may over estimate high-atomic reserves. */
3277 		usable_free -= min(usable_free, reserved);
3278 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3279 			return true;
3280 	}
3281 
3282 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3283 					free_pages))
3284 		return true;
3285 
3286 	/*
3287 	 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3288 	 * when checking the min watermark. The min watermark is the
3289 	 * point where boosting is ignored so that kswapd is woken up
3290 	 * when below the low watermark.
3291 	 */
3292 	if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3293 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3294 		mark = z->_watermark[WMARK_MIN];
3295 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3296 					alloc_flags, free_pages);
3297 	}
3298 
3299 	return false;
3300 }
3301 
3302 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3303 			unsigned long mark, int highest_zoneidx)
3304 {
3305 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3306 
3307 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3308 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3309 
3310 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3311 								free_pages);
3312 }
3313 
3314 #ifdef CONFIG_NUMA
3315 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3316 
3317 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3318 {
3319 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3320 				node_reclaim_distance;
3321 }
3322 #else	/* CONFIG_NUMA */
3323 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3324 {
3325 	return true;
3326 }
3327 #endif	/* CONFIG_NUMA */
3328 
3329 /*
3330  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3331  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3332  * premature use of a lower zone may cause lowmem pressure problems that
3333  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3334  * probably too small. It only makes sense to spread allocations to avoid
3335  * fragmentation between the Normal and DMA32 zones.
3336  */
3337 static inline unsigned int
3338 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3339 {
3340 	unsigned int alloc_flags;
3341 
3342 	/*
3343 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3344 	 * to save a branch.
3345 	 */
3346 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3347 
3348 #ifdef CONFIG_ZONE_DMA32
3349 	if (!zone)
3350 		return alloc_flags;
3351 
3352 	if (zone_idx(zone) != ZONE_NORMAL)
3353 		return alloc_flags;
3354 
3355 	/*
3356 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3357 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3358 	 * on UMA that if Normal is populated then so is DMA32.
3359 	 */
3360 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3361 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3362 		return alloc_flags;
3363 
3364 	alloc_flags |= ALLOC_NOFRAGMENT;
3365 #endif /* CONFIG_ZONE_DMA32 */
3366 	return alloc_flags;
3367 }
3368 
3369 /* Must be called after current_gfp_context() which can change gfp_mask */
3370 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3371 						  unsigned int alloc_flags)
3372 {
3373 #ifdef CONFIG_CMA
3374 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3375 		alloc_flags |= ALLOC_CMA;
3376 #endif
3377 	return alloc_flags;
3378 }
3379 
3380 /*
3381  * get_page_from_freelist goes through the zonelist trying to allocate
3382  * a page.
3383  */
3384 static struct page *
3385 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3386 						const struct alloc_context *ac)
3387 {
3388 	struct zoneref *z;
3389 	struct zone *zone;
3390 	struct pglist_data *last_pgdat = NULL;
3391 	bool last_pgdat_dirty_ok = false;
3392 	bool no_fallback;
3393 
3394 retry:
3395 	/*
3396 	 * Scan zonelist, looking for a zone with enough free.
3397 	 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3398 	 */
3399 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3400 	z = ac->preferred_zoneref;
3401 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3402 					ac->nodemask) {
3403 		struct page *page;
3404 		unsigned long mark;
3405 
3406 		if (cpusets_enabled() &&
3407 			(alloc_flags & ALLOC_CPUSET) &&
3408 			!__cpuset_zone_allowed(zone, gfp_mask))
3409 				continue;
3410 		/*
3411 		 * When allocating a page cache page for writing, we
3412 		 * want to get it from a node that is within its dirty
3413 		 * limit, such that no single node holds more than its
3414 		 * proportional share of globally allowed dirty pages.
3415 		 * The dirty limits take into account the node's
3416 		 * lowmem reserves and high watermark so that kswapd
3417 		 * should be able to balance it without having to
3418 		 * write pages from its LRU list.
3419 		 *
3420 		 * XXX: For now, allow allocations to potentially
3421 		 * exceed the per-node dirty limit in the slowpath
3422 		 * (spread_dirty_pages unset) before going into reclaim,
3423 		 * which is important when on a NUMA setup the allowed
3424 		 * nodes are together not big enough to reach the
3425 		 * global limit.  The proper fix for these situations
3426 		 * will require awareness of nodes in the
3427 		 * dirty-throttling and the flusher threads.
3428 		 */
3429 		if (ac->spread_dirty_pages) {
3430 			if (last_pgdat != zone->zone_pgdat) {
3431 				last_pgdat = zone->zone_pgdat;
3432 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3433 			}
3434 
3435 			if (!last_pgdat_dirty_ok)
3436 				continue;
3437 		}
3438 
3439 		if (no_fallback && nr_online_nodes > 1 &&
3440 		    zone != ac->preferred_zoneref->zone) {
3441 			int local_nid;
3442 
3443 			/*
3444 			 * If moving to a remote node, retry but allow
3445 			 * fragmenting fallbacks. Locality is more important
3446 			 * than fragmentation avoidance.
3447 			 */
3448 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3449 			if (zone_to_nid(zone) != local_nid) {
3450 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3451 				goto retry;
3452 			}
3453 		}
3454 
3455 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3456 		if (!zone_watermark_fast(zone, order, mark,
3457 				       ac->highest_zoneidx, alloc_flags,
3458 				       gfp_mask)) {
3459 			int ret;
3460 
3461 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3462 			/*
3463 			 * Watermark failed for this zone, but see if we can
3464 			 * grow this zone if it contains deferred pages.
3465 			 */
3466 			if (deferred_pages_enabled()) {
3467 				if (_deferred_grow_zone(zone, order))
3468 					goto try_this_zone;
3469 			}
3470 #endif
3471 			/* Checked here to keep the fast path fast */
3472 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3473 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3474 				goto try_this_zone;
3475 
3476 			if (!node_reclaim_enabled() ||
3477 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3478 				continue;
3479 
3480 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3481 			switch (ret) {
3482 			case NODE_RECLAIM_NOSCAN:
3483 				/* did not scan */
3484 				continue;
3485 			case NODE_RECLAIM_FULL:
3486 				/* scanned but unreclaimable */
3487 				continue;
3488 			default:
3489 				/* did we reclaim enough */
3490 				if (zone_watermark_ok(zone, order, mark,
3491 					ac->highest_zoneidx, alloc_flags))
3492 					goto try_this_zone;
3493 
3494 				continue;
3495 			}
3496 		}
3497 
3498 try_this_zone:
3499 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3500 				gfp_mask, alloc_flags, ac->migratetype);
3501 		if (page) {
3502 			prep_new_page(page, order, gfp_mask, alloc_flags);
3503 
3504 			/*
3505 			 * If this is a high-order atomic allocation then check
3506 			 * if the pageblock should be reserved for the future
3507 			 */
3508 			if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3509 				reserve_highatomic_pageblock(page, zone, order);
3510 
3511 			return page;
3512 		} else {
3513 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3514 			/* Try again if zone has deferred pages */
3515 			if (deferred_pages_enabled()) {
3516 				if (_deferred_grow_zone(zone, order))
3517 					goto try_this_zone;
3518 			}
3519 #endif
3520 		}
3521 	}
3522 
3523 	/*
3524 	 * It's possible on a UMA machine to get through all zones that are
3525 	 * fragmented. If avoiding fragmentation, reset and try again.
3526 	 */
3527 	if (no_fallback) {
3528 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3529 		goto retry;
3530 	}
3531 
3532 	return NULL;
3533 }
3534 
3535 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3536 {
3537 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3538 
3539 	/*
3540 	 * This documents exceptions given to allocations in certain
3541 	 * contexts that are allowed to allocate outside current's set
3542 	 * of allowed nodes.
3543 	 */
3544 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3545 		if (tsk_is_oom_victim(current) ||
3546 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3547 			filter &= ~SHOW_MEM_FILTER_NODES;
3548 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3549 		filter &= ~SHOW_MEM_FILTER_NODES;
3550 
3551 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
3552 }
3553 
3554 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3555 {
3556 	struct va_format vaf;
3557 	va_list args;
3558 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3559 
3560 	if ((gfp_mask & __GFP_NOWARN) ||
3561 	     !__ratelimit(&nopage_rs) ||
3562 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3563 		return;
3564 
3565 	va_start(args, fmt);
3566 	vaf.fmt = fmt;
3567 	vaf.va = &args;
3568 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3569 			current->comm, &vaf, gfp_mask, &gfp_mask,
3570 			nodemask_pr_args(nodemask));
3571 	va_end(args);
3572 
3573 	cpuset_print_current_mems_allowed();
3574 	pr_cont("\n");
3575 	dump_stack();
3576 	warn_alloc_show_mem(gfp_mask, nodemask);
3577 }
3578 
3579 static inline struct page *
3580 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3581 			      unsigned int alloc_flags,
3582 			      const struct alloc_context *ac)
3583 {
3584 	struct page *page;
3585 
3586 	page = get_page_from_freelist(gfp_mask, order,
3587 			alloc_flags|ALLOC_CPUSET, ac);
3588 	/*
3589 	 * fallback to ignore cpuset restriction if our nodes
3590 	 * are depleted
3591 	 */
3592 	if (!page)
3593 		page = get_page_from_freelist(gfp_mask, order,
3594 				alloc_flags, ac);
3595 
3596 	return page;
3597 }
3598 
3599 static inline struct page *
3600 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3601 	const struct alloc_context *ac, unsigned long *did_some_progress)
3602 {
3603 	struct oom_control oc = {
3604 		.zonelist = ac->zonelist,
3605 		.nodemask = ac->nodemask,
3606 		.memcg = NULL,
3607 		.gfp_mask = gfp_mask,
3608 		.order = order,
3609 	};
3610 	struct page *page;
3611 
3612 	*did_some_progress = 0;
3613 
3614 	/*
3615 	 * Acquire the oom lock.  If that fails, somebody else is
3616 	 * making progress for us.
3617 	 */
3618 	if (!mutex_trylock(&oom_lock)) {
3619 		*did_some_progress = 1;
3620 		schedule_timeout_uninterruptible(1);
3621 		return NULL;
3622 	}
3623 
3624 	/*
3625 	 * Go through the zonelist yet one more time, keep very high watermark
3626 	 * here, this is only to catch a parallel oom killing, we must fail if
3627 	 * we're still under heavy pressure. But make sure that this reclaim
3628 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3629 	 * allocation which will never fail due to oom_lock already held.
3630 	 */
3631 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3632 				      ~__GFP_DIRECT_RECLAIM, order,
3633 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3634 	if (page)
3635 		goto out;
3636 
3637 	/* Coredumps can quickly deplete all memory reserves */
3638 	if (current->flags & PF_DUMPCORE)
3639 		goto out;
3640 	/* The OOM killer will not help higher order allocs */
3641 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3642 		goto out;
3643 	/*
3644 	 * We have already exhausted all our reclaim opportunities without any
3645 	 * success so it is time to admit defeat. We will skip the OOM killer
3646 	 * because it is very likely that the caller has a more reasonable
3647 	 * fallback than shooting a random task.
3648 	 *
3649 	 * The OOM killer may not free memory on a specific node.
3650 	 */
3651 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3652 		goto out;
3653 	/* The OOM killer does not needlessly kill tasks for lowmem */
3654 	if (ac->highest_zoneidx < ZONE_NORMAL)
3655 		goto out;
3656 	if (pm_suspended_storage())
3657 		goto out;
3658 	/*
3659 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3660 	 * other request to make a forward progress.
3661 	 * We are in an unfortunate situation where out_of_memory cannot
3662 	 * do much for this context but let's try it to at least get
3663 	 * access to memory reserved if the current task is killed (see
3664 	 * out_of_memory). Once filesystems are ready to handle allocation
3665 	 * failures more gracefully we should just bail out here.
3666 	 */
3667 
3668 	/* Exhausted what can be done so it's blame time */
3669 	if (out_of_memory(&oc) ||
3670 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3671 		*did_some_progress = 1;
3672 
3673 		/*
3674 		 * Help non-failing allocations by giving them access to memory
3675 		 * reserves
3676 		 */
3677 		if (gfp_mask & __GFP_NOFAIL)
3678 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3679 					ALLOC_NO_WATERMARKS, ac);
3680 	}
3681 out:
3682 	mutex_unlock(&oom_lock);
3683 	return page;
3684 }
3685 
3686 /*
3687  * Maximum number of compaction retries with a progress before OOM
3688  * killer is consider as the only way to move forward.
3689  */
3690 #define MAX_COMPACT_RETRIES 16
3691 
3692 #ifdef CONFIG_COMPACTION
3693 /* Try memory compaction for high-order allocations before reclaim */
3694 static struct page *
3695 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3696 		unsigned int alloc_flags, const struct alloc_context *ac,
3697 		enum compact_priority prio, enum compact_result *compact_result)
3698 {
3699 	struct page *page = NULL;
3700 	unsigned long pflags;
3701 	unsigned int noreclaim_flag;
3702 
3703 	if (!order)
3704 		return NULL;
3705 
3706 	psi_memstall_enter(&pflags);
3707 	delayacct_compact_start();
3708 	noreclaim_flag = memalloc_noreclaim_save();
3709 
3710 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3711 								prio, &page);
3712 
3713 	memalloc_noreclaim_restore(noreclaim_flag);
3714 	psi_memstall_leave(&pflags);
3715 	delayacct_compact_end();
3716 
3717 	if (*compact_result == COMPACT_SKIPPED)
3718 		return NULL;
3719 	/*
3720 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3721 	 * count a compaction stall
3722 	 */
3723 	count_vm_event(COMPACTSTALL);
3724 
3725 	/* Prep a captured page if available */
3726 	if (page)
3727 		prep_new_page(page, order, gfp_mask, alloc_flags);
3728 
3729 	/* Try get a page from the freelist if available */
3730 	if (!page)
3731 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3732 
3733 	if (page) {
3734 		struct zone *zone = page_zone(page);
3735 
3736 		zone->compact_blockskip_flush = false;
3737 		compaction_defer_reset(zone, order, true);
3738 		count_vm_event(COMPACTSUCCESS);
3739 		return page;
3740 	}
3741 
3742 	/*
3743 	 * It's bad if compaction run occurs and fails. The most likely reason
3744 	 * is that pages exist, but not enough to satisfy watermarks.
3745 	 */
3746 	count_vm_event(COMPACTFAIL);
3747 
3748 	cond_resched();
3749 
3750 	return NULL;
3751 }
3752 
3753 static inline bool
3754 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3755 		     enum compact_result compact_result,
3756 		     enum compact_priority *compact_priority,
3757 		     int *compaction_retries)
3758 {
3759 	int max_retries = MAX_COMPACT_RETRIES;
3760 	int min_priority;
3761 	bool ret = false;
3762 	int retries = *compaction_retries;
3763 	enum compact_priority priority = *compact_priority;
3764 
3765 	if (!order)
3766 		return false;
3767 
3768 	if (fatal_signal_pending(current))
3769 		return false;
3770 
3771 	if (compaction_made_progress(compact_result))
3772 		(*compaction_retries)++;
3773 
3774 	/*
3775 	 * compaction considers all the zone as desperately out of memory
3776 	 * so it doesn't really make much sense to retry except when the
3777 	 * failure could be caused by insufficient priority
3778 	 */
3779 	if (compaction_failed(compact_result))
3780 		goto check_priority;
3781 
3782 	/*
3783 	 * compaction was skipped because there are not enough order-0 pages
3784 	 * to work with, so we retry only if it looks like reclaim can help.
3785 	 */
3786 	if (compaction_needs_reclaim(compact_result)) {
3787 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3788 		goto out;
3789 	}
3790 
3791 	/*
3792 	 * make sure the compaction wasn't deferred or didn't bail out early
3793 	 * due to locks contention before we declare that we should give up.
3794 	 * But the next retry should use a higher priority if allowed, so
3795 	 * we don't just keep bailing out endlessly.
3796 	 */
3797 	if (compaction_withdrawn(compact_result)) {
3798 		goto check_priority;
3799 	}
3800 
3801 	/*
3802 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3803 	 * costly ones because they are de facto nofail and invoke OOM
3804 	 * killer to move on while costly can fail and users are ready
3805 	 * to cope with that. 1/4 retries is rather arbitrary but we
3806 	 * would need much more detailed feedback from compaction to
3807 	 * make a better decision.
3808 	 */
3809 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3810 		max_retries /= 4;
3811 	if (*compaction_retries <= max_retries) {
3812 		ret = true;
3813 		goto out;
3814 	}
3815 
3816 	/*
3817 	 * Make sure there are attempts at the highest priority if we exhausted
3818 	 * all retries or failed at the lower priorities.
3819 	 */
3820 check_priority:
3821 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3822 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3823 
3824 	if (*compact_priority > min_priority) {
3825 		(*compact_priority)--;
3826 		*compaction_retries = 0;
3827 		ret = true;
3828 	}
3829 out:
3830 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3831 	return ret;
3832 }
3833 #else
3834 static inline struct page *
3835 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3836 		unsigned int alloc_flags, const struct alloc_context *ac,
3837 		enum compact_priority prio, enum compact_result *compact_result)
3838 {
3839 	*compact_result = COMPACT_SKIPPED;
3840 	return NULL;
3841 }
3842 
3843 static inline bool
3844 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3845 		     enum compact_result compact_result,
3846 		     enum compact_priority *compact_priority,
3847 		     int *compaction_retries)
3848 {
3849 	struct zone *zone;
3850 	struct zoneref *z;
3851 
3852 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3853 		return false;
3854 
3855 	/*
3856 	 * There are setups with compaction disabled which would prefer to loop
3857 	 * inside the allocator rather than hit the oom killer prematurely.
3858 	 * Let's give them a good hope and keep retrying while the order-0
3859 	 * watermarks are OK.
3860 	 */
3861 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3862 				ac->highest_zoneidx, ac->nodemask) {
3863 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3864 					ac->highest_zoneidx, alloc_flags))
3865 			return true;
3866 	}
3867 	return false;
3868 }
3869 #endif /* CONFIG_COMPACTION */
3870 
3871 #ifdef CONFIG_LOCKDEP
3872 static struct lockdep_map __fs_reclaim_map =
3873 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3874 
3875 static bool __need_reclaim(gfp_t gfp_mask)
3876 {
3877 	/* no reclaim without waiting on it */
3878 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3879 		return false;
3880 
3881 	/* this guy won't enter reclaim */
3882 	if (current->flags & PF_MEMALLOC)
3883 		return false;
3884 
3885 	if (gfp_mask & __GFP_NOLOCKDEP)
3886 		return false;
3887 
3888 	return true;
3889 }
3890 
3891 void __fs_reclaim_acquire(unsigned long ip)
3892 {
3893 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3894 }
3895 
3896 void __fs_reclaim_release(unsigned long ip)
3897 {
3898 	lock_release(&__fs_reclaim_map, ip);
3899 }
3900 
3901 void fs_reclaim_acquire(gfp_t gfp_mask)
3902 {
3903 	gfp_mask = current_gfp_context(gfp_mask);
3904 
3905 	if (__need_reclaim(gfp_mask)) {
3906 		if (gfp_mask & __GFP_FS)
3907 			__fs_reclaim_acquire(_RET_IP_);
3908 
3909 #ifdef CONFIG_MMU_NOTIFIER
3910 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3911 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3912 #endif
3913 
3914 	}
3915 }
3916 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3917 
3918 void fs_reclaim_release(gfp_t gfp_mask)
3919 {
3920 	gfp_mask = current_gfp_context(gfp_mask);
3921 
3922 	if (__need_reclaim(gfp_mask)) {
3923 		if (gfp_mask & __GFP_FS)
3924 			__fs_reclaim_release(_RET_IP_);
3925 	}
3926 }
3927 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3928 #endif
3929 
3930 /*
3931  * Zonelists may change due to hotplug during allocation. Detect when zonelists
3932  * have been rebuilt so allocation retries. Reader side does not lock and
3933  * retries the allocation if zonelist changes. Writer side is protected by the
3934  * embedded spin_lock.
3935  */
3936 static DEFINE_SEQLOCK(zonelist_update_seq);
3937 
3938 static unsigned int zonelist_iter_begin(void)
3939 {
3940 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3941 		return read_seqbegin(&zonelist_update_seq);
3942 
3943 	return 0;
3944 }
3945 
3946 static unsigned int check_retry_zonelist(unsigned int seq)
3947 {
3948 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3949 		return read_seqretry(&zonelist_update_seq, seq);
3950 
3951 	return seq;
3952 }
3953 
3954 /* Perform direct synchronous page reclaim */
3955 static unsigned long
3956 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3957 					const struct alloc_context *ac)
3958 {
3959 	unsigned int noreclaim_flag;
3960 	unsigned long progress;
3961 
3962 	cond_resched();
3963 
3964 	/* We now go into synchronous reclaim */
3965 	cpuset_memory_pressure_bump();
3966 	fs_reclaim_acquire(gfp_mask);
3967 	noreclaim_flag = memalloc_noreclaim_save();
3968 
3969 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3970 								ac->nodemask);
3971 
3972 	memalloc_noreclaim_restore(noreclaim_flag);
3973 	fs_reclaim_release(gfp_mask);
3974 
3975 	cond_resched();
3976 
3977 	return progress;
3978 }
3979 
3980 /* The really slow allocator path where we enter direct reclaim */
3981 static inline struct page *
3982 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3983 		unsigned int alloc_flags, const struct alloc_context *ac,
3984 		unsigned long *did_some_progress)
3985 {
3986 	struct page *page = NULL;
3987 	unsigned long pflags;
3988 	bool drained = false;
3989 
3990 	psi_memstall_enter(&pflags);
3991 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3992 	if (unlikely(!(*did_some_progress)))
3993 		goto out;
3994 
3995 retry:
3996 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3997 
3998 	/*
3999 	 * If an allocation failed after direct reclaim, it could be because
4000 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4001 	 * Shrink them and try again
4002 	 */
4003 	if (!page && !drained) {
4004 		unreserve_highatomic_pageblock(ac, false);
4005 		drain_all_pages(NULL);
4006 		drained = true;
4007 		goto retry;
4008 	}
4009 out:
4010 	psi_memstall_leave(&pflags);
4011 
4012 	return page;
4013 }
4014 
4015 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4016 			     const struct alloc_context *ac)
4017 {
4018 	struct zoneref *z;
4019 	struct zone *zone;
4020 	pg_data_t *last_pgdat = NULL;
4021 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4022 
4023 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4024 					ac->nodemask) {
4025 		if (!managed_zone(zone))
4026 			continue;
4027 		if (last_pgdat != zone->zone_pgdat) {
4028 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4029 			last_pgdat = zone->zone_pgdat;
4030 		}
4031 	}
4032 }
4033 
4034 static inline unsigned int
4035 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
4036 {
4037 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4038 
4039 	/*
4040 	 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
4041 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4042 	 * to save two branches.
4043 	 */
4044 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
4045 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4046 
4047 	/*
4048 	 * The caller may dip into page reserves a bit more if the caller
4049 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4050 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4051 	 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
4052 	 */
4053 	alloc_flags |= (__force int)
4054 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4055 
4056 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
4057 		/*
4058 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4059 		 * if it can't schedule.
4060 		 */
4061 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
4062 			alloc_flags |= ALLOC_NON_BLOCK;
4063 
4064 			if (order > 0)
4065 				alloc_flags |= ALLOC_HIGHATOMIC;
4066 		}
4067 
4068 		/*
4069 		 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
4070 		 * GFP_ATOMIC) rather than fail, see the comment for
4071 		 * cpuset_node_allowed().
4072 		 */
4073 		if (alloc_flags & ALLOC_MIN_RESERVE)
4074 			alloc_flags &= ~ALLOC_CPUSET;
4075 	} else if (unlikely(rt_task(current)) && in_task())
4076 		alloc_flags |= ALLOC_MIN_RESERVE;
4077 
4078 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4079 
4080 	return alloc_flags;
4081 }
4082 
4083 static bool oom_reserves_allowed(struct task_struct *tsk)
4084 {
4085 	if (!tsk_is_oom_victim(tsk))
4086 		return false;
4087 
4088 	/*
4089 	 * !MMU doesn't have oom reaper so give access to memory reserves
4090 	 * only to the thread with TIF_MEMDIE set
4091 	 */
4092 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4093 		return false;
4094 
4095 	return true;
4096 }
4097 
4098 /*
4099  * Distinguish requests which really need access to full memory
4100  * reserves from oom victims which can live with a portion of it
4101  */
4102 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4103 {
4104 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4105 		return 0;
4106 	if (gfp_mask & __GFP_MEMALLOC)
4107 		return ALLOC_NO_WATERMARKS;
4108 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4109 		return ALLOC_NO_WATERMARKS;
4110 	if (!in_interrupt()) {
4111 		if (current->flags & PF_MEMALLOC)
4112 			return ALLOC_NO_WATERMARKS;
4113 		else if (oom_reserves_allowed(current))
4114 			return ALLOC_OOM;
4115 	}
4116 
4117 	return 0;
4118 }
4119 
4120 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4121 {
4122 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4123 }
4124 
4125 /*
4126  * Checks whether it makes sense to retry the reclaim to make a forward progress
4127  * for the given allocation request.
4128  *
4129  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4130  * without success, or when we couldn't even meet the watermark if we
4131  * reclaimed all remaining pages on the LRU lists.
4132  *
4133  * Returns true if a retry is viable or false to enter the oom path.
4134  */
4135 static inline bool
4136 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4137 		     struct alloc_context *ac, int alloc_flags,
4138 		     bool did_some_progress, int *no_progress_loops)
4139 {
4140 	struct zone *zone;
4141 	struct zoneref *z;
4142 	bool ret = false;
4143 
4144 	/*
4145 	 * Costly allocations might have made a progress but this doesn't mean
4146 	 * their order will become available due to high fragmentation so
4147 	 * always increment the no progress counter for them
4148 	 */
4149 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4150 		*no_progress_loops = 0;
4151 	else
4152 		(*no_progress_loops)++;
4153 
4154 	/*
4155 	 * Make sure we converge to OOM if we cannot make any progress
4156 	 * several times in the row.
4157 	 */
4158 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4159 		/* Before OOM, exhaust highatomic_reserve */
4160 		return unreserve_highatomic_pageblock(ac, true);
4161 	}
4162 
4163 	/*
4164 	 * Keep reclaiming pages while there is a chance this will lead
4165 	 * somewhere.  If none of the target zones can satisfy our allocation
4166 	 * request even if all reclaimable pages are considered then we are
4167 	 * screwed and have to go OOM.
4168 	 */
4169 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4170 				ac->highest_zoneidx, ac->nodemask) {
4171 		unsigned long available;
4172 		unsigned long reclaimable;
4173 		unsigned long min_wmark = min_wmark_pages(zone);
4174 		bool wmark;
4175 
4176 		available = reclaimable = zone_reclaimable_pages(zone);
4177 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4178 
4179 		/*
4180 		 * Would the allocation succeed if we reclaimed all
4181 		 * reclaimable pages?
4182 		 */
4183 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4184 				ac->highest_zoneidx, alloc_flags, available);
4185 		trace_reclaim_retry_zone(z, order, reclaimable,
4186 				available, min_wmark, *no_progress_loops, wmark);
4187 		if (wmark) {
4188 			ret = true;
4189 			break;
4190 		}
4191 	}
4192 
4193 	/*
4194 	 * Memory allocation/reclaim might be called from a WQ context and the
4195 	 * current implementation of the WQ concurrency control doesn't
4196 	 * recognize that a particular WQ is congested if the worker thread is
4197 	 * looping without ever sleeping. Therefore we have to do a short sleep
4198 	 * here rather than calling cond_resched().
4199 	 */
4200 	if (current->flags & PF_WQ_WORKER)
4201 		schedule_timeout_uninterruptible(1);
4202 	else
4203 		cond_resched();
4204 	return ret;
4205 }
4206 
4207 static inline bool
4208 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4209 {
4210 	/*
4211 	 * It's possible that cpuset's mems_allowed and the nodemask from
4212 	 * mempolicy don't intersect. This should be normally dealt with by
4213 	 * policy_nodemask(), but it's possible to race with cpuset update in
4214 	 * such a way the check therein was true, and then it became false
4215 	 * before we got our cpuset_mems_cookie here.
4216 	 * This assumes that for all allocations, ac->nodemask can come only
4217 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4218 	 * when it does not intersect with the cpuset restrictions) or the
4219 	 * caller can deal with a violated nodemask.
4220 	 */
4221 	if (cpusets_enabled() && ac->nodemask &&
4222 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4223 		ac->nodemask = NULL;
4224 		return true;
4225 	}
4226 
4227 	/*
4228 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4229 	 * possible to race with parallel threads in such a way that our
4230 	 * allocation can fail while the mask is being updated. If we are about
4231 	 * to fail, check if the cpuset changed during allocation and if so,
4232 	 * retry.
4233 	 */
4234 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4235 		return true;
4236 
4237 	return false;
4238 }
4239 
4240 static inline struct page *
4241 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4242 						struct alloc_context *ac)
4243 {
4244 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4245 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4246 	struct page *page = NULL;
4247 	unsigned int alloc_flags;
4248 	unsigned long did_some_progress;
4249 	enum compact_priority compact_priority;
4250 	enum compact_result compact_result;
4251 	int compaction_retries;
4252 	int no_progress_loops;
4253 	unsigned int cpuset_mems_cookie;
4254 	unsigned int zonelist_iter_cookie;
4255 	int reserve_flags;
4256 
4257 restart:
4258 	compaction_retries = 0;
4259 	no_progress_loops = 0;
4260 	compact_priority = DEF_COMPACT_PRIORITY;
4261 	cpuset_mems_cookie = read_mems_allowed_begin();
4262 	zonelist_iter_cookie = zonelist_iter_begin();
4263 
4264 	/*
4265 	 * The fast path uses conservative alloc_flags to succeed only until
4266 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4267 	 * alloc_flags precisely. So we do that now.
4268 	 */
4269 	alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
4270 
4271 	/*
4272 	 * We need to recalculate the starting point for the zonelist iterator
4273 	 * because we might have used different nodemask in the fast path, or
4274 	 * there was a cpuset modification and we are retrying - otherwise we
4275 	 * could end up iterating over non-eligible zones endlessly.
4276 	 */
4277 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4278 					ac->highest_zoneidx, ac->nodemask);
4279 	if (!ac->preferred_zoneref->zone)
4280 		goto nopage;
4281 
4282 	/*
4283 	 * Check for insane configurations where the cpuset doesn't contain
4284 	 * any suitable zone to satisfy the request - e.g. non-movable
4285 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4286 	 */
4287 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4288 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
4289 					ac->highest_zoneidx,
4290 					&cpuset_current_mems_allowed);
4291 		if (!z->zone)
4292 			goto nopage;
4293 	}
4294 
4295 	if (alloc_flags & ALLOC_KSWAPD)
4296 		wake_all_kswapds(order, gfp_mask, ac);
4297 
4298 	/*
4299 	 * The adjusted alloc_flags might result in immediate success, so try
4300 	 * that first
4301 	 */
4302 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4303 	if (page)
4304 		goto got_pg;
4305 
4306 	/*
4307 	 * For costly allocations, try direct compaction first, as it's likely
4308 	 * that we have enough base pages and don't need to reclaim. For non-
4309 	 * movable high-order allocations, do that as well, as compaction will
4310 	 * try prevent permanent fragmentation by migrating from blocks of the
4311 	 * same migratetype.
4312 	 * Don't try this for allocations that are allowed to ignore
4313 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4314 	 */
4315 	if (can_direct_reclaim &&
4316 			(costly_order ||
4317 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4318 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4319 		page = __alloc_pages_direct_compact(gfp_mask, order,
4320 						alloc_flags, ac,
4321 						INIT_COMPACT_PRIORITY,
4322 						&compact_result);
4323 		if (page)
4324 			goto got_pg;
4325 
4326 		/*
4327 		 * Checks for costly allocations with __GFP_NORETRY, which
4328 		 * includes some THP page fault allocations
4329 		 */
4330 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4331 			/*
4332 			 * If allocating entire pageblock(s) and compaction
4333 			 * failed because all zones are below low watermarks
4334 			 * or is prohibited because it recently failed at this
4335 			 * order, fail immediately unless the allocator has
4336 			 * requested compaction and reclaim retry.
4337 			 *
4338 			 * Reclaim is
4339 			 *  - potentially very expensive because zones are far
4340 			 *    below their low watermarks or this is part of very
4341 			 *    bursty high order allocations,
4342 			 *  - not guaranteed to help because isolate_freepages()
4343 			 *    may not iterate over freed pages as part of its
4344 			 *    linear scan, and
4345 			 *  - unlikely to make entire pageblocks free on its
4346 			 *    own.
4347 			 */
4348 			if (compact_result == COMPACT_SKIPPED ||
4349 			    compact_result == COMPACT_DEFERRED)
4350 				goto nopage;
4351 
4352 			/*
4353 			 * Looks like reclaim/compaction is worth trying, but
4354 			 * sync compaction could be very expensive, so keep
4355 			 * using async compaction.
4356 			 */
4357 			compact_priority = INIT_COMPACT_PRIORITY;
4358 		}
4359 	}
4360 
4361 retry:
4362 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4363 	if (alloc_flags & ALLOC_KSWAPD)
4364 		wake_all_kswapds(order, gfp_mask, ac);
4365 
4366 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4367 	if (reserve_flags)
4368 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4369 					  (alloc_flags & ALLOC_KSWAPD);
4370 
4371 	/*
4372 	 * Reset the nodemask and zonelist iterators if memory policies can be
4373 	 * ignored. These allocations are high priority and system rather than
4374 	 * user oriented.
4375 	 */
4376 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4377 		ac->nodemask = NULL;
4378 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4379 					ac->highest_zoneidx, ac->nodemask);
4380 	}
4381 
4382 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4383 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4384 	if (page)
4385 		goto got_pg;
4386 
4387 	/* Caller is not willing to reclaim, we can't balance anything */
4388 	if (!can_direct_reclaim)
4389 		goto nopage;
4390 
4391 	/* Avoid recursion of direct reclaim */
4392 	if (current->flags & PF_MEMALLOC)
4393 		goto nopage;
4394 
4395 	/* Try direct reclaim and then allocating */
4396 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4397 							&did_some_progress);
4398 	if (page)
4399 		goto got_pg;
4400 
4401 	/* Try direct compaction and then allocating */
4402 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4403 					compact_priority, &compact_result);
4404 	if (page)
4405 		goto got_pg;
4406 
4407 	/* Do not loop if specifically requested */
4408 	if (gfp_mask & __GFP_NORETRY)
4409 		goto nopage;
4410 
4411 	/*
4412 	 * Do not retry costly high order allocations unless they are
4413 	 * __GFP_RETRY_MAYFAIL
4414 	 */
4415 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4416 		goto nopage;
4417 
4418 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4419 				 did_some_progress > 0, &no_progress_loops))
4420 		goto retry;
4421 
4422 	/*
4423 	 * It doesn't make any sense to retry for the compaction if the order-0
4424 	 * reclaim is not able to make any progress because the current
4425 	 * implementation of the compaction depends on the sufficient amount
4426 	 * of free memory (see __compaction_suitable)
4427 	 */
4428 	if (did_some_progress > 0 &&
4429 			should_compact_retry(ac, order, alloc_flags,
4430 				compact_result, &compact_priority,
4431 				&compaction_retries))
4432 		goto retry;
4433 
4434 
4435 	/*
4436 	 * Deal with possible cpuset update races or zonelist updates to avoid
4437 	 * a unnecessary OOM kill.
4438 	 */
4439 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4440 	    check_retry_zonelist(zonelist_iter_cookie))
4441 		goto restart;
4442 
4443 	/* Reclaim has failed us, start killing things */
4444 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4445 	if (page)
4446 		goto got_pg;
4447 
4448 	/* Avoid allocations with no watermarks from looping endlessly */
4449 	if (tsk_is_oom_victim(current) &&
4450 	    (alloc_flags & ALLOC_OOM ||
4451 	     (gfp_mask & __GFP_NOMEMALLOC)))
4452 		goto nopage;
4453 
4454 	/* Retry as long as the OOM killer is making progress */
4455 	if (did_some_progress) {
4456 		no_progress_loops = 0;
4457 		goto retry;
4458 	}
4459 
4460 nopage:
4461 	/*
4462 	 * Deal with possible cpuset update races or zonelist updates to avoid
4463 	 * a unnecessary OOM kill.
4464 	 */
4465 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4466 	    check_retry_zonelist(zonelist_iter_cookie))
4467 		goto restart;
4468 
4469 	/*
4470 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4471 	 * we always retry
4472 	 */
4473 	if (gfp_mask & __GFP_NOFAIL) {
4474 		/*
4475 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4476 		 * of any new users that actually require GFP_NOWAIT
4477 		 */
4478 		if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
4479 			goto fail;
4480 
4481 		/*
4482 		 * PF_MEMALLOC request from this context is rather bizarre
4483 		 * because we cannot reclaim anything and only can loop waiting
4484 		 * for somebody to do a work for us
4485 		 */
4486 		WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
4487 
4488 		/*
4489 		 * non failing costly orders are a hard requirement which we
4490 		 * are not prepared for much so let's warn about these users
4491 		 * so that we can identify them and convert them to something
4492 		 * else.
4493 		 */
4494 		WARN_ON_ONCE_GFP(costly_order, gfp_mask);
4495 
4496 		/*
4497 		 * Help non-failing allocations by giving some access to memory
4498 		 * reserves normally used for high priority non-blocking
4499 		 * allocations but do not use ALLOC_NO_WATERMARKS because this
4500 		 * could deplete whole memory reserves which would just make
4501 		 * the situation worse.
4502 		 */
4503 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4504 		if (page)
4505 			goto got_pg;
4506 
4507 		cond_resched();
4508 		goto retry;
4509 	}
4510 fail:
4511 	warn_alloc(gfp_mask, ac->nodemask,
4512 			"page allocation failure: order:%u", order);
4513 got_pg:
4514 	return page;
4515 }
4516 
4517 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4518 		int preferred_nid, nodemask_t *nodemask,
4519 		struct alloc_context *ac, gfp_t *alloc_gfp,
4520 		unsigned int *alloc_flags)
4521 {
4522 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4523 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4524 	ac->nodemask = nodemask;
4525 	ac->migratetype = gfp_migratetype(gfp_mask);
4526 
4527 	if (cpusets_enabled()) {
4528 		*alloc_gfp |= __GFP_HARDWALL;
4529 		/*
4530 		 * When we are in the interrupt context, it is irrelevant
4531 		 * to the current task context. It means that any node ok.
4532 		 */
4533 		if (in_task() && !ac->nodemask)
4534 			ac->nodemask = &cpuset_current_mems_allowed;
4535 		else
4536 			*alloc_flags |= ALLOC_CPUSET;
4537 	}
4538 
4539 	might_alloc(gfp_mask);
4540 
4541 	if (should_fail_alloc_page(gfp_mask, order))
4542 		return false;
4543 
4544 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4545 
4546 	/* Dirty zone balancing only done in the fast path */
4547 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4548 
4549 	/*
4550 	 * The preferred zone is used for statistics but crucially it is
4551 	 * also used as the starting point for the zonelist iterator. It
4552 	 * may get reset for allocations that ignore memory policies.
4553 	 */
4554 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4555 					ac->highest_zoneidx, ac->nodemask);
4556 
4557 	return true;
4558 }
4559 
4560 /*
4561  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4562  * @gfp: GFP flags for the allocation
4563  * @preferred_nid: The preferred NUMA node ID to allocate from
4564  * @nodemask: Set of nodes to allocate from, may be NULL
4565  * @nr_pages: The number of pages desired on the list or array
4566  * @page_list: Optional list to store the allocated pages
4567  * @page_array: Optional array to store the pages
4568  *
4569  * This is a batched version of the page allocator that attempts to
4570  * allocate nr_pages quickly. Pages are added to page_list if page_list
4571  * is not NULL, otherwise it is assumed that the page_array is valid.
4572  *
4573  * For lists, nr_pages is the number of pages that should be allocated.
4574  *
4575  * For arrays, only NULL elements are populated with pages and nr_pages
4576  * is the maximum number of pages that will be stored in the array.
4577  *
4578  * Returns the number of pages on the list or array.
4579  */
4580 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
4581 			nodemask_t *nodemask, int nr_pages,
4582 			struct list_head *page_list,
4583 			struct page **page_array)
4584 {
4585 	struct page *page;
4586 	unsigned long __maybe_unused UP_flags;
4587 	struct zone *zone;
4588 	struct zoneref *z;
4589 	struct per_cpu_pages *pcp;
4590 	struct list_head *pcp_list;
4591 	struct alloc_context ac;
4592 	gfp_t alloc_gfp;
4593 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4594 	int nr_populated = 0, nr_account = 0;
4595 
4596 	/*
4597 	 * Skip populated array elements to determine if any pages need
4598 	 * to be allocated before disabling IRQs.
4599 	 */
4600 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4601 		nr_populated++;
4602 
4603 	/* No pages requested? */
4604 	if (unlikely(nr_pages <= 0))
4605 		goto out;
4606 
4607 	/* Already populated array? */
4608 	if (unlikely(page_array && nr_pages - nr_populated == 0))
4609 		goto out;
4610 
4611 	/* Bulk allocator does not support memcg accounting. */
4612 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4613 		goto failed;
4614 
4615 	/* Use the single page allocator for one page. */
4616 	if (nr_pages - nr_populated == 1)
4617 		goto failed;
4618 
4619 #ifdef CONFIG_PAGE_OWNER
4620 	/*
4621 	 * PAGE_OWNER may recurse into the allocator to allocate space to
4622 	 * save the stack with pagesets.lock held. Releasing/reacquiring
4623 	 * removes much of the performance benefit of bulk allocation so
4624 	 * force the caller to allocate one page at a time as it'll have
4625 	 * similar performance to added complexity to the bulk allocator.
4626 	 */
4627 	if (static_branch_unlikely(&page_owner_inited))
4628 		goto failed;
4629 #endif
4630 
4631 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4632 	gfp &= gfp_allowed_mask;
4633 	alloc_gfp = gfp;
4634 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4635 		goto out;
4636 	gfp = alloc_gfp;
4637 
4638 	/* Find an allowed local zone that meets the low watermark. */
4639 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
4640 		unsigned long mark;
4641 
4642 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4643 		    !__cpuset_zone_allowed(zone, gfp)) {
4644 			continue;
4645 		}
4646 
4647 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
4648 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
4649 			goto failed;
4650 		}
4651 
4652 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4653 		if (zone_watermark_fast(zone, 0,  mark,
4654 				zonelist_zone_idx(ac.preferred_zoneref),
4655 				alloc_flags, gfp)) {
4656 			break;
4657 		}
4658 	}
4659 
4660 	/*
4661 	 * If there are no allowed local zones that meets the watermarks then
4662 	 * try to allocate a single page and reclaim if necessary.
4663 	 */
4664 	if (unlikely(!zone))
4665 		goto failed;
4666 
4667 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4668 	pcp_trylock_prepare(UP_flags);
4669 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4670 	if (!pcp)
4671 		goto failed_irq;
4672 
4673 	/* Attempt the batch allocation */
4674 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4675 	while (nr_populated < nr_pages) {
4676 
4677 		/* Skip existing pages */
4678 		if (page_array && page_array[nr_populated]) {
4679 			nr_populated++;
4680 			continue;
4681 		}
4682 
4683 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4684 								pcp, pcp_list);
4685 		if (unlikely(!page)) {
4686 			/* Try and allocate at least one page */
4687 			if (!nr_account) {
4688 				pcp_spin_unlock(pcp);
4689 				goto failed_irq;
4690 			}
4691 			break;
4692 		}
4693 		nr_account++;
4694 
4695 		prep_new_page(page, 0, gfp, 0);
4696 		if (page_list)
4697 			list_add(&page->lru, page_list);
4698 		else
4699 			page_array[nr_populated] = page;
4700 		nr_populated++;
4701 	}
4702 
4703 	pcp_spin_unlock(pcp);
4704 	pcp_trylock_finish(UP_flags);
4705 
4706 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4707 	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
4708 
4709 out:
4710 	return nr_populated;
4711 
4712 failed_irq:
4713 	pcp_trylock_finish(UP_flags);
4714 
4715 failed:
4716 	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
4717 	if (page) {
4718 		if (page_list)
4719 			list_add(&page->lru, page_list);
4720 		else
4721 			page_array[nr_populated] = page;
4722 		nr_populated++;
4723 	}
4724 
4725 	goto out;
4726 }
4727 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
4728 
4729 /*
4730  * This is the 'heart' of the zoned buddy allocator.
4731  */
4732 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
4733 							nodemask_t *nodemask)
4734 {
4735 	struct page *page;
4736 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4737 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4738 	struct alloc_context ac = { };
4739 
4740 	/*
4741 	 * There are several places where we assume that the order value is sane
4742 	 * so bail out early if the request is out of bound.
4743 	 */
4744 	if (WARN_ON_ONCE_GFP(order > MAX_ORDER, gfp))
4745 		return NULL;
4746 
4747 	gfp &= gfp_allowed_mask;
4748 	/*
4749 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4750 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4751 	 * from a particular context which has been marked by
4752 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4753 	 * movable zones are not used during allocation.
4754 	 */
4755 	gfp = current_gfp_context(gfp);
4756 	alloc_gfp = gfp;
4757 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4758 			&alloc_gfp, &alloc_flags))
4759 		return NULL;
4760 
4761 	/*
4762 	 * Forbid the first pass from falling back to types that fragment
4763 	 * memory until all local zones are considered.
4764 	 */
4765 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
4766 
4767 	/* First allocation attempt */
4768 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4769 	if (likely(page))
4770 		goto out;
4771 
4772 	alloc_gfp = gfp;
4773 	ac.spread_dirty_pages = false;
4774 
4775 	/*
4776 	 * Restore the original nodemask if it was potentially replaced with
4777 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4778 	 */
4779 	ac.nodemask = nodemask;
4780 
4781 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4782 
4783 out:
4784 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4785 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4786 		__free_pages(page, order);
4787 		page = NULL;
4788 	}
4789 
4790 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4791 	kmsan_alloc_page(page, order, alloc_gfp);
4792 
4793 	return page;
4794 }
4795 EXPORT_SYMBOL(__alloc_pages);
4796 
4797 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
4798 		nodemask_t *nodemask)
4799 {
4800 	struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
4801 			preferred_nid, nodemask);
4802 
4803 	if (page && order > 1)
4804 		prep_transhuge_page(page);
4805 	return (struct folio *)page;
4806 }
4807 EXPORT_SYMBOL(__folio_alloc);
4808 
4809 /*
4810  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4811  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4812  * you need to access high mem.
4813  */
4814 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4815 {
4816 	struct page *page;
4817 
4818 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4819 	if (!page)
4820 		return 0;
4821 	return (unsigned long) page_address(page);
4822 }
4823 EXPORT_SYMBOL(__get_free_pages);
4824 
4825 unsigned long get_zeroed_page(gfp_t gfp_mask)
4826 {
4827 	return __get_free_page(gfp_mask | __GFP_ZERO);
4828 }
4829 EXPORT_SYMBOL(get_zeroed_page);
4830 
4831 /**
4832  * __free_pages - Free pages allocated with alloc_pages().
4833  * @page: The page pointer returned from alloc_pages().
4834  * @order: The order of the allocation.
4835  *
4836  * This function can free multi-page allocations that are not compound
4837  * pages.  It does not check that the @order passed in matches that of
4838  * the allocation, so it is easy to leak memory.  Freeing more memory
4839  * than was allocated will probably emit a warning.
4840  *
4841  * If the last reference to this page is speculative, it will be released
4842  * by put_page() which only frees the first page of a non-compound
4843  * allocation.  To prevent the remaining pages from being leaked, we free
4844  * the subsequent pages here.  If you want to use the page's reference
4845  * count to decide when to free the allocation, you should allocate a
4846  * compound page, and use put_page() instead of __free_pages().
4847  *
4848  * Context: May be called in interrupt context or while holding a normal
4849  * spinlock, but not in NMI context or while holding a raw spinlock.
4850  */
4851 void __free_pages(struct page *page, unsigned int order)
4852 {
4853 	/* get PageHead before we drop reference */
4854 	int head = PageHead(page);
4855 
4856 	if (put_page_testzero(page))
4857 		free_the_page(page, order);
4858 	else if (!head)
4859 		while (order-- > 0)
4860 			free_the_page(page + (1 << order), order);
4861 }
4862 EXPORT_SYMBOL(__free_pages);
4863 
4864 void free_pages(unsigned long addr, unsigned int order)
4865 {
4866 	if (addr != 0) {
4867 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4868 		__free_pages(virt_to_page((void *)addr), order);
4869 	}
4870 }
4871 
4872 EXPORT_SYMBOL(free_pages);
4873 
4874 /*
4875  * Page Fragment:
4876  *  An arbitrary-length arbitrary-offset area of memory which resides
4877  *  within a 0 or higher order page.  Multiple fragments within that page
4878  *  are individually refcounted, in the page's reference counter.
4879  *
4880  * The page_frag functions below provide a simple allocation framework for
4881  * page fragments.  This is used by the network stack and network device
4882  * drivers to provide a backing region of memory for use as either an
4883  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4884  */
4885 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4886 					     gfp_t gfp_mask)
4887 {
4888 	struct page *page = NULL;
4889 	gfp_t gfp = gfp_mask;
4890 
4891 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4892 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4893 		    __GFP_NOMEMALLOC;
4894 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4895 				PAGE_FRAG_CACHE_MAX_ORDER);
4896 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4897 #endif
4898 	if (unlikely(!page))
4899 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4900 
4901 	nc->va = page ? page_address(page) : NULL;
4902 
4903 	return page;
4904 }
4905 
4906 void __page_frag_cache_drain(struct page *page, unsigned int count)
4907 {
4908 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4909 
4910 	if (page_ref_sub_and_test(page, count))
4911 		free_the_page(page, compound_order(page));
4912 }
4913 EXPORT_SYMBOL(__page_frag_cache_drain);
4914 
4915 void *page_frag_alloc_align(struct page_frag_cache *nc,
4916 		      unsigned int fragsz, gfp_t gfp_mask,
4917 		      unsigned int align_mask)
4918 {
4919 	unsigned int size = PAGE_SIZE;
4920 	struct page *page;
4921 	int offset;
4922 
4923 	if (unlikely(!nc->va)) {
4924 refill:
4925 		page = __page_frag_cache_refill(nc, gfp_mask);
4926 		if (!page)
4927 			return NULL;
4928 
4929 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4930 		/* if size can vary use size else just use PAGE_SIZE */
4931 		size = nc->size;
4932 #endif
4933 		/* Even if we own the page, we do not use atomic_set().
4934 		 * This would break get_page_unless_zero() users.
4935 		 */
4936 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4937 
4938 		/* reset page count bias and offset to start of new frag */
4939 		nc->pfmemalloc = page_is_pfmemalloc(page);
4940 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4941 		nc->offset = size;
4942 	}
4943 
4944 	offset = nc->offset - fragsz;
4945 	if (unlikely(offset < 0)) {
4946 		page = virt_to_page(nc->va);
4947 
4948 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4949 			goto refill;
4950 
4951 		if (unlikely(nc->pfmemalloc)) {
4952 			free_the_page(page, compound_order(page));
4953 			goto refill;
4954 		}
4955 
4956 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4957 		/* if size can vary use size else just use PAGE_SIZE */
4958 		size = nc->size;
4959 #endif
4960 		/* OK, page count is 0, we can safely set it */
4961 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4962 
4963 		/* reset page count bias and offset to start of new frag */
4964 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4965 		offset = size - fragsz;
4966 		if (unlikely(offset < 0)) {
4967 			/*
4968 			 * The caller is trying to allocate a fragment
4969 			 * with fragsz > PAGE_SIZE but the cache isn't big
4970 			 * enough to satisfy the request, this may
4971 			 * happen in low memory conditions.
4972 			 * We don't release the cache page because
4973 			 * it could make memory pressure worse
4974 			 * so we simply return NULL here.
4975 			 */
4976 			return NULL;
4977 		}
4978 	}
4979 
4980 	nc->pagecnt_bias--;
4981 	offset &= align_mask;
4982 	nc->offset = offset;
4983 
4984 	return nc->va + offset;
4985 }
4986 EXPORT_SYMBOL(page_frag_alloc_align);
4987 
4988 /*
4989  * Frees a page fragment allocated out of either a compound or order 0 page.
4990  */
4991 void page_frag_free(void *addr)
4992 {
4993 	struct page *page = virt_to_head_page(addr);
4994 
4995 	if (unlikely(put_page_testzero(page)))
4996 		free_the_page(page, compound_order(page));
4997 }
4998 EXPORT_SYMBOL(page_frag_free);
4999 
5000 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5001 		size_t size)
5002 {
5003 	if (addr) {
5004 		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
5005 		struct page *page = virt_to_page((void *)addr);
5006 		struct page *last = page + nr;
5007 
5008 		split_page_owner(page, 1 << order);
5009 		split_page_memcg(page, 1 << order);
5010 		while (page < --last)
5011 			set_page_refcounted(last);
5012 
5013 		last = page + (1UL << order);
5014 		for (page += nr; page < last; page++)
5015 			__free_pages_ok(page, 0, FPI_TO_TAIL);
5016 	}
5017 	return (void *)addr;
5018 }
5019 
5020 /**
5021  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5022  * @size: the number of bytes to allocate
5023  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5024  *
5025  * This function is similar to alloc_pages(), except that it allocates the
5026  * minimum number of pages to satisfy the request.  alloc_pages() can only
5027  * allocate memory in power-of-two pages.
5028  *
5029  * This function is also limited by MAX_ORDER.
5030  *
5031  * Memory allocated by this function must be released by free_pages_exact().
5032  *
5033  * Return: pointer to the allocated area or %NULL in case of error.
5034  */
5035 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5036 {
5037 	unsigned int order = get_order(size);
5038 	unsigned long addr;
5039 
5040 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5041 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5042 
5043 	addr = __get_free_pages(gfp_mask, order);
5044 	return make_alloc_exact(addr, order, size);
5045 }
5046 EXPORT_SYMBOL(alloc_pages_exact);
5047 
5048 /**
5049  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5050  *			   pages on a node.
5051  * @nid: the preferred node ID where memory should be allocated
5052  * @size: the number of bytes to allocate
5053  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5054  *
5055  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5056  * back.
5057  *
5058  * Return: pointer to the allocated area or %NULL in case of error.
5059  */
5060 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5061 {
5062 	unsigned int order = get_order(size);
5063 	struct page *p;
5064 
5065 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5066 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5067 
5068 	p = alloc_pages_node(nid, gfp_mask, order);
5069 	if (!p)
5070 		return NULL;
5071 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5072 }
5073 
5074 /**
5075  * free_pages_exact - release memory allocated via alloc_pages_exact()
5076  * @virt: the value returned by alloc_pages_exact.
5077  * @size: size of allocation, same value as passed to alloc_pages_exact().
5078  *
5079  * Release the memory allocated by a previous call to alloc_pages_exact.
5080  */
5081 void free_pages_exact(void *virt, size_t size)
5082 {
5083 	unsigned long addr = (unsigned long)virt;
5084 	unsigned long end = addr + PAGE_ALIGN(size);
5085 
5086 	while (addr < end) {
5087 		free_page(addr);
5088 		addr += PAGE_SIZE;
5089 	}
5090 }
5091 EXPORT_SYMBOL(free_pages_exact);
5092 
5093 /**
5094  * nr_free_zone_pages - count number of pages beyond high watermark
5095  * @offset: The zone index of the highest zone
5096  *
5097  * nr_free_zone_pages() counts the number of pages which are beyond the
5098  * high watermark within all zones at or below a given zone index.  For each
5099  * zone, the number of pages is calculated as:
5100  *
5101  *     nr_free_zone_pages = managed_pages - high_pages
5102  *
5103  * Return: number of pages beyond high watermark.
5104  */
5105 static unsigned long nr_free_zone_pages(int offset)
5106 {
5107 	struct zoneref *z;
5108 	struct zone *zone;
5109 
5110 	/* Just pick one node, since fallback list is circular */
5111 	unsigned long sum = 0;
5112 
5113 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5114 
5115 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5116 		unsigned long size = zone_managed_pages(zone);
5117 		unsigned long high = high_wmark_pages(zone);
5118 		if (size > high)
5119 			sum += size - high;
5120 	}
5121 
5122 	return sum;
5123 }
5124 
5125 /**
5126  * nr_free_buffer_pages - count number of pages beyond high watermark
5127  *
5128  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5129  * watermark within ZONE_DMA and ZONE_NORMAL.
5130  *
5131  * Return: number of pages beyond high watermark within ZONE_DMA and
5132  * ZONE_NORMAL.
5133  */
5134 unsigned long nr_free_buffer_pages(void)
5135 {
5136 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5137 }
5138 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5139 
5140 static inline void show_node(struct zone *zone)
5141 {
5142 	if (IS_ENABLED(CONFIG_NUMA))
5143 		printk("Node %d ", zone_to_nid(zone));
5144 }
5145 
5146 long si_mem_available(void)
5147 {
5148 	long available;
5149 	unsigned long pagecache;
5150 	unsigned long wmark_low = 0;
5151 	unsigned long pages[NR_LRU_LISTS];
5152 	unsigned long reclaimable;
5153 	struct zone *zone;
5154 	int lru;
5155 
5156 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5157 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5158 
5159 	for_each_zone(zone)
5160 		wmark_low += low_wmark_pages(zone);
5161 
5162 	/*
5163 	 * Estimate the amount of memory available for userspace allocations,
5164 	 * without causing swapping or OOM.
5165 	 */
5166 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5167 
5168 	/*
5169 	 * Not all the page cache can be freed, otherwise the system will
5170 	 * start swapping or thrashing. Assume at least half of the page
5171 	 * cache, or the low watermark worth of cache, needs to stay.
5172 	 */
5173 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5174 	pagecache -= min(pagecache / 2, wmark_low);
5175 	available += pagecache;
5176 
5177 	/*
5178 	 * Part of the reclaimable slab and other kernel memory consists of
5179 	 * items that are in use, and cannot be freed. Cap this estimate at the
5180 	 * low watermark.
5181 	 */
5182 	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5183 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5184 	available += reclaimable - min(reclaimable / 2, wmark_low);
5185 
5186 	if (available < 0)
5187 		available = 0;
5188 	return available;
5189 }
5190 EXPORT_SYMBOL_GPL(si_mem_available);
5191 
5192 void si_meminfo(struct sysinfo *val)
5193 {
5194 	val->totalram = totalram_pages();
5195 	val->sharedram = global_node_page_state(NR_SHMEM);
5196 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5197 	val->bufferram = nr_blockdev_pages();
5198 	val->totalhigh = totalhigh_pages();
5199 	val->freehigh = nr_free_highpages();
5200 	val->mem_unit = PAGE_SIZE;
5201 }
5202 
5203 EXPORT_SYMBOL(si_meminfo);
5204 
5205 #ifdef CONFIG_NUMA
5206 void si_meminfo_node(struct sysinfo *val, int nid)
5207 {
5208 	int zone_type;		/* needs to be signed */
5209 	unsigned long managed_pages = 0;
5210 	unsigned long managed_highpages = 0;
5211 	unsigned long free_highpages = 0;
5212 	pg_data_t *pgdat = NODE_DATA(nid);
5213 
5214 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5215 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5216 	val->totalram = managed_pages;
5217 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5218 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5219 #ifdef CONFIG_HIGHMEM
5220 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5221 		struct zone *zone = &pgdat->node_zones[zone_type];
5222 
5223 		if (is_highmem(zone)) {
5224 			managed_highpages += zone_managed_pages(zone);
5225 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5226 		}
5227 	}
5228 	val->totalhigh = managed_highpages;
5229 	val->freehigh = free_highpages;
5230 #else
5231 	val->totalhigh = managed_highpages;
5232 	val->freehigh = free_highpages;
5233 #endif
5234 	val->mem_unit = PAGE_SIZE;
5235 }
5236 #endif
5237 
5238 /*
5239  * Determine whether the node should be displayed or not, depending on whether
5240  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5241  */
5242 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5243 {
5244 	if (!(flags & SHOW_MEM_FILTER_NODES))
5245 		return false;
5246 
5247 	/*
5248 	 * no node mask - aka implicit memory numa policy. Do not bother with
5249 	 * the synchronization - read_mems_allowed_begin - because we do not
5250 	 * have to be precise here.
5251 	 */
5252 	if (!nodemask)
5253 		nodemask = &cpuset_current_mems_allowed;
5254 
5255 	return !node_isset(nid, *nodemask);
5256 }
5257 
5258 static void show_migration_types(unsigned char type)
5259 {
5260 	static const char types[MIGRATE_TYPES] = {
5261 		[MIGRATE_UNMOVABLE]	= 'U',
5262 		[MIGRATE_MOVABLE]	= 'M',
5263 		[MIGRATE_RECLAIMABLE]	= 'E',
5264 		[MIGRATE_HIGHATOMIC]	= 'H',
5265 #ifdef CONFIG_CMA
5266 		[MIGRATE_CMA]		= 'C',
5267 #endif
5268 #ifdef CONFIG_MEMORY_ISOLATION
5269 		[MIGRATE_ISOLATE]	= 'I',
5270 #endif
5271 	};
5272 	char tmp[MIGRATE_TYPES + 1];
5273 	char *p = tmp;
5274 	int i;
5275 
5276 	for (i = 0; i < MIGRATE_TYPES; i++) {
5277 		if (type & (1 << i))
5278 			*p++ = types[i];
5279 	}
5280 
5281 	*p = '\0';
5282 	printk(KERN_CONT "(%s) ", tmp);
5283 }
5284 
5285 static bool node_has_managed_zones(pg_data_t *pgdat, int max_zone_idx)
5286 {
5287 	int zone_idx;
5288 	for (zone_idx = 0; zone_idx <= max_zone_idx; zone_idx++)
5289 		if (zone_managed_pages(pgdat->node_zones + zone_idx))
5290 			return true;
5291 	return false;
5292 }
5293 
5294 /*
5295  * Show free area list (used inside shift_scroll-lock stuff)
5296  * We also calculate the percentage fragmentation. We do this by counting the
5297  * memory on each free list with the exception of the first item on the list.
5298  *
5299  * Bits in @filter:
5300  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5301  *   cpuset.
5302  */
5303 void __show_free_areas(unsigned int filter, nodemask_t *nodemask, int max_zone_idx)
5304 {
5305 	unsigned long free_pcp = 0;
5306 	int cpu, nid;
5307 	struct zone *zone;
5308 	pg_data_t *pgdat;
5309 
5310 	for_each_populated_zone(zone) {
5311 		if (zone_idx(zone) > max_zone_idx)
5312 			continue;
5313 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5314 			continue;
5315 
5316 		for_each_online_cpu(cpu)
5317 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5318 	}
5319 
5320 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5321 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5322 		" unevictable:%lu dirty:%lu writeback:%lu\n"
5323 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5324 		" mapped:%lu shmem:%lu pagetables:%lu\n"
5325 		" sec_pagetables:%lu bounce:%lu\n"
5326 		" kernel_misc_reclaimable:%lu\n"
5327 		" free:%lu free_pcp:%lu free_cma:%lu\n",
5328 		global_node_page_state(NR_ACTIVE_ANON),
5329 		global_node_page_state(NR_INACTIVE_ANON),
5330 		global_node_page_state(NR_ISOLATED_ANON),
5331 		global_node_page_state(NR_ACTIVE_FILE),
5332 		global_node_page_state(NR_INACTIVE_FILE),
5333 		global_node_page_state(NR_ISOLATED_FILE),
5334 		global_node_page_state(NR_UNEVICTABLE),
5335 		global_node_page_state(NR_FILE_DIRTY),
5336 		global_node_page_state(NR_WRITEBACK),
5337 		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5338 		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5339 		global_node_page_state(NR_FILE_MAPPED),
5340 		global_node_page_state(NR_SHMEM),
5341 		global_node_page_state(NR_PAGETABLE),
5342 		global_node_page_state(NR_SECONDARY_PAGETABLE),
5343 		global_zone_page_state(NR_BOUNCE),
5344 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
5345 		global_zone_page_state(NR_FREE_PAGES),
5346 		free_pcp,
5347 		global_zone_page_state(NR_FREE_CMA_PAGES));
5348 
5349 	for_each_online_pgdat(pgdat) {
5350 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5351 			continue;
5352 		if (!node_has_managed_zones(pgdat, max_zone_idx))
5353 			continue;
5354 
5355 		printk("Node %d"
5356 			" active_anon:%lukB"
5357 			" inactive_anon:%lukB"
5358 			" active_file:%lukB"
5359 			" inactive_file:%lukB"
5360 			" unevictable:%lukB"
5361 			" isolated(anon):%lukB"
5362 			" isolated(file):%lukB"
5363 			" mapped:%lukB"
5364 			" dirty:%lukB"
5365 			" writeback:%lukB"
5366 			" shmem:%lukB"
5367 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5368 			" shmem_thp: %lukB"
5369 			" shmem_pmdmapped: %lukB"
5370 			" anon_thp: %lukB"
5371 #endif
5372 			" writeback_tmp:%lukB"
5373 			" kernel_stack:%lukB"
5374 #ifdef CONFIG_SHADOW_CALL_STACK
5375 			" shadow_call_stack:%lukB"
5376 #endif
5377 			" pagetables:%lukB"
5378 			" sec_pagetables:%lukB"
5379 			" all_unreclaimable? %s"
5380 			"\n",
5381 			pgdat->node_id,
5382 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5383 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5384 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5385 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5386 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
5387 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5388 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5389 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5390 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
5391 			K(node_page_state(pgdat, NR_WRITEBACK)),
5392 			K(node_page_state(pgdat, NR_SHMEM)),
5393 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5394 			K(node_page_state(pgdat, NR_SHMEM_THPS)),
5395 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
5396 			K(node_page_state(pgdat, NR_ANON_THPS)),
5397 #endif
5398 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5399 			node_page_state(pgdat, NR_KERNEL_STACK_KB),
5400 #ifdef CONFIG_SHADOW_CALL_STACK
5401 			node_page_state(pgdat, NR_KERNEL_SCS_KB),
5402 #endif
5403 			K(node_page_state(pgdat, NR_PAGETABLE)),
5404 			K(node_page_state(pgdat, NR_SECONDARY_PAGETABLE)),
5405 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5406 				"yes" : "no");
5407 	}
5408 
5409 	for_each_populated_zone(zone) {
5410 		int i;
5411 
5412 		if (zone_idx(zone) > max_zone_idx)
5413 			continue;
5414 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5415 			continue;
5416 
5417 		free_pcp = 0;
5418 		for_each_online_cpu(cpu)
5419 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5420 
5421 		show_node(zone);
5422 		printk(KERN_CONT
5423 			"%s"
5424 			" free:%lukB"
5425 			" boost:%lukB"
5426 			" min:%lukB"
5427 			" low:%lukB"
5428 			" high:%lukB"
5429 			" reserved_highatomic:%luKB"
5430 			" active_anon:%lukB"
5431 			" inactive_anon:%lukB"
5432 			" active_file:%lukB"
5433 			" inactive_file:%lukB"
5434 			" unevictable:%lukB"
5435 			" writepending:%lukB"
5436 			" present:%lukB"
5437 			" managed:%lukB"
5438 			" mlocked:%lukB"
5439 			" bounce:%lukB"
5440 			" free_pcp:%lukB"
5441 			" local_pcp:%ukB"
5442 			" free_cma:%lukB"
5443 			"\n",
5444 			zone->name,
5445 			K(zone_page_state(zone, NR_FREE_PAGES)),
5446 			K(zone->watermark_boost),
5447 			K(min_wmark_pages(zone)),
5448 			K(low_wmark_pages(zone)),
5449 			K(high_wmark_pages(zone)),
5450 			K(zone->nr_reserved_highatomic),
5451 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5452 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5453 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5454 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5455 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5456 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5457 			K(zone->present_pages),
5458 			K(zone_managed_pages(zone)),
5459 			K(zone_page_state(zone, NR_MLOCK)),
5460 			K(zone_page_state(zone, NR_BOUNCE)),
5461 			K(free_pcp),
5462 			K(this_cpu_read(zone->per_cpu_pageset->count)),
5463 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5464 		printk("lowmem_reserve[]:");
5465 		for (i = 0; i < MAX_NR_ZONES; i++)
5466 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5467 		printk(KERN_CONT "\n");
5468 	}
5469 
5470 	for_each_populated_zone(zone) {
5471 		unsigned int order;
5472 		unsigned long nr[MAX_ORDER + 1], flags, total = 0;
5473 		unsigned char types[MAX_ORDER + 1];
5474 
5475 		if (zone_idx(zone) > max_zone_idx)
5476 			continue;
5477 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5478 			continue;
5479 		show_node(zone);
5480 		printk(KERN_CONT "%s: ", zone->name);
5481 
5482 		spin_lock_irqsave(&zone->lock, flags);
5483 		for (order = 0; order <= MAX_ORDER; order++) {
5484 			struct free_area *area = &zone->free_area[order];
5485 			int type;
5486 
5487 			nr[order] = area->nr_free;
5488 			total += nr[order] << order;
5489 
5490 			types[order] = 0;
5491 			for (type = 0; type < MIGRATE_TYPES; type++) {
5492 				if (!free_area_empty(area, type))
5493 					types[order] |= 1 << type;
5494 			}
5495 		}
5496 		spin_unlock_irqrestore(&zone->lock, flags);
5497 		for (order = 0; order <= MAX_ORDER; order++) {
5498 			printk(KERN_CONT "%lu*%lukB ",
5499 			       nr[order], K(1UL) << order);
5500 			if (nr[order])
5501 				show_migration_types(types[order]);
5502 		}
5503 		printk(KERN_CONT "= %lukB\n", K(total));
5504 	}
5505 
5506 	for_each_online_node(nid) {
5507 		if (show_mem_node_skip(filter, nid, nodemask))
5508 			continue;
5509 		hugetlb_show_meminfo_node(nid);
5510 	}
5511 
5512 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5513 
5514 	show_swap_cache_info();
5515 }
5516 
5517 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5518 {
5519 	zoneref->zone = zone;
5520 	zoneref->zone_idx = zone_idx(zone);
5521 }
5522 
5523 /*
5524  * Builds allocation fallback zone lists.
5525  *
5526  * Add all populated zones of a node to the zonelist.
5527  */
5528 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5529 {
5530 	struct zone *zone;
5531 	enum zone_type zone_type = MAX_NR_ZONES;
5532 	int nr_zones = 0;
5533 
5534 	do {
5535 		zone_type--;
5536 		zone = pgdat->node_zones + zone_type;
5537 		if (populated_zone(zone)) {
5538 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5539 			check_highest_zone(zone_type);
5540 		}
5541 	} while (zone_type);
5542 
5543 	return nr_zones;
5544 }
5545 
5546 #ifdef CONFIG_NUMA
5547 
5548 static int __parse_numa_zonelist_order(char *s)
5549 {
5550 	/*
5551 	 * We used to support different zonelists modes but they turned
5552 	 * out to be just not useful. Let's keep the warning in place
5553 	 * if somebody still use the cmd line parameter so that we do
5554 	 * not fail it silently
5555 	 */
5556 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5557 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5558 		return -EINVAL;
5559 	}
5560 	return 0;
5561 }
5562 
5563 char numa_zonelist_order[] = "Node";
5564 
5565 /*
5566  * sysctl handler for numa_zonelist_order
5567  */
5568 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5569 		void *buffer, size_t *length, loff_t *ppos)
5570 {
5571 	if (write)
5572 		return __parse_numa_zonelist_order(buffer);
5573 	return proc_dostring(table, write, buffer, length, ppos);
5574 }
5575 
5576 
5577 static int node_load[MAX_NUMNODES];
5578 
5579 /**
5580  * find_next_best_node - find the next node that should appear in a given node's fallback list
5581  * @node: node whose fallback list we're appending
5582  * @used_node_mask: nodemask_t of already used nodes
5583  *
5584  * We use a number of factors to determine which is the next node that should
5585  * appear on a given node's fallback list.  The node should not have appeared
5586  * already in @node's fallback list, and it should be the next closest node
5587  * according to the distance array (which contains arbitrary distance values
5588  * from each node to each node in the system), and should also prefer nodes
5589  * with no CPUs, since presumably they'll have very little allocation pressure
5590  * on them otherwise.
5591  *
5592  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5593  */
5594 int find_next_best_node(int node, nodemask_t *used_node_mask)
5595 {
5596 	int n, val;
5597 	int min_val = INT_MAX;
5598 	int best_node = NUMA_NO_NODE;
5599 
5600 	/* Use the local node if we haven't already */
5601 	if (!node_isset(node, *used_node_mask)) {
5602 		node_set(node, *used_node_mask);
5603 		return node;
5604 	}
5605 
5606 	for_each_node_state(n, N_MEMORY) {
5607 
5608 		/* Don't want a node to appear more than once */
5609 		if (node_isset(n, *used_node_mask))
5610 			continue;
5611 
5612 		/* Use the distance array to find the distance */
5613 		val = node_distance(node, n);
5614 
5615 		/* Penalize nodes under us ("prefer the next node") */
5616 		val += (n < node);
5617 
5618 		/* Give preference to headless and unused nodes */
5619 		if (!cpumask_empty(cpumask_of_node(n)))
5620 			val += PENALTY_FOR_NODE_WITH_CPUS;
5621 
5622 		/* Slight preference for less loaded node */
5623 		val *= MAX_NUMNODES;
5624 		val += node_load[n];
5625 
5626 		if (val < min_val) {
5627 			min_val = val;
5628 			best_node = n;
5629 		}
5630 	}
5631 
5632 	if (best_node >= 0)
5633 		node_set(best_node, *used_node_mask);
5634 
5635 	return best_node;
5636 }
5637 
5638 
5639 /*
5640  * Build zonelists ordered by node and zones within node.
5641  * This results in maximum locality--normal zone overflows into local
5642  * DMA zone, if any--but risks exhausting DMA zone.
5643  */
5644 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5645 		unsigned nr_nodes)
5646 {
5647 	struct zoneref *zonerefs;
5648 	int i;
5649 
5650 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5651 
5652 	for (i = 0; i < nr_nodes; i++) {
5653 		int nr_zones;
5654 
5655 		pg_data_t *node = NODE_DATA(node_order[i]);
5656 
5657 		nr_zones = build_zonerefs_node(node, zonerefs);
5658 		zonerefs += nr_zones;
5659 	}
5660 	zonerefs->zone = NULL;
5661 	zonerefs->zone_idx = 0;
5662 }
5663 
5664 /*
5665  * Build gfp_thisnode zonelists
5666  */
5667 static void build_thisnode_zonelists(pg_data_t *pgdat)
5668 {
5669 	struct zoneref *zonerefs;
5670 	int nr_zones;
5671 
5672 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5673 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5674 	zonerefs += nr_zones;
5675 	zonerefs->zone = NULL;
5676 	zonerefs->zone_idx = 0;
5677 }
5678 
5679 /*
5680  * Build zonelists ordered by zone and nodes within zones.
5681  * This results in conserving DMA zone[s] until all Normal memory is
5682  * exhausted, but results in overflowing to remote node while memory
5683  * may still exist in local DMA zone.
5684  */
5685 
5686 static void build_zonelists(pg_data_t *pgdat)
5687 {
5688 	static int node_order[MAX_NUMNODES];
5689 	int node, nr_nodes = 0;
5690 	nodemask_t used_mask = NODE_MASK_NONE;
5691 	int local_node, prev_node;
5692 
5693 	/* NUMA-aware ordering of nodes */
5694 	local_node = pgdat->node_id;
5695 	prev_node = local_node;
5696 
5697 	memset(node_order, 0, sizeof(node_order));
5698 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5699 		/*
5700 		 * We don't want to pressure a particular node.
5701 		 * So adding penalty to the first node in same
5702 		 * distance group to make it round-robin.
5703 		 */
5704 		if (node_distance(local_node, node) !=
5705 		    node_distance(local_node, prev_node))
5706 			node_load[node] += 1;
5707 
5708 		node_order[nr_nodes++] = node;
5709 		prev_node = node;
5710 	}
5711 
5712 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5713 	build_thisnode_zonelists(pgdat);
5714 	pr_info("Fallback order for Node %d: ", local_node);
5715 	for (node = 0; node < nr_nodes; node++)
5716 		pr_cont("%d ", node_order[node]);
5717 	pr_cont("\n");
5718 }
5719 
5720 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5721 /*
5722  * Return node id of node used for "local" allocations.
5723  * I.e., first node id of first zone in arg node's generic zonelist.
5724  * Used for initializing percpu 'numa_mem', which is used primarily
5725  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5726  */
5727 int local_memory_node(int node)
5728 {
5729 	struct zoneref *z;
5730 
5731 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5732 				   gfp_zone(GFP_KERNEL),
5733 				   NULL);
5734 	return zone_to_nid(z->zone);
5735 }
5736 #endif
5737 
5738 static void setup_min_unmapped_ratio(void);
5739 static void setup_min_slab_ratio(void);
5740 #else	/* CONFIG_NUMA */
5741 
5742 static void build_zonelists(pg_data_t *pgdat)
5743 {
5744 	int node, local_node;
5745 	struct zoneref *zonerefs;
5746 	int nr_zones;
5747 
5748 	local_node = pgdat->node_id;
5749 
5750 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5751 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5752 	zonerefs += nr_zones;
5753 
5754 	/*
5755 	 * Now we build the zonelist so that it contains the zones
5756 	 * of all the other nodes.
5757 	 * We don't want to pressure a particular node, so when
5758 	 * building the zones for node N, we make sure that the
5759 	 * zones coming right after the local ones are those from
5760 	 * node N+1 (modulo N)
5761 	 */
5762 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5763 		if (!node_online(node))
5764 			continue;
5765 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5766 		zonerefs += nr_zones;
5767 	}
5768 	for (node = 0; node < local_node; node++) {
5769 		if (!node_online(node))
5770 			continue;
5771 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5772 		zonerefs += nr_zones;
5773 	}
5774 
5775 	zonerefs->zone = NULL;
5776 	zonerefs->zone_idx = 0;
5777 }
5778 
5779 #endif	/* CONFIG_NUMA */
5780 
5781 /*
5782  * Boot pageset table. One per cpu which is going to be used for all
5783  * zones and all nodes. The parameters will be set in such a way
5784  * that an item put on a list will immediately be handed over to
5785  * the buddy list. This is safe since pageset manipulation is done
5786  * with interrupts disabled.
5787  *
5788  * The boot_pagesets must be kept even after bootup is complete for
5789  * unused processors and/or zones. They do play a role for bootstrapping
5790  * hotplugged processors.
5791  *
5792  * zoneinfo_show() and maybe other functions do
5793  * not check if the processor is online before following the pageset pointer.
5794  * Other parts of the kernel may not check if the zone is available.
5795  */
5796 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5797 /* These effectively disable the pcplists in the boot pageset completely */
5798 #define BOOT_PAGESET_HIGH	0
5799 #define BOOT_PAGESET_BATCH	1
5800 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5801 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5802 
5803 static void __build_all_zonelists(void *data)
5804 {
5805 	int nid;
5806 	int __maybe_unused cpu;
5807 	pg_data_t *self = data;
5808 	unsigned long flags;
5809 
5810 	/*
5811 	 * Explicitly disable this CPU's interrupts before taking seqlock
5812 	 * to prevent any IRQ handler from calling into the page allocator
5813 	 * (e.g. GFP_ATOMIC) that could hit zonelist_iter_begin and livelock.
5814 	 */
5815 	local_irq_save(flags);
5816 	/*
5817 	 * Explicitly disable this CPU's synchronous printk() before taking
5818 	 * seqlock to prevent any printk() from trying to hold port->lock, for
5819 	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5820 	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5821 	 */
5822 	printk_deferred_enter();
5823 	write_seqlock(&zonelist_update_seq);
5824 
5825 #ifdef CONFIG_NUMA
5826 	memset(node_load, 0, sizeof(node_load));
5827 #endif
5828 
5829 	/*
5830 	 * This node is hotadded and no memory is yet present.   So just
5831 	 * building zonelists is fine - no need to touch other nodes.
5832 	 */
5833 	if (self && !node_online(self->node_id)) {
5834 		build_zonelists(self);
5835 	} else {
5836 		/*
5837 		 * All possible nodes have pgdat preallocated
5838 		 * in free_area_init
5839 		 */
5840 		for_each_node(nid) {
5841 			pg_data_t *pgdat = NODE_DATA(nid);
5842 
5843 			build_zonelists(pgdat);
5844 		}
5845 
5846 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5847 		/*
5848 		 * We now know the "local memory node" for each node--
5849 		 * i.e., the node of the first zone in the generic zonelist.
5850 		 * Set up numa_mem percpu variable for on-line cpus.  During
5851 		 * boot, only the boot cpu should be on-line;  we'll init the
5852 		 * secondary cpus' numa_mem as they come on-line.  During
5853 		 * node/memory hotplug, we'll fixup all on-line cpus.
5854 		 */
5855 		for_each_online_cpu(cpu)
5856 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5857 #endif
5858 	}
5859 
5860 	write_sequnlock(&zonelist_update_seq);
5861 	printk_deferred_exit();
5862 	local_irq_restore(flags);
5863 }
5864 
5865 static noinline void __init
5866 build_all_zonelists_init(void)
5867 {
5868 	int cpu;
5869 
5870 	__build_all_zonelists(NULL);
5871 
5872 	/*
5873 	 * Initialize the boot_pagesets that are going to be used
5874 	 * for bootstrapping processors. The real pagesets for
5875 	 * each zone will be allocated later when the per cpu
5876 	 * allocator is available.
5877 	 *
5878 	 * boot_pagesets are used also for bootstrapping offline
5879 	 * cpus if the system is already booted because the pagesets
5880 	 * are needed to initialize allocators on a specific cpu too.
5881 	 * F.e. the percpu allocator needs the page allocator which
5882 	 * needs the percpu allocator in order to allocate its pagesets
5883 	 * (a chicken-egg dilemma).
5884 	 */
5885 	for_each_possible_cpu(cpu)
5886 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5887 
5888 	mminit_verify_zonelist();
5889 	cpuset_init_current_mems_allowed();
5890 }
5891 
5892 /*
5893  * unless system_state == SYSTEM_BOOTING.
5894  *
5895  * __ref due to call of __init annotated helper build_all_zonelists_init
5896  * [protected by SYSTEM_BOOTING].
5897  */
5898 void __ref build_all_zonelists(pg_data_t *pgdat)
5899 {
5900 	unsigned long vm_total_pages;
5901 
5902 	if (system_state == SYSTEM_BOOTING) {
5903 		build_all_zonelists_init();
5904 	} else {
5905 		__build_all_zonelists(pgdat);
5906 		/* cpuset refresh routine should be here */
5907 	}
5908 	/* Get the number of free pages beyond high watermark in all zones. */
5909 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5910 	/*
5911 	 * Disable grouping by mobility if the number of pages in the
5912 	 * system is too low to allow the mechanism to work. It would be
5913 	 * more accurate, but expensive to check per-zone. This check is
5914 	 * made on memory-hotadd so a system can start with mobility
5915 	 * disabled and enable it later
5916 	 */
5917 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5918 		page_group_by_mobility_disabled = 1;
5919 	else
5920 		page_group_by_mobility_disabled = 0;
5921 
5922 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5923 		nr_online_nodes,
5924 		page_group_by_mobility_disabled ? "off" : "on",
5925 		vm_total_pages);
5926 #ifdef CONFIG_NUMA
5927 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5928 #endif
5929 }
5930 
5931 static int zone_batchsize(struct zone *zone)
5932 {
5933 #ifdef CONFIG_MMU
5934 	int batch;
5935 
5936 	/*
5937 	 * The number of pages to batch allocate is either ~0.1%
5938 	 * of the zone or 1MB, whichever is smaller. The batch
5939 	 * size is striking a balance between allocation latency
5940 	 * and zone lock contention.
5941 	 */
5942 	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5943 	batch /= 4;		/* We effectively *= 4 below */
5944 	if (batch < 1)
5945 		batch = 1;
5946 
5947 	/*
5948 	 * Clamp the batch to a 2^n - 1 value. Having a power
5949 	 * of 2 value was found to be more likely to have
5950 	 * suboptimal cache aliasing properties in some cases.
5951 	 *
5952 	 * For example if 2 tasks are alternately allocating
5953 	 * batches of pages, one task can end up with a lot
5954 	 * of pages of one half of the possible page colors
5955 	 * and the other with pages of the other colors.
5956 	 */
5957 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5958 
5959 	return batch;
5960 
5961 #else
5962 	/* The deferral and batching of frees should be suppressed under NOMMU
5963 	 * conditions.
5964 	 *
5965 	 * The problem is that NOMMU needs to be able to allocate large chunks
5966 	 * of contiguous memory as there's no hardware page translation to
5967 	 * assemble apparent contiguous memory from discontiguous pages.
5968 	 *
5969 	 * Queueing large contiguous runs of pages for batching, however,
5970 	 * causes the pages to actually be freed in smaller chunks.  As there
5971 	 * can be a significant delay between the individual batches being
5972 	 * recycled, this leads to the once large chunks of space being
5973 	 * fragmented and becoming unavailable for high-order allocations.
5974 	 */
5975 	return 0;
5976 #endif
5977 }
5978 
5979 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
5980 {
5981 #ifdef CONFIG_MMU
5982 	int high;
5983 	int nr_split_cpus;
5984 	unsigned long total_pages;
5985 
5986 	if (!percpu_pagelist_high_fraction) {
5987 		/*
5988 		 * By default, the high value of the pcp is based on the zone
5989 		 * low watermark so that if they are full then background
5990 		 * reclaim will not be started prematurely.
5991 		 */
5992 		total_pages = low_wmark_pages(zone);
5993 	} else {
5994 		/*
5995 		 * If percpu_pagelist_high_fraction is configured, the high
5996 		 * value is based on a fraction of the managed pages in the
5997 		 * zone.
5998 		 */
5999 		total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
6000 	}
6001 
6002 	/*
6003 	 * Split the high value across all online CPUs local to the zone. Note
6004 	 * that early in boot that CPUs may not be online yet and that during
6005 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
6006 	 * onlined. For memory nodes that have no CPUs, split pcp->high across
6007 	 * all online CPUs to mitigate the risk that reclaim is triggered
6008 	 * prematurely due to pages stored on pcp lists.
6009 	 */
6010 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
6011 	if (!nr_split_cpus)
6012 		nr_split_cpus = num_online_cpus();
6013 	high = total_pages / nr_split_cpus;
6014 
6015 	/*
6016 	 * Ensure high is at least batch*4. The multiple is based on the
6017 	 * historical relationship between high and batch.
6018 	 */
6019 	high = max(high, batch << 2);
6020 
6021 	return high;
6022 #else
6023 	return 0;
6024 #endif
6025 }
6026 
6027 /*
6028  * pcp->high and pcp->batch values are related and generally batch is lower
6029  * than high. They are also related to pcp->count such that count is lower
6030  * than high, and as soon as it reaches high, the pcplist is flushed.
6031  *
6032  * However, guaranteeing these relations at all times would require e.g. write
6033  * barriers here but also careful usage of read barriers at the read side, and
6034  * thus be prone to error and bad for performance. Thus the update only prevents
6035  * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6036  * can cope with those fields changing asynchronously, and fully trust only the
6037  * pcp->count field on the local CPU with interrupts disabled.
6038  *
6039  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6040  * outside of boot time (or some other assurance that no concurrent updaters
6041  * exist).
6042  */
6043 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6044 		unsigned long batch)
6045 {
6046 	WRITE_ONCE(pcp->batch, batch);
6047 	WRITE_ONCE(pcp->high, high);
6048 }
6049 
6050 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
6051 {
6052 	int pindex;
6053 
6054 	memset(pcp, 0, sizeof(*pcp));
6055 	memset(pzstats, 0, sizeof(*pzstats));
6056 
6057 	spin_lock_init(&pcp->lock);
6058 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
6059 		INIT_LIST_HEAD(&pcp->lists[pindex]);
6060 
6061 	/*
6062 	 * Set batch and high values safe for a boot pageset. A true percpu
6063 	 * pageset's initialization will update them subsequently. Here we don't
6064 	 * need to be as careful as pageset_update() as nobody can access the
6065 	 * pageset yet.
6066 	 */
6067 	pcp->high = BOOT_PAGESET_HIGH;
6068 	pcp->batch = BOOT_PAGESET_BATCH;
6069 	pcp->free_factor = 0;
6070 }
6071 
6072 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
6073 		unsigned long batch)
6074 {
6075 	struct per_cpu_pages *pcp;
6076 	int cpu;
6077 
6078 	for_each_possible_cpu(cpu) {
6079 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6080 		pageset_update(pcp, high, batch);
6081 	}
6082 }
6083 
6084 /*
6085  * Calculate and set new high and batch values for all per-cpu pagesets of a
6086  * zone based on the zone's size.
6087  */
6088 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
6089 {
6090 	int new_high, new_batch;
6091 
6092 	new_batch = max(1, zone_batchsize(zone));
6093 	new_high = zone_highsize(zone, new_batch, cpu_online);
6094 
6095 	if (zone->pageset_high == new_high &&
6096 	    zone->pageset_batch == new_batch)
6097 		return;
6098 
6099 	zone->pageset_high = new_high;
6100 	zone->pageset_batch = new_batch;
6101 
6102 	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
6103 }
6104 
6105 void __meminit setup_zone_pageset(struct zone *zone)
6106 {
6107 	int cpu;
6108 
6109 	/* Size may be 0 on !SMP && !NUMA */
6110 	if (sizeof(struct per_cpu_zonestat) > 0)
6111 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
6112 
6113 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
6114 	for_each_possible_cpu(cpu) {
6115 		struct per_cpu_pages *pcp;
6116 		struct per_cpu_zonestat *pzstats;
6117 
6118 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6119 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6120 		per_cpu_pages_init(pcp, pzstats);
6121 	}
6122 
6123 	zone_set_pageset_high_and_batch(zone, 0);
6124 }
6125 
6126 /*
6127  * The zone indicated has a new number of managed_pages; batch sizes and percpu
6128  * page high values need to be recalculated.
6129  */
6130 static void zone_pcp_update(struct zone *zone, int cpu_online)
6131 {
6132 	mutex_lock(&pcp_batch_high_lock);
6133 	zone_set_pageset_high_and_batch(zone, cpu_online);
6134 	mutex_unlock(&pcp_batch_high_lock);
6135 }
6136 
6137 /*
6138  * Allocate per cpu pagesets and initialize them.
6139  * Before this call only boot pagesets were available.
6140  */
6141 void __init setup_per_cpu_pageset(void)
6142 {
6143 	struct pglist_data *pgdat;
6144 	struct zone *zone;
6145 	int __maybe_unused cpu;
6146 
6147 	for_each_populated_zone(zone)
6148 		setup_zone_pageset(zone);
6149 
6150 #ifdef CONFIG_NUMA
6151 	/*
6152 	 * Unpopulated zones continue using the boot pagesets.
6153 	 * The numa stats for these pagesets need to be reset.
6154 	 * Otherwise, they will end up skewing the stats of
6155 	 * the nodes these zones are associated with.
6156 	 */
6157 	for_each_possible_cpu(cpu) {
6158 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
6159 		memset(pzstats->vm_numa_event, 0,
6160 		       sizeof(pzstats->vm_numa_event));
6161 	}
6162 #endif
6163 
6164 	for_each_online_pgdat(pgdat)
6165 		pgdat->per_cpu_nodestats =
6166 			alloc_percpu(struct per_cpu_nodestat);
6167 }
6168 
6169 __meminit void zone_pcp_init(struct zone *zone)
6170 {
6171 	/*
6172 	 * per cpu subsystem is not up at this point. The following code
6173 	 * relies on the ability of the linker to provide the
6174 	 * offset of a (static) per cpu variable into the per cpu area.
6175 	 */
6176 	zone->per_cpu_pageset = &boot_pageset;
6177 	zone->per_cpu_zonestats = &boot_zonestats;
6178 	zone->pageset_high = BOOT_PAGESET_HIGH;
6179 	zone->pageset_batch = BOOT_PAGESET_BATCH;
6180 
6181 	if (populated_zone(zone))
6182 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
6183 			 zone->present_pages, zone_batchsize(zone));
6184 }
6185 
6186 void adjust_managed_page_count(struct page *page, long count)
6187 {
6188 	atomic_long_add(count, &page_zone(page)->managed_pages);
6189 	totalram_pages_add(count);
6190 #ifdef CONFIG_HIGHMEM
6191 	if (PageHighMem(page))
6192 		totalhigh_pages_add(count);
6193 #endif
6194 }
6195 EXPORT_SYMBOL(adjust_managed_page_count);
6196 
6197 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
6198 {
6199 	void *pos;
6200 	unsigned long pages = 0;
6201 
6202 	start = (void *)PAGE_ALIGN((unsigned long)start);
6203 	end = (void *)((unsigned long)end & PAGE_MASK);
6204 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6205 		struct page *page = virt_to_page(pos);
6206 		void *direct_map_addr;
6207 
6208 		/*
6209 		 * 'direct_map_addr' might be different from 'pos'
6210 		 * because some architectures' virt_to_page()
6211 		 * work with aliases.  Getting the direct map
6212 		 * address ensures that we get a _writeable_
6213 		 * alias for the memset().
6214 		 */
6215 		direct_map_addr = page_address(page);
6216 		/*
6217 		 * Perform a kasan-unchecked memset() since this memory
6218 		 * has not been initialized.
6219 		 */
6220 		direct_map_addr = kasan_reset_tag(direct_map_addr);
6221 		if ((unsigned int)poison <= 0xFF)
6222 			memset(direct_map_addr, poison, PAGE_SIZE);
6223 
6224 		free_reserved_page(page);
6225 	}
6226 
6227 	if (pages && s)
6228 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
6229 
6230 	return pages;
6231 }
6232 
6233 static int page_alloc_cpu_dead(unsigned int cpu)
6234 {
6235 	struct zone *zone;
6236 
6237 	lru_add_drain_cpu(cpu);
6238 	mlock_drain_remote(cpu);
6239 	drain_pages(cpu);
6240 
6241 	/*
6242 	 * Spill the event counters of the dead processor
6243 	 * into the current processors event counters.
6244 	 * This artificially elevates the count of the current
6245 	 * processor.
6246 	 */
6247 	vm_events_fold_cpu(cpu);
6248 
6249 	/*
6250 	 * Zero the differential counters of the dead processor
6251 	 * so that the vm statistics are consistent.
6252 	 *
6253 	 * This is only okay since the processor is dead and cannot
6254 	 * race with what we are doing.
6255 	 */
6256 	cpu_vm_stats_fold(cpu);
6257 
6258 	for_each_populated_zone(zone)
6259 		zone_pcp_update(zone, 0);
6260 
6261 	return 0;
6262 }
6263 
6264 static int page_alloc_cpu_online(unsigned int cpu)
6265 {
6266 	struct zone *zone;
6267 
6268 	for_each_populated_zone(zone)
6269 		zone_pcp_update(zone, 1);
6270 	return 0;
6271 }
6272 
6273 void __init page_alloc_init_cpuhp(void)
6274 {
6275 	int ret;
6276 
6277 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
6278 					"mm/page_alloc:pcp",
6279 					page_alloc_cpu_online,
6280 					page_alloc_cpu_dead);
6281 	WARN_ON(ret < 0);
6282 }
6283 
6284 /*
6285  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6286  *	or min_free_kbytes changes.
6287  */
6288 static void calculate_totalreserve_pages(void)
6289 {
6290 	struct pglist_data *pgdat;
6291 	unsigned long reserve_pages = 0;
6292 	enum zone_type i, j;
6293 
6294 	for_each_online_pgdat(pgdat) {
6295 
6296 		pgdat->totalreserve_pages = 0;
6297 
6298 		for (i = 0; i < MAX_NR_ZONES; i++) {
6299 			struct zone *zone = pgdat->node_zones + i;
6300 			long max = 0;
6301 			unsigned long managed_pages = zone_managed_pages(zone);
6302 
6303 			/* Find valid and maximum lowmem_reserve in the zone */
6304 			for (j = i; j < MAX_NR_ZONES; j++) {
6305 				if (zone->lowmem_reserve[j] > max)
6306 					max = zone->lowmem_reserve[j];
6307 			}
6308 
6309 			/* we treat the high watermark as reserved pages. */
6310 			max += high_wmark_pages(zone);
6311 
6312 			if (max > managed_pages)
6313 				max = managed_pages;
6314 
6315 			pgdat->totalreserve_pages += max;
6316 
6317 			reserve_pages += max;
6318 		}
6319 	}
6320 	totalreserve_pages = reserve_pages;
6321 }
6322 
6323 /*
6324  * setup_per_zone_lowmem_reserve - called whenever
6325  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
6326  *	has a correct pages reserved value, so an adequate number of
6327  *	pages are left in the zone after a successful __alloc_pages().
6328  */
6329 static void setup_per_zone_lowmem_reserve(void)
6330 {
6331 	struct pglist_data *pgdat;
6332 	enum zone_type i, j;
6333 
6334 	for_each_online_pgdat(pgdat) {
6335 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
6336 			struct zone *zone = &pgdat->node_zones[i];
6337 			int ratio = sysctl_lowmem_reserve_ratio[i];
6338 			bool clear = !ratio || !zone_managed_pages(zone);
6339 			unsigned long managed_pages = 0;
6340 
6341 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
6342 				struct zone *upper_zone = &pgdat->node_zones[j];
6343 
6344 				managed_pages += zone_managed_pages(upper_zone);
6345 
6346 				if (clear)
6347 					zone->lowmem_reserve[j] = 0;
6348 				else
6349 					zone->lowmem_reserve[j] = managed_pages / ratio;
6350 			}
6351 		}
6352 	}
6353 
6354 	/* update totalreserve_pages */
6355 	calculate_totalreserve_pages();
6356 }
6357 
6358 static void __setup_per_zone_wmarks(void)
6359 {
6360 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6361 	unsigned long lowmem_pages = 0;
6362 	struct zone *zone;
6363 	unsigned long flags;
6364 
6365 	/* Calculate total number of !ZONE_HIGHMEM pages */
6366 	for_each_zone(zone) {
6367 		if (!is_highmem(zone))
6368 			lowmem_pages += zone_managed_pages(zone);
6369 	}
6370 
6371 	for_each_zone(zone) {
6372 		u64 tmp;
6373 
6374 		spin_lock_irqsave(&zone->lock, flags);
6375 		tmp = (u64)pages_min * zone_managed_pages(zone);
6376 		do_div(tmp, lowmem_pages);
6377 		if (is_highmem(zone)) {
6378 			/*
6379 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6380 			 * need highmem pages, so cap pages_min to a small
6381 			 * value here.
6382 			 *
6383 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6384 			 * deltas control async page reclaim, and so should
6385 			 * not be capped for highmem.
6386 			 */
6387 			unsigned long min_pages;
6388 
6389 			min_pages = zone_managed_pages(zone) / 1024;
6390 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6391 			zone->_watermark[WMARK_MIN] = min_pages;
6392 		} else {
6393 			/*
6394 			 * If it's a lowmem zone, reserve a number of pages
6395 			 * proportionate to the zone's size.
6396 			 */
6397 			zone->_watermark[WMARK_MIN] = tmp;
6398 		}
6399 
6400 		/*
6401 		 * Set the kswapd watermarks distance according to the
6402 		 * scale factor in proportion to available memory, but
6403 		 * ensure a minimum size on small systems.
6404 		 */
6405 		tmp = max_t(u64, tmp >> 2,
6406 			    mult_frac(zone_managed_pages(zone),
6407 				      watermark_scale_factor, 10000));
6408 
6409 		zone->watermark_boost = 0;
6410 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
6411 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
6412 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
6413 
6414 		spin_unlock_irqrestore(&zone->lock, flags);
6415 	}
6416 
6417 	/* update totalreserve_pages */
6418 	calculate_totalreserve_pages();
6419 }
6420 
6421 /**
6422  * setup_per_zone_wmarks - called when min_free_kbytes changes
6423  * or when memory is hot-{added|removed}
6424  *
6425  * Ensures that the watermark[min,low,high] values for each zone are set
6426  * correctly with respect to min_free_kbytes.
6427  */
6428 void setup_per_zone_wmarks(void)
6429 {
6430 	struct zone *zone;
6431 	static DEFINE_SPINLOCK(lock);
6432 
6433 	spin_lock(&lock);
6434 	__setup_per_zone_wmarks();
6435 	spin_unlock(&lock);
6436 
6437 	/*
6438 	 * The watermark size have changed so update the pcpu batch
6439 	 * and high limits or the limits may be inappropriate.
6440 	 */
6441 	for_each_zone(zone)
6442 		zone_pcp_update(zone, 0);
6443 }
6444 
6445 /*
6446  * Initialise min_free_kbytes.
6447  *
6448  * For small machines we want it small (128k min).  For large machines
6449  * we want it large (256MB max).  But it is not linear, because network
6450  * bandwidth does not increase linearly with machine size.  We use
6451  *
6452  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6453  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
6454  *
6455  * which yields
6456  *
6457  * 16MB:	512k
6458  * 32MB:	724k
6459  * 64MB:	1024k
6460  * 128MB:	1448k
6461  * 256MB:	2048k
6462  * 512MB:	2896k
6463  * 1024MB:	4096k
6464  * 2048MB:	5792k
6465  * 4096MB:	8192k
6466  * 8192MB:	11584k
6467  * 16384MB:	16384k
6468  */
6469 void calculate_min_free_kbytes(void)
6470 {
6471 	unsigned long lowmem_kbytes;
6472 	int new_min_free_kbytes;
6473 
6474 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6475 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6476 
6477 	if (new_min_free_kbytes > user_min_free_kbytes)
6478 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
6479 	else
6480 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6481 				new_min_free_kbytes, user_min_free_kbytes);
6482 
6483 }
6484 
6485 int __meminit init_per_zone_wmark_min(void)
6486 {
6487 	calculate_min_free_kbytes();
6488 	setup_per_zone_wmarks();
6489 	refresh_zone_stat_thresholds();
6490 	setup_per_zone_lowmem_reserve();
6491 
6492 #ifdef CONFIG_NUMA
6493 	setup_min_unmapped_ratio();
6494 	setup_min_slab_ratio();
6495 #endif
6496 
6497 	khugepaged_min_free_kbytes_update();
6498 
6499 	return 0;
6500 }
6501 postcore_initcall(init_per_zone_wmark_min)
6502 
6503 /*
6504  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6505  *	that we can call two helper functions whenever min_free_kbytes
6506  *	changes.
6507  */
6508 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6509 		void *buffer, size_t *length, loff_t *ppos)
6510 {
6511 	int rc;
6512 
6513 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6514 	if (rc)
6515 		return rc;
6516 
6517 	if (write) {
6518 		user_min_free_kbytes = min_free_kbytes;
6519 		setup_per_zone_wmarks();
6520 	}
6521 	return 0;
6522 }
6523 
6524 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6525 		void *buffer, size_t *length, loff_t *ppos)
6526 {
6527 	int rc;
6528 
6529 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6530 	if (rc)
6531 		return rc;
6532 
6533 	if (write)
6534 		setup_per_zone_wmarks();
6535 
6536 	return 0;
6537 }
6538 
6539 #ifdef CONFIG_NUMA
6540 static void setup_min_unmapped_ratio(void)
6541 {
6542 	pg_data_t *pgdat;
6543 	struct zone *zone;
6544 
6545 	for_each_online_pgdat(pgdat)
6546 		pgdat->min_unmapped_pages = 0;
6547 
6548 	for_each_zone(zone)
6549 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
6550 						         sysctl_min_unmapped_ratio) / 100;
6551 }
6552 
6553 
6554 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6555 		void *buffer, size_t *length, loff_t *ppos)
6556 {
6557 	int rc;
6558 
6559 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6560 	if (rc)
6561 		return rc;
6562 
6563 	setup_min_unmapped_ratio();
6564 
6565 	return 0;
6566 }
6567 
6568 static void setup_min_slab_ratio(void)
6569 {
6570 	pg_data_t *pgdat;
6571 	struct zone *zone;
6572 
6573 	for_each_online_pgdat(pgdat)
6574 		pgdat->min_slab_pages = 0;
6575 
6576 	for_each_zone(zone)
6577 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
6578 						     sysctl_min_slab_ratio) / 100;
6579 }
6580 
6581 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6582 		void *buffer, size_t *length, loff_t *ppos)
6583 {
6584 	int rc;
6585 
6586 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6587 	if (rc)
6588 		return rc;
6589 
6590 	setup_min_slab_ratio();
6591 
6592 	return 0;
6593 }
6594 #endif
6595 
6596 /*
6597  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6598  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6599  *	whenever sysctl_lowmem_reserve_ratio changes.
6600  *
6601  * The reserve ratio obviously has absolutely no relation with the
6602  * minimum watermarks. The lowmem reserve ratio can only make sense
6603  * if in function of the boot time zone sizes.
6604  */
6605 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6606 		void *buffer, size_t *length, loff_t *ppos)
6607 {
6608 	int i;
6609 
6610 	proc_dointvec_minmax(table, write, buffer, length, ppos);
6611 
6612 	for (i = 0; i < MAX_NR_ZONES; i++) {
6613 		if (sysctl_lowmem_reserve_ratio[i] < 1)
6614 			sysctl_lowmem_reserve_ratio[i] = 0;
6615 	}
6616 
6617 	setup_per_zone_lowmem_reserve();
6618 	return 0;
6619 }
6620 
6621 /*
6622  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6623  * cpu. It is the fraction of total pages in each zone that a hot per cpu
6624  * pagelist can have before it gets flushed back to buddy allocator.
6625  */
6626 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
6627 		int write, void *buffer, size_t *length, loff_t *ppos)
6628 {
6629 	struct zone *zone;
6630 	int old_percpu_pagelist_high_fraction;
6631 	int ret;
6632 
6633 	mutex_lock(&pcp_batch_high_lock);
6634 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
6635 
6636 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6637 	if (!write || ret < 0)
6638 		goto out;
6639 
6640 	/* Sanity checking to avoid pcp imbalance */
6641 	if (percpu_pagelist_high_fraction &&
6642 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
6643 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
6644 		ret = -EINVAL;
6645 		goto out;
6646 	}
6647 
6648 	/* No change? */
6649 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
6650 		goto out;
6651 
6652 	for_each_populated_zone(zone)
6653 		zone_set_pageset_high_and_batch(zone, 0);
6654 out:
6655 	mutex_unlock(&pcp_batch_high_lock);
6656 	return ret;
6657 }
6658 
6659 #ifdef CONFIG_CONTIG_ALLOC
6660 #if defined(CONFIG_DYNAMIC_DEBUG) || \
6661 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
6662 /* Usage: See admin-guide/dynamic-debug-howto.rst */
6663 static void alloc_contig_dump_pages(struct list_head *page_list)
6664 {
6665 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6666 
6667 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6668 		struct page *page;
6669 
6670 		dump_stack();
6671 		list_for_each_entry(page, page_list, lru)
6672 			dump_page(page, "migration failure");
6673 	}
6674 }
6675 #else
6676 static inline void alloc_contig_dump_pages(struct list_head *page_list)
6677 {
6678 }
6679 #endif
6680 
6681 /* [start, end) must belong to a single zone. */
6682 int __alloc_contig_migrate_range(struct compact_control *cc,
6683 					unsigned long start, unsigned long end)
6684 {
6685 	/* This function is based on compact_zone() from compaction.c. */
6686 	unsigned int nr_reclaimed;
6687 	unsigned long pfn = start;
6688 	unsigned int tries = 0;
6689 	int ret = 0;
6690 	struct migration_target_control mtc = {
6691 		.nid = zone_to_nid(cc->zone),
6692 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6693 	};
6694 
6695 	lru_cache_disable();
6696 
6697 	while (pfn < end || !list_empty(&cc->migratepages)) {
6698 		if (fatal_signal_pending(current)) {
6699 			ret = -EINTR;
6700 			break;
6701 		}
6702 
6703 		if (list_empty(&cc->migratepages)) {
6704 			cc->nr_migratepages = 0;
6705 			ret = isolate_migratepages_range(cc, pfn, end);
6706 			if (ret && ret != -EAGAIN)
6707 				break;
6708 			pfn = cc->migrate_pfn;
6709 			tries = 0;
6710 		} else if (++tries == 5) {
6711 			ret = -EBUSY;
6712 			break;
6713 		}
6714 
6715 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6716 							&cc->migratepages);
6717 		cc->nr_migratepages -= nr_reclaimed;
6718 
6719 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6720 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6721 
6722 		/*
6723 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6724 		 * to retry again over this error, so do the same here.
6725 		 */
6726 		if (ret == -ENOMEM)
6727 			break;
6728 	}
6729 
6730 	lru_cache_enable();
6731 	if (ret < 0) {
6732 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6733 			alloc_contig_dump_pages(&cc->migratepages);
6734 		putback_movable_pages(&cc->migratepages);
6735 		return ret;
6736 	}
6737 	return 0;
6738 }
6739 
6740 /**
6741  * alloc_contig_range() -- tries to allocate given range of pages
6742  * @start:	start PFN to allocate
6743  * @end:	one-past-the-last PFN to allocate
6744  * @migratetype:	migratetype of the underlying pageblocks (either
6745  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6746  *			in range must have the same migratetype and it must
6747  *			be either of the two.
6748  * @gfp_mask:	GFP mask to use during compaction
6749  *
6750  * The PFN range does not have to be pageblock aligned. The PFN range must
6751  * belong to a single zone.
6752  *
6753  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6754  * pageblocks in the range.  Once isolated, the pageblocks should not
6755  * be modified by others.
6756  *
6757  * Return: zero on success or negative error code.  On success all
6758  * pages which PFN is in [start, end) are allocated for the caller and
6759  * need to be freed with free_contig_range().
6760  */
6761 int alloc_contig_range(unsigned long start, unsigned long end,
6762 		       unsigned migratetype, gfp_t gfp_mask)
6763 {
6764 	unsigned long outer_start, outer_end;
6765 	int order;
6766 	int ret = 0;
6767 
6768 	struct compact_control cc = {
6769 		.nr_migratepages = 0,
6770 		.order = -1,
6771 		.zone = page_zone(pfn_to_page(start)),
6772 		.mode = MIGRATE_SYNC,
6773 		.ignore_skip_hint = true,
6774 		.no_set_skip_hint = true,
6775 		.gfp_mask = current_gfp_context(gfp_mask),
6776 		.alloc_contig = true,
6777 	};
6778 	INIT_LIST_HEAD(&cc.migratepages);
6779 
6780 	/*
6781 	 * What we do here is we mark all pageblocks in range as
6782 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6783 	 * have different sizes, and due to the way page allocator
6784 	 * work, start_isolate_page_range() has special handlings for this.
6785 	 *
6786 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6787 	 * migrate the pages from an unaligned range (ie. pages that
6788 	 * we are interested in). This will put all the pages in
6789 	 * range back to page allocator as MIGRATE_ISOLATE.
6790 	 *
6791 	 * When this is done, we take the pages in range from page
6792 	 * allocator removing them from the buddy system.  This way
6793 	 * page allocator will never consider using them.
6794 	 *
6795 	 * This lets us mark the pageblocks back as
6796 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6797 	 * aligned range but not in the unaligned, original range are
6798 	 * put back to page allocator so that buddy can use them.
6799 	 */
6800 
6801 	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
6802 	if (ret)
6803 		goto done;
6804 
6805 	drain_all_pages(cc.zone);
6806 
6807 	/*
6808 	 * In case of -EBUSY, we'd like to know which page causes problem.
6809 	 * So, just fall through. test_pages_isolated() has a tracepoint
6810 	 * which will report the busy page.
6811 	 *
6812 	 * It is possible that busy pages could become available before
6813 	 * the call to test_pages_isolated, and the range will actually be
6814 	 * allocated.  So, if we fall through be sure to clear ret so that
6815 	 * -EBUSY is not accidentally used or returned to caller.
6816 	 */
6817 	ret = __alloc_contig_migrate_range(&cc, start, end);
6818 	if (ret && ret != -EBUSY)
6819 		goto done;
6820 	ret = 0;
6821 
6822 	/*
6823 	 * Pages from [start, end) are within a pageblock_nr_pages
6824 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6825 	 * more, all pages in [start, end) are free in page allocator.
6826 	 * What we are going to do is to allocate all pages from
6827 	 * [start, end) (that is remove them from page allocator).
6828 	 *
6829 	 * The only problem is that pages at the beginning and at the
6830 	 * end of interesting range may be not aligned with pages that
6831 	 * page allocator holds, ie. they can be part of higher order
6832 	 * pages.  Because of this, we reserve the bigger range and
6833 	 * once this is done free the pages we are not interested in.
6834 	 *
6835 	 * We don't have to hold zone->lock here because the pages are
6836 	 * isolated thus they won't get removed from buddy.
6837 	 */
6838 
6839 	order = 0;
6840 	outer_start = start;
6841 	while (!PageBuddy(pfn_to_page(outer_start))) {
6842 		if (++order > MAX_ORDER) {
6843 			outer_start = start;
6844 			break;
6845 		}
6846 		outer_start &= ~0UL << order;
6847 	}
6848 
6849 	if (outer_start != start) {
6850 		order = buddy_order(pfn_to_page(outer_start));
6851 
6852 		/*
6853 		 * outer_start page could be small order buddy page and
6854 		 * it doesn't include start page. Adjust outer_start
6855 		 * in this case to report failed page properly
6856 		 * on tracepoint in test_pages_isolated()
6857 		 */
6858 		if (outer_start + (1UL << order) <= start)
6859 			outer_start = start;
6860 	}
6861 
6862 	/* Make sure the range is really isolated. */
6863 	if (test_pages_isolated(outer_start, end, 0)) {
6864 		ret = -EBUSY;
6865 		goto done;
6866 	}
6867 
6868 	/* Grab isolated pages from freelists. */
6869 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6870 	if (!outer_end) {
6871 		ret = -EBUSY;
6872 		goto done;
6873 	}
6874 
6875 	/* Free head and tail (if any) */
6876 	if (start != outer_start)
6877 		free_contig_range(outer_start, start - outer_start);
6878 	if (end != outer_end)
6879 		free_contig_range(end, outer_end - end);
6880 
6881 done:
6882 	undo_isolate_page_range(start, end, migratetype);
6883 	return ret;
6884 }
6885 EXPORT_SYMBOL(alloc_contig_range);
6886 
6887 static int __alloc_contig_pages(unsigned long start_pfn,
6888 				unsigned long nr_pages, gfp_t gfp_mask)
6889 {
6890 	unsigned long end_pfn = start_pfn + nr_pages;
6891 
6892 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
6893 				  gfp_mask);
6894 }
6895 
6896 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6897 				   unsigned long nr_pages)
6898 {
6899 	unsigned long i, end_pfn = start_pfn + nr_pages;
6900 	struct page *page;
6901 
6902 	for (i = start_pfn; i < end_pfn; i++) {
6903 		page = pfn_to_online_page(i);
6904 		if (!page)
6905 			return false;
6906 
6907 		if (page_zone(page) != z)
6908 			return false;
6909 
6910 		if (PageReserved(page))
6911 			return false;
6912 
6913 		if (PageHuge(page))
6914 			return false;
6915 	}
6916 	return true;
6917 }
6918 
6919 static bool zone_spans_last_pfn(const struct zone *zone,
6920 				unsigned long start_pfn, unsigned long nr_pages)
6921 {
6922 	unsigned long last_pfn = start_pfn + nr_pages - 1;
6923 
6924 	return zone_spans_pfn(zone, last_pfn);
6925 }
6926 
6927 /**
6928  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6929  * @nr_pages:	Number of contiguous pages to allocate
6930  * @gfp_mask:	GFP mask to limit search and used during compaction
6931  * @nid:	Target node
6932  * @nodemask:	Mask for other possible nodes
6933  *
6934  * This routine is a wrapper around alloc_contig_range(). It scans over zones
6935  * on an applicable zonelist to find a contiguous pfn range which can then be
6936  * tried for allocation with alloc_contig_range(). This routine is intended
6937  * for allocation requests which can not be fulfilled with the buddy allocator.
6938  *
6939  * The allocated memory is always aligned to a page boundary. If nr_pages is a
6940  * power of two, then allocated range is also guaranteed to be aligned to same
6941  * nr_pages (e.g. 1GB request would be aligned to 1GB).
6942  *
6943  * Allocated pages can be freed with free_contig_range() or by manually calling
6944  * __free_page() on each allocated page.
6945  *
6946  * Return: pointer to contiguous pages on success, or NULL if not successful.
6947  */
6948 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
6949 				int nid, nodemask_t *nodemask)
6950 {
6951 	unsigned long ret, pfn, flags;
6952 	struct zonelist *zonelist;
6953 	struct zone *zone;
6954 	struct zoneref *z;
6955 
6956 	zonelist = node_zonelist(nid, gfp_mask);
6957 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6958 					gfp_zone(gfp_mask), nodemask) {
6959 		spin_lock_irqsave(&zone->lock, flags);
6960 
6961 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6962 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6963 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6964 				/*
6965 				 * We release the zone lock here because
6966 				 * alloc_contig_range() will also lock the zone
6967 				 * at some point. If there's an allocation
6968 				 * spinning on this lock, it may win the race
6969 				 * and cause alloc_contig_range() to fail...
6970 				 */
6971 				spin_unlock_irqrestore(&zone->lock, flags);
6972 				ret = __alloc_contig_pages(pfn, nr_pages,
6973 							gfp_mask);
6974 				if (!ret)
6975 					return pfn_to_page(pfn);
6976 				spin_lock_irqsave(&zone->lock, flags);
6977 			}
6978 			pfn += nr_pages;
6979 		}
6980 		spin_unlock_irqrestore(&zone->lock, flags);
6981 	}
6982 	return NULL;
6983 }
6984 #endif /* CONFIG_CONTIG_ALLOC */
6985 
6986 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6987 {
6988 	unsigned long count = 0;
6989 
6990 	for (; nr_pages--; pfn++) {
6991 		struct page *page = pfn_to_page(pfn);
6992 
6993 		count += page_count(page) != 1;
6994 		__free_page(page);
6995 	}
6996 	WARN(count != 0, "%lu pages are still in use!\n", count);
6997 }
6998 EXPORT_SYMBOL(free_contig_range);
6999 
7000 /*
7001  * Effectively disable pcplists for the zone by setting the high limit to 0
7002  * and draining all cpus. A concurrent page freeing on another CPU that's about
7003  * to put the page on pcplist will either finish before the drain and the page
7004  * will be drained, or observe the new high limit and skip the pcplist.
7005  *
7006  * Must be paired with a call to zone_pcp_enable().
7007  */
7008 void zone_pcp_disable(struct zone *zone)
7009 {
7010 	mutex_lock(&pcp_batch_high_lock);
7011 	__zone_set_pageset_high_and_batch(zone, 0, 1);
7012 	__drain_all_pages(zone, true);
7013 }
7014 
7015 void zone_pcp_enable(struct zone *zone)
7016 {
7017 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
7018 	mutex_unlock(&pcp_batch_high_lock);
7019 }
7020 
7021 void zone_pcp_reset(struct zone *zone)
7022 {
7023 	int cpu;
7024 	struct per_cpu_zonestat *pzstats;
7025 
7026 	if (zone->per_cpu_pageset != &boot_pageset) {
7027 		for_each_online_cpu(cpu) {
7028 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7029 			drain_zonestat(zone, pzstats);
7030 		}
7031 		free_percpu(zone->per_cpu_pageset);
7032 		zone->per_cpu_pageset = &boot_pageset;
7033 		if (zone->per_cpu_zonestats != &boot_zonestats) {
7034 			free_percpu(zone->per_cpu_zonestats);
7035 			zone->per_cpu_zonestats = &boot_zonestats;
7036 		}
7037 	}
7038 }
7039 
7040 #ifdef CONFIG_MEMORY_HOTREMOVE
7041 /*
7042  * All pages in the range must be in a single zone, must not contain holes,
7043  * must span full sections, and must be isolated before calling this function.
7044  */
7045 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7046 {
7047 	unsigned long pfn = start_pfn;
7048 	struct page *page;
7049 	struct zone *zone;
7050 	unsigned int order;
7051 	unsigned long flags;
7052 
7053 	offline_mem_sections(pfn, end_pfn);
7054 	zone = page_zone(pfn_to_page(pfn));
7055 	spin_lock_irqsave(&zone->lock, flags);
7056 	while (pfn < end_pfn) {
7057 		page = pfn_to_page(pfn);
7058 		/*
7059 		 * The HWPoisoned page may be not in buddy system, and
7060 		 * page_count() is not 0.
7061 		 */
7062 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7063 			pfn++;
7064 			continue;
7065 		}
7066 		/*
7067 		 * At this point all remaining PageOffline() pages have a
7068 		 * reference count of 0 and can simply be skipped.
7069 		 */
7070 		if (PageOffline(page)) {
7071 			BUG_ON(page_count(page));
7072 			BUG_ON(PageBuddy(page));
7073 			pfn++;
7074 			continue;
7075 		}
7076 
7077 		BUG_ON(page_count(page));
7078 		BUG_ON(!PageBuddy(page));
7079 		order = buddy_order(page);
7080 		del_page_from_free_list(page, zone, order);
7081 		pfn += (1 << order);
7082 	}
7083 	spin_unlock_irqrestore(&zone->lock, flags);
7084 }
7085 #endif
7086 
7087 /*
7088  * This function returns a stable result only if called under zone lock.
7089  */
7090 bool is_free_buddy_page(struct page *page)
7091 {
7092 	unsigned long pfn = page_to_pfn(page);
7093 	unsigned int order;
7094 
7095 	for (order = 0; order <= MAX_ORDER; order++) {
7096 		struct page *page_head = page - (pfn & ((1 << order) - 1));
7097 
7098 		if (PageBuddy(page_head) &&
7099 		    buddy_order_unsafe(page_head) >= order)
7100 			break;
7101 	}
7102 
7103 	return order <= MAX_ORDER;
7104 }
7105 EXPORT_SYMBOL(is_free_buddy_page);
7106 
7107 #ifdef CONFIG_MEMORY_FAILURE
7108 /*
7109  * Break down a higher-order page in sub-pages, and keep our target out of
7110  * buddy allocator.
7111  */
7112 static void break_down_buddy_pages(struct zone *zone, struct page *page,
7113 				   struct page *target, int low, int high,
7114 				   int migratetype)
7115 {
7116 	unsigned long size = 1 << high;
7117 	struct page *current_buddy, *next_page;
7118 
7119 	while (high > low) {
7120 		high--;
7121 		size >>= 1;
7122 
7123 		if (target >= &page[size]) {
7124 			next_page = page + size;
7125 			current_buddy = page;
7126 		} else {
7127 			next_page = page;
7128 			current_buddy = page + size;
7129 		}
7130 
7131 		if (set_page_guard(zone, current_buddy, high, migratetype))
7132 			continue;
7133 
7134 		if (current_buddy != target) {
7135 			add_to_free_list(current_buddy, zone, high, migratetype);
7136 			set_buddy_order(current_buddy, high);
7137 			page = next_page;
7138 		}
7139 	}
7140 }
7141 
7142 /*
7143  * Take a page that will be marked as poisoned off the buddy allocator.
7144  */
7145 bool take_page_off_buddy(struct page *page)
7146 {
7147 	struct zone *zone = page_zone(page);
7148 	unsigned long pfn = page_to_pfn(page);
7149 	unsigned long flags;
7150 	unsigned int order;
7151 	bool ret = false;
7152 
7153 	spin_lock_irqsave(&zone->lock, flags);
7154 	for (order = 0; order <= MAX_ORDER; order++) {
7155 		struct page *page_head = page - (pfn & ((1 << order) - 1));
7156 		int page_order = buddy_order(page_head);
7157 
7158 		if (PageBuddy(page_head) && page_order >= order) {
7159 			unsigned long pfn_head = page_to_pfn(page_head);
7160 			int migratetype = get_pfnblock_migratetype(page_head,
7161 								   pfn_head);
7162 
7163 			del_page_from_free_list(page_head, zone, page_order);
7164 			break_down_buddy_pages(zone, page_head, page, 0,
7165 						page_order, migratetype);
7166 			SetPageHWPoisonTakenOff(page);
7167 			if (!is_migrate_isolate(migratetype))
7168 				__mod_zone_freepage_state(zone, -1, migratetype);
7169 			ret = true;
7170 			break;
7171 		}
7172 		if (page_count(page_head) > 0)
7173 			break;
7174 	}
7175 	spin_unlock_irqrestore(&zone->lock, flags);
7176 	return ret;
7177 }
7178 
7179 /*
7180  * Cancel takeoff done by take_page_off_buddy().
7181  */
7182 bool put_page_back_buddy(struct page *page)
7183 {
7184 	struct zone *zone = page_zone(page);
7185 	unsigned long pfn = page_to_pfn(page);
7186 	unsigned long flags;
7187 	int migratetype = get_pfnblock_migratetype(page, pfn);
7188 	bool ret = false;
7189 
7190 	spin_lock_irqsave(&zone->lock, flags);
7191 	if (put_page_testzero(page)) {
7192 		ClearPageHWPoisonTakenOff(page);
7193 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
7194 		if (TestClearPageHWPoison(page)) {
7195 			ret = true;
7196 		}
7197 	}
7198 	spin_unlock_irqrestore(&zone->lock, flags);
7199 
7200 	return ret;
7201 }
7202 #endif
7203 
7204 #ifdef CONFIG_ZONE_DMA
7205 bool has_managed_dma(void)
7206 {
7207 	struct pglist_data *pgdat;
7208 
7209 	for_each_online_pgdat(pgdat) {
7210 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
7211 
7212 		if (managed_zone(zone))
7213 			return true;
7214 	}
7215 	return false;
7216 }
7217 #endif /* CONFIG_ZONE_DMA */
7218