xref: /openbmc/linux/mm/page_alloc.c (revision 6dfcd296)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page_ext.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 
68 #include <asm/sections.h>
69 #include <asm/tlbflush.h>
70 #include <asm/div64.h>
71 #include "internal.h"
72 
73 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
74 static DEFINE_MUTEX(pcp_batch_high_lock);
75 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
76 
77 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
78 DEFINE_PER_CPU(int, numa_node);
79 EXPORT_PER_CPU_SYMBOL(numa_node);
80 #endif
81 
82 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
83 /*
84  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
85  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
86  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
87  * defined in <linux/topology.h>.
88  */
89 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
90 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
91 int _node_numa_mem_[MAX_NUMNODES];
92 #endif
93 
94 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
95 volatile u64 latent_entropy __latent_entropy;
96 EXPORT_SYMBOL(latent_entropy);
97 #endif
98 
99 /*
100  * Array of node states.
101  */
102 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
103 	[N_POSSIBLE] = NODE_MASK_ALL,
104 	[N_ONLINE] = { { [0] = 1UL } },
105 #ifndef CONFIG_NUMA
106 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
107 #ifdef CONFIG_HIGHMEM
108 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
109 #endif
110 #ifdef CONFIG_MOVABLE_NODE
111 	[N_MEMORY] = { { [0] = 1UL } },
112 #endif
113 	[N_CPU] = { { [0] = 1UL } },
114 #endif	/* NUMA */
115 };
116 EXPORT_SYMBOL(node_states);
117 
118 /* Protect totalram_pages and zone->managed_pages */
119 static DEFINE_SPINLOCK(managed_page_count_lock);
120 
121 unsigned long totalram_pages __read_mostly;
122 unsigned long totalreserve_pages __read_mostly;
123 unsigned long totalcma_pages __read_mostly;
124 
125 int percpu_pagelist_fraction;
126 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
127 
128 /*
129  * A cached value of the page's pageblock's migratetype, used when the page is
130  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
131  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
132  * Also the migratetype set in the page does not necessarily match the pcplist
133  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
134  * other index - this ensures that it will be put on the correct CMA freelist.
135  */
136 static inline int get_pcppage_migratetype(struct page *page)
137 {
138 	return page->index;
139 }
140 
141 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
142 {
143 	page->index = migratetype;
144 }
145 
146 #ifdef CONFIG_PM_SLEEP
147 /*
148  * The following functions are used by the suspend/hibernate code to temporarily
149  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
150  * while devices are suspended.  To avoid races with the suspend/hibernate code,
151  * they should always be called with pm_mutex held (gfp_allowed_mask also should
152  * only be modified with pm_mutex held, unless the suspend/hibernate code is
153  * guaranteed not to run in parallel with that modification).
154  */
155 
156 static gfp_t saved_gfp_mask;
157 
158 void pm_restore_gfp_mask(void)
159 {
160 	WARN_ON(!mutex_is_locked(&pm_mutex));
161 	if (saved_gfp_mask) {
162 		gfp_allowed_mask = saved_gfp_mask;
163 		saved_gfp_mask = 0;
164 	}
165 }
166 
167 void pm_restrict_gfp_mask(void)
168 {
169 	WARN_ON(!mutex_is_locked(&pm_mutex));
170 	WARN_ON(saved_gfp_mask);
171 	saved_gfp_mask = gfp_allowed_mask;
172 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
173 }
174 
175 bool pm_suspended_storage(void)
176 {
177 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
178 		return false;
179 	return true;
180 }
181 #endif /* CONFIG_PM_SLEEP */
182 
183 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
184 unsigned int pageblock_order __read_mostly;
185 #endif
186 
187 static void __free_pages_ok(struct page *page, unsigned int order);
188 
189 /*
190  * results with 256, 32 in the lowmem_reserve sysctl:
191  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
192  *	1G machine -> (16M dma, 784M normal, 224M high)
193  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
194  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
195  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
196  *
197  * TBD: should special case ZONE_DMA32 machines here - in those we normally
198  * don't need any ZONE_NORMAL reservation
199  */
200 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
201 #ifdef CONFIG_ZONE_DMA
202 	 256,
203 #endif
204 #ifdef CONFIG_ZONE_DMA32
205 	 256,
206 #endif
207 #ifdef CONFIG_HIGHMEM
208 	 32,
209 #endif
210 	 32,
211 };
212 
213 EXPORT_SYMBOL(totalram_pages);
214 
215 static char * const zone_names[MAX_NR_ZONES] = {
216 #ifdef CONFIG_ZONE_DMA
217 	 "DMA",
218 #endif
219 #ifdef CONFIG_ZONE_DMA32
220 	 "DMA32",
221 #endif
222 	 "Normal",
223 #ifdef CONFIG_HIGHMEM
224 	 "HighMem",
225 #endif
226 	 "Movable",
227 #ifdef CONFIG_ZONE_DEVICE
228 	 "Device",
229 #endif
230 };
231 
232 char * const migratetype_names[MIGRATE_TYPES] = {
233 	"Unmovable",
234 	"Movable",
235 	"Reclaimable",
236 	"HighAtomic",
237 #ifdef CONFIG_CMA
238 	"CMA",
239 #endif
240 #ifdef CONFIG_MEMORY_ISOLATION
241 	"Isolate",
242 #endif
243 };
244 
245 compound_page_dtor * const compound_page_dtors[] = {
246 	NULL,
247 	free_compound_page,
248 #ifdef CONFIG_HUGETLB_PAGE
249 	free_huge_page,
250 #endif
251 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
252 	free_transhuge_page,
253 #endif
254 };
255 
256 int min_free_kbytes = 1024;
257 int user_min_free_kbytes = -1;
258 int watermark_scale_factor = 10;
259 
260 static unsigned long __meminitdata nr_kernel_pages;
261 static unsigned long __meminitdata nr_all_pages;
262 static unsigned long __meminitdata dma_reserve;
263 
264 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
265 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
266 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
267 static unsigned long __initdata required_kernelcore;
268 static unsigned long __initdata required_movablecore;
269 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
270 static bool mirrored_kernelcore;
271 
272 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
273 int movable_zone;
274 EXPORT_SYMBOL(movable_zone);
275 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
276 
277 #if MAX_NUMNODES > 1
278 int nr_node_ids __read_mostly = MAX_NUMNODES;
279 int nr_online_nodes __read_mostly = 1;
280 EXPORT_SYMBOL(nr_node_ids);
281 EXPORT_SYMBOL(nr_online_nodes);
282 #endif
283 
284 int page_group_by_mobility_disabled __read_mostly;
285 
286 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
287 static inline void reset_deferred_meminit(pg_data_t *pgdat)
288 {
289 	pgdat->first_deferred_pfn = ULONG_MAX;
290 }
291 
292 /* Returns true if the struct page for the pfn is uninitialised */
293 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
294 {
295 	int nid = early_pfn_to_nid(pfn);
296 
297 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
298 		return true;
299 
300 	return false;
301 }
302 
303 /*
304  * Returns false when the remaining initialisation should be deferred until
305  * later in the boot cycle when it can be parallelised.
306  */
307 static inline bool update_defer_init(pg_data_t *pgdat,
308 				unsigned long pfn, unsigned long zone_end,
309 				unsigned long *nr_initialised)
310 {
311 	unsigned long max_initialise;
312 
313 	/* Always populate low zones for address-contrained allocations */
314 	if (zone_end < pgdat_end_pfn(pgdat))
315 		return true;
316 	/*
317 	 * Initialise at least 2G of a node but also take into account that
318 	 * two large system hashes that can take up 1GB for 0.25TB/node.
319 	 */
320 	max_initialise = max(2UL << (30 - PAGE_SHIFT),
321 		(pgdat->node_spanned_pages >> 8));
322 
323 	(*nr_initialised)++;
324 	if ((*nr_initialised > max_initialise) &&
325 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
326 		pgdat->first_deferred_pfn = pfn;
327 		return false;
328 	}
329 
330 	return true;
331 }
332 #else
333 static inline void reset_deferred_meminit(pg_data_t *pgdat)
334 {
335 }
336 
337 static inline bool early_page_uninitialised(unsigned long pfn)
338 {
339 	return false;
340 }
341 
342 static inline bool update_defer_init(pg_data_t *pgdat,
343 				unsigned long pfn, unsigned long zone_end,
344 				unsigned long *nr_initialised)
345 {
346 	return true;
347 }
348 #endif
349 
350 /* Return a pointer to the bitmap storing bits affecting a block of pages */
351 static inline unsigned long *get_pageblock_bitmap(struct page *page,
352 							unsigned long pfn)
353 {
354 #ifdef CONFIG_SPARSEMEM
355 	return __pfn_to_section(pfn)->pageblock_flags;
356 #else
357 	return page_zone(page)->pageblock_flags;
358 #endif /* CONFIG_SPARSEMEM */
359 }
360 
361 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
362 {
363 #ifdef CONFIG_SPARSEMEM
364 	pfn &= (PAGES_PER_SECTION-1);
365 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
366 #else
367 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
368 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
369 #endif /* CONFIG_SPARSEMEM */
370 }
371 
372 /**
373  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
374  * @page: The page within the block of interest
375  * @pfn: The target page frame number
376  * @end_bitidx: The last bit of interest to retrieve
377  * @mask: mask of bits that the caller is interested in
378  *
379  * Return: pageblock_bits flags
380  */
381 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
382 					unsigned long pfn,
383 					unsigned long end_bitidx,
384 					unsigned long mask)
385 {
386 	unsigned long *bitmap;
387 	unsigned long bitidx, word_bitidx;
388 	unsigned long word;
389 
390 	bitmap = get_pageblock_bitmap(page, pfn);
391 	bitidx = pfn_to_bitidx(page, pfn);
392 	word_bitidx = bitidx / BITS_PER_LONG;
393 	bitidx &= (BITS_PER_LONG-1);
394 
395 	word = bitmap[word_bitidx];
396 	bitidx += end_bitidx;
397 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
398 }
399 
400 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
401 					unsigned long end_bitidx,
402 					unsigned long mask)
403 {
404 	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
405 }
406 
407 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
408 {
409 	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
410 }
411 
412 /**
413  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
414  * @page: The page within the block of interest
415  * @flags: The flags to set
416  * @pfn: The target page frame number
417  * @end_bitidx: The last bit of interest
418  * @mask: mask of bits that the caller is interested in
419  */
420 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
421 					unsigned long pfn,
422 					unsigned long end_bitidx,
423 					unsigned long mask)
424 {
425 	unsigned long *bitmap;
426 	unsigned long bitidx, word_bitidx;
427 	unsigned long old_word, word;
428 
429 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
430 
431 	bitmap = get_pageblock_bitmap(page, pfn);
432 	bitidx = pfn_to_bitidx(page, pfn);
433 	word_bitidx = bitidx / BITS_PER_LONG;
434 	bitidx &= (BITS_PER_LONG-1);
435 
436 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
437 
438 	bitidx += end_bitidx;
439 	mask <<= (BITS_PER_LONG - bitidx - 1);
440 	flags <<= (BITS_PER_LONG - bitidx - 1);
441 
442 	word = READ_ONCE(bitmap[word_bitidx]);
443 	for (;;) {
444 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
445 		if (word == old_word)
446 			break;
447 		word = old_word;
448 	}
449 }
450 
451 void set_pageblock_migratetype(struct page *page, int migratetype)
452 {
453 	if (unlikely(page_group_by_mobility_disabled &&
454 		     migratetype < MIGRATE_PCPTYPES))
455 		migratetype = MIGRATE_UNMOVABLE;
456 
457 	set_pageblock_flags_group(page, (unsigned long)migratetype,
458 					PB_migrate, PB_migrate_end);
459 }
460 
461 #ifdef CONFIG_DEBUG_VM
462 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
463 {
464 	int ret = 0;
465 	unsigned seq;
466 	unsigned long pfn = page_to_pfn(page);
467 	unsigned long sp, start_pfn;
468 
469 	do {
470 		seq = zone_span_seqbegin(zone);
471 		start_pfn = zone->zone_start_pfn;
472 		sp = zone->spanned_pages;
473 		if (!zone_spans_pfn(zone, pfn))
474 			ret = 1;
475 	} while (zone_span_seqretry(zone, seq));
476 
477 	if (ret)
478 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
479 			pfn, zone_to_nid(zone), zone->name,
480 			start_pfn, start_pfn + sp);
481 
482 	return ret;
483 }
484 
485 static int page_is_consistent(struct zone *zone, struct page *page)
486 {
487 	if (!pfn_valid_within(page_to_pfn(page)))
488 		return 0;
489 	if (zone != page_zone(page))
490 		return 0;
491 
492 	return 1;
493 }
494 /*
495  * Temporary debugging check for pages not lying within a given zone.
496  */
497 static int bad_range(struct zone *zone, struct page *page)
498 {
499 	if (page_outside_zone_boundaries(zone, page))
500 		return 1;
501 	if (!page_is_consistent(zone, page))
502 		return 1;
503 
504 	return 0;
505 }
506 #else
507 static inline int bad_range(struct zone *zone, struct page *page)
508 {
509 	return 0;
510 }
511 #endif
512 
513 static void bad_page(struct page *page, const char *reason,
514 		unsigned long bad_flags)
515 {
516 	static unsigned long resume;
517 	static unsigned long nr_shown;
518 	static unsigned long nr_unshown;
519 
520 	/*
521 	 * Allow a burst of 60 reports, then keep quiet for that minute;
522 	 * or allow a steady drip of one report per second.
523 	 */
524 	if (nr_shown == 60) {
525 		if (time_before(jiffies, resume)) {
526 			nr_unshown++;
527 			goto out;
528 		}
529 		if (nr_unshown) {
530 			pr_alert(
531 			      "BUG: Bad page state: %lu messages suppressed\n",
532 				nr_unshown);
533 			nr_unshown = 0;
534 		}
535 		nr_shown = 0;
536 	}
537 	if (nr_shown++ == 0)
538 		resume = jiffies + 60 * HZ;
539 
540 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
541 		current->comm, page_to_pfn(page));
542 	__dump_page(page, reason);
543 	bad_flags &= page->flags;
544 	if (bad_flags)
545 		pr_alert("bad because of flags: %#lx(%pGp)\n",
546 						bad_flags, &bad_flags);
547 	dump_page_owner(page);
548 
549 	print_modules();
550 	dump_stack();
551 out:
552 	/* Leave bad fields for debug, except PageBuddy could make trouble */
553 	page_mapcount_reset(page); /* remove PageBuddy */
554 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
555 }
556 
557 /*
558  * Higher-order pages are called "compound pages".  They are structured thusly:
559  *
560  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
561  *
562  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
563  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
564  *
565  * The first tail page's ->compound_dtor holds the offset in array of compound
566  * page destructors. See compound_page_dtors.
567  *
568  * The first tail page's ->compound_order holds the order of allocation.
569  * This usage means that zero-order pages may not be compound.
570  */
571 
572 void free_compound_page(struct page *page)
573 {
574 	__free_pages_ok(page, compound_order(page));
575 }
576 
577 void prep_compound_page(struct page *page, unsigned int order)
578 {
579 	int i;
580 	int nr_pages = 1 << order;
581 
582 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
583 	set_compound_order(page, order);
584 	__SetPageHead(page);
585 	for (i = 1; i < nr_pages; i++) {
586 		struct page *p = page + i;
587 		set_page_count(p, 0);
588 		p->mapping = TAIL_MAPPING;
589 		set_compound_head(p, page);
590 	}
591 	atomic_set(compound_mapcount_ptr(page), -1);
592 }
593 
594 #ifdef CONFIG_DEBUG_PAGEALLOC
595 unsigned int _debug_guardpage_minorder;
596 bool _debug_pagealloc_enabled __read_mostly
597 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
598 EXPORT_SYMBOL(_debug_pagealloc_enabled);
599 bool _debug_guardpage_enabled __read_mostly;
600 
601 static int __init early_debug_pagealloc(char *buf)
602 {
603 	if (!buf)
604 		return -EINVAL;
605 	return kstrtobool(buf, &_debug_pagealloc_enabled);
606 }
607 early_param("debug_pagealloc", early_debug_pagealloc);
608 
609 static bool need_debug_guardpage(void)
610 {
611 	/* If we don't use debug_pagealloc, we don't need guard page */
612 	if (!debug_pagealloc_enabled())
613 		return false;
614 
615 	if (!debug_guardpage_minorder())
616 		return false;
617 
618 	return true;
619 }
620 
621 static void init_debug_guardpage(void)
622 {
623 	if (!debug_pagealloc_enabled())
624 		return;
625 
626 	if (!debug_guardpage_minorder())
627 		return;
628 
629 	_debug_guardpage_enabled = true;
630 }
631 
632 struct page_ext_operations debug_guardpage_ops = {
633 	.need = need_debug_guardpage,
634 	.init = init_debug_guardpage,
635 };
636 
637 static int __init debug_guardpage_minorder_setup(char *buf)
638 {
639 	unsigned long res;
640 
641 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
642 		pr_err("Bad debug_guardpage_minorder value\n");
643 		return 0;
644 	}
645 	_debug_guardpage_minorder = res;
646 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
647 	return 0;
648 }
649 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
650 
651 static inline bool set_page_guard(struct zone *zone, struct page *page,
652 				unsigned int order, int migratetype)
653 {
654 	struct page_ext *page_ext;
655 
656 	if (!debug_guardpage_enabled())
657 		return false;
658 
659 	if (order >= debug_guardpage_minorder())
660 		return false;
661 
662 	page_ext = lookup_page_ext(page);
663 	if (unlikely(!page_ext))
664 		return false;
665 
666 	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
667 
668 	INIT_LIST_HEAD(&page->lru);
669 	set_page_private(page, order);
670 	/* Guard pages are not available for any usage */
671 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
672 
673 	return true;
674 }
675 
676 static inline void clear_page_guard(struct zone *zone, struct page *page,
677 				unsigned int order, int migratetype)
678 {
679 	struct page_ext *page_ext;
680 
681 	if (!debug_guardpage_enabled())
682 		return;
683 
684 	page_ext = lookup_page_ext(page);
685 	if (unlikely(!page_ext))
686 		return;
687 
688 	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
689 
690 	set_page_private(page, 0);
691 	if (!is_migrate_isolate(migratetype))
692 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
693 }
694 #else
695 struct page_ext_operations debug_guardpage_ops;
696 static inline bool set_page_guard(struct zone *zone, struct page *page,
697 			unsigned int order, int migratetype) { return false; }
698 static inline void clear_page_guard(struct zone *zone, struct page *page,
699 				unsigned int order, int migratetype) {}
700 #endif
701 
702 static inline void set_page_order(struct page *page, unsigned int order)
703 {
704 	set_page_private(page, order);
705 	__SetPageBuddy(page);
706 }
707 
708 static inline void rmv_page_order(struct page *page)
709 {
710 	__ClearPageBuddy(page);
711 	set_page_private(page, 0);
712 }
713 
714 /*
715  * This function checks whether a page is free && is the buddy
716  * we can do coalesce a page and its buddy if
717  * (a) the buddy is not in a hole &&
718  * (b) the buddy is in the buddy system &&
719  * (c) a page and its buddy have the same order &&
720  * (d) a page and its buddy are in the same zone.
721  *
722  * For recording whether a page is in the buddy system, we set ->_mapcount
723  * PAGE_BUDDY_MAPCOUNT_VALUE.
724  * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
725  * serialized by zone->lock.
726  *
727  * For recording page's order, we use page_private(page).
728  */
729 static inline int page_is_buddy(struct page *page, struct page *buddy,
730 							unsigned int order)
731 {
732 	if (!pfn_valid_within(page_to_pfn(buddy)))
733 		return 0;
734 
735 	if (page_is_guard(buddy) && page_order(buddy) == order) {
736 		if (page_zone_id(page) != page_zone_id(buddy))
737 			return 0;
738 
739 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
740 
741 		return 1;
742 	}
743 
744 	if (PageBuddy(buddy) && page_order(buddy) == order) {
745 		/*
746 		 * zone check is done late to avoid uselessly
747 		 * calculating zone/node ids for pages that could
748 		 * never merge.
749 		 */
750 		if (page_zone_id(page) != page_zone_id(buddy))
751 			return 0;
752 
753 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
754 
755 		return 1;
756 	}
757 	return 0;
758 }
759 
760 /*
761  * Freeing function for a buddy system allocator.
762  *
763  * The concept of a buddy system is to maintain direct-mapped table
764  * (containing bit values) for memory blocks of various "orders".
765  * The bottom level table contains the map for the smallest allocatable
766  * units of memory (here, pages), and each level above it describes
767  * pairs of units from the levels below, hence, "buddies".
768  * At a high level, all that happens here is marking the table entry
769  * at the bottom level available, and propagating the changes upward
770  * as necessary, plus some accounting needed to play nicely with other
771  * parts of the VM system.
772  * At each level, we keep a list of pages, which are heads of continuous
773  * free pages of length of (1 << order) and marked with _mapcount
774  * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
775  * field.
776  * So when we are allocating or freeing one, we can derive the state of the
777  * other.  That is, if we allocate a small block, and both were
778  * free, the remainder of the region must be split into blocks.
779  * If a block is freed, and its buddy is also free, then this
780  * triggers coalescing into a block of larger size.
781  *
782  * -- nyc
783  */
784 
785 static inline void __free_one_page(struct page *page,
786 		unsigned long pfn,
787 		struct zone *zone, unsigned int order,
788 		int migratetype)
789 {
790 	unsigned long page_idx;
791 	unsigned long combined_idx;
792 	unsigned long uninitialized_var(buddy_idx);
793 	struct page *buddy;
794 	unsigned int max_order;
795 
796 	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
797 
798 	VM_BUG_ON(!zone_is_initialized(zone));
799 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
800 
801 	VM_BUG_ON(migratetype == -1);
802 	if (likely(!is_migrate_isolate(migratetype)))
803 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
804 
805 	page_idx = pfn & ((1 << MAX_ORDER) - 1);
806 
807 	VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
808 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
809 
810 continue_merging:
811 	while (order < max_order - 1) {
812 		buddy_idx = __find_buddy_index(page_idx, order);
813 		buddy = page + (buddy_idx - page_idx);
814 		if (!page_is_buddy(page, buddy, order))
815 			goto done_merging;
816 		/*
817 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
818 		 * merge with it and move up one order.
819 		 */
820 		if (page_is_guard(buddy)) {
821 			clear_page_guard(zone, buddy, order, migratetype);
822 		} else {
823 			list_del(&buddy->lru);
824 			zone->free_area[order].nr_free--;
825 			rmv_page_order(buddy);
826 		}
827 		combined_idx = buddy_idx & page_idx;
828 		page = page + (combined_idx - page_idx);
829 		page_idx = combined_idx;
830 		order++;
831 	}
832 	if (max_order < MAX_ORDER) {
833 		/* If we are here, it means order is >= pageblock_order.
834 		 * We want to prevent merge between freepages on isolate
835 		 * pageblock and normal pageblock. Without this, pageblock
836 		 * isolation could cause incorrect freepage or CMA accounting.
837 		 *
838 		 * We don't want to hit this code for the more frequent
839 		 * low-order merging.
840 		 */
841 		if (unlikely(has_isolate_pageblock(zone))) {
842 			int buddy_mt;
843 
844 			buddy_idx = __find_buddy_index(page_idx, order);
845 			buddy = page + (buddy_idx - page_idx);
846 			buddy_mt = get_pageblock_migratetype(buddy);
847 
848 			if (migratetype != buddy_mt
849 					&& (is_migrate_isolate(migratetype) ||
850 						is_migrate_isolate(buddy_mt)))
851 				goto done_merging;
852 		}
853 		max_order++;
854 		goto continue_merging;
855 	}
856 
857 done_merging:
858 	set_page_order(page, order);
859 
860 	/*
861 	 * If this is not the largest possible page, check if the buddy
862 	 * of the next-highest order is free. If it is, it's possible
863 	 * that pages are being freed that will coalesce soon. In case,
864 	 * that is happening, add the free page to the tail of the list
865 	 * so it's less likely to be used soon and more likely to be merged
866 	 * as a higher order page
867 	 */
868 	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
869 		struct page *higher_page, *higher_buddy;
870 		combined_idx = buddy_idx & page_idx;
871 		higher_page = page + (combined_idx - page_idx);
872 		buddy_idx = __find_buddy_index(combined_idx, order + 1);
873 		higher_buddy = higher_page + (buddy_idx - combined_idx);
874 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
875 			list_add_tail(&page->lru,
876 				&zone->free_area[order].free_list[migratetype]);
877 			goto out;
878 		}
879 	}
880 
881 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
882 out:
883 	zone->free_area[order].nr_free++;
884 }
885 
886 /*
887  * A bad page could be due to a number of fields. Instead of multiple branches,
888  * try and check multiple fields with one check. The caller must do a detailed
889  * check if necessary.
890  */
891 static inline bool page_expected_state(struct page *page,
892 					unsigned long check_flags)
893 {
894 	if (unlikely(atomic_read(&page->_mapcount) != -1))
895 		return false;
896 
897 	if (unlikely((unsigned long)page->mapping |
898 			page_ref_count(page) |
899 #ifdef CONFIG_MEMCG
900 			(unsigned long)page->mem_cgroup |
901 #endif
902 			(page->flags & check_flags)))
903 		return false;
904 
905 	return true;
906 }
907 
908 static void free_pages_check_bad(struct page *page)
909 {
910 	const char *bad_reason;
911 	unsigned long bad_flags;
912 
913 	bad_reason = NULL;
914 	bad_flags = 0;
915 
916 	if (unlikely(atomic_read(&page->_mapcount) != -1))
917 		bad_reason = "nonzero mapcount";
918 	if (unlikely(page->mapping != NULL))
919 		bad_reason = "non-NULL mapping";
920 	if (unlikely(page_ref_count(page) != 0))
921 		bad_reason = "nonzero _refcount";
922 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
923 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
924 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
925 	}
926 #ifdef CONFIG_MEMCG
927 	if (unlikely(page->mem_cgroup))
928 		bad_reason = "page still charged to cgroup";
929 #endif
930 	bad_page(page, bad_reason, bad_flags);
931 }
932 
933 static inline int free_pages_check(struct page *page)
934 {
935 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
936 		return 0;
937 
938 	/* Something has gone sideways, find it */
939 	free_pages_check_bad(page);
940 	return 1;
941 }
942 
943 static int free_tail_pages_check(struct page *head_page, struct page *page)
944 {
945 	int ret = 1;
946 
947 	/*
948 	 * We rely page->lru.next never has bit 0 set, unless the page
949 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
950 	 */
951 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
952 
953 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
954 		ret = 0;
955 		goto out;
956 	}
957 	switch (page - head_page) {
958 	case 1:
959 		/* the first tail page: ->mapping is compound_mapcount() */
960 		if (unlikely(compound_mapcount(page))) {
961 			bad_page(page, "nonzero compound_mapcount", 0);
962 			goto out;
963 		}
964 		break;
965 	case 2:
966 		/*
967 		 * the second tail page: ->mapping is
968 		 * page_deferred_list().next -- ignore value.
969 		 */
970 		break;
971 	default:
972 		if (page->mapping != TAIL_MAPPING) {
973 			bad_page(page, "corrupted mapping in tail page", 0);
974 			goto out;
975 		}
976 		break;
977 	}
978 	if (unlikely(!PageTail(page))) {
979 		bad_page(page, "PageTail not set", 0);
980 		goto out;
981 	}
982 	if (unlikely(compound_head(page) != head_page)) {
983 		bad_page(page, "compound_head not consistent", 0);
984 		goto out;
985 	}
986 	ret = 0;
987 out:
988 	page->mapping = NULL;
989 	clear_compound_head(page);
990 	return ret;
991 }
992 
993 static __always_inline bool free_pages_prepare(struct page *page,
994 					unsigned int order, bool check_free)
995 {
996 	int bad = 0;
997 
998 	VM_BUG_ON_PAGE(PageTail(page), page);
999 
1000 	trace_mm_page_free(page, order);
1001 	kmemcheck_free_shadow(page, order);
1002 
1003 	/*
1004 	 * Check tail pages before head page information is cleared to
1005 	 * avoid checking PageCompound for order-0 pages.
1006 	 */
1007 	if (unlikely(order)) {
1008 		bool compound = PageCompound(page);
1009 		int i;
1010 
1011 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1012 
1013 		if (compound)
1014 			ClearPageDoubleMap(page);
1015 		for (i = 1; i < (1 << order); i++) {
1016 			if (compound)
1017 				bad += free_tail_pages_check(page, page + i);
1018 			if (unlikely(free_pages_check(page + i))) {
1019 				bad++;
1020 				continue;
1021 			}
1022 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1023 		}
1024 	}
1025 	if (PageMappingFlags(page))
1026 		page->mapping = NULL;
1027 	if (memcg_kmem_enabled() && PageKmemcg(page))
1028 		memcg_kmem_uncharge(page, order);
1029 	if (check_free)
1030 		bad += free_pages_check(page);
1031 	if (bad)
1032 		return false;
1033 
1034 	page_cpupid_reset_last(page);
1035 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1036 	reset_page_owner(page, order);
1037 
1038 	if (!PageHighMem(page)) {
1039 		debug_check_no_locks_freed(page_address(page),
1040 					   PAGE_SIZE << order);
1041 		debug_check_no_obj_freed(page_address(page),
1042 					   PAGE_SIZE << order);
1043 	}
1044 	arch_free_page(page, order);
1045 	kernel_poison_pages(page, 1 << order, 0);
1046 	kernel_map_pages(page, 1 << order, 0);
1047 	kasan_free_pages(page, order);
1048 
1049 	return true;
1050 }
1051 
1052 #ifdef CONFIG_DEBUG_VM
1053 static inline bool free_pcp_prepare(struct page *page)
1054 {
1055 	return free_pages_prepare(page, 0, true);
1056 }
1057 
1058 static inline bool bulkfree_pcp_prepare(struct page *page)
1059 {
1060 	return false;
1061 }
1062 #else
1063 static bool free_pcp_prepare(struct page *page)
1064 {
1065 	return free_pages_prepare(page, 0, false);
1066 }
1067 
1068 static bool bulkfree_pcp_prepare(struct page *page)
1069 {
1070 	return free_pages_check(page);
1071 }
1072 #endif /* CONFIG_DEBUG_VM */
1073 
1074 /*
1075  * Frees a number of pages from the PCP lists
1076  * Assumes all pages on list are in same zone, and of same order.
1077  * count is the number of pages to free.
1078  *
1079  * If the zone was previously in an "all pages pinned" state then look to
1080  * see if this freeing clears that state.
1081  *
1082  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1083  * pinned" detection logic.
1084  */
1085 static void free_pcppages_bulk(struct zone *zone, int count,
1086 					struct per_cpu_pages *pcp)
1087 {
1088 	int migratetype = 0;
1089 	int batch_free = 0;
1090 	unsigned long nr_scanned;
1091 	bool isolated_pageblocks;
1092 
1093 	spin_lock(&zone->lock);
1094 	isolated_pageblocks = has_isolate_pageblock(zone);
1095 	nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1096 	if (nr_scanned)
1097 		__mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1098 
1099 	while (count) {
1100 		struct page *page;
1101 		struct list_head *list;
1102 
1103 		/*
1104 		 * Remove pages from lists in a round-robin fashion. A
1105 		 * batch_free count is maintained that is incremented when an
1106 		 * empty list is encountered.  This is so more pages are freed
1107 		 * off fuller lists instead of spinning excessively around empty
1108 		 * lists
1109 		 */
1110 		do {
1111 			batch_free++;
1112 			if (++migratetype == MIGRATE_PCPTYPES)
1113 				migratetype = 0;
1114 			list = &pcp->lists[migratetype];
1115 		} while (list_empty(list));
1116 
1117 		/* This is the only non-empty list. Free them all. */
1118 		if (batch_free == MIGRATE_PCPTYPES)
1119 			batch_free = count;
1120 
1121 		do {
1122 			int mt;	/* migratetype of the to-be-freed page */
1123 
1124 			page = list_last_entry(list, struct page, lru);
1125 			/* must delete as __free_one_page list manipulates */
1126 			list_del(&page->lru);
1127 
1128 			mt = get_pcppage_migratetype(page);
1129 			/* MIGRATE_ISOLATE page should not go to pcplists */
1130 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1131 			/* Pageblock could have been isolated meanwhile */
1132 			if (unlikely(isolated_pageblocks))
1133 				mt = get_pageblock_migratetype(page);
1134 
1135 			if (bulkfree_pcp_prepare(page))
1136 				continue;
1137 
1138 			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1139 			trace_mm_page_pcpu_drain(page, 0, mt);
1140 		} while (--count && --batch_free && !list_empty(list));
1141 	}
1142 	spin_unlock(&zone->lock);
1143 }
1144 
1145 static void free_one_page(struct zone *zone,
1146 				struct page *page, unsigned long pfn,
1147 				unsigned int order,
1148 				int migratetype)
1149 {
1150 	unsigned long nr_scanned;
1151 	spin_lock(&zone->lock);
1152 	nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1153 	if (nr_scanned)
1154 		__mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1155 
1156 	if (unlikely(has_isolate_pageblock(zone) ||
1157 		is_migrate_isolate(migratetype))) {
1158 		migratetype = get_pfnblock_migratetype(page, pfn);
1159 	}
1160 	__free_one_page(page, pfn, zone, order, migratetype);
1161 	spin_unlock(&zone->lock);
1162 }
1163 
1164 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1165 				unsigned long zone, int nid)
1166 {
1167 	set_page_links(page, zone, nid, pfn);
1168 	init_page_count(page);
1169 	page_mapcount_reset(page);
1170 	page_cpupid_reset_last(page);
1171 
1172 	INIT_LIST_HEAD(&page->lru);
1173 #ifdef WANT_PAGE_VIRTUAL
1174 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1175 	if (!is_highmem_idx(zone))
1176 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1177 #endif
1178 }
1179 
1180 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1181 					int nid)
1182 {
1183 	return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1184 }
1185 
1186 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1187 static void init_reserved_page(unsigned long pfn)
1188 {
1189 	pg_data_t *pgdat;
1190 	int nid, zid;
1191 
1192 	if (!early_page_uninitialised(pfn))
1193 		return;
1194 
1195 	nid = early_pfn_to_nid(pfn);
1196 	pgdat = NODE_DATA(nid);
1197 
1198 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1199 		struct zone *zone = &pgdat->node_zones[zid];
1200 
1201 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1202 			break;
1203 	}
1204 	__init_single_pfn(pfn, zid, nid);
1205 }
1206 #else
1207 static inline void init_reserved_page(unsigned long pfn)
1208 {
1209 }
1210 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1211 
1212 /*
1213  * Initialised pages do not have PageReserved set. This function is
1214  * called for each range allocated by the bootmem allocator and
1215  * marks the pages PageReserved. The remaining valid pages are later
1216  * sent to the buddy page allocator.
1217  */
1218 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1219 {
1220 	unsigned long start_pfn = PFN_DOWN(start);
1221 	unsigned long end_pfn = PFN_UP(end);
1222 
1223 	for (; start_pfn < end_pfn; start_pfn++) {
1224 		if (pfn_valid(start_pfn)) {
1225 			struct page *page = pfn_to_page(start_pfn);
1226 
1227 			init_reserved_page(start_pfn);
1228 
1229 			/* Avoid false-positive PageTail() */
1230 			INIT_LIST_HEAD(&page->lru);
1231 
1232 			SetPageReserved(page);
1233 		}
1234 	}
1235 }
1236 
1237 static void __free_pages_ok(struct page *page, unsigned int order)
1238 {
1239 	unsigned long flags;
1240 	int migratetype;
1241 	unsigned long pfn = page_to_pfn(page);
1242 
1243 	if (!free_pages_prepare(page, order, true))
1244 		return;
1245 
1246 	migratetype = get_pfnblock_migratetype(page, pfn);
1247 	local_irq_save(flags);
1248 	__count_vm_events(PGFREE, 1 << order);
1249 	free_one_page(page_zone(page), page, pfn, order, migratetype);
1250 	local_irq_restore(flags);
1251 }
1252 
1253 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1254 {
1255 	unsigned int nr_pages = 1 << order;
1256 	struct page *p = page;
1257 	unsigned int loop;
1258 
1259 	prefetchw(p);
1260 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1261 		prefetchw(p + 1);
1262 		__ClearPageReserved(p);
1263 		set_page_count(p, 0);
1264 	}
1265 	__ClearPageReserved(p);
1266 	set_page_count(p, 0);
1267 
1268 	page_zone(page)->managed_pages += nr_pages;
1269 	set_page_refcounted(page);
1270 	__free_pages(page, order);
1271 }
1272 
1273 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1274 	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1275 
1276 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1277 
1278 int __meminit early_pfn_to_nid(unsigned long pfn)
1279 {
1280 	static DEFINE_SPINLOCK(early_pfn_lock);
1281 	int nid;
1282 
1283 	spin_lock(&early_pfn_lock);
1284 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1285 	if (nid < 0)
1286 		nid = first_online_node;
1287 	spin_unlock(&early_pfn_lock);
1288 
1289 	return nid;
1290 }
1291 #endif
1292 
1293 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1294 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1295 					struct mminit_pfnnid_cache *state)
1296 {
1297 	int nid;
1298 
1299 	nid = __early_pfn_to_nid(pfn, state);
1300 	if (nid >= 0 && nid != node)
1301 		return false;
1302 	return true;
1303 }
1304 
1305 /* Only safe to use early in boot when initialisation is single-threaded */
1306 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1307 {
1308 	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1309 }
1310 
1311 #else
1312 
1313 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1314 {
1315 	return true;
1316 }
1317 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1318 					struct mminit_pfnnid_cache *state)
1319 {
1320 	return true;
1321 }
1322 #endif
1323 
1324 
1325 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1326 							unsigned int order)
1327 {
1328 	if (early_page_uninitialised(pfn))
1329 		return;
1330 	return __free_pages_boot_core(page, order);
1331 }
1332 
1333 /*
1334  * Check that the whole (or subset of) a pageblock given by the interval of
1335  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1336  * with the migration of free compaction scanner. The scanners then need to
1337  * use only pfn_valid_within() check for arches that allow holes within
1338  * pageblocks.
1339  *
1340  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1341  *
1342  * It's possible on some configurations to have a setup like node0 node1 node0
1343  * i.e. it's possible that all pages within a zones range of pages do not
1344  * belong to a single zone. We assume that a border between node0 and node1
1345  * can occur within a single pageblock, but not a node0 node1 node0
1346  * interleaving within a single pageblock. It is therefore sufficient to check
1347  * the first and last page of a pageblock and avoid checking each individual
1348  * page in a pageblock.
1349  */
1350 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1351 				     unsigned long end_pfn, struct zone *zone)
1352 {
1353 	struct page *start_page;
1354 	struct page *end_page;
1355 
1356 	/* end_pfn is one past the range we are checking */
1357 	end_pfn--;
1358 
1359 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1360 		return NULL;
1361 
1362 	start_page = pfn_to_page(start_pfn);
1363 
1364 	if (page_zone(start_page) != zone)
1365 		return NULL;
1366 
1367 	end_page = pfn_to_page(end_pfn);
1368 
1369 	/* This gives a shorter code than deriving page_zone(end_page) */
1370 	if (page_zone_id(start_page) != page_zone_id(end_page))
1371 		return NULL;
1372 
1373 	return start_page;
1374 }
1375 
1376 void set_zone_contiguous(struct zone *zone)
1377 {
1378 	unsigned long block_start_pfn = zone->zone_start_pfn;
1379 	unsigned long block_end_pfn;
1380 
1381 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1382 	for (; block_start_pfn < zone_end_pfn(zone);
1383 			block_start_pfn = block_end_pfn,
1384 			 block_end_pfn += pageblock_nr_pages) {
1385 
1386 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1387 
1388 		if (!__pageblock_pfn_to_page(block_start_pfn,
1389 					     block_end_pfn, zone))
1390 			return;
1391 	}
1392 
1393 	/* We confirm that there is no hole */
1394 	zone->contiguous = true;
1395 }
1396 
1397 void clear_zone_contiguous(struct zone *zone)
1398 {
1399 	zone->contiguous = false;
1400 }
1401 
1402 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1403 static void __init deferred_free_range(struct page *page,
1404 					unsigned long pfn, int nr_pages)
1405 {
1406 	int i;
1407 
1408 	if (!page)
1409 		return;
1410 
1411 	/* Free a large naturally-aligned chunk if possible */
1412 	if (nr_pages == pageblock_nr_pages &&
1413 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1414 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1415 		__free_pages_boot_core(page, pageblock_order);
1416 		return;
1417 	}
1418 
1419 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1420 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1421 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1422 		__free_pages_boot_core(page, 0);
1423 	}
1424 }
1425 
1426 /* Completion tracking for deferred_init_memmap() threads */
1427 static atomic_t pgdat_init_n_undone __initdata;
1428 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1429 
1430 static inline void __init pgdat_init_report_one_done(void)
1431 {
1432 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1433 		complete(&pgdat_init_all_done_comp);
1434 }
1435 
1436 /* Initialise remaining memory on a node */
1437 static int __init deferred_init_memmap(void *data)
1438 {
1439 	pg_data_t *pgdat = data;
1440 	int nid = pgdat->node_id;
1441 	struct mminit_pfnnid_cache nid_init_state = { };
1442 	unsigned long start = jiffies;
1443 	unsigned long nr_pages = 0;
1444 	unsigned long walk_start, walk_end;
1445 	int i, zid;
1446 	struct zone *zone;
1447 	unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1448 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1449 
1450 	if (first_init_pfn == ULONG_MAX) {
1451 		pgdat_init_report_one_done();
1452 		return 0;
1453 	}
1454 
1455 	/* Bind memory initialisation thread to a local node if possible */
1456 	if (!cpumask_empty(cpumask))
1457 		set_cpus_allowed_ptr(current, cpumask);
1458 
1459 	/* Sanity check boundaries */
1460 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1461 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1462 	pgdat->first_deferred_pfn = ULONG_MAX;
1463 
1464 	/* Only the highest zone is deferred so find it */
1465 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1466 		zone = pgdat->node_zones + zid;
1467 		if (first_init_pfn < zone_end_pfn(zone))
1468 			break;
1469 	}
1470 
1471 	for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1472 		unsigned long pfn, end_pfn;
1473 		struct page *page = NULL;
1474 		struct page *free_base_page = NULL;
1475 		unsigned long free_base_pfn = 0;
1476 		int nr_to_free = 0;
1477 
1478 		end_pfn = min(walk_end, zone_end_pfn(zone));
1479 		pfn = first_init_pfn;
1480 		if (pfn < walk_start)
1481 			pfn = walk_start;
1482 		if (pfn < zone->zone_start_pfn)
1483 			pfn = zone->zone_start_pfn;
1484 
1485 		for (; pfn < end_pfn; pfn++) {
1486 			if (!pfn_valid_within(pfn))
1487 				goto free_range;
1488 
1489 			/*
1490 			 * Ensure pfn_valid is checked every
1491 			 * pageblock_nr_pages for memory holes
1492 			 */
1493 			if ((pfn & (pageblock_nr_pages - 1)) == 0) {
1494 				if (!pfn_valid(pfn)) {
1495 					page = NULL;
1496 					goto free_range;
1497 				}
1498 			}
1499 
1500 			if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1501 				page = NULL;
1502 				goto free_range;
1503 			}
1504 
1505 			/* Minimise pfn page lookups and scheduler checks */
1506 			if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
1507 				page++;
1508 			} else {
1509 				nr_pages += nr_to_free;
1510 				deferred_free_range(free_base_page,
1511 						free_base_pfn, nr_to_free);
1512 				free_base_page = NULL;
1513 				free_base_pfn = nr_to_free = 0;
1514 
1515 				page = pfn_to_page(pfn);
1516 				cond_resched();
1517 			}
1518 
1519 			if (page->flags) {
1520 				VM_BUG_ON(page_zone(page) != zone);
1521 				goto free_range;
1522 			}
1523 
1524 			__init_single_page(page, pfn, zid, nid);
1525 			if (!free_base_page) {
1526 				free_base_page = page;
1527 				free_base_pfn = pfn;
1528 				nr_to_free = 0;
1529 			}
1530 			nr_to_free++;
1531 
1532 			/* Where possible, batch up pages for a single free */
1533 			continue;
1534 free_range:
1535 			/* Free the current block of pages to allocator */
1536 			nr_pages += nr_to_free;
1537 			deferred_free_range(free_base_page, free_base_pfn,
1538 								nr_to_free);
1539 			free_base_page = NULL;
1540 			free_base_pfn = nr_to_free = 0;
1541 		}
1542 		/* Free the last block of pages to allocator */
1543 		nr_pages += nr_to_free;
1544 		deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
1545 
1546 		first_init_pfn = max(end_pfn, first_init_pfn);
1547 	}
1548 
1549 	/* Sanity check that the next zone really is unpopulated */
1550 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1551 
1552 	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1553 					jiffies_to_msecs(jiffies - start));
1554 
1555 	pgdat_init_report_one_done();
1556 	return 0;
1557 }
1558 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1559 
1560 void __init page_alloc_init_late(void)
1561 {
1562 	struct zone *zone;
1563 
1564 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1565 	int nid;
1566 
1567 	/* There will be num_node_state(N_MEMORY) threads */
1568 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1569 	for_each_node_state(nid, N_MEMORY) {
1570 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1571 	}
1572 
1573 	/* Block until all are initialised */
1574 	wait_for_completion(&pgdat_init_all_done_comp);
1575 
1576 	/* Reinit limits that are based on free pages after the kernel is up */
1577 	files_maxfiles_init();
1578 #endif
1579 
1580 	for_each_populated_zone(zone)
1581 		set_zone_contiguous(zone);
1582 }
1583 
1584 #ifdef CONFIG_CMA
1585 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1586 void __init init_cma_reserved_pageblock(struct page *page)
1587 {
1588 	unsigned i = pageblock_nr_pages;
1589 	struct page *p = page;
1590 
1591 	do {
1592 		__ClearPageReserved(p);
1593 		set_page_count(p, 0);
1594 	} while (++p, --i);
1595 
1596 	set_pageblock_migratetype(page, MIGRATE_CMA);
1597 
1598 	if (pageblock_order >= MAX_ORDER) {
1599 		i = pageblock_nr_pages;
1600 		p = page;
1601 		do {
1602 			set_page_refcounted(p);
1603 			__free_pages(p, MAX_ORDER - 1);
1604 			p += MAX_ORDER_NR_PAGES;
1605 		} while (i -= MAX_ORDER_NR_PAGES);
1606 	} else {
1607 		set_page_refcounted(page);
1608 		__free_pages(page, pageblock_order);
1609 	}
1610 
1611 	adjust_managed_page_count(page, pageblock_nr_pages);
1612 }
1613 #endif
1614 
1615 /*
1616  * The order of subdivision here is critical for the IO subsystem.
1617  * Please do not alter this order without good reasons and regression
1618  * testing. Specifically, as large blocks of memory are subdivided,
1619  * the order in which smaller blocks are delivered depends on the order
1620  * they're subdivided in this function. This is the primary factor
1621  * influencing the order in which pages are delivered to the IO
1622  * subsystem according to empirical testing, and this is also justified
1623  * by considering the behavior of a buddy system containing a single
1624  * large block of memory acted on by a series of small allocations.
1625  * This behavior is a critical factor in sglist merging's success.
1626  *
1627  * -- nyc
1628  */
1629 static inline void expand(struct zone *zone, struct page *page,
1630 	int low, int high, struct free_area *area,
1631 	int migratetype)
1632 {
1633 	unsigned long size = 1 << high;
1634 
1635 	while (high > low) {
1636 		area--;
1637 		high--;
1638 		size >>= 1;
1639 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1640 
1641 		/*
1642 		 * Mark as guard pages (or page), that will allow to
1643 		 * merge back to allocator when buddy will be freed.
1644 		 * Corresponding page table entries will not be touched,
1645 		 * pages will stay not present in virtual address space
1646 		 */
1647 		if (set_page_guard(zone, &page[size], high, migratetype))
1648 			continue;
1649 
1650 		list_add(&page[size].lru, &area->free_list[migratetype]);
1651 		area->nr_free++;
1652 		set_page_order(&page[size], high);
1653 	}
1654 }
1655 
1656 static void check_new_page_bad(struct page *page)
1657 {
1658 	const char *bad_reason = NULL;
1659 	unsigned long bad_flags = 0;
1660 
1661 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1662 		bad_reason = "nonzero mapcount";
1663 	if (unlikely(page->mapping != NULL))
1664 		bad_reason = "non-NULL mapping";
1665 	if (unlikely(page_ref_count(page) != 0))
1666 		bad_reason = "nonzero _count";
1667 	if (unlikely(page->flags & __PG_HWPOISON)) {
1668 		bad_reason = "HWPoisoned (hardware-corrupted)";
1669 		bad_flags = __PG_HWPOISON;
1670 		/* Don't complain about hwpoisoned pages */
1671 		page_mapcount_reset(page); /* remove PageBuddy */
1672 		return;
1673 	}
1674 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1675 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1676 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1677 	}
1678 #ifdef CONFIG_MEMCG
1679 	if (unlikely(page->mem_cgroup))
1680 		bad_reason = "page still charged to cgroup";
1681 #endif
1682 	bad_page(page, bad_reason, bad_flags);
1683 }
1684 
1685 /*
1686  * This page is about to be returned from the page allocator
1687  */
1688 static inline int check_new_page(struct page *page)
1689 {
1690 	if (likely(page_expected_state(page,
1691 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1692 		return 0;
1693 
1694 	check_new_page_bad(page);
1695 	return 1;
1696 }
1697 
1698 static inline bool free_pages_prezeroed(bool poisoned)
1699 {
1700 	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1701 		page_poisoning_enabled() && poisoned;
1702 }
1703 
1704 #ifdef CONFIG_DEBUG_VM
1705 static bool check_pcp_refill(struct page *page)
1706 {
1707 	return false;
1708 }
1709 
1710 static bool check_new_pcp(struct page *page)
1711 {
1712 	return check_new_page(page);
1713 }
1714 #else
1715 static bool check_pcp_refill(struct page *page)
1716 {
1717 	return check_new_page(page);
1718 }
1719 static bool check_new_pcp(struct page *page)
1720 {
1721 	return false;
1722 }
1723 #endif /* CONFIG_DEBUG_VM */
1724 
1725 static bool check_new_pages(struct page *page, unsigned int order)
1726 {
1727 	int i;
1728 	for (i = 0; i < (1 << order); i++) {
1729 		struct page *p = page + i;
1730 
1731 		if (unlikely(check_new_page(p)))
1732 			return true;
1733 	}
1734 
1735 	return false;
1736 }
1737 
1738 inline void post_alloc_hook(struct page *page, unsigned int order,
1739 				gfp_t gfp_flags)
1740 {
1741 	set_page_private(page, 0);
1742 	set_page_refcounted(page);
1743 
1744 	arch_alloc_page(page, order);
1745 	kernel_map_pages(page, 1 << order, 1);
1746 	kernel_poison_pages(page, 1 << order, 1);
1747 	kasan_alloc_pages(page, order);
1748 	set_page_owner(page, order, gfp_flags);
1749 }
1750 
1751 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1752 							unsigned int alloc_flags)
1753 {
1754 	int i;
1755 	bool poisoned = true;
1756 
1757 	for (i = 0; i < (1 << order); i++) {
1758 		struct page *p = page + i;
1759 		if (poisoned)
1760 			poisoned &= page_is_poisoned(p);
1761 	}
1762 
1763 	post_alloc_hook(page, order, gfp_flags);
1764 
1765 	if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
1766 		for (i = 0; i < (1 << order); i++)
1767 			clear_highpage(page + i);
1768 
1769 	if (order && (gfp_flags & __GFP_COMP))
1770 		prep_compound_page(page, order);
1771 
1772 	/*
1773 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1774 	 * allocate the page. The expectation is that the caller is taking
1775 	 * steps that will free more memory. The caller should avoid the page
1776 	 * being used for !PFMEMALLOC purposes.
1777 	 */
1778 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1779 		set_page_pfmemalloc(page);
1780 	else
1781 		clear_page_pfmemalloc(page);
1782 }
1783 
1784 /*
1785  * Go through the free lists for the given migratetype and remove
1786  * the smallest available page from the freelists
1787  */
1788 static inline
1789 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1790 						int migratetype)
1791 {
1792 	unsigned int current_order;
1793 	struct free_area *area;
1794 	struct page *page;
1795 
1796 	/* Find a page of the appropriate size in the preferred list */
1797 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1798 		area = &(zone->free_area[current_order]);
1799 		page = list_first_entry_or_null(&area->free_list[migratetype],
1800 							struct page, lru);
1801 		if (!page)
1802 			continue;
1803 		list_del(&page->lru);
1804 		rmv_page_order(page);
1805 		area->nr_free--;
1806 		expand(zone, page, order, current_order, area, migratetype);
1807 		set_pcppage_migratetype(page, migratetype);
1808 		return page;
1809 	}
1810 
1811 	return NULL;
1812 }
1813 
1814 
1815 /*
1816  * This array describes the order lists are fallen back to when
1817  * the free lists for the desirable migrate type are depleted
1818  */
1819 static int fallbacks[MIGRATE_TYPES][4] = {
1820 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
1821 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
1822 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1823 #ifdef CONFIG_CMA
1824 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1825 #endif
1826 #ifdef CONFIG_MEMORY_ISOLATION
1827 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1828 #endif
1829 };
1830 
1831 #ifdef CONFIG_CMA
1832 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1833 					unsigned int order)
1834 {
1835 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1836 }
1837 #else
1838 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1839 					unsigned int order) { return NULL; }
1840 #endif
1841 
1842 /*
1843  * Move the free pages in a range to the free lists of the requested type.
1844  * Note that start_page and end_pages are not aligned on a pageblock
1845  * boundary. If alignment is required, use move_freepages_block()
1846  */
1847 int move_freepages(struct zone *zone,
1848 			  struct page *start_page, struct page *end_page,
1849 			  int migratetype)
1850 {
1851 	struct page *page;
1852 	unsigned int order;
1853 	int pages_moved = 0;
1854 
1855 #ifndef CONFIG_HOLES_IN_ZONE
1856 	/*
1857 	 * page_zone is not safe to call in this context when
1858 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1859 	 * anyway as we check zone boundaries in move_freepages_block().
1860 	 * Remove at a later date when no bug reports exist related to
1861 	 * grouping pages by mobility
1862 	 */
1863 	VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1864 #endif
1865 
1866 	for (page = start_page; page <= end_page;) {
1867 		/* Make sure we are not inadvertently changing nodes */
1868 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1869 
1870 		if (!pfn_valid_within(page_to_pfn(page))) {
1871 			page++;
1872 			continue;
1873 		}
1874 
1875 		if (!PageBuddy(page)) {
1876 			page++;
1877 			continue;
1878 		}
1879 
1880 		order = page_order(page);
1881 		list_move(&page->lru,
1882 			  &zone->free_area[order].free_list[migratetype]);
1883 		page += 1 << order;
1884 		pages_moved += 1 << order;
1885 	}
1886 
1887 	return pages_moved;
1888 }
1889 
1890 int move_freepages_block(struct zone *zone, struct page *page,
1891 				int migratetype)
1892 {
1893 	unsigned long start_pfn, end_pfn;
1894 	struct page *start_page, *end_page;
1895 
1896 	start_pfn = page_to_pfn(page);
1897 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1898 	start_page = pfn_to_page(start_pfn);
1899 	end_page = start_page + pageblock_nr_pages - 1;
1900 	end_pfn = start_pfn + pageblock_nr_pages - 1;
1901 
1902 	/* Do not cross zone boundaries */
1903 	if (!zone_spans_pfn(zone, start_pfn))
1904 		start_page = page;
1905 	if (!zone_spans_pfn(zone, end_pfn))
1906 		return 0;
1907 
1908 	return move_freepages(zone, start_page, end_page, migratetype);
1909 }
1910 
1911 static void change_pageblock_range(struct page *pageblock_page,
1912 					int start_order, int migratetype)
1913 {
1914 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1915 
1916 	while (nr_pageblocks--) {
1917 		set_pageblock_migratetype(pageblock_page, migratetype);
1918 		pageblock_page += pageblock_nr_pages;
1919 	}
1920 }
1921 
1922 /*
1923  * When we are falling back to another migratetype during allocation, try to
1924  * steal extra free pages from the same pageblocks to satisfy further
1925  * allocations, instead of polluting multiple pageblocks.
1926  *
1927  * If we are stealing a relatively large buddy page, it is likely there will
1928  * be more free pages in the pageblock, so try to steal them all. For
1929  * reclaimable and unmovable allocations, we steal regardless of page size,
1930  * as fragmentation caused by those allocations polluting movable pageblocks
1931  * is worse than movable allocations stealing from unmovable and reclaimable
1932  * pageblocks.
1933  */
1934 static bool can_steal_fallback(unsigned int order, int start_mt)
1935 {
1936 	/*
1937 	 * Leaving this order check is intended, although there is
1938 	 * relaxed order check in next check. The reason is that
1939 	 * we can actually steal whole pageblock if this condition met,
1940 	 * but, below check doesn't guarantee it and that is just heuristic
1941 	 * so could be changed anytime.
1942 	 */
1943 	if (order >= pageblock_order)
1944 		return true;
1945 
1946 	if (order >= pageblock_order / 2 ||
1947 		start_mt == MIGRATE_RECLAIMABLE ||
1948 		start_mt == MIGRATE_UNMOVABLE ||
1949 		page_group_by_mobility_disabled)
1950 		return true;
1951 
1952 	return false;
1953 }
1954 
1955 /*
1956  * This function implements actual steal behaviour. If order is large enough,
1957  * we can steal whole pageblock. If not, we first move freepages in this
1958  * pageblock and check whether half of pages are moved or not. If half of
1959  * pages are moved, we can change migratetype of pageblock and permanently
1960  * use it's pages as requested migratetype in the future.
1961  */
1962 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1963 							  int start_type)
1964 {
1965 	unsigned int current_order = page_order(page);
1966 	int pages;
1967 
1968 	/* Take ownership for orders >= pageblock_order */
1969 	if (current_order >= pageblock_order) {
1970 		change_pageblock_range(page, current_order, start_type);
1971 		return;
1972 	}
1973 
1974 	pages = move_freepages_block(zone, page, start_type);
1975 
1976 	/* Claim the whole block if over half of it is free */
1977 	if (pages >= (1 << (pageblock_order-1)) ||
1978 			page_group_by_mobility_disabled)
1979 		set_pageblock_migratetype(page, start_type);
1980 }
1981 
1982 /*
1983  * Check whether there is a suitable fallback freepage with requested order.
1984  * If only_stealable is true, this function returns fallback_mt only if
1985  * we can steal other freepages all together. This would help to reduce
1986  * fragmentation due to mixed migratetype pages in one pageblock.
1987  */
1988 int find_suitable_fallback(struct free_area *area, unsigned int order,
1989 			int migratetype, bool only_stealable, bool *can_steal)
1990 {
1991 	int i;
1992 	int fallback_mt;
1993 
1994 	if (area->nr_free == 0)
1995 		return -1;
1996 
1997 	*can_steal = false;
1998 	for (i = 0;; i++) {
1999 		fallback_mt = fallbacks[migratetype][i];
2000 		if (fallback_mt == MIGRATE_TYPES)
2001 			break;
2002 
2003 		if (list_empty(&area->free_list[fallback_mt]))
2004 			continue;
2005 
2006 		if (can_steal_fallback(order, migratetype))
2007 			*can_steal = true;
2008 
2009 		if (!only_stealable)
2010 			return fallback_mt;
2011 
2012 		if (*can_steal)
2013 			return fallback_mt;
2014 	}
2015 
2016 	return -1;
2017 }
2018 
2019 /*
2020  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2021  * there are no empty page blocks that contain a page with a suitable order
2022  */
2023 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2024 				unsigned int alloc_order)
2025 {
2026 	int mt;
2027 	unsigned long max_managed, flags;
2028 
2029 	/*
2030 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2031 	 * Check is race-prone but harmless.
2032 	 */
2033 	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2034 	if (zone->nr_reserved_highatomic >= max_managed)
2035 		return;
2036 
2037 	spin_lock_irqsave(&zone->lock, flags);
2038 
2039 	/* Recheck the nr_reserved_highatomic limit under the lock */
2040 	if (zone->nr_reserved_highatomic >= max_managed)
2041 		goto out_unlock;
2042 
2043 	/* Yoink! */
2044 	mt = get_pageblock_migratetype(page);
2045 	if (mt != MIGRATE_HIGHATOMIC &&
2046 			!is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2047 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2048 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2049 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2050 	}
2051 
2052 out_unlock:
2053 	spin_unlock_irqrestore(&zone->lock, flags);
2054 }
2055 
2056 /*
2057  * Used when an allocation is about to fail under memory pressure. This
2058  * potentially hurts the reliability of high-order allocations when under
2059  * intense memory pressure but failed atomic allocations should be easier
2060  * to recover from than an OOM.
2061  */
2062 static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
2063 {
2064 	struct zonelist *zonelist = ac->zonelist;
2065 	unsigned long flags;
2066 	struct zoneref *z;
2067 	struct zone *zone;
2068 	struct page *page;
2069 	int order;
2070 
2071 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2072 								ac->nodemask) {
2073 		/* Preserve at least one pageblock */
2074 		if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
2075 			continue;
2076 
2077 		spin_lock_irqsave(&zone->lock, flags);
2078 		for (order = 0; order < MAX_ORDER; order++) {
2079 			struct free_area *area = &(zone->free_area[order]);
2080 
2081 			page = list_first_entry_or_null(
2082 					&area->free_list[MIGRATE_HIGHATOMIC],
2083 					struct page, lru);
2084 			if (!page)
2085 				continue;
2086 
2087 			/*
2088 			 * It should never happen but changes to locking could
2089 			 * inadvertently allow a per-cpu drain to add pages
2090 			 * to MIGRATE_HIGHATOMIC while unreserving so be safe
2091 			 * and watch for underflows.
2092 			 */
2093 			zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
2094 				zone->nr_reserved_highatomic);
2095 
2096 			/*
2097 			 * Convert to ac->migratetype and avoid the normal
2098 			 * pageblock stealing heuristics. Minimally, the caller
2099 			 * is doing the work and needs the pages. More
2100 			 * importantly, if the block was always converted to
2101 			 * MIGRATE_UNMOVABLE or another type then the number
2102 			 * of pageblocks that cannot be completely freed
2103 			 * may increase.
2104 			 */
2105 			set_pageblock_migratetype(page, ac->migratetype);
2106 			move_freepages_block(zone, page, ac->migratetype);
2107 			spin_unlock_irqrestore(&zone->lock, flags);
2108 			return;
2109 		}
2110 		spin_unlock_irqrestore(&zone->lock, flags);
2111 	}
2112 }
2113 
2114 /* Remove an element from the buddy allocator from the fallback list */
2115 static inline struct page *
2116 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
2117 {
2118 	struct free_area *area;
2119 	unsigned int current_order;
2120 	struct page *page;
2121 	int fallback_mt;
2122 	bool can_steal;
2123 
2124 	/* Find the largest possible block of pages in the other list */
2125 	for (current_order = MAX_ORDER-1;
2126 				current_order >= order && current_order <= MAX_ORDER-1;
2127 				--current_order) {
2128 		area = &(zone->free_area[current_order]);
2129 		fallback_mt = find_suitable_fallback(area, current_order,
2130 				start_migratetype, false, &can_steal);
2131 		if (fallback_mt == -1)
2132 			continue;
2133 
2134 		page = list_first_entry(&area->free_list[fallback_mt],
2135 						struct page, lru);
2136 		if (can_steal)
2137 			steal_suitable_fallback(zone, page, start_migratetype);
2138 
2139 		/* Remove the page from the freelists */
2140 		area->nr_free--;
2141 		list_del(&page->lru);
2142 		rmv_page_order(page);
2143 
2144 		expand(zone, page, order, current_order, area,
2145 					start_migratetype);
2146 		/*
2147 		 * The pcppage_migratetype may differ from pageblock's
2148 		 * migratetype depending on the decisions in
2149 		 * find_suitable_fallback(). This is OK as long as it does not
2150 		 * differ for MIGRATE_CMA pageblocks. Those can be used as
2151 		 * fallback only via special __rmqueue_cma_fallback() function
2152 		 */
2153 		set_pcppage_migratetype(page, start_migratetype);
2154 
2155 		trace_mm_page_alloc_extfrag(page, order, current_order,
2156 			start_migratetype, fallback_mt);
2157 
2158 		return page;
2159 	}
2160 
2161 	return NULL;
2162 }
2163 
2164 /*
2165  * Do the hard work of removing an element from the buddy allocator.
2166  * Call me with the zone->lock already held.
2167  */
2168 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2169 				int migratetype)
2170 {
2171 	struct page *page;
2172 
2173 	page = __rmqueue_smallest(zone, order, migratetype);
2174 	if (unlikely(!page)) {
2175 		if (migratetype == MIGRATE_MOVABLE)
2176 			page = __rmqueue_cma_fallback(zone, order);
2177 
2178 		if (!page)
2179 			page = __rmqueue_fallback(zone, order, migratetype);
2180 	}
2181 
2182 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2183 	return page;
2184 }
2185 
2186 /*
2187  * Obtain a specified number of elements from the buddy allocator, all under
2188  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2189  * Returns the number of new pages which were placed at *list.
2190  */
2191 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2192 			unsigned long count, struct list_head *list,
2193 			int migratetype, bool cold)
2194 {
2195 	int i;
2196 
2197 	spin_lock(&zone->lock);
2198 	for (i = 0; i < count; ++i) {
2199 		struct page *page = __rmqueue(zone, order, migratetype);
2200 		if (unlikely(page == NULL))
2201 			break;
2202 
2203 		if (unlikely(check_pcp_refill(page)))
2204 			continue;
2205 
2206 		/*
2207 		 * Split buddy pages returned by expand() are received here
2208 		 * in physical page order. The page is added to the callers and
2209 		 * list and the list head then moves forward. From the callers
2210 		 * perspective, the linked list is ordered by page number in
2211 		 * some conditions. This is useful for IO devices that can
2212 		 * merge IO requests if the physical pages are ordered
2213 		 * properly.
2214 		 */
2215 		if (likely(!cold))
2216 			list_add(&page->lru, list);
2217 		else
2218 			list_add_tail(&page->lru, list);
2219 		list = &page->lru;
2220 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2221 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2222 					      -(1 << order));
2223 	}
2224 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2225 	spin_unlock(&zone->lock);
2226 	return i;
2227 }
2228 
2229 #ifdef CONFIG_NUMA
2230 /*
2231  * Called from the vmstat counter updater to drain pagesets of this
2232  * currently executing processor on remote nodes after they have
2233  * expired.
2234  *
2235  * Note that this function must be called with the thread pinned to
2236  * a single processor.
2237  */
2238 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2239 {
2240 	unsigned long flags;
2241 	int to_drain, batch;
2242 
2243 	local_irq_save(flags);
2244 	batch = READ_ONCE(pcp->batch);
2245 	to_drain = min(pcp->count, batch);
2246 	if (to_drain > 0) {
2247 		free_pcppages_bulk(zone, to_drain, pcp);
2248 		pcp->count -= to_drain;
2249 	}
2250 	local_irq_restore(flags);
2251 }
2252 #endif
2253 
2254 /*
2255  * Drain pcplists of the indicated processor and zone.
2256  *
2257  * The processor must either be the current processor and the
2258  * thread pinned to the current processor or a processor that
2259  * is not online.
2260  */
2261 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2262 {
2263 	unsigned long flags;
2264 	struct per_cpu_pageset *pset;
2265 	struct per_cpu_pages *pcp;
2266 
2267 	local_irq_save(flags);
2268 	pset = per_cpu_ptr(zone->pageset, cpu);
2269 
2270 	pcp = &pset->pcp;
2271 	if (pcp->count) {
2272 		free_pcppages_bulk(zone, pcp->count, pcp);
2273 		pcp->count = 0;
2274 	}
2275 	local_irq_restore(flags);
2276 }
2277 
2278 /*
2279  * Drain pcplists of all zones on the indicated processor.
2280  *
2281  * The processor must either be the current processor and the
2282  * thread pinned to the current processor or a processor that
2283  * is not online.
2284  */
2285 static void drain_pages(unsigned int cpu)
2286 {
2287 	struct zone *zone;
2288 
2289 	for_each_populated_zone(zone) {
2290 		drain_pages_zone(cpu, zone);
2291 	}
2292 }
2293 
2294 /*
2295  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2296  *
2297  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2298  * the single zone's pages.
2299  */
2300 void drain_local_pages(struct zone *zone)
2301 {
2302 	int cpu = smp_processor_id();
2303 
2304 	if (zone)
2305 		drain_pages_zone(cpu, zone);
2306 	else
2307 		drain_pages(cpu);
2308 }
2309 
2310 /*
2311  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2312  *
2313  * When zone parameter is non-NULL, spill just the single zone's pages.
2314  *
2315  * Note that this code is protected against sending an IPI to an offline
2316  * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2317  * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2318  * nothing keeps CPUs from showing up after we populated the cpumask and
2319  * before the call to on_each_cpu_mask().
2320  */
2321 void drain_all_pages(struct zone *zone)
2322 {
2323 	int cpu;
2324 
2325 	/*
2326 	 * Allocate in the BSS so we wont require allocation in
2327 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2328 	 */
2329 	static cpumask_t cpus_with_pcps;
2330 
2331 	/*
2332 	 * We don't care about racing with CPU hotplug event
2333 	 * as offline notification will cause the notified
2334 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2335 	 * disables preemption as part of its processing
2336 	 */
2337 	for_each_online_cpu(cpu) {
2338 		struct per_cpu_pageset *pcp;
2339 		struct zone *z;
2340 		bool has_pcps = false;
2341 
2342 		if (zone) {
2343 			pcp = per_cpu_ptr(zone->pageset, cpu);
2344 			if (pcp->pcp.count)
2345 				has_pcps = true;
2346 		} else {
2347 			for_each_populated_zone(z) {
2348 				pcp = per_cpu_ptr(z->pageset, cpu);
2349 				if (pcp->pcp.count) {
2350 					has_pcps = true;
2351 					break;
2352 				}
2353 			}
2354 		}
2355 
2356 		if (has_pcps)
2357 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2358 		else
2359 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2360 	}
2361 	on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2362 								zone, 1);
2363 }
2364 
2365 #ifdef CONFIG_HIBERNATION
2366 
2367 void mark_free_pages(struct zone *zone)
2368 {
2369 	unsigned long pfn, max_zone_pfn;
2370 	unsigned long flags;
2371 	unsigned int order, t;
2372 	struct page *page;
2373 
2374 	if (zone_is_empty(zone))
2375 		return;
2376 
2377 	spin_lock_irqsave(&zone->lock, flags);
2378 
2379 	max_zone_pfn = zone_end_pfn(zone);
2380 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2381 		if (pfn_valid(pfn)) {
2382 			page = pfn_to_page(pfn);
2383 
2384 			if (page_zone(page) != zone)
2385 				continue;
2386 
2387 			if (!swsusp_page_is_forbidden(page))
2388 				swsusp_unset_page_free(page);
2389 		}
2390 
2391 	for_each_migratetype_order(order, t) {
2392 		list_for_each_entry(page,
2393 				&zone->free_area[order].free_list[t], lru) {
2394 			unsigned long i;
2395 
2396 			pfn = page_to_pfn(page);
2397 			for (i = 0; i < (1UL << order); i++)
2398 				swsusp_set_page_free(pfn_to_page(pfn + i));
2399 		}
2400 	}
2401 	spin_unlock_irqrestore(&zone->lock, flags);
2402 }
2403 #endif /* CONFIG_PM */
2404 
2405 /*
2406  * Free a 0-order page
2407  * cold == true ? free a cold page : free a hot page
2408  */
2409 void free_hot_cold_page(struct page *page, bool cold)
2410 {
2411 	struct zone *zone = page_zone(page);
2412 	struct per_cpu_pages *pcp;
2413 	unsigned long flags;
2414 	unsigned long pfn = page_to_pfn(page);
2415 	int migratetype;
2416 
2417 	if (!free_pcp_prepare(page))
2418 		return;
2419 
2420 	migratetype = get_pfnblock_migratetype(page, pfn);
2421 	set_pcppage_migratetype(page, migratetype);
2422 	local_irq_save(flags);
2423 	__count_vm_event(PGFREE);
2424 
2425 	/*
2426 	 * We only track unmovable, reclaimable and movable on pcp lists.
2427 	 * Free ISOLATE pages back to the allocator because they are being
2428 	 * offlined but treat RESERVE as movable pages so we can get those
2429 	 * areas back if necessary. Otherwise, we may have to free
2430 	 * excessively into the page allocator
2431 	 */
2432 	if (migratetype >= MIGRATE_PCPTYPES) {
2433 		if (unlikely(is_migrate_isolate(migratetype))) {
2434 			free_one_page(zone, page, pfn, 0, migratetype);
2435 			goto out;
2436 		}
2437 		migratetype = MIGRATE_MOVABLE;
2438 	}
2439 
2440 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2441 	if (!cold)
2442 		list_add(&page->lru, &pcp->lists[migratetype]);
2443 	else
2444 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
2445 	pcp->count++;
2446 	if (pcp->count >= pcp->high) {
2447 		unsigned long batch = READ_ONCE(pcp->batch);
2448 		free_pcppages_bulk(zone, batch, pcp);
2449 		pcp->count -= batch;
2450 	}
2451 
2452 out:
2453 	local_irq_restore(flags);
2454 }
2455 
2456 /*
2457  * Free a list of 0-order pages
2458  */
2459 void free_hot_cold_page_list(struct list_head *list, bool cold)
2460 {
2461 	struct page *page, *next;
2462 
2463 	list_for_each_entry_safe(page, next, list, lru) {
2464 		trace_mm_page_free_batched(page, cold);
2465 		free_hot_cold_page(page, cold);
2466 	}
2467 }
2468 
2469 /*
2470  * split_page takes a non-compound higher-order page, and splits it into
2471  * n (1<<order) sub-pages: page[0..n]
2472  * Each sub-page must be freed individually.
2473  *
2474  * Note: this is probably too low level an operation for use in drivers.
2475  * Please consult with lkml before using this in your driver.
2476  */
2477 void split_page(struct page *page, unsigned int order)
2478 {
2479 	int i;
2480 
2481 	VM_BUG_ON_PAGE(PageCompound(page), page);
2482 	VM_BUG_ON_PAGE(!page_count(page), page);
2483 
2484 #ifdef CONFIG_KMEMCHECK
2485 	/*
2486 	 * Split shadow pages too, because free(page[0]) would
2487 	 * otherwise free the whole shadow.
2488 	 */
2489 	if (kmemcheck_page_is_tracked(page))
2490 		split_page(virt_to_page(page[0].shadow), order);
2491 #endif
2492 
2493 	for (i = 1; i < (1 << order); i++)
2494 		set_page_refcounted(page + i);
2495 	split_page_owner(page, order);
2496 }
2497 EXPORT_SYMBOL_GPL(split_page);
2498 
2499 int __isolate_free_page(struct page *page, unsigned int order)
2500 {
2501 	unsigned long watermark;
2502 	struct zone *zone;
2503 	int mt;
2504 
2505 	BUG_ON(!PageBuddy(page));
2506 
2507 	zone = page_zone(page);
2508 	mt = get_pageblock_migratetype(page);
2509 
2510 	if (!is_migrate_isolate(mt)) {
2511 		/*
2512 		 * Obey watermarks as if the page was being allocated. We can
2513 		 * emulate a high-order watermark check with a raised order-0
2514 		 * watermark, because we already know our high-order page
2515 		 * exists.
2516 		 */
2517 		watermark = min_wmark_pages(zone) + (1UL << order);
2518 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2519 			return 0;
2520 
2521 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2522 	}
2523 
2524 	/* Remove page from free list */
2525 	list_del(&page->lru);
2526 	zone->free_area[order].nr_free--;
2527 	rmv_page_order(page);
2528 
2529 	/*
2530 	 * Set the pageblock if the isolated page is at least half of a
2531 	 * pageblock
2532 	 */
2533 	if (order >= pageblock_order - 1) {
2534 		struct page *endpage = page + (1 << order) - 1;
2535 		for (; page < endpage; page += pageblock_nr_pages) {
2536 			int mt = get_pageblock_migratetype(page);
2537 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
2538 				set_pageblock_migratetype(page,
2539 							  MIGRATE_MOVABLE);
2540 		}
2541 	}
2542 
2543 
2544 	return 1UL << order;
2545 }
2546 
2547 /*
2548  * Update NUMA hit/miss statistics
2549  *
2550  * Must be called with interrupts disabled.
2551  *
2552  * When __GFP_OTHER_NODE is set assume the node of the preferred
2553  * zone is the local node. This is useful for daemons who allocate
2554  * memory on behalf of other processes.
2555  */
2556 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2557 								gfp_t flags)
2558 {
2559 #ifdef CONFIG_NUMA
2560 	int local_nid = numa_node_id();
2561 	enum zone_stat_item local_stat = NUMA_LOCAL;
2562 
2563 	if (unlikely(flags & __GFP_OTHER_NODE)) {
2564 		local_stat = NUMA_OTHER;
2565 		local_nid = preferred_zone->node;
2566 	}
2567 
2568 	if (z->node == local_nid) {
2569 		__inc_zone_state(z, NUMA_HIT);
2570 		__inc_zone_state(z, local_stat);
2571 	} else {
2572 		__inc_zone_state(z, NUMA_MISS);
2573 		__inc_zone_state(preferred_zone, NUMA_FOREIGN);
2574 	}
2575 #endif
2576 }
2577 
2578 /*
2579  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2580  */
2581 static inline
2582 struct page *buffered_rmqueue(struct zone *preferred_zone,
2583 			struct zone *zone, unsigned int order,
2584 			gfp_t gfp_flags, unsigned int alloc_flags,
2585 			int migratetype)
2586 {
2587 	unsigned long flags;
2588 	struct page *page;
2589 	bool cold = ((gfp_flags & __GFP_COLD) != 0);
2590 
2591 	if (likely(order == 0)) {
2592 		struct per_cpu_pages *pcp;
2593 		struct list_head *list;
2594 
2595 		local_irq_save(flags);
2596 		do {
2597 			pcp = &this_cpu_ptr(zone->pageset)->pcp;
2598 			list = &pcp->lists[migratetype];
2599 			if (list_empty(list)) {
2600 				pcp->count += rmqueue_bulk(zone, 0,
2601 						pcp->batch, list,
2602 						migratetype, cold);
2603 				if (unlikely(list_empty(list)))
2604 					goto failed;
2605 			}
2606 
2607 			if (cold)
2608 				page = list_last_entry(list, struct page, lru);
2609 			else
2610 				page = list_first_entry(list, struct page, lru);
2611 
2612 			list_del(&page->lru);
2613 			pcp->count--;
2614 
2615 		} while (check_new_pcp(page));
2616 	} else {
2617 		/*
2618 		 * We most definitely don't want callers attempting to
2619 		 * allocate greater than order-1 page units with __GFP_NOFAIL.
2620 		 */
2621 		WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2622 		spin_lock_irqsave(&zone->lock, flags);
2623 
2624 		do {
2625 			page = NULL;
2626 			if (alloc_flags & ALLOC_HARDER) {
2627 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2628 				if (page)
2629 					trace_mm_page_alloc_zone_locked(page, order, migratetype);
2630 			}
2631 			if (!page)
2632 				page = __rmqueue(zone, order, migratetype);
2633 		} while (page && check_new_pages(page, order));
2634 		spin_unlock(&zone->lock);
2635 		if (!page)
2636 			goto failed;
2637 		__mod_zone_freepage_state(zone, -(1 << order),
2638 					  get_pcppage_migratetype(page));
2639 	}
2640 
2641 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2642 	zone_statistics(preferred_zone, zone, gfp_flags);
2643 	local_irq_restore(flags);
2644 
2645 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
2646 	return page;
2647 
2648 failed:
2649 	local_irq_restore(flags);
2650 	return NULL;
2651 }
2652 
2653 #ifdef CONFIG_FAIL_PAGE_ALLOC
2654 
2655 static struct {
2656 	struct fault_attr attr;
2657 
2658 	bool ignore_gfp_highmem;
2659 	bool ignore_gfp_reclaim;
2660 	u32 min_order;
2661 } fail_page_alloc = {
2662 	.attr = FAULT_ATTR_INITIALIZER,
2663 	.ignore_gfp_reclaim = true,
2664 	.ignore_gfp_highmem = true,
2665 	.min_order = 1,
2666 };
2667 
2668 static int __init setup_fail_page_alloc(char *str)
2669 {
2670 	return setup_fault_attr(&fail_page_alloc.attr, str);
2671 }
2672 __setup("fail_page_alloc=", setup_fail_page_alloc);
2673 
2674 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2675 {
2676 	if (order < fail_page_alloc.min_order)
2677 		return false;
2678 	if (gfp_mask & __GFP_NOFAIL)
2679 		return false;
2680 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2681 		return false;
2682 	if (fail_page_alloc.ignore_gfp_reclaim &&
2683 			(gfp_mask & __GFP_DIRECT_RECLAIM))
2684 		return false;
2685 
2686 	return should_fail(&fail_page_alloc.attr, 1 << order);
2687 }
2688 
2689 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2690 
2691 static int __init fail_page_alloc_debugfs(void)
2692 {
2693 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2694 	struct dentry *dir;
2695 
2696 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2697 					&fail_page_alloc.attr);
2698 	if (IS_ERR(dir))
2699 		return PTR_ERR(dir);
2700 
2701 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2702 				&fail_page_alloc.ignore_gfp_reclaim))
2703 		goto fail;
2704 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2705 				&fail_page_alloc.ignore_gfp_highmem))
2706 		goto fail;
2707 	if (!debugfs_create_u32("min-order", mode, dir,
2708 				&fail_page_alloc.min_order))
2709 		goto fail;
2710 
2711 	return 0;
2712 fail:
2713 	debugfs_remove_recursive(dir);
2714 
2715 	return -ENOMEM;
2716 }
2717 
2718 late_initcall(fail_page_alloc_debugfs);
2719 
2720 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2721 
2722 #else /* CONFIG_FAIL_PAGE_ALLOC */
2723 
2724 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2725 {
2726 	return false;
2727 }
2728 
2729 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2730 
2731 /*
2732  * Return true if free base pages are above 'mark'. For high-order checks it
2733  * will return true of the order-0 watermark is reached and there is at least
2734  * one free page of a suitable size. Checking now avoids taking the zone lock
2735  * to check in the allocation paths if no pages are free.
2736  */
2737 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2738 			 int classzone_idx, unsigned int alloc_flags,
2739 			 long free_pages)
2740 {
2741 	long min = mark;
2742 	int o;
2743 	const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2744 
2745 	/* free_pages may go negative - that's OK */
2746 	free_pages -= (1 << order) - 1;
2747 
2748 	if (alloc_flags & ALLOC_HIGH)
2749 		min -= min / 2;
2750 
2751 	/*
2752 	 * If the caller does not have rights to ALLOC_HARDER then subtract
2753 	 * the high-atomic reserves. This will over-estimate the size of the
2754 	 * atomic reserve but it avoids a search.
2755 	 */
2756 	if (likely(!alloc_harder))
2757 		free_pages -= z->nr_reserved_highatomic;
2758 	else
2759 		min -= min / 4;
2760 
2761 #ifdef CONFIG_CMA
2762 	/* If allocation can't use CMA areas don't use free CMA pages */
2763 	if (!(alloc_flags & ALLOC_CMA))
2764 		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2765 #endif
2766 
2767 	/*
2768 	 * Check watermarks for an order-0 allocation request. If these
2769 	 * are not met, then a high-order request also cannot go ahead
2770 	 * even if a suitable page happened to be free.
2771 	 */
2772 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2773 		return false;
2774 
2775 	/* If this is an order-0 request then the watermark is fine */
2776 	if (!order)
2777 		return true;
2778 
2779 	/* For a high-order request, check at least one suitable page is free */
2780 	for (o = order; o < MAX_ORDER; o++) {
2781 		struct free_area *area = &z->free_area[o];
2782 		int mt;
2783 
2784 		if (!area->nr_free)
2785 			continue;
2786 
2787 		if (alloc_harder)
2788 			return true;
2789 
2790 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2791 			if (!list_empty(&area->free_list[mt]))
2792 				return true;
2793 		}
2794 
2795 #ifdef CONFIG_CMA
2796 		if ((alloc_flags & ALLOC_CMA) &&
2797 		    !list_empty(&area->free_list[MIGRATE_CMA])) {
2798 			return true;
2799 		}
2800 #endif
2801 	}
2802 	return false;
2803 }
2804 
2805 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2806 		      int classzone_idx, unsigned int alloc_flags)
2807 {
2808 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2809 					zone_page_state(z, NR_FREE_PAGES));
2810 }
2811 
2812 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2813 		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2814 {
2815 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
2816 	long cma_pages = 0;
2817 
2818 #ifdef CONFIG_CMA
2819 	/* If allocation can't use CMA areas don't use free CMA pages */
2820 	if (!(alloc_flags & ALLOC_CMA))
2821 		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2822 #endif
2823 
2824 	/*
2825 	 * Fast check for order-0 only. If this fails then the reserves
2826 	 * need to be calculated. There is a corner case where the check
2827 	 * passes but only the high-order atomic reserve are free. If
2828 	 * the caller is !atomic then it'll uselessly search the free
2829 	 * list. That corner case is then slower but it is harmless.
2830 	 */
2831 	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2832 		return true;
2833 
2834 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2835 					free_pages);
2836 }
2837 
2838 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2839 			unsigned long mark, int classzone_idx)
2840 {
2841 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
2842 
2843 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2844 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2845 
2846 	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2847 								free_pages);
2848 }
2849 
2850 #ifdef CONFIG_NUMA
2851 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2852 {
2853 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2854 				RECLAIM_DISTANCE;
2855 }
2856 #else	/* CONFIG_NUMA */
2857 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2858 {
2859 	return true;
2860 }
2861 #endif	/* CONFIG_NUMA */
2862 
2863 /*
2864  * get_page_from_freelist goes through the zonelist trying to allocate
2865  * a page.
2866  */
2867 static struct page *
2868 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2869 						const struct alloc_context *ac)
2870 {
2871 	struct zoneref *z = ac->preferred_zoneref;
2872 	struct zone *zone;
2873 	struct pglist_data *last_pgdat_dirty_limit = NULL;
2874 
2875 	/*
2876 	 * Scan zonelist, looking for a zone with enough free.
2877 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2878 	 */
2879 	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2880 								ac->nodemask) {
2881 		struct page *page;
2882 		unsigned long mark;
2883 
2884 		if (cpusets_enabled() &&
2885 			(alloc_flags & ALLOC_CPUSET) &&
2886 			!__cpuset_zone_allowed(zone, gfp_mask))
2887 				continue;
2888 		/*
2889 		 * When allocating a page cache page for writing, we
2890 		 * want to get it from a node that is within its dirty
2891 		 * limit, such that no single node holds more than its
2892 		 * proportional share of globally allowed dirty pages.
2893 		 * The dirty limits take into account the node's
2894 		 * lowmem reserves and high watermark so that kswapd
2895 		 * should be able to balance it without having to
2896 		 * write pages from its LRU list.
2897 		 *
2898 		 * XXX: For now, allow allocations to potentially
2899 		 * exceed the per-node dirty limit in the slowpath
2900 		 * (spread_dirty_pages unset) before going into reclaim,
2901 		 * which is important when on a NUMA setup the allowed
2902 		 * nodes are together not big enough to reach the
2903 		 * global limit.  The proper fix for these situations
2904 		 * will require awareness of nodes in the
2905 		 * dirty-throttling and the flusher threads.
2906 		 */
2907 		if (ac->spread_dirty_pages) {
2908 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
2909 				continue;
2910 
2911 			if (!node_dirty_ok(zone->zone_pgdat)) {
2912 				last_pgdat_dirty_limit = zone->zone_pgdat;
2913 				continue;
2914 			}
2915 		}
2916 
2917 		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2918 		if (!zone_watermark_fast(zone, order, mark,
2919 				       ac_classzone_idx(ac), alloc_flags)) {
2920 			int ret;
2921 
2922 			/* Checked here to keep the fast path fast */
2923 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2924 			if (alloc_flags & ALLOC_NO_WATERMARKS)
2925 				goto try_this_zone;
2926 
2927 			if (node_reclaim_mode == 0 ||
2928 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
2929 				continue;
2930 
2931 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
2932 			switch (ret) {
2933 			case NODE_RECLAIM_NOSCAN:
2934 				/* did not scan */
2935 				continue;
2936 			case NODE_RECLAIM_FULL:
2937 				/* scanned but unreclaimable */
2938 				continue;
2939 			default:
2940 				/* did we reclaim enough */
2941 				if (zone_watermark_ok(zone, order, mark,
2942 						ac_classzone_idx(ac), alloc_flags))
2943 					goto try_this_zone;
2944 
2945 				continue;
2946 			}
2947 		}
2948 
2949 try_this_zone:
2950 		page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
2951 				gfp_mask, alloc_flags, ac->migratetype);
2952 		if (page) {
2953 			prep_new_page(page, order, gfp_mask, alloc_flags);
2954 
2955 			/*
2956 			 * If this is a high-order atomic allocation then check
2957 			 * if the pageblock should be reserved for the future
2958 			 */
2959 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2960 				reserve_highatomic_pageblock(page, zone, order);
2961 
2962 			return page;
2963 		}
2964 	}
2965 
2966 	return NULL;
2967 }
2968 
2969 /*
2970  * Large machines with many possible nodes should not always dump per-node
2971  * meminfo in irq context.
2972  */
2973 static inline bool should_suppress_show_mem(void)
2974 {
2975 	bool ret = false;
2976 
2977 #if NODES_SHIFT > 8
2978 	ret = in_interrupt();
2979 #endif
2980 	return ret;
2981 }
2982 
2983 static DEFINE_RATELIMIT_STATE(nopage_rs,
2984 		DEFAULT_RATELIMIT_INTERVAL,
2985 		DEFAULT_RATELIMIT_BURST);
2986 
2987 void warn_alloc(gfp_t gfp_mask, const char *fmt, ...)
2988 {
2989 	unsigned int filter = SHOW_MEM_FILTER_NODES;
2990 	struct va_format vaf;
2991 	va_list args;
2992 
2993 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2994 	    debug_guardpage_minorder() > 0)
2995 		return;
2996 
2997 	/*
2998 	 * This documents exceptions given to allocations in certain
2999 	 * contexts that are allowed to allocate outside current's set
3000 	 * of allowed nodes.
3001 	 */
3002 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3003 		if (test_thread_flag(TIF_MEMDIE) ||
3004 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3005 			filter &= ~SHOW_MEM_FILTER_NODES;
3006 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3007 		filter &= ~SHOW_MEM_FILTER_NODES;
3008 
3009 	pr_warn("%s: ", current->comm);
3010 
3011 	va_start(args, fmt);
3012 	vaf.fmt = fmt;
3013 	vaf.va = &args;
3014 	pr_cont("%pV", &vaf);
3015 	va_end(args);
3016 
3017 	pr_cont(", mode:%#x(%pGg)\n", gfp_mask, &gfp_mask);
3018 
3019 	dump_stack();
3020 	if (!should_suppress_show_mem())
3021 		show_mem(filter);
3022 }
3023 
3024 static inline struct page *
3025 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3026 	const struct alloc_context *ac, unsigned long *did_some_progress)
3027 {
3028 	struct oom_control oc = {
3029 		.zonelist = ac->zonelist,
3030 		.nodemask = ac->nodemask,
3031 		.memcg = NULL,
3032 		.gfp_mask = gfp_mask,
3033 		.order = order,
3034 	};
3035 	struct page *page;
3036 
3037 	*did_some_progress = 0;
3038 
3039 	/*
3040 	 * Acquire the oom lock.  If that fails, somebody else is
3041 	 * making progress for us.
3042 	 */
3043 	if (!mutex_trylock(&oom_lock)) {
3044 		*did_some_progress = 1;
3045 		schedule_timeout_uninterruptible(1);
3046 		return NULL;
3047 	}
3048 
3049 	/*
3050 	 * Go through the zonelist yet one more time, keep very high watermark
3051 	 * here, this is only to catch a parallel oom killing, we must fail if
3052 	 * we're still under heavy pressure.
3053 	 */
3054 	page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3055 					ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3056 	if (page)
3057 		goto out;
3058 
3059 	if (!(gfp_mask & __GFP_NOFAIL)) {
3060 		/* Coredumps can quickly deplete all memory reserves */
3061 		if (current->flags & PF_DUMPCORE)
3062 			goto out;
3063 		/* The OOM killer will not help higher order allocs */
3064 		if (order > PAGE_ALLOC_COSTLY_ORDER)
3065 			goto out;
3066 		/* The OOM killer does not needlessly kill tasks for lowmem */
3067 		if (ac->high_zoneidx < ZONE_NORMAL)
3068 			goto out;
3069 		if (pm_suspended_storage())
3070 			goto out;
3071 		/*
3072 		 * XXX: GFP_NOFS allocations should rather fail than rely on
3073 		 * other request to make a forward progress.
3074 		 * We are in an unfortunate situation where out_of_memory cannot
3075 		 * do much for this context but let's try it to at least get
3076 		 * access to memory reserved if the current task is killed (see
3077 		 * out_of_memory). Once filesystems are ready to handle allocation
3078 		 * failures more gracefully we should just bail out here.
3079 		 */
3080 
3081 		/* The OOM killer may not free memory on a specific node */
3082 		if (gfp_mask & __GFP_THISNODE)
3083 			goto out;
3084 	}
3085 	/* Exhausted what can be done so it's blamo time */
3086 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3087 		*did_some_progress = 1;
3088 
3089 		if (gfp_mask & __GFP_NOFAIL) {
3090 			page = get_page_from_freelist(gfp_mask, order,
3091 					ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3092 			/*
3093 			 * fallback to ignore cpuset restriction if our nodes
3094 			 * are depleted
3095 			 */
3096 			if (!page)
3097 				page = get_page_from_freelist(gfp_mask, order,
3098 					ALLOC_NO_WATERMARKS, ac);
3099 		}
3100 	}
3101 out:
3102 	mutex_unlock(&oom_lock);
3103 	return page;
3104 }
3105 
3106 /*
3107  * Maximum number of compaction retries wit a progress before OOM
3108  * killer is consider as the only way to move forward.
3109  */
3110 #define MAX_COMPACT_RETRIES 16
3111 
3112 #ifdef CONFIG_COMPACTION
3113 /* Try memory compaction for high-order allocations before reclaim */
3114 static struct page *
3115 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3116 		unsigned int alloc_flags, const struct alloc_context *ac,
3117 		enum compact_priority prio, enum compact_result *compact_result)
3118 {
3119 	struct page *page;
3120 
3121 	if (!order)
3122 		return NULL;
3123 
3124 	current->flags |= PF_MEMALLOC;
3125 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3126 									prio);
3127 	current->flags &= ~PF_MEMALLOC;
3128 
3129 	if (*compact_result <= COMPACT_INACTIVE)
3130 		return NULL;
3131 
3132 	/*
3133 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3134 	 * count a compaction stall
3135 	 */
3136 	count_vm_event(COMPACTSTALL);
3137 
3138 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3139 
3140 	if (page) {
3141 		struct zone *zone = page_zone(page);
3142 
3143 		zone->compact_blockskip_flush = false;
3144 		compaction_defer_reset(zone, order, true);
3145 		count_vm_event(COMPACTSUCCESS);
3146 		return page;
3147 	}
3148 
3149 	/*
3150 	 * It's bad if compaction run occurs and fails. The most likely reason
3151 	 * is that pages exist, but not enough to satisfy watermarks.
3152 	 */
3153 	count_vm_event(COMPACTFAIL);
3154 
3155 	cond_resched();
3156 
3157 	return NULL;
3158 }
3159 
3160 static inline bool
3161 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3162 		     enum compact_result compact_result,
3163 		     enum compact_priority *compact_priority,
3164 		     int *compaction_retries)
3165 {
3166 	int max_retries = MAX_COMPACT_RETRIES;
3167 	int min_priority;
3168 
3169 	if (!order)
3170 		return false;
3171 
3172 	if (compaction_made_progress(compact_result))
3173 		(*compaction_retries)++;
3174 
3175 	/*
3176 	 * compaction considers all the zone as desperately out of memory
3177 	 * so it doesn't really make much sense to retry except when the
3178 	 * failure could be caused by insufficient priority
3179 	 */
3180 	if (compaction_failed(compact_result))
3181 		goto check_priority;
3182 
3183 	/*
3184 	 * make sure the compaction wasn't deferred or didn't bail out early
3185 	 * due to locks contention before we declare that we should give up.
3186 	 * But do not retry if the given zonelist is not suitable for
3187 	 * compaction.
3188 	 */
3189 	if (compaction_withdrawn(compact_result))
3190 		return compaction_zonelist_suitable(ac, order, alloc_flags);
3191 
3192 	/*
3193 	 * !costly requests are much more important than __GFP_REPEAT
3194 	 * costly ones because they are de facto nofail and invoke OOM
3195 	 * killer to move on while costly can fail and users are ready
3196 	 * to cope with that. 1/4 retries is rather arbitrary but we
3197 	 * would need much more detailed feedback from compaction to
3198 	 * make a better decision.
3199 	 */
3200 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3201 		max_retries /= 4;
3202 	if (*compaction_retries <= max_retries)
3203 		return true;
3204 
3205 	/*
3206 	 * Make sure there are attempts at the highest priority if we exhausted
3207 	 * all retries or failed at the lower priorities.
3208 	 */
3209 check_priority:
3210 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3211 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3212 	if (*compact_priority > min_priority) {
3213 		(*compact_priority)--;
3214 		*compaction_retries = 0;
3215 		return true;
3216 	}
3217 	return false;
3218 }
3219 #else
3220 static inline struct page *
3221 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3222 		unsigned int alloc_flags, const struct alloc_context *ac,
3223 		enum compact_priority prio, enum compact_result *compact_result)
3224 {
3225 	*compact_result = COMPACT_SKIPPED;
3226 	return NULL;
3227 }
3228 
3229 static inline bool
3230 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3231 		     enum compact_result compact_result,
3232 		     enum compact_priority *compact_priority,
3233 		     int *compaction_retries)
3234 {
3235 	struct zone *zone;
3236 	struct zoneref *z;
3237 
3238 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3239 		return false;
3240 
3241 	/*
3242 	 * There are setups with compaction disabled which would prefer to loop
3243 	 * inside the allocator rather than hit the oom killer prematurely.
3244 	 * Let's give them a good hope and keep retrying while the order-0
3245 	 * watermarks are OK.
3246 	 */
3247 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3248 					ac->nodemask) {
3249 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3250 					ac_classzone_idx(ac), alloc_flags))
3251 			return true;
3252 	}
3253 	return false;
3254 }
3255 #endif /* CONFIG_COMPACTION */
3256 
3257 /* Perform direct synchronous page reclaim */
3258 static int
3259 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3260 					const struct alloc_context *ac)
3261 {
3262 	struct reclaim_state reclaim_state;
3263 	int progress;
3264 
3265 	cond_resched();
3266 
3267 	/* We now go into synchronous reclaim */
3268 	cpuset_memory_pressure_bump();
3269 	current->flags |= PF_MEMALLOC;
3270 	lockdep_set_current_reclaim_state(gfp_mask);
3271 	reclaim_state.reclaimed_slab = 0;
3272 	current->reclaim_state = &reclaim_state;
3273 
3274 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3275 								ac->nodemask);
3276 
3277 	current->reclaim_state = NULL;
3278 	lockdep_clear_current_reclaim_state();
3279 	current->flags &= ~PF_MEMALLOC;
3280 
3281 	cond_resched();
3282 
3283 	return progress;
3284 }
3285 
3286 /* The really slow allocator path where we enter direct reclaim */
3287 static inline struct page *
3288 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3289 		unsigned int alloc_flags, const struct alloc_context *ac,
3290 		unsigned long *did_some_progress)
3291 {
3292 	struct page *page = NULL;
3293 	bool drained = false;
3294 
3295 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3296 	if (unlikely(!(*did_some_progress)))
3297 		return NULL;
3298 
3299 retry:
3300 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3301 
3302 	/*
3303 	 * If an allocation failed after direct reclaim, it could be because
3304 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3305 	 * Shrink them them and try again
3306 	 */
3307 	if (!page && !drained) {
3308 		unreserve_highatomic_pageblock(ac);
3309 		drain_all_pages(NULL);
3310 		drained = true;
3311 		goto retry;
3312 	}
3313 
3314 	return page;
3315 }
3316 
3317 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3318 {
3319 	struct zoneref *z;
3320 	struct zone *zone;
3321 	pg_data_t *last_pgdat = NULL;
3322 
3323 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3324 					ac->high_zoneidx, ac->nodemask) {
3325 		if (last_pgdat != zone->zone_pgdat)
3326 			wakeup_kswapd(zone, order, ac->high_zoneidx);
3327 		last_pgdat = zone->zone_pgdat;
3328 	}
3329 }
3330 
3331 static inline unsigned int
3332 gfp_to_alloc_flags(gfp_t gfp_mask)
3333 {
3334 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3335 
3336 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3337 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3338 
3339 	/*
3340 	 * The caller may dip into page reserves a bit more if the caller
3341 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3342 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3343 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3344 	 */
3345 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3346 
3347 	if (gfp_mask & __GFP_ATOMIC) {
3348 		/*
3349 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3350 		 * if it can't schedule.
3351 		 */
3352 		if (!(gfp_mask & __GFP_NOMEMALLOC))
3353 			alloc_flags |= ALLOC_HARDER;
3354 		/*
3355 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3356 		 * comment for __cpuset_node_allowed().
3357 		 */
3358 		alloc_flags &= ~ALLOC_CPUSET;
3359 	} else if (unlikely(rt_task(current)) && !in_interrupt())
3360 		alloc_flags |= ALLOC_HARDER;
3361 
3362 #ifdef CONFIG_CMA
3363 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3364 		alloc_flags |= ALLOC_CMA;
3365 #endif
3366 	return alloc_flags;
3367 }
3368 
3369 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3370 {
3371 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3372 		return false;
3373 
3374 	if (gfp_mask & __GFP_MEMALLOC)
3375 		return true;
3376 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3377 		return true;
3378 	if (!in_interrupt() &&
3379 			((current->flags & PF_MEMALLOC) ||
3380 			 unlikely(test_thread_flag(TIF_MEMDIE))))
3381 		return true;
3382 
3383 	return false;
3384 }
3385 
3386 /*
3387  * Maximum number of reclaim retries without any progress before OOM killer
3388  * is consider as the only way to move forward.
3389  */
3390 #define MAX_RECLAIM_RETRIES 16
3391 
3392 /*
3393  * Checks whether it makes sense to retry the reclaim to make a forward progress
3394  * for the given allocation request.
3395  * The reclaim feedback represented by did_some_progress (any progress during
3396  * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3397  * any progress in a row) is considered as well as the reclaimable pages on the
3398  * applicable zone list (with a backoff mechanism which is a function of
3399  * no_progress_loops).
3400  *
3401  * Returns true if a retry is viable or false to enter the oom path.
3402  */
3403 static inline bool
3404 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3405 		     struct alloc_context *ac, int alloc_flags,
3406 		     bool did_some_progress, int *no_progress_loops)
3407 {
3408 	struct zone *zone;
3409 	struct zoneref *z;
3410 
3411 	/*
3412 	 * Costly allocations might have made a progress but this doesn't mean
3413 	 * their order will become available due to high fragmentation so
3414 	 * always increment the no progress counter for them
3415 	 */
3416 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3417 		*no_progress_loops = 0;
3418 	else
3419 		(*no_progress_loops)++;
3420 
3421 	/*
3422 	 * Make sure we converge to OOM if we cannot make any progress
3423 	 * several times in the row.
3424 	 */
3425 	if (*no_progress_loops > MAX_RECLAIM_RETRIES)
3426 		return false;
3427 
3428 	/*
3429 	 * Keep reclaiming pages while there is a chance this will lead
3430 	 * somewhere.  If none of the target zones can satisfy our allocation
3431 	 * request even if all reclaimable pages are considered then we are
3432 	 * screwed and have to go OOM.
3433 	 */
3434 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3435 					ac->nodemask) {
3436 		unsigned long available;
3437 		unsigned long reclaimable;
3438 
3439 		available = reclaimable = zone_reclaimable_pages(zone);
3440 		available -= DIV_ROUND_UP((*no_progress_loops) * available,
3441 					  MAX_RECLAIM_RETRIES);
3442 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3443 
3444 		/*
3445 		 * Would the allocation succeed if we reclaimed the whole
3446 		 * available?
3447 		 */
3448 		if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
3449 				ac_classzone_idx(ac), alloc_flags, available)) {
3450 			/*
3451 			 * If we didn't make any progress and have a lot of
3452 			 * dirty + writeback pages then we should wait for
3453 			 * an IO to complete to slow down the reclaim and
3454 			 * prevent from pre mature OOM
3455 			 */
3456 			if (!did_some_progress) {
3457 				unsigned long write_pending;
3458 
3459 				write_pending = zone_page_state_snapshot(zone,
3460 							NR_ZONE_WRITE_PENDING);
3461 
3462 				if (2 * write_pending > reclaimable) {
3463 					congestion_wait(BLK_RW_ASYNC, HZ/10);
3464 					return true;
3465 				}
3466 			}
3467 
3468 			/*
3469 			 * Memory allocation/reclaim might be called from a WQ
3470 			 * context and the current implementation of the WQ
3471 			 * concurrency control doesn't recognize that
3472 			 * a particular WQ is congested if the worker thread is
3473 			 * looping without ever sleeping. Therefore we have to
3474 			 * do a short sleep here rather than calling
3475 			 * cond_resched().
3476 			 */
3477 			if (current->flags & PF_WQ_WORKER)
3478 				schedule_timeout_uninterruptible(1);
3479 			else
3480 				cond_resched();
3481 
3482 			return true;
3483 		}
3484 	}
3485 
3486 	return false;
3487 }
3488 
3489 static inline struct page *
3490 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3491 						struct alloc_context *ac)
3492 {
3493 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3494 	struct page *page = NULL;
3495 	unsigned int alloc_flags;
3496 	unsigned long did_some_progress;
3497 	enum compact_priority compact_priority = DEF_COMPACT_PRIORITY;
3498 	enum compact_result compact_result;
3499 	int compaction_retries = 0;
3500 	int no_progress_loops = 0;
3501 	unsigned long alloc_start = jiffies;
3502 	unsigned int stall_timeout = 10 * HZ;
3503 
3504 	/*
3505 	 * In the slowpath, we sanity check order to avoid ever trying to
3506 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3507 	 * be using allocators in order of preference for an area that is
3508 	 * too large.
3509 	 */
3510 	if (order >= MAX_ORDER) {
3511 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3512 		return NULL;
3513 	}
3514 
3515 	/*
3516 	 * We also sanity check to catch abuse of atomic reserves being used by
3517 	 * callers that are not in atomic context.
3518 	 */
3519 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3520 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3521 		gfp_mask &= ~__GFP_ATOMIC;
3522 
3523 	/*
3524 	 * The fast path uses conservative alloc_flags to succeed only until
3525 	 * kswapd needs to be woken up, and to avoid the cost of setting up
3526 	 * alloc_flags precisely. So we do that now.
3527 	 */
3528 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
3529 
3530 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3531 		wake_all_kswapds(order, ac);
3532 
3533 	/*
3534 	 * The adjusted alloc_flags might result in immediate success, so try
3535 	 * that first
3536 	 */
3537 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3538 	if (page)
3539 		goto got_pg;
3540 
3541 	/*
3542 	 * For costly allocations, try direct compaction first, as it's likely
3543 	 * that we have enough base pages and don't need to reclaim. Don't try
3544 	 * that for allocations that are allowed to ignore watermarks, as the
3545 	 * ALLOC_NO_WATERMARKS attempt didn't yet happen.
3546 	 */
3547 	if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
3548 		!gfp_pfmemalloc_allowed(gfp_mask)) {
3549 		page = __alloc_pages_direct_compact(gfp_mask, order,
3550 						alloc_flags, ac,
3551 						INIT_COMPACT_PRIORITY,
3552 						&compact_result);
3553 		if (page)
3554 			goto got_pg;
3555 
3556 		/*
3557 		 * Checks for costly allocations with __GFP_NORETRY, which
3558 		 * includes THP page fault allocations
3559 		 */
3560 		if (gfp_mask & __GFP_NORETRY) {
3561 			/*
3562 			 * If compaction is deferred for high-order allocations,
3563 			 * it is because sync compaction recently failed. If
3564 			 * this is the case and the caller requested a THP
3565 			 * allocation, we do not want to heavily disrupt the
3566 			 * system, so we fail the allocation instead of entering
3567 			 * direct reclaim.
3568 			 */
3569 			if (compact_result == COMPACT_DEFERRED)
3570 				goto nopage;
3571 
3572 			/*
3573 			 * Looks like reclaim/compaction is worth trying, but
3574 			 * sync compaction could be very expensive, so keep
3575 			 * using async compaction.
3576 			 */
3577 			compact_priority = INIT_COMPACT_PRIORITY;
3578 		}
3579 	}
3580 
3581 retry:
3582 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3583 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3584 		wake_all_kswapds(order, ac);
3585 
3586 	if (gfp_pfmemalloc_allowed(gfp_mask))
3587 		alloc_flags = ALLOC_NO_WATERMARKS;
3588 
3589 	/*
3590 	 * Reset the zonelist iterators if memory policies can be ignored.
3591 	 * These allocations are high priority and system rather than user
3592 	 * orientated.
3593 	 */
3594 	if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
3595 		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3596 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3597 					ac->high_zoneidx, ac->nodemask);
3598 	}
3599 
3600 	/* Attempt with potentially adjusted zonelist and alloc_flags */
3601 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3602 	if (page)
3603 		goto got_pg;
3604 
3605 	/* Caller is not willing to reclaim, we can't balance anything */
3606 	if (!can_direct_reclaim) {
3607 		/*
3608 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
3609 		 * of any new users that actually allow this type of allocation
3610 		 * to fail.
3611 		 */
3612 		WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3613 		goto nopage;
3614 	}
3615 
3616 	/* Avoid recursion of direct reclaim */
3617 	if (current->flags & PF_MEMALLOC) {
3618 		/*
3619 		 * __GFP_NOFAIL request from this context is rather bizarre
3620 		 * because we cannot reclaim anything and only can loop waiting
3621 		 * for somebody to do a work for us.
3622 		 */
3623 		if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3624 			cond_resched();
3625 			goto retry;
3626 		}
3627 		goto nopage;
3628 	}
3629 
3630 	/* Avoid allocations with no watermarks from looping endlessly */
3631 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3632 		goto nopage;
3633 
3634 
3635 	/* Try direct reclaim and then allocating */
3636 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3637 							&did_some_progress);
3638 	if (page)
3639 		goto got_pg;
3640 
3641 	/* Try direct compaction and then allocating */
3642 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3643 					compact_priority, &compact_result);
3644 	if (page)
3645 		goto got_pg;
3646 
3647 	/* Do not loop if specifically requested */
3648 	if (gfp_mask & __GFP_NORETRY)
3649 		goto nopage;
3650 
3651 	/*
3652 	 * Do not retry costly high order allocations unless they are
3653 	 * __GFP_REPEAT
3654 	 */
3655 	if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
3656 		goto nopage;
3657 
3658 	/* Make sure we know about allocations which stall for too long */
3659 	if (time_after(jiffies, alloc_start + stall_timeout)) {
3660 		warn_alloc(gfp_mask,
3661 			"page alloction stalls for %ums, order:%u\n",
3662 			jiffies_to_msecs(jiffies-alloc_start), order);
3663 		stall_timeout += 10 * HZ;
3664 	}
3665 
3666 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3667 				 did_some_progress > 0, &no_progress_loops))
3668 		goto retry;
3669 
3670 	/*
3671 	 * It doesn't make any sense to retry for the compaction if the order-0
3672 	 * reclaim is not able to make any progress because the current
3673 	 * implementation of the compaction depends on the sufficient amount
3674 	 * of free memory (see __compaction_suitable)
3675 	 */
3676 	if (did_some_progress > 0 &&
3677 			should_compact_retry(ac, order, alloc_flags,
3678 				compact_result, &compact_priority,
3679 				&compaction_retries))
3680 		goto retry;
3681 
3682 	/* Reclaim has failed us, start killing things */
3683 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3684 	if (page)
3685 		goto got_pg;
3686 
3687 	/* Retry as long as the OOM killer is making progress */
3688 	if (did_some_progress) {
3689 		no_progress_loops = 0;
3690 		goto retry;
3691 	}
3692 
3693 nopage:
3694 	warn_alloc(gfp_mask,
3695 			"page allocation failure: order:%u", order);
3696 got_pg:
3697 	return page;
3698 }
3699 
3700 /*
3701  * This is the 'heart' of the zoned buddy allocator.
3702  */
3703 struct page *
3704 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3705 			struct zonelist *zonelist, nodemask_t *nodemask)
3706 {
3707 	struct page *page;
3708 	unsigned int cpuset_mems_cookie;
3709 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
3710 	gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
3711 	struct alloc_context ac = {
3712 		.high_zoneidx = gfp_zone(gfp_mask),
3713 		.zonelist = zonelist,
3714 		.nodemask = nodemask,
3715 		.migratetype = gfpflags_to_migratetype(gfp_mask),
3716 	};
3717 
3718 	if (cpusets_enabled()) {
3719 		alloc_mask |= __GFP_HARDWALL;
3720 		alloc_flags |= ALLOC_CPUSET;
3721 		if (!ac.nodemask)
3722 			ac.nodemask = &cpuset_current_mems_allowed;
3723 	}
3724 
3725 	gfp_mask &= gfp_allowed_mask;
3726 
3727 	lockdep_trace_alloc(gfp_mask);
3728 
3729 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3730 
3731 	if (should_fail_alloc_page(gfp_mask, order))
3732 		return NULL;
3733 
3734 	/*
3735 	 * Check the zones suitable for the gfp_mask contain at least one
3736 	 * valid zone. It's possible to have an empty zonelist as a result
3737 	 * of __GFP_THISNODE and a memoryless node
3738 	 */
3739 	if (unlikely(!zonelist->_zonerefs->zone))
3740 		return NULL;
3741 
3742 	if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3743 		alloc_flags |= ALLOC_CMA;
3744 
3745 retry_cpuset:
3746 	cpuset_mems_cookie = read_mems_allowed_begin();
3747 
3748 	/* Dirty zone balancing only done in the fast path */
3749 	ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3750 
3751 	/*
3752 	 * The preferred zone is used for statistics but crucially it is
3753 	 * also used as the starting point for the zonelist iterator. It
3754 	 * may get reset for allocations that ignore memory policies.
3755 	 */
3756 	ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3757 					ac.high_zoneidx, ac.nodemask);
3758 	if (!ac.preferred_zoneref) {
3759 		page = NULL;
3760 		goto no_zone;
3761 	}
3762 
3763 	/* First allocation attempt */
3764 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3765 	if (likely(page))
3766 		goto out;
3767 
3768 	/*
3769 	 * Runtime PM, block IO and its error handling path can deadlock
3770 	 * because I/O on the device might not complete.
3771 	 */
3772 	alloc_mask = memalloc_noio_flags(gfp_mask);
3773 	ac.spread_dirty_pages = false;
3774 
3775 	/*
3776 	 * Restore the original nodemask if it was potentially replaced with
3777 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3778 	 */
3779 	if (cpusets_enabled())
3780 		ac.nodemask = nodemask;
3781 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3782 
3783 no_zone:
3784 	/*
3785 	 * When updating a task's mems_allowed, it is possible to race with
3786 	 * parallel threads in such a way that an allocation can fail while
3787 	 * the mask is being updated. If a page allocation is about to fail,
3788 	 * check if the cpuset changed during allocation and if so, retry.
3789 	 */
3790 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3791 		alloc_mask = gfp_mask;
3792 		goto retry_cpuset;
3793 	}
3794 
3795 out:
3796 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
3797 	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
3798 		__free_pages(page, order);
3799 		page = NULL;
3800 	}
3801 
3802 	if (kmemcheck_enabled && page)
3803 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3804 
3805 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3806 
3807 	return page;
3808 }
3809 EXPORT_SYMBOL(__alloc_pages_nodemask);
3810 
3811 /*
3812  * Common helper functions.
3813  */
3814 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3815 {
3816 	struct page *page;
3817 
3818 	/*
3819 	 * __get_free_pages() returns a 32-bit address, which cannot represent
3820 	 * a highmem page
3821 	 */
3822 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3823 
3824 	page = alloc_pages(gfp_mask, order);
3825 	if (!page)
3826 		return 0;
3827 	return (unsigned long) page_address(page);
3828 }
3829 EXPORT_SYMBOL(__get_free_pages);
3830 
3831 unsigned long get_zeroed_page(gfp_t gfp_mask)
3832 {
3833 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3834 }
3835 EXPORT_SYMBOL(get_zeroed_page);
3836 
3837 void __free_pages(struct page *page, unsigned int order)
3838 {
3839 	if (put_page_testzero(page)) {
3840 		if (order == 0)
3841 			free_hot_cold_page(page, false);
3842 		else
3843 			__free_pages_ok(page, order);
3844 	}
3845 }
3846 
3847 EXPORT_SYMBOL(__free_pages);
3848 
3849 void free_pages(unsigned long addr, unsigned int order)
3850 {
3851 	if (addr != 0) {
3852 		VM_BUG_ON(!virt_addr_valid((void *)addr));
3853 		__free_pages(virt_to_page((void *)addr), order);
3854 	}
3855 }
3856 
3857 EXPORT_SYMBOL(free_pages);
3858 
3859 /*
3860  * Page Fragment:
3861  *  An arbitrary-length arbitrary-offset area of memory which resides
3862  *  within a 0 or higher order page.  Multiple fragments within that page
3863  *  are individually refcounted, in the page's reference counter.
3864  *
3865  * The page_frag functions below provide a simple allocation framework for
3866  * page fragments.  This is used by the network stack and network device
3867  * drivers to provide a backing region of memory for use as either an
3868  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3869  */
3870 static struct page *__page_frag_refill(struct page_frag_cache *nc,
3871 				       gfp_t gfp_mask)
3872 {
3873 	struct page *page = NULL;
3874 	gfp_t gfp = gfp_mask;
3875 
3876 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3877 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3878 		    __GFP_NOMEMALLOC;
3879 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3880 				PAGE_FRAG_CACHE_MAX_ORDER);
3881 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3882 #endif
3883 	if (unlikely(!page))
3884 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3885 
3886 	nc->va = page ? page_address(page) : NULL;
3887 
3888 	return page;
3889 }
3890 
3891 void *__alloc_page_frag(struct page_frag_cache *nc,
3892 			unsigned int fragsz, gfp_t gfp_mask)
3893 {
3894 	unsigned int size = PAGE_SIZE;
3895 	struct page *page;
3896 	int offset;
3897 
3898 	if (unlikely(!nc->va)) {
3899 refill:
3900 		page = __page_frag_refill(nc, gfp_mask);
3901 		if (!page)
3902 			return NULL;
3903 
3904 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3905 		/* if size can vary use size else just use PAGE_SIZE */
3906 		size = nc->size;
3907 #endif
3908 		/* Even if we own the page, we do not use atomic_set().
3909 		 * This would break get_page_unless_zero() users.
3910 		 */
3911 		page_ref_add(page, size - 1);
3912 
3913 		/* reset page count bias and offset to start of new frag */
3914 		nc->pfmemalloc = page_is_pfmemalloc(page);
3915 		nc->pagecnt_bias = size;
3916 		nc->offset = size;
3917 	}
3918 
3919 	offset = nc->offset - fragsz;
3920 	if (unlikely(offset < 0)) {
3921 		page = virt_to_page(nc->va);
3922 
3923 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
3924 			goto refill;
3925 
3926 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3927 		/* if size can vary use size else just use PAGE_SIZE */
3928 		size = nc->size;
3929 #endif
3930 		/* OK, page count is 0, we can safely set it */
3931 		set_page_count(page, size);
3932 
3933 		/* reset page count bias and offset to start of new frag */
3934 		nc->pagecnt_bias = size;
3935 		offset = size - fragsz;
3936 	}
3937 
3938 	nc->pagecnt_bias--;
3939 	nc->offset = offset;
3940 
3941 	return nc->va + offset;
3942 }
3943 EXPORT_SYMBOL(__alloc_page_frag);
3944 
3945 /*
3946  * Frees a page fragment allocated out of either a compound or order 0 page.
3947  */
3948 void __free_page_frag(void *addr)
3949 {
3950 	struct page *page = virt_to_head_page(addr);
3951 
3952 	if (unlikely(put_page_testzero(page)))
3953 		__free_pages_ok(page, compound_order(page));
3954 }
3955 EXPORT_SYMBOL(__free_page_frag);
3956 
3957 static void *make_alloc_exact(unsigned long addr, unsigned int order,
3958 		size_t size)
3959 {
3960 	if (addr) {
3961 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
3962 		unsigned long used = addr + PAGE_ALIGN(size);
3963 
3964 		split_page(virt_to_page((void *)addr), order);
3965 		while (used < alloc_end) {
3966 			free_page(used);
3967 			used += PAGE_SIZE;
3968 		}
3969 	}
3970 	return (void *)addr;
3971 }
3972 
3973 /**
3974  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3975  * @size: the number of bytes to allocate
3976  * @gfp_mask: GFP flags for the allocation
3977  *
3978  * This function is similar to alloc_pages(), except that it allocates the
3979  * minimum number of pages to satisfy the request.  alloc_pages() can only
3980  * allocate memory in power-of-two pages.
3981  *
3982  * This function is also limited by MAX_ORDER.
3983  *
3984  * Memory allocated by this function must be released by free_pages_exact().
3985  */
3986 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3987 {
3988 	unsigned int order = get_order(size);
3989 	unsigned long addr;
3990 
3991 	addr = __get_free_pages(gfp_mask, order);
3992 	return make_alloc_exact(addr, order, size);
3993 }
3994 EXPORT_SYMBOL(alloc_pages_exact);
3995 
3996 /**
3997  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3998  *			   pages on a node.
3999  * @nid: the preferred node ID where memory should be allocated
4000  * @size: the number of bytes to allocate
4001  * @gfp_mask: GFP flags for the allocation
4002  *
4003  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4004  * back.
4005  */
4006 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4007 {
4008 	unsigned int order = get_order(size);
4009 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
4010 	if (!p)
4011 		return NULL;
4012 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4013 }
4014 
4015 /**
4016  * free_pages_exact - release memory allocated via alloc_pages_exact()
4017  * @virt: the value returned by alloc_pages_exact.
4018  * @size: size of allocation, same value as passed to alloc_pages_exact().
4019  *
4020  * Release the memory allocated by a previous call to alloc_pages_exact.
4021  */
4022 void free_pages_exact(void *virt, size_t size)
4023 {
4024 	unsigned long addr = (unsigned long)virt;
4025 	unsigned long end = addr + PAGE_ALIGN(size);
4026 
4027 	while (addr < end) {
4028 		free_page(addr);
4029 		addr += PAGE_SIZE;
4030 	}
4031 }
4032 EXPORT_SYMBOL(free_pages_exact);
4033 
4034 /**
4035  * nr_free_zone_pages - count number of pages beyond high watermark
4036  * @offset: The zone index of the highest zone
4037  *
4038  * nr_free_zone_pages() counts the number of counts pages which are beyond the
4039  * high watermark within all zones at or below a given zone index.  For each
4040  * zone, the number of pages is calculated as:
4041  *     managed_pages - high_pages
4042  */
4043 static unsigned long nr_free_zone_pages(int offset)
4044 {
4045 	struct zoneref *z;
4046 	struct zone *zone;
4047 
4048 	/* Just pick one node, since fallback list is circular */
4049 	unsigned long sum = 0;
4050 
4051 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4052 
4053 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4054 		unsigned long size = zone->managed_pages;
4055 		unsigned long high = high_wmark_pages(zone);
4056 		if (size > high)
4057 			sum += size - high;
4058 	}
4059 
4060 	return sum;
4061 }
4062 
4063 /**
4064  * nr_free_buffer_pages - count number of pages beyond high watermark
4065  *
4066  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4067  * watermark within ZONE_DMA and ZONE_NORMAL.
4068  */
4069 unsigned long nr_free_buffer_pages(void)
4070 {
4071 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4072 }
4073 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4074 
4075 /**
4076  * nr_free_pagecache_pages - count number of pages beyond high watermark
4077  *
4078  * nr_free_pagecache_pages() counts the number of pages which are beyond the
4079  * high watermark within all zones.
4080  */
4081 unsigned long nr_free_pagecache_pages(void)
4082 {
4083 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4084 }
4085 
4086 static inline void show_node(struct zone *zone)
4087 {
4088 	if (IS_ENABLED(CONFIG_NUMA))
4089 		printk("Node %d ", zone_to_nid(zone));
4090 }
4091 
4092 long si_mem_available(void)
4093 {
4094 	long available;
4095 	unsigned long pagecache;
4096 	unsigned long wmark_low = 0;
4097 	unsigned long pages[NR_LRU_LISTS];
4098 	struct zone *zone;
4099 	int lru;
4100 
4101 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4102 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4103 
4104 	for_each_zone(zone)
4105 		wmark_low += zone->watermark[WMARK_LOW];
4106 
4107 	/*
4108 	 * Estimate the amount of memory available for userspace allocations,
4109 	 * without causing swapping.
4110 	 */
4111 	available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4112 
4113 	/*
4114 	 * Not all the page cache can be freed, otherwise the system will
4115 	 * start swapping. Assume at least half of the page cache, or the
4116 	 * low watermark worth of cache, needs to stay.
4117 	 */
4118 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4119 	pagecache -= min(pagecache / 2, wmark_low);
4120 	available += pagecache;
4121 
4122 	/*
4123 	 * Part of the reclaimable slab consists of items that are in use,
4124 	 * and cannot be freed. Cap this estimate at the low watermark.
4125 	 */
4126 	available += global_page_state(NR_SLAB_RECLAIMABLE) -
4127 		     min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4128 
4129 	if (available < 0)
4130 		available = 0;
4131 	return available;
4132 }
4133 EXPORT_SYMBOL_GPL(si_mem_available);
4134 
4135 void si_meminfo(struct sysinfo *val)
4136 {
4137 	val->totalram = totalram_pages;
4138 	val->sharedram = global_node_page_state(NR_SHMEM);
4139 	val->freeram = global_page_state(NR_FREE_PAGES);
4140 	val->bufferram = nr_blockdev_pages();
4141 	val->totalhigh = totalhigh_pages;
4142 	val->freehigh = nr_free_highpages();
4143 	val->mem_unit = PAGE_SIZE;
4144 }
4145 
4146 EXPORT_SYMBOL(si_meminfo);
4147 
4148 #ifdef CONFIG_NUMA
4149 void si_meminfo_node(struct sysinfo *val, int nid)
4150 {
4151 	int zone_type;		/* needs to be signed */
4152 	unsigned long managed_pages = 0;
4153 	unsigned long managed_highpages = 0;
4154 	unsigned long free_highpages = 0;
4155 	pg_data_t *pgdat = NODE_DATA(nid);
4156 
4157 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4158 		managed_pages += pgdat->node_zones[zone_type].managed_pages;
4159 	val->totalram = managed_pages;
4160 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
4161 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4162 #ifdef CONFIG_HIGHMEM
4163 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4164 		struct zone *zone = &pgdat->node_zones[zone_type];
4165 
4166 		if (is_highmem(zone)) {
4167 			managed_highpages += zone->managed_pages;
4168 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4169 		}
4170 	}
4171 	val->totalhigh = managed_highpages;
4172 	val->freehigh = free_highpages;
4173 #else
4174 	val->totalhigh = managed_highpages;
4175 	val->freehigh = free_highpages;
4176 #endif
4177 	val->mem_unit = PAGE_SIZE;
4178 }
4179 #endif
4180 
4181 /*
4182  * Determine whether the node should be displayed or not, depending on whether
4183  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4184  */
4185 bool skip_free_areas_node(unsigned int flags, int nid)
4186 {
4187 	bool ret = false;
4188 	unsigned int cpuset_mems_cookie;
4189 
4190 	if (!(flags & SHOW_MEM_FILTER_NODES))
4191 		goto out;
4192 
4193 	do {
4194 		cpuset_mems_cookie = read_mems_allowed_begin();
4195 		ret = !node_isset(nid, cpuset_current_mems_allowed);
4196 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
4197 out:
4198 	return ret;
4199 }
4200 
4201 #define K(x) ((x) << (PAGE_SHIFT-10))
4202 
4203 static void show_migration_types(unsigned char type)
4204 {
4205 	static const char types[MIGRATE_TYPES] = {
4206 		[MIGRATE_UNMOVABLE]	= 'U',
4207 		[MIGRATE_MOVABLE]	= 'M',
4208 		[MIGRATE_RECLAIMABLE]	= 'E',
4209 		[MIGRATE_HIGHATOMIC]	= 'H',
4210 #ifdef CONFIG_CMA
4211 		[MIGRATE_CMA]		= 'C',
4212 #endif
4213 #ifdef CONFIG_MEMORY_ISOLATION
4214 		[MIGRATE_ISOLATE]	= 'I',
4215 #endif
4216 	};
4217 	char tmp[MIGRATE_TYPES + 1];
4218 	char *p = tmp;
4219 	int i;
4220 
4221 	for (i = 0; i < MIGRATE_TYPES; i++) {
4222 		if (type & (1 << i))
4223 			*p++ = types[i];
4224 	}
4225 
4226 	*p = '\0';
4227 	printk("(%s) ", tmp);
4228 }
4229 
4230 /*
4231  * Show free area list (used inside shift_scroll-lock stuff)
4232  * We also calculate the percentage fragmentation. We do this by counting the
4233  * memory on each free list with the exception of the first item on the list.
4234  *
4235  * Bits in @filter:
4236  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4237  *   cpuset.
4238  */
4239 void show_free_areas(unsigned int filter)
4240 {
4241 	unsigned long free_pcp = 0;
4242 	int cpu;
4243 	struct zone *zone;
4244 	pg_data_t *pgdat;
4245 
4246 	for_each_populated_zone(zone) {
4247 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
4248 			continue;
4249 
4250 		for_each_online_cpu(cpu)
4251 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4252 	}
4253 
4254 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4255 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4256 		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4257 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4258 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4259 		" free:%lu free_pcp:%lu free_cma:%lu\n",
4260 		global_node_page_state(NR_ACTIVE_ANON),
4261 		global_node_page_state(NR_INACTIVE_ANON),
4262 		global_node_page_state(NR_ISOLATED_ANON),
4263 		global_node_page_state(NR_ACTIVE_FILE),
4264 		global_node_page_state(NR_INACTIVE_FILE),
4265 		global_node_page_state(NR_ISOLATED_FILE),
4266 		global_node_page_state(NR_UNEVICTABLE),
4267 		global_node_page_state(NR_FILE_DIRTY),
4268 		global_node_page_state(NR_WRITEBACK),
4269 		global_node_page_state(NR_UNSTABLE_NFS),
4270 		global_page_state(NR_SLAB_RECLAIMABLE),
4271 		global_page_state(NR_SLAB_UNRECLAIMABLE),
4272 		global_node_page_state(NR_FILE_MAPPED),
4273 		global_node_page_state(NR_SHMEM),
4274 		global_page_state(NR_PAGETABLE),
4275 		global_page_state(NR_BOUNCE),
4276 		global_page_state(NR_FREE_PAGES),
4277 		free_pcp,
4278 		global_page_state(NR_FREE_CMA_PAGES));
4279 
4280 	for_each_online_pgdat(pgdat) {
4281 		printk("Node %d"
4282 			" active_anon:%lukB"
4283 			" inactive_anon:%lukB"
4284 			" active_file:%lukB"
4285 			" inactive_file:%lukB"
4286 			" unevictable:%lukB"
4287 			" isolated(anon):%lukB"
4288 			" isolated(file):%lukB"
4289 			" mapped:%lukB"
4290 			" dirty:%lukB"
4291 			" writeback:%lukB"
4292 			" shmem:%lukB"
4293 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4294 			" shmem_thp: %lukB"
4295 			" shmem_pmdmapped: %lukB"
4296 			" anon_thp: %lukB"
4297 #endif
4298 			" writeback_tmp:%lukB"
4299 			" unstable:%lukB"
4300 			" pages_scanned:%lu"
4301 			" all_unreclaimable? %s"
4302 			"\n",
4303 			pgdat->node_id,
4304 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4305 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4306 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4307 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4308 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
4309 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4310 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4311 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
4312 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
4313 			K(node_page_state(pgdat, NR_WRITEBACK)),
4314 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4315 			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4316 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4317 					* HPAGE_PMD_NR),
4318 			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4319 #endif
4320 			K(node_page_state(pgdat, NR_SHMEM)),
4321 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4322 			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4323 			node_page_state(pgdat, NR_PAGES_SCANNED),
4324 			!pgdat_reclaimable(pgdat) ? "yes" : "no");
4325 	}
4326 
4327 	for_each_populated_zone(zone) {
4328 		int i;
4329 
4330 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
4331 			continue;
4332 
4333 		free_pcp = 0;
4334 		for_each_online_cpu(cpu)
4335 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4336 
4337 		show_node(zone);
4338 		printk("%s"
4339 			" free:%lukB"
4340 			" min:%lukB"
4341 			" low:%lukB"
4342 			" high:%lukB"
4343 			" active_anon:%lukB"
4344 			" inactive_anon:%lukB"
4345 			" active_file:%lukB"
4346 			" inactive_file:%lukB"
4347 			" unevictable:%lukB"
4348 			" writepending:%lukB"
4349 			" present:%lukB"
4350 			" managed:%lukB"
4351 			" mlocked:%lukB"
4352 			" slab_reclaimable:%lukB"
4353 			" slab_unreclaimable:%lukB"
4354 			" kernel_stack:%lukB"
4355 			" pagetables:%lukB"
4356 			" bounce:%lukB"
4357 			" free_pcp:%lukB"
4358 			" local_pcp:%ukB"
4359 			" free_cma:%lukB"
4360 			"\n",
4361 			zone->name,
4362 			K(zone_page_state(zone, NR_FREE_PAGES)),
4363 			K(min_wmark_pages(zone)),
4364 			K(low_wmark_pages(zone)),
4365 			K(high_wmark_pages(zone)),
4366 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4367 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4368 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4369 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4370 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4371 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4372 			K(zone->present_pages),
4373 			K(zone->managed_pages),
4374 			K(zone_page_state(zone, NR_MLOCK)),
4375 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4376 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
4377 			zone_page_state(zone, NR_KERNEL_STACK_KB),
4378 			K(zone_page_state(zone, NR_PAGETABLE)),
4379 			K(zone_page_state(zone, NR_BOUNCE)),
4380 			K(free_pcp),
4381 			K(this_cpu_read(zone->pageset->pcp.count)),
4382 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4383 		printk("lowmem_reserve[]:");
4384 		for (i = 0; i < MAX_NR_ZONES; i++)
4385 			printk(" %ld", zone->lowmem_reserve[i]);
4386 		printk("\n");
4387 	}
4388 
4389 	for_each_populated_zone(zone) {
4390 		unsigned int order;
4391 		unsigned long nr[MAX_ORDER], flags, total = 0;
4392 		unsigned char types[MAX_ORDER];
4393 
4394 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
4395 			continue;
4396 		show_node(zone);
4397 		printk("%s: ", zone->name);
4398 
4399 		spin_lock_irqsave(&zone->lock, flags);
4400 		for (order = 0; order < MAX_ORDER; order++) {
4401 			struct free_area *area = &zone->free_area[order];
4402 			int type;
4403 
4404 			nr[order] = area->nr_free;
4405 			total += nr[order] << order;
4406 
4407 			types[order] = 0;
4408 			for (type = 0; type < MIGRATE_TYPES; type++) {
4409 				if (!list_empty(&area->free_list[type]))
4410 					types[order] |= 1 << type;
4411 			}
4412 		}
4413 		spin_unlock_irqrestore(&zone->lock, flags);
4414 		for (order = 0; order < MAX_ORDER; order++) {
4415 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
4416 			if (nr[order])
4417 				show_migration_types(types[order]);
4418 		}
4419 		printk("= %lukB\n", K(total));
4420 	}
4421 
4422 	hugetlb_show_meminfo();
4423 
4424 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4425 
4426 	show_swap_cache_info();
4427 }
4428 
4429 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4430 {
4431 	zoneref->zone = zone;
4432 	zoneref->zone_idx = zone_idx(zone);
4433 }
4434 
4435 /*
4436  * Builds allocation fallback zone lists.
4437  *
4438  * Add all populated zones of a node to the zonelist.
4439  */
4440 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4441 				int nr_zones)
4442 {
4443 	struct zone *zone;
4444 	enum zone_type zone_type = MAX_NR_ZONES;
4445 
4446 	do {
4447 		zone_type--;
4448 		zone = pgdat->node_zones + zone_type;
4449 		if (managed_zone(zone)) {
4450 			zoneref_set_zone(zone,
4451 				&zonelist->_zonerefs[nr_zones++]);
4452 			check_highest_zone(zone_type);
4453 		}
4454 	} while (zone_type);
4455 
4456 	return nr_zones;
4457 }
4458 
4459 
4460 /*
4461  *  zonelist_order:
4462  *  0 = automatic detection of better ordering.
4463  *  1 = order by ([node] distance, -zonetype)
4464  *  2 = order by (-zonetype, [node] distance)
4465  *
4466  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4467  *  the same zonelist. So only NUMA can configure this param.
4468  */
4469 #define ZONELIST_ORDER_DEFAULT  0
4470 #define ZONELIST_ORDER_NODE     1
4471 #define ZONELIST_ORDER_ZONE     2
4472 
4473 /* zonelist order in the kernel.
4474  * set_zonelist_order() will set this to NODE or ZONE.
4475  */
4476 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4477 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4478 
4479 
4480 #ifdef CONFIG_NUMA
4481 /* The value user specified ....changed by config */
4482 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4483 /* string for sysctl */
4484 #define NUMA_ZONELIST_ORDER_LEN	16
4485 char numa_zonelist_order[16] = "default";
4486 
4487 /*
4488  * interface for configure zonelist ordering.
4489  * command line option "numa_zonelist_order"
4490  *	= "[dD]efault	- default, automatic configuration.
4491  *	= "[nN]ode 	- order by node locality, then by zone within node
4492  *	= "[zZ]one      - order by zone, then by locality within zone
4493  */
4494 
4495 static int __parse_numa_zonelist_order(char *s)
4496 {
4497 	if (*s == 'd' || *s == 'D') {
4498 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4499 	} else if (*s == 'n' || *s == 'N') {
4500 		user_zonelist_order = ZONELIST_ORDER_NODE;
4501 	} else if (*s == 'z' || *s == 'Z') {
4502 		user_zonelist_order = ZONELIST_ORDER_ZONE;
4503 	} else {
4504 		pr_warn("Ignoring invalid numa_zonelist_order value:  %s\n", s);
4505 		return -EINVAL;
4506 	}
4507 	return 0;
4508 }
4509 
4510 static __init int setup_numa_zonelist_order(char *s)
4511 {
4512 	int ret;
4513 
4514 	if (!s)
4515 		return 0;
4516 
4517 	ret = __parse_numa_zonelist_order(s);
4518 	if (ret == 0)
4519 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4520 
4521 	return ret;
4522 }
4523 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4524 
4525 /*
4526  * sysctl handler for numa_zonelist_order
4527  */
4528 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4529 		void __user *buffer, size_t *length,
4530 		loff_t *ppos)
4531 {
4532 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
4533 	int ret;
4534 	static DEFINE_MUTEX(zl_order_mutex);
4535 
4536 	mutex_lock(&zl_order_mutex);
4537 	if (write) {
4538 		if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4539 			ret = -EINVAL;
4540 			goto out;
4541 		}
4542 		strcpy(saved_string, (char *)table->data);
4543 	}
4544 	ret = proc_dostring(table, write, buffer, length, ppos);
4545 	if (ret)
4546 		goto out;
4547 	if (write) {
4548 		int oldval = user_zonelist_order;
4549 
4550 		ret = __parse_numa_zonelist_order((char *)table->data);
4551 		if (ret) {
4552 			/*
4553 			 * bogus value.  restore saved string
4554 			 */
4555 			strncpy((char *)table->data, saved_string,
4556 				NUMA_ZONELIST_ORDER_LEN);
4557 			user_zonelist_order = oldval;
4558 		} else if (oldval != user_zonelist_order) {
4559 			mutex_lock(&zonelists_mutex);
4560 			build_all_zonelists(NULL, NULL);
4561 			mutex_unlock(&zonelists_mutex);
4562 		}
4563 	}
4564 out:
4565 	mutex_unlock(&zl_order_mutex);
4566 	return ret;
4567 }
4568 
4569 
4570 #define MAX_NODE_LOAD (nr_online_nodes)
4571 static int node_load[MAX_NUMNODES];
4572 
4573 /**
4574  * find_next_best_node - find the next node that should appear in a given node's fallback list
4575  * @node: node whose fallback list we're appending
4576  * @used_node_mask: nodemask_t of already used nodes
4577  *
4578  * We use a number of factors to determine which is the next node that should
4579  * appear on a given node's fallback list.  The node should not have appeared
4580  * already in @node's fallback list, and it should be the next closest node
4581  * according to the distance array (which contains arbitrary distance values
4582  * from each node to each node in the system), and should also prefer nodes
4583  * with no CPUs, since presumably they'll have very little allocation pressure
4584  * on them otherwise.
4585  * It returns -1 if no node is found.
4586  */
4587 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4588 {
4589 	int n, val;
4590 	int min_val = INT_MAX;
4591 	int best_node = NUMA_NO_NODE;
4592 	const struct cpumask *tmp = cpumask_of_node(0);
4593 
4594 	/* Use the local node if we haven't already */
4595 	if (!node_isset(node, *used_node_mask)) {
4596 		node_set(node, *used_node_mask);
4597 		return node;
4598 	}
4599 
4600 	for_each_node_state(n, N_MEMORY) {
4601 
4602 		/* Don't want a node to appear more than once */
4603 		if (node_isset(n, *used_node_mask))
4604 			continue;
4605 
4606 		/* Use the distance array to find the distance */
4607 		val = node_distance(node, n);
4608 
4609 		/* Penalize nodes under us ("prefer the next node") */
4610 		val += (n < node);
4611 
4612 		/* Give preference to headless and unused nodes */
4613 		tmp = cpumask_of_node(n);
4614 		if (!cpumask_empty(tmp))
4615 			val += PENALTY_FOR_NODE_WITH_CPUS;
4616 
4617 		/* Slight preference for less loaded node */
4618 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4619 		val += node_load[n];
4620 
4621 		if (val < min_val) {
4622 			min_val = val;
4623 			best_node = n;
4624 		}
4625 	}
4626 
4627 	if (best_node >= 0)
4628 		node_set(best_node, *used_node_mask);
4629 
4630 	return best_node;
4631 }
4632 
4633 
4634 /*
4635  * Build zonelists ordered by node and zones within node.
4636  * This results in maximum locality--normal zone overflows into local
4637  * DMA zone, if any--but risks exhausting DMA zone.
4638  */
4639 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4640 {
4641 	int j;
4642 	struct zonelist *zonelist;
4643 
4644 	zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4645 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4646 		;
4647 	j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4648 	zonelist->_zonerefs[j].zone = NULL;
4649 	zonelist->_zonerefs[j].zone_idx = 0;
4650 }
4651 
4652 /*
4653  * Build gfp_thisnode zonelists
4654  */
4655 static void build_thisnode_zonelists(pg_data_t *pgdat)
4656 {
4657 	int j;
4658 	struct zonelist *zonelist;
4659 
4660 	zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
4661 	j = build_zonelists_node(pgdat, zonelist, 0);
4662 	zonelist->_zonerefs[j].zone = NULL;
4663 	zonelist->_zonerefs[j].zone_idx = 0;
4664 }
4665 
4666 /*
4667  * Build zonelists ordered by zone and nodes within zones.
4668  * This results in conserving DMA zone[s] until all Normal memory is
4669  * exhausted, but results in overflowing to remote node while memory
4670  * may still exist in local DMA zone.
4671  */
4672 static int node_order[MAX_NUMNODES];
4673 
4674 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4675 {
4676 	int pos, j, node;
4677 	int zone_type;		/* needs to be signed */
4678 	struct zone *z;
4679 	struct zonelist *zonelist;
4680 
4681 	zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4682 	pos = 0;
4683 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4684 		for (j = 0; j < nr_nodes; j++) {
4685 			node = node_order[j];
4686 			z = &NODE_DATA(node)->node_zones[zone_type];
4687 			if (managed_zone(z)) {
4688 				zoneref_set_zone(z,
4689 					&zonelist->_zonerefs[pos++]);
4690 				check_highest_zone(zone_type);
4691 			}
4692 		}
4693 	}
4694 	zonelist->_zonerefs[pos].zone = NULL;
4695 	zonelist->_zonerefs[pos].zone_idx = 0;
4696 }
4697 
4698 #if defined(CONFIG_64BIT)
4699 /*
4700  * Devices that require DMA32/DMA are relatively rare and do not justify a
4701  * penalty to every machine in case the specialised case applies. Default
4702  * to Node-ordering on 64-bit NUMA machines
4703  */
4704 static int default_zonelist_order(void)
4705 {
4706 	return ZONELIST_ORDER_NODE;
4707 }
4708 #else
4709 /*
4710  * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4711  * by the kernel. If processes running on node 0 deplete the low memory zone
4712  * then reclaim will occur more frequency increasing stalls and potentially
4713  * be easier to OOM if a large percentage of the zone is under writeback or
4714  * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4715  * Hence, default to zone ordering on 32-bit.
4716  */
4717 static int default_zonelist_order(void)
4718 {
4719 	return ZONELIST_ORDER_ZONE;
4720 }
4721 #endif /* CONFIG_64BIT */
4722 
4723 static void set_zonelist_order(void)
4724 {
4725 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4726 		current_zonelist_order = default_zonelist_order();
4727 	else
4728 		current_zonelist_order = user_zonelist_order;
4729 }
4730 
4731 static void build_zonelists(pg_data_t *pgdat)
4732 {
4733 	int i, node, load;
4734 	nodemask_t used_mask;
4735 	int local_node, prev_node;
4736 	struct zonelist *zonelist;
4737 	unsigned int order = current_zonelist_order;
4738 
4739 	/* initialize zonelists */
4740 	for (i = 0; i < MAX_ZONELISTS; i++) {
4741 		zonelist = pgdat->node_zonelists + i;
4742 		zonelist->_zonerefs[0].zone = NULL;
4743 		zonelist->_zonerefs[0].zone_idx = 0;
4744 	}
4745 
4746 	/* NUMA-aware ordering of nodes */
4747 	local_node = pgdat->node_id;
4748 	load = nr_online_nodes;
4749 	prev_node = local_node;
4750 	nodes_clear(used_mask);
4751 
4752 	memset(node_order, 0, sizeof(node_order));
4753 	i = 0;
4754 
4755 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4756 		/*
4757 		 * We don't want to pressure a particular node.
4758 		 * So adding penalty to the first node in same
4759 		 * distance group to make it round-robin.
4760 		 */
4761 		if (node_distance(local_node, node) !=
4762 		    node_distance(local_node, prev_node))
4763 			node_load[node] = load;
4764 
4765 		prev_node = node;
4766 		load--;
4767 		if (order == ZONELIST_ORDER_NODE)
4768 			build_zonelists_in_node_order(pgdat, node);
4769 		else
4770 			node_order[i++] = node;	/* remember order */
4771 	}
4772 
4773 	if (order == ZONELIST_ORDER_ZONE) {
4774 		/* calculate node order -- i.e., DMA last! */
4775 		build_zonelists_in_zone_order(pgdat, i);
4776 	}
4777 
4778 	build_thisnode_zonelists(pgdat);
4779 }
4780 
4781 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4782 /*
4783  * Return node id of node used for "local" allocations.
4784  * I.e., first node id of first zone in arg node's generic zonelist.
4785  * Used for initializing percpu 'numa_mem', which is used primarily
4786  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4787  */
4788 int local_memory_node(int node)
4789 {
4790 	struct zoneref *z;
4791 
4792 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4793 				   gfp_zone(GFP_KERNEL),
4794 				   NULL);
4795 	return z->zone->node;
4796 }
4797 #endif
4798 
4799 static void setup_min_unmapped_ratio(void);
4800 static void setup_min_slab_ratio(void);
4801 #else	/* CONFIG_NUMA */
4802 
4803 static void set_zonelist_order(void)
4804 {
4805 	current_zonelist_order = ZONELIST_ORDER_ZONE;
4806 }
4807 
4808 static void build_zonelists(pg_data_t *pgdat)
4809 {
4810 	int node, local_node;
4811 	enum zone_type j;
4812 	struct zonelist *zonelist;
4813 
4814 	local_node = pgdat->node_id;
4815 
4816 	zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4817 	j = build_zonelists_node(pgdat, zonelist, 0);
4818 
4819 	/*
4820 	 * Now we build the zonelist so that it contains the zones
4821 	 * of all the other nodes.
4822 	 * We don't want to pressure a particular node, so when
4823 	 * building the zones for node N, we make sure that the
4824 	 * zones coming right after the local ones are those from
4825 	 * node N+1 (modulo N)
4826 	 */
4827 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4828 		if (!node_online(node))
4829 			continue;
4830 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4831 	}
4832 	for (node = 0; node < local_node; node++) {
4833 		if (!node_online(node))
4834 			continue;
4835 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4836 	}
4837 
4838 	zonelist->_zonerefs[j].zone = NULL;
4839 	zonelist->_zonerefs[j].zone_idx = 0;
4840 }
4841 
4842 #endif	/* CONFIG_NUMA */
4843 
4844 /*
4845  * Boot pageset table. One per cpu which is going to be used for all
4846  * zones and all nodes. The parameters will be set in such a way
4847  * that an item put on a list will immediately be handed over to
4848  * the buddy list. This is safe since pageset manipulation is done
4849  * with interrupts disabled.
4850  *
4851  * The boot_pagesets must be kept even after bootup is complete for
4852  * unused processors and/or zones. They do play a role for bootstrapping
4853  * hotplugged processors.
4854  *
4855  * zoneinfo_show() and maybe other functions do
4856  * not check if the processor is online before following the pageset pointer.
4857  * Other parts of the kernel may not check if the zone is available.
4858  */
4859 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4860 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4861 static void setup_zone_pageset(struct zone *zone);
4862 
4863 /*
4864  * Global mutex to protect against size modification of zonelists
4865  * as well as to serialize pageset setup for the new populated zone.
4866  */
4867 DEFINE_MUTEX(zonelists_mutex);
4868 
4869 /* return values int ....just for stop_machine() */
4870 static int __build_all_zonelists(void *data)
4871 {
4872 	int nid;
4873 	int cpu;
4874 	pg_data_t *self = data;
4875 
4876 #ifdef CONFIG_NUMA
4877 	memset(node_load, 0, sizeof(node_load));
4878 #endif
4879 
4880 	if (self && !node_online(self->node_id)) {
4881 		build_zonelists(self);
4882 	}
4883 
4884 	for_each_online_node(nid) {
4885 		pg_data_t *pgdat = NODE_DATA(nid);
4886 
4887 		build_zonelists(pgdat);
4888 	}
4889 
4890 	/*
4891 	 * Initialize the boot_pagesets that are going to be used
4892 	 * for bootstrapping processors. The real pagesets for
4893 	 * each zone will be allocated later when the per cpu
4894 	 * allocator is available.
4895 	 *
4896 	 * boot_pagesets are used also for bootstrapping offline
4897 	 * cpus if the system is already booted because the pagesets
4898 	 * are needed to initialize allocators on a specific cpu too.
4899 	 * F.e. the percpu allocator needs the page allocator which
4900 	 * needs the percpu allocator in order to allocate its pagesets
4901 	 * (a chicken-egg dilemma).
4902 	 */
4903 	for_each_possible_cpu(cpu) {
4904 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4905 
4906 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4907 		/*
4908 		 * We now know the "local memory node" for each node--
4909 		 * i.e., the node of the first zone in the generic zonelist.
4910 		 * Set up numa_mem percpu variable for on-line cpus.  During
4911 		 * boot, only the boot cpu should be on-line;  we'll init the
4912 		 * secondary cpus' numa_mem as they come on-line.  During
4913 		 * node/memory hotplug, we'll fixup all on-line cpus.
4914 		 */
4915 		if (cpu_online(cpu))
4916 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4917 #endif
4918 	}
4919 
4920 	return 0;
4921 }
4922 
4923 static noinline void __init
4924 build_all_zonelists_init(void)
4925 {
4926 	__build_all_zonelists(NULL);
4927 	mminit_verify_zonelist();
4928 	cpuset_init_current_mems_allowed();
4929 }
4930 
4931 /*
4932  * Called with zonelists_mutex held always
4933  * unless system_state == SYSTEM_BOOTING.
4934  *
4935  * __ref due to (1) call of __meminit annotated setup_zone_pageset
4936  * [we're only called with non-NULL zone through __meminit paths] and
4937  * (2) call of __init annotated helper build_all_zonelists_init
4938  * [protected by SYSTEM_BOOTING].
4939  */
4940 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
4941 {
4942 	set_zonelist_order();
4943 
4944 	if (system_state == SYSTEM_BOOTING) {
4945 		build_all_zonelists_init();
4946 	} else {
4947 #ifdef CONFIG_MEMORY_HOTPLUG
4948 		if (zone)
4949 			setup_zone_pageset(zone);
4950 #endif
4951 		/* we have to stop all cpus to guarantee there is no user
4952 		   of zonelist */
4953 		stop_machine(__build_all_zonelists, pgdat, NULL);
4954 		/* cpuset refresh routine should be here */
4955 	}
4956 	vm_total_pages = nr_free_pagecache_pages();
4957 	/*
4958 	 * Disable grouping by mobility if the number of pages in the
4959 	 * system is too low to allow the mechanism to work. It would be
4960 	 * more accurate, but expensive to check per-zone. This check is
4961 	 * made on memory-hotadd so a system can start with mobility
4962 	 * disabled and enable it later
4963 	 */
4964 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
4965 		page_group_by_mobility_disabled = 1;
4966 	else
4967 		page_group_by_mobility_disabled = 0;
4968 
4969 	pr_info("Built %i zonelists in %s order, mobility grouping %s.  Total pages: %ld\n",
4970 		nr_online_nodes,
4971 		zonelist_order_name[current_zonelist_order],
4972 		page_group_by_mobility_disabled ? "off" : "on",
4973 		vm_total_pages);
4974 #ifdef CONFIG_NUMA
4975 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
4976 #endif
4977 }
4978 
4979 /*
4980  * Helper functions to size the waitqueue hash table.
4981  * Essentially these want to choose hash table sizes sufficiently
4982  * large so that collisions trying to wait on pages are rare.
4983  * But in fact, the number of active page waitqueues on typical
4984  * systems is ridiculously low, less than 200. So this is even
4985  * conservative, even though it seems large.
4986  *
4987  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4988  * waitqueues, i.e. the size of the waitq table given the number of pages.
4989  */
4990 #define PAGES_PER_WAITQUEUE	256
4991 
4992 #ifndef CONFIG_MEMORY_HOTPLUG
4993 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4994 {
4995 	unsigned long size = 1;
4996 
4997 	pages /= PAGES_PER_WAITQUEUE;
4998 
4999 	while (size < pages)
5000 		size <<= 1;
5001 
5002 	/*
5003 	 * Once we have dozens or even hundreds of threads sleeping
5004 	 * on IO we've got bigger problems than wait queue collision.
5005 	 * Limit the size of the wait table to a reasonable size.
5006 	 */
5007 	size = min(size, 4096UL);
5008 
5009 	return max(size, 4UL);
5010 }
5011 #else
5012 /*
5013  * A zone's size might be changed by hot-add, so it is not possible to determine
5014  * a suitable size for its wait_table.  So we use the maximum size now.
5015  *
5016  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
5017  *
5018  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
5019  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
5020  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
5021  *
5022  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
5023  * or more by the traditional way. (See above).  It equals:
5024  *
5025  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
5026  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
5027  *    powerpc (64K page size)             : =  (32G +16M)byte.
5028  */
5029 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
5030 {
5031 	return 4096UL;
5032 }
5033 #endif
5034 
5035 /*
5036  * This is an integer logarithm so that shifts can be used later
5037  * to extract the more random high bits from the multiplicative
5038  * hash function before the remainder is taken.
5039  */
5040 static inline unsigned long wait_table_bits(unsigned long size)
5041 {
5042 	return ffz(~size);
5043 }
5044 
5045 /*
5046  * Initially all pages are reserved - free ones are freed
5047  * up by free_all_bootmem() once the early boot process is
5048  * done. Non-atomic initialization, single-pass.
5049  */
5050 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5051 		unsigned long start_pfn, enum memmap_context context)
5052 {
5053 	struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5054 	unsigned long end_pfn = start_pfn + size;
5055 	pg_data_t *pgdat = NODE_DATA(nid);
5056 	unsigned long pfn;
5057 	unsigned long nr_initialised = 0;
5058 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5059 	struct memblock_region *r = NULL, *tmp;
5060 #endif
5061 
5062 	if (highest_memmap_pfn < end_pfn - 1)
5063 		highest_memmap_pfn = end_pfn - 1;
5064 
5065 	/*
5066 	 * Honor reservation requested by the driver for this ZONE_DEVICE
5067 	 * memory
5068 	 */
5069 	if (altmap && start_pfn == altmap->base_pfn)
5070 		start_pfn += altmap->reserve;
5071 
5072 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5073 		/*
5074 		 * There can be holes in boot-time mem_map[]s handed to this
5075 		 * function.  They do not exist on hotplugged memory.
5076 		 */
5077 		if (context != MEMMAP_EARLY)
5078 			goto not_early;
5079 
5080 		if (!early_pfn_valid(pfn))
5081 			continue;
5082 		if (!early_pfn_in_nid(pfn, nid))
5083 			continue;
5084 		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5085 			break;
5086 
5087 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5088 		/*
5089 		 * Check given memblock attribute by firmware which can affect
5090 		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
5091 		 * mirrored, it's an overlapped memmap init. skip it.
5092 		 */
5093 		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5094 			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5095 				for_each_memblock(memory, tmp)
5096 					if (pfn < memblock_region_memory_end_pfn(tmp))
5097 						break;
5098 				r = tmp;
5099 			}
5100 			if (pfn >= memblock_region_memory_base_pfn(r) &&
5101 			    memblock_is_mirror(r)) {
5102 				/* already initialized as NORMAL */
5103 				pfn = memblock_region_memory_end_pfn(r);
5104 				continue;
5105 			}
5106 		}
5107 #endif
5108 
5109 not_early:
5110 		/*
5111 		 * Mark the block movable so that blocks are reserved for
5112 		 * movable at startup. This will force kernel allocations
5113 		 * to reserve their blocks rather than leaking throughout
5114 		 * the address space during boot when many long-lived
5115 		 * kernel allocations are made.
5116 		 *
5117 		 * bitmap is created for zone's valid pfn range. but memmap
5118 		 * can be created for invalid pages (for alignment)
5119 		 * check here not to call set_pageblock_migratetype() against
5120 		 * pfn out of zone.
5121 		 */
5122 		if (!(pfn & (pageblock_nr_pages - 1))) {
5123 			struct page *page = pfn_to_page(pfn);
5124 
5125 			__init_single_page(page, pfn, zone, nid);
5126 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5127 		} else {
5128 			__init_single_pfn(pfn, zone, nid);
5129 		}
5130 	}
5131 }
5132 
5133 static void __meminit zone_init_free_lists(struct zone *zone)
5134 {
5135 	unsigned int order, t;
5136 	for_each_migratetype_order(order, t) {
5137 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5138 		zone->free_area[order].nr_free = 0;
5139 	}
5140 }
5141 
5142 #ifndef __HAVE_ARCH_MEMMAP_INIT
5143 #define memmap_init(size, nid, zone, start_pfn) \
5144 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5145 #endif
5146 
5147 static int zone_batchsize(struct zone *zone)
5148 {
5149 #ifdef CONFIG_MMU
5150 	int batch;
5151 
5152 	/*
5153 	 * The per-cpu-pages pools are set to around 1000th of the
5154 	 * size of the zone.  But no more than 1/2 of a meg.
5155 	 *
5156 	 * OK, so we don't know how big the cache is.  So guess.
5157 	 */
5158 	batch = zone->managed_pages / 1024;
5159 	if (batch * PAGE_SIZE > 512 * 1024)
5160 		batch = (512 * 1024) / PAGE_SIZE;
5161 	batch /= 4;		/* We effectively *= 4 below */
5162 	if (batch < 1)
5163 		batch = 1;
5164 
5165 	/*
5166 	 * Clamp the batch to a 2^n - 1 value. Having a power
5167 	 * of 2 value was found to be more likely to have
5168 	 * suboptimal cache aliasing properties in some cases.
5169 	 *
5170 	 * For example if 2 tasks are alternately allocating
5171 	 * batches of pages, one task can end up with a lot
5172 	 * of pages of one half of the possible page colors
5173 	 * and the other with pages of the other colors.
5174 	 */
5175 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5176 
5177 	return batch;
5178 
5179 #else
5180 	/* The deferral and batching of frees should be suppressed under NOMMU
5181 	 * conditions.
5182 	 *
5183 	 * The problem is that NOMMU needs to be able to allocate large chunks
5184 	 * of contiguous memory as there's no hardware page translation to
5185 	 * assemble apparent contiguous memory from discontiguous pages.
5186 	 *
5187 	 * Queueing large contiguous runs of pages for batching, however,
5188 	 * causes the pages to actually be freed in smaller chunks.  As there
5189 	 * can be a significant delay between the individual batches being
5190 	 * recycled, this leads to the once large chunks of space being
5191 	 * fragmented and becoming unavailable for high-order allocations.
5192 	 */
5193 	return 0;
5194 #endif
5195 }
5196 
5197 /*
5198  * pcp->high and pcp->batch values are related and dependent on one another:
5199  * ->batch must never be higher then ->high.
5200  * The following function updates them in a safe manner without read side
5201  * locking.
5202  *
5203  * Any new users of pcp->batch and pcp->high should ensure they can cope with
5204  * those fields changing asynchronously (acording the the above rule).
5205  *
5206  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5207  * outside of boot time (or some other assurance that no concurrent updaters
5208  * exist).
5209  */
5210 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5211 		unsigned long batch)
5212 {
5213        /* start with a fail safe value for batch */
5214 	pcp->batch = 1;
5215 	smp_wmb();
5216 
5217        /* Update high, then batch, in order */
5218 	pcp->high = high;
5219 	smp_wmb();
5220 
5221 	pcp->batch = batch;
5222 }
5223 
5224 /* a companion to pageset_set_high() */
5225 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5226 {
5227 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5228 }
5229 
5230 static void pageset_init(struct per_cpu_pageset *p)
5231 {
5232 	struct per_cpu_pages *pcp;
5233 	int migratetype;
5234 
5235 	memset(p, 0, sizeof(*p));
5236 
5237 	pcp = &p->pcp;
5238 	pcp->count = 0;
5239 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5240 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5241 }
5242 
5243 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5244 {
5245 	pageset_init(p);
5246 	pageset_set_batch(p, batch);
5247 }
5248 
5249 /*
5250  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5251  * to the value high for the pageset p.
5252  */
5253 static void pageset_set_high(struct per_cpu_pageset *p,
5254 				unsigned long high)
5255 {
5256 	unsigned long batch = max(1UL, high / 4);
5257 	if ((high / 4) > (PAGE_SHIFT * 8))
5258 		batch = PAGE_SHIFT * 8;
5259 
5260 	pageset_update(&p->pcp, high, batch);
5261 }
5262 
5263 static void pageset_set_high_and_batch(struct zone *zone,
5264 				       struct per_cpu_pageset *pcp)
5265 {
5266 	if (percpu_pagelist_fraction)
5267 		pageset_set_high(pcp,
5268 			(zone->managed_pages /
5269 				percpu_pagelist_fraction));
5270 	else
5271 		pageset_set_batch(pcp, zone_batchsize(zone));
5272 }
5273 
5274 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5275 {
5276 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5277 
5278 	pageset_init(pcp);
5279 	pageset_set_high_and_batch(zone, pcp);
5280 }
5281 
5282 static void __meminit setup_zone_pageset(struct zone *zone)
5283 {
5284 	int cpu;
5285 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5286 	for_each_possible_cpu(cpu)
5287 		zone_pageset_init(zone, cpu);
5288 }
5289 
5290 /*
5291  * Allocate per cpu pagesets and initialize them.
5292  * Before this call only boot pagesets were available.
5293  */
5294 void __init setup_per_cpu_pageset(void)
5295 {
5296 	struct pglist_data *pgdat;
5297 	struct zone *zone;
5298 
5299 	for_each_populated_zone(zone)
5300 		setup_zone_pageset(zone);
5301 
5302 	for_each_online_pgdat(pgdat)
5303 		pgdat->per_cpu_nodestats =
5304 			alloc_percpu(struct per_cpu_nodestat);
5305 }
5306 
5307 static noinline __ref
5308 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
5309 {
5310 	int i;
5311 	size_t alloc_size;
5312 
5313 	/*
5314 	 * The per-page waitqueue mechanism uses hashed waitqueues
5315 	 * per zone.
5316 	 */
5317 	zone->wait_table_hash_nr_entries =
5318 		 wait_table_hash_nr_entries(zone_size_pages);
5319 	zone->wait_table_bits =
5320 		wait_table_bits(zone->wait_table_hash_nr_entries);
5321 	alloc_size = zone->wait_table_hash_nr_entries
5322 					* sizeof(wait_queue_head_t);
5323 
5324 	if (!slab_is_available()) {
5325 		zone->wait_table = (wait_queue_head_t *)
5326 			memblock_virt_alloc_node_nopanic(
5327 				alloc_size, zone->zone_pgdat->node_id);
5328 	} else {
5329 		/*
5330 		 * This case means that a zone whose size was 0 gets new memory
5331 		 * via memory hot-add.
5332 		 * But it may be the case that a new node was hot-added.  In
5333 		 * this case vmalloc() will not be able to use this new node's
5334 		 * memory - this wait_table must be initialized to use this new
5335 		 * node itself as well.
5336 		 * To use this new node's memory, further consideration will be
5337 		 * necessary.
5338 		 */
5339 		zone->wait_table = vmalloc(alloc_size);
5340 	}
5341 	if (!zone->wait_table)
5342 		return -ENOMEM;
5343 
5344 	for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
5345 		init_waitqueue_head(zone->wait_table + i);
5346 
5347 	return 0;
5348 }
5349 
5350 static __meminit void zone_pcp_init(struct zone *zone)
5351 {
5352 	/*
5353 	 * per cpu subsystem is not up at this point. The following code
5354 	 * relies on the ability of the linker to provide the
5355 	 * offset of a (static) per cpu variable into the per cpu area.
5356 	 */
5357 	zone->pageset = &boot_pageset;
5358 
5359 	if (populated_zone(zone))
5360 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
5361 			zone->name, zone->present_pages,
5362 					 zone_batchsize(zone));
5363 }
5364 
5365 int __meminit init_currently_empty_zone(struct zone *zone,
5366 					unsigned long zone_start_pfn,
5367 					unsigned long size)
5368 {
5369 	struct pglist_data *pgdat = zone->zone_pgdat;
5370 	int ret;
5371 	ret = zone_wait_table_init(zone, size);
5372 	if (ret)
5373 		return ret;
5374 	pgdat->nr_zones = zone_idx(zone) + 1;
5375 
5376 	zone->zone_start_pfn = zone_start_pfn;
5377 
5378 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
5379 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
5380 			pgdat->node_id,
5381 			(unsigned long)zone_idx(zone),
5382 			zone_start_pfn, (zone_start_pfn + size));
5383 
5384 	zone_init_free_lists(zone);
5385 
5386 	return 0;
5387 }
5388 
5389 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5390 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5391 
5392 /*
5393  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5394  */
5395 int __meminit __early_pfn_to_nid(unsigned long pfn,
5396 					struct mminit_pfnnid_cache *state)
5397 {
5398 	unsigned long start_pfn, end_pfn;
5399 	int nid;
5400 
5401 	if (state->last_start <= pfn && pfn < state->last_end)
5402 		return state->last_nid;
5403 
5404 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5405 	if (nid != -1) {
5406 		state->last_start = start_pfn;
5407 		state->last_end = end_pfn;
5408 		state->last_nid = nid;
5409 	}
5410 
5411 	return nid;
5412 }
5413 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5414 
5415 /**
5416  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5417  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5418  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5419  *
5420  * If an architecture guarantees that all ranges registered contain no holes
5421  * and may be freed, this this function may be used instead of calling
5422  * memblock_free_early_nid() manually.
5423  */
5424 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5425 {
5426 	unsigned long start_pfn, end_pfn;
5427 	int i, this_nid;
5428 
5429 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5430 		start_pfn = min(start_pfn, max_low_pfn);
5431 		end_pfn = min(end_pfn, max_low_pfn);
5432 
5433 		if (start_pfn < end_pfn)
5434 			memblock_free_early_nid(PFN_PHYS(start_pfn),
5435 					(end_pfn - start_pfn) << PAGE_SHIFT,
5436 					this_nid);
5437 	}
5438 }
5439 
5440 /**
5441  * sparse_memory_present_with_active_regions - Call memory_present for each active range
5442  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5443  *
5444  * If an architecture guarantees that all ranges registered contain no holes and may
5445  * be freed, this function may be used instead of calling memory_present() manually.
5446  */
5447 void __init sparse_memory_present_with_active_regions(int nid)
5448 {
5449 	unsigned long start_pfn, end_pfn;
5450 	int i, this_nid;
5451 
5452 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5453 		memory_present(this_nid, start_pfn, end_pfn);
5454 }
5455 
5456 /**
5457  * get_pfn_range_for_nid - Return the start and end page frames for a node
5458  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5459  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5460  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5461  *
5462  * It returns the start and end page frame of a node based on information
5463  * provided by memblock_set_node(). If called for a node
5464  * with no available memory, a warning is printed and the start and end
5465  * PFNs will be 0.
5466  */
5467 void __meminit get_pfn_range_for_nid(unsigned int nid,
5468 			unsigned long *start_pfn, unsigned long *end_pfn)
5469 {
5470 	unsigned long this_start_pfn, this_end_pfn;
5471 	int i;
5472 
5473 	*start_pfn = -1UL;
5474 	*end_pfn = 0;
5475 
5476 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5477 		*start_pfn = min(*start_pfn, this_start_pfn);
5478 		*end_pfn = max(*end_pfn, this_end_pfn);
5479 	}
5480 
5481 	if (*start_pfn == -1UL)
5482 		*start_pfn = 0;
5483 }
5484 
5485 /*
5486  * This finds a zone that can be used for ZONE_MOVABLE pages. The
5487  * assumption is made that zones within a node are ordered in monotonic
5488  * increasing memory addresses so that the "highest" populated zone is used
5489  */
5490 static void __init find_usable_zone_for_movable(void)
5491 {
5492 	int zone_index;
5493 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5494 		if (zone_index == ZONE_MOVABLE)
5495 			continue;
5496 
5497 		if (arch_zone_highest_possible_pfn[zone_index] >
5498 				arch_zone_lowest_possible_pfn[zone_index])
5499 			break;
5500 	}
5501 
5502 	VM_BUG_ON(zone_index == -1);
5503 	movable_zone = zone_index;
5504 }
5505 
5506 /*
5507  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5508  * because it is sized independent of architecture. Unlike the other zones,
5509  * the starting point for ZONE_MOVABLE is not fixed. It may be different
5510  * in each node depending on the size of each node and how evenly kernelcore
5511  * is distributed. This helper function adjusts the zone ranges
5512  * provided by the architecture for a given node by using the end of the
5513  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5514  * zones within a node are in order of monotonic increases memory addresses
5515  */
5516 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5517 					unsigned long zone_type,
5518 					unsigned long node_start_pfn,
5519 					unsigned long node_end_pfn,
5520 					unsigned long *zone_start_pfn,
5521 					unsigned long *zone_end_pfn)
5522 {
5523 	/* Only adjust if ZONE_MOVABLE is on this node */
5524 	if (zone_movable_pfn[nid]) {
5525 		/* Size ZONE_MOVABLE */
5526 		if (zone_type == ZONE_MOVABLE) {
5527 			*zone_start_pfn = zone_movable_pfn[nid];
5528 			*zone_end_pfn = min(node_end_pfn,
5529 				arch_zone_highest_possible_pfn[movable_zone]);
5530 
5531 		/* Adjust for ZONE_MOVABLE starting within this range */
5532 		} else if (!mirrored_kernelcore &&
5533 			*zone_start_pfn < zone_movable_pfn[nid] &&
5534 			*zone_end_pfn > zone_movable_pfn[nid]) {
5535 			*zone_end_pfn = zone_movable_pfn[nid];
5536 
5537 		/* Check if this whole range is within ZONE_MOVABLE */
5538 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
5539 			*zone_start_pfn = *zone_end_pfn;
5540 	}
5541 }
5542 
5543 /*
5544  * Return the number of pages a zone spans in a node, including holes
5545  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5546  */
5547 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5548 					unsigned long zone_type,
5549 					unsigned long node_start_pfn,
5550 					unsigned long node_end_pfn,
5551 					unsigned long *zone_start_pfn,
5552 					unsigned long *zone_end_pfn,
5553 					unsigned long *ignored)
5554 {
5555 	/* When hotadd a new node from cpu_up(), the node should be empty */
5556 	if (!node_start_pfn && !node_end_pfn)
5557 		return 0;
5558 
5559 	/* Get the start and end of the zone */
5560 	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5561 	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5562 	adjust_zone_range_for_zone_movable(nid, zone_type,
5563 				node_start_pfn, node_end_pfn,
5564 				zone_start_pfn, zone_end_pfn);
5565 
5566 	/* Check that this node has pages within the zone's required range */
5567 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5568 		return 0;
5569 
5570 	/* Move the zone boundaries inside the node if necessary */
5571 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5572 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5573 
5574 	/* Return the spanned pages */
5575 	return *zone_end_pfn - *zone_start_pfn;
5576 }
5577 
5578 /*
5579  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5580  * then all holes in the requested range will be accounted for.
5581  */
5582 unsigned long __meminit __absent_pages_in_range(int nid,
5583 				unsigned long range_start_pfn,
5584 				unsigned long range_end_pfn)
5585 {
5586 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
5587 	unsigned long start_pfn, end_pfn;
5588 	int i;
5589 
5590 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5591 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5592 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5593 		nr_absent -= end_pfn - start_pfn;
5594 	}
5595 	return nr_absent;
5596 }
5597 
5598 /**
5599  * absent_pages_in_range - Return number of page frames in holes within a range
5600  * @start_pfn: The start PFN to start searching for holes
5601  * @end_pfn: The end PFN to stop searching for holes
5602  *
5603  * It returns the number of pages frames in memory holes within a range.
5604  */
5605 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5606 							unsigned long end_pfn)
5607 {
5608 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5609 }
5610 
5611 /* Return the number of page frames in holes in a zone on a node */
5612 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5613 					unsigned long zone_type,
5614 					unsigned long node_start_pfn,
5615 					unsigned long node_end_pfn,
5616 					unsigned long *ignored)
5617 {
5618 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5619 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5620 	unsigned long zone_start_pfn, zone_end_pfn;
5621 	unsigned long nr_absent;
5622 
5623 	/* When hotadd a new node from cpu_up(), the node should be empty */
5624 	if (!node_start_pfn && !node_end_pfn)
5625 		return 0;
5626 
5627 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5628 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5629 
5630 	adjust_zone_range_for_zone_movable(nid, zone_type,
5631 			node_start_pfn, node_end_pfn,
5632 			&zone_start_pfn, &zone_end_pfn);
5633 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5634 
5635 	/*
5636 	 * ZONE_MOVABLE handling.
5637 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5638 	 * and vice versa.
5639 	 */
5640 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5641 		unsigned long start_pfn, end_pfn;
5642 		struct memblock_region *r;
5643 
5644 		for_each_memblock(memory, r) {
5645 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
5646 					  zone_start_pfn, zone_end_pfn);
5647 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
5648 					zone_start_pfn, zone_end_pfn);
5649 
5650 			if (zone_type == ZONE_MOVABLE &&
5651 			    memblock_is_mirror(r))
5652 				nr_absent += end_pfn - start_pfn;
5653 
5654 			if (zone_type == ZONE_NORMAL &&
5655 			    !memblock_is_mirror(r))
5656 				nr_absent += end_pfn - start_pfn;
5657 		}
5658 	}
5659 
5660 	return nr_absent;
5661 }
5662 
5663 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5664 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5665 					unsigned long zone_type,
5666 					unsigned long node_start_pfn,
5667 					unsigned long node_end_pfn,
5668 					unsigned long *zone_start_pfn,
5669 					unsigned long *zone_end_pfn,
5670 					unsigned long *zones_size)
5671 {
5672 	unsigned int zone;
5673 
5674 	*zone_start_pfn = node_start_pfn;
5675 	for (zone = 0; zone < zone_type; zone++)
5676 		*zone_start_pfn += zones_size[zone];
5677 
5678 	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5679 
5680 	return zones_size[zone_type];
5681 }
5682 
5683 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5684 						unsigned long zone_type,
5685 						unsigned long node_start_pfn,
5686 						unsigned long node_end_pfn,
5687 						unsigned long *zholes_size)
5688 {
5689 	if (!zholes_size)
5690 		return 0;
5691 
5692 	return zholes_size[zone_type];
5693 }
5694 
5695 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5696 
5697 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5698 						unsigned long node_start_pfn,
5699 						unsigned long node_end_pfn,
5700 						unsigned long *zones_size,
5701 						unsigned long *zholes_size)
5702 {
5703 	unsigned long realtotalpages = 0, totalpages = 0;
5704 	enum zone_type i;
5705 
5706 	for (i = 0; i < MAX_NR_ZONES; i++) {
5707 		struct zone *zone = pgdat->node_zones + i;
5708 		unsigned long zone_start_pfn, zone_end_pfn;
5709 		unsigned long size, real_size;
5710 
5711 		size = zone_spanned_pages_in_node(pgdat->node_id, i,
5712 						  node_start_pfn,
5713 						  node_end_pfn,
5714 						  &zone_start_pfn,
5715 						  &zone_end_pfn,
5716 						  zones_size);
5717 		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5718 						  node_start_pfn, node_end_pfn,
5719 						  zholes_size);
5720 		if (size)
5721 			zone->zone_start_pfn = zone_start_pfn;
5722 		else
5723 			zone->zone_start_pfn = 0;
5724 		zone->spanned_pages = size;
5725 		zone->present_pages = real_size;
5726 
5727 		totalpages += size;
5728 		realtotalpages += real_size;
5729 	}
5730 
5731 	pgdat->node_spanned_pages = totalpages;
5732 	pgdat->node_present_pages = realtotalpages;
5733 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5734 							realtotalpages);
5735 }
5736 
5737 #ifndef CONFIG_SPARSEMEM
5738 /*
5739  * Calculate the size of the zone->blockflags rounded to an unsigned long
5740  * Start by making sure zonesize is a multiple of pageblock_order by rounding
5741  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5742  * round what is now in bits to nearest long in bits, then return it in
5743  * bytes.
5744  */
5745 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5746 {
5747 	unsigned long usemapsize;
5748 
5749 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5750 	usemapsize = roundup(zonesize, pageblock_nr_pages);
5751 	usemapsize = usemapsize >> pageblock_order;
5752 	usemapsize *= NR_PAGEBLOCK_BITS;
5753 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5754 
5755 	return usemapsize / 8;
5756 }
5757 
5758 static void __init setup_usemap(struct pglist_data *pgdat,
5759 				struct zone *zone,
5760 				unsigned long zone_start_pfn,
5761 				unsigned long zonesize)
5762 {
5763 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5764 	zone->pageblock_flags = NULL;
5765 	if (usemapsize)
5766 		zone->pageblock_flags =
5767 			memblock_virt_alloc_node_nopanic(usemapsize,
5768 							 pgdat->node_id);
5769 }
5770 #else
5771 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5772 				unsigned long zone_start_pfn, unsigned long zonesize) {}
5773 #endif /* CONFIG_SPARSEMEM */
5774 
5775 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5776 
5777 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5778 void __paginginit set_pageblock_order(void)
5779 {
5780 	unsigned int order;
5781 
5782 	/* Check that pageblock_nr_pages has not already been setup */
5783 	if (pageblock_order)
5784 		return;
5785 
5786 	if (HPAGE_SHIFT > PAGE_SHIFT)
5787 		order = HUGETLB_PAGE_ORDER;
5788 	else
5789 		order = MAX_ORDER - 1;
5790 
5791 	/*
5792 	 * Assume the largest contiguous order of interest is a huge page.
5793 	 * This value may be variable depending on boot parameters on IA64 and
5794 	 * powerpc.
5795 	 */
5796 	pageblock_order = order;
5797 }
5798 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5799 
5800 /*
5801  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5802  * is unused as pageblock_order is set at compile-time. See
5803  * include/linux/pageblock-flags.h for the values of pageblock_order based on
5804  * the kernel config
5805  */
5806 void __paginginit set_pageblock_order(void)
5807 {
5808 }
5809 
5810 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5811 
5812 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5813 						   unsigned long present_pages)
5814 {
5815 	unsigned long pages = spanned_pages;
5816 
5817 	/*
5818 	 * Provide a more accurate estimation if there are holes within
5819 	 * the zone and SPARSEMEM is in use. If there are holes within the
5820 	 * zone, each populated memory region may cost us one or two extra
5821 	 * memmap pages due to alignment because memmap pages for each
5822 	 * populated regions may not naturally algined on page boundary.
5823 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5824 	 */
5825 	if (spanned_pages > present_pages + (present_pages >> 4) &&
5826 	    IS_ENABLED(CONFIG_SPARSEMEM))
5827 		pages = present_pages;
5828 
5829 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5830 }
5831 
5832 /*
5833  * Set up the zone data structures:
5834  *   - mark all pages reserved
5835  *   - mark all memory queues empty
5836  *   - clear the memory bitmaps
5837  *
5838  * NOTE: pgdat should get zeroed by caller.
5839  */
5840 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5841 {
5842 	enum zone_type j;
5843 	int nid = pgdat->node_id;
5844 	int ret;
5845 
5846 	pgdat_resize_init(pgdat);
5847 #ifdef CONFIG_NUMA_BALANCING
5848 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
5849 	pgdat->numabalancing_migrate_nr_pages = 0;
5850 	pgdat->numabalancing_migrate_next_window = jiffies;
5851 #endif
5852 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5853 	spin_lock_init(&pgdat->split_queue_lock);
5854 	INIT_LIST_HEAD(&pgdat->split_queue);
5855 	pgdat->split_queue_len = 0;
5856 #endif
5857 	init_waitqueue_head(&pgdat->kswapd_wait);
5858 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
5859 #ifdef CONFIG_COMPACTION
5860 	init_waitqueue_head(&pgdat->kcompactd_wait);
5861 #endif
5862 	pgdat_page_ext_init(pgdat);
5863 	spin_lock_init(&pgdat->lru_lock);
5864 	lruvec_init(node_lruvec(pgdat));
5865 
5866 	for (j = 0; j < MAX_NR_ZONES; j++) {
5867 		struct zone *zone = pgdat->node_zones + j;
5868 		unsigned long size, realsize, freesize, memmap_pages;
5869 		unsigned long zone_start_pfn = zone->zone_start_pfn;
5870 
5871 		size = zone->spanned_pages;
5872 		realsize = freesize = zone->present_pages;
5873 
5874 		/*
5875 		 * Adjust freesize so that it accounts for how much memory
5876 		 * is used by this zone for memmap. This affects the watermark
5877 		 * and per-cpu initialisations
5878 		 */
5879 		memmap_pages = calc_memmap_size(size, realsize);
5880 		if (!is_highmem_idx(j)) {
5881 			if (freesize >= memmap_pages) {
5882 				freesize -= memmap_pages;
5883 				if (memmap_pages)
5884 					printk(KERN_DEBUG
5885 					       "  %s zone: %lu pages used for memmap\n",
5886 					       zone_names[j], memmap_pages);
5887 			} else
5888 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
5889 					zone_names[j], memmap_pages, freesize);
5890 		}
5891 
5892 		/* Account for reserved pages */
5893 		if (j == 0 && freesize > dma_reserve) {
5894 			freesize -= dma_reserve;
5895 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
5896 					zone_names[0], dma_reserve);
5897 		}
5898 
5899 		if (!is_highmem_idx(j))
5900 			nr_kernel_pages += freesize;
5901 		/* Charge for highmem memmap if there are enough kernel pages */
5902 		else if (nr_kernel_pages > memmap_pages * 2)
5903 			nr_kernel_pages -= memmap_pages;
5904 		nr_all_pages += freesize;
5905 
5906 		/*
5907 		 * Set an approximate value for lowmem here, it will be adjusted
5908 		 * when the bootmem allocator frees pages into the buddy system.
5909 		 * And all highmem pages will be managed by the buddy system.
5910 		 */
5911 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5912 #ifdef CONFIG_NUMA
5913 		zone->node = nid;
5914 #endif
5915 		zone->name = zone_names[j];
5916 		zone->zone_pgdat = pgdat;
5917 		spin_lock_init(&zone->lock);
5918 		zone_seqlock_init(zone);
5919 		zone_pcp_init(zone);
5920 
5921 		if (!size)
5922 			continue;
5923 
5924 		set_pageblock_order();
5925 		setup_usemap(pgdat, zone, zone_start_pfn, size);
5926 		ret = init_currently_empty_zone(zone, zone_start_pfn, size);
5927 		BUG_ON(ret);
5928 		memmap_init(size, nid, j, zone_start_pfn);
5929 	}
5930 }
5931 
5932 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
5933 {
5934 	unsigned long __maybe_unused start = 0;
5935 	unsigned long __maybe_unused offset = 0;
5936 
5937 	/* Skip empty nodes */
5938 	if (!pgdat->node_spanned_pages)
5939 		return;
5940 
5941 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5942 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5943 	offset = pgdat->node_start_pfn - start;
5944 	/* ia64 gets its own node_mem_map, before this, without bootmem */
5945 	if (!pgdat->node_mem_map) {
5946 		unsigned long size, end;
5947 		struct page *map;
5948 
5949 		/*
5950 		 * The zone's endpoints aren't required to be MAX_ORDER
5951 		 * aligned but the node_mem_map endpoints must be in order
5952 		 * for the buddy allocator to function correctly.
5953 		 */
5954 		end = pgdat_end_pfn(pgdat);
5955 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
5956 		size =  (end - start) * sizeof(struct page);
5957 		map = alloc_remap(pgdat->node_id, size);
5958 		if (!map)
5959 			map = memblock_virt_alloc_node_nopanic(size,
5960 							       pgdat->node_id);
5961 		pgdat->node_mem_map = map + offset;
5962 	}
5963 #ifndef CONFIG_NEED_MULTIPLE_NODES
5964 	/*
5965 	 * With no DISCONTIG, the global mem_map is just set as node 0's
5966 	 */
5967 	if (pgdat == NODE_DATA(0)) {
5968 		mem_map = NODE_DATA(0)->node_mem_map;
5969 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
5970 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5971 			mem_map -= offset;
5972 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5973 	}
5974 #endif
5975 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5976 }
5977 
5978 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5979 		unsigned long node_start_pfn, unsigned long *zholes_size)
5980 {
5981 	pg_data_t *pgdat = NODE_DATA(nid);
5982 	unsigned long start_pfn = 0;
5983 	unsigned long end_pfn = 0;
5984 
5985 	/* pg_data_t should be reset to zero when it's allocated */
5986 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
5987 
5988 	reset_deferred_meminit(pgdat);
5989 	pgdat->node_id = nid;
5990 	pgdat->node_start_pfn = node_start_pfn;
5991 	pgdat->per_cpu_nodestats = NULL;
5992 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5993 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5994 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5995 		(u64)start_pfn << PAGE_SHIFT,
5996 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
5997 #else
5998 	start_pfn = node_start_pfn;
5999 #endif
6000 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6001 				  zones_size, zholes_size);
6002 
6003 	alloc_node_mem_map(pgdat);
6004 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6005 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6006 		nid, (unsigned long)pgdat,
6007 		(unsigned long)pgdat->node_mem_map);
6008 #endif
6009 
6010 	free_area_init_core(pgdat);
6011 }
6012 
6013 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6014 
6015 #if MAX_NUMNODES > 1
6016 /*
6017  * Figure out the number of possible node ids.
6018  */
6019 void __init setup_nr_node_ids(void)
6020 {
6021 	unsigned int highest;
6022 
6023 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6024 	nr_node_ids = highest + 1;
6025 }
6026 #endif
6027 
6028 /**
6029  * node_map_pfn_alignment - determine the maximum internode alignment
6030  *
6031  * This function should be called after node map is populated and sorted.
6032  * It calculates the maximum power of two alignment which can distinguish
6033  * all the nodes.
6034  *
6035  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6036  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
6037  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
6038  * shifted, 1GiB is enough and this function will indicate so.
6039  *
6040  * This is used to test whether pfn -> nid mapping of the chosen memory
6041  * model has fine enough granularity to avoid incorrect mapping for the
6042  * populated node map.
6043  *
6044  * Returns the determined alignment in pfn's.  0 if there is no alignment
6045  * requirement (single node).
6046  */
6047 unsigned long __init node_map_pfn_alignment(void)
6048 {
6049 	unsigned long accl_mask = 0, last_end = 0;
6050 	unsigned long start, end, mask;
6051 	int last_nid = -1;
6052 	int i, nid;
6053 
6054 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6055 		if (!start || last_nid < 0 || last_nid == nid) {
6056 			last_nid = nid;
6057 			last_end = end;
6058 			continue;
6059 		}
6060 
6061 		/*
6062 		 * Start with a mask granular enough to pin-point to the
6063 		 * start pfn and tick off bits one-by-one until it becomes
6064 		 * too coarse to separate the current node from the last.
6065 		 */
6066 		mask = ~((1 << __ffs(start)) - 1);
6067 		while (mask && last_end <= (start & (mask << 1)))
6068 			mask <<= 1;
6069 
6070 		/* accumulate all internode masks */
6071 		accl_mask |= mask;
6072 	}
6073 
6074 	/* convert mask to number of pages */
6075 	return ~accl_mask + 1;
6076 }
6077 
6078 /* Find the lowest pfn for a node */
6079 static unsigned long __init find_min_pfn_for_node(int nid)
6080 {
6081 	unsigned long min_pfn = ULONG_MAX;
6082 	unsigned long start_pfn;
6083 	int i;
6084 
6085 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6086 		min_pfn = min(min_pfn, start_pfn);
6087 
6088 	if (min_pfn == ULONG_MAX) {
6089 		pr_warn("Could not find start_pfn for node %d\n", nid);
6090 		return 0;
6091 	}
6092 
6093 	return min_pfn;
6094 }
6095 
6096 /**
6097  * find_min_pfn_with_active_regions - Find the minimum PFN registered
6098  *
6099  * It returns the minimum PFN based on information provided via
6100  * memblock_set_node().
6101  */
6102 unsigned long __init find_min_pfn_with_active_regions(void)
6103 {
6104 	return find_min_pfn_for_node(MAX_NUMNODES);
6105 }
6106 
6107 /*
6108  * early_calculate_totalpages()
6109  * Sum pages in active regions for movable zone.
6110  * Populate N_MEMORY for calculating usable_nodes.
6111  */
6112 static unsigned long __init early_calculate_totalpages(void)
6113 {
6114 	unsigned long totalpages = 0;
6115 	unsigned long start_pfn, end_pfn;
6116 	int i, nid;
6117 
6118 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6119 		unsigned long pages = end_pfn - start_pfn;
6120 
6121 		totalpages += pages;
6122 		if (pages)
6123 			node_set_state(nid, N_MEMORY);
6124 	}
6125 	return totalpages;
6126 }
6127 
6128 /*
6129  * Find the PFN the Movable zone begins in each node. Kernel memory
6130  * is spread evenly between nodes as long as the nodes have enough
6131  * memory. When they don't, some nodes will have more kernelcore than
6132  * others
6133  */
6134 static void __init find_zone_movable_pfns_for_nodes(void)
6135 {
6136 	int i, nid;
6137 	unsigned long usable_startpfn;
6138 	unsigned long kernelcore_node, kernelcore_remaining;
6139 	/* save the state before borrow the nodemask */
6140 	nodemask_t saved_node_state = node_states[N_MEMORY];
6141 	unsigned long totalpages = early_calculate_totalpages();
6142 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6143 	struct memblock_region *r;
6144 
6145 	/* Need to find movable_zone earlier when movable_node is specified. */
6146 	find_usable_zone_for_movable();
6147 
6148 	/*
6149 	 * If movable_node is specified, ignore kernelcore and movablecore
6150 	 * options.
6151 	 */
6152 	if (movable_node_is_enabled()) {
6153 		for_each_memblock(memory, r) {
6154 			if (!memblock_is_hotpluggable(r))
6155 				continue;
6156 
6157 			nid = r->nid;
6158 
6159 			usable_startpfn = PFN_DOWN(r->base);
6160 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6161 				min(usable_startpfn, zone_movable_pfn[nid]) :
6162 				usable_startpfn;
6163 		}
6164 
6165 		goto out2;
6166 	}
6167 
6168 	/*
6169 	 * If kernelcore=mirror is specified, ignore movablecore option
6170 	 */
6171 	if (mirrored_kernelcore) {
6172 		bool mem_below_4gb_not_mirrored = false;
6173 
6174 		for_each_memblock(memory, r) {
6175 			if (memblock_is_mirror(r))
6176 				continue;
6177 
6178 			nid = r->nid;
6179 
6180 			usable_startpfn = memblock_region_memory_base_pfn(r);
6181 
6182 			if (usable_startpfn < 0x100000) {
6183 				mem_below_4gb_not_mirrored = true;
6184 				continue;
6185 			}
6186 
6187 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6188 				min(usable_startpfn, zone_movable_pfn[nid]) :
6189 				usable_startpfn;
6190 		}
6191 
6192 		if (mem_below_4gb_not_mirrored)
6193 			pr_warn("This configuration results in unmirrored kernel memory.");
6194 
6195 		goto out2;
6196 	}
6197 
6198 	/*
6199 	 * If movablecore=nn[KMG] was specified, calculate what size of
6200 	 * kernelcore that corresponds so that memory usable for
6201 	 * any allocation type is evenly spread. If both kernelcore
6202 	 * and movablecore are specified, then the value of kernelcore
6203 	 * will be used for required_kernelcore if it's greater than
6204 	 * what movablecore would have allowed.
6205 	 */
6206 	if (required_movablecore) {
6207 		unsigned long corepages;
6208 
6209 		/*
6210 		 * Round-up so that ZONE_MOVABLE is at least as large as what
6211 		 * was requested by the user
6212 		 */
6213 		required_movablecore =
6214 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6215 		required_movablecore = min(totalpages, required_movablecore);
6216 		corepages = totalpages - required_movablecore;
6217 
6218 		required_kernelcore = max(required_kernelcore, corepages);
6219 	}
6220 
6221 	/*
6222 	 * If kernelcore was not specified or kernelcore size is larger
6223 	 * than totalpages, there is no ZONE_MOVABLE.
6224 	 */
6225 	if (!required_kernelcore || required_kernelcore >= totalpages)
6226 		goto out;
6227 
6228 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6229 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6230 
6231 restart:
6232 	/* Spread kernelcore memory as evenly as possible throughout nodes */
6233 	kernelcore_node = required_kernelcore / usable_nodes;
6234 	for_each_node_state(nid, N_MEMORY) {
6235 		unsigned long start_pfn, end_pfn;
6236 
6237 		/*
6238 		 * Recalculate kernelcore_node if the division per node
6239 		 * now exceeds what is necessary to satisfy the requested
6240 		 * amount of memory for the kernel
6241 		 */
6242 		if (required_kernelcore < kernelcore_node)
6243 			kernelcore_node = required_kernelcore / usable_nodes;
6244 
6245 		/*
6246 		 * As the map is walked, we track how much memory is usable
6247 		 * by the kernel using kernelcore_remaining. When it is
6248 		 * 0, the rest of the node is usable by ZONE_MOVABLE
6249 		 */
6250 		kernelcore_remaining = kernelcore_node;
6251 
6252 		/* Go through each range of PFNs within this node */
6253 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6254 			unsigned long size_pages;
6255 
6256 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6257 			if (start_pfn >= end_pfn)
6258 				continue;
6259 
6260 			/* Account for what is only usable for kernelcore */
6261 			if (start_pfn < usable_startpfn) {
6262 				unsigned long kernel_pages;
6263 				kernel_pages = min(end_pfn, usable_startpfn)
6264 								- start_pfn;
6265 
6266 				kernelcore_remaining -= min(kernel_pages,
6267 							kernelcore_remaining);
6268 				required_kernelcore -= min(kernel_pages,
6269 							required_kernelcore);
6270 
6271 				/* Continue if range is now fully accounted */
6272 				if (end_pfn <= usable_startpfn) {
6273 
6274 					/*
6275 					 * Push zone_movable_pfn to the end so
6276 					 * that if we have to rebalance
6277 					 * kernelcore across nodes, we will
6278 					 * not double account here
6279 					 */
6280 					zone_movable_pfn[nid] = end_pfn;
6281 					continue;
6282 				}
6283 				start_pfn = usable_startpfn;
6284 			}
6285 
6286 			/*
6287 			 * The usable PFN range for ZONE_MOVABLE is from
6288 			 * start_pfn->end_pfn. Calculate size_pages as the
6289 			 * number of pages used as kernelcore
6290 			 */
6291 			size_pages = end_pfn - start_pfn;
6292 			if (size_pages > kernelcore_remaining)
6293 				size_pages = kernelcore_remaining;
6294 			zone_movable_pfn[nid] = start_pfn + size_pages;
6295 
6296 			/*
6297 			 * Some kernelcore has been met, update counts and
6298 			 * break if the kernelcore for this node has been
6299 			 * satisfied
6300 			 */
6301 			required_kernelcore -= min(required_kernelcore,
6302 								size_pages);
6303 			kernelcore_remaining -= size_pages;
6304 			if (!kernelcore_remaining)
6305 				break;
6306 		}
6307 	}
6308 
6309 	/*
6310 	 * If there is still required_kernelcore, we do another pass with one
6311 	 * less node in the count. This will push zone_movable_pfn[nid] further
6312 	 * along on the nodes that still have memory until kernelcore is
6313 	 * satisfied
6314 	 */
6315 	usable_nodes--;
6316 	if (usable_nodes && required_kernelcore > usable_nodes)
6317 		goto restart;
6318 
6319 out2:
6320 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6321 	for (nid = 0; nid < MAX_NUMNODES; nid++)
6322 		zone_movable_pfn[nid] =
6323 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6324 
6325 out:
6326 	/* restore the node_state */
6327 	node_states[N_MEMORY] = saved_node_state;
6328 }
6329 
6330 /* Any regular or high memory on that node ? */
6331 static void check_for_memory(pg_data_t *pgdat, int nid)
6332 {
6333 	enum zone_type zone_type;
6334 
6335 	if (N_MEMORY == N_NORMAL_MEMORY)
6336 		return;
6337 
6338 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6339 		struct zone *zone = &pgdat->node_zones[zone_type];
6340 		if (populated_zone(zone)) {
6341 			node_set_state(nid, N_HIGH_MEMORY);
6342 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6343 			    zone_type <= ZONE_NORMAL)
6344 				node_set_state(nid, N_NORMAL_MEMORY);
6345 			break;
6346 		}
6347 	}
6348 }
6349 
6350 /**
6351  * free_area_init_nodes - Initialise all pg_data_t and zone data
6352  * @max_zone_pfn: an array of max PFNs for each zone
6353  *
6354  * This will call free_area_init_node() for each active node in the system.
6355  * Using the page ranges provided by memblock_set_node(), the size of each
6356  * zone in each node and their holes is calculated. If the maximum PFN
6357  * between two adjacent zones match, it is assumed that the zone is empty.
6358  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6359  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6360  * starts where the previous one ended. For example, ZONE_DMA32 starts
6361  * at arch_max_dma_pfn.
6362  */
6363 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6364 {
6365 	unsigned long start_pfn, end_pfn;
6366 	int i, nid;
6367 
6368 	/* Record where the zone boundaries are */
6369 	memset(arch_zone_lowest_possible_pfn, 0,
6370 				sizeof(arch_zone_lowest_possible_pfn));
6371 	memset(arch_zone_highest_possible_pfn, 0,
6372 				sizeof(arch_zone_highest_possible_pfn));
6373 
6374 	start_pfn = find_min_pfn_with_active_regions();
6375 
6376 	for (i = 0; i < MAX_NR_ZONES; i++) {
6377 		if (i == ZONE_MOVABLE)
6378 			continue;
6379 
6380 		end_pfn = max(max_zone_pfn[i], start_pfn);
6381 		arch_zone_lowest_possible_pfn[i] = start_pfn;
6382 		arch_zone_highest_possible_pfn[i] = end_pfn;
6383 
6384 		start_pfn = end_pfn;
6385 	}
6386 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6387 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6388 
6389 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
6390 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6391 	find_zone_movable_pfns_for_nodes();
6392 
6393 	/* Print out the zone ranges */
6394 	pr_info("Zone ranges:\n");
6395 	for (i = 0; i < MAX_NR_ZONES; i++) {
6396 		if (i == ZONE_MOVABLE)
6397 			continue;
6398 		pr_info("  %-8s ", zone_names[i]);
6399 		if (arch_zone_lowest_possible_pfn[i] ==
6400 				arch_zone_highest_possible_pfn[i])
6401 			pr_cont("empty\n");
6402 		else
6403 			pr_cont("[mem %#018Lx-%#018Lx]\n",
6404 				(u64)arch_zone_lowest_possible_pfn[i]
6405 					<< PAGE_SHIFT,
6406 				((u64)arch_zone_highest_possible_pfn[i]
6407 					<< PAGE_SHIFT) - 1);
6408 	}
6409 
6410 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6411 	pr_info("Movable zone start for each node\n");
6412 	for (i = 0; i < MAX_NUMNODES; i++) {
6413 		if (zone_movable_pfn[i])
6414 			pr_info("  Node %d: %#018Lx\n", i,
6415 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6416 	}
6417 
6418 	/* Print out the early node map */
6419 	pr_info("Early memory node ranges\n");
6420 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6421 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6422 			(u64)start_pfn << PAGE_SHIFT,
6423 			((u64)end_pfn << PAGE_SHIFT) - 1);
6424 
6425 	/* Initialise every node */
6426 	mminit_verify_pageflags_layout();
6427 	setup_nr_node_ids();
6428 	for_each_online_node(nid) {
6429 		pg_data_t *pgdat = NODE_DATA(nid);
6430 		free_area_init_node(nid, NULL,
6431 				find_min_pfn_for_node(nid), NULL);
6432 
6433 		/* Any memory on that node */
6434 		if (pgdat->node_present_pages)
6435 			node_set_state(nid, N_MEMORY);
6436 		check_for_memory(pgdat, nid);
6437 	}
6438 }
6439 
6440 static int __init cmdline_parse_core(char *p, unsigned long *core)
6441 {
6442 	unsigned long long coremem;
6443 	if (!p)
6444 		return -EINVAL;
6445 
6446 	coremem = memparse(p, &p);
6447 	*core = coremem >> PAGE_SHIFT;
6448 
6449 	/* Paranoid check that UL is enough for the coremem value */
6450 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6451 
6452 	return 0;
6453 }
6454 
6455 /*
6456  * kernelcore=size sets the amount of memory for use for allocations that
6457  * cannot be reclaimed or migrated.
6458  */
6459 static int __init cmdline_parse_kernelcore(char *p)
6460 {
6461 	/* parse kernelcore=mirror */
6462 	if (parse_option_str(p, "mirror")) {
6463 		mirrored_kernelcore = true;
6464 		return 0;
6465 	}
6466 
6467 	return cmdline_parse_core(p, &required_kernelcore);
6468 }
6469 
6470 /*
6471  * movablecore=size sets the amount of memory for use for allocations that
6472  * can be reclaimed or migrated.
6473  */
6474 static int __init cmdline_parse_movablecore(char *p)
6475 {
6476 	return cmdline_parse_core(p, &required_movablecore);
6477 }
6478 
6479 early_param("kernelcore", cmdline_parse_kernelcore);
6480 early_param("movablecore", cmdline_parse_movablecore);
6481 
6482 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6483 
6484 void adjust_managed_page_count(struct page *page, long count)
6485 {
6486 	spin_lock(&managed_page_count_lock);
6487 	page_zone(page)->managed_pages += count;
6488 	totalram_pages += count;
6489 #ifdef CONFIG_HIGHMEM
6490 	if (PageHighMem(page))
6491 		totalhigh_pages += count;
6492 #endif
6493 	spin_unlock(&managed_page_count_lock);
6494 }
6495 EXPORT_SYMBOL(adjust_managed_page_count);
6496 
6497 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6498 {
6499 	void *pos;
6500 	unsigned long pages = 0;
6501 
6502 	start = (void *)PAGE_ALIGN((unsigned long)start);
6503 	end = (void *)((unsigned long)end & PAGE_MASK);
6504 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6505 		if ((unsigned int)poison <= 0xFF)
6506 			memset(pos, poison, PAGE_SIZE);
6507 		free_reserved_page(virt_to_page(pos));
6508 	}
6509 
6510 	if (pages && s)
6511 		pr_info("Freeing %s memory: %ldK (%p - %p)\n",
6512 			s, pages << (PAGE_SHIFT - 10), start, end);
6513 
6514 	return pages;
6515 }
6516 EXPORT_SYMBOL(free_reserved_area);
6517 
6518 #ifdef	CONFIG_HIGHMEM
6519 void free_highmem_page(struct page *page)
6520 {
6521 	__free_reserved_page(page);
6522 	totalram_pages++;
6523 	page_zone(page)->managed_pages++;
6524 	totalhigh_pages++;
6525 }
6526 #endif
6527 
6528 
6529 void __init mem_init_print_info(const char *str)
6530 {
6531 	unsigned long physpages, codesize, datasize, rosize, bss_size;
6532 	unsigned long init_code_size, init_data_size;
6533 
6534 	physpages = get_num_physpages();
6535 	codesize = _etext - _stext;
6536 	datasize = _edata - _sdata;
6537 	rosize = __end_rodata - __start_rodata;
6538 	bss_size = __bss_stop - __bss_start;
6539 	init_data_size = __init_end - __init_begin;
6540 	init_code_size = _einittext - _sinittext;
6541 
6542 	/*
6543 	 * Detect special cases and adjust section sizes accordingly:
6544 	 * 1) .init.* may be embedded into .data sections
6545 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
6546 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
6547 	 * 3) .rodata.* may be embedded into .text or .data sections.
6548 	 */
6549 #define adj_init_size(start, end, size, pos, adj) \
6550 	do { \
6551 		if (start <= pos && pos < end && size > adj) \
6552 			size -= adj; \
6553 	} while (0)
6554 
6555 	adj_init_size(__init_begin, __init_end, init_data_size,
6556 		     _sinittext, init_code_size);
6557 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6558 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6559 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6560 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6561 
6562 #undef	adj_init_size
6563 
6564 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6565 #ifdef	CONFIG_HIGHMEM
6566 		", %luK highmem"
6567 #endif
6568 		"%s%s)\n",
6569 		nr_free_pages() << (PAGE_SHIFT - 10),
6570 		physpages << (PAGE_SHIFT - 10),
6571 		codesize >> 10, datasize >> 10, rosize >> 10,
6572 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
6573 		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6574 		totalcma_pages << (PAGE_SHIFT - 10),
6575 #ifdef	CONFIG_HIGHMEM
6576 		totalhigh_pages << (PAGE_SHIFT - 10),
6577 #endif
6578 		str ? ", " : "", str ? str : "");
6579 }
6580 
6581 /**
6582  * set_dma_reserve - set the specified number of pages reserved in the first zone
6583  * @new_dma_reserve: The number of pages to mark reserved
6584  *
6585  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6586  * In the DMA zone, a significant percentage may be consumed by kernel image
6587  * and other unfreeable allocations which can skew the watermarks badly. This
6588  * function may optionally be used to account for unfreeable pages in the
6589  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6590  * smaller per-cpu batchsize.
6591  */
6592 void __init set_dma_reserve(unsigned long new_dma_reserve)
6593 {
6594 	dma_reserve = new_dma_reserve;
6595 }
6596 
6597 void __init free_area_init(unsigned long *zones_size)
6598 {
6599 	free_area_init_node(0, zones_size,
6600 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6601 }
6602 
6603 static int page_alloc_cpu_notify(struct notifier_block *self,
6604 				 unsigned long action, void *hcpu)
6605 {
6606 	int cpu = (unsigned long)hcpu;
6607 
6608 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
6609 		lru_add_drain_cpu(cpu);
6610 		drain_pages(cpu);
6611 
6612 		/*
6613 		 * Spill the event counters of the dead processor
6614 		 * into the current processors event counters.
6615 		 * This artificially elevates the count of the current
6616 		 * processor.
6617 		 */
6618 		vm_events_fold_cpu(cpu);
6619 
6620 		/*
6621 		 * Zero the differential counters of the dead processor
6622 		 * so that the vm statistics are consistent.
6623 		 *
6624 		 * This is only okay since the processor is dead and cannot
6625 		 * race with what we are doing.
6626 		 */
6627 		cpu_vm_stats_fold(cpu);
6628 	}
6629 	return NOTIFY_OK;
6630 }
6631 
6632 void __init page_alloc_init(void)
6633 {
6634 	hotcpu_notifier(page_alloc_cpu_notify, 0);
6635 }
6636 
6637 /*
6638  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6639  *	or min_free_kbytes changes.
6640  */
6641 static void calculate_totalreserve_pages(void)
6642 {
6643 	struct pglist_data *pgdat;
6644 	unsigned long reserve_pages = 0;
6645 	enum zone_type i, j;
6646 
6647 	for_each_online_pgdat(pgdat) {
6648 
6649 		pgdat->totalreserve_pages = 0;
6650 
6651 		for (i = 0; i < MAX_NR_ZONES; i++) {
6652 			struct zone *zone = pgdat->node_zones + i;
6653 			long max = 0;
6654 
6655 			/* Find valid and maximum lowmem_reserve in the zone */
6656 			for (j = i; j < MAX_NR_ZONES; j++) {
6657 				if (zone->lowmem_reserve[j] > max)
6658 					max = zone->lowmem_reserve[j];
6659 			}
6660 
6661 			/* we treat the high watermark as reserved pages. */
6662 			max += high_wmark_pages(zone);
6663 
6664 			if (max > zone->managed_pages)
6665 				max = zone->managed_pages;
6666 
6667 			pgdat->totalreserve_pages += max;
6668 
6669 			reserve_pages += max;
6670 		}
6671 	}
6672 	totalreserve_pages = reserve_pages;
6673 }
6674 
6675 /*
6676  * setup_per_zone_lowmem_reserve - called whenever
6677  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
6678  *	has a correct pages reserved value, so an adequate number of
6679  *	pages are left in the zone after a successful __alloc_pages().
6680  */
6681 static void setup_per_zone_lowmem_reserve(void)
6682 {
6683 	struct pglist_data *pgdat;
6684 	enum zone_type j, idx;
6685 
6686 	for_each_online_pgdat(pgdat) {
6687 		for (j = 0; j < MAX_NR_ZONES; j++) {
6688 			struct zone *zone = pgdat->node_zones + j;
6689 			unsigned long managed_pages = zone->managed_pages;
6690 
6691 			zone->lowmem_reserve[j] = 0;
6692 
6693 			idx = j;
6694 			while (idx) {
6695 				struct zone *lower_zone;
6696 
6697 				idx--;
6698 
6699 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
6700 					sysctl_lowmem_reserve_ratio[idx] = 1;
6701 
6702 				lower_zone = pgdat->node_zones + idx;
6703 				lower_zone->lowmem_reserve[j] = managed_pages /
6704 					sysctl_lowmem_reserve_ratio[idx];
6705 				managed_pages += lower_zone->managed_pages;
6706 			}
6707 		}
6708 	}
6709 
6710 	/* update totalreserve_pages */
6711 	calculate_totalreserve_pages();
6712 }
6713 
6714 static void __setup_per_zone_wmarks(void)
6715 {
6716 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6717 	unsigned long lowmem_pages = 0;
6718 	struct zone *zone;
6719 	unsigned long flags;
6720 
6721 	/* Calculate total number of !ZONE_HIGHMEM pages */
6722 	for_each_zone(zone) {
6723 		if (!is_highmem(zone))
6724 			lowmem_pages += zone->managed_pages;
6725 	}
6726 
6727 	for_each_zone(zone) {
6728 		u64 tmp;
6729 
6730 		spin_lock_irqsave(&zone->lock, flags);
6731 		tmp = (u64)pages_min * zone->managed_pages;
6732 		do_div(tmp, lowmem_pages);
6733 		if (is_highmem(zone)) {
6734 			/*
6735 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6736 			 * need highmem pages, so cap pages_min to a small
6737 			 * value here.
6738 			 *
6739 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6740 			 * deltas control asynch page reclaim, and so should
6741 			 * not be capped for highmem.
6742 			 */
6743 			unsigned long min_pages;
6744 
6745 			min_pages = zone->managed_pages / 1024;
6746 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6747 			zone->watermark[WMARK_MIN] = min_pages;
6748 		} else {
6749 			/*
6750 			 * If it's a lowmem zone, reserve a number of pages
6751 			 * proportionate to the zone's size.
6752 			 */
6753 			zone->watermark[WMARK_MIN] = tmp;
6754 		}
6755 
6756 		/*
6757 		 * Set the kswapd watermarks distance according to the
6758 		 * scale factor in proportion to available memory, but
6759 		 * ensure a minimum size on small systems.
6760 		 */
6761 		tmp = max_t(u64, tmp >> 2,
6762 			    mult_frac(zone->managed_pages,
6763 				      watermark_scale_factor, 10000));
6764 
6765 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
6766 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6767 
6768 		spin_unlock_irqrestore(&zone->lock, flags);
6769 	}
6770 
6771 	/* update totalreserve_pages */
6772 	calculate_totalreserve_pages();
6773 }
6774 
6775 /**
6776  * setup_per_zone_wmarks - called when min_free_kbytes changes
6777  * or when memory is hot-{added|removed}
6778  *
6779  * Ensures that the watermark[min,low,high] values for each zone are set
6780  * correctly with respect to min_free_kbytes.
6781  */
6782 void setup_per_zone_wmarks(void)
6783 {
6784 	mutex_lock(&zonelists_mutex);
6785 	__setup_per_zone_wmarks();
6786 	mutex_unlock(&zonelists_mutex);
6787 }
6788 
6789 /*
6790  * Initialise min_free_kbytes.
6791  *
6792  * For small machines we want it small (128k min).  For large machines
6793  * we want it large (64MB max).  But it is not linear, because network
6794  * bandwidth does not increase linearly with machine size.  We use
6795  *
6796  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6797  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
6798  *
6799  * which yields
6800  *
6801  * 16MB:	512k
6802  * 32MB:	724k
6803  * 64MB:	1024k
6804  * 128MB:	1448k
6805  * 256MB:	2048k
6806  * 512MB:	2896k
6807  * 1024MB:	4096k
6808  * 2048MB:	5792k
6809  * 4096MB:	8192k
6810  * 8192MB:	11584k
6811  * 16384MB:	16384k
6812  */
6813 int __meminit init_per_zone_wmark_min(void)
6814 {
6815 	unsigned long lowmem_kbytes;
6816 	int new_min_free_kbytes;
6817 
6818 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6819 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6820 
6821 	if (new_min_free_kbytes > user_min_free_kbytes) {
6822 		min_free_kbytes = new_min_free_kbytes;
6823 		if (min_free_kbytes < 128)
6824 			min_free_kbytes = 128;
6825 		if (min_free_kbytes > 65536)
6826 			min_free_kbytes = 65536;
6827 	} else {
6828 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6829 				new_min_free_kbytes, user_min_free_kbytes);
6830 	}
6831 	setup_per_zone_wmarks();
6832 	refresh_zone_stat_thresholds();
6833 	setup_per_zone_lowmem_reserve();
6834 
6835 #ifdef CONFIG_NUMA
6836 	setup_min_unmapped_ratio();
6837 	setup_min_slab_ratio();
6838 #endif
6839 
6840 	return 0;
6841 }
6842 core_initcall(init_per_zone_wmark_min)
6843 
6844 /*
6845  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6846  *	that we can call two helper functions whenever min_free_kbytes
6847  *	changes.
6848  */
6849 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6850 	void __user *buffer, size_t *length, loff_t *ppos)
6851 {
6852 	int rc;
6853 
6854 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6855 	if (rc)
6856 		return rc;
6857 
6858 	if (write) {
6859 		user_min_free_kbytes = min_free_kbytes;
6860 		setup_per_zone_wmarks();
6861 	}
6862 	return 0;
6863 }
6864 
6865 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6866 	void __user *buffer, size_t *length, loff_t *ppos)
6867 {
6868 	int rc;
6869 
6870 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6871 	if (rc)
6872 		return rc;
6873 
6874 	if (write)
6875 		setup_per_zone_wmarks();
6876 
6877 	return 0;
6878 }
6879 
6880 #ifdef CONFIG_NUMA
6881 static void setup_min_unmapped_ratio(void)
6882 {
6883 	pg_data_t *pgdat;
6884 	struct zone *zone;
6885 
6886 	for_each_online_pgdat(pgdat)
6887 		pgdat->min_unmapped_pages = 0;
6888 
6889 	for_each_zone(zone)
6890 		zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
6891 				sysctl_min_unmapped_ratio) / 100;
6892 }
6893 
6894 
6895 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6896 	void __user *buffer, size_t *length, loff_t *ppos)
6897 {
6898 	int rc;
6899 
6900 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6901 	if (rc)
6902 		return rc;
6903 
6904 	setup_min_unmapped_ratio();
6905 
6906 	return 0;
6907 }
6908 
6909 static void setup_min_slab_ratio(void)
6910 {
6911 	pg_data_t *pgdat;
6912 	struct zone *zone;
6913 
6914 	for_each_online_pgdat(pgdat)
6915 		pgdat->min_slab_pages = 0;
6916 
6917 	for_each_zone(zone)
6918 		zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
6919 				sysctl_min_slab_ratio) / 100;
6920 }
6921 
6922 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6923 	void __user *buffer, size_t *length, loff_t *ppos)
6924 {
6925 	int rc;
6926 
6927 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6928 	if (rc)
6929 		return rc;
6930 
6931 	setup_min_slab_ratio();
6932 
6933 	return 0;
6934 }
6935 #endif
6936 
6937 /*
6938  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6939  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6940  *	whenever sysctl_lowmem_reserve_ratio changes.
6941  *
6942  * The reserve ratio obviously has absolutely no relation with the
6943  * minimum watermarks. The lowmem reserve ratio can only make sense
6944  * if in function of the boot time zone sizes.
6945  */
6946 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6947 	void __user *buffer, size_t *length, loff_t *ppos)
6948 {
6949 	proc_dointvec_minmax(table, write, buffer, length, ppos);
6950 	setup_per_zone_lowmem_reserve();
6951 	return 0;
6952 }
6953 
6954 /*
6955  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6956  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
6957  * pagelist can have before it gets flushed back to buddy allocator.
6958  */
6959 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6960 	void __user *buffer, size_t *length, loff_t *ppos)
6961 {
6962 	struct zone *zone;
6963 	int old_percpu_pagelist_fraction;
6964 	int ret;
6965 
6966 	mutex_lock(&pcp_batch_high_lock);
6967 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6968 
6969 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6970 	if (!write || ret < 0)
6971 		goto out;
6972 
6973 	/* Sanity checking to avoid pcp imbalance */
6974 	if (percpu_pagelist_fraction &&
6975 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6976 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6977 		ret = -EINVAL;
6978 		goto out;
6979 	}
6980 
6981 	/* No change? */
6982 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6983 		goto out;
6984 
6985 	for_each_populated_zone(zone) {
6986 		unsigned int cpu;
6987 
6988 		for_each_possible_cpu(cpu)
6989 			pageset_set_high_and_batch(zone,
6990 					per_cpu_ptr(zone->pageset, cpu));
6991 	}
6992 out:
6993 	mutex_unlock(&pcp_batch_high_lock);
6994 	return ret;
6995 }
6996 
6997 #ifdef CONFIG_NUMA
6998 int hashdist = HASHDIST_DEFAULT;
6999 
7000 static int __init set_hashdist(char *str)
7001 {
7002 	if (!str)
7003 		return 0;
7004 	hashdist = simple_strtoul(str, &str, 0);
7005 	return 1;
7006 }
7007 __setup("hashdist=", set_hashdist);
7008 #endif
7009 
7010 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7011 /*
7012  * Returns the number of pages that arch has reserved but
7013  * is not known to alloc_large_system_hash().
7014  */
7015 static unsigned long __init arch_reserved_kernel_pages(void)
7016 {
7017 	return 0;
7018 }
7019 #endif
7020 
7021 /*
7022  * allocate a large system hash table from bootmem
7023  * - it is assumed that the hash table must contain an exact power-of-2
7024  *   quantity of entries
7025  * - limit is the number of hash buckets, not the total allocation size
7026  */
7027 void *__init alloc_large_system_hash(const char *tablename,
7028 				     unsigned long bucketsize,
7029 				     unsigned long numentries,
7030 				     int scale,
7031 				     int flags,
7032 				     unsigned int *_hash_shift,
7033 				     unsigned int *_hash_mask,
7034 				     unsigned long low_limit,
7035 				     unsigned long high_limit)
7036 {
7037 	unsigned long long max = high_limit;
7038 	unsigned long log2qty, size;
7039 	void *table = NULL;
7040 
7041 	/* allow the kernel cmdline to have a say */
7042 	if (!numentries) {
7043 		/* round applicable memory size up to nearest megabyte */
7044 		numentries = nr_kernel_pages;
7045 		numentries -= arch_reserved_kernel_pages();
7046 
7047 		/* It isn't necessary when PAGE_SIZE >= 1MB */
7048 		if (PAGE_SHIFT < 20)
7049 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7050 
7051 		/* limit to 1 bucket per 2^scale bytes of low memory */
7052 		if (scale > PAGE_SHIFT)
7053 			numentries >>= (scale - PAGE_SHIFT);
7054 		else
7055 			numentries <<= (PAGE_SHIFT - scale);
7056 
7057 		/* Make sure we've got at least a 0-order allocation.. */
7058 		if (unlikely(flags & HASH_SMALL)) {
7059 			/* Makes no sense without HASH_EARLY */
7060 			WARN_ON(!(flags & HASH_EARLY));
7061 			if (!(numentries >> *_hash_shift)) {
7062 				numentries = 1UL << *_hash_shift;
7063 				BUG_ON(!numentries);
7064 			}
7065 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7066 			numentries = PAGE_SIZE / bucketsize;
7067 	}
7068 	numentries = roundup_pow_of_two(numentries);
7069 
7070 	/* limit allocation size to 1/16 total memory by default */
7071 	if (max == 0) {
7072 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7073 		do_div(max, bucketsize);
7074 	}
7075 	max = min(max, 0x80000000ULL);
7076 
7077 	if (numentries < low_limit)
7078 		numentries = low_limit;
7079 	if (numentries > max)
7080 		numentries = max;
7081 
7082 	log2qty = ilog2(numentries);
7083 
7084 	do {
7085 		size = bucketsize << log2qty;
7086 		if (flags & HASH_EARLY)
7087 			table = memblock_virt_alloc_nopanic(size, 0);
7088 		else if (hashdist)
7089 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7090 		else {
7091 			/*
7092 			 * If bucketsize is not a power-of-two, we may free
7093 			 * some pages at the end of hash table which
7094 			 * alloc_pages_exact() automatically does
7095 			 */
7096 			if (get_order(size) < MAX_ORDER) {
7097 				table = alloc_pages_exact(size, GFP_ATOMIC);
7098 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7099 			}
7100 		}
7101 	} while (!table && size > PAGE_SIZE && --log2qty);
7102 
7103 	if (!table)
7104 		panic("Failed to allocate %s hash table\n", tablename);
7105 
7106 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7107 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7108 
7109 	if (_hash_shift)
7110 		*_hash_shift = log2qty;
7111 	if (_hash_mask)
7112 		*_hash_mask = (1 << log2qty) - 1;
7113 
7114 	return table;
7115 }
7116 
7117 /*
7118  * This function checks whether pageblock includes unmovable pages or not.
7119  * If @count is not zero, it is okay to include less @count unmovable pages
7120  *
7121  * PageLRU check without isolation or lru_lock could race so that
7122  * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7123  * expect this function should be exact.
7124  */
7125 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7126 			 bool skip_hwpoisoned_pages)
7127 {
7128 	unsigned long pfn, iter, found;
7129 	int mt;
7130 
7131 	/*
7132 	 * For avoiding noise data, lru_add_drain_all() should be called
7133 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
7134 	 */
7135 	if (zone_idx(zone) == ZONE_MOVABLE)
7136 		return false;
7137 	mt = get_pageblock_migratetype(page);
7138 	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7139 		return false;
7140 
7141 	pfn = page_to_pfn(page);
7142 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7143 		unsigned long check = pfn + iter;
7144 
7145 		if (!pfn_valid_within(check))
7146 			continue;
7147 
7148 		page = pfn_to_page(check);
7149 
7150 		/*
7151 		 * Hugepages are not in LRU lists, but they're movable.
7152 		 * We need not scan over tail pages bacause we don't
7153 		 * handle each tail page individually in migration.
7154 		 */
7155 		if (PageHuge(page)) {
7156 			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7157 			continue;
7158 		}
7159 
7160 		/*
7161 		 * We can't use page_count without pin a page
7162 		 * because another CPU can free compound page.
7163 		 * This check already skips compound tails of THP
7164 		 * because their page->_refcount is zero at all time.
7165 		 */
7166 		if (!page_ref_count(page)) {
7167 			if (PageBuddy(page))
7168 				iter += (1 << page_order(page)) - 1;
7169 			continue;
7170 		}
7171 
7172 		/*
7173 		 * The HWPoisoned page may be not in buddy system, and
7174 		 * page_count() is not 0.
7175 		 */
7176 		if (skip_hwpoisoned_pages && PageHWPoison(page))
7177 			continue;
7178 
7179 		if (!PageLRU(page))
7180 			found++;
7181 		/*
7182 		 * If there are RECLAIMABLE pages, we need to check
7183 		 * it.  But now, memory offline itself doesn't call
7184 		 * shrink_node_slabs() and it still to be fixed.
7185 		 */
7186 		/*
7187 		 * If the page is not RAM, page_count()should be 0.
7188 		 * we don't need more check. This is an _used_ not-movable page.
7189 		 *
7190 		 * The problematic thing here is PG_reserved pages. PG_reserved
7191 		 * is set to both of a memory hole page and a _used_ kernel
7192 		 * page at boot.
7193 		 */
7194 		if (found > count)
7195 			return true;
7196 	}
7197 	return false;
7198 }
7199 
7200 bool is_pageblock_removable_nolock(struct page *page)
7201 {
7202 	struct zone *zone;
7203 	unsigned long pfn;
7204 
7205 	/*
7206 	 * We have to be careful here because we are iterating over memory
7207 	 * sections which are not zone aware so we might end up outside of
7208 	 * the zone but still within the section.
7209 	 * We have to take care about the node as well. If the node is offline
7210 	 * its NODE_DATA will be NULL - see page_zone.
7211 	 */
7212 	if (!node_online(page_to_nid(page)))
7213 		return false;
7214 
7215 	zone = page_zone(page);
7216 	pfn = page_to_pfn(page);
7217 	if (!zone_spans_pfn(zone, pfn))
7218 		return false;
7219 
7220 	return !has_unmovable_pages(zone, page, 0, true);
7221 }
7222 
7223 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7224 
7225 static unsigned long pfn_max_align_down(unsigned long pfn)
7226 {
7227 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7228 			     pageblock_nr_pages) - 1);
7229 }
7230 
7231 static unsigned long pfn_max_align_up(unsigned long pfn)
7232 {
7233 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7234 				pageblock_nr_pages));
7235 }
7236 
7237 /* [start, end) must belong to a single zone. */
7238 static int __alloc_contig_migrate_range(struct compact_control *cc,
7239 					unsigned long start, unsigned long end)
7240 {
7241 	/* This function is based on compact_zone() from compaction.c. */
7242 	unsigned long nr_reclaimed;
7243 	unsigned long pfn = start;
7244 	unsigned int tries = 0;
7245 	int ret = 0;
7246 
7247 	migrate_prep();
7248 
7249 	while (pfn < end || !list_empty(&cc->migratepages)) {
7250 		if (fatal_signal_pending(current)) {
7251 			ret = -EINTR;
7252 			break;
7253 		}
7254 
7255 		if (list_empty(&cc->migratepages)) {
7256 			cc->nr_migratepages = 0;
7257 			pfn = isolate_migratepages_range(cc, pfn, end);
7258 			if (!pfn) {
7259 				ret = -EINTR;
7260 				break;
7261 			}
7262 			tries = 0;
7263 		} else if (++tries == 5) {
7264 			ret = ret < 0 ? ret : -EBUSY;
7265 			break;
7266 		}
7267 
7268 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7269 							&cc->migratepages);
7270 		cc->nr_migratepages -= nr_reclaimed;
7271 
7272 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7273 				    NULL, 0, cc->mode, MR_CMA);
7274 	}
7275 	if (ret < 0) {
7276 		putback_movable_pages(&cc->migratepages);
7277 		return ret;
7278 	}
7279 	return 0;
7280 }
7281 
7282 /**
7283  * alloc_contig_range() -- tries to allocate given range of pages
7284  * @start:	start PFN to allocate
7285  * @end:	one-past-the-last PFN to allocate
7286  * @migratetype:	migratetype of the underlaying pageblocks (either
7287  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
7288  *			in range must have the same migratetype and it must
7289  *			be either of the two.
7290  *
7291  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7292  * aligned, however it's the caller's responsibility to guarantee that
7293  * we are the only thread that changes migrate type of pageblocks the
7294  * pages fall in.
7295  *
7296  * The PFN range must belong to a single zone.
7297  *
7298  * Returns zero on success or negative error code.  On success all
7299  * pages which PFN is in [start, end) are allocated for the caller and
7300  * need to be freed with free_contig_range().
7301  */
7302 int alloc_contig_range(unsigned long start, unsigned long end,
7303 		       unsigned migratetype)
7304 {
7305 	unsigned long outer_start, outer_end;
7306 	unsigned int order;
7307 	int ret = 0;
7308 
7309 	struct compact_control cc = {
7310 		.nr_migratepages = 0,
7311 		.order = -1,
7312 		.zone = page_zone(pfn_to_page(start)),
7313 		.mode = MIGRATE_SYNC,
7314 		.ignore_skip_hint = true,
7315 	};
7316 	INIT_LIST_HEAD(&cc.migratepages);
7317 
7318 	/*
7319 	 * What we do here is we mark all pageblocks in range as
7320 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
7321 	 * have different sizes, and due to the way page allocator
7322 	 * work, we align the range to biggest of the two pages so
7323 	 * that page allocator won't try to merge buddies from
7324 	 * different pageblocks and change MIGRATE_ISOLATE to some
7325 	 * other migration type.
7326 	 *
7327 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7328 	 * migrate the pages from an unaligned range (ie. pages that
7329 	 * we are interested in).  This will put all the pages in
7330 	 * range back to page allocator as MIGRATE_ISOLATE.
7331 	 *
7332 	 * When this is done, we take the pages in range from page
7333 	 * allocator removing them from the buddy system.  This way
7334 	 * page allocator will never consider using them.
7335 	 *
7336 	 * This lets us mark the pageblocks back as
7337 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7338 	 * aligned range but not in the unaligned, original range are
7339 	 * put back to page allocator so that buddy can use them.
7340 	 */
7341 
7342 	ret = start_isolate_page_range(pfn_max_align_down(start),
7343 				       pfn_max_align_up(end), migratetype,
7344 				       false);
7345 	if (ret)
7346 		return ret;
7347 
7348 	/*
7349 	 * In case of -EBUSY, we'd like to know which page causes problem.
7350 	 * So, just fall through. We will check it in test_pages_isolated().
7351 	 */
7352 	ret = __alloc_contig_migrate_range(&cc, start, end);
7353 	if (ret && ret != -EBUSY)
7354 		goto done;
7355 
7356 	/*
7357 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7358 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
7359 	 * more, all pages in [start, end) are free in page allocator.
7360 	 * What we are going to do is to allocate all pages from
7361 	 * [start, end) (that is remove them from page allocator).
7362 	 *
7363 	 * The only problem is that pages at the beginning and at the
7364 	 * end of interesting range may be not aligned with pages that
7365 	 * page allocator holds, ie. they can be part of higher order
7366 	 * pages.  Because of this, we reserve the bigger range and
7367 	 * once this is done free the pages we are not interested in.
7368 	 *
7369 	 * We don't have to hold zone->lock here because the pages are
7370 	 * isolated thus they won't get removed from buddy.
7371 	 */
7372 
7373 	lru_add_drain_all();
7374 	drain_all_pages(cc.zone);
7375 
7376 	order = 0;
7377 	outer_start = start;
7378 	while (!PageBuddy(pfn_to_page(outer_start))) {
7379 		if (++order >= MAX_ORDER) {
7380 			outer_start = start;
7381 			break;
7382 		}
7383 		outer_start &= ~0UL << order;
7384 	}
7385 
7386 	if (outer_start != start) {
7387 		order = page_order(pfn_to_page(outer_start));
7388 
7389 		/*
7390 		 * outer_start page could be small order buddy page and
7391 		 * it doesn't include start page. Adjust outer_start
7392 		 * in this case to report failed page properly
7393 		 * on tracepoint in test_pages_isolated()
7394 		 */
7395 		if (outer_start + (1UL << order) <= start)
7396 			outer_start = start;
7397 	}
7398 
7399 	/* Make sure the range is really isolated. */
7400 	if (test_pages_isolated(outer_start, end, false)) {
7401 		pr_info("%s: [%lx, %lx) PFNs busy\n",
7402 			__func__, outer_start, end);
7403 		ret = -EBUSY;
7404 		goto done;
7405 	}
7406 
7407 	/* Grab isolated pages from freelists. */
7408 	outer_end = isolate_freepages_range(&cc, outer_start, end);
7409 	if (!outer_end) {
7410 		ret = -EBUSY;
7411 		goto done;
7412 	}
7413 
7414 	/* Free head and tail (if any) */
7415 	if (start != outer_start)
7416 		free_contig_range(outer_start, start - outer_start);
7417 	if (end != outer_end)
7418 		free_contig_range(end, outer_end - end);
7419 
7420 done:
7421 	undo_isolate_page_range(pfn_max_align_down(start),
7422 				pfn_max_align_up(end), migratetype);
7423 	return ret;
7424 }
7425 
7426 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7427 {
7428 	unsigned int count = 0;
7429 
7430 	for (; nr_pages--; pfn++) {
7431 		struct page *page = pfn_to_page(pfn);
7432 
7433 		count += page_count(page) != 1;
7434 		__free_page(page);
7435 	}
7436 	WARN(count != 0, "%d pages are still in use!\n", count);
7437 }
7438 #endif
7439 
7440 #ifdef CONFIG_MEMORY_HOTPLUG
7441 /*
7442  * The zone indicated has a new number of managed_pages; batch sizes and percpu
7443  * page high values need to be recalulated.
7444  */
7445 void __meminit zone_pcp_update(struct zone *zone)
7446 {
7447 	unsigned cpu;
7448 	mutex_lock(&pcp_batch_high_lock);
7449 	for_each_possible_cpu(cpu)
7450 		pageset_set_high_and_batch(zone,
7451 				per_cpu_ptr(zone->pageset, cpu));
7452 	mutex_unlock(&pcp_batch_high_lock);
7453 }
7454 #endif
7455 
7456 void zone_pcp_reset(struct zone *zone)
7457 {
7458 	unsigned long flags;
7459 	int cpu;
7460 	struct per_cpu_pageset *pset;
7461 
7462 	/* avoid races with drain_pages()  */
7463 	local_irq_save(flags);
7464 	if (zone->pageset != &boot_pageset) {
7465 		for_each_online_cpu(cpu) {
7466 			pset = per_cpu_ptr(zone->pageset, cpu);
7467 			drain_zonestat(zone, pset);
7468 		}
7469 		free_percpu(zone->pageset);
7470 		zone->pageset = &boot_pageset;
7471 	}
7472 	local_irq_restore(flags);
7473 }
7474 
7475 #ifdef CONFIG_MEMORY_HOTREMOVE
7476 /*
7477  * All pages in the range must be in a single zone and isolated
7478  * before calling this.
7479  */
7480 void
7481 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7482 {
7483 	struct page *page;
7484 	struct zone *zone;
7485 	unsigned int order, i;
7486 	unsigned long pfn;
7487 	unsigned long flags;
7488 	/* find the first valid pfn */
7489 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
7490 		if (pfn_valid(pfn))
7491 			break;
7492 	if (pfn == end_pfn)
7493 		return;
7494 	zone = page_zone(pfn_to_page(pfn));
7495 	spin_lock_irqsave(&zone->lock, flags);
7496 	pfn = start_pfn;
7497 	while (pfn < end_pfn) {
7498 		if (!pfn_valid(pfn)) {
7499 			pfn++;
7500 			continue;
7501 		}
7502 		page = pfn_to_page(pfn);
7503 		/*
7504 		 * The HWPoisoned page may be not in buddy system, and
7505 		 * page_count() is not 0.
7506 		 */
7507 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7508 			pfn++;
7509 			SetPageReserved(page);
7510 			continue;
7511 		}
7512 
7513 		BUG_ON(page_count(page));
7514 		BUG_ON(!PageBuddy(page));
7515 		order = page_order(page);
7516 #ifdef CONFIG_DEBUG_VM
7517 		pr_info("remove from free list %lx %d %lx\n",
7518 			pfn, 1 << order, end_pfn);
7519 #endif
7520 		list_del(&page->lru);
7521 		rmv_page_order(page);
7522 		zone->free_area[order].nr_free--;
7523 		for (i = 0; i < (1 << order); i++)
7524 			SetPageReserved((page+i));
7525 		pfn += (1 << order);
7526 	}
7527 	spin_unlock_irqrestore(&zone->lock, flags);
7528 }
7529 #endif
7530 
7531 bool is_free_buddy_page(struct page *page)
7532 {
7533 	struct zone *zone = page_zone(page);
7534 	unsigned long pfn = page_to_pfn(page);
7535 	unsigned long flags;
7536 	unsigned int order;
7537 
7538 	spin_lock_irqsave(&zone->lock, flags);
7539 	for (order = 0; order < MAX_ORDER; order++) {
7540 		struct page *page_head = page - (pfn & ((1 << order) - 1));
7541 
7542 		if (PageBuddy(page_head) && page_order(page_head) >= order)
7543 			break;
7544 	}
7545 	spin_unlock_irqrestore(&zone->lock, flags);
7546 
7547 	return order < MAX_ORDER;
7548 }
7549