xref: /openbmc/linux/mm/page_alloc.c (revision 69868c3b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/mmu_notifier.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/lockdep.h>
70 #include <linux/nmi.h>
71 #include <linux/psi.h>
72 #include <linux/padata.h>
73 #include <linux/khugepaged.h>
74 #include <linux/buffer_head.h>
75 #include <asm/sections.h>
76 #include <asm/tlbflush.h>
77 #include <asm/div64.h>
78 #include "internal.h"
79 #include "shuffle.h"
80 #include "page_reporting.h"
81 
82 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
83 typedef int __bitwise fpi_t;
84 
85 /* No special request */
86 #define FPI_NONE		((__force fpi_t)0)
87 
88 /*
89  * Skip free page reporting notification for the (possibly merged) page.
90  * This does not hinder free page reporting from grabbing the page,
91  * reporting it and marking it "reported" -  it only skips notifying
92  * the free page reporting infrastructure about a newly freed page. For
93  * example, used when temporarily pulling a page from a freelist and
94  * putting it back unmodified.
95  */
96 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
97 
98 /*
99  * Place the (possibly merged) page to the tail of the freelist. Will ignore
100  * page shuffling (relevant code - e.g., memory onlining - is expected to
101  * shuffle the whole zone).
102  *
103  * Note: No code should rely on this flag for correctness - it's purely
104  *       to allow for optimizations when handing back either fresh pages
105  *       (memory onlining) or untouched pages (page isolation, free page
106  *       reporting).
107  */
108 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
109 
110 /*
111  * Don't poison memory with KASAN (only for the tag-based modes).
112  * During boot, all non-reserved memblock memory is exposed to page_alloc.
113  * Poisoning all that memory lengthens boot time, especially on systems with
114  * large amount of RAM. This flag is used to skip that poisoning.
115  * This is only done for the tag-based KASAN modes, as those are able to
116  * detect memory corruptions with the memory tags assigned by default.
117  * All memory allocated normally after boot gets poisoned as usual.
118  */
119 #define FPI_SKIP_KASAN_POISON	((__force fpi_t)BIT(2))
120 
121 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
122 static DEFINE_MUTEX(pcp_batch_high_lock);
123 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
124 
125 struct pagesets {
126 	local_lock_t lock;
127 };
128 static DEFINE_PER_CPU(struct pagesets, pagesets) = {
129 	.lock = INIT_LOCAL_LOCK(lock),
130 };
131 
132 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
133 DEFINE_PER_CPU(int, numa_node);
134 EXPORT_PER_CPU_SYMBOL(numa_node);
135 #endif
136 
137 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
138 
139 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
140 /*
141  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
142  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
143  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
144  * defined in <linux/topology.h>.
145  */
146 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
147 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
148 #endif
149 
150 /* work_structs for global per-cpu drains */
151 struct pcpu_drain {
152 	struct zone *zone;
153 	struct work_struct work;
154 };
155 static DEFINE_MUTEX(pcpu_drain_mutex);
156 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
157 
158 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
159 volatile unsigned long latent_entropy __latent_entropy;
160 EXPORT_SYMBOL(latent_entropy);
161 #endif
162 
163 /*
164  * Array of node states.
165  */
166 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
167 	[N_POSSIBLE] = NODE_MASK_ALL,
168 	[N_ONLINE] = { { [0] = 1UL } },
169 #ifndef CONFIG_NUMA
170 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
171 #ifdef CONFIG_HIGHMEM
172 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
173 #endif
174 	[N_MEMORY] = { { [0] = 1UL } },
175 	[N_CPU] = { { [0] = 1UL } },
176 #endif	/* NUMA */
177 };
178 EXPORT_SYMBOL(node_states);
179 
180 atomic_long_t _totalram_pages __read_mostly;
181 EXPORT_SYMBOL(_totalram_pages);
182 unsigned long totalreserve_pages __read_mostly;
183 unsigned long totalcma_pages __read_mostly;
184 
185 int percpu_pagelist_high_fraction;
186 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
187 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
188 EXPORT_SYMBOL(init_on_alloc);
189 
190 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
191 EXPORT_SYMBOL(init_on_free);
192 
193 static bool _init_on_alloc_enabled_early __read_mostly
194 				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
195 static int __init early_init_on_alloc(char *buf)
196 {
197 
198 	return kstrtobool(buf, &_init_on_alloc_enabled_early);
199 }
200 early_param("init_on_alloc", early_init_on_alloc);
201 
202 static bool _init_on_free_enabled_early __read_mostly
203 				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
204 static int __init early_init_on_free(char *buf)
205 {
206 	return kstrtobool(buf, &_init_on_free_enabled_early);
207 }
208 early_param("init_on_free", early_init_on_free);
209 
210 /*
211  * A cached value of the page's pageblock's migratetype, used when the page is
212  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
213  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
214  * Also the migratetype set in the page does not necessarily match the pcplist
215  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
216  * other index - this ensures that it will be put on the correct CMA freelist.
217  */
218 static inline int get_pcppage_migratetype(struct page *page)
219 {
220 	return page->index;
221 }
222 
223 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
224 {
225 	page->index = migratetype;
226 }
227 
228 #ifdef CONFIG_PM_SLEEP
229 /*
230  * The following functions are used by the suspend/hibernate code to temporarily
231  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
232  * while devices are suspended.  To avoid races with the suspend/hibernate code,
233  * they should always be called with system_transition_mutex held
234  * (gfp_allowed_mask also should only be modified with system_transition_mutex
235  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
236  * with that modification).
237  */
238 
239 static gfp_t saved_gfp_mask;
240 
241 void pm_restore_gfp_mask(void)
242 {
243 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
244 	if (saved_gfp_mask) {
245 		gfp_allowed_mask = saved_gfp_mask;
246 		saved_gfp_mask = 0;
247 	}
248 }
249 
250 void pm_restrict_gfp_mask(void)
251 {
252 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
253 	WARN_ON(saved_gfp_mask);
254 	saved_gfp_mask = gfp_allowed_mask;
255 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
256 }
257 
258 bool pm_suspended_storage(void)
259 {
260 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
261 		return false;
262 	return true;
263 }
264 #endif /* CONFIG_PM_SLEEP */
265 
266 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
267 unsigned int pageblock_order __read_mostly;
268 #endif
269 
270 static void __free_pages_ok(struct page *page, unsigned int order,
271 			    fpi_t fpi_flags);
272 
273 /*
274  * results with 256, 32 in the lowmem_reserve sysctl:
275  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
276  *	1G machine -> (16M dma, 784M normal, 224M high)
277  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
278  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
279  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
280  *
281  * TBD: should special case ZONE_DMA32 machines here - in those we normally
282  * don't need any ZONE_NORMAL reservation
283  */
284 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
285 #ifdef CONFIG_ZONE_DMA
286 	[ZONE_DMA] = 256,
287 #endif
288 #ifdef CONFIG_ZONE_DMA32
289 	[ZONE_DMA32] = 256,
290 #endif
291 	[ZONE_NORMAL] = 32,
292 #ifdef CONFIG_HIGHMEM
293 	[ZONE_HIGHMEM] = 0,
294 #endif
295 	[ZONE_MOVABLE] = 0,
296 };
297 
298 static char * const zone_names[MAX_NR_ZONES] = {
299 #ifdef CONFIG_ZONE_DMA
300 	 "DMA",
301 #endif
302 #ifdef CONFIG_ZONE_DMA32
303 	 "DMA32",
304 #endif
305 	 "Normal",
306 #ifdef CONFIG_HIGHMEM
307 	 "HighMem",
308 #endif
309 	 "Movable",
310 #ifdef CONFIG_ZONE_DEVICE
311 	 "Device",
312 #endif
313 };
314 
315 const char * const migratetype_names[MIGRATE_TYPES] = {
316 	"Unmovable",
317 	"Movable",
318 	"Reclaimable",
319 	"HighAtomic",
320 #ifdef CONFIG_CMA
321 	"CMA",
322 #endif
323 #ifdef CONFIG_MEMORY_ISOLATION
324 	"Isolate",
325 #endif
326 };
327 
328 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
329 	[NULL_COMPOUND_DTOR] = NULL,
330 	[COMPOUND_PAGE_DTOR] = free_compound_page,
331 #ifdef CONFIG_HUGETLB_PAGE
332 	[HUGETLB_PAGE_DTOR] = free_huge_page,
333 #endif
334 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
335 	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
336 #endif
337 };
338 
339 int min_free_kbytes = 1024;
340 int user_min_free_kbytes = -1;
341 int watermark_boost_factor __read_mostly = 15000;
342 int watermark_scale_factor = 10;
343 
344 static unsigned long nr_kernel_pages __initdata;
345 static unsigned long nr_all_pages __initdata;
346 static unsigned long dma_reserve __initdata;
347 
348 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
349 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
350 static unsigned long required_kernelcore __initdata;
351 static unsigned long required_kernelcore_percent __initdata;
352 static unsigned long required_movablecore __initdata;
353 static unsigned long required_movablecore_percent __initdata;
354 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
355 static bool mirrored_kernelcore __meminitdata;
356 
357 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
358 int movable_zone;
359 EXPORT_SYMBOL(movable_zone);
360 
361 #if MAX_NUMNODES > 1
362 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
363 unsigned int nr_online_nodes __read_mostly = 1;
364 EXPORT_SYMBOL(nr_node_ids);
365 EXPORT_SYMBOL(nr_online_nodes);
366 #endif
367 
368 int page_group_by_mobility_disabled __read_mostly;
369 
370 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
371 /*
372  * During boot we initialize deferred pages on-demand, as needed, but once
373  * page_alloc_init_late() has finished, the deferred pages are all initialized,
374  * and we can permanently disable that path.
375  */
376 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
377 
378 /*
379  * Calling kasan_poison_pages() only after deferred memory initialization
380  * has completed. Poisoning pages during deferred memory init will greatly
381  * lengthen the process and cause problem in large memory systems as the
382  * deferred pages initialization is done with interrupt disabled.
383  *
384  * Assuming that there will be no reference to those newly initialized
385  * pages before they are ever allocated, this should have no effect on
386  * KASAN memory tracking as the poison will be properly inserted at page
387  * allocation time. The only corner case is when pages are allocated by
388  * on-demand allocation and then freed again before the deferred pages
389  * initialization is done, but this is not likely to happen.
390  */
391 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
392 {
393 	return static_branch_unlikely(&deferred_pages) ||
394 	       (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
395 		(fpi_flags & FPI_SKIP_KASAN_POISON)) ||
396 	       PageSkipKASanPoison(page);
397 }
398 
399 /* Returns true if the struct page for the pfn is uninitialised */
400 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
401 {
402 	int nid = early_pfn_to_nid(pfn);
403 
404 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
405 		return true;
406 
407 	return false;
408 }
409 
410 /*
411  * Returns true when the remaining initialisation should be deferred until
412  * later in the boot cycle when it can be parallelised.
413  */
414 static bool __meminit
415 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
416 {
417 	static unsigned long prev_end_pfn, nr_initialised;
418 
419 	/*
420 	 * prev_end_pfn static that contains the end of previous zone
421 	 * No need to protect because called very early in boot before smp_init.
422 	 */
423 	if (prev_end_pfn != end_pfn) {
424 		prev_end_pfn = end_pfn;
425 		nr_initialised = 0;
426 	}
427 
428 	/* Always populate low zones for address-constrained allocations */
429 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
430 		return false;
431 
432 	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
433 		return true;
434 	/*
435 	 * We start only with one section of pages, more pages are added as
436 	 * needed until the rest of deferred pages are initialized.
437 	 */
438 	nr_initialised++;
439 	if ((nr_initialised > PAGES_PER_SECTION) &&
440 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
441 		NODE_DATA(nid)->first_deferred_pfn = pfn;
442 		return true;
443 	}
444 	return false;
445 }
446 #else
447 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
448 {
449 	return (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
450 		(fpi_flags & FPI_SKIP_KASAN_POISON)) ||
451 	       PageSkipKASanPoison(page);
452 }
453 
454 static inline bool early_page_uninitialised(unsigned long pfn)
455 {
456 	return false;
457 }
458 
459 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
460 {
461 	return false;
462 }
463 #endif
464 
465 /* Return a pointer to the bitmap storing bits affecting a block of pages */
466 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
467 							unsigned long pfn)
468 {
469 #ifdef CONFIG_SPARSEMEM
470 	return section_to_usemap(__pfn_to_section(pfn));
471 #else
472 	return page_zone(page)->pageblock_flags;
473 #endif /* CONFIG_SPARSEMEM */
474 }
475 
476 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
477 {
478 #ifdef CONFIG_SPARSEMEM
479 	pfn &= (PAGES_PER_SECTION-1);
480 #else
481 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
482 #endif /* CONFIG_SPARSEMEM */
483 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
484 }
485 
486 static __always_inline
487 unsigned long __get_pfnblock_flags_mask(const struct page *page,
488 					unsigned long pfn,
489 					unsigned long mask)
490 {
491 	unsigned long *bitmap;
492 	unsigned long bitidx, word_bitidx;
493 	unsigned long word;
494 
495 	bitmap = get_pageblock_bitmap(page, pfn);
496 	bitidx = pfn_to_bitidx(page, pfn);
497 	word_bitidx = bitidx / BITS_PER_LONG;
498 	bitidx &= (BITS_PER_LONG-1);
499 
500 	word = bitmap[word_bitidx];
501 	return (word >> bitidx) & mask;
502 }
503 
504 /**
505  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
506  * @page: The page within the block of interest
507  * @pfn: The target page frame number
508  * @mask: mask of bits that the caller is interested in
509  *
510  * Return: pageblock_bits flags
511  */
512 unsigned long get_pfnblock_flags_mask(const struct page *page,
513 					unsigned long pfn, unsigned long mask)
514 {
515 	return __get_pfnblock_flags_mask(page, pfn, mask);
516 }
517 
518 static __always_inline int get_pfnblock_migratetype(const struct page *page,
519 					unsigned long pfn)
520 {
521 	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
522 }
523 
524 /**
525  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
526  * @page: The page within the block of interest
527  * @flags: The flags to set
528  * @pfn: The target page frame number
529  * @mask: mask of bits that the caller is interested in
530  */
531 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
532 					unsigned long pfn,
533 					unsigned long mask)
534 {
535 	unsigned long *bitmap;
536 	unsigned long bitidx, word_bitidx;
537 	unsigned long old_word, word;
538 
539 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
540 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
541 
542 	bitmap = get_pageblock_bitmap(page, pfn);
543 	bitidx = pfn_to_bitidx(page, pfn);
544 	word_bitidx = bitidx / BITS_PER_LONG;
545 	bitidx &= (BITS_PER_LONG-1);
546 
547 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
548 
549 	mask <<= bitidx;
550 	flags <<= bitidx;
551 
552 	word = READ_ONCE(bitmap[word_bitidx]);
553 	for (;;) {
554 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
555 		if (word == old_word)
556 			break;
557 		word = old_word;
558 	}
559 }
560 
561 void set_pageblock_migratetype(struct page *page, int migratetype)
562 {
563 	if (unlikely(page_group_by_mobility_disabled &&
564 		     migratetype < MIGRATE_PCPTYPES))
565 		migratetype = MIGRATE_UNMOVABLE;
566 
567 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
568 				page_to_pfn(page), MIGRATETYPE_MASK);
569 }
570 
571 #ifdef CONFIG_DEBUG_VM
572 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
573 {
574 	int ret = 0;
575 	unsigned seq;
576 	unsigned long pfn = page_to_pfn(page);
577 	unsigned long sp, start_pfn;
578 
579 	do {
580 		seq = zone_span_seqbegin(zone);
581 		start_pfn = zone->zone_start_pfn;
582 		sp = zone->spanned_pages;
583 		if (!zone_spans_pfn(zone, pfn))
584 			ret = 1;
585 	} while (zone_span_seqretry(zone, seq));
586 
587 	if (ret)
588 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
589 			pfn, zone_to_nid(zone), zone->name,
590 			start_pfn, start_pfn + sp);
591 
592 	return ret;
593 }
594 
595 static int page_is_consistent(struct zone *zone, struct page *page)
596 {
597 	if (!pfn_valid_within(page_to_pfn(page)))
598 		return 0;
599 	if (zone != page_zone(page))
600 		return 0;
601 
602 	return 1;
603 }
604 /*
605  * Temporary debugging check for pages not lying within a given zone.
606  */
607 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
608 {
609 	if (page_outside_zone_boundaries(zone, page))
610 		return 1;
611 	if (!page_is_consistent(zone, page))
612 		return 1;
613 
614 	return 0;
615 }
616 #else
617 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
618 {
619 	return 0;
620 }
621 #endif
622 
623 static void bad_page(struct page *page, const char *reason)
624 {
625 	static unsigned long resume;
626 	static unsigned long nr_shown;
627 	static unsigned long nr_unshown;
628 
629 	/*
630 	 * Allow a burst of 60 reports, then keep quiet for that minute;
631 	 * or allow a steady drip of one report per second.
632 	 */
633 	if (nr_shown == 60) {
634 		if (time_before(jiffies, resume)) {
635 			nr_unshown++;
636 			goto out;
637 		}
638 		if (nr_unshown) {
639 			pr_alert(
640 			      "BUG: Bad page state: %lu messages suppressed\n",
641 				nr_unshown);
642 			nr_unshown = 0;
643 		}
644 		nr_shown = 0;
645 	}
646 	if (nr_shown++ == 0)
647 		resume = jiffies + 60 * HZ;
648 
649 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
650 		current->comm, page_to_pfn(page));
651 	dump_page(page, reason);
652 
653 	print_modules();
654 	dump_stack();
655 out:
656 	/* Leave bad fields for debug, except PageBuddy could make trouble */
657 	page_mapcount_reset(page); /* remove PageBuddy */
658 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
659 }
660 
661 static inline unsigned int order_to_pindex(int migratetype, int order)
662 {
663 	int base = order;
664 
665 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
666 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
667 		VM_BUG_ON(order != pageblock_order);
668 		base = PAGE_ALLOC_COSTLY_ORDER + 1;
669 	}
670 #else
671 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
672 #endif
673 
674 	return (MIGRATE_PCPTYPES * base) + migratetype;
675 }
676 
677 static inline int pindex_to_order(unsigned int pindex)
678 {
679 	int order = pindex / MIGRATE_PCPTYPES;
680 
681 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
682 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
683 		order = pageblock_order;
684 		VM_BUG_ON(order != pageblock_order);
685 	}
686 #else
687 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
688 #endif
689 
690 	return order;
691 }
692 
693 static inline bool pcp_allowed_order(unsigned int order)
694 {
695 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
696 		return true;
697 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
698 	if (order == pageblock_order)
699 		return true;
700 #endif
701 	return false;
702 }
703 
704 static inline void free_the_page(struct page *page, unsigned int order)
705 {
706 	if (pcp_allowed_order(order))		/* Via pcp? */
707 		free_unref_page(page, order);
708 	else
709 		__free_pages_ok(page, order, FPI_NONE);
710 }
711 
712 /*
713  * Higher-order pages are called "compound pages".  They are structured thusly:
714  *
715  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
716  *
717  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
718  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
719  *
720  * The first tail page's ->compound_dtor holds the offset in array of compound
721  * page destructors. See compound_page_dtors.
722  *
723  * The first tail page's ->compound_order holds the order of allocation.
724  * This usage means that zero-order pages may not be compound.
725  */
726 
727 void free_compound_page(struct page *page)
728 {
729 	mem_cgroup_uncharge(page);
730 	free_the_page(page, compound_order(page));
731 }
732 
733 void prep_compound_page(struct page *page, unsigned int order)
734 {
735 	int i;
736 	int nr_pages = 1 << order;
737 
738 	__SetPageHead(page);
739 	for (i = 1; i < nr_pages; i++) {
740 		struct page *p = page + i;
741 		p->mapping = TAIL_MAPPING;
742 		set_compound_head(p, page);
743 	}
744 
745 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
746 	set_compound_order(page, order);
747 	atomic_set(compound_mapcount_ptr(page), -1);
748 	if (hpage_pincount_available(page))
749 		atomic_set(compound_pincount_ptr(page), 0);
750 }
751 
752 #ifdef CONFIG_DEBUG_PAGEALLOC
753 unsigned int _debug_guardpage_minorder;
754 
755 bool _debug_pagealloc_enabled_early __read_mostly
756 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
757 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
758 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
759 EXPORT_SYMBOL(_debug_pagealloc_enabled);
760 
761 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
762 
763 static int __init early_debug_pagealloc(char *buf)
764 {
765 	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
766 }
767 early_param("debug_pagealloc", early_debug_pagealloc);
768 
769 static int __init debug_guardpage_minorder_setup(char *buf)
770 {
771 	unsigned long res;
772 
773 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
774 		pr_err("Bad debug_guardpage_minorder value\n");
775 		return 0;
776 	}
777 	_debug_guardpage_minorder = res;
778 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
779 	return 0;
780 }
781 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
782 
783 static inline bool set_page_guard(struct zone *zone, struct page *page,
784 				unsigned int order, int migratetype)
785 {
786 	if (!debug_guardpage_enabled())
787 		return false;
788 
789 	if (order >= debug_guardpage_minorder())
790 		return false;
791 
792 	__SetPageGuard(page);
793 	INIT_LIST_HEAD(&page->lru);
794 	set_page_private(page, order);
795 	/* Guard pages are not available for any usage */
796 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
797 
798 	return true;
799 }
800 
801 static inline void clear_page_guard(struct zone *zone, struct page *page,
802 				unsigned int order, int migratetype)
803 {
804 	if (!debug_guardpage_enabled())
805 		return;
806 
807 	__ClearPageGuard(page);
808 
809 	set_page_private(page, 0);
810 	if (!is_migrate_isolate(migratetype))
811 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
812 }
813 #else
814 static inline bool set_page_guard(struct zone *zone, struct page *page,
815 			unsigned int order, int migratetype) { return false; }
816 static inline void clear_page_guard(struct zone *zone, struct page *page,
817 				unsigned int order, int migratetype) {}
818 #endif
819 
820 /*
821  * Enable static keys related to various memory debugging and hardening options.
822  * Some override others, and depend on early params that are evaluated in the
823  * order of appearance. So we need to first gather the full picture of what was
824  * enabled, and then make decisions.
825  */
826 void init_mem_debugging_and_hardening(void)
827 {
828 	bool page_poisoning_requested = false;
829 
830 #ifdef CONFIG_PAGE_POISONING
831 	/*
832 	 * Page poisoning is debug page alloc for some arches. If
833 	 * either of those options are enabled, enable poisoning.
834 	 */
835 	if (page_poisoning_enabled() ||
836 	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
837 	      debug_pagealloc_enabled())) {
838 		static_branch_enable(&_page_poisoning_enabled);
839 		page_poisoning_requested = true;
840 	}
841 #endif
842 
843 	if (_init_on_alloc_enabled_early) {
844 		if (page_poisoning_requested)
845 			pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
846 				"will take precedence over init_on_alloc\n");
847 		else
848 			static_branch_enable(&init_on_alloc);
849 	}
850 	if (_init_on_free_enabled_early) {
851 		if (page_poisoning_requested)
852 			pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
853 				"will take precedence over init_on_free\n");
854 		else
855 			static_branch_enable(&init_on_free);
856 	}
857 
858 #ifdef CONFIG_DEBUG_PAGEALLOC
859 	if (!debug_pagealloc_enabled())
860 		return;
861 
862 	static_branch_enable(&_debug_pagealloc_enabled);
863 
864 	if (!debug_guardpage_minorder())
865 		return;
866 
867 	static_branch_enable(&_debug_guardpage_enabled);
868 #endif
869 }
870 
871 static inline void set_buddy_order(struct page *page, unsigned int order)
872 {
873 	set_page_private(page, order);
874 	__SetPageBuddy(page);
875 }
876 
877 /*
878  * This function checks whether a page is free && is the buddy
879  * we can coalesce a page and its buddy if
880  * (a) the buddy is not in a hole (check before calling!) &&
881  * (b) the buddy is in the buddy system &&
882  * (c) a page and its buddy have the same order &&
883  * (d) a page and its buddy are in the same zone.
884  *
885  * For recording whether a page is in the buddy system, we set PageBuddy.
886  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
887  *
888  * For recording page's order, we use page_private(page).
889  */
890 static inline bool page_is_buddy(struct page *page, struct page *buddy,
891 							unsigned int order)
892 {
893 	if (!page_is_guard(buddy) && !PageBuddy(buddy))
894 		return false;
895 
896 	if (buddy_order(buddy) != order)
897 		return false;
898 
899 	/*
900 	 * zone check is done late to avoid uselessly calculating
901 	 * zone/node ids for pages that could never merge.
902 	 */
903 	if (page_zone_id(page) != page_zone_id(buddy))
904 		return false;
905 
906 	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
907 
908 	return true;
909 }
910 
911 #ifdef CONFIG_COMPACTION
912 static inline struct capture_control *task_capc(struct zone *zone)
913 {
914 	struct capture_control *capc = current->capture_control;
915 
916 	return unlikely(capc) &&
917 		!(current->flags & PF_KTHREAD) &&
918 		!capc->page &&
919 		capc->cc->zone == zone ? capc : NULL;
920 }
921 
922 static inline bool
923 compaction_capture(struct capture_control *capc, struct page *page,
924 		   int order, int migratetype)
925 {
926 	if (!capc || order != capc->cc->order)
927 		return false;
928 
929 	/* Do not accidentally pollute CMA or isolated regions*/
930 	if (is_migrate_cma(migratetype) ||
931 	    is_migrate_isolate(migratetype))
932 		return false;
933 
934 	/*
935 	 * Do not let lower order allocations pollute a movable pageblock.
936 	 * This might let an unmovable request use a reclaimable pageblock
937 	 * and vice-versa but no more than normal fallback logic which can
938 	 * have trouble finding a high-order free page.
939 	 */
940 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
941 		return false;
942 
943 	capc->page = page;
944 	return true;
945 }
946 
947 #else
948 static inline struct capture_control *task_capc(struct zone *zone)
949 {
950 	return NULL;
951 }
952 
953 static inline bool
954 compaction_capture(struct capture_control *capc, struct page *page,
955 		   int order, int migratetype)
956 {
957 	return false;
958 }
959 #endif /* CONFIG_COMPACTION */
960 
961 /* Used for pages not on another list */
962 static inline void add_to_free_list(struct page *page, struct zone *zone,
963 				    unsigned int order, int migratetype)
964 {
965 	struct free_area *area = &zone->free_area[order];
966 
967 	list_add(&page->lru, &area->free_list[migratetype]);
968 	area->nr_free++;
969 }
970 
971 /* Used for pages not on another list */
972 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
973 					 unsigned int order, int migratetype)
974 {
975 	struct free_area *area = &zone->free_area[order];
976 
977 	list_add_tail(&page->lru, &area->free_list[migratetype]);
978 	area->nr_free++;
979 }
980 
981 /*
982  * Used for pages which are on another list. Move the pages to the tail
983  * of the list - so the moved pages won't immediately be considered for
984  * allocation again (e.g., optimization for memory onlining).
985  */
986 static inline void move_to_free_list(struct page *page, struct zone *zone,
987 				     unsigned int order, int migratetype)
988 {
989 	struct free_area *area = &zone->free_area[order];
990 
991 	list_move_tail(&page->lru, &area->free_list[migratetype]);
992 }
993 
994 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
995 					   unsigned int order)
996 {
997 	/* clear reported state and update reported page count */
998 	if (page_reported(page))
999 		__ClearPageReported(page);
1000 
1001 	list_del(&page->lru);
1002 	__ClearPageBuddy(page);
1003 	set_page_private(page, 0);
1004 	zone->free_area[order].nr_free--;
1005 }
1006 
1007 /*
1008  * If this is not the largest possible page, check if the buddy
1009  * of the next-highest order is free. If it is, it's possible
1010  * that pages are being freed that will coalesce soon. In case,
1011  * that is happening, add the free page to the tail of the list
1012  * so it's less likely to be used soon and more likely to be merged
1013  * as a higher order page
1014  */
1015 static inline bool
1016 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1017 		   struct page *page, unsigned int order)
1018 {
1019 	struct page *higher_page, *higher_buddy;
1020 	unsigned long combined_pfn;
1021 
1022 	if (order >= MAX_ORDER - 2)
1023 		return false;
1024 
1025 	if (!pfn_valid_within(buddy_pfn))
1026 		return false;
1027 
1028 	combined_pfn = buddy_pfn & pfn;
1029 	higher_page = page + (combined_pfn - pfn);
1030 	buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
1031 	higher_buddy = higher_page + (buddy_pfn - combined_pfn);
1032 
1033 	return pfn_valid_within(buddy_pfn) &&
1034 	       page_is_buddy(higher_page, higher_buddy, order + 1);
1035 }
1036 
1037 /*
1038  * Freeing function for a buddy system allocator.
1039  *
1040  * The concept of a buddy system is to maintain direct-mapped table
1041  * (containing bit values) for memory blocks of various "orders".
1042  * The bottom level table contains the map for the smallest allocatable
1043  * units of memory (here, pages), and each level above it describes
1044  * pairs of units from the levels below, hence, "buddies".
1045  * At a high level, all that happens here is marking the table entry
1046  * at the bottom level available, and propagating the changes upward
1047  * as necessary, plus some accounting needed to play nicely with other
1048  * parts of the VM system.
1049  * At each level, we keep a list of pages, which are heads of continuous
1050  * free pages of length of (1 << order) and marked with PageBuddy.
1051  * Page's order is recorded in page_private(page) field.
1052  * So when we are allocating or freeing one, we can derive the state of the
1053  * other.  That is, if we allocate a small block, and both were
1054  * free, the remainder of the region must be split into blocks.
1055  * If a block is freed, and its buddy is also free, then this
1056  * triggers coalescing into a block of larger size.
1057  *
1058  * -- nyc
1059  */
1060 
1061 static inline void __free_one_page(struct page *page,
1062 		unsigned long pfn,
1063 		struct zone *zone, unsigned int order,
1064 		int migratetype, fpi_t fpi_flags)
1065 {
1066 	struct capture_control *capc = task_capc(zone);
1067 	unsigned long buddy_pfn;
1068 	unsigned long combined_pfn;
1069 	unsigned int max_order;
1070 	struct page *buddy;
1071 	bool to_tail;
1072 
1073 	max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1074 
1075 	VM_BUG_ON(!zone_is_initialized(zone));
1076 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1077 
1078 	VM_BUG_ON(migratetype == -1);
1079 	if (likely(!is_migrate_isolate(migratetype)))
1080 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
1081 
1082 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1083 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1084 
1085 continue_merging:
1086 	while (order < max_order) {
1087 		if (compaction_capture(capc, page, order, migratetype)) {
1088 			__mod_zone_freepage_state(zone, -(1 << order),
1089 								migratetype);
1090 			return;
1091 		}
1092 		buddy_pfn = __find_buddy_pfn(pfn, order);
1093 		buddy = page + (buddy_pfn - pfn);
1094 
1095 		if (!pfn_valid_within(buddy_pfn))
1096 			goto done_merging;
1097 		if (!page_is_buddy(page, buddy, order))
1098 			goto done_merging;
1099 		/*
1100 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1101 		 * merge with it and move up one order.
1102 		 */
1103 		if (page_is_guard(buddy))
1104 			clear_page_guard(zone, buddy, order, migratetype);
1105 		else
1106 			del_page_from_free_list(buddy, zone, order);
1107 		combined_pfn = buddy_pfn & pfn;
1108 		page = page + (combined_pfn - pfn);
1109 		pfn = combined_pfn;
1110 		order++;
1111 	}
1112 	if (order < MAX_ORDER - 1) {
1113 		/* If we are here, it means order is >= pageblock_order.
1114 		 * We want to prevent merge between freepages on isolate
1115 		 * pageblock and normal pageblock. Without this, pageblock
1116 		 * isolation could cause incorrect freepage or CMA accounting.
1117 		 *
1118 		 * We don't want to hit this code for the more frequent
1119 		 * low-order merging.
1120 		 */
1121 		if (unlikely(has_isolate_pageblock(zone))) {
1122 			int buddy_mt;
1123 
1124 			buddy_pfn = __find_buddy_pfn(pfn, order);
1125 			buddy = page + (buddy_pfn - pfn);
1126 			buddy_mt = get_pageblock_migratetype(buddy);
1127 
1128 			if (migratetype != buddy_mt
1129 					&& (is_migrate_isolate(migratetype) ||
1130 						is_migrate_isolate(buddy_mt)))
1131 				goto done_merging;
1132 		}
1133 		max_order = order + 1;
1134 		goto continue_merging;
1135 	}
1136 
1137 done_merging:
1138 	set_buddy_order(page, order);
1139 
1140 	if (fpi_flags & FPI_TO_TAIL)
1141 		to_tail = true;
1142 	else if (is_shuffle_order(order))
1143 		to_tail = shuffle_pick_tail();
1144 	else
1145 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1146 
1147 	if (to_tail)
1148 		add_to_free_list_tail(page, zone, order, migratetype);
1149 	else
1150 		add_to_free_list(page, zone, order, migratetype);
1151 
1152 	/* Notify page reporting subsystem of freed page */
1153 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1154 		page_reporting_notify_free(order);
1155 }
1156 
1157 /*
1158  * A bad page could be due to a number of fields. Instead of multiple branches,
1159  * try and check multiple fields with one check. The caller must do a detailed
1160  * check if necessary.
1161  */
1162 static inline bool page_expected_state(struct page *page,
1163 					unsigned long check_flags)
1164 {
1165 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1166 		return false;
1167 
1168 	if (unlikely((unsigned long)page->mapping |
1169 			page_ref_count(page) |
1170 #ifdef CONFIG_MEMCG
1171 			page->memcg_data |
1172 #endif
1173 			(page->flags & check_flags)))
1174 		return false;
1175 
1176 	return true;
1177 }
1178 
1179 static const char *page_bad_reason(struct page *page, unsigned long flags)
1180 {
1181 	const char *bad_reason = NULL;
1182 
1183 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1184 		bad_reason = "nonzero mapcount";
1185 	if (unlikely(page->mapping != NULL))
1186 		bad_reason = "non-NULL mapping";
1187 	if (unlikely(page_ref_count(page) != 0))
1188 		bad_reason = "nonzero _refcount";
1189 	if (unlikely(page->flags & flags)) {
1190 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1191 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1192 		else
1193 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1194 	}
1195 #ifdef CONFIG_MEMCG
1196 	if (unlikely(page->memcg_data))
1197 		bad_reason = "page still charged to cgroup";
1198 #endif
1199 	return bad_reason;
1200 }
1201 
1202 static void check_free_page_bad(struct page *page)
1203 {
1204 	bad_page(page,
1205 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1206 }
1207 
1208 static inline int check_free_page(struct page *page)
1209 {
1210 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1211 		return 0;
1212 
1213 	/* Something has gone sideways, find it */
1214 	check_free_page_bad(page);
1215 	return 1;
1216 }
1217 
1218 static int free_tail_pages_check(struct page *head_page, struct page *page)
1219 {
1220 	int ret = 1;
1221 
1222 	/*
1223 	 * We rely page->lru.next never has bit 0 set, unless the page
1224 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1225 	 */
1226 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1227 
1228 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1229 		ret = 0;
1230 		goto out;
1231 	}
1232 	switch (page - head_page) {
1233 	case 1:
1234 		/* the first tail page: ->mapping may be compound_mapcount() */
1235 		if (unlikely(compound_mapcount(page))) {
1236 			bad_page(page, "nonzero compound_mapcount");
1237 			goto out;
1238 		}
1239 		break;
1240 	case 2:
1241 		/*
1242 		 * the second tail page: ->mapping is
1243 		 * deferred_list.next -- ignore value.
1244 		 */
1245 		break;
1246 	default:
1247 		if (page->mapping != TAIL_MAPPING) {
1248 			bad_page(page, "corrupted mapping in tail page");
1249 			goto out;
1250 		}
1251 		break;
1252 	}
1253 	if (unlikely(!PageTail(page))) {
1254 		bad_page(page, "PageTail not set");
1255 		goto out;
1256 	}
1257 	if (unlikely(compound_head(page) != head_page)) {
1258 		bad_page(page, "compound_head not consistent");
1259 		goto out;
1260 	}
1261 	ret = 0;
1262 out:
1263 	page->mapping = NULL;
1264 	clear_compound_head(page);
1265 	return ret;
1266 }
1267 
1268 static void kernel_init_free_pages(struct page *page, int numpages, bool zero_tags)
1269 {
1270 	int i;
1271 
1272 	if (zero_tags) {
1273 		for (i = 0; i < numpages; i++)
1274 			tag_clear_highpage(page + i);
1275 		return;
1276 	}
1277 
1278 	/* s390's use of memset() could override KASAN redzones. */
1279 	kasan_disable_current();
1280 	for (i = 0; i < numpages; i++) {
1281 		u8 tag = page_kasan_tag(page + i);
1282 		page_kasan_tag_reset(page + i);
1283 		clear_highpage(page + i);
1284 		page_kasan_tag_set(page + i, tag);
1285 	}
1286 	kasan_enable_current();
1287 }
1288 
1289 static __always_inline bool free_pages_prepare(struct page *page,
1290 			unsigned int order, bool check_free, fpi_t fpi_flags)
1291 {
1292 	int bad = 0;
1293 	bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1294 
1295 	VM_BUG_ON_PAGE(PageTail(page), page);
1296 
1297 	trace_mm_page_free(page, order);
1298 
1299 	if (unlikely(PageHWPoison(page)) && !order) {
1300 		/*
1301 		 * Do not let hwpoison pages hit pcplists/buddy
1302 		 * Untie memcg state and reset page's owner
1303 		 */
1304 		if (memcg_kmem_enabled() && PageMemcgKmem(page))
1305 			__memcg_kmem_uncharge_page(page, order);
1306 		reset_page_owner(page, order);
1307 		return false;
1308 	}
1309 
1310 	/*
1311 	 * Check tail pages before head page information is cleared to
1312 	 * avoid checking PageCompound for order-0 pages.
1313 	 */
1314 	if (unlikely(order)) {
1315 		bool compound = PageCompound(page);
1316 		int i;
1317 
1318 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1319 
1320 		if (compound)
1321 			ClearPageDoubleMap(page);
1322 		for (i = 1; i < (1 << order); i++) {
1323 			if (compound)
1324 				bad += free_tail_pages_check(page, page + i);
1325 			if (unlikely(check_free_page(page + i))) {
1326 				bad++;
1327 				continue;
1328 			}
1329 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1330 		}
1331 	}
1332 	if (PageMappingFlags(page))
1333 		page->mapping = NULL;
1334 	if (memcg_kmem_enabled() && PageMemcgKmem(page))
1335 		__memcg_kmem_uncharge_page(page, order);
1336 	if (check_free)
1337 		bad += check_free_page(page);
1338 	if (bad)
1339 		return false;
1340 
1341 	page_cpupid_reset_last(page);
1342 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1343 	reset_page_owner(page, order);
1344 
1345 	if (!PageHighMem(page)) {
1346 		debug_check_no_locks_freed(page_address(page),
1347 					   PAGE_SIZE << order);
1348 		debug_check_no_obj_freed(page_address(page),
1349 					   PAGE_SIZE << order);
1350 	}
1351 
1352 	kernel_poison_pages(page, 1 << order);
1353 
1354 	/*
1355 	 * As memory initialization might be integrated into KASAN,
1356 	 * kasan_free_pages and kernel_init_free_pages must be
1357 	 * kept together to avoid discrepancies in behavior.
1358 	 *
1359 	 * With hardware tag-based KASAN, memory tags must be set before the
1360 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1361 	 */
1362 	if (kasan_has_integrated_init()) {
1363 		if (!skip_kasan_poison)
1364 			kasan_free_pages(page, order);
1365 	} else {
1366 		bool init = want_init_on_free();
1367 
1368 		if (init)
1369 			kernel_init_free_pages(page, 1 << order, false);
1370 		if (!skip_kasan_poison)
1371 			kasan_poison_pages(page, order, init);
1372 	}
1373 
1374 	/*
1375 	 * arch_free_page() can make the page's contents inaccessible.  s390
1376 	 * does this.  So nothing which can access the page's contents should
1377 	 * happen after this.
1378 	 */
1379 	arch_free_page(page, order);
1380 
1381 	debug_pagealloc_unmap_pages(page, 1 << order);
1382 
1383 	return true;
1384 }
1385 
1386 #ifdef CONFIG_DEBUG_VM
1387 /*
1388  * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1389  * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1390  * moved from pcp lists to free lists.
1391  */
1392 static bool free_pcp_prepare(struct page *page, unsigned int order)
1393 {
1394 	return free_pages_prepare(page, order, true, FPI_NONE);
1395 }
1396 
1397 static bool bulkfree_pcp_prepare(struct page *page)
1398 {
1399 	if (debug_pagealloc_enabled_static())
1400 		return check_free_page(page);
1401 	else
1402 		return false;
1403 }
1404 #else
1405 /*
1406  * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1407  * moving from pcp lists to free list in order to reduce overhead. With
1408  * debug_pagealloc enabled, they are checked also immediately when being freed
1409  * to the pcp lists.
1410  */
1411 static bool free_pcp_prepare(struct page *page, unsigned int order)
1412 {
1413 	if (debug_pagealloc_enabled_static())
1414 		return free_pages_prepare(page, order, true, FPI_NONE);
1415 	else
1416 		return free_pages_prepare(page, order, false, FPI_NONE);
1417 }
1418 
1419 static bool bulkfree_pcp_prepare(struct page *page)
1420 {
1421 	return check_free_page(page);
1422 }
1423 #endif /* CONFIG_DEBUG_VM */
1424 
1425 static inline void prefetch_buddy(struct page *page)
1426 {
1427 	unsigned long pfn = page_to_pfn(page);
1428 	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1429 	struct page *buddy = page + (buddy_pfn - pfn);
1430 
1431 	prefetch(buddy);
1432 }
1433 
1434 /*
1435  * Frees a number of pages from the PCP lists
1436  * Assumes all pages on list are in same zone, and of same order.
1437  * count is the number of pages to free.
1438  *
1439  * If the zone was previously in an "all pages pinned" state then look to
1440  * see if this freeing clears that state.
1441  *
1442  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1443  * pinned" detection logic.
1444  */
1445 static void free_pcppages_bulk(struct zone *zone, int count,
1446 					struct per_cpu_pages *pcp)
1447 {
1448 	int pindex = 0;
1449 	int batch_free = 0;
1450 	int nr_freed = 0;
1451 	unsigned int order;
1452 	int prefetch_nr = READ_ONCE(pcp->batch);
1453 	bool isolated_pageblocks;
1454 	struct page *page, *tmp;
1455 	LIST_HEAD(head);
1456 
1457 	/*
1458 	 * Ensure proper count is passed which otherwise would stuck in the
1459 	 * below while (list_empty(list)) loop.
1460 	 */
1461 	count = min(pcp->count, count);
1462 	while (count > 0) {
1463 		struct list_head *list;
1464 
1465 		/*
1466 		 * Remove pages from lists in a round-robin fashion. A
1467 		 * batch_free count is maintained that is incremented when an
1468 		 * empty list is encountered.  This is so more pages are freed
1469 		 * off fuller lists instead of spinning excessively around empty
1470 		 * lists
1471 		 */
1472 		do {
1473 			batch_free++;
1474 			if (++pindex == NR_PCP_LISTS)
1475 				pindex = 0;
1476 			list = &pcp->lists[pindex];
1477 		} while (list_empty(list));
1478 
1479 		/* This is the only non-empty list. Free them all. */
1480 		if (batch_free == NR_PCP_LISTS)
1481 			batch_free = count;
1482 
1483 		order = pindex_to_order(pindex);
1484 		BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH));
1485 		do {
1486 			page = list_last_entry(list, struct page, lru);
1487 			/* must delete to avoid corrupting pcp list */
1488 			list_del(&page->lru);
1489 			nr_freed += 1 << order;
1490 			count -= 1 << order;
1491 
1492 			if (bulkfree_pcp_prepare(page))
1493 				continue;
1494 
1495 			/* Encode order with the migratetype */
1496 			page->index <<= NR_PCP_ORDER_WIDTH;
1497 			page->index |= order;
1498 
1499 			list_add_tail(&page->lru, &head);
1500 
1501 			/*
1502 			 * We are going to put the page back to the global
1503 			 * pool, prefetch its buddy to speed up later access
1504 			 * under zone->lock. It is believed the overhead of
1505 			 * an additional test and calculating buddy_pfn here
1506 			 * can be offset by reduced memory latency later. To
1507 			 * avoid excessive prefetching due to large count, only
1508 			 * prefetch buddy for the first pcp->batch nr of pages.
1509 			 */
1510 			if (prefetch_nr) {
1511 				prefetch_buddy(page);
1512 				prefetch_nr--;
1513 			}
1514 		} while (count > 0 && --batch_free && !list_empty(list));
1515 	}
1516 	pcp->count -= nr_freed;
1517 
1518 	/*
1519 	 * local_lock_irq held so equivalent to spin_lock_irqsave for
1520 	 * both PREEMPT_RT and non-PREEMPT_RT configurations.
1521 	 */
1522 	spin_lock(&zone->lock);
1523 	isolated_pageblocks = has_isolate_pageblock(zone);
1524 
1525 	/*
1526 	 * Use safe version since after __free_one_page(),
1527 	 * page->lru.next will not point to original list.
1528 	 */
1529 	list_for_each_entry_safe(page, tmp, &head, lru) {
1530 		int mt = get_pcppage_migratetype(page);
1531 
1532 		/* mt has been encoded with the order (see above) */
1533 		order = mt & NR_PCP_ORDER_MASK;
1534 		mt >>= NR_PCP_ORDER_WIDTH;
1535 
1536 		/* MIGRATE_ISOLATE page should not go to pcplists */
1537 		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1538 		/* Pageblock could have been isolated meanwhile */
1539 		if (unlikely(isolated_pageblocks))
1540 			mt = get_pageblock_migratetype(page);
1541 
1542 		__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1543 		trace_mm_page_pcpu_drain(page, order, mt);
1544 	}
1545 	spin_unlock(&zone->lock);
1546 }
1547 
1548 static void free_one_page(struct zone *zone,
1549 				struct page *page, unsigned long pfn,
1550 				unsigned int order,
1551 				int migratetype, fpi_t fpi_flags)
1552 {
1553 	unsigned long flags;
1554 
1555 	spin_lock_irqsave(&zone->lock, flags);
1556 	if (unlikely(has_isolate_pageblock(zone) ||
1557 		is_migrate_isolate(migratetype))) {
1558 		migratetype = get_pfnblock_migratetype(page, pfn);
1559 	}
1560 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1561 	spin_unlock_irqrestore(&zone->lock, flags);
1562 }
1563 
1564 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1565 				unsigned long zone, int nid)
1566 {
1567 	mm_zero_struct_page(page);
1568 	set_page_links(page, zone, nid, pfn);
1569 	init_page_count(page);
1570 	page_mapcount_reset(page);
1571 	page_cpupid_reset_last(page);
1572 	page_kasan_tag_reset(page);
1573 
1574 	INIT_LIST_HEAD(&page->lru);
1575 #ifdef WANT_PAGE_VIRTUAL
1576 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1577 	if (!is_highmem_idx(zone))
1578 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1579 #endif
1580 }
1581 
1582 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1583 static void __meminit init_reserved_page(unsigned long pfn)
1584 {
1585 	pg_data_t *pgdat;
1586 	int nid, zid;
1587 
1588 	if (!early_page_uninitialised(pfn))
1589 		return;
1590 
1591 	nid = early_pfn_to_nid(pfn);
1592 	pgdat = NODE_DATA(nid);
1593 
1594 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1595 		struct zone *zone = &pgdat->node_zones[zid];
1596 
1597 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1598 			break;
1599 	}
1600 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1601 }
1602 #else
1603 static inline void init_reserved_page(unsigned long pfn)
1604 {
1605 }
1606 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1607 
1608 /*
1609  * Initialised pages do not have PageReserved set. This function is
1610  * called for each range allocated by the bootmem allocator and
1611  * marks the pages PageReserved. The remaining valid pages are later
1612  * sent to the buddy page allocator.
1613  */
1614 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1615 {
1616 	unsigned long start_pfn = PFN_DOWN(start);
1617 	unsigned long end_pfn = PFN_UP(end);
1618 
1619 	for (; start_pfn < end_pfn; start_pfn++) {
1620 		if (pfn_valid(start_pfn)) {
1621 			struct page *page = pfn_to_page(start_pfn);
1622 
1623 			init_reserved_page(start_pfn);
1624 
1625 			/* Avoid false-positive PageTail() */
1626 			INIT_LIST_HEAD(&page->lru);
1627 
1628 			/*
1629 			 * no need for atomic set_bit because the struct
1630 			 * page is not visible yet so nobody should
1631 			 * access it yet.
1632 			 */
1633 			__SetPageReserved(page);
1634 		}
1635 	}
1636 }
1637 
1638 static void __free_pages_ok(struct page *page, unsigned int order,
1639 			    fpi_t fpi_flags)
1640 {
1641 	unsigned long flags;
1642 	int migratetype;
1643 	unsigned long pfn = page_to_pfn(page);
1644 	struct zone *zone = page_zone(page);
1645 
1646 	if (!free_pages_prepare(page, order, true, fpi_flags))
1647 		return;
1648 
1649 	migratetype = get_pfnblock_migratetype(page, pfn);
1650 
1651 	spin_lock_irqsave(&zone->lock, flags);
1652 	if (unlikely(has_isolate_pageblock(zone) ||
1653 		is_migrate_isolate(migratetype))) {
1654 		migratetype = get_pfnblock_migratetype(page, pfn);
1655 	}
1656 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1657 	spin_unlock_irqrestore(&zone->lock, flags);
1658 
1659 	__count_vm_events(PGFREE, 1 << order);
1660 }
1661 
1662 void __free_pages_core(struct page *page, unsigned int order)
1663 {
1664 	unsigned int nr_pages = 1 << order;
1665 	struct page *p = page;
1666 	unsigned int loop;
1667 
1668 	/*
1669 	 * When initializing the memmap, __init_single_page() sets the refcount
1670 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1671 	 * refcount of all involved pages to 0.
1672 	 */
1673 	prefetchw(p);
1674 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1675 		prefetchw(p + 1);
1676 		__ClearPageReserved(p);
1677 		set_page_count(p, 0);
1678 	}
1679 	__ClearPageReserved(p);
1680 	set_page_count(p, 0);
1681 
1682 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1683 
1684 	/*
1685 	 * Bypass PCP and place fresh pages right to the tail, primarily
1686 	 * relevant for memory onlining.
1687 	 */
1688 	__free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1689 }
1690 
1691 #ifdef CONFIG_NUMA
1692 
1693 /*
1694  * During memory init memblocks map pfns to nids. The search is expensive and
1695  * this caches recent lookups. The implementation of __early_pfn_to_nid
1696  * treats start/end as pfns.
1697  */
1698 struct mminit_pfnnid_cache {
1699 	unsigned long last_start;
1700 	unsigned long last_end;
1701 	int last_nid;
1702 };
1703 
1704 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1705 
1706 /*
1707  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1708  */
1709 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1710 					struct mminit_pfnnid_cache *state)
1711 {
1712 	unsigned long start_pfn, end_pfn;
1713 	int nid;
1714 
1715 	if (state->last_start <= pfn && pfn < state->last_end)
1716 		return state->last_nid;
1717 
1718 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1719 	if (nid != NUMA_NO_NODE) {
1720 		state->last_start = start_pfn;
1721 		state->last_end = end_pfn;
1722 		state->last_nid = nid;
1723 	}
1724 
1725 	return nid;
1726 }
1727 
1728 int __meminit early_pfn_to_nid(unsigned long pfn)
1729 {
1730 	static DEFINE_SPINLOCK(early_pfn_lock);
1731 	int nid;
1732 
1733 	spin_lock(&early_pfn_lock);
1734 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1735 	if (nid < 0)
1736 		nid = first_online_node;
1737 	spin_unlock(&early_pfn_lock);
1738 
1739 	return nid;
1740 }
1741 #endif /* CONFIG_NUMA */
1742 
1743 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1744 							unsigned int order)
1745 {
1746 	if (early_page_uninitialised(pfn))
1747 		return;
1748 	__free_pages_core(page, order);
1749 }
1750 
1751 /*
1752  * Check that the whole (or subset of) a pageblock given by the interval of
1753  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1754  * with the migration of free compaction scanner. The scanners then need to
1755  * use only pfn_valid_within() check for arches that allow holes within
1756  * pageblocks.
1757  *
1758  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1759  *
1760  * It's possible on some configurations to have a setup like node0 node1 node0
1761  * i.e. it's possible that all pages within a zones range of pages do not
1762  * belong to a single zone. We assume that a border between node0 and node1
1763  * can occur within a single pageblock, but not a node0 node1 node0
1764  * interleaving within a single pageblock. It is therefore sufficient to check
1765  * the first and last page of a pageblock and avoid checking each individual
1766  * page in a pageblock.
1767  */
1768 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1769 				     unsigned long end_pfn, struct zone *zone)
1770 {
1771 	struct page *start_page;
1772 	struct page *end_page;
1773 
1774 	/* end_pfn is one past the range we are checking */
1775 	end_pfn--;
1776 
1777 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1778 		return NULL;
1779 
1780 	start_page = pfn_to_online_page(start_pfn);
1781 	if (!start_page)
1782 		return NULL;
1783 
1784 	if (page_zone(start_page) != zone)
1785 		return NULL;
1786 
1787 	end_page = pfn_to_page(end_pfn);
1788 
1789 	/* This gives a shorter code than deriving page_zone(end_page) */
1790 	if (page_zone_id(start_page) != page_zone_id(end_page))
1791 		return NULL;
1792 
1793 	return start_page;
1794 }
1795 
1796 void set_zone_contiguous(struct zone *zone)
1797 {
1798 	unsigned long block_start_pfn = zone->zone_start_pfn;
1799 	unsigned long block_end_pfn;
1800 
1801 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1802 	for (; block_start_pfn < zone_end_pfn(zone);
1803 			block_start_pfn = block_end_pfn,
1804 			 block_end_pfn += pageblock_nr_pages) {
1805 
1806 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1807 
1808 		if (!__pageblock_pfn_to_page(block_start_pfn,
1809 					     block_end_pfn, zone))
1810 			return;
1811 		cond_resched();
1812 	}
1813 
1814 	/* We confirm that there is no hole */
1815 	zone->contiguous = true;
1816 }
1817 
1818 void clear_zone_contiguous(struct zone *zone)
1819 {
1820 	zone->contiguous = false;
1821 }
1822 
1823 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1824 static void __init deferred_free_range(unsigned long pfn,
1825 				       unsigned long nr_pages)
1826 {
1827 	struct page *page;
1828 	unsigned long i;
1829 
1830 	if (!nr_pages)
1831 		return;
1832 
1833 	page = pfn_to_page(pfn);
1834 
1835 	/* Free a large naturally-aligned chunk if possible */
1836 	if (nr_pages == pageblock_nr_pages &&
1837 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1838 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1839 		__free_pages_core(page, pageblock_order);
1840 		return;
1841 	}
1842 
1843 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1844 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1845 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1846 		__free_pages_core(page, 0);
1847 	}
1848 }
1849 
1850 /* Completion tracking for deferred_init_memmap() threads */
1851 static atomic_t pgdat_init_n_undone __initdata;
1852 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1853 
1854 static inline void __init pgdat_init_report_one_done(void)
1855 {
1856 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1857 		complete(&pgdat_init_all_done_comp);
1858 }
1859 
1860 /*
1861  * Returns true if page needs to be initialized or freed to buddy allocator.
1862  *
1863  * First we check if pfn is valid on architectures where it is possible to have
1864  * holes within pageblock_nr_pages. On systems where it is not possible, this
1865  * function is optimized out.
1866  *
1867  * Then, we check if a current large page is valid by only checking the validity
1868  * of the head pfn.
1869  */
1870 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1871 {
1872 	if (!pfn_valid_within(pfn))
1873 		return false;
1874 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1875 		return false;
1876 	return true;
1877 }
1878 
1879 /*
1880  * Free pages to buddy allocator. Try to free aligned pages in
1881  * pageblock_nr_pages sizes.
1882  */
1883 static void __init deferred_free_pages(unsigned long pfn,
1884 				       unsigned long end_pfn)
1885 {
1886 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1887 	unsigned long nr_free = 0;
1888 
1889 	for (; pfn < end_pfn; pfn++) {
1890 		if (!deferred_pfn_valid(pfn)) {
1891 			deferred_free_range(pfn - nr_free, nr_free);
1892 			nr_free = 0;
1893 		} else if (!(pfn & nr_pgmask)) {
1894 			deferred_free_range(pfn - nr_free, nr_free);
1895 			nr_free = 1;
1896 		} else {
1897 			nr_free++;
1898 		}
1899 	}
1900 	/* Free the last block of pages to allocator */
1901 	deferred_free_range(pfn - nr_free, nr_free);
1902 }
1903 
1904 /*
1905  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1906  * by performing it only once every pageblock_nr_pages.
1907  * Return number of pages initialized.
1908  */
1909 static unsigned long  __init deferred_init_pages(struct zone *zone,
1910 						 unsigned long pfn,
1911 						 unsigned long end_pfn)
1912 {
1913 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1914 	int nid = zone_to_nid(zone);
1915 	unsigned long nr_pages = 0;
1916 	int zid = zone_idx(zone);
1917 	struct page *page = NULL;
1918 
1919 	for (; pfn < end_pfn; pfn++) {
1920 		if (!deferred_pfn_valid(pfn)) {
1921 			page = NULL;
1922 			continue;
1923 		} else if (!page || !(pfn & nr_pgmask)) {
1924 			page = pfn_to_page(pfn);
1925 		} else {
1926 			page++;
1927 		}
1928 		__init_single_page(page, pfn, zid, nid);
1929 		nr_pages++;
1930 	}
1931 	return (nr_pages);
1932 }
1933 
1934 /*
1935  * This function is meant to pre-load the iterator for the zone init.
1936  * Specifically it walks through the ranges until we are caught up to the
1937  * first_init_pfn value and exits there. If we never encounter the value we
1938  * return false indicating there are no valid ranges left.
1939  */
1940 static bool __init
1941 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1942 				    unsigned long *spfn, unsigned long *epfn,
1943 				    unsigned long first_init_pfn)
1944 {
1945 	u64 j;
1946 
1947 	/*
1948 	 * Start out by walking through the ranges in this zone that have
1949 	 * already been initialized. We don't need to do anything with them
1950 	 * so we just need to flush them out of the system.
1951 	 */
1952 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1953 		if (*epfn <= first_init_pfn)
1954 			continue;
1955 		if (*spfn < first_init_pfn)
1956 			*spfn = first_init_pfn;
1957 		*i = j;
1958 		return true;
1959 	}
1960 
1961 	return false;
1962 }
1963 
1964 /*
1965  * Initialize and free pages. We do it in two loops: first we initialize
1966  * struct page, then free to buddy allocator, because while we are
1967  * freeing pages we can access pages that are ahead (computing buddy
1968  * page in __free_one_page()).
1969  *
1970  * In order to try and keep some memory in the cache we have the loop
1971  * broken along max page order boundaries. This way we will not cause
1972  * any issues with the buddy page computation.
1973  */
1974 static unsigned long __init
1975 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1976 		       unsigned long *end_pfn)
1977 {
1978 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1979 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
1980 	unsigned long nr_pages = 0;
1981 	u64 j = *i;
1982 
1983 	/* First we loop through and initialize the page values */
1984 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1985 		unsigned long t;
1986 
1987 		if (mo_pfn <= *start_pfn)
1988 			break;
1989 
1990 		t = min(mo_pfn, *end_pfn);
1991 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
1992 
1993 		if (mo_pfn < *end_pfn) {
1994 			*start_pfn = mo_pfn;
1995 			break;
1996 		}
1997 	}
1998 
1999 	/* Reset values and now loop through freeing pages as needed */
2000 	swap(j, *i);
2001 
2002 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2003 		unsigned long t;
2004 
2005 		if (mo_pfn <= spfn)
2006 			break;
2007 
2008 		t = min(mo_pfn, epfn);
2009 		deferred_free_pages(spfn, t);
2010 
2011 		if (mo_pfn <= epfn)
2012 			break;
2013 	}
2014 
2015 	return nr_pages;
2016 }
2017 
2018 static void __init
2019 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2020 			   void *arg)
2021 {
2022 	unsigned long spfn, epfn;
2023 	struct zone *zone = arg;
2024 	u64 i;
2025 
2026 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2027 
2028 	/*
2029 	 * Initialize and free pages in MAX_ORDER sized increments so that we
2030 	 * can avoid introducing any issues with the buddy allocator.
2031 	 */
2032 	while (spfn < end_pfn) {
2033 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
2034 		cond_resched();
2035 	}
2036 }
2037 
2038 /* An arch may override for more concurrency. */
2039 __weak int __init
2040 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2041 {
2042 	return 1;
2043 }
2044 
2045 /* Initialise remaining memory on a node */
2046 static int __init deferred_init_memmap(void *data)
2047 {
2048 	pg_data_t *pgdat = data;
2049 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2050 	unsigned long spfn = 0, epfn = 0;
2051 	unsigned long first_init_pfn, flags;
2052 	unsigned long start = jiffies;
2053 	struct zone *zone;
2054 	int zid, max_threads;
2055 	u64 i;
2056 
2057 	/* Bind memory initialisation thread to a local node if possible */
2058 	if (!cpumask_empty(cpumask))
2059 		set_cpus_allowed_ptr(current, cpumask);
2060 
2061 	pgdat_resize_lock(pgdat, &flags);
2062 	first_init_pfn = pgdat->first_deferred_pfn;
2063 	if (first_init_pfn == ULONG_MAX) {
2064 		pgdat_resize_unlock(pgdat, &flags);
2065 		pgdat_init_report_one_done();
2066 		return 0;
2067 	}
2068 
2069 	/* Sanity check boundaries */
2070 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2071 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2072 	pgdat->first_deferred_pfn = ULONG_MAX;
2073 
2074 	/*
2075 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
2076 	 * interrupt thread must allocate this early in boot, zone must be
2077 	 * pre-grown prior to start of deferred page initialization.
2078 	 */
2079 	pgdat_resize_unlock(pgdat, &flags);
2080 
2081 	/* Only the highest zone is deferred so find it */
2082 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2083 		zone = pgdat->node_zones + zid;
2084 		if (first_init_pfn < zone_end_pfn(zone))
2085 			break;
2086 	}
2087 
2088 	/* If the zone is empty somebody else may have cleared out the zone */
2089 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2090 						 first_init_pfn))
2091 		goto zone_empty;
2092 
2093 	max_threads = deferred_page_init_max_threads(cpumask);
2094 
2095 	while (spfn < epfn) {
2096 		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2097 		struct padata_mt_job job = {
2098 			.thread_fn   = deferred_init_memmap_chunk,
2099 			.fn_arg      = zone,
2100 			.start       = spfn,
2101 			.size        = epfn_align - spfn,
2102 			.align       = PAGES_PER_SECTION,
2103 			.min_chunk   = PAGES_PER_SECTION,
2104 			.max_threads = max_threads,
2105 		};
2106 
2107 		padata_do_multithreaded(&job);
2108 		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2109 						    epfn_align);
2110 	}
2111 zone_empty:
2112 	/* Sanity check that the next zone really is unpopulated */
2113 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2114 
2115 	pr_info("node %d deferred pages initialised in %ums\n",
2116 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
2117 
2118 	pgdat_init_report_one_done();
2119 	return 0;
2120 }
2121 
2122 /*
2123  * If this zone has deferred pages, try to grow it by initializing enough
2124  * deferred pages to satisfy the allocation specified by order, rounded up to
2125  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2126  * of SECTION_SIZE bytes by initializing struct pages in increments of
2127  * PAGES_PER_SECTION * sizeof(struct page) bytes.
2128  *
2129  * Return true when zone was grown, otherwise return false. We return true even
2130  * when we grow less than requested, to let the caller decide if there are
2131  * enough pages to satisfy the allocation.
2132  *
2133  * Note: We use noinline because this function is needed only during boot, and
2134  * it is called from a __ref function _deferred_grow_zone. This way we are
2135  * making sure that it is not inlined into permanent text section.
2136  */
2137 static noinline bool __init
2138 deferred_grow_zone(struct zone *zone, unsigned int order)
2139 {
2140 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2141 	pg_data_t *pgdat = zone->zone_pgdat;
2142 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2143 	unsigned long spfn, epfn, flags;
2144 	unsigned long nr_pages = 0;
2145 	u64 i;
2146 
2147 	/* Only the last zone may have deferred pages */
2148 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2149 		return false;
2150 
2151 	pgdat_resize_lock(pgdat, &flags);
2152 
2153 	/*
2154 	 * If someone grew this zone while we were waiting for spinlock, return
2155 	 * true, as there might be enough pages already.
2156 	 */
2157 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2158 		pgdat_resize_unlock(pgdat, &flags);
2159 		return true;
2160 	}
2161 
2162 	/* If the zone is empty somebody else may have cleared out the zone */
2163 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2164 						 first_deferred_pfn)) {
2165 		pgdat->first_deferred_pfn = ULONG_MAX;
2166 		pgdat_resize_unlock(pgdat, &flags);
2167 		/* Retry only once. */
2168 		return first_deferred_pfn != ULONG_MAX;
2169 	}
2170 
2171 	/*
2172 	 * Initialize and free pages in MAX_ORDER sized increments so
2173 	 * that we can avoid introducing any issues with the buddy
2174 	 * allocator.
2175 	 */
2176 	while (spfn < epfn) {
2177 		/* update our first deferred PFN for this section */
2178 		first_deferred_pfn = spfn;
2179 
2180 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2181 		touch_nmi_watchdog();
2182 
2183 		/* We should only stop along section boundaries */
2184 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2185 			continue;
2186 
2187 		/* If our quota has been met we can stop here */
2188 		if (nr_pages >= nr_pages_needed)
2189 			break;
2190 	}
2191 
2192 	pgdat->first_deferred_pfn = spfn;
2193 	pgdat_resize_unlock(pgdat, &flags);
2194 
2195 	return nr_pages > 0;
2196 }
2197 
2198 /*
2199  * deferred_grow_zone() is __init, but it is called from
2200  * get_page_from_freelist() during early boot until deferred_pages permanently
2201  * disables this call. This is why we have refdata wrapper to avoid warning,
2202  * and to ensure that the function body gets unloaded.
2203  */
2204 static bool __ref
2205 _deferred_grow_zone(struct zone *zone, unsigned int order)
2206 {
2207 	return deferred_grow_zone(zone, order);
2208 }
2209 
2210 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2211 
2212 void __init page_alloc_init_late(void)
2213 {
2214 	struct zone *zone;
2215 	int nid;
2216 
2217 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2218 
2219 	/* There will be num_node_state(N_MEMORY) threads */
2220 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2221 	for_each_node_state(nid, N_MEMORY) {
2222 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2223 	}
2224 
2225 	/* Block until all are initialised */
2226 	wait_for_completion(&pgdat_init_all_done_comp);
2227 
2228 	/*
2229 	 * We initialized the rest of the deferred pages.  Permanently disable
2230 	 * on-demand struct page initialization.
2231 	 */
2232 	static_branch_disable(&deferred_pages);
2233 
2234 	/* Reinit limits that are based on free pages after the kernel is up */
2235 	files_maxfiles_init();
2236 #endif
2237 
2238 	buffer_init();
2239 
2240 	/* Discard memblock private memory */
2241 	memblock_discard();
2242 
2243 	for_each_node_state(nid, N_MEMORY)
2244 		shuffle_free_memory(NODE_DATA(nid));
2245 
2246 	for_each_populated_zone(zone)
2247 		set_zone_contiguous(zone);
2248 }
2249 
2250 #ifdef CONFIG_CMA
2251 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2252 void __init init_cma_reserved_pageblock(struct page *page)
2253 {
2254 	unsigned i = pageblock_nr_pages;
2255 	struct page *p = page;
2256 
2257 	do {
2258 		__ClearPageReserved(p);
2259 		set_page_count(p, 0);
2260 	} while (++p, --i);
2261 
2262 	set_pageblock_migratetype(page, MIGRATE_CMA);
2263 
2264 	if (pageblock_order >= MAX_ORDER) {
2265 		i = pageblock_nr_pages;
2266 		p = page;
2267 		do {
2268 			set_page_refcounted(p);
2269 			__free_pages(p, MAX_ORDER - 1);
2270 			p += MAX_ORDER_NR_PAGES;
2271 		} while (i -= MAX_ORDER_NR_PAGES);
2272 	} else {
2273 		set_page_refcounted(page);
2274 		__free_pages(page, pageblock_order);
2275 	}
2276 
2277 	adjust_managed_page_count(page, pageblock_nr_pages);
2278 	page_zone(page)->cma_pages += pageblock_nr_pages;
2279 }
2280 #endif
2281 
2282 /*
2283  * The order of subdivision here is critical for the IO subsystem.
2284  * Please do not alter this order without good reasons and regression
2285  * testing. Specifically, as large blocks of memory are subdivided,
2286  * the order in which smaller blocks are delivered depends on the order
2287  * they're subdivided in this function. This is the primary factor
2288  * influencing the order in which pages are delivered to the IO
2289  * subsystem according to empirical testing, and this is also justified
2290  * by considering the behavior of a buddy system containing a single
2291  * large block of memory acted on by a series of small allocations.
2292  * This behavior is a critical factor in sglist merging's success.
2293  *
2294  * -- nyc
2295  */
2296 static inline void expand(struct zone *zone, struct page *page,
2297 	int low, int high, int migratetype)
2298 {
2299 	unsigned long size = 1 << high;
2300 
2301 	while (high > low) {
2302 		high--;
2303 		size >>= 1;
2304 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2305 
2306 		/*
2307 		 * Mark as guard pages (or page), that will allow to
2308 		 * merge back to allocator when buddy will be freed.
2309 		 * Corresponding page table entries will not be touched,
2310 		 * pages will stay not present in virtual address space
2311 		 */
2312 		if (set_page_guard(zone, &page[size], high, migratetype))
2313 			continue;
2314 
2315 		add_to_free_list(&page[size], zone, high, migratetype);
2316 		set_buddy_order(&page[size], high);
2317 	}
2318 }
2319 
2320 static void check_new_page_bad(struct page *page)
2321 {
2322 	if (unlikely(page->flags & __PG_HWPOISON)) {
2323 		/* Don't complain about hwpoisoned pages */
2324 		page_mapcount_reset(page); /* remove PageBuddy */
2325 		return;
2326 	}
2327 
2328 	bad_page(page,
2329 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2330 }
2331 
2332 /*
2333  * This page is about to be returned from the page allocator
2334  */
2335 static inline int check_new_page(struct page *page)
2336 {
2337 	if (likely(page_expected_state(page,
2338 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2339 		return 0;
2340 
2341 	check_new_page_bad(page);
2342 	return 1;
2343 }
2344 
2345 #ifdef CONFIG_DEBUG_VM
2346 /*
2347  * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2348  * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2349  * also checked when pcp lists are refilled from the free lists.
2350  */
2351 static inline bool check_pcp_refill(struct page *page)
2352 {
2353 	if (debug_pagealloc_enabled_static())
2354 		return check_new_page(page);
2355 	else
2356 		return false;
2357 }
2358 
2359 static inline bool check_new_pcp(struct page *page)
2360 {
2361 	return check_new_page(page);
2362 }
2363 #else
2364 /*
2365  * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2366  * when pcp lists are being refilled from the free lists. With debug_pagealloc
2367  * enabled, they are also checked when being allocated from the pcp lists.
2368  */
2369 static inline bool check_pcp_refill(struct page *page)
2370 {
2371 	return check_new_page(page);
2372 }
2373 static inline bool check_new_pcp(struct page *page)
2374 {
2375 	if (debug_pagealloc_enabled_static())
2376 		return check_new_page(page);
2377 	else
2378 		return false;
2379 }
2380 #endif /* CONFIG_DEBUG_VM */
2381 
2382 static bool check_new_pages(struct page *page, unsigned int order)
2383 {
2384 	int i;
2385 	for (i = 0; i < (1 << order); i++) {
2386 		struct page *p = page + i;
2387 
2388 		if (unlikely(check_new_page(p)))
2389 			return true;
2390 	}
2391 
2392 	return false;
2393 }
2394 
2395 inline void post_alloc_hook(struct page *page, unsigned int order,
2396 				gfp_t gfp_flags)
2397 {
2398 	set_page_private(page, 0);
2399 	set_page_refcounted(page);
2400 
2401 	arch_alloc_page(page, order);
2402 	debug_pagealloc_map_pages(page, 1 << order);
2403 
2404 	/*
2405 	 * Page unpoisoning must happen before memory initialization.
2406 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2407 	 * allocations and the page unpoisoning code will complain.
2408 	 */
2409 	kernel_unpoison_pages(page, 1 << order);
2410 
2411 	/*
2412 	 * As memory initialization might be integrated into KASAN,
2413 	 * kasan_alloc_pages and kernel_init_free_pages must be
2414 	 * kept together to avoid discrepancies in behavior.
2415 	 */
2416 	if (kasan_has_integrated_init()) {
2417 		kasan_alloc_pages(page, order, gfp_flags);
2418 	} else {
2419 		bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags);
2420 
2421 		kasan_unpoison_pages(page, order, init);
2422 		if (init)
2423 			kernel_init_free_pages(page, 1 << order,
2424 					       gfp_flags & __GFP_ZEROTAGS);
2425 	}
2426 
2427 	set_page_owner(page, order, gfp_flags);
2428 }
2429 
2430 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2431 							unsigned int alloc_flags)
2432 {
2433 	post_alloc_hook(page, order, gfp_flags);
2434 
2435 	if (order && (gfp_flags & __GFP_COMP))
2436 		prep_compound_page(page, order);
2437 
2438 	/*
2439 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2440 	 * allocate the page. The expectation is that the caller is taking
2441 	 * steps that will free more memory. The caller should avoid the page
2442 	 * being used for !PFMEMALLOC purposes.
2443 	 */
2444 	if (alloc_flags & ALLOC_NO_WATERMARKS)
2445 		set_page_pfmemalloc(page);
2446 	else
2447 		clear_page_pfmemalloc(page);
2448 }
2449 
2450 /*
2451  * Go through the free lists for the given migratetype and remove
2452  * the smallest available page from the freelists
2453  */
2454 static __always_inline
2455 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2456 						int migratetype)
2457 {
2458 	unsigned int current_order;
2459 	struct free_area *area;
2460 	struct page *page;
2461 
2462 	/* Find a page of the appropriate size in the preferred list */
2463 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2464 		area = &(zone->free_area[current_order]);
2465 		page = get_page_from_free_area(area, migratetype);
2466 		if (!page)
2467 			continue;
2468 		del_page_from_free_list(page, zone, current_order);
2469 		expand(zone, page, order, current_order, migratetype);
2470 		set_pcppage_migratetype(page, migratetype);
2471 		return page;
2472 	}
2473 
2474 	return NULL;
2475 }
2476 
2477 
2478 /*
2479  * This array describes the order lists are fallen back to when
2480  * the free lists for the desirable migrate type are depleted
2481  */
2482 static int fallbacks[MIGRATE_TYPES][3] = {
2483 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2484 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2485 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2486 #ifdef CONFIG_CMA
2487 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2488 #endif
2489 #ifdef CONFIG_MEMORY_ISOLATION
2490 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2491 #endif
2492 };
2493 
2494 #ifdef CONFIG_CMA
2495 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2496 					unsigned int order)
2497 {
2498 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2499 }
2500 #else
2501 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2502 					unsigned int order) { return NULL; }
2503 #endif
2504 
2505 /*
2506  * Move the free pages in a range to the freelist tail of the requested type.
2507  * Note that start_page and end_pages are not aligned on a pageblock
2508  * boundary. If alignment is required, use move_freepages_block()
2509  */
2510 static int move_freepages(struct zone *zone,
2511 			  unsigned long start_pfn, unsigned long end_pfn,
2512 			  int migratetype, int *num_movable)
2513 {
2514 	struct page *page;
2515 	unsigned long pfn;
2516 	unsigned int order;
2517 	int pages_moved = 0;
2518 
2519 	for (pfn = start_pfn; pfn <= end_pfn;) {
2520 		if (!pfn_valid_within(pfn)) {
2521 			pfn++;
2522 			continue;
2523 		}
2524 
2525 		page = pfn_to_page(pfn);
2526 		if (!PageBuddy(page)) {
2527 			/*
2528 			 * We assume that pages that could be isolated for
2529 			 * migration are movable. But we don't actually try
2530 			 * isolating, as that would be expensive.
2531 			 */
2532 			if (num_movable &&
2533 					(PageLRU(page) || __PageMovable(page)))
2534 				(*num_movable)++;
2535 			pfn++;
2536 			continue;
2537 		}
2538 
2539 		/* Make sure we are not inadvertently changing nodes */
2540 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2541 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2542 
2543 		order = buddy_order(page);
2544 		move_to_free_list(page, zone, order, migratetype);
2545 		pfn += 1 << order;
2546 		pages_moved += 1 << order;
2547 	}
2548 
2549 	return pages_moved;
2550 }
2551 
2552 int move_freepages_block(struct zone *zone, struct page *page,
2553 				int migratetype, int *num_movable)
2554 {
2555 	unsigned long start_pfn, end_pfn, pfn;
2556 
2557 	if (num_movable)
2558 		*num_movable = 0;
2559 
2560 	pfn = page_to_pfn(page);
2561 	start_pfn = pfn & ~(pageblock_nr_pages - 1);
2562 	end_pfn = start_pfn + pageblock_nr_pages - 1;
2563 
2564 	/* Do not cross zone boundaries */
2565 	if (!zone_spans_pfn(zone, start_pfn))
2566 		start_pfn = pfn;
2567 	if (!zone_spans_pfn(zone, end_pfn))
2568 		return 0;
2569 
2570 	return move_freepages(zone, start_pfn, end_pfn, migratetype,
2571 								num_movable);
2572 }
2573 
2574 static void change_pageblock_range(struct page *pageblock_page,
2575 					int start_order, int migratetype)
2576 {
2577 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2578 
2579 	while (nr_pageblocks--) {
2580 		set_pageblock_migratetype(pageblock_page, migratetype);
2581 		pageblock_page += pageblock_nr_pages;
2582 	}
2583 }
2584 
2585 /*
2586  * When we are falling back to another migratetype during allocation, try to
2587  * steal extra free pages from the same pageblocks to satisfy further
2588  * allocations, instead of polluting multiple pageblocks.
2589  *
2590  * If we are stealing a relatively large buddy page, it is likely there will
2591  * be more free pages in the pageblock, so try to steal them all. For
2592  * reclaimable and unmovable allocations, we steal regardless of page size,
2593  * as fragmentation caused by those allocations polluting movable pageblocks
2594  * is worse than movable allocations stealing from unmovable and reclaimable
2595  * pageblocks.
2596  */
2597 static bool can_steal_fallback(unsigned int order, int start_mt)
2598 {
2599 	/*
2600 	 * Leaving this order check is intended, although there is
2601 	 * relaxed order check in next check. The reason is that
2602 	 * we can actually steal whole pageblock if this condition met,
2603 	 * but, below check doesn't guarantee it and that is just heuristic
2604 	 * so could be changed anytime.
2605 	 */
2606 	if (order >= pageblock_order)
2607 		return true;
2608 
2609 	if (order >= pageblock_order / 2 ||
2610 		start_mt == MIGRATE_RECLAIMABLE ||
2611 		start_mt == MIGRATE_UNMOVABLE ||
2612 		page_group_by_mobility_disabled)
2613 		return true;
2614 
2615 	return false;
2616 }
2617 
2618 static inline bool boost_watermark(struct zone *zone)
2619 {
2620 	unsigned long max_boost;
2621 
2622 	if (!watermark_boost_factor)
2623 		return false;
2624 	/*
2625 	 * Don't bother in zones that are unlikely to produce results.
2626 	 * On small machines, including kdump capture kernels running
2627 	 * in a small area, boosting the watermark can cause an out of
2628 	 * memory situation immediately.
2629 	 */
2630 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2631 		return false;
2632 
2633 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2634 			watermark_boost_factor, 10000);
2635 
2636 	/*
2637 	 * high watermark may be uninitialised if fragmentation occurs
2638 	 * very early in boot so do not boost. We do not fall
2639 	 * through and boost by pageblock_nr_pages as failing
2640 	 * allocations that early means that reclaim is not going
2641 	 * to help and it may even be impossible to reclaim the
2642 	 * boosted watermark resulting in a hang.
2643 	 */
2644 	if (!max_boost)
2645 		return false;
2646 
2647 	max_boost = max(pageblock_nr_pages, max_boost);
2648 
2649 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2650 		max_boost);
2651 
2652 	return true;
2653 }
2654 
2655 /*
2656  * This function implements actual steal behaviour. If order is large enough,
2657  * we can steal whole pageblock. If not, we first move freepages in this
2658  * pageblock to our migratetype and determine how many already-allocated pages
2659  * are there in the pageblock with a compatible migratetype. If at least half
2660  * of pages are free or compatible, we can change migratetype of the pageblock
2661  * itself, so pages freed in the future will be put on the correct free list.
2662  */
2663 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2664 		unsigned int alloc_flags, int start_type, bool whole_block)
2665 {
2666 	unsigned int current_order = buddy_order(page);
2667 	int free_pages, movable_pages, alike_pages;
2668 	int old_block_type;
2669 
2670 	old_block_type = get_pageblock_migratetype(page);
2671 
2672 	/*
2673 	 * This can happen due to races and we want to prevent broken
2674 	 * highatomic accounting.
2675 	 */
2676 	if (is_migrate_highatomic(old_block_type))
2677 		goto single_page;
2678 
2679 	/* Take ownership for orders >= pageblock_order */
2680 	if (current_order >= pageblock_order) {
2681 		change_pageblock_range(page, current_order, start_type);
2682 		goto single_page;
2683 	}
2684 
2685 	/*
2686 	 * Boost watermarks to increase reclaim pressure to reduce the
2687 	 * likelihood of future fallbacks. Wake kswapd now as the node
2688 	 * may be balanced overall and kswapd will not wake naturally.
2689 	 */
2690 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2691 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2692 
2693 	/* We are not allowed to try stealing from the whole block */
2694 	if (!whole_block)
2695 		goto single_page;
2696 
2697 	free_pages = move_freepages_block(zone, page, start_type,
2698 						&movable_pages);
2699 	/*
2700 	 * Determine how many pages are compatible with our allocation.
2701 	 * For movable allocation, it's the number of movable pages which
2702 	 * we just obtained. For other types it's a bit more tricky.
2703 	 */
2704 	if (start_type == MIGRATE_MOVABLE) {
2705 		alike_pages = movable_pages;
2706 	} else {
2707 		/*
2708 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2709 		 * to MOVABLE pageblock, consider all non-movable pages as
2710 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2711 		 * vice versa, be conservative since we can't distinguish the
2712 		 * exact migratetype of non-movable pages.
2713 		 */
2714 		if (old_block_type == MIGRATE_MOVABLE)
2715 			alike_pages = pageblock_nr_pages
2716 						- (free_pages + movable_pages);
2717 		else
2718 			alike_pages = 0;
2719 	}
2720 
2721 	/* moving whole block can fail due to zone boundary conditions */
2722 	if (!free_pages)
2723 		goto single_page;
2724 
2725 	/*
2726 	 * If a sufficient number of pages in the block are either free or of
2727 	 * comparable migratability as our allocation, claim the whole block.
2728 	 */
2729 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2730 			page_group_by_mobility_disabled)
2731 		set_pageblock_migratetype(page, start_type);
2732 
2733 	return;
2734 
2735 single_page:
2736 	move_to_free_list(page, zone, current_order, start_type);
2737 }
2738 
2739 /*
2740  * Check whether there is a suitable fallback freepage with requested order.
2741  * If only_stealable is true, this function returns fallback_mt only if
2742  * we can steal other freepages all together. This would help to reduce
2743  * fragmentation due to mixed migratetype pages in one pageblock.
2744  */
2745 int find_suitable_fallback(struct free_area *area, unsigned int order,
2746 			int migratetype, bool only_stealable, bool *can_steal)
2747 {
2748 	int i;
2749 	int fallback_mt;
2750 
2751 	if (area->nr_free == 0)
2752 		return -1;
2753 
2754 	*can_steal = false;
2755 	for (i = 0;; i++) {
2756 		fallback_mt = fallbacks[migratetype][i];
2757 		if (fallback_mt == MIGRATE_TYPES)
2758 			break;
2759 
2760 		if (free_area_empty(area, fallback_mt))
2761 			continue;
2762 
2763 		if (can_steal_fallback(order, migratetype))
2764 			*can_steal = true;
2765 
2766 		if (!only_stealable)
2767 			return fallback_mt;
2768 
2769 		if (*can_steal)
2770 			return fallback_mt;
2771 	}
2772 
2773 	return -1;
2774 }
2775 
2776 /*
2777  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2778  * there are no empty page blocks that contain a page with a suitable order
2779  */
2780 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2781 				unsigned int alloc_order)
2782 {
2783 	int mt;
2784 	unsigned long max_managed, flags;
2785 
2786 	/*
2787 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2788 	 * Check is race-prone but harmless.
2789 	 */
2790 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2791 	if (zone->nr_reserved_highatomic >= max_managed)
2792 		return;
2793 
2794 	spin_lock_irqsave(&zone->lock, flags);
2795 
2796 	/* Recheck the nr_reserved_highatomic limit under the lock */
2797 	if (zone->nr_reserved_highatomic >= max_managed)
2798 		goto out_unlock;
2799 
2800 	/* Yoink! */
2801 	mt = get_pageblock_migratetype(page);
2802 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2803 	    && !is_migrate_cma(mt)) {
2804 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2805 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2806 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2807 	}
2808 
2809 out_unlock:
2810 	spin_unlock_irqrestore(&zone->lock, flags);
2811 }
2812 
2813 /*
2814  * Used when an allocation is about to fail under memory pressure. This
2815  * potentially hurts the reliability of high-order allocations when under
2816  * intense memory pressure but failed atomic allocations should be easier
2817  * to recover from than an OOM.
2818  *
2819  * If @force is true, try to unreserve a pageblock even though highatomic
2820  * pageblock is exhausted.
2821  */
2822 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2823 						bool force)
2824 {
2825 	struct zonelist *zonelist = ac->zonelist;
2826 	unsigned long flags;
2827 	struct zoneref *z;
2828 	struct zone *zone;
2829 	struct page *page;
2830 	int order;
2831 	bool ret;
2832 
2833 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2834 								ac->nodemask) {
2835 		/*
2836 		 * Preserve at least one pageblock unless memory pressure
2837 		 * is really high.
2838 		 */
2839 		if (!force && zone->nr_reserved_highatomic <=
2840 					pageblock_nr_pages)
2841 			continue;
2842 
2843 		spin_lock_irqsave(&zone->lock, flags);
2844 		for (order = 0; order < MAX_ORDER; order++) {
2845 			struct free_area *area = &(zone->free_area[order]);
2846 
2847 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2848 			if (!page)
2849 				continue;
2850 
2851 			/*
2852 			 * In page freeing path, migratetype change is racy so
2853 			 * we can counter several free pages in a pageblock
2854 			 * in this loop although we changed the pageblock type
2855 			 * from highatomic to ac->migratetype. So we should
2856 			 * adjust the count once.
2857 			 */
2858 			if (is_migrate_highatomic_page(page)) {
2859 				/*
2860 				 * It should never happen but changes to
2861 				 * locking could inadvertently allow a per-cpu
2862 				 * drain to add pages to MIGRATE_HIGHATOMIC
2863 				 * while unreserving so be safe and watch for
2864 				 * underflows.
2865 				 */
2866 				zone->nr_reserved_highatomic -= min(
2867 						pageblock_nr_pages,
2868 						zone->nr_reserved_highatomic);
2869 			}
2870 
2871 			/*
2872 			 * Convert to ac->migratetype and avoid the normal
2873 			 * pageblock stealing heuristics. Minimally, the caller
2874 			 * is doing the work and needs the pages. More
2875 			 * importantly, if the block was always converted to
2876 			 * MIGRATE_UNMOVABLE or another type then the number
2877 			 * of pageblocks that cannot be completely freed
2878 			 * may increase.
2879 			 */
2880 			set_pageblock_migratetype(page, ac->migratetype);
2881 			ret = move_freepages_block(zone, page, ac->migratetype,
2882 									NULL);
2883 			if (ret) {
2884 				spin_unlock_irqrestore(&zone->lock, flags);
2885 				return ret;
2886 			}
2887 		}
2888 		spin_unlock_irqrestore(&zone->lock, flags);
2889 	}
2890 
2891 	return false;
2892 }
2893 
2894 /*
2895  * Try finding a free buddy page on the fallback list and put it on the free
2896  * list of requested migratetype, possibly along with other pages from the same
2897  * block, depending on fragmentation avoidance heuristics. Returns true if
2898  * fallback was found so that __rmqueue_smallest() can grab it.
2899  *
2900  * The use of signed ints for order and current_order is a deliberate
2901  * deviation from the rest of this file, to make the for loop
2902  * condition simpler.
2903  */
2904 static __always_inline bool
2905 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2906 						unsigned int alloc_flags)
2907 {
2908 	struct free_area *area;
2909 	int current_order;
2910 	int min_order = order;
2911 	struct page *page;
2912 	int fallback_mt;
2913 	bool can_steal;
2914 
2915 	/*
2916 	 * Do not steal pages from freelists belonging to other pageblocks
2917 	 * i.e. orders < pageblock_order. If there are no local zones free,
2918 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2919 	 */
2920 	if (alloc_flags & ALLOC_NOFRAGMENT)
2921 		min_order = pageblock_order;
2922 
2923 	/*
2924 	 * Find the largest available free page in the other list. This roughly
2925 	 * approximates finding the pageblock with the most free pages, which
2926 	 * would be too costly to do exactly.
2927 	 */
2928 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2929 				--current_order) {
2930 		area = &(zone->free_area[current_order]);
2931 		fallback_mt = find_suitable_fallback(area, current_order,
2932 				start_migratetype, false, &can_steal);
2933 		if (fallback_mt == -1)
2934 			continue;
2935 
2936 		/*
2937 		 * We cannot steal all free pages from the pageblock and the
2938 		 * requested migratetype is movable. In that case it's better to
2939 		 * steal and split the smallest available page instead of the
2940 		 * largest available page, because even if the next movable
2941 		 * allocation falls back into a different pageblock than this
2942 		 * one, it won't cause permanent fragmentation.
2943 		 */
2944 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2945 					&& current_order > order)
2946 			goto find_smallest;
2947 
2948 		goto do_steal;
2949 	}
2950 
2951 	return false;
2952 
2953 find_smallest:
2954 	for (current_order = order; current_order < MAX_ORDER;
2955 							current_order++) {
2956 		area = &(zone->free_area[current_order]);
2957 		fallback_mt = find_suitable_fallback(area, current_order,
2958 				start_migratetype, false, &can_steal);
2959 		if (fallback_mt != -1)
2960 			break;
2961 	}
2962 
2963 	/*
2964 	 * This should not happen - we already found a suitable fallback
2965 	 * when looking for the largest page.
2966 	 */
2967 	VM_BUG_ON(current_order == MAX_ORDER);
2968 
2969 do_steal:
2970 	page = get_page_from_free_area(area, fallback_mt);
2971 
2972 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2973 								can_steal);
2974 
2975 	trace_mm_page_alloc_extfrag(page, order, current_order,
2976 		start_migratetype, fallback_mt);
2977 
2978 	return true;
2979 
2980 }
2981 
2982 /*
2983  * Do the hard work of removing an element from the buddy allocator.
2984  * Call me with the zone->lock already held.
2985  */
2986 static __always_inline struct page *
2987 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2988 						unsigned int alloc_flags)
2989 {
2990 	struct page *page;
2991 
2992 	if (IS_ENABLED(CONFIG_CMA)) {
2993 		/*
2994 		 * Balance movable allocations between regular and CMA areas by
2995 		 * allocating from CMA when over half of the zone's free memory
2996 		 * is in the CMA area.
2997 		 */
2998 		if (alloc_flags & ALLOC_CMA &&
2999 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
3000 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
3001 			page = __rmqueue_cma_fallback(zone, order);
3002 			if (page)
3003 				goto out;
3004 		}
3005 	}
3006 retry:
3007 	page = __rmqueue_smallest(zone, order, migratetype);
3008 	if (unlikely(!page)) {
3009 		if (alloc_flags & ALLOC_CMA)
3010 			page = __rmqueue_cma_fallback(zone, order);
3011 
3012 		if (!page && __rmqueue_fallback(zone, order, migratetype,
3013 								alloc_flags))
3014 			goto retry;
3015 	}
3016 out:
3017 	if (page)
3018 		trace_mm_page_alloc_zone_locked(page, order, migratetype);
3019 	return page;
3020 }
3021 
3022 /*
3023  * Obtain a specified number of elements from the buddy allocator, all under
3024  * a single hold of the lock, for efficiency.  Add them to the supplied list.
3025  * Returns the number of new pages which were placed at *list.
3026  */
3027 static int rmqueue_bulk(struct zone *zone, unsigned int order,
3028 			unsigned long count, struct list_head *list,
3029 			int migratetype, unsigned int alloc_flags)
3030 {
3031 	int i, allocated = 0;
3032 
3033 	/*
3034 	 * local_lock_irq held so equivalent to spin_lock_irqsave for
3035 	 * both PREEMPT_RT and non-PREEMPT_RT configurations.
3036 	 */
3037 	spin_lock(&zone->lock);
3038 	for (i = 0; i < count; ++i) {
3039 		struct page *page = __rmqueue(zone, order, migratetype,
3040 								alloc_flags);
3041 		if (unlikely(page == NULL))
3042 			break;
3043 
3044 		if (unlikely(check_pcp_refill(page)))
3045 			continue;
3046 
3047 		/*
3048 		 * Split buddy pages returned by expand() are received here in
3049 		 * physical page order. The page is added to the tail of
3050 		 * caller's list. From the callers perspective, the linked list
3051 		 * is ordered by page number under some conditions. This is
3052 		 * useful for IO devices that can forward direction from the
3053 		 * head, thus also in the physical page order. This is useful
3054 		 * for IO devices that can merge IO requests if the physical
3055 		 * pages are ordered properly.
3056 		 */
3057 		list_add_tail(&page->lru, list);
3058 		allocated++;
3059 		if (is_migrate_cma(get_pcppage_migratetype(page)))
3060 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3061 					      -(1 << order));
3062 	}
3063 
3064 	/*
3065 	 * i pages were removed from the buddy list even if some leak due
3066 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3067 	 * on i. Do not confuse with 'allocated' which is the number of
3068 	 * pages added to the pcp list.
3069 	 */
3070 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3071 	spin_unlock(&zone->lock);
3072 	return allocated;
3073 }
3074 
3075 #ifdef CONFIG_NUMA
3076 /*
3077  * Called from the vmstat counter updater to drain pagesets of this
3078  * currently executing processor on remote nodes after they have
3079  * expired.
3080  *
3081  * Note that this function must be called with the thread pinned to
3082  * a single processor.
3083  */
3084 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3085 {
3086 	unsigned long flags;
3087 	int to_drain, batch;
3088 
3089 	local_lock_irqsave(&pagesets.lock, flags);
3090 	batch = READ_ONCE(pcp->batch);
3091 	to_drain = min(pcp->count, batch);
3092 	if (to_drain > 0)
3093 		free_pcppages_bulk(zone, to_drain, pcp);
3094 	local_unlock_irqrestore(&pagesets.lock, flags);
3095 }
3096 #endif
3097 
3098 /*
3099  * Drain pcplists of the indicated processor and zone.
3100  *
3101  * The processor must either be the current processor and the
3102  * thread pinned to the current processor or a processor that
3103  * is not online.
3104  */
3105 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3106 {
3107 	unsigned long flags;
3108 	struct per_cpu_pages *pcp;
3109 
3110 	local_lock_irqsave(&pagesets.lock, flags);
3111 
3112 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3113 	if (pcp->count)
3114 		free_pcppages_bulk(zone, pcp->count, pcp);
3115 
3116 	local_unlock_irqrestore(&pagesets.lock, flags);
3117 }
3118 
3119 /*
3120  * Drain pcplists of all zones on the indicated processor.
3121  *
3122  * The processor must either be the current processor and the
3123  * thread pinned to the current processor or a processor that
3124  * is not online.
3125  */
3126 static void drain_pages(unsigned int cpu)
3127 {
3128 	struct zone *zone;
3129 
3130 	for_each_populated_zone(zone) {
3131 		drain_pages_zone(cpu, zone);
3132 	}
3133 }
3134 
3135 /*
3136  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3137  *
3138  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3139  * the single zone's pages.
3140  */
3141 void drain_local_pages(struct zone *zone)
3142 {
3143 	int cpu = smp_processor_id();
3144 
3145 	if (zone)
3146 		drain_pages_zone(cpu, zone);
3147 	else
3148 		drain_pages(cpu);
3149 }
3150 
3151 static void drain_local_pages_wq(struct work_struct *work)
3152 {
3153 	struct pcpu_drain *drain;
3154 
3155 	drain = container_of(work, struct pcpu_drain, work);
3156 
3157 	/*
3158 	 * drain_all_pages doesn't use proper cpu hotplug protection so
3159 	 * we can race with cpu offline when the WQ can move this from
3160 	 * a cpu pinned worker to an unbound one. We can operate on a different
3161 	 * cpu which is alright but we also have to make sure to not move to
3162 	 * a different one.
3163 	 */
3164 	preempt_disable();
3165 	drain_local_pages(drain->zone);
3166 	preempt_enable();
3167 }
3168 
3169 /*
3170  * The implementation of drain_all_pages(), exposing an extra parameter to
3171  * drain on all cpus.
3172  *
3173  * drain_all_pages() is optimized to only execute on cpus where pcplists are
3174  * not empty. The check for non-emptiness can however race with a free to
3175  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3176  * that need the guarantee that every CPU has drained can disable the
3177  * optimizing racy check.
3178  */
3179 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3180 {
3181 	int cpu;
3182 
3183 	/*
3184 	 * Allocate in the BSS so we won't require allocation in
3185 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3186 	 */
3187 	static cpumask_t cpus_with_pcps;
3188 
3189 	/*
3190 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
3191 	 * initialized.
3192 	 */
3193 	if (WARN_ON_ONCE(!mm_percpu_wq))
3194 		return;
3195 
3196 	/*
3197 	 * Do not drain if one is already in progress unless it's specific to
3198 	 * a zone. Such callers are primarily CMA and memory hotplug and need
3199 	 * the drain to be complete when the call returns.
3200 	 */
3201 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3202 		if (!zone)
3203 			return;
3204 		mutex_lock(&pcpu_drain_mutex);
3205 	}
3206 
3207 	/*
3208 	 * We don't care about racing with CPU hotplug event
3209 	 * as offline notification will cause the notified
3210 	 * cpu to drain that CPU pcps and on_each_cpu_mask
3211 	 * disables preemption as part of its processing
3212 	 */
3213 	for_each_online_cpu(cpu) {
3214 		struct per_cpu_pages *pcp;
3215 		struct zone *z;
3216 		bool has_pcps = false;
3217 
3218 		if (force_all_cpus) {
3219 			/*
3220 			 * The pcp.count check is racy, some callers need a
3221 			 * guarantee that no cpu is missed.
3222 			 */
3223 			has_pcps = true;
3224 		} else if (zone) {
3225 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3226 			if (pcp->count)
3227 				has_pcps = true;
3228 		} else {
3229 			for_each_populated_zone(z) {
3230 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3231 				if (pcp->count) {
3232 					has_pcps = true;
3233 					break;
3234 				}
3235 			}
3236 		}
3237 
3238 		if (has_pcps)
3239 			cpumask_set_cpu(cpu, &cpus_with_pcps);
3240 		else
3241 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
3242 	}
3243 
3244 	for_each_cpu(cpu, &cpus_with_pcps) {
3245 		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3246 
3247 		drain->zone = zone;
3248 		INIT_WORK(&drain->work, drain_local_pages_wq);
3249 		queue_work_on(cpu, mm_percpu_wq, &drain->work);
3250 	}
3251 	for_each_cpu(cpu, &cpus_with_pcps)
3252 		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3253 
3254 	mutex_unlock(&pcpu_drain_mutex);
3255 }
3256 
3257 /*
3258  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3259  *
3260  * When zone parameter is non-NULL, spill just the single zone's pages.
3261  *
3262  * Note that this can be extremely slow as the draining happens in a workqueue.
3263  */
3264 void drain_all_pages(struct zone *zone)
3265 {
3266 	__drain_all_pages(zone, false);
3267 }
3268 
3269 #ifdef CONFIG_HIBERNATION
3270 
3271 /*
3272  * Touch the watchdog for every WD_PAGE_COUNT pages.
3273  */
3274 #define WD_PAGE_COUNT	(128*1024)
3275 
3276 void mark_free_pages(struct zone *zone)
3277 {
3278 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3279 	unsigned long flags;
3280 	unsigned int order, t;
3281 	struct page *page;
3282 
3283 	if (zone_is_empty(zone))
3284 		return;
3285 
3286 	spin_lock_irqsave(&zone->lock, flags);
3287 
3288 	max_zone_pfn = zone_end_pfn(zone);
3289 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3290 		if (pfn_valid(pfn)) {
3291 			page = pfn_to_page(pfn);
3292 
3293 			if (!--page_count) {
3294 				touch_nmi_watchdog();
3295 				page_count = WD_PAGE_COUNT;
3296 			}
3297 
3298 			if (page_zone(page) != zone)
3299 				continue;
3300 
3301 			if (!swsusp_page_is_forbidden(page))
3302 				swsusp_unset_page_free(page);
3303 		}
3304 
3305 	for_each_migratetype_order(order, t) {
3306 		list_for_each_entry(page,
3307 				&zone->free_area[order].free_list[t], lru) {
3308 			unsigned long i;
3309 
3310 			pfn = page_to_pfn(page);
3311 			for (i = 0; i < (1UL << order); i++) {
3312 				if (!--page_count) {
3313 					touch_nmi_watchdog();
3314 					page_count = WD_PAGE_COUNT;
3315 				}
3316 				swsusp_set_page_free(pfn_to_page(pfn + i));
3317 			}
3318 		}
3319 	}
3320 	spin_unlock_irqrestore(&zone->lock, flags);
3321 }
3322 #endif /* CONFIG_PM */
3323 
3324 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3325 							unsigned int order)
3326 {
3327 	int migratetype;
3328 
3329 	if (!free_pcp_prepare(page, order))
3330 		return false;
3331 
3332 	migratetype = get_pfnblock_migratetype(page, pfn);
3333 	set_pcppage_migratetype(page, migratetype);
3334 	return true;
3335 }
3336 
3337 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch)
3338 {
3339 	int min_nr_free, max_nr_free;
3340 
3341 	/* Check for PCP disabled or boot pageset */
3342 	if (unlikely(high < batch))
3343 		return 1;
3344 
3345 	/* Leave at least pcp->batch pages on the list */
3346 	min_nr_free = batch;
3347 	max_nr_free = high - batch;
3348 
3349 	/*
3350 	 * Double the number of pages freed each time there is subsequent
3351 	 * freeing of pages without any allocation.
3352 	 */
3353 	batch <<= pcp->free_factor;
3354 	if (batch < max_nr_free)
3355 		pcp->free_factor++;
3356 	batch = clamp(batch, min_nr_free, max_nr_free);
3357 
3358 	return batch;
3359 }
3360 
3361 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone)
3362 {
3363 	int high = READ_ONCE(pcp->high);
3364 
3365 	if (unlikely(!high))
3366 		return 0;
3367 
3368 	if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3369 		return high;
3370 
3371 	/*
3372 	 * If reclaim is active, limit the number of pages that can be
3373 	 * stored on pcp lists
3374 	 */
3375 	return min(READ_ONCE(pcp->batch) << 2, high);
3376 }
3377 
3378 static void free_unref_page_commit(struct page *page, unsigned long pfn,
3379 				   int migratetype, unsigned int order)
3380 {
3381 	struct zone *zone = page_zone(page);
3382 	struct per_cpu_pages *pcp;
3383 	int high;
3384 	int pindex;
3385 
3386 	__count_vm_event(PGFREE);
3387 	pcp = this_cpu_ptr(zone->per_cpu_pageset);
3388 	pindex = order_to_pindex(migratetype, order);
3389 	list_add(&page->lru, &pcp->lists[pindex]);
3390 	pcp->count += 1 << order;
3391 	high = nr_pcp_high(pcp, zone);
3392 	if (pcp->count >= high) {
3393 		int batch = READ_ONCE(pcp->batch);
3394 
3395 		free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch), pcp);
3396 	}
3397 }
3398 
3399 /*
3400  * Free a pcp page
3401  */
3402 void free_unref_page(struct page *page, unsigned int order)
3403 {
3404 	unsigned long flags;
3405 	unsigned long pfn = page_to_pfn(page);
3406 	int migratetype;
3407 
3408 	if (!free_unref_page_prepare(page, pfn, order))
3409 		return;
3410 
3411 	/*
3412 	 * We only track unmovable, reclaimable and movable on pcp lists.
3413 	 * Place ISOLATE pages on the isolated list because they are being
3414 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3415 	 * areas back if necessary. Otherwise, we may have to free
3416 	 * excessively into the page allocator
3417 	 */
3418 	migratetype = get_pcppage_migratetype(page);
3419 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3420 		if (unlikely(is_migrate_isolate(migratetype))) {
3421 			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3422 			return;
3423 		}
3424 		migratetype = MIGRATE_MOVABLE;
3425 	}
3426 
3427 	local_lock_irqsave(&pagesets.lock, flags);
3428 	free_unref_page_commit(page, pfn, migratetype, order);
3429 	local_unlock_irqrestore(&pagesets.lock, flags);
3430 }
3431 
3432 /*
3433  * Free a list of 0-order pages
3434  */
3435 void free_unref_page_list(struct list_head *list)
3436 {
3437 	struct page *page, *next;
3438 	unsigned long flags, pfn;
3439 	int batch_count = 0;
3440 	int migratetype;
3441 
3442 	/* Prepare pages for freeing */
3443 	list_for_each_entry_safe(page, next, list, lru) {
3444 		pfn = page_to_pfn(page);
3445 		if (!free_unref_page_prepare(page, pfn, 0))
3446 			list_del(&page->lru);
3447 
3448 		/*
3449 		 * Free isolated pages directly to the allocator, see
3450 		 * comment in free_unref_page.
3451 		 */
3452 		migratetype = get_pcppage_migratetype(page);
3453 		if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3454 			if (unlikely(is_migrate_isolate(migratetype))) {
3455 				list_del(&page->lru);
3456 				free_one_page(page_zone(page), page, pfn, 0,
3457 							migratetype, FPI_NONE);
3458 				continue;
3459 			}
3460 
3461 			/*
3462 			 * Non-isolated types over MIGRATE_PCPTYPES get added
3463 			 * to the MIGRATE_MOVABLE pcp list.
3464 			 */
3465 			set_pcppage_migratetype(page, MIGRATE_MOVABLE);
3466 		}
3467 
3468 		set_page_private(page, pfn);
3469 	}
3470 
3471 	local_lock_irqsave(&pagesets.lock, flags);
3472 	list_for_each_entry_safe(page, next, list, lru) {
3473 		pfn = page_private(page);
3474 		set_page_private(page, 0);
3475 		migratetype = get_pcppage_migratetype(page);
3476 		trace_mm_page_free_batched(page);
3477 		free_unref_page_commit(page, pfn, migratetype, 0);
3478 
3479 		/*
3480 		 * Guard against excessive IRQ disabled times when we get
3481 		 * a large list of pages to free.
3482 		 */
3483 		if (++batch_count == SWAP_CLUSTER_MAX) {
3484 			local_unlock_irqrestore(&pagesets.lock, flags);
3485 			batch_count = 0;
3486 			local_lock_irqsave(&pagesets.lock, flags);
3487 		}
3488 	}
3489 	local_unlock_irqrestore(&pagesets.lock, flags);
3490 }
3491 
3492 /*
3493  * split_page takes a non-compound higher-order page, and splits it into
3494  * n (1<<order) sub-pages: page[0..n]
3495  * Each sub-page must be freed individually.
3496  *
3497  * Note: this is probably too low level an operation for use in drivers.
3498  * Please consult with lkml before using this in your driver.
3499  */
3500 void split_page(struct page *page, unsigned int order)
3501 {
3502 	int i;
3503 
3504 	VM_BUG_ON_PAGE(PageCompound(page), page);
3505 	VM_BUG_ON_PAGE(!page_count(page), page);
3506 
3507 	for (i = 1; i < (1 << order); i++)
3508 		set_page_refcounted(page + i);
3509 	split_page_owner(page, 1 << order);
3510 	split_page_memcg(page, 1 << order);
3511 }
3512 EXPORT_SYMBOL_GPL(split_page);
3513 
3514 int __isolate_free_page(struct page *page, unsigned int order)
3515 {
3516 	unsigned long watermark;
3517 	struct zone *zone;
3518 	int mt;
3519 
3520 	BUG_ON(!PageBuddy(page));
3521 
3522 	zone = page_zone(page);
3523 	mt = get_pageblock_migratetype(page);
3524 
3525 	if (!is_migrate_isolate(mt)) {
3526 		/*
3527 		 * Obey watermarks as if the page was being allocated. We can
3528 		 * emulate a high-order watermark check with a raised order-0
3529 		 * watermark, because we already know our high-order page
3530 		 * exists.
3531 		 */
3532 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3533 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3534 			return 0;
3535 
3536 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3537 	}
3538 
3539 	/* Remove page from free list */
3540 
3541 	del_page_from_free_list(page, zone, order);
3542 
3543 	/*
3544 	 * Set the pageblock if the isolated page is at least half of a
3545 	 * pageblock
3546 	 */
3547 	if (order >= pageblock_order - 1) {
3548 		struct page *endpage = page + (1 << order) - 1;
3549 		for (; page < endpage; page += pageblock_nr_pages) {
3550 			int mt = get_pageblock_migratetype(page);
3551 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3552 			    && !is_migrate_highatomic(mt))
3553 				set_pageblock_migratetype(page,
3554 							  MIGRATE_MOVABLE);
3555 		}
3556 	}
3557 
3558 
3559 	return 1UL << order;
3560 }
3561 
3562 /**
3563  * __putback_isolated_page - Return a now-isolated page back where we got it
3564  * @page: Page that was isolated
3565  * @order: Order of the isolated page
3566  * @mt: The page's pageblock's migratetype
3567  *
3568  * This function is meant to return a page pulled from the free lists via
3569  * __isolate_free_page back to the free lists they were pulled from.
3570  */
3571 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3572 {
3573 	struct zone *zone = page_zone(page);
3574 
3575 	/* zone lock should be held when this function is called */
3576 	lockdep_assert_held(&zone->lock);
3577 
3578 	/* Return isolated page to tail of freelist. */
3579 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
3580 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3581 }
3582 
3583 /*
3584  * Update NUMA hit/miss statistics
3585  *
3586  * Must be called with interrupts disabled.
3587  */
3588 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3589 				   long nr_account)
3590 {
3591 #ifdef CONFIG_NUMA
3592 	enum numa_stat_item local_stat = NUMA_LOCAL;
3593 
3594 	/* skip numa counters update if numa stats is disabled */
3595 	if (!static_branch_likely(&vm_numa_stat_key))
3596 		return;
3597 
3598 	if (zone_to_nid(z) != numa_node_id())
3599 		local_stat = NUMA_OTHER;
3600 
3601 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3602 		__count_numa_events(z, NUMA_HIT, nr_account);
3603 	else {
3604 		__count_numa_events(z, NUMA_MISS, nr_account);
3605 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3606 	}
3607 	__count_numa_events(z, local_stat, nr_account);
3608 #endif
3609 }
3610 
3611 /* Remove page from the per-cpu list, caller must protect the list */
3612 static inline
3613 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3614 			int migratetype,
3615 			unsigned int alloc_flags,
3616 			struct per_cpu_pages *pcp,
3617 			struct list_head *list)
3618 {
3619 	struct page *page;
3620 
3621 	do {
3622 		if (list_empty(list)) {
3623 			int batch = READ_ONCE(pcp->batch);
3624 			int alloced;
3625 
3626 			/*
3627 			 * Scale batch relative to order if batch implies
3628 			 * free pages can be stored on the PCP. Batch can
3629 			 * be 1 for small zones or for boot pagesets which
3630 			 * should never store free pages as the pages may
3631 			 * belong to arbitrary zones.
3632 			 */
3633 			if (batch > 1)
3634 				batch = max(batch >> order, 2);
3635 			alloced = rmqueue_bulk(zone, order,
3636 					batch, list,
3637 					migratetype, alloc_flags);
3638 
3639 			pcp->count += alloced << order;
3640 			if (unlikely(list_empty(list)))
3641 				return NULL;
3642 		}
3643 
3644 		page = list_first_entry(list, struct page, lru);
3645 		list_del(&page->lru);
3646 		pcp->count -= 1 << order;
3647 	} while (check_new_pcp(page));
3648 
3649 	return page;
3650 }
3651 
3652 /* Lock and remove page from the per-cpu list */
3653 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3654 			struct zone *zone, unsigned int order,
3655 			gfp_t gfp_flags, int migratetype,
3656 			unsigned int alloc_flags)
3657 {
3658 	struct per_cpu_pages *pcp;
3659 	struct list_head *list;
3660 	struct page *page;
3661 	unsigned long flags;
3662 
3663 	local_lock_irqsave(&pagesets.lock, flags);
3664 
3665 	/*
3666 	 * On allocation, reduce the number of pages that are batch freed.
3667 	 * See nr_pcp_free() where free_factor is increased for subsequent
3668 	 * frees.
3669 	 */
3670 	pcp = this_cpu_ptr(zone->per_cpu_pageset);
3671 	pcp->free_factor >>= 1;
3672 	list = &pcp->lists[order_to_pindex(migratetype, order)];
3673 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3674 	local_unlock_irqrestore(&pagesets.lock, flags);
3675 	if (page) {
3676 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3677 		zone_statistics(preferred_zone, zone, 1);
3678 	}
3679 	return page;
3680 }
3681 
3682 /*
3683  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3684  */
3685 static inline
3686 struct page *rmqueue(struct zone *preferred_zone,
3687 			struct zone *zone, unsigned int order,
3688 			gfp_t gfp_flags, unsigned int alloc_flags,
3689 			int migratetype)
3690 {
3691 	unsigned long flags;
3692 	struct page *page;
3693 
3694 	if (likely(pcp_allowed_order(order))) {
3695 		/*
3696 		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3697 		 * we need to skip it when CMA area isn't allowed.
3698 		 */
3699 		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3700 				migratetype != MIGRATE_MOVABLE) {
3701 			page = rmqueue_pcplist(preferred_zone, zone, order,
3702 					gfp_flags, migratetype, alloc_flags);
3703 			goto out;
3704 		}
3705 	}
3706 
3707 	/*
3708 	 * We most definitely don't want callers attempting to
3709 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3710 	 */
3711 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3712 	spin_lock_irqsave(&zone->lock, flags);
3713 
3714 	do {
3715 		page = NULL;
3716 		/*
3717 		 * order-0 request can reach here when the pcplist is skipped
3718 		 * due to non-CMA allocation context. HIGHATOMIC area is
3719 		 * reserved for high-order atomic allocation, so order-0
3720 		 * request should skip it.
3721 		 */
3722 		if (order > 0 && alloc_flags & ALLOC_HARDER) {
3723 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3724 			if (page)
3725 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3726 		}
3727 		if (!page)
3728 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3729 	} while (page && check_new_pages(page, order));
3730 	if (!page)
3731 		goto failed;
3732 
3733 	__mod_zone_freepage_state(zone, -(1 << order),
3734 				  get_pcppage_migratetype(page));
3735 	spin_unlock_irqrestore(&zone->lock, flags);
3736 
3737 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3738 	zone_statistics(preferred_zone, zone, 1);
3739 
3740 out:
3741 	/* Separate test+clear to avoid unnecessary atomics */
3742 	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3743 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3744 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3745 	}
3746 
3747 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3748 	return page;
3749 
3750 failed:
3751 	spin_unlock_irqrestore(&zone->lock, flags);
3752 	return NULL;
3753 }
3754 
3755 #ifdef CONFIG_FAIL_PAGE_ALLOC
3756 
3757 static struct {
3758 	struct fault_attr attr;
3759 
3760 	bool ignore_gfp_highmem;
3761 	bool ignore_gfp_reclaim;
3762 	u32 min_order;
3763 } fail_page_alloc = {
3764 	.attr = FAULT_ATTR_INITIALIZER,
3765 	.ignore_gfp_reclaim = true,
3766 	.ignore_gfp_highmem = true,
3767 	.min_order = 1,
3768 };
3769 
3770 static int __init setup_fail_page_alloc(char *str)
3771 {
3772 	return setup_fault_attr(&fail_page_alloc.attr, str);
3773 }
3774 __setup("fail_page_alloc=", setup_fail_page_alloc);
3775 
3776 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3777 {
3778 	if (order < fail_page_alloc.min_order)
3779 		return false;
3780 	if (gfp_mask & __GFP_NOFAIL)
3781 		return false;
3782 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3783 		return false;
3784 	if (fail_page_alloc.ignore_gfp_reclaim &&
3785 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3786 		return false;
3787 
3788 	return should_fail(&fail_page_alloc.attr, 1 << order);
3789 }
3790 
3791 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3792 
3793 static int __init fail_page_alloc_debugfs(void)
3794 {
3795 	umode_t mode = S_IFREG | 0600;
3796 	struct dentry *dir;
3797 
3798 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3799 					&fail_page_alloc.attr);
3800 
3801 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3802 			    &fail_page_alloc.ignore_gfp_reclaim);
3803 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3804 			    &fail_page_alloc.ignore_gfp_highmem);
3805 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3806 
3807 	return 0;
3808 }
3809 
3810 late_initcall(fail_page_alloc_debugfs);
3811 
3812 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3813 
3814 #else /* CONFIG_FAIL_PAGE_ALLOC */
3815 
3816 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3817 {
3818 	return false;
3819 }
3820 
3821 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3822 
3823 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3824 {
3825 	return __should_fail_alloc_page(gfp_mask, order);
3826 }
3827 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3828 
3829 static inline long __zone_watermark_unusable_free(struct zone *z,
3830 				unsigned int order, unsigned int alloc_flags)
3831 {
3832 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3833 	long unusable_free = (1 << order) - 1;
3834 
3835 	/*
3836 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3837 	 * the high-atomic reserves. This will over-estimate the size of the
3838 	 * atomic reserve but it avoids a search.
3839 	 */
3840 	if (likely(!alloc_harder))
3841 		unusable_free += z->nr_reserved_highatomic;
3842 
3843 #ifdef CONFIG_CMA
3844 	/* If allocation can't use CMA areas don't use free CMA pages */
3845 	if (!(alloc_flags & ALLOC_CMA))
3846 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3847 #endif
3848 
3849 	return unusable_free;
3850 }
3851 
3852 /*
3853  * Return true if free base pages are above 'mark'. For high-order checks it
3854  * will return true of the order-0 watermark is reached and there is at least
3855  * one free page of a suitable size. Checking now avoids taking the zone lock
3856  * to check in the allocation paths if no pages are free.
3857  */
3858 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3859 			 int highest_zoneidx, unsigned int alloc_flags,
3860 			 long free_pages)
3861 {
3862 	long min = mark;
3863 	int o;
3864 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3865 
3866 	/* free_pages may go negative - that's OK */
3867 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3868 
3869 	if (alloc_flags & ALLOC_HIGH)
3870 		min -= min / 2;
3871 
3872 	if (unlikely(alloc_harder)) {
3873 		/*
3874 		 * OOM victims can try even harder than normal ALLOC_HARDER
3875 		 * users on the grounds that it's definitely going to be in
3876 		 * the exit path shortly and free memory. Any allocation it
3877 		 * makes during the free path will be small and short-lived.
3878 		 */
3879 		if (alloc_flags & ALLOC_OOM)
3880 			min -= min / 2;
3881 		else
3882 			min -= min / 4;
3883 	}
3884 
3885 	/*
3886 	 * Check watermarks for an order-0 allocation request. If these
3887 	 * are not met, then a high-order request also cannot go ahead
3888 	 * even if a suitable page happened to be free.
3889 	 */
3890 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3891 		return false;
3892 
3893 	/* If this is an order-0 request then the watermark is fine */
3894 	if (!order)
3895 		return true;
3896 
3897 	/* For a high-order request, check at least one suitable page is free */
3898 	for (o = order; o < MAX_ORDER; o++) {
3899 		struct free_area *area = &z->free_area[o];
3900 		int mt;
3901 
3902 		if (!area->nr_free)
3903 			continue;
3904 
3905 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3906 			if (!free_area_empty(area, mt))
3907 				return true;
3908 		}
3909 
3910 #ifdef CONFIG_CMA
3911 		if ((alloc_flags & ALLOC_CMA) &&
3912 		    !free_area_empty(area, MIGRATE_CMA)) {
3913 			return true;
3914 		}
3915 #endif
3916 		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3917 			return true;
3918 	}
3919 	return false;
3920 }
3921 
3922 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3923 		      int highest_zoneidx, unsigned int alloc_flags)
3924 {
3925 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3926 					zone_page_state(z, NR_FREE_PAGES));
3927 }
3928 
3929 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3930 				unsigned long mark, int highest_zoneidx,
3931 				unsigned int alloc_flags, gfp_t gfp_mask)
3932 {
3933 	long free_pages;
3934 
3935 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3936 
3937 	/*
3938 	 * Fast check for order-0 only. If this fails then the reserves
3939 	 * need to be calculated.
3940 	 */
3941 	if (!order) {
3942 		long fast_free;
3943 
3944 		fast_free = free_pages;
3945 		fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3946 		if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3947 			return true;
3948 	}
3949 
3950 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3951 					free_pages))
3952 		return true;
3953 	/*
3954 	 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3955 	 * when checking the min watermark. The min watermark is the
3956 	 * point where boosting is ignored so that kswapd is woken up
3957 	 * when below the low watermark.
3958 	 */
3959 	if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3960 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3961 		mark = z->_watermark[WMARK_MIN];
3962 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3963 					alloc_flags, free_pages);
3964 	}
3965 
3966 	return false;
3967 }
3968 
3969 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3970 			unsigned long mark, int highest_zoneidx)
3971 {
3972 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3973 
3974 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3975 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3976 
3977 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3978 								free_pages);
3979 }
3980 
3981 #ifdef CONFIG_NUMA
3982 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3983 {
3984 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3985 				node_reclaim_distance;
3986 }
3987 #else	/* CONFIG_NUMA */
3988 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3989 {
3990 	return true;
3991 }
3992 #endif	/* CONFIG_NUMA */
3993 
3994 /*
3995  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3996  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3997  * premature use of a lower zone may cause lowmem pressure problems that
3998  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3999  * probably too small. It only makes sense to spread allocations to avoid
4000  * fragmentation between the Normal and DMA32 zones.
4001  */
4002 static inline unsigned int
4003 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
4004 {
4005 	unsigned int alloc_flags;
4006 
4007 	/*
4008 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4009 	 * to save a branch.
4010 	 */
4011 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
4012 
4013 #ifdef CONFIG_ZONE_DMA32
4014 	if (!zone)
4015 		return alloc_flags;
4016 
4017 	if (zone_idx(zone) != ZONE_NORMAL)
4018 		return alloc_flags;
4019 
4020 	/*
4021 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4022 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4023 	 * on UMA that if Normal is populated then so is DMA32.
4024 	 */
4025 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4026 	if (nr_online_nodes > 1 && !populated_zone(--zone))
4027 		return alloc_flags;
4028 
4029 	alloc_flags |= ALLOC_NOFRAGMENT;
4030 #endif /* CONFIG_ZONE_DMA32 */
4031 	return alloc_flags;
4032 }
4033 
4034 /* Must be called after current_gfp_context() which can change gfp_mask */
4035 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4036 						  unsigned int alloc_flags)
4037 {
4038 #ifdef CONFIG_CMA
4039 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4040 		alloc_flags |= ALLOC_CMA;
4041 #endif
4042 	return alloc_flags;
4043 }
4044 
4045 /*
4046  * get_page_from_freelist goes through the zonelist trying to allocate
4047  * a page.
4048  */
4049 static struct page *
4050 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4051 						const struct alloc_context *ac)
4052 {
4053 	struct zoneref *z;
4054 	struct zone *zone;
4055 	struct pglist_data *last_pgdat_dirty_limit = NULL;
4056 	bool no_fallback;
4057 
4058 retry:
4059 	/*
4060 	 * Scan zonelist, looking for a zone with enough free.
4061 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
4062 	 */
4063 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4064 	z = ac->preferred_zoneref;
4065 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4066 					ac->nodemask) {
4067 		struct page *page;
4068 		unsigned long mark;
4069 
4070 		if (cpusets_enabled() &&
4071 			(alloc_flags & ALLOC_CPUSET) &&
4072 			!__cpuset_zone_allowed(zone, gfp_mask))
4073 				continue;
4074 		/*
4075 		 * When allocating a page cache page for writing, we
4076 		 * want to get it from a node that is within its dirty
4077 		 * limit, such that no single node holds more than its
4078 		 * proportional share of globally allowed dirty pages.
4079 		 * The dirty limits take into account the node's
4080 		 * lowmem reserves and high watermark so that kswapd
4081 		 * should be able to balance it without having to
4082 		 * write pages from its LRU list.
4083 		 *
4084 		 * XXX: For now, allow allocations to potentially
4085 		 * exceed the per-node dirty limit in the slowpath
4086 		 * (spread_dirty_pages unset) before going into reclaim,
4087 		 * which is important when on a NUMA setup the allowed
4088 		 * nodes are together not big enough to reach the
4089 		 * global limit.  The proper fix for these situations
4090 		 * will require awareness of nodes in the
4091 		 * dirty-throttling and the flusher threads.
4092 		 */
4093 		if (ac->spread_dirty_pages) {
4094 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
4095 				continue;
4096 
4097 			if (!node_dirty_ok(zone->zone_pgdat)) {
4098 				last_pgdat_dirty_limit = zone->zone_pgdat;
4099 				continue;
4100 			}
4101 		}
4102 
4103 		if (no_fallback && nr_online_nodes > 1 &&
4104 		    zone != ac->preferred_zoneref->zone) {
4105 			int local_nid;
4106 
4107 			/*
4108 			 * If moving to a remote node, retry but allow
4109 			 * fragmenting fallbacks. Locality is more important
4110 			 * than fragmentation avoidance.
4111 			 */
4112 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4113 			if (zone_to_nid(zone) != local_nid) {
4114 				alloc_flags &= ~ALLOC_NOFRAGMENT;
4115 				goto retry;
4116 			}
4117 		}
4118 
4119 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4120 		if (!zone_watermark_fast(zone, order, mark,
4121 				       ac->highest_zoneidx, alloc_flags,
4122 				       gfp_mask)) {
4123 			int ret;
4124 
4125 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4126 			/*
4127 			 * Watermark failed for this zone, but see if we can
4128 			 * grow this zone if it contains deferred pages.
4129 			 */
4130 			if (static_branch_unlikely(&deferred_pages)) {
4131 				if (_deferred_grow_zone(zone, order))
4132 					goto try_this_zone;
4133 			}
4134 #endif
4135 			/* Checked here to keep the fast path fast */
4136 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4137 			if (alloc_flags & ALLOC_NO_WATERMARKS)
4138 				goto try_this_zone;
4139 
4140 			if (!node_reclaim_enabled() ||
4141 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4142 				continue;
4143 
4144 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4145 			switch (ret) {
4146 			case NODE_RECLAIM_NOSCAN:
4147 				/* did not scan */
4148 				continue;
4149 			case NODE_RECLAIM_FULL:
4150 				/* scanned but unreclaimable */
4151 				continue;
4152 			default:
4153 				/* did we reclaim enough */
4154 				if (zone_watermark_ok(zone, order, mark,
4155 					ac->highest_zoneidx, alloc_flags))
4156 					goto try_this_zone;
4157 
4158 				continue;
4159 			}
4160 		}
4161 
4162 try_this_zone:
4163 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4164 				gfp_mask, alloc_flags, ac->migratetype);
4165 		if (page) {
4166 			prep_new_page(page, order, gfp_mask, alloc_flags);
4167 
4168 			/*
4169 			 * If this is a high-order atomic allocation then check
4170 			 * if the pageblock should be reserved for the future
4171 			 */
4172 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4173 				reserve_highatomic_pageblock(page, zone, order);
4174 
4175 			return page;
4176 		} else {
4177 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4178 			/* Try again if zone has deferred pages */
4179 			if (static_branch_unlikely(&deferred_pages)) {
4180 				if (_deferred_grow_zone(zone, order))
4181 					goto try_this_zone;
4182 			}
4183 #endif
4184 		}
4185 	}
4186 
4187 	/*
4188 	 * It's possible on a UMA machine to get through all zones that are
4189 	 * fragmented. If avoiding fragmentation, reset and try again.
4190 	 */
4191 	if (no_fallback) {
4192 		alloc_flags &= ~ALLOC_NOFRAGMENT;
4193 		goto retry;
4194 	}
4195 
4196 	return NULL;
4197 }
4198 
4199 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4200 {
4201 	unsigned int filter = SHOW_MEM_FILTER_NODES;
4202 
4203 	/*
4204 	 * This documents exceptions given to allocations in certain
4205 	 * contexts that are allowed to allocate outside current's set
4206 	 * of allowed nodes.
4207 	 */
4208 	if (!(gfp_mask & __GFP_NOMEMALLOC))
4209 		if (tsk_is_oom_victim(current) ||
4210 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
4211 			filter &= ~SHOW_MEM_FILTER_NODES;
4212 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4213 		filter &= ~SHOW_MEM_FILTER_NODES;
4214 
4215 	show_mem(filter, nodemask);
4216 }
4217 
4218 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4219 {
4220 	struct va_format vaf;
4221 	va_list args;
4222 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4223 
4224 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
4225 		return;
4226 
4227 	va_start(args, fmt);
4228 	vaf.fmt = fmt;
4229 	vaf.va = &args;
4230 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4231 			current->comm, &vaf, gfp_mask, &gfp_mask,
4232 			nodemask_pr_args(nodemask));
4233 	va_end(args);
4234 
4235 	cpuset_print_current_mems_allowed();
4236 	pr_cont("\n");
4237 	dump_stack();
4238 	warn_alloc_show_mem(gfp_mask, nodemask);
4239 }
4240 
4241 static inline struct page *
4242 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4243 			      unsigned int alloc_flags,
4244 			      const struct alloc_context *ac)
4245 {
4246 	struct page *page;
4247 
4248 	page = get_page_from_freelist(gfp_mask, order,
4249 			alloc_flags|ALLOC_CPUSET, ac);
4250 	/*
4251 	 * fallback to ignore cpuset restriction if our nodes
4252 	 * are depleted
4253 	 */
4254 	if (!page)
4255 		page = get_page_from_freelist(gfp_mask, order,
4256 				alloc_flags, ac);
4257 
4258 	return page;
4259 }
4260 
4261 static inline struct page *
4262 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4263 	const struct alloc_context *ac, unsigned long *did_some_progress)
4264 {
4265 	struct oom_control oc = {
4266 		.zonelist = ac->zonelist,
4267 		.nodemask = ac->nodemask,
4268 		.memcg = NULL,
4269 		.gfp_mask = gfp_mask,
4270 		.order = order,
4271 	};
4272 	struct page *page;
4273 
4274 	*did_some_progress = 0;
4275 
4276 	/*
4277 	 * Acquire the oom lock.  If that fails, somebody else is
4278 	 * making progress for us.
4279 	 */
4280 	if (!mutex_trylock(&oom_lock)) {
4281 		*did_some_progress = 1;
4282 		schedule_timeout_uninterruptible(1);
4283 		return NULL;
4284 	}
4285 
4286 	/*
4287 	 * Go through the zonelist yet one more time, keep very high watermark
4288 	 * here, this is only to catch a parallel oom killing, we must fail if
4289 	 * we're still under heavy pressure. But make sure that this reclaim
4290 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4291 	 * allocation which will never fail due to oom_lock already held.
4292 	 */
4293 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4294 				      ~__GFP_DIRECT_RECLAIM, order,
4295 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4296 	if (page)
4297 		goto out;
4298 
4299 	/* Coredumps can quickly deplete all memory reserves */
4300 	if (current->flags & PF_DUMPCORE)
4301 		goto out;
4302 	/* The OOM killer will not help higher order allocs */
4303 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4304 		goto out;
4305 	/*
4306 	 * We have already exhausted all our reclaim opportunities without any
4307 	 * success so it is time to admit defeat. We will skip the OOM killer
4308 	 * because it is very likely that the caller has a more reasonable
4309 	 * fallback than shooting a random task.
4310 	 *
4311 	 * The OOM killer may not free memory on a specific node.
4312 	 */
4313 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4314 		goto out;
4315 	/* The OOM killer does not needlessly kill tasks for lowmem */
4316 	if (ac->highest_zoneidx < ZONE_NORMAL)
4317 		goto out;
4318 	if (pm_suspended_storage())
4319 		goto out;
4320 	/*
4321 	 * XXX: GFP_NOFS allocations should rather fail than rely on
4322 	 * other request to make a forward progress.
4323 	 * We are in an unfortunate situation where out_of_memory cannot
4324 	 * do much for this context but let's try it to at least get
4325 	 * access to memory reserved if the current task is killed (see
4326 	 * out_of_memory). Once filesystems are ready to handle allocation
4327 	 * failures more gracefully we should just bail out here.
4328 	 */
4329 
4330 	/* Exhausted what can be done so it's blame time */
4331 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4332 		*did_some_progress = 1;
4333 
4334 		/*
4335 		 * Help non-failing allocations by giving them access to memory
4336 		 * reserves
4337 		 */
4338 		if (gfp_mask & __GFP_NOFAIL)
4339 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4340 					ALLOC_NO_WATERMARKS, ac);
4341 	}
4342 out:
4343 	mutex_unlock(&oom_lock);
4344 	return page;
4345 }
4346 
4347 /*
4348  * Maximum number of compaction retries with a progress before OOM
4349  * killer is consider as the only way to move forward.
4350  */
4351 #define MAX_COMPACT_RETRIES 16
4352 
4353 #ifdef CONFIG_COMPACTION
4354 /* Try memory compaction for high-order allocations before reclaim */
4355 static struct page *
4356 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4357 		unsigned int alloc_flags, const struct alloc_context *ac,
4358 		enum compact_priority prio, enum compact_result *compact_result)
4359 {
4360 	struct page *page = NULL;
4361 	unsigned long pflags;
4362 	unsigned int noreclaim_flag;
4363 
4364 	if (!order)
4365 		return NULL;
4366 
4367 	psi_memstall_enter(&pflags);
4368 	noreclaim_flag = memalloc_noreclaim_save();
4369 
4370 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4371 								prio, &page);
4372 
4373 	memalloc_noreclaim_restore(noreclaim_flag);
4374 	psi_memstall_leave(&pflags);
4375 
4376 	if (*compact_result == COMPACT_SKIPPED)
4377 		return NULL;
4378 	/*
4379 	 * At least in one zone compaction wasn't deferred or skipped, so let's
4380 	 * count a compaction stall
4381 	 */
4382 	count_vm_event(COMPACTSTALL);
4383 
4384 	/* Prep a captured page if available */
4385 	if (page)
4386 		prep_new_page(page, order, gfp_mask, alloc_flags);
4387 
4388 	/* Try get a page from the freelist if available */
4389 	if (!page)
4390 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4391 
4392 	if (page) {
4393 		struct zone *zone = page_zone(page);
4394 
4395 		zone->compact_blockskip_flush = false;
4396 		compaction_defer_reset(zone, order, true);
4397 		count_vm_event(COMPACTSUCCESS);
4398 		return page;
4399 	}
4400 
4401 	/*
4402 	 * It's bad if compaction run occurs and fails. The most likely reason
4403 	 * is that pages exist, but not enough to satisfy watermarks.
4404 	 */
4405 	count_vm_event(COMPACTFAIL);
4406 
4407 	cond_resched();
4408 
4409 	return NULL;
4410 }
4411 
4412 static inline bool
4413 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4414 		     enum compact_result compact_result,
4415 		     enum compact_priority *compact_priority,
4416 		     int *compaction_retries)
4417 {
4418 	int max_retries = MAX_COMPACT_RETRIES;
4419 	int min_priority;
4420 	bool ret = false;
4421 	int retries = *compaction_retries;
4422 	enum compact_priority priority = *compact_priority;
4423 
4424 	if (!order)
4425 		return false;
4426 
4427 	if (fatal_signal_pending(current))
4428 		return false;
4429 
4430 	if (compaction_made_progress(compact_result))
4431 		(*compaction_retries)++;
4432 
4433 	/*
4434 	 * compaction considers all the zone as desperately out of memory
4435 	 * so it doesn't really make much sense to retry except when the
4436 	 * failure could be caused by insufficient priority
4437 	 */
4438 	if (compaction_failed(compact_result))
4439 		goto check_priority;
4440 
4441 	/*
4442 	 * compaction was skipped because there are not enough order-0 pages
4443 	 * to work with, so we retry only if it looks like reclaim can help.
4444 	 */
4445 	if (compaction_needs_reclaim(compact_result)) {
4446 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4447 		goto out;
4448 	}
4449 
4450 	/*
4451 	 * make sure the compaction wasn't deferred or didn't bail out early
4452 	 * due to locks contention before we declare that we should give up.
4453 	 * But the next retry should use a higher priority if allowed, so
4454 	 * we don't just keep bailing out endlessly.
4455 	 */
4456 	if (compaction_withdrawn(compact_result)) {
4457 		goto check_priority;
4458 	}
4459 
4460 	/*
4461 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4462 	 * costly ones because they are de facto nofail and invoke OOM
4463 	 * killer to move on while costly can fail and users are ready
4464 	 * to cope with that. 1/4 retries is rather arbitrary but we
4465 	 * would need much more detailed feedback from compaction to
4466 	 * make a better decision.
4467 	 */
4468 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4469 		max_retries /= 4;
4470 	if (*compaction_retries <= max_retries) {
4471 		ret = true;
4472 		goto out;
4473 	}
4474 
4475 	/*
4476 	 * Make sure there are attempts at the highest priority if we exhausted
4477 	 * all retries or failed at the lower priorities.
4478 	 */
4479 check_priority:
4480 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4481 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4482 
4483 	if (*compact_priority > min_priority) {
4484 		(*compact_priority)--;
4485 		*compaction_retries = 0;
4486 		ret = true;
4487 	}
4488 out:
4489 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4490 	return ret;
4491 }
4492 #else
4493 static inline struct page *
4494 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4495 		unsigned int alloc_flags, const struct alloc_context *ac,
4496 		enum compact_priority prio, enum compact_result *compact_result)
4497 {
4498 	*compact_result = COMPACT_SKIPPED;
4499 	return NULL;
4500 }
4501 
4502 static inline bool
4503 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4504 		     enum compact_result compact_result,
4505 		     enum compact_priority *compact_priority,
4506 		     int *compaction_retries)
4507 {
4508 	struct zone *zone;
4509 	struct zoneref *z;
4510 
4511 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4512 		return false;
4513 
4514 	/*
4515 	 * There are setups with compaction disabled which would prefer to loop
4516 	 * inside the allocator rather than hit the oom killer prematurely.
4517 	 * Let's give them a good hope and keep retrying while the order-0
4518 	 * watermarks are OK.
4519 	 */
4520 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4521 				ac->highest_zoneidx, ac->nodemask) {
4522 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4523 					ac->highest_zoneidx, alloc_flags))
4524 			return true;
4525 	}
4526 	return false;
4527 }
4528 #endif /* CONFIG_COMPACTION */
4529 
4530 #ifdef CONFIG_LOCKDEP
4531 static struct lockdep_map __fs_reclaim_map =
4532 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4533 
4534 static bool __need_reclaim(gfp_t gfp_mask)
4535 {
4536 	/* no reclaim without waiting on it */
4537 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4538 		return false;
4539 
4540 	/* this guy won't enter reclaim */
4541 	if (current->flags & PF_MEMALLOC)
4542 		return false;
4543 
4544 	if (gfp_mask & __GFP_NOLOCKDEP)
4545 		return false;
4546 
4547 	return true;
4548 }
4549 
4550 void __fs_reclaim_acquire(void)
4551 {
4552 	lock_map_acquire(&__fs_reclaim_map);
4553 }
4554 
4555 void __fs_reclaim_release(void)
4556 {
4557 	lock_map_release(&__fs_reclaim_map);
4558 }
4559 
4560 void fs_reclaim_acquire(gfp_t gfp_mask)
4561 {
4562 	gfp_mask = current_gfp_context(gfp_mask);
4563 
4564 	if (__need_reclaim(gfp_mask)) {
4565 		if (gfp_mask & __GFP_FS)
4566 			__fs_reclaim_acquire();
4567 
4568 #ifdef CONFIG_MMU_NOTIFIER
4569 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4570 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4571 #endif
4572 
4573 	}
4574 }
4575 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4576 
4577 void fs_reclaim_release(gfp_t gfp_mask)
4578 {
4579 	gfp_mask = current_gfp_context(gfp_mask);
4580 
4581 	if (__need_reclaim(gfp_mask)) {
4582 		if (gfp_mask & __GFP_FS)
4583 			__fs_reclaim_release();
4584 	}
4585 }
4586 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4587 #endif
4588 
4589 /* Perform direct synchronous page reclaim */
4590 static unsigned long
4591 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4592 					const struct alloc_context *ac)
4593 {
4594 	unsigned int noreclaim_flag;
4595 	unsigned long pflags, progress;
4596 
4597 	cond_resched();
4598 
4599 	/* We now go into synchronous reclaim */
4600 	cpuset_memory_pressure_bump();
4601 	psi_memstall_enter(&pflags);
4602 	fs_reclaim_acquire(gfp_mask);
4603 	noreclaim_flag = memalloc_noreclaim_save();
4604 
4605 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4606 								ac->nodemask);
4607 
4608 	memalloc_noreclaim_restore(noreclaim_flag);
4609 	fs_reclaim_release(gfp_mask);
4610 	psi_memstall_leave(&pflags);
4611 
4612 	cond_resched();
4613 
4614 	return progress;
4615 }
4616 
4617 /* The really slow allocator path where we enter direct reclaim */
4618 static inline struct page *
4619 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4620 		unsigned int alloc_flags, const struct alloc_context *ac,
4621 		unsigned long *did_some_progress)
4622 {
4623 	struct page *page = NULL;
4624 	bool drained = false;
4625 
4626 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4627 	if (unlikely(!(*did_some_progress)))
4628 		return NULL;
4629 
4630 retry:
4631 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4632 
4633 	/*
4634 	 * If an allocation failed after direct reclaim, it could be because
4635 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4636 	 * Shrink them and try again
4637 	 */
4638 	if (!page && !drained) {
4639 		unreserve_highatomic_pageblock(ac, false);
4640 		drain_all_pages(NULL);
4641 		drained = true;
4642 		goto retry;
4643 	}
4644 
4645 	return page;
4646 }
4647 
4648 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4649 			     const struct alloc_context *ac)
4650 {
4651 	struct zoneref *z;
4652 	struct zone *zone;
4653 	pg_data_t *last_pgdat = NULL;
4654 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4655 
4656 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4657 					ac->nodemask) {
4658 		if (last_pgdat != zone->zone_pgdat)
4659 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4660 		last_pgdat = zone->zone_pgdat;
4661 	}
4662 }
4663 
4664 static inline unsigned int
4665 gfp_to_alloc_flags(gfp_t gfp_mask)
4666 {
4667 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4668 
4669 	/*
4670 	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4671 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4672 	 * to save two branches.
4673 	 */
4674 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4675 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4676 
4677 	/*
4678 	 * The caller may dip into page reserves a bit more if the caller
4679 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4680 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4681 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4682 	 */
4683 	alloc_flags |= (__force int)
4684 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4685 
4686 	if (gfp_mask & __GFP_ATOMIC) {
4687 		/*
4688 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4689 		 * if it can't schedule.
4690 		 */
4691 		if (!(gfp_mask & __GFP_NOMEMALLOC))
4692 			alloc_flags |= ALLOC_HARDER;
4693 		/*
4694 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4695 		 * comment for __cpuset_node_allowed().
4696 		 */
4697 		alloc_flags &= ~ALLOC_CPUSET;
4698 	} else if (unlikely(rt_task(current)) && !in_interrupt())
4699 		alloc_flags |= ALLOC_HARDER;
4700 
4701 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4702 
4703 	return alloc_flags;
4704 }
4705 
4706 static bool oom_reserves_allowed(struct task_struct *tsk)
4707 {
4708 	if (!tsk_is_oom_victim(tsk))
4709 		return false;
4710 
4711 	/*
4712 	 * !MMU doesn't have oom reaper so give access to memory reserves
4713 	 * only to the thread with TIF_MEMDIE set
4714 	 */
4715 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4716 		return false;
4717 
4718 	return true;
4719 }
4720 
4721 /*
4722  * Distinguish requests which really need access to full memory
4723  * reserves from oom victims which can live with a portion of it
4724  */
4725 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4726 {
4727 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4728 		return 0;
4729 	if (gfp_mask & __GFP_MEMALLOC)
4730 		return ALLOC_NO_WATERMARKS;
4731 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4732 		return ALLOC_NO_WATERMARKS;
4733 	if (!in_interrupt()) {
4734 		if (current->flags & PF_MEMALLOC)
4735 			return ALLOC_NO_WATERMARKS;
4736 		else if (oom_reserves_allowed(current))
4737 			return ALLOC_OOM;
4738 	}
4739 
4740 	return 0;
4741 }
4742 
4743 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4744 {
4745 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4746 }
4747 
4748 /*
4749  * Checks whether it makes sense to retry the reclaim to make a forward progress
4750  * for the given allocation request.
4751  *
4752  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4753  * without success, or when we couldn't even meet the watermark if we
4754  * reclaimed all remaining pages on the LRU lists.
4755  *
4756  * Returns true if a retry is viable or false to enter the oom path.
4757  */
4758 static inline bool
4759 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4760 		     struct alloc_context *ac, int alloc_flags,
4761 		     bool did_some_progress, int *no_progress_loops)
4762 {
4763 	struct zone *zone;
4764 	struct zoneref *z;
4765 	bool ret = false;
4766 
4767 	/*
4768 	 * Costly allocations might have made a progress but this doesn't mean
4769 	 * their order will become available due to high fragmentation so
4770 	 * always increment the no progress counter for them
4771 	 */
4772 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4773 		*no_progress_loops = 0;
4774 	else
4775 		(*no_progress_loops)++;
4776 
4777 	/*
4778 	 * Make sure we converge to OOM if we cannot make any progress
4779 	 * several times in the row.
4780 	 */
4781 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4782 		/* Before OOM, exhaust highatomic_reserve */
4783 		return unreserve_highatomic_pageblock(ac, true);
4784 	}
4785 
4786 	/*
4787 	 * Keep reclaiming pages while there is a chance this will lead
4788 	 * somewhere.  If none of the target zones can satisfy our allocation
4789 	 * request even if all reclaimable pages are considered then we are
4790 	 * screwed and have to go OOM.
4791 	 */
4792 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4793 				ac->highest_zoneidx, ac->nodemask) {
4794 		unsigned long available;
4795 		unsigned long reclaimable;
4796 		unsigned long min_wmark = min_wmark_pages(zone);
4797 		bool wmark;
4798 
4799 		available = reclaimable = zone_reclaimable_pages(zone);
4800 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4801 
4802 		/*
4803 		 * Would the allocation succeed if we reclaimed all
4804 		 * reclaimable pages?
4805 		 */
4806 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4807 				ac->highest_zoneidx, alloc_flags, available);
4808 		trace_reclaim_retry_zone(z, order, reclaimable,
4809 				available, min_wmark, *no_progress_loops, wmark);
4810 		if (wmark) {
4811 			/*
4812 			 * If we didn't make any progress and have a lot of
4813 			 * dirty + writeback pages then we should wait for
4814 			 * an IO to complete to slow down the reclaim and
4815 			 * prevent from pre mature OOM
4816 			 */
4817 			if (!did_some_progress) {
4818 				unsigned long write_pending;
4819 
4820 				write_pending = zone_page_state_snapshot(zone,
4821 							NR_ZONE_WRITE_PENDING);
4822 
4823 				if (2 * write_pending > reclaimable) {
4824 					congestion_wait(BLK_RW_ASYNC, HZ/10);
4825 					return true;
4826 				}
4827 			}
4828 
4829 			ret = true;
4830 			goto out;
4831 		}
4832 	}
4833 
4834 out:
4835 	/*
4836 	 * Memory allocation/reclaim might be called from a WQ context and the
4837 	 * current implementation of the WQ concurrency control doesn't
4838 	 * recognize that a particular WQ is congested if the worker thread is
4839 	 * looping without ever sleeping. Therefore we have to do a short sleep
4840 	 * here rather than calling cond_resched().
4841 	 */
4842 	if (current->flags & PF_WQ_WORKER)
4843 		schedule_timeout_uninterruptible(1);
4844 	else
4845 		cond_resched();
4846 	return ret;
4847 }
4848 
4849 static inline bool
4850 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4851 {
4852 	/*
4853 	 * It's possible that cpuset's mems_allowed and the nodemask from
4854 	 * mempolicy don't intersect. This should be normally dealt with by
4855 	 * policy_nodemask(), but it's possible to race with cpuset update in
4856 	 * such a way the check therein was true, and then it became false
4857 	 * before we got our cpuset_mems_cookie here.
4858 	 * This assumes that for all allocations, ac->nodemask can come only
4859 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4860 	 * when it does not intersect with the cpuset restrictions) or the
4861 	 * caller can deal with a violated nodemask.
4862 	 */
4863 	if (cpusets_enabled() && ac->nodemask &&
4864 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4865 		ac->nodemask = NULL;
4866 		return true;
4867 	}
4868 
4869 	/*
4870 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4871 	 * possible to race with parallel threads in such a way that our
4872 	 * allocation can fail while the mask is being updated. If we are about
4873 	 * to fail, check if the cpuset changed during allocation and if so,
4874 	 * retry.
4875 	 */
4876 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4877 		return true;
4878 
4879 	return false;
4880 }
4881 
4882 static inline struct page *
4883 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4884 						struct alloc_context *ac)
4885 {
4886 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4887 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4888 	struct page *page = NULL;
4889 	unsigned int alloc_flags;
4890 	unsigned long did_some_progress;
4891 	enum compact_priority compact_priority;
4892 	enum compact_result compact_result;
4893 	int compaction_retries;
4894 	int no_progress_loops;
4895 	unsigned int cpuset_mems_cookie;
4896 	int reserve_flags;
4897 
4898 	/*
4899 	 * We also sanity check to catch abuse of atomic reserves being used by
4900 	 * callers that are not in atomic context.
4901 	 */
4902 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4903 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4904 		gfp_mask &= ~__GFP_ATOMIC;
4905 
4906 retry_cpuset:
4907 	compaction_retries = 0;
4908 	no_progress_loops = 0;
4909 	compact_priority = DEF_COMPACT_PRIORITY;
4910 	cpuset_mems_cookie = read_mems_allowed_begin();
4911 
4912 	/*
4913 	 * The fast path uses conservative alloc_flags to succeed only until
4914 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4915 	 * alloc_flags precisely. So we do that now.
4916 	 */
4917 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4918 
4919 	/*
4920 	 * We need to recalculate the starting point for the zonelist iterator
4921 	 * because we might have used different nodemask in the fast path, or
4922 	 * there was a cpuset modification and we are retrying - otherwise we
4923 	 * could end up iterating over non-eligible zones endlessly.
4924 	 */
4925 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4926 					ac->highest_zoneidx, ac->nodemask);
4927 	if (!ac->preferred_zoneref->zone)
4928 		goto nopage;
4929 
4930 	if (alloc_flags & ALLOC_KSWAPD)
4931 		wake_all_kswapds(order, gfp_mask, ac);
4932 
4933 	/*
4934 	 * The adjusted alloc_flags might result in immediate success, so try
4935 	 * that first
4936 	 */
4937 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4938 	if (page)
4939 		goto got_pg;
4940 
4941 	/*
4942 	 * For costly allocations, try direct compaction first, as it's likely
4943 	 * that we have enough base pages and don't need to reclaim. For non-
4944 	 * movable high-order allocations, do that as well, as compaction will
4945 	 * try prevent permanent fragmentation by migrating from blocks of the
4946 	 * same migratetype.
4947 	 * Don't try this for allocations that are allowed to ignore
4948 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4949 	 */
4950 	if (can_direct_reclaim &&
4951 			(costly_order ||
4952 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4953 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4954 		page = __alloc_pages_direct_compact(gfp_mask, order,
4955 						alloc_flags, ac,
4956 						INIT_COMPACT_PRIORITY,
4957 						&compact_result);
4958 		if (page)
4959 			goto got_pg;
4960 
4961 		/*
4962 		 * Checks for costly allocations with __GFP_NORETRY, which
4963 		 * includes some THP page fault allocations
4964 		 */
4965 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4966 			/*
4967 			 * If allocating entire pageblock(s) and compaction
4968 			 * failed because all zones are below low watermarks
4969 			 * or is prohibited because it recently failed at this
4970 			 * order, fail immediately unless the allocator has
4971 			 * requested compaction and reclaim retry.
4972 			 *
4973 			 * Reclaim is
4974 			 *  - potentially very expensive because zones are far
4975 			 *    below their low watermarks or this is part of very
4976 			 *    bursty high order allocations,
4977 			 *  - not guaranteed to help because isolate_freepages()
4978 			 *    may not iterate over freed pages as part of its
4979 			 *    linear scan, and
4980 			 *  - unlikely to make entire pageblocks free on its
4981 			 *    own.
4982 			 */
4983 			if (compact_result == COMPACT_SKIPPED ||
4984 			    compact_result == COMPACT_DEFERRED)
4985 				goto nopage;
4986 
4987 			/*
4988 			 * Looks like reclaim/compaction is worth trying, but
4989 			 * sync compaction could be very expensive, so keep
4990 			 * using async compaction.
4991 			 */
4992 			compact_priority = INIT_COMPACT_PRIORITY;
4993 		}
4994 	}
4995 
4996 retry:
4997 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4998 	if (alloc_flags & ALLOC_KSWAPD)
4999 		wake_all_kswapds(order, gfp_mask, ac);
5000 
5001 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
5002 	if (reserve_flags)
5003 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
5004 
5005 	/*
5006 	 * Reset the nodemask and zonelist iterators if memory policies can be
5007 	 * ignored. These allocations are high priority and system rather than
5008 	 * user oriented.
5009 	 */
5010 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
5011 		ac->nodemask = NULL;
5012 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5013 					ac->highest_zoneidx, ac->nodemask);
5014 	}
5015 
5016 	/* Attempt with potentially adjusted zonelist and alloc_flags */
5017 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5018 	if (page)
5019 		goto got_pg;
5020 
5021 	/* Caller is not willing to reclaim, we can't balance anything */
5022 	if (!can_direct_reclaim)
5023 		goto nopage;
5024 
5025 	/* Avoid recursion of direct reclaim */
5026 	if (current->flags & PF_MEMALLOC)
5027 		goto nopage;
5028 
5029 	/* Try direct reclaim and then allocating */
5030 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5031 							&did_some_progress);
5032 	if (page)
5033 		goto got_pg;
5034 
5035 	/* Try direct compaction and then allocating */
5036 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5037 					compact_priority, &compact_result);
5038 	if (page)
5039 		goto got_pg;
5040 
5041 	/* Do not loop if specifically requested */
5042 	if (gfp_mask & __GFP_NORETRY)
5043 		goto nopage;
5044 
5045 	/*
5046 	 * Do not retry costly high order allocations unless they are
5047 	 * __GFP_RETRY_MAYFAIL
5048 	 */
5049 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5050 		goto nopage;
5051 
5052 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5053 				 did_some_progress > 0, &no_progress_loops))
5054 		goto retry;
5055 
5056 	/*
5057 	 * It doesn't make any sense to retry for the compaction if the order-0
5058 	 * reclaim is not able to make any progress because the current
5059 	 * implementation of the compaction depends on the sufficient amount
5060 	 * of free memory (see __compaction_suitable)
5061 	 */
5062 	if (did_some_progress > 0 &&
5063 			should_compact_retry(ac, order, alloc_flags,
5064 				compact_result, &compact_priority,
5065 				&compaction_retries))
5066 		goto retry;
5067 
5068 
5069 	/* Deal with possible cpuset update races before we start OOM killing */
5070 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
5071 		goto retry_cpuset;
5072 
5073 	/* Reclaim has failed us, start killing things */
5074 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5075 	if (page)
5076 		goto got_pg;
5077 
5078 	/* Avoid allocations with no watermarks from looping endlessly */
5079 	if (tsk_is_oom_victim(current) &&
5080 	    (alloc_flags & ALLOC_OOM ||
5081 	     (gfp_mask & __GFP_NOMEMALLOC)))
5082 		goto nopage;
5083 
5084 	/* Retry as long as the OOM killer is making progress */
5085 	if (did_some_progress) {
5086 		no_progress_loops = 0;
5087 		goto retry;
5088 	}
5089 
5090 nopage:
5091 	/* Deal with possible cpuset update races before we fail */
5092 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
5093 		goto retry_cpuset;
5094 
5095 	/*
5096 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5097 	 * we always retry
5098 	 */
5099 	if (gfp_mask & __GFP_NOFAIL) {
5100 		/*
5101 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
5102 		 * of any new users that actually require GFP_NOWAIT
5103 		 */
5104 		if (WARN_ON_ONCE(!can_direct_reclaim))
5105 			goto fail;
5106 
5107 		/*
5108 		 * PF_MEMALLOC request from this context is rather bizarre
5109 		 * because we cannot reclaim anything and only can loop waiting
5110 		 * for somebody to do a work for us
5111 		 */
5112 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
5113 
5114 		/*
5115 		 * non failing costly orders are a hard requirement which we
5116 		 * are not prepared for much so let's warn about these users
5117 		 * so that we can identify them and convert them to something
5118 		 * else.
5119 		 */
5120 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
5121 
5122 		/*
5123 		 * Help non-failing allocations by giving them access to memory
5124 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
5125 		 * could deplete whole memory reserves which would just make
5126 		 * the situation worse
5127 		 */
5128 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5129 		if (page)
5130 			goto got_pg;
5131 
5132 		cond_resched();
5133 		goto retry;
5134 	}
5135 fail:
5136 	warn_alloc(gfp_mask, ac->nodemask,
5137 			"page allocation failure: order:%u", order);
5138 got_pg:
5139 	return page;
5140 }
5141 
5142 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5143 		int preferred_nid, nodemask_t *nodemask,
5144 		struct alloc_context *ac, gfp_t *alloc_gfp,
5145 		unsigned int *alloc_flags)
5146 {
5147 	ac->highest_zoneidx = gfp_zone(gfp_mask);
5148 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5149 	ac->nodemask = nodemask;
5150 	ac->migratetype = gfp_migratetype(gfp_mask);
5151 
5152 	if (cpusets_enabled()) {
5153 		*alloc_gfp |= __GFP_HARDWALL;
5154 		/*
5155 		 * When we are in the interrupt context, it is irrelevant
5156 		 * to the current task context. It means that any node ok.
5157 		 */
5158 		if (!in_interrupt() && !ac->nodemask)
5159 			ac->nodemask = &cpuset_current_mems_allowed;
5160 		else
5161 			*alloc_flags |= ALLOC_CPUSET;
5162 	}
5163 
5164 	fs_reclaim_acquire(gfp_mask);
5165 	fs_reclaim_release(gfp_mask);
5166 
5167 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
5168 
5169 	if (should_fail_alloc_page(gfp_mask, order))
5170 		return false;
5171 
5172 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5173 
5174 	/* Dirty zone balancing only done in the fast path */
5175 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5176 
5177 	/*
5178 	 * The preferred zone is used for statistics but crucially it is
5179 	 * also used as the starting point for the zonelist iterator. It
5180 	 * may get reset for allocations that ignore memory policies.
5181 	 */
5182 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5183 					ac->highest_zoneidx, ac->nodemask);
5184 
5185 	return true;
5186 }
5187 
5188 /*
5189  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5190  * @gfp: GFP flags for the allocation
5191  * @preferred_nid: The preferred NUMA node ID to allocate from
5192  * @nodemask: Set of nodes to allocate from, may be NULL
5193  * @nr_pages: The number of pages desired on the list or array
5194  * @page_list: Optional list to store the allocated pages
5195  * @page_array: Optional array to store the pages
5196  *
5197  * This is a batched version of the page allocator that attempts to
5198  * allocate nr_pages quickly. Pages are added to page_list if page_list
5199  * is not NULL, otherwise it is assumed that the page_array is valid.
5200  *
5201  * For lists, nr_pages is the number of pages that should be allocated.
5202  *
5203  * For arrays, only NULL elements are populated with pages and nr_pages
5204  * is the maximum number of pages that will be stored in the array.
5205  *
5206  * Returns the number of pages on the list or array.
5207  */
5208 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5209 			nodemask_t *nodemask, int nr_pages,
5210 			struct list_head *page_list,
5211 			struct page **page_array)
5212 {
5213 	struct page *page;
5214 	unsigned long flags;
5215 	struct zone *zone;
5216 	struct zoneref *z;
5217 	struct per_cpu_pages *pcp;
5218 	struct list_head *pcp_list;
5219 	struct alloc_context ac;
5220 	gfp_t alloc_gfp;
5221 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5222 	int nr_populated = 0, nr_account = 0;
5223 
5224 	/*
5225 	 * Skip populated array elements to determine if any pages need
5226 	 * to be allocated before disabling IRQs.
5227 	 */
5228 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5229 		nr_populated++;
5230 
5231 	/* No pages requested? */
5232 	if (unlikely(nr_pages <= 0))
5233 		goto out;
5234 
5235 	/* Already populated array? */
5236 	if (unlikely(page_array && nr_pages - nr_populated == 0))
5237 		goto out;
5238 
5239 	/* Use the single page allocator for one page. */
5240 	if (nr_pages - nr_populated == 1)
5241 		goto failed;
5242 
5243 #ifdef CONFIG_PAGE_OWNER
5244 	/*
5245 	 * PAGE_OWNER may recurse into the allocator to allocate space to
5246 	 * save the stack with pagesets.lock held. Releasing/reacquiring
5247 	 * removes much of the performance benefit of bulk allocation so
5248 	 * force the caller to allocate one page at a time as it'll have
5249 	 * similar performance to added complexity to the bulk allocator.
5250 	 */
5251 	if (static_branch_unlikely(&page_owner_inited))
5252 		goto failed;
5253 #endif
5254 
5255 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5256 	gfp &= gfp_allowed_mask;
5257 	alloc_gfp = gfp;
5258 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5259 		goto out;
5260 	gfp = alloc_gfp;
5261 
5262 	/* Find an allowed local zone that meets the low watermark. */
5263 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5264 		unsigned long mark;
5265 
5266 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5267 		    !__cpuset_zone_allowed(zone, gfp)) {
5268 			continue;
5269 		}
5270 
5271 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5272 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5273 			goto failed;
5274 		}
5275 
5276 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5277 		if (zone_watermark_fast(zone, 0,  mark,
5278 				zonelist_zone_idx(ac.preferred_zoneref),
5279 				alloc_flags, gfp)) {
5280 			break;
5281 		}
5282 	}
5283 
5284 	/*
5285 	 * If there are no allowed local zones that meets the watermarks then
5286 	 * try to allocate a single page and reclaim if necessary.
5287 	 */
5288 	if (unlikely(!zone))
5289 		goto failed;
5290 
5291 	/* Attempt the batch allocation */
5292 	local_lock_irqsave(&pagesets.lock, flags);
5293 	pcp = this_cpu_ptr(zone->per_cpu_pageset);
5294 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5295 
5296 	while (nr_populated < nr_pages) {
5297 
5298 		/* Skip existing pages */
5299 		if (page_array && page_array[nr_populated]) {
5300 			nr_populated++;
5301 			continue;
5302 		}
5303 
5304 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5305 								pcp, pcp_list);
5306 		if (unlikely(!page)) {
5307 			/* Try and get at least one page */
5308 			if (!nr_populated)
5309 				goto failed_irq;
5310 			break;
5311 		}
5312 		nr_account++;
5313 
5314 		prep_new_page(page, 0, gfp, 0);
5315 		if (page_list)
5316 			list_add(&page->lru, page_list);
5317 		else
5318 			page_array[nr_populated] = page;
5319 		nr_populated++;
5320 	}
5321 
5322 	local_unlock_irqrestore(&pagesets.lock, flags);
5323 
5324 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5325 	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5326 
5327 out:
5328 	return nr_populated;
5329 
5330 failed_irq:
5331 	local_unlock_irqrestore(&pagesets.lock, flags);
5332 
5333 failed:
5334 	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5335 	if (page) {
5336 		if (page_list)
5337 			list_add(&page->lru, page_list);
5338 		else
5339 			page_array[nr_populated] = page;
5340 		nr_populated++;
5341 	}
5342 
5343 	goto out;
5344 }
5345 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5346 
5347 /*
5348  * This is the 'heart' of the zoned buddy allocator.
5349  */
5350 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5351 							nodemask_t *nodemask)
5352 {
5353 	struct page *page;
5354 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5355 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5356 	struct alloc_context ac = { };
5357 
5358 	/*
5359 	 * There are several places where we assume that the order value is sane
5360 	 * so bail out early if the request is out of bound.
5361 	 */
5362 	if (unlikely(order >= MAX_ORDER)) {
5363 		WARN_ON_ONCE(!(gfp & __GFP_NOWARN));
5364 		return NULL;
5365 	}
5366 
5367 	gfp &= gfp_allowed_mask;
5368 	/*
5369 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5370 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
5371 	 * from a particular context which has been marked by
5372 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5373 	 * movable zones are not used during allocation.
5374 	 */
5375 	gfp = current_gfp_context(gfp);
5376 	alloc_gfp = gfp;
5377 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5378 			&alloc_gfp, &alloc_flags))
5379 		return NULL;
5380 
5381 	/*
5382 	 * Forbid the first pass from falling back to types that fragment
5383 	 * memory until all local zones are considered.
5384 	 */
5385 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5386 
5387 	/* First allocation attempt */
5388 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5389 	if (likely(page))
5390 		goto out;
5391 
5392 	alloc_gfp = gfp;
5393 	ac.spread_dirty_pages = false;
5394 
5395 	/*
5396 	 * Restore the original nodemask if it was potentially replaced with
5397 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5398 	 */
5399 	ac.nodemask = nodemask;
5400 
5401 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5402 
5403 out:
5404 	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5405 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5406 		__free_pages(page, order);
5407 		page = NULL;
5408 	}
5409 
5410 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5411 
5412 	return page;
5413 }
5414 EXPORT_SYMBOL(__alloc_pages);
5415 
5416 /*
5417  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5418  * address cannot represent highmem pages. Use alloc_pages and then kmap if
5419  * you need to access high mem.
5420  */
5421 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5422 {
5423 	struct page *page;
5424 
5425 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5426 	if (!page)
5427 		return 0;
5428 	return (unsigned long) page_address(page);
5429 }
5430 EXPORT_SYMBOL(__get_free_pages);
5431 
5432 unsigned long get_zeroed_page(gfp_t gfp_mask)
5433 {
5434 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5435 }
5436 EXPORT_SYMBOL(get_zeroed_page);
5437 
5438 /**
5439  * __free_pages - Free pages allocated with alloc_pages().
5440  * @page: The page pointer returned from alloc_pages().
5441  * @order: The order of the allocation.
5442  *
5443  * This function can free multi-page allocations that are not compound
5444  * pages.  It does not check that the @order passed in matches that of
5445  * the allocation, so it is easy to leak memory.  Freeing more memory
5446  * than was allocated will probably emit a warning.
5447  *
5448  * If the last reference to this page is speculative, it will be released
5449  * by put_page() which only frees the first page of a non-compound
5450  * allocation.  To prevent the remaining pages from being leaked, we free
5451  * the subsequent pages here.  If you want to use the page's reference
5452  * count to decide when to free the allocation, you should allocate a
5453  * compound page, and use put_page() instead of __free_pages().
5454  *
5455  * Context: May be called in interrupt context or while holding a normal
5456  * spinlock, but not in NMI context or while holding a raw spinlock.
5457  */
5458 void __free_pages(struct page *page, unsigned int order)
5459 {
5460 	if (put_page_testzero(page))
5461 		free_the_page(page, order);
5462 	else if (!PageHead(page))
5463 		while (order-- > 0)
5464 			free_the_page(page + (1 << order), order);
5465 }
5466 EXPORT_SYMBOL(__free_pages);
5467 
5468 void free_pages(unsigned long addr, unsigned int order)
5469 {
5470 	if (addr != 0) {
5471 		VM_BUG_ON(!virt_addr_valid((void *)addr));
5472 		__free_pages(virt_to_page((void *)addr), order);
5473 	}
5474 }
5475 
5476 EXPORT_SYMBOL(free_pages);
5477 
5478 /*
5479  * Page Fragment:
5480  *  An arbitrary-length arbitrary-offset area of memory which resides
5481  *  within a 0 or higher order page.  Multiple fragments within that page
5482  *  are individually refcounted, in the page's reference counter.
5483  *
5484  * The page_frag functions below provide a simple allocation framework for
5485  * page fragments.  This is used by the network stack and network device
5486  * drivers to provide a backing region of memory for use as either an
5487  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5488  */
5489 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5490 					     gfp_t gfp_mask)
5491 {
5492 	struct page *page = NULL;
5493 	gfp_t gfp = gfp_mask;
5494 
5495 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5496 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5497 		    __GFP_NOMEMALLOC;
5498 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5499 				PAGE_FRAG_CACHE_MAX_ORDER);
5500 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5501 #endif
5502 	if (unlikely(!page))
5503 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5504 
5505 	nc->va = page ? page_address(page) : NULL;
5506 
5507 	return page;
5508 }
5509 
5510 void __page_frag_cache_drain(struct page *page, unsigned int count)
5511 {
5512 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5513 
5514 	if (page_ref_sub_and_test(page, count))
5515 		free_the_page(page, compound_order(page));
5516 }
5517 EXPORT_SYMBOL(__page_frag_cache_drain);
5518 
5519 void *page_frag_alloc_align(struct page_frag_cache *nc,
5520 		      unsigned int fragsz, gfp_t gfp_mask,
5521 		      unsigned int align_mask)
5522 {
5523 	unsigned int size = PAGE_SIZE;
5524 	struct page *page;
5525 	int offset;
5526 
5527 	if (unlikely(!nc->va)) {
5528 refill:
5529 		page = __page_frag_cache_refill(nc, gfp_mask);
5530 		if (!page)
5531 			return NULL;
5532 
5533 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5534 		/* if size can vary use size else just use PAGE_SIZE */
5535 		size = nc->size;
5536 #endif
5537 		/* Even if we own the page, we do not use atomic_set().
5538 		 * This would break get_page_unless_zero() users.
5539 		 */
5540 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5541 
5542 		/* reset page count bias and offset to start of new frag */
5543 		nc->pfmemalloc = page_is_pfmemalloc(page);
5544 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5545 		nc->offset = size;
5546 	}
5547 
5548 	offset = nc->offset - fragsz;
5549 	if (unlikely(offset < 0)) {
5550 		page = virt_to_page(nc->va);
5551 
5552 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5553 			goto refill;
5554 
5555 		if (unlikely(nc->pfmemalloc)) {
5556 			free_the_page(page, compound_order(page));
5557 			goto refill;
5558 		}
5559 
5560 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5561 		/* if size can vary use size else just use PAGE_SIZE */
5562 		size = nc->size;
5563 #endif
5564 		/* OK, page count is 0, we can safely set it */
5565 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5566 
5567 		/* reset page count bias and offset to start of new frag */
5568 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5569 		offset = size - fragsz;
5570 	}
5571 
5572 	nc->pagecnt_bias--;
5573 	offset &= align_mask;
5574 	nc->offset = offset;
5575 
5576 	return nc->va + offset;
5577 }
5578 EXPORT_SYMBOL(page_frag_alloc_align);
5579 
5580 /*
5581  * Frees a page fragment allocated out of either a compound or order 0 page.
5582  */
5583 void page_frag_free(void *addr)
5584 {
5585 	struct page *page = virt_to_head_page(addr);
5586 
5587 	if (unlikely(put_page_testzero(page)))
5588 		free_the_page(page, compound_order(page));
5589 }
5590 EXPORT_SYMBOL(page_frag_free);
5591 
5592 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5593 		size_t size)
5594 {
5595 	if (addr) {
5596 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
5597 		unsigned long used = addr + PAGE_ALIGN(size);
5598 
5599 		split_page(virt_to_page((void *)addr), order);
5600 		while (used < alloc_end) {
5601 			free_page(used);
5602 			used += PAGE_SIZE;
5603 		}
5604 	}
5605 	return (void *)addr;
5606 }
5607 
5608 /**
5609  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5610  * @size: the number of bytes to allocate
5611  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5612  *
5613  * This function is similar to alloc_pages(), except that it allocates the
5614  * minimum number of pages to satisfy the request.  alloc_pages() can only
5615  * allocate memory in power-of-two pages.
5616  *
5617  * This function is also limited by MAX_ORDER.
5618  *
5619  * Memory allocated by this function must be released by free_pages_exact().
5620  *
5621  * Return: pointer to the allocated area or %NULL in case of error.
5622  */
5623 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5624 {
5625 	unsigned int order = get_order(size);
5626 	unsigned long addr;
5627 
5628 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5629 		gfp_mask &= ~__GFP_COMP;
5630 
5631 	addr = __get_free_pages(gfp_mask, order);
5632 	return make_alloc_exact(addr, order, size);
5633 }
5634 EXPORT_SYMBOL(alloc_pages_exact);
5635 
5636 /**
5637  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5638  *			   pages on a node.
5639  * @nid: the preferred node ID where memory should be allocated
5640  * @size: the number of bytes to allocate
5641  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5642  *
5643  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5644  * back.
5645  *
5646  * Return: pointer to the allocated area or %NULL in case of error.
5647  */
5648 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5649 {
5650 	unsigned int order = get_order(size);
5651 	struct page *p;
5652 
5653 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5654 		gfp_mask &= ~__GFP_COMP;
5655 
5656 	p = alloc_pages_node(nid, gfp_mask, order);
5657 	if (!p)
5658 		return NULL;
5659 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5660 }
5661 
5662 /**
5663  * free_pages_exact - release memory allocated via alloc_pages_exact()
5664  * @virt: the value returned by alloc_pages_exact.
5665  * @size: size of allocation, same value as passed to alloc_pages_exact().
5666  *
5667  * Release the memory allocated by a previous call to alloc_pages_exact.
5668  */
5669 void free_pages_exact(void *virt, size_t size)
5670 {
5671 	unsigned long addr = (unsigned long)virt;
5672 	unsigned long end = addr + PAGE_ALIGN(size);
5673 
5674 	while (addr < end) {
5675 		free_page(addr);
5676 		addr += PAGE_SIZE;
5677 	}
5678 }
5679 EXPORT_SYMBOL(free_pages_exact);
5680 
5681 /**
5682  * nr_free_zone_pages - count number of pages beyond high watermark
5683  * @offset: The zone index of the highest zone
5684  *
5685  * nr_free_zone_pages() counts the number of pages which are beyond the
5686  * high watermark within all zones at or below a given zone index.  For each
5687  * zone, the number of pages is calculated as:
5688  *
5689  *     nr_free_zone_pages = managed_pages - high_pages
5690  *
5691  * Return: number of pages beyond high watermark.
5692  */
5693 static unsigned long nr_free_zone_pages(int offset)
5694 {
5695 	struct zoneref *z;
5696 	struct zone *zone;
5697 
5698 	/* Just pick one node, since fallback list is circular */
5699 	unsigned long sum = 0;
5700 
5701 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5702 
5703 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5704 		unsigned long size = zone_managed_pages(zone);
5705 		unsigned long high = high_wmark_pages(zone);
5706 		if (size > high)
5707 			sum += size - high;
5708 	}
5709 
5710 	return sum;
5711 }
5712 
5713 /**
5714  * nr_free_buffer_pages - count number of pages beyond high watermark
5715  *
5716  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5717  * watermark within ZONE_DMA and ZONE_NORMAL.
5718  *
5719  * Return: number of pages beyond high watermark within ZONE_DMA and
5720  * ZONE_NORMAL.
5721  */
5722 unsigned long nr_free_buffer_pages(void)
5723 {
5724 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5725 }
5726 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5727 
5728 static inline void show_node(struct zone *zone)
5729 {
5730 	if (IS_ENABLED(CONFIG_NUMA))
5731 		printk("Node %d ", zone_to_nid(zone));
5732 }
5733 
5734 long si_mem_available(void)
5735 {
5736 	long available;
5737 	unsigned long pagecache;
5738 	unsigned long wmark_low = 0;
5739 	unsigned long pages[NR_LRU_LISTS];
5740 	unsigned long reclaimable;
5741 	struct zone *zone;
5742 	int lru;
5743 
5744 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5745 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5746 
5747 	for_each_zone(zone)
5748 		wmark_low += low_wmark_pages(zone);
5749 
5750 	/*
5751 	 * Estimate the amount of memory available for userspace allocations,
5752 	 * without causing swapping.
5753 	 */
5754 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5755 
5756 	/*
5757 	 * Not all the page cache can be freed, otherwise the system will
5758 	 * start swapping. Assume at least half of the page cache, or the
5759 	 * low watermark worth of cache, needs to stay.
5760 	 */
5761 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5762 	pagecache -= min(pagecache / 2, wmark_low);
5763 	available += pagecache;
5764 
5765 	/*
5766 	 * Part of the reclaimable slab and other kernel memory consists of
5767 	 * items that are in use, and cannot be freed. Cap this estimate at the
5768 	 * low watermark.
5769 	 */
5770 	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5771 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5772 	available += reclaimable - min(reclaimable / 2, wmark_low);
5773 
5774 	if (available < 0)
5775 		available = 0;
5776 	return available;
5777 }
5778 EXPORT_SYMBOL_GPL(si_mem_available);
5779 
5780 void si_meminfo(struct sysinfo *val)
5781 {
5782 	val->totalram = totalram_pages();
5783 	val->sharedram = global_node_page_state(NR_SHMEM);
5784 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5785 	val->bufferram = nr_blockdev_pages();
5786 	val->totalhigh = totalhigh_pages();
5787 	val->freehigh = nr_free_highpages();
5788 	val->mem_unit = PAGE_SIZE;
5789 }
5790 
5791 EXPORT_SYMBOL(si_meminfo);
5792 
5793 #ifdef CONFIG_NUMA
5794 void si_meminfo_node(struct sysinfo *val, int nid)
5795 {
5796 	int zone_type;		/* needs to be signed */
5797 	unsigned long managed_pages = 0;
5798 	unsigned long managed_highpages = 0;
5799 	unsigned long free_highpages = 0;
5800 	pg_data_t *pgdat = NODE_DATA(nid);
5801 
5802 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5803 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5804 	val->totalram = managed_pages;
5805 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5806 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5807 #ifdef CONFIG_HIGHMEM
5808 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5809 		struct zone *zone = &pgdat->node_zones[zone_type];
5810 
5811 		if (is_highmem(zone)) {
5812 			managed_highpages += zone_managed_pages(zone);
5813 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5814 		}
5815 	}
5816 	val->totalhigh = managed_highpages;
5817 	val->freehigh = free_highpages;
5818 #else
5819 	val->totalhigh = managed_highpages;
5820 	val->freehigh = free_highpages;
5821 #endif
5822 	val->mem_unit = PAGE_SIZE;
5823 }
5824 #endif
5825 
5826 /*
5827  * Determine whether the node should be displayed or not, depending on whether
5828  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5829  */
5830 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5831 {
5832 	if (!(flags & SHOW_MEM_FILTER_NODES))
5833 		return false;
5834 
5835 	/*
5836 	 * no node mask - aka implicit memory numa policy. Do not bother with
5837 	 * the synchronization - read_mems_allowed_begin - because we do not
5838 	 * have to be precise here.
5839 	 */
5840 	if (!nodemask)
5841 		nodemask = &cpuset_current_mems_allowed;
5842 
5843 	return !node_isset(nid, *nodemask);
5844 }
5845 
5846 #define K(x) ((x) << (PAGE_SHIFT-10))
5847 
5848 static void show_migration_types(unsigned char type)
5849 {
5850 	static const char types[MIGRATE_TYPES] = {
5851 		[MIGRATE_UNMOVABLE]	= 'U',
5852 		[MIGRATE_MOVABLE]	= 'M',
5853 		[MIGRATE_RECLAIMABLE]	= 'E',
5854 		[MIGRATE_HIGHATOMIC]	= 'H',
5855 #ifdef CONFIG_CMA
5856 		[MIGRATE_CMA]		= 'C',
5857 #endif
5858 #ifdef CONFIG_MEMORY_ISOLATION
5859 		[MIGRATE_ISOLATE]	= 'I',
5860 #endif
5861 	};
5862 	char tmp[MIGRATE_TYPES + 1];
5863 	char *p = tmp;
5864 	int i;
5865 
5866 	for (i = 0; i < MIGRATE_TYPES; i++) {
5867 		if (type & (1 << i))
5868 			*p++ = types[i];
5869 	}
5870 
5871 	*p = '\0';
5872 	printk(KERN_CONT "(%s) ", tmp);
5873 }
5874 
5875 /*
5876  * Show free area list (used inside shift_scroll-lock stuff)
5877  * We also calculate the percentage fragmentation. We do this by counting the
5878  * memory on each free list with the exception of the first item on the list.
5879  *
5880  * Bits in @filter:
5881  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5882  *   cpuset.
5883  */
5884 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5885 {
5886 	unsigned long free_pcp = 0;
5887 	int cpu;
5888 	struct zone *zone;
5889 	pg_data_t *pgdat;
5890 
5891 	for_each_populated_zone(zone) {
5892 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5893 			continue;
5894 
5895 		for_each_online_cpu(cpu)
5896 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5897 	}
5898 
5899 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5900 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5901 		" unevictable:%lu dirty:%lu writeback:%lu\n"
5902 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5903 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5904 		" free:%lu free_pcp:%lu free_cma:%lu\n",
5905 		global_node_page_state(NR_ACTIVE_ANON),
5906 		global_node_page_state(NR_INACTIVE_ANON),
5907 		global_node_page_state(NR_ISOLATED_ANON),
5908 		global_node_page_state(NR_ACTIVE_FILE),
5909 		global_node_page_state(NR_INACTIVE_FILE),
5910 		global_node_page_state(NR_ISOLATED_FILE),
5911 		global_node_page_state(NR_UNEVICTABLE),
5912 		global_node_page_state(NR_FILE_DIRTY),
5913 		global_node_page_state(NR_WRITEBACK),
5914 		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5915 		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5916 		global_node_page_state(NR_FILE_MAPPED),
5917 		global_node_page_state(NR_SHMEM),
5918 		global_node_page_state(NR_PAGETABLE),
5919 		global_zone_page_state(NR_BOUNCE),
5920 		global_zone_page_state(NR_FREE_PAGES),
5921 		free_pcp,
5922 		global_zone_page_state(NR_FREE_CMA_PAGES));
5923 
5924 	for_each_online_pgdat(pgdat) {
5925 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5926 			continue;
5927 
5928 		printk("Node %d"
5929 			" active_anon:%lukB"
5930 			" inactive_anon:%lukB"
5931 			" active_file:%lukB"
5932 			" inactive_file:%lukB"
5933 			" unevictable:%lukB"
5934 			" isolated(anon):%lukB"
5935 			" isolated(file):%lukB"
5936 			" mapped:%lukB"
5937 			" dirty:%lukB"
5938 			" writeback:%lukB"
5939 			" shmem:%lukB"
5940 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5941 			" shmem_thp: %lukB"
5942 			" shmem_pmdmapped: %lukB"
5943 			" anon_thp: %lukB"
5944 #endif
5945 			" writeback_tmp:%lukB"
5946 			" kernel_stack:%lukB"
5947 #ifdef CONFIG_SHADOW_CALL_STACK
5948 			" shadow_call_stack:%lukB"
5949 #endif
5950 			" pagetables:%lukB"
5951 			" all_unreclaimable? %s"
5952 			"\n",
5953 			pgdat->node_id,
5954 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5955 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5956 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5957 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5958 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
5959 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5960 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5961 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5962 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
5963 			K(node_page_state(pgdat, NR_WRITEBACK)),
5964 			K(node_page_state(pgdat, NR_SHMEM)),
5965 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5966 			K(node_page_state(pgdat, NR_SHMEM_THPS)),
5967 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
5968 			K(node_page_state(pgdat, NR_ANON_THPS)),
5969 #endif
5970 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5971 			node_page_state(pgdat, NR_KERNEL_STACK_KB),
5972 #ifdef CONFIG_SHADOW_CALL_STACK
5973 			node_page_state(pgdat, NR_KERNEL_SCS_KB),
5974 #endif
5975 			K(node_page_state(pgdat, NR_PAGETABLE)),
5976 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5977 				"yes" : "no");
5978 	}
5979 
5980 	for_each_populated_zone(zone) {
5981 		int i;
5982 
5983 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5984 			continue;
5985 
5986 		free_pcp = 0;
5987 		for_each_online_cpu(cpu)
5988 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5989 
5990 		show_node(zone);
5991 		printk(KERN_CONT
5992 			"%s"
5993 			" free:%lukB"
5994 			" min:%lukB"
5995 			" low:%lukB"
5996 			" high:%lukB"
5997 			" reserved_highatomic:%luKB"
5998 			" active_anon:%lukB"
5999 			" inactive_anon:%lukB"
6000 			" active_file:%lukB"
6001 			" inactive_file:%lukB"
6002 			" unevictable:%lukB"
6003 			" writepending:%lukB"
6004 			" present:%lukB"
6005 			" managed:%lukB"
6006 			" mlocked:%lukB"
6007 			" bounce:%lukB"
6008 			" free_pcp:%lukB"
6009 			" local_pcp:%ukB"
6010 			" free_cma:%lukB"
6011 			"\n",
6012 			zone->name,
6013 			K(zone_page_state(zone, NR_FREE_PAGES)),
6014 			K(min_wmark_pages(zone)),
6015 			K(low_wmark_pages(zone)),
6016 			K(high_wmark_pages(zone)),
6017 			K(zone->nr_reserved_highatomic),
6018 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6019 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6020 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6021 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6022 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6023 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6024 			K(zone->present_pages),
6025 			K(zone_managed_pages(zone)),
6026 			K(zone_page_state(zone, NR_MLOCK)),
6027 			K(zone_page_state(zone, NR_BOUNCE)),
6028 			K(free_pcp),
6029 			K(this_cpu_read(zone->per_cpu_pageset->count)),
6030 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6031 		printk("lowmem_reserve[]:");
6032 		for (i = 0; i < MAX_NR_ZONES; i++)
6033 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6034 		printk(KERN_CONT "\n");
6035 	}
6036 
6037 	for_each_populated_zone(zone) {
6038 		unsigned int order;
6039 		unsigned long nr[MAX_ORDER], flags, total = 0;
6040 		unsigned char types[MAX_ORDER];
6041 
6042 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6043 			continue;
6044 		show_node(zone);
6045 		printk(KERN_CONT "%s: ", zone->name);
6046 
6047 		spin_lock_irqsave(&zone->lock, flags);
6048 		for (order = 0; order < MAX_ORDER; order++) {
6049 			struct free_area *area = &zone->free_area[order];
6050 			int type;
6051 
6052 			nr[order] = area->nr_free;
6053 			total += nr[order] << order;
6054 
6055 			types[order] = 0;
6056 			for (type = 0; type < MIGRATE_TYPES; type++) {
6057 				if (!free_area_empty(area, type))
6058 					types[order] |= 1 << type;
6059 			}
6060 		}
6061 		spin_unlock_irqrestore(&zone->lock, flags);
6062 		for (order = 0; order < MAX_ORDER; order++) {
6063 			printk(KERN_CONT "%lu*%lukB ",
6064 			       nr[order], K(1UL) << order);
6065 			if (nr[order])
6066 				show_migration_types(types[order]);
6067 		}
6068 		printk(KERN_CONT "= %lukB\n", K(total));
6069 	}
6070 
6071 	hugetlb_show_meminfo();
6072 
6073 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6074 
6075 	show_swap_cache_info();
6076 }
6077 
6078 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6079 {
6080 	zoneref->zone = zone;
6081 	zoneref->zone_idx = zone_idx(zone);
6082 }
6083 
6084 /*
6085  * Builds allocation fallback zone lists.
6086  *
6087  * Add all populated zones of a node to the zonelist.
6088  */
6089 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6090 {
6091 	struct zone *zone;
6092 	enum zone_type zone_type = MAX_NR_ZONES;
6093 	int nr_zones = 0;
6094 
6095 	do {
6096 		zone_type--;
6097 		zone = pgdat->node_zones + zone_type;
6098 		if (managed_zone(zone)) {
6099 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6100 			check_highest_zone(zone_type);
6101 		}
6102 	} while (zone_type);
6103 
6104 	return nr_zones;
6105 }
6106 
6107 #ifdef CONFIG_NUMA
6108 
6109 static int __parse_numa_zonelist_order(char *s)
6110 {
6111 	/*
6112 	 * We used to support different zonelists modes but they turned
6113 	 * out to be just not useful. Let's keep the warning in place
6114 	 * if somebody still use the cmd line parameter so that we do
6115 	 * not fail it silently
6116 	 */
6117 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6118 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
6119 		return -EINVAL;
6120 	}
6121 	return 0;
6122 }
6123 
6124 char numa_zonelist_order[] = "Node";
6125 
6126 /*
6127  * sysctl handler for numa_zonelist_order
6128  */
6129 int numa_zonelist_order_handler(struct ctl_table *table, int write,
6130 		void *buffer, size_t *length, loff_t *ppos)
6131 {
6132 	if (write)
6133 		return __parse_numa_zonelist_order(buffer);
6134 	return proc_dostring(table, write, buffer, length, ppos);
6135 }
6136 
6137 
6138 #define MAX_NODE_LOAD (nr_online_nodes)
6139 static int node_load[MAX_NUMNODES];
6140 
6141 /**
6142  * find_next_best_node - find the next node that should appear in a given node's fallback list
6143  * @node: node whose fallback list we're appending
6144  * @used_node_mask: nodemask_t of already used nodes
6145  *
6146  * We use a number of factors to determine which is the next node that should
6147  * appear on a given node's fallback list.  The node should not have appeared
6148  * already in @node's fallback list, and it should be the next closest node
6149  * according to the distance array (which contains arbitrary distance values
6150  * from each node to each node in the system), and should also prefer nodes
6151  * with no CPUs, since presumably they'll have very little allocation pressure
6152  * on them otherwise.
6153  *
6154  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6155  */
6156 static int find_next_best_node(int node, nodemask_t *used_node_mask)
6157 {
6158 	int n, val;
6159 	int min_val = INT_MAX;
6160 	int best_node = NUMA_NO_NODE;
6161 
6162 	/* Use the local node if we haven't already */
6163 	if (!node_isset(node, *used_node_mask)) {
6164 		node_set(node, *used_node_mask);
6165 		return node;
6166 	}
6167 
6168 	for_each_node_state(n, N_MEMORY) {
6169 
6170 		/* Don't want a node to appear more than once */
6171 		if (node_isset(n, *used_node_mask))
6172 			continue;
6173 
6174 		/* Use the distance array to find the distance */
6175 		val = node_distance(node, n);
6176 
6177 		/* Penalize nodes under us ("prefer the next node") */
6178 		val += (n < node);
6179 
6180 		/* Give preference to headless and unused nodes */
6181 		if (!cpumask_empty(cpumask_of_node(n)))
6182 			val += PENALTY_FOR_NODE_WITH_CPUS;
6183 
6184 		/* Slight preference for less loaded node */
6185 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
6186 		val += node_load[n];
6187 
6188 		if (val < min_val) {
6189 			min_val = val;
6190 			best_node = n;
6191 		}
6192 	}
6193 
6194 	if (best_node >= 0)
6195 		node_set(best_node, *used_node_mask);
6196 
6197 	return best_node;
6198 }
6199 
6200 
6201 /*
6202  * Build zonelists ordered by node and zones within node.
6203  * This results in maximum locality--normal zone overflows into local
6204  * DMA zone, if any--but risks exhausting DMA zone.
6205  */
6206 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6207 		unsigned nr_nodes)
6208 {
6209 	struct zoneref *zonerefs;
6210 	int i;
6211 
6212 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6213 
6214 	for (i = 0; i < nr_nodes; i++) {
6215 		int nr_zones;
6216 
6217 		pg_data_t *node = NODE_DATA(node_order[i]);
6218 
6219 		nr_zones = build_zonerefs_node(node, zonerefs);
6220 		zonerefs += nr_zones;
6221 	}
6222 	zonerefs->zone = NULL;
6223 	zonerefs->zone_idx = 0;
6224 }
6225 
6226 /*
6227  * Build gfp_thisnode zonelists
6228  */
6229 static void build_thisnode_zonelists(pg_data_t *pgdat)
6230 {
6231 	struct zoneref *zonerefs;
6232 	int nr_zones;
6233 
6234 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6235 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6236 	zonerefs += nr_zones;
6237 	zonerefs->zone = NULL;
6238 	zonerefs->zone_idx = 0;
6239 }
6240 
6241 /*
6242  * Build zonelists ordered by zone and nodes within zones.
6243  * This results in conserving DMA zone[s] until all Normal memory is
6244  * exhausted, but results in overflowing to remote node while memory
6245  * may still exist in local DMA zone.
6246  */
6247 
6248 static void build_zonelists(pg_data_t *pgdat)
6249 {
6250 	static int node_order[MAX_NUMNODES];
6251 	int node, load, nr_nodes = 0;
6252 	nodemask_t used_mask = NODE_MASK_NONE;
6253 	int local_node, prev_node;
6254 
6255 	/* NUMA-aware ordering of nodes */
6256 	local_node = pgdat->node_id;
6257 	load = nr_online_nodes;
6258 	prev_node = local_node;
6259 
6260 	memset(node_order, 0, sizeof(node_order));
6261 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6262 		/*
6263 		 * We don't want to pressure a particular node.
6264 		 * So adding penalty to the first node in same
6265 		 * distance group to make it round-robin.
6266 		 */
6267 		if (node_distance(local_node, node) !=
6268 		    node_distance(local_node, prev_node))
6269 			node_load[node] = load;
6270 
6271 		node_order[nr_nodes++] = node;
6272 		prev_node = node;
6273 		load--;
6274 	}
6275 
6276 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6277 	build_thisnode_zonelists(pgdat);
6278 }
6279 
6280 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6281 /*
6282  * Return node id of node used for "local" allocations.
6283  * I.e., first node id of first zone in arg node's generic zonelist.
6284  * Used for initializing percpu 'numa_mem', which is used primarily
6285  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6286  */
6287 int local_memory_node(int node)
6288 {
6289 	struct zoneref *z;
6290 
6291 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6292 				   gfp_zone(GFP_KERNEL),
6293 				   NULL);
6294 	return zone_to_nid(z->zone);
6295 }
6296 #endif
6297 
6298 static void setup_min_unmapped_ratio(void);
6299 static void setup_min_slab_ratio(void);
6300 #else	/* CONFIG_NUMA */
6301 
6302 static void build_zonelists(pg_data_t *pgdat)
6303 {
6304 	int node, local_node;
6305 	struct zoneref *zonerefs;
6306 	int nr_zones;
6307 
6308 	local_node = pgdat->node_id;
6309 
6310 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6311 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6312 	zonerefs += nr_zones;
6313 
6314 	/*
6315 	 * Now we build the zonelist so that it contains the zones
6316 	 * of all the other nodes.
6317 	 * We don't want to pressure a particular node, so when
6318 	 * building the zones for node N, we make sure that the
6319 	 * zones coming right after the local ones are those from
6320 	 * node N+1 (modulo N)
6321 	 */
6322 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6323 		if (!node_online(node))
6324 			continue;
6325 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6326 		zonerefs += nr_zones;
6327 	}
6328 	for (node = 0; node < local_node; node++) {
6329 		if (!node_online(node))
6330 			continue;
6331 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6332 		zonerefs += nr_zones;
6333 	}
6334 
6335 	zonerefs->zone = NULL;
6336 	zonerefs->zone_idx = 0;
6337 }
6338 
6339 #endif	/* CONFIG_NUMA */
6340 
6341 /*
6342  * Boot pageset table. One per cpu which is going to be used for all
6343  * zones and all nodes. The parameters will be set in such a way
6344  * that an item put on a list will immediately be handed over to
6345  * the buddy list. This is safe since pageset manipulation is done
6346  * with interrupts disabled.
6347  *
6348  * The boot_pagesets must be kept even after bootup is complete for
6349  * unused processors and/or zones. They do play a role for bootstrapping
6350  * hotplugged processors.
6351  *
6352  * zoneinfo_show() and maybe other functions do
6353  * not check if the processor is online before following the pageset pointer.
6354  * Other parts of the kernel may not check if the zone is available.
6355  */
6356 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6357 /* These effectively disable the pcplists in the boot pageset completely */
6358 #define BOOT_PAGESET_HIGH	0
6359 #define BOOT_PAGESET_BATCH	1
6360 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6361 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6362 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6363 
6364 static void __build_all_zonelists(void *data)
6365 {
6366 	int nid;
6367 	int __maybe_unused cpu;
6368 	pg_data_t *self = data;
6369 	static DEFINE_SPINLOCK(lock);
6370 
6371 	spin_lock(&lock);
6372 
6373 #ifdef CONFIG_NUMA
6374 	memset(node_load, 0, sizeof(node_load));
6375 #endif
6376 
6377 	/*
6378 	 * This node is hotadded and no memory is yet present.   So just
6379 	 * building zonelists is fine - no need to touch other nodes.
6380 	 */
6381 	if (self && !node_online(self->node_id)) {
6382 		build_zonelists(self);
6383 	} else {
6384 		for_each_online_node(nid) {
6385 			pg_data_t *pgdat = NODE_DATA(nid);
6386 
6387 			build_zonelists(pgdat);
6388 		}
6389 
6390 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6391 		/*
6392 		 * We now know the "local memory node" for each node--
6393 		 * i.e., the node of the first zone in the generic zonelist.
6394 		 * Set up numa_mem percpu variable for on-line cpus.  During
6395 		 * boot, only the boot cpu should be on-line;  we'll init the
6396 		 * secondary cpus' numa_mem as they come on-line.  During
6397 		 * node/memory hotplug, we'll fixup all on-line cpus.
6398 		 */
6399 		for_each_online_cpu(cpu)
6400 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6401 #endif
6402 	}
6403 
6404 	spin_unlock(&lock);
6405 }
6406 
6407 static noinline void __init
6408 build_all_zonelists_init(void)
6409 {
6410 	int cpu;
6411 
6412 	__build_all_zonelists(NULL);
6413 
6414 	/*
6415 	 * Initialize the boot_pagesets that are going to be used
6416 	 * for bootstrapping processors. The real pagesets for
6417 	 * each zone will be allocated later when the per cpu
6418 	 * allocator is available.
6419 	 *
6420 	 * boot_pagesets are used also for bootstrapping offline
6421 	 * cpus if the system is already booted because the pagesets
6422 	 * are needed to initialize allocators on a specific cpu too.
6423 	 * F.e. the percpu allocator needs the page allocator which
6424 	 * needs the percpu allocator in order to allocate its pagesets
6425 	 * (a chicken-egg dilemma).
6426 	 */
6427 	for_each_possible_cpu(cpu)
6428 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6429 
6430 	mminit_verify_zonelist();
6431 	cpuset_init_current_mems_allowed();
6432 }
6433 
6434 /*
6435  * unless system_state == SYSTEM_BOOTING.
6436  *
6437  * __ref due to call of __init annotated helper build_all_zonelists_init
6438  * [protected by SYSTEM_BOOTING].
6439  */
6440 void __ref build_all_zonelists(pg_data_t *pgdat)
6441 {
6442 	unsigned long vm_total_pages;
6443 
6444 	if (system_state == SYSTEM_BOOTING) {
6445 		build_all_zonelists_init();
6446 	} else {
6447 		__build_all_zonelists(pgdat);
6448 		/* cpuset refresh routine should be here */
6449 	}
6450 	/* Get the number of free pages beyond high watermark in all zones. */
6451 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6452 	/*
6453 	 * Disable grouping by mobility if the number of pages in the
6454 	 * system is too low to allow the mechanism to work. It would be
6455 	 * more accurate, but expensive to check per-zone. This check is
6456 	 * made on memory-hotadd so a system can start with mobility
6457 	 * disabled and enable it later
6458 	 */
6459 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6460 		page_group_by_mobility_disabled = 1;
6461 	else
6462 		page_group_by_mobility_disabled = 0;
6463 
6464 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
6465 		nr_online_nodes,
6466 		page_group_by_mobility_disabled ? "off" : "on",
6467 		vm_total_pages);
6468 #ifdef CONFIG_NUMA
6469 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6470 #endif
6471 }
6472 
6473 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6474 static bool __meminit
6475 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6476 {
6477 	static struct memblock_region *r;
6478 
6479 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6480 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6481 			for_each_mem_region(r) {
6482 				if (*pfn < memblock_region_memory_end_pfn(r))
6483 					break;
6484 			}
6485 		}
6486 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
6487 		    memblock_is_mirror(r)) {
6488 			*pfn = memblock_region_memory_end_pfn(r);
6489 			return true;
6490 		}
6491 	}
6492 	return false;
6493 }
6494 
6495 /*
6496  * Initially all pages are reserved - free ones are freed
6497  * up by memblock_free_all() once the early boot process is
6498  * done. Non-atomic initialization, single-pass.
6499  *
6500  * All aligned pageblocks are initialized to the specified migratetype
6501  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6502  * zone stats (e.g., nr_isolate_pageblock) are touched.
6503  */
6504 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6505 		unsigned long start_pfn, unsigned long zone_end_pfn,
6506 		enum meminit_context context,
6507 		struct vmem_altmap *altmap, int migratetype)
6508 {
6509 	unsigned long pfn, end_pfn = start_pfn + size;
6510 	struct page *page;
6511 
6512 	if (highest_memmap_pfn < end_pfn - 1)
6513 		highest_memmap_pfn = end_pfn - 1;
6514 
6515 #ifdef CONFIG_ZONE_DEVICE
6516 	/*
6517 	 * Honor reservation requested by the driver for this ZONE_DEVICE
6518 	 * memory. We limit the total number of pages to initialize to just
6519 	 * those that might contain the memory mapping. We will defer the
6520 	 * ZONE_DEVICE page initialization until after we have released
6521 	 * the hotplug lock.
6522 	 */
6523 	if (zone == ZONE_DEVICE) {
6524 		if (!altmap)
6525 			return;
6526 
6527 		if (start_pfn == altmap->base_pfn)
6528 			start_pfn += altmap->reserve;
6529 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6530 	}
6531 #endif
6532 
6533 	for (pfn = start_pfn; pfn < end_pfn; ) {
6534 		/*
6535 		 * There can be holes in boot-time mem_map[]s handed to this
6536 		 * function.  They do not exist on hotplugged memory.
6537 		 */
6538 		if (context == MEMINIT_EARLY) {
6539 			if (overlap_memmap_init(zone, &pfn))
6540 				continue;
6541 			if (defer_init(nid, pfn, zone_end_pfn))
6542 				break;
6543 		}
6544 
6545 		page = pfn_to_page(pfn);
6546 		__init_single_page(page, pfn, zone, nid);
6547 		if (context == MEMINIT_HOTPLUG)
6548 			__SetPageReserved(page);
6549 
6550 		/*
6551 		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6552 		 * such that unmovable allocations won't be scattered all
6553 		 * over the place during system boot.
6554 		 */
6555 		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6556 			set_pageblock_migratetype(page, migratetype);
6557 			cond_resched();
6558 		}
6559 		pfn++;
6560 	}
6561 }
6562 
6563 #ifdef CONFIG_ZONE_DEVICE
6564 void __ref memmap_init_zone_device(struct zone *zone,
6565 				   unsigned long start_pfn,
6566 				   unsigned long nr_pages,
6567 				   struct dev_pagemap *pgmap)
6568 {
6569 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6570 	struct pglist_data *pgdat = zone->zone_pgdat;
6571 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6572 	unsigned long zone_idx = zone_idx(zone);
6573 	unsigned long start = jiffies;
6574 	int nid = pgdat->node_id;
6575 
6576 	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6577 		return;
6578 
6579 	/*
6580 	 * The call to memmap_init should have already taken care
6581 	 * of the pages reserved for the memmap, so we can just jump to
6582 	 * the end of that region and start processing the device pages.
6583 	 */
6584 	if (altmap) {
6585 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6586 		nr_pages = end_pfn - start_pfn;
6587 	}
6588 
6589 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6590 		struct page *page = pfn_to_page(pfn);
6591 
6592 		__init_single_page(page, pfn, zone_idx, nid);
6593 
6594 		/*
6595 		 * Mark page reserved as it will need to wait for onlining
6596 		 * phase for it to be fully associated with a zone.
6597 		 *
6598 		 * We can use the non-atomic __set_bit operation for setting
6599 		 * the flag as we are still initializing the pages.
6600 		 */
6601 		__SetPageReserved(page);
6602 
6603 		/*
6604 		 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6605 		 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
6606 		 * ever freed or placed on a driver-private list.
6607 		 */
6608 		page->pgmap = pgmap;
6609 		page->zone_device_data = NULL;
6610 
6611 		/*
6612 		 * Mark the block movable so that blocks are reserved for
6613 		 * movable at startup. This will force kernel allocations
6614 		 * to reserve their blocks rather than leaking throughout
6615 		 * the address space during boot when many long-lived
6616 		 * kernel allocations are made.
6617 		 *
6618 		 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6619 		 * because this is done early in section_activate()
6620 		 */
6621 		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6622 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6623 			cond_resched();
6624 		}
6625 	}
6626 
6627 	pr_info("%s initialised %lu pages in %ums\n", __func__,
6628 		nr_pages, jiffies_to_msecs(jiffies - start));
6629 }
6630 
6631 #endif
6632 static void __meminit zone_init_free_lists(struct zone *zone)
6633 {
6634 	unsigned int order, t;
6635 	for_each_migratetype_order(order, t) {
6636 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6637 		zone->free_area[order].nr_free = 0;
6638 	}
6639 }
6640 
6641 #if !defined(CONFIG_FLATMEM)
6642 /*
6643  * Only struct pages that correspond to ranges defined by memblock.memory
6644  * are zeroed and initialized by going through __init_single_page() during
6645  * memmap_init_zone_range().
6646  *
6647  * But, there could be struct pages that correspond to holes in
6648  * memblock.memory. This can happen because of the following reasons:
6649  * - physical memory bank size is not necessarily the exact multiple of the
6650  *   arbitrary section size
6651  * - early reserved memory may not be listed in memblock.memory
6652  * - memory layouts defined with memmap= kernel parameter may not align
6653  *   nicely with memmap sections
6654  *
6655  * Explicitly initialize those struct pages so that:
6656  * - PG_Reserved is set
6657  * - zone and node links point to zone and node that span the page if the
6658  *   hole is in the middle of a zone
6659  * - zone and node links point to adjacent zone/node if the hole falls on
6660  *   the zone boundary; the pages in such holes will be prepended to the
6661  *   zone/node above the hole except for the trailing pages in the last
6662  *   section that will be appended to the zone/node below.
6663  */
6664 static void __init init_unavailable_range(unsigned long spfn,
6665 					  unsigned long epfn,
6666 					  int zone, int node)
6667 {
6668 	unsigned long pfn;
6669 	u64 pgcnt = 0;
6670 
6671 	for (pfn = spfn; pfn < epfn; pfn++) {
6672 		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6673 			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6674 				+ pageblock_nr_pages - 1;
6675 			continue;
6676 		}
6677 		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
6678 		__SetPageReserved(pfn_to_page(pfn));
6679 		pgcnt++;
6680 	}
6681 
6682 	if (pgcnt)
6683 		pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6684 			node, zone_names[zone], pgcnt);
6685 }
6686 #else
6687 static inline void init_unavailable_range(unsigned long spfn,
6688 					  unsigned long epfn,
6689 					  int zone, int node)
6690 {
6691 }
6692 #endif
6693 
6694 static void __init memmap_init_zone_range(struct zone *zone,
6695 					  unsigned long start_pfn,
6696 					  unsigned long end_pfn,
6697 					  unsigned long *hole_pfn)
6698 {
6699 	unsigned long zone_start_pfn = zone->zone_start_pfn;
6700 	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6701 	int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6702 
6703 	start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6704 	end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6705 
6706 	if (start_pfn >= end_pfn)
6707 		return;
6708 
6709 	memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6710 			  zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6711 
6712 	if (*hole_pfn < start_pfn)
6713 		init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6714 
6715 	*hole_pfn = end_pfn;
6716 }
6717 
6718 static void __init memmap_init(void)
6719 {
6720 	unsigned long start_pfn, end_pfn;
6721 	unsigned long hole_pfn = 0;
6722 	int i, j, zone_id, nid;
6723 
6724 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6725 		struct pglist_data *node = NODE_DATA(nid);
6726 
6727 		for (j = 0; j < MAX_NR_ZONES; j++) {
6728 			struct zone *zone = node->node_zones + j;
6729 
6730 			if (!populated_zone(zone))
6731 				continue;
6732 
6733 			memmap_init_zone_range(zone, start_pfn, end_pfn,
6734 					       &hole_pfn);
6735 			zone_id = j;
6736 		}
6737 	}
6738 
6739 #ifdef CONFIG_SPARSEMEM
6740 	/*
6741 	 * Initialize the memory map for hole in the range [memory_end,
6742 	 * section_end].
6743 	 * Append the pages in this hole to the highest zone in the last
6744 	 * node.
6745 	 * The call to init_unavailable_range() is outside the ifdef to
6746 	 * silence the compiler warining about zone_id set but not used;
6747 	 * for FLATMEM it is a nop anyway
6748 	 */
6749 	end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
6750 	if (hole_pfn < end_pfn)
6751 #endif
6752 		init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
6753 }
6754 
6755 static int zone_batchsize(struct zone *zone)
6756 {
6757 #ifdef CONFIG_MMU
6758 	int batch;
6759 
6760 	/*
6761 	 * The number of pages to batch allocate is either ~0.1%
6762 	 * of the zone or 1MB, whichever is smaller. The batch
6763 	 * size is striking a balance between allocation latency
6764 	 * and zone lock contention.
6765 	 */
6766 	batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE);
6767 	batch /= 4;		/* We effectively *= 4 below */
6768 	if (batch < 1)
6769 		batch = 1;
6770 
6771 	/*
6772 	 * Clamp the batch to a 2^n - 1 value. Having a power
6773 	 * of 2 value was found to be more likely to have
6774 	 * suboptimal cache aliasing properties in some cases.
6775 	 *
6776 	 * For example if 2 tasks are alternately allocating
6777 	 * batches of pages, one task can end up with a lot
6778 	 * of pages of one half of the possible page colors
6779 	 * and the other with pages of the other colors.
6780 	 */
6781 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
6782 
6783 	return batch;
6784 
6785 #else
6786 	/* The deferral and batching of frees should be suppressed under NOMMU
6787 	 * conditions.
6788 	 *
6789 	 * The problem is that NOMMU needs to be able to allocate large chunks
6790 	 * of contiguous memory as there's no hardware page translation to
6791 	 * assemble apparent contiguous memory from discontiguous pages.
6792 	 *
6793 	 * Queueing large contiguous runs of pages for batching, however,
6794 	 * causes the pages to actually be freed in smaller chunks.  As there
6795 	 * can be a significant delay between the individual batches being
6796 	 * recycled, this leads to the once large chunks of space being
6797 	 * fragmented and becoming unavailable for high-order allocations.
6798 	 */
6799 	return 0;
6800 #endif
6801 }
6802 
6803 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
6804 {
6805 #ifdef CONFIG_MMU
6806 	int high;
6807 	int nr_split_cpus;
6808 	unsigned long total_pages;
6809 
6810 	if (!percpu_pagelist_high_fraction) {
6811 		/*
6812 		 * By default, the high value of the pcp is based on the zone
6813 		 * low watermark so that if they are full then background
6814 		 * reclaim will not be started prematurely.
6815 		 */
6816 		total_pages = low_wmark_pages(zone);
6817 	} else {
6818 		/*
6819 		 * If percpu_pagelist_high_fraction is configured, the high
6820 		 * value is based on a fraction of the managed pages in the
6821 		 * zone.
6822 		 */
6823 		total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
6824 	}
6825 
6826 	/*
6827 	 * Split the high value across all online CPUs local to the zone. Note
6828 	 * that early in boot that CPUs may not be online yet and that during
6829 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
6830 	 * onlined. For memory nodes that have no CPUs, split pcp->high across
6831 	 * all online CPUs to mitigate the risk that reclaim is triggered
6832 	 * prematurely due to pages stored on pcp lists.
6833 	 */
6834 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
6835 	if (!nr_split_cpus)
6836 		nr_split_cpus = num_online_cpus();
6837 	high = total_pages / nr_split_cpus;
6838 
6839 	/*
6840 	 * Ensure high is at least batch*4. The multiple is based on the
6841 	 * historical relationship between high and batch.
6842 	 */
6843 	high = max(high, batch << 2);
6844 
6845 	return high;
6846 #else
6847 	return 0;
6848 #endif
6849 }
6850 
6851 /*
6852  * pcp->high and pcp->batch values are related and generally batch is lower
6853  * than high. They are also related to pcp->count such that count is lower
6854  * than high, and as soon as it reaches high, the pcplist is flushed.
6855  *
6856  * However, guaranteeing these relations at all times would require e.g. write
6857  * barriers here but also careful usage of read barriers at the read side, and
6858  * thus be prone to error and bad for performance. Thus the update only prevents
6859  * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6860  * can cope with those fields changing asynchronously, and fully trust only the
6861  * pcp->count field on the local CPU with interrupts disabled.
6862  *
6863  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6864  * outside of boot time (or some other assurance that no concurrent updaters
6865  * exist).
6866  */
6867 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6868 		unsigned long batch)
6869 {
6870 	WRITE_ONCE(pcp->batch, batch);
6871 	WRITE_ONCE(pcp->high, high);
6872 }
6873 
6874 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
6875 {
6876 	int pindex;
6877 
6878 	memset(pcp, 0, sizeof(*pcp));
6879 	memset(pzstats, 0, sizeof(*pzstats));
6880 
6881 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
6882 		INIT_LIST_HEAD(&pcp->lists[pindex]);
6883 
6884 	/*
6885 	 * Set batch and high values safe for a boot pageset. A true percpu
6886 	 * pageset's initialization will update them subsequently. Here we don't
6887 	 * need to be as careful as pageset_update() as nobody can access the
6888 	 * pageset yet.
6889 	 */
6890 	pcp->high = BOOT_PAGESET_HIGH;
6891 	pcp->batch = BOOT_PAGESET_BATCH;
6892 	pcp->free_factor = 0;
6893 }
6894 
6895 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
6896 		unsigned long batch)
6897 {
6898 	struct per_cpu_pages *pcp;
6899 	int cpu;
6900 
6901 	for_each_possible_cpu(cpu) {
6902 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6903 		pageset_update(pcp, high, batch);
6904 	}
6905 }
6906 
6907 /*
6908  * Calculate and set new high and batch values for all per-cpu pagesets of a
6909  * zone based on the zone's size.
6910  */
6911 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
6912 {
6913 	int new_high, new_batch;
6914 
6915 	new_batch = max(1, zone_batchsize(zone));
6916 	new_high = zone_highsize(zone, new_batch, cpu_online);
6917 
6918 	if (zone->pageset_high == new_high &&
6919 	    zone->pageset_batch == new_batch)
6920 		return;
6921 
6922 	zone->pageset_high = new_high;
6923 	zone->pageset_batch = new_batch;
6924 
6925 	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
6926 }
6927 
6928 void __meminit setup_zone_pageset(struct zone *zone)
6929 {
6930 	int cpu;
6931 
6932 	/* Size may be 0 on !SMP && !NUMA */
6933 	if (sizeof(struct per_cpu_zonestat) > 0)
6934 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
6935 
6936 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
6937 	for_each_possible_cpu(cpu) {
6938 		struct per_cpu_pages *pcp;
6939 		struct per_cpu_zonestat *pzstats;
6940 
6941 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6942 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6943 		per_cpu_pages_init(pcp, pzstats);
6944 	}
6945 
6946 	zone_set_pageset_high_and_batch(zone, 0);
6947 }
6948 
6949 /*
6950  * Allocate per cpu pagesets and initialize them.
6951  * Before this call only boot pagesets were available.
6952  */
6953 void __init setup_per_cpu_pageset(void)
6954 {
6955 	struct pglist_data *pgdat;
6956 	struct zone *zone;
6957 	int __maybe_unused cpu;
6958 
6959 	for_each_populated_zone(zone)
6960 		setup_zone_pageset(zone);
6961 
6962 #ifdef CONFIG_NUMA
6963 	/*
6964 	 * Unpopulated zones continue using the boot pagesets.
6965 	 * The numa stats for these pagesets need to be reset.
6966 	 * Otherwise, they will end up skewing the stats of
6967 	 * the nodes these zones are associated with.
6968 	 */
6969 	for_each_possible_cpu(cpu) {
6970 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
6971 		memset(pzstats->vm_numa_event, 0,
6972 		       sizeof(pzstats->vm_numa_event));
6973 	}
6974 #endif
6975 
6976 	for_each_online_pgdat(pgdat)
6977 		pgdat->per_cpu_nodestats =
6978 			alloc_percpu(struct per_cpu_nodestat);
6979 }
6980 
6981 static __meminit void zone_pcp_init(struct zone *zone)
6982 {
6983 	/*
6984 	 * per cpu subsystem is not up at this point. The following code
6985 	 * relies on the ability of the linker to provide the
6986 	 * offset of a (static) per cpu variable into the per cpu area.
6987 	 */
6988 	zone->per_cpu_pageset = &boot_pageset;
6989 	zone->per_cpu_zonestats = &boot_zonestats;
6990 	zone->pageset_high = BOOT_PAGESET_HIGH;
6991 	zone->pageset_batch = BOOT_PAGESET_BATCH;
6992 
6993 	if (populated_zone(zone))
6994 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
6995 			 zone->present_pages, zone_batchsize(zone));
6996 }
6997 
6998 void __meminit init_currently_empty_zone(struct zone *zone,
6999 					unsigned long zone_start_pfn,
7000 					unsigned long size)
7001 {
7002 	struct pglist_data *pgdat = zone->zone_pgdat;
7003 	int zone_idx = zone_idx(zone) + 1;
7004 
7005 	if (zone_idx > pgdat->nr_zones)
7006 		pgdat->nr_zones = zone_idx;
7007 
7008 	zone->zone_start_pfn = zone_start_pfn;
7009 
7010 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
7011 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
7012 			pgdat->node_id,
7013 			(unsigned long)zone_idx(zone),
7014 			zone_start_pfn, (zone_start_pfn + size));
7015 
7016 	zone_init_free_lists(zone);
7017 	zone->initialized = 1;
7018 }
7019 
7020 /**
7021  * get_pfn_range_for_nid - Return the start and end page frames for a node
7022  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7023  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7024  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7025  *
7026  * It returns the start and end page frame of a node based on information
7027  * provided by memblock_set_node(). If called for a node
7028  * with no available memory, a warning is printed and the start and end
7029  * PFNs will be 0.
7030  */
7031 void __init get_pfn_range_for_nid(unsigned int nid,
7032 			unsigned long *start_pfn, unsigned long *end_pfn)
7033 {
7034 	unsigned long this_start_pfn, this_end_pfn;
7035 	int i;
7036 
7037 	*start_pfn = -1UL;
7038 	*end_pfn = 0;
7039 
7040 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7041 		*start_pfn = min(*start_pfn, this_start_pfn);
7042 		*end_pfn = max(*end_pfn, this_end_pfn);
7043 	}
7044 
7045 	if (*start_pfn == -1UL)
7046 		*start_pfn = 0;
7047 }
7048 
7049 /*
7050  * This finds a zone that can be used for ZONE_MOVABLE pages. The
7051  * assumption is made that zones within a node are ordered in monotonic
7052  * increasing memory addresses so that the "highest" populated zone is used
7053  */
7054 static void __init find_usable_zone_for_movable(void)
7055 {
7056 	int zone_index;
7057 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7058 		if (zone_index == ZONE_MOVABLE)
7059 			continue;
7060 
7061 		if (arch_zone_highest_possible_pfn[zone_index] >
7062 				arch_zone_lowest_possible_pfn[zone_index])
7063 			break;
7064 	}
7065 
7066 	VM_BUG_ON(zone_index == -1);
7067 	movable_zone = zone_index;
7068 }
7069 
7070 /*
7071  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7072  * because it is sized independent of architecture. Unlike the other zones,
7073  * the starting point for ZONE_MOVABLE is not fixed. It may be different
7074  * in each node depending on the size of each node and how evenly kernelcore
7075  * is distributed. This helper function adjusts the zone ranges
7076  * provided by the architecture for a given node by using the end of the
7077  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7078  * zones within a node are in order of monotonic increases memory addresses
7079  */
7080 static void __init adjust_zone_range_for_zone_movable(int nid,
7081 					unsigned long zone_type,
7082 					unsigned long node_start_pfn,
7083 					unsigned long node_end_pfn,
7084 					unsigned long *zone_start_pfn,
7085 					unsigned long *zone_end_pfn)
7086 {
7087 	/* Only adjust if ZONE_MOVABLE is on this node */
7088 	if (zone_movable_pfn[nid]) {
7089 		/* Size ZONE_MOVABLE */
7090 		if (zone_type == ZONE_MOVABLE) {
7091 			*zone_start_pfn = zone_movable_pfn[nid];
7092 			*zone_end_pfn = min(node_end_pfn,
7093 				arch_zone_highest_possible_pfn[movable_zone]);
7094 
7095 		/* Adjust for ZONE_MOVABLE starting within this range */
7096 		} else if (!mirrored_kernelcore &&
7097 			*zone_start_pfn < zone_movable_pfn[nid] &&
7098 			*zone_end_pfn > zone_movable_pfn[nid]) {
7099 			*zone_end_pfn = zone_movable_pfn[nid];
7100 
7101 		/* Check if this whole range is within ZONE_MOVABLE */
7102 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
7103 			*zone_start_pfn = *zone_end_pfn;
7104 	}
7105 }
7106 
7107 /*
7108  * Return the number of pages a zone spans in a node, including holes
7109  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7110  */
7111 static unsigned long __init zone_spanned_pages_in_node(int nid,
7112 					unsigned long zone_type,
7113 					unsigned long node_start_pfn,
7114 					unsigned long node_end_pfn,
7115 					unsigned long *zone_start_pfn,
7116 					unsigned long *zone_end_pfn)
7117 {
7118 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7119 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7120 	/* When hotadd a new node from cpu_up(), the node should be empty */
7121 	if (!node_start_pfn && !node_end_pfn)
7122 		return 0;
7123 
7124 	/* Get the start and end of the zone */
7125 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7126 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7127 	adjust_zone_range_for_zone_movable(nid, zone_type,
7128 				node_start_pfn, node_end_pfn,
7129 				zone_start_pfn, zone_end_pfn);
7130 
7131 	/* Check that this node has pages within the zone's required range */
7132 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7133 		return 0;
7134 
7135 	/* Move the zone boundaries inside the node if necessary */
7136 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7137 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7138 
7139 	/* Return the spanned pages */
7140 	return *zone_end_pfn - *zone_start_pfn;
7141 }
7142 
7143 /*
7144  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7145  * then all holes in the requested range will be accounted for.
7146  */
7147 unsigned long __init __absent_pages_in_range(int nid,
7148 				unsigned long range_start_pfn,
7149 				unsigned long range_end_pfn)
7150 {
7151 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
7152 	unsigned long start_pfn, end_pfn;
7153 	int i;
7154 
7155 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7156 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7157 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7158 		nr_absent -= end_pfn - start_pfn;
7159 	}
7160 	return nr_absent;
7161 }
7162 
7163 /**
7164  * absent_pages_in_range - Return number of page frames in holes within a range
7165  * @start_pfn: The start PFN to start searching for holes
7166  * @end_pfn: The end PFN to stop searching for holes
7167  *
7168  * Return: the number of pages frames in memory holes within a range.
7169  */
7170 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7171 							unsigned long end_pfn)
7172 {
7173 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7174 }
7175 
7176 /* Return the number of page frames in holes in a zone on a node */
7177 static unsigned long __init zone_absent_pages_in_node(int nid,
7178 					unsigned long zone_type,
7179 					unsigned long node_start_pfn,
7180 					unsigned long node_end_pfn)
7181 {
7182 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7183 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7184 	unsigned long zone_start_pfn, zone_end_pfn;
7185 	unsigned long nr_absent;
7186 
7187 	/* When hotadd a new node from cpu_up(), the node should be empty */
7188 	if (!node_start_pfn && !node_end_pfn)
7189 		return 0;
7190 
7191 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7192 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7193 
7194 	adjust_zone_range_for_zone_movable(nid, zone_type,
7195 			node_start_pfn, node_end_pfn,
7196 			&zone_start_pfn, &zone_end_pfn);
7197 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7198 
7199 	/*
7200 	 * ZONE_MOVABLE handling.
7201 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7202 	 * and vice versa.
7203 	 */
7204 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7205 		unsigned long start_pfn, end_pfn;
7206 		struct memblock_region *r;
7207 
7208 		for_each_mem_region(r) {
7209 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
7210 					  zone_start_pfn, zone_end_pfn);
7211 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
7212 					zone_start_pfn, zone_end_pfn);
7213 
7214 			if (zone_type == ZONE_MOVABLE &&
7215 			    memblock_is_mirror(r))
7216 				nr_absent += end_pfn - start_pfn;
7217 
7218 			if (zone_type == ZONE_NORMAL &&
7219 			    !memblock_is_mirror(r))
7220 				nr_absent += end_pfn - start_pfn;
7221 		}
7222 	}
7223 
7224 	return nr_absent;
7225 }
7226 
7227 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7228 						unsigned long node_start_pfn,
7229 						unsigned long node_end_pfn)
7230 {
7231 	unsigned long realtotalpages = 0, totalpages = 0;
7232 	enum zone_type i;
7233 
7234 	for (i = 0; i < MAX_NR_ZONES; i++) {
7235 		struct zone *zone = pgdat->node_zones + i;
7236 		unsigned long zone_start_pfn, zone_end_pfn;
7237 		unsigned long spanned, absent;
7238 		unsigned long size, real_size;
7239 
7240 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7241 						     node_start_pfn,
7242 						     node_end_pfn,
7243 						     &zone_start_pfn,
7244 						     &zone_end_pfn);
7245 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
7246 						   node_start_pfn,
7247 						   node_end_pfn);
7248 
7249 		size = spanned;
7250 		real_size = size - absent;
7251 
7252 		if (size)
7253 			zone->zone_start_pfn = zone_start_pfn;
7254 		else
7255 			zone->zone_start_pfn = 0;
7256 		zone->spanned_pages = size;
7257 		zone->present_pages = real_size;
7258 
7259 		totalpages += size;
7260 		realtotalpages += real_size;
7261 	}
7262 
7263 	pgdat->node_spanned_pages = totalpages;
7264 	pgdat->node_present_pages = realtotalpages;
7265 	pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7266 }
7267 
7268 #ifndef CONFIG_SPARSEMEM
7269 /*
7270  * Calculate the size of the zone->blockflags rounded to an unsigned long
7271  * Start by making sure zonesize is a multiple of pageblock_order by rounding
7272  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7273  * round what is now in bits to nearest long in bits, then return it in
7274  * bytes.
7275  */
7276 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7277 {
7278 	unsigned long usemapsize;
7279 
7280 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7281 	usemapsize = roundup(zonesize, pageblock_nr_pages);
7282 	usemapsize = usemapsize >> pageblock_order;
7283 	usemapsize *= NR_PAGEBLOCK_BITS;
7284 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7285 
7286 	return usemapsize / 8;
7287 }
7288 
7289 static void __ref setup_usemap(struct zone *zone)
7290 {
7291 	unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7292 					       zone->spanned_pages);
7293 	zone->pageblock_flags = NULL;
7294 	if (usemapsize) {
7295 		zone->pageblock_flags =
7296 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7297 					    zone_to_nid(zone));
7298 		if (!zone->pageblock_flags)
7299 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7300 			      usemapsize, zone->name, zone_to_nid(zone));
7301 	}
7302 }
7303 #else
7304 static inline void setup_usemap(struct zone *zone) {}
7305 #endif /* CONFIG_SPARSEMEM */
7306 
7307 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7308 
7309 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7310 void __init set_pageblock_order(void)
7311 {
7312 	unsigned int order;
7313 
7314 	/* Check that pageblock_nr_pages has not already been setup */
7315 	if (pageblock_order)
7316 		return;
7317 
7318 	if (HPAGE_SHIFT > PAGE_SHIFT)
7319 		order = HUGETLB_PAGE_ORDER;
7320 	else
7321 		order = MAX_ORDER - 1;
7322 
7323 	/*
7324 	 * Assume the largest contiguous order of interest is a huge page.
7325 	 * This value may be variable depending on boot parameters on IA64 and
7326 	 * powerpc.
7327 	 */
7328 	pageblock_order = order;
7329 }
7330 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7331 
7332 /*
7333  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7334  * is unused as pageblock_order is set at compile-time. See
7335  * include/linux/pageblock-flags.h for the values of pageblock_order based on
7336  * the kernel config
7337  */
7338 void __init set_pageblock_order(void)
7339 {
7340 }
7341 
7342 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7343 
7344 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7345 						unsigned long present_pages)
7346 {
7347 	unsigned long pages = spanned_pages;
7348 
7349 	/*
7350 	 * Provide a more accurate estimation if there are holes within
7351 	 * the zone and SPARSEMEM is in use. If there are holes within the
7352 	 * zone, each populated memory region may cost us one or two extra
7353 	 * memmap pages due to alignment because memmap pages for each
7354 	 * populated regions may not be naturally aligned on page boundary.
7355 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7356 	 */
7357 	if (spanned_pages > present_pages + (present_pages >> 4) &&
7358 	    IS_ENABLED(CONFIG_SPARSEMEM))
7359 		pages = present_pages;
7360 
7361 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7362 }
7363 
7364 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
7365 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7366 {
7367 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7368 
7369 	spin_lock_init(&ds_queue->split_queue_lock);
7370 	INIT_LIST_HEAD(&ds_queue->split_queue);
7371 	ds_queue->split_queue_len = 0;
7372 }
7373 #else
7374 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7375 #endif
7376 
7377 #ifdef CONFIG_COMPACTION
7378 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7379 {
7380 	init_waitqueue_head(&pgdat->kcompactd_wait);
7381 }
7382 #else
7383 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7384 #endif
7385 
7386 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7387 {
7388 	pgdat_resize_init(pgdat);
7389 
7390 	pgdat_init_split_queue(pgdat);
7391 	pgdat_init_kcompactd(pgdat);
7392 
7393 	init_waitqueue_head(&pgdat->kswapd_wait);
7394 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
7395 
7396 	pgdat_page_ext_init(pgdat);
7397 	lruvec_init(&pgdat->__lruvec);
7398 }
7399 
7400 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7401 							unsigned long remaining_pages)
7402 {
7403 	atomic_long_set(&zone->managed_pages, remaining_pages);
7404 	zone_set_nid(zone, nid);
7405 	zone->name = zone_names[idx];
7406 	zone->zone_pgdat = NODE_DATA(nid);
7407 	spin_lock_init(&zone->lock);
7408 	zone_seqlock_init(zone);
7409 	zone_pcp_init(zone);
7410 }
7411 
7412 /*
7413  * Set up the zone data structures
7414  * - init pgdat internals
7415  * - init all zones belonging to this node
7416  *
7417  * NOTE: this function is only called during memory hotplug
7418  */
7419 #ifdef CONFIG_MEMORY_HOTPLUG
7420 void __ref free_area_init_core_hotplug(int nid)
7421 {
7422 	enum zone_type z;
7423 	pg_data_t *pgdat = NODE_DATA(nid);
7424 
7425 	pgdat_init_internals(pgdat);
7426 	for (z = 0; z < MAX_NR_ZONES; z++)
7427 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7428 }
7429 #endif
7430 
7431 /*
7432  * Set up the zone data structures:
7433  *   - mark all pages reserved
7434  *   - mark all memory queues empty
7435  *   - clear the memory bitmaps
7436  *
7437  * NOTE: pgdat should get zeroed by caller.
7438  * NOTE: this function is only called during early init.
7439  */
7440 static void __init free_area_init_core(struct pglist_data *pgdat)
7441 {
7442 	enum zone_type j;
7443 	int nid = pgdat->node_id;
7444 
7445 	pgdat_init_internals(pgdat);
7446 	pgdat->per_cpu_nodestats = &boot_nodestats;
7447 
7448 	for (j = 0; j < MAX_NR_ZONES; j++) {
7449 		struct zone *zone = pgdat->node_zones + j;
7450 		unsigned long size, freesize, memmap_pages;
7451 
7452 		size = zone->spanned_pages;
7453 		freesize = zone->present_pages;
7454 
7455 		/*
7456 		 * Adjust freesize so that it accounts for how much memory
7457 		 * is used by this zone for memmap. This affects the watermark
7458 		 * and per-cpu initialisations
7459 		 */
7460 		memmap_pages = calc_memmap_size(size, freesize);
7461 		if (!is_highmem_idx(j)) {
7462 			if (freesize >= memmap_pages) {
7463 				freesize -= memmap_pages;
7464 				if (memmap_pages)
7465 					pr_debug("  %s zone: %lu pages used for memmap\n",
7466 						 zone_names[j], memmap_pages);
7467 			} else
7468 				pr_warn("  %s zone: %lu memmap pages exceeds freesize %lu\n",
7469 					zone_names[j], memmap_pages, freesize);
7470 		}
7471 
7472 		/* Account for reserved pages */
7473 		if (j == 0 && freesize > dma_reserve) {
7474 			freesize -= dma_reserve;
7475 			pr_debug("  %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7476 		}
7477 
7478 		if (!is_highmem_idx(j))
7479 			nr_kernel_pages += freesize;
7480 		/* Charge for highmem memmap if there are enough kernel pages */
7481 		else if (nr_kernel_pages > memmap_pages * 2)
7482 			nr_kernel_pages -= memmap_pages;
7483 		nr_all_pages += freesize;
7484 
7485 		/*
7486 		 * Set an approximate value for lowmem here, it will be adjusted
7487 		 * when the bootmem allocator frees pages into the buddy system.
7488 		 * And all highmem pages will be managed by the buddy system.
7489 		 */
7490 		zone_init_internals(zone, j, nid, freesize);
7491 
7492 		if (!size)
7493 			continue;
7494 
7495 		set_pageblock_order();
7496 		setup_usemap(zone);
7497 		init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7498 	}
7499 }
7500 
7501 #ifdef CONFIG_FLATMEM
7502 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
7503 {
7504 	unsigned long __maybe_unused start = 0;
7505 	unsigned long __maybe_unused offset = 0;
7506 
7507 	/* Skip empty nodes */
7508 	if (!pgdat->node_spanned_pages)
7509 		return;
7510 
7511 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7512 	offset = pgdat->node_start_pfn - start;
7513 	/* ia64 gets its own node_mem_map, before this, without bootmem */
7514 	if (!pgdat->node_mem_map) {
7515 		unsigned long size, end;
7516 		struct page *map;
7517 
7518 		/*
7519 		 * The zone's endpoints aren't required to be MAX_ORDER
7520 		 * aligned but the node_mem_map endpoints must be in order
7521 		 * for the buddy allocator to function correctly.
7522 		 */
7523 		end = pgdat_end_pfn(pgdat);
7524 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
7525 		size =  (end - start) * sizeof(struct page);
7526 		map = memblock_alloc_node(size, SMP_CACHE_BYTES,
7527 					  pgdat->node_id);
7528 		if (!map)
7529 			panic("Failed to allocate %ld bytes for node %d memory map\n",
7530 			      size, pgdat->node_id);
7531 		pgdat->node_mem_map = map + offset;
7532 	}
7533 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7534 				__func__, pgdat->node_id, (unsigned long)pgdat,
7535 				(unsigned long)pgdat->node_mem_map);
7536 #ifndef CONFIG_NUMA
7537 	/*
7538 	 * With no DISCONTIG, the global mem_map is just set as node 0's
7539 	 */
7540 	if (pgdat == NODE_DATA(0)) {
7541 		mem_map = NODE_DATA(0)->node_mem_map;
7542 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7543 			mem_map -= offset;
7544 	}
7545 #endif
7546 }
7547 #else
7548 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
7549 #endif /* CONFIG_FLATMEM */
7550 
7551 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7552 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7553 {
7554 	pgdat->first_deferred_pfn = ULONG_MAX;
7555 }
7556 #else
7557 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7558 #endif
7559 
7560 static void __init free_area_init_node(int nid)
7561 {
7562 	pg_data_t *pgdat = NODE_DATA(nid);
7563 	unsigned long start_pfn = 0;
7564 	unsigned long end_pfn = 0;
7565 
7566 	/* pg_data_t should be reset to zero when it's allocated */
7567 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7568 
7569 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7570 
7571 	pgdat->node_id = nid;
7572 	pgdat->node_start_pfn = start_pfn;
7573 	pgdat->per_cpu_nodestats = NULL;
7574 
7575 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7576 		(u64)start_pfn << PAGE_SHIFT,
7577 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7578 	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7579 
7580 	alloc_node_mem_map(pgdat);
7581 	pgdat_set_deferred_range(pgdat);
7582 
7583 	free_area_init_core(pgdat);
7584 }
7585 
7586 void __init free_area_init_memoryless_node(int nid)
7587 {
7588 	free_area_init_node(nid);
7589 }
7590 
7591 #if MAX_NUMNODES > 1
7592 /*
7593  * Figure out the number of possible node ids.
7594  */
7595 void __init setup_nr_node_ids(void)
7596 {
7597 	unsigned int highest;
7598 
7599 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7600 	nr_node_ids = highest + 1;
7601 }
7602 #endif
7603 
7604 /**
7605  * node_map_pfn_alignment - determine the maximum internode alignment
7606  *
7607  * This function should be called after node map is populated and sorted.
7608  * It calculates the maximum power of two alignment which can distinguish
7609  * all the nodes.
7610  *
7611  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7612  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7613  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7614  * shifted, 1GiB is enough and this function will indicate so.
7615  *
7616  * This is used to test whether pfn -> nid mapping of the chosen memory
7617  * model has fine enough granularity to avoid incorrect mapping for the
7618  * populated node map.
7619  *
7620  * Return: the determined alignment in pfn's.  0 if there is no alignment
7621  * requirement (single node).
7622  */
7623 unsigned long __init node_map_pfn_alignment(void)
7624 {
7625 	unsigned long accl_mask = 0, last_end = 0;
7626 	unsigned long start, end, mask;
7627 	int last_nid = NUMA_NO_NODE;
7628 	int i, nid;
7629 
7630 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7631 		if (!start || last_nid < 0 || last_nid == nid) {
7632 			last_nid = nid;
7633 			last_end = end;
7634 			continue;
7635 		}
7636 
7637 		/*
7638 		 * Start with a mask granular enough to pin-point to the
7639 		 * start pfn and tick off bits one-by-one until it becomes
7640 		 * too coarse to separate the current node from the last.
7641 		 */
7642 		mask = ~((1 << __ffs(start)) - 1);
7643 		while (mask && last_end <= (start & (mask << 1)))
7644 			mask <<= 1;
7645 
7646 		/* accumulate all internode masks */
7647 		accl_mask |= mask;
7648 	}
7649 
7650 	/* convert mask to number of pages */
7651 	return ~accl_mask + 1;
7652 }
7653 
7654 /**
7655  * find_min_pfn_with_active_regions - Find the minimum PFN registered
7656  *
7657  * Return: the minimum PFN based on information provided via
7658  * memblock_set_node().
7659  */
7660 unsigned long __init find_min_pfn_with_active_regions(void)
7661 {
7662 	return PHYS_PFN(memblock_start_of_DRAM());
7663 }
7664 
7665 /*
7666  * early_calculate_totalpages()
7667  * Sum pages in active regions for movable zone.
7668  * Populate N_MEMORY for calculating usable_nodes.
7669  */
7670 static unsigned long __init early_calculate_totalpages(void)
7671 {
7672 	unsigned long totalpages = 0;
7673 	unsigned long start_pfn, end_pfn;
7674 	int i, nid;
7675 
7676 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7677 		unsigned long pages = end_pfn - start_pfn;
7678 
7679 		totalpages += pages;
7680 		if (pages)
7681 			node_set_state(nid, N_MEMORY);
7682 	}
7683 	return totalpages;
7684 }
7685 
7686 /*
7687  * Find the PFN the Movable zone begins in each node. Kernel memory
7688  * is spread evenly between nodes as long as the nodes have enough
7689  * memory. When they don't, some nodes will have more kernelcore than
7690  * others
7691  */
7692 static void __init find_zone_movable_pfns_for_nodes(void)
7693 {
7694 	int i, nid;
7695 	unsigned long usable_startpfn;
7696 	unsigned long kernelcore_node, kernelcore_remaining;
7697 	/* save the state before borrow the nodemask */
7698 	nodemask_t saved_node_state = node_states[N_MEMORY];
7699 	unsigned long totalpages = early_calculate_totalpages();
7700 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7701 	struct memblock_region *r;
7702 
7703 	/* Need to find movable_zone earlier when movable_node is specified. */
7704 	find_usable_zone_for_movable();
7705 
7706 	/*
7707 	 * If movable_node is specified, ignore kernelcore and movablecore
7708 	 * options.
7709 	 */
7710 	if (movable_node_is_enabled()) {
7711 		for_each_mem_region(r) {
7712 			if (!memblock_is_hotpluggable(r))
7713 				continue;
7714 
7715 			nid = memblock_get_region_node(r);
7716 
7717 			usable_startpfn = PFN_DOWN(r->base);
7718 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7719 				min(usable_startpfn, zone_movable_pfn[nid]) :
7720 				usable_startpfn;
7721 		}
7722 
7723 		goto out2;
7724 	}
7725 
7726 	/*
7727 	 * If kernelcore=mirror is specified, ignore movablecore option
7728 	 */
7729 	if (mirrored_kernelcore) {
7730 		bool mem_below_4gb_not_mirrored = false;
7731 
7732 		for_each_mem_region(r) {
7733 			if (memblock_is_mirror(r))
7734 				continue;
7735 
7736 			nid = memblock_get_region_node(r);
7737 
7738 			usable_startpfn = memblock_region_memory_base_pfn(r);
7739 
7740 			if (usable_startpfn < 0x100000) {
7741 				mem_below_4gb_not_mirrored = true;
7742 				continue;
7743 			}
7744 
7745 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7746 				min(usable_startpfn, zone_movable_pfn[nid]) :
7747 				usable_startpfn;
7748 		}
7749 
7750 		if (mem_below_4gb_not_mirrored)
7751 			pr_warn("This configuration results in unmirrored kernel memory.\n");
7752 
7753 		goto out2;
7754 	}
7755 
7756 	/*
7757 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7758 	 * amount of necessary memory.
7759 	 */
7760 	if (required_kernelcore_percent)
7761 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7762 				       10000UL;
7763 	if (required_movablecore_percent)
7764 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7765 					10000UL;
7766 
7767 	/*
7768 	 * If movablecore= was specified, calculate what size of
7769 	 * kernelcore that corresponds so that memory usable for
7770 	 * any allocation type is evenly spread. If both kernelcore
7771 	 * and movablecore are specified, then the value of kernelcore
7772 	 * will be used for required_kernelcore if it's greater than
7773 	 * what movablecore would have allowed.
7774 	 */
7775 	if (required_movablecore) {
7776 		unsigned long corepages;
7777 
7778 		/*
7779 		 * Round-up so that ZONE_MOVABLE is at least as large as what
7780 		 * was requested by the user
7781 		 */
7782 		required_movablecore =
7783 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7784 		required_movablecore = min(totalpages, required_movablecore);
7785 		corepages = totalpages - required_movablecore;
7786 
7787 		required_kernelcore = max(required_kernelcore, corepages);
7788 	}
7789 
7790 	/*
7791 	 * If kernelcore was not specified or kernelcore size is larger
7792 	 * than totalpages, there is no ZONE_MOVABLE.
7793 	 */
7794 	if (!required_kernelcore || required_kernelcore >= totalpages)
7795 		goto out;
7796 
7797 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7798 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7799 
7800 restart:
7801 	/* Spread kernelcore memory as evenly as possible throughout nodes */
7802 	kernelcore_node = required_kernelcore / usable_nodes;
7803 	for_each_node_state(nid, N_MEMORY) {
7804 		unsigned long start_pfn, end_pfn;
7805 
7806 		/*
7807 		 * Recalculate kernelcore_node if the division per node
7808 		 * now exceeds what is necessary to satisfy the requested
7809 		 * amount of memory for the kernel
7810 		 */
7811 		if (required_kernelcore < kernelcore_node)
7812 			kernelcore_node = required_kernelcore / usable_nodes;
7813 
7814 		/*
7815 		 * As the map is walked, we track how much memory is usable
7816 		 * by the kernel using kernelcore_remaining. When it is
7817 		 * 0, the rest of the node is usable by ZONE_MOVABLE
7818 		 */
7819 		kernelcore_remaining = kernelcore_node;
7820 
7821 		/* Go through each range of PFNs within this node */
7822 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7823 			unsigned long size_pages;
7824 
7825 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7826 			if (start_pfn >= end_pfn)
7827 				continue;
7828 
7829 			/* Account for what is only usable for kernelcore */
7830 			if (start_pfn < usable_startpfn) {
7831 				unsigned long kernel_pages;
7832 				kernel_pages = min(end_pfn, usable_startpfn)
7833 								- start_pfn;
7834 
7835 				kernelcore_remaining -= min(kernel_pages,
7836 							kernelcore_remaining);
7837 				required_kernelcore -= min(kernel_pages,
7838 							required_kernelcore);
7839 
7840 				/* Continue if range is now fully accounted */
7841 				if (end_pfn <= usable_startpfn) {
7842 
7843 					/*
7844 					 * Push zone_movable_pfn to the end so
7845 					 * that if we have to rebalance
7846 					 * kernelcore across nodes, we will
7847 					 * not double account here
7848 					 */
7849 					zone_movable_pfn[nid] = end_pfn;
7850 					continue;
7851 				}
7852 				start_pfn = usable_startpfn;
7853 			}
7854 
7855 			/*
7856 			 * The usable PFN range for ZONE_MOVABLE is from
7857 			 * start_pfn->end_pfn. Calculate size_pages as the
7858 			 * number of pages used as kernelcore
7859 			 */
7860 			size_pages = end_pfn - start_pfn;
7861 			if (size_pages > kernelcore_remaining)
7862 				size_pages = kernelcore_remaining;
7863 			zone_movable_pfn[nid] = start_pfn + size_pages;
7864 
7865 			/*
7866 			 * Some kernelcore has been met, update counts and
7867 			 * break if the kernelcore for this node has been
7868 			 * satisfied
7869 			 */
7870 			required_kernelcore -= min(required_kernelcore,
7871 								size_pages);
7872 			kernelcore_remaining -= size_pages;
7873 			if (!kernelcore_remaining)
7874 				break;
7875 		}
7876 	}
7877 
7878 	/*
7879 	 * If there is still required_kernelcore, we do another pass with one
7880 	 * less node in the count. This will push zone_movable_pfn[nid] further
7881 	 * along on the nodes that still have memory until kernelcore is
7882 	 * satisfied
7883 	 */
7884 	usable_nodes--;
7885 	if (usable_nodes && required_kernelcore > usable_nodes)
7886 		goto restart;
7887 
7888 out2:
7889 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7890 	for (nid = 0; nid < MAX_NUMNODES; nid++)
7891 		zone_movable_pfn[nid] =
7892 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7893 
7894 out:
7895 	/* restore the node_state */
7896 	node_states[N_MEMORY] = saved_node_state;
7897 }
7898 
7899 /* Any regular or high memory on that node ? */
7900 static void check_for_memory(pg_data_t *pgdat, int nid)
7901 {
7902 	enum zone_type zone_type;
7903 
7904 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7905 		struct zone *zone = &pgdat->node_zones[zone_type];
7906 		if (populated_zone(zone)) {
7907 			if (IS_ENABLED(CONFIG_HIGHMEM))
7908 				node_set_state(nid, N_HIGH_MEMORY);
7909 			if (zone_type <= ZONE_NORMAL)
7910 				node_set_state(nid, N_NORMAL_MEMORY);
7911 			break;
7912 		}
7913 	}
7914 }
7915 
7916 /*
7917  * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7918  * such cases we allow max_zone_pfn sorted in the descending order
7919  */
7920 bool __weak arch_has_descending_max_zone_pfns(void)
7921 {
7922 	return false;
7923 }
7924 
7925 /**
7926  * free_area_init - Initialise all pg_data_t and zone data
7927  * @max_zone_pfn: an array of max PFNs for each zone
7928  *
7929  * This will call free_area_init_node() for each active node in the system.
7930  * Using the page ranges provided by memblock_set_node(), the size of each
7931  * zone in each node and their holes is calculated. If the maximum PFN
7932  * between two adjacent zones match, it is assumed that the zone is empty.
7933  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7934  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7935  * starts where the previous one ended. For example, ZONE_DMA32 starts
7936  * at arch_max_dma_pfn.
7937  */
7938 void __init free_area_init(unsigned long *max_zone_pfn)
7939 {
7940 	unsigned long start_pfn, end_pfn;
7941 	int i, nid, zone;
7942 	bool descending;
7943 
7944 	/* Record where the zone boundaries are */
7945 	memset(arch_zone_lowest_possible_pfn, 0,
7946 				sizeof(arch_zone_lowest_possible_pfn));
7947 	memset(arch_zone_highest_possible_pfn, 0,
7948 				sizeof(arch_zone_highest_possible_pfn));
7949 
7950 	start_pfn = find_min_pfn_with_active_regions();
7951 	descending = arch_has_descending_max_zone_pfns();
7952 
7953 	for (i = 0; i < MAX_NR_ZONES; i++) {
7954 		if (descending)
7955 			zone = MAX_NR_ZONES - i - 1;
7956 		else
7957 			zone = i;
7958 
7959 		if (zone == ZONE_MOVABLE)
7960 			continue;
7961 
7962 		end_pfn = max(max_zone_pfn[zone], start_pfn);
7963 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
7964 		arch_zone_highest_possible_pfn[zone] = end_pfn;
7965 
7966 		start_pfn = end_pfn;
7967 	}
7968 
7969 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
7970 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7971 	find_zone_movable_pfns_for_nodes();
7972 
7973 	/* Print out the zone ranges */
7974 	pr_info("Zone ranges:\n");
7975 	for (i = 0; i < MAX_NR_ZONES; i++) {
7976 		if (i == ZONE_MOVABLE)
7977 			continue;
7978 		pr_info("  %-8s ", zone_names[i]);
7979 		if (arch_zone_lowest_possible_pfn[i] ==
7980 				arch_zone_highest_possible_pfn[i])
7981 			pr_cont("empty\n");
7982 		else
7983 			pr_cont("[mem %#018Lx-%#018Lx]\n",
7984 				(u64)arch_zone_lowest_possible_pfn[i]
7985 					<< PAGE_SHIFT,
7986 				((u64)arch_zone_highest_possible_pfn[i]
7987 					<< PAGE_SHIFT) - 1);
7988 	}
7989 
7990 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7991 	pr_info("Movable zone start for each node\n");
7992 	for (i = 0; i < MAX_NUMNODES; i++) {
7993 		if (zone_movable_pfn[i])
7994 			pr_info("  Node %d: %#018Lx\n", i,
7995 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7996 	}
7997 
7998 	/*
7999 	 * Print out the early node map, and initialize the
8000 	 * subsection-map relative to active online memory ranges to
8001 	 * enable future "sub-section" extensions of the memory map.
8002 	 */
8003 	pr_info("Early memory node ranges\n");
8004 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8005 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8006 			(u64)start_pfn << PAGE_SHIFT,
8007 			((u64)end_pfn << PAGE_SHIFT) - 1);
8008 		subsection_map_init(start_pfn, end_pfn - start_pfn);
8009 	}
8010 
8011 	/* Initialise every node */
8012 	mminit_verify_pageflags_layout();
8013 	setup_nr_node_ids();
8014 	for_each_online_node(nid) {
8015 		pg_data_t *pgdat = NODE_DATA(nid);
8016 		free_area_init_node(nid);
8017 
8018 		/* Any memory on that node */
8019 		if (pgdat->node_present_pages)
8020 			node_set_state(nid, N_MEMORY);
8021 		check_for_memory(pgdat, nid);
8022 	}
8023 
8024 	memmap_init();
8025 }
8026 
8027 static int __init cmdline_parse_core(char *p, unsigned long *core,
8028 				     unsigned long *percent)
8029 {
8030 	unsigned long long coremem;
8031 	char *endptr;
8032 
8033 	if (!p)
8034 		return -EINVAL;
8035 
8036 	/* Value may be a percentage of total memory, otherwise bytes */
8037 	coremem = simple_strtoull(p, &endptr, 0);
8038 	if (*endptr == '%') {
8039 		/* Paranoid check for percent values greater than 100 */
8040 		WARN_ON(coremem > 100);
8041 
8042 		*percent = coremem;
8043 	} else {
8044 		coremem = memparse(p, &p);
8045 		/* Paranoid check that UL is enough for the coremem value */
8046 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8047 
8048 		*core = coremem >> PAGE_SHIFT;
8049 		*percent = 0UL;
8050 	}
8051 	return 0;
8052 }
8053 
8054 /*
8055  * kernelcore=size sets the amount of memory for use for allocations that
8056  * cannot be reclaimed or migrated.
8057  */
8058 static int __init cmdline_parse_kernelcore(char *p)
8059 {
8060 	/* parse kernelcore=mirror */
8061 	if (parse_option_str(p, "mirror")) {
8062 		mirrored_kernelcore = true;
8063 		return 0;
8064 	}
8065 
8066 	return cmdline_parse_core(p, &required_kernelcore,
8067 				  &required_kernelcore_percent);
8068 }
8069 
8070 /*
8071  * movablecore=size sets the amount of memory for use for allocations that
8072  * can be reclaimed or migrated.
8073  */
8074 static int __init cmdline_parse_movablecore(char *p)
8075 {
8076 	return cmdline_parse_core(p, &required_movablecore,
8077 				  &required_movablecore_percent);
8078 }
8079 
8080 early_param("kernelcore", cmdline_parse_kernelcore);
8081 early_param("movablecore", cmdline_parse_movablecore);
8082 
8083 void adjust_managed_page_count(struct page *page, long count)
8084 {
8085 	atomic_long_add(count, &page_zone(page)->managed_pages);
8086 	totalram_pages_add(count);
8087 #ifdef CONFIG_HIGHMEM
8088 	if (PageHighMem(page))
8089 		totalhigh_pages_add(count);
8090 #endif
8091 }
8092 EXPORT_SYMBOL(adjust_managed_page_count);
8093 
8094 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8095 {
8096 	void *pos;
8097 	unsigned long pages = 0;
8098 
8099 	start = (void *)PAGE_ALIGN((unsigned long)start);
8100 	end = (void *)((unsigned long)end & PAGE_MASK);
8101 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8102 		struct page *page = virt_to_page(pos);
8103 		void *direct_map_addr;
8104 
8105 		/*
8106 		 * 'direct_map_addr' might be different from 'pos'
8107 		 * because some architectures' virt_to_page()
8108 		 * work with aliases.  Getting the direct map
8109 		 * address ensures that we get a _writeable_
8110 		 * alias for the memset().
8111 		 */
8112 		direct_map_addr = page_address(page);
8113 		/*
8114 		 * Perform a kasan-unchecked memset() since this memory
8115 		 * has not been initialized.
8116 		 */
8117 		direct_map_addr = kasan_reset_tag(direct_map_addr);
8118 		if ((unsigned int)poison <= 0xFF)
8119 			memset(direct_map_addr, poison, PAGE_SIZE);
8120 
8121 		free_reserved_page(page);
8122 	}
8123 
8124 	if (pages && s)
8125 		pr_info("Freeing %s memory: %ldK\n",
8126 			s, pages << (PAGE_SHIFT - 10));
8127 
8128 	return pages;
8129 }
8130 
8131 void __init mem_init_print_info(void)
8132 {
8133 	unsigned long physpages, codesize, datasize, rosize, bss_size;
8134 	unsigned long init_code_size, init_data_size;
8135 
8136 	physpages = get_num_physpages();
8137 	codesize = _etext - _stext;
8138 	datasize = _edata - _sdata;
8139 	rosize = __end_rodata - __start_rodata;
8140 	bss_size = __bss_stop - __bss_start;
8141 	init_data_size = __init_end - __init_begin;
8142 	init_code_size = _einittext - _sinittext;
8143 
8144 	/*
8145 	 * Detect special cases and adjust section sizes accordingly:
8146 	 * 1) .init.* may be embedded into .data sections
8147 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
8148 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
8149 	 * 3) .rodata.* may be embedded into .text or .data sections.
8150 	 */
8151 #define adj_init_size(start, end, size, pos, adj) \
8152 	do { \
8153 		if (start <= pos && pos < end && size > adj) \
8154 			size -= adj; \
8155 	} while (0)
8156 
8157 	adj_init_size(__init_begin, __init_end, init_data_size,
8158 		     _sinittext, init_code_size);
8159 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8160 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8161 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8162 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8163 
8164 #undef	adj_init_size
8165 
8166 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8167 #ifdef	CONFIG_HIGHMEM
8168 		", %luK highmem"
8169 #endif
8170 		")\n",
8171 		nr_free_pages() << (PAGE_SHIFT - 10),
8172 		physpages << (PAGE_SHIFT - 10),
8173 		codesize >> 10, datasize >> 10, rosize >> 10,
8174 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
8175 		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
8176 		totalcma_pages << (PAGE_SHIFT - 10)
8177 #ifdef	CONFIG_HIGHMEM
8178 		, totalhigh_pages() << (PAGE_SHIFT - 10)
8179 #endif
8180 		);
8181 }
8182 
8183 /**
8184  * set_dma_reserve - set the specified number of pages reserved in the first zone
8185  * @new_dma_reserve: The number of pages to mark reserved
8186  *
8187  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8188  * In the DMA zone, a significant percentage may be consumed by kernel image
8189  * and other unfreeable allocations which can skew the watermarks badly. This
8190  * function may optionally be used to account for unfreeable pages in the
8191  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8192  * smaller per-cpu batchsize.
8193  */
8194 void __init set_dma_reserve(unsigned long new_dma_reserve)
8195 {
8196 	dma_reserve = new_dma_reserve;
8197 }
8198 
8199 static int page_alloc_cpu_dead(unsigned int cpu)
8200 {
8201 	struct zone *zone;
8202 
8203 	lru_add_drain_cpu(cpu);
8204 	drain_pages(cpu);
8205 
8206 	/*
8207 	 * Spill the event counters of the dead processor
8208 	 * into the current processors event counters.
8209 	 * This artificially elevates the count of the current
8210 	 * processor.
8211 	 */
8212 	vm_events_fold_cpu(cpu);
8213 
8214 	/*
8215 	 * Zero the differential counters of the dead processor
8216 	 * so that the vm statistics are consistent.
8217 	 *
8218 	 * This is only okay since the processor is dead and cannot
8219 	 * race with what we are doing.
8220 	 */
8221 	cpu_vm_stats_fold(cpu);
8222 
8223 	for_each_populated_zone(zone)
8224 		zone_pcp_update(zone, 0);
8225 
8226 	return 0;
8227 }
8228 
8229 static int page_alloc_cpu_online(unsigned int cpu)
8230 {
8231 	struct zone *zone;
8232 
8233 	for_each_populated_zone(zone)
8234 		zone_pcp_update(zone, 1);
8235 	return 0;
8236 }
8237 
8238 #ifdef CONFIG_NUMA
8239 int hashdist = HASHDIST_DEFAULT;
8240 
8241 static int __init set_hashdist(char *str)
8242 {
8243 	if (!str)
8244 		return 0;
8245 	hashdist = simple_strtoul(str, &str, 0);
8246 	return 1;
8247 }
8248 __setup("hashdist=", set_hashdist);
8249 #endif
8250 
8251 void __init page_alloc_init(void)
8252 {
8253 	int ret;
8254 
8255 #ifdef CONFIG_NUMA
8256 	if (num_node_state(N_MEMORY) == 1)
8257 		hashdist = 0;
8258 #endif
8259 
8260 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8261 					"mm/page_alloc:pcp",
8262 					page_alloc_cpu_online,
8263 					page_alloc_cpu_dead);
8264 	WARN_ON(ret < 0);
8265 }
8266 
8267 /*
8268  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8269  *	or min_free_kbytes changes.
8270  */
8271 static void calculate_totalreserve_pages(void)
8272 {
8273 	struct pglist_data *pgdat;
8274 	unsigned long reserve_pages = 0;
8275 	enum zone_type i, j;
8276 
8277 	for_each_online_pgdat(pgdat) {
8278 
8279 		pgdat->totalreserve_pages = 0;
8280 
8281 		for (i = 0; i < MAX_NR_ZONES; i++) {
8282 			struct zone *zone = pgdat->node_zones + i;
8283 			long max = 0;
8284 			unsigned long managed_pages = zone_managed_pages(zone);
8285 
8286 			/* Find valid and maximum lowmem_reserve in the zone */
8287 			for (j = i; j < MAX_NR_ZONES; j++) {
8288 				if (zone->lowmem_reserve[j] > max)
8289 					max = zone->lowmem_reserve[j];
8290 			}
8291 
8292 			/* we treat the high watermark as reserved pages. */
8293 			max += high_wmark_pages(zone);
8294 
8295 			if (max > managed_pages)
8296 				max = managed_pages;
8297 
8298 			pgdat->totalreserve_pages += max;
8299 
8300 			reserve_pages += max;
8301 		}
8302 	}
8303 	totalreserve_pages = reserve_pages;
8304 }
8305 
8306 /*
8307  * setup_per_zone_lowmem_reserve - called whenever
8308  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
8309  *	has a correct pages reserved value, so an adequate number of
8310  *	pages are left in the zone after a successful __alloc_pages().
8311  */
8312 static void setup_per_zone_lowmem_reserve(void)
8313 {
8314 	struct pglist_data *pgdat;
8315 	enum zone_type i, j;
8316 
8317 	for_each_online_pgdat(pgdat) {
8318 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8319 			struct zone *zone = &pgdat->node_zones[i];
8320 			int ratio = sysctl_lowmem_reserve_ratio[i];
8321 			bool clear = !ratio || !zone_managed_pages(zone);
8322 			unsigned long managed_pages = 0;
8323 
8324 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
8325 				struct zone *upper_zone = &pgdat->node_zones[j];
8326 
8327 				managed_pages += zone_managed_pages(upper_zone);
8328 
8329 				if (clear)
8330 					zone->lowmem_reserve[j] = 0;
8331 				else
8332 					zone->lowmem_reserve[j] = managed_pages / ratio;
8333 			}
8334 		}
8335 	}
8336 
8337 	/* update totalreserve_pages */
8338 	calculate_totalreserve_pages();
8339 }
8340 
8341 static void __setup_per_zone_wmarks(void)
8342 {
8343 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8344 	unsigned long lowmem_pages = 0;
8345 	struct zone *zone;
8346 	unsigned long flags;
8347 
8348 	/* Calculate total number of !ZONE_HIGHMEM pages */
8349 	for_each_zone(zone) {
8350 		if (!is_highmem(zone))
8351 			lowmem_pages += zone_managed_pages(zone);
8352 	}
8353 
8354 	for_each_zone(zone) {
8355 		u64 tmp;
8356 
8357 		spin_lock_irqsave(&zone->lock, flags);
8358 		tmp = (u64)pages_min * zone_managed_pages(zone);
8359 		do_div(tmp, lowmem_pages);
8360 		if (is_highmem(zone)) {
8361 			/*
8362 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8363 			 * need highmem pages, so cap pages_min to a small
8364 			 * value here.
8365 			 *
8366 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8367 			 * deltas control async page reclaim, and so should
8368 			 * not be capped for highmem.
8369 			 */
8370 			unsigned long min_pages;
8371 
8372 			min_pages = zone_managed_pages(zone) / 1024;
8373 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8374 			zone->_watermark[WMARK_MIN] = min_pages;
8375 		} else {
8376 			/*
8377 			 * If it's a lowmem zone, reserve a number of pages
8378 			 * proportionate to the zone's size.
8379 			 */
8380 			zone->_watermark[WMARK_MIN] = tmp;
8381 		}
8382 
8383 		/*
8384 		 * Set the kswapd watermarks distance according to the
8385 		 * scale factor in proportion to available memory, but
8386 		 * ensure a minimum size on small systems.
8387 		 */
8388 		tmp = max_t(u64, tmp >> 2,
8389 			    mult_frac(zone_managed_pages(zone),
8390 				      watermark_scale_factor, 10000));
8391 
8392 		zone->watermark_boost = 0;
8393 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
8394 		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
8395 
8396 		spin_unlock_irqrestore(&zone->lock, flags);
8397 	}
8398 
8399 	/* update totalreserve_pages */
8400 	calculate_totalreserve_pages();
8401 }
8402 
8403 /**
8404  * setup_per_zone_wmarks - called when min_free_kbytes changes
8405  * or when memory is hot-{added|removed}
8406  *
8407  * Ensures that the watermark[min,low,high] values for each zone are set
8408  * correctly with respect to min_free_kbytes.
8409  */
8410 void setup_per_zone_wmarks(void)
8411 {
8412 	struct zone *zone;
8413 	static DEFINE_SPINLOCK(lock);
8414 
8415 	spin_lock(&lock);
8416 	__setup_per_zone_wmarks();
8417 	spin_unlock(&lock);
8418 
8419 	/*
8420 	 * The watermark size have changed so update the pcpu batch
8421 	 * and high limits or the limits may be inappropriate.
8422 	 */
8423 	for_each_zone(zone)
8424 		zone_pcp_update(zone, 0);
8425 }
8426 
8427 /*
8428  * Initialise min_free_kbytes.
8429  *
8430  * For small machines we want it small (128k min).  For large machines
8431  * we want it large (256MB max).  But it is not linear, because network
8432  * bandwidth does not increase linearly with machine size.  We use
8433  *
8434  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8435  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
8436  *
8437  * which yields
8438  *
8439  * 16MB:	512k
8440  * 32MB:	724k
8441  * 64MB:	1024k
8442  * 128MB:	1448k
8443  * 256MB:	2048k
8444  * 512MB:	2896k
8445  * 1024MB:	4096k
8446  * 2048MB:	5792k
8447  * 4096MB:	8192k
8448  * 8192MB:	11584k
8449  * 16384MB:	16384k
8450  */
8451 int __meminit init_per_zone_wmark_min(void)
8452 {
8453 	unsigned long lowmem_kbytes;
8454 	int new_min_free_kbytes;
8455 
8456 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8457 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8458 
8459 	if (new_min_free_kbytes > user_min_free_kbytes) {
8460 		min_free_kbytes = new_min_free_kbytes;
8461 		if (min_free_kbytes < 128)
8462 			min_free_kbytes = 128;
8463 		if (min_free_kbytes > 262144)
8464 			min_free_kbytes = 262144;
8465 	} else {
8466 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8467 				new_min_free_kbytes, user_min_free_kbytes);
8468 	}
8469 	setup_per_zone_wmarks();
8470 	refresh_zone_stat_thresholds();
8471 	setup_per_zone_lowmem_reserve();
8472 
8473 #ifdef CONFIG_NUMA
8474 	setup_min_unmapped_ratio();
8475 	setup_min_slab_ratio();
8476 #endif
8477 
8478 	khugepaged_min_free_kbytes_update();
8479 
8480 	return 0;
8481 }
8482 postcore_initcall(init_per_zone_wmark_min)
8483 
8484 /*
8485  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8486  *	that we can call two helper functions whenever min_free_kbytes
8487  *	changes.
8488  */
8489 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8490 		void *buffer, size_t *length, loff_t *ppos)
8491 {
8492 	int rc;
8493 
8494 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8495 	if (rc)
8496 		return rc;
8497 
8498 	if (write) {
8499 		user_min_free_kbytes = min_free_kbytes;
8500 		setup_per_zone_wmarks();
8501 	}
8502 	return 0;
8503 }
8504 
8505 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8506 		void *buffer, size_t *length, loff_t *ppos)
8507 {
8508 	int rc;
8509 
8510 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8511 	if (rc)
8512 		return rc;
8513 
8514 	if (write)
8515 		setup_per_zone_wmarks();
8516 
8517 	return 0;
8518 }
8519 
8520 #ifdef CONFIG_NUMA
8521 static void setup_min_unmapped_ratio(void)
8522 {
8523 	pg_data_t *pgdat;
8524 	struct zone *zone;
8525 
8526 	for_each_online_pgdat(pgdat)
8527 		pgdat->min_unmapped_pages = 0;
8528 
8529 	for_each_zone(zone)
8530 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8531 						         sysctl_min_unmapped_ratio) / 100;
8532 }
8533 
8534 
8535 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8536 		void *buffer, size_t *length, loff_t *ppos)
8537 {
8538 	int rc;
8539 
8540 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8541 	if (rc)
8542 		return rc;
8543 
8544 	setup_min_unmapped_ratio();
8545 
8546 	return 0;
8547 }
8548 
8549 static void setup_min_slab_ratio(void)
8550 {
8551 	pg_data_t *pgdat;
8552 	struct zone *zone;
8553 
8554 	for_each_online_pgdat(pgdat)
8555 		pgdat->min_slab_pages = 0;
8556 
8557 	for_each_zone(zone)
8558 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8559 						     sysctl_min_slab_ratio) / 100;
8560 }
8561 
8562 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8563 		void *buffer, size_t *length, loff_t *ppos)
8564 {
8565 	int rc;
8566 
8567 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8568 	if (rc)
8569 		return rc;
8570 
8571 	setup_min_slab_ratio();
8572 
8573 	return 0;
8574 }
8575 #endif
8576 
8577 /*
8578  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8579  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8580  *	whenever sysctl_lowmem_reserve_ratio changes.
8581  *
8582  * The reserve ratio obviously has absolutely no relation with the
8583  * minimum watermarks. The lowmem reserve ratio can only make sense
8584  * if in function of the boot time zone sizes.
8585  */
8586 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8587 		void *buffer, size_t *length, loff_t *ppos)
8588 {
8589 	int i;
8590 
8591 	proc_dointvec_minmax(table, write, buffer, length, ppos);
8592 
8593 	for (i = 0; i < MAX_NR_ZONES; i++) {
8594 		if (sysctl_lowmem_reserve_ratio[i] < 1)
8595 			sysctl_lowmem_reserve_ratio[i] = 0;
8596 	}
8597 
8598 	setup_per_zone_lowmem_reserve();
8599 	return 0;
8600 }
8601 
8602 /*
8603  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8604  * cpu. It is the fraction of total pages in each zone that a hot per cpu
8605  * pagelist can have before it gets flushed back to buddy allocator.
8606  */
8607 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8608 		int write, void *buffer, size_t *length, loff_t *ppos)
8609 {
8610 	struct zone *zone;
8611 	int old_percpu_pagelist_high_fraction;
8612 	int ret;
8613 
8614 	mutex_lock(&pcp_batch_high_lock);
8615 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
8616 
8617 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8618 	if (!write || ret < 0)
8619 		goto out;
8620 
8621 	/* Sanity checking to avoid pcp imbalance */
8622 	if (percpu_pagelist_high_fraction &&
8623 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8624 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
8625 		ret = -EINVAL;
8626 		goto out;
8627 	}
8628 
8629 	/* No change? */
8630 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
8631 		goto out;
8632 
8633 	for_each_populated_zone(zone)
8634 		zone_set_pageset_high_and_batch(zone, 0);
8635 out:
8636 	mutex_unlock(&pcp_batch_high_lock);
8637 	return ret;
8638 }
8639 
8640 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8641 /*
8642  * Returns the number of pages that arch has reserved but
8643  * is not known to alloc_large_system_hash().
8644  */
8645 static unsigned long __init arch_reserved_kernel_pages(void)
8646 {
8647 	return 0;
8648 }
8649 #endif
8650 
8651 /*
8652  * Adaptive scale is meant to reduce sizes of hash tables on large memory
8653  * machines. As memory size is increased the scale is also increased but at
8654  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
8655  * quadruples the scale is increased by one, which means the size of hash table
8656  * only doubles, instead of quadrupling as well.
8657  * Because 32-bit systems cannot have large physical memory, where this scaling
8658  * makes sense, it is disabled on such platforms.
8659  */
8660 #if __BITS_PER_LONG > 32
8661 #define ADAPT_SCALE_BASE	(64ul << 30)
8662 #define ADAPT_SCALE_SHIFT	2
8663 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
8664 #endif
8665 
8666 /*
8667  * allocate a large system hash table from bootmem
8668  * - it is assumed that the hash table must contain an exact power-of-2
8669  *   quantity of entries
8670  * - limit is the number of hash buckets, not the total allocation size
8671  */
8672 void *__init alloc_large_system_hash(const char *tablename,
8673 				     unsigned long bucketsize,
8674 				     unsigned long numentries,
8675 				     int scale,
8676 				     int flags,
8677 				     unsigned int *_hash_shift,
8678 				     unsigned int *_hash_mask,
8679 				     unsigned long low_limit,
8680 				     unsigned long high_limit)
8681 {
8682 	unsigned long long max = high_limit;
8683 	unsigned long log2qty, size;
8684 	void *table = NULL;
8685 	gfp_t gfp_flags;
8686 	bool virt;
8687 	bool huge;
8688 
8689 	/* allow the kernel cmdline to have a say */
8690 	if (!numentries) {
8691 		/* round applicable memory size up to nearest megabyte */
8692 		numentries = nr_kernel_pages;
8693 		numentries -= arch_reserved_kernel_pages();
8694 
8695 		/* It isn't necessary when PAGE_SIZE >= 1MB */
8696 		if (PAGE_SHIFT < 20)
8697 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8698 
8699 #if __BITS_PER_LONG > 32
8700 		if (!high_limit) {
8701 			unsigned long adapt;
8702 
8703 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8704 			     adapt <<= ADAPT_SCALE_SHIFT)
8705 				scale++;
8706 		}
8707 #endif
8708 
8709 		/* limit to 1 bucket per 2^scale bytes of low memory */
8710 		if (scale > PAGE_SHIFT)
8711 			numentries >>= (scale - PAGE_SHIFT);
8712 		else
8713 			numentries <<= (PAGE_SHIFT - scale);
8714 
8715 		/* Make sure we've got at least a 0-order allocation.. */
8716 		if (unlikely(flags & HASH_SMALL)) {
8717 			/* Makes no sense without HASH_EARLY */
8718 			WARN_ON(!(flags & HASH_EARLY));
8719 			if (!(numentries >> *_hash_shift)) {
8720 				numentries = 1UL << *_hash_shift;
8721 				BUG_ON(!numentries);
8722 			}
8723 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8724 			numentries = PAGE_SIZE / bucketsize;
8725 	}
8726 	numentries = roundup_pow_of_two(numentries);
8727 
8728 	/* limit allocation size to 1/16 total memory by default */
8729 	if (max == 0) {
8730 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8731 		do_div(max, bucketsize);
8732 	}
8733 	max = min(max, 0x80000000ULL);
8734 
8735 	if (numentries < low_limit)
8736 		numentries = low_limit;
8737 	if (numentries > max)
8738 		numentries = max;
8739 
8740 	log2qty = ilog2(numentries);
8741 
8742 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8743 	do {
8744 		virt = false;
8745 		size = bucketsize << log2qty;
8746 		if (flags & HASH_EARLY) {
8747 			if (flags & HASH_ZERO)
8748 				table = memblock_alloc(size, SMP_CACHE_BYTES);
8749 			else
8750 				table = memblock_alloc_raw(size,
8751 							   SMP_CACHE_BYTES);
8752 		} else if (get_order(size) >= MAX_ORDER || hashdist) {
8753 			table = __vmalloc(size, gfp_flags);
8754 			virt = true;
8755 			huge = is_vm_area_hugepages(table);
8756 		} else {
8757 			/*
8758 			 * If bucketsize is not a power-of-two, we may free
8759 			 * some pages at the end of hash table which
8760 			 * alloc_pages_exact() automatically does
8761 			 */
8762 			table = alloc_pages_exact(size, gfp_flags);
8763 			kmemleak_alloc(table, size, 1, gfp_flags);
8764 		}
8765 	} while (!table && size > PAGE_SIZE && --log2qty);
8766 
8767 	if (!table)
8768 		panic("Failed to allocate %s hash table\n", tablename);
8769 
8770 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8771 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8772 		virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
8773 
8774 	if (_hash_shift)
8775 		*_hash_shift = log2qty;
8776 	if (_hash_mask)
8777 		*_hash_mask = (1 << log2qty) - 1;
8778 
8779 	return table;
8780 }
8781 
8782 /*
8783  * This function checks whether pageblock includes unmovable pages or not.
8784  *
8785  * PageLRU check without isolation or lru_lock could race so that
8786  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8787  * check without lock_page also may miss some movable non-lru pages at
8788  * race condition. So you can't expect this function should be exact.
8789  *
8790  * Returns a page without holding a reference. If the caller wants to
8791  * dereference that page (e.g., dumping), it has to make sure that it
8792  * cannot get removed (e.g., via memory unplug) concurrently.
8793  *
8794  */
8795 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8796 				 int migratetype, int flags)
8797 {
8798 	unsigned long iter = 0;
8799 	unsigned long pfn = page_to_pfn(page);
8800 	unsigned long offset = pfn % pageblock_nr_pages;
8801 
8802 	if (is_migrate_cma_page(page)) {
8803 		/*
8804 		 * CMA allocations (alloc_contig_range) really need to mark
8805 		 * isolate CMA pageblocks even when they are not movable in fact
8806 		 * so consider them movable here.
8807 		 */
8808 		if (is_migrate_cma(migratetype))
8809 			return NULL;
8810 
8811 		return page;
8812 	}
8813 
8814 	for (; iter < pageblock_nr_pages - offset; iter++) {
8815 		if (!pfn_valid_within(pfn + iter))
8816 			continue;
8817 
8818 		page = pfn_to_page(pfn + iter);
8819 
8820 		/*
8821 		 * Both, bootmem allocations and memory holes are marked
8822 		 * PG_reserved and are unmovable. We can even have unmovable
8823 		 * allocations inside ZONE_MOVABLE, for example when
8824 		 * specifying "movablecore".
8825 		 */
8826 		if (PageReserved(page))
8827 			return page;
8828 
8829 		/*
8830 		 * If the zone is movable and we have ruled out all reserved
8831 		 * pages then it should be reasonably safe to assume the rest
8832 		 * is movable.
8833 		 */
8834 		if (zone_idx(zone) == ZONE_MOVABLE)
8835 			continue;
8836 
8837 		/*
8838 		 * Hugepages are not in LRU lists, but they're movable.
8839 		 * THPs are on the LRU, but need to be counted as #small pages.
8840 		 * We need not scan over tail pages because we don't
8841 		 * handle each tail page individually in migration.
8842 		 */
8843 		if (PageHuge(page) || PageTransCompound(page)) {
8844 			struct page *head = compound_head(page);
8845 			unsigned int skip_pages;
8846 
8847 			if (PageHuge(page)) {
8848 				if (!hugepage_migration_supported(page_hstate(head)))
8849 					return page;
8850 			} else if (!PageLRU(head) && !__PageMovable(head)) {
8851 				return page;
8852 			}
8853 
8854 			skip_pages = compound_nr(head) - (page - head);
8855 			iter += skip_pages - 1;
8856 			continue;
8857 		}
8858 
8859 		/*
8860 		 * We can't use page_count without pin a page
8861 		 * because another CPU can free compound page.
8862 		 * This check already skips compound tails of THP
8863 		 * because their page->_refcount is zero at all time.
8864 		 */
8865 		if (!page_ref_count(page)) {
8866 			if (PageBuddy(page))
8867 				iter += (1 << buddy_order(page)) - 1;
8868 			continue;
8869 		}
8870 
8871 		/*
8872 		 * The HWPoisoned page may be not in buddy system, and
8873 		 * page_count() is not 0.
8874 		 */
8875 		if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8876 			continue;
8877 
8878 		/*
8879 		 * We treat all PageOffline() pages as movable when offlining
8880 		 * to give drivers a chance to decrement their reference count
8881 		 * in MEM_GOING_OFFLINE in order to indicate that these pages
8882 		 * can be offlined as there are no direct references anymore.
8883 		 * For actually unmovable PageOffline() where the driver does
8884 		 * not support this, we will fail later when trying to actually
8885 		 * move these pages that still have a reference count > 0.
8886 		 * (false negatives in this function only)
8887 		 */
8888 		if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8889 			continue;
8890 
8891 		if (__PageMovable(page) || PageLRU(page))
8892 			continue;
8893 
8894 		/*
8895 		 * If there are RECLAIMABLE pages, we need to check
8896 		 * it.  But now, memory offline itself doesn't call
8897 		 * shrink_node_slabs() and it still to be fixed.
8898 		 */
8899 		return page;
8900 	}
8901 	return NULL;
8902 }
8903 
8904 #ifdef CONFIG_CONTIG_ALLOC
8905 static unsigned long pfn_max_align_down(unsigned long pfn)
8906 {
8907 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8908 			     pageblock_nr_pages) - 1);
8909 }
8910 
8911 static unsigned long pfn_max_align_up(unsigned long pfn)
8912 {
8913 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8914 				pageblock_nr_pages));
8915 }
8916 
8917 #if defined(CONFIG_DYNAMIC_DEBUG) || \
8918 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
8919 /* Usage: See admin-guide/dynamic-debug-howto.rst */
8920 static void alloc_contig_dump_pages(struct list_head *page_list)
8921 {
8922 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
8923 
8924 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
8925 		struct page *page;
8926 
8927 		dump_stack();
8928 		list_for_each_entry(page, page_list, lru)
8929 			dump_page(page, "migration failure");
8930 	}
8931 }
8932 #else
8933 static inline void alloc_contig_dump_pages(struct list_head *page_list)
8934 {
8935 }
8936 #endif
8937 
8938 /* [start, end) must belong to a single zone. */
8939 static int __alloc_contig_migrate_range(struct compact_control *cc,
8940 					unsigned long start, unsigned long end)
8941 {
8942 	/* This function is based on compact_zone() from compaction.c. */
8943 	unsigned int nr_reclaimed;
8944 	unsigned long pfn = start;
8945 	unsigned int tries = 0;
8946 	int ret = 0;
8947 	struct migration_target_control mtc = {
8948 		.nid = zone_to_nid(cc->zone),
8949 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8950 	};
8951 
8952 	lru_cache_disable();
8953 
8954 	while (pfn < end || !list_empty(&cc->migratepages)) {
8955 		if (fatal_signal_pending(current)) {
8956 			ret = -EINTR;
8957 			break;
8958 		}
8959 
8960 		if (list_empty(&cc->migratepages)) {
8961 			cc->nr_migratepages = 0;
8962 			ret = isolate_migratepages_range(cc, pfn, end);
8963 			if (ret && ret != -EAGAIN)
8964 				break;
8965 			pfn = cc->migrate_pfn;
8966 			tries = 0;
8967 		} else if (++tries == 5) {
8968 			ret = -EBUSY;
8969 			break;
8970 		}
8971 
8972 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8973 							&cc->migratepages);
8974 		cc->nr_migratepages -= nr_reclaimed;
8975 
8976 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8977 				NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
8978 
8979 		/*
8980 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
8981 		 * to retry again over this error, so do the same here.
8982 		 */
8983 		if (ret == -ENOMEM)
8984 			break;
8985 	}
8986 
8987 	lru_cache_enable();
8988 	if (ret < 0) {
8989 		if (ret == -EBUSY)
8990 			alloc_contig_dump_pages(&cc->migratepages);
8991 		putback_movable_pages(&cc->migratepages);
8992 		return ret;
8993 	}
8994 	return 0;
8995 }
8996 
8997 /**
8998  * alloc_contig_range() -- tries to allocate given range of pages
8999  * @start:	start PFN to allocate
9000  * @end:	one-past-the-last PFN to allocate
9001  * @migratetype:	migratetype of the underlying pageblocks (either
9002  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
9003  *			in range must have the same migratetype and it must
9004  *			be either of the two.
9005  * @gfp_mask:	GFP mask to use during compaction
9006  *
9007  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
9008  * aligned.  The PFN range must belong to a single zone.
9009  *
9010  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9011  * pageblocks in the range.  Once isolated, the pageblocks should not
9012  * be modified by others.
9013  *
9014  * Return: zero on success or negative error code.  On success all
9015  * pages which PFN is in [start, end) are allocated for the caller and
9016  * need to be freed with free_contig_range().
9017  */
9018 int alloc_contig_range(unsigned long start, unsigned long end,
9019 		       unsigned migratetype, gfp_t gfp_mask)
9020 {
9021 	unsigned long outer_start, outer_end;
9022 	unsigned int order;
9023 	int ret = 0;
9024 
9025 	struct compact_control cc = {
9026 		.nr_migratepages = 0,
9027 		.order = -1,
9028 		.zone = page_zone(pfn_to_page(start)),
9029 		.mode = MIGRATE_SYNC,
9030 		.ignore_skip_hint = true,
9031 		.no_set_skip_hint = true,
9032 		.gfp_mask = current_gfp_context(gfp_mask),
9033 		.alloc_contig = true,
9034 	};
9035 	INIT_LIST_HEAD(&cc.migratepages);
9036 
9037 	/*
9038 	 * What we do here is we mark all pageblocks in range as
9039 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
9040 	 * have different sizes, and due to the way page allocator
9041 	 * work, we align the range to biggest of the two pages so
9042 	 * that page allocator won't try to merge buddies from
9043 	 * different pageblocks and change MIGRATE_ISOLATE to some
9044 	 * other migration type.
9045 	 *
9046 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9047 	 * migrate the pages from an unaligned range (ie. pages that
9048 	 * we are interested in).  This will put all the pages in
9049 	 * range back to page allocator as MIGRATE_ISOLATE.
9050 	 *
9051 	 * When this is done, we take the pages in range from page
9052 	 * allocator removing them from the buddy system.  This way
9053 	 * page allocator will never consider using them.
9054 	 *
9055 	 * This lets us mark the pageblocks back as
9056 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9057 	 * aligned range but not in the unaligned, original range are
9058 	 * put back to page allocator so that buddy can use them.
9059 	 */
9060 
9061 	ret = start_isolate_page_range(pfn_max_align_down(start),
9062 				       pfn_max_align_up(end), migratetype, 0);
9063 	if (ret)
9064 		return ret;
9065 
9066 	drain_all_pages(cc.zone);
9067 
9068 	/*
9069 	 * In case of -EBUSY, we'd like to know which page causes problem.
9070 	 * So, just fall through. test_pages_isolated() has a tracepoint
9071 	 * which will report the busy page.
9072 	 *
9073 	 * It is possible that busy pages could become available before
9074 	 * the call to test_pages_isolated, and the range will actually be
9075 	 * allocated.  So, if we fall through be sure to clear ret so that
9076 	 * -EBUSY is not accidentally used or returned to caller.
9077 	 */
9078 	ret = __alloc_contig_migrate_range(&cc, start, end);
9079 	if (ret && ret != -EBUSY)
9080 		goto done;
9081 	ret = 0;
9082 
9083 	/*
9084 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
9085 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
9086 	 * more, all pages in [start, end) are free in page allocator.
9087 	 * What we are going to do is to allocate all pages from
9088 	 * [start, end) (that is remove them from page allocator).
9089 	 *
9090 	 * The only problem is that pages at the beginning and at the
9091 	 * end of interesting range may be not aligned with pages that
9092 	 * page allocator holds, ie. they can be part of higher order
9093 	 * pages.  Because of this, we reserve the bigger range and
9094 	 * once this is done free the pages we are not interested in.
9095 	 *
9096 	 * We don't have to hold zone->lock here because the pages are
9097 	 * isolated thus they won't get removed from buddy.
9098 	 */
9099 
9100 	order = 0;
9101 	outer_start = start;
9102 	while (!PageBuddy(pfn_to_page(outer_start))) {
9103 		if (++order >= MAX_ORDER) {
9104 			outer_start = start;
9105 			break;
9106 		}
9107 		outer_start &= ~0UL << order;
9108 	}
9109 
9110 	if (outer_start != start) {
9111 		order = buddy_order(pfn_to_page(outer_start));
9112 
9113 		/*
9114 		 * outer_start page could be small order buddy page and
9115 		 * it doesn't include start page. Adjust outer_start
9116 		 * in this case to report failed page properly
9117 		 * on tracepoint in test_pages_isolated()
9118 		 */
9119 		if (outer_start + (1UL << order) <= start)
9120 			outer_start = start;
9121 	}
9122 
9123 	/* Make sure the range is really isolated. */
9124 	if (test_pages_isolated(outer_start, end, 0)) {
9125 		ret = -EBUSY;
9126 		goto done;
9127 	}
9128 
9129 	/* Grab isolated pages from freelists. */
9130 	outer_end = isolate_freepages_range(&cc, outer_start, end);
9131 	if (!outer_end) {
9132 		ret = -EBUSY;
9133 		goto done;
9134 	}
9135 
9136 	/* Free head and tail (if any) */
9137 	if (start != outer_start)
9138 		free_contig_range(outer_start, start - outer_start);
9139 	if (end != outer_end)
9140 		free_contig_range(end, outer_end - end);
9141 
9142 done:
9143 	undo_isolate_page_range(pfn_max_align_down(start),
9144 				pfn_max_align_up(end), migratetype);
9145 	return ret;
9146 }
9147 EXPORT_SYMBOL(alloc_contig_range);
9148 
9149 static int __alloc_contig_pages(unsigned long start_pfn,
9150 				unsigned long nr_pages, gfp_t gfp_mask)
9151 {
9152 	unsigned long end_pfn = start_pfn + nr_pages;
9153 
9154 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9155 				  gfp_mask);
9156 }
9157 
9158 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9159 				   unsigned long nr_pages)
9160 {
9161 	unsigned long i, end_pfn = start_pfn + nr_pages;
9162 	struct page *page;
9163 
9164 	for (i = start_pfn; i < end_pfn; i++) {
9165 		page = pfn_to_online_page(i);
9166 		if (!page)
9167 			return false;
9168 
9169 		if (page_zone(page) != z)
9170 			return false;
9171 
9172 		if (PageReserved(page))
9173 			return false;
9174 	}
9175 	return true;
9176 }
9177 
9178 static bool zone_spans_last_pfn(const struct zone *zone,
9179 				unsigned long start_pfn, unsigned long nr_pages)
9180 {
9181 	unsigned long last_pfn = start_pfn + nr_pages - 1;
9182 
9183 	return zone_spans_pfn(zone, last_pfn);
9184 }
9185 
9186 /**
9187  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9188  * @nr_pages:	Number of contiguous pages to allocate
9189  * @gfp_mask:	GFP mask to limit search and used during compaction
9190  * @nid:	Target node
9191  * @nodemask:	Mask for other possible nodes
9192  *
9193  * This routine is a wrapper around alloc_contig_range(). It scans over zones
9194  * on an applicable zonelist to find a contiguous pfn range which can then be
9195  * tried for allocation with alloc_contig_range(). This routine is intended
9196  * for allocation requests which can not be fulfilled with the buddy allocator.
9197  *
9198  * The allocated memory is always aligned to a page boundary. If nr_pages is a
9199  * power of two then the alignment is guaranteed to be to the given nr_pages
9200  * (e.g. 1GB request would be aligned to 1GB).
9201  *
9202  * Allocated pages can be freed with free_contig_range() or by manually calling
9203  * __free_page() on each allocated page.
9204  *
9205  * Return: pointer to contiguous pages on success, or NULL if not successful.
9206  */
9207 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9208 				int nid, nodemask_t *nodemask)
9209 {
9210 	unsigned long ret, pfn, flags;
9211 	struct zonelist *zonelist;
9212 	struct zone *zone;
9213 	struct zoneref *z;
9214 
9215 	zonelist = node_zonelist(nid, gfp_mask);
9216 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
9217 					gfp_zone(gfp_mask), nodemask) {
9218 		spin_lock_irqsave(&zone->lock, flags);
9219 
9220 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9221 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9222 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9223 				/*
9224 				 * We release the zone lock here because
9225 				 * alloc_contig_range() will also lock the zone
9226 				 * at some point. If there's an allocation
9227 				 * spinning on this lock, it may win the race
9228 				 * and cause alloc_contig_range() to fail...
9229 				 */
9230 				spin_unlock_irqrestore(&zone->lock, flags);
9231 				ret = __alloc_contig_pages(pfn, nr_pages,
9232 							gfp_mask);
9233 				if (!ret)
9234 					return pfn_to_page(pfn);
9235 				spin_lock_irqsave(&zone->lock, flags);
9236 			}
9237 			pfn += nr_pages;
9238 		}
9239 		spin_unlock_irqrestore(&zone->lock, flags);
9240 	}
9241 	return NULL;
9242 }
9243 #endif /* CONFIG_CONTIG_ALLOC */
9244 
9245 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9246 {
9247 	unsigned long count = 0;
9248 
9249 	for (; nr_pages--; pfn++) {
9250 		struct page *page = pfn_to_page(pfn);
9251 
9252 		count += page_count(page) != 1;
9253 		__free_page(page);
9254 	}
9255 	WARN(count != 0, "%lu pages are still in use!\n", count);
9256 }
9257 EXPORT_SYMBOL(free_contig_range);
9258 
9259 /*
9260  * The zone indicated has a new number of managed_pages; batch sizes and percpu
9261  * page high values need to be recalculated.
9262  */
9263 void zone_pcp_update(struct zone *zone, int cpu_online)
9264 {
9265 	mutex_lock(&pcp_batch_high_lock);
9266 	zone_set_pageset_high_and_batch(zone, cpu_online);
9267 	mutex_unlock(&pcp_batch_high_lock);
9268 }
9269 
9270 /*
9271  * Effectively disable pcplists for the zone by setting the high limit to 0
9272  * and draining all cpus. A concurrent page freeing on another CPU that's about
9273  * to put the page on pcplist will either finish before the drain and the page
9274  * will be drained, or observe the new high limit and skip the pcplist.
9275  *
9276  * Must be paired with a call to zone_pcp_enable().
9277  */
9278 void zone_pcp_disable(struct zone *zone)
9279 {
9280 	mutex_lock(&pcp_batch_high_lock);
9281 	__zone_set_pageset_high_and_batch(zone, 0, 1);
9282 	__drain_all_pages(zone, true);
9283 }
9284 
9285 void zone_pcp_enable(struct zone *zone)
9286 {
9287 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9288 	mutex_unlock(&pcp_batch_high_lock);
9289 }
9290 
9291 void zone_pcp_reset(struct zone *zone)
9292 {
9293 	int cpu;
9294 	struct per_cpu_zonestat *pzstats;
9295 
9296 	if (zone->per_cpu_pageset != &boot_pageset) {
9297 		for_each_online_cpu(cpu) {
9298 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9299 			drain_zonestat(zone, pzstats);
9300 		}
9301 		free_percpu(zone->per_cpu_pageset);
9302 		free_percpu(zone->per_cpu_zonestats);
9303 		zone->per_cpu_pageset = &boot_pageset;
9304 		zone->per_cpu_zonestats = &boot_zonestats;
9305 	}
9306 }
9307 
9308 #ifdef CONFIG_MEMORY_HOTREMOVE
9309 /*
9310  * All pages in the range must be in a single zone, must not contain holes,
9311  * must span full sections, and must be isolated before calling this function.
9312  */
9313 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9314 {
9315 	unsigned long pfn = start_pfn;
9316 	struct page *page;
9317 	struct zone *zone;
9318 	unsigned int order;
9319 	unsigned long flags;
9320 
9321 	offline_mem_sections(pfn, end_pfn);
9322 	zone = page_zone(pfn_to_page(pfn));
9323 	spin_lock_irqsave(&zone->lock, flags);
9324 	while (pfn < end_pfn) {
9325 		page = pfn_to_page(pfn);
9326 		/*
9327 		 * The HWPoisoned page may be not in buddy system, and
9328 		 * page_count() is not 0.
9329 		 */
9330 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9331 			pfn++;
9332 			continue;
9333 		}
9334 		/*
9335 		 * At this point all remaining PageOffline() pages have a
9336 		 * reference count of 0 and can simply be skipped.
9337 		 */
9338 		if (PageOffline(page)) {
9339 			BUG_ON(page_count(page));
9340 			BUG_ON(PageBuddy(page));
9341 			pfn++;
9342 			continue;
9343 		}
9344 
9345 		BUG_ON(page_count(page));
9346 		BUG_ON(!PageBuddy(page));
9347 		order = buddy_order(page);
9348 		del_page_from_free_list(page, zone, order);
9349 		pfn += (1 << order);
9350 	}
9351 	spin_unlock_irqrestore(&zone->lock, flags);
9352 }
9353 #endif
9354 
9355 bool is_free_buddy_page(struct page *page)
9356 {
9357 	struct zone *zone = page_zone(page);
9358 	unsigned long pfn = page_to_pfn(page);
9359 	unsigned long flags;
9360 	unsigned int order;
9361 
9362 	spin_lock_irqsave(&zone->lock, flags);
9363 	for (order = 0; order < MAX_ORDER; order++) {
9364 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9365 
9366 		if (PageBuddy(page_head) && buddy_order(page_head) >= order)
9367 			break;
9368 	}
9369 	spin_unlock_irqrestore(&zone->lock, flags);
9370 
9371 	return order < MAX_ORDER;
9372 }
9373 
9374 #ifdef CONFIG_MEMORY_FAILURE
9375 /*
9376  * Break down a higher-order page in sub-pages, and keep our target out of
9377  * buddy allocator.
9378  */
9379 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9380 				   struct page *target, int low, int high,
9381 				   int migratetype)
9382 {
9383 	unsigned long size = 1 << high;
9384 	struct page *current_buddy, *next_page;
9385 
9386 	while (high > low) {
9387 		high--;
9388 		size >>= 1;
9389 
9390 		if (target >= &page[size]) {
9391 			next_page = page + size;
9392 			current_buddy = page;
9393 		} else {
9394 			next_page = page;
9395 			current_buddy = page + size;
9396 		}
9397 
9398 		if (set_page_guard(zone, current_buddy, high, migratetype))
9399 			continue;
9400 
9401 		if (current_buddy != target) {
9402 			add_to_free_list(current_buddy, zone, high, migratetype);
9403 			set_buddy_order(current_buddy, high);
9404 			page = next_page;
9405 		}
9406 	}
9407 }
9408 
9409 /*
9410  * Take a page that will be marked as poisoned off the buddy allocator.
9411  */
9412 bool take_page_off_buddy(struct page *page)
9413 {
9414 	struct zone *zone = page_zone(page);
9415 	unsigned long pfn = page_to_pfn(page);
9416 	unsigned long flags;
9417 	unsigned int order;
9418 	bool ret = false;
9419 
9420 	spin_lock_irqsave(&zone->lock, flags);
9421 	for (order = 0; order < MAX_ORDER; order++) {
9422 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9423 		int page_order = buddy_order(page_head);
9424 
9425 		if (PageBuddy(page_head) && page_order >= order) {
9426 			unsigned long pfn_head = page_to_pfn(page_head);
9427 			int migratetype = get_pfnblock_migratetype(page_head,
9428 								   pfn_head);
9429 
9430 			del_page_from_free_list(page_head, zone, page_order);
9431 			break_down_buddy_pages(zone, page_head, page, 0,
9432 						page_order, migratetype);
9433 			if (!is_migrate_isolate(migratetype))
9434 				__mod_zone_freepage_state(zone, -1, migratetype);
9435 			ret = true;
9436 			break;
9437 		}
9438 		if (page_count(page_head) > 0)
9439 			break;
9440 	}
9441 	spin_unlock_irqrestore(&zone->lock, flags);
9442 	return ret;
9443 }
9444 #endif
9445