xref: /openbmc/linux/mm/page_alloc.c (revision 6774def6)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/prefetch.h>
57 #include <linux/mm_inline.h>
58 #include <linux/migrate.h>
59 #include <linux/page-debug-flags.h>
60 #include <linux/hugetlb.h>
61 #include <linux/sched/rt.h>
62 
63 #include <asm/sections.h>
64 #include <asm/tlbflush.h>
65 #include <asm/div64.h>
66 #include "internal.h"
67 
68 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
69 static DEFINE_MUTEX(pcp_batch_high_lock);
70 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
71 
72 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
73 DEFINE_PER_CPU(int, numa_node);
74 EXPORT_PER_CPU_SYMBOL(numa_node);
75 #endif
76 
77 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
78 /*
79  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
80  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
81  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
82  * defined in <linux/topology.h>.
83  */
84 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
85 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
86 int _node_numa_mem_[MAX_NUMNODES];
87 #endif
88 
89 /*
90  * Array of node states.
91  */
92 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
93 	[N_POSSIBLE] = NODE_MASK_ALL,
94 	[N_ONLINE] = { { [0] = 1UL } },
95 #ifndef CONFIG_NUMA
96 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
97 #ifdef CONFIG_HIGHMEM
98 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
99 #endif
100 #ifdef CONFIG_MOVABLE_NODE
101 	[N_MEMORY] = { { [0] = 1UL } },
102 #endif
103 	[N_CPU] = { { [0] = 1UL } },
104 #endif	/* NUMA */
105 };
106 EXPORT_SYMBOL(node_states);
107 
108 /* Protect totalram_pages and zone->managed_pages */
109 static DEFINE_SPINLOCK(managed_page_count_lock);
110 
111 unsigned long totalram_pages __read_mostly;
112 unsigned long totalreserve_pages __read_mostly;
113 /*
114  * When calculating the number of globally allowed dirty pages, there
115  * is a certain number of per-zone reserves that should not be
116  * considered dirtyable memory.  This is the sum of those reserves
117  * over all existing zones that contribute dirtyable memory.
118  */
119 unsigned long dirty_balance_reserve __read_mostly;
120 
121 int percpu_pagelist_fraction;
122 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
123 
124 #ifdef CONFIG_PM_SLEEP
125 /*
126  * The following functions are used by the suspend/hibernate code to temporarily
127  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
128  * while devices are suspended.  To avoid races with the suspend/hibernate code,
129  * they should always be called with pm_mutex held (gfp_allowed_mask also should
130  * only be modified with pm_mutex held, unless the suspend/hibernate code is
131  * guaranteed not to run in parallel with that modification).
132  */
133 
134 static gfp_t saved_gfp_mask;
135 
136 void pm_restore_gfp_mask(void)
137 {
138 	WARN_ON(!mutex_is_locked(&pm_mutex));
139 	if (saved_gfp_mask) {
140 		gfp_allowed_mask = saved_gfp_mask;
141 		saved_gfp_mask = 0;
142 	}
143 }
144 
145 void pm_restrict_gfp_mask(void)
146 {
147 	WARN_ON(!mutex_is_locked(&pm_mutex));
148 	WARN_ON(saved_gfp_mask);
149 	saved_gfp_mask = gfp_allowed_mask;
150 	gfp_allowed_mask &= ~GFP_IOFS;
151 }
152 
153 bool pm_suspended_storage(void)
154 {
155 	if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
156 		return false;
157 	return true;
158 }
159 #endif /* CONFIG_PM_SLEEP */
160 
161 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
162 int pageblock_order __read_mostly;
163 #endif
164 
165 static void __free_pages_ok(struct page *page, unsigned int order);
166 
167 /*
168  * results with 256, 32 in the lowmem_reserve sysctl:
169  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
170  *	1G machine -> (16M dma, 784M normal, 224M high)
171  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
172  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
173  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
174  *
175  * TBD: should special case ZONE_DMA32 machines here - in those we normally
176  * don't need any ZONE_NORMAL reservation
177  */
178 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
179 #ifdef CONFIG_ZONE_DMA
180 	 256,
181 #endif
182 #ifdef CONFIG_ZONE_DMA32
183 	 256,
184 #endif
185 #ifdef CONFIG_HIGHMEM
186 	 32,
187 #endif
188 	 32,
189 };
190 
191 EXPORT_SYMBOL(totalram_pages);
192 
193 static char * const zone_names[MAX_NR_ZONES] = {
194 #ifdef CONFIG_ZONE_DMA
195 	 "DMA",
196 #endif
197 #ifdef CONFIG_ZONE_DMA32
198 	 "DMA32",
199 #endif
200 	 "Normal",
201 #ifdef CONFIG_HIGHMEM
202 	 "HighMem",
203 #endif
204 	 "Movable",
205 };
206 
207 int min_free_kbytes = 1024;
208 int user_min_free_kbytes = -1;
209 
210 static unsigned long __meminitdata nr_kernel_pages;
211 static unsigned long __meminitdata nr_all_pages;
212 static unsigned long __meminitdata dma_reserve;
213 
214 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
215 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
216 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
217 static unsigned long __initdata required_kernelcore;
218 static unsigned long __initdata required_movablecore;
219 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
220 
221 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
222 int movable_zone;
223 EXPORT_SYMBOL(movable_zone);
224 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
225 
226 #if MAX_NUMNODES > 1
227 int nr_node_ids __read_mostly = MAX_NUMNODES;
228 int nr_online_nodes __read_mostly = 1;
229 EXPORT_SYMBOL(nr_node_ids);
230 EXPORT_SYMBOL(nr_online_nodes);
231 #endif
232 
233 int page_group_by_mobility_disabled __read_mostly;
234 
235 void set_pageblock_migratetype(struct page *page, int migratetype)
236 {
237 	if (unlikely(page_group_by_mobility_disabled &&
238 		     migratetype < MIGRATE_PCPTYPES))
239 		migratetype = MIGRATE_UNMOVABLE;
240 
241 	set_pageblock_flags_group(page, (unsigned long)migratetype,
242 					PB_migrate, PB_migrate_end);
243 }
244 
245 bool oom_killer_disabled __read_mostly;
246 
247 #ifdef CONFIG_DEBUG_VM
248 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
249 {
250 	int ret = 0;
251 	unsigned seq;
252 	unsigned long pfn = page_to_pfn(page);
253 	unsigned long sp, start_pfn;
254 
255 	do {
256 		seq = zone_span_seqbegin(zone);
257 		start_pfn = zone->zone_start_pfn;
258 		sp = zone->spanned_pages;
259 		if (!zone_spans_pfn(zone, pfn))
260 			ret = 1;
261 	} while (zone_span_seqretry(zone, seq));
262 
263 	if (ret)
264 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
265 			pfn, zone_to_nid(zone), zone->name,
266 			start_pfn, start_pfn + sp);
267 
268 	return ret;
269 }
270 
271 static int page_is_consistent(struct zone *zone, struct page *page)
272 {
273 	if (!pfn_valid_within(page_to_pfn(page)))
274 		return 0;
275 	if (zone != page_zone(page))
276 		return 0;
277 
278 	return 1;
279 }
280 /*
281  * Temporary debugging check for pages not lying within a given zone.
282  */
283 static int bad_range(struct zone *zone, struct page *page)
284 {
285 	if (page_outside_zone_boundaries(zone, page))
286 		return 1;
287 	if (!page_is_consistent(zone, page))
288 		return 1;
289 
290 	return 0;
291 }
292 #else
293 static inline int bad_range(struct zone *zone, struct page *page)
294 {
295 	return 0;
296 }
297 #endif
298 
299 static void bad_page(struct page *page, const char *reason,
300 		unsigned long bad_flags)
301 {
302 	static unsigned long resume;
303 	static unsigned long nr_shown;
304 	static unsigned long nr_unshown;
305 
306 	/* Don't complain about poisoned pages */
307 	if (PageHWPoison(page)) {
308 		page_mapcount_reset(page); /* remove PageBuddy */
309 		return;
310 	}
311 
312 	/*
313 	 * Allow a burst of 60 reports, then keep quiet for that minute;
314 	 * or allow a steady drip of one report per second.
315 	 */
316 	if (nr_shown == 60) {
317 		if (time_before(jiffies, resume)) {
318 			nr_unshown++;
319 			goto out;
320 		}
321 		if (nr_unshown) {
322 			printk(KERN_ALERT
323 			      "BUG: Bad page state: %lu messages suppressed\n",
324 				nr_unshown);
325 			nr_unshown = 0;
326 		}
327 		nr_shown = 0;
328 	}
329 	if (nr_shown++ == 0)
330 		resume = jiffies + 60 * HZ;
331 
332 	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
333 		current->comm, page_to_pfn(page));
334 	dump_page_badflags(page, reason, bad_flags);
335 
336 	print_modules();
337 	dump_stack();
338 out:
339 	/* Leave bad fields for debug, except PageBuddy could make trouble */
340 	page_mapcount_reset(page); /* remove PageBuddy */
341 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
342 }
343 
344 /*
345  * Higher-order pages are called "compound pages".  They are structured thusly:
346  *
347  * The first PAGE_SIZE page is called the "head page".
348  *
349  * The remaining PAGE_SIZE pages are called "tail pages".
350  *
351  * All pages have PG_compound set.  All tail pages have their ->first_page
352  * pointing at the head page.
353  *
354  * The first tail page's ->lru.next holds the address of the compound page's
355  * put_page() function.  Its ->lru.prev holds the order of allocation.
356  * This usage means that zero-order pages may not be compound.
357  */
358 
359 static void free_compound_page(struct page *page)
360 {
361 	__free_pages_ok(page, compound_order(page));
362 }
363 
364 void prep_compound_page(struct page *page, unsigned long order)
365 {
366 	int i;
367 	int nr_pages = 1 << order;
368 
369 	set_compound_page_dtor(page, free_compound_page);
370 	set_compound_order(page, order);
371 	__SetPageHead(page);
372 	for (i = 1; i < nr_pages; i++) {
373 		struct page *p = page + i;
374 		set_page_count(p, 0);
375 		p->first_page = page;
376 		/* Make sure p->first_page is always valid for PageTail() */
377 		smp_wmb();
378 		__SetPageTail(p);
379 	}
380 }
381 
382 /* update __split_huge_page_refcount if you change this function */
383 static int destroy_compound_page(struct page *page, unsigned long order)
384 {
385 	int i;
386 	int nr_pages = 1 << order;
387 	int bad = 0;
388 
389 	if (unlikely(compound_order(page) != order)) {
390 		bad_page(page, "wrong compound order", 0);
391 		bad++;
392 	}
393 
394 	__ClearPageHead(page);
395 
396 	for (i = 1; i < nr_pages; i++) {
397 		struct page *p = page + i;
398 
399 		if (unlikely(!PageTail(p))) {
400 			bad_page(page, "PageTail not set", 0);
401 			bad++;
402 		} else if (unlikely(p->first_page != page)) {
403 			bad_page(page, "first_page not consistent", 0);
404 			bad++;
405 		}
406 		__ClearPageTail(p);
407 	}
408 
409 	return bad;
410 }
411 
412 static inline void prep_zero_page(struct page *page, unsigned int order,
413 							gfp_t gfp_flags)
414 {
415 	int i;
416 
417 	/*
418 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
419 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
420 	 */
421 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
422 	for (i = 0; i < (1 << order); i++)
423 		clear_highpage(page + i);
424 }
425 
426 #ifdef CONFIG_DEBUG_PAGEALLOC
427 unsigned int _debug_guardpage_minorder;
428 
429 static int __init debug_guardpage_minorder_setup(char *buf)
430 {
431 	unsigned long res;
432 
433 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
434 		printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
435 		return 0;
436 	}
437 	_debug_guardpage_minorder = res;
438 	printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
439 	return 0;
440 }
441 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
442 
443 static inline void set_page_guard_flag(struct page *page)
444 {
445 	__set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
446 }
447 
448 static inline void clear_page_guard_flag(struct page *page)
449 {
450 	__clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
451 }
452 #else
453 static inline void set_page_guard_flag(struct page *page) { }
454 static inline void clear_page_guard_flag(struct page *page) { }
455 #endif
456 
457 static inline void set_page_order(struct page *page, unsigned int order)
458 {
459 	set_page_private(page, order);
460 	__SetPageBuddy(page);
461 }
462 
463 static inline void rmv_page_order(struct page *page)
464 {
465 	__ClearPageBuddy(page);
466 	set_page_private(page, 0);
467 }
468 
469 /*
470  * This function checks whether a page is free && is the buddy
471  * we can do coalesce a page and its buddy if
472  * (a) the buddy is not in a hole &&
473  * (b) the buddy is in the buddy system &&
474  * (c) a page and its buddy have the same order &&
475  * (d) a page and its buddy are in the same zone.
476  *
477  * For recording whether a page is in the buddy system, we set ->_mapcount
478  * PAGE_BUDDY_MAPCOUNT_VALUE.
479  * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
480  * serialized by zone->lock.
481  *
482  * For recording page's order, we use page_private(page).
483  */
484 static inline int page_is_buddy(struct page *page, struct page *buddy,
485 							unsigned int order)
486 {
487 	if (!pfn_valid_within(page_to_pfn(buddy)))
488 		return 0;
489 
490 	if (page_is_guard(buddy) && page_order(buddy) == order) {
491 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
492 
493 		if (page_zone_id(page) != page_zone_id(buddy))
494 			return 0;
495 
496 		return 1;
497 	}
498 
499 	if (PageBuddy(buddy) && page_order(buddy) == order) {
500 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
501 
502 		/*
503 		 * zone check is done late to avoid uselessly
504 		 * calculating zone/node ids for pages that could
505 		 * never merge.
506 		 */
507 		if (page_zone_id(page) != page_zone_id(buddy))
508 			return 0;
509 
510 		return 1;
511 	}
512 	return 0;
513 }
514 
515 /*
516  * Freeing function for a buddy system allocator.
517  *
518  * The concept of a buddy system is to maintain direct-mapped table
519  * (containing bit values) for memory blocks of various "orders".
520  * The bottom level table contains the map for the smallest allocatable
521  * units of memory (here, pages), and each level above it describes
522  * pairs of units from the levels below, hence, "buddies".
523  * At a high level, all that happens here is marking the table entry
524  * at the bottom level available, and propagating the changes upward
525  * as necessary, plus some accounting needed to play nicely with other
526  * parts of the VM system.
527  * At each level, we keep a list of pages, which are heads of continuous
528  * free pages of length of (1 << order) and marked with _mapcount
529  * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
530  * field.
531  * So when we are allocating or freeing one, we can derive the state of the
532  * other.  That is, if we allocate a small block, and both were
533  * free, the remainder of the region must be split into blocks.
534  * If a block is freed, and its buddy is also free, then this
535  * triggers coalescing into a block of larger size.
536  *
537  * -- nyc
538  */
539 
540 static inline void __free_one_page(struct page *page,
541 		unsigned long pfn,
542 		struct zone *zone, unsigned int order,
543 		int migratetype)
544 {
545 	unsigned long page_idx;
546 	unsigned long combined_idx;
547 	unsigned long uninitialized_var(buddy_idx);
548 	struct page *buddy;
549 	int max_order = MAX_ORDER;
550 
551 	VM_BUG_ON(!zone_is_initialized(zone));
552 
553 	if (unlikely(PageCompound(page)))
554 		if (unlikely(destroy_compound_page(page, order)))
555 			return;
556 
557 	VM_BUG_ON(migratetype == -1);
558 	if (is_migrate_isolate(migratetype)) {
559 		/*
560 		 * We restrict max order of merging to prevent merge
561 		 * between freepages on isolate pageblock and normal
562 		 * pageblock. Without this, pageblock isolation
563 		 * could cause incorrect freepage accounting.
564 		 */
565 		max_order = min(MAX_ORDER, pageblock_order + 1);
566 	} else {
567 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
568 	}
569 
570 	page_idx = pfn & ((1 << max_order) - 1);
571 
572 	VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
573 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
574 
575 	while (order < max_order - 1) {
576 		buddy_idx = __find_buddy_index(page_idx, order);
577 		buddy = page + (buddy_idx - page_idx);
578 		if (!page_is_buddy(page, buddy, order))
579 			break;
580 		/*
581 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
582 		 * merge with it and move up one order.
583 		 */
584 		if (page_is_guard(buddy)) {
585 			clear_page_guard_flag(buddy);
586 			set_page_private(buddy, 0);
587 			if (!is_migrate_isolate(migratetype)) {
588 				__mod_zone_freepage_state(zone, 1 << order,
589 							  migratetype);
590 			}
591 		} else {
592 			list_del(&buddy->lru);
593 			zone->free_area[order].nr_free--;
594 			rmv_page_order(buddy);
595 		}
596 		combined_idx = buddy_idx & page_idx;
597 		page = page + (combined_idx - page_idx);
598 		page_idx = combined_idx;
599 		order++;
600 	}
601 	set_page_order(page, order);
602 
603 	/*
604 	 * If this is not the largest possible page, check if the buddy
605 	 * of the next-highest order is free. If it is, it's possible
606 	 * that pages are being freed that will coalesce soon. In case,
607 	 * that is happening, add the free page to the tail of the list
608 	 * so it's less likely to be used soon and more likely to be merged
609 	 * as a higher order page
610 	 */
611 	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
612 		struct page *higher_page, *higher_buddy;
613 		combined_idx = buddy_idx & page_idx;
614 		higher_page = page + (combined_idx - page_idx);
615 		buddy_idx = __find_buddy_index(combined_idx, order + 1);
616 		higher_buddy = higher_page + (buddy_idx - combined_idx);
617 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
618 			list_add_tail(&page->lru,
619 				&zone->free_area[order].free_list[migratetype]);
620 			goto out;
621 		}
622 	}
623 
624 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
625 out:
626 	zone->free_area[order].nr_free++;
627 }
628 
629 static inline int free_pages_check(struct page *page)
630 {
631 	const char *bad_reason = NULL;
632 	unsigned long bad_flags = 0;
633 
634 	if (unlikely(page_mapcount(page)))
635 		bad_reason = "nonzero mapcount";
636 	if (unlikely(page->mapping != NULL))
637 		bad_reason = "non-NULL mapping";
638 	if (unlikely(atomic_read(&page->_count) != 0))
639 		bad_reason = "nonzero _count";
640 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
641 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
642 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
643 	}
644 	if (unlikely(mem_cgroup_bad_page_check(page)))
645 		bad_reason = "cgroup check failed";
646 	if (unlikely(bad_reason)) {
647 		bad_page(page, bad_reason, bad_flags);
648 		return 1;
649 	}
650 	page_cpupid_reset_last(page);
651 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
652 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
653 	return 0;
654 }
655 
656 /*
657  * Frees a number of pages from the PCP lists
658  * Assumes all pages on list are in same zone, and of same order.
659  * count is the number of pages to free.
660  *
661  * If the zone was previously in an "all pages pinned" state then look to
662  * see if this freeing clears that state.
663  *
664  * And clear the zone's pages_scanned counter, to hold off the "all pages are
665  * pinned" detection logic.
666  */
667 static void free_pcppages_bulk(struct zone *zone, int count,
668 					struct per_cpu_pages *pcp)
669 {
670 	int migratetype = 0;
671 	int batch_free = 0;
672 	int to_free = count;
673 	unsigned long nr_scanned;
674 
675 	spin_lock(&zone->lock);
676 	nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
677 	if (nr_scanned)
678 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
679 
680 	while (to_free) {
681 		struct page *page;
682 		struct list_head *list;
683 
684 		/*
685 		 * Remove pages from lists in a round-robin fashion. A
686 		 * batch_free count is maintained that is incremented when an
687 		 * empty list is encountered.  This is so more pages are freed
688 		 * off fuller lists instead of spinning excessively around empty
689 		 * lists
690 		 */
691 		do {
692 			batch_free++;
693 			if (++migratetype == MIGRATE_PCPTYPES)
694 				migratetype = 0;
695 			list = &pcp->lists[migratetype];
696 		} while (list_empty(list));
697 
698 		/* This is the only non-empty list. Free them all. */
699 		if (batch_free == MIGRATE_PCPTYPES)
700 			batch_free = to_free;
701 
702 		do {
703 			int mt;	/* migratetype of the to-be-freed page */
704 
705 			page = list_entry(list->prev, struct page, lru);
706 			/* must delete as __free_one_page list manipulates */
707 			list_del(&page->lru);
708 			mt = get_freepage_migratetype(page);
709 			if (unlikely(has_isolate_pageblock(zone)))
710 				mt = get_pageblock_migratetype(page);
711 
712 			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
713 			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
714 			trace_mm_page_pcpu_drain(page, 0, mt);
715 		} while (--to_free && --batch_free && !list_empty(list));
716 	}
717 	spin_unlock(&zone->lock);
718 }
719 
720 static void free_one_page(struct zone *zone,
721 				struct page *page, unsigned long pfn,
722 				unsigned int order,
723 				int migratetype)
724 {
725 	unsigned long nr_scanned;
726 	spin_lock(&zone->lock);
727 	nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
728 	if (nr_scanned)
729 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
730 
731 	if (unlikely(has_isolate_pageblock(zone) ||
732 		is_migrate_isolate(migratetype))) {
733 		migratetype = get_pfnblock_migratetype(page, pfn);
734 	}
735 	__free_one_page(page, pfn, zone, order, migratetype);
736 	spin_unlock(&zone->lock);
737 }
738 
739 static bool free_pages_prepare(struct page *page, unsigned int order)
740 {
741 	int i;
742 	int bad = 0;
743 
744 	trace_mm_page_free(page, order);
745 	kmemcheck_free_shadow(page, order);
746 
747 	if (PageAnon(page))
748 		page->mapping = NULL;
749 	for (i = 0; i < (1 << order); i++)
750 		bad += free_pages_check(page + i);
751 	if (bad)
752 		return false;
753 
754 	if (!PageHighMem(page)) {
755 		debug_check_no_locks_freed(page_address(page),
756 					   PAGE_SIZE << order);
757 		debug_check_no_obj_freed(page_address(page),
758 					   PAGE_SIZE << order);
759 	}
760 	arch_free_page(page, order);
761 	kernel_map_pages(page, 1 << order, 0);
762 
763 	return true;
764 }
765 
766 static void __free_pages_ok(struct page *page, unsigned int order)
767 {
768 	unsigned long flags;
769 	int migratetype;
770 	unsigned long pfn = page_to_pfn(page);
771 
772 	if (!free_pages_prepare(page, order))
773 		return;
774 
775 	migratetype = get_pfnblock_migratetype(page, pfn);
776 	local_irq_save(flags);
777 	__count_vm_events(PGFREE, 1 << order);
778 	set_freepage_migratetype(page, migratetype);
779 	free_one_page(page_zone(page), page, pfn, order, migratetype);
780 	local_irq_restore(flags);
781 }
782 
783 void __init __free_pages_bootmem(struct page *page, unsigned int order)
784 {
785 	unsigned int nr_pages = 1 << order;
786 	struct page *p = page;
787 	unsigned int loop;
788 
789 	prefetchw(p);
790 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
791 		prefetchw(p + 1);
792 		__ClearPageReserved(p);
793 		set_page_count(p, 0);
794 	}
795 	__ClearPageReserved(p);
796 	set_page_count(p, 0);
797 
798 	page_zone(page)->managed_pages += nr_pages;
799 	set_page_refcounted(page);
800 	__free_pages(page, order);
801 }
802 
803 #ifdef CONFIG_CMA
804 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
805 void __init init_cma_reserved_pageblock(struct page *page)
806 {
807 	unsigned i = pageblock_nr_pages;
808 	struct page *p = page;
809 
810 	do {
811 		__ClearPageReserved(p);
812 		set_page_count(p, 0);
813 	} while (++p, --i);
814 
815 	set_pageblock_migratetype(page, MIGRATE_CMA);
816 
817 	if (pageblock_order >= MAX_ORDER) {
818 		i = pageblock_nr_pages;
819 		p = page;
820 		do {
821 			set_page_refcounted(p);
822 			__free_pages(p, MAX_ORDER - 1);
823 			p += MAX_ORDER_NR_PAGES;
824 		} while (i -= MAX_ORDER_NR_PAGES);
825 	} else {
826 		set_page_refcounted(page);
827 		__free_pages(page, pageblock_order);
828 	}
829 
830 	adjust_managed_page_count(page, pageblock_nr_pages);
831 }
832 #endif
833 
834 /*
835  * The order of subdivision here is critical for the IO subsystem.
836  * Please do not alter this order without good reasons and regression
837  * testing. Specifically, as large blocks of memory are subdivided,
838  * the order in which smaller blocks are delivered depends on the order
839  * they're subdivided in this function. This is the primary factor
840  * influencing the order in which pages are delivered to the IO
841  * subsystem according to empirical testing, and this is also justified
842  * by considering the behavior of a buddy system containing a single
843  * large block of memory acted on by a series of small allocations.
844  * This behavior is a critical factor in sglist merging's success.
845  *
846  * -- nyc
847  */
848 static inline void expand(struct zone *zone, struct page *page,
849 	int low, int high, struct free_area *area,
850 	int migratetype)
851 {
852 	unsigned long size = 1 << high;
853 
854 	while (high > low) {
855 		area--;
856 		high--;
857 		size >>= 1;
858 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
859 
860 #ifdef CONFIG_DEBUG_PAGEALLOC
861 		if (high < debug_guardpage_minorder()) {
862 			/*
863 			 * Mark as guard pages (or page), that will allow to
864 			 * merge back to allocator when buddy will be freed.
865 			 * Corresponding page table entries will not be touched,
866 			 * pages will stay not present in virtual address space
867 			 */
868 			INIT_LIST_HEAD(&page[size].lru);
869 			set_page_guard_flag(&page[size]);
870 			set_page_private(&page[size], high);
871 			/* Guard pages are not available for any usage */
872 			__mod_zone_freepage_state(zone, -(1 << high),
873 						  migratetype);
874 			continue;
875 		}
876 #endif
877 		list_add(&page[size].lru, &area->free_list[migratetype]);
878 		area->nr_free++;
879 		set_page_order(&page[size], high);
880 	}
881 }
882 
883 /*
884  * This page is about to be returned from the page allocator
885  */
886 static inline int check_new_page(struct page *page)
887 {
888 	const char *bad_reason = NULL;
889 	unsigned long bad_flags = 0;
890 
891 	if (unlikely(page_mapcount(page)))
892 		bad_reason = "nonzero mapcount";
893 	if (unlikely(page->mapping != NULL))
894 		bad_reason = "non-NULL mapping";
895 	if (unlikely(atomic_read(&page->_count) != 0))
896 		bad_reason = "nonzero _count";
897 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
898 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
899 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
900 	}
901 	if (unlikely(mem_cgroup_bad_page_check(page)))
902 		bad_reason = "cgroup check failed";
903 	if (unlikely(bad_reason)) {
904 		bad_page(page, bad_reason, bad_flags);
905 		return 1;
906 	}
907 	return 0;
908 }
909 
910 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags)
911 {
912 	int i;
913 
914 	for (i = 0; i < (1 << order); i++) {
915 		struct page *p = page + i;
916 		if (unlikely(check_new_page(p)))
917 			return 1;
918 	}
919 
920 	set_page_private(page, 0);
921 	set_page_refcounted(page);
922 
923 	arch_alloc_page(page, order);
924 	kernel_map_pages(page, 1 << order, 1);
925 
926 	if (gfp_flags & __GFP_ZERO)
927 		prep_zero_page(page, order, gfp_flags);
928 
929 	if (order && (gfp_flags & __GFP_COMP))
930 		prep_compound_page(page, order);
931 
932 	return 0;
933 }
934 
935 /*
936  * Go through the free lists for the given migratetype and remove
937  * the smallest available page from the freelists
938  */
939 static inline
940 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
941 						int migratetype)
942 {
943 	unsigned int current_order;
944 	struct free_area *area;
945 	struct page *page;
946 
947 	/* Find a page of the appropriate size in the preferred list */
948 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
949 		area = &(zone->free_area[current_order]);
950 		if (list_empty(&area->free_list[migratetype]))
951 			continue;
952 
953 		page = list_entry(area->free_list[migratetype].next,
954 							struct page, lru);
955 		list_del(&page->lru);
956 		rmv_page_order(page);
957 		area->nr_free--;
958 		expand(zone, page, order, current_order, area, migratetype);
959 		set_freepage_migratetype(page, migratetype);
960 		return page;
961 	}
962 
963 	return NULL;
964 }
965 
966 
967 /*
968  * This array describes the order lists are fallen back to when
969  * the free lists for the desirable migrate type are depleted
970  */
971 static int fallbacks[MIGRATE_TYPES][4] = {
972 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,     MIGRATE_RESERVE },
973 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,     MIGRATE_RESERVE },
974 #ifdef CONFIG_CMA
975 	[MIGRATE_MOVABLE]     = { MIGRATE_CMA,         MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
976 	[MIGRATE_CMA]         = { MIGRATE_RESERVE }, /* Never used */
977 #else
978 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE,   MIGRATE_RESERVE },
979 #endif
980 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE }, /* Never used */
981 #ifdef CONFIG_MEMORY_ISOLATION
982 	[MIGRATE_ISOLATE]     = { MIGRATE_RESERVE }, /* Never used */
983 #endif
984 };
985 
986 /*
987  * Move the free pages in a range to the free lists of the requested type.
988  * Note that start_page and end_pages are not aligned on a pageblock
989  * boundary. If alignment is required, use move_freepages_block()
990  */
991 int move_freepages(struct zone *zone,
992 			  struct page *start_page, struct page *end_page,
993 			  int migratetype)
994 {
995 	struct page *page;
996 	unsigned long order;
997 	int pages_moved = 0;
998 
999 #ifndef CONFIG_HOLES_IN_ZONE
1000 	/*
1001 	 * page_zone is not safe to call in this context when
1002 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1003 	 * anyway as we check zone boundaries in move_freepages_block().
1004 	 * Remove at a later date when no bug reports exist related to
1005 	 * grouping pages by mobility
1006 	 */
1007 	VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1008 #endif
1009 
1010 	for (page = start_page; page <= end_page;) {
1011 		/* Make sure we are not inadvertently changing nodes */
1012 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1013 
1014 		if (!pfn_valid_within(page_to_pfn(page))) {
1015 			page++;
1016 			continue;
1017 		}
1018 
1019 		if (!PageBuddy(page)) {
1020 			page++;
1021 			continue;
1022 		}
1023 
1024 		order = page_order(page);
1025 		list_move(&page->lru,
1026 			  &zone->free_area[order].free_list[migratetype]);
1027 		set_freepage_migratetype(page, migratetype);
1028 		page += 1 << order;
1029 		pages_moved += 1 << order;
1030 	}
1031 
1032 	return pages_moved;
1033 }
1034 
1035 int move_freepages_block(struct zone *zone, struct page *page,
1036 				int migratetype)
1037 {
1038 	unsigned long start_pfn, end_pfn;
1039 	struct page *start_page, *end_page;
1040 
1041 	start_pfn = page_to_pfn(page);
1042 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1043 	start_page = pfn_to_page(start_pfn);
1044 	end_page = start_page + pageblock_nr_pages - 1;
1045 	end_pfn = start_pfn + pageblock_nr_pages - 1;
1046 
1047 	/* Do not cross zone boundaries */
1048 	if (!zone_spans_pfn(zone, start_pfn))
1049 		start_page = page;
1050 	if (!zone_spans_pfn(zone, end_pfn))
1051 		return 0;
1052 
1053 	return move_freepages(zone, start_page, end_page, migratetype);
1054 }
1055 
1056 static void change_pageblock_range(struct page *pageblock_page,
1057 					int start_order, int migratetype)
1058 {
1059 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1060 
1061 	while (nr_pageblocks--) {
1062 		set_pageblock_migratetype(pageblock_page, migratetype);
1063 		pageblock_page += pageblock_nr_pages;
1064 	}
1065 }
1066 
1067 /*
1068  * If breaking a large block of pages, move all free pages to the preferred
1069  * allocation list. If falling back for a reclaimable kernel allocation, be
1070  * more aggressive about taking ownership of free pages.
1071  *
1072  * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1073  * nor move CMA pages to different free lists. We don't want unmovable pages
1074  * to be allocated from MIGRATE_CMA areas.
1075  *
1076  * Returns the new migratetype of the pageblock (or the same old migratetype
1077  * if it was unchanged).
1078  */
1079 static int try_to_steal_freepages(struct zone *zone, struct page *page,
1080 				  int start_type, int fallback_type)
1081 {
1082 	int current_order = page_order(page);
1083 
1084 	/*
1085 	 * When borrowing from MIGRATE_CMA, we need to release the excess
1086 	 * buddy pages to CMA itself. We also ensure the freepage_migratetype
1087 	 * is set to CMA so it is returned to the correct freelist in case
1088 	 * the page ends up being not actually allocated from the pcp lists.
1089 	 */
1090 	if (is_migrate_cma(fallback_type))
1091 		return fallback_type;
1092 
1093 	/* Take ownership for orders >= pageblock_order */
1094 	if (current_order >= pageblock_order) {
1095 		change_pageblock_range(page, current_order, start_type);
1096 		return start_type;
1097 	}
1098 
1099 	if (current_order >= pageblock_order / 2 ||
1100 	    start_type == MIGRATE_RECLAIMABLE ||
1101 	    page_group_by_mobility_disabled) {
1102 		int pages;
1103 
1104 		pages = move_freepages_block(zone, page, start_type);
1105 
1106 		/* Claim the whole block if over half of it is free */
1107 		if (pages >= (1 << (pageblock_order-1)) ||
1108 				page_group_by_mobility_disabled) {
1109 
1110 			set_pageblock_migratetype(page, start_type);
1111 			return start_type;
1112 		}
1113 
1114 	}
1115 
1116 	return fallback_type;
1117 }
1118 
1119 /* Remove an element from the buddy allocator from the fallback list */
1120 static inline struct page *
1121 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1122 {
1123 	struct free_area *area;
1124 	unsigned int current_order;
1125 	struct page *page;
1126 	int migratetype, new_type, i;
1127 
1128 	/* Find the largest possible block of pages in the other list */
1129 	for (current_order = MAX_ORDER-1;
1130 				current_order >= order && current_order <= MAX_ORDER-1;
1131 				--current_order) {
1132 		for (i = 0;; i++) {
1133 			migratetype = fallbacks[start_migratetype][i];
1134 
1135 			/* MIGRATE_RESERVE handled later if necessary */
1136 			if (migratetype == MIGRATE_RESERVE)
1137 				break;
1138 
1139 			area = &(zone->free_area[current_order]);
1140 			if (list_empty(&area->free_list[migratetype]))
1141 				continue;
1142 
1143 			page = list_entry(area->free_list[migratetype].next,
1144 					struct page, lru);
1145 			area->nr_free--;
1146 
1147 			new_type = try_to_steal_freepages(zone, page,
1148 							  start_migratetype,
1149 							  migratetype);
1150 
1151 			/* Remove the page from the freelists */
1152 			list_del(&page->lru);
1153 			rmv_page_order(page);
1154 
1155 			expand(zone, page, order, current_order, area,
1156 			       new_type);
1157 			/* The freepage_migratetype may differ from pageblock's
1158 			 * migratetype depending on the decisions in
1159 			 * try_to_steal_freepages. This is OK as long as it does
1160 			 * not differ for MIGRATE_CMA type.
1161 			 */
1162 			set_freepage_migratetype(page, new_type);
1163 
1164 			trace_mm_page_alloc_extfrag(page, order, current_order,
1165 				start_migratetype, migratetype, new_type);
1166 
1167 			return page;
1168 		}
1169 	}
1170 
1171 	return NULL;
1172 }
1173 
1174 /*
1175  * Do the hard work of removing an element from the buddy allocator.
1176  * Call me with the zone->lock already held.
1177  */
1178 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1179 						int migratetype)
1180 {
1181 	struct page *page;
1182 
1183 retry_reserve:
1184 	page = __rmqueue_smallest(zone, order, migratetype);
1185 
1186 	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1187 		page = __rmqueue_fallback(zone, order, migratetype);
1188 
1189 		/*
1190 		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1191 		 * is used because __rmqueue_smallest is an inline function
1192 		 * and we want just one call site
1193 		 */
1194 		if (!page) {
1195 			migratetype = MIGRATE_RESERVE;
1196 			goto retry_reserve;
1197 		}
1198 	}
1199 
1200 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
1201 	return page;
1202 }
1203 
1204 /*
1205  * Obtain a specified number of elements from the buddy allocator, all under
1206  * a single hold of the lock, for efficiency.  Add them to the supplied list.
1207  * Returns the number of new pages which were placed at *list.
1208  */
1209 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1210 			unsigned long count, struct list_head *list,
1211 			int migratetype, bool cold)
1212 {
1213 	int i;
1214 
1215 	spin_lock(&zone->lock);
1216 	for (i = 0; i < count; ++i) {
1217 		struct page *page = __rmqueue(zone, order, migratetype);
1218 		if (unlikely(page == NULL))
1219 			break;
1220 
1221 		/*
1222 		 * Split buddy pages returned by expand() are received here
1223 		 * in physical page order. The page is added to the callers and
1224 		 * list and the list head then moves forward. From the callers
1225 		 * perspective, the linked list is ordered by page number in
1226 		 * some conditions. This is useful for IO devices that can
1227 		 * merge IO requests if the physical pages are ordered
1228 		 * properly.
1229 		 */
1230 		if (likely(!cold))
1231 			list_add(&page->lru, list);
1232 		else
1233 			list_add_tail(&page->lru, list);
1234 		list = &page->lru;
1235 		if (is_migrate_cma(get_freepage_migratetype(page)))
1236 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1237 					      -(1 << order));
1238 	}
1239 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1240 	spin_unlock(&zone->lock);
1241 	return i;
1242 }
1243 
1244 #ifdef CONFIG_NUMA
1245 /*
1246  * Called from the vmstat counter updater to drain pagesets of this
1247  * currently executing processor on remote nodes after they have
1248  * expired.
1249  *
1250  * Note that this function must be called with the thread pinned to
1251  * a single processor.
1252  */
1253 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1254 {
1255 	unsigned long flags;
1256 	int to_drain, batch;
1257 
1258 	local_irq_save(flags);
1259 	batch = ACCESS_ONCE(pcp->batch);
1260 	to_drain = min(pcp->count, batch);
1261 	if (to_drain > 0) {
1262 		free_pcppages_bulk(zone, to_drain, pcp);
1263 		pcp->count -= to_drain;
1264 	}
1265 	local_irq_restore(flags);
1266 }
1267 #endif
1268 
1269 /*
1270  * Drain pages of the indicated processor.
1271  *
1272  * The processor must either be the current processor and the
1273  * thread pinned to the current processor or a processor that
1274  * is not online.
1275  */
1276 static void drain_pages(unsigned int cpu)
1277 {
1278 	unsigned long flags;
1279 	struct zone *zone;
1280 
1281 	for_each_populated_zone(zone) {
1282 		struct per_cpu_pageset *pset;
1283 		struct per_cpu_pages *pcp;
1284 
1285 		local_irq_save(flags);
1286 		pset = per_cpu_ptr(zone->pageset, cpu);
1287 
1288 		pcp = &pset->pcp;
1289 		if (pcp->count) {
1290 			free_pcppages_bulk(zone, pcp->count, pcp);
1291 			pcp->count = 0;
1292 		}
1293 		local_irq_restore(flags);
1294 	}
1295 }
1296 
1297 /*
1298  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1299  */
1300 void drain_local_pages(void *arg)
1301 {
1302 	drain_pages(smp_processor_id());
1303 }
1304 
1305 /*
1306  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1307  *
1308  * Note that this code is protected against sending an IPI to an offline
1309  * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1310  * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1311  * nothing keeps CPUs from showing up after we populated the cpumask and
1312  * before the call to on_each_cpu_mask().
1313  */
1314 void drain_all_pages(void)
1315 {
1316 	int cpu;
1317 	struct per_cpu_pageset *pcp;
1318 	struct zone *zone;
1319 
1320 	/*
1321 	 * Allocate in the BSS so we wont require allocation in
1322 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1323 	 */
1324 	static cpumask_t cpus_with_pcps;
1325 
1326 	/*
1327 	 * We don't care about racing with CPU hotplug event
1328 	 * as offline notification will cause the notified
1329 	 * cpu to drain that CPU pcps and on_each_cpu_mask
1330 	 * disables preemption as part of its processing
1331 	 */
1332 	for_each_online_cpu(cpu) {
1333 		bool has_pcps = false;
1334 		for_each_populated_zone(zone) {
1335 			pcp = per_cpu_ptr(zone->pageset, cpu);
1336 			if (pcp->pcp.count) {
1337 				has_pcps = true;
1338 				break;
1339 			}
1340 		}
1341 		if (has_pcps)
1342 			cpumask_set_cpu(cpu, &cpus_with_pcps);
1343 		else
1344 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
1345 	}
1346 	on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1347 }
1348 
1349 #ifdef CONFIG_HIBERNATION
1350 
1351 void mark_free_pages(struct zone *zone)
1352 {
1353 	unsigned long pfn, max_zone_pfn;
1354 	unsigned long flags;
1355 	unsigned int order, t;
1356 	struct list_head *curr;
1357 
1358 	if (zone_is_empty(zone))
1359 		return;
1360 
1361 	spin_lock_irqsave(&zone->lock, flags);
1362 
1363 	max_zone_pfn = zone_end_pfn(zone);
1364 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1365 		if (pfn_valid(pfn)) {
1366 			struct page *page = pfn_to_page(pfn);
1367 
1368 			if (!swsusp_page_is_forbidden(page))
1369 				swsusp_unset_page_free(page);
1370 		}
1371 
1372 	for_each_migratetype_order(order, t) {
1373 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1374 			unsigned long i;
1375 
1376 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1377 			for (i = 0; i < (1UL << order); i++)
1378 				swsusp_set_page_free(pfn_to_page(pfn + i));
1379 		}
1380 	}
1381 	spin_unlock_irqrestore(&zone->lock, flags);
1382 }
1383 #endif /* CONFIG_PM */
1384 
1385 /*
1386  * Free a 0-order page
1387  * cold == true ? free a cold page : free a hot page
1388  */
1389 void free_hot_cold_page(struct page *page, bool cold)
1390 {
1391 	struct zone *zone = page_zone(page);
1392 	struct per_cpu_pages *pcp;
1393 	unsigned long flags;
1394 	unsigned long pfn = page_to_pfn(page);
1395 	int migratetype;
1396 
1397 	if (!free_pages_prepare(page, 0))
1398 		return;
1399 
1400 	migratetype = get_pfnblock_migratetype(page, pfn);
1401 	set_freepage_migratetype(page, migratetype);
1402 	local_irq_save(flags);
1403 	__count_vm_event(PGFREE);
1404 
1405 	/*
1406 	 * We only track unmovable, reclaimable and movable on pcp lists.
1407 	 * Free ISOLATE pages back to the allocator because they are being
1408 	 * offlined but treat RESERVE as movable pages so we can get those
1409 	 * areas back if necessary. Otherwise, we may have to free
1410 	 * excessively into the page allocator
1411 	 */
1412 	if (migratetype >= MIGRATE_PCPTYPES) {
1413 		if (unlikely(is_migrate_isolate(migratetype))) {
1414 			free_one_page(zone, page, pfn, 0, migratetype);
1415 			goto out;
1416 		}
1417 		migratetype = MIGRATE_MOVABLE;
1418 	}
1419 
1420 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
1421 	if (!cold)
1422 		list_add(&page->lru, &pcp->lists[migratetype]);
1423 	else
1424 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1425 	pcp->count++;
1426 	if (pcp->count >= pcp->high) {
1427 		unsigned long batch = ACCESS_ONCE(pcp->batch);
1428 		free_pcppages_bulk(zone, batch, pcp);
1429 		pcp->count -= batch;
1430 	}
1431 
1432 out:
1433 	local_irq_restore(flags);
1434 }
1435 
1436 /*
1437  * Free a list of 0-order pages
1438  */
1439 void free_hot_cold_page_list(struct list_head *list, bool cold)
1440 {
1441 	struct page *page, *next;
1442 
1443 	list_for_each_entry_safe(page, next, list, lru) {
1444 		trace_mm_page_free_batched(page, cold);
1445 		free_hot_cold_page(page, cold);
1446 	}
1447 }
1448 
1449 /*
1450  * split_page takes a non-compound higher-order page, and splits it into
1451  * n (1<<order) sub-pages: page[0..n]
1452  * Each sub-page must be freed individually.
1453  *
1454  * Note: this is probably too low level an operation for use in drivers.
1455  * Please consult with lkml before using this in your driver.
1456  */
1457 void split_page(struct page *page, unsigned int order)
1458 {
1459 	int i;
1460 
1461 	VM_BUG_ON_PAGE(PageCompound(page), page);
1462 	VM_BUG_ON_PAGE(!page_count(page), page);
1463 
1464 #ifdef CONFIG_KMEMCHECK
1465 	/*
1466 	 * Split shadow pages too, because free(page[0]) would
1467 	 * otherwise free the whole shadow.
1468 	 */
1469 	if (kmemcheck_page_is_tracked(page))
1470 		split_page(virt_to_page(page[0].shadow), order);
1471 #endif
1472 
1473 	for (i = 1; i < (1 << order); i++)
1474 		set_page_refcounted(page + i);
1475 }
1476 EXPORT_SYMBOL_GPL(split_page);
1477 
1478 int __isolate_free_page(struct page *page, unsigned int order)
1479 {
1480 	unsigned long watermark;
1481 	struct zone *zone;
1482 	int mt;
1483 
1484 	BUG_ON(!PageBuddy(page));
1485 
1486 	zone = page_zone(page);
1487 	mt = get_pageblock_migratetype(page);
1488 
1489 	if (!is_migrate_isolate(mt)) {
1490 		/* Obey watermarks as if the page was being allocated */
1491 		watermark = low_wmark_pages(zone) + (1 << order);
1492 		if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1493 			return 0;
1494 
1495 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
1496 	}
1497 
1498 	/* Remove page from free list */
1499 	list_del(&page->lru);
1500 	zone->free_area[order].nr_free--;
1501 	rmv_page_order(page);
1502 
1503 	/* Set the pageblock if the isolated page is at least a pageblock */
1504 	if (order >= pageblock_order - 1) {
1505 		struct page *endpage = page + (1 << order) - 1;
1506 		for (; page < endpage; page += pageblock_nr_pages) {
1507 			int mt = get_pageblock_migratetype(page);
1508 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1509 				set_pageblock_migratetype(page,
1510 							  MIGRATE_MOVABLE);
1511 		}
1512 	}
1513 
1514 	return 1UL << order;
1515 }
1516 
1517 /*
1518  * Similar to split_page except the page is already free. As this is only
1519  * being used for migration, the migratetype of the block also changes.
1520  * As this is called with interrupts disabled, the caller is responsible
1521  * for calling arch_alloc_page() and kernel_map_page() after interrupts
1522  * are enabled.
1523  *
1524  * Note: this is probably too low level an operation for use in drivers.
1525  * Please consult with lkml before using this in your driver.
1526  */
1527 int split_free_page(struct page *page)
1528 {
1529 	unsigned int order;
1530 	int nr_pages;
1531 
1532 	order = page_order(page);
1533 
1534 	nr_pages = __isolate_free_page(page, order);
1535 	if (!nr_pages)
1536 		return 0;
1537 
1538 	/* Split into individual pages */
1539 	set_page_refcounted(page);
1540 	split_page(page, order);
1541 	return nr_pages;
1542 }
1543 
1544 /*
1545  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1546  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1547  * or two.
1548  */
1549 static inline
1550 struct page *buffered_rmqueue(struct zone *preferred_zone,
1551 			struct zone *zone, unsigned int order,
1552 			gfp_t gfp_flags, int migratetype)
1553 {
1554 	unsigned long flags;
1555 	struct page *page;
1556 	bool cold = ((gfp_flags & __GFP_COLD) != 0);
1557 
1558 again:
1559 	if (likely(order == 0)) {
1560 		struct per_cpu_pages *pcp;
1561 		struct list_head *list;
1562 
1563 		local_irq_save(flags);
1564 		pcp = &this_cpu_ptr(zone->pageset)->pcp;
1565 		list = &pcp->lists[migratetype];
1566 		if (list_empty(list)) {
1567 			pcp->count += rmqueue_bulk(zone, 0,
1568 					pcp->batch, list,
1569 					migratetype, cold);
1570 			if (unlikely(list_empty(list)))
1571 				goto failed;
1572 		}
1573 
1574 		if (cold)
1575 			page = list_entry(list->prev, struct page, lru);
1576 		else
1577 			page = list_entry(list->next, struct page, lru);
1578 
1579 		list_del(&page->lru);
1580 		pcp->count--;
1581 	} else {
1582 		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1583 			/*
1584 			 * __GFP_NOFAIL is not to be used in new code.
1585 			 *
1586 			 * All __GFP_NOFAIL callers should be fixed so that they
1587 			 * properly detect and handle allocation failures.
1588 			 *
1589 			 * We most definitely don't want callers attempting to
1590 			 * allocate greater than order-1 page units with
1591 			 * __GFP_NOFAIL.
1592 			 */
1593 			WARN_ON_ONCE(order > 1);
1594 		}
1595 		spin_lock_irqsave(&zone->lock, flags);
1596 		page = __rmqueue(zone, order, migratetype);
1597 		spin_unlock(&zone->lock);
1598 		if (!page)
1599 			goto failed;
1600 		__mod_zone_freepage_state(zone, -(1 << order),
1601 					  get_freepage_migratetype(page));
1602 	}
1603 
1604 	__mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
1605 	if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
1606 	    !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
1607 		set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
1608 
1609 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1610 	zone_statistics(preferred_zone, zone, gfp_flags);
1611 	local_irq_restore(flags);
1612 
1613 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1614 	if (prep_new_page(page, order, gfp_flags))
1615 		goto again;
1616 	return page;
1617 
1618 failed:
1619 	local_irq_restore(flags);
1620 	return NULL;
1621 }
1622 
1623 #ifdef CONFIG_FAIL_PAGE_ALLOC
1624 
1625 static struct {
1626 	struct fault_attr attr;
1627 
1628 	u32 ignore_gfp_highmem;
1629 	u32 ignore_gfp_wait;
1630 	u32 min_order;
1631 } fail_page_alloc = {
1632 	.attr = FAULT_ATTR_INITIALIZER,
1633 	.ignore_gfp_wait = 1,
1634 	.ignore_gfp_highmem = 1,
1635 	.min_order = 1,
1636 };
1637 
1638 static int __init setup_fail_page_alloc(char *str)
1639 {
1640 	return setup_fault_attr(&fail_page_alloc.attr, str);
1641 }
1642 __setup("fail_page_alloc=", setup_fail_page_alloc);
1643 
1644 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1645 {
1646 	if (order < fail_page_alloc.min_order)
1647 		return false;
1648 	if (gfp_mask & __GFP_NOFAIL)
1649 		return false;
1650 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1651 		return false;
1652 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1653 		return false;
1654 
1655 	return should_fail(&fail_page_alloc.attr, 1 << order);
1656 }
1657 
1658 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1659 
1660 static int __init fail_page_alloc_debugfs(void)
1661 {
1662 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1663 	struct dentry *dir;
1664 
1665 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1666 					&fail_page_alloc.attr);
1667 	if (IS_ERR(dir))
1668 		return PTR_ERR(dir);
1669 
1670 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1671 				&fail_page_alloc.ignore_gfp_wait))
1672 		goto fail;
1673 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1674 				&fail_page_alloc.ignore_gfp_highmem))
1675 		goto fail;
1676 	if (!debugfs_create_u32("min-order", mode, dir,
1677 				&fail_page_alloc.min_order))
1678 		goto fail;
1679 
1680 	return 0;
1681 fail:
1682 	debugfs_remove_recursive(dir);
1683 
1684 	return -ENOMEM;
1685 }
1686 
1687 late_initcall(fail_page_alloc_debugfs);
1688 
1689 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1690 
1691 #else /* CONFIG_FAIL_PAGE_ALLOC */
1692 
1693 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1694 {
1695 	return false;
1696 }
1697 
1698 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1699 
1700 /*
1701  * Return true if free pages are above 'mark'. This takes into account the order
1702  * of the allocation.
1703  */
1704 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
1705 			unsigned long mark, int classzone_idx, int alloc_flags,
1706 			long free_pages)
1707 {
1708 	/* free_pages my go negative - that's OK */
1709 	long min = mark;
1710 	int o;
1711 	long free_cma = 0;
1712 
1713 	free_pages -= (1 << order) - 1;
1714 	if (alloc_flags & ALLOC_HIGH)
1715 		min -= min / 2;
1716 	if (alloc_flags & ALLOC_HARDER)
1717 		min -= min / 4;
1718 #ifdef CONFIG_CMA
1719 	/* If allocation can't use CMA areas don't use free CMA pages */
1720 	if (!(alloc_flags & ALLOC_CMA))
1721 		free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1722 #endif
1723 
1724 	if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
1725 		return false;
1726 	for (o = 0; o < order; o++) {
1727 		/* At the next order, this order's pages become unavailable */
1728 		free_pages -= z->free_area[o].nr_free << o;
1729 
1730 		/* Require fewer higher order pages to be free */
1731 		min >>= 1;
1732 
1733 		if (free_pages <= min)
1734 			return false;
1735 	}
1736 	return true;
1737 }
1738 
1739 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1740 		      int classzone_idx, int alloc_flags)
1741 {
1742 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1743 					zone_page_state(z, NR_FREE_PAGES));
1744 }
1745 
1746 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1747 			unsigned long mark, int classzone_idx, int alloc_flags)
1748 {
1749 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
1750 
1751 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1752 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1753 
1754 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1755 								free_pages);
1756 }
1757 
1758 #ifdef CONFIG_NUMA
1759 /*
1760  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1761  * skip over zones that are not allowed by the cpuset, or that have
1762  * been recently (in last second) found to be nearly full.  See further
1763  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1764  * that have to skip over a lot of full or unallowed zones.
1765  *
1766  * If the zonelist cache is present in the passed zonelist, then
1767  * returns a pointer to the allowed node mask (either the current
1768  * tasks mems_allowed, or node_states[N_MEMORY].)
1769  *
1770  * If the zonelist cache is not available for this zonelist, does
1771  * nothing and returns NULL.
1772  *
1773  * If the fullzones BITMAP in the zonelist cache is stale (more than
1774  * a second since last zap'd) then we zap it out (clear its bits.)
1775  *
1776  * We hold off even calling zlc_setup, until after we've checked the
1777  * first zone in the zonelist, on the theory that most allocations will
1778  * be satisfied from that first zone, so best to examine that zone as
1779  * quickly as we can.
1780  */
1781 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1782 {
1783 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1784 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1785 
1786 	zlc = zonelist->zlcache_ptr;
1787 	if (!zlc)
1788 		return NULL;
1789 
1790 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1791 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1792 		zlc->last_full_zap = jiffies;
1793 	}
1794 
1795 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1796 					&cpuset_current_mems_allowed :
1797 					&node_states[N_MEMORY];
1798 	return allowednodes;
1799 }
1800 
1801 /*
1802  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1803  * if it is worth looking at further for free memory:
1804  *  1) Check that the zone isn't thought to be full (doesn't have its
1805  *     bit set in the zonelist_cache fullzones BITMAP).
1806  *  2) Check that the zones node (obtained from the zonelist_cache
1807  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1808  * Return true (non-zero) if zone is worth looking at further, or
1809  * else return false (zero) if it is not.
1810  *
1811  * This check -ignores- the distinction between various watermarks,
1812  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1813  * found to be full for any variation of these watermarks, it will
1814  * be considered full for up to one second by all requests, unless
1815  * we are so low on memory on all allowed nodes that we are forced
1816  * into the second scan of the zonelist.
1817  *
1818  * In the second scan we ignore this zonelist cache and exactly
1819  * apply the watermarks to all zones, even it is slower to do so.
1820  * We are low on memory in the second scan, and should leave no stone
1821  * unturned looking for a free page.
1822  */
1823 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1824 						nodemask_t *allowednodes)
1825 {
1826 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1827 	int i;				/* index of *z in zonelist zones */
1828 	int n;				/* node that zone *z is on */
1829 
1830 	zlc = zonelist->zlcache_ptr;
1831 	if (!zlc)
1832 		return 1;
1833 
1834 	i = z - zonelist->_zonerefs;
1835 	n = zlc->z_to_n[i];
1836 
1837 	/* This zone is worth trying if it is allowed but not full */
1838 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1839 }
1840 
1841 /*
1842  * Given 'z' scanning a zonelist, set the corresponding bit in
1843  * zlc->fullzones, so that subsequent attempts to allocate a page
1844  * from that zone don't waste time re-examining it.
1845  */
1846 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1847 {
1848 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1849 	int i;				/* index of *z in zonelist zones */
1850 
1851 	zlc = zonelist->zlcache_ptr;
1852 	if (!zlc)
1853 		return;
1854 
1855 	i = z - zonelist->_zonerefs;
1856 
1857 	set_bit(i, zlc->fullzones);
1858 }
1859 
1860 /*
1861  * clear all zones full, called after direct reclaim makes progress so that
1862  * a zone that was recently full is not skipped over for up to a second
1863  */
1864 static void zlc_clear_zones_full(struct zonelist *zonelist)
1865 {
1866 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1867 
1868 	zlc = zonelist->zlcache_ptr;
1869 	if (!zlc)
1870 		return;
1871 
1872 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1873 }
1874 
1875 static bool zone_local(struct zone *local_zone, struct zone *zone)
1876 {
1877 	return local_zone->node == zone->node;
1878 }
1879 
1880 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1881 {
1882 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
1883 				RECLAIM_DISTANCE;
1884 }
1885 
1886 #else	/* CONFIG_NUMA */
1887 
1888 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1889 {
1890 	return NULL;
1891 }
1892 
1893 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1894 				nodemask_t *allowednodes)
1895 {
1896 	return 1;
1897 }
1898 
1899 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1900 {
1901 }
1902 
1903 static void zlc_clear_zones_full(struct zonelist *zonelist)
1904 {
1905 }
1906 
1907 static bool zone_local(struct zone *local_zone, struct zone *zone)
1908 {
1909 	return true;
1910 }
1911 
1912 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1913 {
1914 	return true;
1915 }
1916 
1917 #endif	/* CONFIG_NUMA */
1918 
1919 static void reset_alloc_batches(struct zone *preferred_zone)
1920 {
1921 	struct zone *zone = preferred_zone->zone_pgdat->node_zones;
1922 
1923 	do {
1924 		mod_zone_page_state(zone, NR_ALLOC_BATCH,
1925 			high_wmark_pages(zone) - low_wmark_pages(zone) -
1926 			atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
1927 		clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
1928 	} while (zone++ != preferred_zone);
1929 }
1930 
1931 /*
1932  * get_page_from_freelist goes through the zonelist trying to allocate
1933  * a page.
1934  */
1935 static struct page *
1936 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1937 		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1938 		struct zone *preferred_zone, int classzone_idx, int migratetype)
1939 {
1940 	struct zoneref *z;
1941 	struct page *page = NULL;
1942 	struct zone *zone;
1943 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1944 	int zlc_active = 0;		/* set if using zonelist_cache */
1945 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1946 	bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
1947 				(gfp_mask & __GFP_WRITE);
1948 	int nr_fair_skipped = 0;
1949 	bool zonelist_rescan;
1950 
1951 zonelist_scan:
1952 	zonelist_rescan = false;
1953 
1954 	/*
1955 	 * Scan zonelist, looking for a zone with enough free.
1956 	 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
1957 	 */
1958 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1959 						high_zoneidx, nodemask) {
1960 		unsigned long mark;
1961 
1962 		if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1963 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1964 				continue;
1965 		if (cpusets_enabled() &&
1966 			(alloc_flags & ALLOC_CPUSET) &&
1967 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1968 				continue;
1969 		/*
1970 		 * Distribute pages in proportion to the individual
1971 		 * zone size to ensure fair page aging.  The zone a
1972 		 * page was allocated in should have no effect on the
1973 		 * time the page has in memory before being reclaimed.
1974 		 */
1975 		if (alloc_flags & ALLOC_FAIR) {
1976 			if (!zone_local(preferred_zone, zone))
1977 				break;
1978 			if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
1979 				nr_fair_skipped++;
1980 				continue;
1981 			}
1982 		}
1983 		/*
1984 		 * When allocating a page cache page for writing, we
1985 		 * want to get it from a zone that is within its dirty
1986 		 * limit, such that no single zone holds more than its
1987 		 * proportional share of globally allowed dirty pages.
1988 		 * The dirty limits take into account the zone's
1989 		 * lowmem reserves and high watermark so that kswapd
1990 		 * should be able to balance it without having to
1991 		 * write pages from its LRU list.
1992 		 *
1993 		 * This may look like it could increase pressure on
1994 		 * lower zones by failing allocations in higher zones
1995 		 * before they are full.  But the pages that do spill
1996 		 * over are limited as the lower zones are protected
1997 		 * by this very same mechanism.  It should not become
1998 		 * a practical burden to them.
1999 		 *
2000 		 * XXX: For now, allow allocations to potentially
2001 		 * exceed the per-zone dirty limit in the slowpath
2002 		 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2003 		 * which is important when on a NUMA setup the allowed
2004 		 * zones are together not big enough to reach the
2005 		 * global limit.  The proper fix for these situations
2006 		 * will require awareness of zones in the
2007 		 * dirty-throttling and the flusher threads.
2008 		 */
2009 		if (consider_zone_dirty && !zone_dirty_ok(zone))
2010 			continue;
2011 
2012 		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2013 		if (!zone_watermark_ok(zone, order, mark,
2014 				       classzone_idx, alloc_flags)) {
2015 			int ret;
2016 
2017 			/* Checked here to keep the fast path fast */
2018 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2019 			if (alloc_flags & ALLOC_NO_WATERMARKS)
2020 				goto try_this_zone;
2021 
2022 			if (IS_ENABLED(CONFIG_NUMA) &&
2023 					!did_zlc_setup && nr_online_nodes > 1) {
2024 				/*
2025 				 * we do zlc_setup if there are multiple nodes
2026 				 * and before considering the first zone allowed
2027 				 * by the cpuset.
2028 				 */
2029 				allowednodes = zlc_setup(zonelist, alloc_flags);
2030 				zlc_active = 1;
2031 				did_zlc_setup = 1;
2032 			}
2033 
2034 			if (zone_reclaim_mode == 0 ||
2035 			    !zone_allows_reclaim(preferred_zone, zone))
2036 				goto this_zone_full;
2037 
2038 			/*
2039 			 * As we may have just activated ZLC, check if the first
2040 			 * eligible zone has failed zone_reclaim recently.
2041 			 */
2042 			if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2043 				!zlc_zone_worth_trying(zonelist, z, allowednodes))
2044 				continue;
2045 
2046 			ret = zone_reclaim(zone, gfp_mask, order);
2047 			switch (ret) {
2048 			case ZONE_RECLAIM_NOSCAN:
2049 				/* did not scan */
2050 				continue;
2051 			case ZONE_RECLAIM_FULL:
2052 				/* scanned but unreclaimable */
2053 				continue;
2054 			default:
2055 				/* did we reclaim enough */
2056 				if (zone_watermark_ok(zone, order, mark,
2057 						classzone_idx, alloc_flags))
2058 					goto try_this_zone;
2059 
2060 				/*
2061 				 * Failed to reclaim enough to meet watermark.
2062 				 * Only mark the zone full if checking the min
2063 				 * watermark or if we failed to reclaim just
2064 				 * 1<<order pages or else the page allocator
2065 				 * fastpath will prematurely mark zones full
2066 				 * when the watermark is between the low and
2067 				 * min watermarks.
2068 				 */
2069 				if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2070 				    ret == ZONE_RECLAIM_SOME)
2071 					goto this_zone_full;
2072 
2073 				continue;
2074 			}
2075 		}
2076 
2077 try_this_zone:
2078 		page = buffered_rmqueue(preferred_zone, zone, order,
2079 						gfp_mask, migratetype);
2080 		if (page)
2081 			break;
2082 this_zone_full:
2083 		if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
2084 			zlc_mark_zone_full(zonelist, z);
2085 	}
2086 
2087 	if (page) {
2088 		/*
2089 		 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2090 		 * necessary to allocate the page. The expectation is
2091 		 * that the caller is taking steps that will free more
2092 		 * memory. The caller should avoid the page being used
2093 		 * for !PFMEMALLOC purposes.
2094 		 */
2095 		page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
2096 		return page;
2097 	}
2098 
2099 	/*
2100 	 * The first pass makes sure allocations are spread fairly within the
2101 	 * local node.  However, the local node might have free pages left
2102 	 * after the fairness batches are exhausted, and remote zones haven't
2103 	 * even been considered yet.  Try once more without fairness, and
2104 	 * include remote zones now, before entering the slowpath and waking
2105 	 * kswapd: prefer spilling to a remote zone over swapping locally.
2106 	 */
2107 	if (alloc_flags & ALLOC_FAIR) {
2108 		alloc_flags &= ~ALLOC_FAIR;
2109 		if (nr_fair_skipped) {
2110 			zonelist_rescan = true;
2111 			reset_alloc_batches(preferred_zone);
2112 		}
2113 		if (nr_online_nodes > 1)
2114 			zonelist_rescan = true;
2115 	}
2116 
2117 	if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2118 		/* Disable zlc cache for second zonelist scan */
2119 		zlc_active = 0;
2120 		zonelist_rescan = true;
2121 	}
2122 
2123 	if (zonelist_rescan)
2124 		goto zonelist_scan;
2125 
2126 	return NULL;
2127 }
2128 
2129 /*
2130  * Large machines with many possible nodes should not always dump per-node
2131  * meminfo in irq context.
2132  */
2133 static inline bool should_suppress_show_mem(void)
2134 {
2135 	bool ret = false;
2136 
2137 #if NODES_SHIFT > 8
2138 	ret = in_interrupt();
2139 #endif
2140 	return ret;
2141 }
2142 
2143 static DEFINE_RATELIMIT_STATE(nopage_rs,
2144 		DEFAULT_RATELIMIT_INTERVAL,
2145 		DEFAULT_RATELIMIT_BURST);
2146 
2147 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2148 {
2149 	unsigned int filter = SHOW_MEM_FILTER_NODES;
2150 
2151 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2152 	    debug_guardpage_minorder() > 0)
2153 		return;
2154 
2155 	/*
2156 	 * This documents exceptions given to allocations in certain
2157 	 * contexts that are allowed to allocate outside current's set
2158 	 * of allowed nodes.
2159 	 */
2160 	if (!(gfp_mask & __GFP_NOMEMALLOC))
2161 		if (test_thread_flag(TIF_MEMDIE) ||
2162 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
2163 			filter &= ~SHOW_MEM_FILTER_NODES;
2164 	if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2165 		filter &= ~SHOW_MEM_FILTER_NODES;
2166 
2167 	if (fmt) {
2168 		struct va_format vaf;
2169 		va_list args;
2170 
2171 		va_start(args, fmt);
2172 
2173 		vaf.fmt = fmt;
2174 		vaf.va = &args;
2175 
2176 		pr_warn("%pV", &vaf);
2177 
2178 		va_end(args);
2179 	}
2180 
2181 	pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2182 		current->comm, order, gfp_mask);
2183 
2184 	dump_stack();
2185 	if (!should_suppress_show_mem())
2186 		show_mem(filter);
2187 }
2188 
2189 static inline int
2190 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2191 				unsigned long did_some_progress,
2192 				unsigned long pages_reclaimed)
2193 {
2194 	/* Do not loop if specifically requested */
2195 	if (gfp_mask & __GFP_NORETRY)
2196 		return 0;
2197 
2198 	/* Always retry if specifically requested */
2199 	if (gfp_mask & __GFP_NOFAIL)
2200 		return 1;
2201 
2202 	/*
2203 	 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2204 	 * making forward progress without invoking OOM. Suspend also disables
2205 	 * storage devices so kswapd will not help. Bail if we are suspending.
2206 	 */
2207 	if (!did_some_progress && pm_suspended_storage())
2208 		return 0;
2209 
2210 	/*
2211 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2212 	 * means __GFP_NOFAIL, but that may not be true in other
2213 	 * implementations.
2214 	 */
2215 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
2216 		return 1;
2217 
2218 	/*
2219 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2220 	 * specified, then we retry until we no longer reclaim any pages
2221 	 * (above), or we've reclaimed an order of pages at least as
2222 	 * large as the allocation's order. In both cases, if the
2223 	 * allocation still fails, we stop retrying.
2224 	 */
2225 	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2226 		return 1;
2227 
2228 	return 0;
2229 }
2230 
2231 static inline struct page *
2232 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2233 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2234 	nodemask_t *nodemask, struct zone *preferred_zone,
2235 	int classzone_idx, int migratetype)
2236 {
2237 	struct page *page;
2238 
2239 	/* Acquire the per-zone oom lock for each zone */
2240 	if (!oom_zonelist_trylock(zonelist, gfp_mask)) {
2241 		schedule_timeout_uninterruptible(1);
2242 		return NULL;
2243 	}
2244 
2245 	/*
2246 	 * PM-freezer should be notified that there might be an OOM killer on
2247 	 * its way to kill and wake somebody up. This is too early and we might
2248 	 * end up not killing anything but false positives are acceptable.
2249 	 * See freeze_processes.
2250 	 */
2251 	note_oom_kill();
2252 
2253 	/*
2254 	 * Go through the zonelist yet one more time, keep very high watermark
2255 	 * here, this is only to catch a parallel oom killing, we must fail if
2256 	 * we're still under heavy pressure.
2257 	 */
2258 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2259 		order, zonelist, high_zoneidx,
2260 		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2261 		preferred_zone, classzone_idx, migratetype);
2262 	if (page)
2263 		goto out;
2264 
2265 	if (!(gfp_mask & __GFP_NOFAIL)) {
2266 		/* The OOM killer will not help higher order allocs */
2267 		if (order > PAGE_ALLOC_COSTLY_ORDER)
2268 			goto out;
2269 		/* The OOM killer does not needlessly kill tasks for lowmem */
2270 		if (high_zoneidx < ZONE_NORMAL)
2271 			goto out;
2272 		/*
2273 		 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2274 		 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2275 		 * The caller should handle page allocation failure by itself if
2276 		 * it specifies __GFP_THISNODE.
2277 		 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2278 		 */
2279 		if (gfp_mask & __GFP_THISNODE)
2280 			goto out;
2281 	}
2282 	/* Exhausted what can be done so it's blamo time */
2283 	out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2284 
2285 out:
2286 	oom_zonelist_unlock(zonelist, gfp_mask);
2287 	return page;
2288 }
2289 
2290 #ifdef CONFIG_COMPACTION
2291 /* Try memory compaction for high-order allocations before reclaim */
2292 static struct page *
2293 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2294 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2295 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2296 	int classzone_idx, int migratetype, enum migrate_mode mode,
2297 	int *contended_compaction, bool *deferred_compaction)
2298 {
2299 	struct zone *last_compact_zone = NULL;
2300 	unsigned long compact_result;
2301 	struct page *page;
2302 
2303 	if (!order)
2304 		return NULL;
2305 
2306 	current->flags |= PF_MEMALLOC;
2307 	compact_result = try_to_compact_pages(zonelist, order, gfp_mask,
2308 						nodemask, mode,
2309 						contended_compaction,
2310 						&last_compact_zone);
2311 	current->flags &= ~PF_MEMALLOC;
2312 
2313 	switch (compact_result) {
2314 	case COMPACT_DEFERRED:
2315 		*deferred_compaction = true;
2316 		/* fall-through */
2317 	case COMPACT_SKIPPED:
2318 		return NULL;
2319 	default:
2320 		break;
2321 	}
2322 
2323 	/*
2324 	 * At least in one zone compaction wasn't deferred or skipped, so let's
2325 	 * count a compaction stall
2326 	 */
2327 	count_vm_event(COMPACTSTALL);
2328 
2329 	/* Page migration frees to the PCP lists but we want merging */
2330 	drain_pages(get_cpu());
2331 	put_cpu();
2332 
2333 	page = get_page_from_freelist(gfp_mask, nodemask,
2334 			order, zonelist, high_zoneidx,
2335 			alloc_flags & ~ALLOC_NO_WATERMARKS,
2336 			preferred_zone, classzone_idx, migratetype);
2337 
2338 	if (page) {
2339 		struct zone *zone = page_zone(page);
2340 
2341 		zone->compact_blockskip_flush = false;
2342 		compaction_defer_reset(zone, order, true);
2343 		count_vm_event(COMPACTSUCCESS);
2344 		return page;
2345 	}
2346 
2347 	/*
2348 	 * last_compact_zone is where try_to_compact_pages thought allocation
2349 	 * should succeed, so it did not defer compaction. But here we know
2350 	 * that it didn't succeed, so we do the defer.
2351 	 */
2352 	if (last_compact_zone && mode != MIGRATE_ASYNC)
2353 		defer_compaction(last_compact_zone, order);
2354 
2355 	/*
2356 	 * It's bad if compaction run occurs and fails. The most likely reason
2357 	 * is that pages exist, but not enough to satisfy watermarks.
2358 	 */
2359 	count_vm_event(COMPACTFAIL);
2360 
2361 	cond_resched();
2362 
2363 	return NULL;
2364 }
2365 #else
2366 static inline struct page *
2367 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2368 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2369 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2370 	int classzone_idx, int migratetype, enum migrate_mode mode,
2371 	int *contended_compaction, bool *deferred_compaction)
2372 {
2373 	return NULL;
2374 }
2375 #endif /* CONFIG_COMPACTION */
2376 
2377 /* Perform direct synchronous page reclaim */
2378 static int
2379 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2380 		  nodemask_t *nodemask)
2381 {
2382 	struct reclaim_state reclaim_state;
2383 	int progress;
2384 
2385 	cond_resched();
2386 
2387 	/* We now go into synchronous reclaim */
2388 	cpuset_memory_pressure_bump();
2389 	current->flags |= PF_MEMALLOC;
2390 	lockdep_set_current_reclaim_state(gfp_mask);
2391 	reclaim_state.reclaimed_slab = 0;
2392 	current->reclaim_state = &reclaim_state;
2393 
2394 	progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2395 
2396 	current->reclaim_state = NULL;
2397 	lockdep_clear_current_reclaim_state();
2398 	current->flags &= ~PF_MEMALLOC;
2399 
2400 	cond_resched();
2401 
2402 	return progress;
2403 }
2404 
2405 /* The really slow allocator path where we enter direct reclaim */
2406 static inline struct page *
2407 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2408 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2409 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2410 	int classzone_idx, int migratetype, unsigned long *did_some_progress)
2411 {
2412 	struct page *page = NULL;
2413 	bool drained = false;
2414 
2415 	*did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2416 					       nodemask);
2417 	if (unlikely(!(*did_some_progress)))
2418 		return NULL;
2419 
2420 	/* After successful reclaim, reconsider all zones for allocation */
2421 	if (IS_ENABLED(CONFIG_NUMA))
2422 		zlc_clear_zones_full(zonelist);
2423 
2424 retry:
2425 	page = get_page_from_freelist(gfp_mask, nodemask, order,
2426 					zonelist, high_zoneidx,
2427 					alloc_flags & ~ALLOC_NO_WATERMARKS,
2428 					preferred_zone, classzone_idx,
2429 					migratetype);
2430 
2431 	/*
2432 	 * If an allocation failed after direct reclaim, it could be because
2433 	 * pages are pinned on the per-cpu lists. Drain them and try again
2434 	 */
2435 	if (!page && !drained) {
2436 		drain_all_pages();
2437 		drained = true;
2438 		goto retry;
2439 	}
2440 
2441 	return page;
2442 }
2443 
2444 /*
2445  * This is called in the allocator slow-path if the allocation request is of
2446  * sufficient urgency to ignore watermarks and take other desperate measures
2447  */
2448 static inline struct page *
2449 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2450 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2451 	nodemask_t *nodemask, struct zone *preferred_zone,
2452 	int classzone_idx, int migratetype)
2453 {
2454 	struct page *page;
2455 
2456 	do {
2457 		page = get_page_from_freelist(gfp_mask, nodemask, order,
2458 			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2459 			preferred_zone, classzone_idx, migratetype);
2460 
2461 		if (!page && gfp_mask & __GFP_NOFAIL)
2462 			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2463 	} while (!page && (gfp_mask & __GFP_NOFAIL));
2464 
2465 	return page;
2466 }
2467 
2468 static void wake_all_kswapds(unsigned int order,
2469 			     struct zonelist *zonelist,
2470 			     enum zone_type high_zoneidx,
2471 			     struct zone *preferred_zone,
2472 			     nodemask_t *nodemask)
2473 {
2474 	struct zoneref *z;
2475 	struct zone *zone;
2476 
2477 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2478 						high_zoneidx, nodemask)
2479 		wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2480 }
2481 
2482 static inline int
2483 gfp_to_alloc_flags(gfp_t gfp_mask)
2484 {
2485 	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2486 	const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
2487 
2488 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2489 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2490 
2491 	/*
2492 	 * The caller may dip into page reserves a bit more if the caller
2493 	 * cannot run direct reclaim, or if the caller has realtime scheduling
2494 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
2495 	 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
2496 	 */
2497 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2498 
2499 	if (atomic) {
2500 		/*
2501 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2502 		 * if it can't schedule.
2503 		 */
2504 		if (!(gfp_mask & __GFP_NOMEMALLOC))
2505 			alloc_flags |= ALLOC_HARDER;
2506 		/*
2507 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2508 		 * comment for __cpuset_node_allowed_softwall().
2509 		 */
2510 		alloc_flags &= ~ALLOC_CPUSET;
2511 	} else if (unlikely(rt_task(current)) && !in_interrupt())
2512 		alloc_flags |= ALLOC_HARDER;
2513 
2514 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2515 		if (gfp_mask & __GFP_MEMALLOC)
2516 			alloc_flags |= ALLOC_NO_WATERMARKS;
2517 		else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2518 			alloc_flags |= ALLOC_NO_WATERMARKS;
2519 		else if (!in_interrupt() &&
2520 				((current->flags & PF_MEMALLOC) ||
2521 				 unlikely(test_thread_flag(TIF_MEMDIE))))
2522 			alloc_flags |= ALLOC_NO_WATERMARKS;
2523 	}
2524 #ifdef CONFIG_CMA
2525 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2526 		alloc_flags |= ALLOC_CMA;
2527 #endif
2528 	return alloc_flags;
2529 }
2530 
2531 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2532 {
2533 	return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2534 }
2535 
2536 static inline struct page *
2537 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2538 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2539 	nodemask_t *nodemask, struct zone *preferred_zone,
2540 	int classzone_idx, int migratetype)
2541 {
2542 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2543 	struct page *page = NULL;
2544 	int alloc_flags;
2545 	unsigned long pages_reclaimed = 0;
2546 	unsigned long did_some_progress;
2547 	enum migrate_mode migration_mode = MIGRATE_ASYNC;
2548 	bool deferred_compaction = false;
2549 	int contended_compaction = COMPACT_CONTENDED_NONE;
2550 
2551 	/*
2552 	 * In the slowpath, we sanity check order to avoid ever trying to
2553 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2554 	 * be using allocators in order of preference for an area that is
2555 	 * too large.
2556 	 */
2557 	if (order >= MAX_ORDER) {
2558 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2559 		return NULL;
2560 	}
2561 
2562 	/*
2563 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2564 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2565 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2566 	 * using a larger set of nodes after it has established that the
2567 	 * allowed per node queues are empty and that nodes are
2568 	 * over allocated.
2569 	 */
2570 	if (IS_ENABLED(CONFIG_NUMA) &&
2571 	    (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2572 		goto nopage;
2573 
2574 restart:
2575 	if (!(gfp_mask & __GFP_NO_KSWAPD))
2576 		wake_all_kswapds(order, zonelist, high_zoneidx,
2577 				preferred_zone, nodemask);
2578 
2579 	/*
2580 	 * OK, we're below the kswapd watermark and have kicked background
2581 	 * reclaim. Now things get more complex, so set up alloc_flags according
2582 	 * to how we want to proceed.
2583 	 */
2584 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
2585 
2586 	/*
2587 	 * Find the true preferred zone if the allocation is unconstrained by
2588 	 * cpusets.
2589 	 */
2590 	if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) {
2591 		struct zoneref *preferred_zoneref;
2592 		preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
2593 				NULL, &preferred_zone);
2594 		classzone_idx = zonelist_zone_idx(preferred_zoneref);
2595 	}
2596 
2597 rebalance:
2598 	/* This is the last chance, in general, before the goto nopage. */
2599 	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2600 			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2601 			preferred_zone, classzone_idx, migratetype);
2602 	if (page)
2603 		goto got_pg;
2604 
2605 	/* Allocate without watermarks if the context allows */
2606 	if (alloc_flags & ALLOC_NO_WATERMARKS) {
2607 		/*
2608 		 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2609 		 * the allocation is high priority and these type of
2610 		 * allocations are system rather than user orientated
2611 		 */
2612 		zonelist = node_zonelist(numa_node_id(), gfp_mask);
2613 
2614 		page = __alloc_pages_high_priority(gfp_mask, order,
2615 				zonelist, high_zoneidx, nodemask,
2616 				preferred_zone, classzone_idx, migratetype);
2617 		if (page) {
2618 			goto got_pg;
2619 		}
2620 	}
2621 
2622 	/* Atomic allocations - we can't balance anything */
2623 	if (!wait) {
2624 		/*
2625 		 * All existing users of the deprecated __GFP_NOFAIL are
2626 		 * blockable, so warn of any new users that actually allow this
2627 		 * type of allocation to fail.
2628 		 */
2629 		WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
2630 		goto nopage;
2631 	}
2632 
2633 	/* Avoid recursion of direct reclaim */
2634 	if (current->flags & PF_MEMALLOC)
2635 		goto nopage;
2636 
2637 	/* Avoid allocations with no watermarks from looping endlessly */
2638 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2639 		goto nopage;
2640 
2641 	/*
2642 	 * Try direct compaction. The first pass is asynchronous. Subsequent
2643 	 * attempts after direct reclaim are synchronous
2644 	 */
2645 	page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2646 					high_zoneidx, nodemask, alloc_flags,
2647 					preferred_zone,
2648 					classzone_idx, migratetype,
2649 					migration_mode, &contended_compaction,
2650 					&deferred_compaction);
2651 	if (page)
2652 		goto got_pg;
2653 
2654 	/* Checks for THP-specific high-order allocations */
2655 	if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
2656 		/*
2657 		 * If compaction is deferred for high-order allocations, it is
2658 		 * because sync compaction recently failed. If this is the case
2659 		 * and the caller requested a THP allocation, we do not want
2660 		 * to heavily disrupt the system, so we fail the allocation
2661 		 * instead of entering direct reclaim.
2662 		 */
2663 		if (deferred_compaction)
2664 			goto nopage;
2665 
2666 		/*
2667 		 * In all zones where compaction was attempted (and not
2668 		 * deferred or skipped), lock contention has been detected.
2669 		 * For THP allocation we do not want to disrupt the others
2670 		 * so we fallback to base pages instead.
2671 		 */
2672 		if (contended_compaction == COMPACT_CONTENDED_LOCK)
2673 			goto nopage;
2674 
2675 		/*
2676 		 * If compaction was aborted due to need_resched(), we do not
2677 		 * want to further increase allocation latency, unless it is
2678 		 * khugepaged trying to collapse.
2679 		 */
2680 		if (contended_compaction == COMPACT_CONTENDED_SCHED
2681 			&& !(current->flags & PF_KTHREAD))
2682 			goto nopage;
2683 	}
2684 
2685 	/*
2686 	 * It can become very expensive to allocate transparent hugepages at
2687 	 * fault, so use asynchronous memory compaction for THP unless it is
2688 	 * khugepaged trying to collapse.
2689 	 */
2690 	if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
2691 						(current->flags & PF_KTHREAD))
2692 		migration_mode = MIGRATE_SYNC_LIGHT;
2693 
2694 	/* Try direct reclaim and then allocating */
2695 	page = __alloc_pages_direct_reclaim(gfp_mask, order,
2696 					zonelist, high_zoneidx,
2697 					nodemask,
2698 					alloc_flags, preferred_zone,
2699 					classzone_idx, migratetype,
2700 					&did_some_progress);
2701 	if (page)
2702 		goto got_pg;
2703 
2704 	/*
2705 	 * If we failed to make any progress reclaiming, then we are
2706 	 * running out of options and have to consider going OOM
2707 	 */
2708 	if (!did_some_progress) {
2709 		if (oom_gfp_allowed(gfp_mask)) {
2710 			if (oom_killer_disabled)
2711 				goto nopage;
2712 			/* Coredumps can quickly deplete all memory reserves */
2713 			if ((current->flags & PF_DUMPCORE) &&
2714 			    !(gfp_mask & __GFP_NOFAIL))
2715 				goto nopage;
2716 			page = __alloc_pages_may_oom(gfp_mask, order,
2717 					zonelist, high_zoneidx,
2718 					nodemask, preferred_zone,
2719 					classzone_idx, migratetype);
2720 			if (page)
2721 				goto got_pg;
2722 
2723 			if (!(gfp_mask & __GFP_NOFAIL)) {
2724 				/*
2725 				 * The oom killer is not called for high-order
2726 				 * allocations that may fail, so if no progress
2727 				 * is being made, there are no other options and
2728 				 * retrying is unlikely to help.
2729 				 */
2730 				if (order > PAGE_ALLOC_COSTLY_ORDER)
2731 					goto nopage;
2732 				/*
2733 				 * The oom killer is not called for lowmem
2734 				 * allocations to prevent needlessly killing
2735 				 * innocent tasks.
2736 				 */
2737 				if (high_zoneidx < ZONE_NORMAL)
2738 					goto nopage;
2739 			}
2740 
2741 			goto restart;
2742 		}
2743 	}
2744 
2745 	/* Check if we should retry the allocation */
2746 	pages_reclaimed += did_some_progress;
2747 	if (should_alloc_retry(gfp_mask, order, did_some_progress,
2748 						pages_reclaimed)) {
2749 		/* Wait for some write requests to complete then retry */
2750 		wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2751 		goto rebalance;
2752 	} else {
2753 		/*
2754 		 * High-order allocations do not necessarily loop after
2755 		 * direct reclaim and reclaim/compaction depends on compaction
2756 		 * being called after reclaim so call directly if necessary
2757 		 */
2758 		page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2759 					high_zoneidx, nodemask, alloc_flags,
2760 					preferred_zone,
2761 					classzone_idx, migratetype,
2762 					migration_mode, &contended_compaction,
2763 					&deferred_compaction);
2764 		if (page)
2765 			goto got_pg;
2766 	}
2767 
2768 nopage:
2769 	warn_alloc_failed(gfp_mask, order, NULL);
2770 	return page;
2771 got_pg:
2772 	if (kmemcheck_enabled)
2773 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2774 
2775 	return page;
2776 }
2777 
2778 /*
2779  * This is the 'heart' of the zoned buddy allocator.
2780  */
2781 struct page *
2782 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2783 			struct zonelist *zonelist, nodemask_t *nodemask)
2784 {
2785 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2786 	struct zone *preferred_zone;
2787 	struct zoneref *preferred_zoneref;
2788 	struct page *page = NULL;
2789 	int migratetype = gfpflags_to_migratetype(gfp_mask);
2790 	unsigned int cpuset_mems_cookie;
2791 	int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
2792 	int classzone_idx;
2793 
2794 	gfp_mask &= gfp_allowed_mask;
2795 
2796 	lockdep_trace_alloc(gfp_mask);
2797 
2798 	might_sleep_if(gfp_mask & __GFP_WAIT);
2799 
2800 	if (should_fail_alloc_page(gfp_mask, order))
2801 		return NULL;
2802 
2803 	/*
2804 	 * Check the zones suitable for the gfp_mask contain at least one
2805 	 * valid zone. It's possible to have an empty zonelist as a result
2806 	 * of GFP_THISNODE and a memoryless node
2807 	 */
2808 	if (unlikely(!zonelist->_zonerefs->zone))
2809 		return NULL;
2810 
2811 	if (IS_ENABLED(CONFIG_CMA) && migratetype == MIGRATE_MOVABLE)
2812 		alloc_flags |= ALLOC_CMA;
2813 
2814 retry_cpuset:
2815 	cpuset_mems_cookie = read_mems_allowed_begin();
2816 
2817 	/* The preferred zone is used for statistics later */
2818 	preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
2819 				nodemask ? : &cpuset_current_mems_allowed,
2820 				&preferred_zone);
2821 	if (!preferred_zone)
2822 		goto out;
2823 	classzone_idx = zonelist_zone_idx(preferred_zoneref);
2824 
2825 	/* First allocation attempt */
2826 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2827 			zonelist, high_zoneidx, alloc_flags,
2828 			preferred_zone, classzone_idx, migratetype);
2829 	if (unlikely(!page)) {
2830 		/*
2831 		 * Runtime PM, block IO and its error handling path
2832 		 * can deadlock because I/O on the device might not
2833 		 * complete.
2834 		 */
2835 		gfp_mask = memalloc_noio_flags(gfp_mask);
2836 		page = __alloc_pages_slowpath(gfp_mask, order,
2837 				zonelist, high_zoneidx, nodemask,
2838 				preferred_zone, classzone_idx, migratetype);
2839 	}
2840 
2841 	trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2842 
2843 out:
2844 	/*
2845 	 * When updating a task's mems_allowed, it is possible to race with
2846 	 * parallel threads in such a way that an allocation can fail while
2847 	 * the mask is being updated. If a page allocation is about to fail,
2848 	 * check if the cpuset changed during allocation and if so, retry.
2849 	 */
2850 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2851 		goto retry_cpuset;
2852 
2853 	return page;
2854 }
2855 EXPORT_SYMBOL(__alloc_pages_nodemask);
2856 
2857 /*
2858  * Common helper functions.
2859  */
2860 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2861 {
2862 	struct page *page;
2863 
2864 	/*
2865 	 * __get_free_pages() returns a 32-bit address, which cannot represent
2866 	 * a highmem page
2867 	 */
2868 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2869 
2870 	page = alloc_pages(gfp_mask, order);
2871 	if (!page)
2872 		return 0;
2873 	return (unsigned long) page_address(page);
2874 }
2875 EXPORT_SYMBOL(__get_free_pages);
2876 
2877 unsigned long get_zeroed_page(gfp_t gfp_mask)
2878 {
2879 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2880 }
2881 EXPORT_SYMBOL(get_zeroed_page);
2882 
2883 void __free_pages(struct page *page, unsigned int order)
2884 {
2885 	if (put_page_testzero(page)) {
2886 		if (order == 0)
2887 			free_hot_cold_page(page, false);
2888 		else
2889 			__free_pages_ok(page, order);
2890 	}
2891 }
2892 
2893 EXPORT_SYMBOL(__free_pages);
2894 
2895 void free_pages(unsigned long addr, unsigned int order)
2896 {
2897 	if (addr != 0) {
2898 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2899 		__free_pages(virt_to_page((void *)addr), order);
2900 	}
2901 }
2902 
2903 EXPORT_SYMBOL(free_pages);
2904 
2905 /*
2906  * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2907  * of the current memory cgroup.
2908  *
2909  * It should be used when the caller would like to use kmalloc, but since the
2910  * allocation is large, it has to fall back to the page allocator.
2911  */
2912 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
2913 {
2914 	struct page *page;
2915 	struct mem_cgroup *memcg = NULL;
2916 
2917 	if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2918 		return NULL;
2919 	page = alloc_pages(gfp_mask, order);
2920 	memcg_kmem_commit_charge(page, memcg, order);
2921 	return page;
2922 }
2923 
2924 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
2925 {
2926 	struct page *page;
2927 	struct mem_cgroup *memcg = NULL;
2928 
2929 	if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2930 		return NULL;
2931 	page = alloc_pages_node(nid, gfp_mask, order);
2932 	memcg_kmem_commit_charge(page, memcg, order);
2933 	return page;
2934 }
2935 
2936 /*
2937  * __free_kmem_pages and free_kmem_pages will free pages allocated with
2938  * alloc_kmem_pages.
2939  */
2940 void __free_kmem_pages(struct page *page, unsigned int order)
2941 {
2942 	memcg_kmem_uncharge_pages(page, order);
2943 	__free_pages(page, order);
2944 }
2945 
2946 void free_kmem_pages(unsigned long addr, unsigned int order)
2947 {
2948 	if (addr != 0) {
2949 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2950 		__free_kmem_pages(virt_to_page((void *)addr), order);
2951 	}
2952 }
2953 
2954 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2955 {
2956 	if (addr) {
2957 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
2958 		unsigned long used = addr + PAGE_ALIGN(size);
2959 
2960 		split_page(virt_to_page((void *)addr), order);
2961 		while (used < alloc_end) {
2962 			free_page(used);
2963 			used += PAGE_SIZE;
2964 		}
2965 	}
2966 	return (void *)addr;
2967 }
2968 
2969 /**
2970  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2971  * @size: the number of bytes to allocate
2972  * @gfp_mask: GFP flags for the allocation
2973  *
2974  * This function is similar to alloc_pages(), except that it allocates the
2975  * minimum number of pages to satisfy the request.  alloc_pages() can only
2976  * allocate memory in power-of-two pages.
2977  *
2978  * This function is also limited by MAX_ORDER.
2979  *
2980  * Memory allocated by this function must be released by free_pages_exact().
2981  */
2982 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2983 {
2984 	unsigned int order = get_order(size);
2985 	unsigned long addr;
2986 
2987 	addr = __get_free_pages(gfp_mask, order);
2988 	return make_alloc_exact(addr, order, size);
2989 }
2990 EXPORT_SYMBOL(alloc_pages_exact);
2991 
2992 /**
2993  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2994  *			   pages on a node.
2995  * @nid: the preferred node ID where memory should be allocated
2996  * @size: the number of bytes to allocate
2997  * @gfp_mask: GFP flags for the allocation
2998  *
2999  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3000  * back.
3001  * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3002  * but is not exact.
3003  */
3004 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3005 {
3006 	unsigned order = get_order(size);
3007 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
3008 	if (!p)
3009 		return NULL;
3010 	return make_alloc_exact((unsigned long)page_address(p), order, size);
3011 }
3012 
3013 /**
3014  * free_pages_exact - release memory allocated via alloc_pages_exact()
3015  * @virt: the value returned by alloc_pages_exact.
3016  * @size: size of allocation, same value as passed to alloc_pages_exact().
3017  *
3018  * Release the memory allocated by a previous call to alloc_pages_exact.
3019  */
3020 void free_pages_exact(void *virt, size_t size)
3021 {
3022 	unsigned long addr = (unsigned long)virt;
3023 	unsigned long end = addr + PAGE_ALIGN(size);
3024 
3025 	while (addr < end) {
3026 		free_page(addr);
3027 		addr += PAGE_SIZE;
3028 	}
3029 }
3030 EXPORT_SYMBOL(free_pages_exact);
3031 
3032 /**
3033  * nr_free_zone_pages - count number of pages beyond high watermark
3034  * @offset: The zone index of the highest zone
3035  *
3036  * nr_free_zone_pages() counts the number of counts pages which are beyond the
3037  * high watermark within all zones at or below a given zone index.  For each
3038  * zone, the number of pages is calculated as:
3039  *     managed_pages - high_pages
3040  */
3041 static unsigned long nr_free_zone_pages(int offset)
3042 {
3043 	struct zoneref *z;
3044 	struct zone *zone;
3045 
3046 	/* Just pick one node, since fallback list is circular */
3047 	unsigned long sum = 0;
3048 
3049 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3050 
3051 	for_each_zone_zonelist(zone, z, zonelist, offset) {
3052 		unsigned long size = zone->managed_pages;
3053 		unsigned long high = high_wmark_pages(zone);
3054 		if (size > high)
3055 			sum += size - high;
3056 	}
3057 
3058 	return sum;
3059 }
3060 
3061 /**
3062  * nr_free_buffer_pages - count number of pages beyond high watermark
3063  *
3064  * nr_free_buffer_pages() counts the number of pages which are beyond the high
3065  * watermark within ZONE_DMA and ZONE_NORMAL.
3066  */
3067 unsigned long nr_free_buffer_pages(void)
3068 {
3069 	return nr_free_zone_pages(gfp_zone(GFP_USER));
3070 }
3071 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3072 
3073 /**
3074  * nr_free_pagecache_pages - count number of pages beyond high watermark
3075  *
3076  * nr_free_pagecache_pages() counts the number of pages which are beyond the
3077  * high watermark within all zones.
3078  */
3079 unsigned long nr_free_pagecache_pages(void)
3080 {
3081 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3082 }
3083 
3084 static inline void show_node(struct zone *zone)
3085 {
3086 	if (IS_ENABLED(CONFIG_NUMA))
3087 		printk("Node %d ", zone_to_nid(zone));
3088 }
3089 
3090 void si_meminfo(struct sysinfo *val)
3091 {
3092 	val->totalram = totalram_pages;
3093 	val->sharedram = global_page_state(NR_SHMEM);
3094 	val->freeram = global_page_state(NR_FREE_PAGES);
3095 	val->bufferram = nr_blockdev_pages();
3096 	val->totalhigh = totalhigh_pages;
3097 	val->freehigh = nr_free_highpages();
3098 	val->mem_unit = PAGE_SIZE;
3099 }
3100 
3101 EXPORT_SYMBOL(si_meminfo);
3102 
3103 #ifdef CONFIG_NUMA
3104 void si_meminfo_node(struct sysinfo *val, int nid)
3105 {
3106 	int zone_type;		/* needs to be signed */
3107 	unsigned long managed_pages = 0;
3108 	pg_data_t *pgdat = NODE_DATA(nid);
3109 
3110 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3111 		managed_pages += pgdat->node_zones[zone_type].managed_pages;
3112 	val->totalram = managed_pages;
3113 	val->sharedram = node_page_state(nid, NR_SHMEM);
3114 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
3115 #ifdef CONFIG_HIGHMEM
3116 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3117 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3118 			NR_FREE_PAGES);
3119 #else
3120 	val->totalhigh = 0;
3121 	val->freehigh = 0;
3122 #endif
3123 	val->mem_unit = PAGE_SIZE;
3124 }
3125 #endif
3126 
3127 /*
3128  * Determine whether the node should be displayed or not, depending on whether
3129  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3130  */
3131 bool skip_free_areas_node(unsigned int flags, int nid)
3132 {
3133 	bool ret = false;
3134 	unsigned int cpuset_mems_cookie;
3135 
3136 	if (!(flags & SHOW_MEM_FILTER_NODES))
3137 		goto out;
3138 
3139 	do {
3140 		cpuset_mems_cookie = read_mems_allowed_begin();
3141 		ret = !node_isset(nid, cpuset_current_mems_allowed);
3142 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
3143 out:
3144 	return ret;
3145 }
3146 
3147 #define K(x) ((x) << (PAGE_SHIFT-10))
3148 
3149 static void show_migration_types(unsigned char type)
3150 {
3151 	static const char types[MIGRATE_TYPES] = {
3152 		[MIGRATE_UNMOVABLE]	= 'U',
3153 		[MIGRATE_RECLAIMABLE]	= 'E',
3154 		[MIGRATE_MOVABLE]	= 'M',
3155 		[MIGRATE_RESERVE]	= 'R',
3156 #ifdef CONFIG_CMA
3157 		[MIGRATE_CMA]		= 'C',
3158 #endif
3159 #ifdef CONFIG_MEMORY_ISOLATION
3160 		[MIGRATE_ISOLATE]	= 'I',
3161 #endif
3162 	};
3163 	char tmp[MIGRATE_TYPES + 1];
3164 	char *p = tmp;
3165 	int i;
3166 
3167 	for (i = 0; i < MIGRATE_TYPES; i++) {
3168 		if (type & (1 << i))
3169 			*p++ = types[i];
3170 	}
3171 
3172 	*p = '\0';
3173 	printk("(%s) ", tmp);
3174 }
3175 
3176 /*
3177  * Show free area list (used inside shift_scroll-lock stuff)
3178  * We also calculate the percentage fragmentation. We do this by counting the
3179  * memory on each free list with the exception of the first item on the list.
3180  * Suppresses nodes that are not allowed by current's cpuset if
3181  * SHOW_MEM_FILTER_NODES is passed.
3182  */
3183 void show_free_areas(unsigned int filter)
3184 {
3185 	int cpu;
3186 	struct zone *zone;
3187 
3188 	for_each_populated_zone(zone) {
3189 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3190 			continue;
3191 		show_node(zone);
3192 		printk("%s per-cpu:\n", zone->name);
3193 
3194 		for_each_online_cpu(cpu) {
3195 			struct per_cpu_pageset *pageset;
3196 
3197 			pageset = per_cpu_ptr(zone->pageset, cpu);
3198 
3199 			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3200 			       cpu, pageset->pcp.high,
3201 			       pageset->pcp.batch, pageset->pcp.count);
3202 		}
3203 	}
3204 
3205 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3206 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3207 		" unevictable:%lu"
3208 		" dirty:%lu writeback:%lu unstable:%lu\n"
3209 		" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3210 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3211 		" free_cma:%lu\n",
3212 		global_page_state(NR_ACTIVE_ANON),
3213 		global_page_state(NR_INACTIVE_ANON),
3214 		global_page_state(NR_ISOLATED_ANON),
3215 		global_page_state(NR_ACTIVE_FILE),
3216 		global_page_state(NR_INACTIVE_FILE),
3217 		global_page_state(NR_ISOLATED_FILE),
3218 		global_page_state(NR_UNEVICTABLE),
3219 		global_page_state(NR_FILE_DIRTY),
3220 		global_page_state(NR_WRITEBACK),
3221 		global_page_state(NR_UNSTABLE_NFS),
3222 		global_page_state(NR_FREE_PAGES),
3223 		global_page_state(NR_SLAB_RECLAIMABLE),
3224 		global_page_state(NR_SLAB_UNRECLAIMABLE),
3225 		global_page_state(NR_FILE_MAPPED),
3226 		global_page_state(NR_SHMEM),
3227 		global_page_state(NR_PAGETABLE),
3228 		global_page_state(NR_BOUNCE),
3229 		global_page_state(NR_FREE_CMA_PAGES));
3230 
3231 	for_each_populated_zone(zone) {
3232 		int i;
3233 
3234 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3235 			continue;
3236 		show_node(zone);
3237 		printk("%s"
3238 			" free:%lukB"
3239 			" min:%lukB"
3240 			" low:%lukB"
3241 			" high:%lukB"
3242 			" active_anon:%lukB"
3243 			" inactive_anon:%lukB"
3244 			" active_file:%lukB"
3245 			" inactive_file:%lukB"
3246 			" unevictable:%lukB"
3247 			" isolated(anon):%lukB"
3248 			" isolated(file):%lukB"
3249 			" present:%lukB"
3250 			" managed:%lukB"
3251 			" mlocked:%lukB"
3252 			" dirty:%lukB"
3253 			" writeback:%lukB"
3254 			" mapped:%lukB"
3255 			" shmem:%lukB"
3256 			" slab_reclaimable:%lukB"
3257 			" slab_unreclaimable:%lukB"
3258 			" kernel_stack:%lukB"
3259 			" pagetables:%lukB"
3260 			" unstable:%lukB"
3261 			" bounce:%lukB"
3262 			" free_cma:%lukB"
3263 			" writeback_tmp:%lukB"
3264 			" pages_scanned:%lu"
3265 			" all_unreclaimable? %s"
3266 			"\n",
3267 			zone->name,
3268 			K(zone_page_state(zone, NR_FREE_PAGES)),
3269 			K(min_wmark_pages(zone)),
3270 			K(low_wmark_pages(zone)),
3271 			K(high_wmark_pages(zone)),
3272 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
3273 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
3274 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
3275 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
3276 			K(zone_page_state(zone, NR_UNEVICTABLE)),
3277 			K(zone_page_state(zone, NR_ISOLATED_ANON)),
3278 			K(zone_page_state(zone, NR_ISOLATED_FILE)),
3279 			K(zone->present_pages),
3280 			K(zone->managed_pages),
3281 			K(zone_page_state(zone, NR_MLOCK)),
3282 			K(zone_page_state(zone, NR_FILE_DIRTY)),
3283 			K(zone_page_state(zone, NR_WRITEBACK)),
3284 			K(zone_page_state(zone, NR_FILE_MAPPED)),
3285 			K(zone_page_state(zone, NR_SHMEM)),
3286 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3287 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3288 			zone_page_state(zone, NR_KERNEL_STACK) *
3289 				THREAD_SIZE / 1024,
3290 			K(zone_page_state(zone, NR_PAGETABLE)),
3291 			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3292 			K(zone_page_state(zone, NR_BOUNCE)),
3293 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3294 			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3295 			K(zone_page_state(zone, NR_PAGES_SCANNED)),
3296 			(!zone_reclaimable(zone) ? "yes" : "no")
3297 			);
3298 		printk("lowmem_reserve[]:");
3299 		for (i = 0; i < MAX_NR_ZONES; i++)
3300 			printk(" %ld", zone->lowmem_reserve[i]);
3301 		printk("\n");
3302 	}
3303 
3304 	for_each_populated_zone(zone) {
3305 		unsigned long nr[MAX_ORDER], flags, order, total = 0;
3306 		unsigned char types[MAX_ORDER];
3307 
3308 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3309 			continue;
3310 		show_node(zone);
3311 		printk("%s: ", zone->name);
3312 
3313 		spin_lock_irqsave(&zone->lock, flags);
3314 		for (order = 0; order < MAX_ORDER; order++) {
3315 			struct free_area *area = &zone->free_area[order];
3316 			int type;
3317 
3318 			nr[order] = area->nr_free;
3319 			total += nr[order] << order;
3320 
3321 			types[order] = 0;
3322 			for (type = 0; type < MIGRATE_TYPES; type++) {
3323 				if (!list_empty(&area->free_list[type]))
3324 					types[order] |= 1 << type;
3325 			}
3326 		}
3327 		spin_unlock_irqrestore(&zone->lock, flags);
3328 		for (order = 0; order < MAX_ORDER; order++) {
3329 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
3330 			if (nr[order])
3331 				show_migration_types(types[order]);
3332 		}
3333 		printk("= %lukB\n", K(total));
3334 	}
3335 
3336 	hugetlb_show_meminfo();
3337 
3338 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3339 
3340 	show_swap_cache_info();
3341 }
3342 
3343 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3344 {
3345 	zoneref->zone = zone;
3346 	zoneref->zone_idx = zone_idx(zone);
3347 }
3348 
3349 /*
3350  * Builds allocation fallback zone lists.
3351  *
3352  * Add all populated zones of a node to the zonelist.
3353  */
3354 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3355 				int nr_zones)
3356 {
3357 	struct zone *zone;
3358 	enum zone_type zone_type = MAX_NR_ZONES;
3359 
3360 	do {
3361 		zone_type--;
3362 		zone = pgdat->node_zones + zone_type;
3363 		if (populated_zone(zone)) {
3364 			zoneref_set_zone(zone,
3365 				&zonelist->_zonerefs[nr_zones++]);
3366 			check_highest_zone(zone_type);
3367 		}
3368 	} while (zone_type);
3369 
3370 	return nr_zones;
3371 }
3372 
3373 
3374 /*
3375  *  zonelist_order:
3376  *  0 = automatic detection of better ordering.
3377  *  1 = order by ([node] distance, -zonetype)
3378  *  2 = order by (-zonetype, [node] distance)
3379  *
3380  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3381  *  the same zonelist. So only NUMA can configure this param.
3382  */
3383 #define ZONELIST_ORDER_DEFAULT  0
3384 #define ZONELIST_ORDER_NODE     1
3385 #define ZONELIST_ORDER_ZONE     2
3386 
3387 /* zonelist order in the kernel.
3388  * set_zonelist_order() will set this to NODE or ZONE.
3389  */
3390 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3391 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3392 
3393 
3394 #ifdef CONFIG_NUMA
3395 /* The value user specified ....changed by config */
3396 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3397 /* string for sysctl */
3398 #define NUMA_ZONELIST_ORDER_LEN	16
3399 char numa_zonelist_order[16] = "default";
3400 
3401 /*
3402  * interface for configure zonelist ordering.
3403  * command line option "numa_zonelist_order"
3404  *	= "[dD]efault	- default, automatic configuration.
3405  *	= "[nN]ode 	- order by node locality, then by zone within node
3406  *	= "[zZ]one      - order by zone, then by locality within zone
3407  */
3408 
3409 static int __parse_numa_zonelist_order(char *s)
3410 {
3411 	if (*s == 'd' || *s == 'D') {
3412 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3413 	} else if (*s == 'n' || *s == 'N') {
3414 		user_zonelist_order = ZONELIST_ORDER_NODE;
3415 	} else if (*s == 'z' || *s == 'Z') {
3416 		user_zonelist_order = ZONELIST_ORDER_ZONE;
3417 	} else {
3418 		printk(KERN_WARNING
3419 			"Ignoring invalid numa_zonelist_order value:  "
3420 			"%s\n", s);
3421 		return -EINVAL;
3422 	}
3423 	return 0;
3424 }
3425 
3426 static __init int setup_numa_zonelist_order(char *s)
3427 {
3428 	int ret;
3429 
3430 	if (!s)
3431 		return 0;
3432 
3433 	ret = __parse_numa_zonelist_order(s);
3434 	if (ret == 0)
3435 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3436 
3437 	return ret;
3438 }
3439 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3440 
3441 /*
3442  * sysctl handler for numa_zonelist_order
3443  */
3444 int numa_zonelist_order_handler(struct ctl_table *table, int write,
3445 		void __user *buffer, size_t *length,
3446 		loff_t *ppos)
3447 {
3448 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
3449 	int ret;
3450 	static DEFINE_MUTEX(zl_order_mutex);
3451 
3452 	mutex_lock(&zl_order_mutex);
3453 	if (write) {
3454 		if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3455 			ret = -EINVAL;
3456 			goto out;
3457 		}
3458 		strcpy(saved_string, (char *)table->data);
3459 	}
3460 	ret = proc_dostring(table, write, buffer, length, ppos);
3461 	if (ret)
3462 		goto out;
3463 	if (write) {
3464 		int oldval = user_zonelist_order;
3465 
3466 		ret = __parse_numa_zonelist_order((char *)table->data);
3467 		if (ret) {
3468 			/*
3469 			 * bogus value.  restore saved string
3470 			 */
3471 			strncpy((char *)table->data, saved_string,
3472 				NUMA_ZONELIST_ORDER_LEN);
3473 			user_zonelist_order = oldval;
3474 		} else if (oldval != user_zonelist_order) {
3475 			mutex_lock(&zonelists_mutex);
3476 			build_all_zonelists(NULL, NULL);
3477 			mutex_unlock(&zonelists_mutex);
3478 		}
3479 	}
3480 out:
3481 	mutex_unlock(&zl_order_mutex);
3482 	return ret;
3483 }
3484 
3485 
3486 #define MAX_NODE_LOAD (nr_online_nodes)
3487 static int node_load[MAX_NUMNODES];
3488 
3489 /**
3490  * find_next_best_node - find the next node that should appear in a given node's fallback list
3491  * @node: node whose fallback list we're appending
3492  * @used_node_mask: nodemask_t of already used nodes
3493  *
3494  * We use a number of factors to determine which is the next node that should
3495  * appear on a given node's fallback list.  The node should not have appeared
3496  * already in @node's fallback list, and it should be the next closest node
3497  * according to the distance array (which contains arbitrary distance values
3498  * from each node to each node in the system), and should also prefer nodes
3499  * with no CPUs, since presumably they'll have very little allocation pressure
3500  * on them otherwise.
3501  * It returns -1 if no node is found.
3502  */
3503 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3504 {
3505 	int n, val;
3506 	int min_val = INT_MAX;
3507 	int best_node = NUMA_NO_NODE;
3508 	const struct cpumask *tmp = cpumask_of_node(0);
3509 
3510 	/* Use the local node if we haven't already */
3511 	if (!node_isset(node, *used_node_mask)) {
3512 		node_set(node, *used_node_mask);
3513 		return node;
3514 	}
3515 
3516 	for_each_node_state(n, N_MEMORY) {
3517 
3518 		/* Don't want a node to appear more than once */
3519 		if (node_isset(n, *used_node_mask))
3520 			continue;
3521 
3522 		/* Use the distance array to find the distance */
3523 		val = node_distance(node, n);
3524 
3525 		/* Penalize nodes under us ("prefer the next node") */
3526 		val += (n < node);
3527 
3528 		/* Give preference to headless and unused nodes */
3529 		tmp = cpumask_of_node(n);
3530 		if (!cpumask_empty(tmp))
3531 			val += PENALTY_FOR_NODE_WITH_CPUS;
3532 
3533 		/* Slight preference for less loaded node */
3534 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3535 		val += node_load[n];
3536 
3537 		if (val < min_val) {
3538 			min_val = val;
3539 			best_node = n;
3540 		}
3541 	}
3542 
3543 	if (best_node >= 0)
3544 		node_set(best_node, *used_node_mask);
3545 
3546 	return best_node;
3547 }
3548 
3549 
3550 /*
3551  * Build zonelists ordered by node and zones within node.
3552  * This results in maximum locality--normal zone overflows into local
3553  * DMA zone, if any--but risks exhausting DMA zone.
3554  */
3555 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3556 {
3557 	int j;
3558 	struct zonelist *zonelist;
3559 
3560 	zonelist = &pgdat->node_zonelists[0];
3561 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3562 		;
3563 	j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3564 	zonelist->_zonerefs[j].zone = NULL;
3565 	zonelist->_zonerefs[j].zone_idx = 0;
3566 }
3567 
3568 /*
3569  * Build gfp_thisnode zonelists
3570  */
3571 static void build_thisnode_zonelists(pg_data_t *pgdat)
3572 {
3573 	int j;
3574 	struct zonelist *zonelist;
3575 
3576 	zonelist = &pgdat->node_zonelists[1];
3577 	j = build_zonelists_node(pgdat, zonelist, 0);
3578 	zonelist->_zonerefs[j].zone = NULL;
3579 	zonelist->_zonerefs[j].zone_idx = 0;
3580 }
3581 
3582 /*
3583  * Build zonelists ordered by zone and nodes within zones.
3584  * This results in conserving DMA zone[s] until all Normal memory is
3585  * exhausted, but results in overflowing to remote node while memory
3586  * may still exist in local DMA zone.
3587  */
3588 static int node_order[MAX_NUMNODES];
3589 
3590 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3591 {
3592 	int pos, j, node;
3593 	int zone_type;		/* needs to be signed */
3594 	struct zone *z;
3595 	struct zonelist *zonelist;
3596 
3597 	zonelist = &pgdat->node_zonelists[0];
3598 	pos = 0;
3599 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3600 		for (j = 0; j < nr_nodes; j++) {
3601 			node = node_order[j];
3602 			z = &NODE_DATA(node)->node_zones[zone_type];
3603 			if (populated_zone(z)) {
3604 				zoneref_set_zone(z,
3605 					&zonelist->_zonerefs[pos++]);
3606 				check_highest_zone(zone_type);
3607 			}
3608 		}
3609 	}
3610 	zonelist->_zonerefs[pos].zone = NULL;
3611 	zonelist->_zonerefs[pos].zone_idx = 0;
3612 }
3613 
3614 #if defined(CONFIG_64BIT)
3615 /*
3616  * Devices that require DMA32/DMA are relatively rare and do not justify a
3617  * penalty to every machine in case the specialised case applies. Default
3618  * to Node-ordering on 64-bit NUMA machines
3619  */
3620 static int default_zonelist_order(void)
3621 {
3622 	return ZONELIST_ORDER_NODE;
3623 }
3624 #else
3625 /*
3626  * On 32-bit, the Normal zone needs to be preserved for allocations accessible
3627  * by the kernel. If processes running on node 0 deplete the low memory zone
3628  * then reclaim will occur more frequency increasing stalls and potentially
3629  * be easier to OOM if a large percentage of the zone is under writeback or
3630  * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
3631  * Hence, default to zone ordering on 32-bit.
3632  */
3633 static int default_zonelist_order(void)
3634 {
3635 	return ZONELIST_ORDER_ZONE;
3636 }
3637 #endif /* CONFIG_64BIT */
3638 
3639 static void set_zonelist_order(void)
3640 {
3641 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3642 		current_zonelist_order = default_zonelist_order();
3643 	else
3644 		current_zonelist_order = user_zonelist_order;
3645 }
3646 
3647 static void build_zonelists(pg_data_t *pgdat)
3648 {
3649 	int j, node, load;
3650 	enum zone_type i;
3651 	nodemask_t used_mask;
3652 	int local_node, prev_node;
3653 	struct zonelist *zonelist;
3654 	int order = current_zonelist_order;
3655 
3656 	/* initialize zonelists */
3657 	for (i = 0; i < MAX_ZONELISTS; i++) {
3658 		zonelist = pgdat->node_zonelists + i;
3659 		zonelist->_zonerefs[0].zone = NULL;
3660 		zonelist->_zonerefs[0].zone_idx = 0;
3661 	}
3662 
3663 	/* NUMA-aware ordering of nodes */
3664 	local_node = pgdat->node_id;
3665 	load = nr_online_nodes;
3666 	prev_node = local_node;
3667 	nodes_clear(used_mask);
3668 
3669 	memset(node_order, 0, sizeof(node_order));
3670 	j = 0;
3671 
3672 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3673 		/*
3674 		 * We don't want to pressure a particular node.
3675 		 * So adding penalty to the first node in same
3676 		 * distance group to make it round-robin.
3677 		 */
3678 		if (node_distance(local_node, node) !=
3679 		    node_distance(local_node, prev_node))
3680 			node_load[node] = load;
3681 
3682 		prev_node = node;
3683 		load--;
3684 		if (order == ZONELIST_ORDER_NODE)
3685 			build_zonelists_in_node_order(pgdat, node);
3686 		else
3687 			node_order[j++] = node;	/* remember order */
3688 	}
3689 
3690 	if (order == ZONELIST_ORDER_ZONE) {
3691 		/* calculate node order -- i.e., DMA last! */
3692 		build_zonelists_in_zone_order(pgdat, j);
3693 	}
3694 
3695 	build_thisnode_zonelists(pgdat);
3696 }
3697 
3698 /* Construct the zonelist performance cache - see further mmzone.h */
3699 static void build_zonelist_cache(pg_data_t *pgdat)
3700 {
3701 	struct zonelist *zonelist;
3702 	struct zonelist_cache *zlc;
3703 	struct zoneref *z;
3704 
3705 	zonelist = &pgdat->node_zonelists[0];
3706 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3707 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3708 	for (z = zonelist->_zonerefs; z->zone; z++)
3709 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3710 }
3711 
3712 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3713 /*
3714  * Return node id of node used for "local" allocations.
3715  * I.e., first node id of first zone in arg node's generic zonelist.
3716  * Used for initializing percpu 'numa_mem', which is used primarily
3717  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3718  */
3719 int local_memory_node(int node)
3720 {
3721 	struct zone *zone;
3722 
3723 	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3724 				   gfp_zone(GFP_KERNEL),
3725 				   NULL,
3726 				   &zone);
3727 	return zone->node;
3728 }
3729 #endif
3730 
3731 #else	/* CONFIG_NUMA */
3732 
3733 static void set_zonelist_order(void)
3734 {
3735 	current_zonelist_order = ZONELIST_ORDER_ZONE;
3736 }
3737 
3738 static void build_zonelists(pg_data_t *pgdat)
3739 {
3740 	int node, local_node;
3741 	enum zone_type j;
3742 	struct zonelist *zonelist;
3743 
3744 	local_node = pgdat->node_id;
3745 
3746 	zonelist = &pgdat->node_zonelists[0];
3747 	j = build_zonelists_node(pgdat, zonelist, 0);
3748 
3749 	/*
3750 	 * Now we build the zonelist so that it contains the zones
3751 	 * of all the other nodes.
3752 	 * We don't want to pressure a particular node, so when
3753 	 * building the zones for node N, we make sure that the
3754 	 * zones coming right after the local ones are those from
3755 	 * node N+1 (modulo N)
3756 	 */
3757 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3758 		if (!node_online(node))
3759 			continue;
3760 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3761 	}
3762 	for (node = 0; node < local_node; node++) {
3763 		if (!node_online(node))
3764 			continue;
3765 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3766 	}
3767 
3768 	zonelist->_zonerefs[j].zone = NULL;
3769 	zonelist->_zonerefs[j].zone_idx = 0;
3770 }
3771 
3772 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3773 static void build_zonelist_cache(pg_data_t *pgdat)
3774 {
3775 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
3776 }
3777 
3778 #endif	/* CONFIG_NUMA */
3779 
3780 /*
3781  * Boot pageset table. One per cpu which is going to be used for all
3782  * zones and all nodes. The parameters will be set in such a way
3783  * that an item put on a list will immediately be handed over to
3784  * the buddy list. This is safe since pageset manipulation is done
3785  * with interrupts disabled.
3786  *
3787  * The boot_pagesets must be kept even after bootup is complete for
3788  * unused processors and/or zones. They do play a role for bootstrapping
3789  * hotplugged processors.
3790  *
3791  * zoneinfo_show() and maybe other functions do
3792  * not check if the processor is online before following the pageset pointer.
3793  * Other parts of the kernel may not check if the zone is available.
3794  */
3795 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3796 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3797 static void setup_zone_pageset(struct zone *zone);
3798 
3799 /*
3800  * Global mutex to protect against size modification of zonelists
3801  * as well as to serialize pageset setup for the new populated zone.
3802  */
3803 DEFINE_MUTEX(zonelists_mutex);
3804 
3805 /* return values int ....just for stop_machine() */
3806 static int __build_all_zonelists(void *data)
3807 {
3808 	int nid;
3809 	int cpu;
3810 	pg_data_t *self = data;
3811 
3812 #ifdef CONFIG_NUMA
3813 	memset(node_load, 0, sizeof(node_load));
3814 #endif
3815 
3816 	if (self && !node_online(self->node_id)) {
3817 		build_zonelists(self);
3818 		build_zonelist_cache(self);
3819 	}
3820 
3821 	for_each_online_node(nid) {
3822 		pg_data_t *pgdat = NODE_DATA(nid);
3823 
3824 		build_zonelists(pgdat);
3825 		build_zonelist_cache(pgdat);
3826 	}
3827 
3828 	/*
3829 	 * Initialize the boot_pagesets that are going to be used
3830 	 * for bootstrapping processors. The real pagesets for
3831 	 * each zone will be allocated later when the per cpu
3832 	 * allocator is available.
3833 	 *
3834 	 * boot_pagesets are used also for bootstrapping offline
3835 	 * cpus if the system is already booted because the pagesets
3836 	 * are needed to initialize allocators on a specific cpu too.
3837 	 * F.e. the percpu allocator needs the page allocator which
3838 	 * needs the percpu allocator in order to allocate its pagesets
3839 	 * (a chicken-egg dilemma).
3840 	 */
3841 	for_each_possible_cpu(cpu) {
3842 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3843 
3844 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3845 		/*
3846 		 * We now know the "local memory node" for each node--
3847 		 * i.e., the node of the first zone in the generic zonelist.
3848 		 * Set up numa_mem percpu variable for on-line cpus.  During
3849 		 * boot, only the boot cpu should be on-line;  we'll init the
3850 		 * secondary cpus' numa_mem as they come on-line.  During
3851 		 * node/memory hotplug, we'll fixup all on-line cpus.
3852 		 */
3853 		if (cpu_online(cpu))
3854 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3855 #endif
3856 	}
3857 
3858 	return 0;
3859 }
3860 
3861 /*
3862  * Called with zonelists_mutex held always
3863  * unless system_state == SYSTEM_BOOTING.
3864  */
3865 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3866 {
3867 	set_zonelist_order();
3868 
3869 	if (system_state == SYSTEM_BOOTING) {
3870 		__build_all_zonelists(NULL);
3871 		mminit_verify_zonelist();
3872 		cpuset_init_current_mems_allowed();
3873 	} else {
3874 #ifdef CONFIG_MEMORY_HOTPLUG
3875 		if (zone)
3876 			setup_zone_pageset(zone);
3877 #endif
3878 		/* we have to stop all cpus to guarantee there is no user
3879 		   of zonelist */
3880 		stop_machine(__build_all_zonelists, pgdat, NULL);
3881 		/* cpuset refresh routine should be here */
3882 	}
3883 	vm_total_pages = nr_free_pagecache_pages();
3884 	/*
3885 	 * Disable grouping by mobility if the number of pages in the
3886 	 * system is too low to allow the mechanism to work. It would be
3887 	 * more accurate, but expensive to check per-zone. This check is
3888 	 * made on memory-hotadd so a system can start with mobility
3889 	 * disabled and enable it later
3890 	 */
3891 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3892 		page_group_by_mobility_disabled = 1;
3893 	else
3894 		page_group_by_mobility_disabled = 0;
3895 
3896 	printk("Built %i zonelists in %s order, mobility grouping %s.  "
3897 		"Total pages: %ld\n",
3898 			nr_online_nodes,
3899 			zonelist_order_name[current_zonelist_order],
3900 			page_group_by_mobility_disabled ? "off" : "on",
3901 			vm_total_pages);
3902 #ifdef CONFIG_NUMA
3903 	printk("Policy zone: %s\n", zone_names[policy_zone]);
3904 #endif
3905 }
3906 
3907 /*
3908  * Helper functions to size the waitqueue hash table.
3909  * Essentially these want to choose hash table sizes sufficiently
3910  * large so that collisions trying to wait on pages are rare.
3911  * But in fact, the number of active page waitqueues on typical
3912  * systems is ridiculously low, less than 200. So this is even
3913  * conservative, even though it seems large.
3914  *
3915  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3916  * waitqueues, i.e. the size of the waitq table given the number of pages.
3917  */
3918 #define PAGES_PER_WAITQUEUE	256
3919 
3920 #ifndef CONFIG_MEMORY_HOTPLUG
3921 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3922 {
3923 	unsigned long size = 1;
3924 
3925 	pages /= PAGES_PER_WAITQUEUE;
3926 
3927 	while (size < pages)
3928 		size <<= 1;
3929 
3930 	/*
3931 	 * Once we have dozens or even hundreds of threads sleeping
3932 	 * on IO we've got bigger problems than wait queue collision.
3933 	 * Limit the size of the wait table to a reasonable size.
3934 	 */
3935 	size = min(size, 4096UL);
3936 
3937 	return max(size, 4UL);
3938 }
3939 #else
3940 /*
3941  * A zone's size might be changed by hot-add, so it is not possible to determine
3942  * a suitable size for its wait_table.  So we use the maximum size now.
3943  *
3944  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
3945  *
3946  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
3947  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3948  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
3949  *
3950  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3951  * or more by the traditional way. (See above).  It equals:
3952  *
3953  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
3954  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
3955  *    powerpc (64K page size)             : =  (32G +16M)byte.
3956  */
3957 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3958 {
3959 	return 4096UL;
3960 }
3961 #endif
3962 
3963 /*
3964  * This is an integer logarithm so that shifts can be used later
3965  * to extract the more random high bits from the multiplicative
3966  * hash function before the remainder is taken.
3967  */
3968 static inline unsigned long wait_table_bits(unsigned long size)
3969 {
3970 	return ffz(~size);
3971 }
3972 
3973 /*
3974  * Check if a pageblock contains reserved pages
3975  */
3976 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3977 {
3978 	unsigned long pfn;
3979 
3980 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3981 		if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3982 			return 1;
3983 	}
3984 	return 0;
3985 }
3986 
3987 /*
3988  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3989  * of blocks reserved is based on min_wmark_pages(zone). The memory within
3990  * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3991  * higher will lead to a bigger reserve which will get freed as contiguous
3992  * blocks as reclaim kicks in
3993  */
3994 static void setup_zone_migrate_reserve(struct zone *zone)
3995 {
3996 	unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3997 	struct page *page;
3998 	unsigned long block_migratetype;
3999 	int reserve;
4000 	int old_reserve;
4001 
4002 	/*
4003 	 * Get the start pfn, end pfn and the number of blocks to reserve
4004 	 * We have to be careful to be aligned to pageblock_nr_pages to
4005 	 * make sure that we always check pfn_valid for the first page in
4006 	 * the block.
4007 	 */
4008 	start_pfn = zone->zone_start_pfn;
4009 	end_pfn = zone_end_pfn(zone);
4010 	start_pfn = roundup(start_pfn, pageblock_nr_pages);
4011 	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
4012 							pageblock_order;
4013 
4014 	/*
4015 	 * Reserve blocks are generally in place to help high-order atomic
4016 	 * allocations that are short-lived. A min_free_kbytes value that
4017 	 * would result in more than 2 reserve blocks for atomic allocations
4018 	 * is assumed to be in place to help anti-fragmentation for the
4019 	 * future allocation of hugepages at runtime.
4020 	 */
4021 	reserve = min(2, reserve);
4022 	old_reserve = zone->nr_migrate_reserve_block;
4023 
4024 	/* When memory hot-add, we almost always need to do nothing */
4025 	if (reserve == old_reserve)
4026 		return;
4027 	zone->nr_migrate_reserve_block = reserve;
4028 
4029 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
4030 		if (!pfn_valid(pfn))
4031 			continue;
4032 		page = pfn_to_page(pfn);
4033 
4034 		/* Watch out for overlapping nodes */
4035 		if (page_to_nid(page) != zone_to_nid(zone))
4036 			continue;
4037 
4038 		block_migratetype = get_pageblock_migratetype(page);
4039 
4040 		/* Only test what is necessary when the reserves are not met */
4041 		if (reserve > 0) {
4042 			/*
4043 			 * Blocks with reserved pages will never free, skip
4044 			 * them.
4045 			 */
4046 			block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4047 			if (pageblock_is_reserved(pfn, block_end_pfn))
4048 				continue;
4049 
4050 			/* If this block is reserved, account for it */
4051 			if (block_migratetype == MIGRATE_RESERVE) {
4052 				reserve--;
4053 				continue;
4054 			}
4055 
4056 			/* Suitable for reserving if this block is movable */
4057 			if (block_migratetype == MIGRATE_MOVABLE) {
4058 				set_pageblock_migratetype(page,
4059 							MIGRATE_RESERVE);
4060 				move_freepages_block(zone, page,
4061 							MIGRATE_RESERVE);
4062 				reserve--;
4063 				continue;
4064 			}
4065 		} else if (!old_reserve) {
4066 			/*
4067 			 * At boot time we don't need to scan the whole zone
4068 			 * for turning off MIGRATE_RESERVE.
4069 			 */
4070 			break;
4071 		}
4072 
4073 		/*
4074 		 * If the reserve is met and this is a previous reserved block,
4075 		 * take it back
4076 		 */
4077 		if (block_migratetype == MIGRATE_RESERVE) {
4078 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4079 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
4080 		}
4081 	}
4082 }
4083 
4084 /*
4085  * Initially all pages are reserved - free ones are freed
4086  * up by free_all_bootmem() once the early boot process is
4087  * done. Non-atomic initialization, single-pass.
4088  */
4089 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4090 		unsigned long start_pfn, enum memmap_context context)
4091 {
4092 	struct page *page;
4093 	unsigned long end_pfn = start_pfn + size;
4094 	unsigned long pfn;
4095 	struct zone *z;
4096 
4097 	if (highest_memmap_pfn < end_pfn - 1)
4098 		highest_memmap_pfn = end_pfn - 1;
4099 
4100 	z = &NODE_DATA(nid)->node_zones[zone];
4101 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4102 		/*
4103 		 * There can be holes in boot-time mem_map[]s
4104 		 * handed to this function.  They do not
4105 		 * exist on hotplugged memory.
4106 		 */
4107 		if (context == MEMMAP_EARLY) {
4108 			if (!early_pfn_valid(pfn))
4109 				continue;
4110 			if (!early_pfn_in_nid(pfn, nid))
4111 				continue;
4112 		}
4113 		page = pfn_to_page(pfn);
4114 		set_page_links(page, zone, nid, pfn);
4115 		mminit_verify_page_links(page, zone, nid, pfn);
4116 		init_page_count(page);
4117 		page_mapcount_reset(page);
4118 		page_cpupid_reset_last(page);
4119 		SetPageReserved(page);
4120 		/*
4121 		 * Mark the block movable so that blocks are reserved for
4122 		 * movable at startup. This will force kernel allocations
4123 		 * to reserve their blocks rather than leaking throughout
4124 		 * the address space during boot when many long-lived
4125 		 * kernel allocations are made. Later some blocks near
4126 		 * the start are marked MIGRATE_RESERVE by
4127 		 * setup_zone_migrate_reserve()
4128 		 *
4129 		 * bitmap is created for zone's valid pfn range. but memmap
4130 		 * can be created for invalid pages (for alignment)
4131 		 * check here not to call set_pageblock_migratetype() against
4132 		 * pfn out of zone.
4133 		 */
4134 		if ((z->zone_start_pfn <= pfn)
4135 		    && (pfn < zone_end_pfn(z))
4136 		    && !(pfn & (pageblock_nr_pages - 1)))
4137 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4138 
4139 		INIT_LIST_HEAD(&page->lru);
4140 #ifdef WANT_PAGE_VIRTUAL
4141 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
4142 		if (!is_highmem_idx(zone))
4143 			set_page_address(page, __va(pfn << PAGE_SHIFT));
4144 #endif
4145 	}
4146 }
4147 
4148 static void __meminit zone_init_free_lists(struct zone *zone)
4149 {
4150 	unsigned int order, t;
4151 	for_each_migratetype_order(order, t) {
4152 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4153 		zone->free_area[order].nr_free = 0;
4154 	}
4155 }
4156 
4157 #ifndef __HAVE_ARCH_MEMMAP_INIT
4158 #define memmap_init(size, nid, zone, start_pfn) \
4159 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4160 #endif
4161 
4162 static int zone_batchsize(struct zone *zone)
4163 {
4164 #ifdef CONFIG_MMU
4165 	int batch;
4166 
4167 	/*
4168 	 * The per-cpu-pages pools are set to around 1000th of the
4169 	 * size of the zone.  But no more than 1/2 of a meg.
4170 	 *
4171 	 * OK, so we don't know how big the cache is.  So guess.
4172 	 */
4173 	batch = zone->managed_pages / 1024;
4174 	if (batch * PAGE_SIZE > 512 * 1024)
4175 		batch = (512 * 1024) / PAGE_SIZE;
4176 	batch /= 4;		/* We effectively *= 4 below */
4177 	if (batch < 1)
4178 		batch = 1;
4179 
4180 	/*
4181 	 * Clamp the batch to a 2^n - 1 value. Having a power
4182 	 * of 2 value was found to be more likely to have
4183 	 * suboptimal cache aliasing properties in some cases.
4184 	 *
4185 	 * For example if 2 tasks are alternately allocating
4186 	 * batches of pages, one task can end up with a lot
4187 	 * of pages of one half of the possible page colors
4188 	 * and the other with pages of the other colors.
4189 	 */
4190 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
4191 
4192 	return batch;
4193 
4194 #else
4195 	/* The deferral and batching of frees should be suppressed under NOMMU
4196 	 * conditions.
4197 	 *
4198 	 * The problem is that NOMMU needs to be able to allocate large chunks
4199 	 * of contiguous memory as there's no hardware page translation to
4200 	 * assemble apparent contiguous memory from discontiguous pages.
4201 	 *
4202 	 * Queueing large contiguous runs of pages for batching, however,
4203 	 * causes the pages to actually be freed in smaller chunks.  As there
4204 	 * can be a significant delay between the individual batches being
4205 	 * recycled, this leads to the once large chunks of space being
4206 	 * fragmented and becoming unavailable for high-order allocations.
4207 	 */
4208 	return 0;
4209 #endif
4210 }
4211 
4212 /*
4213  * pcp->high and pcp->batch values are related and dependent on one another:
4214  * ->batch must never be higher then ->high.
4215  * The following function updates them in a safe manner without read side
4216  * locking.
4217  *
4218  * Any new users of pcp->batch and pcp->high should ensure they can cope with
4219  * those fields changing asynchronously (acording the the above rule).
4220  *
4221  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4222  * outside of boot time (or some other assurance that no concurrent updaters
4223  * exist).
4224  */
4225 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4226 		unsigned long batch)
4227 {
4228        /* start with a fail safe value for batch */
4229 	pcp->batch = 1;
4230 	smp_wmb();
4231 
4232        /* Update high, then batch, in order */
4233 	pcp->high = high;
4234 	smp_wmb();
4235 
4236 	pcp->batch = batch;
4237 }
4238 
4239 /* a companion to pageset_set_high() */
4240 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4241 {
4242 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4243 }
4244 
4245 static void pageset_init(struct per_cpu_pageset *p)
4246 {
4247 	struct per_cpu_pages *pcp;
4248 	int migratetype;
4249 
4250 	memset(p, 0, sizeof(*p));
4251 
4252 	pcp = &p->pcp;
4253 	pcp->count = 0;
4254 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4255 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
4256 }
4257 
4258 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4259 {
4260 	pageset_init(p);
4261 	pageset_set_batch(p, batch);
4262 }
4263 
4264 /*
4265  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4266  * to the value high for the pageset p.
4267  */
4268 static void pageset_set_high(struct per_cpu_pageset *p,
4269 				unsigned long high)
4270 {
4271 	unsigned long batch = max(1UL, high / 4);
4272 	if ((high / 4) > (PAGE_SHIFT * 8))
4273 		batch = PAGE_SHIFT * 8;
4274 
4275 	pageset_update(&p->pcp, high, batch);
4276 }
4277 
4278 static void pageset_set_high_and_batch(struct zone *zone,
4279 				       struct per_cpu_pageset *pcp)
4280 {
4281 	if (percpu_pagelist_fraction)
4282 		pageset_set_high(pcp,
4283 			(zone->managed_pages /
4284 				percpu_pagelist_fraction));
4285 	else
4286 		pageset_set_batch(pcp, zone_batchsize(zone));
4287 }
4288 
4289 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4290 {
4291 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4292 
4293 	pageset_init(pcp);
4294 	pageset_set_high_and_batch(zone, pcp);
4295 }
4296 
4297 static void __meminit setup_zone_pageset(struct zone *zone)
4298 {
4299 	int cpu;
4300 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
4301 	for_each_possible_cpu(cpu)
4302 		zone_pageset_init(zone, cpu);
4303 }
4304 
4305 /*
4306  * Allocate per cpu pagesets and initialize them.
4307  * Before this call only boot pagesets were available.
4308  */
4309 void __init setup_per_cpu_pageset(void)
4310 {
4311 	struct zone *zone;
4312 
4313 	for_each_populated_zone(zone)
4314 		setup_zone_pageset(zone);
4315 }
4316 
4317 static noinline __init_refok
4318 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4319 {
4320 	int i;
4321 	size_t alloc_size;
4322 
4323 	/*
4324 	 * The per-page waitqueue mechanism uses hashed waitqueues
4325 	 * per zone.
4326 	 */
4327 	zone->wait_table_hash_nr_entries =
4328 		 wait_table_hash_nr_entries(zone_size_pages);
4329 	zone->wait_table_bits =
4330 		wait_table_bits(zone->wait_table_hash_nr_entries);
4331 	alloc_size = zone->wait_table_hash_nr_entries
4332 					* sizeof(wait_queue_head_t);
4333 
4334 	if (!slab_is_available()) {
4335 		zone->wait_table = (wait_queue_head_t *)
4336 			memblock_virt_alloc_node_nopanic(
4337 				alloc_size, zone->zone_pgdat->node_id);
4338 	} else {
4339 		/*
4340 		 * This case means that a zone whose size was 0 gets new memory
4341 		 * via memory hot-add.
4342 		 * But it may be the case that a new node was hot-added.  In
4343 		 * this case vmalloc() will not be able to use this new node's
4344 		 * memory - this wait_table must be initialized to use this new
4345 		 * node itself as well.
4346 		 * To use this new node's memory, further consideration will be
4347 		 * necessary.
4348 		 */
4349 		zone->wait_table = vmalloc(alloc_size);
4350 	}
4351 	if (!zone->wait_table)
4352 		return -ENOMEM;
4353 
4354 	for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4355 		init_waitqueue_head(zone->wait_table + i);
4356 
4357 	return 0;
4358 }
4359 
4360 static __meminit void zone_pcp_init(struct zone *zone)
4361 {
4362 	/*
4363 	 * per cpu subsystem is not up at this point. The following code
4364 	 * relies on the ability of the linker to provide the
4365 	 * offset of a (static) per cpu variable into the per cpu area.
4366 	 */
4367 	zone->pageset = &boot_pageset;
4368 
4369 	if (populated_zone(zone))
4370 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
4371 			zone->name, zone->present_pages,
4372 					 zone_batchsize(zone));
4373 }
4374 
4375 int __meminit init_currently_empty_zone(struct zone *zone,
4376 					unsigned long zone_start_pfn,
4377 					unsigned long size,
4378 					enum memmap_context context)
4379 {
4380 	struct pglist_data *pgdat = zone->zone_pgdat;
4381 	int ret;
4382 	ret = zone_wait_table_init(zone, size);
4383 	if (ret)
4384 		return ret;
4385 	pgdat->nr_zones = zone_idx(zone) + 1;
4386 
4387 	zone->zone_start_pfn = zone_start_pfn;
4388 
4389 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
4390 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
4391 			pgdat->node_id,
4392 			(unsigned long)zone_idx(zone),
4393 			zone_start_pfn, (zone_start_pfn + size));
4394 
4395 	zone_init_free_lists(zone);
4396 
4397 	return 0;
4398 }
4399 
4400 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4401 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4402 /*
4403  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4404  */
4405 int __meminit __early_pfn_to_nid(unsigned long pfn)
4406 {
4407 	unsigned long start_pfn, end_pfn;
4408 	int nid;
4409 	/*
4410 	 * NOTE: The following SMP-unsafe globals are only used early in boot
4411 	 * when the kernel is running single-threaded.
4412 	 */
4413 	static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4414 	static int __meminitdata last_nid;
4415 
4416 	if (last_start_pfn <= pfn && pfn < last_end_pfn)
4417 		return last_nid;
4418 
4419 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4420 	if (nid != -1) {
4421 		last_start_pfn = start_pfn;
4422 		last_end_pfn = end_pfn;
4423 		last_nid = nid;
4424 	}
4425 
4426 	return nid;
4427 }
4428 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4429 
4430 int __meminit early_pfn_to_nid(unsigned long pfn)
4431 {
4432 	int nid;
4433 
4434 	nid = __early_pfn_to_nid(pfn);
4435 	if (nid >= 0)
4436 		return nid;
4437 	/* just returns 0 */
4438 	return 0;
4439 }
4440 
4441 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4442 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4443 {
4444 	int nid;
4445 
4446 	nid = __early_pfn_to_nid(pfn);
4447 	if (nid >= 0 && nid != node)
4448 		return false;
4449 	return true;
4450 }
4451 #endif
4452 
4453 /**
4454  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4455  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4456  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4457  *
4458  * If an architecture guarantees that all ranges registered contain no holes
4459  * and may be freed, this this function may be used instead of calling
4460  * memblock_free_early_nid() manually.
4461  */
4462 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4463 {
4464 	unsigned long start_pfn, end_pfn;
4465 	int i, this_nid;
4466 
4467 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4468 		start_pfn = min(start_pfn, max_low_pfn);
4469 		end_pfn = min(end_pfn, max_low_pfn);
4470 
4471 		if (start_pfn < end_pfn)
4472 			memblock_free_early_nid(PFN_PHYS(start_pfn),
4473 					(end_pfn - start_pfn) << PAGE_SHIFT,
4474 					this_nid);
4475 	}
4476 }
4477 
4478 /**
4479  * sparse_memory_present_with_active_regions - Call memory_present for each active range
4480  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4481  *
4482  * If an architecture guarantees that all ranges registered contain no holes and may
4483  * be freed, this function may be used instead of calling memory_present() manually.
4484  */
4485 void __init sparse_memory_present_with_active_regions(int nid)
4486 {
4487 	unsigned long start_pfn, end_pfn;
4488 	int i, this_nid;
4489 
4490 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4491 		memory_present(this_nid, start_pfn, end_pfn);
4492 }
4493 
4494 /**
4495  * get_pfn_range_for_nid - Return the start and end page frames for a node
4496  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4497  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4498  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4499  *
4500  * It returns the start and end page frame of a node based on information
4501  * provided by memblock_set_node(). If called for a node
4502  * with no available memory, a warning is printed and the start and end
4503  * PFNs will be 0.
4504  */
4505 void __meminit get_pfn_range_for_nid(unsigned int nid,
4506 			unsigned long *start_pfn, unsigned long *end_pfn)
4507 {
4508 	unsigned long this_start_pfn, this_end_pfn;
4509 	int i;
4510 
4511 	*start_pfn = -1UL;
4512 	*end_pfn = 0;
4513 
4514 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4515 		*start_pfn = min(*start_pfn, this_start_pfn);
4516 		*end_pfn = max(*end_pfn, this_end_pfn);
4517 	}
4518 
4519 	if (*start_pfn == -1UL)
4520 		*start_pfn = 0;
4521 }
4522 
4523 /*
4524  * This finds a zone that can be used for ZONE_MOVABLE pages. The
4525  * assumption is made that zones within a node are ordered in monotonic
4526  * increasing memory addresses so that the "highest" populated zone is used
4527  */
4528 static void __init find_usable_zone_for_movable(void)
4529 {
4530 	int zone_index;
4531 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4532 		if (zone_index == ZONE_MOVABLE)
4533 			continue;
4534 
4535 		if (arch_zone_highest_possible_pfn[zone_index] >
4536 				arch_zone_lowest_possible_pfn[zone_index])
4537 			break;
4538 	}
4539 
4540 	VM_BUG_ON(zone_index == -1);
4541 	movable_zone = zone_index;
4542 }
4543 
4544 /*
4545  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4546  * because it is sized independent of architecture. Unlike the other zones,
4547  * the starting point for ZONE_MOVABLE is not fixed. It may be different
4548  * in each node depending on the size of each node and how evenly kernelcore
4549  * is distributed. This helper function adjusts the zone ranges
4550  * provided by the architecture for a given node by using the end of the
4551  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4552  * zones within a node are in order of monotonic increases memory addresses
4553  */
4554 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4555 					unsigned long zone_type,
4556 					unsigned long node_start_pfn,
4557 					unsigned long node_end_pfn,
4558 					unsigned long *zone_start_pfn,
4559 					unsigned long *zone_end_pfn)
4560 {
4561 	/* Only adjust if ZONE_MOVABLE is on this node */
4562 	if (zone_movable_pfn[nid]) {
4563 		/* Size ZONE_MOVABLE */
4564 		if (zone_type == ZONE_MOVABLE) {
4565 			*zone_start_pfn = zone_movable_pfn[nid];
4566 			*zone_end_pfn = min(node_end_pfn,
4567 				arch_zone_highest_possible_pfn[movable_zone]);
4568 
4569 		/* Adjust for ZONE_MOVABLE starting within this range */
4570 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4571 				*zone_end_pfn > zone_movable_pfn[nid]) {
4572 			*zone_end_pfn = zone_movable_pfn[nid];
4573 
4574 		/* Check if this whole range is within ZONE_MOVABLE */
4575 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
4576 			*zone_start_pfn = *zone_end_pfn;
4577 	}
4578 }
4579 
4580 /*
4581  * Return the number of pages a zone spans in a node, including holes
4582  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4583  */
4584 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4585 					unsigned long zone_type,
4586 					unsigned long node_start_pfn,
4587 					unsigned long node_end_pfn,
4588 					unsigned long *ignored)
4589 {
4590 	unsigned long zone_start_pfn, zone_end_pfn;
4591 
4592 	/* Get the start and end of the zone */
4593 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4594 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4595 	adjust_zone_range_for_zone_movable(nid, zone_type,
4596 				node_start_pfn, node_end_pfn,
4597 				&zone_start_pfn, &zone_end_pfn);
4598 
4599 	/* Check that this node has pages within the zone's required range */
4600 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4601 		return 0;
4602 
4603 	/* Move the zone boundaries inside the node if necessary */
4604 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4605 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4606 
4607 	/* Return the spanned pages */
4608 	return zone_end_pfn - zone_start_pfn;
4609 }
4610 
4611 /*
4612  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4613  * then all holes in the requested range will be accounted for.
4614  */
4615 unsigned long __meminit __absent_pages_in_range(int nid,
4616 				unsigned long range_start_pfn,
4617 				unsigned long range_end_pfn)
4618 {
4619 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
4620 	unsigned long start_pfn, end_pfn;
4621 	int i;
4622 
4623 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4624 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4625 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4626 		nr_absent -= end_pfn - start_pfn;
4627 	}
4628 	return nr_absent;
4629 }
4630 
4631 /**
4632  * absent_pages_in_range - Return number of page frames in holes within a range
4633  * @start_pfn: The start PFN to start searching for holes
4634  * @end_pfn: The end PFN to stop searching for holes
4635  *
4636  * It returns the number of pages frames in memory holes within a range.
4637  */
4638 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4639 							unsigned long end_pfn)
4640 {
4641 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4642 }
4643 
4644 /* Return the number of page frames in holes in a zone on a node */
4645 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4646 					unsigned long zone_type,
4647 					unsigned long node_start_pfn,
4648 					unsigned long node_end_pfn,
4649 					unsigned long *ignored)
4650 {
4651 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4652 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4653 	unsigned long zone_start_pfn, zone_end_pfn;
4654 
4655 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4656 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4657 
4658 	adjust_zone_range_for_zone_movable(nid, zone_type,
4659 			node_start_pfn, node_end_pfn,
4660 			&zone_start_pfn, &zone_end_pfn);
4661 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4662 }
4663 
4664 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4665 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4666 					unsigned long zone_type,
4667 					unsigned long node_start_pfn,
4668 					unsigned long node_end_pfn,
4669 					unsigned long *zones_size)
4670 {
4671 	return zones_size[zone_type];
4672 }
4673 
4674 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4675 						unsigned long zone_type,
4676 						unsigned long node_start_pfn,
4677 						unsigned long node_end_pfn,
4678 						unsigned long *zholes_size)
4679 {
4680 	if (!zholes_size)
4681 		return 0;
4682 
4683 	return zholes_size[zone_type];
4684 }
4685 
4686 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4687 
4688 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4689 						unsigned long node_start_pfn,
4690 						unsigned long node_end_pfn,
4691 						unsigned long *zones_size,
4692 						unsigned long *zholes_size)
4693 {
4694 	unsigned long realtotalpages, totalpages = 0;
4695 	enum zone_type i;
4696 
4697 	for (i = 0; i < MAX_NR_ZONES; i++)
4698 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4699 							 node_start_pfn,
4700 							 node_end_pfn,
4701 							 zones_size);
4702 	pgdat->node_spanned_pages = totalpages;
4703 
4704 	realtotalpages = totalpages;
4705 	for (i = 0; i < MAX_NR_ZONES; i++)
4706 		realtotalpages -=
4707 			zone_absent_pages_in_node(pgdat->node_id, i,
4708 						  node_start_pfn, node_end_pfn,
4709 						  zholes_size);
4710 	pgdat->node_present_pages = realtotalpages;
4711 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4712 							realtotalpages);
4713 }
4714 
4715 #ifndef CONFIG_SPARSEMEM
4716 /*
4717  * Calculate the size of the zone->blockflags rounded to an unsigned long
4718  * Start by making sure zonesize is a multiple of pageblock_order by rounding
4719  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4720  * round what is now in bits to nearest long in bits, then return it in
4721  * bytes.
4722  */
4723 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4724 {
4725 	unsigned long usemapsize;
4726 
4727 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4728 	usemapsize = roundup(zonesize, pageblock_nr_pages);
4729 	usemapsize = usemapsize >> pageblock_order;
4730 	usemapsize *= NR_PAGEBLOCK_BITS;
4731 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4732 
4733 	return usemapsize / 8;
4734 }
4735 
4736 static void __init setup_usemap(struct pglist_data *pgdat,
4737 				struct zone *zone,
4738 				unsigned long zone_start_pfn,
4739 				unsigned long zonesize)
4740 {
4741 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4742 	zone->pageblock_flags = NULL;
4743 	if (usemapsize)
4744 		zone->pageblock_flags =
4745 			memblock_virt_alloc_node_nopanic(usemapsize,
4746 							 pgdat->node_id);
4747 }
4748 #else
4749 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4750 				unsigned long zone_start_pfn, unsigned long zonesize) {}
4751 #endif /* CONFIG_SPARSEMEM */
4752 
4753 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4754 
4755 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4756 void __paginginit set_pageblock_order(void)
4757 {
4758 	unsigned int order;
4759 
4760 	/* Check that pageblock_nr_pages has not already been setup */
4761 	if (pageblock_order)
4762 		return;
4763 
4764 	if (HPAGE_SHIFT > PAGE_SHIFT)
4765 		order = HUGETLB_PAGE_ORDER;
4766 	else
4767 		order = MAX_ORDER - 1;
4768 
4769 	/*
4770 	 * Assume the largest contiguous order of interest is a huge page.
4771 	 * This value may be variable depending on boot parameters on IA64 and
4772 	 * powerpc.
4773 	 */
4774 	pageblock_order = order;
4775 }
4776 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4777 
4778 /*
4779  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4780  * is unused as pageblock_order is set at compile-time. See
4781  * include/linux/pageblock-flags.h for the values of pageblock_order based on
4782  * the kernel config
4783  */
4784 void __paginginit set_pageblock_order(void)
4785 {
4786 }
4787 
4788 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4789 
4790 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4791 						   unsigned long present_pages)
4792 {
4793 	unsigned long pages = spanned_pages;
4794 
4795 	/*
4796 	 * Provide a more accurate estimation if there are holes within
4797 	 * the zone and SPARSEMEM is in use. If there are holes within the
4798 	 * zone, each populated memory region may cost us one or two extra
4799 	 * memmap pages due to alignment because memmap pages for each
4800 	 * populated regions may not naturally algined on page boundary.
4801 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4802 	 */
4803 	if (spanned_pages > present_pages + (present_pages >> 4) &&
4804 	    IS_ENABLED(CONFIG_SPARSEMEM))
4805 		pages = present_pages;
4806 
4807 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4808 }
4809 
4810 /*
4811  * Set up the zone data structures:
4812  *   - mark all pages reserved
4813  *   - mark all memory queues empty
4814  *   - clear the memory bitmaps
4815  *
4816  * NOTE: pgdat should get zeroed by caller.
4817  */
4818 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4819 		unsigned long node_start_pfn, unsigned long node_end_pfn,
4820 		unsigned long *zones_size, unsigned long *zholes_size)
4821 {
4822 	enum zone_type j;
4823 	int nid = pgdat->node_id;
4824 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
4825 	int ret;
4826 
4827 	pgdat_resize_init(pgdat);
4828 #ifdef CONFIG_NUMA_BALANCING
4829 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
4830 	pgdat->numabalancing_migrate_nr_pages = 0;
4831 	pgdat->numabalancing_migrate_next_window = jiffies;
4832 #endif
4833 	init_waitqueue_head(&pgdat->kswapd_wait);
4834 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
4835 	pgdat_page_cgroup_init(pgdat);
4836 
4837 	for (j = 0; j < MAX_NR_ZONES; j++) {
4838 		struct zone *zone = pgdat->node_zones + j;
4839 		unsigned long size, realsize, freesize, memmap_pages;
4840 
4841 		size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4842 						  node_end_pfn, zones_size);
4843 		realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4844 								node_start_pfn,
4845 								node_end_pfn,
4846 								zholes_size);
4847 
4848 		/*
4849 		 * Adjust freesize so that it accounts for how much memory
4850 		 * is used by this zone for memmap. This affects the watermark
4851 		 * and per-cpu initialisations
4852 		 */
4853 		memmap_pages = calc_memmap_size(size, realsize);
4854 		if (freesize >= memmap_pages) {
4855 			freesize -= memmap_pages;
4856 			if (memmap_pages)
4857 				printk(KERN_DEBUG
4858 				       "  %s zone: %lu pages used for memmap\n",
4859 				       zone_names[j], memmap_pages);
4860 		} else
4861 			printk(KERN_WARNING
4862 				"  %s zone: %lu pages exceeds freesize %lu\n",
4863 				zone_names[j], memmap_pages, freesize);
4864 
4865 		/* Account for reserved pages */
4866 		if (j == 0 && freesize > dma_reserve) {
4867 			freesize -= dma_reserve;
4868 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
4869 					zone_names[0], dma_reserve);
4870 		}
4871 
4872 		if (!is_highmem_idx(j))
4873 			nr_kernel_pages += freesize;
4874 		/* Charge for highmem memmap if there are enough kernel pages */
4875 		else if (nr_kernel_pages > memmap_pages * 2)
4876 			nr_kernel_pages -= memmap_pages;
4877 		nr_all_pages += freesize;
4878 
4879 		zone->spanned_pages = size;
4880 		zone->present_pages = realsize;
4881 		/*
4882 		 * Set an approximate value for lowmem here, it will be adjusted
4883 		 * when the bootmem allocator frees pages into the buddy system.
4884 		 * And all highmem pages will be managed by the buddy system.
4885 		 */
4886 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4887 #ifdef CONFIG_NUMA
4888 		zone->node = nid;
4889 		zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4890 						/ 100;
4891 		zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4892 #endif
4893 		zone->name = zone_names[j];
4894 		spin_lock_init(&zone->lock);
4895 		spin_lock_init(&zone->lru_lock);
4896 		zone_seqlock_init(zone);
4897 		zone->zone_pgdat = pgdat;
4898 		zone_pcp_init(zone);
4899 
4900 		/* For bootup, initialized properly in watermark setup */
4901 		mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4902 
4903 		lruvec_init(&zone->lruvec);
4904 		if (!size)
4905 			continue;
4906 
4907 		set_pageblock_order();
4908 		setup_usemap(pgdat, zone, zone_start_pfn, size);
4909 		ret = init_currently_empty_zone(zone, zone_start_pfn,
4910 						size, MEMMAP_EARLY);
4911 		BUG_ON(ret);
4912 		memmap_init(size, nid, j, zone_start_pfn);
4913 		zone_start_pfn += size;
4914 	}
4915 }
4916 
4917 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4918 {
4919 	/* Skip empty nodes */
4920 	if (!pgdat->node_spanned_pages)
4921 		return;
4922 
4923 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4924 	/* ia64 gets its own node_mem_map, before this, without bootmem */
4925 	if (!pgdat->node_mem_map) {
4926 		unsigned long size, start, end;
4927 		struct page *map;
4928 
4929 		/*
4930 		 * The zone's endpoints aren't required to be MAX_ORDER
4931 		 * aligned but the node_mem_map endpoints must be in order
4932 		 * for the buddy allocator to function correctly.
4933 		 */
4934 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4935 		end = pgdat_end_pfn(pgdat);
4936 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
4937 		size =  (end - start) * sizeof(struct page);
4938 		map = alloc_remap(pgdat->node_id, size);
4939 		if (!map)
4940 			map = memblock_virt_alloc_node_nopanic(size,
4941 							       pgdat->node_id);
4942 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4943 	}
4944 #ifndef CONFIG_NEED_MULTIPLE_NODES
4945 	/*
4946 	 * With no DISCONTIG, the global mem_map is just set as node 0's
4947 	 */
4948 	if (pgdat == NODE_DATA(0)) {
4949 		mem_map = NODE_DATA(0)->node_mem_map;
4950 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4951 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4952 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4953 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4954 	}
4955 #endif
4956 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4957 }
4958 
4959 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4960 		unsigned long node_start_pfn, unsigned long *zholes_size)
4961 {
4962 	pg_data_t *pgdat = NODE_DATA(nid);
4963 	unsigned long start_pfn = 0;
4964 	unsigned long end_pfn = 0;
4965 
4966 	/* pg_data_t should be reset to zero when it's allocated */
4967 	WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4968 
4969 	pgdat->node_id = nid;
4970 	pgdat->node_start_pfn = node_start_pfn;
4971 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4972 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
4973 	printk(KERN_INFO "Initmem setup node %d [mem %#010Lx-%#010Lx]\n", nid,
4974 			(u64) start_pfn << PAGE_SHIFT, (u64) (end_pfn << PAGE_SHIFT) - 1);
4975 #endif
4976 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
4977 				  zones_size, zholes_size);
4978 
4979 	alloc_node_mem_map(pgdat);
4980 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4981 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4982 		nid, (unsigned long)pgdat,
4983 		(unsigned long)pgdat->node_mem_map);
4984 #endif
4985 
4986 	free_area_init_core(pgdat, start_pfn, end_pfn,
4987 			    zones_size, zholes_size);
4988 }
4989 
4990 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4991 
4992 #if MAX_NUMNODES > 1
4993 /*
4994  * Figure out the number of possible node ids.
4995  */
4996 void __init setup_nr_node_ids(void)
4997 {
4998 	unsigned int node;
4999 	unsigned int highest = 0;
5000 
5001 	for_each_node_mask(node, node_possible_map)
5002 		highest = node;
5003 	nr_node_ids = highest + 1;
5004 }
5005 #endif
5006 
5007 /**
5008  * node_map_pfn_alignment - determine the maximum internode alignment
5009  *
5010  * This function should be called after node map is populated and sorted.
5011  * It calculates the maximum power of two alignment which can distinguish
5012  * all the nodes.
5013  *
5014  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5015  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
5016  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
5017  * shifted, 1GiB is enough and this function will indicate so.
5018  *
5019  * This is used to test whether pfn -> nid mapping of the chosen memory
5020  * model has fine enough granularity to avoid incorrect mapping for the
5021  * populated node map.
5022  *
5023  * Returns the determined alignment in pfn's.  0 if there is no alignment
5024  * requirement (single node).
5025  */
5026 unsigned long __init node_map_pfn_alignment(void)
5027 {
5028 	unsigned long accl_mask = 0, last_end = 0;
5029 	unsigned long start, end, mask;
5030 	int last_nid = -1;
5031 	int i, nid;
5032 
5033 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5034 		if (!start || last_nid < 0 || last_nid == nid) {
5035 			last_nid = nid;
5036 			last_end = end;
5037 			continue;
5038 		}
5039 
5040 		/*
5041 		 * Start with a mask granular enough to pin-point to the
5042 		 * start pfn and tick off bits one-by-one until it becomes
5043 		 * too coarse to separate the current node from the last.
5044 		 */
5045 		mask = ~((1 << __ffs(start)) - 1);
5046 		while (mask && last_end <= (start & (mask << 1)))
5047 			mask <<= 1;
5048 
5049 		/* accumulate all internode masks */
5050 		accl_mask |= mask;
5051 	}
5052 
5053 	/* convert mask to number of pages */
5054 	return ~accl_mask + 1;
5055 }
5056 
5057 /* Find the lowest pfn for a node */
5058 static unsigned long __init find_min_pfn_for_node(int nid)
5059 {
5060 	unsigned long min_pfn = ULONG_MAX;
5061 	unsigned long start_pfn;
5062 	int i;
5063 
5064 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5065 		min_pfn = min(min_pfn, start_pfn);
5066 
5067 	if (min_pfn == ULONG_MAX) {
5068 		printk(KERN_WARNING
5069 			"Could not find start_pfn for node %d\n", nid);
5070 		return 0;
5071 	}
5072 
5073 	return min_pfn;
5074 }
5075 
5076 /**
5077  * find_min_pfn_with_active_regions - Find the minimum PFN registered
5078  *
5079  * It returns the minimum PFN based on information provided via
5080  * memblock_set_node().
5081  */
5082 unsigned long __init find_min_pfn_with_active_regions(void)
5083 {
5084 	return find_min_pfn_for_node(MAX_NUMNODES);
5085 }
5086 
5087 /*
5088  * early_calculate_totalpages()
5089  * Sum pages in active regions for movable zone.
5090  * Populate N_MEMORY for calculating usable_nodes.
5091  */
5092 static unsigned long __init early_calculate_totalpages(void)
5093 {
5094 	unsigned long totalpages = 0;
5095 	unsigned long start_pfn, end_pfn;
5096 	int i, nid;
5097 
5098 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5099 		unsigned long pages = end_pfn - start_pfn;
5100 
5101 		totalpages += pages;
5102 		if (pages)
5103 			node_set_state(nid, N_MEMORY);
5104 	}
5105 	return totalpages;
5106 }
5107 
5108 /*
5109  * Find the PFN the Movable zone begins in each node. Kernel memory
5110  * is spread evenly between nodes as long as the nodes have enough
5111  * memory. When they don't, some nodes will have more kernelcore than
5112  * others
5113  */
5114 static void __init find_zone_movable_pfns_for_nodes(void)
5115 {
5116 	int i, nid;
5117 	unsigned long usable_startpfn;
5118 	unsigned long kernelcore_node, kernelcore_remaining;
5119 	/* save the state before borrow the nodemask */
5120 	nodemask_t saved_node_state = node_states[N_MEMORY];
5121 	unsigned long totalpages = early_calculate_totalpages();
5122 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5123 	struct memblock_region *r;
5124 
5125 	/* Need to find movable_zone earlier when movable_node is specified. */
5126 	find_usable_zone_for_movable();
5127 
5128 	/*
5129 	 * If movable_node is specified, ignore kernelcore and movablecore
5130 	 * options.
5131 	 */
5132 	if (movable_node_is_enabled()) {
5133 		for_each_memblock(memory, r) {
5134 			if (!memblock_is_hotpluggable(r))
5135 				continue;
5136 
5137 			nid = r->nid;
5138 
5139 			usable_startpfn = PFN_DOWN(r->base);
5140 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5141 				min(usable_startpfn, zone_movable_pfn[nid]) :
5142 				usable_startpfn;
5143 		}
5144 
5145 		goto out2;
5146 	}
5147 
5148 	/*
5149 	 * If movablecore=nn[KMG] was specified, calculate what size of
5150 	 * kernelcore that corresponds so that memory usable for
5151 	 * any allocation type is evenly spread. If both kernelcore
5152 	 * and movablecore are specified, then the value of kernelcore
5153 	 * will be used for required_kernelcore if it's greater than
5154 	 * what movablecore would have allowed.
5155 	 */
5156 	if (required_movablecore) {
5157 		unsigned long corepages;
5158 
5159 		/*
5160 		 * Round-up so that ZONE_MOVABLE is at least as large as what
5161 		 * was requested by the user
5162 		 */
5163 		required_movablecore =
5164 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5165 		corepages = totalpages - required_movablecore;
5166 
5167 		required_kernelcore = max(required_kernelcore, corepages);
5168 	}
5169 
5170 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
5171 	if (!required_kernelcore)
5172 		goto out;
5173 
5174 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5175 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5176 
5177 restart:
5178 	/* Spread kernelcore memory as evenly as possible throughout nodes */
5179 	kernelcore_node = required_kernelcore / usable_nodes;
5180 	for_each_node_state(nid, N_MEMORY) {
5181 		unsigned long start_pfn, end_pfn;
5182 
5183 		/*
5184 		 * Recalculate kernelcore_node if the division per node
5185 		 * now exceeds what is necessary to satisfy the requested
5186 		 * amount of memory for the kernel
5187 		 */
5188 		if (required_kernelcore < kernelcore_node)
5189 			kernelcore_node = required_kernelcore / usable_nodes;
5190 
5191 		/*
5192 		 * As the map is walked, we track how much memory is usable
5193 		 * by the kernel using kernelcore_remaining. When it is
5194 		 * 0, the rest of the node is usable by ZONE_MOVABLE
5195 		 */
5196 		kernelcore_remaining = kernelcore_node;
5197 
5198 		/* Go through each range of PFNs within this node */
5199 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5200 			unsigned long size_pages;
5201 
5202 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5203 			if (start_pfn >= end_pfn)
5204 				continue;
5205 
5206 			/* Account for what is only usable for kernelcore */
5207 			if (start_pfn < usable_startpfn) {
5208 				unsigned long kernel_pages;
5209 				kernel_pages = min(end_pfn, usable_startpfn)
5210 								- start_pfn;
5211 
5212 				kernelcore_remaining -= min(kernel_pages,
5213 							kernelcore_remaining);
5214 				required_kernelcore -= min(kernel_pages,
5215 							required_kernelcore);
5216 
5217 				/* Continue if range is now fully accounted */
5218 				if (end_pfn <= usable_startpfn) {
5219 
5220 					/*
5221 					 * Push zone_movable_pfn to the end so
5222 					 * that if we have to rebalance
5223 					 * kernelcore across nodes, we will
5224 					 * not double account here
5225 					 */
5226 					zone_movable_pfn[nid] = end_pfn;
5227 					continue;
5228 				}
5229 				start_pfn = usable_startpfn;
5230 			}
5231 
5232 			/*
5233 			 * The usable PFN range for ZONE_MOVABLE is from
5234 			 * start_pfn->end_pfn. Calculate size_pages as the
5235 			 * number of pages used as kernelcore
5236 			 */
5237 			size_pages = end_pfn - start_pfn;
5238 			if (size_pages > kernelcore_remaining)
5239 				size_pages = kernelcore_remaining;
5240 			zone_movable_pfn[nid] = start_pfn + size_pages;
5241 
5242 			/*
5243 			 * Some kernelcore has been met, update counts and
5244 			 * break if the kernelcore for this node has been
5245 			 * satisfied
5246 			 */
5247 			required_kernelcore -= min(required_kernelcore,
5248 								size_pages);
5249 			kernelcore_remaining -= size_pages;
5250 			if (!kernelcore_remaining)
5251 				break;
5252 		}
5253 	}
5254 
5255 	/*
5256 	 * If there is still required_kernelcore, we do another pass with one
5257 	 * less node in the count. This will push zone_movable_pfn[nid] further
5258 	 * along on the nodes that still have memory until kernelcore is
5259 	 * satisfied
5260 	 */
5261 	usable_nodes--;
5262 	if (usable_nodes && required_kernelcore > usable_nodes)
5263 		goto restart;
5264 
5265 out2:
5266 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5267 	for (nid = 0; nid < MAX_NUMNODES; nid++)
5268 		zone_movable_pfn[nid] =
5269 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5270 
5271 out:
5272 	/* restore the node_state */
5273 	node_states[N_MEMORY] = saved_node_state;
5274 }
5275 
5276 /* Any regular or high memory on that node ? */
5277 static void check_for_memory(pg_data_t *pgdat, int nid)
5278 {
5279 	enum zone_type zone_type;
5280 
5281 	if (N_MEMORY == N_NORMAL_MEMORY)
5282 		return;
5283 
5284 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5285 		struct zone *zone = &pgdat->node_zones[zone_type];
5286 		if (populated_zone(zone)) {
5287 			node_set_state(nid, N_HIGH_MEMORY);
5288 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5289 			    zone_type <= ZONE_NORMAL)
5290 				node_set_state(nid, N_NORMAL_MEMORY);
5291 			break;
5292 		}
5293 	}
5294 }
5295 
5296 /**
5297  * free_area_init_nodes - Initialise all pg_data_t and zone data
5298  * @max_zone_pfn: an array of max PFNs for each zone
5299  *
5300  * This will call free_area_init_node() for each active node in the system.
5301  * Using the page ranges provided by memblock_set_node(), the size of each
5302  * zone in each node and their holes is calculated. If the maximum PFN
5303  * between two adjacent zones match, it is assumed that the zone is empty.
5304  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5305  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5306  * starts where the previous one ended. For example, ZONE_DMA32 starts
5307  * at arch_max_dma_pfn.
5308  */
5309 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5310 {
5311 	unsigned long start_pfn, end_pfn;
5312 	int i, nid;
5313 
5314 	/* Record where the zone boundaries are */
5315 	memset(arch_zone_lowest_possible_pfn, 0,
5316 				sizeof(arch_zone_lowest_possible_pfn));
5317 	memset(arch_zone_highest_possible_pfn, 0,
5318 				sizeof(arch_zone_highest_possible_pfn));
5319 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5320 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5321 	for (i = 1; i < MAX_NR_ZONES; i++) {
5322 		if (i == ZONE_MOVABLE)
5323 			continue;
5324 		arch_zone_lowest_possible_pfn[i] =
5325 			arch_zone_highest_possible_pfn[i-1];
5326 		arch_zone_highest_possible_pfn[i] =
5327 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5328 	}
5329 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5330 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5331 
5332 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
5333 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5334 	find_zone_movable_pfns_for_nodes();
5335 
5336 	/* Print out the zone ranges */
5337 	printk("Zone ranges:\n");
5338 	for (i = 0; i < MAX_NR_ZONES; i++) {
5339 		if (i == ZONE_MOVABLE)
5340 			continue;
5341 		printk(KERN_CONT "  %-8s ", zone_names[i]);
5342 		if (arch_zone_lowest_possible_pfn[i] ==
5343 				arch_zone_highest_possible_pfn[i])
5344 			printk(KERN_CONT "empty\n");
5345 		else
5346 			printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5347 				arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5348 				(arch_zone_highest_possible_pfn[i]
5349 					<< PAGE_SHIFT) - 1);
5350 	}
5351 
5352 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
5353 	printk("Movable zone start for each node\n");
5354 	for (i = 0; i < MAX_NUMNODES; i++) {
5355 		if (zone_movable_pfn[i])
5356 			printk("  Node %d: %#010lx\n", i,
5357 			       zone_movable_pfn[i] << PAGE_SHIFT);
5358 	}
5359 
5360 	/* Print out the early node map */
5361 	printk("Early memory node ranges\n");
5362 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5363 		printk("  node %3d: [mem %#010lx-%#010lx]\n", nid,
5364 		       start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5365 
5366 	/* Initialise every node */
5367 	mminit_verify_pageflags_layout();
5368 	setup_nr_node_ids();
5369 	for_each_online_node(nid) {
5370 		pg_data_t *pgdat = NODE_DATA(nid);
5371 		free_area_init_node(nid, NULL,
5372 				find_min_pfn_for_node(nid), NULL);
5373 
5374 		/* Any memory on that node */
5375 		if (pgdat->node_present_pages)
5376 			node_set_state(nid, N_MEMORY);
5377 		check_for_memory(pgdat, nid);
5378 	}
5379 }
5380 
5381 static int __init cmdline_parse_core(char *p, unsigned long *core)
5382 {
5383 	unsigned long long coremem;
5384 	if (!p)
5385 		return -EINVAL;
5386 
5387 	coremem = memparse(p, &p);
5388 	*core = coremem >> PAGE_SHIFT;
5389 
5390 	/* Paranoid check that UL is enough for the coremem value */
5391 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5392 
5393 	return 0;
5394 }
5395 
5396 /*
5397  * kernelcore=size sets the amount of memory for use for allocations that
5398  * cannot be reclaimed or migrated.
5399  */
5400 static int __init cmdline_parse_kernelcore(char *p)
5401 {
5402 	return cmdline_parse_core(p, &required_kernelcore);
5403 }
5404 
5405 /*
5406  * movablecore=size sets the amount of memory for use for allocations that
5407  * can be reclaimed or migrated.
5408  */
5409 static int __init cmdline_parse_movablecore(char *p)
5410 {
5411 	return cmdline_parse_core(p, &required_movablecore);
5412 }
5413 
5414 early_param("kernelcore", cmdline_parse_kernelcore);
5415 early_param("movablecore", cmdline_parse_movablecore);
5416 
5417 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5418 
5419 void adjust_managed_page_count(struct page *page, long count)
5420 {
5421 	spin_lock(&managed_page_count_lock);
5422 	page_zone(page)->managed_pages += count;
5423 	totalram_pages += count;
5424 #ifdef CONFIG_HIGHMEM
5425 	if (PageHighMem(page))
5426 		totalhigh_pages += count;
5427 #endif
5428 	spin_unlock(&managed_page_count_lock);
5429 }
5430 EXPORT_SYMBOL(adjust_managed_page_count);
5431 
5432 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5433 {
5434 	void *pos;
5435 	unsigned long pages = 0;
5436 
5437 	start = (void *)PAGE_ALIGN((unsigned long)start);
5438 	end = (void *)((unsigned long)end & PAGE_MASK);
5439 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5440 		if ((unsigned int)poison <= 0xFF)
5441 			memset(pos, poison, PAGE_SIZE);
5442 		free_reserved_page(virt_to_page(pos));
5443 	}
5444 
5445 	if (pages && s)
5446 		pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5447 			s, pages << (PAGE_SHIFT - 10), start, end);
5448 
5449 	return pages;
5450 }
5451 EXPORT_SYMBOL(free_reserved_area);
5452 
5453 #ifdef	CONFIG_HIGHMEM
5454 void free_highmem_page(struct page *page)
5455 {
5456 	__free_reserved_page(page);
5457 	totalram_pages++;
5458 	page_zone(page)->managed_pages++;
5459 	totalhigh_pages++;
5460 }
5461 #endif
5462 
5463 
5464 void __init mem_init_print_info(const char *str)
5465 {
5466 	unsigned long physpages, codesize, datasize, rosize, bss_size;
5467 	unsigned long init_code_size, init_data_size;
5468 
5469 	physpages = get_num_physpages();
5470 	codesize = _etext - _stext;
5471 	datasize = _edata - _sdata;
5472 	rosize = __end_rodata - __start_rodata;
5473 	bss_size = __bss_stop - __bss_start;
5474 	init_data_size = __init_end - __init_begin;
5475 	init_code_size = _einittext - _sinittext;
5476 
5477 	/*
5478 	 * Detect special cases and adjust section sizes accordingly:
5479 	 * 1) .init.* may be embedded into .data sections
5480 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
5481 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
5482 	 * 3) .rodata.* may be embedded into .text or .data sections.
5483 	 */
5484 #define adj_init_size(start, end, size, pos, adj) \
5485 	do { \
5486 		if (start <= pos && pos < end && size > adj) \
5487 			size -= adj; \
5488 	} while (0)
5489 
5490 	adj_init_size(__init_begin, __init_end, init_data_size,
5491 		     _sinittext, init_code_size);
5492 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5493 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5494 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5495 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5496 
5497 #undef	adj_init_size
5498 
5499 	printk("Memory: %luK/%luK available "
5500 	       "(%luK kernel code, %luK rwdata, %luK rodata, "
5501 	       "%luK init, %luK bss, %luK reserved"
5502 #ifdef	CONFIG_HIGHMEM
5503 	       ", %luK highmem"
5504 #endif
5505 	       "%s%s)\n",
5506 	       nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5507 	       codesize >> 10, datasize >> 10, rosize >> 10,
5508 	       (init_data_size + init_code_size) >> 10, bss_size >> 10,
5509 	       (physpages - totalram_pages) << (PAGE_SHIFT-10),
5510 #ifdef	CONFIG_HIGHMEM
5511 	       totalhigh_pages << (PAGE_SHIFT-10),
5512 #endif
5513 	       str ? ", " : "", str ? str : "");
5514 }
5515 
5516 /**
5517  * set_dma_reserve - set the specified number of pages reserved in the first zone
5518  * @new_dma_reserve: The number of pages to mark reserved
5519  *
5520  * The per-cpu batchsize and zone watermarks are determined by present_pages.
5521  * In the DMA zone, a significant percentage may be consumed by kernel image
5522  * and other unfreeable allocations which can skew the watermarks badly. This
5523  * function may optionally be used to account for unfreeable pages in the
5524  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5525  * smaller per-cpu batchsize.
5526  */
5527 void __init set_dma_reserve(unsigned long new_dma_reserve)
5528 {
5529 	dma_reserve = new_dma_reserve;
5530 }
5531 
5532 void __init free_area_init(unsigned long *zones_size)
5533 {
5534 	free_area_init_node(0, zones_size,
5535 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5536 }
5537 
5538 static int page_alloc_cpu_notify(struct notifier_block *self,
5539 				 unsigned long action, void *hcpu)
5540 {
5541 	int cpu = (unsigned long)hcpu;
5542 
5543 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5544 		lru_add_drain_cpu(cpu);
5545 		drain_pages(cpu);
5546 
5547 		/*
5548 		 * Spill the event counters of the dead processor
5549 		 * into the current processors event counters.
5550 		 * This artificially elevates the count of the current
5551 		 * processor.
5552 		 */
5553 		vm_events_fold_cpu(cpu);
5554 
5555 		/*
5556 		 * Zero the differential counters of the dead processor
5557 		 * so that the vm statistics are consistent.
5558 		 *
5559 		 * This is only okay since the processor is dead and cannot
5560 		 * race with what we are doing.
5561 		 */
5562 		cpu_vm_stats_fold(cpu);
5563 	}
5564 	return NOTIFY_OK;
5565 }
5566 
5567 void __init page_alloc_init(void)
5568 {
5569 	hotcpu_notifier(page_alloc_cpu_notify, 0);
5570 }
5571 
5572 /*
5573  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5574  *	or min_free_kbytes changes.
5575  */
5576 static void calculate_totalreserve_pages(void)
5577 {
5578 	struct pglist_data *pgdat;
5579 	unsigned long reserve_pages = 0;
5580 	enum zone_type i, j;
5581 
5582 	for_each_online_pgdat(pgdat) {
5583 		for (i = 0; i < MAX_NR_ZONES; i++) {
5584 			struct zone *zone = pgdat->node_zones + i;
5585 			long max = 0;
5586 
5587 			/* Find valid and maximum lowmem_reserve in the zone */
5588 			for (j = i; j < MAX_NR_ZONES; j++) {
5589 				if (zone->lowmem_reserve[j] > max)
5590 					max = zone->lowmem_reserve[j];
5591 			}
5592 
5593 			/* we treat the high watermark as reserved pages. */
5594 			max += high_wmark_pages(zone);
5595 
5596 			if (max > zone->managed_pages)
5597 				max = zone->managed_pages;
5598 			reserve_pages += max;
5599 			/*
5600 			 * Lowmem reserves are not available to
5601 			 * GFP_HIGHUSER page cache allocations and
5602 			 * kswapd tries to balance zones to their high
5603 			 * watermark.  As a result, neither should be
5604 			 * regarded as dirtyable memory, to prevent a
5605 			 * situation where reclaim has to clean pages
5606 			 * in order to balance the zones.
5607 			 */
5608 			zone->dirty_balance_reserve = max;
5609 		}
5610 	}
5611 	dirty_balance_reserve = reserve_pages;
5612 	totalreserve_pages = reserve_pages;
5613 }
5614 
5615 /*
5616  * setup_per_zone_lowmem_reserve - called whenever
5617  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
5618  *	has a correct pages reserved value, so an adequate number of
5619  *	pages are left in the zone after a successful __alloc_pages().
5620  */
5621 static void setup_per_zone_lowmem_reserve(void)
5622 {
5623 	struct pglist_data *pgdat;
5624 	enum zone_type j, idx;
5625 
5626 	for_each_online_pgdat(pgdat) {
5627 		for (j = 0; j < MAX_NR_ZONES; j++) {
5628 			struct zone *zone = pgdat->node_zones + j;
5629 			unsigned long managed_pages = zone->managed_pages;
5630 
5631 			zone->lowmem_reserve[j] = 0;
5632 
5633 			idx = j;
5634 			while (idx) {
5635 				struct zone *lower_zone;
5636 
5637 				idx--;
5638 
5639 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
5640 					sysctl_lowmem_reserve_ratio[idx] = 1;
5641 
5642 				lower_zone = pgdat->node_zones + idx;
5643 				lower_zone->lowmem_reserve[j] = managed_pages /
5644 					sysctl_lowmem_reserve_ratio[idx];
5645 				managed_pages += lower_zone->managed_pages;
5646 			}
5647 		}
5648 	}
5649 
5650 	/* update totalreserve_pages */
5651 	calculate_totalreserve_pages();
5652 }
5653 
5654 static void __setup_per_zone_wmarks(void)
5655 {
5656 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5657 	unsigned long lowmem_pages = 0;
5658 	struct zone *zone;
5659 	unsigned long flags;
5660 
5661 	/* Calculate total number of !ZONE_HIGHMEM pages */
5662 	for_each_zone(zone) {
5663 		if (!is_highmem(zone))
5664 			lowmem_pages += zone->managed_pages;
5665 	}
5666 
5667 	for_each_zone(zone) {
5668 		u64 tmp;
5669 
5670 		spin_lock_irqsave(&zone->lock, flags);
5671 		tmp = (u64)pages_min * zone->managed_pages;
5672 		do_div(tmp, lowmem_pages);
5673 		if (is_highmem(zone)) {
5674 			/*
5675 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5676 			 * need highmem pages, so cap pages_min to a small
5677 			 * value here.
5678 			 *
5679 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5680 			 * deltas controls asynch page reclaim, and so should
5681 			 * not be capped for highmem.
5682 			 */
5683 			unsigned long min_pages;
5684 
5685 			min_pages = zone->managed_pages / 1024;
5686 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5687 			zone->watermark[WMARK_MIN] = min_pages;
5688 		} else {
5689 			/*
5690 			 * If it's a lowmem zone, reserve a number of pages
5691 			 * proportionate to the zone's size.
5692 			 */
5693 			zone->watermark[WMARK_MIN] = tmp;
5694 		}
5695 
5696 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
5697 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5698 
5699 		__mod_zone_page_state(zone, NR_ALLOC_BATCH,
5700 			high_wmark_pages(zone) - low_wmark_pages(zone) -
5701 			atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
5702 
5703 		setup_zone_migrate_reserve(zone);
5704 		spin_unlock_irqrestore(&zone->lock, flags);
5705 	}
5706 
5707 	/* update totalreserve_pages */
5708 	calculate_totalreserve_pages();
5709 }
5710 
5711 /**
5712  * setup_per_zone_wmarks - called when min_free_kbytes changes
5713  * or when memory is hot-{added|removed}
5714  *
5715  * Ensures that the watermark[min,low,high] values for each zone are set
5716  * correctly with respect to min_free_kbytes.
5717  */
5718 void setup_per_zone_wmarks(void)
5719 {
5720 	mutex_lock(&zonelists_mutex);
5721 	__setup_per_zone_wmarks();
5722 	mutex_unlock(&zonelists_mutex);
5723 }
5724 
5725 /*
5726  * The inactive anon list should be small enough that the VM never has to
5727  * do too much work, but large enough that each inactive page has a chance
5728  * to be referenced again before it is swapped out.
5729  *
5730  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5731  * INACTIVE_ANON pages on this zone's LRU, maintained by the
5732  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5733  * the anonymous pages are kept on the inactive list.
5734  *
5735  * total     target    max
5736  * memory    ratio     inactive anon
5737  * -------------------------------------
5738  *   10MB       1         5MB
5739  *  100MB       1        50MB
5740  *    1GB       3       250MB
5741  *   10GB      10       0.9GB
5742  *  100GB      31         3GB
5743  *    1TB     101        10GB
5744  *   10TB     320        32GB
5745  */
5746 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5747 {
5748 	unsigned int gb, ratio;
5749 
5750 	/* Zone size in gigabytes */
5751 	gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5752 	if (gb)
5753 		ratio = int_sqrt(10 * gb);
5754 	else
5755 		ratio = 1;
5756 
5757 	zone->inactive_ratio = ratio;
5758 }
5759 
5760 static void __meminit setup_per_zone_inactive_ratio(void)
5761 {
5762 	struct zone *zone;
5763 
5764 	for_each_zone(zone)
5765 		calculate_zone_inactive_ratio(zone);
5766 }
5767 
5768 /*
5769  * Initialise min_free_kbytes.
5770  *
5771  * For small machines we want it small (128k min).  For large machines
5772  * we want it large (64MB max).  But it is not linear, because network
5773  * bandwidth does not increase linearly with machine size.  We use
5774  *
5775  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5776  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5777  *
5778  * which yields
5779  *
5780  * 16MB:	512k
5781  * 32MB:	724k
5782  * 64MB:	1024k
5783  * 128MB:	1448k
5784  * 256MB:	2048k
5785  * 512MB:	2896k
5786  * 1024MB:	4096k
5787  * 2048MB:	5792k
5788  * 4096MB:	8192k
5789  * 8192MB:	11584k
5790  * 16384MB:	16384k
5791  */
5792 int __meminit init_per_zone_wmark_min(void)
5793 {
5794 	unsigned long lowmem_kbytes;
5795 	int new_min_free_kbytes;
5796 
5797 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5798 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5799 
5800 	if (new_min_free_kbytes > user_min_free_kbytes) {
5801 		min_free_kbytes = new_min_free_kbytes;
5802 		if (min_free_kbytes < 128)
5803 			min_free_kbytes = 128;
5804 		if (min_free_kbytes > 65536)
5805 			min_free_kbytes = 65536;
5806 	} else {
5807 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5808 				new_min_free_kbytes, user_min_free_kbytes);
5809 	}
5810 	setup_per_zone_wmarks();
5811 	refresh_zone_stat_thresholds();
5812 	setup_per_zone_lowmem_reserve();
5813 	setup_per_zone_inactive_ratio();
5814 	return 0;
5815 }
5816 module_init(init_per_zone_wmark_min)
5817 
5818 /*
5819  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5820  *	that we can call two helper functions whenever min_free_kbytes
5821  *	changes.
5822  */
5823 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5824 	void __user *buffer, size_t *length, loff_t *ppos)
5825 {
5826 	int rc;
5827 
5828 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5829 	if (rc)
5830 		return rc;
5831 
5832 	if (write) {
5833 		user_min_free_kbytes = min_free_kbytes;
5834 		setup_per_zone_wmarks();
5835 	}
5836 	return 0;
5837 }
5838 
5839 #ifdef CONFIG_NUMA
5840 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
5841 	void __user *buffer, size_t *length, loff_t *ppos)
5842 {
5843 	struct zone *zone;
5844 	int rc;
5845 
5846 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5847 	if (rc)
5848 		return rc;
5849 
5850 	for_each_zone(zone)
5851 		zone->min_unmapped_pages = (zone->managed_pages *
5852 				sysctl_min_unmapped_ratio) / 100;
5853 	return 0;
5854 }
5855 
5856 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
5857 	void __user *buffer, size_t *length, loff_t *ppos)
5858 {
5859 	struct zone *zone;
5860 	int rc;
5861 
5862 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5863 	if (rc)
5864 		return rc;
5865 
5866 	for_each_zone(zone)
5867 		zone->min_slab_pages = (zone->managed_pages *
5868 				sysctl_min_slab_ratio) / 100;
5869 	return 0;
5870 }
5871 #endif
5872 
5873 /*
5874  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5875  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5876  *	whenever sysctl_lowmem_reserve_ratio changes.
5877  *
5878  * The reserve ratio obviously has absolutely no relation with the
5879  * minimum watermarks. The lowmem reserve ratio can only make sense
5880  * if in function of the boot time zone sizes.
5881  */
5882 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
5883 	void __user *buffer, size_t *length, loff_t *ppos)
5884 {
5885 	proc_dointvec_minmax(table, write, buffer, length, ppos);
5886 	setup_per_zone_lowmem_reserve();
5887 	return 0;
5888 }
5889 
5890 /*
5891  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5892  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
5893  * pagelist can have before it gets flushed back to buddy allocator.
5894  */
5895 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
5896 	void __user *buffer, size_t *length, loff_t *ppos)
5897 {
5898 	struct zone *zone;
5899 	int old_percpu_pagelist_fraction;
5900 	int ret;
5901 
5902 	mutex_lock(&pcp_batch_high_lock);
5903 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
5904 
5905 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5906 	if (!write || ret < 0)
5907 		goto out;
5908 
5909 	/* Sanity checking to avoid pcp imbalance */
5910 	if (percpu_pagelist_fraction &&
5911 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
5912 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
5913 		ret = -EINVAL;
5914 		goto out;
5915 	}
5916 
5917 	/* No change? */
5918 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
5919 		goto out;
5920 
5921 	for_each_populated_zone(zone) {
5922 		unsigned int cpu;
5923 
5924 		for_each_possible_cpu(cpu)
5925 			pageset_set_high_and_batch(zone,
5926 					per_cpu_ptr(zone->pageset, cpu));
5927 	}
5928 out:
5929 	mutex_unlock(&pcp_batch_high_lock);
5930 	return ret;
5931 }
5932 
5933 int hashdist = HASHDIST_DEFAULT;
5934 
5935 #ifdef CONFIG_NUMA
5936 static int __init set_hashdist(char *str)
5937 {
5938 	if (!str)
5939 		return 0;
5940 	hashdist = simple_strtoul(str, &str, 0);
5941 	return 1;
5942 }
5943 __setup("hashdist=", set_hashdist);
5944 #endif
5945 
5946 /*
5947  * allocate a large system hash table from bootmem
5948  * - it is assumed that the hash table must contain an exact power-of-2
5949  *   quantity of entries
5950  * - limit is the number of hash buckets, not the total allocation size
5951  */
5952 void *__init alloc_large_system_hash(const char *tablename,
5953 				     unsigned long bucketsize,
5954 				     unsigned long numentries,
5955 				     int scale,
5956 				     int flags,
5957 				     unsigned int *_hash_shift,
5958 				     unsigned int *_hash_mask,
5959 				     unsigned long low_limit,
5960 				     unsigned long high_limit)
5961 {
5962 	unsigned long long max = high_limit;
5963 	unsigned long log2qty, size;
5964 	void *table = NULL;
5965 
5966 	/* allow the kernel cmdline to have a say */
5967 	if (!numentries) {
5968 		/* round applicable memory size up to nearest megabyte */
5969 		numentries = nr_kernel_pages;
5970 
5971 		/* It isn't necessary when PAGE_SIZE >= 1MB */
5972 		if (PAGE_SHIFT < 20)
5973 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
5974 
5975 		/* limit to 1 bucket per 2^scale bytes of low memory */
5976 		if (scale > PAGE_SHIFT)
5977 			numentries >>= (scale - PAGE_SHIFT);
5978 		else
5979 			numentries <<= (PAGE_SHIFT - scale);
5980 
5981 		/* Make sure we've got at least a 0-order allocation.. */
5982 		if (unlikely(flags & HASH_SMALL)) {
5983 			/* Makes no sense without HASH_EARLY */
5984 			WARN_ON(!(flags & HASH_EARLY));
5985 			if (!(numentries >> *_hash_shift)) {
5986 				numentries = 1UL << *_hash_shift;
5987 				BUG_ON(!numentries);
5988 			}
5989 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5990 			numentries = PAGE_SIZE / bucketsize;
5991 	}
5992 	numentries = roundup_pow_of_two(numentries);
5993 
5994 	/* limit allocation size to 1/16 total memory by default */
5995 	if (max == 0) {
5996 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5997 		do_div(max, bucketsize);
5998 	}
5999 	max = min(max, 0x80000000ULL);
6000 
6001 	if (numentries < low_limit)
6002 		numentries = low_limit;
6003 	if (numentries > max)
6004 		numentries = max;
6005 
6006 	log2qty = ilog2(numentries);
6007 
6008 	do {
6009 		size = bucketsize << log2qty;
6010 		if (flags & HASH_EARLY)
6011 			table = memblock_virt_alloc_nopanic(size, 0);
6012 		else if (hashdist)
6013 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6014 		else {
6015 			/*
6016 			 * If bucketsize is not a power-of-two, we may free
6017 			 * some pages at the end of hash table which
6018 			 * alloc_pages_exact() automatically does
6019 			 */
6020 			if (get_order(size) < MAX_ORDER) {
6021 				table = alloc_pages_exact(size, GFP_ATOMIC);
6022 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6023 			}
6024 		}
6025 	} while (!table && size > PAGE_SIZE && --log2qty);
6026 
6027 	if (!table)
6028 		panic("Failed to allocate %s hash table\n", tablename);
6029 
6030 	printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6031 	       tablename,
6032 	       (1UL << log2qty),
6033 	       ilog2(size) - PAGE_SHIFT,
6034 	       size);
6035 
6036 	if (_hash_shift)
6037 		*_hash_shift = log2qty;
6038 	if (_hash_mask)
6039 		*_hash_mask = (1 << log2qty) - 1;
6040 
6041 	return table;
6042 }
6043 
6044 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6045 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6046 							unsigned long pfn)
6047 {
6048 #ifdef CONFIG_SPARSEMEM
6049 	return __pfn_to_section(pfn)->pageblock_flags;
6050 #else
6051 	return zone->pageblock_flags;
6052 #endif /* CONFIG_SPARSEMEM */
6053 }
6054 
6055 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6056 {
6057 #ifdef CONFIG_SPARSEMEM
6058 	pfn &= (PAGES_PER_SECTION-1);
6059 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6060 #else
6061 	pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6062 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6063 #endif /* CONFIG_SPARSEMEM */
6064 }
6065 
6066 /**
6067  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6068  * @page: The page within the block of interest
6069  * @pfn: The target page frame number
6070  * @end_bitidx: The last bit of interest to retrieve
6071  * @mask: mask of bits that the caller is interested in
6072  *
6073  * Return: pageblock_bits flags
6074  */
6075 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6076 					unsigned long end_bitidx,
6077 					unsigned long mask)
6078 {
6079 	struct zone *zone;
6080 	unsigned long *bitmap;
6081 	unsigned long bitidx, word_bitidx;
6082 	unsigned long word;
6083 
6084 	zone = page_zone(page);
6085 	bitmap = get_pageblock_bitmap(zone, pfn);
6086 	bitidx = pfn_to_bitidx(zone, pfn);
6087 	word_bitidx = bitidx / BITS_PER_LONG;
6088 	bitidx &= (BITS_PER_LONG-1);
6089 
6090 	word = bitmap[word_bitidx];
6091 	bitidx += end_bitidx;
6092 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6093 }
6094 
6095 /**
6096  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6097  * @page: The page within the block of interest
6098  * @flags: The flags to set
6099  * @pfn: The target page frame number
6100  * @end_bitidx: The last bit of interest
6101  * @mask: mask of bits that the caller is interested in
6102  */
6103 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6104 					unsigned long pfn,
6105 					unsigned long end_bitidx,
6106 					unsigned long mask)
6107 {
6108 	struct zone *zone;
6109 	unsigned long *bitmap;
6110 	unsigned long bitidx, word_bitidx;
6111 	unsigned long old_word, word;
6112 
6113 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6114 
6115 	zone = page_zone(page);
6116 	bitmap = get_pageblock_bitmap(zone, pfn);
6117 	bitidx = pfn_to_bitidx(zone, pfn);
6118 	word_bitidx = bitidx / BITS_PER_LONG;
6119 	bitidx &= (BITS_PER_LONG-1);
6120 
6121 	VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6122 
6123 	bitidx += end_bitidx;
6124 	mask <<= (BITS_PER_LONG - bitidx - 1);
6125 	flags <<= (BITS_PER_LONG - bitidx - 1);
6126 
6127 	word = ACCESS_ONCE(bitmap[word_bitidx]);
6128 	for (;;) {
6129 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6130 		if (word == old_word)
6131 			break;
6132 		word = old_word;
6133 	}
6134 }
6135 
6136 /*
6137  * This function checks whether pageblock includes unmovable pages or not.
6138  * If @count is not zero, it is okay to include less @count unmovable pages
6139  *
6140  * PageLRU check without isolation or lru_lock could race so that
6141  * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6142  * expect this function should be exact.
6143  */
6144 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6145 			 bool skip_hwpoisoned_pages)
6146 {
6147 	unsigned long pfn, iter, found;
6148 	int mt;
6149 
6150 	/*
6151 	 * For avoiding noise data, lru_add_drain_all() should be called
6152 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
6153 	 */
6154 	if (zone_idx(zone) == ZONE_MOVABLE)
6155 		return false;
6156 	mt = get_pageblock_migratetype(page);
6157 	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6158 		return false;
6159 
6160 	pfn = page_to_pfn(page);
6161 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6162 		unsigned long check = pfn + iter;
6163 
6164 		if (!pfn_valid_within(check))
6165 			continue;
6166 
6167 		page = pfn_to_page(check);
6168 
6169 		/*
6170 		 * Hugepages are not in LRU lists, but they're movable.
6171 		 * We need not scan over tail pages bacause we don't
6172 		 * handle each tail page individually in migration.
6173 		 */
6174 		if (PageHuge(page)) {
6175 			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6176 			continue;
6177 		}
6178 
6179 		/*
6180 		 * We can't use page_count without pin a page
6181 		 * because another CPU can free compound page.
6182 		 * This check already skips compound tails of THP
6183 		 * because their page->_count is zero at all time.
6184 		 */
6185 		if (!atomic_read(&page->_count)) {
6186 			if (PageBuddy(page))
6187 				iter += (1 << page_order(page)) - 1;
6188 			continue;
6189 		}
6190 
6191 		/*
6192 		 * The HWPoisoned page may be not in buddy system, and
6193 		 * page_count() is not 0.
6194 		 */
6195 		if (skip_hwpoisoned_pages && PageHWPoison(page))
6196 			continue;
6197 
6198 		if (!PageLRU(page))
6199 			found++;
6200 		/*
6201 		 * If there are RECLAIMABLE pages, we need to check it.
6202 		 * But now, memory offline itself doesn't call shrink_slab()
6203 		 * and it still to be fixed.
6204 		 */
6205 		/*
6206 		 * If the page is not RAM, page_count()should be 0.
6207 		 * we don't need more check. This is an _used_ not-movable page.
6208 		 *
6209 		 * The problematic thing here is PG_reserved pages. PG_reserved
6210 		 * is set to both of a memory hole page and a _used_ kernel
6211 		 * page at boot.
6212 		 */
6213 		if (found > count)
6214 			return true;
6215 	}
6216 	return false;
6217 }
6218 
6219 bool is_pageblock_removable_nolock(struct page *page)
6220 {
6221 	struct zone *zone;
6222 	unsigned long pfn;
6223 
6224 	/*
6225 	 * We have to be careful here because we are iterating over memory
6226 	 * sections which are not zone aware so we might end up outside of
6227 	 * the zone but still within the section.
6228 	 * We have to take care about the node as well. If the node is offline
6229 	 * its NODE_DATA will be NULL - see page_zone.
6230 	 */
6231 	if (!node_online(page_to_nid(page)))
6232 		return false;
6233 
6234 	zone = page_zone(page);
6235 	pfn = page_to_pfn(page);
6236 	if (!zone_spans_pfn(zone, pfn))
6237 		return false;
6238 
6239 	return !has_unmovable_pages(zone, page, 0, true);
6240 }
6241 
6242 #ifdef CONFIG_CMA
6243 
6244 static unsigned long pfn_max_align_down(unsigned long pfn)
6245 {
6246 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6247 			     pageblock_nr_pages) - 1);
6248 }
6249 
6250 static unsigned long pfn_max_align_up(unsigned long pfn)
6251 {
6252 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6253 				pageblock_nr_pages));
6254 }
6255 
6256 /* [start, end) must belong to a single zone. */
6257 static int __alloc_contig_migrate_range(struct compact_control *cc,
6258 					unsigned long start, unsigned long end)
6259 {
6260 	/* This function is based on compact_zone() from compaction.c. */
6261 	unsigned long nr_reclaimed;
6262 	unsigned long pfn = start;
6263 	unsigned int tries = 0;
6264 	int ret = 0;
6265 
6266 	migrate_prep();
6267 
6268 	while (pfn < end || !list_empty(&cc->migratepages)) {
6269 		if (fatal_signal_pending(current)) {
6270 			ret = -EINTR;
6271 			break;
6272 		}
6273 
6274 		if (list_empty(&cc->migratepages)) {
6275 			cc->nr_migratepages = 0;
6276 			pfn = isolate_migratepages_range(cc, pfn, end);
6277 			if (!pfn) {
6278 				ret = -EINTR;
6279 				break;
6280 			}
6281 			tries = 0;
6282 		} else if (++tries == 5) {
6283 			ret = ret < 0 ? ret : -EBUSY;
6284 			break;
6285 		}
6286 
6287 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6288 							&cc->migratepages);
6289 		cc->nr_migratepages -= nr_reclaimed;
6290 
6291 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6292 				    NULL, 0, cc->mode, MR_CMA);
6293 	}
6294 	if (ret < 0) {
6295 		putback_movable_pages(&cc->migratepages);
6296 		return ret;
6297 	}
6298 	return 0;
6299 }
6300 
6301 /**
6302  * alloc_contig_range() -- tries to allocate given range of pages
6303  * @start:	start PFN to allocate
6304  * @end:	one-past-the-last PFN to allocate
6305  * @migratetype:	migratetype of the underlaying pageblocks (either
6306  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6307  *			in range must have the same migratetype and it must
6308  *			be either of the two.
6309  *
6310  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6311  * aligned, however it's the caller's responsibility to guarantee that
6312  * we are the only thread that changes migrate type of pageblocks the
6313  * pages fall in.
6314  *
6315  * The PFN range must belong to a single zone.
6316  *
6317  * Returns zero on success or negative error code.  On success all
6318  * pages which PFN is in [start, end) are allocated for the caller and
6319  * need to be freed with free_contig_range().
6320  */
6321 int alloc_contig_range(unsigned long start, unsigned long end,
6322 		       unsigned migratetype)
6323 {
6324 	unsigned long outer_start, outer_end;
6325 	int ret = 0, order;
6326 
6327 	struct compact_control cc = {
6328 		.nr_migratepages = 0,
6329 		.order = -1,
6330 		.zone = page_zone(pfn_to_page(start)),
6331 		.mode = MIGRATE_SYNC,
6332 		.ignore_skip_hint = true,
6333 	};
6334 	INIT_LIST_HEAD(&cc.migratepages);
6335 
6336 	/*
6337 	 * What we do here is we mark all pageblocks in range as
6338 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6339 	 * have different sizes, and due to the way page allocator
6340 	 * work, we align the range to biggest of the two pages so
6341 	 * that page allocator won't try to merge buddies from
6342 	 * different pageblocks and change MIGRATE_ISOLATE to some
6343 	 * other migration type.
6344 	 *
6345 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6346 	 * migrate the pages from an unaligned range (ie. pages that
6347 	 * we are interested in).  This will put all the pages in
6348 	 * range back to page allocator as MIGRATE_ISOLATE.
6349 	 *
6350 	 * When this is done, we take the pages in range from page
6351 	 * allocator removing them from the buddy system.  This way
6352 	 * page allocator will never consider using them.
6353 	 *
6354 	 * This lets us mark the pageblocks back as
6355 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6356 	 * aligned range but not in the unaligned, original range are
6357 	 * put back to page allocator so that buddy can use them.
6358 	 */
6359 
6360 	ret = start_isolate_page_range(pfn_max_align_down(start),
6361 				       pfn_max_align_up(end), migratetype,
6362 				       false);
6363 	if (ret)
6364 		return ret;
6365 
6366 	ret = __alloc_contig_migrate_range(&cc, start, end);
6367 	if (ret)
6368 		goto done;
6369 
6370 	/*
6371 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6372 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6373 	 * more, all pages in [start, end) are free in page allocator.
6374 	 * What we are going to do is to allocate all pages from
6375 	 * [start, end) (that is remove them from page allocator).
6376 	 *
6377 	 * The only problem is that pages at the beginning and at the
6378 	 * end of interesting range may be not aligned with pages that
6379 	 * page allocator holds, ie. they can be part of higher order
6380 	 * pages.  Because of this, we reserve the bigger range and
6381 	 * once this is done free the pages we are not interested in.
6382 	 *
6383 	 * We don't have to hold zone->lock here because the pages are
6384 	 * isolated thus they won't get removed from buddy.
6385 	 */
6386 
6387 	lru_add_drain_all();
6388 	drain_all_pages();
6389 
6390 	order = 0;
6391 	outer_start = start;
6392 	while (!PageBuddy(pfn_to_page(outer_start))) {
6393 		if (++order >= MAX_ORDER) {
6394 			ret = -EBUSY;
6395 			goto done;
6396 		}
6397 		outer_start &= ~0UL << order;
6398 	}
6399 
6400 	/* Make sure the range is really isolated. */
6401 	if (test_pages_isolated(outer_start, end, false)) {
6402 		pr_info("%s: [%lx, %lx) PFNs busy\n",
6403 			__func__, outer_start, end);
6404 		ret = -EBUSY;
6405 		goto done;
6406 	}
6407 
6408 	/* Grab isolated pages from freelists. */
6409 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6410 	if (!outer_end) {
6411 		ret = -EBUSY;
6412 		goto done;
6413 	}
6414 
6415 	/* Free head and tail (if any) */
6416 	if (start != outer_start)
6417 		free_contig_range(outer_start, start - outer_start);
6418 	if (end != outer_end)
6419 		free_contig_range(end, outer_end - end);
6420 
6421 done:
6422 	undo_isolate_page_range(pfn_max_align_down(start),
6423 				pfn_max_align_up(end), migratetype);
6424 	return ret;
6425 }
6426 
6427 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6428 {
6429 	unsigned int count = 0;
6430 
6431 	for (; nr_pages--; pfn++) {
6432 		struct page *page = pfn_to_page(pfn);
6433 
6434 		count += page_count(page) != 1;
6435 		__free_page(page);
6436 	}
6437 	WARN(count != 0, "%d pages are still in use!\n", count);
6438 }
6439 #endif
6440 
6441 #ifdef CONFIG_MEMORY_HOTPLUG
6442 /*
6443  * The zone indicated has a new number of managed_pages; batch sizes and percpu
6444  * page high values need to be recalulated.
6445  */
6446 void __meminit zone_pcp_update(struct zone *zone)
6447 {
6448 	unsigned cpu;
6449 	mutex_lock(&pcp_batch_high_lock);
6450 	for_each_possible_cpu(cpu)
6451 		pageset_set_high_and_batch(zone,
6452 				per_cpu_ptr(zone->pageset, cpu));
6453 	mutex_unlock(&pcp_batch_high_lock);
6454 }
6455 #endif
6456 
6457 void zone_pcp_reset(struct zone *zone)
6458 {
6459 	unsigned long flags;
6460 	int cpu;
6461 	struct per_cpu_pageset *pset;
6462 
6463 	/* avoid races with drain_pages()  */
6464 	local_irq_save(flags);
6465 	if (zone->pageset != &boot_pageset) {
6466 		for_each_online_cpu(cpu) {
6467 			pset = per_cpu_ptr(zone->pageset, cpu);
6468 			drain_zonestat(zone, pset);
6469 		}
6470 		free_percpu(zone->pageset);
6471 		zone->pageset = &boot_pageset;
6472 	}
6473 	local_irq_restore(flags);
6474 }
6475 
6476 #ifdef CONFIG_MEMORY_HOTREMOVE
6477 /*
6478  * All pages in the range must be isolated before calling this.
6479  */
6480 void
6481 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6482 {
6483 	struct page *page;
6484 	struct zone *zone;
6485 	unsigned int order, i;
6486 	unsigned long pfn;
6487 	unsigned long flags;
6488 	/* find the first valid pfn */
6489 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
6490 		if (pfn_valid(pfn))
6491 			break;
6492 	if (pfn == end_pfn)
6493 		return;
6494 	zone = page_zone(pfn_to_page(pfn));
6495 	spin_lock_irqsave(&zone->lock, flags);
6496 	pfn = start_pfn;
6497 	while (pfn < end_pfn) {
6498 		if (!pfn_valid(pfn)) {
6499 			pfn++;
6500 			continue;
6501 		}
6502 		page = pfn_to_page(pfn);
6503 		/*
6504 		 * The HWPoisoned page may be not in buddy system, and
6505 		 * page_count() is not 0.
6506 		 */
6507 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6508 			pfn++;
6509 			SetPageReserved(page);
6510 			continue;
6511 		}
6512 
6513 		BUG_ON(page_count(page));
6514 		BUG_ON(!PageBuddy(page));
6515 		order = page_order(page);
6516 #ifdef CONFIG_DEBUG_VM
6517 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
6518 		       pfn, 1 << order, end_pfn);
6519 #endif
6520 		list_del(&page->lru);
6521 		rmv_page_order(page);
6522 		zone->free_area[order].nr_free--;
6523 		for (i = 0; i < (1 << order); i++)
6524 			SetPageReserved((page+i));
6525 		pfn += (1 << order);
6526 	}
6527 	spin_unlock_irqrestore(&zone->lock, flags);
6528 }
6529 #endif
6530 
6531 #ifdef CONFIG_MEMORY_FAILURE
6532 bool is_free_buddy_page(struct page *page)
6533 {
6534 	struct zone *zone = page_zone(page);
6535 	unsigned long pfn = page_to_pfn(page);
6536 	unsigned long flags;
6537 	unsigned int order;
6538 
6539 	spin_lock_irqsave(&zone->lock, flags);
6540 	for (order = 0; order < MAX_ORDER; order++) {
6541 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6542 
6543 		if (PageBuddy(page_head) && page_order(page_head) >= order)
6544 			break;
6545 	}
6546 	spin_unlock_irqrestore(&zone->lock, flags);
6547 
6548 	return order < MAX_ORDER;
6549 }
6550 #endif
6551