1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kmemcheck.h> 28 #include <linux/module.h> 29 #include <linux/suspend.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/slab.h> 33 #include <linux/ratelimit.h> 34 #include <linux/oom.h> 35 #include <linux/notifier.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/stop_machine.h> 46 #include <linux/sort.h> 47 #include <linux/pfn.h> 48 #include <linux/backing-dev.h> 49 #include <linux/fault-inject.h> 50 #include <linux/page-isolation.h> 51 #include <linux/page_cgroup.h> 52 #include <linux/debugobjects.h> 53 #include <linux/kmemleak.h> 54 #include <linux/compaction.h> 55 #include <trace/events/kmem.h> 56 #include <linux/prefetch.h> 57 #include <linux/mm_inline.h> 58 #include <linux/migrate.h> 59 #include <linux/page-debug-flags.h> 60 #include <linux/hugetlb.h> 61 #include <linux/sched/rt.h> 62 63 #include <asm/sections.h> 64 #include <asm/tlbflush.h> 65 #include <asm/div64.h> 66 #include "internal.h" 67 68 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 69 static DEFINE_MUTEX(pcp_batch_high_lock); 70 #define MIN_PERCPU_PAGELIST_FRACTION (8) 71 72 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 73 DEFINE_PER_CPU(int, numa_node); 74 EXPORT_PER_CPU_SYMBOL(numa_node); 75 #endif 76 77 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 78 /* 79 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 80 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 81 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 82 * defined in <linux/topology.h>. 83 */ 84 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 85 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 86 int _node_numa_mem_[MAX_NUMNODES]; 87 #endif 88 89 /* 90 * Array of node states. 91 */ 92 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 93 [N_POSSIBLE] = NODE_MASK_ALL, 94 [N_ONLINE] = { { [0] = 1UL } }, 95 #ifndef CONFIG_NUMA 96 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 97 #ifdef CONFIG_HIGHMEM 98 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 99 #endif 100 #ifdef CONFIG_MOVABLE_NODE 101 [N_MEMORY] = { { [0] = 1UL } }, 102 #endif 103 [N_CPU] = { { [0] = 1UL } }, 104 #endif /* NUMA */ 105 }; 106 EXPORT_SYMBOL(node_states); 107 108 /* Protect totalram_pages and zone->managed_pages */ 109 static DEFINE_SPINLOCK(managed_page_count_lock); 110 111 unsigned long totalram_pages __read_mostly; 112 unsigned long totalreserve_pages __read_mostly; 113 /* 114 * When calculating the number of globally allowed dirty pages, there 115 * is a certain number of per-zone reserves that should not be 116 * considered dirtyable memory. This is the sum of those reserves 117 * over all existing zones that contribute dirtyable memory. 118 */ 119 unsigned long dirty_balance_reserve __read_mostly; 120 121 int percpu_pagelist_fraction; 122 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 123 124 #ifdef CONFIG_PM_SLEEP 125 /* 126 * The following functions are used by the suspend/hibernate code to temporarily 127 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 128 * while devices are suspended. To avoid races with the suspend/hibernate code, 129 * they should always be called with pm_mutex held (gfp_allowed_mask also should 130 * only be modified with pm_mutex held, unless the suspend/hibernate code is 131 * guaranteed not to run in parallel with that modification). 132 */ 133 134 static gfp_t saved_gfp_mask; 135 136 void pm_restore_gfp_mask(void) 137 { 138 WARN_ON(!mutex_is_locked(&pm_mutex)); 139 if (saved_gfp_mask) { 140 gfp_allowed_mask = saved_gfp_mask; 141 saved_gfp_mask = 0; 142 } 143 } 144 145 void pm_restrict_gfp_mask(void) 146 { 147 WARN_ON(!mutex_is_locked(&pm_mutex)); 148 WARN_ON(saved_gfp_mask); 149 saved_gfp_mask = gfp_allowed_mask; 150 gfp_allowed_mask &= ~GFP_IOFS; 151 } 152 153 bool pm_suspended_storage(void) 154 { 155 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS) 156 return false; 157 return true; 158 } 159 #endif /* CONFIG_PM_SLEEP */ 160 161 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 162 int pageblock_order __read_mostly; 163 #endif 164 165 static void __free_pages_ok(struct page *page, unsigned int order); 166 167 /* 168 * results with 256, 32 in the lowmem_reserve sysctl: 169 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 170 * 1G machine -> (16M dma, 784M normal, 224M high) 171 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 172 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 173 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 174 * 175 * TBD: should special case ZONE_DMA32 machines here - in those we normally 176 * don't need any ZONE_NORMAL reservation 177 */ 178 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 179 #ifdef CONFIG_ZONE_DMA 180 256, 181 #endif 182 #ifdef CONFIG_ZONE_DMA32 183 256, 184 #endif 185 #ifdef CONFIG_HIGHMEM 186 32, 187 #endif 188 32, 189 }; 190 191 EXPORT_SYMBOL(totalram_pages); 192 193 static char * const zone_names[MAX_NR_ZONES] = { 194 #ifdef CONFIG_ZONE_DMA 195 "DMA", 196 #endif 197 #ifdef CONFIG_ZONE_DMA32 198 "DMA32", 199 #endif 200 "Normal", 201 #ifdef CONFIG_HIGHMEM 202 "HighMem", 203 #endif 204 "Movable", 205 }; 206 207 int min_free_kbytes = 1024; 208 int user_min_free_kbytes = -1; 209 210 static unsigned long __meminitdata nr_kernel_pages; 211 static unsigned long __meminitdata nr_all_pages; 212 static unsigned long __meminitdata dma_reserve; 213 214 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 215 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 216 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 217 static unsigned long __initdata required_kernelcore; 218 static unsigned long __initdata required_movablecore; 219 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 220 221 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 222 int movable_zone; 223 EXPORT_SYMBOL(movable_zone); 224 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 225 226 #if MAX_NUMNODES > 1 227 int nr_node_ids __read_mostly = MAX_NUMNODES; 228 int nr_online_nodes __read_mostly = 1; 229 EXPORT_SYMBOL(nr_node_ids); 230 EXPORT_SYMBOL(nr_online_nodes); 231 #endif 232 233 int page_group_by_mobility_disabled __read_mostly; 234 235 void set_pageblock_migratetype(struct page *page, int migratetype) 236 { 237 if (unlikely(page_group_by_mobility_disabled && 238 migratetype < MIGRATE_PCPTYPES)) 239 migratetype = MIGRATE_UNMOVABLE; 240 241 set_pageblock_flags_group(page, (unsigned long)migratetype, 242 PB_migrate, PB_migrate_end); 243 } 244 245 bool oom_killer_disabled __read_mostly; 246 247 #ifdef CONFIG_DEBUG_VM 248 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 249 { 250 int ret = 0; 251 unsigned seq; 252 unsigned long pfn = page_to_pfn(page); 253 unsigned long sp, start_pfn; 254 255 do { 256 seq = zone_span_seqbegin(zone); 257 start_pfn = zone->zone_start_pfn; 258 sp = zone->spanned_pages; 259 if (!zone_spans_pfn(zone, pfn)) 260 ret = 1; 261 } while (zone_span_seqretry(zone, seq)); 262 263 if (ret) 264 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 265 pfn, zone_to_nid(zone), zone->name, 266 start_pfn, start_pfn + sp); 267 268 return ret; 269 } 270 271 static int page_is_consistent(struct zone *zone, struct page *page) 272 { 273 if (!pfn_valid_within(page_to_pfn(page))) 274 return 0; 275 if (zone != page_zone(page)) 276 return 0; 277 278 return 1; 279 } 280 /* 281 * Temporary debugging check for pages not lying within a given zone. 282 */ 283 static int bad_range(struct zone *zone, struct page *page) 284 { 285 if (page_outside_zone_boundaries(zone, page)) 286 return 1; 287 if (!page_is_consistent(zone, page)) 288 return 1; 289 290 return 0; 291 } 292 #else 293 static inline int bad_range(struct zone *zone, struct page *page) 294 { 295 return 0; 296 } 297 #endif 298 299 static void bad_page(struct page *page, const char *reason, 300 unsigned long bad_flags) 301 { 302 static unsigned long resume; 303 static unsigned long nr_shown; 304 static unsigned long nr_unshown; 305 306 /* Don't complain about poisoned pages */ 307 if (PageHWPoison(page)) { 308 page_mapcount_reset(page); /* remove PageBuddy */ 309 return; 310 } 311 312 /* 313 * Allow a burst of 60 reports, then keep quiet for that minute; 314 * or allow a steady drip of one report per second. 315 */ 316 if (nr_shown == 60) { 317 if (time_before(jiffies, resume)) { 318 nr_unshown++; 319 goto out; 320 } 321 if (nr_unshown) { 322 printk(KERN_ALERT 323 "BUG: Bad page state: %lu messages suppressed\n", 324 nr_unshown); 325 nr_unshown = 0; 326 } 327 nr_shown = 0; 328 } 329 if (nr_shown++ == 0) 330 resume = jiffies + 60 * HZ; 331 332 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", 333 current->comm, page_to_pfn(page)); 334 dump_page_badflags(page, reason, bad_flags); 335 336 print_modules(); 337 dump_stack(); 338 out: 339 /* Leave bad fields for debug, except PageBuddy could make trouble */ 340 page_mapcount_reset(page); /* remove PageBuddy */ 341 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 342 } 343 344 /* 345 * Higher-order pages are called "compound pages". They are structured thusly: 346 * 347 * The first PAGE_SIZE page is called the "head page". 348 * 349 * The remaining PAGE_SIZE pages are called "tail pages". 350 * 351 * All pages have PG_compound set. All tail pages have their ->first_page 352 * pointing at the head page. 353 * 354 * The first tail page's ->lru.next holds the address of the compound page's 355 * put_page() function. Its ->lru.prev holds the order of allocation. 356 * This usage means that zero-order pages may not be compound. 357 */ 358 359 static void free_compound_page(struct page *page) 360 { 361 __free_pages_ok(page, compound_order(page)); 362 } 363 364 void prep_compound_page(struct page *page, unsigned long order) 365 { 366 int i; 367 int nr_pages = 1 << order; 368 369 set_compound_page_dtor(page, free_compound_page); 370 set_compound_order(page, order); 371 __SetPageHead(page); 372 for (i = 1; i < nr_pages; i++) { 373 struct page *p = page + i; 374 set_page_count(p, 0); 375 p->first_page = page; 376 /* Make sure p->first_page is always valid for PageTail() */ 377 smp_wmb(); 378 __SetPageTail(p); 379 } 380 } 381 382 /* update __split_huge_page_refcount if you change this function */ 383 static int destroy_compound_page(struct page *page, unsigned long order) 384 { 385 int i; 386 int nr_pages = 1 << order; 387 int bad = 0; 388 389 if (unlikely(compound_order(page) != order)) { 390 bad_page(page, "wrong compound order", 0); 391 bad++; 392 } 393 394 __ClearPageHead(page); 395 396 for (i = 1; i < nr_pages; i++) { 397 struct page *p = page + i; 398 399 if (unlikely(!PageTail(p))) { 400 bad_page(page, "PageTail not set", 0); 401 bad++; 402 } else if (unlikely(p->first_page != page)) { 403 bad_page(page, "first_page not consistent", 0); 404 bad++; 405 } 406 __ClearPageTail(p); 407 } 408 409 return bad; 410 } 411 412 static inline void prep_zero_page(struct page *page, unsigned int order, 413 gfp_t gfp_flags) 414 { 415 int i; 416 417 /* 418 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 419 * and __GFP_HIGHMEM from hard or soft interrupt context. 420 */ 421 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 422 for (i = 0; i < (1 << order); i++) 423 clear_highpage(page + i); 424 } 425 426 #ifdef CONFIG_DEBUG_PAGEALLOC 427 unsigned int _debug_guardpage_minorder; 428 429 static int __init debug_guardpage_minorder_setup(char *buf) 430 { 431 unsigned long res; 432 433 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 434 printk(KERN_ERR "Bad debug_guardpage_minorder value\n"); 435 return 0; 436 } 437 _debug_guardpage_minorder = res; 438 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res); 439 return 0; 440 } 441 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup); 442 443 static inline void set_page_guard_flag(struct page *page) 444 { 445 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 446 } 447 448 static inline void clear_page_guard_flag(struct page *page) 449 { 450 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 451 } 452 #else 453 static inline void set_page_guard_flag(struct page *page) { } 454 static inline void clear_page_guard_flag(struct page *page) { } 455 #endif 456 457 static inline void set_page_order(struct page *page, unsigned int order) 458 { 459 set_page_private(page, order); 460 __SetPageBuddy(page); 461 } 462 463 static inline void rmv_page_order(struct page *page) 464 { 465 __ClearPageBuddy(page); 466 set_page_private(page, 0); 467 } 468 469 /* 470 * This function checks whether a page is free && is the buddy 471 * we can do coalesce a page and its buddy if 472 * (a) the buddy is not in a hole && 473 * (b) the buddy is in the buddy system && 474 * (c) a page and its buddy have the same order && 475 * (d) a page and its buddy are in the same zone. 476 * 477 * For recording whether a page is in the buddy system, we set ->_mapcount 478 * PAGE_BUDDY_MAPCOUNT_VALUE. 479 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is 480 * serialized by zone->lock. 481 * 482 * For recording page's order, we use page_private(page). 483 */ 484 static inline int page_is_buddy(struct page *page, struct page *buddy, 485 unsigned int order) 486 { 487 if (!pfn_valid_within(page_to_pfn(buddy))) 488 return 0; 489 490 if (page_is_guard(buddy) && page_order(buddy) == order) { 491 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 492 493 if (page_zone_id(page) != page_zone_id(buddy)) 494 return 0; 495 496 return 1; 497 } 498 499 if (PageBuddy(buddy) && page_order(buddy) == order) { 500 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 501 502 /* 503 * zone check is done late to avoid uselessly 504 * calculating zone/node ids for pages that could 505 * never merge. 506 */ 507 if (page_zone_id(page) != page_zone_id(buddy)) 508 return 0; 509 510 return 1; 511 } 512 return 0; 513 } 514 515 /* 516 * Freeing function for a buddy system allocator. 517 * 518 * The concept of a buddy system is to maintain direct-mapped table 519 * (containing bit values) for memory blocks of various "orders". 520 * The bottom level table contains the map for the smallest allocatable 521 * units of memory (here, pages), and each level above it describes 522 * pairs of units from the levels below, hence, "buddies". 523 * At a high level, all that happens here is marking the table entry 524 * at the bottom level available, and propagating the changes upward 525 * as necessary, plus some accounting needed to play nicely with other 526 * parts of the VM system. 527 * At each level, we keep a list of pages, which are heads of continuous 528 * free pages of length of (1 << order) and marked with _mapcount 529 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page) 530 * field. 531 * So when we are allocating or freeing one, we can derive the state of the 532 * other. That is, if we allocate a small block, and both were 533 * free, the remainder of the region must be split into blocks. 534 * If a block is freed, and its buddy is also free, then this 535 * triggers coalescing into a block of larger size. 536 * 537 * -- nyc 538 */ 539 540 static inline void __free_one_page(struct page *page, 541 unsigned long pfn, 542 struct zone *zone, unsigned int order, 543 int migratetype) 544 { 545 unsigned long page_idx; 546 unsigned long combined_idx; 547 unsigned long uninitialized_var(buddy_idx); 548 struct page *buddy; 549 int max_order = MAX_ORDER; 550 551 VM_BUG_ON(!zone_is_initialized(zone)); 552 553 if (unlikely(PageCompound(page))) 554 if (unlikely(destroy_compound_page(page, order))) 555 return; 556 557 VM_BUG_ON(migratetype == -1); 558 if (is_migrate_isolate(migratetype)) { 559 /* 560 * We restrict max order of merging to prevent merge 561 * between freepages on isolate pageblock and normal 562 * pageblock. Without this, pageblock isolation 563 * could cause incorrect freepage accounting. 564 */ 565 max_order = min(MAX_ORDER, pageblock_order + 1); 566 } else { 567 __mod_zone_freepage_state(zone, 1 << order, migratetype); 568 } 569 570 page_idx = pfn & ((1 << max_order) - 1); 571 572 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page); 573 VM_BUG_ON_PAGE(bad_range(zone, page), page); 574 575 while (order < max_order - 1) { 576 buddy_idx = __find_buddy_index(page_idx, order); 577 buddy = page + (buddy_idx - page_idx); 578 if (!page_is_buddy(page, buddy, order)) 579 break; 580 /* 581 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 582 * merge with it and move up one order. 583 */ 584 if (page_is_guard(buddy)) { 585 clear_page_guard_flag(buddy); 586 set_page_private(buddy, 0); 587 if (!is_migrate_isolate(migratetype)) { 588 __mod_zone_freepage_state(zone, 1 << order, 589 migratetype); 590 } 591 } else { 592 list_del(&buddy->lru); 593 zone->free_area[order].nr_free--; 594 rmv_page_order(buddy); 595 } 596 combined_idx = buddy_idx & page_idx; 597 page = page + (combined_idx - page_idx); 598 page_idx = combined_idx; 599 order++; 600 } 601 set_page_order(page, order); 602 603 /* 604 * If this is not the largest possible page, check if the buddy 605 * of the next-highest order is free. If it is, it's possible 606 * that pages are being freed that will coalesce soon. In case, 607 * that is happening, add the free page to the tail of the list 608 * so it's less likely to be used soon and more likely to be merged 609 * as a higher order page 610 */ 611 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { 612 struct page *higher_page, *higher_buddy; 613 combined_idx = buddy_idx & page_idx; 614 higher_page = page + (combined_idx - page_idx); 615 buddy_idx = __find_buddy_index(combined_idx, order + 1); 616 higher_buddy = higher_page + (buddy_idx - combined_idx); 617 if (page_is_buddy(higher_page, higher_buddy, order + 1)) { 618 list_add_tail(&page->lru, 619 &zone->free_area[order].free_list[migratetype]); 620 goto out; 621 } 622 } 623 624 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 625 out: 626 zone->free_area[order].nr_free++; 627 } 628 629 static inline int free_pages_check(struct page *page) 630 { 631 const char *bad_reason = NULL; 632 unsigned long bad_flags = 0; 633 634 if (unlikely(page_mapcount(page))) 635 bad_reason = "nonzero mapcount"; 636 if (unlikely(page->mapping != NULL)) 637 bad_reason = "non-NULL mapping"; 638 if (unlikely(atomic_read(&page->_count) != 0)) 639 bad_reason = "nonzero _count"; 640 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { 641 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 642 bad_flags = PAGE_FLAGS_CHECK_AT_FREE; 643 } 644 if (unlikely(mem_cgroup_bad_page_check(page))) 645 bad_reason = "cgroup check failed"; 646 if (unlikely(bad_reason)) { 647 bad_page(page, bad_reason, bad_flags); 648 return 1; 649 } 650 page_cpupid_reset_last(page); 651 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 652 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 653 return 0; 654 } 655 656 /* 657 * Frees a number of pages from the PCP lists 658 * Assumes all pages on list are in same zone, and of same order. 659 * count is the number of pages to free. 660 * 661 * If the zone was previously in an "all pages pinned" state then look to 662 * see if this freeing clears that state. 663 * 664 * And clear the zone's pages_scanned counter, to hold off the "all pages are 665 * pinned" detection logic. 666 */ 667 static void free_pcppages_bulk(struct zone *zone, int count, 668 struct per_cpu_pages *pcp) 669 { 670 int migratetype = 0; 671 int batch_free = 0; 672 int to_free = count; 673 unsigned long nr_scanned; 674 675 spin_lock(&zone->lock); 676 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED); 677 if (nr_scanned) 678 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned); 679 680 while (to_free) { 681 struct page *page; 682 struct list_head *list; 683 684 /* 685 * Remove pages from lists in a round-robin fashion. A 686 * batch_free count is maintained that is incremented when an 687 * empty list is encountered. This is so more pages are freed 688 * off fuller lists instead of spinning excessively around empty 689 * lists 690 */ 691 do { 692 batch_free++; 693 if (++migratetype == MIGRATE_PCPTYPES) 694 migratetype = 0; 695 list = &pcp->lists[migratetype]; 696 } while (list_empty(list)); 697 698 /* This is the only non-empty list. Free them all. */ 699 if (batch_free == MIGRATE_PCPTYPES) 700 batch_free = to_free; 701 702 do { 703 int mt; /* migratetype of the to-be-freed page */ 704 705 page = list_entry(list->prev, struct page, lru); 706 /* must delete as __free_one_page list manipulates */ 707 list_del(&page->lru); 708 mt = get_freepage_migratetype(page); 709 if (unlikely(has_isolate_pageblock(zone))) 710 mt = get_pageblock_migratetype(page); 711 712 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ 713 __free_one_page(page, page_to_pfn(page), zone, 0, mt); 714 trace_mm_page_pcpu_drain(page, 0, mt); 715 } while (--to_free && --batch_free && !list_empty(list)); 716 } 717 spin_unlock(&zone->lock); 718 } 719 720 static void free_one_page(struct zone *zone, 721 struct page *page, unsigned long pfn, 722 unsigned int order, 723 int migratetype) 724 { 725 unsigned long nr_scanned; 726 spin_lock(&zone->lock); 727 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED); 728 if (nr_scanned) 729 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned); 730 731 if (unlikely(has_isolate_pageblock(zone) || 732 is_migrate_isolate(migratetype))) { 733 migratetype = get_pfnblock_migratetype(page, pfn); 734 } 735 __free_one_page(page, pfn, zone, order, migratetype); 736 spin_unlock(&zone->lock); 737 } 738 739 static bool free_pages_prepare(struct page *page, unsigned int order) 740 { 741 int i; 742 int bad = 0; 743 744 trace_mm_page_free(page, order); 745 kmemcheck_free_shadow(page, order); 746 747 if (PageAnon(page)) 748 page->mapping = NULL; 749 for (i = 0; i < (1 << order); i++) 750 bad += free_pages_check(page + i); 751 if (bad) 752 return false; 753 754 if (!PageHighMem(page)) { 755 debug_check_no_locks_freed(page_address(page), 756 PAGE_SIZE << order); 757 debug_check_no_obj_freed(page_address(page), 758 PAGE_SIZE << order); 759 } 760 arch_free_page(page, order); 761 kernel_map_pages(page, 1 << order, 0); 762 763 return true; 764 } 765 766 static void __free_pages_ok(struct page *page, unsigned int order) 767 { 768 unsigned long flags; 769 int migratetype; 770 unsigned long pfn = page_to_pfn(page); 771 772 if (!free_pages_prepare(page, order)) 773 return; 774 775 migratetype = get_pfnblock_migratetype(page, pfn); 776 local_irq_save(flags); 777 __count_vm_events(PGFREE, 1 << order); 778 set_freepage_migratetype(page, migratetype); 779 free_one_page(page_zone(page), page, pfn, order, migratetype); 780 local_irq_restore(flags); 781 } 782 783 void __init __free_pages_bootmem(struct page *page, unsigned int order) 784 { 785 unsigned int nr_pages = 1 << order; 786 struct page *p = page; 787 unsigned int loop; 788 789 prefetchw(p); 790 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 791 prefetchw(p + 1); 792 __ClearPageReserved(p); 793 set_page_count(p, 0); 794 } 795 __ClearPageReserved(p); 796 set_page_count(p, 0); 797 798 page_zone(page)->managed_pages += nr_pages; 799 set_page_refcounted(page); 800 __free_pages(page, order); 801 } 802 803 #ifdef CONFIG_CMA 804 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 805 void __init init_cma_reserved_pageblock(struct page *page) 806 { 807 unsigned i = pageblock_nr_pages; 808 struct page *p = page; 809 810 do { 811 __ClearPageReserved(p); 812 set_page_count(p, 0); 813 } while (++p, --i); 814 815 set_pageblock_migratetype(page, MIGRATE_CMA); 816 817 if (pageblock_order >= MAX_ORDER) { 818 i = pageblock_nr_pages; 819 p = page; 820 do { 821 set_page_refcounted(p); 822 __free_pages(p, MAX_ORDER - 1); 823 p += MAX_ORDER_NR_PAGES; 824 } while (i -= MAX_ORDER_NR_PAGES); 825 } else { 826 set_page_refcounted(page); 827 __free_pages(page, pageblock_order); 828 } 829 830 adjust_managed_page_count(page, pageblock_nr_pages); 831 } 832 #endif 833 834 /* 835 * The order of subdivision here is critical for the IO subsystem. 836 * Please do not alter this order without good reasons and regression 837 * testing. Specifically, as large blocks of memory are subdivided, 838 * the order in which smaller blocks are delivered depends on the order 839 * they're subdivided in this function. This is the primary factor 840 * influencing the order in which pages are delivered to the IO 841 * subsystem according to empirical testing, and this is also justified 842 * by considering the behavior of a buddy system containing a single 843 * large block of memory acted on by a series of small allocations. 844 * This behavior is a critical factor in sglist merging's success. 845 * 846 * -- nyc 847 */ 848 static inline void expand(struct zone *zone, struct page *page, 849 int low, int high, struct free_area *area, 850 int migratetype) 851 { 852 unsigned long size = 1 << high; 853 854 while (high > low) { 855 area--; 856 high--; 857 size >>= 1; 858 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 859 860 #ifdef CONFIG_DEBUG_PAGEALLOC 861 if (high < debug_guardpage_minorder()) { 862 /* 863 * Mark as guard pages (or page), that will allow to 864 * merge back to allocator when buddy will be freed. 865 * Corresponding page table entries will not be touched, 866 * pages will stay not present in virtual address space 867 */ 868 INIT_LIST_HEAD(&page[size].lru); 869 set_page_guard_flag(&page[size]); 870 set_page_private(&page[size], high); 871 /* Guard pages are not available for any usage */ 872 __mod_zone_freepage_state(zone, -(1 << high), 873 migratetype); 874 continue; 875 } 876 #endif 877 list_add(&page[size].lru, &area->free_list[migratetype]); 878 area->nr_free++; 879 set_page_order(&page[size], high); 880 } 881 } 882 883 /* 884 * This page is about to be returned from the page allocator 885 */ 886 static inline int check_new_page(struct page *page) 887 { 888 const char *bad_reason = NULL; 889 unsigned long bad_flags = 0; 890 891 if (unlikely(page_mapcount(page))) 892 bad_reason = "nonzero mapcount"; 893 if (unlikely(page->mapping != NULL)) 894 bad_reason = "non-NULL mapping"; 895 if (unlikely(atomic_read(&page->_count) != 0)) 896 bad_reason = "nonzero _count"; 897 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { 898 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; 899 bad_flags = PAGE_FLAGS_CHECK_AT_PREP; 900 } 901 if (unlikely(mem_cgroup_bad_page_check(page))) 902 bad_reason = "cgroup check failed"; 903 if (unlikely(bad_reason)) { 904 bad_page(page, bad_reason, bad_flags); 905 return 1; 906 } 907 return 0; 908 } 909 910 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags) 911 { 912 int i; 913 914 for (i = 0; i < (1 << order); i++) { 915 struct page *p = page + i; 916 if (unlikely(check_new_page(p))) 917 return 1; 918 } 919 920 set_page_private(page, 0); 921 set_page_refcounted(page); 922 923 arch_alloc_page(page, order); 924 kernel_map_pages(page, 1 << order, 1); 925 926 if (gfp_flags & __GFP_ZERO) 927 prep_zero_page(page, order, gfp_flags); 928 929 if (order && (gfp_flags & __GFP_COMP)) 930 prep_compound_page(page, order); 931 932 return 0; 933 } 934 935 /* 936 * Go through the free lists for the given migratetype and remove 937 * the smallest available page from the freelists 938 */ 939 static inline 940 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 941 int migratetype) 942 { 943 unsigned int current_order; 944 struct free_area *area; 945 struct page *page; 946 947 /* Find a page of the appropriate size in the preferred list */ 948 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 949 area = &(zone->free_area[current_order]); 950 if (list_empty(&area->free_list[migratetype])) 951 continue; 952 953 page = list_entry(area->free_list[migratetype].next, 954 struct page, lru); 955 list_del(&page->lru); 956 rmv_page_order(page); 957 area->nr_free--; 958 expand(zone, page, order, current_order, area, migratetype); 959 set_freepage_migratetype(page, migratetype); 960 return page; 961 } 962 963 return NULL; 964 } 965 966 967 /* 968 * This array describes the order lists are fallen back to when 969 * the free lists for the desirable migrate type are depleted 970 */ 971 static int fallbacks[MIGRATE_TYPES][4] = { 972 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 973 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 974 #ifdef CONFIG_CMA 975 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 976 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */ 977 #else 978 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 979 #endif 980 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */ 981 #ifdef CONFIG_MEMORY_ISOLATION 982 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */ 983 #endif 984 }; 985 986 /* 987 * Move the free pages in a range to the free lists of the requested type. 988 * Note that start_page and end_pages are not aligned on a pageblock 989 * boundary. If alignment is required, use move_freepages_block() 990 */ 991 int move_freepages(struct zone *zone, 992 struct page *start_page, struct page *end_page, 993 int migratetype) 994 { 995 struct page *page; 996 unsigned long order; 997 int pages_moved = 0; 998 999 #ifndef CONFIG_HOLES_IN_ZONE 1000 /* 1001 * page_zone is not safe to call in this context when 1002 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 1003 * anyway as we check zone boundaries in move_freepages_block(). 1004 * Remove at a later date when no bug reports exist related to 1005 * grouping pages by mobility 1006 */ 1007 VM_BUG_ON(page_zone(start_page) != page_zone(end_page)); 1008 #endif 1009 1010 for (page = start_page; page <= end_page;) { 1011 /* Make sure we are not inadvertently changing nodes */ 1012 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1013 1014 if (!pfn_valid_within(page_to_pfn(page))) { 1015 page++; 1016 continue; 1017 } 1018 1019 if (!PageBuddy(page)) { 1020 page++; 1021 continue; 1022 } 1023 1024 order = page_order(page); 1025 list_move(&page->lru, 1026 &zone->free_area[order].free_list[migratetype]); 1027 set_freepage_migratetype(page, migratetype); 1028 page += 1 << order; 1029 pages_moved += 1 << order; 1030 } 1031 1032 return pages_moved; 1033 } 1034 1035 int move_freepages_block(struct zone *zone, struct page *page, 1036 int migratetype) 1037 { 1038 unsigned long start_pfn, end_pfn; 1039 struct page *start_page, *end_page; 1040 1041 start_pfn = page_to_pfn(page); 1042 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 1043 start_page = pfn_to_page(start_pfn); 1044 end_page = start_page + pageblock_nr_pages - 1; 1045 end_pfn = start_pfn + pageblock_nr_pages - 1; 1046 1047 /* Do not cross zone boundaries */ 1048 if (!zone_spans_pfn(zone, start_pfn)) 1049 start_page = page; 1050 if (!zone_spans_pfn(zone, end_pfn)) 1051 return 0; 1052 1053 return move_freepages(zone, start_page, end_page, migratetype); 1054 } 1055 1056 static void change_pageblock_range(struct page *pageblock_page, 1057 int start_order, int migratetype) 1058 { 1059 int nr_pageblocks = 1 << (start_order - pageblock_order); 1060 1061 while (nr_pageblocks--) { 1062 set_pageblock_migratetype(pageblock_page, migratetype); 1063 pageblock_page += pageblock_nr_pages; 1064 } 1065 } 1066 1067 /* 1068 * If breaking a large block of pages, move all free pages to the preferred 1069 * allocation list. If falling back for a reclaimable kernel allocation, be 1070 * more aggressive about taking ownership of free pages. 1071 * 1072 * On the other hand, never change migration type of MIGRATE_CMA pageblocks 1073 * nor move CMA pages to different free lists. We don't want unmovable pages 1074 * to be allocated from MIGRATE_CMA areas. 1075 * 1076 * Returns the new migratetype of the pageblock (or the same old migratetype 1077 * if it was unchanged). 1078 */ 1079 static int try_to_steal_freepages(struct zone *zone, struct page *page, 1080 int start_type, int fallback_type) 1081 { 1082 int current_order = page_order(page); 1083 1084 /* 1085 * When borrowing from MIGRATE_CMA, we need to release the excess 1086 * buddy pages to CMA itself. We also ensure the freepage_migratetype 1087 * is set to CMA so it is returned to the correct freelist in case 1088 * the page ends up being not actually allocated from the pcp lists. 1089 */ 1090 if (is_migrate_cma(fallback_type)) 1091 return fallback_type; 1092 1093 /* Take ownership for orders >= pageblock_order */ 1094 if (current_order >= pageblock_order) { 1095 change_pageblock_range(page, current_order, start_type); 1096 return start_type; 1097 } 1098 1099 if (current_order >= pageblock_order / 2 || 1100 start_type == MIGRATE_RECLAIMABLE || 1101 page_group_by_mobility_disabled) { 1102 int pages; 1103 1104 pages = move_freepages_block(zone, page, start_type); 1105 1106 /* Claim the whole block if over half of it is free */ 1107 if (pages >= (1 << (pageblock_order-1)) || 1108 page_group_by_mobility_disabled) { 1109 1110 set_pageblock_migratetype(page, start_type); 1111 return start_type; 1112 } 1113 1114 } 1115 1116 return fallback_type; 1117 } 1118 1119 /* Remove an element from the buddy allocator from the fallback list */ 1120 static inline struct page * 1121 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype) 1122 { 1123 struct free_area *area; 1124 unsigned int current_order; 1125 struct page *page; 1126 int migratetype, new_type, i; 1127 1128 /* Find the largest possible block of pages in the other list */ 1129 for (current_order = MAX_ORDER-1; 1130 current_order >= order && current_order <= MAX_ORDER-1; 1131 --current_order) { 1132 for (i = 0;; i++) { 1133 migratetype = fallbacks[start_migratetype][i]; 1134 1135 /* MIGRATE_RESERVE handled later if necessary */ 1136 if (migratetype == MIGRATE_RESERVE) 1137 break; 1138 1139 area = &(zone->free_area[current_order]); 1140 if (list_empty(&area->free_list[migratetype])) 1141 continue; 1142 1143 page = list_entry(area->free_list[migratetype].next, 1144 struct page, lru); 1145 area->nr_free--; 1146 1147 new_type = try_to_steal_freepages(zone, page, 1148 start_migratetype, 1149 migratetype); 1150 1151 /* Remove the page from the freelists */ 1152 list_del(&page->lru); 1153 rmv_page_order(page); 1154 1155 expand(zone, page, order, current_order, area, 1156 new_type); 1157 /* The freepage_migratetype may differ from pageblock's 1158 * migratetype depending on the decisions in 1159 * try_to_steal_freepages. This is OK as long as it does 1160 * not differ for MIGRATE_CMA type. 1161 */ 1162 set_freepage_migratetype(page, new_type); 1163 1164 trace_mm_page_alloc_extfrag(page, order, current_order, 1165 start_migratetype, migratetype, new_type); 1166 1167 return page; 1168 } 1169 } 1170 1171 return NULL; 1172 } 1173 1174 /* 1175 * Do the hard work of removing an element from the buddy allocator. 1176 * Call me with the zone->lock already held. 1177 */ 1178 static struct page *__rmqueue(struct zone *zone, unsigned int order, 1179 int migratetype) 1180 { 1181 struct page *page; 1182 1183 retry_reserve: 1184 page = __rmqueue_smallest(zone, order, migratetype); 1185 1186 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { 1187 page = __rmqueue_fallback(zone, order, migratetype); 1188 1189 /* 1190 * Use MIGRATE_RESERVE rather than fail an allocation. goto 1191 * is used because __rmqueue_smallest is an inline function 1192 * and we want just one call site 1193 */ 1194 if (!page) { 1195 migratetype = MIGRATE_RESERVE; 1196 goto retry_reserve; 1197 } 1198 } 1199 1200 trace_mm_page_alloc_zone_locked(page, order, migratetype); 1201 return page; 1202 } 1203 1204 /* 1205 * Obtain a specified number of elements from the buddy allocator, all under 1206 * a single hold of the lock, for efficiency. Add them to the supplied list. 1207 * Returns the number of new pages which were placed at *list. 1208 */ 1209 static int rmqueue_bulk(struct zone *zone, unsigned int order, 1210 unsigned long count, struct list_head *list, 1211 int migratetype, bool cold) 1212 { 1213 int i; 1214 1215 spin_lock(&zone->lock); 1216 for (i = 0; i < count; ++i) { 1217 struct page *page = __rmqueue(zone, order, migratetype); 1218 if (unlikely(page == NULL)) 1219 break; 1220 1221 /* 1222 * Split buddy pages returned by expand() are received here 1223 * in physical page order. The page is added to the callers and 1224 * list and the list head then moves forward. From the callers 1225 * perspective, the linked list is ordered by page number in 1226 * some conditions. This is useful for IO devices that can 1227 * merge IO requests if the physical pages are ordered 1228 * properly. 1229 */ 1230 if (likely(!cold)) 1231 list_add(&page->lru, list); 1232 else 1233 list_add_tail(&page->lru, list); 1234 list = &page->lru; 1235 if (is_migrate_cma(get_freepage_migratetype(page))) 1236 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1237 -(1 << order)); 1238 } 1239 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 1240 spin_unlock(&zone->lock); 1241 return i; 1242 } 1243 1244 #ifdef CONFIG_NUMA 1245 /* 1246 * Called from the vmstat counter updater to drain pagesets of this 1247 * currently executing processor on remote nodes after they have 1248 * expired. 1249 * 1250 * Note that this function must be called with the thread pinned to 1251 * a single processor. 1252 */ 1253 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 1254 { 1255 unsigned long flags; 1256 int to_drain, batch; 1257 1258 local_irq_save(flags); 1259 batch = ACCESS_ONCE(pcp->batch); 1260 to_drain = min(pcp->count, batch); 1261 if (to_drain > 0) { 1262 free_pcppages_bulk(zone, to_drain, pcp); 1263 pcp->count -= to_drain; 1264 } 1265 local_irq_restore(flags); 1266 } 1267 #endif 1268 1269 /* 1270 * Drain pages of the indicated processor. 1271 * 1272 * The processor must either be the current processor and the 1273 * thread pinned to the current processor or a processor that 1274 * is not online. 1275 */ 1276 static void drain_pages(unsigned int cpu) 1277 { 1278 unsigned long flags; 1279 struct zone *zone; 1280 1281 for_each_populated_zone(zone) { 1282 struct per_cpu_pageset *pset; 1283 struct per_cpu_pages *pcp; 1284 1285 local_irq_save(flags); 1286 pset = per_cpu_ptr(zone->pageset, cpu); 1287 1288 pcp = &pset->pcp; 1289 if (pcp->count) { 1290 free_pcppages_bulk(zone, pcp->count, pcp); 1291 pcp->count = 0; 1292 } 1293 local_irq_restore(flags); 1294 } 1295 } 1296 1297 /* 1298 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 1299 */ 1300 void drain_local_pages(void *arg) 1301 { 1302 drain_pages(smp_processor_id()); 1303 } 1304 1305 /* 1306 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 1307 * 1308 * Note that this code is protected against sending an IPI to an offline 1309 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs: 1310 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but 1311 * nothing keeps CPUs from showing up after we populated the cpumask and 1312 * before the call to on_each_cpu_mask(). 1313 */ 1314 void drain_all_pages(void) 1315 { 1316 int cpu; 1317 struct per_cpu_pageset *pcp; 1318 struct zone *zone; 1319 1320 /* 1321 * Allocate in the BSS so we wont require allocation in 1322 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 1323 */ 1324 static cpumask_t cpus_with_pcps; 1325 1326 /* 1327 * We don't care about racing with CPU hotplug event 1328 * as offline notification will cause the notified 1329 * cpu to drain that CPU pcps and on_each_cpu_mask 1330 * disables preemption as part of its processing 1331 */ 1332 for_each_online_cpu(cpu) { 1333 bool has_pcps = false; 1334 for_each_populated_zone(zone) { 1335 pcp = per_cpu_ptr(zone->pageset, cpu); 1336 if (pcp->pcp.count) { 1337 has_pcps = true; 1338 break; 1339 } 1340 } 1341 if (has_pcps) 1342 cpumask_set_cpu(cpu, &cpus_with_pcps); 1343 else 1344 cpumask_clear_cpu(cpu, &cpus_with_pcps); 1345 } 1346 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1); 1347 } 1348 1349 #ifdef CONFIG_HIBERNATION 1350 1351 void mark_free_pages(struct zone *zone) 1352 { 1353 unsigned long pfn, max_zone_pfn; 1354 unsigned long flags; 1355 unsigned int order, t; 1356 struct list_head *curr; 1357 1358 if (zone_is_empty(zone)) 1359 return; 1360 1361 spin_lock_irqsave(&zone->lock, flags); 1362 1363 max_zone_pfn = zone_end_pfn(zone); 1364 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1365 if (pfn_valid(pfn)) { 1366 struct page *page = pfn_to_page(pfn); 1367 1368 if (!swsusp_page_is_forbidden(page)) 1369 swsusp_unset_page_free(page); 1370 } 1371 1372 for_each_migratetype_order(order, t) { 1373 list_for_each(curr, &zone->free_area[order].free_list[t]) { 1374 unsigned long i; 1375 1376 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 1377 for (i = 0; i < (1UL << order); i++) 1378 swsusp_set_page_free(pfn_to_page(pfn + i)); 1379 } 1380 } 1381 spin_unlock_irqrestore(&zone->lock, flags); 1382 } 1383 #endif /* CONFIG_PM */ 1384 1385 /* 1386 * Free a 0-order page 1387 * cold == true ? free a cold page : free a hot page 1388 */ 1389 void free_hot_cold_page(struct page *page, bool cold) 1390 { 1391 struct zone *zone = page_zone(page); 1392 struct per_cpu_pages *pcp; 1393 unsigned long flags; 1394 unsigned long pfn = page_to_pfn(page); 1395 int migratetype; 1396 1397 if (!free_pages_prepare(page, 0)) 1398 return; 1399 1400 migratetype = get_pfnblock_migratetype(page, pfn); 1401 set_freepage_migratetype(page, migratetype); 1402 local_irq_save(flags); 1403 __count_vm_event(PGFREE); 1404 1405 /* 1406 * We only track unmovable, reclaimable and movable on pcp lists. 1407 * Free ISOLATE pages back to the allocator because they are being 1408 * offlined but treat RESERVE as movable pages so we can get those 1409 * areas back if necessary. Otherwise, we may have to free 1410 * excessively into the page allocator 1411 */ 1412 if (migratetype >= MIGRATE_PCPTYPES) { 1413 if (unlikely(is_migrate_isolate(migratetype))) { 1414 free_one_page(zone, page, pfn, 0, migratetype); 1415 goto out; 1416 } 1417 migratetype = MIGRATE_MOVABLE; 1418 } 1419 1420 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1421 if (!cold) 1422 list_add(&page->lru, &pcp->lists[migratetype]); 1423 else 1424 list_add_tail(&page->lru, &pcp->lists[migratetype]); 1425 pcp->count++; 1426 if (pcp->count >= pcp->high) { 1427 unsigned long batch = ACCESS_ONCE(pcp->batch); 1428 free_pcppages_bulk(zone, batch, pcp); 1429 pcp->count -= batch; 1430 } 1431 1432 out: 1433 local_irq_restore(flags); 1434 } 1435 1436 /* 1437 * Free a list of 0-order pages 1438 */ 1439 void free_hot_cold_page_list(struct list_head *list, bool cold) 1440 { 1441 struct page *page, *next; 1442 1443 list_for_each_entry_safe(page, next, list, lru) { 1444 trace_mm_page_free_batched(page, cold); 1445 free_hot_cold_page(page, cold); 1446 } 1447 } 1448 1449 /* 1450 * split_page takes a non-compound higher-order page, and splits it into 1451 * n (1<<order) sub-pages: page[0..n] 1452 * Each sub-page must be freed individually. 1453 * 1454 * Note: this is probably too low level an operation for use in drivers. 1455 * Please consult with lkml before using this in your driver. 1456 */ 1457 void split_page(struct page *page, unsigned int order) 1458 { 1459 int i; 1460 1461 VM_BUG_ON_PAGE(PageCompound(page), page); 1462 VM_BUG_ON_PAGE(!page_count(page), page); 1463 1464 #ifdef CONFIG_KMEMCHECK 1465 /* 1466 * Split shadow pages too, because free(page[0]) would 1467 * otherwise free the whole shadow. 1468 */ 1469 if (kmemcheck_page_is_tracked(page)) 1470 split_page(virt_to_page(page[0].shadow), order); 1471 #endif 1472 1473 for (i = 1; i < (1 << order); i++) 1474 set_page_refcounted(page + i); 1475 } 1476 EXPORT_SYMBOL_GPL(split_page); 1477 1478 int __isolate_free_page(struct page *page, unsigned int order) 1479 { 1480 unsigned long watermark; 1481 struct zone *zone; 1482 int mt; 1483 1484 BUG_ON(!PageBuddy(page)); 1485 1486 zone = page_zone(page); 1487 mt = get_pageblock_migratetype(page); 1488 1489 if (!is_migrate_isolate(mt)) { 1490 /* Obey watermarks as if the page was being allocated */ 1491 watermark = low_wmark_pages(zone) + (1 << order); 1492 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 1493 return 0; 1494 1495 __mod_zone_freepage_state(zone, -(1UL << order), mt); 1496 } 1497 1498 /* Remove page from free list */ 1499 list_del(&page->lru); 1500 zone->free_area[order].nr_free--; 1501 rmv_page_order(page); 1502 1503 /* Set the pageblock if the isolated page is at least a pageblock */ 1504 if (order >= pageblock_order - 1) { 1505 struct page *endpage = page + (1 << order) - 1; 1506 for (; page < endpage; page += pageblock_nr_pages) { 1507 int mt = get_pageblock_migratetype(page); 1508 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)) 1509 set_pageblock_migratetype(page, 1510 MIGRATE_MOVABLE); 1511 } 1512 } 1513 1514 return 1UL << order; 1515 } 1516 1517 /* 1518 * Similar to split_page except the page is already free. As this is only 1519 * being used for migration, the migratetype of the block also changes. 1520 * As this is called with interrupts disabled, the caller is responsible 1521 * for calling arch_alloc_page() and kernel_map_page() after interrupts 1522 * are enabled. 1523 * 1524 * Note: this is probably too low level an operation for use in drivers. 1525 * Please consult with lkml before using this in your driver. 1526 */ 1527 int split_free_page(struct page *page) 1528 { 1529 unsigned int order; 1530 int nr_pages; 1531 1532 order = page_order(page); 1533 1534 nr_pages = __isolate_free_page(page, order); 1535 if (!nr_pages) 1536 return 0; 1537 1538 /* Split into individual pages */ 1539 set_page_refcounted(page); 1540 split_page(page, order); 1541 return nr_pages; 1542 } 1543 1544 /* 1545 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 1546 * we cheat by calling it from here, in the order > 0 path. Saves a branch 1547 * or two. 1548 */ 1549 static inline 1550 struct page *buffered_rmqueue(struct zone *preferred_zone, 1551 struct zone *zone, unsigned int order, 1552 gfp_t gfp_flags, int migratetype) 1553 { 1554 unsigned long flags; 1555 struct page *page; 1556 bool cold = ((gfp_flags & __GFP_COLD) != 0); 1557 1558 again: 1559 if (likely(order == 0)) { 1560 struct per_cpu_pages *pcp; 1561 struct list_head *list; 1562 1563 local_irq_save(flags); 1564 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1565 list = &pcp->lists[migratetype]; 1566 if (list_empty(list)) { 1567 pcp->count += rmqueue_bulk(zone, 0, 1568 pcp->batch, list, 1569 migratetype, cold); 1570 if (unlikely(list_empty(list))) 1571 goto failed; 1572 } 1573 1574 if (cold) 1575 page = list_entry(list->prev, struct page, lru); 1576 else 1577 page = list_entry(list->next, struct page, lru); 1578 1579 list_del(&page->lru); 1580 pcp->count--; 1581 } else { 1582 if (unlikely(gfp_flags & __GFP_NOFAIL)) { 1583 /* 1584 * __GFP_NOFAIL is not to be used in new code. 1585 * 1586 * All __GFP_NOFAIL callers should be fixed so that they 1587 * properly detect and handle allocation failures. 1588 * 1589 * We most definitely don't want callers attempting to 1590 * allocate greater than order-1 page units with 1591 * __GFP_NOFAIL. 1592 */ 1593 WARN_ON_ONCE(order > 1); 1594 } 1595 spin_lock_irqsave(&zone->lock, flags); 1596 page = __rmqueue(zone, order, migratetype); 1597 spin_unlock(&zone->lock); 1598 if (!page) 1599 goto failed; 1600 __mod_zone_freepage_state(zone, -(1 << order), 1601 get_freepage_migratetype(page)); 1602 } 1603 1604 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order)); 1605 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 && 1606 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) 1607 set_bit(ZONE_FAIR_DEPLETED, &zone->flags); 1608 1609 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1610 zone_statistics(preferred_zone, zone, gfp_flags); 1611 local_irq_restore(flags); 1612 1613 VM_BUG_ON_PAGE(bad_range(zone, page), page); 1614 if (prep_new_page(page, order, gfp_flags)) 1615 goto again; 1616 return page; 1617 1618 failed: 1619 local_irq_restore(flags); 1620 return NULL; 1621 } 1622 1623 #ifdef CONFIG_FAIL_PAGE_ALLOC 1624 1625 static struct { 1626 struct fault_attr attr; 1627 1628 u32 ignore_gfp_highmem; 1629 u32 ignore_gfp_wait; 1630 u32 min_order; 1631 } fail_page_alloc = { 1632 .attr = FAULT_ATTR_INITIALIZER, 1633 .ignore_gfp_wait = 1, 1634 .ignore_gfp_highmem = 1, 1635 .min_order = 1, 1636 }; 1637 1638 static int __init setup_fail_page_alloc(char *str) 1639 { 1640 return setup_fault_attr(&fail_page_alloc.attr, str); 1641 } 1642 __setup("fail_page_alloc=", setup_fail_page_alloc); 1643 1644 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1645 { 1646 if (order < fail_page_alloc.min_order) 1647 return false; 1648 if (gfp_mask & __GFP_NOFAIL) 1649 return false; 1650 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1651 return false; 1652 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1653 return false; 1654 1655 return should_fail(&fail_page_alloc.attr, 1 << order); 1656 } 1657 1658 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1659 1660 static int __init fail_page_alloc_debugfs(void) 1661 { 1662 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1663 struct dentry *dir; 1664 1665 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 1666 &fail_page_alloc.attr); 1667 if (IS_ERR(dir)) 1668 return PTR_ERR(dir); 1669 1670 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 1671 &fail_page_alloc.ignore_gfp_wait)) 1672 goto fail; 1673 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1674 &fail_page_alloc.ignore_gfp_highmem)) 1675 goto fail; 1676 if (!debugfs_create_u32("min-order", mode, dir, 1677 &fail_page_alloc.min_order)) 1678 goto fail; 1679 1680 return 0; 1681 fail: 1682 debugfs_remove_recursive(dir); 1683 1684 return -ENOMEM; 1685 } 1686 1687 late_initcall(fail_page_alloc_debugfs); 1688 1689 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1690 1691 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1692 1693 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1694 { 1695 return false; 1696 } 1697 1698 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1699 1700 /* 1701 * Return true if free pages are above 'mark'. This takes into account the order 1702 * of the allocation. 1703 */ 1704 static bool __zone_watermark_ok(struct zone *z, unsigned int order, 1705 unsigned long mark, int classzone_idx, int alloc_flags, 1706 long free_pages) 1707 { 1708 /* free_pages my go negative - that's OK */ 1709 long min = mark; 1710 int o; 1711 long free_cma = 0; 1712 1713 free_pages -= (1 << order) - 1; 1714 if (alloc_flags & ALLOC_HIGH) 1715 min -= min / 2; 1716 if (alloc_flags & ALLOC_HARDER) 1717 min -= min / 4; 1718 #ifdef CONFIG_CMA 1719 /* If allocation can't use CMA areas don't use free CMA pages */ 1720 if (!(alloc_flags & ALLOC_CMA)) 1721 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES); 1722 #endif 1723 1724 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx]) 1725 return false; 1726 for (o = 0; o < order; o++) { 1727 /* At the next order, this order's pages become unavailable */ 1728 free_pages -= z->free_area[o].nr_free << o; 1729 1730 /* Require fewer higher order pages to be free */ 1731 min >>= 1; 1732 1733 if (free_pages <= min) 1734 return false; 1735 } 1736 return true; 1737 } 1738 1739 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 1740 int classzone_idx, int alloc_flags) 1741 { 1742 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1743 zone_page_state(z, NR_FREE_PAGES)); 1744 } 1745 1746 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 1747 unsigned long mark, int classzone_idx, int alloc_flags) 1748 { 1749 long free_pages = zone_page_state(z, NR_FREE_PAGES); 1750 1751 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 1752 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 1753 1754 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1755 free_pages); 1756 } 1757 1758 #ifdef CONFIG_NUMA 1759 /* 1760 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1761 * skip over zones that are not allowed by the cpuset, or that have 1762 * been recently (in last second) found to be nearly full. See further 1763 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1764 * that have to skip over a lot of full or unallowed zones. 1765 * 1766 * If the zonelist cache is present in the passed zonelist, then 1767 * returns a pointer to the allowed node mask (either the current 1768 * tasks mems_allowed, or node_states[N_MEMORY].) 1769 * 1770 * If the zonelist cache is not available for this zonelist, does 1771 * nothing and returns NULL. 1772 * 1773 * If the fullzones BITMAP in the zonelist cache is stale (more than 1774 * a second since last zap'd) then we zap it out (clear its bits.) 1775 * 1776 * We hold off even calling zlc_setup, until after we've checked the 1777 * first zone in the zonelist, on the theory that most allocations will 1778 * be satisfied from that first zone, so best to examine that zone as 1779 * quickly as we can. 1780 */ 1781 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1782 { 1783 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1784 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1785 1786 zlc = zonelist->zlcache_ptr; 1787 if (!zlc) 1788 return NULL; 1789 1790 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1791 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1792 zlc->last_full_zap = jiffies; 1793 } 1794 1795 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1796 &cpuset_current_mems_allowed : 1797 &node_states[N_MEMORY]; 1798 return allowednodes; 1799 } 1800 1801 /* 1802 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1803 * if it is worth looking at further for free memory: 1804 * 1) Check that the zone isn't thought to be full (doesn't have its 1805 * bit set in the zonelist_cache fullzones BITMAP). 1806 * 2) Check that the zones node (obtained from the zonelist_cache 1807 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1808 * Return true (non-zero) if zone is worth looking at further, or 1809 * else return false (zero) if it is not. 1810 * 1811 * This check -ignores- the distinction between various watermarks, 1812 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1813 * found to be full for any variation of these watermarks, it will 1814 * be considered full for up to one second by all requests, unless 1815 * we are so low on memory on all allowed nodes that we are forced 1816 * into the second scan of the zonelist. 1817 * 1818 * In the second scan we ignore this zonelist cache and exactly 1819 * apply the watermarks to all zones, even it is slower to do so. 1820 * We are low on memory in the second scan, and should leave no stone 1821 * unturned looking for a free page. 1822 */ 1823 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1824 nodemask_t *allowednodes) 1825 { 1826 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1827 int i; /* index of *z in zonelist zones */ 1828 int n; /* node that zone *z is on */ 1829 1830 zlc = zonelist->zlcache_ptr; 1831 if (!zlc) 1832 return 1; 1833 1834 i = z - zonelist->_zonerefs; 1835 n = zlc->z_to_n[i]; 1836 1837 /* This zone is worth trying if it is allowed but not full */ 1838 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1839 } 1840 1841 /* 1842 * Given 'z' scanning a zonelist, set the corresponding bit in 1843 * zlc->fullzones, so that subsequent attempts to allocate a page 1844 * from that zone don't waste time re-examining it. 1845 */ 1846 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1847 { 1848 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1849 int i; /* index of *z in zonelist zones */ 1850 1851 zlc = zonelist->zlcache_ptr; 1852 if (!zlc) 1853 return; 1854 1855 i = z - zonelist->_zonerefs; 1856 1857 set_bit(i, zlc->fullzones); 1858 } 1859 1860 /* 1861 * clear all zones full, called after direct reclaim makes progress so that 1862 * a zone that was recently full is not skipped over for up to a second 1863 */ 1864 static void zlc_clear_zones_full(struct zonelist *zonelist) 1865 { 1866 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1867 1868 zlc = zonelist->zlcache_ptr; 1869 if (!zlc) 1870 return; 1871 1872 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1873 } 1874 1875 static bool zone_local(struct zone *local_zone, struct zone *zone) 1876 { 1877 return local_zone->node == zone->node; 1878 } 1879 1880 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 1881 { 1882 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) < 1883 RECLAIM_DISTANCE; 1884 } 1885 1886 #else /* CONFIG_NUMA */ 1887 1888 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1889 { 1890 return NULL; 1891 } 1892 1893 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1894 nodemask_t *allowednodes) 1895 { 1896 return 1; 1897 } 1898 1899 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1900 { 1901 } 1902 1903 static void zlc_clear_zones_full(struct zonelist *zonelist) 1904 { 1905 } 1906 1907 static bool zone_local(struct zone *local_zone, struct zone *zone) 1908 { 1909 return true; 1910 } 1911 1912 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 1913 { 1914 return true; 1915 } 1916 1917 #endif /* CONFIG_NUMA */ 1918 1919 static void reset_alloc_batches(struct zone *preferred_zone) 1920 { 1921 struct zone *zone = preferred_zone->zone_pgdat->node_zones; 1922 1923 do { 1924 mod_zone_page_state(zone, NR_ALLOC_BATCH, 1925 high_wmark_pages(zone) - low_wmark_pages(zone) - 1926 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH])); 1927 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags); 1928 } while (zone++ != preferred_zone); 1929 } 1930 1931 /* 1932 * get_page_from_freelist goes through the zonelist trying to allocate 1933 * a page. 1934 */ 1935 static struct page * 1936 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, 1937 struct zonelist *zonelist, int high_zoneidx, int alloc_flags, 1938 struct zone *preferred_zone, int classzone_idx, int migratetype) 1939 { 1940 struct zoneref *z; 1941 struct page *page = NULL; 1942 struct zone *zone; 1943 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1944 int zlc_active = 0; /* set if using zonelist_cache */ 1945 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1946 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) && 1947 (gfp_mask & __GFP_WRITE); 1948 int nr_fair_skipped = 0; 1949 bool zonelist_rescan; 1950 1951 zonelist_scan: 1952 zonelist_rescan = false; 1953 1954 /* 1955 * Scan zonelist, looking for a zone with enough free. 1956 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c. 1957 */ 1958 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1959 high_zoneidx, nodemask) { 1960 unsigned long mark; 1961 1962 if (IS_ENABLED(CONFIG_NUMA) && zlc_active && 1963 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1964 continue; 1965 if (cpusets_enabled() && 1966 (alloc_flags & ALLOC_CPUSET) && 1967 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1968 continue; 1969 /* 1970 * Distribute pages in proportion to the individual 1971 * zone size to ensure fair page aging. The zone a 1972 * page was allocated in should have no effect on the 1973 * time the page has in memory before being reclaimed. 1974 */ 1975 if (alloc_flags & ALLOC_FAIR) { 1976 if (!zone_local(preferred_zone, zone)) 1977 break; 1978 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) { 1979 nr_fair_skipped++; 1980 continue; 1981 } 1982 } 1983 /* 1984 * When allocating a page cache page for writing, we 1985 * want to get it from a zone that is within its dirty 1986 * limit, such that no single zone holds more than its 1987 * proportional share of globally allowed dirty pages. 1988 * The dirty limits take into account the zone's 1989 * lowmem reserves and high watermark so that kswapd 1990 * should be able to balance it without having to 1991 * write pages from its LRU list. 1992 * 1993 * This may look like it could increase pressure on 1994 * lower zones by failing allocations in higher zones 1995 * before they are full. But the pages that do spill 1996 * over are limited as the lower zones are protected 1997 * by this very same mechanism. It should not become 1998 * a practical burden to them. 1999 * 2000 * XXX: For now, allow allocations to potentially 2001 * exceed the per-zone dirty limit in the slowpath 2002 * (ALLOC_WMARK_LOW unset) before going into reclaim, 2003 * which is important when on a NUMA setup the allowed 2004 * zones are together not big enough to reach the 2005 * global limit. The proper fix for these situations 2006 * will require awareness of zones in the 2007 * dirty-throttling and the flusher threads. 2008 */ 2009 if (consider_zone_dirty && !zone_dirty_ok(zone)) 2010 continue; 2011 2012 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 2013 if (!zone_watermark_ok(zone, order, mark, 2014 classzone_idx, alloc_flags)) { 2015 int ret; 2016 2017 /* Checked here to keep the fast path fast */ 2018 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 2019 if (alloc_flags & ALLOC_NO_WATERMARKS) 2020 goto try_this_zone; 2021 2022 if (IS_ENABLED(CONFIG_NUMA) && 2023 !did_zlc_setup && nr_online_nodes > 1) { 2024 /* 2025 * we do zlc_setup if there are multiple nodes 2026 * and before considering the first zone allowed 2027 * by the cpuset. 2028 */ 2029 allowednodes = zlc_setup(zonelist, alloc_flags); 2030 zlc_active = 1; 2031 did_zlc_setup = 1; 2032 } 2033 2034 if (zone_reclaim_mode == 0 || 2035 !zone_allows_reclaim(preferred_zone, zone)) 2036 goto this_zone_full; 2037 2038 /* 2039 * As we may have just activated ZLC, check if the first 2040 * eligible zone has failed zone_reclaim recently. 2041 */ 2042 if (IS_ENABLED(CONFIG_NUMA) && zlc_active && 2043 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 2044 continue; 2045 2046 ret = zone_reclaim(zone, gfp_mask, order); 2047 switch (ret) { 2048 case ZONE_RECLAIM_NOSCAN: 2049 /* did not scan */ 2050 continue; 2051 case ZONE_RECLAIM_FULL: 2052 /* scanned but unreclaimable */ 2053 continue; 2054 default: 2055 /* did we reclaim enough */ 2056 if (zone_watermark_ok(zone, order, mark, 2057 classzone_idx, alloc_flags)) 2058 goto try_this_zone; 2059 2060 /* 2061 * Failed to reclaim enough to meet watermark. 2062 * Only mark the zone full if checking the min 2063 * watermark or if we failed to reclaim just 2064 * 1<<order pages or else the page allocator 2065 * fastpath will prematurely mark zones full 2066 * when the watermark is between the low and 2067 * min watermarks. 2068 */ 2069 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) || 2070 ret == ZONE_RECLAIM_SOME) 2071 goto this_zone_full; 2072 2073 continue; 2074 } 2075 } 2076 2077 try_this_zone: 2078 page = buffered_rmqueue(preferred_zone, zone, order, 2079 gfp_mask, migratetype); 2080 if (page) 2081 break; 2082 this_zone_full: 2083 if (IS_ENABLED(CONFIG_NUMA) && zlc_active) 2084 zlc_mark_zone_full(zonelist, z); 2085 } 2086 2087 if (page) { 2088 /* 2089 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was 2090 * necessary to allocate the page. The expectation is 2091 * that the caller is taking steps that will free more 2092 * memory. The caller should avoid the page being used 2093 * for !PFMEMALLOC purposes. 2094 */ 2095 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS); 2096 return page; 2097 } 2098 2099 /* 2100 * The first pass makes sure allocations are spread fairly within the 2101 * local node. However, the local node might have free pages left 2102 * after the fairness batches are exhausted, and remote zones haven't 2103 * even been considered yet. Try once more without fairness, and 2104 * include remote zones now, before entering the slowpath and waking 2105 * kswapd: prefer spilling to a remote zone over swapping locally. 2106 */ 2107 if (alloc_flags & ALLOC_FAIR) { 2108 alloc_flags &= ~ALLOC_FAIR; 2109 if (nr_fair_skipped) { 2110 zonelist_rescan = true; 2111 reset_alloc_batches(preferred_zone); 2112 } 2113 if (nr_online_nodes > 1) 2114 zonelist_rescan = true; 2115 } 2116 2117 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) { 2118 /* Disable zlc cache for second zonelist scan */ 2119 zlc_active = 0; 2120 zonelist_rescan = true; 2121 } 2122 2123 if (zonelist_rescan) 2124 goto zonelist_scan; 2125 2126 return NULL; 2127 } 2128 2129 /* 2130 * Large machines with many possible nodes should not always dump per-node 2131 * meminfo in irq context. 2132 */ 2133 static inline bool should_suppress_show_mem(void) 2134 { 2135 bool ret = false; 2136 2137 #if NODES_SHIFT > 8 2138 ret = in_interrupt(); 2139 #endif 2140 return ret; 2141 } 2142 2143 static DEFINE_RATELIMIT_STATE(nopage_rs, 2144 DEFAULT_RATELIMIT_INTERVAL, 2145 DEFAULT_RATELIMIT_BURST); 2146 2147 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...) 2148 { 2149 unsigned int filter = SHOW_MEM_FILTER_NODES; 2150 2151 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) || 2152 debug_guardpage_minorder() > 0) 2153 return; 2154 2155 /* 2156 * This documents exceptions given to allocations in certain 2157 * contexts that are allowed to allocate outside current's set 2158 * of allowed nodes. 2159 */ 2160 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2161 if (test_thread_flag(TIF_MEMDIE) || 2162 (current->flags & (PF_MEMALLOC | PF_EXITING))) 2163 filter &= ~SHOW_MEM_FILTER_NODES; 2164 if (in_interrupt() || !(gfp_mask & __GFP_WAIT)) 2165 filter &= ~SHOW_MEM_FILTER_NODES; 2166 2167 if (fmt) { 2168 struct va_format vaf; 2169 va_list args; 2170 2171 va_start(args, fmt); 2172 2173 vaf.fmt = fmt; 2174 vaf.va = &args; 2175 2176 pr_warn("%pV", &vaf); 2177 2178 va_end(args); 2179 } 2180 2181 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n", 2182 current->comm, order, gfp_mask); 2183 2184 dump_stack(); 2185 if (!should_suppress_show_mem()) 2186 show_mem(filter); 2187 } 2188 2189 static inline int 2190 should_alloc_retry(gfp_t gfp_mask, unsigned int order, 2191 unsigned long did_some_progress, 2192 unsigned long pages_reclaimed) 2193 { 2194 /* Do not loop if specifically requested */ 2195 if (gfp_mask & __GFP_NORETRY) 2196 return 0; 2197 2198 /* Always retry if specifically requested */ 2199 if (gfp_mask & __GFP_NOFAIL) 2200 return 1; 2201 2202 /* 2203 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim 2204 * making forward progress without invoking OOM. Suspend also disables 2205 * storage devices so kswapd will not help. Bail if we are suspending. 2206 */ 2207 if (!did_some_progress && pm_suspended_storage()) 2208 return 0; 2209 2210 /* 2211 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 2212 * means __GFP_NOFAIL, but that may not be true in other 2213 * implementations. 2214 */ 2215 if (order <= PAGE_ALLOC_COSTLY_ORDER) 2216 return 1; 2217 2218 /* 2219 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 2220 * specified, then we retry until we no longer reclaim any pages 2221 * (above), or we've reclaimed an order of pages at least as 2222 * large as the allocation's order. In both cases, if the 2223 * allocation still fails, we stop retrying. 2224 */ 2225 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) 2226 return 1; 2227 2228 return 0; 2229 } 2230 2231 static inline struct page * 2232 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 2233 struct zonelist *zonelist, enum zone_type high_zoneidx, 2234 nodemask_t *nodemask, struct zone *preferred_zone, 2235 int classzone_idx, int migratetype) 2236 { 2237 struct page *page; 2238 2239 /* Acquire the per-zone oom lock for each zone */ 2240 if (!oom_zonelist_trylock(zonelist, gfp_mask)) { 2241 schedule_timeout_uninterruptible(1); 2242 return NULL; 2243 } 2244 2245 /* 2246 * PM-freezer should be notified that there might be an OOM killer on 2247 * its way to kill and wake somebody up. This is too early and we might 2248 * end up not killing anything but false positives are acceptable. 2249 * See freeze_processes. 2250 */ 2251 note_oom_kill(); 2252 2253 /* 2254 * Go through the zonelist yet one more time, keep very high watermark 2255 * here, this is only to catch a parallel oom killing, we must fail if 2256 * we're still under heavy pressure. 2257 */ 2258 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, 2259 order, zonelist, high_zoneidx, 2260 ALLOC_WMARK_HIGH|ALLOC_CPUSET, 2261 preferred_zone, classzone_idx, migratetype); 2262 if (page) 2263 goto out; 2264 2265 if (!(gfp_mask & __GFP_NOFAIL)) { 2266 /* The OOM killer will not help higher order allocs */ 2267 if (order > PAGE_ALLOC_COSTLY_ORDER) 2268 goto out; 2269 /* The OOM killer does not needlessly kill tasks for lowmem */ 2270 if (high_zoneidx < ZONE_NORMAL) 2271 goto out; 2272 /* 2273 * GFP_THISNODE contains __GFP_NORETRY and we never hit this. 2274 * Sanity check for bare calls of __GFP_THISNODE, not real OOM. 2275 * The caller should handle page allocation failure by itself if 2276 * it specifies __GFP_THISNODE. 2277 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER. 2278 */ 2279 if (gfp_mask & __GFP_THISNODE) 2280 goto out; 2281 } 2282 /* Exhausted what can be done so it's blamo time */ 2283 out_of_memory(zonelist, gfp_mask, order, nodemask, false); 2284 2285 out: 2286 oom_zonelist_unlock(zonelist, gfp_mask); 2287 return page; 2288 } 2289 2290 #ifdef CONFIG_COMPACTION 2291 /* Try memory compaction for high-order allocations before reclaim */ 2292 static struct page * 2293 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2294 struct zonelist *zonelist, enum zone_type high_zoneidx, 2295 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2296 int classzone_idx, int migratetype, enum migrate_mode mode, 2297 int *contended_compaction, bool *deferred_compaction) 2298 { 2299 struct zone *last_compact_zone = NULL; 2300 unsigned long compact_result; 2301 struct page *page; 2302 2303 if (!order) 2304 return NULL; 2305 2306 current->flags |= PF_MEMALLOC; 2307 compact_result = try_to_compact_pages(zonelist, order, gfp_mask, 2308 nodemask, mode, 2309 contended_compaction, 2310 &last_compact_zone); 2311 current->flags &= ~PF_MEMALLOC; 2312 2313 switch (compact_result) { 2314 case COMPACT_DEFERRED: 2315 *deferred_compaction = true; 2316 /* fall-through */ 2317 case COMPACT_SKIPPED: 2318 return NULL; 2319 default: 2320 break; 2321 } 2322 2323 /* 2324 * At least in one zone compaction wasn't deferred or skipped, so let's 2325 * count a compaction stall 2326 */ 2327 count_vm_event(COMPACTSTALL); 2328 2329 /* Page migration frees to the PCP lists but we want merging */ 2330 drain_pages(get_cpu()); 2331 put_cpu(); 2332 2333 page = get_page_from_freelist(gfp_mask, nodemask, 2334 order, zonelist, high_zoneidx, 2335 alloc_flags & ~ALLOC_NO_WATERMARKS, 2336 preferred_zone, classzone_idx, migratetype); 2337 2338 if (page) { 2339 struct zone *zone = page_zone(page); 2340 2341 zone->compact_blockskip_flush = false; 2342 compaction_defer_reset(zone, order, true); 2343 count_vm_event(COMPACTSUCCESS); 2344 return page; 2345 } 2346 2347 /* 2348 * last_compact_zone is where try_to_compact_pages thought allocation 2349 * should succeed, so it did not defer compaction. But here we know 2350 * that it didn't succeed, so we do the defer. 2351 */ 2352 if (last_compact_zone && mode != MIGRATE_ASYNC) 2353 defer_compaction(last_compact_zone, order); 2354 2355 /* 2356 * It's bad if compaction run occurs and fails. The most likely reason 2357 * is that pages exist, but not enough to satisfy watermarks. 2358 */ 2359 count_vm_event(COMPACTFAIL); 2360 2361 cond_resched(); 2362 2363 return NULL; 2364 } 2365 #else 2366 static inline struct page * 2367 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2368 struct zonelist *zonelist, enum zone_type high_zoneidx, 2369 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2370 int classzone_idx, int migratetype, enum migrate_mode mode, 2371 int *contended_compaction, bool *deferred_compaction) 2372 { 2373 return NULL; 2374 } 2375 #endif /* CONFIG_COMPACTION */ 2376 2377 /* Perform direct synchronous page reclaim */ 2378 static int 2379 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist, 2380 nodemask_t *nodemask) 2381 { 2382 struct reclaim_state reclaim_state; 2383 int progress; 2384 2385 cond_resched(); 2386 2387 /* We now go into synchronous reclaim */ 2388 cpuset_memory_pressure_bump(); 2389 current->flags |= PF_MEMALLOC; 2390 lockdep_set_current_reclaim_state(gfp_mask); 2391 reclaim_state.reclaimed_slab = 0; 2392 current->reclaim_state = &reclaim_state; 2393 2394 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask); 2395 2396 current->reclaim_state = NULL; 2397 lockdep_clear_current_reclaim_state(); 2398 current->flags &= ~PF_MEMALLOC; 2399 2400 cond_resched(); 2401 2402 return progress; 2403 } 2404 2405 /* The really slow allocator path where we enter direct reclaim */ 2406 static inline struct page * 2407 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 2408 struct zonelist *zonelist, enum zone_type high_zoneidx, 2409 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2410 int classzone_idx, int migratetype, unsigned long *did_some_progress) 2411 { 2412 struct page *page = NULL; 2413 bool drained = false; 2414 2415 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist, 2416 nodemask); 2417 if (unlikely(!(*did_some_progress))) 2418 return NULL; 2419 2420 /* After successful reclaim, reconsider all zones for allocation */ 2421 if (IS_ENABLED(CONFIG_NUMA)) 2422 zlc_clear_zones_full(zonelist); 2423 2424 retry: 2425 page = get_page_from_freelist(gfp_mask, nodemask, order, 2426 zonelist, high_zoneidx, 2427 alloc_flags & ~ALLOC_NO_WATERMARKS, 2428 preferred_zone, classzone_idx, 2429 migratetype); 2430 2431 /* 2432 * If an allocation failed after direct reclaim, it could be because 2433 * pages are pinned on the per-cpu lists. Drain them and try again 2434 */ 2435 if (!page && !drained) { 2436 drain_all_pages(); 2437 drained = true; 2438 goto retry; 2439 } 2440 2441 return page; 2442 } 2443 2444 /* 2445 * This is called in the allocator slow-path if the allocation request is of 2446 * sufficient urgency to ignore watermarks and take other desperate measures 2447 */ 2448 static inline struct page * 2449 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, 2450 struct zonelist *zonelist, enum zone_type high_zoneidx, 2451 nodemask_t *nodemask, struct zone *preferred_zone, 2452 int classzone_idx, int migratetype) 2453 { 2454 struct page *page; 2455 2456 do { 2457 page = get_page_from_freelist(gfp_mask, nodemask, order, 2458 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS, 2459 preferred_zone, classzone_idx, migratetype); 2460 2461 if (!page && gfp_mask & __GFP_NOFAIL) 2462 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2463 } while (!page && (gfp_mask & __GFP_NOFAIL)); 2464 2465 return page; 2466 } 2467 2468 static void wake_all_kswapds(unsigned int order, 2469 struct zonelist *zonelist, 2470 enum zone_type high_zoneidx, 2471 struct zone *preferred_zone, 2472 nodemask_t *nodemask) 2473 { 2474 struct zoneref *z; 2475 struct zone *zone; 2476 2477 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2478 high_zoneidx, nodemask) 2479 wakeup_kswapd(zone, order, zone_idx(preferred_zone)); 2480 } 2481 2482 static inline int 2483 gfp_to_alloc_flags(gfp_t gfp_mask) 2484 { 2485 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 2486 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD)); 2487 2488 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 2489 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 2490 2491 /* 2492 * The caller may dip into page reserves a bit more if the caller 2493 * cannot run direct reclaim, or if the caller has realtime scheduling 2494 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 2495 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH). 2496 */ 2497 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 2498 2499 if (atomic) { 2500 /* 2501 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 2502 * if it can't schedule. 2503 */ 2504 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2505 alloc_flags |= ALLOC_HARDER; 2506 /* 2507 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 2508 * comment for __cpuset_node_allowed_softwall(). 2509 */ 2510 alloc_flags &= ~ALLOC_CPUSET; 2511 } else if (unlikely(rt_task(current)) && !in_interrupt()) 2512 alloc_flags |= ALLOC_HARDER; 2513 2514 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { 2515 if (gfp_mask & __GFP_MEMALLOC) 2516 alloc_flags |= ALLOC_NO_WATERMARKS; 2517 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 2518 alloc_flags |= ALLOC_NO_WATERMARKS; 2519 else if (!in_interrupt() && 2520 ((current->flags & PF_MEMALLOC) || 2521 unlikely(test_thread_flag(TIF_MEMDIE)))) 2522 alloc_flags |= ALLOC_NO_WATERMARKS; 2523 } 2524 #ifdef CONFIG_CMA 2525 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 2526 alloc_flags |= ALLOC_CMA; 2527 #endif 2528 return alloc_flags; 2529 } 2530 2531 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 2532 { 2533 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS); 2534 } 2535 2536 static inline struct page * 2537 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 2538 struct zonelist *zonelist, enum zone_type high_zoneidx, 2539 nodemask_t *nodemask, struct zone *preferred_zone, 2540 int classzone_idx, int migratetype) 2541 { 2542 const gfp_t wait = gfp_mask & __GFP_WAIT; 2543 struct page *page = NULL; 2544 int alloc_flags; 2545 unsigned long pages_reclaimed = 0; 2546 unsigned long did_some_progress; 2547 enum migrate_mode migration_mode = MIGRATE_ASYNC; 2548 bool deferred_compaction = false; 2549 int contended_compaction = COMPACT_CONTENDED_NONE; 2550 2551 /* 2552 * In the slowpath, we sanity check order to avoid ever trying to 2553 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 2554 * be using allocators in order of preference for an area that is 2555 * too large. 2556 */ 2557 if (order >= MAX_ORDER) { 2558 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 2559 return NULL; 2560 } 2561 2562 /* 2563 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 2564 * __GFP_NOWARN set) should not cause reclaim since the subsystem 2565 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 2566 * using a larger set of nodes after it has established that the 2567 * allowed per node queues are empty and that nodes are 2568 * over allocated. 2569 */ 2570 if (IS_ENABLED(CONFIG_NUMA) && 2571 (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 2572 goto nopage; 2573 2574 restart: 2575 if (!(gfp_mask & __GFP_NO_KSWAPD)) 2576 wake_all_kswapds(order, zonelist, high_zoneidx, 2577 preferred_zone, nodemask); 2578 2579 /* 2580 * OK, we're below the kswapd watermark and have kicked background 2581 * reclaim. Now things get more complex, so set up alloc_flags according 2582 * to how we want to proceed. 2583 */ 2584 alloc_flags = gfp_to_alloc_flags(gfp_mask); 2585 2586 /* 2587 * Find the true preferred zone if the allocation is unconstrained by 2588 * cpusets. 2589 */ 2590 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) { 2591 struct zoneref *preferred_zoneref; 2592 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx, 2593 NULL, &preferred_zone); 2594 classzone_idx = zonelist_zone_idx(preferred_zoneref); 2595 } 2596 2597 rebalance: 2598 /* This is the last chance, in general, before the goto nopage. */ 2599 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, 2600 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS, 2601 preferred_zone, classzone_idx, migratetype); 2602 if (page) 2603 goto got_pg; 2604 2605 /* Allocate without watermarks if the context allows */ 2606 if (alloc_flags & ALLOC_NO_WATERMARKS) { 2607 /* 2608 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds 2609 * the allocation is high priority and these type of 2610 * allocations are system rather than user orientated 2611 */ 2612 zonelist = node_zonelist(numa_node_id(), gfp_mask); 2613 2614 page = __alloc_pages_high_priority(gfp_mask, order, 2615 zonelist, high_zoneidx, nodemask, 2616 preferred_zone, classzone_idx, migratetype); 2617 if (page) { 2618 goto got_pg; 2619 } 2620 } 2621 2622 /* Atomic allocations - we can't balance anything */ 2623 if (!wait) { 2624 /* 2625 * All existing users of the deprecated __GFP_NOFAIL are 2626 * blockable, so warn of any new users that actually allow this 2627 * type of allocation to fail. 2628 */ 2629 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL); 2630 goto nopage; 2631 } 2632 2633 /* Avoid recursion of direct reclaim */ 2634 if (current->flags & PF_MEMALLOC) 2635 goto nopage; 2636 2637 /* Avoid allocations with no watermarks from looping endlessly */ 2638 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) 2639 goto nopage; 2640 2641 /* 2642 * Try direct compaction. The first pass is asynchronous. Subsequent 2643 * attempts after direct reclaim are synchronous 2644 */ 2645 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist, 2646 high_zoneidx, nodemask, alloc_flags, 2647 preferred_zone, 2648 classzone_idx, migratetype, 2649 migration_mode, &contended_compaction, 2650 &deferred_compaction); 2651 if (page) 2652 goto got_pg; 2653 2654 /* Checks for THP-specific high-order allocations */ 2655 if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) { 2656 /* 2657 * If compaction is deferred for high-order allocations, it is 2658 * because sync compaction recently failed. If this is the case 2659 * and the caller requested a THP allocation, we do not want 2660 * to heavily disrupt the system, so we fail the allocation 2661 * instead of entering direct reclaim. 2662 */ 2663 if (deferred_compaction) 2664 goto nopage; 2665 2666 /* 2667 * In all zones where compaction was attempted (and not 2668 * deferred or skipped), lock contention has been detected. 2669 * For THP allocation we do not want to disrupt the others 2670 * so we fallback to base pages instead. 2671 */ 2672 if (contended_compaction == COMPACT_CONTENDED_LOCK) 2673 goto nopage; 2674 2675 /* 2676 * If compaction was aborted due to need_resched(), we do not 2677 * want to further increase allocation latency, unless it is 2678 * khugepaged trying to collapse. 2679 */ 2680 if (contended_compaction == COMPACT_CONTENDED_SCHED 2681 && !(current->flags & PF_KTHREAD)) 2682 goto nopage; 2683 } 2684 2685 /* 2686 * It can become very expensive to allocate transparent hugepages at 2687 * fault, so use asynchronous memory compaction for THP unless it is 2688 * khugepaged trying to collapse. 2689 */ 2690 if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE || 2691 (current->flags & PF_KTHREAD)) 2692 migration_mode = MIGRATE_SYNC_LIGHT; 2693 2694 /* Try direct reclaim and then allocating */ 2695 page = __alloc_pages_direct_reclaim(gfp_mask, order, 2696 zonelist, high_zoneidx, 2697 nodemask, 2698 alloc_flags, preferred_zone, 2699 classzone_idx, migratetype, 2700 &did_some_progress); 2701 if (page) 2702 goto got_pg; 2703 2704 /* 2705 * If we failed to make any progress reclaiming, then we are 2706 * running out of options and have to consider going OOM 2707 */ 2708 if (!did_some_progress) { 2709 if (oom_gfp_allowed(gfp_mask)) { 2710 if (oom_killer_disabled) 2711 goto nopage; 2712 /* Coredumps can quickly deplete all memory reserves */ 2713 if ((current->flags & PF_DUMPCORE) && 2714 !(gfp_mask & __GFP_NOFAIL)) 2715 goto nopage; 2716 page = __alloc_pages_may_oom(gfp_mask, order, 2717 zonelist, high_zoneidx, 2718 nodemask, preferred_zone, 2719 classzone_idx, migratetype); 2720 if (page) 2721 goto got_pg; 2722 2723 if (!(gfp_mask & __GFP_NOFAIL)) { 2724 /* 2725 * The oom killer is not called for high-order 2726 * allocations that may fail, so if no progress 2727 * is being made, there are no other options and 2728 * retrying is unlikely to help. 2729 */ 2730 if (order > PAGE_ALLOC_COSTLY_ORDER) 2731 goto nopage; 2732 /* 2733 * The oom killer is not called for lowmem 2734 * allocations to prevent needlessly killing 2735 * innocent tasks. 2736 */ 2737 if (high_zoneidx < ZONE_NORMAL) 2738 goto nopage; 2739 } 2740 2741 goto restart; 2742 } 2743 } 2744 2745 /* Check if we should retry the allocation */ 2746 pages_reclaimed += did_some_progress; 2747 if (should_alloc_retry(gfp_mask, order, did_some_progress, 2748 pages_reclaimed)) { 2749 /* Wait for some write requests to complete then retry */ 2750 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2751 goto rebalance; 2752 } else { 2753 /* 2754 * High-order allocations do not necessarily loop after 2755 * direct reclaim and reclaim/compaction depends on compaction 2756 * being called after reclaim so call directly if necessary 2757 */ 2758 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist, 2759 high_zoneidx, nodemask, alloc_flags, 2760 preferred_zone, 2761 classzone_idx, migratetype, 2762 migration_mode, &contended_compaction, 2763 &deferred_compaction); 2764 if (page) 2765 goto got_pg; 2766 } 2767 2768 nopage: 2769 warn_alloc_failed(gfp_mask, order, NULL); 2770 return page; 2771 got_pg: 2772 if (kmemcheck_enabled) 2773 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 2774 2775 return page; 2776 } 2777 2778 /* 2779 * This is the 'heart' of the zoned buddy allocator. 2780 */ 2781 struct page * 2782 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 2783 struct zonelist *zonelist, nodemask_t *nodemask) 2784 { 2785 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 2786 struct zone *preferred_zone; 2787 struct zoneref *preferred_zoneref; 2788 struct page *page = NULL; 2789 int migratetype = gfpflags_to_migratetype(gfp_mask); 2790 unsigned int cpuset_mems_cookie; 2791 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR; 2792 int classzone_idx; 2793 2794 gfp_mask &= gfp_allowed_mask; 2795 2796 lockdep_trace_alloc(gfp_mask); 2797 2798 might_sleep_if(gfp_mask & __GFP_WAIT); 2799 2800 if (should_fail_alloc_page(gfp_mask, order)) 2801 return NULL; 2802 2803 /* 2804 * Check the zones suitable for the gfp_mask contain at least one 2805 * valid zone. It's possible to have an empty zonelist as a result 2806 * of GFP_THISNODE and a memoryless node 2807 */ 2808 if (unlikely(!zonelist->_zonerefs->zone)) 2809 return NULL; 2810 2811 if (IS_ENABLED(CONFIG_CMA) && migratetype == MIGRATE_MOVABLE) 2812 alloc_flags |= ALLOC_CMA; 2813 2814 retry_cpuset: 2815 cpuset_mems_cookie = read_mems_allowed_begin(); 2816 2817 /* The preferred zone is used for statistics later */ 2818 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx, 2819 nodemask ? : &cpuset_current_mems_allowed, 2820 &preferred_zone); 2821 if (!preferred_zone) 2822 goto out; 2823 classzone_idx = zonelist_zone_idx(preferred_zoneref); 2824 2825 /* First allocation attempt */ 2826 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, 2827 zonelist, high_zoneidx, alloc_flags, 2828 preferred_zone, classzone_idx, migratetype); 2829 if (unlikely(!page)) { 2830 /* 2831 * Runtime PM, block IO and its error handling path 2832 * can deadlock because I/O on the device might not 2833 * complete. 2834 */ 2835 gfp_mask = memalloc_noio_flags(gfp_mask); 2836 page = __alloc_pages_slowpath(gfp_mask, order, 2837 zonelist, high_zoneidx, nodemask, 2838 preferred_zone, classzone_idx, migratetype); 2839 } 2840 2841 trace_mm_page_alloc(page, order, gfp_mask, migratetype); 2842 2843 out: 2844 /* 2845 * When updating a task's mems_allowed, it is possible to race with 2846 * parallel threads in such a way that an allocation can fail while 2847 * the mask is being updated. If a page allocation is about to fail, 2848 * check if the cpuset changed during allocation and if so, retry. 2849 */ 2850 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) 2851 goto retry_cpuset; 2852 2853 return page; 2854 } 2855 EXPORT_SYMBOL(__alloc_pages_nodemask); 2856 2857 /* 2858 * Common helper functions. 2859 */ 2860 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 2861 { 2862 struct page *page; 2863 2864 /* 2865 * __get_free_pages() returns a 32-bit address, which cannot represent 2866 * a highmem page 2867 */ 2868 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 2869 2870 page = alloc_pages(gfp_mask, order); 2871 if (!page) 2872 return 0; 2873 return (unsigned long) page_address(page); 2874 } 2875 EXPORT_SYMBOL(__get_free_pages); 2876 2877 unsigned long get_zeroed_page(gfp_t gfp_mask) 2878 { 2879 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 2880 } 2881 EXPORT_SYMBOL(get_zeroed_page); 2882 2883 void __free_pages(struct page *page, unsigned int order) 2884 { 2885 if (put_page_testzero(page)) { 2886 if (order == 0) 2887 free_hot_cold_page(page, false); 2888 else 2889 __free_pages_ok(page, order); 2890 } 2891 } 2892 2893 EXPORT_SYMBOL(__free_pages); 2894 2895 void free_pages(unsigned long addr, unsigned int order) 2896 { 2897 if (addr != 0) { 2898 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2899 __free_pages(virt_to_page((void *)addr), order); 2900 } 2901 } 2902 2903 EXPORT_SYMBOL(free_pages); 2904 2905 /* 2906 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter 2907 * of the current memory cgroup. 2908 * 2909 * It should be used when the caller would like to use kmalloc, but since the 2910 * allocation is large, it has to fall back to the page allocator. 2911 */ 2912 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order) 2913 { 2914 struct page *page; 2915 struct mem_cgroup *memcg = NULL; 2916 2917 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order)) 2918 return NULL; 2919 page = alloc_pages(gfp_mask, order); 2920 memcg_kmem_commit_charge(page, memcg, order); 2921 return page; 2922 } 2923 2924 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order) 2925 { 2926 struct page *page; 2927 struct mem_cgroup *memcg = NULL; 2928 2929 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order)) 2930 return NULL; 2931 page = alloc_pages_node(nid, gfp_mask, order); 2932 memcg_kmem_commit_charge(page, memcg, order); 2933 return page; 2934 } 2935 2936 /* 2937 * __free_kmem_pages and free_kmem_pages will free pages allocated with 2938 * alloc_kmem_pages. 2939 */ 2940 void __free_kmem_pages(struct page *page, unsigned int order) 2941 { 2942 memcg_kmem_uncharge_pages(page, order); 2943 __free_pages(page, order); 2944 } 2945 2946 void free_kmem_pages(unsigned long addr, unsigned int order) 2947 { 2948 if (addr != 0) { 2949 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2950 __free_kmem_pages(virt_to_page((void *)addr), order); 2951 } 2952 } 2953 2954 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size) 2955 { 2956 if (addr) { 2957 unsigned long alloc_end = addr + (PAGE_SIZE << order); 2958 unsigned long used = addr + PAGE_ALIGN(size); 2959 2960 split_page(virt_to_page((void *)addr), order); 2961 while (used < alloc_end) { 2962 free_page(used); 2963 used += PAGE_SIZE; 2964 } 2965 } 2966 return (void *)addr; 2967 } 2968 2969 /** 2970 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 2971 * @size: the number of bytes to allocate 2972 * @gfp_mask: GFP flags for the allocation 2973 * 2974 * This function is similar to alloc_pages(), except that it allocates the 2975 * minimum number of pages to satisfy the request. alloc_pages() can only 2976 * allocate memory in power-of-two pages. 2977 * 2978 * This function is also limited by MAX_ORDER. 2979 * 2980 * Memory allocated by this function must be released by free_pages_exact(). 2981 */ 2982 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 2983 { 2984 unsigned int order = get_order(size); 2985 unsigned long addr; 2986 2987 addr = __get_free_pages(gfp_mask, order); 2988 return make_alloc_exact(addr, order, size); 2989 } 2990 EXPORT_SYMBOL(alloc_pages_exact); 2991 2992 /** 2993 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 2994 * pages on a node. 2995 * @nid: the preferred node ID where memory should be allocated 2996 * @size: the number of bytes to allocate 2997 * @gfp_mask: GFP flags for the allocation 2998 * 2999 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 3000 * back. 3001 * Note this is not alloc_pages_exact_node() which allocates on a specific node, 3002 * but is not exact. 3003 */ 3004 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 3005 { 3006 unsigned order = get_order(size); 3007 struct page *p = alloc_pages_node(nid, gfp_mask, order); 3008 if (!p) 3009 return NULL; 3010 return make_alloc_exact((unsigned long)page_address(p), order, size); 3011 } 3012 3013 /** 3014 * free_pages_exact - release memory allocated via alloc_pages_exact() 3015 * @virt: the value returned by alloc_pages_exact. 3016 * @size: size of allocation, same value as passed to alloc_pages_exact(). 3017 * 3018 * Release the memory allocated by a previous call to alloc_pages_exact. 3019 */ 3020 void free_pages_exact(void *virt, size_t size) 3021 { 3022 unsigned long addr = (unsigned long)virt; 3023 unsigned long end = addr + PAGE_ALIGN(size); 3024 3025 while (addr < end) { 3026 free_page(addr); 3027 addr += PAGE_SIZE; 3028 } 3029 } 3030 EXPORT_SYMBOL(free_pages_exact); 3031 3032 /** 3033 * nr_free_zone_pages - count number of pages beyond high watermark 3034 * @offset: The zone index of the highest zone 3035 * 3036 * nr_free_zone_pages() counts the number of counts pages which are beyond the 3037 * high watermark within all zones at or below a given zone index. For each 3038 * zone, the number of pages is calculated as: 3039 * managed_pages - high_pages 3040 */ 3041 static unsigned long nr_free_zone_pages(int offset) 3042 { 3043 struct zoneref *z; 3044 struct zone *zone; 3045 3046 /* Just pick one node, since fallback list is circular */ 3047 unsigned long sum = 0; 3048 3049 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 3050 3051 for_each_zone_zonelist(zone, z, zonelist, offset) { 3052 unsigned long size = zone->managed_pages; 3053 unsigned long high = high_wmark_pages(zone); 3054 if (size > high) 3055 sum += size - high; 3056 } 3057 3058 return sum; 3059 } 3060 3061 /** 3062 * nr_free_buffer_pages - count number of pages beyond high watermark 3063 * 3064 * nr_free_buffer_pages() counts the number of pages which are beyond the high 3065 * watermark within ZONE_DMA and ZONE_NORMAL. 3066 */ 3067 unsigned long nr_free_buffer_pages(void) 3068 { 3069 return nr_free_zone_pages(gfp_zone(GFP_USER)); 3070 } 3071 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 3072 3073 /** 3074 * nr_free_pagecache_pages - count number of pages beyond high watermark 3075 * 3076 * nr_free_pagecache_pages() counts the number of pages which are beyond the 3077 * high watermark within all zones. 3078 */ 3079 unsigned long nr_free_pagecache_pages(void) 3080 { 3081 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 3082 } 3083 3084 static inline void show_node(struct zone *zone) 3085 { 3086 if (IS_ENABLED(CONFIG_NUMA)) 3087 printk("Node %d ", zone_to_nid(zone)); 3088 } 3089 3090 void si_meminfo(struct sysinfo *val) 3091 { 3092 val->totalram = totalram_pages; 3093 val->sharedram = global_page_state(NR_SHMEM); 3094 val->freeram = global_page_state(NR_FREE_PAGES); 3095 val->bufferram = nr_blockdev_pages(); 3096 val->totalhigh = totalhigh_pages; 3097 val->freehigh = nr_free_highpages(); 3098 val->mem_unit = PAGE_SIZE; 3099 } 3100 3101 EXPORT_SYMBOL(si_meminfo); 3102 3103 #ifdef CONFIG_NUMA 3104 void si_meminfo_node(struct sysinfo *val, int nid) 3105 { 3106 int zone_type; /* needs to be signed */ 3107 unsigned long managed_pages = 0; 3108 pg_data_t *pgdat = NODE_DATA(nid); 3109 3110 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 3111 managed_pages += pgdat->node_zones[zone_type].managed_pages; 3112 val->totalram = managed_pages; 3113 val->sharedram = node_page_state(nid, NR_SHMEM); 3114 val->freeram = node_page_state(nid, NR_FREE_PAGES); 3115 #ifdef CONFIG_HIGHMEM 3116 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages; 3117 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 3118 NR_FREE_PAGES); 3119 #else 3120 val->totalhigh = 0; 3121 val->freehigh = 0; 3122 #endif 3123 val->mem_unit = PAGE_SIZE; 3124 } 3125 #endif 3126 3127 /* 3128 * Determine whether the node should be displayed or not, depending on whether 3129 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 3130 */ 3131 bool skip_free_areas_node(unsigned int flags, int nid) 3132 { 3133 bool ret = false; 3134 unsigned int cpuset_mems_cookie; 3135 3136 if (!(flags & SHOW_MEM_FILTER_NODES)) 3137 goto out; 3138 3139 do { 3140 cpuset_mems_cookie = read_mems_allowed_begin(); 3141 ret = !node_isset(nid, cpuset_current_mems_allowed); 3142 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 3143 out: 3144 return ret; 3145 } 3146 3147 #define K(x) ((x) << (PAGE_SHIFT-10)) 3148 3149 static void show_migration_types(unsigned char type) 3150 { 3151 static const char types[MIGRATE_TYPES] = { 3152 [MIGRATE_UNMOVABLE] = 'U', 3153 [MIGRATE_RECLAIMABLE] = 'E', 3154 [MIGRATE_MOVABLE] = 'M', 3155 [MIGRATE_RESERVE] = 'R', 3156 #ifdef CONFIG_CMA 3157 [MIGRATE_CMA] = 'C', 3158 #endif 3159 #ifdef CONFIG_MEMORY_ISOLATION 3160 [MIGRATE_ISOLATE] = 'I', 3161 #endif 3162 }; 3163 char tmp[MIGRATE_TYPES + 1]; 3164 char *p = tmp; 3165 int i; 3166 3167 for (i = 0; i < MIGRATE_TYPES; i++) { 3168 if (type & (1 << i)) 3169 *p++ = types[i]; 3170 } 3171 3172 *p = '\0'; 3173 printk("(%s) ", tmp); 3174 } 3175 3176 /* 3177 * Show free area list (used inside shift_scroll-lock stuff) 3178 * We also calculate the percentage fragmentation. We do this by counting the 3179 * memory on each free list with the exception of the first item on the list. 3180 * Suppresses nodes that are not allowed by current's cpuset if 3181 * SHOW_MEM_FILTER_NODES is passed. 3182 */ 3183 void show_free_areas(unsigned int filter) 3184 { 3185 int cpu; 3186 struct zone *zone; 3187 3188 for_each_populated_zone(zone) { 3189 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3190 continue; 3191 show_node(zone); 3192 printk("%s per-cpu:\n", zone->name); 3193 3194 for_each_online_cpu(cpu) { 3195 struct per_cpu_pageset *pageset; 3196 3197 pageset = per_cpu_ptr(zone->pageset, cpu); 3198 3199 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", 3200 cpu, pageset->pcp.high, 3201 pageset->pcp.batch, pageset->pcp.count); 3202 } 3203 } 3204 3205 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 3206 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 3207 " unevictable:%lu" 3208 " dirty:%lu writeback:%lu unstable:%lu\n" 3209 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n" 3210 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 3211 " free_cma:%lu\n", 3212 global_page_state(NR_ACTIVE_ANON), 3213 global_page_state(NR_INACTIVE_ANON), 3214 global_page_state(NR_ISOLATED_ANON), 3215 global_page_state(NR_ACTIVE_FILE), 3216 global_page_state(NR_INACTIVE_FILE), 3217 global_page_state(NR_ISOLATED_FILE), 3218 global_page_state(NR_UNEVICTABLE), 3219 global_page_state(NR_FILE_DIRTY), 3220 global_page_state(NR_WRITEBACK), 3221 global_page_state(NR_UNSTABLE_NFS), 3222 global_page_state(NR_FREE_PAGES), 3223 global_page_state(NR_SLAB_RECLAIMABLE), 3224 global_page_state(NR_SLAB_UNRECLAIMABLE), 3225 global_page_state(NR_FILE_MAPPED), 3226 global_page_state(NR_SHMEM), 3227 global_page_state(NR_PAGETABLE), 3228 global_page_state(NR_BOUNCE), 3229 global_page_state(NR_FREE_CMA_PAGES)); 3230 3231 for_each_populated_zone(zone) { 3232 int i; 3233 3234 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3235 continue; 3236 show_node(zone); 3237 printk("%s" 3238 " free:%lukB" 3239 " min:%lukB" 3240 " low:%lukB" 3241 " high:%lukB" 3242 " active_anon:%lukB" 3243 " inactive_anon:%lukB" 3244 " active_file:%lukB" 3245 " inactive_file:%lukB" 3246 " unevictable:%lukB" 3247 " isolated(anon):%lukB" 3248 " isolated(file):%lukB" 3249 " present:%lukB" 3250 " managed:%lukB" 3251 " mlocked:%lukB" 3252 " dirty:%lukB" 3253 " writeback:%lukB" 3254 " mapped:%lukB" 3255 " shmem:%lukB" 3256 " slab_reclaimable:%lukB" 3257 " slab_unreclaimable:%lukB" 3258 " kernel_stack:%lukB" 3259 " pagetables:%lukB" 3260 " unstable:%lukB" 3261 " bounce:%lukB" 3262 " free_cma:%lukB" 3263 " writeback_tmp:%lukB" 3264 " pages_scanned:%lu" 3265 " all_unreclaimable? %s" 3266 "\n", 3267 zone->name, 3268 K(zone_page_state(zone, NR_FREE_PAGES)), 3269 K(min_wmark_pages(zone)), 3270 K(low_wmark_pages(zone)), 3271 K(high_wmark_pages(zone)), 3272 K(zone_page_state(zone, NR_ACTIVE_ANON)), 3273 K(zone_page_state(zone, NR_INACTIVE_ANON)), 3274 K(zone_page_state(zone, NR_ACTIVE_FILE)), 3275 K(zone_page_state(zone, NR_INACTIVE_FILE)), 3276 K(zone_page_state(zone, NR_UNEVICTABLE)), 3277 K(zone_page_state(zone, NR_ISOLATED_ANON)), 3278 K(zone_page_state(zone, NR_ISOLATED_FILE)), 3279 K(zone->present_pages), 3280 K(zone->managed_pages), 3281 K(zone_page_state(zone, NR_MLOCK)), 3282 K(zone_page_state(zone, NR_FILE_DIRTY)), 3283 K(zone_page_state(zone, NR_WRITEBACK)), 3284 K(zone_page_state(zone, NR_FILE_MAPPED)), 3285 K(zone_page_state(zone, NR_SHMEM)), 3286 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 3287 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 3288 zone_page_state(zone, NR_KERNEL_STACK) * 3289 THREAD_SIZE / 1024, 3290 K(zone_page_state(zone, NR_PAGETABLE)), 3291 K(zone_page_state(zone, NR_UNSTABLE_NFS)), 3292 K(zone_page_state(zone, NR_BOUNCE)), 3293 K(zone_page_state(zone, NR_FREE_CMA_PAGES)), 3294 K(zone_page_state(zone, NR_WRITEBACK_TEMP)), 3295 K(zone_page_state(zone, NR_PAGES_SCANNED)), 3296 (!zone_reclaimable(zone) ? "yes" : "no") 3297 ); 3298 printk("lowmem_reserve[]:"); 3299 for (i = 0; i < MAX_NR_ZONES; i++) 3300 printk(" %ld", zone->lowmem_reserve[i]); 3301 printk("\n"); 3302 } 3303 3304 for_each_populated_zone(zone) { 3305 unsigned long nr[MAX_ORDER], flags, order, total = 0; 3306 unsigned char types[MAX_ORDER]; 3307 3308 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3309 continue; 3310 show_node(zone); 3311 printk("%s: ", zone->name); 3312 3313 spin_lock_irqsave(&zone->lock, flags); 3314 for (order = 0; order < MAX_ORDER; order++) { 3315 struct free_area *area = &zone->free_area[order]; 3316 int type; 3317 3318 nr[order] = area->nr_free; 3319 total += nr[order] << order; 3320 3321 types[order] = 0; 3322 for (type = 0; type < MIGRATE_TYPES; type++) { 3323 if (!list_empty(&area->free_list[type])) 3324 types[order] |= 1 << type; 3325 } 3326 } 3327 spin_unlock_irqrestore(&zone->lock, flags); 3328 for (order = 0; order < MAX_ORDER; order++) { 3329 printk("%lu*%lukB ", nr[order], K(1UL) << order); 3330 if (nr[order]) 3331 show_migration_types(types[order]); 3332 } 3333 printk("= %lukB\n", K(total)); 3334 } 3335 3336 hugetlb_show_meminfo(); 3337 3338 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 3339 3340 show_swap_cache_info(); 3341 } 3342 3343 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 3344 { 3345 zoneref->zone = zone; 3346 zoneref->zone_idx = zone_idx(zone); 3347 } 3348 3349 /* 3350 * Builds allocation fallback zone lists. 3351 * 3352 * Add all populated zones of a node to the zonelist. 3353 */ 3354 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 3355 int nr_zones) 3356 { 3357 struct zone *zone; 3358 enum zone_type zone_type = MAX_NR_ZONES; 3359 3360 do { 3361 zone_type--; 3362 zone = pgdat->node_zones + zone_type; 3363 if (populated_zone(zone)) { 3364 zoneref_set_zone(zone, 3365 &zonelist->_zonerefs[nr_zones++]); 3366 check_highest_zone(zone_type); 3367 } 3368 } while (zone_type); 3369 3370 return nr_zones; 3371 } 3372 3373 3374 /* 3375 * zonelist_order: 3376 * 0 = automatic detection of better ordering. 3377 * 1 = order by ([node] distance, -zonetype) 3378 * 2 = order by (-zonetype, [node] distance) 3379 * 3380 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 3381 * the same zonelist. So only NUMA can configure this param. 3382 */ 3383 #define ZONELIST_ORDER_DEFAULT 0 3384 #define ZONELIST_ORDER_NODE 1 3385 #define ZONELIST_ORDER_ZONE 2 3386 3387 /* zonelist order in the kernel. 3388 * set_zonelist_order() will set this to NODE or ZONE. 3389 */ 3390 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 3391 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 3392 3393 3394 #ifdef CONFIG_NUMA 3395 /* The value user specified ....changed by config */ 3396 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3397 /* string for sysctl */ 3398 #define NUMA_ZONELIST_ORDER_LEN 16 3399 char numa_zonelist_order[16] = "default"; 3400 3401 /* 3402 * interface for configure zonelist ordering. 3403 * command line option "numa_zonelist_order" 3404 * = "[dD]efault - default, automatic configuration. 3405 * = "[nN]ode - order by node locality, then by zone within node 3406 * = "[zZ]one - order by zone, then by locality within zone 3407 */ 3408 3409 static int __parse_numa_zonelist_order(char *s) 3410 { 3411 if (*s == 'd' || *s == 'D') { 3412 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3413 } else if (*s == 'n' || *s == 'N') { 3414 user_zonelist_order = ZONELIST_ORDER_NODE; 3415 } else if (*s == 'z' || *s == 'Z') { 3416 user_zonelist_order = ZONELIST_ORDER_ZONE; 3417 } else { 3418 printk(KERN_WARNING 3419 "Ignoring invalid numa_zonelist_order value: " 3420 "%s\n", s); 3421 return -EINVAL; 3422 } 3423 return 0; 3424 } 3425 3426 static __init int setup_numa_zonelist_order(char *s) 3427 { 3428 int ret; 3429 3430 if (!s) 3431 return 0; 3432 3433 ret = __parse_numa_zonelist_order(s); 3434 if (ret == 0) 3435 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); 3436 3437 return ret; 3438 } 3439 early_param("numa_zonelist_order", setup_numa_zonelist_order); 3440 3441 /* 3442 * sysctl handler for numa_zonelist_order 3443 */ 3444 int numa_zonelist_order_handler(struct ctl_table *table, int write, 3445 void __user *buffer, size_t *length, 3446 loff_t *ppos) 3447 { 3448 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 3449 int ret; 3450 static DEFINE_MUTEX(zl_order_mutex); 3451 3452 mutex_lock(&zl_order_mutex); 3453 if (write) { 3454 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) { 3455 ret = -EINVAL; 3456 goto out; 3457 } 3458 strcpy(saved_string, (char *)table->data); 3459 } 3460 ret = proc_dostring(table, write, buffer, length, ppos); 3461 if (ret) 3462 goto out; 3463 if (write) { 3464 int oldval = user_zonelist_order; 3465 3466 ret = __parse_numa_zonelist_order((char *)table->data); 3467 if (ret) { 3468 /* 3469 * bogus value. restore saved string 3470 */ 3471 strncpy((char *)table->data, saved_string, 3472 NUMA_ZONELIST_ORDER_LEN); 3473 user_zonelist_order = oldval; 3474 } else if (oldval != user_zonelist_order) { 3475 mutex_lock(&zonelists_mutex); 3476 build_all_zonelists(NULL, NULL); 3477 mutex_unlock(&zonelists_mutex); 3478 } 3479 } 3480 out: 3481 mutex_unlock(&zl_order_mutex); 3482 return ret; 3483 } 3484 3485 3486 #define MAX_NODE_LOAD (nr_online_nodes) 3487 static int node_load[MAX_NUMNODES]; 3488 3489 /** 3490 * find_next_best_node - find the next node that should appear in a given node's fallback list 3491 * @node: node whose fallback list we're appending 3492 * @used_node_mask: nodemask_t of already used nodes 3493 * 3494 * We use a number of factors to determine which is the next node that should 3495 * appear on a given node's fallback list. The node should not have appeared 3496 * already in @node's fallback list, and it should be the next closest node 3497 * according to the distance array (which contains arbitrary distance values 3498 * from each node to each node in the system), and should also prefer nodes 3499 * with no CPUs, since presumably they'll have very little allocation pressure 3500 * on them otherwise. 3501 * It returns -1 if no node is found. 3502 */ 3503 static int find_next_best_node(int node, nodemask_t *used_node_mask) 3504 { 3505 int n, val; 3506 int min_val = INT_MAX; 3507 int best_node = NUMA_NO_NODE; 3508 const struct cpumask *tmp = cpumask_of_node(0); 3509 3510 /* Use the local node if we haven't already */ 3511 if (!node_isset(node, *used_node_mask)) { 3512 node_set(node, *used_node_mask); 3513 return node; 3514 } 3515 3516 for_each_node_state(n, N_MEMORY) { 3517 3518 /* Don't want a node to appear more than once */ 3519 if (node_isset(n, *used_node_mask)) 3520 continue; 3521 3522 /* Use the distance array to find the distance */ 3523 val = node_distance(node, n); 3524 3525 /* Penalize nodes under us ("prefer the next node") */ 3526 val += (n < node); 3527 3528 /* Give preference to headless and unused nodes */ 3529 tmp = cpumask_of_node(n); 3530 if (!cpumask_empty(tmp)) 3531 val += PENALTY_FOR_NODE_WITH_CPUS; 3532 3533 /* Slight preference for less loaded node */ 3534 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 3535 val += node_load[n]; 3536 3537 if (val < min_val) { 3538 min_val = val; 3539 best_node = n; 3540 } 3541 } 3542 3543 if (best_node >= 0) 3544 node_set(best_node, *used_node_mask); 3545 3546 return best_node; 3547 } 3548 3549 3550 /* 3551 * Build zonelists ordered by node and zones within node. 3552 * This results in maximum locality--normal zone overflows into local 3553 * DMA zone, if any--but risks exhausting DMA zone. 3554 */ 3555 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 3556 { 3557 int j; 3558 struct zonelist *zonelist; 3559 3560 zonelist = &pgdat->node_zonelists[0]; 3561 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 3562 ; 3563 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 3564 zonelist->_zonerefs[j].zone = NULL; 3565 zonelist->_zonerefs[j].zone_idx = 0; 3566 } 3567 3568 /* 3569 * Build gfp_thisnode zonelists 3570 */ 3571 static void build_thisnode_zonelists(pg_data_t *pgdat) 3572 { 3573 int j; 3574 struct zonelist *zonelist; 3575 3576 zonelist = &pgdat->node_zonelists[1]; 3577 j = build_zonelists_node(pgdat, zonelist, 0); 3578 zonelist->_zonerefs[j].zone = NULL; 3579 zonelist->_zonerefs[j].zone_idx = 0; 3580 } 3581 3582 /* 3583 * Build zonelists ordered by zone and nodes within zones. 3584 * This results in conserving DMA zone[s] until all Normal memory is 3585 * exhausted, but results in overflowing to remote node while memory 3586 * may still exist in local DMA zone. 3587 */ 3588 static int node_order[MAX_NUMNODES]; 3589 3590 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 3591 { 3592 int pos, j, node; 3593 int zone_type; /* needs to be signed */ 3594 struct zone *z; 3595 struct zonelist *zonelist; 3596 3597 zonelist = &pgdat->node_zonelists[0]; 3598 pos = 0; 3599 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 3600 for (j = 0; j < nr_nodes; j++) { 3601 node = node_order[j]; 3602 z = &NODE_DATA(node)->node_zones[zone_type]; 3603 if (populated_zone(z)) { 3604 zoneref_set_zone(z, 3605 &zonelist->_zonerefs[pos++]); 3606 check_highest_zone(zone_type); 3607 } 3608 } 3609 } 3610 zonelist->_zonerefs[pos].zone = NULL; 3611 zonelist->_zonerefs[pos].zone_idx = 0; 3612 } 3613 3614 #if defined(CONFIG_64BIT) 3615 /* 3616 * Devices that require DMA32/DMA are relatively rare and do not justify a 3617 * penalty to every machine in case the specialised case applies. Default 3618 * to Node-ordering on 64-bit NUMA machines 3619 */ 3620 static int default_zonelist_order(void) 3621 { 3622 return ZONELIST_ORDER_NODE; 3623 } 3624 #else 3625 /* 3626 * On 32-bit, the Normal zone needs to be preserved for allocations accessible 3627 * by the kernel. If processes running on node 0 deplete the low memory zone 3628 * then reclaim will occur more frequency increasing stalls and potentially 3629 * be easier to OOM if a large percentage of the zone is under writeback or 3630 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set. 3631 * Hence, default to zone ordering on 32-bit. 3632 */ 3633 static int default_zonelist_order(void) 3634 { 3635 return ZONELIST_ORDER_ZONE; 3636 } 3637 #endif /* CONFIG_64BIT */ 3638 3639 static void set_zonelist_order(void) 3640 { 3641 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 3642 current_zonelist_order = default_zonelist_order(); 3643 else 3644 current_zonelist_order = user_zonelist_order; 3645 } 3646 3647 static void build_zonelists(pg_data_t *pgdat) 3648 { 3649 int j, node, load; 3650 enum zone_type i; 3651 nodemask_t used_mask; 3652 int local_node, prev_node; 3653 struct zonelist *zonelist; 3654 int order = current_zonelist_order; 3655 3656 /* initialize zonelists */ 3657 for (i = 0; i < MAX_ZONELISTS; i++) { 3658 zonelist = pgdat->node_zonelists + i; 3659 zonelist->_zonerefs[0].zone = NULL; 3660 zonelist->_zonerefs[0].zone_idx = 0; 3661 } 3662 3663 /* NUMA-aware ordering of nodes */ 3664 local_node = pgdat->node_id; 3665 load = nr_online_nodes; 3666 prev_node = local_node; 3667 nodes_clear(used_mask); 3668 3669 memset(node_order, 0, sizeof(node_order)); 3670 j = 0; 3671 3672 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 3673 /* 3674 * We don't want to pressure a particular node. 3675 * So adding penalty to the first node in same 3676 * distance group to make it round-robin. 3677 */ 3678 if (node_distance(local_node, node) != 3679 node_distance(local_node, prev_node)) 3680 node_load[node] = load; 3681 3682 prev_node = node; 3683 load--; 3684 if (order == ZONELIST_ORDER_NODE) 3685 build_zonelists_in_node_order(pgdat, node); 3686 else 3687 node_order[j++] = node; /* remember order */ 3688 } 3689 3690 if (order == ZONELIST_ORDER_ZONE) { 3691 /* calculate node order -- i.e., DMA last! */ 3692 build_zonelists_in_zone_order(pgdat, j); 3693 } 3694 3695 build_thisnode_zonelists(pgdat); 3696 } 3697 3698 /* Construct the zonelist performance cache - see further mmzone.h */ 3699 static void build_zonelist_cache(pg_data_t *pgdat) 3700 { 3701 struct zonelist *zonelist; 3702 struct zonelist_cache *zlc; 3703 struct zoneref *z; 3704 3705 zonelist = &pgdat->node_zonelists[0]; 3706 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 3707 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 3708 for (z = zonelist->_zonerefs; z->zone; z++) 3709 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 3710 } 3711 3712 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3713 /* 3714 * Return node id of node used for "local" allocations. 3715 * I.e., first node id of first zone in arg node's generic zonelist. 3716 * Used for initializing percpu 'numa_mem', which is used primarily 3717 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 3718 */ 3719 int local_memory_node(int node) 3720 { 3721 struct zone *zone; 3722 3723 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 3724 gfp_zone(GFP_KERNEL), 3725 NULL, 3726 &zone); 3727 return zone->node; 3728 } 3729 #endif 3730 3731 #else /* CONFIG_NUMA */ 3732 3733 static void set_zonelist_order(void) 3734 { 3735 current_zonelist_order = ZONELIST_ORDER_ZONE; 3736 } 3737 3738 static void build_zonelists(pg_data_t *pgdat) 3739 { 3740 int node, local_node; 3741 enum zone_type j; 3742 struct zonelist *zonelist; 3743 3744 local_node = pgdat->node_id; 3745 3746 zonelist = &pgdat->node_zonelists[0]; 3747 j = build_zonelists_node(pgdat, zonelist, 0); 3748 3749 /* 3750 * Now we build the zonelist so that it contains the zones 3751 * of all the other nodes. 3752 * We don't want to pressure a particular node, so when 3753 * building the zones for node N, we make sure that the 3754 * zones coming right after the local ones are those from 3755 * node N+1 (modulo N) 3756 */ 3757 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 3758 if (!node_online(node)) 3759 continue; 3760 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 3761 } 3762 for (node = 0; node < local_node; node++) { 3763 if (!node_online(node)) 3764 continue; 3765 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 3766 } 3767 3768 zonelist->_zonerefs[j].zone = NULL; 3769 zonelist->_zonerefs[j].zone_idx = 0; 3770 } 3771 3772 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 3773 static void build_zonelist_cache(pg_data_t *pgdat) 3774 { 3775 pgdat->node_zonelists[0].zlcache_ptr = NULL; 3776 } 3777 3778 #endif /* CONFIG_NUMA */ 3779 3780 /* 3781 * Boot pageset table. One per cpu which is going to be used for all 3782 * zones and all nodes. The parameters will be set in such a way 3783 * that an item put on a list will immediately be handed over to 3784 * the buddy list. This is safe since pageset manipulation is done 3785 * with interrupts disabled. 3786 * 3787 * The boot_pagesets must be kept even after bootup is complete for 3788 * unused processors and/or zones. They do play a role for bootstrapping 3789 * hotplugged processors. 3790 * 3791 * zoneinfo_show() and maybe other functions do 3792 * not check if the processor is online before following the pageset pointer. 3793 * Other parts of the kernel may not check if the zone is available. 3794 */ 3795 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 3796 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 3797 static void setup_zone_pageset(struct zone *zone); 3798 3799 /* 3800 * Global mutex to protect against size modification of zonelists 3801 * as well as to serialize pageset setup for the new populated zone. 3802 */ 3803 DEFINE_MUTEX(zonelists_mutex); 3804 3805 /* return values int ....just for stop_machine() */ 3806 static int __build_all_zonelists(void *data) 3807 { 3808 int nid; 3809 int cpu; 3810 pg_data_t *self = data; 3811 3812 #ifdef CONFIG_NUMA 3813 memset(node_load, 0, sizeof(node_load)); 3814 #endif 3815 3816 if (self && !node_online(self->node_id)) { 3817 build_zonelists(self); 3818 build_zonelist_cache(self); 3819 } 3820 3821 for_each_online_node(nid) { 3822 pg_data_t *pgdat = NODE_DATA(nid); 3823 3824 build_zonelists(pgdat); 3825 build_zonelist_cache(pgdat); 3826 } 3827 3828 /* 3829 * Initialize the boot_pagesets that are going to be used 3830 * for bootstrapping processors. The real pagesets for 3831 * each zone will be allocated later when the per cpu 3832 * allocator is available. 3833 * 3834 * boot_pagesets are used also for bootstrapping offline 3835 * cpus if the system is already booted because the pagesets 3836 * are needed to initialize allocators on a specific cpu too. 3837 * F.e. the percpu allocator needs the page allocator which 3838 * needs the percpu allocator in order to allocate its pagesets 3839 * (a chicken-egg dilemma). 3840 */ 3841 for_each_possible_cpu(cpu) { 3842 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 3843 3844 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3845 /* 3846 * We now know the "local memory node" for each node-- 3847 * i.e., the node of the first zone in the generic zonelist. 3848 * Set up numa_mem percpu variable for on-line cpus. During 3849 * boot, only the boot cpu should be on-line; we'll init the 3850 * secondary cpus' numa_mem as they come on-line. During 3851 * node/memory hotplug, we'll fixup all on-line cpus. 3852 */ 3853 if (cpu_online(cpu)) 3854 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 3855 #endif 3856 } 3857 3858 return 0; 3859 } 3860 3861 /* 3862 * Called with zonelists_mutex held always 3863 * unless system_state == SYSTEM_BOOTING. 3864 */ 3865 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone) 3866 { 3867 set_zonelist_order(); 3868 3869 if (system_state == SYSTEM_BOOTING) { 3870 __build_all_zonelists(NULL); 3871 mminit_verify_zonelist(); 3872 cpuset_init_current_mems_allowed(); 3873 } else { 3874 #ifdef CONFIG_MEMORY_HOTPLUG 3875 if (zone) 3876 setup_zone_pageset(zone); 3877 #endif 3878 /* we have to stop all cpus to guarantee there is no user 3879 of zonelist */ 3880 stop_machine(__build_all_zonelists, pgdat, NULL); 3881 /* cpuset refresh routine should be here */ 3882 } 3883 vm_total_pages = nr_free_pagecache_pages(); 3884 /* 3885 * Disable grouping by mobility if the number of pages in the 3886 * system is too low to allow the mechanism to work. It would be 3887 * more accurate, but expensive to check per-zone. This check is 3888 * made on memory-hotadd so a system can start with mobility 3889 * disabled and enable it later 3890 */ 3891 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 3892 page_group_by_mobility_disabled = 1; 3893 else 3894 page_group_by_mobility_disabled = 0; 3895 3896 printk("Built %i zonelists in %s order, mobility grouping %s. " 3897 "Total pages: %ld\n", 3898 nr_online_nodes, 3899 zonelist_order_name[current_zonelist_order], 3900 page_group_by_mobility_disabled ? "off" : "on", 3901 vm_total_pages); 3902 #ifdef CONFIG_NUMA 3903 printk("Policy zone: %s\n", zone_names[policy_zone]); 3904 #endif 3905 } 3906 3907 /* 3908 * Helper functions to size the waitqueue hash table. 3909 * Essentially these want to choose hash table sizes sufficiently 3910 * large so that collisions trying to wait on pages are rare. 3911 * But in fact, the number of active page waitqueues on typical 3912 * systems is ridiculously low, less than 200. So this is even 3913 * conservative, even though it seems large. 3914 * 3915 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 3916 * waitqueues, i.e. the size of the waitq table given the number of pages. 3917 */ 3918 #define PAGES_PER_WAITQUEUE 256 3919 3920 #ifndef CONFIG_MEMORY_HOTPLUG 3921 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3922 { 3923 unsigned long size = 1; 3924 3925 pages /= PAGES_PER_WAITQUEUE; 3926 3927 while (size < pages) 3928 size <<= 1; 3929 3930 /* 3931 * Once we have dozens or even hundreds of threads sleeping 3932 * on IO we've got bigger problems than wait queue collision. 3933 * Limit the size of the wait table to a reasonable size. 3934 */ 3935 size = min(size, 4096UL); 3936 3937 return max(size, 4UL); 3938 } 3939 #else 3940 /* 3941 * A zone's size might be changed by hot-add, so it is not possible to determine 3942 * a suitable size for its wait_table. So we use the maximum size now. 3943 * 3944 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 3945 * 3946 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 3947 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 3948 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 3949 * 3950 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 3951 * or more by the traditional way. (See above). It equals: 3952 * 3953 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 3954 * ia64(16K page size) : = ( 8G + 4M)byte. 3955 * powerpc (64K page size) : = (32G +16M)byte. 3956 */ 3957 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3958 { 3959 return 4096UL; 3960 } 3961 #endif 3962 3963 /* 3964 * This is an integer logarithm so that shifts can be used later 3965 * to extract the more random high bits from the multiplicative 3966 * hash function before the remainder is taken. 3967 */ 3968 static inline unsigned long wait_table_bits(unsigned long size) 3969 { 3970 return ffz(~size); 3971 } 3972 3973 /* 3974 * Check if a pageblock contains reserved pages 3975 */ 3976 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn) 3977 { 3978 unsigned long pfn; 3979 3980 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3981 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn))) 3982 return 1; 3983 } 3984 return 0; 3985 } 3986 3987 /* 3988 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 3989 * of blocks reserved is based on min_wmark_pages(zone). The memory within 3990 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes 3991 * higher will lead to a bigger reserve which will get freed as contiguous 3992 * blocks as reclaim kicks in 3993 */ 3994 static void setup_zone_migrate_reserve(struct zone *zone) 3995 { 3996 unsigned long start_pfn, pfn, end_pfn, block_end_pfn; 3997 struct page *page; 3998 unsigned long block_migratetype; 3999 int reserve; 4000 int old_reserve; 4001 4002 /* 4003 * Get the start pfn, end pfn and the number of blocks to reserve 4004 * We have to be careful to be aligned to pageblock_nr_pages to 4005 * make sure that we always check pfn_valid for the first page in 4006 * the block. 4007 */ 4008 start_pfn = zone->zone_start_pfn; 4009 end_pfn = zone_end_pfn(zone); 4010 start_pfn = roundup(start_pfn, pageblock_nr_pages); 4011 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> 4012 pageblock_order; 4013 4014 /* 4015 * Reserve blocks are generally in place to help high-order atomic 4016 * allocations that are short-lived. A min_free_kbytes value that 4017 * would result in more than 2 reserve blocks for atomic allocations 4018 * is assumed to be in place to help anti-fragmentation for the 4019 * future allocation of hugepages at runtime. 4020 */ 4021 reserve = min(2, reserve); 4022 old_reserve = zone->nr_migrate_reserve_block; 4023 4024 /* When memory hot-add, we almost always need to do nothing */ 4025 if (reserve == old_reserve) 4026 return; 4027 zone->nr_migrate_reserve_block = reserve; 4028 4029 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 4030 if (!pfn_valid(pfn)) 4031 continue; 4032 page = pfn_to_page(pfn); 4033 4034 /* Watch out for overlapping nodes */ 4035 if (page_to_nid(page) != zone_to_nid(zone)) 4036 continue; 4037 4038 block_migratetype = get_pageblock_migratetype(page); 4039 4040 /* Only test what is necessary when the reserves are not met */ 4041 if (reserve > 0) { 4042 /* 4043 * Blocks with reserved pages will never free, skip 4044 * them. 4045 */ 4046 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn); 4047 if (pageblock_is_reserved(pfn, block_end_pfn)) 4048 continue; 4049 4050 /* If this block is reserved, account for it */ 4051 if (block_migratetype == MIGRATE_RESERVE) { 4052 reserve--; 4053 continue; 4054 } 4055 4056 /* Suitable for reserving if this block is movable */ 4057 if (block_migratetype == MIGRATE_MOVABLE) { 4058 set_pageblock_migratetype(page, 4059 MIGRATE_RESERVE); 4060 move_freepages_block(zone, page, 4061 MIGRATE_RESERVE); 4062 reserve--; 4063 continue; 4064 } 4065 } else if (!old_reserve) { 4066 /* 4067 * At boot time we don't need to scan the whole zone 4068 * for turning off MIGRATE_RESERVE. 4069 */ 4070 break; 4071 } 4072 4073 /* 4074 * If the reserve is met and this is a previous reserved block, 4075 * take it back 4076 */ 4077 if (block_migratetype == MIGRATE_RESERVE) { 4078 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 4079 move_freepages_block(zone, page, MIGRATE_MOVABLE); 4080 } 4081 } 4082 } 4083 4084 /* 4085 * Initially all pages are reserved - free ones are freed 4086 * up by free_all_bootmem() once the early boot process is 4087 * done. Non-atomic initialization, single-pass. 4088 */ 4089 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 4090 unsigned long start_pfn, enum memmap_context context) 4091 { 4092 struct page *page; 4093 unsigned long end_pfn = start_pfn + size; 4094 unsigned long pfn; 4095 struct zone *z; 4096 4097 if (highest_memmap_pfn < end_pfn - 1) 4098 highest_memmap_pfn = end_pfn - 1; 4099 4100 z = &NODE_DATA(nid)->node_zones[zone]; 4101 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 4102 /* 4103 * There can be holes in boot-time mem_map[]s 4104 * handed to this function. They do not 4105 * exist on hotplugged memory. 4106 */ 4107 if (context == MEMMAP_EARLY) { 4108 if (!early_pfn_valid(pfn)) 4109 continue; 4110 if (!early_pfn_in_nid(pfn, nid)) 4111 continue; 4112 } 4113 page = pfn_to_page(pfn); 4114 set_page_links(page, zone, nid, pfn); 4115 mminit_verify_page_links(page, zone, nid, pfn); 4116 init_page_count(page); 4117 page_mapcount_reset(page); 4118 page_cpupid_reset_last(page); 4119 SetPageReserved(page); 4120 /* 4121 * Mark the block movable so that blocks are reserved for 4122 * movable at startup. This will force kernel allocations 4123 * to reserve their blocks rather than leaking throughout 4124 * the address space during boot when many long-lived 4125 * kernel allocations are made. Later some blocks near 4126 * the start are marked MIGRATE_RESERVE by 4127 * setup_zone_migrate_reserve() 4128 * 4129 * bitmap is created for zone's valid pfn range. but memmap 4130 * can be created for invalid pages (for alignment) 4131 * check here not to call set_pageblock_migratetype() against 4132 * pfn out of zone. 4133 */ 4134 if ((z->zone_start_pfn <= pfn) 4135 && (pfn < zone_end_pfn(z)) 4136 && !(pfn & (pageblock_nr_pages - 1))) 4137 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 4138 4139 INIT_LIST_HEAD(&page->lru); 4140 #ifdef WANT_PAGE_VIRTUAL 4141 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 4142 if (!is_highmem_idx(zone)) 4143 set_page_address(page, __va(pfn << PAGE_SHIFT)); 4144 #endif 4145 } 4146 } 4147 4148 static void __meminit zone_init_free_lists(struct zone *zone) 4149 { 4150 unsigned int order, t; 4151 for_each_migratetype_order(order, t) { 4152 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 4153 zone->free_area[order].nr_free = 0; 4154 } 4155 } 4156 4157 #ifndef __HAVE_ARCH_MEMMAP_INIT 4158 #define memmap_init(size, nid, zone, start_pfn) \ 4159 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 4160 #endif 4161 4162 static int zone_batchsize(struct zone *zone) 4163 { 4164 #ifdef CONFIG_MMU 4165 int batch; 4166 4167 /* 4168 * The per-cpu-pages pools are set to around 1000th of the 4169 * size of the zone. But no more than 1/2 of a meg. 4170 * 4171 * OK, so we don't know how big the cache is. So guess. 4172 */ 4173 batch = zone->managed_pages / 1024; 4174 if (batch * PAGE_SIZE > 512 * 1024) 4175 batch = (512 * 1024) / PAGE_SIZE; 4176 batch /= 4; /* We effectively *= 4 below */ 4177 if (batch < 1) 4178 batch = 1; 4179 4180 /* 4181 * Clamp the batch to a 2^n - 1 value. Having a power 4182 * of 2 value was found to be more likely to have 4183 * suboptimal cache aliasing properties in some cases. 4184 * 4185 * For example if 2 tasks are alternately allocating 4186 * batches of pages, one task can end up with a lot 4187 * of pages of one half of the possible page colors 4188 * and the other with pages of the other colors. 4189 */ 4190 batch = rounddown_pow_of_two(batch + batch/2) - 1; 4191 4192 return batch; 4193 4194 #else 4195 /* The deferral and batching of frees should be suppressed under NOMMU 4196 * conditions. 4197 * 4198 * The problem is that NOMMU needs to be able to allocate large chunks 4199 * of contiguous memory as there's no hardware page translation to 4200 * assemble apparent contiguous memory from discontiguous pages. 4201 * 4202 * Queueing large contiguous runs of pages for batching, however, 4203 * causes the pages to actually be freed in smaller chunks. As there 4204 * can be a significant delay between the individual batches being 4205 * recycled, this leads to the once large chunks of space being 4206 * fragmented and becoming unavailable for high-order allocations. 4207 */ 4208 return 0; 4209 #endif 4210 } 4211 4212 /* 4213 * pcp->high and pcp->batch values are related and dependent on one another: 4214 * ->batch must never be higher then ->high. 4215 * The following function updates them in a safe manner without read side 4216 * locking. 4217 * 4218 * Any new users of pcp->batch and pcp->high should ensure they can cope with 4219 * those fields changing asynchronously (acording the the above rule). 4220 * 4221 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 4222 * outside of boot time (or some other assurance that no concurrent updaters 4223 * exist). 4224 */ 4225 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 4226 unsigned long batch) 4227 { 4228 /* start with a fail safe value for batch */ 4229 pcp->batch = 1; 4230 smp_wmb(); 4231 4232 /* Update high, then batch, in order */ 4233 pcp->high = high; 4234 smp_wmb(); 4235 4236 pcp->batch = batch; 4237 } 4238 4239 /* a companion to pageset_set_high() */ 4240 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 4241 { 4242 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 4243 } 4244 4245 static void pageset_init(struct per_cpu_pageset *p) 4246 { 4247 struct per_cpu_pages *pcp; 4248 int migratetype; 4249 4250 memset(p, 0, sizeof(*p)); 4251 4252 pcp = &p->pcp; 4253 pcp->count = 0; 4254 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 4255 INIT_LIST_HEAD(&pcp->lists[migratetype]); 4256 } 4257 4258 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 4259 { 4260 pageset_init(p); 4261 pageset_set_batch(p, batch); 4262 } 4263 4264 /* 4265 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 4266 * to the value high for the pageset p. 4267 */ 4268 static void pageset_set_high(struct per_cpu_pageset *p, 4269 unsigned long high) 4270 { 4271 unsigned long batch = max(1UL, high / 4); 4272 if ((high / 4) > (PAGE_SHIFT * 8)) 4273 batch = PAGE_SHIFT * 8; 4274 4275 pageset_update(&p->pcp, high, batch); 4276 } 4277 4278 static void pageset_set_high_and_batch(struct zone *zone, 4279 struct per_cpu_pageset *pcp) 4280 { 4281 if (percpu_pagelist_fraction) 4282 pageset_set_high(pcp, 4283 (zone->managed_pages / 4284 percpu_pagelist_fraction)); 4285 else 4286 pageset_set_batch(pcp, zone_batchsize(zone)); 4287 } 4288 4289 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 4290 { 4291 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 4292 4293 pageset_init(pcp); 4294 pageset_set_high_and_batch(zone, pcp); 4295 } 4296 4297 static void __meminit setup_zone_pageset(struct zone *zone) 4298 { 4299 int cpu; 4300 zone->pageset = alloc_percpu(struct per_cpu_pageset); 4301 for_each_possible_cpu(cpu) 4302 zone_pageset_init(zone, cpu); 4303 } 4304 4305 /* 4306 * Allocate per cpu pagesets and initialize them. 4307 * Before this call only boot pagesets were available. 4308 */ 4309 void __init setup_per_cpu_pageset(void) 4310 { 4311 struct zone *zone; 4312 4313 for_each_populated_zone(zone) 4314 setup_zone_pageset(zone); 4315 } 4316 4317 static noinline __init_refok 4318 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 4319 { 4320 int i; 4321 size_t alloc_size; 4322 4323 /* 4324 * The per-page waitqueue mechanism uses hashed waitqueues 4325 * per zone. 4326 */ 4327 zone->wait_table_hash_nr_entries = 4328 wait_table_hash_nr_entries(zone_size_pages); 4329 zone->wait_table_bits = 4330 wait_table_bits(zone->wait_table_hash_nr_entries); 4331 alloc_size = zone->wait_table_hash_nr_entries 4332 * sizeof(wait_queue_head_t); 4333 4334 if (!slab_is_available()) { 4335 zone->wait_table = (wait_queue_head_t *) 4336 memblock_virt_alloc_node_nopanic( 4337 alloc_size, zone->zone_pgdat->node_id); 4338 } else { 4339 /* 4340 * This case means that a zone whose size was 0 gets new memory 4341 * via memory hot-add. 4342 * But it may be the case that a new node was hot-added. In 4343 * this case vmalloc() will not be able to use this new node's 4344 * memory - this wait_table must be initialized to use this new 4345 * node itself as well. 4346 * To use this new node's memory, further consideration will be 4347 * necessary. 4348 */ 4349 zone->wait_table = vmalloc(alloc_size); 4350 } 4351 if (!zone->wait_table) 4352 return -ENOMEM; 4353 4354 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i) 4355 init_waitqueue_head(zone->wait_table + i); 4356 4357 return 0; 4358 } 4359 4360 static __meminit void zone_pcp_init(struct zone *zone) 4361 { 4362 /* 4363 * per cpu subsystem is not up at this point. The following code 4364 * relies on the ability of the linker to provide the 4365 * offset of a (static) per cpu variable into the per cpu area. 4366 */ 4367 zone->pageset = &boot_pageset; 4368 4369 if (populated_zone(zone)) 4370 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 4371 zone->name, zone->present_pages, 4372 zone_batchsize(zone)); 4373 } 4374 4375 int __meminit init_currently_empty_zone(struct zone *zone, 4376 unsigned long zone_start_pfn, 4377 unsigned long size, 4378 enum memmap_context context) 4379 { 4380 struct pglist_data *pgdat = zone->zone_pgdat; 4381 int ret; 4382 ret = zone_wait_table_init(zone, size); 4383 if (ret) 4384 return ret; 4385 pgdat->nr_zones = zone_idx(zone) + 1; 4386 4387 zone->zone_start_pfn = zone_start_pfn; 4388 4389 mminit_dprintk(MMINIT_TRACE, "memmap_init", 4390 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 4391 pgdat->node_id, 4392 (unsigned long)zone_idx(zone), 4393 zone_start_pfn, (zone_start_pfn + size)); 4394 4395 zone_init_free_lists(zone); 4396 4397 return 0; 4398 } 4399 4400 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4401 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 4402 /* 4403 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 4404 */ 4405 int __meminit __early_pfn_to_nid(unsigned long pfn) 4406 { 4407 unsigned long start_pfn, end_pfn; 4408 int nid; 4409 /* 4410 * NOTE: The following SMP-unsafe globals are only used early in boot 4411 * when the kernel is running single-threaded. 4412 */ 4413 static unsigned long __meminitdata last_start_pfn, last_end_pfn; 4414 static int __meminitdata last_nid; 4415 4416 if (last_start_pfn <= pfn && pfn < last_end_pfn) 4417 return last_nid; 4418 4419 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 4420 if (nid != -1) { 4421 last_start_pfn = start_pfn; 4422 last_end_pfn = end_pfn; 4423 last_nid = nid; 4424 } 4425 4426 return nid; 4427 } 4428 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 4429 4430 int __meminit early_pfn_to_nid(unsigned long pfn) 4431 { 4432 int nid; 4433 4434 nid = __early_pfn_to_nid(pfn); 4435 if (nid >= 0) 4436 return nid; 4437 /* just returns 0 */ 4438 return 0; 4439 } 4440 4441 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 4442 bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 4443 { 4444 int nid; 4445 4446 nid = __early_pfn_to_nid(pfn); 4447 if (nid >= 0 && nid != node) 4448 return false; 4449 return true; 4450 } 4451 #endif 4452 4453 /** 4454 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range 4455 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 4456 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid 4457 * 4458 * If an architecture guarantees that all ranges registered contain no holes 4459 * and may be freed, this this function may be used instead of calling 4460 * memblock_free_early_nid() manually. 4461 */ 4462 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 4463 { 4464 unsigned long start_pfn, end_pfn; 4465 int i, this_nid; 4466 4467 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 4468 start_pfn = min(start_pfn, max_low_pfn); 4469 end_pfn = min(end_pfn, max_low_pfn); 4470 4471 if (start_pfn < end_pfn) 4472 memblock_free_early_nid(PFN_PHYS(start_pfn), 4473 (end_pfn - start_pfn) << PAGE_SHIFT, 4474 this_nid); 4475 } 4476 } 4477 4478 /** 4479 * sparse_memory_present_with_active_regions - Call memory_present for each active range 4480 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 4481 * 4482 * If an architecture guarantees that all ranges registered contain no holes and may 4483 * be freed, this function may be used instead of calling memory_present() manually. 4484 */ 4485 void __init sparse_memory_present_with_active_regions(int nid) 4486 { 4487 unsigned long start_pfn, end_pfn; 4488 int i, this_nid; 4489 4490 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 4491 memory_present(this_nid, start_pfn, end_pfn); 4492 } 4493 4494 /** 4495 * get_pfn_range_for_nid - Return the start and end page frames for a node 4496 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 4497 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 4498 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 4499 * 4500 * It returns the start and end page frame of a node based on information 4501 * provided by memblock_set_node(). If called for a node 4502 * with no available memory, a warning is printed and the start and end 4503 * PFNs will be 0. 4504 */ 4505 void __meminit get_pfn_range_for_nid(unsigned int nid, 4506 unsigned long *start_pfn, unsigned long *end_pfn) 4507 { 4508 unsigned long this_start_pfn, this_end_pfn; 4509 int i; 4510 4511 *start_pfn = -1UL; 4512 *end_pfn = 0; 4513 4514 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 4515 *start_pfn = min(*start_pfn, this_start_pfn); 4516 *end_pfn = max(*end_pfn, this_end_pfn); 4517 } 4518 4519 if (*start_pfn == -1UL) 4520 *start_pfn = 0; 4521 } 4522 4523 /* 4524 * This finds a zone that can be used for ZONE_MOVABLE pages. The 4525 * assumption is made that zones within a node are ordered in monotonic 4526 * increasing memory addresses so that the "highest" populated zone is used 4527 */ 4528 static void __init find_usable_zone_for_movable(void) 4529 { 4530 int zone_index; 4531 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 4532 if (zone_index == ZONE_MOVABLE) 4533 continue; 4534 4535 if (arch_zone_highest_possible_pfn[zone_index] > 4536 arch_zone_lowest_possible_pfn[zone_index]) 4537 break; 4538 } 4539 4540 VM_BUG_ON(zone_index == -1); 4541 movable_zone = zone_index; 4542 } 4543 4544 /* 4545 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 4546 * because it is sized independent of architecture. Unlike the other zones, 4547 * the starting point for ZONE_MOVABLE is not fixed. It may be different 4548 * in each node depending on the size of each node and how evenly kernelcore 4549 * is distributed. This helper function adjusts the zone ranges 4550 * provided by the architecture for a given node by using the end of the 4551 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 4552 * zones within a node are in order of monotonic increases memory addresses 4553 */ 4554 static void __meminit adjust_zone_range_for_zone_movable(int nid, 4555 unsigned long zone_type, 4556 unsigned long node_start_pfn, 4557 unsigned long node_end_pfn, 4558 unsigned long *zone_start_pfn, 4559 unsigned long *zone_end_pfn) 4560 { 4561 /* Only adjust if ZONE_MOVABLE is on this node */ 4562 if (zone_movable_pfn[nid]) { 4563 /* Size ZONE_MOVABLE */ 4564 if (zone_type == ZONE_MOVABLE) { 4565 *zone_start_pfn = zone_movable_pfn[nid]; 4566 *zone_end_pfn = min(node_end_pfn, 4567 arch_zone_highest_possible_pfn[movable_zone]); 4568 4569 /* Adjust for ZONE_MOVABLE starting within this range */ 4570 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 4571 *zone_end_pfn > zone_movable_pfn[nid]) { 4572 *zone_end_pfn = zone_movable_pfn[nid]; 4573 4574 /* Check if this whole range is within ZONE_MOVABLE */ 4575 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 4576 *zone_start_pfn = *zone_end_pfn; 4577 } 4578 } 4579 4580 /* 4581 * Return the number of pages a zone spans in a node, including holes 4582 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 4583 */ 4584 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 4585 unsigned long zone_type, 4586 unsigned long node_start_pfn, 4587 unsigned long node_end_pfn, 4588 unsigned long *ignored) 4589 { 4590 unsigned long zone_start_pfn, zone_end_pfn; 4591 4592 /* Get the start and end of the zone */ 4593 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 4594 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 4595 adjust_zone_range_for_zone_movable(nid, zone_type, 4596 node_start_pfn, node_end_pfn, 4597 &zone_start_pfn, &zone_end_pfn); 4598 4599 /* Check that this node has pages within the zone's required range */ 4600 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 4601 return 0; 4602 4603 /* Move the zone boundaries inside the node if necessary */ 4604 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 4605 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 4606 4607 /* Return the spanned pages */ 4608 return zone_end_pfn - zone_start_pfn; 4609 } 4610 4611 /* 4612 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 4613 * then all holes in the requested range will be accounted for. 4614 */ 4615 unsigned long __meminit __absent_pages_in_range(int nid, 4616 unsigned long range_start_pfn, 4617 unsigned long range_end_pfn) 4618 { 4619 unsigned long nr_absent = range_end_pfn - range_start_pfn; 4620 unsigned long start_pfn, end_pfn; 4621 int i; 4622 4623 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 4624 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 4625 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 4626 nr_absent -= end_pfn - start_pfn; 4627 } 4628 return nr_absent; 4629 } 4630 4631 /** 4632 * absent_pages_in_range - Return number of page frames in holes within a range 4633 * @start_pfn: The start PFN to start searching for holes 4634 * @end_pfn: The end PFN to stop searching for holes 4635 * 4636 * It returns the number of pages frames in memory holes within a range. 4637 */ 4638 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 4639 unsigned long end_pfn) 4640 { 4641 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 4642 } 4643 4644 /* Return the number of page frames in holes in a zone on a node */ 4645 static unsigned long __meminit zone_absent_pages_in_node(int nid, 4646 unsigned long zone_type, 4647 unsigned long node_start_pfn, 4648 unsigned long node_end_pfn, 4649 unsigned long *ignored) 4650 { 4651 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 4652 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 4653 unsigned long zone_start_pfn, zone_end_pfn; 4654 4655 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 4656 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 4657 4658 adjust_zone_range_for_zone_movable(nid, zone_type, 4659 node_start_pfn, node_end_pfn, 4660 &zone_start_pfn, &zone_end_pfn); 4661 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 4662 } 4663 4664 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4665 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 4666 unsigned long zone_type, 4667 unsigned long node_start_pfn, 4668 unsigned long node_end_pfn, 4669 unsigned long *zones_size) 4670 { 4671 return zones_size[zone_type]; 4672 } 4673 4674 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 4675 unsigned long zone_type, 4676 unsigned long node_start_pfn, 4677 unsigned long node_end_pfn, 4678 unsigned long *zholes_size) 4679 { 4680 if (!zholes_size) 4681 return 0; 4682 4683 return zholes_size[zone_type]; 4684 } 4685 4686 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4687 4688 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 4689 unsigned long node_start_pfn, 4690 unsigned long node_end_pfn, 4691 unsigned long *zones_size, 4692 unsigned long *zholes_size) 4693 { 4694 unsigned long realtotalpages, totalpages = 0; 4695 enum zone_type i; 4696 4697 for (i = 0; i < MAX_NR_ZONES; i++) 4698 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 4699 node_start_pfn, 4700 node_end_pfn, 4701 zones_size); 4702 pgdat->node_spanned_pages = totalpages; 4703 4704 realtotalpages = totalpages; 4705 for (i = 0; i < MAX_NR_ZONES; i++) 4706 realtotalpages -= 4707 zone_absent_pages_in_node(pgdat->node_id, i, 4708 node_start_pfn, node_end_pfn, 4709 zholes_size); 4710 pgdat->node_present_pages = realtotalpages; 4711 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 4712 realtotalpages); 4713 } 4714 4715 #ifndef CONFIG_SPARSEMEM 4716 /* 4717 * Calculate the size of the zone->blockflags rounded to an unsigned long 4718 * Start by making sure zonesize is a multiple of pageblock_order by rounding 4719 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 4720 * round what is now in bits to nearest long in bits, then return it in 4721 * bytes. 4722 */ 4723 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 4724 { 4725 unsigned long usemapsize; 4726 4727 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 4728 usemapsize = roundup(zonesize, pageblock_nr_pages); 4729 usemapsize = usemapsize >> pageblock_order; 4730 usemapsize *= NR_PAGEBLOCK_BITS; 4731 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 4732 4733 return usemapsize / 8; 4734 } 4735 4736 static void __init setup_usemap(struct pglist_data *pgdat, 4737 struct zone *zone, 4738 unsigned long zone_start_pfn, 4739 unsigned long zonesize) 4740 { 4741 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 4742 zone->pageblock_flags = NULL; 4743 if (usemapsize) 4744 zone->pageblock_flags = 4745 memblock_virt_alloc_node_nopanic(usemapsize, 4746 pgdat->node_id); 4747 } 4748 #else 4749 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 4750 unsigned long zone_start_pfn, unsigned long zonesize) {} 4751 #endif /* CONFIG_SPARSEMEM */ 4752 4753 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 4754 4755 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 4756 void __paginginit set_pageblock_order(void) 4757 { 4758 unsigned int order; 4759 4760 /* Check that pageblock_nr_pages has not already been setup */ 4761 if (pageblock_order) 4762 return; 4763 4764 if (HPAGE_SHIFT > PAGE_SHIFT) 4765 order = HUGETLB_PAGE_ORDER; 4766 else 4767 order = MAX_ORDER - 1; 4768 4769 /* 4770 * Assume the largest contiguous order of interest is a huge page. 4771 * This value may be variable depending on boot parameters on IA64 and 4772 * powerpc. 4773 */ 4774 pageblock_order = order; 4775 } 4776 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4777 4778 /* 4779 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 4780 * is unused as pageblock_order is set at compile-time. See 4781 * include/linux/pageblock-flags.h for the values of pageblock_order based on 4782 * the kernel config 4783 */ 4784 void __paginginit set_pageblock_order(void) 4785 { 4786 } 4787 4788 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4789 4790 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages, 4791 unsigned long present_pages) 4792 { 4793 unsigned long pages = spanned_pages; 4794 4795 /* 4796 * Provide a more accurate estimation if there are holes within 4797 * the zone and SPARSEMEM is in use. If there are holes within the 4798 * zone, each populated memory region may cost us one or two extra 4799 * memmap pages due to alignment because memmap pages for each 4800 * populated regions may not naturally algined on page boundary. 4801 * So the (present_pages >> 4) heuristic is a tradeoff for that. 4802 */ 4803 if (spanned_pages > present_pages + (present_pages >> 4) && 4804 IS_ENABLED(CONFIG_SPARSEMEM)) 4805 pages = present_pages; 4806 4807 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 4808 } 4809 4810 /* 4811 * Set up the zone data structures: 4812 * - mark all pages reserved 4813 * - mark all memory queues empty 4814 * - clear the memory bitmaps 4815 * 4816 * NOTE: pgdat should get zeroed by caller. 4817 */ 4818 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 4819 unsigned long node_start_pfn, unsigned long node_end_pfn, 4820 unsigned long *zones_size, unsigned long *zholes_size) 4821 { 4822 enum zone_type j; 4823 int nid = pgdat->node_id; 4824 unsigned long zone_start_pfn = pgdat->node_start_pfn; 4825 int ret; 4826 4827 pgdat_resize_init(pgdat); 4828 #ifdef CONFIG_NUMA_BALANCING 4829 spin_lock_init(&pgdat->numabalancing_migrate_lock); 4830 pgdat->numabalancing_migrate_nr_pages = 0; 4831 pgdat->numabalancing_migrate_next_window = jiffies; 4832 #endif 4833 init_waitqueue_head(&pgdat->kswapd_wait); 4834 init_waitqueue_head(&pgdat->pfmemalloc_wait); 4835 pgdat_page_cgroup_init(pgdat); 4836 4837 for (j = 0; j < MAX_NR_ZONES; j++) { 4838 struct zone *zone = pgdat->node_zones + j; 4839 unsigned long size, realsize, freesize, memmap_pages; 4840 4841 size = zone_spanned_pages_in_node(nid, j, node_start_pfn, 4842 node_end_pfn, zones_size); 4843 realsize = freesize = size - zone_absent_pages_in_node(nid, j, 4844 node_start_pfn, 4845 node_end_pfn, 4846 zholes_size); 4847 4848 /* 4849 * Adjust freesize so that it accounts for how much memory 4850 * is used by this zone for memmap. This affects the watermark 4851 * and per-cpu initialisations 4852 */ 4853 memmap_pages = calc_memmap_size(size, realsize); 4854 if (freesize >= memmap_pages) { 4855 freesize -= memmap_pages; 4856 if (memmap_pages) 4857 printk(KERN_DEBUG 4858 " %s zone: %lu pages used for memmap\n", 4859 zone_names[j], memmap_pages); 4860 } else 4861 printk(KERN_WARNING 4862 " %s zone: %lu pages exceeds freesize %lu\n", 4863 zone_names[j], memmap_pages, freesize); 4864 4865 /* Account for reserved pages */ 4866 if (j == 0 && freesize > dma_reserve) { 4867 freesize -= dma_reserve; 4868 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 4869 zone_names[0], dma_reserve); 4870 } 4871 4872 if (!is_highmem_idx(j)) 4873 nr_kernel_pages += freesize; 4874 /* Charge for highmem memmap if there are enough kernel pages */ 4875 else if (nr_kernel_pages > memmap_pages * 2) 4876 nr_kernel_pages -= memmap_pages; 4877 nr_all_pages += freesize; 4878 4879 zone->spanned_pages = size; 4880 zone->present_pages = realsize; 4881 /* 4882 * Set an approximate value for lowmem here, it will be adjusted 4883 * when the bootmem allocator frees pages into the buddy system. 4884 * And all highmem pages will be managed by the buddy system. 4885 */ 4886 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize; 4887 #ifdef CONFIG_NUMA 4888 zone->node = nid; 4889 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio) 4890 / 100; 4891 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100; 4892 #endif 4893 zone->name = zone_names[j]; 4894 spin_lock_init(&zone->lock); 4895 spin_lock_init(&zone->lru_lock); 4896 zone_seqlock_init(zone); 4897 zone->zone_pgdat = pgdat; 4898 zone_pcp_init(zone); 4899 4900 /* For bootup, initialized properly in watermark setup */ 4901 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages); 4902 4903 lruvec_init(&zone->lruvec); 4904 if (!size) 4905 continue; 4906 4907 set_pageblock_order(); 4908 setup_usemap(pgdat, zone, zone_start_pfn, size); 4909 ret = init_currently_empty_zone(zone, zone_start_pfn, 4910 size, MEMMAP_EARLY); 4911 BUG_ON(ret); 4912 memmap_init(size, nid, j, zone_start_pfn); 4913 zone_start_pfn += size; 4914 } 4915 } 4916 4917 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 4918 { 4919 /* Skip empty nodes */ 4920 if (!pgdat->node_spanned_pages) 4921 return; 4922 4923 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4924 /* ia64 gets its own node_mem_map, before this, without bootmem */ 4925 if (!pgdat->node_mem_map) { 4926 unsigned long size, start, end; 4927 struct page *map; 4928 4929 /* 4930 * The zone's endpoints aren't required to be MAX_ORDER 4931 * aligned but the node_mem_map endpoints must be in order 4932 * for the buddy allocator to function correctly. 4933 */ 4934 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 4935 end = pgdat_end_pfn(pgdat); 4936 end = ALIGN(end, MAX_ORDER_NR_PAGES); 4937 size = (end - start) * sizeof(struct page); 4938 map = alloc_remap(pgdat->node_id, size); 4939 if (!map) 4940 map = memblock_virt_alloc_node_nopanic(size, 4941 pgdat->node_id); 4942 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 4943 } 4944 #ifndef CONFIG_NEED_MULTIPLE_NODES 4945 /* 4946 * With no DISCONTIG, the global mem_map is just set as node 0's 4947 */ 4948 if (pgdat == NODE_DATA(0)) { 4949 mem_map = NODE_DATA(0)->node_mem_map; 4950 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4951 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 4952 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 4953 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4954 } 4955 #endif 4956 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 4957 } 4958 4959 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 4960 unsigned long node_start_pfn, unsigned long *zholes_size) 4961 { 4962 pg_data_t *pgdat = NODE_DATA(nid); 4963 unsigned long start_pfn = 0; 4964 unsigned long end_pfn = 0; 4965 4966 /* pg_data_t should be reset to zero when it's allocated */ 4967 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx); 4968 4969 pgdat->node_id = nid; 4970 pgdat->node_start_pfn = node_start_pfn; 4971 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4972 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 4973 printk(KERN_INFO "Initmem setup node %d [mem %#010Lx-%#010Lx]\n", nid, 4974 (u64) start_pfn << PAGE_SHIFT, (u64) (end_pfn << PAGE_SHIFT) - 1); 4975 #endif 4976 calculate_node_totalpages(pgdat, start_pfn, end_pfn, 4977 zones_size, zholes_size); 4978 4979 alloc_node_mem_map(pgdat); 4980 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4981 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 4982 nid, (unsigned long)pgdat, 4983 (unsigned long)pgdat->node_mem_map); 4984 #endif 4985 4986 free_area_init_core(pgdat, start_pfn, end_pfn, 4987 zones_size, zholes_size); 4988 } 4989 4990 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4991 4992 #if MAX_NUMNODES > 1 4993 /* 4994 * Figure out the number of possible node ids. 4995 */ 4996 void __init setup_nr_node_ids(void) 4997 { 4998 unsigned int node; 4999 unsigned int highest = 0; 5000 5001 for_each_node_mask(node, node_possible_map) 5002 highest = node; 5003 nr_node_ids = highest + 1; 5004 } 5005 #endif 5006 5007 /** 5008 * node_map_pfn_alignment - determine the maximum internode alignment 5009 * 5010 * This function should be called after node map is populated and sorted. 5011 * It calculates the maximum power of two alignment which can distinguish 5012 * all the nodes. 5013 * 5014 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 5015 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 5016 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 5017 * shifted, 1GiB is enough and this function will indicate so. 5018 * 5019 * This is used to test whether pfn -> nid mapping of the chosen memory 5020 * model has fine enough granularity to avoid incorrect mapping for the 5021 * populated node map. 5022 * 5023 * Returns the determined alignment in pfn's. 0 if there is no alignment 5024 * requirement (single node). 5025 */ 5026 unsigned long __init node_map_pfn_alignment(void) 5027 { 5028 unsigned long accl_mask = 0, last_end = 0; 5029 unsigned long start, end, mask; 5030 int last_nid = -1; 5031 int i, nid; 5032 5033 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 5034 if (!start || last_nid < 0 || last_nid == nid) { 5035 last_nid = nid; 5036 last_end = end; 5037 continue; 5038 } 5039 5040 /* 5041 * Start with a mask granular enough to pin-point to the 5042 * start pfn and tick off bits one-by-one until it becomes 5043 * too coarse to separate the current node from the last. 5044 */ 5045 mask = ~((1 << __ffs(start)) - 1); 5046 while (mask && last_end <= (start & (mask << 1))) 5047 mask <<= 1; 5048 5049 /* accumulate all internode masks */ 5050 accl_mask |= mask; 5051 } 5052 5053 /* convert mask to number of pages */ 5054 return ~accl_mask + 1; 5055 } 5056 5057 /* Find the lowest pfn for a node */ 5058 static unsigned long __init find_min_pfn_for_node(int nid) 5059 { 5060 unsigned long min_pfn = ULONG_MAX; 5061 unsigned long start_pfn; 5062 int i; 5063 5064 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 5065 min_pfn = min(min_pfn, start_pfn); 5066 5067 if (min_pfn == ULONG_MAX) { 5068 printk(KERN_WARNING 5069 "Could not find start_pfn for node %d\n", nid); 5070 return 0; 5071 } 5072 5073 return min_pfn; 5074 } 5075 5076 /** 5077 * find_min_pfn_with_active_regions - Find the minimum PFN registered 5078 * 5079 * It returns the minimum PFN based on information provided via 5080 * memblock_set_node(). 5081 */ 5082 unsigned long __init find_min_pfn_with_active_regions(void) 5083 { 5084 return find_min_pfn_for_node(MAX_NUMNODES); 5085 } 5086 5087 /* 5088 * early_calculate_totalpages() 5089 * Sum pages in active regions for movable zone. 5090 * Populate N_MEMORY for calculating usable_nodes. 5091 */ 5092 static unsigned long __init early_calculate_totalpages(void) 5093 { 5094 unsigned long totalpages = 0; 5095 unsigned long start_pfn, end_pfn; 5096 int i, nid; 5097 5098 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 5099 unsigned long pages = end_pfn - start_pfn; 5100 5101 totalpages += pages; 5102 if (pages) 5103 node_set_state(nid, N_MEMORY); 5104 } 5105 return totalpages; 5106 } 5107 5108 /* 5109 * Find the PFN the Movable zone begins in each node. Kernel memory 5110 * is spread evenly between nodes as long as the nodes have enough 5111 * memory. When they don't, some nodes will have more kernelcore than 5112 * others 5113 */ 5114 static void __init find_zone_movable_pfns_for_nodes(void) 5115 { 5116 int i, nid; 5117 unsigned long usable_startpfn; 5118 unsigned long kernelcore_node, kernelcore_remaining; 5119 /* save the state before borrow the nodemask */ 5120 nodemask_t saved_node_state = node_states[N_MEMORY]; 5121 unsigned long totalpages = early_calculate_totalpages(); 5122 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 5123 struct memblock_region *r; 5124 5125 /* Need to find movable_zone earlier when movable_node is specified. */ 5126 find_usable_zone_for_movable(); 5127 5128 /* 5129 * If movable_node is specified, ignore kernelcore and movablecore 5130 * options. 5131 */ 5132 if (movable_node_is_enabled()) { 5133 for_each_memblock(memory, r) { 5134 if (!memblock_is_hotpluggable(r)) 5135 continue; 5136 5137 nid = r->nid; 5138 5139 usable_startpfn = PFN_DOWN(r->base); 5140 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 5141 min(usable_startpfn, zone_movable_pfn[nid]) : 5142 usable_startpfn; 5143 } 5144 5145 goto out2; 5146 } 5147 5148 /* 5149 * If movablecore=nn[KMG] was specified, calculate what size of 5150 * kernelcore that corresponds so that memory usable for 5151 * any allocation type is evenly spread. If both kernelcore 5152 * and movablecore are specified, then the value of kernelcore 5153 * will be used for required_kernelcore if it's greater than 5154 * what movablecore would have allowed. 5155 */ 5156 if (required_movablecore) { 5157 unsigned long corepages; 5158 5159 /* 5160 * Round-up so that ZONE_MOVABLE is at least as large as what 5161 * was requested by the user 5162 */ 5163 required_movablecore = 5164 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 5165 corepages = totalpages - required_movablecore; 5166 5167 required_kernelcore = max(required_kernelcore, corepages); 5168 } 5169 5170 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 5171 if (!required_kernelcore) 5172 goto out; 5173 5174 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 5175 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 5176 5177 restart: 5178 /* Spread kernelcore memory as evenly as possible throughout nodes */ 5179 kernelcore_node = required_kernelcore / usable_nodes; 5180 for_each_node_state(nid, N_MEMORY) { 5181 unsigned long start_pfn, end_pfn; 5182 5183 /* 5184 * Recalculate kernelcore_node if the division per node 5185 * now exceeds what is necessary to satisfy the requested 5186 * amount of memory for the kernel 5187 */ 5188 if (required_kernelcore < kernelcore_node) 5189 kernelcore_node = required_kernelcore / usable_nodes; 5190 5191 /* 5192 * As the map is walked, we track how much memory is usable 5193 * by the kernel using kernelcore_remaining. When it is 5194 * 0, the rest of the node is usable by ZONE_MOVABLE 5195 */ 5196 kernelcore_remaining = kernelcore_node; 5197 5198 /* Go through each range of PFNs within this node */ 5199 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 5200 unsigned long size_pages; 5201 5202 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 5203 if (start_pfn >= end_pfn) 5204 continue; 5205 5206 /* Account for what is only usable for kernelcore */ 5207 if (start_pfn < usable_startpfn) { 5208 unsigned long kernel_pages; 5209 kernel_pages = min(end_pfn, usable_startpfn) 5210 - start_pfn; 5211 5212 kernelcore_remaining -= min(kernel_pages, 5213 kernelcore_remaining); 5214 required_kernelcore -= min(kernel_pages, 5215 required_kernelcore); 5216 5217 /* Continue if range is now fully accounted */ 5218 if (end_pfn <= usable_startpfn) { 5219 5220 /* 5221 * Push zone_movable_pfn to the end so 5222 * that if we have to rebalance 5223 * kernelcore across nodes, we will 5224 * not double account here 5225 */ 5226 zone_movable_pfn[nid] = end_pfn; 5227 continue; 5228 } 5229 start_pfn = usable_startpfn; 5230 } 5231 5232 /* 5233 * The usable PFN range for ZONE_MOVABLE is from 5234 * start_pfn->end_pfn. Calculate size_pages as the 5235 * number of pages used as kernelcore 5236 */ 5237 size_pages = end_pfn - start_pfn; 5238 if (size_pages > kernelcore_remaining) 5239 size_pages = kernelcore_remaining; 5240 zone_movable_pfn[nid] = start_pfn + size_pages; 5241 5242 /* 5243 * Some kernelcore has been met, update counts and 5244 * break if the kernelcore for this node has been 5245 * satisfied 5246 */ 5247 required_kernelcore -= min(required_kernelcore, 5248 size_pages); 5249 kernelcore_remaining -= size_pages; 5250 if (!kernelcore_remaining) 5251 break; 5252 } 5253 } 5254 5255 /* 5256 * If there is still required_kernelcore, we do another pass with one 5257 * less node in the count. This will push zone_movable_pfn[nid] further 5258 * along on the nodes that still have memory until kernelcore is 5259 * satisfied 5260 */ 5261 usable_nodes--; 5262 if (usable_nodes && required_kernelcore > usable_nodes) 5263 goto restart; 5264 5265 out2: 5266 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 5267 for (nid = 0; nid < MAX_NUMNODES; nid++) 5268 zone_movable_pfn[nid] = 5269 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 5270 5271 out: 5272 /* restore the node_state */ 5273 node_states[N_MEMORY] = saved_node_state; 5274 } 5275 5276 /* Any regular or high memory on that node ? */ 5277 static void check_for_memory(pg_data_t *pgdat, int nid) 5278 { 5279 enum zone_type zone_type; 5280 5281 if (N_MEMORY == N_NORMAL_MEMORY) 5282 return; 5283 5284 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 5285 struct zone *zone = &pgdat->node_zones[zone_type]; 5286 if (populated_zone(zone)) { 5287 node_set_state(nid, N_HIGH_MEMORY); 5288 if (N_NORMAL_MEMORY != N_HIGH_MEMORY && 5289 zone_type <= ZONE_NORMAL) 5290 node_set_state(nid, N_NORMAL_MEMORY); 5291 break; 5292 } 5293 } 5294 } 5295 5296 /** 5297 * free_area_init_nodes - Initialise all pg_data_t and zone data 5298 * @max_zone_pfn: an array of max PFNs for each zone 5299 * 5300 * This will call free_area_init_node() for each active node in the system. 5301 * Using the page ranges provided by memblock_set_node(), the size of each 5302 * zone in each node and their holes is calculated. If the maximum PFN 5303 * between two adjacent zones match, it is assumed that the zone is empty. 5304 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 5305 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 5306 * starts where the previous one ended. For example, ZONE_DMA32 starts 5307 * at arch_max_dma_pfn. 5308 */ 5309 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 5310 { 5311 unsigned long start_pfn, end_pfn; 5312 int i, nid; 5313 5314 /* Record where the zone boundaries are */ 5315 memset(arch_zone_lowest_possible_pfn, 0, 5316 sizeof(arch_zone_lowest_possible_pfn)); 5317 memset(arch_zone_highest_possible_pfn, 0, 5318 sizeof(arch_zone_highest_possible_pfn)); 5319 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 5320 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 5321 for (i = 1; i < MAX_NR_ZONES; i++) { 5322 if (i == ZONE_MOVABLE) 5323 continue; 5324 arch_zone_lowest_possible_pfn[i] = 5325 arch_zone_highest_possible_pfn[i-1]; 5326 arch_zone_highest_possible_pfn[i] = 5327 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 5328 } 5329 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 5330 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 5331 5332 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 5333 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 5334 find_zone_movable_pfns_for_nodes(); 5335 5336 /* Print out the zone ranges */ 5337 printk("Zone ranges:\n"); 5338 for (i = 0; i < MAX_NR_ZONES; i++) { 5339 if (i == ZONE_MOVABLE) 5340 continue; 5341 printk(KERN_CONT " %-8s ", zone_names[i]); 5342 if (arch_zone_lowest_possible_pfn[i] == 5343 arch_zone_highest_possible_pfn[i]) 5344 printk(KERN_CONT "empty\n"); 5345 else 5346 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n", 5347 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT, 5348 (arch_zone_highest_possible_pfn[i] 5349 << PAGE_SHIFT) - 1); 5350 } 5351 5352 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 5353 printk("Movable zone start for each node\n"); 5354 for (i = 0; i < MAX_NUMNODES; i++) { 5355 if (zone_movable_pfn[i]) 5356 printk(" Node %d: %#010lx\n", i, 5357 zone_movable_pfn[i] << PAGE_SHIFT); 5358 } 5359 5360 /* Print out the early node map */ 5361 printk("Early memory node ranges\n"); 5362 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 5363 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid, 5364 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1); 5365 5366 /* Initialise every node */ 5367 mminit_verify_pageflags_layout(); 5368 setup_nr_node_ids(); 5369 for_each_online_node(nid) { 5370 pg_data_t *pgdat = NODE_DATA(nid); 5371 free_area_init_node(nid, NULL, 5372 find_min_pfn_for_node(nid), NULL); 5373 5374 /* Any memory on that node */ 5375 if (pgdat->node_present_pages) 5376 node_set_state(nid, N_MEMORY); 5377 check_for_memory(pgdat, nid); 5378 } 5379 } 5380 5381 static int __init cmdline_parse_core(char *p, unsigned long *core) 5382 { 5383 unsigned long long coremem; 5384 if (!p) 5385 return -EINVAL; 5386 5387 coremem = memparse(p, &p); 5388 *core = coremem >> PAGE_SHIFT; 5389 5390 /* Paranoid check that UL is enough for the coremem value */ 5391 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 5392 5393 return 0; 5394 } 5395 5396 /* 5397 * kernelcore=size sets the amount of memory for use for allocations that 5398 * cannot be reclaimed or migrated. 5399 */ 5400 static int __init cmdline_parse_kernelcore(char *p) 5401 { 5402 return cmdline_parse_core(p, &required_kernelcore); 5403 } 5404 5405 /* 5406 * movablecore=size sets the amount of memory for use for allocations that 5407 * can be reclaimed or migrated. 5408 */ 5409 static int __init cmdline_parse_movablecore(char *p) 5410 { 5411 return cmdline_parse_core(p, &required_movablecore); 5412 } 5413 5414 early_param("kernelcore", cmdline_parse_kernelcore); 5415 early_param("movablecore", cmdline_parse_movablecore); 5416 5417 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5418 5419 void adjust_managed_page_count(struct page *page, long count) 5420 { 5421 spin_lock(&managed_page_count_lock); 5422 page_zone(page)->managed_pages += count; 5423 totalram_pages += count; 5424 #ifdef CONFIG_HIGHMEM 5425 if (PageHighMem(page)) 5426 totalhigh_pages += count; 5427 #endif 5428 spin_unlock(&managed_page_count_lock); 5429 } 5430 EXPORT_SYMBOL(adjust_managed_page_count); 5431 5432 unsigned long free_reserved_area(void *start, void *end, int poison, char *s) 5433 { 5434 void *pos; 5435 unsigned long pages = 0; 5436 5437 start = (void *)PAGE_ALIGN((unsigned long)start); 5438 end = (void *)((unsigned long)end & PAGE_MASK); 5439 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 5440 if ((unsigned int)poison <= 0xFF) 5441 memset(pos, poison, PAGE_SIZE); 5442 free_reserved_page(virt_to_page(pos)); 5443 } 5444 5445 if (pages && s) 5446 pr_info("Freeing %s memory: %ldK (%p - %p)\n", 5447 s, pages << (PAGE_SHIFT - 10), start, end); 5448 5449 return pages; 5450 } 5451 EXPORT_SYMBOL(free_reserved_area); 5452 5453 #ifdef CONFIG_HIGHMEM 5454 void free_highmem_page(struct page *page) 5455 { 5456 __free_reserved_page(page); 5457 totalram_pages++; 5458 page_zone(page)->managed_pages++; 5459 totalhigh_pages++; 5460 } 5461 #endif 5462 5463 5464 void __init mem_init_print_info(const char *str) 5465 { 5466 unsigned long physpages, codesize, datasize, rosize, bss_size; 5467 unsigned long init_code_size, init_data_size; 5468 5469 physpages = get_num_physpages(); 5470 codesize = _etext - _stext; 5471 datasize = _edata - _sdata; 5472 rosize = __end_rodata - __start_rodata; 5473 bss_size = __bss_stop - __bss_start; 5474 init_data_size = __init_end - __init_begin; 5475 init_code_size = _einittext - _sinittext; 5476 5477 /* 5478 * Detect special cases and adjust section sizes accordingly: 5479 * 1) .init.* may be embedded into .data sections 5480 * 2) .init.text.* may be out of [__init_begin, __init_end], 5481 * please refer to arch/tile/kernel/vmlinux.lds.S. 5482 * 3) .rodata.* may be embedded into .text or .data sections. 5483 */ 5484 #define adj_init_size(start, end, size, pos, adj) \ 5485 do { \ 5486 if (start <= pos && pos < end && size > adj) \ 5487 size -= adj; \ 5488 } while (0) 5489 5490 adj_init_size(__init_begin, __init_end, init_data_size, 5491 _sinittext, init_code_size); 5492 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 5493 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 5494 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 5495 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 5496 5497 #undef adj_init_size 5498 5499 printk("Memory: %luK/%luK available " 5500 "(%luK kernel code, %luK rwdata, %luK rodata, " 5501 "%luK init, %luK bss, %luK reserved" 5502 #ifdef CONFIG_HIGHMEM 5503 ", %luK highmem" 5504 #endif 5505 "%s%s)\n", 5506 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10), 5507 codesize >> 10, datasize >> 10, rosize >> 10, 5508 (init_data_size + init_code_size) >> 10, bss_size >> 10, 5509 (physpages - totalram_pages) << (PAGE_SHIFT-10), 5510 #ifdef CONFIG_HIGHMEM 5511 totalhigh_pages << (PAGE_SHIFT-10), 5512 #endif 5513 str ? ", " : "", str ? str : ""); 5514 } 5515 5516 /** 5517 * set_dma_reserve - set the specified number of pages reserved in the first zone 5518 * @new_dma_reserve: The number of pages to mark reserved 5519 * 5520 * The per-cpu batchsize and zone watermarks are determined by present_pages. 5521 * In the DMA zone, a significant percentage may be consumed by kernel image 5522 * and other unfreeable allocations which can skew the watermarks badly. This 5523 * function may optionally be used to account for unfreeable pages in the 5524 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 5525 * smaller per-cpu batchsize. 5526 */ 5527 void __init set_dma_reserve(unsigned long new_dma_reserve) 5528 { 5529 dma_reserve = new_dma_reserve; 5530 } 5531 5532 void __init free_area_init(unsigned long *zones_size) 5533 { 5534 free_area_init_node(0, zones_size, 5535 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 5536 } 5537 5538 static int page_alloc_cpu_notify(struct notifier_block *self, 5539 unsigned long action, void *hcpu) 5540 { 5541 int cpu = (unsigned long)hcpu; 5542 5543 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 5544 lru_add_drain_cpu(cpu); 5545 drain_pages(cpu); 5546 5547 /* 5548 * Spill the event counters of the dead processor 5549 * into the current processors event counters. 5550 * This artificially elevates the count of the current 5551 * processor. 5552 */ 5553 vm_events_fold_cpu(cpu); 5554 5555 /* 5556 * Zero the differential counters of the dead processor 5557 * so that the vm statistics are consistent. 5558 * 5559 * This is only okay since the processor is dead and cannot 5560 * race with what we are doing. 5561 */ 5562 cpu_vm_stats_fold(cpu); 5563 } 5564 return NOTIFY_OK; 5565 } 5566 5567 void __init page_alloc_init(void) 5568 { 5569 hotcpu_notifier(page_alloc_cpu_notify, 0); 5570 } 5571 5572 /* 5573 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 5574 * or min_free_kbytes changes. 5575 */ 5576 static void calculate_totalreserve_pages(void) 5577 { 5578 struct pglist_data *pgdat; 5579 unsigned long reserve_pages = 0; 5580 enum zone_type i, j; 5581 5582 for_each_online_pgdat(pgdat) { 5583 for (i = 0; i < MAX_NR_ZONES; i++) { 5584 struct zone *zone = pgdat->node_zones + i; 5585 long max = 0; 5586 5587 /* Find valid and maximum lowmem_reserve in the zone */ 5588 for (j = i; j < MAX_NR_ZONES; j++) { 5589 if (zone->lowmem_reserve[j] > max) 5590 max = zone->lowmem_reserve[j]; 5591 } 5592 5593 /* we treat the high watermark as reserved pages. */ 5594 max += high_wmark_pages(zone); 5595 5596 if (max > zone->managed_pages) 5597 max = zone->managed_pages; 5598 reserve_pages += max; 5599 /* 5600 * Lowmem reserves are not available to 5601 * GFP_HIGHUSER page cache allocations and 5602 * kswapd tries to balance zones to their high 5603 * watermark. As a result, neither should be 5604 * regarded as dirtyable memory, to prevent a 5605 * situation where reclaim has to clean pages 5606 * in order to balance the zones. 5607 */ 5608 zone->dirty_balance_reserve = max; 5609 } 5610 } 5611 dirty_balance_reserve = reserve_pages; 5612 totalreserve_pages = reserve_pages; 5613 } 5614 5615 /* 5616 * setup_per_zone_lowmem_reserve - called whenever 5617 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 5618 * has a correct pages reserved value, so an adequate number of 5619 * pages are left in the zone after a successful __alloc_pages(). 5620 */ 5621 static void setup_per_zone_lowmem_reserve(void) 5622 { 5623 struct pglist_data *pgdat; 5624 enum zone_type j, idx; 5625 5626 for_each_online_pgdat(pgdat) { 5627 for (j = 0; j < MAX_NR_ZONES; j++) { 5628 struct zone *zone = pgdat->node_zones + j; 5629 unsigned long managed_pages = zone->managed_pages; 5630 5631 zone->lowmem_reserve[j] = 0; 5632 5633 idx = j; 5634 while (idx) { 5635 struct zone *lower_zone; 5636 5637 idx--; 5638 5639 if (sysctl_lowmem_reserve_ratio[idx] < 1) 5640 sysctl_lowmem_reserve_ratio[idx] = 1; 5641 5642 lower_zone = pgdat->node_zones + idx; 5643 lower_zone->lowmem_reserve[j] = managed_pages / 5644 sysctl_lowmem_reserve_ratio[idx]; 5645 managed_pages += lower_zone->managed_pages; 5646 } 5647 } 5648 } 5649 5650 /* update totalreserve_pages */ 5651 calculate_totalreserve_pages(); 5652 } 5653 5654 static void __setup_per_zone_wmarks(void) 5655 { 5656 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 5657 unsigned long lowmem_pages = 0; 5658 struct zone *zone; 5659 unsigned long flags; 5660 5661 /* Calculate total number of !ZONE_HIGHMEM pages */ 5662 for_each_zone(zone) { 5663 if (!is_highmem(zone)) 5664 lowmem_pages += zone->managed_pages; 5665 } 5666 5667 for_each_zone(zone) { 5668 u64 tmp; 5669 5670 spin_lock_irqsave(&zone->lock, flags); 5671 tmp = (u64)pages_min * zone->managed_pages; 5672 do_div(tmp, lowmem_pages); 5673 if (is_highmem(zone)) { 5674 /* 5675 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 5676 * need highmem pages, so cap pages_min to a small 5677 * value here. 5678 * 5679 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 5680 * deltas controls asynch page reclaim, and so should 5681 * not be capped for highmem. 5682 */ 5683 unsigned long min_pages; 5684 5685 min_pages = zone->managed_pages / 1024; 5686 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 5687 zone->watermark[WMARK_MIN] = min_pages; 5688 } else { 5689 /* 5690 * If it's a lowmem zone, reserve a number of pages 5691 * proportionate to the zone's size. 5692 */ 5693 zone->watermark[WMARK_MIN] = tmp; 5694 } 5695 5696 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); 5697 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); 5698 5699 __mod_zone_page_state(zone, NR_ALLOC_BATCH, 5700 high_wmark_pages(zone) - low_wmark_pages(zone) - 5701 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH])); 5702 5703 setup_zone_migrate_reserve(zone); 5704 spin_unlock_irqrestore(&zone->lock, flags); 5705 } 5706 5707 /* update totalreserve_pages */ 5708 calculate_totalreserve_pages(); 5709 } 5710 5711 /** 5712 * setup_per_zone_wmarks - called when min_free_kbytes changes 5713 * or when memory is hot-{added|removed} 5714 * 5715 * Ensures that the watermark[min,low,high] values for each zone are set 5716 * correctly with respect to min_free_kbytes. 5717 */ 5718 void setup_per_zone_wmarks(void) 5719 { 5720 mutex_lock(&zonelists_mutex); 5721 __setup_per_zone_wmarks(); 5722 mutex_unlock(&zonelists_mutex); 5723 } 5724 5725 /* 5726 * The inactive anon list should be small enough that the VM never has to 5727 * do too much work, but large enough that each inactive page has a chance 5728 * to be referenced again before it is swapped out. 5729 * 5730 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 5731 * INACTIVE_ANON pages on this zone's LRU, maintained by the 5732 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 5733 * the anonymous pages are kept on the inactive list. 5734 * 5735 * total target max 5736 * memory ratio inactive anon 5737 * ------------------------------------- 5738 * 10MB 1 5MB 5739 * 100MB 1 50MB 5740 * 1GB 3 250MB 5741 * 10GB 10 0.9GB 5742 * 100GB 31 3GB 5743 * 1TB 101 10GB 5744 * 10TB 320 32GB 5745 */ 5746 static void __meminit calculate_zone_inactive_ratio(struct zone *zone) 5747 { 5748 unsigned int gb, ratio; 5749 5750 /* Zone size in gigabytes */ 5751 gb = zone->managed_pages >> (30 - PAGE_SHIFT); 5752 if (gb) 5753 ratio = int_sqrt(10 * gb); 5754 else 5755 ratio = 1; 5756 5757 zone->inactive_ratio = ratio; 5758 } 5759 5760 static void __meminit setup_per_zone_inactive_ratio(void) 5761 { 5762 struct zone *zone; 5763 5764 for_each_zone(zone) 5765 calculate_zone_inactive_ratio(zone); 5766 } 5767 5768 /* 5769 * Initialise min_free_kbytes. 5770 * 5771 * For small machines we want it small (128k min). For large machines 5772 * we want it large (64MB max). But it is not linear, because network 5773 * bandwidth does not increase linearly with machine size. We use 5774 * 5775 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 5776 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 5777 * 5778 * which yields 5779 * 5780 * 16MB: 512k 5781 * 32MB: 724k 5782 * 64MB: 1024k 5783 * 128MB: 1448k 5784 * 256MB: 2048k 5785 * 512MB: 2896k 5786 * 1024MB: 4096k 5787 * 2048MB: 5792k 5788 * 4096MB: 8192k 5789 * 8192MB: 11584k 5790 * 16384MB: 16384k 5791 */ 5792 int __meminit init_per_zone_wmark_min(void) 5793 { 5794 unsigned long lowmem_kbytes; 5795 int new_min_free_kbytes; 5796 5797 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 5798 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 5799 5800 if (new_min_free_kbytes > user_min_free_kbytes) { 5801 min_free_kbytes = new_min_free_kbytes; 5802 if (min_free_kbytes < 128) 5803 min_free_kbytes = 128; 5804 if (min_free_kbytes > 65536) 5805 min_free_kbytes = 65536; 5806 } else { 5807 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 5808 new_min_free_kbytes, user_min_free_kbytes); 5809 } 5810 setup_per_zone_wmarks(); 5811 refresh_zone_stat_thresholds(); 5812 setup_per_zone_lowmem_reserve(); 5813 setup_per_zone_inactive_ratio(); 5814 return 0; 5815 } 5816 module_init(init_per_zone_wmark_min) 5817 5818 /* 5819 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 5820 * that we can call two helper functions whenever min_free_kbytes 5821 * changes. 5822 */ 5823 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 5824 void __user *buffer, size_t *length, loff_t *ppos) 5825 { 5826 int rc; 5827 5828 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5829 if (rc) 5830 return rc; 5831 5832 if (write) { 5833 user_min_free_kbytes = min_free_kbytes; 5834 setup_per_zone_wmarks(); 5835 } 5836 return 0; 5837 } 5838 5839 #ifdef CONFIG_NUMA 5840 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 5841 void __user *buffer, size_t *length, loff_t *ppos) 5842 { 5843 struct zone *zone; 5844 int rc; 5845 5846 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5847 if (rc) 5848 return rc; 5849 5850 for_each_zone(zone) 5851 zone->min_unmapped_pages = (zone->managed_pages * 5852 sysctl_min_unmapped_ratio) / 100; 5853 return 0; 5854 } 5855 5856 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 5857 void __user *buffer, size_t *length, loff_t *ppos) 5858 { 5859 struct zone *zone; 5860 int rc; 5861 5862 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5863 if (rc) 5864 return rc; 5865 5866 for_each_zone(zone) 5867 zone->min_slab_pages = (zone->managed_pages * 5868 sysctl_min_slab_ratio) / 100; 5869 return 0; 5870 } 5871 #endif 5872 5873 /* 5874 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 5875 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 5876 * whenever sysctl_lowmem_reserve_ratio changes. 5877 * 5878 * The reserve ratio obviously has absolutely no relation with the 5879 * minimum watermarks. The lowmem reserve ratio can only make sense 5880 * if in function of the boot time zone sizes. 5881 */ 5882 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 5883 void __user *buffer, size_t *length, loff_t *ppos) 5884 { 5885 proc_dointvec_minmax(table, write, buffer, length, ppos); 5886 setup_per_zone_lowmem_reserve(); 5887 return 0; 5888 } 5889 5890 /* 5891 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 5892 * cpu. It is the fraction of total pages in each zone that a hot per cpu 5893 * pagelist can have before it gets flushed back to buddy allocator. 5894 */ 5895 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 5896 void __user *buffer, size_t *length, loff_t *ppos) 5897 { 5898 struct zone *zone; 5899 int old_percpu_pagelist_fraction; 5900 int ret; 5901 5902 mutex_lock(&pcp_batch_high_lock); 5903 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 5904 5905 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 5906 if (!write || ret < 0) 5907 goto out; 5908 5909 /* Sanity checking to avoid pcp imbalance */ 5910 if (percpu_pagelist_fraction && 5911 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 5912 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 5913 ret = -EINVAL; 5914 goto out; 5915 } 5916 5917 /* No change? */ 5918 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 5919 goto out; 5920 5921 for_each_populated_zone(zone) { 5922 unsigned int cpu; 5923 5924 for_each_possible_cpu(cpu) 5925 pageset_set_high_and_batch(zone, 5926 per_cpu_ptr(zone->pageset, cpu)); 5927 } 5928 out: 5929 mutex_unlock(&pcp_batch_high_lock); 5930 return ret; 5931 } 5932 5933 int hashdist = HASHDIST_DEFAULT; 5934 5935 #ifdef CONFIG_NUMA 5936 static int __init set_hashdist(char *str) 5937 { 5938 if (!str) 5939 return 0; 5940 hashdist = simple_strtoul(str, &str, 0); 5941 return 1; 5942 } 5943 __setup("hashdist=", set_hashdist); 5944 #endif 5945 5946 /* 5947 * allocate a large system hash table from bootmem 5948 * - it is assumed that the hash table must contain an exact power-of-2 5949 * quantity of entries 5950 * - limit is the number of hash buckets, not the total allocation size 5951 */ 5952 void *__init alloc_large_system_hash(const char *tablename, 5953 unsigned long bucketsize, 5954 unsigned long numentries, 5955 int scale, 5956 int flags, 5957 unsigned int *_hash_shift, 5958 unsigned int *_hash_mask, 5959 unsigned long low_limit, 5960 unsigned long high_limit) 5961 { 5962 unsigned long long max = high_limit; 5963 unsigned long log2qty, size; 5964 void *table = NULL; 5965 5966 /* allow the kernel cmdline to have a say */ 5967 if (!numentries) { 5968 /* round applicable memory size up to nearest megabyte */ 5969 numentries = nr_kernel_pages; 5970 5971 /* It isn't necessary when PAGE_SIZE >= 1MB */ 5972 if (PAGE_SHIFT < 20) 5973 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 5974 5975 /* limit to 1 bucket per 2^scale bytes of low memory */ 5976 if (scale > PAGE_SHIFT) 5977 numentries >>= (scale - PAGE_SHIFT); 5978 else 5979 numentries <<= (PAGE_SHIFT - scale); 5980 5981 /* Make sure we've got at least a 0-order allocation.. */ 5982 if (unlikely(flags & HASH_SMALL)) { 5983 /* Makes no sense without HASH_EARLY */ 5984 WARN_ON(!(flags & HASH_EARLY)); 5985 if (!(numentries >> *_hash_shift)) { 5986 numentries = 1UL << *_hash_shift; 5987 BUG_ON(!numentries); 5988 } 5989 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 5990 numentries = PAGE_SIZE / bucketsize; 5991 } 5992 numentries = roundup_pow_of_two(numentries); 5993 5994 /* limit allocation size to 1/16 total memory by default */ 5995 if (max == 0) { 5996 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 5997 do_div(max, bucketsize); 5998 } 5999 max = min(max, 0x80000000ULL); 6000 6001 if (numentries < low_limit) 6002 numentries = low_limit; 6003 if (numentries > max) 6004 numentries = max; 6005 6006 log2qty = ilog2(numentries); 6007 6008 do { 6009 size = bucketsize << log2qty; 6010 if (flags & HASH_EARLY) 6011 table = memblock_virt_alloc_nopanic(size, 0); 6012 else if (hashdist) 6013 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 6014 else { 6015 /* 6016 * If bucketsize is not a power-of-two, we may free 6017 * some pages at the end of hash table which 6018 * alloc_pages_exact() automatically does 6019 */ 6020 if (get_order(size) < MAX_ORDER) { 6021 table = alloc_pages_exact(size, GFP_ATOMIC); 6022 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 6023 } 6024 } 6025 } while (!table && size > PAGE_SIZE && --log2qty); 6026 6027 if (!table) 6028 panic("Failed to allocate %s hash table\n", tablename); 6029 6030 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n", 6031 tablename, 6032 (1UL << log2qty), 6033 ilog2(size) - PAGE_SHIFT, 6034 size); 6035 6036 if (_hash_shift) 6037 *_hash_shift = log2qty; 6038 if (_hash_mask) 6039 *_hash_mask = (1 << log2qty) - 1; 6040 6041 return table; 6042 } 6043 6044 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 6045 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 6046 unsigned long pfn) 6047 { 6048 #ifdef CONFIG_SPARSEMEM 6049 return __pfn_to_section(pfn)->pageblock_flags; 6050 #else 6051 return zone->pageblock_flags; 6052 #endif /* CONFIG_SPARSEMEM */ 6053 } 6054 6055 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 6056 { 6057 #ifdef CONFIG_SPARSEMEM 6058 pfn &= (PAGES_PER_SECTION-1); 6059 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 6060 #else 6061 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages); 6062 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 6063 #endif /* CONFIG_SPARSEMEM */ 6064 } 6065 6066 /** 6067 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 6068 * @page: The page within the block of interest 6069 * @pfn: The target page frame number 6070 * @end_bitidx: The last bit of interest to retrieve 6071 * @mask: mask of bits that the caller is interested in 6072 * 6073 * Return: pageblock_bits flags 6074 */ 6075 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 6076 unsigned long end_bitidx, 6077 unsigned long mask) 6078 { 6079 struct zone *zone; 6080 unsigned long *bitmap; 6081 unsigned long bitidx, word_bitidx; 6082 unsigned long word; 6083 6084 zone = page_zone(page); 6085 bitmap = get_pageblock_bitmap(zone, pfn); 6086 bitidx = pfn_to_bitidx(zone, pfn); 6087 word_bitidx = bitidx / BITS_PER_LONG; 6088 bitidx &= (BITS_PER_LONG-1); 6089 6090 word = bitmap[word_bitidx]; 6091 bitidx += end_bitidx; 6092 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; 6093 } 6094 6095 /** 6096 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 6097 * @page: The page within the block of interest 6098 * @flags: The flags to set 6099 * @pfn: The target page frame number 6100 * @end_bitidx: The last bit of interest 6101 * @mask: mask of bits that the caller is interested in 6102 */ 6103 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 6104 unsigned long pfn, 6105 unsigned long end_bitidx, 6106 unsigned long mask) 6107 { 6108 struct zone *zone; 6109 unsigned long *bitmap; 6110 unsigned long bitidx, word_bitidx; 6111 unsigned long old_word, word; 6112 6113 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 6114 6115 zone = page_zone(page); 6116 bitmap = get_pageblock_bitmap(zone, pfn); 6117 bitidx = pfn_to_bitidx(zone, pfn); 6118 word_bitidx = bitidx / BITS_PER_LONG; 6119 bitidx &= (BITS_PER_LONG-1); 6120 6121 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page); 6122 6123 bitidx += end_bitidx; 6124 mask <<= (BITS_PER_LONG - bitidx - 1); 6125 flags <<= (BITS_PER_LONG - bitidx - 1); 6126 6127 word = ACCESS_ONCE(bitmap[word_bitidx]); 6128 for (;;) { 6129 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 6130 if (word == old_word) 6131 break; 6132 word = old_word; 6133 } 6134 } 6135 6136 /* 6137 * This function checks whether pageblock includes unmovable pages or not. 6138 * If @count is not zero, it is okay to include less @count unmovable pages 6139 * 6140 * PageLRU check without isolation or lru_lock could race so that 6141 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't 6142 * expect this function should be exact. 6143 */ 6144 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 6145 bool skip_hwpoisoned_pages) 6146 { 6147 unsigned long pfn, iter, found; 6148 int mt; 6149 6150 /* 6151 * For avoiding noise data, lru_add_drain_all() should be called 6152 * If ZONE_MOVABLE, the zone never contains unmovable pages 6153 */ 6154 if (zone_idx(zone) == ZONE_MOVABLE) 6155 return false; 6156 mt = get_pageblock_migratetype(page); 6157 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt)) 6158 return false; 6159 6160 pfn = page_to_pfn(page); 6161 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 6162 unsigned long check = pfn + iter; 6163 6164 if (!pfn_valid_within(check)) 6165 continue; 6166 6167 page = pfn_to_page(check); 6168 6169 /* 6170 * Hugepages are not in LRU lists, but they're movable. 6171 * We need not scan over tail pages bacause we don't 6172 * handle each tail page individually in migration. 6173 */ 6174 if (PageHuge(page)) { 6175 iter = round_up(iter + 1, 1<<compound_order(page)) - 1; 6176 continue; 6177 } 6178 6179 /* 6180 * We can't use page_count without pin a page 6181 * because another CPU can free compound page. 6182 * This check already skips compound tails of THP 6183 * because their page->_count is zero at all time. 6184 */ 6185 if (!atomic_read(&page->_count)) { 6186 if (PageBuddy(page)) 6187 iter += (1 << page_order(page)) - 1; 6188 continue; 6189 } 6190 6191 /* 6192 * The HWPoisoned page may be not in buddy system, and 6193 * page_count() is not 0. 6194 */ 6195 if (skip_hwpoisoned_pages && PageHWPoison(page)) 6196 continue; 6197 6198 if (!PageLRU(page)) 6199 found++; 6200 /* 6201 * If there are RECLAIMABLE pages, we need to check it. 6202 * But now, memory offline itself doesn't call shrink_slab() 6203 * and it still to be fixed. 6204 */ 6205 /* 6206 * If the page is not RAM, page_count()should be 0. 6207 * we don't need more check. This is an _used_ not-movable page. 6208 * 6209 * The problematic thing here is PG_reserved pages. PG_reserved 6210 * is set to both of a memory hole page and a _used_ kernel 6211 * page at boot. 6212 */ 6213 if (found > count) 6214 return true; 6215 } 6216 return false; 6217 } 6218 6219 bool is_pageblock_removable_nolock(struct page *page) 6220 { 6221 struct zone *zone; 6222 unsigned long pfn; 6223 6224 /* 6225 * We have to be careful here because we are iterating over memory 6226 * sections which are not zone aware so we might end up outside of 6227 * the zone but still within the section. 6228 * We have to take care about the node as well. If the node is offline 6229 * its NODE_DATA will be NULL - see page_zone. 6230 */ 6231 if (!node_online(page_to_nid(page))) 6232 return false; 6233 6234 zone = page_zone(page); 6235 pfn = page_to_pfn(page); 6236 if (!zone_spans_pfn(zone, pfn)) 6237 return false; 6238 6239 return !has_unmovable_pages(zone, page, 0, true); 6240 } 6241 6242 #ifdef CONFIG_CMA 6243 6244 static unsigned long pfn_max_align_down(unsigned long pfn) 6245 { 6246 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 6247 pageblock_nr_pages) - 1); 6248 } 6249 6250 static unsigned long pfn_max_align_up(unsigned long pfn) 6251 { 6252 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 6253 pageblock_nr_pages)); 6254 } 6255 6256 /* [start, end) must belong to a single zone. */ 6257 static int __alloc_contig_migrate_range(struct compact_control *cc, 6258 unsigned long start, unsigned long end) 6259 { 6260 /* This function is based on compact_zone() from compaction.c. */ 6261 unsigned long nr_reclaimed; 6262 unsigned long pfn = start; 6263 unsigned int tries = 0; 6264 int ret = 0; 6265 6266 migrate_prep(); 6267 6268 while (pfn < end || !list_empty(&cc->migratepages)) { 6269 if (fatal_signal_pending(current)) { 6270 ret = -EINTR; 6271 break; 6272 } 6273 6274 if (list_empty(&cc->migratepages)) { 6275 cc->nr_migratepages = 0; 6276 pfn = isolate_migratepages_range(cc, pfn, end); 6277 if (!pfn) { 6278 ret = -EINTR; 6279 break; 6280 } 6281 tries = 0; 6282 } else if (++tries == 5) { 6283 ret = ret < 0 ? ret : -EBUSY; 6284 break; 6285 } 6286 6287 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 6288 &cc->migratepages); 6289 cc->nr_migratepages -= nr_reclaimed; 6290 6291 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 6292 NULL, 0, cc->mode, MR_CMA); 6293 } 6294 if (ret < 0) { 6295 putback_movable_pages(&cc->migratepages); 6296 return ret; 6297 } 6298 return 0; 6299 } 6300 6301 /** 6302 * alloc_contig_range() -- tries to allocate given range of pages 6303 * @start: start PFN to allocate 6304 * @end: one-past-the-last PFN to allocate 6305 * @migratetype: migratetype of the underlaying pageblocks (either 6306 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 6307 * in range must have the same migratetype and it must 6308 * be either of the two. 6309 * 6310 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 6311 * aligned, however it's the caller's responsibility to guarantee that 6312 * we are the only thread that changes migrate type of pageblocks the 6313 * pages fall in. 6314 * 6315 * The PFN range must belong to a single zone. 6316 * 6317 * Returns zero on success or negative error code. On success all 6318 * pages which PFN is in [start, end) are allocated for the caller and 6319 * need to be freed with free_contig_range(). 6320 */ 6321 int alloc_contig_range(unsigned long start, unsigned long end, 6322 unsigned migratetype) 6323 { 6324 unsigned long outer_start, outer_end; 6325 int ret = 0, order; 6326 6327 struct compact_control cc = { 6328 .nr_migratepages = 0, 6329 .order = -1, 6330 .zone = page_zone(pfn_to_page(start)), 6331 .mode = MIGRATE_SYNC, 6332 .ignore_skip_hint = true, 6333 }; 6334 INIT_LIST_HEAD(&cc.migratepages); 6335 6336 /* 6337 * What we do here is we mark all pageblocks in range as 6338 * MIGRATE_ISOLATE. Because pageblock and max order pages may 6339 * have different sizes, and due to the way page allocator 6340 * work, we align the range to biggest of the two pages so 6341 * that page allocator won't try to merge buddies from 6342 * different pageblocks and change MIGRATE_ISOLATE to some 6343 * other migration type. 6344 * 6345 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 6346 * migrate the pages from an unaligned range (ie. pages that 6347 * we are interested in). This will put all the pages in 6348 * range back to page allocator as MIGRATE_ISOLATE. 6349 * 6350 * When this is done, we take the pages in range from page 6351 * allocator removing them from the buddy system. This way 6352 * page allocator will never consider using them. 6353 * 6354 * This lets us mark the pageblocks back as 6355 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 6356 * aligned range but not in the unaligned, original range are 6357 * put back to page allocator so that buddy can use them. 6358 */ 6359 6360 ret = start_isolate_page_range(pfn_max_align_down(start), 6361 pfn_max_align_up(end), migratetype, 6362 false); 6363 if (ret) 6364 return ret; 6365 6366 ret = __alloc_contig_migrate_range(&cc, start, end); 6367 if (ret) 6368 goto done; 6369 6370 /* 6371 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 6372 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 6373 * more, all pages in [start, end) are free in page allocator. 6374 * What we are going to do is to allocate all pages from 6375 * [start, end) (that is remove them from page allocator). 6376 * 6377 * The only problem is that pages at the beginning and at the 6378 * end of interesting range may be not aligned with pages that 6379 * page allocator holds, ie. they can be part of higher order 6380 * pages. Because of this, we reserve the bigger range and 6381 * once this is done free the pages we are not interested in. 6382 * 6383 * We don't have to hold zone->lock here because the pages are 6384 * isolated thus they won't get removed from buddy. 6385 */ 6386 6387 lru_add_drain_all(); 6388 drain_all_pages(); 6389 6390 order = 0; 6391 outer_start = start; 6392 while (!PageBuddy(pfn_to_page(outer_start))) { 6393 if (++order >= MAX_ORDER) { 6394 ret = -EBUSY; 6395 goto done; 6396 } 6397 outer_start &= ~0UL << order; 6398 } 6399 6400 /* Make sure the range is really isolated. */ 6401 if (test_pages_isolated(outer_start, end, false)) { 6402 pr_info("%s: [%lx, %lx) PFNs busy\n", 6403 __func__, outer_start, end); 6404 ret = -EBUSY; 6405 goto done; 6406 } 6407 6408 /* Grab isolated pages from freelists. */ 6409 outer_end = isolate_freepages_range(&cc, outer_start, end); 6410 if (!outer_end) { 6411 ret = -EBUSY; 6412 goto done; 6413 } 6414 6415 /* Free head and tail (if any) */ 6416 if (start != outer_start) 6417 free_contig_range(outer_start, start - outer_start); 6418 if (end != outer_end) 6419 free_contig_range(end, outer_end - end); 6420 6421 done: 6422 undo_isolate_page_range(pfn_max_align_down(start), 6423 pfn_max_align_up(end), migratetype); 6424 return ret; 6425 } 6426 6427 void free_contig_range(unsigned long pfn, unsigned nr_pages) 6428 { 6429 unsigned int count = 0; 6430 6431 for (; nr_pages--; pfn++) { 6432 struct page *page = pfn_to_page(pfn); 6433 6434 count += page_count(page) != 1; 6435 __free_page(page); 6436 } 6437 WARN(count != 0, "%d pages are still in use!\n", count); 6438 } 6439 #endif 6440 6441 #ifdef CONFIG_MEMORY_HOTPLUG 6442 /* 6443 * The zone indicated has a new number of managed_pages; batch sizes and percpu 6444 * page high values need to be recalulated. 6445 */ 6446 void __meminit zone_pcp_update(struct zone *zone) 6447 { 6448 unsigned cpu; 6449 mutex_lock(&pcp_batch_high_lock); 6450 for_each_possible_cpu(cpu) 6451 pageset_set_high_and_batch(zone, 6452 per_cpu_ptr(zone->pageset, cpu)); 6453 mutex_unlock(&pcp_batch_high_lock); 6454 } 6455 #endif 6456 6457 void zone_pcp_reset(struct zone *zone) 6458 { 6459 unsigned long flags; 6460 int cpu; 6461 struct per_cpu_pageset *pset; 6462 6463 /* avoid races with drain_pages() */ 6464 local_irq_save(flags); 6465 if (zone->pageset != &boot_pageset) { 6466 for_each_online_cpu(cpu) { 6467 pset = per_cpu_ptr(zone->pageset, cpu); 6468 drain_zonestat(zone, pset); 6469 } 6470 free_percpu(zone->pageset); 6471 zone->pageset = &boot_pageset; 6472 } 6473 local_irq_restore(flags); 6474 } 6475 6476 #ifdef CONFIG_MEMORY_HOTREMOVE 6477 /* 6478 * All pages in the range must be isolated before calling this. 6479 */ 6480 void 6481 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 6482 { 6483 struct page *page; 6484 struct zone *zone; 6485 unsigned int order, i; 6486 unsigned long pfn; 6487 unsigned long flags; 6488 /* find the first valid pfn */ 6489 for (pfn = start_pfn; pfn < end_pfn; pfn++) 6490 if (pfn_valid(pfn)) 6491 break; 6492 if (pfn == end_pfn) 6493 return; 6494 zone = page_zone(pfn_to_page(pfn)); 6495 spin_lock_irqsave(&zone->lock, flags); 6496 pfn = start_pfn; 6497 while (pfn < end_pfn) { 6498 if (!pfn_valid(pfn)) { 6499 pfn++; 6500 continue; 6501 } 6502 page = pfn_to_page(pfn); 6503 /* 6504 * The HWPoisoned page may be not in buddy system, and 6505 * page_count() is not 0. 6506 */ 6507 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 6508 pfn++; 6509 SetPageReserved(page); 6510 continue; 6511 } 6512 6513 BUG_ON(page_count(page)); 6514 BUG_ON(!PageBuddy(page)); 6515 order = page_order(page); 6516 #ifdef CONFIG_DEBUG_VM 6517 printk(KERN_INFO "remove from free list %lx %d %lx\n", 6518 pfn, 1 << order, end_pfn); 6519 #endif 6520 list_del(&page->lru); 6521 rmv_page_order(page); 6522 zone->free_area[order].nr_free--; 6523 for (i = 0; i < (1 << order); i++) 6524 SetPageReserved((page+i)); 6525 pfn += (1 << order); 6526 } 6527 spin_unlock_irqrestore(&zone->lock, flags); 6528 } 6529 #endif 6530 6531 #ifdef CONFIG_MEMORY_FAILURE 6532 bool is_free_buddy_page(struct page *page) 6533 { 6534 struct zone *zone = page_zone(page); 6535 unsigned long pfn = page_to_pfn(page); 6536 unsigned long flags; 6537 unsigned int order; 6538 6539 spin_lock_irqsave(&zone->lock, flags); 6540 for (order = 0; order < MAX_ORDER; order++) { 6541 struct page *page_head = page - (pfn & ((1 << order) - 1)); 6542 6543 if (PageBuddy(page_head) && page_order(page_head) >= order) 6544 break; 6545 } 6546 spin_unlock_irqrestore(&zone->lock, flags); 6547 6548 return order < MAX_ORDER; 6549 } 6550 #endif 6551