1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kasan.h> 28 #include <linux/module.h> 29 #include <linux/suspend.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/slab.h> 33 #include <linux/ratelimit.h> 34 #include <linux/oom.h> 35 #include <linux/notifier.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/memremap.h> 46 #include <linux/stop_machine.h> 47 #include <linux/sort.h> 48 #include <linux/pfn.h> 49 #include <linux/backing-dev.h> 50 #include <linux/fault-inject.h> 51 #include <linux/page-isolation.h> 52 #include <linux/page_ext.h> 53 #include <linux/debugobjects.h> 54 #include <linux/kmemleak.h> 55 #include <linux/compaction.h> 56 #include <trace/events/kmem.h> 57 #include <trace/events/oom.h> 58 #include <linux/prefetch.h> 59 #include <linux/mm_inline.h> 60 #include <linux/migrate.h> 61 #include <linux/hugetlb.h> 62 #include <linux/sched/rt.h> 63 #include <linux/sched/mm.h> 64 #include <linux/page_owner.h> 65 #include <linux/kthread.h> 66 #include <linux/memcontrol.h> 67 #include <linux/ftrace.h> 68 #include <linux/lockdep.h> 69 #include <linux/nmi.h> 70 71 #include <asm/sections.h> 72 #include <asm/tlbflush.h> 73 #include <asm/div64.h> 74 #include "internal.h" 75 76 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 77 static DEFINE_MUTEX(pcp_batch_high_lock); 78 #define MIN_PERCPU_PAGELIST_FRACTION (8) 79 80 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 81 DEFINE_PER_CPU(int, numa_node); 82 EXPORT_PER_CPU_SYMBOL(numa_node); 83 #endif 84 85 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 86 87 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 88 /* 89 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 90 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 91 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 92 * defined in <linux/topology.h>. 93 */ 94 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 95 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 96 int _node_numa_mem_[MAX_NUMNODES]; 97 #endif 98 99 /* work_structs for global per-cpu drains */ 100 DEFINE_MUTEX(pcpu_drain_mutex); 101 DEFINE_PER_CPU(struct work_struct, pcpu_drain); 102 103 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 104 volatile unsigned long latent_entropy __latent_entropy; 105 EXPORT_SYMBOL(latent_entropy); 106 #endif 107 108 /* 109 * Array of node states. 110 */ 111 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 112 [N_POSSIBLE] = NODE_MASK_ALL, 113 [N_ONLINE] = { { [0] = 1UL } }, 114 #ifndef CONFIG_NUMA 115 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 116 #ifdef CONFIG_HIGHMEM 117 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 118 #endif 119 [N_MEMORY] = { { [0] = 1UL } }, 120 [N_CPU] = { { [0] = 1UL } }, 121 #endif /* NUMA */ 122 }; 123 EXPORT_SYMBOL(node_states); 124 125 /* Protect totalram_pages and zone->managed_pages */ 126 static DEFINE_SPINLOCK(managed_page_count_lock); 127 128 unsigned long totalram_pages __read_mostly; 129 unsigned long totalreserve_pages __read_mostly; 130 unsigned long totalcma_pages __read_mostly; 131 132 int percpu_pagelist_fraction; 133 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 134 135 /* 136 * A cached value of the page's pageblock's migratetype, used when the page is 137 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 138 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 139 * Also the migratetype set in the page does not necessarily match the pcplist 140 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 141 * other index - this ensures that it will be put on the correct CMA freelist. 142 */ 143 static inline int get_pcppage_migratetype(struct page *page) 144 { 145 return page->index; 146 } 147 148 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 149 { 150 page->index = migratetype; 151 } 152 153 #ifdef CONFIG_PM_SLEEP 154 /* 155 * The following functions are used by the suspend/hibernate code to temporarily 156 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 157 * while devices are suspended. To avoid races with the suspend/hibernate code, 158 * they should always be called with pm_mutex held (gfp_allowed_mask also should 159 * only be modified with pm_mutex held, unless the suspend/hibernate code is 160 * guaranteed not to run in parallel with that modification). 161 */ 162 163 static gfp_t saved_gfp_mask; 164 165 void pm_restore_gfp_mask(void) 166 { 167 WARN_ON(!mutex_is_locked(&pm_mutex)); 168 if (saved_gfp_mask) { 169 gfp_allowed_mask = saved_gfp_mask; 170 saved_gfp_mask = 0; 171 } 172 } 173 174 void pm_restrict_gfp_mask(void) 175 { 176 WARN_ON(!mutex_is_locked(&pm_mutex)); 177 WARN_ON(saved_gfp_mask); 178 saved_gfp_mask = gfp_allowed_mask; 179 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 180 } 181 182 bool pm_suspended_storage(void) 183 { 184 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 185 return false; 186 return true; 187 } 188 #endif /* CONFIG_PM_SLEEP */ 189 190 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 191 unsigned int pageblock_order __read_mostly; 192 #endif 193 194 static void __free_pages_ok(struct page *page, unsigned int order); 195 196 /* 197 * results with 256, 32 in the lowmem_reserve sysctl: 198 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 199 * 1G machine -> (16M dma, 784M normal, 224M high) 200 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 201 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 202 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 203 * 204 * TBD: should special case ZONE_DMA32 machines here - in those we normally 205 * don't need any ZONE_NORMAL reservation 206 */ 207 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 208 #ifdef CONFIG_ZONE_DMA 209 256, 210 #endif 211 #ifdef CONFIG_ZONE_DMA32 212 256, 213 #endif 214 #ifdef CONFIG_HIGHMEM 215 32, 216 #endif 217 32, 218 }; 219 220 EXPORT_SYMBOL(totalram_pages); 221 222 static char * const zone_names[MAX_NR_ZONES] = { 223 #ifdef CONFIG_ZONE_DMA 224 "DMA", 225 #endif 226 #ifdef CONFIG_ZONE_DMA32 227 "DMA32", 228 #endif 229 "Normal", 230 #ifdef CONFIG_HIGHMEM 231 "HighMem", 232 #endif 233 "Movable", 234 #ifdef CONFIG_ZONE_DEVICE 235 "Device", 236 #endif 237 }; 238 239 char * const migratetype_names[MIGRATE_TYPES] = { 240 "Unmovable", 241 "Movable", 242 "Reclaimable", 243 "HighAtomic", 244 #ifdef CONFIG_CMA 245 "CMA", 246 #endif 247 #ifdef CONFIG_MEMORY_ISOLATION 248 "Isolate", 249 #endif 250 }; 251 252 compound_page_dtor * const compound_page_dtors[] = { 253 NULL, 254 free_compound_page, 255 #ifdef CONFIG_HUGETLB_PAGE 256 free_huge_page, 257 #endif 258 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 259 free_transhuge_page, 260 #endif 261 }; 262 263 int min_free_kbytes = 1024; 264 int user_min_free_kbytes = -1; 265 int watermark_scale_factor = 10; 266 267 static unsigned long __meminitdata nr_kernel_pages; 268 static unsigned long __meminitdata nr_all_pages; 269 static unsigned long __meminitdata dma_reserve; 270 271 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 272 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 273 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 274 static unsigned long __initdata required_kernelcore; 275 static unsigned long __initdata required_movablecore; 276 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 277 static bool mirrored_kernelcore; 278 279 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 280 int movable_zone; 281 EXPORT_SYMBOL(movable_zone); 282 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 283 284 #if MAX_NUMNODES > 1 285 int nr_node_ids __read_mostly = MAX_NUMNODES; 286 int nr_online_nodes __read_mostly = 1; 287 EXPORT_SYMBOL(nr_node_ids); 288 EXPORT_SYMBOL(nr_online_nodes); 289 #endif 290 291 int page_group_by_mobility_disabled __read_mostly; 292 293 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 294 295 /* 296 * Determine how many pages need to be initialized durig early boot 297 * (non-deferred initialization). 298 * The value of first_deferred_pfn will be set later, once non-deferred pages 299 * are initialized, but for now set it ULONG_MAX. 300 */ 301 static inline void reset_deferred_meminit(pg_data_t *pgdat) 302 { 303 phys_addr_t start_addr, end_addr; 304 unsigned long max_pgcnt; 305 unsigned long reserved; 306 307 /* 308 * Initialise at least 2G of a node but also take into account that 309 * two large system hashes that can take up 1GB for 0.25TB/node. 310 */ 311 max_pgcnt = max(2UL << (30 - PAGE_SHIFT), 312 (pgdat->node_spanned_pages >> 8)); 313 314 /* 315 * Compensate the all the memblock reservations (e.g. crash kernel) 316 * from the initial estimation to make sure we will initialize enough 317 * memory to boot. 318 */ 319 start_addr = PFN_PHYS(pgdat->node_start_pfn); 320 end_addr = PFN_PHYS(pgdat->node_start_pfn + max_pgcnt); 321 reserved = memblock_reserved_memory_within(start_addr, end_addr); 322 max_pgcnt += PHYS_PFN(reserved); 323 324 pgdat->static_init_pgcnt = min(max_pgcnt, pgdat->node_spanned_pages); 325 pgdat->first_deferred_pfn = ULONG_MAX; 326 } 327 328 /* Returns true if the struct page for the pfn is uninitialised */ 329 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 330 { 331 int nid = early_pfn_to_nid(pfn); 332 333 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 334 return true; 335 336 return false; 337 } 338 339 /* 340 * Returns false when the remaining initialisation should be deferred until 341 * later in the boot cycle when it can be parallelised. 342 */ 343 static inline bool update_defer_init(pg_data_t *pgdat, 344 unsigned long pfn, unsigned long zone_end, 345 unsigned long *nr_initialised) 346 { 347 /* Always populate low zones for address-contrained allocations */ 348 if (zone_end < pgdat_end_pfn(pgdat)) 349 return true; 350 (*nr_initialised)++; 351 if ((*nr_initialised > pgdat->static_init_pgcnt) && 352 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 353 pgdat->first_deferred_pfn = pfn; 354 return false; 355 } 356 357 return true; 358 } 359 #else 360 static inline void reset_deferred_meminit(pg_data_t *pgdat) 361 { 362 } 363 364 static inline bool early_page_uninitialised(unsigned long pfn) 365 { 366 return false; 367 } 368 369 static inline bool update_defer_init(pg_data_t *pgdat, 370 unsigned long pfn, unsigned long zone_end, 371 unsigned long *nr_initialised) 372 { 373 return true; 374 } 375 #endif 376 377 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 378 static inline unsigned long *get_pageblock_bitmap(struct page *page, 379 unsigned long pfn) 380 { 381 #ifdef CONFIG_SPARSEMEM 382 return __pfn_to_section(pfn)->pageblock_flags; 383 #else 384 return page_zone(page)->pageblock_flags; 385 #endif /* CONFIG_SPARSEMEM */ 386 } 387 388 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn) 389 { 390 #ifdef CONFIG_SPARSEMEM 391 pfn &= (PAGES_PER_SECTION-1); 392 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 393 #else 394 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 395 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 396 #endif /* CONFIG_SPARSEMEM */ 397 } 398 399 /** 400 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 401 * @page: The page within the block of interest 402 * @pfn: The target page frame number 403 * @end_bitidx: The last bit of interest to retrieve 404 * @mask: mask of bits that the caller is interested in 405 * 406 * Return: pageblock_bits flags 407 */ 408 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page, 409 unsigned long pfn, 410 unsigned long end_bitidx, 411 unsigned long mask) 412 { 413 unsigned long *bitmap; 414 unsigned long bitidx, word_bitidx; 415 unsigned long word; 416 417 bitmap = get_pageblock_bitmap(page, pfn); 418 bitidx = pfn_to_bitidx(page, pfn); 419 word_bitidx = bitidx / BITS_PER_LONG; 420 bitidx &= (BITS_PER_LONG-1); 421 422 word = bitmap[word_bitidx]; 423 bitidx += end_bitidx; 424 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; 425 } 426 427 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 428 unsigned long end_bitidx, 429 unsigned long mask) 430 { 431 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask); 432 } 433 434 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) 435 { 436 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK); 437 } 438 439 /** 440 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 441 * @page: The page within the block of interest 442 * @flags: The flags to set 443 * @pfn: The target page frame number 444 * @end_bitidx: The last bit of interest 445 * @mask: mask of bits that the caller is interested in 446 */ 447 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 448 unsigned long pfn, 449 unsigned long end_bitidx, 450 unsigned long mask) 451 { 452 unsigned long *bitmap; 453 unsigned long bitidx, word_bitidx; 454 unsigned long old_word, word; 455 456 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 457 458 bitmap = get_pageblock_bitmap(page, pfn); 459 bitidx = pfn_to_bitidx(page, pfn); 460 word_bitidx = bitidx / BITS_PER_LONG; 461 bitidx &= (BITS_PER_LONG-1); 462 463 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 464 465 bitidx += end_bitidx; 466 mask <<= (BITS_PER_LONG - bitidx - 1); 467 flags <<= (BITS_PER_LONG - bitidx - 1); 468 469 word = READ_ONCE(bitmap[word_bitidx]); 470 for (;;) { 471 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 472 if (word == old_word) 473 break; 474 word = old_word; 475 } 476 } 477 478 void set_pageblock_migratetype(struct page *page, int migratetype) 479 { 480 if (unlikely(page_group_by_mobility_disabled && 481 migratetype < MIGRATE_PCPTYPES)) 482 migratetype = MIGRATE_UNMOVABLE; 483 484 set_pageblock_flags_group(page, (unsigned long)migratetype, 485 PB_migrate, PB_migrate_end); 486 } 487 488 #ifdef CONFIG_DEBUG_VM 489 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 490 { 491 int ret = 0; 492 unsigned seq; 493 unsigned long pfn = page_to_pfn(page); 494 unsigned long sp, start_pfn; 495 496 do { 497 seq = zone_span_seqbegin(zone); 498 start_pfn = zone->zone_start_pfn; 499 sp = zone->spanned_pages; 500 if (!zone_spans_pfn(zone, pfn)) 501 ret = 1; 502 } while (zone_span_seqretry(zone, seq)); 503 504 if (ret) 505 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 506 pfn, zone_to_nid(zone), zone->name, 507 start_pfn, start_pfn + sp); 508 509 return ret; 510 } 511 512 static int page_is_consistent(struct zone *zone, struct page *page) 513 { 514 if (!pfn_valid_within(page_to_pfn(page))) 515 return 0; 516 if (zone != page_zone(page)) 517 return 0; 518 519 return 1; 520 } 521 /* 522 * Temporary debugging check for pages not lying within a given zone. 523 */ 524 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 525 { 526 if (page_outside_zone_boundaries(zone, page)) 527 return 1; 528 if (!page_is_consistent(zone, page)) 529 return 1; 530 531 return 0; 532 } 533 #else 534 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 535 { 536 return 0; 537 } 538 #endif 539 540 static void bad_page(struct page *page, const char *reason, 541 unsigned long bad_flags) 542 { 543 static unsigned long resume; 544 static unsigned long nr_shown; 545 static unsigned long nr_unshown; 546 547 /* 548 * Allow a burst of 60 reports, then keep quiet for that minute; 549 * or allow a steady drip of one report per second. 550 */ 551 if (nr_shown == 60) { 552 if (time_before(jiffies, resume)) { 553 nr_unshown++; 554 goto out; 555 } 556 if (nr_unshown) { 557 pr_alert( 558 "BUG: Bad page state: %lu messages suppressed\n", 559 nr_unshown); 560 nr_unshown = 0; 561 } 562 nr_shown = 0; 563 } 564 if (nr_shown++ == 0) 565 resume = jiffies + 60 * HZ; 566 567 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 568 current->comm, page_to_pfn(page)); 569 __dump_page(page, reason); 570 bad_flags &= page->flags; 571 if (bad_flags) 572 pr_alert("bad because of flags: %#lx(%pGp)\n", 573 bad_flags, &bad_flags); 574 dump_page_owner(page); 575 576 print_modules(); 577 dump_stack(); 578 out: 579 /* Leave bad fields for debug, except PageBuddy could make trouble */ 580 page_mapcount_reset(page); /* remove PageBuddy */ 581 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 582 } 583 584 /* 585 * Higher-order pages are called "compound pages". They are structured thusly: 586 * 587 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 588 * 589 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 590 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 591 * 592 * The first tail page's ->compound_dtor holds the offset in array of compound 593 * page destructors. See compound_page_dtors. 594 * 595 * The first tail page's ->compound_order holds the order of allocation. 596 * This usage means that zero-order pages may not be compound. 597 */ 598 599 void free_compound_page(struct page *page) 600 { 601 __free_pages_ok(page, compound_order(page)); 602 } 603 604 void prep_compound_page(struct page *page, unsigned int order) 605 { 606 int i; 607 int nr_pages = 1 << order; 608 609 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 610 set_compound_order(page, order); 611 __SetPageHead(page); 612 for (i = 1; i < nr_pages; i++) { 613 struct page *p = page + i; 614 set_page_count(p, 0); 615 p->mapping = TAIL_MAPPING; 616 set_compound_head(p, page); 617 } 618 atomic_set(compound_mapcount_ptr(page), -1); 619 } 620 621 #ifdef CONFIG_DEBUG_PAGEALLOC 622 unsigned int _debug_guardpage_minorder; 623 bool _debug_pagealloc_enabled __read_mostly 624 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 625 EXPORT_SYMBOL(_debug_pagealloc_enabled); 626 bool _debug_guardpage_enabled __read_mostly; 627 628 static int __init early_debug_pagealloc(char *buf) 629 { 630 if (!buf) 631 return -EINVAL; 632 return kstrtobool(buf, &_debug_pagealloc_enabled); 633 } 634 early_param("debug_pagealloc", early_debug_pagealloc); 635 636 static bool need_debug_guardpage(void) 637 { 638 /* If we don't use debug_pagealloc, we don't need guard page */ 639 if (!debug_pagealloc_enabled()) 640 return false; 641 642 if (!debug_guardpage_minorder()) 643 return false; 644 645 return true; 646 } 647 648 static void init_debug_guardpage(void) 649 { 650 if (!debug_pagealloc_enabled()) 651 return; 652 653 if (!debug_guardpage_minorder()) 654 return; 655 656 _debug_guardpage_enabled = true; 657 } 658 659 struct page_ext_operations debug_guardpage_ops = { 660 .need = need_debug_guardpage, 661 .init = init_debug_guardpage, 662 }; 663 664 static int __init debug_guardpage_minorder_setup(char *buf) 665 { 666 unsigned long res; 667 668 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 669 pr_err("Bad debug_guardpage_minorder value\n"); 670 return 0; 671 } 672 _debug_guardpage_minorder = res; 673 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 674 return 0; 675 } 676 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 677 678 static inline bool set_page_guard(struct zone *zone, struct page *page, 679 unsigned int order, int migratetype) 680 { 681 struct page_ext *page_ext; 682 683 if (!debug_guardpage_enabled()) 684 return false; 685 686 if (order >= debug_guardpage_minorder()) 687 return false; 688 689 page_ext = lookup_page_ext(page); 690 if (unlikely(!page_ext)) 691 return false; 692 693 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 694 695 INIT_LIST_HEAD(&page->lru); 696 set_page_private(page, order); 697 /* Guard pages are not available for any usage */ 698 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 699 700 return true; 701 } 702 703 static inline void clear_page_guard(struct zone *zone, struct page *page, 704 unsigned int order, int migratetype) 705 { 706 struct page_ext *page_ext; 707 708 if (!debug_guardpage_enabled()) 709 return; 710 711 page_ext = lookup_page_ext(page); 712 if (unlikely(!page_ext)) 713 return; 714 715 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 716 717 set_page_private(page, 0); 718 if (!is_migrate_isolate(migratetype)) 719 __mod_zone_freepage_state(zone, (1 << order), migratetype); 720 } 721 #else 722 struct page_ext_operations debug_guardpage_ops; 723 static inline bool set_page_guard(struct zone *zone, struct page *page, 724 unsigned int order, int migratetype) { return false; } 725 static inline void clear_page_guard(struct zone *zone, struct page *page, 726 unsigned int order, int migratetype) {} 727 #endif 728 729 static inline void set_page_order(struct page *page, unsigned int order) 730 { 731 set_page_private(page, order); 732 __SetPageBuddy(page); 733 } 734 735 static inline void rmv_page_order(struct page *page) 736 { 737 __ClearPageBuddy(page); 738 set_page_private(page, 0); 739 } 740 741 /* 742 * This function checks whether a page is free && is the buddy 743 * we can do coalesce a page and its buddy if 744 * (a) the buddy is not in a hole (check before calling!) && 745 * (b) the buddy is in the buddy system && 746 * (c) a page and its buddy have the same order && 747 * (d) a page and its buddy are in the same zone. 748 * 749 * For recording whether a page is in the buddy system, we set ->_mapcount 750 * PAGE_BUDDY_MAPCOUNT_VALUE. 751 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is 752 * serialized by zone->lock. 753 * 754 * For recording page's order, we use page_private(page). 755 */ 756 static inline int page_is_buddy(struct page *page, struct page *buddy, 757 unsigned int order) 758 { 759 if (page_is_guard(buddy) && page_order(buddy) == order) { 760 if (page_zone_id(page) != page_zone_id(buddy)) 761 return 0; 762 763 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 764 765 return 1; 766 } 767 768 if (PageBuddy(buddy) && page_order(buddy) == order) { 769 /* 770 * zone check is done late to avoid uselessly 771 * calculating zone/node ids for pages that could 772 * never merge. 773 */ 774 if (page_zone_id(page) != page_zone_id(buddy)) 775 return 0; 776 777 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 778 779 return 1; 780 } 781 return 0; 782 } 783 784 /* 785 * Freeing function for a buddy system allocator. 786 * 787 * The concept of a buddy system is to maintain direct-mapped table 788 * (containing bit values) for memory blocks of various "orders". 789 * The bottom level table contains the map for the smallest allocatable 790 * units of memory (here, pages), and each level above it describes 791 * pairs of units from the levels below, hence, "buddies". 792 * At a high level, all that happens here is marking the table entry 793 * at the bottom level available, and propagating the changes upward 794 * as necessary, plus some accounting needed to play nicely with other 795 * parts of the VM system. 796 * At each level, we keep a list of pages, which are heads of continuous 797 * free pages of length of (1 << order) and marked with _mapcount 798 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page) 799 * field. 800 * So when we are allocating or freeing one, we can derive the state of the 801 * other. That is, if we allocate a small block, and both were 802 * free, the remainder of the region must be split into blocks. 803 * If a block is freed, and its buddy is also free, then this 804 * triggers coalescing into a block of larger size. 805 * 806 * -- nyc 807 */ 808 809 static inline void __free_one_page(struct page *page, 810 unsigned long pfn, 811 struct zone *zone, unsigned int order, 812 int migratetype) 813 { 814 unsigned long combined_pfn; 815 unsigned long uninitialized_var(buddy_pfn); 816 struct page *buddy; 817 unsigned int max_order; 818 819 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1); 820 821 VM_BUG_ON(!zone_is_initialized(zone)); 822 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 823 824 VM_BUG_ON(migratetype == -1); 825 if (likely(!is_migrate_isolate(migratetype))) 826 __mod_zone_freepage_state(zone, 1 << order, migratetype); 827 828 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 829 VM_BUG_ON_PAGE(bad_range(zone, page), page); 830 831 continue_merging: 832 while (order < max_order - 1) { 833 buddy_pfn = __find_buddy_pfn(pfn, order); 834 buddy = page + (buddy_pfn - pfn); 835 836 if (!pfn_valid_within(buddy_pfn)) 837 goto done_merging; 838 if (!page_is_buddy(page, buddy, order)) 839 goto done_merging; 840 /* 841 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 842 * merge with it and move up one order. 843 */ 844 if (page_is_guard(buddy)) { 845 clear_page_guard(zone, buddy, order, migratetype); 846 } else { 847 list_del(&buddy->lru); 848 zone->free_area[order].nr_free--; 849 rmv_page_order(buddy); 850 } 851 combined_pfn = buddy_pfn & pfn; 852 page = page + (combined_pfn - pfn); 853 pfn = combined_pfn; 854 order++; 855 } 856 if (max_order < MAX_ORDER) { 857 /* If we are here, it means order is >= pageblock_order. 858 * We want to prevent merge between freepages on isolate 859 * pageblock and normal pageblock. Without this, pageblock 860 * isolation could cause incorrect freepage or CMA accounting. 861 * 862 * We don't want to hit this code for the more frequent 863 * low-order merging. 864 */ 865 if (unlikely(has_isolate_pageblock(zone))) { 866 int buddy_mt; 867 868 buddy_pfn = __find_buddy_pfn(pfn, order); 869 buddy = page + (buddy_pfn - pfn); 870 buddy_mt = get_pageblock_migratetype(buddy); 871 872 if (migratetype != buddy_mt 873 && (is_migrate_isolate(migratetype) || 874 is_migrate_isolate(buddy_mt))) 875 goto done_merging; 876 } 877 max_order++; 878 goto continue_merging; 879 } 880 881 done_merging: 882 set_page_order(page, order); 883 884 /* 885 * If this is not the largest possible page, check if the buddy 886 * of the next-highest order is free. If it is, it's possible 887 * that pages are being freed that will coalesce soon. In case, 888 * that is happening, add the free page to the tail of the list 889 * so it's less likely to be used soon and more likely to be merged 890 * as a higher order page 891 */ 892 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) { 893 struct page *higher_page, *higher_buddy; 894 combined_pfn = buddy_pfn & pfn; 895 higher_page = page + (combined_pfn - pfn); 896 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); 897 higher_buddy = higher_page + (buddy_pfn - combined_pfn); 898 if (pfn_valid_within(buddy_pfn) && 899 page_is_buddy(higher_page, higher_buddy, order + 1)) { 900 list_add_tail(&page->lru, 901 &zone->free_area[order].free_list[migratetype]); 902 goto out; 903 } 904 } 905 906 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 907 out: 908 zone->free_area[order].nr_free++; 909 } 910 911 /* 912 * A bad page could be due to a number of fields. Instead of multiple branches, 913 * try and check multiple fields with one check. The caller must do a detailed 914 * check if necessary. 915 */ 916 static inline bool page_expected_state(struct page *page, 917 unsigned long check_flags) 918 { 919 if (unlikely(atomic_read(&page->_mapcount) != -1)) 920 return false; 921 922 if (unlikely((unsigned long)page->mapping | 923 page_ref_count(page) | 924 #ifdef CONFIG_MEMCG 925 (unsigned long)page->mem_cgroup | 926 #endif 927 (page->flags & check_flags))) 928 return false; 929 930 return true; 931 } 932 933 static void free_pages_check_bad(struct page *page) 934 { 935 const char *bad_reason; 936 unsigned long bad_flags; 937 938 bad_reason = NULL; 939 bad_flags = 0; 940 941 if (unlikely(atomic_read(&page->_mapcount) != -1)) 942 bad_reason = "nonzero mapcount"; 943 if (unlikely(page->mapping != NULL)) 944 bad_reason = "non-NULL mapping"; 945 if (unlikely(page_ref_count(page) != 0)) 946 bad_reason = "nonzero _refcount"; 947 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { 948 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 949 bad_flags = PAGE_FLAGS_CHECK_AT_FREE; 950 } 951 #ifdef CONFIG_MEMCG 952 if (unlikely(page->mem_cgroup)) 953 bad_reason = "page still charged to cgroup"; 954 #endif 955 bad_page(page, bad_reason, bad_flags); 956 } 957 958 static inline int free_pages_check(struct page *page) 959 { 960 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 961 return 0; 962 963 /* Something has gone sideways, find it */ 964 free_pages_check_bad(page); 965 return 1; 966 } 967 968 static int free_tail_pages_check(struct page *head_page, struct page *page) 969 { 970 int ret = 1; 971 972 /* 973 * We rely page->lru.next never has bit 0 set, unless the page 974 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 975 */ 976 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 977 978 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 979 ret = 0; 980 goto out; 981 } 982 switch (page - head_page) { 983 case 1: 984 /* the first tail page: ->mapping is compound_mapcount() */ 985 if (unlikely(compound_mapcount(page))) { 986 bad_page(page, "nonzero compound_mapcount", 0); 987 goto out; 988 } 989 break; 990 case 2: 991 /* 992 * the second tail page: ->mapping is 993 * page_deferred_list().next -- ignore value. 994 */ 995 break; 996 default: 997 if (page->mapping != TAIL_MAPPING) { 998 bad_page(page, "corrupted mapping in tail page", 0); 999 goto out; 1000 } 1001 break; 1002 } 1003 if (unlikely(!PageTail(page))) { 1004 bad_page(page, "PageTail not set", 0); 1005 goto out; 1006 } 1007 if (unlikely(compound_head(page) != head_page)) { 1008 bad_page(page, "compound_head not consistent", 0); 1009 goto out; 1010 } 1011 ret = 0; 1012 out: 1013 page->mapping = NULL; 1014 clear_compound_head(page); 1015 return ret; 1016 } 1017 1018 static __always_inline bool free_pages_prepare(struct page *page, 1019 unsigned int order, bool check_free) 1020 { 1021 int bad = 0; 1022 1023 VM_BUG_ON_PAGE(PageTail(page), page); 1024 1025 trace_mm_page_free(page, order); 1026 1027 /* 1028 * Check tail pages before head page information is cleared to 1029 * avoid checking PageCompound for order-0 pages. 1030 */ 1031 if (unlikely(order)) { 1032 bool compound = PageCompound(page); 1033 int i; 1034 1035 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1036 1037 if (compound) 1038 ClearPageDoubleMap(page); 1039 for (i = 1; i < (1 << order); i++) { 1040 if (compound) 1041 bad += free_tail_pages_check(page, page + i); 1042 if (unlikely(free_pages_check(page + i))) { 1043 bad++; 1044 continue; 1045 } 1046 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1047 } 1048 } 1049 if (PageMappingFlags(page)) 1050 page->mapping = NULL; 1051 if (memcg_kmem_enabled() && PageKmemcg(page)) 1052 memcg_kmem_uncharge(page, order); 1053 if (check_free) 1054 bad += free_pages_check(page); 1055 if (bad) 1056 return false; 1057 1058 page_cpupid_reset_last(page); 1059 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1060 reset_page_owner(page, order); 1061 1062 if (!PageHighMem(page)) { 1063 debug_check_no_locks_freed(page_address(page), 1064 PAGE_SIZE << order); 1065 debug_check_no_obj_freed(page_address(page), 1066 PAGE_SIZE << order); 1067 } 1068 arch_free_page(page, order); 1069 kernel_poison_pages(page, 1 << order, 0); 1070 kernel_map_pages(page, 1 << order, 0); 1071 kasan_free_pages(page, order); 1072 1073 return true; 1074 } 1075 1076 #ifdef CONFIG_DEBUG_VM 1077 static inline bool free_pcp_prepare(struct page *page) 1078 { 1079 return free_pages_prepare(page, 0, true); 1080 } 1081 1082 static inline bool bulkfree_pcp_prepare(struct page *page) 1083 { 1084 return false; 1085 } 1086 #else 1087 static bool free_pcp_prepare(struct page *page) 1088 { 1089 return free_pages_prepare(page, 0, false); 1090 } 1091 1092 static bool bulkfree_pcp_prepare(struct page *page) 1093 { 1094 return free_pages_check(page); 1095 } 1096 #endif /* CONFIG_DEBUG_VM */ 1097 1098 /* 1099 * Frees a number of pages from the PCP lists 1100 * Assumes all pages on list are in same zone, and of same order. 1101 * count is the number of pages to free. 1102 * 1103 * If the zone was previously in an "all pages pinned" state then look to 1104 * see if this freeing clears that state. 1105 * 1106 * And clear the zone's pages_scanned counter, to hold off the "all pages are 1107 * pinned" detection logic. 1108 */ 1109 static void free_pcppages_bulk(struct zone *zone, int count, 1110 struct per_cpu_pages *pcp) 1111 { 1112 int migratetype = 0; 1113 int batch_free = 0; 1114 bool isolated_pageblocks; 1115 1116 spin_lock(&zone->lock); 1117 isolated_pageblocks = has_isolate_pageblock(zone); 1118 1119 while (count) { 1120 struct page *page; 1121 struct list_head *list; 1122 1123 /* 1124 * Remove pages from lists in a round-robin fashion. A 1125 * batch_free count is maintained that is incremented when an 1126 * empty list is encountered. This is so more pages are freed 1127 * off fuller lists instead of spinning excessively around empty 1128 * lists 1129 */ 1130 do { 1131 batch_free++; 1132 if (++migratetype == MIGRATE_PCPTYPES) 1133 migratetype = 0; 1134 list = &pcp->lists[migratetype]; 1135 } while (list_empty(list)); 1136 1137 /* This is the only non-empty list. Free them all. */ 1138 if (batch_free == MIGRATE_PCPTYPES) 1139 batch_free = count; 1140 1141 do { 1142 int mt; /* migratetype of the to-be-freed page */ 1143 1144 page = list_last_entry(list, struct page, lru); 1145 /* must delete as __free_one_page list manipulates */ 1146 list_del(&page->lru); 1147 1148 mt = get_pcppage_migratetype(page); 1149 /* MIGRATE_ISOLATE page should not go to pcplists */ 1150 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1151 /* Pageblock could have been isolated meanwhile */ 1152 if (unlikely(isolated_pageblocks)) 1153 mt = get_pageblock_migratetype(page); 1154 1155 if (bulkfree_pcp_prepare(page)) 1156 continue; 1157 1158 __free_one_page(page, page_to_pfn(page), zone, 0, mt); 1159 trace_mm_page_pcpu_drain(page, 0, mt); 1160 } while (--count && --batch_free && !list_empty(list)); 1161 } 1162 spin_unlock(&zone->lock); 1163 } 1164 1165 static void free_one_page(struct zone *zone, 1166 struct page *page, unsigned long pfn, 1167 unsigned int order, 1168 int migratetype) 1169 { 1170 spin_lock(&zone->lock); 1171 if (unlikely(has_isolate_pageblock(zone) || 1172 is_migrate_isolate(migratetype))) { 1173 migratetype = get_pfnblock_migratetype(page, pfn); 1174 } 1175 __free_one_page(page, pfn, zone, order, migratetype); 1176 spin_unlock(&zone->lock); 1177 } 1178 1179 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1180 unsigned long zone, int nid) 1181 { 1182 mm_zero_struct_page(page); 1183 set_page_links(page, zone, nid, pfn); 1184 init_page_count(page); 1185 page_mapcount_reset(page); 1186 page_cpupid_reset_last(page); 1187 1188 INIT_LIST_HEAD(&page->lru); 1189 #ifdef WANT_PAGE_VIRTUAL 1190 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1191 if (!is_highmem_idx(zone)) 1192 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1193 #endif 1194 } 1195 1196 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone, 1197 int nid) 1198 { 1199 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid); 1200 } 1201 1202 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1203 static void __meminit init_reserved_page(unsigned long pfn) 1204 { 1205 pg_data_t *pgdat; 1206 int nid, zid; 1207 1208 if (!early_page_uninitialised(pfn)) 1209 return; 1210 1211 nid = early_pfn_to_nid(pfn); 1212 pgdat = NODE_DATA(nid); 1213 1214 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1215 struct zone *zone = &pgdat->node_zones[zid]; 1216 1217 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) 1218 break; 1219 } 1220 __init_single_pfn(pfn, zid, nid); 1221 } 1222 #else 1223 static inline void init_reserved_page(unsigned long pfn) 1224 { 1225 } 1226 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1227 1228 /* 1229 * Initialised pages do not have PageReserved set. This function is 1230 * called for each range allocated by the bootmem allocator and 1231 * marks the pages PageReserved. The remaining valid pages are later 1232 * sent to the buddy page allocator. 1233 */ 1234 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1235 { 1236 unsigned long start_pfn = PFN_DOWN(start); 1237 unsigned long end_pfn = PFN_UP(end); 1238 1239 for (; start_pfn < end_pfn; start_pfn++) { 1240 if (pfn_valid(start_pfn)) { 1241 struct page *page = pfn_to_page(start_pfn); 1242 1243 init_reserved_page(start_pfn); 1244 1245 /* Avoid false-positive PageTail() */ 1246 INIT_LIST_HEAD(&page->lru); 1247 1248 SetPageReserved(page); 1249 } 1250 } 1251 } 1252 1253 static void __free_pages_ok(struct page *page, unsigned int order) 1254 { 1255 unsigned long flags; 1256 int migratetype; 1257 unsigned long pfn = page_to_pfn(page); 1258 1259 if (!free_pages_prepare(page, order, true)) 1260 return; 1261 1262 migratetype = get_pfnblock_migratetype(page, pfn); 1263 local_irq_save(flags); 1264 __count_vm_events(PGFREE, 1 << order); 1265 free_one_page(page_zone(page), page, pfn, order, migratetype); 1266 local_irq_restore(flags); 1267 } 1268 1269 static void __init __free_pages_boot_core(struct page *page, unsigned int order) 1270 { 1271 unsigned int nr_pages = 1 << order; 1272 struct page *p = page; 1273 unsigned int loop; 1274 1275 prefetchw(p); 1276 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1277 prefetchw(p + 1); 1278 __ClearPageReserved(p); 1279 set_page_count(p, 0); 1280 } 1281 __ClearPageReserved(p); 1282 set_page_count(p, 0); 1283 1284 page_zone(page)->managed_pages += nr_pages; 1285 set_page_refcounted(page); 1286 __free_pages(page, order); 1287 } 1288 1289 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \ 1290 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 1291 1292 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1293 1294 int __meminit early_pfn_to_nid(unsigned long pfn) 1295 { 1296 static DEFINE_SPINLOCK(early_pfn_lock); 1297 int nid; 1298 1299 spin_lock(&early_pfn_lock); 1300 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1301 if (nid < 0) 1302 nid = first_online_node; 1303 spin_unlock(&early_pfn_lock); 1304 1305 return nid; 1306 } 1307 #endif 1308 1309 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 1310 static inline bool __meminit __maybe_unused 1311 meminit_pfn_in_nid(unsigned long pfn, int node, 1312 struct mminit_pfnnid_cache *state) 1313 { 1314 int nid; 1315 1316 nid = __early_pfn_to_nid(pfn, state); 1317 if (nid >= 0 && nid != node) 1318 return false; 1319 return true; 1320 } 1321 1322 /* Only safe to use early in boot when initialisation is single-threaded */ 1323 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1324 { 1325 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache); 1326 } 1327 1328 #else 1329 1330 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1331 { 1332 return true; 1333 } 1334 static inline bool __meminit __maybe_unused 1335 meminit_pfn_in_nid(unsigned long pfn, int node, 1336 struct mminit_pfnnid_cache *state) 1337 { 1338 return true; 1339 } 1340 #endif 1341 1342 1343 void __init __free_pages_bootmem(struct page *page, unsigned long pfn, 1344 unsigned int order) 1345 { 1346 if (early_page_uninitialised(pfn)) 1347 return; 1348 return __free_pages_boot_core(page, order); 1349 } 1350 1351 /* 1352 * Check that the whole (or subset of) a pageblock given by the interval of 1353 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1354 * with the migration of free compaction scanner. The scanners then need to 1355 * use only pfn_valid_within() check for arches that allow holes within 1356 * pageblocks. 1357 * 1358 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1359 * 1360 * It's possible on some configurations to have a setup like node0 node1 node0 1361 * i.e. it's possible that all pages within a zones range of pages do not 1362 * belong to a single zone. We assume that a border between node0 and node1 1363 * can occur within a single pageblock, but not a node0 node1 node0 1364 * interleaving within a single pageblock. It is therefore sufficient to check 1365 * the first and last page of a pageblock and avoid checking each individual 1366 * page in a pageblock. 1367 */ 1368 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1369 unsigned long end_pfn, struct zone *zone) 1370 { 1371 struct page *start_page; 1372 struct page *end_page; 1373 1374 /* end_pfn is one past the range we are checking */ 1375 end_pfn--; 1376 1377 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1378 return NULL; 1379 1380 start_page = pfn_to_online_page(start_pfn); 1381 if (!start_page) 1382 return NULL; 1383 1384 if (page_zone(start_page) != zone) 1385 return NULL; 1386 1387 end_page = pfn_to_page(end_pfn); 1388 1389 /* This gives a shorter code than deriving page_zone(end_page) */ 1390 if (page_zone_id(start_page) != page_zone_id(end_page)) 1391 return NULL; 1392 1393 return start_page; 1394 } 1395 1396 void set_zone_contiguous(struct zone *zone) 1397 { 1398 unsigned long block_start_pfn = zone->zone_start_pfn; 1399 unsigned long block_end_pfn; 1400 1401 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1402 for (; block_start_pfn < zone_end_pfn(zone); 1403 block_start_pfn = block_end_pfn, 1404 block_end_pfn += pageblock_nr_pages) { 1405 1406 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1407 1408 if (!__pageblock_pfn_to_page(block_start_pfn, 1409 block_end_pfn, zone)) 1410 return; 1411 } 1412 1413 /* We confirm that there is no hole */ 1414 zone->contiguous = true; 1415 } 1416 1417 void clear_zone_contiguous(struct zone *zone) 1418 { 1419 zone->contiguous = false; 1420 } 1421 1422 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1423 static void __init deferred_free_range(unsigned long pfn, 1424 unsigned long nr_pages) 1425 { 1426 struct page *page; 1427 unsigned long i; 1428 1429 if (!nr_pages) 1430 return; 1431 1432 page = pfn_to_page(pfn); 1433 1434 /* Free a large naturally-aligned chunk if possible */ 1435 if (nr_pages == pageblock_nr_pages && 1436 (pfn & (pageblock_nr_pages - 1)) == 0) { 1437 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1438 __free_pages_boot_core(page, pageblock_order); 1439 return; 1440 } 1441 1442 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1443 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1444 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1445 __free_pages_boot_core(page, 0); 1446 } 1447 } 1448 1449 /* Completion tracking for deferred_init_memmap() threads */ 1450 static atomic_t pgdat_init_n_undone __initdata; 1451 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1452 1453 static inline void __init pgdat_init_report_one_done(void) 1454 { 1455 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1456 complete(&pgdat_init_all_done_comp); 1457 } 1458 1459 /* 1460 * Helper for deferred_init_range, free the given range, reset the counters, and 1461 * return number of pages freed. 1462 */ 1463 static inline unsigned long __init __def_free(unsigned long *nr_free, 1464 unsigned long *free_base_pfn, 1465 struct page **page) 1466 { 1467 unsigned long nr = *nr_free; 1468 1469 deferred_free_range(*free_base_pfn, nr); 1470 *free_base_pfn = 0; 1471 *nr_free = 0; 1472 *page = NULL; 1473 1474 return nr; 1475 } 1476 1477 static unsigned long __init deferred_init_range(int nid, int zid, 1478 unsigned long start_pfn, 1479 unsigned long end_pfn) 1480 { 1481 struct mminit_pfnnid_cache nid_init_state = { }; 1482 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1483 unsigned long free_base_pfn = 0; 1484 unsigned long nr_pages = 0; 1485 unsigned long nr_free = 0; 1486 struct page *page = NULL; 1487 unsigned long pfn; 1488 1489 /* 1490 * First we check if pfn is valid on architectures where it is possible 1491 * to have holes within pageblock_nr_pages. On systems where it is not 1492 * possible, this function is optimized out. 1493 * 1494 * Then, we check if a current large page is valid by only checking the 1495 * validity of the head pfn. 1496 * 1497 * meminit_pfn_in_nid is checked on systems where pfns can interleave 1498 * within a node: a pfn is between start and end of a node, but does not 1499 * belong to this memory node. 1500 * 1501 * Finally, we minimize pfn page lookups and scheduler checks by 1502 * performing it only once every pageblock_nr_pages. 1503 * 1504 * We do it in two loops: first we initialize struct page, than free to 1505 * buddy allocator, becuse while we are freeing pages we can access 1506 * pages that are ahead (computing buddy page in __free_one_page()). 1507 */ 1508 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1509 if (!pfn_valid_within(pfn)) 1510 continue; 1511 if ((pfn & nr_pgmask) || pfn_valid(pfn)) { 1512 if (meminit_pfn_in_nid(pfn, nid, &nid_init_state)) { 1513 if (page && (pfn & nr_pgmask)) 1514 page++; 1515 else 1516 page = pfn_to_page(pfn); 1517 __init_single_page(page, pfn, zid, nid); 1518 cond_resched(); 1519 } 1520 } 1521 } 1522 1523 page = NULL; 1524 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1525 if (!pfn_valid_within(pfn)) { 1526 nr_pages += __def_free(&nr_free, &free_base_pfn, &page); 1527 } else if (!(pfn & nr_pgmask) && !pfn_valid(pfn)) { 1528 nr_pages += __def_free(&nr_free, &free_base_pfn, &page); 1529 } else if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) { 1530 nr_pages += __def_free(&nr_free, &free_base_pfn, &page); 1531 } else if (page && (pfn & nr_pgmask)) { 1532 page++; 1533 nr_free++; 1534 } else { 1535 nr_pages += __def_free(&nr_free, &free_base_pfn, &page); 1536 page = pfn_to_page(pfn); 1537 free_base_pfn = pfn; 1538 nr_free = 1; 1539 cond_resched(); 1540 } 1541 } 1542 /* Free the last block of pages to allocator */ 1543 nr_pages += __def_free(&nr_free, &free_base_pfn, &page); 1544 1545 return nr_pages; 1546 } 1547 1548 /* Initialise remaining memory on a node */ 1549 static int __init deferred_init_memmap(void *data) 1550 { 1551 pg_data_t *pgdat = data; 1552 int nid = pgdat->node_id; 1553 unsigned long start = jiffies; 1554 unsigned long nr_pages = 0; 1555 unsigned long spfn, epfn; 1556 phys_addr_t spa, epa; 1557 int zid; 1558 struct zone *zone; 1559 unsigned long first_init_pfn = pgdat->first_deferred_pfn; 1560 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1561 u64 i; 1562 1563 if (first_init_pfn == ULONG_MAX) { 1564 pgdat_init_report_one_done(); 1565 return 0; 1566 } 1567 1568 /* Bind memory initialisation thread to a local node if possible */ 1569 if (!cpumask_empty(cpumask)) 1570 set_cpus_allowed_ptr(current, cpumask); 1571 1572 /* Sanity check boundaries */ 1573 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 1574 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 1575 pgdat->first_deferred_pfn = ULONG_MAX; 1576 1577 /* Only the highest zone is deferred so find it */ 1578 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1579 zone = pgdat->node_zones + zid; 1580 if (first_init_pfn < zone_end_pfn(zone)) 1581 break; 1582 } 1583 first_init_pfn = max(zone->zone_start_pfn, first_init_pfn); 1584 1585 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) { 1586 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa)); 1587 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa)); 1588 nr_pages += deferred_init_range(nid, zid, spfn, epfn); 1589 } 1590 1591 /* Sanity check that the next zone really is unpopulated */ 1592 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 1593 1594 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages, 1595 jiffies_to_msecs(jiffies - start)); 1596 1597 pgdat_init_report_one_done(); 1598 return 0; 1599 } 1600 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1601 1602 void __init page_alloc_init_late(void) 1603 { 1604 struct zone *zone; 1605 1606 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1607 int nid; 1608 1609 /* There will be num_node_state(N_MEMORY) threads */ 1610 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 1611 for_each_node_state(nid, N_MEMORY) { 1612 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 1613 } 1614 1615 /* Block until all are initialised */ 1616 wait_for_completion(&pgdat_init_all_done_comp); 1617 1618 /* Reinit limits that are based on free pages after the kernel is up */ 1619 files_maxfiles_init(); 1620 #endif 1621 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK 1622 /* Discard memblock private memory */ 1623 memblock_discard(); 1624 #endif 1625 1626 for_each_populated_zone(zone) 1627 set_zone_contiguous(zone); 1628 } 1629 1630 #ifdef CONFIG_CMA 1631 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 1632 void __init init_cma_reserved_pageblock(struct page *page) 1633 { 1634 unsigned i = pageblock_nr_pages; 1635 struct page *p = page; 1636 1637 do { 1638 __ClearPageReserved(p); 1639 set_page_count(p, 0); 1640 } while (++p, --i); 1641 1642 set_pageblock_migratetype(page, MIGRATE_CMA); 1643 1644 if (pageblock_order >= MAX_ORDER) { 1645 i = pageblock_nr_pages; 1646 p = page; 1647 do { 1648 set_page_refcounted(p); 1649 __free_pages(p, MAX_ORDER - 1); 1650 p += MAX_ORDER_NR_PAGES; 1651 } while (i -= MAX_ORDER_NR_PAGES); 1652 } else { 1653 set_page_refcounted(page); 1654 __free_pages(page, pageblock_order); 1655 } 1656 1657 adjust_managed_page_count(page, pageblock_nr_pages); 1658 } 1659 #endif 1660 1661 /* 1662 * The order of subdivision here is critical for the IO subsystem. 1663 * Please do not alter this order without good reasons and regression 1664 * testing. Specifically, as large blocks of memory are subdivided, 1665 * the order in which smaller blocks are delivered depends on the order 1666 * they're subdivided in this function. This is the primary factor 1667 * influencing the order in which pages are delivered to the IO 1668 * subsystem according to empirical testing, and this is also justified 1669 * by considering the behavior of a buddy system containing a single 1670 * large block of memory acted on by a series of small allocations. 1671 * This behavior is a critical factor in sglist merging's success. 1672 * 1673 * -- nyc 1674 */ 1675 static inline void expand(struct zone *zone, struct page *page, 1676 int low, int high, struct free_area *area, 1677 int migratetype) 1678 { 1679 unsigned long size = 1 << high; 1680 1681 while (high > low) { 1682 area--; 1683 high--; 1684 size >>= 1; 1685 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1686 1687 /* 1688 * Mark as guard pages (or page), that will allow to 1689 * merge back to allocator when buddy will be freed. 1690 * Corresponding page table entries will not be touched, 1691 * pages will stay not present in virtual address space 1692 */ 1693 if (set_page_guard(zone, &page[size], high, migratetype)) 1694 continue; 1695 1696 list_add(&page[size].lru, &area->free_list[migratetype]); 1697 area->nr_free++; 1698 set_page_order(&page[size], high); 1699 } 1700 } 1701 1702 static void check_new_page_bad(struct page *page) 1703 { 1704 const char *bad_reason = NULL; 1705 unsigned long bad_flags = 0; 1706 1707 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1708 bad_reason = "nonzero mapcount"; 1709 if (unlikely(page->mapping != NULL)) 1710 bad_reason = "non-NULL mapping"; 1711 if (unlikely(page_ref_count(page) != 0)) 1712 bad_reason = "nonzero _count"; 1713 if (unlikely(page->flags & __PG_HWPOISON)) { 1714 bad_reason = "HWPoisoned (hardware-corrupted)"; 1715 bad_flags = __PG_HWPOISON; 1716 /* Don't complain about hwpoisoned pages */ 1717 page_mapcount_reset(page); /* remove PageBuddy */ 1718 return; 1719 } 1720 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { 1721 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; 1722 bad_flags = PAGE_FLAGS_CHECK_AT_PREP; 1723 } 1724 #ifdef CONFIG_MEMCG 1725 if (unlikely(page->mem_cgroup)) 1726 bad_reason = "page still charged to cgroup"; 1727 #endif 1728 bad_page(page, bad_reason, bad_flags); 1729 } 1730 1731 /* 1732 * This page is about to be returned from the page allocator 1733 */ 1734 static inline int check_new_page(struct page *page) 1735 { 1736 if (likely(page_expected_state(page, 1737 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 1738 return 0; 1739 1740 check_new_page_bad(page); 1741 return 1; 1742 } 1743 1744 static inline bool free_pages_prezeroed(void) 1745 { 1746 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) && 1747 page_poisoning_enabled(); 1748 } 1749 1750 #ifdef CONFIG_DEBUG_VM 1751 static bool check_pcp_refill(struct page *page) 1752 { 1753 return false; 1754 } 1755 1756 static bool check_new_pcp(struct page *page) 1757 { 1758 return check_new_page(page); 1759 } 1760 #else 1761 static bool check_pcp_refill(struct page *page) 1762 { 1763 return check_new_page(page); 1764 } 1765 static bool check_new_pcp(struct page *page) 1766 { 1767 return false; 1768 } 1769 #endif /* CONFIG_DEBUG_VM */ 1770 1771 static bool check_new_pages(struct page *page, unsigned int order) 1772 { 1773 int i; 1774 for (i = 0; i < (1 << order); i++) { 1775 struct page *p = page + i; 1776 1777 if (unlikely(check_new_page(p))) 1778 return true; 1779 } 1780 1781 return false; 1782 } 1783 1784 inline void post_alloc_hook(struct page *page, unsigned int order, 1785 gfp_t gfp_flags) 1786 { 1787 set_page_private(page, 0); 1788 set_page_refcounted(page); 1789 1790 arch_alloc_page(page, order); 1791 kernel_map_pages(page, 1 << order, 1); 1792 kernel_poison_pages(page, 1 << order, 1); 1793 kasan_alloc_pages(page, order); 1794 set_page_owner(page, order, gfp_flags); 1795 } 1796 1797 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1798 unsigned int alloc_flags) 1799 { 1800 int i; 1801 1802 post_alloc_hook(page, order, gfp_flags); 1803 1804 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO)) 1805 for (i = 0; i < (1 << order); i++) 1806 clear_highpage(page + i); 1807 1808 if (order && (gfp_flags & __GFP_COMP)) 1809 prep_compound_page(page, order); 1810 1811 /* 1812 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1813 * allocate the page. The expectation is that the caller is taking 1814 * steps that will free more memory. The caller should avoid the page 1815 * being used for !PFMEMALLOC purposes. 1816 */ 1817 if (alloc_flags & ALLOC_NO_WATERMARKS) 1818 set_page_pfmemalloc(page); 1819 else 1820 clear_page_pfmemalloc(page); 1821 } 1822 1823 /* 1824 * Go through the free lists for the given migratetype and remove 1825 * the smallest available page from the freelists 1826 */ 1827 static __always_inline 1828 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1829 int migratetype) 1830 { 1831 unsigned int current_order; 1832 struct free_area *area; 1833 struct page *page; 1834 1835 /* Find a page of the appropriate size in the preferred list */ 1836 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 1837 area = &(zone->free_area[current_order]); 1838 page = list_first_entry_or_null(&area->free_list[migratetype], 1839 struct page, lru); 1840 if (!page) 1841 continue; 1842 list_del(&page->lru); 1843 rmv_page_order(page); 1844 area->nr_free--; 1845 expand(zone, page, order, current_order, area, migratetype); 1846 set_pcppage_migratetype(page, migratetype); 1847 return page; 1848 } 1849 1850 return NULL; 1851 } 1852 1853 1854 /* 1855 * This array describes the order lists are fallen back to when 1856 * the free lists for the desirable migrate type are depleted 1857 */ 1858 static int fallbacks[MIGRATE_TYPES][4] = { 1859 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 1860 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 1861 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 1862 #ifdef CONFIG_CMA 1863 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 1864 #endif 1865 #ifdef CONFIG_MEMORY_ISOLATION 1866 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 1867 #endif 1868 }; 1869 1870 #ifdef CONFIG_CMA 1871 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1872 unsigned int order) 1873 { 1874 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1875 } 1876 #else 1877 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1878 unsigned int order) { return NULL; } 1879 #endif 1880 1881 /* 1882 * Move the free pages in a range to the free lists of the requested type. 1883 * Note that start_page and end_pages are not aligned on a pageblock 1884 * boundary. If alignment is required, use move_freepages_block() 1885 */ 1886 static int move_freepages(struct zone *zone, 1887 struct page *start_page, struct page *end_page, 1888 int migratetype, int *num_movable) 1889 { 1890 struct page *page; 1891 unsigned int order; 1892 int pages_moved = 0; 1893 1894 #ifndef CONFIG_HOLES_IN_ZONE 1895 /* 1896 * page_zone is not safe to call in this context when 1897 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 1898 * anyway as we check zone boundaries in move_freepages_block(). 1899 * Remove at a later date when no bug reports exist related to 1900 * grouping pages by mobility 1901 */ 1902 VM_BUG_ON(page_zone(start_page) != page_zone(end_page)); 1903 #endif 1904 1905 if (num_movable) 1906 *num_movable = 0; 1907 1908 for (page = start_page; page <= end_page;) { 1909 if (!pfn_valid_within(page_to_pfn(page))) { 1910 page++; 1911 continue; 1912 } 1913 1914 /* Make sure we are not inadvertently changing nodes */ 1915 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1916 1917 if (!PageBuddy(page)) { 1918 /* 1919 * We assume that pages that could be isolated for 1920 * migration are movable. But we don't actually try 1921 * isolating, as that would be expensive. 1922 */ 1923 if (num_movable && 1924 (PageLRU(page) || __PageMovable(page))) 1925 (*num_movable)++; 1926 1927 page++; 1928 continue; 1929 } 1930 1931 order = page_order(page); 1932 list_move(&page->lru, 1933 &zone->free_area[order].free_list[migratetype]); 1934 page += 1 << order; 1935 pages_moved += 1 << order; 1936 } 1937 1938 return pages_moved; 1939 } 1940 1941 int move_freepages_block(struct zone *zone, struct page *page, 1942 int migratetype, int *num_movable) 1943 { 1944 unsigned long start_pfn, end_pfn; 1945 struct page *start_page, *end_page; 1946 1947 start_pfn = page_to_pfn(page); 1948 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 1949 start_page = pfn_to_page(start_pfn); 1950 end_page = start_page + pageblock_nr_pages - 1; 1951 end_pfn = start_pfn + pageblock_nr_pages - 1; 1952 1953 /* Do not cross zone boundaries */ 1954 if (!zone_spans_pfn(zone, start_pfn)) 1955 start_page = page; 1956 if (!zone_spans_pfn(zone, end_pfn)) 1957 return 0; 1958 1959 return move_freepages(zone, start_page, end_page, migratetype, 1960 num_movable); 1961 } 1962 1963 static void change_pageblock_range(struct page *pageblock_page, 1964 int start_order, int migratetype) 1965 { 1966 int nr_pageblocks = 1 << (start_order - pageblock_order); 1967 1968 while (nr_pageblocks--) { 1969 set_pageblock_migratetype(pageblock_page, migratetype); 1970 pageblock_page += pageblock_nr_pages; 1971 } 1972 } 1973 1974 /* 1975 * When we are falling back to another migratetype during allocation, try to 1976 * steal extra free pages from the same pageblocks to satisfy further 1977 * allocations, instead of polluting multiple pageblocks. 1978 * 1979 * If we are stealing a relatively large buddy page, it is likely there will 1980 * be more free pages in the pageblock, so try to steal them all. For 1981 * reclaimable and unmovable allocations, we steal regardless of page size, 1982 * as fragmentation caused by those allocations polluting movable pageblocks 1983 * is worse than movable allocations stealing from unmovable and reclaimable 1984 * pageblocks. 1985 */ 1986 static bool can_steal_fallback(unsigned int order, int start_mt) 1987 { 1988 /* 1989 * Leaving this order check is intended, although there is 1990 * relaxed order check in next check. The reason is that 1991 * we can actually steal whole pageblock if this condition met, 1992 * but, below check doesn't guarantee it and that is just heuristic 1993 * so could be changed anytime. 1994 */ 1995 if (order >= pageblock_order) 1996 return true; 1997 1998 if (order >= pageblock_order / 2 || 1999 start_mt == MIGRATE_RECLAIMABLE || 2000 start_mt == MIGRATE_UNMOVABLE || 2001 page_group_by_mobility_disabled) 2002 return true; 2003 2004 return false; 2005 } 2006 2007 /* 2008 * This function implements actual steal behaviour. If order is large enough, 2009 * we can steal whole pageblock. If not, we first move freepages in this 2010 * pageblock to our migratetype and determine how many already-allocated pages 2011 * are there in the pageblock with a compatible migratetype. If at least half 2012 * of pages are free or compatible, we can change migratetype of the pageblock 2013 * itself, so pages freed in the future will be put on the correct free list. 2014 */ 2015 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2016 int start_type, bool whole_block) 2017 { 2018 unsigned int current_order = page_order(page); 2019 struct free_area *area; 2020 int free_pages, movable_pages, alike_pages; 2021 int old_block_type; 2022 2023 old_block_type = get_pageblock_migratetype(page); 2024 2025 /* 2026 * This can happen due to races and we want to prevent broken 2027 * highatomic accounting. 2028 */ 2029 if (is_migrate_highatomic(old_block_type)) 2030 goto single_page; 2031 2032 /* Take ownership for orders >= pageblock_order */ 2033 if (current_order >= pageblock_order) { 2034 change_pageblock_range(page, current_order, start_type); 2035 goto single_page; 2036 } 2037 2038 /* We are not allowed to try stealing from the whole block */ 2039 if (!whole_block) 2040 goto single_page; 2041 2042 free_pages = move_freepages_block(zone, page, start_type, 2043 &movable_pages); 2044 /* 2045 * Determine how many pages are compatible with our allocation. 2046 * For movable allocation, it's the number of movable pages which 2047 * we just obtained. For other types it's a bit more tricky. 2048 */ 2049 if (start_type == MIGRATE_MOVABLE) { 2050 alike_pages = movable_pages; 2051 } else { 2052 /* 2053 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2054 * to MOVABLE pageblock, consider all non-movable pages as 2055 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2056 * vice versa, be conservative since we can't distinguish the 2057 * exact migratetype of non-movable pages. 2058 */ 2059 if (old_block_type == MIGRATE_MOVABLE) 2060 alike_pages = pageblock_nr_pages 2061 - (free_pages + movable_pages); 2062 else 2063 alike_pages = 0; 2064 } 2065 2066 /* moving whole block can fail due to zone boundary conditions */ 2067 if (!free_pages) 2068 goto single_page; 2069 2070 /* 2071 * If a sufficient number of pages in the block are either free or of 2072 * comparable migratability as our allocation, claim the whole block. 2073 */ 2074 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2075 page_group_by_mobility_disabled) 2076 set_pageblock_migratetype(page, start_type); 2077 2078 return; 2079 2080 single_page: 2081 area = &zone->free_area[current_order]; 2082 list_move(&page->lru, &area->free_list[start_type]); 2083 } 2084 2085 /* 2086 * Check whether there is a suitable fallback freepage with requested order. 2087 * If only_stealable is true, this function returns fallback_mt only if 2088 * we can steal other freepages all together. This would help to reduce 2089 * fragmentation due to mixed migratetype pages in one pageblock. 2090 */ 2091 int find_suitable_fallback(struct free_area *area, unsigned int order, 2092 int migratetype, bool only_stealable, bool *can_steal) 2093 { 2094 int i; 2095 int fallback_mt; 2096 2097 if (area->nr_free == 0) 2098 return -1; 2099 2100 *can_steal = false; 2101 for (i = 0;; i++) { 2102 fallback_mt = fallbacks[migratetype][i]; 2103 if (fallback_mt == MIGRATE_TYPES) 2104 break; 2105 2106 if (list_empty(&area->free_list[fallback_mt])) 2107 continue; 2108 2109 if (can_steal_fallback(order, migratetype)) 2110 *can_steal = true; 2111 2112 if (!only_stealable) 2113 return fallback_mt; 2114 2115 if (*can_steal) 2116 return fallback_mt; 2117 } 2118 2119 return -1; 2120 } 2121 2122 /* 2123 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2124 * there are no empty page blocks that contain a page with a suitable order 2125 */ 2126 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2127 unsigned int alloc_order) 2128 { 2129 int mt; 2130 unsigned long max_managed, flags; 2131 2132 /* 2133 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2134 * Check is race-prone but harmless. 2135 */ 2136 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages; 2137 if (zone->nr_reserved_highatomic >= max_managed) 2138 return; 2139 2140 spin_lock_irqsave(&zone->lock, flags); 2141 2142 /* Recheck the nr_reserved_highatomic limit under the lock */ 2143 if (zone->nr_reserved_highatomic >= max_managed) 2144 goto out_unlock; 2145 2146 /* Yoink! */ 2147 mt = get_pageblock_migratetype(page); 2148 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt) 2149 && !is_migrate_cma(mt)) { 2150 zone->nr_reserved_highatomic += pageblock_nr_pages; 2151 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2152 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2153 } 2154 2155 out_unlock: 2156 spin_unlock_irqrestore(&zone->lock, flags); 2157 } 2158 2159 /* 2160 * Used when an allocation is about to fail under memory pressure. This 2161 * potentially hurts the reliability of high-order allocations when under 2162 * intense memory pressure but failed atomic allocations should be easier 2163 * to recover from than an OOM. 2164 * 2165 * If @force is true, try to unreserve a pageblock even though highatomic 2166 * pageblock is exhausted. 2167 */ 2168 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2169 bool force) 2170 { 2171 struct zonelist *zonelist = ac->zonelist; 2172 unsigned long flags; 2173 struct zoneref *z; 2174 struct zone *zone; 2175 struct page *page; 2176 int order; 2177 bool ret; 2178 2179 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx, 2180 ac->nodemask) { 2181 /* 2182 * Preserve at least one pageblock unless memory pressure 2183 * is really high. 2184 */ 2185 if (!force && zone->nr_reserved_highatomic <= 2186 pageblock_nr_pages) 2187 continue; 2188 2189 spin_lock_irqsave(&zone->lock, flags); 2190 for (order = 0; order < MAX_ORDER; order++) { 2191 struct free_area *area = &(zone->free_area[order]); 2192 2193 page = list_first_entry_or_null( 2194 &area->free_list[MIGRATE_HIGHATOMIC], 2195 struct page, lru); 2196 if (!page) 2197 continue; 2198 2199 /* 2200 * In page freeing path, migratetype change is racy so 2201 * we can counter several free pages in a pageblock 2202 * in this loop althoug we changed the pageblock type 2203 * from highatomic to ac->migratetype. So we should 2204 * adjust the count once. 2205 */ 2206 if (is_migrate_highatomic_page(page)) { 2207 /* 2208 * It should never happen but changes to 2209 * locking could inadvertently allow a per-cpu 2210 * drain to add pages to MIGRATE_HIGHATOMIC 2211 * while unreserving so be safe and watch for 2212 * underflows. 2213 */ 2214 zone->nr_reserved_highatomic -= min( 2215 pageblock_nr_pages, 2216 zone->nr_reserved_highatomic); 2217 } 2218 2219 /* 2220 * Convert to ac->migratetype and avoid the normal 2221 * pageblock stealing heuristics. Minimally, the caller 2222 * is doing the work and needs the pages. More 2223 * importantly, if the block was always converted to 2224 * MIGRATE_UNMOVABLE or another type then the number 2225 * of pageblocks that cannot be completely freed 2226 * may increase. 2227 */ 2228 set_pageblock_migratetype(page, ac->migratetype); 2229 ret = move_freepages_block(zone, page, ac->migratetype, 2230 NULL); 2231 if (ret) { 2232 spin_unlock_irqrestore(&zone->lock, flags); 2233 return ret; 2234 } 2235 } 2236 spin_unlock_irqrestore(&zone->lock, flags); 2237 } 2238 2239 return false; 2240 } 2241 2242 /* 2243 * Try finding a free buddy page on the fallback list and put it on the free 2244 * list of requested migratetype, possibly along with other pages from the same 2245 * block, depending on fragmentation avoidance heuristics. Returns true if 2246 * fallback was found so that __rmqueue_smallest() can grab it. 2247 * 2248 * The use of signed ints for order and current_order is a deliberate 2249 * deviation from the rest of this file, to make the for loop 2250 * condition simpler. 2251 */ 2252 static __always_inline bool 2253 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) 2254 { 2255 struct free_area *area; 2256 int current_order; 2257 struct page *page; 2258 int fallback_mt; 2259 bool can_steal; 2260 2261 /* 2262 * Find the largest available free page in the other list. This roughly 2263 * approximates finding the pageblock with the most free pages, which 2264 * would be too costly to do exactly. 2265 */ 2266 for (current_order = MAX_ORDER - 1; current_order >= order; 2267 --current_order) { 2268 area = &(zone->free_area[current_order]); 2269 fallback_mt = find_suitable_fallback(area, current_order, 2270 start_migratetype, false, &can_steal); 2271 if (fallback_mt == -1) 2272 continue; 2273 2274 /* 2275 * We cannot steal all free pages from the pageblock and the 2276 * requested migratetype is movable. In that case it's better to 2277 * steal and split the smallest available page instead of the 2278 * largest available page, because even if the next movable 2279 * allocation falls back into a different pageblock than this 2280 * one, it won't cause permanent fragmentation. 2281 */ 2282 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2283 && current_order > order) 2284 goto find_smallest; 2285 2286 goto do_steal; 2287 } 2288 2289 return false; 2290 2291 find_smallest: 2292 for (current_order = order; current_order < MAX_ORDER; 2293 current_order++) { 2294 area = &(zone->free_area[current_order]); 2295 fallback_mt = find_suitable_fallback(area, current_order, 2296 start_migratetype, false, &can_steal); 2297 if (fallback_mt != -1) 2298 break; 2299 } 2300 2301 /* 2302 * This should not happen - we already found a suitable fallback 2303 * when looking for the largest page. 2304 */ 2305 VM_BUG_ON(current_order == MAX_ORDER); 2306 2307 do_steal: 2308 page = list_first_entry(&area->free_list[fallback_mt], 2309 struct page, lru); 2310 2311 steal_suitable_fallback(zone, page, start_migratetype, can_steal); 2312 2313 trace_mm_page_alloc_extfrag(page, order, current_order, 2314 start_migratetype, fallback_mt); 2315 2316 return true; 2317 2318 } 2319 2320 /* 2321 * Do the hard work of removing an element from the buddy allocator. 2322 * Call me with the zone->lock already held. 2323 */ 2324 static __always_inline struct page * 2325 __rmqueue(struct zone *zone, unsigned int order, int migratetype) 2326 { 2327 struct page *page; 2328 2329 retry: 2330 page = __rmqueue_smallest(zone, order, migratetype); 2331 if (unlikely(!page)) { 2332 if (migratetype == MIGRATE_MOVABLE) 2333 page = __rmqueue_cma_fallback(zone, order); 2334 2335 if (!page && __rmqueue_fallback(zone, order, migratetype)) 2336 goto retry; 2337 } 2338 2339 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2340 return page; 2341 } 2342 2343 /* 2344 * Obtain a specified number of elements from the buddy allocator, all under 2345 * a single hold of the lock, for efficiency. Add them to the supplied list. 2346 * Returns the number of new pages which were placed at *list. 2347 */ 2348 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2349 unsigned long count, struct list_head *list, 2350 int migratetype) 2351 { 2352 int i, alloced = 0; 2353 2354 spin_lock(&zone->lock); 2355 for (i = 0; i < count; ++i) { 2356 struct page *page = __rmqueue(zone, order, migratetype); 2357 if (unlikely(page == NULL)) 2358 break; 2359 2360 if (unlikely(check_pcp_refill(page))) 2361 continue; 2362 2363 /* 2364 * Split buddy pages returned by expand() are received here in 2365 * physical page order. The page is added to the tail of 2366 * caller's list. From the callers perspective, the linked list 2367 * is ordered by page number under some conditions. This is 2368 * useful for IO devices that can forward direction from the 2369 * head, thus also in the physical page order. This is useful 2370 * for IO devices that can merge IO requests if the physical 2371 * pages are ordered properly. 2372 */ 2373 list_add_tail(&page->lru, list); 2374 alloced++; 2375 if (is_migrate_cma(get_pcppage_migratetype(page))) 2376 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2377 -(1 << order)); 2378 } 2379 2380 /* 2381 * i pages were removed from the buddy list even if some leak due 2382 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 2383 * on i. Do not confuse with 'alloced' which is the number of 2384 * pages added to the pcp list. 2385 */ 2386 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2387 spin_unlock(&zone->lock); 2388 return alloced; 2389 } 2390 2391 #ifdef CONFIG_NUMA 2392 /* 2393 * Called from the vmstat counter updater to drain pagesets of this 2394 * currently executing processor on remote nodes after they have 2395 * expired. 2396 * 2397 * Note that this function must be called with the thread pinned to 2398 * a single processor. 2399 */ 2400 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2401 { 2402 unsigned long flags; 2403 int to_drain, batch; 2404 2405 local_irq_save(flags); 2406 batch = READ_ONCE(pcp->batch); 2407 to_drain = min(pcp->count, batch); 2408 if (to_drain > 0) { 2409 free_pcppages_bulk(zone, to_drain, pcp); 2410 pcp->count -= to_drain; 2411 } 2412 local_irq_restore(flags); 2413 } 2414 #endif 2415 2416 /* 2417 * Drain pcplists of the indicated processor and zone. 2418 * 2419 * The processor must either be the current processor and the 2420 * thread pinned to the current processor or a processor that 2421 * is not online. 2422 */ 2423 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2424 { 2425 unsigned long flags; 2426 struct per_cpu_pageset *pset; 2427 struct per_cpu_pages *pcp; 2428 2429 local_irq_save(flags); 2430 pset = per_cpu_ptr(zone->pageset, cpu); 2431 2432 pcp = &pset->pcp; 2433 if (pcp->count) { 2434 free_pcppages_bulk(zone, pcp->count, pcp); 2435 pcp->count = 0; 2436 } 2437 local_irq_restore(flags); 2438 } 2439 2440 /* 2441 * Drain pcplists of all zones on the indicated processor. 2442 * 2443 * The processor must either be the current processor and the 2444 * thread pinned to the current processor or a processor that 2445 * is not online. 2446 */ 2447 static void drain_pages(unsigned int cpu) 2448 { 2449 struct zone *zone; 2450 2451 for_each_populated_zone(zone) { 2452 drain_pages_zone(cpu, zone); 2453 } 2454 } 2455 2456 /* 2457 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2458 * 2459 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 2460 * the single zone's pages. 2461 */ 2462 void drain_local_pages(struct zone *zone) 2463 { 2464 int cpu = smp_processor_id(); 2465 2466 if (zone) 2467 drain_pages_zone(cpu, zone); 2468 else 2469 drain_pages(cpu); 2470 } 2471 2472 static void drain_local_pages_wq(struct work_struct *work) 2473 { 2474 /* 2475 * drain_all_pages doesn't use proper cpu hotplug protection so 2476 * we can race with cpu offline when the WQ can move this from 2477 * a cpu pinned worker to an unbound one. We can operate on a different 2478 * cpu which is allright but we also have to make sure to not move to 2479 * a different one. 2480 */ 2481 preempt_disable(); 2482 drain_local_pages(NULL); 2483 preempt_enable(); 2484 } 2485 2486 /* 2487 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2488 * 2489 * When zone parameter is non-NULL, spill just the single zone's pages. 2490 * 2491 * Note that this can be extremely slow as the draining happens in a workqueue. 2492 */ 2493 void drain_all_pages(struct zone *zone) 2494 { 2495 int cpu; 2496 2497 /* 2498 * Allocate in the BSS so we wont require allocation in 2499 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2500 */ 2501 static cpumask_t cpus_with_pcps; 2502 2503 /* 2504 * Make sure nobody triggers this path before mm_percpu_wq is fully 2505 * initialized. 2506 */ 2507 if (WARN_ON_ONCE(!mm_percpu_wq)) 2508 return; 2509 2510 /* 2511 * Do not drain if one is already in progress unless it's specific to 2512 * a zone. Such callers are primarily CMA and memory hotplug and need 2513 * the drain to be complete when the call returns. 2514 */ 2515 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2516 if (!zone) 2517 return; 2518 mutex_lock(&pcpu_drain_mutex); 2519 } 2520 2521 /* 2522 * We don't care about racing with CPU hotplug event 2523 * as offline notification will cause the notified 2524 * cpu to drain that CPU pcps and on_each_cpu_mask 2525 * disables preemption as part of its processing 2526 */ 2527 for_each_online_cpu(cpu) { 2528 struct per_cpu_pageset *pcp; 2529 struct zone *z; 2530 bool has_pcps = false; 2531 2532 if (zone) { 2533 pcp = per_cpu_ptr(zone->pageset, cpu); 2534 if (pcp->pcp.count) 2535 has_pcps = true; 2536 } else { 2537 for_each_populated_zone(z) { 2538 pcp = per_cpu_ptr(z->pageset, cpu); 2539 if (pcp->pcp.count) { 2540 has_pcps = true; 2541 break; 2542 } 2543 } 2544 } 2545 2546 if (has_pcps) 2547 cpumask_set_cpu(cpu, &cpus_with_pcps); 2548 else 2549 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2550 } 2551 2552 for_each_cpu(cpu, &cpus_with_pcps) { 2553 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu); 2554 INIT_WORK(work, drain_local_pages_wq); 2555 queue_work_on(cpu, mm_percpu_wq, work); 2556 } 2557 for_each_cpu(cpu, &cpus_with_pcps) 2558 flush_work(per_cpu_ptr(&pcpu_drain, cpu)); 2559 2560 mutex_unlock(&pcpu_drain_mutex); 2561 } 2562 2563 #ifdef CONFIG_HIBERNATION 2564 2565 /* 2566 * Touch the watchdog for every WD_PAGE_COUNT pages. 2567 */ 2568 #define WD_PAGE_COUNT (128*1024) 2569 2570 void mark_free_pages(struct zone *zone) 2571 { 2572 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 2573 unsigned long flags; 2574 unsigned int order, t; 2575 struct page *page; 2576 2577 if (zone_is_empty(zone)) 2578 return; 2579 2580 spin_lock_irqsave(&zone->lock, flags); 2581 2582 max_zone_pfn = zone_end_pfn(zone); 2583 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 2584 if (pfn_valid(pfn)) { 2585 page = pfn_to_page(pfn); 2586 2587 if (!--page_count) { 2588 touch_nmi_watchdog(); 2589 page_count = WD_PAGE_COUNT; 2590 } 2591 2592 if (page_zone(page) != zone) 2593 continue; 2594 2595 if (!swsusp_page_is_forbidden(page)) 2596 swsusp_unset_page_free(page); 2597 } 2598 2599 for_each_migratetype_order(order, t) { 2600 list_for_each_entry(page, 2601 &zone->free_area[order].free_list[t], lru) { 2602 unsigned long i; 2603 2604 pfn = page_to_pfn(page); 2605 for (i = 0; i < (1UL << order); i++) { 2606 if (!--page_count) { 2607 touch_nmi_watchdog(); 2608 page_count = WD_PAGE_COUNT; 2609 } 2610 swsusp_set_page_free(pfn_to_page(pfn + i)); 2611 } 2612 } 2613 } 2614 spin_unlock_irqrestore(&zone->lock, flags); 2615 } 2616 #endif /* CONFIG_PM */ 2617 2618 static bool free_unref_page_prepare(struct page *page, unsigned long pfn) 2619 { 2620 int migratetype; 2621 2622 if (!free_pcp_prepare(page)) 2623 return false; 2624 2625 migratetype = get_pfnblock_migratetype(page, pfn); 2626 set_pcppage_migratetype(page, migratetype); 2627 return true; 2628 } 2629 2630 static void free_unref_page_commit(struct page *page, unsigned long pfn) 2631 { 2632 struct zone *zone = page_zone(page); 2633 struct per_cpu_pages *pcp; 2634 int migratetype; 2635 2636 migratetype = get_pcppage_migratetype(page); 2637 __count_vm_event(PGFREE); 2638 2639 /* 2640 * We only track unmovable, reclaimable and movable on pcp lists. 2641 * Free ISOLATE pages back to the allocator because they are being 2642 * offlined but treat HIGHATOMIC as movable pages so we can get those 2643 * areas back if necessary. Otherwise, we may have to free 2644 * excessively into the page allocator 2645 */ 2646 if (migratetype >= MIGRATE_PCPTYPES) { 2647 if (unlikely(is_migrate_isolate(migratetype))) { 2648 free_one_page(zone, page, pfn, 0, migratetype); 2649 return; 2650 } 2651 migratetype = MIGRATE_MOVABLE; 2652 } 2653 2654 pcp = &this_cpu_ptr(zone->pageset)->pcp; 2655 list_add(&page->lru, &pcp->lists[migratetype]); 2656 pcp->count++; 2657 if (pcp->count >= pcp->high) { 2658 unsigned long batch = READ_ONCE(pcp->batch); 2659 free_pcppages_bulk(zone, batch, pcp); 2660 pcp->count -= batch; 2661 } 2662 } 2663 2664 /* 2665 * Free a 0-order page 2666 */ 2667 void free_unref_page(struct page *page) 2668 { 2669 unsigned long flags; 2670 unsigned long pfn = page_to_pfn(page); 2671 2672 if (!free_unref_page_prepare(page, pfn)) 2673 return; 2674 2675 local_irq_save(flags); 2676 free_unref_page_commit(page, pfn); 2677 local_irq_restore(flags); 2678 } 2679 2680 /* 2681 * Free a list of 0-order pages 2682 */ 2683 void free_unref_page_list(struct list_head *list) 2684 { 2685 struct page *page, *next; 2686 unsigned long flags, pfn; 2687 int batch_count = 0; 2688 2689 /* Prepare pages for freeing */ 2690 list_for_each_entry_safe(page, next, list, lru) { 2691 pfn = page_to_pfn(page); 2692 if (!free_unref_page_prepare(page, pfn)) 2693 list_del(&page->lru); 2694 set_page_private(page, pfn); 2695 } 2696 2697 local_irq_save(flags); 2698 list_for_each_entry_safe(page, next, list, lru) { 2699 unsigned long pfn = page_private(page); 2700 2701 set_page_private(page, 0); 2702 trace_mm_page_free_batched(page); 2703 free_unref_page_commit(page, pfn); 2704 2705 /* 2706 * Guard against excessive IRQ disabled times when we get 2707 * a large list of pages to free. 2708 */ 2709 if (++batch_count == SWAP_CLUSTER_MAX) { 2710 local_irq_restore(flags); 2711 batch_count = 0; 2712 local_irq_save(flags); 2713 } 2714 } 2715 local_irq_restore(flags); 2716 } 2717 2718 /* 2719 * split_page takes a non-compound higher-order page, and splits it into 2720 * n (1<<order) sub-pages: page[0..n] 2721 * Each sub-page must be freed individually. 2722 * 2723 * Note: this is probably too low level an operation for use in drivers. 2724 * Please consult with lkml before using this in your driver. 2725 */ 2726 void split_page(struct page *page, unsigned int order) 2727 { 2728 int i; 2729 2730 VM_BUG_ON_PAGE(PageCompound(page), page); 2731 VM_BUG_ON_PAGE(!page_count(page), page); 2732 2733 for (i = 1; i < (1 << order); i++) 2734 set_page_refcounted(page + i); 2735 split_page_owner(page, order); 2736 } 2737 EXPORT_SYMBOL_GPL(split_page); 2738 2739 int __isolate_free_page(struct page *page, unsigned int order) 2740 { 2741 unsigned long watermark; 2742 struct zone *zone; 2743 int mt; 2744 2745 BUG_ON(!PageBuddy(page)); 2746 2747 zone = page_zone(page); 2748 mt = get_pageblock_migratetype(page); 2749 2750 if (!is_migrate_isolate(mt)) { 2751 /* 2752 * Obey watermarks as if the page was being allocated. We can 2753 * emulate a high-order watermark check with a raised order-0 2754 * watermark, because we already know our high-order page 2755 * exists. 2756 */ 2757 watermark = min_wmark_pages(zone) + (1UL << order); 2758 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 2759 return 0; 2760 2761 __mod_zone_freepage_state(zone, -(1UL << order), mt); 2762 } 2763 2764 /* Remove page from free list */ 2765 list_del(&page->lru); 2766 zone->free_area[order].nr_free--; 2767 rmv_page_order(page); 2768 2769 /* 2770 * Set the pageblock if the isolated page is at least half of a 2771 * pageblock 2772 */ 2773 if (order >= pageblock_order - 1) { 2774 struct page *endpage = page + (1 << order) - 1; 2775 for (; page < endpage; page += pageblock_nr_pages) { 2776 int mt = get_pageblock_migratetype(page); 2777 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt) 2778 && !is_migrate_highatomic(mt)) 2779 set_pageblock_migratetype(page, 2780 MIGRATE_MOVABLE); 2781 } 2782 } 2783 2784 2785 return 1UL << order; 2786 } 2787 2788 /* 2789 * Update NUMA hit/miss statistics 2790 * 2791 * Must be called with interrupts disabled. 2792 */ 2793 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z) 2794 { 2795 #ifdef CONFIG_NUMA 2796 enum numa_stat_item local_stat = NUMA_LOCAL; 2797 2798 /* skip numa counters update if numa stats is disabled */ 2799 if (!static_branch_likely(&vm_numa_stat_key)) 2800 return; 2801 2802 if (z->node != numa_node_id()) 2803 local_stat = NUMA_OTHER; 2804 2805 if (z->node == preferred_zone->node) 2806 __inc_numa_state(z, NUMA_HIT); 2807 else { 2808 __inc_numa_state(z, NUMA_MISS); 2809 __inc_numa_state(preferred_zone, NUMA_FOREIGN); 2810 } 2811 __inc_numa_state(z, local_stat); 2812 #endif 2813 } 2814 2815 /* Remove page from the per-cpu list, caller must protect the list */ 2816 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype, 2817 struct per_cpu_pages *pcp, 2818 struct list_head *list) 2819 { 2820 struct page *page; 2821 2822 do { 2823 if (list_empty(list)) { 2824 pcp->count += rmqueue_bulk(zone, 0, 2825 pcp->batch, list, 2826 migratetype); 2827 if (unlikely(list_empty(list))) 2828 return NULL; 2829 } 2830 2831 page = list_first_entry(list, struct page, lru); 2832 list_del(&page->lru); 2833 pcp->count--; 2834 } while (check_new_pcp(page)); 2835 2836 return page; 2837 } 2838 2839 /* Lock and remove page from the per-cpu list */ 2840 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 2841 struct zone *zone, unsigned int order, 2842 gfp_t gfp_flags, int migratetype) 2843 { 2844 struct per_cpu_pages *pcp; 2845 struct list_head *list; 2846 struct page *page; 2847 unsigned long flags; 2848 2849 local_irq_save(flags); 2850 pcp = &this_cpu_ptr(zone->pageset)->pcp; 2851 list = &pcp->lists[migratetype]; 2852 page = __rmqueue_pcplist(zone, migratetype, pcp, list); 2853 if (page) { 2854 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2855 zone_statistics(preferred_zone, zone); 2856 } 2857 local_irq_restore(flags); 2858 return page; 2859 } 2860 2861 /* 2862 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 2863 */ 2864 static inline 2865 struct page *rmqueue(struct zone *preferred_zone, 2866 struct zone *zone, unsigned int order, 2867 gfp_t gfp_flags, unsigned int alloc_flags, 2868 int migratetype) 2869 { 2870 unsigned long flags; 2871 struct page *page; 2872 2873 if (likely(order == 0)) { 2874 page = rmqueue_pcplist(preferred_zone, zone, order, 2875 gfp_flags, migratetype); 2876 goto out; 2877 } 2878 2879 /* 2880 * We most definitely don't want callers attempting to 2881 * allocate greater than order-1 page units with __GFP_NOFAIL. 2882 */ 2883 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 2884 spin_lock_irqsave(&zone->lock, flags); 2885 2886 do { 2887 page = NULL; 2888 if (alloc_flags & ALLOC_HARDER) { 2889 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2890 if (page) 2891 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2892 } 2893 if (!page) 2894 page = __rmqueue(zone, order, migratetype); 2895 } while (page && check_new_pages(page, order)); 2896 spin_unlock(&zone->lock); 2897 if (!page) 2898 goto failed; 2899 __mod_zone_freepage_state(zone, -(1 << order), 2900 get_pcppage_migratetype(page)); 2901 2902 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2903 zone_statistics(preferred_zone, zone); 2904 local_irq_restore(flags); 2905 2906 out: 2907 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 2908 return page; 2909 2910 failed: 2911 local_irq_restore(flags); 2912 return NULL; 2913 } 2914 2915 #ifdef CONFIG_FAIL_PAGE_ALLOC 2916 2917 static struct { 2918 struct fault_attr attr; 2919 2920 bool ignore_gfp_highmem; 2921 bool ignore_gfp_reclaim; 2922 u32 min_order; 2923 } fail_page_alloc = { 2924 .attr = FAULT_ATTR_INITIALIZER, 2925 .ignore_gfp_reclaim = true, 2926 .ignore_gfp_highmem = true, 2927 .min_order = 1, 2928 }; 2929 2930 static int __init setup_fail_page_alloc(char *str) 2931 { 2932 return setup_fault_attr(&fail_page_alloc.attr, str); 2933 } 2934 __setup("fail_page_alloc=", setup_fail_page_alloc); 2935 2936 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 2937 { 2938 if (order < fail_page_alloc.min_order) 2939 return false; 2940 if (gfp_mask & __GFP_NOFAIL) 2941 return false; 2942 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 2943 return false; 2944 if (fail_page_alloc.ignore_gfp_reclaim && 2945 (gfp_mask & __GFP_DIRECT_RECLAIM)) 2946 return false; 2947 2948 return should_fail(&fail_page_alloc.attr, 1 << order); 2949 } 2950 2951 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 2952 2953 static int __init fail_page_alloc_debugfs(void) 2954 { 2955 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 2956 struct dentry *dir; 2957 2958 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 2959 &fail_page_alloc.attr); 2960 if (IS_ERR(dir)) 2961 return PTR_ERR(dir); 2962 2963 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 2964 &fail_page_alloc.ignore_gfp_reclaim)) 2965 goto fail; 2966 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 2967 &fail_page_alloc.ignore_gfp_highmem)) 2968 goto fail; 2969 if (!debugfs_create_u32("min-order", mode, dir, 2970 &fail_page_alloc.min_order)) 2971 goto fail; 2972 2973 return 0; 2974 fail: 2975 debugfs_remove_recursive(dir); 2976 2977 return -ENOMEM; 2978 } 2979 2980 late_initcall(fail_page_alloc_debugfs); 2981 2982 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 2983 2984 #else /* CONFIG_FAIL_PAGE_ALLOC */ 2985 2986 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 2987 { 2988 return false; 2989 } 2990 2991 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 2992 2993 /* 2994 * Return true if free base pages are above 'mark'. For high-order checks it 2995 * will return true of the order-0 watermark is reached and there is at least 2996 * one free page of a suitable size. Checking now avoids taking the zone lock 2997 * to check in the allocation paths if no pages are free. 2998 */ 2999 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3000 int classzone_idx, unsigned int alloc_flags, 3001 long free_pages) 3002 { 3003 long min = mark; 3004 int o; 3005 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3006 3007 /* free_pages may go negative - that's OK */ 3008 free_pages -= (1 << order) - 1; 3009 3010 if (alloc_flags & ALLOC_HIGH) 3011 min -= min / 2; 3012 3013 /* 3014 * If the caller does not have rights to ALLOC_HARDER then subtract 3015 * the high-atomic reserves. This will over-estimate the size of the 3016 * atomic reserve but it avoids a search. 3017 */ 3018 if (likely(!alloc_harder)) { 3019 free_pages -= z->nr_reserved_highatomic; 3020 } else { 3021 /* 3022 * OOM victims can try even harder than normal ALLOC_HARDER 3023 * users on the grounds that it's definitely going to be in 3024 * the exit path shortly and free memory. Any allocation it 3025 * makes during the free path will be small and short-lived. 3026 */ 3027 if (alloc_flags & ALLOC_OOM) 3028 min -= min / 2; 3029 else 3030 min -= min / 4; 3031 } 3032 3033 3034 #ifdef CONFIG_CMA 3035 /* If allocation can't use CMA areas don't use free CMA pages */ 3036 if (!(alloc_flags & ALLOC_CMA)) 3037 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES); 3038 #endif 3039 3040 /* 3041 * Check watermarks for an order-0 allocation request. If these 3042 * are not met, then a high-order request also cannot go ahead 3043 * even if a suitable page happened to be free. 3044 */ 3045 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 3046 return false; 3047 3048 /* If this is an order-0 request then the watermark is fine */ 3049 if (!order) 3050 return true; 3051 3052 /* For a high-order request, check at least one suitable page is free */ 3053 for (o = order; o < MAX_ORDER; o++) { 3054 struct free_area *area = &z->free_area[o]; 3055 int mt; 3056 3057 if (!area->nr_free) 3058 continue; 3059 3060 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3061 if (!list_empty(&area->free_list[mt])) 3062 return true; 3063 } 3064 3065 #ifdef CONFIG_CMA 3066 if ((alloc_flags & ALLOC_CMA) && 3067 !list_empty(&area->free_list[MIGRATE_CMA])) { 3068 return true; 3069 } 3070 #endif 3071 if (alloc_harder && 3072 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC])) 3073 return true; 3074 } 3075 return false; 3076 } 3077 3078 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3079 int classzone_idx, unsigned int alloc_flags) 3080 { 3081 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3082 zone_page_state(z, NR_FREE_PAGES)); 3083 } 3084 3085 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3086 unsigned long mark, int classzone_idx, unsigned int alloc_flags) 3087 { 3088 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3089 long cma_pages = 0; 3090 3091 #ifdef CONFIG_CMA 3092 /* If allocation can't use CMA areas don't use free CMA pages */ 3093 if (!(alloc_flags & ALLOC_CMA)) 3094 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES); 3095 #endif 3096 3097 /* 3098 * Fast check for order-0 only. If this fails then the reserves 3099 * need to be calculated. There is a corner case where the check 3100 * passes but only the high-order atomic reserve are free. If 3101 * the caller is !atomic then it'll uselessly search the free 3102 * list. That corner case is then slower but it is harmless. 3103 */ 3104 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx]) 3105 return true; 3106 3107 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3108 free_pages); 3109 } 3110 3111 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3112 unsigned long mark, int classzone_idx) 3113 { 3114 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3115 3116 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3117 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3118 3119 return __zone_watermark_ok(z, order, mark, classzone_idx, 0, 3120 free_pages); 3121 } 3122 3123 #ifdef CONFIG_NUMA 3124 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3125 { 3126 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3127 RECLAIM_DISTANCE; 3128 } 3129 #else /* CONFIG_NUMA */ 3130 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3131 { 3132 return true; 3133 } 3134 #endif /* CONFIG_NUMA */ 3135 3136 /* 3137 * get_page_from_freelist goes through the zonelist trying to allocate 3138 * a page. 3139 */ 3140 static struct page * 3141 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3142 const struct alloc_context *ac) 3143 { 3144 struct zoneref *z = ac->preferred_zoneref; 3145 struct zone *zone; 3146 struct pglist_data *last_pgdat_dirty_limit = NULL; 3147 3148 /* 3149 * Scan zonelist, looking for a zone with enough free. 3150 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 3151 */ 3152 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3153 ac->nodemask) { 3154 struct page *page; 3155 unsigned long mark; 3156 3157 if (cpusets_enabled() && 3158 (alloc_flags & ALLOC_CPUSET) && 3159 !__cpuset_zone_allowed(zone, gfp_mask)) 3160 continue; 3161 /* 3162 * When allocating a page cache page for writing, we 3163 * want to get it from a node that is within its dirty 3164 * limit, such that no single node holds more than its 3165 * proportional share of globally allowed dirty pages. 3166 * The dirty limits take into account the node's 3167 * lowmem reserves and high watermark so that kswapd 3168 * should be able to balance it without having to 3169 * write pages from its LRU list. 3170 * 3171 * XXX: For now, allow allocations to potentially 3172 * exceed the per-node dirty limit in the slowpath 3173 * (spread_dirty_pages unset) before going into reclaim, 3174 * which is important when on a NUMA setup the allowed 3175 * nodes are together not big enough to reach the 3176 * global limit. The proper fix for these situations 3177 * will require awareness of nodes in the 3178 * dirty-throttling and the flusher threads. 3179 */ 3180 if (ac->spread_dirty_pages) { 3181 if (last_pgdat_dirty_limit == zone->zone_pgdat) 3182 continue; 3183 3184 if (!node_dirty_ok(zone->zone_pgdat)) { 3185 last_pgdat_dirty_limit = zone->zone_pgdat; 3186 continue; 3187 } 3188 } 3189 3190 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 3191 if (!zone_watermark_fast(zone, order, mark, 3192 ac_classzone_idx(ac), alloc_flags)) { 3193 int ret; 3194 3195 /* Checked here to keep the fast path fast */ 3196 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3197 if (alloc_flags & ALLOC_NO_WATERMARKS) 3198 goto try_this_zone; 3199 3200 if (node_reclaim_mode == 0 || 3201 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3202 continue; 3203 3204 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3205 switch (ret) { 3206 case NODE_RECLAIM_NOSCAN: 3207 /* did not scan */ 3208 continue; 3209 case NODE_RECLAIM_FULL: 3210 /* scanned but unreclaimable */ 3211 continue; 3212 default: 3213 /* did we reclaim enough */ 3214 if (zone_watermark_ok(zone, order, mark, 3215 ac_classzone_idx(ac), alloc_flags)) 3216 goto try_this_zone; 3217 3218 continue; 3219 } 3220 } 3221 3222 try_this_zone: 3223 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3224 gfp_mask, alloc_flags, ac->migratetype); 3225 if (page) { 3226 prep_new_page(page, order, gfp_mask, alloc_flags); 3227 3228 /* 3229 * If this is a high-order atomic allocation then check 3230 * if the pageblock should be reserved for the future 3231 */ 3232 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 3233 reserve_highatomic_pageblock(page, zone, order); 3234 3235 return page; 3236 } 3237 } 3238 3239 return NULL; 3240 } 3241 3242 /* 3243 * Large machines with many possible nodes should not always dump per-node 3244 * meminfo in irq context. 3245 */ 3246 static inline bool should_suppress_show_mem(void) 3247 { 3248 bool ret = false; 3249 3250 #if NODES_SHIFT > 8 3251 ret = in_interrupt(); 3252 #endif 3253 return ret; 3254 } 3255 3256 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3257 { 3258 unsigned int filter = SHOW_MEM_FILTER_NODES; 3259 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1); 3260 3261 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs)) 3262 return; 3263 3264 /* 3265 * This documents exceptions given to allocations in certain 3266 * contexts that are allowed to allocate outside current's set 3267 * of allowed nodes. 3268 */ 3269 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3270 if (tsk_is_oom_victim(current) || 3271 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3272 filter &= ~SHOW_MEM_FILTER_NODES; 3273 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3274 filter &= ~SHOW_MEM_FILTER_NODES; 3275 3276 show_mem(filter, nodemask); 3277 } 3278 3279 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3280 { 3281 struct va_format vaf; 3282 va_list args; 3283 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL, 3284 DEFAULT_RATELIMIT_BURST); 3285 3286 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs)) 3287 return; 3288 3289 va_start(args, fmt); 3290 vaf.fmt = fmt; 3291 vaf.va = &args; 3292 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n", 3293 current->comm, &vaf, gfp_mask, &gfp_mask, 3294 nodemask_pr_args(nodemask)); 3295 va_end(args); 3296 3297 cpuset_print_current_mems_allowed(); 3298 3299 dump_stack(); 3300 warn_alloc_show_mem(gfp_mask, nodemask); 3301 } 3302 3303 static inline struct page * 3304 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3305 unsigned int alloc_flags, 3306 const struct alloc_context *ac) 3307 { 3308 struct page *page; 3309 3310 page = get_page_from_freelist(gfp_mask, order, 3311 alloc_flags|ALLOC_CPUSET, ac); 3312 /* 3313 * fallback to ignore cpuset restriction if our nodes 3314 * are depleted 3315 */ 3316 if (!page) 3317 page = get_page_from_freelist(gfp_mask, order, 3318 alloc_flags, ac); 3319 3320 return page; 3321 } 3322 3323 static inline struct page * 3324 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3325 const struct alloc_context *ac, unsigned long *did_some_progress) 3326 { 3327 struct oom_control oc = { 3328 .zonelist = ac->zonelist, 3329 .nodemask = ac->nodemask, 3330 .memcg = NULL, 3331 .gfp_mask = gfp_mask, 3332 .order = order, 3333 }; 3334 struct page *page; 3335 3336 *did_some_progress = 0; 3337 3338 /* 3339 * Acquire the oom lock. If that fails, somebody else is 3340 * making progress for us. 3341 */ 3342 if (!mutex_trylock(&oom_lock)) { 3343 *did_some_progress = 1; 3344 schedule_timeout_uninterruptible(1); 3345 return NULL; 3346 } 3347 3348 /* 3349 * Go through the zonelist yet one more time, keep very high watermark 3350 * here, this is only to catch a parallel oom killing, we must fail if 3351 * we're still under heavy pressure. But make sure that this reclaim 3352 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3353 * allocation which will never fail due to oom_lock already held. 3354 */ 3355 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3356 ~__GFP_DIRECT_RECLAIM, order, 3357 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3358 if (page) 3359 goto out; 3360 3361 /* Coredumps can quickly deplete all memory reserves */ 3362 if (current->flags & PF_DUMPCORE) 3363 goto out; 3364 /* The OOM killer will not help higher order allocs */ 3365 if (order > PAGE_ALLOC_COSTLY_ORDER) 3366 goto out; 3367 /* 3368 * We have already exhausted all our reclaim opportunities without any 3369 * success so it is time to admit defeat. We will skip the OOM killer 3370 * because it is very likely that the caller has a more reasonable 3371 * fallback than shooting a random task. 3372 */ 3373 if (gfp_mask & __GFP_RETRY_MAYFAIL) 3374 goto out; 3375 /* The OOM killer does not needlessly kill tasks for lowmem */ 3376 if (ac->high_zoneidx < ZONE_NORMAL) 3377 goto out; 3378 if (pm_suspended_storage()) 3379 goto out; 3380 /* 3381 * XXX: GFP_NOFS allocations should rather fail than rely on 3382 * other request to make a forward progress. 3383 * We are in an unfortunate situation where out_of_memory cannot 3384 * do much for this context but let's try it to at least get 3385 * access to memory reserved if the current task is killed (see 3386 * out_of_memory). Once filesystems are ready to handle allocation 3387 * failures more gracefully we should just bail out here. 3388 */ 3389 3390 /* The OOM killer may not free memory on a specific node */ 3391 if (gfp_mask & __GFP_THISNODE) 3392 goto out; 3393 3394 /* Exhausted what can be done so it's blamo time */ 3395 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 3396 *did_some_progress = 1; 3397 3398 /* 3399 * Help non-failing allocations by giving them access to memory 3400 * reserves 3401 */ 3402 if (gfp_mask & __GFP_NOFAIL) 3403 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3404 ALLOC_NO_WATERMARKS, ac); 3405 } 3406 out: 3407 mutex_unlock(&oom_lock); 3408 return page; 3409 } 3410 3411 /* 3412 * Maximum number of compaction retries wit a progress before OOM 3413 * killer is consider as the only way to move forward. 3414 */ 3415 #define MAX_COMPACT_RETRIES 16 3416 3417 #ifdef CONFIG_COMPACTION 3418 /* Try memory compaction for high-order allocations before reclaim */ 3419 static struct page * 3420 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3421 unsigned int alloc_flags, const struct alloc_context *ac, 3422 enum compact_priority prio, enum compact_result *compact_result) 3423 { 3424 struct page *page; 3425 unsigned int noreclaim_flag; 3426 3427 if (!order) 3428 return NULL; 3429 3430 noreclaim_flag = memalloc_noreclaim_save(); 3431 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3432 prio); 3433 memalloc_noreclaim_restore(noreclaim_flag); 3434 3435 if (*compact_result <= COMPACT_INACTIVE) 3436 return NULL; 3437 3438 /* 3439 * At least in one zone compaction wasn't deferred or skipped, so let's 3440 * count a compaction stall 3441 */ 3442 count_vm_event(COMPACTSTALL); 3443 3444 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3445 3446 if (page) { 3447 struct zone *zone = page_zone(page); 3448 3449 zone->compact_blockskip_flush = false; 3450 compaction_defer_reset(zone, order, true); 3451 count_vm_event(COMPACTSUCCESS); 3452 return page; 3453 } 3454 3455 /* 3456 * It's bad if compaction run occurs and fails. The most likely reason 3457 * is that pages exist, but not enough to satisfy watermarks. 3458 */ 3459 count_vm_event(COMPACTFAIL); 3460 3461 cond_resched(); 3462 3463 return NULL; 3464 } 3465 3466 static inline bool 3467 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3468 enum compact_result compact_result, 3469 enum compact_priority *compact_priority, 3470 int *compaction_retries) 3471 { 3472 int max_retries = MAX_COMPACT_RETRIES; 3473 int min_priority; 3474 bool ret = false; 3475 int retries = *compaction_retries; 3476 enum compact_priority priority = *compact_priority; 3477 3478 if (!order) 3479 return false; 3480 3481 if (compaction_made_progress(compact_result)) 3482 (*compaction_retries)++; 3483 3484 /* 3485 * compaction considers all the zone as desperately out of memory 3486 * so it doesn't really make much sense to retry except when the 3487 * failure could be caused by insufficient priority 3488 */ 3489 if (compaction_failed(compact_result)) 3490 goto check_priority; 3491 3492 /* 3493 * make sure the compaction wasn't deferred or didn't bail out early 3494 * due to locks contention before we declare that we should give up. 3495 * But do not retry if the given zonelist is not suitable for 3496 * compaction. 3497 */ 3498 if (compaction_withdrawn(compact_result)) { 3499 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 3500 goto out; 3501 } 3502 3503 /* 3504 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 3505 * costly ones because they are de facto nofail and invoke OOM 3506 * killer to move on while costly can fail and users are ready 3507 * to cope with that. 1/4 retries is rather arbitrary but we 3508 * would need much more detailed feedback from compaction to 3509 * make a better decision. 3510 */ 3511 if (order > PAGE_ALLOC_COSTLY_ORDER) 3512 max_retries /= 4; 3513 if (*compaction_retries <= max_retries) { 3514 ret = true; 3515 goto out; 3516 } 3517 3518 /* 3519 * Make sure there are attempts at the highest priority if we exhausted 3520 * all retries or failed at the lower priorities. 3521 */ 3522 check_priority: 3523 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 3524 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 3525 3526 if (*compact_priority > min_priority) { 3527 (*compact_priority)--; 3528 *compaction_retries = 0; 3529 ret = true; 3530 } 3531 out: 3532 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 3533 return ret; 3534 } 3535 #else 3536 static inline struct page * 3537 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3538 unsigned int alloc_flags, const struct alloc_context *ac, 3539 enum compact_priority prio, enum compact_result *compact_result) 3540 { 3541 *compact_result = COMPACT_SKIPPED; 3542 return NULL; 3543 } 3544 3545 static inline bool 3546 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 3547 enum compact_result compact_result, 3548 enum compact_priority *compact_priority, 3549 int *compaction_retries) 3550 { 3551 struct zone *zone; 3552 struct zoneref *z; 3553 3554 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 3555 return false; 3556 3557 /* 3558 * There are setups with compaction disabled which would prefer to loop 3559 * inside the allocator rather than hit the oom killer prematurely. 3560 * Let's give them a good hope and keep retrying while the order-0 3561 * watermarks are OK. 3562 */ 3563 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3564 ac->nodemask) { 3565 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 3566 ac_classzone_idx(ac), alloc_flags)) 3567 return true; 3568 } 3569 return false; 3570 } 3571 #endif /* CONFIG_COMPACTION */ 3572 3573 #ifdef CONFIG_LOCKDEP 3574 struct lockdep_map __fs_reclaim_map = 3575 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 3576 3577 static bool __need_fs_reclaim(gfp_t gfp_mask) 3578 { 3579 gfp_mask = current_gfp_context(gfp_mask); 3580 3581 /* no reclaim without waiting on it */ 3582 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 3583 return false; 3584 3585 /* this guy won't enter reclaim */ 3586 if ((current->flags & PF_MEMALLOC) && !(gfp_mask & __GFP_NOMEMALLOC)) 3587 return false; 3588 3589 /* We're only interested __GFP_FS allocations for now */ 3590 if (!(gfp_mask & __GFP_FS)) 3591 return false; 3592 3593 if (gfp_mask & __GFP_NOLOCKDEP) 3594 return false; 3595 3596 return true; 3597 } 3598 3599 void fs_reclaim_acquire(gfp_t gfp_mask) 3600 { 3601 if (__need_fs_reclaim(gfp_mask)) 3602 lock_map_acquire(&__fs_reclaim_map); 3603 } 3604 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 3605 3606 void fs_reclaim_release(gfp_t gfp_mask) 3607 { 3608 if (__need_fs_reclaim(gfp_mask)) 3609 lock_map_release(&__fs_reclaim_map); 3610 } 3611 EXPORT_SYMBOL_GPL(fs_reclaim_release); 3612 #endif 3613 3614 /* Perform direct synchronous page reclaim */ 3615 static int 3616 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 3617 const struct alloc_context *ac) 3618 { 3619 struct reclaim_state reclaim_state; 3620 int progress; 3621 unsigned int noreclaim_flag; 3622 3623 cond_resched(); 3624 3625 /* We now go into synchronous reclaim */ 3626 cpuset_memory_pressure_bump(); 3627 noreclaim_flag = memalloc_noreclaim_save(); 3628 fs_reclaim_acquire(gfp_mask); 3629 reclaim_state.reclaimed_slab = 0; 3630 current->reclaim_state = &reclaim_state; 3631 3632 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 3633 ac->nodemask); 3634 3635 current->reclaim_state = NULL; 3636 fs_reclaim_release(gfp_mask); 3637 memalloc_noreclaim_restore(noreclaim_flag); 3638 3639 cond_resched(); 3640 3641 return progress; 3642 } 3643 3644 /* The really slow allocator path where we enter direct reclaim */ 3645 static inline struct page * 3646 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 3647 unsigned int alloc_flags, const struct alloc_context *ac, 3648 unsigned long *did_some_progress) 3649 { 3650 struct page *page = NULL; 3651 bool drained = false; 3652 3653 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 3654 if (unlikely(!(*did_some_progress))) 3655 return NULL; 3656 3657 retry: 3658 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3659 3660 /* 3661 * If an allocation failed after direct reclaim, it could be because 3662 * pages are pinned on the per-cpu lists or in high alloc reserves. 3663 * Shrink them them and try again 3664 */ 3665 if (!page && !drained) { 3666 unreserve_highatomic_pageblock(ac, false); 3667 drain_all_pages(NULL); 3668 drained = true; 3669 goto retry; 3670 } 3671 3672 return page; 3673 } 3674 3675 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac) 3676 { 3677 struct zoneref *z; 3678 struct zone *zone; 3679 pg_data_t *last_pgdat = NULL; 3680 3681 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 3682 ac->high_zoneidx, ac->nodemask) { 3683 if (last_pgdat != zone->zone_pgdat) 3684 wakeup_kswapd(zone, order, ac->high_zoneidx); 3685 last_pgdat = zone->zone_pgdat; 3686 } 3687 } 3688 3689 static inline unsigned int 3690 gfp_to_alloc_flags(gfp_t gfp_mask) 3691 { 3692 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 3693 3694 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 3695 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 3696 3697 /* 3698 * The caller may dip into page reserves a bit more if the caller 3699 * cannot run direct reclaim, or if the caller has realtime scheduling 3700 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 3701 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 3702 */ 3703 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 3704 3705 if (gfp_mask & __GFP_ATOMIC) { 3706 /* 3707 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 3708 * if it can't schedule. 3709 */ 3710 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3711 alloc_flags |= ALLOC_HARDER; 3712 /* 3713 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 3714 * comment for __cpuset_node_allowed(). 3715 */ 3716 alloc_flags &= ~ALLOC_CPUSET; 3717 } else if (unlikely(rt_task(current)) && !in_interrupt()) 3718 alloc_flags |= ALLOC_HARDER; 3719 3720 #ifdef CONFIG_CMA 3721 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3722 alloc_flags |= ALLOC_CMA; 3723 #endif 3724 return alloc_flags; 3725 } 3726 3727 static bool oom_reserves_allowed(struct task_struct *tsk) 3728 { 3729 if (!tsk_is_oom_victim(tsk)) 3730 return false; 3731 3732 /* 3733 * !MMU doesn't have oom reaper so give access to memory reserves 3734 * only to the thread with TIF_MEMDIE set 3735 */ 3736 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 3737 return false; 3738 3739 return true; 3740 } 3741 3742 /* 3743 * Distinguish requests which really need access to full memory 3744 * reserves from oom victims which can live with a portion of it 3745 */ 3746 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 3747 { 3748 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 3749 return 0; 3750 if (gfp_mask & __GFP_MEMALLOC) 3751 return ALLOC_NO_WATERMARKS; 3752 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 3753 return ALLOC_NO_WATERMARKS; 3754 if (!in_interrupt()) { 3755 if (current->flags & PF_MEMALLOC) 3756 return ALLOC_NO_WATERMARKS; 3757 else if (oom_reserves_allowed(current)) 3758 return ALLOC_OOM; 3759 } 3760 3761 return 0; 3762 } 3763 3764 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 3765 { 3766 return !!__gfp_pfmemalloc_flags(gfp_mask); 3767 } 3768 3769 /* 3770 * Checks whether it makes sense to retry the reclaim to make a forward progress 3771 * for the given allocation request. 3772 * 3773 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 3774 * without success, or when we couldn't even meet the watermark if we 3775 * reclaimed all remaining pages on the LRU lists. 3776 * 3777 * Returns true if a retry is viable or false to enter the oom path. 3778 */ 3779 static inline bool 3780 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 3781 struct alloc_context *ac, int alloc_flags, 3782 bool did_some_progress, int *no_progress_loops) 3783 { 3784 struct zone *zone; 3785 struct zoneref *z; 3786 3787 /* 3788 * Costly allocations might have made a progress but this doesn't mean 3789 * their order will become available due to high fragmentation so 3790 * always increment the no progress counter for them 3791 */ 3792 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 3793 *no_progress_loops = 0; 3794 else 3795 (*no_progress_loops)++; 3796 3797 /* 3798 * Make sure we converge to OOM if we cannot make any progress 3799 * several times in the row. 3800 */ 3801 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 3802 /* Before OOM, exhaust highatomic_reserve */ 3803 return unreserve_highatomic_pageblock(ac, true); 3804 } 3805 3806 /* 3807 * Keep reclaiming pages while there is a chance this will lead 3808 * somewhere. If none of the target zones can satisfy our allocation 3809 * request even if all reclaimable pages are considered then we are 3810 * screwed and have to go OOM. 3811 */ 3812 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3813 ac->nodemask) { 3814 unsigned long available; 3815 unsigned long reclaimable; 3816 unsigned long min_wmark = min_wmark_pages(zone); 3817 bool wmark; 3818 3819 available = reclaimable = zone_reclaimable_pages(zone); 3820 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 3821 3822 /* 3823 * Would the allocation succeed if we reclaimed all 3824 * reclaimable pages? 3825 */ 3826 wmark = __zone_watermark_ok(zone, order, min_wmark, 3827 ac_classzone_idx(ac), alloc_flags, available); 3828 trace_reclaim_retry_zone(z, order, reclaimable, 3829 available, min_wmark, *no_progress_loops, wmark); 3830 if (wmark) { 3831 /* 3832 * If we didn't make any progress and have a lot of 3833 * dirty + writeback pages then we should wait for 3834 * an IO to complete to slow down the reclaim and 3835 * prevent from pre mature OOM 3836 */ 3837 if (!did_some_progress) { 3838 unsigned long write_pending; 3839 3840 write_pending = zone_page_state_snapshot(zone, 3841 NR_ZONE_WRITE_PENDING); 3842 3843 if (2 * write_pending > reclaimable) { 3844 congestion_wait(BLK_RW_ASYNC, HZ/10); 3845 return true; 3846 } 3847 } 3848 3849 /* 3850 * Memory allocation/reclaim might be called from a WQ 3851 * context and the current implementation of the WQ 3852 * concurrency control doesn't recognize that 3853 * a particular WQ is congested if the worker thread is 3854 * looping without ever sleeping. Therefore we have to 3855 * do a short sleep here rather than calling 3856 * cond_resched(). 3857 */ 3858 if (current->flags & PF_WQ_WORKER) 3859 schedule_timeout_uninterruptible(1); 3860 else 3861 cond_resched(); 3862 3863 return true; 3864 } 3865 } 3866 3867 return false; 3868 } 3869 3870 static inline bool 3871 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 3872 { 3873 /* 3874 * It's possible that cpuset's mems_allowed and the nodemask from 3875 * mempolicy don't intersect. This should be normally dealt with by 3876 * policy_nodemask(), but it's possible to race with cpuset update in 3877 * such a way the check therein was true, and then it became false 3878 * before we got our cpuset_mems_cookie here. 3879 * This assumes that for all allocations, ac->nodemask can come only 3880 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 3881 * when it does not intersect with the cpuset restrictions) or the 3882 * caller can deal with a violated nodemask. 3883 */ 3884 if (cpusets_enabled() && ac->nodemask && 3885 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 3886 ac->nodemask = NULL; 3887 return true; 3888 } 3889 3890 /* 3891 * When updating a task's mems_allowed or mempolicy nodemask, it is 3892 * possible to race with parallel threads in such a way that our 3893 * allocation can fail while the mask is being updated. If we are about 3894 * to fail, check if the cpuset changed during allocation and if so, 3895 * retry. 3896 */ 3897 if (read_mems_allowed_retry(cpuset_mems_cookie)) 3898 return true; 3899 3900 return false; 3901 } 3902 3903 static inline struct page * 3904 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 3905 struct alloc_context *ac) 3906 { 3907 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 3908 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 3909 struct page *page = NULL; 3910 unsigned int alloc_flags; 3911 unsigned long did_some_progress; 3912 enum compact_priority compact_priority; 3913 enum compact_result compact_result; 3914 int compaction_retries; 3915 int no_progress_loops; 3916 unsigned int cpuset_mems_cookie; 3917 int reserve_flags; 3918 3919 /* 3920 * In the slowpath, we sanity check order to avoid ever trying to 3921 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 3922 * be using allocators in order of preference for an area that is 3923 * too large. 3924 */ 3925 if (order >= MAX_ORDER) { 3926 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 3927 return NULL; 3928 } 3929 3930 /* 3931 * We also sanity check to catch abuse of atomic reserves being used by 3932 * callers that are not in atomic context. 3933 */ 3934 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 3935 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 3936 gfp_mask &= ~__GFP_ATOMIC; 3937 3938 retry_cpuset: 3939 compaction_retries = 0; 3940 no_progress_loops = 0; 3941 compact_priority = DEF_COMPACT_PRIORITY; 3942 cpuset_mems_cookie = read_mems_allowed_begin(); 3943 3944 /* 3945 * The fast path uses conservative alloc_flags to succeed only until 3946 * kswapd needs to be woken up, and to avoid the cost of setting up 3947 * alloc_flags precisely. So we do that now. 3948 */ 3949 alloc_flags = gfp_to_alloc_flags(gfp_mask); 3950 3951 /* 3952 * We need to recalculate the starting point for the zonelist iterator 3953 * because we might have used different nodemask in the fast path, or 3954 * there was a cpuset modification and we are retrying - otherwise we 3955 * could end up iterating over non-eligible zones endlessly. 3956 */ 3957 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 3958 ac->high_zoneidx, ac->nodemask); 3959 if (!ac->preferred_zoneref->zone) 3960 goto nopage; 3961 3962 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 3963 wake_all_kswapds(order, ac); 3964 3965 /* 3966 * The adjusted alloc_flags might result in immediate success, so try 3967 * that first 3968 */ 3969 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3970 if (page) 3971 goto got_pg; 3972 3973 /* 3974 * For costly allocations, try direct compaction first, as it's likely 3975 * that we have enough base pages and don't need to reclaim. For non- 3976 * movable high-order allocations, do that as well, as compaction will 3977 * try prevent permanent fragmentation by migrating from blocks of the 3978 * same migratetype. 3979 * Don't try this for allocations that are allowed to ignore 3980 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 3981 */ 3982 if (can_direct_reclaim && 3983 (costly_order || 3984 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 3985 && !gfp_pfmemalloc_allowed(gfp_mask)) { 3986 page = __alloc_pages_direct_compact(gfp_mask, order, 3987 alloc_flags, ac, 3988 INIT_COMPACT_PRIORITY, 3989 &compact_result); 3990 if (page) 3991 goto got_pg; 3992 3993 /* 3994 * Checks for costly allocations with __GFP_NORETRY, which 3995 * includes THP page fault allocations 3996 */ 3997 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 3998 /* 3999 * If compaction is deferred for high-order allocations, 4000 * it is because sync compaction recently failed. If 4001 * this is the case and the caller requested a THP 4002 * allocation, we do not want to heavily disrupt the 4003 * system, so we fail the allocation instead of entering 4004 * direct reclaim. 4005 */ 4006 if (compact_result == COMPACT_DEFERRED) 4007 goto nopage; 4008 4009 /* 4010 * Looks like reclaim/compaction is worth trying, but 4011 * sync compaction could be very expensive, so keep 4012 * using async compaction. 4013 */ 4014 compact_priority = INIT_COMPACT_PRIORITY; 4015 } 4016 } 4017 4018 retry: 4019 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4020 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 4021 wake_all_kswapds(order, ac); 4022 4023 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4024 if (reserve_flags) 4025 alloc_flags = reserve_flags; 4026 4027 /* 4028 * Reset the zonelist iterators if memory policies can be ignored. 4029 * These allocations are high priority and system rather than user 4030 * orientated. 4031 */ 4032 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4033 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask); 4034 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4035 ac->high_zoneidx, ac->nodemask); 4036 } 4037 4038 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4039 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4040 if (page) 4041 goto got_pg; 4042 4043 /* Caller is not willing to reclaim, we can't balance anything */ 4044 if (!can_direct_reclaim) 4045 goto nopage; 4046 4047 /* Avoid recursion of direct reclaim */ 4048 if (current->flags & PF_MEMALLOC) 4049 goto nopage; 4050 4051 /* Try direct reclaim and then allocating */ 4052 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4053 &did_some_progress); 4054 if (page) 4055 goto got_pg; 4056 4057 /* Try direct compaction and then allocating */ 4058 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4059 compact_priority, &compact_result); 4060 if (page) 4061 goto got_pg; 4062 4063 /* Do not loop if specifically requested */ 4064 if (gfp_mask & __GFP_NORETRY) 4065 goto nopage; 4066 4067 /* 4068 * Do not retry costly high order allocations unless they are 4069 * __GFP_RETRY_MAYFAIL 4070 */ 4071 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 4072 goto nopage; 4073 4074 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4075 did_some_progress > 0, &no_progress_loops)) 4076 goto retry; 4077 4078 /* 4079 * It doesn't make any sense to retry for the compaction if the order-0 4080 * reclaim is not able to make any progress because the current 4081 * implementation of the compaction depends on the sufficient amount 4082 * of free memory (see __compaction_suitable) 4083 */ 4084 if (did_some_progress > 0 && 4085 should_compact_retry(ac, order, alloc_flags, 4086 compact_result, &compact_priority, 4087 &compaction_retries)) 4088 goto retry; 4089 4090 4091 /* Deal with possible cpuset update races before we start OOM killing */ 4092 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4093 goto retry_cpuset; 4094 4095 /* Reclaim has failed us, start killing things */ 4096 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4097 if (page) 4098 goto got_pg; 4099 4100 /* Avoid allocations with no watermarks from looping endlessly */ 4101 if (tsk_is_oom_victim(current) && 4102 (alloc_flags == ALLOC_OOM || 4103 (gfp_mask & __GFP_NOMEMALLOC))) 4104 goto nopage; 4105 4106 /* Retry as long as the OOM killer is making progress */ 4107 if (did_some_progress) { 4108 no_progress_loops = 0; 4109 goto retry; 4110 } 4111 4112 nopage: 4113 /* Deal with possible cpuset update races before we fail */ 4114 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4115 goto retry_cpuset; 4116 4117 /* 4118 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4119 * we always retry 4120 */ 4121 if (gfp_mask & __GFP_NOFAIL) { 4122 /* 4123 * All existing users of the __GFP_NOFAIL are blockable, so warn 4124 * of any new users that actually require GFP_NOWAIT 4125 */ 4126 if (WARN_ON_ONCE(!can_direct_reclaim)) 4127 goto fail; 4128 4129 /* 4130 * PF_MEMALLOC request from this context is rather bizarre 4131 * because we cannot reclaim anything and only can loop waiting 4132 * for somebody to do a work for us 4133 */ 4134 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4135 4136 /* 4137 * non failing costly orders are a hard requirement which we 4138 * are not prepared for much so let's warn about these users 4139 * so that we can identify them and convert them to something 4140 * else. 4141 */ 4142 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); 4143 4144 /* 4145 * Help non-failing allocations by giving them access to memory 4146 * reserves but do not use ALLOC_NO_WATERMARKS because this 4147 * could deplete whole memory reserves which would just make 4148 * the situation worse 4149 */ 4150 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 4151 if (page) 4152 goto got_pg; 4153 4154 cond_resched(); 4155 goto retry; 4156 } 4157 fail: 4158 warn_alloc(gfp_mask, ac->nodemask, 4159 "page allocation failure: order:%u", order); 4160 got_pg: 4161 return page; 4162 } 4163 4164 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4165 int preferred_nid, nodemask_t *nodemask, 4166 struct alloc_context *ac, gfp_t *alloc_mask, 4167 unsigned int *alloc_flags) 4168 { 4169 ac->high_zoneidx = gfp_zone(gfp_mask); 4170 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4171 ac->nodemask = nodemask; 4172 ac->migratetype = gfpflags_to_migratetype(gfp_mask); 4173 4174 if (cpusets_enabled()) { 4175 *alloc_mask |= __GFP_HARDWALL; 4176 if (!ac->nodemask) 4177 ac->nodemask = &cpuset_current_mems_allowed; 4178 else 4179 *alloc_flags |= ALLOC_CPUSET; 4180 } 4181 4182 fs_reclaim_acquire(gfp_mask); 4183 fs_reclaim_release(gfp_mask); 4184 4185 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 4186 4187 if (should_fail_alloc_page(gfp_mask, order)) 4188 return false; 4189 4190 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE) 4191 *alloc_flags |= ALLOC_CMA; 4192 4193 return true; 4194 } 4195 4196 /* Determine whether to spread dirty pages and what the first usable zone */ 4197 static inline void finalise_ac(gfp_t gfp_mask, 4198 unsigned int order, struct alloc_context *ac) 4199 { 4200 /* Dirty zone balancing only done in the fast path */ 4201 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4202 4203 /* 4204 * The preferred zone is used for statistics but crucially it is 4205 * also used as the starting point for the zonelist iterator. It 4206 * may get reset for allocations that ignore memory policies. 4207 */ 4208 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4209 ac->high_zoneidx, ac->nodemask); 4210 } 4211 4212 /* 4213 * This is the 'heart' of the zoned buddy allocator. 4214 */ 4215 struct page * 4216 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid, 4217 nodemask_t *nodemask) 4218 { 4219 struct page *page; 4220 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4221 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */ 4222 struct alloc_context ac = { }; 4223 4224 gfp_mask &= gfp_allowed_mask; 4225 alloc_mask = gfp_mask; 4226 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags)) 4227 return NULL; 4228 4229 finalise_ac(gfp_mask, order, &ac); 4230 4231 /* First allocation attempt */ 4232 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); 4233 if (likely(page)) 4234 goto out; 4235 4236 /* 4237 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4238 * resp. GFP_NOIO which has to be inherited for all allocation requests 4239 * from a particular context which has been marked by 4240 * memalloc_no{fs,io}_{save,restore}. 4241 */ 4242 alloc_mask = current_gfp_context(gfp_mask); 4243 ac.spread_dirty_pages = false; 4244 4245 /* 4246 * Restore the original nodemask if it was potentially replaced with 4247 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4248 */ 4249 if (unlikely(ac.nodemask != nodemask)) 4250 ac.nodemask = nodemask; 4251 4252 page = __alloc_pages_slowpath(alloc_mask, order, &ac); 4253 4254 out: 4255 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page && 4256 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) { 4257 __free_pages(page, order); 4258 page = NULL; 4259 } 4260 4261 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); 4262 4263 return page; 4264 } 4265 EXPORT_SYMBOL(__alloc_pages_nodemask); 4266 4267 /* 4268 * Common helper functions. 4269 */ 4270 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 4271 { 4272 struct page *page; 4273 4274 /* 4275 * __get_free_pages() returns a 32-bit address, which cannot represent 4276 * a highmem page 4277 */ 4278 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 4279 4280 page = alloc_pages(gfp_mask, order); 4281 if (!page) 4282 return 0; 4283 return (unsigned long) page_address(page); 4284 } 4285 EXPORT_SYMBOL(__get_free_pages); 4286 4287 unsigned long get_zeroed_page(gfp_t gfp_mask) 4288 { 4289 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 4290 } 4291 EXPORT_SYMBOL(get_zeroed_page); 4292 4293 void __free_pages(struct page *page, unsigned int order) 4294 { 4295 if (put_page_testzero(page)) { 4296 if (order == 0) 4297 free_unref_page(page); 4298 else 4299 __free_pages_ok(page, order); 4300 } 4301 } 4302 4303 EXPORT_SYMBOL(__free_pages); 4304 4305 void free_pages(unsigned long addr, unsigned int order) 4306 { 4307 if (addr != 0) { 4308 VM_BUG_ON(!virt_addr_valid((void *)addr)); 4309 __free_pages(virt_to_page((void *)addr), order); 4310 } 4311 } 4312 4313 EXPORT_SYMBOL(free_pages); 4314 4315 /* 4316 * Page Fragment: 4317 * An arbitrary-length arbitrary-offset area of memory which resides 4318 * within a 0 or higher order page. Multiple fragments within that page 4319 * are individually refcounted, in the page's reference counter. 4320 * 4321 * The page_frag functions below provide a simple allocation framework for 4322 * page fragments. This is used by the network stack and network device 4323 * drivers to provide a backing region of memory for use as either an 4324 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 4325 */ 4326 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 4327 gfp_t gfp_mask) 4328 { 4329 struct page *page = NULL; 4330 gfp_t gfp = gfp_mask; 4331 4332 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4333 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 4334 __GFP_NOMEMALLOC; 4335 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 4336 PAGE_FRAG_CACHE_MAX_ORDER); 4337 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 4338 #endif 4339 if (unlikely(!page)) 4340 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 4341 4342 nc->va = page ? page_address(page) : NULL; 4343 4344 return page; 4345 } 4346 4347 void __page_frag_cache_drain(struct page *page, unsigned int count) 4348 { 4349 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 4350 4351 if (page_ref_sub_and_test(page, count)) { 4352 unsigned int order = compound_order(page); 4353 4354 if (order == 0) 4355 free_unref_page(page); 4356 else 4357 __free_pages_ok(page, order); 4358 } 4359 } 4360 EXPORT_SYMBOL(__page_frag_cache_drain); 4361 4362 void *page_frag_alloc(struct page_frag_cache *nc, 4363 unsigned int fragsz, gfp_t gfp_mask) 4364 { 4365 unsigned int size = PAGE_SIZE; 4366 struct page *page; 4367 int offset; 4368 4369 if (unlikely(!nc->va)) { 4370 refill: 4371 page = __page_frag_cache_refill(nc, gfp_mask); 4372 if (!page) 4373 return NULL; 4374 4375 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4376 /* if size can vary use size else just use PAGE_SIZE */ 4377 size = nc->size; 4378 #endif 4379 /* Even if we own the page, we do not use atomic_set(). 4380 * This would break get_page_unless_zero() users. 4381 */ 4382 page_ref_add(page, size - 1); 4383 4384 /* reset page count bias and offset to start of new frag */ 4385 nc->pfmemalloc = page_is_pfmemalloc(page); 4386 nc->pagecnt_bias = size; 4387 nc->offset = size; 4388 } 4389 4390 offset = nc->offset - fragsz; 4391 if (unlikely(offset < 0)) { 4392 page = virt_to_page(nc->va); 4393 4394 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 4395 goto refill; 4396 4397 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4398 /* if size can vary use size else just use PAGE_SIZE */ 4399 size = nc->size; 4400 #endif 4401 /* OK, page count is 0, we can safely set it */ 4402 set_page_count(page, size); 4403 4404 /* reset page count bias and offset to start of new frag */ 4405 nc->pagecnt_bias = size; 4406 offset = size - fragsz; 4407 } 4408 4409 nc->pagecnt_bias--; 4410 nc->offset = offset; 4411 4412 return nc->va + offset; 4413 } 4414 EXPORT_SYMBOL(page_frag_alloc); 4415 4416 /* 4417 * Frees a page fragment allocated out of either a compound or order 0 page. 4418 */ 4419 void page_frag_free(void *addr) 4420 { 4421 struct page *page = virt_to_head_page(addr); 4422 4423 if (unlikely(put_page_testzero(page))) 4424 __free_pages_ok(page, compound_order(page)); 4425 } 4426 EXPORT_SYMBOL(page_frag_free); 4427 4428 static void *make_alloc_exact(unsigned long addr, unsigned int order, 4429 size_t size) 4430 { 4431 if (addr) { 4432 unsigned long alloc_end = addr + (PAGE_SIZE << order); 4433 unsigned long used = addr + PAGE_ALIGN(size); 4434 4435 split_page(virt_to_page((void *)addr), order); 4436 while (used < alloc_end) { 4437 free_page(used); 4438 used += PAGE_SIZE; 4439 } 4440 } 4441 return (void *)addr; 4442 } 4443 4444 /** 4445 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 4446 * @size: the number of bytes to allocate 4447 * @gfp_mask: GFP flags for the allocation 4448 * 4449 * This function is similar to alloc_pages(), except that it allocates the 4450 * minimum number of pages to satisfy the request. alloc_pages() can only 4451 * allocate memory in power-of-two pages. 4452 * 4453 * This function is also limited by MAX_ORDER. 4454 * 4455 * Memory allocated by this function must be released by free_pages_exact(). 4456 */ 4457 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 4458 { 4459 unsigned int order = get_order(size); 4460 unsigned long addr; 4461 4462 addr = __get_free_pages(gfp_mask, order); 4463 return make_alloc_exact(addr, order, size); 4464 } 4465 EXPORT_SYMBOL(alloc_pages_exact); 4466 4467 /** 4468 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 4469 * pages on a node. 4470 * @nid: the preferred node ID where memory should be allocated 4471 * @size: the number of bytes to allocate 4472 * @gfp_mask: GFP flags for the allocation 4473 * 4474 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 4475 * back. 4476 */ 4477 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 4478 { 4479 unsigned int order = get_order(size); 4480 struct page *p = alloc_pages_node(nid, gfp_mask, order); 4481 if (!p) 4482 return NULL; 4483 return make_alloc_exact((unsigned long)page_address(p), order, size); 4484 } 4485 4486 /** 4487 * free_pages_exact - release memory allocated via alloc_pages_exact() 4488 * @virt: the value returned by alloc_pages_exact. 4489 * @size: size of allocation, same value as passed to alloc_pages_exact(). 4490 * 4491 * Release the memory allocated by a previous call to alloc_pages_exact. 4492 */ 4493 void free_pages_exact(void *virt, size_t size) 4494 { 4495 unsigned long addr = (unsigned long)virt; 4496 unsigned long end = addr + PAGE_ALIGN(size); 4497 4498 while (addr < end) { 4499 free_page(addr); 4500 addr += PAGE_SIZE; 4501 } 4502 } 4503 EXPORT_SYMBOL(free_pages_exact); 4504 4505 /** 4506 * nr_free_zone_pages - count number of pages beyond high watermark 4507 * @offset: The zone index of the highest zone 4508 * 4509 * nr_free_zone_pages() counts the number of counts pages which are beyond the 4510 * high watermark within all zones at or below a given zone index. For each 4511 * zone, the number of pages is calculated as: 4512 * 4513 * nr_free_zone_pages = managed_pages - high_pages 4514 */ 4515 static unsigned long nr_free_zone_pages(int offset) 4516 { 4517 struct zoneref *z; 4518 struct zone *zone; 4519 4520 /* Just pick one node, since fallback list is circular */ 4521 unsigned long sum = 0; 4522 4523 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 4524 4525 for_each_zone_zonelist(zone, z, zonelist, offset) { 4526 unsigned long size = zone->managed_pages; 4527 unsigned long high = high_wmark_pages(zone); 4528 if (size > high) 4529 sum += size - high; 4530 } 4531 4532 return sum; 4533 } 4534 4535 /** 4536 * nr_free_buffer_pages - count number of pages beyond high watermark 4537 * 4538 * nr_free_buffer_pages() counts the number of pages which are beyond the high 4539 * watermark within ZONE_DMA and ZONE_NORMAL. 4540 */ 4541 unsigned long nr_free_buffer_pages(void) 4542 { 4543 return nr_free_zone_pages(gfp_zone(GFP_USER)); 4544 } 4545 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 4546 4547 /** 4548 * nr_free_pagecache_pages - count number of pages beyond high watermark 4549 * 4550 * nr_free_pagecache_pages() counts the number of pages which are beyond the 4551 * high watermark within all zones. 4552 */ 4553 unsigned long nr_free_pagecache_pages(void) 4554 { 4555 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 4556 } 4557 4558 static inline void show_node(struct zone *zone) 4559 { 4560 if (IS_ENABLED(CONFIG_NUMA)) 4561 printk("Node %d ", zone_to_nid(zone)); 4562 } 4563 4564 long si_mem_available(void) 4565 { 4566 long available; 4567 unsigned long pagecache; 4568 unsigned long wmark_low = 0; 4569 unsigned long pages[NR_LRU_LISTS]; 4570 struct zone *zone; 4571 int lru; 4572 4573 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 4574 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 4575 4576 for_each_zone(zone) 4577 wmark_low += zone->watermark[WMARK_LOW]; 4578 4579 /* 4580 * Estimate the amount of memory available for userspace allocations, 4581 * without causing swapping. 4582 */ 4583 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 4584 4585 /* 4586 * Not all the page cache can be freed, otherwise the system will 4587 * start swapping. Assume at least half of the page cache, or the 4588 * low watermark worth of cache, needs to stay. 4589 */ 4590 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 4591 pagecache -= min(pagecache / 2, wmark_low); 4592 available += pagecache; 4593 4594 /* 4595 * Part of the reclaimable slab consists of items that are in use, 4596 * and cannot be freed. Cap this estimate at the low watermark. 4597 */ 4598 available += global_node_page_state(NR_SLAB_RECLAIMABLE) - 4599 min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2, 4600 wmark_low); 4601 4602 if (available < 0) 4603 available = 0; 4604 return available; 4605 } 4606 EXPORT_SYMBOL_GPL(si_mem_available); 4607 4608 void si_meminfo(struct sysinfo *val) 4609 { 4610 val->totalram = totalram_pages; 4611 val->sharedram = global_node_page_state(NR_SHMEM); 4612 val->freeram = global_zone_page_state(NR_FREE_PAGES); 4613 val->bufferram = nr_blockdev_pages(); 4614 val->totalhigh = totalhigh_pages; 4615 val->freehigh = nr_free_highpages(); 4616 val->mem_unit = PAGE_SIZE; 4617 } 4618 4619 EXPORT_SYMBOL(si_meminfo); 4620 4621 #ifdef CONFIG_NUMA 4622 void si_meminfo_node(struct sysinfo *val, int nid) 4623 { 4624 int zone_type; /* needs to be signed */ 4625 unsigned long managed_pages = 0; 4626 unsigned long managed_highpages = 0; 4627 unsigned long free_highpages = 0; 4628 pg_data_t *pgdat = NODE_DATA(nid); 4629 4630 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 4631 managed_pages += pgdat->node_zones[zone_type].managed_pages; 4632 val->totalram = managed_pages; 4633 val->sharedram = node_page_state(pgdat, NR_SHMEM); 4634 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 4635 #ifdef CONFIG_HIGHMEM 4636 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 4637 struct zone *zone = &pgdat->node_zones[zone_type]; 4638 4639 if (is_highmem(zone)) { 4640 managed_highpages += zone->managed_pages; 4641 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 4642 } 4643 } 4644 val->totalhigh = managed_highpages; 4645 val->freehigh = free_highpages; 4646 #else 4647 val->totalhigh = managed_highpages; 4648 val->freehigh = free_highpages; 4649 #endif 4650 val->mem_unit = PAGE_SIZE; 4651 } 4652 #endif 4653 4654 /* 4655 * Determine whether the node should be displayed or not, depending on whether 4656 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 4657 */ 4658 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 4659 { 4660 if (!(flags & SHOW_MEM_FILTER_NODES)) 4661 return false; 4662 4663 /* 4664 * no node mask - aka implicit memory numa policy. Do not bother with 4665 * the synchronization - read_mems_allowed_begin - because we do not 4666 * have to be precise here. 4667 */ 4668 if (!nodemask) 4669 nodemask = &cpuset_current_mems_allowed; 4670 4671 return !node_isset(nid, *nodemask); 4672 } 4673 4674 #define K(x) ((x) << (PAGE_SHIFT-10)) 4675 4676 static void show_migration_types(unsigned char type) 4677 { 4678 static const char types[MIGRATE_TYPES] = { 4679 [MIGRATE_UNMOVABLE] = 'U', 4680 [MIGRATE_MOVABLE] = 'M', 4681 [MIGRATE_RECLAIMABLE] = 'E', 4682 [MIGRATE_HIGHATOMIC] = 'H', 4683 #ifdef CONFIG_CMA 4684 [MIGRATE_CMA] = 'C', 4685 #endif 4686 #ifdef CONFIG_MEMORY_ISOLATION 4687 [MIGRATE_ISOLATE] = 'I', 4688 #endif 4689 }; 4690 char tmp[MIGRATE_TYPES + 1]; 4691 char *p = tmp; 4692 int i; 4693 4694 for (i = 0; i < MIGRATE_TYPES; i++) { 4695 if (type & (1 << i)) 4696 *p++ = types[i]; 4697 } 4698 4699 *p = '\0'; 4700 printk(KERN_CONT "(%s) ", tmp); 4701 } 4702 4703 /* 4704 * Show free area list (used inside shift_scroll-lock stuff) 4705 * We also calculate the percentage fragmentation. We do this by counting the 4706 * memory on each free list with the exception of the first item on the list. 4707 * 4708 * Bits in @filter: 4709 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 4710 * cpuset. 4711 */ 4712 void show_free_areas(unsigned int filter, nodemask_t *nodemask) 4713 { 4714 unsigned long free_pcp = 0; 4715 int cpu; 4716 struct zone *zone; 4717 pg_data_t *pgdat; 4718 4719 for_each_populated_zone(zone) { 4720 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 4721 continue; 4722 4723 for_each_online_cpu(cpu) 4724 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 4725 } 4726 4727 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 4728 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 4729 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n" 4730 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 4731 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 4732 " free:%lu free_pcp:%lu free_cma:%lu\n", 4733 global_node_page_state(NR_ACTIVE_ANON), 4734 global_node_page_state(NR_INACTIVE_ANON), 4735 global_node_page_state(NR_ISOLATED_ANON), 4736 global_node_page_state(NR_ACTIVE_FILE), 4737 global_node_page_state(NR_INACTIVE_FILE), 4738 global_node_page_state(NR_ISOLATED_FILE), 4739 global_node_page_state(NR_UNEVICTABLE), 4740 global_node_page_state(NR_FILE_DIRTY), 4741 global_node_page_state(NR_WRITEBACK), 4742 global_node_page_state(NR_UNSTABLE_NFS), 4743 global_node_page_state(NR_SLAB_RECLAIMABLE), 4744 global_node_page_state(NR_SLAB_UNRECLAIMABLE), 4745 global_node_page_state(NR_FILE_MAPPED), 4746 global_node_page_state(NR_SHMEM), 4747 global_zone_page_state(NR_PAGETABLE), 4748 global_zone_page_state(NR_BOUNCE), 4749 global_zone_page_state(NR_FREE_PAGES), 4750 free_pcp, 4751 global_zone_page_state(NR_FREE_CMA_PAGES)); 4752 4753 for_each_online_pgdat(pgdat) { 4754 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 4755 continue; 4756 4757 printk("Node %d" 4758 " active_anon:%lukB" 4759 " inactive_anon:%lukB" 4760 " active_file:%lukB" 4761 " inactive_file:%lukB" 4762 " unevictable:%lukB" 4763 " isolated(anon):%lukB" 4764 " isolated(file):%lukB" 4765 " mapped:%lukB" 4766 " dirty:%lukB" 4767 " writeback:%lukB" 4768 " shmem:%lukB" 4769 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4770 " shmem_thp: %lukB" 4771 " shmem_pmdmapped: %lukB" 4772 " anon_thp: %lukB" 4773 #endif 4774 " writeback_tmp:%lukB" 4775 " unstable:%lukB" 4776 " all_unreclaimable? %s" 4777 "\n", 4778 pgdat->node_id, 4779 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 4780 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 4781 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 4782 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 4783 K(node_page_state(pgdat, NR_UNEVICTABLE)), 4784 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 4785 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 4786 K(node_page_state(pgdat, NR_FILE_MAPPED)), 4787 K(node_page_state(pgdat, NR_FILE_DIRTY)), 4788 K(node_page_state(pgdat, NR_WRITEBACK)), 4789 K(node_page_state(pgdat, NR_SHMEM)), 4790 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4791 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR), 4792 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED) 4793 * HPAGE_PMD_NR), 4794 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR), 4795 #endif 4796 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 4797 K(node_page_state(pgdat, NR_UNSTABLE_NFS)), 4798 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 4799 "yes" : "no"); 4800 } 4801 4802 for_each_populated_zone(zone) { 4803 int i; 4804 4805 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 4806 continue; 4807 4808 free_pcp = 0; 4809 for_each_online_cpu(cpu) 4810 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 4811 4812 show_node(zone); 4813 printk(KERN_CONT 4814 "%s" 4815 " free:%lukB" 4816 " min:%lukB" 4817 " low:%lukB" 4818 " high:%lukB" 4819 " active_anon:%lukB" 4820 " inactive_anon:%lukB" 4821 " active_file:%lukB" 4822 " inactive_file:%lukB" 4823 " unevictable:%lukB" 4824 " writepending:%lukB" 4825 " present:%lukB" 4826 " managed:%lukB" 4827 " mlocked:%lukB" 4828 " kernel_stack:%lukB" 4829 " pagetables:%lukB" 4830 " bounce:%lukB" 4831 " free_pcp:%lukB" 4832 " local_pcp:%ukB" 4833 " free_cma:%lukB" 4834 "\n", 4835 zone->name, 4836 K(zone_page_state(zone, NR_FREE_PAGES)), 4837 K(min_wmark_pages(zone)), 4838 K(low_wmark_pages(zone)), 4839 K(high_wmark_pages(zone)), 4840 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 4841 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 4842 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 4843 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 4844 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 4845 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 4846 K(zone->present_pages), 4847 K(zone->managed_pages), 4848 K(zone_page_state(zone, NR_MLOCK)), 4849 zone_page_state(zone, NR_KERNEL_STACK_KB), 4850 K(zone_page_state(zone, NR_PAGETABLE)), 4851 K(zone_page_state(zone, NR_BOUNCE)), 4852 K(free_pcp), 4853 K(this_cpu_read(zone->pageset->pcp.count)), 4854 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 4855 printk("lowmem_reserve[]:"); 4856 for (i = 0; i < MAX_NR_ZONES; i++) 4857 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 4858 printk(KERN_CONT "\n"); 4859 } 4860 4861 for_each_populated_zone(zone) { 4862 unsigned int order; 4863 unsigned long nr[MAX_ORDER], flags, total = 0; 4864 unsigned char types[MAX_ORDER]; 4865 4866 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 4867 continue; 4868 show_node(zone); 4869 printk(KERN_CONT "%s: ", zone->name); 4870 4871 spin_lock_irqsave(&zone->lock, flags); 4872 for (order = 0; order < MAX_ORDER; order++) { 4873 struct free_area *area = &zone->free_area[order]; 4874 int type; 4875 4876 nr[order] = area->nr_free; 4877 total += nr[order] << order; 4878 4879 types[order] = 0; 4880 for (type = 0; type < MIGRATE_TYPES; type++) { 4881 if (!list_empty(&area->free_list[type])) 4882 types[order] |= 1 << type; 4883 } 4884 } 4885 spin_unlock_irqrestore(&zone->lock, flags); 4886 for (order = 0; order < MAX_ORDER; order++) { 4887 printk(KERN_CONT "%lu*%lukB ", 4888 nr[order], K(1UL) << order); 4889 if (nr[order]) 4890 show_migration_types(types[order]); 4891 } 4892 printk(KERN_CONT "= %lukB\n", K(total)); 4893 } 4894 4895 hugetlb_show_meminfo(); 4896 4897 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 4898 4899 show_swap_cache_info(); 4900 } 4901 4902 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 4903 { 4904 zoneref->zone = zone; 4905 zoneref->zone_idx = zone_idx(zone); 4906 } 4907 4908 /* 4909 * Builds allocation fallback zone lists. 4910 * 4911 * Add all populated zones of a node to the zonelist. 4912 */ 4913 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 4914 { 4915 struct zone *zone; 4916 enum zone_type zone_type = MAX_NR_ZONES; 4917 int nr_zones = 0; 4918 4919 do { 4920 zone_type--; 4921 zone = pgdat->node_zones + zone_type; 4922 if (managed_zone(zone)) { 4923 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 4924 check_highest_zone(zone_type); 4925 } 4926 } while (zone_type); 4927 4928 return nr_zones; 4929 } 4930 4931 #ifdef CONFIG_NUMA 4932 4933 static int __parse_numa_zonelist_order(char *s) 4934 { 4935 /* 4936 * We used to support different zonlists modes but they turned 4937 * out to be just not useful. Let's keep the warning in place 4938 * if somebody still use the cmd line parameter so that we do 4939 * not fail it silently 4940 */ 4941 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 4942 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 4943 return -EINVAL; 4944 } 4945 return 0; 4946 } 4947 4948 static __init int setup_numa_zonelist_order(char *s) 4949 { 4950 if (!s) 4951 return 0; 4952 4953 return __parse_numa_zonelist_order(s); 4954 } 4955 early_param("numa_zonelist_order", setup_numa_zonelist_order); 4956 4957 char numa_zonelist_order[] = "Node"; 4958 4959 /* 4960 * sysctl handler for numa_zonelist_order 4961 */ 4962 int numa_zonelist_order_handler(struct ctl_table *table, int write, 4963 void __user *buffer, size_t *length, 4964 loff_t *ppos) 4965 { 4966 char *str; 4967 int ret; 4968 4969 if (!write) 4970 return proc_dostring(table, write, buffer, length, ppos); 4971 str = memdup_user_nul(buffer, 16); 4972 if (IS_ERR(str)) 4973 return PTR_ERR(str); 4974 4975 ret = __parse_numa_zonelist_order(str); 4976 kfree(str); 4977 return ret; 4978 } 4979 4980 4981 #define MAX_NODE_LOAD (nr_online_nodes) 4982 static int node_load[MAX_NUMNODES]; 4983 4984 /** 4985 * find_next_best_node - find the next node that should appear in a given node's fallback list 4986 * @node: node whose fallback list we're appending 4987 * @used_node_mask: nodemask_t of already used nodes 4988 * 4989 * We use a number of factors to determine which is the next node that should 4990 * appear on a given node's fallback list. The node should not have appeared 4991 * already in @node's fallback list, and it should be the next closest node 4992 * according to the distance array (which contains arbitrary distance values 4993 * from each node to each node in the system), and should also prefer nodes 4994 * with no CPUs, since presumably they'll have very little allocation pressure 4995 * on them otherwise. 4996 * It returns -1 if no node is found. 4997 */ 4998 static int find_next_best_node(int node, nodemask_t *used_node_mask) 4999 { 5000 int n, val; 5001 int min_val = INT_MAX; 5002 int best_node = NUMA_NO_NODE; 5003 const struct cpumask *tmp = cpumask_of_node(0); 5004 5005 /* Use the local node if we haven't already */ 5006 if (!node_isset(node, *used_node_mask)) { 5007 node_set(node, *used_node_mask); 5008 return node; 5009 } 5010 5011 for_each_node_state(n, N_MEMORY) { 5012 5013 /* Don't want a node to appear more than once */ 5014 if (node_isset(n, *used_node_mask)) 5015 continue; 5016 5017 /* Use the distance array to find the distance */ 5018 val = node_distance(node, n); 5019 5020 /* Penalize nodes under us ("prefer the next node") */ 5021 val += (n < node); 5022 5023 /* Give preference to headless and unused nodes */ 5024 tmp = cpumask_of_node(n); 5025 if (!cpumask_empty(tmp)) 5026 val += PENALTY_FOR_NODE_WITH_CPUS; 5027 5028 /* Slight preference for less loaded node */ 5029 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 5030 val += node_load[n]; 5031 5032 if (val < min_val) { 5033 min_val = val; 5034 best_node = n; 5035 } 5036 } 5037 5038 if (best_node >= 0) 5039 node_set(best_node, *used_node_mask); 5040 5041 return best_node; 5042 } 5043 5044 5045 /* 5046 * Build zonelists ordered by node and zones within node. 5047 * This results in maximum locality--normal zone overflows into local 5048 * DMA zone, if any--but risks exhausting DMA zone. 5049 */ 5050 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5051 unsigned nr_nodes) 5052 { 5053 struct zoneref *zonerefs; 5054 int i; 5055 5056 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5057 5058 for (i = 0; i < nr_nodes; i++) { 5059 int nr_zones; 5060 5061 pg_data_t *node = NODE_DATA(node_order[i]); 5062 5063 nr_zones = build_zonerefs_node(node, zonerefs); 5064 zonerefs += nr_zones; 5065 } 5066 zonerefs->zone = NULL; 5067 zonerefs->zone_idx = 0; 5068 } 5069 5070 /* 5071 * Build gfp_thisnode zonelists 5072 */ 5073 static void build_thisnode_zonelists(pg_data_t *pgdat) 5074 { 5075 struct zoneref *zonerefs; 5076 int nr_zones; 5077 5078 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5079 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5080 zonerefs += nr_zones; 5081 zonerefs->zone = NULL; 5082 zonerefs->zone_idx = 0; 5083 } 5084 5085 /* 5086 * Build zonelists ordered by zone and nodes within zones. 5087 * This results in conserving DMA zone[s] until all Normal memory is 5088 * exhausted, but results in overflowing to remote node while memory 5089 * may still exist in local DMA zone. 5090 */ 5091 5092 static void build_zonelists(pg_data_t *pgdat) 5093 { 5094 static int node_order[MAX_NUMNODES]; 5095 int node, load, nr_nodes = 0; 5096 nodemask_t used_mask; 5097 int local_node, prev_node; 5098 5099 /* NUMA-aware ordering of nodes */ 5100 local_node = pgdat->node_id; 5101 load = nr_online_nodes; 5102 prev_node = local_node; 5103 nodes_clear(used_mask); 5104 5105 memset(node_order, 0, sizeof(node_order)); 5106 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5107 /* 5108 * We don't want to pressure a particular node. 5109 * So adding penalty to the first node in same 5110 * distance group to make it round-robin. 5111 */ 5112 if (node_distance(local_node, node) != 5113 node_distance(local_node, prev_node)) 5114 node_load[node] = load; 5115 5116 node_order[nr_nodes++] = node; 5117 prev_node = node; 5118 load--; 5119 } 5120 5121 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5122 build_thisnode_zonelists(pgdat); 5123 } 5124 5125 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5126 /* 5127 * Return node id of node used for "local" allocations. 5128 * I.e., first node id of first zone in arg node's generic zonelist. 5129 * Used for initializing percpu 'numa_mem', which is used primarily 5130 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5131 */ 5132 int local_memory_node(int node) 5133 { 5134 struct zoneref *z; 5135 5136 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5137 gfp_zone(GFP_KERNEL), 5138 NULL); 5139 return z->zone->node; 5140 } 5141 #endif 5142 5143 static void setup_min_unmapped_ratio(void); 5144 static void setup_min_slab_ratio(void); 5145 #else /* CONFIG_NUMA */ 5146 5147 static void build_zonelists(pg_data_t *pgdat) 5148 { 5149 int node, local_node; 5150 struct zoneref *zonerefs; 5151 int nr_zones; 5152 5153 local_node = pgdat->node_id; 5154 5155 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5156 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5157 zonerefs += nr_zones; 5158 5159 /* 5160 * Now we build the zonelist so that it contains the zones 5161 * of all the other nodes. 5162 * We don't want to pressure a particular node, so when 5163 * building the zones for node N, we make sure that the 5164 * zones coming right after the local ones are those from 5165 * node N+1 (modulo N) 5166 */ 5167 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 5168 if (!node_online(node)) 5169 continue; 5170 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5171 zonerefs += nr_zones; 5172 } 5173 for (node = 0; node < local_node; node++) { 5174 if (!node_online(node)) 5175 continue; 5176 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5177 zonerefs += nr_zones; 5178 } 5179 5180 zonerefs->zone = NULL; 5181 zonerefs->zone_idx = 0; 5182 } 5183 5184 #endif /* CONFIG_NUMA */ 5185 5186 /* 5187 * Boot pageset table. One per cpu which is going to be used for all 5188 * zones and all nodes. The parameters will be set in such a way 5189 * that an item put on a list will immediately be handed over to 5190 * the buddy list. This is safe since pageset manipulation is done 5191 * with interrupts disabled. 5192 * 5193 * The boot_pagesets must be kept even after bootup is complete for 5194 * unused processors and/or zones. They do play a role for bootstrapping 5195 * hotplugged processors. 5196 * 5197 * zoneinfo_show() and maybe other functions do 5198 * not check if the processor is online before following the pageset pointer. 5199 * Other parts of the kernel may not check if the zone is available. 5200 */ 5201 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 5202 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 5203 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 5204 5205 static void __build_all_zonelists(void *data) 5206 { 5207 int nid; 5208 int __maybe_unused cpu; 5209 pg_data_t *self = data; 5210 static DEFINE_SPINLOCK(lock); 5211 5212 spin_lock(&lock); 5213 5214 #ifdef CONFIG_NUMA 5215 memset(node_load, 0, sizeof(node_load)); 5216 #endif 5217 5218 /* 5219 * This node is hotadded and no memory is yet present. So just 5220 * building zonelists is fine - no need to touch other nodes. 5221 */ 5222 if (self && !node_online(self->node_id)) { 5223 build_zonelists(self); 5224 } else { 5225 for_each_online_node(nid) { 5226 pg_data_t *pgdat = NODE_DATA(nid); 5227 5228 build_zonelists(pgdat); 5229 } 5230 5231 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5232 /* 5233 * We now know the "local memory node" for each node-- 5234 * i.e., the node of the first zone in the generic zonelist. 5235 * Set up numa_mem percpu variable for on-line cpus. During 5236 * boot, only the boot cpu should be on-line; we'll init the 5237 * secondary cpus' numa_mem as they come on-line. During 5238 * node/memory hotplug, we'll fixup all on-line cpus. 5239 */ 5240 for_each_online_cpu(cpu) 5241 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5242 #endif 5243 } 5244 5245 spin_unlock(&lock); 5246 } 5247 5248 static noinline void __init 5249 build_all_zonelists_init(void) 5250 { 5251 int cpu; 5252 5253 __build_all_zonelists(NULL); 5254 5255 /* 5256 * Initialize the boot_pagesets that are going to be used 5257 * for bootstrapping processors. The real pagesets for 5258 * each zone will be allocated later when the per cpu 5259 * allocator is available. 5260 * 5261 * boot_pagesets are used also for bootstrapping offline 5262 * cpus if the system is already booted because the pagesets 5263 * are needed to initialize allocators on a specific cpu too. 5264 * F.e. the percpu allocator needs the page allocator which 5265 * needs the percpu allocator in order to allocate its pagesets 5266 * (a chicken-egg dilemma). 5267 */ 5268 for_each_possible_cpu(cpu) 5269 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 5270 5271 mminit_verify_zonelist(); 5272 cpuset_init_current_mems_allowed(); 5273 } 5274 5275 /* 5276 * unless system_state == SYSTEM_BOOTING. 5277 * 5278 * __ref due to call of __init annotated helper build_all_zonelists_init 5279 * [protected by SYSTEM_BOOTING]. 5280 */ 5281 void __ref build_all_zonelists(pg_data_t *pgdat) 5282 { 5283 if (system_state == SYSTEM_BOOTING) { 5284 build_all_zonelists_init(); 5285 } else { 5286 __build_all_zonelists(pgdat); 5287 /* cpuset refresh routine should be here */ 5288 } 5289 vm_total_pages = nr_free_pagecache_pages(); 5290 /* 5291 * Disable grouping by mobility if the number of pages in the 5292 * system is too low to allow the mechanism to work. It would be 5293 * more accurate, but expensive to check per-zone. This check is 5294 * made on memory-hotadd so a system can start with mobility 5295 * disabled and enable it later 5296 */ 5297 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5298 page_group_by_mobility_disabled = 1; 5299 else 5300 page_group_by_mobility_disabled = 0; 5301 5302 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n", 5303 nr_online_nodes, 5304 page_group_by_mobility_disabled ? "off" : "on", 5305 vm_total_pages); 5306 #ifdef CONFIG_NUMA 5307 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5308 #endif 5309 } 5310 5311 /* 5312 * Initially all pages are reserved - free ones are freed 5313 * up by free_all_bootmem() once the early boot process is 5314 * done. Non-atomic initialization, single-pass. 5315 */ 5316 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 5317 unsigned long start_pfn, enum memmap_context context) 5318 { 5319 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn)); 5320 unsigned long end_pfn = start_pfn + size; 5321 pg_data_t *pgdat = NODE_DATA(nid); 5322 unsigned long pfn; 5323 unsigned long nr_initialised = 0; 5324 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5325 struct memblock_region *r = NULL, *tmp; 5326 #endif 5327 5328 if (highest_memmap_pfn < end_pfn - 1) 5329 highest_memmap_pfn = end_pfn - 1; 5330 5331 /* 5332 * Honor reservation requested by the driver for this ZONE_DEVICE 5333 * memory 5334 */ 5335 if (altmap && start_pfn == altmap->base_pfn) 5336 start_pfn += altmap->reserve; 5337 5338 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 5339 /* 5340 * There can be holes in boot-time mem_map[]s handed to this 5341 * function. They do not exist on hotplugged memory. 5342 */ 5343 if (context != MEMMAP_EARLY) 5344 goto not_early; 5345 5346 if (!early_pfn_valid(pfn)) { 5347 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5348 /* 5349 * Skip to the pfn preceding the next valid one (or 5350 * end_pfn), such that we hit a valid pfn (or end_pfn) 5351 * on our next iteration of the loop. 5352 */ 5353 pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1; 5354 #endif 5355 continue; 5356 } 5357 if (!early_pfn_in_nid(pfn, nid)) 5358 continue; 5359 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised)) 5360 break; 5361 5362 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5363 /* 5364 * Check given memblock attribute by firmware which can affect 5365 * kernel memory layout. If zone==ZONE_MOVABLE but memory is 5366 * mirrored, it's an overlapped memmap init. skip it. 5367 */ 5368 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 5369 if (!r || pfn >= memblock_region_memory_end_pfn(r)) { 5370 for_each_memblock(memory, tmp) 5371 if (pfn < memblock_region_memory_end_pfn(tmp)) 5372 break; 5373 r = tmp; 5374 } 5375 if (pfn >= memblock_region_memory_base_pfn(r) && 5376 memblock_is_mirror(r)) { 5377 /* already initialized as NORMAL */ 5378 pfn = memblock_region_memory_end_pfn(r); 5379 continue; 5380 } 5381 } 5382 #endif 5383 5384 not_early: 5385 /* 5386 * Mark the block movable so that blocks are reserved for 5387 * movable at startup. This will force kernel allocations 5388 * to reserve their blocks rather than leaking throughout 5389 * the address space during boot when many long-lived 5390 * kernel allocations are made. 5391 * 5392 * bitmap is created for zone's valid pfn range. but memmap 5393 * can be created for invalid pages (for alignment) 5394 * check here not to call set_pageblock_migratetype() against 5395 * pfn out of zone. 5396 */ 5397 if (!(pfn & (pageblock_nr_pages - 1))) { 5398 struct page *page = pfn_to_page(pfn); 5399 5400 __init_single_page(page, pfn, zone, nid); 5401 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5402 cond_resched(); 5403 } else { 5404 __init_single_pfn(pfn, zone, nid); 5405 } 5406 } 5407 } 5408 5409 static void __meminit zone_init_free_lists(struct zone *zone) 5410 { 5411 unsigned int order, t; 5412 for_each_migratetype_order(order, t) { 5413 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 5414 zone->free_area[order].nr_free = 0; 5415 } 5416 } 5417 5418 #ifndef __HAVE_ARCH_MEMMAP_INIT 5419 #define memmap_init(size, nid, zone, start_pfn) \ 5420 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 5421 #endif 5422 5423 static int zone_batchsize(struct zone *zone) 5424 { 5425 #ifdef CONFIG_MMU 5426 int batch; 5427 5428 /* 5429 * The per-cpu-pages pools are set to around 1000th of the 5430 * size of the zone. But no more than 1/2 of a meg. 5431 * 5432 * OK, so we don't know how big the cache is. So guess. 5433 */ 5434 batch = zone->managed_pages / 1024; 5435 if (batch * PAGE_SIZE > 512 * 1024) 5436 batch = (512 * 1024) / PAGE_SIZE; 5437 batch /= 4; /* We effectively *= 4 below */ 5438 if (batch < 1) 5439 batch = 1; 5440 5441 /* 5442 * Clamp the batch to a 2^n - 1 value. Having a power 5443 * of 2 value was found to be more likely to have 5444 * suboptimal cache aliasing properties in some cases. 5445 * 5446 * For example if 2 tasks are alternately allocating 5447 * batches of pages, one task can end up with a lot 5448 * of pages of one half of the possible page colors 5449 * and the other with pages of the other colors. 5450 */ 5451 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5452 5453 return batch; 5454 5455 #else 5456 /* The deferral and batching of frees should be suppressed under NOMMU 5457 * conditions. 5458 * 5459 * The problem is that NOMMU needs to be able to allocate large chunks 5460 * of contiguous memory as there's no hardware page translation to 5461 * assemble apparent contiguous memory from discontiguous pages. 5462 * 5463 * Queueing large contiguous runs of pages for batching, however, 5464 * causes the pages to actually be freed in smaller chunks. As there 5465 * can be a significant delay between the individual batches being 5466 * recycled, this leads to the once large chunks of space being 5467 * fragmented and becoming unavailable for high-order allocations. 5468 */ 5469 return 0; 5470 #endif 5471 } 5472 5473 /* 5474 * pcp->high and pcp->batch values are related and dependent on one another: 5475 * ->batch must never be higher then ->high. 5476 * The following function updates them in a safe manner without read side 5477 * locking. 5478 * 5479 * Any new users of pcp->batch and pcp->high should ensure they can cope with 5480 * those fields changing asynchronously (acording the the above rule). 5481 * 5482 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 5483 * outside of boot time (or some other assurance that no concurrent updaters 5484 * exist). 5485 */ 5486 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 5487 unsigned long batch) 5488 { 5489 /* start with a fail safe value for batch */ 5490 pcp->batch = 1; 5491 smp_wmb(); 5492 5493 /* Update high, then batch, in order */ 5494 pcp->high = high; 5495 smp_wmb(); 5496 5497 pcp->batch = batch; 5498 } 5499 5500 /* a companion to pageset_set_high() */ 5501 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 5502 { 5503 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 5504 } 5505 5506 static void pageset_init(struct per_cpu_pageset *p) 5507 { 5508 struct per_cpu_pages *pcp; 5509 int migratetype; 5510 5511 memset(p, 0, sizeof(*p)); 5512 5513 pcp = &p->pcp; 5514 pcp->count = 0; 5515 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 5516 INIT_LIST_HEAD(&pcp->lists[migratetype]); 5517 } 5518 5519 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 5520 { 5521 pageset_init(p); 5522 pageset_set_batch(p, batch); 5523 } 5524 5525 /* 5526 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 5527 * to the value high for the pageset p. 5528 */ 5529 static void pageset_set_high(struct per_cpu_pageset *p, 5530 unsigned long high) 5531 { 5532 unsigned long batch = max(1UL, high / 4); 5533 if ((high / 4) > (PAGE_SHIFT * 8)) 5534 batch = PAGE_SHIFT * 8; 5535 5536 pageset_update(&p->pcp, high, batch); 5537 } 5538 5539 static void pageset_set_high_and_batch(struct zone *zone, 5540 struct per_cpu_pageset *pcp) 5541 { 5542 if (percpu_pagelist_fraction) 5543 pageset_set_high(pcp, 5544 (zone->managed_pages / 5545 percpu_pagelist_fraction)); 5546 else 5547 pageset_set_batch(pcp, zone_batchsize(zone)); 5548 } 5549 5550 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 5551 { 5552 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 5553 5554 pageset_init(pcp); 5555 pageset_set_high_and_batch(zone, pcp); 5556 } 5557 5558 void __meminit setup_zone_pageset(struct zone *zone) 5559 { 5560 int cpu; 5561 zone->pageset = alloc_percpu(struct per_cpu_pageset); 5562 for_each_possible_cpu(cpu) 5563 zone_pageset_init(zone, cpu); 5564 } 5565 5566 /* 5567 * Allocate per cpu pagesets and initialize them. 5568 * Before this call only boot pagesets were available. 5569 */ 5570 void __init setup_per_cpu_pageset(void) 5571 { 5572 struct pglist_data *pgdat; 5573 struct zone *zone; 5574 5575 for_each_populated_zone(zone) 5576 setup_zone_pageset(zone); 5577 5578 for_each_online_pgdat(pgdat) 5579 pgdat->per_cpu_nodestats = 5580 alloc_percpu(struct per_cpu_nodestat); 5581 } 5582 5583 static __meminit void zone_pcp_init(struct zone *zone) 5584 { 5585 /* 5586 * per cpu subsystem is not up at this point. The following code 5587 * relies on the ability of the linker to provide the 5588 * offset of a (static) per cpu variable into the per cpu area. 5589 */ 5590 zone->pageset = &boot_pageset; 5591 5592 if (populated_zone(zone)) 5593 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 5594 zone->name, zone->present_pages, 5595 zone_batchsize(zone)); 5596 } 5597 5598 void __meminit init_currently_empty_zone(struct zone *zone, 5599 unsigned long zone_start_pfn, 5600 unsigned long size) 5601 { 5602 struct pglist_data *pgdat = zone->zone_pgdat; 5603 5604 pgdat->nr_zones = zone_idx(zone) + 1; 5605 5606 zone->zone_start_pfn = zone_start_pfn; 5607 5608 mminit_dprintk(MMINIT_TRACE, "memmap_init", 5609 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 5610 pgdat->node_id, 5611 (unsigned long)zone_idx(zone), 5612 zone_start_pfn, (zone_start_pfn + size)); 5613 5614 zone_init_free_lists(zone); 5615 zone->initialized = 1; 5616 } 5617 5618 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5619 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 5620 5621 /* 5622 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 5623 */ 5624 int __meminit __early_pfn_to_nid(unsigned long pfn, 5625 struct mminit_pfnnid_cache *state) 5626 { 5627 unsigned long start_pfn, end_pfn; 5628 int nid; 5629 5630 if (state->last_start <= pfn && pfn < state->last_end) 5631 return state->last_nid; 5632 5633 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 5634 if (nid != -1) { 5635 state->last_start = start_pfn; 5636 state->last_end = end_pfn; 5637 state->last_nid = nid; 5638 } 5639 5640 return nid; 5641 } 5642 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 5643 5644 /** 5645 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range 5646 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 5647 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid 5648 * 5649 * If an architecture guarantees that all ranges registered contain no holes 5650 * and may be freed, this this function may be used instead of calling 5651 * memblock_free_early_nid() manually. 5652 */ 5653 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 5654 { 5655 unsigned long start_pfn, end_pfn; 5656 int i, this_nid; 5657 5658 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 5659 start_pfn = min(start_pfn, max_low_pfn); 5660 end_pfn = min(end_pfn, max_low_pfn); 5661 5662 if (start_pfn < end_pfn) 5663 memblock_free_early_nid(PFN_PHYS(start_pfn), 5664 (end_pfn - start_pfn) << PAGE_SHIFT, 5665 this_nid); 5666 } 5667 } 5668 5669 /** 5670 * sparse_memory_present_with_active_regions - Call memory_present for each active range 5671 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 5672 * 5673 * If an architecture guarantees that all ranges registered contain no holes and may 5674 * be freed, this function may be used instead of calling memory_present() manually. 5675 */ 5676 void __init sparse_memory_present_with_active_regions(int nid) 5677 { 5678 unsigned long start_pfn, end_pfn; 5679 int i, this_nid; 5680 5681 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 5682 memory_present(this_nid, start_pfn, end_pfn); 5683 } 5684 5685 /** 5686 * get_pfn_range_for_nid - Return the start and end page frames for a node 5687 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 5688 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 5689 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 5690 * 5691 * It returns the start and end page frame of a node based on information 5692 * provided by memblock_set_node(). If called for a node 5693 * with no available memory, a warning is printed and the start and end 5694 * PFNs will be 0. 5695 */ 5696 void __meminit get_pfn_range_for_nid(unsigned int nid, 5697 unsigned long *start_pfn, unsigned long *end_pfn) 5698 { 5699 unsigned long this_start_pfn, this_end_pfn; 5700 int i; 5701 5702 *start_pfn = -1UL; 5703 *end_pfn = 0; 5704 5705 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 5706 *start_pfn = min(*start_pfn, this_start_pfn); 5707 *end_pfn = max(*end_pfn, this_end_pfn); 5708 } 5709 5710 if (*start_pfn == -1UL) 5711 *start_pfn = 0; 5712 } 5713 5714 /* 5715 * This finds a zone that can be used for ZONE_MOVABLE pages. The 5716 * assumption is made that zones within a node are ordered in monotonic 5717 * increasing memory addresses so that the "highest" populated zone is used 5718 */ 5719 static void __init find_usable_zone_for_movable(void) 5720 { 5721 int zone_index; 5722 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 5723 if (zone_index == ZONE_MOVABLE) 5724 continue; 5725 5726 if (arch_zone_highest_possible_pfn[zone_index] > 5727 arch_zone_lowest_possible_pfn[zone_index]) 5728 break; 5729 } 5730 5731 VM_BUG_ON(zone_index == -1); 5732 movable_zone = zone_index; 5733 } 5734 5735 /* 5736 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 5737 * because it is sized independent of architecture. Unlike the other zones, 5738 * the starting point for ZONE_MOVABLE is not fixed. It may be different 5739 * in each node depending on the size of each node and how evenly kernelcore 5740 * is distributed. This helper function adjusts the zone ranges 5741 * provided by the architecture for a given node by using the end of the 5742 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 5743 * zones within a node are in order of monotonic increases memory addresses 5744 */ 5745 static void __meminit adjust_zone_range_for_zone_movable(int nid, 5746 unsigned long zone_type, 5747 unsigned long node_start_pfn, 5748 unsigned long node_end_pfn, 5749 unsigned long *zone_start_pfn, 5750 unsigned long *zone_end_pfn) 5751 { 5752 /* Only adjust if ZONE_MOVABLE is on this node */ 5753 if (zone_movable_pfn[nid]) { 5754 /* Size ZONE_MOVABLE */ 5755 if (zone_type == ZONE_MOVABLE) { 5756 *zone_start_pfn = zone_movable_pfn[nid]; 5757 *zone_end_pfn = min(node_end_pfn, 5758 arch_zone_highest_possible_pfn[movable_zone]); 5759 5760 /* Adjust for ZONE_MOVABLE starting within this range */ 5761 } else if (!mirrored_kernelcore && 5762 *zone_start_pfn < zone_movable_pfn[nid] && 5763 *zone_end_pfn > zone_movable_pfn[nid]) { 5764 *zone_end_pfn = zone_movable_pfn[nid]; 5765 5766 /* Check if this whole range is within ZONE_MOVABLE */ 5767 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 5768 *zone_start_pfn = *zone_end_pfn; 5769 } 5770 } 5771 5772 /* 5773 * Return the number of pages a zone spans in a node, including holes 5774 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 5775 */ 5776 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 5777 unsigned long zone_type, 5778 unsigned long node_start_pfn, 5779 unsigned long node_end_pfn, 5780 unsigned long *zone_start_pfn, 5781 unsigned long *zone_end_pfn, 5782 unsigned long *ignored) 5783 { 5784 /* When hotadd a new node from cpu_up(), the node should be empty */ 5785 if (!node_start_pfn && !node_end_pfn) 5786 return 0; 5787 5788 /* Get the start and end of the zone */ 5789 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 5790 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 5791 adjust_zone_range_for_zone_movable(nid, zone_type, 5792 node_start_pfn, node_end_pfn, 5793 zone_start_pfn, zone_end_pfn); 5794 5795 /* Check that this node has pages within the zone's required range */ 5796 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 5797 return 0; 5798 5799 /* Move the zone boundaries inside the node if necessary */ 5800 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 5801 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 5802 5803 /* Return the spanned pages */ 5804 return *zone_end_pfn - *zone_start_pfn; 5805 } 5806 5807 /* 5808 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 5809 * then all holes in the requested range will be accounted for. 5810 */ 5811 unsigned long __meminit __absent_pages_in_range(int nid, 5812 unsigned long range_start_pfn, 5813 unsigned long range_end_pfn) 5814 { 5815 unsigned long nr_absent = range_end_pfn - range_start_pfn; 5816 unsigned long start_pfn, end_pfn; 5817 int i; 5818 5819 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 5820 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 5821 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 5822 nr_absent -= end_pfn - start_pfn; 5823 } 5824 return nr_absent; 5825 } 5826 5827 /** 5828 * absent_pages_in_range - Return number of page frames in holes within a range 5829 * @start_pfn: The start PFN to start searching for holes 5830 * @end_pfn: The end PFN to stop searching for holes 5831 * 5832 * It returns the number of pages frames in memory holes within a range. 5833 */ 5834 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 5835 unsigned long end_pfn) 5836 { 5837 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 5838 } 5839 5840 /* Return the number of page frames in holes in a zone on a node */ 5841 static unsigned long __meminit zone_absent_pages_in_node(int nid, 5842 unsigned long zone_type, 5843 unsigned long node_start_pfn, 5844 unsigned long node_end_pfn, 5845 unsigned long *ignored) 5846 { 5847 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 5848 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 5849 unsigned long zone_start_pfn, zone_end_pfn; 5850 unsigned long nr_absent; 5851 5852 /* When hotadd a new node from cpu_up(), the node should be empty */ 5853 if (!node_start_pfn && !node_end_pfn) 5854 return 0; 5855 5856 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 5857 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 5858 5859 adjust_zone_range_for_zone_movable(nid, zone_type, 5860 node_start_pfn, node_end_pfn, 5861 &zone_start_pfn, &zone_end_pfn); 5862 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 5863 5864 /* 5865 * ZONE_MOVABLE handling. 5866 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 5867 * and vice versa. 5868 */ 5869 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 5870 unsigned long start_pfn, end_pfn; 5871 struct memblock_region *r; 5872 5873 for_each_memblock(memory, r) { 5874 start_pfn = clamp(memblock_region_memory_base_pfn(r), 5875 zone_start_pfn, zone_end_pfn); 5876 end_pfn = clamp(memblock_region_memory_end_pfn(r), 5877 zone_start_pfn, zone_end_pfn); 5878 5879 if (zone_type == ZONE_MOVABLE && 5880 memblock_is_mirror(r)) 5881 nr_absent += end_pfn - start_pfn; 5882 5883 if (zone_type == ZONE_NORMAL && 5884 !memblock_is_mirror(r)) 5885 nr_absent += end_pfn - start_pfn; 5886 } 5887 } 5888 5889 return nr_absent; 5890 } 5891 5892 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5893 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 5894 unsigned long zone_type, 5895 unsigned long node_start_pfn, 5896 unsigned long node_end_pfn, 5897 unsigned long *zone_start_pfn, 5898 unsigned long *zone_end_pfn, 5899 unsigned long *zones_size) 5900 { 5901 unsigned int zone; 5902 5903 *zone_start_pfn = node_start_pfn; 5904 for (zone = 0; zone < zone_type; zone++) 5905 *zone_start_pfn += zones_size[zone]; 5906 5907 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type]; 5908 5909 return zones_size[zone_type]; 5910 } 5911 5912 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 5913 unsigned long zone_type, 5914 unsigned long node_start_pfn, 5915 unsigned long node_end_pfn, 5916 unsigned long *zholes_size) 5917 { 5918 if (!zholes_size) 5919 return 0; 5920 5921 return zholes_size[zone_type]; 5922 } 5923 5924 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5925 5926 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 5927 unsigned long node_start_pfn, 5928 unsigned long node_end_pfn, 5929 unsigned long *zones_size, 5930 unsigned long *zholes_size) 5931 { 5932 unsigned long realtotalpages = 0, totalpages = 0; 5933 enum zone_type i; 5934 5935 for (i = 0; i < MAX_NR_ZONES; i++) { 5936 struct zone *zone = pgdat->node_zones + i; 5937 unsigned long zone_start_pfn, zone_end_pfn; 5938 unsigned long size, real_size; 5939 5940 size = zone_spanned_pages_in_node(pgdat->node_id, i, 5941 node_start_pfn, 5942 node_end_pfn, 5943 &zone_start_pfn, 5944 &zone_end_pfn, 5945 zones_size); 5946 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i, 5947 node_start_pfn, node_end_pfn, 5948 zholes_size); 5949 if (size) 5950 zone->zone_start_pfn = zone_start_pfn; 5951 else 5952 zone->zone_start_pfn = 0; 5953 zone->spanned_pages = size; 5954 zone->present_pages = real_size; 5955 5956 totalpages += size; 5957 realtotalpages += real_size; 5958 } 5959 5960 pgdat->node_spanned_pages = totalpages; 5961 pgdat->node_present_pages = realtotalpages; 5962 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 5963 realtotalpages); 5964 } 5965 5966 #ifndef CONFIG_SPARSEMEM 5967 /* 5968 * Calculate the size of the zone->blockflags rounded to an unsigned long 5969 * Start by making sure zonesize is a multiple of pageblock_order by rounding 5970 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 5971 * round what is now in bits to nearest long in bits, then return it in 5972 * bytes. 5973 */ 5974 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 5975 { 5976 unsigned long usemapsize; 5977 5978 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 5979 usemapsize = roundup(zonesize, pageblock_nr_pages); 5980 usemapsize = usemapsize >> pageblock_order; 5981 usemapsize *= NR_PAGEBLOCK_BITS; 5982 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 5983 5984 return usemapsize / 8; 5985 } 5986 5987 static void __init setup_usemap(struct pglist_data *pgdat, 5988 struct zone *zone, 5989 unsigned long zone_start_pfn, 5990 unsigned long zonesize) 5991 { 5992 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 5993 zone->pageblock_flags = NULL; 5994 if (usemapsize) 5995 zone->pageblock_flags = 5996 memblock_virt_alloc_node_nopanic(usemapsize, 5997 pgdat->node_id); 5998 } 5999 #else 6000 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 6001 unsigned long zone_start_pfn, unsigned long zonesize) {} 6002 #endif /* CONFIG_SPARSEMEM */ 6003 6004 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 6005 6006 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 6007 void __paginginit set_pageblock_order(void) 6008 { 6009 unsigned int order; 6010 6011 /* Check that pageblock_nr_pages has not already been setup */ 6012 if (pageblock_order) 6013 return; 6014 6015 if (HPAGE_SHIFT > PAGE_SHIFT) 6016 order = HUGETLB_PAGE_ORDER; 6017 else 6018 order = MAX_ORDER - 1; 6019 6020 /* 6021 * Assume the largest contiguous order of interest is a huge page. 6022 * This value may be variable depending on boot parameters on IA64 and 6023 * powerpc. 6024 */ 6025 pageblock_order = order; 6026 } 6027 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6028 6029 /* 6030 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 6031 * is unused as pageblock_order is set at compile-time. See 6032 * include/linux/pageblock-flags.h for the values of pageblock_order based on 6033 * the kernel config 6034 */ 6035 void __paginginit set_pageblock_order(void) 6036 { 6037 } 6038 6039 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6040 6041 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages, 6042 unsigned long present_pages) 6043 { 6044 unsigned long pages = spanned_pages; 6045 6046 /* 6047 * Provide a more accurate estimation if there are holes within 6048 * the zone and SPARSEMEM is in use. If there are holes within the 6049 * zone, each populated memory region may cost us one or two extra 6050 * memmap pages due to alignment because memmap pages for each 6051 * populated regions may not be naturally aligned on page boundary. 6052 * So the (present_pages >> 4) heuristic is a tradeoff for that. 6053 */ 6054 if (spanned_pages > present_pages + (present_pages >> 4) && 6055 IS_ENABLED(CONFIG_SPARSEMEM)) 6056 pages = present_pages; 6057 6058 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 6059 } 6060 6061 /* 6062 * Set up the zone data structures: 6063 * - mark all pages reserved 6064 * - mark all memory queues empty 6065 * - clear the memory bitmaps 6066 * 6067 * NOTE: pgdat should get zeroed by caller. 6068 */ 6069 static void __paginginit free_area_init_core(struct pglist_data *pgdat) 6070 { 6071 enum zone_type j; 6072 int nid = pgdat->node_id; 6073 6074 pgdat_resize_init(pgdat); 6075 #ifdef CONFIG_NUMA_BALANCING 6076 spin_lock_init(&pgdat->numabalancing_migrate_lock); 6077 pgdat->numabalancing_migrate_nr_pages = 0; 6078 pgdat->numabalancing_migrate_next_window = jiffies; 6079 #endif 6080 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6081 spin_lock_init(&pgdat->split_queue_lock); 6082 INIT_LIST_HEAD(&pgdat->split_queue); 6083 pgdat->split_queue_len = 0; 6084 #endif 6085 init_waitqueue_head(&pgdat->kswapd_wait); 6086 init_waitqueue_head(&pgdat->pfmemalloc_wait); 6087 #ifdef CONFIG_COMPACTION 6088 init_waitqueue_head(&pgdat->kcompactd_wait); 6089 #endif 6090 pgdat_page_ext_init(pgdat); 6091 spin_lock_init(&pgdat->lru_lock); 6092 lruvec_init(node_lruvec(pgdat)); 6093 6094 pgdat->per_cpu_nodestats = &boot_nodestats; 6095 6096 for (j = 0; j < MAX_NR_ZONES; j++) { 6097 struct zone *zone = pgdat->node_zones + j; 6098 unsigned long size, realsize, freesize, memmap_pages; 6099 unsigned long zone_start_pfn = zone->zone_start_pfn; 6100 6101 size = zone->spanned_pages; 6102 realsize = freesize = zone->present_pages; 6103 6104 /* 6105 * Adjust freesize so that it accounts for how much memory 6106 * is used by this zone for memmap. This affects the watermark 6107 * and per-cpu initialisations 6108 */ 6109 memmap_pages = calc_memmap_size(size, realsize); 6110 if (!is_highmem_idx(j)) { 6111 if (freesize >= memmap_pages) { 6112 freesize -= memmap_pages; 6113 if (memmap_pages) 6114 printk(KERN_DEBUG 6115 " %s zone: %lu pages used for memmap\n", 6116 zone_names[j], memmap_pages); 6117 } else 6118 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n", 6119 zone_names[j], memmap_pages, freesize); 6120 } 6121 6122 /* Account for reserved pages */ 6123 if (j == 0 && freesize > dma_reserve) { 6124 freesize -= dma_reserve; 6125 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 6126 zone_names[0], dma_reserve); 6127 } 6128 6129 if (!is_highmem_idx(j)) 6130 nr_kernel_pages += freesize; 6131 /* Charge for highmem memmap if there are enough kernel pages */ 6132 else if (nr_kernel_pages > memmap_pages * 2) 6133 nr_kernel_pages -= memmap_pages; 6134 nr_all_pages += freesize; 6135 6136 /* 6137 * Set an approximate value for lowmem here, it will be adjusted 6138 * when the bootmem allocator frees pages into the buddy system. 6139 * And all highmem pages will be managed by the buddy system. 6140 */ 6141 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize; 6142 #ifdef CONFIG_NUMA 6143 zone->node = nid; 6144 #endif 6145 zone->name = zone_names[j]; 6146 zone->zone_pgdat = pgdat; 6147 spin_lock_init(&zone->lock); 6148 zone_seqlock_init(zone); 6149 zone_pcp_init(zone); 6150 6151 if (!size) 6152 continue; 6153 6154 set_pageblock_order(); 6155 setup_usemap(pgdat, zone, zone_start_pfn, size); 6156 init_currently_empty_zone(zone, zone_start_pfn, size); 6157 memmap_init(size, nid, j, zone_start_pfn); 6158 } 6159 } 6160 6161 #ifdef CONFIG_FLAT_NODE_MEM_MAP 6162 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) 6163 { 6164 unsigned long __maybe_unused start = 0; 6165 unsigned long __maybe_unused offset = 0; 6166 6167 /* Skip empty nodes */ 6168 if (!pgdat->node_spanned_pages) 6169 return; 6170 6171 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 6172 offset = pgdat->node_start_pfn - start; 6173 /* ia64 gets its own node_mem_map, before this, without bootmem */ 6174 if (!pgdat->node_mem_map) { 6175 unsigned long size, end; 6176 struct page *map; 6177 6178 /* 6179 * The zone's endpoints aren't required to be MAX_ORDER 6180 * aligned but the node_mem_map endpoints must be in order 6181 * for the buddy allocator to function correctly. 6182 */ 6183 end = pgdat_end_pfn(pgdat); 6184 end = ALIGN(end, MAX_ORDER_NR_PAGES); 6185 size = (end - start) * sizeof(struct page); 6186 map = alloc_remap(pgdat->node_id, size); 6187 if (!map) 6188 map = memblock_virt_alloc_node_nopanic(size, 6189 pgdat->node_id); 6190 pgdat->node_mem_map = map + offset; 6191 } 6192 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 6193 __func__, pgdat->node_id, (unsigned long)pgdat, 6194 (unsigned long)pgdat->node_mem_map); 6195 #ifndef CONFIG_NEED_MULTIPLE_NODES 6196 /* 6197 * With no DISCONTIG, the global mem_map is just set as node 0's 6198 */ 6199 if (pgdat == NODE_DATA(0)) { 6200 mem_map = NODE_DATA(0)->node_mem_map; 6201 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM) 6202 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 6203 mem_map -= offset; 6204 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6205 } 6206 #endif 6207 } 6208 #else 6209 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { } 6210 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 6211 6212 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 6213 unsigned long node_start_pfn, unsigned long *zholes_size) 6214 { 6215 pg_data_t *pgdat = NODE_DATA(nid); 6216 unsigned long start_pfn = 0; 6217 unsigned long end_pfn = 0; 6218 6219 /* pg_data_t should be reset to zero when it's allocated */ 6220 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx); 6221 6222 pgdat->node_id = nid; 6223 pgdat->node_start_pfn = node_start_pfn; 6224 pgdat->per_cpu_nodestats = NULL; 6225 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6226 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 6227 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 6228 (u64)start_pfn << PAGE_SHIFT, 6229 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 6230 #else 6231 start_pfn = node_start_pfn; 6232 #endif 6233 calculate_node_totalpages(pgdat, start_pfn, end_pfn, 6234 zones_size, zholes_size); 6235 6236 alloc_node_mem_map(pgdat); 6237 6238 reset_deferred_meminit(pgdat); 6239 free_area_init_core(pgdat); 6240 } 6241 6242 #ifdef CONFIG_HAVE_MEMBLOCK 6243 /* 6244 * Only struct pages that are backed by physical memory are zeroed and 6245 * initialized by going through __init_single_page(). But, there are some 6246 * struct pages which are reserved in memblock allocator and their fields 6247 * may be accessed (for example page_to_pfn() on some configuration accesses 6248 * flags). We must explicitly zero those struct pages. 6249 */ 6250 void __paginginit zero_resv_unavail(void) 6251 { 6252 phys_addr_t start, end; 6253 unsigned long pfn; 6254 u64 i, pgcnt; 6255 6256 /* 6257 * Loop through ranges that are reserved, but do not have reported 6258 * physical memory backing. 6259 */ 6260 pgcnt = 0; 6261 for_each_resv_unavail_range(i, &start, &end) { 6262 for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) { 6263 mm_zero_struct_page(pfn_to_page(pfn)); 6264 pgcnt++; 6265 } 6266 } 6267 6268 /* 6269 * Struct pages that do not have backing memory. This could be because 6270 * firmware is using some of this memory, or for some other reasons. 6271 * Once memblock is changed so such behaviour is not allowed: i.e. 6272 * list of "reserved" memory must be a subset of list of "memory", then 6273 * this code can be removed. 6274 */ 6275 if (pgcnt) 6276 pr_info("Reserved but unavailable: %lld pages", pgcnt); 6277 } 6278 #endif /* CONFIG_HAVE_MEMBLOCK */ 6279 6280 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6281 6282 #if MAX_NUMNODES > 1 6283 /* 6284 * Figure out the number of possible node ids. 6285 */ 6286 void __init setup_nr_node_ids(void) 6287 { 6288 unsigned int highest; 6289 6290 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 6291 nr_node_ids = highest + 1; 6292 } 6293 #endif 6294 6295 /** 6296 * node_map_pfn_alignment - determine the maximum internode alignment 6297 * 6298 * This function should be called after node map is populated and sorted. 6299 * It calculates the maximum power of two alignment which can distinguish 6300 * all the nodes. 6301 * 6302 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 6303 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 6304 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 6305 * shifted, 1GiB is enough and this function will indicate so. 6306 * 6307 * This is used to test whether pfn -> nid mapping of the chosen memory 6308 * model has fine enough granularity to avoid incorrect mapping for the 6309 * populated node map. 6310 * 6311 * Returns the determined alignment in pfn's. 0 if there is no alignment 6312 * requirement (single node). 6313 */ 6314 unsigned long __init node_map_pfn_alignment(void) 6315 { 6316 unsigned long accl_mask = 0, last_end = 0; 6317 unsigned long start, end, mask; 6318 int last_nid = -1; 6319 int i, nid; 6320 6321 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 6322 if (!start || last_nid < 0 || last_nid == nid) { 6323 last_nid = nid; 6324 last_end = end; 6325 continue; 6326 } 6327 6328 /* 6329 * Start with a mask granular enough to pin-point to the 6330 * start pfn and tick off bits one-by-one until it becomes 6331 * too coarse to separate the current node from the last. 6332 */ 6333 mask = ~((1 << __ffs(start)) - 1); 6334 while (mask && last_end <= (start & (mask << 1))) 6335 mask <<= 1; 6336 6337 /* accumulate all internode masks */ 6338 accl_mask |= mask; 6339 } 6340 6341 /* convert mask to number of pages */ 6342 return ~accl_mask + 1; 6343 } 6344 6345 /* Find the lowest pfn for a node */ 6346 static unsigned long __init find_min_pfn_for_node(int nid) 6347 { 6348 unsigned long min_pfn = ULONG_MAX; 6349 unsigned long start_pfn; 6350 int i; 6351 6352 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 6353 min_pfn = min(min_pfn, start_pfn); 6354 6355 if (min_pfn == ULONG_MAX) { 6356 pr_warn("Could not find start_pfn for node %d\n", nid); 6357 return 0; 6358 } 6359 6360 return min_pfn; 6361 } 6362 6363 /** 6364 * find_min_pfn_with_active_regions - Find the minimum PFN registered 6365 * 6366 * It returns the minimum PFN based on information provided via 6367 * memblock_set_node(). 6368 */ 6369 unsigned long __init find_min_pfn_with_active_regions(void) 6370 { 6371 return find_min_pfn_for_node(MAX_NUMNODES); 6372 } 6373 6374 /* 6375 * early_calculate_totalpages() 6376 * Sum pages in active regions for movable zone. 6377 * Populate N_MEMORY for calculating usable_nodes. 6378 */ 6379 static unsigned long __init early_calculate_totalpages(void) 6380 { 6381 unsigned long totalpages = 0; 6382 unsigned long start_pfn, end_pfn; 6383 int i, nid; 6384 6385 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 6386 unsigned long pages = end_pfn - start_pfn; 6387 6388 totalpages += pages; 6389 if (pages) 6390 node_set_state(nid, N_MEMORY); 6391 } 6392 return totalpages; 6393 } 6394 6395 /* 6396 * Find the PFN the Movable zone begins in each node. Kernel memory 6397 * is spread evenly between nodes as long as the nodes have enough 6398 * memory. When they don't, some nodes will have more kernelcore than 6399 * others 6400 */ 6401 static void __init find_zone_movable_pfns_for_nodes(void) 6402 { 6403 int i, nid; 6404 unsigned long usable_startpfn; 6405 unsigned long kernelcore_node, kernelcore_remaining; 6406 /* save the state before borrow the nodemask */ 6407 nodemask_t saved_node_state = node_states[N_MEMORY]; 6408 unsigned long totalpages = early_calculate_totalpages(); 6409 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 6410 struct memblock_region *r; 6411 6412 /* Need to find movable_zone earlier when movable_node is specified. */ 6413 find_usable_zone_for_movable(); 6414 6415 /* 6416 * If movable_node is specified, ignore kernelcore and movablecore 6417 * options. 6418 */ 6419 if (movable_node_is_enabled()) { 6420 for_each_memblock(memory, r) { 6421 if (!memblock_is_hotpluggable(r)) 6422 continue; 6423 6424 nid = r->nid; 6425 6426 usable_startpfn = PFN_DOWN(r->base); 6427 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 6428 min(usable_startpfn, zone_movable_pfn[nid]) : 6429 usable_startpfn; 6430 } 6431 6432 goto out2; 6433 } 6434 6435 /* 6436 * If kernelcore=mirror is specified, ignore movablecore option 6437 */ 6438 if (mirrored_kernelcore) { 6439 bool mem_below_4gb_not_mirrored = false; 6440 6441 for_each_memblock(memory, r) { 6442 if (memblock_is_mirror(r)) 6443 continue; 6444 6445 nid = r->nid; 6446 6447 usable_startpfn = memblock_region_memory_base_pfn(r); 6448 6449 if (usable_startpfn < 0x100000) { 6450 mem_below_4gb_not_mirrored = true; 6451 continue; 6452 } 6453 6454 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 6455 min(usable_startpfn, zone_movable_pfn[nid]) : 6456 usable_startpfn; 6457 } 6458 6459 if (mem_below_4gb_not_mirrored) 6460 pr_warn("This configuration results in unmirrored kernel memory."); 6461 6462 goto out2; 6463 } 6464 6465 /* 6466 * If movablecore=nn[KMG] was specified, calculate what size of 6467 * kernelcore that corresponds so that memory usable for 6468 * any allocation type is evenly spread. If both kernelcore 6469 * and movablecore are specified, then the value of kernelcore 6470 * will be used for required_kernelcore if it's greater than 6471 * what movablecore would have allowed. 6472 */ 6473 if (required_movablecore) { 6474 unsigned long corepages; 6475 6476 /* 6477 * Round-up so that ZONE_MOVABLE is at least as large as what 6478 * was requested by the user 6479 */ 6480 required_movablecore = 6481 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 6482 required_movablecore = min(totalpages, required_movablecore); 6483 corepages = totalpages - required_movablecore; 6484 6485 required_kernelcore = max(required_kernelcore, corepages); 6486 } 6487 6488 /* 6489 * If kernelcore was not specified or kernelcore size is larger 6490 * than totalpages, there is no ZONE_MOVABLE. 6491 */ 6492 if (!required_kernelcore || required_kernelcore >= totalpages) 6493 goto out; 6494 6495 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 6496 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 6497 6498 restart: 6499 /* Spread kernelcore memory as evenly as possible throughout nodes */ 6500 kernelcore_node = required_kernelcore / usable_nodes; 6501 for_each_node_state(nid, N_MEMORY) { 6502 unsigned long start_pfn, end_pfn; 6503 6504 /* 6505 * Recalculate kernelcore_node if the division per node 6506 * now exceeds what is necessary to satisfy the requested 6507 * amount of memory for the kernel 6508 */ 6509 if (required_kernelcore < kernelcore_node) 6510 kernelcore_node = required_kernelcore / usable_nodes; 6511 6512 /* 6513 * As the map is walked, we track how much memory is usable 6514 * by the kernel using kernelcore_remaining. When it is 6515 * 0, the rest of the node is usable by ZONE_MOVABLE 6516 */ 6517 kernelcore_remaining = kernelcore_node; 6518 6519 /* Go through each range of PFNs within this node */ 6520 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6521 unsigned long size_pages; 6522 6523 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 6524 if (start_pfn >= end_pfn) 6525 continue; 6526 6527 /* Account for what is only usable for kernelcore */ 6528 if (start_pfn < usable_startpfn) { 6529 unsigned long kernel_pages; 6530 kernel_pages = min(end_pfn, usable_startpfn) 6531 - start_pfn; 6532 6533 kernelcore_remaining -= min(kernel_pages, 6534 kernelcore_remaining); 6535 required_kernelcore -= min(kernel_pages, 6536 required_kernelcore); 6537 6538 /* Continue if range is now fully accounted */ 6539 if (end_pfn <= usable_startpfn) { 6540 6541 /* 6542 * Push zone_movable_pfn to the end so 6543 * that if we have to rebalance 6544 * kernelcore across nodes, we will 6545 * not double account here 6546 */ 6547 zone_movable_pfn[nid] = end_pfn; 6548 continue; 6549 } 6550 start_pfn = usable_startpfn; 6551 } 6552 6553 /* 6554 * The usable PFN range for ZONE_MOVABLE is from 6555 * start_pfn->end_pfn. Calculate size_pages as the 6556 * number of pages used as kernelcore 6557 */ 6558 size_pages = end_pfn - start_pfn; 6559 if (size_pages > kernelcore_remaining) 6560 size_pages = kernelcore_remaining; 6561 zone_movable_pfn[nid] = start_pfn + size_pages; 6562 6563 /* 6564 * Some kernelcore has been met, update counts and 6565 * break if the kernelcore for this node has been 6566 * satisfied 6567 */ 6568 required_kernelcore -= min(required_kernelcore, 6569 size_pages); 6570 kernelcore_remaining -= size_pages; 6571 if (!kernelcore_remaining) 6572 break; 6573 } 6574 } 6575 6576 /* 6577 * If there is still required_kernelcore, we do another pass with one 6578 * less node in the count. This will push zone_movable_pfn[nid] further 6579 * along on the nodes that still have memory until kernelcore is 6580 * satisfied 6581 */ 6582 usable_nodes--; 6583 if (usable_nodes && required_kernelcore > usable_nodes) 6584 goto restart; 6585 6586 out2: 6587 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 6588 for (nid = 0; nid < MAX_NUMNODES; nid++) 6589 zone_movable_pfn[nid] = 6590 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 6591 6592 out: 6593 /* restore the node_state */ 6594 node_states[N_MEMORY] = saved_node_state; 6595 } 6596 6597 /* Any regular or high memory on that node ? */ 6598 static void check_for_memory(pg_data_t *pgdat, int nid) 6599 { 6600 enum zone_type zone_type; 6601 6602 if (N_MEMORY == N_NORMAL_MEMORY) 6603 return; 6604 6605 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 6606 struct zone *zone = &pgdat->node_zones[zone_type]; 6607 if (populated_zone(zone)) { 6608 node_set_state(nid, N_HIGH_MEMORY); 6609 if (N_NORMAL_MEMORY != N_HIGH_MEMORY && 6610 zone_type <= ZONE_NORMAL) 6611 node_set_state(nid, N_NORMAL_MEMORY); 6612 break; 6613 } 6614 } 6615 } 6616 6617 /** 6618 * free_area_init_nodes - Initialise all pg_data_t and zone data 6619 * @max_zone_pfn: an array of max PFNs for each zone 6620 * 6621 * This will call free_area_init_node() for each active node in the system. 6622 * Using the page ranges provided by memblock_set_node(), the size of each 6623 * zone in each node and their holes is calculated. If the maximum PFN 6624 * between two adjacent zones match, it is assumed that the zone is empty. 6625 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 6626 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 6627 * starts where the previous one ended. For example, ZONE_DMA32 starts 6628 * at arch_max_dma_pfn. 6629 */ 6630 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 6631 { 6632 unsigned long start_pfn, end_pfn; 6633 int i, nid; 6634 6635 /* Record where the zone boundaries are */ 6636 memset(arch_zone_lowest_possible_pfn, 0, 6637 sizeof(arch_zone_lowest_possible_pfn)); 6638 memset(arch_zone_highest_possible_pfn, 0, 6639 sizeof(arch_zone_highest_possible_pfn)); 6640 6641 start_pfn = find_min_pfn_with_active_regions(); 6642 6643 for (i = 0; i < MAX_NR_ZONES; i++) { 6644 if (i == ZONE_MOVABLE) 6645 continue; 6646 6647 end_pfn = max(max_zone_pfn[i], start_pfn); 6648 arch_zone_lowest_possible_pfn[i] = start_pfn; 6649 arch_zone_highest_possible_pfn[i] = end_pfn; 6650 6651 start_pfn = end_pfn; 6652 } 6653 6654 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 6655 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 6656 find_zone_movable_pfns_for_nodes(); 6657 6658 /* Print out the zone ranges */ 6659 pr_info("Zone ranges:\n"); 6660 for (i = 0; i < MAX_NR_ZONES; i++) { 6661 if (i == ZONE_MOVABLE) 6662 continue; 6663 pr_info(" %-8s ", zone_names[i]); 6664 if (arch_zone_lowest_possible_pfn[i] == 6665 arch_zone_highest_possible_pfn[i]) 6666 pr_cont("empty\n"); 6667 else 6668 pr_cont("[mem %#018Lx-%#018Lx]\n", 6669 (u64)arch_zone_lowest_possible_pfn[i] 6670 << PAGE_SHIFT, 6671 ((u64)arch_zone_highest_possible_pfn[i] 6672 << PAGE_SHIFT) - 1); 6673 } 6674 6675 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 6676 pr_info("Movable zone start for each node\n"); 6677 for (i = 0; i < MAX_NUMNODES; i++) { 6678 if (zone_movable_pfn[i]) 6679 pr_info(" Node %d: %#018Lx\n", i, 6680 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 6681 } 6682 6683 /* Print out the early node map */ 6684 pr_info("Early memory node ranges\n"); 6685 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 6686 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 6687 (u64)start_pfn << PAGE_SHIFT, 6688 ((u64)end_pfn << PAGE_SHIFT) - 1); 6689 6690 /* Initialise every node */ 6691 mminit_verify_pageflags_layout(); 6692 setup_nr_node_ids(); 6693 for_each_online_node(nid) { 6694 pg_data_t *pgdat = NODE_DATA(nid); 6695 free_area_init_node(nid, NULL, 6696 find_min_pfn_for_node(nid), NULL); 6697 6698 /* Any memory on that node */ 6699 if (pgdat->node_present_pages) 6700 node_set_state(nid, N_MEMORY); 6701 check_for_memory(pgdat, nid); 6702 } 6703 zero_resv_unavail(); 6704 } 6705 6706 static int __init cmdline_parse_core(char *p, unsigned long *core) 6707 { 6708 unsigned long long coremem; 6709 if (!p) 6710 return -EINVAL; 6711 6712 coremem = memparse(p, &p); 6713 *core = coremem >> PAGE_SHIFT; 6714 6715 /* Paranoid check that UL is enough for the coremem value */ 6716 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 6717 6718 return 0; 6719 } 6720 6721 /* 6722 * kernelcore=size sets the amount of memory for use for allocations that 6723 * cannot be reclaimed or migrated. 6724 */ 6725 static int __init cmdline_parse_kernelcore(char *p) 6726 { 6727 /* parse kernelcore=mirror */ 6728 if (parse_option_str(p, "mirror")) { 6729 mirrored_kernelcore = true; 6730 return 0; 6731 } 6732 6733 return cmdline_parse_core(p, &required_kernelcore); 6734 } 6735 6736 /* 6737 * movablecore=size sets the amount of memory for use for allocations that 6738 * can be reclaimed or migrated. 6739 */ 6740 static int __init cmdline_parse_movablecore(char *p) 6741 { 6742 return cmdline_parse_core(p, &required_movablecore); 6743 } 6744 6745 early_param("kernelcore", cmdline_parse_kernelcore); 6746 early_param("movablecore", cmdline_parse_movablecore); 6747 6748 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6749 6750 void adjust_managed_page_count(struct page *page, long count) 6751 { 6752 spin_lock(&managed_page_count_lock); 6753 page_zone(page)->managed_pages += count; 6754 totalram_pages += count; 6755 #ifdef CONFIG_HIGHMEM 6756 if (PageHighMem(page)) 6757 totalhigh_pages += count; 6758 #endif 6759 spin_unlock(&managed_page_count_lock); 6760 } 6761 EXPORT_SYMBOL(adjust_managed_page_count); 6762 6763 unsigned long free_reserved_area(void *start, void *end, int poison, char *s) 6764 { 6765 void *pos; 6766 unsigned long pages = 0; 6767 6768 start = (void *)PAGE_ALIGN((unsigned long)start); 6769 end = (void *)((unsigned long)end & PAGE_MASK); 6770 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 6771 if ((unsigned int)poison <= 0xFF) 6772 memset(pos, poison, PAGE_SIZE); 6773 free_reserved_page(virt_to_page(pos)); 6774 } 6775 6776 if (pages && s) 6777 pr_info("Freeing %s memory: %ldK\n", 6778 s, pages << (PAGE_SHIFT - 10)); 6779 6780 return pages; 6781 } 6782 EXPORT_SYMBOL(free_reserved_area); 6783 6784 #ifdef CONFIG_HIGHMEM 6785 void free_highmem_page(struct page *page) 6786 { 6787 __free_reserved_page(page); 6788 totalram_pages++; 6789 page_zone(page)->managed_pages++; 6790 totalhigh_pages++; 6791 } 6792 #endif 6793 6794 6795 void __init mem_init_print_info(const char *str) 6796 { 6797 unsigned long physpages, codesize, datasize, rosize, bss_size; 6798 unsigned long init_code_size, init_data_size; 6799 6800 physpages = get_num_physpages(); 6801 codesize = _etext - _stext; 6802 datasize = _edata - _sdata; 6803 rosize = __end_rodata - __start_rodata; 6804 bss_size = __bss_stop - __bss_start; 6805 init_data_size = __init_end - __init_begin; 6806 init_code_size = _einittext - _sinittext; 6807 6808 /* 6809 * Detect special cases and adjust section sizes accordingly: 6810 * 1) .init.* may be embedded into .data sections 6811 * 2) .init.text.* may be out of [__init_begin, __init_end], 6812 * please refer to arch/tile/kernel/vmlinux.lds.S. 6813 * 3) .rodata.* may be embedded into .text or .data sections. 6814 */ 6815 #define adj_init_size(start, end, size, pos, adj) \ 6816 do { \ 6817 if (start <= pos && pos < end && size > adj) \ 6818 size -= adj; \ 6819 } while (0) 6820 6821 adj_init_size(__init_begin, __init_end, init_data_size, 6822 _sinittext, init_code_size); 6823 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 6824 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 6825 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 6826 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 6827 6828 #undef adj_init_size 6829 6830 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 6831 #ifdef CONFIG_HIGHMEM 6832 ", %luK highmem" 6833 #endif 6834 "%s%s)\n", 6835 nr_free_pages() << (PAGE_SHIFT - 10), 6836 physpages << (PAGE_SHIFT - 10), 6837 codesize >> 10, datasize >> 10, rosize >> 10, 6838 (init_data_size + init_code_size) >> 10, bss_size >> 10, 6839 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10), 6840 totalcma_pages << (PAGE_SHIFT - 10), 6841 #ifdef CONFIG_HIGHMEM 6842 totalhigh_pages << (PAGE_SHIFT - 10), 6843 #endif 6844 str ? ", " : "", str ? str : ""); 6845 } 6846 6847 /** 6848 * set_dma_reserve - set the specified number of pages reserved in the first zone 6849 * @new_dma_reserve: The number of pages to mark reserved 6850 * 6851 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 6852 * In the DMA zone, a significant percentage may be consumed by kernel image 6853 * and other unfreeable allocations which can skew the watermarks badly. This 6854 * function may optionally be used to account for unfreeable pages in the 6855 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 6856 * smaller per-cpu batchsize. 6857 */ 6858 void __init set_dma_reserve(unsigned long new_dma_reserve) 6859 { 6860 dma_reserve = new_dma_reserve; 6861 } 6862 6863 void __init free_area_init(unsigned long *zones_size) 6864 { 6865 free_area_init_node(0, zones_size, 6866 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 6867 zero_resv_unavail(); 6868 } 6869 6870 static int page_alloc_cpu_dead(unsigned int cpu) 6871 { 6872 6873 lru_add_drain_cpu(cpu); 6874 drain_pages(cpu); 6875 6876 /* 6877 * Spill the event counters of the dead processor 6878 * into the current processors event counters. 6879 * This artificially elevates the count of the current 6880 * processor. 6881 */ 6882 vm_events_fold_cpu(cpu); 6883 6884 /* 6885 * Zero the differential counters of the dead processor 6886 * so that the vm statistics are consistent. 6887 * 6888 * This is only okay since the processor is dead and cannot 6889 * race with what we are doing. 6890 */ 6891 cpu_vm_stats_fold(cpu); 6892 return 0; 6893 } 6894 6895 void __init page_alloc_init(void) 6896 { 6897 int ret; 6898 6899 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD, 6900 "mm/page_alloc:dead", NULL, 6901 page_alloc_cpu_dead); 6902 WARN_ON(ret < 0); 6903 } 6904 6905 /* 6906 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 6907 * or min_free_kbytes changes. 6908 */ 6909 static void calculate_totalreserve_pages(void) 6910 { 6911 struct pglist_data *pgdat; 6912 unsigned long reserve_pages = 0; 6913 enum zone_type i, j; 6914 6915 for_each_online_pgdat(pgdat) { 6916 6917 pgdat->totalreserve_pages = 0; 6918 6919 for (i = 0; i < MAX_NR_ZONES; i++) { 6920 struct zone *zone = pgdat->node_zones + i; 6921 long max = 0; 6922 6923 /* Find valid and maximum lowmem_reserve in the zone */ 6924 for (j = i; j < MAX_NR_ZONES; j++) { 6925 if (zone->lowmem_reserve[j] > max) 6926 max = zone->lowmem_reserve[j]; 6927 } 6928 6929 /* we treat the high watermark as reserved pages. */ 6930 max += high_wmark_pages(zone); 6931 6932 if (max > zone->managed_pages) 6933 max = zone->managed_pages; 6934 6935 pgdat->totalreserve_pages += max; 6936 6937 reserve_pages += max; 6938 } 6939 } 6940 totalreserve_pages = reserve_pages; 6941 } 6942 6943 /* 6944 * setup_per_zone_lowmem_reserve - called whenever 6945 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 6946 * has a correct pages reserved value, so an adequate number of 6947 * pages are left in the zone after a successful __alloc_pages(). 6948 */ 6949 static void setup_per_zone_lowmem_reserve(void) 6950 { 6951 struct pglist_data *pgdat; 6952 enum zone_type j, idx; 6953 6954 for_each_online_pgdat(pgdat) { 6955 for (j = 0; j < MAX_NR_ZONES; j++) { 6956 struct zone *zone = pgdat->node_zones + j; 6957 unsigned long managed_pages = zone->managed_pages; 6958 6959 zone->lowmem_reserve[j] = 0; 6960 6961 idx = j; 6962 while (idx) { 6963 struct zone *lower_zone; 6964 6965 idx--; 6966 6967 if (sysctl_lowmem_reserve_ratio[idx] < 1) 6968 sysctl_lowmem_reserve_ratio[idx] = 1; 6969 6970 lower_zone = pgdat->node_zones + idx; 6971 lower_zone->lowmem_reserve[j] = managed_pages / 6972 sysctl_lowmem_reserve_ratio[idx]; 6973 managed_pages += lower_zone->managed_pages; 6974 } 6975 } 6976 } 6977 6978 /* update totalreserve_pages */ 6979 calculate_totalreserve_pages(); 6980 } 6981 6982 static void __setup_per_zone_wmarks(void) 6983 { 6984 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 6985 unsigned long lowmem_pages = 0; 6986 struct zone *zone; 6987 unsigned long flags; 6988 6989 /* Calculate total number of !ZONE_HIGHMEM pages */ 6990 for_each_zone(zone) { 6991 if (!is_highmem(zone)) 6992 lowmem_pages += zone->managed_pages; 6993 } 6994 6995 for_each_zone(zone) { 6996 u64 tmp; 6997 6998 spin_lock_irqsave(&zone->lock, flags); 6999 tmp = (u64)pages_min * zone->managed_pages; 7000 do_div(tmp, lowmem_pages); 7001 if (is_highmem(zone)) { 7002 /* 7003 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 7004 * need highmem pages, so cap pages_min to a small 7005 * value here. 7006 * 7007 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 7008 * deltas control asynch page reclaim, and so should 7009 * not be capped for highmem. 7010 */ 7011 unsigned long min_pages; 7012 7013 min_pages = zone->managed_pages / 1024; 7014 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 7015 zone->watermark[WMARK_MIN] = min_pages; 7016 } else { 7017 /* 7018 * If it's a lowmem zone, reserve a number of pages 7019 * proportionate to the zone's size. 7020 */ 7021 zone->watermark[WMARK_MIN] = tmp; 7022 } 7023 7024 /* 7025 * Set the kswapd watermarks distance according to the 7026 * scale factor in proportion to available memory, but 7027 * ensure a minimum size on small systems. 7028 */ 7029 tmp = max_t(u64, tmp >> 2, 7030 mult_frac(zone->managed_pages, 7031 watermark_scale_factor, 10000)); 7032 7033 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 7034 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; 7035 7036 spin_unlock_irqrestore(&zone->lock, flags); 7037 } 7038 7039 /* update totalreserve_pages */ 7040 calculate_totalreserve_pages(); 7041 } 7042 7043 /** 7044 * setup_per_zone_wmarks - called when min_free_kbytes changes 7045 * or when memory is hot-{added|removed} 7046 * 7047 * Ensures that the watermark[min,low,high] values for each zone are set 7048 * correctly with respect to min_free_kbytes. 7049 */ 7050 void setup_per_zone_wmarks(void) 7051 { 7052 static DEFINE_SPINLOCK(lock); 7053 7054 spin_lock(&lock); 7055 __setup_per_zone_wmarks(); 7056 spin_unlock(&lock); 7057 } 7058 7059 /* 7060 * Initialise min_free_kbytes. 7061 * 7062 * For small machines we want it small (128k min). For large machines 7063 * we want it large (64MB max). But it is not linear, because network 7064 * bandwidth does not increase linearly with machine size. We use 7065 * 7066 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 7067 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 7068 * 7069 * which yields 7070 * 7071 * 16MB: 512k 7072 * 32MB: 724k 7073 * 64MB: 1024k 7074 * 128MB: 1448k 7075 * 256MB: 2048k 7076 * 512MB: 2896k 7077 * 1024MB: 4096k 7078 * 2048MB: 5792k 7079 * 4096MB: 8192k 7080 * 8192MB: 11584k 7081 * 16384MB: 16384k 7082 */ 7083 int __meminit init_per_zone_wmark_min(void) 7084 { 7085 unsigned long lowmem_kbytes; 7086 int new_min_free_kbytes; 7087 7088 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 7089 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 7090 7091 if (new_min_free_kbytes > user_min_free_kbytes) { 7092 min_free_kbytes = new_min_free_kbytes; 7093 if (min_free_kbytes < 128) 7094 min_free_kbytes = 128; 7095 if (min_free_kbytes > 65536) 7096 min_free_kbytes = 65536; 7097 } else { 7098 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 7099 new_min_free_kbytes, user_min_free_kbytes); 7100 } 7101 setup_per_zone_wmarks(); 7102 refresh_zone_stat_thresholds(); 7103 setup_per_zone_lowmem_reserve(); 7104 7105 #ifdef CONFIG_NUMA 7106 setup_min_unmapped_ratio(); 7107 setup_min_slab_ratio(); 7108 #endif 7109 7110 return 0; 7111 } 7112 core_initcall(init_per_zone_wmark_min) 7113 7114 /* 7115 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 7116 * that we can call two helper functions whenever min_free_kbytes 7117 * changes. 7118 */ 7119 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 7120 void __user *buffer, size_t *length, loff_t *ppos) 7121 { 7122 int rc; 7123 7124 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7125 if (rc) 7126 return rc; 7127 7128 if (write) { 7129 user_min_free_kbytes = min_free_kbytes; 7130 setup_per_zone_wmarks(); 7131 } 7132 return 0; 7133 } 7134 7135 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 7136 void __user *buffer, size_t *length, loff_t *ppos) 7137 { 7138 int rc; 7139 7140 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7141 if (rc) 7142 return rc; 7143 7144 if (write) 7145 setup_per_zone_wmarks(); 7146 7147 return 0; 7148 } 7149 7150 #ifdef CONFIG_NUMA 7151 static void setup_min_unmapped_ratio(void) 7152 { 7153 pg_data_t *pgdat; 7154 struct zone *zone; 7155 7156 for_each_online_pgdat(pgdat) 7157 pgdat->min_unmapped_pages = 0; 7158 7159 for_each_zone(zone) 7160 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages * 7161 sysctl_min_unmapped_ratio) / 100; 7162 } 7163 7164 7165 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 7166 void __user *buffer, size_t *length, loff_t *ppos) 7167 { 7168 int rc; 7169 7170 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7171 if (rc) 7172 return rc; 7173 7174 setup_min_unmapped_ratio(); 7175 7176 return 0; 7177 } 7178 7179 static void setup_min_slab_ratio(void) 7180 { 7181 pg_data_t *pgdat; 7182 struct zone *zone; 7183 7184 for_each_online_pgdat(pgdat) 7185 pgdat->min_slab_pages = 0; 7186 7187 for_each_zone(zone) 7188 zone->zone_pgdat->min_slab_pages += (zone->managed_pages * 7189 sysctl_min_slab_ratio) / 100; 7190 } 7191 7192 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 7193 void __user *buffer, size_t *length, loff_t *ppos) 7194 { 7195 int rc; 7196 7197 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7198 if (rc) 7199 return rc; 7200 7201 setup_min_slab_ratio(); 7202 7203 return 0; 7204 } 7205 #endif 7206 7207 /* 7208 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 7209 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 7210 * whenever sysctl_lowmem_reserve_ratio changes. 7211 * 7212 * The reserve ratio obviously has absolutely no relation with the 7213 * minimum watermarks. The lowmem reserve ratio can only make sense 7214 * if in function of the boot time zone sizes. 7215 */ 7216 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 7217 void __user *buffer, size_t *length, loff_t *ppos) 7218 { 7219 proc_dointvec_minmax(table, write, buffer, length, ppos); 7220 setup_per_zone_lowmem_reserve(); 7221 return 0; 7222 } 7223 7224 /* 7225 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 7226 * cpu. It is the fraction of total pages in each zone that a hot per cpu 7227 * pagelist can have before it gets flushed back to buddy allocator. 7228 */ 7229 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 7230 void __user *buffer, size_t *length, loff_t *ppos) 7231 { 7232 struct zone *zone; 7233 int old_percpu_pagelist_fraction; 7234 int ret; 7235 7236 mutex_lock(&pcp_batch_high_lock); 7237 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 7238 7239 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 7240 if (!write || ret < 0) 7241 goto out; 7242 7243 /* Sanity checking to avoid pcp imbalance */ 7244 if (percpu_pagelist_fraction && 7245 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 7246 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 7247 ret = -EINVAL; 7248 goto out; 7249 } 7250 7251 /* No change? */ 7252 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 7253 goto out; 7254 7255 for_each_populated_zone(zone) { 7256 unsigned int cpu; 7257 7258 for_each_possible_cpu(cpu) 7259 pageset_set_high_and_batch(zone, 7260 per_cpu_ptr(zone->pageset, cpu)); 7261 } 7262 out: 7263 mutex_unlock(&pcp_batch_high_lock); 7264 return ret; 7265 } 7266 7267 #ifdef CONFIG_NUMA 7268 int hashdist = HASHDIST_DEFAULT; 7269 7270 static int __init set_hashdist(char *str) 7271 { 7272 if (!str) 7273 return 0; 7274 hashdist = simple_strtoul(str, &str, 0); 7275 return 1; 7276 } 7277 __setup("hashdist=", set_hashdist); 7278 #endif 7279 7280 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 7281 /* 7282 * Returns the number of pages that arch has reserved but 7283 * is not known to alloc_large_system_hash(). 7284 */ 7285 static unsigned long __init arch_reserved_kernel_pages(void) 7286 { 7287 return 0; 7288 } 7289 #endif 7290 7291 /* 7292 * Adaptive scale is meant to reduce sizes of hash tables on large memory 7293 * machines. As memory size is increased the scale is also increased but at 7294 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 7295 * quadruples the scale is increased by one, which means the size of hash table 7296 * only doubles, instead of quadrupling as well. 7297 * Because 32-bit systems cannot have large physical memory, where this scaling 7298 * makes sense, it is disabled on such platforms. 7299 */ 7300 #if __BITS_PER_LONG > 32 7301 #define ADAPT_SCALE_BASE (64ul << 30) 7302 #define ADAPT_SCALE_SHIFT 2 7303 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 7304 #endif 7305 7306 /* 7307 * allocate a large system hash table from bootmem 7308 * - it is assumed that the hash table must contain an exact power-of-2 7309 * quantity of entries 7310 * - limit is the number of hash buckets, not the total allocation size 7311 */ 7312 void *__init alloc_large_system_hash(const char *tablename, 7313 unsigned long bucketsize, 7314 unsigned long numentries, 7315 int scale, 7316 int flags, 7317 unsigned int *_hash_shift, 7318 unsigned int *_hash_mask, 7319 unsigned long low_limit, 7320 unsigned long high_limit) 7321 { 7322 unsigned long long max = high_limit; 7323 unsigned long log2qty, size; 7324 void *table = NULL; 7325 gfp_t gfp_flags; 7326 7327 /* allow the kernel cmdline to have a say */ 7328 if (!numentries) { 7329 /* round applicable memory size up to nearest megabyte */ 7330 numentries = nr_kernel_pages; 7331 numentries -= arch_reserved_kernel_pages(); 7332 7333 /* It isn't necessary when PAGE_SIZE >= 1MB */ 7334 if (PAGE_SHIFT < 20) 7335 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 7336 7337 #if __BITS_PER_LONG > 32 7338 if (!high_limit) { 7339 unsigned long adapt; 7340 7341 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 7342 adapt <<= ADAPT_SCALE_SHIFT) 7343 scale++; 7344 } 7345 #endif 7346 7347 /* limit to 1 bucket per 2^scale bytes of low memory */ 7348 if (scale > PAGE_SHIFT) 7349 numentries >>= (scale - PAGE_SHIFT); 7350 else 7351 numentries <<= (PAGE_SHIFT - scale); 7352 7353 /* Make sure we've got at least a 0-order allocation.. */ 7354 if (unlikely(flags & HASH_SMALL)) { 7355 /* Makes no sense without HASH_EARLY */ 7356 WARN_ON(!(flags & HASH_EARLY)); 7357 if (!(numentries >> *_hash_shift)) { 7358 numentries = 1UL << *_hash_shift; 7359 BUG_ON(!numentries); 7360 } 7361 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 7362 numentries = PAGE_SIZE / bucketsize; 7363 } 7364 numentries = roundup_pow_of_two(numentries); 7365 7366 /* limit allocation size to 1/16 total memory by default */ 7367 if (max == 0) { 7368 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 7369 do_div(max, bucketsize); 7370 } 7371 max = min(max, 0x80000000ULL); 7372 7373 if (numentries < low_limit) 7374 numentries = low_limit; 7375 if (numentries > max) 7376 numentries = max; 7377 7378 log2qty = ilog2(numentries); 7379 7380 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 7381 do { 7382 size = bucketsize << log2qty; 7383 if (flags & HASH_EARLY) { 7384 if (flags & HASH_ZERO) 7385 table = memblock_virt_alloc_nopanic(size, 0); 7386 else 7387 table = memblock_virt_alloc_raw(size, 0); 7388 } else if (hashdist) { 7389 table = __vmalloc(size, gfp_flags, PAGE_KERNEL); 7390 } else { 7391 /* 7392 * If bucketsize is not a power-of-two, we may free 7393 * some pages at the end of hash table which 7394 * alloc_pages_exact() automatically does 7395 */ 7396 if (get_order(size) < MAX_ORDER) { 7397 table = alloc_pages_exact(size, gfp_flags); 7398 kmemleak_alloc(table, size, 1, gfp_flags); 7399 } 7400 } 7401 } while (!table && size > PAGE_SIZE && --log2qty); 7402 7403 if (!table) 7404 panic("Failed to allocate %s hash table\n", tablename); 7405 7406 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n", 7407 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size); 7408 7409 if (_hash_shift) 7410 *_hash_shift = log2qty; 7411 if (_hash_mask) 7412 *_hash_mask = (1 << log2qty) - 1; 7413 7414 return table; 7415 } 7416 7417 /* 7418 * This function checks whether pageblock includes unmovable pages or not. 7419 * If @count is not zero, it is okay to include less @count unmovable pages 7420 * 7421 * PageLRU check without isolation or lru_lock could race so that 7422 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable 7423 * check without lock_page also may miss some movable non-lru pages at 7424 * race condition. So you can't expect this function should be exact. 7425 */ 7426 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 7427 int migratetype, 7428 bool skip_hwpoisoned_pages) 7429 { 7430 unsigned long pfn, iter, found; 7431 7432 /* 7433 * For avoiding noise data, lru_add_drain_all() should be called 7434 * If ZONE_MOVABLE, the zone never contains unmovable pages 7435 */ 7436 if (zone_idx(zone) == ZONE_MOVABLE) 7437 return false; 7438 7439 /* 7440 * CMA allocations (alloc_contig_range) really need to mark isolate 7441 * CMA pageblocks even when they are not movable in fact so consider 7442 * them movable here. 7443 */ 7444 if (is_migrate_cma(migratetype) && 7445 is_migrate_cma(get_pageblock_migratetype(page))) 7446 return false; 7447 7448 pfn = page_to_pfn(page); 7449 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 7450 unsigned long check = pfn + iter; 7451 7452 if (!pfn_valid_within(check)) 7453 continue; 7454 7455 page = pfn_to_page(check); 7456 7457 if (PageReserved(page)) 7458 return true; 7459 7460 /* 7461 * Hugepages are not in LRU lists, but they're movable. 7462 * We need not scan over tail pages bacause we don't 7463 * handle each tail page individually in migration. 7464 */ 7465 if (PageHuge(page)) { 7466 iter = round_up(iter + 1, 1<<compound_order(page)) - 1; 7467 continue; 7468 } 7469 7470 /* 7471 * We can't use page_count without pin a page 7472 * because another CPU can free compound page. 7473 * This check already skips compound tails of THP 7474 * because their page->_refcount is zero at all time. 7475 */ 7476 if (!page_ref_count(page)) { 7477 if (PageBuddy(page)) 7478 iter += (1 << page_order(page)) - 1; 7479 continue; 7480 } 7481 7482 /* 7483 * The HWPoisoned page may be not in buddy system, and 7484 * page_count() is not 0. 7485 */ 7486 if (skip_hwpoisoned_pages && PageHWPoison(page)) 7487 continue; 7488 7489 if (__PageMovable(page)) 7490 continue; 7491 7492 if (!PageLRU(page)) 7493 found++; 7494 /* 7495 * If there are RECLAIMABLE pages, we need to check 7496 * it. But now, memory offline itself doesn't call 7497 * shrink_node_slabs() and it still to be fixed. 7498 */ 7499 /* 7500 * If the page is not RAM, page_count()should be 0. 7501 * we don't need more check. This is an _used_ not-movable page. 7502 * 7503 * The problematic thing here is PG_reserved pages. PG_reserved 7504 * is set to both of a memory hole page and a _used_ kernel 7505 * page at boot. 7506 */ 7507 if (found > count) 7508 return true; 7509 } 7510 return false; 7511 } 7512 7513 bool is_pageblock_removable_nolock(struct page *page) 7514 { 7515 struct zone *zone; 7516 unsigned long pfn; 7517 7518 /* 7519 * We have to be careful here because we are iterating over memory 7520 * sections which are not zone aware so we might end up outside of 7521 * the zone but still within the section. 7522 * We have to take care about the node as well. If the node is offline 7523 * its NODE_DATA will be NULL - see page_zone. 7524 */ 7525 if (!node_online(page_to_nid(page))) 7526 return false; 7527 7528 zone = page_zone(page); 7529 pfn = page_to_pfn(page); 7530 if (!zone_spans_pfn(zone, pfn)) 7531 return false; 7532 7533 return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, true); 7534 } 7535 7536 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA) 7537 7538 static unsigned long pfn_max_align_down(unsigned long pfn) 7539 { 7540 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 7541 pageblock_nr_pages) - 1); 7542 } 7543 7544 static unsigned long pfn_max_align_up(unsigned long pfn) 7545 { 7546 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 7547 pageblock_nr_pages)); 7548 } 7549 7550 /* [start, end) must belong to a single zone. */ 7551 static int __alloc_contig_migrate_range(struct compact_control *cc, 7552 unsigned long start, unsigned long end) 7553 { 7554 /* This function is based on compact_zone() from compaction.c. */ 7555 unsigned long nr_reclaimed; 7556 unsigned long pfn = start; 7557 unsigned int tries = 0; 7558 int ret = 0; 7559 7560 migrate_prep(); 7561 7562 while (pfn < end || !list_empty(&cc->migratepages)) { 7563 if (fatal_signal_pending(current)) { 7564 ret = -EINTR; 7565 break; 7566 } 7567 7568 if (list_empty(&cc->migratepages)) { 7569 cc->nr_migratepages = 0; 7570 pfn = isolate_migratepages_range(cc, pfn, end); 7571 if (!pfn) { 7572 ret = -EINTR; 7573 break; 7574 } 7575 tries = 0; 7576 } else if (++tries == 5) { 7577 ret = ret < 0 ? ret : -EBUSY; 7578 break; 7579 } 7580 7581 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 7582 &cc->migratepages); 7583 cc->nr_migratepages -= nr_reclaimed; 7584 7585 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 7586 NULL, 0, cc->mode, MR_CMA); 7587 } 7588 if (ret < 0) { 7589 putback_movable_pages(&cc->migratepages); 7590 return ret; 7591 } 7592 return 0; 7593 } 7594 7595 /** 7596 * alloc_contig_range() -- tries to allocate given range of pages 7597 * @start: start PFN to allocate 7598 * @end: one-past-the-last PFN to allocate 7599 * @migratetype: migratetype of the underlaying pageblocks (either 7600 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 7601 * in range must have the same migratetype and it must 7602 * be either of the two. 7603 * @gfp_mask: GFP mask to use during compaction 7604 * 7605 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 7606 * aligned, however it's the caller's responsibility to guarantee that 7607 * we are the only thread that changes migrate type of pageblocks the 7608 * pages fall in. 7609 * 7610 * The PFN range must belong to a single zone. 7611 * 7612 * Returns zero on success or negative error code. On success all 7613 * pages which PFN is in [start, end) are allocated for the caller and 7614 * need to be freed with free_contig_range(). 7615 */ 7616 int alloc_contig_range(unsigned long start, unsigned long end, 7617 unsigned migratetype, gfp_t gfp_mask) 7618 { 7619 unsigned long outer_start, outer_end; 7620 unsigned int order; 7621 int ret = 0; 7622 7623 struct compact_control cc = { 7624 .nr_migratepages = 0, 7625 .order = -1, 7626 .zone = page_zone(pfn_to_page(start)), 7627 .mode = MIGRATE_SYNC, 7628 .ignore_skip_hint = true, 7629 .no_set_skip_hint = true, 7630 .gfp_mask = current_gfp_context(gfp_mask), 7631 }; 7632 INIT_LIST_HEAD(&cc.migratepages); 7633 7634 /* 7635 * What we do here is we mark all pageblocks in range as 7636 * MIGRATE_ISOLATE. Because pageblock and max order pages may 7637 * have different sizes, and due to the way page allocator 7638 * work, we align the range to biggest of the two pages so 7639 * that page allocator won't try to merge buddies from 7640 * different pageblocks and change MIGRATE_ISOLATE to some 7641 * other migration type. 7642 * 7643 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 7644 * migrate the pages from an unaligned range (ie. pages that 7645 * we are interested in). This will put all the pages in 7646 * range back to page allocator as MIGRATE_ISOLATE. 7647 * 7648 * When this is done, we take the pages in range from page 7649 * allocator removing them from the buddy system. This way 7650 * page allocator will never consider using them. 7651 * 7652 * This lets us mark the pageblocks back as 7653 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 7654 * aligned range but not in the unaligned, original range are 7655 * put back to page allocator so that buddy can use them. 7656 */ 7657 7658 ret = start_isolate_page_range(pfn_max_align_down(start), 7659 pfn_max_align_up(end), migratetype, 7660 false); 7661 if (ret) 7662 return ret; 7663 7664 /* 7665 * In case of -EBUSY, we'd like to know which page causes problem. 7666 * So, just fall through. test_pages_isolated() has a tracepoint 7667 * which will report the busy page. 7668 * 7669 * It is possible that busy pages could become available before 7670 * the call to test_pages_isolated, and the range will actually be 7671 * allocated. So, if we fall through be sure to clear ret so that 7672 * -EBUSY is not accidentally used or returned to caller. 7673 */ 7674 ret = __alloc_contig_migrate_range(&cc, start, end); 7675 if (ret && ret != -EBUSY) 7676 goto done; 7677 ret =0; 7678 7679 /* 7680 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 7681 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 7682 * more, all pages in [start, end) are free in page allocator. 7683 * What we are going to do is to allocate all pages from 7684 * [start, end) (that is remove them from page allocator). 7685 * 7686 * The only problem is that pages at the beginning and at the 7687 * end of interesting range may be not aligned with pages that 7688 * page allocator holds, ie. they can be part of higher order 7689 * pages. Because of this, we reserve the bigger range and 7690 * once this is done free the pages we are not interested in. 7691 * 7692 * We don't have to hold zone->lock here because the pages are 7693 * isolated thus they won't get removed from buddy. 7694 */ 7695 7696 lru_add_drain_all(); 7697 drain_all_pages(cc.zone); 7698 7699 order = 0; 7700 outer_start = start; 7701 while (!PageBuddy(pfn_to_page(outer_start))) { 7702 if (++order >= MAX_ORDER) { 7703 outer_start = start; 7704 break; 7705 } 7706 outer_start &= ~0UL << order; 7707 } 7708 7709 if (outer_start != start) { 7710 order = page_order(pfn_to_page(outer_start)); 7711 7712 /* 7713 * outer_start page could be small order buddy page and 7714 * it doesn't include start page. Adjust outer_start 7715 * in this case to report failed page properly 7716 * on tracepoint in test_pages_isolated() 7717 */ 7718 if (outer_start + (1UL << order) <= start) 7719 outer_start = start; 7720 } 7721 7722 /* Make sure the range is really isolated. */ 7723 if (test_pages_isolated(outer_start, end, false)) { 7724 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n", 7725 __func__, outer_start, end); 7726 ret = -EBUSY; 7727 goto done; 7728 } 7729 7730 /* Grab isolated pages from freelists. */ 7731 outer_end = isolate_freepages_range(&cc, outer_start, end); 7732 if (!outer_end) { 7733 ret = -EBUSY; 7734 goto done; 7735 } 7736 7737 /* Free head and tail (if any) */ 7738 if (start != outer_start) 7739 free_contig_range(outer_start, start - outer_start); 7740 if (end != outer_end) 7741 free_contig_range(end, outer_end - end); 7742 7743 done: 7744 undo_isolate_page_range(pfn_max_align_down(start), 7745 pfn_max_align_up(end), migratetype); 7746 return ret; 7747 } 7748 7749 void free_contig_range(unsigned long pfn, unsigned nr_pages) 7750 { 7751 unsigned int count = 0; 7752 7753 for (; nr_pages--; pfn++) { 7754 struct page *page = pfn_to_page(pfn); 7755 7756 count += page_count(page) != 1; 7757 __free_page(page); 7758 } 7759 WARN(count != 0, "%d pages are still in use!\n", count); 7760 } 7761 #endif 7762 7763 #ifdef CONFIG_MEMORY_HOTPLUG 7764 /* 7765 * The zone indicated has a new number of managed_pages; batch sizes and percpu 7766 * page high values need to be recalulated. 7767 */ 7768 void __meminit zone_pcp_update(struct zone *zone) 7769 { 7770 unsigned cpu; 7771 mutex_lock(&pcp_batch_high_lock); 7772 for_each_possible_cpu(cpu) 7773 pageset_set_high_and_batch(zone, 7774 per_cpu_ptr(zone->pageset, cpu)); 7775 mutex_unlock(&pcp_batch_high_lock); 7776 } 7777 #endif 7778 7779 void zone_pcp_reset(struct zone *zone) 7780 { 7781 unsigned long flags; 7782 int cpu; 7783 struct per_cpu_pageset *pset; 7784 7785 /* avoid races with drain_pages() */ 7786 local_irq_save(flags); 7787 if (zone->pageset != &boot_pageset) { 7788 for_each_online_cpu(cpu) { 7789 pset = per_cpu_ptr(zone->pageset, cpu); 7790 drain_zonestat(zone, pset); 7791 } 7792 free_percpu(zone->pageset); 7793 zone->pageset = &boot_pageset; 7794 } 7795 local_irq_restore(flags); 7796 } 7797 7798 #ifdef CONFIG_MEMORY_HOTREMOVE 7799 /* 7800 * All pages in the range must be in a single zone and isolated 7801 * before calling this. 7802 */ 7803 void 7804 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 7805 { 7806 struct page *page; 7807 struct zone *zone; 7808 unsigned int order, i; 7809 unsigned long pfn; 7810 unsigned long flags; 7811 /* find the first valid pfn */ 7812 for (pfn = start_pfn; pfn < end_pfn; pfn++) 7813 if (pfn_valid(pfn)) 7814 break; 7815 if (pfn == end_pfn) 7816 return; 7817 offline_mem_sections(pfn, end_pfn); 7818 zone = page_zone(pfn_to_page(pfn)); 7819 spin_lock_irqsave(&zone->lock, flags); 7820 pfn = start_pfn; 7821 while (pfn < end_pfn) { 7822 if (!pfn_valid(pfn)) { 7823 pfn++; 7824 continue; 7825 } 7826 page = pfn_to_page(pfn); 7827 /* 7828 * The HWPoisoned page may be not in buddy system, and 7829 * page_count() is not 0. 7830 */ 7831 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 7832 pfn++; 7833 SetPageReserved(page); 7834 continue; 7835 } 7836 7837 BUG_ON(page_count(page)); 7838 BUG_ON(!PageBuddy(page)); 7839 order = page_order(page); 7840 #ifdef CONFIG_DEBUG_VM 7841 pr_info("remove from free list %lx %d %lx\n", 7842 pfn, 1 << order, end_pfn); 7843 #endif 7844 list_del(&page->lru); 7845 rmv_page_order(page); 7846 zone->free_area[order].nr_free--; 7847 for (i = 0; i < (1 << order); i++) 7848 SetPageReserved((page+i)); 7849 pfn += (1 << order); 7850 } 7851 spin_unlock_irqrestore(&zone->lock, flags); 7852 } 7853 #endif 7854 7855 bool is_free_buddy_page(struct page *page) 7856 { 7857 struct zone *zone = page_zone(page); 7858 unsigned long pfn = page_to_pfn(page); 7859 unsigned long flags; 7860 unsigned int order; 7861 7862 spin_lock_irqsave(&zone->lock, flags); 7863 for (order = 0; order < MAX_ORDER; order++) { 7864 struct page *page_head = page - (pfn & ((1 << order) - 1)); 7865 7866 if (PageBuddy(page_head) && page_order(page_head) >= order) 7867 break; 7868 } 7869 spin_unlock_irqrestore(&zone->lock, flags); 7870 7871 return order < MAX_ORDER; 7872 } 7873