1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kmemcheck.h> 28 #include <linux/kasan.h> 29 #include <linux/module.h> 30 #include <linux/suspend.h> 31 #include <linux/pagevec.h> 32 #include <linux/blkdev.h> 33 #include <linux/slab.h> 34 #include <linux/ratelimit.h> 35 #include <linux/oom.h> 36 #include <linux/notifier.h> 37 #include <linux/topology.h> 38 #include <linux/sysctl.h> 39 #include <linux/cpu.h> 40 #include <linux/cpuset.h> 41 #include <linux/memory_hotplug.h> 42 #include <linux/nodemask.h> 43 #include <linux/vmalloc.h> 44 #include <linux/vmstat.h> 45 #include <linux/mempolicy.h> 46 #include <linux/stop_machine.h> 47 #include <linux/sort.h> 48 #include <linux/pfn.h> 49 #include <linux/backing-dev.h> 50 #include <linux/fault-inject.h> 51 #include <linux/page-isolation.h> 52 #include <linux/page_ext.h> 53 #include <linux/debugobjects.h> 54 #include <linux/kmemleak.h> 55 #include <linux/compaction.h> 56 #include <trace/events/kmem.h> 57 #include <linux/prefetch.h> 58 #include <linux/mm_inline.h> 59 #include <linux/migrate.h> 60 #include <linux/page_ext.h> 61 #include <linux/hugetlb.h> 62 #include <linux/sched/rt.h> 63 #include <linux/page_owner.h> 64 65 #include <asm/sections.h> 66 #include <asm/tlbflush.h> 67 #include <asm/div64.h> 68 #include "internal.h" 69 70 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 71 static DEFINE_MUTEX(pcp_batch_high_lock); 72 #define MIN_PERCPU_PAGELIST_FRACTION (8) 73 74 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 75 DEFINE_PER_CPU(int, numa_node); 76 EXPORT_PER_CPU_SYMBOL(numa_node); 77 #endif 78 79 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 80 /* 81 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 82 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 83 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 84 * defined in <linux/topology.h>. 85 */ 86 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 87 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 88 int _node_numa_mem_[MAX_NUMNODES]; 89 #endif 90 91 /* 92 * Array of node states. 93 */ 94 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 95 [N_POSSIBLE] = NODE_MASK_ALL, 96 [N_ONLINE] = { { [0] = 1UL } }, 97 #ifndef CONFIG_NUMA 98 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 99 #ifdef CONFIG_HIGHMEM 100 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 101 #endif 102 #ifdef CONFIG_MOVABLE_NODE 103 [N_MEMORY] = { { [0] = 1UL } }, 104 #endif 105 [N_CPU] = { { [0] = 1UL } }, 106 #endif /* NUMA */ 107 }; 108 EXPORT_SYMBOL(node_states); 109 110 /* Protect totalram_pages and zone->managed_pages */ 111 static DEFINE_SPINLOCK(managed_page_count_lock); 112 113 unsigned long totalram_pages __read_mostly; 114 unsigned long totalreserve_pages __read_mostly; 115 unsigned long totalcma_pages __read_mostly; 116 /* 117 * When calculating the number of globally allowed dirty pages, there 118 * is a certain number of per-zone reserves that should not be 119 * considered dirtyable memory. This is the sum of those reserves 120 * over all existing zones that contribute dirtyable memory. 121 */ 122 unsigned long dirty_balance_reserve __read_mostly; 123 124 int percpu_pagelist_fraction; 125 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 126 127 #ifdef CONFIG_PM_SLEEP 128 /* 129 * The following functions are used by the suspend/hibernate code to temporarily 130 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 131 * while devices are suspended. To avoid races with the suspend/hibernate code, 132 * they should always be called with pm_mutex held (gfp_allowed_mask also should 133 * only be modified with pm_mutex held, unless the suspend/hibernate code is 134 * guaranteed not to run in parallel with that modification). 135 */ 136 137 static gfp_t saved_gfp_mask; 138 139 void pm_restore_gfp_mask(void) 140 { 141 WARN_ON(!mutex_is_locked(&pm_mutex)); 142 if (saved_gfp_mask) { 143 gfp_allowed_mask = saved_gfp_mask; 144 saved_gfp_mask = 0; 145 } 146 } 147 148 void pm_restrict_gfp_mask(void) 149 { 150 WARN_ON(!mutex_is_locked(&pm_mutex)); 151 WARN_ON(saved_gfp_mask); 152 saved_gfp_mask = gfp_allowed_mask; 153 gfp_allowed_mask &= ~GFP_IOFS; 154 } 155 156 bool pm_suspended_storage(void) 157 { 158 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS) 159 return false; 160 return true; 161 } 162 #endif /* CONFIG_PM_SLEEP */ 163 164 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 165 int pageblock_order __read_mostly; 166 #endif 167 168 static void __free_pages_ok(struct page *page, unsigned int order); 169 170 /* 171 * results with 256, 32 in the lowmem_reserve sysctl: 172 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 173 * 1G machine -> (16M dma, 784M normal, 224M high) 174 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 175 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 176 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 177 * 178 * TBD: should special case ZONE_DMA32 machines here - in those we normally 179 * don't need any ZONE_NORMAL reservation 180 */ 181 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 182 #ifdef CONFIG_ZONE_DMA 183 256, 184 #endif 185 #ifdef CONFIG_ZONE_DMA32 186 256, 187 #endif 188 #ifdef CONFIG_HIGHMEM 189 32, 190 #endif 191 32, 192 }; 193 194 EXPORT_SYMBOL(totalram_pages); 195 196 static char * const zone_names[MAX_NR_ZONES] = { 197 #ifdef CONFIG_ZONE_DMA 198 "DMA", 199 #endif 200 #ifdef CONFIG_ZONE_DMA32 201 "DMA32", 202 #endif 203 "Normal", 204 #ifdef CONFIG_HIGHMEM 205 "HighMem", 206 #endif 207 "Movable", 208 }; 209 210 int min_free_kbytes = 1024; 211 int user_min_free_kbytes = -1; 212 213 static unsigned long __meminitdata nr_kernel_pages; 214 static unsigned long __meminitdata nr_all_pages; 215 static unsigned long __meminitdata dma_reserve; 216 217 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 218 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 219 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 220 static unsigned long __initdata required_kernelcore; 221 static unsigned long __initdata required_movablecore; 222 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 223 224 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 225 int movable_zone; 226 EXPORT_SYMBOL(movable_zone); 227 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 228 229 #if MAX_NUMNODES > 1 230 int nr_node_ids __read_mostly = MAX_NUMNODES; 231 int nr_online_nodes __read_mostly = 1; 232 EXPORT_SYMBOL(nr_node_ids); 233 EXPORT_SYMBOL(nr_online_nodes); 234 #endif 235 236 int page_group_by_mobility_disabled __read_mostly; 237 238 void set_pageblock_migratetype(struct page *page, int migratetype) 239 { 240 if (unlikely(page_group_by_mobility_disabled && 241 migratetype < MIGRATE_PCPTYPES)) 242 migratetype = MIGRATE_UNMOVABLE; 243 244 set_pageblock_flags_group(page, (unsigned long)migratetype, 245 PB_migrate, PB_migrate_end); 246 } 247 248 #ifdef CONFIG_DEBUG_VM 249 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 250 { 251 int ret = 0; 252 unsigned seq; 253 unsigned long pfn = page_to_pfn(page); 254 unsigned long sp, start_pfn; 255 256 do { 257 seq = zone_span_seqbegin(zone); 258 start_pfn = zone->zone_start_pfn; 259 sp = zone->spanned_pages; 260 if (!zone_spans_pfn(zone, pfn)) 261 ret = 1; 262 } while (zone_span_seqretry(zone, seq)); 263 264 if (ret) 265 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 266 pfn, zone_to_nid(zone), zone->name, 267 start_pfn, start_pfn + sp); 268 269 return ret; 270 } 271 272 static int page_is_consistent(struct zone *zone, struct page *page) 273 { 274 if (!pfn_valid_within(page_to_pfn(page))) 275 return 0; 276 if (zone != page_zone(page)) 277 return 0; 278 279 return 1; 280 } 281 /* 282 * Temporary debugging check for pages not lying within a given zone. 283 */ 284 static int bad_range(struct zone *zone, struct page *page) 285 { 286 if (page_outside_zone_boundaries(zone, page)) 287 return 1; 288 if (!page_is_consistent(zone, page)) 289 return 1; 290 291 return 0; 292 } 293 #else 294 static inline int bad_range(struct zone *zone, struct page *page) 295 { 296 return 0; 297 } 298 #endif 299 300 static void bad_page(struct page *page, const char *reason, 301 unsigned long bad_flags) 302 { 303 static unsigned long resume; 304 static unsigned long nr_shown; 305 static unsigned long nr_unshown; 306 307 /* Don't complain about poisoned pages */ 308 if (PageHWPoison(page)) { 309 page_mapcount_reset(page); /* remove PageBuddy */ 310 return; 311 } 312 313 /* 314 * Allow a burst of 60 reports, then keep quiet for that minute; 315 * or allow a steady drip of one report per second. 316 */ 317 if (nr_shown == 60) { 318 if (time_before(jiffies, resume)) { 319 nr_unshown++; 320 goto out; 321 } 322 if (nr_unshown) { 323 printk(KERN_ALERT 324 "BUG: Bad page state: %lu messages suppressed\n", 325 nr_unshown); 326 nr_unshown = 0; 327 } 328 nr_shown = 0; 329 } 330 if (nr_shown++ == 0) 331 resume = jiffies + 60 * HZ; 332 333 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", 334 current->comm, page_to_pfn(page)); 335 dump_page_badflags(page, reason, bad_flags); 336 337 print_modules(); 338 dump_stack(); 339 out: 340 /* Leave bad fields for debug, except PageBuddy could make trouble */ 341 page_mapcount_reset(page); /* remove PageBuddy */ 342 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 343 } 344 345 /* 346 * Higher-order pages are called "compound pages". They are structured thusly: 347 * 348 * The first PAGE_SIZE page is called the "head page". 349 * 350 * The remaining PAGE_SIZE pages are called "tail pages". 351 * 352 * All pages have PG_compound set. All tail pages have their ->first_page 353 * pointing at the head page. 354 * 355 * The first tail page's ->lru.next holds the address of the compound page's 356 * put_page() function. Its ->lru.prev holds the order of allocation. 357 * This usage means that zero-order pages may not be compound. 358 */ 359 360 static void free_compound_page(struct page *page) 361 { 362 __free_pages_ok(page, compound_order(page)); 363 } 364 365 void prep_compound_page(struct page *page, unsigned long order) 366 { 367 int i; 368 int nr_pages = 1 << order; 369 370 set_compound_page_dtor(page, free_compound_page); 371 set_compound_order(page, order); 372 __SetPageHead(page); 373 for (i = 1; i < nr_pages; i++) { 374 struct page *p = page + i; 375 set_page_count(p, 0); 376 p->first_page = page; 377 /* Make sure p->first_page is always valid for PageTail() */ 378 smp_wmb(); 379 __SetPageTail(p); 380 } 381 } 382 383 static inline void prep_zero_page(struct page *page, unsigned int order, 384 gfp_t gfp_flags) 385 { 386 int i; 387 388 /* 389 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 390 * and __GFP_HIGHMEM from hard or soft interrupt context. 391 */ 392 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 393 for (i = 0; i < (1 << order); i++) 394 clear_highpage(page + i); 395 } 396 397 #ifdef CONFIG_DEBUG_PAGEALLOC 398 unsigned int _debug_guardpage_minorder; 399 bool _debug_pagealloc_enabled __read_mostly; 400 bool _debug_guardpage_enabled __read_mostly; 401 402 static int __init early_debug_pagealloc(char *buf) 403 { 404 if (!buf) 405 return -EINVAL; 406 407 if (strcmp(buf, "on") == 0) 408 _debug_pagealloc_enabled = true; 409 410 return 0; 411 } 412 early_param("debug_pagealloc", early_debug_pagealloc); 413 414 static bool need_debug_guardpage(void) 415 { 416 /* If we don't use debug_pagealloc, we don't need guard page */ 417 if (!debug_pagealloc_enabled()) 418 return false; 419 420 return true; 421 } 422 423 static void init_debug_guardpage(void) 424 { 425 if (!debug_pagealloc_enabled()) 426 return; 427 428 _debug_guardpage_enabled = true; 429 } 430 431 struct page_ext_operations debug_guardpage_ops = { 432 .need = need_debug_guardpage, 433 .init = init_debug_guardpage, 434 }; 435 436 static int __init debug_guardpage_minorder_setup(char *buf) 437 { 438 unsigned long res; 439 440 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 441 printk(KERN_ERR "Bad debug_guardpage_minorder value\n"); 442 return 0; 443 } 444 _debug_guardpage_minorder = res; 445 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res); 446 return 0; 447 } 448 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup); 449 450 static inline void set_page_guard(struct zone *zone, struct page *page, 451 unsigned int order, int migratetype) 452 { 453 struct page_ext *page_ext; 454 455 if (!debug_guardpage_enabled()) 456 return; 457 458 page_ext = lookup_page_ext(page); 459 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 460 461 INIT_LIST_HEAD(&page->lru); 462 set_page_private(page, order); 463 /* Guard pages are not available for any usage */ 464 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 465 } 466 467 static inline void clear_page_guard(struct zone *zone, struct page *page, 468 unsigned int order, int migratetype) 469 { 470 struct page_ext *page_ext; 471 472 if (!debug_guardpage_enabled()) 473 return; 474 475 page_ext = lookup_page_ext(page); 476 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 477 478 set_page_private(page, 0); 479 if (!is_migrate_isolate(migratetype)) 480 __mod_zone_freepage_state(zone, (1 << order), migratetype); 481 } 482 #else 483 struct page_ext_operations debug_guardpage_ops = { NULL, }; 484 static inline void set_page_guard(struct zone *zone, struct page *page, 485 unsigned int order, int migratetype) {} 486 static inline void clear_page_guard(struct zone *zone, struct page *page, 487 unsigned int order, int migratetype) {} 488 #endif 489 490 static inline void set_page_order(struct page *page, unsigned int order) 491 { 492 set_page_private(page, order); 493 __SetPageBuddy(page); 494 } 495 496 static inline void rmv_page_order(struct page *page) 497 { 498 __ClearPageBuddy(page); 499 set_page_private(page, 0); 500 } 501 502 /* 503 * This function checks whether a page is free && is the buddy 504 * we can do coalesce a page and its buddy if 505 * (a) the buddy is not in a hole && 506 * (b) the buddy is in the buddy system && 507 * (c) a page and its buddy have the same order && 508 * (d) a page and its buddy are in the same zone. 509 * 510 * For recording whether a page is in the buddy system, we set ->_mapcount 511 * PAGE_BUDDY_MAPCOUNT_VALUE. 512 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is 513 * serialized by zone->lock. 514 * 515 * For recording page's order, we use page_private(page). 516 */ 517 static inline int page_is_buddy(struct page *page, struct page *buddy, 518 unsigned int order) 519 { 520 if (!pfn_valid_within(page_to_pfn(buddy))) 521 return 0; 522 523 if (page_is_guard(buddy) && page_order(buddy) == order) { 524 if (page_zone_id(page) != page_zone_id(buddy)) 525 return 0; 526 527 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 528 529 return 1; 530 } 531 532 if (PageBuddy(buddy) && page_order(buddy) == order) { 533 /* 534 * zone check is done late to avoid uselessly 535 * calculating zone/node ids for pages that could 536 * never merge. 537 */ 538 if (page_zone_id(page) != page_zone_id(buddy)) 539 return 0; 540 541 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 542 543 return 1; 544 } 545 return 0; 546 } 547 548 /* 549 * Freeing function for a buddy system allocator. 550 * 551 * The concept of a buddy system is to maintain direct-mapped table 552 * (containing bit values) for memory blocks of various "orders". 553 * The bottom level table contains the map for the smallest allocatable 554 * units of memory (here, pages), and each level above it describes 555 * pairs of units from the levels below, hence, "buddies". 556 * At a high level, all that happens here is marking the table entry 557 * at the bottom level available, and propagating the changes upward 558 * as necessary, plus some accounting needed to play nicely with other 559 * parts of the VM system. 560 * At each level, we keep a list of pages, which are heads of continuous 561 * free pages of length of (1 << order) and marked with _mapcount 562 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page) 563 * field. 564 * So when we are allocating or freeing one, we can derive the state of the 565 * other. That is, if we allocate a small block, and both were 566 * free, the remainder of the region must be split into blocks. 567 * If a block is freed, and its buddy is also free, then this 568 * triggers coalescing into a block of larger size. 569 * 570 * -- nyc 571 */ 572 573 static inline void __free_one_page(struct page *page, 574 unsigned long pfn, 575 struct zone *zone, unsigned int order, 576 int migratetype) 577 { 578 unsigned long page_idx; 579 unsigned long combined_idx; 580 unsigned long uninitialized_var(buddy_idx); 581 struct page *buddy; 582 int max_order = MAX_ORDER; 583 584 VM_BUG_ON(!zone_is_initialized(zone)); 585 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 586 587 VM_BUG_ON(migratetype == -1); 588 if (is_migrate_isolate(migratetype)) { 589 /* 590 * We restrict max order of merging to prevent merge 591 * between freepages on isolate pageblock and normal 592 * pageblock. Without this, pageblock isolation 593 * could cause incorrect freepage accounting. 594 */ 595 max_order = min(MAX_ORDER, pageblock_order + 1); 596 } else { 597 __mod_zone_freepage_state(zone, 1 << order, migratetype); 598 } 599 600 page_idx = pfn & ((1 << max_order) - 1); 601 602 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page); 603 VM_BUG_ON_PAGE(bad_range(zone, page), page); 604 605 while (order < max_order - 1) { 606 buddy_idx = __find_buddy_index(page_idx, order); 607 buddy = page + (buddy_idx - page_idx); 608 if (!page_is_buddy(page, buddy, order)) 609 break; 610 /* 611 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 612 * merge with it and move up one order. 613 */ 614 if (page_is_guard(buddy)) { 615 clear_page_guard(zone, buddy, order, migratetype); 616 } else { 617 list_del(&buddy->lru); 618 zone->free_area[order].nr_free--; 619 rmv_page_order(buddy); 620 } 621 combined_idx = buddy_idx & page_idx; 622 page = page + (combined_idx - page_idx); 623 page_idx = combined_idx; 624 order++; 625 } 626 set_page_order(page, order); 627 628 /* 629 * If this is not the largest possible page, check if the buddy 630 * of the next-highest order is free. If it is, it's possible 631 * that pages are being freed that will coalesce soon. In case, 632 * that is happening, add the free page to the tail of the list 633 * so it's less likely to be used soon and more likely to be merged 634 * as a higher order page 635 */ 636 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { 637 struct page *higher_page, *higher_buddy; 638 combined_idx = buddy_idx & page_idx; 639 higher_page = page + (combined_idx - page_idx); 640 buddy_idx = __find_buddy_index(combined_idx, order + 1); 641 higher_buddy = higher_page + (buddy_idx - combined_idx); 642 if (page_is_buddy(higher_page, higher_buddy, order + 1)) { 643 list_add_tail(&page->lru, 644 &zone->free_area[order].free_list[migratetype]); 645 goto out; 646 } 647 } 648 649 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 650 out: 651 zone->free_area[order].nr_free++; 652 } 653 654 static inline int free_pages_check(struct page *page) 655 { 656 const char *bad_reason = NULL; 657 unsigned long bad_flags = 0; 658 659 if (unlikely(page_mapcount(page))) 660 bad_reason = "nonzero mapcount"; 661 if (unlikely(page->mapping != NULL)) 662 bad_reason = "non-NULL mapping"; 663 if (unlikely(atomic_read(&page->_count) != 0)) 664 bad_reason = "nonzero _count"; 665 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { 666 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 667 bad_flags = PAGE_FLAGS_CHECK_AT_FREE; 668 } 669 #ifdef CONFIG_MEMCG 670 if (unlikely(page->mem_cgroup)) 671 bad_reason = "page still charged to cgroup"; 672 #endif 673 if (unlikely(bad_reason)) { 674 bad_page(page, bad_reason, bad_flags); 675 return 1; 676 } 677 page_cpupid_reset_last(page); 678 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 679 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 680 return 0; 681 } 682 683 /* 684 * Frees a number of pages from the PCP lists 685 * Assumes all pages on list are in same zone, and of same order. 686 * count is the number of pages to free. 687 * 688 * If the zone was previously in an "all pages pinned" state then look to 689 * see if this freeing clears that state. 690 * 691 * And clear the zone's pages_scanned counter, to hold off the "all pages are 692 * pinned" detection logic. 693 */ 694 static void free_pcppages_bulk(struct zone *zone, int count, 695 struct per_cpu_pages *pcp) 696 { 697 int migratetype = 0; 698 int batch_free = 0; 699 int to_free = count; 700 unsigned long nr_scanned; 701 702 spin_lock(&zone->lock); 703 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED); 704 if (nr_scanned) 705 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned); 706 707 while (to_free) { 708 struct page *page; 709 struct list_head *list; 710 711 /* 712 * Remove pages from lists in a round-robin fashion. A 713 * batch_free count is maintained that is incremented when an 714 * empty list is encountered. This is so more pages are freed 715 * off fuller lists instead of spinning excessively around empty 716 * lists 717 */ 718 do { 719 batch_free++; 720 if (++migratetype == MIGRATE_PCPTYPES) 721 migratetype = 0; 722 list = &pcp->lists[migratetype]; 723 } while (list_empty(list)); 724 725 /* This is the only non-empty list. Free them all. */ 726 if (batch_free == MIGRATE_PCPTYPES) 727 batch_free = to_free; 728 729 do { 730 int mt; /* migratetype of the to-be-freed page */ 731 732 page = list_entry(list->prev, struct page, lru); 733 /* must delete as __free_one_page list manipulates */ 734 list_del(&page->lru); 735 mt = get_freepage_migratetype(page); 736 if (unlikely(has_isolate_pageblock(zone))) 737 mt = get_pageblock_migratetype(page); 738 739 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ 740 __free_one_page(page, page_to_pfn(page), zone, 0, mt); 741 trace_mm_page_pcpu_drain(page, 0, mt); 742 } while (--to_free && --batch_free && !list_empty(list)); 743 } 744 spin_unlock(&zone->lock); 745 } 746 747 static void free_one_page(struct zone *zone, 748 struct page *page, unsigned long pfn, 749 unsigned int order, 750 int migratetype) 751 { 752 unsigned long nr_scanned; 753 spin_lock(&zone->lock); 754 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED); 755 if (nr_scanned) 756 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned); 757 758 if (unlikely(has_isolate_pageblock(zone) || 759 is_migrate_isolate(migratetype))) { 760 migratetype = get_pfnblock_migratetype(page, pfn); 761 } 762 __free_one_page(page, pfn, zone, order, migratetype); 763 spin_unlock(&zone->lock); 764 } 765 766 static int free_tail_pages_check(struct page *head_page, struct page *page) 767 { 768 if (!IS_ENABLED(CONFIG_DEBUG_VM)) 769 return 0; 770 if (unlikely(!PageTail(page))) { 771 bad_page(page, "PageTail not set", 0); 772 return 1; 773 } 774 if (unlikely(page->first_page != head_page)) { 775 bad_page(page, "first_page not consistent", 0); 776 return 1; 777 } 778 return 0; 779 } 780 781 static bool free_pages_prepare(struct page *page, unsigned int order) 782 { 783 bool compound = PageCompound(page); 784 int i, bad = 0; 785 786 VM_BUG_ON_PAGE(PageTail(page), page); 787 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 788 789 trace_mm_page_free(page, order); 790 kmemcheck_free_shadow(page, order); 791 kasan_free_pages(page, order); 792 793 if (PageAnon(page)) 794 page->mapping = NULL; 795 bad += free_pages_check(page); 796 for (i = 1; i < (1 << order); i++) { 797 if (compound) 798 bad += free_tail_pages_check(page, page + i); 799 bad += free_pages_check(page + i); 800 } 801 if (bad) 802 return false; 803 804 reset_page_owner(page, order); 805 806 if (!PageHighMem(page)) { 807 debug_check_no_locks_freed(page_address(page), 808 PAGE_SIZE << order); 809 debug_check_no_obj_freed(page_address(page), 810 PAGE_SIZE << order); 811 } 812 arch_free_page(page, order); 813 kernel_map_pages(page, 1 << order, 0); 814 815 return true; 816 } 817 818 static void __free_pages_ok(struct page *page, unsigned int order) 819 { 820 unsigned long flags; 821 int migratetype; 822 unsigned long pfn = page_to_pfn(page); 823 824 if (!free_pages_prepare(page, order)) 825 return; 826 827 migratetype = get_pfnblock_migratetype(page, pfn); 828 local_irq_save(flags); 829 __count_vm_events(PGFREE, 1 << order); 830 set_freepage_migratetype(page, migratetype); 831 free_one_page(page_zone(page), page, pfn, order, migratetype); 832 local_irq_restore(flags); 833 } 834 835 void __init __free_pages_bootmem(struct page *page, unsigned int order) 836 { 837 unsigned int nr_pages = 1 << order; 838 struct page *p = page; 839 unsigned int loop; 840 841 prefetchw(p); 842 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 843 prefetchw(p + 1); 844 __ClearPageReserved(p); 845 set_page_count(p, 0); 846 } 847 __ClearPageReserved(p); 848 set_page_count(p, 0); 849 850 page_zone(page)->managed_pages += nr_pages; 851 set_page_refcounted(page); 852 __free_pages(page, order); 853 } 854 855 #ifdef CONFIG_CMA 856 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 857 void __init init_cma_reserved_pageblock(struct page *page) 858 { 859 unsigned i = pageblock_nr_pages; 860 struct page *p = page; 861 862 do { 863 __ClearPageReserved(p); 864 set_page_count(p, 0); 865 } while (++p, --i); 866 867 set_pageblock_migratetype(page, MIGRATE_CMA); 868 869 if (pageblock_order >= MAX_ORDER) { 870 i = pageblock_nr_pages; 871 p = page; 872 do { 873 set_page_refcounted(p); 874 __free_pages(p, MAX_ORDER - 1); 875 p += MAX_ORDER_NR_PAGES; 876 } while (i -= MAX_ORDER_NR_PAGES); 877 } else { 878 set_page_refcounted(page); 879 __free_pages(page, pageblock_order); 880 } 881 882 adjust_managed_page_count(page, pageblock_nr_pages); 883 } 884 #endif 885 886 /* 887 * The order of subdivision here is critical for the IO subsystem. 888 * Please do not alter this order without good reasons and regression 889 * testing. Specifically, as large blocks of memory are subdivided, 890 * the order in which smaller blocks are delivered depends on the order 891 * they're subdivided in this function. This is the primary factor 892 * influencing the order in which pages are delivered to the IO 893 * subsystem according to empirical testing, and this is also justified 894 * by considering the behavior of a buddy system containing a single 895 * large block of memory acted on by a series of small allocations. 896 * This behavior is a critical factor in sglist merging's success. 897 * 898 * -- nyc 899 */ 900 static inline void expand(struct zone *zone, struct page *page, 901 int low, int high, struct free_area *area, 902 int migratetype) 903 { 904 unsigned long size = 1 << high; 905 906 while (high > low) { 907 area--; 908 high--; 909 size >>= 1; 910 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 911 912 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 913 debug_guardpage_enabled() && 914 high < debug_guardpage_minorder()) { 915 /* 916 * Mark as guard pages (or page), that will allow to 917 * merge back to allocator when buddy will be freed. 918 * Corresponding page table entries will not be touched, 919 * pages will stay not present in virtual address space 920 */ 921 set_page_guard(zone, &page[size], high, migratetype); 922 continue; 923 } 924 list_add(&page[size].lru, &area->free_list[migratetype]); 925 area->nr_free++; 926 set_page_order(&page[size], high); 927 } 928 } 929 930 /* 931 * This page is about to be returned from the page allocator 932 */ 933 static inline int check_new_page(struct page *page) 934 { 935 const char *bad_reason = NULL; 936 unsigned long bad_flags = 0; 937 938 if (unlikely(page_mapcount(page))) 939 bad_reason = "nonzero mapcount"; 940 if (unlikely(page->mapping != NULL)) 941 bad_reason = "non-NULL mapping"; 942 if (unlikely(atomic_read(&page->_count) != 0)) 943 bad_reason = "nonzero _count"; 944 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { 945 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; 946 bad_flags = PAGE_FLAGS_CHECK_AT_PREP; 947 } 948 #ifdef CONFIG_MEMCG 949 if (unlikely(page->mem_cgroup)) 950 bad_reason = "page still charged to cgroup"; 951 #endif 952 if (unlikely(bad_reason)) { 953 bad_page(page, bad_reason, bad_flags); 954 return 1; 955 } 956 return 0; 957 } 958 959 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 960 int alloc_flags) 961 { 962 int i; 963 964 for (i = 0; i < (1 << order); i++) { 965 struct page *p = page + i; 966 if (unlikely(check_new_page(p))) 967 return 1; 968 } 969 970 set_page_private(page, 0); 971 set_page_refcounted(page); 972 973 arch_alloc_page(page, order); 974 kernel_map_pages(page, 1 << order, 1); 975 kasan_alloc_pages(page, order); 976 977 if (gfp_flags & __GFP_ZERO) 978 prep_zero_page(page, order, gfp_flags); 979 980 if (order && (gfp_flags & __GFP_COMP)) 981 prep_compound_page(page, order); 982 983 set_page_owner(page, order, gfp_flags); 984 985 /* 986 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was necessary to 987 * allocate the page. The expectation is that the caller is taking 988 * steps that will free more memory. The caller should avoid the page 989 * being used for !PFMEMALLOC purposes. 990 */ 991 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS); 992 993 return 0; 994 } 995 996 /* 997 * Go through the free lists for the given migratetype and remove 998 * the smallest available page from the freelists 999 */ 1000 static inline 1001 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1002 int migratetype) 1003 { 1004 unsigned int current_order; 1005 struct free_area *area; 1006 struct page *page; 1007 1008 /* Find a page of the appropriate size in the preferred list */ 1009 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 1010 area = &(zone->free_area[current_order]); 1011 if (list_empty(&area->free_list[migratetype])) 1012 continue; 1013 1014 page = list_entry(area->free_list[migratetype].next, 1015 struct page, lru); 1016 list_del(&page->lru); 1017 rmv_page_order(page); 1018 area->nr_free--; 1019 expand(zone, page, order, current_order, area, migratetype); 1020 set_freepage_migratetype(page, migratetype); 1021 return page; 1022 } 1023 1024 return NULL; 1025 } 1026 1027 1028 /* 1029 * This array describes the order lists are fallen back to when 1030 * the free lists for the desirable migrate type are depleted 1031 */ 1032 static int fallbacks[MIGRATE_TYPES][4] = { 1033 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 1034 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 1035 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 1036 #ifdef CONFIG_CMA 1037 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */ 1038 #endif 1039 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */ 1040 #ifdef CONFIG_MEMORY_ISOLATION 1041 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */ 1042 #endif 1043 }; 1044 1045 #ifdef CONFIG_CMA 1046 static struct page *__rmqueue_cma_fallback(struct zone *zone, 1047 unsigned int order) 1048 { 1049 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1050 } 1051 #else 1052 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1053 unsigned int order) { return NULL; } 1054 #endif 1055 1056 /* 1057 * Move the free pages in a range to the free lists of the requested type. 1058 * Note that start_page and end_pages are not aligned on a pageblock 1059 * boundary. If alignment is required, use move_freepages_block() 1060 */ 1061 int move_freepages(struct zone *zone, 1062 struct page *start_page, struct page *end_page, 1063 int migratetype) 1064 { 1065 struct page *page; 1066 unsigned long order; 1067 int pages_moved = 0; 1068 1069 #ifndef CONFIG_HOLES_IN_ZONE 1070 /* 1071 * page_zone is not safe to call in this context when 1072 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 1073 * anyway as we check zone boundaries in move_freepages_block(). 1074 * Remove at a later date when no bug reports exist related to 1075 * grouping pages by mobility 1076 */ 1077 VM_BUG_ON(page_zone(start_page) != page_zone(end_page)); 1078 #endif 1079 1080 for (page = start_page; page <= end_page;) { 1081 /* Make sure we are not inadvertently changing nodes */ 1082 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1083 1084 if (!pfn_valid_within(page_to_pfn(page))) { 1085 page++; 1086 continue; 1087 } 1088 1089 if (!PageBuddy(page)) { 1090 page++; 1091 continue; 1092 } 1093 1094 order = page_order(page); 1095 list_move(&page->lru, 1096 &zone->free_area[order].free_list[migratetype]); 1097 set_freepage_migratetype(page, migratetype); 1098 page += 1 << order; 1099 pages_moved += 1 << order; 1100 } 1101 1102 return pages_moved; 1103 } 1104 1105 int move_freepages_block(struct zone *zone, struct page *page, 1106 int migratetype) 1107 { 1108 unsigned long start_pfn, end_pfn; 1109 struct page *start_page, *end_page; 1110 1111 start_pfn = page_to_pfn(page); 1112 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 1113 start_page = pfn_to_page(start_pfn); 1114 end_page = start_page + pageblock_nr_pages - 1; 1115 end_pfn = start_pfn + pageblock_nr_pages - 1; 1116 1117 /* Do not cross zone boundaries */ 1118 if (!zone_spans_pfn(zone, start_pfn)) 1119 start_page = page; 1120 if (!zone_spans_pfn(zone, end_pfn)) 1121 return 0; 1122 1123 return move_freepages(zone, start_page, end_page, migratetype); 1124 } 1125 1126 static void change_pageblock_range(struct page *pageblock_page, 1127 int start_order, int migratetype) 1128 { 1129 int nr_pageblocks = 1 << (start_order - pageblock_order); 1130 1131 while (nr_pageblocks--) { 1132 set_pageblock_migratetype(pageblock_page, migratetype); 1133 pageblock_page += pageblock_nr_pages; 1134 } 1135 } 1136 1137 /* 1138 * When we are falling back to another migratetype during allocation, try to 1139 * steal extra free pages from the same pageblocks to satisfy further 1140 * allocations, instead of polluting multiple pageblocks. 1141 * 1142 * If we are stealing a relatively large buddy page, it is likely there will 1143 * be more free pages in the pageblock, so try to steal them all. For 1144 * reclaimable and unmovable allocations, we steal regardless of page size, 1145 * as fragmentation caused by those allocations polluting movable pageblocks 1146 * is worse than movable allocations stealing from unmovable and reclaimable 1147 * pageblocks. 1148 */ 1149 static bool can_steal_fallback(unsigned int order, int start_mt) 1150 { 1151 /* 1152 * Leaving this order check is intended, although there is 1153 * relaxed order check in next check. The reason is that 1154 * we can actually steal whole pageblock if this condition met, 1155 * but, below check doesn't guarantee it and that is just heuristic 1156 * so could be changed anytime. 1157 */ 1158 if (order >= pageblock_order) 1159 return true; 1160 1161 if (order >= pageblock_order / 2 || 1162 start_mt == MIGRATE_RECLAIMABLE || 1163 start_mt == MIGRATE_UNMOVABLE || 1164 page_group_by_mobility_disabled) 1165 return true; 1166 1167 return false; 1168 } 1169 1170 /* 1171 * This function implements actual steal behaviour. If order is large enough, 1172 * we can steal whole pageblock. If not, we first move freepages in this 1173 * pageblock and check whether half of pages are moved or not. If half of 1174 * pages are moved, we can change migratetype of pageblock and permanently 1175 * use it's pages as requested migratetype in the future. 1176 */ 1177 static void steal_suitable_fallback(struct zone *zone, struct page *page, 1178 int start_type) 1179 { 1180 int current_order = page_order(page); 1181 int pages; 1182 1183 /* Take ownership for orders >= pageblock_order */ 1184 if (current_order >= pageblock_order) { 1185 change_pageblock_range(page, current_order, start_type); 1186 return; 1187 } 1188 1189 pages = move_freepages_block(zone, page, start_type); 1190 1191 /* Claim the whole block if over half of it is free */ 1192 if (pages >= (1 << (pageblock_order-1)) || 1193 page_group_by_mobility_disabled) 1194 set_pageblock_migratetype(page, start_type); 1195 } 1196 1197 /* 1198 * Check whether there is a suitable fallback freepage with requested order. 1199 * If only_stealable is true, this function returns fallback_mt only if 1200 * we can steal other freepages all together. This would help to reduce 1201 * fragmentation due to mixed migratetype pages in one pageblock. 1202 */ 1203 int find_suitable_fallback(struct free_area *area, unsigned int order, 1204 int migratetype, bool only_stealable, bool *can_steal) 1205 { 1206 int i; 1207 int fallback_mt; 1208 1209 if (area->nr_free == 0) 1210 return -1; 1211 1212 *can_steal = false; 1213 for (i = 0;; i++) { 1214 fallback_mt = fallbacks[migratetype][i]; 1215 if (fallback_mt == MIGRATE_RESERVE) 1216 break; 1217 1218 if (list_empty(&area->free_list[fallback_mt])) 1219 continue; 1220 1221 if (can_steal_fallback(order, migratetype)) 1222 *can_steal = true; 1223 1224 if (!only_stealable) 1225 return fallback_mt; 1226 1227 if (*can_steal) 1228 return fallback_mt; 1229 } 1230 1231 return -1; 1232 } 1233 1234 /* Remove an element from the buddy allocator from the fallback list */ 1235 static inline struct page * 1236 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype) 1237 { 1238 struct free_area *area; 1239 unsigned int current_order; 1240 struct page *page; 1241 int fallback_mt; 1242 bool can_steal; 1243 1244 /* Find the largest possible block of pages in the other list */ 1245 for (current_order = MAX_ORDER-1; 1246 current_order >= order && current_order <= MAX_ORDER-1; 1247 --current_order) { 1248 area = &(zone->free_area[current_order]); 1249 fallback_mt = find_suitable_fallback(area, current_order, 1250 start_migratetype, false, &can_steal); 1251 if (fallback_mt == -1) 1252 continue; 1253 1254 page = list_entry(area->free_list[fallback_mt].next, 1255 struct page, lru); 1256 if (can_steal) 1257 steal_suitable_fallback(zone, page, start_migratetype); 1258 1259 /* Remove the page from the freelists */ 1260 area->nr_free--; 1261 list_del(&page->lru); 1262 rmv_page_order(page); 1263 1264 expand(zone, page, order, current_order, area, 1265 start_migratetype); 1266 /* 1267 * The freepage_migratetype may differ from pageblock's 1268 * migratetype depending on the decisions in 1269 * try_to_steal_freepages(). This is OK as long as it 1270 * does not differ for MIGRATE_CMA pageblocks. For CMA 1271 * we need to make sure unallocated pages flushed from 1272 * pcp lists are returned to the correct freelist. 1273 */ 1274 set_freepage_migratetype(page, start_migratetype); 1275 1276 trace_mm_page_alloc_extfrag(page, order, current_order, 1277 start_migratetype, fallback_mt); 1278 1279 return page; 1280 } 1281 1282 return NULL; 1283 } 1284 1285 /* 1286 * Do the hard work of removing an element from the buddy allocator. 1287 * Call me with the zone->lock already held. 1288 */ 1289 static struct page *__rmqueue(struct zone *zone, unsigned int order, 1290 int migratetype) 1291 { 1292 struct page *page; 1293 1294 retry_reserve: 1295 page = __rmqueue_smallest(zone, order, migratetype); 1296 1297 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { 1298 if (migratetype == MIGRATE_MOVABLE) 1299 page = __rmqueue_cma_fallback(zone, order); 1300 1301 if (!page) 1302 page = __rmqueue_fallback(zone, order, migratetype); 1303 1304 /* 1305 * Use MIGRATE_RESERVE rather than fail an allocation. goto 1306 * is used because __rmqueue_smallest is an inline function 1307 * and we want just one call site 1308 */ 1309 if (!page) { 1310 migratetype = MIGRATE_RESERVE; 1311 goto retry_reserve; 1312 } 1313 } 1314 1315 trace_mm_page_alloc_zone_locked(page, order, migratetype); 1316 return page; 1317 } 1318 1319 /* 1320 * Obtain a specified number of elements from the buddy allocator, all under 1321 * a single hold of the lock, for efficiency. Add them to the supplied list. 1322 * Returns the number of new pages which were placed at *list. 1323 */ 1324 static int rmqueue_bulk(struct zone *zone, unsigned int order, 1325 unsigned long count, struct list_head *list, 1326 int migratetype, bool cold) 1327 { 1328 int i; 1329 1330 spin_lock(&zone->lock); 1331 for (i = 0; i < count; ++i) { 1332 struct page *page = __rmqueue(zone, order, migratetype); 1333 if (unlikely(page == NULL)) 1334 break; 1335 1336 /* 1337 * Split buddy pages returned by expand() are received here 1338 * in physical page order. The page is added to the callers and 1339 * list and the list head then moves forward. From the callers 1340 * perspective, the linked list is ordered by page number in 1341 * some conditions. This is useful for IO devices that can 1342 * merge IO requests if the physical pages are ordered 1343 * properly. 1344 */ 1345 if (likely(!cold)) 1346 list_add(&page->lru, list); 1347 else 1348 list_add_tail(&page->lru, list); 1349 list = &page->lru; 1350 if (is_migrate_cma(get_freepage_migratetype(page))) 1351 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1352 -(1 << order)); 1353 } 1354 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 1355 spin_unlock(&zone->lock); 1356 return i; 1357 } 1358 1359 #ifdef CONFIG_NUMA 1360 /* 1361 * Called from the vmstat counter updater to drain pagesets of this 1362 * currently executing processor on remote nodes after they have 1363 * expired. 1364 * 1365 * Note that this function must be called with the thread pinned to 1366 * a single processor. 1367 */ 1368 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 1369 { 1370 unsigned long flags; 1371 int to_drain, batch; 1372 1373 local_irq_save(flags); 1374 batch = READ_ONCE(pcp->batch); 1375 to_drain = min(pcp->count, batch); 1376 if (to_drain > 0) { 1377 free_pcppages_bulk(zone, to_drain, pcp); 1378 pcp->count -= to_drain; 1379 } 1380 local_irq_restore(flags); 1381 } 1382 #endif 1383 1384 /* 1385 * Drain pcplists of the indicated processor and zone. 1386 * 1387 * The processor must either be the current processor and the 1388 * thread pinned to the current processor or a processor that 1389 * is not online. 1390 */ 1391 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 1392 { 1393 unsigned long flags; 1394 struct per_cpu_pageset *pset; 1395 struct per_cpu_pages *pcp; 1396 1397 local_irq_save(flags); 1398 pset = per_cpu_ptr(zone->pageset, cpu); 1399 1400 pcp = &pset->pcp; 1401 if (pcp->count) { 1402 free_pcppages_bulk(zone, pcp->count, pcp); 1403 pcp->count = 0; 1404 } 1405 local_irq_restore(flags); 1406 } 1407 1408 /* 1409 * Drain pcplists of all zones on the indicated processor. 1410 * 1411 * The processor must either be the current processor and the 1412 * thread pinned to the current processor or a processor that 1413 * is not online. 1414 */ 1415 static void drain_pages(unsigned int cpu) 1416 { 1417 struct zone *zone; 1418 1419 for_each_populated_zone(zone) { 1420 drain_pages_zone(cpu, zone); 1421 } 1422 } 1423 1424 /* 1425 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 1426 * 1427 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 1428 * the single zone's pages. 1429 */ 1430 void drain_local_pages(struct zone *zone) 1431 { 1432 int cpu = smp_processor_id(); 1433 1434 if (zone) 1435 drain_pages_zone(cpu, zone); 1436 else 1437 drain_pages(cpu); 1438 } 1439 1440 /* 1441 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 1442 * 1443 * When zone parameter is non-NULL, spill just the single zone's pages. 1444 * 1445 * Note that this code is protected against sending an IPI to an offline 1446 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs: 1447 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but 1448 * nothing keeps CPUs from showing up after we populated the cpumask and 1449 * before the call to on_each_cpu_mask(). 1450 */ 1451 void drain_all_pages(struct zone *zone) 1452 { 1453 int cpu; 1454 1455 /* 1456 * Allocate in the BSS so we wont require allocation in 1457 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 1458 */ 1459 static cpumask_t cpus_with_pcps; 1460 1461 /* 1462 * We don't care about racing with CPU hotplug event 1463 * as offline notification will cause the notified 1464 * cpu to drain that CPU pcps and on_each_cpu_mask 1465 * disables preemption as part of its processing 1466 */ 1467 for_each_online_cpu(cpu) { 1468 struct per_cpu_pageset *pcp; 1469 struct zone *z; 1470 bool has_pcps = false; 1471 1472 if (zone) { 1473 pcp = per_cpu_ptr(zone->pageset, cpu); 1474 if (pcp->pcp.count) 1475 has_pcps = true; 1476 } else { 1477 for_each_populated_zone(z) { 1478 pcp = per_cpu_ptr(z->pageset, cpu); 1479 if (pcp->pcp.count) { 1480 has_pcps = true; 1481 break; 1482 } 1483 } 1484 } 1485 1486 if (has_pcps) 1487 cpumask_set_cpu(cpu, &cpus_with_pcps); 1488 else 1489 cpumask_clear_cpu(cpu, &cpus_with_pcps); 1490 } 1491 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages, 1492 zone, 1); 1493 } 1494 1495 #ifdef CONFIG_HIBERNATION 1496 1497 void mark_free_pages(struct zone *zone) 1498 { 1499 unsigned long pfn, max_zone_pfn; 1500 unsigned long flags; 1501 unsigned int order, t; 1502 struct list_head *curr; 1503 1504 if (zone_is_empty(zone)) 1505 return; 1506 1507 spin_lock_irqsave(&zone->lock, flags); 1508 1509 max_zone_pfn = zone_end_pfn(zone); 1510 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1511 if (pfn_valid(pfn)) { 1512 struct page *page = pfn_to_page(pfn); 1513 1514 if (!swsusp_page_is_forbidden(page)) 1515 swsusp_unset_page_free(page); 1516 } 1517 1518 for_each_migratetype_order(order, t) { 1519 list_for_each(curr, &zone->free_area[order].free_list[t]) { 1520 unsigned long i; 1521 1522 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 1523 for (i = 0; i < (1UL << order); i++) 1524 swsusp_set_page_free(pfn_to_page(pfn + i)); 1525 } 1526 } 1527 spin_unlock_irqrestore(&zone->lock, flags); 1528 } 1529 #endif /* CONFIG_PM */ 1530 1531 /* 1532 * Free a 0-order page 1533 * cold == true ? free a cold page : free a hot page 1534 */ 1535 void free_hot_cold_page(struct page *page, bool cold) 1536 { 1537 struct zone *zone = page_zone(page); 1538 struct per_cpu_pages *pcp; 1539 unsigned long flags; 1540 unsigned long pfn = page_to_pfn(page); 1541 int migratetype; 1542 1543 if (!free_pages_prepare(page, 0)) 1544 return; 1545 1546 migratetype = get_pfnblock_migratetype(page, pfn); 1547 set_freepage_migratetype(page, migratetype); 1548 local_irq_save(flags); 1549 __count_vm_event(PGFREE); 1550 1551 /* 1552 * We only track unmovable, reclaimable and movable on pcp lists. 1553 * Free ISOLATE pages back to the allocator because they are being 1554 * offlined but treat RESERVE as movable pages so we can get those 1555 * areas back if necessary. Otherwise, we may have to free 1556 * excessively into the page allocator 1557 */ 1558 if (migratetype >= MIGRATE_PCPTYPES) { 1559 if (unlikely(is_migrate_isolate(migratetype))) { 1560 free_one_page(zone, page, pfn, 0, migratetype); 1561 goto out; 1562 } 1563 migratetype = MIGRATE_MOVABLE; 1564 } 1565 1566 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1567 if (!cold) 1568 list_add(&page->lru, &pcp->lists[migratetype]); 1569 else 1570 list_add_tail(&page->lru, &pcp->lists[migratetype]); 1571 pcp->count++; 1572 if (pcp->count >= pcp->high) { 1573 unsigned long batch = READ_ONCE(pcp->batch); 1574 free_pcppages_bulk(zone, batch, pcp); 1575 pcp->count -= batch; 1576 } 1577 1578 out: 1579 local_irq_restore(flags); 1580 } 1581 1582 /* 1583 * Free a list of 0-order pages 1584 */ 1585 void free_hot_cold_page_list(struct list_head *list, bool cold) 1586 { 1587 struct page *page, *next; 1588 1589 list_for_each_entry_safe(page, next, list, lru) { 1590 trace_mm_page_free_batched(page, cold); 1591 free_hot_cold_page(page, cold); 1592 } 1593 } 1594 1595 /* 1596 * split_page takes a non-compound higher-order page, and splits it into 1597 * n (1<<order) sub-pages: page[0..n] 1598 * Each sub-page must be freed individually. 1599 * 1600 * Note: this is probably too low level an operation for use in drivers. 1601 * Please consult with lkml before using this in your driver. 1602 */ 1603 void split_page(struct page *page, unsigned int order) 1604 { 1605 int i; 1606 1607 VM_BUG_ON_PAGE(PageCompound(page), page); 1608 VM_BUG_ON_PAGE(!page_count(page), page); 1609 1610 #ifdef CONFIG_KMEMCHECK 1611 /* 1612 * Split shadow pages too, because free(page[0]) would 1613 * otherwise free the whole shadow. 1614 */ 1615 if (kmemcheck_page_is_tracked(page)) 1616 split_page(virt_to_page(page[0].shadow), order); 1617 #endif 1618 1619 set_page_owner(page, 0, 0); 1620 for (i = 1; i < (1 << order); i++) { 1621 set_page_refcounted(page + i); 1622 set_page_owner(page + i, 0, 0); 1623 } 1624 } 1625 EXPORT_SYMBOL_GPL(split_page); 1626 1627 int __isolate_free_page(struct page *page, unsigned int order) 1628 { 1629 unsigned long watermark; 1630 struct zone *zone; 1631 int mt; 1632 1633 BUG_ON(!PageBuddy(page)); 1634 1635 zone = page_zone(page); 1636 mt = get_pageblock_migratetype(page); 1637 1638 if (!is_migrate_isolate(mt)) { 1639 /* Obey watermarks as if the page was being allocated */ 1640 watermark = low_wmark_pages(zone) + (1 << order); 1641 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 1642 return 0; 1643 1644 __mod_zone_freepage_state(zone, -(1UL << order), mt); 1645 } 1646 1647 /* Remove page from free list */ 1648 list_del(&page->lru); 1649 zone->free_area[order].nr_free--; 1650 rmv_page_order(page); 1651 1652 /* Set the pageblock if the isolated page is at least a pageblock */ 1653 if (order >= pageblock_order - 1) { 1654 struct page *endpage = page + (1 << order) - 1; 1655 for (; page < endpage; page += pageblock_nr_pages) { 1656 int mt = get_pageblock_migratetype(page); 1657 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)) 1658 set_pageblock_migratetype(page, 1659 MIGRATE_MOVABLE); 1660 } 1661 } 1662 1663 set_page_owner(page, order, 0); 1664 return 1UL << order; 1665 } 1666 1667 /* 1668 * Similar to split_page except the page is already free. As this is only 1669 * being used for migration, the migratetype of the block also changes. 1670 * As this is called with interrupts disabled, the caller is responsible 1671 * for calling arch_alloc_page() and kernel_map_page() after interrupts 1672 * are enabled. 1673 * 1674 * Note: this is probably too low level an operation for use in drivers. 1675 * Please consult with lkml before using this in your driver. 1676 */ 1677 int split_free_page(struct page *page) 1678 { 1679 unsigned int order; 1680 int nr_pages; 1681 1682 order = page_order(page); 1683 1684 nr_pages = __isolate_free_page(page, order); 1685 if (!nr_pages) 1686 return 0; 1687 1688 /* Split into individual pages */ 1689 set_page_refcounted(page); 1690 split_page(page, order); 1691 return nr_pages; 1692 } 1693 1694 /* 1695 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 1696 */ 1697 static inline 1698 struct page *buffered_rmqueue(struct zone *preferred_zone, 1699 struct zone *zone, unsigned int order, 1700 gfp_t gfp_flags, int migratetype) 1701 { 1702 unsigned long flags; 1703 struct page *page; 1704 bool cold = ((gfp_flags & __GFP_COLD) != 0); 1705 1706 if (likely(order == 0)) { 1707 struct per_cpu_pages *pcp; 1708 struct list_head *list; 1709 1710 local_irq_save(flags); 1711 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1712 list = &pcp->lists[migratetype]; 1713 if (list_empty(list)) { 1714 pcp->count += rmqueue_bulk(zone, 0, 1715 pcp->batch, list, 1716 migratetype, cold); 1717 if (unlikely(list_empty(list))) 1718 goto failed; 1719 } 1720 1721 if (cold) 1722 page = list_entry(list->prev, struct page, lru); 1723 else 1724 page = list_entry(list->next, struct page, lru); 1725 1726 list_del(&page->lru); 1727 pcp->count--; 1728 } else { 1729 if (unlikely(gfp_flags & __GFP_NOFAIL)) { 1730 /* 1731 * __GFP_NOFAIL is not to be used in new code. 1732 * 1733 * All __GFP_NOFAIL callers should be fixed so that they 1734 * properly detect and handle allocation failures. 1735 * 1736 * We most definitely don't want callers attempting to 1737 * allocate greater than order-1 page units with 1738 * __GFP_NOFAIL. 1739 */ 1740 WARN_ON_ONCE(order > 1); 1741 } 1742 spin_lock_irqsave(&zone->lock, flags); 1743 page = __rmqueue(zone, order, migratetype); 1744 spin_unlock(&zone->lock); 1745 if (!page) 1746 goto failed; 1747 __mod_zone_freepage_state(zone, -(1 << order), 1748 get_freepage_migratetype(page)); 1749 } 1750 1751 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order)); 1752 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 && 1753 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) 1754 set_bit(ZONE_FAIR_DEPLETED, &zone->flags); 1755 1756 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1757 zone_statistics(preferred_zone, zone, gfp_flags); 1758 local_irq_restore(flags); 1759 1760 VM_BUG_ON_PAGE(bad_range(zone, page), page); 1761 return page; 1762 1763 failed: 1764 local_irq_restore(flags); 1765 return NULL; 1766 } 1767 1768 #ifdef CONFIG_FAIL_PAGE_ALLOC 1769 1770 static struct { 1771 struct fault_attr attr; 1772 1773 u32 ignore_gfp_highmem; 1774 u32 ignore_gfp_wait; 1775 u32 min_order; 1776 } fail_page_alloc = { 1777 .attr = FAULT_ATTR_INITIALIZER, 1778 .ignore_gfp_wait = 1, 1779 .ignore_gfp_highmem = 1, 1780 .min_order = 1, 1781 }; 1782 1783 static int __init setup_fail_page_alloc(char *str) 1784 { 1785 return setup_fault_attr(&fail_page_alloc.attr, str); 1786 } 1787 __setup("fail_page_alloc=", setup_fail_page_alloc); 1788 1789 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1790 { 1791 if (order < fail_page_alloc.min_order) 1792 return false; 1793 if (gfp_mask & __GFP_NOFAIL) 1794 return false; 1795 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1796 return false; 1797 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1798 return false; 1799 1800 return should_fail(&fail_page_alloc.attr, 1 << order); 1801 } 1802 1803 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1804 1805 static int __init fail_page_alloc_debugfs(void) 1806 { 1807 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1808 struct dentry *dir; 1809 1810 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 1811 &fail_page_alloc.attr); 1812 if (IS_ERR(dir)) 1813 return PTR_ERR(dir); 1814 1815 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 1816 &fail_page_alloc.ignore_gfp_wait)) 1817 goto fail; 1818 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1819 &fail_page_alloc.ignore_gfp_highmem)) 1820 goto fail; 1821 if (!debugfs_create_u32("min-order", mode, dir, 1822 &fail_page_alloc.min_order)) 1823 goto fail; 1824 1825 return 0; 1826 fail: 1827 debugfs_remove_recursive(dir); 1828 1829 return -ENOMEM; 1830 } 1831 1832 late_initcall(fail_page_alloc_debugfs); 1833 1834 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1835 1836 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1837 1838 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1839 { 1840 return false; 1841 } 1842 1843 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1844 1845 /* 1846 * Return true if free pages are above 'mark'. This takes into account the order 1847 * of the allocation. 1848 */ 1849 static bool __zone_watermark_ok(struct zone *z, unsigned int order, 1850 unsigned long mark, int classzone_idx, int alloc_flags, 1851 long free_pages) 1852 { 1853 /* free_pages may go negative - that's OK */ 1854 long min = mark; 1855 int o; 1856 long free_cma = 0; 1857 1858 free_pages -= (1 << order) - 1; 1859 if (alloc_flags & ALLOC_HIGH) 1860 min -= min / 2; 1861 if (alloc_flags & ALLOC_HARDER) 1862 min -= min / 4; 1863 #ifdef CONFIG_CMA 1864 /* If allocation can't use CMA areas don't use free CMA pages */ 1865 if (!(alloc_flags & ALLOC_CMA)) 1866 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES); 1867 #endif 1868 1869 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx]) 1870 return false; 1871 for (o = 0; o < order; o++) { 1872 /* At the next order, this order's pages become unavailable */ 1873 free_pages -= z->free_area[o].nr_free << o; 1874 1875 /* Require fewer higher order pages to be free */ 1876 min >>= 1; 1877 1878 if (free_pages <= min) 1879 return false; 1880 } 1881 return true; 1882 } 1883 1884 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 1885 int classzone_idx, int alloc_flags) 1886 { 1887 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1888 zone_page_state(z, NR_FREE_PAGES)); 1889 } 1890 1891 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 1892 unsigned long mark, int classzone_idx, int alloc_flags) 1893 { 1894 long free_pages = zone_page_state(z, NR_FREE_PAGES); 1895 1896 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 1897 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 1898 1899 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1900 free_pages); 1901 } 1902 1903 #ifdef CONFIG_NUMA 1904 /* 1905 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1906 * skip over zones that are not allowed by the cpuset, or that have 1907 * been recently (in last second) found to be nearly full. See further 1908 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1909 * that have to skip over a lot of full or unallowed zones. 1910 * 1911 * If the zonelist cache is present in the passed zonelist, then 1912 * returns a pointer to the allowed node mask (either the current 1913 * tasks mems_allowed, or node_states[N_MEMORY].) 1914 * 1915 * If the zonelist cache is not available for this zonelist, does 1916 * nothing and returns NULL. 1917 * 1918 * If the fullzones BITMAP in the zonelist cache is stale (more than 1919 * a second since last zap'd) then we zap it out (clear its bits.) 1920 * 1921 * We hold off even calling zlc_setup, until after we've checked the 1922 * first zone in the zonelist, on the theory that most allocations will 1923 * be satisfied from that first zone, so best to examine that zone as 1924 * quickly as we can. 1925 */ 1926 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1927 { 1928 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1929 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1930 1931 zlc = zonelist->zlcache_ptr; 1932 if (!zlc) 1933 return NULL; 1934 1935 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1936 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1937 zlc->last_full_zap = jiffies; 1938 } 1939 1940 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1941 &cpuset_current_mems_allowed : 1942 &node_states[N_MEMORY]; 1943 return allowednodes; 1944 } 1945 1946 /* 1947 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1948 * if it is worth looking at further for free memory: 1949 * 1) Check that the zone isn't thought to be full (doesn't have its 1950 * bit set in the zonelist_cache fullzones BITMAP). 1951 * 2) Check that the zones node (obtained from the zonelist_cache 1952 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1953 * Return true (non-zero) if zone is worth looking at further, or 1954 * else return false (zero) if it is not. 1955 * 1956 * This check -ignores- the distinction between various watermarks, 1957 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1958 * found to be full for any variation of these watermarks, it will 1959 * be considered full for up to one second by all requests, unless 1960 * we are so low on memory on all allowed nodes that we are forced 1961 * into the second scan of the zonelist. 1962 * 1963 * In the second scan we ignore this zonelist cache and exactly 1964 * apply the watermarks to all zones, even it is slower to do so. 1965 * We are low on memory in the second scan, and should leave no stone 1966 * unturned looking for a free page. 1967 */ 1968 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1969 nodemask_t *allowednodes) 1970 { 1971 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1972 int i; /* index of *z in zonelist zones */ 1973 int n; /* node that zone *z is on */ 1974 1975 zlc = zonelist->zlcache_ptr; 1976 if (!zlc) 1977 return 1; 1978 1979 i = z - zonelist->_zonerefs; 1980 n = zlc->z_to_n[i]; 1981 1982 /* This zone is worth trying if it is allowed but not full */ 1983 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1984 } 1985 1986 /* 1987 * Given 'z' scanning a zonelist, set the corresponding bit in 1988 * zlc->fullzones, so that subsequent attempts to allocate a page 1989 * from that zone don't waste time re-examining it. 1990 */ 1991 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1992 { 1993 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1994 int i; /* index of *z in zonelist zones */ 1995 1996 zlc = zonelist->zlcache_ptr; 1997 if (!zlc) 1998 return; 1999 2000 i = z - zonelist->_zonerefs; 2001 2002 set_bit(i, zlc->fullzones); 2003 } 2004 2005 /* 2006 * clear all zones full, called after direct reclaim makes progress so that 2007 * a zone that was recently full is not skipped over for up to a second 2008 */ 2009 static void zlc_clear_zones_full(struct zonelist *zonelist) 2010 { 2011 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 2012 2013 zlc = zonelist->zlcache_ptr; 2014 if (!zlc) 2015 return; 2016 2017 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 2018 } 2019 2020 static bool zone_local(struct zone *local_zone, struct zone *zone) 2021 { 2022 return local_zone->node == zone->node; 2023 } 2024 2025 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 2026 { 2027 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) < 2028 RECLAIM_DISTANCE; 2029 } 2030 2031 #else /* CONFIG_NUMA */ 2032 2033 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 2034 { 2035 return NULL; 2036 } 2037 2038 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 2039 nodemask_t *allowednodes) 2040 { 2041 return 1; 2042 } 2043 2044 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 2045 { 2046 } 2047 2048 static void zlc_clear_zones_full(struct zonelist *zonelist) 2049 { 2050 } 2051 2052 static bool zone_local(struct zone *local_zone, struct zone *zone) 2053 { 2054 return true; 2055 } 2056 2057 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 2058 { 2059 return true; 2060 } 2061 2062 #endif /* CONFIG_NUMA */ 2063 2064 static void reset_alloc_batches(struct zone *preferred_zone) 2065 { 2066 struct zone *zone = preferred_zone->zone_pgdat->node_zones; 2067 2068 do { 2069 mod_zone_page_state(zone, NR_ALLOC_BATCH, 2070 high_wmark_pages(zone) - low_wmark_pages(zone) - 2071 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH])); 2072 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags); 2073 } while (zone++ != preferred_zone); 2074 } 2075 2076 /* 2077 * get_page_from_freelist goes through the zonelist trying to allocate 2078 * a page. 2079 */ 2080 static struct page * 2081 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 2082 const struct alloc_context *ac) 2083 { 2084 struct zonelist *zonelist = ac->zonelist; 2085 struct zoneref *z; 2086 struct page *page = NULL; 2087 struct zone *zone; 2088 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 2089 int zlc_active = 0; /* set if using zonelist_cache */ 2090 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 2091 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) && 2092 (gfp_mask & __GFP_WRITE); 2093 int nr_fair_skipped = 0; 2094 bool zonelist_rescan; 2095 2096 zonelist_scan: 2097 zonelist_rescan = false; 2098 2099 /* 2100 * Scan zonelist, looking for a zone with enough free. 2101 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 2102 */ 2103 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx, 2104 ac->nodemask) { 2105 unsigned long mark; 2106 2107 if (IS_ENABLED(CONFIG_NUMA) && zlc_active && 2108 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 2109 continue; 2110 if (cpusets_enabled() && 2111 (alloc_flags & ALLOC_CPUSET) && 2112 !cpuset_zone_allowed(zone, gfp_mask)) 2113 continue; 2114 /* 2115 * Distribute pages in proportion to the individual 2116 * zone size to ensure fair page aging. The zone a 2117 * page was allocated in should have no effect on the 2118 * time the page has in memory before being reclaimed. 2119 */ 2120 if (alloc_flags & ALLOC_FAIR) { 2121 if (!zone_local(ac->preferred_zone, zone)) 2122 break; 2123 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) { 2124 nr_fair_skipped++; 2125 continue; 2126 } 2127 } 2128 /* 2129 * When allocating a page cache page for writing, we 2130 * want to get it from a zone that is within its dirty 2131 * limit, such that no single zone holds more than its 2132 * proportional share of globally allowed dirty pages. 2133 * The dirty limits take into account the zone's 2134 * lowmem reserves and high watermark so that kswapd 2135 * should be able to balance it without having to 2136 * write pages from its LRU list. 2137 * 2138 * This may look like it could increase pressure on 2139 * lower zones by failing allocations in higher zones 2140 * before they are full. But the pages that do spill 2141 * over are limited as the lower zones are protected 2142 * by this very same mechanism. It should not become 2143 * a practical burden to them. 2144 * 2145 * XXX: For now, allow allocations to potentially 2146 * exceed the per-zone dirty limit in the slowpath 2147 * (ALLOC_WMARK_LOW unset) before going into reclaim, 2148 * which is important when on a NUMA setup the allowed 2149 * zones are together not big enough to reach the 2150 * global limit. The proper fix for these situations 2151 * will require awareness of zones in the 2152 * dirty-throttling and the flusher threads. 2153 */ 2154 if (consider_zone_dirty && !zone_dirty_ok(zone)) 2155 continue; 2156 2157 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 2158 if (!zone_watermark_ok(zone, order, mark, 2159 ac->classzone_idx, alloc_flags)) { 2160 int ret; 2161 2162 /* Checked here to keep the fast path fast */ 2163 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 2164 if (alloc_flags & ALLOC_NO_WATERMARKS) 2165 goto try_this_zone; 2166 2167 if (IS_ENABLED(CONFIG_NUMA) && 2168 !did_zlc_setup && nr_online_nodes > 1) { 2169 /* 2170 * we do zlc_setup if there are multiple nodes 2171 * and before considering the first zone allowed 2172 * by the cpuset. 2173 */ 2174 allowednodes = zlc_setup(zonelist, alloc_flags); 2175 zlc_active = 1; 2176 did_zlc_setup = 1; 2177 } 2178 2179 if (zone_reclaim_mode == 0 || 2180 !zone_allows_reclaim(ac->preferred_zone, zone)) 2181 goto this_zone_full; 2182 2183 /* 2184 * As we may have just activated ZLC, check if the first 2185 * eligible zone has failed zone_reclaim recently. 2186 */ 2187 if (IS_ENABLED(CONFIG_NUMA) && zlc_active && 2188 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 2189 continue; 2190 2191 ret = zone_reclaim(zone, gfp_mask, order); 2192 switch (ret) { 2193 case ZONE_RECLAIM_NOSCAN: 2194 /* did not scan */ 2195 continue; 2196 case ZONE_RECLAIM_FULL: 2197 /* scanned but unreclaimable */ 2198 continue; 2199 default: 2200 /* did we reclaim enough */ 2201 if (zone_watermark_ok(zone, order, mark, 2202 ac->classzone_idx, alloc_flags)) 2203 goto try_this_zone; 2204 2205 /* 2206 * Failed to reclaim enough to meet watermark. 2207 * Only mark the zone full if checking the min 2208 * watermark or if we failed to reclaim just 2209 * 1<<order pages or else the page allocator 2210 * fastpath will prematurely mark zones full 2211 * when the watermark is between the low and 2212 * min watermarks. 2213 */ 2214 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) || 2215 ret == ZONE_RECLAIM_SOME) 2216 goto this_zone_full; 2217 2218 continue; 2219 } 2220 } 2221 2222 try_this_zone: 2223 page = buffered_rmqueue(ac->preferred_zone, zone, order, 2224 gfp_mask, ac->migratetype); 2225 if (page) { 2226 if (prep_new_page(page, order, gfp_mask, alloc_flags)) 2227 goto try_this_zone; 2228 return page; 2229 } 2230 this_zone_full: 2231 if (IS_ENABLED(CONFIG_NUMA) && zlc_active) 2232 zlc_mark_zone_full(zonelist, z); 2233 } 2234 2235 /* 2236 * The first pass makes sure allocations are spread fairly within the 2237 * local node. However, the local node might have free pages left 2238 * after the fairness batches are exhausted, and remote zones haven't 2239 * even been considered yet. Try once more without fairness, and 2240 * include remote zones now, before entering the slowpath and waking 2241 * kswapd: prefer spilling to a remote zone over swapping locally. 2242 */ 2243 if (alloc_flags & ALLOC_FAIR) { 2244 alloc_flags &= ~ALLOC_FAIR; 2245 if (nr_fair_skipped) { 2246 zonelist_rescan = true; 2247 reset_alloc_batches(ac->preferred_zone); 2248 } 2249 if (nr_online_nodes > 1) 2250 zonelist_rescan = true; 2251 } 2252 2253 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) { 2254 /* Disable zlc cache for second zonelist scan */ 2255 zlc_active = 0; 2256 zonelist_rescan = true; 2257 } 2258 2259 if (zonelist_rescan) 2260 goto zonelist_scan; 2261 2262 return NULL; 2263 } 2264 2265 /* 2266 * Large machines with many possible nodes should not always dump per-node 2267 * meminfo in irq context. 2268 */ 2269 static inline bool should_suppress_show_mem(void) 2270 { 2271 bool ret = false; 2272 2273 #if NODES_SHIFT > 8 2274 ret = in_interrupt(); 2275 #endif 2276 return ret; 2277 } 2278 2279 static DEFINE_RATELIMIT_STATE(nopage_rs, 2280 DEFAULT_RATELIMIT_INTERVAL, 2281 DEFAULT_RATELIMIT_BURST); 2282 2283 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...) 2284 { 2285 unsigned int filter = SHOW_MEM_FILTER_NODES; 2286 2287 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) || 2288 debug_guardpage_minorder() > 0) 2289 return; 2290 2291 /* 2292 * This documents exceptions given to allocations in certain 2293 * contexts that are allowed to allocate outside current's set 2294 * of allowed nodes. 2295 */ 2296 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2297 if (test_thread_flag(TIF_MEMDIE) || 2298 (current->flags & (PF_MEMALLOC | PF_EXITING))) 2299 filter &= ~SHOW_MEM_FILTER_NODES; 2300 if (in_interrupt() || !(gfp_mask & __GFP_WAIT)) 2301 filter &= ~SHOW_MEM_FILTER_NODES; 2302 2303 if (fmt) { 2304 struct va_format vaf; 2305 va_list args; 2306 2307 va_start(args, fmt); 2308 2309 vaf.fmt = fmt; 2310 vaf.va = &args; 2311 2312 pr_warn("%pV", &vaf); 2313 2314 va_end(args); 2315 } 2316 2317 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n", 2318 current->comm, order, gfp_mask); 2319 2320 dump_stack(); 2321 if (!should_suppress_show_mem()) 2322 show_mem(filter); 2323 } 2324 2325 static inline int 2326 should_alloc_retry(gfp_t gfp_mask, unsigned int order, 2327 unsigned long did_some_progress, 2328 unsigned long pages_reclaimed) 2329 { 2330 /* Do not loop if specifically requested */ 2331 if (gfp_mask & __GFP_NORETRY) 2332 return 0; 2333 2334 /* Always retry if specifically requested */ 2335 if (gfp_mask & __GFP_NOFAIL) 2336 return 1; 2337 2338 /* 2339 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim 2340 * making forward progress without invoking OOM. Suspend also disables 2341 * storage devices so kswapd will not help. Bail if we are suspending. 2342 */ 2343 if (!did_some_progress && pm_suspended_storage()) 2344 return 0; 2345 2346 /* 2347 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 2348 * means __GFP_NOFAIL, but that may not be true in other 2349 * implementations. 2350 */ 2351 if (order <= PAGE_ALLOC_COSTLY_ORDER) 2352 return 1; 2353 2354 /* 2355 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 2356 * specified, then we retry until we no longer reclaim any pages 2357 * (above), or we've reclaimed an order of pages at least as 2358 * large as the allocation's order. In both cases, if the 2359 * allocation still fails, we stop retrying. 2360 */ 2361 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) 2362 return 1; 2363 2364 return 0; 2365 } 2366 2367 static inline struct page * 2368 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 2369 const struct alloc_context *ac, unsigned long *did_some_progress) 2370 { 2371 struct page *page; 2372 2373 *did_some_progress = 0; 2374 2375 /* 2376 * Acquire the per-zone oom lock for each zone. If that 2377 * fails, somebody else is making progress for us. 2378 */ 2379 if (!oom_zonelist_trylock(ac->zonelist, gfp_mask)) { 2380 *did_some_progress = 1; 2381 schedule_timeout_uninterruptible(1); 2382 return NULL; 2383 } 2384 2385 /* 2386 * Go through the zonelist yet one more time, keep very high watermark 2387 * here, this is only to catch a parallel oom killing, we must fail if 2388 * we're still under heavy pressure. 2389 */ 2390 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order, 2391 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 2392 if (page) 2393 goto out; 2394 2395 if (!(gfp_mask & __GFP_NOFAIL)) { 2396 /* Coredumps can quickly deplete all memory reserves */ 2397 if (current->flags & PF_DUMPCORE) 2398 goto out; 2399 /* The OOM killer will not help higher order allocs */ 2400 if (order > PAGE_ALLOC_COSTLY_ORDER) 2401 goto out; 2402 /* The OOM killer does not needlessly kill tasks for lowmem */ 2403 if (ac->high_zoneidx < ZONE_NORMAL) 2404 goto out; 2405 /* The OOM killer does not compensate for light reclaim */ 2406 if (!(gfp_mask & __GFP_FS)) { 2407 /* 2408 * XXX: Page reclaim didn't yield anything, 2409 * and the OOM killer can't be invoked, but 2410 * keep looping as per should_alloc_retry(). 2411 */ 2412 *did_some_progress = 1; 2413 goto out; 2414 } 2415 /* The OOM killer may not free memory on a specific node */ 2416 if (gfp_mask & __GFP_THISNODE) 2417 goto out; 2418 } 2419 /* Exhausted what can be done so it's blamo time */ 2420 if (out_of_memory(ac->zonelist, gfp_mask, order, ac->nodemask, false) 2421 || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) 2422 *did_some_progress = 1; 2423 out: 2424 oom_zonelist_unlock(ac->zonelist, gfp_mask); 2425 return page; 2426 } 2427 2428 #ifdef CONFIG_COMPACTION 2429 /* Try memory compaction for high-order allocations before reclaim */ 2430 static struct page * 2431 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2432 int alloc_flags, const struct alloc_context *ac, 2433 enum migrate_mode mode, int *contended_compaction, 2434 bool *deferred_compaction) 2435 { 2436 unsigned long compact_result; 2437 struct page *page; 2438 2439 if (!order) 2440 return NULL; 2441 2442 current->flags |= PF_MEMALLOC; 2443 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 2444 mode, contended_compaction); 2445 current->flags &= ~PF_MEMALLOC; 2446 2447 switch (compact_result) { 2448 case COMPACT_DEFERRED: 2449 *deferred_compaction = true; 2450 /* fall-through */ 2451 case COMPACT_SKIPPED: 2452 return NULL; 2453 default: 2454 break; 2455 } 2456 2457 /* 2458 * At least in one zone compaction wasn't deferred or skipped, so let's 2459 * count a compaction stall 2460 */ 2461 count_vm_event(COMPACTSTALL); 2462 2463 page = get_page_from_freelist(gfp_mask, order, 2464 alloc_flags & ~ALLOC_NO_WATERMARKS, ac); 2465 2466 if (page) { 2467 struct zone *zone = page_zone(page); 2468 2469 zone->compact_blockskip_flush = false; 2470 compaction_defer_reset(zone, order, true); 2471 count_vm_event(COMPACTSUCCESS); 2472 return page; 2473 } 2474 2475 /* 2476 * It's bad if compaction run occurs and fails. The most likely reason 2477 * is that pages exist, but not enough to satisfy watermarks. 2478 */ 2479 count_vm_event(COMPACTFAIL); 2480 2481 cond_resched(); 2482 2483 return NULL; 2484 } 2485 #else 2486 static inline struct page * 2487 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2488 int alloc_flags, const struct alloc_context *ac, 2489 enum migrate_mode mode, int *contended_compaction, 2490 bool *deferred_compaction) 2491 { 2492 return NULL; 2493 } 2494 #endif /* CONFIG_COMPACTION */ 2495 2496 /* Perform direct synchronous page reclaim */ 2497 static int 2498 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 2499 const struct alloc_context *ac) 2500 { 2501 struct reclaim_state reclaim_state; 2502 int progress; 2503 2504 cond_resched(); 2505 2506 /* We now go into synchronous reclaim */ 2507 cpuset_memory_pressure_bump(); 2508 current->flags |= PF_MEMALLOC; 2509 lockdep_set_current_reclaim_state(gfp_mask); 2510 reclaim_state.reclaimed_slab = 0; 2511 current->reclaim_state = &reclaim_state; 2512 2513 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 2514 ac->nodemask); 2515 2516 current->reclaim_state = NULL; 2517 lockdep_clear_current_reclaim_state(); 2518 current->flags &= ~PF_MEMALLOC; 2519 2520 cond_resched(); 2521 2522 return progress; 2523 } 2524 2525 /* The really slow allocator path where we enter direct reclaim */ 2526 static inline struct page * 2527 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 2528 int alloc_flags, const struct alloc_context *ac, 2529 unsigned long *did_some_progress) 2530 { 2531 struct page *page = NULL; 2532 bool drained = false; 2533 2534 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 2535 if (unlikely(!(*did_some_progress))) 2536 return NULL; 2537 2538 /* After successful reclaim, reconsider all zones for allocation */ 2539 if (IS_ENABLED(CONFIG_NUMA)) 2540 zlc_clear_zones_full(ac->zonelist); 2541 2542 retry: 2543 page = get_page_from_freelist(gfp_mask, order, 2544 alloc_flags & ~ALLOC_NO_WATERMARKS, ac); 2545 2546 /* 2547 * If an allocation failed after direct reclaim, it could be because 2548 * pages are pinned on the per-cpu lists. Drain them and try again 2549 */ 2550 if (!page && !drained) { 2551 drain_all_pages(NULL); 2552 drained = true; 2553 goto retry; 2554 } 2555 2556 return page; 2557 } 2558 2559 /* 2560 * This is called in the allocator slow-path if the allocation request is of 2561 * sufficient urgency to ignore watermarks and take other desperate measures 2562 */ 2563 static inline struct page * 2564 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, 2565 const struct alloc_context *ac) 2566 { 2567 struct page *page; 2568 2569 do { 2570 page = get_page_from_freelist(gfp_mask, order, 2571 ALLOC_NO_WATERMARKS, ac); 2572 2573 if (!page && gfp_mask & __GFP_NOFAIL) 2574 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, 2575 HZ/50); 2576 } while (!page && (gfp_mask & __GFP_NOFAIL)); 2577 2578 return page; 2579 } 2580 2581 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac) 2582 { 2583 struct zoneref *z; 2584 struct zone *zone; 2585 2586 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 2587 ac->high_zoneidx, ac->nodemask) 2588 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone)); 2589 } 2590 2591 static inline int 2592 gfp_to_alloc_flags(gfp_t gfp_mask) 2593 { 2594 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 2595 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD)); 2596 2597 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 2598 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 2599 2600 /* 2601 * The caller may dip into page reserves a bit more if the caller 2602 * cannot run direct reclaim, or if the caller has realtime scheduling 2603 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 2604 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH). 2605 */ 2606 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 2607 2608 if (atomic) { 2609 /* 2610 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 2611 * if it can't schedule. 2612 */ 2613 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2614 alloc_flags |= ALLOC_HARDER; 2615 /* 2616 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 2617 * comment for __cpuset_node_allowed(). 2618 */ 2619 alloc_flags &= ~ALLOC_CPUSET; 2620 } else if (unlikely(rt_task(current)) && !in_interrupt()) 2621 alloc_flags |= ALLOC_HARDER; 2622 2623 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { 2624 if (gfp_mask & __GFP_MEMALLOC) 2625 alloc_flags |= ALLOC_NO_WATERMARKS; 2626 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 2627 alloc_flags |= ALLOC_NO_WATERMARKS; 2628 else if (!in_interrupt() && 2629 ((current->flags & PF_MEMALLOC) || 2630 unlikely(test_thread_flag(TIF_MEMDIE)))) 2631 alloc_flags |= ALLOC_NO_WATERMARKS; 2632 } 2633 #ifdef CONFIG_CMA 2634 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 2635 alloc_flags |= ALLOC_CMA; 2636 #endif 2637 return alloc_flags; 2638 } 2639 2640 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 2641 { 2642 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS); 2643 } 2644 2645 static inline struct page * 2646 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 2647 struct alloc_context *ac) 2648 { 2649 const gfp_t wait = gfp_mask & __GFP_WAIT; 2650 struct page *page = NULL; 2651 int alloc_flags; 2652 unsigned long pages_reclaimed = 0; 2653 unsigned long did_some_progress; 2654 enum migrate_mode migration_mode = MIGRATE_ASYNC; 2655 bool deferred_compaction = false; 2656 int contended_compaction = COMPACT_CONTENDED_NONE; 2657 2658 /* 2659 * In the slowpath, we sanity check order to avoid ever trying to 2660 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 2661 * be using allocators in order of preference for an area that is 2662 * too large. 2663 */ 2664 if (order >= MAX_ORDER) { 2665 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 2666 return NULL; 2667 } 2668 2669 /* 2670 * If this allocation cannot block and it is for a specific node, then 2671 * fail early. There's no need to wakeup kswapd or retry for a 2672 * speculative node-specific allocation. 2673 */ 2674 if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !wait) 2675 goto nopage; 2676 2677 retry: 2678 if (!(gfp_mask & __GFP_NO_KSWAPD)) 2679 wake_all_kswapds(order, ac); 2680 2681 /* 2682 * OK, we're below the kswapd watermark and have kicked background 2683 * reclaim. Now things get more complex, so set up alloc_flags according 2684 * to how we want to proceed. 2685 */ 2686 alloc_flags = gfp_to_alloc_flags(gfp_mask); 2687 2688 /* 2689 * Find the true preferred zone if the allocation is unconstrained by 2690 * cpusets. 2691 */ 2692 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) { 2693 struct zoneref *preferred_zoneref; 2694 preferred_zoneref = first_zones_zonelist(ac->zonelist, 2695 ac->high_zoneidx, NULL, &ac->preferred_zone); 2696 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref); 2697 } 2698 2699 /* This is the last chance, in general, before the goto nopage. */ 2700 page = get_page_from_freelist(gfp_mask, order, 2701 alloc_flags & ~ALLOC_NO_WATERMARKS, ac); 2702 if (page) 2703 goto got_pg; 2704 2705 /* Allocate without watermarks if the context allows */ 2706 if (alloc_flags & ALLOC_NO_WATERMARKS) { 2707 /* 2708 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds 2709 * the allocation is high priority and these type of 2710 * allocations are system rather than user orientated 2711 */ 2712 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask); 2713 2714 page = __alloc_pages_high_priority(gfp_mask, order, ac); 2715 2716 if (page) { 2717 goto got_pg; 2718 } 2719 } 2720 2721 /* Atomic allocations - we can't balance anything */ 2722 if (!wait) { 2723 /* 2724 * All existing users of the deprecated __GFP_NOFAIL are 2725 * blockable, so warn of any new users that actually allow this 2726 * type of allocation to fail. 2727 */ 2728 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL); 2729 goto nopage; 2730 } 2731 2732 /* Avoid recursion of direct reclaim */ 2733 if (current->flags & PF_MEMALLOC) 2734 goto nopage; 2735 2736 /* Avoid allocations with no watermarks from looping endlessly */ 2737 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) 2738 goto nopage; 2739 2740 /* 2741 * Try direct compaction. The first pass is asynchronous. Subsequent 2742 * attempts after direct reclaim are synchronous 2743 */ 2744 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 2745 migration_mode, 2746 &contended_compaction, 2747 &deferred_compaction); 2748 if (page) 2749 goto got_pg; 2750 2751 /* Checks for THP-specific high-order allocations */ 2752 if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) { 2753 /* 2754 * If compaction is deferred for high-order allocations, it is 2755 * because sync compaction recently failed. If this is the case 2756 * and the caller requested a THP allocation, we do not want 2757 * to heavily disrupt the system, so we fail the allocation 2758 * instead of entering direct reclaim. 2759 */ 2760 if (deferred_compaction) 2761 goto nopage; 2762 2763 /* 2764 * In all zones where compaction was attempted (and not 2765 * deferred or skipped), lock contention has been detected. 2766 * For THP allocation we do not want to disrupt the others 2767 * so we fallback to base pages instead. 2768 */ 2769 if (contended_compaction == COMPACT_CONTENDED_LOCK) 2770 goto nopage; 2771 2772 /* 2773 * If compaction was aborted due to need_resched(), we do not 2774 * want to further increase allocation latency, unless it is 2775 * khugepaged trying to collapse. 2776 */ 2777 if (contended_compaction == COMPACT_CONTENDED_SCHED 2778 && !(current->flags & PF_KTHREAD)) 2779 goto nopage; 2780 } 2781 2782 /* 2783 * It can become very expensive to allocate transparent hugepages at 2784 * fault, so use asynchronous memory compaction for THP unless it is 2785 * khugepaged trying to collapse. 2786 */ 2787 if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE || 2788 (current->flags & PF_KTHREAD)) 2789 migration_mode = MIGRATE_SYNC_LIGHT; 2790 2791 /* Try direct reclaim and then allocating */ 2792 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 2793 &did_some_progress); 2794 if (page) 2795 goto got_pg; 2796 2797 /* Check if we should retry the allocation */ 2798 pages_reclaimed += did_some_progress; 2799 if (should_alloc_retry(gfp_mask, order, did_some_progress, 2800 pages_reclaimed)) { 2801 /* 2802 * If we fail to make progress by freeing individual 2803 * pages, but the allocation wants us to keep going, 2804 * start OOM killing tasks. 2805 */ 2806 if (!did_some_progress) { 2807 page = __alloc_pages_may_oom(gfp_mask, order, ac, 2808 &did_some_progress); 2809 if (page) 2810 goto got_pg; 2811 if (!did_some_progress) 2812 goto nopage; 2813 } 2814 /* Wait for some write requests to complete then retry */ 2815 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50); 2816 goto retry; 2817 } else { 2818 /* 2819 * High-order allocations do not necessarily loop after 2820 * direct reclaim and reclaim/compaction depends on compaction 2821 * being called after reclaim so call directly if necessary 2822 */ 2823 page = __alloc_pages_direct_compact(gfp_mask, order, 2824 alloc_flags, ac, migration_mode, 2825 &contended_compaction, 2826 &deferred_compaction); 2827 if (page) 2828 goto got_pg; 2829 } 2830 2831 nopage: 2832 warn_alloc_failed(gfp_mask, order, NULL); 2833 got_pg: 2834 return page; 2835 } 2836 2837 /* 2838 * This is the 'heart' of the zoned buddy allocator. 2839 */ 2840 struct page * 2841 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 2842 struct zonelist *zonelist, nodemask_t *nodemask) 2843 { 2844 struct zoneref *preferred_zoneref; 2845 struct page *page = NULL; 2846 unsigned int cpuset_mems_cookie; 2847 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR; 2848 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */ 2849 struct alloc_context ac = { 2850 .high_zoneidx = gfp_zone(gfp_mask), 2851 .nodemask = nodemask, 2852 .migratetype = gfpflags_to_migratetype(gfp_mask), 2853 }; 2854 2855 gfp_mask &= gfp_allowed_mask; 2856 2857 lockdep_trace_alloc(gfp_mask); 2858 2859 might_sleep_if(gfp_mask & __GFP_WAIT); 2860 2861 if (should_fail_alloc_page(gfp_mask, order)) 2862 return NULL; 2863 2864 /* 2865 * Check the zones suitable for the gfp_mask contain at least one 2866 * valid zone. It's possible to have an empty zonelist as a result 2867 * of __GFP_THISNODE and a memoryless node 2868 */ 2869 if (unlikely(!zonelist->_zonerefs->zone)) 2870 return NULL; 2871 2872 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE) 2873 alloc_flags |= ALLOC_CMA; 2874 2875 retry_cpuset: 2876 cpuset_mems_cookie = read_mems_allowed_begin(); 2877 2878 /* We set it here, as __alloc_pages_slowpath might have changed it */ 2879 ac.zonelist = zonelist; 2880 /* The preferred zone is used for statistics later */ 2881 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx, 2882 ac.nodemask ? : &cpuset_current_mems_allowed, 2883 &ac.preferred_zone); 2884 if (!ac.preferred_zone) 2885 goto out; 2886 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref); 2887 2888 /* First allocation attempt */ 2889 alloc_mask = gfp_mask|__GFP_HARDWALL; 2890 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); 2891 if (unlikely(!page)) { 2892 /* 2893 * Runtime PM, block IO and its error handling path 2894 * can deadlock because I/O on the device might not 2895 * complete. 2896 */ 2897 alloc_mask = memalloc_noio_flags(gfp_mask); 2898 2899 page = __alloc_pages_slowpath(alloc_mask, order, &ac); 2900 } 2901 2902 if (kmemcheck_enabled && page) 2903 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 2904 2905 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); 2906 2907 out: 2908 /* 2909 * When updating a task's mems_allowed, it is possible to race with 2910 * parallel threads in such a way that an allocation can fail while 2911 * the mask is being updated. If a page allocation is about to fail, 2912 * check if the cpuset changed during allocation and if so, retry. 2913 */ 2914 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) 2915 goto retry_cpuset; 2916 2917 return page; 2918 } 2919 EXPORT_SYMBOL(__alloc_pages_nodemask); 2920 2921 /* 2922 * Common helper functions. 2923 */ 2924 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 2925 { 2926 struct page *page; 2927 2928 /* 2929 * __get_free_pages() returns a 32-bit address, which cannot represent 2930 * a highmem page 2931 */ 2932 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 2933 2934 page = alloc_pages(gfp_mask, order); 2935 if (!page) 2936 return 0; 2937 return (unsigned long) page_address(page); 2938 } 2939 EXPORT_SYMBOL(__get_free_pages); 2940 2941 unsigned long get_zeroed_page(gfp_t gfp_mask) 2942 { 2943 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 2944 } 2945 EXPORT_SYMBOL(get_zeroed_page); 2946 2947 void __free_pages(struct page *page, unsigned int order) 2948 { 2949 if (put_page_testzero(page)) { 2950 if (order == 0) 2951 free_hot_cold_page(page, false); 2952 else 2953 __free_pages_ok(page, order); 2954 } 2955 } 2956 2957 EXPORT_SYMBOL(__free_pages); 2958 2959 void free_pages(unsigned long addr, unsigned int order) 2960 { 2961 if (addr != 0) { 2962 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2963 __free_pages(virt_to_page((void *)addr), order); 2964 } 2965 } 2966 2967 EXPORT_SYMBOL(free_pages); 2968 2969 /* 2970 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter 2971 * of the current memory cgroup. 2972 * 2973 * It should be used when the caller would like to use kmalloc, but since the 2974 * allocation is large, it has to fall back to the page allocator. 2975 */ 2976 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order) 2977 { 2978 struct page *page; 2979 struct mem_cgroup *memcg = NULL; 2980 2981 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order)) 2982 return NULL; 2983 page = alloc_pages(gfp_mask, order); 2984 memcg_kmem_commit_charge(page, memcg, order); 2985 return page; 2986 } 2987 2988 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order) 2989 { 2990 struct page *page; 2991 struct mem_cgroup *memcg = NULL; 2992 2993 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order)) 2994 return NULL; 2995 page = alloc_pages_node(nid, gfp_mask, order); 2996 memcg_kmem_commit_charge(page, memcg, order); 2997 return page; 2998 } 2999 3000 /* 3001 * __free_kmem_pages and free_kmem_pages will free pages allocated with 3002 * alloc_kmem_pages. 3003 */ 3004 void __free_kmem_pages(struct page *page, unsigned int order) 3005 { 3006 memcg_kmem_uncharge_pages(page, order); 3007 __free_pages(page, order); 3008 } 3009 3010 void free_kmem_pages(unsigned long addr, unsigned int order) 3011 { 3012 if (addr != 0) { 3013 VM_BUG_ON(!virt_addr_valid((void *)addr)); 3014 __free_kmem_pages(virt_to_page((void *)addr), order); 3015 } 3016 } 3017 3018 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size) 3019 { 3020 if (addr) { 3021 unsigned long alloc_end = addr + (PAGE_SIZE << order); 3022 unsigned long used = addr + PAGE_ALIGN(size); 3023 3024 split_page(virt_to_page((void *)addr), order); 3025 while (used < alloc_end) { 3026 free_page(used); 3027 used += PAGE_SIZE; 3028 } 3029 } 3030 return (void *)addr; 3031 } 3032 3033 /** 3034 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 3035 * @size: the number of bytes to allocate 3036 * @gfp_mask: GFP flags for the allocation 3037 * 3038 * This function is similar to alloc_pages(), except that it allocates the 3039 * minimum number of pages to satisfy the request. alloc_pages() can only 3040 * allocate memory in power-of-two pages. 3041 * 3042 * This function is also limited by MAX_ORDER. 3043 * 3044 * Memory allocated by this function must be released by free_pages_exact(). 3045 */ 3046 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 3047 { 3048 unsigned int order = get_order(size); 3049 unsigned long addr; 3050 3051 addr = __get_free_pages(gfp_mask, order); 3052 return make_alloc_exact(addr, order, size); 3053 } 3054 EXPORT_SYMBOL(alloc_pages_exact); 3055 3056 /** 3057 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 3058 * pages on a node. 3059 * @nid: the preferred node ID where memory should be allocated 3060 * @size: the number of bytes to allocate 3061 * @gfp_mask: GFP flags for the allocation 3062 * 3063 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 3064 * back. 3065 * Note this is not alloc_pages_exact_node() which allocates on a specific node, 3066 * but is not exact. 3067 */ 3068 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 3069 { 3070 unsigned order = get_order(size); 3071 struct page *p = alloc_pages_node(nid, gfp_mask, order); 3072 if (!p) 3073 return NULL; 3074 return make_alloc_exact((unsigned long)page_address(p), order, size); 3075 } 3076 3077 /** 3078 * free_pages_exact - release memory allocated via alloc_pages_exact() 3079 * @virt: the value returned by alloc_pages_exact. 3080 * @size: size of allocation, same value as passed to alloc_pages_exact(). 3081 * 3082 * Release the memory allocated by a previous call to alloc_pages_exact. 3083 */ 3084 void free_pages_exact(void *virt, size_t size) 3085 { 3086 unsigned long addr = (unsigned long)virt; 3087 unsigned long end = addr + PAGE_ALIGN(size); 3088 3089 while (addr < end) { 3090 free_page(addr); 3091 addr += PAGE_SIZE; 3092 } 3093 } 3094 EXPORT_SYMBOL(free_pages_exact); 3095 3096 /** 3097 * nr_free_zone_pages - count number of pages beyond high watermark 3098 * @offset: The zone index of the highest zone 3099 * 3100 * nr_free_zone_pages() counts the number of counts pages which are beyond the 3101 * high watermark within all zones at or below a given zone index. For each 3102 * zone, the number of pages is calculated as: 3103 * managed_pages - high_pages 3104 */ 3105 static unsigned long nr_free_zone_pages(int offset) 3106 { 3107 struct zoneref *z; 3108 struct zone *zone; 3109 3110 /* Just pick one node, since fallback list is circular */ 3111 unsigned long sum = 0; 3112 3113 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 3114 3115 for_each_zone_zonelist(zone, z, zonelist, offset) { 3116 unsigned long size = zone->managed_pages; 3117 unsigned long high = high_wmark_pages(zone); 3118 if (size > high) 3119 sum += size - high; 3120 } 3121 3122 return sum; 3123 } 3124 3125 /** 3126 * nr_free_buffer_pages - count number of pages beyond high watermark 3127 * 3128 * nr_free_buffer_pages() counts the number of pages which are beyond the high 3129 * watermark within ZONE_DMA and ZONE_NORMAL. 3130 */ 3131 unsigned long nr_free_buffer_pages(void) 3132 { 3133 return nr_free_zone_pages(gfp_zone(GFP_USER)); 3134 } 3135 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 3136 3137 /** 3138 * nr_free_pagecache_pages - count number of pages beyond high watermark 3139 * 3140 * nr_free_pagecache_pages() counts the number of pages which are beyond the 3141 * high watermark within all zones. 3142 */ 3143 unsigned long nr_free_pagecache_pages(void) 3144 { 3145 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 3146 } 3147 3148 static inline void show_node(struct zone *zone) 3149 { 3150 if (IS_ENABLED(CONFIG_NUMA)) 3151 printk("Node %d ", zone_to_nid(zone)); 3152 } 3153 3154 void si_meminfo(struct sysinfo *val) 3155 { 3156 val->totalram = totalram_pages; 3157 val->sharedram = global_page_state(NR_SHMEM); 3158 val->freeram = global_page_state(NR_FREE_PAGES); 3159 val->bufferram = nr_blockdev_pages(); 3160 val->totalhigh = totalhigh_pages; 3161 val->freehigh = nr_free_highpages(); 3162 val->mem_unit = PAGE_SIZE; 3163 } 3164 3165 EXPORT_SYMBOL(si_meminfo); 3166 3167 #ifdef CONFIG_NUMA 3168 void si_meminfo_node(struct sysinfo *val, int nid) 3169 { 3170 int zone_type; /* needs to be signed */ 3171 unsigned long managed_pages = 0; 3172 pg_data_t *pgdat = NODE_DATA(nid); 3173 3174 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 3175 managed_pages += pgdat->node_zones[zone_type].managed_pages; 3176 val->totalram = managed_pages; 3177 val->sharedram = node_page_state(nid, NR_SHMEM); 3178 val->freeram = node_page_state(nid, NR_FREE_PAGES); 3179 #ifdef CONFIG_HIGHMEM 3180 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages; 3181 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 3182 NR_FREE_PAGES); 3183 #else 3184 val->totalhigh = 0; 3185 val->freehigh = 0; 3186 #endif 3187 val->mem_unit = PAGE_SIZE; 3188 } 3189 #endif 3190 3191 /* 3192 * Determine whether the node should be displayed or not, depending on whether 3193 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 3194 */ 3195 bool skip_free_areas_node(unsigned int flags, int nid) 3196 { 3197 bool ret = false; 3198 unsigned int cpuset_mems_cookie; 3199 3200 if (!(flags & SHOW_MEM_FILTER_NODES)) 3201 goto out; 3202 3203 do { 3204 cpuset_mems_cookie = read_mems_allowed_begin(); 3205 ret = !node_isset(nid, cpuset_current_mems_allowed); 3206 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 3207 out: 3208 return ret; 3209 } 3210 3211 #define K(x) ((x) << (PAGE_SHIFT-10)) 3212 3213 static void show_migration_types(unsigned char type) 3214 { 3215 static const char types[MIGRATE_TYPES] = { 3216 [MIGRATE_UNMOVABLE] = 'U', 3217 [MIGRATE_RECLAIMABLE] = 'E', 3218 [MIGRATE_MOVABLE] = 'M', 3219 [MIGRATE_RESERVE] = 'R', 3220 #ifdef CONFIG_CMA 3221 [MIGRATE_CMA] = 'C', 3222 #endif 3223 #ifdef CONFIG_MEMORY_ISOLATION 3224 [MIGRATE_ISOLATE] = 'I', 3225 #endif 3226 }; 3227 char tmp[MIGRATE_TYPES + 1]; 3228 char *p = tmp; 3229 int i; 3230 3231 for (i = 0; i < MIGRATE_TYPES; i++) { 3232 if (type & (1 << i)) 3233 *p++ = types[i]; 3234 } 3235 3236 *p = '\0'; 3237 printk("(%s) ", tmp); 3238 } 3239 3240 /* 3241 * Show free area list (used inside shift_scroll-lock stuff) 3242 * We also calculate the percentage fragmentation. We do this by counting the 3243 * memory on each free list with the exception of the first item on the list. 3244 * 3245 * Bits in @filter: 3246 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 3247 * cpuset. 3248 */ 3249 void show_free_areas(unsigned int filter) 3250 { 3251 unsigned long free_pcp = 0; 3252 int cpu; 3253 struct zone *zone; 3254 3255 for_each_populated_zone(zone) { 3256 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3257 continue; 3258 3259 for_each_online_cpu(cpu) 3260 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 3261 } 3262 3263 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 3264 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 3265 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n" 3266 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 3267 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 3268 " free:%lu free_pcp:%lu free_cma:%lu\n", 3269 global_page_state(NR_ACTIVE_ANON), 3270 global_page_state(NR_INACTIVE_ANON), 3271 global_page_state(NR_ISOLATED_ANON), 3272 global_page_state(NR_ACTIVE_FILE), 3273 global_page_state(NR_INACTIVE_FILE), 3274 global_page_state(NR_ISOLATED_FILE), 3275 global_page_state(NR_UNEVICTABLE), 3276 global_page_state(NR_FILE_DIRTY), 3277 global_page_state(NR_WRITEBACK), 3278 global_page_state(NR_UNSTABLE_NFS), 3279 global_page_state(NR_SLAB_RECLAIMABLE), 3280 global_page_state(NR_SLAB_UNRECLAIMABLE), 3281 global_page_state(NR_FILE_MAPPED), 3282 global_page_state(NR_SHMEM), 3283 global_page_state(NR_PAGETABLE), 3284 global_page_state(NR_BOUNCE), 3285 global_page_state(NR_FREE_PAGES), 3286 free_pcp, 3287 global_page_state(NR_FREE_CMA_PAGES)); 3288 3289 for_each_populated_zone(zone) { 3290 int i; 3291 3292 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3293 continue; 3294 3295 free_pcp = 0; 3296 for_each_online_cpu(cpu) 3297 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 3298 3299 show_node(zone); 3300 printk("%s" 3301 " free:%lukB" 3302 " min:%lukB" 3303 " low:%lukB" 3304 " high:%lukB" 3305 " active_anon:%lukB" 3306 " inactive_anon:%lukB" 3307 " active_file:%lukB" 3308 " inactive_file:%lukB" 3309 " unevictable:%lukB" 3310 " isolated(anon):%lukB" 3311 " isolated(file):%lukB" 3312 " present:%lukB" 3313 " managed:%lukB" 3314 " mlocked:%lukB" 3315 " dirty:%lukB" 3316 " writeback:%lukB" 3317 " mapped:%lukB" 3318 " shmem:%lukB" 3319 " slab_reclaimable:%lukB" 3320 " slab_unreclaimable:%lukB" 3321 " kernel_stack:%lukB" 3322 " pagetables:%lukB" 3323 " unstable:%lukB" 3324 " bounce:%lukB" 3325 " free_pcp:%lukB" 3326 " local_pcp:%ukB" 3327 " free_cma:%lukB" 3328 " writeback_tmp:%lukB" 3329 " pages_scanned:%lu" 3330 " all_unreclaimable? %s" 3331 "\n", 3332 zone->name, 3333 K(zone_page_state(zone, NR_FREE_PAGES)), 3334 K(min_wmark_pages(zone)), 3335 K(low_wmark_pages(zone)), 3336 K(high_wmark_pages(zone)), 3337 K(zone_page_state(zone, NR_ACTIVE_ANON)), 3338 K(zone_page_state(zone, NR_INACTIVE_ANON)), 3339 K(zone_page_state(zone, NR_ACTIVE_FILE)), 3340 K(zone_page_state(zone, NR_INACTIVE_FILE)), 3341 K(zone_page_state(zone, NR_UNEVICTABLE)), 3342 K(zone_page_state(zone, NR_ISOLATED_ANON)), 3343 K(zone_page_state(zone, NR_ISOLATED_FILE)), 3344 K(zone->present_pages), 3345 K(zone->managed_pages), 3346 K(zone_page_state(zone, NR_MLOCK)), 3347 K(zone_page_state(zone, NR_FILE_DIRTY)), 3348 K(zone_page_state(zone, NR_WRITEBACK)), 3349 K(zone_page_state(zone, NR_FILE_MAPPED)), 3350 K(zone_page_state(zone, NR_SHMEM)), 3351 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 3352 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 3353 zone_page_state(zone, NR_KERNEL_STACK) * 3354 THREAD_SIZE / 1024, 3355 K(zone_page_state(zone, NR_PAGETABLE)), 3356 K(zone_page_state(zone, NR_UNSTABLE_NFS)), 3357 K(zone_page_state(zone, NR_BOUNCE)), 3358 K(free_pcp), 3359 K(this_cpu_read(zone->pageset->pcp.count)), 3360 K(zone_page_state(zone, NR_FREE_CMA_PAGES)), 3361 K(zone_page_state(zone, NR_WRITEBACK_TEMP)), 3362 K(zone_page_state(zone, NR_PAGES_SCANNED)), 3363 (!zone_reclaimable(zone) ? "yes" : "no") 3364 ); 3365 printk("lowmem_reserve[]:"); 3366 for (i = 0; i < MAX_NR_ZONES; i++) 3367 printk(" %ld", zone->lowmem_reserve[i]); 3368 printk("\n"); 3369 } 3370 3371 for_each_populated_zone(zone) { 3372 unsigned long nr[MAX_ORDER], flags, order, total = 0; 3373 unsigned char types[MAX_ORDER]; 3374 3375 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3376 continue; 3377 show_node(zone); 3378 printk("%s: ", zone->name); 3379 3380 spin_lock_irqsave(&zone->lock, flags); 3381 for (order = 0; order < MAX_ORDER; order++) { 3382 struct free_area *area = &zone->free_area[order]; 3383 int type; 3384 3385 nr[order] = area->nr_free; 3386 total += nr[order] << order; 3387 3388 types[order] = 0; 3389 for (type = 0; type < MIGRATE_TYPES; type++) { 3390 if (!list_empty(&area->free_list[type])) 3391 types[order] |= 1 << type; 3392 } 3393 } 3394 spin_unlock_irqrestore(&zone->lock, flags); 3395 for (order = 0; order < MAX_ORDER; order++) { 3396 printk("%lu*%lukB ", nr[order], K(1UL) << order); 3397 if (nr[order]) 3398 show_migration_types(types[order]); 3399 } 3400 printk("= %lukB\n", K(total)); 3401 } 3402 3403 hugetlb_show_meminfo(); 3404 3405 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 3406 3407 show_swap_cache_info(); 3408 } 3409 3410 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 3411 { 3412 zoneref->zone = zone; 3413 zoneref->zone_idx = zone_idx(zone); 3414 } 3415 3416 /* 3417 * Builds allocation fallback zone lists. 3418 * 3419 * Add all populated zones of a node to the zonelist. 3420 */ 3421 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 3422 int nr_zones) 3423 { 3424 struct zone *zone; 3425 enum zone_type zone_type = MAX_NR_ZONES; 3426 3427 do { 3428 zone_type--; 3429 zone = pgdat->node_zones + zone_type; 3430 if (populated_zone(zone)) { 3431 zoneref_set_zone(zone, 3432 &zonelist->_zonerefs[nr_zones++]); 3433 check_highest_zone(zone_type); 3434 } 3435 } while (zone_type); 3436 3437 return nr_zones; 3438 } 3439 3440 3441 /* 3442 * zonelist_order: 3443 * 0 = automatic detection of better ordering. 3444 * 1 = order by ([node] distance, -zonetype) 3445 * 2 = order by (-zonetype, [node] distance) 3446 * 3447 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 3448 * the same zonelist. So only NUMA can configure this param. 3449 */ 3450 #define ZONELIST_ORDER_DEFAULT 0 3451 #define ZONELIST_ORDER_NODE 1 3452 #define ZONELIST_ORDER_ZONE 2 3453 3454 /* zonelist order in the kernel. 3455 * set_zonelist_order() will set this to NODE or ZONE. 3456 */ 3457 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 3458 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 3459 3460 3461 #ifdef CONFIG_NUMA 3462 /* The value user specified ....changed by config */ 3463 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3464 /* string for sysctl */ 3465 #define NUMA_ZONELIST_ORDER_LEN 16 3466 char numa_zonelist_order[16] = "default"; 3467 3468 /* 3469 * interface for configure zonelist ordering. 3470 * command line option "numa_zonelist_order" 3471 * = "[dD]efault - default, automatic configuration. 3472 * = "[nN]ode - order by node locality, then by zone within node 3473 * = "[zZ]one - order by zone, then by locality within zone 3474 */ 3475 3476 static int __parse_numa_zonelist_order(char *s) 3477 { 3478 if (*s == 'd' || *s == 'D') { 3479 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3480 } else if (*s == 'n' || *s == 'N') { 3481 user_zonelist_order = ZONELIST_ORDER_NODE; 3482 } else if (*s == 'z' || *s == 'Z') { 3483 user_zonelist_order = ZONELIST_ORDER_ZONE; 3484 } else { 3485 printk(KERN_WARNING 3486 "Ignoring invalid numa_zonelist_order value: " 3487 "%s\n", s); 3488 return -EINVAL; 3489 } 3490 return 0; 3491 } 3492 3493 static __init int setup_numa_zonelist_order(char *s) 3494 { 3495 int ret; 3496 3497 if (!s) 3498 return 0; 3499 3500 ret = __parse_numa_zonelist_order(s); 3501 if (ret == 0) 3502 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); 3503 3504 return ret; 3505 } 3506 early_param("numa_zonelist_order", setup_numa_zonelist_order); 3507 3508 /* 3509 * sysctl handler for numa_zonelist_order 3510 */ 3511 int numa_zonelist_order_handler(struct ctl_table *table, int write, 3512 void __user *buffer, size_t *length, 3513 loff_t *ppos) 3514 { 3515 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 3516 int ret; 3517 static DEFINE_MUTEX(zl_order_mutex); 3518 3519 mutex_lock(&zl_order_mutex); 3520 if (write) { 3521 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) { 3522 ret = -EINVAL; 3523 goto out; 3524 } 3525 strcpy(saved_string, (char *)table->data); 3526 } 3527 ret = proc_dostring(table, write, buffer, length, ppos); 3528 if (ret) 3529 goto out; 3530 if (write) { 3531 int oldval = user_zonelist_order; 3532 3533 ret = __parse_numa_zonelist_order((char *)table->data); 3534 if (ret) { 3535 /* 3536 * bogus value. restore saved string 3537 */ 3538 strncpy((char *)table->data, saved_string, 3539 NUMA_ZONELIST_ORDER_LEN); 3540 user_zonelist_order = oldval; 3541 } else if (oldval != user_zonelist_order) { 3542 mutex_lock(&zonelists_mutex); 3543 build_all_zonelists(NULL, NULL); 3544 mutex_unlock(&zonelists_mutex); 3545 } 3546 } 3547 out: 3548 mutex_unlock(&zl_order_mutex); 3549 return ret; 3550 } 3551 3552 3553 #define MAX_NODE_LOAD (nr_online_nodes) 3554 static int node_load[MAX_NUMNODES]; 3555 3556 /** 3557 * find_next_best_node - find the next node that should appear in a given node's fallback list 3558 * @node: node whose fallback list we're appending 3559 * @used_node_mask: nodemask_t of already used nodes 3560 * 3561 * We use a number of factors to determine which is the next node that should 3562 * appear on a given node's fallback list. The node should not have appeared 3563 * already in @node's fallback list, and it should be the next closest node 3564 * according to the distance array (which contains arbitrary distance values 3565 * from each node to each node in the system), and should also prefer nodes 3566 * with no CPUs, since presumably they'll have very little allocation pressure 3567 * on them otherwise. 3568 * It returns -1 if no node is found. 3569 */ 3570 static int find_next_best_node(int node, nodemask_t *used_node_mask) 3571 { 3572 int n, val; 3573 int min_val = INT_MAX; 3574 int best_node = NUMA_NO_NODE; 3575 const struct cpumask *tmp = cpumask_of_node(0); 3576 3577 /* Use the local node if we haven't already */ 3578 if (!node_isset(node, *used_node_mask)) { 3579 node_set(node, *used_node_mask); 3580 return node; 3581 } 3582 3583 for_each_node_state(n, N_MEMORY) { 3584 3585 /* Don't want a node to appear more than once */ 3586 if (node_isset(n, *used_node_mask)) 3587 continue; 3588 3589 /* Use the distance array to find the distance */ 3590 val = node_distance(node, n); 3591 3592 /* Penalize nodes under us ("prefer the next node") */ 3593 val += (n < node); 3594 3595 /* Give preference to headless and unused nodes */ 3596 tmp = cpumask_of_node(n); 3597 if (!cpumask_empty(tmp)) 3598 val += PENALTY_FOR_NODE_WITH_CPUS; 3599 3600 /* Slight preference for less loaded node */ 3601 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 3602 val += node_load[n]; 3603 3604 if (val < min_val) { 3605 min_val = val; 3606 best_node = n; 3607 } 3608 } 3609 3610 if (best_node >= 0) 3611 node_set(best_node, *used_node_mask); 3612 3613 return best_node; 3614 } 3615 3616 3617 /* 3618 * Build zonelists ordered by node and zones within node. 3619 * This results in maximum locality--normal zone overflows into local 3620 * DMA zone, if any--but risks exhausting DMA zone. 3621 */ 3622 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 3623 { 3624 int j; 3625 struct zonelist *zonelist; 3626 3627 zonelist = &pgdat->node_zonelists[0]; 3628 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 3629 ; 3630 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 3631 zonelist->_zonerefs[j].zone = NULL; 3632 zonelist->_zonerefs[j].zone_idx = 0; 3633 } 3634 3635 /* 3636 * Build gfp_thisnode zonelists 3637 */ 3638 static void build_thisnode_zonelists(pg_data_t *pgdat) 3639 { 3640 int j; 3641 struct zonelist *zonelist; 3642 3643 zonelist = &pgdat->node_zonelists[1]; 3644 j = build_zonelists_node(pgdat, zonelist, 0); 3645 zonelist->_zonerefs[j].zone = NULL; 3646 zonelist->_zonerefs[j].zone_idx = 0; 3647 } 3648 3649 /* 3650 * Build zonelists ordered by zone and nodes within zones. 3651 * This results in conserving DMA zone[s] until all Normal memory is 3652 * exhausted, but results in overflowing to remote node while memory 3653 * may still exist in local DMA zone. 3654 */ 3655 static int node_order[MAX_NUMNODES]; 3656 3657 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 3658 { 3659 int pos, j, node; 3660 int zone_type; /* needs to be signed */ 3661 struct zone *z; 3662 struct zonelist *zonelist; 3663 3664 zonelist = &pgdat->node_zonelists[0]; 3665 pos = 0; 3666 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 3667 for (j = 0; j < nr_nodes; j++) { 3668 node = node_order[j]; 3669 z = &NODE_DATA(node)->node_zones[zone_type]; 3670 if (populated_zone(z)) { 3671 zoneref_set_zone(z, 3672 &zonelist->_zonerefs[pos++]); 3673 check_highest_zone(zone_type); 3674 } 3675 } 3676 } 3677 zonelist->_zonerefs[pos].zone = NULL; 3678 zonelist->_zonerefs[pos].zone_idx = 0; 3679 } 3680 3681 #if defined(CONFIG_64BIT) 3682 /* 3683 * Devices that require DMA32/DMA are relatively rare and do not justify a 3684 * penalty to every machine in case the specialised case applies. Default 3685 * to Node-ordering on 64-bit NUMA machines 3686 */ 3687 static int default_zonelist_order(void) 3688 { 3689 return ZONELIST_ORDER_NODE; 3690 } 3691 #else 3692 /* 3693 * On 32-bit, the Normal zone needs to be preserved for allocations accessible 3694 * by the kernel. If processes running on node 0 deplete the low memory zone 3695 * then reclaim will occur more frequency increasing stalls and potentially 3696 * be easier to OOM if a large percentage of the zone is under writeback or 3697 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set. 3698 * Hence, default to zone ordering on 32-bit. 3699 */ 3700 static int default_zonelist_order(void) 3701 { 3702 return ZONELIST_ORDER_ZONE; 3703 } 3704 #endif /* CONFIG_64BIT */ 3705 3706 static void set_zonelist_order(void) 3707 { 3708 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 3709 current_zonelist_order = default_zonelist_order(); 3710 else 3711 current_zonelist_order = user_zonelist_order; 3712 } 3713 3714 static void build_zonelists(pg_data_t *pgdat) 3715 { 3716 int j, node, load; 3717 enum zone_type i; 3718 nodemask_t used_mask; 3719 int local_node, prev_node; 3720 struct zonelist *zonelist; 3721 int order = current_zonelist_order; 3722 3723 /* initialize zonelists */ 3724 for (i = 0; i < MAX_ZONELISTS; i++) { 3725 zonelist = pgdat->node_zonelists + i; 3726 zonelist->_zonerefs[0].zone = NULL; 3727 zonelist->_zonerefs[0].zone_idx = 0; 3728 } 3729 3730 /* NUMA-aware ordering of nodes */ 3731 local_node = pgdat->node_id; 3732 load = nr_online_nodes; 3733 prev_node = local_node; 3734 nodes_clear(used_mask); 3735 3736 memset(node_order, 0, sizeof(node_order)); 3737 j = 0; 3738 3739 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 3740 /* 3741 * We don't want to pressure a particular node. 3742 * So adding penalty to the first node in same 3743 * distance group to make it round-robin. 3744 */ 3745 if (node_distance(local_node, node) != 3746 node_distance(local_node, prev_node)) 3747 node_load[node] = load; 3748 3749 prev_node = node; 3750 load--; 3751 if (order == ZONELIST_ORDER_NODE) 3752 build_zonelists_in_node_order(pgdat, node); 3753 else 3754 node_order[j++] = node; /* remember order */ 3755 } 3756 3757 if (order == ZONELIST_ORDER_ZONE) { 3758 /* calculate node order -- i.e., DMA last! */ 3759 build_zonelists_in_zone_order(pgdat, j); 3760 } 3761 3762 build_thisnode_zonelists(pgdat); 3763 } 3764 3765 /* Construct the zonelist performance cache - see further mmzone.h */ 3766 static void build_zonelist_cache(pg_data_t *pgdat) 3767 { 3768 struct zonelist *zonelist; 3769 struct zonelist_cache *zlc; 3770 struct zoneref *z; 3771 3772 zonelist = &pgdat->node_zonelists[0]; 3773 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 3774 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 3775 for (z = zonelist->_zonerefs; z->zone; z++) 3776 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 3777 } 3778 3779 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3780 /* 3781 * Return node id of node used for "local" allocations. 3782 * I.e., first node id of first zone in arg node's generic zonelist. 3783 * Used for initializing percpu 'numa_mem', which is used primarily 3784 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 3785 */ 3786 int local_memory_node(int node) 3787 { 3788 struct zone *zone; 3789 3790 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 3791 gfp_zone(GFP_KERNEL), 3792 NULL, 3793 &zone); 3794 return zone->node; 3795 } 3796 #endif 3797 3798 #else /* CONFIG_NUMA */ 3799 3800 static void set_zonelist_order(void) 3801 { 3802 current_zonelist_order = ZONELIST_ORDER_ZONE; 3803 } 3804 3805 static void build_zonelists(pg_data_t *pgdat) 3806 { 3807 int node, local_node; 3808 enum zone_type j; 3809 struct zonelist *zonelist; 3810 3811 local_node = pgdat->node_id; 3812 3813 zonelist = &pgdat->node_zonelists[0]; 3814 j = build_zonelists_node(pgdat, zonelist, 0); 3815 3816 /* 3817 * Now we build the zonelist so that it contains the zones 3818 * of all the other nodes. 3819 * We don't want to pressure a particular node, so when 3820 * building the zones for node N, we make sure that the 3821 * zones coming right after the local ones are those from 3822 * node N+1 (modulo N) 3823 */ 3824 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 3825 if (!node_online(node)) 3826 continue; 3827 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 3828 } 3829 for (node = 0; node < local_node; node++) { 3830 if (!node_online(node)) 3831 continue; 3832 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 3833 } 3834 3835 zonelist->_zonerefs[j].zone = NULL; 3836 zonelist->_zonerefs[j].zone_idx = 0; 3837 } 3838 3839 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 3840 static void build_zonelist_cache(pg_data_t *pgdat) 3841 { 3842 pgdat->node_zonelists[0].zlcache_ptr = NULL; 3843 } 3844 3845 #endif /* CONFIG_NUMA */ 3846 3847 /* 3848 * Boot pageset table. One per cpu which is going to be used for all 3849 * zones and all nodes. The parameters will be set in such a way 3850 * that an item put on a list will immediately be handed over to 3851 * the buddy list. This is safe since pageset manipulation is done 3852 * with interrupts disabled. 3853 * 3854 * The boot_pagesets must be kept even after bootup is complete for 3855 * unused processors and/or zones. They do play a role for bootstrapping 3856 * hotplugged processors. 3857 * 3858 * zoneinfo_show() and maybe other functions do 3859 * not check if the processor is online before following the pageset pointer. 3860 * Other parts of the kernel may not check if the zone is available. 3861 */ 3862 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 3863 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 3864 static void setup_zone_pageset(struct zone *zone); 3865 3866 /* 3867 * Global mutex to protect against size modification of zonelists 3868 * as well as to serialize pageset setup for the new populated zone. 3869 */ 3870 DEFINE_MUTEX(zonelists_mutex); 3871 3872 /* return values int ....just for stop_machine() */ 3873 static int __build_all_zonelists(void *data) 3874 { 3875 int nid; 3876 int cpu; 3877 pg_data_t *self = data; 3878 3879 #ifdef CONFIG_NUMA 3880 memset(node_load, 0, sizeof(node_load)); 3881 #endif 3882 3883 if (self && !node_online(self->node_id)) { 3884 build_zonelists(self); 3885 build_zonelist_cache(self); 3886 } 3887 3888 for_each_online_node(nid) { 3889 pg_data_t *pgdat = NODE_DATA(nid); 3890 3891 build_zonelists(pgdat); 3892 build_zonelist_cache(pgdat); 3893 } 3894 3895 /* 3896 * Initialize the boot_pagesets that are going to be used 3897 * for bootstrapping processors. The real pagesets for 3898 * each zone will be allocated later when the per cpu 3899 * allocator is available. 3900 * 3901 * boot_pagesets are used also for bootstrapping offline 3902 * cpus if the system is already booted because the pagesets 3903 * are needed to initialize allocators on a specific cpu too. 3904 * F.e. the percpu allocator needs the page allocator which 3905 * needs the percpu allocator in order to allocate its pagesets 3906 * (a chicken-egg dilemma). 3907 */ 3908 for_each_possible_cpu(cpu) { 3909 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 3910 3911 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3912 /* 3913 * We now know the "local memory node" for each node-- 3914 * i.e., the node of the first zone in the generic zonelist. 3915 * Set up numa_mem percpu variable for on-line cpus. During 3916 * boot, only the boot cpu should be on-line; we'll init the 3917 * secondary cpus' numa_mem as they come on-line. During 3918 * node/memory hotplug, we'll fixup all on-line cpus. 3919 */ 3920 if (cpu_online(cpu)) 3921 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 3922 #endif 3923 } 3924 3925 return 0; 3926 } 3927 3928 static noinline void __init 3929 build_all_zonelists_init(void) 3930 { 3931 __build_all_zonelists(NULL); 3932 mminit_verify_zonelist(); 3933 cpuset_init_current_mems_allowed(); 3934 } 3935 3936 /* 3937 * Called with zonelists_mutex held always 3938 * unless system_state == SYSTEM_BOOTING. 3939 * 3940 * __ref due to (1) call of __meminit annotated setup_zone_pageset 3941 * [we're only called with non-NULL zone through __meminit paths] and 3942 * (2) call of __init annotated helper build_all_zonelists_init 3943 * [protected by SYSTEM_BOOTING]. 3944 */ 3945 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone) 3946 { 3947 set_zonelist_order(); 3948 3949 if (system_state == SYSTEM_BOOTING) { 3950 build_all_zonelists_init(); 3951 } else { 3952 #ifdef CONFIG_MEMORY_HOTPLUG 3953 if (zone) 3954 setup_zone_pageset(zone); 3955 #endif 3956 /* we have to stop all cpus to guarantee there is no user 3957 of zonelist */ 3958 stop_machine(__build_all_zonelists, pgdat, NULL); 3959 /* cpuset refresh routine should be here */ 3960 } 3961 vm_total_pages = nr_free_pagecache_pages(); 3962 /* 3963 * Disable grouping by mobility if the number of pages in the 3964 * system is too low to allow the mechanism to work. It would be 3965 * more accurate, but expensive to check per-zone. This check is 3966 * made on memory-hotadd so a system can start with mobility 3967 * disabled and enable it later 3968 */ 3969 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 3970 page_group_by_mobility_disabled = 1; 3971 else 3972 page_group_by_mobility_disabled = 0; 3973 3974 pr_info("Built %i zonelists in %s order, mobility grouping %s. " 3975 "Total pages: %ld\n", 3976 nr_online_nodes, 3977 zonelist_order_name[current_zonelist_order], 3978 page_group_by_mobility_disabled ? "off" : "on", 3979 vm_total_pages); 3980 #ifdef CONFIG_NUMA 3981 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 3982 #endif 3983 } 3984 3985 /* 3986 * Helper functions to size the waitqueue hash table. 3987 * Essentially these want to choose hash table sizes sufficiently 3988 * large so that collisions trying to wait on pages are rare. 3989 * But in fact, the number of active page waitqueues on typical 3990 * systems is ridiculously low, less than 200. So this is even 3991 * conservative, even though it seems large. 3992 * 3993 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 3994 * waitqueues, i.e. the size of the waitq table given the number of pages. 3995 */ 3996 #define PAGES_PER_WAITQUEUE 256 3997 3998 #ifndef CONFIG_MEMORY_HOTPLUG 3999 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 4000 { 4001 unsigned long size = 1; 4002 4003 pages /= PAGES_PER_WAITQUEUE; 4004 4005 while (size < pages) 4006 size <<= 1; 4007 4008 /* 4009 * Once we have dozens or even hundreds of threads sleeping 4010 * on IO we've got bigger problems than wait queue collision. 4011 * Limit the size of the wait table to a reasonable size. 4012 */ 4013 size = min(size, 4096UL); 4014 4015 return max(size, 4UL); 4016 } 4017 #else 4018 /* 4019 * A zone's size might be changed by hot-add, so it is not possible to determine 4020 * a suitable size for its wait_table. So we use the maximum size now. 4021 * 4022 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 4023 * 4024 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 4025 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 4026 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 4027 * 4028 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 4029 * or more by the traditional way. (See above). It equals: 4030 * 4031 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 4032 * ia64(16K page size) : = ( 8G + 4M)byte. 4033 * powerpc (64K page size) : = (32G +16M)byte. 4034 */ 4035 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 4036 { 4037 return 4096UL; 4038 } 4039 #endif 4040 4041 /* 4042 * This is an integer logarithm so that shifts can be used later 4043 * to extract the more random high bits from the multiplicative 4044 * hash function before the remainder is taken. 4045 */ 4046 static inline unsigned long wait_table_bits(unsigned long size) 4047 { 4048 return ffz(~size); 4049 } 4050 4051 /* 4052 * Check if a pageblock contains reserved pages 4053 */ 4054 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn) 4055 { 4056 unsigned long pfn; 4057 4058 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 4059 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn))) 4060 return 1; 4061 } 4062 return 0; 4063 } 4064 4065 /* 4066 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 4067 * of blocks reserved is based on min_wmark_pages(zone). The memory within 4068 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes 4069 * higher will lead to a bigger reserve which will get freed as contiguous 4070 * blocks as reclaim kicks in 4071 */ 4072 static void setup_zone_migrate_reserve(struct zone *zone) 4073 { 4074 unsigned long start_pfn, pfn, end_pfn, block_end_pfn; 4075 struct page *page; 4076 unsigned long block_migratetype; 4077 int reserve; 4078 int old_reserve; 4079 4080 /* 4081 * Get the start pfn, end pfn and the number of blocks to reserve 4082 * We have to be careful to be aligned to pageblock_nr_pages to 4083 * make sure that we always check pfn_valid for the first page in 4084 * the block. 4085 */ 4086 start_pfn = zone->zone_start_pfn; 4087 end_pfn = zone_end_pfn(zone); 4088 start_pfn = roundup(start_pfn, pageblock_nr_pages); 4089 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> 4090 pageblock_order; 4091 4092 /* 4093 * Reserve blocks are generally in place to help high-order atomic 4094 * allocations that are short-lived. A min_free_kbytes value that 4095 * would result in more than 2 reserve blocks for atomic allocations 4096 * is assumed to be in place to help anti-fragmentation for the 4097 * future allocation of hugepages at runtime. 4098 */ 4099 reserve = min(2, reserve); 4100 old_reserve = zone->nr_migrate_reserve_block; 4101 4102 /* When memory hot-add, we almost always need to do nothing */ 4103 if (reserve == old_reserve) 4104 return; 4105 zone->nr_migrate_reserve_block = reserve; 4106 4107 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 4108 if (!pfn_valid(pfn)) 4109 continue; 4110 page = pfn_to_page(pfn); 4111 4112 /* Watch out for overlapping nodes */ 4113 if (page_to_nid(page) != zone_to_nid(zone)) 4114 continue; 4115 4116 block_migratetype = get_pageblock_migratetype(page); 4117 4118 /* Only test what is necessary when the reserves are not met */ 4119 if (reserve > 0) { 4120 /* 4121 * Blocks with reserved pages will never free, skip 4122 * them. 4123 */ 4124 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn); 4125 if (pageblock_is_reserved(pfn, block_end_pfn)) 4126 continue; 4127 4128 /* If this block is reserved, account for it */ 4129 if (block_migratetype == MIGRATE_RESERVE) { 4130 reserve--; 4131 continue; 4132 } 4133 4134 /* Suitable for reserving if this block is movable */ 4135 if (block_migratetype == MIGRATE_MOVABLE) { 4136 set_pageblock_migratetype(page, 4137 MIGRATE_RESERVE); 4138 move_freepages_block(zone, page, 4139 MIGRATE_RESERVE); 4140 reserve--; 4141 continue; 4142 } 4143 } else if (!old_reserve) { 4144 /* 4145 * At boot time we don't need to scan the whole zone 4146 * for turning off MIGRATE_RESERVE. 4147 */ 4148 break; 4149 } 4150 4151 /* 4152 * If the reserve is met and this is a previous reserved block, 4153 * take it back 4154 */ 4155 if (block_migratetype == MIGRATE_RESERVE) { 4156 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 4157 move_freepages_block(zone, page, MIGRATE_MOVABLE); 4158 } 4159 } 4160 } 4161 4162 /* 4163 * Initially all pages are reserved - free ones are freed 4164 * up by free_all_bootmem() once the early boot process is 4165 * done. Non-atomic initialization, single-pass. 4166 */ 4167 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 4168 unsigned long start_pfn, enum memmap_context context) 4169 { 4170 struct page *page; 4171 unsigned long end_pfn = start_pfn + size; 4172 unsigned long pfn; 4173 struct zone *z; 4174 4175 if (highest_memmap_pfn < end_pfn - 1) 4176 highest_memmap_pfn = end_pfn - 1; 4177 4178 z = &NODE_DATA(nid)->node_zones[zone]; 4179 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 4180 /* 4181 * There can be holes in boot-time mem_map[]s 4182 * handed to this function. They do not 4183 * exist on hotplugged memory. 4184 */ 4185 if (context == MEMMAP_EARLY) { 4186 if (!early_pfn_valid(pfn)) 4187 continue; 4188 if (!early_pfn_in_nid(pfn, nid)) 4189 continue; 4190 } 4191 page = pfn_to_page(pfn); 4192 set_page_links(page, zone, nid, pfn); 4193 mminit_verify_page_links(page, zone, nid, pfn); 4194 init_page_count(page); 4195 page_mapcount_reset(page); 4196 page_cpupid_reset_last(page); 4197 SetPageReserved(page); 4198 /* 4199 * Mark the block movable so that blocks are reserved for 4200 * movable at startup. This will force kernel allocations 4201 * to reserve their blocks rather than leaking throughout 4202 * the address space during boot when many long-lived 4203 * kernel allocations are made. Later some blocks near 4204 * the start are marked MIGRATE_RESERVE by 4205 * setup_zone_migrate_reserve() 4206 * 4207 * bitmap is created for zone's valid pfn range. but memmap 4208 * can be created for invalid pages (for alignment) 4209 * check here not to call set_pageblock_migratetype() against 4210 * pfn out of zone. 4211 */ 4212 if ((z->zone_start_pfn <= pfn) 4213 && (pfn < zone_end_pfn(z)) 4214 && !(pfn & (pageblock_nr_pages - 1))) 4215 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 4216 4217 INIT_LIST_HEAD(&page->lru); 4218 #ifdef WANT_PAGE_VIRTUAL 4219 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 4220 if (!is_highmem_idx(zone)) 4221 set_page_address(page, __va(pfn << PAGE_SHIFT)); 4222 #endif 4223 } 4224 } 4225 4226 static void __meminit zone_init_free_lists(struct zone *zone) 4227 { 4228 unsigned int order, t; 4229 for_each_migratetype_order(order, t) { 4230 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 4231 zone->free_area[order].nr_free = 0; 4232 } 4233 } 4234 4235 #ifndef __HAVE_ARCH_MEMMAP_INIT 4236 #define memmap_init(size, nid, zone, start_pfn) \ 4237 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 4238 #endif 4239 4240 static int zone_batchsize(struct zone *zone) 4241 { 4242 #ifdef CONFIG_MMU 4243 int batch; 4244 4245 /* 4246 * The per-cpu-pages pools are set to around 1000th of the 4247 * size of the zone. But no more than 1/2 of a meg. 4248 * 4249 * OK, so we don't know how big the cache is. So guess. 4250 */ 4251 batch = zone->managed_pages / 1024; 4252 if (batch * PAGE_SIZE > 512 * 1024) 4253 batch = (512 * 1024) / PAGE_SIZE; 4254 batch /= 4; /* We effectively *= 4 below */ 4255 if (batch < 1) 4256 batch = 1; 4257 4258 /* 4259 * Clamp the batch to a 2^n - 1 value. Having a power 4260 * of 2 value was found to be more likely to have 4261 * suboptimal cache aliasing properties in some cases. 4262 * 4263 * For example if 2 tasks are alternately allocating 4264 * batches of pages, one task can end up with a lot 4265 * of pages of one half of the possible page colors 4266 * and the other with pages of the other colors. 4267 */ 4268 batch = rounddown_pow_of_two(batch + batch/2) - 1; 4269 4270 return batch; 4271 4272 #else 4273 /* The deferral and batching of frees should be suppressed under NOMMU 4274 * conditions. 4275 * 4276 * The problem is that NOMMU needs to be able to allocate large chunks 4277 * of contiguous memory as there's no hardware page translation to 4278 * assemble apparent contiguous memory from discontiguous pages. 4279 * 4280 * Queueing large contiguous runs of pages for batching, however, 4281 * causes the pages to actually be freed in smaller chunks. As there 4282 * can be a significant delay between the individual batches being 4283 * recycled, this leads to the once large chunks of space being 4284 * fragmented and becoming unavailable for high-order allocations. 4285 */ 4286 return 0; 4287 #endif 4288 } 4289 4290 /* 4291 * pcp->high and pcp->batch values are related and dependent on one another: 4292 * ->batch must never be higher then ->high. 4293 * The following function updates them in a safe manner without read side 4294 * locking. 4295 * 4296 * Any new users of pcp->batch and pcp->high should ensure they can cope with 4297 * those fields changing asynchronously (acording the the above rule). 4298 * 4299 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 4300 * outside of boot time (or some other assurance that no concurrent updaters 4301 * exist). 4302 */ 4303 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 4304 unsigned long batch) 4305 { 4306 /* start with a fail safe value for batch */ 4307 pcp->batch = 1; 4308 smp_wmb(); 4309 4310 /* Update high, then batch, in order */ 4311 pcp->high = high; 4312 smp_wmb(); 4313 4314 pcp->batch = batch; 4315 } 4316 4317 /* a companion to pageset_set_high() */ 4318 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 4319 { 4320 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 4321 } 4322 4323 static void pageset_init(struct per_cpu_pageset *p) 4324 { 4325 struct per_cpu_pages *pcp; 4326 int migratetype; 4327 4328 memset(p, 0, sizeof(*p)); 4329 4330 pcp = &p->pcp; 4331 pcp->count = 0; 4332 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 4333 INIT_LIST_HEAD(&pcp->lists[migratetype]); 4334 } 4335 4336 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 4337 { 4338 pageset_init(p); 4339 pageset_set_batch(p, batch); 4340 } 4341 4342 /* 4343 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 4344 * to the value high for the pageset p. 4345 */ 4346 static void pageset_set_high(struct per_cpu_pageset *p, 4347 unsigned long high) 4348 { 4349 unsigned long batch = max(1UL, high / 4); 4350 if ((high / 4) > (PAGE_SHIFT * 8)) 4351 batch = PAGE_SHIFT * 8; 4352 4353 pageset_update(&p->pcp, high, batch); 4354 } 4355 4356 static void pageset_set_high_and_batch(struct zone *zone, 4357 struct per_cpu_pageset *pcp) 4358 { 4359 if (percpu_pagelist_fraction) 4360 pageset_set_high(pcp, 4361 (zone->managed_pages / 4362 percpu_pagelist_fraction)); 4363 else 4364 pageset_set_batch(pcp, zone_batchsize(zone)); 4365 } 4366 4367 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 4368 { 4369 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 4370 4371 pageset_init(pcp); 4372 pageset_set_high_and_batch(zone, pcp); 4373 } 4374 4375 static void __meminit setup_zone_pageset(struct zone *zone) 4376 { 4377 int cpu; 4378 zone->pageset = alloc_percpu(struct per_cpu_pageset); 4379 for_each_possible_cpu(cpu) 4380 zone_pageset_init(zone, cpu); 4381 } 4382 4383 /* 4384 * Allocate per cpu pagesets and initialize them. 4385 * Before this call only boot pagesets were available. 4386 */ 4387 void __init setup_per_cpu_pageset(void) 4388 { 4389 struct zone *zone; 4390 4391 for_each_populated_zone(zone) 4392 setup_zone_pageset(zone); 4393 } 4394 4395 static noinline __init_refok 4396 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 4397 { 4398 int i; 4399 size_t alloc_size; 4400 4401 /* 4402 * The per-page waitqueue mechanism uses hashed waitqueues 4403 * per zone. 4404 */ 4405 zone->wait_table_hash_nr_entries = 4406 wait_table_hash_nr_entries(zone_size_pages); 4407 zone->wait_table_bits = 4408 wait_table_bits(zone->wait_table_hash_nr_entries); 4409 alloc_size = zone->wait_table_hash_nr_entries 4410 * sizeof(wait_queue_head_t); 4411 4412 if (!slab_is_available()) { 4413 zone->wait_table = (wait_queue_head_t *) 4414 memblock_virt_alloc_node_nopanic( 4415 alloc_size, zone->zone_pgdat->node_id); 4416 } else { 4417 /* 4418 * This case means that a zone whose size was 0 gets new memory 4419 * via memory hot-add. 4420 * But it may be the case that a new node was hot-added. In 4421 * this case vmalloc() will not be able to use this new node's 4422 * memory - this wait_table must be initialized to use this new 4423 * node itself as well. 4424 * To use this new node's memory, further consideration will be 4425 * necessary. 4426 */ 4427 zone->wait_table = vmalloc(alloc_size); 4428 } 4429 if (!zone->wait_table) 4430 return -ENOMEM; 4431 4432 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i) 4433 init_waitqueue_head(zone->wait_table + i); 4434 4435 return 0; 4436 } 4437 4438 static __meminit void zone_pcp_init(struct zone *zone) 4439 { 4440 /* 4441 * per cpu subsystem is not up at this point. The following code 4442 * relies on the ability of the linker to provide the 4443 * offset of a (static) per cpu variable into the per cpu area. 4444 */ 4445 zone->pageset = &boot_pageset; 4446 4447 if (populated_zone(zone)) 4448 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 4449 zone->name, zone->present_pages, 4450 zone_batchsize(zone)); 4451 } 4452 4453 int __meminit init_currently_empty_zone(struct zone *zone, 4454 unsigned long zone_start_pfn, 4455 unsigned long size, 4456 enum memmap_context context) 4457 { 4458 struct pglist_data *pgdat = zone->zone_pgdat; 4459 int ret; 4460 ret = zone_wait_table_init(zone, size); 4461 if (ret) 4462 return ret; 4463 pgdat->nr_zones = zone_idx(zone) + 1; 4464 4465 zone->zone_start_pfn = zone_start_pfn; 4466 4467 mminit_dprintk(MMINIT_TRACE, "memmap_init", 4468 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 4469 pgdat->node_id, 4470 (unsigned long)zone_idx(zone), 4471 zone_start_pfn, (zone_start_pfn + size)); 4472 4473 zone_init_free_lists(zone); 4474 4475 return 0; 4476 } 4477 4478 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4479 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 4480 /* 4481 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 4482 */ 4483 int __meminit __early_pfn_to_nid(unsigned long pfn) 4484 { 4485 unsigned long start_pfn, end_pfn; 4486 int nid; 4487 /* 4488 * NOTE: The following SMP-unsafe globals are only used early in boot 4489 * when the kernel is running single-threaded. 4490 */ 4491 static unsigned long __meminitdata last_start_pfn, last_end_pfn; 4492 static int __meminitdata last_nid; 4493 4494 if (last_start_pfn <= pfn && pfn < last_end_pfn) 4495 return last_nid; 4496 4497 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 4498 if (nid != -1) { 4499 last_start_pfn = start_pfn; 4500 last_end_pfn = end_pfn; 4501 last_nid = nid; 4502 } 4503 4504 return nid; 4505 } 4506 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 4507 4508 int __meminit early_pfn_to_nid(unsigned long pfn) 4509 { 4510 int nid; 4511 4512 nid = __early_pfn_to_nid(pfn); 4513 if (nid >= 0) 4514 return nid; 4515 /* just returns 0 */ 4516 return 0; 4517 } 4518 4519 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 4520 bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 4521 { 4522 int nid; 4523 4524 nid = __early_pfn_to_nid(pfn); 4525 if (nid >= 0 && nid != node) 4526 return false; 4527 return true; 4528 } 4529 #endif 4530 4531 /** 4532 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range 4533 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 4534 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid 4535 * 4536 * If an architecture guarantees that all ranges registered contain no holes 4537 * and may be freed, this this function may be used instead of calling 4538 * memblock_free_early_nid() manually. 4539 */ 4540 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 4541 { 4542 unsigned long start_pfn, end_pfn; 4543 int i, this_nid; 4544 4545 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 4546 start_pfn = min(start_pfn, max_low_pfn); 4547 end_pfn = min(end_pfn, max_low_pfn); 4548 4549 if (start_pfn < end_pfn) 4550 memblock_free_early_nid(PFN_PHYS(start_pfn), 4551 (end_pfn - start_pfn) << PAGE_SHIFT, 4552 this_nid); 4553 } 4554 } 4555 4556 /** 4557 * sparse_memory_present_with_active_regions - Call memory_present for each active range 4558 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 4559 * 4560 * If an architecture guarantees that all ranges registered contain no holes and may 4561 * be freed, this function may be used instead of calling memory_present() manually. 4562 */ 4563 void __init sparse_memory_present_with_active_regions(int nid) 4564 { 4565 unsigned long start_pfn, end_pfn; 4566 int i, this_nid; 4567 4568 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 4569 memory_present(this_nid, start_pfn, end_pfn); 4570 } 4571 4572 /** 4573 * get_pfn_range_for_nid - Return the start and end page frames for a node 4574 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 4575 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 4576 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 4577 * 4578 * It returns the start and end page frame of a node based on information 4579 * provided by memblock_set_node(). If called for a node 4580 * with no available memory, a warning is printed and the start and end 4581 * PFNs will be 0. 4582 */ 4583 void __meminit get_pfn_range_for_nid(unsigned int nid, 4584 unsigned long *start_pfn, unsigned long *end_pfn) 4585 { 4586 unsigned long this_start_pfn, this_end_pfn; 4587 int i; 4588 4589 *start_pfn = -1UL; 4590 *end_pfn = 0; 4591 4592 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 4593 *start_pfn = min(*start_pfn, this_start_pfn); 4594 *end_pfn = max(*end_pfn, this_end_pfn); 4595 } 4596 4597 if (*start_pfn == -1UL) 4598 *start_pfn = 0; 4599 } 4600 4601 /* 4602 * This finds a zone that can be used for ZONE_MOVABLE pages. The 4603 * assumption is made that zones within a node are ordered in monotonic 4604 * increasing memory addresses so that the "highest" populated zone is used 4605 */ 4606 static void __init find_usable_zone_for_movable(void) 4607 { 4608 int zone_index; 4609 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 4610 if (zone_index == ZONE_MOVABLE) 4611 continue; 4612 4613 if (arch_zone_highest_possible_pfn[zone_index] > 4614 arch_zone_lowest_possible_pfn[zone_index]) 4615 break; 4616 } 4617 4618 VM_BUG_ON(zone_index == -1); 4619 movable_zone = zone_index; 4620 } 4621 4622 /* 4623 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 4624 * because it is sized independent of architecture. Unlike the other zones, 4625 * the starting point for ZONE_MOVABLE is not fixed. It may be different 4626 * in each node depending on the size of each node and how evenly kernelcore 4627 * is distributed. This helper function adjusts the zone ranges 4628 * provided by the architecture for a given node by using the end of the 4629 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 4630 * zones within a node are in order of monotonic increases memory addresses 4631 */ 4632 static void __meminit adjust_zone_range_for_zone_movable(int nid, 4633 unsigned long zone_type, 4634 unsigned long node_start_pfn, 4635 unsigned long node_end_pfn, 4636 unsigned long *zone_start_pfn, 4637 unsigned long *zone_end_pfn) 4638 { 4639 /* Only adjust if ZONE_MOVABLE is on this node */ 4640 if (zone_movable_pfn[nid]) { 4641 /* Size ZONE_MOVABLE */ 4642 if (zone_type == ZONE_MOVABLE) { 4643 *zone_start_pfn = zone_movable_pfn[nid]; 4644 *zone_end_pfn = min(node_end_pfn, 4645 arch_zone_highest_possible_pfn[movable_zone]); 4646 4647 /* Adjust for ZONE_MOVABLE starting within this range */ 4648 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 4649 *zone_end_pfn > zone_movable_pfn[nid]) { 4650 *zone_end_pfn = zone_movable_pfn[nid]; 4651 4652 /* Check if this whole range is within ZONE_MOVABLE */ 4653 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 4654 *zone_start_pfn = *zone_end_pfn; 4655 } 4656 } 4657 4658 /* 4659 * Return the number of pages a zone spans in a node, including holes 4660 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 4661 */ 4662 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 4663 unsigned long zone_type, 4664 unsigned long node_start_pfn, 4665 unsigned long node_end_pfn, 4666 unsigned long *ignored) 4667 { 4668 unsigned long zone_start_pfn, zone_end_pfn; 4669 4670 /* Get the start and end of the zone */ 4671 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 4672 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 4673 adjust_zone_range_for_zone_movable(nid, zone_type, 4674 node_start_pfn, node_end_pfn, 4675 &zone_start_pfn, &zone_end_pfn); 4676 4677 /* Check that this node has pages within the zone's required range */ 4678 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 4679 return 0; 4680 4681 /* Move the zone boundaries inside the node if necessary */ 4682 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 4683 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 4684 4685 /* Return the spanned pages */ 4686 return zone_end_pfn - zone_start_pfn; 4687 } 4688 4689 /* 4690 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 4691 * then all holes in the requested range will be accounted for. 4692 */ 4693 unsigned long __meminit __absent_pages_in_range(int nid, 4694 unsigned long range_start_pfn, 4695 unsigned long range_end_pfn) 4696 { 4697 unsigned long nr_absent = range_end_pfn - range_start_pfn; 4698 unsigned long start_pfn, end_pfn; 4699 int i; 4700 4701 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 4702 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 4703 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 4704 nr_absent -= end_pfn - start_pfn; 4705 } 4706 return nr_absent; 4707 } 4708 4709 /** 4710 * absent_pages_in_range - Return number of page frames in holes within a range 4711 * @start_pfn: The start PFN to start searching for holes 4712 * @end_pfn: The end PFN to stop searching for holes 4713 * 4714 * It returns the number of pages frames in memory holes within a range. 4715 */ 4716 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 4717 unsigned long end_pfn) 4718 { 4719 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 4720 } 4721 4722 /* Return the number of page frames in holes in a zone on a node */ 4723 static unsigned long __meminit zone_absent_pages_in_node(int nid, 4724 unsigned long zone_type, 4725 unsigned long node_start_pfn, 4726 unsigned long node_end_pfn, 4727 unsigned long *ignored) 4728 { 4729 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 4730 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 4731 unsigned long zone_start_pfn, zone_end_pfn; 4732 4733 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 4734 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 4735 4736 adjust_zone_range_for_zone_movable(nid, zone_type, 4737 node_start_pfn, node_end_pfn, 4738 &zone_start_pfn, &zone_end_pfn); 4739 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 4740 } 4741 4742 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4743 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 4744 unsigned long zone_type, 4745 unsigned long node_start_pfn, 4746 unsigned long node_end_pfn, 4747 unsigned long *zones_size) 4748 { 4749 return zones_size[zone_type]; 4750 } 4751 4752 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 4753 unsigned long zone_type, 4754 unsigned long node_start_pfn, 4755 unsigned long node_end_pfn, 4756 unsigned long *zholes_size) 4757 { 4758 if (!zholes_size) 4759 return 0; 4760 4761 return zholes_size[zone_type]; 4762 } 4763 4764 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4765 4766 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 4767 unsigned long node_start_pfn, 4768 unsigned long node_end_pfn, 4769 unsigned long *zones_size, 4770 unsigned long *zholes_size) 4771 { 4772 unsigned long realtotalpages, totalpages = 0; 4773 enum zone_type i; 4774 4775 for (i = 0; i < MAX_NR_ZONES; i++) 4776 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 4777 node_start_pfn, 4778 node_end_pfn, 4779 zones_size); 4780 pgdat->node_spanned_pages = totalpages; 4781 4782 realtotalpages = totalpages; 4783 for (i = 0; i < MAX_NR_ZONES; i++) 4784 realtotalpages -= 4785 zone_absent_pages_in_node(pgdat->node_id, i, 4786 node_start_pfn, node_end_pfn, 4787 zholes_size); 4788 pgdat->node_present_pages = realtotalpages; 4789 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 4790 realtotalpages); 4791 } 4792 4793 #ifndef CONFIG_SPARSEMEM 4794 /* 4795 * Calculate the size of the zone->blockflags rounded to an unsigned long 4796 * Start by making sure zonesize is a multiple of pageblock_order by rounding 4797 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 4798 * round what is now in bits to nearest long in bits, then return it in 4799 * bytes. 4800 */ 4801 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 4802 { 4803 unsigned long usemapsize; 4804 4805 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 4806 usemapsize = roundup(zonesize, pageblock_nr_pages); 4807 usemapsize = usemapsize >> pageblock_order; 4808 usemapsize *= NR_PAGEBLOCK_BITS; 4809 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 4810 4811 return usemapsize / 8; 4812 } 4813 4814 static void __init setup_usemap(struct pglist_data *pgdat, 4815 struct zone *zone, 4816 unsigned long zone_start_pfn, 4817 unsigned long zonesize) 4818 { 4819 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 4820 zone->pageblock_flags = NULL; 4821 if (usemapsize) 4822 zone->pageblock_flags = 4823 memblock_virt_alloc_node_nopanic(usemapsize, 4824 pgdat->node_id); 4825 } 4826 #else 4827 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 4828 unsigned long zone_start_pfn, unsigned long zonesize) {} 4829 #endif /* CONFIG_SPARSEMEM */ 4830 4831 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 4832 4833 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 4834 void __paginginit set_pageblock_order(void) 4835 { 4836 unsigned int order; 4837 4838 /* Check that pageblock_nr_pages has not already been setup */ 4839 if (pageblock_order) 4840 return; 4841 4842 if (HPAGE_SHIFT > PAGE_SHIFT) 4843 order = HUGETLB_PAGE_ORDER; 4844 else 4845 order = MAX_ORDER - 1; 4846 4847 /* 4848 * Assume the largest contiguous order of interest is a huge page. 4849 * This value may be variable depending on boot parameters on IA64 and 4850 * powerpc. 4851 */ 4852 pageblock_order = order; 4853 } 4854 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4855 4856 /* 4857 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 4858 * is unused as pageblock_order is set at compile-time. See 4859 * include/linux/pageblock-flags.h for the values of pageblock_order based on 4860 * the kernel config 4861 */ 4862 void __paginginit set_pageblock_order(void) 4863 { 4864 } 4865 4866 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4867 4868 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages, 4869 unsigned long present_pages) 4870 { 4871 unsigned long pages = spanned_pages; 4872 4873 /* 4874 * Provide a more accurate estimation if there are holes within 4875 * the zone and SPARSEMEM is in use. If there are holes within the 4876 * zone, each populated memory region may cost us one or two extra 4877 * memmap pages due to alignment because memmap pages for each 4878 * populated regions may not naturally algined on page boundary. 4879 * So the (present_pages >> 4) heuristic is a tradeoff for that. 4880 */ 4881 if (spanned_pages > present_pages + (present_pages >> 4) && 4882 IS_ENABLED(CONFIG_SPARSEMEM)) 4883 pages = present_pages; 4884 4885 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 4886 } 4887 4888 /* 4889 * Set up the zone data structures: 4890 * - mark all pages reserved 4891 * - mark all memory queues empty 4892 * - clear the memory bitmaps 4893 * 4894 * NOTE: pgdat should get zeroed by caller. 4895 */ 4896 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 4897 unsigned long node_start_pfn, unsigned long node_end_pfn, 4898 unsigned long *zones_size, unsigned long *zholes_size) 4899 { 4900 enum zone_type j; 4901 int nid = pgdat->node_id; 4902 unsigned long zone_start_pfn = pgdat->node_start_pfn; 4903 int ret; 4904 4905 pgdat_resize_init(pgdat); 4906 #ifdef CONFIG_NUMA_BALANCING 4907 spin_lock_init(&pgdat->numabalancing_migrate_lock); 4908 pgdat->numabalancing_migrate_nr_pages = 0; 4909 pgdat->numabalancing_migrate_next_window = jiffies; 4910 #endif 4911 init_waitqueue_head(&pgdat->kswapd_wait); 4912 init_waitqueue_head(&pgdat->pfmemalloc_wait); 4913 pgdat_page_ext_init(pgdat); 4914 4915 for (j = 0; j < MAX_NR_ZONES; j++) { 4916 struct zone *zone = pgdat->node_zones + j; 4917 unsigned long size, realsize, freesize, memmap_pages; 4918 4919 size = zone_spanned_pages_in_node(nid, j, node_start_pfn, 4920 node_end_pfn, zones_size); 4921 realsize = freesize = size - zone_absent_pages_in_node(nid, j, 4922 node_start_pfn, 4923 node_end_pfn, 4924 zholes_size); 4925 4926 /* 4927 * Adjust freesize so that it accounts for how much memory 4928 * is used by this zone for memmap. This affects the watermark 4929 * and per-cpu initialisations 4930 */ 4931 memmap_pages = calc_memmap_size(size, realsize); 4932 if (!is_highmem_idx(j)) { 4933 if (freesize >= memmap_pages) { 4934 freesize -= memmap_pages; 4935 if (memmap_pages) 4936 printk(KERN_DEBUG 4937 " %s zone: %lu pages used for memmap\n", 4938 zone_names[j], memmap_pages); 4939 } else 4940 printk(KERN_WARNING 4941 " %s zone: %lu pages exceeds freesize %lu\n", 4942 zone_names[j], memmap_pages, freesize); 4943 } 4944 4945 /* Account for reserved pages */ 4946 if (j == 0 && freesize > dma_reserve) { 4947 freesize -= dma_reserve; 4948 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 4949 zone_names[0], dma_reserve); 4950 } 4951 4952 if (!is_highmem_idx(j)) 4953 nr_kernel_pages += freesize; 4954 /* Charge for highmem memmap if there are enough kernel pages */ 4955 else if (nr_kernel_pages > memmap_pages * 2) 4956 nr_kernel_pages -= memmap_pages; 4957 nr_all_pages += freesize; 4958 4959 zone->spanned_pages = size; 4960 zone->present_pages = realsize; 4961 /* 4962 * Set an approximate value for lowmem here, it will be adjusted 4963 * when the bootmem allocator frees pages into the buddy system. 4964 * And all highmem pages will be managed by the buddy system. 4965 */ 4966 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize; 4967 #ifdef CONFIG_NUMA 4968 zone->node = nid; 4969 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio) 4970 / 100; 4971 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100; 4972 #endif 4973 zone->name = zone_names[j]; 4974 spin_lock_init(&zone->lock); 4975 spin_lock_init(&zone->lru_lock); 4976 zone_seqlock_init(zone); 4977 zone->zone_pgdat = pgdat; 4978 zone_pcp_init(zone); 4979 4980 /* For bootup, initialized properly in watermark setup */ 4981 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages); 4982 4983 lruvec_init(&zone->lruvec); 4984 if (!size) 4985 continue; 4986 4987 set_pageblock_order(); 4988 setup_usemap(pgdat, zone, zone_start_pfn, size); 4989 ret = init_currently_empty_zone(zone, zone_start_pfn, 4990 size, MEMMAP_EARLY); 4991 BUG_ON(ret); 4992 memmap_init(size, nid, j, zone_start_pfn); 4993 zone_start_pfn += size; 4994 } 4995 } 4996 4997 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 4998 { 4999 /* Skip empty nodes */ 5000 if (!pgdat->node_spanned_pages) 5001 return; 5002 5003 #ifdef CONFIG_FLAT_NODE_MEM_MAP 5004 /* ia64 gets its own node_mem_map, before this, without bootmem */ 5005 if (!pgdat->node_mem_map) { 5006 unsigned long size, start, end; 5007 struct page *map; 5008 5009 /* 5010 * The zone's endpoints aren't required to be MAX_ORDER 5011 * aligned but the node_mem_map endpoints must be in order 5012 * for the buddy allocator to function correctly. 5013 */ 5014 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 5015 end = pgdat_end_pfn(pgdat); 5016 end = ALIGN(end, MAX_ORDER_NR_PAGES); 5017 size = (end - start) * sizeof(struct page); 5018 map = alloc_remap(pgdat->node_id, size); 5019 if (!map) 5020 map = memblock_virt_alloc_node_nopanic(size, 5021 pgdat->node_id); 5022 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 5023 } 5024 #ifndef CONFIG_NEED_MULTIPLE_NODES 5025 /* 5026 * With no DISCONTIG, the global mem_map is just set as node 0's 5027 */ 5028 if (pgdat == NODE_DATA(0)) { 5029 mem_map = NODE_DATA(0)->node_mem_map; 5030 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5031 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 5032 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 5033 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5034 } 5035 #endif 5036 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 5037 } 5038 5039 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 5040 unsigned long node_start_pfn, unsigned long *zholes_size) 5041 { 5042 pg_data_t *pgdat = NODE_DATA(nid); 5043 unsigned long start_pfn = 0; 5044 unsigned long end_pfn = 0; 5045 5046 /* pg_data_t should be reset to zero when it's allocated */ 5047 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx); 5048 5049 pgdat->node_id = nid; 5050 pgdat->node_start_pfn = node_start_pfn; 5051 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5052 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 5053 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 5054 (u64)start_pfn << PAGE_SHIFT, ((u64)end_pfn << PAGE_SHIFT) - 1); 5055 #endif 5056 calculate_node_totalpages(pgdat, start_pfn, end_pfn, 5057 zones_size, zholes_size); 5058 5059 alloc_node_mem_map(pgdat); 5060 #ifdef CONFIG_FLAT_NODE_MEM_MAP 5061 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 5062 nid, (unsigned long)pgdat, 5063 (unsigned long)pgdat->node_mem_map); 5064 #endif 5065 5066 free_area_init_core(pgdat, start_pfn, end_pfn, 5067 zones_size, zholes_size); 5068 } 5069 5070 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5071 5072 #if MAX_NUMNODES > 1 5073 /* 5074 * Figure out the number of possible node ids. 5075 */ 5076 void __init setup_nr_node_ids(void) 5077 { 5078 unsigned int node; 5079 unsigned int highest = 0; 5080 5081 for_each_node_mask(node, node_possible_map) 5082 highest = node; 5083 nr_node_ids = highest + 1; 5084 } 5085 #endif 5086 5087 /** 5088 * node_map_pfn_alignment - determine the maximum internode alignment 5089 * 5090 * This function should be called after node map is populated and sorted. 5091 * It calculates the maximum power of two alignment which can distinguish 5092 * all the nodes. 5093 * 5094 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 5095 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 5096 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 5097 * shifted, 1GiB is enough and this function will indicate so. 5098 * 5099 * This is used to test whether pfn -> nid mapping of the chosen memory 5100 * model has fine enough granularity to avoid incorrect mapping for the 5101 * populated node map. 5102 * 5103 * Returns the determined alignment in pfn's. 0 if there is no alignment 5104 * requirement (single node). 5105 */ 5106 unsigned long __init node_map_pfn_alignment(void) 5107 { 5108 unsigned long accl_mask = 0, last_end = 0; 5109 unsigned long start, end, mask; 5110 int last_nid = -1; 5111 int i, nid; 5112 5113 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 5114 if (!start || last_nid < 0 || last_nid == nid) { 5115 last_nid = nid; 5116 last_end = end; 5117 continue; 5118 } 5119 5120 /* 5121 * Start with a mask granular enough to pin-point to the 5122 * start pfn and tick off bits one-by-one until it becomes 5123 * too coarse to separate the current node from the last. 5124 */ 5125 mask = ~((1 << __ffs(start)) - 1); 5126 while (mask && last_end <= (start & (mask << 1))) 5127 mask <<= 1; 5128 5129 /* accumulate all internode masks */ 5130 accl_mask |= mask; 5131 } 5132 5133 /* convert mask to number of pages */ 5134 return ~accl_mask + 1; 5135 } 5136 5137 /* Find the lowest pfn for a node */ 5138 static unsigned long __init find_min_pfn_for_node(int nid) 5139 { 5140 unsigned long min_pfn = ULONG_MAX; 5141 unsigned long start_pfn; 5142 int i; 5143 5144 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 5145 min_pfn = min(min_pfn, start_pfn); 5146 5147 if (min_pfn == ULONG_MAX) { 5148 printk(KERN_WARNING 5149 "Could not find start_pfn for node %d\n", nid); 5150 return 0; 5151 } 5152 5153 return min_pfn; 5154 } 5155 5156 /** 5157 * find_min_pfn_with_active_regions - Find the minimum PFN registered 5158 * 5159 * It returns the minimum PFN based on information provided via 5160 * memblock_set_node(). 5161 */ 5162 unsigned long __init find_min_pfn_with_active_regions(void) 5163 { 5164 return find_min_pfn_for_node(MAX_NUMNODES); 5165 } 5166 5167 /* 5168 * early_calculate_totalpages() 5169 * Sum pages in active regions for movable zone. 5170 * Populate N_MEMORY for calculating usable_nodes. 5171 */ 5172 static unsigned long __init early_calculate_totalpages(void) 5173 { 5174 unsigned long totalpages = 0; 5175 unsigned long start_pfn, end_pfn; 5176 int i, nid; 5177 5178 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 5179 unsigned long pages = end_pfn - start_pfn; 5180 5181 totalpages += pages; 5182 if (pages) 5183 node_set_state(nid, N_MEMORY); 5184 } 5185 return totalpages; 5186 } 5187 5188 /* 5189 * Find the PFN the Movable zone begins in each node. Kernel memory 5190 * is spread evenly between nodes as long as the nodes have enough 5191 * memory. When they don't, some nodes will have more kernelcore than 5192 * others 5193 */ 5194 static void __init find_zone_movable_pfns_for_nodes(void) 5195 { 5196 int i, nid; 5197 unsigned long usable_startpfn; 5198 unsigned long kernelcore_node, kernelcore_remaining; 5199 /* save the state before borrow the nodemask */ 5200 nodemask_t saved_node_state = node_states[N_MEMORY]; 5201 unsigned long totalpages = early_calculate_totalpages(); 5202 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 5203 struct memblock_region *r; 5204 5205 /* Need to find movable_zone earlier when movable_node is specified. */ 5206 find_usable_zone_for_movable(); 5207 5208 /* 5209 * If movable_node is specified, ignore kernelcore and movablecore 5210 * options. 5211 */ 5212 if (movable_node_is_enabled()) { 5213 for_each_memblock(memory, r) { 5214 if (!memblock_is_hotpluggable(r)) 5215 continue; 5216 5217 nid = r->nid; 5218 5219 usable_startpfn = PFN_DOWN(r->base); 5220 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 5221 min(usable_startpfn, zone_movable_pfn[nid]) : 5222 usable_startpfn; 5223 } 5224 5225 goto out2; 5226 } 5227 5228 /* 5229 * If movablecore=nn[KMG] was specified, calculate what size of 5230 * kernelcore that corresponds so that memory usable for 5231 * any allocation type is evenly spread. If both kernelcore 5232 * and movablecore are specified, then the value of kernelcore 5233 * will be used for required_kernelcore if it's greater than 5234 * what movablecore would have allowed. 5235 */ 5236 if (required_movablecore) { 5237 unsigned long corepages; 5238 5239 /* 5240 * Round-up so that ZONE_MOVABLE is at least as large as what 5241 * was requested by the user 5242 */ 5243 required_movablecore = 5244 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 5245 corepages = totalpages - required_movablecore; 5246 5247 required_kernelcore = max(required_kernelcore, corepages); 5248 } 5249 5250 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 5251 if (!required_kernelcore) 5252 goto out; 5253 5254 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 5255 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 5256 5257 restart: 5258 /* Spread kernelcore memory as evenly as possible throughout nodes */ 5259 kernelcore_node = required_kernelcore / usable_nodes; 5260 for_each_node_state(nid, N_MEMORY) { 5261 unsigned long start_pfn, end_pfn; 5262 5263 /* 5264 * Recalculate kernelcore_node if the division per node 5265 * now exceeds what is necessary to satisfy the requested 5266 * amount of memory for the kernel 5267 */ 5268 if (required_kernelcore < kernelcore_node) 5269 kernelcore_node = required_kernelcore / usable_nodes; 5270 5271 /* 5272 * As the map is walked, we track how much memory is usable 5273 * by the kernel using kernelcore_remaining. When it is 5274 * 0, the rest of the node is usable by ZONE_MOVABLE 5275 */ 5276 kernelcore_remaining = kernelcore_node; 5277 5278 /* Go through each range of PFNs within this node */ 5279 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 5280 unsigned long size_pages; 5281 5282 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 5283 if (start_pfn >= end_pfn) 5284 continue; 5285 5286 /* Account for what is only usable for kernelcore */ 5287 if (start_pfn < usable_startpfn) { 5288 unsigned long kernel_pages; 5289 kernel_pages = min(end_pfn, usable_startpfn) 5290 - start_pfn; 5291 5292 kernelcore_remaining -= min(kernel_pages, 5293 kernelcore_remaining); 5294 required_kernelcore -= min(kernel_pages, 5295 required_kernelcore); 5296 5297 /* Continue if range is now fully accounted */ 5298 if (end_pfn <= usable_startpfn) { 5299 5300 /* 5301 * Push zone_movable_pfn to the end so 5302 * that if we have to rebalance 5303 * kernelcore across nodes, we will 5304 * not double account here 5305 */ 5306 zone_movable_pfn[nid] = end_pfn; 5307 continue; 5308 } 5309 start_pfn = usable_startpfn; 5310 } 5311 5312 /* 5313 * The usable PFN range for ZONE_MOVABLE is from 5314 * start_pfn->end_pfn. Calculate size_pages as the 5315 * number of pages used as kernelcore 5316 */ 5317 size_pages = end_pfn - start_pfn; 5318 if (size_pages > kernelcore_remaining) 5319 size_pages = kernelcore_remaining; 5320 zone_movable_pfn[nid] = start_pfn + size_pages; 5321 5322 /* 5323 * Some kernelcore has been met, update counts and 5324 * break if the kernelcore for this node has been 5325 * satisfied 5326 */ 5327 required_kernelcore -= min(required_kernelcore, 5328 size_pages); 5329 kernelcore_remaining -= size_pages; 5330 if (!kernelcore_remaining) 5331 break; 5332 } 5333 } 5334 5335 /* 5336 * If there is still required_kernelcore, we do another pass with one 5337 * less node in the count. This will push zone_movable_pfn[nid] further 5338 * along on the nodes that still have memory until kernelcore is 5339 * satisfied 5340 */ 5341 usable_nodes--; 5342 if (usable_nodes && required_kernelcore > usable_nodes) 5343 goto restart; 5344 5345 out2: 5346 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 5347 for (nid = 0; nid < MAX_NUMNODES; nid++) 5348 zone_movable_pfn[nid] = 5349 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 5350 5351 out: 5352 /* restore the node_state */ 5353 node_states[N_MEMORY] = saved_node_state; 5354 } 5355 5356 /* Any regular or high memory on that node ? */ 5357 static void check_for_memory(pg_data_t *pgdat, int nid) 5358 { 5359 enum zone_type zone_type; 5360 5361 if (N_MEMORY == N_NORMAL_MEMORY) 5362 return; 5363 5364 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 5365 struct zone *zone = &pgdat->node_zones[zone_type]; 5366 if (populated_zone(zone)) { 5367 node_set_state(nid, N_HIGH_MEMORY); 5368 if (N_NORMAL_MEMORY != N_HIGH_MEMORY && 5369 zone_type <= ZONE_NORMAL) 5370 node_set_state(nid, N_NORMAL_MEMORY); 5371 break; 5372 } 5373 } 5374 } 5375 5376 /** 5377 * free_area_init_nodes - Initialise all pg_data_t and zone data 5378 * @max_zone_pfn: an array of max PFNs for each zone 5379 * 5380 * This will call free_area_init_node() for each active node in the system. 5381 * Using the page ranges provided by memblock_set_node(), the size of each 5382 * zone in each node and their holes is calculated. If the maximum PFN 5383 * between two adjacent zones match, it is assumed that the zone is empty. 5384 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 5385 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 5386 * starts where the previous one ended. For example, ZONE_DMA32 starts 5387 * at arch_max_dma_pfn. 5388 */ 5389 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 5390 { 5391 unsigned long start_pfn, end_pfn; 5392 int i, nid; 5393 5394 /* Record where the zone boundaries are */ 5395 memset(arch_zone_lowest_possible_pfn, 0, 5396 sizeof(arch_zone_lowest_possible_pfn)); 5397 memset(arch_zone_highest_possible_pfn, 0, 5398 sizeof(arch_zone_highest_possible_pfn)); 5399 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 5400 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 5401 for (i = 1; i < MAX_NR_ZONES; i++) { 5402 if (i == ZONE_MOVABLE) 5403 continue; 5404 arch_zone_lowest_possible_pfn[i] = 5405 arch_zone_highest_possible_pfn[i-1]; 5406 arch_zone_highest_possible_pfn[i] = 5407 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 5408 } 5409 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 5410 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 5411 5412 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 5413 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 5414 find_zone_movable_pfns_for_nodes(); 5415 5416 /* Print out the zone ranges */ 5417 pr_info("Zone ranges:\n"); 5418 for (i = 0; i < MAX_NR_ZONES; i++) { 5419 if (i == ZONE_MOVABLE) 5420 continue; 5421 pr_info(" %-8s ", zone_names[i]); 5422 if (arch_zone_lowest_possible_pfn[i] == 5423 arch_zone_highest_possible_pfn[i]) 5424 pr_cont("empty\n"); 5425 else 5426 pr_cont("[mem %#018Lx-%#018Lx]\n", 5427 (u64)arch_zone_lowest_possible_pfn[i] 5428 << PAGE_SHIFT, 5429 ((u64)arch_zone_highest_possible_pfn[i] 5430 << PAGE_SHIFT) - 1); 5431 } 5432 5433 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 5434 pr_info("Movable zone start for each node\n"); 5435 for (i = 0; i < MAX_NUMNODES; i++) { 5436 if (zone_movable_pfn[i]) 5437 pr_info(" Node %d: %#018Lx\n", i, 5438 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 5439 } 5440 5441 /* Print out the early node map */ 5442 pr_info("Early memory node ranges\n"); 5443 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 5444 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 5445 (u64)start_pfn << PAGE_SHIFT, 5446 ((u64)end_pfn << PAGE_SHIFT) - 1); 5447 5448 /* Initialise every node */ 5449 mminit_verify_pageflags_layout(); 5450 setup_nr_node_ids(); 5451 for_each_online_node(nid) { 5452 pg_data_t *pgdat = NODE_DATA(nid); 5453 free_area_init_node(nid, NULL, 5454 find_min_pfn_for_node(nid), NULL); 5455 5456 /* Any memory on that node */ 5457 if (pgdat->node_present_pages) 5458 node_set_state(nid, N_MEMORY); 5459 check_for_memory(pgdat, nid); 5460 } 5461 } 5462 5463 static int __init cmdline_parse_core(char *p, unsigned long *core) 5464 { 5465 unsigned long long coremem; 5466 if (!p) 5467 return -EINVAL; 5468 5469 coremem = memparse(p, &p); 5470 *core = coremem >> PAGE_SHIFT; 5471 5472 /* Paranoid check that UL is enough for the coremem value */ 5473 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 5474 5475 return 0; 5476 } 5477 5478 /* 5479 * kernelcore=size sets the amount of memory for use for allocations that 5480 * cannot be reclaimed or migrated. 5481 */ 5482 static int __init cmdline_parse_kernelcore(char *p) 5483 { 5484 return cmdline_parse_core(p, &required_kernelcore); 5485 } 5486 5487 /* 5488 * movablecore=size sets the amount of memory for use for allocations that 5489 * can be reclaimed or migrated. 5490 */ 5491 static int __init cmdline_parse_movablecore(char *p) 5492 { 5493 return cmdline_parse_core(p, &required_movablecore); 5494 } 5495 5496 early_param("kernelcore", cmdline_parse_kernelcore); 5497 early_param("movablecore", cmdline_parse_movablecore); 5498 5499 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5500 5501 void adjust_managed_page_count(struct page *page, long count) 5502 { 5503 spin_lock(&managed_page_count_lock); 5504 page_zone(page)->managed_pages += count; 5505 totalram_pages += count; 5506 #ifdef CONFIG_HIGHMEM 5507 if (PageHighMem(page)) 5508 totalhigh_pages += count; 5509 #endif 5510 spin_unlock(&managed_page_count_lock); 5511 } 5512 EXPORT_SYMBOL(adjust_managed_page_count); 5513 5514 unsigned long free_reserved_area(void *start, void *end, int poison, char *s) 5515 { 5516 void *pos; 5517 unsigned long pages = 0; 5518 5519 start = (void *)PAGE_ALIGN((unsigned long)start); 5520 end = (void *)((unsigned long)end & PAGE_MASK); 5521 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 5522 if ((unsigned int)poison <= 0xFF) 5523 memset(pos, poison, PAGE_SIZE); 5524 free_reserved_page(virt_to_page(pos)); 5525 } 5526 5527 if (pages && s) 5528 pr_info("Freeing %s memory: %ldK (%p - %p)\n", 5529 s, pages << (PAGE_SHIFT - 10), start, end); 5530 5531 return pages; 5532 } 5533 EXPORT_SYMBOL(free_reserved_area); 5534 5535 #ifdef CONFIG_HIGHMEM 5536 void free_highmem_page(struct page *page) 5537 { 5538 __free_reserved_page(page); 5539 totalram_pages++; 5540 page_zone(page)->managed_pages++; 5541 totalhigh_pages++; 5542 } 5543 #endif 5544 5545 5546 void __init mem_init_print_info(const char *str) 5547 { 5548 unsigned long physpages, codesize, datasize, rosize, bss_size; 5549 unsigned long init_code_size, init_data_size; 5550 5551 physpages = get_num_physpages(); 5552 codesize = _etext - _stext; 5553 datasize = _edata - _sdata; 5554 rosize = __end_rodata - __start_rodata; 5555 bss_size = __bss_stop - __bss_start; 5556 init_data_size = __init_end - __init_begin; 5557 init_code_size = _einittext - _sinittext; 5558 5559 /* 5560 * Detect special cases and adjust section sizes accordingly: 5561 * 1) .init.* may be embedded into .data sections 5562 * 2) .init.text.* may be out of [__init_begin, __init_end], 5563 * please refer to arch/tile/kernel/vmlinux.lds.S. 5564 * 3) .rodata.* may be embedded into .text or .data sections. 5565 */ 5566 #define adj_init_size(start, end, size, pos, adj) \ 5567 do { \ 5568 if (start <= pos && pos < end && size > adj) \ 5569 size -= adj; \ 5570 } while (0) 5571 5572 adj_init_size(__init_begin, __init_end, init_data_size, 5573 _sinittext, init_code_size); 5574 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 5575 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 5576 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 5577 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 5578 5579 #undef adj_init_size 5580 5581 pr_info("Memory: %luK/%luK available " 5582 "(%luK kernel code, %luK rwdata, %luK rodata, " 5583 "%luK init, %luK bss, %luK reserved, %luK cma-reserved" 5584 #ifdef CONFIG_HIGHMEM 5585 ", %luK highmem" 5586 #endif 5587 "%s%s)\n", 5588 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10), 5589 codesize >> 10, datasize >> 10, rosize >> 10, 5590 (init_data_size + init_code_size) >> 10, bss_size >> 10, 5591 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10), 5592 totalcma_pages << (PAGE_SHIFT-10), 5593 #ifdef CONFIG_HIGHMEM 5594 totalhigh_pages << (PAGE_SHIFT-10), 5595 #endif 5596 str ? ", " : "", str ? str : ""); 5597 } 5598 5599 /** 5600 * set_dma_reserve - set the specified number of pages reserved in the first zone 5601 * @new_dma_reserve: The number of pages to mark reserved 5602 * 5603 * The per-cpu batchsize and zone watermarks are determined by present_pages. 5604 * In the DMA zone, a significant percentage may be consumed by kernel image 5605 * and other unfreeable allocations which can skew the watermarks badly. This 5606 * function may optionally be used to account for unfreeable pages in the 5607 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 5608 * smaller per-cpu batchsize. 5609 */ 5610 void __init set_dma_reserve(unsigned long new_dma_reserve) 5611 { 5612 dma_reserve = new_dma_reserve; 5613 } 5614 5615 void __init free_area_init(unsigned long *zones_size) 5616 { 5617 free_area_init_node(0, zones_size, 5618 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 5619 } 5620 5621 static int page_alloc_cpu_notify(struct notifier_block *self, 5622 unsigned long action, void *hcpu) 5623 { 5624 int cpu = (unsigned long)hcpu; 5625 5626 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 5627 lru_add_drain_cpu(cpu); 5628 drain_pages(cpu); 5629 5630 /* 5631 * Spill the event counters of the dead processor 5632 * into the current processors event counters. 5633 * This artificially elevates the count of the current 5634 * processor. 5635 */ 5636 vm_events_fold_cpu(cpu); 5637 5638 /* 5639 * Zero the differential counters of the dead processor 5640 * so that the vm statistics are consistent. 5641 * 5642 * This is only okay since the processor is dead and cannot 5643 * race with what we are doing. 5644 */ 5645 cpu_vm_stats_fold(cpu); 5646 } 5647 return NOTIFY_OK; 5648 } 5649 5650 void __init page_alloc_init(void) 5651 { 5652 hotcpu_notifier(page_alloc_cpu_notify, 0); 5653 } 5654 5655 /* 5656 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 5657 * or min_free_kbytes changes. 5658 */ 5659 static void calculate_totalreserve_pages(void) 5660 { 5661 struct pglist_data *pgdat; 5662 unsigned long reserve_pages = 0; 5663 enum zone_type i, j; 5664 5665 for_each_online_pgdat(pgdat) { 5666 for (i = 0; i < MAX_NR_ZONES; i++) { 5667 struct zone *zone = pgdat->node_zones + i; 5668 long max = 0; 5669 5670 /* Find valid and maximum lowmem_reserve in the zone */ 5671 for (j = i; j < MAX_NR_ZONES; j++) { 5672 if (zone->lowmem_reserve[j] > max) 5673 max = zone->lowmem_reserve[j]; 5674 } 5675 5676 /* we treat the high watermark as reserved pages. */ 5677 max += high_wmark_pages(zone); 5678 5679 if (max > zone->managed_pages) 5680 max = zone->managed_pages; 5681 reserve_pages += max; 5682 /* 5683 * Lowmem reserves are not available to 5684 * GFP_HIGHUSER page cache allocations and 5685 * kswapd tries to balance zones to their high 5686 * watermark. As a result, neither should be 5687 * regarded as dirtyable memory, to prevent a 5688 * situation where reclaim has to clean pages 5689 * in order to balance the zones. 5690 */ 5691 zone->dirty_balance_reserve = max; 5692 } 5693 } 5694 dirty_balance_reserve = reserve_pages; 5695 totalreserve_pages = reserve_pages; 5696 } 5697 5698 /* 5699 * setup_per_zone_lowmem_reserve - called whenever 5700 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 5701 * has a correct pages reserved value, so an adequate number of 5702 * pages are left in the zone after a successful __alloc_pages(). 5703 */ 5704 static void setup_per_zone_lowmem_reserve(void) 5705 { 5706 struct pglist_data *pgdat; 5707 enum zone_type j, idx; 5708 5709 for_each_online_pgdat(pgdat) { 5710 for (j = 0; j < MAX_NR_ZONES; j++) { 5711 struct zone *zone = pgdat->node_zones + j; 5712 unsigned long managed_pages = zone->managed_pages; 5713 5714 zone->lowmem_reserve[j] = 0; 5715 5716 idx = j; 5717 while (idx) { 5718 struct zone *lower_zone; 5719 5720 idx--; 5721 5722 if (sysctl_lowmem_reserve_ratio[idx] < 1) 5723 sysctl_lowmem_reserve_ratio[idx] = 1; 5724 5725 lower_zone = pgdat->node_zones + idx; 5726 lower_zone->lowmem_reserve[j] = managed_pages / 5727 sysctl_lowmem_reserve_ratio[idx]; 5728 managed_pages += lower_zone->managed_pages; 5729 } 5730 } 5731 } 5732 5733 /* update totalreserve_pages */ 5734 calculate_totalreserve_pages(); 5735 } 5736 5737 static void __setup_per_zone_wmarks(void) 5738 { 5739 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 5740 unsigned long lowmem_pages = 0; 5741 struct zone *zone; 5742 unsigned long flags; 5743 5744 /* Calculate total number of !ZONE_HIGHMEM pages */ 5745 for_each_zone(zone) { 5746 if (!is_highmem(zone)) 5747 lowmem_pages += zone->managed_pages; 5748 } 5749 5750 for_each_zone(zone) { 5751 u64 tmp; 5752 5753 spin_lock_irqsave(&zone->lock, flags); 5754 tmp = (u64)pages_min * zone->managed_pages; 5755 do_div(tmp, lowmem_pages); 5756 if (is_highmem(zone)) { 5757 /* 5758 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 5759 * need highmem pages, so cap pages_min to a small 5760 * value here. 5761 * 5762 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 5763 * deltas control asynch page reclaim, and so should 5764 * not be capped for highmem. 5765 */ 5766 unsigned long min_pages; 5767 5768 min_pages = zone->managed_pages / 1024; 5769 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 5770 zone->watermark[WMARK_MIN] = min_pages; 5771 } else { 5772 /* 5773 * If it's a lowmem zone, reserve a number of pages 5774 * proportionate to the zone's size. 5775 */ 5776 zone->watermark[WMARK_MIN] = tmp; 5777 } 5778 5779 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); 5780 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); 5781 5782 __mod_zone_page_state(zone, NR_ALLOC_BATCH, 5783 high_wmark_pages(zone) - low_wmark_pages(zone) - 5784 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH])); 5785 5786 setup_zone_migrate_reserve(zone); 5787 spin_unlock_irqrestore(&zone->lock, flags); 5788 } 5789 5790 /* update totalreserve_pages */ 5791 calculate_totalreserve_pages(); 5792 } 5793 5794 /** 5795 * setup_per_zone_wmarks - called when min_free_kbytes changes 5796 * or when memory is hot-{added|removed} 5797 * 5798 * Ensures that the watermark[min,low,high] values for each zone are set 5799 * correctly with respect to min_free_kbytes. 5800 */ 5801 void setup_per_zone_wmarks(void) 5802 { 5803 mutex_lock(&zonelists_mutex); 5804 __setup_per_zone_wmarks(); 5805 mutex_unlock(&zonelists_mutex); 5806 } 5807 5808 /* 5809 * The inactive anon list should be small enough that the VM never has to 5810 * do too much work, but large enough that each inactive page has a chance 5811 * to be referenced again before it is swapped out. 5812 * 5813 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 5814 * INACTIVE_ANON pages on this zone's LRU, maintained by the 5815 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 5816 * the anonymous pages are kept on the inactive list. 5817 * 5818 * total target max 5819 * memory ratio inactive anon 5820 * ------------------------------------- 5821 * 10MB 1 5MB 5822 * 100MB 1 50MB 5823 * 1GB 3 250MB 5824 * 10GB 10 0.9GB 5825 * 100GB 31 3GB 5826 * 1TB 101 10GB 5827 * 10TB 320 32GB 5828 */ 5829 static void __meminit calculate_zone_inactive_ratio(struct zone *zone) 5830 { 5831 unsigned int gb, ratio; 5832 5833 /* Zone size in gigabytes */ 5834 gb = zone->managed_pages >> (30 - PAGE_SHIFT); 5835 if (gb) 5836 ratio = int_sqrt(10 * gb); 5837 else 5838 ratio = 1; 5839 5840 zone->inactive_ratio = ratio; 5841 } 5842 5843 static void __meminit setup_per_zone_inactive_ratio(void) 5844 { 5845 struct zone *zone; 5846 5847 for_each_zone(zone) 5848 calculate_zone_inactive_ratio(zone); 5849 } 5850 5851 /* 5852 * Initialise min_free_kbytes. 5853 * 5854 * For small machines we want it small (128k min). For large machines 5855 * we want it large (64MB max). But it is not linear, because network 5856 * bandwidth does not increase linearly with machine size. We use 5857 * 5858 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 5859 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 5860 * 5861 * which yields 5862 * 5863 * 16MB: 512k 5864 * 32MB: 724k 5865 * 64MB: 1024k 5866 * 128MB: 1448k 5867 * 256MB: 2048k 5868 * 512MB: 2896k 5869 * 1024MB: 4096k 5870 * 2048MB: 5792k 5871 * 4096MB: 8192k 5872 * 8192MB: 11584k 5873 * 16384MB: 16384k 5874 */ 5875 int __meminit init_per_zone_wmark_min(void) 5876 { 5877 unsigned long lowmem_kbytes; 5878 int new_min_free_kbytes; 5879 5880 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 5881 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 5882 5883 if (new_min_free_kbytes > user_min_free_kbytes) { 5884 min_free_kbytes = new_min_free_kbytes; 5885 if (min_free_kbytes < 128) 5886 min_free_kbytes = 128; 5887 if (min_free_kbytes > 65536) 5888 min_free_kbytes = 65536; 5889 } else { 5890 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 5891 new_min_free_kbytes, user_min_free_kbytes); 5892 } 5893 setup_per_zone_wmarks(); 5894 refresh_zone_stat_thresholds(); 5895 setup_per_zone_lowmem_reserve(); 5896 setup_per_zone_inactive_ratio(); 5897 return 0; 5898 } 5899 module_init(init_per_zone_wmark_min) 5900 5901 /* 5902 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 5903 * that we can call two helper functions whenever min_free_kbytes 5904 * changes. 5905 */ 5906 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 5907 void __user *buffer, size_t *length, loff_t *ppos) 5908 { 5909 int rc; 5910 5911 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5912 if (rc) 5913 return rc; 5914 5915 if (write) { 5916 user_min_free_kbytes = min_free_kbytes; 5917 setup_per_zone_wmarks(); 5918 } 5919 return 0; 5920 } 5921 5922 #ifdef CONFIG_NUMA 5923 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 5924 void __user *buffer, size_t *length, loff_t *ppos) 5925 { 5926 struct zone *zone; 5927 int rc; 5928 5929 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5930 if (rc) 5931 return rc; 5932 5933 for_each_zone(zone) 5934 zone->min_unmapped_pages = (zone->managed_pages * 5935 sysctl_min_unmapped_ratio) / 100; 5936 return 0; 5937 } 5938 5939 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 5940 void __user *buffer, size_t *length, loff_t *ppos) 5941 { 5942 struct zone *zone; 5943 int rc; 5944 5945 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5946 if (rc) 5947 return rc; 5948 5949 for_each_zone(zone) 5950 zone->min_slab_pages = (zone->managed_pages * 5951 sysctl_min_slab_ratio) / 100; 5952 return 0; 5953 } 5954 #endif 5955 5956 /* 5957 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 5958 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 5959 * whenever sysctl_lowmem_reserve_ratio changes. 5960 * 5961 * The reserve ratio obviously has absolutely no relation with the 5962 * minimum watermarks. The lowmem reserve ratio can only make sense 5963 * if in function of the boot time zone sizes. 5964 */ 5965 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 5966 void __user *buffer, size_t *length, loff_t *ppos) 5967 { 5968 proc_dointvec_minmax(table, write, buffer, length, ppos); 5969 setup_per_zone_lowmem_reserve(); 5970 return 0; 5971 } 5972 5973 /* 5974 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 5975 * cpu. It is the fraction of total pages in each zone that a hot per cpu 5976 * pagelist can have before it gets flushed back to buddy allocator. 5977 */ 5978 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 5979 void __user *buffer, size_t *length, loff_t *ppos) 5980 { 5981 struct zone *zone; 5982 int old_percpu_pagelist_fraction; 5983 int ret; 5984 5985 mutex_lock(&pcp_batch_high_lock); 5986 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 5987 5988 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 5989 if (!write || ret < 0) 5990 goto out; 5991 5992 /* Sanity checking to avoid pcp imbalance */ 5993 if (percpu_pagelist_fraction && 5994 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 5995 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 5996 ret = -EINVAL; 5997 goto out; 5998 } 5999 6000 /* No change? */ 6001 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 6002 goto out; 6003 6004 for_each_populated_zone(zone) { 6005 unsigned int cpu; 6006 6007 for_each_possible_cpu(cpu) 6008 pageset_set_high_and_batch(zone, 6009 per_cpu_ptr(zone->pageset, cpu)); 6010 } 6011 out: 6012 mutex_unlock(&pcp_batch_high_lock); 6013 return ret; 6014 } 6015 6016 int hashdist = HASHDIST_DEFAULT; 6017 6018 #ifdef CONFIG_NUMA 6019 static int __init set_hashdist(char *str) 6020 { 6021 if (!str) 6022 return 0; 6023 hashdist = simple_strtoul(str, &str, 0); 6024 return 1; 6025 } 6026 __setup("hashdist=", set_hashdist); 6027 #endif 6028 6029 /* 6030 * allocate a large system hash table from bootmem 6031 * - it is assumed that the hash table must contain an exact power-of-2 6032 * quantity of entries 6033 * - limit is the number of hash buckets, not the total allocation size 6034 */ 6035 void *__init alloc_large_system_hash(const char *tablename, 6036 unsigned long bucketsize, 6037 unsigned long numentries, 6038 int scale, 6039 int flags, 6040 unsigned int *_hash_shift, 6041 unsigned int *_hash_mask, 6042 unsigned long low_limit, 6043 unsigned long high_limit) 6044 { 6045 unsigned long long max = high_limit; 6046 unsigned long log2qty, size; 6047 void *table = NULL; 6048 6049 /* allow the kernel cmdline to have a say */ 6050 if (!numentries) { 6051 /* round applicable memory size up to nearest megabyte */ 6052 numentries = nr_kernel_pages; 6053 6054 /* It isn't necessary when PAGE_SIZE >= 1MB */ 6055 if (PAGE_SHIFT < 20) 6056 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 6057 6058 /* limit to 1 bucket per 2^scale bytes of low memory */ 6059 if (scale > PAGE_SHIFT) 6060 numentries >>= (scale - PAGE_SHIFT); 6061 else 6062 numentries <<= (PAGE_SHIFT - scale); 6063 6064 /* Make sure we've got at least a 0-order allocation.. */ 6065 if (unlikely(flags & HASH_SMALL)) { 6066 /* Makes no sense without HASH_EARLY */ 6067 WARN_ON(!(flags & HASH_EARLY)); 6068 if (!(numentries >> *_hash_shift)) { 6069 numentries = 1UL << *_hash_shift; 6070 BUG_ON(!numentries); 6071 } 6072 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 6073 numentries = PAGE_SIZE / bucketsize; 6074 } 6075 numentries = roundup_pow_of_two(numentries); 6076 6077 /* limit allocation size to 1/16 total memory by default */ 6078 if (max == 0) { 6079 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 6080 do_div(max, bucketsize); 6081 } 6082 max = min(max, 0x80000000ULL); 6083 6084 if (numentries < low_limit) 6085 numentries = low_limit; 6086 if (numentries > max) 6087 numentries = max; 6088 6089 log2qty = ilog2(numentries); 6090 6091 do { 6092 size = bucketsize << log2qty; 6093 if (flags & HASH_EARLY) 6094 table = memblock_virt_alloc_nopanic(size, 0); 6095 else if (hashdist) 6096 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 6097 else { 6098 /* 6099 * If bucketsize is not a power-of-two, we may free 6100 * some pages at the end of hash table which 6101 * alloc_pages_exact() automatically does 6102 */ 6103 if (get_order(size) < MAX_ORDER) { 6104 table = alloc_pages_exact(size, GFP_ATOMIC); 6105 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 6106 } 6107 } 6108 } while (!table && size > PAGE_SIZE && --log2qty); 6109 6110 if (!table) 6111 panic("Failed to allocate %s hash table\n", tablename); 6112 6113 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n", 6114 tablename, 6115 (1UL << log2qty), 6116 ilog2(size) - PAGE_SHIFT, 6117 size); 6118 6119 if (_hash_shift) 6120 *_hash_shift = log2qty; 6121 if (_hash_mask) 6122 *_hash_mask = (1 << log2qty) - 1; 6123 6124 return table; 6125 } 6126 6127 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 6128 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 6129 unsigned long pfn) 6130 { 6131 #ifdef CONFIG_SPARSEMEM 6132 return __pfn_to_section(pfn)->pageblock_flags; 6133 #else 6134 return zone->pageblock_flags; 6135 #endif /* CONFIG_SPARSEMEM */ 6136 } 6137 6138 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 6139 { 6140 #ifdef CONFIG_SPARSEMEM 6141 pfn &= (PAGES_PER_SECTION-1); 6142 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 6143 #else 6144 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages); 6145 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 6146 #endif /* CONFIG_SPARSEMEM */ 6147 } 6148 6149 /** 6150 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 6151 * @page: The page within the block of interest 6152 * @pfn: The target page frame number 6153 * @end_bitidx: The last bit of interest to retrieve 6154 * @mask: mask of bits that the caller is interested in 6155 * 6156 * Return: pageblock_bits flags 6157 */ 6158 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 6159 unsigned long end_bitidx, 6160 unsigned long mask) 6161 { 6162 struct zone *zone; 6163 unsigned long *bitmap; 6164 unsigned long bitidx, word_bitidx; 6165 unsigned long word; 6166 6167 zone = page_zone(page); 6168 bitmap = get_pageblock_bitmap(zone, pfn); 6169 bitidx = pfn_to_bitidx(zone, pfn); 6170 word_bitidx = bitidx / BITS_PER_LONG; 6171 bitidx &= (BITS_PER_LONG-1); 6172 6173 word = bitmap[word_bitidx]; 6174 bitidx += end_bitidx; 6175 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; 6176 } 6177 6178 /** 6179 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 6180 * @page: The page within the block of interest 6181 * @flags: The flags to set 6182 * @pfn: The target page frame number 6183 * @end_bitidx: The last bit of interest 6184 * @mask: mask of bits that the caller is interested in 6185 */ 6186 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 6187 unsigned long pfn, 6188 unsigned long end_bitidx, 6189 unsigned long mask) 6190 { 6191 struct zone *zone; 6192 unsigned long *bitmap; 6193 unsigned long bitidx, word_bitidx; 6194 unsigned long old_word, word; 6195 6196 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 6197 6198 zone = page_zone(page); 6199 bitmap = get_pageblock_bitmap(zone, pfn); 6200 bitidx = pfn_to_bitidx(zone, pfn); 6201 word_bitidx = bitidx / BITS_PER_LONG; 6202 bitidx &= (BITS_PER_LONG-1); 6203 6204 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page); 6205 6206 bitidx += end_bitidx; 6207 mask <<= (BITS_PER_LONG - bitidx - 1); 6208 flags <<= (BITS_PER_LONG - bitidx - 1); 6209 6210 word = READ_ONCE(bitmap[word_bitidx]); 6211 for (;;) { 6212 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 6213 if (word == old_word) 6214 break; 6215 word = old_word; 6216 } 6217 } 6218 6219 /* 6220 * This function checks whether pageblock includes unmovable pages or not. 6221 * If @count is not zero, it is okay to include less @count unmovable pages 6222 * 6223 * PageLRU check without isolation or lru_lock could race so that 6224 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't 6225 * expect this function should be exact. 6226 */ 6227 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 6228 bool skip_hwpoisoned_pages) 6229 { 6230 unsigned long pfn, iter, found; 6231 int mt; 6232 6233 /* 6234 * For avoiding noise data, lru_add_drain_all() should be called 6235 * If ZONE_MOVABLE, the zone never contains unmovable pages 6236 */ 6237 if (zone_idx(zone) == ZONE_MOVABLE) 6238 return false; 6239 mt = get_pageblock_migratetype(page); 6240 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt)) 6241 return false; 6242 6243 pfn = page_to_pfn(page); 6244 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 6245 unsigned long check = pfn + iter; 6246 6247 if (!pfn_valid_within(check)) 6248 continue; 6249 6250 page = pfn_to_page(check); 6251 6252 /* 6253 * Hugepages are not in LRU lists, but they're movable. 6254 * We need not scan over tail pages bacause we don't 6255 * handle each tail page individually in migration. 6256 */ 6257 if (PageHuge(page)) { 6258 iter = round_up(iter + 1, 1<<compound_order(page)) - 1; 6259 continue; 6260 } 6261 6262 /* 6263 * We can't use page_count without pin a page 6264 * because another CPU can free compound page. 6265 * This check already skips compound tails of THP 6266 * because their page->_count is zero at all time. 6267 */ 6268 if (!atomic_read(&page->_count)) { 6269 if (PageBuddy(page)) 6270 iter += (1 << page_order(page)) - 1; 6271 continue; 6272 } 6273 6274 /* 6275 * The HWPoisoned page may be not in buddy system, and 6276 * page_count() is not 0. 6277 */ 6278 if (skip_hwpoisoned_pages && PageHWPoison(page)) 6279 continue; 6280 6281 if (!PageLRU(page)) 6282 found++; 6283 /* 6284 * If there are RECLAIMABLE pages, we need to check 6285 * it. But now, memory offline itself doesn't call 6286 * shrink_node_slabs() and it still to be fixed. 6287 */ 6288 /* 6289 * If the page is not RAM, page_count()should be 0. 6290 * we don't need more check. This is an _used_ not-movable page. 6291 * 6292 * The problematic thing here is PG_reserved pages. PG_reserved 6293 * is set to both of a memory hole page and a _used_ kernel 6294 * page at boot. 6295 */ 6296 if (found > count) 6297 return true; 6298 } 6299 return false; 6300 } 6301 6302 bool is_pageblock_removable_nolock(struct page *page) 6303 { 6304 struct zone *zone; 6305 unsigned long pfn; 6306 6307 /* 6308 * We have to be careful here because we are iterating over memory 6309 * sections which are not zone aware so we might end up outside of 6310 * the zone but still within the section. 6311 * We have to take care about the node as well. If the node is offline 6312 * its NODE_DATA will be NULL - see page_zone. 6313 */ 6314 if (!node_online(page_to_nid(page))) 6315 return false; 6316 6317 zone = page_zone(page); 6318 pfn = page_to_pfn(page); 6319 if (!zone_spans_pfn(zone, pfn)) 6320 return false; 6321 6322 return !has_unmovable_pages(zone, page, 0, true); 6323 } 6324 6325 #ifdef CONFIG_CMA 6326 6327 static unsigned long pfn_max_align_down(unsigned long pfn) 6328 { 6329 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 6330 pageblock_nr_pages) - 1); 6331 } 6332 6333 static unsigned long pfn_max_align_up(unsigned long pfn) 6334 { 6335 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 6336 pageblock_nr_pages)); 6337 } 6338 6339 /* [start, end) must belong to a single zone. */ 6340 static int __alloc_contig_migrate_range(struct compact_control *cc, 6341 unsigned long start, unsigned long end) 6342 { 6343 /* This function is based on compact_zone() from compaction.c. */ 6344 unsigned long nr_reclaimed; 6345 unsigned long pfn = start; 6346 unsigned int tries = 0; 6347 int ret = 0; 6348 6349 migrate_prep(); 6350 6351 while (pfn < end || !list_empty(&cc->migratepages)) { 6352 if (fatal_signal_pending(current)) { 6353 ret = -EINTR; 6354 break; 6355 } 6356 6357 if (list_empty(&cc->migratepages)) { 6358 cc->nr_migratepages = 0; 6359 pfn = isolate_migratepages_range(cc, pfn, end); 6360 if (!pfn) { 6361 ret = -EINTR; 6362 break; 6363 } 6364 tries = 0; 6365 } else if (++tries == 5) { 6366 ret = ret < 0 ? ret : -EBUSY; 6367 break; 6368 } 6369 6370 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 6371 &cc->migratepages); 6372 cc->nr_migratepages -= nr_reclaimed; 6373 6374 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 6375 NULL, 0, cc->mode, MR_CMA); 6376 } 6377 if (ret < 0) { 6378 putback_movable_pages(&cc->migratepages); 6379 return ret; 6380 } 6381 return 0; 6382 } 6383 6384 /** 6385 * alloc_contig_range() -- tries to allocate given range of pages 6386 * @start: start PFN to allocate 6387 * @end: one-past-the-last PFN to allocate 6388 * @migratetype: migratetype of the underlaying pageblocks (either 6389 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 6390 * in range must have the same migratetype and it must 6391 * be either of the two. 6392 * 6393 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 6394 * aligned, however it's the caller's responsibility to guarantee that 6395 * we are the only thread that changes migrate type of pageblocks the 6396 * pages fall in. 6397 * 6398 * The PFN range must belong to a single zone. 6399 * 6400 * Returns zero on success or negative error code. On success all 6401 * pages which PFN is in [start, end) are allocated for the caller and 6402 * need to be freed with free_contig_range(). 6403 */ 6404 int alloc_contig_range(unsigned long start, unsigned long end, 6405 unsigned migratetype) 6406 { 6407 unsigned long outer_start, outer_end; 6408 int ret = 0, order; 6409 6410 struct compact_control cc = { 6411 .nr_migratepages = 0, 6412 .order = -1, 6413 .zone = page_zone(pfn_to_page(start)), 6414 .mode = MIGRATE_SYNC, 6415 .ignore_skip_hint = true, 6416 }; 6417 INIT_LIST_HEAD(&cc.migratepages); 6418 6419 /* 6420 * What we do here is we mark all pageblocks in range as 6421 * MIGRATE_ISOLATE. Because pageblock and max order pages may 6422 * have different sizes, and due to the way page allocator 6423 * work, we align the range to biggest of the two pages so 6424 * that page allocator won't try to merge buddies from 6425 * different pageblocks and change MIGRATE_ISOLATE to some 6426 * other migration type. 6427 * 6428 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 6429 * migrate the pages from an unaligned range (ie. pages that 6430 * we are interested in). This will put all the pages in 6431 * range back to page allocator as MIGRATE_ISOLATE. 6432 * 6433 * When this is done, we take the pages in range from page 6434 * allocator removing them from the buddy system. This way 6435 * page allocator will never consider using them. 6436 * 6437 * This lets us mark the pageblocks back as 6438 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 6439 * aligned range but not in the unaligned, original range are 6440 * put back to page allocator so that buddy can use them. 6441 */ 6442 6443 ret = start_isolate_page_range(pfn_max_align_down(start), 6444 pfn_max_align_up(end), migratetype, 6445 false); 6446 if (ret) 6447 return ret; 6448 6449 ret = __alloc_contig_migrate_range(&cc, start, end); 6450 if (ret) 6451 goto done; 6452 6453 /* 6454 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 6455 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 6456 * more, all pages in [start, end) are free in page allocator. 6457 * What we are going to do is to allocate all pages from 6458 * [start, end) (that is remove them from page allocator). 6459 * 6460 * The only problem is that pages at the beginning and at the 6461 * end of interesting range may be not aligned with pages that 6462 * page allocator holds, ie. they can be part of higher order 6463 * pages. Because of this, we reserve the bigger range and 6464 * once this is done free the pages we are not interested in. 6465 * 6466 * We don't have to hold zone->lock here because the pages are 6467 * isolated thus they won't get removed from buddy. 6468 */ 6469 6470 lru_add_drain_all(); 6471 drain_all_pages(cc.zone); 6472 6473 order = 0; 6474 outer_start = start; 6475 while (!PageBuddy(pfn_to_page(outer_start))) { 6476 if (++order >= MAX_ORDER) { 6477 ret = -EBUSY; 6478 goto done; 6479 } 6480 outer_start &= ~0UL << order; 6481 } 6482 6483 /* Make sure the range is really isolated. */ 6484 if (test_pages_isolated(outer_start, end, false)) { 6485 pr_info("%s: [%lx, %lx) PFNs busy\n", 6486 __func__, outer_start, end); 6487 ret = -EBUSY; 6488 goto done; 6489 } 6490 6491 /* Grab isolated pages from freelists. */ 6492 outer_end = isolate_freepages_range(&cc, outer_start, end); 6493 if (!outer_end) { 6494 ret = -EBUSY; 6495 goto done; 6496 } 6497 6498 /* Free head and tail (if any) */ 6499 if (start != outer_start) 6500 free_contig_range(outer_start, start - outer_start); 6501 if (end != outer_end) 6502 free_contig_range(end, outer_end - end); 6503 6504 done: 6505 undo_isolate_page_range(pfn_max_align_down(start), 6506 pfn_max_align_up(end), migratetype); 6507 return ret; 6508 } 6509 6510 void free_contig_range(unsigned long pfn, unsigned nr_pages) 6511 { 6512 unsigned int count = 0; 6513 6514 for (; nr_pages--; pfn++) { 6515 struct page *page = pfn_to_page(pfn); 6516 6517 count += page_count(page) != 1; 6518 __free_page(page); 6519 } 6520 WARN(count != 0, "%d pages are still in use!\n", count); 6521 } 6522 #endif 6523 6524 #ifdef CONFIG_MEMORY_HOTPLUG 6525 /* 6526 * The zone indicated has a new number of managed_pages; batch sizes and percpu 6527 * page high values need to be recalulated. 6528 */ 6529 void __meminit zone_pcp_update(struct zone *zone) 6530 { 6531 unsigned cpu; 6532 mutex_lock(&pcp_batch_high_lock); 6533 for_each_possible_cpu(cpu) 6534 pageset_set_high_and_batch(zone, 6535 per_cpu_ptr(zone->pageset, cpu)); 6536 mutex_unlock(&pcp_batch_high_lock); 6537 } 6538 #endif 6539 6540 void zone_pcp_reset(struct zone *zone) 6541 { 6542 unsigned long flags; 6543 int cpu; 6544 struct per_cpu_pageset *pset; 6545 6546 /* avoid races with drain_pages() */ 6547 local_irq_save(flags); 6548 if (zone->pageset != &boot_pageset) { 6549 for_each_online_cpu(cpu) { 6550 pset = per_cpu_ptr(zone->pageset, cpu); 6551 drain_zonestat(zone, pset); 6552 } 6553 free_percpu(zone->pageset); 6554 zone->pageset = &boot_pageset; 6555 } 6556 local_irq_restore(flags); 6557 } 6558 6559 #ifdef CONFIG_MEMORY_HOTREMOVE 6560 /* 6561 * All pages in the range must be isolated before calling this. 6562 */ 6563 void 6564 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 6565 { 6566 struct page *page; 6567 struct zone *zone; 6568 unsigned int order, i; 6569 unsigned long pfn; 6570 unsigned long flags; 6571 /* find the first valid pfn */ 6572 for (pfn = start_pfn; pfn < end_pfn; pfn++) 6573 if (pfn_valid(pfn)) 6574 break; 6575 if (pfn == end_pfn) 6576 return; 6577 zone = page_zone(pfn_to_page(pfn)); 6578 spin_lock_irqsave(&zone->lock, flags); 6579 pfn = start_pfn; 6580 while (pfn < end_pfn) { 6581 if (!pfn_valid(pfn)) { 6582 pfn++; 6583 continue; 6584 } 6585 page = pfn_to_page(pfn); 6586 /* 6587 * The HWPoisoned page may be not in buddy system, and 6588 * page_count() is not 0. 6589 */ 6590 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 6591 pfn++; 6592 SetPageReserved(page); 6593 continue; 6594 } 6595 6596 BUG_ON(page_count(page)); 6597 BUG_ON(!PageBuddy(page)); 6598 order = page_order(page); 6599 #ifdef CONFIG_DEBUG_VM 6600 printk(KERN_INFO "remove from free list %lx %d %lx\n", 6601 pfn, 1 << order, end_pfn); 6602 #endif 6603 list_del(&page->lru); 6604 rmv_page_order(page); 6605 zone->free_area[order].nr_free--; 6606 for (i = 0; i < (1 << order); i++) 6607 SetPageReserved((page+i)); 6608 pfn += (1 << order); 6609 } 6610 spin_unlock_irqrestore(&zone->lock, flags); 6611 } 6612 #endif 6613 6614 #ifdef CONFIG_MEMORY_FAILURE 6615 bool is_free_buddy_page(struct page *page) 6616 { 6617 struct zone *zone = page_zone(page); 6618 unsigned long pfn = page_to_pfn(page); 6619 unsigned long flags; 6620 unsigned int order; 6621 6622 spin_lock_irqsave(&zone->lock, flags); 6623 for (order = 0; order < MAX_ORDER; order++) { 6624 struct page *page_head = page - (pfn & ((1 << order) - 1)); 6625 6626 if (PageBuddy(page_head) && page_order(page_head) >= order) 6627 break; 6628 } 6629 spin_unlock_irqrestore(&zone->lock, flags); 6630 6631 return order < MAX_ORDER; 6632 } 6633 #endif 6634