1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kmemcheck.h> 28 #include <linux/module.h> 29 #include <linux/suspend.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/slab.h> 33 #include <linux/ratelimit.h> 34 #include <linux/oom.h> 35 #include <linux/notifier.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/stop_machine.h> 46 #include <linux/sort.h> 47 #include <linux/pfn.h> 48 #include <linux/backing-dev.h> 49 #include <linux/fault-inject.h> 50 #include <linux/page-isolation.h> 51 #include <linux/page_cgroup.h> 52 #include <linux/debugobjects.h> 53 #include <linux/kmemleak.h> 54 #include <linux/memory.h> 55 #include <linux/compaction.h> 56 #include <trace/events/kmem.h> 57 #include <linux/ftrace_event.h> 58 #include <linux/memcontrol.h> 59 #include <linux/prefetch.h> 60 #include <linux/page-debug-flags.h> 61 62 #include <asm/tlbflush.h> 63 #include <asm/div64.h> 64 #include "internal.h" 65 66 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 67 DEFINE_PER_CPU(int, numa_node); 68 EXPORT_PER_CPU_SYMBOL(numa_node); 69 #endif 70 71 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 72 /* 73 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 74 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 75 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 76 * defined in <linux/topology.h>. 77 */ 78 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 79 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 80 #endif 81 82 /* 83 * Array of node states. 84 */ 85 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 86 [N_POSSIBLE] = NODE_MASK_ALL, 87 [N_ONLINE] = { { [0] = 1UL } }, 88 #ifndef CONFIG_NUMA 89 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 90 #ifdef CONFIG_HIGHMEM 91 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 92 #endif 93 [N_CPU] = { { [0] = 1UL } }, 94 #endif /* NUMA */ 95 }; 96 EXPORT_SYMBOL(node_states); 97 98 unsigned long totalram_pages __read_mostly; 99 unsigned long totalreserve_pages __read_mostly; 100 /* 101 * When calculating the number of globally allowed dirty pages, there 102 * is a certain number of per-zone reserves that should not be 103 * considered dirtyable memory. This is the sum of those reserves 104 * over all existing zones that contribute dirtyable memory. 105 */ 106 unsigned long dirty_balance_reserve __read_mostly; 107 108 int percpu_pagelist_fraction; 109 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 110 111 #ifdef CONFIG_PM_SLEEP 112 /* 113 * The following functions are used by the suspend/hibernate code to temporarily 114 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 115 * while devices are suspended. To avoid races with the suspend/hibernate code, 116 * they should always be called with pm_mutex held (gfp_allowed_mask also should 117 * only be modified with pm_mutex held, unless the suspend/hibernate code is 118 * guaranteed not to run in parallel with that modification). 119 */ 120 121 static gfp_t saved_gfp_mask; 122 123 void pm_restore_gfp_mask(void) 124 { 125 WARN_ON(!mutex_is_locked(&pm_mutex)); 126 if (saved_gfp_mask) { 127 gfp_allowed_mask = saved_gfp_mask; 128 saved_gfp_mask = 0; 129 } 130 } 131 132 void pm_restrict_gfp_mask(void) 133 { 134 WARN_ON(!mutex_is_locked(&pm_mutex)); 135 WARN_ON(saved_gfp_mask); 136 saved_gfp_mask = gfp_allowed_mask; 137 gfp_allowed_mask &= ~GFP_IOFS; 138 } 139 140 bool pm_suspended_storage(void) 141 { 142 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS) 143 return false; 144 return true; 145 } 146 #endif /* CONFIG_PM_SLEEP */ 147 148 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 149 int pageblock_order __read_mostly; 150 #endif 151 152 static void __free_pages_ok(struct page *page, unsigned int order); 153 154 /* 155 * results with 256, 32 in the lowmem_reserve sysctl: 156 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 157 * 1G machine -> (16M dma, 784M normal, 224M high) 158 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 159 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 160 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 161 * 162 * TBD: should special case ZONE_DMA32 machines here - in those we normally 163 * don't need any ZONE_NORMAL reservation 164 */ 165 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 166 #ifdef CONFIG_ZONE_DMA 167 256, 168 #endif 169 #ifdef CONFIG_ZONE_DMA32 170 256, 171 #endif 172 #ifdef CONFIG_HIGHMEM 173 32, 174 #endif 175 32, 176 }; 177 178 EXPORT_SYMBOL(totalram_pages); 179 180 static char * const zone_names[MAX_NR_ZONES] = { 181 #ifdef CONFIG_ZONE_DMA 182 "DMA", 183 #endif 184 #ifdef CONFIG_ZONE_DMA32 185 "DMA32", 186 #endif 187 "Normal", 188 #ifdef CONFIG_HIGHMEM 189 "HighMem", 190 #endif 191 "Movable", 192 }; 193 194 int min_free_kbytes = 1024; 195 196 static unsigned long __meminitdata nr_kernel_pages; 197 static unsigned long __meminitdata nr_all_pages; 198 static unsigned long __meminitdata dma_reserve; 199 200 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 201 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 202 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 203 static unsigned long __initdata required_kernelcore; 204 static unsigned long __initdata required_movablecore; 205 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 206 207 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 208 int movable_zone; 209 EXPORT_SYMBOL(movable_zone); 210 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 211 212 #if MAX_NUMNODES > 1 213 int nr_node_ids __read_mostly = MAX_NUMNODES; 214 int nr_online_nodes __read_mostly = 1; 215 EXPORT_SYMBOL(nr_node_ids); 216 EXPORT_SYMBOL(nr_online_nodes); 217 #endif 218 219 int page_group_by_mobility_disabled __read_mostly; 220 221 static void set_pageblock_migratetype(struct page *page, int migratetype) 222 { 223 224 if (unlikely(page_group_by_mobility_disabled)) 225 migratetype = MIGRATE_UNMOVABLE; 226 227 set_pageblock_flags_group(page, (unsigned long)migratetype, 228 PB_migrate, PB_migrate_end); 229 } 230 231 bool oom_killer_disabled __read_mostly; 232 233 #ifdef CONFIG_DEBUG_VM 234 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 235 { 236 int ret = 0; 237 unsigned seq; 238 unsigned long pfn = page_to_pfn(page); 239 240 do { 241 seq = zone_span_seqbegin(zone); 242 if (pfn >= zone->zone_start_pfn + zone->spanned_pages) 243 ret = 1; 244 else if (pfn < zone->zone_start_pfn) 245 ret = 1; 246 } while (zone_span_seqretry(zone, seq)); 247 248 return ret; 249 } 250 251 static int page_is_consistent(struct zone *zone, struct page *page) 252 { 253 if (!pfn_valid_within(page_to_pfn(page))) 254 return 0; 255 if (zone != page_zone(page)) 256 return 0; 257 258 return 1; 259 } 260 /* 261 * Temporary debugging check for pages not lying within a given zone. 262 */ 263 static int bad_range(struct zone *zone, struct page *page) 264 { 265 if (page_outside_zone_boundaries(zone, page)) 266 return 1; 267 if (!page_is_consistent(zone, page)) 268 return 1; 269 270 return 0; 271 } 272 #else 273 static inline int bad_range(struct zone *zone, struct page *page) 274 { 275 return 0; 276 } 277 #endif 278 279 static void bad_page(struct page *page) 280 { 281 static unsigned long resume; 282 static unsigned long nr_shown; 283 static unsigned long nr_unshown; 284 285 /* Don't complain about poisoned pages */ 286 if (PageHWPoison(page)) { 287 reset_page_mapcount(page); /* remove PageBuddy */ 288 return; 289 } 290 291 /* 292 * Allow a burst of 60 reports, then keep quiet for that minute; 293 * or allow a steady drip of one report per second. 294 */ 295 if (nr_shown == 60) { 296 if (time_before(jiffies, resume)) { 297 nr_unshown++; 298 goto out; 299 } 300 if (nr_unshown) { 301 printk(KERN_ALERT 302 "BUG: Bad page state: %lu messages suppressed\n", 303 nr_unshown); 304 nr_unshown = 0; 305 } 306 nr_shown = 0; 307 } 308 if (nr_shown++ == 0) 309 resume = jiffies + 60 * HZ; 310 311 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", 312 current->comm, page_to_pfn(page)); 313 dump_page(page); 314 315 print_modules(); 316 dump_stack(); 317 out: 318 /* Leave bad fields for debug, except PageBuddy could make trouble */ 319 reset_page_mapcount(page); /* remove PageBuddy */ 320 add_taint(TAINT_BAD_PAGE); 321 } 322 323 /* 324 * Higher-order pages are called "compound pages". They are structured thusly: 325 * 326 * The first PAGE_SIZE page is called the "head page". 327 * 328 * The remaining PAGE_SIZE pages are called "tail pages". 329 * 330 * All pages have PG_compound set. All tail pages have their ->first_page 331 * pointing at the head page. 332 * 333 * The first tail page's ->lru.next holds the address of the compound page's 334 * put_page() function. Its ->lru.prev holds the order of allocation. 335 * This usage means that zero-order pages may not be compound. 336 */ 337 338 static void free_compound_page(struct page *page) 339 { 340 __free_pages_ok(page, compound_order(page)); 341 } 342 343 void prep_compound_page(struct page *page, unsigned long order) 344 { 345 int i; 346 int nr_pages = 1 << order; 347 348 set_compound_page_dtor(page, free_compound_page); 349 set_compound_order(page, order); 350 __SetPageHead(page); 351 for (i = 1; i < nr_pages; i++) { 352 struct page *p = page + i; 353 __SetPageTail(p); 354 set_page_count(p, 0); 355 p->first_page = page; 356 } 357 } 358 359 /* update __split_huge_page_refcount if you change this function */ 360 static int destroy_compound_page(struct page *page, unsigned long order) 361 { 362 int i; 363 int nr_pages = 1 << order; 364 int bad = 0; 365 366 if (unlikely(compound_order(page) != order) || 367 unlikely(!PageHead(page))) { 368 bad_page(page); 369 bad++; 370 } 371 372 __ClearPageHead(page); 373 374 for (i = 1; i < nr_pages; i++) { 375 struct page *p = page + i; 376 377 if (unlikely(!PageTail(p) || (p->first_page != page))) { 378 bad_page(page); 379 bad++; 380 } 381 __ClearPageTail(p); 382 } 383 384 return bad; 385 } 386 387 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 388 { 389 int i; 390 391 /* 392 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 393 * and __GFP_HIGHMEM from hard or soft interrupt context. 394 */ 395 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 396 for (i = 0; i < (1 << order); i++) 397 clear_highpage(page + i); 398 } 399 400 #ifdef CONFIG_DEBUG_PAGEALLOC 401 unsigned int _debug_guardpage_minorder; 402 403 static int __init debug_guardpage_minorder_setup(char *buf) 404 { 405 unsigned long res; 406 407 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 408 printk(KERN_ERR "Bad debug_guardpage_minorder value\n"); 409 return 0; 410 } 411 _debug_guardpage_minorder = res; 412 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res); 413 return 0; 414 } 415 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup); 416 417 static inline void set_page_guard_flag(struct page *page) 418 { 419 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 420 } 421 422 static inline void clear_page_guard_flag(struct page *page) 423 { 424 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 425 } 426 #else 427 static inline void set_page_guard_flag(struct page *page) { } 428 static inline void clear_page_guard_flag(struct page *page) { } 429 #endif 430 431 static inline void set_page_order(struct page *page, int order) 432 { 433 set_page_private(page, order); 434 __SetPageBuddy(page); 435 } 436 437 static inline void rmv_page_order(struct page *page) 438 { 439 __ClearPageBuddy(page); 440 set_page_private(page, 0); 441 } 442 443 /* 444 * Locate the struct page for both the matching buddy in our 445 * pair (buddy1) and the combined O(n+1) page they form (page). 446 * 447 * 1) Any buddy B1 will have an order O twin B2 which satisfies 448 * the following equation: 449 * B2 = B1 ^ (1 << O) 450 * For example, if the starting buddy (buddy2) is #8 its order 451 * 1 buddy is #10: 452 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 453 * 454 * 2) Any buddy B will have an order O+1 parent P which 455 * satisfies the following equation: 456 * P = B & ~(1 << O) 457 * 458 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 459 */ 460 static inline unsigned long 461 __find_buddy_index(unsigned long page_idx, unsigned int order) 462 { 463 return page_idx ^ (1 << order); 464 } 465 466 /* 467 * This function checks whether a page is free && is the buddy 468 * we can do coalesce a page and its buddy if 469 * (a) the buddy is not in a hole && 470 * (b) the buddy is in the buddy system && 471 * (c) a page and its buddy have the same order && 472 * (d) a page and its buddy are in the same zone. 473 * 474 * For recording whether a page is in the buddy system, we set ->_mapcount -2. 475 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock. 476 * 477 * For recording page's order, we use page_private(page). 478 */ 479 static inline int page_is_buddy(struct page *page, struct page *buddy, 480 int order) 481 { 482 if (!pfn_valid_within(page_to_pfn(buddy))) 483 return 0; 484 485 if (page_zone_id(page) != page_zone_id(buddy)) 486 return 0; 487 488 if (page_is_guard(buddy) && page_order(buddy) == order) { 489 VM_BUG_ON(page_count(buddy) != 0); 490 return 1; 491 } 492 493 if (PageBuddy(buddy) && page_order(buddy) == order) { 494 VM_BUG_ON(page_count(buddy) != 0); 495 return 1; 496 } 497 return 0; 498 } 499 500 /* 501 * Freeing function for a buddy system allocator. 502 * 503 * The concept of a buddy system is to maintain direct-mapped table 504 * (containing bit values) for memory blocks of various "orders". 505 * The bottom level table contains the map for the smallest allocatable 506 * units of memory (here, pages), and each level above it describes 507 * pairs of units from the levels below, hence, "buddies". 508 * At a high level, all that happens here is marking the table entry 509 * at the bottom level available, and propagating the changes upward 510 * as necessary, plus some accounting needed to play nicely with other 511 * parts of the VM system. 512 * At each level, we keep a list of pages, which are heads of continuous 513 * free pages of length of (1 << order) and marked with _mapcount -2. Page's 514 * order is recorded in page_private(page) field. 515 * So when we are allocating or freeing one, we can derive the state of the 516 * other. That is, if we allocate a small block, and both were 517 * free, the remainder of the region must be split into blocks. 518 * If a block is freed, and its buddy is also free, then this 519 * triggers coalescing into a block of larger size. 520 * 521 * -- wli 522 */ 523 524 static inline void __free_one_page(struct page *page, 525 struct zone *zone, unsigned int order, 526 int migratetype) 527 { 528 unsigned long page_idx; 529 unsigned long combined_idx; 530 unsigned long uninitialized_var(buddy_idx); 531 struct page *buddy; 532 533 if (unlikely(PageCompound(page))) 534 if (unlikely(destroy_compound_page(page, order))) 535 return; 536 537 VM_BUG_ON(migratetype == -1); 538 539 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 540 541 VM_BUG_ON(page_idx & ((1 << order) - 1)); 542 VM_BUG_ON(bad_range(zone, page)); 543 544 while (order < MAX_ORDER-1) { 545 buddy_idx = __find_buddy_index(page_idx, order); 546 buddy = page + (buddy_idx - page_idx); 547 if (!page_is_buddy(page, buddy, order)) 548 break; 549 /* 550 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 551 * merge with it and move up one order. 552 */ 553 if (page_is_guard(buddy)) { 554 clear_page_guard_flag(buddy); 555 set_page_private(page, 0); 556 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order); 557 } else { 558 list_del(&buddy->lru); 559 zone->free_area[order].nr_free--; 560 rmv_page_order(buddy); 561 } 562 combined_idx = buddy_idx & page_idx; 563 page = page + (combined_idx - page_idx); 564 page_idx = combined_idx; 565 order++; 566 } 567 set_page_order(page, order); 568 569 /* 570 * If this is not the largest possible page, check if the buddy 571 * of the next-highest order is free. If it is, it's possible 572 * that pages are being freed that will coalesce soon. In case, 573 * that is happening, add the free page to the tail of the list 574 * so it's less likely to be used soon and more likely to be merged 575 * as a higher order page 576 */ 577 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { 578 struct page *higher_page, *higher_buddy; 579 combined_idx = buddy_idx & page_idx; 580 higher_page = page + (combined_idx - page_idx); 581 buddy_idx = __find_buddy_index(combined_idx, order + 1); 582 higher_buddy = page + (buddy_idx - combined_idx); 583 if (page_is_buddy(higher_page, higher_buddy, order + 1)) { 584 list_add_tail(&page->lru, 585 &zone->free_area[order].free_list[migratetype]); 586 goto out; 587 } 588 } 589 590 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 591 out: 592 zone->free_area[order].nr_free++; 593 } 594 595 /* 596 * free_page_mlock() -- clean up attempts to free and mlocked() page. 597 * Page should not be on lru, so no need to fix that up. 598 * free_pages_check() will verify... 599 */ 600 static inline void free_page_mlock(struct page *page) 601 { 602 __dec_zone_page_state(page, NR_MLOCK); 603 __count_vm_event(UNEVICTABLE_MLOCKFREED); 604 } 605 606 static inline int free_pages_check(struct page *page) 607 { 608 if (unlikely(page_mapcount(page) | 609 (page->mapping != NULL) | 610 (atomic_read(&page->_count) != 0) | 611 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) | 612 (mem_cgroup_bad_page_check(page)))) { 613 bad_page(page); 614 return 1; 615 } 616 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 617 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 618 return 0; 619 } 620 621 /* 622 * Frees a number of pages from the PCP lists 623 * Assumes all pages on list are in same zone, and of same order. 624 * count is the number of pages to free. 625 * 626 * If the zone was previously in an "all pages pinned" state then look to 627 * see if this freeing clears that state. 628 * 629 * And clear the zone's pages_scanned counter, to hold off the "all pages are 630 * pinned" detection logic. 631 */ 632 static void free_pcppages_bulk(struct zone *zone, int count, 633 struct per_cpu_pages *pcp) 634 { 635 int migratetype = 0; 636 int batch_free = 0; 637 int to_free = count; 638 639 spin_lock(&zone->lock); 640 zone->all_unreclaimable = 0; 641 zone->pages_scanned = 0; 642 643 while (to_free) { 644 struct page *page; 645 struct list_head *list; 646 647 /* 648 * Remove pages from lists in a round-robin fashion. A 649 * batch_free count is maintained that is incremented when an 650 * empty list is encountered. This is so more pages are freed 651 * off fuller lists instead of spinning excessively around empty 652 * lists 653 */ 654 do { 655 batch_free++; 656 if (++migratetype == MIGRATE_PCPTYPES) 657 migratetype = 0; 658 list = &pcp->lists[migratetype]; 659 } while (list_empty(list)); 660 661 /* This is the only non-empty list. Free them all. */ 662 if (batch_free == MIGRATE_PCPTYPES) 663 batch_free = to_free; 664 665 do { 666 page = list_entry(list->prev, struct page, lru); 667 /* must delete as __free_one_page list manipulates */ 668 list_del(&page->lru); 669 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ 670 __free_one_page(page, zone, 0, page_private(page)); 671 trace_mm_page_pcpu_drain(page, 0, page_private(page)); 672 } while (--to_free && --batch_free && !list_empty(list)); 673 } 674 __mod_zone_page_state(zone, NR_FREE_PAGES, count); 675 spin_unlock(&zone->lock); 676 } 677 678 static void free_one_page(struct zone *zone, struct page *page, int order, 679 int migratetype) 680 { 681 spin_lock(&zone->lock); 682 zone->all_unreclaimable = 0; 683 zone->pages_scanned = 0; 684 685 __free_one_page(page, zone, order, migratetype); 686 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order); 687 spin_unlock(&zone->lock); 688 } 689 690 static bool free_pages_prepare(struct page *page, unsigned int order) 691 { 692 int i; 693 int bad = 0; 694 695 trace_mm_page_free(page, order); 696 kmemcheck_free_shadow(page, order); 697 698 if (PageAnon(page)) 699 page->mapping = NULL; 700 for (i = 0; i < (1 << order); i++) 701 bad += free_pages_check(page + i); 702 if (bad) 703 return false; 704 705 if (!PageHighMem(page)) { 706 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); 707 debug_check_no_obj_freed(page_address(page), 708 PAGE_SIZE << order); 709 } 710 arch_free_page(page, order); 711 kernel_map_pages(page, 1 << order, 0); 712 713 return true; 714 } 715 716 static void __free_pages_ok(struct page *page, unsigned int order) 717 { 718 unsigned long flags; 719 int wasMlocked = __TestClearPageMlocked(page); 720 721 if (!free_pages_prepare(page, order)) 722 return; 723 724 local_irq_save(flags); 725 if (unlikely(wasMlocked)) 726 free_page_mlock(page); 727 __count_vm_events(PGFREE, 1 << order); 728 free_one_page(page_zone(page), page, order, 729 get_pageblock_migratetype(page)); 730 local_irq_restore(flags); 731 } 732 733 void __meminit __free_pages_bootmem(struct page *page, unsigned int order) 734 { 735 unsigned int nr_pages = 1 << order; 736 unsigned int loop; 737 738 prefetchw(page); 739 for (loop = 0; loop < nr_pages; loop++) { 740 struct page *p = &page[loop]; 741 742 if (loop + 1 < nr_pages) 743 prefetchw(p + 1); 744 __ClearPageReserved(p); 745 set_page_count(p, 0); 746 } 747 748 set_page_refcounted(page); 749 __free_pages(page, order); 750 } 751 752 753 /* 754 * The order of subdivision here is critical for the IO subsystem. 755 * Please do not alter this order without good reasons and regression 756 * testing. Specifically, as large blocks of memory are subdivided, 757 * the order in which smaller blocks are delivered depends on the order 758 * they're subdivided in this function. This is the primary factor 759 * influencing the order in which pages are delivered to the IO 760 * subsystem according to empirical testing, and this is also justified 761 * by considering the behavior of a buddy system containing a single 762 * large block of memory acted on by a series of small allocations. 763 * This behavior is a critical factor in sglist merging's success. 764 * 765 * -- wli 766 */ 767 static inline void expand(struct zone *zone, struct page *page, 768 int low, int high, struct free_area *area, 769 int migratetype) 770 { 771 unsigned long size = 1 << high; 772 773 while (high > low) { 774 area--; 775 high--; 776 size >>= 1; 777 VM_BUG_ON(bad_range(zone, &page[size])); 778 779 #ifdef CONFIG_DEBUG_PAGEALLOC 780 if (high < debug_guardpage_minorder()) { 781 /* 782 * Mark as guard pages (or page), that will allow to 783 * merge back to allocator when buddy will be freed. 784 * Corresponding page table entries will not be touched, 785 * pages will stay not present in virtual address space 786 */ 787 INIT_LIST_HEAD(&page[size].lru); 788 set_page_guard_flag(&page[size]); 789 set_page_private(&page[size], high); 790 /* Guard pages are not available for any usage */ 791 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << high)); 792 continue; 793 } 794 #endif 795 list_add(&page[size].lru, &area->free_list[migratetype]); 796 area->nr_free++; 797 set_page_order(&page[size], high); 798 } 799 } 800 801 /* 802 * This page is about to be returned from the page allocator 803 */ 804 static inline int check_new_page(struct page *page) 805 { 806 if (unlikely(page_mapcount(page) | 807 (page->mapping != NULL) | 808 (atomic_read(&page->_count) != 0) | 809 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) | 810 (mem_cgroup_bad_page_check(page)))) { 811 bad_page(page); 812 return 1; 813 } 814 return 0; 815 } 816 817 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 818 { 819 int i; 820 821 for (i = 0; i < (1 << order); i++) { 822 struct page *p = page + i; 823 if (unlikely(check_new_page(p))) 824 return 1; 825 } 826 827 set_page_private(page, 0); 828 set_page_refcounted(page); 829 830 arch_alloc_page(page, order); 831 kernel_map_pages(page, 1 << order, 1); 832 833 if (gfp_flags & __GFP_ZERO) 834 prep_zero_page(page, order, gfp_flags); 835 836 if (order && (gfp_flags & __GFP_COMP)) 837 prep_compound_page(page, order); 838 839 return 0; 840 } 841 842 /* 843 * Go through the free lists for the given migratetype and remove 844 * the smallest available page from the freelists 845 */ 846 static inline 847 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 848 int migratetype) 849 { 850 unsigned int current_order; 851 struct free_area * area; 852 struct page *page; 853 854 /* Find a page of the appropriate size in the preferred list */ 855 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 856 area = &(zone->free_area[current_order]); 857 if (list_empty(&area->free_list[migratetype])) 858 continue; 859 860 page = list_entry(area->free_list[migratetype].next, 861 struct page, lru); 862 list_del(&page->lru); 863 rmv_page_order(page); 864 area->nr_free--; 865 expand(zone, page, order, current_order, area, migratetype); 866 return page; 867 } 868 869 return NULL; 870 } 871 872 873 /* 874 * This array describes the order lists are fallen back to when 875 * the free lists for the desirable migrate type are depleted 876 */ 877 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = { 878 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 879 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 880 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 881 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */ 882 }; 883 884 /* 885 * Move the free pages in a range to the free lists of the requested type. 886 * Note that start_page and end_pages are not aligned on a pageblock 887 * boundary. If alignment is required, use move_freepages_block() 888 */ 889 static int move_freepages(struct zone *zone, 890 struct page *start_page, struct page *end_page, 891 int migratetype) 892 { 893 struct page *page; 894 unsigned long order; 895 int pages_moved = 0; 896 897 #ifndef CONFIG_HOLES_IN_ZONE 898 /* 899 * page_zone is not safe to call in this context when 900 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 901 * anyway as we check zone boundaries in move_freepages_block(). 902 * Remove at a later date when no bug reports exist related to 903 * grouping pages by mobility 904 */ 905 BUG_ON(page_zone(start_page) != page_zone(end_page)); 906 #endif 907 908 for (page = start_page; page <= end_page;) { 909 /* Make sure we are not inadvertently changing nodes */ 910 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone)); 911 912 if (!pfn_valid_within(page_to_pfn(page))) { 913 page++; 914 continue; 915 } 916 917 if (!PageBuddy(page)) { 918 page++; 919 continue; 920 } 921 922 order = page_order(page); 923 list_move(&page->lru, 924 &zone->free_area[order].free_list[migratetype]); 925 page += 1 << order; 926 pages_moved += 1 << order; 927 } 928 929 return pages_moved; 930 } 931 932 static int move_freepages_block(struct zone *zone, struct page *page, 933 int migratetype) 934 { 935 unsigned long start_pfn, end_pfn; 936 struct page *start_page, *end_page; 937 938 start_pfn = page_to_pfn(page); 939 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 940 start_page = pfn_to_page(start_pfn); 941 end_page = start_page + pageblock_nr_pages - 1; 942 end_pfn = start_pfn + pageblock_nr_pages - 1; 943 944 /* Do not cross zone boundaries */ 945 if (start_pfn < zone->zone_start_pfn) 946 start_page = page; 947 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages) 948 return 0; 949 950 return move_freepages(zone, start_page, end_page, migratetype); 951 } 952 953 static void change_pageblock_range(struct page *pageblock_page, 954 int start_order, int migratetype) 955 { 956 int nr_pageblocks = 1 << (start_order - pageblock_order); 957 958 while (nr_pageblocks--) { 959 set_pageblock_migratetype(pageblock_page, migratetype); 960 pageblock_page += pageblock_nr_pages; 961 } 962 } 963 964 /* Remove an element from the buddy allocator from the fallback list */ 965 static inline struct page * 966 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) 967 { 968 struct free_area * area; 969 int current_order; 970 struct page *page; 971 int migratetype, i; 972 973 /* Find the largest possible block of pages in the other list */ 974 for (current_order = MAX_ORDER-1; current_order >= order; 975 --current_order) { 976 for (i = 0; i < MIGRATE_TYPES - 1; i++) { 977 migratetype = fallbacks[start_migratetype][i]; 978 979 /* MIGRATE_RESERVE handled later if necessary */ 980 if (migratetype == MIGRATE_RESERVE) 981 continue; 982 983 area = &(zone->free_area[current_order]); 984 if (list_empty(&area->free_list[migratetype])) 985 continue; 986 987 page = list_entry(area->free_list[migratetype].next, 988 struct page, lru); 989 area->nr_free--; 990 991 /* 992 * If breaking a large block of pages, move all free 993 * pages to the preferred allocation list. If falling 994 * back for a reclaimable kernel allocation, be more 995 * aggressive about taking ownership of free pages 996 */ 997 if (unlikely(current_order >= (pageblock_order >> 1)) || 998 start_migratetype == MIGRATE_RECLAIMABLE || 999 page_group_by_mobility_disabled) { 1000 unsigned long pages; 1001 pages = move_freepages_block(zone, page, 1002 start_migratetype); 1003 1004 /* Claim the whole block if over half of it is free */ 1005 if (pages >= (1 << (pageblock_order-1)) || 1006 page_group_by_mobility_disabled) 1007 set_pageblock_migratetype(page, 1008 start_migratetype); 1009 1010 migratetype = start_migratetype; 1011 } 1012 1013 /* Remove the page from the freelists */ 1014 list_del(&page->lru); 1015 rmv_page_order(page); 1016 1017 /* Take ownership for orders >= pageblock_order */ 1018 if (current_order >= pageblock_order) 1019 change_pageblock_range(page, current_order, 1020 start_migratetype); 1021 1022 expand(zone, page, order, current_order, area, migratetype); 1023 1024 trace_mm_page_alloc_extfrag(page, order, current_order, 1025 start_migratetype, migratetype); 1026 1027 return page; 1028 } 1029 } 1030 1031 return NULL; 1032 } 1033 1034 /* 1035 * Do the hard work of removing an element from the buddy allocator. 1036 * Call me with the zone->lock already held. 1037 */ 1038 static struct page *__rmqueue(struct zone *zone, unsigned int order, 1039 int migratetype) 1040 { 1041 struct page *page; 1042 1043 retry_reserve: 1044 page = __rmqueue_smallest(zone, order, migratetype); 1045 1046 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { 1047 page = __rmqueue_fallback(zone, order, migratetype); 1048 1049 /* 1050 * Use MIGRATE_RESERVE rather than fail an allocation. goto 1051 * is used because __rmqueue_smallest is an inline function 1052 * and we want just one call site 1053 */ 1054 if (!page) { 1055 migratetype = MIGRATE_RESERVE; 1056 goto retry_reserve; 1057 } 1058 } 1059 1060 trace_mm_page_alloc_zone_locked(page, order, migratetype); 1061 return page; 1062 } 1063 1064 /* 1065 * Obtain a specified number of elements from the buddy allocator, all under 1066 * a single hold of the lock, for efficiency. Add them to the supplied list. 1067 * Returns the number of new pages which were placed at *list. 1068 */ 1069 static int rmqueue_bulk(struct zone *zone, unsigned int order, 1070 unsigned long count, struct list_head *list, 1071 int migratetype, int cold) 1072 { 1073 int i; 1074 1075 spin_lock(&zone->lock); 1076 for (i = 0; i < count; ++i) { 1077 struct page *page = __rmqueue(zone, order, migratetype); 1078 if (unlikely(page == NULL)) 1079 break; 1080 1081 /* 1082 * Split buddy pages returned by expand() are received here 1083 * in physical page order. The page is added to the callers and 1084 * list and the list head then moves forward. From the callers 1085 * perspective, the linked list is ordered by page number in 1086 * some conditions. This is useful for IO devices that can 1087 * merge IO requests if the physical pages are ordered 1088 * properly. 1089 */ 1090 if (likely(cold == 0)) 1091 list_add(&page->lru, list); 1092 else 1093 list_add_tail(&page->lru, list); 1094 set_page_private(page, migratetype); 1095 list = &page->lru; 1096 } 1097 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 1098 spin_unlock(&zone->lock); 1099 return i; 1100 } 1101 1102 #ifdef CONFIG_NUMA 1103 /* 1104 * Called from the vmstat counter updater to drain pagesets of this 1105 * currently executing processor on remote nodes after they have 1106 * expired. 1107 * 1108 * Note that this function must be called with the thread pinned to 1109 * a single processor. 1110 */ 1111 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 1112 { 1113 unsigned long flags; 1114 int to_drain; 1115 1116 local_irq_save(flags); 1117 if (pcp->count >= pcp->batch) 1118 to_drain = pcp->batch; 1119 else 1120 to_drain = pcp->count; 1121 free_pcppages_bulk(zone, to_drain, pcp); 1122 pcp->count -= to_drain; 1123 local_irq_restore(flags); 1124 } 1125 #endif 1126 1127 /* 1128 * Drain pages of the indicated processor. 1129 * 1130 * The processor must either be the current processor and the 1131 * thread pinned to the current processor or a processor that 1132 * is not online. 1133 */ 1134 static void drain_pages(unsigned int cpu) 1135 { 1136 unsigned long flags; 1137 struct zone *zone; 1138 1139 for_each_populated_zone(zone) { 1140 struct per_cpu_pageset *pset; 1141 struct per_cpu_pages *pcp; 1142 1143 local_irq_save(flags); 1144 pset = per_cpu_ptr(zone->pageset, cpu); 1145 1146 pcp = &pset->pcp; 1147 if (pcp->count) { 1148 free_pcppages_bulk(zone, pcp->count, pcp); 1149 pcp->count = 0; 1150 } 1151 local_irq_restore(flags); 1152 } 1153 } 1154 1155 /* 1156 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 1157 */ 1158 void drain_local_pages(void *arg) 1159 { 1160 drain_pages(smp_processor_id()); 1161 } 1162 1163 /* 1164 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 1165 * 1166 * Note that this code is protected against sending an IPI to an offline 1167 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs: 1168 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but 1169 * nothing keeps CPUs from showing up after we populated the cpumask and 1170 * before the call to on_each_cpu_mask(). 1171 */ 1172 void drain_all_pages(void) 1173 { 1174 int cpu; 1175 struct per_cpu_pageset *pcp; 1176 struct zone *zone; 1177 1178 /* 1179 * Allocate in the BSS so we wont require allocation in 1180 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 1181 */ 1182 static cpumask_t cpus_with_pcps; 1183 1184 /* 1185 * We don't care about racing with CPU hotplug event 1186 * as offline notification will cause the notified 1187 * cpu to drain that CPU pcps and on_each_cpu_mask 1188 * disables preemption as part of its processing 1189 */ 1190 for_each_online_cpu(cpu) { 1191 bool has_pcps = false; 1192 for_each_populated_zone(zone) { 1193 pcp = per_cpu_ptr(zone->pageset, cpu); 1194 if (pcp->pcp.count) { 1195 has_pcps = true; 1196 break; 1197 } 1198 } 1199 if (has_pcps) 1200 cpumask_set_cpu(cpu, &cpus_with_pcps); 1201 else 1202 cpumask_clear_cpu(cpu, &cpus_with_pcps); 1203 } 1204 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1); 1205 } 1206 1207 #ifdef CONFIG_HIBERNATION 1208 1209 void mark_free_pages(struct zone *zone) 1210 { 1211 unsigned long pfn, max_zone_pfn; 1212 unsigned long flags; 1213 int order, t; 1214 struct list_head *curr; 1215 1216 if (!zone->spanned_pages) 1217 return; 1218 1219 spin_lock_irqsave(&zone->lock, flags); 1220 1221 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1222 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1223 if (pfn_valid(pfn)) { 1224 struct page *page = pfn_to_page(pfn); 1225 1226 if (!swsusp_page_is_forbidden(page)) 1227 swsusp_unset_page_free(page); 1228 } 1229 1230 for_each_migratetype_order(order, t) { 1231 list_for_each(curr, &zone->free_area[order].free_list[t]) { 1232 unsigned long i; 1233 1234 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 1235 for (i = 0; i < (1UL << order); i++) 1236 swsusp_set_page_free(pfn_to_page(pfn + i)); 1237 } 1238 } 1239 spin_unlock_irqrestore(&zone->lock, flags); 1240 } 1241 #endif /* CONFIG_PM */ 1242 1243 /* 1244 * Free a 0-order page 1245 * cold == 1 ? free a cold page : free a hot page 1246 */ 1247 void free_hot_cold_page(struct page *page, int cold) 1248 { 1249 struct zone *zone = page_zone(page); 1250 struct per_cpu_pages *pcp; 1251 unsigned long flags; 1252 int migratetype; 1253 int wasMlocked = __TestClearPageMlocked(page); 1254 1255 if (!free_pages_prepare(page, 0)) 1256 return; 1257 1258 migratetype = get_pageblock_migratetype(page); 1259 set_page_private(page, migratetype); 1260 local_irq_save(flags); 1261 if (unlikely(wasMlocked)) 1262 free_page_mlock(page); 1263 __count_vm_event(PGFREE); 1264 1265 /* 1266 * We only track unmovable, reclaimable and movable on pcp lists. 1267 * Free ISOLATE pages back to the allocator because they are being 1268 * offlined but treat RESERVE as movable pages so we can get those 1269 * areas back if necessary. Otherwise, we may have to free 1270 * excessively into the page allocator 1271 */ 1272 if (migratetype >= MIGRATE_PCPTYPES) { 1273 if (unlikely(migratetype == MIGRATE_ISOLATE)) { 1274 free_one_page(zone, page, 0, migratetype); 1275 goto out; 1276 } 1277 migratetype = MIGRATE_MOVABLE; 1278 } 1279 1280 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1281 if (cold) 1282 list_add_tail(&page->lru, &pcp->lists[migratetype]); 1283 else 1284 list_add(&page->lru, &pcp->lists[migratetype]); 1285 pcp->count++; 1286 if (pcp->count >= pcp->high) { 1287 free_pcppages_bulk(zone, pcp->batch, pcp); 1288 pcp->count -= pcp->batch; 1289 } 1290 1291 out: 1292 local_irq_restore(flags); 1293 } 1294 1295 /* 1296 * Free a list of 0-order pages 1297 */ 1298 void free_hot_cold_page_list(struct list_head *list, int cold) 1299 { 1300 struct page *page, *next; 1301 1302 list_for_each_entry_safe(page, next, list, lru) { 1303 trace_mm_page_free_batched(page, cold); 1304 free_hot_cold_page(page, cold); 1305 } 1306 } 1307 1308 /* 1309 * split_page takes a non-compound higher-order page, and splits it into 1310 * n (1<<order) sub-pages: page[0..n] 1311 * Each sub-page must be freed individually. 1312 * 1313 * Note: this is probably too low level an operation for use in drivers. 1314 * Please consult with lkml before using this in your driver. 1315 */ 1316 void split_page(struct page *page, unsigned int order) 1317 { 1318 int i; 1319 1320 VM_BUG_ON(PageCompound(page)); 1321 VM_BUG_ON(!page_count(page)); 1322 1323 #ifdef CONFIG_KMEMCHECK 1324 /* 1325 * Split shadow pages too, because free(page[0]) would 1326 * otherwise free the whole shadow. 1327 */ 1328 if (kmemcheck_page_is_tracked(page)) 1329 split_page(virt_to_page(page[0].shadow), order); 1330 #endif 1331 1332 for (i = 1; i < (1 << order); i++) 1333 set_page_refcounted(page + i); 1334 } 1335 1336 /* 1337 * Similar to split_page except the page is already free. As this is only 1338 * being used for migration, the migratetype of the block also changes. 1339 * As this is called with interrupts disabled, the caller is responsible 1340 * for calling arch_alloc_page() and kernel_map_page() after interrupts 1341 * are enabled. 1342 * 1343 * Note: this is probably too low level an operation for use in drivers. 1344 * Please consult with lkml before using this in your driver. 1345 */ 1346 int split_free_page(struct page *page) 1347 { 1348 unsigned int order; 1349 unsigned long watermark; 1350 struct zone *zone; 1351 1352 BUG_ON(!PageBuddy(page)); 1353 1354 zone = page_zone(page); 1355 order = page_order(page); 1356 1357 /* Obey watermarks as if the page was being allocated */ 1358 watermark = low_wmark_pages(zone) + (1 << order); 1359 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 1360 return 0; 1361 1362 /* Remove page from free list */ 1363 list_del(&page->lru); 1364 zone->free_area[order].nr_free--; 1365 rmv_page_order(page); 1366 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order)); 1367 1368 /* Split into individual pages */ 1369 set_page_refcounted(page); 1370 split_page(page, order); 1371 1372 if (order >= pageblock_order - 1) { 1373 struct page *endpage = page + (1 << order) - 1; 1374 for (; page < endpage; page += pageblock_nr_pages) 1375 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1376 } 1377 1378 return 1 << order; 1379 } 1380 1381 /* 1382 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 1383 * we cheat by calling it from here, in the order > 0 path. Saves a branch 1384 * or two. 1385 */ 1386 static inline 1387 struct page *buffered_rmqueue(struct zone *preferred_zone, 1388 struct zone *zone, int order, gfp_t gfp_flags, 1389 int migratetype) 1390 { 1391 unsigned long flags; 1392 struct page *page; 1393 int cold = !!(gfp_flags & __GFP_COLD); 1394 1395 again: 1396 if (likely(order == 0)) { 1397 struct per_cpu_pages *pcp; 1398 struct list_head *list; 1399 1400 local_irq_save(flags); 1401 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1402 list = &pcp->lists[migratetype]; 1403 if (list_empty(list)) { 1404 pcp->count += rmqueue_bulk(zone, 0, 1405 pcp->batch, list, 1406 migratetype, cold); 1407 if (unlikely(list_empty(list))) 1408 goto failed; 1409 } 1410 1411 if (cold) 1412 page = list_entry(list->prev, struct page, lru); 1413 else 1414 page = list_entry(list->next, struct page, lru); 1415 1416 list_del(&page->lru); 1417 pcp->count--; 1418 } else { 1419 if (unlikely(gfp_flags & __GFP_NOFAIL)) { 1420 /* 1421 * __GFP_NOFAIL is not to be used in new code. 1422 * 1423 * All __GFP_NOFAIL callers should be fixed so that they 1424 * properly detect and handle allocation failures. 1425 * 1426 * We most definitely don't want callers attempting to 1427 * allocate greater than order-1 page units with 1428 * __GFP_NOFAIL. 1429 */ 1430 WARN_ON_ONCE(order > 1); 1431 } 1432 spin_lock_irqsave(&zone->lock, flags); 1433 page = __rmqueue(zone, order, migratetype); 1434 spin_unlock(&zone->lock); 1435 if (!page) 1436 goto failed; 1437 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order)); 1438 } 1439 1440 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1441 zone_statistics(preferred_zone, zone, gfp_flags); 1442 local_irq_restore(flags); 1443 1444 VM_BUG_ON(bad_range(zone, page)); 1445 if (prep_new_page(page, order, gfp_flags)) 1446 goto again; 1447 return page; 1448 1449 failed: 1450 local_irq_restore(flags); 1451 return NULL; 1452 } 1453 1454 /* The ALLOC_WMARK bits are used as an index to zone->watermark */ 1455 #define ALLOC_WMARK_MIN WMARK_MIN 1456 #define ALLOC_WMARK_LOW WMARK_LOW 1457 #define ALLOC_WMARK_HIGH WMARK_HIGH 1458 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ 1459 1460 /* Mask to get the watermark bits */ 1461 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) 1462 1463 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 1464 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 1465 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 1466 1467 #ifdef CONFIG_FAIL_PAGE_ALLOC 1468 1469 static struct { 1470 struct fault_attr attr; 1471 1472 u32 ignore_gfp_highmem; 1473 u32 ignore_gfp_wait; 1474 u32 min_order; 1475 } fail_page_alloc = { 1476 .attr = FAULT_ATTR_INITIALIZER, 1477 .ignore_gfp_wait = 1, 1478 .ignore_gfp_highmem = 1, 1479 .min_order = 1, 1480 }; 1481 1482 static int __init setup_fail_page_alloc(char *str) 1483 { 1484 return setup_fault_attr(&fail_page_alloc.attr, str); 1485 } 1486 __setup("fail_page_alloc=", setup_fail_page_alloc); 1487 1488 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1489 { 1490 if (order < fail_page_alloc.min_order) 1491 return 0; 1492 if (gfp_mask & __GFP_NOFAIL) 1493 return 0; 1494 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1495 return 0; 1496 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1497 return 0; 1498 1499 return should_fail(&fail_page_alloc.attr, 1 << order); 1500 } 1501 1502 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1503 1504 static int __init fail_page_alloc_debugfs(void) 1505 { 1506 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1507 struct dentry *dir; 1508 1509 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 1510 &fail_page_alloc.attr); 1511 if (IS_ERR(dir)) 1512 return PTR_ERR(dir); 1513 1514 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 1515 &fail_page_alloc.ignore_gfp_wait)) 1516 goto fail; 1517 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1518 &fail_page_alloc.ignore_gfp_highmem)) 1519 goto fail; 1520 if (!debugfs_create_u32("min-order", mode, dir, 1521 &fail_page_alloc.min_order)) 1522 goto fail; 1523 1524 return 0; 1525 fail: 1526 debugfs_remove_recursive(dir); 1527 1528 return -ENOMEM; 1529 } 1530 1531 late_initcall(fail_page_alloc_debugfs); 1532 1533 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1534 1535 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1536 1537 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1538 { 1539 return 0; 1540 } 1541 1542 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1543 1544 /* 1545 * Return true if free pages are above 'mark'. This takes into account the order 1546 * of the allocation. 1547 */ 1548 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1549 int classzone_idx, int alloc_flags, long free_pages) 1550 { 1551 /* free_pages my go negative - that's OK */ 1552 long min = mark; 1553 int o; 1554 1555 free_pages -= (1 << order) - 1; 1556 if (alloc_flags & ALLOC_HIGH) 1557 min -= min / 2; 1558 if (alloc_flags & ALLOC_HARDER) 1559 min -= min / 4; 1560 1561 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 1562 return false; 1563 for (o = 0; o < order; o++) { 1564 /* At the next order, this order's pages become unavailable */ 1565 free_pages -= z->free_area[o].nr_free << o; 1566 1567 /* Require fewer higher order pages to be free */ 1568 min >>= 1; 1569 1570 if (free_pages <= min) 1571 return false; 1572 } 1573 return true; 1574 } 1575 1576 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1577 int classzone_idx, int alloc_flags) 1578 { 1579 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1580 zone_page_state(z, NR_FREE_PAGES)); 1581 } 1582 1583 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark, 1584 int classzone_idx, int alloc_flags) 1585 { 1586 long free_pages = zone_page_state(z, NR_FREE_PAGES); 1587 1588 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 1589 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 1590 1591 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1592 free_pages); 1593 } 1594 1595 #ifdef CONFIG_NUMA 1596 /* 1597 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1598 * skip over zones that are not allowed by the cpuset, or that have 1599 * been recently (in last second) found to be nearly full. See further 1600 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1601 * that have to skip over a lot of full or unallowed zones. 1602 * 1603 * If the zonelist cache is present in the passed in zonelist, then 1604 * returns a pointer to the allowed node mask (either the current 1605 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].) 1606 * 1607 * If the zonelist cache is not available for this zonelist, does 1608 * nothing and returns NULL. 1609 * 1610 * If the fullzones BITMAP in the zonelist cache is stale (more than 1611 * a second since last zap'd) then we zap it out (clear its bits.) 1612 * 1613 * We hold off even calling zlc_setup, until after we've checked the 1614 * first zone in the zonelist, on the theory that most allocations will 1615 * be satisfied from that first zone, so best to examine that zone as 1616 * quickly as we can. 1617 */ 1618 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1619 { 1620 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1621 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1622 1623 zlc = zonelist->zlcache_ptr; 1624 if (!zlc) 1625 return NULL; 1626 1627 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1628 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1629 zlc->last_full_zap = jiffies; 1630 } 1631 1632 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1633 &cpuset_current_mems_allowed : 1634 &node_states[N_HIGH_MEMORY]; 1635 return allowednodes; 1636 } 1637 1638 /* 1639 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1640 * if it is worth looking at further for free memory: 1641 * 1) Check that the zone isn't thought to be full (doesn't have its 1642 * bit set in the zonelist_cache fullzones BITMAP). 1643 * 2) Check that the zones node (obtained from the zonelist_cache 1644 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1645 * Return true (non-zero) if zone is worth looking at further, or 1646 * else return false (zero) if it is not. 1647 * 1648 * This check -ignores- the distinction between various watermarks, 1649 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1650 * found to be full for any variation of these watermarks, it will 1651 * be considered full for up to one second by all requests, unless 1652 * we are so low on memory on all allowed nodes that we are forced 1653 * into the second scan of the zonelist. 1654 * 1655 * In the second scan we ignore this zonelist cache and exactly 1656 * apply the watermarks to all zones, even it is slower to do so. 1657 * We are low on memory in the second scan, and should leave no stone 1658 * unturned looking for a free page. 1659 */ 1660 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1661 nodemask_t *allowednodes) 1662 { 1663 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1664 int i; /* index of *z in zonelist zones */ 1665 int n; /* node that zone *z is on */ 1666 1667 zlc = zonelist->zlcache_ptr; 1668 if (!zlc) 1669 return 1; 1670 1671 i = z - zonelist->_zonerefs; 1672 n = zlc->z_to_n[i]; 1673 1674 /* This zone is worth trying if it is allowed but not full */ 1675 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1676 } 1677 1678 /* 1679 * Given 'z' scanning a zonelist, set the corresponding bit in 1680 * zlc->fullzones, so that subsequent attempts to allocate a page 1681 * from that zone don't waste time re-examining it. 1682 */ 1683 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1684 { 1685 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1686 int i; /* index of *z in zonelist zones */ 1687 1688 zlc = zonelist->zlcache_ptr; 1689 if (!zlc) 1690 return; 1691 1692 i = z - zonelist->_zonerefs; 1693 1694 set_bit(i, zlc->fullzones); 1695 } 1696 1697 /* 1698 * clear all zones full, called after direct reclaim makes progress so that 1699 * a zone that was recently full is not skipped over for up to a second 1700 */ 1701 static void zlc_clear_zones_full(struct zonelist *zonelist) 1702 { 1703 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1704 1705 zlc = zonelist->zlcache_ptr; 1706 if (!zlc) 1707 return; 1708 1709 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1710 } 1711 1712 #else /* CONFIG_NUMA */ 1713 1714 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1715 { 1716 return NULL; 1717 } 1718 1719 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1720 nodemask_t *allowednodes) 1721 { 1722 return 1; 1723 } 1724 1725 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1726 { 1727 } 1728 1729 static void zlc_clear_zones_full(struct zonelist *zonelist) 1730 { 1731 } 1732 #endif /* CONFIG_NUMA */ 1733 1734 /* 1735 * get_page_from_freelist goes through the zonelist trying to allocate 1736 * a page. 1737 */ 1738 static struct page * 1739 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, 1740 struct zonelist *zonelist, int high_zoneidx, int alloc_flags, 1741 struct zone *preferred_zone, int migratetype) 1742 { 1743 struct zoneref *z; 1744 struct page *page = NULL; 1745 int classzone_idx; 1746 struct zone *zone; 1747 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1748 int zlc_active = 0; /* set if using zonelist_cache */ 1749 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1750 1751 classzone_idx = zone_idx(preferred_zone); 1752 zonelist_scan: 1753 /* 1754 * Scan zonelist, looking for a zone with enough free. 1755 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1756 */ 1757 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1758 high_zoneidx, nodemask) { 1759 if (NUMA_BUILD && zlc_active && 1760 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1761 continue; 1762 if ((alloc_flags & ALLOC_CPUSET) && 1763 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1764 continue; 1765 /* 1766 * When allocating a page cache page for writing, we 1767 * want to get it from a zone that is within its dirty 1768 * limit, such that no single zone holds more than its 1769 * proportional share of globally allowed dirty pages. 1770 * The dirty limits take into account the zone's 1771 * lowmem reserves and high watermark so that kswapd 1772 * should be able to balance it without having to 1773 * write pages from its LRU list. 1774 * 1775 * This may look like it could increase pressure on 1776 * lower zones by failing allocations in higher zones 1777 * before they are full. But the pages that do spill 1778 * over are limited as the lower zones are protected 1779 * by this very same mechanism. It should not become 1780 * a practical burden to them. 1781 * 1782 * XXX: For now, allow allocations to potentially 1783 * exceed the per-zone dirty limit in the slowpath 1784 * (ALLOC_WMARK_LOW unset) before going into reclaim, 1785 * which is important when on a NUMA setup the allowed 1786 * zones are together not big enough to reach the 1787 * global limit. The proper fix for these situations 1788 * will require awareness of zones in the 1789 * dirty-throttling and the flusher threads. 1790 */ 1791 if ((alloc_flags & ALLOC_WMARK_LOW) && 1792 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone)) 1793 goto this_zone_full; 1794 1795 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 1796 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 1797 unsigned long mark; 1798 int ret; 1799 1800 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 1801 if (zone_watermark_ok(zone, order, mark, 1802 classzone_idx, alloc_flags)) 1803 goto try_this_zone; 1804 1805 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) { 1806 /* 1807 * we do zlc_setup if there are multiple nodes 1808 * and before considering the first zone allowed 1809 * by the cpuset. 1810 */ 1811 allowednodes = zlc_setup(zonelist, alloc_flags); 1812 zlc_active = 1; 1813 did_zlc_setup = 1; 1814 } 1815 1816 if (zone_reclaim_mode == 0) 1817 goto this_zone_full; 1818 1819 /* 1820 * As we may have just activated ZLC, check if the first 1821 * eligible zone has failed zone_reclaim recently. 1822 */ 1823 if (NUMA_BUILD && zlc_active && 1824 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1825 continue; 1826 1827 ret = zone_reclaim(zone, gfp_mask, order); 1828 switch (ret) { 1829 case ZONE_RECLAIM_NOSCAN: 1830 /* did not scan */ 1831 continue; 1832 case ZONE_RECLAIM_FULL: 1833 /* scanned but unreclaimable */ 1834 continue; 1835 default: 1836 /* did we reclaim enough */ 1837 if (!zone_watermark_ok(zone, order, mark, 1838 classzone_idx, alloc_flags)) 1839 goto this_zone_full; 1840 } 1841 } 1842 1843 try_this_zone: 1844 page = buffered_rmqueue(preferred_zone, zone, order, 1845 gfp_mask, migratetype); 1846 if (page) 1847 break; 1848 this_zone_full: 1849 if (NUMA_BUILD) 1850 zlc_mark_zone_full(zonelist, z); 1851 } 1852 1853 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) { 1854 /* Disable zlc cache for second zonelist scan */ 1855 zlc_active = 0; 1856 goto zonelist_scan; 1857 } 1858 return page; 1859 } 1860 1861 /* 1862 * Large machines with many possible nodes should not always dump per-node 1863 * meminfo in irq context. 1864 */ 1865 static inline bool should_suppress_show_mem(void) 1866 { 1867 bool ret = false; 1868 1869 #if NODES_SHIFT > 8 1870 ret = in_interrupt(); 1871 #endif 1872 return ret; 1873 } 1874 1875 static DEFINE_RATELIMIT_STATE(nopage_rs, 1876 DEFAULT_RATELIMIT_INTERVAL, 1877 DEFAULT_RATELIMIT_BURST); 1878 1879 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...) 1880 { 1881 unsigned int filter = SHOW_MEM_FILTER_NODES; 1882 1883 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) || 1884 debug_guardpage_minorder() > 0) 1885 return; 1886 1887 /* 1888 * This documents exceptions given to allocations in certain 1889 * contexts that are allowed to allocate outside current's set 1890 * of allowed nodes. 1891 */ 1892 if (!(gfp_mask & __GFP_NOMEMALLOC)) 1893 if (test_thread_flag(TIF_MEMDIE) || 1894 (current->flags & (PF_MEMALLOC | PF_EXITING))) 1895 filter &= ~SHOW_MEM_FILTER_NODES; 1896 if (in_interrupt() || !(gfp_mask & __GFP_WAIT)) 1897 filter &= ~SHOW_MEM_FILTER_NODES; 1898 1899 if (fmt) { 1900 struct va_format vaf; 1901 va_list args; 1902 1903 va_start(args, fmt); 1904 1905 vaf.fmt = fmt; 1906 vaf.va = &args; 1907 1908 pr_warn("%pV", &vaf); 1909 1910 va_end(args); 1911 } 1912 1913 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n", 1914 current->comm, order, gfp_mask); 1915 1916 dump_stack(); 1917 if (!should_suppress_show_mem()) 1918 show_mem(filter); 1919 } 1920 1921 static inline int 1922 should_alloc_retry(gfp_t gfp_mask, unsigned int order, 1923 unsigned long did_some_progress, 1924 unsigned long pages_reclaimed) 1925 { 1926 /* Do not loop if specifically requested */ 1927 if (gfp_mask & __GFP_NORETRY) 1928 return 0; 1929 1930 /* Always retry if specifically requested */ 1931 if (gfp_mask & __GFP_NOFAIL) 1932 return 1; 1933 1934 /* 1935 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim 1936 * making forward progress without invoking OOM. Suspend also disables 1937 * storage devices so kswapd will not help. Bail if we are suspending. 1938 */ 1939 if (!did_some_progress && pm_suspended_storage()) 1940 return 0; 1941 1942 /* 1943 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 1944 * means __GFP_NOFAIL, but that may not be true in other 1945 * implementations. 1946 */ 1947 if (order <= PAGE_ALLOC_COSTLY_ORDER) 1948 return 1; 1949 1950 /* 1951 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 1952 * specified, then we retry until we no longer reclaim any pages 1953 * (above), or we've reclaimed an order of pages at least as 1954 * large as the allocation's order. In both cases, if the 1955 * allocation still fails, we stop retrying. 1956 */ 1957 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) 1958 return 1; 1959 1960 return 0; 1961 } 1962 1963 static inline struct page * 1964 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 1965 struct zonelist *zonelist, enum zone_type high_zoneidx, 1966 nodemask_t *nodemask, struct zone *preferred_zone, 1967 int migratetype) 1968 { 1969 struct page *page; 1970 1971 /* Acquire the OOM killer lock for the zones in zonelist */ 1972 if (!try_set_zonelist_oom(zonelist, gfp_mask)) { 1973 schedule_timeout_uninterruptible(1); 1974 return NULL; 1975 } 1976 1977 /* 1978 * Go through the zonelist yet one more time, keep very high watermark 1979 * here, this is only to catch a parallel oom killing, we must fail if 1980 * we're still under heavy pressure. 1981 */ 1982 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, 1983 order, zonelist, high_zoneidx, 1984 ALLOC_WMARK_HIGH|ALLOC_CPUSET, 1985 preferred_zone, migratetype); 1986 if (page) 1987 goto out; 1988 1989 if (!(gfp_mask & __GFP_NOFAIL)) { 1990 /* The OOM killer will not help higher order allocs */ 1991 if (order > PAGE_ALLOC_COSTLY_ORDER) 1992 goto out; 1993 /* The OOM killer does not needlessly kill tasks for lowmem */ 1994 if (high_zoneidx < ZONE_NORMAL) 1995 goto out; 1996 /* 1997 * GFP_THISNODE contains __GFP_NORETRY and we never hit this. 1998 * Sanity check for bare calls of __GFP_THISNODE, not real OOM. 1999 * The caller should handle page allocation failure by itself if 2000 * it specifies __GFP_THISNODE. 2001 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER. 2002 */ 2003 if (gfp_mask & __GFP_THISNODE) 2004 goto out; 2005 } 2006 /* Exhausted what can be done so it's blamo time */ 2007 out_of_memory(zonelist, gfp_mask, order, nodemask, false); 2008 2009 out: 2010 clear_zonelist_oom(zonelist, gfp_mask); 2011 return page; 2012 } 2013 2014 #ifdef CONFIG_COMPACTION 2015 /* Try memory compaction for high-order allocations before reclaim */ 2016 static struct page * 2017 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2018 struct zonelist *zonelist, enum zone_type high_zoneidx, 2019 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2020 int migratetype, bool sync_migration, 2021 bool *deferred_compaction, 2022 unsigned long *did_some_progress) 2023 { 2024 struct page *page; 2025 2026 if (!order) 2027 return NULL; 2028 2029 if (compaction_deferred(preferred_zone, order)) { 2030 *deferred_compaction = true; 2031 return NULL; 2032 } 2033 2034 current->flags |= PF_MEMALLOC; 2035 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask, 2036 nodemask, sync_migration); 2037 current->flags &= ~PF_MEMALLOC; 2038 if (*did_some_progress != COMPACT_SKIPPED) { 2039 2040 /* Page migration frees to the PCP lists but we want merging */ 2041 drain_pages(get_cpu()); 2042 put_cpu(); 2043 2044 page = get_page_from_freelist(gfp_mask, nodemask, 2045 order, zonelist, high_zoneidx, 2046 alloc_flags, preferred_zone, 2047 migratetype); 2048 if (page) { 2049 preferred_zone->compact_considered = 0; 2050 preferred_zone->compact_defer_shift = 0; 2051 if (order >= preferred_zone->compact_order_failed) 2052 preferred_zone->compact_order_failed = order + 1; 2053 count_vm_event(COMPACTSUCCESS); 2054 return page; 2055 } 2056 2057 /* 2058 * It's bad if compaction run occurs and fails. 2059 * The most likely reason is that pages exist, 2060 * but not enough to satisfy watermarks. 2061 */ 2062 count_vm_event(COMPACTFAIL); 2063 2064 /* 2065 * As async compaction considers a subset of pageblocks, only 2066 * defer if the failure was a sync compaction failure. 2067 */ 2068 if (sync_migration) 2069 defer_compaction(preferred_zone, order); 2070 2071 cond_resched(); 2072 } 2073 2074 return NULL; 2075 } 2076 #else 2077 static inline struct page * 2078 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2079 struct zonelist *zonelist, enum zone_type high_zoneidx, 2080 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2081 int migratetype, bool sync_migration, 2082 bool *deferred_compaction, 2083 unsigned long *did_some_progress) 2084 { 2085 return NULL; 2086 } 2087 #endif /* CONFIG_COMPACTION */ 2088 2089 /* The really slow allocator path where we enter direct reclaim */ 2090 static inline struct page * 2091 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 2092 struct zonelist *zonelist, enum zone_type high_zoneidx, 2093 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2094 int migratetype, unsigned long *did_some_progress) 2095 { 2096 struct page *page = NULL; 2097 struct reclaim_state reclaim_state; 2098 bool drained = false; 2099 2100 cond_resched(); 2101 2102 /* We now go into synchronous reclaim */ 2103 cpuset_memory_pressure_bump(); 2104 current->flags |= PF_MEMALLOC; 2105 lockdep_set_current_reclaim_state(gfp_mask); 2106 reclaim_state.reclaimed_slab = 0; 2107 current->reclaim_state = &reclaim_state; 2108 2109 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask); 2110 2111 current->reclaim_state = NULL; 2112 lockdep_clear_current_reclaim_state(); 2113 current->flags &= ~PF_MEMALLOC; 2114 2115 cond_resched(); 2116 2117 if (unlikely(!(*did_some_progress))) 2118 return NULL; 2119 2120 /* After successful reclaim, reconsider all zones for allocation */ 2121 if (NUMA_BUILD) 2122 zlc_clear_zones_full(zonelist); 2123 2124 retry: 2125 page = get_page_from_freelist(gfp_mask, nodemask, order, 2126 zonelist, high_zoneidx, 2127 alloc_flags, preferred_zone, 2128 migratetype); 2129 2130 /* 2131 * If an allocation failed after direct reclaim, it could be because 2132 * pages are pinned on the per-cpu lists. Drain them and try again 2133 */ 2134 if (!page && !drained) { 2135 drain_all_pages(); 2136 drained = true; 2137 goto retry; 2138 } 2139 2140 return page; 2141 } 2142 2143 /* 2144 * This is called in the allocator slow-path if the allocation request is of 2145 * sufficient urgency to ignore watermarks and take other desperate measures 2146 */ 2147 static inline struct page * 2148 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, 2149 struct zonelist *zonelist, enum zone_type high_zoneidx, 2150 nodemask_t *nodemask, struct zone *preferred_zone, 2151 int migratetype) 2152 { 2153 struct page *page; 2154 2155 do { 2156 page = get_page_from_freelist(gfp_mask, nodemask, order, 2157 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS, 2158 preferred_zone, migratetype); 2159 2160 if (!page && gfp_mask & __GFP_NOFAIL) 2161 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2162 } while (!page && (gfp_mask & __GFP_NOFAIL)); 2163 2164 return page; 2165 } 2166 2167 static inline 2168 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist, 2169 enum zone_type high_zoneidx, 2170 enum zone_type classzone_idx) 2171 { 2172 struct zoneref *z; 2173 struct zone *zone; 2174 2175 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) 2176 wakeup_kswapd(zone, order, classzone_idx); 2177 } 2178 2179 static inline int 2180 gfp_to_alloc_flags(gfp_t gfp_mask) 2181 { 2182 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 2183 const gfp_t wait = gfp_mask & __GFP_WAIT; 2184 2185 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 2186 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 2187 2188 /* 2189 * The caller may dip into page reserves a bit more if the caller 2190 * cannot run direct reclaim, or if the caller has realtime scheduling 2191 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 2192 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 2193 */ 2194 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 2195 2196 if (!wait) { 2197 /* 2198 * Not worth trying to allocate harder for 2199 * __GFP_NOMEMALLOC even if it can't schedule. 2200 */ 2201 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2202 alloc_flags |= ALLOC_HARDER; 2203 /* 2204 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 2205 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 2206 */ 2207 alloc_flags &= ~ALLOC_CPUSET; 2208 } else if (unlikely(rt_task(current)) && !in_interrupt()) 2209 alloc_flags |= ALLOC_HARDER; 2210 2211 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { 2212 if (!in_interrupt() && 2213 ((current->flags & PF_MEMALLOC) || 2214 unlikely(test_thread_flag(TIF_MEMDIE)))) 2215 alloc_flags |= ALLOC_NO_WATERMARKS; 2216 } 2217 2218 return alloc_flags; 2219 } 2220 2221 static inline struct page * 2222 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 2223 struct zonelist *zonelist, enum zone_type high_zoneidx, 2224 nodemask_t *nodemask, struct zone *preferred_zone, 2225 int migratetype) 2226 { 2227 const gfp_t wait = gfp_mask & __GFP_WAIT; 2228 struct page *page = NULL; 2229 int alloc_flags; 2230 unsigned long pages_reclaimed = 0; 2231 unsigned long did_some_progress; 2232 bool sync_migration = false; 2233 bool deferred_compaction = false; 2234 2235 /* 2236 * In the slowpath, we sanity check order to avoid ever trying to 2237 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 2238 * be using allocators in order of preference for an area that is 2239 * too large. 2240 */ 2241 if (order >= MAX_ORDER) { 2242 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 2243 return NULL; 2244 } 2245 2246 /* 2247 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 2248 * __GFP_NOWARN set) should not cause reclaim since the subsystem 2249 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 2250 * using a larger set of nodes after it has established that the 2251 * allowed per node queues are empty and that nodes are 2252 * over allocated. 2253 */ 2254 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 2255 goto nopage; 2256 2257 restart: 2258 if (!(gfp_mask & __GFP_NO_KSWAPD)) 2259 wake_all_kswapd(order, zonelist, high_zoneidx, 2260 zone_idx(preferred_zone)); 2261 2262 /* 2263 * OK, we're below the kswapd watermark and have kicked background 2264 * reclaim. Now things get more complex, so set up alloc_flags according 2265 * to how we want to proceed. 2266 */ 2267 alloc_flags = gfp_to_alloc_flags(gfp_mask); 2268 2269 /* 2270 * Find the true preferred zone if the allocation is unconstrained by 2271 * cpusets. 2272 */ 2273 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) 2274 first_zones_zonelist(zonelist, high_zoneidx, NULL, 2275 &preferred_zone); 2276 2277 rebalance: 2278 /* This is the last chance, in general, before the goto nopage. */ 2279 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, 2280 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS, 2281 preferred_zone, migratetype); 2282 if (page) 2283 goto got_pg; 2284 2285 /* Allocate without watermarks if the context allows */ 2286 if (alloc_flags & ALLOC_NO_WATERMARKS) { 2287 page = __alloc_pages_high_priority(gfp_mask, order, 2288 zonelist, high_zoneidx, nodemask, 2289 preferred_zone, migratetype); 2290 if (page) 2291 goto got_pg; 2292 } 2293 2294 /* Atomic allocations - we can't balance anything */ 2295 if (!wait) 2296 goto nopage; 2297 2298 /* Avoid recursion of direct reclaim */ 2299 if (current->flags & PF_MEMALLOC) 2300 goto nopage; 2301 2302 /* Avoid allocations with no watermarks from looping endlessly */ 2303 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) 2304 goto nopage; 2305 2306 /* 2307 * Try direct compaction. The first pass is asynchronous. Subsequent 2308 * attempts after direct reclaim are synchronous 2309 */ 2310 page = __alloc_pages_direct_compact(gfp_mask, order, 2311 zonelist, high_zoneidx, 2312 nodemask, 2313 alloc_flags, preferred_zone, 2314 migratetype, sync_migration, 2315 &deferred_compaction, 2316 &did_some_progress); 2317 if (page) 2318 goto got_pg; 2319 sync_migration = true; 2320 2321 /* 2322 * If compaction is deferred for high-order allocations, it is because 2323 * sync compaction recently failed. In this is the case and the caller 2324 * has requested the system not be heavily disrupted, fail the 2325 * allocation now instead of entering direct reclaim 2326 */ 2327 if (deferred_compaction && (gfp_mask & __GFP_NO_KSWAPD)) 2328 goto nopage; 2329 2330 /* Try direct reclaim and then allocating */ 2331 page = __alloc_pages_direct_reclaim(gfp_mask, order, 2332 zonelist, high_zoneidx, 2333 nodemask, 2334 alloc_flags, preferred_zone, 2335 migratetype, &did_some_progress); 2336 if (page) 2337 goto got_pg; 2338 2339 /* 2340 * If we failed to make any progress reclaiming, then we are 2341 * running out of options and have to consider going OOM 2342 */ 2343 if (!did_some_progress) { 2344 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 2345 if (oom_killer_disabled) 2346 goto nopage; 2347 /* Coredumps can quickly deplete all memory reserves */ 2348 if ((current->flags & PF_DUMPCORE) && 2349 !(gfp_mask & __GFP_NOFAIL)) 2350 goto nopage; 2351 page = __alloc_pages_may_oom(gfp_mask, order, 2352 zonelist, high_zoneidx, 2353 nodemask, preferred_zone, 2354 migratetype); 2355 if (page) 2356 goto got_pg; 2357 2358 if (!(gfp_mask & __GFP_NOFAIL)) { 2359 /* 2360 * The oom killer is not called for high-order 2361 * allocations that may fail, so if no progress 2362 * is being made, there are no other options and 2363 * retrying is unlikely to help. 2364 */ 2365 if (order > PAGE_ALLOC_COSTLY_ORDER) 2366 goto nopage; 2367 /* 2368 * The oom killer is not called for lowmem 2369 * allocations to prevent needlessly killing 2370 * innocent tasks. 2371 */ 2372 if (high_zoneidx < ZONE_NORMAL) 2373 goto nopage; 2374 } 2375 2376 goto restart; 2377 } 2378 } 2379 2380 /* Check if we should retry the allocation */ 2381 pages_reclaimed += did_some_progress; 2382 if (should_alloc_retry(gfp_mask, order, did_some_progress, 2383 pages_reclaimed)) { 2384 /* Wait for some write requests to complete then retry */ 2385 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2386 goto rebalance; 2387 } else { 2388 /* 2389 * High-order allocations do not necessarily loop after 2390 * direct reclaim and reclaim/compaction depends on compaction 2391 * being called after reclaim so call directly if necessary 2392 */ 2393 page = __alloc_pages_direct_compact(gfp_mask, order, 2394 zonelist, high_zoneidx, 2395 nodemask, 2396 alloc_flags, preferred_zone, 2397 migratetype, sync_migration, 2398 &deferred_compaction, 2399 &did_some_progress); 2400 if (page) 2401 goto got_pg; 2402 } 2403 2404 nopage: 2405 warn_alloc_failed(gfp_mask, order, NULL); 2406 return page; 2407 got_pg: 2408 if (kmemcheck_enabled) 2409 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 2410 return page; 2411 2412 } 2413 2414 /* 2415 * This is the 'heart' of the zoned buddy allocator. 2416 */ 2417 struct page * 2418 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 2419 struct zonelist *zonelist, nodemask_t *nodemask) 2420 { 2421 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 2422 struct zone *preferred_zone; 2423 struct page *page = NULL; 2424 int migratetype = allocflags_to_migratetype(gfp_mask); 2425 unsigned int cpuset_mems_cookie; 2426 2427 gfp_mask &= gfp_allowed_mask; 2428 2429 lockdep_trace_alloc(gfp_mask); 2430 2431 might_sleep_if(gfp_mask & __GFP_WAIT); 2432 2433 if (should_fail_alloc_page(gfp_mask, order)) 2434 return NULL; 2435 2436 /* 2437 * Check the zones suitable for the gfp_mask contain at least one 2438 * valid zone. It's possible to have an empty zonelist as a result 2439 * of GFP_THISNODE and a memoryless node 2440 */ 2441 if (unlikely(!zonelist->_zonerefs->zone)) 2442 return NULL; 2443 2444 retry_cpuset: 2445 cpuset_mems_cookie = get_mems_allowed(); 2446 2447 /* The preferred zone is used for statistics later */ 2448 first_zones_zonelist(zonelist, high_zoneidx, 2449 nodemask ? : &cpuset_current_mems_allowed, 2450 &preferred_zone); 2451 if (!preferred_zone) 2452 goto out; 2453 2454 /* First allocation attempt */ 2455 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, 2456 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET, 2457 preferred_zone, migratetype); 2458 if (unlikely(!page)) 2459 page = __alloc_pages_slowpath(gfp_mask, order, 2460 zonelist, high_zoneidx, nodemask, 2461 preferred_zone, migratetype); 2462 2463 trace_mm_page_alloc(page, order, gfp_mask, migratetype); 2464 2465 out: 2466 /* 2467 * When updating a task's mems_allowed, it is possible to race with 2468 * parallel threads in such a way that an allocation can fail while 2469 * the mask is being updated. If a page allocation is about to fail, 2470 * check if the cpuset changed during allocation and if so, retry. 2471 */ 2472 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) 2473 goto retry_cpuset; 2474 2475 return page; 2476 } 2477 EXPORT_SYMBOL(__alloc_pages_nodemask); 2478 2479 /* 2480 * Common helper functions. 2481 */ 2482 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 2483 { 2484 struct page *page; 2485 2486 /* 2487 * __get_free_pages() returns a 32-bit address, which cannot represent 2488 * a highmem page 2489 */ 2490 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 2491 2492 page = alloc_pages(gfp_mask, order); 2493 if (!page) 2494 return 0; 2495 return (unsigned long) page_address(page); 2496 } 2497 EXPORT_SYMBOL(__get_free_pages); 2498 2499 unsigned long get_zeroed_page(gfp_t gfp_mask) 2500 { 2501 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 2502 } 2503 EXPORT_SYMBOL(get_zeroed_page); 2504 2505 void __free_pages(struct page *page, unsigned int order) 2506 { 2507 if (put_page_testzero(page)) { 2508 if (order == 0) 2509 free_hot_cold_page(page, 0); 2510 else 2511 __free_pages_ok(page, order); 2512 } 2513 } 2514 2515 EXPORT_SYMBOL(__free_pages); 2516 2517 void free_pages(unsigned long addr, unsigned int order) 2518 { 2519 if (addr != 0) { 2520 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2521 __free_pages(virt_to_page((void *)addr), order); 2522 } 2523 } 2524 2525 EXPORT_SYMBOL(free_pages); 2526 2527 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size) 2528 { 2529 if (addr) { 2530 unsigned long alloc_end = addr + (PAGE_SIZE << order); 2531 unsigned long used = addr + PAGE_ALIGN(size); 2532 2533 split_page(virt_to_page((void *)addr), order); 2534 while (used < alloc_end) { 2535 free_page(used); 2536 used += PAGE_SIZE; 2537 } 2538 } 2539 return (void *)addr; 2540 } 2541 2542 /** 2543 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 2544 * @size: the number of bytes to allocate 2545 * @gfp_mask: GFP flags for the allocation 2546 * 2547 * This function is similar to alloc_pages(), except that it allocates the 2548 * minimum number of pages to satisfy the request. alloc_pages() can only 2549 * allocate memory in power-of-two pages. 2550 * 2551 * This function is also limited by MAX_ORDER. 2552 * 2553 * Memory allocated by this function must be released by free_pages_exact(). 2554 */ 2555 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 2556 { 2557 unsigned int order = get_order(size); 2558 unsigned long addr; 2559 2560 addr = __get_free_pages(gfp_mask, order); 2561 return make_alloc_exact(addr, order, size); 2562 } 2563 EXPORT_SYMBOL(alloc_pages_exact); 2564 2565 /** 2566 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 2567 * pages on a node. 2568 * @nid: the preferred node ID where memory should be allocated 2569 * @size: the number of bytes to allocate 2570 * @gfp_mask: GFP flags for the allocation 2571 * 2572 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 2573 * back. 2574 * Note this is not alloc_pages_exact_node() which allocates on a specific node, 2575 * but is not exact. 2576 */ 2577 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 2578 { 2579 unsigned order = get_order(size); 2580 struct page *p = alloc_pages_node(nid, gfp_mask, order); 2581 if (!p) 2582 return NULL; 2583 return make_alloc_exact((unsigned long)page_address(p), order, size); 2584 } 2585 EXPORT_SYMBOL(alloc_pages_exact_nid); 2586 2587 /** 2588 * free_pages_exact - release memory allocated via alloc_pages_exact() 2589 * @virt: the value returned by alloc_pages_exact. 2590 * @size: size of allocation, same value as passed to alloc_pages_exact(). 2591 * 2592 * Release the memory allocated by a previous call to alloc_pages_exact. 2593 */ 2594 void free_pages_exact(void *virt, size_t size) 2595 { 2596 unsigned long addr = (unsigned long)virt; 2597 unsigned long end = addr + PAGE_ALIGN(size); 2598 2599 while (addr < end) { 2600 free_page(addr); 2601 addr += PAGE_SIZE; 2602 } 2603 } 2604 EXPORT_SYMBOL(free_pages_exact); 2605 2606 static unsigned int nr_free_zone_pages(int offset) 2607 { 2608 struct zoneref *z; 2609 struct zone *zone; 2610 2611 /* Just pick one node, since fallback list is circular */ 2612 unsigned int sum = 0; 2613 2614 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 2615 2616 for_each_zone_zonelist(zone, z, zonelist, offset) { 2617 unsigned long size = zone->present_pages; 2618 unsigned long high = high_wmark_pages(zone); 2619 if (size > high) 2620 sum += size - high; 2621 } 2622 2623 return sum; 2624 } 2625 2626 /* 2627 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 2628 */ 2629 unsigned int nr_free_buffer_pages(void) 2630 { 2631 return nr_free_zone_pages(gfp_zone(GFP_USER)); 2632 } 2633 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 2634 2635 /* 2636 * Amount of free RAM allocatable within all zones 2637 */ 2638 unsigned int nr_free_pagecache_pages(void) 2639 { 2640 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 2641 } 2642 2643 static inline void show_node(struct zone *zone) 2644 { 2645 if (NUMA_BUILD) 2646 printk("Node %d ", zone_to_nid(zone)); 2647 } 2648 2649 void si_meminfo(struct sysinfo *val) 2650 { 2651 val->totalram = totalram_pages; 2652 val->sharedram = 0; 2653 val->freeram = global_page_state(NR_FREE_PAGES); 2654 val->bufferram = nr_blockdev_pages(); 2655 val->totalhigh = totalhigh_pages; 2656 val->freehigh = nr_free_highpages(); 2657 val->mem_unit = PAGE_SIZE; 2658 } 2659 2660 EXPORT_SYMBOL(si_meminfo); 2661 2662 #ifdef CONFIG_NUMA 2663 void si_meminfo_node(struct sysinfo *val, int nid) 2664 { 2665 pg_data_t *pgdat = NODE_DATA(nid); 2666 2667 val->totalram = pgdat->node_present_pages; 2668 val->freeram = node_page_state(nid, NR_FREE_PAGES); 2669 #ifdef CONFIG_HIGHMEM 2670 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 2671 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 2672 NR_FREE_PAGES); 2673 #else 2674 val->totalhigh = 0; 2675 val->freehigh = 0; 2676 #endif 2677 val->mem_unit = PAGE_SIZE; 2678 } 2679 #endif 2680 2681 /* 2682 * Determine whether the node should be displayed or not, depending on whether 2683 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 2684 */ 2685 bool skip_free_areas_node(unsigned int flags, int nid) 2686 { 2687 bool ret = false; 2688 unsigned int cpuset_mems_cookie; 2689 2690 if (!(flags & SHOW_MEM_FILTER_NODES)) 2691 goto out; 2692 2693 do { 2694 cpuset_mems_cookie = get_mems_allowed(); 2695 ret = !node_isset(nid, cpuset_current_mems_allowed); 2696 } while (!put_mems_allowed(cpuset_mems_cookie)); 2697 out: 2698 return ret; 2699 } 2700 2701 #define K(x) ((x) << (PAGE_SHIFT-10)) 2702 2703 /* 2704 * Show free area list (used inside shift_scroll-lock stuff) 2705 * We also calculate the percentage fragmentation. We do this by counting the 2706 * memory on each free list with the exception of the first item on the list. 2707 * Suppresses nodes that are not allowed by current's cpuset if 2708 * SHOW_MEM_FILTER_NODES is passed. 2709 */ 2710 void show_free_areas(unsigned int filter) 2711 { 2712 int cpu; 2713 struct zone *zone; 2714 2715 for_each_populated_zone(zone) { 2716 if (skip_free_areas_node(filter, zone_to_nid(zone))) 2717 continue; 2718 show_node(zone); 2719 printk("%s per-cpu:\n", zone->name); 2720 2721 for_each_online_cpu(cpu) { 2722 struct per_cpu_pageset *pageset; 2723 2724 pageset = per_cpu_ptr(zone->pageset, cpu); 2725 2726 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", 2727 cpu, pageset->pcp.high, 2728 pageset->pcp.batch, pageset->pcp.count); 2729 } 2730 } 2731 2732 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 2733 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 2734 " unevictable:%lu" 2735 " dirty:%lu writeback:%lu unstable:%lu\n" 2736 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n" 2737 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n", 2738 global_page_state(NR_ACTIVE_ANON), 2739 global_page_state(NR_INACTIVE_ANON), 2740 global_page_state(NR_ISOLATED_ANON), 2741 global_page_state(NR_ACTIVE_FILE), 2742 global_page_state(NR_INACTIVE_FILE), 2743 global_page_state(NR_ISOLATED_FILE), 2744 global_page_state(NR_UNEVICTABLE), 2745 global_page_state(NR_FILE_DIRTY), 2746 global_page_state(NR_WRITEBACK), 2747 global_page_state(NR_UNSTABLE_NFS), 2748 global_page_state(NR_FREE_PAGES), 2749 global_page_state(NR_SLAB_RECLAIMABLE), 2750 global_page_state(NR_SLAB_UNRECLAIMABLE), 2751 global_page_state(NR_FILE_MAPPED), 2752 global_page_state(NR_SHMEM), 2753 global_page_state(NR_PAGETABLE), 2754 global_page_state(NR_BOUNCE)); 2755 2756 for_each_populated_zone(zone) { 2757 int i; 2758 2759 if (skip_free_areas_node(filter, zone_to_nid(zone))) 2760 continue; 2761 show_node(zone); 2762 printk("%s" 2763 " free:%lukB" 2764 " min:%lukB" 2765 " low:%lukB" 2766 " high:%lukB" 2767 " active_anon:%lukB" 2768 " inactive_anon:%lukB" 2769 " active_file:%lukB" 2770 " inactive_file:%lukB" 2771 " unevictable:%lukB" 2772 " isolated(anon):%lukB" 2773 " isolated(file):%lukB" 2774 " present:%lukB" 2775 " mlocked:%lukB" 2776 " dirty:%lukB" 2777 " writeback:%lukB" 2778 " mapped:%lukB" 2779 " shmem:%lukB" 2780 " slab_reclaimable:%lukB" 2781 " slab_unreclaimable:%lukB" 2782 " kernel_stack:%lukB" 2783 " pagetables:%lukB" 2784 " unstable:%lukB" 2785 " bounce:%lukB" 2786 " writeback_tmp:%lukB" 2787 " pages_scanned:%lu" 2788 " all_unreclaimable? %s" 2789 "\n", 2790 zone->name, 2791 K(zone_page_state(zone, NR_FREE_PAGES)), 2792 K(min_wmark_pages(zone)), 2793 K(low_wmark_pages(zone)), 2794 K(high_wmark_pages(zone)), 2795 K(zone_page_state(zone, NR_ACTIVE_ANON)), 2796 K(zone_page_state(zone, NR_INACTIVE_ANON)), 2797 K(zone_page_state(zone, NR_ACTIVE_FILE)), 2798 K(zone_page_state(zone, NR_INACTIVE_FILE)), 2799 K(zone_page_state(zone, NR_UNEVICTABLE)), 2800 K(zone_page_state(zone, NR_ISOLATED_ANON)), 2801 K(zone_page_state(zone, NR_ISOLATED_FILE)), 2802 K(zone->present_pages), 2803 K(zone_page_state(zone, NR_MLOCK)), 2804 K(zone_page_state(zone, NR_FILE_DIRTY)), 2805 K(zone_page_state(zone, NR_WRITEBACK)), 2806 K(zone_page_state(zone, NR_FILE_MAPPED)), 2807 K(zone_page_state(zone, NR_SHMEM)), 2808 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 2809 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 2810 zone_page_state(zone, NR_KERNEL_STACK) * 2811 THREAD_SIZE / 1024, 2812 K(zone_page_state(zone, NR_PAGETABLE)), 2813 K(zone_page_state(zone, NR_UNSTABLE_NFS)), 2814 K(zone_page_state(zone, NR_BOUNCE)), 2815 K(zone_page_state(zone, NR_WRITEBACK_TEMP)), 2816 zone->pages_scanned, 2817 (zone->all_unreclaimable ? "yes" : "no") 2818 ); 2819 printk("lowmem_reserve[]:"); 2820 for (i = 0; i < MAX_NR_ZONES; i++) 2821 printk(" %lu", zone->lowmem_reserve[i]); 2822 printk("\n"); 2823 } 2824 2825 for_each_populated_zone(zone) { 2826 unsigned long nr[MAX_ORDER], flags, order, total = 0; 2827 2828 if (skip_free_areas_node(filter, zone_to_nid(zone))) 2829 continue; 2830 show_node(zone); 2831 printk("%s: ", zone->name); 2832 2833 spin_lock_irqsave(&zone->lock, flags); 2834 for (order = 0; order < MAX_ORDER; order++) { 2835 nr[order] = zone->free_area[order].nr_free; 2836 total += nr[order] << order; 2837 } 2838 spin_unlock_irqrestore(&zone->lock, flags); 2839 for (order = 0; order < MAX_ORDER; order++) 2840 printk("%lu*%lukB ", nr[order], K(1UL) << order); 2841 printk("= %lukB\n", K(total)); 2842 } 2843 2844 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 2845 2846 show_swap_cache_info(); 2847 } 2848 2849 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 2850 { 2851 zoneref->zone = zone; 2852 zoneref->zone_idx = zone_idx(zone); 2853 } 2854 2855 /* 2856 * Builds allocation fallback zone lists. 2857 * 2858 * Add all populated zones of a node to the zonelist. 2859 */ 2860 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 2861 int nr_zones, enum zone_type zone_type) 2862 { 2863 struct zone *zone; 2864 2865 BUG_ON(zone_type >= MAX_NR_ZONES); 2866 zone_type++; 2867 2868 do { 2869 zone_type--; 2870 zone = pgdat->node_zones + zone_type; 2871 if (populated_zone(zone)) { 2872 zoneref_set_zone(zone, 2873 &zonelist->_zonerefs[nr_zones++]); 2874 check_highest_zone(zone_type); 2875 } 2876 2877 } while (zone_type); 2878 return nr_zones; 2879 } 2880 2881 2882 /* 2883 * zonelist_order: 2884 * 0 = automatic detection of better ordering. 2885 * 1 = order by ([node] distance, -zonetype) 2886 * 2 = order by (-zonetype, [node] distance) 2887 * 2888 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 2889 * the same zonelist. So only NUMA can configure this param. 2890 */ 2891 #define ZONELIST_ORDER_DEFAULT 0 2892 #define ZONELIST_ORDER_NODE 1 2893 #define ZONELIST_ORDER_ZONE 2 2894 2895 /* zonelist order in the kernel. 2896 * set_zonelist_order() will set this to NODE or ZONE. 2897 */ 2898 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 2899 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 2900 2901 2902 #ifdef CONFIG_NUMA 2903 /* The value user specified ....changed by config */ 2904 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 2905 /* string for sysctl */ 2906 #define NUMA_ZONELIST_ORDER_LEN 16 2907 char numa_zonelist_order[16] = "default"; 2908 2909 /* 2910 * interface for configure zonelist ordering. 2911 * command line option "numa_zonelist_order" 2912 * = "[dD]efault - default, automatic configuration. 2913 * = "[nN]ode - order by node locality, then by zone within node 2914 * = "[zZ]one - order by zone, then by locality within zone 2915 */ 2916 2917 static int __parse_numa_zonelist_order(char *s) 2918 { 2919 if (*s == 'd' || *s == 'D') { 2920 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 2921 } else if (*s == 'n' || *s == 'N') { 2922 user_zonelist_order = ZONELIST_ORDER_NODE; 2923 } else if (*s == 'z' || *s == 'Z') { 2924 user_zonelist_order = ZONELIST_ORDER_ZONE; 2925 } else { 2926 printk(KERN_WARNING 2927 "Ignoring invalid numa_zonelist_order value: " 2928 "%s\n", s); 2929 return -EINVAL; 2930 } 2931 return 0; 2932 } 2933 2934 static __init int setup_numa_zonelist_order(char *s) 2935 { 2936 int ret; 2937 2938 if (!s) 2939 return 0; 2940 2941 ret = __parse_numa_zonelist_order(s); 2942 if (ret == 0) 2943 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); 2944 2945 return ret; 2946 } 2947 early_param("numa_zonelist_order", setup_numa_zonelist_order); 2948 2949 /* 2950 * sysctl handler for numa_zonelist_order 2951 */ 2952 int numa_zonelist_order_handler(ctl_table *table, int write, 2953 void __user *buffer, size_t *length, 2954 loff_t *ppos) 2955 { 2956 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 2957 int ret; 2958 static DEFINE_MUTEX(zl_order_mutex); 2959 2960 mutex_lock(&zl_order_mutex); 2961 if (write) 2962 strcpy(saved_string, (char*)table->data); 2963 ret = proc_dostring(table, write, buffer, length, ppos); 2964 if (ret) 2965 goto out; 2966 if (write) { 2967 int oldval = user_zonelist_order; 2968 if (__parse_numa_zonelist_order((char*)table->data)) { 2969 /* 2970 * bogus value. restore saved string 2971 */ 2972 strncpy((char*)table->data, saved_string, 2973 NUMA_ZONELIST_ORDER_LEN); 2974 user_zonelist_order = oldval; 2975 } else if (oldval != user_zonelist_order) { 2976 mutex_lock(&zonelists_mutex); 2977 build_all_zonelists(NULL); 2978 mutex_unlock(&zonelists_mutex); 2979 } 2980 } 2981 out: 2982 mutex_unlock(&zl_order_mutex); 2983 return ret; 2984 } 2985 2986 2987 #define MAX_NODE_LOAD (nr_online_nodes) 2988 static int node_load[MAX_NUMNODES]; 2989 2990 /** 2991 * find_next_best_node - find the next node that should appear in a given node's fallback list 2992 * @node: node whose fallback list we're appending 2993 * @used_node_mask: nodemask_t of already used nodes 2994 * 2995 * We use a number of factors to determine which is the next node that should 2996 * appear on a given node's fallback list. The node should not have appeared 2997 * already in @node's fallback list, and it should be the next closest node 2998 * according to the distance array (which contains arbitrary distance values 2999 * from each node to each node in the system), and should also prefer nodes 3000 * with no CPUs, since presumably they'll have very little allocation pressure 3001 * on them otherwise. 3002 * It returns -1 if no node is found. 3003 */ 3004 static int find_next_best_node(int node, nodemask_t *used_node_mask) 3005 { 3006 int n, val; 3007 int min_val = INT_MAX; 3008 int best_node = -1; 3009 const struct cpumask *tmp = cpumask_of_node(0); 3010 3011 /* Use the local node if we haven't already */ 3012 if (!node_isset(node, *used_node_mask)) { 3013 node_set(node, *used_node_mask); 3014 return node; 3015 } 3016 3017 for_each_node_state(n, N_HIGH_MEMORY) { 3018 3019 /* Don't want a node to appear more than once */ 3020 if (node_isset(n, *used_node_mask)) 3021 continue; 3022 3023 /* Use the distance array to find the distance */ 3024 val = node_distance(node, n); 3025 3026 /* Penalize nodes under us ("prefer the next node") */ 3027 val += (n < node); 3028 3029 /* Give preference to headless and unused nodes */ 3030 tmp = cpumask_of_node(n); 3031 if (!cpumask_empty(tmp)) 3032 val += PENALTY_FOR_NODE_WITH_CPUS; 3033 3034 /* Slight preference for less loaded node */ 3035 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 3036 val += node_load[n]; 3037 3038 if (val < min_val) { 3039 min_val = val; 3040 best_node = n; 3041 } 3042 } 3043 3044 if (best_node >= 0) 3045 node_set(best_node, *used_node_mask); 3046 3047 return best_node; 3048 } 3049 3050 3051 /* 3052 * Build zonelists ordered by node and zones within node. 3053 * This results in maximum locality--normal zone overflows into local 3054 * DMA zone, if any--but risks exhausting DMA zone. 3055 */ 3056 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 3057 { 3058 int j; 3059 struct zonelist *zonelist; 3060 3061 zonelist = &pgdat->node_zonelists[0]; 3062 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 3063 ; 3064 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3065 MAX_NR_ZONES - 1); 3066 zonelist->_zonerefs[j].zone = NULL; 3067 zonelist->_zonerefs[j].zone_idx = 0; 3068 } 3069 3070 /* 3071 * Build gfp_thisnode zonelists 3072 */ 3073 static void build_thisnode_zonelists(pg_data_t *pgdat) 3074 { 3075 int j; 3076 struct zonelist *zonelist; 3077 3078 zonelist = &pgdat->node_zonelists[1]; 3079 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 3080 zonelist->_zonerefs[j].zone = NULL; 3081 zonelist->_zonerefs[j].zone_idx = 0; 3082 } 3083 3084 /* 3085 * Build zonelists ordered by zone and nodes within zones. 3086 * This results in conserving DMA zone[s] until all Normal memory is 3087 * exhausted, but results in overflowing to remote node while memory 3088 * may still exist in local DMA zone. 3089 */ 3090 static int node_order[MAX_NUMNODES]; 3091 3092 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 3093 { 3094 int pos, j, node; 3095 int zone_type; /* needs to be signed */ 3096 struct zone *z; 3097 struct zonelist *zonelist; 3098 3099 zonelist = &pgdat->node_zonelists[0]; 3100 pos = 0; 3101 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 3102 for (j = 0; j < nr_nodes; j++) { 3103 node = node_order[j]; 3104 z = &NODE_DATA(node)->node_zones[zone_type]; 3105 if (populated_zone(z)) { 3106 zoneref_set_zone(z, 3107 &zonelist->_zonerefs[pos++]); 3108 check_highest_zone(zone_type); 3109 } 3110 } 3111 } 3112 zonelist->_zonerefs[pos].zone = NULL; 3113 zonelist->_zonerefs[pos].zone_idx = 0; 3114 } 3115 3116 static int default_zonelist_order(void) 3117 { 3118 int nid, zone_type; 3119 unsigned long low_kmem_size,total_size; 3120 struct zone *z; 3121 int average_size; 3122 /* 3123 * ZONE_DMA and ZONE_DMA32 can be very small area in the system. 3124 * If they are really small and used heavily, the system can fall 3125 * into OOM very easily. 3126 * This function detect ZONE_DMA/DMA32 size and configures zone order. 3127 */ 3128 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ 3129 low_kmem_size = 0; 3130 total_size = 0; 3131 for_each_online_node(nid) { 3132 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 3133 z = &NODE_DATA(nid)->node_zones[zone_type]; 3134 if (populated_zone(z)) { 3135 if (zone_type < ZONE_NORMAL) 3136 low_kmem_size += z->present_pages; 3137 total_size += z->present_pages; 3138 } else if (zone_type == ZONE_NORMAL) { 3139 /* 3140 * If any node has only lowmem, then node order 3141 * is preferred to allow kernel allocations 3142 * locally; otherwise, they can easily infringe 3143 * on other nodes when there is an abundance of 3144 * lowmem available to allocate from. 3145 */ 3146 return ZONELIST_ORDER_NODE; 3147 } 3148 } 3149 } 3150 if (!low_kmem_size || /* there are no DMA area. */ 3151 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ 3152 return ZONELIST_ORDER_NODE; 3153 /* 3154 * look into each node's config. 3155 * If there is a node whose DMA/DMA32 memory is very big area on 3156 * local memory, NODE_ORDER may be suitable. 3157 */ 3158 average_size = total_size / 3159 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1); 3160 for_each_online_node(nid) { 3161 low_kmem_size = 0; 3162 total_size = 0; 3163 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 3164 z = &NODE_DATA(nid)->node_zones[zone_type]; 3165 if (populated_zone(z)) { 3166 if (zone_type < ZONE_NORMAL) 3167 low_kmem_size += z->present_pages; 3168 total_size += z->present_pages; 3169 } 3170 } 3171 if (low_kmem_size && 3172 total_size > average_size && /* ignore small node */ 3173 low_kmem_size > total_size * 70/100) 3174 return ZONELIST_ORDER_NODE; 3175 } 3176 return ZONELIST_ORDER_ZONE; 3177 } 3178 3179 static void set_zonelist_order(void) 3180 { 3181 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 3182 current_zonelist_order = default_zonelist_order(); 3183 else 3184 current_zonelist_order = user_zonelist_order; 3185 } 3186 3187 static void build_zonelists(pg_data_t *pgdat) 3188 { 3189 int j, node, load; 3190 enum zone_type i; 3191 nodemask_t used_mask; 3192 int local_node, prev_node; 3193 struct zonelist *zonelist; 3194 int order = current_zonelist_order; 3195 3196 /* initialize zonelists */ 3197 for (i = 0; i < MAX_ZONELISTS; i++) { 3198 zonelist = pgdat->node_zonelists + i; 3199 zonelist->_zonerefs[0].zone = NULL; 3200 zonelist->_zonerefs[0].zone_idx = 0; 3201 } 3202 3203 /* NUMA-aware ordering of nodes */ 3204 local_node = pgdat->node_id; 3205 load = nr_online_nodes; 3206 prev_node = local_node; 3207 nodes_clear(used_mask); 3208 3209 memset(node_order, 0, sizeof(node_order)); 3210 j = 0; 3211 3212 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 3213 int distance = node_distance(local_node, node); 3214 3215 /* 3216 * If another node is sufficiently far away then it is better 3217 * to reclaim pages in a zone before going off node. 3218 */ 3219 if (distance > RECLAIM_DISTANCE) 3220 zone_reclaim_mode = 1; 3221 3222 /* 3223 * We don't want to pressure a particular node. 3224 * So adding penalty to the first node in same 3225 * distance group to make it round-robin. 3226 */ 3227 if (distance != node_distance(local_node, prev_node)) 3228 node_load[node] = load; 3229 3230 prev_node = node; 3231 load--; 3232 if (order == ZONELIST_ORDER_NODE) 3233 build_zonelists_in_node_order(pgdat, node); 3234 else 3235 node_order[j++] = node; /* remember order */ 3236 } 3237 3238 if (order == ZONELIST_ORDER_ZONE) { 3239 /* calculate node order -- i.e., DMA last! */ 3240 build_zonelists_in_zone_order(pgdat, j); 3241 } 3242 3243 build_thisnode_zonelists(pgdat); 3244 } 3245 3246 /* Construct the zonelist performance cache - see further mmzone.h */ 3247 static void build_zonelist_cache(pg_data_t *pgdat) 3248 { 3249 struct zonelist *zonelist; 3250 struct zonelist_cache *zlc; 3251 struct zoneref *z; 3252 3253 zonelist = &pgdat->node_zonelists[0]; 3254 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 3255 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 3256 for (z = zonelist->_zonerefs; z->zone; z++) 3257 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 3258 } 3259 3260 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3261 /* 3262 * Return node id of node used for "local" allocations. 3263 * I.e., first node id of first zone in arg node's generic zonelist. 3264 * Used for initializing percpu 'numa_mem', which is used primarily 3265 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 3266 */ 3267 int local_memory_node(int node) 3268 { 3269 struct zone *zone; 3270 3271 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 3272 gfp_zone(GFP_KERNEL), 3273 NULL, 3274 &zone); 3275 return zone->node; 3276 } 3277 #endif 3278 3279 #else /* CONFIG_NUMA */ 3280 3281 static void set_zonelist_order(void) 3282 { 3283 current_zonelist_order = ZONELIST_ORDER_ZONE; 3284 } 3285 3286 static void build_zonelists(pg_data_t *pgdat) 3287 { 3288 int node, local_node; 3289 enum zone_type j; 3290 struct zonelist *zonelist; 3291 3292 local_node = pgdat->node_id; 3293 3294 zonelist = &pgdat->node_zonelists[0]; 3295 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 3296 3297 /* 3298 * Now we build the zonelist so that it contains the zones 3299 * of all the other nodes. 3300 * We don't want to pressure a particular node, so when 3301 * building the zones for node N, we make sure that the 3302 * zones coming right after the local ones are those from 3303 * node N+1 (modulo N) 3304 */ 3305 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 3306 if (!node_online(node)) 3307 continue; 3308 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3309 MAX_NR_ZONES - 1); 3310 } 3311 for (node = 0; node < local_node; node++) { 3312 if (!node_online(node)) 3313 continue; 3314 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3315 MAX_NR_ZONES - 1); 3316 } 3317 3318 zonelist->_zonerefs[j].zone = NULL; 3319 zonelist->_zonerefs[j].zone_idx = 0; 3320 } 3321 3322 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 3323 static void build_zonelist_cache(pg_data_t *pgdat) 3324 { 3325 pgdat->node_zonelists[0].zlcache_ptr = NULL; 3326 } 3327 3328 #endif /* CONFIG_NUMA */ 3329 3330 /* 3331 * Boot pageset table. One per cpu which is going to be used for all 3332 * zones and all nodes. The parameters will be set in such a way 3333 * that an item put on a list will immediately be handed over to 3334 * the buddy list. This is safe since pageset manipulation is done 3335 * with interrupts disabled. 3336 * 3337 * The boot_pagesets must be kept even after bootup is complete for 3338 * unused processors and/or zones. They do play a role for bootstrapping 3339 * hotplugged processors. 3340 * 3341 * zoneinfo_show() and maybe other functions do 3342 * not check if the processor is online before following the pageset pointer. 3343 * Other parts of the kernel may not check if the zone is available. 3344 */ 3345 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 3346 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 3347 static void setup_zone_pageset(struct zone *zone); 3348 3349 /* 3350 * Global mutex to protect against size modification of zonelists 3351 * as well as to serialize pageset setup for the new populated zone. 3352 */ 3353 DEFINE_MUTEX(zonelists_mutex); 3354 3355 /* return values int ....just for stop_machine() */ 3356 static __init_refok int __build_all_zonelists(void *data) 3357 { 3358 int nid; 3359 int cpu; 3360 3361 #ifdef CONFIG_NUMA 3362 memset(node_load, 0, sizeof(node_load)); 3363 #endif 3364 for_each_online_node(nid) { 3365 pg_data_t *pgdat = NODE_DATA(nid); 3366 3367 build_zonelists(pgdat); 3368 build_zonelist_cache(pgdat); 3369 } 3370 3371 /* 3372 * Initialize the boot_pagesets that are going to be used 3373 * for bootstrapping processors. The real pagesets for 3374 * each zone will be allocated later when the per cpu 3375 * allocator is available. 3376 * 3377 * boot_pagesets are used also for bootstrapping offline 3378 * cpus if the system is already booted because the pagesets 3379 * are needed to initialize allocators on a specific cpu too. 3380 * F.e. the percpu allocator needs the page allocator which 3381 * needs the percpu allocator in order to allocate its pagesets 3382 * (a chicken-egg dilemma). 3383 */ 3384 for_each_possible_cpu(cpu) { 3385 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 3386 3387 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3388 /* 3389 * We now know the "local memory node" for each node-- 3390 * i.e., the node of the first zone in the generic zonelist. 3391 * Set up numa_mem percpu variable for on-line cpus. During 3392 * boot, only the boot cpu should be on-line; we'll init the 3393 * secondary cpus' numa_mem as they come on-line. During 3394 * node/memory hotplug, we'll fixup all on-line cpus. 3395 */ 3396 if (cpu_online(cpu)) 3397 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 3398 #endif 3399 } 3400 3401 return 0; 3402 } 3403 3404 /* 3405 * Called with zonelists_mutex held always 3406 * unless system_state == SYSTEM_BOOTING. 3407 */ 3408 void __ref build_all_zonelists(void *data) 3409 { 3410 set_zonelist_order(); 3411 3412 if (system_state == SYSTEM_BOOTING) { 3413 __build_all_zonelists(NULL); 3414 mminit_verify_zonelist(); 3415 cpuset_init_current_mems_allowed(); 3416 } else { 3417 /* we have to stop all cpus to guarantee there is no user 3418 of zonelist */ 3419 #ifdef CONFIG_MEMORY_HOTPLUG 3420 if (data) 3421 setup_zone_pageset((struct zone *)data); 3422 #endif 3423 stop_machine(__build_all_zonelists, NULL, NULL); 3424 /* cpuset refresh routine should be here */ 3425 } 3426 vm_total_pages = nr_free_pagecache_pages(); 3427 /* 3428 * Disable grouping by mobility if the number of pages in the 3429 * system is too low to allow the mechanism to work. It would be 3430 * more accurate, but expensive to check per-zone. This check is 3431 * made on memory-hotadd so a system can start with mobility 3432 * disabled and enable it later 3433 */ 3434 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 3435 page_group_by_mobility_disabled = 1; 3436 else 3437 page_group_by_mobility_disabled = 0; 3438 3439 printk("Built %i zonelists in %s order, mobility grouping %s. " 3440 "Total pages: %ld\n", 3441 nr_online_nodes, 3442 zonelist_order_name[current_zonelist_order], 3443 page_group_by_mobility_disabled ? "off" : "on", 3444 vm_total_pages); 3445 #ifdef CONFIG_NUMA 3446 printk("Policy zone: %s\n", zone_names[policy_zone]); 3447 #endif 3448 } 3449 3450 /* 3451 * Helper functions to size the waitqueue hash table. 3452 * Essentially these want to choose hash table sizes sufficiently 3453 * large so that collisions trying to wait on pages are rare. 3454 * But in fact, the number of active page waitqueues on typical 3455 * systems is ridiculously low, less than 200. So this is even 3456 * conservative, even though it seems large. 3457 * 3458 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 3459 * waitqueues, i.e. the size of the waitq table given the number of pages. 3460 */ 3461 #define PAGES_PER_WAITQUEUE 256 3462 3463 #ifndef CONFIG_MEMORY_HOTPLUG 3464 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3465 { 3466 unsigned long size = 1; 3467 3468 pages /= PAGES_PER_WAITQUEUE; 3469 3470 while (size < pages) 3471 size <<= 1; 3472 3473 /* 3474 * Once we have dozens or even hundreds of threads sleeping 3475 * on IO we've got bigger problems than wait queue collision. 3476 * Limit the size of the wait table to a reasonable size. 3477 */ 3478 size = min(size, 4096UL); 3479 3480 return max(size, 4UL); 3481 } 3482 #else 3483 /* 3484 * A zone's size might be changed by hot-add, so it is not possible to determine 3485 * a suitable size for its wait_table. So we use the maximum size now. 3486 * 3487 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 3488 * 3489 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 3490 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 3491 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 3492 * 3493 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 3494 * or more by the traditional way. (See above). It equals: 3495 * 3496 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 3497 * ia64(16K page size) : = ( 8G + 4M)byte. 3498 * powerpc (64K page size) : = (32G +16M)byte. 3499 */ 3500 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3501 { 3502 return 4096UL; 3503 } 3504 #endif 3505 3506 /* 3507 * This is an integer logarithm so that shifts can be used later 3508 * to extract the more random high bits from the multiplicative 3509 * hash function before the remainder is taken. 3510 */ 3511 static inline unsigned long wait_table_bits(unsigned long size) 3512 { 3513 return ffz(~size); 3514 } 3515 3516 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 3517 3518 /* 3519 * Check if a pageblock contains reserved pages 3520 */ 3521 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn) 3522 { 3523 unsigned long pfn; 3524 3525 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3526 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn))) 3527 return 1; 3528 } 3529 return 0; 3530 } 3531 3532 /* 3533 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 3534 * of blocks reserved is based on min_wmark_pages(zone). The memory within 3535 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes 3536 * higher will lead to a bigger reserve which will get freed as contiguous 3537 * blocks as reclaim kicks in 3538 */ 3539 static void setup_zone_migrate_reserve(struct zone *zone) 3540 { 3541 unsigned long start_pfn, pfn, end_pfn, block_end_pfn; 3542 struct page *page; 3543 unsigned long block_migratetype; 3544 int reserve; 3545 3546 /* 3547 * Get the start pfn, end pfn and the number of blocks to reserve 3548 * We have to be careful to be aligned to pageblock_nr_pages to 3549 * make sure that we always check pfn_valid for the first page in 3550 * the block. 3551 */ 3552 start_pfn = zone->zone_start_pfn; 3553 end_pfn = start_pfn + zone->spanned_pages; 3554 start_pfn = roundup(start_pfn, pageblock_nr_pages); 3555 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> 3556 pageblock_order; 3557 3558 /* 3559 * Reserve blocks are generally in place to help high-order atomic 3560 * allocations that are short-lived. A min_free_kbytes value that 3561 * would result in more than 2 reserve blocks for atomic allocations 3562 * is assumed to be in place to help anti-fragmentation for the 3563 * future allocation of hugepages at runtime. 3564 */ 3565 reserve = min(2, reserve); 3566 3567 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 3568 if (!pfn_valid(pfn)) 3569 continue; 3570 page = pfn_to_page(pfn); 3571 3572 /* Watch out for overlapping nodes */ 3573 if (page_to_nid(page) != zone_to_nid(zone)) 3574 continue; 3575 3576 block_migratetype = get_pageblock_migratetype(page); 3577 3578 /* Only test what is necessary when the reserves are not met */ 3579 if (reserve > 0) { 3580 /* 3581 * Blocks with reserved pages will never free, skip 3582 * them. 3583 */ 3584 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn); 3585 if (pageblock_is_reserved(pfn, block_end_pfn)) 3586 continue; 3587 3588 /* If this block is reserved, account for it */ 3589 if (block_migratetype == MIGRATE_RESERVE) { 3590 reserve--; 3591 continue; 3592 } 3593 3594 /* Suitable for reserving if this block is movable */ 3595 if (block_migratetype == MIGRATE_MOVABLE) { 3596 set_pageblock_migratetype(page, 3597 MIGRATE_RESERVE); 3598 move_freepages_block(zone, page, 3599 MIGRATE_RESERVE); 3600 reserve--; 3601 continue; 3602 } 3603 } 3604 3605 /* 3606 * If the reserve is met and this is a previous reserved block, 3607 * take it back 3608 */ 3609 if (block_migratetype == MIGRATE_RESERVE) { 3610 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3611 move_freepages_block(zone, page, MIGRATE_MOVABLE); 3612 } 3613 } 3614 } 3615 3616 /* 3617 * Initially all pages are reserved - free ones are freed 3618 * up by free_all_bootmem() once the early boot process is 3619 * done. Non-atomic initialization, single-pass. 3620 */ 3621 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 3622 unsigned long start_pfn, enum memmap_context context) 3623 { 3624 struct page *page; 3625 unsigned long end_pfn = start_pfn + size; 3626 unsigned long pfn; 3627 struct zone *z; 3628 3629 if (highest_memmap_pfn < end_pfn - 1) 3630 highest_memmap_pfn = end_pfn - 1; 3631 3632 z = &NODE_DATA(nid)->node_zones[zone]; 3633 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3634 /* 3635 * There can be holes in boot-time mem_map[]s 3636 * handed to this function. They do not 3637 * exist on hotplugged memory. 3638 */ 3639 if (context == MEMMAP_EARLY) { 3640 if (!early_pfn_valid(pfn)) 3641 continue; 3642 if (!early_pfn_in_nid(pfn, nid)) 3643 continue; 3644 } 3645 page = pfn_to_page(pfn); 3646 set_page_links(page, zone, nid, pfn); 3647 mminit_verify_page_links(page, zone, nid, pfn); 3648 init_page_count(page); 3649 reset_page_mapcount(page); 3650 SetPageReserved(page); 3651 /* 3652 * Mark the block movable so that blocks are reserved for 3653 * movable at startup. This will force kernel allocations 3654 * to reserve their blocks rather than leaking throughout 3655 * the address space during boot when many long-lived 3656 * kernel allocations are made. Later some blocks near 3657 * the start are marked MIGRATE_RESERVE by 3658 * setup_zone_migrate_reserve() 3659 * 3660 * bitmap is created for zone's valid pfn range. but memmap 3661 * can be created for invalid pages (for alignment) 3662 * check here not to call set_pageblock_migratetype() against 3663 * pfn out of zone. 3664 */ 3665 if ((z->zone_start_pfn <= pfn) 3666 && (pfn < z->zone_start_pfn + z->spanned_pages) 3667 && !(pfn & (pageblock_nr_pages - 1))) 3668 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3669 3670 INIT_LIST_HEAD(&page->lru); 3671 #ifdef WANT_PAGE_VIRTUAL 3672 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 3673 if (!is_highmem_idx(zone)) 3674 set_page_address(page, __va(pfn << PAGE_SHIFT)); 3675 #endif 3676 } 3677 } 3678 3679 static void __meminit zone_init_free_lists(struct zone *zone) 3680 { 3681 int order, t; 3682 for_each_migratetype_order(order, t) { 3683 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 3684 zone->free_area[order].nr_free = 0; 3685 } 3686 } 3687 3688 #ifndef __HAVE_ARCH_MEMMAP_INIT 3689 #define memmap_init(size, nid, zone, start_pfn) \ 3690 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 3691 #endif 3692 3693 static int zone_batchsize(struct zone *zone) 3694 { 3695 #ifdef CONFIG_MMU 3696 int batch; 3697 3698 /* 3699 * The per-cpu-pages pools are set to around 1000th of the 3700 * size of the zone. But no more than 1/2 of a meg. 3701 * 3702 * OK, so we don't know how big the cache is. So guess. 3703 */ 3704 batch = zone->present_pages / 1024; 3705 if (batch * PAGE_SIZE > 512 * 1024) 3706 batch = (512 * 1024) / PAGE_SIZE; 3707 batch /= 4; /* We effectively *= 4 below */ 3708 if (batch < 1) 3709 batch = 1; 3710 3711 /* 3712 * Clamp the batch to a 2^n - 1 value. Having a power 3713 * of 2 value was found to be more likely to have 3714 * suboptimal cache aliasing properties in some cases. 3715 * 3716 * For example if 2 tasks are alternately allocating 3717 * batches of pages, one task can end up with a lot 3718 * of pages of one half of the possible page colors 3719 * and the other with pages of the other colors. 3720 */ 3721 batch = rounddown_pow_of_two(batch + batch/2) - 1; 3722 3723 return batch; 3724 3725 #else 3726 /* The deferral and batching of frees should be suppressed under NOMMU 3727 * conditions. 3728 * 3729 * The problem is that NOMMU needs to be able to allocate large chunks 3730 * of contiguous memory as there's no hardware page translation to 3731 * assemble apparent contiguous memory from discontiguous pages. 3732 * 3733 * Queueing large contiguous runs of pages for batching, however, 3734 * causes the pages to actually be freed in smaller chunks. As there 3735 * can be a significant delay between the individual batches being 3736 * recycled, this leads to the once large chunks of space being 3737 * fragmented and becoming unavailable for high-order allocations. 3738 */ 3739 return 0; 3740 #endif 3741 } 3742 3743 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 3744 { 3745 struct per_cpu_pages *pcp; 3746 int migratetype; 3747 3748 memset(p, 0, sizeof(*p)); 3749 3750 pcp = &p->pcp; 3751 pcp->count = 0; 3752 pcp->high = 6 * batch; 3753 pcp->batch = max(1UL, 1 * batch); 3754 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 3755 INIT_LIST_HEAD(&pcp->lists[migratetype]); 3756 } 3757 3758 /* 3759 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 3760 * to the value high for the pageset p. 3761 */ 3762 3763 static void setup_pagelist_highmark(struct per_cpu_pageset *p, 3764 unsigned long high) 3765 { 3766 struct per_cpu_pages *pcp; 3767 3768 pcp = &p->pcp; 3769 pcp->high = high; 3770 pcp->batch = max(1UL, high/4); 3771 if ((high/4) > (PAGE_SHIFT * 8)) 3772 pcp->batch = PAGE_SHIFT * 8; 3773 } 3774 3775 static void setup_zone_pageset(struct zone *zone) 3776 { 3777 int cpu; 3778 3779 zone->pageset = alloc_percpu(struct per_cpu_pageset); 3780 3781 for_each_possible_cpu(cpu) { 3782 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 3783 3784 setup_pageset(pcp, zone_batchsize(zone)); 3785 3786 if (percpu_pagelist_fraction) 3787 setup_pagelist_highmark(pcp, 3788 (zone->present_pages / 3789 percpu_pagelist_fraction)); 3790 } 3791 } 3792 3793 /* 3794 * Allocate per cpu pagesets and initialize them. 3795 * Before this call only boot pagesets were available. 3796 */ 3797 void __init setup_per_cpu_pageset(void) 3798 { 3799 struct zone *zone; 3800 3801 for_each_populated_zone(zone) 3802 setup_zone_pageset(zone); 3803 } 3804 3805 static noinline __init_refok 3806 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 3807 { 3808 int i; 3809 struct pglist_data *pgdat = zone->zone_pgdat; 3810 size_t alloc_size; 3811 3812 /* 3813 * The per-page waitqueue mechanism uses hashed waitqueues 3814 * per zone. 3815 */ 3816 zone->wait_table_hash_nr_entries = 3817 wait_table_hash_nr_entries(zone_size_pages); 3818 zone->wait_table_bits = 3819 wait_table_bits(zone->wait_table_hash_nr_entries); 3820 alloc_size = zone->wait_table_hash_nr_entries 3821 * sizeof(wait_queue_head_t); 3822 3823 if (!slab_is_available()) { 3824 zone->wait_table = (wait_queue_head_t *) 3825 alloc_bootmem_node_nopanic(pgdat, alloc_size); 3826 } else { 3827 /* 3828 * This case means that a zone whose size was 0 gets new memory 3829 * via memory hot-add. 3830 * But it may be the case that a new node was hot-added. In 3831 * this case vmalloc() will not be able to use this new node's 3832 * memory - this wait_table must be initialized to use this new 3833 * node itself as well. 3834 * To use this new node's memory, further consideration will be 3835 * necessary. 3836 */ 3837 zone->wait_table = vmalloc(alloc_size); 3838 } 3839 if (!zone->wait_table) 3840 return -ENOMEM; 3841 3842 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) 3843 init_waitqueue_head(zone->wait_table + i); 3844 3845 return 0; 3846 } 3847 3848 static int __zone_pcp_update(void *data) 3849 { 3850 struct zone *zone = data; 3851 int cpu; 3852 unsigned long batch = zone_batchsize(zone), flags; 3853 3854 for_each_possible_cpu(cpu) { 3855 struct per_cpu_pageset *pset; 3856 struct per_cpu_pages *pcp; 3857 3858 pset = per_cpu_ptr(zone->pageset, cpu); 3859 pcp = &pset->pcp; 3860 3861 local_irq_save(flags); 3862 free_pcppages_bulk(zone, pcp->count, pcp); 3863 setup_pageset(pset, batch); 3864 local_irq_restore(flags); 3865 } 3866 return 0; 3867 } 3868 3869 void zone_pcp_update(struct zone *zone) 3870 { 3871 stop_machine(__zone_pcp_update, zone, NULL); 3872 } 3873 3874 static __meminit void zone_pcp_init(struct zone *zone) 3875 { 3876 /* 3877 * per cpu subsystem is not up at this point. The following code 3878 * relies on the ability of the linker to provide the 3879 * offset of a (static) per cpu variable into the per cpu area. 3880 */ 3881 zone->pageset = &boot_pageset; 3882 3883 if (zone->present_pages) 3884 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 3885 zone->name, zone->present_pages, 3886 zone_batchsize(zone)); 3887 } 3888 3889 __meminit int init_currently_empty_zone(struct zone *zone, 3890 unsigned long zone_start_pfn, 3891 unsigned long size, 3892 enum memmap_context context) 3893 { 3894 struct pglist_data *pgdat = zone->zone_pgdat; 3895 int ret; 3896 ret = zone_wait_table_init(zone, size); 3897 if (ret) 3898 return ret; 3899 pgdat->nr_zones = zone_idx(zone) + 1; 3900 3901 zone->zone_start_pfn = zone_start_pfn; 3902 3903 mminit_dprintk(MMINIT_TRACE, "memmap_init", 3904 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 3905 pgdat->node_id, 3906 (unsigned long)zone_idx(zone), 3907 zone_start_pfn, (zone_start_pfn + size)); 3908 3909 zone_init_free_lists(zone); 3910 3911 return 0; 3912 } 3913 3914 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 3915 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 3916 /* 3917 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 3918 * Architectures may implement their own version but if add_active_range() 3919 * was used and there are no special requirements, this is a convenient 3920 * alternative 3921 */ 3922 int __meminit __early_pfn_to_nid(unsigned long pfn) 3923 { 3924 unsigned long start_pfn, end_pfn; 3925 int i, nid; 3926 3927 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 3928 if (start_pfn <= pfn && pfn < end_pfn) 3929 return nid; 3930 /* This is a memory hole */ 3931 return -1; 3932 } 3933 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 3934 3935 int __meminit early_pfn_to_nid(unsigned long pfn) 3936 { 3937 int nid; 3938 3939 nid = __early_pfn_to_nid(pfn); 3940 if (nid >= 0) 3941 return nid; 3942 /* just returns 0 */ 3943 return 0; 3944 } 3945 3946 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 3947 bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 3948 { 3949 int nid; 3950 3951 nid = __early_pfn_to_nid(pfn); 3952 if (nid >= 0 && nid != node) 3953 return false; 3954 return true; 3955 } 3956 #endif 3957 3958 /** 3959 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range 3960 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 3961 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node 3962 * 3963 * If an architecture guarantees that all ranges registered with 3964 * add_active_ranges() contain no holes and may be freed, this 3965 * this function may be used instead of calling free_bootmem() manually. 3966 */ 3967 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 3968 { 3969 unsigned long start_pfn, end_pfn; 3970 int i, this_nid; 3971 3972 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 3973 start_pfn = min(start_pfn, max_low_pfn); 3974 end_pfn = min(end_pfn, max_low_pfn); 3975 3976 if (start_pfn < end_pfn) 3977 free_bootmem_node(NODE_DATA(this_nid), 3978 PFN_PHYS(start_pfn), 3979 (end_pfn - start_pfn) << PAGE_SHIFT); 3980 } 3981 } 3982 3983 /** 3984 * sparse_memory_present_with_active_regions - Call memory_present for each active range 3985 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 3986 * 3987 * If an architecture guarantees that all ranges registered with 3988 * add_active_ranges() contain no holes and may be freed, this 3989 * function may be used instead of calling memory_present() manually. 3990 */ 3991 void __init sparse_memory_present_with_active_regions(int nid) 3992 { 3993 unsigned long start_pfn, end_pfn; 3994 int i, this_nid; 3995 3996 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 3997 memory_present(this_nid, start_pfn, end_pfn); 3998 } 3999 4000 /** 4001 * get_pfn_range_for_nid - Return the start and end page frames for a node 4002 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 4003 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 4004 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 4005 * 4006 * It returns the start and end page frame of a node based on information 4007 * provided by an arch calling add_active_range(). If called for a node 4008 * with no available memory, a warning is printed and the start and end 4009 * PFNs will be 0. 4010 */ 4011 void __meminit get_pfn_range_for_nid(unsigned int nid, 4012 unsigned long *start_pfn, unsigned long *end_pfn) 4013 { 4014 unsigned long this_start_pfn, this_end_pfn; 4015 int i; 4016 4017 *start_pfn = -1UL; 4018 *end_pfn = 0; 4019 4020 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 4021 *start_pfn = min(*start_pfn, this_start_pfn); 4022 *end_pfn = max(*end_pfn, this_end_pfn); 4023 } 4024 4025 if (*start_pfn == -1UL) 4026 *start_pfn = 0; 4027 } 4028 4029 /* 4030 * This finds a zone that can be used for ZONE_MOVABLE pages. The 4031 * assumption is made that zones within a node are ordered in monotonic 4032 * increasing memory addresses so that the "highest" populated zone is used 4033 */ 4034 static void __init find_usable_zone_for_movable(void) 4035 { 4036 int zone_index; 4037 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 4038 if (zone_index == ZONE_MOVABLE) 4039 continue; 4040 4041 if (arch_zone_highest_possible_pfn[zone_index] > 4042 arch_zone_lowest_possible_pfn[zone_index]) 4043 break; 4044 } 4045 4046 VM_BUG_ON(zone_index == -1); 4047 movable_zone = zone_index; 4048 } 4049 4050 /* 4051 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 4052 * because it is sized independent of architecture. Unlike the other zones, 4053 * the starting point for ZONE_MOVABLE is not fixed. It may be different 4054 * in each node depending on the size of each node and how evenly kernelcore 4055 * is distributed. This helper function adjusts the zone ranges 4056 * provided by the architecture for a given node by using the end of the 4057 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 4058 * zones within a node are in order of monotonic increases memory addresses 4059 */ 4060 static void __meminit adjust_zone_range_for_zone_movable(int nid, 4061 unsigned long zone_type, 4062 unsigned long node_start_pfn, 4063 unsigned long node_end_pfn, 4064 unsigned long *zone_start_pfn, 4065 unsigned long *zone_end_pfn) 4066 { 4067 /* Only adjust if ZONE_MOVABLE is on this node */ 4068 if (zone_movable_pfn[nid]) { 4069 /* Size ZONE_MOVABLE */ 4070 if (zone_type == ZONE_MOVABLE) { 4071 *zone_start_pfn = zone_movable_pfn[nid]; 4072 *zone_end_pfn = min(node_end_pfn, 4073 arch_zone_highest_possible_pfn[movable_zone]); 4074 4075 /* Adjust for ZONE_MOVABLE starting within this range */ 4076 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 4077 *zone_end_pfn > zone_movable_pfn[nid]) { 4078 *zone_end_pfn = zone_movable_pfn[nid]; 4079 4080 /* Check if this whole range is within ZONE_MOVABLE */ 4081 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 4082 *zone_start_pfn = *zone_end_pfn; 4083 } 4084 } 4085 4086 /* 4087 * Return the number of pages a zone spans in a node, including holes 4088 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 4089 */ 4090 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 4091 unsigned long zone_type, 4092 unsigned long *ignored) 4093 { 4094 unsigned long node_start_pfn, node_end_pfn; 4095 unsigned long zone_start_pfn, zone_end_pfn; 4096 4097 /* Get the start and end of the node and zone */ 4098 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 4099 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 4100 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 4101 adjust_zone_range_for_zone_movable(nid, zone_type, 4102 node_start_pfn, node_end_pfn, 4103 &zone_start_pfn, &zone_end_pfn); 4104 4105 /* Check that this node has pages within the zone's required range */ 4106 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 4107 return 0; 4108 4109 /* Move the zone boundaries inside the node if necessary */ 4110 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 4111 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 4112 4113 /* Return the spanned pages */ 4114 return zone_end_pfn - zone_start_pfn; 4115 } 4116 4117 /* 4118 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 4119 * then all holes in the requested range will be accounted for. 4120 */ 4121 unsigned long __meminit __absent_pages_in_range(int nid, 4122 unsigned long range_start_pfn, 4123 unsigned long range_end_pfn) 4124 { 4125 unsigned long nr_absent = range_end_pfn - range_start_pfn; 4126 unsigned long start_pfn, end_pfn; 4127 int i; 4128 4129 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 4130 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 4131 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 4132 nr_absent -= end_pfn - start_pfn; 4133 } 4134 return nr_absent; 4135 } 4136 4137 /** 4138 * absent_pages_in_range - Return number of page frames in holes within a range 4139 * @start_pfn: The start PFN to start searching for holes 4140 * @end_pfn: The end PFN to stop searching for holes 4141 * 4142 * It returns the number of pages frames in memory holes within a range. 4143 */ 4144 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 4145 unsigned long end_pfn) 4146 { 4147 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 4148 } 4149 4150 /* Return the number of page frames in holes in a zone on a node */ 4151 static unsigned long __meminit zone_absent_pages_in_node(int nid, 4152 unsigned long zone_type, 4153 unsigned long *ignored) 4154 { 4155 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 4156 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 4157 unsigned long node_start_pfn, node_end_pfn; 4158 unsigned long zone_start_pfn, zone_end_pfn; 4159 4160 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 4161 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 4162 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 4163 4164 adjust_zone_range_for_zone_movable(nid, zone_type, 4165 node_start_pfn, node_end_pfn, 4166 &zone_start_pfn, &zone_end_pfn); 4167 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 4168 } 4169 4170 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4171 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 4172 unsigned long zone_type, 4173 unsigned long *zones_size) 4174 { 4175 return zones_size[zone_type]; 4176 } 4177 4178 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 4179 unsigned long zone_type, 4180 unsigned long *zholes_size) 4181 { 4182 if (!zholes_size) 4183 return 0; 4184 4185 return zholes_size[zone_type]; 4186 } 4187 4188 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4189 4190 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 4191 unsigned long *zones_size, unsigned long *zholes_size) 4192 { 4193 unsigned long realtotalpages, totalpages = 0; 4194 enum zone_type i; 4195 4196 for (i = 0; i < MAX_NR_ZONES; i++) 4197 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 4198 zones_size); 4199 pgdat->node_spanned_pages = totalpages; 4200 4201 realtotalpages = totalpages; 4202 for (i = 0; i < MAX_NR_ZONES; i++) 4203 realtotalpages -= 4204 zone_absent_pages_in_node(pgdat->node_id, i, 4205 zholes_size); 4206 pgdat->node_present_pages = realtotalpages; 4207 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 4208 realtotalpages); 4209 } 4210 4211 #ifndef CONFIG_SPARSEMEM 4212 /* 4213 * Calculate the size of the zone->blockflags rounded to an unsigned long 4214 * Start by making sure zonesize is a multiple of pageblock_order by rounding 4215 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 4216 * round what is now in bits to nearest long in bits, then return it in 4217 * bytes. 4218 */ 4219 static unsigned long __init usemap_size(unsigned long zonesize) 4220 { 4221 unsigned long usemapsize; 4222 4223 usemapsize = roundup(zonesize, pageblock_nr_pages); 4224 usemapsize = usemapsize >> pageblock_order; 4225 usemapsize *= NR_PAGEBLOCK_BITS; 4226 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 4227 4228 return usemapsize / 8; 4229 } 4230 4231 static void __init setup_usemap(struct pglist_data *pgdat, 4232 struct zone *zone, unsigned long zonesize) 4233 { 4234 unsigned long usemapsize = usemap_size(zonesize); 4235 zone->pageblock_flags = NULL; 4236 if (usemapsize) 4237 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat, 4238 usemapsize); 4239 } 4240 #else 4241 static inline void setup_usemap(struct pglist_data *pgdat, 4242 struct zone *zone, unsigned long zonesize) {} 4243 #endif /* CONFIG_SPARSEMEM */ 4244 4245 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 4246 4247 /* Return a sensible default order for the pageblock size. */ 4248 static inline int pageblock_default_order(void) 4249 { 4250 if (HPAGE_SHIFT > PAGE_SHIFT) 4251 return HUGETLB_PAGE_ORDER; 4252 4253 return MAX_ORDER-1; 4254 } 4255 4256 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 4257 static inline void __init set_pageblock_order(unsigned int order) 4258 { 4259 /* Check that pageblock_nr_pages has not already been setup */ 4260 if (pageblock_order) 4261 return; 4262 4263 /* 4264 * Assume the largest contiguous order of interest is a huge page. 4265 * This value may be variable depending on boot parameters on IA64 4266 */ 4267 pageblock_order = order; 4268 } 4269 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4270 4271 /* 4272 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 4273 * and pageblock_default_order() are unused as pageblock_order is set 4274 * at compile-time. See include/linux/pageblock-flags.h for the values of 4275 * pageblock_order based on the kernel config 4276 */ 4277 static inline int pageblock_default_order(unsigned int order) 4278 { 4279 return MAX_ORDER-1; 4280 } 4281 #define set_pageblock_order(x) do {} while (0) 4282 4283 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4284 4285 /* 4286 * Set up the zone data structures: 4287 * - mark all pages reserved 4288 * - mark all memory queues empty 4289 * - clear the memory bitmaps 4290 */ 4291 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 4292 unsigned long *zones_size, unsigned long *zholes_size) 4293 { 4294 enum zone_type j; 4295 int nid = pgdat->node_id; 4296 unsigned long zone_start_pfn = pgdat->node_start_pfn; 4297 int ret; 4298 4299 pgdat_resize_init(pgdat); 4300 pgdat->nr_zones = 0; 4301 init_waitqueue_head(&pgdat->kswapd_wait); 4302 pgdat->kswapd_max_order = 0; 4303 pgdat_page_cgroup_init(pgdat); 4304 4305 for (j = 0; j < MAX_NR_ZONES; j++) { 4306 struct zone *zone = pgdat->node_zones + j; 4307 unsigned long size, realsize, memmap_pages; 4308 enum lru_list lru; 4309 4310 size = zone_spanned_pages_in_node(nid, j, zones_size); 4311 realsize = size - zone_absent_pages_in_node(nid, j, 4312 zholes_size); 4313 4314 /* 4315 * Adjust realsize so that it accounts for how much memory 4316 * is used by this zone for memmap. This affects the watermark 4317 * and per-cpu initialisations 4318 */ 4319 memmap_pages = 4320 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT; 4321 if (realsize >= memmap_pages) { 4322 realsize -= memmap_pages; 4323 if (memmap_pages) 4324 printk(KERN_DEBUG 4325 " %s zone: %lu pages used for memmap\n", 4326 zone_names[j], memmap_pages); 4327 } else 4328 printk(KERN_WARNING 4329 " %s zone: %lu pages exceeds realsize %lu\n", 4330 zone_names[j], memmap_pages, realsize); 4331 4332 /* Account for reserved pages */ 4333 if (j == 0 && realsize > dma_reserve) { 4334 realsize -= dma_reserve; 4335 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 4336 zone_names[0], dma_reserve); 4337 } 4338 4339 if (!is_highmem_idx(j)) 4340 nr_kernel_pages += realsize; 4341 nr_all_pages += realsize; 4342 4343 zone->spanned_pages = size; 4344 zone->present_pages = realsize; 4345 #ifdef CONFIG_NUMA 4346 zone->node = nid; 4347 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio) 4348 / 100; 4349 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100; 4350 #endif 4351 zone->name = zone_names[j]; 4352 spin_lock_init(&zone->lock); 4353 spin_lock_init(&zone->lru_lock); 4354 zone_seqlock_init(zone); 4355 zone->zone_pgdat = pgdat; 4356 4357 zone_pcp_init(zone); 4358 for_each_lru(lru) 4359 INIT_LIST_HEAD(&zone->lruvec.lists[lru]); 4360 zone->reclaim_stat.recent_rotated[0] = 0; 4361 zone->reclaim_stat.recent_rotated[1] = 0; 4362 zone->reclaim_stat.recent_scanned[0] = 0; 4363 zone->reclaim_stat.recent_scanned[1] = 0; 4364 zap_zone_vm_stats(zone); 4365 zone->flags = 0; 4366 if (!size) 4367 continue; 4368 4369 set_pageblock_order(pageblock_default_order()); 4370 setup_usemap(pgdat, zone, size); 4371 ret = init_currently_empty_zone(zone, zone_start_pfn, 4372 size, MEMMAP_EARLY); 4373 BUG_ON(ret); 4374 memmap_init(size, nid, j, zone_start_pfn); 4375 zone_start_pfn += size; 4376 } 4377 } 4378 4379 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 4380 { 4381 /* Skip empty nodes */ 4382 if (!pgdat->node_spanned_pages) 4383 return; 4384 4385 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4386 /* ia64 gets its own node_mem_map, before this, without bootmem */ 4387 if (!pgdat->node_mem_map) { 4388 unsigned long size, start, end; 4389 struct page *map; 4390 4391 /* 4392 * The zone's endpoints aren't required to be MAX_ORDER 4393 * aligned but the node_mem_map endpoints must be in order 4394 * for the buddy allocator to function correctly. 4395 */ 4396 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 4397 end = pgdat->node_start_pfn + pgdat->node_spanned_pages; 4398 end = ALIGN(end, MAX_ORDER_NR_PAGES); 4399 size = (end - start) * sizeof(struct page); 4400 map = alloc_remap(pgdat->node_id, size); 4401 if (!map) 4402 map = alloc_bootmem_node_nopanic(pgdat, size); 4403 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 4404 } 4405 #ifndef CONFIG_NEED_MULTIPLE_NODES 4406 /* 4407 * With no DISCONTIG, the global mem_map is just set as node 0's 4408 */ 4409 if (pgdat == NODE_DATA(0)) { 4410 mem_map = NODE_DATA(0)->node_mem_map; 4411 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4412 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 4413 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 4414 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4415 } 4416 #endif 4417 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 4418 } 4419 4420 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 4421 unsigned long node_start_pfn, unsigned long *zholes_size) 4422 { 4423 pg_data_t *pgdat = NODE_DATA(nid); 4424 4425 pgdat->node_id = nid; 4426 pgdat->node_start_pfn = node_start_pfn; 4427 calculate_node_totalpages(pgdat, zones_size, zholes_size); 4428 4429 alloc_node_mem_map(pgdat); 4430 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4431 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 4432 nid, (unsigned long)pgdat, 4433 (unsigned long)pgdat->node_mem_map); 4434 #endif 4435 4436 free_area_init_core(pgdat, zones_size, zholes_size); 4437 } 4438 4439 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4440 4441 #if MAX_NUMNODES > 1 4442 /* 4443 * Figure out the number of possible node ids. 4444 */ 4445 static void __init setup_nr_node_ids(void) 4446 { 4447 unsigned int node; 4448 unsigned int highest = 0; 4449 4450 for_each_node_mask(node, node_possible_map) 4451 highest = node; 4452 nr_node_ids = highest + 1; 4453 } 4454 #else 4455 static inline void setup_nr_node_ids(void) 4456 { 4457 } 4458 #endif 4459 4460 /** 4461 * node_map_pfn_alignment - determine the maximum internode alignment 4462 * 4463 * This function should be called after node map is populated and sorted. 4464 * It calculates the maximum power of two alignment which can distinguish 4465 * all the nodes. 4466 * 4467 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 4468 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 4469 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 4470 * shifted, 1GiB is enough and this function will indicate so. 4471 * 4472 * This is used to test whether pfn -> nid mapping of the chosen memory 4473 * model has fine enough granularity to avoid incorrect mapping for the 4474 * populated node map. 4475 * 4476 * Returns the determined alignment in pfn's. 0 if there is no alignment 4477 * requirement (single node). 4478 */ 4479 unsigned long __init node_map_pfn_alignment(void) 4480 { 4481 unsigned long accl_mask = 0, last_end = 0; 4482 unsigned long start, end, mask; 4483 int last_nid = -1; 4484 int i, nid; 4485 4486 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 4487 if (!start || last_nid < 0 || last_nid == nid) { 4488 last_nid = nid; 4489 last_end = end; 4490 continue; 4491 } 4492 4493 /* 4494 * Start with a mask granular enough to pin-point to the 4495 * start pfn and tick off bits one-by-one until it becomes 4496 * too coarse to separate the current node from the last. 4497 */ 4498 mask = ~((1 << __ffs(start)) - 1); 4499 while (mask && last_end <= (start & (mask << 1))) 4500 mask <<= 1; 4501 4502 /* accumulate all internode masks */ 4503 accl_mask |= mask; 4504 } 4505 4506 /* convert mask to number of pages */ 4507 return ~accl_mask + 1; 4508 } 4509 4510 /* Find the lowest pfn for a node */ 4511 static unsigned long __init find_min_pfn_for_node(int nid) 4512 { 4513 unsigned long min_pfn = ULONG_MAX; 4514 unsigned long start_pfn; 4515 int i; 4516 4517 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 4518 min_pfn = min(min_pfn, start_pfn); 4519 4520 if (min_pfn == ULONG_MAX) { 4521 printk(KERN_WARNING 4522 "Could not find start_pfn for node %d\n", nid); 4523 return 0; 4524 } 4525 4526 return min_pfn; 4527 } 4528 4529 /** 4530 * find_min_pfn_with_active_regions - Find the minimum PFN registered 4531 * 4532 * It returns the minimum PFN based on information provided via 4533 * add_active_range(). 4534 */ 4535 unsigned long __init find_min_pfn_with_active_regions(void) 4536 { 4537 return find_min_pfn_for_node(MAX_NUMNODES); 4538 } 4539 4540 /* 4541 * early_calculate_totalpages() 4542 * Sum pages in active regions for movable zone. 4543 * Populate N_HIGH_MEMORY for calculating usable_nodes. 4544 */ 4545 static unsigned long __init early_calculate_totalpages(void) 4546 { 4547 unsigned long totalpages = 0; 4548 unsigned long start_pfn, end_pfn; 4549 int i, nid; 4550 4551 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 4552 unsigned long pages = end_pfn - start_pfn; 4553 4554 totalpages += pages; 4555 if (pages) 4556 node_set_state(nid, N_HIGH_MEMORY); 4557 } 4558 return totalpages; 4559 } 4560 4561 /* 4562 * Find the PFN the Movable zone begins in each node. Kernel memory 4563 * is spread evenly between nodes as long as the nodes have enough 4564 * memory. When they don't, some nodes will have more kernelcore than 4565 * others 4566 */ 4567 static void __init find_zone_movable_pfns_for_nodes(void) 4568 { 4569 int i, nid; 4570 unsigned long usable_startpfn; 4571 unsigned long kernelcore_node, kernelcore_remaining; 4572 /* save the state before borrow the nodemask */ 4573 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY]; 4574 unsigned long totalpages = early_calculate_totalpages(); 4575 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]); 4576 4577 /* 4578 * If movablecore was specified, calculate what size of 4579 * kernelcore that corresponds so that memory usable for 4580 * any allocation type is evenly spread. If both kernelcore 4581 * and movablecore are specified, then the value of kernelcore 4582 * will be used for required_kernelcore if it's greater than 4583 * what movablecore would have allowed. 4584 */ 4585 if (required_movablecore) { 4586 unsigned long corepages; 4587 4588 /* 4589 * Round-up so that ZONE_MOVABLE is at least as large as what 4590 * was requested by the user 4591 */ 4592 required_movablecore = 4593 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 4594 corepages = totalpages - required_movablecore; 4595 4596 required_kernelcore = max(required_kernelcore, corepages); 4597 } 4598 4599 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 4600 if (!required_kernelcore) 4601 goto out; 4602 4603 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 4604 find_usable_zone_for_movable(); 4605 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 4606 4607 restart: 4608 /* Spread kernelcore memory as evenly as possible throughout nodes */ 4609 kernelcore_node = required_kernelcore / usable_nodes; 4610 for_each_node_state(nid, N_HIGH_MEMORY) { 4611 unsigned long start_pfn, end_pfn; 4612 4613 /* 4614 * Recalculate kernelcore_node if the division per node 4615 * now exceeds what is necessary to satisfy the requested 4616 * amount of memory for the kernel 4617 */ 4618 if (required_kernelcore < kernelcore_node) 4619 kernelcore_node = required_kernelcore / usable_nodes; 4620 4621 /* 4622 * As the map is walked, we track how much memory is usable 4623 * by the kernel using kernelcore_remaining. When it is 4624 * 0, the rest of the node is usable by ZONE_MOVABLE 4625 */ 4626 kernelcore_remaining = kernelcore_node; 4627 4628 /* Go through each range of PFNs within this node */ 4629 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 4630 unsigned long size_pages; 4631 4632 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 4633 if (start_pfn >= end_pfn) 4634 continue; 4635 4636 /* Account for what is only usable for kernelcore */ 4637 if (start_pfn < usable_startpfn) { 4638 unsigned long kernel_pages; 4639 kernel_pages = min(end_pfn, usable_startpfn) 4640 - start_pfn; 4641 4642 kernelcore_remaining -= min(kernel_pages, 4643 kernelcore_remaining); 4644 required_kernelcore -= min(kernel_pages, 4645 required_kernelcore); 4646 4647 /* Continue if range is now fully accounted */ 4648 if (end_pfn <= usable_startpfn) { 4649 4650 /* 4651 * Push zone_movable_pfn to the end so 4652 * that if we have to rebalance 4653 * kernelcore across nodes, we will 4654 * not double account here 4655 */ 4656 zone_movable_pfn[nid] = end_pfn; 4657 continue; 4658 } 4659 start_pfn = usable_startpfn; 4660 } 4661 4662 /* 4663 * The usable PFN range for ZONE_MOVABLE is from 4664 * start_pfn->end_pfn. Calculate size_pages as the 4665 * number of pages used as kernelcore 4666 */ 4667 size_pages = end_pfn - start_pfn; 4668 if (size_pages > kernelcore_remaining) 4669 size_pages = kernelcore_remaining; 4670 zone_movable_pfn[nid] = start_pfn + size_pages; 4671 4672 /* 4673 * Some kernelcore has been met, update counts and 4674 * break if the kernelcore for this node has been 4675 * satisified 4676 */ 4677 required_kernelcore -= min(required_kernelcore, 4678 size_pages); 4679 kernelcore_remaining -= size_pages; 4680 if (!kernelcore_remaining) 4681 break; 4682 } 4683 } 4684 4685 /* 4686 * If there is still required_kernelcore, we do another pass with one 4687 * less node in the count. This will push zone_movable_pfn[nid] further 4688 * along on the nodes that still have memory until kernelcore is 4689 * satisified 4690 */ 4691 usable_nodes--; 4692 if (usable_nodes && required_kernelcore > usable_nodes) 4693 goto restart; 4694 4695 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 4696 for (nid = 0; nid < MAX_NUMNODES; nid++) 4697 zone_movable_pfn[nid] = 4698 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 4699 4700 out: 4701 /* restore the node_state */ 4702 node_states[N_HIGH_MEMORY] = saved_node_state; 4703 } 4704 4705 /* Any regular memory on that node ? */ 4706 static void check_for_regular_memory(pg_data_t *pgdat) 4707 { 4708 #ifdef CONFIG_HIGHMEM 4709 enum zone_type zone_type; 4710 4711 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) { 4712 struct zone *zone = &pgdat->node_zones[zone_type]; 4713 if (zone->present_pages) { 4714 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY); 4715 break; 4716 } 4717 } 4718 #endif 4719 } 4720 4721 /** 4722 * free_area_init_nodes - Initialise all pg_data_t and zone data 4723 * @max_zone_pfn: an array of max PFNs for each zone 4724 * 4725 * This will call free_area_init_node() for each active node in the system. 4726 * Using the page ranges provided by add_active_range(), the size of each 4727 * zone in each node and their holes is calculated. If the maximum PFN 4728 * between two adjacent zones match, it is assumed that the zone is empty. 4729 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 4730 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 4731 * starts where the previous one ended. For example, ZONE_DMA32 starts 4732 * at arch_max_dma_pfn. 4733 */ 4734 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 4735 { 4736 unsigned long start_pfn, end_pfn; 4737 int i, nid; 4738 4739 /* Record where the zone boundaries are */ 4740 memset(arch_zone_lowest_possible_pfn, 0, 4741 sizeof(arch_zone_lowest_possible_pfn)); 4742 memset(arch_zone_highest_possible_pfn, 0, 4743 sizeof(arch_zone_highest_possible_pfn)); 4744 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 4745 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 4746 for (i = 1; i < MAX_NR_ZONES; i++) { 4747 if (i == ZONE_MOVABLE) 4748 continue; 4749 arch_zone_lowest_possible_pfn[i] = 4750 arch_zone_highest_possible_pfn[i-1]; 4751 arch_zone_highest_possible_pfn[i] = 4752 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 4753 } 4754 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 4755 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 4756 4757 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 4758 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 4759 find_zone_movable_pfns_for_nodes(); 4760 4761 /* Print out the zone ranges */ 4762 printk("Zone PFN ranges:\n"); 4763 for (i = 0; i < MAX_NR_ZONES; i++) { 4764 if (i == ZONE_MOVABLE) 4765 continue; 4766 printk(" %-8s ", zone_names[i]); 4767 if (arch_zone_lowest_possible_pfn[i] == 4768 arch_zone_highest_possible_pfn[i]) 4769 printk("empty\n"); 4770 else 4771 printk("%0#10lx -> %0#10lx\n", 4772 arch_zone_lowest_possible_pfn[i], 4773 arch_zone_highest_possible_pfn[i]); 4774 } 4775 4776 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 4777 printk("Movable zone start PFN for each node\n"); 4778 for (i = 0; i < MAX_NUMNODES; i++) { 4779 if (zone_movable_pfn[i]) 4780 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]); 4781 } 4782 4783 /* Print out the early_node_map[] */ 4784 printk("Early memory PFN ranges\n"); 4785 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 4786 printk(" %3d: %0#10lx -> %0#10lx\n", nid, start_pfn, end_pfn); 4787 4788 /* Initialise every node */ 4789 mminit_verify_pageflags_layout(); 4790 setup_nr_node_ids(); 4791 for_each_online_node(nid) { 4792 pg_data_t *pgdat = NODE_DATA(nid); 4793 free_area_init_node(nid, NULL, 4794 find_min_pfn_for_node(nid), NULL); 4795 4796 /* Any memory on that node */ 4797 if (pgdat->node_present_pages) 4798 node_set_state(nid, N_HIGH_MEMORY); 4799 check_for_regular_memory(pgdat); 4800 } 4801 } 4802 4803 static int __init cmdline_parse_core(char *p, unsigned long *core) 4804 { 4805 unsigned long long coremem; 4806 if (!p) 4807 return -EINVAL; 4808 4809 coremem = memparse(p, &p); 4810 *core = coremem >> PAGE_SHIFT; 4811 4812 /* Paranoid check that UL is enough for the coremem value */ 4813 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 4814 4815 return 0; 4816 } 4817 4818 /* 4819 * kernelcore=size sets the amount of memory for use for allocations that 4820 * cannot be reclaimed or migrated. 4821 */ 4822 static int __init cmdline_parse_kernelcore(char *p) 4823 { 4824 return cmdline_parse_core(p, &required_kernelcore); 4825 } 4826 4827 /* 4828 * movablecore=size sets the amount of memory for use for allocations that 4829 * can be reclaimed or migrated. 4830 */ 4831 static int __init cmdline_parse_movablecore(char *p) 4832 { 4833 return cmdline_parse_core(p, &required_movablecore); 4834 } 4835 4836 early_param("kernelcore", cmdline_parse_kernelcore); 4837 early_param("movablecore", cmdline_parse_movablecore); 4838 4839 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4840 4841 /** 4842 * set_dma_reserve - set the specified number of pages reserved in the first zone 4843 * @new_dma_reserve: The number of pages to mark reserved 4844 * 4845 * The per-cpu batchsize and zone watermarks are determined by present_pages. 4846 * In the DMA zone, a significant percentage may be consumed by kernel image 4847 * and other unfreeable allocations which can skew the watermarks badly. This 4848 * function may optionally be used to account for unfreeable pages in the 4849 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 4850 * smaller per-cpu batchsize. 4851 */ 4852 void __init set_dma_reserve(unsigned long new_dma_reserve) 4853 { 4854 dma_reserve = new_dma_reserve; 4855 } 4856 4857 void __init free_area_init(unsigned long *zones_size) 4858 { 4859 free_area_init_node(0, zones_size, 4860 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 4861 } 4862 4863 static int page_alloc_cpu_notify(struct notifier_block *self, 4864 unsigned long action, void *hcpu) 4865 { 4866 int cpu = (unsigned long)hcpu; 4867 4868 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 4869 lru_add_drain_cpu(cpu); 4870 drain_pages(cpu); 4871 4872 /* 4873 * Spill the event counters of the dead processor 4874 * into the current processors event counters. 4875 * This artificially elevates the count of the current 4876 * processor. 4877 */ 4878 vm_events_fold_cpu(cpu); 4879 4880 /* 4881 * Zero the differential counters of the dead processor 4882 * so that the vm statistics are consistent. 4883 * 4884 * This is only okay since the processor is dead and cannot 4885 * race with what we are doing. 4886 */ 4887 refresh_cpu_vm_stats(cpu); 4888 } 4889 return NOTIFY_OK; 4890 } 4891 4892 void __init page_alloc_init(void) 4893 { 4894 hotcpu_notifier(page_alloc_cpu_notify, 0); 4895 } 4896 4897 /* 4898 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 4899 * or min_free_kbytes changes. 4900 */ 4901 static void calculate_totalreserve_pages(void) 4902 { 4903 struct pglist_data *pgdat; 4904 unsigned long reserve_pages = 0; 4905 enum zone_type i, j; 4906 4907 for_each_online_pgdat(pgdat) { 4908 for (i = 0; i < MAX_NR_ZONES; i++) { 4909 struct zone *zone = pgdat->node_zones + i; 4910 unsigned long max = 0; 4911 4912 /* Find valid and maximum lowmem_reserve in the zone */ 4913 for (j = i; j < MAX_NR_ZONES; j++) { 4914 if (zone->lowmem_reserve[j] > max) 4915 max = zone->lowmem_reserve[j]; 4916 } 4917 4918 /* we treat the high watermark as reserved pages. */ 4919 max += high_wmark_pages(zone); 4920 4921 if (max > zone->present_pages) 4922 max = zone->present_pages; 4923 reserve_pages += max; 4924 /* 4925 * Lowmem reserves are not available to 4926 * GFP_HIGHUSER page cache allocations and 4927 * kswapd tries to balance zones to their high 4928 * watermark. As a result, neither should be 4929 * regarded as dirtyable memory, to prevent a 4930 * situation where reclaim has to clean pages 4931 * in order to balance the zones. 4932 */ 4933 zone->dirty_balance_reserve = max; 4934 } 4935 } 4936 dirty_balance_reserve = reserve_pages; 4937 totalreserve_pages = reserve_pages; 4938 } 4939 4940 /* 4941 * setup_per_zone_lowmem_reserve - called whenever 4942 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 4943 * has a correct pages reserved value, so an adequate number of 4944 * pages are left in the zone after a successful __alloc_pages(). 4945 */ 4946 static void setup_per_zone_lowmem_reserve(void) 4947 { 4948 struct pglist_data *pgdat; 4949 enum zone_type j, idx; 4950 4951 for_each_online_pgdat(pgdat) { 4952 for (j = 0; j < MAX_NR_ZONES; j++) { 4953 struct zone *zone = pgdat->node_zones + j; 4954 unsigned long present_pages = zone->present_pages; 4955 4956 zone->lowmem_reserve[j] = 0; 4957 4958 idx = j; 4959 while (idx) { 4960 struct zone *lower_zone; 4961 4962 idx--; 4963 4964 if (sysctl_lowmem_reserve_ratio[idx] < 1) 4965 sysctl_lowmem_reserve_ratio[idx] = 1; 4966 4967 lower_zone = pgdat->node_zones + idx; 4968 lower_zone->lowmem_reserve[j] = present_pages / 4969 sysctl_lowmem_reserve_ratio[idx]; 4970 present_pages += lower_zone->present_pages; 4971 } 4972 } 4973 } 4974 4975 /* update totalreserve_pages */ 4976 calculate_totalreserve_pages(); 4977 } 4978 4979 /** 4980 * setup_per_zone_wmarks - called when min_free_kbytes changes 4981 * or when memory is hot-{added|removed} 4982 * 4983 * Ensures that the watermark[min,low,high] values for each zone are set 4984 * correctly with respect to min_free_kbytes. 4985 */ 4986 void setup_per_zone_wmarks(void) 4987 { 4988 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 4989 unsigned long lowmem_pages = 0; 4990 struct zone *zone; 4991 unsigned long flags; 4992 4993 /* Calculate total number of !ZONE_HIGHMEM pages */ 4994 for_each_zone(zone) { 4995 if (!is_highmem(zone)) 4996 lowmem_pages += zone->present_pages; 4997 } 4998 4999 for_each_zone(zone) { 5000 u64 tmp; 5001 5002 spin_lock_irqsave(&zone->lock, flags); 5003 tmp = (u64)pages_min * zone->present_pages; 5004 do_div(tmp, lowmem_pages); 5005 if (is_highmem(zone)) { 5006 /* 5007 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 5008 * need highmem pages, so cap pages_min to a small 5009 * value here. 5010 * 5011 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 5012 * deltas controls asynch page reclaim, and so should 5013 * not be capped for highmem. 5014 */ 5015 int min_pages; 5016 5017 min_pages = zone->present_pages / 1024; 5018 if (min_pages < SWAP_CLUSTER_MAX) 5019 min_pages = SWAP_CLUSTER_MAX; 5020 if (min_pages > 128) 5021 min_pages = 128; 5022 zone->watermark[WMARK_MIN] = min_pages; 5023 } else { 5024 /* 5025 * If it's a lowmem zone, reserve a number of pages 5026 * proportionate to the zone's size. 5027 */ 5028 zone->watermark[WMARK_MIN] = tmp; 5029 } 5030 5031 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); 5032 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); 5033 setup_zone_migrate_reserve(zone); 5034 spin_unlock_irqrestore(&zone->lock, flags); 5035 } 5036 5037 /* update totalreserve_pages */ 5038 calculate_totalreserve_pages(); 5039 } 5040 5041 /* 5042 * The inactive anon list should be small enough that the VM never has to 5043 * do too much work, but large enough that each inactive page has a chance 5044 * to be referenced again before it is swapped out. 5045 * 5046 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 5047 * INACTIVE_ANON pages on this zone's LRU, maintained by the 5048 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 5049 * the anonymous pages are kept on the inactive list. 5050 * 5051 * total target max 5052 * memory ratio inactive anon 5053 * ------------------------------------- 5054 * 10MB 1 5MB 5055 * 100MB 1 50MB 5056 * 1GB 3 250MB 5057 * 10GB 10 0.9GB 5058 * 100GB 31 3GB 5059 * 1TB 101 10GB 5060 * 10TB 320 32GB 5061 */ 5062 static void __meminit calculate_zone_inactive_ratio(struct zone *zone) 5063 { 5064 unsigned int gb, ratio; 5065 5066 /* Zone size in gigabytes */ 5067 gb = zone->present_pages >> (30 - PAGE_SHIFT); 5068 if (gb) 5069 ratio = int_sqrt(10 * gb); 5070 else 5071 ratio = 1; 5072 5073 zone->inactive_ratio = ratio; 5074 } 5075 5076 static void __meminit setup_per_zone_inactive_ratio(void) 5077 { 5078 struct zone *zone; 5079 5080 for_each_zone(zone) 5081 calculate_zone_inactive_ratio(zone); 5082 } 5083 5084 /* 5085 * Initialise min_free_kbytes. 5086 * 5087 * For small machines we want it small (128k min). For large machines 5088 * we want it large (64MB max). But it is not linear, because network 5089 * bandwidth does not increase linearly with machine size. We use 5090 * 5091 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 5092 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 5093 * 5094 * which yields 5095 * 5096 * 16MB: 512k 5097 * 32MB: 724k 5098 * 64MB: 1024k 5099 * 128MB: 1448k 5100 * 256MB: 2048k 5101 * 512MB: 2896k 5102 * 1024MB: 4096k 5103 * 2048MB: 5792k 5104 * 4096MB: 8192k 5105 * 8192MB: 11584k 5106 * 16384MB: 16384k 5107 */ 5108 int __meminit init_per_zone_wmark_min(void) 5109 { 5110 unsigned long lowmem_kbytes; 5111 5112 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 5113 5114 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 5115 if (min_free_kbytes < 128) 5116 min_free_kbytes = 128; 5117 if (min_free_kbytes > 65536) 5118 min_free_kbytes = 65536; 5119 setup_per_zone_wmarks(); 5120 refresh_zone_stat_thresholds(); 5121 setup_per_zone_lowmem_reserve(); 5122 setup_per_zone_inactive_ratio(); 5123 return 0; 5124 } 5125 module_init(init_per_zone_wmark_min) 5126 5127 /* 5128 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 5129 * that we can call two helper functions whenever min_free_kbytes 5130 * changes. 5131 */ 5132 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 5133 void __user *buffer, size_t *length, loff_t *ppos) 5134 { 5135 proc_dointvec(table, write, buffer, length, ppos); 5136 if (write) 5137 setup_per_zone_wmarks(); 5138 return 0; 5139 } 5140 5141 #ifdef CONFIG_NUMA 5142 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, 5143 void __user *buffer, size_t *length, loff_t *ppos) 5144 { 5145 struct zone *zone; 5146 int rc; 5147 5148 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5149 if (rc) 5150 return rc; 5151 5152 for_each_zone(zone) 5153 zone->min_unmapped_pages = (zone->present_pages * 5154 sysctl_min_unmapped_ratio) / 100; 5155 return 0; 5156 } 5157 5158 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, 5159 void __user *buffer, size_t *length, loff_t *ppos) 5160 { 5161 struct zone *zone; 5162 int rc; 5163 5164 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5165 if (rc) 5166 return rc; 5167 5168 for_each_zone(zone) 5169 zone->min_slab_pages = (zone->present_pages * 5170 sysctl_min_slab_ratio) / 100; 5171 return 0; 5172 } 5173 #endif 5174 5175 /* 5176 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 5177 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 5178 * whenever sysctl_lowmem_reserve_ratio changes. 5179 * 5180 * The reserve ratio obviously has absolutely no relation with the 5181 * minimum watermarks. The lowmem reserve ratio can only make sense 5182 * if in function of the boot time zone sizes. 5183 */ 5184 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 5185 void __user *buffer, size_t *length, loff_t *ppos) 5186 { 5187 proc_dointvec_minmax(table, write, buffer, length, ppos); 5188 setup_per_zone_lowmem_reserve(); 5189 return 0; 5190 } 5191 5192 /* 5193 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 5194 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 5195 * can have before it gets flushed back to buddy allocator. 5196 */ 5197 5198 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 5199 void __user *buffer, size_t *length, loff_t *ppos) 5200 { 5201 struct zone *zone; 5202 unsigned int cpu; 5203 int ret; 5204 5205 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 5206 if (!write || (ret < 0)) 5207 return ret; 5208 for_each_populated_zone(zone) { 5209 for_each_possible_cpu(cpu) { 5210 unsigned long high; 5211 high = zone->present_pages / percpu_pagelist_fraction; 5212 setup_pagelist_highmark( 5213 per_cpu_ptr(zone->pageset, cpu), high); 5214 } 5215 } 5216 return 0; 5217 } 5218 5219 int hashdist = HASHDIST_DEFAULT; 5220 5221 #ifdef CONFIG_NUMA 5222 static int __init set_hashdist(char *str) 5223 { 5224 if (!str) 5225 return 0; 5226 hashdist = simple_strtoul(str, &str, 0); 5227 return 1; 5228 } 5229 __setup("hashdist=", set_hashdist); 5230 #endif 5231 5232 /* 5233 * allocate a large system hash table from bootmem 5234 * - it is assumed that the hash table must contain an exact power-of-2 5235 * quantity of entries 5236 * - limit is the number of hash buckets, not the total allocation size 5237 */ 5238 void *__init alloc_large_system_hash(const char *tablename, 5239 unsigned long bucketsize, 5240 unsigned long numentries, 5241 int scale, 5242 int flags, 5243 unsigned int *_hash_shift, 5244 unsigned int *_hash_mask, 5245 unsigned long limit) 5246 { 5247 unsigned long long max = limit; 5248 unsigned long log2qty, size; 5249 void *table = NULL; 5250 5251 /* allow the kernel cmdline to have a say */ 5252 if (!numentries) { 5253 /* round applicable memory size up to nearest megabyte */ 5254 numentries = nr_kernel_pages; 5255 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 5256 numentries >>= 20 - PAGE_SHIFT; 5257 numentries <<= 20 - PAGE_SHIFT; 5258 5259 /* limit to 1 bucket per 2^scale bytes of low memory */ 5260 if (scale > PAGE_SHIFT) 5261 numentries >>= (scale - PAGE_SHIFT); 5262 else 5263 numentries <<= (PAGE_SHIFT - scale); 5264 5265 /* Make sure we've got at least a 0-order allocation.. */ 5266 if (unlikely(flags & HASH_SMALL)) { 5267 /* Makes no sense without HASH_EARLY */ 5268 WARN_ON(!(flags & HASH_EARLY)); 5269 if (!(numentries >> *_hash_shift)) { 5270 numentries = 1UL << *_hash_shift; 5271 BUG_ON(!numentries); 5272 } 5273 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 5274 numentries = PAGE_SIZE / bucketsize; 5275 } 5276 numentries = roundup_pow_of_two(numentries); 5277 5278 /* limit allocation size to 1/16 total memory by default */ 5279 if (max == 0) { 5280 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 5281 do_div(max, bucketsize); 5282 } 5283 max = min(max, 0x80000000ULL); 5284 5285 if (numentries > max) 5286 numentries = max; 5287 5288 log2qty = ilog2(numentries); 5289 5290 do { 5291 size = bucketsize << log2qty; 5292 if (flags & HASH_EARLY) 5293 table = alloc_bootmem_nopanic(size); 5294 else if (hashdist) 5295 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 5296 else { 5297 /* 5298 * If bucketsize is not a power-of-two, we may free 5299 * some pages at the end of hash table which 5300 * alloc_pages_exact() automatically does 5301 */ 5302 if (get_order(size) < MAX_ORDER) { 5303 table = alloc_pages_exact(size, GFP_ATOMIC); 5304 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 5305 } 5306 } 5307 } while (!table && size > PAGE_SIZE && --log2qty); 5308 5309 if (!table) 5310 panic("Failed to allocate %s hash table\n", tablename); 5311 5312 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n", 5313 tablename, 5314 (1UL << log2qty), 5315 ilog2(size) - PAGE_SHIFT, 5316 size); 5317 5318 if (_hash_shift) 5319 *_hash_shift = log2qty; 5320 if (_hash_mask) 5321 *_hash_mask = (1 << log2qty) - 1; 5322 5323 return table; 5324 } 5325 5326 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 5327 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 5328 unsigned long pfn) 5329 { 5330 #ifdef CONFIG_SPARSEMEM 5331 return __pfn_to_section(pfn)->pageblock_flags; 5332 #else 5333 return zone->pageblock_flags; 5334 #endif /* CONFIG_SPARSEMEM */ 5335 } 5336 5337 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 5338 { 5339 #ifdef CONFIG_SPARSEMEM 5340 pfn &= (PAGES_PER_SECTION-1); 5341 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5342 #else 5343 pfn = pfn - zone->zone_start_pfn; 5344 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5345 #endif /* CONFIG_SPARSEMEM */ 5346 } 5347 5348 /** 5349 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages 5350 * @page: The page within the block of interest 5351 * @start_bitidx: The first bit of interest to retrieve 5352 * @end_bitidx: The last bit of interest 5353 * returns pageblock_bits flags 5354 */ 5355 unsigned long get_pageblock_flags_group(struct page *page, 5356 int start_bitidx, int end_bitidx) 5357 { 5358 struct zone *zone; 5359 unsigned long *bitmap; 5360 unsigned long pfn, bitidx; 5361 unsigned long flags = 0; 5362 unsigned long value = 1; 5363 5364 zone = page_zone(page); 5365 pfn = page_to_pfn(page); 5366 bitmap = get_pageblock_bitmap(zone, pfn); 5367 bitidx = pfn_to_bitidx(zone, pfn); 5368 5369 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5370 if (test_bit(bitidx + start_bitidx, bitmap)) 5371 flags |= value; 5372 5373 return flags; 5374 } 5375 5376 /** 5377 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages 5378 * @page: The page within the block of interest 5379 * @start_bitidx: The first bit of interest 5380 * @end_bitidx: The last bit of interest 5381 * @flags: The flags to set 5382 */ 5383 void set_pageblock_flags_group(struct page *page, unsigned long flags, 5384 int start_bitidx, int end_bitidx) 5385 { 5386 struct zone *zone; 5387 unsigned long *bitmap; 5388 unsigned long pfn, bitidx; 5389 unsigned long value = 1; 5390 5391 zone = page_zone(page); 5392 pfn = page_to_pfn(page); 5393 bitmap = get_pageblock_bitmap(zone, pfn); 5394 bitidx = pfn_to_bitidx(zone, pfn); 5395 VM_BUG_ON(pfn < zone->zone_start_pfn); 5396 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages); 5397 5398 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5399 if (flags & value) 5400 __set_bit(bitidx + start_bitidx, bitmap); 5401 else 5402 __clear_bit(bitidx + start_bitidx, bitmap); 5403 } 5404 5405 /* 5406 * This is designed as sub function...plz see page_isolation.c also. 5407 * set/clear page block's type to be ISOLATE. 5408 * page allocater never alloc memory from ISOLATE block. 5409 */ 5410 5411 static int 5412 __count_immobile_pages(struct zone *zone, struct page *page, int count) 5413 { 5414 unsigned long pfn, iter, found; 5415 /* 5416 * For avoiding noise data, lru_add_drain_all() should be called 5417 * If ZONE_MOVABLE, the zone never contains immobile pages 5418 */ 5419 if (zone_idx(zone) == ZONE_MOVABLE) 5420 return true; 5421 5422 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE) 5423 return true; 5424 5425 pfn = page_to_pfn(page); 5426 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 5427 unsigned long check = pfn + iter; 5428 5429 if (!pfn_valid_within(check)) 5430 continue; 5431 5432 page = pfn_to_page(check); 5433 if (!page_count(page)) { 5434 if (PageBuddy(page)) 5435 iter += (1 << page_order(page)) - 1; 5436 continue; 5437 } 5438 if (!PageLRU(page)) 5439 found++; 5440 /* 5441 * If there are RECLAIMABLE pages, we need to check it. 5442 * But now, memory offline itself doesn't call shrink_slab() 5443 * and it still to be fixed. 5444 */ 5445 /* 5446 * If the page is not RAM, page_count()should be 0. 5447 * we don't need more check. This is an _used_ not-movable page. 5448 * 5449 * The problematic thing here is PG_reserved pages. PG_reserved 5450 * is set to both of a memory hole page and a _used_ kernel 5451 * page at boot. 5452 */ 5453 if (found > count) 5454 return false; 5455 } 5456 return true; 5457 } 5458 5459 bool is_pageblock_removable_nolock(struct page *page) 5460 { 5461 struct zone *zone; 5462 unsigned long pfn; 5463 5464 /* 5465 * We have to be careful here because we are iterating over memory 5466 * sections which are not zone aware so we might end up outside of 5467 * the zone but still within the section. 5468 * We have to take care about the node as well. If the node is offline 5469 * its NODE_DATA will be NULL - see page_zone. 5470 */ 5471 if (!node_online(page_to_nid(page))) 5472 return false; 5473 5474 zone = page_zone(page); 5475 pfn = page_to_pfn(page); 5476 if (zone->zone_start_pfn > pfn || 5477 zone->zone_start_pfn + zone->spanned_pages <= pfn) 5478 return false; 5479 5480 return __count_immobile_pages(zone, page, 0); 5481 } 5482 5483 int set_migratetype_isolate(struct page *page) 5484 { 5485 struct zone *zone; 5486 unsigned long flags, pfn; 5487 struct memory_isolate_notify arg; 5488 int notifier_ret; 5489 int ret = -EBUSY; 5490 5491 zone = page_zone(page); 5492 5493 spin_lock_irqsave(&zone->lock, flags); 5494 5495 pfn = page_to_pfn(page); 5496 arg.start_pfn = pfn; 5497 arg.nr_pages = pageblock_nr_pages; 5498 arg.pages_found = 0; 5499 5500 /* 5501 * It may be possible to isolate a pageblock even if the 5502 * migratetype is not MIGRATE_MOVABLE. The memory isolation 5503 * notifier chain is used by balloon drivers to return the 5504 * number of pages in a range that are held by the balloon 5505 * driver to shrink memory. If all the pages are accounted for 5506 * by balloons, are free, or on the LRU, isolation can continue. 5507 * Later, for example, when memory hotplug notifier runs, these 5508 * pages reported as "can be isolated" should be isolated(freed) 5509 * by the balloon driver through the memory notifier chain. 5510 */ 5511 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg); 5512 notifier_ret = notifier_to_errno(notifier_ret); 5513 if (notifier_ret) 5514 goto out; 5515 /* 5516 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself. 5517 * We just check MOVABLE pages. 5518 */ 5519 if (__count_immobile_pages(zone, page, arg.pages_found)) 5520 ret = 0; 5521 5522 /* 5523 * immobile means "not-on-lru" paes. If immobile is larger than 5524 * removable-by-driver pages reported by notifier, we'll fail. 5525 */ 5526 5527 out: 5528 if (!ret) { 5529 set_pageblock_migratetype(page, MIGRATE_ISOLATE); 5530 move_freepages_block(zone, page, MIGRATE_ISOLATE); 5531 } 5532 5533 spin_unlock_irqrestore(&zone->lock, flags); 5534 if (!ret) 5535 drain_all_pages(); 5536 return ret; 5537 } 5538 5539 void unset_migratetype_isolate(struct page *page) 5540 { 5541 struct zone *zone; 5542 unsigned long flags; 5543 zone = page_zone(page); 5544 spin_lock_irqsave(&zone->lock, flags); 5545 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE) 5546 goto out; 5547 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5548 move_freepages_block(zone, page, MIGRATE_MOVABLE); 5549 out: 5550 spin_unlock_irqrestore(&zone->lock, flags); 5551 } 5552 5553 #ifdef CONFIG_MEMORY_HOTREMOVE 5554 /* 5555 * All pages in the range must be isolated before calling this. 5556 */ 5557 void 5558 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 5559 { 5560 struct page *page; 5561 struct zone *zone; 5562 int order, i; 5563 unsigned long pfn; 5564 unsigned long flags; 5565 /* find the first valid pfn */ 5566 for (pfn = start_pfn; pfn < end_pfn; pfn++) 5567 if (pfn_valid(pfn)) 5568 break; 5569 if (pfn == end_pfn) 5570 return; 5571 zone = page_zone(pfn_to_page(pfn)); 5572 spin_lock_irqsave(&zone->lock, flags); 5573 pfn = start_pfn; 5574 while (pfn < end_pfn) { 5575 if (!pfn_valid(pfn)) { 5576 pfn++; 5577 continue; 5578 } 5579 page = pfn_to_page(pfn); 5580 BUG_ON(page_count(page)); 5581 BUG_ON(!PageBuddy(page)); 5582 order = page_order(page); 5583 #ifdef CONFIG_DEBUG_VM 5584 printk(KERN_INFO "remove from free list %lx %d %lx\n", 5585 pfn, 1 << order, end_pfn); 5586 #endif 5587 list_del(&page->lru); 5588 rmv_page_order(page); 5589 zone->free_area[order].nr_free--; 5590 __mod_zone_page_state(zone, NR_FREE_PAGES, 5591 - (1UL << order)); 5592 for (i = 0; i < (1 << order); i++) 5593 SetPageReserved((page+i)); 5594 pfn += (1 << order); 5595 } 5596 spin_unlock_irqrestore(&zone->lock, flags); 5597 } 5598 #endif 5599 5600 #ifdef CONFIG_MEMORY_FAILURE 5601 bool is_free_buddy_page(struct page *page) 5602 { 5603 struct zone *zone = page_zone(page); 5604 unsigned long pfn = page_to_pfn(page); 5605 unsigned long flags; 5606 int order; 5607 5608 spin_lock_irqsave(&zone->lock, flags); 5609 for (order = 0; order < MAX_ORDER; order++) { 5610 struct page *page_head = page - (pfn & ((1 << order) - 1)); 5611 5612 if (PageBuddy(page_head) && page_order(page_head) >= order) 5613 break; 5614 } 5615 spin_unlock_irqrestore(&zone->lock, flags); 5616 5617 return order < MAX_ORDER; 5618 } 5619 #endif 5620 5621 static struct trace_print_flags pageflag_names[] = { 5622 {1UL << PG_locked, "locked" }, 5623 {1UL << PG_error, "error" }, 5624 {1UL << PG_referenced, "referenced" }, 5625 {1UL << PG_uptodate, "uptodate" }, 5626 {1UL << PG_dirty, "dirty" }, 5627 {1UL << PG_lru, "lru" }, 5628 {1UL << PG_active, "active" }, 5629 {1UL << PG_slab, "slab" }, 5630 {1UL << PG_owner_priv_1, "owner_priv_1" }, 5631 {1UL << PG_arch_1, "arch_1" }, 5632 {1UL << PG_reserved, "reserved" }, 5633 {1UL << PG_private, "private" }, 5634 {1UL << PG_private_2, "private_2" }, 5635 {1UL << PG_writeback, "writeback" }, 5636 #ifdef CONFIG_PAGEFLAGS_EXTENDED 5637 {1UL << PG_head, "head" }, 5638 {1UL << PG_tail, "tail" }, 5639 #else 5640 {1UL << PG_compound, "compound" }, 5641 #endif 5642 {1UL << PG_swapcache, "swapcache" }, 5643 {1UL << PG_mappedtodisk, "mappedtodisk" }, 5644 {1UL << PG_reclaim, "reclaim" }, 5645 {1UL << PG_swapbacked, "swapbacked" }, 5646 {1UL << PG_unevictable, "unevictable" }, 5647 #ifdef CONFIG_MMU 5648 {1UL << PG_mlocked, "mlocked" }, 5649 #endif 5650 #ifdef CONFIG_ARCH_USES_PG_UNCACHED 5651 {1UL << PG_uncached, "uncached" }, 5652 #endif 5653 #ifdef CONFIG_MEMORY_FAILURE 5654 {1UL << PG_hwpoison, "hwpoison" }, 5655 #endif 5656 {-1UL, NULL }, 5657 }; 5658 5659 static void dump_page_flags(unsigned long flags) 5660 { 5661 const char *delim = ""; 5662 unsigned long mask; 5663 int i; 5664 5665 printk(KERN_ALERT "page flags: %#lx(", flags); 5666 5667 /* remove zone id */ 5668 flags &= (1UL << NR_PAGEFLAGS) - 1; 5669 5670 for (i = 0; pageflag_names[i].name && flags; i++) { 5671 5672 mask = pageflag_names[i].mask; 5673 if ((flags & mask) != mask) 5674 continue; 5675 5676 flags &= ~mask; 5677 printk("%s%s", delim, pageflag_names[i].name); 5678 delim = "|"; 5679 } 5680 5681 /* check for left over flags */ 5682 if (flags) 5683 printk("%s%#lx", delim, flags); 5684 5685 printk(")\n"); 5686 } 5687 5688 void dump_page(struct page *page) 5689 { 5690 printk(KERN_ALERT 5691 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n", 5692 page, atomic_read(&page->_count), page_mapcount(page), 5693 page->mapping, page->index); 5694 dump_page_flags(page->flags); 5695 mem_cgroup_print_bad_page(page); 5696 } 5697