xref: /openbmc/linux/mm/page_alloc.c (revision 63dc02bd)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/memory.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <linux/ftrace_event.h>
58 #include <linux/memcontrol.h>
59 #include <linux/prefetch.h>
60 #include <linux/page-debug-flags.h>
61 
62 #include <asm/tlbflush.h>
63 #include <asm/div64.h>
64 #include "internal.h"
65 
66 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
67 DEFINE_PER_CPU(int, numa_node);
68 EXPORT_PER_CPU_SYMBOL(numa_node);
69 #endif
70 
71 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
72 /*
73  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
74  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
75  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
76  * defined in <linux/topology.h>.
77  */
78 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
79 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
80 #endif
81 
82 /*
83  * Array of node states.
84  */
85 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
86 	[N_POSSIBLE] = NODE_MASK_ALL,
87 	[N_ONLINE] = { { [0] = 1UL } },
88 #ifndef CONFIG_NUMA
89 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
90 #ifdef CONFIG_HIGHMEM
91 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
92 #endif
93 	[N_CPU] = { { [0] = 1UL } },
94 #endif	/* NUMA */
95 };
96 EXPORT_SYMBOL(node_states);
97 
98 unsigned long totalram_pages __read_mostly;
99 unsigned long totalreserve_pages __read_mostly;
100 /*
101  * When calculating the number of globally allowed dirty pages, there
102  * is a certain number of per-zone reserves that should not be
103  * considered dirtyable memory.  This is the sum of those reserves
104  * over all existing zones that contribute dirtyable memory.
105  */
106 unsigned long dirty_balance_reserve __read_mostly;
107 
108 int percpu_pagelist_fraction;
109 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
110 
111 #ifdef CONFIG_PM_SLEEP
112 /*
113  * The following functions are used by the suspend/hibernate code to temporarily
114  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
115  * while devices are suspended.  To avoid races with the suspend/hibernate code,
116  * they should always be called with pm_mutex held (gfp_allowed_mask also should
117  * only be modified with pm_mutex held, unless the suspend/hibernate code is
118  * guaranteed not to run in parallel with that modification).
119  */
120 
121 static gfp_t saved_gfp_mask;
122 
123 void pm_restore_gfp_mask(void)
124 {
125 	WARN_ON(!mutex_is_locked(&pm_mutex));
126 	if (saved_gfp_mask) {
127 		gfp_allowed_mask = saved_gfp_mask;
128 		saved_gfp_mask = 0;
129 	}
130 }
131 
132 void pm_restrict_gfp_mask(void)
133 {
134 	WARN_ON(!mutex_is_locked(&pm_mutex));
135 	WARN_ON(saved_gfp_mask);
136 	saved_gfp_mask = gfp_allowed_mask;
137 	gfp_allowed_mask &= ~GFP_IOFS;
138 }
139 
140 bool pm_suspended_storage(void)
141 {
142 	if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
143 		return false;
144 	return true;
145 }
146 #endif /* CONFIG_PM_SLEEP */
147 
148 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
149 int pageblock_order __read_mostly;
150 #endif
151 
152 static void __free_pages_ok(struct page *page, unsigned int order);
153 
154 /*
155  * results with 256, 32 in the lowmem_reserve sysctl:
156  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
157  *	1G machine -> (16M dma, 784M normal, 224M high)
158  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
159  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
160  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
161  *
162  * TBD: should special case ZONE_DMA32 machines here - in those we normally
163  * don't need any ZONE_NORMAL reservation
164  */
165 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
166 #ifdef CONFIG_ZONE_DMA
167 	 256,
168 #endif
169 #ifdef CONFIG_ZONE_DMA32
170 	 256,
171 #endif
172 #ifdef CONFIG_HIGHMEM
173 	 32,
174 #endif
175 	 32,
176 };
177 
178 EXPORT_SYMBOL(totalram_pages);
179 
180 static char * const zone_names[MAX_NR_ZONES] = {
181 #ifdef CONFIG_ZONE_DMA
182 	 "DMA",
183 #endif
184 #ifdef CONFIG_ZONE_DMA32
185 	 "DMA32",
186 #endif
187 	 "Normal",
188 #ifdef CONFIG_HIGHMEM
189 	 "HighMem",
190 #endif
191 	 "Movable",
192 };
193 
194 int min_free_kbytes = 1024;
195 
196 static unsigned long __meminitdata nr_kernel_pages;
197 static unsigned long __meminitdata nr_all_pages;
198 static unsigned long __meminitdata dma_reserve;
199 
200 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
201 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
202 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
203 static unsigned long __initdata required_kernelcore;
204 static unsigned long __initdata required_movablecore;
205 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
206 
207 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
208 int movable_zone;
209 EXPORT_SYMBOL(movable_zone);
210 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
211 
212 #if MAX_NUMNODES > 1
213 int nr_node_ids __read_mostly = MAX_NUMNODES;
214 int nr_online_nodes __read_mostly = 1;
215 EXPORT_SYMBOL(nr_node_ids);
216 EXPORT_SYMBOL(nr_online_nodes);
217 #endif
218 
219 int page_group_by_mobility_disabled __read_mostly;
220 
221 static void set_pageblock_migratetype(struct page *page, int migratetype)
222 {
223 
224 	if (unlikely(page_group_by_mobility_disabled))
225 		migratetype = MIGRATE_UNMOVABLE;
226 
227 	set_pageblock_flags_group(page, (unsigned long)migratetype,
228 					PB_migrate, PB_migrate_end);
229 }
230 
231 bool oom_killer_disabled __read_mostly;
232 
233 #ifdef CONFIG_DEBUG_VM
234 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
235 {
236 	int ret = 0;
237 	unsigned seq;
238 	unsigned long pfn = page_to_pfn(page);
239 
240 	do {
241 		seq = zone_span_seqbegin(zone);
242 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
243 			ret = 1;
244 		else if (pfn < zone->zone_start_pfn)
245 			ret = 1;
246 	} while (zone_span_seqretry(zone, seq));
247 
248 	return ret;
249 }
250 
251 static int page_is_consistent(struct zone *zone, struct page *page)
252 {
253 	if (!pfn_valid_within(page_to_pfn(page)))
254 		return 0;
255 	if (zone != page_zone(page))
256 		return 0;
257 
258 	return 1;
259 }
260 /*
261  * Temporary debugging check for pages not lying within a given zone.
262  */
263 static int bad_range(struct zone *zone, struct page *page)
264 {
265 	if (page_outside_zone_boundaries(zone, page))
266 		return 1;
267 	if (!page_is_consistent(zone, page))
268 		return 1;
269 
270 	return 0;
271 }
272 #else
273 static inline int bad_range(struct zone *zone, struct page *page)
274 {
275 	return 0;
276 }
277 #endif
278 
279 static void bad_page(struct page *page)
280 {
281 	static unsigned long resume;
282 	static unsigned long nr_shown;
283 	static unsigned long nr_unshown;
284 
285 	/* Don't complain about poisoned pages */
286 	if (PageHWPoison(page)) {
287 		reset_page_mapcount(page); /* remove PageBuddy */
288 		return;
289 	}
290 
291 	/*
292 	 * Allow a burst of 60 reports, then keep quiet for that minute;
293 	 * or allow a steady drip of one report per second.
294 	 */
295 	if (nr_shown == 60) {
296 		if (time_before(jiffies, resume)) {
297 			nr_unshown++;
298 			goto out;
299 		}
300 		if (nr_unshown) {
301 			printk(KERN_ALERT
302 			      "BUG: Bad page state: %lu messages suppressed\n",
303 				nr_unshown);
304 			nr_unshown = 0;
305 		}
306 		nr_shown = 0;
307 	}
308 	if (nr_shown++ == 0)
309 		resume = jiffies + 60 * HZ;
310 
311 	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
312 		current->comm, page_to_pfn(page));
313 	dump_page(page);
314 
315 	print_modules();
316 	dump_stack();
317 out:
318 	/* Leave bad fields for debug, except PageBuddy could make trouble */
319 	reset_page_mapcount(page); /* remove PageBuddy */
320 	add_taint(TAINT_BAD_PAGE);
321 }
322 
323 /*
324  * Higher-order pages are called "compound pages".  They are structured thusly:
325  *
326  * The first PAGE_SIZE page is called the "head page".
327  *
328  * The remaining PAGE_SIZE pages are called "tail pages".
329  *
330  * All pages have PG_compound set.  All tail pages have their ->first_page
331  * pointing at the head page.
332  *
333  * The first tail page's ->lru.next holds the address of the compound page's
334  * put_page() function.  Its ->lru.prev holds the order of allocation.
335  * This usage means that zero-order pages may not be compound.
336  */
337 
338 static void free_compound_page(struct page *page)
339 {
340 	__free_pages_ok(page, compound_order(page));
341 }
342 
343 void prep_compound_page(struct page *page, unsigned long order)
344 {
345 	int i;
346 	int nr_pages = 1 << order;
347 
348 	set_compound_page_dtor(page, free_compound_page);
349 	set_compound_order(page, order);
350 	__SetPageHead(page);
351 	for (i = 1; i < nr_pages; i++) {
352 		struct page *p = page + i;
353 		__SetPageTail(p);
354 		set_page_count(p, 0);
355 		p->first_page = page;
356 	}
357 }
358 
359 /* update __split_huge_page_refcount if you change this function */
360 static int destroy_compound_page(struct page *page, unsigned long order)
361 {
362 	int i;
363 	int nr_pages = 1 << order;
364 	int bad = 0;
365 
366 	if (unlikely(compound_order(page) != order) ||
367 	    unlikely(!PageHead(page))) {
368 		bad_page(page);
369 		bad++;
370 	}
371 
372 	__ClearPageHead(page);
373 
374 	for (i = 1; i < nr_pages; i++) {
375 		struct page *p = page + i;
376 
377 		if (unlikely(!PageTail(p) || (p->first_page != page))) {
378 			bad_page(page);
379 			bad++;
380 		}
381 		__ClearPageTail(p);
382 	}
383 
384 	return bad;
385 }
386 
387 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
388 {
389 	int i;
390 
391 	/*
392 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
393 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
394 	 */
395 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
396 	for (i = 0; i < (1 << order); i++)
397 		clear_highpage(page + i);
398 }
399 
400 #ifdef CONFIG_DEBUG_PAGEALLOC
401 unsigned int _debug_guardpage_minorder;
402 
403 static int __init debug_guardpage_minorder_setup(char *buf)
404 {
405 	unsigned long res;
406 
407 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
408 		printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
409 		return 0;
410 	}
411 	_debug_guardpage_minorder = res;
412 	printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
413 	return 0;
414 }
415 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
416 
417 static inline void set_page_guard_flag(struct page *page)
418 {
419 	__set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
420 }
421 
422 static inline void clear_page_guard_flag(struct page *page)
423 {
424 	__clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
425 }
426 #else
427 static inline void set_page_guard_flag(struct page *page) { }
428 static inline void clear_page_guard_flag(struct page *page) { }
429 #endif
430 
431 static inline void set_page_order(struct page *page, int order)
432 {
433 	set_page_private(page, order);
434 	__SetPageBuddy(page);
435 }
436 
437 static inline void rmv_page_order(struct page *page)
438 {
439 	__ClearPageBuddy(page);
440 	set_page_private(page, 0);
441 }
442 
443 /*
444  * Locate the struct page for both the matching buddy in our
445  * pair (buddy1) and the combined O(n+1) page they form (page).
446  *
447  * 1) Any buddy B1 will have an order O twin B2 which satisfies
448  * the following equation:
449  *     B2 = B1 ^ (1 << O)
450  * For example, if the starting buddy (buddy2) is #8 its order
451  * 1 buddy is #10:
452  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
453  *
454  * 2) Any buddy B will have an order O+1 parent P which
455  * satisfies the following equation:
456  *     P = B & ~(1 << O)
457  *
458  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
459  */
460 static inline unsigned long
461 __find_buddy_index(unsigned long page_idx, unsigned int order)
462 {
463 	return page_idx ^ (1 << order);
464 }
465 
466 /*
467  * This function checks whether a page is free && is the buddy
468  * we can do coalesce a page and its buddy if
469  * (a) the buddy is not in a hole &&
470  * (b) the buddy is in the buddy system &&
471  * (c) a page and its buddy have the same order &&
472  * (d) a page and its buddy are in the same zone.
473  *
474  * For recording whether a page is in the buddy system, we set ->_mapcount -2.
475  * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
476  *
477  * For recording page's order, we use page_private(page).
478  */
479 static inline int page_is_buddy(struct page *page, struct page *buddy,
480 								int order)
481 {
482 	if (!pfn_valid_within(page_to_pfn(buddy)))
483 		return 0;
484 
485 	if (page_zone_id(page) != page_zone_id(buddy))
486 		return 0;
487 
488 	if (page_is_guard(buddy) && page_order(buddy) == order) {
489 		VM_BUG_ON(page_count(buddy) != 0);
490 		return 1;
491 	}
492 
493 	if (PageBuddy(buddy) && page_order(buddy) == order) {
494 		VM_BUG_ON(page_count(buddy) != 0);
495 		return 1;
496 	}
497 	return 0;
498 }
499 
500 /*
501  * Freeing function for a buddy system allocator.
502  *
503  * The concept of a buddy system is to maintain direct-mapped table
504  * (containing bit values) for memory blocks of various "orders".
505  * The bottom level table contains the map for the smallest allocatable
506  * units of memory (here, pages), and each level above it describes
507  * pairs of units from the levels below, hence, "buddies".
508  * At a high level, all that happens here is marking the table entry
509  * at the bottom level available, and propagating the changes upward
510  * as necessary, plus some accounting needed to play nicely with other
511  * parts of the VM system.
512  * At each level, we keep a list of pages, which are heads of continuous
513  * free pages of length of (1 << order) and marked with _mapcount -2. Page's
514  * order is recorded in page_private(page) field.
515  * So when we are allocating or freeing one, we can derive the state of the
516  * other.  That is, if we allocate a small block, and both were
517  * free, the remainder of the region must be split into blocks.
518  * If a block is freed, and its buddy is also free, then this
519  * triggers coalescing into a block of larger size.
520  *
521  * -- wli
522  */
523 
524 static inline void __free_one_page(struct page *page,
525 		struct zone *zone, unsigned int order,
526 		int migratetype)
527 {
528 	unsigned long page_idx;
529 	unsigned long combined_idx;
530 	unsigned long uninitialized_var(buddy_idx);
531 	struct page *buddy;
532 
533 	if (unlikely(PageCompound(page)))
534 		if (unlikely(destroy_compound_page(page, order)))
535 			return;
536 
537 	VM_BUG_ON(migratetype == -1);
538 
539 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
540 
541 	VM_BUG_ON(page_idx & ((1 << order) - 1));
542 	VM_BUG_ON(bad_range(zone, page));
543 
544 	while (order < MAX_ORDER-1) {
545 		buddy_idx = __find_buddy_index(page_idx, order);
546 		buddy = page + (buddy_idx - page_idx);
547 		if (!page_is_buddy(page, buddy, order))
548 			break;
549 		/*
550 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
551 		 * merge with it and move up one order.
552 		 */
553 		if (page_is_guard(buddy)) {
554 			clear_page_guard_flag(buddy);
555 			set_page_private(page, 0);
556 			__mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
557 		} else {
558 			list_del(&buddy->lru);
559 			zone->free_area[order].nr_free--;
560 			rmv_page_order(buddy);
561 		}
562 		combined_idx = buddy_idx & page_idx;
563 		page = page + (combined_idx - page_idx);
564 		page_idx = combined_idx;
565 		order++;
566 	}
567 	set_page_order(page, order);
568 
569 	/*
570 	 * If this is not the largest possible page, check if the buddy
571 	 * of the next-highest order is free. If it is, it's possible
572 	 * that pages are being freed that will coalesce soon. In case,
573 	 * that is happening, add the free page to the tail of the list
574 	 * so it's less likely to be used soon and more likely to be merged
575 	 * as a higher order page
576 	 */
577 	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
578 		struct page *higher_page, *higher_buddy;
579 		combined_idx = buddy_idx & page_idx;
580 		higher_page = page + (combined_idx - page_idx);
581 		buddy_idx = __find_buddy_index(combined_idx, order + 1);
582 		higher_buddy = page + (buddy_idx - combined_idx);
583 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
584 			list_add_tail(&page->lru,
585 				&zone->free_area[order].free_list[migratetype]);
586 			goto out;
587 		}
588 	}
589 
590 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
591 out:
592 	zone->free_area[order].nr_free++;
593 }
594 
595 /*
596  * free_page_mlock() -- clean up attempts to free and mlocked() page.
597  * Page should not be on lru, so no need to fix that up.
598  * free_pages_check() will verify...
599  */
600 static inline void free_page_mlock(struct page *page)
601 {
602 	__dec_zone_page_state(page, NR_MLOCK);
603 	__count_vm_event(UNEVICTABLE_MLOCKFREED);
604 }
605 
606 static inline int free_pages_check(struct page *page)
607 {
608 	if (unlikely(page_mapcount(page) |
609 		(page->mapping != NULL)  |
610 		(atomic_read(&page->_count) != 0) |
611 		(page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
612 		(mem_cgroup_bad_page_check(page)))) {
613 		bad_page(page);
614 		return 1;
615 	}
616 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
617 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
618 	return 0;
619 }
620 
621 /*
622  * Frees a number of pages from the PCP lists
623  * Assumes all pages on list are in same zone, and of same order.
624  * count is the number of pages to free.
625  *
626  * If the zone was previously in an "all pages pinned" state then look to
627  * see if this freeing clears that state.
628  *
629  * And clear the zone's pages_scanned counter, to hold off the "all pages are
630  * pinned" detection logic.
631  */
632 static void free_pcppages_bulk(struct zone *zone, int count,
633 					struct per_cpu_pages *pcp)
634 {
635 	int migratetype = 0;
636 	int batch_free = 0;
637 	int to_free = count;
638 
639 	spin_lock(&zone->lock);
640 	zone->all_unreclaimable = 0;
641 	zone->pages_scanned = 0;
642 
643 	while (to_free) {
644 		struct page *page;
645 		struct list_head *list;
646 
647 		/*
648 		 * Remove pages from lists in a round-robin fashion. A
649 		 * batch_free count is maintained that is incremented when an
650 		 * empty list is encountered.  This is so more pages are freed
651 		 * off fuller lists instead of spinning excessively around empty
652 		 * lists
653 		 */
654 		do {
655 			batch_free++;
656 			if (++migratetype == MIGRATE_PCPTYPES)
657 				migratetype = 0;
658 			list = &pcp->lists[migratetype];
659 		} while (list_empty(list));
660 
661 		/* This is the only non-empty list. Free them all. */
662 		if (batch_free == MIGRATE_PCPTYPES)
663 			batch_free = to_free;
664 
665 		do {
666 			page = list_entry(list->prev, struct page, lru);
667 			/* must delete as __free_one_page list manipulates */
668 			list_del(&page->lru);
669 			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
670 			__free_one_page(page, zone, 0, page_private(page));
671 			trace_mm_page_pcpu_drain(page, 0, page_private(page));
672 		} while (--to_free && --batch_free && !list_empty(list));
673 	}
674 	__mod_zone_page_state(zone, NR_FREE_PAGES, count);
675 	spin_unlock(&zone->lock);
676 }
677 
678 static void free_one_page(struct zone *zone, struct page *page, int order,
679 				int migratetype)
680 {
681 	spin_lock(&zone->lock);
682 	zone->all_unreclaimable = 0;
683 	zone->pages_scanned = 0;
684 
685 	__free_one_page(page, zone, order, migratetype);
686 	__mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
687 	spin_unlock(&zone->lock);
688 }
689 
690 static bool free_pages_prepare(struct page *page, unsigned int order)
691 {
692 	int i;
693 	int bad = 0;
694 
695 	trace_mm_page_free(page, order);
696 	kmemcheck_free_shadow(page, order);
697 
698 	if (PageAnon(page))
699 		page->mapping = NULL;
700 	for (i = 0; i < (1 << order); i++)
701 		bad += free_pages_check(page + i);
702 	if (bad)
703 		return false;
704 
705 	if (!PageHighMem(page)) {
706 		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
707 		debug_check_no_obj_freed(page_address(page),
708 					   PAGE_SIZE << order);
709 	}
710 	arch_free_page(page, order);
711 	kernel_map_pages(page, 1 << order, 0);
712 
713 	return true;
714 }
715 
716 static void __free_pages_ok(struct page *page, unsigned int order)
717 {
718 	unsigned long flags;
719 	int wasMlocked = __TestClearPageMlocked(page);
720 
721 	if (!free_pages_prepare(page, order))
722 		return;
723 
724 	local_irq_save(flags);
725 	if (unlikely(wasMlocked))
726 		free_page_mlock(page);
727 	__count_vm_events(PGFREE, 1 << order);
728 	free_one_page(page_zone(page), page, order,
729 					get_pageblock_migratetype(page));
730 	local_irq_restore(flags);
731 }
732 
733 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
734 {
735 	unsigned int nr_pages = 1 << order;
736 	unsigned int loop;
737 
738 	prefetchw(page);
739 	for (loop = 0; loop < nr_pages; loop++) {
740 		struct page *p = &page[loop];
741 
742 		if (loop + 1 < nr_pages)
743 			prefetchw(p + 1);
744 		__ClearPageReserved(p);
745 		set_page_count(p, 0);
746 	}
747 
748 	set_page_refcounted(page);
749 	__free_pages(page, order);
750 }
751 
752 
753 /*
754  * The order of subdivision here is critical for the IO subsystem.
755  * Please do not alter this order without good reasons and regression
756  * testing. Specifically, as large blocks of memory are subdivided,
757  * the order in which smaller blocks are delivered depends on the order
758  * they're subdivided in this function. This is the primary factor
759  * influencing the order in which pages are delivered to the IO
760  * subsystem according to empirical testing, and this is also justified
761  * by considering the behavior of a buddy system containing a single
762  * large block of memory acted on by a series of small allocations.
763  * This behavior is a critical factor in sglist merging's success.
764  *
765  * -- wli
766  */
767 static inline void expand(struct zone *zone, struct page *page,
768 	int low, int high, struct free_area *area,
769 	int migratetype)
770 {
771 	unsigned long size = 1 << high;
772 
773 	while (high > low) {
774 		area--;
775 		high--;
776 		size >>= 1;
777 		VM_BUG_ON(bad_range(zone, &page[size]));
778 
779 #ifdef CONFIG_DEBUG_PAGEALLOC
780 		if (high < debug_guardpage_minorder()) {
781 			/*
782 			 * Mark as guard pages (or page), that will allow to
783 			 * merge back to allocator when buddy will be freed.
784 			 * Corresponding page table entries will not be touched,
785 			 * pages will stay not present in virtual address space
786 			 */
787 			INIT_LIST_HEAD(&page[size].lru);
788 			set_page_guard_flag(&page[size]);
789 			set_page_private(&page[size], high);
790 			/* Guard pages are not available for any usage */
791 			__mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << high));
792 			continue;
793 		}
794 #endif
795 		list_add(&page[size].lru, &area->free_list[migratetype]);
796 		area->nr_free++;
797 		set_page_order(&page[size], high);
798 	}
799 }
800 
801 /*
802  * This page is about to be returned from the page allocator
803  */
804 static inline int check_new_page(struct page *page)
805 {
806 	if (unlikely(page_mapcount(page) |
807 		(page->mapping != NULL)  |
808 		(atomic_read(&page->_count) != 0)  |
809 		(page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
810 		(mem_cgroup_bad_page_check(page)))) {
811 		bad_page(page);
812 		return 1;
813 	}
814 	return 0;
815 }
816 
817 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
818 {
819 	int i;
820 
821 	for (i = 0; i < (1 << order); i++) {
822 		struct page *p = page + i;
823 		if (unlikely(check_new_page(p)))
824 			return 1;
825 	}
826 
827 	set_page_private(page, 0);
828 	set_page_refcounted(page);
829 
830 	arch_alloc_page(page, order);
831 	kernel_map_pages(page, 1 << order, 1);
832 
833 	if (gfp_flags & __GFP_ZERO)
834 		prep_zero_page(page, order, gfp_flags);
835 
836 	if (order && (gfp_flags & __GFP_COMP))
837 		prep_compound_page(page, order);
838 
839 	return 0;
840 }
841 
842 /*
843  * Go through the free lists for the given migratetype and remove
844  * the smallest available page from the freelists
845  */
846 static inline
847 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
848 						int migratetype)
849 {
850 	unsigned int current_order;
851 	struct free_area * area;
852 	struct page *page;
853 
854 	/* Find a page of the appropriate size in the preferred list */
855 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
856 		area = &(zone->free_area[current_order]);
857 		if (list_empty(&area->free_list[migratetype]))
858 			continue;
859 
860 		page = list_entry(area->free_list[migratetype].next,
861 							struct page, lru);
862 		list_del(&page->lru);
863 		rmv_page_order(page);
864 		area->nr_free--;
865 		expand(zone, page, order, current_order, area, migratetype);
866 		return page;
867 	}
868 
869 	return NULL;
870 }
871 
872 
873 /*
874  * This array describes the order lists are fallen back to when
875  * the free lists for the desirable migrate type are depleted
876  */
877 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
878 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_RESERVE },
879 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_RESERVE },
880 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
881 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE,     MIGRATE_RESERVE,   MIGRATE_RESERVE }, /* Never used */
882 };
883 
884 /*
885  * Move the free pages in a range to the free lists of the requested type.
886  * Note that start_page and end_pages are not aligned on a pageblock
887  * boundary. If alignment is required, use move_freepages_block()
888  */
889 static int move_freepages(struct zone *zone,
890 			  struct page *start_page, struct page *end_page,
891 			  int migratetype)
892 {
893 	struct page *page;
894 	unsigned long order;
895 	int pages_moved = 0;
896 
897 #ifndef CONFIG_HOLES_IN_ZONE
898 	/*
899 	 * page_zone is not safe to call in this context when
900 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
901 	 * anyway as we check zone boundaries in move_freepages_block().
902 	 * Remove at a later date when no bug reports exist related to
903 	 * grouping pages by mobility
904 	 */
905 	BUG_ON(page_zone(start_page) != page_zone(end_page));
906 #endif
907 
908 	for (page = start_page; page <= end_page;) {
909 		/* Make sure we are not inadvertently changing nodes */
910 		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
911 
912 		if (!pfn_valid_within(page_to_pfn(page))) {
913 			page++;
914 			continue;
915 		}
916 
917 		if (!PageBuddy(page)) {
918 			page++;
919 			continue;
920 		}
921 
922 		order = page_order(page);
923 		list_move(&page->lru,
924 			  &zone->free_area[order].free_list[migratetype]);
925 		page += 1 << order;
926 		pages_moved += 1 << order;
927 	}
928 
929 	return pages_moved;
930 }
931 
932 static int move_freepages_block(struct zone *zone, struct page *page,
933 				int migratetype)
934 {
935 	unsigned long start_pfn, end_pfn;
936 	struct page *start_page, *end_page;
937 
938 	start_pfn = page_to_pfn(page);
939 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
940 	start_page = pfn_to_page(start_pfn);
941 	end_page = start_page + pageblock_nr_pages - 1;
942 	end_pfn = start_pfn + pageblock_nr_pages - 1;
943 
944 	/* Do not cross zone boundaries */
945 	if (start_pfn < zone->zone_start_pfn)
946 		start_page = page;
947 	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
948 		return 0;
949 
950 	return move_freepages(zone, start_page, end_page, migratetype);
951 }
952 
953 static void change_pageblock_range(struct page *pageblock_page,
954 					int start_order, int migratetype)
955 {
956 	int nr_pageblocks = 1 << (start_order - pageblock_order);
957 
958 	while (nr_pageblocks--) {
959 		set_pageblock_migratetype(pageblock_page, migratetype);
960 		pageblock_page += pageblock_nr_pages;
961 	}
962 }
963 
964 /* Remove an element from the buddy allocator from the fallback list */
965 static inline struct page *
966 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
967 {
968 	struct free_area * area;
969 	int current_order;
970 	struct page *page;
971 	int migratetype, i;
972 
973 	/* Find the largest possible block of pages in the other list */
974 	for (current_order = MAX_ORDER-1; current_order >= order;
975 						--current_order) {
976 		for (i = 0; i < MIGRATE_TYPES - 1; i++) {
977 			migratetype = fallbacks[start_migratetype][i];
978 
979 			/* MIGRATE_RESERVE handled later if necessary */
980 			if (migratetype == MIGRATE_RESERVE)
981 				continue;
982 
983 			area = &(zone->free_area[current_order]);
984 			if (list_empty(&area->free_list[migratetype]))
985 				continue;
986 
987 			page = list_entry(area->free_list[migratetype].next,
988 					struct page, lru);
989 			area->nr_free--;
990 
991 			/*
992 			 * If breaking a large block of pages, move all free
993 			 * pages to the preferred allocation list. If falling
994 			 * back for a reclaimable kernel allocation, be more
995 			 * aggressive about taking ownership of free pages
996 			 */
997 			if (unlikely(current_order >= (pageblock_order >> 1)) ||
998 					start_migratetype == MIGRATE_RECLAIMABLE ||
999 					page_group_by_mobility_disabled) {
1000 				unsigned long pages;
1001 				pages = move_freepages_block(zone, page,
1002 								start_migratetype);
1003 
1004 				/* Claim the whole block if over half of it is free */
1005 				if (pages >= (1 << (pageblock_order-1)) ||
1006 						page_group_by_mobility_disabled)
1007 					set_pageblock_migratetype(page,
1008 								start_migratetype);
1009 
1010 				migratetype = start_migratetype;
1011 			}
1012 
1013 			/* Remove the page from the freelists */
1014 			list_del(&page->lru);
1015 			rmv_page_order(page);
1016 
1017 			/* Take ownership for orders >= pageblock_order */
1018 			if (current_order >= pageblock_order)
1019 				change_pageblock_range(page, current_order,
1020 							start_migratetype);
1021 
1022 			expand(zone, page, order, current_order, area, migratetype);
1023 
1024 			trace_mm_page_alloc_extfrag(page, order, current_order,
1025 				start_migratetype, migratetype);
1026 
1027 			return page;
1028 		}
1029 	}
1030 
1031 	return NULL;
1032 }
1033 
1034 /*
1035  * Do the hard work of removing an element from the buddy allocator.
1036  * Call me with the zone->lock already held.
1037  */
1038 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1039 						int migratetype)
1040 {
1041 	struct page *page;
1042 
1043 retry_reserve:
1044 	page = __rmqueue_smallest(zone, order, migratetype);
1045 
1046 	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1047 		page = __rmqueue_fallback(zone, order, migratetype);
1048 
1049 		/*
1050 		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1051 		 * is used because __rmqueue_smallest is an inline function
1052 		 * and we want just one call site
1053 		 */
1054 		if (!page) {
1055 			migratetype = MIGRATE_RESERVE;
1056 			goto retry_reserve;
1057 		}
1058 	}
1059 
1060 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
1061 	return page;
1062 }
1063 
1064 /*
1065  * Obtain a specified number of elements from the buddy allocator, all under
1066  * a single hold of the lock, for efficiency.  Add them to the supplied list.
1067  * Returns the number of new pages which were placed at *list.
1068  */
1069 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1070 			unsigned long count, struct list_head *list,
1071 			int migratetype, int cold)
1072 {
1073 	int i;
1074 
1075 	spin_lock(&zone->lock);
1076 	for (i = 0; i < count; ++i) {
1077 		struct page *page = __rmqueue(zone, order, migratetype);
1078 		if (unlikely(page == NULL))
1079 			break;
1080 
1081 		/*
1082 		 * Split buddy pages returned by expand() are received here
1083 		 * in physical page order. The page is added to the callers and
1084 		 * list and the list head then moves forward. From the callers
1085 		 * perspective, the linked list is ordered by page number in
1086 		 * some conditions. This is useful for IO devices that can
1087 		 * merge IO requests if the physical pages are ordered
1088 		 * properly.
1089 		 */
1090 		if (likely(cold == 0))
1091 			list_add(&page->lru, list);
1092 		else
1093 			list_add_tail(&page->lru, list);
1094 		set_page_private(page, migratetype);
1095 		list = &page->lru;
1096 	}
1097 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1098 	spin_unlock(&zone->lock);
1099 	return i;
1100 }
1101 
1102 #ifdef CONFIG_NUMA
1103 /*
1104  * Called from the vmstat counter updater to drain pagesets of this
1105  * currently executing processor on remote nodes after they have
1106  * expired.
1107  *
1108  * Note that this function must be called with the thread pinned to
1109  * a single processor.
1110  */
1111 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1112 {
1113 	unsigned long flags;
1114 	int to_drain;
1115 
1116 	local_irq_save(flags);
1117 	if (pcp->count >= pcp->batch)
1118 		to_drain = pcp->batch;
1119 	else
1120 		to_drain = pcp->count;
1121 	free_pcppages_bulk(zone, to_drain, pcp);
1122 	pcp->count -= to_drain;
1123 	local_irq_restore(flags);
1124 }
1125 #endif
1126 
1127 /*
1128  * Drain pages of the indicated processor.
1129  *
1130  * The processor must either be the current processor and the
1131  * thread pinned to the current processor or a processor that
1132  * is not online.
1133  */
1134 static void drain_pages(unsigned int cpu)
1135 {
1136 	unsigned long flags;
1137 	struct zone *zone;
1138 
1139 	for_each_populated_zone(zone) {
1140 		struct per_cpu_pageset *pset;
1141 		struct per_cpu_pages *pcp;
1142 
1143 		local_irq_save(flags);
1144 		pset = per_cpu_ptr(zone->pageset, cpu);
1145 
1146 		pcp = &pset->pcp;
1147 		if (pcp->count) {
1148 			free_pcppages_bulk(zone, pcp->count, pcp);
1149 			pcp->count = 0;
1150 		}
1151 		local_irq_restore(flags);
1152 	}
1153 }
1154 
1155 /*
1156  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1157  */
1158 void drain_local_pages(void *arg)
1159 {
1160 	drain_pages(smp_processor_id());
1161 }
1162 
1163 /*
1164  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1165  *
1166  * Note that this code is protected against sending an IPI to an offline
1167  * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1168  * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1169  * nothing keeps CPUs from showing up after we populated the cpumask and
1170  * before the call to on_each_cpu_mask().
1171  */
1172 void drain_all_pages(void)
1173 {
1174 	int cpu;
1175 	struct per_cpu_pageset *pcp;
1176 	struct zone *zone;
1177 
1178 	/*
1179 	 * Allocate in the BSS so we wont require allocation in
1180 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1181 	 */
1182 	static cpumask_t cpus_with_pcps;
1183 
1184 	/*
1185 	 * We don't care about racing with CPU hotplug event
1186 	 * as offline notification will cause the notified
1187 	 * cpu to drain that CPU pcps and on_each_cpu_mask
1188 	 * disables preemption as part of its processing
1189 	 */
1190 	for_each_online_cpu(cpu) {
1191 		bool has_pcps = false;
1192 		for_each_populated_zone(zone) {
1193 			pcp = per_cpu_ptr(zone->pageset, cpu);
1194 			if (pcp->pcp.count) {
1195 				has_pcps = true;
1196 				break;
1197 			}
1198 		}
1199 		if (has_pcps)
1200 			cpumask_set_cpu(cpu, &cpus_with_pcps);
1201 		else
1202 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
1203 	}
1204 	on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1205 }
1206 
1207 #ifdef CONFIG_HIBERNATION
1208 
1209 void mark_free_pages(struct zone *zone)
1210 {
1211 	unsigned long pfn, max_zone_pfn;
1212 	unsigned long flags;
1213 	int order, t;
1214 	struct list_head *curr;
1215 
1216 	if (!zone->spanned_pages)
1217 		return;
1218 
1219 	spin_lock_irqsave(&zone->lock, flags);
1220 
1221 	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1222 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1223 		if (pfn_valid(pfn)) {
1224 			struct page *page = pfn_to_page(pfn);
1225 
1226 			if (!swsusp_page_is_forbidden(page))
1227 				swsusp_unset_page_free(page);
1228 		}
1229 
1230 	for_each_migratetype_order(order, t) {
1231 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1232 			unsigned long i;
1233 
1234 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1235 			for (i = 0; i < (1UL << order); i++)
1236 				swsusp_set_page_free(pfn_to_page(pfn + i));
1237 		}
1238 	}
1239 	spin_unlock_irqrestore(&zone->lock, flags);
1240 }
1241 #endif /* CONFIG_PM */
1242 
1243 /*
1244  * Free a 0-order page
1245  * cold == 1 ? free a cold page : free a hot page
1246  */
1247 void free_hot_cold_page(struct page *page, int cold)
1248 {
1249 	struct zone *zone = page_zone(page);
1250 	struct per_cpu_pages *pcp;
1251 	unsigned long flags;
1252 	int migratetype;
1253 	int wasMlocked = __TestClearPageMlocked(page);
1254 
1255 	if (!free_pages_prepare(page, 0))
1256 		return;
1257 
1258 	migratetype = get_pageblock_migratetype(page);
1259 	set_page_private(page, migratetype);
1260 	local_irq_save(flags);
1261 	if (unlikely(wasMlocked))
1262 		free_page_mlock(page);
1263 	__count_vm_event(PGFREE);
1264 
1265 	/*
1266 	 * We only track unmovable, reclaimable and movable on pcp lists.
1267 	 * Free ISOLATE pages back to the allocator because they are being
1268 	 * offlined but treat RESERVE as movable pages so we can get those
1269 	 * areas back if necessary. Otherwise, we may have to free
1270 	 * excessively into the page allocator
1271 	 */
1272 	if (migratetype >= MIGRATE_PCPTYPES) {
1273 		if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1274 			free_one_page(zone, page, 0, migratetype);
1275 			goto out;
1276 		}
1277 		migratetype = MIGRATE_MOVABLE;
1278 	}
1279 
1280 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
1281 	if (cold)
1282 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1283 	else
1284 		list_add(&page->lru, &pcp->lists[migratetype]);
1285 	pcp->count++;
1286 	if (pcp->count >= pcp->high) {
1287 		free_pcppages_bulk(zone, pcp->batch, pcp);
1288 		pcp->count -= pcp->batch;
1289 	}
1290 
1291 out:
1292 	local_irq_restore(flags);
1293 }
1294 
1295 /*
1296  * Free a list of 0-order pages
1297  */
1298 void free_hot_cold_page_list(struct list_head *list, int cold)
1299 {
1300 	struct page *page, *next;
1301 
1302 	list_for_each_entry_safe(page, next, list, lru) {
1303 		trace_mm_page_free_batched(page, cold);
1304 		free_hot_cold_page(page, cold);
1305 	}
1306 }
1307 
1308 /*
1309  * split_page takes a non-compound higher-order page, and splits it into
1310  * n (1<<order) sub-pages: page[0..n]
1311  * Each sub-page must be freed individually.
1312  *
1313  * Note: this is probably too low level an operation for use in drivers.
1314  * Please consult with lkml before using this in your driver.
1315  */
1316 void split_page(struct page *page, unsigned int order)
1317 {
1318 	int i;
1319 
1320 	VM_BUG_ON(PageCompound(page));
1321 	VM_BUG_ON(!page_count(page));
1322 
1323 #ifdef CONFIG_KMEMCHECK
1324 	/*
1325 	 * Split shadow pages too, because free(page[0]) would
1326 	 * otherwise free the whole shadow.
1327 	 */
1328 	if (kmemcheck_page_is_tracked(page))
1329 		split_page(virt_to_page(page[0].shadow), order);
1330 #endif
1331 
1332 	for (i = 1; i < (1 << order); i++)
1333 		set_page_refcounted(page + i);
1334 }
1335 
1336 /*
1337  * Similar to split_page except the page is already free. As this is only
1338  * being used for migration, the migratetype of the block also changes.
1339  * As this is called with interrupts disabled, the caller is responsible
1340  * for calling arch_alloc_page() and kernel_map_page() after interrupts
1341  * are enabled.
1342  *
1343  * Note: this is probably too low level an operation for use in drivers.
1344  * Please consult with lkml before using this in your driver.
1345  */
1346 int split_free_page(struct page *page)
1347 {
1348 	unsigned int order;
1349 	unsigned long watermark;
1350 	struct zone *zone;
1351 
1352 	BUG_ON(!PageBuddy(page));
1353 
1354 	zone = page_zone(page);
1355 	order = page_order(page);
1356 
1357 	/* Obey watermarks as if the page was being allocated */
1358 	watermark = low_wmark_pages(zone) + (1 << order);
1359 	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1360 		return 0;
1361 
1362 	/* Remove page from free list */
1363 	list_del(&page->lru);
1364 	zone->free_area[order].nr_free--;
1365 	rmv_page_order(page);
1366 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1367 
1368 	/* Split into individual pages */
1369 	set_page_refcounted(page);
1370 	split_page(page, order);
1371 
1372 	if (order >= pageblock_order - 1) {
1373 		struct page *endpage = page + (1 << order) - 1;
1374 		for (; page < endpage; page += pageblock_nr_pages)
1375 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1376 	}
1377 
1378 	return 1 << order;
1379 }
1380 
1381 /*
1382  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1383  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1384  * or two.
1385  */
1386 static inline
1387 struct page *buffered_rmqueue(struct zone *preferred_zone,
1388 			struct zone *zone, int order, gfp_t gfp_flags,
1389 			int migratetype)
1390 {
1391 	unsigned long flags;
1392 	struct page *page;
1393 	int cold = !!(gfp_flags & __GFP_COLD);
1394 
1395 again:
1396 	if (likely(order == 0)) {
1397 		struct per_cpu_pages *pcp;
1398 		struct list_head *list;
1399 
1400 		local_irq_save(flags);
1401 		pcp = &this_cpu_ptr(zone->pageset)->pcp;
1402 		list = &pcp->lists[migratetype];
1403 		if (list_empty(list)) {
1404 			pcp->count += rmqueue_bulk(zone, 0,
1405 					pcp->batch, list,
1406 					migratetype, cold);
1407 			if (unlikely(list_empty(list)))
1408 				goto failed;
1409 		}
1410 
1411 		if (cold)
1412 			page = list_entry(list->prev, struct page, lru);
1413 		else
1414 			page = list_entry(list->next, struct page, lru);
1415 
1416 		list_del(&page->lru);
1417 		pcp->count--;
1418 	} else {
1419 		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1420 			/*
1421 			 * __GFP_NOFAIL is not to be used in new code.
1422 			 *
1423 			 * All __GFP_NOFAIL callers should be fixed so that they
1424 			 * properly detect and handle allocation failures.
1425 			 *
1426 			 * We most definitely don't want callers attempting to
1427 			 * allocate greater than order-1 page units with
1428 			 * __GFP_NOFAIL.
1429 			 */
1430 			WARN_ON_ONCE(order > 1);
1431 		}
1432 		spin_lock_irqsave(&zone->lock, flags);
1433 		page = __rmqueue(zone, order, migratetype);
1434 		spin_unlock(&zone->lock);
1435 		if (!page)
1436 			goto failed;
1437 		__mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1438 	}
1439 
1440 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1441 	zone_statistics(preferred_zone, zone, gfp_flags);
1442 	local_irq_restore(flags);
1443 
1444 	VM_BUG_ON(bad_range(zone, page));
1445 	if (prep_new_page(page, order, gfp_flags))
1446 		goto again;
1447 	return page;
1448 
1449 failed:
1450 	local_irq_restore(flags);
1451 	return NULL;
1452 }
1453 
1454 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1455 #define ALLOC_WMARK_MIN		WMARK_MIN
1456 #define ALLOC_WMARK_LOW		WMARK_LOW
1457 #define ALLOC_WMARK_HIGH	WMARK_HIGH
1458 #define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
1459 
1460 /* Mask to get the watermark bits */
1461 #define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
1462 
1463 #define ALLOC_HARDER		0x10 /* try to alloc harder */
1464 #define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
1465 #define ALLOC_CPUSET		0x40 /* check for correct cpuset */
1466 
1467 #ifdef CONFIG_FAIL_PAGE_ALLOC
1468 
1469 static struct {
1470 	struct fault_attr attr;
1471 
1472 	u32 ignore_gfp_highmem;
1473 	u32 ignore_gfp_wait;
1474 	u32 min_order;
1475 } fail_page_alloc = {
1476 	.attr = FAULT_ATTR_INITIALIZER,
1477 	.ignore_gfp_wait = 1,
1478 	.ignore_gfp_highmem = 1,
1479 	.min_order = 1,
1480 };
1481 
1482 static int __init setup_fail_page_alloc(char *str)
1483 {
1484 	return setup_fault_attr(&fail_page_alloc.attr, str);
1485 }
1486 __setup("fail_page_alloc=", setup_fail_page_alloc);
1487 
1488 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1489 {
1490 	if (order < fail_page_alloc.min_order)
1491 		return 0;
1492 	if (gfp_mask & __GFP_NOFAIL)
1493 		return 0;
1494 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1495 		return 0;
1496 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1497 		return 0;
1498 
1499 	return should_fail(&fail_page_alloc.attr, 1 << order);
1500 }
1501 
1502 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1503 
1504 static int __init fail_page_alloc_debugfs(void)
1505 {
1506 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1507 	struct dentry *dir;
1508 
1509 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1510 					&fail_page_alloc.attr);
1511 	if (IS_ERR(dir))
1512 		return PTR_ERR(dir);
1513 
1514 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1515 				&fail_page_alloc.ignore_gfp_wait))
1516 		goto fail;
1517 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1518 				&fail_page_alloc.ignore_gfp_highmem))
1519 		goto fail;
1520 	if (!debugfs_create_u32("min-order", mode, dir,
1521 				&fail_page_alloc.min_order))
1522 		goto fail;
1523 
1524 	return 0;
1525 fail:
1526 	debugfs_remove_recursive(dir);
1527 
1528 	return -ENOMEM;
1529 }
1530 
1531 late_initcall(fail_page_alloc_debugfs);
1532 
1533 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1534 
1535 #else /* CONFIG_FAIL_PAGE_ALLOC */
1536 
1537 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1538 {
1539 	return 0;
1540 }
1541 
1542 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1543 
1544 /*
1545  * Return true if free pages are above 'mark'. This takes into account the order
1546  * of the allocation.
1547  */
1548 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1549 		      int classzone_idx, int alloc_flags, long free_pages)
1550 {
1551 	/* free_pages my go negative - that's OK */
1552 	long min = mark;
1553 	int o;
1554 
1555 	free_pages -= (1 << order) - 1;
1556 	if (alloc_flags & ALLOC_HIGH)
1557 		min -= min / 2;
1558 	if (alloc_flags & ALLOC_HARDER)
1559 		min -= min / 4;
1560 
1561 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1562 		return false;
1563 	for (o = 0; o < order; o++) {
1564 		/* At the next order, this order's pages become unavailable */
1565 		free_pages -= z->free_area[o].nr_free << o;
1566 
1567 		/* Require fewer higher order pages to be free */
1568 		min >>= 1;
1569 
1570 		if (free_pages <= min)
1571 			return false;
1572 	}
1573 	return true;
1574 }
1575 
1576 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1577 		      int classzone_idx, int alloc_flags)
1578 {
1579 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1580 					zone_page_state(z, NR_FREE_PAGES));
1581 }
1582 
1583 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1584 		      int classzone_idx, int alloc_flags)
1585 {
1586 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
1587 
1588 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1589 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1590 
1591 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1592 								free_pages);
1593 }
1594 
1595 #ifdef CONFIG_NUMA
1596 /*
1597  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1598  * skip over zones that are not allowed by the cpuset, or that have
1599  * been recently (in last second) found to be nearly full.  See further
1600  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1601  * that have to skip over a lot of full or unallowed zones.
1602  *
1603  * If the zonelist cache is present in the passed in zonelist, then
1604  * returns a pointer to the allowed node mask (either the current
1605  * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1606  *
1607  * If the zonelist cache is not available for this zonelist, does
1608  * nothing and returns NULL.
1609  *
1610  * If the fullzones BITMAP in the zonelist cache is stale (more than
1611  * a second since last zap'd) then we zap it out (clear its bits.)
1612  *
1613  * We hold off even calling zlc_setup, until after we've checked the
1614  * first zone in the zonelist, on the theory that most allocations will
1615  * be satisfied from that first zone, so best to examine that zone as
1616  * quickly as we can.
1617  */
1618 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1619 {
1620 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1621 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1622 
1623 	zlc = zonelist->zlcache_ptr;
1624 	if (!zlc)
1625 		return NULL;
1626 
1627 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1628 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1629 		zlc->last_full_zap = jiffies;
1630 	}
1631 
1632 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1633 					&cpuset_current_mems_allowed :
1634 					&node_states[N_HIGH_MEMORY];
1635 	return allowednodes;
1636 }
1637 
1638 /*
1639  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1640  * if it is worth looking at further for free memory:
1641  *  1) Check that the zone isn't thought to be full (doesn't have its
1642  *     bit set in the zonelist_cache fullzones BITMAP).
1643  *  2) Check that the zones node (obtained from the zonelist_cache
1644  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1645  * Return true (non-zero) if zone is worth looking at further, or
1646  * else return false (zero) if it is not.
1647  *
1648  * This check -ignores- the distinction between various watermarks,
1649  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1650  * found to be full for any variation of these watermarks, it will
1651  * be considered full for up to one second by all requests, unless
1652  * we are so low on memory on all allowed nodes that we are forced
1653  * into the second scan of the zonelist.
1654  *
1655  * In the second scan we ignore this zonelist cache and exactly
1656  * apply the watermarks to all zones, even it is slower to do so.
1657  * We are low on memory in the second scan, and should leave no stone
1658  * unturned looking for a free page.
1659  */
1660 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1661 						nodemask_t *allowednodes)
1662 {
1663 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1664 	int i;				/* index of *z in zonelist zones */
1665 	int n;				/* node that zone *z is on */
1666 
1667 	zlc = zonelist->zlcache_ptr;
1668 	if (!zlc)
1669 		return 1;
1670 
1671 	i = z - zonelist->_zonerefs;
1672 	n = zlc->z_to_n[i];
1673 
1674 	/* This zone is worth trying if it is allowed but not full */
1675 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1676 }
1677 
1678 /*
1679  * Given 'z' scanning a zonelist, set the corresponding bit in
1680  * zlc->fullzones, so that subsequent attempts to allocate a page
1681  * from that zone don't waste time re-examining it.
1682  */
1683 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1684 {
1685 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1686 	int i;				/* index of *z in zonelist zones */
1687 
1688 	zlc = zonelist->zlcache_ptr;
1689 	if (!zlc)
1690 		return;
1691 
1692 	i = z - zonelist->_zonerefs;
1693 
1694 	set_bit(i, zlc->fullzones);
1695 }
1696 
1697 /*
1698  * clear all zones full, called after direct reclaim makes progress so that
1699  * a zone that was recently full is not skipped over for up to a second
1700  */
1701 static void zlc_clear_zones_full(struct zonelist *zonelist)
1702 {
1703 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1704 
1705 	zlc = zonelist->zlcache_ptr;
1706 	if (!zlc)
1707 		return;
1708 
1709 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1710 }
1711 
1712 #else	/* CONFIG_NUMA */
1713 
1714 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1715 {
1716 	return NULL;
1717 }
1718 
1719 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1720 				nodemask_t *allowednodes)
1721 {
1722 	return 1;
1723 }
1724 
1725 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1726 {
1727 }
1728 
1729 static void zlc_clear_zones_full(struct zonelist *zonelist)
1730 {
1731 }
1732 #endif	/* CONFIG_NUMA */
1733 
1734 /*
1735  * get_page_from_freelist goes through the zonelist trying to allocate
1736  * a page.
1737  */
1738 static struct page *
1739 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1740 		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1741 		struct zone *preferred_zone, int migratetype)
1742 {
1743 	struct zoneref *z;
1744 	struct page *page = NULL;
1745 	int classzone_idx;
1746 	struct zone *zone;
1747 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1748 	int zlc_active = 0;		/* set if using zonelist_cache */
1749 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1750 
1751 	classzone_idx = zone_idx(preferred_zone);
1752 zonelist_scan:
1753 	/*
1754 	 * Scan zonelist, looking for a zone with enough free.
1755 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1756 	 */
1757 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1758 						high_zoneidx, nodemask) {
1759 		if (NUMA_BUILD && zlc_active &&
1760 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1761 				continue;
1762 		if ((alloc_flags & ALLOC_CPUSET) &&
1763 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1764 				continue;
1765 		/*
1766 		 * When allocating a page cache page for writing, we
1767 		 * want to get it from a zone that is within its dirty
1768 		 * limit, such that no single zone holds more than its
1769 		 * proportional share of globally allowed dirty pages.
1770 		 * The dirty limits take into account the zone's
1771 		 * lowmem reserves and high watermark so that kswapd
1772 		 * should be able to balance it without having to
1773 		 * write pages from its LRU list.
1774 		 *
1775 		 * This may look like it could increase pressure on
1776 		 * lower zones by failing allocations in higher zones
1777 		 * before they are full.  But the pages that do spill
1778 		 * over are limited as the lower zones are protected
1779 		 * by this very same mechanism.  It should not become
1780 		 * a practical burden to them.
1781 		 *
1782 		 * XXX: For now, allow allocations to potentially
1783 		 * exceed the per-zone dirty limit in the slowpath
1784 		 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1785 		 * which is important when on a NUMA setup the allowed
1786 		 * zones are together not big enough to reach the
1787 		 * global limit.  The proper fix for these situations
1788 		 * will require awareness of zones in the
1789 		 * dirty-throttling and the flusher threads.
1790 		 */
1791 		if ((alloc_flags & ALLOC_WMARK_LOW) &&
1792 		    (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1793 			goto this_zone_full;
1794 
1795 		BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1796 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1797 			unsigned long mark;
1798 			int ret;
1799 
1800 			mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1801 			if (zone_watermark_ok(zone, order, mark,
1802 				    classzone_idx, alloc_flags))
1803 				goto try_this_zone;
1804 
1805 			if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1806 				/*
1807 				 * we do zlc_setup if there are multiple nodes
1808 				 * and before considering the first zone allowed
1809 				 * by the cpuset.
1810 				 */
1811 				allowednodes = zlc_setup(zonelist, alloc_flags);
1812 				zlc_active = 1;
1813 				did_zlc_setup = 1;
1814 			}
1815 
1816 			if (zone_reclaim_mode == 0)
1817 				goto this_zone_full;
1818 
1819 			/*
1820 			 * As we may have just activated ZLC, check if the first
1821 			 * eligible zone has failed zone_reclaim recently.
1822 			 */
1823 			if (NUMA_BUILD && zlc_active &&
1824 				!zlc_zone_worth_trying(zonelist, z, allowednodes))
1825 				continue;
1826 
1827 			ret = zone_reclaim(zone, gfp_mask, order);
1828 			switch (ret) {
1829 			case ZONE_RECLAIM_NOSCAN:
1830 				/* did not scan */
1831 				continue;
1832 			case ZONE_RECLAIM_FULL:
1833 				/* scanned but unreclaimable */
1834 				continue;
1835 			default:
1836 				/* did we reclaim enough */
1837 				if (!zone_watermark_ok(zone, order, mark,
1838 						classzone_idx, alloc_flags))
1839 					goto this_zone_full;
1840 			}
1841 		}
1842 
1843 try_this_zone:
1844 		page = buffered_rmqueue(preferred_zone, zone, order,
1845 						gfp_mask, migratetype);
1846 		if (page)
1847 			break;
1848 this_zone_full:
1849 		if (NUMA_BUILD)
1850 			zlc_mark_zone_full(zonelist, z);
1851 	}
1852 
1853 	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1854 		/* Disable zlc cache for second zonelist scan */
1855 		zlc_active = 0;
1856 		goto zonelist_scan;
1857 	}
1858 	return page;
1859 }
1860 
1861 /*
1862  * Large machines with many possible nodes should not always dump per-node
1863  * meminfo in irq context.
1864  */
1865 static inline bool should_suppress_show_mem(void)
1866 {
1867 	bool ret = false;
1868 
1869 #if NODES_SHIFT > 8
1870 	ret = in_interrupt();
1871 #endif
1872 	return ret;
1873 }
1874 
1875 static DEFINE_RATELIMIT_STATE(nopage_rs,
1876 		DEFAULT_RATELIMIT_INTERVAL,
1877 		DEFAULT_RATELIMIT_BURST);
1878 
1879 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1880 {
1881 	unsigned int filter = SHOW_MEM_FILTER_NODES;
1882 
1883 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
1884 	    debug_guardpage_minorder() > 0)
1885 		return;
1886 
1887 	/*
1888 	 * This documents exceptions given to allocations in certain
1889 	 * contexts that are allowed to allocate outside current's set
1890 	 * of allowed nodes.
1891 	 */
1892 	if (!(gfp_mask & __GFP_NOMEMALLOC))
1893 		if (test_thread_flag(TIF_MEMDIE) ||
1894 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
1895 			filter &= ~SHOW_MEM_FILTER_NODES;
1896 	if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
1897 		filter &= ~SHOW_MEM_FILTER_NODES;
1898 
1899 	if (fmt) {
1900 		struct va_format vaf;
1901 		va_list args;
1902 
1903 		va_start(args, fmt);
1904 
1905 		vaf.fmt = fmt;
1906 		vaf.va = &args;
1907 
1908 		pr_warn("%pV", &vaf);
1909 
1910 		va_end(args);
1911 	}
1912 
1913 	pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
1914 		current->comm, order, gfp_mask);
1915 
1916 	dump_stack();
1917 	if (!should_suppress_show_mem())
1918 		show_mem(filter);
1919 }
1920 
1921 static inline int
1922 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1923 				unsigned long did_some_progress,
1924 				unsigned long pages_reclaimed)
1925 {
1926 	/* Do not loop if specifically requested */
1927 	if (gfp_mask & __GFP_NORETRY)
1928 		return 0;
1929 
1930 	/* Always retry if specifically requested */
1931 	if (gfp_mask & __GFP_NOFAIL)
1932 		return 1;
1933 
1934 	/*
1935 	 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
1936 	 * making forward progress without invoking OOM. Suspend also disables
1937 	 * storage devices so kswapd will not help. Bail if we are suspending.
1938 	 */
1939 	if (!did_some_progress && pm_suspended_storage())
1940 		return 0;
1941 
1942 	/*
1943 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1944 	 * means __GFP_NOFAIL, but that may not be true in other
1945 	 * implementations.
1946 	 */
1947 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
1948 		return 1;
1949 
1950 	/*
1951 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1952 	 * specified, then we retry until we no longer reclaim any pages
1953 	 * (above), or we've reclaimed an order of pages at least as
1954 	 * large as the allocation's order. In both cases, if the
1955 	 * allocation still fails, we stop retrying.
1956 	 */
1957 	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1958 		return 1;
1959 
1960 	return 0;
1961 }
1962 
1963 static inline struct page *
1964 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1965 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1966 	nodemask_t *nodemask, struct zone *preferred_zone,
1967 	int migratetype)
1968 {
1969 	struct page *page;
1970 
1971 	/* Acquire the OOM killer lock for the zones in zonelist */
1972 	if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
1973 		schedule_timeout_uninterruptible(1);
1974 		return NULL;
1975 	}
1976 
1977 	/*
1978 	 * Go through the zonelist yet one more time, keep very high watermark
1979 	 * here, this is only to catch a parallel oom killing, we must fail if
1980 	 * we're still under heavy pressure.
1981 	 */
1982 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1983 		order, zonelist, high_zoneidx,
1984 		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1985 		preferred_zone, migratetype);
1986 	if (page)
1987 		goto out;
1988 
1989 	if (!(gfp_mask & __GFP_NOFAIL)) {
1990 		/* The OOM killer will not help higher order allocs */
1991 		if (order > PAGE_ALLOC_COSTLY_ORDER)
1992 			goto out;
1993 		/* The OOM killer does not needlessly kill tasks for lowmem */
1994 		if (high_zoneidx < ZONE_NORMAL)
1995 			goto out;
1996 		/*
1997 		 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1998 		 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1999 		 * The caller should handle page allocation failure by itself if
2000 		 * it specifies __GFP_THISNODE.
2001 		 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2002 		 */
2003 		if (gfp_mask & __GFP_THISNODE)
2004 			goto out;
2005 	}
2006 	/* Exhausted what can be done so it's blamo time */
2007 	out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2008 
2009 out:
2010 	clear_zonelist_oom(zonelist, gfp_mask);
2011 	return page;
2012 }
2013 
2014 #ifdef CONFIG_COMPACTION
2015 /* Try memory compaction for high-order allocations before reclaim */
2016 static struct page *
2017 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2018 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2019 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2020 	int migratetype, bool sync_migration,
2021 	bool *deferred_compaction,
2022 	unsigned long *did_some_progress)
2023 {
2024 	struct page *page;
2025 
2026 	if (!order)
2027 		return NULL;
2028 
2029 	if (compaction_deferred(preferred_zone, order)) {
2030 		*deferred_compaction = true;
2031 		return NULL;
2032 	}
2033 
2034 	current->flags |= PF_MEMALLOC;
2035 	*did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2036 						nodemask, sync_migration);
2037 	current->flags &= ~PF_MEMALLOC;
2038 	if (*did_some_progress != COMPACT_SKIPPED) {
2039 
2040 		/* Page migration frees to the PCP lists but we want merging */
2041 		drain_pages(get_cpu());
2042 		put_cpu();
2043 
2044 		page = get_page_from_freelist(gfp_mask, nodemask,
2045 				order, zonelist, high_zoneidx,
2046 				alloc_flags, preferred_zone,
2047 				migratetype);
2048 		if (page) {
2049 			preferred_zone->compact_considered = 0;
2050 			preferred_zone->compact_defer_shift = 0;
2051 			if (order >= preferred_zone->compact_order_failed)
2052 				preferred_zone->compact_order_failed = order + 1;
2053 			count_vm_event(COMPACTSUCCESS);
2054 			return page;
2055 		}
2056 
2057 		/*
2058 		 * It's bad if compaction run occurs and fails.
2059 		 * The most likely reason is that pages exist,
2060 		 * but not enough to satisfy watermarks.
2061 		 */
2062 		count_vm_event(COMPACTFAIL);
2063 
2064 		/*
2065 		 * As async compaction considers a subset of pageblocks, only
2066 		 * defer if the failure was a sync compaction failure.
2067 		 */
2068 		if (sync_migration)
2069 			defer_compaction(preferred_zone, order);
2070 
2071 		cond_resched();
2072 	}
2073 
2074 	return NULL;
2075 }
2076 #else
2077 static inline struct page *
2078 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2079 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2080 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2081 	int migratetype, bool sync_migration,
2082 	bool *deferred_compaction,
2083 	unsigned long *did_some_progress)
2084 {
2085 	return NULL;
2086 }
2087 #endif /* CONFIG_COMPACTION */
2088 
2089 /* The really slow allocator path where we enter direct reclaim */
2090 static inline struct page *
2091 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2092 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2093 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2094 	int migratetype, unsigned long *did_some_progress)
2095 {
2096 	struct page *page = NULL;
2097 	struct reclaim_state reclaim_state;
2098 	bool drained = false;
2099 
2100 	cond_resched();
2101 
2102 	/* We now go into synchronous reclaim */
2103 	cpuset_memory_pressure_bump();
2104 	current->flags |= PF_MEMALLOC;
2105 	lockdep_set_current_reclaim_state(gfp_mask);
2106 	reclaim_state.reclaimed_slab = 0;
2107 	current->reclaim_state = &reclaim_state;
2108 
2109 	*did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2110 
2111 	current->reclaim_state = NULL;
2112 	lockdep_clear_current_reclaim_state();
2113 	current->flags &= ~PF_MEMALLOC;
2114 
2115 	cond_resched();
2116 
2117 	if (unlikely(!(*did_some_progress)))
2118 		return NULL;
2119 
2120 	/* After successful reclaim, reconsider all zones for allocation */
2121 	if (NUMA_BUILD)
2122 		zlc_clear_zones_full(zonelist);
2123 
2124 retry:
2125 	page = get_page_from_freelist(gfp_mask, nodemask, order,
2126 					zonelist, high_zoneidx,
2127 					alloc_flags, preferred_zone,
2128 					migratetype);
2129 
2130 	/*
2131 	 * If an allocation failed after direct reclaim, it could be because
2132 	 * pages are pinned on the per-cpu lists. Drain them and try again
2133 	 */
2134 	if (!page && !drained) {
2135 		drain_all_pages();
2136 		drained = true;
2137 		goto retry;
2138 	}
2139 
2140 	return page;
2141 }
2142 
2143 /*
2144  * This is called in the allocator slow-path if the allocation request is of
2145  * sufficient urgency to ignore watermarks and take other desperate measures
2146  */
2147 static inline struct page *
2148 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2149 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2150 	nodemask_t *nodemask, struct zone *preferred_zone,
2151 	int migratetype)
2152 {
2153 	struct page *page;
2154 
2155 	do {
2156 		page = get_page_from_freelist(gfp_mask, nodemask, order,
2157 			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2158 			preferred_zone, migratetype);
2159 
2160 		if (!page && gfp_mask & __GFP_NOFAIL)
2161 			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2162 	} while (!page && (gfp_mask & __GFP_NOFAIL));
2163 
2164 	return page;
2165 }
2166 
2167 static inline
2168 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2169 						enum zone_type high_zoneidx,
2170 						enum zone_type classzone_idx)
2171 {
2172 	struct zoneref *z;
2173 	struct zone *zone;
2174 
2175 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2176 		wakeup_kswapd(zone, order, classzone_idx);
2177 }
2178 
2179 static inline int
2180 gfp_to_alloc_flags(gfp_t gfp_mask)
2181 {
2182 	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2183 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2184 
2185 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2186 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2187 
2188 	/*
2189 	 * The caller may dip into page reserves a bit more if the caller
2190 	 * cannot run direct reclaim, or if the caller has realtime scheduling
2191 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
2192 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2193 	 */
2194 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2195 
2196 	if (!wait) {
2197 		/*
2198 		 * Not worth trying to allocate harder for
2199 		 * __GFP_NOMEMALLOC even if it can't schedule.
2200 		 */
2201 		if  (!(gfp_mask & __GFP_NOMEMALLOC))
2202 			alloc_flags |= ALLOC_HARDER;
2203 		/*
2204 		 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2205 		 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2206 		 */
2207 		alloc_flags &= ~ALLOC_CPUSET;
2208 	} else if (unlikely(rt_task(current)) && !in_interrupt())
2209 		alloc_flags |= ALLOC_HARDER;
2210 
2211 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2212 		if (!in_interrupt() &&
2213 		    ((current->flags & PF_MEMALLOC) ||
2214 		     unlikely(test_thread_flag(TIF_MEMDIE))))
2215 			alloc_flags |= ALLOC_NO_WATERMARKS;
2216 	}
2217 
2218 	return alloc_flags;
2219 }
2220 
2221 static inline struct page *
2222 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2223 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2224 	nodemask_t *nodemask, struct zone *preferred_zone,
2225 	int migratetype)
2226 {
2227 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2228 	struct page *page = NULL;
2229 	int alloc_flags;
2230 	unsigned long pages_reclaimed = 0;
2231 	unsigned long did_some_progress;
2232 	bool sync_migration = false;
2233 	bool deferred_compaction = false;
2234 
2235 	/*
2236 	 * In the slowpath, we sanity check order to avoid ever trying to
2237 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2238 	 * be using allocators in order of preference for an area that is
2239 	 * too large.
2240 	 */
2241 	if (order >= MAX_ORDER) {
2242 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2243 		return NULL;
2244 	}
2245 
2246 	/*
2247 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2248 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2249 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2250 	 * using a larger set of nodes after it has established that the
2251 	 * allowed per node queues are empty and that nodes are
2252 	 * over allocated.
2253 	 */
2254 	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2255 		goto nopage;
2256 
2257 restart:
2258 	if (!(gfp_mask & __GFP_NO_KSWAPD))
2259 		wake_all_kswapd(order, zonelist, high_zoneidx,
2260 						zone_idx(preferred_zone));
2261 
2262 	/*
2263 	 * OK, we're below the kswapd watermark and have kicked background
2264 	 * reclaim. Now things get more complex, so set up alloc_flags according
2265 	 * to how we want to proceed.
2266 	 */
2267 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
2268 
2269 	/*
2270 	 * Find the true preferred zone if the allocation is unconstrained by
2271 	 * cpusets.
2272 	 */
2273 	if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2274 		first_zones_zonelist(zonelist, high_zoneidx, NULL,
2275 					&preferred_zone);
2276 
2277 rebalance:
2278 	/* This is the last chance, in general, before the goto nopage. */
2279 	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2280 			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2281 			preferred_zone, migratetype);
2282 	if (page)
2283 		goto got_pg;
2284 
2285 	/* Allocate without watermarks if the context allows */
2286 	if (alloc_flags & ALLOC_NO_WATERMARKS) {
2287 		page = __alloc_pages_high_priority(gfp_mask, order,
2288 				zonelist, high_zoneidx, nodemask,
2289 				preferred_zone, migratetype);
2290 		if (page)
2291 			goto got_pg;
2292 	}
2293 
2294 	/* Atomic allocations - we can't balance anything */
2295 	if (!wait)
2296 		goto nopage;
2297 
2298 	/* Avoid recursion of direct reclaim */
2299 	if (current->flags & PF_MEMALLOC)
2300 		goto nopage;
2301 
2302 	/* Avoid allocations with no watermarks from looping endlessly */
2303 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2304 		goto nopage;
2305 
2306 	/*
2307 	 * Try direct compaction. The first pass is asynchronous. Subsequent
2308 	 * attempts after direct reclaim are synchronous
2309 	 */
2310 	page = __alloc_pages_direct_compact(gfp_mask, order,
2311 					zonelist, high_zoneidx,
2312 					nodemask,
2313 					alloc_flags, preferred_zone,
2314 					migratetype, sync_migration,
2315 					&deferred_compaction,
2316 					&did_some_progress);
2317 	if (page)
2318 		goto got_pg;
2319 	sync_migration = true;
2320 
2321 	/*
2322 	 * If compaction is deferred for high-order allocations, it is because
2323 	 * sync compaction recently failed. In this is the case and the caller
2324 	 * has requested the system not be heavily disrupted, fail the
2325 	 * allocation now instead of entering direct reclaim
2326 	 */
2327 	if (deferred_compaction && (gfp_mask & __GFP_NO_KSWAPD))
2328 		goto nopage;
2329 
2330 	/* Try direct reclaim and then allocating */
2331 	page = __alloc_pages_direct_reclaim(gfp_mask, order,
2332 					zonelist, high_zoneidx,
2333 					nodemask,
2334 					alloc_flags, preferred_zone,
2335 					migratetype, &did_some_progress);
2336 	if (page)
2337 		goto got_pg;
2338 
2339 	/*
2340 	 * If we failed to make any progress reclaiming, then we are
2341 	 * running out of options and have to consider going OOM
2342 	 */
2343 	if (!did_some_progress) {
2344 		if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2345 			if (oom_killer_disabled)
2346 				goto nopage;
2347 			/* Coredumps can quickly deplete all memory reserves */
2348 			if ((current->flags & PF_DUMPCORE) &&
2349 			    !(gfp_mask & __GFP_NOFAIL))
2350 				goto nopage;
2351 			page = __alloc_pages_may_oom(gfp_mask, order,
2352 					zonelist, high_zoneidx,
2353 					nodemask, preferred_zone,
2354 					migratetype);
2355 			if (page)
2356 				goto got_pg;
2357 
2358 			if (!(gfp_mask & __GFP_NOFAIL)) {
2359 				/*
2360 				 * The oom killer is not called for high-order
2361 				 * allocations that may fail, so if no progress
2362 				 * is being made, there are no other options and
2363 				 * retrying is unlikely to help.
2364 				 */
2365 				if (order > PAGE_ALLOC_COSTLY_ORDER)
2366 					goto nopage;
2367 				/*
2368 				 * The oom killer is not called for lowmem
2369 				 * allocations to prevent needlessly killing
2370 				 * innocent tasks.
2371 				 */
2372 				if (high_zoneidx < ZONE_NORMAL)
2373 					goto nopage;
2374 			}
2375 
2376 			goto restart;
2377 		}
2378 	}
2379 
2380 	/* Check if we should retry the allocation */
2381 	pages_reclaimed += did_some_progress;
2382 	if (should_alloc_retry(gfp_mask, order, did_some_progress,
2383 						pages_reclaimed)) {
2384 		/* Wait for some write requests to complete then retry */
2385 		wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2386 		goto rebalance;
2387 	} else {
2388 		/*
2389 		 * High-order allocations do not necessarily loop after
2390 		 * direct reclaim and reclaim/compaction depends on compaction
2391 		 * being called after reclaim so call directly if necessary
2392 		 */
2393 		page = __alloc_pages_direct_compact(gfp_mask, order,
2394 					zonelist, high_zoneidx,
2395 					nodemask,
2396 					alloc_flags, preferred_zone,
2397 					migratetype, sync_migration,
2398 					&deferred_compaction,
2399 					&did_some_progress);
2400 		if (page)
2401 			goto got_pg;
2402 	}
2403 
2404 nopage:
2405 	warn_alloc_failed(gfp_mask, order, NULL);
2406 	return page;
2407 got_pg:
2408 	if (kmemcheck_enabled)
2409 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2410 	return page;
2411 
2412 }
2413 
2414 /*
2415  * This is the 'heart' of the zoned buddy allocator.
2416  */
2417 struct page *
2418 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2419 			struct zonelist *zonelist, nodemask_t *nodemask)
2420 {
2421 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2422 	struct zone *preferred_zone;
2423 	struct page *page = NULL;
2424 	int migratetype = allocflags_to_migratetype(gfp_mask);
2425 	unsigned int cpuset_mems_cookie;
2426 
2427 	gfp_mask &= gfp_allowed_mask;
2428 
2429 	lockdep_trace_alloc(gfp_mask);
2430 
2431 	might_sleep_if(gfp_mask & __GFP_WAIT);
2432 
2433 	if (should_fail_alloc_page(gfp_mask, order))
2434 		return NULL;
2435 
2436 	/*
2437 	 * Check the zones suitable for the gfp_mask contain at least one
2438 	 * valid zone. It's possible to have an empty zonelist as a result
2439 	 * of GFP_THISNODE and a memoryless node
2440 	 */
2441 	if (unlikely(!zonelist->_zonerefs->zone))
2442 		return NULL;
2443 
2444 retry_cpuset:
2445 	cpuset_mems_cookie = get_mems_allowed();
2446 
2447 	/* The preferred zone is used for statistics later */
2448 	first_zones_zonelist(zonelist, high_zoneidx,
2449 				nodemask ? : &cpuset_current_mems_allowed,
2450 				&preferred_zone);
2451 	if (!preferred_zone)
2452 		goto out;
2453 
2454 	/* First allocation attempt */
2455 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2456 			zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2457 			preferred_zone, migratetype);
2458 	if (unlikely(!page))
2459 		page = __alloc_pages_slowpath(gfp_mask, order,
2460 				zonelist, high_zoneidx, nodemask,
2461 				preferred_zone, migratetype);
2462 
2463 	trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2464 
2465 out:
2466 	/*
2467 	 * When updating a task's mems_allowed, it is possible to race with
2468 	 * parallel threads in such a way that an allocation can fail while
2469 	 * the mask is being updated. If a page allocation is about to fail,
2470 	 * check if the cpuset changed during allocation and if so, retry.
2471 	 */
2472 	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2473 		goto retry_cpuset;
2474 
2475 	return page;
2476 }
2477 EXPORT_SYMBOL(__alloc_pages_nodemask);
2478 
2479 /*
2480  * Common helper functions.
2481  */
2482 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2483 {
2484 	struct page *page;
2485 
2486 	/*
2487 	 * __get_free_pages() returns a 32-bit address, which cannot represent
2488 	 * a highmem page
2489 	 */
2490 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2491 
2492 	page = alloc_pages(gfp_mask, order);
2493 	if (!page)
2494 		return 0;
2495 	return (unsigned long) page_address(page);
2496 }
2497 EXPORT_SYMBOL(__get_free_pages);
2498 
2499 unsigned long get_zeroed_page(gfp_t gfp_mask)
2500 {
2501 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2502 }
2503 EXPORT_SYMBOL(get_zeroed_page);
2504 
2505 void __free_pages(struct page *page, unsigned int order)
2506 {
2507 	if (put_page_testzero(page)) {
2508 		if (order == 0)
2509 			free_hot_cold_page(page, 0);
2510 		else
2511 			__free_pages_ok(page, order);
2512 	}
2513 }
2514 
2515 EXPORT_SYMBOL(__free_pages);
2516 
2517 void free_pages(unsigned long addr, unsigned int order)
2518 {
2519 	if (addr != 0) {
2520 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2521 		__free_pages(virt_to_page((void *)addr), order);
2522 	}
2523 }
2524 
2525 EXPORT_SYMBOL(free_pages);
2526 
2527 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2528 {
2529 	if (addr) {
2530 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
2531 		unsigned long used = addr + PAGE_ALIGN(size);
2532 
2533 		split_page(virt_to_page((void *)addr), order);
2534 		while (used < alloc_end) {
2535 			free_page(used);
2536 			used += PAGE_SIZE;
2537 		}
2538 	}
2539 	return (void *)addr;
2540 }
2541 
2542 /**
2543  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2544  * @size: the number of bytes to allocate
2545  * @gfp_mask: GFP flags for the allocation
2546  *
2547  * This function is similar to alloc_pages(), except that it allocates the
2548  * minimum number of pages to satisfy the request.  alloc_pages() can only
2549  * allocate memory in power-of-two pages.
2550  *
2551  * This function is also limited by MAX_ORDER.
2552  *
2553  * Memory allocated by this function must be released by free_pages_exact().
2554  */
2555 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2556 {
2557 	unsigned int order = get_order(size);
2558 	unsigned long addr;
2559 
2560 	addr = __get_free_pages(gfp_mask, order);
2561 	return make_alloc_exact(addr, order, size);
2562 }
2563 EXPORT_SYMBOL(alloc_pages_exact);
2564 
2565 /**
2566  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2567  *			   pages on a node.
2568  * @nid: the preferred node ID where memory should be allocated
2569  * @size: the number of bytes to allocate
2570  * @gfp_mask: GFP flags for the allocation
2571  *
2572  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2573  * back.
2574  * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2575  * but is not exact.
2576  */
2577 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2578 {
2579 	unsigned order = get_order(size);
2580 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
2581 	if (!p)
2582 		return NULL;
2583 	return make_alloc_exact((unsigned long)page_address(p), order, size);
2584 }
2585 EXPORT_SYMBOL(alloc_pages_exact_nid);
2586 
2587 /**
2588  * free_pages_exact - release memory allocated via alloc_pages_exact()
2589  * @virt: the value returned by alloc_pages_exact.
2590  * @size: size of allocation, same value as passed to alloc_pages_exact().
2591  *
2592  * Release the memory allocated by a previous call to alloc_pages_exact.
2593  */
2594 void free_pages_exact(void *virt, size_t size)
2595 {
2596 	unsigned long addr = (unsigned long)virt;
2597 	unsigned long end = addr + PAGE_ALIGN(size);
2598 
2599 	while (addr < end) {
2600 		free_page(addr);
2601 		addr += PAGE_SIZE;
2602 	}
2603 }
2604 EXPORT_SYMBOL(free_pages_exact);
2605 
2606 static unsigned int nr_free_zone_pages(int offset)
2607 {
2608 	struct zoneref *z;
2609 	struct zone *zone;
2610 
2611 	/* Just pick one node, since fallback list is circular */
2612 	unsigned int sum = 0;
2613 
2614 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2615 
2616 	for_each_zone_zonelist(zone, z, zonelist, offset) {
2617 		unsigned long size = zone->present_pages;
2618 		unsigned long high = high_wmark_pages(zone);
2619 		if (size > high)
2620 			sum += size - high;
2621 	}
2622 
2623 	return sum;
2624 }
2625 
2626 /*
2627  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2628  */
2629 unsigned int nr_free_buffer_pages(void)
2630 {
2631 	return nr_free_zone_pages(gfp_zone(GFP_USER));
2632 }
2633 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2634 
2635 /*
2636  * Amount of free RAM allocatable within all zones
2637  */
2638 unsigned int nr_free_pagecache_pages(void)
2639 {
2640 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2641 }
2642 
2643 static inline void show_node(struct zone *zone)
2644 {
2645 	if (NUMA_BUILD)
2646 		printk("Node %d ", zone_to_nid(zone));
2647 }
2648 
2649 void si_meminfo(struct sysinfo *val)
2650 {
2651 	val->totalram = totalram_pages;
2652 	val->sharedram = 0;
2653 	val->freeram = global_page_state(NR_FREE_PAGES);
2654 	val->bufferram = nr_blockdev_pages();
2655 	val->totalhigh = totalhigh_pages;
2656 	val->freehigh = nr_free_highpages();
2657 	val->mem_unit = PAGE_SIZE;
2658 }
2659 
2660 EXPORT_SYMBOL(si_meminfo);
2661 
2662 #ifdef CONFIG_NUMA
2663 void si_meminfo_node(struct sysinfo *val, int nid)
2664 {
2665 	pg_data_t *pgdat = NODE_DATA(nid);
2666 
2667 	val->totalram = pgdat->node_present_pages;
2668 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
2669 #ifdef CONFIG_HIGHMEM
2670 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2671 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2672 			NR_FREE_PAGES);
2673 #else
2674 	val->totalhigh = 0;
2675 	val->freehigh = 0;
2676 #endif
2677 	val->mem_unit = PAGE_SIZE;
2678 }
2679 #endif
2680 
2681 /*
2682  * Determine whether the node should be displayed or not, depending on whether
2683  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2684  */
2685 bool skip_free_areas_node(unsigned int flags, int nid)
2686 {
2687 	bool ret = false;
2688 	unsigned int cpuset_mems_cookie;
2689 
2690 	if (!(flags & SHOW_MEM_FILTER_NODES))
2691 		goto out;
2692 
2693 	do {
2694 		cpuset_mems_cookie = get_mems_allowed();
2695 		ret = !node_isset(nid, cpuset_current_mems_allowed);
2696 	} while (!put_mems_allowed(cpuset_mems_cookie));
2697 out:
2698 	return ret;
2699 }
2700 
2701 #define K(x) ((x) << (PAGE_SHIFT-10))
2702 
2703 /*
2704  * Show free area list (used inside shift_scroll-lock stuff)
2705  * We also calculate the percentage fragmentation. We do this by counting the
2706  * memory on each free list with the exception of the first item on the list.
2707  * Suppresses nodes that are not allowed by current's cpuset if
2708  * SHOW_MEM_FILTER_NODES is passed.
2709  */
2710 void show_free_areas(unsigned int filter)
2711 {
2712 	int cpu;
2713 	struct zone *zone;
2714 
2715 	for_each_populated_zone(zone) {
2716 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
2717 			continue;
2718 		show_node(zone);
2719 		printk("%s per-cpu:\n", zone->name);
2720 
2721 		for_each_online_cpu(cpu) {
2722 			struct per_cpu_pageset *pageset;
2723 
2724 			pageset = per_cpu_ptr(zone->pageset, cpu);
2725 
2726 			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2727 			       cpu, pageset->pcp.high,
2728 			       pageset->pcp.batch, pageset->pcp.count);
2729 		}
2730 	}
2731 
2732 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2733 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2734 		" unevictable:%lu"
2735 		" dirty:%lu writeback:%lu unstable:%lu\n"
2736 		" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2737 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2738 		global_page_state(NR_ACTIVE_ANON),
2739 		global_page_state(NR_INACTIVE_ANON),
2740 		global_page_state(NR_ISOLATED_ANON),
2741 		global_page_state(NR_ACTIVE_FILE),
2742 		global_page_state(NR_INACTIVE_FILE),
2743 		global_page_state(NR_ISOLATED_FILE),
2744 		global_page_state(NR_UNEVICTABLE),
2745 		global_page_state(NR_FILE_DIRTY),
2746 		global_page_state(NR_WRITEBACK),
2747 		global_page_state(NR_UNSTABLE_NFS),
2748 		global_page_state(NR_FREE_PAGES),
2749 		global_page_state(NR_SLAB_RECLAIMABLE),
2750 		global_page_state(NR_SLAB_UNRECLAIMABLE),
2751 		global_page_state(NR_FILE_MAPPED),
2752 		global_page_state(NR_SHMEM),
2753 		global_page_state(NR_PAGETABLE),
2754 		global_page_state(NR_BOUNCE));
2755 
2756 	for_each_populated_zone(zone) {
2757 		int i;
2758 
2759 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
2760 			continue;
2761 		show_node(zone);
2762 		printk("%s"
2763 			" free:%lukB"
2764 			" min:%lukB"
2765 			" low:%lukB"
2766 			" high:%lukB"
2767 			" active_anon:%lukB"
2768 			" inactive_anon:%lukB"
2769 			" active_file:%lukB"
2770 			" inactive_file:%lukB"
2771 			" unevictable:%lukB"
2772 			" isolated(anon):%lukB"
2773 			" isolated(file):%lukB"
2774 			" present:%lukB"
2775 			" mlocked:%lukB"
2776 			" dirty:%lukB"
2777 			" writeback:%lukB"
2778 			" mapped:%lukB"
2779 			" shmem:%lukB"
2780 			" slab_reclaimable:%lukB"
2781 			" slab_unreclaimable:%lukB"
2782 			" kernel_stack:%lukB"
2783 			" pagetables:%lukB"
2784 			" unstable:%lukB"
2785 			" bounce:%lukB"
2786 			" writeback_tmp:%lukB"
2787 			" pages_scanned:%lu"
2788 			" all_unreclaimable? %s"
2789 			"\n",
2790 			zone->name,
2791 			K(zone_page_state(zone, NR_FREE_PAGES)),
2792 			K(min_wmark_pages(zone)),
2793 			K(low_wmark_pages(zone)),
2794 			K(high_wmark_pages(zone)),
2795 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
2796 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
2797 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
2798 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
2799 			K(zone_page_state(zone, NR_UNEVICTABLE)),
2800 			K(zone_page_state(zone, NR_ISOLATED_ANON)),
2801 			K(zone_page_state(zone, NR_ISOLATED_FILE)),
2802 			K(zone->present_pages),
2803 			K(zone_page_state(zone, NR_MLOCK)),
2804 			K(zone_page_state(zone, NR_FILE_DIRTY)),
2805 			K(zone_page_state(zone, NR_WRITEBACK)),
2806 			K(zone_page_state(zone, NR_FILE_MAPPED)),
2807 			K(zone_page_state(zone, NR_SHMEM)),
2808 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2809 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2810 			zone_page_state(zone, NR_KERNEL_STACK) *
2811 				THREAD_SIZE / 1024,
2812 			K(zone_page_state(zone, NR_PAGETABLE)),
2813 			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2814 			K(zone_page_state(zone, NR_BOUNCE)),
2815 			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2816 			zone->pages_scanned,
2817 			(zone->all_unreclaimable ? "yes" : "no")
2818 			);
2819 		printk("lowmem_reserve[]:");
2820 		for (i = 0; i < MAX_NR_ZONES; i++)
2821 			printk(" %lu", zone->lowmem_reserve[i]);
2822 		printk("\n");
2823 	}
2824 
2825 	for_each_populated_zone(zone) {
2826  		unsigned long nr[MAX_ORDER], flags, order, total = 0;
2827 
2828 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
2829 			continue;
2830 		show_node(zone);
2831 		printk("%s: ", zone->name);
2832 
2833 		spin_lock_irqsave(&zone->lock, flags);
2834 		for (order = 0; order < MAX_ORDER; order++) {
2835 			nr[order] = zone->free_area[order].nr_free;
2836 			total += nr[order] << order;
2837 		}
2838 		spin_unlock_irqrestore(&zone->lock, flags);
2839 		for (order = 0; order < MAX_ORDER; order++)
2840 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
2841 		printk("= %lukB\n", K(total));
2842 	}
2843 
2844 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2845 
2846 	show_swap_cache_info();
2847 }
2848 
2849 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2850 {
2851 	zoneref->zone = zone;
2852 	zoneref->zone_idx = zone_idx(zone);
2853 }
2854 
2855 /*
2856  * Builds allocation fallback zone lists.
2857  *
2858  * Add all populated zones of a node to the zonelist.
2859  */
2860 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2861 				int nr_zones, enum zone_type zone_type)
2862 {
2863 	struct zone *zone;
2864 
2865 	BUG_ON(zone_type >= MAX_NR_ZONES);
2866 	zone_type++;
2867 
2868 	do {
2869 		zone_type--;
2870 		zone = pgdat->node_zones + zone_type;
2871 		if (populated_zone(zone)) {
2872 			zoneref_set_zone(zone,
2873 				&zonelist->_zonerefs[nr_zones++]);
2874 			check_highest_zone(zone_type);
2875 		}
2876 
2877 	} while (zone_type);
2878 	return nr_zones;
2879 }
2880 
2881 
2882 /*
2883  *  zonelist_order:
2884  *  0 = automatic detection of better ordering.
2885  *  1 = order by ([node] distance, -zonetype)
2886  *  2 = order by (-zonetype, [node] distance)
2887  *
2888  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2889  *  the same zonelist. So only NUMA can configure this param.
2890  */
2891 #define ZONELIST_ORDER_DEFAULT  0
2892 #define ZONELIST_ORDER_NODE     1
2893 #define ZONELIST_ORDER_ZONE     2
2894 
2895 /* zonelist order in the kernel.
2896  * set_zonelist_order() will set this to NODE or ZONE.
2897  */
2898 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2899 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2900 
2901 
2902 #ifdef CONFIG_NUMA
2903 /* The value user specified ....changed by config */
2904 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2905 /* string for sysctl */
2906 #define NUMA_ZONELIST_ORDER_LEN	16
2907 char numa_zonelist_order[16] = "default";
2908 
2909 /*
2910  * interface for configure zonelist ordering.
2911  * command line option "numa_zonelist_order"
2912  *	= "[dD]efault	- default, automatic configuration.
2913  *	= "[nN]ode 	- order by node locality, then by zone within node
2914  *	= "[zZ]one      - order by zone, then by locality within zone
2915  */
2916 
2917 static int __parse_numa_zonelist_order(char *s)
2918 {
2919 	if (*s == 'd' || *s == 'D') {
2920 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2921 	} else if (*s == 'n' || *s == 'N') {
2922 		user_zonelist_order = ZONELIST_ORDER_NODE;
2923 	} else if (*s == 'z' || *s == 'Z') {
2924 		user_zonelist_order = ZONELIST_ORDER_ZONE;
2925 	} else {
2926 		printk(KERN_WARNING
2927 			"Ignoring invalid numa_zonelist_order value:  "
2928 			"%s\n", s);
2929 		return -EINVAL;
2930 	}
2931 	return 0;
2932 }
2933 
2934 static __init int setup_numa_zonelist_order(char *s)
2935 {
2936 	int ret;
2937 
2938 	if (!s)
2939 		return 0;
2940 
2941 	ret = __parse_numa_zonelist_order(s);
2942 	if (ret == 0)
2943 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
2944 
2945 	return ret;
2946 }
2947 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2948 
2949 /*
2950  * sysctl handler for numa_zonelist_order
2951  */
2952 int numa_zonelist_order_handler(ctl_table *table, int write,
2953 		void __user *buffer, size_t *length,
2954 		loff_t *ppos)
2955 {
2956 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
2957 	int ret;
2958 	static DEFINE_MUTEX(zl_order_mutex);
2959 
2960 	mutex_lock(&zl_order_mutex);
2961 	if (write)
2962 		strcpy(saved_string, (char*)table->data);
2963 	ret = proc_dostring(table, write, buffer, length, ppos);
2964 	if (ret)
2965 		goto out;
2966 	if (write) {
2967 		int oldval = user_zonelist_order;
2968 		if (__parse_numa_zonelist_order((char*)table->data)) {
2969 			/*
2970 			 * bogus value.  restore saved string
2971 			 */
2972 			strncpy((char*)table->data, saved_string,
2973 				NUMA_ZONELIST_ORDER_LEN);
2974 			user_zonelist_order = oldval;
2975 		} else if (oldval != user_zonelist_order) {
2976 			mutex_lock(&zonelists_mutex);
2977 			build_all_zonelists(NULL);
2978 			mutex_unlock(&zonelists_mutex);
2979 		}
2980 	}
2981 out:
2982 	mutex_unlock(&zl_order_mutex);
2983 	return ret;
2984 }
2985 
2986 
2987 #define MAX_NODE_LOAD (nr_online_nodes)
2988 static int node_load[MAX_NUMNODES];
2989 
2990 /**
2991  * find_next_best_node - find the next node that should appear in a given node's fallback list
2992  * @node: node whose fallback list we're appending
2993  * @used_node_mask: nodemask_t of already used nodes
2994  *
2995  * We use a number of factors to determine which is the next node that should
2996  * appear on a given node's fallback list.  The node should not have appeared
2997  * already in @node's fallback list, and it should be the next closest node
2998  * according to the distance array (which contains arbitrary distance values
2999  * from each node to each node in the system), and should also prefer nodes
3000  * with no CPUs, since presumably they'll have very little allocation pressure
3001  * on them otherwise.
3002  * It returns -1 if no node is found.
3003  */
3004 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3005 {
3006 	int n, val;
3007 	int min_val = INT_MAX;
3008 	int best_node = -1;
3009 	const struct cpumask *tmp = cpumask_of_node(0);
3010 
3011 	/* Use the local node if we haven't already */
3012 	if (!node_isset(node, *used_node_mask)) {
3013 		node_set(node, *used_node_mask);
3014 		return node;
3015 	}
3016 
3017 	for_each_node_state(n, N_HIGH_MEMORY) {
3018 
3019 		/* Don't want a node to appear more than once */
3020 		if (node_isset(n, *used_node_mask))
3021 			continue;
3022 
3023 		/* Use the distance array to find the distance */
3024 		val = node_distance(node, n);
3025 
3026 		/* Penalize nodes under us ("prefer the next node") */
3027 		val += (n < node);
3028 
3029 		/* Give preference to headless and unused nodes */
3030 		tmp = cpumask_of_node(n);
3031 		if (!cpumask_empty(tmp))
3032 			val += PENALTY_FOR_NODE_WITH_CPUS;
3033 
3034 		/* Slight preference for less loaded node */
3035 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3036 		val += node_load[n];
3037 
3038 		if (val < min_val) {
3039 			min_val = val;
3040 			best_node = n;
3041 		}
3042 	}
3043 
3044 	if (best_node >= 0)
3045 		node_set(best_node, *used_node_mask);
3046 
3047 	return best_node;
3048 }
3049 
3050 
3051 /*
3052  * Build zonelists ordered by node and zones within node.
3053  * This results in maximum locality--normal zone overflows into local
3054  * DMA zone, if any--but risks exhausting DMA zone.
3055  */
3056 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3057 {
3058 	int j;
3059 	struct zonelist *zonelist;
3060 
3061 	zonelist = &pgdat->node_zonelists[0];
3062 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3063 		;
3064 	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3065 							MAX_NR_ZONES - 1);
3066 	zonelist->_zonerefs[j].zone = NULL;
3067 	zonelist->_zonerefs[j].zone_idx = 0;
3068 }
3069 
3070 /*
3071  * Build gfp_thisnode zonelists
3072  */
3073 static void build_thisnode_zonelists(pg_data_t *pgdat)
3074 {
3075 	int j;
3076 	struct zonelist *zonelist;
3077 
3078 	zonelist = &pgdat->node_zonelists[1];
3079 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3080 	zonelist->_zonerefs[j].zone = NULL;
3081 	zonelist->_zonerefs[j].zone_idx = 0;
3082 }
3083 
3084 /*
3085  * Build zonelists ordered by zone and nodes within zones.
3086  * This results in conserving DMA zone[s] until all Normal memory is
3087  * exhausted, but results in overflowing to remote node while memory
3088  * may still exist in local DMA zone.
3089  */
3090 static int node_order[MAX_NUMNODES];
3091 
3092 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3093 {
3094 	int pos, j, node;
3095 	int zone_type;		/* needs to be signed */
3096 	struct zone *z;
3097 	struct zonelist *zonelist;
3098 
3099 	zonelist = &pgdat->node_zonelists[0];
3100 	pos = 0;
3101 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3102 		for (j = 0; j < nr_nodes; j++) {
3103 			node = node_order[j];
3104 			z = &NODE_DATA(node)->node_zones[zone_type];
3105 			if (populated_zone(z)) {
3106 				zoneref_set_zone(z,
3107 					&zonelist->_zonerefs[pos++]);
3108 				check_highest_zone(zone_type);
3109 			}
3110 		}
3111 	}
3112 	zonelist->_zonerefs[pos].zone = NULL;
3113 	zonelist->_zonerefs[pos].zone_idx = 0;
3114 }
3115 
3116 static int default_zonelist_order(void)
3117 {
3118 	int nid, zone_type;
3119 	unsigned long low_kmem_size,total_size;
3120 	struct zone *z;
3121 	int average_size;
3122 	/*
3123          * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3124 	 * If they are really small and used heavily, the system can fall
3125 	 * into OOM very easily.
3126 	 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3127 	 */
3128 	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3129 	low_kmem_size = 0;
3130 	total_size = 0;
3131 	for_each_online_node(nid) {
3132 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3133 			z = &NODE_DATA(nid)->node_zones[zone_type];
3134 			if (populated_zone(z)) {
3135 				if (zone_type < ZONE_NORMAL)
3136 					low_kmem_size += z->present_pages;
3137 				total_size += z->present_pages;
3138 			} else if (zone_type == ZONE_NORMAL) {
3139 				/*
3140 				 * If any node has only lowmem, then node order
3141 				 * is preferred to allow kernel allocations
3142 				 * locally; otherwise, they can easily infringe
3143 				 * on other nodes when there is an abundance of
3144 				 * lowmem available to allocate from.
3145 				 */
3146 				return ZONELIST_ORDER_NODE;
3147 			}
3148 		}
3149 	}
3150 	if (!low_kmem_size ||  /* there are no DMA area. */
3151 	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3152 		return ZONELIST_ORDER_NODE;
3153 	/*
3154 	 * look into each node's config.
3155   	 * If there is a node whose DMA/DMA32 memory is very big area on
3156  	 * local memory, NODE_ORDER may be suitable.
3157          */
3158 	average_size = total_size /
3159 				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
3160 	for_each_online_node(nid) {
3161 		low_kmem_size = 0;
3162 		total_size = 0;
3163 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3164 			z = &NODE_DATA(nid)->node_zones[zone_type];
3165 			if (populated_zone(z)) {
3166 				if (zone_type < ZONE_NORMAL)
3167 					low_kmem_size += z->present_pages;
3168 				total_size += z->present_pages;
3169 			}
3170 		}
3171 		if (low_kmem_size &&
3172 		    total_size > average_size && /* ignore small node */
3173 		    low_kmem_size > total_size * 70/100)
3174 			return ZONELIST_ORDER_NODE;
3175 	}
3176 	return ZONELIST_ORDER_ZONE;
3177 }
3178 
3179 static void set_zonelist_order(void)
3180 {
3181 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3182 		current_zonelist_order = default_zonelist_order();
3183 	else
3184 		current_zonelist_order = user_zonelist_order;
3185 }
3186 
3187 static void build_zonelists(pg_data_t *pgdat)
3188 {
3189 	int j, node, load;
3190 	enum zone_type i;
3191 	nodemask_t used_mask;
3192 	int local_node, prev_node;
3193 	struct zonelist *zonelist;
3194 	int order = current_zonelist_order;
3195 
3196 	/* initialize zonelists */
3197 	for (i = 0; i < MAX_ZONELISTS; i++) {
3198 		zonelist = pgdat->node_zonelists + i;
3199 		zonelist->_zonerefs[0].zone = NULL;
3200 		zonelist->_zonerefs[0].zone_idx = 0;
3201 	}
3202 
3203 	/* NUMA-aware ordering of nodes */
3204 	local_node = pgdat->node_id;
3205 	load = nr_online_nodes;
3206 	prev_node = local_node;
3207 	nodes_clear(used_mask);
3208 
3209 	memset(node_order, 0, sizeof(node_order));
3210 	j = 0;
3211 
3212 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3213 		int distance = node_distance(local_node, node);
3214 
3215 		/*
3216 		 * If another node is sufficiently far away then it is better
3217 		 * to reclaim pages in a zone before going off node.
3218 		 */
3219 		if (distance > RECLAIM_DISTANCE)
3220 			zone_reclaim_mode = 1;
3221 
3222 		/*
3223 		 * We don't want to pressure a particular node.
3224 		 * So adding penalty to the first node in same
3225 		 * distance group to make it round-robin.
3226 		 */
3227 		if (distance != node_distance(local_node, prev_node))
3228 			node_load[node] = load;
3229 
3230 		prev_node = node;
3231 		load--;
3232 		if (order == ZONELIST_ORDER_NODE)
3233 			build_zonelists_in_node_order(pgdat, node);
3234 		else
3235 			node_order[j++] = node;	/* remember order */
3236 	}
3237 
3238 	if (order == ZONELIST_ORDER_ZONE) {
3239 		/* calculate node order -- i.e., DMA last! */
3240 		build_zonelists_in_zone_order(pgdat, j);
3241 	}
3242 
3243 	build_thisnode_zonelists(pgdat);
3244 }
3245 
3246 /* Construct the zonelist performance cache - see further mmzone.h */
3247 static void build_zonelist_cache(pg_data_t *pgdat)
3248 {
3249 	struct zonelist *zonelist;
3250 	struct zonelist_cache *zlc;
3251 	struct zoneref *z;
3252 
3253 	zonelist = &pgdat->node_zonelists[0];
3254 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3255 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3256 	for (z = zonelist->_zonerefs; z->zone; z++)
3257 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3258 }
3259 
3260 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3261 /*
3262  * Return node id of node used for "local" allocations.
3263  * I.e., first node id of first zone in arg node's generic zonelist.
3264  * Used for initializing percpu 'numa_mem', which is used primarily
3265  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3266  */
3267 int local_memory_node(int node)
3268 {
3269 	struct zone *zone;
3270 
3271 	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3272 				   gfp_zone(GFP_KERNEL),
3273 				   NULL,
3274 				   &zone);
3275 	return zone->node;
3276 }
3277 #endif
3278 
3279 #else	/* CONFIG_NUMA */
3280 
3281 static void set_zonelist_order(void)
3282 {
3283 	current_zonelist_order = ZONELIST_ORDER_ZONE;
3284 }
3285 
3286 static void build_zonelists(pg_data_t *pgdat)
3287 {
3288 	int node, local_node;
3289 	enum zone_type j;
3290 	struct zonelist *zonelist;
3291 
3292 	local_node = pgdat->node_id;
3293 
3294 	zonelist = &pgdat->node_zonelists[0];
3295 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3296 
3297 	/*
3298 	 * Now we build the zonelist so that it contains the zones
3299 	 * of all the other nodes.
3300 	 * We don't want to pressure a particular node, so when
3301 	 * building the zones for node N, we make sure that the
3302 	 * zones coming right after the local ones are those from
3303 	 * node N+1 (modulo N)
3304 	 */
3305 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3306 		if (!node_online(node))
3307 			continue;
3308 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3309 							MAX_NR_ZONES - 1);
3310 	}
3311 	for (node = 0; node < local_node; node++) {
3312 		if (!node_online(node))
3313 			continue;
3314 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3315 							MAX_NR_ZONES - 1);
3316 	}
3317 
3318 	zonelist->_zonerefs[j].zone = NULL;
3319 	zonelist->_zonerefs[j].zone_idx = 0;
3320 }
3321 
3322 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3323 static void build_zonelist_cache(pg_data_t *pgdat)
3324 {
3325 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
3326 }
3327 
3328 #endif	/* CONFIG_NUMA */
3329 
3330 /*
3331  * Boot pageset table. One per cpu which is going to be used for all
3332  * zones and all nodes. The parameters will be set in such a way
3333  * that an item put on a list will immediately be handed over to
3334  * the buddy list. This is safe since pageset manipulation is done
3335  * with interrupts disabled.
3336  *
3337  * The boot_pagesets must be kept even after bootup is complete for
3338  * unused processors and/or zones. They do play a role for bootstrapping
3339  * hotplugged processors.
3340  *
3341  * zoneinfo_show() and maybe other functions do
3342  * not check if the processor is online before following the pageset pointer.
3343  * Other parts of the kernel may not check if the zone is available.
3344  */
3345 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3346 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3347 static void setup_zone_pageset(struct zone *zone);
3348 
3349 /*
3350  * Global mutex to protect against size modification of zonelists
3351  * as well as to serialize pageset setup for the new populated zone.
3352  */
3353 DEFINE_MUTEX(zonelists_mutex);
3354 
3355 /* return values int ....just for stop_machine() */
3356 static __init_refok int __build_all_zonelists(void *data)
3357 {
3358 	int nid;
3359 	int cpu;
3360 
3361 #ifdef CONFIG_NUMA
3362 	memset(node_load, 0, sizeof(node_load));
3363 #endif
3364 	for_each_online_node(nid) {
3365 		pg_data_t *pgdat = NODE_DATA(nid);
3366 
3367 		build_zonelists(pgdat);
3368 		build_zonelist_cache(pgdat);
3369 	}
3370 
3371 	/*
3372 	 * Initialize the boot_pagesets that are going to be used
3373 	 * for bootstrapping processors. The real pagesets for
3374 	 * each zone will be allocated later when the per cpu
3375 	 * allocator is available.
3376 	 *
3377 	 * boot_pagesets are used also for bootstrapping offline
3378 	 * cpus if the system is already booted because the pagesets
3379 	 * are needed to initialize allocators on a specific cpu too.
3380 	 * F.e. the percpu allocator needs the page allocator which
3381 	 * needs the percpu allocator in order to allocate its pagesets
3382 	 * (a chicken-egg dilemma).
3383 	 */
3384 	for_each_possible_cpu(cpu) {
3385 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3386 
3387 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3388 		/*
3389 		 * We now know the "local memory node" for each node--
3390 		 * i.e., the node of the first zone in the generic zonelist.
3391 		 * Set up numa_mem percpu variable for on-line cpus.  During
3392 		 * boot, only the boot cpu should be on-line;  we'll init the
3393 		 * secondary cpus' numa_mem as they come on-line.  During
3394 		 * node/memory hotplug, we'll fixup all on-line cpus.
3395 		 */
3396 		if (cpu_online(cpu))
3397 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3398 #endif
3399 	}
3400 
3401 	return 0;
3402 }
3403 
3404 /*
3405  * Called with zonelists_mutex held always
3406  * unless system_state == SYSTEM_BOOTING.
3407  */
3408 void __ref build_all_zonelists(void *data)
3409 {
3410 	set_zonelist_order();
3411 
3412 	if (system_state == SYSTEM_BOOTING) {
3413 		__build_all_zonelists(NULL);
3414 		mminit_verify_zonelist();
3415 		cpuset_init_current_mems_allowed();
3416 	} else {
3417 		/* we have to stop all cpus to guarantee there is no user
3418 		   of zonelist */
3419 #ifdef CONFIG_MEMORY_HOTPLUG
3420 		if (data)
3421 			setup_zone_pageset((struct zone *)data);
3422 #endif
3423 		stop_machine(__build_all_zonelists, NULL, NULL);
3424 		/* cpuset refresh routine should be here */
3425 	}
3426 	vm_total_pages = nr_free_pagecache_pages();
3427 	/*
3428 	 * Disable grouping by mobility if the number of pages in the
3429 	 * system is too low to allow the mechanism to work. It would be
3430 	 * more accurate, but expensive to check per-zone. This check is
3431 	 * made on memory-hotadd so a system can start with mobility
3432 	 * disabled and enable it later
3433 	 */
3434 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3435 		page_group_by_mobility_disabled = 1;
3436 	else
3437 		page_group_by_mobility_disabled = 0;
3438 
3439 	printk("Built %i zonelists in %s order, mobility grouping %s.  "
3440 		"Total pages: %ld\n",
3441 			nr_online_nodes,
3442 			zonelist_order_name[current_zonelist_order],
3443 			page_group_by_mobility_disabled ? "off" : "on",
3444 			vm_total_pages);
3445 #ifdef CONFIG_NUMA
3446 	printk("Policy zone: %s\n", zone_names[policy_zone]);
3447 #endif
3448 }
3449 
3450 /*
3451  * Helper functions to size the waitqueue hash table.
3452  * Essentially these want to choose hash table sizes sufficiently
3453  * large so that collisions trying to wait on pages are rare.
3454  * But in fact, the number of active page waitqueues on typical
3455  * systems is ridiculously low, less than 200. So this is even
3456  * conservative, even though it seems large.
3457  *
3458  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3459  * waitqueues, i.e. the size of the waitq table given the number of pages.
3460  */
3461 #define PAGES_PER_WAITQUEUE	256
3462 
3463 #ifndef CONFIG_MEMORY_HOTPLUG
3464 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3465 {
3466 	unsigned long size = 1;
3467 
3468 	pages /= PAGES_PER_WAITQUEUE;
3469 
3470 	while (size < pages)
3471 		size <<= 1;
3472 
3473 	/*
3474 	 * Once we have dozens or even hundreds of threads sleeping
3475 	 * on IO we've got bigger problems than wait queue collision.
3476 	 * Limit the size of the wait table to a reasonable size.
3477 	 */
3478 	size = min(size, 4096UL);
3479 
3480 	return max(size, 4UL);
3481 }
3482 #else
3483 /*
3484  * A zone's size might be changed by hot-add, so it is not possible to determine
3485  * a suitable size for its wait_table.  So we use the maximum size now.
3486  *
3487  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
3488  *
3489  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
3490  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3491  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
3492  *
3493  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3494  * or more by the traditional way. (See above).  It equals:
3495  *
3496  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
3497  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
3498  *    powerpc (64K page size)             : =  (32G +16M)byte.
3499  */
3500 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3501 {
3502 	return 4096UL;
3503 }
3504 #endif
3505 
3506 /*
3507  * This is an integer logarithm so that shifts can be used later
3508  * to extract the more random high bits from the multiplicative
3509  * hash function before the remainder is taken.
3510  */
3511 static inline unsigned long wait_table_bits(unsigned long size)
3512 {
3513 	return ffz(~size);
3514 }
3515 
3516 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3517 
3518 /*
3519  * Check if a pageblock contains reserved pages
3520  */
3521 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3522 {
3523 	unsigned long pfn;
3524 
3525 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3526 		if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3527 			return 1;
3528 	}
3529 	return 0;
3530 }
3531 
3532 /*
3533  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3534  * of blocks reserved is based on min_wmark_pages(zone). The memory within
3535  * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3536  * higher will lead to a bigger reserve which will get freed as contiguous
3537  * blocks as reclaim kicks in
3538  */
3539 static void setup_zone_migrate_reserve(struct zone *zone)
3540 {
3541 	unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3542 	struct page *page;
3543 	unsigned long block_migratetype;
3544 	int reserve;
3545 
3546 	/*
3547 	 * Get the start pfn, end pfn and the number of blocks to reserve
3548 	 * We have to be careful to be aligned to pageblock_nr_pages to
3549 	 * make sure that we always check pfn_valid for the first page in
3550 	 * the block.
3551 	 */
3552 	start_pfn = zone->zone_start_pfn;
3553 	end_pfn = start_pfn + zone->spanned_pages;
3554 	start_pfn = roundup(start_pfn, pageblock_nr_pages);
3555 	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3556 							pageblock_order;
3557 
3558 	/*
3559 	 * Reserve blocks are generally in place to help high-order atomic
3560 	 * allocations that are short-lived. A min_free_kbytes value that
3561 	 * would result in more than 2 reserve blocks for atomic allocations
3562 	 * is assumed to be in place to help anti-fragmentation for the
3563 	 * future allocation of hugepages at runtime.
3564 	 */
3565 	reserve = min(2, reserve);
3566 
3567 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3568 		if (!pfn_valid(pfn))
3569 			continue;
3570 		page = pfn_to_page(pfn);
3571 
3572 		/* Watch out for overlapping nodes */
3573 		if (page_to_nid(page) != zone_to_nid(zone))
3574 			continue;
3575 
3576 		block_migratetype = get_pageblock_migratetype(page);
3577 
3578 		/* Only test what is necessary when the reserves are not met */
3579 		if (reserve > 0) {
3580 			/*
3581 			 * Blocks with reserved pages will never free, skip
3582 			 * them.
3583 			 */
3584 			block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3585 			if (pageblock_is_reserved(pfn, block_end_pfn))
3586 				continue;
3587 
3588 			/* If this block is reserved, account for it */
3589 			if (block_migratetype == MIGRATE_RESERVE) {
3590 				reserve--;
3591 				continue;
3592 			}
3593 
3594 			/* Suitable for reserving if this block is movable */
3595 			if (block_migratetype == MIGRATE_MOVABLE) {
3596 				set_pageblock_migratetype(page,
3597 							MIGRATE_RESERVE);
3598 				move_freepages_block(zone, page,
3599 							MIGRATE_RESERVE);
3600 				reserve--;
3601 				continue;
3602 			}
3603 		}
3604 
3605 		/*
3606 		 * If the reserve is met and this is a previous reserved block,
3607 		 * take it back
3608 		 */
3609 		if (block_migratetype == MIGRATE_RESERVE) {
3610 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3611 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
3612 		}
3613 	}
3614 }
3615 
3616 /*
3617  * Initially all pages are reserved - free ones are freed
3618  * up by free_all_bootmem() once the early boot process is
3619  * done. Non-atomic initialization, single-pass.
3620  */
3621 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3622 		unsigned long start_pfn, enum memmap_context context)
3623 {
3624 	struct page *page;
3625 	unsigned long end_pfn = start_pfn + size;
3626 	unsigned long pfn;
3627 	struct zone *z;
3628 
3629 	if (highest_memmap_pfn < end_pfn - 1)
3630 		highest_memmap_pfn = end_pfn - 1;
3631 
3632 	z = &NODE_DATA(nid)->node_zones[zone];
3633 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3634 		/*
3635 		 * There can be holes in boot-time mem_map[]s
3636 		 * handed to this function.  They do not
3637 		 * exist on hotplugged memory.
3638 		 */
3639 		if (context == MEMMAP_EARLY) {
3640 			if (!early_pfn_valid(pfn))
3641 				continue;
3642 			if (!early_pfn_in_nid(pfn, nid))
3643 				continue;
3644 		}
3645 		page = pfn_to_page(pfn);
3646 		set_page_links(page, zone, nid, pfn);
3647 		mminit_verify_page_links(page, zone, nid, pfn);
3648 		init_page_count(page);
3649 		reset_page_mapcount(page);
3650 		SetPageReserved(page);
3651 		/*
3652 		 * Mark the block movable so that blocks are reserved for
3653 		 * movable at startup. This will force kernel allocations
3654 		 * to reserve their blocks rather than leaking throughout
3655 		 * the address space during boot when many long-lived
3656 		 * kernel allocations are made. Later some blocks near
3657 		 * the start are marked MIGRATE_RESERVE by
3658 		 * setup_zone_migrate_reserve()
3659 		 *
3660 		 * bitmap is created for zone's valid pfn range. but memmap
3661 		 * can be created for invalid pages (for alignment)
3662 		 * check here not to call set_pageblock_migratetype() against
3663 		 * pfn out of zone.
3664 		 */
3665 		if ((z->zone_start_pfn <= pfn)
3666 		    && (pfn < z->zone_start_pfn + z->spanned_pages)
3667 		    && !(pfn & (pageblock_nr_pages - 1)))
3668 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3669 
3670 		INIT_LIST_HEAD(&page->lru);
3671 #ifdef WANT_PAGE_VIRTUAL
3672 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
3673 		if (!is_highmem_idx(zone))
3674 			set_page_address(page, __va(pfn << PAGE_SHIFT));
3675 #endif
3676 	}
3677 }
3678 
3679 static void __meminit zone_init_free_lists(struct zone *zone)
3680 {
3681 	int order, t;
3682 	for_each_migratetype_order(order, t) {
3683 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3684 		zone->free_area[order].nr_free = 0;
3685 	}
3686 }
3687 
3688 #ifndef __HAVE_ARCH_MEMMAP_INIT
3689 #define memmap_init(size, nid, zone, start_pfn) \
3690 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3691 #endif
3692 
3693 static int zone_batchsize(struct zone *zone)
3694 {
3695 #ifdef CONFIG_MMU
3696 	int batch;
3697 
3698 	/*
3699 	 * The per-cpu-pages pools are set to around 1000th of the
3700 	 * size of the zone.  But no more than 1/2 of a meg.
3701 	 *
3702 	 * OK, so we don't know how big the cache is.  So guess.
3703 	 */
3704 	batch = zone->present_pages / 1024;
3705 	if (batch * PAGE_SIZE > 512 * 1024)
3706 		batch = (512 * 1024) / PAGE_SIZE;
3707 	batch /= 4;		/* We effectively *= 4 below */
3708 	if (batch < 1)
3709 		batch = 1;
3710 
3711 	/*
3712 	 * Clamp the batch to a 2^n - 1 value. Having a power
3713 	 * of 2 value was found to be more likely to have
3714 	 * suboptimal cache aliasing properties in some cases.
3715 	 *
3716 	 * For example if 2 tasks are alternately allocating
3717 	 * batches of pages, one task can end up with a lot
3718 	 * of pages of one half of the possible page colors
3719 	 * and the other with pages of the other colors.
3720 	 */
3721 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
3722 
3723 	return batch;
3724 
3725 #else
3726 	/* The deferral and batching of frees should be suppressed under NOMMU
3727 	 * conditions.
3728 	 *
3729 	 * The problem is that NOMMU needs to be able to allocate large chunks
3730 	 * of contiguous memory as there's no hardware page translation to
3731 	 * assemble apparent contiguous memory from discontiguous pages.
3732 	 *
3733 	 * Queueing large contiguous runs of pages for batching, however,
3734 	 * causes the pages to actually be freed in smaller chunks.  As there
3735 	 * can be a significant delay between the individual batches being
3736 	 * recycled, this leads to the once large chunks of space being
3737 	 * fragmented and becoming unavailable for high-order allocations.
3738 	 */
3739 	return 0;
3740 #endif
3741 }
3742 
3743 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3744 {
3745 	struct per_cpu_pages *pcp;
3746 	int migratetype;
3747 
3748 	memset(p, 0, sizeof(*p));
3749 
3750 	pcp = &p->pcp;
3751 	pcp->count = 0;
3752 	pcp->high = 6 * batch;
3753 	pcp->batch = max(1UL, 1 * batch);
3754 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3755 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
3756 }
3757 
3758 /*
3759  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3760  * to the value high for the pageset p.
3761  */
3762 
3763 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3764 				unsigned long high)
3765 {
3766 	struct per_cpu_pages *pcp;
3767 
3768 	pcp = &p->pcp;
3769 	pcp->high = high;
3770 	pcp->batch = max(1UL, high/4);
3771 	if ((high/4) > (PAGE_SHIFT * 8))
3772 		pcp->batch = PAGE_SHIFT * 8;
3773 }
3774 
3775 static void setup_zone_pageset(struct zone *zone)
3776 {
3777 	int cpu;
3778 
3779 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
3780 
3781 	for_each_possible_cpu(cpu) {
3782 		struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3783 
3784 		setup_pageset(pcp, zone_batchsize(zone));
3785 
3786 		if (percpu_pagelist_fraction)
3787 			setup_pagelist_highmark(pcp,
3788 				(zone->present_pages /
3789 					percpu_pagelist_fraction));
3790 	}
3791 }
3792 
3793 /*
3794  * Allocate per cpu pagesets and initialize them.
3795  * Before this call only boot pagesets were available.
3796  */
3797 void __init setup_per_cpu_pageset(void)
3798 {
3799 	struct zone *zone;
3800 
3801 	for_each_populated_zone(zone)
3802 		setup_zone_pageset(zone);
3803 }
3804 
3805 static noinline __init_refok
3806 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3807 {
3808 	int i;
3809 	struct pglist_data *pgdat = zone->zone_pgdat;
3810 	size_t alloc_size;
3811 
3812 	/*
3813 	 * The per-page waitqueue mechanism uses hashed waitqueues
3814 	 * per zone.
3815 	 */
3816 	zone->wait_table_hash_nr_entries =
3817 		 wait_table_hash_nr_entries(zone_size_pages);
3818 	zone->wait_table_bits =
3819 		wait_table_bits(zone->wait_table_hash_nr_entries);
3820 	alloc_size = zone->wait_table_hash_nr_entries
3821 					* sizeof(wait_queue_head_t);
3822 
3823 	if (!slab_is_available()) {
3824 		zone->wait_table = (wait_queue_head_t *)
3825 			alloc_bootmem_node_nopanic(pgdat, alloc_size);
3826 	} else {
3827 		/*
3828 		 * This case means that a zone whose size was 0 gets new memory
3829 		 * via memory hot-add.
3830 		 * But it may be the case that a new node was hot-added.  In
3831 		 * this case vmalloc() will not be able to use this new node's
3832 		 * memory - this wait_table must be initialized to use this new
3833 		 * node itself as well.
3834 		 * To use this new node's memory, further consideration will be
3835 		 * necessary.
3836 		 */
3837 		zone->wait_table = vmalloc(alloc_size);
3838 	}
3839 	if (!zone->wait_table)
3840 		return -ENOMEM;
3841 
3842 	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3843 		init_waitqueue_head(zone->wait_table + i);
3844 
3845 	return 0;
3846 }
3847 
3848 static int __zone_pcp_update(void *data)
3849 {
3850 	struct zone *zone = data;
3851 	int cpu;
3852 	unsigned long batch = zone_batchsize(zone), flags;
3853 
3854 	for_each_possible_cpu(cpu) {
3855 		struct per_cpu_pageset *pset;
3856 		struct per_cpu_pages *pcp;
3857 
3858 		pset = per_cpu_ptr(zone->pageset, cpu);
3859 		pcp = &pset->pcp;
3860 
3861 		local_irq_save(flags);
3862 		free_pcppages_bulk(zone, pcp->count, pcp);
3863 		setup_pageset(pset, batch);
3864 		local_irq_restore(flags);
3865 	}
3866 	return 0;
3867 }
3868 
3869 void zone_pcp_update(struct zone *zone)
3870 {
3871 	stop_machine(__zone_pcp_update, zone, NULL);
3872 }
3873 
3874 static __meminit void zone_pcp_init(struct zone *zone)
3875 {
3876 	/*
3877 	 * per cpu subsystem is not up at this point. The following code
3878 	 * relies on the ability of the linker to provide the
3879 	 * offset of a (static) per cpu variable into the per cpu area.
3880 	 */
3881 	zone->pageset = &boot_pageset;
3882 
3883 	if (zone->present_pages)
3884 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
3885 			zone->name, zone->present_pages,
3886 					 zone_batchsize(zone));
3887 }
3888 
3889 __meminit int init_currently_empty_zone(struct zone *zone,
3890 					unsigned long zone_start_pfn,
3891 					unsigned long size,
3892 					enum memmap_context context)
3893 {
3894 	struct pglist_data *pgdat = zone->zone_pgdat;
3895 	int ret;
3896 	ret = zone_wait_table_init(zone, size);
3897 	if (ret)
3898 		return ret;
3899 	pgdat->nr_zones = zone_idx(zone) + 1;
3900 
3901 	zone->zone_start_pfn = zone_start_pfn;
3902 
3903 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
3904 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
3905 			pgdat->node_id,
3906 			(unsigned long)zone_idx(zone),
3907 			zone_start_pfn, (zone_start_pfn + size));
3908 
3909 	zone_init_free_lists(zone);
3910 
3911 	return 0;
3912 }
3913 
3914 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
3915 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3916 /*
3917  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3918  * Architectures may implement their own version but if add_active_range()
3919  * was used and there are no special requirements, this is a convenient
3920  * alternative
3921  */
3922 int __meminit __early_pfn_to_nid(unsigned long pfn)
3923 {
3924 	unsigned long start_pfn, end_pfn;
3925 	int i, nid;
3926 
3927 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
3928 		if (start_pfn <= pfn && pfn < end_pfn)
3929 			return nid;
3930 	/* This is a memory hole */
3931 	return -1;
3932 }
3933 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3934 
3935 int __meminit early_pfn_to_nid(unsigned long pfn)
3936 {
3937 	int nid;
3938 
3939 	nid = __early_pfn_to_nid(pfn);
3940 	if (nid >= 0)
3941 		return nid;
3942 	/* just returns 0 */
3943 	return 0;
3944 }
3945 
3946 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3947 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3948 {
3949 	int nid;
3950 
3951 	nid = __early_pfn_to_nid(pfn);
3952 	if (nid >= 0 && nid != node)
3953 		return false;
3954 	return true;
3955 }
3956 #endif
3957 
3958 /**
3959  * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3960  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3961  * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3962  *
3963  * If an architecture guarantees that all ranges registered with
3964  * add_active_ranges() contain no holes and may be freed, this
3965  * this function may be used instead of calling free_bootmem() manually.
3966  */
3967 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
3968 {
3969 	unsigned long start_pfn, end_pfn;
3970 	int i, this_nid;
3971 
3972 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
3973 		start_pfn = min(start_pfn, max_low_pfn);
3974 		end_pfn = min(end_pfn, max_low_pfn);
3975 
3976 		if (start_pfn < end_pfn)
3977 			free_bootmem_node(NODE_DATA(this_nid),
3978 					  PFN_PHYS(start_pfn),
3979 					  (end_pfn - start_pfn) << PAGE_SHIFT);
3980 	}
3981 }
3982 
3983 /**
3984  * sparse_memory_present_with_active_regions - Call memory_present for each active range
3985  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3986  *
3987  * If an architecture guarantees that all ranges registered with
3988  * add_active_ranges() contain no holes and may be freed, this
3989  * function may be used instead of calling memory_present() manually.
3990  */
3991 void __init sparse_memory_present_with_active_regions(int nid)
3992 {
3993 	unsigned long start_pfn, end_pfn;
3994 	int i, this_nid;
3995 
3996 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
3997 		memory_present(this_nid, start_pfn, end_pfn);
3998 }
3999 
4000 /**
4001  * get_pfn_range_for_nid - Return the start and end page frames for a node
4002  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4003  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4004  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4005  *
4006  * It returns the start and end page frame of a node based on information
4007  * provided by an arch calling add_active_range(). If called for a node
4008  * with no available memory, a warning is printed and the start and end
4009  * PFNs will be 0.
4010  */
4011 void __meminit get_pfn_range_for_nid(unsigned int nid,
4012 			unsigned long *start_pfn, unsigned long *end_pfn)
4013 {
4014 	unsigned long this_start_pfn, this_end_pfn;
4015 	int i;
4016 
4017 	*start_pfn = -1UL;
4018 	*end_pfn = 0;
4019 
4020 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4021 		*start_pfn = min(*start_pfn, this_start_pfn);
4022 		*end_pfn = max(*end_pfn, this_end_pfn);
4023 	}
4024 
4025 	if (*start_pfn == -1UL)
4026 		*start_pfn = 0;
4027 }
4028 
4029 /*
4030  * This finds a zone that can be used for ZONE_MOVABLE pages. The
4031  * assumption is made that zones within a node are ordered in monotonic
4032  * increasing memory addresses so that the "highest" populated zone is used
4033  */
4034 static void __init find_usable_zone_for_movable(void)
4035 {
4036 	int zone_index;
4037 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4038 		if (zone_index == ZONE_MOVABLE)
4039 			continue;
4040 
4041 		if (arch_zone_highest_possible_pfn[zone_index] >
4042 				arch_zone_lowest_possible_pfn[zone_index])
4043 			break;
4044 	}
4045 
4046 	VM_BUG_ON(zone_index == -1);
4047 	movable_zone = zone_index;
4048 }
4049 
4050 /*
4051  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4052  * because it is sized independent of architecture. Unlike the other zones,
4053  * the starting point for ZONE_MOVABLE is not fixed. It may be different
4054  * in each node depending on the size of each node and how evenly kernelcore
4055  * is distributed. This helper function adjusts the zone ranges
4056  * provided by the architecture for a given node by using the end of the
4057  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4058  * zones within a node are in order of monotonic increases memory addresses
4059  */
4060 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4061 					unsigned long zone_type,
4062 					unsigned long node_start_pfn,
4063 					unsigned long node_end_pfn,
4064 					unsigned long *zone_start_pfn,
4065 					unsigned long *zone_end_pfn)
4066 {
4067 	/* Only adjust if ZONE_MOVABLE is on this node */
4068 	if (zone_movable_pfn[nid]) {
4069 		/* Size ZONE_MOVABLE */
4070 		if (zone_type == ZONE_MOVABLE) {
4071 			*zone_start_pfn = zone_movable_pfn[nid];
4072 			*zone_end_pfn = min(node_end_pfn,
4073 				arch_zone_highest_possible_pfn[movable_zone]);
4074 
4075 		/* Adjust for ZONE_MOVABLE starting within this range */
4076 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4077 				*zone_end_pfn > zone_movable_pfn[nid]) {
4078 			*zone_end_pfn = zone_movable_pfn[nid];
4079 
4080 		/* Check if this whole range is within ZONE_MOVABLE */
4081 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
4082 			*zone_start_pfn = *zone_end_pfn;
4083 	}
4084 }
4085 
4086 /*
4087  * Return the number of pages a zone spans in a node, including holes
4088  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4089  */
4090 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4091 					unsigned long zone_type,
4092 					unsigned long *ignored)
4093 {
4094 	unsigned long node_start_pfn, node_end_pfn;
4095 	unsigned long zone_start_pfn, zone_end_pfn;
4096 
4097 	/* Get the start and end of the node and zone */
4098 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4099 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4100 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4101 	adjust_zone_range_for_zone_movable(nid, zone_type,
4102 				node_start_pfn, node_end_pfn,
4103 				&zone_start_pfn, &zone_end_pfn);
4104 
4105 	/* Check that this node has pages within the zone's required range */
4106 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4107 		return 0;
4108 
4109 	/* Move the zone boundaries inside the node if necessary */
4110 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4111 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4112 
4113 	/* Return the spanned pages */
4114 	return zone_end_pfn - zone_start_pfn;
4115 }
4116 
4117 /*
4118  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4119  * then all holes in the requested range will be accounted for.
4120  */
4121 unsigned long __meminit __absent_pages_in_range(int nid,
4122 				unsigned long range_start_pfn,
4123 				unsigned long range_end_pfn)
4124 {
4125 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
4126 	unsigned long start_pfn, end_pfn;
4127 	int i;
4128 
4129 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4130 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4131 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4132 		nr_absent -= end_pfn - start_pfn;
4133 	}
4134 	return nr_absent;
4135 }
4136 
4137 /**
4138  * absent_pages_in_range - Return number of page frames in holes within a range
4139  * @start_pfn: The start PFN to start searching for holes
4140  * @end_pfn: The end PFN to stop searching for holes
4141  *
4142  * It returns the number of pages frames in memory holes within a range.
4143  */
4144 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4145 							unsigned long end_pfn)
4146 {
4147 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4148 }
4149 
4150 /* Return the number of page frames in holes in a zone on a node */
4151 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4152 					unsigned long zone_type,
4153 					unsigned long *ignored)
4154 {
4155 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4156 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4157 	unsigned long node_start_pfn, node_end_pfn;
4158 	unsigned long zone_start_pfn, zone_end_pfn;
4159 
4160 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4161 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4162 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4163 
4164 	adjust_zone_range_for_zone_movable(nid, zone_type,
4165 			node_start_pfn, node_end_pfn,
4166 			&zone_start_pfn, &zone_end_pfn);
4167 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4168 }
4169 
4170 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4171 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4172 					unsigned long zone_type,
4173 					unsigned long *zones_size)
4174 {
4175 	return zones_size[zone_type];
4176 }
4177 
4178 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4179 						unsigned long zone_type,
4180 						unsigned long *zholes_size)
4181 {
4182 	if (!zholes_size)
4183 		return 0;
4184 
4185 	return zholes_size[zone_type];
4186 }
4187 
4188 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4189 
4190 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4191 		unsigned long *zones_size, unsigned long *zholes_size)
4192 {
4193 	unsigned long realtotalpages, totalpages = 0;
4194 	enum zone_type i;
4195 
4196 	for (i = 0; i < MAX_NR_ZONES; i++)
4197 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4198 								zones_size);
4199 	pgdat->node_spanned_pages = totalpages;
4200 
4201 	realtotalpages = totalpages;
4202 	for (i = 0; i < MAX_NR_ZONES; i++)
4203 		realtotalpages -=
4204 			zone_absent_pages_in_node(pgdat->node_id, i,
4205 								zholes_size);
4206 	pgdat->node_present_pages = realtotalpages;
4207 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4208 							realtotalpages);
4209 }
4210 
4211 #ifndef CONFIG_SPARSEMEM
4212 /*
4213  * Calculate the size of the zone->blockflags rounded to an unsigned long
4214  * Start by making sure zonesize is a multiple of pageblock_order by rounding
4215  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4216  * round what is now in bits to nearest long in bits, then return it in
4217  * bytes.
4218  */
4219 static unsigned long __init usemap_size(unsigned long zonesize)
4220 {
4221 	unsigned long usemapsize;
4222 
4223 	usemapsize = roundup(zonesize, pageblock_nr_pages);
4224 	usemapsize = usemapsize >> pageblock_order;
4225 	usemapsize *= NR_PAGEBLOCK_BITS;
4226 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4227 
4228 	return usemapsize / 8;
4229 }
4230 
4231 static void __init setup_usemap(struct pglist_data *pgdat,
4232 				struct zone *zone, unsigned long zonesize)
4233 {
4234 	unsigned long usemapsize = usemap_size(zonesize);
4235 	zone->pageblock_flags = NULL;
4236 	if (usemapsize)
4237 		zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4238 								   usemapsize);
4239 }
4240 #else
4241 static inline void setup_usemap(struct pglist_data *pgdat,
4242 				struct zone *zone, unsigned long zonesize) {}
4243 #endif /* CONFIG_SPARSEMEM */
4244 
4245 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4246 
4247 /* Return a sensible default order for the pageblock size. */
4248 static inline int pageblock_default_order(void)
4249 {
4250 	if (HPAGE_SHIFT > PAGE_SHIFT)
4251 		return HUGETLB_PAGE_ORDER;
4252 
4253 	return MAX_ORDER-1;
4254 }
4255 
4256 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4257 static inline void __init set_pageblock_order(unsigned int order)
4258 {
4259 	/* Check that pageblock_nr_pages has not already been setup */
4260 	if (pageblock_order)
4261 		return;
4262 
4263 	/*
4264 	 * Assume the largest contiguous order of interest is a huge page.
4265 	 * This value may be variable depending on boot parameters on IA64
4266 	 */
4267 	pageblock_order = order;
4268 }
4269 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4270 
4271 /*
4272  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4273  * and pageblock_default_order() are unused as pageblock_order is set
4274  * at compile-time. See include/linux/pageblock-flags.h for the values of
4275  * pageblock_order based on the kernel config
4276  */
4277 static inline int pageblock_default_order(unsigned int order)
4278 {
4279 	return MAX_ORDER-1;
4280 }
4281 #define set_pageblock_order(x)	do {} while (0)
4282 
4283 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4284 
4285 /*
4286  * Set up the zone data structures:
4287  *   - mark all pages reserved
4288  *   - mark all memory queues empty
4289  *   - clear the memory bitmaps
4290  */
4291 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4292 		unsigned long *zones_size, unsigned long *zholes_size)
4293 {
4294 	enum zone_type j;
4295 	int nid = pgdat->node_id;
4296 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
4297 	int ret;
4298 
4299 	pgdat_resize_init(pgdat);
4300 	pgdat->nr_zones = 0;
4301 	init_waitqueue_head(&pgdat->kswapd_wait);
4302 	pgdat->kswapd_max_order = 0;
4303 	pgdat_page_cgroup_init(pgdat);
4304 
4305 	for (j = 0; j < MAX_NR_ZONES; j++) {
4306 		struct zone *zone = pgdat->node_zones + j;
4307 		unsigned long size, realsize, memmap_pages;
4308 		enum lru_list lru;
4309 
4310 		size = zone_spanned_pages_in_node(nid, j, zones_size);
4311 		realsize = size - zone_absent_pages_in_node(nid, j,
4312 								zholes_size);
4313 
4314 		/*
4315 		 * Adjust realsize so that it accounts for how much memory
4316 		 * is used by this zone for memmap. This affects the watermark
4317 		 * and per-cpu initialisations
4318 		 */
4319 		memmap_pages =
4320 			PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4321 		if (realsize >= memmap_pages) {
4322 			realsize -= memmap_pages;
4323 			if (memmap_pages)
4324 				printk(KERN_DEBUG
4325 				       "  %s zone: %lu pages used for memmap\n",
4326 				       zone_names[j], memmap_pages);
4327 		} else
4328 			printk(KERN_WARNING
4329 				"  %s zone: %lu pages exceeds realsize %lu\n",
4330 				zone_names[j], memmap_pages, realsize);
4331 
4332 		/* Account for reserved pages */
4333 		if (j == 0 && realsize > dma_reserve) {
4334 			realsize -= dma_reserve;
4335 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
4336 					zone_names[0], dma_reserve);
4337 		}
4338 
4339 		if (!is_highmem_idx(j))
4340 			nr_kernel_pages += realsize;
4341 		nr_all_pages += realsize;
4342 
4343 		zone->spanned_pages = size;
4344 		zone->present_pages = realsize;
4345 #ifdef CONFIG_NUMA
4346 		zone->node = nid;
4347 		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4348 						/ 100;
4349 		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4350 #endif
4351 		zone->name = zone_names[j];
4352 		spin_lock_init(&zone->lock);
4353 		spin_lock_init(&zone->lru_lock);
4354 		zone_seqlock_init(zone);
4355 		zone->zone_pgdat = pgdat;
4356 
4357 		zone_pcp_init(zone);
4358 		for_each_lru(lru)
4359 			INIT_LIST_HEAD(&zone->lruvec.lists[lru]);
4360 		zone->reclaim_stat.recent_rotated[0] = 0;
4361 		zone->reclaim_stat.recent_rotated[1] = 0;
4362 		zone->reclaim_stat.recent_scanned[0] = 0;
4363 		zone->reclaim_stat.recent_scanned[1] = 0;
4364 		zap_zone_vm_stats(zone);
4365 		zone->flags = 0;
4366 		if (!size)
4367 			continue;
4368 
4369 		set_pageblock_order(pageblock_default_order());
4370 		setup_usemap(pgdat, zone, size);
4371 		ret = init_currently_empty_zone(zone, zone_start_pfn,
4372 						size, MEMMAP_EARLY);
4373 		BUG_ON(ret);
4374 		memmap_init(size, nid, j, zone_start_pfn);
4375 		zone_start_pfn += size;
4376 	}
4377 }
4378 
4379 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4380 {
4381 	/* Skip empty nodes */
4382 	if (!pgdat->node_spanned_pages)
4383 		return;
4384 
4385 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4386 	/* ia64 gets its own node_mem_map, before this, without bootmem */
4387 	if (!pgdat->node_mem_map) {
4388 		unsigned long size, start, end;
4389 		struct page *map;
4390 
4391 		/*
4392 		 * The zone's endpoints aren't required to be MAX_ORDER
4393 		 * aligned but the node_mem_map endpoints must be in order
4394 		 * for the buddy allocator to function correctly.
4395 		 */
4396 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4397 		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4398 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
4399 		size =  (end - start) * sizeof(struct page);
4400 		map = alloc_remap(pgdat->node_id, size);
4401 		if (!map)
4402 			map = alloc_bootmem_node_nopanic(pgdat, size);
4403 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4404 	}
4405 #ifndef CONFIG_NEED_MULTIPLE_NODES
4406 	/*
4407 	 * With no DISCONTIG, the global mem_map is just set as node 0's
4408 	 */
4409 	if (pgdat == NODE_DATA(0)) {
4410 		mem_map = NODE_DATA(0)->node_mem_map;
4411 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4412 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4413 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4414 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4415 	}
4416 #endif
4417 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4418 }
4419 
4420 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4421 		unsigned long node_start_pfn, unsigned long *zholes_size)
4422 {
4423 	pg_data_t *pgdat = NODE_DATA(nid);
4424 
4425 	pgdat->node_id = nid;
4426 	pgdat->node_start_pfn = node_start_pfn;
4427 	calculate_node_totalpages(pgdat, zones_size, zholes_size);
4428 
4429 	alloc_node_mem_map(pgdat);
4430 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4431 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4432 		nid, (unsigned long)pgdat,
4433 		(unsigned long)pgdat->node_mem_map);
4434 #endif
4435 
4436 	free_area_init_core(pgdat, zones_size, zholes_size);
4437 }
4438 
4439 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4440 
4441 #if MAX_NUMNODES > 1
4442 /*
4443  * Figure out the number of possible node ids.
4444  */
4445 static void __init setup_nr_node_ids(void)
4446 {
4447 	unsigned int node;
4448 	unsigned int highest = 0;
4449 
4450 	for_each_node_mask(node, node_possible_map)
4451 		highest = node;
4452 	nr_node_ids = highest + 1;
4453 }
4454 #else
4455 static inline void setup_nr_node_ids(void)
4456 {
4457 }
4458 #endif
4459 
4460 /**
4461  * node_map_pfn_alignment - determine the maximum internode alignment
4462  *
4463  * This function should be called after node map is populated and sorted.
4464  * It calculates the maximum power of two alignment which can distinguish
4465  * all the nodes.
4466  *
4467  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4468  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
4469  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
4470  * shifted, 1GiB is enough and this function will indicate so.
4471  *
4472  * This is used to test whether pfn -> nid mapping of the chosen memory
4473  * model has fine enough granularity to avoid incorrect mapping for the
4474  * populated node map.
4475  *
4476  * Returns the determined alignment in pfn's.  0 if there is no alignment
4477  * requirement (single node).
4478  */
4479 unsigned long __init node_map_pfn_alignment(void)
4480 {
4481 	unsigned long accl_mask = 0, last_end = 0;
4482 	unsigned long start, end, mask;
4483 	int last_nid = -1;
4484 	int i, nid;
4485 
4486 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4487 		if (!start || last_nid < 0 || last_nid == nid) {
4488 			last_nid = nid;
4489 			last_end = end;
4490 			continue;
4491 		}
4492 
4493 		/*
4494 		 * Start with a mask granular enough to pin-point to the
4495 		 * start pfn and tick off bits one-by-one until it becomes
4496 		 * too coarse to separate the current node from the last.
4497 		 */
4498 		mask = ~((1 << __ffs(start)) - 1);
4499 		while (mask && last_end <= (start & (mask << 1)))
4500 			mask <<= 1;
4501 
4502 		/* accumulate all internode masks */
4503 		accl_mask |= mask;
4504 	}
4505 
4506 	/* convert mask to number of pages */
4507 	return ~accl_mask + 1;
4508 }
4509 
4510 /* Find the lowest pfn for a node */
4511 static unsigned long __init find_min_pfn_for_node(int nid)
4512 {
4513 	unsigned long min_pfn = ULONG_MAX;
4514 	unsigned long start_pfn;
4515 	int i;
4516 
4517 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4518 		min_pfn = min(min_pfn, start_pfn);
4519 
4520 	if (min_pfn == ULONG_MAX) {
4521 		printk(KERN_WARNING
4522 			"Could not find start_pfn for node %d\n", nid);
4523 		return 0;
4524 	}
4525 
4526 	return min_pfn;
4527 }
4528 
4529 /**
4530  * find_min_pfn_with_active_regions - Find the minimum PFN registered
4531  *
4532  * It returns the minimum PFN based on information provided via
4533  * add_active_range().
4534  */
4535 unsigned long __init find_min_pfn_with_active_regions(void)
4536 {
4537 	return find_min_pfn_for_node(MAX_NUMNODES);
4538 }
4539 
4540 /*
4541  * early_calculate_totalpages()
4542  * Sum pages in active regions for movable zone.
4543  * Populate N_HIGH_MEMORY for calculating usable_nodes.
4544  */
4545 static unsigned long __init early_calculate_totalpages(void)
4546 {
4547 	unsigned long totalpages = 0;
4548 	unsigned long start_pfn, end_pfn;
4549 	int i, nid;
4550 
4551 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4552 		unsigned long pages = end_pfn - start_pfn;
4553 
4554 		totalpages += pages;
4555 		if (pages)
4556 			node_set_state(nid, N_HIGH_MEMORY);
4557 	}
4558   	return totalpages;
4559 }
4560 
4561 /*
4562  * Find the PFN the Movable zone begins in each node. Kernel memory
4563  * is spread evenly between nodes as long as the nodes have enough
4564  * memory. When they don't, some nodes will have more kernelcore than
4565  * others
4566  */
4567 static void __init find_zone_movable_pfns_for_nodes(void)
4568 {
4569 	int i, nid;
4570 	unsigned long usable_startpfn;
4571 	unsigned long kernelcore_node, kernelcore_remaining;
4572 	/* save the state before borrow the nodemask */
4573 	nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4574 	unsigned long totalpages = early_calculate_totalpages();
4575 	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4576 
4577 	/*
4578 	 * If movablecore was specified, calculate what size of
4579 	 * kernelcore that corresponds so that memory usable for
4580 	 * any allocation type is evenly spread. If both kernelcore
4581 	 * and movablecore are specified, then the value of kernelcore
4582 	 * will be used for required_kernelcore if it's greater than
4583 	 * what movablecore would have allowed.
4584 	 */
4585 	if (required_movablecore) {
4586 		unsigned long corepages;
4587 
4588 		/*
4589 		 * Round-up so that ZONE_MOVABLE is at least as large as what
4590 		 * was requested by the user
4591 		 */
4592 		required_movablecore =
4593 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4594 		corepages = totalpages - required_movablecore;
4595 
4596 		required_kernelcore = max(required_kernelcore, corepages);
4597 	}
4598 
4599 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
4600 	if (!required_kernelcore)
4601 		goto out;
4602 
4603 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4604 	find_usable_zone_for_movable();
4605 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4606 
4607 restart:
4608 	/* Spread kernelcore memory as evenly as possible throughout nodes */
4609 	kernelcore_node = required_kernelcore / usable_nodes;
4610 	for_each_node_state(nid, N_HIGH_MEMORY) {
4611 		unsigned long start_pfn, end_pfn;
4612 
4613 		/*
4614 		 * Recalculate kernelcore_node if the division per node
4615 		 * now exceeds what is necessary to satisfy the requested
4616 		 * amount of memory for the kernel
4617 		 */
4618 		if (required_kernelcore < kernelcore_node)
4619 			kernelcore_node = required_kernelcore / usable_nodes;
4620 
4621 		/*
4622 		 * As the map is walked, we track how much memory is usable
4623 		 * by the kernel using kernelcore_remaining. When it is
4624 		 * 0, the rest of the node is usable by ZONE_MOVABLE
4625 		 */
4626 		kernelcore_remaining = kernelcore_node;
4627 
4628 		/* Go through each range of PFNs within this node */
4629 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4630 			unsigned long size_pages;
4631 
4632 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
4633 			if (start_pfn >= end_pfn)
4634 				continue;
4635 
4636 			/* Account for what is only usable for kernelcore */
4637 			if (start_pfn < usable_startpfn) {
4638 				unsigned long kernel_pages;
4639 				kernel_pages = min(end_pfn, usable_startpfn)
4640 								- start_pfn;
4641 
4642 				kernelcore_remaining -= min(kernel_pages,
4643 							kernelcore_remaining);
4644 				required_kernelcore -= min(kernel_pages,
4645 							required_kernelcore);
4646 
4647 				/* Continue if range is now fully accounted */
4648 				if (end_pfn <= usable_startpfn) {
4649 
4650 					/*
4651 					 * Push zone_movable_pfn to the end so
4652 					 * that if we have to rebalance
4653 					 * kernelcore across nodes, we will
4654 					 * not double account here
4655 					 */
4656 					zone_movable_pfn[nid] = end_pfn;
4657 					continue;
4658 				}
4659 				start_pfn = usable_startpfn;
4660 			}
4661 
4662 			/*
4663 			 * The usable PFN range for ZONE_MOVABLE is from
4664 			 * start_pfn->end_pfn. Calculate size_pages as the
4665 			 * number of pages used as kernelcore
4666 			 */
4667 			size_pages = end_pfn - start_pfn;
4668 			if (size_pages > kernelcore_remaining)
4669 				size_pages = kernelcore_remaining;
4670 			zone_movable_pfn[nid] = start_pfn + size_pages;
4671 
4672 			/*
4673 			 * Some kernelcore has been met, update counts and
4674 			 * break if the kernelcore for this node has been
4675 			 * satisified
4676 			 */
4677 			required_kernelcore -= min(required_kernelcore,
4678 								size_pages);
4679 			kernelcore_remaining -= size_pages;
4680 			if (!kernelcore_remaining)
4681 				break;
4682 		}
4683 	}
4684 
4685 	/*
4686 	 * If there is still required_kernelcore, we do another pass with one
4687 	 * less node in the count. This will push zone_movable_pfn[nid] further
4688 	 * along on the nodes that still have memory until kernelcore is
4689 	 * satisified
4690 	 */
4691 	usable_nodes--;
4692 	if (usable_nodes && required_kernelcore > usable_nodes)
4693 		goto restart;
4694 
4695 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4696 	for (nid = 0; nid < MAX_NUMNODES; nid++)
4697 		zone_movable_pfn[nid] =
4698 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4699 
4700 out:
4701 	/* restore the node_state */
4702 	node_states[N_HIGH_MEMORY] = saved_node_state;
4703 }
4704 
4705 /* Any regular memory on that node ? */
4706 static void check_for_regular_memory(pg_data_t *pgdat)
4707 {
4708 #ifdef CONFIG_HIGHMEM
4709 	enum zone_type zone_type;
4710 
4711 	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4712 		struct zone *zone = &pgdat->node_zones[zone_type];
4713 		if (zone->present_pages) {
4714 			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4715 			break;
4716 		}
4717 	}
4718 #endif
4719 }
4720 
4721 /**
4722  * free_area_init_nodes - Initialise all pg_data_t and zone data
4723  * @max_zone_pfn: an array of max PFNs for each zone
4724  *
4725  * This will call free_area_init_node() for each active node in the system.
4726  * Using the page ranges provided by add_active_range(), the size of each
4727  * zone in each node and their holes is calculated. If the maximum PFN
4728  * between two adjacent zones match, it is assumed that the zone is empty.
4729  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4730  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4731  * starts where the previous one ended. For example, ZONE_DMA32 starts
4732  * at arch_max_dma_pfn.
4733  */
4734 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4735 {
4736 	unsigned long start_pfn, end_pfn;
4737 	int i, nid;
4738 
4739 	/* Record where the zone boundaries are */
4740 	memset(arch_zone_lowest_possible_pfn, 0,
4741 				sizeof(arch_zone_lowest_possible_pfn));
4742 	memset(arch_zone_highest_possible_pfn, 0,
4743 				sizeof(arch_zone_highest_possible_pfn));
4744 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4745 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4746 	for (i = 1; i < MAX_NR_ZONES; i++) {
4747 		if (i == ZONE_MOVABLE)
4748 			continue;
4749 		arch_zone_lowest_possible_pfn[i] =
4750 			arch_zone_highest_possible_pfn[i-1];
4751 		arch_zone_highest_possible_pfn[i] =
4752 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4753 	}
4754 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4755 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4756 
4757 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
4758 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4759 	find_zone_movable_pfns_for_nodes();
4760 
4761 	/* Print out the zone ranges */
4762 	printk("Zone PFN ranges:\n");
4763 	for (i = 0; i < MAX_NR_ZONES; i++) {
4764 		if (i == ZONE_MOVABLE)
4765 			continue;
4766 		printk("  %-8s ", zone_names[i]);
4767 		if (arch_zone_lowest_possible_pfn[i] ==
4768 				arch_zone_highest_possible_pfn[i])
4769 			printk("empty\n");
4770 		else
4771 			printk("%0#10lx -> %0#10lx\n",
4772 				arch_zone_lowest_possible_pfn[i],
4773 				arch_zone_highest_possible_pfn[i]);
4774 	}
4775 
4776 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
4777 	printk("Movable zone start PFN for each node\n");
4778 	for (i = 0; i < MAX_NUMNODES; i++) {
4779 		if (zone_movable_pfn[i])
4780 			printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
4781 	}
4782 
4783 	/* Print out the early_node_map[] */
4784 	printk("Early memory PFN ranges\n");
4785 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4786 		printk("  %3d: %0#10lx -> %0#10lx\n", nid, start_pfn, end_pfn);
4787 
4788 	/* Initialise every node */
4789 	mminit_verify_pageflags_layout();
4790 	setup_nr_node_ids();
4791 	for_each_online_node(nid) {
4792 		pg_data_t *pgdat = NODE_DATA(nid);
4793 		free_area_init_node(nid, NULL,
4794 				find_min_pfn_for_node(nid), NULL);
4795 
4796 		/* Any memory on that node */
4797 		if (pgdat->node_present_pages)
4798 			node_set_state(nid, N_HIGH_MEMORY);
4799 		check_for_regular_memory(pgdat);
4800 	}
4801 }
4802 
4803 static int __init cmdline_parse_core(char *p, unsigned long *core)
4804 {
4805 	unsigned long long coremem;
4806 	if (!p)
4807 		return -EINVAL;
4808 
4809 	coremem = memparse(p, &p);
4810 	*core = coremem >> PAGE_SHIFT;
4811 
4812 	/* Paranoid check that UL is enough for the coremem value */
4813 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4814 
4815 	return 0;
4816 }
4817 
4818 /*
4819  * kernelcore=size sets the amount of memory for use for allocations that
4820  * cannot be reclaimed or migrated.
4821  */
4822 static int __init cmdline_parse_kernelcore(char *p)
4823 {
4824 	return cmdline_parse_core(p, &required_kernelcore);
4825 }
4826 
4827 /*
4828  * movablecore=size sets the amount of memory for use for allocations that
4829  * can be reclaimed or migrated.
4830  */
4831 static int __init cmdline_parse_movablecore(char *p)
4832 {
4833 	return cmdline_parse_core(p, &required_movablecore);
4834 }
4835 
4836 early_param("kernelcore", cmdline_parse_kernelcore);
4837 early_param("movablecore", cmdline_parse_movablecore);
4838 
4839 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4840 
4841 /**
4842  * set_dma_reserve - set the specified number of pages reserved in the first zone
4843  * @new_dma_reserve: The number of pages to mark reserved
4844  *
4845  * The per-cpu batchsize and zone watermarks are determined by present_pages.
4846  * In the DMA zone, a significant percentage may be consumed by kernel image
4847  * and other unfreeable allocations which can skew the watermarks badly. This
4848  * function may optionally be used to account for unfreeable pages in the
4849  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4850  * smaller per-cpu batchsize.
4851  */
4852 void __init set_dma_reserve(unsigned long new_dma_reserve)
4853 {
4854 	dma_reserve = new_dma_reserve;
4855 }
4856 
4857 void __init free_area_init(unsigned long *zones_size)
4858 {
4859 	free_area_init_node(0, zones_size,
4860 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4861 }
4862 
4863 static int page_alloc_cpu_notify(struct notifier_block *self,
4864 				 unsigned long action, void *hcpu)
4865 {
4866 	int cpu = (unsigned long)hcpu;
4867 
4868 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4869 		lru_add_drain_cpu(cpu);
4870 		drain_pages(cpu);
4871 
4872 		/*
4873 		 * Spill the event counters of the dead processor
4874 		 * into the current processors event counters.
4875 		 * This artificially elevates the count of the current
4876 		 * processor.
4877 		 */
4878 		vm_events_fold_cpu(cpu);
4879 
4880 		/*
4881 		 * Zero the differential counters of the dead processor
4882 		 * so that the vm statistics are consistent.
4883 		 *
4884 		 * This is only okay since the processor is dead and cannot
4885 		 * race with what we are doing.
4886 		 */
4887 		refresh_cpu_vm_stats(cpu);
4888 	}
4889 	return NOTIFY_OK;
4890 }
4891 
4892 void __init page_alloc_init(void)
4893 {
4894 	hotcpu_notifier(page_alloc_cpu_notify, 0);
4895 }
4896 
4897 /*
4898  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4899  *	or min_free_kbytes changes.
4900  */
4901 static void calculate_totalreserve_pages(void)
4902 {
4903 	struct pglist_data *pgdat;
4904 	unsigned long reserve_pages = 0;
4905 	enum zone_type i, j;
4906 
4907 	for_each_online_pgdat(pgdat) {
4908 		for (i = 0; i < MAX_NR_ZONES; i++) {
4909 			struct zone *zone = pgdat->node_zones + i;
4910 			unsigned long max = 0;
4911 
4912 			/* Find valid and maximum lowmem_reserve in the zone */
4913 			for (j = i; j < MAX_NR_ZONES; j++) {
4914 				if (zone->lowmem_reserve[j] > max)
4915 					max = zone->lowmem_reserve[j];
4916 			}
4917 
4918 			/* we treat the high watermark as reserved pages. */
4919 			max += high_wmark_pages(zone);
4920 
4921 			if (max > zone->present_pages)
4922 				max = zone->present_pages;
4923 			reserve_pages += max;
4924 			/*
4925 			 * Lowmem reserves are not available to
4926 			 * GFP_HIGHUSER page cache allocations and
4927 			 * kswapd tries to balance zones to their high
4928 			 * watermark.  As a result, neither should be
4929 			 * regarded as dirtyable memory, to prevent a
4930 			 * situation where reclaim has to clean pages
4931 			 * in order to balance the zones.
4932 			 */
4933 			zone->dirty_balance_reserve = max;
4934 		}
4935 	}
4936 	dirty_balance_reserve = reserve_pages;
4937 	totalreserve_pages = reserve_pages;
4938 }
4939 
4940 /*
4941  * setup_per_zone_lowmem_reserve - called whenever
4942  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
4943  *	has a correct pages reserved value, so an adequate number of
4944  *	pages are left in the zone after a successful __alloc_pages().
4945  */
4946 static void setup_per_zone_lowmem_reserve(void)
4947 {
4948 	struct pglist_data *pgdat;
4949 	enum zone_type j, idx;
4950 
4951 	for_each_online_pgdat(pgdat) {
4952 		for (j = 0; j < MAX_NR_ZONES; j++) {
4953 			struct zone *zone = pgdat->node_zones + j;
4954 			unsigned long present_pages = zone->present_pages;
4955 
4956 			zone->lowmem_reserve[j] = 0;
4957 
4958 			idx = j;
4959 			while (idx) {
4960 				struct zone *lower_zone;
4961 
4962 				idx--;
4963 
4964 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
4965 					sysctl_lowmem_reserve_ratio[idx] = 1;
4966 
4967 				lower_zone = pgdat->node_zones + idx;
4968 				lower_zone->lowmem_reserve[j] = present_pages /
4969 					sysctl_lowmem_reserve_ratio[idx];
4970 				present_pages += lower_zone->present_pages;
4971 			}
4972 		}
4973 	}
4974 
4975 	/* update totalreserve_pages */
4976 	calculate_totalreserve_pages();
4977 }
4978 
4979 /**
4980  * setup_per_zone_wmarks - called when min_free_kbytes changes
4981  * or when memory is hot-{added|removed}
4982  *
4983  * Ensures that the watermark[min,low,high] values for each zone are set
4984  * correctly with respect to min_free_kbytes.
4985  */
4986 void setup_per_zone_wmarks(void)
4987 {
4988 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4989 	unsigned long lowmem_pages = 0;
4990 	struct zone *zone;
4991 	unsigned long flags;
4992 
4993 	/* Calculate total number of !ZONE_HIGHMEM pages */
4994 	for_each_zone(zone) {
4995 		if (!is_highmem(zone))
4996 			lowmem_pages += zone->present_pages;
4997 	}
4998 
4999 	for_each_zone(zone) {
5000 		u64 tmp;
5001 
5002 		spin_lock_irqsave(&zone->lock, flags);
5003 		tmp = (u64)pages_min * zone->present_pages;
5004 		do_div(tmp, lowmem_pages);
5005 		if (is_highmem(zone)) {
5006 			/*
5007 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5008 			 * need highmem pages, so cap pages_min to a small
5009 			 * value here.
5010 			 *
5011 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5012 			 * deltas controls asynch page reclaim, and so should
5013 			 * not be capped for highmem.
5014 			 */
5015 			int min_pages;
5016 
5017 			min_pages = zone->present_pages / 1024;
5018 			if (min_pages < SWAP_CLUSTER_MAX)
5019 				min_pages = SWAP_CLUSTER_MAX;
5020 			if (min_pages > 128)
5021 				min_pages = 128;
5022 			zone->watermark[WMARK_MIN] = min_pages;
5023 		} else {
5024 			/*
5025 			 * If it's a lowmem zone, reserve a number of pages
5026 			 * proportionate to the zone's size.
5027 			 */
5028 			zone->watermark[WMARK_MIN] = tmp;
5029 		}
5030 
5031 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
5032 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5033 		setup_zone_migrate_reserve(zone);
5034 		spin_unlock_irqrestore(&zone->lock, flags);
5035 	}
5036 
5037 	/* update totalreserve_pages */
5038 	calculate_totalreserve_pages();
5039 }
5040 
5041 /*
5042  * The inactive anon list should be small enough that the VM never has to
5043  * do too much work, but large enough that each inactive page has a chance
5044  * to be referenced again before it is swapped out.
5045  *
5046  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5047  * INACTIVE_ANON pages on this zone's LRU, maintained by the
5048  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5049  * the anonymous pages are kept on the inactive list.
5050  *
5051  * total     target    max
5052  * memory    ratio     inactive anon
5053  * -------------------------------------
5054  *   10MB       1         5MB
5055  *  100MB       1        50MB
5056  *    1GB       3       250MB
5057  *   10GB      10       0.9GB
5058  *  100GB      31         3GB
5059  *    1TB     101        10GB
5060  *   10TB     320        32GB
5061  */
5062 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5063 {
5064 	unsigned int gb, ratio;
5065 
5066 	/* Zone size in gigabytes */
5067 	gb = zone->present_pages >> (30 - PAGE_SHIFT);
5068 	if (gb)
5069 		ratio = int_sqrt(10 * gb);
5070 	else
5071 		ratio = 1;
5072 
5073 	zone->inactive_ratio = ratio;
5074 }
5075 
5076 static void __meminit setup_per_zone_inactive_ratio(void)
5077 {
5078 	struct zone *zone;
5079 
5080 	for_each_zone(zone)
5081 		calculate_zone_inactive_ratio(zone);
5082 }
5083 
5084 /*
5085  * Initialise min_free_kbytes.
5086  *
5087  * For small machines we want it small (128k min).  For large machines
5088  * we want it large (64MB max).  But it is not linear, because network
5089  * bandwidth does not increase linearly with machine size.  We use
5090  *
5091  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5092  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5093  *
5094  * which yields
5095  *
5096  * 16MB:	512k
5097  * 32MB:	724k
5098  * 64MB:	1024k
5099  * 128MB:	1448k
5100  * 256MB:	2048k
5101  * 512MB:	2896k
5102  * 1024MB:	4096k
5103  * 2048MB:	5792k
5104  * 4096MB:	8192k
5105  * 8192MB:	11584k
5106  * 16384MB:	16384k
5107  */
5108 int __meminit init_per_zone_wmark_min(void)
5109 {
5110 	unsigned long lowmem_kbytes;
5111 
5112 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5113 
5114 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5115 	if (min_free_kbytes < 128)
5116 		min_free_kbytes = 128;
5117 	if (min_free_kbytes > 65536)
5118 		min_free_kbytes = 65536;
5119 	setup_per_zone_wmarks();
5120 	refresh_zone_stat_thresholds();
5121 	setup_per_zone_lowmem_reserve();
5122 	setup_per_zone_inactive_ratio();
5123 	return 0;
5124 }
5125 module_init(init_per_zone_wmark_min)
5126 
5127 /*
5128  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5129  *	that we can call two helper functions whenever min_free_kbytes
5130  *	changes.
5131  */
5132 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5133 	void __user *buffer, size_t *length, loff_t *ppos)
5134 {
5135 	proc_dointvec(table, write, buffer, length, ppos);
5136 	if (write)
5137 		setup_per_zone_wmarks();
5138 	return 0;
5139 }
5140 
5141 #ifdef CONFIG_NUMA
5142 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5143 	void __user *buffer, size_t *length, loff_t *ppos)
5144 {
5145 	struct zone *zone;
5146 	int rc;
5147 
5148 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5149 	if (rc)
5150 		return rc;
5151 
5152 	for_each_zone(zone)
5153 		zone->min_unmapped_pages = (zone->present_pages *
5154 				sysctl_min_unmapped_ratio) / 100;
5155 	return 0;
5156 }
5157 
5158 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5159 	void __user *buffer, size_t *length, loff_t *ppos)
5160 {
5161 	struct zone *zone;
5162 	int rc;
5163 
5164 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5165 	if (rc)
5166 		return rc;
5167 
5168 	for_each_zone(zone)
5169 		zone->min_slab_pages = (zone->present_pages *
5170 				sysctl_min_slab_ratio) / 100;
5171 	return 0;
5172 }
5173 #endif
5174 
5175 /*
5176  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5177  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5178  *	whenever sysctl_lowmem_reserve_ratio changes.
5179  *
5180  * The reserve ratio obviously has absolutely no relation with the
5181  * minimum watermarks. The lowmem reserve ratio can only make sense
5182  * if in function of the boot time zone sizes.
5183  */
5184 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5185 	void __user *buffer, size_t *length, loff_t *ppos)
5186 {
5187 	proc_dointvec_minmax(table, write, buffer, length, ppos);
5188 	setup_per_zone_lowmem_reserve();
5189 	return 0;
5190 }
5191 
5192 /*
5193  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5194  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
5195  * can have before it gets flushed back to buddy allocator.
5196  */
5197 
5198 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5199 	void __user *buffer, size_t *length, loff_t *ppos)
5200 {
5201 	struct zone *zone;
5202 	unsigned int cpu;
5203 	int ret;
5204 
5205 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5206 	if (!write || (ret < 0))
5207 		return ret;
5208 	for_each_populated_zone(zone) {
5209 		for_each_possible_cpu(cpu) {
5210 			unsigned long  high;
5211 			high = zone->present_pages / percpu_pagelist_fraction;
5212 			setup_pagelist_highmark(
5213 				per_cpu_ptr(zone->pageset, cpu), high);
5214 		}
5215 	}
5216 	return 0;
5217 }
5218 
5219 int hashdist = HASHDIST_DEFAULT;
5220 
5221 #ifdef CONFIG_NUMA
5222 static int __init set_hashdist(char *str)
5223 {
5224 	if (!str)
5225 		return 0;
5226 	hashdist = simple_strtoul(str, &str, 0);
5227 	return 1;
5228 }
5229 __setup("hashdist=", set_hashdist);
5230 #endif
5231 
5232 /*
5233  * allocate a large system hash table from bootmem
5234  * - it is assumed that the hash table must contain an exact power-of-2
5235  *   quantity of entries
5236  * - limit is the number of hash buckets, not the total allocation size
5237  */
5238 void *__init alloc_large_system_hash(const char *tablename,
5239 				     unsigned long bucketsize,
5240 				     unsigned long numentries,
5241 				     int scale,
5242 				     int flags,
5243 				     unsigned int *_hash_shift,
5244 				     unsigned int *_hash_mask,
5245 				     unsigned long limit)
5246 {
5247 	unsigned long long max = limit;
5248 	unsigned long log2qty, size;
5249 	void *table = NULL;
5250 
5251 	/* allow the kernel cmdline to have a say */
5252 	if (!numentries) {
5253 		/* round applicable memory size up to nearest megabyte */
5254 		numentries = nr_kernel_pages;
5255 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5256 		numentries >>= 20 - PAGE_SHIFT;
5257 		numentries <<= 20 - PAGE_SHIFT;
5258 
5259 		/* limit to 1 bucket per 2^scale bytes of low memory */
5260 		if (scale > PAGE_SHIFT)
5261 			numentries >>= (scale - PAGE_SHIFT);
5262 		else
5263 			numentries <<= (PAGE_SHIFT - scale);
5264 
5265 		/* Make sure we've got at least a 0-order allocation.. */
5266 		if (unlikely(flags & HASH_SMALL)) {
5267 			/* Makes no sense without HASH_EARLY */
5268 			WARN_ON(!(flags & HASH_EARLY));
5269 			if (!(numentries >> *_hash_shift)) {
5270 				numentries = 1UL << *_hash_shift;
5271 				BUG_ON(!numentries);
5272 			}
5273 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5274 			numentries = PAGE_SIZE / bucketsize;
5275 	}
5276 	numentries = roundup_pow_of_two(numentries);
5277 
5278 	/* limit allocation size to 1/16 total memory by default */
5279 	if (max == 0) {
5280 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5281 		do_div(max, bucketsize);
5282 	}
5283 	max = min(max, 0x80000000ULL);
5284 
5285 	if (numentries > max)
5286 		numentries = max;
5287 
5288 	log2qty = ilog2(numentries);
5289 
5290 	do {
5291 		size = bucketsize << log2qty;
5292 		if (flags & HASH_EARLY)
5293 			table = alloc_bootmem_nopanic(size);
5294 		else if (hashdist)
5295 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5296 		else {
5297 			/*
5298 			 * If bucketsize is not a power-of-two, we may free
5299 			 * some pages at the end of hash table which
5300 			 * alloc_pages_exact() automatically does
5301 			 */
5302 			if (get_order(size) < MAX_ORDER) {
5303 				table = alloc_pages_exact(size, GFP_ATOMIC);
5304 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5305 			}
5306 		}
5307 	} while (!table && size > PAGE_SIZE && --log2qty);
5308 
5309 	if (!table)
5310 		panic("Failed to allocate %s hash table\n", tablename);
5311 
5312 	printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5313 	       tablename,
5314 	       (1UL << log2qty),
5315 	       ilog2(size) - PAGE_SHIFT,
5316 	       size);
5317 
5318 	if (_hash_shift)
5319 		*_hash_shift = log2qty;
5320 	if (_hash_mask)
5321 		*_hash_mask = (1 << log2qty) - 1;
5322 
5323 	return table;
5324 }
5325 
5326 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5327 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5328 							unsigned long pfn)
5329 {
5330 #ifdef CONFIG_SPARSEMEM
5331 	return __pfn_to_section(pfn)->pageblock_flags;
5332 #else
5333 	return zone->pageblock_flags;
5334 #endif /* CONFIG_SPARSEMEM */
5335 }
5336 
5337 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5338 {
5339 #ifdef CONFIG_SPARSEMEM
5340 	pfn &= (PAGES_PER_SECTION-1);
5341 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5342 #else
5343 	pfn = pfn - zone->zone_start_pfn;
5344 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5345 #endif /* CONFIG_SPARSEMEM */
5346 }
5347 
5348 /**
5349  * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5350  * @page: The page within the block of interest
5351  * @start_bitidx: The first bit of interest to retrieve
5352  * @end_bitidx: The last bit of interest
5353  * returns pageblock_bits flags
5354  */
5355 unsigned long get_pageblock_flags_group(struct page *page,
5356 					int start_bitidx, int end_bitidx)
5357 {
5358 	struct zone *zone;
5359 	unsigned long *bitmap;
5360 	unsigned long pfn, bitidx;
5361 	unsigned long flags = 0;
5362 	unsigned long value = 1;
5363 
5364 	zone = page_zone(page);
5365 	pfn = page_to_pfn(page);
5366 	bitmap = get_pageblock_bitmap(zone, pfn);
5367 	bitidx = pfn_to_bitidx(zone, pfn);
5368 
5369 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5370 		if (test_bit(bitidx + start_bitidx, bitmap))
5371 			flags |= value;
5372 
5373 	return flags;
5374 }
5375 
5376 /**
5377  * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5378  * @page: The page within the block of interest
5379  * @start_bitidx: The first bit of interest
5380  * @end_bitidx: The last bit of interest
5381  * @flags: The flags to set
5382  */
5383 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5384 					int start_bitidx, int end_bitidx)
5385 {
5386 	struct zone *zone;
5387 	unsigned long *bitmap;
5388 	unsigned long pfn, bitidx;
5389 	unsigned long value = 1;
5390 
5391 	zone = page_zone(page);
5392 	pfn = page_to_pfn(page);
5393 	bitmap = get_pageblock_bitmap(zone, pfn);
5394 	bitidx = pfn_to_bitidx(zone, pfn);
5395 	VM_BUG_ON(pfn < zone->zone_start_pfn);
5396 	VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5397 
5398 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5399 		if (flags & value)
5400 			__set_bit(bitidx + start_bitidx, bitmap);
5401 		else
5402 			__clear_bit(bitidx + start_bitidx, bitmap);
5403 }
5404 
5405 /*
5406  * This is designed as sub function...plz see page_isolation.c also.
5407  * set/clear page block's type to be ISOLATE.
5408  * page allocater never alloc memory from ISOLATE block.
5409  */
5410 
5411 static int
5412 __count_immobile_pages(struct zone *zone, struct page *page, int count)
5413 {
5414 	unsigned long pfn, iter, found;
5415 	/*
5416 	 * For avoiding noise data, lru_add_drain_all() should be called
5417 	 * If ZONE_MOVABLE, the zone never contains immobile pages
5418 	 */
5419 	if (zone_idx(zone) == ZONE_MOVABLE)
5420 		return true;
5421 
5422 	if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
5423 		return true;
5424 
5425 	pfn = page_to_pfn(page);
5426 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5427 		unsigned long check = pfn + iter;
5428 
5429 		if (!pfn_valid_within(check))
5430 			continue;
5431 
5432 		page = pfn_to_page(check);
5433 		if (!page_count(page)) {
5434 			if (PageBuddy(page))
5435 				iter += (1 << page_order(page)) - 1;
5436 			continue;
5437 		}
5438 		if (!PageLRU(page))
5439 			found++;
5440 		/*
5441 		 * If there are RECLAIMABLE pages, we need to check it.
5442 		 * But now, memory offline itself doesn't call shrink_slab()
5443 		 * and it still to be fixed.
5444 		 */
5445 		/*
5446 		 * If the page is not RAM, page_count()should be 0.
5447 		 * we don't need more check. This is an _used_ not-movable page.
5448 		 *
5449 		 * The problematic thing here is PG_reserved pages. PG_reserved
5450 		 * is set to both of a memory hole page and a _used_ kernel
5451 		 * page at boot.
5452 		 */
5453 		if (found > count)
5454 			return false;
5455 	}
5456 	return true;
5457 }
5458 
5459 bool is_pageblock_removable_nolock(struct page *page)
5460 {
5461 	struct zone *zone;
5462 	unsigned long pfn;
5463 
5464 	/*
5465 	 * We have to be careful here because we are iterating over memory
5466 	 * sections which are not zone aware so we might end up outside of
5467 	 * the zone but still within the section.
5468 	 * We have to take care about the node as well. If the node is offline
5469 	 * its NODE_DATA will be NULL - see page_zone.
5470 	 */
5471 	if (!node_online(page_to_nid(page)))
5472 		return false;
5473 
5474 	zone = page_zone(page);
5475 	pfn = page_to_pfn(page);
5476 	if (zone->zone_start_pfn > pfn ||
5477 			zone->zone_start_pfn + zone->spanned_pages <= pfn)
5478 		return false;
5479 
5480 	return __count_immobile_pages(zone, page, 0);
5481 }
5482 
5483 int set_migratetype_isolate(struct page *page)
5484 {
5485 	struct zone *zone;
5486 	unsigned long flags, pfn;
5487 	struct memory_isolate_notify arg;
5488 	int notifier_ret;
5489 	int ret = -EBUSY;
5490 
5491 	zone = page_zone(page);
5492 
5493 	spin_lock_irqsave(&zone->lock, flags);
5494 
5495 	pfn = page_to_pfn(page);
5496 	arg.start_pfn = pfn;
5497 	arg.nr_pages = pageblock_nr_pages;
5498 	arg.pages_found = 0;
5499 
5500 	/*
5501 	 * It may be possible to isolate a pageblock even if the
5502 	 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5503 	 * notifier chain is used by balloon drivers to return the
5504 	 * number of pages in a range that are held by the balloon
5505 	 * driver to shrink memory. If all the pages are accounted for
5506 	 * by balloons, are free, or on the LRU, isolation can continue.
5507 	 * Later, for example, when memory hotplug notifier runs, these
5508 	 * pages reported as "can be isolated" should be isolated(freed)
5509 	 * by the balloon driver through the memory notifier chain.
5510 	 */
5511 	notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5512 	notifier_ret = notifier_to_errno(notifier_ret);
5513 	if (notifier_ret)
5514 		goto out;
5515 	/*
5516 	 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5517 	 * We just check MOVABLE pages.
5518 	 */
5519 	if (__count_immobile_pages(zone, page, arg.pages_found))
5520 		ret = 0;
5521 
5522 	/*
5523 	 * immobile means "not-on-lru" paes. If immobile is larger than
5524 	 * removable-by-driver pages reported by notifier, we'll fail.
5525 	 */
5526 
5527 out:
5528 	if (!ret) {
5529 		set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5530 		move_freepages_block(zone, page, MIGRATE_ISOLATE);
5531 	}
5532 
5533 	spin_unlock_irqrestore(&zone->lock, flags);
5534 	if (!ret)
5535 		drain_all_pages();
5536 	return ret;
5537 }
5538 
5539 void unset_migratetype_isolate(struct page *page)
5540 {
5541 	struct zone *zone;
5542 	unsigned long flags;
5543 	zone = page_zone(page);
5544 	spin_lock_irqsave(&zone->lock, flags);
5545 	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5546 		goto out;
5547 	set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5548 	move_freepages_block(zone, page, MIGRATE_MOVABLE);
5549 out:
5550 	spin_unlock_irqrestore(&zone->lock, flags);
5551 }
5552 
5553 #ifdef CONFIG_MEMORY_HOTREMOVE
5554 /*
5555  * All pages in the range must be isolated before calling this.
5556  */
5557 void
5558 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5559 {
5560 	struct page *page;
5561 	struct zone *zone;
5562 	int order, i;
5563 	unsigned long pfn;
5564 	unsigned long flags;
5565 	/* find the first valid pfn */
5566 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
5567 		if (pfn_valid(pfn))
5568 			break;
5569 	if (pfn == end_pfn)
5570 		return;
5571 	zone = page_zone(pfn_to_page(pfn));
5572 	spin_lock_irqsave(&zone->lock, flags);
5573 	pfn = start_pfn;
5574 	while (pfn < end_pfn) {
5575 		if (!pfn_valid(pfn)) {
5576 			pfn++;
5577 			continue;
5578 		}
5579 		page = pfn_to_page(pfn);
5580 		BUG_ON(page_count(page));
5581 		BUG_ON(!PageBuddy(page));
5582 		order = page_order(page);
5583 #ifdef CONFIG_DEBUG_VM
5584 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
5585 		       pfn, 1 << order, end_pfn);
5586 #endif
5587 		list_del(&page->lru);
5588 		rmv_page_order(page);
5589 		zone->free_area[order].nr_free--;
5590 		__mod_zone_page_state(zone, NR_FREE_PAGES,
5591 				      - (1UL << order));
5592 		for (i = 0; i < (1 << order); i++)
5593 			SetPageReserved((page+i));
5594 		pfn += (1 << order);
5595 	}
5596 	spin_unlock_irqrestore(&zone->lock, flags);
5597 }
5598 #endif
5599 
5600 #ifdef CONFIG_MEMORY_FAILURE
5601 bool is_free_buddy_page(struct page *page)
5602 {
5603 	struct zone *zone = page_zone(page);
5604 	unsigned long pfn = page_to_pfn(page);
5605 	unsigned long flags;
5606 	int order;
5607 
5608 	spin_lock_irqsave(&zone->lock, flags);
5609 	for (order = 0; order < MAX_ORDER; order++) {
5610 		struct page *page_head = page - (pfn & ((1 << order) - 1));
5611 
5612 		if (PageBuddy(page_head) && page_order(page_head) >= order)
5613 			break;
5614 	}
5615 	spin_unlock_irqrestore(&zone->lock, flags);
5616 
5617 	return order < MAX_ORDER;
5618 }
5619 #endif
5620 
5621 static struct trace_print_flags pageflag_names[] = {
5622 	{1UL << PG_locked,		"locked"	},
5623 	{1UL << PG_error,		"error"		},
5624 	{1UL << PG_referenced,		"referenced"	},
5625 	{1UL << PG_uptodate,		"uptodate"	},
5626 	{1UL << PG_dirty,		"dirty"		},
5627 	{1UL << PG_lru,			"lru"		},
5628 	{1UL << PG_active,		"active"	},
5629 	{1UL << PG_slab,		"slab"		},
5630 	{1UL << PG_owner_priv_1,	"owner_priv_1"	},
5631 	{1UL << PG_arch_1,		"arch_1"	},
5632 	{1UL << PG_reserved,		"reserved"	},
5633 	{1UL << PG_private,		"private"	},
5634 	{1UL << PG_private_2,		"private_2"	},
5635 	{1UL << PG_writeback,		"writeback"	},
5636 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5637 	{1UL << PG_head,		"head"		},
5638 	{1UL << PG_tail,		"tail"		},
5639 #else
5640 	{1UL << PG_compound,		"compound"	},
5641 #endif
5642 	{1UL << PG_swapcache,		"swapcache"	},
5643 	{1UL << PG_mappedtodisk,	"mappedtodisk"	},
5644 	{1UL << PG_reclaim,		"reclaim"	},
5645 	{1UL << PG_swapbacked,		"swapbacked"	},
5646 	{1UL << PG_unevictable,		"unevictable"	},
5647 #ifdef CONFIG_MMU
5648 	{1UL << PG_mlocked,		"mlocked"	},
5649 #endif
5650 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5651 	{1UL << PG_uncached,		"uncached"	},
5652 #endif
5653 #ifdef CONFIG_MEMORY_FAILURE
5654 	{1UL << PG_hwpoison,		"hwpoison"	},
5655 #endif
5656 	{-1UL,				NULL		},
5657 };
5658 
5659 static void dump_page_flags(unsigned long flags)
5660 {
5661 	const char *delim = "";
5662 	unsigned long mask;
5663 	int i;
5664 
5665 	printk(KERN_ALERT "page flags: %#lx(", flags);
5666 
5667 	/* remove zone id */
5668 	flags &= (1UL << NR_PAGEFLAGS) - 1;
5669 
5670 	for (i = 0; pageflag_names[i].name && flags; i++) {
5671 
5672 		mask = pageflag_names[i].mask;
5673 		if ((flags & mask) != mask)
5674 			continue;
5675 
5676 		flags &= ~mask;
5677 		printk("%s%s", delim, pageflag_names[i].name);
5678 		delim = "|";
5679 	}
5680 
5681 	/* check for left over flags */
5682 	if (flags)
5683 		printk("%s%#lx", delim, flags);
5684 
5685 	printk(")\n");
5686 }
5687 
5688 void dump_page(struct page *page)
5689 {
5690 	printk(KERN_ALERT
5691 	       "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5692 		page, atomic_read(&page->_count), page_mapcount(page),
5693 		page->mapping, page->index);
5694 	dump_page_flags(page->flags);
5695 	mem_cgroup_print_bad_page(page);
5696 }
5697