1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/swap.h> 22 #include <linux/swapops.h> 23 #include <linux/interrupt.h> 24 #include <linux/pagemap.h> 25 #include <linux/jiffies.h> 26 #include <linux/memblock.h> 27 #include <linux/compiler.h> 28 #include <linux/kernel.h> 29 #include <linux/kasan.h> 30 #include <linux/kmsan.h> 31 #include <linux/module.h> 32 #include <linux/suspend.h> 33 #include <linux/pagevec.h> 34 #include <linux/blkdev.h> 35 #include <linux/slab.h> 36 #include <linux/ratelimit.h> 37 #include <linux/oom.h> 38 #include <linux/topology.h> 39 #include <linux/sysctl.h> 40 #include <linux/cpu.h> 41 #include <linux/cpuset.h> 42 #include <linux/memory_hotplug.h> 43 #include <linux/nodemask.h> 44 #include <linux/vmalloc.h> 45 #include <linux/vmstat.h> 46 #include <linux/mempolicy.h> 47 #include <linux/memremap.h> 48 #include <linux/stop_machine.h> 49 #include <linux/random.h> 50 #include <linux/sort.h> 51 #include <linux/pfn.h> 52 #include <linux/backing-dev.h> 53 #include <linux/fault-inject.h> 54 #include <linux/page-isolation.h> 55 #include <linux/debugobjects.h> 56 #include <linux/kmemleak.h> 57 #include <linux/compaction.h> 58 #include <trace/events/kmem.h> 59 #include <trace/events/oom.h> 60 #include <linux/prefetch.h> 61 #include <linux/mm_inline.h> 62 #include <linux/mmu_notifier.h> 63 #include <linux/migrate.h> 64 #include <linux/hugetlb.h> 65 #include <linux/sched/rt.h> 66 #include <linux/sched/mm.h> 67 #include <linux/page_owner.h> 68 #include <linux/page_table_check.h> 69 #include <linux/kthread.h> 70 #include <linux/memcontrol.h> 71 #include <linux/ftrace.h> 72 #include <linux/lockdep.h> 73 #include <linux/nmi.h> 74 #include <linux/psi.h> 75 #include <linux/padata.h> 76 #include <linux/khugepaged.h> 77 #include <linux/buffer_head.h> 78 #include <linux/delayacct.h> 79 #include <asm/sections.h> 80 #include <asm/tlbflush.h> 81 #include <asm/div64.h> 82 #include "internal.h" 83 #include "shuffle.h" 84 #include "page_reporting.h" 85 #include "swap.h" 86 87 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 88 typedef int __bitwise fpi_t; 89 90 /* No special request */ 91 #define FPI_NONE ((__force fpi_t)0) 92 93 /* 94 * Skip free page reporting notification for the (possibly merged) page. 95 * This does not hinder free page reporting from grabbing the page, 96 * reporting it and marking it "reported" - it only skips notifying 97 * the free page reporting infrastructure about a newly freed page. For 98 * example, used when temporarily pulling a page from a freelist and 99 * putting it back unmodified. 100 */ 101 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 102 103 /* 104 * Place the (possibly merged) page to the tail of the freelist. Will ignore 105 * page shuffling (relevant code - e.g., memory onlining - is expected to 106 * shuffle the whole zone). 107 * 108 * Note: No code should rely on this flag for correctness - it's purely 109 * to allow for optimizations when handing back either fresh pages 110 * (memory onlining) or untouched pages (page isolation, free page 111 * reporting). 112 */ 113 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 114 115 /* 116 * Don't poison memory with KASAN (only for the tag-based modes). 117 * During boot, all non-reserved memblock memory is exposed to page_alloc. 118 * Poisoning all that memory lengthens boot time, especially on systems with 119 * large amount of RAM. This flag is used to skip that poisoning. 120 * This is only done for the tag-based KASAN modes, as those are able to 121 * detect memory corruptions with the memory tags assigned by default. 122 * All memory allocated normally after boot gets poisoned as usual. 123 */ 124 #define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2)) 125 126 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 127 static DEFINE_MUTEX(pcp_batch_high_lock); 128 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) 129 130 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT) 131 /* 132 * On SMP, spin_trylock is sufficient protection. 133 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP. 134 */ 135 #define pcp_trylock_prepare(flags) do { } while (0) 136 #define pcp_trylock_finish(flag) do { } while (0) 137 #else 138 139 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */ 140 #define pcp_trylock_prepare(flags) local_irq_save(flags) 141 #define pcp_trylock_finish(flags) local_irq_restore(flags) 142 #endif 143 144 /* 145 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid 146 * a migration causing the wrong PCP to be locked and remote memory being 147 * potentially allocated, pin the task to the CPU for the lookup+lock. 148 * preempt_disable is used on !RT because it is faster than migrate_disable. 149 * migrate_disable is used on RT because otherwise RT spinlock usage is 150 * interfered with and a high priority task cannot preempt the allocator. 151 */ 152 #ifndef CONFIG_PREEMPT_RT 153 #define pcpu_task_pin() preempt_disable() 154 #define pcpu_task_unpin() preempt_enable() 155 #else 156 #define pcpu_task_pin() migrate_disable() 157 #define pcpu_task_unpin() migrate_enable() 158 #endif 159 160 /* 161 * Generic helper to lookup and a per-cpu variable with an embedded spinlock. 162 * Return value should be used with equivalent unlock helper. 163 */ 164 #define pcpu_spin_lock(type, member, ptr) \ 165 ({ \ 166 type *_ret; \ 167 pcpu_task_pin(); \ 168 _ret = this_cpu_ptr(ptr); \ 169 spin_lock(&_ret->member); \ 170 _ret; \ 171 }) 172 173 #define pcpu_spin_trylock(type, member, ptr) \ 174 ({ \ 175 type *_ret; \ 176 pcpu_task_pin(); \ 177 _ret = this_cpu_ptr(ptr); \ 178 if (!spin_trylock(&_ret->member)) { \ 179 pcpu_task_unpin(); \ 180 _ret = NULL; \ 181 } \ 182 _ret; \ 183 }) 184 185 #define pcpu_spin_unlock(member, ptr) \ 186 ({ \ 187 spin_unlock(&ptr->member); \ 188 pcpu_task_unpin(); \ 189 }) 190 191 /* struct per_cpu_pages specific helpers. */ 192 #define pcp_spin_lock(ptr) \ 193 pcpu_spin_lock(struct per_cpu_pages, lock, ptr) 194 195 #define pcp_spin_trylock(ptr) \ 196 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr) 197 198 #define pcp_spin_unlock(ptr) \ 199 pcpu_spin_unlock(lock, ptr) 200 201 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 202 DEFINE_PER_CPU(int, numa_node); 203 EXPORT_PER_CPU_SYMBOL(numa_node); 204 #endif 205 206 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 207 208 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 209 /* 210 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 211 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 212 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 213 * defined in <linux/topology.h>. 214 */ 215 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 216 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 217 #endif 218 219 static DEFINE_MUTEX(pcpu_drain_mutex); 220 221 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 222 volatile unsigned long latent_entropy __latent_entropy; 223 EXPORT_SYMBOL(latent_entropy); 224 #endif 225 226 /* 227 * Array of node states. 228 */ 229 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 230 [N_POSSIBLE] = NODE_MASK_ALL, 231 [N_ONLINE] = { { [0] = 1UL } }, 232 #ifndef CONFIG_NUMA 233 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 234 #ifdef CONFIG_HIGHMEM 235 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 236 #endif 237 [N_MEMORY] = { { [0] = 1UL } }, 238 [N_CPU] = { { [0] = 1UL } }, 239 #endif /* NUMA */ 240 }; 241 EXPORT_SYMBOL(node_states); 242 243 atomic_long_t _totalram_pages __read_mostly; 244 EXPORT_SYMBOL(_totalram_pages); 245 unsigned long totalreserve_pages __read_mostly; 246 unsigned long totalcma_pages __read_mostly; 247 248 int percpu_pagelist_high_fraction; 249 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 250 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 251 EXPORT_SYMBOL(init_on_alloc); 252 253 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 254 EXPORT_SYMBOL(init_on_free); 255 256 static bool _init_on_alloc_enabled_early __read_mostly 257 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON); 258 static int __init early_init_on_alloc(char *buf) 259 { 260 261 return kstrtobool(buf, &_init_on_alloc_enabled_early); 262 } 263 early_param("init_on_alloc", early_init_on_alloc); 264 265 static bool _init_on_free_enabled_early __read_mostly 266 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON); 267 static int __init early_init_on_free(char *buf) 268 { 269 return kstrtobool(buf, &_init_on_free_enabled_early); 270 } 271 early_param("init_on_free", early_init_on_free); 272 273 /* 274 * A cached value of the page's pageblock's migratetype, used when the page is 275 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 276 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 277 * Also the migratetype set in the page does not necessarily match the pcplist 278 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 279 * other index - this ensures that it will be put on the correct CMA freelist. 280 */ 281 static inline int get_pcppage_migratetype(struct page *page) 282 { 283 return page->index; 284 } 285 286 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 287 { 288 page->index = migratetype; 289 } 290 291 #ifdef CONFIG_PM_SLEEP 292 /* 293 * The following functions are used by the suspend/hibernate code to temporarily 294 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 295 * while devices are suspended. To avoid races with the suspend/hibernate code, 296 * they should always be called with system_transition_mutex held 297 * (gfp_allowed_mask also should only be modified with system_transition_mutex 298 * held, unless the suspend/hibernate code is guaranteed not to run in parallel 299 * with that modification). 300 */ 301 302 static gfp_t saved_gfp_mask; 303 304 void pm_restore_gfp_mask(void) 305 { 306 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 307 if (saved_gfp_mask) { 308 gfp_allowed_mask = saved_gfp_mask; 309 saved_gfp_mask = 0; 310 } 311 } 312 313 void pm_restrict_gfp_mask(void) 314 { 315 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 316 WARN_ON(saved_gfp_mask); 317 saved_gfp_mask = gfp_allowed_mask; 318 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 319 } 320 321 bool pm_suspended_storage(void) 322 { 323 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 324 return false; 325 return true; 326 } 327 #endif /* CONFIG_PM_SLEEP */ 328 329 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 330 unsigned int pageblock_order __read_mostly; 331 #endif 332 333 static void __free_pages_ok(struct page *page, unsigned int order, 334 fpi_t fpi_flags); 335 336 /* 337 * results with 256, 32 in the lowmem_reserve sysctl: 338 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 339 * 1G machine -> (16M dma, 784M normal, 224M high) 340 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 341 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 342 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 343 * 344 * TBD: should special case ZONE_DMA32 machines here - in those we normally 345 * don't need any ZONE_NORMAL reservation 346 */ 347 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 348 #ifdef CONFIG_ZONE_DMA 349 [ZONE_DMA] = 256, 350 #endif 351 #ifdef CONFIG_ZONE_DMA32 352 [ZONE_DMA32] = 256, 353 #endif 354 [ZONE_NORMAL] = 32, 355 #ifdef CONFIG_HIGHMEM 356 [ZONE_HIGHMEM] = 0, 357 #endif 358 [ZONE_MOVABLE] = 0, 359 }; 360 361 static char * const zone_names[MAX_NR_ZONES] = { 362 #ifdef CONFIG_ZONE_DMA 363 "DMA", 364 #endif 365 #ifdef CONFIG_ZONE_DMA32 366 "DMA32", 367 #endif 368 "Normal", 369 #ifdef CONFIG_HIGHMEM 370 "HighMem", 371 #endif 372 "Movable", 373 #ifdef CONFIG_ZONE_DEVICE 374 "Device", 375 #endif 376 }; 377 378 const char * const migratetype_names[MIGRATE_TYPES] = { 379 "Unmovable", 380 "Movable", 381 "Reclaimable", 382 "HighAtomic", 383 #ifdef CONFIG_CMA 384 "CMA", 385 #endif 386 #ifdef CONFIG_MEMORY_ISOLATION 387 "Isolate", 388 #endif 389 }; 390 391 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = { 392 [NULL_COMPOUND_DTOR] = NULL, 393 [COMPOUND_PAGE_DTOR] = free_compound_page, 394 #ifdef CONFIG_HUGETLB_PAGE 395 [HUGETLB_PAGE_DTOR] = free_huge_page, 396 #endif 397 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 398 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page, 399 #endif 400 }; 401 402 int min_free_kbytes = 1024; 403 int user_min_free_kbytes = -1; 404 int watermark_boost_factor __read_mostly = 15000; 405 int watermark_scale_factor = 10; 406 407 static unsigned long nr_kernel_pages __initdata; 408 static unsigned long nr_all_pages __initdata; 409 static unsigned long dma_reserve __initdata; 410 411 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 412 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 413 static unsigned long required_kernelcore __initdata; 414 static unsigned long required_kernelcore_percent __initdata; 415 static unsigned long required_movablecore __initdata; 416 static unsigned long required_movablecore_percent __initdata; 417 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 418 bool mirrored_kernelcore __initdata_memblock; 419 420 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 421 int movable_zone; 422 EXPORT_SYMBOL(movable_zone); 423 424 #if MAX_NUMNODES > 1 425 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 426 unsigned int nr_online_nodes __read_mostly = 1; 427 EXPORT_SYMBOL(nr_node_ids); 428 EXPORT_SYMBOL(nr_online_nodes); 429 #endif 430 431 int page_group_by_mobility_disabled __read_mostly; 432 433 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 434 /* 435 * During boot we initialize deferred pages on-demand, as needed, but once 436 * page_alloc_init_late() has finished, the deferred pages are all initialized, 437 * and we can permanently disable that path. 438 */ 439 static DEFINE_STATIC_KEY_TRUE(deferred_pages); 440 441 static inline bool deferred_pages_enabled(void) 442 { 443 return static_branch_unlikely(&deferred_pages); 444 } 445 446 /* Returns true if the struct page for the pfn is initialised */ 447 static inline bool __meminit early_page_initialised(unsigned long pfn) 448 { 449 int nid = early_pfn_to_nid(pfn); 450 451 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 452 return false; 453 454 return true; 455 } 456 457 /* 458 * Returns true when the remaining initialisation should be deferred until 459 * later in the boot cycle when it can be parallelised. 460 */ 461 static bool __meminit 462 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 463 { 464 static unsigned long prev_end_pfn, nr_initialised; 465 466 if (early_page_ext_enabled()) 467 return false; 468 /* 469 * prev_end_pfn static that contains the end of previous zone 470 * No need to protect because called very early in boot before smp_init. 471 */ 472 if (prev_end_pfn != end_pfn) { 473 prev_end_pfn = end_pfn; 474 nr_initialised = 0; 475 } 476 477 /* Always populate low zones for address-constrained allocations */ 478 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 479 return false; 480 481 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX) 482 return true; 483 /* 484 * We start only with one section of pages, more pages are added as 485 * needed until the rest of deferred pages are initialized. 486 */ 487 nr_initialised++; 488 if ((nr_initialised > PAGES_PER_SECTION) && 489 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 490 NODE_DATA(nid)->first_deferred_pfn = pfn; 491 return true; 492 } 493 return false; 494 } 495 #else 496 static inline bool deferred_pages_enabled(void) 497 { 498 return false; 499 } 500 501 static inline bool early_page_initialised(unsigned long pfn) 502 { 503 return true; 504 } 505 506 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 507 { 508 return false; 509 } 510 #endif 511 512 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 513 static inline unsigned long *get_pageblock_bitmap(const struct page *page, 514 unsigned long pfn) 515 { 516 #ifdef CONFIG_SPARSEMEM 517 return section_to_usemap(__pfn_to_section(pfn)); 518 #else 519 return page_zone(page)->pageblock_flags; 520 #endif /* CONFIG_SPARSEMEM */ 521 } 522 523 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) 524 { 525 #ifdef CONFIG_SPARSEMEM 526 pfn &= (PAGES_PER_SECTION-1); 527 #else 528 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn); 529 #endif /* CONFIG_SPARSEMEM */ 530 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 531 } 532 533 static __always_inline 534 unsigned long __get_pfnblock_flags_mask(const struct page *page, 535 unsigned long pfn, 536 unsigned long mask) 537 { 538 unsigned long *bitmap; 539 unsigned long bitidx, word_bitidx; 540 unsigned long word; 541 542 bitmap = get_pageblock_bitmap(page, pfn); 543 bitidx = pfn_to_bitidx(page, pfn); 544 word_bitidx = bitidx / BITS_PER_LONG; 545 bitidx &= (BITS_PER_LONG-1); 546 /* 547 * This races, without locks, with set_pfnblock_flags_mask(). Ensure 548 * a consistent read of the memory array, so that results, even though 549 * racy, are not corrupted. 550 */ 551 word = READ_ONCE(bitmap[word_bitidx]); 552 return (word >> bitidx) & mask; 553 } 554 555 /** 556 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 557 * @page: The page within the block of interest 558 * @pfn: The target page frame number 559 * @mask: mask of bits that the caller is interested in 560 * 561 * Return: pageblock_bits flags 562 */ 563 unsigned long get_pfnblock_flags_mask(const struct page *page, 564 unsigned long pfn, unsigned long mask) 565 { 566 return __get_pfnblock_flags_mask(page, pfn, mask); 567 } 568 569 static __always_inline int get_pfnblock_migratetype(const struct page *page, 570 unsigned long pfn) 571 { 572 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 573 } 574 575 /** 576 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 577 * @page: The page within the block of interest 578 * @flags: The flags to set 579 * @pfn: The target page frame number 580 * @mask: mask of bits that the caller is interested in 581 */ 582 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 583 unsigned long pfn, 584 unsigned long mask) 585 { 586 unsigned long *bitmap; 587 unsigned long bitidx, word_bitidx; 588 unsigned long word; 589 590 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 591 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 592 593 bitmap = get_pageblock_bitmap(page, pfn); 594 bitidx = pfn_to_bitidx(page, pfn); 595 word_bitidx = bitidx / BITS_PER_LONG; 596 bitidx &= (BITS_PER_LONG-1); 597 598 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 599 600 mask <<= bitidx; 601 flags <<= bitidx; 602 603 word = READ_ONCE(bitmap[word_bitidx]); 604 do { 605 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags)); 606 } 607 608 void set_pageblock_migratetype(struct page *page, int migratetype) 609 { 610 if (unlikely(page_group_by_mobility_disabled && 611 migratetype < MIGRATE_PCPTYPES)) 612 migratetype = MIGRATE_UNMOVABLE; 613 614 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 615 page_to_pfn(page), MIGRATETYPE_MASK); 616 } 617 618 #ifdef CONFIG_DEBUG_VM 619 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 620 { 621 int ret = 0; 622 unsigned seq; 623 unsigned long pfn = page_to_pfn(page); 624 unsigned long sp, start_pfn; 625 626 do { 627 seq = zone_span_seqbegin(zone); 628 start_pfn = zone->zone_start_pfn; 629 sp = zone->spanned_pages; 630 if (!zone_spans_pfn(zone, pfn)) 631 ret = 1; 632 } while (zone_span_seqretry(zone, seq)); 633 634 if (ret) 635 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 636 pfn, zone_to_nid(zone), zone->name, 637 start_pfn, start_pfn + sp); 638 639 return ret; 640 } 641 642 static int page_is_consistent(struct zone *zone, struct page *page) 643 { 644 if (zone != page_zone(page)) 645 return 0; 646 647 return 1; 648 } 649 /* 650 * Temporary debugging check for pages not lying within a given zone. 651 */ 652 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 653 { 654 if (page_outside_zone_boundaries(zone, page)) 655 return 1; 656 if (!page_is_consistent(zone, page)) 657 return 1; 658 659 return 0; 660 } 661 #else 662 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 663 { 664 return 0; 665 } 666 #endif 667 668 static void bad_page(struct page *page, const char *reason) 669 { 670 static unsigned long resume; 671 static unsigned long nr_shown; 672 static unsigned long nr_unshown; 673 674 /* 675 * Allow a burst of 60 reports, then keep quiet for that minute; 676 * or allow a steady drip of one report per second. 677 */ 678 if (nr_shown == 60) { 679 if (time_before(jiffies, resume)) { 680 nr_unshown++; 681 goto out; 682 } 683 if (nr_unshown) { 684 pr_alert( 685 "BUG: Bad page state: %lu messages suppressed\n", 686 nr_unshown); 687 nr_unshown = 0; 688 } 689 nr_shown = 0; 690 } 691 if (nr_shown++ == 0) 692 resume = jiffies + 60 * HZ; 693 694 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 695 current->comm, page_to_pfn(page)); 696 dump_page(page, reason); 697 698 print_modules(); 699 dump_stack(); 700 out: 701 /* Leave bad fields for debug, except PageBuddy could make trouble */ 702 page_mapcount_reset(page); /* remove PageBuddy */ 703 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 704 } 705 706 static inline unsigned int order_to_pindex(int migratetype, int order) 707 { 708 int base = order; 709 710 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 711 if (order > PAGE_ALLOC_COSTLY_ORDER) { 712 VM_BUG_ON(order != pageblock_order); 713 return NR_LOWORDER_PCP_LISTS; 714 } 715 #else 716 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 717 #endif 718 719 return (MIGRATE_PCPTYPES * base) + migratetype; 720 } 721 722 static inline int pindex_to_order(unsigned int pindex) 723 { 724 int order = pindex / MIGRATE_PCPTYPES; 725 726 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 727 if (pindex == NR_LOWORDER_PCP_LISTS) 728 order = pageblock_order; 729 #else 730 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 731 #endif 732 733 return order; 734 } 735 736 static inline bool pcp_allowed_order(unsigned int order) 737 { 738 if (order <= PAGE_ALLOC_COSTLY_ORDER) 739 return true; 740 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 741 if (order == pageblock_order) 742 return true; 743 #endif 744 return false; 745 } 746 747 static inline void free_the_page(struct page *page, unsigned int order) 748 { 749 if (pcp_allowed_order(order)) /* Via pcp? */ 750 free_unref_page(page, order); 751 else 752 __free_pages_ok(page, order, FPI_NONE); 753 } 754 755 /* 756 * Higher-order pages are called "compound pages". They are structured thusly: 757 * 758 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 759 * 760 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 761 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 762 * 763 * The first tail page's ->compound_dtor holds the offset in array of compound 764 * page destructors. See compound_page_dtors. 765 * 766 * The first tail page's ->compound_order holds the order of allocation. 767 * This usage means that zero-order pages may not be compound. 768 */ 769 770 void free_compound_page(struct page *page) 771 { 772 mem_cgroup_uncharge(page_folio(page)); 773 free_the_page(page, compound_order(page)); 774 } 775 776 static void prep_compound_head(struct page *page, unsigned int order) 777 { 778 struct folio *folio = (struct folio *)page; 779 780 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 781 set_compound_order(page, order); 782 atomic_set(&folio->_entire_mapcount, -1); 783 atomic_set(&folio->_nr_pages_mapped, 0); 784 atomic_set(&folio->_pincount, 0); 785 } 786 787 static void prep_compound_tail(struct page *head, int tail_idx) 788 { 789 struct page *p = head + tail_idx; 790 791 p->mapping = TAIL_MAPPING; 792 set_compound_head(p, head); 793 set_page_private(p, 0); 794 } 795 796 void prep_compound_page(struct page *page, unsigned int order) 797 { 798 int i; 799 int nr_pages = 1 << order; 800 801 __SetPageHead(page); 802 for (i = 1; i < nr_pages; i++) 803 prep_compound_tail(page, i); 804 805 prep_compound_head(page, order); 806 } 807 808 void destroy_large_folio(struct folio *folio) 809 { 810 enum compound_dtor_id dtor = folio->_folio_dtor; 811 812 VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio); 813 compound_page_dtors[dtor](&folio->page); 814 } 815 816 #ifdef CONFIG_DEBUG_PAGEALLOC 817 unsigned int _debug_guardpage_minorder; 818 819 bool _debug_pagealloc_enabled_early __read_mostly 820 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 821 EXPORT_SYMBOL(_debug_pagealloc_enabled_early); 822 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 823 EXPORT_SYMBOL(_debug_pagealloc_enabled); 824 825 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 826 827 static int __init early_debug_pagealloc(char *buf) 828 { 829 return kstrtobool(buf, &_debug_pagealloc_enabled_early); 830 } 831 early_param("debug_pagealloc", early_debug_pagealloc); 832 833 static int __init debug_guardpage_minorder_setup(char *buf) 834 { 835 unsigned long res; 836 837 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 838 pr_err("Bad debug_guardpage_minorder value\n"); 839 return 0; 840 } 841 _debug_guardpage_minorder = res; 842 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 843 return 0; 844 } 845 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 846 847 static inline bool set_page_guard(struct zone *zone, struct page *page, 848 unsigned int order, int migratetype) 849 { 850 if (!debug_guardpage_enabled()) 851 return false; 852 853 if (order >= debug_guardpage_minorder()) 854 return false; 855 856 __SetPageGuard(page); 857 INIT_LIST_HEAD(&page->buddy_list); 858 set_page_private(page, order); 859 /* Guard pages are not available for any usage */ 860 if (!is_migrate_isolate(migratetype)) 861 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 862 863 return true; 864 } 865 866 static inline void clear_page_guard(struct zone *zone, struct page *page, 867 unsigned int order, int migratetype) 868 { 869 if (!debug_guardpage_enabled()) 870 return; 871 872 __ClearPageGuard(page); 873 874 set_page_private(page, 0); 875 if (!is_migrate_isolate(migratetype)) 876 __mod_zone_freepage_state(zone, (1 << order), migratetype); 877 } 878 #else 879 static inline bool set_page_guard(struct zone *zone, struct page *page, 880 unsigned int order, int migratetype) { return false; } 881 static inline void clear_page_guard(struct zone *zone, struct page *page, 882 unsigned int order, int migratetype) {} 883 #endif 884 885 /* 886 * Enable static keys related to various memory debugging and hardening options. 887 * Some override others, and depend on early params that are evaluated in the 888 * order of appearance. So we need to first gather the full picture of what was 889 * enabled, and then make decisions. 890 */ 891 void __init init_mem_debugging_and_hardening(void) 892 { 893 bool page_poisoning_requested = false; 894 895 #ifdef CONFIG_PAGE_POISONING 896 /* 897 * Page poisoning is debug page alloc for some arches. If 898 * either of those options are enabled, enable poisoning. 899 */ 900 if (page_poisoning_enabled() || 901 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) && 902 debug_pagealloc_enabled())) { 903 static_branch_enable(&_page_poisoning_enabled); 904 page_poisoning_requested = true; 905 } 906 #endif 907 908 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) && 909 page_poisoning_requested) { 910 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, " 911 "will take precedence over init_on_alloc and init_on_free\n"); 912 _init_on_alloc_enabled_early = false; 913 _init_on_free_enabled_early = false; 914 } 915 916 if (_init_on_alloc_enabled_early) 917 static_branch_enable(&init_on_alloc); 918 else 919 static_branch_disable(&init_on_alloc); 920 921 if (_init_on_free_enabled_early) 922 static_branch_enable(&init_on_free); 923 else 924 static_branch_disable(&init_on_free); 925 926 if (IS_ENABLED(CONFIG_KMSAN) && 927 (_init_on_alloc_enabled_early || _init_on_free_enabled_early)) 928 pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n"); 929 930 #ifdef CONFIG_DEBUG_PAGEALLOC 931 if (!debug_pagealloc_enabled()) 932 return; 933 934 static_branch_enable(&_debug_pagealloc_enabled); 935 936 if (!debug_guardpage_minorder()) 937 return; 938 939 static_branch_enable(&_debug_guardpage_enabled); 940 #endif 941 } 942 943 static inline void set_buddy_order(struct page *page, unsigned int order) 944 { 945 set_page_private(page, order); 946 __SetPageBuddy(page); 947 } 948 949 #ifdef CONFIG_COMPACTION 950 static inline struct capture_control *task_capc(struct zone *zone) 951 { 952 struct capture_control *capc = current->capture_control; 953 954 return unlikely(capc) && 955 !(current->flags & PF_KTHREAD) && 956 !capc->page && 957 capc->cc->zone == zone ? capc : NULL; 958 } 959 960 static inline bool 961 compaction_capture(struct capture_control *capc, struct page *page, 962 int order, int migratetype) 963 { 964 if (!capc || order != capc->cc->order) 965 return false; 966 967 /* Do not accidentally pollute CMA or isolated regions*/ 968 if (is_migrate_cma(migratetype) || 969 is_migrate_isolate(migratetype)) 970 return false; 971 972 /* 973 * Do not let lower order allocations pollute a movable pageblock. 974 * This might let an unmovable request use a reclaimable pageblock 975 * and vice-versa but no more than normal fallback logic which can 976 * have trouble finding a high-order free page. 977 */ 978 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 979 return false; 980 981 capc->page = page; 982 return true; 983 } 984 985 #else 986 static inline struct capture_control *task_capc(struct zone *zone) 987 { 988 return NULL; 989 } 990 991 static inline bool 992 compaction_capture(struct capture_control *capc, struct page *page, 993 int order, int migratetype) 994 { 995 return false; 996 } 997 #endif /* CONFIG_COMPACTION */ 998 999 /* Used for pages not on another list */ 1000 static inline void add_to_free_list(struct page *page, struct zone *zone, 1001 unsigned int order, int migratetype) 1002 { 1003 struct free_area *area = &zone->free_area[order]; 1004 1005 list_add(&page->buddy_list, &area->free_list[migratetype]); 1006 area->nr_free++; 1007 } 1008 1009 /* Used for pages not on another list */ 1010 static inline void add_to_free_list_tail(struct page *page, struct zone *zone, 1011 unsigned int order, int migratetype) 1012 { 1013 struct free_area *area = &zone->free_area[order]; 1014 1015 list_add_tail(&page->buddy_list, &area->free_list[migratetype]); 1016 area->nr_free++; 1017 } 1018 1019 /* 1020 * Used for pages which are on another list. Move the pages to the tail 1021 * of the list - so the moved pages won't immediately be considered for 1022 * allocation again (e.g., optimization for memory onlining). 1023 */ 1024 static inline void move_to_free_list(struct page *page, struct zone *zone, 1025 unsigned int order, int migratetype) 1026 { 1027 struct free_area *area = &zone->free_area[order]; 1028 1029 list_move_tail(&page->buddy_list, &area->free_list[migratetype]); 1030 } 1031 1032 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 1033 unsigned int order) 1034 { 1035 /* clear reported state and update reported page count */ 1036 if (page_reported(page)) 1037 __ClearPageReported(page); 1038 1039 list_del(&page->buddy_list); 1040 __ClearPageBuddy(page); 1041 set_page_private(page, 0); 1042 zone->free_area[order].nr_free--; 1043 } 1044 1045 /* 1046 * If this is not the largest possible page, check if the buddy 1047 * of the next-highest order is free. If it is, it's possible 1048 * that pages are being freed that will coalesce soon. In case, 1049 * that is happening, add the free page to the tail of the list 1050 * so it's less likely to be used soon and more likely to be merged 1051 * as a higher order page 1052 */ 1053 static inline bool 1054 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 1055 struct page *page, unsigned int order) 1056 { 1057 unsigned long higher_page_pfn; 1058 struct page *higher_page; 1059 1060 if (order >= MAX_ORDER - 2) 1061 return false; 1062 1063 higher_page_pfn = buddy_pfn & pfn; 1064 higher_page = page + (higher_page_pfn - pfn); 1065 1066 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1, 1067 NULL) != NULL; 1068 } 1069 1070 /* 1071 * Freeing function for a buddy system allocator. 1072 * 1073 * The concept of a buddy system is to maintain direct-mapped table 1074 * (containing bit values) for memory blocks of various "orders". 1075 * The bottom level table contains the map for the smallest allocatable 1076 * units of memory (here, pages), and each level above it describes 1077 * pairs of units from the levels below, hence, "buddies". 1078 * At a high level, all that happens here is marking the table entry 1079 * at the bottom level available, and propagating the changes upward 1080 * as necessary, plus some accounting needed to play nicely with other 1081 * parts of the VM system. 1082 * At each level, we keep a list of pages, which are heads of continuous 1083 * free pages of length of (1 << order) and marked with PageBuddy. 1084 * Page's order is recorded in page_private(page) field. 1085 * So when we are allocating or freeing one, we can derive the state of the 1086 * other. That is, if we allocate a small block, and both were 1087 * free, the remainder of the region must be split into blocks. 1088 * If a block is freed, and its buddy is also free, then this 1089 * triggers coalescing into a block of larger size. 1090 * 1091 * -- nyc 1092 */ 1093 1094 static inline void __free_one_page(struct page *page, 1095 unsigned long pfn, 1096 struct zone *zone, unsigned int order, 1097 int migratetype, fpi_t fpi_flags) 1098 { 1099 struct capture_control *capc = task_capc(zone); 1100 unsigned long buddy_pfn = 0; 1101 unsigned long combined_pfn; 1102 struct page *buddy; 1103 bool to_tail; 1104 1105 VM_BUG_ON(!zone_is_initialized(zone)); 1106 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 1107 1108 VM_BUG_ON(migratetype == -1); 1109 if (likely(!is_migrate_isolate(migratetype))) 1110 __mod_zone_freepage_state(zone, 1 << order, migratetype); 1111 1112 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 1113 VM_BUG_ON_PAGE(bad_range(zone, page), page); 1114 1115 while (order < MAX_ORDER - 1) { 1116 if (compaction_capture(capc, page, order, migratetype)) { 1117 __mod_zone_freepage_state(zone, -(1 << order), 1118 migratetype); 1119 return; 1120 } 1121 1122 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn); 1123 if (!buddy) 1124 goto done_merging; 1125 1126 if (unlikely(order >= pageblock_order)) { 1127 /* 1128 * We want to prevent merge between freepages on pageblock 1129 * without fallbacks and normal pageblock. Without this, 1130 * pageblock isolation could cause incorrect freepage or CMA 1131 * accounting or HIGHATOMIC accounting. 1132 */ 1133 int buddy_mt = get_pageblock_migratetype(buddy); 1134 1135 if (migratetype != buddy_mt 1136 && (!migratetype_is_mergeable(migratetype) || 1137 !migratetype_is_mergeable(buddy_mt))) 1138 goto done_merging; 1139 } 1140 1141 /* 1142 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 1143 * merge with it and move up one order. 1144 */ 1145 if (page_is_guard(buddy)) 1146 clear_page_guard(zone, buddy, order, migratetype); 1147 else 1148 del_page_from_free_list(buddy, zone, order); 1149 combined_pfn = buddy_pfn & pfn; 1150 page = page + (combined_pfn - pfn); 1151 pfn = combined_pfn; 1152 order++; 1153 } 1154 1155 done_merging: 1156 set_buddy_order(page, order); 1157 1158 if (fpi_flags & FPI_TO_TAIL) 1159 to_tail = true; 1160 else if (is_shuffle_order(order)) 1161 to_tail = shuffle_pick_tail(); 1162 else 1163 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 1164 1165 if (to_tail) 1166 add_to_free_list_tail(page, zone, order, migratetype); 1167 else 1168 add_to_free_list(page, zone, order, migratetype); 1169 1170 /* Notify page reporting subsystem of freed page */ 1171 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 1172 page_reporting_notify_free(order); 1173 } 1174 1175 /** 1176 * split_free_page() -- split a free page at split_pfn_offset 1177 * @free_page: the original free page 1178 * @order: the order of the page 1179 * @split_pfn_offset: split offset within the page 1180 * 1181 * Return -ENOENT if the free page is changed, otherwise 0 1182 * 1183 * It is used when the free page crosses two pageblocks with different migratetypes 1184 * at split_pfn_offset within the page. The split free page will be put into 1185 * separate migratetype lists afterwards. Otherwise, the function achieves 1186 * nothing. 1187 */ 1188 int split_free_page(struct page *free_page, 1189 unsigned int order, unsigned long split_pfn_offset) 1190 { 1191 struct zone *zone = page_zone(free_page); 1192 unsigned long free_page_pfn = page_to_pfn(free_page); 1193 unsigned long pfn; 1194 unsigned long flags; 1195 int free_page_order; 1196 int mt; 1197 int ret = 0; 1198 1199 if (split_pfn_offset == 0) 1200 return ret; 1201 1202 spin_lock_irqsave(&zone->lock, flags); 1203 1204 if (!PageBuddy(free_page) || buddy_order(free_page) != order) { 1205 ret = -ENOENT; 1206 goto out; 1207 } 1208 1209 mt = get_pageblock_migratetype(free_page); 1210 if (likely(!is_migrate_isolate(mt))) 1211 __mod_zone_freepage_state(zone, -(1UL << order), mt); 1212 1213 del_page_from_free_list(free_page, zone, order); 1214 for (pfn = free_page_pfn; 1215 pfn < free_page_pfn + (1UL << order);) { 1216 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn); 1217 1218 free_page_order = min_t(unsigned int, 1219 pfn ? __ffs(pfn) : order, 1220 __fls(split_pfn_offset)); 1221 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order, 1222 mt, FPI_NONE); 1223 pfn += 1UL << free_page_order; 1224 split_pfn_offset -= (1UL << free_page_order); 1225 /* we have done the first part, now switch to second part */ 1226 if (split_pfn_offset == 0) 1227 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn); 1228 } 1229 out: 1230 spin_unlock_irqrestore(&zone->lock, flags); 1231 return ret; 1232 } 1233 /* 1234 * A bad page could be due to a number of fields. Instead of multiple branches, 1235 * try and check multiple fields with one check. The caller must do a detailed 1236 * check if necessary. 1237 */ 1238 static inline bool page_expected_state(struct page *page, 1239 unsigned long check_flags) 1240 { 1241 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1242 return false; 1243 1244 if (unlikely((unsigned long)page->mapping | 1245 page_ref_count(page) | 1246 #ifdef CONFIG_MEMCG 1247 page->memcg_data | 1248 #endif 1249 (page->flags & check_flags))) 1250 return false; 1251 1252 return true; 1253 } 1254 1255 static const char *page_bad_reason(struct page *page, unsigned long flags) 1256 { 1257 const char *bad_reason = NULL; 1258 1259 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1260 bad_reason = "nonzero mapcount"; 1261 if (unlikely(page->mapping != NULL)) 1262 bad_reason = "non-NULL mapping"; 1263 if (unlikely(page_ref_count(page) != 0)) 1264 bad_reason = "nonzero _refcount"; 1265 if (unlikely(page->flags & flags)) { 1266 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 1267 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 1268 else 1269 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 1270 } 1271 #ifdef CONFIG_MEMCG 1272 if (unlikely(page->memcg_data)) 1273 bad_reason = "page still charged to cgroup"; 1274 #endif 1275 return bad_reason; 1276 } 1277 1278 static void free_page_is_bad_report(struct page *page) 1279 { 1280 bad_page(page, 1281 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 1282 } 1283 1284 static inline bool free_page_is_bad(struct page *page) 1285 { 1286 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 1287 return false; 1288 1289 /* Something has gone sideways, find it */ 1290 free_page_is_bad_report(page); 1291 return true; 1292 } 1293 1294 static int free_tail_pages_check(struct page *head_page, struct page *page) 1295 { 1296 struct folio *folio = (struct folio *)head_page; 1297 int ret = 1; 1298 1299 /* 1300 * We rely page->lru.next never has bit 0 set, unless the page 1301 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 1302 */ 1303 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1304 1305 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 1306 ret = 0; 1307 goto out; 1308 } 1309 switch (page - head_page) { 1310 case 1: 1311 /* the first tail page: these may be in place of ->mapping */ 1312 if (unlikely(folio_entire_mapcount(folio))) { 1313 bad_page(page, "nonzero entire_mapcount"); 1314 goto out; 1315 } 1316 if (unlikely(atomic_read(&folio->_nr_pages_mapped))) { 1317 bad_page(page, "nonzero nr_pages_mapped"); 1318 goto out; 1319 } 1320 if (unlikely(atomic_read(&folio->_pincount))) { 1321 bad_page(page, "nonzero pincount"); 1322 goto out; 1323 } 1324 break; 1325 case 2: 1326 /* 1327 * the second tail page: ->mapping is 1328 * deferred_list.next -- ignore value. 1329 */ 1330 break; 1331 default: 1332 if (page->mapping != TAIL_MAPPING) { 1333 bad_page(page, "corrupted mapping in tail page"); 1334 goto out; 1335 } 1336 break; 1337 } 1338 if (unlikely(!PageTail(page))) { 1339 bad_page(page, "PageTail not set"); 1340 goto out; 1341 } 1342 if (unlikely(compound_head(page) != head_page)) { 1343 bad_page(page, "compound_head not consistent"); 1344 goto out; 1345 } 1346 ret = 0; 1347 out: 1348 page->mapping = NULL; 1349 clear_compound_head(page); 1350 return ret; 1351 } 1352 1353 /* 1354 * Skip KASAN memory poisoning when either: 1355 * 1356 * 1. Deferred memory initialization has not yet completed, 1357 * see the explanation below. 1358 * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON, 1359 * see the comment next to it. 1360 * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON, 1361 * see the comment next to it. 1362 * 4. The allocation is excluded from being checked due to sampling, 1363 * see the call to kasan_unpoison_pages. 1364 * 1365 * Poisoning pages during deferred memory init will greatly lengthen the 1366 * process and cause problem in large memory systems as the deferred pages 1367 * initialization is done with interrupt disabled. 1368 * 1369 * Assuming that there will be no reference to those newly initialized 1370 * pages before they are ever allocated, this should have no effect on 1371 * KASAN memory tracking as the poison will be properly inserted at page 1372 * allocation time. The only corner case is when pages are allocated by 1373 * on-demand allocation and then freed again before the deferred pages 1374 * initialization is done, but this is not likely to happen. 1375 */ 1376 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags) 1377 { 1378 return deferred_pages_enabled() || 1379 (!IS_ENABLED(CONFIG_KASAN_GENERIC) && 1380 (fpi_flags & FPI_SKIP_KASAN_POISON)) || 1381 PageSkipKASanPoison(page); 1382 } 1383 1384 static void kernel_init_pages(struct page *page, int numpages) 1385 { 1386 int i; 1387 1388 /* s390's use of memset() could override KASAN redzones. */ 1389 kasan_disable_current(); 1390 for (i = 0; i < numpages; i++) 1391 clear_highpage_kasan_tagged(page + i); 1392 kasan_enable_current(); 1393 } 1394 1395 static __always_inline bool free_pages_prepare(struct page *page, 1396 unsigned int order, bool check_free, fpi_t fpi_flags) 1397 { 1398 int bad = 0; 1399 bool init = want_init_on_free(); 1400 1401 VM_BUG_ON_PAGE(PageTail(page), page); 1402 1403 trace_mm_page_free(page, order); 1404 kmsan_free_page(page, order); 1405 1406 if (unlikely(PageHWPoison(page)) && !order) { 1407 /* 1408 * Do not let hwpoison pages hit pcplists/buddy 1409 * Untie memcg state and reset page's owner 1410 */ 1411 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1412 __memcg_kmem_uncharge_page(page, order); 1413 reset_page_owner(page, order); 1414 page_table_check_free(page, order); 1415 return false; 1416 } 1417 1418 /* 1419 * Check tail pages before head page information is cleared to 1420 * avoid checking PageCompound for order-0 pages. 1421 */ 1422 if (unlikely(order)) { 1423 bool compound = PageCompound(page); 1424 int i; 1425 1426 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1427 1428 if (compound) 1429 ClearPageHasHWPoisoned(page); 1430 for (i = 1; i < (1 << order); i++) { 1431 if (compound) 1432 bad += free_tail_pages_check(page, page + i); 1433 if (unlikely(free_page_is_bad(page + i))) { 1434 bad++; 1435 continue; 1436 } 1437 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1438 } 1439 } 1440 if (PageMappingFlags(page)) 1441 page->mapping = NULL; 1442 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1443 __memcg_kmem_uncharge_page(page, order); 1444 if (check_free && free_page_is_bad(page)) 1445 bad++; 1446 if (bad) 1447 return false; 1448 1449 page_cpupid_reset_last(page); 1450 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1451 reset_page_owner(page, order); 1452 page_table_check_free(page, order); 1453 1454 if (!PageHighMem(page)) { 1455 debug_check_no_locks_freed(page_address(page), 1456 PAGE_SIZE << order); 1457 debug_check_no_obj_freed(page_address(page), 1458 PAGE_SIZE << order); 1459 } 1460 1461 kernel_poison_pages(page, 1 << order); 1462 1463 /* 1464 * As memory initialization might be integrated into KASAN, 1465 * KASAN poisoning and memory initialization code must be 1466 * kept together to avoid discrepancies in behavior. 1467 * 1468 * With hardware tag-based KASAN, memory tags must be set before the 1469 * page becomes unavailable via debug_pagealloc or arch_free_page. 1470 */ 1471 if (!should_skip_kasan_poison(page, fpi_flags)) { 1472 kasan_poison_pages(page, order, init); 1473 1474 /* Memory is already initialized if KASAN did it internally. */ 1475 if (kasan_has_integrated_init()) 1476 init = false; 1477 } 1478 if (init) 1479 kernel_init_pages(page, 1 << order); 1480 1481 /* 1482 * arch_free_page() can make the page's contents inaccessible. s390 1483 * does this. So nothing which can access the page's contents should 1484 * happen after this. 1485 */ 1486 arch_free_page(page, order); 1487 1488 debug_pagealloc_unmap_pages(page, 1 << order); 1489 1490 return true; 1491 } 1492 1493 #ifdef CONFIG_DEBUG_VM 1494 /* 1495 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed 1496 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when 1497 * moved from pcp lists to free lists. 1498 */ 1499 static bool free_pcp_prepare(struct page *page, unsigned int order) 1500 { 1501 return free_pages_prepare(page, order, true, FPI_NONE); 1502 } 1503 1504 /* return true if this page has an inappropriate state */ 1505 static bool bulkfree_pcp_prepare(struct page *page) 1506 { 1507 if (debug_pagealloc_enabled_static()) 1508 return free_page_is_bad(page); 1509 else 1510 return false; 1511 } 1512 #else 1513 /* 1514 * With DEBUG_VM disabled, order-0 pages being freed are checked only when 1515 * moving from pcp lists to free list in order to reduce overhead. With 1516 * debug_pagealloc enabled, they are checked also immediately when being freed 1517 * to the pcp lists. 1518 */ 1519 static bool free_pcp_prepare(struct page *page, unsigned int order) 1520 { 1521 if (debug_pagealloc_enabled_static()) 1522 return free_pages_prepare(page, order, true, FPI_NONE); 1523 else 1524 return free_pages_prepare(page, order, false, FPI_NONE); 1525 } 1526 1527 static bool bulkfree_pcp_prepare(struct page *page) 1528 { 1529 return free_page_is_bad(page); 1530 } 1531 #endif /* CONFIG_DEBUG_VM */ 1532 1533 /* 1534 * Frees a number of pages from the PCP lists 1535 * Assumes all pages on list are in same zone. 1536 * count is the number of pages to free. 1537 */ 1538 static void free_pcppages_bulk(struct zone *zone, int count, 1539 struct per_cpu_pages *pcp, 1540 int pindex) 1541 { 1542 unsigned long flags; 1543 int min_pindex = 0; 1544 int max_pindex = NR_PCP_LISTS - 1; 1545 unsigned int order; 1546 bool isolated_pageblocks; 1547 struct page *page; 1548 1549 /* 1550 * Ensure proper count is passed which otherwise would stuck in the 1551 * below while (list_empty(list)) loop. 1552 */ 1553 count = min(pcp->count, count); 1554 1555 /* Ensure requested pindex is drained first. */ 1556 pindex = pindex - 1; 1557 1558 spin_lock_irqsave(&zone->lock, flags); 1559 isolated_pageblocks = has_isolate_pageblock(zone); 1560 1561 while (count > 0) { 1562 struct list_head *list; 1563 int nr_pages; 1564 1565 /* Remove pages from lists in a round-robin fashion. */ 1566 do { 1567 if (++pindex > max_pindex) 1568 pindex = min_pindex; 1569 list = &pcp->lists[pindex]; 1570 if (!list_empty(list)) 1571 break; 1572 1573 if (pindex == max_pindex) 1574 max_pindex--; 1575 if (pindex == min_pindex) 1576 min_pindex++; 1577 } while (1); 1578 1579 order = pindex_to_order(pindex); 1580 nr_pages = 1 << order; 1581 do { 1582 int mt; 1583 1584 page = list_last_entry(list, struct page, pcp_list); 1585 mt = get_pcppage_migratetype(page); 1586 1587 /* must delete to avoid corrupting pcp list */ 1588 list_del(&page->pcp_list); 1589 count -= nr_pages; 1590 pcp->count -= nr_pages; 1591 1592 if (bulkfree_pcp_prepare(page)) 1593 continue; 1594 1595 /* MIGRATE_ISOLATE page should not go to pcplists */ 1596 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1597 /* Pageblock could have been isolated meanwhile */ 1598 if (unlikely(isolated_pageblocks)) 1599 mt = get_pageblock_migratetype(page); 1600 1601 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE); 1602 trace_mm_page_pcpu_drain(page, order, mt); 1603 } while (count > 0 && !list_empty(list)); 1604 } 1605 1606 spin_unlock_irqrestore(&zone->lock, flags); 1607 } 1608 1609 static void free_one_page(struct zone *zone, 1610 struct page *page, unsigned long pfn, 1611 unsigned int order, 1612 int migratetype, fpi_t fpi_flags) 1613 { 1614 unsigned long flags; 1615 1616 spin_lock_irqsave(&zone->lock, flags); 1617 if (unlikely(has_isolate_pageblock(zone) || 1618 is_migrate_isolate(migratetype))) { 1619 migratetype = get_pfnblock_migratetype(page, pfn); 1620 } 1621 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1622 spin_unlock_irqrestore(&zone->lock, flags); 1623 } 1624 1625 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1626 unsigned long zone, int nid) 1627 { 1628 mm_zero_struct_page(page); 1629 set_page_links(page, zone, nid, pfn); 1630 init_page_count(page); 1631 page_mapcount_reset(page); 1632 page_cpupid_reset_last(page); 1633 page_kasan_tag_reset(page); 1634 1635 INIT_LIST_HEAD(&page->lru); 1636 #ifdef WANT_PAGE_VIRTUAL 1637 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1638 if (!is_highmem_idx(zone)) 1639 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1640 #endif 1641 } 1642 1643 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1644 static void __meminit init_reserved_page(unsigned long pfn) 1645 { 1646 pg_data_t *pgdat; 1647 int nid, zid; 1648 1649 if (early_page_initialised(pfn)) 1650 return; 1651 1652 nid = early_pfn_to_nid(pfn); 1653 pgdat = NODE_DATA(nid); 1654 1655 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1656 struct zone *zone = &pgdat->node_zones[zid]; 1657 1658 if (zone_spans_pfn(zone, pfn)) 1659 break; 1660 } 1661 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 1662 } 1663 #else 1664 static inline void init_reserved_page(unsigned long pfn) 1665 { 1666 } 1667 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1668 1669 /* 1670 * Initialised pages do not have PageReserved set. This function is 1671 * called for each range allocated by the bootmem allocator and 1672 * marks the pages PageReserved. The remaining valid pages are later 1673 * sent to the buddy page allocator. 1674 */ 1675 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1676 { 1677 unsigned long start_pfn = PFN_DOWN(start); 1678 unsigned long end_pfn = PFN_UP(end); 1679 1680 for (; start_pfn < end_pfn; start_pfn++) { 1681 if (pfn_valid(start_pfn)) { 1682 struct page *page = pfn_to_page(start_pfn); 1683 1684 init_reserved_page(start_pfn); 1685 1686 /* Avoid false-positive PageTail() */ 1687 INIT_LIST_HEAD(&page->lru); 1688 1689 /* 1690 * no need for atomic set_bit because the struct 1691 * page is not visible yet so nobody should 1692 * access it yet. 1693 */ 1694 __SetPageReserved(page); 1695 } 1696 } 1697 } 1698 1699 static void __free_pages_ok(struct page *page, unsigned int order, 1700 fpi_t fpi_flags) 1701 { 1702 unsigned long flags; 1703 int migratetype; 1704 unsigned long pfn = page_to_pfn(page); 1705 struct zone *zone = page_zone(page); 1706 1707 if (!free_pages_prepare(page, order, true, fpi_flags)) 1708 return; 1709 1710 /* 1711 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here 1712 * is used to avoid calling get_pfnblock_migratetype() under the lock. 1713 * This will reduce the lock holding time. 1714 */ 1715 migratetype = get_pfnblock_migratetype(page, pfn); 1716 1717 spin_lock_irqsave(&zone->lock, flags); 1718 if (unlikely(has_isolate_pageblock(zone) || 1719 is_migrate_isolate(migratetype))) { 1720 migratetype = get_pfnblock_migratetype(page, pfn); 1721 } 1722 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1723 spin_unlock_irqrestore(&zone->lock, flags); 1724 1725 __count_vm_events(PGFREE, 1 << order); 1726 } 1727 1728 void __free_pages_core(struct page *page, unsigned int order) 1729 { 1730 unsigned int nr_pages = 1 << order; 1731 struct page *p = page; 1732 unsigned int loop; 1733 1734 /* 1735 * When initializing the memmap, __init_single_page() sets the refcount 1736 * of all pages to 1 ("allocated"/"not free"). We have to set the 1737 * refcount of all involved pages to 0. 1738 */ 1739 prefetchw(p); 1740 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1741 prefetchw(p + 1); 1742 __ClearPageReserved(p); 1743 set_page_count(p, 0); 1744 } 1745 __ClearPageReserved(p); 1746 set_page_count(p, 0); 1747 1748 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1749 1750 /* 1751 * Bypass PCP and place fresh pages right to the tail, primarily 1752 * relevant for memory onlining. 1753 */ 1754 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON); 1755 } 1756 1757 #ifdef CONFIG_NUMA 1758 1759 /* 1760 * During memory init memblocks map pfns to nids. The search is expensive and 1761 * this caches recent lookups. The implementation of __early_pfn_to_nid 1762 * treats start/end as pfns. 1763 */ 1764 struct mminit_pfnnid_cache { 1765 unsigned long last_start; 1766 unsigned long last_end; 1767 int last_nid; 1768 }; 1769 1770 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1771 1772 /* 1773 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 1774 */ 1775 static int __meminit __early_pfn_to_nid(unsigned long pfn, 1776 struct mminit_pfnnid_cache *state) 1777 { 1778 unsigned long start_pfn, end_pfn; 1779 int nid; 1780 1781 if (state->last_start <= pfn && pfn < state->last_end) 1782 return state->last_nid; 1783 1784 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 1785 if (nid != NUMA_NO_NODE) { 1786 state->last_start = start_pfn; 1787 state->last_end = end_pfn; 1788 state->last_nid = nid; 1789 } 1790 1791 return nid; 1792 } 1793 1794 int __meminit early_pfn_to_nid(unsigned long pfn) 1795 { 1796 static DEFINE_SPINLOCK(early_pfn_lock); 1797 int nid; 1798 1799 spin_lock(&early_pfn_lock); 1800 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1801 if (nid < 0) 1802 nid = first_online_node; 1803 spin_unlock(&early_pfn_lock); 1804 1805 return nid; 1806 } 1807 #endif /* CONFIG_NUMA */ 1808 1809 void __init memblock_free_pages(struct page *page, unsigned long pfn, 1810 unsigned int order) 1811 { 1812 if (!early_page_initialised(pfn)) 1813 return; 1814 if (!kmsan_memblock_free_pages(page, order)) { 1815 /* KMSAN will take care of these pages. */ 1816 return; 1817 } 1818 __free_pages_core(page, order); 1819 } 1820 1821 /* 1822 * Check that the whole (or subset of) a pageblock given by the interval of 1823 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1824 * with the migration of free compaction scanner. 1825 * 1826 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1827 * 1828 * It's possible on some configurations to have a setup like node0 node1 node0 1829 * i.e. it's possible that all pages within a zones range of pages do not 1830 * belong to a single zone. We assume that a border between node0 and node1 1831 * can occur within a single pageblock, but not a node0 node1 node0 1832 * interleaving within a single pageblock. It is therefore sufficient to check 1833 * the first and last page of a pageblock and avoid checking each individual 1834 * page in a pageblock. 1835 */ 1836 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1837 unsigned long end_pfn, struct zone *zone) 1838 { 1839 struct page *start_page; 1840 struct page *end_page; 1841 1842 /* end_pfn is one past the range we are checking */ 1843 end_pfn--; 1844 1845 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1846 return NULL; 1847 1848 start_page = pfn_to_online_page(start_pfn); 1849 if (!start_page) 1850 return NULL; 1851 1852 if (page_zone(start_page) != zone) 1853 return NULL; 1854 1855 end_page = pfn_to_page(end_pfn); 1856 1857 /* This gives a shorter code than deriving page_zone(end_page) */ 1858 if (page_zone_id(start_page) != page_zone_id(end_page)) 1859 return NULL; 1860 1861 return start_page; 1862 } 1863 1864 void set_zone_contiguous(struct zone *zone) 1865 { 1866 unsigned long block_start_pfn = zone->zone_start_pfn; 1867 unsigned long block_end_pfn; 1868 1869 block_end_pfn = pageblock_end_pfn(block_start_pfn); 1870 for (; block_start_pfn < zone_end_pfn(zone); 1871 block_start_pfn = block_end_pfn, 1872 block_end_pfn += pageblock_nr_pages) { 1873 1874 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1875 1876 if (!__pageblock_pfn_to_page(block_start_pfn, 1877 block_end_pfn, zone)) 1878 return; 1879 cond_resched(); 1880 } 1881 1882 /* We confirm that there is no hole */ 1883 zone->contiguous = true; 1884 } 1885 1886 void clear_zone_contiguous(struct zone *zone) 1887 { 1888 zone->contiguous = false; 1889 } 1890 1891 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1892 static void __init deferred_free_range(unsigned long pfn, 1893 unsigned long nr_pages) 1894 { 1895 struct page *page; 1896 unsigned long i; 1897 1898 if (!nr_pages) 1899 return; 1900 1901 page = pfn_to_page(pfn); 1902 1903 /* Free a large naturally-aligned chunk if possible */ 1904 if (nr_pages == pageblock_nr_pages && pageblock_aligned(pfn)) { 1905 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1906 __free_pages_core(page, pageblock_order); 1907 return; 1908 } 1909 1910 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1911 if (pageblock_aligned(pfn)) 1912 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1913 __free_pages_core(page, 0); 1914 } 1915 } 1916 1917 /* Completion tracking for deferred_init_memmap() threads */ 1918 static atomic_t pgdat_init_n_undone __initdata; 1919 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1920 1921 static inline void __init pgdat_init_report_one_done(void) 1922 { 1923 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1924 complete(&pgdat_init_all_done_comp); 1925 } 1926 1927 /* 1928 * Returns true if page needs to be initialized or freed to buddy allocator. 1929 * 1930 * We check if a current large page is valid by only checking the validity 1931 * of the head pfn. 1932 */ 1933 static inline bool __init deferred_pfn_valid(unsigned long pfn) 1934 { 1935 if (pageblock_aligned(pfn) && !pfn_valid(pfn)) 1936 return false; 1937 return true; 1938 } 1939 1940 /* 1941 * Free pages to buddy allocator. Try to free aligned pages in 1942 * pageblock_nr_pages sizes. 1943 */ 1944 static void __init deferred_free_pages(unsigned long pfn, 1945 unsigned long end_pfn) 1946 { 1947 unsigned long nr_free = 0; 1948 1949 for (; pfn < end_pfn; pfn++) { 1950 if (!deferred_pfn_valid(pfn)) { 1951 deferred_free_range(pfn - nr_free, nr_free); 1952 nr_free = 0; 1953 } else if (pageblock_aligned(pfn)) { 1954 deferred_free_range(pfn - nr_free, nr_free); 1955 nr_free = 1; 1956 } else { 1957 nr_free++; 1958 } 1959 } 1960 /* Free the last block of pages to allocator */ 1961 deferred_free_range(pfn - nr_free, nr_free); 1962 } 1963 1964 /* 1965 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1966 * by performing it only once every pageblock_nr_pages. 1967 * Return number of pages initialized. 1968 */ 1969 static unsigned long __init deferred_init_pages(struct zone *zone, 1970 unsigned long pfn, 1971 unsigned long end_pfn) 1972 { 1973 int nid = zone_to_nid(zone); 1974 unsigned long nr_pages = 0; 1975 int zid = zone_idx(zone); 1976 struct page *page = NULL; 1977 1978 for (; pfn < end_pfn; pfn++) { 1979 if (!deferred_pfn_valid(pfn)) { 1980 page = NULL; 1981 continue; 1982 } else if (!page || pageblock_aligned(pfn)) { 1983 page = pfn_to_page(pfn); 1984 } else { 1985 page++; 1986 } 1987 __init_single_page(page, pfn, zid, nid); 1988 nr_pages++; 1989 } 1990 return (nr_pages); 1991 } 1992 1993 /* 1994 * This function is meant to pre-load the iterator for the zone init. 1995 * Specifically it walks through the ranges until we are caught up to the 1996 * first_init_pfn value and exits there. If we never encounter the value we 1997 * return false indicating there are no valid ranges left. 1998 */ 1999 static bool __init 2000 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, 2001 unsigned long *spfn, unsigned long *epfn, 2002 unsigned long first_init_pfn) 2003 { 2004 u64 j; 2005 2006 /* 2007 * Start out by walking through the ranges in this zone that have 2008 * already been initialized. We don't need to do anything with them 2009 * so we just need to flush them out of the system. 2010 */ 2011 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { 2012 if (*epfn <= first_init_pfn) 2013 continue; 2014 if (*spfn < first_init_pfn) 2015 *spfn = first_init_pfn; 2016 *i = j; 2017 return true; 2018 } 2019 2020 return false; 2021 } 2022 2023 /* 2024 * Initialize and free pages. We do it in two loops: first we initialize 2025 * struct page, then free to buddy allocator, because while we are 2026 * freeing pages we can access pages that are ahead (computing buddy 2027 * page in __free_one_page()). 2028 * 2029 * In order to try and keep some memory in the cache we have the loop 2030 * broken along max page order boundaries. This way we will not cause 2031 * any issues with the buddy page computation. 2032 */ 2033 static unsigned long __init 2034 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, 2035 unsigned long *end_pfn) 2036 { 2037 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); 2038 unsigned long spfn = *start_pfn, epfn = *end_pfn; 2039 unsigned long nr_pages = 0; 2040 u64 j = *i; 2041 2042 /* First we loop through and initialize the page values */ 2043 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { 2044 unsigned long t; 2045 2046 if (mo_pfn <= *start_pfn) 2047 break; 2048 2049 t = min(mo_pfn, *end_pfn); 2050 nr_pages += deferred_init_pages(zone, *start_pfn, t); 2051 2052 if (mo_pfn < *end_pfn) { 2053 *start_pfn = mo_pfn; 2054 break; 2055 } 2056 } 2057 2058 /* Reset values and now loop through freeing pages as needed */ 2059 swap(j, *i); 2060 2061 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { 2062 unsigned long t; 2063 2064 if (mo_pfn <= spfn) 2065 break; 2066 2067 t = min(mo_pfn, epfn); 2068 deferred_free_pages(spfn, t); 2069 2070 if (mo_pfn <= epfn) 2071 break; 2072 } 2073 2074 return nr_pages; 2075 } 2076 2077 static void __init 2078 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn, 2079 void *arg) 2080 { 2081 unsigned long spfn, epfn; 2082 struct zone *zone = arg; 2083 u64 i; 2084 2085 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn); 2086 2087 /* 2088 * Initialize and free pages in MAX_ORDER sized increments so that we 2089 * can avoid introducing any issues with the buddy allocator. 2090 */ 2091 while (spfn < end_pfn) { 2092 deferred_init_maxorder(&i, zone, &spfn, &epfn); 2093 cond_resched(); 2094 } 2095 } 2096 2097 /* An arch may override for more concurrency. */ 2098 __weak int __init 2099 deferred_page_init_max_threads(const struct cpumask *node_cpumask) 2100 { 2101 return 1; 2102 } 2103 2104 /* Initialise remaining memory on a node */ 2105 static int __init deferred_init_memmap(void *data) 2106 { 2107 pg_data_t *pgdat = data; 2108 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2109 unsigned long spfn = 0, epfn = 0; 2110 unsigned long first_init_pfn, flags; 2111 unsigned long start = jiffies; 2112 struct zone *zone; 2113 int zid, max_threads; 2114 u64 i; 2115 2116 /* Bind memory initialisation thread to a local node if possible */ 2117 if (!cpumask_empty(cpumask)) 2118 set_cpus_allowed_ptr(current, cpumask); 2119 2120 pgdat_resize_lock(pgdat, &flags); 2121 first_init_pfn = pgdat->first_deferred_pfn; 2122 if (first_init_pfn == ULONG_MAX) { 2123 pgdat_resize_unlock(pgdat, &flags); 2124 pgdat_init_report_one_done(); 2125 return 0; 2126 } 2127 2128 /* Sanity check boundaries */ 2129 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 2130 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 2131 pgdat->first_deferred_pfn = ULONG_MAX; 2132 2133 /* 2134 * Once we unlock here, the zone cannot be grown anymore, thus if an 2135 * interrupt thread must allocate this early in boot, zone must be 2136 * pre-grown prior to start of deferred page initialization. 2137 */ 2138 pgdat_resize_unlock(pgdat, &flags); 2139 2140 /* Only the highest zone is deferred so find it */ 2141 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2142 zone = pgdat->node_zones + zid; 2143 if (first_init_pfn < zone_end_pfn(zone)) 2144 break; 2145 } 2146 2147 /* If the zone is empty somebody else may have cleared out the zone */ 2148 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2149 first_init_pfn)) 2150 goto zone_empty; 2151 2152 max_threads = deferred_page_init_max_threads(cpumask); 2153 2154 while (spfn < epfn) { 2155 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION); 2156 struct padata_mt_job job = { 2157 .thread_fn = deferred_init_memmap_chunk, 2158 .fn_arg = zone, 2159 .start = spfn, 2160 .size = epfn_align - spfn, 2161 .align = PAGES_PER_SECTION, 2162 .min_chunk = PAGES_PER_SECTION, 2163 .max_threads = max_threads, 2164 }; 2165 2166 padata_do_multithreaded(&job); 2167 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2168 epfn_align); 2169 } 2170 zone_empty: 2171 /* Sanity check that the next zone really is unpopulated */ 2172 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 2173 2174 pr_info("node %d deferred pages initialised in %ums\n", 2175 pgdat->node_id, jiffies_to_msecs(jiffies - start)); 2176 2177 pgdat_init_report_one_done(); 2178 return 0; 2179 } 2180 2181 /* 2182 * If this zone has deferred pages, try to grow it by initializing enough 2183 * deferred pages to satisfy the allocation specified by order, rounded up to 2184 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 2185 * of SECTION_SIZE bytes by initializing struct pages in increments of 2186 * PAGES_PER_SECTION * sizeof(struct page) bytes. 2187 * 2188 * Return true when zone was grown, otherwise return false. We return true even 2189 * when we grow less than requested, to let the caller decide if there are 2190 * enough pages to satisfy the allocation. 2191 * 2192 * Note: We use noinline because this function is needed only during boot, and 2193 * it is called from a __ref function _deferred_grow_zone. This way we are 2194 * making sure that it is not inlined into permanent text section. 2195 */ 2196 static noinline bool __init 2197 deferred_grow_zone(struct zone *zone, unsigned int order) 2198 { 2199 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 2200 pg_data_t *pgdat = zone->zone_pgdat; 2201 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 2202 unsigned long spfn, epfn, flags; 2203 unsigned long nr_pages = 0; 2204 u64 i; 2205 2206 /* Only the last zone may have deferred pages */ 2207 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 2208 return false; 2209 2210 pgdat_resize_lock(pgdat, &flags); 2211 2212 /* 2213 * If someone grew this zone while we were waiting for spinlock, return 2214 * true, as there might be enough pages already. 2215 */ 2216 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 2217 pgdat_resize_unlock(pgdat, &flags); 2218 return true; 2219 } 2220 2221 /* If the zone is empty somebody else may have cleared out the zone */ 2222 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2223 first_deferred_pfn)) { 2224 pgdat->first_deferred_pfn = ULONG_MAX; 2225 pgdat_resize_unlock(pgdat, &flags); 2226 /* Retry only once. */ 2227 return first_deferred_pfn != ULONG_MAX; 2228 } 2229 2230 /* 2231 * Initialize and free pages in MAX_ORDER sized increments so 2232 * that we can avoid introducing any issues with the buddy 2233 * allocator. 2234 */ 2235 while (spfn < epfn) { 2236 /* update our first deferred PFN for this section */ 2237 first_deferred_pfn = spfn; 2238 2239 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 2240 touch_nmi_watchdog(); 2241 2242 /* We should only stop along section boundaries */ 2243 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) 2244 continue; 2245 2246 /* If our quota has been met we can stop here */ 2247 if (nr_pages >= nr_pages_needed) 2248 break; 2249 } 2250 2251 pgdat->first_deferred_pfn = spfn; 2252 pgdat_resize_unlock(pgdat, &flags); 2253 2254 return nr_pages > 0; 2255 } 2256 2257 /* 2258 * deferred_grow_zone() is __init, but it is called from 2259 * get_page_from_freelist() during early boot until deferred_pages permanently 2260 * disables this call. This is why we have refdata wrapper to avoid warning, 2261 * and to ensure that the function body gets unloaded. 2262 */ 2263 static bool __ref 2264 _deferred_grow_zone(struct zone *zone, unsigned int order) 2265 { 2266 return deferred_grow_zone(zone, order); 2267 } 2268 2269 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 2270 2271 void __init page_alloc_init_late(void) 2272 { 2273 struct zone *zone; 2274 int nid; 2275 2276 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 2277 2278 /* There will be num_node_state(N_MEMORY) threads */ 2279 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 2280 for_each_node_state(nid, N_MEMORY) { 2281 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 2282 } 2283 2284 /* Block until all are initialised */ 2285 wait_for_completion(&pgdat_init_all_done_comp); 2286 2287 /* 2288 * We initialized the rest of the deferred pages. Permanently disable 2289 * on-demand struct page initialization. 2290 */ 2291 static_branch_disable(&deferred_pages); 2292 2293 /* Reinit limits that are based on free pages after the kernel is up */ 2294 files_maxfiles_init(); 2295 #endif 2296 2297 buffer_init(); 2298 2299 /* Discard memblock private memory */ 2300 memblock_discard(); 2301 2302 for_each_node_state(nid, N_MEMORY) 2303 shuffle_free_memory(NODE_DATA(nid)); 2304 2305 for_each_populated_zone(zone) 2306 set_zone_contiguous(zone); 2307 } 2308 2309 #ifdef CONFIG_CMA 2310 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 2311 void __init init_cma_reserved_pageblock(struct page *page) 2312 { 2313 unsigned i = pageblock_nr_pages; 2314 struct page *p = page; 2315 2316 do { 2317 __ClearPageReserved(p); 2318 set_page_count(p, 0); 2319 } while (++p, --i); 2320 2321 set_pageblock_migratetype(page, MIGRATE_CMA); 2322 set_page_refcounted(page); 2323 __free_pages(page, pageblock_order); 2324 2325 adjust_managed_page_count(page, pageblock_nr_pages); 2326 page_zone(page)->cma_pages += pageblock_nr_pages; 2327 } 2328 #endif 2329 2330 /* 2331 * The order of subdivision here is critical for the IO subsystem. 2332 * Please do not alter this order without good reasons and regression 2333 * testing. Specifically, as large blocks of memory are subdivided, 2334 * the order in which smaller blocks are delivered depends on the order 2335 * they're subdivided in this function. This is the primary factor 2336 * influencing the order in which pages are delivered to the IO 2337 * subsystem according to empirical testing, and this is also justified 2338 * by considering the behavior of a buddy system containing a single 2339 * large block of memory acted on by a series of small allocations. 2340 * This behavior is a critical factor in sglist merging's success. 2341 * 2342 * -- nyc 2343 */ 2344 static inline void expand(struct zone *zone, struct page *page, 2345 int low, int high, int migratetype) 2346 { 2347 unsigned long size = 1 << high; 2348 2349 while (high > low) { 2350 high--; 2351 size >>= 1; 2352 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 2353 2354 /* 2355 * Mark as guard pages (or page), that will allow to 2356 * merge back to allocator when buddy will be freed. 2357 * Corresponding page table entries will not be touched, 2358 * pages will stay not present in virtual address space 2359 */ 2360 if (set_page_guard(zone, &page[size], high, migratetype)) 2361 continue; 2362 2363 add_to_free_list(&page[size], zone, high, migratetype); 2364 set_buddy_order(&page[size], high); 2365 } 2366 } 2367 2368 static void check_new_page_bad(struct page *page) 2369 { 2370 if (unlikely(page->flags & __PG_HWPOISON)) { 2371 /* Don't complain about hwpoisoned pages */ 2372 page_mapcount_reset(page); /* remove PageBuddy */ 2373 return; 2374 } 2375 2376 bad_page(page, 2377 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 2378 } 2379 2380 /* 2381 * This page is about to be returned from the page allocator 2382 */ 2383 static inline int check_new_page(struct page *page) 2384 { 2385 if (likely(page_expected_state(page, 2386 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 2387 return 0; 2388 2389 check_new_page_bad(page); 2390 return 1; 2391 } 2392 2393 static bool check_new_pages(struct page *page, unsigned int order) 2394 { 2395 int i; 2396 for (i = 0; i < (1 << order); i++) { 2397 struct page *p = page + i; 2398 2399 if (unlikely(check_new_page(p))) 2400 return true; 2401 } 2402 2403 return false; 2404 } 2405 2406 #ifdef CONFIG_DEBUG_VM 2407 /* 2408 * With DEBUG_VM enabled, order-0 pages are checked for expected state when 2409 * being allocated from pcp lists. With debug_pagealloc also enabled, they are 2410 * also checked when pcp lists are refilled from the free lists. 2411 */ 2412 static inline bool check_pcp_refill(struct page *page, unsigned int order) 2413 { 2414 if (debug_pagealloc_enabled_static()) 2415 return check_new_pages(page, order); 2416 else 2417 return false; 2418 } 2419 2420 static inline bool check_new_pcp(struct page *page, unsigned int order) 2421 { 2422 return check_new_pages(page, order); 2423 } 2424 #else 2425 /* 2426 * With DEBUG_VM disabled, free order-0 pages are checked for expected state 2427 * when pcp lists are being refilled from the free lists. With debug_pagealloc 2428 * enabled, they are also checked when being allocated from the pcp lists. 2429 */ 2430 static inline bool check_pcp_refill(struct page *page, unsigned int order) 2431 { 2432 return check_new_pages(page, order); 2433 } 2434 static inline bool check_new_pcp(struct page *page, unsigned int order) 2435 { 2436 if (debug_pagealloc_enabled_static()) 2437 return check_new_pages(page, order); 2438 else 2439 return false; 2440 } 2441 #endif /* CONFIG_DEBUG_VM */ 2442 2443 static inline bool should_skip_kasan_unpoison(gfp_t flags) 2444 { 2445 /* Don't skip if a software KASAN mode is enabled. */ 2446 if (IS_ENABLED(CONFIG_KASAN_GENERIC) || 2447 IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 2448 return false; 2449 2450 /* Skip, if hardware tag-based KASAN is not enabled. */ 2451 if (!kasan_hw_tags_enabled()) 2452 return true; 2453 2454 /* 2455 * With hardware tag-based KASAN enabled, skip if this has been 2456 * requested via __GFP_SKIP_KASAN_UNPOISON. 2457 */ 2458 return flags & __GFP_SKIP_KASAN_UNPOISON; 2459 } 2460 2461 static inline bool should_skip_init(gfp_t flags) 2462 { 2463 /* Don't skip, if hardware tag-based KASAN is not enabled. */ 2464 if (!kasan_hw_tags_enabled()) 2465 return false; 2466 2467 /* For hardware tag-based KASAN, skip if requested. */ 2468 return (flags & __GFP_SKIP_ZERO); 2469 } 2470 2471 inline void post_alloc_hook(struct page *page, unsigned int order, 2472 gfp_t gfp_flags) 2473 { 2474 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) && 2475 !should_skip_init(gfp_flags); 2476 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS); 2477 bool reset_tags = !zero_tags; 2478 int i; 2479 2480 set_page_private(page, 0); 2481 set_page_refcounted(page); 2482 2483 arch_alloc_page(page, order); 2484 debug_pagealloc_map_pages(page, 1 << order); 2485 2486 /* 2487 * Page unpoisoning must happen before memory initialization. 2488 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 2489 * allocations and the page unpoisoning code will complain. 2490 */ 2491 kernel_unpoison_pages(page, 1 << order); 2492 2493 /* 2494 * As memory initialization might be integrated into KASAN, 2495 * KASAN unpoisoning and memory initializion code must be 2496 * kept together to avoid discrepancies in behavior. 2497 */ 2498 2499 /* 2500 * If memory tags should be zeroed 2501 * (which happens only when memory should be initialized as well). 2502 */ 2503 if (zero_tags) { 2504 /* Initialize both memory and tags. */ 2505 for (i = 0; i != 1 << order; ++i) 2506 tag_clear_highpage(page + i); 2507 2508 /* Take note that memory was initialized by the loop above. */ 2509 init = false; 2510 } 2511 if (!should_skip_kasan_unpoison(gfp_flags)) { 2512 /* Try unpoisoning (or setting tags) and initializing memory. */ 2513 if (kasan_unpoison_pages(page, order, init)) { 2514 /* Take note that memory was initialized by KASAN. */ 2515 if (kasan_has_integrated_init()) 2516 init = false; 2517 /* Take note that memory tags were set by KASAN. */ 2518 reset_tags = false; 2519 } else { 2520 /* 2521 * KASAN decided to exclude this allocation from being 2522 * poisoned due to sampling. Skip poisoning as well. 2523 */ 2524 SetPageSkipKASanPoison(page); 2525 } 2526 } 2527 /* 2528 * If memory tags have not been set, reset the page tags to ensure 2529 * page_address() dereferencing does not fault. 2530 */ 2531 if (reset_tags) { 2532 for (i = 0; i != 1 << order; ++i) 2533 page_kasan_tag_reset(page + i); 2534 } 2535 /* If memory is still not initialized, initialize it now. */ 2536 if (init) 2537 kernel_init_pages(page, 1 << order); 2538 /* Propagate __GFP_SKIP_KASAN_POISON to page flags. */ 2539 if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON)) 2540 SetPageSkipKASanPoison(page); 2541 2542 set_page_owner(page, order, gfp_flags); 2543 page_table_check_alloc(page, order); 2544 } 2545 2546 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 2547 unsigned int alloc_flags) 2548 { 2549 post_alloc_hook(page, order, gfp_flags); 2550 2551 if (order && (gfp_flags & __GFP_COMP)) 2552 prep_compound_page(page, order); 2553 2554 /* 2555 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 2556 * allocate the page. The expectation is that the caller is taking 2557 * steps that will free more memory. The caller should avoid the page 2558 * being used for !PFMEMALLOC purposes. 2559 */ 2560 if (alloc_flags & ALLOC_NO_WATERMARKS) 2561 set_page_pfmemalloc(page); 2562 else 2563 clear_page_pfmemalloc(page); 2564 } 2565 2566 /* 2567 * Go through the free lists for the given migratetype and remove 2568 * the smallest available page from the freelists 2569 */ 2570 static __always_inline 2571 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 2572 int migratetype) 2573 { 2574 unsigned int current_order; 2575 struct free_area *area; 2576 struct page *page; 2577 2578 /* Find a page of the appropriate size in the preferred list */ 2579 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 2580 area = &(zone->free_area[current_order]); 2581 page = get_page_from_free_area(area, migratetype); 2582 if (!page) 2583 continue; 2584 del_page_from_free_list(page, zone, current_order); 2585 expand(zone, page, order, current_order, migratetype); 2586 set_pcppage_migratetype(page, migratetype); 2587 trace_mm_page_alloc_zone_locked(page, order, migratetype, 2588 pcp_allowed_order(order) && 2589 migratetype < MIGRATE_PCPTYPES); 2590 return page; 2591 } 2592 2593 return NULL; 2594 } 2595 2596 2597 /* 2598 * This array describes the order lists are fallen back to when 2599 * the free lists for the desirable migrate type are depleted 2600 * 2601 * The other migratetypes do not have fallbacks. 2602 */ 2603 static int fallbacks[MIGRATE_TYPES][3] = { 2604 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2605 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 2606 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2607 }; 2608 2609 #ifdef CONFIG_CMA 2610 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2611 unsigned int order) 2612 { 2613 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 2614 } 2615 #else 2616 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2617 unsigned int order) { return NULL; } 2618 #endif 2619 2620 /* 2621 * Move the free pages in a range to the freelist tail of the requested type. 2622 * Note that start_page and end_pages are not aligned on a pageblock 2623 * boundary. If alignment is required, use move_freepages_block() 2624 */ 2625 static int move_freepages(struct zone *zone, 2626 unsigned long start_pfn, unsigned long end_pfn, 2627 int migratetype, int *num_movable) 2628 { 2629 struct page *page; 2630 unsigned long pfn; 2631 unsigned int order; 2632 int pages_moved = 0; 2633 2634 for (pfn = start_pfn; pfn <= end_pfn;) { 2635 page = pfn_to_page(pfn); 2636 if (!PageBuddy(page)) { 2637 /* 2638 * We assume that pages that could be isolated for 2639 * migration are movable. But we don't actually try 2640 * isolating, as that would be expensive. 2641 */ 2642 if (num_movable && 2643 (PageLRU(page) || __PageMovable(page))) 2644 (*num_movable)++; 2645 pfn++; 2646 continue; 2647 } 2648 2649 /* Make sure we are not inadvertently changing nodes */ 2650 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 2651 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 2652 2653 order = buddy_order(page); 2654 move_to_free_list(page, zone, order, migratetype); 2655 pfn += 1 << order; 2656 pages_moved += 1 << order; 2657 } 2658 2659 return pages_moved; 2660 } 2661 2662 int move_freepages_block(struct zone *zone, struct page *page, 2663 int migratetype, int *num_movable) 2664 { 2665 unsigned long start_pfn, end_pfn, pfn; 2666 2667 if (num_movable) 2668 *num_movable = 0; 2669 2670 pfn = page_to_pfn(page); 2671 start_pfn = pageblock_start_pfn(pfn); 2672 end_pfn = pageblock_end_pfn(pfn) - 1; 2673 2674 /* Do not cross zone boundaries */ 2675 if (!zone_spans_pfn(zone, start_pfn)) 2676 start_pfn = pfn; 2677 if (!zone_spans_pfn(zone, end_pfn)) 2678 return 0; 2679 2680 return move_freepages(zone, start_pfn, end_pfn, migratetype, 2681 num_movable); 2682 } 2683 2684 static void change_pageblock_range(struct page *pageblock_page, 2685 int start_order, int migratetype) 2686 { 2687 int nr_pageblocks = 1 << (start_order - pageblock_order); 2688 2689 while (nr_pageblocks--) { 2690 set_pageblock_migratetype(pageblock_page, migratetype); 2691 pageblock_page += pageblock_nr_pages; 2692 } 2693 } 2694 2695 /* 2696 * When we are falling back to another migratetype during allocation, try to 2697 * steal extra free pages from the same pageblocks to satisfy further 2698 * allocations, instead of polluting multiple pageblocks. 2699 * 2700 * If we are stealing a relatively large buddy page, it is likely there will 2701 * be more free pages in the pageblock, so try to steal them all. For 2702 * reclaimable and unmovable allocations, we steal regardless of page size, 2703 * as fragmentation caused by those allocations polluting movable pageblocks 2704 * is worse than movable allocations stealing from unmovable and reclaimable 2705 * pageblocks. 2706 */ 2707 static bool can_steal_fallback(unsigned int order, int start_mt) 2708 { 2709 /* 2710 * Leaving this order check is intended, although there is 2711 * relaxed order check in next check. The reason is that 2712 * we can actually steal whole pageblock if this condition met, 2713 * but, below check doesn't guarantee it and that is just heuristic 2714 * so could be changed anytime. 2715 */ 2716 if (order >= pageblock_order) 2717 return true; 2718 2719 if (order >= pageblock_order / 2 || 2720 start_mt == MIGRATE_RECLAIMABLE || 2721 start_mt == MIGRATE_UNMOVABLE || 2722 page_group_by_mobility_disabled) 2723 return true; 2724 2725 return false; 2726 } 2727 2728 static inline bool boost_watermark(struct zone *zone) 2729 { 2730 unsigned long max_boost; 2731 2732 if (!watermark_boost_factor) 2733 return false; 2734 /* 2735 * Don't bother in zones that are unlikely to produce results. 2736 * On small machines, including kdump capture kernels running 2737 * in a small area, boosting the watermark can cause an out of 2738 * memory situation immediately. 2739 */ 2740 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 2741 return false; 2742 2743 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2744 watermark_boost_factor, 10000); 2745 2746 /* 2747 * high watermark may be uninitialised if fragmentation occurs 2748 * very early in boot so do not boost. We do not fall 2749 * through and boost by pageblock_nr_pages as failing 2750 * allocations that early means that reclaim is not going 2751 * to help and it may even be impossible to reclaim the 2752 * boosted watermark resulting in a hang. 2753 */ 2754 if (!max_boost) 2755 return false; 2756 2757 max_boost = max(pageblock_nr_pages, max_boost); 2758 2759 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2760 max_boost); 2761 2762 return true; 2763 } 2764 2765 /* 2766 * This function implements actual steal behaviour. If order is large enough, 2767 * we can steal whole pageblock. If not, we first move freepages in this 2768 * pageblock to our migratetype and determine how many already-allocated pages 2769 * are there in the pageblock with a compatible migratetype. If at least half 2770 * of pages are free or compatible, we can change migratetype of the pageblock 2771 * itself, so pages freed in the future will be put on the correct free list. 2772 */ 2773 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2774 unsigned int alloc_flags, int start_type, bool whole_block) 2775 { 2776 unsigned int current_order = buddy_order(page); 2777 int free_pages, movable_pages, alike_pages; 2778 int old_block_type; 2779 2780 old_block_type = get_pageblock_migratetype(page); 2781 2782 /* 2783 * This can happen due to races and we want to prevent broken 2784 * highatomic accounting. 2785 */ 2786 if (is_migrate_highatomic(old_block_type)) 2787 goto single_page; 2788 2789 /* Take ownership for orders >= pageblock_order */ 2790 if (current_order >= pageblock_order) { 2791 change_pageblock_range(page, current_order, start_type); 2792 goto single_page; 2793 } 2794 2795 /* 2796 * Boost watermarks to increase reclaim pressure to reduce the 2797 * likelihood of future fallbacks. Wake kswapd now as the node 2798 * may be balanced overall and kswapd will not wake naturally. 2799 */ 2800 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 2801 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2802 2803 /* We are not allowed to try stealing from the whole block */ 2804 if (!whole_block) 2805 goto single_page; 2806 2807 free_pages = move_freepages_block(zone, page, start_type, 2808 &movable_pages); 2809 /* 2810 * Determine how many pages are compatible with our allocation. 2811 * For movable allocation, it's the number of movable pages which 2812 * we just obtained. For other types it's a bit more tricky. 2813 */ 2814 if (start_type == MIGRATE_MOVABLE) { 2815 alike_pages = movable_pages; 2816 } else { 2817 /* 2818 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2819 * to MOVABLE pageblock, consider all non-movable pages as 2820 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2821 * vice versa, be conservative since we can't distinguish the 2822 * exact migratetype of non-movable pages. 2823 */ 2824 if (old_block_type == MIGRATE_MOVABLE) 2825 alike_pages = pageblock_nr_pages 2826 - (free_pages + movable_pages); 2827 else 2828 alike_pages = 0; 2829 } 2830 2831 /* moving whole block can fail due to zone boundary conditions */ 2832 if (!free_pages) 2833 goto single_page; 2834 2835 /* 2836 * If a sufficient number of pages in the block are either free or of 2837 * comparable migratability as our allocation, claim the whole block. 2838 */ 2839 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2840 page_group_by_mobility_disabled) 2841 set_pageblock_migratetype(page, start_type); 2842 2843 return; 2844 2845 single_page: 2846 move_to_free_list(page, zone, current_order, start_type); 2847 } 2848 2849 /* 2850 * Check whether there is a suitable fallback freepage with requested order. 2851 * If only_stealable is true, this function returns fallback_mt only if 2852 * we can steal other freepages all together. This would help to reduce 2853 * fragmentation due to mixed migratetype pages in one pageblock. 2854 */ 2855 int find_suitable_fallback(struct free_area *area, unsigned int order, 2856 int migratetype, bool only_stealable, bool *can_steal) 2857 { 2858 int i; 2859 int fallback_mt; 2860 2861 if (area->nr_free == 0) 2862 return -1; 2863 2864 *can_steal = false; 2865 for (i = 0;; i++) { 2866 fallback_mt = fallbacks[migratetype][i]; 2867 if (fallback_mt == MIGRATE_TYPES) 2868 break; 2869 2870 if (free_area_empty(area, fallback_mt)) 2871 continue; 2872 2873 if (can_steal_fallback(order, migratetype)) 2874 *can_steal = true; 2875 2876 if (!only_stealable) 2877 return fallback_mt; 2878 2879 if (*can_steal) 2880 return fallback_mt; 2881 } 2882 2883 return -1; 2884 } 2885 2886 /* 2887 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2888 * there are no empty page blocks that contain a page with a suitable order 2889 */ 2890 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2891 unsigned int alloc_order) 2892 { 2893 int mt; 2894 unsigned long max_managed, flags; 2895 2896 /* 2897 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2898 * Check is race-prone but harmless. 2899 */ 2900 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 2901 if (zone->nr_reserved_highatomic >= max_managed) 2902 return; 2903 2904 spin_lock_irqsave(&zone->lock, flags); 2905 2906 /* Recheck the nr_reserved_highatomic limit under the lock */ 2907 if (zone->nr_reserved_highatomic >= max_managed) 2908 goto out_unlock; 2909 2910 /* Yoink! */ 2911 mt = get_pageblock_migratetype(page); 2912 /* Only reserve normal pageblocks (i.e., they can merge with others) */ 2913 if (migratetype_is_mergeable(mt)) { 2914 zone->nr_reserved_highatomic += pageblock_nr_pages; 2915 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2916 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2917 } 2918 2919 out_unlock: 2920 spin_unlock_irqrestore(&zone->lock, flags); 2921 } 2922 2923 /* 2924 * Used when an allocation is about to fail under memory pressure. This 2925 * potentially hurts the reliability of high-order allocations when under 2926 * intense memory pressure but failed atomic allocations should be easier 2927 * to recover from than an OOM. 2928 * 2929 * If @force is true, try to unreserve a pageblock even though highatomic 2930 * pageblock is exhausted. 2931 */ 2932 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2933 bool force) 2934 { 2935 struct zonelist *zonelist = ac->zonelist; 2936 unsigned long flags; 2937 struct zoneref *z; 2938 struct zone *zone; 2939 struct page *page; 2940 int order; 2941 bool ret; 2942 2943 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 2944 ac->nodemask) { 2945 /* 2946 * Preserve at least one pageblock unless memory pressure 2947 * is really high. 2948 */ 2949 if (!force && zone->nr_reserved_highatomic <= 2950 pageblock_nr_pages) 2951 continue; 2952 2953 spin_lock_irqsave(&zone->lock, flags); 2954 for (order = 0; order < MAX_ORDER; order++) { 2955 struct free_area *area = &(zone->free_area[order]); 2956 2957 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2958 if (!page) 2959 continue; 2960 2961 /* 2962 * In page freeing path, migratetype change is racy so 2963 * we can counter several free pages in a pageblock 2964 * in this loop although we changed the pageblock type 2965 * from highatomic to ac->migratetype. So we should 2966 * adjust the count once. 2967 */ 2968 if (is_migrate_highatomic_page(page)) { 2969 /* 2970 * It should never happen but changes to 2971 * locking could inadvertently allow a per-cpu 2972 * drain to add pages to MIGRATE_HIGHATOMIC 2973 * while unreserving so be safe and watch for 2974 * underflows. 2975 */ 2976 zone->nr_reserved_highatomic -= min( 2977 pageblock_nr_pages, 2978 zone->nr_reserved_highatomic); 2979 } 2980 2981 /* 2982 * Convert to ac->migratetype and avoid the normal 2983 * pageblock stealing heuristics. Minimally, the caller 2984 * is doing the work and needs the pages. More 2985 * importantly, if the block was always converted to 2986 * MIGRATE_UNMOVABLE or another type then the number 2987 * of pageblocks that cannot be completely freed 2988 * may increase. 2989 */ 2990 set_pageblock_migratetype(page, ac->migratetype); 2991 ret = move_freepages_block(zone, page, ac->migratetype, 2992 NULL); 2993 if (ret) { 2994 spin_unlock_irqrestore(&zone->lock, flags); 2995 return ret; 2996 } 2997 } 2998 spin_unlock_irqrestore(&zone->lock, flags); 2999 } 3000 3001 return false; 3002 } 3003 3004 /* 3005 * Try finding a free buddy page on the fallback list and put it on the free 3006 * list of requested migratetype, possibly along with other pages from the same 3007 * block, depending on fragmentation avoidance heuristics. Returns true if 3008 * fallback was found so that __rmqueue_smallest() can grab it. 3009 * 3010 * The use of signed ints for order and current_order is a deliberate 3011 * deviation from the rest of this file, to make the for loop 3012 * condition simpler. 3013 */ 3014 static __always_inline bool 3015 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 3016 unsigned int alloc_flags) 3017 { 3018 struct free_area *area; 3019 int current_order; 3020 int min_order = order; 3021 struct page *page; 3022 int fallback_mt; 3023 bool can_steal; 3024 3025 /* 3026 * Do not steal pages from freelists belonging to other pageblocks 3027 * i.e. orders < pageblock_order. If there are no local zones free, 3028 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 3029 */ 3030 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT) 3031 min_order = pageblock_order; 3032 3033 /* 3034 * Find the largest available free page in the other list. This roughly 3035 * approximates finding the pageblock with the most free pages, which 3036 * would be too costly to do exactly. 3037 */ 3038 for (current_order = MAX_ORDER - 1; current_order >= min_order; 3039 --current_order) { 3040 area = &(zone->free_area[current_order]); 3041 fallback_mt = find_suitable_fallback(area, current_order, 3042 start_migratetype, false, &can_steal); 3043 if (fallback_mt == -1) 3044 continue; 3045 3046 /* 3047 * We cannot steal all free pages from the pageblock and the 3048 * requested migratetype is movable. In that case it's better to 3049 * steal and split the smallest available page instead of the 3050 * largest available page, because even if the next movable 3051 * allocation falls back into a different pageblock than this 3052 * one, it won't cause permanent fragmentation. 3053 */ 3054 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 3055 && current_order > order) 3056 goto find_smallest; 3057 3058 goto do_steal; 3059 } 3060 3061 return false; 3062 3063 find_smallest: 3064 for (current_order = order; current_order < MAX_ORDER; 3065 current_order++) { 3066 area = &(zone->free_area[current_order]); 3067 fallback_mt = find_suitable_fallback(area, current_order, 3068 start_migratetype, false, &can_steal); 3069 if (fallback_mt != -1) 3070 break; 3071 } 3072 3073 /* 3074 * This should not happen - we already found a suitable fallback 3075 * when looking for the largest page. 3076 */ 3077 VM_BUG_ON(current_order == MAX_ORDER); 3078 3079 do_steal: 3080 page = get_page_from_free_area(area, fallback_mt); 3081 3082 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 3083 can_steal); 3084 3085 trace_mm_page_alloc_extfrag(page, order, current_order, 3086 start_migratetype, fallback_mt); 3087 3088 return true; 3089 3090 } 3091 3092 /* 3093 * Do the hard work of removing an element from the buddy allocator. 3094 * Call me with the zone->lock already held. 3095 */ 3096 static __always_inline struct page * 3097 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 3098 unsigned int alloc_flags) 3099 { 3100 struct page *page; 3101 3102 if (IS_ENABLED(CONFIG_CMA)) { 3103 /* 3104 * Balance movable allocations between regular and CMA areas by 3105 * allocating from CMA when over half of the zone's free memory 3106 * is in the CMA area. 3107 */ 3108 if (alloc_flags & ALLOC_CMA && 3109 zone_page_state(zone, NR_FREE_CMA_PAGES) > 3110 zone_page_state(zone, NR_FREE_PAGES) / 2) { 3111 page = __rmqueue_cma_fallback(zone, order); 3112 if (page) 3113 return page; 3114 } 3115 } 3116 retry: 3117 page = __rmqueue_smallest(zone, order, migratetype); 3118 if (unlikely(!page)) { 3119 if (alloc_flags & ALLOC_CMA) 3120 page = __rmqueue_cma_fallback(zone, order); 3121 3122 if (!page && __rmqueue_fallback(zone, order, migratetype, 3123 alloc_flags)) 3124 goto retry; 3125 } 3126 return page; 3127 } 3128 3129 /* 3130 * Obtain a specified number of elements from the buddy allocator, all under 3131 * a single hold of the lock, for efficiency. Add them to the supplied list. 3132 * Returns the number of new pages which were placed at *list. 3133 */ 3134 static int rmqueue_bulk(struct zone *zone, unsigned int order, 3135 unsigned long count, struct list_head *list, 3136 int migratetype, unsigned int alloc_flags) 3137 { 3138 unsigned long flags; 3139 int i, allocated = 0; 3140 3141 spin_lock_irqsave(&zone->lock, flags); 3142 for (i = 0; i < count; ++i) { 3143 struct page *page = __rmqueue(zone, order, migratetype, 3144 alloc_flags); 3145 if (unlikely(page == NULL)) 3146 break; 3147 3148 if (unlikely(check_pcp_refill(page, order))) 3149 continue; 3150 3151 /* 3152 * Split buddy pages returned by expand() are received here in 3153 * physical page order. The page is added to the tail of 3154 * caller's list. From the callers perspective, the linked list 3155 * is ordered by page number under some conditions. This is 3156 * useful for IO devices that can forward direction from the 3157 * head, thus also in the physical page order. This is useful 3158 * for IO devices that can merge IO requests if the physical 3159 * pages are ordered properly. 3160 */ 3161 list_add_tail(&page->pcp_list, list); 3162 allocated++; 3163 if (is_migrate_cma(get_pcppage_migratetype(page))) 3164 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 3165 -(1 << order)); 3166 } 3167 3168 /* 3169 * i pages were removed from the buddy list even if some leak due 3170 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 3171 * on i. Do not confuse with 'allocated' which is the number of 3172 * pages added to the pcp list. 3173 */ 3174 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 3175 spin_unlock_irqrestore(&zone->lock, flags); 3176 return allocated; 3177 } 3178 3179 #ifdef CONFIG_NUMA 3180 /* 3181 * Called from the vmstat counter updater to drain pagesets of this 3182 * currently executing processor on remote nodes after they have 3183 * expired. 3184 */ 3185 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 3186 { 3187 int to_drain, batch; 3188 3189 batch = READ_ONCE(pcp->batch); 3190 to_drain = min(pcp->count, batch); 3191 if (to_drain > 0) { 3192 spin_lock(&pcp->lock); 3193 free_pcppages_bulk(zone, to_drain, pcp, 0); 3194 spin_unlock(&pcp->lock); 3195 } 3196 } 3197 #endif 3198 3199 /* 3200 * Drain pcplists of the indicated processor and zone. 3201 */ 3202 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 3203 { 3204 struct per_cpu_pages *pcp; 3205 3206 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 3207 if (pcp->count) { 3208 spin_lock(&pcp->lock); 3209 free_pcppages_bulk(zone, pcp->count, pcp, 0); 3210 spin_unlock(&pcp->lock); 3211 } 3212 } 3213 3214 /* 3215 * Drain pcplists of all zones on the indicated processor. 3216 */ 3217 static void drain_pages(unsigned int cpu) 3218 { 3219 struct zone *zone; 3220 3221 for_each_populated_zone(zone) { 3222 drain_pages_zone(cpu, zone); 3223 } 3224 } 3225 3226 /* 3227 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 3228 */ 3229 void drain_local_pages(struct zone *zone) 3230 { 3231 int cpu = smp_processor_id(); 3232 3233 if (zone) 3234 drain_pages_zone(cpu, zone); 3235 else 3236 drain_pages(cpu); 3237 } 3238 3239 /* 3240 * The implementation of drain_all_pages(), exposing an extra parameter to 3241 * drain on all cpus. 3242 * 3243 * drain_all_pages() is optimized to only execute on cpus where pcplists are 3244 * not empty. The check for non-emptiness can however race with a free to 3245 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 3246 * that need the guarantee that every CPU has drained can disable the 3247 * optimizing racy check. 3248 */ 3249 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 3250 { 3251 int cpu; 3252 3253 /* 3254 * Allocate in the BSS so we won't require allocation in 3255 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 3256 */ 3257 static cpumask_t cpus_with_pcps; 3258 3259 /* 3260 * Do not drain if one is already in progress unless it's specific to 3261 * a zone. Such callers are primarily CMA and memory hotplug and need 3262 * the drain to be complete when the call returns. 3263 */ 3264 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 3265 if (!zone) 3266 return; 3267 mutex_lock(&pcpu_drain_mutex); 3268 } 3269 3270 /* 3271 * We don't care about racing with CPU hotplug event 3272 * as offline notification will cause the notified 3273 * cpu to drain that CPU pcps and on_each_cpu_mask 3274 * disables preemption as part of its processing 3275 */ 3276 for_each_online_cpu(cpu) { 3277 struct per_cpu_pages *pcp; 3278 struct zone *z; 3279 bool has_pcps = false; 3280 3281 if (force_all_cpus) { 3282 /* 3283 * The pcp.count check is racy, some callers need a 3284 * guarantee that no cpu is missed. 3285 */ 3286 has_pcps = true; 3287 } else if (zone) { 3288 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 3289 if (pcp->count) 3290 has_pcps = true; 3291 } else { 3292 for_each_populated_zone(z) { 3293 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); 3294 if (pcp->count) { 3295 has_pcps = true; 3296 break; 3297 } 3298 } 3299 } 3300 3301 if (has_pcps) 3302 cpumask_set_cpu(cpu, &cpus_with_pcps); 3303 else 3304 cpumask_clear_cpu(cpu, &cpus_with_pcps); 3305 } 3306 3307 for_each_cpu(cpu, &cpus_with_pcps) { 3308 if (zone) 3309 drain_pages_zone(cpu, zone); 3310 else 3311 drain_pages(cpu); 3312 } 3313 3314 mutex_unlock(&pcpu_drain_mutex); 3315 } 3316 3317 /* 3318 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 3319 * 3320 * When zone parameter is non-NULL, spill just the single zone's pages. 3321 */ 3322 void drain_all_pages(struct zone *zone) 3323 { 3324 __drain_all_pages(zone, false); 3325 } 3326 3327 #ifdef CONFIG_HIBERNATION 3328 3329 /* 3330 * Touch the watchdog for every WD_PAGE_COUNT pages. 3331 */ 3332 #define WD_PAGE_COUNT (128*1024) 3333 3334 void mark_free_pages(struct zone *zone) 3335 { 3336 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 3337 unsigned long flags; 3338 unsigned int order, t; 3339 struct page *page; 3340 3341 if (zone_is_empty(zone)) 3342 return; 3343 3344 spin_lock_irqsave(&zone->lock, flags); 3345 3346 max_zone_pfn = zone_end_pfn(zone); 3347 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 3348 if (pfn_valid(pfn)) { 3349 page = pfn_to_page(pfn); 3350 3351 if (!--page_count) { 3352 touch_nmi_watchdog(); 3353 page_count = WD_PAGE_COUNT; 3354 } 3355 3356 if (page_zone(page) != zone) 3357 continue; 3358 3359 if (!swsusp_page_is_forbidden(page)) 3360 swsusp_unset_page_free(page); 3361 } 3362 3363 for_each_migratetype_order(order, t) { 3364 list_for_each_entry(page, 3365 &zone->free_area[order].free_list[t], buddy_list) { 3366 unsigned long i; 3367 3368 pfn = page_to_pfn(page); 3369 for (i = 0; i < (1UL << order); i++) { 3370 if (!--page_count) { 3371 touch_nmi_watchdog(); 3372 page_count = WD_PAGE_COUNT; 3373 } 3374 swsusp_set_page_free(pfn_to_page(pfn + i)); 3375 } 3376 } 3377 } 3378 spin_unlock_irqrestore(&zone->lock, flags); 3379 } 3380 #endif /* CONFIG_PM */ 3381 3382 static bool free_unref_page_prepare(struct page *page, unsigned long pfn, 3383 unsigned int order) 3384 { 3385 int migratetype; 3386 3387 if (!free_pcp_prepare(page, order)) 3388 return false; 3389 3390 migratetype = get_pfnblock_migratetype(page, pfn); 3391 set_pcppage_migratetype(page, migratetype); 3392 return true; 3393 } 3394 3395 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch, 3396 bool free_high) 3397 { 3398 int min_nr_free, max_nr_free; 3399 3400 /* Free everything if batch freeing high-order pages. */ 3401 if (unlikely(free_high)) 3402 return pcp->count; 3403 3404 /* Check for PCP disabled or boot pageset */ 3405 if (unlikely(high < batch)) 3406 return 1; 3407 3408 /* Leave at least pcp->batch pages on the list */ 3409 min_nr_free = batch; 3410 max_nr_free = high - batch; 3411 3412 /* 3413 * Double the number of pages freed each time there is subsequent 3414 * freeing of pages without any allocation. 3415 */ 3416 batch <<= pcp->free_factor; 3417 if (batch < max_nr_free) 3418 pcp->free_factor++; 3419 batch = clamp(batch, min_nr_free, max_nr_free); 3420 3421 return batch; 3422 } 3423 3424 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone, 3425 bool free_high) 3426 { 3427 int high = READ_ONCE(pcp->high); 3428 3429 if (unlikely(!high || free_high)) 3430 return 0; 3431 3432 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) 3433 return high; 3434 3435 /* 3436 * If reclaim is active, limit the number of pages that can be 3437 * stored on pcp lists 3438 */ 3439 return min(READ_ONCE(pcp->batch) << 2, high); 3440 } 3441 3442 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp, 3443 struct page *page, int migratetype, 3444 unsigned int order) 3445 { 3446 int high; 3447 int pindex; 3448 bool free_high; 3449 3450 __count_vm_events(PGFREE, 1 << order); 3451 pindex = order_to_pindex(migratetype, order); 3452 list_add(&page->pcp_list, &pcp->lists[pindex]); 3453 pcp->count += 1 << order; 3454 3455 /* 3456 * As high-order pages other than THP's stored on PCP can contribute 3457 * to fragmentation, limit the number stored when PCP is heavily 3458 * freeing without allocation. The remainder after bulk freeing 3459 * stops will be drained from vmstat refresh context. 3460 */ 3461 free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER); 3462 3463 high = nr_pcp_high(pcp, zone, free_high); 3464 if (pcp->count >= high) { 3465 int batch = READ_ONCE(pcp->batch); 3466 3467 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex); 3468 } 3469 } 3470 3471 /* 3472 * Free a pcp page 3473 */ 3474 void free_unref_page(struct page *page, unsigned int order) 3475 { 3476 unsigned long __maybe_unused UP_flags; 3477 struct per_cpu_pages *pcp; 3478 struct zone *zone; 3479 unsigned long pfn = page_to_pfn(page); 3480 int migratetype; 3481 3482 if (!free_unref_page_prepare(page, pfn, order)) 3483 return; 3484 3485 /* 3486 * We only track unmovable, reclaimable and movable on pcp lists. 3487 * Place ISOLATE pages on the isolated list because they are being 3488 * offlined but treat HIGHATOMIC as movable pages so we can get those 3489 * areas back if necessary. Otherwise, we may have to free 3490 * excessively into the page allocator 3491 */ 3492 migratetype = get_pcppage_migratetype(page); 3493 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 3494 if (unlikely(is_migrate_isolate(migratetype))) { 3495 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE); 3496 return; 3497 } 3498 migratetype = MIGRATE_MOVABLE; 3499 } 3500 3501 zone = page_zone(page); 3502 pcp_trylock_prepare(UP_flags); 3503 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 3504 if (pcp) { 3505 free_unref_page_commit(zone, pcp, page, migratetype, order); 3506 pcp_spin_unlock(pcp); 3507 } else { 3508 free_one_page(zone, page, pfn, order, migratetype, FPI_NONE); 3509 } 3510 pcp_trylock_finish(UP_flags); 3511 } 3512 3513 /* 3514 * Free a list of 0-order pages 3515 */ 3516 void free_unref_page_list(struct list_head *list) 3517 { 3518 unsigned long __maybe_unused UP_flags; 3519 struct page *page, *next; 3520 struct per_cpu_pages *pcp = NULL; 3521 struct zone *locked_zone = NULL; 3522 int batch_count = 0; 3523 int migratetype; 3524 3525 /* Prepare pages for freeing */ 3526 list_for_each_entry_safe(page, next, list, lru) { 3527 unsigned long pfn = page_to_pfn(page); 3528 if (!free_unref_page_prepare(page, pfn, 0)) { 3529 list_del(&page->lru); 3530 continue; 3531 } 3532 3533 /* 3534 * Free isolated pages directly to the allocator, see 3535 * comment in free_unref_page. 3536 */ 3537 migratetype = get_pcppage_migratetype(page); 3538 if (unlikely(is_migrate_isolate(migratetype))) { 3539 list_del(&page->lru); 3540 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE); 3541 continue; 3542 } 3543 } 3544 3545 list_for_each_entry_safe(page, next, list, lru) { 3546 struct zone *zone = page_zone(page); 3547 3548 list_del(&page->lru); 3549 migratetype = get_pcppage_migratetype(page); 3550 3551 /* 3552 * Either different zone requiring a different pcp lock or 3553 * excessive lock hold times when freeing a large list of 3554 * pages. 3555 */ 3556 if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) { 3557 if (pcp) { 3558 pcp_spin_unlock(pcp); 3559 pcp_trylock_finish(UP_flags); 3560 } 3561 3562 batch_count = 0; 3563 3564 /* 3565 * trylock is necessary as pages may be getting freed 3566 * from IRQ or SoftIRQ context after an IO completion. 3567 */ 3568 pcp_trylock_prepare(UP_flags); 3569 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 3570 if (unlikely(!pcp)) { 3571 pcp_trylock_finish(UP_flags); 3572 free_one_page(zone, page, page_to_pfn(page), 3573 0, migratetype, FPI_NONE); 3574 locked_zone = NULL; 3575 continue; 3576 } 3577 locked_zone = zone; 3578 } 3579 3580 /* 3581 * Non-isolated types over MIGRATE_PCPTYPES get added 3582 * to the MIGRATE_MOVABLE pcp list. 3583 */ 3584 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) 3585 migratetype = MIGRATE_MOVABLE; 3586 3587 trace_mm_page_free_batched(page); 3588 free_unref_page_commit(zone, pcp, page, migratetype, 0); 3589 batch_count++; 3590 } 3591 3592 if (pcp) { 3593 pcp_spin_unlock(pcp); 3594 pcp_trylock_finish(UP_flags); 3595 } 3596 } 3597 3598 /* 3599 * split_page takes a non-compound higher-order page, and splits it into 3600 * n (1<<order) sub-pages: page[0..n] 3601 * Each sub-page must be freed individually. 3602 * 3603 * Note: this is probably too low level an operation for use in drivers. 3604 * Please consult with lkml before using this in your driver. 3605 */ 3606 void split_page(struct page *page, unsigned int order) 3607 { 3608 int i; 3609 3610 VM_BUG_ON_PAGE(PageCompound(page), page); 3611 VM_BUG_ON_PAGE(!page_count(page), page); 3612 3613 for (i = 1; i < (1 << order); i++) 3614 set_page_refcounted(page + i); 3615 split_page_owner(page, 1 << order); 3616 split_page_memcg(page, 1 << order); 3617 } 3618 EXPORT_SYMBOL_GPL(split_page); 3619 3620 int __isolate_free_page(struct page *page, unsigned int order) 3621 { 3622 struct zone *zone = page_zone(page); 3623 int mt = get_pageblock_migratetype(page); 3624 3625 if (!is_migrate_isolate(mt)) { 3626 unsigned long watermark; 3627 /* 3628 * Obey watermarks as if the page was being allocated. We can 3629 * emulate a high-order watermark check with a raised order-0 3630 * watermark, because we already know our high-order page 3631 * exists. 3632 */ 3633 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 3634 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 3635 return 0; 3636 3637 __mod_zone_freepage_state(zone, -(1UL << order), mt); 3638 } 3639 3640 del_page_from_free_list(page, zone, order); 3641 3642 /* 3643 * Set the pageblock if the isolated page is at least half of a 3644 * pageblock 3645 */ 3646 if (order >= pageblock_order - 1) { 3647 struct page *endpage = page + (1 << order) - 1; 3648 for (; page < endpage; page += pageblock_nr_pages) { 3649 int mt = get_pageblock_migratetype(page); 3650 /* 3651 * Only change normal pageblocks (i.e., they can merge 3652 * with others) 3653 */ 3654 if (migratetype_is_mergeable(mt)) 3655 set_pageblock_migratetype(page, 3656 MIGRATE_MOVABLE); 3657 } 3658 } 3659 3660 return 1UL << order; 3661 } 3662 3663 /** 3664 * __putback_isolated_page - Return a now-isolated page back where we got it 3665 * @page: Page that was isolated 3666 * @order: Order of the isolated page 3667 * @mt: The page's pageblock's migratetype 3668 * 3669 * This function is meant to return a page pulled from the free lists via 3670 * __isolate_free_page back to the free lists they were pulled from. 3671 */ 3672 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 3673 { 3674 struct zone *zone = page_zone(page); 3675 3676 /* zone lock should be held when this function is called */ 3677 lockdep_assert_held(&zone->lock); 3678 3679 /* Return isolated page to tail of freelist. */ 3680 __free_one_page(page, page_to_pfn(page), zone, order, mt, 3681 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 3682 } 3683 3684 /* 3685 * Update NUMA hit/miss statistics 3686 */ 3687 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 3688 long nr_account) 3689 { 3690 #ifdef CONFIG_NUMA 3691 enum numa_stat_item local_stat = NUMA_LOCAL; 3692 3693 /* skip numa counters update if numa stats is disabled */ 3694 if (!static_branch_likely(&vm_numa_stat_key)) 3695 return; 3696 3697 if (zone_to_nid(z) != numa_node_id()) 3698 local_stat = NUMA_OTHER; 3699 3700 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 3701 __count_numa_events(z, NUMA_HIT, nr_account); 3702 else { 3703 __count_numa_events(z, NUMA_MISS, nr_account); 3704 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); 3705 } 3706 __count_numa_events(z, local_stat, nr_account); 3707 #endif 3708 } 3709 3710 static __always_inline 3711 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone, 3712 unsigned int order, unsigned int alloc_flags, 3713 int migratetype) 3714 { 3715 struct page *page; 3716 unsigned long flags; 3717 3718 do { 3719 page = NULL; 3720 spin_lock_irqsave(&zone->lock, flags); 3721 /* 3722 * order-0 request can reach here when the pcplist is skipped 3723 * due to non-CMA allocation context. HIGHATOMIC area is 3724 * reserved for high-order atomic allocation, so order-0 3725 * request should skip it. 3726 */ 3727 if (order > 0 && alloc_flags & ALLOC_HARDER) 3728 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3729 if (!page) { 3730 page = __rmqueue(zone, order, migratetype, alloc_flags); 3731 if (!page) { 3732 spin_unlock_irqrestore(&zone->lock, flags); 3733 return NULL; 3734 } 3735 } 3736 __mod_zone_freepage_state(zone, -(1 << order), 3737 get_pcppage_migratetype(page)); 3738 spin_unlock_irqrestore(&zone->lock, flags); 3739 } while (check_new_pages(page, order)); 3740 3741 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3742 zone_statistics(preferred_zone, zone, 1); 3743 3744 return page; 3745 } 3746 3747 /* Remove page from the per-cpu list, caller must protect the list */ 3748 static inline 3749 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, 3750 int migratetype, 3751 unsigned int alloc_flags, 3752 struct per_cpu_pages *pcp, 3753 struct list_head *list) 3754 { 3755 struct page *page; 3756 3757 do { 3758 if (list_empty(list)) { 3759 int batch = READ_ONCE(pcp->batch); 3760 int alloced; 3761 3762 /* 3763 * Scale batch relative to order if batch implies 3764 * free pages can be stored on the PCP. Batch can 3765 * be 1 for small zones or for boot pagesets which 3766 * should never store free pages as the pages may 3767 * belong to arbitrary zones. 3768 */ 3769 if (batch > 1) 3770 batch = max(batch >> order, 2); 3771 alloced = rmqueue_bulk(zone, order, 3772 batch, list, 3773 migratetype, alloc_flags); 3774 3775 pcp->count += alloced << order; 3776 if (unlikely(list_empty(list))) 3777 return NULL; 3778 } 3779 3780 page = list_first_entry(list, struct page, pcp_list); 3781 list_del(&page->pcp_list); 3782 pcp->count -= 1 << order; 3783 } while (check_new_pcp(page, order)); 3784 3785 return page; 3786 } 3787 3788 /* Lock and remove page from the per-cpu list */ 3789 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3790 struct zone *zone, unsigned int order, 3791 int migratetype, unsigned int alloc_flags) 3792 { 3793 struct per_cpu_pages *pcp; 3794 struct list_head *list; 3795 struct page *page; 3796 unsigned long __maybe_unused UP_flags; 3797 3798 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 3799 pcp_trylock_prepare(UP_flags); 3800 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 3801 if (!pcp) { 3802 pcp_trylock_finish(UP_flags); 3803 return NULL; 3804 } 3805 3806 /* 3807 * On allocation, reduce the number of pages that are batch freed. 3808 * See nr_pcp_free() where free_factor is increased for subsequent 3809 * frees. 3810 */ 3811 pcp->free_factor >>= 1; 3812 list = &pcp->lists[order_to_pindex(migratetype, order)]; 3813 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); 3814 pcp_spin_unlock(pcp); 3815 pcp_trylock_finish(UP_flags); 3816 if (page) { 3817 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3818 zone_statistics(preferred_zone, zone, 1); 3819 } 3820 return page; 3821 } 3822 3823 /* 3824 * Allocate a page from the given zone. 3825 * Use pcplists for THP or "cheap" high-order allocations. 3826 */ 3827 3828 /* 3829 * Do not instrument rmqueue() with KMSAN. This function may call 3830 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask(). 3831 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it 3832 * may call rmqueue() again, which will result in a deadlock. 3833 */ 3834 __no_sanitize_memory 3835 static inline 3836 struct page *rmqueue(struct zone *preferred_zone, 3837 struct zone *zone, unsigned int order, 3838 gfp_t gfp_flags, unsigned int alloc_flags, 3839 int migratetype) 3840 { 3841 struct page *page; 3842 3843 /* 3844 * We most definitely don't want callers attempting to 3845 * allocate greater than order-1 page units with __GFP_NOFAIL. 3846 */ 3847 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3848 3849 if (likely(pcp_allowed_order(order))) { 3850 /* 3851 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and 3852 * we need to skip it when CMA area isn't allowed. 3853 */ 3854 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA || 3855 migratetype != MIGRATE_MOVABLE) { 3856 page = rmqueue_pcplist(preferred_zone, zone, order, 3857 migratetype, alloc_flags); 3858 if (likely(page)) 3859 goto out; 3860 } 3861 } 3862 3863 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags, 3864 migratetype); 3865 3866 out: 3867 /* Separate test+clear to avoid unnecessary atomics */ 3868 if (unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) { 3869 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3870 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3871 } 3872 3873 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3874 return page; 3875 } 3876 3877 #ifdef CONFIG_FAIL_PAGE_ALLOC 3878 3879 static struct { 3880 struct fault_attr attr; 3881 3882 bool ignore_gfp_highmem; 3883 bool ignore_gfp_reclaim; 3884 u32 min_order; 3885 } fail_page_alloc = { 3886 .attr = FAULT_ATTR_INITIALIZER, 3887 .ignore_gfp_reclaim = true, 3888 .ignore_gfp_highmem = true, 3889 .min_order = 1, 3890 }; 3891 3892 static int __init setup_fail_page_alloc(char *str) 3893 { 3894 return setup_fault_attr(&fail_page_alloc.attr, str); 3895 } 3896 __setup("fail_page_alloc=", setup_fail_page_alloc); 3897 3898 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3899 { 3900 int flags = 0; 3901 3902 if (order < fail_page_alloc.min_order) 3903 return false; 3904 if (gfp_mask & __GFP_NOFAIL) 3905 return false; 3906 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3907 return false; 3908 if (fail_page_alloc.ignore_gfp_reclaim && 3909 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3910 return false; 3911 3912 /* See comment in __should_failslab() */ 3913 if (gfp_mask & __GFP_NOWARN) 3914 flags |= FAULT_NOWARN; 3915 3916 return should_fail_ex(&fail_page_alloc.attr, 1 << order, flags); 3917 } 3918 3919 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3920 3921 static int __init fail_page_alloc_debugfs(void) 3922 { 3923 umode_t mode = S_IFREG | 0600; 3924 struct dentry *dir; 3925 3926 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3927 &fail_page_alloc.attr); 3928 3929 debugfs_create_bool("ignore-gfp-wait", mode, dir, 3930 &fail_page_alloc.ignore_gfp_reclaim); 3931 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3932 &fail_page_alloc.ignore_gfp_highmem); 3933 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order); 3934 3935 return 0; 3936 } 3937 3938 late_initcall(fail_page_alloc_debugfs); 3939 3940 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3941 3942 #else /* CONFIG_FAIL_PAGE_ALLOC */ 3943 3944 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3945 { 3946 return false; 3947 } 3948 3949 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3950 3951 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3952 { 3953 return __should_fail_alloc_page(gfp_mask, order); 3954 } 3955 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 3956 3957 static inline long __zone_watermark_unusable_free(struct zone *z, 3958 unsigned int order, unsigned int alloc_flags) 3959 { 3960 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3961 long unusable_free = (1 << order) - 1; 3962 3963 /* 3964 * If the caller does not have rights to ALLOC_HARDER then subtract 3965 * the high-atomic reserves. This will over-estimate the size of the 3966 * atomic reserve but it avoids a search. 3967 */ 3968 if (likely(!alloc_harder)) 3969 unusable_free += z->nr_reserved_highatomic; 3970 3971 #ifdef CONFIG_CMA 3972 /* If allocation can't use CMA areas don't use free CMA pages */ 3973 if (!(alloc_flags & ALLOC_CMA)) 3974 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3975 #endif 3976 3977 return unusable_free; 3978 } 3979 3980 /* 3981 * Return true if free base pages are above 'mark'. For high-order checks it 3982 * will return true of the order-0 watermark is reached and there is at least 3983 * one free page of a suitable size. Checking now avoids taking the zone lock 3984 * to check in the allocation paths if no pages are free. 3985 */ 3986 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3987 int highest_zoneidx, unsigned int alloc_flags, 3988 long free_pages) 3989 { 3990 long min = mark; 3991 int o; 3992 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3993 3994 /* free_pages may go negative - that's OK */ 3995 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3996 3997 if (alloc_flags & ALLOC_HIGH) 3998 min -= min / 2; 3999 4000 if (unlikely(alloc_harder)) { 4001 /* 4002 * OOM victims can try even harder than normal ALLOC_HARDER 4003 * users on the grounds that it's definitely going to be in 4004 * the exit path shortly and free memory. Any allocation it 4005 * makes during the free path will be small and short-lived. 4006 */ 4007 if (alloc_flags & ALLOC_OOM) 4008 min -= min / 2; 4009 else 4010 min -= min / 4; 4011 } 4012 4013 /* 4014 * Check watermarks for an order-0 allocation request. If these 4015 * are not met, then a high-order request also cannot go ahead 4016 * even if a suitable page happened to be free. 4017 */ 4018 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 4019 return false; 4020 4021 /* If this is an order-0 request then the watermark is fine */ 4022 if (!order) 4023 return true; 4024 4025 /* For a high-order request, check at least one suitable page is free */ 4026 for (o = order; o < MAX_ORDER; o++) { 4027 struct free_area *area = &z->free_area[o]; 4028 int mt; 4029 4030 if (!area->nr_free) 4031 continue; 4032 4033 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 4034 if (!free_area_empty(area, mt)) 4035 return true; 4036 } 4037 4038 #ifdef CONFIG_CMA 4039 if ((alloc_flags & ALLOC_CMA) && 4040 !free_area_empty(area, MIGRATE_CMA)) { 4041 return true; 4042 } 4043 #endif 4044 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC)) 4045 return true; 4046 } 4047 return false; 4048 } 4049 4050 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 4051 int highest_zoneidx, unsigned int alloc_flags) 4052 { 4053 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 4054 zone_page_state(z, NR_FREE_PAGES)); 4055 } 4056 4057 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 4058 unsigned long mark, int highest_zoneidx, 4059 unsigned int alloc_flags, gfp_t gfp_mask) 4060 { 4061 long free_pages; 4062 4063 free_pages = zone_page_state(z, NR_FREE_PAGES); 4064 4065 /* 4066 * Fast check for order-0 only. If this fails then the reserves 4067 * need to be calculated. 4068 */ 4069 if (!order) { 4070 long usable_free; 4071 long reserved; 4072 4073 usable_free = free_pages; 4074 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags); 4075 4076 /* reserved may over estimate high-atomic reserves. */ 4077 usable_free -= min(usable_free, reserved); 4078 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx]) 4079 return true; 4080 } 4081 4082 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 4083 free_pages)) 4084 return true; 4085 /* 4086 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations 4087 * when checking the min watermark. The min watermark is the 4088 * point where boosting is ignored so that kswapd is woken up 4089 * when below the low watermark. 4090 */ 4091 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost 4092 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 4093 mark = z->_watermark[WMARK_MIN]; 4094 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 4095 alloc_flags, free_pages); 4096 } 4097 4098 return false; 4099 } 4100 4101 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 4102 unsigned long mark, int highest_zoneidx) 4103 { 4104 long free_pages = zone_page_state(z, NR_FREE_PAGES); 4105 4106 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 4107 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 4108 4109 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 4110 free_pages); 4111 } 4112 4113 #ifdef CONFIG_NUMA 4114 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 4115 4116 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 4117 { 4118 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 4119 node_reclaim_distance; 4120 } 4121 #else /* CONFIG_NUMA */ 4122 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 4123 { 4124 return true; 4125 } 4126 #endif /* CONFIG_NUMA */ 4127 4128 /* 4129 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 4130 * fragmentation is subtle. If the preferred zone was HIGHMEM then 4131 * premature use of a lower zone may cause lowmem pressure problems that 4132 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 4133 * probably too small. It only makes sense to spread allocations to avoid 4134 * fragmentation between the Normal and DMA32 zones. 4135 */ 4136 static inline unsigned int 4137 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 4138 { 4139 unsigned int alloc_flags; 4140 4141 /* 4142 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4143 * to save a branch. 4144 */ 4145 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 4146 4147 #ifdef CONFIG_ZONE_DMA32 4148 if (!zone) 4149 return alloc_flags; 4150 4151 if (zone_idx(zone) != ZONE_NORMAL) 4152 return alloc_flags; 4153 4154 /* 4155 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 4156 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 4157 * on UMA that if Normal is populated then so is DMA32. 4158 */ 4159 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 4160 if (nr_online_nodes > 1 && !populated_zone(--zone)) 4161 return alloc_flags; 4162 4163 alloc_flags |= ALLOC_NOFRAGMENT; 4164 #endif /* CONFIG_ZONE_DMA32 */ 4165 return alloc_flags; 4166 } 4167 4168 /* Must be called after current_gfp_context() which can change gfp_mask */ 4169 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 4170 unsigned int alloc_flags) 4171 { 4172 #ifdef CONFIG_CMA 4173 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 4174 alloc_flags |= ALLOC_CMA; 4175 #endif 4176 return alloc_flags; 4177 } 4178 4179 /* 4180 * get_page_from_freelist goes through the zonelist trying to allocate 4181 * a page. 4182 */ 4183 static struct page * 4184 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 4185 const struct alloc_context *ac) 4186 { 4187 struct zoneref *z; 4188 struct zone *zone; 4189 struct pglist_data *last_pgdat = NULL; 4190 bool last_pgdat_dirty_ok = false; 4191 bool no_fallback; 4192 4193 retry: 4194 /* 4195 * Scan zonelist, looking for a zone with enough free. 4196 * See also __cpuset_node_allowed() comment in kernel/cgroup/cpuset.c. 4197 */ 4198 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 4199 z = ac->preferred_zoneref; 4200 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 4201 ac->nodemask) { 4202 struct page *page; 4203 unsigned long mark; 4204 4205 if (cpusets_enabled() && 4206 (alloc_flags & ALLOC_CPUSET) && 4207 !__cpuset_zone_allowed(zone, gfp_mask)) 4208 continue; 4209 /* 4210 * When allocating a page cache page for writing, we 4211 * want to get it from a node that is within its dirty 4212 * limit, such that no single node holds more than its 4213 * proportional share of globally allowed dirty pages. 4214 * The dirty limits take into account the node's 4215 * lowmem reserves and high watermark so that kswapd 4216 * should be able to balance it without having to 4217 * write pages from its LRU list. 4218 * 4219 * XXX: For now, allow allocations to potentially 4220 * exceed the per-node dirty limit in the slowpath 4221 * (spread_dirty_pages unset) before going into reclaim, 4222 * which is important when on a NUMA setup the allowed 4223 * nodes are together not big enough to reach the 4224 * global limit. The proper fix for these situations 4225 * will require awareness of nodes in the 4226 * dirty-throttling and the flusher threads. 4227 */ 4228 if (ac->spread_dirty_pages) { 4229 if (last_pgdat != zone->zone_pgdat) { 4230 last_pgdat = zone->zone_pgdat; 4231 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat); 4232 } 4233 4234 if (!last_pgdat_dirty_ok) 4235 continue; 4236 } 4237 4238 if (no_fallback && nr_online_nodes > 1 && 4239 zone != ac->preferred_zoneref->zone) { 4240 int local_nid; 4241 4242 /* 4243 * If moving to a remote node, retry but allow 4244 * fragmenting fallbacks. Locality is more important 4245 * than fragmentation avoidance. 4246 */ 4247 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 4248 if (zone_to_nid(zone) != local_nid) { 4249 alloc_flags &= ~ALLOC_NOFRAGMENT; 4250 goto retry; 4251 } 4252 } 4253 4254 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 4255 if (!zone_watermark_fast(zone, order, mark, 4256 ac->highest_zoneidx, alloc_flags, 4257 gfp_mask)) { 4258 int ret; 4259 4260 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 4261 /* 4262 * Watermark failed for this zone, but see if we can 4263 * grow this zone if it contains deferred pages. 4264 */ 4265 if (static_branch_unlikely(&deferred_pages)) { 4266 if (_deferred_grow_zone(zone, order)) 4267 goto try_this_zone; 4268 } 4269 #endif 4270 /* Checked here to keep the fast path fast */ 4271 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 4272 if (alloc_flags & ALLOC_NO_WATERMARKS) 4273 goto try_this_zone; 4274 4275 if (!node_reclaim_enabled() || 4276 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 4277 continue; 4278 4279 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 4280 switch (ret) { 4281 case NODE_RECLAIM_NOSCAN: 4282 /* did not scan */ 4283 continue; 4284 case NODE_RECLAIM_FULL: 4285 /* scanned but unreclaimable */ 4286 continue; 4287 default: 4288 /* did we reclaim enough */ 4289 if (zone_watermark_ok(zone, order, mark, 4290 ac->highest_zoneidx, alloc_flags)) 4291 goto try_this_zone; 4292 4293 continue; 4294 } 4295 } 4296 4297 try_this_zone: 4298 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 4299 gfp_mask, alloc_flags, ac->migratetype); 4300 if (page) { 4301 prep_new_page(page, order, gfp_mask, alloc_flags); 4302 4303 /* 4304 * If this is a high-order atomic allocation then check 4305 * if the pageblock should be reserved for the future 4306 */ 4307 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 4308 reserve_highatomic_pageblock(page, zone, order); 4309 4310 return page; 4311 } else { 4312 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 4313 /* Try again if zone has deferred pages */ 4314 if (static_branch_unlikely(&deferred_pages)) { 4315 if (_deferred_grow_zone(zone, order)) 4316 goto try_this_zone; 4317 } 4318 #endif 4319 } 4320 } 4321 4322 /* 4323 * It's possible on a UMA machine to get through all zones that are 4324 * fragmented. If avoiding fragmentation, reset and try again. 4325 */ 4326 if (no_fallback) { 4327 alloc_flags &= ~ALLOC_NOFRAGMENT; 4328 goto retry; 4329 } 4330 4331 return NULL; 4332 } 4333 4334 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 4335 { 4336 unsigned int filter = SHOW_MEM_FILTER_NODES; 4337 4338 /* 4339 * This documents exceptions given to allocations in certain 4340 * contexts that are allowed to allocate outside current's set 4341 * of allowed nodes. 4342 */ 4343 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4344 if (tsk_is_oom_victim(current) || 4345 (current->flags & (PF_MEMALLOC | PF_EXITING))) 4346 filter &= ~SHOW_MEM_FILTER_NODES; 4347 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 4348 filter &= ~SHOW_MEM_FILTER_NODES; 4349 4350 __show_mem(filter, nodemask, gfp_zone(gfp_mask)); 4351 } 4352 4353 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 4354 { 4355 struct va_format vaf; 4356 va_list args; 4357 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 4358 4359 if ((gfp_mask & __GFP_NOWARN) || 4360 !__ratelimit(&nopage_rs) || 4361 ((gfp_mask & __GFP_DMA) && !has_managed_dma())) 4362 return; 4363 4364 va_start(args, fmt); 4365 vaf.fmt = fmt; 4366 vaf.va = &args; 4367 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 4368 current->comm, &vaf, gfp_mask, &gfp_mask, 4369 nodemask_pr_args(nodemask)); 4370 va_end(args); 4371 4372 cpuset_print_current_mems_allowed(); 4373 pr_cont("\n"); 4374 dump_stack(); 4375 warn_alloc_show_mem(gfp_mask, nodemask); 4376 } 4377 4378 static inline struct page * 4379 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 4380 unsigned int alloc_flags, 4381 const struct alloc_context *ac) 4382 { 4383 struct page *page; 4384 4385 page = get_page_from_freelist(gfp_mask, order, 4386 alloc_flags|ALLOC_CPUSET, ac); 4387 /* 4388 * fallback to ignore cpuset restriction if our nodes 4389 * are depleted 4390 */ 4391 if (!page) 4392 page = get_page_from_freelist(gfp_mask, order, 4393 alloc_flags, ac); 4394 4395 return page; 4396 } 4397 4398 static inline struct page * 4399 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 4400 const struct alloc_context *ac, unsigned long *did_some_progress) 4401 { 4402 struct oom_control oc = { 4403 .zonelist = ac->zonelist, 4404 .nodemask = ac->nodemask, 4405 .memcg = NULL, 4406 .gfp_mask = gfp_mask, 4407 .order = order, 4408 }; 4409 struct page *page; 4410 4411 *did_some_progress = 0; 4412 4413 /* 4414 * Acquire the oom lock. If that fails, somebody else is 4415 * making progress for us. 4416 */ 4417 if (!mutex_trylock(&oom_lock)) { 4418 *did_some_progress = 1; 4419 schedule_timeout_uninterruptible(1); 4420 return NULL; 4421 } 4422 4423 /* 4424 * Go through the zonelist yet one more time, keep very high watermark 4425 * here, this is only to catch a parallel oom killing, we must fail if 4426 * we're still under heavy pressure. But make sure that this reclaim 4427 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 4428 * allocation which will never fail due to oom_lock already held. 4429 */ 4430 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 4431 ~__GFP_DIRECT_RECLAIM, order, 4432 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 4433 if (page) 4434 goto out; 4435 4436 /* Coredumps can quickly deplete all memory reserves */ 4437 if (current->flags & PF_DUMPCORE) 4438 goto out; 4439 /* The OOM killer will not help higher order allocs */ 4440 if (order > PAGE_ALLOC_COSTLY_ORDER) 4441 goto out; 4442 /* 4443 * We have already exhausted all our reclaim opportunities without any 4444 * success so it is time to admit defeat. We will skip the OOM killer 4445 * because it is very likely that the caller has a more reasonable 4446 * fallback than shooting a random task. 4447 * 4448 * The OOM killer may not free memory on a specific node. 4449 */ 4450 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 4451 goto out; 4452 /* The OOM killer does not needlessly kill tasks for lowmem */ 4453 if (ac->highest_zoneidx < ZONE_NORMAL) 4454 goto out; 4455 if (pm_suspended_storage()) 4456 goto out; 4457 /* 4458 * XXX: GFP_NOFS allocations should rather fail than rely on 4459 * other request to make a forward progress. 4460 * We are in an unfortunate situation where out_of_memory cannot 4461 * do much for this context but let's try it to at least get 4462 * access to memory reserved if the current task is killed (see 4463 * out_of_memory). Once filesystems are ready to handle allocation 4464 * failures more gracefully we should just bail out here. 4465 */ 4466 4467 /* Exhausted what can be done so it's blame time */ 4468 if (out_of_memory(&oc) || 4469 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) { 4470 *did_some_progress = 1; 4471 4472 /* 4473 * Help non-failing allocations by giving them access to memory 4474 * reserves 4475 */ 4476 if (gfp_mask & __GFP_NOFAIL) 4477 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 4478 ALLOC_NO_WATERMARKS, ac); 4479 } 4480 out: 4481 mutex_unlock(&oom_lock); 4482 return page; 4483 } 4484 4485 /* 4486 * Maximum number of compaction retries with a progress before OOM 4487 * killer is consider as the only way to move forward. 4488 */ 4489 #define MAX_COMPACT_RETRIES 16 4490 4491 #ifdef CONFIG_COMPACTION 4492 /* Try memory compaction for high-order allocations before reclaim */ 4493 static struct page * 4494 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4495 unsigned int alloc_flags, const struct alloc_context *ac, 4496 enum compact_priority prio, enum compact_result *compact_result) 4497 { 4498 struct page *page = NULL; 4499 unsigned long pflags; 4500 unsigned int noreclaim_flag; 4501 4502 if (!order) 4503 return NULL; 4504 4505 psi_memstall_enter(&pflags); 4506 delayacct_compact_start(); 4507 noreclaim_flag = memalloc_noreclaim_save(); 4508 4509 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 4510 prio, &page); 4511 4512 memalloc_noreclaim_restore(noreclaim_flag); 4513 psi_memstall_leave(&pflags); 4514 delayacct_compact_end(); 4515 4516 if (*compact_result == COMPACT_SKIPPED) 4517 return NULL; 4518 /* 4519 * At least in one zone compaction wasn't deferred or skipped, so let's 4520 * count a compaction stall 4521 */ 4522 count_vm_event(COMPACTSTALL); 4523 4524 /* Prep a captured page if available */ 4525 if (page) 4526 prep_new_page(page, order, gfp_mask, alloc_flags); 4527 4528 /* Try get a page from the freelist if available */ 4529 if (!page) 4530 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4531 4532 if (page) { 4533 struct zone *zone = page_zone(page); 4534 4535 zone->compact_blockskip_flush = false; 4536 compaction_defer_reset(zone, order, true); 4537 count_vm_event(COMPACTSUCCESS); 4538 return page; 4539 } 4540 4541 /* 4542 * It's bad if compaction run occurs and fails. The most likely reason 4543 * is that pages exist, but not enough to satisfy watermarks. 4544 */ 4545 count_vm_event(COMPACTFAIL); 4546 4547 cond_resched(); 4548 4549 return NULL; 4550 } 4551 4552 static inline bool 4553 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 4554 enum compact_result compact_result, 4555 enum compact_priority *compact_priority, 4556 int *compaction_retries) 4557 { 4558 int max_retries = MAX_COMPACT_RETRIES; 4559 int min_priority; 4560 bool ret = false; 4561 int retries = *compaction_retries; 4562 enum compact_priority priority = *compact_priority; 4563 4564 if (!order) 4565 return false; 4566 4567 if (fatal_signal_pending(current)) 4568 return false; 4569 4570 if (compaction_made_progress(compact_result)) 4571 (*compaction_retries)++; 4572 4573 /* 4574 * compaction considers all the zone as desperately out of memory 4575 * so it doesn't really make much sense to retry except when the 4576 * failure could be caused by insufficient priority 4577 */ 4578 if (compaction_failed(compact_result)) 4579 goto check_priority; 4580 4581 /* 4582 * compaction was skipped because there are not enough order-0 pages 4583 * to work with, so we retry only if it looks like reclaim can help. 4584 */ 4585 if (compaction_needs_reclaim(compact_result)) { 4586 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 4587 goto out; 4588 } 4589 4590 /* 4591 * make sure the compaction wasn't deferred or didn't bail out early 4592 * due to locks contention before we declare that we should give up. 4593 * But the next retry should use a higher priority if allowed, so 4594 * we don't just keep bailing out endlessly. 4595 */ 4596 if (compaction_withdrawn(compact_result)) { 4597 goto check_priority; 4598 } 4599 4600 /* 4601 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 4602 * costly ones because they are de facto nofail and invoke OOM 4603 * killer to move on while costly can fail and users are ready 4604 * to cope with that. 1/4 retries is rather arbitrary but we 4605 * would need much more detailed feedback from compaction to 4606 * make a better decision. 4607 */ 4608 if (order > PAGE_ALLOC_COSTLY_ORDER) 4609 max_retries /= 4; 4610 if (*compaction_retries <= max_retries) { 4611 ret = true; 4612 goto out; 4613 } 4614 4615 /* 4616 * Make sure there are attempts at the highest priority if we exhausted 4617 * all retries or failed at the lower priorities. 4618 */ 4619 check_priority: 4620 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 4621 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 4622 4623 if (*compact_priority > min_priority) { 4624 (*compact_priority)--; 4625 *compaction_retries = 0; 4626 ret = true; 4627 } 4628 out: 4629 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 4630 return ret; 4631 } 4632 #else 4633 static inline struct page * 4634 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4635 unsigned int alloc_flags, const struct alloc_context *ac, 4636 enum compact_priority prio, enum compact_result *compact_result) 4637 { 4638 *compact_result = COMPACT_SKIPPED; 4639 return NULL; 4640 } 4641 4642 static inline bool 4643 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 4644 enum compact_result compact_result, 4645 enum compact_priority *compact_priority, 4646 int *compaction_retries) 4647 { 4648 struct zone *zone; 4649 struct zoneref *z; 4650 4651 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 4652 return false; 4653 4654 /* 4655 * There are setups with compaction disabled which would prefer to loop 4656 * inside the allocator rather than hit the oom killer prematurely. 4657 * Let's give them a good hope and keep retrying while the order-0 4658 * watermarks are OK. 4659 */ 4660 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4661 ac->highest_zoneidx, ac->nodemask) { 4662 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 4663 ac->highest_zoneidx, alloc_flags)) 4664 return true; 4665 } 4666 return false; 4667 } 4668 #endif /* CONFIG_COMPACTION */ 4669 4670 #ifdef CONFIG_LOCKDEP 4671 static struct lockdep_map __fs_reclaim_map = 4672 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 4673 4674 static bool __need_reclaim(gfp_t gfp_mask) 4675 { 4676 /* no reclaim without waiting on it */ 4677 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 4678 return false; 4679 4680 /* this guy won't enter reclaim */ 4681 if (current->flags & PF_MEMALLOC) 4682 return false; 4683 4684 if (gfp_mask & __GFP_NOLOCKDEP) 4685 return false; 4686 4687 return true; 4688 } 4689 4690 void __fs_reclaim_acquire(unsigned long ip) 4691 { 4692 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); 4693 } 4694 4695 void __fs_reclaim_release(unsigned long ip) 4696 { 4697 lock_release(&__fs_reclaim_map, ip); 4698 } 4699 4700 void fs_reclaim_acquire(gfp_t gfp_mask) 4701 { 4702 gfp_mask = current_gfp_context(gfp_mask); 4703 4704 if (__need_reclaim(gfp_mask)) { 4705 if (gfp_mask & __GFP_FS) 4706 __fs_reclaim_acquire(_RET_IP_); 4707 4708 #ifdef CONFIG_MMU_NOTIFIER 4709 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 4710 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 4711 #endif 4712 4713 } 4714 } 4715 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4716 4717 void fs_reclaim_release(gfp_t gfp_mask) 4718 { 4719 gfp_mask = current_gfp_context(gfp_mask); 4720 4721 if (__need_reclaim(gfp_mask)) { 4722 if (gfp_mask & __GFP_FS) 4723 __fs_reclaim_release(_RET_IP_); 4724 } 4725 } 4726 EXPORT_SYMBOL_GPL(fs_reclaim_release); 4727 #endif 4728 4729 /* 4730 * Zonelists may change due to hotplug during allocation. Detect when zonelists 4731 * have been rebuilt so allocation retries. Reader side does not lock and 4732 * retries the allocation if zonelist changes. Writer side is protected by the 4733 * embedded spin_lock. 4734 */ 4735 static DEFINE_SEQLOCK(zonelist_update_seq); 4736 4737 static unsigned int zonelist_iter_begin(void) 4738 { 4739 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 4740 return read_seqbegin(&zonelist_update_seq); 4741 4742 return 0; 4743 } 4744 4745 static unsigned int check_retry_zonelist(unsigned int seq) 4746 { 4747 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 4748 return read_seqretry(&zonelist_update_seq, seq); 4749 4750 return seq; 4751 } 4752 4753 /* Perform direct synchronous page reclaim */ 4754 static unsigned long 4755 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 4756 const struct alloc_context *ac) 4757 { 4758 unsigned int noreclaim_flag; 4759 unsigned long progress; 4760 4761 cond_resched(); 4762 4763 /* We now go into synchronous reclaim */ 4764 cpuset_memory_pressure_bump(); 4765 fs_reclaim_acquire(gfp_mask); 4766 noreclaim_flag = memalloc_noreclaim_save(); 4767 4768 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4769 ac->nodemask); 4770 4771 memalloc_noreclaim_restore(noreclaim_flag); 4772 fs_reclaim_release(gfp_mask); 4773 4774 cond_resched(); 4775 4776 return progress; 4777 } 4778 4779 /* The really slow allocator path where we enter direct reclaim */ 4780 static inline struct page * 4781 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4782 unsigned int alloc_flags, const struct alloc_context *ac, 4783 unsigned long *did_some_progress) 4784 { 4785 struct page *page = NULL; 4786 unsigned long pflags; 4787 bool drained = false; 4788 4789 psi_memstall_enter(&pflags); 4790 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4791 if (unlikely(!(*did_some_progress))) 4792 goto out; 4793 4794 retry: 4795 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4796 4797 /* 4798 * If an allocation failed after direct reclaim, it could be because 4799 * pages are pinned on the per-cpu lists or in high alloc reserves. 4800 * Shrink them and try again 4801 */ 4802 if (!page && !drained) { 4803 unreserve_highatomic_pageblock(ac, false); 4804 drain_all_pages(NULL); 4805 drained = true; 4806 goto retry; 4807 } 4808 out: 4809 psi_memstall_leave(&pflags); 4810 4811 return page; 4812 } 4813 4814 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4815 const struct alloc_context *ac) 4816 { 4817 struct zoneref *z; 4818 struct zone *zone; 4819 pg_data_t *last_pgdat = NULL; 4820 enum zone_type highest_zoneidx = ac->highest_zoneidx; 4821 4822 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 4823 ac->nodemask) { 4824 if (!managed_zone(zone)) 4825 continue; 4826 if (last_pgdat != zone->zone_pgdat) { 4827 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); 4828 last_pgdat = zone->zone_pgdat; 4829 } 4830 } 4831 } 4832 4833 static inline unsigned int 4834 gfp_to_alloc_flags(gfp_t gfp_mask) 4835 { 4836 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4837 4838 /* 4839 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH 4840 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4841 * to save two branches. 4842 */ 4843 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 4844 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 4845 4846 /* 4847 * The caller may dip into page reserves a bit more if the caller 4848 * cannot run direct reclaim, or if the caller has realtime scheduling 4849 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4850 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 4851 */ 4852 alloc_flags |= (__force int) 4853 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 4854 4855 if (gfp_mask & __GFP_ATOMIC) { 4856 /* 4857 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4858 * if it can't schedule. 4859 */ 4860 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4861 alloc_flags |= ALLOC_HARDER; 4862 /* 4863 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 4864 * comment for __cpuset_node_allowed(). 4865 */ 4866 alloc_flags &= ~ALLOC_CPUSET; 4867 } else if (unlikely(rt_task(current)) && in_task()) 4868 alloc_flags |= ALLOC_HARDER; 4869 4870 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 4871 4872 return alloc_flags; 4873 } 4874 4875 static bool oom_reserves_allowed(struct task_struct *tsk) 4876 { 4877 if (!tsk_is_oom_victim(tsk)) 4878 return false; 4879 4880 /* 4881 * !MMU doesn't have oom reaper so give access to memory reserves 4882 * only to the thread with TIF_MEMDIE set 4883 */ 4884 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4885 return false; 4886 4887 return true; 4888 } 4889 4890 /* 4891 * Distinguish requests which really need access to full memory 4892 * reserves from oom victims which can live with a portion of it 4893 */ 4894 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4895 { 4896 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4897 return 0; 4898 if (gfp_mask & __GFP_MEMALLOC) 4899 return ALLOC_NO_WATERMARKS; 4900 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4901 return ALLOC_NO_WATERMARKS; 4902 if (!in_interrupt()) { 4903 if (current->flags & PF_MEMALLOC) 4904 return ALLOC_NO_WATERMARKS; 4905 else if (oom_reserves_allowed(current)) 4906 return ALLOC_OOM; 4907 } 4908 4909 return 0; 4910 } 4911 4912 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4913 { 4914 return !!__gfp_pfmemalloc_flags(gfp_mask); 4915 } 4916 4917 /* 4918 * Checks whether it makes sense to retry the reclaim to make a forward progress 4919 * for the given allocation request. 4920 * 4921 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4922 * without success, or when we couldn't even meet the watermark if we 4923 * reclaimed all remaining pages on the LRU lists. 4924 * 4925 * Returns true if a retry is viable or false to enter the oom path. 4926 */ 4927 static inline bool 4928 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4929 struct alloc_context *ac, int alloc_flags, 4930 bool did_some_progress, int *no_progress_loops) 4931 { 4932 struct zone *zone; 4933 struct zoneref *z; 4934 bool ret = false; 4935 4936 /* 4937 * Costly allocations might have made a progress but this doesn't mean 4938 * their order will become available due to high fragmentation so 4939 * always increment the no progress counter for them 4940 */ 4941 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4942 *no_progress_loops = 0; 4943 else 4944 (*no_progress_loops)++; 4945 4946 /* 4947 * Make sure we converge to OOM if we cannot make any progress 4948 * several times in the row. 4949 */ 4950 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 4951 /* Before OOM, exhaust highatomic_reserve */ 4952 return unreserve_highatomic_pageblock(ac, true); 4953 } 4954 4955 /* 4956 * Keep reclaiming pages while there is a chance this will lead 4957 * somewhere. If none of the target zones can satisfy our allocation 4958 * request even if all reclaimable pages are considered then we are 4959 * screwed and have to go OOM. 4960 */ 4961 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4962 ac->highest_zoneidx, ac->nodemask) { 4963 unsigned long available; 4964 unsigned long reclaimable; 4965 unsigned long min_wmark = min_wmark_pages(zone); 4966 bool wmark; 4967 4968 available = reclaimable = zone_reclaimable_pages(zone); 4969 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4970 4971 /* 4972 * Would the allocation succeed if we reclaimed all 4973 * reclaimable pages? 4974 */ 4975 wmark = __zone_watermark_ok(zone, order, min_wmark, 4976 ac->highest_zoneidx, alloc_flags, available); 4977 trace_reclaim_retry_zone(z, order, reclaimable, 4978 available, min_wmark, *no_progress_loops, wmark); 4979 if (wmark) { 4980 ret = true; 4981 break; 4982 } 4983 } 4984 4985 /* 4986 * Memory allocation/reclaim might be called from a WQ context and the 4987 * current implementation of the WQ concurrency control doesn't 4988 * recognize that a particular WQ is congested if the worker thread is 4989 * looping without ever sleeping. Therefore we have to do a short sleep 4990 * here rather than calling cond_resched(). 4991 */ 4992 if (current->flags & PF_WQ_WORKER) 4993 schedule_timeout_uninterruptible(1); 4994 else 4995 cond_resched(); 4996 return ret; 4997 } 4998 4999 static inline bool 5000 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 5001 { 5002 /* 5003 * It's possible that cpuset's mems_allowed and the nodemask from 5004 * mempolicy don't intersect. This should be normally dealt with by 5005 * policy_nodemask(), but it's possible to race with cpuset update in 5006 * such a way the check therein was true, and then it became false 5007 * before we got our cpuset_mems_cookie here. 5008 * This assumes that for all allocations, ac->nodemask can come only 5009 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 5010 * when it does not intersect with the cpuset restrictions) or the 5011 * caller can deal with a violated nodemask. 5012 */ 5013 if (cpusets_enabled() && ac->nodemask && 5014 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 5015 ac->nodemask = NULL; 5016 return true; 5017 } 5018 5019 /* 5020 * When updating a task's mems_allowed or mempolicy nodemask, it is 5021 * possible to race with parallel threads in such a way that our 5022 * allocation can fail while the mask is being updated. If we are about 5023 * to fail, check if the cpuset changed during allocation and if so, 5024 * retry. 5025 */ 5026 if (read_mems_allowed_retry(cpuset_mems_cookie)) 5027 return true; 5028 5029 return false; 5030 } 5031 5032 static inline struct page * 5033 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 5034 struct alloc_context *ac) 5035 { 5036 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 5037 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 5038 struct page *page = NULL; 5039 unsigned int alloc_flags; 5040 unsigned long did_some_progress; 5041 enum compact_priority compact_priority; 5042 enum compact_result compact_result; 5043 int compaction_retries; 5044 int no_progress_loops; 5045 unsigned int cpuset_mems_cookie; 5046 unsigned int zonelist_iter_cookie; 5047 int reserve_flags; 5048 5049 /* 5050 * We also sanity check to catch abuse of atomic reserves being used by 5051 * callers that are not in atomic context. 5052 */ 5053 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 5054 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 5055 gfp_mask &= ~__GFP_ATOMIC; 5056 5057 restart: 5058 compaction_retries = 0; 5059 no_progress_loops = 0; 5060 compact_priority = DEF_COMPACT_PRIORITY; 5061 cpuset_mems_cookie = read_mems_allowed_begin(); 5062 zonelist_iter_cookie = zonelist_iter_begin(); 5063 5064 /* 5065 * The fast path uses conservative alloc_flags to succeed only until 5066 * kswapd needs to be woken up, and to avoid the cost of setting up 5067 * alloc_flags precisely. So we do that now. 5068 */ 5069 alloc_flags = gfp_to_alloc_flags(gfp_mask); 5070 5071 /* 5072 * We need to recalculate the starting point for the zonelist iterator 5073 * because we might have used different nodemask in the fast path, or 5074 * there was a cpuset modification and we are retrying - otherwise we 5075 * could end up iterating over non-eligible zones endlessly. 5076 */ 5077 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5078 ac->highest_zoneidx, ac->nodemask); 5079 if (!ac->preferred_zoneref->zone) 5080 goto nopage; 5081 5082 /* 5083 * Check for insane configurations where the cpuset doesn't contain 5084 * any suitable zone to satisfy the request - e.g. non-movable 5085 * GFP_HIGHUSER allocations from MOVABLE nodes only. 5086 */ 5087 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { 5088 struct zoneref *z = first_zones_zonelist(ac->zonelist, 5089 ac->highest_zoneidx, 5090 &cpuset_current_mems_allowed); 5091 if (!z->zone) 5092 goto nopage; 5093 } 5094 5095 if (alloc_flags & ALLOC_KSWAPD) 5096 wake_all_kswapds(order, gfp_mask, ac); 5097 5098 /* 5099 * The adjusted alloc_flags might result in immediate success, so try 5100 * that first 5101 */ 5102 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 5103 if (page) 5104 goto got_pg; 5105 5106 /* 5107 * For costly allocations, try direct compaction first, as it's likely 5108 * that we have enough base pages and don't need to reclaim. For non- 5109 * movable high-order allocations, do that as well, as compaction will 5110 * try prevent permanent fragmentation by migrating from blocks of the 5111 * same migratetype. 5112 * Don't try this for allocations that are allowed to ignore 5113 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 5114 */ 5115 if (can_direct_reclaim && 5116 (costly_order || 5117 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 5118 && !gfp_pfmemalloc_allowed(gfp_mask)) { 5119 page = __alloc_pages_direct_compact(gfp_mask, order, 5120 alloc_flags, ac, 5121 INIT_COMPACT_PRIORITY, 5122 &compact_result); 5123 if (page) 5124 goto got_pg; 5125 5126 /* 5127 * Checks for costly allocations with __GFP_NORETRY, which 5128 * includes some THP page fault allocations 5129 */ 5130 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 5131 /* 5132 * If allocating entire pageblock(s) and compaction 5133 * failed because all zones are below low watermarks 5134 * or is prohibited because it recently failed at this 5135 * order, fail immediately unless the allocator has 5136 * requested compaction and reclaim retry. 5137 * 5138 * Reclaim is 5139 * - potentially very expensive because zones are far 5140 * below their low watermarks or this is part of very 5141 * bursty high order allocations, 5142 * - not guaranteed to help because isolate_freepages() 5143 * may not iterate over freed pages as part of its 5144 * linear scan, and 5145 * - unlikely to make entire pageblocks free on its 5146 * own. 5147 */ 5148 if (compact_result == COMPACT_SKIPPED || 5149 compact_result == COMPACT_DEFERRED) 5150 goto nopage; 5151 5152 /* 5153 * Looks like reclaim/compaction is worth trying, but 5154 * sync compaction could be very expensive, so keep 5155 * using async compaction. 5156 */ 5157 compact_priority = INIT_COMPACT_PRIORITY; 5158 } 5159 } 5160 5161 retry: 5162 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 5163 if (alloc_flags & ALLOC_KSWAPD) 5164 wake_all_kswapds(order, gfp_mask, ac); 5165 5166 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 5167 if (reserve_flags) 5168 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) | 5169 (alloc_flags & ALLOC_KSWAPD); 5170 5171 /* 5172 * Reset the nodemask and zonelist iterators if memory policies can be 5173 * ignored. These allocations are high priority and system rather than 5174 * user oriented. 5175 */ 5176 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 5177 ac->nodemask = NULL; 5178 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5179 ac->highest_zoneidx, ac->nodemask); 5180 } 5181 5182 /* Attempt with potentially adjusted zonelist and alloc_flags */ 5183 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 5184 if (page) 5185 goto got_pg; 5186 5187 /* Caller is not willing to reclaim, we can't balance anything */ 5188 if (!can_direct_reclaim) 5189 goto nopage; 5190 5191 /* Avoid recursion of direct reclaim */ 5192 if (current->flags & PF_MEMALLOC) 5193 goto nopage; 5194 5195 /* Try direct reclaim and then allocating */ 5196 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 5197 &did_some_progress); 5198 if (page) 5199 goto got_pg; 5200 5201 /* Try direct compaction and then allocating */ 5202 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 5203 compact_priority, &compact_result); 5204 if (page) 5205 goto got_pg; 5206 5207 /* Do not loop if specifically requested */ 5208 if (gfp_mask & __GFP_NORETRY) 5209 goto nopage; 5210 5211 /* 5212 * Do not retry costly high order allocations unless they are 5213 * __GFP_RETRY_MAYFAIL 5214 */ 5215 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 5216 goto nopage; 5217 5218 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 5219 did_some_progress > 0, &no_progress_loops)) 5220 goto retry; 5221 5222 /* 5223 * It doesn't make any sense to retry for the compaction if the order-0 5224 * reclaim is not able to make any progress because the current 5225 * implementation of the compaction depends on the sufficient amount 5226 * of free memory (see __compaction_suitable) 5227 */ 5228 if (did_some_progress > 0 && 5229 should_compact_retry(ac, order, alloc_flags, 5230 compact_result, &compact_priority, 5231 &compaction_retries)) 5232 goto retry; 5233 5234 5235 /* 5236 * Deal with possible cpuset update races or zonelist updates to avoid 5237 * a unnecessary OOM kill. 5238 */ 5239 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 5240 check_retry_zonelist(zonelist_iter_cookie)) 5241 goto restart; 5242 5243 /* Reclaim has failed us, start killing things */ 5244 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 5245 if (page) 5246 goto got_pg; 5247 5248 /* Avoid allocations with no watermarks from looping endlessly */ 5249 if (tsk_is_oom_victim(current) && 5250 (alloc_flags & ALLOC_OOM || 5251 (gfp_mask & __GFP_NOMEMALLOC))) 5252 goto nopage; 5253 5254 /* Retry as long as the OOM killer is making progress */ 5255 if (did_some_progress) { 5256 no_progress_loops = 0; 5257 goto retry; 5258 } 5259 5260 nopage: 5261 /* 5262 * Deal with possible cpuset update races or zonelist updates to avoid 5263 * a unnecessary OOM kill. 5264 */ 5265 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 5266 check_retry_zonelist(zonelist_iter_cookie)) 5267 goto restart; 5268 5269 /* 5270 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 5271 * we always retry 5272 */ 5273 if (gfp_mask & __GFP_NOFAIL) { 5274 /* 5275 * All existing users of the __GFP_NOFAIL are blockable, so warn 5276 * of any new users that actually require GFP_NOWAIT 5277 */ 5278 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask)) 5279 goto fail; 5280 5281 /* 5282 * PF_MEMALLOC request from this context is rather bizarre 5283 * because we cannot reclaim anything and only can loop waiting 5284 * for somebody to do a work for us 5285 */ 5286 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask); 5287 5288 /* 5289 * non failing costly orders are a hard requirement which we 5290 * are not prepared for much so let's warn about these users 5291 * so that we can identify them and convert them to something 5292 * else. 5293 */ 5294 WARN_ON_ONCE_GFP(costly_order, gfp_mask); 5295 5296 /* 5297 * Help non-failing allocations by giving them access to memory 5298 * reserves but do not use ALLOC_NO_WATERMARKS because this 5299 * could deplete whole memory reserves which would just make 5300 * the situation worse 5301 */ 5302 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 5303 if (page) 5304 goto got_pg; 5305 5306 cond_resched(); 5307 goto retry; 5308 } 5309 fail: 5310 warn_alloc(gfp_mask, ac->nodemask, 5311 "page allocation failure: order:%u", order); 5312 got_pg: 5313 return page; 5314 } 5315 5316 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 5317 int preferred_nid, nodemask_t *nodemask, 5318 struct alloc_context *ac, gfp_t *alloc_gfp, 5319 unsigned int *alloc_flags) 5320 { 5321 ac->highest_zoneidx = gfp_zone(gfp_mask); 5322 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 5323 ac->nodemask = nodemask; 5324 ac->migratetype = gfp_migratetype(gfp_mask); 5325 5326 if (cpusets_enabled()) { 5327 *alloc_gfp |= __GFP_HARDWALL; 5328 /* 5329 * When we are in the interrupt context, it is irrelevant 5330 * to the current task context. It means that any node ok. 5331 */ 5332 if (in_task() && !ac->nodemask) 5333 ac->nodemask = &cpuset_current_mems_allowed; 5334 else 5335 *alloc_flags |= ALLOC_CPUSET; 5336 } 5337 5338 might_alloc(gfp_mask); 5339 5340 if (should_fail_alloc_page(gfp_mask, order)) 5341 return false; 5342 5343 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 5344 5345 /* Dirty zone balancing only done in the fast path */ 5346 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 5347 5348 /* 5349 * The preferred zone is used for statistics but crucially it is 5350 * also used as the starting point for the zonelist iterator. It 5351 * may get reset for allocations that ignore memory policies. 5352 */ 5353 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5354 ac->highest_zoneidx, ac->nodemask); 5355 5356 return true; 5357 } 5358 5359 /* 5360 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array 5361 * @gfp: GFP flags for the allocation 5362 * @preferred_nid: The preferred NUMA node ID to allocate from 5363 * @nodemask: Set of nodes to allocate from, may be NULL 5364 * @nr_pages: The number of pages desired on the list or array 5365 * @page_list: Optional list to store the allocated pages 5366 * @page_array: Optional array to store the pages 5367 * 5368 * This is a batched version of the page allocator that attempts to 5369 * allocate nr_pages quickly. Pages are added to page_list if page_list 5370 * is not NULL, otherwise it is assumed that the page_array is valid. 5371 * 5372 * For lists, nr_pages is the number of pages that should be allocated. 5373 * 5374 * For arrays, only NULL elements are populated with pages and nr_pages 5375 * is the maximum number of pages that will be stored in the array. 5376 * 5377 * Returns the number of pages on the list or array. 5378 */ 5379 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid, 5380 nodemask_t *nodemask, int nr_pages, 5381 struct list_head *page_list, 5382 struct page **page_array) 5383 { 5384 struct page *page; 5385 unsigned long __maybe_unused UP_flags; 5386 struct zone *zone; 5387 struct zoneref *z; 5388 struct per_cpu_pages *pcp; 5389 struct list_head *pcp_list; 5390 struct alloc_context ac; 5391 gfp_t alloc_gfp; 5392 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5393 int nr_populated = 0, nr_account = 0; 5394 5395 /* 5396 * Skip populated array elements to determine if any pages need 5397 * to be allocated before disabling IRQs. 5398 */ 5399 while (page_array && nr_populated < nr_pages && page_array[nr_populated]) 5400 nr_populated++; 5401 5402 /* No pages requested? */ 5403 if (unlikely(nr_pages <= 0)) 5404 goto out; 5405 5406 /* Already populated array? */ 5407 if (unlikely(page_array && nr_pages - nr_populated == 0)) 5408 goto out; 5409 5410 /* Bulk allocator does not support memcg accounting. */ 5411 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT)) 5412 goto failed; 5413 5414 /* Use the single page allocator for one page. */ 5415 if (nr_pages - nr_populated == 1) 5416 goto failed; 5417 5418 #ifdef CONFIG_PAGE_OWNER 5419 /* 5420 * PAGE_OWNER may recurse into the allocator to allocate space to 5421 * save the stack with pagesets.lock held. Releasing/reacquiring 5422 * removes much of the performance benefit of bulk allocation so 5423 * force the caller to allocate one page at a time as it'll have 5424 * similar performance to added complexity to the bulk allocator. 5425 */ 5426 if (static_branch_unlikely(&page_owner_inited)) 5427 goto failed; 5428 #endif 5429 5430 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 5431 gfp &= gfp_allowed_mask; 5432 alloc_gfp = gfp; 5433 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 5434 goto out; 5435 gfp = alloc_gfp; 5436 5437 /* Find an allowed local zone that meets the low watermark. */ 5438 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) { 5439 unsigned long mark; 5440 5441 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 5442 !__cpuset_zone_allowed(zone, gfp)) { 5443 continue; 5444 } 5445 5446 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone && 5447 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) { 5448 goto failed; 5449 } 5450 5451 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 5452 if (zone_watermark_fast(zone, 0, mark, 5453 zonelist_zone_idx(ac.preferred_zoneref), 5454 alloc_flags, gfp)) { 5455 break; 5456 } 5457 } 5458 5459 /* 5460 * If there are no allowed local zones that meets the watermarks then 5461 * try to allocate a single page and reclaim if necessary. 5462 */ 5463 if (unlikely(!zone)) 5464 goto failed; 5465 5466 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 5467 pcp_trylock_prepare(UP_flags); 5468 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 5469 if (!pcp) 5470 goto failed_irq; 5471 5472 /* Attempt the batch allocation */ 5473 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; 5474 while (nr_populated < nr_pages) { 5475 5476 /* Skip existing pages */ 5477 if (page_array && page_array[nr_populated]) { 5478 nr_populated++; 5479 continue; 5480 } 5481 5482 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, 5483 pcp, pcp_list); 5484 if (unlikely(!page)) { 5485 /* Try and allocate at least one page */ 5486 if (!nr_account) { 5487 pcp_spin_unlock(pcp); 5488 goto failed_irq; 5489 } 5490 break; 5491 } 5492 nr_account++; 5493 5494 prep_new_page(page, 0, gfp, 0); 5495 if (page_list) 5496 list_add(&page->lru, page_list); 5497 else 5498 page_array[nr_populated] = page; 5499 nr_populated++; 5500 } 5501 5502 pcp_spin_unlock(pcp); 5503 pcp_trylock_finish(UP_flags); 5504 5505 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); 5506 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account); 5507 5508 out: 5509 return nr_populated; 5510 5511 failed_irq: 5512 pcp_trylock_finish(UP_flags); 5513 5514 failed: 5515 page = __alloc_pages(gfp, 0, preferred_nid, nodemask); 5516 if (page) { 5517 if (page_list) 5518 list_add(&page->lru, page_list); 5519 else 5520 page_array[nr_populated] = page; 5521 nr_populated++; 5522 } 5523 5524 goto out; 5525 } 5526 EXPORT_SYMBOL_GPL(__alloc_pages_bulk); 5527 5528 /* 5529 * This is the 'heart' of the zoned buddy allocator. 5530 */ 5531 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid, 5532 nodemask_t *nodemask) 5533 { 5534 struct page *page; 5535 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5536 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 5537 struct alloc_context ac = { }; 5538 5539 /* 5540 * There are several places where we assume that the order value is sane 5541 * so bail out early if the request is out of bound. 5542 */ 5543 if (WARN_ON_ONCE_GFP(order >= MAX_ORDER, gfp)) 5544 return NULL; 5545 5546 gfp &= gfp_allowed_mask; 5547 /* 5548 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 5549 * resp. GFP_NOIO which has to be inherited for all allocation requests 5550 * from a particular context which has been marked by 5551 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 5552 * movable zones are not used during allocation. 5553 */ 5554 gfp = current_gfp_context(gfp); 5555 alloc_gfp = gfp; 5556 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 5557 &alloc_gfp, &alloc_flags)) 5558 return NULL; 5559 5560 /* 5561 * Forbid the first pass from falling back to types that fragment 5562 * memory until all local zones are considered. 5563 */ 5564 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp); 5565 5566 /* First allocation attempt */ 5567 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 5568 if (likely(page)) 5569 goto out; 5570 5571 alloc_gfp = gfp; 5572 ac.spread_dirty_pages = false; 5573 5574 /* 5575 * Restore the original nodemask if it was potentially replaced with 5576 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 5577 */ 5578 ac.nodemask = nodemask; 5579 5580 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 5581 5582 out: 5583 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page && 5584 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 5585 __free_pages(page, order); 5586 page = NULL; 5587 } 5588 5589 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 5590 kmsan_alloc_page(page, order, alloc_gfp); 5591 5592 return page; 5593 } 5594 EXPORT_SYMBOL(__alloc_pages); 5595 5596 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid, 5597 nodemask_t *nodemask) 5598 { 5599 struct page *page = __alloc_pages(gfp | __GFP_COMP, order, 5600 preferred_nid, nodemask); 5601 5602 if (page && order > 1) 5603 prep_transhuge_page(page); 5604 return (struct folio *)page; 5605 } 5606 EXPORT_SYMBOL(__folio_alloc); 5607 5608 /* 5609 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 5610 * address cannot represent highmem pages. Use alloc_pages and then kmap if 5611 * you need to access high mem. 5612 */ 5613 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 5614 { 5615 struct page *page; 5616 5617 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 5618 if (!page) 5619 return 0; 5620 return (unsigned long) page_address(page); 5621 } 5622 EXPORT_SYMBOL(__get_free_pages); 5623 5624 unsigned long get_zeroed_page(gfp_t gfp_mask) 5625 { 5626 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 5627 } 5628 EXPORT_SYMBOL(get_zeroed_page); 5629 5630 /** 5631 * __free_pages - Free pages allocated with alloc_pages(). 5632 * @page: The page pointer returned from alloc_pages(). 5633 * @order: The order of the allocation. 5634 * 5635 * This function can free multi-page allocations that are not compound 5636 * pages. It does not check that the @order passed in matches that of 5637 * the allocation, so it is easy to leak memory. Freeing more memory 5638 * than was allocated will probably emit a warning. 5639 * 5640 * If the last reference to this page is speculative, it will be released 5641 * by put_page() which only frees the first page of a non-compound 5642 * allocation. To prevent the remaining pages from being leaked, we free 5643 * the subsequent pages here. If you want to use the page's reference 5644 * count to decide when to free the allocation, you should allocate a 5645 * compound page, and use put_page() instead of __free_pages(). 5646 * 5647 * Context: May be called in interrupt context or while holding a normal 5648 * spinlock, but not in NMI context or while holding a raw spinlock. 5649 */ 5650 void __free_pages(struct page *page, unsigned int order) 5651 { 5652 if (put_page_testzero(page)) 5653 free_the_page(page, order); 5654 else if (!PageHead(page)) 5655 while (order-- > 0) 5656 free_the_page(page + (1 << order), order); 5657 } 5658 EXPORT_SYMBOL(__free_pages); 5659 5660 void free_pages(unsigned long addr, unsigned int order) 5661 { 5662 if (addr != 0) { 5663 VM_BUG_ON(!virt_addr_valid((void *)addr)); 5664 __free_pages(virt_to_page((void *)addr), order); 5665 } 5666 } 5667 5668 EXPORT_SYMBOL(free_pages); 5669 5670 /* 5671 * Page Fragment: 5672 * An arbitrary-length arbitrary-offset area of memory which resides 5673 * within a 0 or higher order page. Multiple fragments within that page 5674 * are individually refcounted, in the page's reference counter. 5675 * 5676 * The page_frag functions below provide a simple allocation framework for 5677 * page fragments. This is used by the network stack and network device 5678 * drivers to provide a backing region of memory for use as either an 5679 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 5680 */ 5681 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 5682 gfp_t gfp_mask) 5683 { 5684 struct page *page = NULL; 5685 gfp_t gfp = gfp_mask; 5686 5687 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5688 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 5689 __GFP_NOMEMALLOC; 5690 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 5691 PAGE_FRAG_CACHE_MAX_ORDER); 5692 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 5693 #endif 5694 if (unlikely(!page)) 5695 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 5696 5697 nc->va = page ? page_address(page) : NULL; 5698 5699 return page; 5700 } 5701 5702 void __page_frag_cache_drain(struct page *page, unsigned int count) 5703 { 5704 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 5705 5706 if (page_ref_sub_and_test(page, count)) 5707 free_the_page(page, compound_order(page)); 5708 } 5709 EXPORT_SYMBOL(__page_frag_cache_drain); 5710 5711 void *page_frag_alloc_align(struct page_frag_cache *nc, 5712 unsigned int fragsz, gfp_t gfp_mask, 5713 unsigned int align_mask) 5714 { 5715 unsigned int size = PAGE_SIZE; 5716 struct page *page; 5717 int offset; 5718 5719 if (unlikely(!nc->va)) { 5720 refill: 5721 page = __page_frag_cache_refill(nc, gfp_mask); 5722 if (!page) 5723 return NULL; 5724 5725 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5726 /* if size can vary use size else just use PAGE_SIZE */ 5727 size = nc->size; 5728 #endif 5729 /* Even if we own the page, we do not use atomic_set(). 5730 * This would break get_page_unless_zero() users. 5731 */ 5732 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 5733 5734 /* reset page count bias and offset to start of new frag */ 5735 nc->pfmemalloc = page_is_pfmemalloc(page); 5736 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5737 nc->offset = size; 5738 } 5739 5740 offset = nc->offset - fragsz; 5741 if (unlikely(offset < 0)) { 5742 page = virt_to_page(nc->va); 5743 5744 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 5745 goto refill; 5746 5747 if (unlikely(nc->pfmemalloc)) { 5748 free_the_page(page, compound_order(page)); 5749 goto refill; 5750 } 5751 5752 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5753 /* if size can vary use size else just use PAGE_SIZE */ 5754 size = nc->size; 5755 #endif 5756 /* OK, page count is 0, we can safely set it */ 5757 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 5758 5759 /* reset page count bias and offset to start of new frag */ 5760 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5761 offset = size - fragsz; 5762 if (unlikely(offset < 0)) { 5763 /* 5764 * The caller is trying to allocate a fragment 5765 * with fragsz > PAGE_SIZE but the cache isn't big 5766 * enough to satisfy the request, this may 5767 * happen in low memory conditions. 5768 * We don't release the cache page because 5769 * it could make memory pressure worse 5770 * so we simply return NULL here. 5771 */ 5772 return NULL; 5773 } 5774 } 5775 5776 nc->pagecnt_bias--; 5777 offset &= align_mask; 5778 nc->offset = offset; 5779 5780 return nc->va + offset; 5781 } 5782 EXPORT_SYMBOL(page_frag_alloc_align); 5783 5784 /* 5785 * Frees a page fragment allocated out of either a compound or order 0 page. 5786 */ 5787 void page_frag_free(void *addr) 5788 { 5789 struct page *page = virt_to_head_page(addr); 5790 5791 if (unlikely(put_page_testzero(page))) 5792 free_the_page(page, compound_order(page)); 5793 } 5794 EXPORT_SYMBOL(page_frag_free); 5795 5796 static void *make_alloc_exact(unsigned long addr, unsigned int order, 5797 size_t size) 5798 { 5799 if (addr) { 5800 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE); 5801 struct page *page = virt_to_page((void *)addr); 5802 struct page *last = page + nr; 5803 5804 split_page_owner(page, 1 << order); 5805 split_page_memcg(page, 1 << order); 5806 while (page < --last) 5807 set_page_refcounted(last); 5808 5809 last = page + (1UL << order); 5810 for (page += nr; page < last; page++) 5811 __free_pages_ok(page, 0, FPI_TO_TAIL); 5812 } 5813 return (void *)addr; 5814 } 5815 5816 /** 5817 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 5818 * @size: the number of bytes to allocate 5819 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5820 * 5821 * This function is similar to alloc_pages(), except that it allocates the 5822 * minimum number of pages to satisfy the request. alloc_pages() can only 5823 * allocate memory in power-of-two pages. 5824 * 5825 * This function is also limited by MAX_ORDER. 5826 * 5827 * Memory allocated by this function must be released by free_pages_exact(). 5828 * 5829 * Return: pointer to the allocated area or %NULL in case of error. 5830 */ 5831 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 5832 { 5833 unsigned int order = get_order(size); 5834 unsigned long addr; 5835 5836 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5837 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5838 5839 addr = __get_free_pages(gfp_mask, order); 5840 return make_alloc_exact(addr, order, size); 5841 } 5842 EXPORT_SYMBOL(alloc_pages_exact); 5843 5844 /** 5845 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 5846 * pages on a node. 5847 * @nid: the preferred node ID where memory should be allocated 5848 * @size: the number of bytes to allocate 5849 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5850 * 5851 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 5852 * back. 5853 * 5854 * Return: pointer to the allocated area or %NULL in case of error. 5855 */ 5856 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 5857 { 5858 unsigned int order = get_order(size); 5859 struct page *p; 5860 5861 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5862 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5863 5864 p = alloc_pages_node(nid, gfp_mask, order); 5865 if (!p) 5866 return NULL; 5867 return make_alloc_exact((unsigned long)page_address(p), order, size); 5868 } 5869 5870 /** 5871 * free_pages_exact - release memory allocated via alloc_pages_exact() 5872 * @virt: the value returned by alloc_pages_exact. 5873 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5874 * 5875 * Release the memory allocated by a previous call to alloc_pages_exact. 5876 */ 5877 void free_pages_exact(void *virt, size_t size) 5878 { 5879 unsigned long addr = (unsigned long)virt; 5880 unsigned long end = addr + PAGE_ALIGN(size); 5881 5882 while (addr < end) { 5883 free_page(addr); 5884 addr += PAGE_SIZE; 5885 } 5886 } 5887 EXPORT_SYMBOL(free_pages_exact); 5888 5889 /** 5890 * nr_free_zone_pages - count number of pages beyond high watermark 5891 * @offset: The zone index of the highest zone 5892 * 5893 * nr_free_zone_pages() counts the number of pages which are beyond the 5894 * high watermark within all zones at or below a given zone index. For each 5895 * zone, the number of pages is calculated as: 5896 * 5897 * nr_free_zone_pages = managed_pages - high_pages 5898 * 5899 * Return: number of pages beyond high watermark. 5900 */ 5901 static unsigned long nr_free_zone_pages(int offset) 5902 { 5903 struct zoneref *z; 5904 struct zone *zone; 5905 5906 /* Just pick one node, since fallback list is circular */ 5907 unsigned long sum = 0; 5908 5909 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5910 5911 for_each_zone_zonelist(zone, z, zonelist, offset) { 5912 unsigned long size = zone_managed_pages(zone); 5913 unsigned long high = high_wmark_pages(zone); 5914 if (size > high) 5915 sum += size - high; 5916 } 5917 5918 return sum; 5919 } 5920 5921 /** 5922 * nr_free_buffer_pages - count number of pages beyond high watermark 5923 * 5924 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5925 * watermark within ZONE_DMA and ZONE_NORMAL. 5926 * 5927 * Return: number of pages beyond high watermark within ZONE_DMA and 5928 * ZONE_NORMAL. 5929 */ 5930 unsigned long nr_free_buffer_pages(void) 5931 { 5932 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5933 } 5934 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5935 5936 static inline void show_node(struct zone *zone) 5937 { 5938 if (IS_ENABLED(CONFIG_NUMA)) 5939 printk("Node %d ", zone_to_nid(zone)); 5940 } 5941 5942 long si_mem_available(void) 5943 { 5944 long available; 5945 unsigned long pagecache; 5946 unsigned long wmark_low = 0; 5947 unsigned long pages[NR_LRU_LISTS]; 5948 unsigned long reclaimable; 5949 struct zone *zone; 5950 int lru; 5951 5952 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 5953 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 5954 5955 for_each_zone(zone) 5956 wmark_low += low_wmark_pages(zone); 5957 5958 /* 5959 * Estimate the amount of memory available for userspace allocations, 5960 * without causing swapping or OOM. 5961 */ 5962 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 5963 5964 /* 5965 * Not all the page cache can be freed, otherwise the system will 5966 * start swapping or thrashing. Assume at least half of the page 5967 * cache, or the low watermark worth of cache, needs to stay. 5968 */ 5969 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 5970 pagecache -= min(pagecache / 2, wmark_low); 5971 available += pagecache; 5972 5973 /* 5974 * Part of the reclaimable slab and other kernel memory consists of 5975 * items that are in use, and cannot be freed. Cap this estimate at the 5976 * low watermark. 5977 */ 5978 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) + 5979 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); 5980 available += reclaimable - min(reclaimable / 2, wmark_low); 5981 5982 if (available < 0) 5983 available = 0; 5984 return available; 5985 } 5986 EXPORT_SYMBOL_GPL(si_mem_available); 5987 5988 void si_meminfo(struct sysinfo *val) 5989 { 5990 val->totalram = totalram_pages(); 5991 val->sharedram = global_node_page_state(NR_SHMEM); 5992 val->freeram = global_zone_page_state(NR_FREE_PAGES); 5993 val->bufferram = nr_blockdev_pages(); 5994 val->totalhigh = totalhigh_pages(); 5995 val->freehigh = nr_free_highpages(); 5996 val->mem_unit = PAGE_SIZE; 5997 } 5998 5999 EXPORT_SYMBOL(si_meminfo); 6000 6001 #ifdef CONFIG_NUMA 6002 void si_meminfo_node(struct sysinfo *val, int nid) 6003 { 6004 int zone_type; /* needs to be signed */ 6005 unsigned long managed_pages = 0; 6006 unsigned long managed_highpages = 0; 6007 unsigned long free_highpages = 0; 6008 pg_data_t *pgdat = NODE_DATA(nid); 6009 6010 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 6011 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]); 6012 val->totalram = managed_pages; 6013 val->sharedram = node_page_state(pgdat, NR_SHMEM); 6014 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 6015 #ifdef CONFIG_HIGHMEM 6016 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 6017 struct zone *zone = &pgdat->node_zones[zone_type]; 6018 6019 if (is_highmem(zone)) { 6020 managed_highpages += zone_managed_pages(zone); 6021 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 6022 } 6023 } 6024 val->totalhigh = managed_highpages; 6025 val->freehigh = free_highpages; 6026 #else 6027 val->totalhigh = managed_highpages; 6028 val->freehigh = free_highpages; 6029 #endif 6030 val->mem_unit = PAGE_SIZE; 6031 } 6032 #endif 6033 6034 /* 6035 * Determine whether the node should be displayed or not, depending on whether 6036 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 6037 */ 6038 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 6039 { 6040 if (!(flags & SHOW_MEM_FILTER_NODES)) 6041 return false; 6042 6043 /* 6044 * no node mask - aka implicit memory numa policy. Do not bother with 6045 * the synchronization - read_mems_allowed_begin - because we do not 6046 * have to be precise here. 6047 */ 6048 if (!nodemask) 6049 nodemask = &cpuset_current_mems_allowed; 6050 6051 return !node_isset(nid, *nodemask); 6052 } 6053 6054 #define K(x) ((x) << (PAGE_SHIFT-10)) 6055 6056 static void show_migration_types(unsigned char type) 6057 { 6058 static const char types[MIGRATE_TYPES] = { 6059 [MIGRATE_UNMOVABLE] = 'U', 6060 [MIGRATE_MOVABLE] = 'M', 6061 [MIGRATE_RECLAIMABLE] = 'E', 6062 [MIGRATE_HIGHATOMIC] = 'H', 6063 #ifdef CONFIG_CMA 6064 [MIGRATE_CMA] = 'C', 6065 #endif 6066 #ifdef CONFIG_MEMORY_ISOLATION 6067 [MIGRATE_ISOLATE] = 'I', 6068 #endif 6069 }; 6070 char tmp[MIGRATE_TYPES + 1]; 6071 char *p = tmp; 6072 int i; 6073 6074 for (i = 0; i < MIGRATE_TYPES; i++) { 6075 if (type & (1 << i)) 6076 *p++ = types[i]; 6077 } 6078 6079 *p = '\0'; 6080 printk(KERN_CONT "(%s) ", tmp); 6081 } 6082 6083 static bool node_has_managed_zones(pg_data_t *pgdat, int max_zone_idx) 6084 { 6085 int zone_idx; 6086 for (zone_idx = 0; zone_idx <= max_zone_idx; zone_idx++) 6087 if (zone_managed_pages(pgdat->node_zones + zone_idx)) 6088 return true; 6089 return false; 6090 } 6091 6092 /* 6093 * Show free area list (used inside shift_scroll-lock stuff) 6094 * We also calculate the percentage fragmentation. We do this by counting the 6095 * memory on each free list with the exception of the first item on the list. 6096 * 6097 * Bits in @filter: 6098 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 6099 * cpuset. 6100 */ 6101 void __show_free_areas(unsigned int filter, nodemask_t *nodemask, int max_zone_idx) 6102 { 6103 unsigned long free_pcp = 0; 6104 int cpu, nid; 6105 struct zone *zone; 6106 pg_data_t *pgdat; 6107 6108 for_each_populated_zone(zone) { 6109 if (zone_idx(zone) > max_zone_idx) 6110 continue; 6111 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 6112 continue; 6113 6114 for_each_online_cpu(cpu) 6115 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count; 6116 } 6117 6118 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 6119 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 6120 " unevictable:%lu dirty:%lu writeback:%lu\n" 6121 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 6122 " mapped:%lu shmem:%lu pagetables:%lu\n" 6123 " sec_pagetables:%lu bounce:%lu\n" 6124 " kernel_misc_reclaimable:%lu\n" 6125 " free:%lu free_pcp:%lu free_cma:%lu\n", 6126 global_node_page_state(NR_ACTIVE_ANON), 6127 global_node_page_state(NR_INACTIVE_ANON), 6128 global_node_page_state(NR_ISOLATED_ANON), 6129 global_node_page_state(NR_ACTIVE_FILE), 6130 global_node_page_state(NR_INACTIVE_FILE), 6131 global_node_page_state(NR_ISOLATED_FILE), 6132 global_node_page_state(NR_UNEVICTABLE), 6133 global_node_page_state(NR_FILE_DIRTY), 6134 global_node_page_state(NR_WRITEBACK), 6135 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B), 6136 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B), 6137 global_node_page_state(NR_FILE_MAPPED), 6138 global_node_page_state(NR_SHMEM), 6139 global_node_page_state(NR_PAGETABLE), 6140 global_node_page_state(NR_SECONDARY_PAGETABLE), 6141 global_zone_page_state(NR_BOUNCE), 6142 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE), 6143 global_zone_page_state(NR_FREE_PAGES), 6144 free_pcp, 6145 global_zone_page_state(NR_FREE_CMA_PAGES)); 6146 6147 for_each_online_pgdat(pgdat) { 6148 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 6149 continue; 6150 if (!node_has_managed_zones(pgdat, max_zone_idx)) 6151 continue; 6152 6153 printk("Node %d" 6154 " active_anon:%lukB" 6155 " inactive_anon:%lukB" 6156 " active_file:%lukB" 6157 " inactive_file:%lukB" 6158 " unevictable:%lukB" 6159 " isolated(anon):%lukB" 6160 " isolated(file):%lukB" 6161 " mapped:%lukB" 6162 " dirty:%lukB" 6163 " writeback:%lukB" 6164 " shmem:%lukB" 6165 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6166 " shmem_thp: %lukB" 6167 " shmem_pmdmapped: %lukB" 6168 " anon_thp: %lukB" 6169 #endif 6170 " writeback_tmp:%lukB" 6171 " kernel_stack:%lukB" 6172 #ifdef CONFIG_SHADOW_CALL_STACK 6173 " shadow_call_stack:%lukB" 6174 #endif 6175 " pagetables:%lukB" 6176 " sec_pagetables:%lukB" 6177 " all_unreclaimable? %s" 6178 "\n", 6179 pgdat->node_id, 6180 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 6181 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 6182 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 6183 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 6184 K(node_page_state(pgdat, NR_UNEVICTABLE)), 6185 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 6186 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 6187 K(node_page_state(pgdat, NR_FILE_MAPPED)), 6188 K(node_page_state(pgdat, NR_FILE_DIRTY)), 6189 K(node_page_state(pgdat, NR_WRITEBACK)), 6190 K(node_page_state(pgdat, NR_SHMEM)), 6191 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6192 K(node_page_state(pgdat, NR_SHMEM_THPS)), 6193 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)), 6194 K(node_page_state(pgdat, NR_ANON_THPS)), 6195 #endif 6196 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 6197 node_page_state(pgdat, NR_KERNEL_STACK_KB), 6198 #ifdef CONFIG_SHADOW_CALL_STACK 6199 node_page_state(pgdat, NR_KERNEL_SCS_KB), 6200 #endif 6201 K(node_page_state(pgdat, NR_PAGETABLE)), 6202 K(node_page_state(pgdat, NR_SECONDARY_PAGETABLE)), 6203 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 6204 "yes" : "no"); 6205 } 6206 6207 for_each_populated_zone(zone) { 6208 int i; 6209 6210 if (zone_idx(zone) > max_zone_idx) 6211 continue; 6212 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 6213 continue; 6214 6215 free_pcp = 0; 6216 for_each_online_cpu(cpu) 6217 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count; 6218 6219 show_node(zone); 6220 printk(KERN_CONT 6221 "%s" 6222 " free:%lukB" 6223 " boost:%lukB" 6224 " min:%lukB" 6225 " low:%lukB" 6226 " high:%lukB" 6227 " reserved_highatomic:%luKB" 6228 " active_anon:%lukB" 6229 " inactive_anon:%lukB" 6230 " active_file:%lukB" 6231 " inactive_file:%lukB" 6232 " unevictable:%lukB" 6233 " writepending:%lukB" 6234 " present:%lukB" 6235 " managed:%lukB" 6236 " mlocked:%lukB" 6237 " bounce:%lukB" 6238 " free_pcp:%lukB" 6239 " local_pcp:%ukB" 6240 " free_cma:%lukB" 6241 "\n", 6242 zone->name, 6243 K(zone_page_state(zone, NR_FREE_PAGES)), 6244 K(zone->watermark_boost), 6245 K(min_wmark_pages(zone)), 6246 K(low_wmark_pages(zone)), 6247 K(high_wmark_pages(zone)), 6248 K(zone->nr_reserved_highatomic), 6249 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 6250 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 6251 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 6252 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 6253 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 6254 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 6255 K(zone->present_pages), 6256 K(zone_managed_pages(zone)), 6257 K(zone_page_state(zone, NR_MLOCK)), 6258 K(zone_page_state(zone, NR_BOUNCE)), 6259 K(free_pcp), 6260 K(this_cpu_read(zone->per_cpu_pageset->count)), 6261 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 6262 printk("lowmem_reserve[]:"); 6263 for (i = 0; i < MAX_NR_ZONES; i++) 6264 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 6265 printk(KERN_CONT "\n"); 6266 } 6267 6268 for_each_populated_zone(zone) { 6269 unsigned int order; 6270 unsigned long nr[MAX_ORDER], flags, total = 0; 6271 unsigned char types[MAX_ORDER]; 6272 6273 if (zone_idx(zone) > max_zone_idx) 6274 continue; 6275 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 6276 continue; 6277 show_node(zone); 6278 printk(KERN_CONT "%s: ", zone->name); 6279 6280 spin_lock_irqsave(&zone->lock, flags); 6281 for (order = 0; order < MAX_ORDER; order++) { 6282 struct free_area *area = &zone->free_area[order]; 6283 int type; 6284 6285 nr[order] = area->nr_free; 6286 total += nr[order] << order; 6287 6288 types[order] = 0; 6289 for (type = 0; type < MIGRATE_TYPES; type++) { 6290 if (!free_area_empty(area, type)) 6291 types[order] |= 1 << type; 6292 } 6293 } 6294 spin_unlock_irqrestore(&zone->lock, flags); 6295 for (order = 0; order < MAX_ORDER; order++) { 6296 printk(KERN_CONT "%lu*%lukB ", 6297 nr[order], K(1UL) << order); 6298 if (nr[order]) 6299 show_migration_types(types[order]); 6300 } 6301 printk(KERN_CONT "= %lukB\n", K(total)); 6302 } 6303 6304 for_each_online_node(nid) { 6305 if (show_mem_node_skip(filter, nid, nodemask)) 6306 continue; 6307 hugetlb_show_meminfo_node(nid); 6308 } 6309 6310 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 6311 6312 show_swap_cache_info(); 6313 } 6314 6315 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 6316 { 6317 zoneref->zone = zone; 6318 zoneref->zone_idx = zone_idx(zone); 6319 } 6320 6321 /* 6322 * Builds allocation fallback zone lists. 6323 * 6324 * Add all populated zones of a node to the zonelist. 6325 */ 6326 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 6327 { 6328 struct zone *zone; 6329 enum zone_type zone_type = MAX_NR_ZONES; 6330 int nr_zones = 0; 6331 6332 do { 6333 zone_type--; 6334 zone = pgdat->node_zones + zone_type; 6335 if (populated_zone(zone)) { 6336 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 6337 check_highest_zone(zone_type); 6338 } 6339 } while (zone_type); 6340 6341 return nr_zones; 6342 } 6343 6344 #ifdef CONFIG_NUMA 6345 6346 static int __parse_numa_zonelist_order(char *s) 6347 { 6348 /* 6349 * We used to support different zonelists modes but they turned 6350 * out to be just not useful. Let's keep the warning in place 6351 * if somebody still use the cmd line parameter so that we do 6352 * not fail it silently 6353 */ 6354 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 6355 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 6356 return -EINVAL; 6357 } 6358 return 0; 6359 } 6360 6361 char numa_zonelist_order[] = "Node"; 6362 6363 /* 6364 * sysctl handler for numa_zonelist_order 6365 */ 6366 int numa_zonelist_order_handler(struct ctl_table *table, int write, 6367 void *buffer, size_t *length, loff_t *ppos) 6368 { 6369 if (write) 6370 return __parse_numa_zonelist_order(buffer); 6371 return proc_dostring(table, write, buffer, length, ppos); 6372 } 6373 6374 6375 static int node_load[MAX_NUMNODES]; 6376 6377 /** 6378 * find_next_best_node - find the next node that should appear in a given node's fallback list 6379 * @node: node whose fallback list we're appending 6380 * @used_node_mask: nodemask_t of already used nodes 6381 * 6382 * We use a number of factors to determine which is the next node that should 6383 * appear on a given node's fallback list. The node should not have appeared 6384 * already in @node's fallback list, and it should be the next closest node 6385 * according to the distance array (which contains arbitrary distance values 6386 * from each node to each node in the system), and should also prefer nodes 6387 * with no CPUs, since presumably they'll have very little allocation pressure 6388 * on them otherwise. 6389 * 6390 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 6391 */ 6392 int find_next_best_node(int node, nodemask_t *used_node_mask) 6393 { 6394 int n, val; 6395 int min_val = INT_MAX; 6396 int best_node = NUMA_NO_NODE; 6397 6398 /* Use the local node if we haven't already */ 6399 if (!node_isset(node, *used_node_mask)) { 6400 node_set(node, *used_node_mask); 6401 return node; 6402 } 6403 6404 for_each_node_state(n, N_MEMORY) { 6405 6406 /* Don't want a node to appear more than once */ 6407 if (node_isset(n, *used_node_mask)) 6408 continue; 6409 6410 /* Use the distance array to find the distance */ 6411 val = node_distance(node, n); 6412 6413 /* Penalize nodes under us ("prefer the next node") */ 6414 val += (n < node); 6415 6416 /* Give preference to headless and unused nodes */ 6417 if (!cpumask_empty(cpumask_of_node(n))) 6418 val += PENALTY_FOR_NODE_WITH_CPUS; 6419 6420 /* Slight preference for less loaded node */ 6421 val *= MAX_NUMNODES; 6422 val += node_load[n]; 6423 6424 if (val < min_val) { 6425 min_val = val; 6426 best_node = n; 6427 } 6428 } 6429 6430 if (best_node >= 0) 6431 node_set(best_node, *used_node_mask); 6432 6433 return best_node; 6434 } 6435 6436 6437 /* 6438 * Build zonelists ordered by node and zones within node. 6439 * This results in maximum locality--normal zone overflows into local 6440 * DMA zone, if any--but risks exhausting DMA zone. 6441 */ 6442 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 6443 unsigned nr_nodes) 6444 { 6445 struct zoneref *zonerefs; 6446 int i; 6447 6448 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 6449 6450 for (i = 0; i < nr_nodes; i++) { 6451 int nr_zones; 6452 6453 pg_data_t *node = NODE_DATA(node_order[i]); 6454 6455 nr_zones = build_zonerefs_node(node, zonerefs); 6456 zonerefs += nr_zones; 6457 } 6458 zonerefs->zone = NULL; 6459 zonerefs->zone_idx = 0; 6460 } 6461 6462 /* 6463 * Build gfp_thisnode zonelists 6464 */ 6465 static void build_thisnode_zonelists(pg_data_t *pgdat) 6466 { 6467 struct zoneref *zonerefs; 6468 int nr_zones; 6469 6470 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 6471 nr_zones = build_zonerefs_node(pgdat, zonerefs); 6472 zonerefs += nr_zones; 6473 zonerefs->zone = NULL; 6474 zonerefs->zone_idx = 0; 6475 } 6476 6477 /* 6478 * Build zonelists ordered by zone and nodes within zones. 6479 * This results in conserving DMA zone[s] until all Normal memory is 6480 * exhausted, but results in overflowing to remote node while memory 6481 * may still exist in local DMA zone. 6482 */ 6483 6484 static void build_zonelists(pg_data_t *pgdat) 6485 { 6486 static int node_order[MAX_NUMNODES]; 6487 int node, nr_nodes = 0; 6488 nodemask_t used_mask = NODE_MASK_NONE; 6489 int local_node, prev_node; 6490 6491 /* NUMA-aware ordering of nodes */ 6492 local_node = pgdat->node_id; 6493 prev_node = local_node; 6494 6495 memset(node_order, 0, sizeof(node_order)); 6496 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 6497 /* 6498 * We don't want to pressure a particular node. 6499 * So adding penalty to the first node in same 6500 * distance group to make it round-robin. 6501 */ 6502 if (node_distance(local_node, node) != 6503 node_distance(local_node, prev_node)) 6504 node_load[node] += 1; 6505 6506 node_order[nr_nodes++] = node; 6507 prev_node = node; 6508 } 6509 6510 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 6511 build_thisnode_zonelists(pgdat); 6512 pr_info("Fallback order for Node %d: ", local_node); 6513 for (node = 0; node < nr_nodes; node++) 6514 pr_cont("%d ", node_order[node]); 6515 pr_cont("\n"); 6516 } 6517 6518 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 6519 /* 6520 * Return node id of node used for "local" allocations. 6521 * I.e., first node id of first zone in arg node's generic zonelist. 6522 * Used for initializing percpu 'numa_mem', which is used primarily 6523 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 6524 */ 6525 int local_memory_node(int node) 6526 { 6527 struct zoneref *z; 6528 6529 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 6530 gfp_zone(GFP_KERNEL), 6531 NULL); 6532 return zone_to_nid(z->zone); 6533 } 6534 #endif 6535 6536 static void setup_min_unmapped_ratio(void); 6537 static void setup_min_slab_ratio(void); 6538 #else /* CONFIG_NUMA */ 6539 6540 static void build_zonelists(pg_data_t *pgdat) 6541 { 6542 int node, local_node; 6543 struct zoneref *zonerefs; 6544 int nr_zones; 6545 6546 local_node = pgdat->node_id; 6547 6548 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 6549 nr_zones = build_zonerefs_node(pgdat, zonerefs); 6550 zonerefs += nr_zones; 6551 6552 /* 6553 * Now we build the zonelist so that it contains the zones 6554 * of all the other nodes. 6555 * We don't want to pressure a particular node, so when 6556 * building the zones for node N, we make sure that the 6557 * zones coming right after the local ones are those from 6558 * node N+1 (modulo N) 6559 */ 6560 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 6561 if (!node_online(node)) 6562 continue; 6563 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 6564 zonerefs += nr_zones; 6565 } 6566 for (node = 0; node < local_node; node++) { 6567 if (!node_online(node)) 6568 continue; 6569 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 6570 zonerefs += nr_zones; 6571 } 6572 6573 zonerefs->zone = NULL; 6574 zonerefs->zone_idx = 0; 6575 } 6576 6577 #endif /* CONFIG_NUMA */ 6578 6579 /* 6580 * Boot pageset table. One per cpu which is going to be used for all 6581 * zones and all nodes. The parameters will be set in such a way 6582 * that an item put on a list will immediately be handed over to 6583 * the buddy list. This is safe since pageset manipulation is done 6584 * with interrupts disabled. 6585 * 6586 * The boot_pagesets must be kept even after bootup is complete for 6587 * unused processors and/or zones. They do play a role for bootstrapping 6588 * hotplugged processors. 6589 * 6590 * zoneinfo_show() and maybe other functions do 6591 * not check if the processor is online before following the pageset pointer. 6592 * Other parts of the kernel may not check if the zone is available. 6593 */ 6594 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); 6595 /* These effectively disable the pcplists in the boot pageset completely */ 6596 #define BOOT_PAGESET_HIGH 0 6597 #define BOOT_PAGESET_BATCH 1 6598 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); 6599 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); 6600 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 6601 6602 static void __build_all_zonelists(void *data) 6603 { 6604 int nid; 6605 int __maybe_unused cpu; 6606 pg_data_t *self = data; 6607 6608 write_seqlock(&zonelist_update_seq); 6609 6610 #ifdef CONFIG_NUMA 6611 memset(node_load, 0, sizeof(node_load)); 6612 #endif 6613 6614 /* 6615 * This node is hotadded and no memory is yet present. So just 6616 * building zonelists is fine - no need to touch other nodes. 6617 */ 6618 if (self && !node_online(self->node_id)) { 6619 build_zonelists(self); 6620 } else { 6621 /* 6622 * All possible nodes have pgdat preallocated 6623 * in free_area_init 6624 */ 6625 for_each_node(nid) { 6626 pg_data_t *pgdat = NODE_DATA(nid); 6627 6628 build_zonelists(pgdat); 6629 } 6630 6631 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 6632 /* 6633 * We now know the "local memory node" for each node-- 6634 * i.e., the node of the first zone in the generic zonelist. 6635 * Set up numa_mem percpu variable for on-line cpus. During 6636 * boot, only the boot cpu should be on-line; we'll init the 6637 * secondary cpus' numa_mem as they come on-line. During 6638 * node/memory hotplug, we'll fixup all on-line cpus. 6639 */ 6640 for_each_online_cpu(cpu) 6641 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 6642 #endif 6643 } 6644 6645 write_sequnlock(&zonelist_update_seq); 6646 } 6647 6648 static noinline void __init 6649 build_all_zonelists_init(void) 6650 { 6651 int cpu; 6652 6653 __build_all_zonelists(NULL); 6654 6655 /* 6656 * Initialize the boot_pagesets that are going to be used 6657 * for bootstrapping processors. The real pagesets for 6658 * each zone will be allocated later when the per cpu 6659 * allocator is available. 6660 * 6661 * boot_pagesets are used also for bootstrapping offline 6662 * cpus if the system is already booted because the pagesets 6663 * are needed to initialize allocators on a specific cpu too. 6664 * F.e. the percpu allocator needs the page allocator which 6665 * needs the percpu allocator in order to allocate its pagesets 6666 * (a chicken-egg dilemma). 6667 */ 6668 for_each_possible_cpu(cpu) 6669 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); 6670 6671 mminit_verify_zonelist(); 6672 cpuset_init_current_mems_allowed(); 6673 } 6674 6675 /* 6676 * unless system_state == SYSTEM_BOOTING. 6677 * 6678 * __ref due to call of __init annotated helper build_all_zonelists_init 6679 * [protected by SYSTEM_BOOTING]. 6680 */ 6681 void __ref build_all_zonelists(pg_data_t *pgdat) 6682 { 6683 unsigned long vm_total_pages; 6684 6685 if (system_state == SYSTEM_BOOTING) { 6686 build_all_zonelists_init(); 6687 } else { 6688 __build_all_zonelists(pgdat); 6689 /* cpuset refresh routine should be here */ 6690 } 6691 /* Get the number of free pages beyond high watermark in all zones. */ 6692 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 6693 /* 6694 * Disable grouping by mobility if the number of pages in the 6695 * system is too low to allow the mechanism to work. It would be 6696 * more accurate, but expensive to check per-zone. This check is 6697 * made on memory-hotadd so a system can start with mobility 6698 * disabled and enable it later 6699 */ 6700 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 6701 page_group_by_mobility_disabled = 1; 6702 else 6703 page_group_by_mobility_disabled = 0; 6704 6705 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 6706 nr_online_nodes, 6707 page_group_by_mobility_disabled ? "off" : "on", 6708 vm_total_pages); 6709 #ifdef CONFIG_NUMA 6710 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 6711 #endif 6712 } 6713 6714 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 6715 static bool __meminit 6716 overlap_memmap_init(unsigned long zone, unsigned long *pfn) 6717 { 6718 static struct memblock_region *r; 6719 6720 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 6721 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 6722 for_each_mem_region(r) { 6723 if (*pfn < memblock_region_memory_end_pfn(r)) 6724 break; 6725 } 6726 } 6727 if (*pfn >= memblock_region_memory_base_pfn(r) && 6728 memblock_is_mirror(r)) { 6729 *pfn = memblock_region_memory_end_pfn(r); 6730 return true; 6731 } 6732 } 6733 return false; 6734 } 6735 6736 /* 6737 * Initially all pages are reserved - free ones are freed 6738 * up by memblock_free_all() once the early boot process is 6739 * done. Non-atomic initialization, single-pass. 6740 * 6741 * All aligned pageblocks are initialized to the specified migratetype 6742 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related 6743 * zone stats (e.g., nr_isolate_pageblock) are touched. 6744 */ 6745 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone, 6746 unsigned long start_pfn, unsigned long zone_end_pfn, 6747 enum meminit_context context, 6748 struct vmem_altmap *altmap, int migratetype) 6749 { 6750 unsigned long pfn, end_pfn = start_pfn + size; 6751 struct page *page; 6752 6753 if (highest_memmap_pfn < end_pfn - 1) 6754 highest_memmap_pfn = end_pfn - 1; 6755 6756 #ifdef CONFIG_ZONE_DEVICE 6757 /* 6758 * Honor reservation requested by the driver for this ZONE_DEVICE 6759 * memory. We limit the total number of pages to initialize to just 6760 * those that might contain the memory mapping. We will defer the 6761 * ZONE_DEVICE page initialization until after we have released 6762 * the hotplug lock. 6763 */ 6764 if (zone == ZONE_DEVICE) { 6765 if (!altmap) 6766 return; 6767 6768 if (start_pfn == altmap->base_pfn) 6769 start_pfn += altmap->reserve; 6770 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6771 } 6772 #endif 6773 6774 for (pfn = start_pfn; pfn < end_pfn; ) { 6775 /* 6776 * There can be holes in boot-time mem_map[]s handed to this 6777 * function. They do not exist on hotplugged memory. 6778 */ 6779 if (context == MEMINIT_EARLY) { 6780 if (overlap_memmap_init(zone, &pfn)) 6781 continue; 6782 if (defer_init(nid, pfn, zone_end_pfn)) 6783 break; 6784 } 6785 6786 page = pfn_to_page(pfn); 6787 __init_single_page(page, pfn, zone, nid); 6788 if (context == MEMINIT_HOTPLUG) 6789 __SetPageReserved(page); 6790 6791 /* 6792 * Usually, we want to mark the pageblock MIGRATE_MOVABLE, 6793 * such that unmovable allocations won't be scattered all 6794 * over the place during system boot. 6795 */ 6796 if (pageblock_aligned(pfn)) { 6797 set_pageblock_migratetype(page, migratetype); 6798 cond_resched(); 6799 } 6800 pfn++; 6801 } 6802 } 6803 6804 #ifdef CONFIG_ZONE_DEVICE 6805 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn, 6806 unsigned long zone_idx, int nid, 6807 struct dev_pagemap *pgmap) 6808 { 6809 6810 __init_single_page(page, pfn, zone_idx, nid); 6811 6812 /* 6813 * Mark page reserved as it will need to wait for onlining 6814 * phase for it to be fully associated with a zone. 6815 * 6816 * We can use the non-atomic __set_bit operation for setting 6817 * the flag as we are still initializing the pages. 6818 */ 6819 __SetPageReserved(page); 6820 6821 /* 6822 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer 6823 * and zone_device_data. It is a bug if a ZONE_DEVICE page is 6824 * ever freed or placed on a driver-private list. 6825 */ 6826 page->pgmap = pgmap; 6827 page->zone_device_data = NULL; 6828 6829 /* 6830 * Mark the block movable so that blocks are reserved for 6831 * movable at startup. This will force kernel allocations 6832 * to reserve their blocks rather than leaking throughout 6833 * the address space during boot when many long-lived 6834 * kernel allocations are made. 6835 * 6836 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap 6837 * because this is done early in section_activate() 6838 */ 6839 if (pageblock_aligned(pfn)) { 6840 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 6841 cond_resched(); 6842 } 6843 6844 /* 6845 * ZONE_DEVICE pages are released directly to the driver page allocator 6846 * which will set the page count to 1 when allocating the page. 6847 */ 6848 if (pgmap->type == MEMORY_DEVICE_PRIVATE || 6849 pgmap->type == MEMORY_DEVICE_COHERENT) 6850 set_page_count(page, 0); 6851 } 6852 6853 /* 6854 * With compound page geometry and when struct pages are stored in ram most 6855 * tail pages are reused. Consequently, the amount of unique struct pages to 6856 * initialize is a lot smaller that the total amount of struct pages being 6857 * mapped. This is a paired / mild layering violation with explicit knowledge 6858 * of how the sparse_vmemmap internals handle compound pages in the lack 6859 * of an altmap. See vmemmap_populate_compound_pages(). 6860 */ 6861 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap, 6862 unsigned long nr_pages) 6863 { 6864 return is_power_of_2(sizeof(struct page)) && 6865 !altmap ? 2 * (PAGE_SIZE / sizeof(struct page)) : nr_pages; 6866 } 6867 6868 static void __ref memmap_init_compound(struct page *head, 6869 unsigned long head_pfn, 6870 unsigned long zone_idx, int nid, 6871 struct dev_pagemap *pgmap, 6872 unsigned long nr_pages) 6873 { 6874 unsigned long pfn, end_pfn = head_pfn + nr_pages; 6875 unsigned int order = pgmap->vmemmap_shift; 6876 6877 __SetPageHead(head); 6878 for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) { 6879 struct page *page = pfn_to_page(pfn); 6880 6881 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); 6882 prep_compound_tail(head, pfn - head_pfn); 6883 set_page_count(page, 0); 6884 6885 /* 6886 * The first tail page stores important compound page info. 6887 * Call prep_compound_head() after the first tail page has 6888 * been initialized, to not have the data overwritten. 6889 */ 6890 if (pfn == head_pfn + 1) 6891 prep_compound_head(head, order); 6892 } 6893 } 6894 6895 void __ref memmap_init_zone_device(struct zone *zone, 6896 unsigned long start_pfn, 6897 unsigned long nr_pages, 6898 struct dev_pagemap *pgmap) 6899 { 6900 unsigned long pfn, end_pfn = start_pfn + nr_pages; 6901 struct pglist_data *pgdat = zone->zone_pgdat; 6902 struct vmem_altmap *altmap = pgmap_altmap(pgmap); 6903 unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap); 6904 unsigned long zone_idx = zone_idx(zone); 6905 unsigned long start = jiffies; 6906 int nid = pgdat->node_id; 6907 6908 if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE)) 6909 return; 6910 6911 /* 6912 * The call to memmap_init should have already taken care 6913 * of the pages reserved for the memmap, so we can just jump to 6914 * the end of that region and start processing the device pages. 6915 */ 6916 if (altmap) { 6917 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6918 nr_pages = end_pfn - start_pfn; 6919 } 6920 6921 for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) { 6922 struct page *page = pfn_to_page(pfn); 6923 6924 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); 6925 6926 if (pfns_per_compound == 1) 6927 continue; 6928 6929 memmap_init_compound(page, pfn, zone_idx, nid, pgmap, 6930 compound_nr_pages(altmap, pfns_per_compound)); 6931 } 6932 6933 pr_info("%s initialised %lu pages in %ums\n", __func__, 6934 nr_pages, jiffies_to_msecs(jiffies - start)); 6935 } 6936 6937 #endif 6938 static void __meminit zone_init_free_lists(struct zone *zone) 6939 { 6940 unsigned int order, t; 6941 for_each_migratetype_order(order, t) { 6942 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 6943 zone->free_area[order].nr_free = 0; 6944 } 6945 } 6946 6947 /* 6948 * Only struct pages that correspond to ranges defined by memblock.memory 6949 * are zeroed and initialized by going through __init_single_page() during 6950 * memmap_init_zone_range(). 6951 * 6952 * But, there could be struct pages that correspond to holes in 6953 * memblock.memory. This can happen because of the following reasons: 6954 * - physical memory bank size is not necessarily the exact multiple of the 6955 * arbitrary section size 6956 * - early reserved memory may not be listed in memblock.memory 6957 * - memory layouts defined with memmap= kernel parameter may not align 6958 * nicely with memmap sections 6959 * 6960 * Explicitly initialize those struct pages so that: 6961 * - PG_Reserved is set 6962 * - zone and node links point to zone and node that span the page if the 6963 * hole is in the middle of a zone 6964 * - zone and node links point to adjacent zone/node if the hole falls on 6965 * the zone boundary; the pages in such holes will be prepended to the 6966 * zone/node above the hole except for the trailing pages in the last 6967 * section that will be appended to the zone/node below. 6968 */ 6969 static void __init init_unavailable_range(unsigned long spfn, 6970 unsigned long epfn, 6971 int zone, int node) 6972 { 6973 unsigned long pfn; 6974 u64 pgcnt = 0; 6975 6976 for (pfn = spfn; pfn < epfn; pfn++) { 6977 if (!pfn_valid(pageblock_start_pfn(pfn))) { 6978 pfn = pageblock_end_pfn(pfn) - 1; 6979 continue; 6980 } 6981 __init_single_page(pfn_to_page(pfn), pfn, zone, node); 6982 __SetPageReserved(pfn_to_page(pfn)); 6983 pgcnt++; 6984 } 6985 6986 if (pgcnt) 6987 pr_info("On node %d, zone %s: %lld pages in unavailable ranges", 6988 node, zone_names[zone], pgcnt); 6989 } 6990 6991 static void __init memmap_init_zone_range(struct zone *zone, 6992 unsigned long start_pfn, 6993 unsigned long end_pfn, 6994 unsigned long *hole_pfn) 6995 { 6996 unsigned long zone_start_pfn = zone->zone_start_pfn; 6997 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages; 6998 int nid = zone_to_nid(zone), zone_id = zone_idx(zone); 6999 7000 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn); 7001 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn); 7002 7003 if (start_pfn >= end_pfn) 7004 return; 7005 7006 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn, 7007 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE); 7008 7009 if (*hole_pfn < start_pfn) 7010 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid); 7011 7012 *hole_pfn = end_pfn; 7013 } 7014 7015 static void __init memmap_init(void) 7016 { 7017 unsigned long start_pfn, end_pfn; 7018 unsigned long hole_pfn = 0; 7019 int i, j, zone_id = 0, nid; 7020 7021 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7022 struct pglist_data *node = NODE_DATA(nid); 7023 7024 for (j = 0; j < MAX_NR_ZONES; j++) { 7025 struct zone *zone = node->node_zones + j; 7026 7027 if (!populated_zone(zone)) 7028 continue; 7029 7030 memmap_init_zone_range(zone, start_pfn, end_pfn, 7031 &hole_pfn); 7032 zone_id = j; 7033 } 7034 } 7035 7036 #ifdef CONFIG_SPARSEMEM 7037 /* 7038 * Initialize the memory map for hole in the range [memory_end, 7039 * section_end]. 7040 * Append the pages in this hole to the highest zone in the last 7041 * node. 7042 * The call to init_unavailable_range() is outside the ifdef to 7043 * silence the compiler warining about zone_id set but not used; 7044 * for FLATMEM it is a nop anyway 7045 */ 7046 end_pfn = round_up(end_pfn, PAGES_PER_SECTION); 7047 if (hole_pfn < end_pfn) 7048 #endif 7049 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid); 7050 } 7051 7052 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align, 7053 phys_addr_t min_addr, int nid, bool exact_nid) 7054 { 7055 void *ptr; 7056 7057 if (exact_nid) 7058 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr, 7059 MEMBLOCK_ALLOC_ACCESSIBLE, 7060 nid); 7061 else 7062 ptr = memblock_alloc_try_nid_raw(size, align, min_addr, 7063 MEMBLOCK_ALLOC_ACCESSIBLE, 7064 nid); 7065 7066 if (ptr && size > 0) 7067 page_init_poison(ptr, size); 7068 7069 return ptr; 7070 } 7071 7072 static int zone_batchsize(struct zone *zone) 7073 { 7074 #ifdef CONFIG_MMU 7075 int batch; 7076 7077 /* 7078 * The number of pages to batch allocate is either ~0.1% 7079 * of the zone or 1MB, whichever is smaller. The batch 7080 * size is striking a balance between allocation latency 7081 * and zone lock contention. 7082 */ 7083 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE); 7084 batch /= 4; /* We effectively *= 4 below */ 7085 if (batch < 1) 7086 batch = 1; 7087 7088 /* 7089 * Clamp the batch to a 2^n - 1 value. Having a power 7090 * of 2 value was found to be more likely to have 7091 * suboptimal cache aliasing properties in some cases. 7092 * 7093 * For example if 2 tasks are alternately allocating 7094 * batches of pages, one task can end up with a lot 7095 * of pages of one half of the possible page colors 7096 * and the other with pages of the other colors. 7097 */ 7098 batch = rounddown_pow_of_two(batch + batch/2) - 1; 7099 7100 return batch; 7101 7102 #else 7103 /* The deferral and batching of frees should be suppressed under NOMMU 7104 * conditions. 7105 * 7106 * The problem is that NOMMU needs to be able to allocate large chunks 7107 * of contiguous memory as there's no hardware page translation to 7108 * assemble apparent contiguous memory from discontiguous pages. 7109 * 7110 * Queueing large contiguous runs of pages for batching, however, 7111 * causes the pages to actually be freed in smaller chunks. As there 7112 * can be a significant delay between the individual batches being 7113 * recycled, this leads to the once large chunks of space being 7114 * fragmented and becoming unavailable for high-order allocations. 7115 */ 7116 return 0; 7117 #endif 7118 } 7119 7120 static int zone_highsize(struct zone *zone, int batch, int cpu_online) 7121 { 7122 #ifdef CONFIG_MMU 7123 int high; 7124 int nr_split_cpus; 7125 unsigned long total_pages; 7126 7127 if (!percpu_pagelist_high_fraction) { 7128 /* 7129 * By default, the high value of the pcp is based on the zone 7130 * low watermark so that if they are full then background 7131 * reclaim will not be started prematurely. 7132 */ 7133 total_pages = low_wmark_pages(zone); 7134 } else { 7135 /* 7136 * If percpu_pagelist_high_fraction is configured, the high 7137 * value is based on a fraction of the managed pages in the 7138 * zone. 7139 */ 7140 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction; 7141 } 7142 7143 /* 7144 * Split the high value across all online CPUs local to the zone. Note 7145 * that early in boot that CPUs may not be online yet and that during 7146 * CPU hotplug that the cpumask is not yet updated when a CPU is being 7147 * onlined. For memory nodes that have no CPUs, split pcp->high across 7148 * all online CPUs to mitigate the risk that reclaim is triggered 7149 * prematurely due to pages stored on pcp lists. 7150 */ 7151 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; 7152 if (!nr_split_cpus) 7153 nr_split_cpus = num_online_cpus(); 7154 high = total_pages / nr_split_cpus; 7155 7156 /* 7157 * Ensure high is at least batch*4. The multiple is based on the 7158 * historical relationship between high and batch. 7159 */ 7160 high = max(high, batch << 2); 7161 7162 return high; 7163 #else 7164 return 0; 7165 #endif 7166 } 7167 7168 /* 7169 * pcp->high and pcp->batch values are related and generally batch is lower 7170 * than high. They are also related to pcp->count such that count is lower 7171 * than high, and as soon as it reaches high, the pcplist is flushed. 7172 * 7173 * However, guaranteeing these relations at all times would require e.g. write 7174 * barriers here but also careful usage of read barriers at the read side, and 7175 * thus be prone to error and bad for performance. Thus the update only prevents 7176 * store tearing. Any new users of pcp->batch and pcp->high should ensure they 7177 * can cope with those fields changing asynchronously, and fully trust only the 7178 * pcp->count field on the local CPU with interrupts disabled. 7179 * 7180 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 7181 * outside of boot time (or some other assurance that no concurrent updaters 7182 * exist). 7183 */ 7184 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 7185 unsigned long batch) 7186 { 7187 WRITE_ONCE(pcp->batch, batch); 7188 WRITE_ONCE(pcp->high, high); 7189 } 7190 7191 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) 7192 { 7193 int pindex; 7194 7195 memset(pcp, 0, sizeof(*pcp)); 7196 memset(pzstats, 0, sizeof(*pzstats)); 7197 7198 spin_lock_init(&pcp->lock); 7199 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) 7200 INIT_LIST_HEAD(&pcp->lists[pindex]); 7201 7202 /* 7203 * Set batch and high values safe for a boot pageset. A true percpu 7204 * pageset's initialization will update them subsequently. Here we don't 7205 * need to be as careful as pageset_update() as nobody can access the 7206 * pageset yet. 7207 */ 7208 pcp->high = BOOT_PAGESET_HIGH; 7209 pcp->batch = BOOT_PAGESET_BATCH; 7210 pcp->free_factor = 0; 7211 } 7212 7213 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high, 7214 unsigned long batch) 7215 { 7216 struct per_cpu_pages *pcp; 7217 int cpu; 7218 7219 for_each_possible_cpu(cpu) { 7220 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 7221 pageset_update(pcp, high, batch); 7222 } 7223 } 7224 7225 /* 7226 * Calculate and set new high and batch values for all per-cpu pagesets of a 7227 * zone based on the zone's size. 7228 */ 7229 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) 7230 { 7231 int new_high, new_batch; 7232 7233 new_batch = max(1, zone_batchsize(zone)); 7234 new_high = zone_highsize(zone, new_batch, cpu_online); 7235 7236 if (zone->pageset_high == new_high && 7237 zone->pageset_batch == new_batch) 7238 return; 7239 7240 zone->pageset_high = new_high; 7241 zone->pageset_batch = new_batch; 7242 7243 __zone_set_pageset_high_and_batch(zone, new_high, new_batch); 7244 } 7245 7246 void __meminit setup_zone_pageset(struct zone *zone) 7247 { 7248 int cpu; 7249 7250 /* Size may be 0 on !SMP && !NUMA */ 7251 if (sizeof(struct per_cpu_zonestat) > 0) 7252 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); 7253 7254 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); 7255 for_each_possible_cpu(cpu) { 7256 struct per_cpu_pages *pcp; 7257 struct per_cpu_zonestat *pzstats; 7258 7259 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 7260 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 7261 per_cpu_pages_init(pcp, pzstats); 7262 } 7263 7264 zone_set_pageset_high_and_batch(zone, 0); 7265 } 7266 7267 /* 7268 * The zone indicated has a new number of managed_pages; batch sizes and percpu 7269 * page high values need to be recalculated. 7270 */ 7271 static void zone_pcp_update(struct zone *zone, int cpu_online) 7272 { 7273 mutex_lock(&pcp_batch_high_lock); 7274 zone_set_pageset_high_and_batch(zone, cpu_online); 7275 mutex_unlock(&pcp_batch_high_lock); 7276 } 7277 7278 /* 7279 * Allocate per cpu pagesets and initialize them. 7280 * Before this call only boot pagesets were available. 7281 */ 7282 void __init setup_per_cpu_pageset(void) 7283 { 7284 struct pglist_data *pgdat; 7285 struct zone *zone; 7286 int __maybe_unused cpu; 7287 7288 for_each_populated_zone(zone) 7289 setup_zone_pageset(zone); 7290 7291 #ifdef CONFIG_NUMA 7292 /* 7293 * Unpopulated zones continue using the boot pagesets. 7294 * The numa stats for these pagesets need to be reset. 7295 * Otherwise, they will end up skewing the stats of 7296 * the nodes these zones are associated with. 7297 */ 7298 for_each_possible_cpu(cpu) { 7299 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); 7300 memset(pzstats->vm_numa_event, 0, 7301 sizeof(pzstats->vm_numa_event)); 7302 } 7303 #endif 7304 7305 for_each_online_pgdat(pgdat) 7306 pgdat->per_cpu_nodestats = 7307 alloc_percpu(struct per_cpu_nodestat); 7308 } 7309 7310 static __meminit void zone_pcp_init(struct zone *zone) 7311 { 7312 /* 7313 * per cpu subsystem is not up at this point. The following code 7314 * relies on the ability of the linker to provide the 7315 * offset of a (static) per cpu variable into the per cpu area. 7316 */ 7317 zone->per_cpu_pageset = &boot_pageset; 7318 zone->per_cpu_zonestats = &boot_zonestats; 7319 zone->pageset_high = BOOT_PAGESET_HIGH; 7320 zone->pageset_batch = BOOT_PAGESET_BATCH; 7321 7322 if (populated_zone(zone)) 7323 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, 7324 zone->present_pages, zone_batchsize(zone)); 7325 } 7326 7327 void __meminit init_currently_empty_zone(struct zone *zone, 7328 unsigned long zone_start_pfn, 7329 unsigned long size) 7330 { 7331 struct pglist_data *pgdat = zone->zone_pgdat; 7332 int zone_idx = zone_idx(zone) + 1; 7333 7334 if (zone_idx > pgdat->nr_zones) 7335 pgdat->nr_zones = zone_idx; 7336 7337 zone->zone_start_pfn = zone_start_pfn; 7338 7339 mminit_dprintk(MMINIT_TRACE, "memmap_init", 7340 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 7341 pgdat->node_id, 7342 (unsigned long)zone_idx(zone), 7343 zone_start_pfn, (zone_start_pfn + size)); 7344 7345 zone_init_free_lists(zone); 7346 zone->initialized = 1; 7347 } 7348 7349 /** 7350 * get_pfn_range_for_nid - Return the start and end page frames for a node 7351 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 7352 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 7353 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 7354 * 7355 * It returns the start and end page frame of a node based on information 7356 * provided by memblock_set_node(). If called for a node 7357 * with no available memory, a warning is printed and the start and end 7358 * PFNs will be 0. 7359 */ 7360 void __init get_pfn_range_for_nid(unsigned int nid, 7361 unsigned long *start_pfn, unsigned long *end_pfn) 7362 { 7363 unsigned long this_start_pfn, this_end_pfn; 7364 int i; 7365 7366 *start_pfn = -1UL; 7367 *end_pfn = 0; 7368 7369 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 7370 *start_pfn = min(*start_pfn, this_start_pfn); 7371 *end_pfn = max(*end_pfn, this_end_pfn); 7372 } 7373 7374 if (*start_pfn == -1UL) 7375 *start_pfn = 0; 7376 } 7377 7378 /* 7379 * This finds a zone that can be used for ZONE_MOVABLE pages. The 7380 * assumption is made that zones within a node are ordered in monotonic 7381 * increasing memory addresses so that the "highest" populated zone is used 7382 */ 7383 static void __init find_usable_zone_for_movable(void) 7384 { 7385 int zone_index; 7386 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 7387 if (zone_index == ZONE_MOVABLE) 7388 continue; 7389 7390 if (arch_zone_highest_possible_pfn[zone_index] > 7391 arch_zone_lowest_possible_pfn[zone_index]) 7392 break; 7393 } 7394 7395 VM_BUG_ON(zone_index == -1); 7396 movable_zone = zone_index; 7397 } 7398 7399 /* 7400 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 7401 * because it is sized independent of architecture. Unlike the other zones, 7402 * the starting point for ZONE_MOVABLE is not fixed. It may be different 7403 * in each node depending on the size of each node and how evenly kernelcore 7404 * is distributed. This helper function adjusts the zone ranges 7405 * provided by the architecture for a given node by using the end of the 7406 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 7407 * zones within a node are in order of monotonic increases memory addresses 7408 */ 7409 static void __init adjust_zone_range_for_zone_movable(int nid, 7410 unsigned long zone_type, 7411 unsigned long node_start_pfn, 7412 unsigned long node_end_pfn, 7413 unsigned long *zone_start_pfn, 7414 unsigned long *zone_end_pfn) 7415 { 7416 /* Only adjust if ZONE_MOVABLE is on this node */ 7417 if (zone_movable_pfn[nid]) { 7418 /* Size ZONE_MOVABLE */ 7419 if (zone_type == ZONE_MOVABLE) { 7420 *zone_start_pfn = zone_movable_pfn[nid]; 7421 *zone_end_pfn = min(node_end_pfn, 7422 arch_zone_highest_possible_pfn[movable_zone]); 7423 7424 /* Adjust for ZONE_MOVABLE starting within this range */ 7425 } else if (!mirrored_kernelcore && 7426 *zone_start_pfn < zone_movable_pfn[nid] && 7427 *zone_end_pfn > zone_movable_pfn[nid]) { 7428 *zone_end_pfn = zone_movable_pfn[nid]; 7429 7430 /* Check if this whole range is within ZONE_MOVABLE */ 7431 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 7432 *zone_start_pfn = *zone_end_pfn; 7433 } 7434 } 7435 7436 /* 7437 * Return the number of pages a zone spans in a node, including holes 7438 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 7439 */ 7440 static unsigned long __init zone_spanned_pages_in_node(int nid, 7441 unsigned long zone_type, 7442 unsigned long node_start_pfn, 7443 unsigned long node_end_pfn, 7444 unsigned long *zone_start_pfn, 7445 unsigned long *zone_end_pfn) 7446 { 7447 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 7448 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 7449 /* When hotadd a new node from cpu_up(), the node should be empty */ 7450 if (!node_start_pfn && !node_end_pfn) 7451 return 0; 7452 7453 /* Get the start and end of the zone */ 7454 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 7455 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 7456 adjust_zone_range_for_zone_movable(nid, zone_type, 7457 node_start_pfn, node_end_pfn, 7458 zone_start_pfn, zone_end_pfn); 7459 7460 /* Check that this node has pages within the zone's required range */ 7461 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 7462 return 0; 7463 7464 /* Move the zone boundaries inside the node if necessary */ 7465 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 7466 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 7467 7468 /* Return the spanned pages */ 7469 return *zone_end_pfn - *zone_start_pfn; 7470 } 7471 7472 /* 7473 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 7474 * then all holes in the requested range will be accounted for. 7475 */ 7476 unsigned long __init __absent_pages_in_range(int nid, 7477 unsigned long range_start_pfn, 7478 unsigned long range_end_pfn) 7479 { 7480 unsigned long nr_absent = range_end_pfn - range_start_pfn; 7481 unsigned long start_pfn, end_pfn; 7482 int i; 7483 7484 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7485 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 7486 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 7487 nr_absent -= end_pfn - start_pfn; 7488 } 7489 return nr_absent; 7490 } 7491 7492 /** 7493 * absent_pages_in_range - Return number of page frames in holes within a range 7494 * @start_pfn: The start PFN to start searching for holes 7495 * @end_pfn: The end PFN to stop searching for holes 7496 * 7497 * Return: the number of pages frames in memory holes within a range. 7498 */ 7499 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 7500 unsigned long end_pfn) 7501 { 7502 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 7503 } 7504 7505 /* Return the number of page frames in holes in a zone on a node */ 7506 static unsigned long __init zone_absent_pages_in_node(int nid, 7507 unsigned long zone_type, 7508 unsigned long node_start_pfn, 7509 unsigned long node_end_pfn) 7510 { 7511 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 7512 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 7513 unsigned long zone_start_pfn, zone_end_pfn; 7514 unsigned long nr_absent; 7515 7516 /* When hotadd a new node from cpu_up(), the node should be empty */ 7517 if (!node_start_pfn && !node_end_pfn) 7518 return 0; 7519 7520 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 7521 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 7522 7523 adjust_zone_range_for_zone_movable(nid, zone_type, 7524 node_start_pfn, node_end_pfn, 7525 &zone_start_pfn, &zone_end_pfn); 7526 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 7527 7528 /* 7529 * ZONE_MOVABLE handling. 7530 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 7531 * and vice versa. 7532 */ 7533 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 7534 unsigned long start_pfn, end_pfn; 7535 struct memblock_region *r; 7536 7537 for_each_mem_region(r) { 7538 start_pfn = clamp(memblock_region_memory_base_pfn(r), 7539 zone_start_pfn, zone_end_pfn); 7540 end_pfn = clamp(memblock_region_memory_end_pfn(r), 7541 zone_start_pfn, zone_end_pfn); 7542 7543 if (zone_type == ZONE_MOVABLE && 7544 memblock_is_mirror(r)) 7545 nr_absent += end_pfn - start_pfn; 7546 7547 if (zone_type == ZONE_NORMAL && 7548 !memblock_is_mirror(r)) 7549 nr_absent += end_pfn - start_pfn; 7550 } 7551 } 7552 7553 return nr_absent; 7554 } 7555 7556 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 7557 unsigned long node_start_pfn, 7558 unsigned long node_end_pfn) 7559 { 7560 unsigned long realtotalpages = 0, totalpages = 0; 7561 enum zone_type i; 7562 7563 for (i = 0; i < MAX_NR_ZONES; i++) { 7564 struct zone *zone = pgdat->node_zones + i; 7565 unsigned long zone_start_pfn, zone_end_pfn; 7566 unsigned long spanned, absent; 7567 unsigned long size, real_size; 7568 7569 spanned = zone_spanned_pages_in_node(pgdat->node_id, i, 7570 node_start_pfn, 7571 node_end_pfn, 7572 &zone_start_pfn, 7573 &zone_end_pfn); 7574 absent = zone_absent_pages_in_node(pgdat->node_id, i, 7575 node_start_pfn, 7576 node_end_pfn); 7577 7578 size = spanned; 7579 real_size = size - absent; 7580 7581 if (size) 7582 zone->zone_start_pfn = zone_start_pfn; 7583 else 7584 zone->zone_start_pfn = 0; 7585 zone->spanned_pages = size; 7586 zone->present_pages = real_size; 7587 #if defined(CONFIG_MEMORY_HOTPLUG) 7588 zone->present_early_pages = real_size; 7589 #endif 7590 7591 totalpages += size; 7592 realtotalpages += real_size; 7593 } 7594 7595 pgdat->node_spanned_pages = totalpages; 7596 pgdat->node_present_pages = realtotalpages; 7597 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); 7598 } 7599 7600 #ifndef CONFIG_SPARSEMEM 7601 /* 7602 * Calculate the size of the zone->blockflags rounded to an unsigned long 7603 * Start by making sure zonesize is a multiple of pageblock_order by rounding 7604 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 7605 * round what is now in bits to nearest long in bits, then return it in 7606 * bytes. 7607 */ 7608 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 7609 { 7610 unsigned long usemapsize; 7611 7612 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 7613 usemapsize = roundup(zonesize, pageblock_nr_pages); 7614 usemapsize = usemapsize >> pageblock_order; 7615 usemapsize *= NR_PAGEBLOCK_BITS; 7616 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 7617 7618 return usemapsize / 8; 7619 } 7620 7621 static void __ref setup_usemap(struct zone *zone) 7622 { 7623 unsigned long usemapsize = usemap_size(zone->zone_start_pfn, 7624 zone->spanned_pages); 7625 zone->pageblock_flags = NULL; 7626 if (usemapsize) { 7627 zone->pageblock_flags = 7628 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, 7629 zone_to_nid(zone)); 7630 if (!zone->pageblock_flags) 7631 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", 7632 usemapsize, zone->name, zone_to_nid(zone)); 7633 } 7634 } 7635 #else 7636 static inline void setup_usemap(struct zone *zone) {} 7637 #endif /* CONFIG_SPARSEMEM */ 7638 7639 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 7640 7641 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 7642 void __init set_pageblock_order(void) 7643 { 7644 unsigned int order = MAX_ORDER - 1; 7645 7646 /* Check that pageblock_nr_pages has not already been setup */ 7647 if (pageblock_order) 7648 return; 7649 7650 /* Don't let pageblocks exceed the maximum allocation granularity. */ 7651 if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order) 7652 order = HUGETLB_PAGE_ORDER; 7653 7654 /* 7655 * Assume the largest contiguous order of interest is a huge page. 7656 * This value may be variable depending on boot parameters on IA64 and 7657 * powerpc. 7658 */ 7659 pageblock_order = order; 7660 } 7661 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 7662 7663 /* 7664 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 7665 * is unused as pageblock_order is set at compile-time. See 7666 * include/linux/pageblock-flags.h for the values of pageblock_order based on 7667 * the kernel config 7668 */ 7669 void __init set_pageblock_order(void) 7670 { 7671 } 7672 7673 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 7674 7675 static unsigned long __init calc_memmap_size(unsigned long spanned_pages, 7676 unsigned long present_pages) 7677 { 7678 unsigned long pages = spanned_pages; 7679 7680 /* 7681 * Provide a more accurate estimation if there are holes within 7682 * the zone and SPARSEMEM is in use. If there are holes within the 7683 * zone, each populated memory region may cost us one or two extra 7684 * memmap pages due to alignment because memmap pages for each 7685 * populated regions may not be naturally aligned on page boundary. 7686 * So the (present_pages >> 4) heuristic is a tradeoff for that. 7687 */ 7688 if (spanned_pages > present_pages + (present_pages >> 4) && 7689 IS_ENABLED(CONFIG_SPARSEMEM)) 7690 pages = present_pages; 7691 7692 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 7693 } 7694 7695 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 7696 static void pgdat_init_split_queue(struct pglist_data *pgdat) 7697 { 7698 struct deferred_split *ds_queue = &pgdat->deferred_split_queue; 7699 7700 spin_lock_init(&ds_queue->split_queue_lock); 7701 INIT_LIST_HEAD(&ds_queue->split_queue); 7702 ds_queue->split_queue_len = 0; 7703 } 7704 #else 7705 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 7706 #endif 7707 7708 #ifdef CONFIG_COMPACTION 7709 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 7710 { 7711 init_waitqueue_head(&pgdat->kcompactd_wait); 7712 } 7713 #else 7714 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 7715 #endif 7716 7717 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 7718 { 7719 int i; 7720 7721 pgdat_resize_init(pgdat); 7722 pgdat_kswapd_lock_init(pgdat); 7723 7724 pgdat_init_split_queue(pgdat); 7725 pgdat_init_kcompactd(pgdat); 7726 7727 init_waitqueue_head(&pgdat->kswapd_wait); 7728 init_waitqueue_head(&pgdat->pfmemalloc_wait); 7729 7730 for (i = 0; i < NR_VMSCAN_THROTTLE; i++) 7731 init_waitqueue_head(&pgdat->reclaim_wait[i]); 7732 7733 pgdat_page_ext_init(pgdat); 7734 lruvec_init(&pgdat->__lruvec); 7735 } 7736 7737 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 7738 unsigned long remaining_pages) 7739 { 7740 atomic_long_set(&zone->managed_pages, remaining_pages); 7741 zone_set_nid(zone, nid); 7742 zone->name = zone_names[idx]; 7743 zone->zone_pgdat = NODE_DATA(nid); 7744 spin_lock_init(&zone->lock); 7745 zone_seqlock_init(zone); 7746 zone_pcp_init(zone); 7747 } 7748 7749 /* 7750 * Set up the zone data structures 7751 * - init pgdat internals 7752 * - init all zones belonging to this node 7753 * 7754 * NOTE: this function is only called during memory hotplug 7755 */ 7756 #ifdef CONFIG_MEMORY_HOTPLUG 7757 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat) 7758 { 7759 int nid = pgdat->node_id; 7760 enum zone_type z; 7761 int cpu; 7762 7763 pgdat_init_internals(pgdat); 7764 7765 if (pgdat->per_cpu_nodestats == &boot_nodestats) 7766 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat); 7767 7768 /* 7769 * Reset the nr_zones, order and highest_zoneidx before reuse. 7770 * Note that kswapd will init kswapd_highest_zoneidx properly 7771 * when it starts in the near future. 7772 */ 7773 pgdat->nr_zones = 0; 7774 pgdat->kswapd_order = 0; 7775 pgdat->kswapd_highest_zoneidx = 0; 7776 pgdat->node_start_pfn = 0; 7777 for_each_online_cpu(cpu) { 7778 struct per_cpu_nodestat *p; 7779 7780 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); 7781 memset(p, 0, sizeof(*p)); 7782 } 7783 7784 for (z = 0; z < MAX_NR_ZONES; z++) 7785 zone_init_internals(&pgdat->node_zones[z], z, nid, 0); 7786 } 7787 #endif 7788 7789 /* 7790 * Set up the zone data structures: 7791 * - mark all pages reserved 7792 * - mark all memory queues empty 7793 * - clear the memory bitmaps 7794 * 7795 * NOTE: pgdat should get zeroed by caller. 7796 * NOTE: this function is only called during early init. 7797 */ 7798 static void __init free_area_init_core(struct pglist_data *pgdat) 7799 { 7800 enum zone_type j; 7801 int nid = pgdat->node_id; 7802 7803 pgdat_init_internals(pgdat); 7804 pgdat->per_cpu_nodestats = &boot_nodestats; 7805 7806 for (j = 0; j < MAX_NR_ZONES; j++) { 7807 struct zone *zone = pgdat->node_zones + j; 7808 unsigned long size, freesize, memmap_pages; 7809 7810 size = zone->spanned_pages; 7811 freesize = zone->present_pages; 7812 7813 /* 7814 * Adjust freesize so that it accounts for how much memory 7815 * is used by this zone for memmap. This affects the watermark 7816 * and per-cpu initialisations 7817 */ 7818 memmap_pages = calc_memmap_size(size, freesize); 7819 if (!is_highmem_idx(j)) { 7820 if (freesize >= memmap_pages) { 7821 freesize -= memmap_pages; 7822 if (memmap_pages) 7823 pr_debug(" %s zone: %lu pages used for memmap\n", 7824 zone_names[j], memmap_pages); 7825 } else 7826 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n", 7827 zone_names[j], memmap_pages, freesize); 7828 } 7829 7830 /* Account for reserved pages */ 7831 if (j == 0 && freesize > dma_reserve) { 7832 freesize -= dma_reserve; 7833 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve); 7834 } 7835 7836 if (!is_highmem_idx(j)) 7837 nr_kernel_pages += freesize; 7838 /* Charge for highmem memmap if there are enough kernel pages */ 7839 else if (nr_kernel_pages > memmap_pages * 2) 7840 nr_kernel_pages -= memmap_pages; 7841 nr_all_pages += freesize; 7842 7843 /* 7844 * Set an approximate value for lowmem here, it will be adjusted 7845 * when the bootmem allocator frees pages into the buddy system. 7846 * And all highmem pages will be managed by the buddy system. 7847 */ 7848 zone_init_internals(zone, j, nid, freesize); 7849 7850 if (!size) 7851 continue; 7852 7853 set_pageblock_order(); 7854 setup_usemap(zone); 7855 init_currently_empty_zone(zone, zone->zone_start_pfn, size); 7856 } 7857 } 7858 7859 #ifdef CONFIG_FLATMEM 7860 static void __init alloc_node_mem_map(struct pglist_data *pgdat) 7861 { 7862 unsigned long __maybe_unused start = 0; 7863 unsigned long __maybe_unused offset = 0; 7864 7865 /* Skip empty nodes */ 7866 if (!pgdat->node_spanned_pages) 7867 return; 7868 7869 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 7870 offset = pgdat->node_start_pfn - start; 7871 /* ia64 gets its own node_mem_map, before this, without bootmem */ 7872 if (!pgdat->node_mem_map) { 7873 unsigned long size, end; 7874 struct page *map; 7875 7876 /* 7877 * The zone's endpoints aren't required to be MAX_ORDER 7878 * aligned but the node_mem_map endpoints must be in order 7879 * for the buddy allocator to function correctly. 7880 */ 7881 end = pgdat_end_pfn(pgdat); 7882 end = ALIGN(end, MAX_ORDER_NR_PAGES); 7883 size = (end - start) * sizeof(struct page); 7884 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT, 7885 pgdat->node_id, false); 7886 if (!map) 7887 panic("Failed to allocate %ld bytes for node %d memory map\n", 7888 size, pgdat->node_id); 7889 pgdat->node_mem_map = map + offset; 7890 } 7891 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 7892 __func__, pgdat->node_id, (unsigned long)pgdat, 7893 (unsigned long)pgdat->node_mem_map); 7894 #ifndef CONFIG_NUMA 7895 /* 7896 * With no DISCONTIG, the global mem_map is just set as node 0's 7897 */ 7898 if (pgdat == NODE_DATA(0)) { 7899 mem_map = NODE_DATA(0)->node_mem_map; 7900 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 7901 mem_map -= offset; 7902 } 7903 #endif 7904 } 7905 #else 7906 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { } 7907 #endif /* CONFIG_FLATMEM */ 7908 7909 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 7910 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 7911 { 7912 pgdat->first_deferred_pfn = ULONG_MAX; 7913 } 7914 #else 7915 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 7916 #endif 7917 7918 static void __init free_area_init_node(int nid) 7919 { 7920 pg_data_t *pgdat = NODE_DATA(nid); 7921 unsigned long start_pfn = 0; 7922 unsigned long end_pfn = 0; 7923 7924 /* pg_data_t should be reset to zero when it's allocated */ 7925 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx); 7926 7927 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 7928 7929 pgdat->node_id = nid; 7930 pgdat->node_start_pfn = start_pfn; 7931 pgdat->per_cpu_nodestats = NULL; 7932 7933 if (start_pfn != end_pfn) { 7934 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 7935 (u64)start_pfn << PAGE_SHIFT, 7936 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 7937 } else { 7938 pr_info("Initmem setup node %d as memoryless\n", nid); 7939 } 7940 7941 calculate_node_totalpages(pgdat, start_pfn, end_pfn); 7942 7943 alloc_node_mem_map(pgdat); 7944 pgdat_set_deferred_range(pgdat); 7945 7946 free_area_init_core(pgdat); 7947 lru_gen_init_pgdat(pgdat); 7948 } 7949 7950 static void __init free_area_init_memoryless_node(int nid) 7951 { 7952 free_area_init_node(nid); 7953 } 7954 7955 #if MAX_NUMNODES > 1 7956 /* 7957 * Figure out the number of possible node ids. 7958 */ 7959 void __init setup_nr_node_ids(void) 7960 { 7961 unsigned int highest; 7962 7963 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 7964 nr_node_ids = highest + 1; 7965 } 7966 #endif 7967 7968 /** 7969 * node_map_pfn_alignment - determine the maximum internode alignment 7970 * 7971 * This function should be called after node map is populated and sorted. 7972 * It calculates the maximum power of two alignment which can distinguish 7973 * all the nodes. 7974 * 7975 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 7976 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 7977 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 7978 * shifted, 1GiB is enough and this function will indicate so. 7979 * 7980 * This is used to test whether pfn -> nid mapping of the chosen memory 7981 * model has fine enough granularity to avoid incorrect mapping for the 7982 * populated node map. 7983 * 7984 * Return: the determined alignment in pfn's. 0 if there is no alignment 7985 * requirement (single node). 7986 */ 7987 unsigned long __init node_map_pfn_alignment(void) 7988 { 7989 unsigned long accl_mask = 0, last_end = 0; 7990 unsigned long start, end, mask; 7991 int last_nid = NUMA_NO_NODE; 7992 int i, nid; 7993 7994 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 7995 if (!start || last_nid < 0 || last_nid == nid) { 7996 last_nid = nid; 7997 last_end = end; 7998 continue; 7999 } 8000 8001 /* 8002 * Start with a mask granular enough to pin-point to the 8003 * start pfn and tick off bits one-by-one until it becomes 8004 * too coarse to separate the current node from the last. 8005 */ 8006 mask = ~((1 << __ffs(start)) - 1); 8007 while (mask && last_end <= (start & (mask << 1))) 8008 mask <<= 1; 8009 8010 /* accumulate all internode masks */ 8011 accl_mask |= mask; 8012 } 8013 8014 /* convert mask to number of pages */ 8015 return ~accl_mask + 1; 8016 } 8017 8018 /* 8019 * early_calculate_totalpages() 8020 * Sum pages in active regions for movable zone. 8021 * Populate N_MEMORY for calculating usable_nodes. 8022 */ 8023 static unsigned long __init early_calculate_totalpages(void) 8024 { 8025 unsigned long totalpages = 0; 8026 unsigned long start_pfn, end_pfn; 8027 int i, nid; 8028 8029 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 8030 unsigned long pages = end_pfn - start_pfn; 8031 8032 totalpages += pages; 8033 if (pages) 8034 node_set_state(nid, N_MEMORY); 8035 } 8036 return totalpages; 8037 } 8038 8039 /* 8040 * Find the PFN the Movable zone begins in each node. Kernel memory 8041 * is spread evenly between nodes as long as the nodes have enough 8042 * memory. When they don't, some nodes will have more kernelcore than 8043 * others 8044 */ 8045 static void __init find_zone_movable_pfns_for_nodes(void) 8046 { 8047 int i, nid; 8048 unsigned long usable_startpfn; 8049 unsigned long kernelcore_node, kernelcore_remaining; 8050 /* save the state before borrow the nodemask */ 8051 nodemask_t saved_node_state = node_states[N_MEMORY]; 8052 unsigned long totalpages = early_calculate_totalpages(); 8053 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 8054 struct memblock_region *r; 8055 8056 /* Need to find movable_zone earlier when movable_node is specified. */ 8057 find_usable_zone_for_movable(); 8058 8059 /* 8060 * If movable_node is specified, ignore kernelcore and movablecore 8061 * options. 8062 */ 8063 if (movable_node_is_enabled()) { 8064 for_each_mem_region(r) { 8065 if (!memblock_is_hotpluggable(r)) 8066 continue; 8067 8068 nid = memblock_get_region_node(r); 8069 8070 usable_startpfn = PFN_DOWN(r->base); 8071 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 8072 min(usable_startpfn, zone_movable_pfn[nid]) : 8073 usable_startpfn; 8074 } 8075 8076 goto out2; 8077 } 8078 8079 /* 8080 * If kernelcore=mirror is specified, ignore movablecore option 8081 */ 8082 if (mirrored_kernelcore) { 8083 bool mem_below_4gb_not_mirrored = false; 8084 8085 for_each_mem_region(r) { 8086 if (memblock_is_mirror(r)) 8087 continue; 8088 8089 nid = memblock_get_region_node(r); 8090 8091 usable_startpfn = memblock_region_memory_base_pfn(r); 8092 8093 if (usable_startpfn < PHYS_PFN(SZ_4G)) { 8094 mem_below_4gb_not_mirrored = true; 8095 continue; 8096 } 8097 8098 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 8099 min(usable_startpfn, zone_movable_pfn[nid]) : 8100 usable_startpfn; 8101 } 8102 8103 if (mem_below_4gb_not_mirrored) 8104 pr_warn("This configuration results in unmirrored kernel memory.\n"); 8105 8106 goto out2; 8107 } 8108 8109 /* 8110 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 8111 * amount of necessary memory. 8112 */ 8113 if (required_kernelcore_percent) 8114 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 8115 10000UL; 8116 if (required_movablecore_percent) 8117 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 8118 10000UL; 8119 8120 /* 8121 * If movablecore= was specified, calculate what size of 8122 * kernelcore that corresponds so that memory usable for 8123 * any allocation type is evenly spread. If both kernelcore 8124 * and movablecore are specified, then the value of kernelcore 8125 * will be used for required_kernelcore if it's greater than 8126 * what movablecore would have allowed. 8127 */ 8128 if (required_movablecore) { 8129 unsigned long corepages; 8130 8131 /* 8132 * Round-up so that ZONE_MOVABLE is at least as large as what 8133 * was requested by the user 8134 */ 8135 required_movablecore = 8136 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 8137 required_movablecore = min(totalpages, required_movablecore); 8138 corepages = totalpages - required_movablecore; 8139 8140 required_kernelcore = max(required_kernelcore, corepages); 8141 } 8142 8143 /* 8144 * If kernelcore was not specified or kernelcore size is larger 8145 * than totalpages, there is no ZONE_MOVABLE. 8146 */ 8147 if (!required_kernelcore || required_kernelcore >= totalpages) 8148 goto out; 8149 8150 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 8151 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 8152 8153 restart: 8154 /* Spread kernelcore memory as evenly as possible throughout nodes */ 8155 kernelcore_node = required_kernelcore / usable_nodes; 8156 for_each_node_state(nid, N_MEMORY) { 8157 unsigned long start_pfn, end_pfn; 8158 8159 /* 8160 * Recalculate kernelcore_node if the division per node 8161 * now exceeds what is necessary to satisfy the requested 8162 * amount of memory for the kernel 8163 */ 8164 if (required_kernelcore < kernelcore_node) 8165 kernelcore_node = required_kernelcore / usable_nodes; 8166 8167 /* 8168 * As the map is walked, we track how much memory is usable 8169 * by the kernel using kernelcore_remaining. When it is 8170 * 0, the rest of the node is usable by ZONE_MOVABLE 8171 */ 8172 kernelcore_remaining = kernelcore_node; 8173 8174 /* Go through each range of PFNs within this node */ 8175 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 8176 unsigned long size_pages; 8177 8178 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 8179 if (start_pfn >= end_pfn) 8180 continue; 8181 8182 /* Account for what is only usable for kernelcore */ 8183 if (start_pfn < usable_startpfn) { 8184 unsigned long kernel_pages; 8185 kernel_pages = min(end_pfn, usable_startpfn) 8186 - start_pfn; 8187 8188 kernelcore_remaining -= min(kernel_pages, 8189 kernelcore_remaining); 8190 required_kernelcore -= min(kernel_pages, 8191 required_kernelcore); 8192 8193 /* Continue if range is now fully accounted */ 8194 if (end_pfn <= usable_startpfn) { 8195 8196 /* 8197 * Push zone_movable_pfn to the end so 8198 * that if we have to rebalance 8199 * kernelcore across nodes, we will 8200 * not double account here 8201 */ 8202 zone_movable_pfn[nid] = end_pfn; 8203 continue; 8204 } 8205 start_pfn = usable_startpfn; 8206 } 8207 8208 /* 8209 * The usable PFN range for ZONE_MOVABLE is from 8210 * start_pfn->end_pfn. Calculate size_pages as the 8211 * number of pages used as kernelcore 8212 */ 8213 size_pages = end_pfn - start_pfn; 8214 if (size_pages > kernelcore_remaining) 8215 size_pages = kernelcore_remaining; 8216 zone_movable_pfn[nid] = start_pfn + size_pages; 8217 8218 /* 8219 * Some kernelcore has been met, update counts and 8220 * break if the kernelcore for this node has been 8221 * satisfied 8222 */ 8223 required_kernelcore -= min(required_kernelcore, 8224 size_pages); 8225 kernelcore_remaining -= size_pages; 8226 if (!kernelcore_remaining) 8227 break; 8228 } 8229 } 8230 8231 /* 8232 * If there is still required_kernelcore, we do another pass with one 8233 * less node in the count. This will push zone_movable_pfn[nid] further 8234 * along on the nodes that still have memory until kernelcore is 8235 * satisfied 8236 */ 8237 usable_nodes--; 8238 if (usable_nodes && required_kernelcore > usable_nodes) 8239 goto restart; 8240 8241 out2: 8242 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 8243 for (nid = 0; nid < MAX_NUMNODES; nid++) { 8244 unsigned long start_pfn, end_pfn; 8245 8246 zone_movable_pfn[nid] = 8247 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 8248 8249 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 8250 if (zone_movable_pfn[nid] >= end_pfn) 8251 zone_movable_pfn[nid] = 0; 8252 } 8253 8254 out: 8255 /* restore the node_state */ 8256 node_states[N_MEMORY] = saved_node_state; 8257 } 8258 8259 /* Any regular or high memory on that node ? */ 8260 static void check_for_memory(pg_data_t *pgdat, int nid) 8261 { 8262 enum zone_type zone_type; 8263 8264 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 8265 struct zone *zone = &pgdat->node_zones[zone_type]; 8266 if (populated_zone(zone)) { 8267 if (IS_ENABLED(CONFIG_HIGHMEM)) 8268 node_set_state(nid, N_HIGH_MEMORY); 8269 if (zone_type <= ZONE_NORMAL) 8270 node_set_state(nid, N_NORMAL_MEMORY); 8271 break; 8272 } 8273 } 8274 } 8275 8276 /* 8277 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For 8278 * such cases we allow max_zone_pfn sorted in the descending order 8279 */ 8280 bool __weak arch_has_descending_max_zone_pfns(void) 8281 { 8282 return false; 8283 } 8284 8285 /** 8286 * free_area_init - Initialise all pg_data_t and zone data 8287 * @max_zone_pfn: an array of max PFNs for each zone 8288 * 8289 * This will call free_area_init_node() for each active node in the system. 8290 * Using the page ranges provided by memblock_set_node(), the size of each 8291 * zone in each node and their holes is calculated. If the maximum PFN 8292 * between two adjacent zones match, it is assumed that the zone is empty. 8293 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 8294 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 8295 * starts where the previous one ended. For example, ZONE_DMA32 starts 8296 * at arch_max_dma_pfn. 8297 */ 8298 void __init free_area_init(unsigned long *max_zone_pfn) 8299 { 8300 unsigned long start_pfn, end_pfn; 8301 int i, nid, zone; 8302 bool descending; 8303 8304 /* Record where the zone boundaries are */ 8305 memset(arch_zone_lowest_possible_pfn, 0, 8306 sizeof(arch_zone_lowest_possible_pfn)); 8307 memset(arch_zone_highest_possible_pfn, 0, 8308 sizeof(arch_zone_highest_possible_pfn)); 8309 8310 start_pfn = PHYS_PFN(memblock_start_of_DRAM()); 8311 descending = arch_has_descending_max_zone_pfns(); 8312 8313 for (i = 0; i < MAX_NR_ZONES; i++) { 8314 if (descending) 8315 zone = MAX_NR_ZONES - i - 1; 8316 else 8317 zone = i; 8318 8319 if (zone == ZONE_MOVABLE) 8320 continue; 8321 8322 end_pfn = max(max_zone_pfn[zone], start_pfn); 8323 arch_zone_lowest_possible_pfn[zone] = start_pfn; 8324 arch_zone_highest_possible_pfn[zone] = end_pfn; 8325 8326 start_pfn = end_pfn; 8327 } 8328 8329 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 8330 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 8331 find_zone_movable_pfns_for_nodes(); 8332 8333 /* Print out the zone ranges */ 8334 pr_info("Zone ranges:\n"); 8335 for (i = 0; i < MAX_NR_ZONES; i++) { 8336 if (i == ZONE_MOVABLE) 8337 continue; 8338 pr_info(" %-8s ", zone_names[i]); 8339 if (arch_zone_lowest_possible_pfn[i] == 8340 arch_zone_highest_possible_pfn[i]) 8341 pr_cont("empty\n"); 8342 else 8343 pr_cont("[mem %#018Lx-%#018Lx]\n", 8344 (u64)arch_zone_lowest_possible_pfn[i] 8345 << PAGE_SHIFT, 8346 ((u64)arch_zone_highest_possible_pfn[i] 8347 << PAGE_SHIFT) - 1); 8348 } 8349 8350 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 8351 pr_info("Movable zone start for each node\n"); 8352 for (i = 0; i < MAX_NUMNODES; i++) { 8353 if (zone_movable_pfn[i]) 8354 pr_info(" Node %d: %#018Lx\n", i, 8355 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 8356 } 8357 8358 /* 8359 * Print out the early node map, and initialize the 8360 * subsection-map relative to active online memory ranges to 8361 * enable future "sub-section" extensions of the memory map. 8362 */ 8363 pr_info("Early memory node ranges\n"); 8364 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 8365 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 8366 (u64)start_pfn << PAGE_SHIFT, 8367 ((u64)end_pfn << PAGE_SHIFT) - 1); 8368 subsection_map_init(start_pfn, end_pfn - start_pfn); 8369 } 8370 8371 /* Initialise every node */ 8372 mminit_verify_pageflags_layout(); 8373 setup_nr_node_ids(); 8374 for_each_node(nid) { 8375 pg_data_t *pgdat; 8376 8377 if (!node_online(nid)) { 8378 pr_info("Initializing node %d as memoryless\n", nid); 8379 8380 /* Allocator not initialized yet */ 8381 pgdat = arch_alloc_nodedata(nid); 8382 if (!pgdat) { 8383 pr_err("Cannot allocate %zuB for node %d.\n", 8384 sizeof(*pgdat), nid); 8385 continue; 8386 } 8387 arch_refresh_nodedata(nid, pgdat); 8388 free_area_init_memoryless_node(nid); 8389 8390 /* 8391 * We do not want to confuse userspace by sysfs 8392 * files/directories for node without any memory 8393 * attached to it, so this node is not marked as 8394 * N_MEMORY and not marked online so that no sysfs 8395 * hierarchy will be created via register_one_node for 8396 * it. The pgdat will get fully initialized by 8397 * hotadd_init_pgdat() when memory is hotplugged into 8398 * this node. 8399 */ 8400 continue; 8401 } 8402 8403 pgdat = NODE_DATA(nid); 8404 free_area_init_node(nid); 8405 8406 /* Any memory on that node */ 8407 if (pgdat->node_present_pages) 8408 node_set_state(nid, N_MEMORY); 8409 check_for_memory(pgdat, nid); 8410 } 8411 8412 memmap_init(); 8413 } 8414 8415 static int __init cmdline_parse_core(char *p, unsigned long *core, 8416 unsigned long *percent) 8417 { 8418 unsigned long long coremem; 8419 char *endptr; 8420 8421 if (!p) 8422 return -EINVAL; 8423 8424 /* Value may be a percentage of total memory, otherwise bytes */ 8425 coremem = simple_strtoull(p, &endptr, 0); 8426 if (*endptr == '%') { 8427 /* Paranoid check for percent values greater than 100 */ 8428 WARN_ON(coremem > 100); 8429 8430 *percent = coremem; 8431 } else { 8432 coremem = memparse(p, &p); 8433 /* Paranoid check that UL is enough for the coremem value */ 8434 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 8435 8436 *core = coremem >> PAGE_SHIFT; 8437 *percent = 0UL; 8438 } 8439 return 0; 8440 } 8441 8442 /* 8443 * kernelcore=size sets the amount of memory for use for allocations that 8444 * cannot be reclaimed or migrated. 8445 */ 8446 static int __init cmdline_parse_kernelcore(char *p) 8447 { 8448 /* parse kernelcore=mirror */ 8449 if (parse_option_str(p, "mirror")) { 8450 mirrored_kernelcore = true; 8451 return 0; 8452 } 8453 8454 return cmdline_parse_core(p, &required_kernelcore, 8455 &required_kernelcore_percent); 8456 } 8457 8458 /* 8459 * movablecore=size sets the amount of memory for use for allocations that 8460 * can be reclaimed or migrated. 8461 */ 8462 static int __init cmdline_parse_movablecore(char *p) 8463 { 8464 return cmdline_parse_core(p, &required_movablecore, 8465 &required_movablecore_percent); 8466 } 8467 8468 early_param("kernelcore", cmdline_parse_kernelcore); 8469 early_param("movablecore", cmdline_parse_movablecore); 8470 8471 void adjust_managed_page_count(struct page *page, long count) 8472 { 8473 atomic_long_add(count, &page_zone(page)->managed_pages); 8474 totalram_pages_add(count); 8475 #ifdef CONFIG_HIGHMEM 8476 if (PageHighMem(page)) 8477 totalhigh_pages_add(count); 8478 #endif 8479 } 8480 EXPORT_SYMBOL(adjust_managed_page_count); 8481 8482 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 8483 { 8484 void *pos; 8485 unsigned long pages = 0; 8486 8487 start = (void *)PAGE_ALIGN((unsigned long)start); 8488 end = (void *)((unsigned long)end & PAGE_MASK); 8489 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 8490 struct page *page = virt_to_page(pos); 8491 void *direct_map_addr; 8492 8493 /* 8494 * 'direct_map_addr' might be different from 'pos' 8495 * because some architectures' virt_to_page() 8496 * work with aliases. Getting the direct map 8497 * address ensures that we get a _writeable_ 8498 * alias for the memset(). 8499 */ 8500 direct_map_addr = page_address(page); 8501 /* 8502 * Perform a kasan-unchecked memset() since this memory 8503 * has not been initialized. 8504 */ 8505 direct_map_addr = kasan_reset_tag(direct_map_addr); 8506 if ((unsigned int)poison <= 0xFF) 8507 memset(direct_map_addr, poison, PAGE_SIZE); 8508 8509 free_reserved_page(page); 8510 } 8511 8512 if (pages && s) 8513 pr_info("Freeing %s memory: %ldK\n", s, K(pages)); 8514 8515 return pages; 8516 } 8517 8518 void __init mem_init_print_info(void) 8519 { 8520 unsigned long physpages, codesize, datasize, rosize, bss_size; 8521 unsigned long init_code_size, init_data_size; 8522 8523 physpages = get_num_physpages(); 8524 codesize = _etext - _stext; 8525 datasize = _edata - _sdata; 8526 rosize = __end_rodata - __start_rodata; 8527 bss_size = __bss_stop - __bss_start; 8528 init_data_size = __init_end - __init_begin; 8529 init_code_size = _einittext - _sinittext; 8530 8531 /* 8532 * Detect special cases and adjust section sizes accordingly: 8533 * 1) .init.* may be embedded into .data sections 8534 * 2) .init.text.* may be out of [__init_begin, __init_end], 8535 * please refer to arch/tile/kernel/vmlinux.lds.S. 8536 * 3) .rodata.* may be embedded into .text or .data sections. 8537 */ 8538 #define adj_init_size(start, end, size, pos, adj) \ 8539 do { \ 8540 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \ 8541 size -= adj; \ 8542 } while (0) 8543 8544 adj_init_size(__init_begin, __init_end, init_data_size, 8545 _sinittext, init_code_size); 8546 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 8547 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 8548 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 8549 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 8550 8551 #undef adj_init_size 8552 8553 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 8554 #ifdef CONFIG_HIGHMEM 8555 ", %luK highmem" 8556 #endif 8557 ")\n", 8558 K(nr_free_pages()), K(physpages), 8559 codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K, 8560 (init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K, 8561 K(physpages - totalram_pages() - totalcma_pages), 8562 K(totalcma_pages) 8563 #ifdef CONFIG_HIGHMEM 8564 , K(totalhigh_pages()) 8565 #endif 8566 ); 8567 } 8568 8569 /** 8570 * set_dma_reserve - set the specified number of pages reserved in the first zone 8571 * @new_dma_reserve: The number of pages to mark reserved 8572 * 8573 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 8574 * In the DMA zone, a significant percentage may be consumed by kernel image 8575 * and other unfreeable allocations which can skew the watermarks badly. This 8576 * function may optionally be used to account for unfreeable pages in the 8577 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 8578 * smaller per-cpu batchsize. 8579 */ 8580 void __init set_dma_reserve(unsigned long new_dma_reserve) 8581 { 8582 dma_reserve = new_dma_reserve; 8583 } 8584 8585 static int page_alloc_cpu_dead(unsigned int cpu) 8586 { 8587 struct zone *zone; 8588 8589 lru_add_drain_cpu(cpu); 8590 mlock_drain_remote(cpu); 8591 drain_pages(cpu); 8592 8593 /* 8594 * Spill the event counters of the dead processor 8595 * into the current processors event counters. 8596 * This artificially elevates the count of the current 8597 * processor. 8598 */ 8599 vm_events_fold_cpu(cpu); 8600 8601 /* 8602 * Zero the differential counters of the dead processor 8603 * so that the vm statistics are consistent. 8604 * 8605 * This is only okay since the processor is dead and cannot 8606 * race with what we are doing. 8607 */ 8608 cpu_vm_stats_fold(cpu); 8609 8610 for_each_populated_zone(zone) 8611 zone_pcp_update(zone, 0); 8612 8613 return 0; 8614 } 8615 8616 static int page_alloc_cpu_online(unsigned int cpu) 8617 { 8618 struct zone *zone; 8619 8620 for_each_populated_zone(zone) 8621 zone_pcp_update(zone, 1); 8622 return 0; 8623 } 8624 8625 #ifdef CONFIG_NUMA 8626 int hashdist = HASHDIST_DEFAULT; 8627 8628 static int __init set_hashdist(char *str) 8629 { 8630 if (!str) 8631 return 0; 8632 hashdist = simple_strtoul(str, &str, 0); 8633 return 1; 8634 } 8635 __setup("hashdist=", set_hashdist); 8636 #endif 8637 8638 void __init page_alloc_init(void) 8639 { 8640 int ret; 8641 8642 #ifdef CONFIG_NUMA 8643 if (num_node_state(N_MEMORY) == 1) 8644 hashdist = 0; 8645 #endif 8646 8647 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, 8648 "mm/page_alloc:pcp", 8649 page_alloc_cpu_online, 8650 page_alloc_cpu_dead); 8651 WARN_ON(ret < 0); 8652 } 8653 8654 /* 8655 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 8656 * or min_free_kbytes changes. 8657 */ 8658 static void calculate_totalreserve_pages(void) 8659 { 8660 struct pglist_data *pgdat; 8661 unsigned long reserve_pages = 0; 8662 enum zone_type i, j; 8663 8664 for_each_online_pgdat(pgdat) { 8665 8666 pgdat->totalreserve_pages = 0; 8667 8668 for (i = 0; i < MAX_NR_ZONES; i++) { 8669 struct zone *zone = pgdat->node_zones + i; 8670 long max = 0; 8671 unsigned long managed_pages = zone_managed_pages(zone); 8672 8673 /* Find valid and maximum lowmem_reserve in the zone */ 8674 for (j = i; j < MAX_NR_ZONES; j++) { 8675 if (zone->lowmem_reserve[j] > max) 8676 max = zone->lowmem_reserve[j]; 8677 } 8678 8679 /* we treat the high watermark as reserved pages. */ 8680 max += high_wmark_pages(zone); 8681 8682 if (max > managed_pages) 8683 max = managed_pages; 8684 8685 pgdat->totalreserve_pages += max; 8686 8687 reserve_pages += max; 8688 } 8689 } 8690 totalreserve_pages = reserve_pages; 8691 } 8692 8693 /* 8694 * setup_per_zone_lowmem_reserve - called whenever 8695 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 8696 * has a correct pages reserved value, so an adequate number of 8697 * pages are left in the zone after a successful __alloc_pages(). 8698 */ 8699 static void setup_per_zone_lowmem_reserve(void) 8700 { 8701 struct pglist_data *pgdat; 8702 enum zone_type i, j; 8703 8704 for_each_online_pgdat(pgdat) { 8705 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 8706 struct zone *zone = &pgdat->node_zones[i]; 8707 int ratio = sysctl_lowmem_reserve_ratio[i]; 8708 bool clear = !ratio || !zone_managed_pages(zone); 8709 unsigned long managed_pages = 0; 8710 8711 for (j = i + 1; j < MAX_NR_ZONES; j++) { 8712 struct zone *upper_zone = &pgdat->node_zones[j]; 8713 8714 managed_pages += zone_managed_pages(upper_zone); 8715 8716 if (clear) 8717 zone->lowmem_reserve[j] = 0; 8718 else 8719 zone->lowmem_reserve[j] = managed_pages / ratio; 8720 } 8721 } 8722 } 8723 8724 /* update totalreserve_pages */ 8725 calculate_totalreserve_pages(); 8726 } 8727 8728 static void __setup_per_zone_wmarks(void) 8729 { 8730 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 8731 unsigned long lowmem_pages = 0; 8732 struct zone *zone; 8733 unsigned long flags; 8734 8735 /* Calculate total number of !ZONE_HIGHMEM pages */ 8736 for_each_zone(zone) { 8737 if (!is_highmem(zone)) 8738 lowmem_pages += zone_managed_pages(zone); 8739 } 8740 8741 for_each_zone(zone) { 8742 u64 tmp; 8743 8744 spin_lock_irqsave(&zone->lock, flags); 8745 tmp = (u64)pages_min * zone_managed_pages(zone); 8746 do_div(tmp, lowmem_pages); 8747 if (is_highmem(zone)) { 8748 /* 8749 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 8750 * need highmem pages, so cap pages_min to a small 8751 * value here. 8752 * 8753 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 8754 * deltas control async page reclaim, and so should 8755 * not be capped for highmem. 8756 */ 8757 unsigned long min_pages; 8758 8759 min_pages = zone_managed_pages(zone) / 1024; 8760 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 8761 zone->_watermark[WMARK_MIN] = min_pages; 8762 } else { 8763 /* 8764 * If it's a lowmem zone, reserve a number of pages 8765 * proportionate to the zone's size. 8766 */ 8767 zone->_watermark[WMARK_MIN] = tmp; 8768 } 8769 8770 /* 8771 * Set the kswapd watermarks distance according to the 8772 * scale factor in proportion to available memory, but 8773 * ensure a minimum size on small systems. 8774 */ 8775 tmp = max_t(u64, tmp >> 2, 8776 mult_frac(zone_managed_pages(zone), 8777 watermark_scale_factor, 10000)); 8778 8779 zone->watermark_boost = 0; 8780 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 8781 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp; 8782 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp; 8783 8784 spin_unlock_irqrestore(&zone->lock, flags); 8785 } 8786 8787 /* update totalreserve_pages */ 8788 calculate_totalreserve_pages(); 8789 } 8790 8791 /** 8792 * setup_per_zone_wmarks - called when min_free_kbytes changes 8793 * or when memory is hot-{added|removed} 8794 * 8795 * Ensures that the watermark[min,low,high] values for each zone are set 8796 * correctly with respect to min_free_kbytes. 8797 */ 8798 void setup_per_zone_wmarks(void) 8799 { 8800 struct zone *zone; 8801 static DEFINE_SPINLOCK(lock); 8802 8803 spin_lock(&lock); 8804 __setup_per_zone_wmarks(); 8805 spin_unlock(&lock); 8806 8807 /* 8808 * The watermark size have changed so update the pcpu batch 8809 * and high limits or the limits may be inappropriate. 8810 */ 8811 for_each_zone(zone) 8812 zone_pcp_update(zone, 0); 8813 } 8814 8815 /* 8816 * Initialise min_free_kbytes. 8817 * 8818 * For small machines we want it small (128k min). For large machines 8819 * we want it large (256MB max). But it is not linear, because network 8820 * bandwidth does not increase linearly with machine size. We use 8821 * 8822 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 8823 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 8824 * 8825 * which yields 8826 * 8827 * 16MB: 512k 8828 * 32MB: 724k 8829 * 64MB: 1024k 8830 * 128MB: 1448k 8831 * 256MB: 2048k 8832 * 512MB: 2896k 8833 * 1024MB: 4096k 8834 * 2048MB: 5792k 8835 * 4096MB: 8192k 8836 * 8192MB: 11584k 8837 * 16384MB: 16384k 8838 */ 8839 void calculate_min_free_kbytes(void) 8840 { 8841 unsigned long lowmem_kbytes; 8842 int new_min_free_kbytes; 8843 8844 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 8845 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 8846 8847 if (new_min_free_kbytes > user_min_free_kbytes) 8848 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144); 8849 else 8850 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 8851 new_min_free_kbytes, user_min_free_kbytes); 8852 8853 } 8854 8855 int __meminit init_per_zone_wmark_min(void) 8856 { 8857 calculate_min_free_kbytes(); 8858 setup_per_zone_wmarks(); 8859 refresh_zone_stat_thresholds(); 8860 setup_per_zone_lowmem_reserve(); 8861 8862 #ifdef CONFIG_NUMA 8863 setup_min_unmapped_ratio(); 8864 setup_min_slab_ratio(); 8865 #endif 8866 8867 khugepaged_min_free_kbytes_update(); 8868 8869 return 0; 8870 } 8871 postcore_initcall(init_per_zone_wmark_min) 8872 8873 /* 8874 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 8875 * that we can call two helper functions whenever min_free_kbytes 8876 * changes. 8877 */ 8878 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 8879 void *buffer, size_t *length, loff_t *ppos) 8880 { 8881 int rc; 8882 8883 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8884 if (rc) 8885 return rc; 8886 8887 if (write) { 8888 user_min_free_kbytes = min_free_kbytes; 8889 setup_per_zone_wmarks(); 8890 } 8891 return 0; 8892 } 8893 8894 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 8895 void *buffer, size_t *length, loff_t *ppos) 8896 { 8897 int rc; 8898 8899 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8900 if (rc) 8901 return rc; 8902 8903 if (write) 8904 setup_per_zone_wmarks(); 8905 8906 return 0; 8907 } 8908 8909 #ifdef CONFIG_NUMA 8910 static void setup_min_unmapped_ratio(void) 8911 { 8912 pg_data_t *pgdat; 8913 struct zone *zone; 8914 8915 for_each_online_pgdat(pgdat) 8916 pgdat->min_unmapped_pages = 0; 8917 8918 for_each_zone(zone) 8919 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 8920 sysctl_min_unmapped_ratio) / 100; 8921 } 8922 8923 8924 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 8925 void *buffer, size_t *length, loff_t *ppos) 8926 { 8927 int rc; 8928 8929 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8930 if (rc) 8931 return rc; 8932 8933 setup_min_unmapped_ratio(); 8934 8935 return 0; 8936 } 8937 8938 static void setup_min_slab_ratio(void) 8939 { 8940 pg_data_t *pgdat; 8941 struct zone *zone; 8942 8943 for_each_online_pgdat(pgdat) 8944 pgdat->min_slab_pages = 0; 8945 8946 for_each_zone(zone) 8947 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 8948 sysctl_min_slab_ratio) / 100; 8949 } 8950 8951 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 8952 void *buffer, size_t *length, loff_t *ppos) 8953 { 8954 int rc; 8955 8956 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8957 if (rc) 8958 return rc; 8959 8960 setup_min_slab_ratio(); 8961 8962 return 0; 8963 } 8964 #endif 8965 8966 /* 8967 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 8968 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 8969 * whenever sysctl_lowmem_reserve_ratio changes. 8970 * 8971 * The reserve ratio obviously has absolutely no relation with the 8972 * minimum watermarks. The lowmem reserve ratio can only make sense 8973 * if in function of the boot time zone sizes. 8974 */ 8975 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 8976 void *buffer, size_t *length, loff_t *ppos) 8977 { 8978 int i; 8979 8980 proc_dointvec_minmax(table, write, buffer, length, ppos); 8981 8982 for (i = 0; i < MAX_NR_ZONES; i++) { 8983 if (sysctl_lowmem_reserve_ratio[i] < 1) 8984 sysctl_lowmem_reserve_ratio[i] = 0; 8985 } 8986 8987 setup_per_zone_lowmem_reserve(); 8988 return 0; 8989 } 8990 8991 /* 8992 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each 8993 * cpu. It is the fraction of total pages in each zone that a hot per cpu 8994 * pagelist can have before it gets flushed back to buddy allocator. 8995 */ 8996 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table, 8997 int write, void *buffer, size_t *length, loff_t *ppos) 8998 { 8999 struct zone *zone; 9000 int old_percpu_pagelist_high_fraction; 9001 int ret; 9002 9003 mutex_lock(&pcp_batch_high_lock); 9004 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; 9005 9006 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 9007 if (!write || ret < 0) 9008 goto out; 9009 9010 /* Sanity checking to avoid pcp imbalance */ 9011 if (percpu_pagelist_high_fraction && 9012 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { 9013 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; 9014 ret = -EINVAL; 9015 goto out; 9016 } 9017 9018 /* No change? */ 9019 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) 9020 goto out; 9021 9022 for_each_populated_zone(zone) 9023 zone_set_pageset_high_and_batch(zone, 0); 9024 out: 9025 mutex_unlock(&pcp_batch_high_lock); 9026 return ret; 9027 } 9028 9029 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 9030 /* 9031 * Returns the number of pages that arch has reserved but 9032 * is not known to alloc_large_system_hash(). 9033 */ 9034 static unsigned long __init arch_reserved_kernel_pages(void) 9035 { 9036 return 0; 9037 } 9038 #endif 9039 9040 /* 9041 * Adaptive scale is meant to reduce sizes of hash tables on large memory 9042 * machines. As memory size is increased the scale is also increased but at 9043 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 9044 * quadruples the scale is increased by one, which means the size of hash table 9045 * only doubles, instead of quadrupling as well. 9046 * Because 32-bit systems cannot have large physical memory, where this scaling 9047 * makes sense, it is disabled on such platforms. 9048 */ 9049 #if __BITS_PER_LONG > 32 9050 #define ADAPT_SCALE_BASE (64ul << 30) 9051 #define ADAPT_SCALE_SHIFT 2 9052 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 9053 #endif 9054 9055 /* 9056 * allocate a large system hash table from bootmem 9057 * - it is assumed that the hash table must contain an exact power-of-2 9058 * quantity of entries 9059 * - limit is the number of hash buckets, not the total allocation size 9060 */ 9061 void *__init alloc_large_system_hash(const char *tablename, 9062 unsigned long bucketsize, 9063 unsigned long numentries, 9064 int scale, 9065 int flags, 9066 unsigned int *_hash_shift, 9067 unsigned int *_hash_mask, 9068 unsigned long low_limit, 9069 unsigned long high_limit) 9070 { 9071 unsigned long long max = high_limit; 9072 unsigned long log2qty, size; 9073 void *table; 9074 gfp_t gfp_flags; 9075 bool virt; 9076 bool huge; 9077 9078 /* allow the kernel cmdline to have a say */ 9079 if (!numentries) { 9080 /* round applicable memory size up to nearest megabyte */ 9081 numentries = nr_kernel_pages; 9082 numentries -= arch_reserved_kernel_pages(); 9083 9084 /* It isn't necessary when PAGE_SIZE >= 1MB */ 9085 if (PAGE_SIZE < SZ_1M) 9086 numentries = round_up(numentries, SZ_1M / PAGE_SIZE); 9087 9088 #if __BITS_PER_LONG > 32 9089 if (!high_limit) { 9090 unsigned long adapt; 9091 9092 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 9093 adapt <<= ADAPT_SCALE_SHIFT) 9094 scale++; 9095 } 9096 #endif 9097 9098 /* limit to 1 bucket per 2^scale bytes of low memory */ 9099 if (scale > PAGE_SHIFT) 9100 numentries >>= (scale - PAGE_SHIFT); 9101 else 9102 numentries <<= (PAGE_SHIFT - scale); 9103 9104 /* Make sure we've got at least a 0-order allocation.. */ 9105 if (unlikely(flags & HASH_SMALL)) { 9106 /* Makes no sense without HASH_EARLY */ 9107 WARN_ON(!(flags & HASH_EARLY)); 9108 if (!(numentries >> *_hash_shift)) { 9109 numentries = 1UL << *_hash_shift; 9110 BUG_ON(!numentries); 9111 } 9112 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 9113 numentries = PAGE_SIZE / bucketsize; 9114 } 9115 numentries = roundup_pow_of_two(numentries); 9116 9117 /* limit allocation size to 1/16 total memory by default */ 9118 if (max == 0) { 9119 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 9120 do_div(max, bucketsize); 9121 } 9122 max = min(max, 0x80000000ULL); 9123 9124 if (numentries < low_limit) 9125 numentries = low_limit; 9126 if (numentries > max) 9127 numentries = max; 9128 9129 log2qty = ilog2(numentries); 9130 9131 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 9132 do { 9133 virt = false; 9134 size = bucketsize << log2qty; 9135 if (flags & HASH_EARLY) { 9136 if (flags & HASH_ZERO) 9137 table = memblock_alloc(size, SMP_CACHE_BYTES); 9138 else 9139 table = memblock_alloc_raw(size, 9140 SMP_CACHE_BYTES); 9141 } else if (get_order(size) >= MAX_ORDER || hashdist) { 9142 table = vmalloc_huge(size, gfp_flags); 9143 virt = true; 9144 if (table) 9145 huge = is_vm_area_hugepages(table); 9146 } else { 9147 /* 9148 * If bucketsize is not a power-of-two, we may free 9149 * some pages at the end of hash table which 9150 * alloc_pages_exact() automatically does 9151 */ 9152 table = alloc_pages_exact(size, gfp_flags); 9153 kmemleak_alloc(table, size, 1, gfp_flags); 9154 } 9155 } while (!table && size > PAGE_SIZE && --log2qty); 9156 9157 if (!table) 9158 panic("Failed to allocate %s hash table\n", tablename); 9159 9160 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", 9161 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, 9162 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear"); 9163 9164 if (_hash_shift) 9165 *_hash_shift = log2qty; 9166 if (_hash_mask) 9167 *_hash_mask = (1 << log2qty) - 1; 9168 9169 return table; 9170 } 9171 9172 #ifdef CONFIG_CONTIG_ALLOC 9173 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 9174 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 9175 /* Usage: See admin-guide/dynamic-debug-howto.rst */ 9176 static void alloc_contig_dump_pages(struct list_head *page_list) 9177 { 9178 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 9179 9180 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 9181 struct page *page; 9182 9183 dump_stack(); 9184 list_for_each_entry(page, page_list, lru) 9185 dump_page(page, "migration failure"); 9186 } 9187 } 9188 #else 9189 static inline void alloc_contig_dump_pages(struct list_head *page_list) 9190 { 9191 } 9192 #endif 9193 9194 /* [start, end) must belong to a single zone. */ 9195 int __alloc_contig_migrate_range(struct compact_control *cc, 9196 unsigned long start, unsigned long end) 9197 { 9198 /* This function is based on compact_zone() from compaction.c. */ 9199 unsigned int nr_reclaimed; 9200 unsigned long pfn = start; 9201 unsigned int tries = 0; 9202 int ret = 0; 9203 struct migration_target_control mtc = { 9204 .nid = zone_to_nid(cc->zone), 9205 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 9206 }; 9207 9208 lru_cache_disable(); 9209 9210 while (pfn < end || !list_empty(&cc->migratepages)) { 9211 if (fatal_signal_pending(current)) { 9212 ret = -EINTR; 9213 break; 9214 } 9215 9216 if (list_empty(&cc->migratepages)) { 9217 cc->nr_migratepages = 0; 9218 ret = isolate_migratepages_range(cc, pfn, end); 9219 if (ret && ret != -EAGAIN) 9220 break; 9221 pfn = cc->migrate_pfn; 9222 tries = 0; 9223 } else if (++tries == 5) { 9224 ret = -EBUSY; 9225 break; 9226 } 9227 9228 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 9229 &cc->migratepages); 9230 cc->nr_migratepages -= nr_reclaimed; 9231 9232 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 9233 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); 9234 9235 /* 9236 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 9237 * to retry again over this error, so do the same here. 9238 */ 9239 if (ret == -ENOMEM) 9240 break; 9241 } 9242 9243 lru_cache_enable(); 9244 if (ret < 0) { 9245 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY) 9246 alloc_contig_dump_pages(&cc->migratepages); 9247 putback_movable_pages(&cc->migratepages); 9248 return ret; 9249 } 9250 return 0; 9251 } 9252 9253 /** 9254 * alloc_contig_range() -- tries to allocate given range of pages 9255 * @start: start PFN to allocate 9256 * @end: one-past-the-last PFN to allocate 9257 * @migratetype: migratetype of the underlying pageblocks (either 9258 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 9259 * in range must have the same migratetype and it must 9260 * be either of the two. 9261 * @gfp_mask: GFP mask to use during compaction 9262 * 9263 * The PFN range does not have to be pageblock aligned. The PFN range must 9264 * belong to a single zone. 9265 * 9266 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 9267 * pageblocks in the range. Once isolated, the pageblocks should not 9268 * be modified by others. 9269 * 9270 * Return: zero on success or negative error code. On success all 9271 * pages which PFN is in [start, end) are allocated for the caller and 9272 * need to be freed with free_contig_range(). 9273 */ 9274 int alloc_contig_range(unsigned long start, unsigned long end, 9275 unsigned migratetype, gfp_t gfp_mask) 9276 { 9277 unsigned long outer_start, outer_end; 9278 int order; 9279 int ret = 0; 9280 9281 struct compact_control cc = { 9282 .nr_migratepages = 0, 9283 .order = -1, 9284 .zone = page_zone(pfn_to_page(start)), 9285 .mode = MIGRATE_SYNC, 9286 .ignore_skip_hint = true, 9287 .no_set_skip_hint = true, 9288 .gfp_mask = current_gfp_context(gfp_mask), 9289 .alloc_contig = true, 9290 }; 9291 INIT_LIST_HEAD(&cc.migratepages); 9292 9293 /* 9294 * What we do here is we mark all pageblocks in range as 9295 * MIGRATE_ISOLATE. Because pageblock and max order pages may 9296 * have different sizes, and due to the way page allocator 9297 * work, start_isolate_page_range() has special handlings for this. 9298 * 9299 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 9300 * migrate the pages from an unaligned range (ie. pages that 9301 * we are interested in). This will put all the pages in 9302 * range back to page allocator as MIGRATE_ISOLATE. 9303 * 9304 * When this is done, we take the pages in range from page 9305 * allocator removing them from the buddy system. This way 9306 * page allocator will never consider using them. 9307 * 9308 * This lets us mark the pageblocks back as 9309 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 9310 * aligned range but not in the unaligned, original range are 9311 * put back to page allocator so that buddy can use them. 9312 */ 9313 9314 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask); 9315 if (ret) 9316 goto done; 9317 9318 drain_all_pages(cc.zone); 9319 9320 /* 9321 * In case of -EBUSY, we'd like to know which page causes problem. 9322 * So, just fall through. test_pages_isolated() has a tracepoint 9323 * which will report the busy page. 9324 * 9325 * It is possible that busy pages could become available before 9326 * the call to test_pages_isolated, and the range will actually be 9327 * allocated. So, if we fall through be sure to clear ret so that 9328 * -EBUSY is not accidentally used or returned to caller. 9329 */ 9330 ret = __alloc_contig_migrate_range(&cc, start, end); 9331 if (ret && ret != -EBUSY) 9332 goto done; 9333 ret = 0; 9334 9335 /* 9336 * Pages from [start, end) are within a pageblock_nr_pages 9337 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 9338 * more, all pages in [start, end) are free in page allocator. 9339 * What we are going to do is to allocate all pages from 9340 * [start, end) (that is remove them from page allocator). 9341 * 9342 * The only problem is that pages at the beginning and at the 9343 * end of interesting range may be not aligned with pages that 9344 * page allocator holds, ie. they can be part of higher order 9345 * pages. Because of this, we reserve the bigger range and 9346 * once this is done free the pages we are not interested in. 9347 * 9348 * We don't have to hold zone->lock here because the pages are 9349 * isolated thus they won't get removed from buddy. 9350 */ 9351 9352 order = 0; 9353 outer_start = start; 9354 while (!PageBuddy(pfn_to_page(outer_start))) { 9355 if (++order >= MAX_ORDER) { 9356 outer_start = start; 9357 break; 9358 } 9359 outer_start &= ~0UL << order; 9360 } 9361 9362 if (outer_start != start) { 9363 order = buddy_order(pfn_to_page(outer_start)); 9364 9365 /* 9366 * outer_start page could be small order buddy page and 9367 * it doesn't include start page. Adjust outer_start 9368 * in this case to report failed page properly 9369 * on tracepoint in test_pages_isolated() 9370 */ 9371 if (outer_start + (1UL << order) <= start) 9372 outer_start = start; 9373 } 9374 9375 /* Make sure the range is really isolated. */ 9376 if (test_pages_isolated(outer_start, end, 0)) { 9377 ret = -EBUSY; 9378 goto done; 9379 } 9380 9381 /* Grab isolated pages from freelists. */ 9382 outer_end = isolate_freepages_range(&cc, outer_start, end); 9383 if (!outer_end) { 9384 ret = -EBUSY; 9385 goto done; 9386 } 9387 9388 /* Free head and tail (if any) */ 9389 if (start != outer_start) 9390 free_contig_range(outer_start, start - outer_start); 9391 if (end != outer_end) 9392 free_contig_range(end, outer_end - end); 9393 9394 done: 9395 undo_isolate_page_range(start, end, migratetype); 9396 return ret; 9397 } 9398 EXPORT_SYMBOL(alloc_contig_range); 9399 9400 static int __alloc_contig_pages(unsigned long start_pfn, 9401 unsigned long nr_pages, gfp_t gfp_mask) 9402 { 9403 unsigned long end_pfn = start_pfn + nr_pages; 9404 9405 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 9406 gfp_mask); 9407 } 9408 9409 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 9410 unsigned long nr_pages) 9411 { 9412 unsigned long i, end_pfn = start_pfn + nr_pages; 9413 struct page *page; 9414 9415 for (i = start_pfn; i < end_pfn; i++) { 9416 page = pfn_to_online_page(i); 9417 if (!page) 9418 return false; 9419 9420 if (page_zone(page) != z) 9421 return false; 9422 9423 if (PageReserved(page)) 9424 return false; 9425 } 9426 return true; 9427 } 9428 9429 static bool zone_spans_last_pfn(const struct zone *zone, 9430 unsigned long start_pfn, unsigned long nr_pages) 9431 { 9432 unsigned long last_pfn = start_pfn + nr_pages - 1; 9433 9434 return zone_spans_pfn(zone, last_pfn); 9435 } 9436 9437 /** 9438 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 9439 * @nr_pages: Number of contiguous pages to allocate 9440 * @gfp_mask: GFP mask to limit search and used during compaction 9441 * @nid: Target node 9442 * @nodemask: Mask for other possible nodes 9443 * 9444 * This routine is a wrapper around alloc_contig_range(). It scans over zones 9445 * on an applicable zonelist to find a contiguous pfn range which can then be 9446 * tried for allocation with alloc_contig_range(). This routine is intended 9447 * for allocation requests which can not be fulfilled with the buddy allocator. 9448 * 9449 * The allocated memory is always aligned to a page boundary. If nr_pages is a 9450 * power of two, then allocated range is also guaranteed to be aligned to same 9451 * nr_pages (e.g. 1GB request would be aligned to 1GB). 9452 * 9453 * Allocated pages can be freed with free_contig_range() or by manually calling 9454 * __free_page() on each allocated page. 9455 * 9456 * Return: pointer to contiguous pages on success, or NULL if not successful. 9457 */ 9458 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, 9459 int nid, nodemask_t *nodemask) 9460 { 9461 unsigned long ret, pfn, flags; 9462 struct zonelist *zonelist; 9463 struct zone *zone; 9464 struct zoneref *z; 9465 9466 zonelist = node_zonelist(nid, gfp_mask); 9467 for_each_zone_zonelist_nodemask(zone, z, zonelist, 9468 gfp_zone(gfp_mask), nodemask) { 9469 spin_lock_irqsave(&zone->lock, flags); 9470 9471 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 9472 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 9473 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 9474 /* 9475 * We release the zone lock here because 9476 * alloc_contig_range() will also lock the zone 9477 * at some point. If there's an allocation 9478 * spinning on this lock, it may win the race 9479 * and cause alloc_contig_range() to fail... 9480 */ 9481 spin_unlock_irqrestore(&zone->lock, flags); 9482 ret = __alloc_contig_pages(pfn, nr_pages, 9483 gfp_mask); 9484 if (!ret) 9485 return pfn_to_page(pfn); 9486 spin_lock_irqsave(&zone->lock, flags); 9487 } 9488 pfn += nr_pages; 9489 } 9490 spin_unlock_irqrestore(&zone->lock, flags); 9491 } 9492 return NULL; 9493 } 9494 #endif /* CONFIG_CONTIG_ALLOC */ 9495 9496 void free_contig_range(unsigned long pfn, unsigned long nr_pages) 9497 { 9498 unsigned long count = 0; 9499 9500 for (; nr_pages--; pfn++) { 9501 struct page *page = pfn_to_page(pfn); 9502 9503 count += page_count(page) != 1; 9504 __free_page(page); 9505 } 9506 WARN(count != 0, "%lu pages are still in use!\n", count); 9507 } 9508 EXPORT_SYMBOL(free_contig_range); 9509 9510 /* 9511 * Effectively disable pcplists for the zone by setting the high limit to 0 9512 * and draining all cpus. A concurrent page freeing on another CPU that's about 9513 * to put the page on pcplist will either finish before the drain and the page 9514 * will be drained, or observe the new high limit and skip the pcplist. 9515 * 9516 * Must be paired with a call to zone_pcp_enable(). 9517 */ 9518 void zone_pcp_disable(struct zone *zone) 9519 { 9520 mutex_lock(&pcp_batch_high_lock); 9521 __zone_set_pageset_high_and_batch(zone, 0, 1); 9522 __drain_all_pages(zone, true); 9523 } 9524 9525 void zone_pcp_enable(struct zone *zone) 9526 { 9527 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch); 9528 mutex_unlock(&pcp_batch_high_lock); 9529 } 9530 9531 void zone_pcp_reset(struct zone *zone) 9532 { 9533 int cpu; 9534 struct per_cpu_zonestat *pzstats; 9535 9536 if (zone->per_cpu_pageset != &boot_pageset) { 9537 for_each_online_cpu(cpu) { 9538 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 9539 drain_zonestat(zone, pzstats); 9540 } 9541 free_percpu(zone->per_cpu_pageset); 9542 zone->per_cpu_pageset = &boot_pageset; 9543 if (zone->per_cpu_zonestats != &boot_zonestats) { 9544 free_percpu(zone->per_cpu_zonestats); 9545 zone->per_cpu_zonestats = &boot_zonestats; 9546 } 9547 } 9548 } 9549 9550 #ifdef CONFIG_MEMORY_HOTREMOVE 9551 /* 9552 * All pages in the range must be in a single zone, must not contain holes, 9553 * must span full sections, and must be isolated before calling this function. 9554 */ 9555 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 9556 { 9557 unsigned long pfn = start_pfn; 9558 struct page *page; 9559 struct zone *zone; 9560 unsigned int order; 9561 unsigned long flags; 9562 9563 offline_mem_sections(pfn, end_pfn); 9564 zone = page_zone(pfn_to_page(pfn)); 9565 spin_lock_irqsave(&zone->lock, flags); 9566 while (pfn < end_pfn) { 9567 page = pfn_to_page(pfn); 9568 /* 9569 * The HWPoisoned page may be not in buddy system, and 9570 * page_count() is not 0. 9571 */ 9572 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 9573 pfn++; 9574 continue; 9575 } 9576 /* 9577 * At this point all remaining PageOffline() pages have a 9578 * reference count of 0 and can simply be skipped. 9579 */ 9580 if (PageOffline(page)) { 9581 BUG_ON(page_count(page)); 9582 BUG_ON(PageBuddy(page)); 9583 pfn++; 9584 continue; 9585 } 9586 9587 BUG_ON(page_count(page)); 9588 BUG_ON(!PageBuddy(page)); 9589 order = buddy_order(page); 9590 del_page_from_free_list(page, zone, order); 9591 pfn += (1 << order); 9592 } 9593 spin_unlock_irqrestore(&zone->lock, flags); 9594 } 9595 #endif 9596 9597 /* 9598 * This function returns a stable result only if called under zone lock. 9599 */ 9600 bool is_free_buddy_page(struct page *page) 9601 { 9602 unsigned long pfn = page_to_pfn(page); 9603 unsigned int order; 9604 9605 for (order = 0; order < MAX_ORDER; order++) { 9606 struct page *page_head = page - (pfn & ((1 << order) - 1)); 9607 9608 if (PageBuddy(page_head) && 9609 buddy_order_unsafe(page_head) >= order) 9610 break; 9611 } 9612 9613 return order < MAX_ORDER; 9614 } 9615 EXPORT_SYMBOL(is_free_buddy_page); 9616 9617 #ifdef CONFIG_MEMORY_FAILURE 9618 /* 9619 * Break down a higher-order page in sub-pages, and keep our target out of 9620 * buddy allocator. 9621 */ 9622 static void break_down_buddy_pages(struct zone *zone, struct page *page, 9623 struct page *target, int low, int high, 9624 int migratetype) 9625 { 9626 unsigned long size = 1 << high; 9627 struct page *current_buddy, *next_page; 9628 9629 while (high > low) { 9630 high--; 9631 size >>= 1; 9632 9633 if (target >= &page[size]) { 9634 next_page = page + size; 9635 current_buddy = page; 9636 } else { 9637 next_page = page; 9638 current_buddy = page + size; 9639 } 9640 9641 if (set_page_guard(zone, current_buddy, high, migratetype)) 9642 continue; 9643 9644 if (current_buddy != target) { 9645 add_to_free_list(current_buddy, zone, high, migratetype); 9646 set_buddy_order(current_buddy, high); 9647 page = next_page; 9648 } 9649 } 9650 } 9651 9652 /* 9653 * Take a page that will be marked as poisoned off the buddy allocator. 9654 */ 9655 bool take_page_off_buddy(struct page *page) 9656 { 9657 struct zone *zone = page_zone(page); 9658 unsigned long pfn = page_to_pfn(page); 9659 unsigned long flags; 9660 unsigned int order; 9661 bool ret = false; 9662 9663 spin_lock_irqsave(&zone->lock, flags); 9664 for (order = 0; order < MAX_ORDER; order++) { 9665 struct page *page_head = page - (pfn & ((1 << order) - 1)); 9666 int page_order = buddy_order(page_head); 9667 9668 if (PageBuddy(page_head) && page_order >= order) { 9669 unsigned long pfn_head = page_to_pfn(page_head); 9670 int migratetype = get_pfnblock_migratetype(page_head, 9671 pfn_head); 9672 9673 del_page_from_free_list(page_head, zone, page_order); 9674 break_down_buddy_pages(zone, page_head, page, 0, 9675 page_order, migratetype); 9676 SetPageHWPoisonTakenOff(page); 9677 if (!is_migrate_isolate(migratetype)) 9678 __mod_zone_freepage_state(zone, -1, migratetype); 9679 ret = true; 9680 break; 9681 } 9682 if (page_count(page_head) > 0) 9683 break; 9684 } 9685 spin_unlock_irqrestore(&zone->lock, flags); 9686 return ret; 9687 } 9688 9689 /* 9690 * Cancel takeoff done by take_page_off_buddy(). 9691 */ 9692 bool put_page_back_buddy(struct page *page) 9693 { 9694 struct zone *zone = page_zone(page); 9695 unsigned long pfn = page_to_pfn(page); 9696 unsigned long flags; 9697 int migratetype = get_pfnblock_migratetype(page, pfn); 9698 bool ret = false; 9699 9700 spin_lock_irqsave(&zone->lock, flags); 9701 if (put_page_testzero(page)) { 9702 ClearPageHWPoisonTakenOff(page); 9703 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE); 9704 if (TestClearPageHWPoison(page)) { 9705 ret = true; 9706 } 9707 } 9708 spin_unlock_irqrestore(&zone->lock, flags); 9709 9710 return ret; 9711 } 9712 #endif 9713 9714 #ifdef CONFIG_ZONE_DMA 9715 bool has_managed_dma(void) 9716 { 9717 struct pglist_data *pgdat; 9718 9719 for_each_online_pgdat(pgdat) { 9720 struct zone *zone = &pgdat->node_zones[ZONE_DMA]; 9721 9722 if (managed_zone(zone)) 9723 return true; 9724 } 9725 return false; 9726 } 9727 #endif /* CONFIG_ZONE_DMA */ 9728