xref: /openbmc/linux/mm/page_alloc.c (revision 60eb644b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmstat.h>
38 #include <linux/fault-inject.h>
39 #include <linux/compaction.h>
40 #include <trace/events/kmem.h>
41 #include <trace/events/oom.h>
42 #include <linux/prefetch.h>
43 #include <linux/mm_inline.h>
44 #include <linux/mmu_notifier.h>
45 #include <linux/migrate.h>
46 #include <linux/sched/mm.h>
47 #include <linux/page_owner.h>
48 #include <linux/page_table_check.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/lockdep.h>
52 #include <linux/psi.h>
53 #include <linux/khugepaged.h>
54 #include <linux/delayacct.h>
55 #include <asm/div64.h>
56 #include "internal.h"
57 #include "shuffle.h"
58 #include "page_reporting.h"
59 
60 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
61 typedef int __bitwise fpi_t;
62 
63 /* No special request */
64 #define FPI_NONE		((__force fpi_t)0)
65 
66 /*
67  * Skip free page reporting notification for the (possibly merged) page.
68  * This does not hinder free page reporting from grabbing the page,
69  * reporting it and marking it "reported" -  it only skips notifying
70  * the free page reporting infrastructure about a newly freed page. For
71  * example, used when temporarily pulling a page from a freelist and
72  * putting it back unmodified.
73  */
74 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
75 
76 /*
77  * Place the (possibly merged) page to the tail of the freelist. Will ignore
78  * page shuffling (relevant code - e.g., memory onlining - is expected to
79  * shuffle the whole zone).
80  *
81  * Note: No code should rely on this flag for correctness - it's purely
82  *       to allow for optimizations when handing back either fresh pages
83  *       (memory onlining) or untouched pages (page isolation, free page
84  *       reporting).
85  */
86 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
87 
88 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
89 static DEFINE_MUTEX(pcp_batch_high_lock);
90 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
91 
92 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
93 /*
94  * On SMP, spin_trylock is sufficient protection.
95  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
96  */
97 #define pcp_trylock_prepare(flags)	do { } while (0)
98 #define pcp_trylock_finish(flag)	do { } while (0)
99 #else
100 
101 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
102 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
103 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
104 #endif
105 
106 /*
107  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
108  * a migration causing the wrong PCP to be locked and remote memory being
109  * potentially allocated, pin the task to the CPU for the lookup+lock.
110  * preempt_disable is used on !RT because it is faster than migrate_disable.
111  * migrate_disable is used on RT because otherwise RT spinlock usage is
112  * interfered with and a high priority task cannot preempt the allocator.
113  */
114 #ifndef CONFIG_PREEMPT_RT
115 #define pcpu_task_pin()		preempt_disable()
116 #define pcpu_task_unpin()	preempt_enable()
117 #else
118 #define pcpu_task_pin()		migrate_disable()
119 #define pcpu_task_unpin()	migrate_enable()
120 #endif
121 
122 /*
123  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
124  * Return value should be used with equivalent unlock helper.
125  */
126 #define pcpu_spin_lock(type, member, ptr)				\
127 ({									\
128 	type *_ret;							\
129 	pcpu_task_pin();						\
130 	_ret = this_cpu_ptr(ptr);					\
131 	spin_lock(&_ret->member);					\
132 	_ret;								\
133 })
134 
135 #define pcpu_spin_trylock(type, member, ptr)				\
136 ({									\
137 	type *_ret;							\
138 	pcpu_task_pin();						\
139 	_ret = this_cpu_ptr(ptr);					\
140 	if (!spin_trylock(&_ret->member)) {				\
141 		pcpu_task_unpin();					\
142 		_ret = NULL;						\
143 	}								\
144 	_ret;								\
145 })
146 
147 #define pcpu_spin_unlock(member, ptr)					\
148 ({									\
149 	spin_unlock(&ptr->member);					\
150 	pcpu_task_unpin();						\
151 })
152 
153 /* struct per_cpu_pages specific helpers. */
154 #define pcp_spin_lock(ptr)						\
155 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
156 
157 #define pcp_spin_trylock(ptr)						\
158 	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
159 
160 #define pcp_spin_unlock(ptr)						\
161 	pcpu_spin_unlock(lock, ptr)
162 
163 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
164 DEFINE_PER_CPU(int, numa_node);
165 EXPORT_PER_CPU_SYMBOL(numa_node);
166 #endif
167 
168 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
169 
170 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
171 /*
172  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
173  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
174  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
175  * defined in <linux/topology.h>.
176  */
177 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
178 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
179 #endif
180 
181 static DEFINE_MUTEX(pcpu_drain_mutex);
182 
183 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
184 volatile unsigned long latent_entropy __latent_entropy;
185 EXPORT_SYMBOL(latent_entropy);
186 #endif
187 
188 /*
189  * Array of node states.
190  */
191 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
192 	[N_POSSIBLE] = NODE_MASK_ALL,
193 	[N_ONLINE] = { { [0] = 1UL } },
194 #ifndef CONFIG_NUMA
195 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
196 #ifdef CONFIG_HIGHMEM
197 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
198 #endif
199 	[N_MEMORY] = { { [0] = 1UL } },
200 	[N_CPU] = { { [0] = 1UL } },
201 #endif	/* NUMA */
202 };
203 EXPORT_SYMBOL(node_states);
204 
205 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
206 
207 /*
208  * A cached value of the page's pageblock's migratetype, used when the page is
209  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
210  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
211  * Also the migratetype set in the page does not necessarily match the pcplist
212  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
213  * other index - this ensures that it will be put on the correct CMA freelist.
214  */
215 static inline int get_pcppage_migratetype(struct page *page)
216 {
217 	return page->index;
218 }
219 
220 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
221 {
222 	page->index = migratetype;
223 }
224 
225 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
226 unsigned int pageblock_order __read_mostly;
227 #endif
228 
229 static void __free_pages_ok(struct page *page, unsigned int order,
230 			    fpi_t fpi_flags);
231 
232 /*
233  * results with 256, 32 in the lowmem_reserve sysctl:
234  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
235  *	1G machine -> (16M dma, 784M normal, 224M high)
236  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
237  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
238  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
239  *
240  * TBD: should special case ZONE_DMA32 machines here - in those we normally
241  * don't need any ZONE_NORMAL reservation
242  */
243 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
244 #ifdef CONFIG_ZONE_DMA
245 	[ZONE_DMA] = 256,
246 #endif
247 #ifdef CONFIG_ZONE_DMA32
248 	[ZONE_DMA32] = 256,
249 #endif
250 	[ZONE_NORMAL] = 32,
251 #ifdef CONFIG_HIGHMEM
252 	[ZONE_HIGHMEM] = 0,
253 #endif
254 	[ZONE_MOVABLE] = 0,
255 };
256 
257 char * const zone_names[MAX_NR_ZONES] = {
258 #ifdef CONFIG_ZONE_DMA
259 	 "DMA",
260 #endif
261 #ifdef CONFIG_ZONE_DMA32
262 	 "DMA32",
263 #endif
264 	 "Normal",
265 #ifdef CONFIG_HIGHMEM
266 	 "HighMem",
267 #endif
268 	 "Movable",
269 #ifdef CONFIG_ZONE_DEVICE
270 	 "Device",
271 #endif
272 };
273 
274 const char * const migratetype_names[MIGRATE_TYPES] = {
275 	"Unmovable",
276 	"Movable",
277 	"Reclaimable",
278 	"HighAtomic",
279 #ifdef CONFIG_CMA
280 	"CMA",
281 #endif
282 #ifdef CONFIG_MEMORY_ISOLATION
283 	"Isolate",
284 #endif
285 };
286 
287 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
288 	[NULL_COMPOUND_DTOR] = NULL,
289 	[COMPOUND_PAGE_DTOR] = free_compound_page,
290 #ifdef CONFIG_HUGETLB_PAGE
291 	[HUGETLB_PAGE_DTOR] = free_huge_page,
292 #endif
293 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
294 	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
295 #endif
296 };
297 
298 int min_free_kbytes = 1024;
299 int user_min_free_kbytes = -1;
300 static int watermark_boost_factor __read_mostly = 15000;
301 static int watermark_scale_factor = 10;
302 
303 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
304 int movable_zone;
305 EXPORT_SYMBOL(movable_zone);
306 
307 #if MAX_NUMNODES > 1
308 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
309 unsigned int nr_online_nodes __read_mostly = 1;
310 EXPORT_SYMBOL(nr_node_ids);
311 EXPORT_SYMBOL(nr_online_nodes);
312 #endif
313 
314 int page_group_by_mobility_disabled __read_mostly;
315 
316 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
317 /*
318  * During boot we initialize deferred pages on-demand, as needed, but once
319  * page_alloc_init_late() has finished, the deferred pages are all initialized,
320  * and we can permanently disable that path.
321  */
322 DEFINE_STATIC_KEY_TRUE(deferred_pages);
323 
324 static inline bool deferred_pages_enabled(void)
325 {
326 	return static_branch_unlikely(&deferred_pages);
327 }
328 
329 /*
330  * deferred_grow_zone() is __init, but it is called from
331  * get_page_from_freelist() during early boot until deferred_pages permanently
332  * disables this call. This is why we have refdata wrapper to avoid warning,
333  * and to ensure that the function body gets unloaded.
334  */
335 static bool __ref
336 _deferred_grow_zone(struct zone *zone, unsigned int order)
337 {
338        return deferred_grow_zone(zone, order);
339 }
340 #else
341 static inline bool deferred_pages_enabled(void)
342 {
343 	return false;
344 }
345 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
346 
347 /* Return a pointer to the bitmap storing bits affecting a block of pages */
348 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
349 							unsigned long pfn)
350 {
351 #ifdef CONFIG_SPARSEMEM
352 	return section_to_usemap(__pfn_to_section(pfn));
353 #else
354 	return page_zone(page)->pageblock_flags;
355 #endif /* CONFIG_SPARSEMEM */
356 }
357 
358 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
359 {
360 #ifdef CONFIG_SPARSEMEM
361 	pfn &= (PAGES_PER_SECTION-1);
362 #else
363 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
364 #endif /* CONFIG_SPARSEMEM */
365 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
366 }
367 
368 static __always_inline
369 unsigned long __get_pfnblock_flags_mask(const struct page *page,
370 					unsigned long pfn,
371 					unsigned long mask)
372 {
373 	unsigned long *bitmap;
374 	unsigned long bitidx, word_bitidx;
375 	unsigned long word;
376 
377 	bitmap = get_pageblock_bitmap(page, pfn);
378 	bitidx = pfn_to_bitidx(page, pfn);
379 	word_bitidx = bitidx / BITS_PER_LONG;
380 	bitidx &= (BITS_PER_LONG-1);
381 	/*
382 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
383 	 * a consistent read of the memory array, so that results, even though
384 	 * racy, are not corrupted.
385 	 */
386 	word = READ_ONCE(bitmap[word_bitidx]);
387 	return (word >> bitidx) & mask;
388 }
389 
390 /**
391  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
392  * @page: The page within the block of interest
393  * @pfn: The target page frame number
394  * @mask: mask of bits that the caller is interested in
395  *
396  * Return: pageblock_bits flags
397  */
398 unsigned long get_pfnblock_flags_mask(const struct page *page,
399 					unsigned long pfn, unsigned long mask)
400 {
401 	return __get_pfnblock_flags_mask(page, pfn, mask);
402 }
403 
404 static __always_inline int get_pfnblock_migratetype(const struct page *page,
405 					unsigned long pfn)
406 {
407 	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
408 }
409 
410 /**
411  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
412  * @page: The page within the block of interest
413  * @flags: The flags to set
414  * @pfn: The target page frame number
415  * @mask: mask of bits that the caller is interested in
416  */
417 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
418 					unsigned long pfn,
419 					unsigned long mask)
420 {
421 	unsigned long *bitmap;
422 	unsigned long bitidx, word_bitidx;
423 	unsigned long word;
424 
425 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
426 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
427 
428 	bitmap = get_pageblock_bitmap(page, pfn);
429 	bitidx = pfn_to_bitidx(page, pfn);
430 	word_bitidx = bitidx / BITS_PER_LONG;
431 	bitidx &= (BITS_PER_LONG-1);
432 
433 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
434 
435 	mask <<= bitidx;
436 	flags <<= bitidx;
437 
438 	word = READ_ONCE(bitmap[word_bitidx]);
439 	do {
440 	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
441 }
442 
443 void set_pageblock_migratetype(struct page *page, int migratetype)
444 {
445 	if (unlikely(page_group_by_mobility_disabled &&
446 		     migratetype < MIGRATE_PCPTYPES))
447 		migratetype = MIGRATE_UNMOVABLE;
448 
449 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
450 				page_to_pfn(page), MIGRATETYPE_MASK);
451 }
452 
453 #ifdef CONFIG_DEBUG_VM
454 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
455 {
456 	int ret = 0;
457 	unsigned seq;
458 	unsigned long pfn = page_to_pfn(page);
459 	unsigned long sp, start_pfn;
460 
461 	do {
462 		seq = zone_span_seqbegin(zone);
463 		start_pfn = zone->zone_start_pfn;
464 		sp = zone->spanned_pages;
465 		if (!zone_spans_pfn(zone, pfn))
466 			ret = 1;
467 	} while (zone_span_seqretry(zone, seq));
468 
469 	if (ret)
470 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
471 			pfn, zone_to_nid(zone), zone->name,
472 			start_pfn, start_pfn + sp);
473 
474 	return ret;
475 }
476 
477 /*
478  * Temporary debugging check for pages not lying within a given zone.
479  */
480 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
481 {
482 	if (page_outside_zone_boundaries(zone, page))
483 		return 1;
484 	if (zone != page_zone(page))
485 		return 1;
486 
487 	return 0;
488 }
489 #else
490 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
491 {
492 	return 0;
493 }
494 #endif
495 
496 static void bad_page(struct page *page, const char *reason)
497 {
498 	static unsigned long resume;
499 	static unsigned long nr_shown;
500 	static unsigned long nr_unshown;
501 
502 	/*
503 	 * Allow a burst of 60 reports, then keep quiet for that minute;
504 	 * or allow a steady drip of one report per second.
505 	 */
506 	if (nr_shown == 60) {
507 		if (time_before(jiffies, resume)) {
508 			nr_unshown++;
509 			goto out;
510 		}
511 		if (nr_unshown) {
512 			pr_alert(
513 			      "BUG: Bad page state: %lu messages suppressed\n",
514 				nr_unshown);
515 			nr_unshown = 0;
516 		}
517 		nr_shown = 0;
518 	}
519 	if (nr_shown++ == 0)
520 		resume = jiffies + 60 * HZ;
521 
522 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
523 		current->comm, page_to_pfn(page));
524 	dump_page(page, reason);
525 
526 	print_modules();
527 	dump_stack();
528 out:
529 	/* Leave bad fields for debug, except PageBuddy could make trouble */
530 	page_mapcount_reset(page); /* remove PageBuddy */
531 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
532 }
533 
534 static inline unsigned int order_to_pindex(int migratetype, int order)
535 {
536 	int base = order;
537 
538 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
539 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
540 		VM_BUG_ON(order != pageblock_order);
541 		return NR_LOWORDER_PCP_LISTS;
542 	}
543 #else
544 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
545 #endif
546 
547 	return (MIGRATE_PCPTYPES * base) + migratetype;
548 }
549 
550 static inline int pindex_to_order(unsigned int pindex)
551 {
552 	int order = pindex / MIGRATE_PCPTYPES;
553 
554 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
555 	if (pindex == NR_LOWORDER_PCP_LISTS)
556 		order = pageblock_order;
557 #else
558 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
559 #endif
560 
561 	return order;
562 }
563 
564 static inline bool pcp_allowed_order(unsigned int order)
565 {
566 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
567 		return true;
568 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
569 	if (order == pageblock_order)
570 		return true;
571 #endif
572 	return false;
573 }
574 
575 static inline void free_the_page(struct page *page, unsigned int order)
576 {
577 	if (pcp_allowed_order(order))		/* Via pcp? */
578 		free_unref_page(page, order);
579 	else
580 		__free_pages_ok(page, order, FPI_NONE);
581 }
582 
583 /*
584  * Higher-order pages are called "compound pages".  They are structured thusly:
585  *
586  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
587  *
588  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
589  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
590  *
591  * The first tail page's ->compound_dtor holds the offset in array of compound
592  * page destructors. See compound_page_dtors.
593  *
594  * The first tail page's ->compound_order holds the order of allocation.
595  * This usage means that zero-order pages may not be compound.
596  */
597 
598 void free_compound_page(struct page *page)
599 {
600 	mem_cgroup_uncharge(page_folio(page));
601 	free_the_page(page, compound_order(page));
602 }
603 
604 void prep_compound_page(struct page *page, unsigned int order)
605 {
606 	int i;
607 	int nr_pages = 1 << order;
608 
609 	__SetPageHead(page);
610 	for (i = 1; i < nr_pages; i++)
611 		prep_compound_tail(page, i);
612 
613 	prep_compound_head(page, order);
614 }
615 
616 void destroy_large_folio(struct folio *folio)
617 {
618 	enum compound_dtor_id dtor = folio->_folio_dtor;
619 
620 	VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio);
621 	compound_page_dtors[dtor](&folio->page);
622 }
623 
624 static inline void set_buddy_order(struct page *page, unsigned int order)
625 {
626 	set_page_private(page, order);
627 	__SetPageBuddy(page);
628 }
629 
630 #ifdef CONFIG_COMPACTION
631 static inline struct capture_control *task_capc(struct zone *zone)
632 {
633 	struct capture_control *capc = current->capture_control;
634 
635 	return unlikely(capc) &&
636 		!(current->flags & PF_KTHREAD) &&
637 		!capc->page &&
638 		capc->cc->zone == zone ? capc : NULL;
639 }
640 
641 static inline bool
642 compaction_capture(struct capture_control *capc, struct page *page,
643 		   int order, int migratetype)
644 {
645 	if (!capc || order != capc->cc->order)
646 		return false;
647 
648 	/* Do not accidentally pollute CMA or isolated regions*/
649 	if (is_migrate_cma(migratetype) ||
650 	    is_migrate_isolate(migratetype))
651 		return false;
652 
653 	/*
654 	 * Do not let lower order allocations pollute a movable pageblock.
655 	 * This might let an unmovable request use a reclaimable pageblock
656 	 * and vice-versa but no more than normal fallback logic which can
657 	 * have trouble finding a high-order free page.
658 	 */
659 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
660 		return false;
661 
662 	capc->page = page;
663 	return true;
664 }
665 
666 #else
667 static inline struct capture_control *task_capc(struct zone *zone)
668 {
669 	return NULL;
670 }
671 
672 static inline bool
673 compaction_capture(struct capture_control *capc, struct page *page,
674 		   int order, int migratetype)
675 {
676 	return false;
677 }
678 #endif /* CONFIG_COMPACTION */
679 
680 /* Used for pages not on another list */
681 static inline void add_to_free_list(struct page *page, struct zone *zone,
682 				    unsigned int order, int migratetype)
683 {
684 	struct free_area *area = &zone->free_area[order];
685 
686 	list_add(&page->buddy_list, &area->free_list[migratetype]);
687 	area->nr_free++;
688 }
689 
690 /* Used for pages not on another list */
691 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
692 					 unsigned int order, int migratetype)
693 {
694 	struct free_area *area = &zone->free_area[order];
695 
696 	list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
697 	area->nr_free++;
698 }
699 
700 /*
701  * Used for pages which are on another list. Move the pages to the tail
702  * of the list - so the moved pages won't immediately be considered for
703  * allocation again (e.g., optimization for memory onlining).
704  */
705 static inline void move_to_free_list(struct page *page, struct zone *zone,
706 				     unsigned int order, int migratetype)
707 {
708 	struct free_area *area = &zone->free_area[order];
709 
710 	list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
711 }
712 
713 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
714 					   unsigned int order)
715 {
716 	/* clear reported state and update reported page count */
717 	if (page_reported(page))
718 		__ClearPageReported(page);
719 
720 	list_del(&page->buddy_list);
721 	__ClearPageBuddy(page);
722 	set_page_private(page, 0);
723 	zone->free_area[order].nr_free--;
724 }
725 
726 static inline struct page *get_page_from_free_area(struct free_area *area,
727 					    int migratetype)
728 {
729 	return list_first_entry_or_null(&area->free_list[migratetype],
730 					struct page, lru);
731 }
732 
733 /*
734  * If this is not the largest possible page, check if the buddy
735  * of the next-highest order is free. If it is, it's possible
736  * that pages are being freed that will coalesce soon. In case,
737  * that is happening, add the free page to the tail of the list
738  * so it's less likely to be used soon and more likely to be merged
739  * as a higher order page
740  */
741 static inline bool
742 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
743 		   struct page *page, unsigned int order)
744 {
745 	unsigned long higher_page_pfn;
746 	struct page *higher_page;
747 
748 	if (order >= MAX_ORDER - 1)
749 		return false;
750 
751 	higher_page_pfn = buddy_pfn & pfn;
752 	higher_page = page + (higher_page_pfn - pfn);
753 
754 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
755 			NULL) != NULL;
756 }
757 
758 /*
759  * Freeing function for a buddy system allocator.
760  *
761  * The concept of a buddy system is to maintain direct-mapped table
762  * (containing bit values) for memory blocks of various "orders".
763  * The bottom level table contains the map for the smallest allocatable
764  * units of memory (here, pages), and each level above it describes
765  * pairs of units from the levels below, hence, "buddies".
766  * At a high level, all that happens here is marking the table entry
767  * at the bottom level available, and propagating the changes upward
768  * as necessary, plus some accounting needed to play nicely with other
769  * parts of the VM system.
770  * At each level, we keep a list of pages, which are heads of continuous
771  * free pages of length of (1 << order) and marked with PageBuddy.
772  * Page's order is recorded in page_private(page) field.
773  * So when we are allocating or freeing one, we can derive the state of the
774  * other.  That is, if we allocate a small block, and both were
775  * free, the remainder of the region must be split into blocks.
776  * If a block is freed, and its buddy is also free, then this
777  * triggers coalescing into a block of larger size.
778  *
779  * -- nyc
780  */
781 
782 static inline void __free_one_page(struct page *page,
783 		unsigned long pfn,
784 		struct zone *zone, unsigned int order,
785 		int migratetype, fpi_t fpi_flags)
786 {
787 	struct capture_control *capc = task_capc(zone);
788 	unsigned long buddy_pfn = 0;
789 	unsigned long combined_pfn;
790 	struct page *buddy;
791 	bool to_tail;
792 
793 	VM_BUG_ON(!zone_is_initialized(zone));
794 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
795 
796 	VM_BUG_ON(migratetype == -1);
797 	if (likely(!is_migrate_isolate(migratetype)))
798 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
799 
800 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
801 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
802 
803 	while (order < MAX_ORDER) {
804 		if (compaction_capture(capc, page, order, migratetype)) {
805 			__mod_zone_freepage_state(zone, -(1 << order),
806 								migratetype);
807 			return;
808 		}
809 
810 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
811 		if (!buddy)
812 			goto done_merging;
813 
814 		if (unlikely(order >= pageblock_order)) {
815 			/*
816 			 * We want to prevent merge between freepages on pageblock
817 			 * without fallbacks and normal pageblock. Without this,
818 			 * pageblock isolation could cause incorrect freepage or CMA
819 			 * accounting or HIGHATOMIC accounting.
820 			 */
821 			int buddy_mt = get_pageblock_migratetype(buddy);
822 
823 			if (migratetype != buddy_mt
824 					&& (!migratetype_is_mergeable(migratetype) ||
825 						!migratetype_is_mergeable(buddy_mt)))
826 				goto done_merging;
827 		}
828 
829 		/*
830 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
831 		 * merge with it and move up one order.
832 		 */
833 		if (page_is_guard(buddy))
834 			clear_page_guard(zone, buddy, order, migratetype);
835 		else
836 			del_page_from_free_list(buddy, zone, order);
837 		combined_pfn = buddy_pfn & pfn;
838 		page = page + (combined_pfn - pfn);
839 		pfn = combined_pfn;
840 		order++;
841 	}
842 
843 done_merging:
844 	set_buddy_order(page, order);
845 
846 	if (fpi_flags & FPI_TO_TAIL)
847 		to_tail = true;
848 	else if (is_shuffle_order(order))
849 		to_tail = shuffle_pick_tail();
850 	else
851 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
852 
853 	if (to_tail)
854 		add_to_free_list_tail(page, zone, order, migratetype);
855 	else
856 		add_to_free_list(page, zone, order, migratetype);
857 
858 	/* Notify page reporting subsystem of freed page */
859 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
860 		page_reporting_notify_free(order);
861 }
862 
863 /**
864  * split_free_page() -- split a free page at split_pfn_offset
865  * @free_page:		the original free page
866  * @order:		the order of the page
867  * @split_pfn_offset:	split offset within the page
868  *
869  * Return -ENOENT if the free page is changed, otherwise 0
870  *
871  * It is used when the free page crosses two pageblocks with different migratetypes
872  * at split_pfn_offset within the page. The split free page will be put into
873  * separate migratetype lists afterwards. Otherwise, the function achieves
874  * nothing.
875  */
876 int split_free_page(struct page *free_page,
877 			unsigned int order, unsigned long split_pfn_offset)
878 {
879 	struct zone *zone = page_zone(free_page);
880 	unsigned long free_page_pfn = page_to_pfn(free_page);
881 	unsigned long pfn;
882 	unsigned long flags;
883 	int free_page_order;
884 	int mt;
885 	int ret = 0;
886 
887 	if (split_pfn_offset == 0)
888 		return ret;
889 
890 	spin_lock_irqsave(&zone->lock, flags);
891 
892 	if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
893 		ret = -ENOENT;
894 		goto out;
895 	}
896 
897 	mt = get_pageblock_migratetype(free_page);
898 	if (likely(!is_migrate_isolate(mt)))
899 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
900 
901 	del_page_from_free_list(free_page, zone, order);
902 	for (pfn = free_page_pfn;
903 	     pfn < free_page_pfn + (1UL << order);) {
904 		int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
905 
906 		free_page_order = min_t(unsigned int,
907 					pfn ? __ffs(pfn) : order,
908 					__fls(split_pfn_offset));
909 		__free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
910 				mt, FPI_NONE);
911 		pfn += 1UL << free_page_order;
912 		split_pfn_offset -= (1UL << free_page_order);
913 		/* we have done the first part, now switch to second part */
914 		if (split_pfn_offset == 0)
915 			split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
916 	}
917 out:
918 	spin_unlock_irqrestore(&zone->lock, flags);
919 	return ret;
920 }
921 /*
922  * A bad page could be due to a number of fields. Instead of multiple branches,
923  * try and check multiple fields with one check. The caller must do a detailed
924  * check if necessary.
925  */
926 static inline bool page_expected_state(struct page *page,
927 					unsigned long check_flags)
928 {
929 	if (unlikely(atomic_read(&page->_mapcount) != -1))
930 		return false;
931 
932 	if (unlikely((unsigned long)page->mapping |
933 			page_ref_count(page) |
934 #ifdef CONFIG_MEMCG
935 			page->memcg_data |
936 #endif
937 			(page->flags & check_flags)))
938 		return false;
939 
940 	return true;
941 }
942 
943 static const char *page_bad_reason(struct page *page, unsigned long flags)
944 {
945 	const char *bad_reason = NULL;
946 
947 	if (unlikely(atomic_read(&page->_mapcount) != -1))
948 		bad_reason = "nonzero mapcount";
949 	if (unlikely(page->mapping != NULL))
950 		bad_reason = "non-NULL mapping";
951 	if (unlikely(page_ref_count(page) != 0))
952 		bad_reason = "nonzero _refcount";
953 	if (unlikely(page->flags & flags)) {
954 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
955 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
956 		else
957 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
958 	}
959 #ifdef CONFIG_MEMCG
960 	if (unlikely(page->memcg_data))
961 		bad_reason = "page still charged to cgroup";
962 #endif
963 	return bad_reason;
964 }
965 
966 static void free_page_is_bad_report(struct page *page)
967 {
968 	bad_page(page,
969 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
970 }
971 
972 static inline bool free_page_is_bad(struct page *page)
973 {
974 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
975 		return false;
976 
977 	/* Something has gone sideways, find it */
978 	free_page_is_bad_report(page);
979 	return true;
980 }
981 
982 static inline bool is_check_pages_enabled(void)
983 {
984 	return static_branch_unlikely(&check_pages_enabled);
985 }
986 
987 static int free_tail_page_prepare(struct page *head_page, struct page *page)
988 {
989 	struct folio *folio = (struct folio *)head_page;
990 	int ret = 1;
991 
992 	/*
993 	 * We rely page->lru.next never has bit 0 set, unless the page
994 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
995 	 */
996 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
997 
998 	if (!is_check_pages_enabled()) {
999 		ret = 0;
1000 		goto out;
1001 	}
1002 	switch (page - head_page) {
1003 	case 1:
1004 		/* the first tail page: these may be in place of ->mapping */
1005 		if (unlikely(folio_entire_mapcount(folio))) {
1006 			bad_page(page, "nonzero entire_mapcount");
1007 			goto out;
1008 		}
1009 		if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
1010 			bad_page(page, "nonzero nr_pages_mapped");
1011 			goto out;
1012 		}
1013 		if (unlikely(atomic_read(&folio->_pincount))) {
1014 			bad_page(page, "nonzero pincount");
1015 			goto out;
1016 		}
1017 		break;
1018 	case 2:
1019 		/*
1020 		 * the second tail page: ->mapping is
1021 		 * deferred_list.next -- ignore value.
1022 		 */
1023 		break;
1024 	default:
1025 		if (page->mapping != TAIL_MAPPING) {
1026 			bad_page(page, "corrupted mapping in tail page");
1027 			goto out;
1028 		}
1029 		break;
1030 	}
1031 	if (unlikely(!PageTail(page))) {
1032 		bad_page(page, "PageTail not set");
1033 		goto out;
1034 	}
1035 	if (unlikely(compound_head(page) != head_page)) {
1036 		bad_page(page, "compound_head not consistent");
1037 		goto out;
1038 	}
1039 	ret = 0;
1040 out:
1041 	page->mapping = NULL;
1042 	clear_compound_head(page);
1043 	return ret;
1044 }
1045 
1046 /*
1047  * Skip KASAN memory poisoning when either:
1048  *
1049  * 1. For generic KASAN: deferred memory initialization has not yet completed.
1050  *    Tag-based KASAN modes skip pages freed via deferred memory initialization
1051  *    using page tags instead (see below).
1052  * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1053  *    that error detection is disabled for accesses via the page address.
1054  *
1055  * Pages will have match-all tags in the following circumstances:
1056  *
1057  * 1. Pages are being initialized for the first time, including during deferred
1058  *    memory init; see the call to page_kasan_tag_reset in __init_single_page.
1059  * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1060  *    exception of pages unpoisoned by kasan_unpoison_vmalloc.
1061  * 3. The allocation was excluded from being checked due to sampling,
1062  *    see the call to kasan_unpoison_pages.
1063  *
1064  * Poisoning pages during deferred memory init will greatly lengthen the
1065  * process and cause problem in large memory systems as the deferred pages
1066  * initialization is done with interrupt disabled.
1067  *
1068  * Assuming that there will be no reference to those newly initialized
1069  * pages before they are ever allocated, this should have no effect on
1070  * KASAN memory tracking as the poison will be properly inserted at page
1071  * allocation time. The only corner case is when pages are allocated by
1072  * on-demand allocation and then freed again before the deferred pages
1073  * initialization is done, but this is not likely to happen.
1074  */
1075 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1076 {
1077 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1078 		return deferred_pages_enabled();
1079 
1080 	return page_kasan_tag(page) == 0xff;
1081 }
1082 
1083 static void kernel_init_pages(struct page *page, int numpages)
1084 {
1085 	int i;
1086 
1087 	/* s390's use of memset() could override KASAN redzones. */
1088 	kasan_disable_current();
1089 	for (i = 0; i < numpages; i++)
1090 		clear_highpage_kasan_tagged(page + i);
1091 	kasan_enable_current();
1092 }
1093 
1094 static __always_inline bool free_pages_prepare(struct page *page,
1095 			unsigned int order, fpi_t fpi_flags)
1096 {
1097 	int bad = 0;
1098 	bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1099 	bool init = want_init_on_free();
1100 
1101 	VM_BUG_ON_PAGE(PageTail(page), page);
1102 
1103 	trace_mm_page_free(page, order);
1104 	kmsan_free_page(page, order);
1105 
1106 	if (unlikely(PageHWPoison(page)) && !order) {
1107 		/*
1108 		 * Do not let hwpoison pages hit pcplists/buddy
1109 		 * Untie memcg state and reset page's owner
1110 		 */
1111 		if (memcg_kmem_online() && PageMemcgKmem(page))
1112 			__memcg_kmem_uncharge_page(page, order);
1113 		reset_page_owner(page, order);
1114 		page_table_check_free(page, order);
1115 		return false;
1116 	}
1117 
1118 	/*
1119 	 * Check tail pages before head page information is cleared to
1120 	 * avoid checking PageCompound for order-0 pages.
1121 	 */
1122 	if (unlikely(order)) {
1123 		bool compound = PageCompound(page);
1124 		int i;
1125 
1126 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1127 
1128 		if (compound)
1129 			ClearPageHasHWPoisoned(page);
1130 		for (i = 1; i < (1 << order); i++) {
1131 			if (compound)
1132 				bad += free_tail_page_prepare(page, page + i);
1133 			if (is_check_pages_enabled()) {
1134 				if (free_page_is_bad(page + i)) {
1135 					bad++;
1136 					continue;
1137 				}
1138 			}
1139 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1140 		}
1141 	}
1142 	if (PageMappingFlags(page))
1143 		page->mapping = NULL;
1144 	if (memcg_kmem_online() && PageMemcgKmem(page))
1145 		__memcg_kmem_uncharge_page(page, order);
1146 	if (is_check_pages_enabled()) {
1147 		if (free_page_is_bad(page))
1148 			bad++;
1149 		if (bad)
1150 			return false;
1151 	}
1152 
1153 	page_cpupid_reset_last(page);
1154 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1155 	reset_page_owner(page, order);
1156 	page_table_check_free(page, order);
1157 
1158 	if (!PageHighMem(page)) {
1159 		debug_check_no_locks_freed(page_address(page),
1160 					   PAGE_SIZE << order);
1161 		debug_check_no_obj_freed(page_address(page),
1162 					   PAGE_SIZE << order);
1163 	}
1164 
1165 	kernel_poison_pages(page, 1 << order);
1166 
1167 	/*
1168 	 * As memory initialization might be integrated into KASAN,
1169 	 * KASAN poisoning and memory initialization code must be
1170 	 * kept together to avoid discrepancies in behavior.
1171 	 *
1172 	 * With hardware tag-based KASAN, memory tags must be set before the
1173 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1174 	 */
1175 	if (!skip_kasan_poison) {
1176 		kasan_poison_pages(page, order, init);
1177 
1178 		/* Memory is already initialized if KASAN did it internally. */
1179 		if (kasan_has_integrated_init())
1180 			init = false;
1181 	}
1182 	if (init)
1183 		kernel_init_pages(page, 1 << order);
1184 
1185 	/*
1186 	 * arch_free_page() can make the page's contents inaccessible.  s390
1187 	 * does this.  So nothing which can access the page's contents should
1188 	 * happen after this.
1189 	 */
1190 	arch_free_page(page, order);
1191 
1192 	debug_pagealloc_unmap_pages(page, 1 << order);
1193 
1194 	return true;
1195 }
1196 
1197 /*
1198  * Frees a number of pages from the PCP lists
1199  * Assumes all pages on list are in same zone.
1200  * count is the number of pages to free.
1201  */
1202 static void free_pcppages_bulk(struct zone *zone, int count,
1203 					struct per_cpu_pages *pcp,
1204 					int pindex)
1205 {
1206 	unsigned long flags;
1207 	int min_pindex = 0;
1208 	int max_pindex = NR_PCP_LISTS - 1;
1209 	unsigned int order;
1210 	bool isolated_pageblocks;
1211 	struct page *page;
1212 
1213 	/*
1214 	 * Ensure proper count is passed which otherwise would stuck in the
1215 	 * below while (list_empty(list)) loop.
1216 	 */
1217 	count = min(pcp->count, count);
1218 
1219 	/* Ensure requested pindex is drained first. */
1220 	pindex = pindex - 1;
1221 
1222 	spin_lock_irqsave(&zone->lock, flags);
1223 	isolated_pageblocks = has_isolate_pageblock(zone);
1224 
1225 	while (count > 0) {
1226 		struct list_head *list;
1227 		int nr_pages;
1228 
1229 		/* Remove pages from lists in a round-robin fashion. */
1230 		do {
1231 			if (++pindex > max_pindex)
1232 				pindex = min_pindex;
1233 			list = &pcp->lists[pindex];
1234 			if (!list_empty(list))
1235 				break;
1236 
1237 			if (pindex == max_pindex)
1238 				max_pindex--;
1239 			if (pindex == min_pindex)
1240 				min_pindex++;
1241 		} while (1);
1242 
1243 		order = pindex_to_order(pindex);
1244 		nr_pages = 1 << order;
1245 		do {
1246 			int mt;
1247 
1248 			page = list_last_entry(list, struct page, pcp_list);
1249 			mt = get_pcppage_migratetype(page);
1250 
1251 			/* must delete to avoid corrupting pcp list */
1252 			list_del(&page->pcp_list);
1253 			count -= nr_pages;
1254 			pcp->count -= nr_pages;
1255 
1256 			/* MIGRATE_ISOLATE page should not go to pcplists */
1257 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1258 			/* Pageblock could have been isolated meanwhile */
1259 			if (unlikely(isolated_pageblocks))
1260 				mt = get_pageblock_migratetype(page);
1261 
1262 			__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1263 			trace_mm_page_pcpu_drain(page, order, mt);
1264 		} while (count > 0 && !list_empty(list));
1265 	}
1266 
1267 	spin_unlock_irqrestore(&zone->lock, flags);
1268 }
1269 
1270 static void free_one_page(struct zone *zone,
1271 				struct page *page, unsigned long pfn,
1272 				unsigned int order,
1273 				int migratetype, fpi_t fpi_flags)
1274 {
1275 	unsigned long flags;
1276 
1277 	spin_lock_irqsave(&zone->lock, flags);
1278 	if (unlikely(has_isolate_pageblock(zone) ||
1279 		is_migrate_isolate(migratetype))) {
1280 		migratetype = get_pfnblock_migratetype(page, pfn);
1281 	}
1282 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1283 	spin_unlock_irqrestore(&zone->lock, flags);
1284 }
1285 
1286 static void __free_pages_ok(struct page *page, unsigned int order,
1287 			    fpi_t fpi_flags)
1288 {
1289 	unsigned long flags;
1290 	int migratetype;
1291 	unsigned long pfn = page_to_pfn(page);
1292 	struct zone *zone = page_zone(page);
1293 
1294 	if (!free_pages_prepare(page, order, fpi_flags))
1295 		return;
1296 
1297 	/*
1298 	 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here
1299 	 * is used to avoid calling get_pfnblock_migratetype() under the lock.
1300 	 * This will reduce the lock holding time.
1301 	 */
1302 	migratetype = get_pfnblock_migratetype(page, pfn);
1303 
1304 	spin_lock_irqsave(&zone->lock, flags);
1305 	if (unlikely(has_isolate_pageblock(zone) ||
1306 		is_migrate_isolate(migratetype))) {
1307 		migratetype = get_pfnblock_migratetype(page, pfn);
1308 	}
1309 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1310 	spin_unlock_irqrestore(&zone->lock, flags);
1311 
1312 	__count_vm_events(PGFREE, 1 << order);
1313 }
1314 
1315 void __free_pages_core(struct page *page, unsigned int order)
1316 {
1317 	unsigned int nr_pages = 1 << order;
1318 	struct page *p = page;
1319 	unsigned int loop;
1320 
1321 	/*
1322 	 * When initializing the memmap, __init_single_page() sets the refcount
1323 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1324 	 * refcount of all involved pages to 0.
1325 	 */
1326 	prefetchw(p);
1327 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1328 		prefetchw(p + 1);
1329 		__ClearPageReserved(p);
1330 		set_page_count(p, 0);
1331 	}
1332 	__ClearPageReserved(p);
1333 	set_page_count(p, 0);
1334 
1335 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1336 
1337 	/*
1338 	 * Bypass PCP and place fresh pages right to the tail, primarily
1339 	 * relevant for memory onlining.
1340 	 */
1341 	__free_pages_ok(page, order, FPI_TO_TAIL);
1342 }
1343 
1344 /*
1345  * Check that the whole (or subset of) a pageblock given by the interval of
1346  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1347  * with the migration of free compaction scanner.
1348  *
1349  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1350  *
1351  * It's possible on some configurations to have a setup like node0 node1 node0
1352  * i.e. it's possible that all pages within a zones range of pages do not
1353  * belong to a single zone. We assume that a border between node0 and node1
1354  * can occur within a single pageblock, but not a node0 node1 node0
1355  * interleaving within a single pageblock. It is therefore sufficient to check
1356  * the first and last page of a pageblock and avoid checking each individual
1357  * page in a pageblock.
1358  *
1359  * Note: the function may return non-NULL struct page even for a page block
1360  * which contains a memory hole (i.e. there is no physical memory for a subset
1361  * of the pfn range). For example, if the pageblock order is MAX_ORDER, which
1362  * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1363  * even though the start pfn is online and valid. This should be safe most of
1364  * the time because struct pages are still initialized via init_unavailable_range()
1365  * and pfn walkers shouldn't touch any physical memory range for which they do
1366  * not recognize any specific metadata in struct pages.
1367  */
1368 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1369 				     unsigned long end_pfn, struct zone *zone)
1370 {
1371 	struct page *start_page;
1372 	struct page *end_page;
1373 
1374 	/* end_pfn is one past the range we are checking */
1375 	end_pfn--;
1376 
1377 	if (!pfn_valid(end_pfn))
1378 		return NULL;
1379 
1380 	start_page = pfn_to_online_page(start_pfn);
1381 	if (!start_page)
1382 		return NULL;
1383 
1384 	if (page_zone(start_page) != zone)
1385 		return NULL;
1386 
1387 	end_page = pfn_to_page(end_pfn);
1388 
1389 	/* This gives a shorter code than deriving page_zone(end_page) */
1390 	if (page_zone_id(start_page) != page_zone_id(end_page))
1391 		return NULL;
1392 
1393 	return start_page;
1394 }
1395 
1396 /*
1397  * The order of subdivision here is critical for the IO subsystem.
1398  * Please do not alter this order without good reasons and regression
1399  * testing. Specifically, as large blocks of memory are subdivided,
1400  * the order in which smaller blocks are delivered depends on the order
1401  * they're subdivided in this function. This is the primary factor
1402  * influencing the order in which pages are delivered to the IO
1403  * subsystem according to empirical testing, and this is also justified
1404  * by considering the behavior of a buddy system containing a single
1405  * large block of memory acted on by a series of small allocations.
1406  * This behavior is a critical factor in sglist merging's success.
1407  *
1408  * -- nyc
1409  */
1410 static inline void expand(struct zone *zone, struct page *page,
1411 	int low, int high, int migratetype)
1412 {
1413 	unsigned long size = 1 << high;
1414 
1415 	while (high > low) {
1416 		high--;
1417 		size >>= 1;
1418 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1419 
1420 		/*
1421 		 * Mark as guard pages (or page), that will allow to
1422 		 * merge back to allocator when buddy will be freed.
1423 		 * Corresponding page table entries will not be touched,
1424 		 * pages will stay not present in virtual address space
1425 		 */
1426 		if (set_page_guard(zone, &page[size], high, migratetype))
1427 			continue;
1428 
1429 		add_to_free_list(&page[size], zone, high, migratetype);
1430 		set_buddy_order(&page[size], high);
1431 	}
1432 }
1433 
1434 static void check_new_page_bad(struct page *page)
1435 {
1436 	if (unlikely(page->flags & __PG_HWPOISON)) {
1437 		/* Don't complain about hwpoisoned pages */
1438 		page_mapcount_reset(page); /* remove PageBuddy */
1439 		return;
1440 	}
1441 
1442 	bad_page(page,
1443 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1444 }
1445 
1446 /*
1447  * This page is about to be returned from the page allocator
1448  */
1449 static int check_new_page(struct page *page)
1450 {
1451 	if (likely(page_expected_state(page,
1452 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1453 		return 0;
1454 
1455 	check_new_page_bad(page);
1456 	return 1;
1457 }
1458 
1459 static inline bool check_new_pages(struct page *page, unsigned int order)
1460 {
1461 	if (is_check_pages_enabled()) {
1462 		for (int i = 0; i < (1 << order); i++) {
1463 			struct page *p = page + i;
1464 
1465 			if (check_new_page(p))
1466 				return true;
1467 		}
1468 	}
1469 
1470 	return false;
1471 }
1472 
1473 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1474 {
1475 	/* Don't skip if a software KASAN mode is enabled. */
1476 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1477 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1478 		return false;
1479 
1480 	/* Skip, if hardware tag-based KASAN is not enabled. */
1481 	if (!kasan_hw_tags_enabled())
1482 		return true;
1483 
1484 	/*
1485 	 * With hardware tag-based KASAN enabled, skip if this has been
1486 	 * requested via __GFP_SKIP_KASAN.
1487 	 */
1488 	return flags & __GFP_SKIP_KASAN;
1489 }
1490 
1491 static inline bool should_skip_init(gfp_t flags)
1492 {
1493 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
1494 	if (!kasan_hw_tags_enabled())
1495 		return false;
1496 
1497 	/* For hardware tag-based KASAN, skip if requested. */
1498 	return (flags & __GFP_SKIP_ZERO);
1499 }
1500 
1501 inline void post_alloc_hook(struct page *page, unsigned int order,
1502 				gfp_t gfp_flags)
1503 {
1504 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1505 			!should_skip_init(gfp_flags);
1506 	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1507 	int i;
1508 
1509 	set_page_private(page, 0);
1510 	set_page_refcounted(page);
1511 
1512 	arch_alloc_page(page, order);
1513 	debug_pagealloc_map_pages(page, 1 << order);
1514 
1515 	/*
1516 	 * Page unpoisoning must happen before memory initialization.
1517 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1518 	 * allocations and the page unpoisoning code will complain.
1519 	 */
1520 	kernel_unpoison_pages(page, 1 << order);
1521 
1522 	/*
1523 	 * As memory initialization might be integrated into KASAN,
1524 	 * KASAN unpoisoning and memory initializion code must be
1525 	 * kept together to avoid discrepancies in behavior.
1526 	 */
1527 
1528 	/*
1529 	 * If memory tags should be zeroed
1530 	 * (which happens only when memory should be initialized as well).
1531 	 */
1532 	if (zero_tags) {
1533 		/* Initialize both memory and memory tags. */
1534 		for (i = 0; i != 1 << order; ++i)
1535 			tag_clear_highpage(page + i);
1536 
1537 		/* Take note that memory was initialized by the loop above. */
1538 		init = false;
1539 	}
1540 	if (!should_skip_kasan_unpoison(gfp_flags) &&
1541 	    kasan_unpoison_pages(page, order, init)) {
1542 		/* Take note that memory was initialized by KASAN. */
1543 		if (kasan_has_integrated_init())
1544 			init = false;
1545 	} else {
1546 		/*
1547 		 * If memory tags have not been set by KASAN, reset the page
1548 		 * tags to ensure page_address() dereferencing does not fault.
1549 		 */
1550 		for (i = 0; i != 1 << order; ++i)
1551 			page_kasan_tag_reset(page + i);
1552 	}
1553 	/* If memory is still not initialized, initialize it now. */
1554 	if (init)
1555 		kernel_init_pages(page, 1 << order);
1556 
1557 	set_page_owner(page, order, gfp_flags);
1558 	page_table_check_alloc(page, order);
1559 }
1560 
1561 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1562 							unsigned int alloc_flags)
1563 {
1564 	post_alloc_hook(page, order, gfp_flags);
1565 
1566 	if (order && (gfp_flags & __GFP_COMP))
1567 		prep_compound_page(page, order);
1568 
1569 	/*
1570 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1571 	 * allocate the page. The expectation is that the caller is taking
1572 	 * steps that will free more memory. The caller should avoid the page
1573 	 * being used for !PFMEMALLOC purposes.
1574 	 */
1575 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1576 		set_page_pfmemalloc(page);
1577 	else
1578 		clear_page_pfmemalloc(page);
1579 }
1580 
1581 /*
1582  * Go through the free lists for the given migratetype and remove
1583  * the smallest available page from the freelists
1584  */
1585 static __always_inline
1586 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1587 						int migratetype)
1588 {
1589 	unsigned int current_order;
1590 	struct free_area *area;
1591 	struct page *page;
1592 
1593 	/* Find a page of the appropriate size in the preferred list */
1594 	for (current_order = order; current_order <= MAX_ORDER; ++current_order) {
1595 		area = &(zone->free_area[current_order]);
1596 		page = get_page_from_free_area(area, migratetype);
1597 		if (!page)
1598 			continue;
1599 		del_page_from_free_list(page, zone, current_order);
1600 		expand(zone, page, order, current_order, migratetype);
1601 		set_pcppage_migratetype(page, migratetype);
1602 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
1603 				pcp_allowed_order(order) &&
1604 				migratetype < MIGRATE_PCPTYPES);
1605 		return page;
1606 	}
1607 
1608 	return NULL;
1609 }
1610 
1611 
1612 /*
1613  * This array describes the order lists are fallen back to when
1614  * the free lists for the desirable migrate type are depleted
1615  *
1616  * The other migratetypes do not have fallbacks.
1617  */
1618 static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = {
1619 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
1620 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1621 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
1622 };
1623 
1624 #ifdef CONFIG_CMA
1625 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1626 					unsigned int order)
1627 {
1628 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1629 }
1630 #else
1631 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1632 					unsigned int order) { return NULL; }
1633 #endif
1634 
1635 /*
1636  * Move the free pages in a range to the freelist tail of the requested type.
1637  * Note that start_page and end_pages are not aligned on a pageblock
1638  * boundary. If alignment is required, use move_freepages_block()
1639  */
1640 static int move_freepages(struct zone *zone,
1641 			  unsigned long start_pfn, unsigned long end_pfn,
1642 			  int migratetype, int *num_movable)
1643 {
1644 	struct page *page;
1645 	unsigned long pfn;
1646 	unsigned int order;
1647 	int pages_moved = 0;
1648 
1649 	for (pfn = start_pfn; pfn <= end_pfn;) {
1650 		page = pfn_to_page(pfn);
1651 		if (!PageBuddy(page)) {
1652 			/*
1653 			 * We assume that pages that could be isolated for
1654 			 * migration are movable. But we don't actually try
1655 			 * isolating, as that would be expensive.
1656 			 */
1657 			if (num_movable &&
1658 					(PageLRU(page) || __PageMovable(page)))
1659 				(*num_movable)++;
1660 			pfn++;
1661 			continue;
1662 		}
1663 
1664 		/* Make sure we are not inadvertently changing nodes */
1665 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1666 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1667 
1668 		order = buddy_order(page);
1669 		move_to_free_list(page, zone, order, migratetype);
1670 		pfn += 1 << order;
1671 		pages_moved += 1 << order;
1672 	}
1673 
1674 	return pages_moved;
1675 }
1676 
1677 int move_freepages_block(struct zone *zone, struct page *page,
1678 				int migratetype, int *num_movable)
1679 {
1680 	unsigned long start_pfn, end_pfn, pfn;
1681 
1682 	if (num_movable)
1683 		*num_movable = 0;
1684 
1685 	pfn = page_to_pfn(page);
1686 	start_pfn = pageblock_start_pfn(pfn);
1687 	end_pfn = pageblock_end_pfn(pfn) - 1;
1688 
1689 	/* Do not cross zone boundaries */
1690 	if (!zone_spans_pfn(zone, start_pfn))
1691 		start_pfn = pfn;
1692 	if (!zone_spans_pfn(zone, end_pfn))
1693 		return 0;
1694 
1695 	return move_freepages(zone, start_pfn, end_pfn, migratetype,
1696 								num_movable);
1697 }
1698 
1699 static void change_pageblock_range(struct page *pageblock_page,
1700 					int start_order, int migratetype)
1701 {
1702 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1703 
1704 	while (nr_pageblocks--) {
1705 		set_pageblock_migratetype(pageblock_page, migratetype);
1706 		pageblock_page += pageblock_nr_pages;
1707 	}
1708 }
1709 
1710 /*
1711  * When we are falling back to another migratetype during allocation, try to
1712  * steal extra free pages from the same pageblocks to satisfy further
1713  * allocations, instead of polluting multiple pageblocks.
1714  *
1715  * If we are stealing a relatively large buddy page, it is likely there will
1716  * be more free pages in the pageblock, so try to steal them all. For
1717  * reclaimable and unmovable allocations, we steal regardless of page size,
1718  * as fragmentation caused by those allocations polluting movable pageblocks
1719  * is worse than movable allocations stealing from unmovable and reclaimable
1720  * pageblocks.
1721  */
1722 static bool can_steal_fallback(unsigned int order, int start_mt)
1723 {
1724 	/*
1725 	 * Leaving this order check is intended, although there is
1726 	 * relaxed order check in next check. The reason is that
1727 	 * we can actually steal whole pageblock if this condition met,
1728 	 * but, below check doesn't guarantee it and that is just heuristic
1729 	 * so could be changed anytime.
1730 	 */
1731 	if (order >= pageblock_order)
1732 		return true;
1733 
1734 	if (order >= pageblock_order / 2 ||
1735 		start_mt == MIGRATE_RECLAIMABLE ||
1736 		start_mt == MIGRATE_UNMOVABLE ||
1737 		page_group_by_mobility_disabled)
1738 		return true;
1739 
1740 	return false;
1741 }
1742 
1743 static inline bool boost_watermark(struct zone *zone)
1744 {
1745 	unsigned long max_boost;
1746 
1747 	if (!watermark_boost_factor)
1748 		return false;
1749 	/*
1750 	 * Don't bother in zones that are unlikely to produce results.
1751 	 * On small machines, including kdump capture kernels running
1752 	 * in a small area, boosting the watermark can cause an out of
1753 	 * memory situation immediately.
1754 	 */
1755 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1756 		return false;
1757 
1758 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1759 			watermark_boost_factor, 10000);
1760 
1761 	/*
1762 	 * high watermark may be uninitialised if fragmentation occurs
1763 	 * very early in boot so do not boost. We do not fall
1764 	 * through and boost by pageblock_nr_pages as failing
1765 	 * allocations that early means that reclaim is not going
1766 	 * to help and it may even be impossible to reclaim the
1767 	 * boosted watermark resulting in a hang.
1768 	 */
1769 	if (!max_boost)
1770 		return false;
1771 
1772 	max_boost = max(pageblock_nr_pages, max_boost);
1773 
1774 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1775 		max_boost);
1776 
1777 	return true;
1778 }
1779 
1780 /*
1781  * This function implements actual steal behaviour. If order is large enough,
1782  * we can steal whole pageblock. If not, we first move freepages in this
1783  * pageblock to our migratetype and determine how many already-allocated pages
1784  * are there in the pageblock with a compatible migratetype. If at least half
1785  * of pages are free or compatible, we can change migratetype of the pageblock
1786  * itself, so pages freed in the future will be put on the correct free list.
1787  */
1788 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1789 		unsigned int alloc_flags, int start_type, bool whole_block)
1790 {
1791 	unsigned int current_order = buddy_order(page);
1792 	int free_pages, movable_pages, alike_pages;
1793 	int old_block_type;
1794 
1795 	old_block_type = get_pageblock_migratetype(page);
1796 
1797 	/*
1798 	 * This can happen due to races and we want to prevent broken
1799 	 * highatomic accounting.
1800 	 */
1801 	if (is_migrate_highatomic(old_block_type))
1802 		goto single_page;
1803 
1804 	/* Take ownership for orders >= pageblock_order */
1805 	if (current_order >= pageblock_order) {
1806 		change_pageblock_range(page, current_order, start_type);
1807 		goto single_page;
1808 	}
1809 
1810 	/*
1811 	 * Boost watermarks to increase reclaim pressure to reduce the
1812 	 * likelihood of future fallbacks. Wake kswapd now as the node
1813 	 * may be balanced overall and kswapd will not wake naturally.
1814 	 */
1815 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1816 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1817 
1818 	/* We are not allowed to try stealing from the whole block */
1819 	if (!whole_block)
1820 		goto single_page;
1821 
1822 	free_pages = move_freepages_block(zone, page, start_type,
1823 						&movable_pages);
1824 	/*
1825 	 * Determine how many pages are compatible with our allocation.
1826 	 * For movable allocation, it's the number of movable pages which
1827 	 * we just obtained. For other types it's a bit more tricky.
1828 	 */
1829 	if (start_type == MIGRATE_MOVABLE) {
1830 		alike_pages = movable_pages;
1831 	} else {
1832 		/*
1833 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1834 		 * to MOVABLE pageblock, consider all non-movable pages as
1835 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1836 		 * vice versa, be conservative since we can't distinguish the
1837 		 * exact migratetype of non-movable pages.
1838 		 */
1839 		if (old_block_type == MIGRATE_MOVABLE)
1840 			alike_pages = pageblock_nr_pages
1841 						- (free_pages + movable_pages);
1842 		else
1843 			alike_pages = 0;
1844 	}
1845 
1846 	/* moving whole block can fail due to zone boundary conditions */
1847 	if (!free_pages)
1848 		goto single_page;
1849 
1850 	/*
1851 	 * If a sufficient number of pages in the block are either free or of
1852 	 * comparable migratability as our allocation, claim the whole block.
1853 	 */
1854 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
1855 			page_group_by_mobility_disabled)
1856 		set_pageblock_migratetype(page, start_type);
1857 
1858 	return;
1859 
1860 single_page:
1861 	move_to_free_list(page, zone, current_order, start_type);
1862 }
1863 
1864 /*
1865  * Check whether there is a suitable fallback freepage with requested order.
1866  * If only_stealable is true, this function returns fallback_mt only if
1867  * we can steal other freepages all together. This would help to reduce
1868  * fragmentation due to mixed migratetype pages in one pageblock.
1869  */
1870 int find_suitable_fallback(struct free_area *area, unsigned int order,
1871 			int migratetype, bool only_stealable, bool *can_steal)
1872 {
1873 	int i;
1874 	int fallback_mt;
1875 
1876 	if (area->nr_free == 0)
1877 		return -1;
1878 
1879 	*can_steal = false;
1880 	for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
1881 		fallback_mt = fallbacks[migratetype][i];
1882 		if (free_area_empty(area, fallback_mt))
1883 			continue;
1884 
1885 		if (can_steal_fallback(order, migratetype))
1886 			*can_steal = true;
1887 
1888 		if (!only_stealable)
1889 			return fallback_mt;
1890 
1891 		if (*can_steal)
1892 			return fallback_mt;
1893 	}
1894 
1895 	return -1;
1896 }
1897 
1898 /*
1899  * Reserve a pageblock for exclusive use of high-order atomic allocations if
1900  * there are no empty page blocks that contain a page with a suitable order
1901  */
1902 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1903 				unsigned int alloc_order)
1904 {
1905 	int mt;
1906 	unsigned long max_managed, flags;
1907 
1908 	/*
1909 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1910 	 * Check is race-prone but harmless.
1911 	 */
1912 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
1913 	if (zone->nr_reserved_highatomic >= max_managed)
1914 		return;
1915 
1916 	spin_lock_irqsave(&zone->lock, flags);
1917 
1918 	/* Recheck the nr_reserved_highatomic limit under the lock */
1919 	if (zone->nr_reserved_highatomic >= max_managed)
1920 		goto out_unlock;
1921 
1922 	/* Yoink! */
1923 	mt = get_pageblock_migratetype(page);
1924 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
1925 	if (migratetype_is_mergeable(mt)) {
1926 		zone->nr_reserved_highatomic += pageblock_nr_pages;
1927 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1928 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
1929 	}
1930 
1931 out_unlock:
1932 	spin_unlock_irqrestore(&zone->lock, flags);
1933 }
1934 
1935 /*
1936  * Used when an allocation is about to fail under memory pressure. This
1937  * potentially hurts the reliability of high-order allocations when under
1938  * intense memory pressure but failed atomic allocations should be easier
1939  * to recover from than an OOM.
1940  *
1941  * If @force is true, try to unreserve a pageblock even though highatomic
1942  * pageblock is exhausted.
1943  */
1944 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
1945 						bool force)
1946 {
1947 	struct zonelist *zonelist = ac->zonelist;
1948 	unsigned long flags;
1949 	struct zoneref *z;
1950 	struct zone *zone;
1951 	struct page *page;
1952 	int order;
1953 	bool ret;
1954 
1955 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
1956 								ac->nodemask) {
1957 		/*
1958 		 * Preserve at least one pageblock unless memory pressure
1959 		 * is really high.
1960 		 */
1961 		if (!force && zone->nr_reserved_highatomic <=
1962 					pageblock_nr_pages)
1963 			continue;
1964 
1965 		spin_lock_irqsave(&zone->lock, flags);
1966 		for (order = 0; order <= MAX_ORDER; order++) {
1967 			struct free_area *area = &(zone->free_area[order]);
1968 
1969 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
1970 			if (!page)
1971 				continue;
1972 
1973 			/*
1974 			 * In page freeing path, migratetype change is racy so
1975 			 * we can counter several free pages in a pageblock
1976 			 * in this loop although we changed the pageblock type
1977 			 * from highatomic to ac->migratetype. So we should
1978 			 * adjust the count once.
1979 			 */
1980 			if (is_migrate_highatomic_page(page)) {
1981 				/*
1982 				 * It should never happen but changes to
1983 				 * locking could inadvertently allow a per-cpu
1984 				 * drain to add pages to MIGRATE_HIGHATOMIC
1985 				 * while unreserving so be safe and watch for
1986 				 * underflows.
1987 				 */
1988 				zone->nr_reserved_highatomic -= min(
1989 						pageblock_nr_pages,
1990 						zone->nr_reserved_highatomic);
1991 			}
1992 
1993 			/*
1994 			 * Convert to ac->migratetype and avoid the normal
1995 			 * pageblock stealing heuristics. Minimally, the caller
1996 			 * is doing the work and needs the pages. More
1997 			 * importantly, if the block was always converted to
1998 			 * MIGRATE_UNMOVABLE or another type then the number
1999 			 * of pageblocks that cannot be completely freed
2000 			 * may increase.
2001 			 */
2002 			set_pageblock_migratetype(page, ac->migratetype);
2003 			ret = move_freepages_block(zone, page, ac->migratetype,
2004 									NULL);
2005 			if (ret) {
2006 				spin_unlock_irqrestore(&zone->lock, flags);
2007 				return ret;
2008 			}
2009 		}
2010 		spin_unlock_irqrestore(&zone->lock, flags);
2011 	}
2012 
2013 	return false;
2014 }
2015 
2016 /*
2017  * Try finding a free buddy page on the fallback list and put it on the free
2018  * list of requested migratetype, possibly along with other pages from the same
2019  * block, depending on fragmentation avoidance heuristics. Returns true if
2020  * fallback was found so that __rmqueue_smallest() can grab it.
2021  *
2022  * The use of signed ints for order and current_order is a deliberate
2023  * deviation from the rest of this file, to make the for loop
2024  * condition simpler.
2025  */
2026 static __always_inline bool
2027 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2028 						unsigned int alloc_flags)
2029 {
2030 	struct free_area *area;
2031 	int current_order;
2032 	int min_order = order;
2033 	struct page *page;
2034 	int fallback_mt;
2035 	bool can_steal;
2036 
2037 	/*
2038 	 * Do not steal pages from freelists belonging to other pageblocks
2039 	 * i.e. orders < pageblock_order. If there are no local zones free,
2040 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2041 	 */
2042 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2043 		min_order = pageblock_order;
2044 
2045 	/*
2046 	 * Find the largest available free page in the other list. This roughly
2047 	 * approximates finding the pageblock with the most free pages, which
2048 	 * would be too costly to do exactly.
2049 	 */
2050 	for (current_order = MAX_ORDER; current_order >= min_order;
2051 				--current_order) {
2052 		area = &(zone->free_area[current_order]);
2053 		fallback_mt = find_suitable_fallback(area, current_order,
2054 				start_migratetype, false, &can_steal);
2055 		if (fallback_mt == -1)
2056 			continue;
2057 
2058 		/*
2059 		 * We cannot steal all free pages from the pageblock and the
2060 		 * requested migratetype is movable. In that case it's better to
2061 		 * steal and split the smallest available page instead of the
2062 		 * largest available page, because even if the next movable
2063 		 * allocation falls back into a different pageblock than this
2064 		 * one, it won't cause permanent fragmentation.
2065 		 */
2066 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2067 					&& current_order > order)
2068 			goto find_smallest;
2069 
2070 		goto do_steal;
2071 	}
2072 
2073 	return false;
2074 
2075 find_smallest:
2076 	for (current_order = order; current_order <= MAX_ORDER;
2077 							current_order++) {
2078 		area = &(zone->free_area[current_order]);
2079 		fallback_mt = find_suitable_fallback(area, current_order,
2080 				start_migratetype, false, &can_steal);
2081 		if (fallback_mt != -1)
2082 			break;
2083 	}
2084 
2085 	/*
2086 	 * This should not happen - we already found a suitable fallback
2087 	 * when looking for the largest page.
2088 	 */
2089 	VM_BUG_ON(current_order > MAX_ORDER);
2090 
2091 do_steal:
2092 	page = get_page_from_free_area(area, fallback_mt);
2093 
2094 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2095 								can_steal);
2096 
2097 	trace_mm_page_alloc_extfrag(page, order, current_order,
2098 		start_migratetype, fallback_mt);
2099 
2100 	return true;
2101 
2102 }
2103 
2104 /*
2105  * Do the hard work of removing an element from the buddy allocator.
2106  * Call me with the zone->lock already held.
2107  */
2108 static __always_inline struct page *
2109 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2110 						unsigned int alloc_flags)
2111 {
2112 	struct page *page;
2113 
2114 	if (IS_ENABLED(CONFIG_CMA)) {
2115 		/*
2116 		 * Balance movable allocations between regular and CMA areas by
2117 		 * allocating from CMA when over half of the zone's free memory
2118 		 * is in the CMA area.
2119 		 */
2120 		if (alloc_flags & ALLOC_CMA &&
2121 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2122 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2123 			page = __rmqueue_cma_fallback(zone, order);
2124 			if (page)
2125 				return page;
2126 		}
2127 	}
2128 retry:
2129 	page = __rmqueue_smallest(zone, order, migratetype);
2130 	if (unlikely(!page)) {
2131 		if (alloc_flags & ALLOC_CMA)
2132 			page = __rmqueue_cma_fallback(zone, order);
2133 
2134 		if (!page && __rmqueue_fallback(zone, order, migratetype,
2135 								alloc_flags))
2136 			goto retry;
2137 	}
2138 	return page;
2139 }
2140 
2141 /*
2142  * Obtain a specified number of elements from the buddy allocator, all under
2143  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2144  * Returns the number of new pages which were placed at *list.
2145  */
2146 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2147 			unsigned long count, struct list_head *list,
2148 			int migratetype, unsigned int alloc_flags)
2149 {
2150 	unsigned long flags;
2151 	int i;
2152 
2153 	spin_lock_irqsave(&zone->lock, flags);
2154 	for (i = 0; i < count; ++i) {
2155 		struct page *page = __rmqueue(zone, order, migratetype,
2156 								alloc_flags);
2157 		if (unlikely(page == NULL))
2158 			break;
2159 
2160 		/*
2161 		 * Split buddy pages returned by expand() are received here in
2162 		 * physical page order. The page is added to the tail of
2163 		 * caller's list. From the callers perspective, the linked list
2164 		 * is ordered by page number under some conditions. This is
2165 		 * useful for IO devices that can forward direction from the
2166 		 * head, thus also in the physical page order. This is useful
2167 		 * for IO devices that can merge IO requests if the physical
2168 		 * pages are ordered properly.
2169 		 */
2170 		list_add_tail(&page->pcp_list, list);
2171 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2172 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2173 					      -(1 << order));
2174 	}
2175 
2176 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2177 	spin_unlock_irqrestore(&zone->lock, flags);
2178 
2179 	return i;
2180 }
2181 
2182 #ifdef CONFIG_NUMA
2183 /*
2184  * Called from the vmstat counter updater to drain pagesets of this
2185  * currently executing processor on remote nodes after they have
2186  * expired.
2187  */
2188 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2189 {
2190 	int to_drain, batch;
2191 
2192 	batch = READ_ONCE(pcp->batch);
2193 	to_drain = min(pcp->count, batch);
2194 	if (to_drain > 0) {
2195 		spin_lock(&pcp->lock);
2196 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2197 		spin_unlock(&pcp->lock);
2198 	}
2199 }
2200 #endif
2201 
2202 /*
2203  * Drain pcplists of the indicated processor and zone.
2204  */
2205 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2206 {
2207 	struct per_cpu_pages *pcp;
2208 
2209 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2210 	if (pcp->count) {
2211 		spin_lock(&pcp->lock);
2212 		free_pcppages_bulk(zone, pcp->count, pcp, 0);
2213 		spin_unlock(&pcp->lock);
2214 	}
2215 }
2216 
2217 /*
2218  * Drain pcplists of all zones on the indicated processor.
2219  */
2220 static void drain_pages(unsigned int cpu)
2221 {
2222 	struct zone *zone;
2223 
2224 	for_each_populated_zone(zone) {
2225 		drain_pages_zone(cpu, zone);
2226 	}
2227 }
2228 
2229 /*
2230  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2231  */
2232 void drain_local_pages(struct zone *zone)
2233 {
2234 	int cpu = smp_processor_id();
2235 
2236 	if (zone)
2237 		drain_pages_zone(cpu, zone);
2238 	else
2239 		drain_pages(cpu);
2240 }
2241 
2242 /*
2243  * The implementation of drain_all_pages(), exposing an extra parameter to
2244  * drain on all cpus.
2245  *
2246  * drain_all_pages() is optimized to only execute on cpus where pcplists are
2247  * not empty. The check for non-emptiness can however race with a free to
2248  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2249  * that need the guarantee that every CPU has drained can disable the
2250  * optimizing racy check.
2251  */
2252 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2253 {
2254 	int cpu;
2255 
2256 	/*
2257 	 * Allocate in the BSS so we won't require allocation in
2258 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2259 	 */
2260 	static cpumask_t cpus_with_pcps;
2261 
2262 	/*
2263 	 * Do not drain if one is already in progress unless it's specific to
2264 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2265 	 * the drain to be complete when the call returns.
2266 	 */
2267 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2268 		if (!zone)
2269 			return;
2270 		mutex_lock(&pcpu_drain_mutex);
2271 	}
2272 
2273 	/*
2274 	 * We don't care about racing with CPU hotplug event
2275 	 * as offline notification will cause the notified
2276 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2277 	 * disables preemption as part of its processing
2278 	 */
2279 	for_each_online_cpu(cpu) {
2280 		struct per_cpu_pages *pcp;
2281 		struct zone *z;
2282 		bool has_pcps = false;
2283 
2284 		if (force_all_cpus) {
2285 			/*
2286 			 * The pcp.count check is racy, some callers need a
2287 			 * guarantee that no cpu is missed.
2288 			 */
2289 			has_pcps = true;
2290 		} else if (zone) {
2291 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2292 			if (pcp->count)
2293 				has_pcps = true;
2294 		} else {
2295 			for_each_populated_zone(z) {
2296 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2297 				if (pcp->count) {
2298 					has_pcps = true;
2299 					break;
2300 				}
2301 			}
2302 		}
2303 
2304 		if (has_pcps)
2305 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2306 		else
2307 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2308 	}
2309 
2310 	for_each_cpu(cpu, &cpus_with_pcps) {
2311 		if (zone)
2312 			drain_pages_zone(cpu, zone);
2313 		else
2314 			drain_pages(cpu);
2315 	}
2316 
2317 	mutex_unlock(&pcpu_drain_mutex);
2318 }
2319 
2320 /*
2321  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2322  *
2323  * When zone parameter is non-NULL, spill just the single zone's pages.
2324  */
2325 void drain_all_pages(struct zone *zone)
2326 {
2327 	__drain_all_pages(zone, false);
2328 }
2329 
2330 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
2331 							unsigned int order)
2332 {
2333 	int migratetype;
2334 
2335 	if (!free_pages_prepare(page, order, FPI_NONE))
2336 		return false;
2337 
2338 	migratetype = get_pfnblock_migratetype(page, pfn);
2339 	set_pcppage_migratetype(page, migratetype);
2340 	return true;
2341 }
2342 
2343 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch,
2344 		       bool free_high)
2345 {
2346 	int min_nr_free, max_nr_free;
2347 
2348 	/* Free everything if batch freeing high-order pages. */
2349 	if (unlikely(free_high))
2350 		return pcp->count;
2351 
2352 	/* Check for PCP disabled or boot pageset */
2353 	if (unlikely(high < batch))
2354 		return 1;
2355 
2356 	/* Leave at least pcp->batch pages on the list */
2357 	min_nr_free = batch;
2358 	max_nr_free = high - batch;
2359 
2360 	/*
2361 	 * Double the number of pages freed each time there is subsequent
2362 	 * freeing of pages without any allocation.
2363 	 */
2364 	batch <<= pcp->free_factor;
2365 	if (batch < max_nr_free)
2366 		pcp->free_factor++;
2367 	batch = clamp(batch, min_nr_free, max_nr_free);
2368 
2369 	return batch;
2370 }
2371 
2372 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2373 		       bool free_high)
2374 {
2375 	int high = READ_ONCE(pcp->high);
2376 
2377 	if (unlikely(!high || free_high))
2378 		return 0;
2379 
2380 	if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
2381 		return high;
2382 
2383 	/*
2384 	 * If reclaim is active, limit the number of pages that can be
2385 	 * stored on pcp lists
2386 	 */
2387 	return min(READ_ONCE(pcp->batch) << 2, high);
2388 }
2389 
2390 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2391 				   struct page *page, int migratetype,
2392 				   unsigned int order)
2393 {
2394 	int high;
2395 	int pindex;
2396 	bool free_high;
2397 
2398 	__count_vm_events(PGFREE, 1 << order);
2399 	pindex = order_to_pindex(migratetype, order);
2400 	list_add(&page->pcp_list, &pcp->lists[pindex]);
2401 	pcp->count += 1 << order;
2402 
2403 	/*
2404 	 * As high-order pages other than THP's stored on PCP can contribute
2405 	 * to fragmentation, limit the number stored when PCP is heavily
2406 	 * freeing without allocation. The remainder after bulk freeing
2407 	 * stops will be drained from vmstat refresh context.
2408 	 */
2409 	free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
2410 
2411 	high = nr_pcp_high(pcp, zone, free_high);
2412 	if (pcp->count >= high) {
2413 		int batch = READ_ONCE(pcp->batch);
2414 
2415 		free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex);
2416 	}
2417 }
2418 
2419 /*
2420  * Free a pcp page
2421  */
2422 void free_unref_page(struct page *page, unsigned int order)
2423 {
2424 	unsigned long __maybe_unused UP_flags;
2425 	struct per_cpu_pages *pcp;
2426 	struct zone *zone;
2427 	unsigned long pfn = page_to_pfn(page);
2428 	int migratetype;
2429 
2430 	if (!free_unref_page_prepare(page, pfn, order))
2431 		return;
2432 
2433 	/*
2434 	 * We only track unmovable, reclaimable and movable on pcp lists.
2435 	 * Place ISOLATE pages on the isolated list because they are being
2436 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2437 	 * areas back if necessary. Otherwise, we may have to free
2438 	 * excessively into the page allocator
2439 	 */
2440 	migratetype = get_pcppage_migratetype(page);
2441 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2442 		if (unlikely(is_migrate_isolate(migratetype))) {
2443 			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
2444 			return;
2445 		}
2446 		migratetype = MIGRATE_MOVABLE;
2447 	}
2448 
2449 	zone = page_zone(page);
2450 	pcp_trylock_prepare(UP_flags);
2451 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2452 	if (pcp) {
2453 		free_unref_page_commit(zone, pcp, page, migratetype, order);
2454 		pcp_spin_unlock(pcp);
2455 	} else {
2456 		free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
2457 	}
2458 	pcp_trylock_finish(UP_flags);
2459 }
2460 
2461 /*
2462  * Free a list of 0-order pages
2463  */
2464 void free_unref_page_list(struct list_head *list)
2465 {
2466 	unsigned long __maybe_unused UP_flags;
2467 	struct page *page, *next;
2468 	struct per_cpu_pages *pcp = NULL;
2469 	struct zone *locked_zone = NULL;
2470 	int batch_count = 0;
2471 	int migratetype;
2472 
2473 	/* Prepare pages for freeing */
2474 	list_for_each_entry_safe(page, next, list, lru) {
2475 		unsigned long pfn = page_to_pfn(page);
2476 		if (!free_unref_page_prepare(page, pfn, 0)) {
2477 			list_del(&page->lru);
2478 			continue;
2479 		}
2480 
2481 		/*
2482 		 * Free isolated pages directly to the allocator, see
2483 		 * comment in free_unref_page.
2484 		 */
2485 		migratetype = get_pcppage_migratetype(page);
2486 		if (unlikely(is_migrate_isolate(migratetype))) {
2487 			list_del(&page->lru);
2488 			free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
2489 			continue;
2490 		}
2491 	}
2492 
2493 	list_for_each_entry_safe(page, next, list, lru) {
2494 		struct zone *zone = page_zone(page);
2495 
2496 		list_del(&page->lru);
2497 		migratetype = get_pcppage_migratetype(page);
2498 
2499 		/*
2500 		 * Either different zone requiring a different pcp lock or
2501 		 * excessive lock hold times when freeing a large list of
2502 		 * pages.
2503 		 */
2504 		if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) {
2505 			if (pcp) {
2506 				pcp_spin_unlock(pcp);
2507 				pcp_trylock_finish(UP_flags);
2508 			}
2509 
2510 			batch_count = 0;
2511 
2512 			/*
2513 			 * trylock is necessary as pages may be getting freed
2514 			 * from IRQ or SoftIRQ context after an IO completion.
2515 			 */
2516 			pcp_trylock_prepare(UP_flags);
2517 			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2518 			if (unlikely(!pcp)) {
2519 				pcp_trylock_finish(UP_flags);
2520 				free_one_page(zone, page, page_to_pfn(page),
2521 					      0, migratetype, FPI_NONE);
2522 				locked_zone = NULL;
2523 				continue;
2524 			}
2525 			locked_zone = zone;
2526 		}
2527 
2528 		/*
2529 		 * Non-isolated types over MIGRATE_PCPTYPES get added
2530 		 * to the MIGRATE_MOVABLE pcp list.
2531 		 */
2532 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2533 			migratetype = MIGRATE_MOVABLE;
2534 
2535 		trace_mm_page_free_batched(page);
2536 		free_unref_page_commit(zone, pcp, page, migratetype, 0);
2537 		batch_count++;
2538 	}
2539 
2540 	if (pcp) {
2541 		pcp_spin_unlock(pcp);
2542 		pcp_trylock_finish(UP_flags);
2543 	}
2544 }
2545 
2546 /*
2547  * split_page takes a non-compound higher-order page, and splits it into
2548  * n (1<<order) sub-pages: page[0..n]
2549  * Each sub-page must be freed individually.
2550  *
2551  * Note: this is probably too low level an operation for use in drivers.
2552  * Please consult with lkml before using this in your driver.
2553  */
2554 void split_page(struct page *page, unsigned int order)
2555 {
2556 	int i;
2557 
2558 	VM_BUG_ON_PAGE(PageCompound(page), page);
2559 	VM_BUG_ON_PAGE(!page_count(page), page);
2560 
2561 	for (i = 1; i < (1 << order); i++)
2562 		set_page_refcounted(page + i);
2563 	split_page_owner(page, 1 << order);
2564 	split_page_memcg(page, 1 << order);
2565 }
2566 EXPORT_SYMBOL_GPL(split_page);
2567 
2568 int __isolate_free_page(struct page *page, unsigned int order)
2569 {
2570 	struct zone *zone = page_zone(page);
2571 	int mt = get_pageblock_migratetype(page);
2572 
2573 	if (!is_migrate_isolate(mt)) {
2574 		unsigned long watermark;
2575 		/*
2576 		 * Obey watermarks as if the page was being allocated. We can
2577 		 * emulate a high-order watermark check with a raised order-0
2578 		 * watermark, because we already know our high-order page
2579 		 * exists.
2580 		 */
2581 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2582 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2583 			return 0;
2584 
2585 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2586 	}
2587 
2588 	del_page_from_free_list(page, zone, order);
2589 
2590 	/*
2591 	 * Set the pageblock if the isolated page is at least half of a
2592 	 * pageblock
2593 	 */
2594 	if (order >= pageblock_order - 1) {
2595 		struct page *endpage = page + (1 << order) - 1;
2596 		for (; page < endpage; page += pageblock_nr_pages) {
2597 			int mt = get_pageblock_migratetype(page);
2598 			/*
2599 			 * Only change normal pageblocks (i.e., they can merge
2600 			 * with others)
2601 			 */
2602 			if (migratetype_is_mergeable(mt))
2603 				set_pageblock_migratetype(page,
2604 							  MIGRATE_MOVABLE);
2605 		}
2606 	}
2607 
2608 	return 1UL << order;
2609 }
2610 
2611 /**
2612  * __putback_isolated_page - Return a now-isolated page back where we got it
2613  * @page: Page that was isolated
2614  * @order: Order of the isolated page
2615  * @mt: The page's pageblock's migratetype
2616  *
2617  * This function is meant to return a page pulled from the free lists via
2618  * __isolate_free_page back to the free lists they were pulled from.
2619  */
2620 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2621 {
2622 	struct zone *zone = page_zone(page);
2623 
2624 	/* zone lock should be held when this function is called */
2625 	lockdep_assert_held(&zone->lock);
2626 
2627 	/* Return isolated page to tail of freelist. */
2628 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
2629 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2630 }
2631 
2632 /*
2633  * Update NUMA hit/miss statistics
2634  */
2635 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2636 				   long nr_account)
2637 {
2638 #ifdef CONFIG_NUMA
2639 	enum numa_stat_item local_stat = NUMA_LOCAL;
2640 
2641 	/* skip numa counters update if numa stats is disabled */
2642 	if (!static_branch_likely(&vm_numa_stat_key))
2643 		return;
2644 
2645 	if (zone_to_nid(z) != numa_node_id())
2646 		local_stat = NUMA_OTHER;
2647 
2648 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2649 		__count_numa_events(z, NUMA_HIT, nr_account);
2650 	else {
2651 		__count_numa_events(z, NUMA_MISS, nr_account);
2652 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2653 	}
2654 	__count_numa_events(z, local_stat, nr_account);
2655 #endif
2656 }
2657 
2658 static __always_inline
2659 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2660 			   unsigned int order, unsigned int alloc_flags,
2661 			   int migratetype)
2662 {
2663 	struct page *page;
2664 	unsigned long flags;
2665 
2666 	do {
2667 		page = NULL;
2668 		spin_lock_irqsave(&zone->lock, flags);
2669 		/*
2670 		 * order-0 request can reach here when the pcplist is skipped
2671 		 * due to non-CMA allocation context. HIGHATOMIC area is
2672 		 * reserved for high-order atomic allocation, so order-0
2673 		 * request should skip it.
2674 		 */
2675 		if (alloc_flags & ALLOC_HIGHATOMIC)
2676 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2677 		if (!page) {
2678 			page = __rmqueue(zone, order, migratetype, alloc_flags);
2679 
2680 			/*
2681 			 * If the allocation fails, allow OOM handling access
2682 			 * to HIGHATOMIC reserves as failing now is worse than
2683 			 * failing a high-order atomic allocation in the
2684 			 * future.
2685 			 */
2686 			if (!page && (alloc_flags & ALLOC_OOM))
2687 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2688 
2689 			if (!page) {
2690 				spin_unlock_irqrestore(&zone->lock, flags);
2691 				return NULL;
2692 			}
2693 		}
2694 		__mod_zone_freepage_state(zone, -(1 << order),
2695 					  get_pcppage_migratetype(page));
2696 		spin_unlock_irqrestore(&zone->lock, flags);
2697 	} while (check_new_pages(page, order));
2698 
2699 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2700 	zone_statistics(preferred_zone, zone, 1);
2701 
2702 	return page;
2703 }
2704 
2705 /* Remove page from the per-cpu list, caller must protect the list */
2706 static inline
2707 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2708 			int migratetype,
2709 			unsigned int alloc_flags,
2710 			struct per_cpu_pages *pcp,
2711 			struct list_head *list)
2712 {
2713 	struct page *page;
2714 
2715 	do {
2716 		if (list_empty(list)) {
2717 			int batch = READ_ONCE(pcp->batch);
2718 			int alloced;
2719 
2720 			/*
2721 			 * Scale batch relative to order if batch implies
2722 			 * free pages can be stored on the PCP. Batch can
2723 			 * be 1 for small zones or for boot pagesets which
2724 			 * should never store free pages as the pages may
2725 			 * belong to arbitrary zones.
2726 			 */
2727 			if (batch > 1)
2728 				batch = max(batch >> order, 2);
2729 			alloced = rmqueue_bulk(zone, order,
2730 					batch, list,
2731 					migratetype, alloc_flags);
2732 
2733 			pcp->count += alloced << order;
2734 			if (unlikely(list_empty(list)))
2735 				return NULL;
2736 		}
2737 
2738 		page = list_first_entry(list, struct page, pcp_list);
2739 		list_del(&page->pcp_list);
2740 		pcp->count -= 1 << order;
2741 	} while (check_new_pages(page, order));
2742 
2743 	return page;
2744 }
2745 
2746 /* Lock and remove page from the per-cpu list */
2747 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2748 			struct zone *zone, unsigned int order,
2749 			int migratetype, unsigned int alloc_flags)
2750 {
2751 	struct per_cpu_pages *pcp;
2752 	struct list_head *list;
2753 	struct page *page;
2754 	unsigned long __maybe_unused UP_flags;
2755 
2756 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
2757 	pcp_trylock_prepare(UP_flags);
2758 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2759 	if (!pcp) {
2760 		pcp_trylock_finish(UP_flags);
2761 		return NULL;
2762 	}
2763 
2764 	/*
2765 	 * On allocation, reduce the number of pages that are batch freed.
2766 	 * See nr_pcp_free() where free_factor is increased for subsequent
2767 	 * frees.
2768 	 */
2769 	pcp->free_factor >>= 1;
2770 	list = &pcp->lists[order_to_pindex(migratetype, order)];
2771 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
2772 	pcp_spin_unlock(pcp);
2773 	pcp_trylock_finish(UP_flags);
2774 	if (page) {
2775 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2776 		zone_statistics(preferred_zone, zone, 1);
2777 	}
2778 	return page;
2779 }
2780 
2781 /*
2782  * Allocate a page from the given zone.
2783  * Use pcplists for THP or "cheap" high-order allocations.
2784  */
2785 
2786 /*
2787  * Do not instrument rmqueue() with KMSAN. This function may call
2788  * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
2789  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
2790  * may call rmqueue() again, which will result in a deadlock.
2791  */
2792 __no_sanitize_memory
2793 static inline
2794 struct page *rmqueue(struct zone *preferred_zone,
2795 			struct zone *zone, unsigned int order,
2796 			gfp_t gfp_flags, unsigned int alloc_flags,
2797 			int migratetype)
2798 {
2799 	struct page *page;
2800 
2801 	/*
2802 	 * We most definitely don't want callers attempting to
2803 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
2804 	 */
2805 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2806 
2807 	if (likely(pcp_allowed_order(order))) {
2808 		/*
2809 		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
2810 		 * we need to skip it when CMA area isn't allowed.
2811 		 */
2812 		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
2813 				migratetype != MIGRATE_MOVABLE) {
2814 			page = rmqueue_pcplist(preferred_zone, zone, order,
2815 					migratetype, alloc_flags);
2816 			if (likely(page))
2817 				goto out;
2818 		}
2819 	}
2820 
2821 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
2822 							migratetype);
2823 
2824 out:
2825 	/* Separate test+clear to avoid unnecessary atomics */
2826 	if ((alloc_flags & ALLOC_KSWAPD) &&
2827 	    unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
2828 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2829 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
2830 	}
2831 
2832 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2833 	return page;
2834 }
2835 
2836 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2837 {
2838 	return __should_fail_alloc_page(gfp_mask, order);
2839 }
2840 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
2841 
2842 static inline long __zone_watermark_unusable_free(struct zone *z,
2843 				unsigned int order, unsigned int alloc_flags)
2844 {
2845 	long unusable_free = (1 << order) - 1;
2846 
2847 	/*
2848 	 * If the caller does not have rights to reserves below the min
2849 	 * watermark then subtract the high-atomic reserves. This will
2850 	 * over-estimate the size of the atomic reserve but it avoids a search.
2851 	 */
2852 	if (likely(!(alloc_flags & ALLOC_RESERVES)))
2853 		unusable_free += z->nr_reserved_highatomic;
2854 
2855 #ifdef CONFIG_CMA
2856 	/* If allocation can't use CMA areas don't use free CMA pages */
2857 	if (!(alloc_flags & ALLOC_CMA))
2858 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
2859 #endif
2860 
2861 	return unusable_free;
2862 }
2863 
2864 /*
2865  * Return true if free base pages are above 'mark'. For high-order checks it
2866  * will return true of the order-0 watermark is reached and there is at least
2867  * one free page of a suitable size. Checking now avoids taking the zone lock
2868  * to check in the allocation paths if no pages are free.
2869  */
2870 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2871 			 int highest_zoneidx, unsigned int alloc_flags,
2872 			 long free_pages)
2873 {
2874 	long min = mark;
2875 	int o;
2876 
2877 	/* free_pages may go negative - that's OK */
2878 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
2879 
2880 	if (unlikely(alloc_flags & ALLOC_RESERVES)) {
2881 		/*
2882 		 * __GFP_HIGH allows access to 50% of the min reserve as well
2883 		 * as OOM.
2884 		 */
2885 		if (alloc_flags & ALLOC_MIN_RESERVE) {
2886 			min -= min / 2;
2887 
2888 			/*
2889 			 * Non-blocking allocations (e.g. GFP_ATOMIC) can
2890 			 * access more reserves than just __GFP_HIGH. Other
2891 			 * non-blocking allocations requests such as GFP_NOWAIT
2892 			 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
2893 			 * access to the min reserve.
2894 			 */
2895 			if (alloc_flags & ALLOC_NON_BLOCK)
2896 				min -= min / 4;
2897 		}
2898 
2899 		/*
2900 		 * OOM victims can try even harder than the normal reserve
2901 		 * users on the grounds that it's definitely going to be in
2902 		 * the exit path shortly and free memory. Any allocation it
2903 		 * makes during the free path will be small and short-lived.
2904 		 */
2905 		if (alloc_flags & ALLOC_OOM)
2906 			min -= min / 2;
2907 	}
2908 
2909 	/*
2910 	 * Check watermarks for an order-0 allocation request. If these
2911 	 * are not met, then a high-order request also cannot go ahead
2912 	 * even if a suitable page happened to be free.
2913 	 */
2914 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
2915 		return false;
2916 
2917 	/* If this is an order-0 request then the watermark is fine */
2918 	if (!order)
2919 		return true;
2920 
2921 	/* For a high-order request, check at least one suitable page is free */
2922 	for (o = order; o <= MAX_ORDER; o++) {
2923 		struct free_area *area = &z->free_area[o];
2924 		int mt;
2925 
2926 		if (!area->nr_free)
2927 			continue;
2928 
2929 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2930 			if (!free_area_empty(area, mt))
2931 				return true;
2932 		}
2933 
2934 #ifdef CONFIG_CMA
2935 		if ((alloc_flags & ALLOC_CMA) &&
2936 		    !free_area_empty(area, MIGRATE_CMA)) {
2937 			return true;
2938 		}
2939 #endif
2940 		if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
2941 		    !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
2942 			return true;
2943 		}
2944 	}
2945 	return false;
2946 }
2947 
2948 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2949 		      int highest_zoneidx, unsigned int alloc_flags)
2950 {
2951 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
2952 					zone_page_state(z, NR_FREE_PAGES));
2953 }
2954 
2955 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2956 				unsigned long mark, int highest_zoneidx,
2957 				unsigned int alloc_flags, gfp_t gfp_mask)
2958 {
2959 	long free_pages;
2960 
2961 	free_pages = zone_page_state(z, NR_FREE_PAGES);
2962 
2963 	/*
2964 	 * Fast check for order-0 only. If this fails then the reserves
2965 	 * need to be calculated.
2966 	 */
2967 	if (!order) {
2968 		long usable_free;
2969 		long reserved;
2970 
2971 		usable_free = free_pages;
2972 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
2973 
2974 		/* reserved may over estimate high-atomic reserves. */
2975 		usable_free -= min(usable_free, reserved);
2976 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
2977 			return true;
2978 	}
2979 
2980 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
2981 					free_pages))
2982 		return true;
2983 
2984 	/*
2985 	 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
2986 	 * when checking the min watermark. The min watermark is the
2987 	 * point where boosting is ignored so that kswapd is woken up
2988 	 * when below the low watermark.
2989 	 */
2990 	if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
2991 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
2992 		mark = z->_watermark[WMARK_MIN];
2993 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
2994 					alloc_flags, free_pages);
2995 	}
2996 
2997 	return false;
2998 }
2999 
3000 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3001 			unsigned long mark, int highest_zoneidx)
3002 {
3003 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3004 
3005 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3006 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3007 
3008 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3009 								free_pages);
3010 }
3011 
3012 #ifdef CONFIG_NUMA
3013 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3014 
3015 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3016 {
3017 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3018 				node_reclaim_distance;
3019 }
3020 #else	/* CONFIG_NUMA */
3021 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3022 {
3023 	return true;
3024 }
3025 #endif	/* CONFIG_NUMA */
3026 
3027 /*
3028  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3029  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3030  * premature use of a lower zone may cause lowmem pressure problems that
3031  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3032  * probably too small. It only makes sense to spread allocations to avoid
3033  * fragmentation between the Normal and DMA32 zones.
3034  */
3035 static inline unsigned int
3036 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3037 {
3038 	unsigned int alloc_flags;
3039 
3040 	/*
3041 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3042 	 * to save a branch.
3043 	 */
3044 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3045 
3046 #ifdef CONFIG_ZONE_DMA32
3047 	if (!zone)
3048 		return alloc_flags;
3049 
3050 	if (zone_idx(zone) != ZONE_NORMAL)
3051 		return alloc_flags;
3052 
3053 	/*
3054 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3055 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3056 	 * on UMA that if Normal is populated then so is DMA32.
3057 	 */
3058 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3059 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3060 		return alloc_flags;
3061 
3062 	alloc_flags |= ALLOC_NOFRAGMENT;
3063 #endif /* CONFIG_ZONE_DMA32 */
3064 	return alloc_flags;
3065 }
3066 
3067 /* Must be called after current_gfp_context() which can change gfp_mask */
3068 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3069 						  unsigned int alloc_flags)
3070 {
3071 #ifdef CONFIG_CMA
3072 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3073 		alloc_flags |= ALLOC_CMA;
3074 #endif
3075 	return alloc_flags;
3076 }
3077 
3078 /*
3079  * get_page_from_freelist goes through the zonelist trying to allocate
3080  * a page.
3081  */
3082 static struct page *
3083 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3084 						const struct alloc_context *ac)
3085 {
3086 	struct zoneref *z;
3087 	struct zone *zone;
3088 	struct pglist_data *last_pgdat = NULL;
3089 	bool last_pgdat_dirty_ok = false;
3090 	bool no_fallback;
3091 
3092 retry:
3093 	/*
3094 	 * Scan zonelist, looking for a zone with enough free.
3095 	 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3096 	 */
3097 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3098 	z = ac->preferred_zoneref;
3099 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3100 					ac->nodemask) {
3101 		struct page *page;
3102 		unsigned long mark;
3103 
3104 		if (cpusets_enabled() &&
3105 			(alloc_flags & ALLOC_CPUSET) &&
3106 			!__cpuset_zone_allowed(zone, gfp_mask))
3107 				continue;
3108 		/*
3109 		 * When allocating a page cache page for writing, we
3110 		 * want to get it from a node that is within its dirty
3111 		 * limit, such that no single node holds more than its
3112 		 * proportional share of globally allowed dirty pages.
3113 		 * The dirty limits take into account the node's
3114 		 * lowmem reserves and high watermark so that kswapd
3115 		 * should be able to balance it without having to
3116 		 * write pages from its LRU list.
3117 		 *
3118 		 * XXX: For now, allow allocations to potentially
3119 		 * exceed the per-node dirty limit in the slowpath
3120 		 * (spread_dirty_pages unset) before going into reclaim,
3121 		 * which is important when on a NUMA setup the allowed
3122 		 * nodes are together not big enough to reach the
3123 		 * global limit.  The proper fix for these situations
3124 		 * will require awareness of nodes in the
3125 		 * dirty-throttling and the flusher threads.
3126 		 */
3127 		if (ac->spread_dirty_pages) {
3128 			if (last_pgdat != zone->zone_pgdat) {
3129 				last_pgdat = zone->zone_pgdat;
3130 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3131 			}
3132 
3133 			if (!last_pgdat_dirty_ok)
3134 				continue;
3135 		}
3136 
3137 		if (no_fallback && nr_online_nodes > 1 &&
3138 		    zone != ac->preferred_zoneref->zone) {
3139 			int local_nid;
3140 
3141 			/*
3142 			 * If moving to a remote node, retry but allow
3143 			 * fragmenting fallbacks. Locality is more important
3144 			 * than fragmentation avoidance.
3145 			 */
3146 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3147 			if (zone_to_nid(zone) != local_nid) {
3148 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3149 				goto retry;
3150 			}
3151 		}
3152 
3153 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3154 		if (!zone_watermark_fast(zone, order, mark,
3155 				       ac->highest_zoneidx, alloc_flags,
3156 				       gfp_mask)) {
3157 			int ret;
3158 
3159 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3160 			/*
3161 			 * Watermark failed for this zone, but see if we can
3162 			 * grow this zone if it contains deferred pages.
3163 			 */
3164 			if (deferred_pages_enabled()) {
3165 				if (_deferred_grow_zone(zone, order))
3166 					goto try_this_zone;
3167 			}
3168 #endif
3169 			/* Checked here to keep the fast path fast */
3170 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3171 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3172 				goto try_this_zone;
3173 
3174 			if (!node_reclaim_enabled() ||
3175 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3176 				continue;
3177 
3178 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3179 			switch (ret) {
3180 			case NODE_RECLAIM_NOSCAN:
3181 				/* did not scan */
3182 				continue;
3183 			case NODE_RECLAIM_FULL:
3184 				/* scanned but unreclaimable */
3185 				continue;
3186 			default:
3187 				/* did we reclaim enough */
3188 				if (zone_watermark_ok(zone, order, mark,
3189 					ac->highest_zoneidx, alloc_flags))
3190 					goto try_this_zone;
3191 
3192 				continue;
3193 			}
3194 		}
3195 
3196 try_this_zone:
3197 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3198 				gfp_mask, alloc_flags, ac->migratetype);
3199 		if (page) {
3200 			prep_new_page(page, order, gfp_mask, alloc_flags);
3201 
3202 			/*
3203 			 * If this is a high-order atomic allocation then check
3204 			 * if the pageblock should be reserved for the future
3205 			 */
3206 			if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3207 				reserve_highatomic_pageblock(page, zone, order);
3208 
3209 			return page;
3210 		} else {
3211 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3212 			/* Try again if zone has deferred pages */
3213 			if (deferred_pages_enabled()) {
3214 				if (_deferred_grow_zone(zone, order))
3215 					goto try_this_zone;
3216 			}
3217 #endif
3218 		}
3219 	}
3220 
3221 	/*
3222 	 * It's possible on a UMA machine to get through all zones that are
3223 	 * fragmented. If avoiding fragmentation, reset and try again.
3224 	 */
3225 	if (no_fallback) {
3226 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3227 		goto retry;
3228 	}
3229 
3230 	return NULL;
3231 }
3232 
3233 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3234 {
3235 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3236 
3237 	/*
3238 	 * This documents exceptions given to allocations in certain
3239 	 * contexts that are allowed to allocate outside current's set
3240 	 * of allowed nodes.
3241 	 */
3242 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3243 		if (tsk_is_oom_victim(current) ||
3244 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3245 			filter &= ~SHOW_MEM_FILTER_NODES;
3246 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3247 		filter &= ~SHOW_MEM_FILTER_NODES;
3248 
3249 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
3250 }
3251 
3252 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3253 {
3254 	struct va_format vaf;
3255 	va_list args;
3256 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3257 
3258 	if ((gfp_mask & __GFP_NOWARN) ||
3259 	     !__ratelimit(&nopage_rs) ||
3260 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3261 		return;
3262 
3263 	va_start(args, fmt);
3264 	vaf.fmt = fmt;
3265 	vaf.va = &args;
3266 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3267 			current->comm, &vaf, gfp_mask, &gfp_mask,
3268 			nodemask_pr_args(nodemask));
3269 	va_end(args);
3270 
3271 	cpuset_print_current_mems_allowed();
3272 	pr_cont("\n");
3273 	dump_stack();
3274 	warn_alloc_show_mem(gfp_mask, nodemask);
3275 }
3276 
3277 static inline struct page *
3278 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3279 			      unsigned int alloc_flags,
3280 			      const struct alloc_context *ac)
3281 {
3282 	struct page *page;
3283 
3284 	page = get_page_from_freelist(gfp_mask, order,
3285 			alloc_flags|ALLOC_CPUSET, ac);
3286 	/*
3287 	 * fallback to ignore cpuset restriction if our nodes
3288 	 * are depleted
3289 	 */
3290 	if (!page)
3291 		page = get_page_from_freelist(gfp_mask, order,
3292 				alloc_flags, ac);
3293 
3294 	return page;
3295 }
3296 
3297 static inline struct page *
3298 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3299 	const struct alloc_context *ac, unsigned long *did_some_progress)
3300 {
3301 	struct oom_control oc = {
3302 		.zonelist = ac->zonelist,
3303 		.nodemask = ac->nodemask,
3304 		.memcg = NULL,
3305 		.gfp_mask = gfp_mask,
3306 		.order = order,
3307 	};
3308 	struct page *page;
3309 
3310 	*did_some_progress = 0;
3311 
3312 	/*
3313 	 * Acquire the oom lock.  If that fails, somebody else is
3314 	 * making progress for us.
3315 	 */
3316 	if (!mutex_trylock(&oom_lock)) {
3317 		*did_some_progress = 1;
3318 		schedule_timeout_uninterruptible(1);
3319 		return NULL;
3320 	}
3321 
3322 	/*
3323 	 * Go through the zonelist yet one more time, keep very high watermark
3324 	 * here, this is only to catch a parallel oom killing, we must fail if
3325 	 * we're still under heavy pressure. But make sure that this reclaim
3326 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3327 	 * allocation which will never fail due to oom_lock already held.
3328 	 */
3329 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3330 				      ~__GFP_DIRECT_RECLAIM, order,
3331 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3332 	if (page)
3333 		goto out;
3334 
3335 	/* Coredumps can quickly deplete all memory reserves */
3336 	if (current->flags & PF_DUMPCORE)
3337 		goto out;
3338 	/* The OOM killer will not help higher order allocs */
3339 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3340 		goto out;
3341 	/*
3342 	 * We have already exhausted all our reclaim opportunities without any
3343 	 * success so it is time to admit defeat. We will skip the OOM killer
3344 	 * because it is very likely that the caller has a more reasonable
3345 	 * fallback than shooting a random task.
3346 	 *
3347 	 * The OOM killer may not free memory on a specific node.
3348 	 */
3349 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3350 		goto out;
3351 	/* The OOM killer does not needlessly kill tasks for lowmem */
3352 	if (ac->highest_zoneidx < ZONE_NORMAL)
3353 		goto out;
3354 	if (pm_suspended_storage())
3355 		goto out;
3356 	/*
3357 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3358 	 * other request to make a forward progress.
3359 	 * We are in an unfortunate situation where out_of_memory cannot
3360 	 * do much for this context but let's try it to at least get
3361 	 * access to memory reserved if the current task is killed (see
3362 	 * out_of_memory). Once filesystems are ready to handle allocation
3363 	 * failures more gracefully we should just bail out here.
3364 	 */
3365 
3366 	/* Exhausted what can be done so it's blame time */
3367 	if (out_of_memory(&oc) ||
3368 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3369 		*did_some_progress = 1;
3370 
3371 		/*
3372 		 * Help non-failing allocations by giving them access to memory
3373 		 * reserves
3374 		 */
3375 		if (gfp_mask & __GFP_NOFAIL)
3376 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3377 					ALLOC_NO_WATERMARKS, ac);
3378 	}
3379 out:
3380 	mutex_unlock(&oom_lock);
3381 	return page;
3382 }
3383 
3384 /*
3385  * Maximum number of compaction retries with a progress before OOM
3386  * killer is consider as the only way to move forward.
3387  */
3388 #define MAX_COMPACT_RETRIES 16
3389 
3390 #ifdef CONFIG_COMPACTION
3391 /* Try memory compaction for high-order allocations before reclaim */
3392 static struct page *
3393 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3394 		unsigned int alloc_flags, const struct alloc_context *ac,
3395 		enum compact_priority prio, enum compact_result *compact_result)
3396 {
3397 	struct page *page = NULL;
3398 	unsigned long pflags;
3399 	unsigned int noreclaim_flag;
3400 
3401 	if (!order)
3402 		return NULL;
3403 
3404 	psi_memstall_enter(&pflags);
3405 	delayacct_compact_start();
3406 	noreclaim_flag = memalloc_noreclaim_save();
3407 
3408 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3409 								prio, &page);
3410 
3411 	memalloc_noreclaim_restore(noreclaim_flag);
3412 	psi_memstall_leave(&pflags);
3413 	delayacct_compact_end();
3414 
3415 	if (*compact_result == COMPACT_SKIPPED)
3416 		return NULL;
3417 	/*
3418 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3419 	 * count a compaction stall
3420 	 */
3421 	count_vm_event(COMPACTSTALL);
3422 
3423 	/* Prep a captured page if available */
3424 	if (page)
3425 		prep_new_page(page, order, gfp_mask, alloc_flags);
3426 
3427 	/* Try get a page from the freelist if available */
3428 	if (!page)
3429 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3430 
3431 	if (page) {
3432 		struct zone *zone = page_zone(page);
3433 
3434 		zone->compact_blockskip_flush = false;
3435 		compaction_defer_reset(zone, order, true);
3436 		count_vm_event(COMPACTSUCCESS);
3437 		return page;
3438 	}
3439 
3440 	/*
3441 	 * It's bad if compaction run occurs and fails. The most likely reason
3442 	 * is that pages exist, but not enough to satisfy watermarks.
3443 	 */
3444 	count_vm_event(COMPACTFAIL);
3445 
3446 	cond_resched();
3447 
3448 	return NULL;
3449 }
3450 
3451 static inline bool
3452 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3453 		     enum compact_result compact_result,
3454 		     enum compact_priority *compact_priority,
3455 		     int *compaction_retries)
3456 {
3457 	int max_retries = MAX_COMPACT_RETRIES;
3458 	int min_priority;
3459 	bool ret = false;
3460 	int retries = *compaction_retries;
3461 	enum compact_priority priority = *compact_priority;
3462 
3463 	if (!order)
3464 		return false;
3465 
3466 	if (fatal_signal_pending(current))
3467 		return false;
3468 
3469 	/*
3470 	 * Compaction was skipped due to a lack of free order-0
3471 	 * migration targets. Continue if reclaim can help.
3472 	 */
3473 	if (compact_result == COMPACT_SKIPPED) {
3474 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3475 		goto out;
3476 	}
3477 
3478 	/*
3479 	 * Compaction managed to coalesce some page blocks, but the
3480 	 * allocation failed presumably due to a race. Retry some.
3481 	 */
3482 	if (compact_result == COMPACT_SUCCESS) {
3483 		/*
3484 		 * !costly requests are much more important than
3485 		 * __GFP_RETRY_MAYFAIL costly ones because they are de
3486 		 * facto nofail and invoke OOM killer to move on while
3487 		 * costly can fail and users are ready to cope with
3488 		 * that. 1/4 retries is rather arbitrary but we would
3489 		 * need much more detailed feedback from compaction to
3490 		 * make a better decision.
3491 		 */
3492 		if (order > PAGE_ALLOC_COSTLY_ORDER)
3493 			max_retries /= 4;
3494 
3495 		if (++(*compaction_retries) <= max_retries) {
3496 			ret = true;
3497 			goto out;
3498 		}
3499 	}
3500 
3501 	/*
3502 	 * Compaction failed. Retry with increasing priority.
3503 	 */
3504 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3505 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3506 
3507 	if (*compact_priority > min_priority) {
3508 		(*compact_priority)--;
3509 		*compaction_retries = 0;
3510 		ret = true;
3511 	}
3512 out:
3513 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3514 	return ret;
3515 }
3516 #else
3517 static inline struct page *
3518 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3519 		unsigned int alloc_flags, const struct alloc_context *ac,
3520 		enum compact_priority prio, enum compact_result *compact_result)
3521 {
3522 	*compact_result = COMPACT_SKIPPED;
3523 	return NULL;
3524 }
3525 
3526 static inline bool
3527 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3528 		     enum compact_result compact_result,
3529 		     enum compact_priority *compact_priority,
3530 		     int *compaction_retries)
3531 {
3532 	struct zone *zone;
3533 	struct zoneref *z;
3534 
3535 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3536 		return false;
3537 
3538 	/*
3539 	 * There are setups with compaction disabled which would prefer to loop
3540 	 * inside the allocator rather than hit the oom killer prematurely.
3541 	 * Let's give them a good hope and keep retrying while the order-0
3542 	 * watermarks are OK.
3543 	 */
3544 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3545 				ac->highest_zoneidx, ac->nodemask) {
3546 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3547 					ac->highest_zoneidx, alloc_flags))
3548 			return true;
3549 	}
3550 	return false;
3551 }
3552 #endif /* CONFIG_COMPACTION */
3553 
3554 #ifdef CONFIG_LOCKDEP
3555 static struct lockdep_map __fs_reclaim_map =
3556 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3557 
3558 static bool __need_reclaim(gfp_t gfp_mask)
3559 {
3560 	/* no reclaim without waiting on it */
3561 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3562 		return false;
3563 
3564 	/* this guy won't enter reclaim */
3565 	if (current->flags & PF_MEMALLOC)
3566 		return false;
3567 
3568 	if (gfp_mask & __GFP_NOLOCKDEP)
3569 		return false;
3570 
3571 	return true;
3572 }
3573 
3574 void __fs_reclaim_acquire(unsigned long ip)
3575 {
3576 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3577 }
3578 
3579 void __fs_reclaim_release(unsigned long ip)
3580 {
3581 	lock_release(&__fs_reclaim_map, ip);
3582 }
3583 
3584 void fs_reclaim_acquire(gfp_t gfp_mask)
3585 {
3586 	gfp_mask = current_gfp_context(gfp_mask);
3587 
3588 	if (__need_reclaim(gfp_mask)) {
3589 		if (gfp_mask & __GFP_FS)
3590 			__fs_reclaim_acquire(_RET_IP_);
3591 
3592 #ifdef CONFIG_MMU_NOTIFIER
3593 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3594 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3595 #endif
3596 
3597 	}
3598 }
3599 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3600 
3601 void fs_reclaim_release(gfp_t gfp_mask)
3602 {
3603 	gfp_mask = current_gfp_context(gfp_mask);
3604 
3605 	if (__need_reclaim(gfp_mask)) {
3606 		if (gfp_mask & __GFP_FS)
3607 			__fs_reclaim_release(_RET_IP_);
3608 	}
3609 }
3610 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3611 #endif
3612 
3613 /*
3614  * Zonelists may change due to hotplug during allocation. Detect when zonelists
3615  * have been rebuilt so allocation retries. Reader side does not lock and
3616  * retries the allocation if zonelist changes. Writer side is protected by the
3617  * embedded spin_lock.
3618  */
3619 static DEFINE_SEQLOCK(zonelist_update_seq);
3620 
3621 static unsigned int zonelist_iter_begin(void)
3622 {
3623 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3624 		return read_seqbegin(&zonelist_update_seq);
3625 
3626 	return 0;
3627 }
3628 
3629 static unsigned int check_retry_zonelist(unsigned int seq)
3630 {
3631 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3632 		return read_seqretry(&zonelist_update_seq, seq);
3633 
3634 	return seq;
3635 }
3636 
3637 /* Perform direct synchronous page reclaim */
3638 static unsigned long
3639 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3640 					const struct alloc_context *ac)
3641 {
3642 	unsigned int noreclaim_flag;
3643 	unsigned long progress;
3644 
3645 	cond_resched();
3646 
3647 	/* We now go into synchronous reclaim */
3648 	cpuset_memory_pressure_bump();
3649 	fs_reclaim_acquire(gfp_mask);
3650 	noreclaim_flag = memalloc_noreclaim_save();
3651 
3652 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3653 								ac->nodemask);
3654 
3655 	memalloc_noreclaim_restore(noreclaim_flag);
3656 	fs_reclaim_release(gfp_mask);
3657 
3658 	cond_resched();
3659 
3660 	return progress;
3661 }
3662 
3663 /* The really slow allocator path where we enter direct reclaim */
3664 static inline struct page *
3665 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3666 		unsigned int alloc_flags, const struct alloc_context *ac,
3667 		unsigned long *did_some_progress)
3668 {
3669 	struct page *page = NULL;
3670 	unsigned long pflags;
3671 	bool drained = false;
3672 
3673 	psi_memstall_enter(&pflags);
3674 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3675 	if (unlikely(!(*did_some_progress)))
3676 		goto out;
3677 
3678 retry:
3679 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3680 
3681 	/*
3682 	 * If an allocation failed after direct reclaim, it could be because
3683 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3684 	 * Shrink them and try again
3685 	 */
3686 	if (!page && !drained) {
3687 		unreserve_highatomic_pageblock(ac, false);
3688 		drain_all_pages(NULL);
3689 		drained = true;
3690 		goto retry;
3691 	}
3692 out:
3693 	psi_memstall_leave(&pflags);
3694 
3695 	return page;
3696 }
3697 
3698 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3699 			     const struct alloc_context *ac)
3700 {
3701 	struct zoneref *z;
3702 	struct zone *zone;
3703 	pg_data_t *last_pgdat = NULL;
3704 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
3705 
3706 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
3707 					ac->nodemask) {
3708 		if (!managed_zone(zone))
3709 			continue;
3710 		if (last_pgdat != zone->zone_pgdat) {
3711 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
3712 			last_pgdat = zone->zone_pgdat;
3713 		}
3714 	}
3715 }
3716 
3717 static inline unsigned int
3718 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
3719 {
3720 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3721 
3722 	/*
3723 	 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
3724 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3725 	 * to save two branches.
3726 	 */
3727 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
3728 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
3729 
3730 	/*
3731 	 * The caller may dip into page reserves a bit more if the caller
3732 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3733 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3734 	 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
3735 	 */
3736 	alloc_flags |= (__force int)
3737 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
3738 
3739 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
3740 		/*
3741 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3742 		 * if it can't schedule.
3743 		 */
3744 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
3745 			alloc_flags |= ALLOC_NON_BLOCK;
3746 
3747 			if (order > 0)
3748 				alloc_flags |= ALLOC_HIGHATOMIC;
3749 		}
3750 
3751 		/*
3752 		 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
3753 		 * GFP_ATOMIC) rather than fail, see the comment for
3754 		 * cpuset_node_allowed().
3755 		 */
3756 		if (alloc_flags & ALLOC_MIN_RESERVE)
3757 			alloc_flags &= ~ALLOC_CPUSET;
3758 	} else if (unlikely(rt_task(current)) && in_task())
3759 		alloc_flags |= ALLOC_MIN_RESERVE;
3760 
3761 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
3762 
3763 	return alloc_flags;
3764 }
3765 
3766 static bool oom_reserves_allowed(struct task_struct *tsk)
3767 {
3768 	if (!tsk_is_oom_victim(tsk))
3769 		return false;
3770 
3771 	/*
3772 	 * !MMU doesn't have oom reaper so give access to memory reserves
3773 	 * only to the thread with TIF_MEMDIE set
3774 	 */
3775 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3776 		return false;
3777 
3778 	return true;
3779 }
3780 
3781 /*
3782  * Distinguish requests which really need access to full memory
3783  * reserves from oom victims which can live with a portion of it
3784  */
3785 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3786 {
3787 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3788 		return 0;
3789 	if (gfp_mask & __GFP_MEMALLOC)
3790 		return ALLOC_NO_WATERMARKS;
3791 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3792 		return ALLOC_NO_WATERMARKS;
3793 	if (!in_interrupt()) {
3794 		if (current->flags & PF_MEMALLOC)
3795 			return ALLOC_NO_WATERMARKS;
3796 		else if (oom_reserves_allowed(current))
3797 			return ALLOC_OOM;
3798 	}
3799 
3800 	return 0;
3801 }
3802 
3803 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3804 {
3805 	return !!__gfp_pfmemalloc_flags(gfp_mask);
3806 }
3807 
3808 /*
3809  * Checks whether it makes sense to retry the reclaim to make a forward progress
3810  * for the given allocation request.
3811  *
3812  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3813  * without success, or when we couldn't even meet the watermark if we
3814  * reclaimed all remaining pages on the LRU lists.
3815  *
3816  * Returns true if a retry is viable or false to enter the oom path.
3817  */
3818 static inline bool
3819 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3820 		     struct alloc_context *ac, int alloc_flags,
3821 		     bool did_some_progress, int *no_progress_loops)
3822 {
3823 	struct zone *zone;
3824 	struct zoneref *z;
3825 	bool ret = false;
3826 
3827 	/*
3828 	 * Costly allocations might have made a progress but this doesn't mean
3829 	 * their order will become available due to high fragmentation so
3830 	 * always increment the no progress counter for them
3831 	 */
3832 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3833 		*no_progress_loops = 0;
3834 	else
3835 		(*no_progress_loops)++;
3836 
3837 	/*
3838 	 * Make sure we converge to OOM if we cannot make any progress
3839 	 * several times in the row.
3840 	 */
3841 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3842 		/* Before OOM, exhaust highatomic_reserve */
3843 		return unreserve_highatomic_pageblock(ac, true);
3844 	}
3845 
3846 	/*
3847 	 * Keep reclaiming pages while there is a chance this will lead
3848 	 * somewhere.  If none of the target zones can satisfy our allocation
3849 	 * request even if all reclaimable pages are considered then we are
3850 	 * screwed and have to go OOM.
3851 	 */
3852 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3853 				ac->highest_zoneidx, ac->nodemask) {
3854 		unsigned long available;
3855 		unsigned long reclaimable;
3856 		unsigned long min_wmark = min_wmark_pages(zone);
3857 		bool wmark;
3858 
3859 		available = reclaimable = zone_reclaimable_pages(zone);
3860 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3861 
3862 		/*
3863 		 * Would the allocation succeed if we reclaimed all
3864 		 * reclaimable pages?
3865 		 */
3866 		wmark = __zone_watermark_ok(zone, order, min_wmark,
3867 				ac->highest_zoneidx, alloc_flags, available);
3868 		trace_reclaim_retry_zone(z, order, reclaimable,
3869 				available, min_wmark, *no_progress_loops, wmark);
3870 		if (wmark) {
3871 			ret = true;
3872 			break;
3873 		}
3874 	}
3875 
3876 	/*
3877 	 * Memory allocation/reclaim might be called from a WQ context and the
3878 	 * current implementation of the WQ concurrency control doesn't
3879 	 * recognize that a particular WQ is congested if the worker thread is
3880 	 * looping without ever sleeping. Therefore we have to do a short sleep
3881 	 * here rather than calling cond_resched().
3882 	 */
3883 	if (current->flags & PF_WQ_WORKER)
3884 		schedule_timeout_uninterruptible(1);
3885 	else
3886 		cond_resched();
3887 	return ret;
3888 }
3889 
3890 static inline bool
3891 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3892 {
3893 	/*
3894 	 * It's possible that cpuset's mems_allowed and the nodemask from
3895 	 * mempolicy don't intersect. This should be normally dealt with by
3896 	 * policy_nodemask(), but it's possible to race with cpuset update in
3897 	 * such a way the check therein was true, and then it became false
3898 	 * before we got our cpuset_mems_cookie here.
3899 	 * This assumes that for all allocations, ac->nodemask can come only
3900 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3901 	 * when it does not intersect with the cpuset restrictions) or the
3902 	 * caller can deal with a violated nodemask.
3903 	 */
3904 	if (cpusets_enabled() && ac->nodemask &&
3905 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3906 		ac->nodemask = NULL;
3907 		return true;
3908 	}
3909 
3910 	/*
3911 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
3912 	 * possible to race with parallel threads in such a way that our
3913 	 * allocation can fail while the mask is being updated. If we are about
3914 	 * to fail, check if the cpuset changed during allocation and if so,
3915 	 * retry.
3916 	 */
3917 	if (read_mems_allowed_retry(cpuset_mems_cookie))
3918 		return true;
3919 
3920 	return false;
3921 }
3922 
3923 static inline struct page *
3924 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3925 						struct alloc_context *ac)
3926 {
3927 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3928 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3929 	struct page *page = NULL;
3930 	unsigned int alloc_flags;
3931 	unsigned long did_some_progress;
3932 	enum compact_priority compact_priority;
3933 	enum compact_result compact_result;
3934 	int compaction_retries;
3935 	int no_progress_loops;
3936 	unsigned int cpuset_mems_cookie;
3937 	unsigned int zonelist_iter_cookie;
3938 	int reserve_flags;
3939 
3940 restart:
3941 	compaction_retries = 0;
3942 	no_progress_loops = 0;
3943 	compact_priority = DEF_COMPACT_PRIORITY;
3944 	cpuset_mems_cookie = read_mems_allowed_begin();
3945 	zonelist_iter_cookie = zonelist_iter_begin();
3946 
3947 	/*
3948 	 * The fast path uses conservative alloc_flags to succeed only until
3949 	 * kswapd needs to be woken up, and to avoid the cost of setting up
3950 	 * alloc_flags precisely. So we do that now.
3951 	 */
3952 	alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
3953 
3954 	/*
3955 	 * We need to recalculate the starting point for the zonelist iterator
3956 	 * because we might have used different nodemask in the fast path, or
3957 	 * there was a cpuset modification and we are retrying - otherwise we
3958 	 * could end up iterating over non-eligible zones endlessly.
3959 	 */
3960 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3961 					ac->highest_zoneidx, ac->nodemask);
3962 	if (!ac->preferred_zoneref->zone)
3963 		goto nopage;
3964 
3965 	/*
3966 	 * Check for insane configurations where the cpuset doesn't contain
3967 	 * any suitable zone to satisfy the request - e.g. non-movable
3968 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
3969 	 */
3970 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
3971 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
3972 					ac->highest_zoneidx,
3973 					&cpuset_current_mems_allowed);
3974 		if (!z->zone)
3975 			goto nopage;
3976 	}
3977 
3978 	if (alloc_flags & ALLOC_KSWAPD)
3979 		wake_all_kswapds(order, gfp_mask, ac);
3980 
3981 	/*
3982 	 * The adjusted alloc_flags might result in immediate success, so try
3983 	 * that first
3984 	 */
3985 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3986 	if (page)
3987 		goto got_pg;
3988 
3989 	/*
3990 	 * For costly allocations, try direct compaction first, as it's likely
3991 	 * that we have enough base pages and don't need to reclaim. For non-
3992 	 * movable high-order allocations, do that as well, as compaction will
3993 	 * try prevent permanent fragmentation by migrating from blocks of the
3994 	 * same migratetype.
3995 	 * Don't try this for allocations that are allowed to ignore
3996 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
3997 	 */
3998 	if (can_direct_reclaim &&
3999 			(costly_order ||
4000 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4001 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4002 		page = __alloc_pages_direct_compact(gfp_mask, order,
4003 						alloc_flags, ac,
4004 						INIT_COMPACT_PRIORITY,
4005 						&compact_result);
4006 		if (page)
4007 			goto got_pg;
4008 
4009 		/*
4010 		 * Checks for costly allocations with __GFP_NORETRY, which
4011 		 * includes some THP page fault allocations
4012 		 */
4013 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4014 			/*
4015 			 * If allocating entire pageblock(s) and compaction
4016 			 * failed because all zones are below low watermarks
4017 			 * or is prohibited because it recently failed at this
4018 			 * order, fail immediately unless the allocator has
4019 			 * requested compaction and reclaim retry.
4020 			 *
4021 			 * Reclaim is
4022 			 *  - potentially very expensive because zones are far
4023 			 *    below their low watermarks or this is part of very
4024 			 *    bursty high order allocations,
4025 			 *  - not guaranteed to help because isolate_freepages()
4026 			 *    may not iterate over freed pages as part of its
4027 			 *    linear scan, and
4028 			 *  - unlikely to make entire pageblocks free on its
4029 			 *    own.
4030 			 */
4031 			if (compact_result == COMPACT_SKIPPED ||
4032 			    compact_result == COMPACT_DEFERRED)
4033 				goto nopage;
4034 
4035 			/*
4036 			 * Looks like reclaim/compaction is worth trying, but
4037 			 * sync compaction could be very expensive, so keep
4038 			 * using async compaction.
4039 			 */
4040 			compact_priority = INIT_COMPACT_PRIORITY;
4041 		}
4042 	}
4043 
4044 retry:
4045 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4046 	if (alloc_flags & ALLOC_KSWAPD)
4047 		wake_all_kswapds(order, gfp_mask, ac);
4048 
4049 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4050 	if (reserve_flags)
4051 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4052 					  (alloc_flags & ALLOC_KSWAPD);
4053 
4054 	/*
4055 	 * Reset the nodemask and zonelist iterators if memory policies can be
4056 	 * ignored. These allocations are high priority and system rather than
4057 	 * user oriented.
4058 	 */
4059 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4060 		ac->nodemask = NULL;
4061 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4062 					ac->highest_zoneidx, ac->nodemask);
4063 	}
4064 
4065 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4066 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4067 	if (page)
4068 		goto got_pg;
4069 
4070 	/* Caller is not willing to reclaim, we can't balance anything */
4071 	if (!can_direct_reclaim)
4072 		goto nopage;
4073 
4074 	/* Avoid recursion of direct reclaim */
4075 	if (current->flags & PF_MEMALLOC)
4076 		goto nopage;
4077 
4078 	/* Try direct reclaim and then allocating */
4079 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4080 							&did_some_progress);
4081 	if (page)
4082 		goto got_pg;
4083 
4084 	/* Try direct compaction and then allocating */
4085 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4086 					compact_priority, &compact_result);
4087 	if (page)
4088 		goto got_pg;
4089 
4090 	/* Do not loop if specifically requested */
4091 	if (gfp_mask & __GFP_NORETRY)
4092 		goto nopage;
4093 
4094 	/*
4095 	 * Do not retry costly high order allocations unless they are
4096 	 * __GFP_RETRY_MAYFAIL
4097 	 */
4098 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4099 		goto nopage;
4100 
4101 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4102 				 did_some_progress > 0, &no_progress_loops))
4103 		goto retry;
4104 
4105 	/*
4106 	 * It doesn't make any sense to retry for the compaction if the order-0
4107 	 * reclaim is not able to make any progress because the current
4108 	 * implementation of the compaction depends on the sufficient amount
4109 	 * of free memory (see __compaction_suitable)
4110 	 */
4111 	if (did_some_progress > 0 &&
4112 			should_compact_retry(ac, order, alloc_flags,
4113 				compact_result, &compact_priority,
4114 				&compaction_retries))
4115 		goto retry;
4116 
4117 
4118 	/*
4119 	 * Deal with possible cpuset update races or zonelist updates to avoid
4120 	 * a unnecessary OOM kill.
4121 	 */
4122 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4123 	    check_retry_zonelist(zonelist_iter_cookie))
4124 		goto restart;
4125 
4126 	/* Reclaim has failed us, start killing things */
4127 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4128 	if (page)
4129 		goto got_pg;
4130 
4131 	/* Avoid allocations with no watermarks from looping endlessly */
4132 	if (tsk_is_oom_victim(current) &&
4133 	    (alloc_flags & ALLOC_OOM ||
4134 	     (gfp_mask & __GFP_NOMEMALLOC)))
4135 		goto nopage;
4136 
4137 	/* Retry as long as the OOM killer is making progress */
4138 	if (did_some_progress) {
4139 		no_progress_loops = 0;
4140 		goto retry;
4141 	}
4142 
4143 nopage:
4144 	/*
4145 	 * Deal with possible cpuset update races or zonelist updates to avoid
4146 	 * a unnecessary OOM kill.
4147 	 */
4148 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4149 	    check_retry_zonelist(zonelist_iter_cookie))
4150 		goto restart;
4151 
4152 	/*
4153 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4154 	 * we always retry
4155 	 */
4156 	if (gfp_mask & __GFP_NOFAIL) {
4157 		/*
4158 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4159 		 * of any new users that actually require GFP_NOWAIT
4160 		 */
4161 		if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
4162 			goto fail;
4163 
4164 		/*
4165 		 * PF_MEMALLOC request from this context is rather bizarre
4166 		 * because we cannot reclaim anything and only can loop waiting
4167 		 * for somebody to do a work for us
4168 		 */
4169 		WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
4170 
4171 		/*
4172 		 * non failing costly orders are a hard requirement which we
4173 		 * are not prepared for much so let's warn about these users
4174 		 * so that we can identify them and convert them to something
4175 		 * else.
4176 		 */
4177 		WARN_ON_ONCE_GFP(costly_order, gfp_mask);
4178 
4179 		/*
4180 		 * Help non-failing allocations by giving some access to memory
4181 		 * reserves normally used for high priority non-blocking
4182 		 * allocations but do not use ALLOC_NO_WATERMARKS because this
4183 		 * could deplete whole memory reserves which would just make
4184 		 * the situation worse.
4185 		 */
4186 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4187 		if (page)
4188 			goto got_pg;
4189 
4190 		cond_resched();
4191 		goto retry;
4192 	}
4193 fail:
4194 	warn_alloc(gfp_mask, ac->nodemask,
4195 			"page allocation failure: order:%u", order);
4196 got_pg:
4197 	return page;
4198 }
4199 
4200 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4201 		int preferred_nid, nodemask_t *nodemask,
4202 		struct alloc_context *ac, gfp_t *alloc_gfp,
4203 		unsigned int *alloc_flags)
4204 {
4205 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4206 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4207 	ac->nodemask = nodemask;
4208 	ac->migratetype = gfp_migratetype(gfp_mask);
4209 
4210 	if (cpusets_enabled()) {
4211 		*alloc_gfp |= __GFP_HARDWALL;
4212 		/*
4213 		 * When we are in the interrupt context, it is irrelevant
4214 		 * to the current task context. It means that any node ok.
4215 		 */
4216 		if (in_task() && !ac->nodemask)
4217 			ac->nodemask = &cpuset_current_mems_allowed;
4218 		else
4219 			*alloc_flags |= ALLOC_CPUSET;
4220 	}
4221 
4222 	might_alloc(gfp_mask);
4223 
4224 	if (should_fail_alloc_page(gfp_mask, order))
4225 		return false;
4226 
4227 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4228 
4229 	/* Dirty zone balancing only done in the fast path */
4230 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4231 
4232 	/*
4233 	 * The preferred zone is used for statistics but crucially it is
4234 	 * also used as the starting point for the zonelist iterator. It
4235 	 * may get reset for allocations that ignore memory policies.
4236 	 */
4237 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4238 					ac->highest_zoneidx, ac->nodemask);
4239 
4240 	return true;
4241 }
4242 
4243 /*
4244  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4245  * @gfp: GFP flags for the allocation
4246  * @preferred_nid: The preferred NUMA node ID to allocate from
4247  * @nodemask: Set of nodes to allocate from, may be NULL
4248  * @nr_pages: The number of pages desired on the list or array
4249  * @page_list: Optional list to store the allocated pages
4250  * @page_array: Optional array to store the pages
4251  *
4252  * This is a batched version of the page allocator that attempts to
4253  * allocate nr_pages quickly. Pages are added to page_list if page_list
4254  * is not NULL, otherwise it is assumed that the page_array is valid.
4255  *
4256  * For lists, nr_pages is the number of pages that should be allocated.
4257  *
4258  * For arrays, only NULL elements are populated with pages and nr_pages
4259  * is the maximum number of pages that will be stored in the array.
4260  *
4261  * Returns the number of pages on the list or array.
4262  */
4263 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
4264 			nodemask_t *nodemask, int nr_pages,
4265 			struct list_head *page_list,
4266 			struct page **page_array)
4267 {
4268 	struct page *page;
4269 	unsigned long __maybe_unused UP_flags;
4270 	struct zone *zone;
4271 	struct zoneref *z;
4272 	struct per_cpu_pages *pcp;
4273 	struct list_head *pcp_list;
4274 	struct alloc_context ac;
4275 	gfp_t alloc_gfp;
4276 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4277 	int nr_populated = 0, nr_account = 0;
4278 
4279 	/*
4280 	 * Skip populated array elements to determine if any pages need
4281 	 * to be allocated before disabling IRQs.
4282 	 */
4283 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4284 		nr_populated++;
4285 
4286 	/* No pages requested? */
4287 	if (unlikely(nr_pages <= 0))
4288 		goto out;
4289 
4290 	/* Already populated array? */
4291 	if (unlikely(page_array && nr_pages - nr_populated == 0))
4292 		goto out;
4293 
4294 	/* Bulk allocator does not support memcg accounting. */
4295 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4296 		goto failed;
4297 
4298 	/* Use the single page allocator for one page. */
4299 	if (nr_pages - nr_populated == 1)
4300 		goto failed;
4301 
4302 #ifdef CONFIG_PAGE_OWNER
4303 	/*
4304 	 * PAGE_OWNER may recurse into the allocator to allocate space to
4305 	 * save the stack with pagesets.lock held. Releasing/reacquiring
4306 	 * removes much of the performance benefit of bulk allocation so
4307 	 * force the caller to allocate one page at a time as it'll have
4308 	 * similar performance to added complexity to the bulk allocator.
4309 	 */
4310 	if (static_branch_unlikely(&page_owner_inited))
4311 		goto failed;
4312 #endif
4313 
4314 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4315 	gfp &= gfp_allowed_mask;
4316 	alloc_gfp = gfp;
4317 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4318 		goto out;
4319 	gfp = alloc_gfp;
4320 
4321 	/* Find an allowed local zone that meets the low watermark. */
4322 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
4323 		unsigned long mark;
4324 
4325 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4326 		    !__cpuset_zone_allowed(zone, gfp)) {
4327 			continue;
4328 		}
4329 
4330 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
4331 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
4332 			goto failed;
4333 		}
4334 
4335 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4336 		if (zone_watermark_fast(zone, 0,  mark,
4337 				zonelist_zone_idx(ac.preferred_zoneref),
4338 				alloc_flags, gfp)) {
4339 			break;
4340 		}
4341 	}
4342 
4343 	/*
4344 	 * If there are no allowed local zones that meets the watermarks then
4345 	 * try to allocate a single page and reclaim if necessary.
4346 	 */
4347 	if (unlikely(!zone))
4348 		goto failed;
4349 
4350 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4351 	pcp_trylock_prepare(UP_flags);
4352 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4353 	if (!pcp)
4354 		goto failed_irq;
4355 
4356 	/* Attempt the batch allocation */
4357 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4358 	while (nr_populated < nr_pages) {
4359 
4360 		/* Skip existing pages */
4361 		if (page_array && page_array[nr_populated]) {
4362 			nr_populated++;
4363 			continue;
4364 		}
4365 
4366 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4367 								pcp, pcp_list);
4368 		if (unlikely(!page)) {
4369 			/* Try and allocate at least one page */
4370 			if (!nr_account) {
4371 				pcp_spin_unlock(pcp);
4372 				goto failed_irq;
4373 			}
4374 			break;
4375 		}
4376 		nr_account++;
4377 
4378 		prep_new_page(page, 0, gfp, 0);
4379 		if (page_list)
4380 			list_add(&page->lru, page_list);
4381 		else
4382 			page_array[nr_populated] = page;
4383 		nr_populated++;
4384 	}
4385 
4386 	pcp_spin_unlock(pcp);
4387 	pcp_trylock_finish(UP_flags);
4388 
4389 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4390 	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
4391 
4392 out:
4393 	return nr_populated;
4394 
4395 failed_irq:
4396 	pcp_trylock_finish(UP_flags);
4397 
4398 failed:
4399 	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
4400 	if (page) {
4401 		if (page_list)
4402 			list_add(&page->lru, page_list);
4403 		else
4404 			page_array[nr_populated] = page;
4405 		nr_populated++;
4406 	}
4407 
4408 	goto out;
4409 }
4410 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
4411 
4412 /*
4413  * This is the 'heart' of the zoned buddy allocator.
4414  */
4415 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
4416 							nodemask_t *nodemask)
4417 {
4418 	struct page *page;
4419 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4420 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4421 	struct alloc_context ac = { };
4422 
4423 	/*
4424 	 * There are several places where we assume that the order value is sane
4425 	 * so bail out early if the request is out of bound.
4426 	 */
4427 	if (WARN_ON_ONCE_GFP(order > MAX_ORDER, gfp))
4428 		return NULL;
4429 
4430 	gfp &= gfp_allowed_mask;
4431 	/*
4432 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4433 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4434 	 * from a particular context which has been marked by
4435 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4436 	 * movable zones are not used during allocation.
4437 	 */
4438 	gfp = current_gfp_context(gfp);
4439 	alloc_gfp = gfp;
4440 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4441 			&alloc_gfp, &alloc_flags))
4442 		return NULL;
4443 
4444 	/*
4445 	 * Forbid the first pass from falling back to types that fragment
4446 	 * memory until all local zones are considered.
4447 	 */
4448 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
4449 
4450 	/* First allocation attempt */
4451 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4452 	if (likely(page))
4453 		goto out;
4454 
4455 	alloc_gfp = gfp;
4456 	ac.spread_dirty_pages = false;
4457 
4458 	/*
4459 	 * Restore the original nodemask if it was potentially replaced with
4460 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4461 	 */
4462 	ac.nodemask = nodemask;
4463 
4464 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4465 
4466 out:
4467 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4468 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4469 		__free_pages(page, order);
4470 		page = NULL;
4471 	}
4472 
4473 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4474 	kmsan_alloc_page(page, order, alloc_gfp);
4475 
4476 	return page;
4477 }
4478 EXPORT_SYMBOL(__alloc_pages);
4479 
4480 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
4481 		nodemask_t *nodemask)
4482 {
4483 	struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
4484 			preferred_nid, nodemask);
4485 
4486 	if (page && order > 1)
4487 		prep_transhuge_page(page);
4488 	return (struct folio *)page;
4489 }
4490 EXPORT_SYMBOL(__folio_alloc);
4491 
4492 /*
4493  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4494  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4495  * you need to access high mem.
4496  */
4497 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4498 {
4499 	struct page *page;
4500 
4501 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4502 	if (!page)
4503 		return 0;
4504 	return (unsigned long) page_address(page);
4505 }
4506 EXPORT_SYMBOL(__get_free_pages);
4507 
4508 unsigned long get_zeroed_page(gfp_t gfp_mask)
4509 {
4510 	return __get_free_page(gfp_mask | __GFP_ZERO);
4511 }
4512 EXPORT_SYMBOL(get_zeroed_page);
4513 
4514 /**
4515  * __free_pages - Free pages allocated with alloc_pages().
4516  * @page: The page pointer returned from alloc_pages().
4517  * @order: The order of the allocation.
4518  *
4519  * This function can free multi-page allocations that are not compound
4520  * pages.  It does not check that the @order passed in matches that of
4521  * the allocation, so it is easy to leak memory.  Freeing more memory
4522  * than was allocated will probably emit a warning.
4523  *
4524  * If the last reference to this page is speculative, it will be released
4525  * by put_page() which only frees the first page of a non-compound
4526  * allocation.  To prevent the remaining pages from being leaked, we free
4527  * the subsequent pages here.  If you want to use the page's reference
4528  * count to decide when to free the allocation, you should allocate a
4529  * compound page, and use put_page() instead of __free_pages().
4530  *
4531  * Context: May be called in interrupt context or while holding a normal
4532  * spinlock, but not in NMI context or while holding a raw spinlock.
4533  */
4534 void __free_pages(struct page *page, unsigned int order)
4535 {
4536 	/* get PageHead before we drop reference */
4537 	int head = PageHead(page);
4538 
4539 	if (put_page_testzero(page))
4540 		free_the_page(page, order);
4541 	else if (!head)
4542 		while (order-- > 0)
4543 			free_the_page(page + (1 << order), order);
4544 }
4545 EXPORT_SYMBOL(__free_pages);
4546 
4547 void free_pages(unsigned long addr, unsigned int order)
4548 {
4549 	if (addr != 0) {
4550 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4551 		__free_pages(virt_to_page((void *)addr), order);
4552 	}
4553 }
4554 
4555 EXPORT_SYMBOL(free_pages);
4556 
4557 /*
4558  * Page Fragment:
4559  *  An arbitrary-length arbitrary-offset area of memory which resides
4560  *  within a 0 or higher order page.  Multiple fragments within that page
4561  *  are individually refcounted, in the page's reference counter.
4562  *
4563  * The page_frag functions below provide a simple allocation framework for
4564  * page fragments.  This is used by the network stack and network device
4565  * drivers to provide a backing region of memory for use as either an
4566  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4567  */
4568 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4569 					     gfp_t gfp_mask)
4570 {
4571 	struct page *page = NULL;
4572 	gfp_t gfp = gfp_mask;
4573 
4574 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4575 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4576 		    __GFP_NOMEMALLOC;
4577 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4578 				PAGE_FRAG_CACHE_MAX_ORDER);
4579 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4580 #endif
4581 	if (unlikely(!page))
4582 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4583 
4584 	nc->va = page ? page_address(page) : NULL;
4585 
4586 	return page;
4587 }
4588 
4589 void __page_frag_cache_drain(struct page *page, unsigned int count)
4590 {
4591 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4592 
4593 	if (page_ref_sub_and_test(page, count))
4594 		free_the_page(page, compound_order(page));
4595 }
4596 EXPORT_SYMBOL(__page_frag_cache_drain);
4597 
4598 void *page_frag_alloc_align(struct page_frag_cache *nc,
4599 		      unsigned int fragsz, gfp_t gfp_mask,
4600 		      unsigned int align_mask)
4601 {
4602 	unsigned int size = PAGE_SIZE;
4603 	struct page *page;
4604 	int offset;
4605 
4606 	if (unlikely(!nc->va)) {
4607 refill:
4608 		page = __page_frag_cache_refill(nc, gfp_mask);
4609 		if (!page)
4610 			return NULL;
4611 
4612 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4613 		/* if size can vary use size else just use PAGE_SIZE */
4614 		size = nc->size;
4615 #endif
4616 		/* Even if we own the page, we do not use atomic_set().
4617 		 * This would break get_page_unless_zero() users.
4618 		 */
4619 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4620 
4621 		/* reset page count bias and offset to start of new frag */
4622 		nc->pfmemalloc = page_is_pfmemalloc(page);
4623 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4624 		nc->offset = size;
4625 	}
4626 
4627 	offset = nc->offset - fragsz;
4628 	if (unlikely(offset < 0)) {
4629 		page = virt_to_page(nc->va);
4630 
4631 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4632 			goto refill;
4633 
4634 		if (unlikely(nc->pfmemalloc)) {
4635 			free_the_page(page, compound_order(page));
4636 			goto refill;
4637 		}
4638 
4639 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4640 		/* if size can vary use size else just use PAGE_SIZE */
4641 		size = nc->size;
4642 #endif
4643 		/* OK, page count is 0, we can safely set it */
4644 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4645 
4646 		/* reset page count bias and offset to start of new frag */
4647 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4648 		offset = size - fragsz;
4649 		if (unlikely(offset < 0)) {
4650 			/*
4651 			 * The caller is trying to allocate a fragment
4652 			 * with fragsz > PAGE_SIZE but the cache isn't big
4653 			 * enough to satisfy the request, this may
4654 			 * happen in low memory conditions.
4655 			 * We don't release the cache page because
4656 			 * it could make memory pressure worse
4657 			 * so we simply return NULL here.
4658 			 */
4659 			return NULL;
4660 		}
4661 	}
4662 
4663 	nc->pagecnt_bias--;
4664 	offset &= align_mask;
4665 	nc->offset = offset;
4666 
4667 	return nc->va + offset;
4668 }
4669 EXPORT_SYMBOL(page_frag_alloc_align);
4670 
4671 /*
4672  * Frees a page fragment allocated out of either a compound or order 0 page.
4673  */
4674 void page_frag_free(void *addr)
4675 {
4676 	struct page *page = virt_to_head_page(addr);
4677 
4678 	if (unlikely(put_page_testzero(page)))
4679 		free_the_page(page, compound_order(page));
4680 }
4681 EXPORT_SYMBOL(page_frag_free);
4682 
4683 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4684 		size_t size)
4685 {
4686 	if (addr) {
4687 		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4688 		struct page *page = virt_to_page((void *)addr);
4689 		struct page *last = page + nr;
4690 
4691 		split_page_owner(page, 1 << order);
4692 		split_page_memcg(page, 1 << order);
4693 		while (page < --last)
4694 			set_page_refcounted(last);
4695 
4696 		last = page + (1UL << order);
4697 		for (page += nr; page < last; page++)
4698 			__free_pages_ok(page, 0, FPI_TO_TAIL);
4699 	}
4700 	return (void *)addr;
4701 }
4702 
4703 /**
4704  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4705  * @size: the number of bytes to allocate
4706  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4707  *
4708  * This function is similar to alloc_pages(), except that it allocates the
4709  * minimum number of pages to satisfy the request.  alloc_pages() can only
4710  * allocate memory in power-of-two pages.
4711  *
4712  * This function is also limited by MAX_ORDER.
4713  *
4714  * Memory allocated by this function must be released by free_pages_exact().
4715  *
4716  * Return: pointer to the allocated area or %NULL in case of error.
4717  */
4718 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4719 {
4720 	unsigned int order = get_order(size);
4721 	unsigned long addr;
4722 
4723 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4724 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4725 
4726 	addr = __get_free_pages(gfp_mask, order);
4727 	return make_alloc_exact(addr, order, size);
4728 }
4729 EXPORT_SYMBOL(alloc_pages_exact);
4730 
4731 /**
4732  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4733  *			   pages on a node.
4734  * @nid: the preferred node ID where memory should be allocated
4735  * @size: the number of bytes to allocate
4736  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4737  *
4738  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4739  * back.
4740  *
4741  * Return: pointer to the allocated area or %NULL in case of error.
4742  */
4743 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4744 {
4745 	unsigned int order = get_order(size);
4746 	struct page *p;
4747 
4748 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4749 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4750 
4751 	p = alloc_pages_node(nid, gfp_mask, order);
4752 	if (!p)
4753 		return NULL;
4754 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4755 }
4756 
4757 /**
4758  * free_pages_exact - release memory allocated via alloc_pages_exact()
4759  * @virt: the value returned by alloc_pages_exact.
4760  * @size: size of allocation, same value as passed to alloc_pages_exact().
4761  *
4762  * Release the memory allocated by a previous call to alloc_pages_exact.
4763  */
4764 void free_pages_exact(void *virt, size_t size)
4765 {
4766 	unsigned long addr = (unsigned long)virt;
4767 	unsigned long end = addr + PAGE_ALIGN(size);
4768 
4769 	while (addr < end) {
4770 		free_page(addr);
4771 		addr += PAGE_SIZE;
4772 	}
4773 }
4774 EXPORT_SYMBOL(free_pages_exact);
4775 
4776 /**
4777  * nr_free_zone_pages - count number of pages beyond high watermark
4778  * @offset: The zone index of the highest zone
4779  *
4780  * nr_free_zone_pages() counts the number of pages which are beyond the
4781  * high watermark within all zones at or below a given zone index.  For each
4782  * zone, the number of pages is calculated as:
4783  *
4784  *     nr_free_zone_pages = managed_pages - high_pages
4785  *
4786  * Return: number of pages beyond high watermark.
4787  */
4788 static unsigned long nr_free_zone_pages(int offset)
4789 {
4790 	struct zoneref *z;
4791 	struct zone *zone;
4792 
4793 	/* Just pick one node, since fallback list is circular */
4794 	unsigned long sum = 0;
4795 
4796 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4797 
4798 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4799 		unsigned long size = zone_managed_pages(zone);
4800 		unsigned long high = high_wmark_pages(zone);
4801 		if (size > high)
4802 			sum += size - high;
4803 	}
4804 
4805 	return sum;
4806 }
4807 
4808 /**
4809  * nr_free_buffer_pages - count number of pages beyond high watermark
4810  *
4811  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4812  * watermark within ZONE_DMA and ZONE_NORMAL.
4813  *
4814  * Return: number of pages beyond high watermark within ZONE_DMA and
4815  * ZONE_NORMAL.
4816  */
4817 unsigned long nr_free_buffer_pages(void)
4818 {
4819 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4820 }
4821 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4822 
4823 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4824 {
4825 	zoneref->zone = zone;
4826 	zoneref->zone_idx = zone_idx(zone);
4827 }
4828 
4829 /*
4830  * Builds allocation fallback zone lists.
4831  *
4832  * Add all populated zones of a node to the zonelist.
4833  */
4834 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
4835 {
4836 	struct zone *zone;
4837 	enum zone_type zone_type = MAX_NR_ZONES;
4838 	int nr_zones = 0;
4839 
4840 	do {
4841 		zone_type--;
4842 		zone = pgdat->node_zones + zone_type;
4843 		if (populated_zone(zone)) {
4844 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
4845 			check_highest_zone(zone_type);
4846 		}
4847 	} while (zone_type);
4848 
4849 	return nr_zones;
4850 }
4851 
4852 #ifdef CONFIG_NUMA
4853 
4854 static int __parse_numa_zonelist_order(char *s)
4855 {
4856 	/*
4857 	 * We used to support different zonelists modes but they turned
4858 	 * out to be just not useful. Let's keep the warning in place
4859 	 * if somebody still use the cmd line parameter so that we do
4860 	 * not fail it silently
4861 	 */
4862 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4863 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
4864 		return -EINVAL;
4865 	}
4866 	return 0;
4867 }
4868 
4869 static char numa_zonelist_order[] = "Node";
4870 #define NUMA_ZONELIST_ORDER_LEN	16
4871 /*
4872  * sysctl handler for numa_zonelist_order
4873  */
4874 static int numa_zonelist_order_handler(struct ctl_table *table, int write,
4875 		void *buffer, size_t *length, loff_t *ppos)
4876 {
4877 	if (write)
4878 		return __parse_numa_zonelist_order(buffer);
4879 	return proc_dostring(table, write, buffer, length, ppos);
4880 }
4881 
4882 static int node_load[MAX_NUMNODES];
4883 
4884 /**
4885  * find_next_best_node - find the next node that should appear in a given node's fallback list
4886  * @node: node whose fallback list we're appending
4887  * @used_node_mask: nodemask_t of already used nodes
4888  *
4889  * We use a number of factors to determine which is the next node that should
4890  * appear on a given node's fallback list.  The node should not have appeared
4891  * already in @node's fallback list, and it should be the next closest node
4892  * according to the distance array (which contains arbitrary distance values
4893  * from each node to each node in the system), and should also prefer nodes
4894  * with no CPUs, since presumably they'll have very little allocation pressure
4895  * on them otherwise.
4896  *
4897  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
4898  */
4899 int find_next_best_node(int node, nodemask_t *used_node_mask)
4900 {
4901 	int n, val;
4902 	int min_val = INT_MAX;
4903 	int best_node = NUMA_NO_NODE;
4904 
4905 	/* Use the local node if we haven't already */
4906 	if (!node_isset(node, *used_node_mask)) {
4907 		node_set(node, *used_node_mask);
4908 		return node;
4909 	}
4910 
4911 	for_each_node_state(n, N_MEMORY) {
4912 
4913 		/* Don't want a node to appear more than once */
4914 		if (node_isset(n, *used_node_mask))
4915 			continue;
4916 
4917 		/* Use the distance array to find the distance */
4918 		val = node_distance(node, n);
4919 
4920 		/* Penalize nodes under us ("prefer the next node") */
4921 		val += (n < node);
4922 
4923 		/* Give preference to headless and unused nodes */
4924 		if (!cpumask_empty(cpumask_of_node(n)))
4925 			val += PENALTY_FOR_NODE_WITH_CPUS;
4926 
4927 		/* Slight preference for less loaded node */
4928 		val *= MAX_NUMNODES;
4929 		val += node_load[n];
4930 
4931 		if (val < min_val) {
4932 			min_val = val;
4933 			best_node = n;
4934 		}
4935 	}
4936 
4937 	if (best_node >= 0)
4938 		node_set(best_node, *used_node_mask);
4939 
4940 	return best_node;
4941 }
4942 
4943 
4944 /*
4945  * Build zonelists ordered by node and zones within node.
4946  * This results in maximum locality--normal zone overflows into local
4947  * DMA zone, if any--but risks exhausting DMA zone.
4948  */
4949 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
4950 		unsigned nr_nodes)
4951 {
4952 	struct zoneref *zonerefs;
4953 	int i;
4954 
4955 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
4956 
4957 	for (i = 0; i < nr_nodes; i++) {
4958 		int nr_zones;
4959 
4960 		pg_data_t *node = NODE_DATA(node_order[i]);
4961 
4962 		nr_zones = build_zonerefs_node(node, zonerefs);
4963 		zonerefs += nr_zones;
4964 	}
4965 	zonerefs->zone = NULL;
4966 	zonerefs->zone_idx = 0;
4967 }
4968 
4969 /*
4970  * Build gfp_thisnode zonelists
4971  */
4972 static void build_thisnode_zonelists(pg_data_t *pgdat)
4973 {
4974 	struct zoneref *zonerefs;
4975 	int nr_zones;
4976 
4977 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
4978 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
4979 	zonerefs += nr_zones;
4980 	zonerefs->zone = NULL;
4981 	zonerefs->zone_idx = 0;
4982 }
4983 
4984 /*
4985  * Build zonelists ordered by zone and nodes within zones.
4986  * This results in conserving DMA zone[s] until all Normal memory is
4987  * exhausted, but results in overflowing to remote node while memory
4988  * may still exist in local DMA zone.
4989  */
4990 
4991 static void build_zonelists(pg_data_t *pgdat)
4992 {
4993 	static int node_order[MAX_NUMNODES];
4994 	int node, nr_nodes = 0;
4995 	nodemask_t used_mask = NODE_MASK_NONE;
4996 	int local_node, prev_node;
4997 
4998 	/* NUMA-aware ordering of nodes */
4999 	local_node = pgdat->node_id;
5000 	prev_node = local_node;
5001 
5002 	memset(node_order, 0, sizeof(node_order));
5003 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5004 		/*
5005 		 * We don't want to pressure a particular node.
5006 		 * So adding penalty to the first node in same
5007 		 * distance group to make it round-robin.
5008 		 */
5009 		if (node_distance(local_node, node) !=
5010 		    node_distance(local_node, prev_node))
5011 			node_load[node] += 1;
5012 
5013 		node_order[nr_nodes++] = node;
5014 		prev_node = node;
5015 	}
5016 
5017 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5018 	build_thisnode_zonelists(pgdat);
5019 	pr_info("Fallback order for Node %d: ", local_node);
5020 	for (node = 0; node < nr_nodes; node++)
5021 		pr_cont("%d ", node_order[node]);
5022 	pr_cont("\n");
5023 }
5024 
5025 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5026 /*
5027  * Return node id of node used for "local" allocations.
5028  * I.e., first node id of first zone in arg node's generic zonelist.
5029  * Used for initializing percpu 'numa_mem', which is used primarily
5030  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5031  */
5032 int local_memory_node(int node)
5033 {
5034 	struct zoneref *z;
5035 
5036 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5037 				   gfp_zone(GFP_KERNEL),
5038 				   NULL);
5039 	return zone_to_nid(z->zone);
5040 }
5041 #endif
5042 
5043 static void setup_min_unmapped_ratio(void);
5044 static void setup_min_slab_ratio(void);
5045 #else	/* CONFIG_NUMA */
5046 
5047 static void build_zonelists(pg_data_t *pgdat)
5048 {
5049 	int node, local_node;
5050 	struct zoneref *zonerefs;
5051 	int nr_zones;
5052 
5053 	local_node = pgdat->node_id;
5054 
5055 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5056 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5057 	zonerefs += nr_zones;
5058 
5059 	/*
5060 	 * Now we build the zonelist so that it contains the zones
5061 	 * of all the other nodes.
5062 	 * We don't want to pressure a particular node, so when
5063 	 * building the zones for node N, we make sure that the
5064 	 * zones coming right after the local ones are those from
5065 	 * node N+1 (modulo N)
5066 	 */
5067 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5068 		if (!node_online(node))
5069 			continue;
5070 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5071 		zonerefs += nr_zones;
5072 	}
5073 	for (node = 0; node < local_node; node++) {
5074 		if (!node_online(node))
5075 			continue;
5076 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5077 		zonerefs += nr_zones;
5078 	}
5079 
5080 	zonerefs->zone = NULL;
5081 	zonerefs->zone_idx = 0;
5082 }
5083 
5084 #endif	/* CONFIG_NUMA */
5085 
5086 /*
5087  * Boot pageset table. One per cpu which is going to be used for all
5088  * zones and all nodes. The parameters will be set in such a way
5089  * that an item put on a list will immediately be handed over to
5090  * the buddy list. This is safe since pageset manipulation is done
5091  * with interrupts disabled.
5092  *
5093  * The boot_pagesets must be kept even after bootup is complete for
5094  * unused processors and/or zones. They do play a role for bootstrapping
5095  * hotplugged processors.
5096  *
5097  * zoneinfo_show() and maybe other functions do
5098  * not check if the processor is online before following the pageset pointer.
5099  * Other parts of the kernel may not check if the zone is available.
5100  */
5101 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5102 /* These effectively disable the pcplists in the boot pageset completely */
5103 #define BOOT_PAGESET_HIGH	0
5104 #define BOOT_PAGESET_BATCH	1
5105 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5106 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5107 
5108 static void __build_all_zonelists(void *data)
5109 {
5110 	int nid;
5111 	int __maybe_unused cpu;
5112 	pg_data_t *self = data;
5113 	unsigned long flags;
5114 
5115 	/*
5116 	 * Explicitly disable this CPU's interrupts before taking seqlock
5117 	 * to prevent any IRQ handler from calling into the page allocator
5118 	 * (e.g. GFP_ATOMIC) that could hit zonelist_iter_begin and livelock.
5119 	 */
5120 	local_irq_save(flags);
5121 	/*
5122 	 * Explicitly disable this CPU's synchronous printk() before taking
5123 	 * seqlock to prevent any printk() from trying to hold port->lock, for
5124 	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5125 	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5126 	 */
5127 	printk_deferred_enter();
5128 	write_seqlock(&zonelist_update_seq);
5129 
5130 #ifdef CONFIG_NUMA
5131 	memset(node_load, 0, sizeof(node_load));
5132 #endif
5133 
5134 	/*
5135 	 * This node is hotadded and no memory is yet present.   So just
5136 	 * building zonelists is fine - no need to touch other nodes.
5137 	 */
5138 	if (self && !node_online(self->node_id)) {
5139 		build_zonelists(self);
5140 	} else {
5141 		/*
5142 		 * All possible nodes have pgdat preallocated
5143 		 * in free_area_init
5144 		 */
5145 		for_each_node(nid) {
5146 			pg_data_t *pgdat = NODE_DATA(nid);
5147 
5148 			build_zonelists(pgdat);
5149 		}
5150 
5151 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5152 		/*
5153 		 * We now know the "local memory node" for each node--
5154 		 * i.e., the node of the first zone in the generic zonelist.
5155 		 * Set up numa_mem percpu variable for on-line cpus.  During
5156 		 * boot, only the boot cpu should be on-line;  we'll init the
5157 		 * secondary cpus' numa_mem as they come on-line.  During
5158 		 * node/memory hotplug, we'll fixup all on-line cpus.
5159 		 */
5160 		for_each_online_cpu(cpu)
5161 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5162 #endif
5163 	}
5164 
5165 	write_sequnlock(&zonelist_update_seq);
5166 	printk_deferred_exit();
5167 	local_irq_restore(flags);
5168 }
5169 
5170 static noinline void __init
5171 build_all_zonelists_init(void)
5172 {
5173 	int cpu;
5174 
5175 	__build_all_zonelists(NULL);
5176 
5177 	/*
5178 	 * Initialize the boot_pagesets that are going to be used
5179 	 * for bootstrapping processors. The real pagesets for
5180 	 * each zone will be allocated later when the per cpu
5181 	 * allocator is available.
5182 	 *
5183 	 * boot_pagesets are used also for bootstrapping offline
5184 	 * cpus if the system is already booted because the pagesets
5185 	 * are needed to initialize allocators on a specific cpu too.
5186 	 * F.e. the percpu allocator needs the page allocator which
5187 	 * needs the percpu allocator in order to allocate its pagesets
5188 	 * (a chicken-egg dilemma).
5189 	 */
5190 	for_each_possible_cpu(cpu)
5191 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5192 
5193 	mminit_verify_zonelist();
5194 	cpuset_init_current_mems_allowed();
5195 }
5196 
5197 /*
5198  * unless system_state == SYSTEM_BOOTING.
5199  *
5200  * __ref due to call of __init annotated helper build_all_zonelists_init
5201  * [protected by SYSTEM_BOOTING].
5202  */
5203 void __ref build_all_zonelists(pg_data_t *pgdat)
5204 {
5205 	unsigned long vm_total_pages;
5206 
5207 	if (system_state == SYSTEM_BOOTING) {
5208 		build_all_zonelists_init();
5209 	} else {
5210 		__build_all_zonelists(pgdat);
5211 		/* cpuset refresh routine should be here */
5212 	}
5213 	/* Get the number of free pages beyond high watermark in all zones. */
5214 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5215 	/*
5216 	 * Disable grouping by mobility if the number of pages in the
5217 	 * system is too low to allow the mechanism to work. It would be
5218 	 * more accurate, but expensive to check per-zone. This check is
5219 	 * made on memory-hotadd so a system can start with mobility
5220 	 * disabled and enable it later
5221 	 */
5222 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5223 		page_group_by_mobility_disabled = 1;
5224 	else
5225 		page_group_by_mobility_disabled = 0;
5226 
5227 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5228 		nr_online_nodes,
5229 		page_group_by_mobility_disabled ? "off" : "on",
5230 		vm_total_pages);
5231 #ifdef CONFIG_NUMA
5232 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5233 #endif
5234 }
5235 
5236 static int zone_batchsize(struct zone *zone)
5237 {
5238 #ifdef CONFIG_MMU
5239 	int batch;
5240 
5241 	/*
5242 	 * The number of pages to batch allocate is either ~0.1%
5243 	 * of the zone or 1MB, whichever is smaller. The batch
5244 	 * size is striking a balance between allocation latency
5245 	 * and zone lock contention.
5246 	 */
5247 	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5248 	batch /= 4;		/* We effectively *= 4 below */
5249 	if (batch < 1)
5250 		batch = 1;
5251 
5252 	/*
5253 	 * Clamp the batch to a 2^n - 1 value. Having a power
5254 	 * of 2 value was found to be more likely to have
5255 	 * suboptimal cache aliasing properties in some cases.
5256 	 *
5257 	 * For example if 2 tasks are alternately allocating
5258 	 * batches of pages, one task can end up with a lot
5259 	 * of pages of one half of the possible page colors
5260 	 * and the other with pages of the other colors.
5261 	 */
5262 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5263 
5264 	return batch;
5265 
5266 #else
5267 	/* The deferral and batching of frees should be suppressed under NOMMU
5268 	 * conditions.
5269 	 *
5270 	 * The problem is that NOMMU needs to be able to allocate large chunks
5271 	 * of contiguous memory as there's no hardware page translation to
5272 	 * assemble apparent contiguous memory from discontiguous pages.
5273 	 *
5274 	 * Queueing large contiguous runs of pages for batching, however,
5275 	 * causes the pages to actually be freed in smaller chunks.  As there
5276 	 * can be a significant delay between the individual batches being
5277 	 * recycled, this leads to the once large chunks of space being
5278 	 * fragmented and becoming unavailable for high-order allocations.
5279 	 */
5280 	return 0;
5281 #endif
5282 }
5283 
5284 static int percpu_pagelist_high_fraction;
5285 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
5286 {
5287 #ifdef CONFIG_MMU
5288 	int high;
5289 	int nr_split_cpus;
5290 	unsigned long total_pages;
5291 
5292 	if (!percpu_pagelist_high_fraction) {
5293 		/*
5294 		 * By default, the high value of the pcp is based on the zone
5295 		 * low watermark so that if they are full then background
5296 		 * reclaim will not be started prematurely.
5297 		 */
5298 		total_pages = low_wmark_pages(zone);
5299 	} else {
5300 		/*
5301 		 * If percpu_pagelist_high_fraction is configured, the high
5302 		 * value is based on a fraction of the managed pages in the
5303 		 * zone.
5304 		 */
5305 		total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
5306 	}
5307 
5308 	/*
5309 	 * Split the high value across all online CPUs local to the zone. Note
5310 	 * that early in boot that CPUs may not be online yet and that during
5311 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5312 	 * onlined. For memory nodes that have no CPUs, split pcp->high across
5313 	 * all online CPUs to mitigate the risk that reclaim is triggered
5314 	 * prematurely due to pages stored on pcp lists.
5315 	 */
5316 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5317 	if (!nr_split_cpus)
5318 		nr_split_cpus = num_online_cpus();
5319 	high = total_pages / nr_split_cpus;
5320 
5321 	/*
5322 	 * Ensure high is at least batch*4. The multiple is based on the
5323 	 * historical relationship between high and batch.
5324 	 */
5325 	high = max(high, batch << 2);
5326 
5327 	return high;
5328 #else
5329 	return 0;
5330 #endif
5331 }
5332 
5333 /*
5334  * pcp->high and pcp->batch values are related and generally batch is lower
5335  * than high. They are also related to pcp->count such that count is lower
5336  * than high, and as soon as it reaches high, the pcplist is flushed.
5337  *
5338  * However, guaranteeing these relations at all times would require e.g. write
5339  * barriers here but also careful usage of read barriers at the read side, and
5340  * thus be prone to error and bad for performance. Thus the update only prevents
5341  * store tearing. Any new users of pcp->batch and pcp->high should ensure they
5342  * can cope with those fields changing asynchronously, and fully trust only the
5343  * pcp->count field on the local CPU with interrupts disabled.
5344  *
5345  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5346  * outside of boot time (or some other assurance that no concurrent updaters
5347  * exist).
5348  */
5349 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5350 		unsigned long batch)
5351 {
5352 	WRITE_ONCE(pcp->batch, batch);
5353 	WRITE_ONCE(pcp->high, high);
5354 }
5355 
5356 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5357 {
5358 	int pindex;
5359 
5360 	memset(pcp, 0, sizeof(*pcp));
5361 	memset(pzstats, 0, sizeof(*pzstats));
5362 
5363 	spin_lock_init(&pcp->lock);
5364 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5365 		INIT_LIST_HEAD(&pcp->lists[pindex]);
5366 
5367 	/*
5368 	 * Set batch and high values safe for a boot pageset. A true percpu
5369 	 * pageset's initialization will update them subsequently. Here we don't
5370 	 * need to be as careful as pageset_update() as nobody can access the
5371 	 * pageset yet.
5372 	 */
5373 	pcp->high = BOOT_PAGESET_HIGH;
5374 	pcp->batch = BOOT_PAGESET_BATCH;
5375 	pcp->free_factor = 0;
5376 }
5377 
5378 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
5379 		unsigned long batch)
5380 {
5381 	struct per_cpu_pages *pcp;
5382 	int cpu;
5383 
5384 	for_each_possible_cpu(cpu) {
5385 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5386 		pageset_update(pcp, high, batch);
5387 	}
5388 }
5389 
5390 /*
5391  * Calculate and set new high and batch values for all per-cpu pagesets of a
5392  * zone based on the zone's size.
5393  */
5394 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5395 {
5396 	int new_high, new_batch;
5397 
5398 	new_batch = max(1, zone_batchsize(zone));
5399 	new_high = zone_highsize(zone, new_batch, cpu_online);
5400 
5401 	if (zone->pageset_high == new_high &&
5402 	    zone->pageset_batch == new_batch)
5403 		return;
5404 
5405 	zone->pageset_high = new_high;
5406 	zone->pageset_batch = new_batch;
5407 
5408 	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
5409 }
5410 
5411 void __meminit setup_zone_pageset(struct zone *zone)
5412 {
5413 	int cpu;
5414 
5415 	/* Size may be 0 on !SMP && !NUMA */
5416 	if (sizeof(struct per_cpu_zonestat) > 0)
5417 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5418 
5419 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5420 	for_each_possible_cpu(cpu) {
5421 		struct per_cpu_pages *pcp;
5422 		struct per_cpu_zonestat *pzstats;
5423 
5424 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5425 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5426 		per_cpu_pages_init(pcp, pzstats);
5427 	}
5428 
5429 	zone_set_pageset_high_and_batch(zone, 0);
5430 }
5431 
5432 /*
5433  * The zone indicated has a new number of managed_pages; batch sizes and percpu
5434  * page high values need to be recalculated.
5435  */
5436 static void zone_pcp_update(struct zone *zone, int cpu_online)
5437 {
5438 	mutex_lock(&pcp_batch_high_lock);
5439 	zone_set_pageset_high_and_batch(zone, cpu_online);
5440 	mutex_unlock(&pcp_batch_high_lock);
5441 }
5442 
5443 /*
5444  * Allocate per cpu pagesets and initialize them.
5445  * Before this call only boot pagesets were available.
5446  */
5447 void __init setup_per_cpu_pageset(void)
5448 {
5449 	struct pglist_data *pgdat;
5450 	struct zone *zone;
5451 	int __maybe_unused cpu;
5452 
5453 	for_each_populated_zone(zone)
5454 		setup_zone_pageset(zone);
5455 
5456 #ifdef CONFIG_NUMA
5457 	/*
5458 	 * Unpopulated zones continue using the boot pagesets.
5459 	 * The numa stats for these pagesets need to be reset.
5460 	 * Otherwise, they will end up skewing the stats of
5461 	 * the nodes these zones are associated with.
5462 	 */
5463 	for_each_possible_cpu(cpu) {
5464 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5465 		memset(pzstats->vm_numa_event, 0,
5466 		       sizeof(pzstats->vm_numa_event));
5467 	}
5468 #endif
5469 
5470 	for_each_online_pgdat(pgdat)
5471 		pgdat->per_cpu_nodestats =
5472 			alloc_percpu(struct per_cpu_nodestat);
5473 }
5474 
5475 __meminit void zone_pcp_init(struct zone *zone)
5476 {
5477 	/*
5478 	 * per cpu subsystem is not up at this point. The following code
5479 	 * relies on the ability of the linker to provide the
5480 	 * offset of a (static) per cpu variable into the per cpu area.
5481 	 */
5482 	zone->per_cpu_pageset = &boot_pageset;
5483 	zone->per_cpu_zonestats = &boot_zonestats;
5484 	zone->pageset_high = BOOT_PAGESET_HIGH;
5485 	zone->pageset_batch = BOOT_PAGESET_BATCH;
5486 
5487 	if (populated_zone(zone))
5488 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5489 			 zone->present_pages, zone_batchsize(zone));
5490 }
5491 
5492 void adjust_managed_page_count(struct page *page, long count)
5493 {
5494 	atomic_long_add(count, &page_zone(page)->managed_pages);
5495 	totalram_pages_add(count);
5496 #ifdef CONFIG_HIGHMEM
5497 	if (PageHighMem(page))
5498 		totalhigh_pages_add(count);
5499 #endif
5500 }
5501 EXPORT_SYMBOL(adjust_managed_page_count);
5502 
5503 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5504 {
5505 	void *pos;
5506 	unsigned long pages = 0;
5507 
5508 	start = (void *)PAGE_ALIGN((unsigned long)start);
5509 	end = (void *)((unsigned long)end & PAGE_MASK);
5510 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5511 		struct page *page = virt_to_page(pos);
5512 		void *direct_map_addr;
5513 
5514 		/*
5515 		 * 'direct_map_addr' might be different from 'pos'
5516 		 * because some architectures' virt_to_page()
5517 		 * work with aliases.  Getting the direct map
5518 		 * address ensures that we get a _writeable_
5519 		 * alias for the memset().
5520 		 */
5521 		direct_map_addr = page_address(page);
5522 		/*
5523 		 * Perform a kasan-unchecked memset() since this memory
5524 		 * has not been initialized.
5525 		 */
5526 		direct_map_addr = kasan_reset_tag(direct_map_addr);
5527 		if ((unsigned int)poison <= 0xFF)
5528 			memset(direct_map_addr, poison, PAGE_SIZE);
5529 
5530 		free_reserved_page(page);
5531 	}
5532 
5533 	if (pages && s)
5534 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5535 
5536 	return pages;
5537 }
5538 
5539 static int page_alloc_cpu_dead(unsigned int cpu)
5540 {
5541 	struct zone *zone;
5542 
5543 	lru_add_drain_cpu(cpu);
5544 	mlock_drain_remote(cpu);
5545 	drain_pages(cpu);
5546 
5547 	/*
5548 	 * Spill the event counters of the dead processor
5549 	 * into the current processors event counters.
5550 	 * This artificially elevates the count of the current
5551 	 * processor.
5552 	 */
5553 	vm_events_fold_cpu(cpu);
5554 
5555 	/*
5556 	 * Zero the differential counters of the dead processor
5557 	 * so that the vm statistics are consistent.
5558 	 *
5559 	 * This is only okay since the processor is dead and cannot
5560 	 * race with what we are doing.
5561 	 */
5562 	cpu_vm_stats_fold(cpu);
5563 
5564 	for_each_populated_zone(zone)
5565 		zone_pcp_update(zone, 0);
5566 
5567 	return 0;
5568 }
5569 
5570 static int page_alloc_cpu_online(unsigned int cpu)
5571 {
5572 	struct zone *zone;
5573 
5574 	for_each_populated_zone(zone)
5575 		zone_pcp_update(zone, 1);
5576 	return 0;
5577 }
5578 
5579 void __init page_alloc_init_cpuhp(void)
5580 {
5581 	int ret;
5582 
5583 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5584 					"mm/page_alloc:pcp",
5585 					page_alloc_cpu_online,
5586 					page_alloc_cpu_dead);
5587 	WARN_ON(ret < 0);
5588 }
5589 
5590 /*
5591  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5592  *	or min_free_kbytes changes.
5593  */
5594 static void calculate_totalreserve_pages(void)
5595 {
5596 	struct pglist_data *pgdat;
5597 	unsigned long reserve_pages = 0;
5598 	enum zone_type i, j;
5599 
5600 	for_each_online_pgdat(pgdat) {
5601 
5602 		pgdat->totalreserve_pages = 0;
5603 
5604 		for (i = 0; i < MAX_NR_ZONES; i++) {
5605 			struct zone *zone = pgdat->node_zones + i;
5606 			long max = 0;
5607 			unsigned long managed_pages = zone_managed_pages(zone);
5608 
5609 			/* Find valid and maximum lowmem_reserve in the zone */
5610 			for (j = i; j < MAX_NR_ZONES; j++) {
5611 				if (zone->lowmem_reserve[j] > max)
5612 					max = zone->lowmem_reserve[j];
5613 			}
5614 
5615 			/* we treat the high watermark as reserved pages. */
5616 			max += high_wmark_pages(zone);
5617 
5618 			if (max > managed_pages)
5619 				max = managed_pages;
5620 
5621 			pgdat->totalreserve_pages += max;
5622 
5623 			reserve_pages += max;
5624 		}
5625 	}
5626 	totalreserve_pages = reserve_pages;
5627 }
5628 
5629 /*
5630  * setup_per_zone_lowmem_reserve - called whenever
5631  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
5632  *	has a correct pages reserved value, so an adequate number of
5633  *	pages are left in the zone after a successful __alloc_pages().
5634  */
5635 static void setup_per_zone_lowmem_reserve(void)
5636 {
5637 	struct pglist_data *pgdat;
5638 	enum zone_type i, j;
5639 
5640 	for_each_online_pgdat(pgdat) {
5641 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5642 			struct zone *zone = &pgdat->node_zones[i];
5643 			int ratio = sysctl_lowmem_reserve_ratio[i];
5644 			bool clear = !ratio || !zone_managed_pages(zone);
5645 			unsigned long managed_pages = 0;
5646 
5647 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
5648 				struct zone *upper_zone = &pgdat->node_zones[j];
5649 
5650 				managed_pages += zone_managed_pages(upper_zone);
5651 
5652 				if (clear)
5653 					zone->lowmem_reserve[j] = 0;
5654 				else
5655 					zone->lowmem_reserve[j] = managed_pages / ratio;
5656 			}
5657 		}
5658 	}
5659 
5660 	/* update totalreserve_pages */
5661 	calculate_totalreserve_pages();
5662 }
5663 
5664 static void __setup_per_zone_wmarks(void)
5665 {
5666 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5667 	unsigned long lowmem_pages = 0;
5668 	struct zone *zone;
5669 	unsigned long flags;
5670 
5671 	/* Calculate total number of !ZONE_HIGHMEM pages */
5672 	for_each_zone(zone) {
5673 		if (!is_highmem(zone))
5674 			lowmem_pages += zone_managed_pages(zone);
5675 	}
5676 
5677 	for_each_zone(zone) {
5678 		u64 tmp;
5679 
5680 		spin_lock_irqsave(&zone->lock, flags);
5681 		tmp = (u64)pages_min * zone_managed_pages(zone);
5682 		do_div(tmp, lowmem_pages);
5683 		if (is_highmem(zone)) {
5684 			/*
5685 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5686 			 * need highmem pages, so cap pages_min to a small
5687 			 * value here.
5688 			 *
5689 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5690 			 * deltas control async page reclaim, and so should
5691 			 * not be capped for highmem.
5692 			 */
5693 			unsigned long min_pages;
5694 
5695 			min_pages = zone_managed_pages(zone) / 1024;
5696 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5697 			zone->_watermark[WMARK_MIN] = min_pages;
5698 		} else {
5699 			/*
5700 			 * If it's a lowmem zone, reserve a number of pages
5701 			 * proportionate to the zone's size.
5702 			 */
5703 			zone->_watermark[WMARK_MIN] = tmp;
5704 		}
5705 
5706 		/*
5707 		 * Set the kswapd watermarks distance according to the
5708 		 * scale factor in proportion to available memory, but
5709 		 * ensure a minimum size on small systems.
5710 		 */
5711 		tmp = max_t(u64, tmp >> 2,
5712 			    mult_frac(zone_managed_pages(zone),
5713 				      watermark_scale_factor, 10000));
5714 
5715 		zone->watermark_boost = 0;
5716 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
5717 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
5718 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
5719 
5720 		spin_unlock_irqrestore(&zone->lock, flags);
5721 	}
5722 
5723 	/* update totalreserve_pages */
5724 	calculate_totalreserve_pages();
5725 }
5726 
5727 /**
5728  * setup_per_zone_wmarks - called when min_free_kbytes changes
5729  * or when memory is hot-{added|removed}
5730  *
5731  * Ensures that the watermark[min,low,high] values for each zone are set
5732  * correctly with respect to min_free_kbytes.
5733  */
5734 void setup_per_zone_wmarks(void)
5735 {
5736 	struct zone *zone;
5737 	static DEFINE_SPINLOCK(lock);
5738 
5739 	spin_lock(&lock);
5740 	__setup_per_zone_wmarks();
5741 	spin_unlock(&lock);
5742 
5743 	/*
5744 	 * The watermark size have changed so update the pcpu batch
5745 	 * and high limits or the limits may be inappropriate.
5746 	 */
5747 	for_each_zone(zone)
5748 		zone_pcp_update(zone, 0);
5749 }
5750 
5751 /*
5752  * Initialise min_free_kbytes.
5753  *
5754  * For small machines we want it small (128k min).  For large machines
5755  * we want it large (256MB max).  But it is not linear, because network
5756  * bandwidth does not increase linearly with machine size.  We use
5757  *
5758  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5759  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5760  *
5761  * which yields
5762  *
5763  * 16MB:	512k
5764  * 32MB:	724k
5765  * 64MB:	1024k
5766  * 128MB:	1448k
5767  * 256MB:	2048k
5768  * 512MB:	2896k
5769  * 1024MB:	4096k
5770  * 2048MB:	5792k
5771  * 4096MB:	8192k
5772  * 8192MB:	11584k
5773  * 16384MB:	16384k
5774  */
5775 void calculate_min_free_kbytes(void)
5776 {
5777 	unsigned long lowmem_kbytes;
5778 	int new_min_free_kbytes;
5779 
5780 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5781 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5782 
5783 	if (new_min_free_kbytes > user_min_free_kbytes)
5784 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
5785 	else
5786 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5787 				new_min_free_kbytes, user_min_free_kbytes);
5788 
5789 }
5790 
5791 int __meminit init_per_zone_wmark_min(void)
5792 {
5793 	calculate_min_free_kbytes();
5794 	setup_per_zone_wmarks();
5795 	refresh_zone_stat_thresholds();
5796 	setup_per_zone_lowmem_reserve();
5797 
5798 #ifdef CONFIG_NUMA
5799 	setup_min_unmapped_ratio();
5800 	setup_min_slab_ratio();
5801 #endif
5802 
5803 	khugepaged_min_free_kbytes_update();
5804 
5805 	return 0;
5806 }
5807 postcore_initcall(init_per_zone_wmark_min)
5808 
5809 /*
5810  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5811  *	that we can call two helper functions whenever min_free_kbytes
5812  *	changes.
5813  */
5814 static int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5815 		void *buffer, size_t *length, loff_t *ppos)
5816 {
5817 	int rc;
5818 
5819 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5820 	if (rc)
5821 		return rc;
5822 
5823 	if (write) {
5824 		user_min_free_kbytes = min_free_kbytes;
5825 		setup_per_zone_wmarks();
5826 	}
5827 	return 0;
5828 }
5829 
5830 static int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
5831 		void *buffer, size_t *length, loff_t *ppos)
5832 {
5833 	int rc;
5834 
5835 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5836 	if (rc)
5837 		return rc;
5838 
5839 	if (write)
5840 		setup_per_zone_wmarks();
5841 
5842 	return 0;
5843 }
5844 
5845 #ifdef CONFIG_NUMA
5846 static void setup_min_unmapped_ratio(void)
5847 {
5848 	pg_data_t *pgdat;
5849 	struct zone *zone;
5850 
5851 	for_each_online_pgdat(pgdat)
5852 		pgdat->min_unmapped_pages = 0;
5853 
5854 	for_each_zone(zone)
5855 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
5856 						         sysctl_min_unmapped_ratio) / 100;
5857 }
5858 
5859 
5860 static int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
5861 		void *buffer, size_t *length, loff_t *ppos)
5862 {
5863 	int rc;
5864 
5865 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5866 	if (rc)
5867 		return rc;
5868 
5869 	setup_min_unmapped_ratio();
5870 
5871 	return 0;
5872 }
5873 
5874 static void setup_min_slab_ratio(void)
5875 {
5876 	pg_data_t *pgdat;
5877 	struct zone *zone;
5878 
5879 	for_each_online_pgdat(pgdat)
5880 		pgdat->min_slab_pages = 0;
5881 
5882 	for_each_zone(zone)
5883 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
5884 						     sysctl_min_slab_ratio) / 100;
5885 }
5886 
5887 static int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
5888 		void *buffer, size_t *length, loff_t *ppos)
5889 {
5890 	int rc;
5891 
5892 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5893 	if (rc)
5894 		return rc;
5895 
5896 	setup_min_slab_ratio();
5897 
5898 	return 0;
5899 }
5900 #endif
5901 
5902 /*
5903  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5904  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5905  *	whenever sysctl_lowmem_reserve_ratio changes.
5906  *
5907  * The reserve ratio obviously has absolutely no relation with the
5908  * minimum watermarks. The lowmem reserve ratio can only make sense
5909  * if in function of the boot time zone sizes.
5910  */
5911 static int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table,
5912 		int write, void *buffer, size_t *length, loff_t *ppos)
5913 {
5914 	int i;
5915 
5916 	proc_dointvec_minmax(table, write, buffer, length, ppos);
5917 
5918 	for (i = 0; i < MAX_NR_ZONES; i++) {
5919 		if (sysctl_lowmem_reserve_ratio[i] < 1)
5920 			sysctl_lowmem_reserve_ratio[i] = 0;
5921 	}
5922 
5923 	setup_per_zone_lowmem_reserve();
5924 	return 0;
5925 }
5926 
5927 /*
5928  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
5929  * cpu. It is the fraction of total pages in each zone that a hot per cpu
5930  * pagelist can have before it gets flushed back to buddy allocator.
5931  */
5932 static int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
5933 		int write, void *buffer, size_t *length, loff_t *ppos)
5934 {
5935 	struct zone *zone;
5936 	int old_percpu_pagelist_high_fraction;
5937 	int ret;
5938 
5939 	mutex_lock(&pcp_batch_high_lock);
5940 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
5941 
5942 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5943 	if (!write || ret < 0)
5944 		goto out;
5945 
5946 	/* Sanity checking to avoid pcp imbalance */
5947 	if (percpu_pagelist_high_fraction &&
5948 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
5949 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
5950 		ret = -EINVAL;
5951 		goto out;
5952 	}
5953 
5954 	/* No change? */
5955 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
5956 		goto out;
5957 
5958 	for_each_populated_zone(zone)
5959 		zone_set_pageset_high_and_batch(zone, 0);
5960 out:
5961 	mutex_unlock(&pcp_batch_high_lock);
5962 	return ret;
5963 }
5964 
5965 static struct ctl_table page_alloc_sysctl_table[] = {
5966 	{
5967 		.procname	= "min_free_kbytes",
5968 		.data		= &min_free_kbytes,
5969 		.maxlen		= sizeof(min_free_kbytes),
5970 		.mode		= 0644,
5971 		.proc_handler	= min_free_kbytes_sysctl_handler,
5972 		.extra1		= SYSCTL_ZERO,
5973 	},
5974 	{
5975 		.procname	= "watermark_boost_factor",
5976 		.data		= &watermark_boost_factor,
5977 		.maxlen		= sizeof(watermark_boost_factor),
5978 		.mode		= 0644,
5979 		.proc_handler	= proc_dointvec_minmax,
5980 		.extra1		= SYSCTL_ZERO,
5981 	},
5982 	{
5983 		.procname	= "watermark_scale_factor",
5984 		.data		= &watermark_scale_factor,
5985 		.maxlen		= sizeof(watermark_scale_factor),
5986 		.mode		= 0644,
5987 		.proc_handler	= watermark_scale_factor_sysctl_handler,
5988 		.extra1		= SYSCTL_ONE,
5989 		.extra2		= SYSCTL_THREE_THOUSAND,
5990 	},
5991 	{
5992 		.procname	= "percpu_pagelist_high_fraction",
5993 		.data		= &percpu_pagelist_high_fraction,
5994 		.maxlen		= sizeof(percpu_pagelist_high_fraction),
5995 		.mode		= 0644,
5996 		.proc_handler	= percpu_pagelist_high_fraction_sysctl_handler,
5997 		.extra1		= SYSCTL_ZERO,
5998 	},
5999 	{
6000 		.procname	= "lowmem_reserve_ratio",
6001 		.data		= &sysctl_lowmem_reserve_ratio,
6002 		.maxlen		= sizeof(sysctl_lowmem_reserve_ratio),
6003 		.mode		= 0644,
6004 		.proc_handler	= lowmem_reserve_ratio_sysctl_handler,
6005 	},
6006 #ifdef CONFIG_NUMA
6007 	{
6008 		.procname	= "numa_zonelist_order",
6009 		.data		= &numa_zonelist_order,
6010 		.maxlen		= NUMA_ZONELIST_ORDER_LEN,
6011 		.mode		= 0644,
6012 		.proc_handler	= numa_zonelist_order_handler,
6013 	},
6014 	{
6015 		.procname	= "min_unmapped_ratio",
6016 		.data		= &sysctl_min_unmapped_ratio,
6017 		.maxlen		= sizeof(sysctl_min_unmapped_ratio),
6018 		.mode		= 0644,
6019 		.proc_handler	= sysctl_min_unmapped_ratio_sysctl_handler,
6020 		.extra1		= SYSCTL_ZERO,
6021 		.extra2		= SYSCTL_ONE_HUNDRED,
6022 	},
6023 	{
6024 		.procname	= "min_slab_ratio",
6025 		.data		= &sysctl_min_slab_ratio,
6026 		.maxlen		= sizeof(sysctl_min_slab_ratio),
6027 		.mode		= 0644,
6028 		.proc_handler	= sysctl_min_slab_ratio_sysctl_handler,
6029 		.extra1		= SYSCTL_ZERO,
6030 		.extra2		= SYSCTL_ONE_HUNDRED,
6031 	},
6032 #endif
6033 	{}
6034 };
6035 
6036 void __init page_alloc_sysctl_init(void)
6037 {
6038 	register_sysctl_init("vm", page_alloc_sysctl_table);
6039 }
6040 
6041 #ifdef CONFIG_CONTIG_ALLOC
6042 /* Usage: See admin-guide/dynamic-debug-howto.rst */
6043 static void alloc_contig_dump_pages(struct list_head *page_list)
6044 {
6045 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6046 
6047 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6048 		struct page *page;
6049 
6050 		dump_stack();
6051 		list_for_each_entry(page, page_list, lru)
6052 			dump_page(page, "migration failure");
6053 	}
6054 }
6055 
6056 /* [start, end) must belong to a single zone. */
6057 int __alloc_contig_migrate_range(struct compact_control *cc,
6058 					unsigned long start, unsigned long end)
6059 {
6060 	/* This function is based on compact_zone() from compaction.c. */
6061 	unsigned int nr_reclaimed;
6062 	unsigned long pfn = start;
6063 	unsigned int tries = 0;
6064 	int ret = 0;
6065 	struct migration_target_control mtc = {
6066 		.nid = zone_to_nid(cc->zone),
6067 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6068 	};
6069 
6070 	lru_cache_disable();
6071 
6072 	while (pfn < end || !list_empty(&cc->migratepages)) {
6073 		if (fatal_signal_pending(current)) {
6074 			ret = -EINTR;
6075 			break;
6076 		}
6077 
6078 		if (list_empty(&cc->migratepages)) {
6079 			cc->nr_migratepages = 0;
6080 			ret = isolate_migratepages_range(cc, pfn, end);
6081 			if (ret && ret != -EAGAIN)
6082 				break;
6083 			pfn = cc->migrate_pfn;
6084 			tries = 0;
6085 		} else if (++tries == 5) {
6086 			ret = -EBUSY;
6087 			break;
6088 		}
6089 
6090 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6091 							&cc->migratepages);
6092 		cc->nr_migratepages -= nr_reclaimed;
6093 
6094 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6095 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6096 
6097 		/*
6098 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6099 		 * to retry again over this error, so do the same here.
6100 		 */
6101 		if (ret == -ENOMEM)
6102 			break;
6103 	}
6104 
6105 	lru_cache_enable();
6106 	if (ret < 0) {
6107 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6108 			alloc_contig_dump_pages(&cc->migratepages);
6109 		putback_movable_pages(&cc->migratepages);
6110 		return ret;
6111 	}
6112 	return 0;
6113 }
6114 
6115 /**
6116  * alloc_contig_range() -- tries to allocate given range of pages
6117  * @start:	start PFN to allocate
6118  * @end:	one-past-the-last PFN to allocate
6119  * @migratetype:	migratetype of the underlying pageblocks (either
6120  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6121  *			in range must have the same migratetype and it must
6122  *			be either of the two.
6123  * @gfp_mask:	GFP mask to use during compaction
6124  *
6125  * The PFN range does not have to be pageblock aligned. The PFN range must
6126  * belong to a single zone.
6127  *
6128  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6129  * pageblocks in the range.  Once isolated, the pageblocks should not
6130  * be modified by others.
6131  *
6132  * Return: zero on success or negative error code.  On success all
6133  * pages which PFN is in [start, end) are allocated for the caller and
6134  * need to be freed with free_contig_range().
6135  */
6136 int alloc_contig_range(unsigned long start, unsigned long end,
6137 		       unsigned migratetype, gfp_t gfp_mask)
6138 {
6139 	unsigned long outer_start, outer_end;
6140 	int order;
6141 	int ret = 0;
6142 
6143 	struct compact_control cc = {
6144 		.nr_migratepages = 0,
6145 		.order = -1,
6146 		.zone = page_zone(pfn_to_page(start)),
6147 		.mode = MIGRATE_SYNC,
6148 		.ignore_skip_hint = true,
6149 		.no_set_skip_hint = true,
6150 		.gfp_mask = current_gfp_context(gfp_mask),
6151 		.alloc_contig = true,
6152 	};
6153 	INIT_LIST_HEAD(&cc.migratepages);
6154 
6155 	/*
6156 	 * What we do here is we mark all pageblocks in range as
6157 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6158 	 * have different sizes, and due to the way page allocator
6159 	 * work, start_isolate_page_range() has special handlings for this.
6160 	 *
6161 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6162 	 * migrate the pages from an unaligned range (ie. pages that
6163 	 * we are interested in). This will put all the pages in
6164 	 * range back to page allocator as MIGRATE_ISOLATE.
6165 	 *
6166 	 * When this is done, we take the pages in range from page
6167 	 * allocator removing them from the buddy system.  This way
6168 	 * page allocator will never consider using them.
6169 	 *
6170 	 * This lets us mark the pageblocks back as
6171 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6172 	 * aligned range but not in the unaligned, original range are
6173 	 * put back to page allocator so that buddy can use them.
6174 	 */
6175 
6176 	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
6177 	if (ret)
6178 		goto done;
6179 
6180 	drain_all_pages(cc.zone);
6181 
6182 	/*
6183 	 * In case of -EBUSY, we'd like to know which page causes problem.
6184 	 * So, just fall through. test_pages_isolated() has a tracepoint
6185 	 * which will report the busy page.
6186 	 *
6187 	 * It is possible that busy pages could become available before
6188 	 * the call to test_pages_isolated, and the range will actually be
6189 	 * allocated.  So, if we fall through be sure to clear ret so that
6190 	 * -EBUSY is not accidentally used or returned to caller.
6191 	 */
6192 	ret = __alloc_contig_migrate_range(&cc, start, end);
6193 	if (ret && ret != -EBUSY)
6194 		goto done;
6195 	ret = 0;
6196 
6197 	/*
6198 	 * Pages from [start, end) are within a pageblock_nr_pages
6199 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6200 	 * more, all pages in [start, end) are free in page allocator.
6201 	 * What we are going to do is to allocate all pages from
6202 	 * [start, end) (that is remove them from page allocator).
6203 	 *
6204 	 * The only problem is that pages at the beginning and at the
6205 	 * end of interesting range may be not aligned with pages that
6206 	 * page allocator holds, ie. they can be part of higher order
6207 	 * pages.  Because of this, we reserve the bigger range and
6208 	 * once this is done free the pages we are not interested in.
6209 	 *
6210 	 * We don't have to hold zone->lock here because the pages are
6211 	 * isolated thus they won't get removed from buddy.
6212 	 */
6213 
6214 	order = 0;
6215 	outer_start = start;
6216 	while (!PageBuddy(pfn_to_page(outer_start))) {
6217 		if (++order > MAX_ORDER) {
6218 			outer_start = start;
6219 			break;
6220 		}
6221 		outer_start &= ~0UL << order;
6222 	}
6223 
6224 	if (outer_start != start) {
6225 		order = buddy_order(pfn_to_page(outer_start));
6226 
6227 		/*
6228 		 * outer_start page could be small order buddy page and
6229 		 * it doesn't include start page. Adjust outer_start
6230 		 * in this case to report failed page properly
6231 		 * on tracepoint in test_pages_isolated()
6232 		 */
6233 		if (outer_start + (1UL << order) <= start)
6234 			outer_start = start;
6235 	}
6236 
6237 	/* Make sure the range is really isolated. */
6238 	if (test_pages_isolated(outer_start, end, 0)) {
6239 		ret = -EBUSY;
6240 		goto done;
6241 	}
6242 
6243 	/* Grab isolated pages from freelists. */
6244 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6245 	if (!outer_end) {
6246 		ret = -EBUSY;
6247 		goto done;
6248 	}
6249 
6250 	/* Free head and tail (if any) */
6251 	if (start != outer_start)
6252 		free_contig_range(outer_start, start - outer_start);
6253 	if (end != outer_end)
6254 		free_contig_range(end, outer_end - end);
6255 
6256 done:
6257 	undo_isolate_page_range(start, end, migratetype);
6258 	return ret;
6259 }
6260 EXPORT_SYMBOL(alloc_contig_range);
6261 
6262 static int __alloc_contig_pages(unsigned long start_pfn,
6263 				unsigned long nr_pages, gfp_t gfp_mask)
6264 {
6265 	unsigned long end_pfn = start_pfn + nr_pages;
6266 
6267 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
6268 				  gfp_mask);
6269 }
6270 
6271 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6272 				   unsigned long nr_pages)
6273 {
6274 	unsigned long i, end_pfn = start_pfn + nr_pages;
6275 	struct page *page;
6276 
6277 	for (i = start_pfn; i < end_pfn; i++) {
6278 		page = pfn_to_online_page(i);
6279 		if (!page)
6280 			return false;
6281 
6282 		if (page_zone(page) != z)
6283 			return false;
6284 
6285 		if (PageReserved(page))
6286 			return false;
6287 
6288 		if (PageHuge(page))
6289 			return false;
6290 	}
6291 	return true;
6292 }
6293 
6294 static bool zone_spans_last_pfn(const struct zone *zone,
6295 				unsigned long start_pfn, unsigned long nr_pages)
6296 {
6297 	unsigned long last_pfn = start_pfn + nr_pages - 1;
6298 
6299 	return zone_spans_pfn(zone, last_pfn);
6300 }
6301 
6302 /**
6303  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6304  * @nr_pages:	Number of contiguous pages to allocate
6305  * @gfp_mask:	GFP mask to limit search and used during compaction
6306  * @nid:	Target node
6307  * @nodemask:	Mask for other possible nodes
6308  *
6309  * This routine is a wrapper around alloc_contig_range(). It scans over zones
6310  * on an applicable zonelist to find a contiguous pfn range which can then be
6311  * tried for allocation with alloc_contig_range(). This routine is intended
6312  * for allocation requests which can not be fulfilled with the buddy allocator.
6313  *
6314  * The allocated memory is always aligned to a page boundary. If nr_pages is a
6315  * power of two, then allocated range is also guaranteed to be aligned to same
6316  * nr_pages (e.g. 1GB request would be aligned to 1GB).
6317  *
6318  * Allocated pages can be freed with free_contig_range() or by manually calling
6319  * __free_page() on each allocated page.
6320  *
6321  * Return: pointer to contiguous pages on success, or NULL if not successful.
6322  */
6323 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
6324 				int nid, nodemask_t *nodemask)
6325 {
6326 	unsigned long ret, pfn, flags;
6327 	struct zonelist *zonelist;
6328 	struct zone *zone;
6329 	struct zoneref *z;
6330 
6331 	zonelist = node_zonelist(nid, gfp_mask);
6332 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6333 					gfp_zone(gfp_mask), nodemask) {
6334 		spin_lock_irqsave(&zone->lock, flags);
6335 
6336 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6337 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6338 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6339 				/*
6340 				 * We release the zone lock here because
6341 				 * alloc_contig_range() will also lock the zone
6342 				 * at some point. If there's an allocation
6343 				 * spinning on this lock, it may win the race
6344 				 * and cause alloc_contig_range() to fail...
6345 				 */
6346 				spin_unlock_irqrestore(&zone->lock, flags);
6347 				ret = __alloc_contig_pages(pfn, nr_pages,
6348 							gfp_mask);
6349 				if (!ret)
6350 					return pfn_to_page(pfn);
6351 				spin_lock_irqsave(&zone->lock, flags);
6352 			}
6353 			pfn += nr_pages;
6354 		}
6355 		spin_unlock_irqrestore(&zone->lock, flags);
6356 	}
6357 	return NULL;
6358 }
6359 #endif /* CONFIG_CONTIG_ALLOC */
6360 
6361 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6362 {
6363 	unsigned long count = 0;
6364 
6365 	for (; nr_pages--; pfn++) {
6366 		struct page *page = pfn_to_page(pfn);
6367 
6368 		count += page_count(page) != 1;
6369 		__free_page(page);
6370 	}
6371 	WARN(count != 0, "%lu pages are still in use!\n", count);
6372 }
6373 EXPORT_SYMBOL(free_contig_range);
6374 
6375 /*
6376  * Effectively disable pcplists for the zone by setting the high limit to 0
6377  * and draining all cpus. A concurrent page freeing on another CPU that's about
6378  * to put the page on pcplist will either finish before the drain and the page
6379  * will be drained, or observe the new high limit and skip the pcplist.
6380  *
6381  * Must be paired with a call to zone_pcp_enable().
6382  */
6383 void zone_pcp_disable(struct zone *zone)
6384 {
6385 	mutex_lock(&pcp_batch_high_lock);
6386 	__zone_set_pageset_high_and_batch(zone, 0, 1);
6387 	__drain_all_pages(zone, true);
6388 }
6389 
6390 void zone_pcp_enable(struct zone *zone)
6391 {
6392 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
6393 	mutex_unlock(&pcp_batch_high_lock);
6394 }
6395 
6396 void zone_pcp_reset(struct zone *zone)
6397 {
6398 	int cpu;
6399 	struct per_cpu_zonestat *pzstats;
6400 
6401 	if (zone->per_cpu_pageset != &boot_pageset) {
6402 		for_each_online_cpu(cpu) {
6403 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6404 			drain_zonestat(zone, pzstats);
6405 		}
6406 		free_percpu(zone->per_cpu_pageset);
6407 		zone->per_cpu_pageset = &boot_pageset;
6408 		if (zone->per_cpu_zonestats != &boot_zonestats) {
6409 			free_percpu(zone->per_cpu_zonestats);
6410 			zone->per_cpu_zonestats = &boot_zonestats;
6411 		}
6412 	}
6413 }
6414 
6415 #ifdef CONFIG_MEMORY_HOTREMOVE
6416 /*
6417  * All pages in the range must be in a single zone, must not contain holes,
6418  * must span full sections, and must be isolated before calling this function.
6419  */
6420 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6421 {
6422 	unsigned long pfn = start_pfn;
6423 	struct page *page;
6424 	struct zone *zone;
6425 	unsigned int order;
6426 	unsigned long flags;
6427 
6428 	offline_mem_sections(pfn, end_pfn);
6429 	zone = page_zone(pfn_to_page(pfn));
6430 	spin_lock_irqsave(&zone->lock, flags);
6431 	while (pfn < end_pfn) {
6432 		page = pfn_to_page(pfn);
6433 		/*
6434 		 * The HWPoisoned page may be not in buddy system, and
6435 		 * page_count() is not 0.
6436 		 */
6437 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6438 			pfn++;
6439 			continue;
6440 		}
6441 		/*
6442 		 * At this point all remaining PageOffline() pages have a
6443 		 * reference count of 0 and can simply be skipped.
6444 		 */
6445 		if (PageOffline(page)) {
6446 			BUG_ON(page_count(page));
6447 			BUG_ON(PageBuddy(page));
6448 			pfn++;
6449 			continue;
6450 		}
6451 
6452 		BUG_ON(page_count(page));
6453 		BUG_ON(!PageBuddy(page));
6454 		order = buddy_order(page);
6455 		del_page_from_free_list(page, zone, order);
6456 		pfn += (1 << order);
6457 	}
6458 	spin_unlock_irqrestore(&zone->lock, flags);
6459 }
6460 #endif
6461 
6462 /*
6463  * This function returns a stable result only if called under zone lock.
6464  */
6465 bool is_free_buddy_page(struct page *page)
6466 {
6467 	unsigned long pfn = page_to_pfn(page);
6468 	unsigned int order;
6469 
6470 	for (order = 0; order <= MAX_ORDER; order++) {
6471 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6472 
6473 		if (PageBuddy(page_head) &&
6474 		    buddy_order_unsafe(page_head) >= order)
6475 			break;
6476 	}
6477 
6478 	return order <= MAX_ORDER;
6479 }
6480 EXPORT_SYMBOL(is_free_buddy_page);
6481 
6482 #ifdef CONFIG_MEMORY_FAILURE
6483 /*
6484  * Break down a higher-order page in sub-pages, and keep our target out of
6485  * buddy allocator.
6486  */
6487 static void break_down_buddy_pages(struct zone *zone, struct page *page,
6488 				   struct page *target, int low, int high,
6489 				   int migratetype)
6490 {
6491 	unsigned long size = 1 << high;
6492 	struct page *current_buddy, *next_page;
6493 
6494 	while (high > low) {
6495 		high--;
6496 		size >>= 1;
6497 
6498 		if (target >= &page[size]) {
6499 			next_page = page + size;
6500 			current_buddy = page;
6501 		} else {
6502 			next_page = page;
6503 			current_buddy = page + size;
6504 		}
6505 
6506 		if (set_page_guard(zone, current_buddy, high, migratetype))
6507 			continue;
6508 
6509 		if (current_buddy != target) {
6510 			add_to_free_list(current_buddy, zone, high, migratetype);
6511 			set_buddy_order(current_buddy, high);
6512 			page = next_page;
6513 		}
6514 	}
6515 }
6516 
6517 /*
6518  * Take a page that will be marked as poisoned off the buddy allocator.
6519  */
6520 bool take_page_off_buddy(struct page *page)
6521 {
6522 	struct zone *zone = page_zone(page);
6523 	unsigned long pfn = page_to_pfn(page);
6524 	unsigned long flags;
6525 	unsigned int order;
6526 	bool ret = false;
6527 
6528 	spin_lock_irqsave(&zone->lock, flags);
6529 	for (order = 0; order <= MAX_ORDER; order++) {
6530 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6531 		int page_order = buddy_order(page_head);
6532 
6533 		if (PageBuddy(page_head) && page_order >= order) {
6534 			unsigned long pfn_head = page_to_pfn(page_head);
6535 			int migratetype = get_pfnblock_migratetype(page_head,
6536 								   pfn_head);
6537 
6538 			del_page_from_free_list(page_head, zone, page_order);
6539 			break_down_buddy_pages(zone, page_head, page, 0,
6540 						page_order, migratetype);
6541 			SetPageHWPoisonTakenOff(page);
6542 			if (!is_migrate_isolate(migratetype))
6543 				__mod_zone_freepage_state(zone, -1, migratetype);
6544 			ret = true;
6545 			break;
6546 		}
6547 		if (page_count(page_head) > 0)
6548 			break;
6549 	}
6550 	spin_unlock_irqrestore(&zone->lock, flags);
6551 	return ret;
6552 }
6553 
6554 /*
6555  * Cancel takeoff done by take_page_off_buddy().
6556  */
6557 bool put_page_back_buddy(struct page *page)
6558 {
6559 	struct zone *zone = page_zone(page);
6560 	unsigned long pfn = page_to_pfn(page);
6561 	unsigned long flags;
6562 	int migratetype = get_pfnblock_migratetype(page, pfn);
6563 	bool ret = false;
6564 
6565 	spin_lock_irqsave(&zone->lock, flags);
6566 	if (put_page_testzero(page)) {
6567 		ClearPageHWPoisonTakenOff(page);
6568 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6569 		if (TestClearPageHWPoison(page)) {
6570 			ret = true;
6571 		}
6572 	}
6573 	spin_unlock_irqrestore(&zone->lock, flags);
6574 
6575 	return ret;
6576 }
6577 #endif
6578 
6579 #ifdef CONFIG_ZONE_DMA
6580 bool has_managed_dma(void)
6581 {
6582 	struct pglist_data *pgdat;
6583 
6584 	for_each_online_pgdat(pgdat) {
6585 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6586 
6587 		if (managed_zone(zone))
6588 			return true;
6589 	}
6590 	return false;
6591 }
6592 #endif /* CONFIG_ZONE_DMA */
6593