1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kmemcheck.h> 28 #include <linux/module.h> 29 #include <linux/suspend.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/slab.h> 33 #include <linux/ratelimit.h> 34 #include <linux/oom.h> 35 #include <linux/notifier.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/stop_machine.h> 46 #include <linux/sort.h> 47 #include <linux/pfn.h> 48 #include <linux/backing-dev.h> 49 #include <linux/fault-inject.h> 50 #include <linux/page-isolation.h> 51 #include <linux/page_cgroup.h> 52 #include <linux/debugobjects.h> 53 #include <linux/kmemleak.h> 54 #include <linux/compaction.h> 55 #include <trace/events/kmem.h> 56 #include <linux/prefetch.h> 57 #include <linux/mm_inline.h> 58 #include <linux/migrate.h> 59 #include <linux/page-debug-flags.h> 60 #include <linux/hugetlb.h> 61 #include <linux/sched/rt.h> 62 63 #include <asm/sections.h> 64 #include <asm/tlbflush.h> 65 #include <asm/div64.h> 66 #include "internal.h" 67 68 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 69 static DEFINE_MUTEX(pcp_batch_high_lock); 70 #define MIN_PERCPU_PAGELIST_FRACTION (8) 71 72 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 73 DEFINE_PER_CPU(int, numa_node); 74 EXPORT_PER_CPU_SYMBOL(numa_node); 75 #endif 76 77 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 78 /* 79 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 80 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 81 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 82 * defined in <linux/topology.h>. 83 */ 84 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 85 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 86 int _node_numa_mem_[MAX_NUMNODES]; 87 #endif 88 89 /* 90 * Array of node states. 91 */ 92 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 93 [N_POSSIBLE] = NODE_MASK_ALL, 94 [N_ONLINE] = { { [0] = 1UL } }, 95 #ifndef CONFIG_NUMA 96 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 97 #ifdef CONFIG_HIGHMEM 98 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 99 #endif 100 #ifdef CONFIG_MOVABLE_NODE 101 [N_MEMORY] = { { [0] = 1UL } }, 102 #endif 103 [N_CPU] = { { [0] = 1UL } }, 104 #endif /* NUMA */ 105 }; 106 EXPORT_SYMBOL(node_states); 107 108 /* Protect totalram_pages and zone->managed_pages */ 109 static DEFINE_SPINLOCK(managed_page_count_lock); 110 111 unsigned long totalram_pages __read_mostly; 112 unsigned long totalreserve_pages __read_mostly; 113 /* 114 * When calculating the number of globally allowed dirty pages, there 115 * is a certain number of per-zone reserves that should not be 116 * considered dirtyable memory. This is the sum of those reserves 117 * over all existing zones that contribute dirtyable memory. 118 */ 119 unsigned long dirty_balance_reserve __read_mostly; 120 121 int percpu_pagelist_fraction; 122 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 123 124 #ifdef CONFIG_PM_SLEEP 125 /* 126 * The following functions are used by the suspend/hibernate code to temporarily 127 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 128 * while devices are suspended. To avoid races with the suspend/hibernate code, 129 * they should always be called with pm_mutex held (gfp_allowed_mask also should 130 * only be modified with pm_mutex held, unless the suspend/hibernate code is 131 * guaranteed not to run in parallel with that modification). 132 */ 133 134 static gfp_t saved_gfp_mask; 135 136 void pm_restore_gfp_mask(void) 137 { 138 WARN_ON(!mutex_is_locked(&pm_mutex)); 139 if (saved_gfp_mask) { 140 gfp_allowed_mask = saved_gfp_mask; 141 saved_gfp_mask = 0; 142 } 143 } 144 145 void pm_restrict_gfp_mask(void) 146 { 147 WARN_ON(!mutex_is_locked(&pm_mutex)); 148 WARN_ON(saved_gfp_mask); 149 saved_gfp_mask = gfp_allowed_mask; 150 gfp_allowed_mask &= ~GFP_IOFS; 151 } 152 153 bool pm_suspended_storage(void) 154 { 155 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS) 156 return false; 157 return true; 158 } 159 #endif /* CONFIG_PM_SLEEP */ 160 161 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 162 int pageblock_order __read_mostly; 163 #endif 164 165 static void __free_pages_ok(struct page *page, unsigned int order); 166 167 /* 168 * results with 256, 32 in the lowmem_reserve sysctl: 169 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 170 * 1G machine -> (16M dma, 784M normal, 224M high) 171 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 172 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 173 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 174 * 175 * TBD: should special case ZONE_DMA32 machines here - in those we normally 176 * don't need any ZONE_NORMAL reservation 177 */ 178 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 179 #ifdef CONFIG_ZONE_DMA 180 256, 181 #endif 182 #ifdef CONFIG_ZONE_DMA32 183 256, 184 #endif 185 #ifdef CONFIG_HIGHMEM 186 32, 187 #endif 188 32, 189 }; 190 191 EXPORT_SYMBOL(totalram_pages); 192 193 static char * const zone_names[MAX_NR_ZONES] = { 194 #ifdef CONFIG_ZONE_DMA 195 "DMA", 196 #endif 197 #ifdef CONFIG_ZONE_DMA32 198 "DMA32", 199 #endif 200 "Normal", 201 #ifdef CONFIG_HIGHMEM 202 "HighMem", 203 #endif 204 "Movable", 205 }; 206 207 int min_free_kbytes = 1024; 208 int user_min_free_kbytes = -1; 209 210 static unsigned long __meminitdata nr_kernel_pages; 211 static unsigned long __meminitdata nr_all_pages; 212 static unsigned long __meminitdata dma_reserve; 213 214 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 215 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 216 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 217 static unsigned long __initdata required_kernelcore; 218 static unsigned long __initdata required_movablecore; 219 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 220 221 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 222 int movable_zone; 223 EXPORT_SYMBOL(movable_zone); 224 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 225 226 #if MAX_NUMNODES > 1 227 int nr_node_ids __read_mostly = MAX_NUMNODES; 228 int nr_online_nodes __read_mostly = 1; 229 EXPORT_SYMBOL(nr_node_ids); 230 EXPORT_SYMBOL(nr_online_nodes); 231 #endif 232 233 int page_group_by_mobility_disabled __read_mostly; 234 235 void set_pageblock_migratetype(struct page *page, int migratetype) 236 { 237 if (unlikely(page_group_by_mobility_disabled && 238 migratetype < MIGRATE_PCPTYPES)) 239 migratetype = MIGRATE_UNMOVABLE; 240 241 set_pageblock_flags_group(page, (unsigned long)migratetype, 242 PB_migrate, PB_migrate_end); 243 } 244 245 bool oom_killer_disabled __read_mostly; 246 247 #ifdef CONFIG_DEBUG_VM 248 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 249 { 250 int ret = 0; 251 unsigned seq; 252 unsigned long pfn = page_to_pfn(page); 253 unsigned long sp, start_pfn; 254 255 do { 256 seq = zone_span_seqbegin(zone); 257 start_pfn = zone->zone_start_pfn; 258 sp = zone->spanned_pages; 259 if (!zone_spans_pfn(zone, pfn)) 260 ret = 1; 261 } while (zone_span_seqretry(zone, seq)); 262 263 if (ret) 264 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 265 pfn, zone_to_nid(zone), zone->name, 266 start_pfn, start_pfn + sp); 267 268 return ret; 269 } 270 271 static int page_is_consistent(struct zone *zone, struct page *page) 272 { 273 if (!pfn_valid_within(page_to_pfn(page))) 274 return 0; 275 if (zone != page_zone(page)) 276 return 0; 277 278 return 1; 279 } 280 /* 281 * Temporary debugging check for pages not lying within a given zone. 282 */ 283 static int bad_range(struct zone *zone, struct page *page) 284 { 285 if (page_outside_zone_boundaries(zone, page)) 286 return 1; 287 if (!page_is_consistent(zone, page)) 288 return 1; 289 290 return 0; 291 } 292 #else 293 static inline int bad_range(struct zone *zone, struct page *page) 294 { 295 return 0; 296 } 297 #endif 298 299 static void bad_page(struct page *page, const char *reason, 300 unsigned long bad_flags) 301 { 302 static unsigned long resume; 303 static unsigned long nr_shown; 304 static unsigned long nr_unshown; 305 306 /* Don't complain about poisoned pages */ 307 if (PageHWPoison(page)) { 308 page_mapcount_reset(page); /* remove PageBuddy */ 309 return; 310 } 311 312 /* 313 * Allow a burst of 60 reports, then keep quiet for that minute; 314 * or allow a steady drip of one report per second. 315 */ 316 if (nr_shown == 60) { 317 if (time_before(jiffies, resume)) { 318 nr_unshown++; 319 goto out; 320 } 321 if (nr_unshown) { 322 printk(KERN_ALERT 323 "BUG: Bad page state: %lu messages suppressed\n", 324 nr_unshown); 325 nr_unshown = 0; 326 } 327 nr_shown = 0; 328 } 329 if (nr_shown++ == 0) 330 resume = jiffies + 60 * HZ; 331 332 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", 333 current->comm, page_to_pfn(page)); 334 dump_page_badflags(page, reason, bad_flags); 335 336 print_modules(); 337 dump_stack(); 338 out: 339 /* Leave bad fields for debug, except PageBuddy could make trouble */ 340 page_mapcount_reset(page); /* remove PageBuddy */ 341 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 342 } 343 344 /* 345 * Higher-order pages are called "compound pages". They are structured thusly: 346 * 347 * The first PAGE_SIZE page is called the "head page". 348 * 349 * The remaining PAGE_SIZE pages are called "tail pages". 350 * 351 * All pages have PG_compound set. All tail pages have their ->first_page 352 * pointing at the head page. 353 * 354 * The first tail page's ->lru.next holds the address of the compound page's 355 * put_page() function. Its ->lru.prev holds the order of allocation. 356 * This usage means that zero-order pages may not be compound. 357 */ 358 359 static void free_compound_page(struct page *page) 360 { 361 __free_pages_ok(page, compound_order(page)); 362 } 363 364 void prep_compound_page(struct page *page, unsigned long order) 365 { 366 int i; 367 int nr_pages = 1 << order; 368 369 set_compound_page_dtor(page, free_compound_page); 370 set_compound_order(page, order); 371 __SetPageHead(page); 372 for (i = 1; i < nr_pages; i++) { 373 struct page *p = page + i; 374 set_page_count(p, 0); 375 p->first_page = page; 376 /* Make sure p->first_page is always valid for PageTail() */ 377 smp_wmb(); 378 __SetPageTail(p); 379 } 380 } 381 382 /* update __split_huge_page_refcount if you change this function */ 383 static int destroy_compound_page(struct page *page, unsigned long order) 384 { 385 int i; 386 int nr_pages = 1 << order; 387 int bad = 0; 388 389 if (unlikely(compound_order(page) != order)) { 390 bad_page(page, "wrong compound order", 0); 391 bad++; 392 } 393 394 __ClearPageHead(page); 395 396 for (i = 1; i < nr_pages; i++) { 397 struct page *p = page + i; 398 399 if (unlikely(!PageTail(p))) { 400 bad_page(page, "PageTail not set", 0); 401 bad++; 402 } else if (unlikely(p->first_page != page)) { 403 bad_page(page, "first_page not consistent", 0); 404 bad++; 405 } 406 __ClearPageTail(p); 407 } 408 409 return bad; 410 } 411 412 static inline void prep_zero_page(struct page *page, unsigned int order, 413 gfp_t gfp_flags) 414 { 415 int i; 416 417 /* 418 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 419 * and __GFP_HIGHMEM from hard or soft interrupt context. 420 */ 421 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 422 for (i = 0; i < (1 << order); i++) 423 clear_highpage(page + i); 424 } 425 426 #ifdef CONFIG_DEBUG_PAGEALLOC 427 unsigned int _debug_guardpage_minorder; 428 429 static int __init debug_guardpage_minorder_setup(char *buf) 430 { 431 unsigned long res; 432 433 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 434 printk(KERN_ERR "Bad debug_guardpage_minorder value\n"); 435 return 0; 436 } 437 _debug_guardpage_minorder = res; 438 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res); 439 return 0; 440 } 441 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup); 442 443 static inline void set_page_guard_flag(struct page *page) 444 { 445 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 446 } 447 448 static inline void clear_page_guard_flag(struct page *page) 449 { 450 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 451 } 452 #else 453 static inline void set_page_guard_flag(struct page *page) { } 454 static inline void clear_page_guard_flag(struct page *page) { } 455 #endif 456 457 static inline void set_page_order(struct page *page, unsigned int order) 458 { 459 set_page_private(page, order); 460 __SetPageBuddy(page); 461 } 462 463 static inline void rmv_page_order(struct page *page) 464 { 465 __ClearPageBuddy(page); 466 set_page_private(page, 0); 467 } 468 469 /* 470 * Locate the struct page for both the matching buddy in our 471 * pair (buddy1) and the combined O(n+1) page they form (page). 472 * 473 * 1) Any buddy B1 will have an order O twin B2 which satisfies 474 * the following equation: 475 * B2 = B1 ^ (1 << O) 476 * For example, if the starting buddy (buddy2) is #8 its order 477 * 1 buddy is #10: 478 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 479 * 480 * 2) Any buddy B will have an order O+1 parent P which 481 * satisfies the following equation: 482 * P = B & ~(1 << O) 483 * 484 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 485 */ 486 static inline unsigned long 487 __find_buddy_index(unsigned long page_idx, unsigned int order) 488 { 489 return page_idx ^ (1 << order); 490 } 491 492 /* 493 * This function checks whether a page is free && is the buddy 494 * we can do coalesce a page and its buddy if 495 * (a) the buddy is not in a hole && 496 * (b) the buddy is in the buddy system && 497 * (c) a page and its buddy have the same order && 498 * (d) a page and its buddy are in the same zone. 499 * 500 * For recording whether a page is in the buddy system, we set ->_mapcount 501 * PAGE_BUDDY_MAPCOUNT_VALUE. 502 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is 503 * serialized by zone->lock. 504 * 505 * For recording page's order, we use page_private(page). 506 */ 507 static inline int page_is_buddy(struct page *page, struct page *buddy, 508 unsigned int order) 509 { 510 if (!pfn_valid_within(page_to_pfn(buddy))) 511 return 0; 512 513 if (page_is_guard(buddy) && page_order(buddy) == order) { 514 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 515 516 if (page_zone_id(page) != page_zone_id(buddy)) 517 return 0; 518 519 return 1; 520 } 521 522 if (PageBuddy(buddy) && page_order(buddy) == order) { 523 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 524 525 /* 526 * zone check is done late to avoid uselessly 527 * calculating zone/node ids for pages that could 528 * never merge. 529 */ 530 if (page_zone_id(page) != page_zone_id(buddy)) 531 return 0; 532 533 return 1; 534 } 535 return 0; 536 } 537 538 /* 539 * Freeing function for a buddy system allocator. 540 * 541 * The concept of a buddy system is to maintain direct-mapped table 542 * (containing bit values) for memory blocks of various "orders". 543 * The bottom level table contains the map for the smallest allocatable 544 * units of memory (here, pages), and each level above it describes 545 * pairs of units from the levels below, hence, "buddies". 546 * At a high level, all that happens here is marking the table entry 547 * at the bottom level available, and propagating the changes upward 548 * as necessary, plus some accounting needed to play nicely with other 549 * parts of the VM system. 550 * At each level, we keep a list of pages, which are heads of continuous 551 * free pages of length of (1 << order) and marked with _mapcount 552 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page) 553 * field. 554 * So when we are allocating or freeing one, we can derive the state of the 555 * other. That is, if we allocate a small block, and both were 556 * free, the remainder of the region must be split into blocks. 557 * If a block is freed, and its buddy is also free, then this 558 * triggers coalescing into a block of larger size. 559 * 560 * -- nyc 561 */ 562 563 static inline void __free_one_page(struct page *page, 564 unsigned long pfn, 565 struct zone *zone, unsigned int order, 566 int migratetype) 567 { 568 unsigned long page_idx; 569 unsigned long combined_idx; 570 unsigned long uninitialized_var(buddy_idx); 571 struct page *buddy; 572 573 VM_BUG_ON(!zone_is_initialized(zone)); 574 575 if (unlikely(PageCompound(page))) 576 if (unlikely(destroy_compound_page(page, order))) 577 return; 578 579 VM_BUG_ON(migratetype == -1); 580 581 page_idx = pfn & ((1 << MAX_ORDER) - 1); 582 583 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page); 584 VM_BUG_ON_PAGE(bad_range(zone, page), page); 585 586 while (order < MAX_ORDER-1) { 587 buddy_idx = __find_buddy_index(page_idx, order); 588 buddy = page + (buddy_idx - page_idx); 589 if (!page_is_buddy(page, buddy, order)) 590 break; 591 /* 592 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 593 * merge with it and move up one order. 594 */ 595 if (page_is_guard(buddy)) { 596 clear_page_guard_flag(buddy); 597 set_page_private(page, 0); 598 __mod_zone_freepage_state(zone, 1 << order, 599 migratetype); 600 } else { 601 list_del(&buddy->lru); 602 zone->free_area[order].nr_free--; 603 rmv_page_order(buddy); 604 } 605 combined_idx = buddy_idx & page_idx; 606 page = page + (combined_idx - page_idx); 607 page_idx = combined_idx; 608 order++; 609 } 610 set_page_order(page, order); 611 612 /* 613 * If this is not the largest possible page, check if the buddy 614 * of the next-highest order is free. If it is, it's possible 615 * that pages are being freed that will coalesce soon. In case, 616 * that is happening, add the free page to the tail of the list 617 * so it's less likely to be used soon and more likely to be merged 618 * as a higher order page 619 */ 620 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { 621 struct page *higher_page, *higher_buddy; 622 combined_idx = buddy_idx & page_idx; 623 higher_page = page + (combined_idx - page_idx); 624 buddy_idx = __find_buddy_index(combined_idx, order + 1); 625 higher_buddy = higher_page + (buddy_idx - combined_idx); 626 if (page_is_buddy(higher_page, higher_buddy, order + 1)) { 627 list_add_tail(&page->lru, 628 &zone->free_area[order].free_list[migratetype]); 629 goto out; 630 } 631 } 632 633 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 634 out: 635 zone->free_area[order].nr_free++; 636 } 637 638 static inline int free_pages_check(struct page *page) 639 { 640 const char *bad_reason = NULL; 641 unsigned long bad_flags = 0; 642 643 if (unlikely(page_mapcount(page))) 644 bad_reason = "nonzero mapcount"; 645 if (unlikely(page->mapping != NULL)) 646 bad_reason = "non-NULL mapping"; 647 if (unlikely(atomic_read(&page->_count) != 0)) 648 bad_reason = "nonzero _count"; 649 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { 650 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 651 bad_flags = PAGE_FLAGS_CHECK_AT_FREE; 652 } 653 if (unlikely(mem_cgroup_bad_page_check(page))) 654 bad_reason = "cgroup check failed"; 655 if (unlikely(bad_reason)) { 656 bad_page(page, bad_reason, bad_flags); 657 return 1; 658 } 659 page_cpupid_reset_last(page); 660 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 661 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 662 return 0; 663 } 664 665 /* 666 * Frees a number of pages from the PCP lists 667 * Assumes all pages on list are in same zone, and of same order. 668 * count is the number of pages to free. 669 * 670 * If the zone was previously in an "all pages pinned" state then look to 671 * see if this freeing clears that state. 672 * 673 * And clear the zone's pages_scanned counter, to hold off the "all pages are 674 * pinned" detection logic. 675 */ 676 static void free_pcppages_bulk(struct zone *zone, int count, 677 struct per_cpu_pages *pcp) 678 { 679 int migratetype = 0; 680 int batch_free = 0; 681 int to_free = count; 682 unsigned long nr_scanned; 683 684 spin_lock(&zone->lock); 685 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED); 686 if (nr_scanned) 687 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned); 688 689 while (to_free) { 690 struct page *page; 691 struct list_head *list; 692 693 /* 694 * Remove pages from lists in a round-robin fashion. A 695 * batch_free count is maintained that is incremented when an 696 * empty list is encountered. This is so more pages are freed 697 * off fuller lists instead of spinning excessively around empty 698 * lists 699 */ 700 do { 701 batch_free++; 702 if (++migratetype == MIGRATE_PCPTYPES) 703 migratetype = 0; 704 list = &pcp->lists[migratetype]; 705 } while (list_empty(list)); 706 707 /* This is the only non-empty list. Free them all. */ 708 if (batch_free == MIGRATE_PCPTYPES) 709 batch_free = to_free; 710 711 do { 712 int mt; /* migratetype of the to-be-freed page */ 713 714 page = list_entry(list->prev, struct page, lru); 715 /* must delete as __free_one_page list manipulates */ 716 list_del(&page->lru); 717 mt = get_freepage_migratetype(page); 718 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ 719 __free_one_page(page, page_to_pfn(page), zone, 0, mt); 720 trace_mm_page_pcpu_drain(page, 0, mt); 721 if (likely(!is_migrate_isolate_page(page))) { 722 __mod_zone_page_state(zone, NR_FREE_PAGES, 1); 723 if (is_migrate_cma(mt)) 724 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1); 725 } 726 } while (--to_free && --batch_free && !list_empty(list)); 727 } 728 spin_unlock(&zone->lock); 729 } 730 731 static void free_one_page(struct zone *zone, 732 struct page *page, unsigned long pfn, 733 unsigned int order, 734 int migratetype) 735 { 736 unsigned long nr_scanned; 737 spin_lock(&zone->lock); 738 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED); 739 if (nr_scanned) 740 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned); 741 742 __free_one_page(page, pfn, zone, order, migratetype); 743 if (unlikely(!is_migrate_isolate(migratetype))) 744 __mod_zone_freepage_state(zone, 1 << order, migratetype); 745 spin_unlock(&zone->lock); 746 } 747 748 static bool free_pages_prepare(struct page *page, unsigned int order) 749 { 750 int i; 751 int bad = 0; 752 753 trace_mm_page_free(page, order); 754 kmemcheck_free_shadow(page, order); 755 756 if (PageAnon(page)) 757 page->mapping = NULL; 758 for (i = 0; i < (1 << order); i++) 759 bad += free_pages_check(page + i); 760 if (bad) 761 return false; 762 763 if (!PageHighMem(page)) { 764 debug_check_no_locks_freed(page_address(page), 765 PAGE_SIZE << order); 766 debug_check_no_obj_freed(page_address(page), 767 PAGE_SIZE << order); 768 } 769 arch_free_page(page, order); 770 kernel_map_pages(page, 1 << order, 0); 771 772 return true; 773 } 774 775 static void __free_pages_ok(struct page *page, unsigned int order) 776 { 777 unsigned long flags; 778 int migratetype; 779 unsigned long pfn = page_to_pfn(page); 780 781 if (!free_pages_prepare(page, order)) 782 return; 783 784 migratetype = get_pfnblock_migratetype(page, pfn); 785 local_irq_save(flags); 786 __count_vm_events(PGFREE, 1 << order); 787 set_freepage_migratetype(page, migratetype); 788 free_one_page(page_zone(page), page, pfn, order, migratetype); 789 local_irq_restore(flags); 790 } 791 792 void __init __free_pages_bootmem(struct page *page, unsigned int order) 793 { 794 unsigned int nr_pages = 1 << order; 795 struct page *p = page; 796 unsigned int loop; 797 798 prefetchw(p); 799 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 800 prefetchw(p + 1); 801 __ClearPageReserved(p); 802 set_page_count(p, 0); 803 } 804 __ClearPageReserved(p); 805 set_page_count(p, 0); 806 807 page_zone(page)->managed_pages += nr_pages; 808 set_page_refcounted(page); 809 __free_pages(page, order); 810 } 811 812 #ifdef CONFIG_CMA 813 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 814 void __init init_cma_reserved_pageblock(struct page *page) 815 { 816 unsigned i = pageblock_nr_pages; 817 struct page *p = page; 818 819 do { 820 __ClearPageReserved(p); 821 set_page_count(p, 0); 822 } while (++p, --i); 823 824 set_pageblock_migratetype(page, MIGRATE_CMA); 825 826 if (pageblock_order >= MAX_ORDER) { 827 i = pageblock_nr_pages; 828 p = page; 829 do { 830 set_page_refcounted(p); 831 __free_pages(p, MAX_ORDER - 1); 832 p += MAX_ORDER_NR_PAGES; 833 } while (i -= MAX_ORDER_NR_PAGES); 834 } else { 835 set_page_refcounted(page); 836 __free_pages(page, pageblock_order); 837 } 838 839 adjust_managed_page_count(page, pageblock_nr_pages); 840 } 841 #endif 842 843 /* 844 * The order of subdivision here is critical for the IO subsystem. 845 * Please do not alter this order without good reasons and regression 846 * testing. Specifically, as large blocks of memory are subdivided, 847 * the order in which smaller blocks are delivered depends on the order 848 * they're subdivided in this function. This is the primary factor 849 * influencing the order in which pages are delivered to the IO 850 * subsystem according to empirical testing, and this is also justified 851 * by considering the behavior of a buddy system containing a single 852 * large block of memory acted on by a series of small allocations. 853 * This behavior is a critical factor in sglist merging's success. 854 * 855 * -- nyc 856 */ 857 static inline void expand(struct zone *zone, struct page *page, 858 int low, int high, struct free_area *area, 859 int migratetype) 860 { 861 unsigned long size = 1 << high; 862 863 while (high > low) { 864 area--; 865 high--; 866 size >>= 1; 867 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 868 869 #ifdef CONFIG_DEBUG_PAGEALLOC 870 if (high < debug_guardpage_minorder()) { 871 /* 872 * Mark as guard pages (or page), that will allow to 873 * merge back to allocator when buddy will be freed. 874 * Corresponding page table entries will not be touched, 875 * pages will stay not present in virtual address space 876 */ 877 INIT_LIST_HEAD(&page[size].lru); 878 set_page_guard_flag(&page[size]); 879 set_page_private(&page[size], high); 880 /* Guard pages are not available for any usage */ 881 __mod_zone_freepage_state(zone, -(1 << high), 882 migratetype); 883 continue; 884 } 885 #endif 886 list_add(&page[size].lru, &area->free_list[migratetype]); 887 area->nr_free++; 888 set_page_order(&page[size], high); 889 } 890 } 891 892 /* 893 * This page is about to be returned from the page allocator 894 */ 895 static inline int check_new_page(struct page *page) 896 { 897 const char *bad_reason = NULL; 898 unsigned long bad_flags = 0; 899 900 if (unlikely(page_mapcount(page))) 901 bad_reason = "nonzero mapcount"; 902 if (unlikely(page->mapping != NULL)) 903 bad_reason = "non-NULL mapping"; 904 if (unlikely(atomic_read(&page->_count) != 0)) 905 bad_reason = "nonzero _count"; 906 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { 907 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; 908 bad_flags = PAGE_FLAGS_CHECK_AT_PREP; 909 } 910 if (unlikely(mem_cgroup_bad_page_check(page))) 911 bad_reason = "cgroup check failed"; 912 if (unlikely(bad_reason)) { 913 bad_page(page, bad_reason, bad_flags); 914 return 1; 915 } 916 return 0; 917 } 918 919 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags) 920 { 921 int i; 922 923 for (i = 0; i < (1 << order); i++) { 924 struct page *p = page + i; 925 if (unlikely(check_new_page(p))) 926 return 1; 927 } 928 929 set_page_private(page, 0); 930 set_page_refcounted(page); 931 932 arch_alloc_page(page, order); 933 kernel_map_pages(page, 1 << order, 1); 934 935 if (gfp_flags & __GFP_ZERO) 936 prep_zero_page(page, order, gfp_flags); 937 938 if (order && (gfp_flags & __GFP_COMP)) 939 prep_compound_page(page, order); 940 941 return 0; 942 } 943 944 /* 945 * Go through the free lists for the given migratetype and remove 946 * the smallest available page from the freelists 947 */ 948 static inline 949 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 950 int migratetype) 951 { 952 unsigned int current_order; 953 struct free_area *area; 954 struct page *page; 955 956 /* Find a page of the appropriate size in the preferred list */ 957 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 958 area = &(zone->free_area[current_order]); 959 if (list_empty(&area->free_list[migratetype])) 960 continue; 961 962 page = list_entry(area->free_list[migratetype].next, 963 struct page, lru); 964 list_del(&page->lru); 965 rmv_page_order(page); 966 area->nr_free--; 967 expand(zone, page, order, current_order, area, migratetype); 968 set_freepage_migratetype(page, migratetype); 969 return page; 970 } 971 972 return NULL; 973 } 974 975 976 /* 977 * This array describes the order lists are fallen back to when 978 * the free lists for the desirable migrate type are depleted 979 */ 980 static int fallbacks[MIGRATE_TYPES][4] = { 981 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 982 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 983 #ifdef CONFIG_CMA 984 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 985 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */ 986 #else 987 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 988 #endif 989 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */ 990 #ifdef CONFIG_MEMORY_ISOLATION 991 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */ 992 #endif 993 }; 994 995 /* 996 * Move the free pages in a range to the free lists of the requested type. 997 * Note that start_page and end_pages are not aligned on a pageblock 998 * boundary. If alignment is required, use move_freepages_block() 999 */ 1000 int move_freepages(struct zone *zone, 1001 struct page *start_page, struct page *end_page, 1002 int migratetype) 1003 { 1004 struct page *page; 1005 unsigned long order; 1006 int pages_moved = 0; 1007 1008 #ifndef CONFIG_HOLES_IN_ZONE 1009 /* 1010 * page_zone is not safe to call in this context when 1011 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 1012 * anyway as we check zone boundaries in move_freepages_block(). 1013 * Remove at a later date when no bug reports exist related to 1014 * grouping pages by mobility 1015 */ 1016 VM_BUG_ON(page_zone(start_page) != page_zone(end_page)); 1017 #endif 1018 1019 for (page = start_page; page <= end_page;) { 1020 /* Make sure we are not inadvertently changing nodes */ 1021 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1022 1023 if (!pfn_valid_within(page_to_pfn(page))) { 1024 page++; 1025 continue; 1026 } 1027 1028 if (!PageBuddy(page)) { 1029 page++; 1030 continue; 1031 } 1032 1033 order = page_order(page); 1034 list_move(&page->lru, 1035 &zone->free_area[order].free_list[migratetype]); 1036 set_freepage_migratetype(page, migratetype); 1037 page += 1 << order; 1038 pages_moved += 1 << order; 1039 } 1040 1041 return pages_moved; 1042 } 1043 1044 int move_freepages_block(struct zone *zone, struct page *page, 1045 int migratetype) 1046 { 1047 unsigned long start_pfn, end_pfn; 1048 struct page *start_page, *end_page; 1049 1050 start_pfn = page_to_pfn(page); 1051 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 1052 start_page = pfn_to_page(start_pfn); 1053 end_page = start_page + pageblock_nr_pages - 1; 1054 end_pfn = start_pfn + pageblock_nr_pages - 1; 1055 1056 /* Do not cross zone boundaries */ 1057 if (!zone_spans_pfn(zone, start_pfn)) 1058 start_page = page; 1059 if (!zone_spans_pfn(zone, end_pfn)) 1060 return 0; 1061 1062 return move_freepages(zone, start_page, end_page, migratetype); 1063 } 1064 1065 static void change_pageblock_range(struct page *pageblock_page, 1066 int start_order, int migratetype) 1067 { 1068 int nr_pageblocks = 1 << (start_order - pageblock_order); 1069 1070 while (nr_pageblocks--) { 1071 set_pageblock_migratetype(pageblock_page, migratetype); 1072 pageblock_page += pageblock_nr_pages; 1073 } 1074 } 1075 1076 /* 1077 * If breaking a large block of pages, move all free pages to the preferred 1078 * allocation list. If falling back for a reclaimable kernel allocation, be 1079 * more aggressive about taking ownership of free pages. 1080 * 1081 * On the other hand, never change migration type of MIGRATE_CMA pageblocks 1082 * nor move CMA pages to different free lists. We don't want unmovable pages 1083 * to be allocated from MIGRATE_CMA areas. 1084 * 1085 * Returns the new migratetype of the pageblock (or the same old migratetype 1086 * if it was unchanged). 1087 */ 1088 static int try_to_steal_freepages(struct zone *zone, struct page *page, 1089 int start_type, int fallback_type) 1090 { 1091 int current_order = page_order(page); 1092 1093 /* 1094 * When borrowing from MIGRATE_CMA, we need to release the excess 1095 * buddy pages to CMA itself. We also ensure the freepage_migratetype 1096 * is set to CMA so it is returned to the correct freelist in case 1097 * the page ends up being not actually allocated from the pcp lists. 1098 */ 1099 if (is_migrate_cma(fallback_type)) 1100 return fallback_type; 1101 1102 /* Take ownership for orders >= pageblock_order */ 1103 if (current_order >= pageblock_order) { 1104 change_pageblock_range(page, current_order, start_type); 1105 return start_type; 1106 } 1107 1108 if (current_order >= pageblock_order / 2 || 1109 start_type == MIGRATE_RECLAIMABLE || 1110 page_group_by_mobility_disabled) { 1111 int pages; 1112 1113 pages = move_freepages_block(zone, page, start_type); 1114 1115 /* Claim the whole block if over half of it is free */ 1116 if (pages >= (1 << (pageblock_order-1)) || 1117 page_group_by_mobility_disabled) { 1118 1119 set_pageblock_migratetype(page, start_type); 1120 return start_type; 1121 } 1122 1123 } 1124 1125 return fallback_type; 1126 } 1127 1128 /* Remove an element from the buddy allocator from the fallback list */ 1129 static inline struct page * 1130 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype) 1131 { 1132 struct free_area *area; 1133 unsigned int current_order; 1134 struct page *page; 1135 int migratetype, new_type, i; 1136 1137 /* Find the largest possible block of pages in the other list */ 1138 for (current_order = MAX_ORDER-1; 1139 current_order >= order && current_order <= MAX_ORDER-1; 1140 --current_order) { 1141 for (i = 0;; i++) { 1142 migratetype = fallbacks[start_migratetype][i]; 1143 1144 /* MIGRATE_RESERVE handled later if necessary */ 1145 if (migratetype == MIGRATE_RESERVE) 1146 break; 1147 1148 area = &(zone->free_area[current_order]); 1149 if (list_empty(&area->free_list[migratetype])) 1150 continue; 1151 1152 page = list_entry(area->free_list[migratetype].next, 1153 struct page, lru); 1154 area->nr_free--; 1155 1156 new_type = try_to_steal_freepages(zone, page, 1157 start_migratetype, 1158 migratetype); 1159 1160 /* Remove the page from the freelists */ 1161 list_del(&page->lru); 1162 rmv_page_order(page); 1163 1164 expand(zone, page, order, current_order, area, 1165 new_type); 1166 /* The freepage_migratetype may differ from pageblock's 1167 * migratetype depending on the decisions in 1168 * try_to_steal_freepages. This is OK as long as it does 1169 * not differ for MIGRATE_CMA type. 1170 */ 1171 set_freepage_migratetype(page, new_type); 1172 1173 trace_mm_page_alloc_extfrag(page, order, current_order, 1174 start_migratetype, migratetype, new_type); 1175 1176 return page; 1177 } 1178 } 1179 1180 return NULL; 1181 } 1182 1183 /* 1184 * Do the hard work of removing an element from the buddy allocator. 1185 * Call me with the zone->lock already held. 1186 */ 1187 static struct page *__rmqueue(struct zone *zone, unsigned int order, 1188 int migratetype) 1189 { 1190 struct page *page; 1191 1192 retry_reserve: 1193 page = __rmqueue_smallest(zone, order, migratetype); 1194 1195 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { 1196 page = __rmqueue_fallback(zone, order, migratetype); 1197 1198 /* 1199 * Use MIGRATE_RESERVE rather than fail an allocation. goto 1200 * is used because __rmqueue_smallest is an inline function 1201 * and we want just one call site 1202 */ 1203 if (!page) { 1204 migratetype = MIGRATE_RESERVE; 1205 goto retry_reserve; 1206 } 1207 } 1208 1209 trace_mm_page_alloc_zone_locked(page, order, migratetype); 1210 return page; 1211 } 1212 1213 /* 1214 * Obtain a specified number of elements from the buddy allocator, all under 1215 * a single hold of the lock, for efficiency. Add them to the supplied list. 1216 * Returns the number of new pages which were placed at *list. 1217 */ 1218 static int rmqueue_bulk(struct zone *zone, unsigned int order, 1219 unsigned long count, struct list_head *list, 1220 int migratetype, bool cold) 1221 { 1222 int i; 1223 1224 spin_lock(&zone->lock); 1225 for (i = 0; i < count; ++i) { 1226 struct page *page = __rmqueue(zone, order, migratetype); 1227 if (unlikely(page == NULL)) 1228 break; 1229 1230 /* 1231 * Split buddy pages returned by expand() are received here 1232 * in physical page order. The page is added to the callers and 1233 * list and the list head then moves forward. From the callers 1234 * perspective, the linked list is ordered by page number in 1235 * some conditions. This is useful for IO devices that can 1236 * merge IO requests if the physical pages are ordered 1237 * properly. 1238 */ 1239 if (likely(!cold)) 1240 list_add(&page->lru, list); 1241 else 1242 list_add_tail(&page->lru, list); 1243 list = &page->lru; 1244 if (is_migrate_cma(get_freepage_migratetype(page))) 1245 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1246 -(1 << order)); 1247 } 1248 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 1249 spin_unlock(&zone->lock); 1250 return i; 1251 } 1252 1253 #ifdef CONFIG_NUMA 1254 /* 1255 * Called from the vmstat counter updater to drain pagesets of this 1256 * currently executing processor on remote nodes after they have 1257 * expired. 1258 * 1259 * Note that this function must be called with the thread pinned to 1260 * a single processor. 1261 */ 1262 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 1263 { 1264 unsigned long flags; 1265 int to_drain, batch; 1266 1267 local_irq_save(flags); 1268 batch = ACCESS_ONCE(pcp->batch); 1269 to_drain = min(pcp->count, batch); 1270 if (to_drain > 0) { 1271 free_pcppages_bulk(zone, to_drain, pcp); 1272 pcp->count -= to_drain; 1273 } 1274 local_irq_restore(flags); 1275 } 1276 #endif 1277 1278 /* 1279 * Drain pages of the indicated processor. 1280 * 1281 * The processor must either be the current processor and the 1282 * thread pinned to the current processor or a processor that 1283 * is not online. 1284 */ 1285 static void drain_pages(unsigned int cpu) 1286 { 1287 unsigned long flags; 1288 struct zone *zone; 1289 1290 for_each_populated_zone(zone) { 1291 struct per_cpu_pageset *pset; 1292 struct per_cpu_pages *pcp; 1293 1294 local_irq_save(flags); 1295 pset = per_cpu_ptr(zone->pageset, cpu); 1296 1297 pcp = &pset->pcp; 1298 if (pcp->count) { 1299 free_pcppages_bulk(zone, pcp->count, pcp); 1300 pcp->count = 0; 1301 } 1302 local_irq_restore(flags); 1303 } 1304 } 1305 1306 /* 1307 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 1308 */ 1309 void drain_local_pages(void *arg) 1310 { 1311 drain_pages(smp_processor_id()); 1312 } 1313 1314 /* 1315 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 1316 * 1317 * Note that this code is protected against sending an IPI to an offline 1318 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs: 1319 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but 1320 * nothing keeps CPUs from showing up after we populated the cpumask and 1321 * before the call to on_each_cpu_mask(). 1322 */ 1323 void drain_all_pages(void) 1324 { 1325 int cpu; 1326 struct per_cpu_pageset *pcp; 1327 struct zone *zone; 1328 1329 /* 1330 * Allocate in the BSS so we wont require allocation in 1331 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 1332 */ 1333 static cpumask_t cpus_with_pcps; 1334 1335 /* 1336 * We don't care about racing with CPU hotplug event 1337 * as offline notification will cause the notified 1338 * cpu to drain that CPU pcps and on_each_cpu_mask 1339 * disables preemption as part of its processing 1340 */ 1341 for_each_online_cpu(cpu) { 1342 bool has_pcps = false; 1343 for_each_populated_zone(zone) { 1344 pcp = per_cpu_ptr(zone->pageset, cpu); 1345 if (pcp->pcp.count) { 1346 has_pcps = true; 1347 break; 1348 } 1349 } 1350 if (has_pcps) 1351 cpumask_set_cpu(cpu, &cpus_with_pcps); 1352 else 1353 cpumask_clear_cpu(cpu, &cpus_with_pcps); 1354 } 1355 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1); 1356 } 1357 1358 #ifdef CONFIG_HIBERNATION 1359 1360 void mark_free_pages(struct zone *zone) 1361 { 1362 unsigned long pfn, max_zone_pfn; 1363 unsigned long flags; 1364 unsigned int order, t; 1365 struct list_head *curr; 1366 1367 if (zone_is_empty(zone)) 1368 return; 1369 1370 spin_lock_irqsave(&zone->lock, flags); 1371 1372 max_zone_pfn = zone_end_pfn(zone); 1373 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1374 if (pfn_valid(pfn)) { 1375 struct page *page = pfn_to_page(pfn); 1376 1377 if (!swsusp_page_is_forbidden(page)) 1378 swsusp_unset_page_free(page); 1379 } 1380 1381 for_each_migratetype_order(order, t) { 1382 list_for_each(curr, &zone->free_area[order].free_list[t]) { 1383 unsigned long i; 1384 1385 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 1386 for (i = 0; i < (1UL << order); i++) 1387 swsusp_set_page_free(pfn_to_page(pfn + i)); 1388 } 1389 } 1390 spin_unlock_irqrestore(&zone->lock, flags); 1391 } 1392 #endif /* CONFIG_PM */ 1393 1394 /* 1395 * Free a 0-order page 1396 * cold == true ? free a cold page : free a hot page 1397 */ 1398 void free_hot_cold_page(struct page *page, bool cold) 1399 { 1400 struct zone *zone = page_zone(page); 1401 struct per_cpu_pages *pcp; 1402 unsigned long flags; 1403 unsigned long pfn = page_to_pfn(page); 1404 int migratetype; 1405 1406 if (!free_pages_prepare(page, 0)) 1407 return; 1408 1409 migratetype = get_pfnblock_migratetype(page, pfn); 1410 set_freepage_migratetype(page, migratetype); 1411 local_irq_save(flags); 1412 __count_vm_event(PGFREE); 1413 1414 /* 1415 * We only track unmovable, reclaimable and movable on pcp lists. 1416 * Free ISOLATE pages back to the allocator because they are being 1417 * offlined but treat RESERVE as movable pages so we can get those 1418 * areas back if necessary. Otherwise, we may have to free 1419 * excessively into the page allocator 1420 */ 1421 if (migratetype >= MIGRATE_PCPTYPES) { 1422 if (unlikely(is_migrate_isolate(migratetype))) { 1423 free_one_page(zone, page, pfn, 0, migratetype); 1424 goto out; 1425 } 1426 migratetype = MIGRATE_MOVABLE; 1427 } 1428 1429 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1430 if (!cold) 1431 list_add(&page->lru, &pcp->lists[migratetype]); 1432 else 1433 list_add_tail(&page->lru, &pcp->lists[migratetype]); 1434 pcp->count++; 1435 if (pcp->count >= pcp->high) { 1436 unsigned long batch = ACCESS_ONCE(pcp->batch); 1437 free_pcppages_bulk(zone, batch, pcp); 1438 pcp->count -= batch; 1439 } 1440 1441 out: 1442 local_irq_restore(flags); 1443 } 1444 1445 /* 1446 * Free a list of 0-order pages 1447 */ 1448 void free_hot_cold_page_list(struct list_head *list, bool cold) 1449 { 1450 struct page *page, *next; 1451 1452 list_for_each_entry_safe(page, next, list, lru) { 1453 trace_mm_page_free_batched(page, cold); 1454 free_hot_cold_page(page, cold); 1455 } 1456 } 1457 1458 /* 1459 * split_page takes a non-compound higher-order page, and splits it into 1460 * n (1<<order) sub-pages: page[0..n] 1461 * Each sub-page must be freed individually. 1462 * 1463 * Note: this is probably too low level an operation for use in drivers. 1464 * Please consult with lkml before using this in your driver. 1465 */ 1466 void split_page(struct page *page, unsigned int order) 1467 { 1468 int i; 1469 1470 VM_BUG_ON_PAGE(PageCompound(page), page); 1471 VM_BUG_ON_PAGE(!page_count(page), page); 1472 1473 #ifdef CONFIG_KMEMCHECK 1474 /* 1475 * Split shadow pages too, because free(page[0]) would 1476 * otherwise free the whole shadow. 1477 */ 1478 if (kmemcheck_page_is_tracked(page)) 1479 split_page(virt_to_page(page[0].shadow), order); 1480 #endif 1481 1482 for (i = 1; i < (1 << order); i++) 1483 set_page_refcounted(page + i); 1484 } 1485 EXPORT_SYMBOL_GPL(split_page); 1486 1487 static int __isolate_free_page(struct page *page, unsigned int order) 1488 { 1489 unsigned long watermark; 1490 struct zone *zone; 1491 int mt; 1492 1493 BUG_ON(!PageBuddy(page)); 1494 1495 zone = page_zone(page); 1496 mt = get_pageblock_migratetype(page); 1497 1498 if (!is_migrate_isolate(mt)) { 1499 /* Obey watermarks as if the page was being allocated */ 1500 watermark = low_wmark_pages(zone) + (1 << order); 1501 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 1502 return 0; 1503 1504 __mod_zone_freepage_state(zone, -(1UL << order), mt); 1505 } 1506 1507 /* Remove page from free list */ 1508 list_del(&page->lru); 1509 zone->free_area[order].nr_free--; 1510 rmv_page_order(page); 1511 1512 /* Set the pageblock if the isolated page is at least a pageblock */ 1513 if (order >= pageblock_order - 1) { 1514 struct page *endpage = page + (1 << order) - 1; 1515 for (; page < endpage; page += pageblock_nr_pages) { 1516 int mt = get_pageblock_migratetype(page); 1517 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)) 1518 set_pageblock_migratetype(page, 1519 MIGRATE_MOVABLE); 1520 } 1521 } 1522 1523 return 1UL << order; 1524 } 1525 1526 /* 1527 * Similar to split_page except the page is already free. As this is only 1528 * being used for migration, the migratetype of the block also changes. 1529 * As this is called with interrupts disabled, the caller is responsible 1530 * for calling arch_alloc_page() and kernel_map_page() after interrupts 1531 * are enabled. 1532 * 1533 * Note: this is probably too low level an operation for use in drivers. 1534 * Please consult with lkml before using this in your driver. 1535 */ 1536 int split_free_page(struct page *page) 1537 { 1538 unsigned int order; 1539 int nr_pages; 1540 1541 order = page_order(page); 1542 1543 nr_pages = __isolate_free_page(page, order); 1544 if (!nr_pages) 1545 return 0; 1546 1547 /* Split into individual pages */ 1548 set_page_refcounted(page); 1549 split_page(page, order); 1550 return nr_pages; 1551 } 1552 1553 /* 1554 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 1555 * we cheat by calling it from here, in the order > 0 path. Saves a branch 1556 * or two. 1557 */ 1558 static inline 1559 struct page *buffered_rmqueue(struct zone *preferred_zone, 1560 struct zone *zone, unsigned int order, 1561 gfp_t gfp_flags, int migratetype) 1562 { 1563 unsigned long flags; 1564 struct page *page; 1565 bool cold = ((gfp_flags & __GFP_COLD) != 0); 1566 1567 again: 1568 if (likely(order == 0)) { 1569 struct per_cpu_pages *pcp; 1570 struct list_head *list; 1571 1572 local_irq_save(flags); 1573 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1574 list = &pcp->lists[migratetype]; 1575 if (list_empty(list)) { 1576 pcp->count += rmqueue_bulk(zone, 0, 1577 pcp->batch, list, 1578 migratetype, cold); 1579 if (unlikely(list_empty(list))) 1580 goto failed; 1581 } 1582 1583 if (cold) 1584 page = list_entry(list->prev, struct page, lru); 1585 else 1586 page = list_entry(list->next, struct page, lru); 1587 1588 list_del(&page->lru); 1589 pcp->count--; 1590 } else { 1591 if (unlikely(gfp_flags & __GFP_NOFAIL)) { 1592 /* 1593 * __GFP_NOFAIL is not to be used in new code. 1594 * 1595 * All __GFP_NOFAIL callers should be fixed so that they 1596 * properly detect and handle allocation failures. 1597 * 1598 * We most definitely don't want callers attempting to 1599 * allocate greater than order-1 page units with 1600 * __GFP_NOFAIL. 1601 */ 1602 WARN_ON_ONCE(order > 1); 1603 } 1604 spin_lock_irqsave(&zone->lock, flags); 1605 page = __rmqueue(zone, order, migratetype); 1606 spin_unlock(&zone->lock); 1607 if (!page) 1608 goto failed; 1609 __mod_zone_freepage_state(zone, -(1 << order), 1610 get_freepage_migratetype(page)); 1611 } 1612 1613 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order)); 1614 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 && 1615 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) 1616 set_bit(ZONE_FAIR_DEPLETED, &zone->flags); 1617 1618 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1619 zone_statistics(preferred_zone, zone, gfp_flags); 1620 local_irq_restore(flags); 1621 1622 VM_BUG_ON_PAGE(bad_range(zone, page), page); 1623 if (prep_new_page(page, order, gfp_flags)) 1624 goto again; 1625 return page; 1626 1627 failed: 1628 local_irq_restore(flags); 1629 return NULL; 1630 } 1631 1632 #ifdef CONFIG_FAIL_PAGE_ALLOC 1633 1634 static struct { 1635 struct fault_attr attr; 1636 1637 u32 ignore_gfp_highmem; 1638 u32 ignore_gfp_wait; 1639 u32 min_order; 1640 } fail_page_alloc = { 1641 .attr = FAULT_ATTR_INITIALIZER, 1642 .ignore_gfp_wait = 1, 1643 .ignore_gfp_highmem = 1, 1644 .min_order = 1, 1645 }; 1646 1647 static int __init setup_fail_page_alloc(char *str) 1648 { 1649 return setup_fault_attr(&fail_page_alloc.attr, str); 1650 } 1651 __setup("fail_page_alloc=", setup_fail_page_alloc); 1652 1653 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1654 { 1655 if (order < fail_page_alloc.min_order) 1656 return false; 1657 if (gfp_mask & __GFP_NOFAIL) 1658 return false; 1659 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1660 return false; 1661 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1662 return false; 1663 1664 return should_fail(&fail_page_alloc.attr, 1 << order); 1665 } 1666 1667 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1668 1669 static int __init fail_page_alloc_debugfs(void) 1670 { 1671 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1672 struct dentry *dir; 1673 1674 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 1675 &fail_page_alloc.attr); 1676 if (IS_ERR(dir)) 1677 return PTR_ERR(dir); 1678 1679 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 1680 &fail_page_alloc.ignore_gfp_wait)) 1681 goto fail; 1682 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1683 &fail_page_alloc.ignore_gfp_highmem)) 1684 goto fail; 1685 if (!debugfs_create_u32("min-order", mode, dir, 1686 &fail_page_alloc.min_order)) 1687 goto fail; 1688 1689 return 0; 1690 fail: 1691 debugfs_remove_recursive(dir); 1692 1693 return -ENOMEM; 1694 } 1695 1696 late_initcall(fail_page_alloc_debugfs); 1697 1698 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1699 1700 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1701 1702 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1703 { 1704 return false; 1705 } 1706 1707 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1708 1709 /* 1710 * Return true if free pages are above 'mark'. This takes into account the order 1711 * of the allocation. 1712 */ 1713 static bool __zone_watermark_ok(struct zone *z, unsigned int order, 1714 unsigned long mark, int classzone_idx, int alloc_flags, 1715 long free_pages) 1716 { 1717 /* free_pages my go negative - that's OK */ 1718 long min = mark; 1719 int o; 1720 long free_cma = 0; 1721 1722 free_pages -= (1 << order) - 1; 1723 if (alloc_flags & ALLOC_HIGH) 1724 min -= min / 2; 1725 if (alloc_flags & ALLOC_HARDER) 1726 min -= min / 4; 1727 #ifdef CONFIG_CMA 1728 /* If allocation can't use CMA areas don't use free CMA pages */ 1729 if (!(alloc_flags & ALLOC_CMA)) 1730 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES); 1731 #endif 1732 1733 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx]) 1734 return false; 1735 for (o = 0; o < order; o++) { 1736 /* At the next order, this order's pages become unavailable */ 1737 free_pages -= z->free_area[o].nr_free << o; 1738 1739 /* Require fewer higher order pages to be free */ 1740 min >>= 1; 1741 1742 if (free_pages <= min) 1743 return false; 1744 } 1745 return true; 1746 } 1747 1748 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 1749 int classzone_idx, int alloc_flags) 1750 { 1751 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1752 zone_page_state(z, NR_FREE_PAGES)); 1753 } 1754 1755 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 1756 unsigned long mark, int classzone_idx, int alloc_flags) 1757 { 1758 long free_pages = zone_page_state(z, NR_FREE_PAGES); 1759 1760 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 1761 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 1762 1763 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1764 free_pages); 1765 } 1766 1767 #ifdef CONFIG_NUMA 1768 /* 1769 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1770 * skip over zones that are not allowed by the cpuset, or that have 1771 * been recently (in last second) found to be nearly full. See further 1772 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1773 * that have to skip over a lot of full or unallowed zones. 1774 * 1775 * If the zonelist cache is present in the passed zonelist, then 1776 * returns a pointer to the allowed node mask (either the current 1777 * tasks mems_allowed, or node_states[N_MEMORY].) 1778 * 1779 * If the zonelist cache is not available for this zonelist, does 1780 * nothing and returns NULL. 1781 * 1782 * If the fullzones BITMAP in the zonelist cache is stale (more than 1783 * a second since last zap'd) then we zap it out (clear its bits.) 1784 * 1785 * We hold off even calling zlc_setup, until after we've checked the 1786 * first zone in the zonelist, on the theory that most allocations will 1787 * be satisfied from that first zone, so best to examine that zone as 1788 * quickly as we can. 1789 */ 1790 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1791 { 1792 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1793 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1794 1795 zlc = zonelist->zlcache_ptr; 1796 if (!zlc) 1797 return NULL; 1798 1799 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1800 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1801 zlc->last_full_zap = jiffies; 1802 } 1803 1804 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1805 &cpuset_current_mems_allowed : 1806 &node_states[N_MEMORY]; 1807 return allowednodes; 1808 } 1809 1810 /* 1811 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1812 * if it is worth looking at further for free memory: 1813 * 1) Check that the zone isn't thought to be full (doesn't have its 1814 * bit set in the zonelist_cache fullzones BITMAP). 1815 * 2) Check that the zones node (obtained from the zonelist_cache 1816 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1817 * Return true (non-zero) if zone is worth looking at further, or 1818 * else return false (zero) if it is not. 1819 * 1820 * This check -ignores- the distinction between various watermarks, 1821 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1822 * found to be full for any variation of these watermarks, it will 1823 * be considered full for up to one second by all requests, unless 1824 * we are so low on memory on all allowed nodes that we are forced 1825 * into the second scan of the zonelist. 1826 * 1827 * In the second scan we ignore this zonelist cache and exactly 1828 * apply the watermarks to all zones, even it is slower to do so. 1829 * We are low on memory in the second scan, and should leave no stone 1830 * unturned looking for a free page. 1831 */ 1832 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1833 nodemask_t *allowednodes) 1834 { 1835 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1836 int i; /* index of *z in zonelist zones */ 1837 int n; /* node that zone *z is on */ 1838 1839 zlc = zonelist->zlcache_ptr; 1840 if (!zlc) 1841 return 1; 1842 1843 i = z - zonelist->_zonerefs; 1844 n = zlc->z_to_n[i]; 1845 1846 /* This zone is worth trying if it is allowed but not full */ 1847 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1848 } 1849 1850 /* 1851 * Given 'z' scanning a zonelist, set the corresponding bit in 1852 * zlc->fullzones, so that subsequent attempts to allocate a page 1853 * from that zone don't waste time re-examining it. 1854 */ 1855 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1856 { 1857 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1858 int i; /* index of *z in zonelist zones */ 1859 1860 zlc = zonelist->zlcache_ptr; 1861 if (!zlc) 1862 return; 1863 1864 i = z - zonelist->_zonerefs; 1865 1866 set_bit(i, zlc->fullzones); 1867 } 1868 1869 /* 1870 * clear all zones full, called after direct reclaim makes progress so that 1871 * a zone that was recently full is not skipped over for up to a second 1872 */ 1873 static void zlc_clear_zones_full(struct zonelist *zonelist) 1874 { 1875 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1876 1877 zlc = zonelist->zlcache_ptr; 1878 if (!zlc) 1879 return; 1880 1881 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1882 } 1883 1884 static bool zone_local(struct zone *local_zone, struct zone *zone) 1885 { 1886 return local_zone->node == zone->node; 1887 } 1888 1889 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 1890 { 1891 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) < 1892 RECLAIM_DISTANCE; 1893 } 1894 1895 #else /* CONFIG_NUMA */ 1896 1897 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1898 { 1899 return NULL; 1900 } 1901 1902 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1903 nodemask_t *allowednodes) 1904 { 1905 return 1; 1906 } 1907 1908 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1909 { 1910 } 1911 1912 static void zlc_clear_zones_full(struct zonelist *zonelist) 1913 { 1914 } 1915 1916 static bool zone_local(struct zone *local_zone, struct zone *zone) 1917 { 1918 return true; 1919 } 1920 1921 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 1922 { 1923 return true; 1924 } 1925 1926 #endif /* CONFIG_NUMA */ 1927 1928 static void reset_alloc_batches(struct zone *preferred_zone) 1929 { 1930 struct zone *zone = preferred_zone->zone_pgdat->node_zones; 1931 1932 do { 1933 mod_zone_page_state(zone, NR_ALLOC_BATCH, 1934 high_wmark_pages(zone) - low_wmark_pages(zone) - 1935 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH])); 1936 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags); 1937 } while (zone++ != preferred_zone); 1938 } 1939 1940 /* 1941 * get_page_from_freelist goes through the zonelist trying to allocate 1942 * a page. 1943 */ 1944 static struct page * 1945 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, 1946 struct zonelist *zonelist, int high_zoneidx, int alloc_flags, 1947 struct zone *preferred_zone, int classzone_idx, int migratetype) 1948 { 1949 struct zoneref *z; 1950 struct page *page = NULL; 1951 struct zone *zone; 1952 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1953 int zlc_active = 0; /* set if using zonelist_cache */ 1954 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1955 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) && 1956 (gfp_mask & __GFP_WRITE); 1957 int nr_fair_skipped = 0; 1958 bool zonelist_rescan; 1959 1960 zonelist_scan: 1961 zonelist_rescan = false; 1962 1963 /* 1964 * Scan zonelist, looking for a zone with enough free. 1965 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c. 1966 */ 1967 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1968 high_zoneidx, nodemask) { 1969 unsigned long mark; 1970 1971 if (IS_ENABLED(CONFIG_NUMA) && zlc_active && 1972 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1973 continue; 1974 if (cpusets_enabled() && 1975 (alloc_flags & ALLOC_CPUSET) && 1976 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1977 continue; 1978 /* 1979 * Distribute pages in proportion to the individual 1980 * zone size to ensure fair page aging. The zone a 1981 * page was allocated in should have no effect on the 1982 * time the page has in memory before being reclaimed. 1983 */ 1984 if (alloc_flags & ALLOC_FAIR) { 1985 if (!zone_local(preferred_zone, zone)) 1986 break; 1987 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) { 1988 nr_fair_skipped++; 1989 continue; 1990 } 1991 } 1992 /* 1993 * When allocating a page cache page for writing, we 1994 * want to get it from a zone that is within its dirty 1995 * limit, such that no single zone holds more than its 1996 * proportional share of globally allowed dirty pages. 1997 * The dirty limits take into account the zone's 1998 * lowmem reserves and high watermark so that kswapd 1999 * should be able to balance it without having to 2000 * write pages from its LRU list. 2001 * 2002 * This may look like it could increase pressure on 2003 * lower zones by failing allocations in higher zones 2004 * before they are full. But the pages that do spill 2005 * over are limited as the lower zones are protected 2006 * by this very same mechanism. It should not become 2007 * a practical burden to them. 2008 * 2009 * XXX: For now, allow allocations to potentially 2010 * exceed the per-zone dirty limit in the slowpath 2011 * (ALLOC_WMARK_LOW unset) before going into reclaim, 2012 * which is important when on a NUMA setup the allowed 2013 * zones are together not big enough to reach the 2014 * global limit. The proper fix for these situations 2015 * will require awareness of zones in the 2016 * dirty-throttling and the flusher threads. 2017 */ 2018 if (consider_zone_dirty && !zone_dirty_ok(zone)) 2019 continue; 2020 2021 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 2022 if (!zone_watermark_ok(zone, order, mark, 2023 classzone_idx, alloc_flags)) { 2024 int ret; 2025 2026 /* Checked here to keep the fast path fast */ 2027 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 2028 if (alloc_flags & ALLOC_NO_WATERMARKS) 2029 goto try_this_zone; 2030 2031 if (IS_ENABLED(CONFIG_NUMA) && 2032 !did_zlc_setup && nr_online_nodes > 1) { 2033 /* 2034 * we do zlc_setup if there are multiple nodes 2035 * and before considering the first zone allowed 2036 * by the cpuset. 2037 */ 2038 allowednodes = zlc_setup(zonelist, alloc_flags); 2039 zlc_active = 1; 2040 did_zlc_setup = 1; 2041 } 2042 2043 if (zone_reclaim_mode == 0 || 2044 !zone_allows_reclaim(preferred_zone, zone)) 2045 goto this_zone_full; 2046 2047 /* 2048 * As we may have just activated ZLC, check if the first 2049 * eligible zone has failed zone_reclaim recently. 2050 */ 2051 if (IS_ENABLED(CONFIG_NUMA) && zlc_active && 2052 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 2053 continue; 2054 2055 ret = zone_reclaim(zone, gfp_mask, order); 2056 switch (ret) { 2057 case ZONE_RECLAIM_NOSCAN: 2058 /* did not scan */ 2059 continue; 2060 case ZONE_RECLAIM_FULL: 2061 /* scanned but unreclaimable */ 2062 continue; 2063 default: 2064 /* did we reclaim enough */ 2065 if (zone_watermark_ok(zone, order, mark, 2066 classzone_idx, alloc_flags)) 2067 goto try_this_zone; 2068 2069 /* 2070 * Failed to reclaim enough to meet watermark. 2071 * Only mark the zone full if checking the min 2072 * watermark or if we failed to reclaim just 2073 * 1<<order pages or else the page allocator 2074 * fastpath will prematurely mark zones full 2075 * when the watermark is between the low and 2076 * min watermarks. 2077 */ 2078 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) || 2079 ret == ZONE_RECLAIM_SOME) 2080 goto this_zone_full; 2081 2082 continue; 2083 } 2084 } 2085 2086 try_this_zone: 2087 page = buffered_rmqueue(preferred_zone, zone, order, 2088 gfp_mask, migratetype); 2089 if (page) 2090 break; 2091 this_zone_full: 2092 if (IS_ENABLED(CONFIG_NUMA) && zlc_active) 2093 zlc_mark_zone_full(zonelist, z); 2094 } 2095 2096 if (page) { 2097 /* 2098 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was 2099 * necessary to allocate the page. The expectation is 2100 * that the caller is taking steps that will free more 2101 * memory. The caller should avoid the page being used 2102 * for !PFMEMALLOC purposes. 2103 */ 2104 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS); 2105 return page; 2106 } 2107 2108 /* 2109 * The first pass makes sure allocations are spread fairly within the 2110 * local node. However, the local node might have free pages left 2111 * after the fairness batches are exhausted, and remote zones haven't 2112 * even been considered yet. Try once more without fairness, and 2113 * include remote zones now, before entering the slowpath and waking 2114 * kswapd: prefer spilling to a remote zone over swapping locally. 2115 */ 2116 if (alloc_flags & ALLOC_FAIR) { 2117 alloc_flags &= ~ALLOC_FAIR; 2118 if (nr_fair_skipped) { 2119 zonelist_rescan = true; 2120 reset_alloc_batches(preferred_zone); 2121 } 2122 if (nr_online_nodes > 1) 2123 zonelist_rescan = true; 2124 } 2125 2126 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) { 2127 /* Disable zlc cache for second zonelist scan */ 2128 zlc_active = 0; 2129 zonelist_rescan = true; 2130 } 2131 2132 if (zonelist_rescan) 2133 goto zonelist_scan; 2134 2135 return NULL; 2136 } 2137 2138 /* 2139 * Large machines with many possible nodes should not always dump per-node 2140 * meminfo in irq context. 2141 */ 2142 static inline bool should_suppress_show_mem(void) 2143 { 2144 bool ret = false; 2145 2146 #if NODES_SHIFT > 8 2147 ret = in_interrupt(); 2148 #endif 2149 return ret; 2150 } 2151 2152 static DEFINE_RATELIMIT_STATE(nopage_rs, 2153 DEFAULT_RATELIMIT_INTERVAL, 2154 DEFAULT_RATELIMIT_BURST); 2155 2156 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...) 2157 { 2158 unsigned int filter = SHOW_MEM_FILTER_NODES; 2159 2160 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) || 2161 debug_guardpage_minorder() > 0) 2162 return; 2163 2164 /* 2165 * This documents exceptions given to allocations in certain 2166 * contexts that are allowed to allocate outside current's set 2167 * of allowed nodes. 2168 */ 2169 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2170 if (test_thread_flag(TIF_MEMDIE) || 2171 (current->flags & (PF_MEMALLOC | PF_EXITING))) 2172 filter &= ~SHOW_MEM_FILTER_NODES; 2173 if (in_interrupt() || !(gfp_mask & __GFP_WAIT)) 2174 filter &= ~SHOW_MEM_FILTER_NODES; 2175 2176 if (fmt) { 2177 struct va_format vaf; 2178 va_list args; 2179 2180 va_start(args, fmt); 2181 2182 vaf.fmt = fmt; 2183 vaf.va = &args; 2184 2185 pr_warn("%pV", &vaf); 2186 2187 va_end(args); 2188 } 2189 2190 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n", 2191 current->comm, order, gfp_mask); 2192 2193 dump_stack(); 2194 if (!should_suppress_show_mem()) 2195 show_mem(filter); 2196 } 2197 2198 static inline int 2199 should_alloc_retry(gfp_t gfp_mask, unsigned int order, 2200 unsigned long did_some_progress, 2201 unsigned long pages_reclaimed) 2202 { 2203 /* Do not loop if specifically requested */ 2204 if (gfp_mask & __GFP_NORETRY) 2205 return 0; 2206 2207 /* Always retry if specifically requested */ 2208 if (gfp_mask & __GFP_NOFAIL) 2209 return 1; 2210 2211 /* 2212 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim 2213 * making forward progress without invoking OOM. Suspend also disables 2214 * storage devices so kswapd will not help. Bail if we are suspending. 2215 */ 2216 if (!did_some_progress && pm_suspended_storage()) 2217 return 0; 2218 2219 /* 2220 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 2221 * means __GFP_NOFAIL, but that may not be true in other 2222 * implementations. 2223 */ 2224 if (order <= PAGE_ALLOC_COSTLY_ORDER) 2225 return 1; 2226 2227 /* 2228 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 2229 * specified, then we retry until we no longer reclaim any pages 2230 * (above), or we've reclaimed an order of pages at least as 2231 * large as the allocation's order. In both cases, if the 2232 * allocation still fails, we stop retrying. 2233 */ 2234 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) 2235 return 1; 2236 2237 return 0; 2238 } 2239 2240 static inline struct page * 2241 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 2242 struct zonelist *zonelist, enum zone_type high_zoneidx, 2243 nodemask_t *nodemask, struct zone *preferred_zone, 2244 int classzone_idx, int migratetype) 2245 { 2246 struct page *page; 2247 2248 /* Acquire the per-zone oom lock for each zone */ 2249 if (!oom_zonelist_trylock(zonelist, gfp_mask)) { 2250 schedule_timeout_uninterruptible(1); 2251 return NULL; 2252 } 2253 2254 /* 2255 * Go through the zonelist yet one more time, keep very high watermark 2256 * here, this is only to catch a parallel oom killing, we must fail if 2257 * we're still under heavy pressure. 2258 */ 2259 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, 2260 order, zonelist, high_zoneidx, 2261 ALLOC_WMARK_HIGH|ALLOC_CPUSET, 2262 preferred_zone, classzone_idx, migratetype); 2263 if (page) 2264 goto out; 2265 2266 if (!(gfp_mask & __GFP_NOFAIL)) { 2267 /* The OOM killer will not help higher order allocs */ 2268 if (order > PAGE_ALLOC_COSTLY_ORDER) 2269 goto out; 2270 /* The OOM killer does not needlessly kill tasks for lowmem */ 2271 if (high_zoneidx < ZONE_NORMAL) 2272 goto out; 2273 /* 2274 * GFP_THISNODE contains __GFP_NORETRY and we never hit this. 2275 * Sanity check for bare calls of __GFP_THISNODE, not real OOM. 2276 * The caller should handle page allocation failure by itself if 2277 * it specifies __GFP_THISNODE. 2278 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER. 2279 */ 2280 if (gfp_mask & __GFP_THISNODE) 2281 goto out; 2282 } 2283 /* Exhausted what can be done so it's blamo time */ 2284 out_of_memory(zonelist, gfp_mask, order, nodemask, false); 2285 2286 out: 2287 oom_zonelist_unlock(zonelist, gfp_mask); 2288 return page; 2289 } 2290 2291 #ifdef CONFIG_COMPACTION 2292 /* Try memory compaction for high-order allocations before reclaim */ 2293 static struct page * 2294 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2295 struct zonelist *zonelist, enum zone_type high_zoneidx, 2296 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2297 int classzone_idx, int migratetype, enum migrate_mode mode, 2298 int *contended_compaction, bool *deferred_compaction) 2299 { 2300 struct zone *last_compact_zone = NULL; 2301 unsigned long compact_result; 2302 struct page *page; 2303 2304 if (!order) 2305 return NULL; 2306 2307 current->flags |= PF_MEMALLOC; 2308 compact_result = try_to_compact_pages(zonelist, order, gfp_mask, 2309 nodemask, mode, 2310 contended_compaction, 2311 &last_compact_zone); 2312 current->flags &= ~PF_MEMALLOC; 2313 2314 switch (compact_result) { 2315 case COMPACT_DEFERRED: 2316 *deferred_compaction = true; 2317 /* fall-through */ 2318 case COMPACT_SKIPPED: 2319 return NULL; 2320 default: 2321 break; 2322 } 2323 2324 /* 2325 * At least in one zone compaction wasn't deferred or skipped, so let's 2326 * count a compaction stall 2327 */ 2328 count_vm_event(COMPACTSTALL); 2329 2330 /* Page migration frees to the PCP lists but we want merging */ 2331 drain_pages(get_cpu()); 2332 put_cpu(); 2333 2334 page = get_page_from_freelist(gfp_mask, nodemask, 2335 order, zonelist, high_zoneidx, 2336 alloc_flags & ~ALLOC_NO_WATERMARKS, 2337 preferred_zone, classzone_idx, migratetype); 2338 2339 if (page) { 2340 struct zone *zone = page_zone(page); 2341 2342 zone->compact_blockskip_flush = false; 2343 compaction_defer_reset(zone, order, true); 2344 count_vm_event(COMPACTSUCCESS); 2345 return page; 2346 } 2347 2348 /* 2349 * last_compact_zone is where try_to_compact_pages thought allocation 2350 * should succeed, so it did not defer compaction. But here we know 2351 * that it didn't succeed, so we do the defer. 2352 */ 2353 if (last_compact_zone && mode != MIGRATE_ASYNC) 2354 defer_compaction(last_compact_zone, order); 2355 2356 /* 2357 * It's bad if compaction run occurs and fails. The most likely reason 2358 * is that pages exist, but not enough to satisfy watermarks. 2359 */ 2360 count_vm_event(COMPACTFAIL); 2361 2362 cond_resched(); 2363 2364 return NULL; 2365 } 2366 #else 2367 static inline struct page * 2368 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2369 struct zonelist *zonelist, enum zone_type high_zoneidx, 2370 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2371 int classzone_idx, int migratetype, enum migrate_mode mode, 2372 int *contended_compaction, bool *deferred_compaction) 2373 { 2374 return NULL; 2375 } 2376 #endif /* CONFIG_COMPACTION */ 2377 2378 /* Perform direct synchronous page reclaim */ 2379 static int 2380 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist, 2381 nodemask_t *nodemask) 2382 { 2383 struct reclaim_state reclaim_state; 2384 int progress; 2385 2386 cond_resched(); 2387 2388 /* We now go into synchronous reclaim */ 2389 cpuset_memory_pressure_bump(); 2390 current->flags |= PF_MEMALLOC; 2391 lockdep_set_current_reclaim_state(gfp_mask); 2392 reclaim_state.reclaimed_slab = 0; 2393 current->reclaim_state = &reclaim_state; 2394 2395 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask); 2396 2397 current->reclaim_state = NULL; 2398 lockdep_clear_current_reclaim_state(); 2399 current->flags &= ~PF_MEMALLOC; 2400 2401 cond_resched(); 2402 2403 return progress; 2404 } 2405 2406 /* The really slow allocator path where we enter direct reclaim */ 2407 static inline struct page * 2408 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 2409 struct zonelist *zonelist, enum zone_type high_zoneidx, 2410 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2411 int classzone_idx, int migratetype, unsigned long *did_some_progress) 2412 { 2413 struct page *page = NULL; 2414 bool drained = false; 2415 2416 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist, 2417 nodemask); 2418 if (unlikely(!(*did_some_progress))) 2419 return NULL; 2420 2421 /* After successful reclaim, reconsider all zones for allocation */ 2422 if (IS_ENABLED(CONFIG_NUMA)) 2423 zlc_clear_zones_full(zonelist); 2424 2425 retry: 2426 page = get_page_from_freelist(gfp_mask, nodemask, order, 2427 zonelist, high_zoneidx, 2428 alloc_flags & ~ALLOC_NO_WATERMARKS, 2429 preferred_zone, classzone_idx, 2430 migratetype); 2431 2432 /* 2433 * If an allocation failed after direct reclaim, it could be because 2434 * pages are pinned on the per-cpu lists. Drain them and try again 2435 */ 2436 if (!page && !drained) { 2437 drain_all_pages(); 2438 drained = true; 2439 goto retry; 2440 } 2441 2442 return page; 2443 } 2444 2445 /* 2446 * This is called in the allocator slow-path if the allocation request is of 2447 * sufficient urgency to ignore watermarks and take other desperate measures 2448 */ 2449 static inline struct page * 2450 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, 2451 struct zonelist *zonelist, enum zone_type high_zoneidx, 2452 nodemask_t *nodemask, struct zone *preferred_zone, 2453 int classzone_idx, int migratetype) 2454 { 2455 struct page *page; 2456 2457 do { 2458 page = get_page_from_freelist(gfp_mask, nodemask, order, 2459 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS, 2460 preferred_zone, classzone_idx, migratetype); 2461 2462 if (!page && gfp_mask & __GFP_NOFAIL) 2463 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2464 } while (!page && (gfp_mask & __GFP_NOFAIL)); 2465 2466 return page; 2467 } 2468 2469 static void wake_all_kswapds(unsigned int order, 2470 struct zonelist *zonelist, 2471 enum zone_type high_zoneidx, 2472 struct zone *preferred_zone, 2473 nodemask_t *nodemask) 2474 { 2475 struct zoneref *z; 2476 struct zone *zone; 2477 2478 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2479 high_zoneidx, nodemask) 2480 wakeup_kswapd(zone, order, zone_idx(preferred_zone)); 2481 } 2482 2483 static inline int 2484 gfp_to_alloc_flags(gfp_t gfp_mask) 2485 { 2486 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 2487 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD)); 2488 2489 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 2490 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 2491 2492 /* 2493 * The caller may dip into page reserves a bit more if the caller 2494 * cannot run direct reclaim, or if the caller has realtime scheduling 2495 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 2496 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH). 2497 */ 2498 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 2499 2500 if (atomic) { 2501 /* 2502 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 2503 * if it can't schedule. 2504 */ 2505 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2506 alloc_flags |= ALLOC_HARDER; 2507 /* 2508 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 2509 * comment for __cpuset_node_allowed_softwall(). 2510 */ 2511 alloc_flags &= ~ALLOC_CPUSET; 2512 } else if (unlikely(rt_task(current)) && !in_interrupt()) 2513 alloc_flags |= ALLOC_HARDER; 2514 2515 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { 2516 if (gfp_mask & __GFP_MEMALLOC) 2517 alloc_flags |= ALLOC_NO_WATERMARKS; 2518 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 2519 alloc_flags |= ALLOC_NO_WATERMARKS; 2520 else if (!in_interrupt() && 2521 ((current->flags & PF_MEMALLOC) || 2522 unlikely(test_thread_flag(TIF_MEMDIE)))) 2523 alloc_flags |= ALLOC_NO_WATERMARKS; 2524 } 2525 #ifdef CONFIG_CMA 2526 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 2527 alloc_flags |= ALLOC_CMA; 2528 #endif 2529 return alloc_flags; 2530 } 2531 2532 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 2533 { 2534 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS); 2535 } 2536 2537 static inline struct page * 2538 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 2539 struct zonelist *zonelist, enum zone_type high_zoneidx, 2540 nodemask_t *nodemask, struct zone *preferred_zone, 2541 int classzone_idx, int migratetype) 2542 { 2543 const gfp_t wait = gfp_mask & __GFP_WAIT; 2544 struct page *page = NULL; 2545 int alloc_flags; 2546 unsigned long pages_reclaimed = 0; 2547 unsigned long did_some_progress; 2548 enum migrate_mode migration_mode = MIGRATE_ASYNC; 2549 bool deferred_compaction = false; 2550 int contended_compaction = COMPACT_CONTENDED_NONE; 2551 2552 /* 2553 * In the slowpath, we sanity check order to avoid ever trying to 2554 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 2555 * be using allocators in order of preference for an area that is 2556 * too large. 2557 */ 2558 if (order >= MAX_ORDER) { 2559 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 2560 return NULL; 2561 } 2562 2563 /* 2564 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 2565 * __GFP_NOWARN set) should not cause reclaim since the subsystem 2566 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 2567 * using a larger set of nodes after it has established that the 2568 * allowed per node queues are empty and that nodes are 2569 * over allocated. 2570 */ 2571 if (IS_ENABLED(CONFIG_NUMA) && 2572 (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 2573 goto nopage; 2574 2575 restart: 2576 if (!(gfp_mask & __GFP_NO_KSWAPD)) 2577 wake_all_kswapds(order, zonelist, high_zoneidx, 2578 preferred_zone, nodemask); 2579 2580 /* 2581 * OK, we're below the kswapd watermark and have kicked background 2582 * reclaim. Now things get more complex, so set up alloc_flags according 2583 * to how we want to proceed. 2584 */ 2585 alloc_flags = gfp_to_alloc_flags(gfp_mask); 2586 2587 /* 2588 * Find the true preferred zone if the allocation is unconstrained by 2589 * cpusets. 2590 */ 2591 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) { 2592 struct zoneref *preferred_zoneref; 2593 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx, 2594 NULL, &preferred_zone); 2595 classzone_idx = zonelist_zone_idx(preferred_zoneref); 2596 } 2597 2598 rebalance: 2599 /* This is the last chance, in general, before the goto nopage. */ 2600 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, 2601 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS, 2602 preferred_zone, classzone_idx, migratetype); 2603 if (page) 2604 goto got_pg; 2605 2606 /* Allocate without watermarks if the context allows */ 2607 if (alloc_flags & ALLOC_NO_WATERMARKS) { 2608 /* 2609 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds 2610 * the allocation is high priority and these type of 2611 * allocations are system rather than user orientated 2612 */ 2613 zonelist = node_zonelist(numa_node_id(), gfp_mask); 2614 2615 page = __alloc_pages_high_priority(gfp_mask, order, 2616 zonelist, high_zoneidx, nodemask, 2617 preferred_zone, classzone_idx, migratetype); 2618 if (page) { 2619 goto got_pg; 2620 } 2621 } 2622 2623 /* Atomic allocations - we can't balance anything */ 2624 if (!wait) { 2625 /* 2626 * All existing users of the deprecated __GFP_NOFAIL are 2627 * blockable, so warn of any new users that actually allow this 2628 * type of allocation to fail. 2629 */ 2630 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL); 2631 goto nopage; 2632 } 2633 2634 /* Avoid recursion of direct reclaim */ 2635 if (current->flags & PF_MEMALLOC) 2636 goto nopage; 2637 2638 /* Avoid allocations with no watermarks from looping endlessly */ 2639 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) 2640 goto nopage; 2641 2642 /* 2643 * Try direct compaction. The first pass is asynchronous. Subsequent 2644 * attempts after direct reclaim are synchronous 2645 */ 2646 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist, 2647 high_zoneidx, nodemask, alloc_flags, 2648 preferred_zone, 2649 classzone_idx, migratetype, 2650 migration_mode, &contended_compaction, 2651 &deferred_compaction); 2652 if (page) 2653 goto got_pg; 2654 2655 /* Checks for THP-specific high-order allocations */ 2656 if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) { 2657 /* 2658 * If compaction is deferred for high-order allocations, it is 2659 * because sync compaction recently failed. If this is the case 2660 * and the caller requested a THP allocation, we do not want 2661 * to heavily disrupt the system, so we fail the allocation 2662 * instead of entering direct reclaim. 2663 */ 2664 if (deferred_compaction) 2665 goto nopage; 2666 2667 /* 2668 * In all zones where compaction was attempted (and not 2669 * deferred or skipped), lock contention has been detected. 2670 * For THP allocation we do not want to disrupt the others 2671 * so we fallback to base pages instead. 2672 */ 2673 if (contended_compaction == COMPACT_CONTENDED_LOCK) 2674 goto nopage; 2675 2676 /* 2677 * If compaction was aborted due to need_resched(), we do not 2678 * want to further increase allocation latency, unless it is 2679 * khugepaged trying to collapse. 2680 */ 2681 if (contended_compaction == COMPACT_CONTENDED_SCHED 2682 && !(current->flags & PF_KTHREAD)) 2683 goto nopage; 2684 } 2685 2686 /* 2687 * It can become very expensive to allocate transparent hugepages at 2688 * fault, so use asynchronous memory compaction for THP unless it is 2689 * khugepaged trying to collapse. 2690 */ 2691 if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE || 2692 (current->flags & PF_KTHREAD)) 2693 migration_mode = MIGRATE_SYNC_LIGHT; 2694 2695 /* Try direct reclaim and then allocating */ 2696 page = __alloc_pages_direct_reclaim(gfp_mask, order, 2697 zonelist, high_zoneidx, 2698 nodemask, 2699 alloc_flags, preferred_zone, 2700 classzone_idx, migratetype, 2701 &did_some_progress); 2702 if (page) 2703 goto got_pg; 2704 2705 /* 2706 * If we failed to make any progress reclaiming, then we are 2707 * running out of options and have to consider going OOM 2708 */ 2709 if (!did_some_progress) { 2710 if (oom_gfp_allowed(gfp_mask)) { 2711 if (oom_killer_disabled) 2712 goto nopage; 2713 /* Coredumps can quickly deplete all memory reserves */ 2714 if ((current->flags & PF_DUMPCORE) && 2715 !(gfp_mask & __GFP_NOFAIL)) 2716 goto nopage; 2717 page = __alloc_pages_may_oom(gfp_mask, order, 2718 zonelist, high_zoneidx, 2719 nodemask, preferred_zone, 2720 classzone_idx, migratetype); 2721 if (page) 2722 goto got_pg; 2723 2724 if (!(gfp_mask & __GFP_NOFAIL)) { 2725 /* 2726 * The oom killer is not called for high-order 2727 * allocations that may fail, so if no progress 2728 * is being made, there are no other options and 2729 * retrying is unlikely to help. 2730 */ 2731 if (order > PAGE_ALLOC_COSTLY_ORDER) 2732 goto nopage; 2733 /* 2734 * The oom killer is not called for lowmem 2735 * allocations to prevent needlessly killing 2736 * innocent tasks. 2737 */ 2738 if (high_zoneidx < ZONE_NORMAL) 2739 goto nopage; 2740 } 2741 2742 goto restart; 2743 } 2744 } 2745 2746 /* Check if we should retry the allocation */ 2747 pages_reclaimed += did_some_progress; 2748 if (should_alloc_retry(gfp_mask, order, did_some_progress, 2749 pages_reclaimed)) { 2750 /* Wait for some write requests to complete then retry */ 2751 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2752 goto rebalance; 2753 } else { 2754 /* 2755 * High-order allocations do not necessarily loop after 2756 * direct reclaim and reclaim/compaction depends on compaction 2757 * being called after reclaim so call directly if necessary 2758 */ 2759 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist, 2760 high_zoneidx, nodemask, alloc_flags, 2761 preferred_zone, 2762 classzone_idx, migratetype, 2763 migration_mode, &contended_compaction, 2764 &deferred_compaction); 2765 if (page) 2766 goto got_pg; 2767 } 2768 2769 nopage: 2770 warn_alloc_failed(gfp_mask, order, NULL); 2771 return page; 2772 got_pg: 2773 if (kmemcheck_enabled) 2774 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 2775 2776 return page; 2777 } 2778 2779 /* 2780 * This is the 'heart' of the zoned buddy allocator. 2781 */ 2782 struct page * 2783 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 2784 struct zonelist *zonelist, nodemask_t *nodemask) 2785 { 2786 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 2787 struct zone *preferred_zone; 2788 struct zoneref *preferred_zoneref; 2789 struct page *page = NULL; 2790 int migratetype = gfpflags_to_migratetype(gfp_mask); 2791 unsigned int cpuset_mems_cookie; 2792 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR; 2793 int classzone_idx; 2794 2795 gfp_mask &= gfp_allowed_mask; 2796 2797 lockdep_trace_alloc(gfp_mask); 2798 2799 might_sleep_if(gfp_mask & __GFP_WAIT); 2800 2801 if (should_fail_alloc_page(gfp_mask, order)) 2802 return NULL; 2803 2804 /* 2805 * Check the zones suitable for the gfp_mask contain at least one 2806 * valid zone. It's possible to have an empty zonelist as a result 2807 * of GFP_THISNODE and a memoryless node 2808 */ 2809 if (unlikely(!zonelist->_zonerefs->zone)) 2810 return NULL; 2811 2812 if (IS_ENABLED(CONFIG_CMA) && migratetype == MIGRATE_MOVABLE) 2813 alloc_flags |= ALLOC_CMA; 2814 2815 retry_cpuset: 2816 cpuset_mems_cookie = read_mems_allowed_begin(); 2817 2818 /* The preferred zone is used for statistics later */ 2819 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx, 2820 nodemask ? : &cpuset_current_mems_allowed, 2821 &preferred_zone); 2822 if (!preferred_zone) 2823 goto out; 2824 classzone_idx = zonelist_zone_idx(preferred_zoneref); 2825 2826 /* First allocation attempt */ 2827 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, 2828 zonelist, high_zoneidx, alloc_flags, 2829 preferred_zone, classzone_idx, migratetype); 2830 if (unlikely(!page)) { 2831 /* 2832 * Runtime PM, block IO and its error handling path 2833 * can deadlock because I/O on the device might not 2834 * complete. 2835 */ 2836 gfp_mask = memalloc_noio_flags(gfp_mask); 2837 page = __alloc_pages_slowpath(gfp_mask, order, 2838 zonelist, high_zoneidx, nodemask, 2839 preferred_zone, classzone_idx, migratetype); 2840 } 2841 2842 trace_mm_page_alloc(page, order, gfp_mask, migratetype); 2843 2844 out: 2845 /* 2846 * When updating a task's mems_allowed, it is possible to race with 2847 * parallel threads in such a way that an allocation can fail while 2848 * the mask is being updated. If a page allocation is about to fail, 2849 * check if the cpuset changed during allocation and if so, retry. 2850 */ 2851 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) 2852 goto retry_cpuset; 2853 2854 return page; 2855 } 2856 EXPORT_SYMBOL(__alloc_pages_nodemask); 2857 2858 /* 2859 * Common helper functions. 2860 */ 2861 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 2862 { 2863 struct page *page; 2864 2865 /* 2866 * __get_free_pages() returns a 32-bit address, which cannot represent 2867 * a highmem page 2868 */ 2869 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 2870 2871 page = alloc_pages(gfp_mask, order); 2872 if (!page) 2873 return 0; 2874 return (unsigned long) page_address(page); 2875 } 2876 EXPORT_SYMBOL(__get_free_pages); 2877 2878 unsigned long get_zeroed_page(gfp_t gfp_mask) 2879 { 2880 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 2881 } 2882 EXPORT_SYMBOL(get_zeroed_page); 2883 2884 void __free_pages(struct page *page, unsigned int order) 2885 { 2886 if (put_page_testzero(page)) { 2887 if (order == 0) 2888 free_hot_cold_page(page, false); 2889 else 2890 __free_pages_ok(page, order); 2891 } 2892 } 2893 2894 EXPORT_SYMBOL(__free_pages); 2895 2896 void free_pages(unsigned long addr, unsigned int order) 2897 { 2898 if (addr != 0) { 2899 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2900 __free_pages(virt_to_page((void *)addr), order); 2901 } 2902 } 2903 2904 EXPORT_SYMBOL(free_pages); 2905 2906 /* 2907 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter 2908 * of the current memory cgroup. 2909 * 2910 * It should be used when the caller would like to use kmalloc, but since the 2911 * allocation is large, it has to fall back to the page allocator. 2912 */ 2913 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order) 2914 { 2915 struct page *page; 2916 struct mem_cgroup *memcg = NULL; 2917 2918 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order)) 2919 return NULL; 2920 page = alloc_pages(gfp_mask, order); 2921 memcg_kmem_commit_charge(page, memcg, order); 2922 return page; 2923 } 2924 2925 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order) 2926 { 2927 struct page *page; 2928 struct mem_cgroup *memcg = NULL; 2929 2930 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order)) 2931 return NULL; 2932 page = alloc_pages_node(nid, gfp_mask, order); 2933 memcg_kmem_commit_charge(page, memcg, order); 2934 return page; 2935 } 2936 2937 /* 2938 * __free_kmem_pages and free_kmem_pages will free pages allocated with 2939 * alloc_kmem_pages. 2940 */ 2941 void __free_kmem_pages(struct page *page, unsigned int order) 2942 { 2943 memcg_kmem_uncharge_pages(page, order); 2944 __free_pages(page, order); 2945 } 2946 2947 void free_kmem_pages(unsigned long addr, unsigned int order) 2948 { 2949 if (addr != 0) { 2950 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2951 __free_kmem_pages(virt_to_page((void *)addr), order); 2952 } 2953 } 2954 2955 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size) 2956 { 2957 if (addr) { 2958 unsigned long alloc_end = addr + (PAGE_SIZE << order); 2959 unsigned long used = addr + PAGE_ALIGN(size); 2960 2961 split_page(virt_to_page((void *)addr), order); 2962 while (used < alloc_end) { 2963 free_page(used); 2964 used += PAGE_SIZE; 2965 } 2966 } 2967 return (void *)addr; 2968 } 2969 2970 /** 2971 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 2972 * @size: the number of bytes to allocate 2973 * @gfp_mask: GFP flags for the allocation 2974 * 2975 * This function is similar to alloc_pages(), except that it allocates the 2976 * minimum number of pages to satisfy the request. alloc_pages() can only 2977 * allocate memory in power-of-two pages. 2978 * 2979 * This function is also limited by MAX_ORDER. 2980 * 2981 * Memory allocated by this function must be released by free_pages_exact(). 2982 */ 2983 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 2984 { 2985 unsigned int order = get_order(size); 2986 unsigned long addr; 2987 2988 addr = __get_free_pages(gfp_mask, order); 2989 return make_alloc_exact(addr, order, size); 2990 } 2991 EXPORT_SYMBOL(alloc_pages_exact); 2992 2993 /** 2994 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 2995 * pages on a node. 2996 * @nid: the preferred node ID where memory should be allocated 2997 * @size: the number of bytes to allocate 2998 * @gfp_mask: GFP flags for the allocation 2999 * 3000 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 3001 * back. 3002 * Note this is not alloc_pages_exact_node() which allocates on a specific node, 3003 * but is not exact. 3004 */ 3005 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 3006 { 3007 unsigned order = get_order(size); 3008 struct page *p = alloc_pages_node(nid, gfp_mask, order); 3009 if (!p) 3010 return NULL; 3011 return make_alloc_exact((unsigned long)page_address(p), order, size); 3012 } 3013 3014 /** 3015 * free_pages_exact - release memory allocated via alloc_pages_exact() 3016 * @virt: the value returned by alloc_pages_exact. 3017 * @size: size of allocation, same value as passed to alloc_pages_exact(). 3018 * 3019 * Release the memory allocated by a previous call to alloc_pages_exact. 3020 */ 3021 void free_pages_exact(void *virt, size_t size) 3022 { 3023 unsigned long addr = (unsigned long)virt; 3024 unsigned long end = addr + PAGE_ALIGN(size); 3025 3026 while (addr < end) { 3027 free_page(addr); 3028 addr += PAGE_SIZE; 3029 } 3030 } 3031 EXPORT_SYMBOL(free_pages_exact); 3032 3033 /** 3034 * nr_free_zone_pages - count number of pages beyond high watermark 3035 * @offset: The zone index of the highest zone 3036 * 3037 * nr_free_zone_pages() counts the number of counts pages which are beyond the 3038 * high watermark within all zones at or below a given zone index. For each 3039 * zone, the number of pages is calculated as: 3040 * managed_pages - high_pages 3041 */ 3042 static unsigned long nr_free_zone_pages(int offset) 3043 { 3044 struct zoneref *z; 3045 struct zone *zone; 3046 3047 /* Just pick one node, since fallback list is circular */ 3048 unsigned long sum = 0; 3049 3050 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 3051 3052 for_each_zone_zonelist(zone, z, zonelist, offset) { 3053 unsigned long size = zone->managed_pages; 3054 unsigned long high = high_wmark_pages(zone); 3055 if (size > high) 3056 sum += size - high; 3057 } 3058 3059 return sum; 3060 } 3061 3062 /** 3063 * nr_free_buffer_pages - count number of pages beyond high watermark 3064 * 3065 * nr_free_buffer_pages() counts the number of pages which are beyond the high 3066 * watermark within ZONE_DMA and ZONE_NORMAL. 3067 */ 3068 unsigned long nr_free_buffer_pages(void) 3069 { 3070 return nr_free_zone_pages(gfp_zone(GFP_USER)); 3071 } 3072 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 3073 3074 /** 3075 * nr_free_pagecache_pages - count number of pages beyond high watermark 3076 * 3077 * nr_free_pagecache_pages() counts the number of pages which are beyond the 3078 * high watermark within all zones. 3079 */ 3080 unsigned long nr_free_pagecache_pages(void) 3081 { 3082 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 3083 } 3084 3085 static inline void show_node(struct zone *zone) 3086 { 3087 if (IS_ENABLED(CONFIG_NUMA)) 3088 printk("Node %d ", zone_to_nid(zone)); 3089 } 3090 3091 void si_meminfo(struct sysinfo *val) 3092 { 3093 val->totalram = totalram_pages; 3094 val->sharedram = global_page_state(NR_SHMEM); 3095 val->freeram = global_page_state(NR_FREE_PAGES); 3096 val->bufferram = nr_blockdev_pages(); 3097 val->totalhigh = totalhigh_pages; 3098 val->freehigh = nr_free_highpages(); 3099 val->mem_unit = PAGE_SIZE; 3100 } 3101 3102 EXPORT_SYMBOL(si_meminfo); 3103 3104 #ifdef CONFIG_NUMA 3105 void si_meminfo_node(struct sysinfo *val, int nid) 3106 { 3107 int zone_type; /* needs to be signed */ 3108 unsigned long managed_pages = 0; 3109 pg_data_t *pgdat = NODE_DATA(nid); 3110 3111 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 3112 managed_pages += pgdat->node_zones[zone_type].managed_pages; 3113 val->totalram = managed_pages; 3114 val->sharedram = node_page_state(nid, NR_SHMEM); 3115 val->freeram = node_page_state(nid, NR_FREE_PAGES); 3116 #ifdef CONFIG_HIGHMEM 3117 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages; 3118 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 3119 NR_FREE_PAGES); 3120 #else 3121 val->totalhigh = 0; 3122 val->freehigh = 0; 3123 #endif 3124 val->mem_unit = PAGE_SIZE; 3125 } 3126 #endif 3127 3128 /* 3129 * Determine whether the node should be displayed or not, depending on whether 3130 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 3131 */ 3132 bool skip_free_areas_node(unsigned int flags, int nid) 3133 { 3134 bool ret = false; 3135 unsigned int cpuset_mems_cookie; 3136 3137 if (!(flags & SHOW_MEM_FILTER_NODES)) 3138 goto out; 3139 3140 do { 3141 cpuset_mems_cookie = read_mems_allowed_begin(); 3142 ret = !node_isset(nid, cpuset_current_mems_allowed); 3143 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 3144 out: 3145 return ret; 3146 } 3147 3148 #define K(x) ((x) << (PAGE_SHIFT-10)) 3149 3150 static void show_migration_types(unsigned char type) 3151 { 3152 static const char types[MIGRATE_TYPES] = { 3153 [MIGRATE_UNMOVABLE] = 'U', 3154 [MIGRATE_RECLAIMABLE] = 'E', 3155 [MIGRATE_MOVABLE] = 'M', 3156 [MIGRATE_RESERVE] = 'R', 3157 #ifdef CONFIG_CMA 3158 [MIGRATE_CMA] = 'C', 3159 #endif 3160 #ifdef CONFIG_MEMORY_ISOLATION 3161 [MIGRATE_ISOLATE] = 'I', 3162 #endif 3163 }; 3164 char tmp[MIGRATE_TYPES + 1]; 3165 char *p = tmp; 3166 int i; 3167 3168 for (i = 0; i < MIGRATE_TYPES; i++) { 3169 if (type & (1 << i)) 3170 *p++ = types[i]; 3171 } 3172 3173 *p = '\0'; 3174 printk("(%s) ", tmp); 3175 } 3176 3177 /* 3178 * Show free area list (used inside shift_scroll-lock stuff) 3179 * We also calculate the percentage fragmentation. We do this by counting the 3180 * memory on each free list with the exception of the first item on the list. 3181 * Suppresses nodes that are not allowed by current's cpuset if 3182 * SHOW_MEM_FILTER_NODES is passed. 3183 */ 3184 void show_free_areas(unsigned int filter) 3185 { 3186 int cpu; 3187 struct zone *zone; 3188 3189 for_each_populated_zone(zone) { 3190 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3191 continue; 3192 show_node(zone); 3193 printk("%s per-cpu:\n", zone->name); 3194 3195 for_each_online_cpu(cpu) { 3196 struct per_cpu_pageset *pageset; 3197 3198 pageset = per_cpu_ptr(zone->pageset, cpu); 3199 3200 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", 3201 cpu, pageset->pcp.high, 3202 pageset->pcp.batch, pageset->pcp.count); 3203 } 3204 } 3205 3206 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 3207 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 3208 " unevictable:%lu" 3209 " dirty:%lu writeback:%lu unstable:%lu\n" 3210 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n" 3211 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 3212 " free_cma:%lu\n", 3213 global_page_state(NR_ACTIVE_ANON), 3214 global_page_state(NR_INACTIVE_ANON), 3215 global_page_state(NR_ISOLATED_ANON), 3216 global_page_state(NR_ACTIVE_FILE), 3217 global_page_state(NR_INACTIVE_FILE), 3218 global_page_state(NR_ISOLATED_FILE), 3219 global_page_state(NR_UNEVICTABLE), 3220 global_page_state(NR_FILE_DIRTY), 3221 global_page_state(NR_WRITEBACK), 3222 global_page_state(NR_UNSTABLE_NFS), 3223 global_page_state(NR_FREE_PAGES), 3224 global_page_state(NR_SLAB_RECLAIMABLE), 3225 global_page_state(NR_SLAB_UNRECLAIMABLE), 3226 global_page_state(NR_FILE_MAPPED), 3227 global_page_state(NR_SHMEM), 3228 global_page_state(NR_PAGETABLE), 3229 global_page_state(NR_BOUNCE), 3230 global_page_state(NR_FREE_CMA_PAGES)); 3231 3232 for_each_populated_zone(zone) { 3233 int i; 3234 3235 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3236 continue; 3237 show_node(zone); 3238 printk("%s" 3239 " free:%lukB" 3240 " min:%lukB" 3241 " low:%lukB" 3242 " high:%lukB" 3243 " active_anon:%lukB" 3244 " inactive_anon:%lukB" 3245 " active_file:%lukB" 3246 " inactive_file:%lukB" 3247 " unevictable:%lukB" 3248 " isolated(anon):%lukB" 3249 " isolated(file):%lukB" 3250 " present:%lukB" 3251 " managed:%lukB" 3252 " mlocked:%lukB" 3253 " dirty:%lukB" 3254 " writeback:%lukB" 3255 " mapped:%lukB" 3256 " shmem:%lukB" 3257 " slab_reclaimable:%lukB" 3258 " slab_unreclaimable:%lukB" 3259 " kernel_stack:%lukB" 3260 " pagetables:%lukB" 3261 " unstable:%lukB" 3262 " bounce:%lukB" 3263 " free_cma:%lukB" 3264 " writeback_tmp:%lukB" 3265 " pages_scanned:%lu" 3266 " all_unreclaimable? %s" 3267 "\n", 3268 zone->name, 3269 K(zone_page_state(zone, NR_FREE_PAGES)), 3270 K(min_wmark_pages(zone)), 3271 K(low_wmark_pages(zone)), 3272 K(high_wmark_pages(zone)), 3273 K(zone_page_state(zone, NR_ACTIVE_ANON)), 3274 K(zone_page_state(zone, NR_INACTIVE_ANON)), 3275 K(zone_page_state(zone, NR_ACTIVE_FILE)), 3276 K(zone_page_state(zone, NR_INACTIVE_FILE)), 3277 K(zone_page_state(zone, NR_UNEVICTABLE)), 3278 K(zone_page_state(zone, NR_ISOLATED_ANON)), 3279 K(zone_page_state(zone, NR_ISOLATED_FILE)), 3280 K(zone->present_pages), 3281 K(zone->managed_pages), 3282 K(zone_page_state(zone, NR_MLOCK)), 3283 K(zone_page_state(zone, NR_FILE_DIRTY)), 3284 K(zone_page_state(zone, NR_WRITEBACK)), 3285 K(zone_page_state(zone, NR_FILE_MAPPED)), 3286 K(zone_page_state(zone, NR_SHMEM)), 3287 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 3288 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 3289 zone_page_state(zone, NR_KERNEL_STACK) * 3290 THREAD_SIZE / 1024, 3291 K(zone_page_state(zone, NR_PAGETABLE)), 3292 K(zone_page_state(zone, NR_UNSTABLE_NFS)), 3293 K(zone_page_state(zone, NR_BOUNCE)), 3294 K(zone_page_state(zone, NR_FREE_CMA_PAGES)), 3295 K(zone_page_state(zone, NR_WRITEBACK_TEMP)), 3296 K(zone_page_state(zone, NR_PAGES_SCANNED)), 3297 (!zone_reclaimable(zone) ? "yes" : "no") 3298 ); 3299 printk("lowmem_reserve[]:"); 3300 for (i = 0; i < MAX_NR_ZONES; i++) 3301 printk(" %ld", zone->lowmem_reserve[i]); 3302 printk("\n"); 3303 } 3304 3305 for_each_populated_zone(zone) { 3306 unsigned long nr[MAX_ORDER], flags, order, total = 0; 3307 unsigned char types[MAX_ORDER]; 3308 3309 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3310 continue; 3311 show_node(zone); 3312 printk("%s: ", zone->name); 3313 3314 spin_lock_irqsave(&zone->lock, flags); 3315 for (order = 0; order < MAX_ORDER; order++) { 3316 struct free_area *area = &zone->free_area[order]; 3317 int type; 3318 3319 nr[order] = area->nr_free; 3320 total += nr[order] << order; 3321 3322 types[order] = 0; 3323 for (type = 0; type < MIGRATE_TYPES; type++) { 3324 if (!list_empty(&area->free_list[type])) 3325 types[order] |= 1 << type; 3326 } 3327 } 3328 spin_unlock_irqrestore(&zone->lock, flags); 3329 for (order = 0; order < MAX_ORDER; order++) { 3330 printk("%lu*%lukB ", nr[order], K(1UL) << order); 3331 if (nr[order]) 3332 show_migration_types(types[order]); 3333 } 3334 printk("= %lukB\n", K(total)); 3335 } 3336 3337 hugetlb_show_meminfo(); 3338 3339 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 3340 3341 show_swap_cache_info(); 3342 } 3343 3344 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 3345 { 3346 zoneref->zone = zone; 3347 zoneref->zone_idx = zone_idx(zone); 3348 } 3349 3350 /* 3351 * Builds allocation fallback zone lists. 3352 * 3353 * Add all populated zones of a node to the zonelist. 3354 */ 3355 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 3356 int nr_zones) 3357 { 3358 struct zone *zone; 3359 enum zone_type zone_type = MAX_NR_ZONES; 3360 3361 do { 3362 zone_type--; 3363 zone = pgdat->node_zones + zone_type; 3364 if (populated_zone(zone)) { 3365 zoneref_set_zone(zone, 3366 &zonelist->_zonerefs[nr_zones++]); 3367 check_highest_zone(zone_type); 3368 } 3369 } while (zone_type); 3370 3371 return nr_zones; 3372 } 3373 3374 3375 /* 3376 * zonelist_order: 3377 * 0 = automatic detection of better ordering. 3378 * 1 = order by ([node] distance, -zonetype) 3379 * 2 = order by (-zonetype, [node] distance) 3380 * 3381 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 3382 * the same zonelist. So only NUMA can configure this param. 3383 */ 3384 #define ZONELIST_ORDER_DEFAULT 0 3385 #define ZONELIST_ORDER_NODE 1 3386 #define ZONELIST_ORDER_ZONE 2 3387 3388 /* zonelist order in the kernel. 3389 * set_zonelist_order() will set this to NODE or ZONE. 3390 */ 3391 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 3392 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 3393 3394 3395 #ifdef CONFIG_NUMA 3396 /* The value user specified ....changed by config */ 3397 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3398 /* string for sysctl */ 3399 #define NUMA_ZONELIST_ORDER_LEN 16 3400 char numa_zonelist_order[16] = "default"; 3401 3402 /* 3403 * interface for configure zonelist ordering. 3404 * command line option "numa_zonelist_order" 3405 * = "[dD]efault - default, automatic configuration. 3406 * = "[nN]ode - order by node locality, then by zone within node 3407 * = "[zZ]one - order by zone, then by locality within zone 3408 */ 3409 3410 static int __parse_numa_zonelist_order(char *s) 3411 { 3412 if (*s == 'd' || *s == 'D') { 3413 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3414 } else if (*s == 'n' || *s == 'N') { 3415 user_zonelist_order = ZONELIST_ORDER_NODE; 3416 } else if (*s == 'z' || *s == 'Z') { 3417 user_zonelist_order = ZONELIST_ORDER_ZONE; 3418 } else { 3419 printk(KERN_WARNING 3420 "Ignoring invalid numa_zonelist_order value: " 3421 "%s\n", s); 3422 return -EINVAL; 3423 } 3424 return 0; 3425 } 3426 3427 static __init int setup_numa_zonelist_order(char *s) 3428 { 3429 int ret; 3430 3431 if (!s) 3432 return 0; 3433 3434 ret = __parse_numa_zonelist_order(s); 3435 if (ret == 0) 3436 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); 3437 3438 return ret; 3439 } 3440 early_param("numa_zonelist_order", setup_numa_zonelist_order); 3441 3442 /* 3443 * sysctl handler for numa_zonelist_order 3444 */ 3445 int numa_zonelist_order_handler(struct ctl_table *table, int write, 3446 void __user *buffer, size_t *length, 3447 loff_t *ppos) 3448 { 3449 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 3450 int ret; 3451 static DEFINE_MUTEX(zl_order_mutex); 3452 3453 mutex_lock(&zl_order_mutex); 3454 if (write) { 3455 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) { 3456 ret = -EINVAL; 3457 goto out; 3458 } 3459 strcpy(saved_string, (char *)table->data); 3460 } 3461 ret = proc_dostring(table, write, buffer, length, ppos); 3462 if (ret) 3463 goto out; 3464 if (write) { 3465 int oldval = user_zonelist_order; 3466 3467 ret = __parse_numa_zonelist_order((char *)table->data); 3468 if (ret) { 3469 /* 3470 * bogus value. restore saved string 3471 */ 3472 strncpy((char *)table->data, saved_string, 3473 NUMA_ZONELIST_ORDER_LEN); 3474 user_zonelist_order = oldval; 3475 } else if (oldval != user_zonelist_order) { 3476 mutex_lock(&zonelists_mutex); 3477 build_all_zonelists(NULL, NULL); 3478 mutex_unlock(&zonelists_mutex); 3479 } 3480 } 3481 out: 3482 mutex_unlock(&zl_order_mutex); 3483 return ret; 3484 } 3485 3486 3487 #define MAX_NODE_LOAD (nr_online_nodes) 3488 static int node_load[MAX_NUMNODES]; 3489 3490 /** 3491 * find_next_best_node - find the next node that should appear in a given node's fallback list 3492 * @node: node whose fallback list we're appending 3493 * @used_node_mask: nodemask_t of already used nodes 3494 * 3495 * We use a number of factors to determine which is the next node that should 3496 * appear on a given node's fallback list. The node should not have appeared 3497 * already in @node's fallback list, and it should be the next closest node 3498 * according to the distance array (which contains arbitrary distance values 3499 * from each node to each node in the system), and should also prefer nodes 3500 * with no CPUs, since presumably they'll have very little allocation pressure 3501 * on them otherwise. 3502 * It returns -1 if no node is found. 3503 */ 3504 static int find_next_best_node(int node, nodemask_t *used_node_mask) 3505 { 3506 int n, val; 3507 int min_val = INT_MAX; 3508 int best_node = NUMA_NO_NODE; 3509 const struct cpumask *tmp = cpumask_of_node(0); 3510 3511 /* Use the local node if we haven't already */ 3512 if (!node_isset(node, *used_node_mask)) { 3513 node_set(node, *used_node_mask); 3514 return node; 3515 } 3516 3517 for_each_node_state(n, N_MEMORY) { 3518 3519 /* Don't want a node to appear more than once */ 3520 if (node_isset(n, *used_node_mask)) 3521 continue; 3522 3523 /* Use the distance array to find the distance */ 3524 val = node_distance(node, n); 3525 3526 /* Penalize nodes under us ("prefer the next node") */ 3527 val += (n < node); 3528 3529 /* Give preference to headless and unused nodes */ 3530 tmp = cpumask_of_node(n); 3531 if (!cpumask_empty(tmp)) 3532 val += PENALTY_FOR_NODE_WITH_CPUS; 3533 3534 /* Slight preference for less loaded node */ 3535 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 3536 val += node_load[n]; 3537 3538 if (val < min_val) { 3539 min_val = val; 3540 best_node = n; 3541 } 3542 } 3543 3544 if (best_node >= 0) 3545 node_set(best_node, *used_node_mask); 3546 3547 return best_node; 3548 } 3549 3550 3551 /* 3552 * Build zonelists ordered by node and zones within node. 3553 * This results in maximum locality--normal zone overflows into local 3554 * DMA zone, if any--but risks exhausting DMA zone. 3555 */ 3556 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 3557 { 3558 int j; 3559 struct zonelist *zonelist; 3560 3561 zonelist = &pgdat->node_zonelists[0]; 3562 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 3563 ; 3564 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 3565 zonelist->_zonerefs[j].zone = NULL; 3566 zonelist->_zonerefs[j].zone_idx = 0; 3567 } 3568 3569 /* 3570 * Build gfp_thisnode zonelists 3571 */ 3572 static void build_thisnode_zonelists(pg_data_t *pgdat) 3573 { 3574 int j; 3575 struct zonelist *zonelist; 3576 3577 zonelist = &pgdat->node_zonelists[1]; 3578 j = build_zonelists_node(pgdat, zonelist, 0); 3579 zonelist->_zonerefs[j].zone = NULL; 3580 zonelist->_zonerefs[j].zone_idx = 0; 3581 } 3582 3583 /* 3584 * Build zonelists ordered by zone and nodes within zones. 3585 * This results in conserving DMA zone[s] until all Normal memory is 3586 * exhausted, but results in overflowing to remote node while memory 3587 * may still exist in local DMA zone. 3588 */ 3589 static int node_order[MAX_NUMNODES]; 3590 3591 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 3592 { 3593 int pos, j, node; 3594 int zone_type; /* needs to be signed */ 3595 struct zone *z; 3596 struct zonelist *zonelist; 3597 3598 zonelist = &pgdat->node_zonelists[0]; 3599 pos = 0; 3600 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 3601 for (j = 0; j < nr_nodes; j++) { 3602 node = node_order[j]; 3603 z = &NODE_DATA(node)->node_zones[zone_type]; 3604 if (populated_zone(z)) { 3605 zoneref_set_zone(z, 3606 &zonelist->_zonerefs[pos++]); 3607 check_highest_zone(zone_type); 3608 } 3609 } 3610 } 3611 zonelist->_zonerefs[pos].zone = NULL; 3612 zonelist->_zonerefs[pos].zone_idx = 0; 3613 } 3614 3615 #if defined(CONFIG_64BIT) 3616 /* 3617 * Devices that require DMA32/DMA are relatively rare and do not justify a 3618 * penalty to every machine in case the specialised case applies. Default 3619 * to Node-ordering on 64-bit NUMA machines 3620 */ 3621 static int default_zonelist_order(void) 3622 { 3623 return ZONELIST_ORDER_NODE; 3624 } 3625 #else 3626 /* 3627 * On 32-bit, the Normal zone needs to be preserved for allocations accessible 3628 * by the kernel. If processes running on node 0 deplete the low memory zone 3629 * then reclaim will occur more frequency increasing stalls and potentially 3630 * be easier to OOM if a large percentage of the zone is under writeback or 3631 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set. 3632 * Hence, default to zone ordering on 32-bit. 3633 */ 3634 static int default_zonelist_order(void) 3635 { 3636 return ZONELIST_ORDER_ZONE; 3637 } 3638 #endif /* CONFIG_64BIT */ 3639 3640 static void set_zonelist_order(void) 3641 { 3642 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 3643 current_zonelist_order = default_zonelist_order(); 3644 else 3645 current_zonelist_order = user_zonelist_order; 3646 } 3647 3648 static void build_zonelists(pg_data_t *pgdat) 3649 { 3650 int j, node, load; 3651 enum zone_type i; 3652 nodemask_t used_mask; 3653 int local_node, prev_node; 3654 struct zonelist *zonelist; 3655 int order = current_zonelist_order; 3656 3657 /* initialize zonelists */ 3658 for (i = 0; i < MAX_ZONELISTS; i++) { 3659 zonelist = pgdat->node_zonelists + i; 3660 zonelist->_zonerefs[0].zone = NULL; 3661 zonelist->_zonerefs[0].zone_idx = 0; 3662 } 3663 3664 /* NUMA-aware ordering of nodes */ 3665 local_node = pgdat->node_id; 3666 load = nr_online_nodes; 3667 prev_node = local_node; 3668 nodes_clear(used_mask); 3669 3670 memset(node_order, 0, sizeof(node_order)); 3671 j = 0; 3672 3673 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 3674 /* 3675 * We don't want to pressure a particular node. 3676 * So adding penalty to the first node in same 3677 * distance group to make it round-robin. 3678 */ 3679 if (node_distance(local_node, node) != 3680 node_distance(local_node, prev_node)) 3681 node_load[node] = load; 3682 3683 prev_node = node; 3684 load--; 3685 if (order == ZONELIST_ORDER_NODE) 3686 build_zonelists_in_node_order(pgdat, node); 3687 else 3688 node_order[j++] = node; /* remember order */ 3689 } 3690 3691 if (order == ZONELIST_ORDER_ZONE) { 3692 /* calculate node order -- i.e., DMA last! */ 3693 build_zonelists_in_zone_order(pgdat, j); 3694 } 3695 3696 build_thisnode_zonelists(pgdat); 3697 } 3698 3699 /* Construct the zonelist performance cache - see further mmzone.h */ 3700 static void build_zonelist_cache(pg_data_t *pgdat) 3701 { 3702 struct zonelist *zonelist; 3703 struct zonelist_cache *zlc; 3704 struct zoneref *z; 3705 3706 zonelist = &pgdat->node_zonelists[0]; 3707 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 3708 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 3709 for (z = zonelist->_zonerefs; z->zone; z++) 3710 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 3711 } 3712 3713 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3714 /* 3715 * Return node id of node used for "local" allocations. 3716 * I.e., first node id of first zone in arg node's generic zonelist. 3717 * Used for initializing percpu 'numa_mem', which is used primarily 3718 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 3719 */ 3720 int local_memory_node(int node) 3721 { 3722 struct zone *zone; 3723 3724 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 3725 gfp_zone(GFP_KERNEL), 3726 NULL, 3727 &zone); 3728 return zone->node; 3729 } 3730 #endif 3731 3732 #else /* CONFIG_NUMA */ 3733 3734 static void set_zonelist_order(void) 3735 { 3736 current_zonelist_order = ZONELIST_ORDER_ZONE; 3737 } 3738 3739 static void build_zonelists(pg_data_t *pgdat) 3740 { 3741 int node, local_node; 3742 enum zone_type j; 3743 struct zonelist *zonelist; 3744 3745 local_node = pgdat->node_id; 3746 3747 zonelist = &pgdat->node_zonelists[0]; 3748 j = build_zonelists_node(pgdat, zonelist, 0); 3749 3750 /* 3751 * Now we build the zonelist so that it contains the zones 3752 * of all the other nodes. 3753 * We don't want to pressure a particular node, so when 3754 * building the zones for node N, we make sure that the 3755 * zones coming right after the local ones are those from 3756 * node N+1 (modulo N) 3757 */ 3758 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 3759 if (!node_online(node)) 3760 continue; 3761 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 3762 } 3763 for (node = 0; node < local_node; node++) { 3764 if (!node_online(node)) 3765 continue; 3766 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 3767 } 3768 3769 zonelist->_zonerefs[j].zone = NULL; 3770 zonelist->_zonerefs[j].zone_idx = 0; 3771 } 3772 3773 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 3774 static void build_zonelist_cache(pg_data_t *pgdat) 3775 { 3776 pgdat->node_zonelists[0].zlcache_ptr = NULL; 3777 } 3778 3779 #endif /* CONFIG_NUMA */ 3780 3781 /* 3782 * Boot pageset table. One per cpu which is going to be used for all 3783 * zones and all nodes. The parameters will be set in such a way 3784 * that an item put on a list will immediately be handed over to 3785 * the buddy list. This is safe since pageset manipulation is done 3786 * with interrupts disabled. 3787 * 3788 * The boot_pagesets must be kept even after bootup is complete for 3789 * unused processors and/or zones. They do play a role for bootstrapping 3790 * hotplugged processors. 3791 * 3792 * zoneinfo_show() and maybe other functions do 3793 * not check if the processor is online before following the pageset pointer. 3794 * Other parts of the kernel may not check if the zone is available. 3795 */ 3796 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 3797 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 3798 static void setup_zone_pageset(struct zone *zone); 3799 3800 /* 3801 * Global mutex to protect against size modification of zonelists 3802 * as well as to serialize pageset setup for the new populated zone. 3803 */ 3804 DEFINE_MUTEX(zonelists_mutex); 3805 3806 /* return values int ....just for stop_machine() */ 3807 static int __build_all_zonelists(void *data) 3808 { 3809 int nid; 3810 int cpu; 3811 pg_data_t *self = data; 3812 3813 #ifdef CONFIG_NUMA 3814 memset(node_load, 0, sizeof(node_load)); 3815 #endif 3816 3817 if (self && !node_online(self->node_id)) { 3818 build_zonelists(self); 3819 build_zonelist_cache(self); 3820 } 3821 3822 for_each_online_node(nid) { 3823 pg_data_t *pgdat = NODE_DATA(nid); 3824 3825 build_zonelists(pgdat); 3826 build_zonelist_cache(pgdat); 3827 } 3828 3829 /* 3830 * Initialize the boot_pagesets that are going to be used 3831 * for bootstrapping processors. The real pagesets for 3832 * each zone will be allocated later when the per cpu 3833 * allocator is available. 3834 * 3835 * boot_pagesets are used also for bootstrapping offline 3836 * cpus if the system is already booted because the pagesets 3837 * are needed to initialize allocators on a specific cpu too. 3838 * F.e. the percpu allocator needs the page allocator which 3839 * needs the percpu allocator in order to allocate its pagesets 3840 * (a chicken-egg dilemma). 3841 */ 3842 for_each_possible_cpu(cpu) { 3843 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 3844 3845 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3846 /* 3847 * We now know the "local memory node" for each node-- 3848 * i.e., the node of the first zone in the generic zonelist. 3849 * Set up numa_mem percpu variable for on-line cpus. During 3850 * boot, only the boot cpu should be on-line; we'll init the 3851 * secondary cpus' numa_mem as they come on-line. During 3852 * node/memory hotplug, we'll fixup all on-line cpus. 3853 */ 3854 if (cpu_online(cpu)) 3855 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 3856 #endif 3857 } 3858 3859 return 0; 3860 } 3861 3862 /* 3863 * Called with zonelists_mutex held always 3864 * unless system_state == SYSTEM_BOOTING. 3865 */ 3866 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone) 3867 { 3868 set_zonelist_order(); 3869 3870 if (system_state == SYSTEM_BOOTING) { 3871 __build_all_zonelists(NULL); 3872 mminit_verify_zonelist(); 3873 cpuset_init_current_mems_allowed(); 3874 } else { 3875 #ifdef CONFIG_MEMORY_HOTPLUG 3876 if (zone) 3877 setup_zone_pageset(zone); 3878 #endif 3879 /* we have to stop all cpus to guarantee there is no user 3880 of zonelist */ 3881 stop_machine(__build_all_zonelists, pgdat, NULL); 3882 /* cpuset refresh routine should be here */ 3883 } 3884 vm_total_pages = nr_free_pagecache_pages(); 3885 /* 3886 * Disable grouping by mobility if the number of pages in the 3887 * system is too low to allow the mechanism to work. It would be 3888 * more accurate, but expensive to check per-zone. This check is 3889 * made on memory-hotadd so a system can start with mobility 3890 * disabled and enable it later 3891 */ 3892 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 3893 page_group_by_mobility_disabled = 1; 3894 else 3895 page_group_by_mobility_disabled = 0; 3896 3897 printk("Built %i zonelists in %s order, mobility grouping %s. " 3898 "Total pages: %ld\n", 3899 nr_online_nodes, 3900 zonelist_order_name[current_zonelist_order], 3901 page_group_by_mobility_disabled ? "off" : "on", 3902 vm_total_pages); 3903 #ifdef CONFIG_NUMA 3904 printk("Policy zone: %s\n", zone_names[policy_zone]); 3905 #endif 3906 } 3907 3908 /* 3909 * Helper functions to size the waitqueue hash table. 3910 * Essentially these want to choose hash table sizes sufficiently 3911 * large so that collisions trying to wait on pages are rare. 3912 * But in fact, the number of active page waitqueues on typical 3913 * systems is ridiculously low, less than 200. So this is even 3914 * conservative, even though it seems large. 3915 * 3916 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 3917 * waitqueues, i.e. the size of the waitq table given the number of pages. 3918 */ 3919 #define PAGES_PER_WAITQUEUE 256 3920 3921 #ifndef CONFIG_MEMORY_HOTPLUG 3922 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3923 { 3924 unsigned long size = 1; 3925 3926 pages /= PAGES_PER_WAITQUEUE; 3927 3928 while (size < pages) 3929 size <<= 1; 3930 3931 /* 3932 * Once we have dozens or even hundreds of threads sleeping 3933 * on IO we've got bigger problems than wait queue collision. 3934 * Limit the size of the wait table to a reasonable size. 3935 */ 3936 size = min(size, 4096UL); 3937 3938 return max(size, 4UL); 3939 } 3940 #else 3941 /* 3942 * A zone's size might be changed by hot-add, so it is not possible to determine 3943 * a suitable size for its wait_table. So we use the maximum size now. 3944 * 3945 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 3946 * 3947 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 3948 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 3949 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 3950 * 3951 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 3952 * or more by the traditional way. (See above). It equals: 3953 * 3954 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 3955 * ia64(16K page size) : = ( 8G + 4M)byte. 3956 * powerpc (64K page size) : = (32G +16M)byte. 3957 */ 3958 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3959 { 3960 return 4096UL; 3961 } 3962 #endif 3963 3964 /* 3965 * This is an integer logarithm so that shifts can be used later 3966 * to extract the more random high bits from the multiplicative 3967 * hash function before the remainder is taken. 3968 */ 3969 static inline unsigned long wait_table_bits(unsigned long size) 3970 { 3971 return ffz(~size); 3972 } 3973 3974 /* 3975 * Check if a pageblock contains reserved pages 3976 */ 3977 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn) 3978 { 3979 unsigned long pfn; 3980 3981 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3982 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn))) 3983 return 1; 3984 } 3985 return 0; 3986 } 3987 3988 /* 3989 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 3990 * of blocks reserved is based on min_wmark_pages(zone). The memory within 3991 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes 3992 * higher will lead to a bigger reserve which will get freed as contiguous 3993 * blocks as reclaim kicks in 3994 */ 3995 static void setup_zone_migrate_reserve(struct zone *zone) 3996 { 3997 unsigned long start_pfn, pfn, end_pfn, block_end_pfn; 3998 struct page *page; 3999 unsigned long block_migratetype; 4000 int reserve; 4001 int old_reserve; 4002 4003 /* 4004 * Get the start pfn, end pfn and the number of blocks to reserve 4005 * We have to be careful to be aligned to pageblock_nr_pages to 4006 * make sure that we always check pfn_valid for the first page in 4007 * the block. 4008 */ 4009 start_pfn = zone->zone_start_pfn; 4010 end_pfn = zone_end_pfn(zone); 4011 start_pfn = roundup(start_pfn, pageblock_nr_pages); 4012 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> 4013 pageblock_order; 4014 4015 /* 4016 * Reserve blocks are generally in place to help high-order atomic 4017 * allocations that are short-lived. A min_free_kbytes value that 4018 * would result in more than 2 reserve blocks for atomic allocations 4019 * is assumed to be in place to help anti-fragmentation for the 4020 * future allocation of hugepages at runtime. 4021 */ 4022 reserve = min(2, reserve); 4023 old_reserve = zone->nr_migrate_reserve_block; 4024 4025 /* When memory hot-add, we almost always need to do nothing */ 4026 if (reserve == old_reserve) 4027 return; 4028 zone->nr_migrate_reserve_block = reserve; 4029 4030 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 4031 if (!pfn_valid(pfn)) 4032 continue; 4033 page = pfn_to_page(pfn); 4034 4035 /* Watch out for overlapping nodes */ 4036 if (page_to_nid(page) != zone_to_nid(zone)) 4037 continue; 4038 4039 block_migratetype = get_pageblock_migratetype(page); 4040 4041 /* Only test what is necessary when the reserves are not met */ 4042 if (reserve > 0) { 4043 /* 4044 * Blocks with reserved pages will never free, skip 4045 * them. 4046 */ 4047 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn); 4048 if (pageblock_is_reserved(pfn, block_end_pfn)) 4049 continue; 4050 4051 /* If this block is reserved, account for it */ 4052 if (block_migratetype == MIGRATE_RESERVE) { 4053 reserve--; 4054 continue; 4055 } 4056 4057 /* Suitable for reserving if this block is movable */ 4058 if (block_migratetype == MIGRATE_MOVABLE) { 4059 set_pageblock_migratetype(page, 4060 MIGRATE_RESERVE); 4061 move_freepages_block(zone, page, 4062 MIGRATE_RESERVE); 4063 reserve--; 4064 continue; 4065 } 4066 } else if (!old_reserve) { 4067 /* 4068 * At boot time we don't need to scan the whole zone 4069 * for turning off MIGRATE_RESERVE. 4070 */ 4071 break; 4072 } 4073 4074 /* 4075 * If the reserve is met and this is a previous reserved block, 4076 * take it back 4077 */ 4078 if (block_migratetype == MIGRATE_RESERVE) { 4079 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 4080 move_freepages_block(zone, page, MIGRATE_MOVABLE); 4081 } 4082 } 4083 } 4084 4085 /* 4086 * Initially all pages are reserved - free ones are freed 4087 * up by free_all_bootmem() once the early boot process is 4088 * done. Non-atomic initialization, single-pass. 4089 */ 4090 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 4091 unsigned long start_pfn, enum memmap_context context) 4092 { 4093 struct page *page; 4094 unsigned long end_pfn = start_pfn + size; 4095 unsigned long pfn; 4096 struct zone *z; 4097 4098 if (highest_memmap_pfn < end_pfn - 1) 4099 highest_memmap_pfn = end_pfn - 1; 4100 4101 z = &NODE_DATA(nid)->node_zones[zone]; 4102 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 4103 /* 4104 * There can be holes in boot-time mem_map[]s 4105 * handed to this function. They do not 4106 * exist on hotplugged memory. 4107 */ 4108 if (context == MEMMAP_EARLY) { 4109 if (!early_pfn_valid(pfn)) 4110 continue; 4111 if (!early_pfn_in_nid(pfn, nid)) 4112 continue; 4113 } 4114 page = pfn_to_page(pfn); 4115 set_page_links(page, zone, nid, pfn); 4116 mminit_verify_page_links(page, zone, nid, pfn); 4117 init_page_count(page); 4118 page_mapcount_reset(page); 4119 page_cpupid_reset_last(page); 4120 SetPageReserved(page); 4121 /* 4122 * Mark the block movable so that blocks are reserved for 4123 * movable at startup. This will force kernel allocations 4124 * to reserve their blocks rather than leaking throughout 4125 * the address space during boot when many long-lived 4126 * kernel allocations are made. Later some blocks near 4127 * the start are marked MIGRATE_RESERVE by 4128 * setup_zone_migrate_reserve() 4129 * 4130 * bitmap is created for zone's valid pfn range. but memmap 4131 * can be created for invalid pages (for alignment) 4132 * check here not to call set_pageblock_migratetype() against 4133 * pfn out of zone. 4134 */ 4135 if ((z->zone_start_pfn <= pfn) 4136 && (pfn < zone_end_pfn(z)) 4137 && !(pfn & (pageblock_nr_pages - 1))) 4138 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 4139 4140 INIT_LIST_HEAD(&page->lru); 4141 #ifdef WANT_PAGE_VIRTUAL 4142 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 4143 if (!is_highmem_idx(zone)) 4144 set_page_address(page, __va(pfn << PAGE_SHIFT)); 4145 #endif 4146 } 4147 } 4148 4149 static void __meminit zone_init_free_lists(struct zone *zone) 4150 { 4151 unsigned int order, t; 4152 for_each_migratetype_order(order, t) { 4153 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 4154 zone->free_area[order].nr_free = 0; 4155 } 4156 } 4157 4158 #ifndef __HAVE_ARCH_MEMMAP_INIT 4159 #define memmap_init(size, nid, zone, start_pfn) \ 4160 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 4161 #endif 4162 4163 static int zone_batchsize(struct zone *zone) 4164 { 4165 #ifdef CONFIG_MMU 4166 int batch; 4167 4168 /* 4169 * The per-cpu-pages pools are set to around 1000th of the 4170 * size of the zone. But no more than 1/2 of a meg. 4171 * 4172 * OK, so we don't know how big the cache is. So guess. 4173 */ 4174 batch = zone->managed_pages / 1024; 4175 if (batch * PAGE_SIZE > 512 * 1024) 4176 batch = (512 * 1024) / PAGE_SIZE; 4177 batch /= 4; /* We effectively *= 4 below */ 4178 if (batch < 1) 4179 batch = 1; 4180 4181 /* 4182 * Clamp the batch to a 2^n - 1 value. Having a power 4183 * of 2 value was found to be more likely to have 4184 * suboptimal cache aliasing properties in some cases. 4185 * 4186 * For example if 2 tasks are alternately allocating 4187 * batches of pages, one task can end up with a lot 4188 * of pages of one half of the possible page colors 4189 * and the other with pages of the other colors. 4190 */ 4191 batch = rounddown_pow_of_two(batch + batch/2) - 1; 4192 4193 return batch; 4194 4195 #else 4196 /* The deferral and batching of frees should be suppressed under NOMMU 4197 * conditions. 4198 * 4199 * The problem is that NOMMU needs to be able to allocate large chunks 4200 * of contiguous memory as there's no hardware page translation to 4201 * assemble apparent contiguous memory from discontiguous pages. 4202 * 4203 * Queueing large contiguous runs of pages for batching, however, 4204 * causes the pages to actually be freed in smaller chunks. As there 4205 * can be a significant delay between the individual batches being 4206 * recycled, this leads to the once large chunks of space being 4207 * fragmented and becoming unavailable for high-order allocations. 4208 */ 4209 return 0; 4210 #endif 4211 } 4212 4213 /* 4214 * pcp->high and pcp->batch values are related and dependent on one another: 4215 * ->batch must never be higher then ->high. 4216 * The following function updates them in a safe manner without read side 4217 * locking. 4218 * 4219 * Any new users of pcp->batch and pcp->high should ensure they can cope with 4220 * those fields changing asynchronously (acording the the above rule). 4221 * 4222 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 4223 * outside of boot time (or some other assurance that no concurrent updaters 4224 * exist). 4225 */ 4226 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 4227 unsigned long batch) 4228 { 4229 /* start with a fail safe value for batch */ 4230 pcp->batch = 1; 4231 smp_wmb(); 4232 4233 /* Update high, then batch, in order */ 4234 pcp->high = high; 4235 smp_wmb(); 4236 4237 pcp->batch = batch; 4238 } 4239 4240 /* a companion to pageset_set_high() */ 4241 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 4242 { 4243 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 4244 } 4245 4246 static void pageset_init(struct per_cpu_pageset *p) 4247 { 4248 struct per_cpu_pages *pcp; 4249 int migratetype; 4250 4251 memset(p, 0, sizeof(*p)); 4252 4253 pcp = &p->pcp; 4254 pcp->count = 0; 4255 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 4256 INIT_LIST_HEAD(&pcp->lists[migratetype]); 4257 } 4258 4259 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 4260 { 4261 pageset_init(p); 4262 pageset_set_batch(p, batch); 4263 } 4264 4265 /* 4266 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 4267 * to the value high for the pageset p. 4268 */ 4269 static void pageset_set_high(struct per_cpu_pageset *p, 4270 unsigned long high) 4271 { 4272 unsigned long batch = max(1UL, high / 4); 4273 if ((high / 4) > (PAGE_SHIFT * 8)) 4274 batch = PAGE_SHIFT * 8; 4275 4276 pageset_update(&p->pcp, high, batch); 4277 } 4278 4279 static void pageset_set_high_and_batch(struct zone *zone, 4280 struct per_cpu_pageset *pcp) 4281 { 4282 if (percpu_pagelist_fraction) 4283 pageset_set_high(pcp, 4284 (zone->managed_pages / 4285 percpu_pagelist_fraction)); 4286 else 4287 pageset_set_batch(pcp, zone_batchsize(zone)); 4288 } 4289 4290 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 4291 { 4292 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 4293 4294 pageset_init(pcp); 4295 pageset_set_high_and_batch(zone, pcp); 4296 } 4297 4298 static void __meminit setup_zone_pageset(struct zone *zone) 4299 { 4300 int cpu; 4301 zone->pageset = alloc_percpu(struct per_cpu_pageset); 4302 for_each_possible_cpu(cpu) 4303 zone_pageset_init(zone, cpu); 4304 } 4305 4306 /* 4307 * Allocate per cpu pagesets and initialize them. 4308 * Before this call only boot pagesets were available. 4309 */ 4310 void __init setup_per_cpu_pageset(void) 4311 { 4312 struct zone *zone; 4313 4314 for_each_populated_zone(zone) 4315 setup_zone_pageset(zone); 4316 } 4317 4318 static noinline __init_refok 4319 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 4320 { 4321 int i; 4322 size_t alloc_size; 4323 4324 /* 4325 * The per-page waitqueue mechanism uses hashed waitqueues 4326 * per zone. 4327 */ 4328 zone->wait_table_hash_nr_entries = 4329 wait_table_hash_nr_entries(zone_size_pages); 4330 zone->wait_table_bits = 4331 wait_table_bits(zone->wait_table_hash_nr_entries); 4332 alloc_size = zone->wait_table_hash_nr_entries 4333 * sizeof(wait_queue_head_t); 4334 4335 if (!slab_is_available()) { 4336 zone->wait_table = (wait_queue_head_t *) 4337 memblock_virt_alloc_node_nopanic( 4338 alloc_size, zone->zone_pgdat->node_id); 4339 } else { 4340 /* 4341 * This case means that a zone whose size was 0 gets new memory 4342 * via memory hot-add. 4343 * But it may be the case that a new node was hot-added. In 4344 * this case vmalloc() will not be able to use this new node's 4345 * memory - this wait_table must be initialized to use this new 4346 * node itself as well. 4347 * To use this new node's memory, further consideration will be 4348 * necessary. 4349 */ 4350 zone->wait_table = vmalloc(alloc_size); 4351 } 4352 if (!zone->wait_table) 4353 return -ENOMEM; 4354 4355 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i) 4356 init_waitqueue_head(zone->wait_table + i); 4357 4358 return 0; 4359 } 4360 4361 static __meminit void zone_pcp_init(struct zone *zone) 4362 { 4363 /* 4364 * per cpu subsystem is not up at this point. The following code 4365 * relies on the ability of the linker to provide the 4366 * offset of a (static) per cpu variable into the per cpu area. 4367 */ 4368 zone->pageset = &boot_pageset; 4369 4370 if (populated_zone(zone)) 4371 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 4372 zone->name, zone->present_pages, 4373 zone_batchsize(zone)); 4374 } 4375 4376 int __meminit init_currently_empty_zone(struct zone *zone, 4377 unsigned long zone_start_pfn, 4378 unsigned long size, 4379 enum memmap_context context) 4380 { 4381 struct pglist_data *pgdat = zone->zone_pgdat; 4382 int ret; 4383 ret = zone_wait_table_init(zone, size); 4384 if (ret) 4385 return ret; 4386 pgdat->nr_zones = zone_idx(zone) + 1; 4387 4388 zone->zone_start_pfn = zone_start_pfn; 4389 4390 mminit_dprintk(MMINIT_TRACE, "memmap_init", 4391 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 4392 pgdat->node_id, 4393 (unsigned long)zone_idx(zone), 4394 zone_start_pfn, (zone_start_pfn + size)); 4395 4396 zone_init_free_lists(zone); 4397 4398 return 0; 4399 } 4400 4401 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4402 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 4403 /* 4404 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 4405 */ 4406 int __meminit __early_pfn_to_nid(unsigned long pfn) 4407 { 4408 unsigned long start_pfn, end_pfn; 4409 int nid; 4410 /* 4411 * NOTE: The following SMP-unsafe globals are only used early in boot 4412 * when the kernel is running single-threaded. 4413 */ 4414 static unsigned long __meminitdata last_start_pfn, last_end_pfn; 4415 static int __meminitdata last_nid; 4416 4417 if (last_start_pfn <= pfn && pfn < last_end_pfn) 4418 return last_nid; 4419 4420 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 4421 if (nid != -1) { 4422 last_start_pfn = start_pfn; 4423 last_end_pfn = end_pfn; 4424 last_nid = nid; 4425 } 4426 4427 return nid; 4428 } 4429 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 4430 4431 int __meminit early_pfn_to_nid(unsigned long pfn) 4432 { 4433 int nid; 4434 4435 nid = __early_pfn_to_nid(pfn); 4436 if (nid >= 0) 4437 return nid; 4438 /* just returns 0 */ 4439 return 0; 4440 } 4441 4442 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 4443 bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 4444 { 4445 int nid; 4446 4447 nid = __early_pfn_to_nid(pfn); 4448 if (nid >= 0 && nid != node) 4449 return false; 4450 return true; 4451 } 4452 #endif 4453 4454 /** 4455 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range 4456 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 4457 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid 4458 * 4459 * If an architecture guarantees that all ranges registered contain no holes 4460 * and may be freed, this this function may be used instead of calling 4461 * memblock_free_early_nid() manually. 4462 */ 4463 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 4464 { 4465 unsigned long start_pfn, end_pfn; 4466 int i, this_nid; 4467 4468 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 4469 start_pfn = min(start_pfn, max_low_pfn); 4470 end_pfn = min(end_pfn, max_low_pfn); 4471 4472 if (start_pfn < end_pfn) 4473 memblock_free_early_nid(PFN_PHYS(start_pfn), 4474 (end_pfn - start_pfn) << PAGE_SHIFT, 4475 this_nid); 4476 } 4477 } 4478 4479 /** 4480 * sparse_memory_present_with_active_regions - Call memory_present for each active range 4481 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 4482 * 4483 * If an architecture guarantees that all ranges registered contain no holes and may 4484 * be freed, this function may be used instead of calling memory_present() manually. 4485 */ 4486 void __init sparse_memory_present_with_active_regions(int nid) 4487 { 4488 unsigned long start_pfn, end_pfn; 4489 int i, this_nid; 4490 4491 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 4492 memory_present(this_nid, start_pfn, end_pfn); 4493 } 4494 4495 /** 4496 * get_pfn_range_for_nid - Return the start and end page frames for a node 4497 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 4498 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 4499 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 4500 * 4501 * It returns the start and end page frame of a node based on information 4502 * provided by memblock_set_node(). If called for a node 4503 * with no available memory, a warning is printed and the start and end 4504 * PFNs will be 0. 4505 */ 4506 void __meminit get_pfn_range_for_nid(unsigned int nid, 4507 unsigned long *start_pfn, unsigned long *end_pfn) 4508 { 4509 unsigned long this_start_pfn, this_end_pfn; 4510 int i; 4511 4512 *start_pfn = -1UL; 4513 *end_pfn = 0; 4514 4515 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 4516 *start_pfn = min(*start_pfn, this_start_pfn); 4517 *end_pfn = max(*end_pfn, this_end_pfn); 4518 } 4519 4520 if (*start_pfn == -1UL) 4521 *start_pfn = 0; 4522 } 4523 4524 /* 4525 * This finds a zone that can be used for ZONE_MOVABLE pages. The 4526 * assumption is made that zones within a node are ordered in monotonic 4527 * increasing memory addresses so that the "highest" populated zone is used 4528 */ 4529 static void __init find_usable_zone_for_movable(void) 4530 { 4531 int zone_index; 4532 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 4533 if (zone_index == ZONE_MOVABLE) 4534 continue; 4535 4536 if (arch_zone_highest_possible_pfn[zone_index] > 4537 arch_zone_lowest_possible_pfn[zone_index]) 4538 break; 4539 } 4540 4541 VM_BUG_ON(zone_index == -1); 4542 movable_zone = zone_index; 4543 } 4544 4545 /* 4546 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 4547 * because it is sized independent of architecture. Unlike the other zones, 4548 * the starting point for ZONE_MOVABLE is not fixed. It may be different 4549 * in each node depending on the size of each node and how evenly kernelcore 4550 * is distributed. This helper function adjusts the zone ranges 4551 * provided by the architecture for a given node by using the end of the 4552 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 4553 * zones within a node are in order of monotonic increases memory addresses 4554 */ 4555 static void __meminit adjust_zone_range_for_zone_movable(int nid, 4556 unsigned long zone_type, 4557 unsigned long node_start_pfn, 4558 unsigned long node_end_pfn, 4559 unsigned long *zone_start_pfn, 4560 unsigned long *zone_end_pfn) 4561 { 4562 /* Only adjust if ZONE_MOVABLE is on this node */ 4563 if (zone_movable_pfn[nid]) { 4564 /* Size ZONE_MOVABLE */ 4565 if (zone_type == ZONE_MOVABLE) { 4566 *zone_start_pfn = zone_movable_pfn[nid]; 4567 *zone_end_pfn = min(node_end_pfn, 4568 arch_zone_highest_possible_pfn[movable_zone]); 4569 4570 /* Adjust for ZONE_MOVABLE starting within this range */ 4571 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 4572 *zone_end_pfn > zone_movable_pfn[nid]) { 4573 *zone_end_pfn = zone_movable_pfn[nid]; 4574 4575 /* Check if this whole range is within ZONE_MOVABLE */ 4576 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 4577 *zone_start_pfn = *zone_end_pfn; 4578 } 4579 } 4580 4581 /* 4582 * Return the number of pages a zone spans in a node, including holes 4583 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 4584 */ 4585 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 4586 unsigned long zone_type, 4587 unsigned long node_start_pfn, 4588 unsigned long node_end_pfn, 4589 unsigned long *ignored) 4590 { 4591 unsigned long zone_start_pfn, zone_end_pfn; 4592 4593 /* Get the start and end of the zone */ 4594 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 4595 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 4596 adjust_zone_range_for_zone_movable(nid, zone_type, 4597 node_start_pfn, node_end_pfn, 4598 &zone_start_pfn, &zone_end_pfn); 4599 4600 /* Check that this node has pages within the zone's required range */ 4601 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 4602 return 0; 4603 4604 /* Move the zone boundaries inside the node if necessary */ 4605 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 4606 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 4607 4608 /* Return the spanned pages */ 4609 return zone_end_pfn - zone_start_pfn; 4610 } 4611 4612 /* 4613 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 4614 * then all holes in the requested range will be accounted for. 4615 */ 4616 unsigned long __meminit __absent_pages_in_range(int nid, 4617 unsigned long range_start_pfn, 4618 unsigned long range_end_pfn) 4619 { 4620 unsigned long nr_absent = range_end_pfn - range_start_pfn; 4621 unsigned long start_pfn, end_pfn; 4622 int i; 4623 4624 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 4625 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 4626 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 4627 nr_absent -= end_pfn - start_pfn; 4628 } 4629 return nr_absent; 4630 } 4631 4632 /** 4633 * absent_pages_in_range - Return number of page frames in holes within a range 4634 * @start_pfn: The start PFN to start searching for holes 4635 * @end_pfn: The end PFN to stop searching for holes 4636 * 4637 * It returns the number of pages frames in memory holes within a range. 4638 */ 4639 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 4640 unsigned long end_pfn) 4641 { 4642 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 4643 } 4644 4645 /* Return the number of page frames in holes in a zone on a node */ 4646 static unsigned long __meminit zone_absent_pages_in_node(int nid, 4647 unsigned long zone_type, 4648 unsigned long node_start_pfn, 4649 unsigned long node_end_pfn, 4650 unsigned long *ignored) 4651 { 4652 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 4653 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 4654 unsigned long zone_start_pfn, zone_end_pfn; 4655 4656 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 4657 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 4658 4659 adjust_zone_range_for_zone_movable(nid, zone_type, 4660 node_start_pfn, node_end_pfn, 4661 &zone_start_pfn, &zone_end_pfn); 4662 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 4663 } 4664 4665 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4666 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 4667 unsigned long zone_type, 4668 unsigned long node_start_pfn, 4669 unsigned long node_end_pfn, 4670 unsigned long *zones_size) 4671 { 4672 return zones_size[zone_type]; 4673 } 4674 4675 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 4676 unsigned long zone_type, 4677 unsigned long node_start_pfn, 4678 unsigned long node_end_pfn, 4679 unsigned long *zholes_size) 4680 { 4681 if (!zholes_size) 4682 return 0; 4683 4684 return zholes_size[zone_type]; 4685 } 4686 4687 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4688 4689 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 4690 unsigned long node_start_pfn, 4691 unsigned long node_end_pfn, 4692 unsigned long *zones_size, 4693 unsigned long *zholes_size) 4694 { 4695 unsigned long realtotalpages, totalpages = 0; 4696 enum zone_type i; 4697 4698 for (i = 0; i < MAX_NR_ZONES; i++) 4699 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 4700 node_start_pfn, 4701 node_end_pfn, 4702 zones_size); 4703 pgdat->node_spanned_pages = totalpages; 4704 4705 realtotalpages = totalpages; 4706 for (i = 0; i < MAX_NR_ZONES; i++) 4707 realtotalpages -= 4708 zone_absent_pages_in_node(pgdat->node_id, i, 4709 node_start_pfn, node_end_pfn, 4710 zholes_size); 4711 pgdat->node_present_pages = realtotalpages; 4712 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 4713 realtotalpages); 4714 } 4715 4716 #ifndef CONFIG_SPARSEMEM 4717 /* 4718 * Calculate the size of the zone->blockflags rounded to an unsigned long 4719 * Start by making sure zonesize is a multiple of pageblock_order by rounding 4720 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 4721 * round what is now in bits to nearest long in bits, then return it in 4722 * bytes. 4723 */ 4724 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 4725 { 4726 unsigned long usemapsize; 4727 4728 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 4729 usemapsize = roundup(zonesize, pageblock_nr_pages); 4730 usemapsize = usemapsize >> pageblock_order; 4731 usemapsize *= NR_PAGEBLOCK_BITS; 4732 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 4733 4734 return usemapsize / 8; 4735 } 4736 4737 static void __init setup_usemap(struct pglist_data *pgdat, 4738 struct zone *zone, 4739 unsigned long zone_start_pfn, 4740 unsigned long zonesize) 4741 { 4742 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 4743 zone->pageblock_flags = NULL; 4744 if (usemapsize) 4745 zone->pageblock_flags = 4746 memblock_virt_alloc_node_nopanic(usemapsize, 4747 pgdat->node_id); 4748 } 4749 #else 4750 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 4751 unsigned long zone_start_pfn, unsigned long zonesize) {} 4752 #endif /* CONFIG_SPARSEMEM */ 4753 4754 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 4755 4756 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 4757 void __paginginit set_pageblock_order(void) 4758 { 4759 unsigned int order; 4760 4761 /* Check that pageblock_nr_pages has not already been setup */ 4762 if (pageblock_order) 4763 return; 4764 4765 if (HPAGE_SHIFT > PAGE_SHIFT) 4766 order = HUGETLB_PAGE_ORDER; 4767 else 4768 order = MAX_ORDER - 1; 4769 4770 /* 4771 * Assume the largest contiguous order of interest is a huge page. 4772 * This value may be variable depending on boot parameters on IA64 and 4773 * powerpc. 4774 */ 4775 pageblock_order = order; 4776 } 4777 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4778 4779 /* 4780 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 4781 * is unused as pageblock_order is set at compile-time. See 4782 * include/linux/pageblock-flags.h for the values of pageblock_order based on 4783 * the kernel config 4784 */ 4785 void __paginginit set_pageblock_order(void) 4786 { 4787 } 4788 4789 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4790 4791 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages, 4792 unsigned long present_pages) 4793 { 4794 unsigned long pages = spanned_pages; 4795 4796 /* 4797 * Provide a more accurate estimation if there are holes within 4798 * the zone and SPARSEMEM is in use. If there are holes within the 4799 * zone, each populated memory region may cost us one or two extra 4800 * memmap pages due to alignment because memmap pages for each 4801 * populated regions may not naturally algined on page boundary. 4802 * So the (present_pages >> 4) heuristic is a tradeoff for that. 4803 */ 4804 if (spanned_pages > present_pages + (present_pages >> 4) && 4805 IS_ENABLED(CONFIG_SPARSEMEM)) 4806 pages = present_pages; 4807 4808 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 4809 } 4810 4811 /* 4812 * Set up the zone data structures: 4813 * - mark all pages reserved 4814 * - mark all memory queues empty 4815 * - clear the memory bitmaps 4816 * 4817 * NOTE: pgdat should get zeroed by caller. 4818 */ 4819 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 4820 unsigned long node_start_pfn, unsigned long node_end_pfn, 4821 unsigned long *zones_size, unsigned long *zholes_size) 4822 { 4823 enum zone_type j; 4824 int nid = pgdat->node_id; 4825 unsigned long zone_start_pfn = pgdat->node_start_pfn; 4826 int ret; 4827 4828 pgdat_resize_init(pgdat); 4829 #ifdef CONFIG_NUMA_BALANCING 4830 spin_lock_init(&pgdat->numabalancing_migrate_lock); 4831 pgdat->numabalancing_migrate_nr_pages = 0; 4832 pgdat->numabalancing_migrate_next_window = jiffies; 4833 #endif 4834 init_waitqueue_head(&pgdat->kswapd_wait); 4835 init_waitqueue_head(&pgdat->pfmemalloc_wait); 4836 pgdat_page_cgroup_init(pgdat); 4837 4838 for (j = 0; j < MAX_NR_ZONES; j++) { 4839 struct zone *zone = pgdat->node_zones + j; 4840 unsigned long size, realsize, freesize, memmap_pages; 4841 4842 size = zone_spanned_pages_in_node(nid, j, node_start_pfn, 4843 node_end_pfn, zones_size); 4844 realsize = freesize = size - zone_absent_pages_in_node(nid, j, 4845 node_start_pfn, 4846 node_end_pfn, 4847 zholes_size); 4848 4849 /* 4850 * Adjust freesize so that it accounts for how much memory 4851 * is used by this zone for memmap. This affects the watermark 4852 * and per-cpu initialisations 4853 */ 4854 memmap_pages = calc_memmap_size(size, realsize); 4855 if (freesize >= memmap_pages) { 4856 freesize -= memmap_pages; 4857 if (memmap_pages) 4858 printk(KERN_DEBUG 4859 " %s zone: %lu pages used for memmap\n", 4860 zone_names[j], memmap_pages); 4861 } else 4862 printk(KERN_WARNING 4863 " %s zone: %lu pages exceeds freesize %lu\n", 4864 zone_names[j], memmap_pages, freesize); 4865 4866 /* Account for reserved pages */ 4867 if (j == 0 && freesize > dma_reserve) { 4868 freesize -= dma_reserve; 4869 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 4870 zone_names[0], dma_reserve); 4871 } 4872 4873 if (!is_highmem_idx(j)) 4874 nr_kernel_pages += freesize; 4875 /* Charge for highmem memmap if there are enough kernel pages */ 4876 else if (nr_kernel_pages > memmap_pages * 2) 4877 nr_kernel_pages -= memmap_pages; 4878 nr_all_pages += freesize; 4879 4880 zone->spanned_pages = size; 4881 zone->present_pages = realsize; 4882 /* 4883 * Set an approximate value for lowmem here, it will be adjusted 4884 * when the bootmem allocator frees pages into the buddy system. 4885 * And all highmem pages will be managed by the buddy system. 4886 */ 4887 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize; 4888 #ifdef CONFIG_NUMA 4889 zone->node = nid; 4890 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio) 4891 / 100; 4892 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100; 4893 #endif 4894 zone->name = zone_names[j]; 4895 spin_lock_init(&zone->lock); 4896 spin_lock_init(&zone->lru_lock); 4897 zone_seqlock_init(zone); 4898 zone->zone_pgdat = pgdat; 4899 zone_pcp_init(zone); 4900 4901 /* For bootup, initialized properly in watermark setup */ 4902 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages); 4903 4904 lruvec_init(&zone->lruvec); 4905 if (!size) 4906 continue; 4907 4908 set_pageblock_order(); 4909 setup_usemap(pgdat, zone, zone_start_pfn, size); 4910 ret = init_currently_empty_zone(zone, zone_start_pfn, 4911 size, MEMMAP_EARLY); 4912 BUG_ON(ret); 4913 memmap_init(size, nid, j, zone_start_pfn); 4914 zone_start_pfn += size; 4915 } 4916 } 4917 4918 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 4919 { 4920 /* Skip empty nodes */ 4921 if (!pgdat->node_spanned_pages) 4922 return; 4923 4924 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4925 /* ia64 gets its own node_mem_map, before this, without bootmem */ 4926 if (!pgdat->node_mem_map) { 4927 unsigned long size, start, end; 4928 struct page *map; 4929 4930 /* 4931 * The zone's endpoints aren't required to be MAX_ORDER 4932 * aligned but the node_mem_map endpoints must be in order 4933 * for the buddy allocator to function correctly. 4934 */ 4935 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 4936 end = pgdat_end_pfn(pgdat); 4937 end = ALIGN(end, MAX_ORDER_NR_PAGES); 4938 size = (end - start) * sizeof(struct page); 4939 map = alloc_remap(pgdat->node_id, size); 4940 if (!map) 4941 map = memblock_virt_alloc_node_nopanic(size, 4942 pgdat->node_id); 4943 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 4944 } 4945 #ifndef CONFIG_NEED_MULTIPLE_NODES 4946 /* 4947 * With no DISCONTIG, the global mem_map is just set as node 0's 4948 */ 4949 if (pgdat == NODE_DATA(0)) { 4950 mem_map = NODE_DATA(0)->node_mem_map; 4951 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4952 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 4953 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 4954 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4955 } 4956 #endif 4957 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 4958 } 4959 4960 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 4961 unsigned long node_start_pfn, unsigned long *zholes_size) 4962 { 4963 pg_data_t *pgdat = NODE_DATA(nid); 4964 unsigned long start_pfn = 0; 4965 unsigned long end_pfn = 0; 4966 4967 /* pg_data_t should be reset to zero when it's allocated */ 4968 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx); 4969 4970 pgdat->node_id = nid; 4971 pgdat->node_start_pfn = node_start_pfn; 4972 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4973 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 4974 printk(KERN_INFO "Initmem setup node %d [mem %#010Lx-%#010Lx]\n", nid, 4975 (u64) start_pfn << PAGE_SHIFT, (u64) (end_pfn << PAGE_SHIFT) - 1); 4976 #endif 4977 calculate_node_totalpages(pgdat, start_pfn, end_pfn, 4978 zones_size, zholes_size); 4979 4980 alloc_node_mem_map(pgdat); 4981 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4982 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 4983 nid, (unsigned long)pgdat, 4984 (unsigned long)pgdat->node_mem_map); 4985 #endif 4986 4987 free_area_init_core(pgdat, start_pfn, end_pfn, 4988 zones_size, zholes_size); 4989 } 4990 4991 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4992 4993 #if MAX_NUMNODES > 1 4994 /* 4995 * Figure out the number of possible node ids. 4996 */ 4997 void __init setup_nr_node_ids(void) 4998 { 4999 unsigned int node; 5000 unsigned int highest = 0; 5001 5002 for_each_node_mask(node, node_possible_map) 5003 highest = node; 5004 nr_node_ids = highest + 1; 5005 } 5006 #endif 5007 5008 /** 5009 * node_map_pfn_alignment - determine the maximum internode alignment 5010 * 5011 * This function should be called after node map is populated and sorted. 5012 * It calculates the maximum power of two alignment which can distinguish 5013 * all the nodes. 5014 * 5015 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 5016 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 5017 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 5018 * shifted, 1GiB is enough and this function will indicate so. 5019 * 5020 * This is used to test whether pfn -> nid mapping of the chosen memory 5021 * model has fine enough granularity to avoid incorrect mapping for the 5022 * populated node map. 5023 * 5024 * Returns the determined alignment in pfn's. 0 if there is no alignment 5025 * requirement (single node). 5026 */ 5027 unsigned long __init node_map_pfn_alignment(void) 5028 { 5029 unsigned long accl_mask = 0, last_end = 0; 5030 unsigned long start, end, mask; 5031 int last_nid = -1; 5032 int i, nid; 5033 5034 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 5035 if (!start || last_nid < 0 || last_nid == nid) { 5036 last_nid = nid; 5037 last_end = end; 5038 continue; 5039 } 5040 5041 /* 5042 * Start with a mask granular enough to pin-point to the 5043 * start pfn and tick off bits one-by-one until it becomes 5044 * too coarse to separate the current node from the last. 5045 */ 5046 mask = ~((1 << __ffs(start)) - 1); 5047 while (mask && last_end <= (start & (mask << 1))) 5048 mask <<= 1; 5049 5050 /* accumulate all internode masks */ 5051 accl_mask |= mask; 5052 } 5053 5054 /* convert mask to number of pages */ 5055 return ~accl_mask + 1; 5056 } 5057 5058 /* Find the lowest pfn for a node */ 5059 static unsigned long __init find_min_pfn_for_node(int nid) 5060 { 5061 unsigned long min_pfn = ULONG_MAX; 5062 unsigned long start_pfn; 5063 int i; 5064 5065 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 5066 min_pfn = min(min_pfn, start_pfn); 5067 5068 if (min_pfn == ULONG_MAX) { 5069 printk(KERN_WARNING 5070 "Could not find start_pfn for node %d\n", nid); 5071 return 0; 5072 } 5073 5074 return min_pfn; 5075 } 5076 5077 /** 5078 * find_min_pfn_with_active_regions - Find the minimum PFN registered 5079 * 5080 * It returns the minimum PFN based on information provided via 5081 * memblock_set_node(). 5082 */ 5083 unsigned long __init find_min_pfn_with_active_regions(void) 5084 { 5085 return find_min_pfn_for_node(MAX_NUMNODES); 5086 } 5087 5088 /* 5089 * early_calculate_totalpages() 5090 * Sum pages in active regions for movable zone. 5091 * Populate N_MEMORY for calculating usable_nodes. 5092 */ 5093 static unsigned long __init early_calculate_totalpages(void) 5094 { 5095 unsigned long totalpages = 0; 5096 unsigned long start_pfn, end_pfn; 5097 int i, nid; 5098 5099 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 5100 unsigned long pages = end_pfn - start_pfn; 5101 5102 totalpages += pages; 5103 if (pages) 5104 node_set_state(nid, N_MEMORY); 5105 } 5106 return totalpages; 5107 } 5108 5109 /* 5110 * Find the PFN the Movable zone begins in each node. Kernel memory 5111 * is spread evenly between nodes as long as the nodes have enough 5112 * memory. When they don't, some nodes will have more kernelcore than 5113 * others 5114 */ 5115 static void __init find_zone_movable_pfns_for_nodes(void) 5116 { 5117 int i, nid; 5118 unsigned long usable_startpfn; 5119 unsigned long kernelcore_node, kernelcore_remaining; 5120 /* save the state before borrow the nodemask */ 5121 nodemask_t saved_node_state = node_states[N_MEMORY]; 5122 unsigned long totalpages = early_calculate_totalpages(); 5123 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 5124 struct memblock_region *r; 5125 5126 /* Need to find movable_zone earlier when movable_node is specified. */ 5127 find_usable_zone_for_movable(); 5128 5129 /* 5130 * If movable_node is specified, ignore kernelcore and movablecore 5131 * options. 5132 */ 5133 if (movable_node_is_enabled()) { 5134 for_each_memblock(memory, r) { 5135 if (!memblock_is_hotpluggable(r)) 5136 continue; 5137 5138 nid = r->nid; 5139 5140 usable_startpfn = PFN_DOWN(r->base); 5141 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 5142 min(usable_startpfn, zone_movable_pfn[nid]) : 5143 usable_startpfn; 5144 } 5145 5146 goto out2; 5147 } 5148 5149 /* 5150 * If movablecore=nn[KMG] was specified, calculate what size of 5151 * kernelcore that corresponds so that memory usable for 5152 * any allocation type is evenly spread. If both kernelcore 5153 * and movablecore are specified, then the value of kernelcore 5154 * will be used for required_kernelcore if it's greater than 5155 * what movablecore would have allowed. 5156 */ 5157 if (required_movablecore) { 5158 unsigned long corepages; 5159 5160 /* 5161 * Round-up so that ZONE_MOVABLE is at least as large as what 5162 * was requested by the user 5163 */ 5164 required_movablecore = 5165 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 5166 corepages = totalpages - required_movablecore; 5167 5168 required_kernelcore = max(required_kernelcore, corepages); 5169 } 5170 5171 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 5172 if (!required_kernelcore) 5173 goto out; 5174 5175 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 5176 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 5177 5178 restart: 5179 /* Spread kernelcore memory as evenly as possible throughout nodes */ 5180 kernelcore_node = required_kernelcore / usable_nodes; 5181 for_each_node_state(nid, N_MEMORY) { 5182 unsigned long start_pfn, end_pfn; 5183 5184 /* 5185 * Recalculate kernelcore_node if the division per node 5186 * now exceeds what is necessary to satisfy the requested 5187 * amount of memory for the kernel 5188 */ 5189 if (required_kernelcore < kernelcore_node) 5190 kernelcore_node = required_kernelcore / usable_nodes; 5191 5192 /* 5193 * As the map is walked, we track how much memory is usable 5194 * by the kernel using kernelcore_remaining. When it is 5195 * 0, the rest of the node is usable by ZONE_MOVABLE 5196 */ 5197 kernelcore_remaining = kernelcore_node; 5198 5199 /* Go through each range of PFNs within this node */ 5200 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 5201 unsigned long size_pages; 5202 5203 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 5204 if (start_pfn >= end_pfn) 5205 continue; 5206 5207 /* Account for what is only usable for kernelcore */ 5208 if (start_pfn < usable_startpfn) { 5209 unsigned long kernel_pages; 5210 kernel_pages = min(end_pfn, usable_startpfn) 5211 - start_pfn; 5212 5213 kernelcore_remaining -= min(kernel_pages, 5214 kernelcore_remaining); 5215 required_kernelcore -= min(kernel_pages, 5216 required_kernelcore); 5217 5218 /* Continue if range is now fully accounted */ 5219 if (end_pfn <= usable_startpfn) { 5220 5221 /* 5222 * Push zone_movable_pfn to the end so 5223 * that if we have to rebalance 5224 * kernelcore across nodes, we will 5225 * not double account here 5226 */ 5227 zone_movable_pfn[nid] = end_pfn; 5228 continue; 5229 } 5230 start_pfn = usable_startpfn; 5231 } 5232 5233 /* 5234 * The usable PFN range for ZONE_MOVABLE is from 5235 * start_pfn->end_pfn. Calculate size_pages as the 5236 * number of pages used as kernelcore 5237 */ 5238 size_pages = end_pfn - start_pfn; 5239 if (size_pages > kernelcore_remaining) 5240 size_pages = kernelcore_remaining; 5241 zone_movable_pfn[nid] = start_pfn + size_pages; 5242 5243 /* 5244 * Some kernelcore has been met, update counts and 5245 * break if the kernelcore for this node has been 5246 * satisfied 5247 */ 5248 required_kernelcore -= min(required_kernelcore, 5249 size_pages); 5250 kernelcore_remaining -= size_pages; 5251 if (!kernelcore_remaining) 5252 break; 5253 } 5254 } 5255 5256 /* 5257 * If there is still required_kernelcore, we do another pass with one 5258 * less node in the count. This will push zone_movable_pfn[nid] further 5259 * along on the nodes that still have memory until kernelcore is 5260 * satisfied 5261 */ 5262 usable_nodes--; 5263 if (usable_nodes && required_kernelcore > usable_nodes) 5264 goto restart; 5265 5266 out2: 5267 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 5268 for (nid = 0; nid < MAX_NUMNODES; nid++) 5269 zone_movable_pfn[nid] = 5270 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 5271 5272 out: 5273 /* restore the node_state */ 5274 node_states[N_MEMORY] = saved_node_state; 5275 } 5276 5277 /* Any regular or high memory on that node ? */ 5278 static void check_for_memory(pg_data_t *pgdat, int nid) 5279 { 5280 enum zone_type zone_type; 5281 5282 if (N_MEMORY == N_NORMAL_MEMORY) 5283 return; 5284 5285 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 5286 struct zone *zone = &pgdat->node_zones[zone_type]; 5287 if (populated_zone(zone)) { 5288 node_set_state(nid, N_HIGH_MEMORY); 5289 if (N_NORMAL_MEMORY != N_HIGH_MEMORY && 5290 zone_type <= ZONE_NORMAL) 5291 node_set_state(nid, N_NORMAL_MEMORY); 5292 break; 5293 } 5294 } 5295 } 5296 5297 /** 5298 * free_area_init_nodes - Initialise all pg_data_t and zone data 5299 * @max_zone_pfn: an array of max PFNs for each zone 5300 * 5301 * This will call free_area_init_node() for each active node in the system. 5302 * Using the page ranges provided by memblock_set_node(), the size of each 5303 * zone in each node and their holes is calculated. If the maximum PFN 5304 * between two adjacent zones match, it is assumed that the zone is empty. 5305 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 5306 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 5307 * starts where the previous one ended. For example, ZONE_DMA32 starts 5308 * at arch_max_dma_pfn. 5309 */ 5310 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 5311 { 5312 unsigned long start_pfn, end_pfn; 5313 int i, nid; 5314 5315 /* Record where the zone boundaries are */ 5316 memset(arch_zone_lowest_possible_pfn, 0, 5317 sizeof(arch_zone_lowest_possible_pfn)); 5318 memset(arch_zone_highest_possible_pfn, 0, 5319 sizeof(arch_zone_highest_possible_pfn)); 5320 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 5321 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 5322 for (i = 1; i < MAX_NR_ZONES; i++) { 5323 if (i == ZONE_MOVABLE) 5324 continue; 5325 arch_zone_lowest_possible_pfn[i] = 5326 arch_zone_highest_possible_pfn[i-1]; 5327 arch_zone_highest_possible_pfn[i] = 5328 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 5329 } 5330 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 5331 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 5332 5333 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 5334 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 5335 find_zone_movable_pfns_for_nodes(); 5336 5337 /* Print out the zone ranges */ 5338 printk("Zone ranges:\n"); 5339 for (i = 0; i < MAX_NR_ZONES; i++) { 5340 if (i == ZONE_MOVABLE) 5341 continue; 5342 printk(KERN_CONT " %-8s ", zone_names[i]); 5343 if (arch_zone_lowest_possible_pfn[i] == 5344 arch_zone_highest_possible_pfn[i]) 5345 printk(KERN_CONT "empty\n"); 5346 else 5347 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n", 5348 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT, 5349 (arch_zone_highest_possible_pfn[i] 5350 << PAGE_SHIFT) - 1); 5351 } 5352 5353 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 5354 printk("Movable zone start for each node\n"); 5355 for (i = 0; i < MAX_NUMNODES; i++) { 5356 if (zone_movable_pfn[i]) 5357 printk(" Node %d: %#010lx\n", i, 5358 zone_movable_pfn[i] << PAGE_SHIFT); 5359 } 5360 5361 /* Print out the early node map */ 5362 printk("Early memory node ranges\n"); 5363 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 5364 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid, 5365 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1); 5366 5367 /* Initialise every node */ 5368 mminit_verify_pageflags_layout(); 5369 setup_nr_node_ids(); 5370 for_each_online_node(nid) { 5371 pg_data_t *pgdat = NODE_DATA(nid); 5372 free_area_init_node(nid, NULL, 5373 find_min_pfn_for_node(nid), NULL); 5374 5375 /* Any memory on that node */ 5376 if (pgdat->node_present_pages) 5377 node_set_state(nid, N_MEMORY); 5378 check_for_memory(pgdat, nid); 5379 } 5380 } 5381 5382 static int __init cmdline_parse_core(char *p, unsigned long *core) 5383 { 5384 unsigned long long coremem; 5385 if (!p) 5386 return -EINVAL; 5387 5388 coremem = memparse(p, &p); 5389 *core = coremem >> PAGE_SHIFT; 5390 5391 /* Paranoid check that UL is enough for the coremem value */ 5392 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 5393 5394 return 0; 5395 } 5396 5397 /* 5398 * kernelcore=size sets the amount of memory for use for allocations that 5399 * cannot be reclaimed or migrated. 5400 */ 5401 static int __init cmdline_parse_kernelcore(char *p) 5402 { 5403 return cmdline_parse_core(p, &required_kernelcore); 5404 } 5405 5406 /* 5407 * movablecore=size sets the amount of memory for use for allocations that 5408 * can be reclaimed or migrated. 5409 */ 5410 static int __init cmdline_parse_movablecore(char *p) 5411 { 5412 return cmdline_parse_core(p, &required_movablecore); 5413 } 5414 5415 early_param("kernelcore", cmdline_parse_kernelcore); 5416 early_param("movablecore", cmdline_parse_movablecore); 5417 5418 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5419 5420 void adjust_managed_page_count(struct page *page, long count) 5421 { 5422 spin_lock(&managed_page_count_lock); 5423 page_zone(page)->managed_pages += count; 5424 totalram_pages += count; 5425 #ifdef CONFIG_HIGHMEM 5426 if (PageHighMem(page)) 5427 totalhigh_pages += count; 5428 #endif 5429 spin_unlock(&managed_page_count_lock); 5430 } 5431 EXPORT_SYMBOL(adjust_managed_page_count); 5432 5433 unsigned long free_reserved_area(void *start, void *end, int poison, char *s) 5434 { 5435 void *pos; 5436 unsigned long pages = 0; 5437 5438 start = (void *)PAGE_ALIGN((unsigned long)start); 5439 end = (void *)((unsigned long)end & PAGE_MASK); 5440 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 5441 if ((unsigned int)poison <= 0xFF) 5442 memset(pos, poison, PAGE_SIZE); 5443 free_reserved_page(virt_to_page(pos)); 5444 } 5445 5446 if (pages && s) 5447 pr_info("Freeing %s memory: %ldK (%p - %p)\n", 5448 s, pages << (PAGE_SHIFT - 10), start, end); 5449 5450 return pages; 5451 } 5452 EXPORT_SYMBOL(free_reserved_area); 5453 5454 #ifdef CONFIG_HIGHMEM 5455 void free_highmem_page(struct page *page) 5456 { 5457 __free_reserved_page(page); 5458 totalram_pages++; 5459 page_zone(page)->managed_pages++; 5460 totalhigh_pages++; 5461 } 5462 #endif 5463 5464 5465 void __init mem_init_print_info(const char *str) 5466 { 5467 unsigned long physpages, codesize, datasize, rosize, bss_size; 5468 unsigned long init_code_size, init_data_size; 5469 5470 physpages = get_num_physpages(); 5471 codesize = _etext - _stext; 5472 datasize = _edata - _sdata; 5473 rosize = __end_rodata - __start_rodata; 5474 bss_size = __bss_stop - __bss_start; 5475 init_data_size = __init_end - __init_begin; 5476 init_code_size = _einittext - _sinittext; 5477 5478 /* 5479 * Detect special cases and adjust section sizes accordingly: 5480 * 1) .init.* may be embedded into .data sections 5481 * 2) .init.text.* may be out of [__init_begin, __init_end], 5482 * please refer to arch/tile/kernel/vmlinux.lds.S. 5483 * 3) .rodata.* may be embedded into .text or .data sections. 5484 */ 5485 #define adj_init_size(start, end, size, pos, adj) \ 5486 do { \ 5487 if (start <= pos && pos < end && size > adj) \ 5488 size -= adj; \ 5489 } while (0) 5490 5491 adj_init_size(__init_begin, __init_end, init_data_size, 5492 _sinittext, init_code_size); 5493 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 5494 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 5495 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 5496 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 5497 5498 #undef adj_init_size 5499 5500 printk("Memory: %luK/%luK available " 5501 "(%luK kernel code, %luK rwdata, %luK rodata, " 5502 "%luK init, %luK bss, %luK reserved" 5503 #ifdef CONFIG_HIGHMEM 5504 ", %luK highmem" 5505 #endif 5506 "%s%s)\n", 5507 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10), 5508 codesize >> 10, datasize >> 10, rosize >> 10, 5509 (init_data_size + init_code_size) >> 10, bss_size >> 10, 5510 (physpages - totalram_pages) << (PAGE_SHIFT-10), 5511 #ifdef CONFIG_HIGHMEM 5512 totalhigh_pages << (PAGE_SHIFT-10), 5513 #endif 5514 str ? ", " : "", str ? str : ""); 5515 } 5516 5517 /** 5518 * set_dma_reserve - set the specified number of pages reserved in the first zone 5519 * @new_dma_reserve: The number of pages to mark reserved 5520 * 5521 * The per-cpu batchsize and zone watermarks are determined by present_pages. 5522 * In the DMA zone, a significant percentage may be consumed by kernel image 5523 * and other unfreeable allocations which can skew the watermarks badly. This 5524 * function may optionally be used to account for unfreeable pages in the 5525 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 5526 * smaller per-cpu batchsize. 5527 */ 5528 void __init set_dma_reserve(unsigned long new_dma_reserve) 5529 { 5530 dma_reserve = new_dma_reserve; 5531 } 5532 5533 void __init free_area_init(unsigned long *zones_size) 5534 { 5535 free_area_init_node(0, zones_size, 5536 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 5537 } 5538 5539 static int page_alloc_cpu_notify(struct notifier_block *self, 5540 unsigned long action, void *hcpu) 5541 { 5542 int cpu = (unsigned long)hcpu; 5543 5544 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 5545 lru_add_drain_cpu(cpu); 5546 drain_pages(cpu); 5547 5548 /* 5549 * Spill the event counters of the dead processor 5550 * into the current processors event counters. 5551 * This artificially elevates the count of the current 5552 * processor. 5553 */ 5554 vm_events_fold_cpu(cpu); 5555 5556 /* 5557 * Zero the differential counters of the dead processor 5558 * so that the vm statistics are consistent. 5559 * 5560 * This is only okay since the processor is dead and cannot 5561 * race with what we are doing. 5562 */ 5563 cpu_vm_stats_fold(cpu); 5564 } 5565 return NOTIFY_OK; 5566 } 5567 5568 void __init page_alloc_init(void) 5569 { 5570 hotcpu_notifier(page_alloc_cpu_notify, 0); 5571 } 5572 5573 /* 5574 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 5575 * or min_free_kbytes changes. 5576 */ 5577 static void calculate_totalreserve_pages(void) 5578 { 5579 struct pglist_data *pgdat; 5580 unsigned long reserve_pages = 0; 5581 enum zone_type i, j; 5582 5583 for_each_online_pgdat(pgdat) { 5584 for (i = 0; i < MAX_NR_ZONES; i++) { 5585 struct zone *zone = pgdat->node_zones + i; 5586 long max = 0; 5587 5588 /* Find valid and maximum lowmem_reserve in the zone */ 5589 for (j = i; j < MAX_NR_ZONES; j++) { 5590 if (zone->lowmem_reserve[j] > max) 5591 max = zone->lowmem_reserve[j]; 5592 } 5593 5594 /* we treat the high watermark as reserved pages. */ 5595 max += high_wmark_pages(zone); 5596 5597 if (max > zone->managed_pages) 5598 max = zone->managed_pages; 5599 reserve_pages += max; 5600 /* 5601 * Lowmem reserves are not available to 5602 * GFP_HIGHUSER page cache allocations and 5603 * kswapd tries to balance zones to their high 5604 * watermark. As a result, neither should be 5605 * regarded as dirtyable memory, to prevent a 5606 * situation where reclaim has to clean pages 5607 * in order to balance the zones. 5608 */ 5609 zone->dirty_balance_reserve = max; 5610 } 5611 } 5612 dirty_balance_reserve = reserve_pages; 5613 totalreserve_pages = reserve_pages; 5614 } 5615 5616 /* 5617 * setup_per_zone_lowmem_reserve - called whenever 5618 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 5619 * has a correct pages reserved value, so an adequate number of 5620 * pages are left in the zone after a successful __alloc_pages(). 5621 */ 5622 static void setup_per_zone_lowmem_reserve(void) 5623 { 5624 struct pglist_data *pgdat; 5625 enum zone_type j, idx; 5626 5627 for_each_online_pgdat(pgdat) { 5628 for (j = 0; j < MAX_NR_ZONES; j++) { 5629 struct zone *zone = pgdat->node_zones + j; 5630 unsigned long managed_pages = zone->managed_pages; 5631 5632 zone->lowmem_reserve[j] = 0; 5633 5634 idx = j; 5635 while (idx) { 5636 struct zone *lower_zone; 5637 5638 idx--; 5639 5640 if (sysctl_lowmem_reserve_ratio[idx] < 1) 5641 sysctl_lowmem_reserve_ratio[idx] = 1; 5642 5643 lower_zone = pgdat->node_zones + idx; 5644 lower_zone->lowmem_reserve[j] = managed_pages / 5645 sysctl_lowmem_reserve_ratio[idx]; 5646 managed_pages += lower_zone->managed_pages; 5647 } 5648 } 5649 } 5650 5651 /* update totalreserve_pages */ 5652 calculate_totalreserve_pages(); 5653 } 5654 5655 static void __setup_per_zone_wmarks(void) 5656 { 5657 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 5658 unsigned long lowmem_pages = 0; 5659 struct zone *zone; 5660 unsigned long flags; 5661 5662 /* Calculate total number of !ZONE_HIGHMEM pages */ 5663 for_each_zone(zone) { 5664 if (!is_highmem(zone)) 5665 lowmem_pages += zone->managed_pages; 5666 } 5667 5668 for_each_zone(zone) { 5669 u64 tmp; 5670 5671 spin_lock_irqsave(&zone->lock, flags); 5672 tmp = (u64)pages_min * zone->managed_pages; 5673 do_div(tmp, lowmem_pages); 5674 if (is_highmem(zone)) { 5675 /* 5676 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 5677 * need highmem pages, so cap pages_min to a small 5678 * value here. 5679 * 5680 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 5681 * deltas controls asynch page reclaim, and so should 5682 * not be capped for highmem. 5683 */ 5684 unsigned long min_pages; 5685 5686 min_pages = zone->managed_pages / 1024; 5687 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 5688 zone->watermark[WMARK_MIN] = min_pages; 5689 } else { 5690 /* 5691 * If it's a lowmem zone, reserve a number of pages 5692 * proportionate to the zone's size. 5693 */ 5694 zone->watermark[WMARK_MIN] = tmp; 5695 } 5696 5697 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); 5698 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); 5699 5700 __mod_zone_page_state(zone, NR_ALLOC_BATCH, 5701 high_wmark_pages(zone) - low_wmark_pages(zone) - 5702 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH])); 5703 5704 setup_zone_migrate_reserve(zone); 5705 spin_unlock_irqrestore(&zone->lock, flags); 5706 } 5707 5708 /* update totalreserve_pages */ 5709 calculate_totalreserve_pages(); 5710 } 5711 5712 /** 5713 * setup_per_zone_wmarks - called when min_free_kbytes changes 5714 * or when memory is hot-{added|removed} 5715 * 5716 * Ensures that the watermark[min,low,high] values for each zone are set 5717 * correctly with respect to min_free_kbytes. 5718 */ 5719 void setup_per_zone_wmarks(void) 5720 { 5721 mutex_lock(&zonelists_mutex); 5722 __setup_per_zone_wmarks(); 5723 mutex_unlock(&zonelists_mutex); 5724 } 5725 5726 /* 5727 * The inactive anon list should be small enough that the VM never has to 5728 * do too much work, but large enough that each inactive page has a chance 5729 * to be referenced again before it is swapped out. 5730 * 5731 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 5732 * INACTIVE_ANON pages on this zone's LRU, maintained by the 5733 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 5734 * the anonymous pages are kept on the inactive list. 5735 * 5736 * total target max 5737 * memory ratio inactive anon 5738 * ------------------------------------- 5739 * 10MB 1 5MB 5740 * 100MB 1 50MB 5741 * 1GB 3 250MB 5742 * 10GB 10 0.9GB 5743 * 100GB 31 3GB 5744 * 1TB 101 10GB 5745 * 10TB 320 32GB 5746 */ 5747 static void __meminit calculate_zone_inactive_ratio(struct zone *zone) 5748 { 5749 unsigned int gb, ratio; 5750 5751 /* Zone size in gigabytes */ 5752 gb = zone->managed_pages >> (30 - PAGE_SHIFT); 5753 if (gb) 5754 ratio = int_sqrt(10 * gb); 5755 else 5756 ratio = 1; 5757 5758 zone->inactive_ratio = ratio; 5759 } 5760 5761 static void __meminit setup_per_zone_inactive_ratio(void) 5762 { 5763 struct zone *zone; 5764 5765 for_each_zone(zone) 5766 calculate_zone_inactive_ratio(zone); 5767 } 5768 5769 /* 5770 * Initialise min_free_kbytes. 5771 * 5772 * For small machines we want it small (128k min). For large machines 5773 * we want it large (64MB max). But it is not linear, because network 5774 * bandwidth does not increase linearly with machine size. We use 5775 * 5776 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 5777 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 5778 * 5779 * which yields 5780 * 5781 * 16MB: 512k 5782 * 32MB: 724k 5783 * 64MB: 1024k 5784 * 128MB: 1448k 5785 * 256MB: 2048k 5786 * 512MB: 2896k 5787 * 1024MB: 4096k 5788 * 2048MB: 5792k 5789 * 4096MB: 8192k 5790 * 8192MB: 11584k 5791 * 16384MB: 16384k 5792 */ 5793 int __meminit init_per_zone_wmark_min(void) 5794 { 5795 unsigned long lowmem_kbytes; 5796 int new_min_free_kbytes; 5797 5798 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 5799 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 5800 5801 if (new_min_free_kbytes > user_min_free_kbytes) { 5802 min_free_kbytes = new_min_free_kbytes; 5803 if (min_free_kbytes < 128) 5804 min_free_kbytes = 128; 5805 if (min_free_kbytes > 65536) 5806 min_free_kbytes = 65536; 5807 } else { 5808 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 5809 new_min_free_kbytes, user_min_free_kbytes); 5810 } 5811 setup_per_zone_wmarks(); 5812 refresh_zone_stat_thresholds(); 5813 setup_per_zone_lowmem_reserve(); 5814 setup_per_zone_inactive_ratio(); 5815 return 0; 5816 } 5817 module_init(init_per_zone_wmark_min) 5818 5819 /* 5820 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 5821 * that we can call two helper functions whenever min_free_kbytes 5822 * changes. 5823 */ 5824 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 5825 void __user *buffer, size_t *length, loff_t *ppos) 5826 { 5827 int rc; 5828 5829 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5830 if (rc) 5831 return rc; 5832 5833 if (write) { 5834 user_min_free_kbytes = min_free_kbytes; 5835 setup_per_zone_wmarks(); 5836 } 5837 return 0; 5838 } 5839 5840 #ifdef CONFIG_NUMA 5841 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 5842 void __user *buffer, size_t *length, loff_t *ppos) 5843 { 5844 struct zone *zone; 5845 int rc; 5846 5847 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5848 if (rc) 5849 return rc; 5850 5851 for_each_zone(zone) 5852 zone->min_unmapped_pages = (zone->managed_pages * 5853 sysctl_min_unmapped_ratio) / 100; 5854 return 0; 5855 } 5856 5857 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 5858 void __user *buffer, size_t *length, loff_t *ppos) 5859 { 5860 struct zone *zone; 5861 int rc; 5862 5863 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5864 if (rc) 5865 return rc; 5866 5867 for_each_zone(zone) 5868 zone->min_slab_pages = (zone->managed_pages * 5869 sysctl_min_slab_ratio) / 100; 5870 return 0; 5871 } 5872 #endif 5873 5874 /* 5875 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 5876 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 5877 * whenever sysctl_lowmem_reserve_ratio changes. 5878 * 5879 * The reserve ratio obviously has absolutely no relation with the 5880 * minimum watermarks. The lowmem reserve ratio can only make sense 5881 * if in function of the boot time zone sizes. 5882 */ 5883 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 5884 void __user *buffer, size_t *length, loff_t *ppos) 5885 { 5886 proc_dointvec_minmax(table, write, buffer, length, ppos); 5887 setup_per_zone_lowmem_reserve(); 5888 return 0; 5889 } 5890 5891 /* 5892 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 5893 * cpu. It is the fraction of total pages in each zone that a hot per cpu 5894 * pagelist can have before it gets flushed back to buddy allocator. 5895 */ 5896 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 5897 void __user *buffer, size_t *length, loff_t *ppos) 5898 { 5899 struct zone *zone; 5900 int old_percpu_pagelist_fraction; 5901 int ret; 5902 5903 mutex_lock(&pcp_batch_high_lock); 5904 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 5905 5906 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 5907 if (!write || ret < 0) 5908 goto out; 5909 5910 /* Sanity checking to avoid pcp imbalance */ 5911 if (percpu_pagelist_fraction && 5912 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 5913 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 5914 ret = -EINVAL; 5915 goto out; 5916 } 5917 5918 /* No change? */ 5919 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 5920 goto out; 5921 5922 for_each_populated_zone(zone) { 5923 unsigned int cpu; 5924 5925 for_each_possible_cpu(cpu) 5926 pageset_set_high_and_batch(zone, 5927 per_cpu_ptr(zone->pageset, cpu)); 5928 } 5929 out: 5930 mutex_unlock(&pcp_batch_high_lock); 5931 return ret; 5932 } 5933 5934 int hashdist = HASHDIST_DEFAULT; 5935 5936 #ifdef CONFIG_NUMA 5937 static int __init set_hashdist(char *str) 5938 { 5939 if (!str) 5940 return 0; 5941 hashdist = simple_strtoul(str, &str, 0); 5942 return 1; 5943 } 5944 __setup("hashdist=", set_hashdist); 5945 #endif 5946 5947 /* 5948 * allocate a large system hash table from bootmem 5949 * - it is assumed that the hash table must contain an exact power-of-2 5950 * quantity of entries 5951 * - limit is the number of hash buckets, not the total allocation size 5952 */ 5953 void *__init alloc_large_system_hash(const char *tablename, 5954 unsigned long bucketsize, 5955 unsigned long numentries, 5956 int scale, 5957 int flags, 5958 unsigned int *_hash_shift, 5959 unsigned int *_hash_mask, 5960 unsigned long low_limit, 5961 unsigned long high_limit) 5962 { 5963 unsigned long long max = high_limit; 5964 unsigned long log2qty, size; 5965 void *table = NULL; 5966 5967 /* allow the kernel cmdline to have a say */ 5968 if (!numentries) { 5969 /* round applicable memory size up to nearest megabyte */ 5970 numentries = nr_kernel_pages; 5971 5972 /* It isn't necessary when PAGE_SIZE >= 1MB */ 5973 if (PAGE_SHIFT < 20) 5974 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 5975 5976 /* limit to 1 bucket per 2^scale bytes of low memory */ 5977 if (scale > PAGE_SHIFT) 5978 numentries >>= (scale - PAGE_SHIFT); 5979 else 5980 numentries <<= (PAGE_SHIFT - scale); 5981 5982 /* Make sure we've got at least a 0-order allocation.. */ 5983 if (unlikely(flags & HASH_SMALL)) { 5984 /* Makes no sense without HASH_EARLY */ 5985 WARN_ON(!(flags & HASH_EARLY)); 5986 if (!(numentries >> *_hash_shift)) { 5987 numentries = 1UL << *_hash_shift; 5988 BUG_ON(!numentries); 5989 } 5990 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 5991 numentries = PAGE_SIZE / bucketsize; 5992 } 5993 numentries = roundup_pow_of_two(numentries); 5994 5995 /* limit allocation size to 1/16 total memory by default */ 5996 if (max == 0) { 5997 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 5998 do_div(max, bucketsize); 5999 } 6000 max = min(max, 0x80000000ULL); 6001 6002 if (numentries < low_limit) 6003 numentries = low_limit; 6004 if (numentries > max) 6005 numentries = max; 6006 6007 log2qty = ilog2(numentries); 6008 6009 do { 6010 size = bucketsize << log2qty; 6011 if (flags & HASH_EARLY) 6012 table = memblock_virt_alloc_nopanic(size, 0); 6013 else if (hashdist) 6014 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 6015 else { 6016 /* 6017 * If bucketsize is not a power-of-two, we may free 6018 * some pages at the end of hash table which 6019 * alloc_pages_exact() automatically does 6020 */ 6021 if (get_order(size) < MAX_ORDER) { 6022 table = alloc_pages_exact(size, GFP_ATOMIC); 6023 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 6024 } 6025 } 6026 } while (!table && size > PAGE_SIZE && --log2qty); 6027 6028 if (!table) 6029 panic("Failed to allocate %s hash table\n", tablename); 6030 6031 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n", 6032 tablename, 6033 (1UL << log2qty), 6034 ilog2(size) - PAGE_SHIFT, 6035 size); 6036 6037 if (_hash_shift) 6038 *_hash_shift = log2qty; 6039 if (_hash_mask) 6040 *_hash_mask = (1 << log2qty) - 1; 6041 6042 return table; 6043 } 6044 6045 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 6046 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 6047 unsigned long pfn) 6048 { 6049 #ifdef CONFIG_SPARSEMEM 6050 return __pfn_to_section(pfn)->pageblock_flags; 6051 #else 6052 return zone->pageblock_flags; 6053 #endif /* CONFIG_SPARSEMEM */ 6054 } 6055 6056 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 6057 { 6058 #ifdef CONFIG_SPARSEMEM 6059 pfn &= (PAGES_PER_SECTION-1); 6060 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 6061 #else 6062 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages); 6063 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 6064 #endif /* CONFIG_SPARSEMEM */ 6065 } 6066 6067 /** 6068 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 6069 * @page: The page within the block of interest 6070 * @pfn: The target page frame number 6071 * @end_bitidx: The last bit of interest to retrieve 6072 * @mask: mask of bits that the caller is interested in 6073 * 6074 * Return: pageblock_bits flags 6075 */ 6076 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 6077 unsigned long end_bitidx, 6078 unsigned long mask) 6079 { 6080 struct zone *zone; 6081 unsigned long *bitmap; 6082 unsigned long bitidx, word_bitidx; 6083 unsigned long word; 6084 6085 zone = page_zone(page); 6086 bitmap = get_pageblock_bitmap(zone, pfn); 6087 bitidx = pfn_to_bitidx(zone, pfn); 6088 word_bitidx = bitidx / BITS_PER_LONG; 6089 bitidx &= (BITS_PER_LONG-1); 6090 6091 word = bitmap[word_bitidx]; 6092 bitidx += end_bitidx; 6093 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; 6094 } 6095 6096 /** 6097 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 6098 * @page: The page within the block of interest 6099 * @flags: The flags to set 6100 * @pfn: The target page frame number 6101 * @end_bitidx: The last bit of interest 6102 * @mask: mask of bits that the caller is interested in 6103 */ 6104 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 6105 unsigned long pfn, 6106 unsigned long end_bitidx, 6107 unsigned long mask) 6108 { 6109 struct zone *zone; 6110 unsigned long *bitmap; 6111 unsigned long bitidx, word_bitidx; 6112 unsigned long old_word, word; 6113 6114 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 6115 6116 zone = page_zone(page); 6117 bitmap = get_pageblock_bitmap(zone, pfn); 6118 bitidx = pfn_to_bitidx(zone, pfn); 6119 word_bitidx = bitidx / BITS_PER_LONG; 6120 bitidx &= (BITS_PER_LONG-1); 6121 6122 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page); 6123 6124 bitidx += end_bitidx; 6125 mask <<= (BITS_PER_LONG - bitidx - 1); 6126 flags <<= (BITS_PER_LONG - bitidx - 1); 6127 6128 word = ACCESS_ONCE(bitmap[word_bitidx]); 6129 for (;;) { 6130 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 6131 if (word == old_word) 6132 break; 6133 word = old_word; 6134 } 6135 } 6136 6137 /* 6138 * This function checks whether pageblock includes unmovable pages or not. 6139 * If @count is not zero, it is okay to include less @count unmovable pages 6140 * 6141 * PageLRU check without isolation or lru_lock could race so that 6142 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't 6143 * expect this function should be exact. 6144 */ 6145 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 6146 bool skip_hwpoisoned_pages) 6147 { 6148 unsigned long pfn, iter, found; 6149 int mt; 6150 6151 /* 6152 * For avoiding noise data, lru_add_drain_all() should be called 6153 * If ZONE_MOVABLE, the zone never contains unmovable pages 6154 */ 6155 if (zone_idx(zone) == ZONE_MOVABLE) 6156 return false; 6157 mt = get_pageblock_migratetype(page); 6158 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt)) 6159 return false; 6160 6161 pfn = page_to_pfn(page); 6162 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 6163 unsigned long check = pfn + iter; 6164 6165 if (!pfn_valid_within(check)) 6166 continue; 6167 6168 page = pfn_to_page(check); 6169 6170 /* 6171 * Hugepages are not in LRU lists, but they're movable. 6172 * We need not scan over tail pages bacause we don't 6173 * handle each tail page individually in migration. 6174 */ 6175 if (PageHuge(page)) { 6176 iter = round_up(iter + 1, 1<<compound_order(page)) - 1; 6177 continue; 6178 } 6179 6180 /* 6181 * We can't use page_count without pin a page 6182 * because another CPU can free compound page. 6183 * This check already skips compound tails of THP 6184 * because their page->_count is zero at all time. 6185 */ 6186 if (!atomic_read(&page->_count)) { 6187 if (PageBuddy(page)) 6188 iter += (1 << page_order(page)) - 1; 6189 continue; 6190 } 6191 6192 /* 6193 * The HWPoisoned page may be not in buddy system, and 6194 * page_count() is not 0. 6195 */ 6196 if (skip_hwpoisoned_pages && PageHWPoison(page)) 6197 continue; 6198 6199 if (!PageLRU(page)) 6200 found++; 6201 /* 6202 * If there are RECLAIMABLE pages, we need to check it. 6203 * But now, memory offline itself doesn't call shrink_slab() 6204 * and it still to be fixed. 6205 */ 6206 /* 6207 * If the page is not RAM, page_count()should be 0. 6208 * we don't need more check. This is an _used_ not-movable page. 6209 * 6210 * The problematic thing here is PG_reserved pages. PG_reserved 6211 * is set to both of a memory hole page and a _used_ kernel 6212 * page at boot. 6213 */ 6214 if (found > count) 6215 return true; 6216 } 6217 return false; 6218 } 6219 6220 bool is_pageblock_removable_nolock(struct page *page) 6221 { 6222 struct zone *zone; 6223 unsigned long pfn; 6224 6225 /* 6226 * We have to be careful here because we are iterating over memory 6227 * sections which are not zone aware so we might end up outside of 6228 * the zone but still within the section. 6229 * We have to take care about the node as well. If the node is offline 6230 * its NODE_DATA will be NULL - see page_zone. 6231 */ 6232 if (!node_online(page_to_nid(page))) 6233 return false; 6234 6235 zone = page_zone(page); 6236 pfn = page_to_pfn(page); 6237 if (!zone_spans_pfn(zone, pfn)) 6238 return false; 6239 6240 return !has_unmovable_pages(zone, page, 0, true); 6241 } 6242 6243 #ifdef CONFIG_CMA 6244 6245 static unsigned long pfn_max_align_down(unsigned long pfn) 6246 { 6247 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 6248 pageblock_nr_pages) - 1); 6249 } 6250 6251 static unsigned long pfn_max_align_up(unsigned long pfn) 6252 { 6253 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 6254 pageblock_nr_pages)); 6255 } 6256 6257 /* [start, end) must belong to a single zone. */ 6258 static int __alloc_contig_migrate_range(struct compact_control *cc, 6259 unsigned long start, unsigned long end) 6260 { 6261 /* This function is based on compact_zone() from compaction.c. */ 6262 unsigned long nr_reclaimed; 6263 unsigned long pfn = start; 6264 unsigned int tries = 0; 6265 int ret = 0; 6266 6267 migrate_prep(); 6268 6269 while (pfn < end || !list_empty(&cc->migratepages)) { 6270 if (fatal_signal_pending(current)) { 6271 ret = -EINTR; 6272 break; 6273 } 6274 6275 if (list_empty(&cc->migratepages)) { 6276 cc->nr_migratepages = 0; 6277 pfn = isolate_migratepages_range(cc, pfn, end); 6278 if (!pfn) { 6279 ret = -EINTR; 6280 break; 6281 } 6282 tries = 0; 6283 } else if (++tries == 5) { 6284 ret = ret < 0 ? ret : -EBUSY; 6285 break; 6286 } 6287 6288 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 6289 &cc->migratepages); 6290 cc->nr_migratepages -= nr_reclaimed; 6291 6292 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 6293 NULL, 0, cc->mode, MR_CMA); 6294 } 6295 if (ret < 0) { 6296 putback_movable_pages(&cc->migratepages); 6297 return ret; 6298 } 6299 return 0; 6300 } 6301 6302 /** 6303 * alloc_contig_range() -- tries to allocate given range of pages 6304 * @start: start PFN to allocate 6305 * @end: one-past-the-last PFN to allocate 6306 * @migratetype: migratetype of the underlaying pageblocks (either 6307 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 6308 * in range must have the same migratetype and it must 6309 * be either of the two. 6310 * 6311 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 6312 * aligned, however it's the caller's responsibility to guarantee that 6313 * we are the only thread that changes migrate type of pageblocks the 6314 * pages fall in. 6315 * 6316 * The PFN range must belong to a single zone. 6317 * 6318 * Returns zero on success or negative error code. On success all 6319 * pages which PFN is in [start, end) are allocated for the caller and 6320 * need to be freed with free_contig_range(). 6321 */ 6322 int alloc_contig_range(unsigned long start, unsigned long end, 6323 unsigned migratetype) 6324 { 6325 unsigned long outer_start, outer_end; 6326 int ret = 0, order; 6327 6328 struct compact_control cc = { 6329 .nr_migratepages = 0, 6330 .order = -1, 6331 .zone = page_zone(pfn_to_page(start)), 6332 .mode = MIGRATE_SYNC, 6333 .ignore_skip_hint = true, 6334 }; 6335 INIT_LIST_HEAD(&cc.migratepages); 6336 6337 /* 6338 * What we do here is we mark all pageblocks in range as 6339 * MIGRATE_ISOLATE. Because pageblock and max order pages may 6340 * have different sizes, and due to the way page allocator 6341 * work, we align the range to biggest of the two pages so 6342 * that page allocator won't try to merge buddies from 6343 * different pageblocks and change MIGRATE_ISOLATE to some 6344 * other migration type. 6345 * 6346 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 6347 * migrate the pages from an unaligned range (ie. pages that 6348 * we are interested in). This will put all the pages in 6349 * range back to page allocator as MIGRATE_ISOLATE. 6350 * 6351 * When this is done, we take the pages in range from page 6352 * allocator removing them from the buddy system. This way 6353 * page allocator will never consider using them. 6354 * 6355 * This lets us mark the pageblocks back as 6356 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 6357 * aligned range but not in the unaligned, original range are 6358 * put back to page allocator so that buddy can use them. 6359 */ 6360 6361 ret = start_isolate_page_range(pfn_max_align_down(start), 6362 pfn_max_align_up(end), migratetype, 6363 false); 6364 if (ret) 6365 return ret; 6366 6367 ret = __alloc_contig_migrate_range(&cc, start, end); 6368 if (ret) 6369 goto done; 6370 6371 /* 6372 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 6373 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 6374 * more, all pages in [start, end) are free in page allocator. 6375 * What we are going to do is to allocate all pages from 6376 * [start, end) (that is remove them from page allocator). 6377 * 6378 * The only problem is that pages at the beginning and at the 6379 * end of interesting range may be not aligned with pages that 6380 * page allocator holds, ie. they can be part of higher order 6381 * pages. Because of this, we reserve the bigger range and 6382 * once this is done free the pages we are not interested in. 6383 * 6384 * We don't have to hold zone->lock here because the pages are 6385 * isolated thus they won't get removed from buddy. 6386 */ 6387 6388 lru_add_drain_all(); 6389 drain_all_pages(); 6390 6391 order = 0; 6392 outer_start = start; 6393 while (!PageBuddy(pfn_to_page(outer_start))) { 6394 if (++order >= MAX_ORDER) { 6395 ret = -EBUSY; 6396 goto done; 6397 } 6398 outer_start &= ~0UL << order; 6399 } 6400 6401 /* Make sure the range is really isolated. */ 6402 if (test_pages_isolated(outer_start, end, false)) { 6403 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n", 6404 outer_start, end); 6405 ret = -EBUSY; 6406 goto done; 6407 } 6408 6409 6410 /* Grab isolated pages from freelists. */ 6411 outer_end = isolate_freepages_range(&cc, outer_start, end); 6412 if (!outer_end) { 6413 ret = -EBUSY; 6414 goto done; 6415 } 6416 6417 /* Free head and tail (if any) */ 6418 if (start != outer_start) 6419 free_contig_range(outer_start, start - outer_start); 6420 if (end != outer_end) 6421 free_contig_range(end, outer_end - end); 6422 6423 done: 6424 undo_isolate_page_range(pfn_max_align_down(start), 6425 pfn_max_align_up(end), migratetype); 6426 return ret; 6427 } 6428 6429 void free_contig_range(unsigned long pfn, unsigned nr_pages) 6430 { 6431 unsigned int count = 0; 6432 6433 for (; nr_pages--; pfn++) { 6434 struct page *page = pfn_to_page(pfn); 6435 6436 count += page_count(page) != 1; 6437 __free_page(page); 6438 } 6439 WARN(count != 0, "%d pages are still in use!\n", count); 6440 } 6441 #endif 6442 6443 #ifdef CONFIG_MEMORY_HOTPLUG 6444 /* 6445 * The zone indicated has a new number of managed_pages; batch sizes and percpu 6446 * page high values need to be recalulated. 6447 */ 6448 void __meminit zone_pcp_update(struct zone *zone) 6449 { 6450 unsigned cpu; 6451 mutex_lock(&pcp_batch_high_lock); 6452 for_each_possible_cpu(cpu) 6453 pageset_set_high_and_batch(zone, 6454 per_cpu_ptr(zone->pageset, cpu)); 6455 mutex_unlock(&pcp_batch_high_lock); 6456 } 6457 #endif 6458 6459 void zone_pcp_reset(struct zone *zone) 6460 { 6461 unsigned long flags; 6462 int cpu; 6463 struct per_cpu_pageset *pset; 6464 6465 /* avoid races with drain_pages() */ 6466 local_irq_save(flags); 6467 if (zone->pageset != &boot_pageset) { 6468 for_each_online_cpu(cpu) { 6469 pset = per_cpu_ptr(zone->pageset, cpu); 6470 drain_zonestat(zone, pset); 6471 } 6472 free_percpu(zone->pageset); 6473 zone->pageset = &boot_pageset; 6474 } 6475 local_irq_restore(flags); 6476 } 6477 6478 #ifdef CONFIG_MEMORY_HOTREMOVE 6479 /* 6480 * All pages in the range must be isolated before calling this. 6481 */ 6482 void 6483 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 6484 { 6485 struct page *page; 6486 struct zone *zone; 6487 unsigned int order, i; 6488 unsigned long pfn; 6489 unsigned long flags; 6490 /* find the first valid pfn */ 6491 for (pfn = start_pfn; pfn < end_pfn; pfn++) 6492 if (pfn_valid(pfn)) 6493 break; 6494 if (pfn == end_pfn) 6495 return; 6496 zone = page_zone(pfn_to_page(pfn)); 6497 spin_lock_irqsave(&zone->lock, flags); 6498 pfn = start_pfn; 6499 while (pfn < end_pfn) { 6500 if (!pfn_valid(pfn)) { 6501 pfn++; 6502 continue; 6503 } 6504 page = pfn_to_page(pfn); 6505 /* 6506 * The HWPoisoned page may be not in buddy system, and 6507 * page_count() is not 0. 6508 */ 6509 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 6510 pfn++; 6511 SetPageReserved(page); 6512 continue; 6513 } 6514 6515 BUG_ON(page_count(page)); 6516 BUG_ON(!PageBuddy(page)); 6517 order = page_order(page); 6518 #ifdef CONFIG_DEBUG_VM 6519 printk(KERN_INFO "remove from free list %lx %d %lx\n", 6520 pfn, 1 << order, end_pfn); 6521 #endif 6522 list_del(&page->lru); 6523 rmv_page_order(page); 6524 zone->free_area[order].nr_free--; 6525 for (i = 0; i < (1 << order); i++) 6526 SetPageReserved((page+i)); 6527 pfn += (1 << order); 6528 } 6529 spin_unlock_irqrestore(&zone->lock, flags); 6530 } 6531 #endif 6532 6533 #ifdef CONFIG_MEMORY_FAILURE 6534 bool is_free_buddy_page(struct page *page) 6535 { 6536 struct zone *zone = page_zone(page); 6537 unsigned long pfn = page_to_pfn(page); 6538 unsigned long flags; 6539 unsigned int order; 6540 6541 spin_lock_irqsave(&zone->lock, flags); 6542 for (order = 0; order < MAX_ORDER; order++) { 6543 struct page *page_head = page - (pfn & ((1 << order) - 1)); 6544 6545 if (PageBuddy(page_head) && page_order(page_head) >= order) 6546 break; 6547 } 6548 spin_unlock_irqrestore(&zone->lock, flags); 6549 6550 return order < MAX_ORDER; 6551 } 6552 #endif 6553