xref: /openbmc/linux/mm/page_alloc.c (revision 5fa1f7680f2728d62561db6d4a9282c4d21f2324)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
70 #include <linux/psi.h>
71 #include <linux/padata.h>
72 
73 #include <asm/sections.h>
74 #include <asm/tlbflush.h>
75 #include <asm/div64.h>
76 #include "internal.h"
77 #include "shuffle.h"
78 #include "page_reporting.h"
79 
80 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
81 static DEFINE_MUTEX(pcp_batch_high_lock);
82 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
83 
84 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
85 DEFINE_PER_CPU(int, numa_node);
86 EXPORT_PER_CPU_SYMBOL(numa_node);
87 #endif
88 
89 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
90 
91 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
92 /*
93  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
94  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
95  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
96  * defined in <linux/topology.h>.
97  */
98 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
99 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
100 #endif
101 
102 /* work_structs for global per-cpu drains */
103 struct pcpu_drain {
104 	struct zone *zone;
105 	struct work_struct work;
106 };
107 static DEFINE_MUTEX(pcpu_drain_mutex);
108 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
109 
110 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
111 volatile unsigned long latent_entropy __latent_entropy;
112 EXPORT_SYMBOL(latent_entropy);
113 #endif
114 
115 /*
116  * Array of node states.
117  */
118 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
119 	[N_POSSIBLE] = NODE_MASK_ALL,
120 	[N_ONLINE] = { { [0] = 1UL } },
121 #ifndef CONFIG_NUMA
122 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
123 #ifdef CONFIG_HIGHMEM
124 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
125 #endif
126 	[N_MEMORY] = { { [0] = 1UL } },
127 	[N_CPU] = { { [0] = 1UL } },
128 #endif	/* NUMA */
129 };
130 EXPORT_SYMBOL(node_states);
131 
132 atomic_long_t _totalram_pages __read_mostly;
133 EXPORT_SYMBOL(_totalram_pages);
134 unsigned long totalreserve_pages __read_mostly;
135 unsigned long totalcma_pages __read_mostly;
136 
137 int percpu_pagelist_fraction;
138 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
139 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
140 DEFINE_STATIC_KEY_TRUE(init_on_alloc);
141 #else
142 DEFINE_STATIC_KEY_FALSE(init_on_alloc);
143 #endif
144 EXPORT_SYMBOL(init_on_alloc);
145 
146 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
147 DEFINE_STATIC_KEY_TRUE(init_on_free);
148 #else
149 DEFINE_STATIC_KEY_FALSE(init_on_free);
150 #endif
151 EXPORT_SYMBOL(init_on_free);
152 
153 static int __init early_init_on_alloc(char *buf)
154 {
155 	int ret;
156 	bool bool_result;
157 
158 	if (!buf)
159 		return -EINVAL;
160 	ret = kstrtobool(buf, &bool_result);
161 	if (bool_result && page_poisoning_enabled())
162 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
163 	if (bool_result)
164 		static_branch_enable(&init_on_alloc);
165 	else
166 		static_branch_disable(&init_on_alloc);
167 	return ret;
168 }
169 early_param("init_on_alloc", early_init_on_alloc);
170 
171 static int __init early_init_on_free(char *buf)
172 {
173 	int ret;
174 	bool bool_result;
175 
176 	if (!buf)
177 		return -EINVAL;
178 	ret = kstrtobool(buf, &bool_result);
179 	if (bool_result && page_poisoning_enabled())
180 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
181 	if (bool_result)
182 		static_branch_enable(&init_on_free);
183 	else
184 		static_branch_disable(&init_on_free);
185 	return ret;
186 }
187 early_param("init_on_free", early_init_on_free);
188 
189 /*
190  * A cached value of the page's pageblock's migratetype, used when the page is
191  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
192  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
193  * Also the migratetype set in the page does not necessarily match the pcplist
194  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
195  * other index - this ensures that it will be put on the correct CMA freelist.
196  */
197 static inline int get_pcppage_migratetype(struct page *page)
198 {
199 	return page->index;
200 }
201 
202 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
203 {
204 	page->index = migratetype;
205 }
206 
207 #ifdef CONFIG_PM_SLEEP
208 /*
209  * The following functions are used by the suspend/hibernate code to temporarily
210  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
211  * while devices are suspended.  To avoid races with the suspend/hibernate code,
212  * they should always be called with system_transition_mutex held
213  * (gfp_allowed_mask also should only be modified with system_transition_mutex
214  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
215  * with that modification).
216  */
217 
218 static gfp_t saved_gfp_mask;
219 
220 void pm_restore_gfp_mask(void)
221 {
222 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
223 	if (saved_gfp_mask) {
224 		gfp_allowed_mask = saved_gfp_mask;
225 		saved_gfp_mask = 0;
226 	}
227 }
228 
229 void pm_restrict_gfp_mask(void)
230 {
231 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
232 	WARN_ON(saved_gfp_mask);
233 	saved_gfp_mask = gfp_allowed_mask;
234 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
235 }
236 
237 bool pm_suspended_storage(void)
238 {
239 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
240 		return false;
241 	return true;
242 }
243 #endif /* CONFIG_PM_SLEEP */
244 
245 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
246 unsigned int pageblock_order __read_mostly;
247 #endif
248 
249 static void __free_pages_ok(struct page *page, unsigned int order);
250 
251 /*
252  * results with 256, 32 in the lowmem_reserve sysctl:
253  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
254  *	1G machine -> (16M dma, 784M normal, 224M high)
255  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
256  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
257  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
258  *
259  * TBD: should special case ZONE_DMA32 machines here - in those we normally
260  * don't need any ZONE_NORMAL reservation
261  */
262 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
263 #ifdef CONFIG_ZONE_DMA
264 	[ZONE_DMA] = 256,
265 #endif
266 #ifdef CONFIG_ZONE_DMA32
267 	[ZONE_DMA32] = 256,
268 #endif
269 	[ZONE_NORMAL] = 32,
270 #ifdef CONFIG_HIGHMEM
271 	[ZONE_HIGHMEM] = 0,
272 #endif
273 	[ZONE_MOVABLE] = 0,
274 };
275 
276 static char * const zone_names[MAX_NR_ZONES] = {
277 #ifdef CONFIG_ZONE_DMA
278 	 "DMA",
279 #endif
280 #ifdef CONFIG_ZONE_DMA32
281 	 "DMA32",
282 #endif
283 	 "Normal",
284 #ifdef CONFIG_HIGHMEM
285 	 "HighMem",
286 #endif
287 	 "Movable",
288 #ifdef CONFIG_ZONE_DEVICE
289 	 "Device",
290 #endif
291 };
292 
293 const char * const migratetype_names[MIGRATE_TYPES] = {
294 	"Unmovable",
295 	"Movable",
296 	"Reclaimable",
297 	"HighAtomic",
298 #ifdef CONFIG_CMA
299 	"CMA",
300 #endif
301 #ifdef CONFIG_MEMORY_ISOLATION
302 	"Isolate",
303 #endif
304 };
305 
306 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
307 	[NULL_COMPOUND_DTOR] = NULL,
308 	[COMPOUND_PAGE_DTOR] = free_compound_page,
309 #ifdef CONFIG_HUGETLB_PAGE
310 	[HUGETLB_PAGE_DTOR] = free_huge_page,
311 #endif
312 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
313 	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
314 #endif
315 };
316 
317 int min_free_kbytes = 1024;
318 int user_min_free_kbytes = -1;
319 #ifdef CONFIG_DISCONTIGMEM
320 /*
321  * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
322  * are not on separate NUMA nodes. Functionally this works but with
323  * watermark_boost_factor, it can reclaim prematurely as the ranges can be
324  * quite small. By default, do not boost watermarks on discontigmem as in
325  * many cases very high-order allocations like THP are likely to be
326  * unsupported and the premature reclaim offsets the advantage of long-term
327  * fragmentation avoidance.
328  */
329 int watermark_boost_factor __read_mostly;
330 #else
331 int watermark_boost_factor __read_mostly = 15000;
332 #endif
333 int watermark_scale_factor = 10;
334 
335 static unsigned long nr_kernel_pages __initdata;
336 static unsigned long nr_all_pages __initdata;
337 static unsigned long dma_reserve __initdata;
338 
339 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
340 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
341 static unsigned long required_kernelcore __initdata;
342 static unsigned long required_kernelcore_percent __initdata;
343 static unsigned long required_movablecore __initdata;
344 static unsigned long required_movablecore_percent __initdata;
345 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
346 static bool mirrored_kernelcore __meminitdata;
347 
348 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
349 int movable_zone;
350 EXPORT_SYMBOL(movable_zone);
351 
352 #if MAX_NUMNODES > 1
353 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
354 unsigned int nr_online_nodes __read_mostly = 1;
355 EXPORT_SYMBOL(nr_node_ids);
356 EXPORT_SYMBOL(nr_online_nodes);
357 #endif
358 
359 int page_group_by_mobility_disabled __read_mostly;
360 
361 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
362 /*
363  * During boot we initialize deferred pages on-demand, as needed, but once
364  * page_alloc_init_late() has finished, the deferred pages are all initialized,
365  * and we can permanently disable that path.
366  */
367 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
368 
369 /*
370  * Calling kasan_free_pages() only after deferred memory initialization
371  * has completed. Poisoning pages during deferred memory init will greatly
372  * lengthen the process and cause problem in large memory systems as the
373  * deferred pages initialization is done with interrupt disabled.
374  *
375  * Assuming that there will be no reference to those newly initialized
376  * pages before they are ever allocated, this should have no effect on
377  * KASAN memory tracking as the poison will be properly inserted at page
378  * allocation time. The only corner case is when pages are allocated by
379  * on-demand allocation and then freed again before the deferred pages
380  * initialization is done, but this is not likely to happen.
381  */
382 static inline void kasan_free_nondeferred_pages(struct page *page, int order)
383 {
384 	if (!static_branch_unlikely(&deferred_pages))
385 		kasan_free_pages(page, order);
386 }
387 
388 /* Returns true if the struct page for the pfn is uninitialised */
389 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
390 {
391 	int nid = early_pfn_to_nid(pfn);
392 
393 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
394 		return true;
395 
396 	return false;
397 }
398 
399 /*
400  * Returns true when the remaining initialisation should be deferred until
401  * later in the boot cycle when it can be parallelised.
402  */
403 static bool __meminit
404 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
405 {
406 	static unsigned long prev_end_pfn, nr_initialised;
407 
408 	/*
409 	 * prev_end_pfn static that contains the end of previous zone
410 	 * No need to protect because called very early in boot before smp_init.
411 	 */
412 	if (prev_end_pfn != end_pfn) {
413 		prev_end_pfn = end_pfn;
414 		nr_initialised = 0;
415 	}
416 
417 	/* Always populate low zones for address-constrained allocations */
418 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
419 		return false;
420 
421 	/*
422 	 * We start only with one section of pages, more pages are added as
423 	 * needed until the rest of deferred pages are initialized.
424 	 */
425 	nr_initialised++;
426 	if ((nr_initialised > PAGES_PER_SECTION) &&
427 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
428 		NODE_DATA(nid)->first_deferred_pfn = pfn;
429 		return true;
430 	}
431 	return false;
432 }
433 #else
434 #define kasan_free_nondeferred_pages(p, o)	kasan_free_pages(p, o)
435 
436 static inline bool early_page_uninitialised(unsigned long pfn)
437 {
438 	return false;
439 }
440 
441 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
442 {
443 	return false;
444 }
445 #endif
446 
447 /* Return a pointer to the bitmap storing bits affecting a block of pages */
448 static inline unsigned long *get_pageblock_bitmap(struct page *page,
449 							unsigned long pfn)
450 {
451 #ifdef CONFIG_SPARSEMEM
452 	return section_to_usemap(__pfn_to_section(pfn));
453 #else
454 	return page_zone(page)->pageblock_flags;
455 #endif /* CONFIG_SPARSEMEM */
456 }
457 
458 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
459 {
460 #ifdef CONFIG_SPARSEMEM
461 	pfn &= (PAGES_PER_SECTION-1);
462 #else
463 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
464 #endif /* CONFIG_SPARSEMEM */
465 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
466 }
467 
468 /**
469  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
470  * @page: The page within the block of interest
471  * @pfn: The target page frame number
472  * @mask: mask of bits that the caller is interested in
473  *
474  * Return: pageblock_bits flags
475  */
476 static __always_inline
477 unsigned long __get_pfnblock_flags_mask(struct page *page,
478 					unsigned long pfn,
479 					unsigned long mask)
480 {
481 	unsigned long *bitmap;
482 	unsigned long bitidx, word_bitidx;
483 	unsigned long word;
484 
485 	bitmap = get_pageblock_bitmap(page, pfn);
486 	bitidx = pfn_to_bitidx(page, pfn);
487 	word_bitidx = bitidx / BITS_PER_LONG;
488 	bitidx &= (BITS_PER_LONG-1);
489 
490 	word = bitmap[word_bitidx];
491 	return (word >> bitidx) & mask;
492 }
493 
494 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
495 					unsigned long mask)
496 {
497 	return __get_pfnblock_flags_mask(page, pfn, mask);
498 }
499 
500 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
501 {
502 	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
503 }
504 
505 /**
506  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
507  * @page: The page within the block of interest
508  * @flags: The flags to set
509  * @pfn: The target page frame number
510  * @mask: mask of bits that the caller is interested in
511  */
512 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
513 					unsigned long pfn,
514 					unsigned long mask)
515 {
516 	unsigned long *bitmap;
517 	unsigned long bitidx, word_bitidx;
518 	unsigned long old_word, word;
519 
520 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
521 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
522 
523 	bitmap = get_pageblock_bitmap(page, pfn);
524 	bitidx = pfn_to_bitidx(page, pfn);
525 	word_bitidx = bitidx / BITS_PER_LONG;
526 	bitidx &= (BITS_PER_LONG-1);
527 
528 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
529 
530 	mask <<= bitidx;
531 	flags <<= bitidx;
532 
533 	word = READ_ONCE(bitmap[word_bitidx]);
534 	for (;;) {
535 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
536 		if (word == old_word)
537 			break;
538 		word = old_word;
539 	}
540 }
541 
542 void set_pageblock_migratetype(struct page *page, int migratetype)
543 {
544 	if (unlikely(page_group_by_mobility_disabled &&
545 		     migratetype < MIGRATE_PCPTYPES))
546 		migratetype = MIGRATE_UNMOVABLE;
547 
548 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
549 				page_to_pfn(page), MIGRATETYPE_MASK);
550 }
551 
552 #ifdef CONFIG_DEBUG_VM
553 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
554 {
555 	int ret = 0;
556 	unsigned seq;
557 	unsigned long pfn = page_to_pfn(page);
558 	unsigned long sp, start_pfn;
559 
560 	do {
561 		seq = zone_span_seqbegin(zone);
562 		start_pfn = zone->zone_start_pfn;
563 		sp = zone->spanned_pages;
564 		if (!zone_spans_pfn(zone, pfn))
565 			ret = 1;
566 	} while (zone_span_seqretry(zone, seq));
567 
568 	if (ret)
569 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
570 			pfn, zone_to_nid(zone), zone->name,
571 			start_pfn, start_pfn + sp);
572 
573 	return ret;
574 }
575 
576 static int page_is_consistent(struct zone *zone, struct page *page)
577 {
578 	if (!pfn_valid_within(page_to_pfn(page)))
579 		return 0;
580 	if (zone != page_zone(page))
581 		return 0;
582 
583 	return 1;
584 }
585 /*
586  * Temporary debugging check for pages not lying within a given zone.
587  */
588 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
589 {
590 	if (page_outside_zone_boundaries(zone, page))
591 		return 1;
592 	if (!page_is_consistent(zone, page))
593 		return 1;
594 
595 	return 0;
596 }
597 #else
598 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
599 {
600 	return 0;
601 }
602 #endif
603 
604 static void bad_page(struct page *page, const char *reason)
605 {
606 	static unsigned long resume;
607 	static unsigned long nr_shown;
608 	static unsigned long nr_unshown;
609 
610 	/*
611 	 * Allow a burst of 60 reports, then keep quiet for that minute;
612 	 * or allow a steady drip of one report per second.
613 	 */
614 	if (nr_shown == 60) {
615 		if (time_before(jiffies, resume)) {
616 			nr_unshown++;
617 			goto out;
618 		}
619 		if (nr_unshown) {
620 			pr_alert(
621 			      "BUG: Bad page state: %lu messages suppressed\n",
622 				nr_unshown);
623 			nr_unshown = 0;
624 		}
625 		nr_shown = 0;
626 	}
627 	if (nr_shown++ == 0)
628 		resume = jiffies + 60 * HZ;
629 
630 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
631 		current->comm, page_to_pfn(page));
632 	__dump_page(page, reason);
633 	dump_page_owner(page);
634 
635 	print_modules();
636 	dump_stack();
637 out:
638 	/* Leave bad fields for debug, except PageBuddy could make trouble */
639 	page_mapcount_reset(page); /* remove PageBuddy */
640 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
641 }
642 
643 /*
644  * Higher-order pages are called "compound pages".  They are structured thusly:
645  *
646  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
647  *
648  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
649  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
650  *
651  * The first tail page's ->compound_dtor holds the offset in array of compound
652  * page destructors. See compound_page_dtors.
653  *
654  * The first tail page's ->compound_order holds the order of allocation.
655  * This usage means that zero-order pages may not be compound.
656  */
657 
658 void free_compound_page(struct page *page)
659 {
660 	mem_cgroup_uncharge(page);
661 	__free_pages_ok(page, compound_order(page));
662 }
663 
664 void prep_compound_page(struct page *page, unsigned int order)
665 {
666 	int i;
667 	int nr_pages = 1 << order;
668 
669 	__SetPageHead(page);
670 	for (i = 1; i < nr_pages; i++) {
671 		struct page *p = page + i;
672 		set_page_count(p, 0);
673 		p->mapping = TAIL_MAPPING;
674 		set_compound_head(p, page);
675 	}
676 
677 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
678 	set_compound_order(page, order);
679 	atomic_set(compound_mapcount_ptr(page), -1);
680 	if (hpage_pincount_available(page))
681 		atomic_set(compound_pincount_ptr(page), 0);
682 }
683 
684 #ifdef CONFIG_DEBUG_PAGEALLOC
685 unsigned int _debug_guardpage_minorder;
686 
687 bool _debug_pagealloc_enabled_early __read_mostly
688 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
689 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
690 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
691 EXPORT_SYMBOL(_debug_pagealloc_enabled);
692 
693 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
694 
695 static int __init early_debug_pagealloc(char *buf)
696 {
697 	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
698 }
699 early_param("debug_pagealloc", early_debug_pagealloc);
700 
701 void init_debug_pagealloc(void)
702 {
703 	if (!debug_pagealloc_enabled())
704 		return;
705 
706 	static_branch_enable(&_debug_pagealloc_enabled);
707 
708 	if (!debug_guardpage_minorder())
709 		return;
710 
711 	static_branch_enable(&_debug_guardpage_enabled);
712 }
713 
714 static int __init debug_guardpage_minorder_setup(char *buf)
715 {
716 	unsigned long res;
717 
718 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
719 		pr_err("Bad debug_guardpage_minorder value\n");
720 		return 0;
721 	}
722 	_debug_guardpage_minorder = res;
723 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
724 	return 0;
725 }
726 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
727 
728 static inline bool set_page_guard(struct zone *zone, struct page *page,
729 				unsigned int order, int migratetype)
730 {
731 	if (!debug_guardpage_enabled())
732 		return false;
733 
734 	if (order >= debug_guardpage_minorder())
735 		return false;
736 
737 	__SetPageGuard(page);
738 	INIT_LIST_HEAD(&page->lru);
739 	set_page_private(page, order);
740 	/* Guard pages are not available for any usage */
741 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
742 
743 	return true;
744 }
745 
746 static inline void clear_page_guard(struct zone *zone, struct page *page,
747 				unsigned int order, int migratetype)
748 {
749 	if (!debug_guardpage_enabled())
750 		return;
751 
752 	__ClearPageGuard(page);
753 
754 	set_page_private(page, 0);
755 	if (!is_migrate_isolate(migratetype))
756 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
757 }
758 #else
759 static inline bool set_page_guard(struct zone *zone, struct page *page,
760 			unsigned int order, int migratetype) { return false; }
761 static inline void clear_page_guard(struct zone *zone, struct page *page,
762 				unsigned int order, int migratetype) {}
763 #endif
764 
765 static inline void set_page_order(struct page *page, unsigned int order)
766 {
767 	set_page_private(page, order);
768 	__SetPageBuddy(page);
769 }
770 
771 /*
772  * This function checks whether a page is free && is the buddy
773  * we can coalesce a page and its buddy if
774  * (a) the buddy is not in a hole (check before calling!) &&
775  * (b) the buddy is in the buddy system &&
776  * (c) a page and its buddy have the same order &&
777  * (d) a page and its buddy are in the same zone.
778  *
779  * For recording whether a page is in the buddy system, we set PageBuddy.
780  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
781  *
782  * For recording page's order, we use page_private(page).
783  */
784 static inline bool page_is_buddy(struct page *page, struct page *buddy,
785 							unsigned int order)
786 {
787 	if (!page_is_guard(buddy) && !PageBuddy(buddy))
788 		return false;
789 
790 	if (page_order(buddy) != order)
791 		return false;
792 
793 	/*
794 	 * zone check is done late to avoid uselessly calculating
795 	 * zone/node ids for pages that could never merge.
796 	 */
797 	if (page_zone_id(page) != page_zone_id(buddy))
798 		return false;
799 
800 	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
801 
802 	return true;
803 }
804 
805 #ifdef CONFIG_COMPACTION
806 static inline struct capture_control *task_capc(struct zone *zone)
807 {
808 	struct capture_control *capc = current->capture_control;
809 
810 	return unlikely(capc) &&
811 		!(current->flags & PF_KTHREAD) &&
812 		!capc->page &&
813 		capc->cc->zone == zone ? capc : NULL;
814 }
815 
816 static inline bool
817 compaction_capture(struct capture_control *capc, struct page *page,
818 		   int order, int migratetype)
819 {
820 	if (!capc || order != capc->cc->order)
821 		return false;
822 
823 	/* Do not accidentally pollute CMA or isolated regions*/
824 	if (is_migrate_cma(migratetype) ||
825 	    is_migrate_isolate(migratetype))
826 		return false;
827 
828 	/*
829 	 * Do not let lower order allocations polluate a movable pageblock.
830 	 * This might let an unmovable request use a reclaimable pageblock
831 	 * and vice-versa but no more than normal fallback logic which can
832 	 * have trouble finding a high-order free page.
833 	 */
834 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
835 		return false;
836 
837 	capc->page = page;
838 	return true;
839 }
840 
841 #else
842 static inline struct capture_control *task_capc(struct zone *zone)
843 {
844 	return NULL;
845 }
846 
847 static inline bool
848 compaction_capture(struct capture_control *capc, struct page *page,
849 		   int order, int migratetype)
850 {
851 	return false;
852 }
853 #endif /* CONFIG_COMPACTION */
854 
855 /* Used for pages not on another list */
856 static inline void add_to_free_list(struct page *page, struct zone *zone,
857 				    unsigned int order, int migratetype)
858 {
859 	struct free_area *area = &zone->free_area[order];
860 
861 	list_add(&page->lru, &area->free_list[migratetype]);
862 	area->nr_free++;
863 }
864 
865 /* Used for pages not on another list */
866 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
867 					 unsigned int order, int migratetype)
868 {
869 	struct free_area *area = &zone->free_area[order];
870 
871 	list_add_tail(&page->lru, &area->free_list[migratetype]);
872 	area->nr_free++;
873 }
874 
875 /* Used for pages which are on another list */
876 static inline void move_to_free_list(struct page *page, struct zone *zone,
877 				     unsigned int order, int migratetype)
878 {
879 	struct free_area *area = &zone->free_area[order];
880 
881 	list_move(&page->lru, &area->free_list[migratetype]);
882 }
883 
884 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
885 					   unsigned int order)
886 {
887 	/* clear reported state and update reported page count */
888 	if (page_reported(page))
889 		__ClearPageReported(page);
890 
891 	list_del(&page->lru);
892 	__ClearPageBuddy(page);
893 	set_page_private(page, 0);
894 	zone->free_area[order].nr_free--;
895 }
896 
897 /*
898  * If this is not the largest possible page, check if the buddy
899  * of the next-highest order is free. If it is, it's possible
900  * that pages are being freed that will coalesce soon. In case,
901  * that is happening, add the free page to the tail of the list
902  * so it's less likely to be used soon and more likely to be merged
903  * as a higher order page
904  */
905 static inline bool
906 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
907 		   struct page *page, unsigned int order)
908 {
909 	struct page *higher_page, *higher_buddy;
910 	unsigned long combined_pfn;
911 
912 	if (order >= MAX_ORDER - 2)
913 		return false;
914 
915 	if (!pfn_valid_within(buddy_pfn))
916 		return false;
917 
918 	combined_pfn = buddy_pfn & pfn;
919 	higher_page = page + (combined_pfn - pfn);
920 	buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
921 	higher_buddy = higher_page + (buddy_pfn - combined_pfn);
922 
923 	return pfn_valid_within(buddy_pfn) &&
924 	       page_is_buddy(higher_page, higher_buddy, order + 1);
925 }
926 
927 /*
928  * Freeing function for a buddy system allocator.
929  *
930  * The concept of a buddy system is to maintain direct-mapped table
931  * (containing bit values) for memory blocks of various "orders".
932  * The bottom level table contains the map for the smallest allocatable
933  * units of memory (here, pages), and each level above it describes
934  * pairs of units from the levels below, hence, "buddies".
935  * At a high level, all that happens here is marking the table entry
936  * at the bottom level available, and propagating the changes upward
937  * as necessary, plus some accounting needed to play nicely with other
938  * parts of the VM system.
939  * At each level, we keep a list of pages, which are heads of continuous
940  * free pages of length of (1 << order) and marked with PageBuddy.
941  * Page's order is recorded in page_private(page) field.
942  * So when we are allocating or freeing one, we can derive the state of the
943  * other.  That is, if we allocate a small block, and both were
944  * free, the remainder of the region must be split into blocks.
945  * If a block is freed, and its buddy is also free, then this
946  * triggers coalescing into a block of larger size.
947  *
948  * -- nyc
949  */
950 
951 static inline void __free_one_page(struct page *page,
952 		unsigned long pfn,
953 		struct zone *zone, unsigned int order,
954 		int migratetype, bool report)
955 {
956 	struct capture_control *capc = task_capc(zone);
957 	unsigned long buddy_pfn;
958 	unsigned long combined_pfn;
959 	unsigned int max_order;
960 	struct page *buddy;
961 	bool to_tail;
962 
963 	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
964 
965 	VM_BUG_ON(!zone_is_initialized(zone));
966 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
967 
968 	VM_BUG_ON(migratetype == -1);
969 	if (likely(!is_migrate_isolate(migratetype)))
970 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
971 
972 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
973 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
974 
975 continue_merging:
976 	while (order < max_order - 1) {
977 		if (compaction_capture(capc, page, order, migratetype)) {
978 			__mod_zone_freepage_state(zone, -(1 << order),
979 								migratetype);
980 			return;
981 		}
982 		buddy_pfn = __find_buddy_pfn(pfn, order);
983 		buddy = page + (buddy_pfn - pfn);
984 
985 		if (!pfn_valid_within(buddy_pfn))
986 			goto done_merging;
987 		if (!page_is_buddy(page, buddy, order))
988 			goto done_merging;
989 		/*
990 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
991 		 * merge with it and move up one order.
992 		 */
993 		if (page_is_guard(buddy))
994 			clear_page_guard(zone, buddy, order, migratetype);
995 		else
996 			del_page_from_free_list(buddy, zone, order);
997 		combined_pfn = buddy_pfn & pfn;
998 		page = page + (combined_pfn - pfn);
999 		pfn = combined_pfn;
1000 		order++;
1001 	}
1002 	if (max_order < MAX_ORDER) {
1003 		/* If we are here, it means order is >= pageblock_order.
1004 		 * We want to prevent merge between freepages on isolate
1005 		 * pageblock and normal pageblock. Without this, pageblock
1006 		 * isolation could cause incorrect freepage or CMA accounting.
1007 		 *
1008 		 * We don't want to hit this code for the more frequent
1009 		 * low-order merging.
1010 		 */
1011 		if (unlikely(has_isolate_pageblock(zone))) {
1012 			int buddy_mt;
1013 
1014 			buddy_pfn = __find_buddy_pfn(pfn, order);
1015 			buddy = page + (buddy_pfn - pfn);
1016 			buddy_mt = get_pageblock_migratetype(buddy);
1017 
1018 			if (migratetype != buddy_mt
1019 					&& (is_migrate_isolate(migratetype) ||
1020 						is_migrate_isolate(buddy_mt)))
1021 				goto done_merging;
1022 		}
1023 		max_order++;
1024 		goto continue_merging;
1025 	}
1026 
1027 done_merging:
1028 	set_page_order(page, order);
1029 
1030 	if (is_shuffle_order(order))
1031 		to_tail = shuffle_pick_tail();
1032 	else
1033 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1034 
1035 	if (to_tail)
1036 		add_to_free_list_tail(page, zone, order, migratetype);
1037 	else
1038 		add_to_free_list(page, zone, order, migratetype);
1039 
1040 	/* Notify page reporting subsystem of freed page */
1041 	if (report)
1042 		page_reporting_notify_free(order);
1043 }
1044 
1045 /*
1046  * A bad page could be due to a number of fields. Instead of multiple branches,
1047  * try and check multiple fields with one check. The caller must do a detailed
1048  * check if necessary.
1049  */
1050 static inline bool page_expected_state(struct page *page,
1051 					unsigned long check_flags)
1052 {
1053 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1054 		return false;
1055 
1056 	if (unlikely((unsigned long)page->mapping |
1057 			page_ref_count(page) |
1058 #ifdef CONFIG_MEMCG
1059 			(unsigned long)page->mem_cgroup |
1060 #endif
1061 			(page->flags & check_flags)))
1062 		return false;
1063 
1064 	return true;
1065 }
1066 
1067 static const char *page_bad_reason(struct page *page, unsigned long flags)
1068 {
1069 	const char *bad_reason = NULL;
1070 
1071 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1072 		bad_reason = "nonzero mapcount";
1073 	if (unlikely(page->mapping != NULL))
1074 		bad_reason = "non-NULL mapping";
1075 	if (unlikely(page_ref_count(page) != 0))
1076 		bad_reason = "nonzero _refcount";
1077 	if (unlikely(page->flags & flags)) {
1078 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1079 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1080 		else
1081 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1082 	}
1083 #ifdef CONFIG_MEMCG
1084 	if (unlikely(page->mem_cgroup))
1085 		bad_reason = "page still charged to cgroup";
1086 #endif
1087 	return bad_reason;
1088 }
1089 
1090 static void check_free_page_bad(struct page *page)
1091 {
1092 	bad_page(page,
1093 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1094 }
1095 
1096 static inline int check_free_page(struct page *page)
1097 {
1098 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1099 		return 0;
1100 
1101 	/* Something has gone sideways, find it */
1102 	check_free_page_bad(page);
1103 	return 1;
1104 }
1105 
1106 static int free_tail_pages_check(struct page *head_page, struct page *page)
1107 {
1108 	int ret = 1;
1109 
1110 	/*
1111 	 * We rely page->lru.next never has bit 0 set, unless the page
1112 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1113 	 */
1114 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1115 
1116 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1117 		ret = 0;
1118 		goto out;
1119 	}
1120 	switch (page - head_page) {
1121 	case 1:
1122 		/* the first tail page: ->mapping may be compound_mapcount() */
1123 		if (unlikely(compound_mapcount(page))) {
1124 			bad_page(page, "nonzero compound_mapcount");
1125 			goto out;
1126 		}
1127 		break;
1128 	case 2:
1129 		/*
1130 		 * the second tail page: ->mapping is
1131 		 * deferred_list.next -- ignore value.
1132 		 */
1133 		break;
1134 	default:
1135 		if (page->mapping != TAIL_MAPPING) {
1136 			bad_page(page, "corrupted mapping in tail page");
1137 			goto out;
1138 		}
1139 		break;
1140 	}
1141 	if (unlikely(!PageTail(page))) {
1142 		bad_page(page, "PageTail not set");
1143 		goto out;
1144 	}
1145 	if (unlikely(compound_head(page) != head_page)) {
1146 		bad_page(page, "compound_head not consistent");
1147 		goto out;
1148 	}
1149 	ret = 0;
1150 out:
1151 	page->mapping = NULL;
1152 	clear_compound_head(page);
1153 	return ret;
1154 }
1155 
1156 static void kernel_init_free_pages(struct page *page, int numpages)
1157 {
1158 	int i;
1159 
1160 	/* s390's use of memset() could override KASAN redzones. */
1161 	kasan_disable_current();
1162 	for (i = 0; i < numpages; i++)
1163 		clear_highpage(page + i);
1164 	kasan_enable_current();
1165 }
1166 
1167 static __always_inline bool free_pages_prepare(struct page *page,
1168 					unsigned int order, bool check_free)
1169 {
1170 	int bad = 0;
1171 
1172 	VM_BUG_ON_PAGE(PageTail(page), page);
1173 
1174 	trace_mm_page_free(page, order);
1175 
1176 	/*
1177 	 * Check tail pages before head page information is cleared to
1178 	 * avoid checking PageCompound for order-0 pages.
1179 	 */
1180 	if (unlikely(order)) {
1181 		bool compound = PageCompound(page);
1182 		int i;
1183 
1184 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1185 
1186 		if (compound)
1187 			ClearPageDoubleMap(page);
1188 		for (i = 1; i < (1 << order); i++) {
1189 			if (compound)
1190 				bad += free_tail_pages_check(page, page + i);
1191 			if (unlikely(check_free_page(page + i))) {
1192 				bad++;
1193 				continue;
1194 			}
1195 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1196 		}
1197 	}
1198 	if (PageMappingFlags(page))
1199 		page->mapping = NULL;
1200 	if (memcg_kmem_enabled() && PageKmemcg(page))
1201 		__memcg_kmem_uncharge_page(page, order);
1202 	if (check_free)
1203 		bad += check_free_page(page);
1204 	if (bad)
1205 		return false;
1206 
1207 	page_cpupid_reset_last(page);
1208 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1209 	reset_page_owner(page, order);
1210 
1211 	if (!PageHighMem(page)) {
1212 		debug_check_no_locks_freed(page_address(page),
1213 					   PAGE_SIZE << order);
1214 		debug_check_no_obj_freed(page_address(page),
1215 					   PAGE_SIZE << order);
1216 	}
1217 	if (want_init_on_free())
1218 		kernel_init_free_pages(page, 1 << order);
1219 
1220 	kernel_poison_pages(page, 1 << order, 0);
1221 	/*
1222 	 * arch_free_page() can make the page's contents inaccessible.  s390
1223 	 * does this.  So nothing which can access the page's contents should
1224 	 * happen after this.
1225 	 */
1226 	arch_free_page(page, order);
1227 
1228 	if (debug_pagealloc_enabled_static())
1229 		kernel_map_pages(page, 1 << order, 0);
1230 
1231 	kasan_free_nondeferred_pages(page, order);
1232 
1233 	return true;
1234 }
1235 
1236 #ifdef CONFIG_DEBUG_VM
1237 /*
1238  * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1239  * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1240  * moved from pcp lists to free lists.
1241  */
1242 static bool free_pcp_prepare(struct page *page)
1243 {
1244 	return free_pages_prepare(page, 0, true);
1245 }
1246 
1247 static bool bulkfree_pcp_prepare(struct page *page)
1248 {
1249 	if (debug_pagealloc_enabled_static())
1250 		return check_free_page(page);
1251 	else
1252 		return false;
1253 }
1254 #else
1255 /*
1256  * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1257  * moving from pcp lists to free list in order to reduce overhead. With
1258  * debug_pagealloc enabled, they are checked also immediately when being freed
1259  * to the pcp lists.
1260  */
1261 static bool free_pcp_prepare(struct page *page)
1262 {
1263 	if (debug_pagealloc_enabled_static())
1264 		return free_pages_prepare(page, 0, true);
1265 	else
1266 		return free_pages_prepare(page, 0, false);
1267 }
1268 
1269 static bool bulkfree_pcp_prepare(struct page *page)
1270 {
1271 	return check_free_page(page);
1272 }
1273 #endif /* CONFIG_DEBUG_VM */
1274 
1275 static inline void prefetch_buddy(struct page *page)
1276 {
1277 	unsigned long pfn = page_to_pfn(page);
1278 	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1279 	struct page *buddy = page + (buddy_pfn - pfn);
1280 
1281 	prefetch(buddy);
1282 }
1283 
1284 /*
1285  * Frees a number of pages from the PCP lists
1286  * Assumes all pages on list are in same zone, and of same order.
1287  * count is the number of pages to free.
1288  *
1289  * If the zone was previously in an "all pages pinned" state then look to
1290  * see if this freeing clears that state.
1291  *
1292  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1293  * pinned" detection logic.
1294  */
1295 static void free_pcppages_bulk(struct zone *zone, int count,
1296 					struct per_cpu_pages *pcp)
1297 {
1298 	int migratetype = 0;
1299 	int batch_free = 0;
1300 	int prefetch_nr = 0;
1301 	bool isolated_pageblocks;
1302 	struct page *page, *tmp;
1303 	LIST_HEAD(head);
1304 
1305 	while (count) {
1306 		struct list_head *list;
1307 
1308 		/*
1309 		 * Remove pages from lists in a round-robin fashion. A
1310 		 * batch_free count is maintained that is incremented when an
1311 		 * empty list is encountered.  This is so more pages are freed
1312 		 * off fuller lists instead of spinning excessively around empty
1313 		 * lists
1314 		 */
1315 		do {
1316 			batch_free++;
1317 			if (++migratetype == MIGRATE_PCPTYPES)
1318 				migratetype = 0;
1319 			list = &pcp->lists[migratetype];
1320 		} while (list_empty(list));
1321 
1322 		/* This is the only non-empty list. Free them all. */
1323 		if (batch_free == MIGRATE_PCPTYPES)
1324 			batch_free = count;
1325 
1326 		do {
1327 			page = list_last_entry(list, struct page, lru);
1328 			/* must delete to avoid corrupting pcp list */
1329 			list_del(&page->lru);
1330 			pcp->count--;
1331 
1332 			if (bulkfree_pcp_prepare(page))
1333 				continue;
1334 
1335 			list_add_tail(&page->lru, &head);
1336 
1337 			/*
1338 			 * We are going to put the page back to the global
1339 			 * pool, prefetch its buddy to speed up later access
1340 			 * under zone->lock. It is believed the overhead of
1341 			 * an additional test and calculating buddy_pfn here
1342 			 * can be offset by reduced memory latency later. To
1343 			 * avoid excessive prefetching due to large count, only
1344 			 * prefetch buddy for the first pcp->batch nr of pages.
1345 			 */
1346 			if (prefetch_nr++ < pcp->batch)
1347 				prefetch_buddy(page);
1348 		} while (--count && --batch_free && !list_empty(list));
1349 	}
1350 
1351 	spin_lock(&zone->lock);
1352 	isolated_pageblocks = has_isolate_pageblock(zone);
1353 
1354 	/*
1355 	 * Use safe version since after __free_one_page(),
1356 	 * page->lru.next will not point to original list.
1357 	 */
1358 	list_for_each_entry_safe(page, tmp, &head, lru) {
1359 		int mt = get_pcppage_migratetype(page);
1360 		/* MIGRATE_ISOLATE page should not go to pcplists */
1361 		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1362 		/* Pageblock could have been isolated meanwhile */
1363 		if (unlikely(isolated_pageblocks))
1364 			mt = get_pageblock_migratetype(page);
1365 
1366 		__free_one_page(page, page_to_pfn(page), zone, 0, mt, true);
1367 		trace_mm_page_pcpu_drain(page, 0, mt);
1368 	}
1369 	spin_unlock(&zone->lock);
1370 }
1371 
1372 static void free_one_page(struct zone *zone,
1373 				struct page *page, unsigned long pfn,
1374 				unsigned int order,
1375 				int migratetype)
1376 {
1377 	spin_lock(&zone->lock);
1378 	if (unlikely(has_isolate_pageblock(zone) ||
1379 		is_migrate_isolate(migratetype))) {
1380 		migratetype = get_pfnblock_migratetype(page, pfn);
1381 	}
1382 	__free_one_page(page, pfn, zone, order, migratetype, true);
1383 	spin_unlock(&zone->lock);
1384 }
1385 
1386 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1387 				unsigned long zone, int nid)
1388 {
1389 	mm_zero_struct_page(page);
1390 	set_page_links(page, zone, nid, pfn);
1391 	init_page_count(page);
1392 	page_mapcount_reset(page);
1393 	page_cpupid_reset_last(page);
1394 	page_kasan_tag_reset(page);
1395 
1396 	INIT_LIST_HEAD(&page->lru);
1397 #ifdef WANT_PAGE_VIRTUAL
1398 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1399 	if (!is_highmem_idx(zone))
1400 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1401 #endif
1402 }
1403 
1404 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1405 static void __meminit init_reserved_page(unsigned long pfn)
1406 {
1407 	pg_data_t *pgdat;
1408 	int nid, zid;
1409 
1410 	if (!early_page_uninitialised(pfn))
1411 		return;
1412 
1413 	nid = early_pfn_to_nid(pfn);
1414 	pgdat = NODE_DATA(nid);
1415 
1416 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1417 		struct zone *zone = &pgdat->node_zones[zid];
1418 
1419 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1420 			break;
1421 	}
1422 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1423 }
1424 #else
1425 static inline void init_reserved_page(unsigned long pfn)
1426 {
1427 }
1428 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1429 
1430 /*
1431  * Initialised pages do not have PageReserved set. This function is
1432  * called for each range allocated by the bootmem allocator and
1433  * marks the pages PageReserved. The remaining valid pages are later
1434  * sent to the buddy page allocator.
1435  */
1436 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1437 {
1438 	unsigned long start_pfn = PFN_DOWN(start);
1439 	unsigned long end_pfn = PFN_UP(end);
1440 
1441 	for (; start_pfn < end_pfn; start_pfn++) {
1442 		if (pfn_valid(start_pfn)) {
1443 			struct page *page = pfn_to_page(start_pfn);
1444 
1445 			init_reserved_page(start_pfn);
1446 
1447 			/* Avoid false-positive PageTail() */
1448 			INIT_LIST_HEAD(&page->lru);
1449 
1450 			/*
1451 			 * no need for atomic set_bit because the struct
1452 			 * page is not visible yet so nobody should
1453 			 * access it yet.
1454 			 */
1455 			__SetPageReserved(page);
1456 		}
1457 	}
1458 }
1459 
1460 static void __free_pages_ok(struct page *page, unsigned int order)
1461 {
1462 	unsigned long flags;
1463 	int migratetype;
1464 	unsigned long pfn = page_to_pfn(page);
1465 
1466 	if (!free_pages_prepare(page, order, true))
1467 		return;
1468 
1469 	migratetype = get_pfnblock_migratetype(page, pfn);
1470 	local_irq_save(flags);
1471 	__count_vm_events(PGFREE, 1 << order);
1472 	free_one_page(page_zone(page), page, pfn, order, migratetype);
1473 	local_irq_restore(flags);
1474 }
1475 
1476 void __free_pages_core(struct page *page, unsigned int order)
1477 {
1478 	unsigned int nr_pages = 1 << order;
1479 	struct page *p = page;
1480 	unsigned int loop;
1481 
1482 	prefetchw(p);
1483 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1484 		prefetchw(p + 1);
1485 		__ClearPageReserved(p);
1486 		set_page_count(p, 0);
1487 	}
1488 	__ClearPageReserved(p);
1489 	set_page_count(p, 0);
1490 
1491 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1492 	set_page_refcounted(page);
1493 	__free_pages(page, order);
1494 }
1495 
1496 #ifdef CONFIG_NEED_MULTIPLE_NODES
1497 
1498 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1499 
1500 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1501 
1502 /*
1503  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1504  */
1505 int __meminit __early_pfn_to_nid(unsigned long pfn,
1506 					struct mminit_pfnnid_cache *state)
1507 {
1508 	unsigned long start_pfn, end_pfn;
1509 	int nid;
1510 
1511 	if (state->last_start <= pfn && pfn < state->last_end)
1512 		return state->last_nid;
1513 
1514 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1515 	if (nid != NUMA_NO_NODE) {
1516 		state->last_start = start_pfn;
1517 		state->last_end = end_pfn;
1518 		state->last_nid = nid;
1519 	}
1520 
1521 	return nid;
1522 }
1523 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1524 
1525 int __meminit early_pfn_to_nid(unsigned long pfn)
1526 {
1527 	static DEFINE_SPINLOCK(early_pfn_lock);
1528 	int nid;
1529 
1530 	spin_lock(&early_pfn_lock);
1531 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1532 	if (nid < 0)
1533 		nid = first_online_node;
1534 	spin_unlock(&early_pfn_lock);
1535 
1536 	return nid;
1537 }
1538 #endif /* CONFIG_NEED_MULTIPLE_NODES */
1539 
1540 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1541 							unsigned int order)
1542 {
1543 	if (early_page_uninitialised(pfn))
1544 		return;
1545 	__free_pages_core(page, order);
1546 }
1547 
1548 /*
1549  * Check that the whole (or subset of) a pageblock given by the interval of
1550  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1551  * with the migration of free compaction scanner. The scanners then need to
1552  * use only pfn_valid_within() check for arches that allow holes within
1553  * pageblocks.
1554  *
1555  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1556  *
1557  * It's possible on some configurations to have a setup like node0 node1 node0
1558  * i.e. it's possible that all pages within a zones range of pages do not
1559  * belong to a single zone. We assume that a border between node0 and node1
1560  * can occur within a single pageblock, but not a node0 node1 node0
1561  * interleaving within a single pageblock. It is therefore sufficient to check
1562  * the first and last page of a pageblock and avoid checking each individual
1563  * page in a pageblock.
1564  */
1565 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1566 				     unsigned long end_pfn, struct zone *zone)
1567 {
1568 	struct page *start_page;
1569 	struct page *end_page;
1570 
1571 	/* end_pfn is one past the range we are checking */
1572 	end_pfn--;
1573 
1574 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1575 		return NULL;
1576 
1577 	start_page = pfn_to_online_page(start_pfn);
1578 	if (!start_page)
1579 		return NULL;
1580 
1581 	if (page_zone(start_page) != zone)
1582 		return NULL;
1583 
1584 	end_page = pfn_to_page(end_pfn);
1585 
1586 	/* This gives a shorter code than deriving page_zone(end_page) */
1587 	if (page_zone_id(start_page) != page_zone_id(end_page))
1588 		return NULL;
1589 
1590 	return start_page;
1591 }
1592 
1593 void set_zone_contiguous(struct zone *zone)
1594 {
1595 	unsigned long block_start_pfn = zone->zone_start_pfn;
1596 	unsigned long block_end_pfn;
1597 
1598 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1599 	for (; block_start_pfn < zone_end_pfn(zone);
1600 			block_start_pfn = block_end_pfn,
1601 			 block_end_pfn += pageblock_nr_pages) {
1602 
1603 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1604 
1605 		if (!__pageblock_pfn_to_page(block_start_pfn,
1606 					     block_end_pfn, zone))
1607 			return;
1608 		cond_resched();
1609 	}
1610 
1611 	/* We confirm that there is no hole */
1612 	zone->contiguous = true;
1613 }
1614 
1615 void clear_zone_contiguous(struct zone *zone)
1616 {
1617 	zone->contiguous = false;
1618 }
1619 
1620 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1621 static void __init deferred_free_range(unsigned long pfn,
1622 				       unsigned long nr_pages)
1623 {
1624 	struct page *page;
1625 	unsigned long i;
1626 
1627 	if (!nr_pages)
1628 		return;
1629 
1630 	page = pfn_to_page(pfn);
1631 
1632 	/* Free a large naturally-aligned chunk if possible */
1633 	if (nr_pages == pageblock_nr_pages &&
1634 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1635 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1636 		__free_pages_core(page, pageblock_order);
1637 		return;
1638 	}
1639 
1640 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1641 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1642 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1643 		__free_pages_core(page, 0);
1644 	}
1645 }
1646 
1647 /* Completion tracking for deferred_init_memmap() threads */
1648 static atomic_t pgdat_init_n_undone __initdata;
1649 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1650 
1651 static inline void __init pgdat_init_report_one_done(void)
1652 {
1653 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1654 		complete(&pgdat_init_all_done_comp);
1655 }
1656 
1657 /*
1658  * Returns true if page needs to be initialized or freed to buddy allocator.
1659  *
1660  * First we check if pfn is valid on architectures where it is possible to have
1661  * holes within pageblock_nr_pages. On systems where it is not possible, this
1662  * function is optimized out.
1663  *
1664  * Then, we check if a current large page is valid by only checking the validity
1665  * of the head pfn.
1666  */
1667 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1668 {
1669 	if (!pfn_valid_within(pfn))
1670 		return false;
1671 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1672 		return false;
1673 	return true;
1674 }
1675 
1676 /*
1677  * Free pages to buddy allocator. Try to free aligned pages in
1678  * pageblock_nr_pages sizes.
1679  */
1680 static void __init deferred_free_pages(unsigned long pfn,
1681 				       unsigned long end_pfn)
1682 {
1683 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1684 	unsigned long nr_free = 0;
1685 
1686 	for (; pfn < end_pfn; pfn++) {
1687 		if (!deferred_pfn_valid(pfn)) {
1688 			deferred_free_range(pfn - nr_free, nr_free);
1689 			nr_free = 0;
1690 		} else if (!(pfn & nr_pgmask)) {
1691 			deferred_free_range(pfn - nr_free, nr_free);
1692 			nr_free = 1;
1693 		} else {
1694 			nr_free++;
1695 		}
1696 	}
1697 	/* Free the last block of pages to allocator */
1698 	deferred_free_range(pfn - nr_free, nr_free);
1699 }
1700 
1701 /*
1702  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1703  * by performing it only once every pageblock_nr_pages.
1704  * Return number of pages initialized.
1705  */
1706 static unsigned long  __init deferred_init_pages(struct zone *zone,
1707 						 unsigned long pfn,
1708 						 unsigned long end_pfn)
1709 {
1710 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1711 	int nid = zone_to_nid(zone);
1712 	unsigned long nr_pages = 0;
1713 	int zid = zone_idx(zone);
1714 	struct page *page = NULL;
1715 
1716 	for (; pfn < end_pfn; pfn++) {
1717 		if (!deferred_pfn_valid(pfn)) {
1718 			page = NULL;
1719 			continue;
1720 		} else if (!page || !(pfn & nr_pgmask)) {
1721 			page = pfn_to_page(pfn);
1722 		} else {
1723 			page++;
1724 		}
1725 		__init_single_page(page, pfn, zid, nid);
1726 		nr_pages++;
1727 	}
1728 	return (nr_pages);
1729 }
1730 
1731 /*
1732  * This function is meant to pre-load the iterator for the zone init.
1733  * Specifically it walks through the ranges until we are caught up to the
1734  * first_init_pfn value and exits there. If we never encounter the value we
1735  * return false indicating there are no valid ranges left.
1736  */
1737 static bool __init
1738 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1739 				    unsigned long *spfn, unsigned long *epfn,
1740 				    unsigned long first_init_pfn)
1741 {
1742 	u64 j;
1743 
1744 	/*
1745 	 * Start out by walking through the ranges in this zone that have
1746 	 * already been initialized. We don't need to do anything with them
1747 	 * so we just need to flush them out of the system.
1748 	 */
1749 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1750 		if (*epfn <= first_init_pfn)
1751 			continue;
1752 		if (*spfn < first_init_pfn)
1753 			*spfn = first_init_pfn;
1754 		*i = j;
1755 		return true;
1756 	}
1757 
1758 	return false;
1759 }
1760 
1761 /*
1762  * Initialize and free pages. We do it in two loops: first we initialize
1763  * struct page, then free to buddy allocator, because while we are
1764  * freeing pages we can access pages that are ahead (computing buddy
1765  * page in __free_one_page()).
1766  *
1767  * In order to try and keep some memory in the cache we have the loop
1768  * broken along max page order boundaries. This way we will not cause
1769  * any issues with the buddy page computation.
1770  */
1771 static unsigned long __init
1772 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1773 		       unsigned long *end_pfn)
1774 {
1775 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1776 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
1777 	unsigned long nr_pages = 0;
1778 	u64 j = *i;
1779 
1780 	/* First we loop through and initialize the page values */
1781 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1782 		unsigned long t;
1783 
1784 		if (mo_pfn <= *start_pfn)
1785 			break;
1786 
1787 		t = min(mo_pfn, *end_pfn);
1788 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
1789 
1790 		if (mo_pfn < *end_pfn) {
1791 			*start_pfn = mo_pfn;
1792 			break;
1793 		}
1794 	}
1795 
1796 	/* Reset values and now loop through freeing pages as needed */
1797 	swap(j, *i);
1798 
1799 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1800 		unsigned long t;
1801 
1802 		if (mo_pfn <= spfn)
1803 			break;
1804 
1805 		t = min(mo_pfn, epfn);
1806 		deferred_free_pages(spfn, t);
1807 
1808 		if (mo_pfn <= epfn)
1809 			break;
1810 	}
1811 
1812 	return nr_pages;
1813 }
1814 
1815 static void __init
1816 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1817 			   void *arg)
1818 {
1819 	unsigned long spfn, epfn;
1820 	struct zone *zone = arg;
1821 	u64 i;
1822 
1823 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1824 
1825 	/*
1826 	 * Initialize and free pages in MAX_ORDER sized increments so that we
1827 	 * can avoid introducing any issues with the buddy allocator.
1828 	 */
1829 	while (spfn < end_pfn) {
1830 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
1831 		cond_resched();
1832 	}
1833 }
1834 
1835 /* An arch may override for more concurrency. */
1836 __weak int __init
1837 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1838 {
1839 	return 1;
1840 }
1841 
1842 /* Initialise remaining memory on a node */
1843 static int __init deferred_init_memmap(void *data)
1844 {
1845 	pg_data_t *pgdat = data;
1846 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1847 	unsigned long spfn = 0, epfn = 0;
1848 	unsigned long first_init_pfn, flags;
1849 	unsigned long start = jiffies;
1850 	struct zone *zone;
1851 	int zid, max_threads;
1852 	u64 i;
1853 
1854 	/* Bind memory initialisation thread to a local node if possible */
1855 	if (!cpumask_empty(cpumask))
1856 		set_cpus_allowed_ptr(current, cpumask);
1857 
1858 	pgdat_resize_lock(pgdat, &flags);
1859 	first_init_pfn = pgdat->first_deferred_pfn;
1860 	if (first_init_pfn == ULONG_MAX) {
1861 		pgdat_resize_unlock(pgdat, &flags);
1862 		pgdat_init_report_one_done();
1863 		return 0;
1864 	}
1865 
1866 	/* Sanity check boundaries */
1867 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1868 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1869 	pgdat->first_deferred_pfn = ULONG_MAX;
1870 
1871 	/*
1872 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
1873 	 * interrupt thread must allocate this early in boot, zone must be
1874 	 * pre-grown prior to start of deferred page initialization.
1875 	 */
1876 	pgdat_resize_unlock(pgdat, &flags);
1877 
1878 	/* Only the highest zone is deferred so find it */
1879 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1880 		zone = pgdat->node_zones + zid;
1881 		if (first_init_pfn < zone_end_pfn(zone))
1882 			break;
1883 	}
1884 
1885 	/* If the zone is empty somebody else may have cleared out the zone */
1886 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1887 						 first_init_pfn))
1888 		goto zone_empty;
1889 
1890 	max_threads = deferred_page_init_max_threads(cpumask);
1891 
1892 	while (spfn < epfn) {
1893 		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
1894 		struct padata_mt_job job = {
1895 			.thread_fn   = deferred_init_memmap_chunk,
1896 			.fn_arg      = zone,
1897 			.start       = spfn,
1898 			.size        = epfn_align - spfn,
1899 			.align       = PAGES_PER_SECTION,
1900 			.min_chunk   = PAGES_PER_SECTION,
1901 			.max_threads = max_threads,
1902 		};
1903 
1904 		padata_do_multithreaded(&job);
1905 		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1906 						    epfn_align);
1907 	}
1908 zone_empty:
1909 	/* Sanity check that the next zone really is unpopulated */
1910 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1911 
1912 	pr_info("node %d deferred pages initialised in %ums\n",
1913 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
1914 
1915 	pgdat_init_report_one_done();
1916 	return 0;
1917 }
1918 
1919 /*
1920  * If this zone has deferred pages, try to grow it by initializing enough
1921  * deferred pages to satisfy the allocation specified by order, rounded up to
1922  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
1923  * of SECTION_SIZE bytes by initializing struct pages in increments of
1924  * PAGES_PER_SECTION * sizeof(struct page) bytes.
1925  *
1926  * Return true when zone was grown, otherwise return false. We return true even
1927  * when we grow less than requested, to let the caller decide if there are
1928  * enough pages to satisfy the allocation.
1929  *
1930  * Note: We use noinline because this function is needed only during boot, and
1931  * it is called from a __ref function _deferred_grow_zone. This way we are
1932  * making sure that it is not inlined into permanent text section.
1933  */
1934 static noinline bool __init
1935 deferred_grow_zone(struct zone *zone, unsigned int order)
1936 {
1937 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1938 	pg_data_t *pgdat = zone->zone_pgdat;
1939 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1940 	unsigned long spfn, epfn, flags;
1941 	unsigned long nr_pages = 0;
1942 	u64 i;
1943 
1944 	/* Only the last zone may have deferred pages */
1945 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1946 		return false;
1947 
1948 	pgdat_resize_lock(pgdat, &flags);
1949 
1950 	/*
1951 	 * If someone grew this zone while we were waiting for spinlock, return
1952 	 * true, as there might be enough pages already.
1953 	 */
1954 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1955 		pgdat_resize_unlock(pgdat, &flags);
1956 		return true;
1957 	}
1958 
1959 	/* If the zone is empty somebody else may have cleared out the zone */
1960 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1961 						 first_deferred_pfn)) {
1962 		pgdat->first_deferred_pfn = ULONG_MAX;
1963 		pgdat_resize_unlock(pgdat, &flags);
1964 		/* Retry only once. */
1965 		return first_deferred_pfn != ULONG_MAX;
1966 	}
1967 
1968 	/*
1969 	 * Initialize and free pages in MAX_ORDER sized increments so
1970 	 * that we can avoid introducing any issues with the buddy
1971 	 * allocator.
1972 	 */
1973 	while (spfn < epfn) {
1974 		/* update our first deferred PFN for this section */
1975 		first_deferred_pfn = spfn;
1976 
1977 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1978 		touch_nmi_watchdog();
1979 
1980 		/* We should only stop along section boundaries */
1981 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1982 			continue;
1983 
1984 		/* If our quota has been met we can stop here */
1985 		if (nr_pages >= nr_pages_needed)
1986 			break;
1987 	}
1988 
1989 	pgdat->first_deferred_pfn = spfn;
1990 	pgdat_resize_unlock(pgdat, &flags);
1991 
1992 	return nr_pages > 0;
1993 }
1994 
1995 /*
1996  * deferred_grow_zone() is __init, but it is called from
1997  * get_page_from_freelist() during early boot until deferred_pages permanently
1998  * disables this call. This is why we have refdata wrapper to avoid warning,
1999  * and to ensure that the function body gets unloaded.
2000  */
2001 static bool __ref
2002 _deferred_grow_zone(struct zone *zone, unsigned int order)
2003 {
2004 	return deferred_grow_zone(zone, order);
2005 }
2006 
2007 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2008 
2009 void __init page_alloc_init_late(void)
2010 {
2011 	struct zone *zone;
2012 	int nid;
2013 
2014 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2015 
2016 	/* There will be num_node_state(N_MEMORY) threads */
2017 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2018 	for_each_node_state(nid, N_MEMORY) {
2019 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2020 	}
2021 
2022 	/* Block until all are initialised */
2023 	wait_for_completion(&pgdat_init_all_done_comp);
2024 
2025 	/*
2026 	 * The number of managed pages has changed due to the initialisation
2027 	 * so the pcpu batch and high limits needs to be updated or the limits
2028 	 * will be artificially small.
2029 	 */
2030 	for_each_populated_zone(zone)
2031 		zone_pcp_update(zone);
2032 
2033 	/*
2034 	 * We initialized the rest of the deferred pages.  Permanently disable
2035 	 * on-demand struct page initialization.
2036 	 */
2037 	static_branch_disable(&deferred_pages);
2038 
2039 	/* Reinit limits that are based on free pages after the kernel is up */
2040 	files_maxfiles_init();
2041 #endif
2042 
2043 	/* Discard memblock private memory */
2044 	memblock_discard();
2045 
2046 	for_each_node_state(nid, N_MEMORY)
2047 		shuffle_free_memory(NODE_DATA(nid));
2048 
2049 	for_each_populated_zone(zone)
2050 		set_zone_contiguous(zone);
2051 }
2052 
2053 #ifdef CONFIG_CMA
2054 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2055 void __init init_cma_reserved_pageblock(struct page *page)
2056 {
2057 	unsigned i = pageblock_nr_pages;
2058 	struct page *p = page;
2059 
2060 	do {
2061 		__ClearPageReserved(p);
2062 		set_page_count(p, 0);
2063 	} while (++p, --i);
2064 
2065 	set_pageblock_migratetype(page, MIGRATE_CMA);
2066 
2067 	if (pageblock_order >= MAX_ORDER) {
2068 		i = pageblock_nr_pages;
2069 		p = page;
2070 		do {
2071 			set_page_refcounted(p);
2072 			__free_pages(p, MAX_ORDER - 1);
2073 			p += MAX_ORDER_NR_PAGES;
2074 		} while (i -= MAX_ORDER_NR_PAGES);
2075 	} else {
2076 		set_page_refcounted(page);
2077 		__free_pages(page, pageblock_order);
2078 	}
2079 
2080 	adjust_managed_page_count(page, pageblock_nr_pages);
2081 }
2082 #endif
2083 
2084 /*
2085  * The order of subdivision here is critical for the IO subsystem.
2086  * Please do not alter this order without good reasons and regression
2087  * testing. Specifically, as large blocks of memory are subdivided,
2088  * the order in which smaller blocks are delivered depends on the order
2089  * they're subdivided in this function. This is the primary factor
2090  * influencing the order in which pages are delivered to the IO
2091  * subsystem according to empirical testing, and this is also justified
2092  * by considering the behavior of a buddy system containing a single
2093  * large block of memory acted on by a series of small allocations.
2094  * This behavior is a critical factor in sglist merging's success.
2095  *
2096  * -- nyc
2097  */
2098 static inline void expand(struct zone *zone, struct page *page,
2099 	int low, int high, int migratetype)
2100 {
2101 	unsigned long size = 1 << high;
2102 
2103 	while (high > low) {
2104 		high--;
2105 		size >>= 1;
2106 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2107 
2108 		/*
2109 		 * Mark as guard pages (or page), that will allow to
2110 		 * merge back to allocator when buddy will be freed.
2111 		 * Corresponding page table entries will not be touched,
2112 		 * pages will stay not present in virtual address space
2113 		 */
2114 		if (set_page_guard(zone, &page[size], high, migratetype))
2115 			continue;
2116 
2117 		add_to_free_list(&page[size], zone, high, migratetype);
2118 		set_page_order(&page[size], high);
2119 	}
2120 }
2121 
2122 static void check_new_page_bad(struct page *page)
2123 {
2124 	if (unlikely(page->flags & __PG_HWPOISON)) {
2125 		/* Don't complain about hwpoisoned pages */
2126 		page_mapcount_reset(page); /* remove PageBuddy */
2127 		return;
2128 	}
2129 
2130 	bad_page(page,
2131 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2132 }
2133 
2134 /*
2135  * This page is about to be returned from the page allocator
2136  */
2137 static inline int check_new_page(struct page *page)
2138 {
2139 	if (likely(page_expected_state(page,
2140 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2141 		return 0;
2142 
2143 	check_new_page_bad(page);
2144 	return 1;
2145 }
2146 
2147 static inline bool free_pages_prezeroed(void)
2148 {
2149 	return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2150 		page_poisoning_enabled()) || want_init_on_free();
2151 }
2152 
2153 #ifdef CONFIG_DEBUG_VM
2154 /*
2155  * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2156  * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2157  * also checked when pcp lists are refilled from the free lists.
2158  */
2159 static inline bool check_pcp_refill(struct page *page)
2160 {
2161 	if (debug_pagealloc_enabled_static())
2162 		return check_new_page(page);
2163 	else
2164 		return false;
2165 }
2166 
2167 static inline bool check_new_pcp(struct page *page)
2168 {
2169 	return check_new_page(page);
2170 }
2171 #else
2172 /*
2173  * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2174  * when pcp lists are being refilled from the free lists. With debug_pagealloc
2175  * enabled, they are also checked when being allocated from the pcp lists.
2176  */
2177 static inline bool check_pcp_refill(struct page *page)
2178 {
2179 	return check_new_page(page);
2180 }
2181 static inline bool check_new_pcp(struct page *page)
2182 {
2183 	if (debug_pagealloc_enabled_static())
2184 		return check_new_page(page);
2185 	else
2186 		return false;
2187 }
2188 #endif /* CONFIG_DEBUG_VM */
2189 
2190 static bool check_new_pages(struct page *page, unsigned int order)
2191 {
2192 	int i;
2193 	for (i = 0; i < (1 << order); i++) {
2194 		struct page *p = page + i;
2195 
2196 		if (unlikely(check_new_page(p)))
2197 			return true;
2198 	}
2199 
2200 	return false;
2201 }
2202 
2203 inline void post_alloc_hook(struct page *page, unsigned int order,
2204 				gfp_t gfp_flags)
2205 {
2206 	set_page_private(page, 0);
2207 	set_page_refcounted(page);
2208 
2209 	arch_alloc_page(page, order);
2210 	if (debug_pagealloc_enabled_static())
2211 		kernel_map_pages(page, 1 << order, 1);
2212 	kasan_alloc_pages(page, order);
2213 	kernel_poison_pages(page, 1 << order, 1);
2214 	set_page_owner(page, order, gfp_flags);
2215 }
2216 
2217 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2218 							unsigned int alloc_flags)
2219 {
2220 	post_alloc_hook(page, order, gfp_flags);
2221 
2222 	if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2223 		kernel_init_free_pages(page, 1 << order);
2224 
2225 	if (order && (gfp_flags & __GFP_COMP))
2226 		prep_compound_page(page, order);
2227 
2228 	/*
2229 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2230 	 * allocate the page. The expectation is that the caller is taking
2231 	 * steps that will free more memory. The caller should avoid the page
2232 	 * being used for !PFMEMALLOC purposes.
2233 	 */
2234 	if (alloc_flags & ALLOC_NO_WATERMARKS)
2235 		set_page_pfmemalloc(page);
2236 	else
2237 		clear_page_pfmemalloc(page);
2238 }
2239 
2240 /*
2241  * Go through the free lists for the given migratetype and remove
2242  * the smallest available page from the freelists
2243  */
2244 static __always_inline
2245 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2246 						int migratetype)
2247 {
2248 	unsigned int current_order;
2249 	struct free_area *area;
2250 	struct page *page;
2251 
2252 	/* Find a page of the appropriate size in the preferred list */
2253 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2254 		area = &(zone->free_area[current_order]);
2255 		page = get_page_from_free_area(area, migratetype);
2256 		if (!page)
2257 			continue;
2258 		del_page_from_free_list(page, zone, current_order);
2259 		expand(zone, page, order, current_order, migratetype);
2260 		set_pcppage_migratetype(page, migratetype);
2261 		return page;
2262 	}
2263 
2264 	return NULL;
2265 }
2266 
2267 
2268 /*
2269  * This array describes the order lists are fallen back to when
2270  * the free lists for the desirable migrate type are depleted
2271  */
2272 static int fallbacks[MIGRATE_TYPES][3] = {
2273 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2274 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2275 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2276 #ifdef CONFIG_CMA
2277 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2278 #endif
2279 #ifdef CONFIG_MEMORY_ISOLATION
2280 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2281 #endif
2282 };
2283 
2284 #ifdef CONFIG_CMA
2285 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2286 					unsigned int order)
2287 {
2288 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2289 }
2290 #else
2291 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2292 					unsigned int order) { return NULL; }
2293 #endif
2294 
2295 /*
2296  * Move the free pages in a range to the free lists of the requested type.
2297  * Note that start_page and end_pages are not aligned on a pageblock
2298  * boundary. If alignment is required, use move_freepages_block()
2299  */
2300 static int move_freepages(struct zone *zone,
2301 			  struct page *start_page, struct page *end_page,
2302 			  int migratetype, int *num_movable)
2303 {
2304 	struct page *page;
2305 	unsigned int order;
2306 	int pages_moved = 0;
2307 
2308 	for (page = start_page; page <= end_page;) {
2309 		if (!pfn_valid_within(page_to_pfn(page))) {
2310 			page++;
2311 			continue;
2312 		}
2313 
2314 		if (!PageBuddy(page)) {
2315 			/*
2316 			 * We assume that pages that could be isolated for
2317 			 * migration are movable. But we don't actually try
2318 			 * isolating, as that would be expensive.
2319 			 */
2320 			if (num_movable &&
2321 					(PageLRU(page) || __PageMovable(page)))
2322 				(*num_movable)++;
2323 
2324 			page++;
2325 			continue;
2326 		}
2327 
2328 		/* Make sure we are not inadvertently changing nodes */
2329 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2330 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2331 
2332 		order = page_order(page);
2333 		move_to_free_list(page, zone, order, migratetype);
2334 		page += 1 << order;
2335 		pages_moved += 1 << order;
2336 	}
2337 
2338 	return pages_moved;
2339 }
2340 
2341 int move_freepages_block(struct zone *zone, struct page *page,
2342 				int migratetype, int *num_movable)
2343 {
2344 	unsigned long start_pfn, end_pfn;
2345 	struct page *start_page, *end_page;
2346 
2347 	if (num_movable)
2348 		*num_movable = 0;
2349 
2350 	start_pfn = page_to_pfn(page);
2351 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2352 	start_page = pfn_to_page(start_pfn);
2353 	end_page = start_page + pageblock_nr_pages - 1;
2354 	end_pfn = start_pfn + pageblock_nr_pages - 1;
2355 
2356 	/* Do not cross zone boundaries */
2357 	if (!zone_spans_pfn(zone, start_pfn))
2358 		start_page = page;
2359 	if (!zone_spans_pfn(zone, end_pfn))
2360 		return 0;
2361 
2362 	return move_freepages(zone, start_page, end_page, migratetype,
2363 								num_movable);
2364 }
2365 
2366 static void change_pageblock_range(struct page *pageblock_page,
2367 					int start_order, int migratetype)
2368 {
2369 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2370 
2371 	while (nr_pageblocks--) {
2372 		set_pageblock_migratetype(pageblock_page, migratetype);
2373 		pageblock_page += pageblock_nr_pages;
2374 	}
2375 }
2376 
2377 /*
2378  * When we are falling back to another migratetype during allocation, try to
2379  * steal extra free pages from the same pageblocks to satisfy further
2380  * allocations, instead of polluting multiple pageblocks.
2381  *
2382  * If we are stealing a relatively large buddy page, it is likely there will
2383  * be more free pages in the pageblock, so try to steal them all. For
2384  * reclaimable and unmovable allocations, we steal regardless of page size,
2385  * as fragmentation caused by those allocations polluting movable pageblocks
2386  * is worse than movable allocations stealing from unmovable and reclaimable
2387  * pageblocks.
2388  */
2389 static bool can_steal_fallback(unsigned int order, int start_mt)
2390 {
2391 	/*
2392 	 * Leaving this order check is intended, although there is
2393 	 * relaxed order check in next check. The reason is that
2394 	 * we can actually steal whole pageblock if this condition met,
2395 	 * but, below check doesn't guarantee it and that is just heuristic
2396 	 * so could be changed anytime.
2397 	 */
2398 	if (order >= pageblock_order)
2399 		return true;
2400 
2401 	if (order >= pageblock_order / 2 ||
2402 		start_mt == MIGRATE_RECLAIMABLE ||
2403 		start_mt == MIGRATE_UNMOVABLE ||
2404 		page_group_by_mobility_disabled)
2405 		return true;
2406 
2407 	return false;
2408 }
2409 
2410 static inline void boost_watermark(struct zone *zone)
2411 {
2412 	unsigned long max_boost;
2413 
2414 	if (!watermark_boost_factor)
2415 		return;
2416 	/*
2417 	 * Don't bother in zones that are unlikely to produce results.
2418 	 * On small machines, including kdump capture kernels running
2419 	 * in a small area, boosting the watermark can cause an out of
2420 	 * memory situation immediately.
2421 	 */
2422 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2423 		return;
2424 
2425 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2426 			watermark_boost_factor, 10000);
2427 
2428 	/*
2429 	 * high watermark may be uninitialised if fragmentation occurs
2430 	 * very early in boot so do not boost. We do not fall
2431 	 * through and boost by pageblock_nr_pages as failing
2432 	 * allocations that early means that reclaim is not going
2433 	 * to help and it may even be impossible to reclaim the
2434 	 * boosted watermark resulting in a hang.
2435 	 */
2436 	if (!max_boost)
2437 		return;
2438 
2439 	max_boost = max(pageblock_nr_pages, max_boost);
2440 
2441 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2442 		max_boost);
2443 }
2444 
2445 /*
2446  * This function implements actual steal behaviour. If order is large enough,
2447  * we can steal whole pageblock. If not, we first move freepages in this
2448  * pageblock to our migratetype and determine how many already-allocated pages
2449  * are there in the pageblock with a compatible migratetype. If at least half
2450  * of pages are free or compatible, we can change migratetype of the pageblock
2451  * itself, so pages freed in the future will be put on the correct free list.
2452  */
2453 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2454 		unsigned int alloc_flags, int start_type, bool whole_block)
2455 {
2456 	unsigned int current_order = page_order(page);
2457 	int free_pages, movable_pages, alike_pages;
2458 	int old_block_type;
2459 
2460 	old_block_type = get_pageblock_migratetype(page);
2461 
2462 	/*
2463 	 * This can happen due to races and we want to prevent broken
2464 	 * highatomic accounting.
2465 	 */
2466 	if (is_migrate_highatomic(old_block_type))
2467 		goto single_page;
2468 
2469 	/* Take ownership for orders >= pageblock_order */
2470 	if (current_order >= pageblock_order) {
2471 		change_pageblock_range(page, current_order, start_type);
2472 		goto single_page;
2473 	}
2474 
2475 	/*
2476 	 * Boost watermarks to increase reclaim pressure to reduce the
2477 	 * likelihood of future fallbacks. Wake kswapd now as the node
2478 	 * may be balanced overall and kswapd will not wake naturally.
2479 	 */
2480 	boost_watermark(zone);
2481 	if (alloc_flags & ALLOC_KSWAPD)
2482 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2483 
2484 	/* We are not allowed to try stealing from the whole block */
2485 	if (!whole_block)
2486 		goto single_page;
2487 
2488 	free_pages = move_freepages_block(zone, page, start_type,
2489 						&movable_pages);
2490 	/*
2491 	 * Determine how many pages are compatible with our allocation.
2492 	 * For movable allocation, it's the number of movable pages which
2493 	 * we just obtained. For other types it's a bit more tricky.
2494 	 */
2495 	if (start_type == MIGRATE_MOVABLE) {
2496 		alike_pages = movable_pages;
2497 	} else {
2498 		/*
2499 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2500 		 * to MOVABLE pageblock, consider all non-movable pages as
2501 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2502 		 * vice versa, be conservative since we can't distinguish the
2503 		 * exact migratetype of non-movable pages.
2504 		 */
2505 		if (old_block_type == MIGRATE_MOVABLE)
2506 			alike_pages = pageblock_nr_pages
2507 						- (free_pages + movable_pages);
2508 		else
2509 			alike_pages = 0;
2510 	}
2511 
2512 	/* moving whole block can fail due to zone boundary conditions */
2513 	if (!free_pages)
2514 		goto single_page;
2515 
2516 	/*
2517 	 * If a sufficient number of pages in the block are either free or of
2518 	 * comparable migratability as our allocation, claim the whole block.
2519 	 */
2520 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2521 			page_group_by_mobility_disabled)
2522 		set_pageblock_migratetype(page, start_type);
2523 
2524 	return;
2525 
2526 single_page:
2527 	move_to_free_list(page, zone, current_order, start_type);
2528 }
2529 
2530 /*
2531  * Check whether there is a suitable fallback freepage with requested order.
2532  * If only_stealable is true, this function returns fallback_mt only if
2533  * we can steal other freepages all together. This would help to reduce
2534  * fragmentation due to mixed migratetype pages in one pageblock.
2535  */
2536 int find_suitable_fallback(struct free_area *area, unsigned int order,
2537 			int migratetype, bool only_stealable, bool *can_steal)
2538 {
2539 	int i;
2540 	int fallback_mt;
2541 
2542 	if (area->nr_free == 0)
2543 		return -1;
2544 
2545 	*can_steal = false;
2546 	for (i = 0;; i++) {
2547 		fallback_mt = fallbacks[migratetype][i];
2548 		if (fallback_mt == MIGRATE_TYPES)
2549 			break;
2550 
2551 		if (free_area_empty(area, fallback_mt))
2552 			continue;
2553 
2554 		if (can_steal_fallback(order, migratetype))
2555 			*can_steal = true;
2556 
2557 		if (!only_stealable)
2558 			return fallback_mt;
2559 
2560 		if (*can_steal)
2561 			return fallback_mt;
2562 	}
2563 
2564 	return -1;
2565 }
2566 
2567 /*
2568  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2569  * there are no empty page blocks that contain a page with a suitable order
2570  */
2571 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2572 				unsigned int alloc_order)
2573 {
2574 	int mt;
2575 	unsigned long max_managed, flags;
2576 
2577 	/*
2578 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2579 	 * Check is race-prone but harmless.
2580 	 */
2581 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2582 	if (zone->nr_reserved_highatomic >= max_managed)
2583 		return;
2584 
2585 	spin_lock_irqsave(&zone->lock, flags);
2586 
2587 	/* Recheck the nr_reserved_highatomic limit under the lock */
2588 	if (zone->nr_reserved_highatomic >= max_managed)
2589 		goto out_unlock;
2590 
2591 	/* Yoink! */
2592 	mt = get_pageblock_migratetype(page);
2593 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2594 	    && !is_migrate_cma(mt)) {
2595 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2596 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2597 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2598 	}
2599 
2600 out_unlock:
2601 	spin_unlock_irqrestore(&zone->lock, flags);
2602 }
2603 
2604 /*
2605  * Used when an allocation is about to fail under memory pressure. This
2606  * potentially hurts the reliability of high-order allocations when under
2607  * intense memory pressure but failed atomic allocations should be easier
2608  * to recover from than an OOM.
2609  *
2610  * If @force is true, try to unreserve a pageblock even though highatomic
2611  * pageblock is exhausted.
2612  */
2613 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2614 						bool force)
2615 {
2616 	struct zonelist *zonelist = ac->zonelist;
2617 	unsigned long flags;
2618 	struct zoneref *z;
2619 	struct zone *zone;
2620 	struct page *page;
2621 	int order;
2622 	bool ret;
2623 
2624 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2625 								ac->nodemask) {
2626 		/*
2627 		 * Preserve at least one pageblock unless memory pressure
2628 		 * is really high.
2629 		 */
2630 		if (!force && zone->nr_reserved_highatomic <=
2631 					pageblock_nr_pages)
2632 			continue;
2633 
2634 		spin_lock_irqsave(&zone->lock, flags);
2635 		for (order = 0; order < MAX_ORDER; order++) {
2636 			struct free_area *area = &(zone->free_area[order]);
2637 
2638 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2639 			if (!page)
2640 				continue;
2641 
2642 			/*
2643 			 * In page freeing path, migratetype change is racy so
2644 			 * we can counter several free pages in a pageblock
2645 			 * in this loop althoug we changed the pageblock type
2646 			 * from highatomic to ac->migratetype. So we should
2647 			 * adjust the count once.
2648 			 */
2649 			if (is_migrate_highatomic_page(page)) {
2650 				/*
2651 				 * It should never happen but changes to
2652 				 * locking could inadvertently allow a per-cpu
2653 				 * drain to add pages to MIGRATE_HIGHATOMIC
2654 				 * while unreserving so be safe and watch for
2655 				 * underflows.
2656 				 */
2657 				zone->nr_reserved_highatomic -= min(
2658 						pageblock_nr_pages,
2659 						zone->nr_reserved_highatomic);
2660 			}
2661 
2662 			/*
2663 			 * Convert to ac->migratetype and avoid the normal
2664 			 * pageblock stealing heuristics. Minimally, the caller
2665 			 * is doing the work and needs the pages. More
2666 			 * importantly, if the block was always converted to
2667 			 * MIGRATE_UNMOVABLE or another type then the number
2668 			 * of pageblocks that cannot be completely freed
2669 			 * may increase.
2670 			 */
2671 			set_pageblock_migratetype(page, ac->migratetype);
2672 			ret = move_freepages_block(zone, page, ac->migratetype,
2673 									NULL);
2674 			if (ret) {
2675 				spin_unlock_irqrestore(&zone->lock, flags);
2676 				return ret;
2677 			}
2678 		}
2679 		spin_unlock_irqrestore(&zone->lock, flags);
2680 	}
2681 
2682 	return false;
2683 }
2684 
2685 /*
2686  * Try finding a free buddy page on the fallback list and put it on the free
2687  * list of requested migratetype, possibly along with other pages from the same
2688  * block, depending on fragmentation avoidance heuristics. Returns true if
2689  * fallback was found so that __rmqueue_smallest() can grab it.
2690  *
2691  * The use of signed ints for order and current_order is a deliberate
2692  * deviation from the rest of this file, to make the for loop
2693  * condition simpler.
2694  */
2695 static __always_inline bool
2696 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2697 						unsigned int alloc_flags)
2698 {
2699 	struct free_area *area;
2700 	int current_order;
2701 	int min_order = order;
2702 	struct page *page;
2703 	int fallback_mt;
2704 	bool can_steal;
2705 
2706 	/*
2707 	 * Do not steal pages from freelists belonging to other pageblocks
2708 	 * i.e. orders < pageblock_order. If there are no local zones free,
2709 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2710 	 */
2711 	if (alloc_flags & ALLOC_NOFRAGMENT)
2712 		min_order = pageblock_order;
2713 
2714 	/*
2715 	 * Find the largest available free page in the other list. This roughly
2716 	 * approximates finding the pageblock with the most free pages, which
2717 	 * would be too costly to do exactly.
2718 	 */
2719 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2720 				--current_order) {
2721 		area = &(zone->free_area[current_order]);
2722 		fallback_mt = find_suitable_fallback(area, current_order,
2723 				start_migratetype, false, &can_steal);
2724 		if (fallback_mt == -1)
2725 			continue;
2726 
2727 		/*
2728 		 * We cannot steal all free pages from the pageblock and the
2729 		 * requested migratetype is movable. In that case it's better to
2730 		 * steal and split the smallest available page instead of the
2731 		 * largest available page, because even if the next movable
2732 		 * allocation falls back into a different pageblock than this
2733 		 * one, it won't cause permanent fragmentation.
2734 		 */
2735 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2736 					&& current_order > order)
2737 			goto find_smallest;
2738 
2739 		goto do_steal;
2740 	}
2741 
2742 	return false;
2743 
2744 find_smallest:
2745 	for (current_order = order; current_order < MAX_ORDER;
2746 							current_order++) {
2747 		area = &(zone->free_area[current_order]);
2748 		fallback_mt = find_suitable_fallback(area, current_order,
2749 				start_migratetype, false, &can_steal);
2750 		if (fallback_mt != -1)
2751 			break;
2752 	}
2753 
2754 	/*
2755 	 * This should not happen - we already found a suitable fallback
2756 	 * when looking for the largest page.
2757 	 */
2758 	VM_BUG_ON(current_order == MAX_ORDER);
2759 
2760 do_steal:
2761 	page = get_page_from_free_area(area, fallback_mt);
2762 
2763 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2764 								can_steal);
2765 
2766 	trace_mm_page_alloc_extfrag(page, order, current_order,
2767 		start_migratetype, fallback_mt);
2768 
2769 	return true;
2770 
2771 }
2772 
2773 /*
2774  * Do the hard work of removing an element from the buddy allocator.
2775  * Call me with the zone->lock already held.
2776  */
2777 static __always_inline struct page *
2778 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2779 						unsigned int alloc_flags)
2780 {
2781 	struct page *page;
2782 
2783 #ifdef CONFIG_CMA
2784 	/*
2785 	 * Balance movable allocations between regular and CMA areas by
2786 	 * allocating from CMA when over half of the zone's free memory
2787 	 * is in the CMA area.
2788 	 */
2789 	if (alloc_flags & ALLOC_CMA &&
2790 	    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2791 	    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2792 		page = __rmqueue_cma_fallback(zone, order);
2793 		if (page)
2794 			return page;
2795 	}
2796 #endif
2797 retry:
2798 	page = __rmqueue_smallest(zone, order, migratetype);
2799 	if (unlikely(!page)) {
2800 		if (alloc_flags & ALLOC_CMA)
2801 			page = __rmqueue_cma_fallback(zone, order);
2802 
2803 		if (!page && __rmqueue_fallback(zone, order, migratetype,
2804 								alloc_flags))
2805 			goto retry;
2806 	}
2807 
2808 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2809 	return page;
2810 }
2811 
2812 /*
2813  * Obtain a specified number of elements from the buddy allocator, all under
2814  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2815  * Returns the number of new pages which were placed at *list.
2816  */
2817 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2818 			unsigned long count, struct list_head *list,
2819 			int migratetype, unsigned int alloc_flags)
2820 {
2821 	int i, alloced = 0;
2822 
2823 	spin_lock(&zone->lock);
2824 	for (i = 0; i < count; ++i) {
2825 		struct page *page = __rmqueue(zone, order, migratetype,
2826 								alloc_flags);
2827 		if (unlikely(page == NULL))
2828 			break;
2829 
2830 		if (unlikely(check_pcp_refill(page)))
2831 			continue;
2832 
2833 		/*
2834 		 * Split buddy pages returned by expand() are received here in
2835 		 * physical page order. The page is added to the tail of
2836 		 * caller's list. From the callers perspective, the linked list
2837 		 * is ordered by page number under some conditions. This is
2838 		 * useful for IO devices that can forward direction from the
2839 		 * head, thus also in the physical page order. This is useful
2840 		 * for IO devices that can merge IO requests if the physical
2841 		 * pages are ordered properly.
2842 		 */
2843 		list_add_tail(&page->lru, list);
2844 		alloced++;
2845 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2846 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2847 					      -(1 << order));
2848 	}
2849 
2850 	/*
2851 	 * i pages were removed from the buddy list even if some leak due
2852 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2853 	 * on i. Do not confuse with 'alloced' which is the number of
2854 	 * pages added to the pcp list.
2855 	 */
2856 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2857 	spin_unlock(&zone->lock);
2858 	return alloced;
2859 }
2860 
2861 #ifdef CONFIG_NUMA
2862 /*
2863  * Called from the vmstat counter updater to drain pagesets of this
2864  * currently executing processor on remote nodes after they have
2865  * expired.
2866  *
2867  * Note that this function must be called with the thread pinned to
2868  * a single processor.
2869  */
2870 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2871 {
2872 	unsigned long flags;
2873 	int to_drain, batch;
2874 
2875 	local_irq_save(flags);
2876 	batch = READ_ONCE(pcp->batch);
2877 	to_drain = min(pcp->count, batch);
2878 	if (to_drain > 0)
2879 		free_pcppages_bulk(zone, to_drain, pcp);
2880 	local_irq_restore(flags);
2881 }
2882 #endif
2883 
2884 /*
2885  * Drain pcplists of the indicated processor and zone.
2886  *
2887  * The processor must either be the current processor and the
2888  * thread pinned to the current processor or a processor that
2889  * is not online.
2890  */
2891 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2892 {
2893 	unsigned long flags;
2894 	struct per_cpu_pageset *pset;
2895 	struct per_cpu_pages *pcp;
2896 
2897 	local_irq_save(flags);
2898 	pset = per_cpu_ptr(zone->pageset, cpu);
2899 
2900 	pcp = &pset->pcp;
2901 	if (pcp->count)
2902 		free_pcppages_bulk(zone, pcp->count, pcp);
2903 	local_irq_restore(flags);
2904 }
2905 
2906 /*
2907  * Drain pcplists of all zones on the indicated processor.
2908  *
2909  * The processor must either be the current processor and the
2910  * thread pinned to the current processor or a processor that
2911  * is not online.
2912  */
2913 static void drain_pages(unsigned int cpu)
2914 {
2915 	struct zone *zone;
2916 
2917 	for_each_populated_zone(zone) {
2918 		drain_pages_zone(cpu, zone);
2919 	}
2920 }
2921 
2922 /*
2923  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2924  *
2925  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2926  * the single zone's pages.
2927  */
2928 void drain_local_pages(struct zone *zone)
2929 {
2930 	int cpu = smp_processor_id();
2931 
2932 	if (zone)
2933 		drain_pages_zone(cpu, zone);
2934 	else
2935 		drain_pages(cpu);
2936 }
2937 
2938 static void drain_local_pages_wq(struct work_struct *work)
2939 {
2940 	struct pcpu_drain *drain;
2941 
2942 	drain = container_of(work, struct pcpu_drain, work);
2943 
2944 	/*
2945 	 * drain_all_pages doesn't use proper cpu hotplug protection so
2946 	 * we can race with cpu offline when the WQ can move this from
2947 	 * a cpu pinned worker to an unbound one. We can operate on a different
2948 	 * cpu which is allright but we also have to make sure to not move to
2949 	 * a different one.
2950 	 */
2951 	preempt_disable();
2952 	drain_local_pages(drain->zone);
2953 	preempt_enable();
2954 }
2955 
2956 /*
2957  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2958  *
2959  * When zone parameter is non-NULL, spill just the single zone's pages.
2960  *
2961  * Note that this can be extremely slow as the draining happens in a workqueue.
2962  */
2963 void drain_all_pages(struct zone *zone)
2964 {
2965 	int cpu;
2966 
2967 	/*
2968 	 * Allocate in the BSS so we wont require allocation in
2969 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2970 	 */
2971 	static cpumask_t cpus_with_pcps;
2972 
2973 	/*
2974 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
2975 	 * initialized.
2976 	 */
2977 	if (WARN_ON_ONCE(!mm_percpu_wq))
2978 		return;
2979 
2980 	/*
2981 	 * Do not drain if one is already in progress unless it's specific to
2982 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2983 	 * the drain to be complete when the call returns.
2984 	 */
2985 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2986 		if (!zone)
2987 			return;
2988 		mutex_lock(&pcpu_drain_mutex);
2989 	}
2990 
2991 	/*
2992 	 * We don't care about racing with CPU hotplug event
2993 	 * as offline notification will cause the notified
2994 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2995 	 * disables preemption as part of its processing
2996 	 */
2997 	for_each_online_cpu(cpu) {
2998 		struct per_cpu_pageset *pcp;
2999 		struct zone *z;
3000 		bool has_pcps = false;
3001 
3002 		if (zone) {
3003 			pcp = per_cpu_ptr(zone->pageset, cpu);
3004 			if (pcp->pcp.count)
3005 				has_pcps = true;
3006 		} else {
3007 			for_each_populated_zone(z) {
3008 				pcp = per_cpu_ptr(z->pageset, cpu);
3009 				if (pcp->pcp.count) {
3010 					has_pcps = true;
3011 					break;
3012 				}
3013 			}
3014 		}
3015 
3016 		if (has_pcps)
3017 			cpumask_set_cpu(cpu, &cpus_with_pcps);
3018 		else
3019 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
3020 	}
3021 
3022 	for_each_cpu(cpu, &cpus_with_pcps) {
3023 		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3024 
3025 		drain->zone = zone;
3026 		INIT_WORK(&drain->work, drain_local_pages_wq);
3027 		queue_work_on(cpu, mm_percpu_wq, &drain->work);
3028 	}
3029 	for_each_cpu(cpu, &cpus_with_pcps)
3030 		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3031 
3032 	mutex_unlock(&pcpu_drain_mutex);
3033 }
3034 
3035 #ifdef CONFIG_HIBERNATION
3036 
3037 /*
3038  * Touch the watchdog for every WD_PAGE_COUNT pages.
3039  */
3040 #define WD_PAGE_COUNT	(128*1024)
3041 
3042 void mark_free_pages(struct zone *zone)
3043 {
3044 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3045 	unsigned long flags;
3046 	unsigned int order, t;
3047 	struct page *page;
3048 
3049 	if (zone_is_empty(zone))
3050 		return;
3051 
3052 	spin_lock_irqsave(&zone->lock, flags);
3053 
3054 	max_zone_pfn = zone_end_pfn(zone);
3055 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3056 		if (pfn_valid(pfn)) {
3057 			page = pfn_to_page(pfn);
3058 
3059 			if (!--page_count) {
3060 				touch_nmi_watchdog();
3061 				page_count = WD_PAGE_COUNT;
3062 			}
3063 
3064 			if (page_zone(page) != zone)
3065 				continue;
3066 
3067 			if (!swsusp_page_is_forbidden(page))
3068 				swsusp_unset_page_free(page);
3069 		}
3070 
3071 	for_each_migratetype_order(order, t) {
3072 		list_for_each_entry(page,
3073 				&zone->free_area[order].free_list[t], lru) {
3074 			unsigned long i;
3075 
3076 			pfn = page_to_pfn(page);
3077 			for (i = 0; i < (1UL << order); i++) {
3078 				if (!--page_count) {
3079 					touch_nmi_watchdog();
3080 					page_count = WD_PAGE_COUNT;
3081 				}
3082 				swsusp_set_page_free(pfn_to_page(pfn + i));
3083 			}
3084 		}
3085 	}
3086 	spin_unlock_irqrestore(&zone->lock, flags);
3087 }
3088 #endif /* CONFIG_PM */
3089 
3090 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
3091 {
3092 	int migratetype;
3093 
3094 	if (!free_pcp_prepare(page))
3095 		return false;
3096 
3097 	migratetype = get_pfnblock_migratetype(page, pfn);
3098 	set_pcppage_migratetype(page, migratetype);
3099 	return true;
3100 }
3101 
3102 static void free_unref_page_commit(struct page *page, unsigned long pfn)
3103 {
3104 	struct zone *zone = page_zone(page);
3105 	struct per_cpu_pages *pcp;
3106 	int migratetype;
3107 
3108 	migratetype = get_pcppage_migratetype(page);
3109 	__count_vm_event(PGFREE);
3110 
3111 	/*
3112 	 * We only track unmovable, reclaimable and movable on pcp lists.
3113 	 * Free ISOLATE pages back to the allocator because they are being
3114 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3115 	 * areas back if necessary. Otherwise, we may have to free
3116 	 * excessively into the page allocator
3117 	 */
3118 	if (migratetype >= MIGRATE_PCPTYPES) {
3119 		if (unlikely(is_migrate_isolate(migratetype))) {
3120 			free_one_page(zone, page, pfn, 0, migratetype);
3121 			return;
3122 		}
3123 		migratetype = MIGRATE_MOVABLE;
3124 	}
3125 
3126 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3127 	list_add(&page->lru, &pcp->lists[migratetype]);
3128 	pcp->count++;
3129 	if (pcp->count >= pcp->high) {
3130 		unsigned long batch = READ_ONCE(pcp->batch);
3131 		free_pcppages_bulk(zone, batch, pcp);
3132 	}
3133 }
3134 
3135 /*
3136  * Free a 0-order page
3137  */
3138 void free_unref_page(struct page *page)
3139 {
3140 	unsigned long flags;
3141 	unsigned long pfn = page_to_pfn(page);
3142 
3143 	if (!free_unref_page_prepare(page, pfn))
3144 		return;
3145 
3146 	local_irq_save(flags);
3147 	free_unref_page_commit(page, pfn);
3148 	local_irq_restore(flags);
3149 }
3150 
3151 /*
3152  * Free a list of 0-order pages
3153  */
3154 void free_unref_page_list(struct list_head *list)
3155 {
3156 	struct page *page, *next;
3157 	unsigned long flags, pfn;
3158 	int batch_count = 0;
3159 
3160 	/* Prepare pages for freeing */
3161 	list_for_each_entry_safe(page, next, list, lru) {
3162 		pfn = page_to_pfn(page);
3163 		if (!free_unref_page_prepare(page, pfn))
3164 			list_del(&page->lru);
3165 		set_page_private(page, pfn);
3166 	}
3167 
3168 	local_irq_save(flags);
3169 	list_for_each_entry_safe(page, next, list, lru) {
3170 		unsigned long pfn = page_private(page);
3171 
3172 		set_page_private(page, 0);
3173 		trace_mm_page_free_batched(page);
3174 		free_unref_page_commit(page, pfn);
3175 
3176 		/*
3177 		 * Guard against excessive IRQ disabled times when we get
3178 		 * a large list of pages to free.
3179 		 */
3180 		if (++batch_count == SWAP_CLUSTER_MAX) {
3181 			local_irq_restore(flags);
3182 			batch_count = 0;
3183 			local_irq_save(flags);
3184 		}
3185 	}
3186 	local_irq_restore(flags);
3187 }
3188 
3189 /*
3190  * split_page takes a non-compound higher-order page, and splits it into
3191  * n (1<<order) sub-pages: page[0..n]
3192  * Each sub-page must be freed individually.
3193  *
3194  * Note: this is probably too low level an operation for use in drivers.
3195  * Please consult with lkml before using this in your driver.
3196  */
3197 void split_page(struct page *page, unsigned int order)
3198 {
3199 	int i;
3200 
3201 	VM_BUG_ON_PAGE(PageCompound(page), page);
3202 	VM_BUG_ON_PAGE(!page_count(page), page);
3203 
3204 	for (i = 1; i < (1 << order); i++)
3205 		set_page_refcounted(page + i);
3206 	split_page_owner(page, order);
3207 }
3208 EXPORT_SYMBOL_GPL(split_page);
3209 
3210 int __isolate_free_page(struct page *page, unsigned int order)
3211 {
3212 	unsigned long watermark;
3213 	struct zone *zone;
3214 	int mt;
3215 
3216 	BUG_ON(!PageBuddy(page));
3217 
3218 	zone = page_zone(page);
3219 	mt = get_pageblock_migratetype(page);
3220 
3221 	if (!is_migrate_isolate(mt)) {
3222 		/*
3223 		 * Obey watermarks as if the page was being allocated. We can
3224 		 * emulate a high-order watermark check with a raised order-0
3225 		 * watermark, because we already know our high-order page
3226 		 * exists.
3227 		 */
3228 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3229 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3230 			return 0;
3231 
3232 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3233 	}
3234 
3235 	/* Remove page from free list */
3236 
3237 	del_page_from_free_list(page, zone, order);
3238 
3239 	/*
3240 	 * Set the pageblock if the isolated page is at least half of a
3241 	 * pageblock
3242 	 */
3243 	if (order >= pageblock_order - 1) {
3244 		struct page *endpage = page + (1 << order) - 1;
3245 		for (; page < endpage; page += pageblock_nr_pages) {
3246 			int mt = get_pageblock_migratetype(page);
3247 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3248 			    && !is_migrate_highatomic(mt))
3249 				set_pageblock_migratetype(page,
3250 							  MIGRATE_MOVABLE);
3251 		}
3252 	}
3253 
3254 
3255 	return 1UL << order;
3256 }
3257 
3258 /**
3259  * __putback_isolated_page - Return a now-isolated page back where we got it
3260  * @page: Page that was isolated
3261  * @order: Order of the isolated page
3262  * @mt: The page's pageblock's migratetype
3263  *
3264  * This function is meant to return a page pulled from the free lists via
3265  * __isolate_free_page back to the free lists they were pulled from.
3266  */
3267 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3268 {
3269 	struct zone *zone = page_zone(page);
3270 
3271 	/* zone lock should be held when this function is called */
3272 	lockdep_assert_held(&zone->lock);
3273 
3274 	/* Return isolated page to tail of freelist. */
3275 	__free_one_page(page, page_to_pfn(page), zone, order, mt, false);
3276 }
3277 
3278 /*
3279  * Update NUMA hit/miss statistics
3280  *
3281  * Must be called with interrupts disabled.
3282  */
3283 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3284 {
3285 #ifdef CONFIG_NUMA
3286 	enum numa_stat_item local_stat = NUMA_LOCAL;
3287 
3288 	/* skip numa counters update if numa stats is disabled */
3289 	if (!static_branch_likely(&vm_numa_stat_key))
3290 		return;
3291 
3292 	if (zone_to_nid(z) != numa_node_id())
3293 		local_stat = NUMA_OTHER;
3294 
3295 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3296 		__inc_numa_state(z, NUMA_HIT);
3297 	else {
3298 		__inc_numa_state(z, NUMA_MISS);
3299 		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
3300 	}
3301 	__inc_numa_state(z, local_stat);
3302 #endif
3303 }
3304 
3305 /* Remove page from the per-cpu list, caller must protect the list */
3306 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3307 			unsigned int alloc_flags,
3308 			struct per_cpu_pages *pcp,
3309 			struct list_head *list)
3310 {
3311 	struct page *page;
3312 
3313 	do {
3314 		if (list_empty(list)) {
3315 			pcp->count += rmqueue_bulk(zone, 0,
3316 					pcp->batch, list,
3317 					migratetype, alloc_flags);
3318 			if (unlikely(list_empty(list)))
3319 				return NULL;
3320 		}
3321 
3322 		page = list_first_entry(list, struct page, lru);
3323 		list_del(&page->lru);
3324 		pcp->count--;
3325 	} while (check_new_pcp(page));
3326 
3327 	return page;
3328 }
3329 
3330 /* Lock and remove page from the per-cpu list */
3331 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3332 			struct zone *zone, gfp_t gfp_flags,
3333 			int migratetype, unsigned int alloc_flags)
3334 {
3335 	struct per_cpu_pages *pcp;
3336 	struct list_head *list;
3337 	struct page *page;
3338 	unsigned long flags;
3339 
3340 	local_irq_save(flags);
3341 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3342 	list = &pcp->lists[migratetype];
3343 	page = __rmqueue_pcplist(zone,  migratetype, alloc_flags, pcp, list);
3344 	if (page) {
3345 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3346 		zone_statistics(preferred_zone, zone);
3347 	}
3348 	local_irq_restore(flags);
3349 	return page;
3350 }
3351 
3352 /*
3353  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3354  */
3355 static inline
3356 struct page *rmqueue(struct zone *preferred_zone,
3357 			struct zone *zone, unsigned int order,
3358 			gfp_t gfp_flags, unsigned int alloc_flags,
3359 			int migratetype)
3360 {
3361 	unsigned long flags;
3362 	struct page *page;
3363 
3364 	if (likely(order == 0)) {
3365 		page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3366 					migratetype, alloc_flags);
3367 		goto out;
3368 	}
3369 
3370 	/*
3371 	 * We most definitely don't want callers attempting to
3372 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3373 	 */
3374 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3375 	spin_lock_irqsave(&zone->lock, flags);
3376 
3377 	do {
3378 		page = NULL;
3379 		if (alloc_flags & ALLOC_HARDER) {
3380 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3381 			if (page)
3382 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3383 		}
3384 		if (!page)
3385 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3386 	} while (page && check_new_pages(page, order));
3387 	spin_unlock(&zone->lock);
3388 	if (!page)
3389 		goto failed;
3390 	__mod_zone_freepage_state(zone, -(1 << order),
3391 				  get_pcppage_migratetype(page));
3392 
3393 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3394 	zone_statistics(preferred_zone, zone);
3395 	local_irq_restore(flags);
3396 
3397 out:
3398 	/* Separate test+clear to avoid unnecessary atomics */
3399 	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3400 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3401 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3402 	}
3403 
3404 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3405 	return page;
3406 
3407 failed:
3408 	local_irq_restore(flags);
3409 	return NULL;
3410 }
3411 
3412 #ifdef CONFIG_FAIL_PAGE_ALLOC
3413 
3414 static struct {
3415 	struct fault_attr attr;
3416 
3417 	bool ignore_gfp_highmem;
3418 	bool ignore_gfp_reclaim;
3419 	u32 min_order;
3420 } fail_page_alloc = {
3421 	.attr = FAULT_ATTR_INITIALIZER,
3422 	.ignore_gfp_reclaim = true,
3423 	.ignore_gfp_highmem = true,
3424 	.min_order = 1,
3425 };
3426 
3427 static int __init setup_fail_page_alloc(char *str)
3428 {
3429 	return setup_fault_attr(&fail_page_alloc.attr, str);
3430 }
3431 __setup("fail_page_alloc=", setup_fail_page_alloc);
3432 
3433 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3434 {
3435 	if (order < fail_page_alloc.min_order)
3436 		return false;
3437 	if (gfp_mask & __GFP_NOFAIL)
3438 		return false;
3439 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3440 		return false;
3441 	if (fail_page_alloc.ignore_gfp_reclaim &&
3442 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3443 		return false;
3444 
3445 	return should_fail(&fail_page_alloc.attr, 1 << order);
3446 }
3447 
3448 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3449 
3450 static int __init fail_page_alloc_debugfs(void)
3451 {
3452 	umode_t mode = S_IFREG | 0600;
3453 	struct dentry *dir;
3454 
3455 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3456 					&fail_page_alloc.attr);
3457 
3458 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3459 			    &fail_page_alloc.ignore_gfp_reclaim);
3460 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3461 			    &fail_page_alloc.ignore_gfp_highmem);
3462 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3463 
3464 	return 0;
3465 }
3466 
3467 late_initcall(fail_page_alloc_debugfs);
3468 
3469 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3470 
3471 #else /* CONFIG_FAIL_PAGE_ALLOC */
3472 
3473 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3474 {
3475 	return false;
3476 }
3477 
3478 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3479 
3480 static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3481 {
3482 	return __should_fail_alloc_page(gfp_mask, order);
3483 }
3484 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3485 
3486 static inline long __zone_watermark_unusable_free(struct zone *z,
3487 				unsigned int order, unsigned int alloc_flags)
3488 {
3489 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3490 	long unusable_free = (1 << order) - 1;
3491 
3492 	/*
3493 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3494 	 * the high-atomic reserves. This will over-estimate the size of the
3495 	 * atomic reserve but it avoids a search.
3496 	 */
3497 	if (likely(!alloc_harder))
3498 		unusable_free += z->nr_reserved_highatomic;
3499 
3500 #ifdef CONFIG_CMA
3501 	/* If allocation can't use CMA areas don't use free CMA pages */
3502 	if (!(alloc_flags & ALLOC_CMA))
3503 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3504 #endif
3505 
3506 	return unusable_free;
3507 }
3508 
3509 /*
3510  * Return true if free base pages are above 'mark'. For high-order checks it
3511  * will return true of the order-0 watermark is reached and there is at least
3512  * one free page of a suitable size. Checking now avoids taking the zone lock
3513  * to check in the allocation paths if no pages are free.
3514  */
3515 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3516 			 int highest_zoneidx, unsigned int alloc_flags,
3517 			 long free_pages)
3518 {
3519 	long min = mark;
3520 	int o;
3521 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3522 
3523 	/* free_pages may go negative - that's OK */
3524 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3525 
3526 	if (alloc_flags & ALLOC_HIGH)
3527 		min -= min / 2;
3528 
3529 	if (unlikely(alloc_harder)) {
3530 		/*
3531 		 * OOM victims can try even harder than normal ALLOC_HARDER
3532 		 * users on the grounds that it's definitely going to be in
3533 		 * the exit path shortly and free memory. Any allocation it
3534 		 * makes during the free path will be small and short-lived.
3535 		 */
3536 		if (alloc_flags & ALLOC_OOM)
3537 			min -= min / 2;
3538 		else
3539 			min -= min / 4;
3540 	}
3541 
3542 	/*
3543 	 * Check watermarks for an order-0 allocation request. If these
3544 	 * are not met, then a high-order request also cannot go ahead
3545 	 * even if a suitable page happened to be free.
3546 	 */
3547 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3548 		return false;
3549 
3550 	/* If this is an order-0 request then the watermark is fine */
3551 	if (!order)
3552 		return true;
3553 
3554 	/* For a high-order request, check at least one suitable page is free */
3555 	for (o = order; o < MAX_ORDER; o++) {
3556 		struct free_area *area = &z->free_area[o];
3557 		int mt;
3558 
3559 		if (!area->nr_free)
3560 			continue;
3561 
3562 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3563 			if (!free_area_empty(area, mt))
3564 				return true;
3565 		}
3566 
3567 #ifdef CONFIG_CMA
3568 		if ((alloc_flags & ALLOC_CMA) &&
3569 		    !free_area_empty(area, MIGRATE_CMA)) {
3570 			return true;
3571 		}
3572 #endif
3573 		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3574 			return true;
3575 	}
3576 	return false;
3577 }
3578 
3579 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3580 		      int highest_zoneidx, unsigned int alloc_flags)
3581 {
3582 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3583 					zone_page_state(z, NR_FREE_PAGES));
3584 }
3585 
3586 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3587 				unsigned long mark, int highest_zoneidx,
3588 				unsigned int alloc_flags, gfp_t gfp_mask)
3589 {
3590 	long free_pages;
3591 
3592 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3593 
3594 	/*
3595 	 * Fast check for order-0 only. If this fails then the reserves
3596 	 * need to be calculated.
3597 	 */
3598 	if (!order) {
3599 		long fast_free;
3600 
3601 		fast_free = free_pages;
3602 		fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3603 		if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3604 			return true;
3605 	}
3606 
3607 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3608 					free_pages))
3609 		return true;
3610 	/*
3611 	 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3612 	 * when checking the min watermark. The min watermark is the
3613 	 * point where boosting is ignored so that kswapd is woken up
3614 	 * when below the low watermark.
3615 	 */
3616 	if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3617 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3618 		mark = z->_watermark[WMARK_MIN];
3619 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3620 					alloc_flags, free_pages);
3621 	}
3622 
3623 	return false;
3624 }
3625 
3626 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3627 			unsigned long mark, int highest_zoneidx)
3628 {
3629 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3630 
3631 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3632 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3633 
3634 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3635 								free_pages);
3636 }
3637 
3638 #ifdef CONFIG_NUMA
3639 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3640 {
3641 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3642 				node_reclaim_distance;
3643 }
3644 #else	/* CONFIG_NUMA */
3645 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3646 {
3647 	return true;
3648 }
3649 #endif	/* CONFIG_NUMA */
3650 
3651 /*
3652  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3653  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3654  * premature use of a lower zone may cause lowmem pressure problems that
3655  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3656  * probably too small. It only makes sense to spread allocations to avoid
3657  * fragmentation between the Normal and DMA32 zones.
3658  */
3659 static inline unsigned int
3660 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3661 {
3662 	unsigned int alloc_flags;
3663 
3664 	/*
3665 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3666 	 * to save a branch.
3667 	 */
3668 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3669 
3670 #ifdef CONFIG_ZONE_DMA32
3671 	if (!zone)
3672 		return alloc_flags;
3673 
3674 	if (zone_idx(zone) != ZONE_NORMAL)
3675 		return alloc_flags;
3676 
3677 	/*
3678 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3679 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3680 	 * on UMA that if Normal is populated then so is DMA32.
3681 	 */
3682 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3683 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3684 		return alloc_flags;
3685 
3686 	alloc_flags |= ALLOC_NOFRAGMENT;
3687 #endif /* CONFIG_ZONE_DMA32 */
3688 	return alloc_flags;
3689 }
3690 
3691 static inline unsigned int current_alloc_flags(gfp_t gfp_mask,
3692 					unsigned int alloc_flags)
3693 {
3694 #ifdef CONFIG_CMA
3695 	unsigned int pflags = current->flags;
3696 
3697 	if (!(pflags & PF_MEMALLOC_NOCMA) &&
3698 			gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3699 		alloc_flags |= ALLOC_CMA;
3700 
3701 #endif
3702 	return alloc_flags;
3703 }
3704 
3705 /*
3706  * get_page_from_freelist goes through the zonelist trying to allocate
3707  * a page.
3708  */
3709 static struct page *
3710 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3711 						const struct alloc_context *ac)
3712 {
3713 	struct zoneref *z;
3714 	struct zone *zone;
3715 	struct pglist_data *last_pgdat_dirty_limit = NULL;
3716 	bool no_fallback;
3717 
3718 retry:
3719 	/*
3720 	 * Scan zonelist, looking for a zone with enough free.
3721 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3722 	 */
3723 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3724 	z = ac->preferred_zoneref;
3725 	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist,
3726 					ac->highest_zoneidx, ac->nodemask) {
3727 		struct page *page;
3728 		unsigned long mark;
3729 
3730 		if (cpusets_enabled() &&
3731 			(alloc_flags & ALLOC_CPUSET) &&
3732 			!__cpuset_zone_allowed(zone, gfp_mask))
3733 				continue;
3734 		/*
3735 		 * When allocating a page cache page for writing, we
3736 		 * want to get it from a node that is within its dirty
3737 		 * limit, such that no single node holds more than its
3738 		 * proportional share of globally allowed dirty pages.
3739 		 * The dirty limits take into account the node's
3740 		 * lowmem reserves and high watermark so that kswapd
3741 		 * should be able to balance it without having to
3742 		 * write pages from its LRU list.
3743 		 *
3744 		 * XXX: For now, allow allocations to potentially
3745 		 * exceed the per-node dirty limit in the slowpath
3746 		 * (spread_dirty_pages unset) before going into reclaim,
3747 		 * which is important when on a NUMA setup the allowed
3748 		 * nodes are together not big enough to reach the
3749 		 * global limit.  The proper fix for these situations
3750 		 * will require awareness of nodes in the
3751 		 * dirty-throttling and the flusher threads.
3752 		 */
3753 		if (ac->spread_dirty_pages) {
3754 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3755 				continue;
3756 
3757 			if (!node_dirty_ok(zone->zone_pgdat)) {
3758 				last_pgdat_dirty_limit = zone->zone_pgdat;
3759 				continue;
3760 			}
3761 		}
3762 
3763 		if (no_fallback && nr_online_nodes > 1 &&
3764 		    zone != ac->preferred_zoneref->zone) {
3765 			int local_nid;
3766 
3767 			/*
3768 			 * If moving to a remote node, retry but allow
3769 			 * fragmenting fallbacks. Locality is more important
3770 			 * than fragmentation avoidance.
3771 			 */
3772 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3773 			if (zone_to_nid(zone) != local_nid) {
3774 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3775 				goto retry;
3776 			}
3777 		}
3778 
3779 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3780 		if (!zone_watermark_fast(zone, order, mark,
3781 				       ac->highest_zoneidx, alloc_flags,
3782 				       gfp_mask)) {
3783 			int ret;
3784 
3785 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3786 			/*
3787 			 * Watermark failed for this zone, but see if we can
3788 			 * grow this zone if it contains deferred pages.
3789 			 */
3790 			if (static_branch_unlikely(&deferred_pages)) {
3791 				if (_deferred_grow_zone(zone, order))
3792 					goto try_this_zone;
3793 			}
3794 #endif
3795 			/* Checked here to keep the fast path fast */
3796 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3797 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3798 				goto try_this_zone;
3799 
3800 			if (node_reclaim_mode == 0 ||
3801 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3802 				continue;
3803 
3804 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3805 			switch (ret) {
3806 			case NODE_RECLAIM_NOSCAN:
3807 				/* did not scan */
3808 				continue;
3809 			case NODE_RECLAIM_FULL:
3810 				/* scanned but unreclaimable */
3811 				continue;
3812 			default:
3813 				/* did we reclaim enough */
3814 				if (zone_watermark_ok(zone, order, mark,
3815 					ac->highest_zoneidx, alloc_flags))
3816 					goto try_this_zone;
3817 
3818 				continue;
3819 			}
3820 		}
3821 
3822 try_this_zone:
3823 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3824 				gfp_mask, alloc_flags, ac->migratetype);
3825 		if (page) {
3826 			prep_new_page(page, order, gfp_mask, alloc_flags);
3827 
3828 			/*
3829 			 * If this is a high-order atomic allocation then check
3830 			 * if the pageblock should be reserved for the future
3831 			 */
3832 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3833 				reserve_highatomic_pageblock(page, zone, order);
3834 
3835 			return page;
3836 		} else {
3837 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3838 			/* Try again if zone has deferred pages */
3839 			if (static_branch_unlikely(&deferred_pages)) {
3840 				if (_deferred_grow_zone(zone, order))
3841 					goto try_this_zone;
3842 			}
3843 #endif
3844 		}
3845 	}
3846 
3847 	/*
3848 	 * It's possible on a UMA machine to get through all zones that are
3849 	 * fragmented. If avoiding fragmentation, reset and try again.
3850 	 */
3851 	if (no_fallback) {
3852 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3853 		goto retry;
3854 	}
3855 
3856 	return NULL;
3857 }
3858 
3859 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3860 {
3861 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3862 
3863 	/*
3864 	 * This documents exceptions given to allocations in certain
3865 	 * contexts that are allowed to allocate outside current's set
3866 	 * of allowed nodes.
3867 	 */
3868 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3869 		if (tsk_is_oom_victim(current) ||
3870 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3871 			filter &= ~SHOW_MEM_FILTER_NODES;
3872 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3873 		filter &= ~SHOW_MEM_FILTER_NODES;
3874 
3875 	show_mem(filter, nodemask);
3876 }
3877 
3878 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3879 {
3880 	struct va_format vaf;
3881 	va_list args;
3882 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3883 
3884 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3885 		return;
3886 
3887 	va_start(args, fmt);
3888 	vaf.fmt = fmt;
3889 	vaf.va = &args;
3890 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3891 			current->comm, &vaf, gfp_mask, &gfp_mask,
3892 			nodemask_pr_args(nodemask));
3893 	va_end(args);
3894 
3895 	cpuset_print_current_mems_allowed();
3896 	pr_cont("\n");
3897 	dump_stack();
3898 	warn_alloc_show_mem(gfp_mask, nodemask);
3899 }
3900 
3901 static inline struct page *
3902 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3903 			      unsigned int alloc_flags,
3904 			      const struct alloc_context *ac)
3905 {
3906 	struct page *page;
3907 
3908 	page = get_page_from_freelist(gfp_mask, order,
3909 			alloc_flags|ALLOC_CPUSET, ac);
3910 	/*
3911 	 * fallback to ignore cpuset restriction if our nodes
3912 	 * are depleted
3913 	 */
3914 	if (!page)
3915 		page = get_page_from_freelist(gfp_mask, order,
3916 				alloc_flags, ac);
3917 
3918 	return page;
3919 }
3920 
3921 static inline struct page *
3922 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3923 	const struct alloc_context *ac, unsigned long *did_some_progress)
3924 {
3925 	struct oom_control oc = {
3926 		.zonelist = ac->zonelist,
3927 		.nodemask = ac->nodemask,
3928 		.memcg = NULL,
3929 		.gfp_mask = gfp_mask,
3930 		.order = order,
3931 	};
3932 	struct page *page;
3933 
3934 	*did_some_progress = 0;
3935 
3936 	/*
3937 	 * Acquire the oom lock.  If that fails, somebody else is
3938 	 * making progress for us.
3939 	 */
3940 	if (!mutex_trylock(&oom_lock)) {
3941 		*did_some_progress = 1;
3942 		schedule_timeout_uninterruptible(1);
3943 		return NULL;
3944 	}
3945 
3946 	/*
3947 	 * Go through the zonelist yet one more time, keep very high watermark
3948 	 * here, this is only to catch a parallel oom killing, we must fail if
3949 	 * we're still under heavy pressure. But make sure that this reclaim
3950 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3951 	 * allocation which will never fail due to oom_lock already held.
3952 	 */
3953 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3954 				      ~__GFP_DIRECT_RECLAIM, order,
3955 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3956 	if (page)
3957 		goto out;
3958 
3959 	/* Coredumps can quickly deplete all memory reserves */
3960 	if (current->flags & PF_DUMPCORE)
3961 		goto out;
3962 	/* The OOM killer will not help higher order allocs */
3963 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3964 		goto out;
3965 	/*
3966 	 * We have already exhausted all our reclaim opportunities without any
3967 	 * success so it is time to admit defeat. We will skip the OOM killer
3968 	 * because it is very likely that the caller has a more reasonable
3969 	 * fallback than shooting a random task.
3970 	 */
3971 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
3972 		goto out;
3973 	/* The OOM killer does not needlessly kill tasks for lowmem */
3974 	if (ac->highest_zoneidx < ZONE_NORMAL)
3975 		goto out;
3976 	if (pm_suspended_storage())
3977 		goto out;
3978 	/*
3979 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3980 	 * other request to make a forward progress.
3981 	 * We are in an unfortunate situation where out_of_memory cannot
3982 	 * do much for this context but let's try it to at least get
3983 	 * access to memory reserved if the current task is killed (see
3984 	 * out_of_memory). Once filesystems are ready to handle allocation
3985 	 * failures more gracefully we should just bail out here.
3986 	 */
3987 
3988 	/* The OOM killer may not free memory on a specific node */
3989 	if (gfp_mask & __GFP_THISNODE)
3990 		goto out;
3991 
3992 	/* Exhausted what can be done so it's blame time */
3993 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3994 		*did_some_progress = 1;
3995 
3996 		/*
3997 		 * Help non-failing allocations by giving them access to memory
3998 		 * reserves
3999 		 */
4000 		if (gfp_mask & __GFP_NOFAIL)
4001 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4002 					ALLOC_NO_WATERMARKS, ac);
4003 	}
4004 out:
4005 	mutex_unlock(&oom_lock);
4006 	return page;
4007 }
4008 
4009 /*
4010  * Maximum number of compaction retries wit a progress before OOM
4011  * killer is consider as the only way to move forward.
4012  */
4013 #define MAX_COMPACT_RETRIES 16
4014 
4015 #ifdef CONFIG_COMPACTION
4016 /* Try memory compaction for high-order allocations before reclaim */
4017 static struct page *
4018 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4019 		unsigned int alloc_flags, const struct alloc_context *ac,
4020 		enum compact_priority prio, enum compact_result *compact_result)
4021 {
4022 	struct page *page = NULL;
4023 	unsigned long pflags;
4024 	unsigned int noreclaim_flag;
4025 
4026 	if (!order)
4027 		return NULL;
4028 
4029 	psi_memstall_enter(&pflags);
4030 	noreclaim_flag = memalloc_noreclaim_save();
4031 
4032 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4033 								prio, &page);
4034 
4035 	memalloc_noreclaim_restore(noreclaim_flag);
4036 	psi_memstall_leave(&pflags);
4037 
4038 	/*
4039 	 * At least in one zone compaction wasn't deferred or skipped, so let's
4040 	 * count a compaction stall
4041 	 */
4042 	count_vm_event(COMPACTSTALL);
4043 
4044 	/* Prep a captured page if available */
4045 	if (page)
4046 		prep_new_page(page, order, gfp_mask, alloc_flags);
4047 
4048 	/* Try get a page from the freelist if available */
4049 	if (!page)
4050 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4051 
4052 	if (page) {
4053 		struct zone *zone = page_zone(page);
4054 
4055 		zone->compact_blockskip_flush = false;
4056 		compaction_defer_reset(zone, order, true);
4057 		count_vm_event(COMPACTSUCCESS);
4058 		return page;
4059 	}
4060 
4061 	/*
4062 	 * It's bad if compaction run occurs and fails. The most likely reason
4063 	 * is that pages exist, but not enough to satisfy watermarks.
4064 	 */
4065 	count_vm_event(COMPACTFAIL);
4066 
4067 	cond_resched();
4068 
4069 	return NULL;
4070 }
4071 
4072 static inline bool
4073 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4074 		     enum compact_result compact_result,
4075 		     enum compact_priority *compact_priority,
4076 		     int *compaction_retries)
4077 {
4078 	int max_retries = MAX_COMPACT_RETRIES;
4079 	int min_priority;
4080 	bool ret = false;
4081 	int retries = *compaction_retries;
4082 	enum compact_priority priority = *compact_priority;
4083 
4084 	if (!order)
4085 		return false;
4086 
4087 	if (compaction_made_progress(compact_result))
4088 		(*compaction_retries)++;
4089 
4090 	/*
4091 	 * compaction considers all the zone as desperately out of memory
4092 	 * so it doesn't really make much sense to retry except when the
4093 	 * failure could be caused by insufficient priority
4094 	 */
4095 	if (compaction_failed(compact_result))
4096 		goto check_priority;
4097 
4098 	/*
4099 	 * compaction was skipped because there are not enough order-0 pages
4100 	 * to work with, so we retry only if it looks like reclaim can help.
4101 	 */
4102 	if (compaction_needs_reclaim(compact_result)) {
4103 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4104 		goto out;
4105 	}
4106 
4107 	/*
4108 	 * make sure the compaction wasn't deferred or didn't bail out early
4109 	 * due to locks contention before we declare that we should give up.
4110 	 * But the next retry should use a higher priority if allowed, so
4111 	 * we don't just keep bailing out endlessly.
4112 	 */
4113 	if (compaction_withdrawn(compact_result)) {
4114 		goto check_priority;
4115 	}
4116 
4117 	/*
4118 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4119 	 * costly ones because they are de facto nofail and invoke OOM
4120 	 * killer to move on while costly can fail and users are ready
4121 	 * to cope with that. 1/4 retries is rather arbitrary but we
4122 	 * would need much more detailed feedback from compaction to
4123 	 * make a better decision.
4124 	 */
4125 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4126 		max_retries /= 4;
4127 	if (*compaction_retries <= max_retries) {
4128 		ret = true;
4129 		goto out;
4130 	}
4131 
4132 	/*
4133 	 * Make sure there are attempts at the highest priority if we exhausted
4134 	 * all retries or failed at the lower priorities.
4135 	 */
4136 check_priority:
4137 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4138 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4139 
4140 	if (*compact_priority > min_priority) {
4141 		(*compact_priority)--;
4142 		*compaction_retries = 0;
4143 		ret = true;
4144 	}
4145 out:
4146 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4147 	return ret;
4148 }
4149 #else
4150 static inline struct page *
4151 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4152 		unsigned int alloc_flags, const struct alloc_context *ac,
4153 		enum compact_priority prio, enum compact_result *compact_result)
4154 {
4155 	*compact_result = COMPACT_SKIPPED;
4156 	return NULL;
4157 }
4158 
4159 static inline bool
4160 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4161 		     enum compact_result compact_result,
4162 		     enum compact_priority *compact_priority,
4163 		     int *compaction_retries)
4164 {
4165 	struct zone *zone;
4166 	struct zoneref *z;
4167 
4168 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4169 		return false;
4170 
4171 	/*
4172 	 * There are setups with compaction disabled which would prefer to loop
4173 	 * inside the allocator rather than hit the oom killer prematurely.
4174 	 * Let's give them a good hope and keep retrying while the order-0
4175 	 * watermarks are OK.
4176 	 */
4177 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4178 				ac->highest_zoneidx, ac->nodemask) {
4179 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4180 					ac->highest_zoneidx, alloc_flags))
4181 			return true;
4182 	}
4183 	return false;
4184 }
4185 #endif /* CONFIG_COMPACTION */
4186 
4187 #ifdef CONFIG_LOCKDEP
4188 static struct lockdep_map __fs_reclaim_map =
4189 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4190 
4191 static bool __need_fs_reclaim(gfp_t gfp_mask)
4192 {
4193 	gfp_mask = current_gfp_context(gfp_mask);
4194 
4195 	/* no reclaim without waiting on it */
4196 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4197 		return false;
4198 
4199 	/* this guy won't enter reclaim */
4200 	if (current->flags & PF_MEMALLOC)
4201 		return false;
4202 
4203 	/* We're only interested __GFP_FS allocations for now */
4204 	if (!(gfp_mask & __GFP_FS))
4205 		return false;
4206 
4207 	if (gfp_mask & __GFP_NOLOCKDEP)
4208 		return false;
4209 
4210 	return true;
4211 }
4212 
4213 void __fs_reclaim_acquire(void)
4214 {
4215 	lock_map_acquire(&__fs_reclaim_map);
4216 }
4217 
4218 void __fs_reclaim_release(void)
4219 {
4220 	lock_map_release(&__fs_reclaim_map);
4221 }
4222 
4223 void fs_reclaim_acquire(gfp_t gfp_mask)
4224 {
4225 	if (__need_fs_reclaim(gfp_mask))
4226 		__fs_reclaim_acquire();
4227 }
4228 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4229 
4230 void fs_reclaim_release(gfp_t gfp_mask)
4231 {
4232 	if (__need_fs_reclaim(gfp_mask))
4233 		__fs_reclaim_release();
4234 }
4235 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4236 #endif
4237 
4238 /* Perform direct synchronous page reclaim */
4239 static int
4240 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4241 					const struct alloc_context *ac)
4242 {
4243 	int progress;
4244 	unsigned int noreclaim_flag;
4245 	unsigned long pflags;
4246 
4247 	cond_resched();
4248 
4249 	/* We now go into synchronous reclaim */
4250 	cpuset_memory_pressure_bump();
4251 	psi_memstall_enter(&pflags);
4252 	fs_reclaim_acquire(gfp_mask);
4253 	noreclaim_flag = memalloc_noreclaim_save();
4254 
4255 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4256 								ac->nodemask);
4257 
4258 	memalloc_noreclaim_restore(noreclaim_flag);
4259 	fs_reclaim_release(gfp_mask);
4260 	psi_memstall_leave(&pflags);
4261 
4262 	cond_resched();
4263 
4264 	return progress;
4265 }
4266 
4267 /* The really slow allocator path where we enter direct reclaim */
4268 static inline struct page *
4269 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4270 		unsigned int alloc_flags, const struct alloc_context *ac,
4271 		unsigned long *did_some_progress)
4272 {
4273 	struct page *page = NULL;
4274 	bool drained = false;
4275 
4276 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4277 	if (unlikely(!(*did_some_progress)))
4278 		return NULL;
4279 
4280 retry:
4281 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4282 
4283 	/*
4284 	 * If an allocation failed after direct reclaim, it could be because
4285 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4286 	 * Shrink them and try again
4287 	 */
4288 	if (!page && !drained) {
4289 		unreserve_highatomic_pageblock(ac, false);
4290 		drain_all_pages(NULL);
4291 		drained = true;
4292 		goto retry;
4293 	}
4294 
4295 	return page;
4296 }
4297 
4298 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4299 			     const struct alloc_context *ac)
4300 {
4301 	struct zoneref *z;
4302 	struct zone *zone;
4303 	pg_data_t *last_pgdat = NULL;
4304 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4305 
4306 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4307 					ac->nodemask) {
4308 		if (last_pgdat != zone->zone_pgdat)
4309 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4310 		last_pgdat = zone->zone_pgdat;
4311 	}
4312 }
4313 
4314 static inline unsigned int
4315 gfp_to_alloc_flags(gfp_t gfp_mask)
4316 {
4317 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4318 
4319 	/*
4320 	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4321 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4322 	 * to save two branches.
4323 	 */
4324 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4325 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4326 
4327 	/*
4328 	 * The caller may dip into page reserves a bit more if the caller
4329 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4330 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4331 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4332 	 */
4333 	alloc_flags |= (__force int)
4334 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4335 
4336 	if (gfp_mask & __GFP_ATOMIC) {
4337 		/*
4338 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4339 		 * if it can't schedule.
4340 		 */
4341 		if (!(gfp_mask & __GFP_NOMEMALLOC))
4342 			alloc_flags |= ALLOC_HARDER;
4343 		/*
4344 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4345 		 * comment for __cpuset_node_allowed().
4346 		 */
4347 		alloc_flags &= ~ALLOC_CPUSET;
4348 	} else if (unlikely(rt_task(current)) && !in_interrupt())
4349 		alloc_flags |= ALLOC_HARDER;
4350 
4351 	alloc_flags = current_alloc_flags(gfp_mask, alloc_flags);
4352 
4353 	return alloc_flags;
4354 }
4355 
4356 static bool oom_reserves_allowed(struct task_struct *tsk)
4357 {
4358 	if (!tsk_is_oom_victim(tsk))
4359 		return false;
4360 
4361 	/*
4362 	 * !MMU doesn't have oom reaper so give access to memory reserves
4363 	 * only to the thread with TIF_MEMDIE set
4364 	 */
4365 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4366 		return false;
4367 
4368 	return true;
4369 }
4370 
4371 /*
4372  * Distinguish requests which really need access to full memory
4373  * reserves from oom victims which can live with a portion of it
4374  */
4375 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4376 {
4377 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4378 		return 0;
4379 	if (gfp_mask & __GFP_MEMALLOC)
4380 		return ALLOC_NO_WATERMARKS;
4381 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4382 		return ALLOC_NO_WATERMARKS;
4383 	if (!in_interrupt()) {
4384 		if (current->flags & PF_MEMALLOC)
4385 			return ALLOC_NO_WATERMARKS;
4386 		else if (oom_reserves_allowed(current))
4387 			return ALLOC_OOM;
4388 	}
4389 
4390 	return 0;
4391 }
4392 
4393 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4394 {
4395 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4396 }
4397 
4398 /*
4399  * Checks whether it makes sense to retry the reclaim to make a forward progress
4400  * for the given allocation request.
4401  *
4402  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4403  * without success, or when we couldn't even meet the watermark if we
4404  * reclaimed all remaining pages on the LRU lists.
4405  *
4406  * Returns true if a retry is viable or false to enter the oom path.
4407  */
4408 static inline bool
4409 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4410 		     struct alloc_context *ac, int alloc_flags,
4411 		     bool did_some_progress, int *no_progress_loops)
4412 {
4413 	struct zone *zone;
4414 	struct zoneref *z;
4415 	bool ret = false;
4416 
4417 	/*
4418 	 * Costly allocations might have made a progress but this doesn't mean
4419 	 * their order will become available due to high fragmentation so
4420 	 * always increment the no progress counter for them
4421 	 */
4422 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4423 		*no_progress_loops = 0;
4424 	else
4425 		(*no_progress_loops)++;
4426 
4427 	/*
4428 	 * Make sure we converge to OOM if we cannot make any progress
4429 	 * several times in the row.
4430 	 */
4431 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4432 		/* Before OOM, exhaust highatomic_reserve */
4433 		return unreserve_highatomic_pageblock(ac, true);
4434 	}
4435 
4436 	/*
4437 	 * Keep reclaiming pages while there is a chance this will lead
4438 	 * somewhere.  If none of the target zones can satisfy our allocation
4439 	 * request even if all reclaimable pages are considered then we are
4440 	 * screwed and have to go OOM.
4441 	 */
4442 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4443 				ac->highest_zoneidx, ac->nodemask) {
4444 		unsigned long available;
4445 		unsigned long reclaimable;
4446 		unsigned long min_wmark = min_wmark_pages(zone);
4447 		bool wmark;
4448 
4449 		available = reclaimable = zone_reclaimable_pages(zone);
4450 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4451 
4452 		/*
4453 		 * Would the allocation succeed if we reclaimed all
4454 		 * reclaimable pages?
4455 		 */
4456 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4457 				ac->highest_zoneidx, alloc_flags, available);
4458 		trace_reclaim_retry_zone(z, order, reclaimable,
4459 				available, min_wmark, *no_progress_loops, wmark);
4460 		if (wmark) {
4461 			/*
4462 			 * If we didn't make any progress and have a lot of
4463 			 * dirty + writeback pages then we should wait for
4464 			 * an IO to complete to slow down the reclaim and
4465 			 * prevent from pre mature OOM
4466 			 */
4467 			if (!did_some_progress) {
4468 				unsigned long write_pending;
4469 
4470 				write_pending = zone_page_state_snapshot(zone,
4471 							NR_ZONE_WRITE_PENDING);
4472 
4473 				if (2 * write_pending > reclaimable) {
4474 					congestion_wait(BLK_RW_ASYNC, HZ/10);
4475 					return true;
4476 				}
4477 			}
4478 
4479 			ret = true;
4480 			goto out;
4481 		}
4482 	}
4483 
4484 out:
4485 	/*
4486 	 * Memory allocation/reclaim might be called from a WQ context and the
4487 	 * current implementation of the WQ concurrency control doesn't
4488 	 * recognize that a particular WQ is congested if the worker thread is
4489 	 * looping without ever sleeping. Therefore we have to do a short sleep
4490 	 * here rather than calling cond_resched().
4491 	 */
4492 	if (current->flags & PF_WQ_WORKER)
4493 		schedule_timeout_uninterruptible(1);
4494 	else
4495 		cond_resched();
4496 	return ret;
4497 }
4498 
4499 static inline bool
4500 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4501 {
4502 	/*
4503 	 * It's possible that cpuset's mems_allowed and the nodemask from
4504 	 * mempolicy don't intersect. This should be normally dealt with by
4505 	 * policy_nodemask(), but it's possible to race with cpuset update in
4506 	 * such a way the check therein was true, and then it became false
4507 	 * before we got our cpuset_mems_cookie here.
4508 	 * This assumes that for all allocations, ac->nodemask can come only
4509 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4510 	 * when it does not intersect with the cpuset restrictions) or the
4511 	 * caller can deal with a violated nodemask.
4512 	 */
4513 	if (cpusets_enabled() && ac->nodemask &&
4514 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4515 		ac->nodemask = NULL;
4516 		return true;
4517 	}
4518 
4519 	/*
4520 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4521 	 * possible to race with parallel threads in such a way that our
4522 	 * allocation can fail while the mask is being updated. If we are about
4523 	 * to fail, check if the cpuset changed during allocation and if so,
4524 	 * retry.
4525 	 */
4526 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4527 		return true;
4528 
4529 	return false;
4530 }
4531 
4532 static inline struct page *
4533 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4534 						struct alloc_context *ac)
4535 {
4536 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4537 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4538 	struct page *page = NULL;
4539 	unsigned int alloc_flags;
4540 	unsigned long did_some_progress;
4541 	enum compact_priority compact_priority;
4542 	enum compact_result compact_result;
4543 	int compaction_retries;
4544 	int no_progress_loops;
4545 	unsigned int cpuset_mems_cookie;
4546 	int reserve_flags;
4547 
4548 	/*
4549 	 * We also sanity check to catch abuse of atomic reserves being used by
4550 	 * callers that are not in atomic context.
4551 	 */
4552 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4553 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4554 		gfp_mask &= ~__GFP_ATOMIC;
4555 
4556 retry_cpuset:
4557 	compaction_retries = 0;
4558 	no_progress_loops = 0;
4559 	compact_priority = DEF_COMPACT_PRIORITY;
4560 	cpuset_mems_cookie = read_mems_allowed_begin();
4561 
4562 	/*
4563 	 * The fast path uses conservative alloc_flags to succeed only until
4564 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4565 	 * alloc_flags precisely. So we do that now.
4566 	 */
4567 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4568 
4569 	/*
4570 	 * We need to recalculate the starting point for the zonelist iterator
4571 	 * because we might have used different nodemask in the fast path, or
4572 	 * there was a cpuset modification and we are retrying - otherwise we
4573 	 * could end up iterating over non-eligible zones endlessly.
4574 	 */
4575 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4576 					ac->highest_zoneidx, ac->nodemask);
4577 	if (!ac->preferred_zoneref->zone)
4578 		goto nopage;
4579 
4580 	if (alloc_flags & ALLOC_KSWAPD)
4581 		wake_all_kswapds(order, gfp_mask, ac);
4582 
4583 	/*
4584 	 * The adjusted alloc_flags might result in immediate success, so try
4585 	 * that first
4586 	 */
4587 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4588 	if (page)
4589 		goto got_pg;
4590 
4591 	/*
4592 	 * For costly allocations, try direct compaction first, as it's likely
4593 	 * that we have enough base pages and don't need to reclaim. For non-
4594 	 * movable high-order allocations, do that as well, as compaction will
4595 	 * try prevent permanent fragmentation by migrating from blocks of the
4596 	 * same migratetype.
4597 	 * Don't try this for allocations that are allowed to ignore
4598 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4599 	 */
4600 	if (can_direct_reclaim &&
4601 			(costly_order ||
4602 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4603 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4604 		page = __alloc_pages_direct_compact(gfp_mask, order,
4605 						alloc_flags, ac,
4606 						INIT_COMPACT_PRIORITY,
4607 						&compact_result);
4608 		if (page)
4609 			goto got_pg;
4610 
4611 		/*
4612 		 * Checks for costly allocations with __GFP_NORETRY, which
4613 		 * includes some THP page fault allocations
4614 		 */
4615 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4616 			/*
4617 			 * If allocating entire pageblock(s) and compaction
4618 			 * failed because all zones are below low watermarks
4619 			 * or is prohibited because it recently failed at this
4620 			 * order, fail immediately unless the allocator has
4621 			 * requested compaction and reclaim retry.
4622 			 *
4623 			 * Reclaim is
4624 			 *  - potentially very expensive because zones are far
4625 			 *    below their low watermarks or this is part of very
4626 			 *    bursty high order allocations,
4627 			 *  - not guaranteed to help because isolate_freepages()
4628 			 *    may not iterate over freed pages as part of its
4629 			 *    linear scan, and
4630 			 *  - unlikely to make entire pageblocks free on its
4631 			 *    own.
4632 			 */
4633 			if (compact_result == COMPACT_SKIPPED ||
4634 			    compact_result == COMPACT_DEFERRED)
4635 				goto nopage;
4636 
4637 			/*
4638 			 * Looks like reclaim/compaction is worth trying, but
4639 			 * sync compaction could be very expensive, so keep
4640 			 * using async compaction.
4641 			 */
4642 			compact_priority = INIT_COMPACT_PRIORITY;
4643 		}
4644 	}
4645 
4646 retry:
4647 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4648 	if (alloc_flags & ALLOC_KSWAPD)
4649 		wake_all_kswapds(order, gfp_mask, ac);
4650 
4651 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4652 	if (reserve_flags)
4653 		alloc_flags = current_alloc_flags(gfp_mask, reserve_flags);
4654 
4655 	/*
4656 	 * Reset the nodemask and zonelist iterators if memory policies can be
4657 	 * ignored. These allocations are high priority and system rather than
4658 	 * user oriented.
4659 	 */
4660 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4661 		ac->nodemask = NULL;
4662 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4663 					ac->highest_zoneidx, ac->nodemask);
4664 	}
4665 
4666 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4667 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4668 	if (page)
4669 		goto got_pg;
4670 
4671 	/* Caller is not willing to reclaim, we can't balance anything */
4672 	if (!can_direct_reclaim)
4673 		goto nopage;
4674 
4675 	/* Avoid recursion of direct reclaim */
4676 	if (current->flags & PF_MEMALLOC)
4677 		goto nopage;
4678 
4679 	/* Try direct reclaim and then allocating */
4680 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4681 							&did_some_progress);
4682 	if (page)
4683 		goto got_pg;
4684 
4685 	/* Try direct compaction and then allocating */
4686 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4687 					compact_priority, &compact_result);
4688 	if (page)
4689 		goto got_pg;
4690 
4691 	/* Do not loop if specifically requested */
4692 	if (gfp_mask & __GFP_NORETRY)
4693 		goto nopage;
4694 
4695 	/*
4696 	 * Do not retry costly high order allocations unless they are
4697 	 * __GFP_RETRY_MAYFAIL
4698 	 */
4699 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4700 		goto nopage;
4701 
4702 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4703 				 did_some_progress > 0, &no_progress_loops))
4704 		goto retry;
4705 
4706 	/*
4707 	 * It doesn't make any sense to retry for the compaction if the order-0
4708 	 * reclaim is not able to make any progress because the current
4709 	 * implementation of the compaction depends on the sufficient amount
4710 	 * of free memory (see __compaction_suitable)
4711 	 */
4712 	if (did_some_progress > 0 &&
4713 			should_compact_retry(ac, order, alloc_flags,
4714 				compact_result, &compact_priority,
4715 				&compaction_retries))
4716 		goto retry;
4717 
4718 
4719 	/* Deal with possible cpuset update races before we start OOM killing */
4720 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4721 		goto retry_cpuset;
4722 
4723 	/* Reclaim has failed us, start killing things */
4724 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4725 	if (page)
4726 		goto got_pg;
4727 
4728 	/* Avoid allocations with no watermarks from looping endlessly */
4729 	if (tsk_is_oom_victim(current) &&
4730 	    (alloc_flags & ALLOC_OOM ||
4731 	     (gfp_mask & __GFP_NOMEMALLOC)))
4732 		goto nopage;
4733 
4734 	/* Retry as long as the OOM killer is making progress */
4735 	if (did_some_progress) {
4736 		no_progress_loops = 0;
4737 		goto retry;
4738 	}
4739 
4740 nopage:
4741 	/* Deal with possible cpuset update races before we fail */
4742 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4743 		goto retry_cpuset;
4744 
4745 	/*
4746 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4747 	 * we always retry
4748 	 */
4749 	if (gfp_mask & __GFP_NOFAIL) {
4750 		/*
4751 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4752 		 * of any new users that actually require GFP_NOWAIT
4753 		 */
4754 		if (WARN_ON_ONCE(!can_direct_reclaim))
4755 			goto fail;
4756 
4757 		/*
4758 		 * PF_MEMALLOC request from this context is rather bizarre
4759 		 * because we cannot reclaim anything and only can loop waiting
4760 		 * for somebody to do a work for us
4761 		 */
4762 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4763 
4764 		/*
4765 		 * non failing costly orders are a hard requirement which we
4766 		 * are not prepared for much so let's warn about these users
4767 		 * so that we can identify them and convert them to something
4768 		 * else.
4769 		 */
4770 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4771 
4772 		/*
4773 		 * Help non-failing allocations by giving them access to memory
4774 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
4775 		 * could deplete whole memory reserves which would just make
4776 		 * the situation worse
4777 		 */
4778 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4779 		if (page)
4780 			goto got_pg;
4781 
4782 		cond_resched();
4783 		goto retry;
4784 	}
4785 fail:
4786 	warn_alloc(gfp_mask, ac->nodemask,
4787 			"page allocation failure: order:%u", order);
4788 got_pg:
4789 	return page;
4790 }
4791 
4792 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4793 		int preferred_nid, nodemask_t *nodemask,
4794 		struct alloc_context *ac, gfp_t *alloc_mask,
4795 		unsigned int *alloc_flags)
4796 {
4797 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4798 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4799 	ac->nodemask = nodemask;
4800 	ac->migratetype = gfp_migratetype(gfp_mask);
4801 
4802 	if (cpusets_enabled()) {
4803 		*alloc_mask |= __GFP_HARDWALL;
4804 		/*
4805 		 * When we are in the interrupt context, it is irrelevant
4806 		 * to the current task context. It means that any node ok.
4807 		 */
4808 		if (!in_interrupt() && !ac->nodemask)
4809 			ac->nodemask = &cpuset_current_mems_allowed;
4810 		else
4811 			*alloc_flags |= ALLOC_CPUSET;
4812 	}
4813 
4814 	fs_reclaim_acquire(gfp_mask);
4815 	fs_reclaim_release(gfp_mask);
4816 
4817 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4818 
4819 	if (should_fail_alloc_page(gfp_mask, order))
4820 		return false;
4821 
4822 	*alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags);
4823 
4824 	return true;
4825 }
4826 
4827 /* Determine whether to spread dirty pages and what the first usable zone */
4828 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4829 {
4830 	/* Dirty zone balancing only done in the fast path */
4831 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4832 
4833 	/*
4834 	 * The preferred zone is used for statistics but crucially it is
4835 	 * also used as the starting point for the zonelist iterator. It
4836 	 * may get reset for allocations that ignore memory policies.
4837 	 */
4838 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4839 					ac->highest_zoneidx, ac->nodemask);
4840 }
4841 
4842 /*
4843  * This is the 'heart' of the zoned buddy allocator.
4844  */
4845 struct page *
4846 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4847 							nodemask_t *nodemask)
4848 {
4849 	struct page *page;
4850 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4851 	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4852 	struct alloc_context ac = { };
4853 
4854 	/*
4855 	 * There are several places where we assume that the order value is sane
4856 	 * so bail out early if the request is out of bound.
4857 	 */
4858 	if (unlikely(order >= MAX_ORDER)) {
4859 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4860 		return NULL;
4861 	}
4862 
4863 	gfp_mask &= gfp_allowed_mask;
4864 	alloc_mask = gfp_mask;
4865 	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4866 		return NULL;
4867 
4868 	finalise_ac(gfp_mask, &ac);
4869 
4870 	/*
4871 	 * Forbid the first pass from falling back to types that fragment
4872 	 * memory until all local zones are considered.
4873 	 */
4874 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4875 
4876 	/* First allocation attempt */
4877 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4878 	if (likely(page))
4879 		goto out;
4880 
4881 	/*
4882 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4883 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4884 	 * from a particular context which has been marked by
4885 	 * memalloc_no{fs,io}_{save,restore}.
4886 	 */
4887 	alloc_mask = current_gfp_context(gfp_mask);
4888 	ac.spread_dirty_pages = false;
4889 
4890 	/*
4891 	 * Restore the original nodemask if it was potentially replaced with
4892 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4893 	 */
4894 	ac.nodemask = nodemask;
4895 
4896 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4897 
4898 out:
4899 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4900 	    unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
4901 		__free_pages(page, order);
4902 		page = NULL;
4903 	}
4904 
4905 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4906 
4907 	return page;
4908 }
4909 EXPORT_SYMBOL(__alloc_pages_nodemask);
4910 
4911 /*
4912  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4913  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4914  * you need to access high mem.
4915  */
4916 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4917 {
4918 	struct page *page;
4919 
4920 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4921 	if (!page)
4922 		return 0;
4923 	return (unsigned long) page_address(page);
4924 }
4925 EXPORT_SYMBOL(__get_free_pages);
4926 
4927 unsigned long get_zeroed_page(gfp_t gfp_mask)
4928 {
4929 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4930 }
4931 EXPORT_SYMBOL(get_zeroed_page);
4932 
4933 static inline void free_the_page(struct page *page, unsigned int order)
4934 {
4935 	if (order == 0)		/* Via pcp? */
4936 		free_unref_page(page);
4937 	else
4938 		__free_pages_ok(page, order);
4939 }
4940 
4941 void __free_pages(struct page *page, unsigned int order)
4942 {
4943 	if (put_page_testzero(page))
4944 		free_the_page(page, order);
4945 }
4946 EXPORT_SYMBOL(__free_pages);
4947 
4948 void free_pages(unsigned long addr, unsigned int order)
4949 {
4950 	if (addr != 0) {
4951 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4952 		__free_pages(virt_to_page((void *)addr), order);
4953 	}
4954 }
4955 
4956 EXPORT_SYMBOL(free_pages);
4957 
4958 /*
4959  * Page Fragment:
4960  *  An arbitrary-length arbitrary-offset area of memory which resides
4961  *  within a 0 or higher order page.  Multiple fragments within that page
4962  *  are individually refcounted, in the page's reference counter.
4963  *
4964  * The page_frag functions below provide a simple allocation framework for
4965  * page fragments.  This is used by the network stack and network device
4966  * drivers to provide a backing region of memory for use as either an
4967  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4968  */
4969 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4970 					     gfp_t gfp_mask)
4971 {
4972 	struct page *page = NULL;
4973 	gfp_t gfp = gfp_mask;
4974 
4975 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4976 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4977 		    __GFP_NOMEMALLOC;
4978 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4979 				PAGE_FRAG_CACHE_MAX_ORDER);
4980 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4981 #endif
4982 	if (unlikely(!page))
4983 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4984 
4985 	nc->va = page ? page_address(page) : NULL;
4986 
4987 	return page;
4988 }
4989 
4990 void __page_frag_cache_drain(struct page *page, unsigned int count)
4991 {
4992 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4993 
4994 	if (page_ref_sub_and_test(page, count))
4995 		free_the_page(page, compound_order(page));
4996 }
4997 EXPORT_SYMBOL(__page_frag_cache_drain);
4998 
4999 void *page_frag_alloc(struct page_frag_cache *nc,
5000 		      unsigned int fragsz, gfp_t gfp_mask)
5001 {
5002 	unsigned int size = PAGE_SIZE;
5003 	struct page *page;
5004 	int offset;
5005 
5006 	if (unlikely(!nc->va)) {
5007 refill:
5008 		page = __page_frag_cache_refill(nc, gfp_mask);
5009 		if (!page)
5010 			return NULL;
5011 
5012 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5013 		/* if size can vary use size else just use PAGE_SIZE */
5014 		size = nc->size;
5015 #endif
5016 		/* Even if we own the page, we do not use atomic_set().
5017 		 * This would break get_page_unless_zero() users.
5018 		 */
5019 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5020 
5021 		/* reset page count bias and offset to start of new frag */
5022 		nc->pfmemalloc = page_is_pfmemalloc(page);
5023 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5024 		nc->offset = size;
5025 	}
5026 
5027 	offset = nc->offset - fragsz;
5028 	if (unlikely(offset < 0)) {
5029 		page = virt_to_page(nc->va);
5030 
5031 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5032 			goto refill;
5033 
5034 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5035 		/* if size can vary use size else just use PAGE_SIZE */
5036 		size = nc->size;
5037 #endif
5038 		/* OK, page count is 0, we can safely set it */
5039 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5040 
5041 		/* reset page count bias and offset to start of new frag */
5042 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5043 		offset = size - fragsz;
5044 	}
5045 
5046 	nc->pagecnt_bias--;
5047 	nc->offset = offset;
5048 
5049 	return nc->va + offset;
5050 }
5051 EXPORT_SYMBOL(page_frag_alloc);
5052 
5053 /*
5054  * Frees a page fragment allocated out of either a compound or order 0 page.
5055  */
5056 void page_frag_free(void *addr)
5057 {
5058 	struct page *page = virt_to_head_page(addr);
5059 
5060 	if (unlikely(put_page_testzero(page)))
5061 		free_the_page(page, compound_order(page));
5062 }
5063 EXPORT_SYMBOL(page_frag_free);
5064 
5065 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5066 		size_t size)
5067 {
5068 	if (addr) {
5069 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
5070 		unsigned long used = addr + PAGE_ALIGN(size);
5071 
5072 		split_page(virt_to_page((void *)addr), order);
5073 		while (used < alloc_end) {
5074 			free_page(used);
5075 			used += PAGE_SIZE;
5076 		}
5077 	}
5078 	return (void *)addr;
5079 }
5080 
5081 /**
5082  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5083  * @size: the number of bytes to allocate
5084  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5085  *
5086  * This function is similar to alloc_pages(), except that it allocates the
5087  * minimum number of pages to satisfy the request.  alloc_pages() can only
5088  * allocate memory in power-of-two pages.
5089  *
5090  * This function is also limited by MAX_ORDER.
5091  *
5092  * Memory allocated by this function must be released by free_pages_exact().
5093  *
5094  * Return: pointer to the allocated area or %NULL in case of error.
5095  */
5096 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5097 {
5098 	unsigned int order = get_order(size);
5099 	unsigned long addr;
5100 
5101 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5102 		gfp_mask &= ~__GFP_COMP;
5103 
5104 	addr = __get_free_pages(gfp_mask, order);
5105 	return make_alloc_exact(addr, order, size);
5106 }
5107 EXPORT_SYMBOL(alloc_pages_exact);
5108 
5109 /**
5110  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5111  *			   pages on a node.
5112  * @nid: the preferred node ID where memory should be allocated
5113  * @size: the number of bytes to allocate
5114  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5115  *
5116  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5117  * back.
5118  *
5119  * Return: pointer to the allocated area or %NULL in case of error.
5120  */
5121 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5122 {
5123 	unsigned int order = get_order(size);
5124 	struct page *p;
5125 
5126 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5127 		gfp_mask &= ~__GFP_COMP;
5128 
5129 	p = alloc_pages_node(nid, gfp_mask, order);
5130 	if (!p)
5131 		return NULL;
5132 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5133 }
5134 
5135 /**
5136  * free_pages_exact - release memory allocated via alloc_pages_exact()
5137  * @virt: the value returned by alloc_pages_exact.
5138  * @size: size of allocation, same value as passed to alloc_pages_exact().
5139  *
5140  * Release the memory allocated by a previous call to alloc_pages_exact.
5141  */
5142 void free_pages_exact(void *virt, size_t size)
5143 {
5144 	unsigned long addr = (unsigned long)virt;
5145 	unsigned long end = addr + PAGE_ALIGN(size);
5146 
5147 	while (addr < end) {
5148 		free_page(addr);
5149 		addr += PAGE_SIZE;
5150 	}
5151 }
5152 EXPORT_SYMBOL(free_pages_exact);
5153 
5154 /**
5155  * nr_free_zone_pages - count number of pages beyond high watermark
5156  * @offset: The zone index of the highest zone
5157  *
5158  * nr_free_zone_pages() counts the number of pages which are beyond the
5159  * high watermark within all zones at or below a given zone index.  For each
5160  * zone, the number of pages is calculated as:
5161  *
5162  *     nr_free_zone_pages = managed_pages - high_pages
5163  *
5164  * Return: number of pages beyond high watermark.
5165  */
5166 static unsigned long nr_free_zone_pages(int offset)
5167 {
5168 	struct zoneref *z;
5169 	struct zone *zone;
5170 
5171 	/* Just pick one node, since fallback list is circular */
5172 	unsigned long sum = 0;
5173 
5174 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5175 
5176 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5177 		unsigned long size = zone_managed_pages(zone);
5178 		unsigned long high = high_wmark_pages(zone);
5179 		if (size > high)
5180 			sum += size - high;
5181 	}
5182 
5183 	return sum;
5184 }
5185 
5186 /**
5187  * nr_free_buffer_pages - count number of pages beyond high watermark
5188  *
5189  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5190  * watermark within ZONE_DMA and ZONE_NORMAL.
5191  *
5192  * Return: number of pages beyond high watermark within ZONE_DMA and
5193  * ZONE_NORMAL.
5194  */
5195 unsigned long nr_free_buffer_pages(void)
5196 {
5197 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5198 }
5199 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5200 
5201 static inline void show_node(struct zone *zone)
5202 {
5203 	if (IS_ENABLED(CONFIG_NUMA))
5204 		printk("Node %d ", zone_to_nid(zone));
5205 }
5206 
5207 long si_mem_available(void)
5208 {
5209 	long available;
5210 	unsigned long pagecache;
5211 	unsigned long wmark_low = 0;
5212 	unsigned long pages[NR_LRU_LISTS];
5213 	unsigned long reclaimable;
5214 	struct zone *zone;
5215 	int lru;
5216 
5217 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5218 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5219 
5220 	for_each_zone(zone)
5221 		wmark_low += low_wmark_pages(zone);
5222 
5223 	/*
5224 	 * Estimate the amount of memory available for userspace allocations,
5225 	 * without causing swapping.
5226 	 */
5227 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5228 
5229 	/*
5230 	 * Not all the page cache can be freed, otherwise the system will
5231 	 * start swapping. Assume at least half of the page cache, or the
5232 	 * low watermark worth of cache, needs to stay.
5233 	 */
5234 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5235 	pagecache -= min(pagecache / 2, wmark_low);
5236 	available += pagecache;
5237 
5238 	/*
5239 	 * Part of the reclaimable slab and other kernel memory consists of
5240 	 * items that are in use, and cannot be freed. Cap this estimate at the
5241 	 * low watermark.
5242 	 */
5243 	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5244 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5245 	available += reclaimable - min(reclaimable / 2, wmark_low);
5246 
5247 	if (available < 0)
5248 		available = 0;
5249 	return available;
5250 }
5251 EXPORT_SYMBOL_GPL(si_mem_available);
5252 
5253 void si_meminfo(struct sysinfo *val)
5254 {
5255 	val->totalram = totalram_pages();
5256 	val->sharedram = global_node_page_state(NR_SHMEM);
5257 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5258 	val->bufferram = nr_blockdev_pages();
5259 	val->totalhigh = totalhigh_pages();
5260 	val->freehigh = nr_free_highpages();
5261 	val->mem_unit = PAGE_SIZE;
5262 }
5263 
5264 EXPORT_SYMBOL(si_meminfo);
5265 
5266 #ifdef CONFIG_NUMA
5267 void si_meminfo_node(struct sysinfo *val, int nid)
5268 {
5269 	int zone_type;		/* needs to be signed */
5270 	unsigned long managed_pages = 0;
5271 	unsigned long managed_highpages = 0;
5272 	unsigned long free_highpages = 0;
5273 	pg_data_t *pgdat = NODE_DATA(nid);
5274 
5275 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5276 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5277 	val->totalram = managed_pages;
5278 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5279 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5280 #ifdef CONFIG_HIGHMEM
5281 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5282 		struct zone *zone = &pgdat->node_zones[zone_type];
5283 
5284 		if (is_highmem(zone)) {
5285 			managed_highpages += zone_managed_pages(zone);
5286 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5287 		}
5288 	}
5289 	val->totalhigh = managed_highpages;
5290 	val->freehigh = free_highpages;
5291 #else
5292 	val->totalhigh = managed_highpages;
5293 	val->freehigh = free_highpages;
5294 #endif
5295 	val->mem_unit = PAGE_SIZE;
5296 }
5297 #endif
5298 
5299 /*
5300  * Determine whether the node should be displayed or not, depending on whether
5301  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5302  */
5303 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5304 {
5305 	if (!(flags & SHOW_MEM_FILTER_NODES))
5306 		return false;
5307 
5308 	/*
5309 	 * no node mask - aka implicit memory numa policy. Do not bother with
5310 	 * the synchronization - read_mems_allowed_begin - because we do not
5311 	 * have to be precise here.
5312 	 */
5313 	if (!nodemask)
5314 		nodemask = &cpuset_current_mems_allowed;
5315 
5316 	return !node_isset(nid, *nodemask);
5317 }
5318 
5319 #define K(x) ((x) << (PAGE_SHIFT-10))
5320 
5321 static void show_migration_types(unsigned char type)
5322 {
5323 	static const char types[MIGRATE_TYPES] = {
5324 		[MIGRATE_UNMOVABLE]	= 'U',
5325 		[MIGRATE_MOVABLE]	= 'M',
5326 		[MIGRATE_RECLAIMABLE]	= 'E',
5327 		[MIGRATE_HIGHATOMIC]	= 'H',
5328 #ifdef CONFIG_CMA
5329 		[MIGRATE_CMA]		= 'C',
5330 #endif
5331 #ifdef CONFIG_MEMORY_ISOLATION
5332 		[MIGRATE_ISOLATE]	= 'I',
5333 #endif
5334 	};
5335 	char tmp[MIGRATE_TYPES + 1];
5336 	char *p = tmp;
5337 	int i;
5338 
5339 	for (i = 0; i < MIGRATE_TYPES; i++) {
5340 		if (type & (1 << i))
5341 			*p++ = types[i];
5342 	}
5343 
5344 	*p = '\0';
5345 	printk(KERN_CONT "(%s) ", tmp);
5346 }
5347 
5348 /*
5349  * Show free area list (used inside shift_scroll-lock stuff)
5350  * We also calculate the percentage fragmentation. We do this by counting the
5351  * memory on each free list with the exception of the first item on the list.
5352  *
5353  * Bits in @filter:
5354  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5355  *   cpuset.
5356  */
5357 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5358 {
5359 	unsigned long free_pcp = 0;
5360 	int cpu;
5361 	struct zone *zone;
5362 	pg_data_t *pgdat;
5363 
5364 	for_each_populated_zone(zone) {
5365 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5366 			continue;
5367 
5368 		for_each_online_cpu(cpu)
5369 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5370 	}
5371 
5372 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5373 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5374 		" unevictable:%lu dirty:%lu writeback:%lu\n"
5375 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5376 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5377 		" free:%lu free_pcp:%lu free_cma:%lu\n",
5378 		global_node_page_state(NR_ACTIVE_ANON),
5379 		global_node_page_state(NR_INACTIVE_ANON),
5380 		global_node_page_state(NR_ISOLATED_ANON),
5381 		global_node_page_state(NR_ACTIVE_FILE),
5382 		global_node_page_state(NR_INACTIVE_FILE),
5383 		global_node_page_state(NR_ISOLATED_FILE),
5384 		global_node_page_state(NR_UNEVICTABLE),
5385 		global_node_page_state(NR_FILE_DIRTY),
5386 		global_node_page_state(NR_WRITEBACK),
5387 		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5388 		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5389 		global_node_page_state(NR_FILE_MAPPED),
5390 		global_node_page_state(NR_SHMEM),
5391 		global_zone_page_state(NR_PAGETABLE),
5392 		global_zone_page_state(NR_BOUNCE),
5393 		global_zone_page_state(NR_FREE_PAGES),
5394 		free_pcp,
5395 		global_zone_page_state(NR_FREE_CMA_PAGES));
5396 
5397 	for_each_online_pgdat(pgdat) {
5398 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5399 			continue;
5400 
5401 		printk("Node %d"
5402 			" active_anon:%lukB"
5403 			" inactive_anon:%lukB"
5404 			" active_file:%lukB"
5405 			" inactive_file:%lukB"
5406 			" unevictable:%lukB"
5407 			" isolated(anon):%lukB"
5408 			" isolated(file):%lukB"
5409 			" mapped:%lukB"
5410 			" dirty:%lukB"
5411 			" writeback:%lukB"
5412 			" shmem:%lukB"
5413 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5414 			" shmem_thp: %lukB"
5415 			" shmem_pmdmapped: %lukB"
5416 			" anon_thp: %lukB"
5417 #endif
5418 			" writeback_tmp:%lukB"
5419 			" kernel_stack:%lukB"
5420 #ifdef CONFIG_SHADOW_CALL_STACK
5421 			" shadow_call_stack:%lukB"
5422 #endif
5423 			" all_unreclaimable? %s"
5424 			"\n",
5425 			pgdat->node_id,
5426 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5427 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5428 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5429 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5430 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
5431 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5432 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5433 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5434 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
5435 			K(node_page_state(pgdat, NR_WRITEBACK)),
5436 			K(node_page_state(pgdat, NR_SHMEM)),
5437 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5438 			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5439 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5440 					* HPAGE_PMD_NR),
5441 			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5442 #endif
5443 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5444 			node_page_state(pgdat, NR_KERNEL_STACK_KB),
5445 #ifdef CONFIG_SHADOW_CALL_STACK
5446 			node_page_state(pgdat, NR_KERNEL_SCS_KB),
5447 #endif
5448 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5449 				"yes" : "no");
5450 	}
5451 
5452 	for_each_populated_zone(zone) {
5453 		int i;
5454 
5455 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5456 			continue;
5457 
5458 		free_pcp = 0;
5459 		for_each_online_cpu(cpu)
5460 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5461 
5462 		show_node(zone);
5463 		printk(KERN_CONT
5464 			"%s"
5465 			" free:%lukB"
5466 			" min:%lukB"
5467 			" low:%lukB"
5468 			" high:%lukB"
5469 			" reserved_highatomic:%luKB"
5470 			" active_anon:%lukB"
5471 			" inactive_anon:%lukB"
5472 			" active_file:%lukB"
5473 			" inactive_file:%lukB"
5474 			" unevictable:%lukB"
5475 			" writepending:%lukB"
5476 			" present:%lukB"
5477 			" managed:%lukB"
5478 			" mlocked:%lukB"
5479 			" pagetables:%lukB"
5480 			" bounce:%lukB"
5481 			" free_pcp:%lukB"
5482 			" local_pcp:%ukB"
5483 			" free_cma:%lukB"
5484 			"\n",
5485 			zone->name,
5486 			K(zone_page_state(zone, NR_FREE_PAGES)),
5487 			K(min_wmark_pages(zone)),
5488 			K(low_wmark_pages(zone)),
5489 			K(high_wmark_pages(zone)),
5490 			K(zone->nr_reserved_highatomic),
5491 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5492 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5493 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5494 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5495 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5496 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5497 			K(zone->present_pages),
5498 			K(zone_managed_pages(zone)),
5499 			K(zone_page_state(zone, NR_MLOCK)),
5500 			K(zone_page_state(zone, NR_PAGETABLE)),
5501 			K(zone_page_state(zone, NR_BOUNCE)),
5502 			K(free_pcp),
5503 			K(this_cpu_read(zone->pageset->pcp.count)),
5504 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5505 		printk("lowmem_reserve[]:");
5506 		for (i = 0; i < MAX_NR_ZONES; i++)
5507 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5508 		printk(KERN_CONT "\n");
5509 	}
5510 
5511 	for_each_populated_zone(zone) {
5512 		unsigned int order;
5513 		unsigned long nr[MAX_ORDER], flags, total = 0;
5514 		unsigned char types[MAX_ORDER];
5515 
5516 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5517 			continue;
5518 		show_node(zone);
5519 		printk(KERN_CONT "%s: ", zone->name);
5520 
5521 		spin_lock_irqsave(&zone->lock, flags);
5522 		for (order = 0; order < MAX_ORDER; order++) {
5523 			struct free_area *area = &zone->free_area[order];
5524 			int type;
5525 
5526 			nr[order] = area->nr_free;
5527 			total += nr[order] << order;
5528 
5529 			types[order] = 0;
5530 			for (type = 0; type < MIGRATE_TYPES; type++) {
5531 				if (!free_area_empty(area, type))
5532 					types[order] |= 1 << type;
5533 			}
5534 		}
5535 		spin_unlock_irqrestore(&zone->lock, flags);
5536 		for (order = 0; order < MAX_ORDER; order++) {
5537 			printk(KERN_CONT "%lu*%lukB ",
5538 			       nr[order], K(1UL) << order);
5539 			if (nr[order])
5540 				show_migration_types(types[order]);
5541 		}
5542 		printk(KERN_CONT "= %lukB\n", K(total));
5543 	}
5544 
5545 	hugetlb_show_meminfo();
5546 
5547 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5548 
5549 	show_swap_cache_info();
5550 }
5551 
5552 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5553 {
5554 	zoneref->zone = zone;
5555 	zoneref->zone_idx = zone_idx(zone);
5556 }
5557 
5558 /*
5559  * Builds allocation fallback zone lists.
5560  *
5561  * Add all populated zones of a node to the zonelist.
5562  */
5563 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5564 {
5565 	struct zone *zone;
5566 	enum zone_type zone_type = MAX_NR_ZONES;
5567 	int nr_zones = 0;
5568 
5569 	do {
5570 		zone_type--;
5571 		zone = pgdat->node_zones + zone_type;
5572 		if (managed_zone(zone)) {
5573 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5574 			check_highest_zone(zone_type);
5575 		}
5576 	} while (zone_type);
5577 
5578 	return nr_zones;
5579 }
5580 
5581 #ifdef CONFIG_NUMA
5582 
5583 static int __parse_numa_zonelist_order(char *s)
5584 {
5585 	/*
5586 	 * We used to support different zonlists modes but they turned
5587 	 * out to be just not useful. Let's keep the warning in place
5588 	 * if somebody still use the cmd line parameter so that we do
5589 	 * not fail it silently
5590 	 */
5591 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5592 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5593 		return -EINVAL;
5594 	}
5595 	return 0;
5596 }
5597 
5598 char numa_zonelist_order[] = "Node";
5599 
5600 /*
5601  * sysctl handler for numa_zonelist_order
5602  */
5603 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5604 		void *buffer, size_t *length, loff_t *ppos)
5605 {
5606 	if (write)
5607 		return __parse_numa_zonelist_order(buffer);
5608 	return proc_dostring(table, write, buffer, length, ppos);
5609 }
5610 
5611 
5612 #define MAX_NODE_LOAD (nr_online_nodes)
5613 static int node_load[MAX_NUMNODES];
5614 
5615 /**
5616  * find_next_best_node - find the next node that should appear in a given node's fallback list
5617  * @node: node whose fallback list we're appending
5618  * @used_node_mask: nodemask_t of already used nodes
5619  *
5620  * We use a number of factors to determine which is the next node that should
5621  * appear on a given node's fallback list.  The node should not have appeared
5622  * already in @node's fallback list, and it should be the next closest node
5623  * according to the distance array (which contains arbitrary distance values
5624  * from each node to each node in the system), and should also prefer nodes
5625  * with no CPUs, since presumably they'll have very little allocation pressure
5626  * on them otherwise.
5627  *
5628  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5629  */
5630 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5631 {
5632 	int n, val;
5633 	int min_val = INT_MAX;
5634 	int best_node = NUMA_NO_NODE;
5635 	const struct cpumask *tmp = cpumask_of_node(0);
5636 
5637 	/* Use the local node if we haven't already */
5638 	if (!node_isset(node, *used_node_mask)) {
5639 		node_set(node, *used_node_mask);
5640 		return node;
5641 	}
5642 
5643 	for_each_node_state(n, N_MEMORY) {
5644 
5645 		/* Don't want a node to appear more than once */
5646 		if (node_isset(n, *used_node_mask))
5647 			continue;
5648 
5649 		/* Use the distance array to find the distance */
5650 		val = node_distance(node, n);
5651 
5652 		/* Penalize nodes under us ("prefer the next node") */
5653 		val += (n < node);
5654 
5655 		/* Give preference to headless and unused nodes */
5656 		tmp = cpumask_of_node(n);
5657 		if (!cpumask_empty(tmp))
5658 			val += PENALTY_FOR_NODE_WITH_CPUS;
5659 
5660 		/* Slight preference for less loaded node */
5661 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5662 		val += node_load[n];
5663 
5664 		if (val < min_val) {
5665 			min_val = val;
5666 			best_node = n;
5667 		}
5668 	}
5669 
5670 	if (best_node >= 0)
5671 		node_set(best_node, *used_node_mask);
5672 
5673 	return best_node;
5674 }
5675 
5676 
5677 /*
5678  * Build zonelists ordered by node and zones within node.
5679  * This results in maximum locality--normal zone overflows into local
5680  * DMA zone, if any--but risks exhausting DMA zone.
5681  */
5682 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5683 		unsigned nr_nodes)
5684 {
5685 	struct zoneref *zonerefs;
5686 	int i;
5687 
5688 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5689 
5690 	for (i = 0; i < nr_nodes; i++) {
5691 		int nr_zones;
5692 
5693 		pg_data_t *node = NODE_DATA(node_order[i]);
5694 
5695 		nr_zones = build_zonerefs_node(node, zonerefs);
5696 		zonerefs += nr_zones;
5697 	}
5698 	zonerefs->zone = NULL;
5699 	zonerefs->zone_idx = 0;
5700 }
5701 
5702 /*
5703  * Build gfp_thisnode zonelists
5704  */
5705 static void build_thisnode_zonelists(pg_data_t *pgdat)
5706 {
5707 	struct zoneref *zonerefs;
5708 	int nr_zones;
5709 
5710 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5711 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5712 	zonerefs += nr_zones;
5713 	zonerefs->zone = NULL;
5714 	zonerefs->zone_idx = 0;
5715 }
5716 
5717 /*
5718  * Build zonelists ordered by zone and nodes within zones.
5719  * This results in conserving DMA zone[s] until all Normal memory is
5720  * exhausted, but results in overflowing to remote node while memory
5721  * may still exist in local DMA zone.
5722  */
5723 
5724 static void build_zonelists(pg_data_t *pgdat)
5725 {
5726 	static int node_order[MAX_NUMNODES];
5727 	int node, load, nr_nodes = 0;
5728 	nodemask_t used_mask = NODE_MASK_NONE;
5729 	int local_node, prev_node;
5730 
5731 	/* NUMA-aware ordering of nodes */
5732 	local_node = pgdat->node_id;
5733 	load = nr_online_nodes;
5734 	prev_node = local_node;
5735 
5736 	memset(node_order, 0, sizeof(node_order));
5737 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5738 		/*
5739 		 * We don't want to pressure a particular node.
5740 		 * So adding penalty to the first node in same
5741 		 * distance group to make it round-robin.
5742 		 */
5743 		if (node_distance(local_node, node) !=
5744 		    node_distance(local_node, prev_node))
5745 			node_load[node] = load;
5746 
5747 		node_order[nr_nodes++] = node;
5748 		prev_node = node;
5749 		load--;
5750 	}
5751 
5752 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5753 	build_thisnode_zonelists(pgdat);
5754 }
5755 
5756 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5757 /*
5758  * Return node id of node used for "local" allocations.
5759  * I.e., first node id of first zone in arg node's generic zonelist.
5760  * Used for initializing percpu 'numa_mem', which is used primarily
5761  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5762  */
5763 int local_memory_node(int node)
5764 {
5765 	struct zoneref *z;
5766 
5767 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5768 				   gfp_zone(GFP_KERNEL),
5769 				   NULL);
5770 	return zone_to_nid(z->zone);
5771 }
5772 #endif
5773 
5774 static void setup_min_unmapped_ratio(void);
5775 static void setup_min_slab_ratio(void);
5776 #else	/* CONFIG_NUMA */
5777 
5778 static void build_zonelists(pg_data_t *pgdat)
5779 {
5780 	int node, local_node;
5781 	struct zoneref *zonerefs;
5782 	int nr_zones;
5783 
5784 	local_node = pgdat->node_id;
5785 
5786 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5787 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5788 	zonerefs += nr_zones;
5789 
5790 	/*
5791 	 * Now we build the zonelist so that it contains the zones
5792 	 * of all the other nodes.
5793 	 * We don't want to pressure a particular node, so when
5794 	 * building the zones for node N, we make sure that the
5795 	 * zones coming right after the local ones are those from
5796 	 * node N+1 (modulo N)
5797 	 */
5798 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5799 		if (!node_online(node))
5800 			continue;
5801 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5802 		zonerefs += nr_zones;
5803 	}
5804 	for (node = 0; node < local_node; node++) {
5805 		if (!node_online(node))
5806 			continue;
5807 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5808 		zonerefs += nr_zones;
5809 	}
5810 
5811 	zonerefs->zone = NULL;
5812 	zonerefs->zone_idx = 0;
5813 }
5814 
5815 #endif	/* CONFIG_NUMA */
5816 
5817 /*
5818  * Boot pageset table. One per cpu which is going to be used for all
5819  * zones and all nodes. The parameters will be set in such a way
5820  * that an item put on a list will immediately be handed over to
5821  * the buddy list. This is safe since pageset manipulation is done
5822  * with interrupts disabled.
5823  *
5824  * The boot_pagesets must be kept even after bootup is complete for
5825  * unused processors and/or zones. They do play a role for bootstrapping
5826  * hotplugged processors.
5827  *
5828  * zoneinfo_show() and maybe other functions do
5829  * not check if the processor is online before following the pageset pointer.
5830  * Other parts of the kernel may not check if the zone is available.
5831  */
5832 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5833 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5834 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5835 
5836 static void __build_all_zonelists(void *data)
5837 {
5838 	int nid;
5839 	int __maybe_unused cpu;
5840 	pg_data_t *self = data;
5841 	static DEFINE_SPINLOCK(lock);
5842 
5843 	spin_lock(&lock);
5844 
5845 #ifdef CONFIG_NUMA
5846 	memset(node_load, 0, sizeof(node_load));
5847 #endif
5848 
5849 	/*
5850 	 * This node is hotadded and no memory is yet present.   So just
5851 	 * building zonelists is fine - no need to touch other nodes.
5852 	 */
5853 	if (self && !node_online(self->node_id)) {
5854 		build_zonelists(self);
5855 	} else {
5856 		for_each_online_node(nid) {
5857 			pg_data_t *pgdat = NODE_DATA(nid);
5858 
5859 			build_zonelists(pgdat);
5860 		}
5861 
5862 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5863 		/*
5864 		 * We now know the "local memory node" for each node--
5865 		 * i.e., the node of the first zone in the generic zonelist.
5866 		 * Set up numa_mem percpu variable for on-line cpus.  During
5867 		 * boot, only the boot cpu should be on-line;  we'll init the
5868 		 * secondary cpus' numa_mem as they come on-line.  During
5869 		 * node/memory hotplug, we'll fixup all on-line cpus.
5870 		 */
5871 		for_each_online_cpu(cpu)
5872 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5873 #endif
5874 	}
5875 
5876 	spin_unlock(&lock);
5877 }
5878 
5879 static noinline void __init
5880 build_all_zonelists_init(void)
5881 {
5882 	int cpu;
5883 
5884 	__build_all_zonelists(NULL);
5885 
5886 	/*
5887 	 * Initialize the boot_pagesets that are going to be used
5888 	 * for bootstrapping processors. The real pagesets for
5889 	 * each zone will be allocated later when the per cpu
5890 	 * allocator is available.
5891 	 *
5892 	 * boot_pagesets are used also for bootstrapping offline
5893 	 * cpus if the system is already booted because the pagesets
5894 	 * are needed to initialize allocators on a specific cpu too.
5895 	 * F.e. the percpu allocator needs the page allocator which
5896 	 * needs the percpu allocator in order to allocate its pagesets
5897 	 * (a chicken-egg dilemma).
5898 	 */
5899 	for_each_possible_cpu(cpu)
5900 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5901 
5902 	mminit_verify_zonelist();
5903 	cpuset_init_current_mems_allowed();
5904 }
5905 
5906 /*
5907  * unless system_state == SYSTEM_BOOTING.
5908  *
5909  * __ref due to call of __init annotated helper build_all_zonelists_init
5910  * [protected by SYSTEM_BOOTING].
5911  */
5912 void __ref build_all_zonelists(pg_data_t *pgdat)
5913 {
5914 	unsigned long vm_total_pages;
5915 
5916 	if (system_state == SYSTEM_BOOTING) {
5917 		build_all_zonelists_init();
5918 	} else {
5919 		__build_all_zonelists(pgdat);
5920 		/* cpuset refresh routine should be here */
5921 	}
5922 	/* Get the number of free pages beyond high watermark in all zones. */
5923 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5924 	/*
5925 	 * Disable grouping by mobility if the number of pages in the
5926 	 * system is too low to allow the mechanism to work. It would be
5927 	 * more accurate, but expensive to check per-zone. This check is
5928 	 * made on memory-hotadd so a system can start with mobility
5929 	 * disabled and enable it later
5930 	 */
5931 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5932 		page_group_by_mobility_disabled = 1;
5933 	else
5934 		page_group_by_mobility_disabled = 0;
5935 
5936 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5937 		nr_online_nodes,
5938 		page_group_by_mobility_disabled ? "off" : "on",
5939 		vm_total_pages);
5940 #ifdef CONFIG_NUMA
5941 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5942 #endif
5943 }
5944 
5945 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5946 static bool __meminit
5947 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5948 {
5949 	static struct memblock_region *r;
5950 
5951 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5952 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5953 			for_each_memblock(memory, r) {
5954 				if (*pfn < memblock_region_memory_end_pfn(r))
5955 					break;
5956 			}
5957 		}
5958 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
5959 		    memblock_is_mirror(r)) {
5960 			*pfn = memblock_region_memory_end_pfn(r);
5961 			return true;
5962 		}
5963 	}
5964 	return false;
5965 }
5966 
5967 /*
5968  * Initially all pages are reserved - free ones are freed
5969  * up by memblock_free_all() once the early boot process is
5970  * done. Non-atomic initialization, single-pass.
5971  */
5972 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5973 		unsigned long start_pfn, enum memmap_context context,
5974 		struct vmem_altmap *altmap)
5975 {
5976 	unsigned long pfn, end_pfn = start_pfn + size;
5977 	struct page *page;
5978 
5979 	if (highest_memmap_pfn < end_pfn - 1)
5980 		highest_memmap_pfn = end_pfn - 1;
5981 
5982 #ifdef CONFIG_ZONE_DEVICE
5983 	/*
5984 	 * Honor reservation requested by the driver for this ZONE_DEVICE
5985 	 * memory. We limit the total number of pages to initialize to just
5986 	 * those that might contain the memory mapping. We will defer the
5987 	 * ZONE_DEVICE page initialization until after we have released
5988 	 * the hotplug lock.
5989 	 */
5990 	if (zone == ZONE_DEVICE) {
5991 		if (!altmap)
5992 			return;
5993 
5994 		if (start_pfn == altmap->base_pfn)
5995 			start_pfn += altmap->reserve;
5996 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5997 	}
5998 #endif
5999 
6000 	for (pfn = start_pfn; pfn < end_pfn; ) {
6001 		/*
6002 		 * There can be holes in boot-time mem_map[]s handed to this
6003 		 * function.  They do not exist on hotplugged memory.
6004 		 */
6005 		if (context == MEMMAP_EARLY) {
6006 			if (overlap_memmap_init(zone, &pfn))
6007 				continue;
6008 			if (defer_init(nid, pfn, end_pfn))
6009 				break;
6010 		}
6011 
6012 		page = pfn_to_page(pfn);
6013 		__init_single_page(page, pfn, zone, nid);
6014 		if (context == MEMMAP_HOTPLUG)
6015 			__SetPageReserved(page);
6016 
6017 		/*
6018 		 * Mark the block movable so that blocks are reserved for
6019 		 * movable at startup. This will force kernel allocations
6020 		 * to reserve their blocks rather than leaking throughout
6021 		 * the address space during boot when many long-lived
6022 		 * kernel allocations are made.
6023 		 *
6024 		 * bitmap is created for zone's valid pfn range. but memmap
6025 		 * can be created for invalid pages (for alignment)
6026 		 * check here not to call set_pageblock_migratetype() against
6027 		 * pfn out of zone.
6028 		 */
6029 		if (!(pfn & (pageblock_nr_pages - 1))) {
6030 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6031 			cond_resched();
6032 		}
6033 		pfn++;
6034 	}
6035 }
6036 
6037 #ifdef CONFIG_ZONE_DEVICE
6038 void __ref memmap_init_zone_device(struct zone *zone,
6039 				   unsigned long start_pfn,
6040 				   unsigned long nr_pages,
6041 				   struct dev_pagemap *pgmap)
6042 {
6043 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6044 	struct pglist_data *pgdat = zone->zone_pgdat;
6045 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6046 	unsigned long zone_idx = zone_idx(zone);
6047 	unsigned long start = jiffies;
6048 	int nid = pgdat->node_id;
6049 
6050 	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6051 		return;
6052 
6053 	/*
6054 	 * The call to memmap_init_zone should have already taken care
6055 	 * of the pages reserved for the memmap, so we can just jump to
6056 	 * the end of that region and start processing the device pages.
6057 	 */
6058 	if (altmap) {
6059 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6060 		nr_pages = end_pfn - start_pfn;
6061 	}
6062 
6063 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6064 		struct page *page = pfn_to_page(pfn);
6065 
6066 		__init_single_page(page, pfn, zone_idx, nid);
6067 
6068 		/*
6069 		 * Mark page reserved as it will need to wait for onlining
6070 		 * phase for it to be fully associated with a zone.
6071 		 *
6072 		 * We can use the non-atomic __set_bit operation for setting
6073 		 * the flag as we are still initializing the pages.
6074 		 */
6075 		__SetPageReserved(page);
6076 
6077 		/*
6078 		 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6079 		 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
6080 		 * ever freed or placed on a driver-private list.
6081 		 */
6082 		page->pgmap = pgmap;
6083 		page->zone_device_data = NULL;
6084 
6085 		/*
6086 		 * Mark the block movable so that blocks are reserved for
6087 		 * movable at startup. This will force kernel allocations
6088 		 * to reserve their blocks rather than leaking throughout
6089 		 * the address space during boot when many long-lived
6090 		 * kernel allocations are made.
6091 		 *
6092 		 * bitmap is created for zone's valid pfn range. but memmap
6093 		 * can be created for invalid pages (for alignment)
6094 		 * check here not to call set_pageblock_migratetype() against
6095 		 * pfn out of zone.
6096 		 *
6097 		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
6098 		 * because this is done early in section_activate()
6099 		 */
6100 		if (!(pfn & (pageblock_nr_pages - 1))) {
6101 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6102 			cond_resched();
6103 		}
6104 	}
6105 
6106 	pr_info("%s initialised %lu pages in %ums\n", __func__,
6107 		nr_pages, jiffies_to_msecs(jiffies - start));
6108 }
6109 
6110 #endif
6111 static void __meminit zone_init_free_lists(struct zone *zone)
6112 {
6113 	unsigned int order, t;
6114 	for_each_migratetype_order(order, t) {
6115 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6116 		zone->free_area[order].nr_free = 0;
6117 	}
6118 }
6119 
6120 void __meminit __weak memmap_init(unsigned long size, int nid,
6121 				  unsigned long zone,
6122 				  unsigned long range_start_pfn)
6123 {
6124 	unsigned long start_pfn, end_pfn;
6125 	unsigned long range_end_pfn = range_start_pfn + size;
6126 	int i;
6127 
6128 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6129 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6130 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6131 
6132 		if (end_pfn > start_pfn) {
6133 			size = end_pfn - start_pfn;
6134 			memmap_init_zone(size, nid, zone, start_pfn,
6135 					 MEMMAP_EARLY, NULL);
6136 		}
6137 	}
6138 }
6139 
6140 static int zone_batchsize(struct zone *zone)
6141 {
6142 #ifdef CONFIG_MMU
6143 	int batch;
6144 
6145 	/*
6146 	 * The per-cpu-pages pools are set to around 1000th of the
6147 	 * size of the zone.
6148 	 */
6149 	batch = zone_managed_pages(zone) / 1024;
6150 	/* But no more than a meg. */
6151 	if (batch * PAGE_SIZE > 1024 * 1024)
6152 		batch = (1024 * 1024) / PAGE_SIZE;
6153 	batch /= 4;		/* We effectively *= 4 below */
6154 	if (batch < 1)
6155 		batch = 1;
6156 
6157 	/*
6158 	 * Clamp the batch to a 2^n - 1 value. Having a power
6159 	 * of 2 value was found to be more likely to have
6160 	 * suboptimal cache aliasing properties in some cases.
6161 	 *
6162 	 * For example if 2 tasks are alternately allocating
6163 	 * batches of pages, one task can end up with a lot
6164 	 * of pages of one half of the possible page colors
6165 	 * and the other with pages of the other colors.
6166 	 */
6167 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
6168 
6169 	return batch;
6170 
6171 #else
6172 	/* The deferral and batching of frees should be suppressed under NOMMU
6173 	 * conditions.
6174 	 *
6175 	 * The problem is that NOMMU needs to be able to allocate large chunks
6176 	 * of contiguous memory as there's no hardware page translation to
6177 	 * assemble apparent contiguous memory from discontiguous pages.
6178 	 *
6179 	 * Queueing large contiguous runs of pages for batching, however,
6180 	 * causes the pages to actually be freed in smaller chunks.  As there
6181 	 * can be a significant delay between the individual batches being
6182 	 * recycled, this leads to the once large chunks of space being
6183 	 * fragmented and becoming unavailable for high-order allocations.
6184 	 */
6185 	return 0;
6186 #endif
6187 }
6188 
6189 /*
6190  * pcp->high and pcp->batch values are related and dependent on one another:
6191  * ->batch must never be higher then ->high.
6192  * The following function updates them in a safe manner without read side
6193  * locking.
6194  *
6195  * Any new users of pcp->batch and pcp->high should ensure they can cope with
6196  * those fields changing asynchronously (acording to the above rule).
6197  *
6198  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6199  * outside of boot time (or some other assurance that no concurrent updaters
6200  * exist).
6201  */
6202 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6203 		unsigned long batch)
6204 {
6205        /* start with a fail safe value for batch */
6206 	pcp->batch = 1;
6207 	smp_wmb();
6208 
6209        /* Update high, then batch, in order */
6210 	pcp->high = high;
6211 	smp_wmb();
6212 
6213 	pcp->batch = batch;
6214 }
6215 
6216 /* a companion to pageset_set_high() */
6217 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6218 {
6219 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6220 }
6221 
6222 static void pageset_init(struct per_cpu_pageset *p)
6223 {
6224 	struct per_cpu_pages *pcp;
6225 	int migratetype;
6226 
6227 	memset(p, 0, sizeof(*p));
6228 
6229 	pcp = &p->pcp;
6230 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6231 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
6232 }
6233 
6234 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6235 {
6236 	pageset_init(p);
6237 	pageset_set_batch(p, batch);
6238 }
6239 
6240 /*
6241  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6242  * to the value high for the pageset p.
6243  */
6244 static void pageset_set_high(struct per_cpu_pageset *p,
6245 				unsigned long high)
6246 {
6247 	unsigned long batch = max(1UL, high / 4);
6248 	if ((high / 4) > (PAGE_SHIFT * 8))
6249 		batch = PAGE_SHIFT * 8;
6250 
6251 	pageset_update(&p->pcp, high, batch);
6252 }
6253 
6254 static void pageset_set_high_and_batch(struct zone *zone,
6255 				       struct per_cpu_pageset *pcp)
6256 {
6257 	if (percpu_pagelist_fraction)
6258 		pageset_set_high(pcp,
6259 			(zone_managed_pages(zone) /
6260 				percpu_pagelist_fraction));
6261 	else
6262 		pageset_set_batch(pcp, zone_batchsize(zone));
6263 }
6264 
6265 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6266 {
6267 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6268 
6269 	pageset_init(pcp);
6270 	pageset_set_high_and_batch(zone, pcp);
6271 }
6272 
6273 void __meminit setup_zone_pageset(struct zone *zone)
6274 {
6275 	int cpu;
6276 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
6277 	for_each_possible_cpu(cpu)
6278 		zone_pageset_init(zone, cpu);
6279 }
6280 
6281 /*
6282  * Allocate per cpu pagesets and initialize them.
6283  * Before this call only boot pagesets were available.
6284  */
6285 void __init setup_per_cpu_pageset(void)
6286 {
6287 	struct pglist_data *pgdat;
6288 	struct zone *zone;
6289 	int __maybe_unused cpu;
6290 
6291 	for_each_populated_zone(zone)
6292 		setup_zone_pageset(zone);
6293 
6294 #ifdef CONFIG_NUMA
6295 	/*
6296 	 * Unpopulated zones continue using the boot pagesets.
6297 	 * The numa stats for these pagesets need to be reset.
6298 	 * Otherwise, they will end up skewing the stats of
6299 	 * the nodes these zones are associated with.
6300 	 */
6301 	for_each_possible_cpu(cpu) {
6302 		struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
6303 		memset(pcp->vm_numa_stat_diff, 0,
6304 		       sizeof(pcp->vm_numa_stat_diff));
6305 	}
6306 #endif
6307 
6308 	for_each_online_pgdat(pgdat)
6309 		pgdat->per_cpu_nodestats =
6310 			alloc_percpu(struct per_cpu_nodestat);
6311 }
6312 
6313 static __meminit void zone_pcp_init(struct zone *zone)
6314 {
6315 	/*
6316 	 * per cpu subsystem is not up at this point. The following code
6317 	 * relies on the ability of the linker to provide the
6318 	 * offset of a (static) per cpu variable into the per cpu area.
6319 	 */
6320 	zone->pageset = &boot_pageset;
6321 
6322 	if (populated_zone(zone))
6323 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
6324 			zone->name, zone->present_pages,
6325 					 zone_batchsize(zone));
6326 }
6327 
6328 void __meminit init_currently_empty_zone(struct zone *zone,
6329 					unsigned long zone_start_pfn,
6330 					unsigned long size)
6331 {
6332 	struct pglist_data *pgdat = zone->zone_pgdat;
6333 	int zone_idx = zone_idx(zone) + 1;
6334 
6335 	if (zone_idx > pgdat->nr_zones)
6336 		pgdat->nr_zones = zone_idx;
6337 
6338 	zone->zone_start_pfn = zone_start_pfn;
6339 
6340 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
6341 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
6342 			pgdat->node_id,
6343 			(unsigned long)zone_idx(zone),
6344 			zone_start_pfn, (zone_start_pfn + size));
6345 
6346 	zone_init_free_lists(zone);
6347 	zone->initialized = 1;
6348 }
6349 
6350 /**
6351  * get_pfn_range_for_nid - Return the start and end page frames for a node
6352  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6353  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6354  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6355  *
6356  * It returns the start and end page frame of a node based on information
6357  * provided by memblock_set_node(). If called for a node
6358  * with no available memory, a warning is printed and the start and end
6359  * PFNs will be 0.
6360  */
6361 void __init get_pfn_range_for_nid(unsigned int nid,
6362 			unsigned long *start_pfn, unsigned long *end_pfn)
6363 {
6364 	unsigned long this_start_pfn, this_end_pfn;
6365 	int i;
6366 
6367 	*start_pfn = -1UL;
6368 	*end_pfn = 0;
6369 
6370 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6371 		*start_pfn = min(*start_pfn, this_start_pfn);
6372 		*end_pfn = max(*end_pfn, this_end_pfn);
6373 	}
6374 
6375 	if (*start_pfn == -1UL)
6376 		*start_pfn = 0;
6377 }
6378 
6379 /*
6380  * This finds a zone that can be used for ZONE_MOVABLE pages. The
6381  * assumption is made that zones within a node are ordered in monotonic
6382  * increasing memory addresses so that the "highest" populated zone is used
6383  */
6384 static void __init find_usable_zone_for_movable(void)
6385 {
6386 	int zone_index;
6387 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6388 		if (zone_index == ZONE_MOVABLE)
6389 			continue;
6390 
6391 		if (arch_zone_highest_possible_pfn[zone_index] >
6392 				arch_zone_lowest_possible_pfn[zone_index])
6393 			break;
6394 	}
6395 
6396 	VM_BUG_ON(zone_index == -1);
6397 	movable_zone = zone_index;
6398 }
6399 
6400 /*
6401  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6402  * because it is sized independent of architecture. Unlike the other zones,
6403  * the starting point for ZONE_MOVABLE is not fixed. It may be different
6404  * in each node depending on the size of each node and how evenly kernelcore
6405  * is distributed. This helper function adjusts the zone ranges
6406  * provided by the architecture for a given node by using the end of the
6407  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6408  * zones within a node are in order of monotonic increases memory addresses
6409  */
6410 static void __init adjust_zone_range_for_zone_movable(int nid,
6411 					unsigned long zone_type,
6412 					unsigned long node_start_pfn,
6413 					unsigned long node_end_pfn,
6414 					unsigned long *zone_start_pfn,
6415 					unsigned long *zone_end_pfn)
6416 {
6417 	/* Only adjust if ZONE_MOVABLE is on this node */
6418 	if (zone_movable_pfn[nid]) {
6419 		/* Size ZONE_MOVABLE */
6420 		if (zone_type == ZONE_MOVABLE) {
6421 			*zone_start_pfn = zone_movable_pfn[nid];
6422 			*zone_end_pfn = min(node_end_pfn,
6423 				arch_zone_highest_possible_pfn[movable_zone]);
6424 
6425 		/* Adjust for ZONE_MOVABLE starting within this range */
6426 		} else if (!mirrored_kernelcore &&
6427 			*zone_start_pfn < zone_movable_pfn[nid] &&
6428 			*zone_end_pfn > zone_movable_pfn[nid]) {
6429 			*zone_end_pfn = zone_movable_pfn[nid];
6430 
6431 		/* Check if this whole range is within ZONE_MOVABLE */
6432 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
6433 			*zone_start_pfn = *zone_end_pfn;
6434 	}
6435 }
6436 
6437 /*
6438  * Return the number of pages a zone spans in a node, including holes
6439  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6440  */
6441 static unsigned long __init zone_spanned_pages_in_node(int nid,
6442 					unsigned long zone_type,
6443 					unsigned long node_start_pfn,
6444 					unsigned long node_end_pfn,
6445 					unsigned long *zone_start_pfn,
6446 					unsigned long *zone_end_pfn)
6447 {
6448 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6449 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6450 	/* When hotadd a new node from cpu_up(), the node should be empty */
6451 	if (!node_start_pfn && !node_end_pfn)
6452 		return 0;
6453 
6454 	/* Get the start and end of the zone */
6455 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6456 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6457 	adjust_zone_range_for_zone_movable(nid, zone_type,
6458 				node_start_pfn, node_end_pfn,
6459 				zone_start_pfn, zone_end_pfn);
6460 
6461 	/* Check that this node has pages within the zone's required range */
6462 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6463 		return 0;
6464 
6465 	/* Move the zone boundaries inside the node if necessary */
6466 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6467 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6468 
6469 	/* Return the spanned pages */
6470 	return *zone_end_pfn - *zone_start_pfn;
6471 }
6472 
6473 /*
6474  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6475  * then all holes in the requested range will be accounted for.
6476  */
6477 unsigned long __init __absent_pages_in_range(int nid,
6478 				unsigned long range_start_pfn,
6479 				unsigned long range_end_pfn)
6480 {
6481 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
6482 	unsigned long start_pfn, end_pfn;
6483 	int i;
6484 
6485 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6486 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6487 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6488 		nr_absent -= end_pfn - start_pfn;
6489 	}
6490 	return nr_absent;
6491 }
6492 
6493 /**
6494  * absent_pages_in_range - Return number of page frames in holes within a range
6495  * @start_pfn: The start PFN to start searching for holes
6496  * @end_pfn: The end PFN to stop searching for holes
6497  *
6498  * Return: the number of pages frames in memory holes within a range.
6499  */
6500 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6501 							unsigned long end_pfn)
6502 {
6503 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6504 }
6505 
6506 /* Return the number of page frames in holes in a zone on a node */
6507 static unsigned long __init zone_absent_pages_in_node(int nid,
6508 					unsigned long zone_type,
6509 					unsigned long node_start_pfn,
6510 					unsigned long node_end_pfn)
6511 {
6512 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6513 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6514 	unsigned long zone_start_pfn, zone_end_pfn;
6515 	unsigned long nr_absent;
6516 
6517 	/* When hotadd a new node from cpu_up(), the node should be empty */
6518 	if (!node_start_pfn && !node_end_pfn)
6519 		return 0;
6520 
6521 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6522 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6523 
6524 	adjust_zone_range_for_zone_movable(nid, zone_type,
6525 			node_start_pfn, node_end_pfn,
6526 			&zone_start_pfn, &zone_end_pfn);
6527 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6528 
6529 	/*
6530 	 * ZONE_MOVABLE handling.
6531 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6532 	 * and vice versa.
6533 	 */
6534 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6535 		unsigned long start_pfn, end_pfn;
6536 		struct memblock_region *r;
6537 
6538 		for_each_memblock(memory, r) {
6539 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
6540 					  zone_start_pfn, zone_end_pfn);
6541 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
6542 					zone_start_pfn, zone_end_pfn);
6543 
6544 			if (zone_type == ZONE_MOVABLE &&
6545 			    memblock_is_mirror(r))
6546 				nr_absent += end_pfn - start_pfn;
6547 
6548 			if (zone_type == ZONE_NORMAL &&
6549 			    !memblock_is_mirror(r))
6550 				nr_absent += end_pfn - start_pfn;
6551 		}
6552 	}
6553 
6554 	return nr_absent;
6555 }
6556 
6557 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6558 						unsigned long node_start_pfn,
6559 						unsigned long node_end_pfn)
6560 {
6561 	unsigned long realtotalpages = 0, totalpages = 0;
6562 	enum zone_type i;
6563 
6564 	for (i = 0; i < MAX_NR_ZONES; i++) {
6565 		struct zone *zone = pgdat->node_zones + i;
6566 		unsigned long zone_start_pfn, zone_end_pfn;
6567 		unsigned long spanned, absent;
6568 		unsigned long size, real_size;
6569 
6570 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
6571 						     node_start_pfn,
6572 						     node_end_pfn,
6573 						     &zone_start_pfn,
6574 						     &zone_end_pfn);
6575 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
6576 						   node_start_pfn,
6577 						   node_end_pfn);
6578 
6579 		size = spanned;
6580 		real_size = size - absent;
6581 
6582 		if (size)
6583 			zone->zone_start_pfn = zone_start_pfn;
6584 		else
6585 			zone->zone_start_pfn = 0;
6586 		zone->spanned_pages = size;
6587 		zone->present_pages = real_size;
6588 
6589 		totalpages += size;
6590 		realtotalpages += real_size;
6591 	}
6592 
6593 	pgdat->node_spanned_pages = totalpages;
6594 	pgdat->node_present_pages = realtotalpages;
6595 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6596 							realtotalpages);
6597 }
6598 
6599 #ifndef CONFIG_SPARSEMEM
6600 /*
6601  * Calculate the size of the zone->blockflags rounded to an unsigned long
6602  * Start by making sure zonesize is a multiple of pageblock_order by rounding
6603  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6604  * round what is now in bits to nearest long in bits, then return it in
6605  * bytes.
6606  */
6607 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6608 {
6609 	unsigned long usemapsize;
6610 
6611 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6612 	usemapsize = roundup(zonesize, pageblock_nr_pages);
6613 	usemapsize = usemapsize >> pageblock_order;
6614 	usemapsize *= NR_PAGEBLOCK_BITS;
6615 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6616 
6617 	return usemapsize / 8;
6618 }
6619 
6620 static void __ref setup_usemap(struct pglist_data *pgdat,
6621 				struct zone *zone,
6622 				unsigned long zone_start_pfn,
6623 				unsigned long zonesize)
6624 {
6625 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6626 	zone->pageblock_flags = NULL;
6627 	if (usemapsize) {
6628 		zone->pageblock_flags =
6629 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6630 					    pgdat->node_id);
6631 		if (!zone->pageblock_flags)
6632 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6633 			      usemapsize, zone->name, pgdat->node_id);
6634 	}
6635 }
6636 #else
6637 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6638 				unsigned long zone_start_pfn, unsigned long zonesize) {}
6639 #endif /* CONFIG_SPARSEMEM */
6640 
6641 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6642 
6643 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6644 void __init set_pageblock_order(void)
6645 {
6646 	unsigned int order;
6647 
6648 	/* Check that pageblock_nr_pages has not already been setup */
6649 	if (pageblock_order)
6650 		return;
6651 
6652 	if (HPAGE_SHIFT > PAGE_SHIFT)
6653 		order = HUGETLB_PAGE_ORDER;
6654 	else
6655 		order = MAX_ORDER - 1;
6656 
6657 	/*
6658 	 * Assume the largest contiguous order of interest is a huge page.
6659 	 * This value may be variable depending on boot parameters on IA64 and
6660 	 * powerpc.
6661 	 */
6662 	pageblock_order = order;
6663 }
6664 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6665 
6666 /*
6667  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6668  * is unused as pageblock_order is set at compile-time. See
6669  * include/linux/pageblock-flags.h for the values of pageblock_order based on
6670  * the kernel config
6671  */
6672 void __init set_pageblock_order(void)
6673 {
6674 }
6675 
6676 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6677 
6678 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6679 						unsigned long present_pages)
6680 {
6681 	unsigned long pages = spanned_pages;
6682 
6683 	/*
6684 	 * Provide a more accurate estimation if there are holes within
6685 	 * the zone and SPARSEMEM is in use. If there are holes within the
6686 	 * zone, each populated memory region may cost us one or two extra
6687 	 * memmap pages due to alignment because memmap pages for each
6688 	 * populated regions may not be naturally aligned on page boundary.
6689 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6690 	 */
6691 	if (spanned_pages > present_pages + (present_pages >> 4) &&
6692 	    IS_ENABLED(CONFIG_SPARSEMEM))
6693 		pages = present_pages;
6694 
6695 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6696 }
6697 
6698 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6699 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6700 {
6701 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6702 
6703 	spin_lock_init(&ds_queue->split_queue_lock);
6704 	INIT_LIST_HEAD(&ds_queue->split_queue);
6705 	ds_queue->split_queue_len = 0;
6706 }
6707 #else
6708 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6709 #endif
6710 
6711 #ifdef CONFIG_COMPACTION
6712 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6713 {
6714 	init_waitqueue_head(&pgdat->kcompactd_wait);
6715 }
6716 #else
6717 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6718 #endif
6719 
6720 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6721 {
6722 	pgdat_resize_init(pgdat);
6723 
6724 	pgdat_init_split_queue(pgdat);
6725 	pgdat_init_kcompactd(pgdat);
6726 
6727 	init_waitqueue_head(&pgdat->kswapd_wait);
6728 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6729 
6730 	pgdat_page_ext_init(pgdat);
6731 	spin_lock_init(&pgdat->lru_lock);
6732 	lruvec_init(&pgdat->__lruvec);
6733 }
6734 
6735 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6736 							unsigned long remaining_pages)
6737 {
6738 	atomic_long_set(&zone->managed_pages, remaining_pages);
6739 	zone_set_nid(zone, nid);
6740 	zone->name = zone_names[idx];
6741 	zone->zone_pgdat = NODE_DATA(nid);
6742 	spin_lock_init(&zone->lock);
6743 	zone_seqlock_init(zone);
6744 	zone_pcp_init(zone);
6745 }
6746 
6747 /*
6748  * Set up the zone data structures
6749  * - init pgdat internals
6750  * - init all zones belonging to this node
6751  *
6752  * NOTE: this function is only called during memory hotplug
6753  */
6754 #ifdef CONFIG_MEMORY_HOTPLUG
6755 void __ref free_area_init_core_hotplug(int nid)
6756 {
6757 	enum zone_type z;
6758 	pg_data_t *pgdat = NODE_DATA(nid);
6759 
6760 	pgdat_init_internals(pgdat);
6761 	for (z = 0; z < MAX_NR_ZONES; z++)
6762 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6763 }
6764 #endif
6765 
6766 /*
6767  * Set up the zone data structures:
6768  *   - mark all pages reserved
6769  *   - mark all memory queues empty
6770  *   - clear the memory bitmaps
6771  *
6772  * NOTE: pgdat should get zeroed by caller.
6773  * NOTE: this function is only called during early init.
6774  */
6775 static void __init free_area_init_core(struct pglist_data *pgdat)
6776 {
6777 	enum zone_type j;
6778 	int nid = pgdat->node_id;
6779 
6780 	pgdat_init_internals(pgdat);
6781 	pgdat->per_cpu_nodestats = &boot_nodestats;
6782 
6783 	for (j = 0; j < MAX_NR_ZONES; j++) {
6784 		struct zone *zone = pgdat->node_zones + j;
6785 		unsigned long size, freesize, memmap_pages;
6786 		unsigned long zone_start_pfn = zone->zone_start_pfn;
6787 
6788 		size = zone->spanned_pages;
6789 		freesize = zone->present_pages;
6790 
6791 		/*
6792 		 * Adjust freesize so that it accounts for how much memory
6793 		 * is used by this zone for memmap. This affects the watermark
6794 		 * and per-cpu initialisations
6795 		 */
6796 		memmap_pages = calc_memmap_size(size, freesize);
6797 		if (!is_highmem_idx(j)) {
6798 			if (freesize >= memmap_pages) {
6799 				freesize -= memmap_pages;
6800 				if (memmap_pages)
6801 					printk(KERN_DEBUG
6802 					       "  %s zone: %lu pages used for memmap\n",
6803 					       zone_names[j], memmap_pages);
6804 			} else
6805 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6806 					zone_names[j], memmap_pages, freesize);
6807 		}
6808 
6809 		/* Account for reserved pages */
6810 		if (j == 0 && freesize > dma_reserve) {
6811 			freesize -= dma_reserve;
6812 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6813 					zone_names[0], dma_reserve);
6814 		}
6815 
6816 		if (!is_highmem_idx(j))
6817 			nr_kernel_pages += freesize;
6818 		/* Charge for highmem memmap if there are enough kernel pages */
6819 		else if (nr_kernel_pages > memmap_pages * 2)
6820 			nr_kernel_pages -= memmap_pages;
6821 		nr_all_pages += freesize;
6822 
6823 		/*
6824 		 * Set an approximate value for lowmem here, it will be adjusted
6825 		 * when the bootmem allocator frees pages into the buddy system.
6826 		 * And all highmem pages will be managed by the buddy system.
6827 		 */
6828 		zone_init_internals(zone, j, nid, freesize);
6829 
6830 		if (!size)
6831 			continue;
6832 
6833 		set_pageblock_order();
6834 		setup_usemap(pgdat, zone, zone_start_pfn, size);
6835 		init_currently_empty_zone(zone, zone_start_pfn, size);
6836 		memmap_init(size, nid, j, zone_start_pfn);
6837 	}
6838 }
6839 
6840 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6841 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6842 {
6843 	unsigned long __maybe_unused start = 0;
6844 	unsigned long __maybe_unused offset = 0;
6845 
6846 	/* Skip empty nodes */
6847 	if (!pgdat->node_spanned_pages)
6848 		return;
6849 
6850 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6851 	offset = pgdat->node_start_pfn - start;
6852 	/* ia64 gets its own node_mem_map, before this, without bootmem */
6853 	if (!pgdat->node_mem_map) {
6854 		unsigned long size, end;
6855 		struct page *map;
6856 
6857 		/*
6858 		 * The zone's endpoints aren't required to be MAX_ORDER
6859 		 * aligned but the node_mem_map endpoints must be in order
6860 		 * for the buddy allocator to function correctly.
6861 		 */
6862 		end = pgdat_end_pfn(pgdat);
6863 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
6864 		size =  (end - start) * sizeof(struct page);
6865 		map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6866 					  pgdat->node_id);
6867 		if (!map)
6868 			panic("Failed to allocate %ld bytes for node %d memory map\n",
6869 			      size, pgdat->node_id);
6870 		pgdat->node_mem_map = map + offset;
6871 	}
6872 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6873 				__func__, pgdat->node_id, (unsigned long)pgdat,
6874 				(unsigned long)pgdat->node_mem_map);
6875 #ifndef CONFIG_NEED_MULTIPLE_NODES
6876 	/*
6877 	 * With no DISCONTIG, the global mem_map is just set as node 0's
6878 	 */
6879 	if (pgdat == NODE_DATA(0)) {
6880 		mem_map = NODE_DATA(0)->node_mem_map;
6881 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6882 			mem_map -= offset;
6883 	}
6884 #endif
6885 }
6886 #else
6887 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6888 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6889 
6890 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6891 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6892 {
6893 	pgdat->first_deferred_pfn = ULONG_MAX;
6894 }
6895 #else
6896 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6897 #endif
6898 
6899 static void __init free_area_init_node(int nid)
6900 {
6901 	pg_data_t *pgdat = NODE_DATA(nid);
6902 	unsigned long start_pfn = 0;
6903 	unsigned long end_pfn = 0;
6904 
6905 	/* pg_data_t should be reset to zero when it's allocated */
6906 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
6907 
6908 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6909 
6910 	pgdat->node_id = nid;
6911 	pgdat->node_start_pfn = start_pfn;
6912 	pgdat->per_cpu_nodestats = NULL;
6913 
6914 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6915 		(u64)start_pfn << PAGE_SHIFT,
6916 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6917 	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
6918 
6919 	alloc_node_mem_map(pgdat);
6920 	pgdat_set_deferred_range(pgdat);
6921 
6922 	free_area_init_core(pgdat);
6923 }
6924 
6925 void __init free_area_init_memoryless_node(int nid)
6926 {
6927 	free_area_init_node(nid);
6928 }
6929 
6930 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6931 /*
6932  * Initialize all valid struct pages in the range [spfn, epfn) and mark them
6933  * PageReserved(). Return the number of struct pages that were initialized.
6934  */
6935 static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn)
6936 {
6937 	unsigned long pfn;
6938 	u64 pgcnt = 0;
6939 
6940 	for (pfn = spfn; pfn < epfn; pfn++) {
6941 		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6942 			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6943 				+ pageblock_nr_pages - 1;
6944 			continue;
6945 		}
6946 		/*
6947 		 * Use a fake node/zone (0) for now. Some of these pages
6948 		 * (in memblock.reserved but not in memblock.memory) will
6949 		 * get re-initialized via reserve_bootmem_region() later.
6950 		 */
6951 		__init_single_page(pfn_to_page(pfn), pfn, 0, 0);
6952 		__SetPageReserved(pfn_to_page(pfn));
6953 		pgcnt++;
6954 	}
6955 
6956 	return pgcnt;
6957 }
6958 
6959 /*
6960  * Only struct pages that are backed by physical memory are zeroed and
6961  * initialized by going through __init_single_page(). But, there are some
6962  * struct pages which are reserved in memblock allocator and their fields
6963  * may be accessed (for example page_to_pfn() on some configuration accesses
6964  * flags). We must explicitly initialize those struct pages.
6965  *
6966  * This function also addresses a similar issue where struct pages are left
6967  * uninitialized because the physical address range is not covered by
6968  * memblock.memory or memblock.reserved. That could happen when memblock
6969  * layout is manually configured via memmap=, or when the highest physical
6970  * address (max_pfn) does not end on a section boundary.
6971  */
6972 static void __init init_unavailable_mem(void)
6973 {
6974 	phys_addr_t start, end;
6975 	u64 i, pgcnt;
6976 	phys_addr_t next = 0;
6977 
6978 	/*
6979 	 * Loop through unavailable ranges not covered by memblock.memory.
6980 	 */
6981 	pgcnt = 0;
6982 	for_each_mem_range(i, &memblock.memory, NULL,
6983 			NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6984 		if (next < start)
6985 			pgcnt += init_unavailable_range(PFN_DOWN(next),
6986 							PFN_UP(start));
6987 		next = end;
6988 	}
6989 
6990 	/*
6991 	 * Early sections always have a fully populated memmap for the whole
6992 	 * section - see pfn_valid(). If the last section has holes at the
6993 	 * end and that section is marked "online", the memmap will be
6994 	 * considered initialized. Make sure that memmap has a well defined
6995 	 * state.
6996 	 */
6997 	pgcnt += init_unavailable_range(PFN_DOWN(next),
6998 					round_up(max_pfn, PAGES_PER_SECTION));
6999 
7000 	/*
7001 	 * Struct pages that do not have backing memory. This could be because
7002 	 * firmware is using some of this memory, or for some other reasons.
7003 	 */
7004 	if (pgcnt)
7005 		pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
7006 }
7007 #else
7008 static inline void __init init_unavailable_mem(void)
7009 {
7010 }
7011 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
7012 
7013 #if MAX_NUMNODES > 1
7014 /*
7015  * Figure out the number of possible node ids.
7016  */
7017 void __init setup_nr_node_ids(void)
7018 {
7019 	unsigned int highest;
7020 
7021 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7022 	nr_node_ids = highest + 1;
7023 }
7024 #endif
7025 
7026 /**
7027  * node_map_pfn_alignment - determine the maximum internode alignment
7028  *
7029  * This function should be called after node map is populated and sorted.
7030  * It calculates the maximum power of two alignment which can distinguish
7031  * all the nodes.
7032  *
7033  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7034  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7035  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7036  * shifted, 1GiB is enough and this function will indicate so.
7037  *
7038  * This is used to test whether pfn -> nid mapping of the chosen memory
7039  * model has fine enough granularity to avoid incorrect mapping for the
7040  * populated node map.
7041  *
7042  * Return: the determined alignment in pfn's.  0 if there is no alignment
7043  * requirement (single node).
7044  */
7045 unsigned long __init node_map_pfn_alignment(void)
7046 {
7047 	unsigned long accl_mask = 0, last_end = 0;
7048 	unsigned long start, end, mask;
7049 	int last_nid = NUMA_NO_NODE;
7050 	int i, nid;
7051 
7052 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7053 		if (!start || last_nid < 0 || last_nid == nid) {
7054 			last_nid = nid;
7055 			last_end = end;
7056 			continue;
7057 		}
7058 
7059 		/*
7060 		 * Start with a mask granular enough to pin-point to the
7061 		 * start pfn and tick off bits one-by-one until it becomes
7062 		 * too coarse to separate the current node from the last.
7063 		 */
7064 		mask = ~((1 << __ffs(start)) - 1);
7065 		while (mask && last_end <= (start & (mask << 1)))
7066 			mask <<= 1;
7067 
7068 		/* accumulate all internode masks */
7069 		accl_mask |= mask;
7070 	}
7071 
7072 	/* convert mask to number of pages */
7073 	return ~accl_mask + 1;
7074 }
7075 
7076 /**
7077  * find_min_pfn_with_active_regions - Find the minimum PFN registered
7078  *
7079  * Return: the minimum PFN based on information provided via
7080  * memblock_set_node().
7081  */
7082 unsigned long __init find_min_pfn_with_active_regions(void)
7083 {
7084 	return PHYS_PFN(memblock_start_of_DRAM());
7085 }
7086 
7087 /*
7088  * early_calculate_totalpages()
7089  * Sum pages in active regions for movable zone.
7090  * Populate N_MEMORY for calculating usable_nodes.
7091  */
7092 static unsigned long __init early_calculate_totalpages(void)
7093 {
7094 	unsigned long totalpages = 0;
7095 	unsigned long start_pfn, end_pfn;
7096 	int i, nid;
7097 
7098 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7099 		unsigned long pages = end_pfn - start_pfn;
7100 
7101 		totalpages += pages;
7102 		if (pages)
7103 			node_set_state(nid, N_MEMORY);
7104 	}
7105 	return totalpages;
7106 }
7107 
7108 /*
7109  * Find the PFN the Movable zone begins in each node. Kernel memory
7110  * is spread evenly between nodes as long as the nodes have enough
7111  * memory. When they don't, some nodes will have more kernelcore than
7112  * others
7113  */
7114 static void __init find_zone_movable_pfns_for_nodes(void)
7115 {
7116 	int i, nid;
7117 	unsigned long usable_startpfn;
7118 	unsigned long kernelcore_node, kernelcore_remaining;
7119 	/* save the state before borrow the nodemask */
7120 	nodemask_t saved_node_state = node_states[N_MEMORY];
7121 	unsigned long totalpages = early_calculate_totalpages();
7122 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7123 	struct memblock_region *r;
7124 
7125 	/* Need to find movable_zone earlier when movable_node is specified. */
7126 	find_usable_zone_for_movable();
7127 
7128 	/*
7129 	 * If movable_node is specified, ignore kernelcore and movablecore
7130 	 * options.
7131 	 */
7132 	if (movable_node_is_enabled()) {
7133 		for_each_memblock(memory, r) {
7134 			if (!memblock_is_hotpluggable(r))
7135 				continue;
7136 
7137 			nid = memblock_get_region_node(r);
7138 
7139 			usable_startpfn = PFN_DOWN(r->base);
7140 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7141 				min(usable_startpfn, zone_movable_pfn[nid]) :
7142 				usable_startpfn;
7143 		}
7144 
7145 		goto out2;
7146 	}
7147 
7148 	/*
7149 	 * If kernelcore=mirror is specified, ignore movablecore option
7150 	 */
7151 	if (mirrored_kernelcore) {
7152 		bool mem_below_4gb_not_mirrored = false;
7153 
7154 		for_each_memblock(memory, r) {
7155 			if (memblock_is_mirror(r))
7156 				continue;
7157 
7158 			nid = memblock_get_region_node(r);
7159 
7160 			usable_startpfn = memblock_region_memory_base_pfn(r);
7161 
7162 			if (usable_startpfn < 0x100000) {
7163 				mem_below_4gb_not_mirrored = true;
7164 				continue;
7165 			}
7166 
7167 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7168 				min(usable_startpfn, zone_movable_pfn[nid]) :
7169 				usable_startpfn;
7170 		}
7171 
7172 		if (mem_below_4gb_not_mirrored)
7173 			pr_warn("This configuration results in unmirrored kernel memory.\n");
7174 
7175 		goto out2;
7176 	}
7177 
7178 	/*
7179 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7180 	 * amount of necessary memory.
7181 	 */
7182 	if (required_kernelcore_percent)
7183 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7184 				       10000UL;
7185 	if (required_movablecore_percent)
7186 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7187 					10000UL;
7188 
7189 	/*
7190 	 * If movablecore= was specified, calculate what size of
7191 	 * kernelcore that corresponds so that memory usable for
7192 	 * any allocation type is evenly spread. If both kernelcore
7193 	 * and movablecore are specified, then the value of kernelcore
7194 	 * will be used for required_kernelcore if it's greater than
7195 	 * what movablecore would have allowed.
7196 	 */
7197 	if (required_movablecore) {
7198 		unsigned long corepages;
7199 
7200 		/*
7201 		 * Round-up so that ZONE_MOVABLE is at least as large as what
7202 		 * was requested by the user
7203 		 */
7204 		required_movablecore =
7205 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7206 		required_movablecore = min(totalpages, required_movablecore);
7207 		corepages = totalpages - required_movablecore;
7208 
7209 		required_kernelcore = max(required_kernelcore, corepages);
7210 	}
7211 
7212 	/*
7213 	 * If kernelcore was not specified or kernelcore size is larger
7214 	 * than totalpages, there is no ZONE_MOVABLE.
7215 	 */
7216 	if (!required_kernelcore || required_kernelcore >= totalpages)
7217 		goto out;
7218 
7219 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7220 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7221 
7222 restart:
7223 	/* Spread kernelcore memory as evenly as possible throughout nodes */
7224 	kernelcore_node = required_kernelcore / usable_nodes;
7225 	for_each_node_state(nid, N_MEMORY) {
7226 		unsigned long start_pfn, end_pfn;
7227 
7228 		/*
7229 		 * Recalculate kernelcore_node if the division per node
7230 		 * now exceeds what is necessary to satisfy the requested
7231 		 * amount of memory for the kernel
7232 		 */
7233 		if (required_kernelcore < kernelcore_node)
7234 			kernelcore_node = required_kernelcore / usable_nodes;
7235 
7236 		/*
7237 		 * As the map is walked, we track how much memory is usable
7238 		 * by the kernel using kernelcore_remaining. When it is
7239 		 * 0, the rest of the node is usable by ZONE_MOVABLE
7240 		 */
7241 		kernelcore_remaining = kernelcore_node;
7242 
7243 		/* Go through each range of PFNs within this node */
7244 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7245 			unsigned long size_pages;
7246 
7247 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7248 			if (start_pfn >= end_pfn)
7249 				continue;
7250 
7251 			/* Account for what is only usable for kernelcore */
7252 			if (start_pfn < usable_startpfn) {
7253 				unsigned long kernel_pages;
7254 				kernel_pages = min(end_pfn, usable_startpfn)
7255 								- start_pfn;
7256 
7257 				kernelcore_remaining -= min(kernel_pages,
7258 							kernelcore_remaining);
7259 				required_kernelcore -= min(kernel_pages,
7260 							required_kernelcore);
7261 
7262 				/* Continue if range is now fully accounted */
7263 				if (end_pfn <= usable_startpfn) {
7264 
7265 					/*
7266 					 * Push zone_movable_pfn to the end so
7267 					 * that if we have to rebalance
7268 					 * kernelcore across nodes, we will
7269 					 * not double account here
7270 					 */
7271 					zone_movable_pfn[nid] = end_pfn;
7272 					continue;
7273 				}
7274 				start_pfn = usable_startpfn;
7275 			}
7276 
7277 			/*
7278 			 * The usable PFN range for ZONE_MOVABLE is from
7279 			 * start_pfn->end_pfn. Calculate size_pages as the
7280 			 * number of pages used as kernelcore
7281 			 */
7282 			size_pages = end_pfn - start_pfn;
7283 			if (size_pages > kernelcore_remaining)
7284 				size_pages = kernelcore_remaining;
7285 			zone_movable_pfn[nid] = start_pfn + size_pages;
7286 
7287 			/*
7288 			 * Some kernelcore has been met, update counts and
7289 			 * break if the kernelcore for this node has been
7290 			 * satisfied
7291 			 */
7292 			required_kernelcore -= min(required_kernelcore,
7293 								size_pages);
7294 			kernelcore_remaining -= size_pages;
7295 			if (!kernelcore_remaining)
7296 				break;
7297 		}
7298 	}
7299 
7300 	/*
7301 	 * If there is still required_kernelcore, we do another pass with one
7302 	 * less node in the count. This will push zone_movable_pfn[nid] further
7303 	 * along on the nodes that still have memory until kernelcore is
7304 	 * satisfied
7305 	 */
7306 	usable_nodes--;
7307 	if (usable_nodes && required_kernelcore > usable_nodes)
7308 		goto restart;
7309 
7310 out2:
7311 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7312 	for (nid = 0; nid < MAX_NUMNODES; nid++)
7313 		zone_movable_pfn[nid] =
7314 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7315 
7316 out:
7317 	/* restore the node_state */
7318 	node_states[N_MEMORY] = saved_node_state;
7319 }
7320 
7321 /* Any regular or high memory on that node ? */
7322 static void check_for_memory(pg_data_t *pgdat, int nid)
7323 {
7324 	enum zone_type zone_type;
7325 
7326 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7327 		struct zone *zone = &pgdat->node_zones[zone_type];
7328 		if (populated_zone(zone)) {
7329 			if (IS_ENABLED(CONFIG_HIGHMEM))
7330 				node_set_state(nid, N_HIGH_MEMORY);
7331 			if (zone_type <= ZONE_NORMAL)
7332 				node_set_state(nid, N_NORMAL_MEMORY);
7333 			break;
7334 		}
7335 	}
7336 }
7337 
7338 /*
7339  * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7340  * such cases we allow max_zone_pfn sorted in the descending order
7341  */
7342 bool __weak arch_has_descending_max_zone_pfns(void)
7343 {
7344 	return false;
7345 }
7346 
7347 /**
7348  * free_area_init - Initialise all pg_data_t and zone data
7349  * @max_zone_pfn: an array of max PFNs for each zone
7350  *
7351  * This will call free_area_init_node() for each active node in the system.
7352  * Using the page ranges provided by memblock_set_node(), the size of each
7353  * zone in each node and their holes is calculated. If the maximum PFN
7354  * between two adjacent zones match, it is assumed that the zone is empty.
7355  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7356  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7357  * starts where the previous one ended. For example, ZONE_DMA32 starts
7358  * at arch_max_dma_pfn.
7359  */
7360 void __init free_area_init(unsigned long *max_zone_pfn)
7361 {
7362 	unsigned long start_pfn, end_pfn;
7363 	int i, nid, zone;
7364 	bool descending;
7365 
7366 	/* Record where the zone boundaries are */
7367 	memset(arch_zone_lowest_possible_pfn, 0,
7368 				sizeof(arch_zone_lowest_possible_pfn));
7369 	memset(arch_zone_highest_possible_pfn, 0,
7370 				sizeof(arch_zone_highest_possible_pfn));
7371 
7372 	start_pfn = find_min_pfn_with_active_regions();
7373 	descending = arch_has_descending_max_zone_pfns();
7374 
7375 	for (i = 0; i < MAX_NR_ZONES; i++) {
7376 		if (descending)
7377 			zone = MAX_NR_ZONES - i - 1;
7378 		else
7379 			zone = i;
7380 
7381 		if (zone == ZONE_MOVABLE)
7382 			continue;
7383 
7384 		end_pfn = max(max_zone_pfn[zone], start_pfn);
7385 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
7386 		arch_zone_highest_possible_pfn[zone] = end_pfn;
7387 
7388 		start_pfn = end_pfn;
7389 	}
7390 
7391 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
7392 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7393 	find_zone_movable_pfns_for_nodes();
7394 
7395 	/* Print out the zone ranges */
7396 	pr_info("Zone ranges:\n");
7397 	for (i = 0; i < MAX_NR_ZONES; i++) {
7398 		if (i == ZONE_MOVABLE)
7399 			continue;
7400 		pr_info("  %-8s ", zone_names[i]);
7401 		if (arch_zone_lowest_possible_pfn[i] ==
7402 				arch_zone_highest_possible_pfn[i])
7403 			pr_cont("empty\n");
7404 		else
7405 			pr_cont("[mem %#018Lx-%#018Lx]\n",
7406 				(u64)arch_zone_lowest_possible_pfn[i]
7407 					<< PAGE_SHIFT,
7408 				((u64)arch_zone_highest_possible_pfn[i]
7409 					<< PAGE_SHIFT) - 1);
7410 	}
7411 
7412 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7413 	pr_info("Movable zone start for each node\n");
7414 	for (i = 0; i < MAX_NUMNODES; i++) {
7415 		if (zone_movable_pfn[i])
7416 			pr_info("  Node %d: %#018Lx\n", i,
7417 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7418 	}
7419 
7420 	/*
7421 	 * Print out the early node map, and initialize the
7422 	 * subsection-map relative to active online memory ranges to
7423 	 * enable future "sub-section" extensions of the memory map.
7424 	 */
7425 	pr_info("Early memory node ranges\n");
7426 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7427 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7428 			(u64)start_pfn << PAGE_SHIFT,
7429 			((u64)end_pfn << PAGE_SHIFT) - 1);
7430 		subsection_map_init(start_pfn, end_pfn - start_pfn);
7431 	}
7432 
7433 	/* Initialise every node */
7434 	mminit_verify_pageflags_layout();
7435 	setup_nr_node_ids();
7436 	init_unavailable_mem();
7437 	for_each_online_node(nid) {
7438 		pg_data_t *pgdat = NODE_DATA(nid);
7439 		free_area_init_node(nid);
7440 
7441 		/* Any memory on that node */
7442 		if (pgdat->node_present_pages)
7443 			node_set_state(nid, N_MEMORY);
7444 		check_for_memory(pgdat, nid);
7445 	}
7446 }
7447 
7448 static int __init cmdline_parse_core(char *p, unsigned long *core,
7449 				     unsigned long *percent)
7450 {
7451 	unsigned long long coremem;
7452 	char *endptr;
7453 
7454 	if (!p)
7455 		return -EINVAL;
7456 
7457 	/* Value may be a percentage of total memory, otherwise bytes */
7458 	coremem = simple_strtoull(p, &endptr, 0);
7459 	if (*endptr == '%') {
7460 		/* Paranoid check for percent values greater than 100 */
7461 		WARN_ON(coremem > 100);
7462 
7463 		*percent = coremem;
7464 	} else {
7465 		coremem = memparse(p, &p);
7466 		/* Paranoid check that UL is enough for the coremem value */
7467 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7468 
7469 		*core = coremem >> PAGE_SHIFT;
7470 		*percent = 0UL;
7471 	}
7472 	return 0;
7473 }
7474 
7475 /*
7476  * kernelcore=size sets the amount of memory for use for allocations that
7477  * cannot be reclaimed or migrated.
7478  */
7479 static int __init cmdline_parse_kernelcore(char *p)
7480 {
7481 	/* parse kernelcore=mirror */
7482 	if (parse_option_str(p, "mirror")) {
7483 		mirrored_kernelcore = true;
7484 		return 0;
7485 	}
7486 
7487 	return cmdline_parse_core(p, &required_kernelcore,
7488 				  &required_kernelcore_percent);
7489 }
7490 
7491 /*
7492  * movablecore=size sets the amount of memory for use for allocations that
7493  * can be reclaimed or migrated.
7494  */
7495 static int __init cmdline_parse_movablecore(char *p)
7496 {
7497 	return cmdline_parse_core(p, &required_movablecore,
7498 				  &required_movablecore_percent);
7499 }
7500 
7501 early_param("kernelcore", cmdline_parse_kernelcore);
7502 early_param("movablecore", cmdline_parse_movablecore);
7503 
7504 void adjust_managed_page_count(struct page *page, long count)
7505 {
7506 	atomic_long_add(count, &page_zone(page)->managed_pages);
7507 	totalram_pages_add(count);
7508 #ifdef CONFIG_HIGHMEM
7509 	if (PageHighMem(page))
7510 		totalhigh_pages_add(count);
7511 #endif
7512 }
7513 EXPORT_SYMBOL(adjust_managed_page_count);
7514 
7515 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7516 {
7517 	void *pos;
7518 	unsigned long pages = 0;
7519 
7520 	start = (void *)PAGE_ALIGN((unsigned long)start);
7521 	end = (void *)((unsigned long)end & PAGE_MASK);
7522 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7523 		struct page *page = virt_to_page(pos);
7524 		void *direct_map_addr;
7525 
7526 		/*
7527 		 * 'direct_map_addr' might be different from 'pos'
7528 		 * because some architectures' virt_to_page()
7529 		 * work with aliases.  Getting the direct map
7530 		 * address ensures that we get a _writeable_
7531 		 * alias for the memset().
7532 		 */
7533 		direct_map_addr = page_address(page);
7534 		if ((unsigned int)poison <= 0xFF)
7535 			memset(direct_map_addr, poison, PAGE_SIZE);
7536 
7537 		free_reserved_page(page);
7538 	}
7539 
7540 	if (pages && s)
7541 		pr_info("Freeing %s memory: %ldK\n",
7542 			s, pages << (PAGE_SHIFT - 10));
7543 
7544 	return pages;
7545 }
7546 
7547 #ifdef	CONFIG_HIGHMEM
7548 void free_highmem_page(struct page *page)
7549 {
7550 	__free_reserved_page(page);
7551 	totalram_pages_inc();
7552 	atomic_long_inc(&page_zone(page)->managed_pages);
7553 	totalhigh_pages_inc();
7554 }
7555 #endif
7556 
7557 
7558 void __init mem_init_print_info(const char *str)
7559 {
7560 	unsigned long physpages, codesize, datasize, rosize, bss_size;
7561 	unsigned long init_code_size, init_data_size;
7562 
7563 	physpages = get_num_physpages();
7564 	codesize = _etext - _stext;
7565 	datasize = _edata - _sdata;
7566 	rosize = __end_rodata - __start_rodata;
7567 	bss_size = __bss_stop - __bss_start;
7568 	init_data_size = __init_end - __init_begin;
7569 	init_code_size = _einittext - _sinittext;
7570 
7571 	/*
7572 	 * Detect special cases and adjust section sizes accordingly:
7573 	 * 1) .init.* may be embedded into .data sections
7574 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
7575 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
7576 	 * 3) .rodata.* may be embedded into .text or .data sections.
7577 	 */
7578 #define adj_init_size(start, end, size, pos, adj) \
7579 	do { \
7580 		if (start <= pos && pos < end && size > adj) \
7581 			size -= adj; \
7582 	} while (0)
7583 
7584 	adj_init_size(__init_begin, __init_end, init_data_size,
7585 		     _sinittext, init_code_size);
7586 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7587 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7588 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7589 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7590 
7591 #undef	adj_init_size
7592 
7593 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7594 #ifdef	CONFIG_HIGHMEM
7595 		", %luK highmem"
7596 #endif
7597 		"%s%s)\n",
7598 		nr_free_pages() << (PAGE_SHIFT - 10),
7599 		physpages << (PAGE_SHIFT - 10),
7600 		codesize >> 10, datasize >> 10, rosize >> 10,
7601 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7602 		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7603 		totalcma_pages << (PAGE_SHIFT - 10),
7604 #ifdef	CONFIG_HIGHMEM
7605 		totalhigh_pages() << (PAGE_SHIFT - 10),
7606 #endif
7607 		str ? ", " : "", str ? str : "");
7608 }
7609 
7610 /**
7611  * set_dma_reserve - set the specified number of pages reserved in the first zone
7612  * @new_dma_reserve: The number of pages to mark reserved
7613  *
7614  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7615  * In the DMA zone, a significant percentage may be consumed by kernel image
7616  * and other unfreeable allocations which can skew the watermarks badly. This
7617  * function may optionally be used to account for unfreeable pages in the
7618  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7619  * smaller per-cpu batchsize.
7620  */
7621 void __init set_dma_reserve(unsigned long new_dma_reserve)
7622 {
7623 	dma_reserve = new_dma_reserve;
7624 }
7625 
7626 static int page_alloc_cpu_dead(unsigned int cpu)
7627 {
7628 
7629 	lru_add_drain_cpu(cpu);
7630 	drain_pages(cpu);
7631 
7632 	/*
7633 	 * Spill the event counters of the dead processor
7634 	 * into the current processors event counters.
7635 	 * This artificially elevates the count of the current
7636 	 * processor.
7637 	 */
7638 	vm_events_fold_cpu(cpu);
7639 
7640 	/*
7641 	 * Zero the differential counters of the dead processor
7642 	 * so that the vm statistics are consistent.
7643 	 *
7644 	 * This is only okay since the processor is dead and cannot
7645 	 * race with what we are doing.
7646 	 */
7647 	cpu_vm_stats_fold(cpu);
7648 	return 0;
7649 }
7650 
7651 #ifdef CONFIG_NUMA
7652 int hashdist = HASHDIST_DEFAULT;
7653 
7654 static int __init set_hashdist(char *str)
7655 {
7656 	if (!str)
7657 		return 0;
7658 	hashdist = simple_strtoul(str, &str, 0);
7659 	return 1;
7660 }
7661 __setup("hashdist=", set_hashdist);
7662 #endif
7663 
7664 void __init page_alloc_init(void)
7665 {
7666 	int ret;
7667 
7668 #ifdef CONFIG_NUMA
7669 	if (num_node_state(N_MEMORY) == 1)
7670 		hashdist = 0;
7671 #endif
7672 
7673 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7674 					"mm/page_alloc:dead", NULL,
7675 					page_alloc_cpu_dead);
7676 	WARN_ON(ret < 0);
7677 }
7678 
7679 /*
7680  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7681  *	or min_free_kbytes changes.
7682  */
7683 static void calculate_totalreserve_pages(void)
7684 {
7685 	struct pglist_data *pgdat;
7686 	unsigned long reserve_pages = 0;
7687 	enum zone_type i, j;
7688 
7689 	for_each_online_pgdat(pgdat) {
7690 
7691 		pgdat->totalreserve_pages = 0;
7692 
7693 		for (i = 0; i < MAX_NR_ZONES; i++) {
7694 			struct zone *zone = pgdat->node_zones + i;
7695 			long max = 0;
7696 			unsigned long managed_pages = zone_managed_pages(zone);
7697 
7698 			/* Find valid and maximum lowmem_reserve in the zone */
7699 			for (j = i; j < MAX_NR_ZONES; j++) {
7700 				if (zone->lowmem_reserve[j] > max)
7701 					max = zone->lowmem_reserve[j];
7702 			}
7703 
7704 			/* we treat the high watermark as reserved pages. */
7705 			max += high_wmark_pages(zone);
7706 
7707 			if (max > managed_pages)
7708 				max = managed_pages;
7709 
7710 			pgdat->totalreserve_pages += max;
7711 
7712 			reserve_pages += max;
7713 		}
7714 	}
7715 	totalreserve_pages = reserve_pages;
7716 }
7717 
7718 /*
7719  * setup_per_zone_lowmem_reserve - called whenever
7720  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
7721  *	has a correct pages reserved value, so an adequate number of
7722  *	pages are left in the zone after a successful __alloc_pages().
7723  */
7724 static void setup_per_zone_lowmem_reserve(void)
7725 {
7726 	struct pglist_data *pgdat;
7727 	enum zone_type j, idx;
7728 
7729 	for_each_online_pgdat(pgdat) {
7730 		for (j = 0; j < MAX_NR_ZONES; j++) {
7731 			struct zone *zone = pgdat->node_zones + j;
7732 			unsigned long managed_pages = zone_managed_pages(zone);
7733 
7734 			zone->lowmem_reserve[j] = 0;
7735 
7736 			idx = j;
7737 			while (idx) {
7738 				struct zone *lower_zone;
7739 
7740 				idx--;
7741 				lower_zone = pgdat->node_zones + idx;
7742 
7743 				if (!sysctl_lowmem_reserve_ratio[idx] ||
7744 				    !zone_managed_pages(lower_zone)) {
7745 					lower_zone->lowmem_reserve[j] = 0;
7746 					continue;
7747 				} else {
7748 					lower_zone->lowmem_reserve[j] =
7749 						managed_pages / sysctl_lowmem_reserve_ratio[idx];
7750 				}
7751 				managed_pages += zone_managed_pages(lower_zone);
7752 			}
7753 		}
7754 	}
7755 
7756 	/* update totalreserve_pages */
7757 	calculate_totalreserve_pages();
7758 }
7759 
7760 static void __setup_per_zone_wmarks(void)
7761 {
7762 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7763 	unsigned long lowmem_pages = 0;
7764 	struct zone *zone;
7765 	unsigned long flags;
7766 
7767 	/* Calculate total number of !ZONE_HIGHMEM pages */
7768 	for_each_zone(zone) {
7769 		if (!is_highmem(zone))
7770 			lowmem_pages += zone_managed_pages(zone);
7771 	}
7772 
7773 	for_each_zone(zone) {
7774 		u64 tmp;
7775 
7776 		spin_lock_irqsave(&zone->lock, flags);
7777 		tmp = (u64)pages_min * zone_managed_pages(zone);
7778 		do_div(tmp, lowmem_pages);
7779 		if (is_highmem(zone)) {
7780 			/*
7781 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7782 			 * need highmem pages, so cap pages_min to a small
7783 			 * value here.
7784 			 *
7785 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7786 			 * deltas control async page reclaim, and so should
7787 			 * not be capped for highmem.
7788 			 */
7789 			unsigned long min_pages;
7790 
7791 			min_pages = zone_managed_pages(zone) / 1024;
7792 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7793 			zone->_watermark[WMARK_MIN] = min_pages;
7794 		} else {
7795 			/*
7796 			 * If it's a lowmem zone, reserve a number of pages
7797 			 * proportionate to the zone's size.
7798 			 */
7799 			zone->_watermark[WMARK_MIN] = tmp;
7800 		}
7801 
7802 		/*
7803 		 * Set the kswapd watermarks distance according to the
7804 		 * scale factor in proportion to available memory, but
7805 		 * ensure a minimum size on small systems.
7806 		 */
7807 		tmp = max_t(u64, tmp >> 2,
7808 			    mult_frac(zone_managed_pages(zone),
7809 				      watermark_scale_factor, 10000));
7810 
7811 		zone->watermark_boost = 0;
7812 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
7813 		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7814 
7815 		spin_unlock_irqrestore(&zone->lock, flags);
7816 	}
7817 
7818 	/* update totalreserve_pages */
7819 	calculate_totalreserve_pages();
7820 }
7821 
7822 /**
7823  * setup_per_zone_wmarks - called when min_free_kbytes changes
7824  * or when memory is hot-{added|removed}
7825  *
7826  * Ensures that the watermark[min,low,high] values for each zone are set
7827  * correctly with respect to min_free_kbytes.
7828  */
7829 void setup_per_zone_wmarks(void)
7830 {
7831 	static DEFINE_SPINLOCK(lock);
7832 
7833 	spin_lock(&lock);
7834 	__setup_per_zone_wmarks();
7835 	spin_unlock(&lock);
7836 }
7837 
7838 /*
7839  * Initialise min_free_kbytes.
7840  *
7841  * For small machines we want it small (128k min).  For large machines
7842  * we want it large (256MB max).  But it is not linear, because network
7843  * bandwidth does not increase linearly with machine size.  We use
7844  *
7845  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7846  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
7847  *
7848  * which yields
7849  *
7850  * 16MB:	512k
7851  * 32MB:	724k
7852  * 64MB:	1024k
7853  * 128MB:	1448k
7854  * 256MB:	2048k
7855  * 512MB:	2896k
7856  * 1024MB:	4096k
7857  * 2048MB:	5792k
7858  * 4096MB:	8192k
7859  * 8192MB:	11584k
7860  * 16384MB:	16384k
7861  */
7862 int __meminit init_per_zone_wmark_min(void)
7863 {
7864 	unsigned long lowmem_kbytes;
7865 	int new_min_free_kbytes;
7866 
7867 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7868 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7869 
7870 	if (new_min_free_kbytes > user_min_free_kbytes) {
7871 		min_free_kbytes = new_min_free_kbytes;
7872 		if (min_free_kbytes < 128)
7873 			min_free_kbytes = 128;
7874 		if (min_free_kbytes > 262144)
7875 			min_free_kbytes = 262144;
7876 	} else {
7877 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7878 				new_min_free_kbytes, user_min_free_kbytes);
7879 	}
7880 	setup_per_zone_wmarks();
7881 	refresh_zone_stat_thresholds();
7882 	setup_per_zone_lowmem_reserve();
7883 
7884 #ifdef CONFIG_NUMA
7885 	setup_min_unmapped_ratio();
7886 	setup_min_slab_ratio();
7887 #endif
7888 
7889 	return 0;
7890 }
7891 core_initcall(init_per_zone_wmark_min)
7892 
7893 /*
7894  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7895  *	that we can call two helper functions whenever min_free_kbytes
7896  *	changes.
7897  */
7898 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7899 		void *buffer, size_t *length, loff_t *ppos)
7900 {
7901 	int rc;
7902 
7903 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7904 	if (rc)
7905 		return rc;
7906 
7907 	if (write) {
7908 		user_min_free_kbytes = min_free_kbytes;
7909 		setup_per_zone_wmarks();
7910 	}
7911 	return 0;
7912 }
7913 
7914 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7915 		void *buffer, size_t *length, loff_t *ppos)
7916 {
7917 	int rc;
7918 
7919 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7920 	if (rc)
7921 		return rc;
7922 
7923 	if (write)
7924 		setup_per_zone_wmarks();
7925 
7926 	return 0;
7927 }
7928 
7929 #ifdef CONFIG_NUMA
7930 static void setup_min_unmapped_ratio(void)
7931 {
7932 	pg_data_t *pgdat;
7933 	struct zone *zone;
7934 
7935 	for_each_online_pgdat(pgdat)
7936 		pgdat->min_unmapped_pages = 0;
7937 
7938 	for_each_zone(zone)
7939 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7940 						         sysctl_min_unmapped_ratio) / 100;
7941 }
7942 
7943 
7944 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7945 		void *buffer, size_t *length, loff_t *ppos)
7946 {
7947 	int rc;
7948 
7949 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7950 	if (rc)
7951 		return rc;
7952 
7953 	setup_min_unmapped_ratio();
7954 
7955 	return 0;
7956 }
7957 
7958 static void setup_min_slab_ratio(void)
7959 {
7960 	pg_data_t *pgdat;
7961 	struct zone *zone;
7962 
7963 	for_each_online_pgdat(pgdat)
7964 		pgdat->min_slab_pages = 0;
7965 
7966 	for_each_zone(zone)
7967 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7968 						     sysctl_min_slab_ratio) / 100;
7969 }
7970 
7971 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7972 		void *buffer, size_t *length, loff_t *ppos)
7973 {
7974 	int rc;
7975 
7976 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7977 	if (rc)
7978 		return rc;
7979 
7980 	setup_min_slab_ratio();
7981 
7982 	return 0;
7983 }
7984 #endif
7985 
7986 /*
7987  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7988  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7989  *	whenever sysctl_lowmem_reserve_ratio changes.
7990  *
7991  * The reserve ratio obviously has absolutely no relation with the
7992  * minimum watermarks. The lowmem reserve ratio can only make sense
7993  * if in function of the boot time zone sizes.
7994  */
7995 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7996 		void *buffer, size_t *length, loff_t *ppos)
7997 {
7998 	int i;
7999 
8000 	proc_dointvec_minmax(table, write, buffer, length, ppos);
8001 
8002 	for (i = 0; i < MAX_NR_ZONES; i++) {
8003 		if (sysctl_lowmem_reserve_ratio[i] < 1)
8004 			sysctl_lowmem_reserve_ratio[i] = 0;
8005 	}
8006 
8007 	setup_per_zone_lowmem_reserve();
8008 	return 0;
8009 }
8010 
8011 static void __zone_pcp_update(struct zone *zone)
8012 {
8013 	unsigned int cpu;
8014 
8015 	for_each_possible_cpu(cpu)
8016 		pageset_set_high_and_batch(zone,
8017 				per_cpu_ptr(zone->pageset, cpu));
8018 }
8019 
8020 /*
8021  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8022  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
8023  * pagelist can have before it gets flushed back to buddy allocator.
8024  */
8025 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8026 		void *buffer, size_t *length, loff_t *ppos)
8027 {
8028 	struct zone *zone;
8029 	int old_percpu_pagelist_fraction;
8030 	int ret;
8031 
8032 	mutex_lock(&pcp_batch_high_lock);
8033 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8034 
8035 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8036 	if (!write || ret < 0)
8037 		goto out;
8038 
8039 	/* Sanity checking to avoid pcp imbalance */
8040 	if (percpu_pagelist_fraction &&
8041 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8042 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8043 		ret = -EINVAL;
8044 		goto out;
8045 	}
8046 
8047 	/* No change? */
8048 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8049 		goto out;
8050 
8051 	for_each_populated_zone(zone)
8052 		__zone_pcp_update(zone);
8053 out:
8054 	mutex_unlock(&pcp_batch_high_lock);
8055 	return ret;
8056 }
8057 
8058 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8059 /*
8060  * Returns the number of pages that arch has reserved but
8061  * is not known to alloc_large_system_hash().
8062  */
8063 static unsigned long __init arch_reserved_kernel_pages(void)
8064 {
8065 	return 0;
8066 }
8067 #endif
8068 
8069 /*
8070  * Adaptive scale is meant to reduce sizes of hash tables on large memory
8071  * machines. As memory size is increased the scale is also increased but at
8072  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
8073  * quadruples the scale is increased by one, which means the size of hash table
8074  * only doubles, instead of quadrupling as well.
8075  * Because 32-bit systems cannot have large physical memory, where this scaling
8076  * makes sense, it is disabled on such platforms.
8077  */
8078 #if __BITS_PER_LONG > 32
8079 #define ADAPT_SCALE_BASE	(64ul << 30)
8080 #define ADAPT_SCALE_SHIFT	2
8081 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
8082 #endif
8083 
8084 /*
8085  * allocate a large system hash table from bootmem
8086  * - it is assumed that the hash table must contain an exact power-of-2
8087  *   quantity of entries
8088  * - limit is the number of hash buckets, not the total allocation size
8089  */
8090 void *__init alloc_large_system_hash(const char *tablename,
8091 				     unsigned long bucketsize,
8092 				     unsigned long numentries,
8093 				     int scale,
8094 				     int flags,
8095 				     unsigned int *_hash_shift,
8096 				     unsigned int *_hash_mask,
8097 				     unsigned long low_limit,
8098 				     unsigned long high_limit)
8099 {
8100 	unsigned long long max = high_limit;
8101 	unsigned long log2qty, size;
8102 	void *table = NULL;
8103 	gfp_t gfp_flags;
8104 	bool virt;
8105 
8106 	/* allow the kernel cmdline to have a say */
8107 	if (!numentries) {
8108 		/* round applicable memory size up to nearest megabyte */
8109 		numentries = nr_kernel_pages;
8110 		numentries -= arch_reserved_kernel_pages();
8111 
8112 		/* It isn't necessary when PAGE_SIZE >= 1MB */
8113 		if (PAGE_SHIFT < 20)
8114 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8115 
8116 #if __BITS_PER_LONG > 32
8117 		if (!high_limit) {
8118 			unsigned long adapt;
8119 
8120 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8121 			     adapt <<= ADAPT_SCALE_SHIFT)
8122 				scale++;
8123 		}
8124 #endif
8125 
8126 		/* limit to 1 bucket per 2^scale bytes of low memory */
8127 		if (scale > PAGE_SHIFT)
8128 			numentries >>= (scale - PAGE_SHIFT);
8129 		else
8130 			numentries <<= (PAGE_SHIFT - scale);
8131 
8132 		/* Make sure we've got at least a 0-order allocation.. */
8133 		if (unlikely(flags & HASH_SMALL)) {
8134 			/* Makes no sense without HASH_EARLY */
8135 			WARN_ON(!(flags & HASH_EARLY));
8136 			if (!(numentries >> *_hash_shift)) {
8137 				numentries = 1UL << *_hash_shift;
8138 				BUG_ON(!numentries);
8139 			}
8140 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8141 			numentries = PAGE_SIZE / bucketsize;
8142 	}
8143 	numentries = roundup_pow_of_two(numentries);
8144 
8145 	/* limit allocation size to 1/16 total memory by default */
8146 	if (max == 0) {
8147 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8148 		do_div(max, bucketsize);
8149 	}
8150 	max = min(max, 0x80000000ULL);
8151 
8152 	if (numentries < low_limit)
8153 		numentries = low_limit;
8154 	if (numentries > max)
8155 		numentries = max;
8156 
8157 	log2qty = ilog2(numentries);
8158 
8159 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8160 	do {
8161 		virt = false;
8162 		size = bucketsize << log2qty;
8163 		if (flags & HASH_EARLY) {
8164 			if (flags & HASH_ZERO)
8165 				table = memblock_alloc(size, SMP_CACHE_BYTES);
8166 			else
8167 				table = memblock_alloc_raw(size,
8168 							   SMP_CACHE_BYTES);
8169 		} else if (get_order(size) >= MAX_ORDER || hashdist) {
8170 			table = __vmalloc(size, gfp_flags);
8171 			virt = true;
8172 		} else {
8173 			/*
8174 			 * If bucketsize is not a power-of-two, we may free
8175 			 * some pages at the end of hash table which
8176 			 * alloc_pages_exact() automatically does
8177 			 */
8178 			table = alloc_pages_exact(size, gfp_flags);
8179 			kmemleak_alloc(table, size, 1, gfp_flags);
8180 		}
8181 	} while (!table && size > PAGE_SIZE && --log2qty);
8182 
8183 	if (!table)
8184 		panic("Failed to allocate %s hash table\n", tablename);
8185 
8186 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8187 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8188 		virt ? "vmalloc" : "linear");
8189 
8190 	if (_hash_shift)
8191 		*_hash_shift = log2qty;
8192 	if (_hash_mask)
8193 		*_hash_mask = (1 << log2qty) - 1;
8194 
8195 	return table;
8196 }
8197 
8198 /*
8199  * This function checks whether pageblock includes unmovable pages or not.
8200  *
8201  * PageLRU check without isolation or lru_lock could race so that
8202  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8203  * check without lock_page also may miss some movable non-lru pages at
8204  * race condition. So you can't expect this function should be exact.
8205  *
8206  * Returns a page without holding a reference. If the caller wants to
8207  * dereference that page (e.g., dumping), it has to make sure that it
8208  * cannot get removed (e.g., via memory unplug) concurrently.
8209  *
8210  */
8211 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8212 				 int migratetype, int flags)
8213 {
8214 	unsigned long iter = 0;
8215 	unsigned long pfn = page_to_pfn(page);
8216 
8217 	/*
8218 	 * TODO we could make this much more efficient by not checking every
8219 	 * page in the range if we know all of them are in MOVABLE_ZONE and
8220 	 * that the movable zone guarantees that pages are migratable but
8221 	 * the later is not the case right now unfortunatelly. E.g. movablecore
8222 	 * can still lead to having bootmem allocations in zone_movable.
8223 	 */
8224 
8225 	if (is_migrate_cma_page(page)) {
8226 		/*
8227 		 * CMA allocations (alloc_contig_range) really need to mark
8228 		 * isolate CMA pageblocks even when they are not movable in fact
8229 		 * so consider them movable here.
8230 		 */
8231 		if (is_migrate_cma(migratetype))
8232 			return NULL;
8233 
8234 		return page;
8235 	}
8236 
8237 	for (; iter < pageblock_nr_pages; iter++) {
8238 		if (!pfn_valid_within(pfn + iter))
8239 			continue;
8240 
8241 		page = pfn_to_page(pfn + iter);
8242 
8243 		if (PageReserved(page))
8244 			return page;
8245 
8246 		/*
8247 		 * If the zone is movable and we have ruled out all reserved
8248 		 * pages then it should be reasonably safe to assume the rest
8249 		 * is movable.
8250 		 */
8251 		if (zone_idx(zone) == ZONE_MOVABLE)
8252 			continue;
8253 
8254 		/*
8255 		 * Hugepages are not in LRU lists, but they're movable.
8256 		 * THPs are on the LRU, but need to be counted as #small pages.
8257 		 * We need not scan over tail pages because we don't
8258 		 * handle each tail page individually in migration.
8259 		 */
8260 		if (PageHuge(page) || PageTransCompound(page)) {
8261 			struct page *head = compound_head(page);
8262 			unsigned int skip_pages;
8263 
8264 			if (PageHuge(page)) {
8265 				if (!hugepage_migration_supported(page_hstate(head)))
8266 					return page;
8267 			} else if (!PageLRU(head) && !__PageMovable(head)) {
8268 				return page;
8269 			}
8270 
8271 			skip_pages = compound_nr(head) - (page - head);
8272 			iter += skip_pages - 1;
8273 			continue;
8274 		}
8275 
8276 		/*
8277 		 * We can't use page_count without pin a page
8278 		 * because another CPU can free compound page.
8279 		 * This check already skips compound tails of THP
8280 		 * because their page->_refcount is zero at all time.
8281 		 */
8282 		if (!page_ref_count(page)) {
8283 			if (PageBuddy(page))
8284 				iter += (1 << page_order(page)) - 1;
8285 			continue;
8286 		}
8287 
8288 		/*
8289 		 * The HWPoisoned page may be not in buddy system, and
8290 		 * page_count() is not 0.
8291 		 */
8292 		if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8293 			continue;
8294 
8295 		/*
8296 		 * We treat all PageOffline() pages as movable when offlining
8297 		 * to give drivers a chance to decrement their reference count
8298 		 * in MEM_GOING_OFFLINE in order to indicate that these pages
8299 		 * can be offlined as there are no direct references anymore.
8300 		 * For actually unmovable PageOffline() where the driver does
8301 		 * not support this, we will fail later when trying to actually
8302 		 * move these pages that still have a reference count > 0.
8303 		 * (false negatives in this function only)
8304 		 */
8305 		if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8306 			continue;
8307 
8308 		if (__PageMovable(page) || PageLRU(page))
8309 			continue;
8310 
8311 		/*
8312 		 * If there are RECLAIMABLE pages, we need to check
8313 		 * it.  But now, memory offline itself doesn't call
8314 		 * shrink_node_slabs() and it still to be fixed.
8315 		 */
8316 		/*
8317 		 * If the page is not RAM, page_count()should be 0.
8318 		 * we don't need more check. This is an _used_ not-movable page.
8319 		 *
8320 		 * The problematic thing here is PG_reserved pages. PG_reserved
8321 		 * is set to both of a memory hole page and a _used_ kernel
8322 		 * page at boot.
8323 		 */
8324 		return page;
8325 	}
8326 	return NULL;
8327 }
8328 
8329 #ifdef CONFIG_CONTIG_ALLOC
8330 static unsigned long pfn_max_align_down(unsigned long pfn)
8331 {
8332 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8333 			     pageblock_nr_pages) - 1);
8334 }
8335 
8336 static unsigned long pfn_max_align_up(unsigned long pfn)
8337 {
8338 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8339 				pageblock_nr_pages));
8340 }
8341 
8342 /* [start, end) must belong to a single zone. */
8343 static int __alloc_contig_migrate_range(struct compact_control *cc,
8344 					unsigned long start, unsigned long end)
8345 {
8346 	/* This function is based on compact_zone() from compaction.c. */
8347 	unsigned int nr_reclaimed;
8348 	unsigned long pfn = start;
8349 	unsigned int tries = 0;
8350 	int ret = 0;
8351 	struct migration_target_control mtc = {
8352 		.nid = zone_to_nid(cc->zone),
8353 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8354 	};
8355 
8356 	migrate_prep();
8357 
8358 	while (pfn < end || !list_empty(&cc->migratepages)) {
8359 		if (fatal_signal_pending(current)) {
8360 			ret = -EINTR;
8361 			break;
8362 		}
8363 
8364 		if (list_empty(&cc->migratepages)) {
8365 			cc->nr_migratepages = 0;
8366 			pfn = isolate_migratepages_range(cc, pfn, end);
8367 			if (!pfn) {
8368 				ret = -EINTR;
8369 				break;
8370 			}
8371 			tries = 0;
8372 		} else if (++tries == 5) {
8373 			ret = ret < 0 ? ret : -EBUSY;
8374 			break;
8375 		}
8376 
8377 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8378 							&cc->migratepages);
8379 		cc->nr_migratepages -= nr_reclaimed;
8380 
8381 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8382 				NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
8383 	}
8384 	if (ret < 0) {
8385 		putback_movable_pages(&cc->migratepages);
8386 		return ret;
8387 	}
8388 	return 0;
8389 }
8390 
8391 /**
8392  * alloc_contig_range() -- tries to allocate given range of pages
8393  * @start:	start PFN to allocate
8394  * @end:	one-past-the-last PFN to allocate
8395  * @migratetype:	migratetype of the underlaying pageblocks (either
8396  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
8397  *			in range must have the same migratetype and it must
8398  *			be either of the two.
8399  * @gfp_mask:	GFP mask to use during compaction
8400  *
8401  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8402  * aligned.  The PFN range must belong to a single zone.
8403  *
8404  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8405  * pageblocks in the range.  Once isolated, the pageblocks should not
8406  * be modified by others.
8407  *
8408  * Return: zero on success or negative error code.  On success all
8409  * pages which PFN is in [start, end) are allocated for the caller and
8410  * need to be freed with free_contig_range().
8411  */
8412 int alloc_contig_range(unsigned long start, unsigned long end,
8413 		       unsigned migratetype, gfp_t gfp_mask)
8414 {
8415 	unsigned long outer_start, outer_end;
8416 	unsigned int order;
8417 	int ret = 0;
8418 
8419 	struct compact_control cc = {
8420 		.nr_migratepages = 0,
8421 		.order = -1,
8422 		.zone = page_zone(pfn_to_page(start)),
8423 		.mode = MIGRATE_SYNC,
8424 		.ignore_skip_hint = true,
8425 		.no_set_skip_hint = true,
8426 		.gfp_mask = current_gfp_context(gfp_mask),
8427 		.alloc_contig = true,
8428 	};
8429 	INIT_LIST_HEAD(&cc.migratepages);
8430 
8431 	/*
8432 	 * What we do here is we mark all pageblocks in range as
8433 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
8434 	 * have different sizes, and due to the way page allocator
8435 	 * work, we align the range to biggest of the two pages so
8436 	 * that page allocator won't try to merge buddies from
8437 	 * different pageblocks and change MIGRATE_ISOLATE to some
8438 	 * other migration type.
8439 	 *
8440 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8441 	 * migrate the pages from an unaligned range (ie. pages that
8442 	 * we are interested in).  This will put all the pages in
8443 	 * range back to page allocator as MIGRATE_ISOLATE.
8444 	 *
8445 	 * When this is done, we take the pages in range from page
8446 	 * allocator removing them from the buddy system.  This way
8447 	 * page allocator will never consider using them.
8448 	 *
8449 	 * This lets us mark the pageblocks back as
8450 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8451 	 * aligned range but not in the unaligned, original range are
8452 	 * put back to page allocator so that buddy can use them.
8453 	 */
8454 
8455 	ret = start_isolate_page_range(pfn_max_align_down(start),
8456 				       pfn_max_align_up(end), migratetype, 0);
8457 	if (ret < 0)
8458 		return ret;
8459 
8460 	/*
8461 	 * In case of -EBUSY, we'd like to know which page causes problem.
8462 	 * So, just fall through. test_pages_isolated() has a tracepoint
8463 	 * which will report the busy page.
8464 	 *
8465 	 * It is possible that busy pages could become available before
8466 	 * the call to test_pages_isolated, and the range will actually be
8467 	 * allocated.  So, if we fall through be sure to clear ret so that
8468 	 * -EBUSY is not accidentally used or returned to caller.
8469 	 */
8470 	ret = __alloc_contig_migrate_range(&cc, start, end);
8471 	if (ret && ret != -EBUSY)
8472 		goto done;
8473 	ret =0;
8474 
8475 	/*
8476 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8477 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
8478 	 * more, all pages in [start, end) are free in page allocator.
8479 	 * What we are going to do is to allocate all pages from
8480 	 * [start, end) (that is remove them from page allocator).
8481 	 *
8482 	 * The only problem is that pages at the beginning and at the
8483 	 * end of interesting range may be not aligned with pages that
8484 	 * page allocator holds, ie. they can be part of higher order
8485 	 * pages.  Because of this, we reserve the bigger range and
8486 	 * once this is done free the pages we are not interested in.
8487 	 *
8488 	 * We don't have to hold zone->lock here because the pages are
8489 	 * isolated thus they won't get removed from buddy.
8490 	 */
8491 
8492 	lru_add_drain_all();
8493 
8494 	order = 0;
8495 	outer_start = start;
8496 	while (!PageBuddy(pfn_to_page(outer_start))) {
8497 		if (++order >= MAX_ORDER) {
8498 			outer_start = start;
8499 			break;
8500 		}
8501 		outer_start &= ~0UL << order;
8502 	}
8503 
8504 	if (outer_start != start) {
8505 		order = page_order(pfn_to_page(outer_start));
8506 
8507 		/*
8508 		 * outer_start page could be small order buddy page and
8509 		 * it doesn't include start page. Adjust outer_start
8510 		 * in this case to report failed page properly
8511 		 * on tracepoint in test_pages_isolated()
8512 		 */
8513 		if (outer_start + (1UL << order) <= start)
8514 			outer_start = start;
8515 	}
8516 
8517 	/* Make sure the range is really isolated. */
8518 	if (test_pages_isolated(outer_start, end, 0)) {
8519 		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8520 			__func__, outer_start, end);
8521 		ret = -EBUSY;
8522 		goto done;
8523 	}
8524 
8525 	/* Grab isolated pages from freelists. */
8526 	outer_end = isolate_freepages_range(&cc, outer_start, end);
8527 	if (!outer_end) {
8528 		ret = -EBUSY;
8529 		goto done;
8530 	}
8531 
8532 	/* Free head and tail (if any) */
8533 	if (start != outer_start)
8534 		free_contig_range(outer_start, start - outer_start);
8535 	if (end != outer_end)
8536 		free_contig_range(end, outer_end - end);
8537 
8538 done:
8539 	undo_isolate_page_range(pfn_max_align_down(start),
8540 				pfn_max_align_up(end), migratetype);
8541 	return ret;
8542 }
8543 EXPORT_SYMBOL(alloc_contig_range);
8544 
8545 static int __alloc_contig_pages(unsigned long start_pfn,
8546 				unsigned long nr_pages, gfp_t gfp_mask)
8547 {
8548 	unsigned long end_pfn = start_pfn + nr_pages;
8549 
8550 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8551 				  gfp_mask);
8552 }
8553 
8554 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8555 				   unsigned long nr_pages)
8556 {
8557 	unsigned long i, end_pfn = start_pfn + nr_pages;
8558 	struct page *page;
8559 
8560 	for (i = start_pfn; i < end_pfn; i++) {
8561 		page = pfn_to_online_page(i);
8562 		if (!page)
8563 			return false;
8564 
8565 		if (page_zone(page) != z)
8566 			return false;
8567 
8568 		if (PageReserved(page))
8569 			return false;
8570 
8571 		if (page_count(page) > 0)
8572 			return false;
8573 
8574 		if (PageHuge(page))
8575 			return false;
8576 	}
8577 	return true;
8578 }
8579 
8580 static bool zone_spans_last_pfn(const struct zone *zone,
8581 				unsigned long start_pfn, unsigned long nr_pages)
8582 {
8583 	unsigned long last_pfn = start_pfn + nr_pages - 1;
8584 
8585 	return zone_spans_pfn(zone, last_pfn);
8586 }
8587 
8588 /**
8589  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8590  * @nr_pages:	Number of contiguous pages to allocate
8591  * @gfp_mask:	GFP mask to limit search and used during compaction
8592  * @nid:	Target node
8593  * @nodemask:	Mask for other possible nodes
8594  *
8595  * This routine is a wrapper around alloc_contig_range(). It scans over zones
8596  * on an applicable zonelist to find a contiguous pfn range which can then be
8597  * tried for allocation with alloc_contig_range(). This routine is intended
8598  * for allocation requests which can not be fulfilled with the buddy allocator.
8599  *
8600  * The allocated memory is always aligned to a page boundary. If nr_pages is a
8601  * power of two then the alignment is guaranteed to be to the given nr_pages
8602  * (e.g. 1GB request would be aligned to 1GB).
8603  *
8604  * Allocated pages can be freed with free_contig_range() or by manually calling
8605  * __free_page() on each allocated page.
8606  *
8607  * Return: pointer to contiguous pages on success, or NULL if not successful.
8608  */
8609 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8610 				int nid, nodemask_t *nodemask)
8611 {
8612 	unsigned long ret, pfn, flags;
8613 	struct zonelist *zonelist;
8614 	struct zone *zone;
8615 	struct zoneref *z;
8616 
8617 	zonelist = node_zonelist(nid, gfp_mask);
8618 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
8619 					gfp_zone(gfp_mask), nodemask) {
8620 		spin_lock_irqsave(&zone->lock, flags);
8621 
8622 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8623 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8624 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8625 				/*
8626 				 * We release the zone lock here because
8627 				 * alloc_contig_range() will also lock the zone
8628 				 * at some point. If there's an allocation
8629 				 * spinning on this lock, it may win the race
8630 				 * and cause alloc_contig_range() to fail...
8631 				 */
8632 				spin_unlock_irqrestore(&zone->lock, flags);
8633 				ret = __alloc_contig_pages(pfn, nr_pages,
8634 							gfp_mask);
8635 				if (!ret)
8636 					return pfn_to_page(pfn);
8637 				spin_lock_irqsave(&zone->lock, flags);
8638 			}
8639 			pfn += nr_pages;
8640 		}
8641 		spin_unlock_irqrestore(&zone->lock, flags);
8642 	}
8643 	return NULL;
8644 }
8645 #endif /* CONFIG_CONTIG_ALLOC */
8646 
8647 void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8648 {
8649 	unsigned int count = 0;
8650 
8651 	for (; nr_pages--; pfn++) {
8652 		struct page *page = pfn_to_page(pfn);
8653 
8654 		count += page_count(page) != 1;
8655 		__free_page(page);
8656 	}
8657 	WARN(count != 0, "%d pages are still in use!\n", count);
8658 }
8659 EXPORT_SYMBOL(free_contig_range);
8660 
8661 /*
8662  * The zone indicated has a new number of managed_pages; batch sizes and percpu
8663  * page high values need to be recalulated.
8664  */
8665 void __meminit zone_pcp_update(struct zone *zone)
8666 {
8667 	mutex_lock(&pcp_batch_high_lock);
8668 	__zone_pcp_update(zone);
8669 	mutex_unlock(&pcp_batch_high_lock);
8670 }
8671 
8672 void zone_pcp_reset(struct zone *zone)
8673 {
8674 	unsigned long flags;
8675 	int cpu;
8676 	struct per_cpu_pageset *pset;
8677 
8678 	/* avoid races with drain_pages()  */
8679 	local_irq_save(flags);
8680 	if (zone->pageset != &boot_pageset) {
8681 		for_each_online_cpu(cpu) {
8682 			pset = per_cpu_ptr(zone->pageset, cpu);
8683 			drain_zonestat(zone, pset);
8684 		}
8685 		free_percpu(zone->pageset);
8686 		zone->pageset = &boot_pageset;
8687 	}
8688 	local_irq_restore(flags);
8689 }
8690 
8691 #ifdef CONFIG_MEMORY_HOTREMOVE
8692 /*
8693  * All pages in the range must be in a single zone and isolated
8694  * before calling this.
8695  */
8696 unsigned long
8697 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8698 {
8699 	struct page *page;
8700 	struct zone *zone;
8701 	unsigned int order;
8702 	unsigned long pfn;
8703 	unsigned long flags;
8704 	unsigned long offlined_pages = 0;
8705 
8706 	/* find the first valid pfn */
8707 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
8708 		if (pfn_valid(pfn))
8709 			break;
8710 	if (pfn == end_pfn)
8711 		return offlined_pages;
8712 
8713 	offline_mem_sections(pfn, end_pfn);
8714 	zone = page_zone(pfn_to_page(pfn));
8715 	spin_lock_irqsave(&zone->lock, flags);
8716 	pfn = start_pfn;
8717 	while (pfn < end_pfn) {
8718 		if (!pfn_valid(pfn)) {
8719 			pfn++;
8720 			continue;
8721 		}
8722 		page = pfn_to_page(pfn);
8723 		/*
8724 		 * The HWPoisoned page may be not in buddy system, and
8725 		 * page_count() is not 0.
8726 		 */
8727 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8728 			pfn++;
8729 			offlined_pages++;
8730 			continue;
8731 		}
8732 		/*
8733 		 * At this point all remaining PageOffline() pages have a
8734 		 * reference count of 0 and can simply be skipped.
8735 		 */
8736 		if (PageOffline(page)) {
8737 			BUG_ON(page_count(page));
8738 			BUG_ON(PageBuddy(page));
8739 			pfn++;
8740 			offlined_pages++;
8741 			continue;
8742 		}
8743 
8744 		BUG_ON(page_count(page));
8745 		BUG_ON(!PageBuddy(page));
8746 		order = page_order(page);
8747 		offlined_pages += 1 << order;
8748 		del_page_from_free_list(page, zone, order);
8749 		pfn += (1 << order);
8750 	}
8751 	spin_unlock_irqrestore(&zone->lock, flags);
8752 
8753 	return offlined_pages;
8754 }
8755 #endif
8756 
8757 bool is_free_buddy_page(struct page *page)
8758 {
8759 	struct zone *zone = page_zone(page);
8760 	unsigned long pfn = page_to_pfn(page);
8761 	unsigned long flags;
8762 	unsigned int order;
8763 
8764 	spin_lock_irqsave(&zone->lock, flags);
8765 	for (order = 0; order < MAX_ORDER; order++) {
8766 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8767 
8768 		if (PageBuddy(page_head) && page_order(page_head) >= order)
8769 			break;
8770 	}
8771 	spin_unlock_irqrestore(&zone->lock, flags);
8772 
8773 	return order < MAX_ORDER;
8774 }
8775 
8776 #ifdef CONFIG_MEMORY_FAILURE
8777 /*
8778  * Set PG_hwpoison flag if a given page is confirmed to be a free page.  This
8779  * test is performed under the zone lock to prevent a race against page
8780  * allocation.
8781  */
8782 bool set_hwpoison_free_buddy_page(struct page *page)
8783 {
8784 	struct zone *zone = page_zone(page);
8785 	unsigned long pfn = page_to_pfn(page);
8786 	unsigned long flags;
8787 	unsigned int order;
8788 	bool hwpoisoned = false;
8789 
8790 	spin_lock_irqsave(&zone->lock, flags);
8791 	for (order = 0; order < MAX_ORDER; order++) {
8792 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8793 
8794 		if (PageBuddy(page_head) && page_order(page_head) >= order) {
8795 			if (!TestSetPageHWPoison(page))
8796 				hwpoisoned = true;
8797 			break;
8798 		}
8799 	}
8800 	spin_unlock_irqrestore(&zone->lock, flags);
8801 
8802 	return hwpoisoned;
8803 }
8804 #endif
8805