xref: /openbmc/linux/mm/page_alloc.c (revision 5f32c314)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page-debug-flags.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 
65 #include <asm/sections.h>
66 #include <asm/tlbflush.h>
67 #include <asm/div64.h>
68 #include "internal.h"
69 
70 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71 static DEFINE_MUTEX(pcp_batch_high_lock);
72 
73 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
74 DEFINE_PER_CPU(int, numa_node);
75 EXPORT_PER_CPU_SYMBOL(numa_node);
76 #endif
77 
78 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
79 /*
80  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
81  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
82  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
83  * defined in <linux/topology.h>.
84  */
85 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
86 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
87 #endif
88 
89 /*
90  * Array of node states.
91  */
92 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
93 	[N_POSSIBLE] = NODE_MASK_ALL,
94 	[N_ONLINE] = { { [0] = 1UL } },
95 #ifndef CONFIG_NUMA
96 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
97 #ifdef CONFIG_HIGHMEM
98 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
99 #endif
100 #ifdef CONFIG_MOVABLE_NODE
101 	[N_MEMORY] = { { [0] = 1UL } },
102 #endif
103 	[N_CPU] = { { [0] = 1UL } },
104 #endif	/* NUMA */
105 };
106 EXPORT_SYMBOL(node_states);
107 
108 /* Protect totalram_pages and zone->managed_pages */
109 static DEFINE_SPINLOCK(managed_page_count_lock);
110 
111 unsigned long totalram_pages __read_mostly;
112 unsigned long totalreserve_pages __read_mostly;
113 /*
114  * When calculating the number of globally allowed dirty pages, there
115  * is a certain number of per-zone reserves that should not be
116  * considered dirtyable memory.  This is the sum of those reserves
117  * over all existing zones that contribute dirtyable memory.
118  */
119 unsigned long dirty_balance_reserve __read_mostly;
120 
121 int percpu_pagelist_fraction;
122 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
123 
124 #ifdef CONFIG_PM_SLEEP
125 /*
126  * The following functions are used by the suspend/hibernate code to temporarily
127  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
128  * while devices are suspended.  To avoid races with the suspend/hibernate code,
129  * they should always be called with pm_mutex held (gfp_allowed_mask also should
130  * only be modified with pm_mutex held, unless the suspend/hibernate code is
131  * guaranteed not to run in parallel with that modification).
132  */
133 
134 static gfp_t saved_gfp_mask;
135 
136 void pm_restore_gfp_mask(void)
137 {
138 	WARN_ON(!mutex_is_locked(&pm_mutex));
139 	if (saved_gfp_mask) {
140 		gfp_allowed_mask = saved_gfp_mask;
141 		saved_gfp_mask = 0;
142 	}
143 }
144 
145 void pm_restrict_gfp_mask(void)
146 {
147 	WARN_ON(!mutex_is_locked(&pm_mutex));
148 	WARN_ON(saved_gfp_mask);
149 	saved_gfp_mask = gfp_allowed_mask;
150 	gfp_allowed_mask &= ~GFP_IOFS;
151 }
152 
153 bool pm_suspended_storage(void)
154 {
155 	if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
156 		return false;
157 	return true;
158 }
159 #endif /* CONFIG_PM_SLEEP */
160 
161 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
162 int pageblock_order __read_mostly;
163 #endif
164 
165 static void __free_pages_ok(struct page *page, unsigned int order);
166 
167 /*
168  * results with 256, 32 in the lowmem_reserve sysctl:
169  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
170  *	1G machine -> (16M dma, 784M normal, 224M high)
171  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
172  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
173  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
174  *
175  * TBD: should special case ZONE_DMA32 machines here - in those we normally
176  * don't need any ZONE_NORMAL reservation
177  */
178 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
179 #ifdef CONFIG_ZONE_DMA
180 	 256,
181 #endif
182 #ifdef CONFIG_ZONE_DMA32
183 	 256,
184 #endif
185 #ifdef CONFIG_HIGHMEM
186 	 32,
187 #endif
188 	 32,
189 };
190 
191 EXPORT_SYMBOL(totalram_pages);
192 
193 static char * const zone_names[MAX_NR_ZONES] = {
194 #ifdef CONFIG_ZONE_DMA
195 	 "DMA",
196 #endif
197 #ifdef CONFIG_ZONE_DMA32
198 	 "DMA32",
199 #endif
200 	 "Normal",
201 #ifdef CONFIG_HIGHMEM
202 	 "HighMem",
203 #endif
204 	 "Movable",
205 };
206 
207 int min_free_kbytes = 1024;
208 int user_min_free_kbytes = -1;
209 
210 static unsigned long __meminitdata nr_kernel_pages;
211 static unsigned long __meminitdata nr_all_pages;
212 static unsigned long __meminitdata dma_reserve;
213 
214 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
215 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
216 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
217 static unsigned long __initdata required_kernelcore;
218 static unsigned long __initdata required_movablecore;
219 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
220 
221 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
222 int movable_zone;
223 EXPORT_SYMBOL(movable_zone);
224 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
225 
226 #if MAX_NUMNODES > 1
227 int nr_node_ids __read_mostly = MAX_NUMNODES;
228 int nr_online_nodes __read_mostly = 1;
229 EXPORT_SYMBOL(nr_node_ids);
230 EXPORT_SYMBOL(nr_online_nodes);
231 #endif
232 
233 int page_group_by_mobility_disabled __read_mostly;
234 
235 void set_pageblock_migratetype(struct page *page, int migratetype)
236 {
237 	if (unlikely(page_group_by_mobility_disabled &&
238 		     migratetype < MIGRATE_PCPTYPES))
239 		migratetype = MIGRATE_UNMOVABLE;
240 
241 	set_pageblock_flags_group(page, (unsigned long)migratetype,
242 					PB_migrate, PB_migrate_end);
243 }
244 
245 bool oom_killer_disabled __read_mostly;
246 
247 #ifdef CONFIG_DEBUG_VM
248 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
249 {
250 	int ret = 0;
251 	unsigned seq;
252 	unsigned long pfn = page_to_pfn(page);
253 	unsigned long sp, start_pfn;
254 
255 	do {
256 		seq = zone_span_seqbegin(zone);
257 		start_pfn = zone->zone_start_pfn;
258 		sp = zone->spanned_pages;
259 		if (!zone_spans_pfn(zone, pfn))
260 			ret = 1;
261 	} while (zone_span_seqretry(zone, seq));
262 
263 	if (ret)
264 		pr_err("page %lu outside zone [ %lu - %lu ]\n",
265 			pfn, start_pfn, start_pfn + sp);
266 
267 	return ret;
268 }
269 
270 static int page_is_consistent(struct zone *zone, struct page *page)
271 {
272 	if (!pfn_valid_within(page_to_pfn(page)))
273 		return 0;
274 	if (zone != page_zone(page))
275 		return 0;
276 
277 	return 1;
278 }
279 /*
280  * Temporary debugging check for pages not lying within a given zone.
281  */
282 static int bad_range(struct zone *zone, struct page *page)
283 {
284 	if (page_outside_zone_boundaries(zone, page))
285 		return 1;
286 	if (!page_is_consistent(zone, page))
287 		return 1;
288 
289 	return 0;
290 }
291 #else
292 static inline int bad_range(struct zone *zone, struct page *page)
293 {
294 	return 0;
295 }
296 #endif
297 
298 static void bad_page(struct page *page, char *reason, unsigned long bad_flags)
299 {
300 	static unsigned long resume;
301 	static unsigned long nr_shown;
302 	static unsigned long nr_unshown;
303 
304 	/* Don't complain about poisoned pages */
305 	if (PageHWPoison(page)) {
306 		page_mapcount_reset(page); /* remove PageBuddy */
307 		return;
308 	}
309 
310 	/*
311 	 * Allow a burst of 60 reports, then keep quiet for that minute;
312 	 * or allow a steady drip of one report per second.
313 	 */
314 	if (nr_shown == 60) {
315 		if (time_before(jiffies, resume)) {
316 			nr_unshown++;
317 			goto out;
318 		}
319 		if (nr_unshown) {
320 			printk(KERN_ALERT
321 			      "BUG: Bad page state: %lu messages suppressed\n",
322 				nr_unshown);
323 			nr_unshown = 0;
324 		}
325 		nr_shown = 0;
326 	}
327 	if (nr_shown++ == 0)
328 		resume = jiffies + 60 * HZ;
329 
330 	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
331 		current->comm, page_to_pfn(page));
332 	dump_page_badflags(page, reason, bad_flags);
333 
334 	print_modules();
335 	dump_stack();
336 out:
337 	/* Leave bad fields for debug, except PageBuddy could make trouble */
338 	page_mapcount_reset(page); /* remove PageBuddy */
339 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
340 }
341 
342 /*
343  * Higher-order pages are called "compound pages".  They are structured thusly:
344  *
345  * The first PAGE_SIZE page is called the "head page".
346  *
347  * The remaining PAGE_SIZE pages are called "tail pages".
348  *
349  * All pages have PG_compound set.  All tail pages have their ->first_page
350  * pointing at the head page.
351  *
352  * The first tail page's ->lru.next holds the address of the compound page's
353  * put_page() function.  Its ->lru.prev holds the order of allocation.
354  * This usage means that zero-order pages may not be compound.
355  */
356 
357 static void free_compound_page(struct page *page)
358 {
359 	__free_pages_ok(page, compound_order(page));
360 }
361 
362 void prep_compound_page(struct page *page, unsigned long order)
363 {
364 	int i;
365 	int nr_pages = 1 << order;
366 
367 	set_compound_page_dtor(page, free_compound_page);
368 	set_compound_order(page, order);
369 	__SetPageHead(page);
370 	for (i = 1; i < nr_pages; i++) {
371 		struct page *p = page + i;
372 		__SetPageTail(p);
373 		set_page_count(p, 0);
374 		p->first_page = page;
375 	}
376 }
377 
378 /* update __split_huge_page_refcount if you change this function */
379 static int destroy_compound_page(struct page *page, unsigned long order)
380 {
381 	int i;
382 	int nr_pages = 1 << order;
383 	int bad = 0;
384 
385 	if (unlikely(compound_order(page) != order)) {
386 		bad_page(page, "wrong compound order", 0);
387 		bad++;
388 	}
389 
390 	__ClearPageHead(page);
391 
392 	for (i = 1; i < nr_pages; i++) {
393 		struct page *p = page + i;
394 
395 		if (unlikely(!PageTail(p))) {
396 			bad_page(page, "PageTail not set", 0);
397 			bad++;
398 		} else if (unlikely(p->first_page != page)) {
399 			bad_page(page, "first_page not consistent", 0);
400 			bad++;
401 		}
402 		__ClearPageTail(p);
403 	}
404 
405 	return bad;
406 }
407 
408 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
409 {
410 	int i;
411 
412 	/*
413 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
414 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
415 	 */
416 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
417 	for (i = 0; i < (1 << order); i++)
418 		clear_highpage(page + i);
419 }
420 
421 #ifdef CONFIG_DEBUG_PAGEALLOC
422 unsigned int _debug_guardpage_minorder;
423 
424 static int __init debug_guardpage_minorder_setup(char *buf)
425 {
426 	unsigned long res;
427 
428 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
429 		printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
430 		return 0;
431 	}
432 	_debug_guardpage_minorder = res;
433 	printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
434 	return 0;
435 }
436 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
437 
438 static inline void set_page_guard_flag(struct page *page)
439 {
440 	__set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
441 }
442 
443 static inline void clear_page_guard_flag(struct page *page)
444 {
445 	__clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
446 }
447 #else
448 static inline void set_page_guard_flag(struct page *page) { }
449 static inline void clear_page_guard_flag(struct page *page) { }
450 #endif
451 
452 static inline void set_page_order(struct page *page, int order)
453 {
454 	set_page_private(page, order);
455 	__SetPageBuddy(page);
456 }
457 
458 static inline void rmv_page_order(struct page *page)
459 {
460 	__ClearPageBuddy(page);
461 	set_page_private(page, 0);
462 }
463 
464 /*
465  * Locate the struct page for both the matching buddy in our
466  * pair (buddy1) and the combined O(n+1) page they form (page).
467  *
468  * 1) Any buddy B1 will have an order O twin B2 which satisfies
469  * the following equation:
470  *     B2 = B1 ^ (1 << O)
471  * For example, if the starting buddy (buddy2) is #8 its order
472  * 1 buddy is #10:
473  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
474  *
475  * 2) Any buddy B will have an order O+1 parent P which
476  * satisfies the following equation:
477  *     P = B & ~(1 << O)
478  *
479  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
480  */
481 static inline unsigned long
482 __find_buddy_index(unsigned long page_idx, unsigned int order)
483 {
484 	return page_idx ^ (1 << order);
485 }
486 
487 /*
488  * This function checks whether a page is free && is the buddy
489  * we can do coalesce a page and its buddy if
490  * (a) the buddy is not in a hole &&
491  * (b) the buddy is in the buddy system &&
492  * (c) a page and its buddy have the same order &&
493  * (d) a page and its buddy are in the same zone.
494  *
495  * For recording whether a page is in the buddy system, we set ->_mapcount
496  * PAGE_BUDDY_MAPCOUNT_VALUE.
497  * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
498  * serialized by zone->lock.
499  *
500  * For recording page's order, we use page_private(page).
501  */
502 static inline int page_is_buddy(struct page *page, struct page *buddy,
503 								int order)
504 {
505 	if (!pfn_valid_within(page_to_pfn(buddy)))
506 		return 0;
507 
508 	if (page_zone_id(page) != page_zone_id(buddy))
509 		return 0;
510 
511 	if (page_is_guard(buddy) && page_order(buddy) == order) {
512 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
513 		return 1;
514 	}
515 
516 	if (PageBuddy(buddy) && page_order(buddy) == order) {
517 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
518 		return 1;
519 	}
520 	return 0;
521 }
522 
523 /*
524  * Freeing function for a buddy system allocator.
525  *
526  * The concept of a buddy system is to maintain direct-mapped table
527  * (containing bit values) for memory blocks of various "orders".
528  * The bottom level table contains the map for the smallest allocatable
529  * units of memory (here, pages), and each level above it describes
530  * pairs of units from the levels below, hence, "buddies".
531  * At a high level, all that happens here is marking the table entry
532  * at the bottom level available, and propagating the changes upward
533  * as necessary, plus some accounting needed to play nicely with other
534  * parts of the VM system.
535  * At each level, we keep a list of pages, which are heads of continuous
536  * free pages of length of (1 << order) and marked with _mapcount
537  * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
538  * field.
539  * So when we are allocating or freeing one, we can derive the state of the
540  * other.  That is, if we allocate a small block, and both were
541  * free, the remainder of the region must be split into blocks.
542  * If a block is freed, and its buddy is also free, then this
543  * triggers coalescing into a block of larger size.
544  *
545  * -- nyc
546  */
547 
548 static inline void __free_one_page(struct page *page,
549 		struct zone *zone, unsigned int order,
550 		int migratetype)
551 {
552 	unsigned long page_idx;
553 	unsigned long combined_idx;
554 	unsigned long uninitialized_var(buddy_idx);
555 	struct page *buddy;
556 
557 	VM_BUG_ON(!zone_is_initialized(zone));
558 
559 	if (unlikely(PageCompound(page)))
560 		if (unlikely(destroy_compound_page(page, order)))
561 			return;
562 
563 	VM_BUG_ON(migratetype == -1);
564 
565 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
566 
567 	VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
568 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
569 
570 	while (order < MAX_ORDER-1) {
571 		buddy_idx = __find_buddy_index(page_idx, order);
572 		buddy = page + (buddy_idx - page_idx);
573 		if (!page_is_buddy(page, buddy, order))
574 			break;
575 		/*
576 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
577 		 * merge with it and move up one order.
578 		 */
579 		if (page_is_guard(buddy)) {
580 			clear_page_guard_flag(buddy);
581 			set_page_private(page, 0);
582 			__mod_zone_freepage_state(zone, 1 << order,
583 						  migratetype);
584 		} else {
585 			list_del(&buddy->lru);
586 			zone->free_area[order].nr_free--;
587 			rmv_page_order(buddy);
588 		}
589 		combined_idx = buddy_idx & page_idx;
590 		page = page + (combined_idx - page_idx);
591 		page_idx = combined_idx;
592 		order++;
593 	}
594 	set_page_order(page, order);
595 
596 	/*
597 	 * If this is not the largest possible page, check if the buddy
598 	 * of the next-highest order is free. If it is, it's possible
599 	 * that pages are being freed that will coalesce soon. In case,
600 	 * that is happening, add the free page to the tail of the list
601 	 * so it's less likely to be used soon and more likely to be merged
602 	 * as a higher order page
603 	 */
604 	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
605 		struct page *higher_page, *higher_buddy;
606 		combined_idx = buddy_idx & page_idx;
607 		higher_page = page + (combined_idx - page_idx);
608 		buddy_idx = __find_buddy_index(combined_idx, order + 1);
609 		higher_buddy = higher_page + (buddy_idx - combined_idx);
610 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
611 			list_add_tail(&page->lru,
612 				&zone->free_area[order].free_list[migratetype]);
613 			goto out;
614 		}
615 	}
616 
617 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
618 out:
619 	zone->free_area[order].nr_free++;
620 }
621 
622 static inline int free_pages_check(struct page *page)
623 {
624 	char *bad_reason = NULL;
625 	unsigned long bad_flags = 0;
626 
627 	if (unlikely(page_mapcount(page)))
628 		bad_reason = "nonzero mapcount";
629 	if (unlikely(page->mapping != NULL))
630 		bad_reason = "non-NULL mapping";
631 	if (unlikely(atomic_read(&page->_count) != 0))
632 		bad_reason = "nonzero _count";
633 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
634 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
635 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
636 	}
637 	if (unlikely(mem_cgroup_bad_page_check(page)))
638 		bad_reason = "cgroup check failed";
639 	if (unlikely(bad_reason)) {
640 		bad_page(page, bad_reason, bad_flags);
641 		return 1;
642 	}
643 	page_cpupid_reset_last(page);
644 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
645 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
646 	return 0;
647 }
648 
649 /*
650  * Frees a number of pages from the PCP lists
651  * Assumes all pages on list are in same zone, and of same order.
652  * count is the number of pages to free.
653  *
654  * If the zone was previously in an "all pages pinned" state then look to
655  * see if this freeing clears that state.
656  *
657  * And clear the zone's pages_scanned counter, to hold off the "all pages are
658  * pinned" detection logic.
659  */
660 static void free_pcppages_bulk(struct zone *zone, int count,
661 					struct per_cpu_pages *pcp)
662 {
663 	int migratetype = 0;
664 	int batch_free = 0;
665 	int to_free = count;
666 
667 	spin_lock(&zone->lock);
668 	zone->pages_scanned = 0;
669 
670 	while (to_free) {
671 		struct page *page;
672 		struct list_head *list;
673 
674 		/*
675 		 * Remove pages from lists in a round-robin fashion. A
676 		 * batch_free count is maintained that is incremented when an
677 		 * empty list is encountered.  This is so more pages are freed
678 		 * off fuller lists instead of spinning excessively around empty
679 		 * lists
680 		 */
681 		do {
682 			batch_free++;
683 			if (++migratetype == MIGRATE_PCPTYPES)
684 				migratetype = 0;
685 			list = &pcp->lists[migratetype];
686 		} while (list_empty(list));
687 
688 		/* This is the only non-empty list. Free them all. */
689 		if (batch_free == MIGRATE_PCPTYPES)
690 			batch_free = to_free;
691 
692 		do {
693 			int mt;	/* migratetype of the to-be-freed page */
694 
695 			page = list_entry(list->prev, struct page, lru);
696 			/* must delete as __free_one_page list manipulates */
697 			list_del(&page->lru);
698 			mt = get_freepage_migratetype(page);
699 			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
700 			__free_one_page(page, zone, 0, mt);
701 			trace_mm_page_pcpu_drain(page, 0, mt);
702 			if (likely(!is_migrate_isolate_page(page))) {
703 				__mod_zone_page_state(zone, NR_FREE_PAGES, 1);
704 				if (is_migrate_cma(mt))
705 					__mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
706 			}
707 		} while (--to_free && --batch_free && !list_empty(list));
708 	}
709 	spin_unlock(&zone->lock);
710 }
711 
712 static void free_one_page(struct zone *zone, struct page *page, int order,
713 				int migratetype)
714 {
715 	spin_lock(&zone->lock);
716 	zone->pages_scanned = 0;
717 
718 	__free_one_page(page, zone, order, migratetype);
719 	if (unlikely(!is_migrate_isolate(migratetype)))
720 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
721 	spin_unlock(&zone->lock);
722 }
723 
724 static bool free_pages_prepare(struct page *page, unsigned int order)
725 {
726 	int i;
727 	int bad = 0;
728 
729 	trace_mm_page_free(page, order);
730 	kmemcheck_free_shadow(page, order);
731 
732 	if (PageAnon(page))
733 		page->mapping = NULL;
734 	for (i = 0; i < (1 << order); i++)
735 		bad += free_pages_check(page + i);
736 	if (bad)
737 		return false;
738 
739 	if (!PageHighMem(page)) {
740 		debug_check_no_locks_freed(page_address(page),
741 					   PAGE_SIZE << order);
742 		debug_check_no_obj_freed(page_address(page),
743 					   PAGE_SIZE << order);
744 	}
745 	arch_free_page(page, order);
746 	kernel_map_pages(page, 1 << order, 0);
747 
748 	return true;
749 }
750 
751 static void __free_pages_ok(struct page *page, unsigned int order)
752 {
753 	unsigned long flags;
754 	int migratetype;
755 
756 	if (!free_pages_prepare(page, order))
757 		return;
758 
759 	local_irq_save(flags);
760 	__count_vm_events(PGFREE, 1 << order);
761 	migratetype = get_pageblock_migratetype(page);
762 	set_freepage_migratetype(page, migratetype);
763 	free_one_page(page_zone(page), page, order, migratetype);
764 	local_irq_restore(flags);
765 }
766 
767 void __init __free_pages_bootmem(struct page *page, unsigned int order)
768 {
769 	unsigned int nr_pages = 1 << order;
770 	struct page *p = page;
771 	unsigned int loop;
772 
773 	prefetchw(p);
774 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
775 		prefetchw(p + 1);
776 		__ClearPageReserved(p);
777 		set_page_count(p, 0);
778 	}
779 	__ClearPageReserved(p);
780 	set_page_count(p, 0);
781 
782 	page_zone(page)->managed_pages += nr_pages;
783 	set_page_refcounted(page);
784 	__free_pages(page, order);
785 }
786 
787 #ifdef CONFIG_CMA
788 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
789 void __init init_cma_reserved_pageblock(struct page *page)
790 {
791 	unsigned i = pageblock_nr_pages;
792 	struct page *p = page;
793 
794 	do {
795 		__ClearPageReserved(p);
796 		set_page_count(p, 0);
797 	} while (++p, --i);
798 
799 	set_page_refcounted(page);
800 	set_pageblock_migratetype(page, MIGRATE_CMA);
801 	__free_pages(page, pageblock_order);
802 	adjust_managed_page_count(page, pageblock_nr_pages);
803 }
804 #endif
805 
806 /*
807  * The order of subdivision here is critical for the IO subsystem.
808  * Please do not alter this order without good reasons and regression
809  * testing. Specifically, as large blocks of memory are subdivided,
810  * the order in which smaller blocks are delivered depends on the order
811  * they're subdivided in this function. This is the primary factor
812  * influencing the order in which pages are delivered to the IO
813  * subsystem according to empirical testing, and this is also justified
814  * by considering the behavior of a buddy system containing a single
815  * large block of memory acted on by a series of small allocations.
816  * This behavior is a critical factor in sglist merging's success.
817  *
818  * -- nyc
819  */
820 static inline void expand(struct zone *zone, struct page *page,
821 	int low, int high, struct free_area *area,
822 	int migratetype)
823 {
824 	unsigned long size = 1 << high;
825 
826 	while (high > low) {
827 		area--;
828 		high--;
829 		size >>= 1;
830 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
831 
832 #ifdef CONFIG_DEBUG_PAGEALLOC
833 		if (high < debug_guardpage_minorder()) {
834 			/*
835 			 * Mark as guard pages (or page), that will allow to
836 			 * merge back to allocator when buddy will be freed.
837 			 * Corresponding page table entries will not be touched,
838 			 * pages will stay not present in virtual address space
839 			 */
840 			INIT_LIST_HEAD(&page[size].lru);
841 			set_page_guard_flag(&page[size]);
842 			set_page_private(&page[size], high);
843 			/* Guard pages are not available for any usage */
844 			__mod_zone_freepage_state(zone, -(1 << high),
845 						  migratetype);
846 			continue;
847 		}
848 #endif
849 		list_add(&page[size].lru, &area->free_list[migratetype]);
850 		area->nr_free++;
851 		set_page_order(&page[size], high);
852 	}
853 }
854 
855 /*
856  * This page is about to be returned from the page allocator
857  */
858 static inline int check_new_page(struct page *page)
859 {
860 	char *bad_reason = NULL;
861 	unsigned long bad_flags = 0;
862 
863 	if (unlikely(page_mapcount(page)))
864 		bad_reason = "nonzero mapcount";
865 	if (unlikely(page->mapping != NULL))
866 		bad_reason = "non-NULL mapping";
867 	if (unlikely(atomic_read(&page->_count) != 0))
868 		bad_reason = "nonzero _count";
869 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
870 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
871 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
872 	}
873 	if (unlikely(mem_cgroup_bad_page_check(page)))
874 		bad_reason = "cgroup check failed";
875 	if (unlikely(bad_reason)) {
876 		bad_page(page, bad_reason, bad_flags);
877 		return 1;
878 	}
879 	return 0;
880 }
881 
882 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
883 {
884 	int i;
885 
886 	for (i = 0; i < (1 << order); i++) {
887 		struct page *p = page + i;
888 		if (unlikely(check_new_page(p)))
889 			return 1;
890 	}
891 
892 	set_page_private(page, 0);
893 	set_page_refcounted(page);
894 
895 	arch_alloc_page(page, order);
896 	kernel_map_pages(page, 1 << order, 1);
897 
898 	if (gfp_flags & __GFP_ZERO)
899 		prep_zero_page(page, order, gfp_flags);
900 
901 	if (order && (gfp_flags & __GFP_COMP))
902 		prep_compound_page(page, order);
903 
904 	return 0;
905 }
906 
907 /*
908  * Go through the free lists for the given migratetype and remove
909  * the smallest available page from the freelists
910  */
911 static inline
912 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
913 						int migratetype)
914 {
915 	unsigned int current_order;
916 	struct free_area *area;
917 	struct page *page;
918 
919 	/* Find a page of the appropriate size in the preferred list */
920 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
921 		area = &(zone->free_area[current_order]);
922 		if (list_empty(&area->free_list[migratetype]))
923 			continue;
924 
925 		page = list_entry(area->free_list[migratetype].next,
926 							struct page, lru);
927 		list_del(&page->lru);
928 		rmv_page_order(page);
929 		area->nr_free--;
930 		expand(zone, page, order, current_order, area, migratetype);
931 		return page;
932 	}
933 
934 	return NULL;
935 }
936 
937 
938 /*
939  * This array describes the order lists are fallen back to when
940  * the free lists for the desirable migrate type are depleted
941  */
942 static int fallbacks[MIGRATE_TYPES][4] = {
943 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,     MIGRATE_RESERVE },
944 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,     MIGRATE_RESERVE },
945 #ifdef CONFIG_CMA
946 	[MIGRATE_MOVABLE]     = { MIGRATE_CMA,         MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
947 	[MIGRATE_CMA]         = { MIGRATE_RESERVE }, /* Never used */
948 #else
949 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE,   MIGRATE_RESERVE },
950 #endif
951 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE }, /* Never used */
952 #ifdef CONFIG_MEMORY_ISOLATION
953 	[MIGRATE_ISOLATE]     = { MIGRATE_RESERVE }, /* Never used */
954 #endif
955 };
956 
957 /*
958  * Move the free pages in a range to the free lists of the requested type.
959  * Note that start_page and end_pages are not aligned on a pageblock
960  * boundary. If alignment is required, use move_freepages_block()
961  */
962 int move_freepages(struct zone *zone,
963 			  struct page *start_page, struct page *end_page,
964 			  int migratetype)
965 {
966 	struct page *page;
967 	unsigned long order;
968 	int pages_moved = 0;
969 
970 #ifndef CONFIG_HOLES_IN_ZONE
971 	/*
972 	 * page_zone is not safe to call in this context when
973 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
974 	 * anyway as we check zone boundaries in move_freepages_block().
975 	 * Remove at a later date when no bug reports exist related to
976 	 * grouping pages by mobility
977 	 */
978 	BUG_ON(page_zone(start_page) != page_zone(end_page));
979 #endif
980 
981 	for (page = start_page; page <= end_page;) {
982 		/* Make sure we are not inadvertently changing nodes */
983 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
984 
985 		if (!pfn_valid_within(page_to_pfn(page))) {
986 			page++;
987 			continue;
988 		}
989 
990 		if (!PageBuddy(page)) {
991 			page++;
992 			continue;
993 		}
994 
995 		order = page_order(page);
996 		list_move(&page->lru,
997 			  &zone->free_area[order].free_list[migratetype]);
998 		set_freepage_migratetype(page, migratetype);
999 		page += 1 << order;
1000 		pages_moved += 1 << order;
1001 	}
1002 
1003 	return pages_moved;
1004 }
1005 
1006 int move_freepages_block(struct zone *zone, struct page *page,
1007 				int migratetype)
1008 {
1009 	unsigned long start_pfn, end_pfn;
1010 	struct page *start_page, *end_page;
1011 
1012 	start_pfn = page_to_pfn(page);
1013 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1014 	start_page = pfn_to_page(start_pfn);
1015 	end_page = start_page + pageblock_nr_pages - 1;
1016 	end_pfn = start_pfn + pageblock_nr_pages - 1;
1017 
1018 	/* Do not cross zone boundaries */
1019 	if (!zone_spans_pfn(zone, start_pfn))
1020 		start_page = page;
1021 	if (!zone_spans_pfn(zone, end_pfn))
1022 		return 0;
1023 
1024 	return move_freepages(zone, start_page, end_page, migratetype);
1025 }
1026 
1027 static void change_pageblock_range(struct page *pageblock_page,
1028 					int start_order, int migratetype)
1029 {
1030 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1031 
1032 	while (nr_pageblocks--) {
1033 		set_pageblock_migratetype(pageblock_page, migratetype);
1034 		pageblock_page += pageblock_nr_pages;
1035 	}
1036 }
1037 
1038 /*
1039  * If breaking a large block of pages, move all free pages to the preferred
1040  * allocation list. If falling back for a reclaimable kernel allocation, be
1041  * more aggressive about taking ownership of free pages.
1042  *
1043  * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1044  * nor move CMA pages to different free lists. We don't want unmovable pages
1045  * to be allocated from MIGRATE_CMA areas.
1046  *
1047  * Returns the new migratetype of the pageblock (or the same old migratetype
1048  * if it was unchanged).
1049  */
1050 static int try_to_steal_freepages(struct zone *zone, struct page *page,
1051 				  int start_type, int fallback_type)
1052 {
1053 	int current_order = page_order(page);
1054 
1055 	/*
1056 	 * When borrowing from MIGRATE_CMA, we need to release the excess
1057 	 * buddy pages to CMA itself.
1058 	 */
1059 	if (is_migrate_cma(fallback_type))
1060 		return fallback_type;
1061 
1062 	/* Take ownership for orders >= pageblock_order */
1063 	if (current_order >= pageblock_order) {
1064 		change_pageblock_range(page, current_order, start_type);
1065 		return start_type;
1066 	}
1067 
1068 	if (current_order >= pageblock_order / 2 ||
1069 	    start_type == MIGRATE_RECLAIMABLE ||
1070 	    page_group_by_mobility_disabled) {
1071 		int pages;
1072 
1073 		pages = move_freepages_block(zone, page, start_type);
1074 
1075 		/* Claim the whole block if over half of it is free */
1076 		if (pages >= (1 << (pageblock_order-1)) ||
1077 				page_group_by_mobility_disabled) {
1078 
1079 			set_pageblock_migratetype(page, start_type);
1080 			return start_type;
1081 		}
1082 
1083 	}
1084 
1085 	return fallback_type;
1086 }
1087 
1088 /* Remove an element from the buddy allocator from the fallback list */
1089 static inline struct page *
1090 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
1091 {
1092 	struct free_area *area;
1093 	int current_order;
1094 	struct page *page;
1095 	int migratetype, new_type, i;
1096 
1097 	/* Find the largest possible block of pages in the other list */
1098 	for (current_order = MAX_ORDER-1; current_order >= order;
1099 						--current_order) {
1100 		for (i = 0;; i++) {
1101 			migratetype = fallbacks[start_migratetype][i];
1102 
1103 			/* MIGRATE_RESERVE handled later if necessary */
1104 			if (migratetype == MIGRATE_RESERVE)
1105 				break;
1106 
1107 			area = &(zone->free_area[current_order]);
1108 			if (list_empty(&area->free_list[migratetype]))
1109 				continue;
1110 
1111 			page = list_entry(area->free_list[migratetype].next,
1112 					struct page, lru);
1113 			area->nr_free--;
1114 
1115 			new_type = try_to_steal_freepages(zone, page,
1116 							  start_migratetype,
1117 							  migratetype);
1118 
1119 			/* Remove the page from the freelists */
1120 			list_del(&page->lru);
1121 			rmv_page_order(page);
1122 
1123 			expand(zone, page, order, current_order, area,
1124 			       new_type);
1125 
1126 			trace_mm_page_alloc_extfrag(page, order, current_order,
1127 				start_migratetype, migratetype, new_type);
1128 
1129 			return page;
1130 		}
1131 	}
1132 
1133 	return NULL;
1134 }
1135 
1136 /*
1137  * Do the hard work of removing an element from the buddy allocator.
1138  * Call me with the zone->lock already held.
1139  */
1140 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1141 						int migratetype)
1142 {
1143 	struct page *page;
1144 
1145 retry_reserve:
1146 	page = __rmqueue_smallest(zone, order, migratetype);
1147 
1148 	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1149 		page = __rmqueue_fallback(zone, order, migratetype);
1150 
1151 		/*
1152 		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1153 		 * is used because __rmqueue_smallest is an inline function
1154 		 * and we want just one call site
1155 		 */
1156 		if (!page) {
1157 			migratetype = MIGRATE_RESERVE;
1158 			goto retry_reserve;
1159 		}
1160 	}
1161 
1162 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
1163 	return page;
1164 }
1165 
1166 /*
1167  * Obtain a specified number of elements from the buddy allocator, all under
1168  * a single hold of the lock, for efficiency.  Add them to the supplied list.
1169  * Returns the number of new pages which were placed at *list.
1170  */
1171 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1172 			unsigned long count, struct list_head *list,
1173 			int migratetype, int cold)
1174 {
1175 	int mt = migratetype, i;
1176 
1177 	spin_lock(&zone->lock);
1178 	for (i = 0; i < count; ++i) {
1179 		struct page *page = __rmqueue(zone, order, migratetype);
1180 		if (unlikely(page == NULL))
1181 			break;
1182 
1183 		/*
1184 		 * Split buddy pages returned by expand() are received here
1185 		 * in physical page order. The page is added to the callers and
1186 		 * list and the list head then moves forward. From the callers
1187 		 * perspective, the linked list is ordered by page number in
1188 		 * some conditions. This is useful for IO devices that can
1189 		 * merge IO requests if the physical pages are ordered
1190 		 * properly.
1191 		 */
1192 		if (likely(cold == 0))
1193 			list_add(&page->lru, list);
1194 		else
1195 			list_add_tail(&page->lru, list);
1196 		if (IS_ENABLED(CONFIG_CMA)) {
1197 			mt = get_pageblock_migratetype(page);
1198 			if (!is_migrate_cma(mt) && !is_migrate_isolate(mt))
1199 				mt = migratetype;
1200 		}
1201 		set_freepage_migratetype(page, mt);
1202 		list = &page->lru;
1203 		if (is_migrate_cma(mt))
1204 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1205 					      -(1 << order));
1206 	}
1207 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1208 	spin_unlock(&zone->lock);
1209 	return i;
1210 }
1211 
1212 #ifdef CONFIG_NUMA
1213 /*
1214  * Called from the vmstat counter updater to drain pagesets of this
1215  * currently executing processor on remote nodes after they have
1216  * expired.
1217  *
1218  * Note that this function must be called with the thread pinned to
1219  * a single processor.
1220  */
1221 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1222 {
1223 	unsigned long flags;
1224 	int to_drain;
1225 	unsigned long batch;
1226 
1227 	local_irq_save(flags);
1228 	batch = ACCESS_ONCE(pcp->batch);
1229 	if (pcp->count >= batch)
1230 		to_drain = batch;
1231 	else
1232 		to_drain = pcp->count;
1233 	if (to_drain > 0) {
1234 		free_pcppages_bulk(zone, to_drain, pcp);
1235 		pcp->count -= to_drain;
1236 	}
1237 	local_irq_restore(flags);
1238 }
1239 #endif
1240 
1241 /*
1242  * Drain pages of the indicated processor.
1243  *
1244  * The processor must either be the current processor and the
1245  * thread pinned to the current processor or a processor that
1246  * is not online.
1247  */
1248 static void drain_pages(unsigned int cpu)
1249 {
1250 	unsigned long flags;
1251 	struct zone *zone;
1252 
1253 	for_each_populated_zone(zone) {
1254 		struct per_cpu_pageset *pset;
1255 		struct per_cpu_pages *pcp;
1256 
1257 		local_irq_save(flags);
1258 		pset = per_cpu_ptr(zone->pageset, cpu);
1259 
1260 		pcp = &pset->pcp;
1261 		if (pcp->count) {
1262 			free_pcppages_bulk(zone, pcp->count, pcp);
1263 			pcp->count = 0;
1264 		}
1265 		local_irq_restore(flags);
1266 	}
1267 }
1268 
1269 /*
1270  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1271  */
1272 void drain_local_pages(void *arg)
1273 {
1274 	drain_pages(smp_processor_id());
1275 }
1276 
1277 /*
1278  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1279  *
1280  * Note that this code is protected against sending an IPI to an offline
1281  * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1282  * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1283  * nothing keeps CPUs from showing up after we populated the cpumask and
1284  * before the call to on_each_cpu_mask().
1285  */
1286 void drain_all_pages(void)
1287 {
1288 	int cpu;
1289 	struct per_cpu_pageset *pcp;
1290 	struct zone *zone;
1291 
1292 	/*
1293 	 * Allocate in the BSS so we wont require allocation in
1294 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1295 	 */
1296 	static cpumask_t cpus_with_pcps;
1297 
1298 	/*
1299 	 * We don't care about racing with CPU hotplug event
1300 	 * as offline notification will cause the notified
1301 	 * cpu to drain that CPU pcps and on_each_cpu_mask
1302 	 * disables preemption as part of its processing
1303 	 */
1304 	for_each_online_cpu(cpu) {
1305 		bool has_pcps = false;
1306 		for_each_populated_zone(zone) {
1307 			pcp = per_cpu_ptr(zone->pageset, cpu);
1308 			if (pcp->pcp.count) {
1309 				has_pcps = true;
1310 				break;
1311 			}
1312 		}
1313 		if (has_pcps)
1314 			cpumask_set_cpu(cpu, &cpus_with_pcps);
1315 		else
1316 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
1317 	}
1318 	on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1319 }
1320 
1321 #ifdef CONFIG_HIBERNATION
1322 
1323 void mark_free_pages(struct zone *zone)
1324 {
1325 	unsigned long pfn, max_zone_pfn;
1326 	unsigned long flags;
1327 	int order, t;
1328 	struct list_head *curr;
1329 
1330 	if (zone_is_empty(zone))
1331 		return;
1332 
1333 	spin_lock_irqsave(&zone->lock, flags);
1334 
1335 	max_zone_pfn = zone_end_pfn(zone);
1336 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1337 		if (pfn_valid(pfn)) {
1338 			struct page *page = pfn_to_page(pfn);
1339 
1340 			if (!swsusp_page_is_forbidden(page))
1341 				swsusp_unset_page_free(page);
1342 		}
1343 
1344 	for_each_migratetype_order(order, t) {
1345 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1346 			unsigned long i;
1347 
1348 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1349 			for (i = 0; i < (1UL << order); i++)
1350 				swsusp_set_page_free(pfn_to_page(pfn + i));
1351 		}
1352 	}
1353 	spin_unlock_irqrestore(&zone->lock, flags);
1354 }
1355 #endif /* CONFIG_PM */
1356 
1357 /*
1358  * Free a 0-order page
1359  * cold == 1 ? free a cold page : free a hot page
1360  */
1361 void free_hot_cold_page(struct page *page, int cold)
1362 {
1363 	struct zone *zone = page_zone(page);
1364 	struct per_cpu_pages *pcp;
1365 	unsigned long flags;
1366 	int migratetype;
1367 
1368 	if (!free_pages_prepare(page, 0))
1369 		return;
1370 
1371 	migratetype = get_pageblock_migratetype(page);
1372 	set_freepage_migratetype(page, migratetype);
1373 	local_irq_save(flags);
1374 	__count_vm_event(PGFREE);
1375 
1376 	/*
1377 	 * We only track unmovable, reclaimable and movable on pcp lists.
1378 	 * Free ISOLATE pages back to the allocator because they are being
1379 	 * offlined but treat RESERVE as movable pages so we can get those
1380 	 * areas back if necessary. Otherwise, we may have to free
1381 	 * excessively into the page allocator
1382 	 */
1383 	if (migratetype >= MIGRATE_PCPTYPES) {
1384 		if (unlikely(is_migrate_isolate(migratetype))) {
1385 			free_one_page(zone, page, 0, migratetype);
1386 			goto out;
1387 		}
1388 		migratetype = MIGRATE_MOVABLE;
1389 	}
1390 
1391 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
1392 	if (cold)
1393 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1394 	else
1395 		list_add(&page->lru, &pcp->lists[migratetype]);
1396 	pcp->count++;
1397 	if (pcp->count >= pcp->high) {
1398 		unsigned long batch = ACCESS_ONCE(pcp->batch);
1399 		free_pcppages_bulk(zone, batch, pcp);
1400 		pcp->count -= batch;
1401 	}
1402 
1403 out:
1404 	local_irq_restore(flags);
1405 }
1406 
1407 /*
1408  * Free a list of 0-order pages
1409  */
1410 void free_hot_cold_page_list(struct list_head *list, int cold)
1411 {
1412 	struct page *page, *next;
1413 
1414 	list_for_each_entry_safe(page, next, list, lru) {
1415 		trace_mm_page_free_batched(page, cold);
1416 		free_hot_cold_page(page, cold);
1417 	}
1418 }
1419 
1420 /*
1421  * split_page takes a non-compound higher-order page, and splits it into
1422  * n (1<<order) sub-pages: page[0..n]
1423  * Each sub-page must be freed individually.
1424  *
1425  * Note: this is probably too low level an operation for use in drivers.
1426  * Please consult with lkml before using this in your driver.
1427  */
1428 void split_page(struct page *page, unsigned int order)
1429 {
1430 	int i;
1431 
1432 	VM_BUG_ON_PAGE(PageCompound(page), page);
1433 	VM_BUG_ON_PAGE(!page_count(page), page);
1434 
1435 #ifdef CONFIG_KMEMCHECK
1436 	/*
1437 	 * Split shadow pages too, because free(page[0]) would
1438 	 * otherwise free the whole shadow.
1439 	 */
1440 	if (kmemcheck_page_is_tracked(page))
1441 		split_page(virt_to_page(page[0].shadow), order);
1442 #endif
1443 
1444 	for (i = 1; i < (1 << order); i++)
1445 		set_page_refcounted(page + i);
1446 }
1447 EXPORT_SYMBOL_GPL(split_page);
1448 
1449 static int __isolate_free_page(struct page *page, unsigned int order)
1450 {
1451 	unsigned long watermark;
1452 	struct zone *zone;
1453 	int mt;
1454 
1455 	BUG_ON(!PageBuddy(page));
1456 
1457 	zone = page_zone(page);
1458 	mt = get_pageblock_migratetype(page);
1459 
1460 	if (!is_migrate_isolate(mt)) {
1461 		/* Obey watermarks as if the page was being allocated */
1462 		watermark = low_wmark_pages(zone) + (1 << order);
1463 		if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1464 			return 0;
1465 
1466 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
1467 	}
1468 
1469 	/* Remove page from free list */
1470 	list_del(&page->lru);
1471 	zone->free_area[order].nr_free--;
1472 	rmv_page_order(page);
1473 
1474 	/* Set the pageblock if the isolated page is at least a pageblock */
1475 	if (order >= pageblock_order - 1) {
1476 		struct page *endpage = page + (1 << order) - 1;
1477 		for (; page < endpage; page += pageblock_nr_pages) {
1478 			int mt = get_pageblock_migratetype(page);
1479 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1480 				set_pageblock_migratetype(page,
1481 							  MIGRATE_MOVABLE);
1482 		}
1483 	}
1484 
1485 	return 1UL << order;
1486 }
1487 
1488 /*
1489  * Similar to split_page except the page is already free. As this is only
1490  * being used for migration, the migratetype of the block also changes.
1491  * As this is called with interrupts disabled, the caller is responsible
1492  * for calling arch_alloc_page() and kernel_map_page() after interrupts
1493  * are enabled.
1494  *
1495  * Note: this is probably too low level an operation for use in drivers.
1496  * Please consult with lkml before using this in your driver.
1497  */
1498 int split_free_page(struct page *page)
1499 {
1500 	unsigned int order;
1501 	int nr_pages;
1502 
1503 	order = page_order(page);
1504 
1505 	nr_pages = __isolate_free_page(page, order);
1506 	if (!nr_pages)
1507 		return 0;
1508 
1509 	/* Split into individual pages */
1510 	set_page_refcounted(page);
1511 	split_page(page, order);
1512 	return nr_pages;
1513 }
1514 
1515 /*
1516  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1517  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1518  * or two.
1519  */
1520 static inline
1521 struct page *buffered_rmqueue(struct zone *preferred_zone,
1522 			struct zone *zone, int order, gfp_t gfp_flags,
1523 			int migratetype)
1524 {
1525 	unsigned long flags;
1526 	struct page *page;
1527 	int cold = !!(gfp_flags & __GFP_COLD);
1528 
1529 again:
1530 	if (likely(order == 0)) {
1531 		struct per_cpu_pages *pcp;
1532 		struct list_head *list;
1533 
1534 		local_irq_save(flags);
1535 		pcp = &this_cpu_ptr(zone->pageset)->pcp;
1536 		list = &pcp->lists[migratetype];
1537 		if (list_empty(list)) {
1538 			pcp->count += rmqueue_bulk(zone, 0,
1539 					pcp->batch, list,
1540 					migratetype, cold);
1541 			if (unlikely(list_empty(list)))
1542 				goto failed;
1543 		}
1544 
1545 		if (cold)
1546 			page = list_entry(list->prev, struct page, lru);
1547 		else
1548 			page = list_entry(list->next, struct page, lru);
1549 
1550 		list_del(&page->lru);
1551 		pcp->count--;
1552 	} else {
1553 		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1554 			/*
1555 			 * __GFP_NOFAIL is not to be used in new code.
1556 			 *
1557 			 * All __GFP_NOFAIL callers should be fixed so that they
1558 			 * properly detect and handle allocation failures.
1559 			 *
1560 			 * We most definitely don't want callers attempting to
1561 			 * allocate greater than order-1 page units with
1562 			 * __GFP_NOFAIL.
1563 			 */
1564 			WARN_ON_ONCE(order > 1);
1565 		}
1566 		spin_lock_irqsave(&zone->lock, flags);
1567 		page = __rmqueue(zone, order, migratetype);
1568 		spin_unlock(&zone->lock);
1569 		if (!page)
1570 			goto failed;
1571 		__mod_zone_freepage_state(zone, -(1 << order),
1572 					  get_pageblock_migratetype(page));
1573 	}
1574 
1575 	__mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
1576 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1577 	zone_statistics(preferred_zone, zone, gfp_flags);
1578 	local_irq_restore(flags);
1579 
1580 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1581 	if (prep_new_page(page, order, gfp_flags))
1582 		goto again;
1583 	return page;
1584 
1585 failed:
1586 	local_irq_restore(flags);
1587 	return NULL;
1588 }
1589 
1590 #ifdef CONFIG_FAIL_PAGE_ALLOC
1591 
1592 static struct {
1593 	struct fault_attr attr;
1594 
1595 	u32 ignore_gfp_highmem;
1596 	u32 ignore_gfp_wait;
1597 	u32 min_order;
1598 } fail_page_alloc = {
1599 	.attr = FAULT_ATTR_INITIALIZER,
1600 	.ignore_gfp_wait = 1,
1601 	.ignore_gfp_highmem = 1,
1602 	.min_order = 1,
1603 };
1604 
1605 static int __init setup_fail_page_alloc(char *str)
1606 {
1607 	return setup_fault_attr(&fail_page_alloc.attr, str);
1608 }
1609 __setup("fail_page_alloc=", setup_fail_page_alloc);
1610 
1611 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1612 {
1613 	if (order < fail_page_alloc.min_order)
1614 		return false;
1615 	if (gfp_mask & __GFP_NOFAIL)
1616 		return false;
1617 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1618 		return false;
1619 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1620 		return false;
1621 
1622 	return should_fail(&fail_page_alloc.attr, 1 << order);
1623 }
1624 
1625 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1626 
1627 static int __init fail_page_alloc_debugfs(void)
1628 {
1629 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1630 	struct dentry *dir;
1631 
1632 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1633 					&fail_page_alloc.attr);
1634 	if (IS_ERR(dir))
1635 		return PTR_ERR(dir);
1636 
1637 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1638 				&fail_page_alloc.ignore_gfp_wait))
1639 		goto fail;
1640 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1641 				&fail_page_alloc.ignore_gfp_highmem))
1642 		goto fail;
1643 	if (!debugfs_create_u32("min-order", mode, dir,
1644 				&fail_page_alloc.min_order))
1645 		goto fail;
1646 
1647 	return 0;
1648 fail:
1649 	debugfs_remove_recursive(dir);
1650 
1651 	return -ENOMEM;
1652 }
1653 
1654 late_initcall(fail_page_alloc_debugfs);
1655 
1656 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1657 
1658 #else /* CONFIG_FAIL_PAGE_ALLOC */
1659 
1660 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1661 {
1662 	return false;
1663 }
1664 
1665 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1666 
1667 /*
1668  * Return true if free pages are above 'mark'. This takes into account the order
1669  * of the allocation.
1670  */
1671 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1672 		      int classzone_idx, int alloc_flags, long free_pages)
1673 {
1674 	/* free_pages my go negative - that's OK */
1675 	long min = mark;
1676 	long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1677 	int o;
1678 	long free_cma = 0;
1679 
1680 	free_pages -= (1 << order) - 1;
1681 	if (alloc_flags & ALLOC_HIGH)
1682 		min -= min / 2;
1683 	if (alloc_flags & ALLOC_HARDER)
1684 		min -= min / 4;
1685 #ifdef CONFIG_CMA
1686 	/* If allocation can't use CMA areas don't use free CMA pages */
1687 	if (!(alloc_flags & ALLOC_CMA))
1688 		free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1689 #endif
1690 
1691 	if (free_pages - free_cma <= min + lowmem_reserve)
1692 		return false;
1693 	for (o = 0; o < order; o++) {
1694 		/* At the next order, this order's pages become unavailable */
1695 		free_pages -= z->free_area[o].nr_free << o;
1696 
1697 		/* Require fewer higher order pages to be free */
1698 		min >>= 1;
1699 
1700 		if (free_pages <= min)
1701 			return false;
1702 	}
1703 	return true;
1704 }
1705 
1706 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1707 		      int classzone_idx, int alloc_flags)
1708 {
1709 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1710 					zone_page_state(z, NR_FREE_PAGES));
1711 }
1712 
1713 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1714 		      int classzone_idx, int alloc_flags)
1715 {
1716 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
1717 
1718 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1719 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1720 
1721 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1722 								free_pages);
1723 }
1724 
1725 #ifdef CONFIG_NUMA
1726 /*
1727  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1728  * skip over zones that are not allowed by the cpuset, or that have
1729  * been recently (in last second) found to be nearly full.  See further
1730  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1731  * that have to skip over a lot of full or unallowed zones.
1732  *
1733  * If the zonelist cache is present in the passed zonelist, then
1734  * returns a pointer to the allowed node mask (either the current
1735  * tasks mems_allowed, or node_states[N_MEMORY].)
1736  *
1737  * If the zonelist cache is not available for this zonelist, does
1738  * nothing and returns NULL.
1739  *
1740  * If the fullzones BITMAP in the zonelist cache is stale (more than
1741  * a second since last zap'd) then we zap it out (clear its bits.)
1742  *
1743  * We hold off even calling zlc_setup, until after we've checked the
1744  * first zone in the zonelist, on the theory that most allocations will
1745  * be satisfied from that first zone, so best to examine that zone as
1746  * quickly as we can.
1747  */
1748 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1749 {
1750 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1751 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1752 
1753 	zlc = zonelist->zlcache_ptr;
1754 	if (!zlc)
1755 		return NULL;
1756 
1757 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1758 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1759 		zlc->last_full_zap = jiffies;
1760 	}
1761 
1762 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1763 					&cpuset_current_mems_allowed :
1764 					&node_states[N_MEMORY];
1765 	return allowednodes;
1766 }
1767 
1768 /*
1769  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1770  * if it is worth looking at further for free memory:
1771  *  1) Check that the zone isn't thought to be full (doesn't have its
1772  *     bit set in the zonelist_cache fullzones BITMAP).
1773  *  2) Check that the zones node (obtained from the zonelist_cache
1774  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1775  * Return true (non-zero) if zone is worth looking at further, or
1776  * else return false (zero) if it is not.
1777  *
1778  * This check -ignores- the distinction between various watermarks,
1779  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1780  * found to be full for any variation of these watermarks, it will
1781  * be considered full for up to one second by all requests, unless
1782  * we are so low on memory on all allowed nodes that we are forced
1783  * into the second scan of the zonelist.
1784  *
1785  * In the second scan we ignore this zonelist cache and exactly
1786  * apply the watermarks to all zones, even it is slower to do so.
1787  * We are low on memory in the second scan, and should leave no stone
1788  * unturned looking for a free page.
1789  */
1790 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1791 						nodemask_t *allowednodes)
1792 {
1793 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1794 	int i;				/* index of *z in zonelist zones */
1795 	int n;				/* node that zone *z is on */
1796 
1797 	zlc = zonelist->zlcache_ptr;
1798 	if (!zlc)
1799 		return 1;
1800 
1801 	i = z - zonelist->_zonerefs;
1802 	n = zlc->z_to_n[i];
1803 
1804 	/* This zone is worth trying if it is allowed but not full */
1805 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1806 }
1807 
1808 /*
1809  * Given 'z' scanning a zonelist, set the corresponding bit in
1810  * zlc->fullzones, so that subsequent attempts to allocate a page
1811  * from that zone don't waste time re-examining it.
1812  */
1813 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1814 {
1815 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1816 	int i;				/* index of *z in zonelist zones */
1817 
1818 	zlc = zonelist->zlcache_ptr;
1819 	if (!zlc)
1820 		return;
1821 
1822 	i = z - zonelist->_zonerefs;
1823 
1824 	set_bit(i, zlc->fullzones);
1825 }
1826 
1827 /*
1828  * clear all zones full, called after direct reclaim makes progress so that
1829  * a zone that was recently full is not skipped over for up to a second
1830  */
1831 static void zlc_clear_zones_full(struct zonelist *zonelist)
1832 {
1833 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1834 
1835 	zlc = zonelist->zlcache_ptr;
1836 	if (!zlc)
1837 		return;
1838 
1839 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1840 }
1841 
1842 static bool zone_local(struct zone *local_zone, struct zone *zone)
1843 {
1844 	return local_zone->node == zone->node;
1845 }
1846 
1847 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1848 {
1849 	return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1850 }
1851 
1852 static void __paginginit init_zone_allows_reclaim(int nid)
1853 {
1854 	int i;
1855 
1856 	for_each_online_node(i)
1857 		if (node_distance(nid, i) <= RECLAIM_DISTANCE)
1858 			node_set(i, NODE_DATA(nid)->reclaim_nodes);
1859 		else
1860 			zone_reclaim_mode = 1;
1861 }
1862 
1863 #else	/* CONFIG_NUMA */
1864 
1865 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1866 {
1867 	return NULL;
1868 }
1869 
1870 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1871 				nodemask_t *allowednodes)
1872 {
1873 	return 1;
1874 }
1875 
1876 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1877 {
1878 }
1879 
1880 static void zlc_clear_zones_full(struct zonelist *zonelist)
1881 {
1882 }
1883 
1884 static bool zone_local(struct zone *local_zone, struct zone *zone)
1885 {
1886 	return true;
1887 }
1888 
1889 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1890 {
1891 	return true;
1892 }
1893 
1894 static inline void init_zone_allows_reclaim(int nid)
1895 {
1896 }
1897 #endif	/* CONFIG_NUMA */
1898 
1899 /*
1900  * get_page_from_freelist goes through the zonelist trying to allocate
1901  * a page.
1902  */
1903 static struct page *
1904 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1905 		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1906 		struct zone *preferred_zone, int migratetype)
1907 {
1908 	struct zoneref *z;
1909 	struct page *page = NULL;
1910 	int classzone_idx;
1911 	struct zone *zone;
1912 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1913 	int zlc_active = 0;		/* set if using zonelist_cache */
1914 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1915 
1916 	classzone_idx = zone_idx(preferred_zone);
1917 zonelist_scan:
1918 	/*
1919 	 * Scan zonelist, looking for a zone with enough free.
1920 	 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
1921 	 */
1922 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1923 						high_zoneidx, nodemask) {
1924 		unsigned long mark;
1925 
1926 		if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1927 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1928 				continue;
1929 		if ((alloc_flags & ALLOC_CPUSET) &&
1930 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1931 				continue;
1932 		BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1933 		if (unlikely(alloc_flags & ALLOC_NO_WATERMARKS))
1934 			goto try_this_zone;
1935 		/*
1936 		 * Distribute pages in proportion to the individual
1937 		 * zone size to ensure fair page aging.  The zone a
1938 		 * page was allocated in should have no effect on the
1939 		 * time the page has in memory before being reclaimed.
1940 		 *
1941 		 * Try to stay in local zones in the fastpath.  If
1942 		 * that fails, the slowpath is entered, which will do
1943 		 * another pass starting with the local zones, but
1944 		 * ultimately fall back to remote zones that do not
1945 		 * partake in the fairness round-robin cycle of this
1946 		 * zonelist.
1947 		 */
1948 		if (alloc_flags & ALLOC_WMARK_LOW) {
1949 			if (zone_page_state(zone, NR_ALLOC_BATCH) <= 0)
1950 				continue;
1951 			if (!zone_local(preferred_zone, zone))
1952 				continue;
1953 		}
1954 		/*
1955 		 * When allocating a page cache page for writing, we
1956 		 * want to get it from a zone that is within its dirty
1957 		 * limit, such that no single zone holds more than its
1958 		 * proportional share of globally allowed dirty pages.
1959 		 * The dirty limits take into account the zone's
1960 		 * lowmem reserves and high watermark so that kswapd
1961 		 * should be able to balance it without having to
1962 		 * write pages from its LRU list.
1963 		 *
1964 		 * This may look like it could increase pressure on
1965 		 * lower zones by failing allocations in higher zones
1966 		 * before they are full.  But the pages that do spill
1967 		 * over are limited as the lower zones are protected
1968 		 * by this very same mechanism.  It should not become
1969 		 * a practical burden to them.
1970 		 *
1971 		 * XXX: For now, allow allocations to potentially
1972 		 * exceed the per-zone dirty limit in the slowpath
1973 		 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1974 		 * which is important when on a NUMA setup the allowed
1975 		 * zones are together not big enough to reach the
1976 		 * global limit.  The proper fix for these situations
1977 		 * will require awareness of zones in the
1978 		 * dirty-throttling and the flusher threads.
1979 		 */
1980 		if ((alloc_flags & ALLOC_WMARK_LOW) &&
1981 		    (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1982 			goto this_zone_full;
1983 
1984 		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1985 		if (!zone_watermark_ok(zone, order, mark,
1986 				       classzone_idx, alloc_flags)) {
1987 			int ret;
1988 
1989 			if (IS_ENABLED(CONFIG_NUMA) &&
1990 					!did_zlc_setup && nr_online_nodes > 1) {
1991 				/*
1992 				 * we do zlc_setup if there are multiple nodes
1993 				 * and before considering the first zone allowed
1994 				 * by the cpuset.
1995 				 */
1996 				allowednodes = zlc_setup(zonelist, alloc_flags);
1997 				zlc_active = 1;
1998 				did_zlc_setup = 1;
1999 			}
2000 
2001 			if (zone_reclaim_mode == 0 ||
2002 			    !zone_allows_reclaim(preferred_zone, zone))
2003 				goto this_zone_full;
2004 
2005 			/*
2006 			 * As we may have just activated ZLC, check if the first
2007 			 * eligible zone has failed zone_reclaim recently.
2008 			 */
2009 			if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2010 				!zlc_zone_worth_trying(zonelist, z, allowednodes))
2011 				continue;
2012 
2013 			ret = zone_reclaim(zone, gfp_mask, order);
2014 			switch (ret) {
2015 			case ZONE_RECLAIM_NOSCAN:
2016 				/* did not scan */
2017 				continue;
2018 			case ZONE_RECLAIM_FULL:
2019 				/* scanned but unreclaimable */
2020 				continue;
2021 			default:
2022 				/* did we reclaim enough */
2023 				if (zone_watermark_ok(zone, order, mark,
2024 						classzone_idx, alloc_flags))
2025 					goto try_this_zone;
2026 
2027 				/*
2028 				 * Failed to reclaim enough to meet watermark.
2029 				 * Only mark the zone full if checking the min
2030 				 * watermark or if we failed to reclaim just
2031 				 * 1<<order pages or else the page allocator
2032 				 * fastpath will prematurely mark zones full
2033 				 * when the watermark is between the low and
2034 				 * min watermarks.
2035 				 */
2036 				if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2037 				    ret == ZONE_RECLAIM_SOME)
2038 					goto this_zone_full;
2039 
2040 				continue;
2041 			}
2042 		}
2043 
2044 try_this_zone:
2045 		page = buffered_rmqueue(preferred_zone, zone, order,
2046 						gfp_mask, migratetype);
2047 		if (page)
2048 			break;
2049 this_zone_full:
2050 		if (IS_ENABLED(CONFIG_NUMA))
2051 			zlc_mark_zone_full(zonelist, z);
2052 	}
2053 
2054 	if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
2055 		/* Disable zlc cache for second zonelist scan */
2056 		zlc_active = 0;
2057 		goto zonelist_scan;
2058 	}
2059 
2060 	if (page)
2061 		/*
2062 		 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2063 		 * necessary to allocate the page. The expectation is
2064 		 * that the caller is taking steps that will free more
2065 		 * memory. The caller should avoid the page being used
2066 		 * for !PFMEMALLOC purposes.
2067 		 */
2068 		page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
2069 
2070 	return page;
2071 }
2072 
2073 /*
2074  * Large machines with many possible nodes should not always dump per-node
2075  * meminfo in irq context.
2076  */
2077 static inline bool should_suppress_show_mem(void)
2078 {
2079 	bool ret = false;
2080 
2081 #if NODES_SHIFT > 8
2082 	ret = in_interrupt();
2083 #endif
2084 	return ret;
2085 }
2086 
2087 static DEFINE_RATELIMIT_STATE(nopage_rs,
2088 		DEFAULT_RATELIMIT_INTERVAL,
2089 		DEFAULT_RATELIMIT_BURST);
2090 
2091 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2092 {
2093 	unsigned int filter = SHOW_MEM_FILTER_NODES;
2094 
2095 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2096 	    debug_guardpage_minorder() > 0)
2097 		return;
2098 
2099 	/*
2100 	 * This documents exceptions given to allocations in certain
2101 	 * contexts that are allowed to allocate outside current's set
2102 	 * of allowed nodes.
2103 	 */
2104 	if (!(gfp_mask & __GFP_NOMEMALLOC))
2105 		if (test_thread_flag(TIF_MEMDIE) ||
2106 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
2107 			filter &= ~SHOW_MEM_FILTER_NODES;
2108 	if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2109 		filter &= ~SHOW_MEM_FILTER_NODES;
2110 
2111 	if (fmt) {
2112 		struct va_format vaf;
2113 		va_list args;
2114 
2115 		va_start(args, fmt);
2116 
2117 		vaf.fmt = fmt;
2118 		vaf.va = &args;
2119 
2120 		pr_warn("%pV", &vaf);
2121 
2122 		va_end(args);
2123 	}
2124 
2125 	pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2126 		current->comm, order, gfp_mask);
2127 
2128 	dump_stack();
2129 	if (!should_suppress_show_mem())
2130 		show_mem(filter);
2131 }
2132 
2133 static inline int
2134 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2135 				unsigned long did_some_progress,
2136 				unsigned long pages_reclaimed)
2137 {
2138 	/* Do not loop if specifically requested */
2139 	if (gfp_mask & __GFP_NORETRY)
2140 		return 0;
2141 
2142 	/* Always retry if specifically requested */
2143 	if (gfp_mask & __GFP_NOFAIL)
2144 		return 1;
2145 
2146 	/*
2147 	 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2148 	 * making forward progress without invoking OOM. Suspend also disables
2149 	 * storage devices so kswapd will not help. Bail if we are suspending.
2150 	 */
2151 	if (!did_some_progress && pm_suspended_storage())
2152 		return 0;
2153 
2154 	/*
2155 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2156 	 * means __GFP_NOFAIL, but that may not be true in other
2157 	 * implementations.
2158 	 */
2159 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
2160 		return 1;
2161 
2162 	/*
2163 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2164 	 * specified, then we retry until we no longer reclaim any pages
2165 	 * (above), or we've reclaimed an order of pages at least as
2166 	 * large as the allocation's order. In both cases, if the
2167 	 * allocation still fails, we stop retrying.
2168 	 */
2169 	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2170 		return 1;
2171 
2172 	return 0;
2173 }
2174 
2175 static inline struct page *
2176 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2177 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2178 	nodemask_t *nodemask, struct zone *preferred_zone,
2179 	int migratetype)
2180 {
2181 	struct page *page;
2182 
2183 	/* Acquire the OOM killer lock for the zones in zonelist */
2184 	if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2185 		schedule_timeout_uninterruptible(1);
2186 		return NULL;
2187 	}
2188 
2189 	/*
2190 	 * Go through the zonelist yet one more time, keep very high watermark
2191 	 * here, this is only to catch a parallel oom killing, we must fail if
2192 	 * we're still under heavy pressure.
2193 	 */
2194 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2195 		order, zonelist, high_zoneidx,
2196 		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2197 		preferred_zone, migratetype);
2198 	if (page)
2199 		goto out;
2200 
2201 	if (!(gfp_mask & __GFP_NOFAIL)) {
2202 		/* The OOM killer will not help higher order allocs */
2203 		if (order > PAGE_ALLOC_COSTLY_ORDER)
2204 			goto out;
2205 		/* The OOM killer does not needlessly kill tasks for lowmem */
2206 		if (high_zoneidx < ZONE_NORMAL)
2207 			goto out;
2208 		/*
2209 		 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2210 		 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2211 		 * The caller should handle page allocation failure by itself if
2212 		 * it specifies __GFP_THISNODE.
2213 		 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2214 		 */
2215 		if (gfp_mask & __GFP_THISNODE)
2216 			goto out;
2217 	}
2218 	/* Exhausted what can be done so it's blamo time */
2219 	out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2220 
2221 out:
2222 	clear_zonelist_oom(zonelist, gfp_mask);
2223 	return page;
2224 }
2225 
2226 #ifdef CONFIG_COMPACTION
2227 /* Try memory compaction for high-order allocations before reclaim */
2228 static struct page *
2229 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2230 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2231 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2232 	int migratetype, bool sync_migration,
2233 	bool *contended_compaction, bool *deferred_compaction,
2234 	unsigned long *did_some_progress)
2235 {
2236 	if (!order)
2237 		return NULL;
2238 
2239 	if (compaction_deferred(preferred_zone, order)) {
2240 		*deferred_compaction = true;
2241 		return NULL;
2242 	}
2243 
2244 	current->flags |= PF_MEMALLOC;
2245 	*did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2246 						nodemask, sync_migration,
2247 						contended_compaction);
2248 	current->flags &= ~PF_MEMALLOC;
2249 
2250 	if (*did_some_progress != COMPACT_SKIPPED) {
2251 		struct page *page;
2252 
2253 		/* Page migration frees to the PCP lists but we want merging */
2254 		drain_pages(get_cpu());
2255 		put_cpu();
2256 
2257 		page = get_page_from_freelist(gfp_mask, nodemask,
2258 				order, zonelist, high_zoneidx,
2259 				alloc_flags & ~ALLOC_NO_WATERMARKS,
2260 				preferred_zone, migratetype);
2261 		if (page) {
2262 			preferred_zone->compact_blockskip_flush = false;
2263 			compaction_defer_reset(preferred_zone, order, true);
2264 			count_vm_event(COMPACTSUCCESS);
2265 			return page;
2266 		}
2267 
2268 		/*
2269 		 * It's bad if compaction run occurs and fails.
2270 		 * The most likely reason is that pages exist,
2271 		 * but not enough to satisfy watermarks.
2272 		 */
2273 		count_vm_event(COMPACTFAIL);
2274 
2275 		/*
2276 		 * As async compaction considers a subset of pageblocks, only
2277 		 * defer if the failure was a sync compaction failure.
2278 		 */
2279 		if (sync_migration)
2280 			defer_compaction(preferred_zone, order);
2281 
2282 		cond_resched();
2283 	}
2284 
2285 	return NULL;
2286 }
2287 #else
2288 static inline struct page *
2289 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2290 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2291 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2292 	int migratetype, bool sync_migration,
2293 	bool *contended_compaction, bool *deferred_compaction,
2294 	unsigned long *did_some_progress)
2295 {
2296 	return NULL;
2297 }
2298 #endif /* CONFIG_COMPACTION */
2299 
2300 /* Perform direct synchronous page reclaim */
2301 static int
2302 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2303 		  nodemask_t *nodemask)
2304 {
2305 	struct reclaim_state reclaim_state;
2306 	int progress;
2307 
2308 	cond_resched();
2309 
2310 	/* We now go into synchronous reclaim */
2311 	cpuset_memory_pressure_bump();
2312 	current->flags |= PF_MEMALLOC;
2313 	lockdep_set_current_reclaim_state(gfp_mask);
2314 	reclaim_state.reclaimed_slab = 0;
2315 	current->reclaim_state = &reclaim_state;
2316 
2317 	progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2318 
2319 	current->reclaim_state = NULL;
2320 	lockdep_clear_current_reclaim_state();
2321 	current->flags &= ~PF_MEMALLOC;
2322 
2323 	cond_resched();
2324 
2325 	return progress;
2326 }
2327 
2328 /* The really slow allocator path where we enter direct reclaim */
2329 static inline struct page *
2330 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2331 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2332 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2333 	int migratetype, unsigned long *did_some_progress)
2334 {
2335 	struct page *page = NULL;
2336 	bool drained = false;
2337 
2338 	*did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2339 					       nodemask);
2340 	if (unlikely(!(*did_some_progress)))
2341 		return NULL;
2342 
2343 	/* After successful reclaim, reconsider all zones for allocation */
2344 	if (IS_ENABLED(CONFIG_NUMA))
2345 		zlc_clear_zones_full(zonelist);
2346 
2347 retry:
2348 	page = get_page_from_freelist(gfp_mask, nodemask, order,
2349 					zonelist, high_zoneidx,
2350 					alloc_flags & ~ALLOC_NO_WATERMARKS,
2351 					preferred_zone, migratetype);
2352 
2353 	/*
2354 	 * If an allocation failed after direct reclaim, it could be because
2355 	 * pages are pinned on the per-cpu lists. Drain them and try again
2356 	 */
2357 	if (!page && !drained) {
2358 		drain_all_pages();
2359 		drained = true;
2360 		goto retry;
2361 	}
2362 
2363 	return page;
2364 }
2365 
2366 /*
2367  * This is called in the allocator slow-path if the allocation request is of
2368  * sufficient urgency to ignore watermarks and take other desperate measures
2369  */
2370 static inline struct page *
2371 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2372 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2373 	nodemask_t *nodemask, struct zone *preferred_zone,
2374 	int migratetype)
2375 {
2376 	struct page *page;
2377 
2378 	do {
2379 		page = get_page_from_freelist(gfp_mask, nodemask, order,
2380 			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2381 			preferred_zone, migratetype);
2382 
2383 		if (!page && gfp_mask & __GFP_NOFAIL)
2384 			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2385 	} while (!page && (gfp_mask & __GFP_NOFAIL));
2386 
2387 	return page;
2388 }
2389 
2390 static void prepare_slowpath(gfp_t gfp_mask, unsigned int order,
2391 			     struct zonelist *zonelist,
2392 			     enum zone_type high_zoneidx,
2393 			     struct zone *preferred_zone)
2394 {
2395 	struct zoneref *z;
2396 	struct zone *zone;
2397 
2398 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
2399 		if (!(gfp_mask & __GFP_NO_KSWAPD))
2400 			wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2401 		/*
2402 		 * Only reset the batches of zones that were actually
2403 		 * considered in the fast path, we don't want to
2404 		 * thrash fairness information for zones that are not
2405 		 * actually part of this zonelist's round-robin cycle.
2406 		 */
2407 		if (!zone_local(preferred_zone, zone))
2408 			continue;
2409 		mod_zone_page_state(zone, NR_ALLOC_BATCH,
2410 				    high_wmark_pages(zone) -
2411 				    low_wmark_pages(zone) -
2412 				    zone_page_state(zone, NR_ALLOC_BATCH));
2413 	}
2414 }
2415 
2416 static inline int
2417 gfp_to_alloc_flags(gfp_t gfp_mask)
2418 {
2419 	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2420 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2421 
2422 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2423 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2424 
2425 	/*
2426 	 * The caller may dip into page reserves a bit more if the caller
2427 	 * cannot run direct reclaim, or if the caller has realtime scheduling
2428 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
2429 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2430 	 */
2431 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2432 
2433 	if (!wait) {
2434 		/*
2435 		 * Not worth trying to allocate harder for
2436 		 * __GFP_NOMEMALLOC even if it can't schedule.
2437 		 */
2438 		if  (!(gfp_mask & __GFP_NOMEMALLOC))
2439 			alloc_flags |= ALLOC_HARDER;
2440 		/*
2441 		 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2442 		 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2443 		 */
2444 		alloc_flags &= ~ALLOC_CPUSET;
2445 	} else if (unlikely(rt_task(current)) && !in_interrupt())
2446 		alloc_flags |= ALLOC_HARDER;
2447 
2448 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2449 		if (gfp_mask & __GFP_MEMALLOC)
2450 			alloc_flags |= ALLOC_NO_WATERMARKS;
2451 		else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2452 			alloc_flags |= ALLOC_NO_WATERMARKS;
2453 		else if (!in_interrupt() &&
2454 				((current->flags & PF_MEMALLOC) ||
2455 				 unlikely(test_thread_flag(TIF_MEMDIE))))
2456 			alloc_flags |= ALLOC_NO_WATERMARKS;
2457 	}
2458 #ifdef CONFIG_CMA
2459 	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2460 		alloc_flags |= ALLOC_CMA;
2461 #endif
2462 	return alloc_flags;
2463 }
2464 
2465 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2466 {
2467 	return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2468 }
2469 
2470 static inline struct page *
2471 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2472 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2473 	nodemask_t *nodemask, struct zone *preferred_zone,
2474 	int migratetype)
2475 {
2476 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2477 	struct page *page = NULL;
2478 	int alloc_flags;
2479 	unsigned long pages_reclaimed = 0;
2480 	unsigned long did_some_progress;
2481 	bool sync_migration = false;
2482 	bool deferred_compaction = false;
2483 	bool contended_compaction = false;
2484 
2485 	/*
2486 	 * In the slowpath, we sanity check order to avoid ever trying to
2487 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2488 	 * be using allocators in order of preference for an area that is
2489 	 * too large.
2490 	 */
2491 	if (order >= MAX_ORDER) {
2492 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2493 		return NULL;
2494 	}
2495 
2496 	/*
2497 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2498 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2499 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2500 	 * using a larger set of nodes after it has established that the
2501 	 * allowed per node queues are empty and that nodes are
2502 	 * over allocated.
2503 	 */
2504 	if (IS_ENABLED(CONFIG_NUMA) &&
2505 			(gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2506 		goto nopage;
2507 
2508 restart:
2509 	prepare_slowpath(gfp_mask, order, zonelist,
2510 			 high_zoneidx, preferred_zone);
2511 
2512 	/*
2513 	 * OK, we're below the kswapd watermark and have kicked background
2514 	 * reclaim. Now things get more complex, so set up alloc_flags according
2515 	 * to how we want to proceed.
2516 	 */
2517 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
2518 
2519 	/*
2520 	 * Find the true preferred zone if the allocation is unconstrained by
2521 	 * cpusets.
2522 	 */
2523 	if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2524 		first_zones_zonelist(zonelist, high_zoneidx, NULL,
2525 					&preferred_zone);
2526 
2527 rebalance:
2528 	/* This is the last chance, in general, before the goto nopage. */
2529 	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2530 			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2531 			preferred_zone, migratetype);
2532 	if (page)
2533 		goto got_pg;
2534 
2535 	/* Allocate without watermarks if the context allows */
2536 	if (alloc_flags & ALLOC_NO_WATERMARKS) {
2537 		/*
2538 		 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2539 		 * the allocation is high priority and these type of
2540 		 * allocations are system rather than user orientated
2541 		 */
2542 		zonelist = node_zonelist(numa_node_id(), gfp_mask);
2543 
2544 		page = __alloc_pages_high_priority(gfp_mask, order,
2545 				zonelist, high_zoneidx, nodemask,
2546 				preferred_zone, migratetype);
2547 		if (page) {
2548 			goto got_pg;
2549 		}
2550 	}
2551 
2552 	/* Atomic allocations - we can't balance anything */
2553 	if (!wait) {
2554 		/*
2555 		 * All existing users of the deprecated __GFP_NOFAIL are
2556 		 * blockable, so warn of any new users that actually allow this
2557 		 * type of allocation to fail.
2558 		 */
2559 		WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
2560 		goto nopage;
2561 	}
2562 
2563 	/* Avoid recursion of direct reclaim */
2564 	if (current->flags & PF_MEMALLOC)
2565 		goto nopage;
2566 
2567 	/* Avoid allocations with no watermarks from looping endlessly */
2568 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2569 		goto nopage;
2570 
2571 	/*
2572 	 * Try direct compaction. The first pass is asynchronous. Subsequent
2573 	 * attempts after direct reclaim are synchronous
2574 	 */
2575 	page = __alloc_pages_direct_compact(gfp_mask, order,
2576 					zonelist, high_zoneidx,
2577 					nodemask,
2578 					alloc_flags, preferred_zone,
2579 					migratetype, sync_migration,
2580 					&contended_compaction,
2581 					&deferred_compaction,
2582 					&did_some_progress);
2583 	if (page)
2584 		goto got_pg;
2585 	sync_migration = true;
2586 
2587 	/*
2588 	 * If compaction is deferred for high-order allocations, it is because
2589 	 * sync compaction recently failed. In this is the case and the caller
2590 	 * requested a movable allocation that does not heavily disrupt the
2591 	 * system then fail the allocation instead of entering direct reclaim.
2592 	 */
2593 	if ((deferred_compaction || contended_compaction) &&
2594 						(gfp_mask & __GFP_NO_KSWAPD))
2595 		goto nopage;
2596 
2597 	/* Try direct reclaim and then allocating */
2598 	page = __alloc_pages_direct_reclaim(gfp_mask, order,
2599 					zonelist, high_zoneidx,
2600 					nodemask,
2601 					alloc_flags, preferred_zone,
2602 					migratetype, &did_some_progress);
2603 	if (page)
2604 		goto got_pg;
2605 
2606 	/*
2607 	 * If we failed to make any progress reclaiming, then we are
2608 	 * running out of options and have to consider going OOM
2609 	 */
2610 	if (!did_some_progress) {
2611 		if (oom_gfp_allowed(gfp_mask)) {
2612 			if (oom_killer_disabled)
2613 				goto nopage;
2614 			/* Coredumps can quickly deplete all memory reserves */
2615 			if ((current->flags & PF_DUMPCORE) &&
2616 			    !(gfp_mask & __GFP_NOFAIL))
2617 				goto nopage;
2618 			page = __alloc_pages_may_oom(gfp_mask, order,
2619 					zonelist, high_zoneidx,
2620 					nodemask, preferred_zone,
2621 					migratetype);
2622 			if (page)
2623 				goto got_pg;
2624 
2625 			if (!(gfp_mask & __GFP_NOFAIL)) {
2626 				/*
2627 				 * The oom killer is not called for high-order
2628 				 * allocations that may fail, so if no progress
2629 				 * is being made, there are no other options and
2630 				 * retrying is unlikely to help.
2631 				 */
2632 				if (order > PAGE_ALLOC_COSTLY_ORDER)
2633 					goto nopage;
2634 				/*
2635 				 * The oom killer is not called for lowmem
2636 				 * allocations to prevent needlessly killing
2637 				 * innocent tasks.
2638 				 */
2639 				if (high_zoneidx < ZONE_NORMAL)
2640 					goto nopage;
2641 			}
2642 
2643 			goto restart;
2644 		}
2645 	}
2646 
2647 	/* Check if we should retry the allocation */
2648 	pages_reclaimed += did_some_progress;
2649 	if (should_alloc_retry(gfp_mask, order, did_some_progress,
2650 						pages_reclaimed)) {
2651 		/* Wait for some write requests to complete then retry */
2652 		wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2653 		goto rebalance;
2654 	} else {
2655 		/*
2656 		 * High-order allocations do not necessarily loop after
2657 		 * direct reclaim and reclaim/compaction depends on compaction
2658 		 * being called after reclaim so call directly if necessary
2659 		 */
2660 		page = __alloc_pages_direct_compact(gfp_mask, order,
2661 					zonelist, high_zoneidx,
2662 					nodemask,
2663 					alloc_flags, preferred_zone,
2664 					migratetype, sync_migration,
2665 					&contended_compaction,
2666 					&deferred_compaction,
2667 					&did_some_progress);
2668 		if (page)
2669 			goto got_pg;
2670 	}
2671 
2672 nopage:
2673 	warn_alloc_failed(gfp_mask, order, NULL);
2674 	return page;
2675 got_pg:
2676 	if (kmemcheck_enabled)
2677 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2678 
2679 	return page;
2680 }
2681 
2682 /*
2683  * This is the 'heart' of the zoned buddy allocator.
2684  */
2685 struct page *
2686 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2687 			struct zonelist *zonelist, nodemask_t *nodemask)
2688 {
2689 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2690 	struct zone *preferred_zone;
2691 	struct page *page = NULL;
2692 	int migratetype = allocflags_to_migratetype(gfp_mask);
2693 	unsigned int cpuset_mems_cookie;
2694 	int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
2695 	struct mem_cgroup *memcg = NULL;
2696 
2697 	gfp_mask &= gfp_allowed_mask;
2698 
2699 	lockdep_trace_alloc(gfp_mask);
2700 
2701 	might_sleep_if(gfp_mask & __GFP_WAIT);
2702 
2703 	if (should_fail_alloc_page(gfp_mask, order))
2704 		return NULL;
2705 
2706 	/*
2707 	 * Check the zones suitable for the gfp_mask contain at least one
2708 	 * valid zone. It's possible to have an empty zonelist as a result
2709 	 * of GFP_THISNODE and a memoryless node
2710 	 */
2711 	if (unlikely(!zonelist->_zonerefs->zone))
2712 		return NULL;
2713 
2714 	/*
2715 	 * Will only have any effect when __GFP_KMEMCG is set.  This is
2716 	 * verified in the (always inline) callee
2717 	 */
2718 	if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2719 		return NULL;
2720 
2721 retry_cpuset:
2722 	cpuset_mems_cookie = get_mems_allowed();
2723 
2724 	/* The preferred zone is used for statistics later */
2725 	first_zones_zonelist(zonelist, high_zoneidx,
2726 				nodemask ? : &cpuset_current_mems_allowed,
2727 				&preferred_zone);
2728 	if (!preferred_zone)
2729 		goto out;
2730 
2731 #ifdef CONFIG_CMA
2732 	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2733 		alloc_flags |= ALLOC_CMA;
2734 #endif
2735 	/* First allocation attempt */
2736 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2737 			zonelist, high_zoneidx, alloc_flags,
2738 			preferred_zone, migratetype);
2739 	if (unlikely(!page)) {
2740 		/*
2741 		 * Runtime PM, block IO and its error handling path
2742 		 * can deadlock because I/O on the device might not
2743 		 * complete.
2744 		 */
2745 		gfp_mask = memalloc_noio_flags(gfp_mask);
2746 		page = __alloc_pages_slowpath(gfp_mask, order,
2747 				zonelist, high_zoneidx, nodemask,
2748 				preferred_zone, migratetype);
2749 	}
2750 
2751 	trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2752 
2753 out:
2754 	/*
2755 	 * When updating a task's mems_allowed, it is possible to race with
2756 	 * parallel threads in such a way that an allocation can fail while
2757 	 * the mask is being updated. If a page allocation is about to fail,
2758 	 * check if the cpuset changed during allocation and if so, retry.
2759 	 */
2760 	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2761 		goto retry_cpuset;
2762 
2763 	memcg_kmem_commit_charge(page, memcg, order);
2764 
2765 	return page;
2766 }
2767 EXPORT_SYMBOL(__alloc_pages_nodemask);
2768 
2769 /*
2770  * Common helper functions.
2771  */
2772 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2773 {
2774 	struct page *page;
2775 
2776 	/*
2777 	 * __get_free_pages() returns a 32-bit address, which cannot represent
2778 	 * a highmem page
2779 	 */
2780 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2781 
2782 	page = alloc_pages(gfp_mask, order);
2783 	if (!page)
2784 		return 0;
2785 	return (unsigned long) page_address(page);
2786 }
2787 EXPORT_SYMBOL(__get_free_pages);
2788 
2789 unsigned long get_zeroed_page(gfp_t gfp_mask)
2790 {
2791 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2792 }
2793 EXPORT_SYMBOL(get_zeroed_page);
2794 
2795 void __free_pages(struct page *page, unsigned int order)
2796 {
2797 	if (put_page_testzero(page)) {
2798 		if (order == 0)
2799 			free_hot_cold_page(page, 0);
2800 		else
2801 			__free_pages_ok(page, order);
2802 	}
2803 }
2804 
2805 EXPORT_SYMBOL(__free_pages);
2806 
2807 void free_pages(unsigned long addr, unsigned int order)
2808 {
2809 	if (addr != 0) {
2810 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2811 		__free_pages(virt_to_page((void *)addr), order);
2812 	}
2813 }
2814 
2815 EXPORT_SYMBOL(free_pages);
2816 
2817 /*
2818  * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2819  * pages allocated with __GFP_KMEMCG.
2820  *
2821  * Those pages are accounted to a particular memcg, embedded in the
2822  * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2823  * for that information only to find out that it is NULL for users who have no
2824  * interest in that whatsoever, we provide these functions.
2825  *
2826  * The caller knows better which flags it relies on.
2827  */
2828 void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2829 {
2830 	memcg_kmem_uncharge_pages(page, order);
2831 	__free_pages(page, order);
2832 }
2833 
2834 void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2835 {
2836 	if (addr != 0) {
2837 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2838 		__free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2839 	}
2840 }
2841 
2842 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2843 {
2844 	if (addr) {
2845 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
2846 		unsigned long used = addr + PAGE_ALIGN(size);
2847 
2848 		split_page(virt_to_page((void *)addr), order);
2849 		while (used < alloc_end) {
2850 			free_page(used);
2851 			used += PAGE_SIZE;
2852 		}
2853 	}
2854 	return (void *)addr;
2855 }
2856 
2857 /**
2858  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2859  * @size: the number of bytes to allocate
2860  * @gfp_mask: GFP flags for the allocation
2861  *
2862  * This function is similar to alloc_pages(), except that it allocates the
2863  * minimum number of pages to satisfy the request.  alloc_pages() can only
2864  * allocate memory in power-of-two pages.
2865  *
2866  * This function is also limited by MAX_ORDER.
2867  *
2868  * Memory allocated by this function must be released by free_pages_exact().
2869  */
2870 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2871 {
2872 	unsigned int order = get_order(size);
2873 	unsigned long addr;
2874 
2875 	addr = __get_free_pages(gfp_mask, order);
2876 	return make_alloc_exact(addr, order, size);
2877 }
2878 EXPORT_SYMBOL(alloc_pages_exact);
2879 
2880 /**
2881  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2882  *			   pages on a node.
2883  * @nid: the preferred node ID where memory should be allocated
2884  * @size: the number of bytes to allocate
2885  * @gfp_mask: GFP flags for the allocation
2886  *
2887  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2888  * back.
2889  * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2890  * but is not exact.
2891  */
2892 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2893 {
2894 	unsigned order = get_order(size);
2895 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
2896 	if (!p)
2897 		return NULL;
2898 	return make_alloc_exact((unsigned long)page_address(p), order, size);
2899 }
2900 EXPORT_SYMBOL(alloc_pages_exact_nid);
2901 
2902 /**
2903  * free_pages_exact - release memory allocated via alloc_pages_exact()
2904  * @virt: the value returned by alloc_pages_exact.
2905  * @size: size of allocation, same value as passed to alloc_pages_exact().
2906  *
2907  * Release the memory allocated by a previous call to alloc_pages_exact.
2908  */
2909 void free_pages_exact(void *virt, size_t size)
2910 {
2911 	unsigned long addr = (unsigned long)virt;
2912 	unsigned long end = addr + PAGE_ALIGN(size);
2913 
2914 	while (addr < end) {
2915 		free_page(addr);
2916 		addr += PAGE_SIZE;
2917 	}
2918 }
2919 EXPORT_SYMBOL(free_pages_exact);
2920 
2921 /**
2922  * nr_free_zone_pages - count number of pages beyond high watermark
2923  * @offset: The zone index of the highest zone
2924  *
2925  * nr_free_zone_pages() counts the number of counts pages which are beyond the
2926  * high watermark within all zones at or below a given zone index.  For each
2927  * zone, the number of pages is calculated as:
2928  *     managed_pages - high_pages
2929  */
2930 static unsigned long nr_free_zone_pages(int offset)
2931 {
2932 	struct zoneref *z;
2933 	struct zone *zone;
2934 
2935 	/* Just pick one node, since fallback list is circular */
2936 	unsigned long sum = 0;
2937 
2938 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2939 
2940 	for_each_zone_zonelist(zone, z, zonelist, offset) {
2941 		unsigned long size = zone->managed_pages;
2942 		unsigned long high = high_wmark_pages(zone);
2943 		if (size > high)
2944 			sum += size - high;
2945 	}
2946 
2947 	return sum;
2948 }
2949 
2950 /**
2951  * nr_free_buffer_pages - count number of pages beyond high watermark
2952  *
2953  * nr_free_buffer_pages() counts the number of pages which are beyond the high
2954  * watermark within ZONE_DMA and ZONE_NORMAL.
2955  */
2956 unsigned long nr_free_buffer_pages(void)
2957 {
2958 	return nr_free_zone_pages(gfp_zone(GFP_USER));
2959 }
2960 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2961 
2962 /**
2963  * nr_free_pagecache_pages - count number of pages beyond high watermark
2964  *
2965  * nr_free_pagecache_pages() counts the number of pages which are beyond the
2966  * high watermark within all zones.
2967  */
2968 unsigned long nr_free_pagecache_pages(void)
2969 {
2970 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2971 }
2972 
2973 static inline void show_node(struct zone *zone)
2974 {
2975 	if (IS_ENABLED(CONFIG_NUMA))
2976 		printk("Node %d ", zone_to_nid(zone));
2977 }
2978 
2979 void si_meminfo(struct sysinfo *val)
2980 {
2981 	val->totalram = totalram_pages;
2982 	val->sharedram = 0;
2983 	val->freeram = global_page_state(NR_FREE_PAGES);
2984 	val->bufferram = nr_blockdev_pages();
2985 	val->totalhigh = totalhigh_pages;
2986 	val->freehigh = nr_free_highpages();
2987 	val->mem_unit = PAGE_SIZE;
2988 }
2989 
2990 EXPORT_SYMBOL(si_meminfo);
2991 
2992 #ifdef CONFIG_NUMA
2993 void si_meminfo_node(struct sysinfo *val, int nid)
2994 {
2995 	int zone_type;		/* needs to be signed */
2996 	unsigned long managed_pages = 0;
2997 	pg_data_t *pgdat = NODE_DATA(nid);
2998 
2999 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3000 		managed_pages += pgdat->node_zones[zone_type].managed_pages;
3001 	val->totalram = managed_pages;
3002 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
3003 #ifdef CONFIG_HIGHMEM
3004 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3005 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3006 			NR_FREE_PAGES);
3007 #else
3008 	val->totalhigh = 0;
3009 	val->freehigh = 0;
3010 #endif
3011 	val->mem_unit = PAGE_SIZE;
3012 }
3013 #endif
3014 
3015 /*
3016  * Determine whether the node should be displayed or not, depending on whether
3017  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3018  */
3019 bool skip_free_areas_node(unsigned int flags, int nid)
3020 {
3021 	bool ret = false;
3022 	unsigned int cpuset_mems_cookie;
3023 
3024 	if (!(flags & SHOW_MEM_FILTER_NODES))
3025 		goto out;
3026 
3027 	do {
3028 		cpuset_mems_cookie = get_mems_allowed();
3029 		ret = !node_isset(nid, cpuset_current_mems_allowed);
3030 	} while (!put_mems_allowed(cpuset_mems_cookie));
3031 out:
3032 	return ret;
3033 }
3034 
3035 #define K(x) ((x) << (PAGE_SHIFT-10))
3036 
3037 static void show_migration_types(unsigned char type)
3038 {
3039 	static const char types[MIGRATE_TYPES] = {
3040 		[MIGRATE_UNMOVABLE]	= 'U',
3041 		[MIGRATE_RECLAIMABLE]	= 'E',
3042 		[MIGRATE_MOVABLE]	= 'M',
3043 		[MIGRATE_RESERVE]	= 'R',
3044 #ifdef CONFIG_CMA
3045 		[MIGRATE_CMA]		= 'C',
3046 #endif
3047 #ifdef CONFIG_MEMORY_ISOLATION
3048 		[MIGRATE_ISOLATE]	= 'I',
3049 #endif
3050 	};
3051 	char tmp[MIGRATE_TYPES + 1];
3052 	char *p = tmp;
3053 	int i;
3054 
3055 	for (i = 0; i < MIGRATE_TYPES; i++) {
3056 		if (type & (1 << i))
3057 			*p++ = types[i];
3058 	}
3059 
3060 	*p = '\0';
3061 	printk("(%s) ", tmp);
3062 }
3063 
3064 /*
3065  * Show free area list (used inside shift_scroll-lock stuff)
3066  * We also calculate the percentage fragmentation. We do this by counting the
3067  * memory on each free list with the exception of the first item on the list.
3068  * Suppresses nodes that are not allowed by current's cpuset if
3069  * SHOW_MEM_FILTER_NODES is passed.
3070  */
3071 void show_free_areas(unsigned int filter)
3072 {
3073 	int cpu;
3074 	struct zone *zone;
3075 
3076 	for_each_populated_zone(zone) {
3077 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3078 			continue;
3079 		show_node(zone);
3080 		printk("%s per-cpu:\n", zone->name);
3081 
3082 		for_each_online_cpu(cpu) {
3083 			struct per_cpu_pageset *pageset;
3084 
3085 			pageset = per_cpu_ptr(zone->pageset, cpu);
3086 
3087 			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3088 			       cpu, pageset->pcp.high,
3089 			       pageset->pcp.batch, pageset->pcp.count);
3090 		}
3091 	}
3092 
3093 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3094 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3095 		" unevictable:%lu"
3096 		" dirty:%lu writeback:%lu unstable:%lu\n"
3097 		" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3098 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3099 		" free_cma:%lu\n",
3100 		global_page_state(NR_ACTIVE_ANON),
3101 		global_page_state(NR_INACTIVE_ANON),
3102 		global_page_state(NR_ISOLATED_ANON),
3103 		global_page_state(NR_ACTIVE_FILE),
3104 		global_page_state(NR_INACTIVE_FILE),
3105 		global_page_state(NR_ISOLATED_FILE),
3106 		global_page_state(NR_UNEVICTABLE),
3107 		global_page_state(NR_FILE_DIRTY),
3108 		global_page_state(NR_WRITEBACK),
3109 		global_page_state(NR_UNSTABLE_NFS),
3110 		global_page_state(NR_FREE_PAGES),
3111 		global_page_state(NR_SLAB_RECLAIMABLE),
3112 		global_page_state(NR_SLAB_UNRECLAIMABLE),
3113 		global_page_state(NR_FILE_MAPPED),
3114 		global_page_state(NR_SHMEM),
3115 		global_page_state(NR_PAGETABLE),
3116 		global_page_state(NR_BOUNCE),
3117 		global_page_state(NR_FREE_CMA_PAGES));
3118 
3119 	for_each_populated_zone(zone) {
3120 		int i;
3121 
3122 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3123 			continue;
3124 		show_node(zone);
3125 		printk("%s"
3126 			" free:%lukB"
3127 			" min:%lukB"
3128 			" low:%lukB"
3129 			" high:%lukB"
3130 			" active_anon:%lukB"
3131 			" inactive_anon:%lukB"
3132 			" active_file:%lukB"
3133 			" inactive_file:%lukB"
3134 			" unevictable:%lukB"
3135 			" isolated(anon):%lukB"
3136 			" isolated(file):%lukB"
3137 			" present:%lukB"
3138 			" managed:%lukB"
3139 			" mlocked:%lukB"
3140 			" dirty:%lukB"
3141 			" writeback:%lukB"
3142 			" mapped:%lukB"
3143 			" shmem:%lukB"
3144 			" slab_reclaimable:%lukB"
3145 			" slab_unreclaimable:%lukB"
3146 			" kernel_stack:%lukB"
3147 			" pagetables:%lukB"
3148 			" unstable:%lukB"
3149 			" bounce:%lukB"
3150 			" free_cma:%lukB"
3151 			" writeback_tmp:%lukB"
3152 			" pages_scanned:%lu"
3153 			" all_unreclaimable? %s"
3154 			"\n",
3155 			zone->name,
3156 			K(zone_page_state(zone, NR_FREE_PAGES)),
3157 			K(min_wmark_pages(zone)),
3158 			K(low_wmark_pages(zone)),
3159 			K(high_wmark_pages(zone)),
3160 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
3161 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
3162 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
3163 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
3164 			K(zone_page_state(zone, NR_UNEVICTABLE)),
3165 			K(zone_page_state(zone, NR_ISOLATED_ANON)),
3166 			K(zone_page_state(zone, NR_ISOLATED_FILE)),
3167 			K(zone->present_pages),
3168 			K(zone->managed_pages),
3169 			K(zone_page_state(zone, NR_MLOCK)),
3170 			K(zone_page_state(zone, NR_FILE_DIRTY)),
3171 			K(zone_page_state(zone, NR_WRITEBACK)),
3172 			K(zone_page_state(zone, NR_FILE_MAPPED)),
3173 			K(zone_page_state(zone, NR_SHMEM)),
3174 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3175 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3176 			zone_page_state(zone, NR_KERNEL_STACK) *
3177 				THREAD_SIZE / 1024,
3178 			K(zone_page_state(zone, NR_PAGETABLE)),
3179 			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3180 			K(zone_page_state(zone, NR_BOUNCE)),
3181 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3182 			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3183 			zone->pages_scanned,
3184 			(!zone_reclaimable(zone) ? "yes" : "no")
3185 			);
3186 		printk("lowmem_reserve[]:");
3187 		for (i = 0; i < MAX_NR_ZONES; i++)
3188 			printk(" %lu", zone->lowmem_reserve[i]);
3189 		printk("\n");
3190 	}
3191 
3192 	for_each_populated_zone(zone) {
3193 		unsigned long nr[MAX_ORDER], flags, order, total = 0;
3194 		unsigned char types[MAX_ORDER];
3195 
3196 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3197 			continue;
3198 		show_node(zone);
3199 		printk("%s: ", zone->name);
3200 
3201 		spin_lock_irqsave(&zone->lock, flags);
3202 		for (order = 0; order < MAX_ORDER; order++) {
3203 			struct free_area *area = &zone->free_area[order];
3204 			int type;
3205 
3206 			nr[order] = area->nr_free;
3207 			total += nr[order] << order;
3208 
3209 			types[order] = 0;
3210 			for (type = 0; type < MIGRATE_TYPES; type++) {
3211 				if (!list_empty(&area->free_list[type]))
3212 					types[order] |= 1 << type;
3213 			}
3214 		}
3215 		spin_unlock_irqrestore(&zone->lock, flags);
3216 		for (order = 0; order < MAX_ORDER; order++) {
3217 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
3218 			if (nr[order])
3219 				show_migration_types(types[order]);
3220 		}
3221 		printk("= %lukB\n", K(total));
3222 	}
3223 
3224 	hugetlb_show_meminfo();
3225 
3226 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3227 
3228 	show_swap_cache_info();
3229 }
3230 
3231 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3232 {
3233 	zoneref->zone = zone;
3234 	zoneref->zone_idx = zone_idx(zone);
3235 }
3236 
3237 /*
3238  * Builds allocation fallback zone lists.
3239  *
3240  * Add all populated zones of a node to the zonelist.
3241  */
3242 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3243 				int nr_zones)
3244 {
3245 	struct zone *zone;
3246 	enum zone_type zone_type = MAX_NR_ZONES;
3247 
3248 	do {
3249 		zone_type--;
3250 		zone = pgdat->node_zones + zone_type;
3251 		if (populated_zone(zone)) {
3252 			zoneref_set_zone(zone,
3253 				&zonelist->_zonerefs[nr_zones++]);
3254 			check_highest_zone(zone_type);
3255 		}
3256 	} while (zone_type);
3257 
3258 	return nr_zones;
3259 }
3260 
3261 
3262 /*
3263  *  zonelist_order:
3264  *  0 = automatic detection of better ordering.
3265  *  1 = order by ([node] distance, -zonetype)
3266  *  2 = order by (-zonetype, [node] distance)
3267  *
3268  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3269  *  the same zonelist. So only NUMA can configure this param.
3270  */
3271 #define ZONELIST_ORDER_DEFAULT  0
3272 #define ZONELIST_ORDER_NODE     1
3273 #define ZONELIST_ORDER_ZONE     2
3274 
3275 /* zonelist order in the kernel.
3276  * set_zonelist_order() will set this to NODE or ZONE.
3277  */
3278 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3279 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3280 
3281 
3282 #ifdef CONFIG_NUMA
3283 /* The value user specified ....changed by config */
3284 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3285 /* string for sysctl */
3286 #define NUMA_ZONELIST_ORDER_LEN	16
3287 char numa_zonelist_order[16] = "default";
3288 
3289 /*
3290  * interface for configure zonelist ordering.
3291  * command line option "numa_zonelist_order"
3292  *	= "[dD]efault	- default, automatic configuration.
3293  *	= "[nN]ode 	- order by node locality, then by zone within node
3294  *	= "[zZ]one      - order by zone, then by locality within zone
3295  */
3296 
3297 static int __parse_numa_zonelist_order(char *s)
3298 {
3299 	if (*s == 'd' || *s == 'D') {
3300 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3301 	} else if (*s == 'n' || *s == 'N') {
3302 		user_zonelist_order = ZONELIST_ORDER_NODE;
3303 	} else if (*s == 'z' || *s == 'Z') {
3304 		user_zonelist_order = ZONELIST_ORDER_ZONE;
3305 	} else {
3306 		printk(KERN_WARNING
3307 			"Ignoring invalid numa_zonelist_order value:  "
3308 			"%s\n", s);
3309 		return -EINVAL;
3310 	}
3311 	return 0;
3312 }
3313 
3314 static __init int setup_numa_zonelist_order(char *s)
3315 {
3316 	int ret;
3317 
3318 	if (!s)
3319 		return 0;
3320 
3321 	ret = __parse_numa_zonelist_order(s);
3322 	if (ret == 0)
3323 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3324 
3325 	return ret;
3326 }
3327 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3328 
3329 /*
3330  * sysctl handler for numa_zonelist_order
3331  */
3332 int numa_zonelist_order_handler(ctl_table *table, int write,
3333 		void __user *buffer, size_t *length,
3334 		loff_t *ppos)
3335 {
3336 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
3337 	int ret;
3338 	static DEFINE_MUTEX(zl_order_mutex);
3339 
3340 	mutex_lock(&zl_order_mutex);
3341 	if (write) {
3342 		if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3343 			ret = -EINVAL;
3344 			goto out;
3345 		}
3346 		strcpy(saved_string, (char *)table->data);
3347 	}
3348 	ret = proc_dostring(table, write, buffer, length, ppos);
3349 	if (ret)
3350 		goto out;
3351 	if (write) {
3352 		int oldval = user_zonelist_order;
3353 
3354 		ret = __parse_numa_zonelist_order((char *)table->data);
3355 		if (ret) {
3356 			/*
3357 			 * bogus value.  restore saved string
3358 			 */
3359 			strncpy((char *)table->data, saved_string,
3360 				NUMA_ZONELIST_ORDER_LEN);
3361 			user_zonelist_order = oldval;
3362 		} else if (oldval != user_zonelist_order) {
3363 			mutex_lock(&zonelists_mutex);
3364 			build_all_zonelists(NULL, NULL);
3365 			mutex_unlock(&zonelists_mutex);
3366 		}
3367 	}
3368 out:
3369 	mutex_unlock(&zl_order_mutex);
3370 	return ret;
3371 }
3372 
3373 
3374 #define MAX_NODE_LOAD (nr_online_nodes)
3375 static int node_load[MAX_NUMNODES];
3376 
3377 /**
3378  * find_next_best_node - find the next node that should appear in a given node's fallback list
3379  * @node: node whose fallback list we're appending
3380  * @used_node_mask: nodemask_t of already used nodes
3381  *
3382  * We use a number of factors to determine which is the next node that should
3383  * appear on a given node's fallback list.  The node should not have appeared
3384  * already in @node's fallback list, and it should be the next closest node
3385  * according to the distance array (which contains arbitrary distance values
3386  * from each node to each node in the system), and should also prefer nodes
3387  * with no CPUs, since presumably they'll have very little allocation pressure
3388  * on them otherwise.
3389  * It returns -1 if no node is found.
3390  */
3391 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3392 {
3393 	int n, val;
3394 	int min_val = INT_MAX;
3395 	int best_node = NUMA_NO_NODE;
3396 	const struct cpumask *tmp = cpumask_of_node(0);
3397 
3398 	/* Use the local node if we haven't already */
3399 	if (!node_isset(node, *used_node_mask)) {
3400 		node_set(node, *used_node_mask);
3401 		return node;
3402 	}
3403 
3404 	for_each_node_state(n, N_MEMORY) {
3405 
3406 		/* Don't want a node to appear more than once */
3407 		if (node_isset(n, *used_node_mask))
3408 			continue;
3409 
3410 		/* Use the distance array to find the distance */
3411 		val = node_distance(node, n);
3412 
3413 		/* Penalize nodes under us ("prefer the next node") */
3414 		val += (n < node);
3415 
3416 		/* Give preference to headless and unused nodes */
3417 		tmp = cpumask_of_node(n);
3418 		if (!cpumask_empty(tmp))
3419 			val += PENALTY_FOR_NODE_WITH_CPUS;
3420 
3421 		/* Slight preference for less loaded node */
3422 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3423 		val += node_load[n];
3424 
3425 		if (val < min_val) {
3426 			min_val = val;
3427 			best_node = n;
3428 		}
3429 	}
3430 
3431 	if (best_node >= 0)
3432 		node_set(best_node, *used_node_mask);
3433 
3434 	return best_node;
3435 }
3436 
3437 
3438 /*
3439  * Build zonelists ordered by node and zones within node.
3440  * This results in maximum locality--normal zone overflows into local
3441  * DMA zone, if any--but risks exhausting DMA zone.
3442  */
3443 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3444 {
3445 	int j;
3446 	struct zonelist *zonelist;
3447 
3448 	zonelist = &pgdat->node_zonelists[0];
3449 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3450 		;
3451 	j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3452 	zonelist->_zonerefs[j].zone = NULL;
3453 	zonelist->_zonerefs[j].zone_idx = 0;
3454 }
3455 
3456 /*
3457  * Build gfp_thisnode zonelists
3458  */
3459 static void build_thisnode_zonelists(pg_data_t *pgdat)
3460 {
3461 	int j;
3462 	struct zonelist *zonelist;
3463 
3464 	zonelist = &pgdat->node_zonelists[1];
3465 	j = build_zonelists_node(pgdat, zonelist, 0);
3466 	zonelist->_zonerefs[j].zone = NULL;
3467 	zonelist->_zonerefs[j].zone_idx = 0;
3468 }
3469 
3470 /*
3471  * Build zonelists ordered by zone and nodes within zones.
3472  * This results in conserving DMA zone[s] until all Normal memory is
3473  * exhausted, but results in overflowing to remote node while memory
3474  * may still exist in local DMA zone.
3475  */
3476 static int node_order[MAX_NUMNODES];
3477 
3478 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3479 {
3480 	int pos, j, node;
3481 	int zone_type;		/* needs to be signed */
3482 	struct zone *z;
3483 	struct zonelist *zonelist;
3484 
3485 	zonelist = &pgdat->node_zonelists[0];
3486 	pos = 0;
3487 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3488 		for (j = 0; j < nr_nodes; j++) {
3489 			node = node_order[j];
3490 			z = &NODE_DATA(node)->node_zones[zone_type];
3491 			if (populated_zone(z)) {
3492 				zoneref_set_zone(z,
3493 					&zonelist->_zonerefs[pos++]);
3494 				check_highest_zone(zone_type);
3495 			}
3496 		}
3497 	}
3498 	zonelist->_zonerefs[pos].zone = NULL;
3499 	zonelist->_zonerefs[pos].zone_idx = 0;
3500 }
3501 
3502 static int default_zonelist_order(void)
3503 {
3504 	int nid, zone_type;
3505 	unsigned long low_kmem_size, total_size;
3506 	struct zone *z;
3507 	int average_size;
3508 	/*
3509 	 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3510 	 * If they are really small and used heavily, the system can fall
3511 	 * into OOM very easily.
3512 	 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3513 	 */
3514 	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3515 	low_kmem_size = 0;
3516 	total_size = 0;
3517 	for_each_online_node(nid) {
3518 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3519 			z = &NODE_DATA(nid)->node_zones[zone_type];
3520 			if (populated_zone(z)) {
3521 				if (zone_type < ZONE_NORMAL)
3522 					low_kmem_size += z->managed_pages;
3523 				total_size += z->managed_pages;
3524 			} else if (zone_type == ZONE_NORMAL) {
3525 				/*
3526 				 * If any node has only lowmem, then node order
3527 				 * is preferred to allow kernel allocations
3528 				 * locally; otherwise, they can easily infringe
3529 				 * on other nodes when there is an abundance of
3530 				 * lowmem available to allocate from.
3531 				 */
3532 				return ZONELIST_ORDER_NODE;
3533 			}
3534 		}
3535 	}
3536 	if (!low_kmem_size ||  /* there are no DMA area. */
3537 	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3538 		return ZONELIST_ORDER_NODE;
3539 	/*
3540 	 * look into each node's config.
3541 	 * If there is a node whose DMA/DMA32 memory is very big area on
3542 	 * local memory, NODE_ORDER may be suitable.
3543 	 */
3544 	average_size = total_size /
3545 				(nodes_weight(node_states[N_MEMORY]) + 1);
3546 	for_each_online_node(nid) {
3547 		low_kmem_size = 0;
3548 		total_size = 0;
3549 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3550 			z = &NODE_DATA(nid)->node_zones[zone_type];
3551 			if (populated_zone(z)) {
3552 				if (zone_type < ZONE_NORMAL)
3553 					low_kmem_size += z->present_pages;
3554 				total_size += z->present_pages;
3555 			}
3556 		}
3557 		if (low_kmem_size &&
3558 		    total_size > average_size && /* ignore small node */
3559 		    low_kmem_size > total_size * 70/100)
3560 			return ZONELIST_ORDER_NODE;
3561 	}
3562 	return ZONELIST_ORDER_ZONE;
3563 }
3564 
3565 static void set_zonelist_order(void)
3566 {
3567 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3568 		current_zonelist_order = default_zonelist_order();
3569 	else
3570 		current_zonelist_order = user_zonelist_order;
3571 }
3572 
3573 static void build_zonelists(pg_data_t *pgdat)
3574 {
3575 	int j, node, load;
3576 	enum zone_type i;
3577 	nodemask_t used_mask;
3578 	int local_node, prev_node;
3579 	struct zonelist *zonelist;
3580 	int order = current_zonelist_order;
3581 
3582 	/* initialize zonelists */
3583 	for (i = 0; i < MAX_ZONELISTS; i++) {
3584 		zonelist = pgdat->node_zonelists + i;
3585 		zonelist->_zonerefs[0].zone = NULL;
3586 		zonelist->_zonerefs[0].zone_idx = 0;
3587 	}
3588 
3589 	/* NUMA-aware ordering of nodes */
3590 	local_node = pgdat->node_id;
3591 	load = nr_online_nodes;
3592 	prev_node = local_node;
3593 	nodes_clear(used_mask);
3594 
3595 	memset(node_order, 0, sizeof(node_order));
3596 	j = 0;
3597 
3598 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3599 		/*
3600 		 * We don't want to pressure a particular node.
3601 		 * So adding penalty to the first node in same
3602 		 * distance group to make it round-robin.
3603 		 */
3604 		if (node_distance(local_node, node) !=
3605 		    node_distance(local_node, prev_node))
3606 			node_load[node] = load;
3607 
3608 		prev_node = node;
3609 		load--;
3610 		if (order == ZONELIST_ORDER_NODE)
3611 			build_zonelists_in_node_order(pgdat, node);
3612 		else
3613 			node_order[j++] = node;	/* remember order */
3614 	}
3615 
3616 	if (order == ZONELIST_ORDER_ZONE) {
3617 		/* calculate node order -- i.e., DMA last! */
3618 		build_zonelists_in_zone_order(pgdat, j);
3619 	}
3620 
3621 	build_thisnode_zonelists(pgdat);
3622 }
3623 
3624 /* Construct the zonelist performance cache - see further mmzone.h */
3625 static void build_zonelist_cache(pg_data_t *pgdat)
3626 {
3627 	struct zonelist *zonelist;
3628 	struct zonelist_cache *zlc;
3629 	struct zoneref *z;
3630 
3631 	zonelist = &pgdat->node_zonelists[0];
3632 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3633 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3634 	for (z = zonelist->_zonerefs; z->zone; z++)
3635 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3636 }
3637 
3638 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3639 /*
3640  * Return node id of node used for "local" allocations.
3641  * I.e., first node id of first zone in arg node's generic zonelist.
3642  * Used for initializing percpu 'numa_mem', which is used primarily
3643  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3644  */
3645 int local_memory_node(int node)
3646 {
3647 	struct zone *zone;
3648 
3649 	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3650 				   gfp_zone(GFP_KERNEL),
3651 				   NULL,
3652 				   &zone);
3653 	return zone->node;
3654 }
3655 #endif
3656 
3657 #else	/* CONFIG_NUMA */
3658 
3659 static void set_zonelist_order(void)
3660 {
3661 	current_zonelist_order = ZONELIST_ORDER_ZONE;
3662 }
3663 
3664 static void build_zonelists(pg_data_t *pgdat)
3665 {
3666 	int node, local_node;
3667 	enum zone_type j;
3668 	struct zonelist *zonelist;
3669 
3670 	local_node = pgdat->node_id;
3671 
3672 	zonelist = &pgdat->node_zonelists[0];
3673 	j = build_zonelists_node(pgdat, zonelist, 0);
3674 
3675 	/*
3676 	 * Now we build the zonelist so that it contains the zones
3677 	 * of all the other nodes.
3678 	 * We don't want to pressure a particular node, so when
3679 	 * building the zones for node N, we make sure that the
3680 	 * zones coming right after the local ones are those from
3681 	 * node N+1 (modulo N)
3682 	 */
3683 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3684 		if (!node_online(node))
3685 			continue;
3686 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3687 	}
3688 	for (node = 0; node < local_node; node++) {
3689 		if (!node_online(node))
3690 			continue;
3691 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3692 	}
3693 
3694 	zonelist->_zonerefs[j].zone = NULL;
3695 	zonelist->_zonerefs[j].zone_idx = 0;
3696 }
3697 
3698 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3699 static void build_zonelist_cache(pg_data_t *pgdat)
3700 {
3701 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
3702 }
3703 
3704 #endif	/* CONFIG_NUMA */
3705 
3706 /*
3707  * Boot pageset table. One per cpu which is going to be used for all
3708  * zones and all nodes. The parameters will be set in such a way
3709  * that an item put on a list will immediately be handed over to
3710  * the buddy list. This is safe since pageset manipulation is done
3711  * with interrupts disabled.
3712  *
3713  * The boot_pagesets must be kept even after bootup is complete for
3714  * unused processors and/or zones. They do play a role for bootstrapping
3715  * hotplugged processors.
3716  *
3717  * zoneinfo_show() and maybe other functions do
3718  * not check if the processor is online before following the pageset pointer.
3719  * Other parts of the kernel may not check if the zone is available.
3720  */
3721 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3722 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3723 static void setup_zone_pageset(struct zone *zone);
3724 
3725 /*
3726  * Global mutex to protect against size modification of zonelists
3727  * as well as to serialize pageset setup for the new populated zone.
3728  */
3729 DEFINE_MUTEX(zonelists_mutex);
3730 
3731 /* return values int ....just for stop_machine() */
3732 static int __build_all_zonelists(void *data)
3733 {
3734 	int nid;
3735 	int cpu;
3736 	pg_data_t *self = data;
3737 
3738 #ifdef CONFIG_NUMA
3739 	memset(node_load, 0, sizeof(node_load));
3740 #endif
3741 
3742 	if (self && !node_online(self->node_id)) {
3743 		build_zonelists(self);
3744 		build_zonelist_cache(self);
3745 	}
3746 
3747 	for_each_online_node(nid) {
3748 		pg_data_t *pgdat = NODE_DATA(nid);
3749 
3750 		build_zonelists(pgdat);
3751 		build_zonelist_cache(pgdat);
3752 	}
3753 
3754 	/*
3755 	 * Initialize the boot_pagesets that are going to be used
3756 	 * for bootstrapping processors. The real pagesets for
3757 	 * each zone will be allocated later when the per cpu
3758 	 * allocator is available.
3759 	 *
3760 	 * boot_pagesets are used also for bootstrapping offline
3761 	 * cpus if the system is already booted because the pagesets
3762 	 * are needed to initialize allocators on a specific cpu too.
3763 	 * F.e. the percpu allocator needs the page allocator which
3764 	 * needs the percpu allocator in order to allocate its pagesets
3765 	 * (a chicken-egg dilemma).
3766 	 */
3767 	for_each_possible_cpu(cpu) {
3768 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3769 
3770 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3771 		/*
3772 		 * We now know the "local memory node" for each node--
3773 		 * i.e., the node of the first zone in the generic zonelist.
3774 		 * Set up numa_mem percpu variable for on-line cpus.  During
3775 		 * boot, only the boot cpu should be on-line;  we'll init the
3776 		 * secondary cpus' numa_mem as they come on-line.  During
3777 		 * node/memory hotplug, we'll fixup all on-line cpus.
3778 		 */
3779 		if (cpu_online(cpu))
3780 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3781 #endif
3782 	}
3783 
3784 	return 0;
3785 }
3786 
3787 /*
3788  * Called with zonelists_mutex held always
3789  * unless system_state == SYSTEM_BOOTING.
3790  */
3791 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3792 {
3793 	set_zonelist_order();
3794 
3795 	if (system_state == SYSTEM_BOOTING) {
3796 		__build_all_zonelists(NULL);
3797 		mminit_verify_zonelist();
3798 		cpuset_init_current_mems_allowed();
3799 	} else {
3800 #ifdef CONFIG_MEMORY_HOTPLUG
3801 		if (zone)
3802 			setup_zone_pageset(zone);
3803 #endif
3804 		/* we have to stop all cpus to guarantee there is no user
3805 		   of zonelist */
3806 		stop_machine(__build_all_zonelists, pgdat, NULL);
3807 		/* cpuset refresh routine should be here */
3808 	}
3809 	vm_total_pages = nr_free_pagecache_pages();
3810 	/*
3811 	 * Disable grouping by mobility if the number of pages in the
3812 	 * system is too low to allow the mechanism to work. It would be
3813 	 * more accurate, but expensive to check per-zone. This check is
3814 	 * made on memory-hotadd so a system can start with mobility
3815 	 * disabled and enable it later
3816 	 */
3817 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3818 		page_group_by_mobility_disabled = 1;
3819 	else
3820 		page_group_by_mobility_disabled = 0;
3821 
3822 	printk("Built %i zonelists in %s order, mobility grouping %s.  "
3823 		"Total pages: %ld\n",
3824 			nr_online_nodes,
3825 			zonelist_order_name[current_zonelist_order],
3826 			page_group_by_mobility_disabled ? "off" : "on",
3827 			vm_total_pages);
3828 #ifdef CONFIG_NUMA
3829 	printk("Policy zone: %s\n", zone_names[policy_zone]);
3830 #endif
3831 }
3832 
3833 /*
3834  * Helper functions to size the waitqueue hash table.
3835  * Essentially these want to choose hash table sizes sufficiently
3836  * large so that collisions trying to wait on pages are rare.
3837  * But in fact, the number of active page waitqueues on typical
3838  * systems is ridiculously low, less than 200. So this is even
3839  * conservative, even though it seems large.
3840  *
3841  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3842  * waitqueues, i.e. the size of the waitq table given the number of pages.
3843  */
3844 #define PAGES_PER_WAITQUEUE	256
3845 
3846 #ifndef CONFIG_MEMORY_HOTPLUG
3847 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3848 {
3849 	unsigned long size = 1;
3850 
3851 	pages /= PAGES_PER_WAITQUEUE;
3852 
3853 	while (size < pages)
3854 		size <<= 1;
3855 
3856 	/*
3857 	 * Once we have dozens or even hundreds of threads sleeping
3858 	 * on IO we've got bigger problems than wait queue collision.
3859 	 * Limit the size of the wait table to a reasonable size.
3860 	 */
3861 	size = min(size, 4096UL);
3862 
3863 	return max(size, 4UL);
3864 }
3865 #else
3866 /*
3867  * A zone's size might be changed by hot-add, so it is not possible to determine
3868  * a suitable size for its wait_table.  So we use the maximum size now.
3869  *
3870  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
3871  *
3872  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
3873  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3874  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
3875  *
3876  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3877  * or more by the traditional way. (See above).  It equals:
3878  *
3879  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
3880  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
3881  *    powerpc (64K page size)             : =  (32G +16M)byte.
3882  */
3883 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3884 {
3885 	return 4096UL;
3886 }
3887 #endif
3888 
3889 /*
3890  * This is an integer logarithm so that shifts can be used later
3891  * to extract the more random high bits from the multiplicative
3892  * hash function before the remainder is taken.
3893  */
3894 static inline unsigned long wait_table_bits(unsigned long size)
3895 {
3896 	return ffz(~size);
3897 }
3898 
3899 /*
3900  * Check if a pageblock contains reserved pages
3901  */
3902 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3903 {
3904 	unsigned long pfn;
3905 
3906 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3907 		if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3908 			return 1;
3909 	}
3910 	return 0;
3911 }
3912 
3913 /*
3914  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3915  * of blocks reserved is based on min_wmark_pages(zone). The memory within
3916  * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3917  * higher will lead to a bigger reserve which will get freed as contiguous
3918  * blocks as reclaim kicks in
3919  */
3920 static void setup_zone_migrate_reserve(struct zone *zone)
3921 {
3922 	unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3923 	struct page *page;
3924 	unsigned long block_migratetype;
3925 	int reserve;
3926 	int old_reserve;
3927 
3928 	/*
3929 	 * Get the start pfn, end pfn and the number of blocks to reserve
3930 	 * We have to be careful to be aligned to pageblock_nr_pages to
3931 	 * make sure that we always check pfn_valid for the first page in
3932 	 * the block.
3933 	 */
3934 	start_pfn = zone->zone_start_pfn;
3935 	end_pfn = zone_end_pfn(zone);
3936 	start_pfn = roundup(start_pfn, pageblock_nr_pages);
3937 	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3938 							pageblock_order;
3939 
3940 	/*
3941 	 * Reserve blocks are generally in place to help high-order atomic
3942 	 * allocations that are short-lived. A min_free_kbytes value that
3943 	 * would result in more than 2 reserve blocks for atomic allocations
3944 	 * is assumed to be in place to help anti-fragmentation for the
3945 	 * future allocation of hugepages at runtime.
3946 	 */
3947 	reserve = min(2, reserve);
3948 	old_reserve = zone->nr_migrate_reserve_block;
3949 
3950 	/* When memory hot-add, we almost always need to do nothing */
3951 	if (reserve == old_reserve)
3952 		return;
3953 	zone->nr_migrate_reserve_block = reserve;
3954 
3955 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3956 		if (!pfn_valid(pfn))
3957 			continue;
3958 		page = pfn_to_page(pfn);
3959 
3960 		/* Watch out for overlapping nodes */
3961 		if (page_to_nid(page) != zone_to_nid(zone))
3962 			continue;
3963 
3964 		block_migratetype = get_pageblock_migratetype(page);
3965 
3966 		/* Only test what is necessary when the reserves are not met */
3967 		if (reserve > 0) {
3968 			/*
3969 			 * Blocks with reserved pages will never free, skip
3970 			 * them.
3971 			 */
3972 			block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3973 			if (pageblock_is_reserved(pfn, block_end_pfn))
3974 				continue;
3975 
3976 			/* If this block is reserved, account for it */
3977 			if (block_migratetype == MIGRATE_RESERVE) {
3978 				reserve--;
3979 				continue;
3980 			}
3981 
3982 			/* Suitable for reserving if this block is movable */
3983 			if (block_migratetype == MIGRATE_MOVABLE) {
3984 				set_pageblock_migratetype(page,
3985 							MIGRATE_RESERVE);
3986 				move_freepages_block(zone, page,
3987 							MIGRATE_RESERVE);
3988 				reserve--;
3989 				continue;
3990 			}
3991 		} else if (!old_reserve) {
3992 			/*
3993 			 * At boot time we don't need to scan the whole zone
3994 			 * for turning off MIGRATE_RESERVE.
3995 			 */
3996 			break;
3997 		}
3998 
3999 		/*
4000 		 * If the reserve is met and this is a previous reserved block,
4001 		 * take it back
4002 		 */
4003 		if (block_migratetype == MIGRATE_RESERVE) {
4004 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4005 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
4006 		}
4007 	}
4008 }
4009 
4010 /*
4011  * Initially all pages are reserved - free ones are freed
4012  * up by free_all_bootmem() once the early boot process is
4013  * done. Non-atomic initialization, single-pass.
4014  */
4015 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4016 		unsigned long start_pfn, enum memmap_context context)
4017 {
4018 	struct page *page;
4019 	unsigned long end_pfn = start_pfn + size;
4020 	unsigned long pfn;
4021 	struct zone *z;
4022 
4023 	if (highest_memmap_pfn < end_pfn - 1)
4024 		highest_memmap_pfn = end_pfn - 1;
4025 
4026 	z = &NODE_DATA(nid)->node_zones[zone];
4027 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4028 		/*
4029 		 * There can be holes in boot-time mem_map[]s
4030 		 * handed to this function.  They do not
4031 		 * exist on hotplugged memory.
4032 		 */
4033 		if (context == MEMMAP_EARLY) {
4034 			if (!early_pfn_valid(pfn))
4035 				continue;
4036 			if (!early_pfn_in_nid(pfn, nid))
4037 				continue;
4038 		}
4039 		page = pfn_to_page(pfn);
4040 		set_page_links(page, zone, nid, pfn);
4041 		mminit_verify_page_links(page, zone, nid, pfn);
4042 		init_page_count(page);
4043 		page_mapcount_reset(page);
4044 		page_cpupid_reset_last(page);
4045 		SetPageReserved(page);
4046 		/*
4047 		 * Mark the block movable so that blocks are reserved for
4048 		 * movable at startup. This will force kernel allocations
4049 		 * to reserve their blocks rather than leaking throughout
4050 		 * the address space during boot when many long-lived
4051 		 * kernel allocations are made. Later some blocks near
4052 		 * the start are marked MIGRATE_RESERVE by
4053 		 * setup_zone_migrate_reserve()
4054 		 *
4055 		 * bitmap is created for zone's valid pfn range. but memmap
4056 		 * can be created for invalid pages (for alignment)
4057 		 * check here not to call set_pageblock_migratetype() against
4058 		 * pfn out of zone.
4059 		 */
4060 		if ((z->zone_start_pfn <= pfn)
4061 		    && (pfn < zone_end_pfn(z))
4062 		    && !(pfn & (pageblock_nr_pages - 1)))
4063 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4064 
4065 		INIT_LIST_HEAD(&page->lru);
4066 #ifdef WANT_PAGE_VIRTUAL
4067 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
4068 		if (!is_highmem_idx(zone))
4069 			set_page_address(page, __va(pfn << PAGE_SHIFT));
4070 #endif
4071 	}
4072 }
4073 
4074 static void __meminit zone_init_free_lists(struct zone *zone)
4075 {
4076 	int order, t;
4077 	for_each_migratetype_order(order, t) {
4078 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4079 		zone->free_area[order].nr_free = 0;
4080 	}
4081 }
4082 
4083 #ifndef __HAVE_ARCH_MEMMAP_INIT
4084 #define memmap_init(size, nid, zone, start_pfn) \
4085 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4086 #endif
4087 
4088 static int __meminit zone_batchsize(struct zone *zone)
4089 {
4090 #ifdef CONFIG_MMU
4091 	int batch;
4092 
4093 	/*
4094 	 * The per-cpu-pages pools are set to around 1000th of the
4095 	 * size of the zone.  But no more than 1/2 of a meg.
4096 	 *
4097 	 * OK, so we don't know how big the cache is.  So guess.
4098 	 */
4099 	batch = zone->managed_pages / 1024;
4100 	if (batch * PAGE_SIZE > 512 * 1024)
4101 		batch = (512 * 1024) / PAGE_SIZE;
4102 	batch /= 4;		/* We effectively *= 4 below */
4103 	if (batch < 1)
4104 		batch = 1;
4105 
4106 	/*
4107 	 * Clamp the batch to a 2^n - 1 value. Having a power
4108 	 * of 2 value was found to be more likely to have
4109 	 * suboptimal cache aliasing properties in some cases.
4110 	 *
4111 	 * For example if 2 tasks are alternately allocating
4112 	 * batches of pages, one task can end up with a lot
4113 	 * of pages of one half of the possible page colors
4114 	 * and the other with pages of the other colors.
4115 	 */
4116 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
4117 
4118 	return batch;
4119 
4120 #else
4121 	/* The deferral and batching of frees should be suppressed under NOMMU
4122 	 * conditions.
4123 	 *
4124 	 * The problem is that NOMMU needs to be able to allocate large chunks
4125 	 * of contiguous memory as there's no hardware page translation to
4126 	 * assemble apparent contiguous memory from discontiguous pages.
4127 	 *
4128 	 * Queueing large contiguous runs of pages for batching, however,
4129 	 * causes the pages to actually be freed in smaller chunks.  As there
4130 	 * can be a significant delay between the individual batches being
4131 	 * recycled, this leads to the once large chunks of space being
4132 	 * fragmented and becoming unavailable for high-order allocations.
4133 	 */
4134 	return 0;
4135 #endif
4136 }
4137 
4138 /*
4139  * pcp->high and pcp->batch values are related and dependent on one another:
4140  * ->batch must never be higher then ->high.
4141  * The following function updates them in a safe manner without read side
4142  * locking.
4143  *
4144  * Any new users of pcp->batch and pcp->high should ensure they can cope with
4145  * those fields changing asynchronously (acording the the above rule).
4146  *
4147  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4148  * outside of boot time (or some other assurance that no concurrent updaters
4149  * exist).
4150  */
4151 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4152 		unsigned long batch)
4153 {
4154        /* start with a fail safe value for batch */
4155 	pcp->batch = 1;
4156 	smp_wmb();
4157 
4158        /* Update high, then batch, in order */
4159 	pcp->high = high;
4160 	smp_wmb();
4161 
4162 	pcp->batch = batch;
4163 }
4164 
4165 /* a companion to pageset_set_high() */
4166 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4167 {
4168 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4169 }
4170 
4171 static void pageset_init(struct per_cpu_pageset *p)
4172 {
4173 	struct per_cpu_pages *pcp;
4174 	int migratetype;
4175 
4176 	memset(p, 0, sizeof(*p));
4177 
4178 	pcp = &p->pcp;
4179 	pcp->count = 0;
4180 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4181 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
4182 }
4183 
4184 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4185 {
4186 	pageset_init(p);
4187 	pageset_set_batch(p, batch);
4188 }
4189 
4190 /*
4191  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4192  * to the value high for the pageset p.
4193  */
4194 static void pageset_set_high(struct per_cpu_pageset *p,
4195 				unsigned long high)
4196 {
4197 	unsigned long batch = max(1UL, high / 4);
4198 	if ((high / 4) > (PAGE_SHIFT * 8))
4199 		batch = PAGE_SHIFT * 8;
4200 
4201 	pageset_update(&p->pcp, high, batch);
4202 }
4203 
4204 static void __meminit pageset_set_high_and_batch(struct zone *zone,
4205 		struct per_cpu_pageset *pcp)
4206 {
4207 	if (percpu_pagelist_fraction)
4208 		pageset_set_high(pcp,
4209 			(zone->managed_pages /
4210 				percpu_pagelist_fraction));
4211 	else
4212 		pageset_set_batch(pcp, zone_batchsize(zone));
4213 }
4214 
4215 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4216 {
4217 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4218 
4219 	pageset_init(pcp);
4220 	pageset_set_high_and_batch(zone, pcp);
4221 }
4222 
4223 static void __meminit setup_zone_pageset(struct zone *zone)
4224 {
4225 	int cpu;
4226 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
4227 	for_each_possible_cpu(cpu)
4228 		zone_pageset_init(zone, cpu);
4229 }
4230 
4231 /*
4232  * Allocate per cpu pagesets and initialize them.
4233  * Before this call only boot pagesets were available.
4234  */
4235 void __init setup_per_cpu_pageset(void)
4236 {
4237 	struct zone *zone;
4238 
4239 	for_each_populated_zone(zone)
4240 		setup_zone_pageset(zone);
4241 }
4242 
4243 static noinline __init_refok
4244 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4245 {
4246 	int i;
4247 	size_t alloc_size;
4248 
4249 	/*
4250 	 * The per-page waitqueue mechanism uses hashed waitqueues
4251 	 * per zone.
4252 	 */
4253 	zone->wait_table_hash_nr_entries =
4254 		 wait_table_hash_nr_entries(zone_size_pages);
4255 	zone->wait_table_bits =
4256 		wait_table_bits(zone->wait_table_hash_nr_entries);
4257 	alloc_size = zone->wait_table_hash_nr_entries
4258 					* sizeof(wait_queue_head_t);
4259 
4260 	if (!slab_is_available()) {
4261 		zone->wait_table = (wait_queue_head_t *)
4262 			memblock_virt_alloc_node_nopanic(
4263 				alloc_size, zone->zone_pgdat->node_id);
4264 	} else {
4265 		/*
4266 		 * This case means that a zone whose size was 0 gets new memory
4267 		 * via memory hot-add.
4268 		 * But it may be the case that a new node was hot-added.  In
4269 		 * this case vmalloc() will not be able to use this new node's
4270 		 * memory - this wait_table must be initialized to use this new
4271 		 * node itself as well.
4272 		 * To use this new node's memory, further consideration will be
4273 		 * necessary.
4274 		 */
4275 		zone->wait_table = vmalloc(alloc_size);
4276 	}
4277 	if (!zone->wait_table)
4278 		return -ENOMEM;
4279 
4280 	for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4281 		init_waitqueue_head(zone->wait_table + i);
4282 
4283 	return 0;
4284 }
4285 
4286 static __meminit void zone_pcp_init(struct zone *zone)
4287 {
4288 	/*
4289 	 * per cpu subsystem is not up at this point. The following code
4290 	 * relies on the ability of the linker to provide the
4291 	 * offset of a (static) per cpu variable into the per cpu area.
4292 	 */
4293 	zone->pageset = &boot_pageset;
4294 
4295 	if (populated_zone(zone))
4296 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
4297 			zone->name, zone->present_pages,
4298 					 zone_batchsize(zone));
4299 }
4300 
4301 int __meminit init_currently_empty_zone(struct zone *zone,
4302 					unsigned long zone_start_pfn,
4303 					unsigned long size,
4304 					enum memmap_context context)
4305 {
4306 	struct pglist_data *pgdat = zone->zone_pgdat;
4307 	int ret;
4308 	ret = zone_wait_table_init(zone, size);
4309 	if (ret)
4310 		return ret;
4311 	pgdat->nr_zones = zone_idx(zone) + 1;
4312 
4313 	zone->zone_start_pfn = zone_start_pfn;
4314 
4315 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
4316 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
4317 			pgdat->node_id,
4318 			(unsigned long)zone_idx(zone),
4319 			zone_start_pfn, (zone_start_pfn + size));
4320 
4321 	zone_init_free_lists(zone);
4322 
4323 	return 0;
4324 }
4325 
4326 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4327 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4328 /*
4329  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4330  * Architectures may implement their own version but if add_active_range()
4331  * was used and there are no special requirements, this is a convenient
4332  * alternative
4333  */
4334 int __meminit __early_pfn_to_nid(unsigned long pfn)
4335 {
4336 	unsigned long start_pfn, end_pfn;
4337 	int nid;
4338 	/*
4339 	 * NOTE: The following SMP-unsafe globals are only used early in boot
4340 	 * when the kernel is running single-threaded.
4341 	 */
4342 	static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4343 	static int __meminitdata last_nid;
4344 
4345 	if (last_start_pfn <= pfn && pfn < last_end_pfn)
4346 		return last_nid;
4347 
4348 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4349 	if (nid != -1) {
4350 		last_start_pfn = start_pfn;
4351 		last_end_pfn = end_pfn;
4352 		last_nid = nid;
4353 	}
4354 
4355 	return nid;
4356 }
4357 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4358 
4359 int __meminit early_pfn_to_nid(unsigned long pfn)
4360 {
4361 	int nid;
4362 
4363 	nid = __early_pfn_to_nid(pfn);
4364 	if (nid >= 0)
4365 		return nid;
4366 	/* just returns 0 */
4367 	return 0;
4368 }
4369 
4370 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4371 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4372 {
4373 	int nid;
4374 
4375 	nid = __early_pfn_to_nid(pfn);
4376 	if (nid >= 0 && nid != node)
4377 		return false;
4378 	return true;
4379 }
4380 #endif
4381 
4382 /**
4383  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4384  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4385  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4386  *
4387  * If an architecture guarantees that all ranges registered with
4388  * add_active_ranges() contain no holes and may be freed, this
4389  * this function may be used instead of calling memblock_free_early_nid()
4390  * manually.
4391  */
4392 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4393 {
4394 	unsigned long start_pfn, end_pfn;
4395 	int i, this_nid;
4396 
4397 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4398 		start_pfn = min(start_pfn, max_low_pfn);
4399 		end_pfn = min(end_pfn, max_low_pfn);
4400 
4401 		if (start_pfn < end_pfn)
4402 			memblock_free_early_nid(PFN_PHYS(start_pfn),
4403 					(end_pfn - start_pfn) << PAGE_SHIFT,
4404 					this_nid);
4405 	}
4406 }
4407 
4408 /**
4409  * sparse_memory_present_with_active_regions - Call memory_present for each active range
4410  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4411  *
4412  * If an architecture guarantees that all ranges registered with
4413  * add_active_ranges() contain no holes and may be freed, this
4414  * function may be used instead of calling memory_present() manually.
4415  */
4416 void __init sparse_memory_present_with_active_regions(int nid)
4417 {
4418 	unsigned long start_pfn, end_pfn;
4419 	int i, this_nid;
4420 
4421 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4422 		memory_present(this_nid, start_pfn, end_pfn);
4423 }
4424 
4425 /**
4426  * get_pfn_range_for_nid - Return the start and end page frames for a node
4427  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4428  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4429  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4430  *
4431  * It returns the start and end page frame of a node based on information
4432  * provided by an arch calling add_active_range(). If called for a node
4433  * with no available memory, a warning is printed and the start and end
4434  * PFNs will be 0.
4435  */
4436 void __meminit get_pfn_range_for_nid(unsigned int nid,
4437 			unsigned long *start_pfn, unsigned long *end_pfn)
4438 {
4439 	unsigned long this_start_pfn, this_end_pfn;
4440 	int i;
4441 
4442 	*start_pfn = -1UL;
4443 	*end_pfn = 0;
4444 
4445 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4446 		*start_pfn = min(*start_pfn, this_start_pfn);
4447 		*end_pfn = max(*end_pfn, this_end_pfn);
4448 	}
4449 
4450 	if (*start_pfn == -1UL)
4451 		*start_pfn = 0;
4452 }
4453 
4454 /*
4455  * This finds a zone that can be used for ZONE_MOVABLE pages. The
4456  * assumption is made that zones within a node are ordered in monotonic
4457  * increasing memory addresses so that the "highest" populated zone is used
4458  */
4459 static void __init find_usable_zone_for_movable(void)
4460 {
4461 	int zone_index;
4462 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4463 		if (zone_index == ZONE_MOVABLE)
4464 			continue;
4465 
4466 		if (arch_zone_highest_possible_pfn[zone_index] >
4467 				arch_zone_lowest_possible_pfn[zone_index])
4468 			break;
4469 	}
4470 
4471 	VM_BUG_ON(zone_index == -1);
4472 	movable_zone = zone_index;
4473 }
4474 
4475 /*
4476  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4477  * because it is sized independent of architecture. Unlike the other zones,
4478  * the starting point for ZONE_MOVABLE is not fixed. It may be different
4479  * in each node depending on the size of each node and how evenly kernelcore
4480  * is distributed. This helper function adjusts the zone ranges
4481  * provided by the architecture for a given node by using the end of the
4482  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4483  * zones within a node are in order of monotonic increases memory addresses
4484  */
4485 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4486 					unsigned long zone_type,
4487 					unsigned long node_start_pfn,
4488 					unsigned long node_end_pfn,
4489 					unsigned long *zone_start_pfn,
4490 					unsigned long *zone_end_pfn)
4491 {
4492 	/* Only adjust if ZONE_MOVABLE is on this node */
4493 	if (zone_movable_pfn[nid]) {
4494 		/* Size ZONE_MOVABLE */
4495 		if (zone_type == ZONE_MOVABLE) {
4496 			*zone_start_pfn = zone_movable_pfn[nid];
4497 			*zone_end_pfn = min(node_end_pfn,
4498 				arch_zone_highest_possible_pfn[movable_zone]);
4499 
4500 		/* Adjust for ZONE_MOVABLE starting within this range */
4501 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4502 				*zone_end_pfn > zone_movable_pfn[nid]) {
4503 			*zone_end_pfn = zone_movable_pfn[nid];
4504 
4505 		/* Check if this whole range is within ZONE_MOVABLE */
4506 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
4507 			*zone_start_pfn = *zone_end_pfn;
4508 	}
4509 }
4510 
4511 /*
4512  * Return the number of pages a zone spans in a node, including holes
4513  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4514  */
4515 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4516 					unsigned long zone_type,
4517 					unsigned long node_start_pfn,
4518 					unsigned long node_end_pfn,
4519 					unsigned long *ignored)
4520 {
4521 	unsigned long zone_start_pfn, zone_end_pfn;
4522 
4523 	/* Get the start and end of the zone */
4524 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4525 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4526 	adjust_zone_range_for_zone_movable(nid, zone_type,
4527 				node_start_pfn, node_end_pfn,
4528 				&zone_start_pfn, &zone_end_pfn);
4529 
4530 	/* Check that this node has pages within the zone's required range */
4531 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4532 		return 0;
4533 
4534 	/* Move the zone boundaries inside the node if necessary */
4535 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4536 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4537 
4538 	/* Return the spanned pages */
4539 	return zone_end_pfn - zone_start_pfn;
4540 }
4541 
4542 /*
4543  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4544  * then all holes in the requested range will be accounted for.
4545  */
4546 unsigned long __meminit __absent_pages_in_range(int nid,
4547 				unsigned long range_start_pfn,
4548 				unsigned long range_end_pfn)
4549 {
4550 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
4551 	unsigned long start_pfn, end_pfn;
4552 	int i;
4553 
4554 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4555 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4556 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4557 		nr_absent -= end_pfn - start_pfn;
4558 	}
4559 	return nr_absent;
4560 }
4561 
4562 /**
4563  * absent_pages_in_range - Return number of page frames in holes within a range
4564  * @start_pfn: The start PFN to start searching for holes
4565  * @end_pfn: The end PFN to stop searching for holes
4566  *
4567  * It returns the number of pages frames in memory holes within a range.
4568  */
4569 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4570 							unsigned long end_pfn)
4571 {
4572 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4573 }
4574 
4575 /* Return the number of page frames in holes in a zone on a node */
4576 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4577 					unsigned long zone_type,
4578 					unsigned long node_start_pfn,
4579 					unsigned long node_end_pfn,
4580 					unsigned long *ignored)
4581 {
4582 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4583 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4584 	unsigned long zone_start_pfn, zone_end_pfn;
4585 
4586 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4587 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4588 
4589 	adjust_zone_range_for_zone_movable(nid, zone_type,
4590 			node_start_pfn, node_end_pfn,
4591 			&zone_start_pfn, &zone_end_pfn);
4592 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4593 }
4594 
4595 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4596 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4597 					unsigned long zone_type,
4598 					unsigned long node_start_pfn,
4599 					unsigned long node_end_pfn,
4600 					unsigned long *zones_size)
4601 {
4602 	return zones_size[zone_type];
4603 }
4604 
4605 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4606 						unsigned long zone_type,
4607 						unsigned long node_start_pfn,
4608 						unsigned long node_end_pfn,
4609 						unsigned long *zholes_size)
4610 {
4611 	if (!zholes_size)
4612 		return 0;
4613 
4614 	return zholes_size[zone_type];
4615 }
4616 
4617 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4618 
4619 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4620 						unsigned long node_start_pfn,
4621 						unsigned long node_end_pfn,
4622 						unsigned long *zones_size,
4623 						unsigned long *zholes_size)
4624 {
4625 	unsigned long realtotalpages, totalpages = 0;
4626 	enum zone_type i;
4627 
4628 	for (i = 0; i < MAX_NR_ZONES; i++)
4629 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4630 							 node_start_pfn,
4631 							 node_end_pfn,
4632 							 zones_size);
4633 	pgdat->node_spanned_pages = totalpages;
4634 
4635 	realtotalpages = totalpages;
4636 	for (i = 0; i < MAX_NR_ZONES; i++)
4637 		realtotalpages -=
4638 			zone_absent_pages_in_node(pgdat->node_id, i,
4639 						  node_start_pfn, node_end_pfn,
4640 						  zholes_size);
4641 	pgdat->node_present_pages = realtotalpages;
4642 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4643 							realtotalpages);
4644 }
4645 
4646 #ifndef CONFIG_SPARSEMEM
4647 /*
4648  * Calculate the size of the zone->blockflags rounded to an unsigned long
4649  * Start by making sure zonesize is a multiple of pageblock_order by rounding
4650  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4651  * round what is now in bits to nearest long in bits, then return it in
4652  * bytes.
4653  */
4654 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4655 {
4656 	unsigned long usemapsize;
4657 
4658 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4659 	usemapsize = roundup(zonesize, pageblock_nr_pages);
4660 	usemapsize = usemapsize >> pageblock_order;
4661 	usemapsize *= NR_PAGEBLOCK_BITS;
4662 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4663 
4664 	return usemapsize / 8;
4665 }
4666 
4667 static void __init setup_usemap(struct pglist_data *pgdat,
4668 				struct zone *zone,
4669 				unsigned long zone_start_pfn,
4670 				unsigned long zonesize)
4671 {
4672 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4673 	zone->pageblock_flags = NULL;
4674 	if (usemapsize)
4675 		zone->pageblock_flags =
4676 			memblock_virt_alloc_node_nopanic(usemapsize,
4677 							 pgdat->node_id);
4678 }
4679 #else
4680 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4681 				unsigned long zone_start_pfn, unsigned long zonesize) {}
4682 #endif /* CONFIG_SPARSEMEM */
4683 
4684 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4685 
4686 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4687 void __paginginit set_pageblock_order(void)
4688 {
4689 	unsigned int order;
4690 
4691 	/* Check that pageblock_nr_pages has not already been setup */
4692 	if (pageblock_order)
4693 		return;
4694 
4695 	if (HPAGE_SHIFT > PAGE_SHIFT)
4696 		order = HUGETLB_PAGE_ORDER;
4697 	else
4698 		order = MAX_ORDER - 1;
4699 
4700 	/*
4701 	 * Assume the largest contiguous order of interest is a huge page.
4702 	 * This value may be variable depending on boot parameters on IA64 and
4703 	 * powerpc.
4704 	 */
4705 	pageblock_order = order;
4706 }
4707 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4708 
4709 /*
4710  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4711  * is unused as pageblock_order is set at compile-time. See
4712  * include/linux/pageblock-flags.h for the values of pageblock_order based on
4713  * the kernel config
4714  */
4715 void __paginginit set_pageblock_order(void)
4716 {
4717 }
4718 
4719 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4720 
4721 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4722 						   unsigned long present_pages)
4723 {
4724 	unsigned long pages = spanned_pages;
4725 
4726 	/*
4727 	 * Provide a more accurate estimation if there are holes within
4728 	 * the zone and SPARSEMEM is in use. If there are holes within the
4729 	 * zone, each populated memory region may cost us one or two extra
4730 	 * memmap pages due to alignment because memmap pages for each
4731 	 * populated regions may not naturally algined on page boundary.
4732 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4733 	 */
4734 	if (spanned_pages > present_pages + (present_pages >> 4) &&
4735 	    IS_ENABLED(CONFIG_SPARSEMEM))
4736 		pages = present_pages;
4737 
4738 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4739 }
4740 
4741 /*
4742  * Set up the zone data structures:
4743  *   - mark all pages reserved
4744  *   - mark all memory queues empty
4745  *   - clear the memory bitmaps
4746  *
4747  * NOTE: pgdat should get zeroed by caller.
4748  */
4749 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4750 		unsigned long node_start_pfn, unsigned long node_end_pfn,
4751 		unsigned long *zones_size, unsigned long *zholes_size)
4752 {
4753 	enum zone_type j;
4754 	int nid = pgdat->node_id;
4755 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
4756 	int ret;
4757 
4758 	pgdat_resize_init(pgdat);
4759 #ifdef CONFIG_NUMA_BALANCING
4760 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
4761 	pgdat->numabalancing_migrate_nr_pages = 0;
4762 	pgdat->numabalancing_migrate_next_window = jiffies;
4763 #endif
4764 	init_waitqueue_head(&pgdat->kswapd_wait);
4765 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
4766 	pgdat_page_cgroup_init(pgdat);
4767 
4768 	for (j = 0; j < MAX_NR_ZONES; j++) {
4769 		struct zone *zone = pgdat->node_zones + j;
4770 		unsigned long size, realsize, freesize, memmap_pages;
4771 
4772 		size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4773 						  node_end_pfn, zones_size);
4774 		realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4775 								node_start_pfn,
4776 								node_end_pfn,
4777 								zholes_size);
4778 
4779 		/*
4780 		 * Adjust freesize so that it accounts for how much memory
4781 		 * is used by this zone for memmap. This affects the watermark
4782 		 * and per-cpu initialisations
4783 		 */
4784 		memmap_pages = calc_memmap_size(size, realsize);
4785 		if (freesize >= memmap_pages) {
4786 			freesize -= memmap_pages;
4787 			if (memmap_pages)
4788 				printk(KERN_DEBUG
4789 				       "  %s zone: %lu pages used for memmap\n",
4790 				       zone_names[j], memmap_pages);
4791 		} else
4792 			printk(KERN_WARNING
4793 				"  %s zone: %lu pages exceeds freesize %lu\n",
4794 				zone_names[j], memmap_pages, freesize);
4795 
4796 		/* Account for reserved pages */
4797 		if (j == 0 && freesize > dma_reserve) {
4798 			freesize -= dma_reserve;
4799 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
4800 					zone_names[0], dma_reserve);
4801 		}
4802 
4803 		if (!is_highmem_idx(j))
4804 			nr_kernel_pages += freesize;
4805 		/* Charge for highmem memmap if there are enough kernel pages */
4806 		else if (nr_kernel_pages > memmap_pages * 2)
4807 			nr_kernel_pages -= memmap_pages;
4808 		nr_all_pages += freesize;
4809 
4810 		zone->spanned_pages = size;
4811 		zone->present_pages = realsize;
4812 		/*
4813 		 * Set an approximate value for lowmem here, it will be adjusted
4814 		 * when the bootmem allocator frees pages into the buddy system.
4815 		 * And all highmem pages will be managed by the buddy system.
4816 		 */
4817 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4818 #ifdef CONFIG_NUMA
4819 		zone->node = nid;
4820 		zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4821 						/ 100;
4822 		zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4823 #endif
4824 		zone->name = zone_names[j];
4825 		spin_lock_init(&zone->lock);
4826 		spin_lock_init(&zone->lru_lock);
4827 		zone_seqlock_init(zone);
4828 		zone->zone_pgdat = pgdat;
4829 		zone_pcp_init(zone);
4830 
4831 		/* For bootup, initialized properly in watermark setup */
4832 		mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4833 
4834 		lruvec_init(&zone->lruvec);
4835 		if (!size)
4836 			continue;
4837 
4838 		set_pageblock_order();
4839 		setup_usemap(pgdat, zone, zone_start_pfn, size);
4840 		ret = init_currently_empty_zone(zone, zone_start_pfn,
4841 						size, MEMMAP_EARLY);
4842 		BUG_ON(ret);
4843 		memmap_init(size, nid, j, zone_start_pfn);
4844 		zone_start_pfn += size;
4845 	}
4846 }
4847 
4848 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4849 {
4850 	/* Skip empty nodes */
4851 	if (!pgdat->node_spanned_pages)
4852 		return;
4853 
4854 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4855 	/* ia64 gets its own node_mem_map, before this, without bootmem */
4856 	if (!pgdat->node_mem_map) {
4857 		unsigned long size, start, end;
4858 		struct page *map;
4859 
4860 		/*
4861 		 * The zone's endpoints aren't required to be MAX_ORDER
4862 		 * aligned but the node_mem_map endpoints must be in order
4863 		 * for the buddy allocator to function correctly.
4864 		 */
4865 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4866 		end = pgdat_end_pfn(pgdat);
4867 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
4868 		size =  (end - start) * sizeof(struct page);
4869 		map = alloc_remap(pgdat->node_id, size);
4870 		if (!map)
4871 			map = memblock_virt_alloc_node_nopanic(size,
4872 							       pgdat->node_id);
4873 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4874 	}
4875 #ifndef CONFIG_NEED_MULTIPLE_NODES
4876 	/*
4877 	 * With no DISCONTIG, the global mem_map is just set as node 0's
4878 	 */
4879 	if (pgdat == NODE_DATA(0)) {
4880 		mem_map = NODE_DATA(0)->node_mem_map;
4881 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4882 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4883 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4884 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4885 	}
4886 #endif
4887 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4888 }
4889 
4890 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4891 		unsigned long node_start_pfn, unsigned long *zholes_size)
4892 {
4893 	pg_data_t *pgdat = NODE_DATA(nid);
4894 	unsigned long start_pfn = 0;
4895 	unsigned long end_pfn = 0;
4896 
4897 	/* pg_data_t should be reset to zero when it's allocated */
4898 	WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4899 
4900 	pgdat->node_id = nid;
4901 	pgdat->node_start_pfn = node_start_pfn;
4902 	init_zone_allows_reclaim(nid);
4903 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4904 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
4905 #endif
4906 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
4907 				  zones_size, zholes_size);
4908 
4909 	alloc_node_mem_map(pgdat);
4910 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4911 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4912 		nid, (unsigned long)pgdat,
4913 		(unsigned long)pgdat->node_mem_map);
4914 #endif
4915 
4916 	free_area_init_core(pgdat, start_pfn, end_pfn,
4917 			    zones_size, zholes_size);
4918 }
4919 
4920 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4921 
4922 #if MAX_NUMNODES > 1
4923 /*
4924  * Figure out the number of possible node ids.
4925  */
4926 void __init setup_nr_node_ids(void)
4927 {
4928 	unsigned int node;
4929 	unsigned int highest = 0;
4930 
4931 	for_each_node_mask(node, node_possible_map)
4932 		highest = node;
4933 	nr_node_ids = highest + 1;
4934 }
4935 #endif
4936 
4937 /**
4938  * node_map_pfn_alignment - determine the maximum internode alignment
4939  *
4940  * This function should be called after node map is populated and sorted.
4941  * It calculates the maximum power of two alignment which can distinguish
4942  * all the nodes.
4943  *
4944  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4945  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
4946  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
4947  * shifted, 1GiB is enough and this function will indicate so.
4948  *
4949  * This is used to test whether pfn -> nid mapping of the chosen memory
4950  * model has fine enough granularity to avoid incorrect mapping for the
4951  * populated node map.
4952  *
4953  * Returns the determined alignment in pfn's.  0 if there is no alignment
4954  * requirement (single node).
4955  */
4956 unsigned long __init node_map_pfn_alignment(void)
4957 {
4958 	unsigned long accl_mask = 0, last_end = 0;
4959 	unsigned long start, end, mask;
4960 	int last_nid = -1;
4961 	int i, nid;
4962 
4963 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4964 		if (!start || last_nid < 0 || last_nid == nid) {
4965 			last_nid = nid;
4966 			last_end = end;
4967 			continue;
4968 		}
4969 
4970 		/*
4971 		 * Start with a mask granular enough to pin-point to the
4972 		 * start pfn and tick off bits one-by-one until it becomes
4973 		 * too coarse to separate the current node from the last.
4974 		 */
4975 		mask = ~((1 << __ffs(start)) - 1);
4976 		while (mask && last_end <= (start & (mask << 1)))
4977 			mask <<= 1;
4978 
4979 		/* accumulate all internode masks */
4980 		accl_mask |= mask;
4981 	}
4982 
4983 	/* convert mask to number of pages */
4984 	return ~accl_mask + 1;
4985 }
4986 
4987 /* Find the lowest pfn for a node */
4988 static unsigned long __init find_min_pfn_for_node(int nid)
4989 {
4990 	unsigned long min_pfn = ULONG_MAX;
4991 	unsigned long start_pfn;
4992 	int i;
4993 
4994 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4995 		min_pfn = min(min_pfn, start_pfn);
4996 
4997 	if (min_pfn == ULONG_MAX) {
4998 		printk(KERN_WARNING
4999 			"Could not find start_pfn for node %d\n", nid);
5000 		return 0;
5001 	}
5002 
5003 	return min_pfn;
5004 }
5005 
5006 /**
5007  * find_min_pfn_with_active_regions - Find the minimum PFN registered
5008  *
5009  * It returns the minimum PFN based on information provided via
5010  * add_active_range().
5011  */
5012 unsigned long __init find_min_pfn_with_active_regions(void)
5013 {
5014 	return find_min_pfn_for_node(MAX_NUMNODES);
5015 }
5016 
5017 /*
5018  * early_calculate_totalpages()
5019  * Sum pages in active regions for movable zone.
5020  * Populate N_MEMORY for calculating usable_nodes.
5021  */
5022 static unsigned long __init early_calculate_totalpages(void)
5023 {
5024 	unsigned long totalpages = 0;
5025 	unsigned long start_pfn, end_pfn;
5026 	int i, nid;
5027 
5028 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5029 		unsigned long pages = end_pfn - start_pfn;
5030 
5031 		totalpages += pages;
5032 		if (pages)
5033 			node_set_state(nid, N_MEMORY);
5034 	}
5035 	return totalpages;
5036 }
5037 
5038 /*
5039  * Find the PFN the Movable zone begins in each node. Kernel memory
5040  * is spread evenly between nodes as long as the nodes have enough
5041  * memory. When they don't, some nodes will have more kernelcore than
5042  * others
5043  */
5044 static void __init find_zone_movable_pfns_for_nodes(void)
5045 {
5046 	int i, nid;
5047 	unsigned long usable_startpfn;
5048 	unsigned long kernelcore_node, kernelcore_remaining;
5049 	/* save the state before borrow the nodemask */
5050 	nodemask_t saved_node_state = node_states[N_MEMORY];
5051 	unsigned long totalpages = early_calculate_totalpages();
5052 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5053 	struct memblock_type *type = &memblock.memory;
5054 
5055 	/* Need to find movable_zone earlier when movable_node is specified. */
5056 	find_usable_zone_for_movable();
5057 
5058 	/*
5059 	 * If movable_node is specified, ignore kernelcore and movablecore
5060 	 * options.
5061 	 */
5062 	if (movable_node_is_enabled()) {
5063 		for (i = 0; i < type->cnt; i++) {
5064 			if (!memblock_is_hotpluggable(&type->regions[i]))
5065 				continue;
5066 
5067 			nid = type->regions[i].nid;
5068 
5069 			usable_startpfn = PFN_DOWN(type->regions[i].base);
5070 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5071 				min(usable_startpfn, zone_movable_pfn[nid]) :
5072 				usable_startpfn;
5073 		}
5074 
5075 		goto out2;
5076 	}
5077 
5078 	/*
5079 	 * If movablecore=nn[KMG] was specified, calculate what size of
5080 	 * kernelcore that corresponds so that memory usable for
5081 	 * any allocation type is evenly spread. If both kernelcore
5082 	 * and movablecore are specified, then the value of kernelcore
5083 	 * will be used for required_kernelcore if it's greater than
5084 	 * what movablecore would have allowed.
5085 	 */
5086 	if (required_movablecore) {
5087 		unsigned long corepages;
5088 
5089 		/*
5090 		 * Round-up so that ZONE_MOVABLE is at least as large as what
5091 		 * was requested by the user
5092 		 */
5093 		required_movablecore =
5094 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5095 		corepages = totalpages - required_movablecore;
5096 
5097 		required_kernelcore = max(required_kernelcore, corepages);
5098 	}
5099 
5100 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
5101 	if (!required_kernelcore)
5102 		goto out;
5103 
5104 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5105 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5106 
5107 restart:
5108 	/* Spread kernelcore memory as evenly as possible throughout nodes */
5109 	kernelcore_node = required_kernelcore / usable_nodes;
5110 	for_each_node_state(nid, N_MEMORY) {
5111 		unsigned long start_pfn, end_pfn;
5112 
5113 		/*
5114 		 * Recalculate kernelcore_node if the division per node
5115 		 * now exceeds what is necessary to satisfy the requested
5116 		 * amount of memory for the kernel
5117 		 */
5118 		if (required_kernelcore < kernelcore_node)
5119 			kernelcore_node = required_kernelcore / usable_nodes;
5120 
5121 		/*
5122 		 * As the map is walked, we track how much memory is usable
5123 		 * by the kernel using kernelcore_remaining. When it is
5124 		 * 0, the rest of the node is usable by ZONE_MOVABLE
5125 		 */
5126 		kernelcore_remaining = kernelcore_node;
5127 
5128 		/* Go through each range of PFNs within this node */
5129 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5130 			unsigned long size_pages;
5131 
5132 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5133 			if (start_pfn >= end_pfn)
5134 				continue;
5135 
5136 			/* Account for what is only usable for kernelcore */
5137 			if (start_pfn < usable_startpfn) {
5138 				unsigned long kernel_pages;
5139 				kernel_pages = min(end_pfn, usable_startpfn)
5140 								- start_pfn;
5141 
5142 				kernelcore_remaining -= min(kernel_pages,
5143 							kernelcore_remaining);
5144 				required_kernelcore -= min(kernel_pages,
5145 							required_kernelcore);
5146 
5147 				/* Continue if range is now fully accounted */
5148 				if (end_pfn <= usable_startpfn) {
5149 
5150 					/*
5151 					 * Push zone_movable_pfn to the end so
5152 					 * that if we have to rebalance
5153 					 * kernelcore across nodes, we will
5154 					 * not double account here
5155 					 */
5156 					zone_movable_pfn[nid] = end_pfn;
5157 					continue;
5158 				}
5159 				start_pfn = usable_startpfn;
5160 			}
5161 
5162 			/*
5163 			 * The usable PFN range for ZONE_MOVABLE is from
5164 			 * start_pfn->end_pfn. Calculate size_pages as the
5165 			 * number of pages used as kernelcore
5166 			 */
5167 			size_pages = end_pfn - start_pfn;
5168 			if (size_pages > kernelcore_remaining)
5169 				size_pages = kernelcore_remaining;
5170 			zone_movable_pfn[nid] = start_pfn + size_pages;
5171 
5172 			/*
5173 			 * Some kernelcore has been met, update counts and
5174 			 * break if the kernelcore for this node has been
5175 			 * satisfied
5176 			 */
5177 			required_kernelcore -= min(required_kernelcore,
5178 								size_pages);
5179 			kernelcore_remaining -= size_pages;
5180 			if (!kernelcore_remaining)
5181 				break;
5182 		}
5183 	}
5184 
5185 	/*
5186 	 * If there is still required_kernelcore, we do another pass with one
5187 	 * less node in the count. This will push zone_movable_pfn[nid] further
5188 	 * along on the nodes that still have memory until kernelcore is
5189 	 * satisfied
5190 	 */
5191 	usable_nodes--;
5192 	if (usable_nodes && required_kernelcore > usable_nodes)
5193 		goto restart;
5194 
5195 out2:
5196 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5197 	for (nid = 0; nid < MAX_NUMNODES; nid++)
5198 		zone_movable_pfn[nid] =
5199 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5200 
5201 out:
5202 	/* restore the node_state */
5203 	node_states[N_MEMORY] = saved_node_state;
5204 }
5205 
5206 /* Any regular or high memory on that node ? */
5207 static void check_for_memory(pg_data_t *pgdat, int nid)
5208 {
5209 	enum zone_type zone_type;
5210 
5211 	if (N_MEMORY == N_NORMAL_MEMORY)
5212 		return;
5213 
5214 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5215 		struct zone *zone = &pgdat->node_zones[zone_type];
5216 		if (populated_zone(zone)) {
5217 			node_set_state(nid, N_HIGH_MEMORY);
5218 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5219 			    zone_type <= ZONE_NORMAL)
5220 				node_set_state(nid, N_NORMAL_MEMORY);
5221 			break;
5222 		}
5223 	}
5224 }
5225 
5226 /**
5227  * free_area_init_nodes - Initialise all pg_data_t and zone data
5228  * @max_zone_pfn: an array of max PFNs for each zone
5229  *
5230  * This will call free_area_init_node() for each active node in the system.
5231  * Using the page ranges provided by add_active_range(), the size of each
5232  * zone in each node and their holes is calculated. If the maximum PFN
5233  * between two adjacent zones match, it is assumed that the zone is empty.
5234  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5235  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5236  * starts where the previous one ended. For example, ZONE_DMA32 starts
5237  * at arch_max_dma_pfn.
5238  */
5239 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5240 {
5241 	unsigned long start_pfn, end_pfn;
5242 	int i, nid;
5243 
5244 	/* Record where the zone boundaries are */
5245 	memset(arch_zone_lowest_possible_pfn, 0,
5246 				sizeof(arch_zone_lowest_possible_pfn));
5247 	memset(arch_zone_highest_possible_pfn, 0,
5248 				sizeof(arch_zone_highest_possible_pfn));
5249 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5250 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5251 	for (i = 1; i < MAX_NR_ZONES; i++) {
5252 		if (i == ZONE_MOVABLE)
5253 			continue;
5254 		arch_zone_lowest_possible_pfn[i] =
5255 			arch_zone_highest_possible_pfn[i-1];
5256 		arch_zone_highest_possible_pfn[i] =
5257 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5258 	}
5259 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5260 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5261 
5262 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
5263 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5264 	find_zone_movable_pfns_for_nodes();
5265 
5266 	/* Print out the zone ranges */
5267 	printk("Zone ranges:\n");
5268 	for (i = 0; i < MAX_NR_ZONES; i++) {
5269 		if (i == ZONE_MOVABLE)
5270 			continue;
5271 		printk(KERN_CONT "  %-8s ", zone_names[i]);
5272 		if (arch_zone_lowest_possible_pfn[i] ==
5273 				arch_zone_highest_possible_pfn[i])
5274 			printk(KERN_CONT "empty\n");
5275 		else
5276 			printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5277 				arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5278 				(arch_zone_highest_possible_pfn[i]
5279 					<< PAGE_SHIFT) - 1);
5280 	}
5281 
5282 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
5283 	printk("Movable zone start for each node\n");
5284 	for (i = 0; i < MAX_NUMNODES; i++) {
5285 		if (zone_movable_pfn[i])
5286 			printk("  Node %d: %#010lx\n", i,
5287 			       zone_movable_pfn[i] << PAGE_SHIFT);
5288 	}
5289 
5290 	/* Print out the early node map */
5291 	printk("Early memory node ranges\n");
5292 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5293 		printk("  node %3d: [mem %#010lx-%#010lx]\n", nid,
5294 		       start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5295 
5296 	/* Initialise every node */
5297 	mminit_verify_pageflags_layout();
5298 	setup_nr_node_ids();
5299 	for_each_online_node(nid) {
5300 		pg_data_t *pgdat = NODE_DATA(nid);
5301 		free_area_init_node(nid, NULL,
5302 				find_min_pfn_for_node(nid), NULL);
5303 
5304 		/* Any memory on that node */
5305 		if (pgdat->node_present_pages)
5306 			node_set_state(nid, N_MEMORY);
5307 		check_for_memory(pgdat, nid);
5308 	}
5309 }
5310 
5311 static int __init cmdline_parse_core(char *p, unsigned long *core)
5312 {
5313 	unsigned long long coremem;
5314 	if (!p)
5315 		return -EINVAL;
5316 
5317 	coremem = memparse(p, &p);
5318 	*core = coremem >> PAGE_SHIFT;
5319 
5320 	/* Paranoid check that UL is enough for the coremem value */
5321 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5322 
5323 	return 0;
5324 }
5325 
5326 /*
5327  * kernelcore=size sets the amount of memory for use for allocations that
5328  * cannot be reclaimed or migrated.
5329  */
5330 static int __init cmdline_parse_kernelcore(char *p)
5331 {
5332 	return cmdline_parse_core(p, &required_kernelcore);
5333 }
5334 
5335 /*
5336  * movablecore=size sets the amount of memory for use for allocations that
5337  * can be reclaimed or migrated.
5338  */
5339 static int __init cmdline_parse_movablecore(char *p)
5340 {
5341 	return cmdline_parse_core(p, &required_movablecore);
5342 }
5343 
5344 early_param("kernelcore", cmdline_parse_kernelcore);
5345 early_param("movablecore", cmdline_parse_movablecore);
5346 
5347 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5348 
5349 void adjust_managed_page_count(struct page *page, long count)
5350 {
5351 	spin_lock(&managed_page_count_lock);
5352 	page_zone(page)->managed_pages += count;
5353 	totalram_pages += count;
5354 #ifdef CONFIG_HIGHMEM
5355 	if (PageHighMem(page))
5356 		totalhigh_pages += count;
5357 #endif
5358 	spin_unlock(&managed_page_count_lock);
5359 }
5360 EXPORT_SYMBOL(adjust_managed_page_count);
5361 
5362 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5363 {
5364 	void *pos;
5365 	unsigned long pages = 0;
5366 
5367 	start = (void *)PAGE_ALIGN((unsigned long)start);
5368 	end = (void *)((unsigned long)end & PAGE_MASK);
5369 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5370 		if ((unsigned int)poison <= 0xFF)
5371 			memset(pos, poison, PAGE_SIZE);
5372 		free_reserved_page(virt_to_page(pos));
5373 	}
5374 
5375 	if (pages && s)
5376 		pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5377 			s, pages << (PAGE_SHIFT - 10), start, end);
5378 
5379 	return pages;
5380 }
5381 EXPORT_SYMBOL(free_reserved_area);
5382 
5383 #ifdef	CONFIG_HIGHMEM
5384 void free_highmem_page(struct page *page)
5385 {
5386 	__free_reserved_page(page);
5387 	totalram_pages++;
5388 	page_zone(page)->managed_pages++;
5389 	totalhigh_pages++;
5390 }
5391 #endif
5392 
5393 
5394 void __init mem_init_print_info(const char *str)
5395 {
5396 	unsigned long physpages, codesize, datasize, rosize, bss_size;
5397 	unsigned long init_code_size, init_data_size;
5398 
5399 	physpages = get_num_physpages();
5400 	codesize = _etext - _stext;
5401 	datasize = _edata - _sdata;
5402 	rosize = __end_rodata - __start_rodata;
5403 	bss_size = __bss_stop - __bss_start;
5404 	init_data_size = __init_end - __init_begin;
5405 	init_code_size = _einittext - _sinittext;
5406 
5407 	/*
5408 	 * Detect special cases and adjust section sizes accordingly:
5409 	 * 1) .init.* may be embedded into .data sections
5410 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
5411 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
5412 	 * 3) .rodata.* may be embedded into .text or .data sections.
5413 	 */
5414 #define adj_init_size(start, end, size, pos, adj) \
5415 	do { \
5416 		if (start <= pos && pos < end && size > adj) \
5417 			size -= adj; \
5418 	} while (0)
5419 
5420 	adj_init_size(__init_begin, __init_end, init_data_size,
5421 		     _sinittext, init_code_size);
5422 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5423 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5424 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5425 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5426 
5427 #undef	adj_init_size
5428 
5429 	printk("Memory: %luK/%luK available "
5430 	       "(%luK kernel code, %luK rwdata, %luK rodata, "
5431 	       "%luK init, %luK bss, %luK reserved"
5432 #ifdef	CONFIG_HIGHMEM
5433 	       ", %luK highmem"
5434 #endif
5435 	       "%s%s)\n",
5436 	       nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5437 	       codesize >> 10, datasize >> 10, rosize >> 10,
5438 	       (init_data_size + init_code_size) >> 10, bss_size >> 10,
5439 	       (physpages - totalram_pages) << (PAGE_SHIFT-10),
5440 #ifdef	CONFIG_HIGHMEM
5441 	       totalhigh_pages << (PAGE_SHIFT-10),
5442 #endif
5443 	       str ? ", " : "", str ? str : "");
5444 }
5445 
5446 /**
5447  * set_dma_reserve - set the specified number of pages reserved in the first zone
5448  * @new_dma_reserve: The number of pages to mark reserved
5449  *
5450  * The per-cpu batchsize and zone watermarks are determined by present_pages.
5451  * In the DMA zone, a significant percentage may be consumed by kernel image
5452  * and other unfreeable allocations which can skew the watermarks badly. This
5453  * function may optionally be used to account for unfreeable pages in the
5454  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5455  * smaller per-cpu batchsize.
5456  */
5457 void __init set_dma_reserve(unsigned long new_dma_reserve)
5458 {
5459 	dma_reserve = new_dma_reserve;
5460 }
5461 
5462 void __init free_area_init(unsigned long *zones_size)
5463 {
5464 	free_area_init_node(0, zones_size,
5465 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5466 }
5467 
5468 static int page_alloc_cpu_notify(struct notifier_block *self,
5469 				 unsigned long action, void *hcpu)
5470 {
5471 	int cpu = (unsigned long)hcpu;
5472 
5473 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5474 		lru_add_drain_cpu(cpu);
5475 		drain_pages(cpu);
5476 
5477 		/*
5478 		 * Spill the event counters of the dead processor
5479 		 * into the current processors event counters.
5480 		 * This artificially elevates the count of the current
5481 		 * processor.
5482 		 */
5483 		vm_events_fold_cpu(cpu);
5484 
5485 		/*
5486 		 * Zero the differential counters of the dead processor
5487 		 * so that the vm statistics are consistent.
5488 		 *
5489 		 * This is only okay since the processor is dead and cannot
5490 		 * race with what we are doing.
5491 		 */
5492 		cpu_vm_stats_fold(cpu);
5493 	}
5494 	return NOTIFY_OK;
5495 }
5496 
5497 void __init page_alloc_init(void)
5498 {
5499 	hotcpu_notifier(page_alloc_cpu_notify, 0);
5500 }
5501 
5502 /*
5503  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5504  *	or min_free_kbytes changes.
5505  */
5506 static void calculate_totalreserve_pages(void)
5507 {
5508 	struct pglist_data *pgdat;
5509 	unsigned long reserve_pages = 0;
5510 	enum zone_type i, j;
5511 
5512 	for_each_online_pgdat(pgdat) {
5513 		for (i = 0; i < MAX_NR_ZONES; i++) {
5514 			struct zone *zone = pgdat->node_zones + i;
5515 			unsigned long max = 0;
5516 
5517 			/* Find valid and maximum lowmem_reserve in the zone */
5518 			for (j = i; j < MAX_NR_ZONES; j++) {
5519 				if (zone->lowmem_reserve[j] > max)
5520 					max = zone->lowmem_reserve[j];
5521 			}
5522 
5523 			/* we treat the high watermark as reserved pages. */
5524 			max += high_wmark_pages(zone);
5525 
5526 			if (max > zone->managed_pages)
5527 				max = zone->managed_pages;
5528 			reserve_pages += max;
5529 			/*
5530 			 * Lowmem reserves are not available to
5531 			 * GFP_HIGHUSER page cache allocations and
5532 			 * kswapd tries to balance zones to their high
5533 			 * watermark.  As a result, neither should be
5534 			 * regarded as dirtyable memory, to prevent a
5535 			 * situation where reclaim has to clean pages
5536 			 * in order to balance the zones.
5537 			 */
5538 			zone->dirty_balance_reserve = max;
5539 		}
5540 	}
5541 	dirty_balance_reserve = reserve_pages;
5542 	totalreserve_pages = reserve_pages;
5543 }
5544 
5545 /*
5546  * setup_per_zone_lowmem_reserve - called whenever
5547  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
5548  *	has a correct pages reserved value, so an adequate number of
5549  *	pages are left in the zone after a successful __alloc_pages().
5550  */
5551 static void setup_per_zone_lowmem_reserve(void)
5552 {
5553 	struct pglist_data *pgdat;
5554 	enum zone_type j, idx;
5555 
5556 	for_each_online_pgdat(pgdat) {
5557 		for (j = 0; j < MAX_NR_ZONES; j++) {
5558 			struct zone *zone = pgdat->node_zones + j;
5559 			unsigned long managed_pages = zone->managed_pages;
5560 
5561 			zone->lowmem_reserve[j] = 0;
5562 
5563 			idx = j;
5564 			while (idx) {
5565 				struct zone *lower_zone;
5566 
5567 				idx--;
5568 
5569 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
5570 					sysctl_lowmem_reserve_ratio[idx] = 1;
5571 
5572 				lower_zone = pgdat->node_zones + idx;
5573 				lower_zone->lowmem_reserve[j] = managed_pages /
5574 					sysctl_lowmem_reserve_ratio[idx];
5575 				managed_pages += lower_zone->managed_pages;
5576 			}
5577 		}
5578 	}
5579 
5580 	/* update totalreserve_pages */
5581 	calculate_totalreserve_pages();
5582 }
5583 
5584 static void __setup_per_zone_wmarks(void)
5585 {
5586 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5587 	unsigned long lowmem_pages = 0;
5588 	struct zone *zone;
5589 	unsigned long flags;
5590 
5591 	/* Calculate total number of !ZONE_HIGHMEM pages */
5592 	for_each_zone(zone) {
5593 		if (!is_highmem(zone))
5594 			lowmem_pages += zone->managed_pages;
5595 	}
5596 
5597 	for_each_zone(zone) {
5598 		u64 tmp;
5599 
5600 		spin_lock_irqsave(&zone->lock, flags);
5601 		tmp = (u64)pages_min * zone->managed_pages;
5602 		do_div(tmp, lowmem_pages);
5603 		if (is_highmem(zone)) {
5604 			/*
5605 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5606 			 * need highmem pages, so cap pages_min to a small
5607 			 * value here.
5608 			 *
5609 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5610 			 * deltas controls asynch page reclaim, and so should
5611 			 * not be capped for highmem.
5612 			 */
5613 			unsigned long min_pages;
5614 
5615 			min_pages = zone->managed_pages / 1024;
5616 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5617 			zone->watermark[WMARK_MIN] = min_pages;
5618 		} else {
5619 			/*
5620 			 * If it's a lowmem zone, reserve a number of pages
5621 			 * proportionate to the zone's size.
5622 			 */
5623 			zone->watermark[WMARK_MIN] = tmp;
5624 		}
5625 
5626 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
5627 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5628 
5629 		__mod_zone_page_state(zone, NR_ALLOC_BATCH,
5630 				      high_wmark_pages(zone) -
5631 				      low_wmark_pages(zone) -
5632 				      zone_page_state(zone, NR_ALLOC_BATCH));
5633 
5634 		setup_zone_migrate_reserve(zone);
5635 		spin_unlock_irqrestore(&zone->lock, flags);
5636 	}
5637 
5638 	/* update totalreserve_pages */
5639 	calculate_totalreserve_pages();
5640 }
5641 
5642 /**
5643  * setup_per_zone_wmarks - called when min_free_kbytes changes
5644  * or when memory is hot-{added|removed}
5645  *
5646  * Ensures that the watermark[min,low,high] values for each zone are set
5647  * correctly with respect to min_free_kbytes.
5648  */
5649 void setup_per_zone_wmarks(void)
5650 {
5651 	mutex_lock(&zonelists_mutex);
5652 	__setup_per_zone_wmarks();
5653 	mutex_unlock(&zonelists_mutex);
5654 }
5655 
5656 /*
5657  * The inactive anon list should be small enough that the VM never has to
5658  * do too much work, but large enough that each inactive page has a chance
5659  * to be referenced again before it is swapped out.
5660  *
5661  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5662  * INACTIVE_ANON pages on this zone's LRU, maintained by the
5663  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5664  * the anonymous pages are kept on the inactive list.
5665  *
5666  * total     target    max
5667  * memory    ratio     inactive anon
5668  * -------------------------------------
5669  *   10MB       1         5MB
5670  *  100MB       1        50MB
5671  *    1GB       3       250MB
5672  *   10GB      10       0.9GB
5673  *  100GB      31         3GB
5674  *    1TB     101        10GB
5675  *   10TB     320        32GB
5676  */
5677 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5678 {
5679 	unsigned int gb, ratio;
5680 
5681 	/* Zone size in gigabytes */
5682 	gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5683 	if (gb)
5684 		ratio = int_sqrt(10 * gb);
5685 	else
5686 		ratio = 1;
5687 
5688 	zone->inactive_ratio = ratio;
5689 }
5690 
5691 static void __meminit setup_per_zone_inactive_ratio(void)
5692 {
5693 	struct zone *zone;
5694 
5695 	for_each_zone(zone)
5696 		calculate_zone_inactive_ratio(zone);
5697 }
5698 
5699 /*
5700  * Initialise min_free_kbytes.
5701  *
5702  * For small machines we want it small (128k min).  For large machines
5703  * we want it large (64MB max).  But it is not linear, because network
5704  * bandwidth does not increase linearly with machine size.  We use
5705  *
5706  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5707  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5708  *
5709  * which yields
5710  *
5711  * 16MB:	512k
5712  * 32MB:	724k
5713  * 64MB:	1024k
5714  * 128MB:	1448k
5715  * 256MB:	2048k
5716  * 512MB:	2896k
5717  * 1024MB:	4096k
5718  * 2048MB:	5792k
5719  * 4096MB:	8192k
5720  * 8192MB:	11584k
5721  * 16384MB:	16384k
5722  */
5723 int __meminit init_per_zone_wmark_min(void)
5724 {
5725 	unsigned long lowmem_kbytes;
5726 	int new_min_free_kbytes;
5727 
5728 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5729 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5730 
5731 	if (new_min_free_kbytes > user_min_free_kbytes) {
5732 		min_free_kbytes = new_min_free_kbytes;
5733 		if (min_free_kbytes < 128)
5734 			min_free_kbytes = 128;
5735 		if (min_free_kbytes > 65536)
5736 			min_free_kbytes = 65536;
5737 	} else {
5738 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5739 				new_min_free_kbytes, user_min_free_kbytes);
5740 	}
5741 	setup_per_zone_wmarks();
5742 	refresh_zone_stat_thresholds();
5743 	setup_per_zone_lowmem_reserve();
5744 	setup_per_zone_inactive_ratio();
5745 	return 0;
5746 }
5747 module_init(init_per_zone_wmark_min)
5748 
5749 /*
5750  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5751  *	that we can call two helper functions whenever min_free_kbytes
5752  *	changes.
5753  */
5754 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5755 	void __user *buffer, size_t *length, loff_t *ppos)
5756 {
5757 	int rc;
5758 
5759 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5760 	if (rc)
5761 		return rc;
5762 
5763 	if (write) {
5764 		user_min_free_kbytes = min_free_kbytes;
5765 		setup_per_zone_wmarks();
5766 	}
5767 	return 0;
5768 }
5769 
5770 #ifdef CONFIG_NUMA
5771 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5772 	void __user *buffer, size_t *length, loff_t *ppos)
5773 {
5774 	struct zone *zone;
5775 	int rc;
5776 
5777 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5778 	if (rc)
5779 		return rc;
5780 
5781 	for_each_zone(zone)
5782 		zone->min_unmapped_pages = (zone->managed_pages *
5783 				sysctl_min_unmapped_ratio) / 100;
5784 	return 0;
5785 }
5786 
5787 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5788 	void __user *buffer, size_t *length, loff_t *ppos)
5789 {
5790 	struct zone *zone;
5791 	int rc;
5792 
5793 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5794 	if (rc)
5795 		return rc;
5796 
5797 	for_each_zone(zone)
5798 		zone->min_slab_pages = (zone->managed_pages *
5799 				sysctl_min_slab_ratio) / 100;
5800 	return 0;
5801 }
5802 #endif
5803 
5804 /*
5805  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5806  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5807  *	whenever sysctl_lowmem_reserve_ratio changes.
5808  *
5809  * The reserve ratio obviously has absolutely no relation with the
5810  * minimum watermarks. The lowmem reserve ratio can only make sense
5811  * if in function of the boot time zone sizes.
5812  */
5813 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5814 	void __user *buffer, size_t *length, loff_t *ppos)
5815 {
5816 	proc_dointvec_minmax(table, write, buffer, length, ppos);
5817 	setup_per_zone_lowmem_reserve();
5818 	return 0;
5819 }
5820 
5821 /*
5822  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5823  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
5824  * pagelist can have before it gets flushed back to buddy allocator.
5825  */
5826 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5827 	void __user *buffer, size_t *length, loff_t *ppos)
5828 {
5829 	struct zone *zone;
5830 	unsigned int cpu;
5831 	int ret;
5832 
5833 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5834 	if (!write || (ret < 0))
5835 		return ret;
5836 
5837 	mutex_lock(&pcp_batch_high_lock);
5838 	for_each_populated_zone(zone) {
5839 		unsigned long  high;
5840 		high = zone->managed_pages / percpu_pagelist_fraction;
5841 		for_each_possible_cpu(cpu)
5842 			pageset_set_high(per_cpu_ptr(zone->pageset, cpu),
5843 					 high);
5844 	}
5845 	mutex_unlock(&pcp_batch_high_lock);
5846 	return 0;
5847 }
5848 
5849 int hashdist = HASHDIST_DEFAULT;
5850 
5851 #ifdef CONFIG_NUMA
5852 static int __init set_hashdist(char *str)
5853 {
5854 	if (!str)
5855 		return 0;
5856 	hashdist = simple_strtoul(str, &str, 0);
5857 	return 1;
5858 }
5859 __setup("hashdist=", set_hashdist);
5860 #endif
5861 
5862 /*
5863  * allocate a large system hash table from bootmem
5864  * - it is assumed that the hash table must contain an exact power-of-2
5865  *   quantity of entries
5866  * - limit is the number of hash buckets, not the total allocation size
5867  */
5868 void *__init alloc_large_system_hash(const char *tablename,
5869 				     unsigned long bucketsize,
5870 				     unsigned long numentries,
5871 				     int scale,
5872 				     int flags,
5873 				     unsigned int *_hash_shift,
5874 				     unsigned int *_hash_mask,
5875 				     unsigned long low_limit,
5876 				     unsigned long high_limit)
5877 {
5878 	unsigned long long max = high_limit;
5879 	unsigned long log2qty, size;
5880 	void *table = NULL;
5881 
5882 	/* allow the kernel cmdline to have a say */
5883 	if (!numentries) {
5884 		/* round applicable memory size up to nearest megabyte */
5885 		numentries = nr_kernel_pages;
5886 
5887 		/* It isn't necessary when PAGE_SIZE >= 1MB */
5888 		if (PAGE_SHIFT < 20)
5889 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
5890 
5891 		/* limit to 1 bucket per 2^scale bytes of low memory */
5892 		if (scale > PAGE_SHIFT)
5893 			numentries >>= (scale - PAGE_SHIFT);
5894 		else
5895 			numentries <<= (PAGE_SHIFT - scale);
5896 
5897 		/* Make sure we've got at least a 0-order allocation.. */
5898 		if (unlikely(flags & HASH_SMALL)) {
5899 			/* Makes no sense without HASH_EARLY */
5900 			WARN_ON(!(flags & HASH_EARLY));
5901 			if (!(numentries >> *_hash_shift)) {
5902 				numentries = 1UL << *_hash_shift;
5903 				BUG_ON(!numentries);
5904 			}
5905 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5906 			numentries = PAGE_SIZE / bucketsize;
5907 	}
5908 	numentries = roundup_pow_of_two(numentries);
5909 
5910 	/* limit allocation size to 1/16 total memory by default */
5911 	if (max == 0) {
5912 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5913 		do_div(max, bucketsize);
5914 	}
5915 	max = min(max, 0x80000000ULL);
5916 
5917 	if (numentries < low_limit)
5918 		numentries = low_limit;
5919 	if (numentries > max)
5920 		numentries = max;
5921 
5922 	log2qty = ilog2(numentries);
5923 
5924 	do {
5925 		size = bucketsize << log2qty;
5926 		if (flags & HASH_EARLY)
5927 			table = memblock_virt_alloc_nopanic(size, 0);
5928 		else if (hashdist)
5929 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5930 		else {
5931 			/*
5932 			 * If bucketsize is not a power-of-two, we may free
5933 			 * some pages at the end of hash table which
5934 			 * alloc_pages_exact() automatically does
5935 			 */
5936 			if (get_order(size) < MAX_ORDER) {
5937 				table = alloc_pages_exact(size, GFP_ATOMIC);
5938 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5939 			}
5940 		}
5941 	} while (!table && size > PAGE_SIZE && --log2qty);
5942 
5943 	if (!table)
5944 		panic("Failed to allocate %s hash table\n", tablename);
5945 
5946 	printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5947 	       tablename,
5948 	       (1UL << log2qty),
5949 	       ilog2(size) - PAGE_SHIFT,
5950 	       size);
5951 
5952 	if (_hash_shift)
5953 		*_hash_shift = log2qty;
5954 	if (_hash_mask)
5955 		*_hash_mask = (1 << log2qty) - 1;
5956 
5957 	return table;
5958 }
5959 
5960 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5961 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5962 							unsigned long pfn)
5963 {
5964 #ifdef CONFIG_SPARSEMEM
5965 	return __pfn_to_section(pfn)->pageblock_flags;
5966 #else
5967 	return zone->pageblock_flags;
5968 #endif /* CONFIG_SPARSEMEM */
5969 }
5970 
5971 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5972 {
5973 #ifdef CONFIG_SPARSEMEM
5974 	pfn &= (PAGES_PER_SECTION-1);
5975 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5976 #else
5977 	pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
5978 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5979 #endif /* CONFIG_SPARSEMEM */
5980 }
5981 
5982 /**
5983  * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5984  * @page: The page within the block of interest
5985  * @start_bitidx: The first bit of interest to retrieve
5986  * @end_bitidx: The last bit of interest
5987  * returns pageblock_bits flags
5988  */
5989 unsigned long get_pageblock_flags_group(struct page *page,
5990 					int start_bitidx, int end_bitidx)
5991 {
5992 	struct zone *zone;
5993 	unsigned long *bitmap;
5994 	unsigned long pfn, bitidx;
5995 	unsigned long flags = 0;
5996 	unsigned long value = 1;
5997 
5998 	zone = page_zone(page);
5999 	pfn = page_to_pfn(page);
6000 	bitmap = get_pageblock_bitmap(zone, pfn);
6001 	bitidx = pfn_to_bitidx(zone, pfn);
6002 
6003 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
6004 		if (test_bit(bitidx + start_bitidx, bitmap))
6005 			flags |= value;
6006 
6007 	return flags;
6008 }
6009 
6010 /**
6011  * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
6012  * @page: The page within the block of interest
6013  * @start_bitidx: The first bit of interest
6014  * @end_bitidx: The last bit of interest
6015  * @flags: The flags to set
6016  */
6017 void set_pageblock_flags_group(struct page *page, unsigned long flags,
6018 					int start_bitidx, int end_bitidx)
6019 {
6020 	struct zone *zone;
6021 	unsigned long *bitmap;
6022 	unsigned long pfn, bitidx;
6023 	unsigned long value = 1;
6024 
6025 	zone = page_zone(page);
6026 	pfn = page_to_pfn(page);
6027 	bitmap = get_pageblock_bitmap(zone, pfn);
6028 	bitidx = pfn_to_bitidx(zone, pfn);
6029 	VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6030 
6031 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
6032 		if (flags & value)
6033 			__set_bit(bitidx + start_bitidx, bitmap);
6034 		else
6035 			__clear_bit(bitidx + start_bitidx, bitmap);
6036 }
6037 
6038 /*
6039  * This function checks whether pageblock includes unmovable pages or not.
6040  * If @count is not zero, it is okay to include less @count unmovable pages
6041  *
6042  * PageLRU check without isolation or lru_lock could race so that
6043  * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6044  * expect this function should be exact.
6045  */
6046 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6047 			 bool skip_hwpoisoned_pages)
6048 {
6049 	unsigned long pfn, iter, found;
6050 	int mt;
6051 
6052 	/*
6053 	 * For avoiding noise data, lru_add_drain_all() should be called
6054 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
6055 	 */
6056 	if (zone_idx(zone) == ZONE_MOVABLE)
6057 		return false;
6058 	mt = get_pageblock_migratetype(page);
6059 	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6060 		return false;
6061 
6062 	pfn = page_to_pfn(page);
6063 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6064 		unsigned long check = pfn + iter;
6065 
6066 		if (!pfn_valid_within(check))
6067 			continue;
6068 
6069 		page = pfn_to_page(check);
6070 
6071 		/*
6072 		 * Hugepages are not in LRU lists, but they're movable.
6073 		 * We need not scan over tail pages bacause we don't
6074 		 * handle each tail page individually in migration.
6075 		 */
6076 		if (PageHuge(page)) {
6077 			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6078 			continue;
6079 		}
6080 
6081 		/*
6082 		 * We can't use page_count without pin a page
6083 		 * because another CPU can free compound page.
6084 		 * This check already skips compound tails of THP
6085 		 * because their page->_count is zero at all time.
6086 		 */
6087 		if (!atomic_read(&page->_count)) {
6088 			if (PageBuddy(page))
6089 				iter += (1 << page_order(page)) - 1;
6090 			continue;
6091 		}
6092 
6093 		/*
6094 		 * The HWPoisoned page may be not in buddy system, and
6095 		 * page_count() is not 0.
6096 		 */
6097 		if (skip_hwpoisoned_pages && PageHWPoison(page))
6098 			continue;
6099 
6100 		if (!PageLRU(page))
6101 			found++;
6102 		/*
6103 		 * If there are RECLAIMABLE pages, we need to check it.
6104 		 * But now, memory offline itself doesn't call shrink_slab()
6105 		 * and it still to be fixed.
6106 		 */
6107 		/*
6108 		 * If the page is not RAM, page_count()should be 0.
6109 		 * we don't need more check. This is an _used_ not-movable page.
6110 		 *
6111 		 * The problematic thing here is PG_reserved pages. PG_reserved
6112 		 * is set to both of a memory hole page and a _used_ kernel
6113 		 * page at boot.
6114 		 */
6115 		if (found > count)
6116 			return true;
6117 	}
6118 	return false;
6119 }
6120 
6121 bool is_pageblock_removable_nolock(struct page *page)
6122 {
6123 	struct zone *zone;
6124 	unsigned long pfn;
6125 
6126 	/*
6127 	 * We have to be careful here because we are iterating over memory
6128 	 * sections which are not zone aware so we might end up outside of
6129 	 * the zone but still within the section.
6130 	 * We have to take care about the node as well. If the node is offline
6131 	 * its NODE_DATA will be NULL - see page_zone.
6132 	 */
6133 	if (!node_online(page_to_nid(page)))
6134 		return false;
6135 
6136 	zone = page_zone(page);
6137 	pfn = page_to_pfn(page);
6138 	if (!zone_spans_pfn(zone, pfn))
6139 		return false;
6140 
6141 	return !has_unmovable_pages(zone, page, 0, true);
6142 }
6143 
6144 #ifdef CONFIG_CMA
6145 
6146 static unsigned long pfn_max_align_down(unsigned long pfn)
6147 {
6148 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6149 			     pageblock_nr_pages) - 1);
6150 }
6151 
6152 static unsigned long pfn_max_align_up(unsigned long pfn)
6153 {
6154 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6155 				pageblock_nr_pages));
6156 }
6157 
6158 /* [start, end) must belong to a single zone. */
6159 static int __alloc_contig_migrate_range(struct compact_control *cc,
6160 					unsigned long start, unsigned long end)
6161 {
6162 	/* This function is based on compact_zone() from compaction.c. */
6163 	unsigned long nr_reclaimed;
6164 	unsigned long pfn = start;
6165 	unsigned int tries = 0;
6166 	int ret = 0;
6167 
6168 	migrate_prep();
6169 
6170 	while (pfn < end || !list_empty(&cc->migratepages)) {
6171 		if (fatal_signal_pending(current)) {
6172 			ret = -EINTR;
6173 			break;
6174 		}
6175 
6176 		if (list_empty(&cc->migratepages)) {
6177 			cc->nr_migratepages = 0;
6178 			pfn = isolate_migratepages_range(cc->zone, cc,
6179 							 pfn, end, true);
6180 			if (!pfn) {
6181 				ret = -EINTR;
6182 				break;
6183 			}
6184 			tries = 0;
6185 		} else if (++tries == 5) {
6186 			ret = ret < 0 ? ret : -EBUSY;
6187 			break;
6188 		}
6189 
6190 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6191 							&cc->migratepages);
6192 		cc->nr_migratepages -= nr_reclaimed;
6193 
6194 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6195 				    0, MIGRATE_SYNC, MR_CMA);
6196 	}
6197 	if (ret < 0) {
6198 		putback_movable_pages(&cc->migratepages);
6199 		return ret;
6200 	}
6201 	return 0;
6202 }
6203 
6204 /**
6205  * alloc_contig_range() -- tries to allocate given range of pages
6206  * @start:	start PFN to allocate
6207  * @end:	one-past-the-last PFN to allocate
6208  * @migratetype:	migratetype of the underlaying pageblocks (either
6209  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6210  *			in range must have the same migratetype and it must
6211  *			be either of the two.
6212  *
6213  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6214  * aligned, however it's the caller's responsibility to guarantee that
6215  * we are the only thread that changes migrate type of pageblocks the
6216  * pages fall in.
6217  *
6218  * The PFN range must belong to a single zone.
6219  *
6220  * Returns zero on success or negative error code.  On success all
6221  * pages which PFN is in [start, end) are allocated for the caller and
6222  * need to be freed with free_contig_range().
6223  */
6224 int alloc_contig_range(unsigned long start, unsigned long end,
6225 		       unsigned migratetype)
6226 {
6227 	unsigned long outer_start, outer_end;
6228 	int ret = 0, order;
6229 
6230 	struct compact_control cc = {
6231 		.nr_migratepages = 0,
6232 		.order = -1,
6233 		.zone = page_zone(pfn_to_page(start)),
6234 		.sync = true,
6235 		.ignore_skip_hint = true,
6236 	};
6237 	INIT_LIST_HEAD(&cc.migratepages);
6238 
6239 	/*
6240 	 * What we do here is we mark all pageblocks in range as
6241 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6242 	 * have different sizes, and due to the way page allocator
6243 	 * work, we align the range to biggest of the two pages so
6244 	 * that page allocator won't try to merge buddies from
6245 	 * different pageblocks and change MIGRATE_ISOLATE to some
6246 	 * other migration type.
6247 	 *
6248 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6249 	 * migrate the pages from an unaligned range (ie. pages that
6250 	 * we are interested in).  This will put all the pages in
6251 	 * range back to page allocator as MIGRATE_ISOLATE.
6252 	 *
6253 	 * When this is done, we take the pages in range from page
6254 	 * allocator removing them from the buddy system.  This way
6255 	 * page allocator will never consider using them.
6256 	 *
6257 	 * This lets us mark the pageblocks back as
6258 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6259 	 * aligned range but not in the unaligned, original range are
6260 	 * put back to page allocator so that buddy can use them.
6261 	 */
6262 
6263 	ret = start_isolate_page_range(pfn_max_align_down(start),
6264 				       pfn_max_align_up(end), migratetype,
6265 				       false);
6266 	if (ret)
6267 		return ret;
6268 
6269 	ret = __alloc_contig_migrate_range(&cc, start, end);
6270 	if (ret)
6271 		goto done;
6272 
6273 	/*
6274 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6275 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6276 	 * more, all pages in [start, end) are free in page allocator.
6277 	 * What we are going to do is to allocate all pages from
6278 	 * [start, end) (that is remove them from page allocator).
6279 	 *
6280 	 * The only problem is that pages at the beginning and at the
6281 	 * end of interesting range may be not aligned with pages that
6282 	 * page allocator holds, ie. they can be part of higher order
6283 	 * pages.  Because of this, we reserve the bigger range and
6284 	 * once this is done free the pages we are not interested in.
6285 	 *
6286 	 * We don't have to hold zone->lock here because the pages are
6287 	 * isolated thus they won't get removed from buddy.
6288 	 */
6289 
6290 	lru_add_drain_all();
6291 	drain_all_pages();
6292 
6293 	order = 0;
6294 	outer_start = start;
6295 	while (!PageBuddy(pfn_to_page(outer_start))) {
6296 		if (++order >= MAX_ORDER) {
6297 			ret = -EBUSY;
6298 			goto done;
6299 		}
6300 		outer_start &= ~0UL << order;
6301 	}
6302 
6303 	/* Make sure the range is really isolated. */
6304 	if (test_pages_isolated(outer_start, end, false)) {
6305 		pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6306 		       outer_start, end);
6307 		ret = -EBUSY;
6308 		goto done;
6309 	}
6310 
6311 
6312 	/* Grab isolated pages from freelists. */
6313 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6314 	if (!outer_end) {
6315 		ret = -EBUSY;
6316 		goto done;
6317 	}
6318 
6319 	/* Free head and tail (if any) */
6320 	if (start != outer_start)
6321 		free_contig_range(outer_start, start - outer_start);
6322 	if (end != outer_end)
6323 		free_contig_range(end, outer_end - end);
6324 
6325 done:
6326 	undo_isolate_page_range(pfn_max_align_down(start),
6327 				pfn_max_align_up(end), migratetype);
6328 	return ret;
6329 }
6330 
6331 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6332 {
6333 	unsigned int count = 0;
6334 
6335 	for (; nr_pages--; pfn++) {
6336 		struct page *page = pfn_to_page(pfn);
6337 
6338 		count += page_count(page) != 1;
6339 		__free_page(page);
6340 	}
6341 	WARN(count != 0, "%d pages are still in use!\n", count);
6342 }
6343 #endif
6344 
6345 #ifdef CONFIG_MEMORY_HOTPLUG
6346 /*
6347  * The zone indicated has a new number of managed_pages; batch sizes and percpu
6348  * page high values need to be recalulated.
6349  */
6350 void __meminit zone_pcp_update(struct zone *zone)
6351 {
6352 	unsigned cpu;
6353 	mutex_lock(&pcp_batch_high_lock);
6354 	for_each_possible_cpu(cpu)
6355 		pageset_set_high_and_batch(zone,
6356 				per_cpu_ptr(zone->pageset, cpu));
6357 	mutex_unlock(&pcp_batch_high_lock);
6358 }
6359 #endif
6360 
6361 void zone_pcp_reset(struct zone *zone)
6362 {
6363 	unsigned long flags;
6364 	int cpu;
6365 	struct per_cpu_pageset *pset;
6366 
6367 	/* avoid races with drain_pages()  */
6368 	local_irq_save(flags);
6369 	if (zone->pageset != &boot_pageset) {
6370 		for_each_online_cpu(cpu) {
6371 			pset = per_cpu_ptr(zone->pageset, cpu);
6372 			drain_zonestat(zone, pset);
6373 		}
6374 		free_percpu(zone->pageset);
6375 		zone->pageset = &boot_pageset;
6376 	}
6377 	local_irq_restore(flags);
6378 }
6379 
6380 #ifdef CONFIG_MEMORY_HOTREMOVE
6381 /*
6382  * All pages in the range must be isolated before calling this.
6383  */
6384 void
6385 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6386 {
6387 	struct page *page;
6388 	struct zone *zone;
6389 	int order, i;
6390 	unsigned long pfn;
6391 	unsigned long flags;
6392 	/* find the first valid pfn */
6393 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
6394 		if (pfn_valid(pfn))
6395 			break;
6396 	if (pfn == end_pfn)
6397 		return;
6398 	zone = page_zone(pfn_to_page(pfn));
6399 	spin_lock_irqsave(&zone->lock, flags);
6400 	pfn = start_pfn;
6401 	while (pfn < end_pfn) {
6402 		if (!pfn_valid(pfn)) {
6403 			pfn++;
6404 			continue;
6405 		}
6406 		page = pfn_to_page(pfn);
6407 		/*
6408 		 * The HWPoisoned page may be not in buddy system, and
6409 		 * page_count() is not 0.
6410 		 */
6411 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6412 			pfn++;
6413 			SetPageReserved(page);
6414 			continue;
6415 		}
6416 
6417 		BUG_ON(page_count(page));
6418 		BUG_ON(!PageBuddy(page));
6419 		order = page_order(page);
6420 #ifdef CONFIG_DEBUG_VM
6421 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
6422 		       pfn, 1 << order, end_pfn);
6423 #endif
6424 		list_del(&page->lru);
6425 		rmv_page_order(page);
6426 		zone->free_area[order].nr_free--;
6427 		for (i = 0; i < (1 << order); i++)
6428 			SetPageReserved((page+i));
6429 		pfn += (1 << order);
6430 	}
6431 	spin_unlock_irqrestore(&zone->lock, flags);
6432 }
6433 #endif
6434 
6435 #ifdef CONFIG_MEMORY_FAILURE
6436 bool is_free_buddy_page(struct page *page)
6437 {
6438 	struct zone *zone = page_zone(page);
6439 	unsigned long pfn = page_to_pfn(page);
6440 	unsigned long flags;
6441 	int order;
6442 
6443 	spin_lock_irqsave(&zone->lock, flags);
6444 	for (order = 0; order < MAX_ORDER; order++) {
6445 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6446 
6447 		if (PageBuddy(page_head) && page_order(page_head) >= order)
6448 			break;
6449 	}
6450 	spin_unlock_irqrestore(&zone->lock, flags);
6451 
6452 	return order < MAX_ORDER;
6453 }
6454 #endif
6455 
6456 static const struct trace_print_flags pageflag_names[] = {
6457 	{1UL << PG_locked,		"locked"	},
6458 	{1UL << PG_error,		"error"		},
6459 	{1UL << PG_referenced,		"referenced"	},
6460 	{1UL << PG_uptodate,		"uptodate"	},
6461 	{1UL << PG_dirty,		"dirty"		},
6462 	{1UL << PG_lru,			"lru"		},
6463 	{1UL << PG_active,		"active"	},
6464 	{1UL << PG_slab,		"slab"		},
6465 	{1UL << PG_owner_priv_1,	"owner_priv_1"	},
6466 	{1UL << PG_arch_1,		"arch_1"	},
6467 	{1UL << PG_reserved,		"reserved"	},
6468 	{1UL << PG_private,		"private"	},
6469 	{1UL << PG_private_2,		"private_2"	},
6470 	{1UL << PG_writeback,		"writeback"	},
6471 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6472 	{1UL << PG_head,		"head"		},
6473 	{1UL << PG_tail,		"tail"		},
6474 #else
6475 	{1UL << PG_compound,		"compound"	},
6476 #endif
6477 	{1UL << PG_swapcache,		"swapcache"	},
6478 	{1UL << PG_mappedtodisk,	"mappedtodisk"	},
6479 	{1UL << PG_reclaim,		"reclaim"	},
6480 	{1UL << PG_swapbacked,		"swapbacked"	},
6481 	{1UL << PG_unevictable,		"unevictable"	},
6482 #ifdef CONFIG_MMU
6483 	{1UL << PG_mlocked,		"mlocked"	},
6484 #endif
6485 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6486 	{1UL << PG_uncached,		"uncached"	},
6487 #endif
6488 #ifdef CONFIG_MEMORY_FAILURE
6489 	{1UL << PG_hwpoison,		"hwpoison"	},
6490 #endif
6491 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6492 	{1UL << PG_compound_lock,	"compound_lock"	},
6493 #endif
6494 };
6495 
6496 static void dump_page_flags(unsigned long flags)
6497 {
6498 	const char *delim = "";
6499 	unsigned long mask;
6500 	int i;
6501 
6502 	BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6503 
6504 	printk(KERN_ALERT "page flags: %#lx(", flags);
6505 
6506 	/* remove zone id */
6507 	flags &= (1UL << NR_PAGEFLAGS) - 1;
6508 
6509 	for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6510 
6511 		mask = pageflag_names[i].mask;
6512 		if ((flags & mask) != mask)
6513 			continue;
6514 
6515 		flags &= ~mask;
6516 		printk("%s%s", delim, pageflag_names[i].name);
6517 		delim = "|";
6518 	}
6519 
6520 	/* check for left over flags */
6521 	if (flags)
6522 		printk("%s%#lx", delim, flags);
6523 
6524 	printk(")\n");
6525 }
6526 
6527 void dump_page_badflags(struct page *page, char *reason, unsigned long badflags)
6528 {
6529 	printk(KERN_ALERT
6530 	       "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6531 		page, atomic_read(&page->_count), page_mapcount(page),
6532 		page->mapping, page->index);
6533 	dump_page_flags(page->flags);
6534 	if (reason)
6535 		pr_alert("page dumped because: %s\n", reason);
6536 	if (page->flags & badflags) {
6537 		pr_alert("bad because of flags:\n");
6538 		dump_page_flags(page->flags & badflags);
6539 	}
6540 	mem_cgroup_print_bad_page(page);
6541 }
6542 
6543 void dump_page(struct page *page, char *reason)
6544 {
6545 	dump_page_badflags(page, reason, 0);
6546 }
6547 EXPORT_SYMBOL_GPL(dump_page);
6548