1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kmemcheck.h> 28 #include <linux/module.h> 29 #include <linux/suspend.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/slab.h> 33 #include <linux/ratelimit.h> 34 #include <linux/oom.h> 35 #include <linux/notifier.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/stop_machine.h> 46 #include <linux/sort.h> 47 #include <linux/pfn.h> 48 #include <linux/backing-dev.h> 49 #include <linux/fault-inject.h> 50 #include <linux/page-isolation.h> 51 #include <linux/page_cgroup.h> 52 #include <linux/debugobjects.h> 53 #include <linux/kmemleak.h> 54 #include <linux/compaction.h> 55 #include <trace/events/kmem.h> 56 #include <linux/ftrace_event.h> 57 #include <linux/memcontrol.h> 58 #include <linux/prefetch.h> 59 #include <linux/mm_inline.h> 60 #include <linux/migrate.h> 61 #include <linux/page-debug-flags.h> 62 #include <linux/hugetlb.h> 63 #include <linux/sched/rt.h> 64 65 #include <asm/sections.h> 66 #include <asm/tlbflush.h> 67 #include <asm/div64.h> 68 #include "internal.h" 69 70 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 71 static DEFINE_MUTEX(pcp_batch_high_lock); 72 73 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 74 DEFINE_PER_CPU(int, numa_node); 75 EXPORT_PER_CPU_SYMBOL(numa_node); 76 #endif 77 78 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 79 /* 80 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 81 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 82 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 83 * defined in <linux/topology.h>. 84 */ 85 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 86 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 87 #endif 88 89 /* 90 * Array of node states. 91 */ 92 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 93 [N_POSSIBLE] = NODE_MASK_ALL, 94 [N_ONLINE] = { { [0] = 1UL } }, 95 #ifndef CONFIG_NUMA 96 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 97 #ifdef CONFIG_HIGHMEM 98 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 99 #endif 100 #ifdef CONFIG_MOVABLE_NODE 101 [N_MEMORY] = { { [0] = 1UL } }, 102 #endif 103 [N_CPU] = { { [0] = 1UL } }, 104 #endif /* NUMA */ 105 }; 106 EXPORT_SYMBOL(node_states); 107 108 /* Protect totalram_pages and zone->managed_pages */ 109 static DEFINE_SPINLOCK(managed_page_count_lock); 110 111 unsigned long totalram_pages __read_mostly; 112 unsigned long totalreserve_pages __read_mostly; 113 /* 114 * When calculating the number of globally allowed dirty pages, there 115 * is a certain number of per-zone reserves that should not be 116 * considered dirtyable memory. This is the sum of those reserves 117 * over all existing zones that contribute dirtyable memory. 118 */ 119 unsigned long dirty_balance_reserve __read_mostly; 120 121 int percpu_pagelist_fraction; 122 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 123 124 #ifdef CONFIG_PM_SLEEP 125 /* 126 * The following functions are used by the suspend/hibernate code to temporarily 127 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 128 * while devices are suspended. To avoid races with the suspend/hibernate code, 129 * they should always be called with pm_mutex held (gfp_allowed_mask also should 130 * only be modified with pm_mutex held, unless the suspend/hibernate code is 131 * guaranteed not to run in parallel with that modification). 132 */ 133 134 static gfp_t saved_gfp_mask; 135 136 void pm_restore_gfp_mask(void) 137 { 138 WARN_ON(!mutex_is_locked(&pm_mutex)); 139 if (saved_gfp_mask) { 140 gfp_allowed_mask = saved_gfp_mask; 141 saved_gfp_mask = 0; 142 } 143 } 144 145 void pm_restrict_gfp_mask(void) 146 { 147 WARN_ON(!mutex_is_locked(&pm_mutex)); 148 WARN_ON(saved_gfp_mask); 149 saved_gfp_mask = gfp_allowed_mask; 150 gfp_allowed_mask &= ~GFP_IOFS; 151 } 152 153 bool pm_suspended_storage(void) 154 { 155 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS) 156 return false; 157 return true; 158 } 159 #endif /* CONFIG_PM_SLEEP */ 160 161 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 162 int pageblock_order __read_mostly; 163 #endif 164 165 static void __free_pages_ok(struct page *page, unsigned int order); 166 167 /* 168 * results with 256, 32 in the lowmem_reserve sysctl: 169 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 170 * 1G machine -> (16M dma, 784M normal, 224M high) 171 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 172 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 173 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 174 * 175 * TBD: should special case ZONE_DMA32 machines here - in those we normally 176 * don't need any ZONE_NORMAL reservation 177 */ 178 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 179 #ifdef CONFIG_ZONE_DMA 180 256, 181 #endif 182 #ifdef CONFIG_ZONE_DMA32 183 256, 184 #endif 185 #ifdef CONFIG_HIGHMEM 186 32, 187 #endif 188 32, 189 }; 190 191 EXPORT_SYMBOL(totalram_pages); 192 193 static char * const zone_names[MAX_NR_ZONES] = { 194 #ifdef CONFIG_ZONE_DMA 195 "DMA", 196 #endif 197 #ifdef CONFIG_ZONE_DMA32 198 "DMA32", 199 #endif 200 "Normal", 201 #ifdef CONFIG_HIGHMEM 202 "HighMem", 203 #endif 204 "Movable", 205 }; 206 207 int min_free_kbytes = 1024; 208 int user_min_free_kbytes = -1; 209 210 static unsigned long __meminitdata nr_kernel_pages; 211 static unsigned long __meminitdata nr_all_pages; 212 static unsigned long __meminitdata dma_reserve; 213 214 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 215 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 216 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 217 static unsigned long __initdata required_kernelcore; 218 static unsigned long __initdata required_movablecore; 219 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 220 221 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 222 int movable_zone; 223 EXPORT_SYMBOL(movable_zone); 224 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 225 226 #if MAX_NUMNODES > 1 227 int nr_node_ids __read_mostly = MAX_NUMNODES; 228 int nr_online_nodes __read_mostly = 1; 229 EXPORT_SYMBOL(nr_node_ids); 230 EXPORT_SYMBOL(nr_online_nodes); 231 #endif 232 233 int page_group_by_mobility_disabled __read_mostly; 234 235 void set_pageblock_migratetype(struct page *page, int migratetype) 236 { 237 if (unlikely(page_group_by_mobility_disabled && 238 migratetype < MIGRATE_PCPTYPES)) 239 migratetype = MIGRATE_UNMOVABLE; 240 241 set_pageblock_flags_group(page, (unsigned long)migratetype, 242 PB_migrate, PB_migrate_end); 243 } 244 245 bool oom_killer_disabled __read_mostly; 246 247 #ifdef CONFIG_DEBUG_VM 248 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 249 { 250 int ret = 0; 251 unsigned seq; 252 unsigned long pfn = page_to_pfn(page); 253 unsigned long sp, start_pfn; 254 255 do { 256 seq = zone_span_seqbegin(zone); 257 start_pfn = zone->zone_start_pfn; 258 sp = zone->spanned_pages; 259 if (!zone_spans_pfn(zone, pfn)) 260 ret = 1; 261 } while (zone_span_seqretry(zone, seq)); 262 263 if (ret) 264 pr_err("page %lu outside zone [ %lu - %lu ]\n", 265 pfn, start_pfn, start_pfn + sp); 266 267 return ret; 268 } 269 270 static int page_is_consistent(struct zone *zone, struct page *page) 271 { 272 if (!pfn_valid_within(page_to_pfn(page))) 273 return 0; 274 if (zone != page_zone(page)) 275 return 0; 276 277 return 1; 278 } 279 /* 280 * Temporary debugging check for pages not lying within a given zone. 281 */ 282 static int bad_range(struct zone *zone, struct page *page) 283 { 284 if (page_outside_zone_boundaries(zone, page)) 285 return 1; 286 if (!page_is_consistent(zone, page)) 287 return 1; 288 289 return 0; 290 } 291 #else 292 static inline int bad_range(struct zone *zone, struct page *page) 293 { 294 return 0; 295 } 296 #endif 297 298 static void bad_page(struct page *page, char *reason, unsigned long bad_flags) 299 { 300 static unsigned long resume; 301 static unsigned long nr_shown; 302 static unsigned long nr_unshown; 303 304 /* Don't complain about poisoned pages */ 305 if (PageHWPoison(page)) { 306 page_mapcount_reset(page); /* remove PageBuddy */ 307 return; 308 } 309 310 /* 311 * Allow a burst of 60 reports, then keep quiet for that minute; 312 * or allow a steady drip of one report per second. 313 */ 314 if (nr_shown == 60) { 315 if (time_before(jiffies, resume)) { 316 nr_unshown++; 317 goto out; 318 } 319 if (nr_unshown) { 320 printk(KERN_ALERT 321 "BUG: Bad page state: %lu messages suppressed\n", 322 nr_unshown); 323 nr_unshown = 0; 324 } 325 nr_shown = 0; 326 } 327 if (nr_shown++ == 0) 328 resume = jiffies + 60 * HZ; 329 330 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", 331 current->comm, page_to_pfn(page)); 332 dump_page_badflags(page, reason, bad_flags); 333 334 print_modules(); 335 dump_stack(); 336 out: 337 /* Leave bad fields for debug, except PageBuddy could make trouble */ 338 page_mapcount_reset(page); /* remove PageBuddy */ 339 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 340 } 341 342 /* 343 * Higher-order pages are called "compound pages". They are structured thusly: 344 * 345 * The first PAGE_SIZE page is called the "head page". 346 * 347 * The remaining PAGE_SIZE pages are called "tail pages". 348 * 349 * All pages have PG_compound set. All tail pages have their ->first_page 350 * pointing at the head page. 351 * 352 * The first tail page's ->lru.next holds the address of the compound page's 353 * put_page() function. Its ->lru.prev holds the order of allocation. 354 * This usage means that zero-order pages may not be compound. 355 */ 356 357 static void free_compound_page(struct page *page) 358 { 359 __free_pages_ok(page, compound_order(page)); 360 } 361 362 void prep_compound_page(struct page *page, unsigned long order) 363 { 364 int i; 365 int nr_pages = 1 << order; 366 367 set_compound_page_dtor(page, free_compound_page); 368 set_compound_order(page, order); 369 __SetPageHead(page); 370 for (i = 1; i < nr_pages; i++) { 371 struct page *p = page + i; 372 __SetPageTail(p); 373 set_page_count(p, 0); 374 p->first_page = page; 375 } 376 } 377 378 /* update __split_huge_page_refcount if you change this function */ 379 static int destroy_compound_page(struct page *page, unsigned long order) 380 { 381 int i; 382 int nr_pages = 1 << order; 383 int bad = 0; 384 385 if (unlikely(compound_order(page) != order)) { 386 bad_page(page, "wrong compound order", 0); 387 bad++; 388 } 389 390 __ClearPageHead(page); 391 392 for (i = 1; i < nr_pages; i++) { 393 struct page *p = page + i; 394 395 if (unlikely(!PageTail(p))) { 396 bad_page(page, "PageTail not set", 0); 397 bad++; 398 } else if (unlikely(p->first_page != page)) { 399 bad_page(page, "first_page not consistent", 0); 400 bad++; 401 } 402 __ClearPageTail(p); 403 } 404 405 return bad; 406 } 407 408 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 409 { 410 int i; 411 412 /* 413 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 414 * and __GFP_HIGHMEM from hard or soft interrupt context. 415 */ 416 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 417 for (i = 0; i < (1 << order); i++) 418 clear_highpage(page + i); 419 } 420 421 #ifdef CONFIG_DEBUG_PAGEALLOC 422 unsigned int _debug_guardpage_minorder; 423 424 static int __init debug_guardpage_minorder_setup(char *buf) 425 { 426 unsigned long res; 427 428 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 429 printk(KERN_ERR "Bad debug_guardpage_minorder value\n"); 430 return 0; 431 } 432 _debug_guardpage_minorder = res; 433 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res); 434 return 0; 435 } 436 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup); 437 438 static inline void set_page_guard_flag(struct page *page) 439 { 440 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 441 } 442 443 static inline void clear_page_guard_flag(struct page *page) 444 { 445 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 446 } 447 #else 448 static inline void set_page_guard_flag(struct page *page) { } 449 static inline void clear_page_guard_flag(struct page *page) { } 450 #endif 451 452 static inline void set_page_order(struct page *page, int order) 453 { 454 set_page_private(page, order); 455 __SetPageBuddy(page); 456 } 457 458 static inline void rmv_page_order(struct page *page) 459 { 460 __ClearPageBuddy(page); 461 set_page_private(page, 0); 462 } 463 464 /* 465 * Locate the struct page for both the matching buddy in our 466 * pair (buddy1) and the combined O(n+1) page they form (page). 467 * 468 * 1) Any buddy B1 will have an order O twin B2 which satisfies 469 * the following equation: 470 * B2 = B1 ^ (1 << O) 471 * For example, if the starting buddy (buddy2) is #8 its order 472 * 1 buddy is #10: 473 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 474 * 475 * 2) Any buddy B will have an order O+1 parent P which 476 * satisfies the following equation: 477 * P = B & ~(1 << O) 478 * 479 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 480 */ 481 static inline unsigned long 482 __find_buddy_index(unsigned long page_idx, unsigned int order) 483 { 484 return page_idx ^ (1 << order); 485 } 486 487 /* 488 * This function checks whether a page is free && is the buddy 489 * we can do coalesce a page and its buddy if 490 * (a) the buddy is not in a hole && 491 * (b) the buddy is in the buddy system && 492 * (c) a page and its buddy have the same order && 493 * (d) a page and its buddy are in the same zone. 494 * 495 * For recording whether a page is in the buddy system, we set ->_mapcount 496 * PAGE_BUDDY_MAPCOUNT_VALUE. 497 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is 498 * serialized by zone->lock. 499 * 500 * For recording page's order, we use page_private(page). 501 */ 502 static inline int page_is_buddy(struct page *page, struct page *buddy, 503 int order) 504 { 505 if (!pfn_valid_within(page_to_pfn(buddy))) 506 return 0; 507 508 if (page_zone_id(page) != page_zone_id(buddy)) 509 return 0; 510 511 if (page_is_guard(buddy) && page_order(buddy) == order) { 512 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 513 return 1; 514 } 515 516 if (PageBuddy(buddy) && page_order(buddy) == order) { 517 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 518 return 1; 519 } 520 return 0; 521 } 522 523 /* 524 * Freeing function for a buddy system allocator. 525 * 526 * The concept of a buddy system is to maintain direct-mapped table 527 * (containing bit values) for memory blocks of various "orders". 528 * The bottom level table contains the map for the smallest allocatable 529 * units of memory (here, pages), and each level above it describes 530 * pairs of units from the levels below, hence, "buddies". 531 * At a high level, all that happens here is marking the table entry 532 * at the bottom level available, and propagating the changes upward 533 * as necessary, plus some accounting needed to play nicely with other 534 * parts of the VM system. 535 * At each level, we keep a list of pages, which are heads of continuous 536 * free pages of length of (1 << order) and marked with _mapcount 537 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page) 538 * field. 539 * So when we are allocating or freeing one, we can derive the state of the 540 * other. That is, if we allocate a small block, and both were 541 * free, the remainder of the region must be split into blocks. 542 * If a block is freed, and its buddy is also free, then this 543 * triggers coalescing into a block of larger size. 544 * 545 * -- nyc 546 */ 547 548 static inline void __free_one_page(struct page *page, 549 struct zone *zone, unsigned int order, 550 int migratetype) 551 { 552 unsigned long page_idx; 553 unsigned long combined_idx; 554 unsigned long uninitialized_var(buddy_idx); 555 struct page *buddy; 556 557 VM_BUG_ON(!zone_is_initialized(zone)); 558 559 if (unlikely(PageCompound(page))) 560 if (unlikely(destroy_compound_page(page, order))) 561 return; 562 563 VM_BUG_ON(migratetype == -1); 564 565 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 566 567 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page); 568 VM_BUG_ON_PAGE(bad_range(zone, page), page); 569 570 while (order < MAX_ORDER-1) { 571 buddy_idx = __find_buddy_index(page_idx, order); 572 buddy = page + (buddy_idx - page_idx); 573 if (!page_is_buddy(page, buddy, order)) 574 break; 575 /* 576 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 577 * merge with it and move up one order. 578 */ 579 if (page_is_guard(buddy)) { 580 clear_page_guard_flag(buddy); 581 set_page_private(page, 0); 582 __mod_zone_freepage_state(zone, 1 << order, 583 migratetype); 584 } else { 585 list_del(&buddy->lru); 586 zone->free_area[order].nr_free--; 587 rmv_page_order(buddy); 588 } 589 combined_idx = buddy_idx & page_idx; 590 page = page + (combined_idx - page_idx); 591 page_idx = combined_idx; 592 order++; 593 } 594 set_page_order(page, order); 595 596 /* 597 * If this is not the largest possible page, check if the buddy 598 * of the next-highest order is free. If it is, it's possible 599 * that pages are being freed that will coalesce soon. In case, 600 * that is happening, add the free page to the tail of the list 601 * so it's less likely to be used soon and more likely to be merged 602 * as a higher order page 603 */ 604 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { 605 struct page *higher_page, *higher_buddy; 606 combined_idx = buddy_idx & page_idx; 607 higher_page = page + (combined_idx - page_idx); 608 buddy_idx = __find_buddy_index(combined_idx, order + 1); 609 higher_buddy = higher_page + (buddy_idx - combined_idx); 610 if (page_is_buddy(higher_page, higher_buddy, order + 1)) { 611 list_add_tail(&page->lru, 612 &zone->free_area[order].free_list[migratetype]); 613 goto out; 614 } 615 } 616 617 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 618 out: 619 zone->free_area[order].nr_free++; 620 } 621 622 static inline int free_pages_check(struct page *page) 623 { 624 char *bad_reason = NULL; 625 unsigned long bad_flags = 0; 626 627 if (unlikely(page_mapcount(page))) 628 bad_reason = "nonzero mapcount"; 629 if (unlikely(page->mapping != NULL)) 630 bad_reason = "non-NULL mapping"; 631 if (unlikely(atomic_read(&page->_count) != 0)) 632 bad_reason = "nonzero _count"; 633 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { 634 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 635 bad_flags = PAGE_FLAGS_CHECK_AT_FREE; 636 } 637 if (unlikely(mem_cgroup_bad_page_check(page))) 638 bad_reason = "cgroup check failed"; 639 if (unlikely(bad_reason)) { 640 bad_page(page, bad_reason, bad_flags); 641 return 1; 642 } 643 page_cpupid_reset_last(page); 644 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 645 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 646 return 0; 647 } 648 649 /* 650 * Frees a number of pages from the PCP lists 651 * Assumes all pages on list are in same zone, and of same order. 652 * count is the number of pages to free. 653 * 654 * If the zone was previously in an "all pages pinned" state then look to 655 * see if this freeing clears that state. 656 * 657 * And clear the zone's pages_scanned counter, to hold off the "all pages are 658 * pinned" detection logic. 659 */ 660 static void free_pcppages_bulk(struct zone *zone, int count, 661 struct per_cpu_pages *pcp) 662 { 663 int migratetype = 0; 664 int batch_free = 0; 665 int to_free = count; 666 667 spin_lock(&zone->lock); 668 zone->pages_scanned = 0; 669 670 while (to_free) { 671 struct page *page; 672 struct list_head *list; 673 674 /* 675 * Remove pages from lists in a round-robin fashion. A 676 * batch_free count is maintained that is incremented when an 677 * empty list is encountered. This is so more pages are freed 678 * off fuller lists instead of spinning excessively around empty 679 * lists 680 */ 681 do { 682 batch_free++; 683 if (++migratetype == MIGRATE_PCPTYPES) 684 migratetype = 0; 685 list = &pcp->lists[migratetype]; 686 } while (list_empty(list)); 687 688 /* This is the only non-empty list. Free them all. */ 689 if (batch_free == MIGRATE_PCPTYPES) 690 batch_free = to_free; 691 692 do { 693 int mt; /* migratetype of the to-be-freed page */ 694 695 page = list_entry(list->prev, struct page, lru); 696 /* must delete as __free_one_page list manipulates */ 697 list_del(&page->lru); 698 mt = get_freepage_migratetype(page); 699 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ 700 __free_one_page(page, zone, 0, mt); 701 trace_mm_page_pcpu_drain(page, 0, mt); 702 if (likely(!is_migrate_isolate_page(page))) { 703 __mod_zone_page_state(zone, NR_FREE_PAGES, 1); 704 if (is_migrate_cma(mt)) 705 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1); 706 } 707 } while (--to_free && --batch_free && !list_empty(list)); 708 } 709 spin_unlock(&zone->lock); 710 } 711 712 static void free_one_page(struct zone *zone, struct page *page, int order, 713 int migratetype) 714 { 715 spin_lock(&zone->lock); 716 zone->pages_scanned = 0; 717 718 __free_one_page(page, zone, order, migratetype); 719 if (unlikely(!is_migrate_isolate(migratetype))) 720 __mod_zone_freepage_state(zone, 1 << order, migratetype); 721 spin_unlock(&zone->lock); 722 } 723 724 static bool free_pages_prepare(struct page *page, unsigned int order) 725 { 726 int i; 727 int bad = 0; 728 729 trace_mm_page_free(page, order); 730 kmemcheck_free_shadow(page, order); 731 732 if (PageAnon(page)) 733 page->mapping = NULL; 734 for (i = 0; i < (1 << order); i++) 735 bad += free_pages_check(page + i); 736 if (bad) 737 return false; 738 739 if (!PageHighMem(page)) { 740 debug_check_no_locks_freed(page_address(page), 741 PAGE_SIZE << order); 742 debug_check_no_obj_freed(page_address(page), 743 PAGE_SIZE << order); 744 } 745 arch_free_page(page, order); 746 kernel_map_pages(page, 1 << order, 0); 747 748 return true; 749 } 750 751 static void __free_pages_ok(struct page *page, unsigned int order) 752 { 753 unsigned long flags; 754 int migratetype; 755 756 if (!free_pages_prepare(page, order)) 757 return; 758 759 local_irq_save(flags); 760 __count_vm_events(PGFREE, 1 << order); 761 migratetype = get_pageblock_migratetype(page); 762 set_freepage_migratetype(page, migratetype); 763 free_one_page(page_zone(page), page, order, migratetype); 764 local_irq_restore(flags); 765 } 766 767 void __init __free_pages_bootmem(struct page *page, unsigned int order) 768 { 769 unsigned int nr_pages = 1 << order; 770 struct page *p = page; 771 unsigned int loop; 772 773 prefetchw(p); 774 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 775 prefetchw(p + 1); 776 __ClearPageReserved(p); 777 set_page_count(p, 0); 778 } 779 __ClearPageReserved(p); 780 set_page_count(p, 0); 781 782 page_zone(page)->managed_pages += nr_pages; 783 set_page_refcounted(page); 784 __free_pages(page, order); 785 } 786 787 #ifdef CONFIG_CMA 788 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 789 void __init init_cma_reserved_pageblock(struct page *page) 790 { 791 unsigned i = pageblock_nr_pages; 792 struct page *p = page; 793 794 do { 795 __ClearPageReserved(p); 796 set_page_count(p, 0); 797 } while (++p, --i); 798 799 set_page_refcounted(page); 800 set_pageblock_migratetype(page, MIGRATE_CMA); 801 __free_pages(page, pageblock_order); 802 adjust_managed_page_count(page, pageblock_nr_pages); 803 } 804 #endif 805 806 /* 807 * The order of subdivision here is critical for the IO subsystem. 808 * Please do not alter this order without good reasons and regression 809 * testing. Specifically, as large blocks of memory are subdivided, 810 * the order in which smaller blocks are delivered depends on the order 811 * they're subdivided in this function. This is the primary factor 812 * influencing the order in which pages are delivered to the IO 813 * subsystem according to empirical testing, and this is also justified 814 * by considering the behavior of a buddy system containing a single 815 * large block of memory acted on by a series of small allocations. 816 * This behavior is a critical factor in sglist merging's success. 817 * 818 * -- nyc 819 */ 820 static inline void expand(struct zone *zone, struct page *page, 821 int low, int high, struct free_area *area, 822 int migratetype) 823 { 824 unsigned long size = 1 << high; 825 826 while (high > low) { 827 area--; 828 high--; 829 size >>= 1; 830 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 831 832 #ifdef CONFIG_DEBUG_PAGEALLOC 833 if (high < debug_guardpage_minorder()) { 834 /* 835 * Mark as guard pages (or page), that will allow to 836 * merge back to allocator when buddy will be freed. 837 * Corresponding page table entries will not be touched, 838 * pages will stay not present in virtual address space 839 */ 840 INIT_LIST_HEAD(&page[size].lru); 841 set_page_guard_flag(&page[size]); 842 set_page_private(&page[size], high); 843 /* Guard pages are not available for any usage */ 844 __mod_zone_freepage_state(zone, -(1 << high), 845 migratetype); 846 continue; 847 } 848 #endif 849 list_add(&page[size].lru, &area->free_list[migratetype]); 850 area->nr_free++; 851 set_page_order(&page[size], high); 852 } 853 } 854 855 /* 856 * This page is about to be returned from the page allocator 857 */ 858 static inline int check_new_page(struct page *page) 859 { 860 char *bad_reason = NULL; 861 unsigned long bad_flags = 0; 862 863 if (unlikely(page_mapcount(page))) 864 bad_reason = "nonzero mapcount"; 865 if (unlikely(page->mapping != NULL)) 866 bad_reason = "non-NULL mapping"; 867 if (unlikely(atomic_read(&page->_count) != 0)) 868 bad_reason = "nonzero _count"; 869 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { 870 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; 871 bad_flags = PAGE_FLAGS_CHECK_AT_PREP; 872 } 873 if (unlikely(mem_cgroup_bad_page_check(page))) 874 bad_reason = "cgroup check failed"; 875 if (unlikely(bad_reason)) { 876 bad_page(page, bad_reason, bad_flags); 877 return 1; 878 } 879 return 0; 880 } 881 882 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 883 { 884 int i; 885 886 for (i = 0; i < (1 << order); i++) { 887 struct page *p = page + i; 888 if (unlikely(check_new_page(p))) 889 return 1; 890 } 891 892 set_page_private(page, 0); 893 set_page_refcounted(page); 894 895 arch_alloc_page(page, order); 896 kernel_map_pages(page, 1 << order, 1); 897 898 if (gfp_flags & __GFP_ZERO) 899 prep_zero_page(page, order, gfp_flags); 900 901 if (order && (gfp_flags & __GFP_COMP)) 902 prep_compound_page(page, order); 903 904 return 0; 905 } 906 907 /* 908 * Go through the free lists for the given migratetype and remove 909 * the smallest available page from the freelists 910 */ 911 static inline 912 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 913 int migratetype) 914 { 915 unsigned int current_order; 916 struct free_area *area; 917 struct page *page; 918 919 /* Find a page of the appropriate size in the preferred list */ 920 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 921 area = &(zone->free_area[current_order]); 922 if (list_empty(&area->free_list[migratetype])) 923 continue; 924 925 page = list_entry(area->free_list[migratetype].next, 926 struct page, lru); 927 list_del(&page->lru); 928 rmv_page_order(page); 929 area->nr_free--; 930 expand(zone, page, order, current_order, area, migratetype); 931 return page; 932 } 933 934 return NULL; 935 } 936 937 938 /* 939 * This array describes the order lists are fallen back to when 940 * the free lists for the desirable migrate type are depleted 941 */ 942 static int fallbacks[MIGRATE_TYPES][4] = { 943 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 944 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 945 #ifdef CONFIG_CMA 946 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 947 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */ 948 #else 949 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 950 #endif 951 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */ 952 #ifdef CONFIG_MEMORY_ISOLATION 953 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */ 954 #endif 955 }; 956 957 /* 958 * Move the free pages in a range to the free lists of the requested type. 959 * Note that start_page and end_pages are not aligned on a pageblock 960 * boundary. If alignment is required, use move_freepages_block() 961 */ 962 int move_freepages(struct zone *zone, 963 struct page *start_page, struct page *end_page, 964 int migratetype) 965 { 966 struct page *page; 967 unsigned long order; 968 int pages_moved = 0; 969 970 #ifndef CONFIG_HOLES_IN_ZONE 971 /* 972 * page_zone is not safe to call in this context when 973 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 974 * anyway as we check zone boundaries in move_freepages_block(). 975 * Remove at a later date when no bug reports exist related to 976 * grouping pages by mobility 977 */ 978 BUG_ON(page_zone(start_page) != page_zone(end_page)); 979 #endif 980 981 for (page = start_page; page <= end_page;) { 982 /* Make sure we are not inadvertently changing nodes */ 983 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 984 985 if (!pfn_valid_within(page_to_pfn(page))) { 986 page++; 987 continue; 988 } 989 990 if (!PageBuddy(page)) { 991 page++; 992 continue; 993 } 994 995 order = page_order(page); 996 list_move(&page->lru, 997 &zone->free_area[order].free_list[migratetype]); 998 set_freepage_migratetype(page, migratetype); 999 page += 1 << order; 1000 pages_moved += 1 << order; 1001 } 1002 1003 return pages_moved; 1004 } 1005 1006 int move_freepages_block(struct zone *zone, struct page *page, 1007 int migratetype) 1008 { 1009 unsigned long start_pfn, end_pfn; 1010 struct page *start_page, *end_page; 1011 1012 start_pfn = page_to_pfn(page); 1013 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 1014 start_page = pfn_to_page(start_pfn); 1015 end_page = start_page + pageblock_nr_pages - 1; 1016 end_pfn = start_pfn + pageblock_nr_pages - 1; 1017 1018 /* Do not cross zone boundaries */ 1019 if (!zone_spans_pfn(zone, start_pfn)) 1020 start_page = page; 1021 if (!zone_spans_pfn(zone, end_pfn)) 1022 return 0; 1023 1024 return move_freepages(zone, start_page, end_page, migratetype); 1025 } 1026 1027 static void change_pageblock_range(struct page *pageblock_page, 1028 int start_order, int migratetype) 1029 { 1030 int nr_pageblocks = 1 << (start_order - pageblock_order); 1031 1032 while (nr_pageblocks--) { 1033 set_pageblock_migratetype(pageblock_page, migratetype); 1034 pageblock_page += pageblock_nr_pages; 1035 } 1036 } 1037 1038 /* 1039 * If breaking a large block of pages, move all free pages to the preferred 1040 * allocation list. If falling back for a reclaimable kernel allocation, be 1041 * more aggressive about taking ownership of free pages. 1042 * 1043 * On the other hand, never change migration type of MIGRATE_CMA pageblocks 1044 * nor move CMA pages to different free lists. We don't want unmovable pages 1045 * to be allocated from MIGRATE_CMA areas. 1046 * 1047 * Returns the new migratetype of the pageblock (or the same old migratetype 1048 * if it was unchanged). 1049 */ 1050 static int try_to_steal_freepages(struct zone *zone, struct page *page, 1051 int start_type, int fallback_type) 1052 { 1053 int current_order = page_order(page); 1054 1055 /* 1056 * When borrowing from MIGRATE_CMA, we need to release the excess 1057 * buddy pages to CMA itself. 1058 */ 1059 if (is_migrate_cma(fallback_type)) 1060 return fallback_type; 1061 1062 /* Take ownership for orders >= pageblock_order */ 1063 if (current_order >= pageblock_order) { 1064 change_pageblock_range(page, current_order, start_type); 1065 return start_type; 1066 } 1067 1068 if (current_order >= pageblock_order / 2 || 1069 start_type == MIGRATE_RECLAIMABLE || 1070 page_group_by_mobility_disabled) { 1071 int pages; 1072 1073 pages = move_freepages_block(zone, page, start_type); 1074 1075 /* Claim the whole block if over half of it is free */ 1076 if (pages >= (1 << (pageblock_order-1)) || 1077 page_group_by_mobility_disabled) { 1078 1079 set_pageblock_migratetype(page, start_type); 1080 return start_type; 1081 } 1082 1083 } 1084 1085 return fallback_type; 1086 } 1087 1088 /* Remove an element from the buddy allocator from the fallback list */ 1089 static inline struct page * 1090 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) 1091 { 1092 struct free_area *area; 1093 int current_order; 1094 struct page *page; 1095 int migratetype, new_type, i; 1096 1097 /* Find the largest possible block of pages in the other list */ 1098 for (current_order = MAX_ORDER-1; current_order >= order; 1099 --current_order) { 1100 for (i = 0;; i++) { 1101 migratetype = fallbacks[start_migratetype][i]; 1102 1103 /* MIGRATE_RESERVE handled later if necessary */ 1104 if (migratetype == MIGRATE_RESERVE) 1105 break; 1106 1107 area = &(zone->free_area[current_order]); 1108 if (list_empty(&area->free_list[migratetype])) 1109 continue; 1110 1111 page = list_entry(area->free_list[migratetype].next, 1112 struct page, lru); 1113 area->nr_free--; 1114 1115 new_type = try_to_steal_freepages(zone, page, 1116 start_migratetype, 1117 migratetype); 1118 1119 /* Remove the page from the freelists */ 1120 list_del(&page->lru); 1121 rmv_page_order(page); 1122 1123 expand(zone, page, order, current_order, area, 1124 new_type); 1125 1126 trace_mm_page_alloc_extfrag(page, order, current_order, 1127 start_migratetype, migratetype, new_type); 1128 1129 return page; 1130 } 1131 } 1132 1133 return NULL; 1134 } 1135 1136 /* 1137 * Do the hard work of removing an element from the buddy allocator. 1138 * Call me with the zone->lock already held. 1139 */ 1140 static struct page *__rmqueue(struct zone *zone, unsigned int order, 1141 int migratetype) 1142 { 1143 struct page *page; 1144 1145 retry_reserve: 1146 page = __rmqueue_smallest(zone, order, migratetype); 1147 1148 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { 1149 page = __rmqueue_fallback(zone, order, migratetype); 1150 1151 /* 1152 * Use MIGRATE_RESERVE rather than fail an allocation. goto 1153 * is used because __rmqueue_smallest is an inline function 1154 * and we want just one call site 1155 */ 1156 if (!page) { 1157 migratetype = MIGRATE_RESERVE; 1158 goto retry_reserve; 1159 } 1160 } 1161 1162 trace_mm_page_alloc_zone_locked(page, order, migratetype); 1163 return page; 1164 } 1165 1166 /* 1167 * Obtain a specified number of elements from the buddy allocator, all under 1168 * a single hold of the lock, for efficiency. Add them to the supplied list. 1169 * Returns the number of new pages which were placed at *list. 1170 */ 1171 static int rmqueue_bulk(struct zone *zone, unsigned int order, 1172 unsigned long count, struct list_head *list, 1173 int migratetype, int cold) 1174 { 1175 int mt = migratetype, i; 1176 1177 spin_lock(&zone->lock); 1178 for (i = 0; i < count; ++i) { 1179 struct page *page = __rmqueue(zone, order, migratetype); 1180 if (unlikely(page == NULL)) 1181 break; 1182 1183 /* 1184 * Split buddy pages returned by expand() are received here 1185 * in physical page order. The page is added to the callers and 1186 * list and the list head then moves forward. From the callers 1187 * perspective, the linked list is ordered by page number in 1188 * some conditions. This is useful for IO devices that can 1189 * merge IO requests if the physical pages are ordered 1190 * properly. 1191 */ 1192 if (likely(cold == 0)) 1193 list_add(&page->lru, list); 1194 else 1195 list_add_tail(&page->lru, list); 1196 if (IS_ENABLED(CONFIG_CMA)) { 1197 mt = get_pageblock_migratetype(page); 1198 if (!is_migrate_cma(mt) && !is_migrate_isolate(mt)) 1199 mt = migratetype; 1200 } 1201 set_freepage_migratetype(page, mt); 1202 list = &page->lru; 1203 if (is_migrate_cma(mt)) 1204 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1205 -(1 << order)); 1206 } 1207 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 1208 spin_unlock(&zone->lock); 1209 return i; 1210 } 1211 1212 #ifdef CONFIG_NUMA 1213 /* 1214 * Called from the vmstat counter updater to drain pagesets of this 1215 * currently executing processor on remote nodes after they have 1216 * expired. 1217 * 1218 * Note that this function must be called with the thread pinned to 1219 * a single processor. 1220 */ 1221 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 1222 { 1223 unsigned long flags; 1224 int to_drain; 1225 unsigned long batch; 1226 1227 local_irq_save(flags); 1228 batch = ACCESS_ONCE(pcp->batch); 1229 if (pcp->count >= batch) 1230 to_drain = batch; 1231 else 1232 to_drain = pcp->count; 1233 if (to_drain > 0) { 1234 free_pcppages_bulk(zone, to_drain, pcp); 1235 pcp->count -= to_drain; 1236 } 1237 local_irq_restore(flags); 1238 } 1239 #endif 1240 1241 /* 1242 * Drain pages of the indicated processor. 1243 * 1244 * The processor must either be the current processor and the 1245 * thread pinned to the current processor or a processor that 1246 * is not online. 1247 */ 1248 static void drain_pages(unsigned int cpu) 1249 { 1250 unsigned long flags; 1251 struct zone *zone; 1252 1253 for_each_populated_zone(zone) { 1254 struct per_cpu_pageset *pset; 1255 struct per_cpu_pages *pcp; 1256 1257 local_irq_save(flags); 1258 pset = per_cpu_ptr(zone->pageset, cpu); 1259 1260 pcp = &pset->pcp; 1261 if (pcp->count) { 1262 free_pcppages_bulk(zone, pcp->count, pcp); 1263 pcp->count = 0; 1264 } 1265 local_irq_restore(flags); 1266 } 1267 } 1268 1269 /* 1270 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 1271 */ 1272 void drain_local_pages(void *arg) 1273 { 1274 drain_pages(smp_processor_id()); 1275 } 1276 1277 /* 1278 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 1279 * 1280 * Note that this code is protected against sending an IPI to an offline 1281 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs: 1282 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but 1283 * nothing keeps CPUs from showing up after we populated the cpumask and 1284 * before the call to on_each_cpu_mask(). 1285 */ 1286 void drain_all_pages(void) 1287 { 1288 int cpu; 1289 struct per_cpu_pageset *pcp; 1290 struct zone *zone; 1291 1292 /* 1293 * Allocate in the BSS so we wont require allocation in 1294 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 1295 */ 1296 static cpumask_t cpus_with_pcps; 1297 1298 /* 1299 * We don't care about racing with CPU hotplug event 1300 * as offline notification will cause the notified 1301 * cpu to drain that CPU pcps and on_each_cpu_mask 1302 * disables preemption as part of its processing 1303 */ 1304 for_each_online_cpu(cpu) { 1305 bool has_pcps = false; 1306 for_each_populated_zone(zone) { 1307 pcp = per_cpu_ptr(zone->pageset, cpu); 1308 if (pcp->pcp.count) { 1309 has_pcps = true; 1310 break; 1311 } 1312 } 1313 if (has_pcps) 1314 cpumask_set_cpu(cpu, &cpus_with_pcps); 1315 else 1316 cpumask_clear_cpu(cpu, &cpus_with_pcps); 1317 } 1318 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1); 1319 } 1320 1321 #ifdef CONFIG_HIBERNATION 1322 1323 void mark_free_pages(struct zone *zone) 1324 { 1325 unsigned long pfn, max_zone_pfn; 1326 unsigned long flags; 1327 int order, t; 1328 struct list_head *curr; 1329 1330 if (zone_is_empty(zone)) 1331 return; 1332 1333 spin_lock_irqsave(&zone->lock, flags); 1334 1335 max_zone_pfn = zone_end_pfn(zone); 1336 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1337 if (pfn_valid(pfn)) { 1338 struct page *page = pfn_to_page(pfn); 1339 1340 if (!swsusp_page_is_forbidden(page)) 1341 swsusp_unset_page_free(page); 1342 } 1343 1344 for_each_migratetype_order(order, t) { 1345 list_for_each(curr, &zone->free_area[order].free_list[t]) { 1346 unsigned long i; 1347 1348 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 1349 for (i = 0; i < (1UL << order); i++) 1350 swsusp_set_page_free(pfn_to_page(pfn + i)); 1351 } 1352 } 1353 spin_unlock_irqrestore(&zone->lock, flags); 1354 } 1355 #endif /* CONFIG_PM */ 1356 1357 /* 1358 * Free a 0-order page 1359 * cold == 1 ? free a cold page : free a hot page 1360 */ 1361 void free_hot_cold_page(struct page *page, int cold) 1362 { 1363 struct zone *zone = page_zone(page); 1364 struct per_cpu_pages *pcp; 1365 unsigned long flags; 1366 int migratetype; 1367 1368 if (!free_pages_prepare(page, 0)) 1369 return; 1370 1371 migratetype = get_pageblock_migratetype(page); 1372 set_freepage_migratetype(page, migratetype); 1373 local_irq_save(flags); 1374 __count_vm_event(PGFREE); 1375 1376 /* 1377 * We only track unmovable, reclaimable and movable on pcp lists. 1378 * Free ISOLATE pages back to the allocator because they are being 1379 * offlined but treat RESERVE as movable pages so we can get those 1380 * areas back if necessary. Otherwise, we may have to free 1381 * excessively into the page allocator 1382 */ 1383 if (migratetype >= MIGRATE_PCPTYPES) { 1384 if (unlikely(is_migrate_isolate(migratetype))) { 1385 free_one_page(zone, page, 0, migratetype); 1386 goto out; 1387 } 1388 migratetype = MIGRATE_MOVABLE; 1389 } 1390 1391 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1392 if (cold) 1393 list_add_tail(&page->lru, &pcp->lists[migratetype]); 1394 else 1395 list_add(&page->lru, &pcp->lists[migratetype]); 1396 pcp->count++; 1397 if (pcp->count >= pcp->high) { 1398 unsigned long batch = ACCESS_ONCE(pcp->batch); 1399 free_pcppages_bulk(zone, batch, pcp); 1400 pcp->count -= batch; 1401 } 1402 1403 out: 1404 local_irq_restore(flags); 1405 } 1406 1407 /* 1408 * Free a list of 0-order pages 1409 */ 1410 void free_hot_cold_page_list(struct list_head *list, int cold) 1411 { 1412 struct page *page, *next; 1413 1414 list_for_each_entry_safe(page, next, list, lru) { 1415 trace_mm_page_free_batched(page, cold); 1416 free_hot_cold_page(page, cold); 1417 } 1418 } 1419 1420 /* 1421 * split_page takes a non-compound higher-order page, and splits it into 1422 * n (1<<order) sub-pages: page[0..n] 1423 * Each sub-page must be freed individually. 1424 * 1425 * Note: this is probably too low level an operation for use in drivers. 1426 * Please consult with lkml before using this in your driver. 1427 */ 1428 void split_page(struct page *page, unsigned int order) 1429 { 1430 int i; 1431 1432 VM_BUG_ON_PAGE(PageCompound(page), page); 1433 VM_BUG_ON_PAGE(!page_count(page), page); 1434 1435 #ifdef CONFIG_KMEMCHECK 1436 /* 1437 * Split shadow pages too, because free(page[0]) would 1438 * otherwise free the whole shadow. 1439 */ 1440 if (kmemcheck_page_is_tracked(page)) 1441 split_page(virt_to_page(page[0].shadow), order); 1442 #endif 1443 1444 for (i = 1; i < (1 << order); i++) 1445 set_page_refcounted(page + i); 1446 } 1447 EXPORT_SYMBOL_GPL(split_page); 1448 1449 static int __isolate_free_page(struct page *page, unsigned int order) 1450 { 1451 unsigned long watermark; 1452 struct zone *zone; 1453 int mt; 1454 1455 BUG_ON(!PageBuddy(page)); 1456 1457 zone = page_zone(page); 1458 mt = get_pageblock_migratetype(page); 1459 1460 if (!is_migrate_isolate(mt)) { 1461 /* Obey watermarks as if the page was being allocated */ 1462 watermark = low_wmark_pages(zone) + (1 << order); 1463 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 1464 return 0; 1465 1466 __mod_zone_freepage_state(zone, -(1UL << order), mt); 1467 } 1468 1469 /* Remove page from free list */ 1470 list_del(&page->lru); 1471 zone->free_area[order].nr_free--; 1472 rmv_page_order(page); 1473 1474 /* Set the pageblock if the isolated page is at least a pageblock */ 1475 if (order >= pageblock_order - 1) { 1476 struct page *endpage = page + (1 << order) - 1; 1477 for (; page < endpage; page += pageblock_nr_pages) { 1478 int mt = get_pageblock_migratetype(page); 1479 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)) 1480 set_pageblock_migratetype(page, 1481 MIGRATE_MOVABLE); 1482 } 1483 } 1484 1485 return 1UL << order; 1486 } 1487 1488 /* 1489 * Similar to split_page except the page is already free. As this is only 1490 * being used for migration, the migratetype of the block also changes. 1491 * As this is called with interrupts disabled, the caller is responsible 1492 * for calling arch_alloc_page() and kernel_map_page() after interrupts 1493 * are enabled. 1494 * 1495 * Note: this is probably too low level an operation for use in drivers. 1496 * Please consult with lkml before using this in your driver. 1497 */ 1498 int split_free_page(struct page *page) 1499 { 1500 unsigned int order; 1501 int nr_pages; 1502 1503 order = page_order(page); 1504 1505 nr_pages = __isolate_free_page(page, order); 1506 if (!nr_pages) 1507 return 0; 1508 1509 /* Split into individual pages */ 1510 set_page_refcounted(page); 1511 split_page(page, order); 1512 return nr_pages; 1513 } 1514 1515 /* 1516 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 1517 * we cheat by calling it from here, in the order > 0 path. Saves a branch 1518 * or two. 1519 */ 1520 static inline 1521 struct page *buffered_rmqueue(struct zone *preferred_zone, 1522 struct zone *zone, int order, gfp_t gfp_flags, 1523 int migratetype) 1524 { 1525 unsigned long flags; 1526 struct page *page; 1527 int cold = !!(gfp_flags & __GFP_COLD); 1528 1529 again: 1530 if (likely(order == 0)) { 1531 struct per_cpu_pages *pcp; 1532 struct list_head *list; 1533 1534 local_irq_save(flags); 1535 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1536 list = &pcp->lists[migratetype]; 1537 if (list_empty(list)) { 1538 pcp->count += rmqueue_bulk(zone, 0, 1539 pcp->batch, list, 1540 migratetype, cold); 1541 if (unlikely(list_empty(list))) 1542 goto failed; 1543 } 1544 1545 if (cold) 1546 page = list_entry(list->prev, struct page, lru); 1547 else 1548 page = list_entry(list->next, struct page, lru); 1549 1550 list_del(&page->lru); 1551 pcp->count--; 1552 } else { 1553 if (unlikely(gfp_flags & __GFP_NOFAIL)) { 1554 /* 1555 * __GFP_NOFAIL is not to be used in new code. 1556 * 1557 * All __GFP_NOFAIL callers should be fixed so that they 1558 * properly detect and handle allocation failures. 1559 * 1560 * We most definitely don't want callers attempting to 1561 * allocate greater than order-1 page units with 1562 * __GFP_NOFAIL. 1563 */ 1564 WARN_ON_ONCE(order > 1); 1565 } 1566 spin_lock_irqsave(&zone->lock, flags); 1567 page = __rmqueue(zone, order, migratetype); 1568 spin_unlock(&zone->lock); 1569 if (!page) 1570 goto failed; 1571 __mod_zone_freepage_state(zone, -(1 << order), 1572 get_pageblock_migratetype(page)); 1573 } 1574 1575 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order)); 1576 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1577 zone_statistics(preferred_zone, zone, gfp_flags); 1578 local_irq_restore(flags); 1579 1580 VM_BUG_ON_PAGE(bad_range(zone, page), page); 1581 if (prep_new_page(page, order, gfp_flags)) 1582 goto again; 1583 return page; 1584 1585 failed: 1586 local_irq_restore(flags); 1587 return NULL; 1588 } 1589 1590 #ifdef CONFIG_FAIL_PAGE_ALLOC 1591 1592 static struct { 1593 struct fault_attr attr; 1594 1595 u32 ignore_gfp_highmem; 1596 u32 ignore_gfp_wait; 1597 u32 min_order; 1598 } fail_page_alloc = { 1599 .attr = FAULT_ATTR_INITIALIZER, 1600 .ignore_gfp_wait = 1, 1601 .ignore_gfp_highmem = 1, 1602 .min_order = 1, 1603 }; 1604 1605 static int __init setup_fail_page_alloc(char *str) 1606 { 1607 return setup_fault_attr(&fail_page_alloc.attr, str); 1608 } 1609 __setup("fail_page_alloc=", setup_fail_page_alloc); 1610 1611 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1612 { 1613 if (order < fail_page_alloc.min_order) 1614 return false; 1615 if (gfp_mask & __GFP_NOFAIL) 1616 return false; 1617 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1618 return false; 1619 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1620 return false; 1621 1622 return should_fail(&fail_page_alloc.attr, 1 << order); 1623 } 1624 1625 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1626 1627 static int __init fail_page_alloc_debugfs(void) 1628 { 1629 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1630 struct dentry *dir; 1631 1632 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 1633 &fail_page_alloc.attr); 1634 if (IS_ERR(dir)) 1635 return PTR_ERR(dir); 1636 1637 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 1638 &fail_page_alloc.ignore_gfp_wait)) 1639 goto fail; 1640 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1641 &fail_page_alloc.ignore_gfp_highmem)) 1642 goto fail; 1643 if (!debugfs_create_u32("min-order", mode, dir, 1644 &fail_page_alloc.min_order)) 1645 goto fail; 1646 1647 return 0; 1648 fail: 1649 debugfs_remove_recursive(dir); 1650 1651 return -ENOMEM; 1652 } 1653 1654 late_initcall(fail_page_alloc_debugfs); 1655 1656 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1657 1658 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1659 1660 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1661 { 1662 return false; 1663 } 1664 1665 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1666 1667 /* 1668 * Return true if free pages are above 'mark'. This takes into account the order 1669 * of the allocation. 1670 */ 1671 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1672 int classzone_idx, int alloc_flags, long free_pages) 1673 { 1674 /* free_pages my go negative - that's OK */ 1675 long min = mark; 1676 long lowmem_reserve = z->lowmem_reserve[classzone_idx]; 1677 int o; 1678 long free_cma = 0; 1679 1680 free_pages -= (1 << order) - 1; 1681 if (alloc_flags & ALLOC_HIGH) 1682 min -= min / 2; 1683 if (alloc_flags & ALLOC_HARDER) 1684 min -= min / 4; 1685 #ifdef CONFIG_CMA 1686 /* If allocation can't use CMA areas don't use free CMA pages */ 1687 if (!(alloc_flags & ALLOC_CMA)) 1688 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES); 1689 #endif 1690 1691 if (free_pages - free_cma <= min + lowmem_reserve) 1692 return false; 1693 for (o = 0; o < order; o++) { 1694 /* At the next order, this order's pages become unavailable */ 1695 free_pages -= z->free_area[o].nr_free << o; 1696 1697 /* Require fewer higher order pages to be free */ 1698 min >>= 1; 1699 1700 if (free_pages <= min) 1701 return false; 1702 } 1703 return true; 1704 } 1705 1706 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1707 int classzone_idx, int alloc_flags) 1708 { 1709 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1710 zone_page_state(z, NR_FREE_PAGES)); 1711 } 1712 1713 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark, 1714 int classzone_idx, int alloc_flags) 1715 { 1716 long free_pages = zone_page_state(z, NR_FREE_PAGES); 1717 1718 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 1719 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 1720 1721 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1722 free_pages); 1723 } 1724 1725 #ifdef CONFIG_NUMA 1726 /* 1727 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1728 * skip over zones that are not allowed by the cpuset, or that have 1729 * been recently (in last second) found to be nearly full. See further 1730 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1731 * that have to skip over a lot of full or unallowed zones. 1732 * 1733 * If the zonelist cache is present in the passed zonelist, then 1734 * returns a pointer to the allowed node mask (either the current 1735 * tasks mems_allowed, or node_states[N_MEMORY].) 1736 * 1737 * If the zonelist cache is not available for this zonelist, does 1738 * nothing and returns NULL. 1739 * 1740 * If the fullzones BITMAP in the zonelist cache is stale (more than 1741 * a second since last zap'd) then we zap it out (clear its bits.) 1742 * 1743 * We hold off even calling zlc_setup, until after we've checked the 1744 * first zone in the zonelist, on the theory that most allocations will 1745 * be satisfied from that first zone, so best to examine that zone as 1746 * quickly as we can. 1747 */ 1748 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1749 { 1750 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1751 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1752 1753 zlc = zonelist->zlcache_ptr; 1754 if (!zlc) 1755 return NULL; 1756 1757 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1758 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1759 zlc->last_full_zap = jiffies; 1760 } 1761 1762 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1763 &cpuset_current_mems_allowed : 1764 &node_states[N_MEMORY]; 1765 return allowednodes; 1766 } 1767 1768 /* 1769 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1770 * if it is worth looking at further for free memory: 1771 * 1) Check that the zone isn't thought to be full (doesn't have its 1772 * bit set in the zonelist_cache fullzones BITMAP). 1773 * 2) Check that the zones node (obtained from the zonelist_cache 1774 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1775 * Return true (non-zero) if zone is worth looking at further, or 1776 * else return false (zero) if it is not. 1777 * 1778 * This check -ignores- the distinction between various watermarks, 1779 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1780 * found to be full for any variation of these watermarks, it will 1781 * be considered full for up to one second by all requests, unless 1782 * we are so low on memory on all allowed nodes that we are forced 1783 * into the second scan of the zonelist. 1784 * 1785 * In the second scan we ignore this zonelist cache and exactly 1786 * apply the watermarks to all zones, even it is slower to do so. 1787 * We are low on memory in the second scan, and should leave no stone 1788 * unturned looking for a free page. 1789 */ 1790 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1791 nodemask_t *allowednodes) 1792 { 1793 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1794 int i; /* index of *z in zonelist zones */ 1795 int n; /* node that zone *z is on */ 1796 1797 zlc = zonelist->zlcache_ptr; 1798 if (!zlc) 1799 return 1; 1800 1801 i = z - zonelist->_zonerefs; 1802 n = zlc->z_to_n[i]; 1803 1804 /* This zone is worth trying if it is allowed but not full */ 1805 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1806 } 1807 1808 /* 1809 * Given 'z' scanning a zonelist, set the corresponding bit in 1810 * zlc->fullzones, so that subsequent attempts to allocate a page 1811 * from that zone don't waste time re-examining it. 1812 */ 1813 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1814 { 1815 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1816 int i; /* index of *z in zonelist zones */ 1817 1818 zlc = zonelist->zlcache_ptr; 1819 if (!zlc) 1820 return; 1821 1822 i = z - zonelist->_zonerefs; 1823 1824 set_bit(i, zlc->fullzones); 1825 } 1826 1827 /* 1828 * clear all zones full, called after direct reclaim makes progress so that 1829 * a zone that was recently full is not skipped over for up to a second 1830 */ 1831 static void zlc_clear_zones_full(struct zonelist *zonelist) 1832 { 1833 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1834 1835 zlc = zonelist->zlcache_ptr; 1836 if (!zlc) 1837 return; 1838 1839 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1840 } 1841 1842 static bool zone_local(struct zone *local_zone, struct zone *zone) 1843 { 1844 return local_zone->node == zone->node; 1845 } 1846 1847 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 1848 { 1849 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes); 1850 } 1851 1852 static void __paginginit init_zone_allows_reclaim(int nid) 1853 { 1854 int i; 1855 1856 for_each_online_node(i) 1857 if (node_distance(nid, i) <= RECLAIM_DISTANCE) 1858 node_set(i, NODE_DATA(nid)->reclaim_nodes); 1859 else 1860 zone_reclaim_mode = 1; 1861 } 1862 1863 #else /* CONFIG_NUMA */ 1864 1865 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1866 { 1867 return NULL; 1868 } 1869 1870 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1871 nodemask_t *allowednodes) 1872 { 1873 return 1; 1874 } 1875 1876 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1877 { 1878 } 1879 1880 static void zlc_clear_zones_full(struct zonelist *zonelist) 1881 { 1882 } 1883 1884 static bool zone_local(struct zone *local_zone, struct zone *zone) 1885 { 1886 return true; 1887 } 1888 1889 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 1890 { 1891 return true; 1892 } 1893 1894 static inline void init_zone_allows_reclaim(int nid) 1895 { 1896 } 1897 #endif /* CONFIG_NUMA */ 1898 1899 /* 1900 * get_page_from_freelist goes through the zonelist trying to allocate 1901 * a page. 1902 */ 1903 static struct page * 1904 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, 1905 struct zonelist *zonelist, int high_zoneidx, int alloc_flags, 1906 struct zone *preferred_zone, int migratetype) 1907 { 1908 struct zoneref *z; 1909 struct page *page = NULL; 1910 int classzone_idx; 1911 struct zone *zone; 1912 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1913 int zlc_active = 0; /* set if using zonelist_cache */ 1914 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1915 1916 classzone_idx = zone_idx(preferred_zone); 1917 zonelist_scan: 1918 /* 1919 * Scan zonelist, looking for a zone with enough free. 1920 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c. 1921 */ 1922 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1923 high_zoneidx, nodemask) { 1924 unsigned long mark; 1925 1926 if (IS_ENABLED(CONFIG_NUMA) && zlc_active && 1927 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1928 continue; 1929 if ((alloc_flags & ALLOC_CPUSET) && 1930 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1931 continue; 1932 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 1933 if (unlikely(alloc_flags & ALLOC_NO_WATERMARKS)) 1934 goto try_this_zone; 1935 /* 1936 * Distribute pages in proportion to the individual 1937 * zone size to ensure fair page aging. The zone a 1938 * page was allocated in should have no effect on the 1939 * time the page has in memory before being reclaimed. 1940 * 1941 * Try to stay in local zones in the fastpath. If 1942 * that fails, the slowpath is entered, which will do 1943 * another pass starting with the local zones, but 1944 * ultimately fall back to remote zones that do not 1945 * partake in the fairness round-robin cycle of this 1946 * zonelist. 1947 */ 1948 if (alloc_flags & ALLOC_WMARK_LOW) { 1949 if (zone_page_state(zone, NR_ALLOC_BATCH) <= 0) 1950 continue; 1951 if (!zone_local(preferred_zone, zone)) 1952 continue; 1953 } 1954 /* 1955 * When allocating a page cache page for writing, we 1956 * want to get it from a zone that is within its dirty 1957 * limit, such that no single zone holds more than its 1958 * proportional share of globally allowed dirty pages. 1959 * The dirty limits take into account the zone's 1960 * lowmem reserves and high watermark so that kswapd 1961 * should be able to balance it without having to 1962 * write pages from its LRU list. 1963 * 1964 * This may look like it could increase pressure on 1965 * lower zones by failing allocations in higher zones 1966 * before they are full. But the pages that do spill 1967 * over are limited as the lower zones are protected 1968 * by this very same mechanism. It should not become 1969 * a practical burden to them. 1970 * 1971 * XXX: For now, allow allocations to potentially 1972 * exceed the per-zone dirty limit in the slowpath 1973 * (ALLOC_WMARK_LOW unset) before going into reclaim, 1974 * which is important when on a NUMA setup the allowed 1975 * zones are together not big enough to reach the 1976 * global limit. The proper fix for these situations 1977 * will require awareness of zones in the 1978 * dirty-throttling and the flusher threads. 1979 */ 1980 if ((alloc_flags & ALLOC_WMARK_LOW) && 1981 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone)) 1982 goto this_zone_full; 1983 1984 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 1985 if (!zone_watermark_ok(zone, order, mark, 1986 classzone_idx, alloc_flags)) { 1987 int ret; 1988 1989 if (IS_ENABLED(CONFIG_NUMA) && 1990 !did_zlc_setup && nr_online_nodes > 1) { 1991 /* 1992 * we do zlc_setup if there are multiple nodes 1993 * and before considering the first zone allowed 1994 * by the cpuset. 1995 */ 1996 allowednodes = zlc_setup(zonelist, alloc_flags); 1997 zlc_active = 1; 1998 did_zlc_setup = 1; 1999 } 2000 2001 if (zone_reclaim_mode == 0 || 2002 !zone_allows_reclaim(preferred_zone, zone)) 2003 goto this_zone_full; 2004 2005 /* 2006 * As we may have just activated ZLC, check if the first 2007 * eligible zone has failed zone_reclaim recently. 2008 */ 2009 if (IS_ENABLED(CONFIG_NUMA) && zlc_active && 2010 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 2011 continue; 2012 2013 ret = zone_reclaim(zone, gfp_mask, order); 2014 switch (ret) { 2015 case ZONE_RECLAIM_NOSCAN: 2016 /* did not scan */ 2017 continue; 2018 case ZONE_RECLAIM_FULL: 2019 /* scanned but unreclaimable */ 2020 continue; 2021 default: 2022 /* did we reclaim enough */ 2023 if (zone_watermark_ok(zone, order, mark, 2024 classzone_idx, alloc_flags)) 2025 goto try_this_zone; 2026 2027 /* 2028 * Failed to reclaim enough to meet watermark. 2029 * Only mark the zone full if checking the min 2030 * watermark or if we failed to reclaim just 2031 * 1<<order pages or else the page allocator 2032 * fastpath will prematurely mark zones full 2033 * when the watermark is between the low and 2034 * min watermarks. 2035 */ 2036 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) || 2037 ret == ZONE_RECLAIM_SOME) 2038 goto this_zone_full; 2039 2040 continue; 2041 } 2042 } 2043 2044 try_this_zone: 2045 page = buffered_rmqueue(preferred_zone, zone, order, 2046 gfp_mask, migratetype); 2047 if (page) 2048 break; 2049 this_zone_full: 2050 if (IS_ENABLED(CONFIG_NUMA)) 2051 zlc_mark_zone_full(zonelist, z); 2052 } 2053 2054 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) { 2055 /* Disable zlc cache for second zonelist scan */ 2056 zlc_active = 0; 2057 goto zonelist_scan; 2058 } 2059 2060 if (page) 2061 /* 2062 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was 2063 * necessary to allocate the page. The expectation is 2064 * that the caller is taking steps that will free more 2065 * memory. The caller should avoid the page being used 2066 * for !PFMEMALLOC purposes. 2067 */ 2068 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS); 2069 2070 return page; 2071 } 2072 2073 /* 2074 * Large machines with many possible nodes should not always dump per-node 2075 * meminfo in irq context. 2076 */ 2077 static inline bool should_suppress_show_mem(void) 2078 { 2079 bool ret = false; 2080 2081 #if NODES_SHIFT > 8 2082 ret = in_interrupt(); 2083 #endif 2084 return ret; 2085 } 2086 2087 static DEFINE_RATELIMIT_STATE(nopage_rs, 2088 DEFAULT_RATELIMIT_INTERVAL, 2089 DEFAULT_RATELIMIT_BURST); 2090 2091 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...) 2092 { 2093 unsigned int filter = SHOW_MEM_FILTER_NODES; 2094 2095 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) || 2096 debug_guardpage_minorder() > 0) 2097 return; 2098 2099 /* 2100 * This documents exceptions given to allocations in certain 2101 * contexts that are allowed to allocate outside current's set 2102 * of allowed nodes. 2103 */ 2104 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2105 if (test_thread_flag(TIF_MEMDIE) || 2106 (current->flags & (PF_MEMALLOC | PF_EXITING))) 2107 filter &= ~SHOW_MEM_FILTER_NODES; 2108 if (in_interrupt() || !(gfp_mask & __GFP_WAIT)) 2109 filter &= ~SHOW_MEM_FILTER_NODES; 2110 2111 if (fmt) { 2112 struct va_format vaf; 2113 va_list args; 2114 2115 va_start(args, fmt); 2116 2117 vaf.fmt = fmt; 2118 vaf.va = &args; 2119 2120 pr_warn("%pV", &vaf); 2121 2122 va_end(args); 2123 } 2124 2125 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n", 2126 current->comm, order, gfp_mask); 2127 2128 dump_stack(); 2129 if (!should_suppress_show_mem()) 2130 show_mem(filter); 2131 } 2132 2133 static inline int 2134 should_alloc_retry(gfp_t gfp_mask, unsigned int order, 2135 unsigned long did_some_progress, 2136 unsigned long pages_reclaimed) 2137 { 2138 /* Do not loop if specifically requested */ 2139 if (gfp_mask & __GFP_NORETRY) 2140 return 0; 2141 2142 /* Always retry if specifically requested */ 2143 if (gfp_mask & __GFP_NOFAIL) 2144 return 1; 2145 2146 /* 2147 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim 2148 * making forward progress without invoking OOM. Suspend also disables 2149 * storage devices so kswapd will not help. Bail if we are suspending. 2150 */ 2151 if (!did_some_progress && pm_suspended_storage()) 2152 return 0; 2153 2154 /* 2155 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 2156 * means __GFP_NOFAIL, but that may not be true in other 2157 * implementations. 2158 */ 2159 if (order <= PAGE_ALLOC_COSTLY_ORDER) 2160 return 1; 2161 2162 /* 2163 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 2164 * specified, then we retry until we no longer reclaim any pages 2165 * (above), or we've reclaimed an order of pages at least as 2166 * large as the allocation's order. In both cases, if the 2167 * allocation still fails, we stop retrying. 2168 */ 2169 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) 2170 return 1; 2171 2172 return 0; 2173 } 2174 2175 static inline struct page * 2176 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 2177 struct zonelist *zonelist, enum zone_type high_zoneidx, 2178 nodemask_t *nodemask, struct zone *preferred_zone, 2179 int migratetype) 2180 { 2181 struct page *page; 2182 2183 /* Acquire the OOM killer lock for the zones in zonelist */ 2184 if (!try_set_zonelist_oom(zonelist, gfp_mask)) { 2185 schedule_timeout_uninterruptible(1); 2186 return NULL; 2187 } 2188 2189 /* 2190 * Go through the zonelist yet one more time, keep very high watermark 2191 * here, this is only to catch a parallel oom killing, we must fail if 2192 * we're still under heavy pressure. 2193 */ 2194 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, 2195 order, zonelist, high_zoneidx, 2196 ALLOC_WMARK_HIGH|ALLOC_CPUSET, 2197 preferred_zone, migratetype); 2198 if (page) 2199 goto out; 2200 2201 if (!(gfp_mask & __GFP_NOFAIL)) { 2202 /* The OOM killer will not help higher order allocs */ 2203 if (order > PAGE_ALLOC_COSTLY_ORDER) 2204 goto out; 2205 /* The OOM killer does not needlessly kill tasks for lowmem */ 2206 if (high_zoneidx < ZONE_NORMAL) 2207 goto out; 2208 /* 2209 * GFP_THISNODE contains __GFP_NORETRY and we never hit this. 2210 * Sanity check for bare calls of __GFP_THISNODE, not real OOM. 2211 * The caller should handle page allocation failure by itself if 2212 * it specifies __GFP_THISNODE. 2213 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER. 2214 */ 2215 if (gfp_mask & __GFP_THISNODE) 2216 goto out; 2217 } 2218 /* Exhausted what can be done so it's blamo time */ 2219 out_of_memory(zonelist, gfp_mask, order, nodemask, false); 2220 2221 out: 2222 clear_zonelist_oom(zonelist, gfp_mask); 2223 return page; 2224 } 2225 2226 #ifdef CONFIG_COMPACTION 2227 /* Try memory compaction for high-order allocations before reclaim */ 2228 static struct page * 2229 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2230 struct zonelist *zonelist, enum zone_type high_zoneidx, 2231 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2232 int migratetype, bool sync_migration, 2233 bool *contended_compaction, bool *deferred_compaction, 2234 unsigned long *did_some_progress) 2235 { 2236 if (!order) 2237 return NULL; 2238 2239 if (compaction_deferred(preferred_zone, order)) { 2240 *deferred_compaction = true; 2241 return NULL; 2242 } 2243 2244 current->flags |= PF_MEMALLOC; 2245 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask, 2246 nodemask, sync_migration, 2247 contended_compaction); 2248 current->flags &= ~PF_MEMALLOC; 2249 2250 if (*did_some_progress != COMPACT_SKIPPED) { 2251 struct page *page; 2252 2253 /* Page migration frees to the PCP lists but we want merging */ 2254 drain_pages(get_cpu()); 2255 put_cpu(); 2256 2257 page = get_page_from_freelist(gfp_mask, nodemask, 2258 order, zonelist, high_zoneidx, 2259 alloc_flags & ~ALLOC_NO_WATERMARKS, 2260 preferred_zone, migratetype); 2261 if (page) { 2262 preferred_zone->compact_blockskip_flush = false; 2263 compaction_defer_reset(preferred_zone, order, true); 2264 count_vm_event(COMPACTSUCCESS); 2265 return page; 2266 } 2267 2268 /* 2269 * It's bad if compaction run occurs and fails. 2270 * The most likely reason is that pages exist, 2271 * but not enough to satisfy watermarks. 2272 */ 2273 count_vm_event(COMPACTFAIL); 2274 2275 /* 2276 * As async compaction considers a subset of pageblocks, only 2277 * defer if the failure was a sync compaction failure. 2278 */ 2279 if (sync_migration) 2280 defer_compaction(preferred_zone, order); 2281 2282 cond_resched(); 2283 } 2284 2285 return NULL; 2286 } 2287 #else 2288 static inline struct page * 2289 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2290 struct zonelist *zonelist, enum zone_type high_zoneidx, 2291 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2292 int migratetype, bool sync_migration, 2293 bool *contended_compaction, bool *deferred_compaction, 2294 unsigned long *did_some_progress) 2295 { 2296 return NULL; 2297 } 2298 #endif /* CONFIG_COMPACTION */ 2299 2300 /* Perform direct synchronous page reclaim */ 2301 static int 2302 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist, 2303 nodemask_t *nodemask) 2304 { 2305 struct reclaim_state reclaim_state; 2306 int progress; 2307 2308 cond_resched(); 2309 2310 /* We now go into synchronous reclaim */ 2311 cpuset_memory_pressure_bump(); 2312 current->flags |= PF_MEMALLOC; 2313 lockdep_set_current_reclaim_state(gfp_mask); 2314 reclaim_state.reclaimed_slab = 0; 2315 current->reclaim_state = &reclaim_state; 2316 2317 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask); 2318 2319 current->reclaim_state = NULL; 2320 lockdep_clear_current_reclaim_state(); 2321 current->flags &= ~PF_MEMALLOC; 2322 2323 cond_resched(); 2324 2325 return progress; 2326 } 2327 2328 /* The really slow allocator path where we enter direct reclaim */ 2329 static inline struct page * 2330 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 2331 struct zonelist *zonelist, enum zone_type high_zoneidx, 2332 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2333 int migratetype, unsigned long *did_some_progress) 2334 { 2335 struct page *page = NULL; 2336 bool drained = false; 2337 2338 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist, 2339 nodemask); 2340 if (unlikely(!(*did_some_progress))) 2341 return NULL; 2342 2343 /* After successful reclaim, reconsider all zones for allocation */ 2344 if (IS_ENABLED(CONFIG_NUMA)) 2345 zlc_clear_zones_full(zonelist); 2346 2347 retry: 2348 page = get_page_from_freelist(gfp_mask, nodemask, order, 2349 zonelist, high_zoneidx, 2350 alloc_flags & ~ALLOC_NO_WATERMARKS, 2351 preferred_zone, migratetype); 2352 2353 /* 2354 * If an allocation failed after direct reclaim, it could be because 2355 * pages are pinned on the per-cpu lists. Drain them and try again 2356 */ 2357 if (!page && !drained) { 2358 drain_all_pages(); 2359 drained = true; 2360 goto retry; 2361 } 2362 2363 return page; 2364 } 2365 2366 /* 2367 * This is called in the allocator slow-path if the allocation request is of 2368 * sufficient urgency to ignore watermarks and take other desperate measures 2369 */ 2370 static inline struct page * 2371 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, 2372 struct zonelist *zonelist, enum zone_type high_zoneidx, 2373 nodemask_t *nodemask, struct zone *preferred_zone, 2374 int migratetype) 2375 { 2376 struct page *page; 2377 2378 do { 2379 page = get_page_from_freelist(gfp_mask, nodemask, order, 2380 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS, 2381 preferred_zone, migratetype); 2382 2383 if (!page && gfp_mask & __GFP_NOFAIL) 2384 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2385 } while (!page && (gfp_mask & __GFP_NOFAIL)); 2386 2387 return page; 2388 } 2389 2390 static void prepare_slowpath(gfp_t gfp_mask, unsigned int order, 2391 struct zonelist *zonelist, 2392 enum zone_type high_zoneidx, 2393 struct zone *preferred_zone) 2394 { 2395 struct zoneref *z; 2396 struct zone *zone; 2397 2398 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 2399 if (!(gfp_mask & __GFP_NO_KSWAPD)) 2400 wakeup_kswapd(zone, order, zone_idx(preferred_zone)); 2401 /* 2402 * Only reset the batches of zones that were actually 2403 * considered in the fast path, we don't want to 2404 * thrash fairness information for zones that are not 2405 * actually part of this zonelist's round-robin cycle. 2406 */ 2407 if (!zone_local(preferred_zone, zone)) 2408 continue; 2409 mod_zone_page_state(zone, NR_ALLOC_BATCH, 2410 high_wmark_pages(zone) - 2411 low_wmark_pages(zone) - 2412 zone_page_state(zone, NR_ALLOC_BATCH)); 2413 } 2414 } 2415 2416 static inline int 2417 gfp_to_alloc_flags(gfp_t gfp_mask) 2418 { 2419 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 2420 const gfp_t wait = gfp_mask & __GFP_WAIT; 2421 2422 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 2423 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 2424 2425 /* 2426 * The caller may dip into page reserves a bit more if the caller 2427 * cannot run direct reclaim, or if the caller has realtime scheduling 2428 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 2429 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 2430 */ 2431 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 2432 2433 if (!wait) { 2434 /* 2435 * Not worth trying to allocate harder for 2436 * __GFP_NOMEMALLOC even if it can't schedule. 2437 */ 2438 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2439 alloc_flags |= ALLOC_HARDER; 2440 /* 2441 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 2442 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 2443 */ 2444 alloc_flags &= ~ALLOC_CPUSET; 2445 } else if (unlikely(rt_task(current)) && !in_interrupt()) 2446 alloc_flags |= ALLOC_HARDER; 2447 2448 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { 2449 if (gfp_mask & __GFP_MEMALLOC) 2450 alloc_flags |= ALLOC_NO_WATERMARKS; 2451 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 2452 alloc_flags |= ALLOC_NO_WATERMARKS; 2453 else if (!in_interrupt() && 2454 ((current->flags & PF_MEMALLOC) || 2455 unlikely(test_thread_flag(TIF_MEMDIE)))) 2456 alloc_flags |= ALLOC_NO_WATERMARKS; 2457 } 2458 #ifdef CONFIG_CMA 2459 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 2460 alloc_flags |= ALLOC_CMA; 2461 #endif 2462 return alloc_flags; 2463 } 2464 2465 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 2466 { 2467 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS); 2468 } 2469 2470 static inline struct page * 2471 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 2472 struct zonelist *zonelist, enum zone_type high_zoneidx, 2473 nodemask_t *nodemask, struct zone *preferred_zone, 2474 int migratetype) 2475 { 2476 const gfp_t wait = gfp_mask & __GFP_WAIT; 2477 struct page *page = NULL; 2478 int alloc_flags; 2479 unsigned long pages_reclaimed = 0; 2480 unsigned long did_some_progress; 2481 bool sync_migration = false; 2482 bool deferred_compaction = false; 2483 bool contended_compaction = false; 2484 2485 /* 2486 * In the slowpath, we sanity check order to avoid ever trying to 2487 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 2488 * be using allocators in order of preference for an area that is 2489 * too large. 2490 */ 2491 if (order >= MAX_ORDER) { 2492 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 2493 return NULL; 2494 } 2495 2496 /* 2497 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 2498 * __GFP_NOWARN set) should not cause reclaim since the subsystem 2499 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 2500 * using a larger set of nodes after it has established that the 2501 * allowed per node queues are empty and that nodes are 2502 * over allocated. 2503 */ 2504 if (IS_ENABLED(CONFIG_NUMA) && 2505 (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 2506 goto nopage; 2507 2508 restart: 2509 prepare_slowpath(gfp_mask, order, zonelist, 2510 high_zoneidx, preferred_zone); 2511 2512 /* 2513 * OK, we're below the kswapd watermark and have kicked background 2514 * reclaim. Now things get more complex, so set up alloc_flags according 2515 * to how we want to proceed. 2516 */ 2517 alloc_flags = gfp_to_alloc_flags(gfp_mask); 2518 2519 /* 2520 * Find the true preferred zone if the allocation is unconstrained by 2521 * cpusets. 2522 */ 2523 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) 2524 first_zones_zonelist(zonelist, high_zoneidx, NULL, 2525 &preferred_zone); 2526 2527 rebalance: 2528 /* This is the last chance, in general, before the goto nopage. */ 2529 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, 2530 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS, 2531 preferred_zone, migratetype); 2532 if (page) 2533 goto got_pg; 2534 2535 /* Allocate without watermarks if the context allows */ 2536 if (alloc_flags & ALLOC_NO_WATERMARKS) { 2537 /* 2538 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds 2539 * the allocation is high priority and these type of 2540 * allocations are system rather than user orientated 2541 */ 2542 zonelist = node_zonelist(numa_node_id(), gfp_mask); 2543 2544 page = __alloc_pages_high_priority(gfp_mask, order, 2545 zonelist, high_zoneidx, nodemask, 2546 preferred_zone, migratetype); 2547 if (page) { 2548 goto got_pg; 2549 } 2550 } 2551 2552 /* Atomic allocations - we can't balance anything */ 2553 if (!wait) { 2554 /* 2555 * All existing users of the deprecated __GFP_NOFAIL are 2556 * blockable, so warn of any new users that actually allow this 2557 * type of allocation to fail. 2558 */ 2559 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL); 2560 goto nopage; 2561 } 2562 2563 /* Avoid recursion of direct reclaim */ 2564 if (current->flags & PF_MEMALLOC) 2565 goto nopage; 2566 2567 /* Avoid allocations with no watermarks from looping endlessly */ 2568 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) 2569 goto nopage; 2570 2571 /* 2572 * Try direct compaction. The first pass is asynchronous. Subsequent 2573 * attempts after direct reclaim are synchronous 2574 */ 2575 page = __alloc_pages_direct_compact(gfp_mask, order, 2576 zonelist, high_zoneidx, 2577 nodemask, 2578 alloc_flags, preferred_zone, 2579 migratetype, sync_migration, 2580 &contended_compaction, 2581 &deferred_compaction, 2582 &did_some_progress); 2583 if (page) 2584 goto got_pg; 2585 sync_migration = true; 2586 2587 /* 2588 * If compaction is deferred for high-order allocations, it is because 2589 * sync compaction recently failed. In this is the case and the caller 2590 * requested a movable allocation that does not heavily disrupt the 2591 * system then fail the allocation instead of entering direct reclaim. 2592 */ 2593 if ((deferred_compaction || contended_compaction) && 2594 (gfp_mask & __GFP_NO_KSWAPD)) 2595 goto nopage; 2596 2597 /* Try direct reclaim and then allocating */ 2598 page = __alloc_pages_direct_reclaim(gfp_mask, order, 2599 zonelist, high_zoneidx, 2600 nodemask, 2601 alloc_flags, preferred_zone, 2602 migratetype, &did_some_progress); 2603 if (page) 2604 goto got_pg; 2605 2606 /* 2607 * If we failed to make any progress reclaiming, then we are 2608 * running out of options and have to consider going OOM 2609 */ 2610 if (!did_some_progress) { 2611 if (oom_gfp_allowed(gfp_mask)) { 2612 if (oom_killer_disabled) 2613 goto nopage; 2614 /* Coredumps can quickly deplete all memory reserves */ 2615 if ((current->flags & PF_DUMPCORE) && 2616 !(gfp_mask & __GFP_NOFAIL)) 2617 goto nopage; 2618 page = __alloc_pages_may_oom(gfp_mask, order, 2619 zonelist, high_zoneidx, 2620 nodemask, preferred_zone, 2621 migratetype); 2622 if (page) 2623 goto got_pg; 2624 2625 if (!(gfp_mask & __GFP_NOFAIL)) { 2626 /* 2627 * The oom killer is not called for high-order 2628 * allocations that may fail, so if no progress 2629 * is being made, there are no other options and 2630 * retrying is unlikely to help. 2631 */ 2632 if (order > PAGE_ALLOC_COSTLY_ORDER) 2633 goto nopage; 2634 /* 2635 * The oom killer is not called for lowmem 2636 * allocations to prevent needlessly killing 2637 * innocent tasks. 2638 */ 2639 if (high_zoneidx < ZONE_NORMAL) 2640 goto nopage; 2641 } 2642 2643 goto restart; 2644 } 2645 } 2646 2647 /* Check if we should retry the allocation */ 2648 pages_reclaimed += did_some_progress; 2649 if (should_alloc_retry(gfp_mask, order, did_some_progress, 2650 pages_reclaimed)) { 2651 /* Wait for some write requests to complete then retry */ 2652 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2653 goto rebalance; 2654 } else { 2655 /* 2656 * High-order allocations do not necessarily loop after 2657 * direct reclaim and reclaim/compaction depends on compaction 2658 * being called after reclaim so call directly if necessary 2659 */ 2660 page = __alloc_pages_direct_compact(gfp_mask, order, 2661 zonelist, high_zoneidx, 2662 nodemask, 2663 alloc_flags, preferred_zone, 2664 migratetype, sync_migration, 2665 &contended_compaction, 2666 &deferred_compaction, 2667 &did_some_progress); 2668 if (page) 2669 goto got_pg; 2670 } 2671 2672 nopage: 2673 warn_alloc_failed(gfp_mask, order, NULL); 2674 return page; 2675 got_pg: 2676 if (kmemcheck_enabled) 2677 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 2678 2679 return page; 2680 } 2681 2682 /* 2683 * This is the 'heart' of the zoned buddy allocator. 2684 */ 2685 struct page * 2686 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 2687 struct zonelist *zonelist, nodemask_t *nodemask) 2688 { 2689 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 2690 struct zone *preferred_zone; 2691 struct page *page = NULL; 2692 int migratetype = allocflags_to_migratetype(gfp_mask); 2693 unsigned int cpuset_mems_cookie; 2694 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET; 2695 struct mem_cgroup *memcg = NULL; 2696 2697 gfp_mask &= gfp_allowed_mask; 2698 2699 lockdep_trace_alloc(gfp_mask); 2700 2701 might_sleep_if(gfp_mask & __GFP_WAIT); 2702 2703 if (should_fail_alloc_page(gfp_mask, order)) 2704 return NULL; 2705 2706 /* 2707 * Check the zones suitable for the gfp_mask contain at least one 2708 * valid zone. It's possible to have an empty zonelist as a result 2709 * of GFP_THISNODE and a memoryless node 2710 */ 2711 if (unlikely(!zonelist->_zonerefs->zone)) 2712 return NULL; 2713 2714 /* 2715 * Will only have any effect when __GFP_KMEMCG is set. This is 2716 * verified in the (always inline) callee 2717 */ 2718 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order)) 2719 return NULL; 2720 2721 retry_cpuset: 2722 cpuset_mems_cookie = get_mems_allowed(); 2723 2724 /* The preferred zone is used for statistics later */ 2725 first_zones_zonelist(zonelist, high_zoneidx, 2726 nodemask ? : &cpuset_current_mems_allowed, 2727 &preferred_zone); 2728 if (!preferred_zone) 2729 goto out; 2730 2731 #ifdef CONFIG_CMA 2732 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 2733 alloc_flags |= ALLOC_CMA; 2734 #endif 2735 /* First allocation attempt */ 2736 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, 2737 zonelist, high_zoneidx, alloc_flags, 2738 preferred_zone, migratetype); 2739 if (unlikely(!page)) { 2740 /* 2741 * Runtime PM, block IO and its error handling path 2742 * can deadlock because I/O on the device might not 2743 * complete. 2744 */ 2745 gfp_mask = memalloc_noio_flags(gfp_mask); 2746 page = __alloc_pages_slowpath(gfp_mask, order, 2747 zonelist, high_zoneidx, nodemask, 2748 preferred_zone, migratetype); 2749 } 2750 2751 trace_mm_page_alloc(page, order, gfp_mask, migratetype); 2752 2753 out: 2754 /* 2755 * When updating a task's mems_allowed, it is possible to race with 2756 * parallel threads in such a way that an allocation can fail while 2757 * the mask is being updated. If a page allocation is about to fail, 2758 * check if the cpuset changed during allocation and if so, retry. 2759 */ 2760 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) 2761 goto retry_cpuset; 2762 2763 memcg_kmem_commit_charge(page, memcg, order); 2764 2765 return page; 2766 } 2767 EXPORT_SYMBOL(__alloc_pages_nodemask); 2768 2769 /* 2770 * Common helper functions. 2771 */ 2772 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 2773 { 2774 struct page *page; 2775 2776 /* 2777 * __get_free_pages() returns a 32-bit address, which cannot represent 2778 * a highmem page 2779 */ 2780 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 2781 2782 page = alloc_pages(gfp_mask, order); 2783 if (!page) 2784 return 0; 2785 return (unsigned long) page_address(page); 2786 } 2787 EXPORT_SYMBOL(__get_free_pages); 2788 2789 unsigned long get_zeroed_page(gfp_t gfp_mask) 2790 { 2791 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 2792 } 2793 EXPORT_SYMBOL(get_zeroed_page); 2794 2795 void __free_pages(struct page *page, unsigned int order) 2796 { 2797 if (put_page_testzero(page)) { 2798 if (order == 0) 2799 free_hot_cold_page(page, 0); 2800 else 2801 __free_pages_ok(page, order); 2802 } 2803 } 2804 2805 EXPORT_SYMBOL(__free_pages); 2806 2807 void free_pages(unsigned long addr, unsigned int order) 2808 { 2809 if (addr != 0) { 2810 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2811 __free_pages(virt_to_page((void *)addr), order); 2812 } 2813 } 2814 2815 EXPORT_SYMBOL(free_pages); 2816 2817 /* 2818 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free 2819 * pages allocated with __GFP_KMEMCG. 2820 * 2821 * Those pages are accounted to a particular memcg, embedded in the 2822 * corresponding page_cgroup. To avoid adding a hit in the allocator to search 2823 * for that information only to find out that it is NULL for users who have no 2824 * interest in that whatsoever, we provide these functions. 2825 * 2826 * The caller knows better which flags it relies on. 2827 */ 2828 void __free_memcg_kmem_pages(struct page *page, unsigned int order) 2829 { 2830 memcg_kmem_uncharge_pages(page, order); 2831 __free_pages(page, order); 2832 } 2833 2834 void free_memcg_kmem_pages(unsigned long addr, unsigned int order) 2835 { 2836 if (addr != 0) { 2837 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2838 __free_memcg_kmem_pages(virt_to_page((void *)addr), order); 2839 } 2840 } 2841 2842 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size) 2843 { 2844 if (addr) { 2845 unsigned long alloc_end = addr + (PAGE_SIZE << order); 2846 unsigned long used = addr + PAGE_ALIGN(size); 2847 2848 split_page(virt_to_page((void *)addr), order); 2849 while (used < alloc_end) { 2850 free_page(used); 2851 used += PAGE_SIZE; 2852 } 2853 } 2854 return (void *)addr; 2855 } 2856 2857 /** 2858 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 2859 * @size: the number of bytes to allocate 2860 * @gfp_mask: GFP flags for the allocation 2861 * 2862 * This function is similar to alloc_pages(), except that it allocates the 2863 * minimum number of pages to satisfy the request. alloc_pages() can only 2864 * allocate memory in power-of-two pages. 2865 * 2866 * This function is also limited by MAX_ORDER. 2867 * 2868 * Memory allocated by this function must be released by free_pages_exact(). 2869 */ 2870 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 2871 { 2872 unsigned int order = get_order(size); 2873 unsigned long addr; 2874 2875 addr = __get_free_pages(gfp_mask, order); 2876 return make_alloc_exact(addr, order, size); 2877 } 2878 EXPORT_SYMBOL(alloc_pages_exact); 2879 2880 /** 2881 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 2882 * pages on a node. 2883 * @nid: the preferred node ID where memory should be allocated 2884 * @size: the number of bytes to allocate 2885 * @gfp_mask: GFP flags for the allocation 2886 * 2887 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 2888 * back. 2889 * Note this is not alloc_pages_exact_node() which allocates on a specific node, 2890 * but is not exact. 2891 */ 2892 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 2893 { 2894 unsigned order = get_order(size); 2895 struct page *p = alloc_pages_node(nid, gfp_mask, order); 2896 if (!p) 2897 return NULL; 2898 return make_alloc_exact((unsigned long)page_address(p), order, size); 2899 } 2900 EXPORT_SYMBOL(alloc_pages_exact_nid); 2901 2902 /** 2903 * free_pages_exact - release memory allocated via alloc_pages_exact() 2904 * @virt: the value returned by alloc_pages_exact. 2905 * @size: size of allocation, same value as passed to alloc_pages_exact(). 2906 * 2907 * Release the memory allocated by a previous call to alloc_pages_exact. 2908 */ 2909 void free_pages_exact(void *virt, size_t size) 2910 { 2911 unsigned long addr = (unsigned long)virt; 2912 unsigned long end = addr + PAGE_ALIGN(size); 2913 2914 while (addr < end) { 2915 free_page(addr); 2916 addr += PAGE_SIZE; 2917 } 2918 } 2919 EXPORT_SYMBOL(free_pages_exact); 2920 2921 /** 2922 * nr_free_zone_pages - count number of pages beyond high watermark 2923 * @offset: The zone index of the highest zone 2924 * 2925 * nr_free_zone_pages() counts the number of counts pages which are beyond the 2926 * high watermark within all zones at or below a given zone index. For each 2927 * zone, the number of pages is calculated as: 2928 * managed_pages - high_pages 2929 */ 2930 static unsigned long nr_free_zone_pages(int offset) 2931 { 2932 struct zoneref *z; 2933 struct zone *zone; 2934 2935 /* Just pick one node, since fallback list is circular */ 2936 unsigned long sum = 0; 2937 2938 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 2939 2940 for_each_zone_zonelist(zone, z, zonelist, offset) { 2941 unsigned long size = zone->managed_pages; 2942 unsigned long high = high_wmark_pages(zone); 2943 if (size > high) 2944 sum += size - high; 2945 } 2946 2947 return sum; 2948 } 2949 2950 /** 2951 * nr_free_buffer_pages - count number of pages beyond high watermark 2952 * 2953 * nr_free_buffer_pages() counts the number of pages which are beyond the high 2954 * watermark within ZONE_DMA and ZONE_NORMAL. 2955 */ 2956 unsigned long nr_free_buffer_pages(void) 2957 { 2958 return nr_free_zone_pages(gfp_zone(GFP_USER)); 2959 } 2960 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 2961 2962 /** 2963 * nr_free_pagecache_pages - count number of pages beyond high watermark 2964 * 2965 * nr_free_pagecache_pages() counts the number of pages which are beyond the 2966 * high watermark within all zones. 2967 */ 2968 unsigned long nr_free_pagecache_pages(void) 2969 { 2970 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 2971 } 2972 2973 static inline void show_node(struct zone *zone) 2974 { 2975 if (IS_ENABLED(CONFIG_NUMA)) 2976 printk("Node %d ", zone_to_nid(zone)); 2977 } 2978 2979 void si_meminfo(struct sysinfo *val) 2980 { 2981 val->totalram = totalram_pages; 2982 val->sharedram = 0; 2983 val->freeram = global_page_state(NR_FREE_PAGES); 2984 val->bufferram = nr_blockdev_pages(); 2985 val->totalhigh = totalhigh_pages; 2986 val->freehigh = nr_free_highpages(); 2987 val->mem_unit = PAGE_SIZE; 2988 } 2989 2990 EXPORT_SYMBOL(si_meminfo); 2991 2992 #ifdef CONFIG_NUMA 2993 void si_meminfo_node(struct sysinfo *val, int nid) 2994 { 2995 int zone_type; /* needs to be signed */ 2996 unsigned long managed_pages = 0; 2997 pg_data_t *pgdat = NODE_DATA(nid); 2998 2999 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 3000 managed_pages += pgdat->node_zones[zone_type].managed_pages; 3001 val->totalram = managed_pages; 3002 val->freeram = node_page_state(nid, NR_FREE_PAGES); 3003 #ifdef CONFIG_HIGHMEM 3004 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages; 3005 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 3006 NR_FREE_PAGES); 3007 #else 3008 val->totalhigh = 0; 3009 val->freehigh = 0; 3010 #endif 3011 val->mem_unit = PAGE_SIZE; 3012 } 3013 #endif 3014 3015 /* 3016 * Determine whether the node should be displayed or not, depending on whether 3017 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 3018 */ 3019 bool skip_free_areas_node(unsigned int flags, int nid) 3020 { 3021 bool ret = false; 3022 unsigned int cpuset_mems_cookie; 3023 3024 if (!(flags & SHOW_MEM_FILTER_NODES)) 3025 goto out; 3026 3027 do { 3028 cpuset_mems_cookie = get_mems_allowed(); 3029 ret = !node_isset(nid, cpuset_current_mems_allowed); 3030 } while (!put_mems_allowed(cpuset_mems_cookie)); 3031 out: 3032 return ret; 3033 } 3034 3035 #define K(x) ((x) << (PAGE_SHIFT-10)) 3036 3037 static void show_migration_types(unsigned char type) 3038 { 3039 static const char types[MIGRATE_TYPES] = { 3040 [MIGRATE_UNMOVABLE] = 'U', 3041 [MIGRATE_RECLAIMABLE] = 'E', 3042 [MIGRATE_MOVABLE] = 'M', 3043 [MIGRATE_RESERVE] = 'R', 3044 #ifdef CONFIG_CMA 3045 [MIGRATE_CMA] = 'C', 3046 #endif 3047 #ifdef CONFIG_MEMORY_ISOLATION 3048 [MIGRATE_ISOLATE] = 'I', 3049 #endif 3050 }; 3051 char tmp[MIGRATE_TYPES + 1]; 3052 char *p = tmp; 3053 int i; 3054 3055 for (i = 0; i < MIGRATE_TYPES; i++) { 3056 if (type & (1 << i)) 3057 *p++ = types[i]; 3058 } 3059 3060 *p = '\0'; 3061 printk("(%s) ", tmp); 3062 } 3063 3064 /* 3065 * Show free area list (used inside shift_scroll-lock stuff) 3066 * We also calculate the percentage fragmentation. We do this by counting the 3067 * memory on each free list with the exception of the first item on the list. 3068 * Suppresses nodes that are not allowed by current's cpuset if 3069 * SHOW_MEM_FILTER_NODES is passed. 3070 */ 3071 void show_free_areas(unsigned int filter) 3072 { 3073 int cpu; 3074 struct zone *zone; 3075 3076 for_each_populated_zone(zone) { 3077 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3078 continue; 3079 show_node(zone); 3080 printk("%s per-cpu:\n", zone->name); 3081 3082 for_each_online_cpu(cpu) { 3083 struct per_cpu_pageset *pageset; 3084 3085 pageset = per_cpu_ptr(zone->pageset, cpu); 3086 3087 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", 3088 cpu, pageset->pcp.high, 3089 pageset->pcp.batch, pageset->pcp.count); 3090 } 3091 } 3092 3093 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 3094 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 3095 " unevictable:%lu" 3096 " dirty:%lu writeback:%lu unstable:%lu\n" 3097 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n" 3098 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 3099 " free_cma:%lu\n", 3100 global_page_state(NR_ACTIVE_ANON), 3101 global_page_state(NR_INACTIVE_ANON), 3102 global_page_state(NR_ISOLATED_ANON), 3103 global_page_state(NR_ACTIVE_FILE), 3104 global_page_state(NR_INACTIVE_FILE), 3105 global_page_state(NR_ISOLATED_FILE), 3106 global_page_state(NR_UNEVICTABLE), 3107 global_page_state(NR_FILE_DIRTY), 3108 global_page_state(NR_WRITEBACK), 3109 global_page_state(NR_UNSTABLE_NFS), 3110 global_page_state(NR_FREE_PAGES), 3111 global_page_state(NR_SLAB_RECLAIMABLE), 3112 global_page_state(NR_SLAB_UNRECLAIMABLE), 3113 global_page_state(NR_FILE_MAPPED), 3114 global_page_state(NR_SHMEM), 3115 global_page_state(NR_PAGETABLE), 3116 global_page_state(NR_BOUNCE), 3117 global_page_state(NR_FREE_CMA_PAGES)); 3118 3119 for_each_populated_zone(zone) { 3120 int i; 3121 3122 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3123 continue; 3124 show_node(zone); 3125 printk("%s" 3126 " free:%lukB" 3127 " min:%lukB" 3128 " low:%lukB" 3129 " high:%lukB" 3130 " active_anon:%lukB" 3131 " inactive_anon:%lukB" 3132 " active_file:%lukB" 3133 " inactive_file:%lukB" 3134 " unevictable:%lukB" 3135 " isolated(anon):%lukB" 3136 " isolated(file):%lukB" 3137 " present:%lukB" 3138 " managed:%lukB" 3139 " mlocked:%lukB" 3140 " dirty:%lukB" 3141 " writeback:%lukB" 3142 " mapped:%lukB" 3143 " shmem:%lukB" 3144 " slab_reclaimable:%lukB" 3145 " slab_unreclaimable:%lukB" 3146 " kernel_stack:%lukB" 3147 " pagetables:%lukB" 3148 " unstable:%lukB" 3149 " bounce:%lukB" 3150 " free_cma:%lukB" 3151 " writeback_tmp:%lukB" 3152 " pages_scanned:%lu" 3153 " all_unreclaimable? %s" 3154 "\n", 3155 zone->name, 3156 K(zone_page_state(zone, NR_FREE_PAGES)), 3157 K(min_wmark_pages(zone)), 3158 K(low_wmark_pages(zone)), 3159 K(high_wmark_pages(zone)), 3160 K(zone_page_state(zone, NR_ACTIVE_ANON)), 3161 K(zone_page_state(zone, NR_INACTIVE_ANON)), 3162 K(zone_page_state(zone, NR_ACTIVE_FILE)), 3163 K(zone_page_state(zone, NR_INACTIVE_FILE)), 3164 K(zone_page_state(zone, NR_UNEVICTABLE)), 3165 K(zone_page_state(zone, NR_ISOLATED_ANON)), 3166 K(zone_page_state(zone, NR_ISOLATED_FILE)), 3167 K(zone->present_pages), 3168 K(zone->managed_pages), 3169 K(zone_page_state(zone, NR_MLOCK)), 3170 K(zone_page_state(zone, NR_FILE_DIRTY)), 3171 K(zone_page_state(zone, NR_WRITEBACK)), 3172 K(zone_page_state(zone, NR_FILE_MAPPED)), 3173 K(zone_page_state(zone, NR_SHMEM)), 3174 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 3175 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 3176 zone_page_state(zone, NR_KERNEL_STACK) * 3177 THREAD_SIZE / 1024, 3178 K(zone_page_state(zone, NR_PAGETABLE)), 3179 K(zone_page_state(zone, NR_UNSTABLE_NFS)), 3180 K(zone_page_state(zone, NR_BOUNCE)), 3181 K(zone_page_state(zone, NR_FREE_CMA_PAGES)), 3182 K(zone_page_state(zone, NR_WRITEBACK_TEMP)), 3183 zone->pages_scanned, 3184 (!zone_reclaimable(zone) ? "yes" : "no") 3185 ); 3186 printk("lowmem_reserve[]:"); 3187 for (i = 0; i < MAX_NR_ZONES; i++) 3188 printk(" %lu", zone->lowmem_reserve[i]); 3189 printk("\n"); 3190 } 3191 3192 for_each_populated_zone(zone) { 3193 unsigned long nr[MAX_ORDER], flags, order, total = 0; 3194 unsigned char types[MAX_ORDER]; 3195 3196 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3197 continue; 3198 show_node(zone); 3199 printk("%s: ", zone->name); 3200 3201 spin_lock_irqsave(&zone->lock, flags); 3202 for (order = 0; order < MAX_ORDER; order++) { 3203 struct free_area *area = &zone->free_area[order]; 3204 int type; 3205 3206 nr[order] = area->nr_free; 3207 total += nr[order] << order; 3208 3209 types[order] = 0; 3210 for (type = 0; type < MIGRATE_TYPES; type++) { 3211 if (!list_empty(&area->free_list[type])) 3212 types[order] |= 1 << type; 3213 } 3214 } 3215 spin_unlock_irqrestore(&zone->lock, flags); 3216 for (order = 0; order < MAX_ORDER; order++) { 3217 printk("%lu*%lukB ", nr[order], K(1UL) << order); 3218 if (nr[order]) 3219 show_migration_types(types[order]); 3220 } 3221 printk("= %lukB\n", K(total)); 3222 } 3223 3224 hugetlb_show_meminfo(); 3225 3226 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 3227 3228 show_swap_cache_info(); 3229 } 3230 3231 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 3232 { 3233 zoneref->zone = zone; 3234 zoneref->zone_idx = zone_idx(zone); 3235 } 3236 3237 /* 3238 * Builds allocation fallback zone lists. 3239 * 3240 * Add all populated zones of a node to the zonelist. 3241 */ 3242 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 3243 int nr_zones) 3244 { 3245 struct zone *zone; 3246 enum zone_type zone_type = MAX_NR_ZONES; 3247 3248 do { 3249 zone_type--; 3250 zone = pgdat->node_zones + zone_type; 3251 if (populated_zone(zone)) { 3252 zoneref_set_zone(zone, 3253 &zonelist->_zonerefs[nr_zones++]); 3254 check_highest_zone(zone_type); 3255 } 3256 } while (zone_type); 3257 3258 return nr_zones; 3259 } 3260 3261 3262 /* 3263 * zonelist_order: 3264 * 0 = automatic detection of better ordering. 3265 * 1 = order by ([node] distance, -zonetype) 3266 * 2 = order by (-zonetype, [node] distance) 3267 * 3268 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 3269 * the same zonelist. So only NUMA can configure this param. 3270 */ 3271 #define ZONELIST_ORDER_DEFAULT 0 3272 #define ZONELIST_ORDER_NODE 1 3273 #define ZONELIST_ORDER_ZONE 2 3274 3275 /* zonelist order in the kernel. 3276 * set_zonelist_order() will set this to NODE or ZONE. 3277 */ 3278 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 3279 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 3280 3281 3282 #ifdef CONFIG_NUMA 3283 /* The value user specified ....changed by config */ 3284 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3285 /* string for sysctl */ 3286 #define NUMA_ZONELIST_ORDER_LEN 16 3287 char numa_zonelist_order[16] = "default"; 3288 3289 /* 3290 * interface for configure zonelist ordering. 3291 * command line option "numa_zonelist_order" 3292 * = "[dD]efault - default, automatic configuration. 3293 * = "[nN]ode - order by node locality, then by zone within node 3294 * = "[zZ]one - order by zone, then by locality within zone 3295 */ 3296 3297 static int __parse_numa_zonelist_order(char *s) 3298 { 3299 if (*s == 'd' || *s == 'D') { 3300 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3301 } else if (*s == 'n' || *s == 'N') { 3302 user_zonelist_order = ZONELIST_ORDER_NODE; 3303 } else if (*s == 'z' || *s == 'Z') { 3304 user_zonelist_order = ZONELIST_ORDER_ZONE; 3305 } else { 3306 printk(KERN_WARNING 3307 "Ignoring invalid numa_zonelist_order value: " 3308 "%s\n", s); 3309 return -EINVAL; 3310 } 3311 return 0; 3312 } 3313 3314 static __init int setup_numa_zonelist_order(char *s) 3315 { 3316 int ret; 3317 3318 if (!s) 3319 return 0; 3320 3321 ret = __parse_numa_zonelist_order(s); 3322 if (ret == 0) 3323 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); 3324 3325 return ret; 3326 } 3327 early_param("numa_zonelist_order", setup_numa_zonelist_order); 3328 3329 /* 3330 * sysctl handler for numa_zonelist_order 3331 */ 3332 int numa_zonelist_order_handler(ctl_table *table, int write, 3333 void __user *buffer, size_t *length, 3334 loff_t *ppos) 3335 { 3336 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 3337 int ret; 3338 static DEFINE_MUTEX(zl_order_mutex); 3339 3340 mutex_lock(&zl_order_mutex); 3341 if (write) { 3342 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) { 3343 ret = -EINVAL; 3344 goto out; 3345 } 3346 strcpy(saved_string, (char *)table->data); 3347 } 3348 ret = proc_dostring(table, write, buffer, length, ppos); 3349 if (ret) 3350 goto out; 3351 if (write) { 3352 int oldval = user_zonelist_order; 3353 3354 ret = __parse_numa_zonelist_order((char *)table->data); 3355 if (ret) { 3356 /* 3357 * bogus value. restore saved string 3358 */ 3359 strncpy((char *)table->data, saved_string, 3360 NUMA_ZONELIST_ORDER_LEN); 3361 user_zonelist_order = oldval; 3362 } else if (oldval != user_zonelist_order) { 3363 mutex_lock(&zonelists_mutex); 3364 build_all_zonelists(NULL, NULL); 3365 mutex_unlock(&zonelists_mutex); 3366 } 3367 } 3368 out: 3369 mutex_unlock(&zl_order_mutex); 3370 return ret; 3371 } 3372 3373 3374 #define MAX_NODE_LOAD (nr_online_nodes) 3375 static int node_load[MAX_NUMNODES]; 3376 3377 /** 3378 * find_next_best_node - find the next node that should appear in a given node's fallback list 3379 * @node: node whose fallback list we're appending 3380 * @used_node_mask: nodemask_t of already used nodes 3381 * 3382 * We use a number of factors to determine which is the next node that should 3383 * appear on a given node's fallback list. The node should not have appeared 3384 * already in @node's fallback list, and it should be the next closest node 3385 * according to the distance array (which contains arbitrary distance values 3386 * from each node to each node in the system), and should also prefer nodes 3387 * with no CPUs, since presumably they'll have very little allocation pressure 3388 * on them otherwise. 3389 * It returns -1 if no node is found. 3390 */ 3391 static int find_next_best_node(int node, nodemask_t *used_node_mask) 3392 { 3393 int n, val; 3394 int min_val = INT_MAX; 3395 int best_node = NUMA_NO_NODE; 3396 const struct cpumask *tmp = cpumask_of_node(0); 3397 3398 /* Use the local node if we haven't already */ 3399 if (!node_isset(node, *used_node_mask)) { 3400 node_set(node, *used_node_mask); 3401 return node; 3402 } 3403 3404 for_each_node_state(n, N_MEMORY) { 3405 3406 /* Don't want a node to appear more than once */ 3407 if (node_isset(n, *used_node_mask)) 3408 continue; 3409 3410 /* Use the distance array to find the distance */ 3411 val = node_distance(node, n); 3412 3413 /* Penalize nodes under us ("prefer the next node") */ 3414 val += (n < node); 3415 3416 /* Give preference to headless and unused nodes */ 3417 tmp = cpumask_of_node(n); 3418 if (!cpumask_empty(tmp)) 3419 val += PENALTY_FOR_NODE_WITH_CPUS; 3420 3421 /* Slight preference for less loaded node */ 3422 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 3423 val += node_load[n]; 3424 3425 if (val < min_val) { 3426 min_val = val; 3427 best_node = n; 3428 } 3429 } 3430 3431 if (best_node >= 0) 3432 node_set(best_node, *used_node_mask); 3433 3434 return best_node; 3435 } 3436 3437 3438 /* 3439 * Build zonelists ordered by node and zones within node. 3440 * This results in maximum locality--normal zone overflows into local 3441 * DMA zone, if any--but risks exhausting DMA zone. 3442 */ 3443 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 3444 { 3445 int j; 3446 struct zonelist *zonelist; 3447 3448 zonelist = &pgdat->node_zonelists[0]; 3449 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 3450 ; 3451 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 3452 zonelist->_zonerefs[j].zone = NULL; 3453 zonelist->_zonerefs[j].zone_idx = 0; 3454 } 3455 3456 /* 3457 * Build gfp_thisnode zonelists 3458 */ 3459 static void build_thisnode_zonelists(pg_data_t *pgdat) 3460 { 3461 int j; 3462 struct zonelist *zonelist; 3463 3464 zonelist = &pgdat->node_zonelists[1]; 3465 j = build_zonelists_node(pgdat, zonelist, 0); 3466 zonelist->_zonerefs[j].zone = NULL; 3467 zonelist->_zonerefs[j].zone_idx = 0; 3468 } 3469 3470 /* 3471 * Build zonelists ordered by zone and nodes within zones. 3472 * This results in conserving DMA zone[s] until all Normal memory is 3473 * exhausted, but results in overflowing to remote node while memory 3474 * may still exist in local DMA zone. 3475 */ 3476 static int node_order[MAX_NUMNODES]; 3477 3478 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 3479 { 3480 int pos, j, node; 3481 int zone_type; /* needs to be signed */ 3482 struct zone *z; 3483 struct zonelist *zonelist; 3484 3485 zonelist = &pgdat->node_zonelists[0]; 3486 pos = 0; 3487 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 3488 for (j = 0; j < nr_nodes; j++) { 3489 node = node_order[j]; 3490 z = &NODE_DATA(node)->node_zones[zone_type]; 3491 if (populated_zone(z)) { 3492 zoneref_set_zone(z, 3493 &zonelist->_zonerefs[pos++]); 3494 check_highest_zone(zone_type); 3495 } 3496 } 3497 } 3498 zonelist->_zonerefs[pos].zone = NULL; 3499 zonelist->_zonerefs[pos].zone_idx = 0; 3500 } 3501 3502 static int default_zonelist_order(void) 3503 { 3504 int nid, zone_type; 3505 unsigned long low_kmem_size, total_size; 3506 struct zone *z; 3507 int average_size; 3508 /* 3509 * ZONE_DMA and ZONE_DMA32 can be very small area in the system. 3510 * If they are really small and used heavily, the system can fall 3511 * into OOM very easily. 3512 * This function detect ZONE_DMA/DMA32 size and configures zone order. 3513 */ 3514 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ 3515 low_kmem_size = 0; 3516 total_size = 0; 3517 for_each_online_node(nid) { 3518 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 3519 z = &NODE_DATA(nid)->node_zones[zone_type]; 3520 if (populated_zone(z)) { 3521 if (zone_type < ZONE_NORMAL) 3522 low_kmem_size += z->managed_pages; 3523 total_size += z->managed_pages; 3524 } else if (zone_type == ZONE_NORMAL) { 3525 /* 3526 * If any node has only lowmem, then node order 3527 * is preferred to allow kernel allocations 3528 * locally; otherwise, they can easily infringe 3529 * on other nodes when there is an abundance of 3530 * lowmem available to allocate from. 3531 */ 3532 return ZONELIST_ORDER_NODE; 3533 } 3534 } 3535 } 3536 if (!low_kmem_size || /* there are no DMA area. */ 3537 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ 3538 return ZONELIST_ORDER_NODE; 3539 /* 3540 * look into each node's config. 3541 * If there is a node whose DMA/DMA32 memory is very big area on 3542 * local memory, NODE_ORDER may be suitable. 3543 */ 3544 average_size = total_size / 3545 (nodes_weight(node_states[N_MEMORY]) + 1); 3546 for_each_online_node(nid) { 3547 low_kmem_size = 0; 3548 total_size = 0; 3549 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 3550 z = &NODE_DATA(nid)->node_zones[zone_type]; 3551 if (populated_zone(z)) { 3552 if (zone_type < ZONE_NORMAL) 3553 low_kmem_size += z->present_pages; 3554 total_size += z->present_pages; 3555 } 3556 } 3557 if (low_kmem_size && 3558 total_size > average_size && /* ignore small node */ 3559 low_kmem_size > total_size * 70/100) 3560 return ZONELIST_ORDER_NODE; 3561 } 3562 return ZONELIST_ORDER_ZONE; 3563 } 3564 3565 static void set_zonelist_order(void) 3566 { 3567 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 3568 current_zonelist_order = default_zonelist_order(); 3569 else 3570 current_zonelist_order = user_zonelist_order; 3571 } 3572 3573 static void build_zonelists(pg_data_t *pgdat) 3574 { 3575 int j, node, load; 3576 enum zone_type i; 3577 nodemask_t used_mask; 3578 int local_node, prev_node; 3579 struct zonelist *zonelist; 3580 int order = current_zonelist_order; 3581 3582 /* initialize zonelists */ 3583 for (i = 0; i < MAX_ZONELISTS; i++) { 3584 zonelist = pgdat->node_zonelists + i; 3585 zonelist->_zonerefs[0].zone = NULL; 3586 zonelist->_zonerefs[0].zone_idx = 0; 3587 } 3588 3589 /* NUMA-aware ordering of nodes */ 3590 local_node = pgdat->node_id; 3591 load = nr_online_nodes; 3592 prev_node = local_node; 3593 nodes_clear(used_mask); 3594 3595 memset(node_order, 0, sizeof(node_order)); 3596 j = 0; 3597 3598 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 3599 /* 3600 * We don't want to pressure a particular node. 3601 * So adding penalty to the first node in same 3602 * distance group to make it round-robin. 3603 */ 3604 if (node_distance(local_node, node) != 3605 node_distance(local_node, prev_node)) 3606 node_load[node] = load; 3607 3608 prev_node = node; 3609 load--; 3610 if (order == ZONELIST_ORDER_NODE) 3611 build_zonelists_in_node_order(pgdat, node); 3612 else 3613 node_order[j++] = node; /* remember order */ 3614 } 3615 3616 if (order == ZONELIST_ORDER_ZONE) { 3617 /* calculate node order -- i.e., DMA last! */ 3618 build_zonelists_in_zone_order(pgdat, j); 3619 } 3620 3621 build_thisnode_zonelists(pgdat); 3622 } 3623 3624 /* Construct the zonelist performance cache - see further mmzone.h */ 3625 static void build_zonelist_cache(pg_data_t *pgdat) 3626 { 3627 struct zonelist *zonelist; 3628 struct zonelist_cache *zlc; 3629 struct zoneref *z; 3630 3631 zonelist = &pgdat->node_zonelists[0]; 3632 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 3633 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 3634 for (z = zonelist->_zonerefs; z->zone; z++) 3635 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 3636 } 3637 3638 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3639 /* 3640 * Return node id of node used for "local" allocations. 3641 * I.e., first node id of first zone in arg node's generic zonelist. 3642 * Used for initializing percpu 'numa_mem', which is used primarily 3643 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 3644 */ 3645 int local_memory_node(int node) 3646 { 3647 struct zone *zone; 3648 3649 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 3650 gfp_zone(GFP_KERNEL), 3651 NULL, 3652 &zone); 3653 return zone->node; 3654 } 3655 #endif 3656 3657 #else /* CONFIG_NUMA */ 3658 3659 static void set_zonelist_order(void) 3660 { 3661 current_zonelist_order = ZONELIST_ORDER_ZONE; 3662 } 3663 3664 static void build_zonelists(pg_data_t *pgdat) 3665 { 3666 int node, local_node; 3667 enum zone_type j; 3668 struct zonelist *zonelist; 3669 3670 local_node = pgdat->node_id; 3671 3672 zonelist = &pgdat->node_zonelists[0]; 3673 j = build_zonelists_node(pgdat, zonelist, 0); 3674 3675 /* 3676 * Now we build the zonelist so that it contains the zones 3677 * of all the other nodes. 3678 * We don't want to pressure a particular node, so when 3679 * building the zones for node N, we make sure that the 3680 * zones coming right after the local ones are those from 3681 * node N+1 (modulo N) 3682 */ 3683 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 3684 if (!node_online(node)) 3685 continue; 3686 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 3687 } 3688 for (node = 0; node < local_node; node++) { 3689 if (!node_online(node)) 3690 continue; 3691 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 3692 } 3693 3694 zonelist->_zonerefs[j].zone = NULL; 3695 zonelist->_zonerefs[j].zone_idx = 0; 3696 } 3697 3698 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 3699 static void build_zonelist_cache(pg_data_t *pgdat) 3700 { 3701 pgdat->node_zonelists[0].zlcache_ptr = NULL; 3702 } 3703 3704 #endif /* CONFIG_NUMA */ 3705 3706 /* 3707 * Boot pageset table. One per cpu which is going to be used for all 3708 * zones and all nodes. The parameters will be set in such a way 3709 * that an item put on a list will immediately be handed over to 3710 * the buddy list. This is safe since pageset manipulation is done 3711 * with interrupts disabled. 3712 * 3713 * The boot_pagesets must be kept even after bootup is complete for 3714 * unused processors and/or zones. They do play a role for bootstrapping 3715 * hotplugged processors. 3716 * 3717 * zoneinfo_show() and maybe other functions do 3718 * not check if the processor is online before following the pageset pointer. 3719 * Other parts of the kernel may not check if the zone is available. 3720 */ 3721 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 3722 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 3723 static void setup_zone_pageset(struct zone *zone); 3724 3725 /* 3726 * Global mutex to protect against size modification of zonelists 3727 * as well as to serialize pageset setup for the new populated zone. 3728 */ 3729 DEFINE_MUTEX(zonelists_mutex); 3730 3731 /* return values int ....just for stop_machine() */ 3732 static int __build_all_zonelists(void *data) 3733 { 3734 int nid; 3735 int cpu; 3736 pg_data_t *self = data; 3737 3738 #ifdef CONFIG_NUMA 3739 memset(node_load, 0, sizeof(node_load)); 3740 #endif 3741 3742 if (self && !node_online(self->node_id)) { 3743 build_zonelists(self); 3744 build_zonelist_cache(self); 3745 } 3746 3747 for_each_online_node(nid) { 3748 pg_data_t *pgdat = NODE_DATA(nid); 3749 3750 build_zonelists(pgdat); 3751 build_zonelist_cache(pgdat); 3752 } 3753 3754 /* 3755 * Initialize the boot_pagesets that are going to be used 3756 * for bootstrapping processors. The real pagesets for 3757 * each zone will be allocated later when the per cpu 3758 * allocator is available. 3759 * 3760 * boot_pagesets are used also for bootstrapping offline 3761 * cpus if the system is already booted because the pagesets 3762 * are needed to initialize allocators on a specific cpu too. 3763 * F.e. the percpu allocator needs the page allocator which 3764 * needs the percpu allocator in order to allocate its pagesets 3765 * (a chicken-egg dilemma). 3766 */ 3767 for_each_possible_cpu(cpu) { 3768 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 3769 3770 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3771 /* 3772 * We now know the "local memory node" for each node-- 3773 * i.e., the node of the first zone in the generic zonelist. 3774 * Set up numa_mem percpu variable for on-line cpus. During 3775 * boot, only the boot cpu should be on-line; we'll init the 3776 * secondary cpus' numa_mem as they come on-line. During 3777 * node/memory hotplug, we'll fixup all on-line cpus. 3778 */ 3779 if (cpu_online(cpu)) 3780 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 3781 #endif 3782 } 3783 3784 return 0; 3785 } 3786 3787 /* 3788 * Called with zonelists_mutex held always 3789 * unless system_state == SYSTEM_BOOTING. 3790 */ 3791 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone) 3792 { 3793 set_zonelist_order(); 3794 3795 if (system_state == SYSTEM_BOOTING) { 3796 __build_all_zonelists(NULL); 3797 mminit_verify_zonelist(); 3798 cpuset_init_current_mems_allowed(); 3799 } else { 3800 #ifdef CONFIG_MEMORY_HOTPLUG 3801 if (zone) 3802 setup_zone_pageset(zone); 3803 #endif 3804 /* we have to stop all cpus to guarantee there is no user 3805 of zonelist */ 3806 stop_machine(__build_all_zonelists, pgdat, NULL); 3807 /* cpuset refresh routine should be here */ 3808 } 3809 vm_total_pages = nr_free_pagecache_pages(); 3810 /* 3811 * Disable grouping by mobility if the number of pages in the 3812 * system is too low to allow the mechanism to work. It would be 3813 * more accurate, but expensive to check per-zone. This check is 3814 * made on memory-hotadd so a system can start with mobility 3815 * disabled and enable it later 3816 */ 3817 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 3818 page_group_by_mobility_disabled = 1; 3819 else 3820 page_group_by_mobility_disabled = 0; 3821 3822 printk("Built %i zonelists in %s order, mobility grouping %s. " 3823 "Total pages: %ld\n", 3824 nr_online_nodes, 3825 zonelist_order_name[current_zonelist_order], 3826 page_group_by_mobility_disabled ? "off" : "on", 3827 vm_total_pages); 3828 #ifdef CONFIG_NUMA 3829 printk("Policy zone: %s\n", zone_names[policy_zone]); 3830 #endif 3831 } 3832 3833 /* 3834 * Helper functions to size the waitqueue hash table. 3835 * Essentially these want to choose hash table sizes sufficiently 3836 * large so that collisions trying to wait on pages are rare. 3837 * But in fact, the number of active page waitqueues on typical 3838 * systems is ridiculously low, less than 200. So this is even 3839 * conservative, even though it seems large. 3840 * 3841 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 3842 * waitqueues, i.e. the size of the waitq table given the number of pages. 3843 */ 3844 #define PAGES_PER_WAITQUEUE 256 3845 3846 #ifndef CONFIG_MEMORY_HOTPLUG 3847 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3848 { 3849 unsigned long size = 1; 3850 3851 pages /= PAGES_PER_WAITQUEUE; 3852 3853 while (size < pages) 3854 size <<= 1; 3855 3856 /* 3857 * Once we have dozens or even hundreds of threads sleeping 3858 * on IO we've got bigger problems than wait queue collision. 3859 * Limit the size of the wait table to a reasonable size. 3860 */ 3861 size = min(size, 4096UL); 3862 3863 return max(size, 4UL); 3864 } 3865 #else 3866 /* 3867 * A zone's size might be changed by hot-add, so it is not possible to determine 3868 * a suitable size for its wait_table. So we use the maximum size now. 3869 * 3870 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 3871 * 3872 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 3873 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 3874 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 3875 * 3876 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 3877 * or more by the traditional way. (See above). It equals: 3878 * 3879 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 3880 * ia64(16K page size) : = ( 8G + 4M)byte. 3881 * powerpc (64K page size) : = (32G +16M)byte. 3882 */ 3883 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3884 { 3885 return 4096UL; 3886 } 3887 #endif 3888 3889 /* 3890 * This is an integer logarithm so that shifts can be used later 3891 * to extract the more random high bits from the multiplicative 3892 * hash function before the remainder is taken. 3893 */ 3894 static inline unsigned long wait_table_bits(unsigned long size) 3895 { 3896 return ffz(~size); 3897 } 3898 3899 /* 3900 * Check if a pageblock contains reserved pages 3901 */ 3902 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn) 3903 { 3904 unsigned long pfn; 3905 3906 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3907 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn))) 3908 return 1; 3909 } 3910 return 0; 3911 } 3912 3913 /* 3914 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 3915 * of blocks reserved is based on min_wmark_pages(zone). The memory within 3916 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes 3917 * higher will lead to a bigger reserve which will get freed as contiguous 3918 * blocks as reclaim kicks in 3919 */ 3920 static void setup_zone_migrate_reserve(struct zone *zone) 3921 { 3922 unsigned long start_pfn, pfn, end_pfn, block_end_pfn; 3923 struct page *page; 3924 unsigned long block_migratetype; 3925 int reserve; 3926 int old_reserve; 3927 3928 /* 3929 * Get the start pfn, end pfn and the number of blocks to reserve 3930 * We have to be careful to be aligned to pageblock_nr_pages to 3931 * make sure that we always check pfn_valid for the first page in 3932 * the block. 3933 */ 3934 start_pfn = zone->zone_start_pfn; 3935 end_pfn = zone_end_pfn(zone); 3936 start_pfn = roundup(start_pfn, pageblock_nr_pages); 3937 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> 3938 pageblock_order; 3939 3940 /* 3941 * Reserve blocks are generally in place to help high-order atomic 3942 * allocations that are short-lived. A min_free_kbytes value that 3943 * would result in more than 2 reserve blocks for atomic allocations 3944 * is assumed to be in place to help anti-fragmentation for the 3945 * future allocation of hugepages at runtime. 3946 */ 3947 reserve = min(2, reserve); 3948 old_reserve = zone->nr_migrate_reserve_block; 3949 3950 /* When memory hot-add, we almost always need to do nothing */ 3951 if (reserve == old_reserve) 3952 return; 3953 zone->nr_migrate_reserve_block = reserve; 3954 3955 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 3956 if (!pfn_valid(pfn)) 3957 continue; 3958 page = pfn_to_page(pfn); 3959 3960 /* Watch out for overlapping nodes */ 3961 if (page_to_nid(page) != zone_to_nid(zone)) 3962 continue; 3963 3964 block_migratetype = get_pageblock_migratetype(page); 3965 3966 /* Only test what is necessary when the reserves are not met */ 3967 if (reserve > 0) { 3968 /* 3969 * Blocks with reserved pages will never free, skip 3970 * them. 3971 */ 3972 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn); 3973 if (pageblock_is_reserved(pfn, block_end_pfn)) 3974 continue; 3975 3976 /* If this block is reserved, account for it */ 3977 if (block_migratetype == MIGRATE_RESERVE) { 3978 reserve--; 3979 continue; 3980 } 3981 3982 /* Suitable for reserving if this block is movable */ 3983 if (block_migratetype == MIGRATE_MOVABLE) { 3984 set_pageblock_migratetype(page, 3985 MIGRATE_RESERVE); 3986 move_freepages_block(zone, page, 3987 MIGRATE_RESERVE); 3988 reserve--; 3989 continue; 3990 } 3991 } else if (!old_reserve) { 3992 /* 3993 * At boot time we don't need to scan the whole zone 3994 * for turning off MIGRATE_RESERVE. 3995 */ 3996 break; 3997 } 3998 3999 /* 4000 * If the reserve is met and this is a previous reserved block, 4001 * take it back 4002 */ 4003 if (block_migratetype == MIGRATE_RESERVE) { 4004 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 4005 move_freepages_block(zone, page, MIGRATE_MOVABLE); 4006 } 4007 } 4008 } 4009 4010 /* 4011 * Initially all pages are reserved - free ones are freed 4012 * up by free_all_bootmem() once the early boot process is 4013 * done. Non-atomic initialization, single-pass. 4014 */ 4015 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 4016 unsigned long start_pfn, enum memmap_context context) 4017 { 4018 struct page *page; 4019 unsigned long end_pfn = start_pfn + size; 4020 unsigned long pfn; 4021 struct zone *z; 4022 4023 if (highest_memmap_pfn < end_pfn - 1) 4024 highest_memmap_pfn = end_pfn - 1; 4025 4026 z = &NODE_DATA(nid)->node_zones[zone]; 4027 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 4028 /* 4029 * There can be holes in boot-time mem_map[]s 4030 * handed to this function. They do not 4031 * exist on hotplugged memory. 4032 */ 4033 if (context == MEMMAP_EARLY) { 4034 if (!early_pfn_valid(pfn)) 4035 continue; 4036 if (!early_pfn_in_nid(pfn, nid)) 4037 continue; 4038 } 4039 page = pfn_to_page(pfn); 4040 set_page_links(page, zone, nid, pfn); 4041 mminit_verify_page_links(page, zone, nid, pfn); 4042 init_page_count(page); 4043 page_mapcount_reset(page); 4044 page_cpupid_reset_last(page); 4045 SetPageReserved(page); 4046 /* 4047 * Mark the block movable so that blocks are reserved for 4048 * movable at startup. This will force kernel allocations 4049 * to reserve their blocks rather than leaking throughout 4050 * the address space during boot when many long-lived 4051 * kernel allocations are made. Later some blocks near 4052 * the start are marked MIGRATE_RESERVE by 4053 * setup_zone_migrate_reserve() 4054 * 4055 * bitmap is created for zone's valid pfn range. but memmap 4056 * can be created for invalid pages (for alignment) 4057 * check here not to call set_pageblock_migratetype() against 4058 * pfn out of zone. 4059 */ 4060 if ((z->zone_start_pfn <= pfn) 4061 && (pfn < zone_end_pfn(z)) 4062 && !(pfn & (pageblock_nr_pages - 1))) 4063 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 4064 4065 INIT_LIST_HEAD(&page->lru); 4066 #ifdef WANT_PAGE_VIRTUAL 4067 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 4068 if (!is_highmem_idx(zone)) 4069 set_page_address(page, __va(pfn << PAGE_SHIFT)); 4070 #endif 4071 } 4072 } 4073 4074 static void __meminit zone_init_free_lists(struct zone *zone) 4075 { 4076 int order, t; 4077 for_each_migratetype_order(order, t) { 4078 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 4079 zone->free_area[order].nr_free = 0; 4080 } 4081 } 4082 4083 #ifndef __HAVE_ARCH_MEMMAP_INIT 4084 #define memmap_init(size, nid, zone, start_pfn) \ 4085 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 4086 #endif 4087 4088 static int __meminit zone_batchsize(struct zone *zone) 4089 { 4090 #ifdef CONFIG_MMU 4091 int batch; 4092 4093 /* 4094 * The per-cpu-pages pools are set to around 1000th of the 4095 * size of the zone. But no more than 1/2 of a meg. 4096 * 4097 * OK, so we don't know how big the cache is. So guess. 4098 */ 4099 batch = zone->managed_pages / 1024; 4100 if (batch * PAGE_SIZE > 512 * 1024) 4101 batch = (512 * 1024) / PAGE_SIZE; 4102 batch /= 4; /* We effectively *= 4 below */ 4103 if (batch < 1) 4104 batch = 1; 4105 4106 /* 4107 * Clamp the batch to a 2^n - 1 value. Having a power 4108 * of 2 value was found to be more likely to have 4109 * suboptimal cache aliasing properties in some cases. 4110 * 4111 * For example if 2 tasks are alternately allocating 4112 * batches of pages, one task can end up with a lot 4113 * of pages of one half of the possible page colors 4114 * and the other with pages of the other colors. 4115 */ 4116 batch = rounddown_pow_of_two(batch + batch/2) - 1; 4117 4118 return batch; 4119 4120 #else 4121 /* The deferral and batching of frees should be suppressed under NOMMU 4122 * conditions. 4123 * 4124 * The problem is that NOMMU needs to be able to allocate large chunks 4125 * of contiguous memory as there's no hardware page translation to 4126 * assemble apparent contiguous memory from discontiguous pages. 4127 * 4128 * Queueing large contiguous runs of pages for batching, however, 4129 * causes the pages to actually be freed in smaller chunks. As there 4130 * can be a significant delay between the individual batches being 4131 * recycled, this leads to the once large chunks of space being 4132 * fragmented and becoming unavailable for high-order allocations. 4133 */ 4134 return 0; 4135 #endif 4136 } 4137 4138 /* 4139 * pcp->high and pcp->batch values are related and dependent on one another: 4140 * ->batch must never be higher then ->high. 4141 * The following function updates them in a safe manner without read side 4142 * locking. 4143 * 4144 * Any new users of pcp->batch and pcp->high should ensure they can cope with 4145 * those fields changing asynchronously (acording the the above rule). 4146 * 4147 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 4148 * outside of boot time (or some other assurance that no concurrent updaters 4149 * exist). 4150 */ 4151 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 4152 unsigned long batch) 4153 { 4154 /* start with a fail safe value for batch */ 4155 pcp->batch = 1; 4156 smp_wmb(); 4157 4158 /* Update high, then batch, in order */ 4159 pcp->high = high; 4160 smp_wmb(); 4161 4162 pcp->batch = batch; 4163 } 4164 4165 /* a companion to pageset_set_high() */ 4166 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 4167 { 4168 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 4169 } 4170 4171 static void pageset_init(struct per_cpu_pageset *p) 4172 { 4173 struct per_cpu_pages *pcp; 4174 int migratetype; 4175 4176 memset(p, 0, sizeof(*p)); 4177 4178 pcp = &p->pcp; 4179 pcp->count = 0; 4180 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 4181 INIT_LIST_HEAD(&pcp->lists[migratetype]); 4182 } 4183 4184 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 4185 { 4186 pageset_init(p); 4187 pageset_set_batch(p, batch); 4188 } 4189 4190 /* 4191 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 4192 * to the value high for the pageset p. 4193 */ 4194 static void pageset_set_high(struct per_cpu_pageset *p, 4195 unsigned long high) 4196 { 4197 unsigned long batch = max(1UL, high / 4); 4198 if ((high / 4) > (PAGE_SHIFT * 8)) 4199 batch = PAGE_SHIFT * 8; 4200 4201 pageset_update(&p->pcp, high, batch); 4202 } 4203 4204 static void __meminit pageset_set_high_and_batch(struct zone *zone, 4205 struct per_cpu_pageset *pcp) 4206 { 4207 if (percpu_pagelist_fraction) 4208 pageset_set_high(pcp, 4209 (zone->managed_pages / 4210 percpu_pagelist_fraction)); 4211 else 4212 pageset_set_batch(pcp, zone_batchsize(zone)); 4213 } 4214 4215 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 4216 { 4217 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 4218 4219 pageset_init(pcp); 4220 pageset_set_high_and_batch(zone, pcp); 4221 } 4222 4223 static void __meminit setup_zone_pageset(struct zone *zone) 4224 { 4225 int cpu; 4226 zone->pageset = alloc_percpu(struct per_cpu_pageset); 4227 for_each_possible_cpu(cpu) 4228 zone_pageset_init(zone, cpu); 4229 } 4230 4231 /* 4232 * Allocate per cpu pagesets and initialize them. 4233 * Before this call only boot pagesets were available. 4234 */ 4235 void __init setup_per_cpu_pageset(void) 4236 { 4237 struct zone *zone; 4238 4239 for_each_populated_zone(zone) 4240 setup_zone_pageset(zone); 4241 } 4242 4243 static noinline __init_refok 4244 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 4245 { 4246 int i; 4247 size_t alloc_size; 4248 4249 /* 4250 * The per-page waitqueue mechanism uses hashed waitqueues 4251 * per zone. 4252 */ 4253 zone->wait_table_hash_nr_entries = 4254 wait_table_hash_nr_entries(zone_size_pages); 4255 zone->wait_table_bits = 4256 wait_table_bits(zone->wait_table_hash_nr_entries); 4257 alloc_size = zone->wait_table_hash_nr_entries 4258 * sizeof(wait_queue_head_t); 4259 4260 if (!slab_is_available()) { 4261 zone->wait_table = (wait_queue_head_t *) 4262 memblock_virt_alloc_node_nopanic( 4263 alloc_size, zone->zone_pgdat->node_id); 4264 } else { 4265 /* 4266 * This case means that a zone whose size was 0 gets new memory 4267 * via memory hot-add. 4268 * But it may be the case that a new node was hot-added. In 4269 * this case vmalloc() will not be able to use this new node's 4270 * memory - this wait_table must be initialized to use this new 4271 * node itself as well. 4272 * To use this new node's memory, further consideration will be 4273 * necessary. 4274 */ 4275 zone->wait_table = vmalloc(alloc_size); 4276 } 4277 if (!zone->wait_table) 4278 return -ENOMEM; 4279 4280 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i) 4281 init_waitqueue_head(zone->wait_table + i); 4282 4283 return 0; 4284 } 4285 4286 static __meminit void zone_pcp_init(struct zone *zone) 4287 { 4288 /* 4289 * per cpu subsystem is not up at this point. The following code 4290 * relies on the ability of the linker to provide the 4291 * offset of a (static) per cpu variable into the per cpu area. 4292 */ 4293 zone->pageset = &boot_pageset; 4294 4295 if (populated_zone(zone)) 4296 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 4297 zone->name, zone->present_pages, 4298 zone_batchsize(zone)); 4299 } 4300 4301 int __meminit init_currently_empty_zone(struct zone *zone, 4302 unsigned long zone_start_pfn, 4303 unsigned long size, 4304 enum memmap_context context) 4305 { 4306 struct pglist_data *pgdat = zone->zone_pgdat; 4307 int ret; 4308 ret = zone_wait_table_init(zone, size); 4309 if (ret) 4310 return ret; 4311 pgdat->nr_zones = zone_idx(zone) + 1; 4312 4313 zone->zone_start_pfn = zone_start_pfn; 4314 4315 mminit_dprintk(MMINIT_TRACE, "memmap_init", 4316 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 4317 pgdat->node_id, 4318 (unsigned long)zone_idx(zone), 4319 zone_start_pfn, (zone_start_pfn + size)); 4320 4321 zone_init_free_lists(zone); 4322 4323 return 0; 4324 } 4325 4326 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4327 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 4328 /* 4329 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 4330 * Architectures may implement their own version but if add_active_range() 4331 * was used and there are no special requirements, this is a convenient 4332 * alternative 4333 */ 4334 int __meminit __early_pfn_to_nid(unsigned long pfn) 4335 { 4336 unsigned long start_pfn, end_pfn; 4337 int nid; 4338 /* 4339 * NOTE: The following SMP-unsafe globals are only used early in boot 4340 * when the kernel is running single-threaded. 4341 */ 4342 static unsigned long __meminitdata last_start_pfn, last_end_pfn; 4343 static int __meminitdata last_nid; 4344 4345 if (last_start_pfn <= pfn && pfn < last_end_pfn) 4346 return last_nid; 4347 4348 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 4349 if (nid != -1) { 4350 last_start_pfn = start_pfn; 4351 last_end_pfn = end_pfn; 4352 last_nid = nid; 4353 } 4354 4355 return nid; 4356 } 4357 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 4358 4359 int __meminit early_pfn_to_nid(unsigned long pfn) 4360 { 4361 int nid; 4362 4363 nid = __early_pfn_to_nid(pfn); 4364 if (nid >= 0) 4365 return nid; 4366 /* just returns 0 */ 4367 return 0; 4368 } 4369 4370 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 4371 bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 4372 { 4373 int nid; 4374 4375 nid = __early_pfn_to_nid(pfn); 4376 if (nid >= 0 && nid != node) 4377 return false; 4378 return true; 4379 } 4380 #endif 4381 4382 /** 4383 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range 4384 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 4385 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid 4386 * 4387 * If an architecture guarantees that all ranges registered with 4388 * add_active_ranges() contain no holes and may be freed, this 4389 * this function may be used instead of calling memblock_free_early_nid() 4390 * manually. 4391 */ 4392 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 4393 { 4394 unsigned long start_pfn, end_pfn; 4395 int i, this_nid; 4396 4397 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 4398 start_pfn = min(start_pfn, max_low_pfn); 4399 end_pfn = min(end_pfn, max_low_pfn); 4400 4401 if (start_pfn < end_pfn) 4402 memblock_free_early_nid(PFN_PHYS(start_pfn), 4403 (end_pfn - start_pfn) << PAGE_SHIFT, 4404 this_nid); 4405 } 4406 } 4407 4408 /** 4409 * sparse_memory_present_with_active_regions - Call memory_present for each active range 4410 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 4411 * 4412 * If an architecture guarantees that all ranges registered with 4413 * add_active_ranges() contain no holes and may be freed, this 4414 * function may be used instead of calling memory_present() manually. 4415 */ 4416 void __init sparse_memory_present_with_active_regions(int nid) 4417 { 4418 unsigned long start_pfn, end_pfn; 4419 int i, this_nid; 4420 4421 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 4422 memory_present(this_nid, start_pfn, end_pfn); 4423 } 4424 4425 /** 4426 * get_pfn_range_for_nid - Return the start and end page frames for a node 4427 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 4428 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 4429 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 4430 * 4431 * It returns the start and end page frame of a node based on information 4432 * provided by an arch calling add_active_range(). If called for a node 4433 * with no available memory, a warning is printed and the start and end 4434 * PFNs will be 0. 4435 */ 4436 void __meminit get_pfn_range_for_nid(unsigned int nid, 4437 unsigned long *start_pfn, unsigned long *end_pfn) 4438 { 4439 unsigned long this_start_pfn, this_end_pfn; 4440 int i; 4441 4442 *start_pfn = -1UL; 4443 *end_pfn = 0; 4444 4445 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 4446 *start_pfn = min(*start_pfn, this_start_pfn); 4447 *end_pfn = max(*end_pfn, this_end_pfn); 4448 } 4449 4450 if (*start_pfn == -1UL) 4451 *start_pfn = 0; 4452 } 4453 4454 /* 4455 * This finds a zone that can be used for ZONE_MOVABLE pages. The 4456 * assumption is made that zones within a node are ordered in monotonic 4457 * increasing memory addresses so that the "highest" populated zone is used 4458 */ 4459 static void __init find_usable_zone_for_movable(void) 4460 { 4461 int zone_index; 4462 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 4463 if (zone_index == ZONE_MOVABLE) 4464 continue; 4465 4466 if (arch_zone_highest_possible_pfn[zone_index] > 4467 arch_zone_lowest_possible_pfn[zone_index]) 4468 break; 4469 } 4470 4471 VM_BUG_ON(zone_index == -1); 4472 movable_zone = zone_index; 4473 } 4474 4475 /* 4476 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 4477 * because it is sized independent of architecture. Unlike the other zones, 4478 * the starting point for ZONE_MOVABLE is not fixed. It may be different 4479 * in each node depending on the size of each node and how evenly kernelcore 4480 * is distributed. This helper function adjusts the zone ranges 4481 * provided by the architecture for a given node by using the end of the 4482 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 4483 * zones within a node are in order of monotonic increases memory addresses 4484 */ 4485 static void __meminit adjust_zone_range_for_zone_movable(int nid, 4486 unsigned long zone_type, 4487 unsigned long node_start_pfn, 4488 unsigned long node_end_pfn, 4489 unsigned long *zone_start_pfn, 4490 unsigned long *zone_end_pfn) 4491 { 4492 /* Only adjust if ZONE_MOVABLE is on this node */ 4493 if (zone_movable_pfn[nid]) { 4494 /* Size ZONE_MOVABLE */ 4495 if (zone_type == ZONE_MOVABLE) { 4496 *zone_start_pfn = zone_movable_pfn[nid]; 4497 *zone_end_pfn = min(node_end_pfn, 4498 arch_zone_highest_possible_pfn[movable_zone]); 4499 4500 /* Adjust for ZONE_MOVABLE starting within this range */ 4501 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 4502 *zone_end_pfn > zone_movable_pfn[nid]) { 4503 *zone_end_pfn = zone_movable_pfn[nid]; 4504 4505 /* Check if this whole range is within ZONE_MOVABLE */ 4506 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 4507 *zone_start_pfn = *zone_end_pfn; 4508 } 4509 } 4510 4511 /* 4512 * Return the number of pages a zone spans in a node, including holes 4513 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 4514 */ 4515 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 4516 unsigned long zone_type, 4517 unsigned long node_start_pfn, 4518 unsigned long node_end_pfn, 4519 unsigned long *ignored) 4520 { 4521 unsigned long zone_start_pfn, zone_end_pfn; 4522 4523 /* Get the start and end of the zone */ 4524 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 4525 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 4526 adjust_zone_range_for_zone_movable(nid, zone_type, 4527 node_start_pfn, node_end_pfn, 4528 &zone_start_pfn, &zone_end_pfn); 4529 4530 /* Check that this node has pages within the zone's required range */ 4531 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 4532 return 0; 4533 4534 /* Move the zone boundaries inside the node if necessary */ 4535 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 4536 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 4537 4538 /* Return the spanned pages */ 4539 return zone_end_pfn - zone_start_pfn; 4540 } 4541 4542 /* 4543 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 4544 * then all holes in the requested range will be accounted for. 4545 */ 4546 unsigned long __meminit __absent_pages_in_range(int nid, 4547 unsigned long range_start_pfn, 4548 unsigned long range_end_pfn) 4549 { 4550 unsigned long nr_absent = range_end_pfn - range_start_pfn; 4551 unsigned long start_pfn, end_pfn; 4552 int i; 4553 4554 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 4555 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 4556 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 4557 nr_absent -= end_pfn - start_pfn; 4558 } 4559 return nr_absent; 4560 } 4561 4562 /** 4563 * absent_pages_in_range - Return number of page frames in holes within a range 4564 * @start_pfn: The start PFN to start searching for holes 4565 * @end_pfn: The end PFN to stop searching for holes 4566 * 4567 * It returns the number of pages frames in memory holes within a range. 4568 */ 4569 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 4570 unsigned long end_pfn) 4571 { 4572 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 4573 } 4574 4575 /* Return the number of page frames in holes in a zone on a node */ 4576 static unsigned long __meminit zone_absent_pages_in_node(int nid, 4577 unsigned long zone_type, 4578 unsigned long node_start_pfn, 4579 unsigned long node_end_pfn, 4580 unsigned long *ignored) 4581 { 4582 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 4583 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 4584 unsigned long zone_start_pfn, zone_end_pfn; 4585 4586 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 4587 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 4588 4589 adjust_zone_range_for_zone_movable(nid, zone_type, 4590 node_start_pfn, node_end_pfn, 4591 &zone_start_pfn, &zone_end_pfn); 4592 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 4593 } 4594 4595 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4596 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 4597 unsigned long zone_type, 4598 unsigned long node_start_pfn, 4599 unsigned long node_end_pfn, 4600 unsigned long *zones_size) 4601 { 4602 return zones_size[zone_type]; 4603 } 4604 4605 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 4606 unsigned long zone_type, 4607 unsigned long node_start_pfn, 4608 unsigned long node_end_pfn, 4609 unsigned long *zholes_size) 4610 { 4611 if (!zholes_size) 4612 return 0; 4613 4614 return zholes_size[zone_type]; 4615 } 4616 4617 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4618 4619 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 4620 unsigned long node_start_pfn, 4621 unsigned long node_end_pfn, 4622 unsigned long *zones_size, 4623 unsigned long *zholes_size) 4624 { 4625 unsigned long realtotalpages, totalpages = 0; 4626 enum zone_type i; 4627 4628 for (i = 0; i < MAX_NR_ZONES; i++) 4629 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 4630 node_start_pfn, 4631 node_end_pfn, 4632 zones_size); 4633 pgdat->node_spanned_pages = totalpages; 4634 4635 realtotalpages = totalpages; 4636 for (i = 0; i < MAX_NR_ZONES; i++) 4637 realtotalpages -= 4638 zone_absent_pages_in_node(pgdat->node_id, i, 4639 node_start_pfn, node_end_pfn, 4640 zholes_size); 4641 pgdat->node_present_pages = realtotalpages; 4642 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 4643 realtotalpages); 4644 } 4645 4646 #ifndef CONFIG_SPARSEMEM 4647 /* 4648 * Calculate the size of the zone->blockflags rounded to an unsigned long 4649 * Start by making sure zonesize is a multiple of pageblock_order by rounding 4650 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 4651 * round what is now in bits to nearest long in bits, then return it in 4652 * bytes. 4653 */ 4654 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 4655 { 4656 unsigned long usemapsize; 4657 4658 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 4659 usemapsize = roundup(zonesize, pageblock_nr_pages); 4660 usemapsize = usemapsize >> pageblock_order; 4661 usemapsize *= NR_PAGEBLOCK_BITS; 4662 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 4663 4664 return usemapsize / 8; 4665 } 4666 4667 static void __init setup_usemap(struct pglist_data *pgdat, 4668 struct zone *zone, 4669 unsigned long zone_start_pfn, 4670 unsigned long zonesize) 4671 { 4672 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 4673 zone->pageblock_flags = NULL; 4674 if (usemapsize) 4675 zone->pageblock_flags = 4676 memblock_virt_alloc_node_nopanic(usemapsize, 4677 pgdat->node_id); 4678 } 4679 #else 4680 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 4681 unsigned long zone_start_pfn, unsigned long zonesize) {} 4682 #endif /* CONFIG_SPARSEMEM */ 4683 4684 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 4685 4686 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 4687 void __paginginit set_pageblock_order(void) 4688 { 4689 unsigned int order; 4690 4691 /* Check that pageblock_nr_pages has not already been setup */ 4692 if (pageblock_order) 4693 return; 4694 4695 if (HPAGE_SHIFT > PAGE_SHIFT) 4696 order = HUGETLB_PAGE_ORDER; 4697 else 4698 order = MAX_ORDER - 1; 4699 4700 /* 4701 * Assume the largest contiguous order of interest is a huge page. 4702 * This value may be variable depending on boot parameters on IA64 and 4703 * powerpc. 4704 */ 4705 pageblock_order = order; 4706 } 4707 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4708 4709 /* 4710 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 4711 * is unused as pageblock_order is set at compile-time. See 4712 * include/linux/pageblock-flags.h for the values of pageblock_order based on 4713 * the kernel config 4714 */ 4715 void __paginginit set_pageblock_order(void) 4716 { 4717 } 4718 4719 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4720 4721 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages, 4722 unsigned long present_pages) 4723 { 4724 unsigned long pages = spanned_pages; 4725 4726 /* 4727 * Provide a more accurate estimation if there are holes within 4728 * the zone and SPARSEMEM is in use. If there are holes within the 4729 * zone, each populated memory region may cost us one or two extra 4730 * memmap pages due to alignment because memmap pages for each 4731 * populated regions may not naturally algined on page boundary. 4732 * So the (present_pages >> 4) heuristic is a tradeoff for that. 4733 */ 4734 if (spanned_pages > present_pages + (present_pages >> 4) && 4735 IS_ENABLED(CONFIG_SPARSEMEM)) 4736 pages = present_pages; 4737 4738 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 4739 } 4740 4741 /* 4742 * Set up the zone data structures: 4743 * - mark all pages reserved 4744 * - mark all memory queues empty 4745 * - clear the memory bitmaps 4746 * 4747 * NOTE: pgdat should get zeroed by caller. 4748 */ 4749 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 4750 unsigned long node_start_pfn, unsigned long node_end_pfn, 4751 unsigned long *zones_size, unsigned long *zholes_size) 4752 { 4753 enum zone_type j; 4754 int nid = pgdat->node_id; 4755 unsigned long zone_start_pfn = pgdat->node_start_pfn; 4756 int ret; 4757 4758 pgdat_resize_init(pgdat); 4759 #ifdef CONFIG_NUMA_BALANCING 4760 spin_lock_init(&pgdat->numabalancing_migrate_lock); 4761 pgdat->numabalancing_migrate_nr_pages = 0; 4762 pgdat->numabalancing_migrate_next_window = jiffies; 4763 #endif 4764 init_waitqueue_head(&pgdat->kswapd_wait); 4765 init_waitqueue_head(&pgdat->pfmemalloc_wait); 4766 pgdat_page_cgroup_init(pgdat); 4767 4768 for (j = 0; j < MAX_NR_ZONES; j++) { 4769 struct zone *zone = pgdat->node_zones + j; 4770 unsigned long size, realsize, freesize, memmap_pages; 4771 4772 size = zone_spanned_pages_in_node(nid, j, node_start_pfn, 4773 node_end_pfn, zones_size); 4774 realsize = freesize = size - zone_absent_pages_in_node(nid, j, 4775 node_start_pfn, 4776 node_end_pfn, 4777 zholes_size); 4778 4779 /* 4780 * Adjust freesize so that it accounts for how much memory 4781 * is used by this zone for memmap. This affects the watermark 4782 * and per-cpu initialisations 4783 */ 4784 memmap_pages = calc_memmap_size(size, realsize); 4785 if (freesize >= memmap_pages) { 4786 freesize -= memmap_pages; 4787 if (memmap_pages) 4788 printk(KERN_DEBUG 4789 " %s zone: %lu pages used for memmap\n", 4790 zone_names[j], memmap_pages); 4791 } else 4792 printk(KERN_WARNING 4793 " %s zone: %lu pages exceeds freesize %lu\n", 4794 zone_names[j], memmap_pages, freesize); 4795 4796 /* Account for reserved pages */ 4797 if (j == 0 && freesize > dma_reserve) { 4798 freesize -= dma_reserve; 4799 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 4800 zone_names[0], dma_reserve); 4801 } 4802 4803 if (!is_highmem_idx(j)) 4804 nr_kernel_pages += freesize; 4805 /* Charge for highmem memmap if there are enough kernel pages */ 4806 else if (nr_kernel_pages > memmap_pages * 2) 4807 nr_kernel_pages -= memmap_pages; 4808 nr_all_pages += freesize; 4809 4810 zone->spanned_pages = size; 4811 zone->present_pages = realsize; 4812 /* 4813 * Set an approximate value for lowmem here, it will be adjusted 4814 * when the bootmem allocator frees pages into the buddy system. 4815 * And all highmem pages will be managed by the buddy system. 4816 */ 4817 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize; 4818 #ifdef CONFIG_NUMA 4819 zone->node = nid; 4820 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio) 4821 / 100; 4822 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100; 4823 #endif 4824 zone->name = zone_names[j]; 4825 spin_lock_init(&zone->lock); 4826 spin_lock_init(&zone->lru_lock); 4827 zone_seqlock_init(zone); 4828 zone->zone_pgdat = pgdat; 4829 zone_pcp_init(zone); 4830 4831 /* For bootup, initialized properly in watermark setup */ 4832 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages); 4833 4834 lruvec_init(&zone->lruvec); 4835 if (!size) 4836 continue; 4837 4838 set_pageblock_order(); 4839 setup_usemap(pgdat, zone, zone_start_pfn, size); 4840 ret = init_currently_empty_zone(zone, zone_start_pfn, 4841 size, MEMMAP_EARLY); 4842 BUG_ON(ret); 4843 memmap_init(size, nid, j, zone_start_pfn); 4844 zone_start_pfn += size; 4845 } 4846 } 4847 4848 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 4849 { 4850 /* Skip empty nodes */ 4851 if (!pgdat->node_spanned_pages) 4852 return; 4853 4854 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4855 /* ia64 gets its own node_mem_map, before this, without bootmem */ 4856 if (!pgdat->node_mem_map) { 4857 unsigned long size, start, end; 4858 struct page *map; 4859 4860 /* 4861 * The zone's endpoints aren't required to be MAX_ORDER 4862 * aligned but the node_mem_map endpoints must be in order 4863 * for the buddy allocator to function correctly. 4864 */ 4865 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 4866 end = pgdat_end_pfn(pgdat); 4867 end = ALIGN(end, MAX_ORDER_NR_PAGES); 4868 size = (end - start) * sizeof(struct page); 4869 map = alloc_remap(pgdat->node_id, size); 4870 if (!map) 4871 map = memblock_virt_alloc_node_nopanic(size, 4872 pgdat->node_id); 4873 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 4874 } 4875 #ifndef CONFIG_NEED_MULTIPLE_NODES 4876 /* 4877 * With no DISCONTIG, the global mem_map is just set as node 0's 4878 */ 4879 if (pgdat == NODE_DATA(0)) { 4880 mem_map = NODE_DATA(0)->node_mem_map; 4881 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4882 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 4883 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 4884 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4885 } 4886 #endif 4887 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 4888 } 4889 4890 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 4891 unsigned long node_start_pfn, unsigned long *zholes_size) 4892 { 4893 pg_data_t *pgdat = NODE_DATA(nid); 4894 unsigned long start_pfn = 0; 4895 unsigned long end_pfn = 0; 4896 4897 /* pg_data_t should be reset to zero when it's allocated */ 4898 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx); 4899 4900 pgdat->node_id = nid; 4901 pgdat->node_start_pfn = node_start_pfn; 4902 init_zone_allows_reclaim(nid); 4903 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4904 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 4905 #endif 4906 calculate_node_totalpages(pgdat, start_pfn, end_pfn, 4907 zones_size, zholes_size); 4908 4909 alloc_node_mem_map(pgdat); 4910 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4911 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 4912 nid, (unsigned long)pgdat, 4913 (unsigned long)pgdat->node_mem_map); 4914 #endif 4915 4916 free_area_init_core(pgdat, start_pfn, end_pfn, 4917 zones_size, zholes_size); 4918 } 4919 4920 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4921 4922 #if MAX_NUMNODES > 1 4923 /* 4924 * Figure out the number of possible node ids. 4925 */ 4926 void __init setup_nr_node_ids(void) 4927 { 4928 unsigned int node; 4929 unsigned int highest = 0; 4930 4931 for_each_node_mask(node, node_possible_map) 4932 highest = node; 4933 nr_node_ids = highest + 1; 4934 } 4935 #endif 4936 4937 /** 4938 * node_map_pfn_alignment - determine the maximum internode alignment 4939 * 4940 * This function should be called after node map is populated and sorted. 4941 * It calculates the maximum power of two alignment which can distinguish 4942 * all the nodes. 4943 * 4944 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 4945 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 4946 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 4947 * shifted, 1GiB is enough and this function will indicate so. 4948 * 4949 * This is used to test whether pfn -> nid mapping of the chosen memory 4950 * model has fine enough granularity to avoid incorrect mapping for the 4951 * populated node map. 4952 * 4953 * Returns the determined alignment in pfn's. 0 if there is no alignment 4954 * requirement (single node). 4955 */ 4956 unsigned long __init node_map_pfn_alignment(void) 4957 { 4958 unsigned long accl_mask = 0, last_end = 0; 4959 unsigned long start, end, mask; 4960 int last_nid = -1; 4961 int i, nid; 4962 4963 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 4964 if (!start || last_nid < 0 || last_nid == nid) { 4965 last_nid = nid; 4966 last_end = end; 4967 continue; 4968 } 4969 4970 /* 4971 * Start with a mask granular enough to pin-point to the 4972 * start pfn and tick off bits one-by-one until it becomes 4973 * too coarse to separate the current node from the last. 4974 */ 4975 mask = ~((1 << __ffs(start)) - 1); 4976 while (mask && last_end <= (start & (mask << 1))) 4977 mask <<= 1; 4978 4979 /* accumulate all internode masks */ 4980 accl_mask |= mask; 4981 } 4982 4983 /* convert mask to number of pages */ 4984 return ~accl_mask + 1; 4985 } 4986 4987 /* Find the lowest pfn for a node */ 4988 static unsigned long __init find_min_pfn_for_node(int nid) 4989 { 4990 unsigned long min_pfn = ULONG_MAX; 4991 unsigned long start_pfn; 4992 int i; 4993 4994 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 4995 min_pfn = min(min_pfn, start_pfn); 4996 4997 if (min_pfn == ULONG_MAX) { 4998 printk(KERN_WARNING 4999 "Could not find start_pfn for node %d\n", nid); 5000 return 0; 5001 } 5002 5003 return min_pfn; 5004 } 5005 5006 /** 5007 * find_min_pfn_with_active_regions - Find the minimum PFN registered 5008 * 5009 * It returns the minimum PFN based on information provided via 5010 * add_active_range(). 5011 */ 5012 unsigned long __init find_min_pfn_with_active_regions(void) 5013 { 5014 return find_min_pfn_for_node(MAX_NUMNODES); 5015 } 5016 5017 /* 5018 * early_calculate_totalpages() 5019 * Sum pages in active regions for movable zone. 5020 * Populate N_MEMORY for calculating usable_nodes. 5021 */ 5022 static unsigned long __init early_calculate_totalpages(void) 5023 { 5024 unsigned long totalpages = 0; 5025 unsigned long start_pfn, end_pfn; 5026 int i, nid; 5027 5028 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 5029 unsigned long pages = end_pfn - start_pfn; 5030 5031 totalpages += pages; 5032 if (pages) 5033 node_set_state(nid, N_MEMORY); 5034 } 5035 return totalpages; 5036 } 5037 5038 /* 5039 * Find the PFN the Movable zone begins in each node. Kernel memory 5040 * is spread evenly between nodes as long as the nodes have enough 5041 * memory. When they don't, some nodes will have more kernelcore than 5042 * others 5043 */ 5044 static void __init find_zone_movable_pfns_for_nodes(void) 5045 { 5046 int i, nid; 5047 unsigned long usable_startpfn; 5048 unsigned long kernelcore_node, kernelcore_remaining; 5049 /* save the state before borrow the nodemask */ 5050 nodemask_t saved_node_state = node_states[N_MEMORY]; 5051 unsigned long totalpages = early_calculate_totalpages(); 5052 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 5053 struct memblock_type *type = &memblock.memory; 5054 5055 /* Need to find movable_zone earlier when movable_node is specified. */ 5056 find_usable_zone_for_movable(); 5057 5058 /* 5059 * If movable_node is specified, ignore kernelcore and movablecore 5060 * options. 5061 */ 5062 if (movable_node_is_enabled()) { 5063 for (i = 0; i < type->cnt; i++) { 5064 if (!memblock_is_hotpluggable(&type->regions[i])) 5065 continue; 5066 5067 nid = type->regions[i].nid; 5068 5069 usable_startpfn = PFN_DOWN(type->regions[i].base); 5070 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 5071 min(usable_startpfn, zone_movable_pfn[nid]) : 5072 usable_startpfn; 5073 } 5074 5075 goto out2; 5076 } 5077 5078 /* 5079 * If movablecore=nn[KMG] was specified, calculate what size of 5080 * kernelcore that corresponds so that memory usable for 5081 * any allocation type is evenly spread. If both kernelcore 5082 * and movablecore are specified, then the value of kernelcore 5083 * will be used for required_kernelcore if it's greater than 5084 * what movablecore would have allowed. 5085 */ 5086 if (required_movablecore) { 5087 unsigned long corepages; 5088 5089 /* 5090 * Round-up so that ZONE_MOVABLE is at least as large as what 5091 * was requested by the user 5092 */ 5093 required_movablecore = 5094 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 5095 corepages = totalpages - required_movablecore; 5096 5097 required_kernelcore = max(required_kernelcore, corepages); 5098 } 5099 5100 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 5101 if (!required_kernelcore) 5102 goto out; 5103 5104 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 5105 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 5106 5107 restart: 5108 /* Spread kernelcore memory as evenly as possible throughout nodes */ 5109 kernelcore_node = required_kernelcore / usable_nodes; 5110 for_each_node_state(nid, N_MEMORY) { 5111 unsigned long start_pfn, end_pfn; 5112 5113 /* 5114 * Recalculate kernelcore_node if the division per node 5115 * now exceeds what is necessary to satisfy the requested 5116 * amount of memory for the kernel 5117 */ 5118 if (required_kernelcore < kernelcore_node) 5119 kernelcore_node = required_kernelcore / usable_nodes; 5120 5121 /* 5122 * As the map is walked, we track how much memory is usable 5123 * by the kernel using kernelcore_remaining. When it is 5124 * 0, the rest of the node is usable by ZONE_MOVABLE 5125 */ 5126 kernelcore_remaining = kernelcore_node; 5127 5128 /* Go through each range of PFNs within this node */ 5129 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 5130 unsigned long size_pages; 5131 5132 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 5133 if (start_pfn >= end_pfn) 5134 continue; 5135 5136 /* Account for what is only usable for kernelcore */ 5137 if (start_pfn < usable_startpfn) { 5138 unsigned long kernel_pages; 5139 kernel_pages = min(end_pfn, usable_startpfn) 5140 - start_pfn; 5141 5142 kernelcore_remaining -= min(kernel_pages, 5143 kernelcore_remaining); 5144 required_kernelcore -= min(kernel_pages, 5145 required_kernelcore); 5146 5147 /* Continue if range is now fully accounted */ 5148 if (end_pfn <= usable_startpfn) { 5149 5150 /* 5151 * Push zone_movable_pfn to the end so 5152 * that if we have to rebalance 5153 * kernelcore across nodes, we will 5154 * not double account here 5155 */ 5156 zone_movable_pfn[nid] = end_pfn; 5157 continue; 5158 } 5159 start_pfn = usable_startpfn; 5160 } 5161 5162 /* 5163 * The usable PFN range for ZONE_MOVABLE is from 5164 * start_pfn->end_pfn. Calculate size_pages as the 5165 * number of pages used as kernelcore 5166 */ 5167 size_pages = end_pfn - start_pfn; 5168 if (size_pages > kernelcore_remaining) 5169 size_pages = kernelcore_remaining; 5170 zone_movable_pfn[nid] = start_pfn + size_pages; 5171 5172 /* 5173 * Some kernelcore has been met, update counts and 5174 * break if the kernelcore for this node has been 5175 * satisfied 5176 */ 5177 required_kernelcore -= min(required_kernelcore, 5178 size_pages); 5179 kernelcore_remaining -= size_pages; 5180 if (!kernelcore_remaining) 5181 break; 5182 } 5183 } 5184 5185 /* 5186 * If there is still required_kernelcore, we do another pass with one 5187 * less node in the count. This will push zone_movable_pfn[nid] further 5188 * along on the nodes that still have memory until kernelcore is 5189 * satisfied 5190 */ 5191 usable_nodes--; 5192 if (usable_nodes && required_kernelcore > usable_nodes) 5193 goto restart; 5194 5195 out2: 5196 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 5197 for (nid = 0; nid < MAX_NUMNODES; nid++) 5198 zone_movable_pfn[nid] = 5199 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 5200 5201 out: 5202 /* restore the node_state */ 5203 node_states[N_MEMORY] = saved_node_state; 5204 } 5205 5206 /* Any regular or high memory on that node ? */ 5207 static void check_for_memory(pg_data_t *pgdat, int nid) 5208 { 5209 enum zone_type zone_type; 5210 5211 if (N_MEMORY == N_NORMAL_MEMORY) 5212 return; 5213 5214 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 5215 struct zone *zone = &pgdat->node_zones[zone_type]; 5216 if (populated_zone(zone)) { 5217 node_set_state(nid, N_HIGH_MEMORY); 5218 if (N_NORMAL_MEMORY != N_HIGH_MEMORY && 5219 zone_type <= ZONE_NORMAL) 5220 node_set_state(nid, N_NORMAL_MEMORY); 5221 break; 5222 } 5223 } 5224 } 5225 5226 /** 5227 * free_area_init_nodes - Initialise all pg_data_t and zone data 5228 * @max_zone_pfn: an array of max PFNs for each zone 5229 * 5230 * This will call free_area_init_node() for each active node in the system. 5231 * Using the page ranges provided by add_active_range(), the size of each 5232 * zone in each node and their holes is calculated. If the maximum PFN 5233 * between two adjacent zones match, it is assumed that the zone is empty. 5234 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 5235 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 5236 * starts where the previous one ended. For example, ZONE_DMA32 starts 5237 * at arch_max_dma_pfn. 5238 */ 5239 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 5240 { 5241 unsigned long start_pfn, end_pfn; 5242 int i, nid; 5243 5244 /* Record where the zone boundaries are */ 5245 memset(arch_zone_lowest_possible_pfn, 0, 5246 sizeof(arch_zone_lowest_possible_pfn)); 5247 memset(arch_zone_highest_possible_pfn, 0, 5248 sizeof(arch_zone_highest_possible_pfn)); 5249 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 5250 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 5251 for (i = 1; i < MAX_NR_ZONES; i++) { 5252 if (i == ZONE_MOVABLE) 5253 continue; 5254 arch_zone_lowest_possible_pfn[i] = 5255 arch_zone_highest_possible_pfn[i-1]; 5256 arch_zone_highest_possible_pfn[i] = 5257 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 5258 } 5259 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 5260 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 5261 5262 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 5263 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 5264 find_zone_movable_pfns_for_nodes(); 5265 5266 /* Print out the zone ranges */ 5267 printk("Zone ranges:\n"); 5268 for (i = 0; i < MAX_NR_ZONES; i++) { 5269 if (i == ZONE_MOVABLE) 5270 continue; 5271 printk(KERN_CONT " %-8s ", zone_names[i]); 5272 if (arch_zone_lowest_possible_pfn[i] == 5273 arch_zone_highest_possible_pfn[i]) 5274 printk(KERN_CONT "empty\n"); 5275 else 5276 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n", 5277 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT, 5278 (arch_zone_highest_possible_pfn[i] 5279 << PAGE_SHIFT) - 1); 5280 } 5281 5282 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 5283 printk("Movable zone start for each node\n"); 5284 for (i = 0; i < MAX_NUMNODES; i++) { 5285 if (zone_movable_pfn[i]) 5286 printk(" Node %d: %#010lx\n", i, 5287 zone_movable_pfn[i] << PAGE_SHIFT); 5288 } 5289 5290 /* Print out the early node map */ 5291 printk("Early memory node ranges\n"); 5292 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 5293 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid, 5294 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1); 5295 5296 /* Initialise every node */ 5297 mminit_verify_pageflags_layout(); 5298 setup_nr_node_ids(); 5299 for_each_online_node(nid) { 5300 pg_data_t *pgdat = NODE_DATA(nid); 5301 free_area_init_node(nid, NULL, 5302 find_min_pfn_for_node(nid), NULL); 5303 5304 /* Any memory on that node */ 5305 if (pgdat->node_present_pages) 5306 node_set_state(nid, N_MEMORY); 5307 check_for_memory(pgdat, nid); 5308 } 5309 } 5310 5311 static int __init cmdline_parse_core(char *p, unsigned long *core) 5312 { 5313 unsigned long long coremem; 5314 if (!p) 5315 return -EINVAL; 5316 5317 coremem = memparse(p, &p); 5318 *core = coremem >> PAGE_SHIFT; 5319 5320 /* Paranoid check that UL is enough for the coremem value */ 5321 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 5322 5323 return 0; 5324 } 5325 5326 /* 5327 * kernelcore=size sets the amount of memory for use for allocations that 5328 * cannot be reclaimed or migrated. 5329 */ 5330 static int __init cmdline_parse_kernelcore(char *p) 5331 { 5332 return cmdline_parse_core(p, &required_kernelcore); 5333 } 5334 5335 /* 5336 * movablecore=size sets the amount of memory for use for allocations that 5337 * can be reclaimed or migrated. 5338 */ 5339 static int __init cmdline_parse_movablecore(char *p) 5340 { 5341 return cmdline_parse_core(p, &required_movablecore); 5342 } 5343 5344 early_param("kernelcore", cmdline_parse_kernelcore); 5345 early_param("movablecore", cmdline_parse_movablecore); 5346 5347 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5348 5349 void adjust_managed_page_count(struct page *page, long count) 5350 { 5351 spin_lock(&managed_page_count_lock); 5352 page_zone(page)->managed_pages += count; 5353 totalram_pages += count; 5354 #ifdef CONFIG_HIGHMEM 5355 if (PageHighMem(page)) 5356 totalhigh_pages += count; 5357 #endif 5358 spin_unlock(&managed_page_count_lock); 5359 } 5360 EXPORT_SYMBOL(adjust_managed_page_count); 5361 5362 unsigned long free_reserved_area(void *start, void *end, int poison, char *s) 5363 { 5364 void *pos; 5365 unsigned long pages = 0; 5366 5367 start = (void *)PAGE_ALIGN((unsigned long)start); 5368 end = (void *)((unsigned long)end & PAGE_MASK); 5369 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 5370 if ((unsigned int)poison <= 0xFF) 5371 memset(pos, poison, PAGE_SIZE); 5372 free_reserved_page(virt_to_page(pos)); 5373 } 5374 5375 if (pages && s) 5376 pr_info("Freeing %s memory: %ldK (%p - %p)\n", 5377 s, pages << (PAGE_SHIFT - 10), start, end); 5378 5379 return pages; 5380 } 5381 EXPORT_SYMBOL(free_reserved_area); 5382 5383 #ifdef CONFIG_HIGHMEM 5384 void free_highmem_page(struct page *page) 5385 { 5386 __free_reserved_page(page); 5387 totalram_pages++; 5388 page_zone(page)->managed_pages++; 5389 totalhigh_pages++; 5390 } 5391 #endif 5392 5393 5394 void __init mem_init_print_info(const char *str) 5395 { 5396 unsigned long physpages, codesize, datasize, rosize, bss_size; 5397 unsigned long init_code_size, init_data_size; 5398 5399 physpages = get_num_physpages(); 5400 codesize = _etext - _stext; 5401 datasize = _edata - _sdata; 5402 rosize = __end_rodata - __start_rodata; 5403 bss_size = __bss_stop - __bss_start; 5404 init_data_size = __init_end - __init_begin; 5405 init_code_size = _einittext - _sinittext; 5406 5407 /* 5408 * Detect special cases and adjust section sizes accordingly: 5409 * 1) .init.* may be embedded into .data sections 5410 * 2) .init.text.* may be out of [__init_begin, __init_end], 5411 * please refer to arch/tile/kernel/vmlinux.lds.S. 5412 * 3) .rodata.* may be embedded into .text or .data sections. 5413 */ 5414 #define adj_init_size(start, end, size, pos, adj) \ 5415 do { \ 5416 if (start <= pos && pos < end && size > adj) \ 5417 size -= adj; \ 5418 } while (0) 5419 5420 adj_init_size(__init_begin, __init_end, init_data_size, 5421 _sinittext, init_code_size); 5422 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 5423 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 5424 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 5425 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 5426 5427 #undef adj_init_size 5428 5429 printk("Memory: %luK/%luK available " 5430 "(%luK kernel code, %luK rwdata, %luK rodata, " 5431 "%luK init, %luK bss, %luK reserved" 5432 #ifdef CONFIG_HIGHMEM 5433 ", %luK highmem" 5434 #endif 5435 "%s%s)\n", 5436 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10), 5437 codesize >> 10, datasize >> 10, rosize >> 10, 5438 (init_data_size + init_code_size) >> 10, bss_size >> 10, 5439 (physpages - totalram_pages) << (PAGE_SHIFT-10), 5440 #ifdef CONFIG_HIGHMEM 5441 totalhigh_pages << (PAGE_SHIFT-10), 5442 #endif 5443 str ? ", " : "", str ? str : ""); 5444 } 5445 5446 /** 5447 * set_dma_reserve - set the specified number of pages reserved in the first zone 5448 * @new_dma_reserve: The number of pages to mark reserved 5449 * 5450 * The per-cpu batchsize and zone watermarks are determined by present_pages. 5451 * In the DMA zone, a significant percentage may be consumed by kernel image 5452 * and other unfreeable allocations which can skew the watermarks badly. This 5453 * function may optionally be used to account for unfreeable pages in the 5454 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 5455 * smaller per-cpu batchsize. 5456 */ 5457 void __init set_dma_reserve(unsigned long new_dma_reserve) 5458 { 5459 dma_reserve = new_dma_reserve; 5460 } 5461 5462 void __init free_area_init(unsigned long *zones_size) 5463 { 5464 free_area_init_node(0, zones_size, 5465 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 5466 } 5467 5468 static int page_alloc_cpu_notify(struct notifier_block *self, 5469 unsigned long action, void *hcpu) 5470 { 5471 int cpu = (unsigned long)hcpu; 5472 5473 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 5474 lru_add_drain_cpu(cpu); 5475 drain_pages(cpu); 5476 5477 /* 5478 * Spill the event counters of the dead processor 5479 * into the current processors event counters. 5480 * This artificially elevates the count of the current 5481 * processor. 5482 */ 5483 vm_events_fold_cpu(cpu); 5484 5485 /* 5486 * Zero the differential counters of the dead processor 5487 * so that the vm statistics are consistent. 5488 * 5489 * This is only okay since the processor is dead and cannot 5490 * race with what we are doing. 5491 */ 5492 cpu_vm_stats_fold(cpu); 5493 } 5494 return NOTIFY_OK; 5495 } 5496 5497 void __init page_alloc_init(void) 5498 { 5499 hotcpu_notifier(page_alloc_cpu_notify, 0); 5500 } 5501 5502 /* 5503 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 5504 * or min_free_kbytes changes. 5505 */ 5506 static void calculate_totalreserve_pages(void) 5507 { 5508 struct pglist_data *pgdat; 5509 unsigned long reserve_pages = 0; 5510 enum zone_type i, j; 5511 5512 for_each_online_pgdat(pgdat) { 5513 for (i = 0; i < MAX_NR_ZONES; i++) { 5514 struct zone *zone = pgdat->node_zones + i; 5515 unsigned long max = 0; 5516 5517 /* Find valid and maximum lowmem_reserve in the zone */ 5518 for (j = i; j < MAX_NR_ZONES; j++) { 5519 if (zone->lowmem_reserve[j] > max) 5520 max = zone->lowmem_reserve[j]; 5521 } 5522 5523 /* we treat the high watermark as reserved pages. */ 5524 max += high_wmark_pages(zone); 5525 5526 if (max > zone->managed_pages) 5527 max = zone->managed_pages; 5528 reserve_pages += max; 5529 /* 5530 * Lowmem reserves are not available to 5531 * GFP_HIGHUSER page cache allocations and 5532 * kswapd tries to balance zones to their high 5533 * watermark. As a result, neither should be 5534 * regarded as dirtyable memory, to prevent a 5535 * situation where reclaim has to clean pages 5536 * in order to balance the zones. 5537 */ 5538 zone->dirty_balance_reserve = max; 5539 } 5540 } 5541 dirty_balance_reserve = reserve_pages; 5542 totalreserve_pages = reserve_pages; 5543 } 5544 5545 /* 5546 * setup_per_zone_lowmem_reserve - called whenever 5547 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 5548 * has a correct pages reserved value, so an adequate number of 5549 * pages are left in the zone after a successful __alloc_pages(). 5550 */ 5551 static void setup_per_zone_lowmem_reserve(void) 5552 { 5553 struct pglist_data *pgdat; 5554 enum zone_type j, idx; 5555 5556 for_each_online_pgdat(pgdat) { 5557 for (j = 0; j < MAX_NR_ZONES; j++) { 5558 struct zone *zone = pgdat->node_zones + j; 5559 unsigned long managed_pages = zone->managed_pages; 5560 5561 zone->lowmem_reserve[j] = 0; 5562 5563 idx = j; 5564 while (idx) { 5565 struct zone *lower_zone; 5566 5567 idx--; 5568 5569 if (sysctl_lowmem_reserve_ratio[idx] < 1) 5570 sysctl_lowmem_reserve_ratio[idx] = 1; 5571 5572 lower_zone = pgdat->node_zones + idx; 5573 lower_zone->lowmem_reserve[j] = managed_pages / 5574 sysctl_lowmem_reserve_ratio[idx]; 5575 managed_pages += lower_zone->managed_pages; 5576 } 5577 } 5578 } 5579 5580 /* update totalreserve_pages */ 5581 calculate_totalreserve_pages(); 5582 } 5583 5584 static void __setup_per_zone_wmarks(void) 5585 { 5586 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 5587 unsigned long lowmem_pages = 0; 5588 struct zone *zone; 5589 unsigned long flags; 5590 5591 /* Calculate total number of !ZONE_HIGHMEM pages */ 5592 for_each_zone(zone) { 5593 if (!is_highmem(zone)) 5594 lowmem_pages += zone->managed_pages; 5595 } 5596 5597 for_each_zone(zone) { 5598 u64 tmp; 5599 5600 spin_lock_irqsave(&zone->lock, flags); 5601 tmp = (u64)pages_min * zone->managed_pages; 5602 do_div(tmp, lowmem_pages); 5603 if (is_highmem(zone)) { 5604 /* 5605 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 5606 * need highmem pages, so cap pages_min to a small 5607 * value here. 5608 * 5609 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 5610 * deltas controls asynch page reclaim, and so should 5611 * not be capped for highmem. 5612 */ 5613 unsigned long min_pages; 5614 5615 min_pages = zone->managed_pages / 1024; 5616 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 5617 zone->watermark[WMARK_MIN] = min_pages; 5618 } else { 5619 /* 5620 * If it's a lowmem zone, reserve a number of pages 5621 * proportionate to the zone's size. 5622 */ 5623 zone->watermark[WMARK_MIN] = tmp; 5624 } 5625 5626 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); 5627 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); 5628 5629 __mod_zone_page_state(zone, NR_ALLOC_BATCH, 5630 high_wmark_pages(zone) - 5631 low_wmark_pages(zone) - 5632 zone_page_state(zone, NR_ALLOC_BATCH)); 5633 5634 setup_zone_migrate_reserve(zone); 5635 spin_unlock_irqrestore(&zone->lock, flags); 5636 } 5637 5638 /* update totalreserve_pages */ 5639 calculate_totalreserve_pages(); 5640 } 5641 5642 /** 5643 * setup_per_zone_wmarks - called when min_free_kbytes changes 5644 * or when memory is hot-{added|removed} 5645 * 5646 * Ensures that the watermark[min,low,high] values for each zone are set 5647 * correctly with respect to min_free_kbytes. 5648 */ 5649 void setup_per_zone_wmarks(void) 5650 { 5651 mutex_lock(&zonelists_mutex); 5652 __setup_per_zone_wmarks(); 5653 mutex_unlock(&zonelists_mutex); 5654 } 5655 5656 /* 5657 * The inactive anon list should be small enough that the VM never has to 5658 * do too much work, but large enough that each inactive page has a chance 5659 * to be referenced again before it is swapped out. 5660 * 5661 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 5662 * INACTIVE_ANON pages on this zone's LRU, maintained by the 5663 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 5664 * the anonymous pages are kept on the inactive list. 5665 * 5666 * total target max 5667 * memory ratio inactive anon 5668 * ------------------------------------- 5669 * 10MB 1 5MB 5670 * 100MB 1 50MB 5671 * 1GB 3 250MB 5672 * 10GB 10 0.9GB 5673 * 100GB 31 3GB 5674 * 1TB 101 10GB 5675 * 10TB 320 32GB 5676 */ 5677 static void __meminit calculate_zone_inactive_ratio(struct zone *zone) 5678 { 5679 unsigned int gb, ratio; 5680 5681 /* Zone size in gigabytes */ 5682 gb = zone->managed_pages >> (30 - PAGE_SHIFT); 5683 if (gb) 5684 ratio = int_sqrt(10 * gb); 5685 else 5686 ratio = 1; 5687 5688 zone->inactive_ratio = ratio; 5689 } 5690 5691 static void __meminit setup_per_zone_inactive_ratio(void) 5692 { 5693 struct zone *zone; 5694 5695 for_each_zone(zone) 5696 calculate_zone_inactive_ratio(zone); 5697 } 5698 5699 /* 5700 * Initialise min_free_kbytes. 5701 * 5702 * For small machines we want it small (128k min). For large machines 5703 * we want it large (64MB max). But it is not linear, because network 5704 * bandwidth does not increase linearly with machine size. We use 5705 * 5706 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 5707 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 5708 * 5709 * which yields 5710 * 5711 * 16MB: 512k 5712 * 32MB: 724k 5713 * 64MB: 1024k 5714 * 128MB: 1448k 5715 * 256MB: 2048k 5716 * 512MB: 2896k 5717 * 1024MB: 4096k 5718 * 2048MB: 5792k 5719 * 4096MB: 8192k 5720 * 8192MB: 11584k 5721 * 16384MB: 16384k 5722 */ 5723 int __meminit init_per_zone_wmark_min(void) 5724 { 5725 unsigned long lowmem_kbytes; 5726 int new_min_free_kbytes; 5727 5728 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 5729 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 5730 5731 if (new_min_free_kbytes > user_min_free_kbytes) { 5732 min_free_kbytes = new_min_free_kbytes; 5733 if (min_free_kbytes < 128) 5734 min_free_kbytes = 128; 5735 if (min_free_kbytes > 65536) 5736 min_free_kbytes = 65536; 5737 } else { 5738 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 5739 new_min_free_kbytes, user_min_free_kbytes); 5740 } 5741 setup_per_zone_wmarks(); 5742 refresh_zone_stat_thresholds(); 5743 setup_per_zone_lowmem_reserve(); 5744 setup_per_zone_inactive_ratio(); 5745 return 0; 5746 } 5747 module_init(init_per_zone_wmark_min) 5748 5749 /* 5750 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 5751 * that we can call two helper functions whenever min_free_kbytes 5752 * changes. 5753 */ 5754 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 5755 void __user *buffer, size_t *length, loff_t *ppos) 5756 { 5757 int rc; 5758 5759 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5760 if (rc) 5761 return rc; 5762 5763 if (write) { 5764 user_min_free_kbytes = min_free_kbytes; 5765 setup_per_zone_wmarks(); 5766 } 5767 return 0; 5768 } 5769 5770 #ifdef CONFIG_NUMA 5771 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, 5772 void __user *buffer, size_t *length, loff_t *ppos) 5773 { 5774 struct zone *zone; 5775 int rc; 5776 5777 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5778 if (rc) 5779 return rc; 5780 5781 for_each_zone(zone) 5782 zone->min_unmapped_pages = (zone->managed_pages * 5783 sysctl_min_unmapped_ratio) / 100; 5784 return 0; 5785 } 5786 5787 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, 5788 void __user *buffer, size_t *length, loff_t *ppos) 5789 { 5790 struct zone *zone; 5791 int rc; 5792 5793 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5794 if (rc) 5795 return rc; 5796 5797 for_each_zone(zone) 5798 zone->min_slab_pages = (zone->managed_pages * 5799 sysctl_min_slab_ratio) / 100; 5800 return 0; 5801 } 5802 #endif 5803 5804 /* 5805 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 5806 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 5807 * whenever sysctl_lowmem_reserve_ratio changes. 5808 * 5809 * The reserve ratio obviously has absolutely no relation with the 5810 * minimum watermarks. The lowmem reserve ratio can only make sense 5811 * if in function of the boot time zone sizes. 5812 */ 5813 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 5814 void __user *buffer, size_t *length, loff_t *ppos) 5815 { 5816 proc_dointvec_minmax(table, write, buffer, length, ppos); 5817 setup_per_zone_lowmem_reserve(); 5818 return 0; 5819 } 5820 5821 /* 5822 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 5823 * cpu. It is the fraction of total pages in each zone that a hot per cpu 5824 * pagelist can have before it gets flushed back to buddy allocator. 5825 */ 5826 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 5827 void __user *buffer, size_t *length, loff_t *ppos) 5828 { 5829 struct zone *zone; 5830 unsigned int cpu; 5831 int ret; 5832 5833 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 5834 if (!write || (ret < 0)) 5835 return ret; 5836 5837 mutex_lock(&pcp_batch_high_lock); 5838 for_each_populated_zone(zone) { 5839 unsigned long high; 5840 high = zone->managed_pages / percpu_pagelist_fraction; 5841 for_each_possible_cpu(cpu) 5842 pageset_set_high(per_cpu_ptr(zone->pageset, cpu), 5843 high); 5844 } 5845 mutex_unlock(&pcp_batch_high_lock); 5846 return 0; 5847 } 5848 5849 int hashdist = HASHDIST_DEFAULT; 5850 5851 #ifdef CONFIG_NUMA 5852 static int __init set_hashdist(char *str) 5853 { 5854 if (!str) 5855 return 0; 5856 hashdist = simple_strtoul(str, &str, 0); 5857 return 1; 5858 } 5859 __setup("hashdist=", set_hashdist); 5860 #endif 5861 5862 /* 5863 * allocate a large system hash table from bootmem 5864 * - it is assumed that the hash table must contain an exact power-of-2 5865 * quantity of entries 5866 * - limit is the number of hash buckets, not the total allocation size 5867 */ 5868 void *__init alloc_large_system_hash(const char *tablename, 5869 unsigned long bucketsize, 5870 unsigned long numentries, 5871 int scale, 5872 int flags, 5873 unsigned int *_hash_shift, 5874 unsigned int *_hash_mask, 5875 unsigned long low_limit, 5876 unsigned long high_limit) 5877 { 5878 unsigned long long max = high_limit; 5879 unsigned long log2qty, size; 5880 void *table = NULL; 5881 5882 /* allow the kernel cmdline to have a say */ 5883 if (!numentries) { 5884 /* round applicable memory size up to nearest megabyte */ 5885 numentries = nr_kernel_pages; 5886 5887 /* It isn't necessary when PAGE_SIZE >= 1MB */ 5888 if (PAGE_SHIFT < 20) 5889 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 5890 5891 /* limit to 1 bucket per 2^scale bytes of low memory */ 5892 if (scale > PAGE_SHIFT) 5893 numentries >>= (scale - PAGE_SHIFT); 5894 else 5895 numentries <<= (PAGE_SHIFT - scale); 5896 5897 /* Make sure we've got at least a 0-order allocation.. */ 5898 if (unlikely(flags & HASH_SMALL)) { 5899 /* Makes no sense without HASH_EARLY */ 5900 WARN_ON(!(flags & HASH_EARLY)); 5901 if (!(numentries >> *_hash_shift)) { 5902 numentries = 1UL << *_hash_shift; 5903 BUG_ON(!numentries); 5904 } 5905 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 5906 numentries = PAGE_SIZE / bucketsize; 5907 } 5908 numentries = roundup_pow_of_two(numentries); 5909 5910 /* limit allocation size to 1/16 total memory by default */ 5911 if (max == 0) { 5912 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 5913 do_div(max, bucketsize); 5914 } 5915 max = min(max, 0x80000000ULL); 5916 5917 if (numentries < low_limit) 5918 numentries = low_limit; 5919 if (numentries > max) 5920 numentries = max; 5921 5922 log2qty = ilog2(numentries); 5923 5924 do { 5925 size = bucketsize << log2qty; 5926 if (flags & HASH_EARLY) 5927 table = memblock_virt_alloc_nopanic(size, 0); 5928 else if (hashdist) 5929 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 5930 else { 5931 /* 5932 * If bucketsize is not a power-of-two, we may free 5933 * some pages at the end of hash table which 5934 * alloc_pages_exact() automatically does 5935 */ 5936 if (get_order(size) < MAX_ORDER) { 5937 table = alloc_pages_exact(size, GFP_ATOMIC); 5938 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 5939 } 5940 } 5941 } while (!table && size > PAGE_SIZE && --log2qty); 5942 5943 if (!table) 5944 panic("Failed to allocate %s hash table\n", tablename); 5945 5946 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n", 5947 tablename, 5948 (1UL << log2qty), 5949 ilog2(size) - PAGE_SHIFT, 5950 size); 5951 5952 if (_hash_shift) 5953 *_hash_shift = log2qty; 5954 if (_hash_mask) 5955 *_hash_mask = (1 << log2qty) - 1; 5956 5957 return table; 5958 } 5959 5960 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 5961 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 5962 unsigned long pfn) 5963 { 5964 #ifdef CONFIG_SPARSEMEM 5965 return __pfn_to_section(pfn)->pageblock_flags; 5966 #else 5967 return zone->pageblock_flags; 5968 #endif /* CONFIG_SPARSEMEM */ 5969 } 5970 5971 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 5972 { 5973 #ifdef CONFIG_SPARSEMEM 5974 pfn &= (PAGES_PER_SECTION-1); 5975 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5976 #else 5977 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages); 5978 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5979 #endif /* CONFIG_SPARSEMEM */ 5980 } 5981 5982 /** 5983 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages 5984 * @page: The page within the block of interest 5985 * @start_bitidx: The first bit of interest to retrieve 5986 * @end_bitidx: The last bit of interest 5987 * returns pageblock_bits flags 5988 */ 5989 unsigned long get_pageblock_flags_group(struct page *page, 5990 int start_bitidx, int end_bitidx) 5991 { 5992 struct zone *zone; 5993 unsigned long *bitmap; 5994 unsigned long pfn, bitidx; 5995 unsigned long flags = 0; 5996 unsigned long value = 1; 5997 5998 zone = page_zone(page); 5999 pfn = page_to_pfn(page); 6000 bitmap = get_pageblock_bitmap(zone, pfn); 6001 bitidx = pfn_to_bitidx(zone, pfn); 6002 6003 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 6004 if (test_bit(bitidx + start_bitidx, bitmap)) 6005 flags |= value; 6006 6007 return flags; 6008 } 6009 6010 /** 6011 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages 6012 * @page: The page within the block of interest 6013 * @start_bitidx: The first bit of interest 6014 * @end_bitidx: The last bit of interest 6015 * @flags: The flags to set 6016 */ 6017 void set_pageblock_flags_group(struct page *page, unsigned long flags, 6018 int start_bitidx, int end_bitidx) 6019 { 6020 struct zone *zone; 6021 unsigned long *bitmap; 6022 unsigned long pfn, bitidx; 6023 unsigned long value = 1; 6024 6025 zone = page_zone(page); 6026 pfn = page_to_pfn(page); 6027 bitmap = get_pageblock_bitmap(zone, pfn); 6028 bitidx = pfn_to_bitidx(zone, pfn); 6029 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page); 6030 6031 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 6032 if (flags & value) 6033 __set_bit(bitidx + start_bitidx, bitmap); 6034 else 6035 __clear_bit(bitidx + start_bitidx, bitmap); 6036 } 6037 6038 /* 6039 * This function checks whether pageblock includes unmovable pages or not. 6040 * If @count is not zero, it is okay to include less @count unmovable pages 6041 * 6042 * PageLRU check without isolation or lru_lock could race so that 6043 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't 6044 * expect this function should be exact. 6045 */ 6046 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 6047 bool skip_hwpoisoned_pages) 6048 { 6049 unsigned long pfn, iter, found; 6050 int mt; 6051 6052 /* 6053 * For avoiding noise data, lru_add_drain_all() should be called 6054 * If ZONE_MOVABLE, the zone never contains unmovable pages 6055 */ 6056 if (zone_idx(zone) == ZONE_MOVABLE) 6057 return false; 6058 mt = get_pageblock_migratetype(page); 6059 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt)) 6060 return false; 6061 6062 pfn = page_to_pfn(page); 6063 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 6064 unsigned long check = pfn + iter; 6065 6066 if (!pfn_valid_within(check)) 6067 continue; 6068 6069 page = pfn_to_page(check); 6070 6071 /* 6072 * Hugepages are not in LRU lists, but they're movable. 6073 * We need not scan over tail pages bacause we don't 6074 * handle each tail page individually in migration. 6075 */ 6076 if (PageHuge(page)) { 6077 iter = round_up(iter + 1, 1<<compound_order(page)) - 1; 6078 continue; 6079 } 6080 6081 /* 6082 * We can't use page_count without pin a page 6083 * because another CPU can free compound page. 6084 * This check already skips compound tails of THP 6085 * because their page->_count is zero at all time. 6086 */ 6087 if (!atomic_read(&page->_count)) { 6088 if (PageBuddy(page)) 6089 iter += (1 << page_order(page)) - 1; 6090 continue; 6091 } 6092 6093 /* 6094 * The HWPoisoned page may be not in buddy system, and 6095 * page_count() is not 0. 6096 */ 6097 if (skip_hwpoisoned_pages && PageHWPoison(page)) 6098 continue; 6099 6100 if (!PageLRU(page)) 6101 found++; 6102 /* 6103 * If there are RECLAIMABLE pages, we need to check it. 6104 * But now, memory offline itself doesn't call shrink_slab() 6105 * and it still to be fixed. 6106 */ 6107 /* 6108 * If the page is not RAM, page_count()should be 0. 6109 * we don't need more check. This is an _used_ not-movable page. 6110 * 6111 * The problematic thing here is PG_reserved pages. PG_reserved 6112 * is set to both of a memory hole page and a _used_ kernel 6113 * page at boot. 6114 */ 6115 if (found > count) 6116 return true; 6117 } 6118 return false; 6119 } 6120 6121 bool is_pageblock_removable_nolock(struct page *page) 6122 { 6123 struct zone *zone; 6124 unsigned long pfn; 6125 6126 /* 6127 * We have to be careful here because we are iterating over memory 6128 * sections which are not zone aware so we might end up outside of 6129 * the zone but still within the section. 6130 * We have to take care about the node as well. If the node is offline 6131 * its NODE_DATA will be NULL - see page_zone. 6132 */ 6133 if (!node_online(page_to_nid(page))) 6134 return false; 6135 6136 zone = page_zone(page); 6137 pfn = page_to_pfn(page); 6138 if (!zone_spans_pfn(zone, pfn)) 6139 return false; 6140 6141 return !has_unmovable_pages(zone, page, 0, true); 6142 } 6143 6144 #ifdef CONFIG_CMA 6145 6146 static unsigned long pfn_max_align_down(unsigned long pfn) 6147 { 6148 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 6149 pageblock_nr_pages) - 1); 6150 } 6151 6152 static unsigned long pfn_max_align_up(unsigned long pfn) 6153 { 6154 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 6155 pageblock_nr_pages)); 6156 } 6157 6158 /* [start, end) must belong to a single zone. */ 6159 static int __alloc_contig_migrate_range(struct compact_control *cc, 6160 unsigned long start, unsigned long end) 6161 { 6162 /* This function is based on compact_zone() from compaction.c. */ 6163 unsigned long nr_reclaimed; 6164 unsigned long pfn = start; 6165 unsigned int tries = 0; 6166 int ret = 0; 6167 6168 migrate_prep(); 6169 6170 while (pfn < end || !list_empty(&cc->migratepages)) { 6171 if (fatal_signal_pending(current)) { 6172 ret = -EINTR; 6173 break; 6174 } 6175 6176 if (list_empty(&cc->migratepages)) { 6177 cc->nr_migratepages = 0; 6178 pfn = isolate_migratepages_range(cc->zone, cc, 6179 pfn, end, true); 6180 if (!pfn) { 6181 ret = -EINTR; 6182 break; 6183 } 6184 tries = 0; 6185 } else if (++tries == 5) { 6186 ret = ret < 0 ? ret : -EBUSY; 6187 break; 6188 } 6189 6190 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 6191 &cc->migratepages); 6192 cc->nr_migratepages -= nr_reclaimed; 6193 6194 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 6195 0, MIGRATE_SYNC, MR_CMA); 6196 } 6197 if (ret < 0) { 6198 putback_movable_pages(&cc->migratepages); 6199 return ret; 6200 } 6201 return 0; 6202 } 6203 6204 /** 6205 * alloc_contig_range() -- tries to allocate given range of pages 6206 * @start: start PFN to allocate 6207 * @end: one-past-the-last PFN to allocate 6208 * @migratetype: migratetype of the underlaying pageblocks (either 6209 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 6210 * in range must have the same migratetype and it must 6211 * be either of the two. 6212 * 6213 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 6214 * aligned, however it's the caller's responsibility to guarantee that 6215 * we are the only thread that changes migrate type of pageblocks the 6216 * pages fall in. 6217 * 6218 * The PFN range must belong to a single zone. 6219 * 6220 * Returns zero on success or negative error code. On success all 6221 * pages which PFN is in [start, end) are allocated for the caller and 6222 * need to be freed with free_contig_range(). 6223 */ 6224 int alloc_contig_range(unsigned long start, unsigned long end, 6225 unsigned migratetype) 6226 { 6227 unsigned long outer_start, outer_end; 6228 int ret = 0, order; 6229 6230 struct compact_control cc = { 6231 .nr_migratepages = 0, 6232 .order = -1, 6233 .zone = page_zone(pfn_to_page(start)), 6234 .sync = true, 6235 .ignore_skip_hint = true, 6236 }; 6237 INIT_LIST_HEAD(&cc.migratepages); 6238 6239 /* 6240 * What we do here is we mark all pageblocks in range as 6241 * MIGRATE_ISOLATE. Because pageblock and max order pages may 6242 * have different sizes, and due to the way page allocator 6243 * work, we align the range to biggest of the two pages so 6244 * that page allocator won't try to merge buddies from 6245 * different pageblocks and change MIGRATE_ISOLATE to some 6246 * other migration type. 6247 * 6248 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 6249 * migrate the pages from an unaligned range (ie. pages that 6250 * we are interested in). This will put all the pages in 6251 * range back to page allocator as MIGRATE_ISOLATE. 6252 * 6253 * When this is done, we take the pages in range from page 6254 * allocator removing them from the buddy system. This way 6255 * page allocator will never consider using them. 6256 * 6257 * This lets us mark the pageblocks back as 6258 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 6259 * aligned range but not in the unaligned, original range are 6260 * put back to page allocator so that buddy can use them. 6261 */ 6262 6263 ret = start_isolate_page_range(pfn_max_align_down(start), 6264 pfn_max_align_up(end), migratetype, 6265 false); 6266 if (ret) 6267 return ret; 6268 6269 ret = __alloc_contig_migrate_range(&cc, start, end); 6270 if (ret) 6271 goto done; 6272 6273 /* 6274 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 6275 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 6276 * more, all pages in [start, end) are free in page allocator. 6277 * What we are going to do is to allocate all pages from 6278 * [start, end) (that is remove them from page allocator). 6279 * 6280 * The only problem is that pages at the beginning and at the 6281 * end of interesting range may be not aligned with pages that 6282 * page allocator holds, ie. they can be part of higher order 6283 * pages. Because of this, we reserve the bigger range and 6284 * once this is done free the pages we are not interested in. 6285 * 6286 * We don't have to hold zone->lock here because the pages are 6287 * isolated thus they won't get removed from buddy. 6288 */ 6289 6290 lru_add_drain_all(); 6291 drain_all_pages(); 6292 6293 order = 0; 6294 outer_start = start; 6295 while (!PageBuddy(pfn_to_page(outer_start))) { 6296 if (++order >= MAX_ORDER) { 6297 ret = -EBUSY; 6298 goto done; 6299 } 6300 outer_start &= ~0UL << order; 6301 } 6302 6303 /* Make sure the range is really isolated. */ 6304 if (test_pages_isolated(outer_start, end, false)) { 6305 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n", 6306 outer_start, end); 6307 ret = -EBUSY; 6308 goto done; 6309 } 6310 6311 6312 /* Grab isolated pages from freelists. */ 6313 outer_end = isolate_freepages_range(&cc, outer_start, end); 6314 if (!outer_end) { 6315 ret = -EBUSY; 6316 goto done; 6317 } 6318 6319 /* Free head and tail (if any) */ 6320 if (start != outer_start) 6321 free_contig_range(outer_start, start - outer_start); 6322 if (end != outer_end) 6323 free_contig_range(end, outer_end - end); 6324 6325 done: 6326 undo_isolate_page_range(pfn_max_align_down(start), 6327 pfn_max_align_up(end), migratetype); 6328 return ret; 6329 } 6330 6331 void free_contig_range(unsigned long pfn, unsigned nr_pages) 6332 { 6333 unsigned int count = 0; 6334 6335 for (; nr_pages--; pfn++) { 6336 struct page *page = pfn_to_page(pfn); 6337 6338 count += page_count(page) != 1; 6339 __free_page(page); 6340 } 6341 WARN(count != 0, "%d pages are still in use!\n", count); 6342 } 6343 #endif 6344 6345 #ifdef CONFIG_MEMORY_HOTPLUG 6346 /* 6347 * The zone indicated has a new number of managed_pages; batch sizes and percpu 6348 * page high values need to be recalulated. 6349 */ 6350 void __meminit zone_pcp_update(struct zone *zone) 6351 { 6352 unsigned cpu; 6353 mutex_lock(&pcp_batch_high_lock); 6354 for_each_possible_cpu(cpu) 6355 pageset_set_high_and_batch(zone, 6356 per_cpu_ptr(zone->pageset, cpu)); 6357 mutex_unlock(&pcp_batch_high_lock); 6358 } 6359 #endif 6360 6361 void zone_pcp_reset(struct zone *zone) 6362 { 6363 unsigned long flags; 6364 int cpu; 6365 struct per_cpu_pageset *pset; 6366 6367 /* avoid races with drain_pages() */ 6368 local_irq_save(flags); 6369 if (zone->pageset != &boot_pageset) { 6370 for_each_online_cpu(cpu) { 6371 pset = per_cpu_ptr(zone->pageset, cpu); 6372 drain_zonestat(zone, pset); 6373 } 6374 free_percpu(zone->pageset); 6375 zone->pageset = &boot_pageset; 6376 } 6377 local_irq_restore(flags); 6378 } 6379 6380 #ifdef CONFIG_MEMORY_HOTREMOVE 6381 /* 6382 * All pages in the range must be isolated before calling this. 6383 */ 6384 void 6385 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 6386 { 6387 struct page *page; 6388 struct zone *zone; 6389 int order, i; 6390 unsigned long pfn; 6391 unsigned long flags; 6392 /* find the first valid pfn */ 6393 for (pfn = start_pfn; pfn < end_pfn; pfn++) 6394 if (pfn_valid(pfn)) 6395 break; 6396 if (pfn == end_pfn) 6397 return; 6398 zone = page_zone(pfn_to_page(pfn)); 6399 spin_lock_irqsave(&zone->lock, flags); 6400 pfn = start_pfn; 6401 while (pfn < end_pfn) { 6402 if (!pfn_valid(pfn)) { 6403 pfn++; 6404 continue; 6405 } 6406 page = pfn_to_page(pfn); 6407 /* 6408 * The HWPoisoned page may be not in buddy system, and 6409 * page_count() is not 0. 6410 */ 6411 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 6412 pfn++; 6413 SetPageReserved(page); 6414 continue; 6415 } 6416 6417 BUG_ON(page_count(page)); 6418 BUG_ON(!PageBuddy(page)); 6419 order = page_order(page); 6420 #ifdef CONFIG_DEBUG_VM 6421 printk(KERN_INFO "remove from free list %lx %d %lx\n", 6422 pfn, 1 << order, end_pfn); 6423 #endif 6424 list_del(&page->lru); 6425 rmv_page_order(page); 6426 zone->free_area[order].nr_free--; 6427 for (i = 0; i < (1 << order); i++) 6428 SetPageReserved((page+i)); 6429 pfn += (1 << order); 6430 } 6431 spin_unlock_irqrestore(&zone->lock, flags); 6432 } 6433 #endif 6434 6435 #ifdef CONFIG_MEMORY_FAILURE 6436 bool is_free_buddy_page(struct page *page) 6437 { 6438 struct zone *zone = page_zone(page); 6439 unsigned long pfn = page_to_pfn(page); 6440 unsigned long flags; 6441 int order; 6442 6443 spin_lock_irqsave(&zone->lock, flags); 6444 for (order = 0; order < MAX_ORDER; order++) { 6445 struct page *page_head = page - (pfn & ((1 << order) - 1)); 6446 6447 if (PageBuddy(page_head) && page_order(page_head) >= order) 6448 break; 6449 } 6450 spin_unlock_irqrestore(&zone->lock, flags); 6451 6452 return order < MAX_ORDER; 6453 } 6454 #endif 6455 6456 static const struct trace_print_flags pageflag_names[] = { 6457 {1UL << PG_locked, "locked" }, 6458 {1UL << PG_error, "error" }, 6459 {1UL << PG_referenced, "referenced" }, 6460 {1UL << PG_uptodate, "uptodate" }, 6461 {1UL << PG_dirty, "dirty" }, 6462 {1UL << PG_lru, "lru" }, 6463 {1UL << PG_active, "active" }, 6464 {1UL << PG_slab, "slab" }, 6465 {1UL << PG_owner_priv_1, "owner_priv_1" }, 6466 {1UL << PG_arch_1, "arch_1" }, 6467 {1UL << PG_reserved, "reserved" }, 6468 {1UL << PG_private, "private" }, 6469 {1UL << PG_private_2, "private_2" }, 6470 {1UL << PG_writeback, "writeback" }, 6471 #ifdef CONFIG_PAGEFLAGS_EXTENDED 6472 {1UL << PG_head, "head" }, 6473 {1UL << PG_tail, "tail" }, 6474 #else 6475 {1UL << PG_compound, "compound" }, 6476 #endif 6477 {1UL << PG_swapcache, "swapcache" }, 6478 {1UL << PG_mappedtodisk, "mappedtodisk" }, 6479 {1UL << PG_reclaim, "reclaim" }, 6480 {1UL << PG_swapbacked, "swapbacked" }, 6481 {1UL << PG_unevictable, "unevictable" }, 6482 #ifdef CONFIG_MMU 6483 {1UL << PG_mlocked, "mlocked" }, 6484 #endif 6485 #ifdef CONFIG_ARCH_USES_PG_UNCACHED 6486 {1UL << PG_uncached, "uncached" }, 6487 #endif 6488 #ifdef CONFIG_MEMORY_FAILURE 6489 {1UL << PG_hwpoison, "hwpoison" }, 6490 #endif 6491 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6492 {1UL << PG_compound_lock, "compound_lock" }, 6493 #endif 6494 }; 6495 6496 static void dump_page_flags(unsigned long flags) 6497 { 6498 const char *delim = ""; 6499 unsigned long mask; 6500 int i; 6501 6502 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS); 6503 6504 printk(KERN_ALERT "page flags: %#lx(", flags); 6505 6506 /* remove zone id */ 6507 flags &= (1UL << NR_PAGEFLAGS) - 1; 6508 6509 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) { 6510 6511 mask = pageflag_names[i].mask; 6512 if ((flags & mask) != mask) 6513 continue; 6514 6515 flags &= ~mask; 6516 printk("%s%s", delim, pageflag_names[i].name); 6517 delim = "|"; 6518 } 6519 6520 /* check for left over flags */ 6521 if (flags) 6522 printk("%s%#lx", delim, flags); 6523 6524 printk(")\n"); 6525 } 6526 6527 void dump_page_badflags(struct page *page, char *reason, unsigned long badflags) 6528 { 6529 printk(KERN_ALERT 6530 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n", 6531 page, atomic_read(&page->_count), page_mapcount(page), 6532 page->mapping, page->index); 6533 dump_page_flags(page->flags); 6534 if (reason) 6535 pr_alert("page dumped because: %s\n", reason); 6536 if (page->flags & badflags) { 6537 pr_alert("bad because of flags:\n"); 6538 dump_page_flags(page->flags & badflags); 6539 } 6540 mem_cgroup_print_bad_page(page); 6541 } 6542 6543 void dump_page(struct page *page, char *reason) 6544 { 6545 dump_page_badflags(page, reason, 0); 6546 } 6547 EXPORT_SYMBOL_GPL(dump_page); 6548