xref: /openbmc/linux/mm/page_alloc.c (revision 5d7800d9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmstat.h>
38 #include <linux/fault-inject.h>
39 #include <linux/compaction.h>
40 #include <trace/events/kmem.h>
41 #include <trace/events/oom.h>
42 #include <linux/prefetch.h>
43 #include <linux/mm_inline.h>
44 #include <linux/mmu_notifier.h>
45 #include <linux/migrate.h>
46 #include <linux/sched/mm.h>
47 #include <linux/page_owner.h>
48 #include <linux/page_table_check.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/lockdep.h>
52 #include <linux/psi.h>
53 #include <linux/khugepaged.h>
54 #include <linux/delayacct.h>
55 #include <asm/div64.h>
56 #include "internal.h"
57 #include "shuffle.h"
58 #include "page_reporting.h"
59 
60 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
61 typedef int __bitwise fpi_t;
62 
63 /* No special request */
64 #define FPI_NONE		((__force fpi_t)0)
65 
66 /*
67  * Skip free page reporting notification for the (possibly merged) page.
68  * This does not hinder free page reporting from grabbing the page,
69  * reporting it and marking it "reported" -  it only skips notifying
70  * the free page reporting infrastructure about a newly freed page. For
71  * example, used when temporarily pulling a page from a freelist and
72  * putting it back unmodified.
73  */
74 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
75 
76 /*
77  * Place the (possibly merged) page to the tail of the freelist. Will ignore
78  * page shuffling (relevant code - e.g., memory onlining - is expected to
79  * shuffle the whole zone).
80  *
81  * Note: No code should rely on this flag for correctness - it's purely
82  *       to allow for optimizations when handing back either fresh pages
83  *       (memory onlining) or untouched pages (page isolation, free page
84  *       reporting).
85  */
86 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
87 
88 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
89 static DEFINE_MUTEX(pcp_batch_high_lock);
90 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
91 
92 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
93 /*
94  * On SMP, spin_trylock is sufficient protection.
95  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
96  */
97 #define pcp_trylock_prepare(flags)	do { } while (0)
98 #define pcp_trylock_finish(flag)	do { } while (0)
99 #else
100 
101 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
102 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
103 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
104 #endif
105 
106 /*
107  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
108  * a migration causing the wrong PCP to be locked and remote memory being
109  * potentially allocated, pin the task to the CPU for the lookup+lock.
110  * preempt_disable is used on !RT because it is faster than migrate_disable.
111  * migrate_disable is used on RT because otherwise RT spinlock usage is
112  * interfered with and a high priority task cannot preempt the allocator.
113  */
114 #ifndef CONFIG_PREEMPT_RT
115 #define pcpu_task_pin()		preempt_disable()
116 #define pcpu_task_unpin()	preempt_enable()
117 #else
118 #define pcpu_task_pin()		migrate_disable()
119 #define pcpu_task_unpin()	migrate_enable()
120 #endif
121 
122 /*
123  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
124  * Return value should be used with equivalent unlock helper.
125  */
126 #define pcpu_spin_lock(type, member, ptr)				\
127 ({									\
128 	type *_ret;							\
129 	pcpu_task_pin();						\
130 	_ret = this_cpu_ptr(ptr);					\
131 	spin_lock(&_ret->member);					\
132 	_ret;								\
133 })
134 
135 #define pcpu_spin_trylock(type, member, ptr)				\
136 ({									\
137 	type *_ret;							\
138 	pcpu_task_pin();						\
139 	_ret = this_cpu_ptr(ptr);					\
140 	if (!spin_trylock(&_ret->member)) {				\
141 		pcpu_task_unpin();					\
142 		_ret = NULL;						\
143 	}								\
144 	_ret;								\
145 })
146 
147 #define pcpu_spin_unlock(member, ptr)					\
148 ({									\
149 	spin_unlock(&ptr->member);					\
150 	pcpu_task_unpin();						\
151 })
152 
153 /* struct per_cpu_pages specific helpers. */
154 #define pcp_spin_lock(ptr)						\
155 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
156 
157 #define pcp_spin_trylock(ptr)						\
158 	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
159 
160 #define pcp_spin_unlock(ptr)						\
161 	pcpu_spin_unlock(lock, ptr)
162 
163 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
164 DEFINE_PER_CPU(int, numa_node);
165 EXPORT_PER_CPU_SYMBOL(numa_node);
166 #endif
167 
168 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
169 
170 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
171 /*
172  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
173  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
174  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
175  * defined in <linux/topology.h>.
176  */
177 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
178 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
179 #endif
180 
181 static DEFINE_MUTEX(pcpu_drain_mutex);
182 
183 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
184 volatile unsigned long latent_entropy __latent_entropy;
185 EXPORT_SYMBOL(latent_entropy);
186 #endif
187 
188 /*
189  * Array of node states.
190  */
191 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
192 	[N_POSSIBLE] = NODE_MASK_ALL,
193 	[N_ONLINE] = { { [0] = 1UL } },
194 #ifndef CONFIG_NUMA
195 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
196 #ifdef CONFIG_HIGHMEM
197 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
198 #endif
199 	[N_MEMORY] = { { [0] = 1UL } },
200 	[N_CPU] = { { [0] = 1UL } },
201 #endif	/* NUMA */
202 };
203 EXPORT_SYMBOL(node_states);
204 
205 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
206 
207 /*
208  * A cached value of the page's pageblock's migratetype, used when the page is
209  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
210  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
211  * Also the migratetype set in the page does not necessarily match the pcplist
212  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
213  * other index - this ensures that it will be put on the correct CMA freelist.
214  */
215 static inline int get_pcppage_migratetype(struct page *page)
216 {
217 	return page->index;
218 }
219 
220 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
221 {
222 	page->index = migratetype;
223 }
224 
225 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
226 unsigned int pageblock_order __read_mostly;
227 #endif
228 
229 static void __free_pages_ok(struct page *page, unsigned int order,
230 			    fpi_t fpi_flags);
231 
232 /*
233  * results with 256, 32 in the lowmem_reserve sysctl:
234  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
235  *	1G machine -> (16M dma, 784M normal, 224M high)
236  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
237  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
238  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
239  *
240  * TBD: should special case ZONE_DMA32 machines here - in those we normally
241  * don't need any ZONE_NORMAL reservation
242  */
243 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
244 #ifdef CONFIG_ZONE_DMA
245 	[ZONE_DMA] = 256,
246 #endif
247 #ifdef CONFIG_ZONE_DMA32
248 	[ZONE_DMA32] = 256,
249 #endif
250 	[ZONE_NORMAL] = 32,
251 #ifdef CONFIG_HIGHMEM
252 	[ZONE_HIGHMEM] = 0,
253 #endif
254 	[ZONE_MOVABLE] = 0,
255 };
256 
257 char * const zone_names[MAX_NR_ZONES] = {
258 #ifdef CONFIG_ZONE_DMA
259 	 "DMA",
260 #endif
261 #ifdef CONFIG_ZONE_DMA32
262 	 "DMA32",
263 #endif
264 	 "Normal",
265 #ifdef CONFIG_HIGHMEM
266 	 "HighMem",
267 #endif
268 	 "Movable",
269 #ifdef CONFIG_ZONE_DEVICE
270 	 "Device",
271 #endif
272 };
273 
274 const char * const migratetype_names[MIGRATE_TYPES] = {
275 	"Unmovable",
276 	"Movable",
277 	"Reclaimable",
278 	"HighAtomic",
279 #ifdef CONFIG_CMA
280 	"CMA",
281 #endif
282 #ifdef CONFIG_MEMORY_ISOLATION
283 	"Isolate",
284 #endif
285 };
286 
287 static compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
288 	[NULL_COMPOUND_DTOR] = NULL,
289 	[COMPOUND_PAGE_DTOR] = free_compound_page,
290 #ifdef CONFIG_HUGETLB_PAGE
291 	[HUGETLB_PAGE_DTOR] = free_huge_page,
292 #endif
293 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
294 	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
295 #endif
296 };
297 
298 int min_free_kbytes = 1024;
299 int user_min_free_kbytes = -1;
300 static int watermark_boost_factor __read_mostly = 15000;
301 static int watermark_scale_factor = 10;
302 
303 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
304 int movable_zone;
305 EXPORT_SYMBOL(movable_zone);
306 
307 #if MAX_NUMNODES > 1
308 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
309 unsigned int nr_online_nodes __read_mostly = 1;
310 EXPORT_SYMBOL(nr_node_ids);
311 EXPORT_SYMBOL(nr_online_nodes);
312 #endif
313 
314 static bool page_contains_unaccepted(struct page *page, unsigned int order);
315 static void accept_page(struct page *page, unsigned int order);
316 static bool try_to_accept_memory(struct zone *zone, unsigned int order);
317 static inline bool has_unaccepted_memory(void);
318 static bool __free_unaccepted(struct page *page);
319 
320 int page_group_by_mobility_disabled __read_mostly;
321 
322 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
323 /*
324  * During boot we initialize deferred pages on-demand, as needed, but once
325  * page_alloc_init_late() has finished, the deferred pages are all initialized,
326  * and we can permanently disable that path.
327  */
328 DEFINE_STATIC_KEY_TRUE(deferred_pages);
329 
330 static inline bool deferred_pages_enabled(void)
331 {
332 	return static_branch_unlikely(&deferred_pages);
333 }
334 
335 /*
336  * deferred_grow_zone() is __init, but it is called from
337  * get_page_from_freelist() during early boot until deferred_pages permanently
338  * disables this call. This is why we have refdata wrapper to avoid warning,
339  * and to ensure that the function body gets unloaded.
340  */
341 static bool __ref
342 _deferred_grow_zone(struct zone *zone, unsigned int order)
343 {
344        return deferred_grow_zone(zone, order);
345 }
346 #else
347 static inline bool deferred_pages_enabled(void)
348 {
349 	return false;
350 }
351 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
352 
353 /* Return a pointer to the bitmap storing bits affecting a block of pages */
354 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
355 							unsigned long pfn)
356 {
357 #ifdef CONFIG_SPARSEMEM
358 	return section_to_usemap(__pfn_to_section(pfn));
359 #else
360 	return page_zone(page)->pageblock_flags;
361 #endif /* CONFIG_SPARSEMEM */
362 }
363 
364 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
365 {
366 #ifdef CONFIG_SPARSEMEM
367 	pfn &= (PAGES_PER_SECTION-1);
368 #else
369 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
370 #endif /* CONFIG_SPARSEMEM */
371 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
372 }
373 
374 static __always_inline
375 unsigned long __get_pfnblock_flags_mask(const struct page *page,
376 					unsigned long pfn,
377 					unsigned long mask)
378 {
379 	unsigned long *bitmap;
380 	unsigned long bitidx, word_bitidx;
381 	unsigned long word;
382 
383 	bitmap = get_pageblock_bitmap(page, pfn);
384 	bitidx = pfn_to_bitidx(page, pfn);
385 	word_bitidx = bitidx / BITS_PER_LONG;
386 	bitidx &= (BITS_PER_LONG-1);
387 	/*
388 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
389 	 * a consistent read of the memory array, so that results, even though
390 	 * racy, are not corrupted.
391 	 */
392 	word = READ_ONCE(bitmap[word_bitidx]);
393 	return (word >> bitidx) & mask;
394 }
395 
396 /**
397  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
398  * @page: The page within the block of interest
399  * @pfn: The target page frame number
400  * @mask: mask of bits that the caller is interested in
401  *
402  * Return: pageblock_bits flags
403  */
404 unsigned long get_pfnblock_flags_mask(const struct page *page,
405 					unsigned long pfn, unsigned long mask)
406 {
407 	return __get_pfnblock_flags_mask(page, pfn, mask);
408 }
409 
410 static __always_inline int get_pfnblock_migratetype(const struct page *page,
411 					unsigned long pfn)
412 {
413 	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
414 }
415 
416 /**
417  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
418  * @page: The page within the block of interest
419  * @flags: The flags to set
420  * @pfn: The target page frame number
421  * @mask: mask of bits that the caller is interested in
422  */
423 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
424 					unsigned long pfn,
425 					unsigned long mask)
426 {
427 	unsigned long *bitmap;
428 	unsigned long bitidx, word_bitidx;
429 	unsigned long word;
430 
431 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
432 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
433 
434 	bitmap = get_pageblock_bitmap(page, pfn);
435 	bitidx = pfn_to_bitidx(page, pfn);
436 	word_bitidx = bitidx / BITS_PER_LONG;
437 	bitidx &= (BITS_PER_LONG-1);
438 
439 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
440 
441 	mask <<= bitidx;
442 	flags <<= bitidx;
443 
444 	word = READ_ONCE(bitmap[word_bitidx]);
445 	do {
446 	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
447 }
448 
449 void set_pageblock_migratetype(struct page *page, int migratetype)
450 {
451 	if (unlikely(page_group_by_mobility_disabled &&
452 		     migratetype < MIGRATE_PCPTYPES))
453 		migratetype = MIGRATE_UNMOVABLE;
454 
455 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
456 				page_to_pfn(page), MIGRATETYPE_MASK);
457 }
458 
459 #ifdef CONFIG_DEBUG_VM
460 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
461 {
462 	int ret;
463 	unsigned seq;
464 	unsigned long pfn = page_to_pfn(page);
465 	unsigned long sp, start_pfn;
466 
467 	do {
468 		seq = zone_span_seqbegin(zone);
469 		start_pfn = zone->zone_start_pfn;
470 		sp = zone->spanned_pages;
471 		ret = !zone_spans_pfn(zone, pfn);
472 	} while (zone_span_seqretry(zone, seq));
473 
474 	if (ret)
475 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
476 			pfn, zone_to_nid(zone), zone->name,
477 			start_pfn, start_pfn + sp);
478 
479 	return ret;
480 }
481 
482 /*
483  * Temporary debugging check for pages not lying within a given zone.
484  */
485 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
486 {
487 	if (page_outside_zone_boundaries(zone, page))
488 		return 1;
489 	if (zone != page_zone(page))
490 		return 1;
491 
492 	return 0;
493 }
494 #else
495 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
496 {
497 	return 0;
498 }
499 #endif
500 
501 static void bad_page(struct page *page, const char *reason)
502 {
503 	static unsigned long resume;
504 	static unsigned long nr_shown;
505 	static unsigned long nr_unshown;
506 
507 	/*
508 	 * Allow a burst of 60 reports, then keep quiet for that minute;
509 	 * or allow a steady drip of one report per second.
510 	 */
511 	if (nr_shown == 60) {
512 		if (time_before(jiffies, resume)) {
513 			nr_unshown++;
514 			goto out;
515 		}
516 		if (nr_unshown) {
517 			pr_alert(
518 			      "BUG: Bad page state: %lu messages suppressed\n",
519 				nr_unshown);
520 			nr_unshown = 0;
521 		}
522 		nr_shown = 0;
523 	}
524 	if (nr_shown++ == 0)
525 		resume = jiffies + 60 * HZ;
526 
527 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
528 		current->comm, page_to_pfn(page));
529 	dump_page(page, reason);
530 
531 	print_modules();
532 	dump_stack();
533 out:
534 	/* Leave bad fields for debug, except PageBuddy could make trouble */
535 	page_mapcount_reset(page); /* remove PageBuddy */
536 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
537 }
538 
539 static inline unsigned int order_to_pindex(int migratetype, int order)
540 {
541 	int base = order;
542 
543 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
544 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
545 		VM_BUG_ON(order != pageblock_order);
546 		return NR_LOWORDER_PCP_LISTS;
547 	}
548 #else
549 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
550 #endif
551 
552 	return (MIGRATE_PCPTYPES * base) + migratetype;
553 }
554 
555 static inline int pindex_to_order(unsigned int pindex)
556 {
557 	int order = pindex / MIGRATE_PCPTYPES;
558 
559 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
560 	if (pindex == NR_LOWORDER_PCP_LISTS)
561 		order = pageblock_order;
562 #else
563 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
564 #endif
565 
566 	return order;
567 }
568 
569 static inline bool pcp_allowed_order(unsigned int order)
570 {
571 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
572 		return true;
573 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
574 	if (order == pageblock_order)
575 		return true;
576 #endif
577 	return false;
578 }
579 
580 static inline void free_the_page(struct page *page, unsigned int order)
581 {
582 	if (pcp_allowed_order(order))		/* Via pcp? */
583 		free_unref_page(page, order);
584 	else
585 		__free_pages_ok(page, order, FPI_NONE);
586 }
587 
588 /*
589  * Higher-order pages are called "compound pages".  They are structured thusly:
590  *
591  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
592  *
593  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
594  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
595  *
596  * The first tail page's ->compound_dtor holds the offset in array of compound
597  * page destructors. See compound_page_dtors.
598  *
599  * The first tail page's ->compound_order holds the order of allocation.
600  * This usage means that zero-order pages may not be compound.
601  */
602 
603 void free_compound_page(struct page *page)
604 {
605 	mem_cgroup_uncharge(page_folio(page));
606 	free_the_page(page, compound_order(page));
607 }
608 
609 void prep_compound_page(struct page *page, unsigned int order)
610 {
611 	int i;
612 	int nr_pages = 1 << order;
613 
614 	__SetPageHead(page);
615 	for (i = 1; i < nr_pages; i++)
616 		prep_compound_tail(page, i);
617 
618 	prep_compound_head(page, order);
619 }
620 
621 void destroy_large_folio(struct folio *folio)
622 {
623 	enum compound_dtor_id dtor = folio->_folio_dtor;
624 
625 	VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio);
626 	compound_page_dtors[dtor](&folio->page);
627 }
628 
629 static inline void set_buddy_order(struct page *page, unsigned int order)
630 {
631 	set_page_private(page, order);
632 	__SetPageBuddy(page);
633 }
634 
635 #ifdef CONFIG_COMPACTION
636 static inline struct capture_control *task_capc(struct zone *zone)
637 {
638 	struct capture_control *capc = current->capture_control;
639 
640 	return unlikely(capc) &&
641 		!(current->flags & PF_KTHREAD) &&
642 		!capc->page &&
643 		capc->cc->zone == zone ? capc : NULL;
644 }
645 
646 static inline bool
647 compaction_capture(struct capture_control *capc, struct page *page,
648 		   int order, int migratetype)
649 {
650 	if (!capc || order != capc->cc->order)
651 		return false;
652 
653 	/* Do not accidentally pollute CMA or isolated regions*/
654 	if (is_migrate_cma(migratetype) ||
655 	    is_migrate_isolate(migratetype))
656 		return false;
657 
658 	/*
659 	 * Do not let lower order allocations pollute a movable pageblock.
660 	 * This might let an unmovable request use a reclaimable pageblock
661 	 * and vice-versa but no more than normal fallback logic which can
662 	 * have trouble finding a high-order free page.
663 	 */
664 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
665 		return false;
666 
667 	capc->page = page;
668 	return true;
669 }
670 
671 #else
672 static inline struct capture_control *task_capc(struct zone *zone)
673 {
674 	return NULL;
675 }
676 
677 static inline bool
678 compaction_capture(struct capture_control *capc, struct page *page,
679 		   int order, int migratetype)
680 {
681 	return false;
682 }
683 #endif /* CONFIG_COMPACTION */
684 
685 /* Used for pages not on another list */
686 static inline void add_to_free_list(struct page *page, struct zone *zone,
687 				    unsigned int order, int migratetype)
688 {
689 	struct free_area *area = &zone->free_area[order];
690 
691 	list_add(&page->buddy_list, &area->free_list[migratetype]);
692 	area->nr_free++;
693 }
694 
695 /* Used for pages not on another list */
696 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
697 					 unsigned int order, int migratetype)
698 {
699 	struct free_area *area = &zone->free_area[order];
700 
701 	list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
702 	area->nr_free++;
703 }
704 
705 /*
706  * Used for pages which are on another list. Move the pages to the tail
707  * of the list - so the moved pages won't immediately be considered for
708  * allocation again (e.g., optimization for memory onlining).
709  */
710 static inline void move_to_free_list(struct page *page, struct zone *zone,
711 				     unsigned int order, int migratetype)
712 {
713 	struct free_area *area = &zone->free_area[order];
714 
715 	list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
716 }
717 
718 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
719 					   unsigned int order)
720 {
721 	/* clear reported state and update reported page count */
722 	if (page_reported(page))
723 		__ClearPageReported(page);
724 
725 	list_del(&page->buddy_list);
726 	__ClearPageBuddy(page);
727 	set_page_private(page, 0);
728 	zone->free_area[order].nr_free--;
729 }
730 
731 static inline struct page *get_page_from_free_area(struct free_area *area,
732 					    int migratetype)
733 {
734 	return list_first_entry_or_null(&area->free_list[migratetype],
735 					struct page, buddy_list);
736 }
737 
738 /*
739  * If this is not the largest possible page, check if the buddy
740  * of the next-highest order is free. If it is, it's possible
741  * that pages are being freed that will coalesce soon. In case,
742  * that is happening, add the free page to the tail of the list
743  * so it's less likely to be used soon and more likely to be merged
744  * as a higher order page
745  */
746 static inline bool
747 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
748 		   struct page *page, unsigned int order)
749 {
750 	unsigned long higher_page_pfn;
751 	struct page *higher_page;
752 
753 	if (order >= MAX_ORDER - 1)
754 		return false;
755 
756 	higher_page_pfn = buddy_pfn & pfn;
757 	higher_page = page + (higher_page_pfn - pfn);
758 
759 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
760 			NULL) != NULL;
761 }
762 
763 /*
764  * Freeing function for a buddy system allocator.
765  *
766  * The concept of a buddy system is to maintain direct-mapped table
767  * (containing bit values) for memory blocks of various "orders".
768  * The bottom level table contains the map for the smallest allocatable
769  * units of memory (here, pages), and each level above it describes
770  * pairs of units from the levels below, hence, "buddies".
771  * At a high level, all that happens here is marking the table entry
772  * at the bottom level available, and propagating the changes upward
773  * as necessary, plus some accounting needed to play nicely with other
774  * parts of the VM system.
775  * At each level, we keep a list of pages, which are heads of continuous
776  * free pages of length of (1 << order) and marked with PageBuddy.
777  * Page's order is recorded in page_private(page) field.
778  * So when we are allocating or freeing one, we can derive the state of the
779  * other.  That is, if we allocate a small block, and both were
780  * free, the remainder of the region must be split into blocks.
781  * If a block is freed, and its buddy is also free, then this
782  * triggers coalescing into a block of larger size.
783  *
784  * -- nyc
785  */
786 
787 static inline void __free_one_page(struct page *page,
788 		unsigned long pfn,
789 		struct zone *zone, unsigned int order,
790 		int migratetype, fpi_t fpi_flags)
791 {
792 	struct capture_control *capc = task_capc(zone);
793 	unsigned long buddy_pfn = 0;
794 	unsigned long combined_pfn;
795 	struct page *buddy;
796 	bool to_tail;
797 
798 	VM_BUG_ON(!zone_is_initialized(zone));
799 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
800 
801 	VM_BUG_ON(migratetype == -1);
802 	if (likely(!is_migrate_isolate(migratetype)))
803 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
804 
805 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
806 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
807 
808 	while (order < MAX_ORDER) {
809 		if (compaction_capture(capc, page, order, migratetype)) {
810 			__mod_zone_freepage_state(zone, -(1 << order),
811 								migratetype);
812 			return;
813 		}
814 
815 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
816 		if (!buddy)
817 			goto done_merging;
818 
819 		if (unlikely(order >= pageblock_order)) {
820 			/*
821 			 * We want to prevent merge between freepages on pageblock
822 			 * without fallbacks and normal pageblock. Without this,
823 			 * pageblock isolation could cause incorrect freepage or CMA
824 			 * accounting or HIGHATOMIC accounting.
825 			 */
826 			int buddy_mt = get_pageblock_migratetype(buddy);
827 
828 			if (migratetype != buddy_mt
829 					&& (!migratetype_is_mergeable(migratetype) ||
830 						!migratetype_is_mergeable(buddy_mt)))
831 				goto done_merging;
832 		}
833 
834 		/*
835 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
836 		 * merge with it and move up one order.
837 		 */
838 		if (page_is_guard(buddy))
839 			clear_page_guard(zone, buddy, order, migratetype);
840 		else
841 			del_page_from_free_list(buddy, zone, order);
842 		combined_pfn = buddy_pfn & pfn;
843 		page = page + (combined_pfn - pfn);
844 		pfn = combined_pfn;
845 		order++;
846 	}
847 
848 done_merging:
849 	set_buddy_order(page, order);
850 
851 	if (fpi_flags & FPI_TO_TAIL)
852 		to_tail = true;
853 	else if (is_shuffle_order(order))
854 		to_tail = shuffle_pick_tail();
855 	else
856 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
857 
858 	if (to_tail)
859 		add_to_free_list_tail(page, zone, order, migratetype);
860 	else
861 		add_to_free_list(page, zone, order, migratetype);
862 
863 	/* Notify page reporting subsystem of freed page */
864 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
865 		page_reporting_notify_free(order);
866 }
867 
868 /**
869  * split_free_page() -- split a free page at split_pfn_offset
870  * @free_page:		the original free page
871  * @order:		the order of the page
872  * @split_pfn_offset:	split offset within the page
873  *
874  * Return -ENOENT if the free page is changed, otherwise 0
875  *
876  * It is used when the free page crosses two pageblocks with different migratetypes
877  * at split_pfn_offset within the page. The split free page will be put into
878  * separate migratetype lists afterwards. Otherwise, the function achieves
879  * nothing.
880  */
881 int split_free_page(struct page *free_page,
882 			unsigned int order, unsigned long split_pfn_offset)
883 {
884 	struct zone *zone = page_zone(free_page);
885 	unsigned long free_page_pfn = page_to_pfn(free_page);
886 	unsigned long pfn;
887 	unsigned long flags;
888 	int free_page_order;
889 	int mt;
890 	int ret = 0;
891 
892 	if (split_pfn_offset == 0)
893 		return ret;
894 
895 	spin_lock_irqsave(&zone->lock, flags);
896 
897 	if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
898 		ret = -ENOENT;
899 		goto out;
900 	}
901 
902 	mt = get_pageblock_migratetype(free_page);
903 	if (likely(!is_migrate_isolate(mt)))
904 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
905 
906 	del_page_from_free_list(free_page, zone, order);
907 	for (pfn = free_page_pfn;
908 	     pfn < free_page_pfn + (1UL << order);) {
909 		int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
910 
911 		free_page_order = min_t(unsigned int,
912 					pfn ? __ffs(pfn) : order,
913 					__fls(split_pfn_offset));
914 		__free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
915 				mt, FPI_NONE);
916 		pfn += 1UL << free_page_order;
917 		split_pfn_offset -= (1UL << free_page_order);
918 		/* we have done the first part, now switch to second part */
919 		if (split_pfn_offset == 0)
920 			split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
921 	}
922 out:
923 	spin_unlock_irqrestore(&zone->lock, flags);
924 	return ret;
925 }
926 /*
927  * A bad page could be due to a number of fields. Instead of multiple branches,
928  * try and check multiple fields with one check. The caller must do a detailed
929  * check if necessary.
930  */
931 static inline bool page_expected_state(struct page *page,
932 					unsigned long check_flags)
933 {
934 	if (unlikely(atomic_read(&page->_mapcount) != -1))
935 		return false;
936 
937 	if (unlikely((unsigned long)page->mapping |
938 			page_ref_count(page) |
939 #ifdef CONFIG_MEMCG
940 			page->memcg_data |
941 #endif
942 			(page->flags & check_flags)))
943 		return false;
944 
945 	return true;
946 }
947 
948 static const char *page_bad_reason(struct page *page, unsigned long flags)
949 {
950 	const char *bad_reason = NULL;
951 
952 	if (unlikely(atomic_read(&page->_mapcount) != -1))
953 		bad_reason = "nonzero mapcount";
954 	if (unlikely(page->mapping != NULL))
955 		bad_reason = "non-NULL mapping";
956 	if (unlikely(page_ref_count(page) != 0))
957 		bad_reason = "nonzero _refcount";
958 	if (unlikely(page->flags & flags)) {
959 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
960 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
961 		else
962 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
963 	}
964 #ifdef CONFIG_MEMCG
965 	if (unlikely(page->memcg_data))
966 		bad_reason = "page still charged to cgroup";
967 #endif
968 	return bad_reason;
969 }
970 
971 static void free_page_is_bad_report(struct page *page)
972 {
973 	bad_page(page,
974 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
975 }
976 
977 static inline bool free_page_is_bad(struct page *page)
978 {
979 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
980 		return false;
981 
982 	/* Something has gone sideways, find it */
983 	free_page_is_bad_report(page);
984 	return true;
985 }
986 
987 static inline bool is_check_pages_enabled(void)
988 {
989 	return static_branch_unlikely(&check_pages_enabled);
990 }
991 
992 static int free_tail_page_prepare(struct page *head_page, struct page *page)
993 {
994 	struct folio *folio = (struct folio *)head_page;
995 	int ret = 1;
996 
997 	/*
998 	 * We rely page->lru.next never has bit 0 set, unless the page
999 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1000 	 */
1001 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1002 
1003 	if (!is_check_pages_enabled()) {
1004 		ret = 0;
1005 		goto out;
1006 	}
1007 	switch (page - head_page) {
1008 	case 1:
1009 		/* the first tail page: these may be in place of ->mapping */
1010 		if (unlikely(folio_entire_mapcount(folio))) {
1011 			bad_page(page, "nonzero entire_mapcount");
1012 			goto out;
1013 		}
1014 		if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
1015 			bad_page(page, "nonzero nr_pages_mapped");
1016 			goto out;
1017 		}
1018 		if (unlikely(atomic_read(&folio->_pincount))) {
1019 			bad_page(page, "nonzero pincount");
1020 			goto out;
1021 		}
1022 		break;
1023 	case 2:
1024 		/*
1025 		 * the second tail page: ->mapping is
1026 		 * deferred_list.next -- ignore value.
1027 		 */
1028 		break;
1029 	default:
1030 		if (page->mapping != TAIL_MAPPING) {
1031 			bad_page(page, "corrupted mapping in tail page");
1032 			goto out;
1033 		}
1034 		break;
1035 	}
1036 	if (unlikely(!PageTail(page))) {
1037 		bad_page(page, "PageTail not set");
1038 		goto out;
1039 	}
1040 	if (unlikely(compound_head(page) != head_page)) {
1041 		bad_page(page, "compound_head not consistent");
1042 		goto out;
1043 	}
1044 	ret = 0;
1045 out:
1046 	page->mapping = NULL;
1047 	clear_compound_head(page);
1048 	return ret;
1049 }
1050 
1051 /*
1052  * Skip KASAN memory poisoning when either:
1053  *
1054  * 1. For generic KASAN: deferred memory initialization has not yet completed.
1055  *    Tag-based KASAN modes skip pages freed via deferred memory initialization
1056  *    using page tags instead (see below).
1057  * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1058  *    that error detection is disabled for accesses via the page address.
1059  *
1060  * Pages will have match-all tags in the following circumstances:
1061  *
1062  * 1. Pages are being initialized for the first time, including during deferred
1063  *    memory init; see the call to page_kasan_tag_reset in __init_single_page.
1064  * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1065  *    exception of pages unpoisoned by kasan_unpoison_vmalloc.
1066  * 3. The allocation was excluded from being checked due to sampling,
1067  *    see the call to kasan_unpoison_pages.
1068  *
1069  * Poisoning pages during deferred memory init will greatly lengthen the
1070  * process and cause problem in large memory systems as the deferred pages
1071  * initialization is done with interrupt disabled.
1072  *
1073  * Assuming that there will be no reference to those newly initialized
1074  * pages before they are ever allocated, this should have no effect on
1075  * KASAN memory tracking as the poison will be properly inserted at page
1076  * allocation time. The only corner case is when pages are allocated by
1077  * on-demand allocation and then freed again before the deferred pages
1078  * initialization is done, but this is not likely to happen.
1079  */
1080 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1081 {
1082 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1083 		return deferred_pages_enabled();
1084 
1085 	return page_kasan_tag(page) == 0xff;
1086 }
1087 
1088 static void kernel_init_pages(struct page *page, int numpages)
1089 {
1090 	int i;
1091 
1092 	/* s390's use of memset() could override KASAN redzones. */
1093 	kasan_disable_current();
1094 	for (i = 0; i < numpages; i++)
1095 		clear_highpage_kasan_tagged(page + i);
1096 	kasan_enable_current();
1097 }
1098 
1099 static __always_inline bool free_pages_prepare(struct page *page,
1100 			unsigned int order, fpi_t fpi_flags)
1101 {
1102 	int bad = 0;
1103 	bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1104 	bool init = want_init_on_free();
1105 
1106 	VM_BUG_ON_PAGE(PageTail(page), page);
1107 
1108 	trace_mm_page_free(page, order);
1109 	kmsan_free_page(page, order);
1110 
1111 	if (unlikely(PageHWPoison(page)) && !order) {
1112 		/*
1113 		 * Do not let hwpoison pages hit pcplists/buddy
1114 		 * Untie memcg state and reset page's owner
1115 		 */
1116 		if (memcg_kmem_online() && PageMemcgKmem(page))
1117 			__memcg_kmem_uncharge_page(page, order);
1118 		reset_page_owner(page, order);
1119 		page_table_check_free(page, order);
1120 		return false;
1121 	}
1122 
1123 	/*
1124 	 * Check tail pages before head page information is cleared to
1125 	 * avoid checking PageCompound for order-0 pages.
1126 	 */
1127 	if (unlikely(order)) {
1128 		bool compound = PageCompound(page);
1129 		int i;
1130 
1131 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1132 
1133 		if (compound)
1134 			ClearPageHasHWPoisoned(page);
1135 		for (i = 1; i < (1 << order); i++) {
1136 			if (compound)
1137 				bad += free_tail_page_prepare(page, page + i);
1138 			if (is_check_pages_enabled()) {
1139 				if (free_page_is_bad(page + i)) {
1140 					bad++;
1141 					continue;
1142 				}
1143 			}
1144 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1145 		}
1146 	}
1147 	if (PageMappingFlags(page))
1148 		page->mapping = NULL;
1149 	if (memcg_kmem_online() && PageMemcgKmem(page))
1150 		__memcg_kmem_uncharge_page(page, order);
1151 	if (is_check_pages_enabled()) {
1152 		if (free_page_is_bad(page))
1153 			bad++;
1154 		if (bad)
1155 			return false;
1156 	}
1157 
1158 	page_cpupid_reset_last(page);
1159 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1160 	reset_page_owner(page, order);
1161 	page_table_check_free(page, order);
1162 
1163 	if (!PageHighMem(page)) {
1164 		debug_check_no_locks_freed(page_address(page),
1165 					   PAGE_SIZE << order);
1166 		debug_check_no_obj_freed(page_address(page),
1167 					   PAGE_SIZE << order);
1168 	}
1169 
1170 	kernel_poison_pages(page, 1 << order);
1171 
1172 	/*
1173 	 * As memory initialization might be integrated into KASAN,
1174 	 * KASAN poisoning and memory initialization code must be
1175 	 * kept together to avoid discrepancies in behavior.
1176 	 *
1177 	 * With hardware tag-based KASAN, memory tags must be set before the
1178 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1179 	 */
1180 	if (!skip_kasan_poison) {
1181 		kasan_poison_pages(page, order, init);
1182 
1183 		/* Memory is already initialized if KASAN did it internally. */
1184 		if (kasan_has_integrated_init())
1185 			init = false;
1186 	}
1187 	if (init)
1188 		kernel_init_pages(page, 1 << order);
1189 
1190 	/*
1191 	 * arch_free_page() can make the page's contents inaccessible.  s390
1192 	 * does this.  So nothing which can access the page's contents should
1193 	 * happen after this.
1194 	 */
1195 	arch_free_page(page, order);
1196 
1197 	debug_pagealloc_unmap_pages(page, 1 << order);
1198 
1199 	return true;
1200 }
1201 
1202 /*
1203  * Frees a number of pages from the PCP lists
1204  * Assumes all pages on list are in same zone.
1205  * count is the number of pages to free.
1206  */
1207 static void free_pcppages_bulk(struct zone *zone, int count,
1208 					struct per_cpu_pages *pcp,
1209 					int pindex)
1210 {
1211 	unsigned long flags;
1212 	int min_pindex = 0;
1213 	int max_pindex = NR_PCP_LISTS - 1;
1214 	unsigned int order;
1215 	bool isolated_pageblocks;
1216 	struct page *page;
1217 
1218 	/*
1219 	 * Ensure proper count is passed which otherwise would stuck in the
1220 	 * below while (list_empty(list)) loop.
1221 	 */
1222 	count = min(pcp->count, count);
1223 
1224 	/* Ensure requested pindex is drained first. */
1225 	pindex = pindex - 1;
1226 
1227 	spin_lock_irqsave(&zone->lock, flags);
1228 	isolated_pageblocks = has_isolate_pageblock(zone);
1229 
1230 	while (count > 0) {
1231 		struct list_head *list;
1232 		int nr_pages;
1233 
1234 		/* Remove pages from lists in a round-robin fashion. */
1235 		do {
1236 			if (++pindex > max_pindex)
1237 				pindex = min_pindex;
1238 			list = &pcp->lists[pindex];
1239 			if (!list_empty(list))
1240 				break;
1241 
1242 			if (pindex == max_pindex)
1243 				max_pindex--;
1244 			if (pindex == min_pindex)
1245 				min_pindex++;
1246 		} while (1);
1247 
1248 		order = pindex_to_order(pindex);
1249 		nr_pages = 1 << order;
1250 		do {
1251 			int mt;
1252 
1253 			page = list_last_entry(list, struct page, pcp_list);
1254 			mt = get_pcppage_migratetype(page);
1255 
1256 			/* must delete to avoid corrupting pcp list */
1257 			list_del(&page->pcp_list);
1258 			count -= nr_pages;
1259 			pcp->count -= nr_pages;
1260 
1261 			/* MIGRATE_ISOLATE page should not go to pcplists */
1262 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1263 			/* Pageblock could have been isolated meanwhile */
1264 			if (unlikely(isolated_pageblocks))
1265 				mt = get_pageblock_migratetype(page);
1266 
1267 			__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1268 			trace_mm_page_pcpu_drain(page, order, mt);
1269 		} while (count > 0 && !list_empty(list));
1270 	}
1271 
1272 	spin_unlock_irqrestore(&zone->lock, flags);
1273 }
1274 
1275 static void free_one_page(struct zone *zone,
1276 				struct page *page, unsigned long pfn,
1277 				unsigned int order,
1278 				int migratetype, fpi_t fpi_flags)
1279 {
1280 	unsigned long flags;
1281 
1282 	spin_lock_irqsave(&zone->lock, flags);
1283 	if (unlikely(has_isolate_pageblock(zone) ||
1284 		is_migrate_isolate(migratetype))) {
1285 		migratetype = get_pfnblock_migratetype(page, pfn);
1286 	}
1287 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1288 	spin_unlock_irqrestore(&zone->lock, flags);
1289 }
1290 
1291 static void __free_pages_ok(struct page *page, unsigned int order,
1292 			    fpi_t fpi_flags)
1293 {
1294 	unsigned long flags;
1295 	int migratetype;
1296 	unsigned long pfn = page_to_pfn(page);
1297 	struct zone *zone = page_zone(page);
1298 
1299 	if (!free_pages_prepare(page, order, fpi_flags))
1300 		return;
1301 
1302 	/*
1303 	 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here
1304 	 * is used to avoid calling get_pfnblock_migratetype() under the lock.
1305 	 * This will reduce the lock holding time.
1306 	 */
1307 	migratetype = get_pfnblock_migratetype(page, pfn);
1308 
1309 	spin_lock_irqsave(&zone->lock, flags);
1310 	if (unlikely(has_isolate_pageblock(zone) ||
1311 		is_migrate_isolate(migratetype))) {
1312 		migratetype = get_pfnblock_migratetype(page, pfn);
1313 	}
1314 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1315 	spin_unlock_irqrestore(&zone->lock, flags);
1316 
1317 	__count_vm_events(PGFREE, 1 << order);
1318 }
1319 
1320 void __free_pages_core(struct page *page, unsigned int order)
1321 {
1322 	unsigned int nr_pages = 1 << order;
1323 	struct page *p = page;
1324 	unsigned int loop;
1325 
1326 	/*
1327 	 * When initializing the memmap, __init_single_page() sets the refcount
1328 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1329 	 * refcount of all involved pages to 0.
1330 	 */
1331 	prefetchw(p);
1332 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1333 		prefetchw(p + 1);
1334 		__ClearPageReserved(p);
1335 		set_page_count(p, 0);
1336 	}
1337 	__ClearPageReserved(p);
1338 	set_page_count(p, 0);
1339 
1340 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1341 
1342 	if (page_contains_unaccepted(page, order)) {
1343 		if (order == MAX_ORDER && __free_unaccepted(page))
1344 			return;
1345 
1346 		accept_page(page, order);
1347 	}
1348 
1349 	/*
1350 	 * Bypass PCP and place fresh pages right to the tail, primarily
1351 	 * relevant for memory onlining.
1352 	 */
1353 	__free_pages_ok(page, order, FPI_TO_TAIL);
1354 }
1355 
1356 /*
1357  * Check that the whole (or subset of) a pageblock given by the interval of
1358  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1359  * with the migration of free compaction scanner.
1360  *
1361  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1362  *
1363  * It's possible on some configurations to have a setup like node0 node1 node0
1364  * i.e. it's possible that all pages within a zones range of pages do not
1365  * belong to a single zone. We assume that a border between node0 and node1
1366  * can occur within a single pageblock, but not a node0 node1 node0
1367  * interleaving within a single pageblock. It is therefore sufficient to check
1368  * the first and last page of a pageblock and avoid checking each individual
1369  * page in a pageblock.
1370  *
1371  * Note: the function may return non-NULL struct page even for a page block
1372  * which contains a memory hole (i.e. there is no physical memory for a subset
1373  * of the pfn range). For example, if the pageblock order is MAX_ORDER, which
1374  * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1375  * even though the start pfn is online and valid. This should be safe most of
1376  * the time because struct pages are still initialized via init_unavailable_range()
1377  * and pfn walkers shouldn't touch any physical memory range for which they do
1378  * not recognize any specific metadata in struct pages.
1379  */
1380 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1381 				     unsigned long end_pfn, struct zone *zone)
1382 {
1383 	struct page *start_page;
1384 	struct page *end_page;
1385 
1386 	/* end_pfn is one past the range we are checking */
1387 	end_pfn--;
1388 
1389 	if (!pfn_valid(end_pfn))
1390 		return NULL;
1391 
1392 	start_page = pfn_to_online_page(start_pfn);
1393 	if (!start_page)
1394 		return NULL;
1395 
1396 	if (page_zone(start_page) != zone)
1397 		return NULL;
1398 
1399 	end_page = pfn_to_page(end_pfn);
1400 
1401 	/* This gives a shorter code than deriving page_zone(end_page) */
1402 	if (page_zone_id(start_page) != page_zone_id(end_page))
1403 		return NULL;
1404 
1405 	return start_page;
1406 }
1407 
1408 /*
1409  * The order of subdivision here is critical for the IO subsystem.
1410  * Please do not alter this order without good reasons and regression
1411  * testing. Specifically, as large blocks of memory are subdivided,
1412  * the order in which smaller blocks are delivered depends on the order
1413  * they're subdivided in this function. This is the primary factor
1414  * influencing the order in which pages are delivered to the IO
1415  * subsystem according to empirical testing, and this is also justified
1416  * by considering the behavior of a buddy system containing a single
1417  * large block of memory acted on by a series of small allocations.
1418  * This behavior is a critical factor in sglist merging's success.
1419  *
1420  * -- nyc
1421  */
1422 static inline void expand(struct zone *zone, struct page *page,
1423 	int low, int high, int migratetype)
1424 {
1425 	unsigned long size = 1 << high;
1426 
1427 	while (high > low) {
1428 		high--;
1429 		size >>= 1;
1430 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1431 
1432 		/*
1433 		 * Mark as guard pages (or page), that will allow to
1434 		 * merge back to allocator when buddy will be freed.
1435 		 * Corresponding page table entries will not be touched,
1436 		 * pages will stay not present in virtual address space
1437 		 */
1438 		if (set_page_guard(zone, &page[size], high, migratetype))
1439 			continue;
1440 
1441 		add_to_free_list(&page[size], zone, high, migratetype);
1442 		set_buddy_order(&page[size], high);
1443 	}
1444 }
1445 
1446 static void check_new_page_bad(struct page *page)
1447 {
1448 	if (unlikely(page->flags & __PG_HWPOISON)) {
1449 		/* Don't complain about hwpoisoned pages */
1450 		page_mapcount_reset(page); /* remove PageBuddy */
1451 		return;
1452 	}
1453 
1454 	bad_page(page,
1455 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1456 }
1457 
1458 /*
1459  * This page is about to be returned from the page allocator
1460  */
1461 static int check_new_page(struct page *page)
1462 {
1463 	if (likely(page_expected_state(page,
1464 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1465 		return 0;
1466 
1467 	check_new_page_bad(page);
1468 	return 1;
1469 }
1470 
1471 static inline bool check_new_pages(struct page *page, unsigned int order)
1472 {
1473 	if (is_check_pages_enabled()) {
1474 		for (int i = 0; i < (1 << order); i++) {
1475 			struct page *p = page + i;
1476 
1477 			if (check_new_page(p))
1478 				return true;
1479 		}
1480 	}
1481 
1482 	return false;
1483 }
1484 
1485 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1486 {
1487 	/* Don't skip if a software KASAN mode is enabled. */
1488 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1489 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1490 		return false;
1491 
1492 	/* Skip, if hardware tag-based KASAN is not enabled. */
1493 	if (!kasan_hw_tags_enabled())
1494 		return true;
1495 
1496 	/*
1497 	 * With hardware tag-based KASAN enabled, skip if this has been
1498 	 * requested via __GFP_SKIP_KASAN.
1499 	 */
1500 	return flags & __GFP_SKIP_KASAN;
1501 }
1502 
1503 static inline bool should_skip_init(gfp_t flags)
1504 {
1505 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
1506 	if (!kasan_hw_tags_enabled())
1507 		return false;
1508 
1509 	/* For hardware tag-based KASAN, skip if requested. */
1510 	return (flags & __GFP_SKIP_ZERO);
1511 }
1512 
1513 inline void post_alloc_hook(struct page *page, unsigned int order,
1514 				gfp_t gfp_flags)
1515 {
1516 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1517 			!should_skip_init(gfp_flags);
1518 	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1519 	int i;
1520 
1521 	set_page_private(page, 0);
1522 	set_page_refcounted(page);
1523 
1524 	arch_alloc_page(page, order);
1525 	debug_pagealloc_map_pages(page, 1 << order);
1526 
1527 	/*
1528 	 * Page unpoisoning must happen before memory initialization.
1529 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1530 	 * allocations and the page unpoisoning code will complain.
1531 	 */
1532 	kernel_unpoison_pages(page, 1 << order);
1533 
1534 	/*
1535 	 * As memory initialization might be integrated into KASAN,
1536 	 * KASAN unpoisoning and memory initializion code must be
1537 	 * kept together to avoid discrepancies in behavior.
1538 	 */
1539 
1540 	/*
1541 	 * If memory tags should be zeroed
1542 	 * (which happens only when memory should be initialized as well).
1543 	 */
1544 	if (zero_tags) {
1545 		/* Initialize both memory and memory tags. */
1546 		for (i = 0; i != 1 << order; ++i)
1547 			tag_clear_highpage(page + i);
1548 
1549 		/* Take note that memory was initialized by the loop above. */
1550 		init = false;
1551 	}
1552 	if (!should_skip_kasan_unpoison(gfp_flags) &&
1553 	    kasan_unpoison_pages(page, order, init)) {
1554 		/* Take note that memory was initialized by KASAN. */
1555 		if (kasan_has_integrated_init())
1556 			init = false;
1557 	} else {
1558 		/*
1559 		 * If memory tags have not been set by KASAN, reset the page
1560 		 * tags to ensure page_address() dereferencing does not fault.
1561 		 */
1562 		for (i = 0; i != 1 << order; ++i)
1563 			page_kasan_tag_reset(page + i);
1564 	}
1565 	/* If memory is still not initialized, initialize it now. */
1566 	if (init)
1567 		kernel_init_pages(page, 1 << order);
1568 
1569 	set_page_owner(page, order, gfp_flags);
1570 	page_table_check_alloc(page, order);
1571 }
1572 
1573 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1574 							unsigned int alloc_flags)
1575 {
1576 	post_alloc_hook(page, order, gfp_flags);
1577 
1578 	if (order && (gfp_flags & __GFP_COMP))
1579 		prep_compound_page(page, order);
1580 
1581 	/*
1582 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1583 	 * allocate the page. The expectation is that the caller is taking
1584 	 * steps that will free more memory. The caller should avoid the page
1585 	 * being used for !PFMEMALLOC purposes.
1586 	 */
1587 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1588 		set_page_pfmemalloc(page);
1589 	else
1590 		clear_page_pfmemalloc(page);
1591 }
1592 
1593 /*
1594  * Go through the free lists for the given migratetype and remove
1595  * the smallest available page from the freelists
1596  */
1597 static __always_inline
1598 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1599 						int migratetype)
1600 {
1601 	unsigned int current_order;
1602 	struct free_area *area;
1603 	struct page *page;
1604 
1605 	/* Find a page of the appropriate size in the preferred list */
1606 	for (current_order = order; current_order <= MAX_ORDER; ++current_order) {
1607 		area = &(zone->free_area[current_order]);
1608 		page = get_page_from_free_area(area, migratetype);
1609 		if (!page)
1610 			continue;
1611 		del_page_from_free_list(page, zone, current_order);
1612 		expand(zone, page, order, current_order, migratetype);
1613 		set_pcppage_migratetype(page, migratetype);
1614 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
1615 				pcp_allowed_order(order) &&
1616 				migratetype < MIGRATE_PCPTYPES);
1617 		return page;
1618 	}
1619 
1620 	return NULL;
1621 }
1622 
1623 
1624 /*
1625  * This array describes the order lists are fallen back to when
1626  * the free lists for the desirable migrate type are depleted
1627  *
1628  * The other migratetypes do not have fallbacks.
1629  */
1630 static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = {
1631 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
1632 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1633 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
1634 };
1635 
1636 #ifdef CONFIG_CMA
1637 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1638 					unsigned int order)
1639 {
1640 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1641 }
1642 #else
1643 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1644 					unsigned int order) { return NULL; }
1645 #endif
1646 
1647 /*
1648  * Move the free pages in a range to the freelist tail of the requested type.
1649  * Note that start_page and end_pages are not aligned on a pageblock
1650  * boundary. If alignment is required, use move_freepages_block()
1651  */
1652 static int move_freepages(struct zone *zone,
1653 			  unsigned long start_pfn, unsigned long end_pfn,
1654 			  int migratetype, int *num_movable)
1655 {
1656 	struct page *page;
1657 	unsigned long pfn;
1658 	unsigned int order;
1659 	int pages_moved = 0;
1660 
1661 	for (pfn = start_pfn; pfn <= end_pfn;) {
1662 		page = pfn_to_page(pfn);
1663 		if (!PageBuddy(page)) {
1664 			/*
1665 			 * We assume that pages that could be isolated for
1666 			 * migration are movable. But we don't actually try
1667 			 * isolating, as that would be expensive.
1668 			 */
1669 			if (num_movable &&
1670 					(PageLRU(page) || __PageMovable(page)))
1671 				(*num_movable)++;
1672 			pfn++;
1673 			continue;
1674 		}
1675 
1676 		/* Make sure we are not inadvertently changing nodes */
1677 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1678 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1679 
1680 		order = buddy_order(page);
1681 		move_to_free_list(page, zone, order, migratetype);
1682 		pfn += 1 << order;
1683 		pages_moved += 1 << order;
1684 	}
1685 
1686 	return pages_moved;
1687 }
1688 
1689 int move_freepages_block(struct zone *zone, struct page *page,
1690 				int migratetype, int *num_movable)
1691 {
1692 	unsigned long start_pfn, end_pfn, pfn;
1693 
1694 	if (num_movable)
1695 		*num_movable = 0;
1696 
1697 	pfn = page_to_pfn(page);
1698 	start_pfn = pageblock_start_pfn(pfn);
1699 	end_pfn = pageblock_end_pfn(pfn) - 1;
1700 
1701 	/* Do not cross zone boundaries */
1702 	if (!zone_spans_pfn(zone, start_pfn))
1703 		start_pfn = pfn;
1704 	if (!zone_spans_pfn(zone, end_pfn))
1705 		return 0;
1706 
1707 	return move_freepages(zone, start_pfn, end_pfn, migratetype,
1708 								num_movable);
1709 }
1710 
1711 static void change_pageblock_range(struct page *pageblock_page,
1712 					int start_order, int migratetype)
1713 {
1714 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1715 
1716 	while (nr_pageblocks--) {
1717 		set_pageblock_migratetype(pageblock_page, migratetype);
1718 		pageblock_page += pageblock_nr_pages;
1719 	}
1720 }
1721 
1722 /*
1723  * When we are falling back to another migratetype during allocation, try to
1724  * steal extra free pages from the same pageblocks to satisfy further
1725  * allocations, instead of polluting multiple pageblocks.
1726  *
1727  * If we are stealing a relatively large buddy page, it is likely there will
1728  * be more free pages in the pageblock, so try to steal them all. For
1729  * reclaimable and unmovable allocations, we steal regardless of page size,
1730  * as fragmentation caused by those allocations polluting movable pageblocks
1731  * is worse than movable allocations stealing from unmovable and reclaimable
1732  * pageblocks.
1733  */
1734 static bool can_steal_fallback(unsigned int order, int start_mt)
1735 {
1736 	/*
1737 	 * Leaving this order check is intended, although there is
1738 	 * relaxed order check in next check. The reason is that
1739 	 * we can actually steal whole pageblock if this condition met,
1740 	 * but, below check doesn't guarantee it and that is just heuristic
1741 	 * so could be changed anytime.
1742 	 */
1743 	if (order >= pageblock_order)
1744 		return true;
1745 
1746 	if (order >= pageblock_order / 2 ||
1747 		start_mt == MIGRATE_RECLAIMABLE ||
1748 		start_mt == MIGRATE_UNMOVABLE ||
1749 		page_group_by_mobility_disabled)
1750 		return true;
1751 
1752 	return false;
1753 }
1754 
1755 static inline bool boost_watermark(struct zone *zone)
1756 {
1757 	unsigned long max_boost;
1758 
1759 	if (!watermark_boost_factor)
1760 		return false;
1761 	/*
1762 	 * Don't bother in zones that are unlikely to produce results.
1763 	 * On small machines, including kdump capture kernels running
1764 	 * in a small area, boosting the watermark can cause an out of
1765 	 * memory situation immediately.
1766 	 */
1767 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1768 		return false;
1769 
1770 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1771 			watermark_boost_factor, 10000);
1772 
1773 	/*
1774 	 * high watermark may be uninitialised if fragmentation occurs
1775 	 * very early in boot so do not boost. We do not fall
1776 	 * through and boost by pageblock_nr_pages as failing
1777 	 * allocations that early means that reclaim is not going
1778 	 * to help and it may even be impossible to reclaim the
1779 	 * boosted watermark resulting in a hang.
1780 	 */
1781 	if (!max_boost)
1782 		return false;
1783 
1784 	max_boost = max(pageblock_nr_pages, max_boost);
1785 
1786 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1787 		max_boost);
1788 
1789 	return true;
1790 }
1791 
1792 /*
1793  * This function implements actual steal behaviour. If order is large enough,
1794  * we can steal whole pageblock. If not, we first move freepages in this
1795  * pageblock to our migratetype and determine how many already-allocated pages
1796  * are there in the pageblock with a compatible migratetype. If at least half
1797  * of pages are free or compatible, we can change migratetype of the pageblock
1798  * itself, so pages freed in the future will be put on the correct free list.
1799  */
1800 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1801 		unsigned int alloc_flags, int start_type, bool whole_block)
1802 {
1803 	unsigned int current_order = buddy_order(page);
1804 	int free_pages, movable_pages, alike_pages;
1805 	int old_block_type;
1806 
1807 	old_block_type = get_pageblock_migratetype(page);
1808 
1809 	/*
1810 	 * This can happen due to races and we want to prevent broken
1811 	 * highatomic accounting.
1812 	 */
1813 	if (is_migrate_highatomic(old_block_type))
1814 		goto single_page;
1815 
1816 	/* Take ownership for orders >= pageblock_order */
1817 	if (current_order >= pageblock_order) {
1818 		change_pageblock_range(page, current_order, start_type);
1819 		goto single_page;
1820 	}
1821 
1822 	/*
1823 	 * Boost watermarks to increase reclaim pressure to reduce the
1824 	 * likelihood of future fallbacks. Wake kswapd now as the node
1825 	 * may be balanced overall and kswapd will not wake naturally.
1826 	 */
1827 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1828 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1829 
1830 	/* We are not allowed to try stealing from the whole block */
1831 	if (!whole_block)
1832 		goto single_page;
1833 
1834 	free_pages = move_freepages_block(zone, page, start_type,
1835 						&movable_pages);
1836 	/*
1837 	 * Determine how many pages are compatible with our allocation.
1838 	 * For movable allocation, it's the number of movable pages which
1839 	 * we just obtained. For other types it's a bit more tricky.
1840 	 */
1841 	if (start_type == MIGRATE_MOVABLE) {
1842 		alike_pages = movable_pages;
1843 	} else {
1844 		/*
1845 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1846 		 * to MOVABLE pageblock, consider all non-movable pages as
1847 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1848 		 * vice versa, be conservative since we can't distinguish the
1849 		 * exact migratetype of non-movable pages.
1850 		 */
1851 		if (old_block_type == MIGRATE_MOVABLE)
1852 			alike_pages = pageblock_nr_pages
1853 						- (free_pages + movable_pages);
1854 		else
1855 			alike_pages = 0;
1856 	}
1857 
1858 	/* moving whole block can fail due to zone boundary conditions */
1859 	if (!free_pages)
1860 		goto single_page;
1861 
1862 	/*
1863 	 * If a sufficient number of pages in the block are either free or of
1864 	 * comparable migratability as our allocation, claim the whole block.
1865 	 */
1866 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
1867 			page_group_by_mobility_disabled)
1868 		set_pageblock_migratetype(page, start_type);
1869 
1870 	return;
1871 
1872 single_page:
1873 	move_to_free_list(page, zone, current_order, start_type);
1874 }
1875 
1876 /*
1877  * Check whether there is a suitable fallback freepage with requested order.
1878  * If only_stealable is true, this function returns fallback_mt only if
1879  * we can steal other freepages all together. This would help to reduce
1880  * fragmentation due to mixed migratetype pages in one pageblock.
1881  */
1882 int find_suitable_fallback(struct free_area *area, unsigned int order,
1883 			int migratetype, bool only_stealable, bool *can_steal)
1884 {
1885 	int i;
1886 	int fallback_mt;
1887 
1888 	if (area->nr_free == 0)
1889 		return -1;
1890 
1891 	*can_steal = false;
1892 	for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
1893 		fallback_mt = fallbacks[migratetype][i];
1894 		if (free_area_empty(area, fallback_mt))
1895 			continue;
1896 
1897 		if (can_steal_fallback(order, migratetype))
1898 			*can_steal = true;
1899 
1900 		if (!only_stealable)
1901 			return fallback_mt;
1902 
1903 		if (*can_steal)
1904 			return fallback_mt;
1905 	}
1906 
1907 	return -1;
1908 }
1909 
1910 /*
1911  * Reserve a pageblock for exclusive use of high-order atomic allocations if
1912  * there are no empty page blocks that contain a page with a suitable order
1913  */
1914 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1915 				unsigned int alloc_order)
1916 {
1917 	int mt;
1918 	unsigned long max_managed, flags;
1919 
1920 	/*
1921 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1922 	 * Check is race-prone but harmless.
1923 	 */
1924 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
1925 	if (zone->nr_reserved_highatomic >= max_managed)
1926 		return;
1927 
1928 	spin_lock_irqsave(&zone->lock, flags);
1929 
1930 	/* Recheck the nr_reserved_highatomic limit under the lock */
1931 	if (zone->nr_reserved_highatomic >= max_managed)
1932 		goto out_unlock;
1933 
1934 	/* Yoink! */
1935 	mt = get_pageblock_migratetype(page);
1936 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
1937 	if (migratetype_is_mergeable(mt)) {
1938 		zone->nr_reserved_highatomic += pageblock_nr_pages;
1939 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1940 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
1941 	}
1942 
1943 out_unlock:
1944 	spin_unlock_irqrestore(&zone->lock, flags);
1945 }
1946 
1947 /*
1948  * Used when an allocation is about to fail under memory pressure. This
1949  * potentially hurts the reliability of high-order allocations when under
1950  * intense memory pressure but failed atomic allocations should be easier
1951  * to recover from than an OOM.
1952  *
1953  * If @force is true, try to unreserve a pageblock even though highatomic
1954  * pageblock is exhausted.
1955  */
1956 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
1957 						bool force)
1958 {
1959 	struct zonelist *zonelist = ac->zonelist;
1960 	unsigned long flags;
1961 	struct zoneref *z;
1962 	struct zone *zone;
1963 	struct page *page;
1964 	int order;
1965 	bool ret;
1966 
1967 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
1968 								ac->nodemask) {
1969 		/*
1970 		 * Preserve at least one pageblock unless memory pressure
1971 		 * is really high.
1972 		 */
1973 		if (!force && zone->nr_reserved_highatomic <=
1974 					pageblock_nr_pages)
1975 			continue;
1976 
1977 		spin_lock_irqsave(&zone->lock, flags);
1978 		for (order = 0; order <= MAX_ORDER; order++) {
1979 			struct free_area *area = &(zone->free_area[order]);
1980 
1981 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
1982 			if (!page)
1983 				continue;
1984 
1985 			/*
1986 			 * In page freeing path, migratetype change is racy so
1987 			 * we can counter several free pages in a pageblock
1988 			 * in this loop although we changed the pageblock type
1989 			 * from highatomic to ac->migratetype. So we should
1990 			 * adjust the count once.
1991 			 */
1992 			if (is_migrate_highatomic_page(page)) {
1993 				/*
1994 				 * It should never happen but changes to
1995 				 * locking could inadvertently allow a per-cpu
1996 				 * drain to add pages to MIGRATE_HIGHATOMIC
1997 				 * while unreserving so be safe and watch for
1998 				 * underflows.
1999 				 */
2000 				zone->nr_reserved_highatomic -= min(
2001 						pageblock_nr_pages,
2002 						zone->nr_reserved_highatomic);
2003 			}
2004 
2005 			/*
2006 			 * Convert to ac->migratetype and avoid the normal
2007 			 * pageblock stealing heuristics. Minimally, the caller
2008 			 * is doing the work and needs the pages. More
2009 			 * importantly, if the block was always converted to
2010 			 * MIGRATE_UNMOVABLE or another type then the number
2011 			 * of pageblocks that cannot be completely freed
2012 			 * may increase.
2013 			 */
2014 			set_pageblock_migratetype(page, ac->migratetype);
2015 			ret = move_freepages_block(zone, page, ac->migratetype,
2016 									NULL);
2017 			if (ret) {
2018 				spin_unlock_irqrestore(&zone->lock, flags);
2019 				return ret;
2020 			}
2021 		}
2022 		spin_unlock_irqrestore(&zone->lock, flags);
2023 	}
2024 
2025 	return false;
2026 }
2027 
2028 /*
2029  * Try finding a free buddy page on the fallback list and put it on the free
2030  * list of requested migratetype, possibly along with other pages from the same
2031  * block, depending on fragmentation avoidance heuristics. Returns true if
2032  * fallback was found so that __rmqueue_smallest() can grab it.
2033  *
2034  * The use of signed ints for order and current_order is a deliberate
2035  * deviation from the rest of this file, to make the for loop
2036  * condition simpler.
2037  */
2038 static __always_inline bool
2039 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2040 						unsigned int alloc_flags)
2041 {
2042 	struct free_area *area;
2043 	int current_order;
2044 	int min_order = order;
2045 	struct page *page;
2046 	int fallback_mt;
2047 	bool can_steal;
2048 
2049 	/*
2050 	 * Do not steal pages from freelists belonging to other pageblocks
2051 	 * i.e. orders < pageblock_order. If there are no local zones free,
2052 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2053 	 */
2054 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2055 		min_order = pageblock_order;
2056 
2057 	/*
2058 	 * Find the largest available free page in the other list. This roughly
2059 	 * approximates finding the pageblock with the most free pages, which
2060 	 * would be too costly to do exactly.
2061 	 */
2062 	for (current_order = MAX_ORDER; current_order >= min_order;
2063 				--current_order) {
2064 		area = &(zone->free_area[current_order]);
2065 		fallback_mt = find_suitable_fallback(area, current_order,
2066 				start_migratetype, false, &can_steal);
2067 		if (fallback_mt == -1)
2068 			continue;
2069 
2070 		/*
2071 		 * We cannot steal all free pages from the pageblock and the
2072 		 * requested migratetype is movable. In that case it's better to
2073 		 * steal and split the smallest available page instead of the
2074 		 * largest available page, because even if the next movable
2075 		 * allocation falls back into a different pageblock than this
2076 		 * one, it won't cause permanent fragmentation.
2077 		 */
2078 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2079 					&& current_order > order)
2080 			goto find_smallest;
2081 
2082 		goto do_steal;
2083 	}
2084 
2085 	return false;
2086 
2087 find_smallest:
2088 	for (current_order = order; current_order <= MAX_ORDER;
2089 							current_order++) {
2090 		area = &(zone->free_area[current_order]);
2091 		fallback_mt = find_suitable_fallback(area, current_order,
2092 				start_migratetype, false, &can_steal);
2093 		if (fallback_mt != -1)
2094 			break;
2095 	}
2096 
2097 	/*
2098 	 * This should not happen - we already found a suitable fallback
2099 	 * when looking for the largest page.
2100 	 */
2101 	VM_BUG_ON(current_order > MAX_ORDER);
2102 
2103 do_steal:
2104 	page = get_page_from_free_area(area, fallback_mt);
2105 
2106 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2107 								can_steal);
2108 
2109 	trace_mm_page_alloc_extfrag(page, order, current_order,
2110 		start_migratetype, fallback_mt);
2111 
2112 	return true;
2113 
2114 }
2115 
2116 /*
2117  * Do the hard work of removing an element from the buddy allocator.
2118  * Call me with the zone->lock already held.
2119  */
2120 static __always_inline struct page *
2121 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2122 						unsigned int alloc_flags)
2123 {
2124 	struct page *page;
2125 
2126 	if (IS_ENABLED(CONFIG_CMA)) {
2127 		/*
2128 		 * Balance movable allocations between regular and CMA areas by
2129 		 * allocating from CMA when over half of the zone's free memory
2130 		 * is in the CMA area.
2131 		 */
2132 		if (alloc_flags & ALLOC_CMA &&
2133 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2134 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2135 			page = __rmqueue_cma_fallback(zone, order);
2136 			if (page)
2137 				return page;
2138 		}
2139 	}
2140 retry:
2141 	page = __rmqueue_smallest(zone, order, migratetype);
2142 	if (unlikely(!page)) {
2143 		if (alloc_flags & ALLOC_CMA)
2144 			page = __rmqueue_cma_fallback(zone, order);
2145 
2146 		if (!page && __rmqueue_fallback(zone, order, migratetype,
2147 								alloc_flags))
2148 			goto retry;
2149 	}
2150 	return page;
2151 }
2152 
2153 /*
2154  * Obtain a specified number of elements from the buddy allocator, all under
2155  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2156  * Returns the number of new pages which were placed at *list.
2157  */
2158 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2159 			unsigned long count, struct list_head *list,
2160 			int migratetype, unsigned int alloc_flags)
2161 {
2162 	unsigned long flags;
2163 	int i;
2164 
2165 	spin_lock_irqsave(&zone->lock, flags);
2166 	for (i = 0; i < count; ++i) {
2167 		struct page *page = __rmqueue(zone, order, migratetype,
2168 								alloc_flags);
2169 		if (unlikely(page == NULL))
2170 			break;
2171 
2172 		/*
2173 		 * Split buddy pages returned by expand() are received here in
2174 		 * physical page order. The page is added to the tail of
2175 		 * caller's list. From the callers perspective, the linked list
2176 		 * is ordered by page number under some conditions. This is
2177 		 * useful for IO devices that can forward direction from the
2178 		 * head, thus also in the physical page order. This is useful
2179 		 * for IO devices that can merge IO requests if the physical
2180 		 * pages are ordered properly.
2181 		 */
2182 		list_add_tail(&page->pcp_list, list);
2183 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2184 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2185 					      -(1 << order));
2186 	}
2187 
2188 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2189 	spin_unlock_irqrestore(&zone->lock, flags);
2190 
2191 	return i;
2192 }
2193 
2194 #ifdef CONFIG_NUMA
2195 /*
2196  * Called from the vmstat counter updater to drain pagesets of this
2197  * currently executing processor on remote nodes after they have
2198  * expired.
2199  */
2200 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2201 {
2202 	int to_drain, batch;
2203 
2204 	batch = READ_ONCE(pcp->batch);
2205 	to_drain = min(pcp->count, batch);
2206 	if (to_drain > 0) {
2207 		spin_lock(&pcp->lock);
2208 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2209 		spin_unlock(&pcp->lock);
2210 	}
2211 }
2212 #endif
2213 
2214 /*
2215  * Drain pcplists of the indicated processor and zone.
2216  */
2217 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2218 {
2219 	struct per_cpu_pages *pcp;
2220 
2221 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2222 	if (pcp->count) {
2223 		spin_lock(&pcp->lock);
2224 		free_pcppages_bulk(zone, pcp->count, pcp, 0);
2225 		spin_unlock(&pcp->lock);
2226 	}
2227 }
2228 
2229 /*
2230  * Drain pcplists of all zones on the indicated processor.
2231  */
2232 static void drain_pages(unsigned int cpu)
2233 {
2234 	struct zone *zone;
2235 
2236 	for_each_populated_zone(zone) {
2237 		drain_pages_zone(cpu, zone);
2238 	}
2239 }
2240 
2241 /*
2242  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2243  */
2244 void drain_local_pages(struct zone *zone)
2245 {
2246 	int cpu = smp_processor_id();
2247 
2248 	if (zone)
2249 		drain_pages_zone(cpu, zone);
2250 	else
2251 		drain_pages(cpu);
2252 }
2253 
2254 /*
2255  * The implementation of drain_all_pages(), exposing an extra parameter to
2256  * drain on all cpus.
2257  *
2258  * drain_all_pages() is optimized to only execute on cpus where pcplists are
2259  * not empty. The check for non-emptiness can however race with a free to
2260  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2261  * that need the guarantee that every CPU has drained can disable the
2262  * optimizing racy check.
2263  */
2264 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2265 {
2266 	int cpu;
2267 
2268 	/*
2269 	 * Allocate in the BSS so we won't require allocation in
2270 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2271 	 */
2272 	static cpumask_t cpus_with_pcps;
2273 
2274 	/*
2275 	 * Do not drain if one is already in progress unless it's specific to
2276 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2277 	 * the drain to be complete when the call returns.
2278 	 */
2279 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2280 		if (!zone)
2281 			return;
2282 		mutex_lock(&pcpu_drain_mutex);
2283 	}
2284 
2285 	/*
2286 	 * We don't care about racing with CPU hotplug event
2287 	 * as offline notification will cause the notified
2288 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2289 	 * disables preemption as part of its processing
2290 	 */
2291 	for_each_online_cpu(cpu) {
2292 		struct per_cpu_pages *pcp;
2293 		struct zone *z;
2294 		bool has_pcps = false;
2295 
2296 		if (force_all_cpus) {
2297 			/*
2298 			 * The pcp.count check is racy, some callers need a
2299 			 * guarantee that no cpu is missed.
2300 			 */
2301 			has_pcps = true;
2302 		} else if (zone) {
2303 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2304 			if (pcp->count)
2305 				has_pcps = true;
2306 		} else {
2307 			for_each_populated_zone(z) {
2308 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2309 				if (pcp->count) {
2310 					has_pcps = true;
2311 					break;
2312 				}
2313 			}
2314 		}
2315 
2316 		if (has_pcps)
2317 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2318 		else
2319 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2320 	}
2321 
2322 	for_each_cpu(cpu, &cpus_with_pcps) {
2323 		if (zone)
2324 			drain_pages_zone(cpu, zone);
2325 		else
2326 			drain_pages(cpu);
2327 	}
2328 
2329 	mutex_unlock(&pcpu_drain_mutex);
2330 }
2331 
2332 /*
2333  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2334  *
2335  * When zone parameter is non-NULL, spill just the single zone's pages.
2336  */
2337 void drain_all_pages(struct zone *zone)
2338 {
2339 	__drain_all_pages(zone, false);
2340 }
2341 
2342 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
2343 							unsigned int order)
2344 {
2345 	int migratetype;
2346 
2347 	if (!free_pages_prepare(page, order, FPI_NONE))
2348 		return false;
2349 
2350 	migratetype = get_pfnblock_migratetype(page, pfn);
2351 	set_pcppage_migratetype(page, migratetype);
2352 	return true;
2353 }
2354 
2355 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch,
2356 		       bool free_high)
2357 {
2358 	int min_nr_free, max_nr_free;
2359 
2360 	/* Free everything if batch freeing high-order pages. */
2361 	if (unlikely(free_high))
2362 		return pcp->count;
2363 
2364 	/* Check for PCP disabled or boot pageset */
2365 	if (unlikely(high < batch))
2366 		return 1;
2367 
2368 	/* Leave at least pcp->batch pages on the list */
2369 	min_nr_free = batch;
2370 	max_nr_free = high - batch;
2371 
2372 	/*
2373 	 * Double the number of pages freed each time there is subsequent
2374 	 * freeing of pages without any allocation.
2375 	 */
2376 	batch <<= pcp->free_factor;
2377 	if (batch < max_nr_free)
2378 		pcp->free_factor++;
2379 	batch = clamp(batch, min_nr_free, max_nr_free);
2380 
2381 	return batch;
2382 }
2383 
2384 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2385 		       bool free_high)
2386 {
2387 	int high = READ_ONCE(pcp->high);
2388 
2389 	if (unlikely(!high || free_high))
2390 		return 0;
2391 
2392 	if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
2393 		return high;
2394 
2395 	/*
2396 	 * If reclaim is active, limit the number of pages that can be
2397 	 * stored on pcp lists
2398 	 */
2399 	return min(READ_ONCE(pcp->batch) << 2, high);
2400 }
2401 
2402 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2403 				   struct page *page, int migratetype,
2404 				   unsigned int order)
2405 {
2406 	int high;
2407 	int pindex;
2408 	bool free_high;
2409 
2410 	__count_vm_events(PGFREE, 1 << order);
2411 	pindex = order_to_pindex(migratetype, order);
2412 	list_add(&page->pcp_list, &pcp->lists[pindex]);
2413 	pcp->count += 1 << order;
2414 
2415 	/*
2416 	 * As high-order pages other than THP's stored on PCP can contribute
2417 	 * to fragmentation, limit the number stored when PCP is heavily
2418 	 * freeing without allocation. The remainder after bulk freeing
2419 	 * stops will be drained from vmstat refresh context.
2420 	 */
2421 	free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
2422 
2423 	high = nr_pcp_high(pcp, zone, free_high);
2424 	if (pcp->count >= high) {
2425 		int batch = READ_ONCE(pcp->batch);
2426 
2427 		free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex);
2428 	}
2429 }
2430 
2431 /*
2432  * Free a pcp page
2433  */
2434 void free_unref_page(struct page *page, unsigned int order)
2435 {
2436 	unsigned long __maybe_unused UP_flags;
2437 	struct per_cpu_pages *pcp;
2438 	struct zone *zone;
2439 	unsigned long pfn = page_to_pfn(page);
2440 	int migratetype;
2441 
2442 	if (!free_unref_page_prepare(page, pfn, order))
2443 		return;
2444 
2445 	/*
2446 	 * We only track unmovable, reclaimable and movable on pcp lists.
2447 	 * Place ISOLATE pages on the isolated list because they are being
2448 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2449 	 * areas back if necessary. Otherwise, we may have to free
2450 	 * excessively into the page allocator
2451 	 */
2452 	migratetype = get_pcppage_migratetype(page);
2453 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2454 		if (unlikely(is_migrate_isolate(migratetype))) {
2455 			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
2456 			return;
2457 		}
2458 		migratetype = MIGRATE_MOVABLE;
2459 	}
2460 
2461 	zone = page_zone(page);
2462 	pcp_trylock_prepare(UP_flags);
2463 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2464 	if (pcp) {
2465 		free_unref_page_commit(zone, pcp, page, migratetype, order);
2466 		pcp_spin_unlock(pcp);
2467 	} else {
2468 		free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
2469 	}
2470 	pcp_trylock_finish(UP_flags);
2471 }
2472 
2473 /*
2474  * Free a list of 0-order pages
2475  */
2476 void free_unref_page_list(struct list_head *list)
2477 {
2478 	unsigned long __maybe_unused UP_flags;
2479 	struct page *page, *next;
2480 	struct per_cpu_pages *pcp = NULL;
2481 	struct zone *locked_zone = NULL;
2482 	int batch_count = 0;
2483 	int migratetype;
2484 
2485 	/* Prepare pages for freeing */
2486 	list_for_each_entry_safe(page, next, list, lru) {
2487 		unsigned long pfn = page_to_pfn(page);
2488 		if (!free_unref_page_prepare(page, pfn, 0)) {
2489 			list_del(&page->lru);
2490 			continue;
2491 		}
2492 
2493 		/*
2494 		 * Free isolated pages directly to the allocator, see
2495 		 * comment in free_unref_page.
2496 		 */
2497 		migratetype = get_pcppage_migratetype(page);
2498 		if (unlikely(is_migrate_isolate(migratetype))) {
2499 			list_del(&page->lru);
2500 			free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
2501 			continue;
2502 		}
2503 	}
2504 
2505 	list_for_each_entry_safe(page, next, list, lru) {
2506 		struct zone *zone = page_zone(page);
2507 
2508 		list_del(&page->lru);
2509 		migratetype = get_pcppage_migratetype(page);
2510 
2511 		/*
2512 		 * Either different zone requiring a different pcp lock or
2513 		 * excessive lock hold times when freeing a large list of
2514 		 * pages.
2515 		 */
2516 		if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) {
2517 			if (pcp) {
2518 				pcp_spin_unlock(pcp);
2519 				pcp_trylock_finish(UP_flags);
2520 			}
2521 
2522 			batch_count = 0;
2523 
2524 			/*
2525 			 * trylock is necessary as pages may be getting freed
2526 			 * from IRQ or SoftIRQ context after an IO completion.
2527 			 */
2528 			pcp_trylock_prepare(UP_flags);
2529 			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2530 			if (unlikely(!pcp)) {
2531 				pcp_trylock_finish(UP_flags);
2532 				free_one_page(zone, page, page_to_pfn(page),
2533 					      0, migratetype, FPI_NONE);
2534 				locked_zone = NULL;
2535 				continue;
2536 			}
2537 			locked_zone = zone;
2538 		}
2539 
2540 		/*
2541 		 * Non-isolated types over MIGRATE_PCPTYPES get added
2542 		 * to the MIGRATE_MOVABLE pcp list.
2543 		 */
2544 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2545 			migratetype = MIGRATE_MOVABLE;
2546 
2547 		trace_mm_page_free_batched(page);
2548 		free_unref_page_commit(zone, pcp, page, migratetype, 0);
2549 		batch_count++;
2550 	}
2551 
2552 	if (pcp) {
2553 		pcp_spin_unlock(pcp);
2554 		pcp_trylock_finish(UP_flags);
2555 	}
2556 }
2557 
2558 /*
2559  * split_page takes a non-compound higher-order page, and splits it into
2560  * n (1<<order) sub-pages: page[0..n]
2561  * Each sub-page must be freed individually.
2562  *
2563  * Note: this is probably too low level an operation for use in drivers.
2564  * Please consult with lkml before using this in your driver.
2565  */
2566 void split_page(struct page *page, unsigned int order)
2567 {
2568 	int i;
2569 
2570 	VM_BUG_ON_PAGE(PageCompound(page), page);
2571 	VM_BUG_ON_PAGE(!page_count(page), page);
2572 
2573 	for (i = 1; i < (1 << order); i++)
2574 		set_page_refcounted(page + i);
2575 	split_page_owner(page, 1 << order);
2576 	split_page_memcg(page, 1 << order);
2577 }
2578 EXPORT_SYMBOL_GPL(split_page);
2579 
2580 int __isolate_free_page(struct page *page, unsigned int order)
2581 {
2582 	struct zone *zone = page_zone(page);
2583 	int mt = get_pageblock_migratetype(page);
2584 
2585 	if (!is_migrate_isolate(mt)) {
2586 		unsigned long watermark;
2587 		/*
2588 		 * Obey watermarks as if the page was being allocated. We can
2589 		 * emulate a high-order watermark check with a raised order-0
2590 		 * watermark, because we already know our high-order page
2591 		 * exists.
2592 		 */
2593 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2594 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2595 			return 0;
2596 
2597 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2598 	}
2599 
2600 	del_page_from_free_list(page, zone, order);
2601 
2602 	/*
2603 	 * Set the pageblock if the isolated page is at least half of a
2604 	 * pageblock
2605 	 */
2606 	if (order >= pageblock_order - 1) {
2607 		struct page *endpage = page + (1 << order) - 1;
2608 		for (; page < endpage; page += pageblock_nr_pages) {
2609 			int mt = get_pageblock_migratetype(page);
2610 			/*
2611 			 * Only change normal pageblocks (i.e., they can merge
2612 			 * with others)
2613 			 */
2614 			if (migratetype_is_mergeable(mt))
2615 				set_pageblock_migratetype(page,
2616 							  MIGRATE_MOVABLE);
2617 		}
2618 	}
2619 
2620 	return 1UL << order;
2621 }
2622 
2623 /**
2624  * __putback_isolated_page - Return a now-isolated page back where we got it
2625  * @page: Page that was isolated
2626  * @order: Order of the isolated page
2627  * @mt: The page's pageblock's migratetype
2628  *
2629  * This function is meant to return a page pulled from the free lists via
2630  * __isolate_free_page back to the free lists they were pulled from.
2631  */
2632 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2633 {
2634 	struct zone *zone = page_zone(page);
2635 
2636 	/* zone lock should be held when this function is called */
2637 	lockdep_assert_held(&zone->lock);
2638 
2639 	/* Return isolated page to tail of freelist. */
2640 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
2641 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2642 }
2643 
2644 /*
2645  * Update NUMA hit/miss statistics
2646  */
2647 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2648 				   long nr_account)
2649 {
2650 #ifdef CONFIG_NUMA
2651 	enum numa_stat_item local_stat = NUMA_LOCAL;
2652 
2653 	/* skip numa counters update if numa stats is disabled */
2654 	if (!static_branch_likely(&vm_numa_stat_key))
2655 		return;
2656 
2657 	if (zone_to_nid(z) != numa_node_id())
2658 		local_stat = NUMA_OTHER;
2659 
2660 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2661 		__count_numa_events(z, NUMA_HIT, nr_account);
2662 	else {
2663 		__count_numa_events(z, NUMA_MISS, nr_account);
2664 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2665 	}
2666 	__count_numa_events(z, local_stat, nr_account);
2667 #endif
2668 }
2669 
2670 static __always_inline
2671 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2672 			   unsigned int order, unsigned int alloc_flags,
2673 			   int migratetype)
2674 {
2675 	struct page *page;
2676 	unsigned long flags;
2677 
2678 	do {
2679 		page = NULL;
2680 		spin_lock_irqsave(&zone->lock, flags);
2681 		/*
2682 		 * order-0 request can reach here when the pcplist is skipped
2683 		 * due to non-CMA allocation context. HIGHATOMIC area is
2684 		 * reserved for high-order atomic allocation, so order-0
2685 		 * request should skip it.
2686 		 */
2687 		if (alloc_flags & ALLOC_HIGHATOMIC)
2688 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2689 		if (!page) {
2690 			page = __rmqueue(zone, order, migratetype, alloc_flags);
2691 
2692 			/*
2693 			 * If the allocation fails, allow OOM handling access
2694 			 * to HIGHATOMIC reserves as failing now is worse than
2695 			 * failing a high-order atomic allocation in the
2696 			 * future.
2697 			 */
2698 			if (!page && (alloc_flags & ALLOC_OOM))
2699 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2700 
2701 			if (!page) {
2702 				spin_unlock_irqrestore(&zone->lock, flags);
2703 				return NULL;
2704 			}
2705 		}
2706 		__mod_zone_freepage_state(zone, -(1 << order),
2707 					  get_pcppage_migratetype(page));
2708 		spin_unlock_irqrestore(&zone->lock, flags);
2709 	} while (check_new_pages(page, order));
2710 
2711 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2712 	zone_statistics(preferred_zone, zone, 1);
2713 
2714 	return page;
2715 }
2716 
2717 /* Remove page from the per-cpu list, caller must protect the list */
2718 static inline
2719 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2720 			int migratetype,
2721 			unsigned int alloc_flags,
2722 			struct per_cpu_pages *pcp,
2723 			struct list_head *list)
2724 {
2725 	struct page *page;
2726 
2727 	do {
2728 		if (list_empty(list)) {
2729 			int batch = READ_ONCE(pcp->batch);
2730 			int alloced;
2731 
2732 			/*
2733 			 * Scale batch relative to order if batch implies
2734 			 * free pages can be stored on the PCP. Batch can
2735 			 * be 1 for small zones or for boot pagesets which
2736 			 * should never store free pages as the pages may
2737 			 * belong to arbitrary zones.
2738 			 */
2739 			if (batch > 1)
2740 				batch = max(batch >> order, 2);
2741 			alloced = rmqueue_bulk(zone, order,
2742 					batch, list,
2743 					migratetype, alloc_flags);
2744 
2745 			pcp->count += alloced << order;
2746 			if (unlikely(list_empty(list)))
2747 				return NULL;
2748 		}
2749 
2750 		page = list_first_entry(list, struct page, pcp_list);
2751 		list_del(&page->pcp_list);
2752 		pcp->count -= 1 << order;
2753 	} while (check_new_pages(page, order));
2754 
2755 	return page;
2756 }
2757 
2758 /* Lock and remove page from the per-cpu list */
2759 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2760 			struct zone *zone, unsigned int order,
2761 			int migratetype, unsigned int alloc_flags)
2762 {
2763 	struct per_cpu_pages *pcp;
2764 	struct list_head *list;
2765 	struct page *page;
2766 	unsigned long __maybe_unused UP_flags;
2767 
2768 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
2769 	pcp_trylock_prepare(UP_flags);
2770 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2771 	if (!pcp) {
2772 		pcp_trylock_finish(UP_flags);
2773 		return NULL;
2774 	}
2775 
2776 	/*
2777 	 * On allocation, reduce the number of pages that are batch freed.
2778 	 * See nr_pcp_free() where free_factor is increased for subsequent
2779 	 * frees.
2780 	 */
2781 	pcp->free_factor >>= 1;
2782 	list = &pcp->lists[order_to_pindex(migratetype, order)];
2783 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
2784 	pcp_spin_unlock(pcp);
2785 	pcp_trylock_finish(UP_flags);
2786 	if (page) {
2787 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2788 		zone_statistics(preferred_zone, zone, 1);
2789 	}
2790 	return page;
2791 }
2792 
2793 /*
2794  * Allocate a page from the given zone.
2795  * Use pcplists for THP or "cheap" high-order allocations.
2796  */
2797 
2798 /*
2799  * Do not instrument rmqueue() with KMSAN. This function may call
2800  * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
2801  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
2802  * may call rmqueue() again, which will result in a deadlock.
2803  */
2804 __no_sanitize_memory
2805 static inline
2806 struct page *rmqueue(struct zone *preferred_zone,
2807 			struct zone *zone, unsigned int order,
2808 			gfp_t gfp_flags, unsigned int alloc_flags,
2809 			int migratetype)
2810 {
2811 	struct page *page;
2812 
2813 	/*
2814 	 * We most definitely don't want callers attempting to
2815 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
2816 	 */
2817 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2818 
2819 	if (likely(pcp_allowed_order(order))) {
2820 		/*
2821 		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
2822 		 * we need to skip it when CMA area isn't allowed.
2823 		 */
2824 		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
2825 				migratetype != MIGRATE_MOVABLE) {
2826 			page = rmqueue_pcplist(preferred_zone, zone, order,
2827 					migratetype, alloc_flags);
2828 			if (likely(page))
2829 				goto out;
2830 		}
2831 	}
2832 
2833 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
2834 							migratetype);
2835 
2836 out:
2837 	/* Separate test+clear to avoid unnecessary atomics */
2838 	if ((alloc_flags & ALLOC_KSWAPD) &&
2839 	    unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
2840 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2841 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
2842 	}
2843 
2844 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2845 	return page;
2846 }
2847 
2848 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2849 {
2850 	return __should_fail_alloc_page(gfp_mask, order);
2851 }
2852 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
2853 
2854 static inline long __zone_watermark_unusable_free(struct zone *z,
2855 				unsigned int order, unsigned int alloc_flags)
2856 {
2857 	long unusable_free = (1 << order) - 1;
2858 
2859 	/*
2860 	 * If the caller does not have rights to reserves below the min
2861 	 * watermark then subtract the high-atomic reserves. This will
2862 	 * over-estimate the size of the atomic reserve but it avoids a search.
2863 	 */
2864 	if (likely(!(alloc_flags & ALLOC_RESERVES)))
2865 		unusable_free += z->nr_reserved_highatomic;
2866 
2867 #ifdef CONFIG_CMA
2868 	/* If allocation can't use CMA areas don't use free CMA pages */
2869 	if (!(alloc_flags & ALLOC_CMA))
2870 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
2871 #endif
2872 #ifdef CONFIG_UNACCEPTED_MEMORY
2873 	unusable_free += zone_page_state(z, NR_UNACCEPTED);
2874 #endif
2875 
2876 	return unusable_free;
2877 }
2878 
2879 /*
2880  * Return true if free base pages are above 'mark'. For high-order checks it
2881  * will return true of the order-0 watermark is reached and there is at least
2882  * one free page of a suitable size. Checking now avoids taking the zone lock
2883  * to check in the allocation paths if no pages are free.
2884  */
2885 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2886 			 int highest_zoneidx, unsigned int alloc_flags,
2887 			 long free_pages)
2888 {
2889 	long min = mark;
2890 	int o;
2891 
2892 	/* free_pages may go negative - that's OK */
2893 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
2894 
2895 	if (unlikely(alloc_flags & ALLOC_RESERVES)) {
2896 		/*
2897 		 * __GFP_HIGH allows access to 50% of the min reserve as well
2898 		 * as OOM.
2899 		 */
2900 		if (alloc_flags & ALLOC_MIN_RESERVE) {
2901 			min -= min / 2;
2902 
2903 			/*
2904 			 * Non-blocking allocations (e.g. GFP_ATOMIC) can
2905 			 * access more reserves than just __GFP_HIGH. Other
2906 			 * non-blocking allocations requests such as GFP_NOWAIT
2907 			 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
2908 			 * access to the min reserve.
2909 			 */
2910 			if (alloc_flags & ALLOC_NON_BLOCK)
2911 				min -= min / 4;
2912 		}
2913 
2914 		/*
2915 		 * OOM victims can try even harder than the normal reserve
2916 		 * users on the grounds that it's definitely going to be in
2917 		 * the exit path shortly and free memory. Any allocation it
2918 		 * makes during the free path will be small and short-lived.
2919 		 */
2920 		if (alloc_flags & ALLOC_OOM)
2921 			min -= min / 2;
2922 	}
2923 
2924 	/*
2925 	 * Check watermarks for an order-0 allocation request. If these
2926 	 * are not met, then a high-order request also cannot go ahead
2927 	 * even if a suitable page happened to be free.
2928 	 */
2929 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
2930 		return false;
2931 
2932 	/* If this is an order-0 request then the watermark is fine */
2933 	if (!order)
2934 		return true;
2935 
2936 	/* For a high-order request, check at least one suitable page is free */
2937 	for (o = order; o <= MAX_ORDER; o++) {
2938 		struct free_area *area = &z->free_area[o];
2939 		int mt;
2940 
2941 		if (!area->nr_free)
2942 			continue;
2943 
2944 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2945 			if (!free_area_empty(area, mt))
2946 				return true;
2947 		}
2948 
2949 #ifdef CONFIG_CMA
2950 		if ((alloc_flags & ALLOC_CMA) &&
2951 		    !free_area_empty(area, MIGRATE_CMA)) {
2952 			return true;
2953 		}
2954 #endif
2955 		if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
2956 		    !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
2957 			return true;
2958 		}
2959 	}
2960 	return false;
2961 }
2962 
2963 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2964 		      int highest_zoneidx, unsigned int alloc_flags)
2965 {
2966 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
2967 					zone_page_state(z, NR_FREE_PAGES));
2968 }
2969 
2970 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2971 				unsigned long mark, int highest_zoneidx,
2972 				unsigned int alloc_flags, gfp_t gfp_mask)
2973 {
2974 	long free_pages;
2975 
2976 	free_pages = zone_page_state(z, NR_FREE_PAGES);
2977 
2978 	/*
2979 	 * Fast check for order-0 only. If this fails then the reserves
2980 	 * need to be calculated.
2981 	 */
2982 	if (!order) {
2983 		long usable_free;
2984 		long reserved;
2985 
2986 		usable_free = free_pages;
2987 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
2988 
2989 		/* reserved may over estimate high-atomic reserves. */
2990 		usable_free -= min(usable_free, reserved);
2991 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
2992 			return true;
2993 	}
2994 
2995 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
2996 					free_pages))
2997 		return true;
2998 
2999 	/*
3000 	 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3001 	 * when checking the min watermark. The min watermark is the
3002 	 * point where boosting is ignored so that kswapd is woken up
3003 	 * when below the low watermark.
3004 	 */
3005 	if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3006 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3007 		mark = z->_watermark[WMARK_MIN];
3008 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3009 					alloc_flags, free_pages);
3010 	}
3011 
3012 	return false;
3013 }
3014 
3015 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3016 			unsigned long mark, int highest_zoneidx)
3017 {
3018 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3019 
3020 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3021 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3022 
3023 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3024 								free_pages);
3025 }
3026 
3027 #ifdef CONFIG_NUMA
3028 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3029 
3030 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3031 {
3032 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3033 				node_reclaim_distance;
3034 }
3035 #else	/* CONFIG_NUMA */
3036 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3037 {
3038 	return true;
3039 }
3040 #endif	/* CONFIG_NUMA */
3041 
3042 /*
3043  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3044  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3045  * premature use of a lower zone may cause lowmem pressure problems that
3046  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3047  * probably too small. It only makes sense to spread allocations to avoid
3048  * fragmentation between the Normal and DMA32 zones.
3049  */
3050 static inline unsigned int
3051 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3052 {
3053 	unsigned int alloc_flags;
3054 
3055 	/*
3056 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3057 	 * to save a branch.
3058 	 */
3059 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3060 
3061 #ifdef CONFIG_ZONE_DMA32
3062 	if (!zone)
3063 		return alloc_flags;
3064 
3065 	if (zone_idx(zone) != ZONE_NORMAL)
3066 		return alloc_flags;
3067 
3068 	/*
3069 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3070 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3071 	 * on UMA that if Normal is populated then so is DMA32.
3072 	 */
3073 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3074 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3075 		return alloc_flags;
3076 
3077 	alloc_flags |= ALLOC_NOFRAGMENT;
3078 #endif /* CONFIG_ZONE_DMA32 */
3079 	return alloc_flags;
3080 }
3081 
3082 /* Must be called after current_gfp_context() which can change gfp_mask */
3083 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3084 						  unsigned int alloc_flags)
3085 {
3086 #ifdef CONFIG_CMA
3087 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3088 		alloc_flags |= ALLOC_CMA;
3089 #endif
3090 	return alloc_flags;
3091 }
3092 
3093 /*
3094  * get_page_from_freelist goes through the zonelist trying to allocate
3095  * a page.
3096  */
3097 static struct page *
3098 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3099 						const struct alloc_context *ac)
3100 {
3101 	struct zoneref *z;
3102 	struct zone *zone;
3103 	struct pglist_data *last_pgdat = NULL;
3104 	bool last_pgdat_dirty_ok = false;
3105 	bool no_fallback;
3106 
3107 retry:
3108 	/*
3109 	 * Scan zonelist, looking for a zone with enough free.
3110 	 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3111 	 */
3112 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3113 	z = ac->preferred_zoneref;
3114 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3115 					ac->nodemask) {
3116 		struct page *page;
3117 		unsigned long mark;
3118 
3119 		if (cpusets_enabled() &&
3120 			(alloc_flags & ALLOC_CPUSET) &&
3121 			!__cpuset_zone_allowed(zone, gfp_mask))
3122 				continue;
3123 		/*
3124 		 * When allocating a page cache page for writing, we
3125 		 * want to get it from a node that is within its dirty
3126 		 * limit, such that no single node holds more than its
3127 		 * proportional share of globally allowed dirty pages.
3128 		 * The dirty limits take into account the node's
3129 		 * lowmem reserves and high watermark so that kswapd
3130 		 * should be able to balance it without having to
3131 		 * write pages from its LRU list.
3132 		 *
3133 		 * XXX: For now, allow allocations to potentially
3134 		 * exceed the per-node dirty limit in the slowpath
3135 		 * (spread_dirty_pages unset) before going into reclaim,
3136 		 * which is important when on a NUMA setup the allowed
3137 		 * nodes are together not big enough to reach the
3138 		 * global limit.  The proper fix for these situations
3139 		 * will require awareness of nodes in the
3140 		 * dirty-throttling and the flusher threads.
3141 		 */
3142 		if (ac->spread_dirty_pages) {
3143 			if (last_pgdat != zone->zone_pgdat) {
3144 				last_pgdat = zone->zone_pgdat;
3145 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3146 			}
3147 
3148 			if (!last_pgdat_dirty_ok)
3149 				continue;
3150 		}
3151 
3152 		if (no_fallback && nr_online_nodes > 1 &&
3153 		    zone != ac->preferred_zoneref->zone) {
3154 			int local_nid;
3155 
3156 			/*
3157 			 * If moving to a remote node, retry but allow
3158 			 * fragmenting fallbacks. Locality is more important
3159 			 * than fragmentation avoidance.
3160 			 */
3161 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3162 			if (zone_to_nid(zone) != local_nid) {
3163 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3164 				goto retry;
3165 			}
3166 		}
3167 
3168 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3169 		if (!zone_watermark_fast(zone, order, mark,
3170 				       ac->highest_zoneidx, alloc_flags,
3171 				       gfp_mask)) {
3172 			int ret;
3173 
3174 			if (has_unaccepted_memory()) {
3175 				if (try_to_accept_memory(zone, order))
3176 					goto try_this_zone;
3177 			}
3178 
3179 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3180 			/*
3181 			 * Watermark failed for this zone, but see if we can
3182 			 * grow this zone if it contains deferred pages.
3183 			 */
3184 			if (deferred_pages_enabled()) {
3185 				if (_deferred_grow_zone(zone, order))
3186 					goto try_this_zone;
3187 			}
3188 #endif
3189 			/* Checked here to keep the fast path fast */
3190 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3191 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3192 				goto try_this_zone;
3193 
3194 			if (!node_reclaim_enabled() ||
3195 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3196 				continue;
3197 
3198 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3199 			switch (ret) {
3200 			case NODE_RECLAIM_NOSCAN:
3201 				/* did not scan */
3202 				continue;
3203 			case NODE_RECLAIM_FULL:
3204 				/* scanned but unreclaimable */
3205 				continue;
3206 			default:
3207 				/* did we reclaim enough */
3208 				if (zone_watermark_ok(zone, order, mark,
3209 					ac->highest_zoneidx, alloc_flags))
3210 					goto try_this_zone;
3211 
3212 				continue;
3213 			}
3214 		}
3215 
3216 try_this_zone:
3217 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3218 				gfp_mask, alloc_flags, ac->migratetype);
3219 		if (page) {
3220 			prep_new_page(page, order, gfp_mask, alloc_flags);
3221 
3222 			/*
3223 			 * If this is a high-order atomic allocation then check
3224 			 * if the pageblock should be reserved for the future
3225 			 */
3226 			if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3227 				reserve_highatomic_pageblock(page, zone, order);
3228 
3229 			return page;
3230 		} else {
3231 			if (has_unaccepted_memory()) {
3232 				if (try_to_accept_memory(zone, order))
3233 					goto try_this_zone;
3234 			}
3235 
3236 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3237 			/* Try again if zone has deferred pages */
3238 			if (deferred_pages_enabled()) {
3239 				if (_deferred_grow_zone(zone, order))
3240 					goto try_this_zone;
3241 			}
3242 #endif
3243 		}
3244 	}
3245 
3246 	/*
3247 	 * It's possible on a UMA machine to get through all zones that are
3248 	 * fragmented. If avoiding fragmentation, reset and try again.
3249 	 */
3250 	if (no_fallback) {
3251 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3252 		goto retry;
3253 	}
3254 
3255 	return NULL;
3256 }
3257 
3258 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3259 {
3260 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3261 
3262 	/*
3263 	 * This documents exceptions given to allocations in certain
3264 	 * contexts that are allowed to allocate outside current's set
3265 	 * of allowed nodes.
3266 	 */
3267 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3268 		if (tsk_is_oom_victim(current) ||
3269 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3270 			filter &= ~SHOW_MEM_FILTER_NODES;
3271 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3272 		filter &= ~SHOW_MEM_FILTER_NODES;
3273 
3274 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
3275 }
3276 
3277 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3278 {
3279 	struct va_format vaf;
3280 	va_list args;
3281 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3282 
3283 	if ((gfp_mask & __GFP_NOWARN) ||
3284 	     !__ratelimit(&nopage_rs) ||
3285 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3286 		return;
3287 
3288 	va_start(args, fmt);
3289 	vaf.fmt = fmt;
3290 	vaf.va = &args;
3291 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3292 			current->comm, &vaf, gfp_mask, &gfp_mask,
3293 			nodemask_pr_args(nodemask));
3294 	va_end(args);
3295 
3296 	cpuset_print_current_mems_allowed();
3297 	pr_cont("\n");
3298 	dump_stack();
3299 	warn_alloc_show_mem(gfp_mask, nodemask);
3300 }
3301 
3302 static inline struct page *
3303 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3304 			      unsigned int alloc_flags,
3305 			      const struct alloc_context *ac)
3306 {
3307 	struct page *page;
3308 
3309 	page = get_page_from_freelist(gfp_mask, order,
3310 			alloc_flags|ALLOC_CPUSET, ac);
3311 	/*
3312 	 * fallback to ignore cpuset restriction if our nodes
3313 	 * are depleted
3314 	 */
3315 	if (!page)
3316 		page = get_page_from_freelist(gfp_mask, order,
3317 				alloc_flags, ac);
3318 
3319 	return page;
3320 }
3321 
3322 static inline struct page *
3323 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3324 	const struct alloc_context *ac, unsigned long *did_some_progress)
3325 {
3326 	struct oom_control oc = {
3327 		.zonelist = ac->zonelist,
3328 		.nodemask = ac->nodemask,
3329 		.memcg = NULL,
3330 		.gfp_mask = gfp_mask,
3331 		.order = order,
3332 	};
3333 	struct page *page;
3334 
3335 	*did_some_progress = 0;
3336 
3337 	/*
3338 	 * Acquire the oom lock.  If that fails, somebody else is
3339 	 * making progress for us.
3340 	 */
3341 	if (!mutex_trylock(&oom_lock)) {
3342 		*did_some_progress = 1;
3343 		schedule_timeout_uninterruptible(1);
3344 		return NULL;
3345 	}
3346 
3347 	/*
3348 	 * Go through the zonelist yet one more time, keep very high watermark
3349 	 * here, this is only to catch a parallel oom killing, we must fail if
3350 	 * we're still under heavy pressure. But make sure that this reclaim
3351 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3352 	 * allocation which will never fail due to oom_lock already held.
3353 	 */
3354 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3355 				      ~__GFP_DIRECT_RECLAIM, order,
3356 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3357 	if (page)
3358 		goto out;
3359 
3360 	/* Coredumps can quickly deplete all memory reserves */
3361 	if (current->flags & PF_DUMPCORE)
3362 		goto out;
3363 	/* The OOM killer will not help higher order allocs */
3364 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3365 		goto out;
3366 	/*
3367 	 * We have already exhausted all our reclaim opportunities without any
3368 	 * success so it is time to admit defeat. We will skip the OOM killer
3369 	 * because it is very likely that the caller has a more reasonable
3370 	 * fallback than shooting a random task.
3371 	 *
3372 	 * The OOM killer may not free memory on a specific node.
3373 	 */
3374 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3375 		goto out;
3376 	/* The OOM killer does not needlessly kill tasks for lowmem */
3377 	if (ac->highest_zoneidx < ZONE_NORMAL)
3378 		goto out;
3379 	if (pm_suspended_storage())
3380 		goto out;
3381 	/*
3382 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3383 	 * other request to make a forward progress.
3384 	 * We are in an unfortunate situation where out_of_memory cannot
3385 	 * do much for this context but let's try it to at least get
3386 	 * access to memory reserved if the current task is killed (see
3387 	 * out_of_memory). Once filesystems are ready to handle allocation
3388 	 * failures more gracefully we should just bail out here.
3389 	 */
3390 
3391 	/* Exhausted what can be done so it's blame time */
3392 	if (out_of_memory(&oc) ||
3393 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3394 		*did_some_progress = 1;
3395 
3396 		/*
3397 		 * Help non-failing allocations by giving them access to memory
3398 		 * reserves
3399 		 */
3400 		if (gfp_mask & __GFP_NOFAIL)
3401 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3402 					ALLOC_NO_WATERMARKS, ac);
3403 	}
3404 out:
3405 	mutex_unlock(&oom_lock);
3406 	return page;
3407 }
3408 
3409 /*
3410  * Maximum number of compaction retries with a progress before OOM
3411  * killer is consider as the only way to move forward.
3412  */
3413 #define MAX_COMPACT_RETRIES 16
3414 
3415 #ifdef CONFIG_COMPACTION
3416 /* Try memory compaction for high-order allocations before reclaim */
3417 static struct page *
3418 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3419 		unsigned int alloc_flags, const struct alloc_context *ac,
3420 		enum compact_priority prio, enum compact_result *compact_result)
3421 {
3422 	struct page *page = NULL;
3423 	unsigned long pflags;
3424 	unsigned int noreclaim_flag;
3425 
3426 	if (!order)
3427 		return NULL;
3428 
3429 	psi_memstall_enter(&pflags);
3430 	delayacct_compact_start();
3431 	noreclaim_flag = memalloc_noreclaim_save();
3432 
3433 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3434 								prio, &page);
3435 
3436 	memalloc_noreclaim_restore(noreclaim_flag);
3437 	psi_memstall_leave(&pflags);
3438 	delayacct_compact_end();
3439 
3440 	if (*compact_result == COMPACT_SKIPPED)
3441 		return NULL;
3442 	/*
3443 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3444 	 * count a compaction stall
3445 	 */
3446 	count_vm_event(COMPACTSTALL);
3447 
3448 	/* Prep a captured page if available */
3449 	if (page)
3450 		prep_new_page(page, order, gfp_mask, alloc_flags);
3451 
3452 	/* Try get a page from the freelist if available */
3453 	if (!page)
3454 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3455 
3456 	if (page) {
3457 		struct zone *zone = page_zone(page);
3458 
3459 		zone->compact_blockskip_flush = false;
3460 		compaction_defer_reset(zone, order, true);
3461 		count_vm_event(COMPACTSUCCESS);
3462 		return page;
3463 	}
3464 
3465 	/*
3466 	 * It's bad if compaction run occurs and fails. The most likely reason
3467 	 * is that pages exist, but not enough to satisfy watermarks.
3468 	 */
3469 	count_vm_event(COMPACTFAIL);
3470 
3471 	cond_resched();
3472 
3473 	return NULL;
3474 }
3475 
3476 static inline bool
3477 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3478 		     enum compact_result compact_result,
3479 		     enum compact_priority *compact_priority,
3480 		     int *compaction_retries)
3481 {
3482 	int max_retries = MAX_COMPACT_RETRIES;
3483 	int min_priority;
3484 	bool ret = false;
3485 	int retries = *compaction_retries;
3486 	enum compact_priority priority = *compact_priority;
3487 
3488 	if (!order)
3489 		return false;
3490 
3491 	if (fatal_signal_pending(current))
3492 		return false;
3493 
3494 	/*
3495 	 * Compaction was skipped due to a lack of free order-0
3496 	 * migration targets. Continue if reclaim can help.
3497 	 */
3498 	if (compact_result == COMPACT_SKIPPED) {
3499 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3500 		goto out;
3501 	}
3502 
3503 	/*
3504 	 * Compaction managed to coalesce some page blocks, but the
3505 	 * allocation failed presumably due to a race. Retry some.
3506 	 */
3507 	if (compact_result == COMPACT_SUCCESS) {
3508 		/*
3509 		 * !costly requests are much more important than
3510 		 * __GFP_RETRY_MAYFAIL costly ones because they are de
3511 		 * facto nofail and invoke OOM killer to move on while
3512 		 * costly can fail and users are ready to cope with
3513 		 * that. 1/4 retries is rather arbitrary but we would
3514 		 * need much more detailed feedback from compaction to
3515 		 * make a better decision.
3516 		 */
3517 		if (order > PAGE_ALLOC_COSTLY_ORDER)
3518 			max_retries /= 4;
3519 
3520 		if (++(*compaction_retries) <= max_retries) {
3521 			ret = true;
3522 			goto out;
3523 		}
3524 	}
3525 
3526 	/*
3527 	 * Compaction failed. Retry with increasing priority.
3528 	 */
3529 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3530 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3531 
3532 	if (*compact_priority > min_priority) {
3533 		(*compact_priority)--;
3534 		*compaction_retries = 0;
3535 		ret = true;
3536 	}
3537 out:
3538 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3539 	return ret;
3540 }
3541 #else
3542 static inline struct page *
3543 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3544 		unsigned int alloc_flags, const struct alloc_context *ac,
3545 		enum compact_priority prio, enum compact_result *compact_result)
3546 {
3547 	*compact_result = COMPACT_SKIPPED;
3548 	return NULL;
3549 }
3550 
3551 static inline bool
3552 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3553 		     enum compact_result compact_result,
3554 		     enum compact_priority *compact_priority,
3555 		     int *compaction_retries)
3556 {
3557 	struct zone *zone;
3558 	struct zoneref *z;
3559 
3560 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3561 		return false;
3562 
3563 	/*
3564 	 * There are setups with compaction disabled which would prefer to loop
3565 	 * inside the allocator rather than hit the oom killer prematurely.
3566 	 * Let's give them a good hope and keep retrying while the order-0
3567 	 * watermarks are OK.
3568 	 */
3569 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3570 				ac->highest_zoneidx, ac->nodemask) {
3571 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3572 					ac->highest_zoneidx, alloc_flags))
3573 			return true;
3574 	}
3575 	return false;
3576 }
3577 #endif /* CONFIG_COMPACTION */
3578 
3579 #ifdef CONFIG_LOCKDEP
3580 static struct lockdep_map __fs_reclaim_map =
3581 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3582 
3583 static bool __need_reclaim(gfp_t gfp_mask)
3584 {
3585 	/* no reclaim without waiting on it */
3586 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3587 		return false;
3588 
3589 	/* this guy won't enter reclaim */
3590 	if (current->flags & PF_MEMALLOC)
3591 		return false;
3592 
3593 	if (gfp_mask & __GFP_NOLOCKDEP)
3594 		return false;
3595 
3596 	return true;
3597 }
3598 
3599 void __fs_reclaim_acquire(unsigned long ip)
3600 {
3601 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3602 }
3603 
3604 void __fs_reclaim_release(unsigned long ip)
3605 {
3606 	lock_release(&__fs_reclaim_map, ip);
3607 }
3608 
3609 void fs_reclaim_acquire(gfp_t gfp_mask)
3610 {
3611 	gfp_mask = current_gfp_context(gfp_mask);
3612 
3613 	if (__need_reclaim(gfp_mask)) {
3614 		if (gfp_mask & __GFP_FS)
3615 			__fs_reclaim_acquire(_RET_IP_);
3616 
3617 #ifdef CONFIG_MMU_NOTIFIER
3618 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3619 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3620 #endif
3621 
3622 	}
3623 }
3624 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3625 
3626 void fs_reclaim_release(gfp_t gfp_mask)
3627 {
3628 	gfp_mask = current_gfp_context(gfp_mask);
3629 
3630 	if (__need_reclaim(gfp_mask)) {
3631 		if (gfp_mask & __GFP_FS)
3632 			__fs_reclaim_release(_RET_IP_);
3633 	}
3634 }
3635 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3636 #endif
3637 
3638 /*
3639  * Zonelists may change due to hotplug during allocation. Detect when zonelists
3640  * have been rebuilt so allocation retries. Reader side does not lock and
3641  * retries the allocation if zonelist changes. Writer side is protected by the
3642  * embedded spin_lock.
3643  */
3644 static DEFINE_SEQLOCK(zonelist_update_seq);
3645 
3646 static unsigned int zonelist_iter_begin(void)
3647 {
3648 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3649 		return read_seqbegin(&zonelist_update_seq);
3650 
3651 	return 0;
3652 }
3653 
3654 static unsigned int check_retry_zonelist(unsigned int seq)
3655 {
3656 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3657 		return read_seqretry(&zonelist_update_seq, seq);
3658 
3659 	return seq;
3660 }
3661 
3662 /* Perform direct synchronous page reclaim */
3663 static unsigned long
3664 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3665 					const struct alloc_context *ac)
3666 {
3667 	unsigned int noreclaim_flag;
3668 	unsigned long progress;
3669 
3670 	cond_resched();
3671 
3672 	/* We now go into synchronous reclaim */
3673 	cpuset_memory_pressure_bump();
3674 	fs_reclaim_acquire(gfp_mask);
3675 	noreclaim_flag = memalloc_noreclaim_save();
3676 
3677 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3678 								ac->nodemask);
3679 
3680 	memalloc_noreclaim_restore(noreclaim_flag);
3681 	fs_reclaim_release(gfp_mask);
3682 
3683 	cond_resched();
3684 
3685 	return progress;
3686 }
3687 
3688 /* The really slow allocator path where we enter direct reclaim */
3689 static inline struct page *
3690 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3691 		unsigned int alloc_flags, const struct alloc_context *ac,
3692 		unsigned long *did_some_progress)
3693 {
3694 	struct page *page = NULL;
3695 	unsigned long pflags;
3696 	bool drained = false;
3697 
3698 	psi_memstall_enter(&pflags);
3699 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3700 	if (unlikely(!(*did_some_progress)))
3701 		goto out;
3702 
3703 retry:
3704 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3705 
3706 	/*
3707 	 * If an allocation failed after direct reclaim, it could be because
3708 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3709 	 * Shrink them and try again
3710 	 */
3711 	if (!page && !drained) {
3712 		unreserve_highatomic_pageblock(ac, false);
3713 		drain_all_pages(NULL);
3714 		drained = true;
3715 		goto retry;
3716 	}
3717 out:
3718 	psi_memstall_leave(&pflags);
3719 
3720 	return page;
3721 }
3722 
3723 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3724 			     const struct alloc_context *ac)
3725 {
3726 	struct zoneref *z;
3727 	struct zone *zone;
3728 	pg_data_t *last_pgdat = NULL;
3729 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
3730 
3731 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
3732 					ac->nodemask) {
3733 		if (!managed_zone(zone))
3734 			continue;
3735 		if (last_pgdat != zone->zone_pgdat) {
3736 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
3737 			last_pgdat = zone->zone_pgdat;
3738 		}
3739 	}
3740 }
3741 
3742 static inline unsigned int
3743 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
3744 {
3745 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3746 
3747 	/*
3748 	 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
3749 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3750 	 * to save two branches.
3751 	 */
3752 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
3753 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
3754 
3755 	/*
3756 	 * The caller may dip into page reserves a bit more if the caller
3757 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3758 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3759 	 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
3760 	 */
3761 	alloc_flags |= (__force int)
3762 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
3763 
3764 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
3765 		/*
3766 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3767 		 * if it can't schedule.
3768 		 */
3769 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
3770 			alloc_flags |= ALLOC_NON_BLOCK;
3771 
3772 			if (order > 0)
3773 				alloc_flags |= ALLOC_HIGHATOMIC;
3774 		}
3775 
3776 		/*
3777 		 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
3778 		 * GFP_ATOMIC) rather than fail, see the comment for
3779 		 * cpuset_node_allowed().
3780 		 */
3781 		if (alloc_flags & ALLOC_MIN_RESERVE)
3782 			alloc_flags &= ~ALLOC_CPUSET;
3783 	} else if (unlikely(rt_task(current)) && in_task())
3784 		alloc_flags |= ALLOC_MIN_RESERVE;
3785 
3786 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
3787 
3788 	return alloc_flags;
3789 }
3790 
3791 static bool oom_reserves_allowed(struct task_struct *tsk)
3792 {
3793 	if (!tsk_is_oom_victim(tsk))
3794 		return false;
3795 
3796 	/*
3797 	 * !MMU doesn't have oom reaper so give access to memory reserves
3798 	 * only to the thread with TIF_MEMDIE set
3799 	 */
3800 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3801 		return false;
3802 
3803 	return true;
3804 }
3805 
3806 /*
3807  * Distinguish requests which really need access to full memory
3808  * reserves from oom victims which can live with a portion of it
3809  */
3810 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3811 {
3812 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3813 		return 0;
3814 	if (gfp_mask & __GFP_MEMALLOC)
3815 		return ALLOC_NO_WATERMARKS;
3816 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3817 		return ALLOC_NO_WATERMARKS;
3818 	if (!in_interrupt()) {
3819 		if (current->flags & PF_MEMALLOC)
3820 			return ALLOC_NO_WATERMARKS;
3821 		else if (oom_reserves_allowed(current))
3822 			return ALLOC_OOM;
3823 	}
3824 
3825 	return 0;
3826 }
3827 
3828 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3829 {
3830 	return !!__gfp_pfmemalloc_flags(gfp_mask);
3831 }
3832 
3833 /*
3834  * Checks whether it makes sense to retry the reclaim to make a forward progress
3835  * for the given allocation request.
3836  *
3837  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3838  * without success, or when we couldn't even meet the watermark if we
3839  * reclaimed all remaining pages on the LRU lists.
3840  *
3841  * Returns true if a retry is viable or false to enter the oom path.
3842  */
3843 static inline bool
3844 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3845 		     struct alloc_context *ac, int alloc_flags,
3846 		     bool did_some_progress, int *no_progress_loops)
3847 {
3848 	struct zone *zone;
3849 	struct zoneref *z;
3850 	bool ret = false;
3851 
3852 	/*
3853 	 * Costly allocations might have made a progress but this doesn't mean
3854 	 * their order will become available due to high fragmentation so
3855 	 * always increment the no progress counter for them
3856 	 */
3857 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3858 		*no_progress_loops = 0;
3859 	else
3860 		(*no_progress_loops)++;
3861 
3862 	/*
3863 	 * Make sure we converge to OOM if we cannot make any progress
3864 	 * several times in the row.
3865 	 */
3866 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3867 		/* Before OOM, exhaust highatomic_reserve */
3868 		return unreserve_highatomic_pageblock(ac, true);
3869 	}
3870 
3871 	/*
3872 	 * Keep reclaiming pages while there is a chance this will lead
3873 	 * somewhere.  If none of the target zones can satisfy our allocation
3874 	 * request even if all reclaimable pages are considered then we are
3875 	 * screwed and have to go OOM.
3876 	 */
3877 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3878 				ac->highest_zoneidx, ac->nodemask) {
3879 		unsigned long available;
3880 		unsigned long reclaimable;
3881 		unsigned long min_wmark = min_wmark_pages(zone);
3882 		bool wmark;
3883 
3884 		available = reclaimable = zone_reclaimable_pages(zone);
3885 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3886 
3887 		/*
3888 		 * Would the allocation succeed if we reclaimed all
3889 		 * reclaimable pages?
3890 		 */
3891 		wmark = __zone_watermark_ok(zone, order, min_wmark,
3892 				ac->highest_zoneidx, alloc_flags, available);
3893 		trace_reclaim_retry_zone(z, order, reclaimable,
3894 				available, min_wmark, *no_progress_loops, wmark);
3895 		if (wmark) {
3896 			ret = true;
3897 			break;
3898 		}
3899 	}
3900 
3901 	/*
3902 	 * Memory allocation/reclaim might be called from a WQ context and the
3903 	 * current implementation of the WQ concurrency control doesn't
3904 	 * recognize that a particular WQ is congested if the worker thread is
3905 	 * looping without ever sleeping. Therefore we have to do a short sleep
3906 	 * here rather than calling cond_resched().
3907 	 */
3908 	if (current->flags & PF_WQ_WORKER)
3909 		schedule_timeout_uninterruptible(1);
3910 	else
3911 		cond_resched();
3912 	return ret;
3913 }
3914 
3915 static inline bool
3916 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3917 {
3918 	/*
3919 	 * It's possible that cpuset's mems_allowed and the nodemask from
3920 	 * mempolicy don't intersect. This should be normally dealt with by
3921 	 * policy_nodemask(), but it's possible to race with cpuset update in
3922 	 * such a way the check therein was true, and then it became false
3923 	 * before we got our cpuset_mems_cookie here.
3924 	 * This assumes that for all allocations, ac->nodemask can come only
3925 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3926 	 * when it does not intersect with the cpuset restrictions) or the
3927 	 * caller can deal with a violated nodemask.
3928 	 */
3929 	if (cpusets_enabled() && ac->nodemask &&
3930 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3931 		ac->nodemask = NULL;
3932 		return true;
3933 	}
3934 
3935 	/*
3936 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
3937 	 * possible to race with parallel threads in such a way that our
3938 	 * allocation can fail while the mask is being updated. If we are about
3939 	 * to fail, check if the cpuset changed during allocation and if so,
3940 	 * retry.
3941 	 */
3942 	if (read_mems_allowed_retry(cpuset_mems_cookie))
3943 		return true;
3944 
3945 	return false;
3946 }
3947 
3948 static inline struct page *
3949 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3950 						struct alloc_context *ac)
3951 {
3952 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3953 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3954 	struct page *page = NULL;
3955 	unsigned int alloc_flags;
3956 	unsigned long did_some_progress;
3957 	enum compact_priority compact_priority;
3958 	enum compact_result compact_result;
3959 	int compaction_retries;
3960 	int no_progress_loops;
3961 	unsigned int cpuset_mems_cookie;
3962 	unsigned int zonelist_iter_cookie;
3963 	int reserve_flags;
3964 
3965 restart:
3966 	compaction_retries = 0;
3967 	no_progress_loops = 0;
3968 	compact_priority = DEF_COMPACT_PRIORITY;
3969 	cpuset_mems_cookie = read_mems_allowed_begin();
3970 	zonelist_iter_cookie = zonelist_iter_begin();
3971 
3972 	/*
3973 	 * The fast path uses conservative alloc_flags to succeed only until
3974 	 * kswapd needs to be woken up, and to avoid the cost of setting up
3975 	 * alloc_flags precisely. So we do that now.
3976 	 */
3977 	alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
3978 
3979 	/*
3980 	 * We need to recalculate the starting point for the zonelist iterator
3981 	 * because we might have used different nodemask in the fast path, or
3982 	 * there was a cpuset modification and we are retrying - otherwise we
3983 	 * could end up iterating over non-eligible zones endlessly.
3984 	 */
3985 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3986 					ac->highest_zoneidx, ac->nodemask);
3987 	if (!ac->preferred_zoneref->zone)
3988 		goto nopage;
3989 
3990 	/*
3991 	 * Check for insane configurations where the cpuset doesn't contain
3992 	 * any suitable zone to satisfy the request - e.g. non-movable
3993 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
3994 	 */
3995 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
3996 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
3997 					ac->highest_zoneidx,
3998 					&cpuset_current_mems_allowed);
3999 		if (!z->zone)
4000 			goto nopage;
4001 	}
4002 
4003 	if (alloc_flags & ALLOC_KSWAPD)
4004 		wake_all_kswapds(order, gfp_mask, ac);
4005 
4006 	/*
4007 	 * The adjusted alloc_flags might result in immediate success, so try
4008 	 * that first
4009 	 */
4010 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4011 	if (page)
4012 		goto got_pg;
4013 
4014 	/*
4015 	 * For costly allocations, try direct compaction first, as it's likely
4016 	 * that we have enough base pages and don't need to reclaim. For non-
4017 	 * movable high-order allocations, do that as well, as compaction will
4018 	 * try prevent permanent fragmentation by migrating from blocks of the
4019 	 * same migratetype.
4020 	 * Don't try this for allocations that are allowed to ignore
4021 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4022 	 */
4023 	if (can_direct_reclaim &&
4024 			(costly_order ||
4025 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4026 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4027 		page = __alloc_pages_direct_compact(gfp_mask, order,
4028 						alloc_flags, ac,
4029 						INIT_COMPACT_PRIORITY,
4030 						&compact_result);
4031 		if (page)
4032 			goto got_pg;
4033 
4034 		/*
4035 		 * Checks for costly allocations with __GFP_NORETRY, which
4036 		 * includes some THP page fault allocations
4037 		 */
4038 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4039 			/*
4040 			 * If allocating entire pageblock(s) and compaction
4041 			 * failed because all zones are below low watermarks
4042 			 * or is prohibited because it recently failed at this
4043 			 * order, fail immediately unless the allocator has
4044 			 * requested compaction and reclaim retry.
4045 			 *
4046 			 * Reclaim is
4047 			 *  - potentially very expensive because zones are far
4048 			 *    below their low watermarks or this is part of very
4049 			 *    bursty high order allocations,
4050 			 *  - not guaranteed to help because isolate_freepages()
4051 			 *    may not iterate over freed pages as part of its
4052 			 *    linear scan, and
4053 			 *  - unlikely to make entire pageblocks free on its
4054 			 *    own.
4055 			 */
4056 			if (compact_result == COMPACT_SKIPPED ||
4057 			    compact_result == COMPACT_DEFERRED)
4058 				goto nopage;
4059 
4060 			/*
4061 			 * Looks like reclaim/compaction is worth trying, but
4062 			 * sync compaction could be very expensive, so keep
4063 			 * using async compaction.
4064 			 */
4065 			compact_priority = INIT_COMPACT_PRIORITY;
4066 		}
4067 	}
4068 
4069 retry:
4070 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4071 	if (alloc_flags & ALLOC_KSWAPD)
4072 		wake_all_kswapds(order, gfp_mask, ac);
4073 
4074 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4075 	if (reserve_flags)
4076 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4077 					  (alloc_flags & ALLOC_KSWAPD);
4078 
4079 	/*
4080 	 * Reset the nodemask and zonelist iterators if memory policies can be
4081 	 * ignored. These allocations are high priority and system rather than
4082 	 * user oriented.
4083 	 */
4084 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4085 		ac->nodemask = NULL;
4086 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4087 					ac->highest_zoneidx, ac->nodemask);
4088 	}
4089 
4090 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4091 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4092 	if (page)
4093 		goto got_pg;
4094 
4095 	/* Caller is not willing to reclaim, we can't balance anything */
4096 	if (!can_direct_reclaim)
4097 		goto nopage;
4098 
4099 	/* Avoid recursion of direct reclaim */
4100 	if (current->flags & PF_MEMALLOC)
4101 		goto nopage;
4102 
4103 	/* Try direct reclaim and then allocating */
4104 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4105 							&did_some_progress);
4106 	if (page)
4107 		goto got_pg;
4108 
4109 	/* Try direct compaction and then allocating */
4110 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4111 					compact_priority, &compact_result);
4112 	if (page)
4113 		goto got_pg;
4114 
4115 	/* Do not loop if specifically requested */
4116 	if (gfp_mask & __GFP_NORETRY)
4117 		goto nopage;
4118 
4119 	/*
4120 	 * Do not retry costly high order allocations unless they are
4121 	 * __GFP_RETRY_MAYFAIL
4122 	 */
4123 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4124 		goto nopage;
4125 
4126 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4127 				 did_some_progress > 0, &no_progress_loops))
4128 		goto retry;
4129 
4130 	/*
4131 	 * It doesn't make any sense to retry for the compaction if the order-0
4132 	 * reclaim is not able to make any progress because the current
4133 	 * implementation of the compaction depends on the sufficient amount
4134 	 * of free memory (see __compaction_suitable)
4135 	 */
4136 	if (did_some_progress > 0 &&
4137 			should_compact_retry(ac, order, alloc_flags,
4138 				compact_result, &compact_priority,
4139 				&compaction_retries))
4140 		goto retry;
4141 
4142 
4143 	/*
4144 	 * Deal with possible cpuset update races or zonelist updates to avoid
4145 	 * a unnecessary OOM kill.
4146 	 */
4147 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4148 	    check_retry_zonelist(zonelist_iter_cookie))
4149 		goto restart;
4150 
4151 	/* Reclaim has failed us, start killing things */
4152 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4153 	if (page)
4154 		goto got_pg;
4155 
4156 	/* Avoid allocations with no watermarks from looping endlessly */
4157 	if (tsk_is_oom_victim(current) &&
4158 	    (alloc_flags & ALLOC_OOM ||
4159 	     (gfp_mask & __GFP_NOMEMALLOC)))
4160 		goto nopage;
4161 
4162 	/* Retry as long as the OOM killer is making progress */
4163 	if (did_some_progress) {
4164 		no_progress_loops = 0;
4165 		goto retry;
4166 	}
4167 
4168 nopage:
4169 	/*
4170 	 * Deal with possible cpuset update races or zonelist updates to avoid
4171 	 * a unnecessary OOM kill.
4172 	 */
4173 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4174 	    check_retry_zonelist(zonelist_iter_cookie))
4175 		goto restart;
4176 
4177 	/*
4178 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4179 	 * we always retry
4180 	 */
4181 	if (gfp_mask & __GFP_NOFAIL) {
4182 		/*
4183 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4184 		 * of any new users that actually require GFP_NOWAIT
4185 		 */
4186 		if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
4187 			goto fail;
4188 
4189 		/*
4190 		 * PF_MEMALLOC request from this context is rather bizarre
4191 		 * because we cannot reclaim anything and only can loop waiting
4192 		 * for somebody to do a work for us
4193 		 */
4194 		WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
4195 
4196 		/*
4197 		 * non failing costly orders are a hard requirement which we
4198 		 * are not prepared for much so let's warn about these users
4199 		 * so that we can identify them and convert them to something
4200 		 * else.
4201 		 */
4202 		WARN_ON_ONCE_GFP(costly_order, gfp_mask);
4203 
4204 		/*
4205 		 * Help non-failing allocations by giving some access to memory
4206 		 * reserves normally used for high priority non-blocking
4207 		 * allocations but do not use ALLOC_NO_WATERMARKS because this
4208 		 * could deplete whole memory reserves which would just make
4209 		 * the situation worse.
4210 		 */
4211 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4212 		if (page)
4213 			goto got_pg;
4214 
4215 		cond_resched();
4216 		goto retry;
4217 	}
4218 fail:
4219 	warn_alloc(gfp_mask, ac->nodemask,
4220 			"page allocation failure: order:%u", order);
4221 got_pg:
4222 	return page;
4223 }
4224 
4225 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4226 		int preferred_nid, nodemask_t *nodemask,
4227 		struct alloc_context *ac, gfp_t *alloc_gfp,
4228 		unsigned int *alloc_flags)
4229 {
4230 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4231 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4232 	ac->nodemask = nodemask;
4233 	ac->migratetype = gfp_migratetype(gfp_mask);
4234 
4235 	if (cpusets_enabled()) {
4236 		*alloc_gfp |= __GFP_HARDWALL;
4237 		/*
4238 		 * When we are in the interrupt context, it is irrelevant
4239 		 * to the current task context. It means that any node ok.
4240 		 */
4241 		if (in_task() && !ac->nodemask)
4242 			ac->nodemask = &cpuset_current_mems_allowed;
4243 		else
4244 			*alloc_flags |= ALLOC_CPUSET;
4245 	}
4246 
4247 	might_alloc(gfp_mask);
4248 
4249 	if (should_fail_alloc_page(gfp_mask, order))
4250 		return false;
4251 
4252 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4253 
4254 	/* Dirty zone balancing only done in the fast path */
4255 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4256 
4257 	/*
4258 	 * The preferred zone is used for statistics but crucially it is
4259 	 * also used as the starting point for the zonelist iterator. It
4260 	 * may get reset for allocations that ignore memory policies.
4261 	 */
4262 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4263 					ac->highest_zoneidx, ac->nodemask);
4264 
4265 	return true;
4266 }
4267 
4268 /*
4269  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4270  * @gfp: GFP flags for the allocation
4271  * @preferred_nid: The preferred NUMA node ID to allocate from
4272  * @nodemask: Set of nodes to allocate from, may be NULL
4273  * @nr_pages: The number of pages desired on the list or array
4274  * @page_list: Optional list to store the allocated pages
4275  * @page_array: Optional array to store the pages
4276  *
4277  * This is a batched version of the page allocator that attempts to
4278  * allocate nr_pages quickly. Pages are added to page_list if page_list
4279  * is not NULL, otherwise it is assumed that the page_array is valid.
4280  *
4281  * For lists, nr_pages is the number of pages that should be allocated.
4282  *
4283  * For arrays, only NULL elements are populated with pages and nr_pages
4284  * is the maximum number of pages that will be stored in the array.
4285  *
4286  * Returns the number of pages on the list or array.
4287  */
4288 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
4289 			nodemask_t *nodemask, int nr_pages,
4290 			struct list_head *page_list,
4291 			struct page **page_array)
4292 {
4293 	struct page *page;
4294 	unsigned long __maybe_unused UP_flags;
4295 	struct zone *zone;
4296 	struct zoneref *z;
4297 	struct per_cpu_pages *pcp;
4298 	struct list_head *pcp_list;
4299 	struct alloc_context ac;
4300 	gfp_t alloc_gfp;
4301 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4302 	int nr_populated = 0, nr_account = 0;
4303 
4304 	/*
4305 	 * Skip populated array elements to determine if any pages need
4306 	 * to be allocated before disabling IRQs.
4307 	 */
4308 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4309 		nr_populated++;
4310 
4311 	/* No pages requested? */
4312 	if (unlikely(nr_pages <= 0))
4313 		goto out;
4314 
4315 	/* Already populated array? */
4316 	if (unlikely(page_array && nr_pages - nr_populated == 0))
4317 		goto out;
4318 
4319 	/* Bulk allocator does not support memcg accounting. */
4320 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4321 		goto failed;
4322 
4323 	/* Use the single page allocator for one page. */
4324 	if (nr_pages - nr_populated == 1)
4325 		goto failed;
4326 
4327 #ifdef CONFIG_PAGE_OWNER
4328 	/*
4329 	 * PAGE_OWNER may recurse into the allocator to allocate space to
4330 	 * save the stack with pagesets.lock held. Releasing/reacquiring
4331 	 * removes much of the performance benefit of bulk allocation so
4332 	 * force the caller to allocate one page at a time as it'll have
4333 	 * similar performance to added complexity to the bulk allocator.
4334 	 */
4335 	if (static_branch_unlikely(&page_owner_inited))
4336 		goto failed;
4337 #endif
4338 
4339 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4340 	gfp &= gfp_allowed_mask;
4341 	alloc_gfp = gfp;
4342 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4343 		goto out;
4344 	gfp = alloc_gfp;
4345 
4346 	/* Find an allowed local zone that meets the low watermark. */
4347 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
4348 		unsigned long mark;
4349 
4350 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4351 		    !__cpuset_zone_allowed(zone, gfp)) {
4352 			continue;
4353 		}
4354 
4355 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
4356 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
4357 			goto failed;
4358 		}
4359 
4360 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4361 		if (zone_watermark_fast(zone, 0,  mark,
4362 				zonelist_zone_idx(ac.preferred_zoneref),
4363 				alloc_flags, gfp)) {
4364 			break;
4365 		}
4366 	}
4367 
4368 	/*
4369 	 * If there are no allowed local zones that meets the watermarks then
4370 	 * try to allocate a single page and reclaim if necessary.
4371 	 */
4372 	if (unlikely(!zone))
4373 		goto failed;
4374 
4375 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4376 	pcp_trylock_prepare(UP_flags);
4377 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4378 	if (!pcp)
4379 		goto failed_irq;
4380 
4381 	/* Attempt the batch allocation */
4382 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4383 	while (nr_populated < nr_pages) {
4384 
4385 		/* Skip existing pages */
4386 		if (page_array && page_array[nr_populated]) {
4387 			nr_populated++;
4388 			continue;
4389 		}
4390 
4391 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4392 								pcp, pcp_list);
4393 		if (unlikely(!page)) {
4394 			/* Try and allocate at least one page */
4395 			if (!nr_account) {
4396 				pcp_spin_unlock(pcp);
4397 				goto failed_irq;
4398 			}
4399 			break;
4400 		}
4401 		nr_account++;
4402 
4403 		prep_new_page(page, 0, gfp, 0);
4404 		if (page_list)
4405 			list_add(&page->lru, page_list);
4406 		else
4407 			page_array[nr_populated] = page;
4408 		nr_populated++;
4409 	}
4410 
4411 	pcp_spin_unlock(pcp);
4412 	pcp_trylock_finish(UP_flags);
4413 
4414 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4415 	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
4416 
4417 out:
4418 	return nr_populated;
4419 
4420 failed_irq:
4421 	pcp_trylock_finish(UP_flags);
4422 
4423 failed:
4424 	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
4425 	if (page) {
4426 		if (page_list)
4427 			list_add(&page->lru, page_list);
4428 		else
4429 			page_array[nr_populated] = page;
4430 		nr_populated++;
4431 	}
4432 
4433 	goto out;
4434 }
4435 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
4436 
4437 /*
4438  * This is the 'heart' of the zoned buddy allocator.
4439  */
4440 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
4441 							nodemask_t *nodemask)
4442 {
4443 	struct page *page;
4444 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4445 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4446 	struct alloc_context ac = { };
4447 
4448 	/*
4449 	 * There are several places where we assume that the order value is sane
4450 	 * so bail out early if the request is out of bound.
4451 	 */
4452 	if (WARN_ON_ONCE_GFP(order > MAX_ORDER, gfp))
4453 		return NULL;
4454 
4455 	gfp &= gfp_allowed_mask;
4456 	/*
4457 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4458 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4459 	 * from a particular context which has been marked by
4460 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4461 	 * movable zones are not used during allocation.
4462 	 */
4463 	gfp = current_gfp_context(gfp);
4464 	alloc_gfp = gfp;
4465 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4466 			&alloc_gfp, &alloc_flags))
4467 		return NULL;
4468 
4469 	/*
4470 	 * Forbid the first pass from falling back to types that fragment
4471 	 * memory until all local zones are considered.
4472 	 */
4473 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
4474 
4475 	/* First allocation attempt */
4476 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4477 	if (likely(page))
4478 		goto out;
4479 
4480 	alloc_gfp = gfp;
4481 	ac.spread_dirty_pages = false;
4482 
4483 	/*
4484 	 * Restore the original nodemask if it was potentially replaced with
4485 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4486 	 */
4487 	ac.nodemask = nodemask;
4488 
4489 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4490 
4491 out:
4492 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4493 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4494 		__free_pages(page, order);
4495 		page = NULL;
4496 	}
4497 
4498 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4499 	kmsan_alloc_page(page, order, alloc_gfp);
4500 
4501 	return page;
4502 }
4503 EXPORT_SYMBOL(__alloc_pages);
4504 
4505 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
4506 		nodemask_t *nodemask)
4507 {
4508 	struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
4509 			preferred_nid, nodemask);
4510 
4511 	if (page && order > 1)
4512 		prep_transhuge_page(page);
4513 	return (struct folio *)page;
4514 }
4515 EXPORT_SYMBOL(__folio_alloc);
4516 
4517 /*
4518  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4519  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4520  * you need to access high mem.
4521  */
4522 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4523 {
4524 	struct page *page;
4525 
4526 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4527 	if (!page)
4528 		return 0;
4529 	return (unsigned long) page_address(page);
4530 }
4531 EXPORT_SYMBOL(__get_free_pages);
4532 
4533 unsigned long get_zeroed_page(gfp_t gfp_mask)
4534 {
4535 	return __get_free_page(gfp_mask | __GFP_ZERO);
4536 }
4537 EXPORT_SYMBOL(get_zeroed_page);
4538 
4539 /**
4540  * __free_pages - Free pages allocated with alloc_pages().
4541  * @page: The page pointer returned from alloc_pages().
4542  * @order: The order of the allocation.
4543  *
4544  * This function can free multi-page allocations that are not compound
4545  * pages.  It does not check that the @order passed in matches that of
4546  * the allocation, so it is easy to leak memory.  Freeing more memory
4547  * than was allocated will probably emit a warning.
4548  *
4549  * If the last reference to this page is speculative, it will be released
4550  * by put_page() which only frees the first page of a non-compound
4551  * allocation.  To prevent the remaining pages from being leaked, we free
4552  * the subsequent pages here.  If you want to use the page's reference
4553  * count to decide when to free the allocation, you should allocate a
4554  * compound page, and use put_page() instead of __free_pages().
4555  *
4556  * Context: May be called in interrupt context or while holding a normal
4557  * spinlock, but not in NMI context or while holding a raw spinlock.
4558  */
4559 void __free_pages(struct page *page, unsigned int order)
4560 {
4561 	/* get PageHead before we drop reference */
4562 	int head = PageHead(page);
4563 
4564 	if (put_page_testzero(page))
4565 		free_the_page(page, order);
4566 	else if (!head)
4567 		while (order-- > 0)
4568 			free_the_page(page + (1 << order), order);
4569 }
4570 EXPORT_SYMBOL(__free_pages);
4571 
4572 void free_pages(unsigned long addr, unsigned int order)
4573 {
4574 	if (addr != 0) {
4575 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4576 		__free_pages(virt_to_page((void *)addr), order);
4577 	}
4578 }
4579 
4580 EXPORT_SYMBOL(free_pages);
4581 
4582 /*
4583  * Page Fragment:
4584  *  An arbitrary-length arbitrary-offset area of memory which resides
4585  *  within a 0 or higher order page.  Multiple fragments within that page
4586  *  are individually refcounted, in the page's reference counter.
4587  *
4588  * The page_frag functions below provide a simple allocation framework for
4589  * page fragments.  This is used by the network stack and network device
4590  * drivers to provide a backing region of memory for use as either an
4591  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4592  */
4593 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4594 					     gfp_t gfp_mask)
4595 {
4596 	struct page *page = NULL;
4597 	gfp_t gfp = gfp_mask;
4598 
4599 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4600 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4601 		    __GFP_NOMEMALLOC;
4602 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4603 				PAGE_FRAG_CACHE_MAX_ORDER);
4604 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4605 #endif
4606 	if (unlikely(!page))
4607 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4608 
4609 	nc->va = page ? page_address(page) : NULL;
4610 
4611 	return page;
4612 }
4613 
4614 void __page_frag_cache_drain(struct page *page, unsigned int count)
4615 {
4616 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4617 
4618 	if (page_ref_sub_and_test(page, count))
4619 		free_the_page(page, compound_order(page));
4620 }
4621 EXPORT_SYMBOL(__page_frag_cache_drain);
4622 
4623 void *page_frag_alloc_align(struct page_frag_cache *nc,
4624 		      unsigned int fragsz, gfp_t gfp_mask,
4625 		      unsigned int align_mask)
4626 {
4627 	unsigned int size = PAGE_SIZE;
4628 	struct page *page;
4629 	int offset;
4630 
4631 	if (unlikely(!nc->va)) {
4632 refill:
4633 		page = __page_frag_cache_refill(nc, gfp_mask);
4634 		if (!page)
4635 			return NULL;
4636 
4637 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4638 		/* if size can vary use size else just use PAGE_SIZE */
4639 		size = nc->size;
4640 #endif
4641 		/* Even if we own the page, we do not use atomic_set().
4642 		 * This would break get_page_unless_zero() users.
4643 		 */
4644 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4645 
4646 		/* reset page count bias and offset to start of new frag */
4647 		nc->pfmemalloc = page_is_pfmemalloc(page);
4648 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4649 		nc->offset = size;
4650 	}
4651 
4652 	offset = nc->offset - fragsz;
4653 	if (unlikely(offset < 0)) {
4654 		page = virt_to_page(nc->va);
4655 
4656 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4657 			goto refill;
4658 
4659 		if (unlikely(nc->pfmemalloc)) {
4660 			free_the_page(page, compound_order(page));
4661 			goto refill;
4662 		}
4663 
4664 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4665 		/* if size can vary use size else just use PAGE_SIZE */
4666 		size = nc->size;
4667 #endif
4668 		/* OK, page count is 0, we can safely set it */
4669 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4670 
4671 		/* reset page count bias and offset to start of new frag */
4672 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4673 		offset = size - fragsz;
4674 		if (unlikely(offset < 0)) {
4675 			/*
4676 			 * The caller is trying to allocate a fragment
4677 			 * with fragsz > PAGE_SIZE but the cache isn't big
4678 			 * enough to satisfy the request, this may
4679 			 * happen in low memory conditions.
4680 			 * We don't release the cache page because
4681 			 * it could make memory pressure worse
4682 			 * so we simply return NULL here.
4683 			 */
4684 			return NULL;
4685 		}
4686 	}
4687 
4688 	nc->pagecnt_bias--;
4689 	offset &= align_mask;
4690 	nc->offset = offset;
4691 
4692 	return nc->va + offset;
4693 }
4694 EXPORT_SYMBOL(page_frag_alloc_align);
4695 
4696 /*
4697  * Frees a page fragment allocated out of either a compound or order 0 page.
4698  */
4699 void page_frag_free(void *addr)
4700 {
4701 	struct page *page = virt_to_head_page(addr);
4702 
4703 	if (unlikely(put_page_testzero(page)))
4704 		free_the_page(page, compound_order(page));
4705 }
4706 EXPORT_SYMBOL(page_frag_free);
4707 
4708 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4709 		size_t size)
4710 {
4711 	if (addr) {
4712 		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4713 		struct page *page = virt_to_page((void *)addr);
4714 		struct page *last = page + nr;
4715 
4716 		split_page_owner(page, 1 << order);
4717 		split_page_memcg(page, 1 << order);
4718 		while (page < --last)
4719 			set_page_refcounted(last);
4720 
4721 		last = page + (1UL << order);
4722 		for (page += nr; page < last; page++)
4723 			__free_pages_ok(page, 0, FPI_TO_TAIL);
4724 	}
4725 	return (void *)addr;
4726 }
4727 
4728 /**
4729  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4730  * @size: the number of bytes to allocate
4731  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4732  *
4733  * This function is similar to alloc_pages(), except that it allocates the
4734  * minimum number of pages to satisfy the request.  alloc_pages() can only
4735  * allocate memory in power-of-two pages.
4736  *
4737  * This function is also limited by MAX_ORDER.
4738  *
4739  * Memory allocated by this function must be released by free_pages_exact().
4740  *
4741  * Return: pointer to the allocated area or %NULL in case of error.
4742  */
4743 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4744 {
4745 	unsigned int order = get_order(size);
4746 	unsigned long addr;
4747 
4748 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4749 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4750 
4751 	addr = __get_free_pages(gfp_mask, order);
4752 	return make_alloc_exact(addr, order, size);
4753 }
4754 EXPORT_SYMBOL(alloc_pages_exact);
4755 
4756 /**
4757  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4758  *			   pages on a node.
4759  * @nid: the preferred node ID where memory should be allocated
4760  * @size: the number of bytes to allocate
4761  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4762  *
4763  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4764  * back.
4765  *
4766  * Return: pointer to the allocated area or %NULL in case of error.
4767  */
4768 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4769 {
4770 	unsigned int order = get_order(size);
4771 	struct page *p;
4772 
4773 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4774 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4775 
4776 	p = alloc_pages_node(nid, gfp_mask, order);
4777 	if (!p)
4778 		return NULL;
4779 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4780 }
4781 
4782 /**
4783  * free_pages_exact - release memory allocated via alloc_pages_exact()
4784  * @virt: the value returned by alloc_pages_exact.
4785  * @size: size of allocation, same value as passed to alloc_pages_exact().
4786  *
4787  * Release the memory allocated by a previous call to alloc_pages_exact.
4788  */
4789 void free_pages_exact(void *virt, size_t size)
4790 {
4791 	unsigned long addr = (unsigned long)virt;
4792 	unsigned long end = addr + PAGE_ALIGN(size);
4793 
4794 	while (addr < end) {
4795 		free_page(addr);
4796 		addr += PAGE_SIZE;
4797 	}
4798 }
4799 EXPORT_SYMBOL(free_pages_exact);
4800 
4801 /**
4802  * nr_free_zone_pages - count number of pages beyond high watermark
4803  * @offset: The zone index of the highest zone
4804  *
4805  * nr_free_zone_pages() counts the number of pages which are beyond the
4806  * high watermark within all zones at or below a given zone index.  For each
4807  * zone, the number of pages is calculated as:
4808  *
4809  *     nr_free_zone_pages = managed_pages - high_pages
4810  *
4811  * Return: number of pages beyond high watermark.
4812  */
4813 static unsigned long nr_free_zone_pages(int offset)
4814 {
4815 	struct zoneref *z;
4816 	struct zone *zone;
4817 
4818 	/* Just pick one node, since fallback list is circular */
4819 	unsigned long sum = 0;
4820 
4821 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4822 
4823 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4824 		unsigned long size = zone_managed_pages(zone);
4825 		unsigned long high = high_wmark_pages(zone);
4826 		if (size > high)
4827 			sum += size - high;
4828 	}
4829 
4830 	return sum;
4831 }
4832 
4833 /**
4834  * nr_free_buffer_pages - count number of pages beyond high watermark
4835  *
4836  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4837  * watermark within ZONE_DMA and ZONE_NORMAL.
4838  *
4839  * Return: number of pages beyond high watermark within ZONE_DMA and
4840  * ZONE_NORMAL.
4841  */
4842 unsigned long nr_free_buffer_pages(void)
4843 {
4844 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4845 }
4846 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4847 
4848 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4849 {
4850 	zoneref->zone = zone;
4851 	zoneref->zone_idx = zone_idx(zone);
4852 }
4853 
4854 /*
4855  * Builds allocation fallback zone lists.
4856  *
4857  * Add all populated zones of a node to the zonelist.
4858  */
4859 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
4860 {
4861 	struct zone *zone;
4862 	enum zone_type zone_type = MAX_NR_ZONES;
4863 	int nr_zones = 0;
4864 
4865 	do {
4866 		zone_type--;
4867 		zone = pgdat->node_zones + zone_type;
4868 		if (populated_zone(zone)) {
4869 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
4870 			check_highest_zone(zone_type);
4871 		}
4872 	} while (zone_type);
4873 
4874 	return nr_zones;
4875 }
4876 
4877 #ifdef CONFIG_NUMA
4878 
4879 static int __parse_numa_zonelist_order(char *s)
4880 {
4881 	/*
4882 	 * We used to support different zonelists modes but they turned
4883 	 * out to be just not useful. Let's keep the warning in place
4884 	 * if somebody still use the cmd line parameter so that we do
4885 	 * not fail it silently
4886 	 */
4887 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4888 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
4889 		return -EINVAL;
4890 	}
4891 	return 0;
4892 }
4893 
4894 static char numa_zonelist_order[] = "Node";
4895 #define NUMA_ZONELIST_ORDER_LEN	16
4896 /*
4897  * sysctl handler for numa_zonelist_order
4898  */
4899 static int numa_zonelist_order_handler(struct ctl_table *table, int write,
4900 		void *buffer, size_t *length, loff_t *ppos)
4901 {
4902 	if (write)
4903 		return __parse_numa_zonelist_order(buffer);
4904 	return proc_dostring(table, write, buffer, length, ppos);
4905 }
4906 
4907 static int node_load[MAX_NUMNODES];
4908 
4909 /**
4910  * find_next_best_node - find the next node that should appear in a given node's fallback list
4911  * @node: node whose fallback list we're appending
4912  * @used_node_mask: nodemask_t of already used nodes
4913  *
4914  * We use a number of factors to determine which is the next node that should
4915  * appear on a given node's fallback list.  The node should not have appeared
4916  * already in @node's fallback list, and it should be the next closest node
4917  * according to the distance array (which contains arbitrary distance values
4918  * from each node to each node in the system), and should also prefer nodes
4919  * with no CPUs, since presumably they'll have very little allocation pressure
4920  * on them otherwise.
4921  *
4922  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
4923  */
4924 int find_next_best_node(int node, nodemask_t *used_node_mask)
4925 {
4926 	int n, val;
4927 	int min_val = INT_MAX;
4928 	int best_node = NUMA_NO_NODE;
4929 
4930 	/* Use the local node if we haven't already */
4931 	if (!node_isset(node, *used_node_mask)) {
4932 		node_set(node, *used_node_mask);
4933 		return node;
4934 	}
4935 
4936 	for_each_node_state(n, N_MEMORY) {
4937 
4938 		/* Don't want a node to appear more than once */
4939 		if (node_isset(n, *used_node_mask))
4940 			continue;
4941 
4942 		/* Use the distance array to find the distance */
4943 		val = node_distance(node, n);
4944 
4945 		/* Penalize nodes under us ("prefer the next node") */
4946 		val += (n < node);
4947 
4948 		/* Give preference to headless and unused nodes */
4949 		if (!cpumask_empty(cpumask_of_node(n)))
4950 			val += PENALTY_FOR_NODE_WITH_CPUS;
4951 
4952 		/* Slight preference for less loaded node */
4953 		val *= MAX_NUMNODES;
4954 		val += node_load[n];
4955 
4956 		if (val < min_val) {
4957 			min_val = val;
4958 			best_node = n;
4959 		}
4960 	}
4961 
4962 	if (best_node >= 0)
4963 		node_set(best_node, *used_node_mask);
4964 
4965 	return best_node;
4966 }
4967 
4968 
4969 /*
4970  * Build zonelists ordered by node and zones within node.
4971  * This results in maximum locality--normal zone overflows into local
4972  * DMA zone, if any--but risks exhausting DMA zone.
4973  */
4974 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
4975 		unsigned nr_nodes)
4976 {
4977 	struct zoneref *zonerefs;
4978 	int i;
4979 
4980 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
4981 
4982 	for (i = 0; i < nr_nodes; i++) {
4983 		int nr_zones;
4984 
4985 		pg_data_t *node = NODE_DATA(node_order[i]);
4986 
4987 		nr_zones = build_zonerefs_node(node, zonerefs);
4988 		zonerefs += nr_zones;
4989 	}
4990 	zonerefs->zone = NULL;
4991 	zonerefs->zone_idx = 0;
4992 }
4993 
4994 /*
4995  * Build gfp_thisnode zonelists
4996  */
4997 static void build_thisnode_zonelists(pg_data_t *pgdat)
4998 {
4999 	struct zoneref *zonerefs;
5000 	int nr_zones;
5001 
5002 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5003 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5004 	zonerefs += nr_zones;
5005 	zonerefs->zone = NULL;
5006 	zonerefs->zone_idx = 0;
5007 }
5008 
5009 /*
5010  * Build zonelists ordered by zone and nodes within zones.
5011  * This results in conserving DMA zone[s] until all Normal memory is
5012  * exhausted, but results in overflowing to remote node while memory
5013  * may still exist in local DMA zone.
5014  */
5015 
5016 static void build_zonelists(pg_data_t *pgdat)
5017 {
5018 	static int node_order[MAX_NUMNODES];
5019 	int node, nr_nodes = 0;
5020 	nodemask_t used_mask = NODE_MASK_NONE;
5021 	int local_node, prev_node;
5022 
5023 	/* NUMA-aware ordering of nodes */
5024 	local_node = pgdat->node_id;
5025 	prev_node = local_node;
5026 
5027 	memset(node_order, 0, sizeof(node_order));
5028 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5029 		/*
5030 		 * We don't want to pressure a particular node.
5031 		 * So adding penalty to the first node in same
5032 		 * distance group to make it round-robin.
5033 		 */
5034 		if (node_distance(local_node, node) !=
5035 		    node_distance(local_node, prev_node))
5036 			node_load[node] += 1;
5037 
5038 		node_order[nr_nodes++] = node;
5039 		prev_node = node;
5040 	}
5041 
5042 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5043 	build_thisnode_zonelists(pgdat);
5044 	pr_info("Fallback order for Node %d: ", local_node);
5045 	for (node = 0; node < nr_nodes; node++)
5046 		pr_cont("%d ", node_order[node]);
5047 	pr_cont("\n");
5048 }
5049 
5050 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5051 /*
5052  * Return node id of node used for "local" allocations.
5053  * I.e., first node id of first zone in arg node's generic zonelist.
5054  * Used for initializing percpu 'numa_mem', which is used primarily
5055  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5056  */
5057 int local_memory_node(int node)
5058 {
5059 	struct zoneref *z;
5060 
5061 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5062 				   gfp_zone(GFP_KERNEL),
5063 				   NULL);
5064 	return zone_to_nid(z->zone);
5065 }
5066 #endif
5067 
5068 static void setup_min_unmapped_ratio(void);
5069 static void setup_min_slab_ratio(void);
5070 #else	/* CONFIG_NUMA */
5071 
5072 static void build_zonelists(pg_data_t *pgdat)
5073 {
5074 	int node, local_node;
5075 	struct zoneref *zonerefs;
5076 	int nr_zones;
5077 
5078 	local_node = pgdat->node_id;
5079 
5080 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5081 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5082 	zonerefs += nr_zones;
5083 
5084 	/*
5085 	 * Now we build the zonelist so that it contains the zones
5086 	 * of all the other nodes.
5087 	 * We don't want to pressure a particular node, so when
5088 	 * building the zones for node N, we make sure that the
5089 	 * zones coming right after the local ones are those from
5090 	 * node N+1 (modulo N)
5091 	 */
5092 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5093 		if (!node_online(node))
5094 			continue;
5095 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5096 		zonerefs += nr_zones;
5097 	}
5098 	for (node = 0; node < local_node; node++) {
5099 		if (!node_online(node))
5100 			continue;
5101 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5102 		zonerefs += nr_zones;
5103 	}
5104 
5105 	zonerefs->zone = NULL;
5106 	zonerefs->zone_idx = 0;
5107 }
5108 
5109 #endif	/* CONFIG_NUMA */
5110 
5111 /*
5112  * Boot pageset table. One per cpu which is going to be used for all
5113  * zones and all nodes. The parameters will be set in such a way
5114  * that an item put on a list will immediately be handed over to
5115  * the buddy list. This is safe since pageset manipulation is done
5116  * with interrupts disabled.
5117  *
5118  * The boot_pagesets must be kept even after bootup is complete for
5119  * unused processors and/or zones. They do play a role for bootstrapping
5120  * hotplugged processors.
5121  *
5122  * zoneinfo_show() and maybe other functions do
5123  * not check if the processor is online before following the pageset pointer.
5124  * Other parts of the kernel may not check if the zone is available.
5125  */
5126 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5127 /* These effectively disable the pcplists in the boot pageset completely */
5128 #define BOOT_PAGESET_HIGH	0
5129 #define BOOT_PAGESET_BATCH	1
5130 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5131 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5132 
5133 static void __build_all_zonelists(void *data)
5134 {
5135 	int nid;
5136 	int __maybe_unused cpu;
5137 	pg_data_t *self = data;
5138 	unsigned long flags;
5139 
5140 	/*
5141 	 * The zonelist_update_seq must be acquired with irqsave because the
5142 	 * reader can be invoked from IRQ with GFP_ATOMIC.
5143 	 */
5144 	write_seqlock_irqsave(&zonelist_update_seq, flags);
5145 	/*
5146 	 * Also disable synchronous printk() to prevent any printk() from
5147 	 * trying to hold port->lock, for
5148 	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5149 	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5150 	 */
5151 	printk_deferred_enter();
5152 
5153 #ifdef CONFIG_NUMA
5154 	memset(node_load, 0, sizeof(node_load));
5155 #endif
5156 
5157 	/*
5158 	 * This node is hotadded and no memory is yet present.   So just
5159 	 * building zonelists is fine - no need to touch other nodes.
5160 	 */
5161 	if (self && !node_online(self->node_id)) {
5162 		build_zonelists(self);
5163 	} else {
5164 		/*
5165 		 * All possible nodes have pgdat preallocated
5166 		 * in free_area_init
5167 		 */
5168 		for_each_node(nid) {
5169 			pg_data_t *pgdat = NODE_DATA(nid);
5170 
5171 			build_zonelists(pgdat);
5172 		}
5173 
5174 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5175 		/*
5176 		 * We now know the "local memory node" for each node--
5177 		 * i.e., the node of the first zone in the generic zonelist.
5178 		 * Set up numa_mem percpu variable for on-line cpus.  During
5179 		 * boot, only the boot cpu should be on-line;  we'll init the
5180 		 * secondary cpus' numa_mem as they come on-line.  During
5181 		 * node/memory hotplug, we'll fixup all on-line cpus.
5182 		 */
5183 		for_each_online_cpu(cpu)
5184 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5185 #endif
5186 	}
5187 
5188 	printk_deferred_exit();
5189 	write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5190 }
5191 
5192 static noinline void __init
5193 build_all_zonelists_init(void)
5194 {
5195 	int cpu;
5196 
5197 	__build_all_zonelists(NULL);
5198 
5199 	/*
5200 	 * Initialize the boot_pagesets that are going to be used
5201 	 * for bootstrapping processors. The real pagesets for
5202 	 * each zone will be allocated later when the per cpu
5203 	 * allocator is available.
5204 	 *
5205 	 * boot_pagesets are used also for bootstrapping offline
5206 	 * cpus if the system is already booted because the pagesets
5207 	 * are needed to initialize allocators on a specific cpu too.
5208 	 * F.e. the percpu allocator needs the page allocator which
5209 	 * needs the percpu allocator in order to allocate its pagesets
5210 	 * (a chicken-egg dilemma).
5211 	 */
5212 	for_each_possible_cpu(cpu)
5213 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5214 
5215 	mminit_verify_zonelist();
5216 	cpuset_init_current_mems_allowed();
5217 }
5218 
5219 /*
5220  * unless system_state == SYSTEM_BOOTING.
5221  *
5222  * __ref due to call of __init annotated helper build_all_zonelists_init
5223  * [protected by SYSTEM_BOOTING].
5224  */
5225 void __ref build_all_zonelists(pg_data_t *pgdat)
5226 {
5227 	unsigned long vm_total_pages;
5228 
5229 	if (system_state == SYSTEM_BOOTING) {
5230 		build_all_zonelists_init();
5231 	} else {
5232 		__build_all_zonelists(pgdat);
5233 		/* cpuset refresh routine should be here */
5234 	}
5235 	/* Get the number of free pages beyond high watermark in all zones. */
5236 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5237 	/*
5238 	 * Disable grouping by mobility if the number of pages in the
5239 	 * system is too low to allow the mechanism to work. It would be
5240 	 * more accurate, but expensive to check per-zone. This check is
5241 	 * made on memory-hotadd so a system can start with mobility
5242 	 * disabled and enable it later
5243 	 */
5244 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5245 		page_group_by_mobility_disabled = 1;
5246 	else
5247 		page_group_by_mobility_disabled = 0;
5248 
5249 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5250 		nr_online_nodes,
5251 		page_group_by_mobility_disabled ? "off" : "on",
5252 		vm_total_pages);
5253 #ifdef CONFIG_NUMA
5254 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5255 #endif
5256 }
5257 
5258 static int zone_batchsize(struct zone *zone)
5259 {
5260 #ifdef CONFIG_MMU
5261 	int batch;
5262 
5263 	/*
5264 	 * The number of pages to batch allocate is either ~0.1%
5265 	 * of the zone or 1MB, whichever is smaller. The batch
5266 	 * size is striking a balance between allocation latency
5267 	 * and zone lock contention.
5268 	 */
5269 	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5270 	batch /= 4;		/* We effectively *= 4 below */
5271 	if (batch < 1)
5272 		batch = 1;
5273 
5274 	/*
5275 	 * Clamp the batch to a 2^n - 1 value. Having a power
5276 	 * of 2 value was found to be more likely to have
5277 	 * suboptimal cache aliasing properties in some cases.
5278 	 *
5279 	 * For example if 2 tasks are alternately allocating
5280 	 * batches of pages, one task can end up with a lot
5281 	 * of pages of one half of the possible page colors
5282 	 * and the other with pages of the other colors.
5283 	 */
5284 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5285 
5286 	return batch;
5287 
5288 #else
5289 	/* The deferral and batching of frees should be suppressed under NOMMU
5290 	 * conditions.
5291 	 *
5292 	 * The problem is that NOMMU needs to be able to allocate large chunks
5293 	 * of contiguous memory as there's no hardware page translation to
5294 	 * assemble apparent contiguous memory from discontiguous pages.
5295 	 *
5296 	 * Queueing large contiguous runs of pages for batching, however,
5297 	 * causes the pages to actually be freed in smaller chunks.  As there
5298 	 * can be a significant delay between the individual batches being
5299 	 * recycled, this leads to the once large chunks of space being
5300 	 * fragmented and becoming unavailable for high-order allocations.
5301 	 */
5302 	return 0;
5303 #endif
5304 }
5305 
5306 static int percpu_pagelist_high_fraction;
5307 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
5308 {
5309 #ifdef CONFIG_MMU
5310 	int high;
5311 	int nr_split_cpus;
5312 	unsigned long total_pages;
5313 
5314 	if (!percpu_pagelist_high_fraction) {
5315 		/*
5316 		 * By default, the high value of the pcp is based on the zone
5317 		 * low watermark so that if they are full then background
5318 		 * reclaim will not be started prematurely.
5319 		 */
5320 		total_pages = low_wmark_pages(zone);
5321 	} else {
5322 		/*
5323 		 * If percpu_pagelist_high_fraction is configured, the high
5324 		 * value is based on a fraction of the managed pages in the
5325 		 * zone.
5326 		 */
5327 		total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
5328 	}
5329 
5330 	/*
5331 	 * Split the high value across all online CPUs local to the zone. Note
5332 	 * that early in boot that CPUs may not be online yet and that during
5333 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5334 	 * onlined. For memory nodes that have no CPUs, split pcp->high across
5335 	 * all online CPUs to mitigate the risk that reclaim is triggered
5336 	 * prematurely due to pages stored on pcp lists.
5337 	 */
5338 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5339 	if (!nr_split_cpus)
5340 		nr_split_cpus = num_online_cpus();
5341 	high = total_pages / nr_split_cpus;
5342 
5343 	/*
5344 	 * Ensure high is at least batch*4. The multiple is based on the
5345 	 * historical relationship between high and batch.
5346 	 */
5347 	high = max(high, batch << 2);
5348 
5349 	return high;
5350 #else
5351 	return 0;
5352 #endif
5353 }
5354 
5355 /*
5356  * pcp->high and pcp->batch values are related and generally batch is lower
5357  * than high. They are also related to pcp->count such that count is lower
5358  * than high, and as soon as it reaches high, the pcplist is flushed.
5359  *
5360  * However, guaranteeing these relations at all times would require e.g. write
5361  * barriers here but also careful usage of read barriers at the read side, and
5362  * thus be prone to error and bad for performance. Thus the update only prevents
5363  * store tearing. Any new users of pcp->batch and pcp->high should ensure they
5364  * can cope with those fields changing asynchronously, and fully trust only the
5365  * pcp->count field on the local CPU with interrupts disabled.
5366  *
5367  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5368  * outside of boot time (or some other assurance that no concurrent updaters
5369  * exist).
5370  */
5371 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5372 		unsigned long batch)
5373 {
5374 	WRITE_ONCE(pcp->batch, batch);
5375 	WRITE_ONCE(pcp->high, high);
5376 }
5377 
5378 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5379 {
5380 	int pindex;
5381 
5382 	memset(pcp, 0, sizeof(*pcp));
5383 	memset(pzstats, 0, sizeof(*pzstats));
5384 
5385 	spin_lock_init(&pcp->lock);
5386 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5387 		INIT_LIST_HEAD(&pcp->lists[pindex]);
5388 
5389 	/*
5390 	 * Set batch and high values safe for a boot pageset. A true percpu
5391 	 * pageset's initialization will update them subsequently. Here we don't
5392 	 * need to be as careful as pageset_update() as nobody can access the
5393 	 * pageset yet.
5394 	 */
5395 	pcp->high = BOOT_PAGESET_HIGH;
5396 	pcp->batch = BOOT_PAGESET_BATCH;
5397 	pcp->free_factor = 0;
5398 }
5399 
5400 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
5401 		unsigned long batch)
5402 {
5403 	struct per_cpu_pages *pcp;
5404 	int cpu;
5405 
5406 	for_each_possible_cpu(cpu) {
5407 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5408 		pageset_update(pcp, high, batch);
5409 	}
5410 }
5411 
5412 /*
5413  * Calculate and set new high and batch values for all per-cpu pagesets of a
5414  * zone based on the zone's size.
5415  */
5416 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5417 {
5418 	int new_high, new_batch;
5419 
5420 	new_batch = max(1, zone_batchsize(zone));
5421 	new_high = zone_highsize(zone, new_batch, cpu_online);
5422 
5423 	if (zone->pageset_high == new_high &&
5424 	    zone->pageset_batch == new_batch)
5425 		return;
5426 
5427 	zone->pageset_high = new_high;
5428 	zone->pageset_batch = new_batch;
5429 
5430 	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
5431 }
5432 
5433 void __meminit setup_zone_pageset(struct zone *zone)
5434 {
5435 	int cpu;
5436 
5437 	/* Size may be 0 on !SMP && !NUMA */
5438 	if (sizeof(struct per_cpu_zonestat) > 0)
5439 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5440 
5441 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5442 	for_each_possible_cpu(cpu) {
5443 		struct per_cpu_pages *pcp;
5444 		struct per_cpu_zonestat *pzstats;
5445 
5446 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5447 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5448 		per_cpu_pages_init(pcp, pzstats);
5449 	}
5450 
5451 	zone_set_pageset_high_and_batch(zone, 0);
5452 }
5453 
5454 /*
5455  * The zone indicated has a new number of managed_pages; batch sizes and percpu
5456  * page high values need to be recalculated.
5457  */
5458 static void zone_pcp_update(struct zone *zone, int cpu_online)
5459 {
5460 	mutex_lock(&pcp_batch_high_lock);
5461 	zone_set_pageset_high_and_batch(zone, cpu_online);
5462 	mutex_unlock(&pcp_batch_high_lock);
5463 }
5464 
5465 /*
5466  * Allocate per cpu pagesets and initialize them.
5467  * Before this call only boot pagesets were available.
5468  */
5469 void __init setup_per_cpu_pageset(void)
5470 {
5471 	struct pglist_data *pgdat;
5472 	struct zone *zone;
5473 	int __maybe_unused cpu;
5474 
5475 	for_each_populated_zone(zone)
5476 		setup_zone_pageset(zone);
5477 
5478 #ifdef CONFIG_NUMA
5479 	/*
5480 	 * Unpopulated zones continue using the boot pagesets.
5481 	 * The numa stats for these pagesets need to be reset.
5482 	 * Otherwise, they will end up skewing the stats of
5483 	 * the nodes these zones are associated with.
5484 	 */
5485 	for_each_possible_cpu(cpu) {
5486 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5487 		memset(pzstats->vm_numa_event, 0,
5488 		       sizeof(pzstats->vm_numa_event));
5489 	}
5490 #endif
5491 
5492 	for_each_online_pgdat(pgdat)
5493 		pgdat->per_cpu_nodestats =
5494 			alloc_percpu(struct per_cpu_nodestat);
5495 }
5496 
5497 __meminit void zone_pcp_init(struct zone *zone)
5498 {
5499 	/*
5500 	 * per cpu subsystem is not up at this point. The following code
5501 	 * relies on the ability of the linker to provide the
5502 	 * offset of a (static) per cpu variable into the per cpu area.
5503 	 */
5504 	zone->per_cpu_pageset = &boot_pageset;
5505 	zone->per_cpu_zonestats = &boot_zonestats;
5506 	zone->pageset_high = BOOT_PAGESET_HIGH;
5507 	zone->pageset_batch = BOOT_PAGESET_BATCH;
5508 
5509 	if (populated_zone(zone))
5510 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5511 			 zone->present_pages, zone_batchsize(zone));
5512 }
5513 
5514 void adjust_managed_page_count(struct page *page, long count)
5515 {
5516 	atomic_long_add(count, &page_zone(page)->managed_pages);
5517 	totalram_pages_add(count);
5518 #ifdef CONFIG_HIGHMEM
5519 	if (PageHighMem(page))
5520 		totalhigh_pages_add(count);
5521 #endif
5522 }
5523 EXPORT_SYMBOL(adjust_managed_page_count);
5524 
5525 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5526 {
5527 	void *pos;
5528 	unsigned long pages = 0;
5529 
5530 	start = (void *)PAGE_ALIGN((unsigned long)start);
5531 	end = (void *)((unsigned long)end & PAGE_MASK);
5532 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5533 		struct page *page = virt_to_page(pos);
5534 		void *direct_map_addr;
5535 
5536 		/*
5537 		 * 'direct_map_addr' might be different from 'pos'
5538 		 * because some architectures' virt_to_page()
5539 		 * work with aliases.  Getting the direct map
5540 		 * address ensures that we get a _writeable_
5541 		 * alias for the memset().
5542 		 */
5543 		direct_map_addr = page_address(page);
5544 		/*
5545 		 * Perform a kasan-unchecked memset() since this memory
5546 		 * has not been initialized.
5547 		 */
5548 		direct_map_addr = kasan_reset_tag(direct_map_addr);
5549 		if ((unsigned int)poison <= 0xFF)
5550 			memset(direct_map_addr, poison, PAGE_SIZE);
5551 
5552 		free_reserved_page(page);
5553 	}
5554 
5555 	if (pages && s)
5556 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5557 
5558 	return pages;
5559 }
5560 
5561 static int page_alloc_cpu_dead(unsigned int cpu)
5562 {
5563 	struct zone *zone;
5564 
5565 	lru_add_drain_cpu(cpu);
5566 	mlock_drain_remote(cpu);
5567 	drain_pages(cpu);
5568 
5569 	/*
5570 	 * Spill the event counters of the dead processor
5571 	 * into the current processors event counters.
5572 	 * This artificially elevates the count of the current
5573 	 * processor.
5574 	 */
5575 	vm_events_fold_cpu(cpu);
5576 
5577 	/*
5578 	 * Zero the differential counters of the dead processor
5579 	 * so that the vm statistics are consistent.
5580 	 *
5581 	 * This is only okay since the processor is dead and cannot
5582 	 * race with what we are doing.
5583 	 */
5584 	cpu_vm_stats_fold(cpu);
5585 
5586 	for_each_populated_zone(zone)
5587 		zone_pcp_update(zone, 0);
5588 
5589 	return 0;
5590 }
5591 
5592 static int page_alloc_cpu_online(unsigned int cpu)
5593 {
5594 	struct zone *zone;
5595 
5596 	for_each_populated_zone(zone)
5597 		zone_pcp_update(zone, 1);
5598 	return 0;
5599 }
5600 
5601 void __init page_alloc_init_cpuhp(void)
5602 {
5603 	int ret;
5604 
5605 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5606 					"mm/page_alloc:pcp",
5607 					page_alloc_cpu_online,
5608 					page_alloc_cpu_dead);
5609 	WARN_ON(ret < 0);
5610 }
5611 
5612 /*
5613  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5614  *	or min_free_kbytes changes.
5615  */
5616 static void calculate_totalreserve_pages(void)
5617 {
5618 	struct pglist_data *pgdat;
5619 	unsigned long reserve_pages = 0;
5620 	enum zone_type i, j;
5621 
5622 	for_each_online_pgdat(pgdat) {
5623 
5624 		pgdat->totalreserve_pages = 0;
5625 
5626 		for (i = 0; i < MAX_NR_ZONES; i++) {
5627 			struct zone *zone = pgdat->node_zones + i;
5628 			long max = 0;
5629 			unsigned long managed_pages = zone_managed_pages(zone);
5630 
5631 			/* Find valid and maximum lowmem_reserve in the zone */
5632 			for (j = i; j < MAX_NR_ZONES; j++) {
5633 				if (zone->lowmem_reserve[j] > max)
5634 					max = zone->lowmem_reserve[j];
5635 			}
5636 
5637 			/* we treat the high watermark as reserved pages. */
5638 			max += high_wmark_pages(zone);
5639 
5640 			if (max > managed_pages)
5641 				max = managed_pages;
5642 
5643 			pgdat->totalreserve_pages += max;
5644 
5645 			reserve_pages += max;
5646 		}
5647 	}
5648 	totalreserve_pages = reserve_pages;
5649 }
5650 
5651 /*
5652  * setup_per_zone_lowmem_reserve - called whenever
5653  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
5654  *	has a correct pages reserved value, so an adequate number of
5655  *	pages are left in the zone after a successful __alloc_pages().
5656  */
5657 static void setup_per_zone_lowmem_reserve(void)
5658 {
5659 	struct pglist_data *pgdat;
5660 	enum zone_type i, j;
5661 
5662 	for_each_online_pgdat(pgdat) {
5663 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5664 			struct zone *zone = &pgdat->node_zones[i];
5665 			int ratio = sysctl_lowmem_reserve_ratio[i];
5666 			bool clear = !ratio || !zone_managed_pages(zone);
5667 			unsigned long managed_pages = 0;
5668 
5669 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
5670 				struct zone *upper_zone = &pgdat->node_zones[j];
5671 
5672 				managed_pages += zone_managed_pages(upper_zone);
5673 
5674 				if (clear)
5675 					zone->lowmem_reserve[j] = 0;
5676 				else
5677 					zone->lowmem_reserve[j] = managed_pages / ratio;
5678 			}
5679 		}
5680 	}
5681 
5682 	/* update totalreserve_pages */
5683 	calculate_totalreserve_pages();
5684 }
5685 
5686 static void __setup_per_zone_wmarks(void)
5687 {
5688 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5689 	unsigned long lowmem_pages = 0;
5690 	struct zone *zone;
5691 	unsigned long flags;
5692 
5693 	/* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
5694 	for_each_zone(zone) {
5695 		if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
5696 			lowmem_pages += zone_managed_pages(zone);
5697 	}
5698 
5699 	for_each_zone(zone) {
5700 		u64 tmp;
5701 
5702 		spin_lock_irqsave(&zone->lock, flags);
5703 		tmp = (u64)pages_min * zone_managed_pages(zone);
5704 		do_div(tmp, lowmem_pages);
5705 		if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
5706 			/*
5707 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5708 			 * need highmem and movable zones pages, so cap pages_min
5709 			 * to a small  value here.
5710 			 *
5711 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5712 			 * deltas control async page reclaim, and so should
5713 			 * not be capped for highmem and movable zones.
5714 			 */
5715 			unsigned long min_pages;
5716 
5717 			min_pages = zone_managed_pages(zone) / 1024;
5718 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5719 			zone->_watermark[WMARK_MIN] = min_pages;
5720 		} else {
5721 			/*
5722 			 * If it's a lowmem zone, reserve a number of pages
5723 			 * proportionate to the zone's size.
5724 			 */
5725 			zone->_watermark[WMARK_MIN] = tmp;
5726 		}
5727 
5728 		/*
5729 		 * Set the kswapd watermarks distance according to the
5730 		 * scale factor in proportion to available memory, but
5731 		 * ensure a minimum size on small systems.
5732 		 */
5733 		tmp = max_t(u64, tmp >> 2,
5734 			    mult_frac(zone_managed_pages(zone),
5735 				      watermark_scale_factor, 10000));
5736 
5737 		zone->watermark_boost = 0;
5738 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
5739 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
5740 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
5741 
5742 		spin_unlock_irqrestore(&zone->lock, flags);
5743 	}
5744 
5745 	/* update totalreserve_pages */
5746 	calculate_totalreserve_pages();
5747 }
5748 
5749 /**
5750  * setup_per_zone_wmarks - called when min_free_kbytes changes
5751  * or when memory is hot-{added|removed}
5752  *
5753  * Ensures that the watermark[min,low,high] values for each zone are set
5754  * correctly with respect to min_free_kbytes.
5755  */
5756 void setup_per_zone_wmarks(void)
5757 {
5758 	struct zone *zone;
5759 	static DEFINE_SPINLOCK(lock);
5760 
5761 	spin_lock(&lock);
5762 	__setup_per_zone_wmarks();
5763 	spin_unlock(&lock);
5764 
5765 	/*
5766 	 * The watermark size have changed so update the pcpu batch
5767 	 * and high limits or the limits may be inappropriate.
5768 	 */
5769 	for_each_zone(zone)
5770 		zone_pcp_update(zone, 0);
5771 }
5772 
5773 /*
5774  * Initialise min_free_kbytes.
5775  *
5776  * For small machines we want it small (128k min).  For large machines
5777  * we want it large (256MB max).  But it is not linear, because network
5778  * bandwidth does not increase linearly with machine size.  We use
5779  *
5780  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5781  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5782  *
5783  * which yields
5784  *
5785  * 16MB:	512k
5786  * 32MB:	724k
5787  * 64MB:	1024k
5788  * 128MB:	1448k
5789  * 256MB:	2048k
5790  * 512MB:	2896k
5791  * 1024MB:	4096k
5792  * 2048MB:	5792k
5793  * 4096MB:	8192k
5794  * 8192MB:	11584k
5795  * 16384MB:	16384k
5796  */
5797 void calculate_min_free_kbytes(void)
5798 {
5799 	unsigned long lowmem_kbytes;
5800 	int new_min_free_kbytes;
5801 
5802 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5803 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5804 
5805 	if (new_min_free_kbytes > user_min_free_kbytes)
5806 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
5807 	else
5808 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5809 				new_min_free_kbytes, user_min_free_kbytes);
5810 
5811 }
5812 
5813 int __meminit init_per_zone_wmark_min(void)
5814 {
5815 	calculate_min_free_kbytes();
5816 	setup_per_zone_wmarks();
5817 	refresh_zone_stat_thresholds();
5818 	setup_per_zone_lowmem_reserve();
5819 
5820 #ifdef CONFIG_NUMA
5821 	setup_min_unmapped_ratio();
5822 	setup_min_slab_ratio();
5823 #endif
5824 
5825 	khugepaged_min_free_kbytes_update();
5826 
5827 	return 0;
5828 }
5829 postcore_initcall(init_per_zone_wmark_min)
5830 
5831 /*
5832  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5833  *	that we can call two helper functions whenever min_free_kbytes
5834  *	changes.
5835  */
5836 static int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5837 		void *buffer, size_t *length, loff_t *ppos)
5838 {
5839 	int rc;
5840 
5841 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5842 	if (rc)
5843 		return rc;
5844 
5845 	if (write) {
5846 		user_min_free_kbytes = min_free_kbytes;
5847 		setup_per_zone_wmarks();
5848 	}
5849 	return 0;
5850 }
5851 
5852 static int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
5853 		void *buffer, size_t *length, loff_t *ppos)
5854 {
5855 	int rc;
5856 
5857 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5858 	if (rc)
5859 		return rc;
5860 
5861 	if (write)
5862 		setup_per_zone_wmarks();
5863 
5864 	return 0;
5865 }
5866 
5867 #ifdef CONFIG_NUMA
5868 static void setup_min_unmapped_ratio(void)
5869 {
5870 	pg_data_t *pgdat;
5871 	struct zone *zone;
5872 
5873 	for_each_online_pgdat(pgdat)
5874 		pgdat->min_unmapped_pages = 0;
5875 
5876 	for_each_zone(zone)
5877 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
5878 						         sysctl_min_unmapped_ratio) / 100;
5879 }
5880 
5881 
5882 static int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
5883 		void *buffer, size_t *length, loff_t *ppos)
5884 {
5885 	int rc;
5886 
5887 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5888 	if (rc)
5889 		return rc;
5890 
5891 	setup_min_unmapped_ratio();
5892 
5893 	return 0;
5894 }
5895 
5896 static void setup_min_slab_ratio(void)
5897 {
5898 	pg_data_t *pgdat;
5899 	struct zone *zone;
5900 
5901 	for_each_online_pgdat(pgdat)
5902 		pgdat->min_slab_pages = 0;
5903 
5904 	for_each_zone(zone)
5905 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
5906 						     sysctl_min_slab_ratio) / 100;
5907 }
5908 
5909 static int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
5910 		void *buffer, size_t *length, loff_t *ppos)
5911 {
5912 	int rc;
5913 
5914 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5915 	if (rc)
5916 		return rc;
5917 
5918 	setup_min_slab_ratio();
5919 
5920 	return 0;
5921 }
5922 #endif
5923 
5924 /*
5925  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5926  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5927  *	whenever sysctl_lowmem_reserve_ratio changes.
5928  *
5929  * The reserve ratio obviously has absolutely no relation with the
5930  * minimum watermarks. The lowmem reserve ratio can only make sense
5931  * if in function of the boot time zone sizes.
5932  */
5933 static int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table,
5934 		int write, void *buffer, size_t *length, loff_t *ppos)
5935 {
5936 	int i;
5937 
5938 	proc_dointvec_minmax(table, write, buffer, length, ppos);
5939 
5940 	for (i = 0; i < MAX_NR_ZONES; i++) {
5941 		if (sysctl_lowmem_reserve_ratio[i] < 1)
5942 			sysctl_lowmem_reserve_ratio[i] = 0;
5943 	}
5944 
5945 	setup_per_zone_lowmem_reserve();
5946 	return 0;
5947 }
5948 
5949 /*
5950  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
5951  * cpu. It is the fraction of total pages in each zone that a hot per cpu
5952  * pagelist can have before it gets flushed back to buddy allocator.
5953  */
5954 static int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
5955 		int write, void *buffer, size_t *length, loff_t *ppos)
5956 {
5957 	struct zone *zone;
5958 	int old_percpu_pagelist_high_fraction;
5959 	int ret;
5960 
5961 	mutex_lock(&pcp_batch_high_lock);
5962 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
5963 
5964 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5965 	if (!write || ret < 0)
5966 		goto out;
5967 
5968 	/* Sanity checking to avoid pcp imbalance */
5969 	if (percpu_pagelist_high_fraction &&
5970 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
5971 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
5972 		ret = -EINVAL;
5973 		goto out;
5974 	}
5975 
5976 	/* No change? */
5977 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
5978 		goto out;
5979 
5980 	for_each_populated_zone(zone)
5981 		zone_set_pageset_high_and_batch(zone, 0);
5982 out:
5983 	mutex_unlock(&pcp_batch_high_lock);
5984 	return ret;
5985 }
5986 
5987 static struct ctl_table page_alloc_sysctl_table[] = {
5988 	{
5989 		.procname	= "min_free_kbytes",
5990 		.data		= &min_free_kbytes,
5991 		.maxlen		= sizeof(min_free_kbytes),
5992 		.mode		= 0644,
5993 		.proc_handler	= min_free_kbytes_sysctl_handler,
5994 		.extra1		= SYSCTL_ZERO,
5995 	},
5996 	{
5997 		.procname	= "watermark_boost_factor",
5998 		.data		= &watermark_boost_factor,
5999 		.maxlen		= sizeof(watermark_boost_factor),
6000 		.mode		= 0644,
6001 		.proc_handler	= proc_dointvec_minmax,
6002 		.extra1		= SYSCTL_ZERO,
6003 	},
6004 	{
6005 		.procname	= "watermark_scale_factor",
6006 		.data		= &watermark_scale_factor,
6007 		.maxlen		= sizeof(watermark_scale_factor),
6008 		.mode		= 0644,
6009 		.proc_handler	= watermark_scale_factor_sysctl_handler,
6010 		.extra1		= SYSCTL_ONE,
6011 		.extra2		= SYSCTL_THREE_THOUSAND,
6012 	},
6013 	{
6014 		.procname	= "percpu_pagelist_high_fraction",
6015 		.data		= &percpu_pagelist_high_fraction,
6016 		.maxlen		= sizeof(percpu_pagelist_high_fraction),
6017 		.mode		= 0644,
6018 		.proc_handler	= percpu_pagelist_high_fraction_sysctl_handler,
6019 		.extra1		= SYSCTL_ZERO,
6020 	},
6021 	{
6022 		.procname	= "lowmem_reserve_ratio",
6023 		.data		= &sysctl_lowmem_reserve_ratio,
6024 		.maxlen		= sizeof(sysctl_lowmem_reserve_ratio),
6025 		.mode		= 0644,
6026 		.proc_handler	= lowmem_reserve_ratio_sysctl_handler,
6027 	},
6028 #ifdef CONFIG_NUMA
6029 	{
6030 		.procname	= "numa_zonelist_order",
6031 		.data		= &numa_zonelist_order,
6032 		.maxlen		= NUMA_ZONELIST_ORDER_LEN,
6033 		.mode		= 0644,
6034 		.proc_handler	= numa_zonelist_order_handler,
6035 	},
6036 	{
6037 		.procname	= "min_unmapped_ratio",
6038 		.data		= &sysctl_min_unmapped_ratio,
6039 		.maxlen		= sizeof(sysctl_min_unmapped_ratio),
6040 		.mode		= 0644,
6041 		.proc_handler	= sysctl_min_unmapped_ratio_sysctl_handler,
6042 		.extra1		= SYSCTL_ZERO,
6043 		.extra2		= SYSCTL_ONE_HUNDRED,
6044 	},
6045 	{
6046 		.procname	= "min_slab_ratio",
6047 		.data		= &sysctl_min_slab_ratio,
6048 		.maxlen		= sizeof(sysctl_min_slab_ratio),
6049 		.mode		= 0644,
6050 		.proc_handler	= sysctl_min_slab_ratio_sysctl_handler,
6051 		.extra1		= SYSCTL_ZERO,
6052 		.extra2		= SYSCTL_ONE_HUNDRED,
6053 	},
6054 #endif
6055 	{}
6056 };
6057 
6058 void __init page_alloc_sysctl_init(void)
6059 {
6060 	register_sysctl_init("vm", page_alloc_sysctl_table);
6061 }
6062 
6063 #ifdef CONFIG_CONTIG_ALLOC
6064 /* Usage: See admin-guide/dynamic-debug-howto.rst */
6065 static void alloc_contig_dump_pages(struct list_head *page_list)
6066 {
6067 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6068 
6069 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6070 		struct page *page;
6071 
6072 		dump_stack();
6073 		list_for_each_entry(page, page_list, lru)
6074 			dump_page(page, "migration failure");
6075 	}
6076 }
6077 
6078 /* [start, end) must belong to a single zone. */
6079 int __alloc_contig_migrate_range(struct compact_control *cc,
6080 					unsigned long start, unsigned long end)
6081 {
6082 	/* This function is based on compact_zone() from compaction.c. */
6083 	unsigned int nr_reclaimed;
6084 	unsigned long pfn = start;
6085 	unsigned int tries = 0;
6086 	int ret = 0;
6087 	struct migration_target_control mtc = {
6088 		.nid = zone_to_nid(cc->zone),
6089 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6090 	};
6091 
6092 	lru_cache_disable();
6093 
6094 	while (pfn < end || !list_empty(&cc->migratepages)) {
6095 		if (fatal_signal_pending(current)) {
6096 			ret = -EINTR;
6097 			break;
6098 		}
6099 
6100 		if (list_empty(&cc->migratepages)) {
6101 			cc->nr_migratepages = 0;
6102 			ret = isolate_migratepages_range(cc, pfn, end);
6103 			if (ret && ret != -EAGAIN)
6104 				break;
6105 			pfn = cc->migrate_pfn;
6106 			tries = 0;
6107 		} else if (++tries == 5) {
6108 			ret = -EBUSY;
6109 			break;
6110 		}
6111 
6112 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6113 							&cc->migratepages);
6114 		cc->nr_migratepages -= nr_reclaimed;
6115 
6116 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6117 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6118 
6119 		/*
6120 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6121 		 * to retry again over this error, so do the same here.
6122 		 */
6123 		if (ret == -ENOMEM)
6124 			break;
6125 	}
6126 
6127 	lru_cache_enable();
6128 	if (ret < 0) {
6129 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6130 			alloc_contig_dump_pages(&cc->migratepages);
6131 		putback_movable_pages(&cc->migratepages);
6132 		return ret;
6133 	}
6134 	return 0;
6135 }
6136 
6137 /**
6138  * alloc_contig_range() -- tries to allocate given range of pages
6139  * @start:	start PFN to allocate
6140  * @end:	one-past-the-last PFN to allocate
6141  * @migratetype:	migratetype of the underlying pageblocks (either
6142  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6143  *			in range must have the same migratetype and it must
6144  *			be either of the two.
6145  * @gfp_mask:	GFP mask to use during compaction
6146  *
6147  * The PFN range does not have to be pageblock aligned. The PFN range must
6148  * belong to a single zone.
6149  *
6150  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6151  * pageblocks in the range.  Once isolated, the pageblocks should not
6152  * be modified by others.
6153  *
6154  * Return: zero on success or negative error code.  On success all
6155  * pages which PFN is in [start, end) are allocated for the caller and
6156  * need to be freed with free_contig_range().
6157  */
6158 int alloc_contig_range(unsigned long start, unsigned long end,
6159 		       unsigned migratetype, gfp_t gfp_mask)
6160 {
6161 	unsigned long outer_start, outer_end;
6162 	int order;
6163 	int ret = 0;
6164 
6165 	struct compact_control cc = {
6166 		.nr_migratepages = 0,
6167 		.order = -1,
6168 		.zone = page_zone(pfn_to_page(start)),
6169 		.mode = MIGRATE_SYNC,
6170 		.ignore_skip_hint = true,
6171 		.no_set_skip_hint = true,
6172 		.gfp_mask = current_gfp_context(gfp_mask),
6173 		.alloc_contig = true,
6174 	};
6175 	INIT_LIST_HEAD(&cc.migratepages);
6176 
6177 	/*
6178 	 * What we do here is we mark all pageblocks in range as
6179 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6180 	 * have different sizes, and due to the way page allocator
6181 	 * work, start_isolate_page_range() has special handlings for this.
6182 	 *
6183 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6184 	 * migrate the pages from an unaligned range (ie. pages that
6185 	 * we are interested in). This will put all the pages in
6186 	 * range back to page allocator as MIGRATE_ISOLATE.
6187 	 *
6188 	 * When this is done, we take the pages in range from page
6189 	 * allocator removing them from the buddy system.  This way
6190 	 * page allocator will never consider using them.
6191 	 *
6192 	 * This lets us mark the pageblocks back as
6193 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6194 	 * aligned range but not in the unaligned, original range are
6195 	 * put back to page allocator so that buddy can use them.
6196 	 */
6197 
6198 	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
6199 	if (ret)
6200 		goto done;
6201 
6202 	drain_all_pages(cc.zone);
6203 
6204 	/*
6205 	 * In case of -EBUSY, we'd like to know which page causes problem.
6206 	 * So, just fall through. test_pages_isolated() has a tracepoint
6207 	 * which will report the busy page.
6208 	 *
6209 	 * It is possible that busy pages could become available before
6210 	 * the call to test_pages_isolated, and the range will actually be
6211 	 * allocated.  So, if we fall through be sure to clear ret so that
6212 	 * -EBUSY is not accidentally used or returned to caller.
6213 	 */
6214 	ret = __alloc_contig_migrate_range(&cc, start, end);
6215 	if (ret && ret != -EBUSY)
6216 		goto done;
6217 	ret = 0;
6218 
6219 	/*
6220 	 * Pages from [start, end) are within a pageblock_nr_pages
6221 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6222 	 * more, all pages in [start, end) are free in page allocator.
6223 	 * What we are going to do is to allocate all pages from
6224 	 * [start, end) (that is remove them from page allocator).
6225 	 *
6226 	 * The only problem is that pages at the beginning and at the
6227 	 * end of interesting range may be not aligned with pages that
6228 	 * page allocator holds, ie. they can be part of higher order
6229 	 * pages.  Because of this, we reserve the bigger range and
6230 	 * once this is done free the pages we are not interested in.
6231 	 *
6232 	 * We don't have to hold zone->lock here because the pages are
6233 	 * isolated thus they won't get removed from buddy.
6234 	 */
6235 
6236 	order = 0;
6237 	outer_start = start;
6238 	while (!PageBuddy(pfn_to_page(outer_start))) {
6239 		if (++order > MAX_ORDER) {
6240 			outer_start = start;
6241 			break;
6242 		}
6243 		outer_start &= ~0UL << order;
6244 	}
6245 
6246 	if (outer_start != start) {
6247 		order = buddy_order(pfn_to_page(outer_start));
6248 
6249 		/*
6250 		 * outer_start page could be small order buddy page and
6251 		 * it doesn't include start page. Adjust outer_start
6252 		 * in this case to report failed page properly
6253 		 * on tracepoint in test_pages_isolated()
6254 		 */
6255 		if (outer_start + (1UL << order) <= start)
6256 			outer_start = start;
6257 	}
6258 
6259 	/* Make sure the range is really isolated. */
6260 	if (test_pages_isolated(outer_start, end, 0)) {
6261 		ret = -EBUSY;
6262 		goto done;
6263 	}
6264 
6265 	/* Grab isolated pages from freelists. */
6266 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6267 	if (!outer_end) {
6268 		ret = -EBUSY;
6269 		goto done;
6270 	}
6271 
6272 	/* Free head and tail (if any) */
6273 	if (start != outer_start)
6274 		free_contig_range(outer_start, start - outer_start);
6275 	if (end != outer_end)
6276 		free_contig_range(end, outer_end - end);
6277 
6278 done:
6279 	undo_isolate_page_range(start, end, migratetype);
6280 	return ret;
6281 }
6282 EXPORT_SYMBOL(alloc_contig_range);
6283 
6284 static int __alloc_contig_pages(unsigned long start_pfn,
6285 				unsigned long nr_pages, gfp_t gfp_mask)
6286 {
6287 	unsigned long end_pfn = start_pfn + nr_pages;
6288 
6289 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
6290 				  gfp_mask);
6291 }
6292 
6293 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6294 				   unsigned long nr_pages)
6295 {
6296 	unsigned long i, end_pfn = start_pfn + nr_pages;
6297 	struct page *page;
6298 
6299 	for (i = start_pfn; i < end_pfn; i++) {
6300 		page = pfn_to_online_page(i);
6301 		if (!page)
6302 			return false;
6303 
6304 		if (page_zone(page) != z)
6305 			return false;
6306 
6307 		if (PageReserved(page))
6308 			return false;
6309 
6310 		if (PageHuge(page))
6311 			return false;
6312 	}
6313 	return true;
6314 }
6315 
6316 static bool zone_spans_last_pfn(const struct zone *zone,
6317 				unsigned long start_pfn, unsigned long nr_pages)
6318 {
6319 	unsigned long last_pfn = start_pfn + nr_pages - 1;
6320 
6321 	return zone_spans_pfn(zone, last_pfn);
6322 }
6323 
6324 /**
6325  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6326  * @nr_pages:	Number of contiguous pages to allocate
6327  * @gfp_mask:	GFP mask to limit search and used during compaction
6328  * @nid:	Target node
6329  * @nodemask:	Mask for other possible nodes
6330  *
6331  * This routine is a wrapper around alloc_contig_range(). It scans over zones
6332  * on an applicable zonelist to find a contiguous pfn range which can then be
6333  * tried for allocation with alloc_contig_range(). This routine is intended
6334  * for allocation requests which can not be fulfilled with the buddy allocator.
6335  *
6336  * The allocated memory is always aligned to a page boundary. If nr_pages is a
6337  * power of two, then allocated range is also guaranteed to be aligned to same
6338  * nr_pages (e.g. 1GB request would be aligned to 1GB).
6339  *
6340  * Allocated pages can be freed with free_contig_range() or by manually calling
6341  * __free_page() on each allocated page.
6342  *
6343  * Return: pointer to contiguous pages on success, or NULL if not successful.
6344  */
6345 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
6346 				int nid, nodemask_t *nodemask)
6347 {
6348 	unsigned long ret, pfn, flags;
6349 	struct zonelist *zonelist;
6350 	struct zone *zone;
6351 	struct zoneref *z;
6352 
6353 	zonelist = node_zonelist(nid, gfp_mask);
6354 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6355 					gfp_zone(gfp_mask), nodemask) {
6356 		spin_lock_irqsave(&zone->lock, flags);
6357 
6358 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6359 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6360 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6361 				/*
6362 				 * We release the zone lock here because
6363 				 * alloc_contig_range() will also lock the zone
6364 				 * at some point. If there's an allocation
6365 				 * spinning on this lock, it may win the race
6366 				 * and cause alloc_contig_range() to fail...
6367 				 */
6368 				spin_unlock_irqrestore(&zone->lock, flags);
6369 				ret = __alloc_contig_pages(pfn, nr_pages,
6370 							gfp_mask);
6371 				if (!ret)
6372 					return pfn_to_page(pfn);
6373 				spin_lock_irqsave(&zone->lock, flags);
6374 			}
6375 			pfn += nr_pages;
6376 		}
6377 		spin_unlock_irqrestore(&zone->lock, flags);
6378 	}
6379 	return NULL;
6380 }
6381 #endif /* CONFIG_CONTIG_ALLOC */
6382 
6383 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6384 {
6385 	unsigned long count = 0;
6386 
6387 	for (; nr_pages--; pfn++) {
6388 		struct page *page = pfn_to_page(pfn);
6389 
6390 		count += page_count(page) != 1;
6391 		__free_page(page);
6392 	}
6393 	WARN(count != 0, "%lu pages are still in use!\n", count);
6394 }
6395 EXPORT_SYMBOL(free_contig_range);
6396 
6397 /*
6398  * Effectively disable pcplists for the zone by setting the high limit to 0
6399  * and draining all cpus. A concurrent page freeing on another CPU that's about
6400  * to put the page on pcplist will either finish before the drain and the page
6401  * will be drained, or observe the new high limit and skip the pcplist.
6402  *
6403  * Must be paired with a call to zone_pcp_enable().
6404  */
6405 void zone_pcp_disable(struct zone *zone)
6406 {
6407 	mutex_lock(&pcp_batch_high_lock);
6408 	__zone_set_pageset_high_and_batch(zone, 0, 1);
6409 	__drain_all_pages(zone, true);
6410 }
6411 
6412 void zone_pcp_enable(struct zone *zone)
6413 {
6414 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
6415 	mutex_unlock(&pcp_batch_high_lock);
6416 }
6417 
6418 void zone_pcp_reset(struct zone *zone)
6419 {
6420 	int cpu;
6421 	struct per_cpu_zonestat *pzstats;
6422 
6423 	if (zone->per_cpu_pageset != &boot_pageset) {
6424 		for_each_online_cpu(cpu) {
6425 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6426 			drain_zonestat(zone, pzstats);
6427 		}
6428 		free_percpu(zone->per_cpu_pageset);
6429 		zone->per_cpu_pageset = &boot_pageset;
6430 		if (zone->per_cpu_zonestats != &boot_zonestats) {
6431 			free_percpu(zone->per_cpu_zonestats);
6432 			zone->per_cpu_zonestats = &boot_zonestats;
6433 		}
6434 	}
6435 }
6436 
6437 #ifdef CONFIG_MEMORY_HOTREMOVE
6438 /*
6439  * All pages in the range must be in a single zone, must not contain holes,
6440  * must span full sections, and must be isolated before calling this function.
6441  */
6442 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6443 {
6444 	unsigned long pfn = start_pfn;
6445 	struct page *page;
6446 	struct zone *zone;
6447 	unsigned int order;
6448 	unsigned long flags;
6449 
6450 	offline_mem_sections(pfn, end_pfn);
6451 	zone = page_zone(pfn_to_page(pfn));
6452 	spin_lock_irqsave(&zone->lock, flags);
6453 	while (pfn < end_pfn) {
6454 		page = pfn_to_page(pfn);
6455 		/*
6456 		 * The HWPoisoned page may be not in buddy system, and
6457 		 * page_count() is not 0.
6458 		 */
6459 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6460 			pfn++;
6461 			continue;
6462 		}
6463 		/*
6464 		 * At this point all remaining PageOffline() pages have a
6465 		 * reference count of 0 and can simply be skipped.
6466 		 */
6467 		if (PageOffline(page)) {
6468 			BUG_ON(page_count(page));
6469 			BUG_ON(PageBuddy(page));
6470 			pfn++;
6471 			continue;
6472 		}
6473 
6474 		BUG_ON(page_count(page));
6475 		BUG_ON(!PageBuddy(page));
6476 		order = buddy_order(page);
6477 		del_page_from_free_list(page, zone, order);
6478 		pfn += (1 << order);
6479 	}
6480 	spin_unlock_irqrestore(&zone->lock, flags);
6481 }
6482 #endif
6483 
6484 /*
6485  * This function returns a stable result only if called under zone lock.
6486  */
6487 bool is_free_buddy_page(struct page *page)
6488 {
6489 	unsigned long pfn = page_to_pfn(page);
6490 	unsigned int order;
6491 
6492 	for (order = 0; order <= MAX_ORDER; order++) {
6493 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6494 
6495 		if (PageBuddy(page_head) &&
6496 		    buddy_order_unsafe(page_head) >= order)
6497 			break;
6498 	}
6499 
6500 	return order <= MAX_ORDER;
6501 }
6502 EXPORT_SYMBOL(is_free_buddy_page);
6503 
6504 #ifdef CONFIG_MEMORY_FAILURE
6505 /*
6506  * Break down a higher-order page in sub-pages, and keep our target out of
6507  * buddy allocator.
6508  */
6509 static void break_down_buddy_pages(struct zone *zone, struct page *page,
6510 				   struct page *target, int low, int high,
6511 				   int migratetype)
6512 {
6513 	unsigned long size = 1 << high;
6514 	struct page *current_buddy, *next_page;
6515 
6516 	while (high > low) {
6517 		high--;
6518 		size >>= 1;
6519 
6520 		if (target >= &page[size]) {
6521 			next_page = page + size;
6522 			current_buddy = page;
6523 		} else {
6524 			next_page = page;
6525 			current_buddy = page + size;
6526 		}
6527 
6528 		if (set_page_guard(zone, current_buddy, high, migratetype))
6529 			continue;
6530 
6531 		if (current_buddy != target) {
6532 			add_to_free_list(current_buddy, zone, high, migratetype);
6533 			set_buddy_order(current_buddy, high);
6534 			page = next_page;
6535 		}
6536 	}
6537 }
6538 
6539 /*
6540  * Take a page that will be marked as poisoned off the buddy allocator.
6541  */
6542 bool take_page_off_buddy(struct page *page)
6543 {
6544 	struct zone *zone = page_zone(page);
6545 	unsigned long pfn = page_to_pfn(page);
6546 	unsigned long flags;
6547 	unsigned int order;
6548 	bool ret = false;
6549 
6550 	spin_lock_irqsave(&zone->lock, flags);
6551 	for (order = 0; order <= MAX_ORDER; order++) {
6552 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6553 		int page_order = buddy_order(page_head);
6554 
6555 		if (PageBuddy(page_head) && page_order >= order) {
6556 			unsigned long pfn_head = page_to_pfn(page_head);
6557 			int migratetype = get_pfnblock_migratetype(page_head,
6558 								   pfn_head);
6559 
6560 			del_page_from_free_list(page_head, zone, page_order);
6561 			break_down_buddy_pages(zone, page_head, page, 0,
6562 						page_order, migratetype);
6563 			SetPageHWPoisonTakenOff(page);
6564 			if (!is_migrate_isolate(migratetype))
6565 				__mod_zone_freepage_state(zone, -1, migratetype);
6566 			ret = true;
6567 			break;
6568 		}
6569 		if (page_count(page_head) > 0)
6570 			break;
6571 	}
6572 	spin_unlock_irqrestore(&zone->lock, flags);
6573 	return ret;
6574 }
6575 
6576 /*
6577  * Cancel takeoff done by take_page_off_buddy().
6578  */
6579 bool put_page_back_buddy(struct page *page)
6580 {
6581 	struct zone *zone = page_zone(page);
6582 	unsigned long pfn = page_to_pfn(page);
6583 	unsigned long flags;
6584 	int migratetype = get_pfnblock_migratetype(page, pfn);
6585 	bool ret = false;
6586 
6587 	spin_lock_irqsave(&zone->lock, flags);
6588 	if (put_page_testzero(page)) {
6589 		ClearPageHWPoisonTakenOff(page);
6590 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6591 		if (TestClearPageHWPoison(page)) {
6592 			ret = true;
6593 		}
6594 	}
6595 	spin_unlock_irqrestore(&zone->lock, flags);
6596 
6597 	return ret;
6598 }
6599 #endif
6600 
6601 #ifdef CONFIG_ZONE_DMA
6602 bool has_managed_dma(void)
6603 {
6604 	struct pglist_data *pgdat;
6605 
6606 	for_each_online_pgdat(pgdat) {
6607 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6608 
6609 		if (managed_zone(zone))
6610 			return true;
6611 	}
6612 	return false;
6613 }
6614 #endif /* CONFIG_ZONE_DMA */
6615 
6616 #ifdef CONFIG_UNACCEPTED_MEMORY
6617 
6618 /* Counts number of zones with unaccepted pages. */
6619 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
6620 
6621 static bool lazy_accept = true;
6622 
6623 static int __init accept_memory_parse(char *p)
6624 {
6625 	if (!strcmp(p, "lazy")) {
6626 		lazy_accept = true;
6627 		return 0;
6628 	} else if (!strcmp(p, "eager")) {
6629 		lazy_accept = false;
6630 		return 0;
6631 	} else {
6632 		return -EINVAL;
6633 	}
6634 }
6635 early_param("accept_memory", accept_memory_parse);
6636 
6637 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6638 {
6639 	phys_addr_t start = page_to_phys(page);
6640 	phys_addr_t end = start + (PAGE_SIZE << order);
6641 
6642 	return range_contains_unaccepted_memory(start, end);
6643 }
6644 
6645 static void accept_page(struct page *page, unsigned int order)
6646 {
6647 	phys_addr_t start = page_to_phys(page);
6648 
6649 	accept_memory(start, start + (PAGE_SIZE << order));
6650 }
6651 
6652 static bool try_to_accept_memory_one(struct zone *zone)
6653 {
6654 	unsigned long flags;
6655 	struct page *page;
6656 	bool last;
6657 
6658 	if (list_empty(&zone->unaccepted_pages))
6659 		return false;
6660 
6661 	spin_lock_irqsave(&zone->lock, flags);
6662 	page = list_first_entry_or_null(&zone->unaccepted_pages,
6663 					struct page, lru);
6664 	if (!page) {
6665 		spin_unlock_irqrestore(&zone->lock, flags);
6666 		return false;
6667 	}
6668 
6669 	list_del(&page->lru);
6670 	last = list_empty(&zone->unaccepted_pages);
6671 
6672 	__mod_zone_freepage_state(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6673 	__mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
6674 	spin_unlock_irqrestore(&zone->lock, flags);
6675 
6676 	accept_page(page, MAX_ORDER);
6677 
6678 	__free_pages_ok(page, MAX_ORDER, FPI_TO_TAIL);
6679 
6680 	if (last)
6681 		static_branch_dec(&zones_with_unaccepted_pages);
6682 
6683 	return true;
6684 }
6685 
6686 static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6687 {
6688 	long to_accept;
6689 	int ret = false;
6690 
6691 	/* How much to accept to get to high watermark? */
6692 	to_accept = high_wmark_pages(zone) -
6693 		    (zone_page_state(zone, NR_FREE_PAGES) -
6694 		    __zone_watermark_unusable_free(zone, order, 0));
6695 
6696 	/* Accept at least one page */
6697 	do {
6698 		if (!try_to_accept_memory_one(zone))
6699 			break;
6700 		ret = true;
6701 		to_accept -= MAX_ORDER_NR_PAGES;
6702 	} while (to_accept > 0);
6703 
6704 	return ret;
6705 }
6706 
6707 static inline bool has_unaccepted_memory(void)
6708 {
6709 	return static_branch_unlikely(&zones_with_unaccepted_pages);
6710 }
6711 
6712 static bool __free_unaccepted(struct page *page)
6713 {
6714 	struct zone *zone = page_zone(page);
6715 	unsigned long flags;
6716 	bool first = false;
6717 
6718 	if (!lazy_accept)
6719 		return false;
6720 
6721 	spin_lock_irqsave(&zone->lock, flags);
6722 	first = list_empty(&zone->unaccepted_pages);
6723 	list_add_tail(&page->lru, &zone->unaccepted_pages);
6724 	__mod_zone_freepage_state(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6725 	__mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
6726 	spin_unlock_irqrestore(&zone->lock, flags);
6727 
6728 	if (first)
6729 		static_branch_inc(&zones_with_unaccepted_pages);
6730 
6731 	return true;
6732 }
6733 
6734 #else
6735 
6736 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6737 {
6738 	return false;
6739 }
6740 
6741 static void accept_page(struct page *page, unsigned int order)
6742 {
6743 }
6744 
6745 static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6746 {
6747 	return false;
6748 }
6749 
6750 static inline bool has_unaccepted_memory(void)
6751 {
6752 	return false;
6753 }
6754 
6755 static bool __free_unaccepted(struct page *page)
6756 {
6757 	BUILD_BUG();
6758 	return false;
6759 }
6760 
6761 #endif /* CONFIG_UNACCEPTED_MEMORY */
6762