xref: /openbmc/linux/mm/page_alloc.c (revision 5d0e4d78)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <trace/events/oom.h>
59 #include <linux/prefetch.h>
60 #include <linux/mm_inline.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 
70 #include <asm/sections.h>
71 #include <asm/tlbflush.h>
72 #include <asm/div64.h>
73 #include "internal.h"
74 
75 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
76 static DEFINE_MUTEX(pcp_batch_high_lock);
77 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
78 
79 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
80 DEFINE_PER_CPU(int, numa_node);
81 EXPORT_PER_CPU_SYMBOL(numa_node);
82 #endif
83 
84 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
85 /*
86  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
87  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
88  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
89  * defined in <linux/topology.h>.
90  */
91 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
92 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
93 int _node_numa_mem_[MAX_NUMNODES];
94 #endif
95 
96 /* work_structs for global per-cpu drains */
97 DEFINE_MUTEX(pcpu_drain_mutex);
98 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
99 
100 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
101 volatile unsigned long latent_entropy __latent_entropy;
102 EXPORT_SYMBOL(latent_entropy);
103 #endif
104 
105 /*
106  * Array of node states.
107  */
108 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
109 	[N_POSSIBLE] = NODE_MASK_ALL,
110 	[N_ONLINE] = { { [0] = 1UL } },
111 #ifndef CONFIG_NUMA
112 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
113 #ifdef CONFIG_HIGHMEM
114 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
115 #endif
116 	[N_MEMORY] = { { [0] = 1UL } },
117 	[N_CPU] = { { [0] = 1UL } },
118 #endif	/* NUMA */
119 };
120 EXPORT_SYMBOL(node_states);
121 
122 /* Protect totalram_pages and zone->managed_pages */
123 static DEFINE_SPINLOCK(managed_page_count_lock);
124 
125 unsigned long totalram_pages __read_mostly;
126 unsigned long totalreserve_pages __read_mostly;
127 unsigned long totalcma_pages __read_mostly;
128 
129 int percpu_pagelist_fraction;
130 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
131 
132 /*
133  * A cached value of the page's pageblock's migratetype, used when the page is
134  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
135  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
136  * Also the migratetype set in the page does not necessarily match the pcplist
137  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
138  * other index - this ensures that it will be put on the correct CMA freelist.
139  */
140 static inline int get_pcppage_migratetype(struct page *page)
141 {
142 	return page->index;
143 }
144 
145 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
146 {
147 	page->index = migratetype;
148 }
149 
150 #ifdef CONFIG_PM_SLEEP
151 /*
152  * The following functions are used by the suspend/hibernate code to temporarily
153  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
154  * while devices are suspended.  To avoid races with the suspend/hibernate code,
155  * they should always be called with pm_mutex held (gfp_allowed_mask also should
156  * only be modified with pm_mutex held, unless the suspend/hibernate code is
157  * guaranteed not to run in parallel with that modification).
158  */
159 
160 static gfp_t saved_gfp_mask;
161 
162 void pm_restore_gfp_mask(void)
163 {
164 	WARN_ON(!mutex_is_locked(&pm_mutex));
165 	if (saved_gfp_mask) {
166 		gfp_allowed_mask = saved_gfp_mask;
167 		saved_gfp_mask = 0;
168 	}
169 }
170 
171 void pm_restrict_gfp_mask(void)
172 {
173 	WARN_ON(!mutex_is_locked(&pm_mutex));
174 	WARN_ON(saved_gfp_mask);
175 	saved_gfp_mask = gfp_allowed_mask;
176 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
177 }
178 
179 bool pm_suspended_storage(void)
180 {
181 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
182 		return false;
183 	return true;
184 }
185 #endif /* CONFIG_PM_SLEEP */
186 
187 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
188 unsigned int pageblock_order __read_mostly;
189 #endif
190 
191 static void __free_pages_ok(struct page *page, unsigned int order);
192 
193 /*
194  * results with 256, 32 in the lowmem_reserve sysctl:
195  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
196  *	1G machine -> (16M dma, 784M normal, 224M high)
197  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
198  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
199  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
200  *
201  * TBD: should special case ZONE_DMA32 machines here - in those we normally
202  * don't need any ZONE_NORMAL reservation
203  */
204 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
205 #ifdef CONFIG_ZONE_DMA
206 	 256,
207 #endif
208 #ifdef CONFIG_ZONE_DMA32
209 	 256,
210 #endif
211 #ifdef CONFIG_HIGHMEM
212 	 32,
213 #endif
214 	 32,
215 };
216 
217 EXPORT_SYMBOL(totalram_pages);
218 
219 static char * const zone_names[MAX_NR_ZONES] = {
220 #ifdef CONFIG_ZONE_DMA
221 	 "DMA",
222 #endif
223 #ifdef CONFIG_ZONE_DMA32
224 	 "DMA32",
225 #endif
226 	 "Normal",
227 #ifdef CONFIG_HIGHMEM
228 	 "HighMem",
229 #endif
230 	 "Movable",
231 #ifdef CONFIG_ZONE_DEVICE
232 	 "Device",
233 #endif
234 };
235 
236 char * const migratetype_names[MIGRATE_TYPES] = {
237 	"Unmovable",
238 	"Movable",
239 	"Reclaimable",
240 	"HighAtomic",
241 #ifdef CONFIG_CMA
242 	"CMA",
243 #endif
244 #ifdef CONFIG_MEMORY_ISOLATION
245 	"Isolate",
246 #endif
247 };
248 
249 compound_page_dtor * const compound_page_dtors[] = {
250 	NULL,
251 	free_compound_page,
252 #ifdef CONFIG_HUGETLB_PAGE
253 	free_huge_page,
254 #endif
255 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
256 	free_transhuge_page,
257 #endif
258 };
259 
260 int min_free_kbytes = 1024;
261 int user_min_free_kbytes = -1;
262 int watermark_scale_factor = 10;
263 
264 static unsigned long __meminitdata nr_kernel_pages;
265 static unsigned long __meminitdata nr_all_pages;
266 static unsigned long __meminitdata dma_reserve;
267 
268 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
269 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
270 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
271 static unsigned long __initdata required_kernelcore;
272 static unsigned long __initdata required_movablecore;
273 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
274 static bool mirrored_kernelcore;
275 
276 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
277 int movable_zone;
278 EXPORT_SYMBOL(movable_zone);
279 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
280 
281 #if MAX_NUMNODES > 1
282 int nr_node_ids __read_mostly = MAX_NUMNODES;
283 int nr_online_nodes __read_mostly = 1;
284 EXPORT_SYMBOL(nr_node_ids);
285 EXPORT_SYMBOL(nr_online_nodes);
286 #endif
287 
288 int page_group_by_mobility_disabled __read_mostly;
289 
290 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
291 static inline void reset_deferred_meminit(pg_data_t *pgdat)
292 {
293 	unsigned long max_initialise;
294 	unsigned long reserved_lowmem;
295 
296 	/*
297 	 * Initialise at least 2G of a node but also take into account that
298 	 * two large system hashes that can take up 1GB for 0.25TB/node.
299 	 */
300 	max_initialise = max(2UL << (30 - PAGE_SHIFT),
301 		(pgdat->node_spanned_pages >> 8));
302 
303 	/*
304 	 * Compensate the all the memblock reservations (e.g. crash kernel)
305 	 * from the initial estimation to make sure we will initialize enough
306 	 * memory to boot.
307 	 */
308 	reserved_lowmem = memblock_reserved_memory_within(pgdat->node_start_pfn,
309 			pgdat->node_start_pfn + max_initialise);
310 	max_initialise += reserved_lowmem;
311 
312 	pgdat->static_init_size = min(max_initialise, pgdat->node_spanned_pages);
313 	pgdat->first_deferred_pfn = ULONG_MAX;
314 }
315 
316 /* Returns true if the struct page for the pfn is uninitialised */
317 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
318 {
319 	int nid = early_pfn_to_nid(pfn);
320 
321 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
322 		return true;
323 
324 	return false;
325 }
326 
327 /*
328  * Returns false when the remaining initialisation should be deferred until
329  * later in the boot cycle when it can be parallelised.
330  */
331 static inline bool update_defer_init(pg_data_t *pgdat,
332 				unsigned long pfn, unsigned long zone_end,
333 				unsigned long *nr_initialised)
334 {
335 	/* Always populate low zones for address-contrained allocations */
336 	if (zone_end < pgdat_end_pfn(pgdat))
337 		return true;
338 	(*nr_initialised)++;
339 	if ((*nr_initialised > pgdat->static_init_size) &&
340 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
341 		pgdat->first_deferred_pfn = pfn;
342 		return false;
343 	}
344 
345 	return true;
346 }
347 #else
348 static inline void reset_deferred_meminit(pg_data_t *pgdat)
349 {
350 }
351 
352 static inline bool early_page_uninitialised(unsigned long pfn)
353 {
354 	return false;
355 }
356 
357 static inline bool update_defer_init(pg_data_t *pgdat,
358 				unsigned long pfn, unsigned long zone_end,
359 				unsigned long *nr_initialised)
360 {
361 	return true;
362 }
363 #endif
364 
365 /* Return a pointer to the bitmap storing bits affecting a block of pages */
366 static inline unsigned long *get_pageblock_bitmap(struct page *page,
367 							unsigned long pfn)
368 {
369 #ifdef CONFIG_SPARSEMEM
370 	return __pfn_to_section(pfn)->pageblock_flags;
371 #else
372 	return page_zone(page)->pageblock_flags;
373 #endif /* CONFIG_SPARSEMEM */
374 }
375 
376 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
377 {
378 #ifdef CONFIG_SPARSEMEM
379 	pfn &= (PAGES_PER_SECTION-1);
380 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
381 #else
382 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
383 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
384 #endif /* CONFIG_SPARSEMEM */
385 }
386 
387 /**
388  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
389  * @page: The page within the block of interest
390  * @pfn: The target page frame number
391  * @end_bitidx: The last bit of interest to retrieve
392  * @mask: mask of bits that the caller is interested in
393  *
394  * Return: pageblock_bits flags
395  */
396 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
397 					unsigned long pfn,
398 					unsigned long end_bitidx,
399 					unsigned long mask)
400 {
401 	unsigned long *bitmap;
402 	unsigned long bitidx, word_bitidx;
403 	unsigned long word;
404 
405 	bitmap = get_pageblock_bitmap(page, pfn);
406 	bitidx = pfn_to_bitidx(page, pfn);
407 	word_bitidx = bitidx / BITS_PER_LONG;
408 	bitidx &= (BITS_PER_LONG-1);
409 
410 	word = bitmap[word_bitidx];
411 	bitidx += end_bitidx;
412 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
413 }
414 
415 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
416 					unsigned long end_bitidx,
417 					unsigned long mask)
418 {
419 	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
420 }
421 
422 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
423 {
424 	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
425 }
426 
427 /**
428  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
429  * @page: The page within the block of interest
430  * @flags: The flags to set
431  * @pfn: The target page frame number
432  * @end_bitidx: The last bit of interest
433  * @mask: mask of bits that the caller is interested in
434  */
435 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
436 					unsigned long pfn,
437 					unsigned long end_bitidx,
438 					unsigned long mask)
439 {
440 	unsigned long *bitmap;
441 	unsigned long bitidx, word_bitidx;
442 	unsigned long old_word, word;
443 
444 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
445 
446 	bitmap = get_pageblock_bitmap(page, pfn);
447 	bitidx = pfn_to_bitidx(page, pfn);
448 	word_bitidx = bitidx / BITS_PER_LONG;
449 	bitidx &= (BITS_PER_LONG-1);
450 
451 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
452 
453 	bitidx += end_bitidx;
454 	mask <<= (BITS_PER_LONG - bitidx - 1);
455 	flags <<= (BITS_PER_LONG - bitidx - 1);
456 
457 	word = READ_ONCE(bitmap[word_bitidx]);
458 	for (;;) {
459 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
460 		if (word == old_word)
461 			break;
462 		word = old_word;
463 	}
464 }
465 
466 void set_pageblock_migratetype(struct page *page, int migratetype)
467 {
468 	if (unlikely(page_group_by_mobility_disabled &&
469 		     migratetype < MIGRATE_PCPTYPES))
470 		migratetype = MIGRATE_UNMOVABLE;
471 
472 	set_pageblock_flags_group(page, (unsigned long)migratetype,
473 					PB_migrate, PB_migrate_end);
474 }
475 
476 #ifdef CONFIG_DEBUG_VM
477 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
478 {
479 	int ret = 0;
480 	unsigned seq;
481 	unsigned long pfn = page_to_pfn(page);
482 	unsigned long sp, start_pfn;
483 
484 	do {
485 		seq = zone_span_seqbegin(zone);
486 		start_pfn = zone->zone_start_pfn;
487 		sp = zone->spanned_pages;
488 		if (!zone_spans_pfn(zone, pfn))
489 			ret = 1;
490 	} while (zone_span_seqretry(zone, seq));
491 
492 	if (ret)
493 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
494 			pfn, zone_to_nid(zone), zone->name,
495 			start_pfn, start_pfn + sp);
496 
497 	return ret;
498 }
499 
500 static int page_is_consistent(struct zone *zone, struct page *page)
501 {
502 	if (!pfn_valid_within(page_to_pfn(page)))
503 		return 0;
504 	if (zone != page_zone(page))
505 		return 0;
506 
507 	return 1;
508 }
509 /*
510  * Temporary debugging check for pages not lying within a given zone.
511  */
512 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
513 {
514 	if (page_outside_zone_boundaries(zone, page))
515 		return 1;
516 	if (!page_is_consistent(zone, page))
517 		return 1;
518 
519 	return 0;
520 }
521 #else
522 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
523 {
524 	return 0;
525 }
526 #endif
527 
528 static void bad_page(struct page *page, const char *reason,
529 		unsigned long bad_flags)
530 {
531 	static unsigned long resume;
532 	static unsigned long nr_shown;
533 	static unsigned long nr_unshown;
534 
535 	/*
536 	 * Allow a burst of 60 reports, then keep quiet for that minute;
537 	 * or allow a steady drip of one report per second.
538 	 */
539 	if (nr_shown == 60) {
540 		if (time_before(jiffies, resume)) {
541 			nr_unshown++;
542 			goto out;
543 		}
544 		if (nr_unshown) {
545 			pr_alert(
546 			      "BUG: Bad page state: %lu messages suppressed\n",
547 				nr_unshown);
548 			nr_unshown = 0;
549 		}
550 		nr_shown = 0;
551 	}
552 	if (nr_shown++ == 0)
553 		resume = jiffies + 60 * HZ;
554 
555 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
556 		current->comm, page_to_pfn(page));
557 	__dump_page(page, reason);
558 	bad_flags &= page->flags;
559 	if (bad_flags)
560 		pr_alert("bad because of flags: %#lx(%pGp)\n",
561 						bad_flags, &bad_flags);
562 	dump_page_owner(page);
563 
564 	print_modules();
565 	dump_stack();
566 out:
567 	/* Leave bad fields for debug, except PageBuddy could make trouble */
568 	page_mapcount_reset(page); /* remove PageBuddy */
569 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
570 }
571 
572 /*
573  * Higher-order pages are called "compound pages".  They are structured thusly:
574  *
575  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
576  *
577  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
578  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
579  *
580  * The first tail page's ->compound_dtor holds the offset in array of compound
581  * page destructors. See compound_page_dtors.
582  *
583  * The first tail page's ->compound_order holds the order of allocation.
584  * This usage means that zero-order pages may not be compound.
585  */
586 
587 void free_compound_page(struct page *page)
588 {
589 	__free_pages_ok(page, compound_order(page));
590 }
591 
592 void prep_compound_page(struct page *page, unsigned int order)
593 {
594 	int i;
595 	int nr_pages = 1 << order;
596 
597 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
598 	set_compound_order(page, order);
599 	__SetPageHead(page);
600 	for (i = 1; i < nr_pages; i++) {
601 		struct page *p = page + i;
602 		set_page_count(p, 0);
603 		p->mapping = TAIL_MAPPING;
604 		set_compound_head(p, page);
605 	}
606 	atomic_set(compound_mapcount_ptr(page), -1);
607 }
608 
609 #ifdef CONFIG_DEBUG_PAGEALLOC
610 unsigned int _debug_guardpage_minorder;
611 bool _debug_pagealloc_enabled __read_mostly
612 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
613 EXPORT_SYMBOL(_debug_pagealloc_enabled);
614 bool _debug_guardpage_enabled __read_mostly;
615 
616 static int __init early_debug_pagealloc(char *buf)
617 {
618 	if (!buf)
619 		return -EINVAL;
620 	return kstrtobool(buf, &_debug_pagealloc_enabled);
621 }
622 early_param("debug_pagealloc", early_debug_pagealloc);
623 
624 static bool need_debug_guardpage(void)
625 {
626 	/* If we don't use debug_pagealloc, we don't need guard page */
627 	if (!debug_pagealloc_enabled())
628 		return false;
629 
630 	if (!debug_guardpage_minorder())
631 		return false;
632 
633 	return true;
634 }
635 
636 static void init_debug_guardpage(void)
637 {
638 	if (!debug_pagealloc_enabled())
639 		return;
640 
641 	if (!debug_guardpage_minorder())
642 		return;
643 
644 	_debug_guardpage_enabled = true;
645 }
646 
647 struct page_ext_operations debug_guardpage_ops = {
648 	.need = need_debug_guardpage,
649 	.init = init_debug_guardpage,
650 };
651 
652 static int __init debug_guardpage_minorder_setup(char *buf)
653 {
654 	unsigned long res;
655 
656 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
657 		pr_err("Bad debug_guardpage_minorder value\n");
658 		return 0;
659 	}
660 	_debug_guardpage_minorder = res;
661 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
662 	return 0;
663 }
664 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
665 
666 static inline bool set_page_guard(struct zone *zone, struct page *page,
667 				unsigned int order, int migratetype)
668 {
669 	struct page_ext *page_ext;
670 
671 	if (!debug_guardpage_enabled())
672 		return false;
673 
674 	if (order >= debug_guardpage_minorder())
675 		return false;
676 
677 	page_ext = lookup_page_ext(page);
678 	if (unlikely(!page_ext))
679 		return false;
680 
681 	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
682 
683 	INIT_LIST_HEAD(&page->lru);
684 	set_page_private(page, order);
685 	/* Guard pages are not available for any usage */
686 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
687 
688 	return true;
689 }
690 
691 static inline void clear_page_guard(struct zone *zone, struct page *page,
692 				unsigned int order, int migratetype)
693 {
694 	struct page_ext *page_ext;
695 
696 	if (!debug_guardpage_enabled())
697 		return;
698 
699 	page_ext = lookup_page_ext(page);
700 	if (unlikely(!page_ext))
701 		return;
702 
703 	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
704 
705 	set_page_private(page, 0);
706 	if (!is_migrate_isolate(migratetype))
707 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
708 }
709 #else
710 struct page_ext_operations debug_guardpage_ops;
711 static inline bool set_page_guard(struct zone *zone, struct page *page,
712 			unsigned int order, int migratetype) { return false; }
713 static inline void clear_page_guard(struct zone *zone, struct page *page,
714 				unsigned int order, int migratetype) {}
715 #endif
716 
717 static inline void set_page_order(struct page *page, unsigned int order)
718 {
719 	set_page_private(page, order);
720 	__SetPageBuddy(page);
721 }
722 
723 static inline void rmv_page_order(struct page *page)
724 {
725 	__ClearPageBuddy(page);
726 	set_page_private(page, 0);
727 }
728 
729 /*
730  * This function checks whether a page is free && is the buddy
731  * we can do coalesce a page and its buddy if
732  * (a) the buddy is not in a hole (check before calling!) &&
733  * (b) the buddy is in the buddy system &&
734  * (c) a page and its buddy have the same order &&
735  * (d) a page and its buddy are in the same zone.
736  *
737  * For recording whether a page is in the buddy system, we set ->_mapcount
738  * PAGE_BUDDY_MAPCOUNT_VALUE.
739  * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
740  * serialized by zone->lock.
741  *
742  * For recording page's order, we use page_private(page).
743  */
744 static inline int page_is_buddy(struct page *page, struct page *buddy,
745 							unsigned int order)
746 {
747 	if (page_is_guard(buddy) && page_order(buddy) == order) {
748 		if (page_zone_id(page) != page_zone_id(buddy))
749 			return 0;
750 
751 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
752 
753 		return 1;
754 	}
755 
756 	if (PageBuddy(buddy) && page_order(buddy) == order) {
757 		/*
758 		 * zone check is done late to avoid uselessly
759 		 * calculating zone/node ids for pages that could
760 		 * never merge.
761 		 */
762 		if (page_zone_id(page) != page_zone_id(buddy))
763 			return 0;
764 
765 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
766 
767 		return 1;
768 	}
769 	return 0;
770 }
771 
772 /*
773  * Freeing function for a buddy system allocator.
774  *
775  * The concept of a buddy system is to maintain direct-mapped table
776  * (containing bit values) for memory blocks of various "orders".
777  * The bottom level table contains the map for the smallest allocatable
778  * units of memory (here, pages), and each level above it describes
779  * pairs of units from the levels below, hence, "buddies".
780  * At a high level, all that happens here is marking the table entry
781  * at the bottom level available, and propagating the changes upward
782  * as necessary, plus some accounting needed to play nicely with other
783  * parts of the VM system.
784  * At each level, we keep a list of pages, which are heads of continuous
785  * free pages of length of (1 << order) and marked with _mapcount
786  * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
787  * field.
788  * So when we are allocating or freeing one, we can derive the state of the
789  * other.  That is, if we allocate a small block, and both were
790  * free, the remainder of the region must be split into blocks.
791  * If a block is freed, and its buddy is also free, then this
792  * triggers coalescing into a block of larger size.
793  *
794  * -- nyc
795  */
796 
797 static inline void __free_one_page(struct page *page,
798 		unsigned long pfn,
799 		struct zone *zone, unsigned int order,
800 		int migratetype)
801 {
802 	unsigned long combined_pfn;
803 	unsigned long uninitialized_var(buddy_pfn);
804 	struct page *buddy;
805 	unsigned int max_order;
806 
807 	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
808 
809 	VM_BUG_ON(!zone_is_initialized(zone));
810 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
811 
812 	VM_BUG_ON(migratetype == -1);
813 	if (likely(!is_migrate_isolate(migratetype)))
814 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
815 
816 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
817 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
818 
819 continue_merging:
820 	while (order < max_order - 1) {
821 		buddy_pfn = __find_buddy_pfn(pfn, order);
822 		buddy = page + (buddy_pfn - pfn);
823 
824 		if (!pfn_valid_within(buddy_pfn))
825 			goto done_merging;
826 		if (!page_is_buddy(page, buddy, order))
827 			goto done_merging;
828 		/*
829 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
830 		 * merge with it and move up one order.
831 		 */
832 		if (page_is_guard(buddy)) {
833 			clear_page_guard(zone, buddy, order, migratetype);
834 		} else {
835 			list_del(&buddy->lru);
836 			zone->free_area[order].nr_free--;
837 			rmv_page_order(buddy);
838 		}
839 		combined_pfn = buddy_pfn & pfn;
840 		page = page + (combined_pfn - pfn);
841 		pfn = combined_pfn;
842 		order++;
843 	}
844 	if (max_order < MAX_ORDER) {
845 		/* If we are here, it means order is >= pageblock_order.
846 		 * We want to prevent merge between freepages on isolate
847 		 * pageblock and normal pageblock. Without this, pageblock
848 		 * isolation could cause incorrect freepage or CMA accounting.
849 		 *
850 		 * We don't want to hit this code for the more frequent
851 		 * low-order merging.
852 		 */
853 		if (unlikely(has_isolate_pageblock(zone))) {
854 			int buddy_mt;
855 
856 			buddy_pfn = __find_buddy_pfn(pfn, order);
857 			buddy = page + (buddy_pfn - pfn);
858 			buddy_mt = get_pageblock_migratetype(buddy);
859 
860 			if (migratetype != buddy_mt
861 					&& (is_migrate_isolate(migratetype) ||
862 						is_migrate_isolate(buddy_mt)))
863 				goto done_merging;
864 		}
865 		max_order++;
866 		goto continue_merging;
867 	}
868 
869 done_merging:
870 	set_page_order(page, order);
871 
872 	/*
873 	 * If this is not the largest possible page, check if the buddy
874 	 * of the next-highest order is free. If it is, it's possible
875 	 * that pages are being freed that will coalesce soon. In case,
876 	 * that is happening, add the free page to the tail of the list
877 	 * so it's less likely to be used soon and more likely to be merged
878 	 * as a higher order page
879 	 */
880 	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
881 		struct page *higher_page, *higher_buddy;
882 		combined_pfn = buddy_pfn & pfn;
883 		higher_page = page + (combined_pfn - pfn);
884 		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
885 		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
886 		if (pfn_valid_within(buddy_pfn) &&
887 		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
888 			list_add_tail(&page->lru,
889 				&zone->free_area[order].free_list[migratetype]);
890 			goto out;
891 		}
892 	}
893 
894 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
895 out:
896 	zone->free_area[order].nr_free++;
897 }
898 
899 /*
900  * A bad page could be due to a number of fields. Instead of multiple branches,
901  * try and check multiple fields with one check. The caller must do a detailed
902  * check if necessary.
903  */
904 static inline bool page_expected_state(struct page *page,
905 					unsigned long check_flags)
906 {
907 	if (unlikely(atomic_read(&page->_mapcount) != -1))
908 		return false;
909 
910 	if (unlikely((unsigned long)page->mapping |
911 			page_ref_count(page) |
912 #ifdef CONFIG_MEMCG
913 			(unsigned long)page->mem_cgroup |
914 #endif
915 			(page->flags & check_flags)))
916 		return false;
917 
918 	return true;
919 }
920 
921 static void free_pages_check_bad(struct page *page)
922 {
923 	const char *bad_reason;
924 	unsigned long bad_flags;
925 
926 	bad_reason = NULL;
927 	bad_flags = 0;
928 
929 	if (unlikely(atomic_read(&page->_mapcount) != -1))
930 		bad_reason = "nonzero mapcount";
931 	if (unlikely(page->mapping != NULL))
932 		bad_reason = "non-NULL mapping";
933 	if (unlikely(page_ref_count(page) != 0))
934 		bad_reason = "nonzero _refcount";
935 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
936 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
937 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
938 	}
939 #ifdef CONFIG_MEMCG
940 	if (unlikely(page->mem_cgroup))
941 		bad_reason = "page still charged to cgroup";
942 #endif
943 	bad_page(page, bad_reason, bad_flags);
944 }
945 
946 static inline int free_pages_check(struct page *page)
947 {
948 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
949 		return 0;
950 
951 	/* Something has gone sideways, find it */
952 	free_pages_check_bad(page);
953 	return 1;
954 }
955 
956 static int free_tail_pages_check(struct page *head_page, struct page *page)
957 {
958 	int ret = 1;
959 
960 	/*
961 	 * We rely page->lru.next never has bit 0 set, unless the page
962 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
963 	 */
964 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
965 
966 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
967 		ret = 0;
968 		goto out;
969 	}
970 	switch (page - head_page) {
971 	case 1:
972 		/* the first tail page: ->mapping is compound_mapcount() */
973 		if (unlikely(compound_mapcount(page))) {
974 			bad_page(page, "nonzero compound_mapcount", 0);
975 			goto out;
976 		}
977 		break;
978 	case 2:
979 		/*
980 		 * the second tail page: ->mapping is
981 		 * page_deferred_list().next -- ignore value.
982 		 */
983 		break;
984 	default:
985 		if (page->mapping != TAIL_MAPPING) {
986 			bad_page(page, "corrupted mapping in tail page", 0);
987 			goto out;
988 		}
989 		break;
990 	}
991 	if (unlikely(!PageTail(page))) {
992 		bad_page(page, "PageTail not set", 0);
993 		goto out;
994 	}
995 	if (unlikely(compound_head(page) != head_page)) {
996 		bad_page(page, "compound_head not consistent", 0);
997 		goto out;
998 	}
999 	ret = 0;
1000 out:
1001 	page->mapping = NULL;
1002 	clear_compound_head(page);
1003 	return ret;
1004 }
1005 
1006 static __always_inline bool free_pages_prepare(struct page *page,
1007 					unsigned int order, bool check_free)
1008 {
1009 	int bad = 0;
1010 
1011 	VM_BUG_ON_PAGE(PageTail(page), page);
1012 
1013 	trace_mm_page_free(page, order);
1014 	kmemcheck_free_shadow(page, order);
1015 
1016 	/*
1017 	 * Check tail pages before head page information is cleared to
1018 	 * avoid checking PageCompound for order-0 pages.
1019 	 */
1020 	if (unlikely(order)) {
1021 		bool compound = PageCompound(page);
1022 		int i;
1023 
1024 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1025 
1026 		if (compound)
1027 			ClearPageDoubleMap(page);
1028 		for (i = 1; i < (1 << order); i++) {
1029 			if (compound)
1030 				bad += free_tail_pages_check(page, page + i);
1031 			if (unlikely(free_pages_check(page + i))) {
1032 				bad++;
1033 				continue;
1034 			}
1035 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1036 		}
1037 	}
1038 	if (PageMappingFlags(page))
1039 		page->mapping = NULL;
1040 	if (memcg_kmem_enabled() && PageKmemcg(page))
1041 		memcg_kmem_uncharge(page, order);
1042 	if (check_free)
1043 		bad += free_pages_check(page);
1044 	if (bad)
1045 		return false;
1046 
1047 	page_cpupid_reset_last(page);
1048 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1049 	reset_page_owner(page, order);
1050 
1051 	if (!PageHighMem(page)) {
1052 		debug_check_no_locks_freed(page_address(page),
1053 					   PAGE_SIZE << order);
1054 		debug_check_no_obj_freed(page_address(page),
1055 					   PAGE_SIZE << order);
1056 	}
1057 	arch_free_page(page, order);
1058 	kernel_poison_pages(page, 1 << order, 0);
1059 	kernel_map_pages(page, 1 << order, 0);
1060 	kasan_free_pages(page, order);
1061 
1062 	return true;
1063 }
1064 
1065 #ifdef CONFIG_DEBUG_VM
1066 static inline bool free_pcp_prepare(struct page *page)
1067 {
1068 	return free_pages_prepare(page, 0, true);
1069 }
1070 
1071 static inline bool bulkfree_pcp_prepare(struct page *page)
1072 {
1073 	return false;
1074 }
1075 #else
1076 static bool free_pcp_prepare(struct page *page)
1077 {
1078 	return free_pages_prepare(page, 0, false);
1079 }
1080 
1081 static bool bulkfree_pcp_prepare(struct page *page)
1082 {
1083 	return free_pages_check(page);
1084 }
1085 #endif /* CONFIG_DEBUG_VM */
1086 
1087 /*
1088  * Frees a number of pages from the PCP lists
1089  * Assumes all pages on list are in same zone, and of same order.
1090  * count is the number of pages to free.
1091  *
1092  * If the zone was previously in an "all pages pinned" state then look to
1093  * see if this freeing clears that state.
1094  *
1095  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1096  * pinned" detection logic.
1097  */
1098 static void free_pcppages_bulk(struct zone *zone, int count,
1099 					struct per_cpu_pages *pcp)
1100 {
1101 	int migratetype = 0;
1102 	int batch_free = 0;
1103 	bool isolated_pageblocks;
1104 
1105 	spin_lock(&zone->lock);
1106 	isolated_pageblocks = has_isolate_pageblock(zone);
1107 
1108 	while (count) {
1109 		struct page *page;
1110 		struct list_head *list;
1111 
1112 		/*
1113 		 * Remove pages from lists in a round-robin fashion. A
1114 		 * batch_free count is maintained that is incremented when an
1115 		 * empty list is encountered.  This is so more pages are freed
1116 		 * off fuller lists instead of spinning excessively around empty
1117 		 * lists
1118 		 */
1119 		do {
1120 			batch_free++;
1121 			if (++migratetype == MIGRATE_PCPTYPES)
1122 				migratetype = 0;
1123 			list = &pcp->lists[migratetype];
1124 		} while (list_empty(list));
1125 
1126 		/* This is the only non-empty list. Free them all. */
1127 		if (batch_free == MIGRATE_PCPTYPES)
1128 			batch_free = count;
1129 
1130 		do {
1131 			int mt;	/* migratetype of the to-be-freed page */
1132 
1133 			page = list_last_entry(list, struct page, lru);
1134 			/* must delete as __free_one_page list manipulates */
1135 			list_del(&page->lru);
1136 
1137 			mt = get_pcppage_migratetype(page);
1138 			/* MIGRATE_ISOLATE page should not go to pcplists */
1139 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1140 			/* Pageblock could have been isolated meanwhile */
1141 			if (unlikely(isolated_pageblocks))
1142 				mt = get_pageblock_migratetype(page);
1143 
1144 			if (bulkfree_pcp_prepare(page))
1145 				continue;
1146 
1147 			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1148 			trace_mm_page_pcpu_drain(page, 0, mt);
1149 		} while (--count && --batch_free && !list_empty(list));
1150 	}
1151 	spin_unlock(&zone->lock);
1152 }
1153 
1154 static void free_one_page(struct zone *zone,
1155 				struct page *page, unsigned long pfn,
1156 				unsigned int order,
1157 				int migratetype)
1158 {
1159 	spin_lock(&zone->lock);
1160 	if (unlikely(has_isolate_pageblock(zone) ||
1161 		is_migrate_isolate(migratetype))) {
1162 		migratetype = get_pfnblock_migratetype(page, pfn);
1163 	}
1164 	__free_one_page(page, pfn, zone, order, migratetype);
1165 	spin_unlock(&zone->lock);
1166 }
1167 
1168 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1169 				unsigned long zone, int nid)
1170 {
1171 	set_page_links(page, zone, nid, pfn);
1172 	init_page_count(page);
1173 	page_mapcount_reset(page);
1174 	page_cpupid_reset_last(page);
1175 
1176 	INIT_LIST_HEAD(&page->lru);
1177 #ifdef WANT_PAGE_VIRTUAL
1178 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1179 	if (!is_highmem_idx(zone))
1180 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1181 #endif
1182 }
1183 
1184 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1185 					int nid)
1186 {
1187 	return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1188 }
1189 
1190 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1191 static void init_reserved_page(unsigned long pfn)
1192 {
1193 	pg_data_t *pgdat;
1194 	int nid, zid;
1195 
1196 	if (!early_page_uninitialised(pfn))
1197 		return;
1198 
1199 	nid = early_pfn_to_nid(pfn);
1200 	pgdat = NODE_DATA(nid);
1201 
1202 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1203 		struct zone *zone = &pgdat->node_zones[zid];
1204 
1205 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1206 			break;
1207 	}
1208 	__init_single_pfn(pfn, zid, nid);
1209 }
1210 #else
1211 static inline void init_reserved_page(unsigned long pfn)
1212 {
1213 }
1214 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1215 
1216 /*
1217  * Initialised pages do not have PageReserved set. This function is
1218  * called for each range allocated by the bootmem allocator and
1219  * marks the pages PageReserved. The remaining valid pages are later
1220  * sent to the buddy page allocator.
1221  */
1222 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1223 {
1224 	unsigned long start_pfn = PFN_DOWN(start);
1225 	unsigned long end_pfn = PFN_UP(end);
1226 
1227 	for (; start_pfn < end_pfn; start_pfn++) {
1228 		if (pfn_valid(start_pfn)) {
1229 			struct page *page = pfn_to_page(start_pfn);
1230 
1231 			init_reserved_page(start_pfn);
1232 
1233 			/* Avoid false-positive PageTail() */
1234 			INIT_LIST_HEAD(&page->lru);
1235 
1236 			SetPageReserved(page);
1237 		}
1238 	}
1239 }
1240 
1241 static void __free_pages_ok(struct page *page, unsigned int order)
1242 {
1243 	unsigned long flags;
1244 	int migratetype;
1245 	unsigned long pfn = page_to_pfn(page);
1246 
1247 	if (!free_pages_prepare(page, order, true))
1248 		return;
1249 
1250 	migratetype = get_pfnblock_migratetype(page, pfn);
1251 	local_irq_save(flags);
1252 	__count_vm_events(PGFREE, 1 << order);
1253 	free_one_page(page_zone(page), page, pfn, order, migratetype);
1254 	local_irq_restore(flags);
1255 }
1256 
1257 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1258 {
1259 	unsigned int nr_pages = 1 << order;
1260 	struct page *p = page;
1261 	unsigned int loop;
1262 
1263 	prefetchw(p);
1264 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1265 		prefetchw(p + 1);
1266 		__ClearPageReserved(p);
1267 		set_page_count(p, 0);
1268 	}
1269 	__ClearPageReserved(p);
1270 	set_page_count(p, 0);
1271 
1272 	page_zone(page)->managed_pages += nr_pages;
1273 	set_page_refcounted(page);
1274 	__free_pages(page, order);
1275 }
1276 
1277 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1278 	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1279 
1280 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1281 
1282 int __meminit early_pfn_to_nid(unsigned long pfn)
1283 {
1284 	static DEFINE_SPINLOCK(early_pfn_lock);
1285 	int nid;
1286 
1287 	spin_lock(&early_pfn_lock);
1288 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1289 	if (nid < 0)
1290 		nid = first_online_node;
1291 	spin_unlock(&early_pfn_lock);
1292 
1293 	return nid;
1294 }
1295 #endif
1296 
1297 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1298 static inline bool __meminit __maybe_unused
1299 meminit_pfn_in_nid(unsigned long pfn, int node,
1300 		   struct mminit_pfnnid_cache *state)
1301 {
1302 	int nid;
1303 
1304 	nid = __early_pfn_to_nid(pfn, state);
1305 	if (nid >= 0 && nid != node)
1306 		return false;
1307 	return true;
1308 }
1309 
1310 /* Only safe to use early in boot when initialisation is single-threaded */
1311 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1312 {
1313 	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1314 }
1315 
1316 #else
1317 
1318 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1319 {
1320 	return true;
1321 }
1322 static inline bool __meminit  __maybe_unused
1323 meminit_pfn_in_nid(unsigned long pfn, int node,
1324 		   struct mminit_pfnnid_cache *state)
1325 {
1326 	return true;
1327 }
1328 #endif
1329 
1330 
1331 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1332 							unsigned int order)
1333 {
1334 	if (early_page_uninitialised(pfn))
1335 		return;
1336 	return __free_pages_boot_core(page, order);
1337 }
1338 
1339 /*
1340  * Check that the whole (or subset of) a pageblock given by the interval of
1341  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1342  * with the migration of free compaction scanner. The scanners then need to
1343  * use only pfn_valid_within() check for arches that allow holes within
1344  * pageblocks.
1345  *
1346  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1347  *
1348  * It's possible on some configurations to have a setup like node0 node1 node0
1349  * i.e. it's possible that all pages within a zones range of pages do not
1350  * belong to a single zone. We assume that a border between node0 and node1
1351  * can occur within a single pageblock, but not a node0 node1 node0
1352  * interleaving within a single pageblock. It is therefore sufficient to check
1353  * the first and last page of a pageblock and avoid checking each individual
1354  * page in a pageblock.
1355  */
1356 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1357 				     unsigned long end_pfn, struct zone *zone)
1358 {
1359 	struct page *start_page;
1360 	struct page *end_page;
1361 
1362 	/* end_pfn is one past the range we are checking */
1363 	end_pfn--;
1364 
1365 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1366 		return NULL;
1367 
1368 	start_page = pfn_to_online_page(start_pfn);
1369 	if (!start_page)
1370 		return NULL;
1371 
1372 	if (page_zone(start_page) != zone)
1373 		return NULL;
1374 
1375 	end_page = pfn_to_page(end_pfn);
1376 
1377 	/* This gives a shorter code than deriving page_zone(end_page) */
1378 	if (page_zone_id(start_page) != page_zone_id(end_page))
1379 		return NULL;
1380 
1381 	return start_page;
1382 }
1383 
1384 void set_zone_contiguous(struct zone *zone)
1385 {
1386 	unsigned long block_start_pfn = zone->zone_start_pfn;
1387 	unsigned long block_end_pfn;
1388 
1389 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1390 	for (; block_start_pfn < zone_end_pfn(zone);
1391 			block_start_pfn = block_end_pfn,
1392 			 block_end_pfn += pageblock_nr_pages) {
1393 
1394 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1395 
1396 		if (!__pageblock_pfn_to_page(block_start_pfn,
1397 					     block_end_pfn, zone))
1398 			return;
1399 	}
1400 
1401 	/* We confirm that there is no hole */
1402 	zone->contiguous = true;
1403 }
1404 
1405 void clear_zone_contiguous(struct zone *zone)
1406 {
1407 	zone->contiguous = false;
1408 }
1409 
1410 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1411 static void __init deferred_free_range(struct page *page,
1412 					unsigned long pfn, int nr_pages)
1413 {
1414 	int i;
1415 
1416 	if (!page)
1417 		return;
1418 
1419 	/* Free a large naturally-aligned chunk if possible */
1420 	if (nr_pages == pageblock_nr_pages &&
1421 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1422 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1423 		__free_pages_boot_core(page, pageblock_order);
1424 		return;
1425 	}
1426 
1427 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1428 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1429 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1430 		__free_pages_boot_core(page, 0);
1431 	}
1432 }
1433 
1434 /* Completion tracking for deferred_init_memmap() threads */
1435 static atomic_t pgdat_init_n_undone __initdata;
1436 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1437 
1438 static inline void __init pgdat_init_report_one_done(void)
1439 {
1440 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1441 		complete(&pgdat_init_all_done_comp);
1442 }
1443 
1444 /* Initialise remaining memory on a node */
1445 static int __init deferred_init_memmap(void *data)
1446 {
1447 	pg_data_t *pgdat = data;
1448 	int nid = pgdat->node_id;
1449 	struct mminit_pfnnid_cache nid_init_state = { };
1450 	unsigned long start = jiffies;
1451 	unsigned long nr_pages = 0;
1452 	unsigned long walk_start, walk_end;
1453 	int i, zid;
1454 	struct zone *zone;
1455 	unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1456 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1457 
1458 	if (first_init_pfn == ULONG_MAX) {
1459 		pgdat_init_report_one_done();
1460 		return 0;
1461 	}
1462 
1463 	/* Bind memory initialisation thread to a local node if possible */
1464 	if (!cpumask_empty(cpumask))
1465 		set_cpus_allowed_ptr(current, cpumask);
1466 
1467 	/* Sanity check boundaries */
1468 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1469 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1470 	pgdat->first_deferred_pfn = ULONG_MAX;
1471 
1472 	/* Only the highest zone is deferred so find it */
1473 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1474 		zone = pgdat->node_zones + zid;
1475 		if (first_init_pfn < zone_end_pfn(zone))
1476 			break;
1477 	}
1478 
1479 	for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1480 		unsigned long pfn, end_pfn;
1481 		struct page *page = NULL;
1482 		struct page *free_base_page = NULL;
1483 		unsigned long free_base_pfn = 0;
1484 		int nr_to_free = 0;
1485 
1486 		end_pfn = min(walk_end, zone_end_pfn(zone));
1487 		pfn = first_init_pfn;
1488 		if (pfn < walk_start)
1489 			pfn = walk_start;
1490 		if (pfn < zone->zone_start_pfn)
1491 			pfn = zone->zone_start_pfn;
1492 
1493 		for (; pfn < end_pfn; pfn++) {
1494 			if (!pfn_valid_within(pfn))
1495 				goto free_range;
1496 
1497 			/*
1498 			 * Ensure pfn_valid is checked every
1499 			 * pageblock_nr_pages for memory holes
1500 			 */
1501 			if ((pfn & (pageblock_nr_pages - 1)) == 0) {
1502 				if (!pfn_valid(pfn)) {
1503 					page = NULL;
1504 					goto free_range;
1505 				}
1506 			}
1507 
1508 			if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1509 				page = NULL;
1510 				goto free_range;
1511 			}
1512 
1513 			/* Minimise pfn page lookups and scheduler checks */
1514 			if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
1515 				page++;
1516 			} else {
1517 				nr_pages += nr_to_free;
1518 				deferred_free_range(free_base_page,
1519 						free_base_pfn, nr_to_free);
1520 				free_base_page = NULL;
1521 				free_base_pfn = nr_to_free = 0;
1522 
1523 				page = pfn_to_page(pfn);
1524 				cond_resched();
1525 			}
1526 
1527 			if (page->flags) {
1528 				VM_BUG_ON(page_zone(page) != zone);
1529 				goto free_range;
1530 			}
1531 
1532 			__init_single_page(page, pfn, zid, nid);
1533 			if (!free_base_page) {
1534 				free_base_page = page;
1535 				free_base_pfn = pfn;
1536 				nr_to_free = 0;
1537 			}
1538 			nr_to_free++;
1539 
1540 			/* Where possible, batch up pages for a single free */
1541 			continue;
1542 free_range:
1543 			/* Free the current block of pages to allocator */
1544 			nr_pages += nr_to_free;
1545 			deferred_free_range(free_base_page, free_base_pfn,
1546 								nr_to_free);
1547 			free_base_page = NULL;
1548 			free_base_pfn = nr_to_free = 0;
1549 		}
1550 		/* Free the last block of pages to allocator */
1551 		nr_pages += nr_to_free;
1552 		deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
1553 
1554 		first_init_pfn = max(end_pfn, first_init_pfn);
1555 	}
1556 
1557 	/* Sanity check that the next zone really is unpopulated */
1558 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1559 
1560 	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1561 					jiffies_to_msecs(jiffies - start));
1562 
1563 	pgdat_init_report_one_done();
1564 	return 0;
1565 }
1566 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1567 
1568 void __init page_alloc_init_late(void)
1569 {
1570 	struct zone *zone;
1571 
1572 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1573 	int nid;
1574 
1575 	/* There will be num_node_state(N_MEMORY) threads */
1576 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1577 	for_each_node_state(nid, N_MEMORY) {
1578 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1579 	}
1580 
1581 	/* Block until all are initialised */
1582 	wait_for_completion(&pgdat_init_all_done_comp);
1583 
1584 	/* Reinit limits that are based on free pages after the kernel is up */
1585 	files_maxfiles_init();
1586 #endif
1587 
1588 	for_each_populated_zone(zone)
1589 		set_zone_contiguous(zone);
1590 }
1591 
1592 #ifdef CONFIG_CMA
1593 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1594 void __init init_cma_reserved_pageblock(struct page *page)
1595 {
1596 	unsigned i = pageblock_nr_pages;
1597 	struct page *p = page;
1598 
1599 	do {
1600 		__ClearPageReserved(p);
1601 		set_page_count(p, 0);
1602 	} while (++p, --i);
1603 
1604 	set_pageblock_migratetype(page, MIGRATE_CMA);
1605 
1606 	if (pageblock_order >= MAX_ORDER) {
1607 		i = pageblock_nr_pages;
1608 		p = page;
1609 		do {
1610 			set_page_refcounted(p);
1611 			__free_pages(p, MAX_ORDER - 1);
1612 			p += MAX_ORDER_NR_PAGES;
1613 		} while (i -= MAX_ORDER_NR_PAGES);
1614 	} else {
1615 		set_page_refcounted(page);
1616 		__free_pages(page, pageblock_order);
1617 	}
1618 
1619 	adjust_managed_page_count(page, pageblock_nr_pages);
1620 }
1621 #endif
1622 
1623 /*
1624  * The order of subdivision here is critical for the IO subsystem.
1625  * Please do not alter this order without good reasons and regression
1626  * testing. Specifically, as large blocks of memory are subdivided,
1627  * the order in which smaller blocks are delivered depends on the order
1628  * they're subdivided in this function. This is the primary factor
1629  * influencing the order in which pages are delivered to the IO
1630  * subsystem according to empirical testing, and this is also justified
1631  * by considering the behavior of a buddy system containing a single
1632  * large block of memory acted on by a series of small allocations.
1633  * This behavior is a critical factor in sglist merging's success.
1634  *
1635  * -- nyc
1636  */
1637 static inline void expand(struct zone *zone, struct page *page,
1638 	int low, int high, struct free_area *area,
1639 	int migratetype)
1640 {
1641 	unsigned long size = 1 << high;
1642 
1643 	while (high > low) {
1644 		area--;
1645 		high--;
1646 		size >>= 1;
1647 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1648 
1649 		/*
1650 		 * Mark as guard pages (or page), that will allow to
1651 		 * merge back to allocator when buddy will be freed.
1652 		 * Corresponding page table entries will not be touched,
1653 		 * pages will stay not present in virtual address space
1654 		 */
1655 		if (set_page_guard(zone, &page[size], high, migratetype))
1656 			continue;
1657 
1658 		list_add(&page[size].lru, &area->free_list[migratetype]);
1659 		area->nr_free++;
1660 		set_page_order(&page[size], high);
1661 	}
1662 }
1663 
1664 static void check_new_page_bad(struct page *page)
1665 {
1666 	const char *bad_reason = NULL;
1667 	unsigned long bad_flags = 0;
1668 
1669 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1670 		bad_reason = "nonzero mapcount";
1671 	if (unlikely(page->mapping != NULL))
1672 		bad_reason = "non-NULL mapping";
1673 	if (unlikely(page_ref_count(page) != 0))
1674 		bad_reason = "nonzero _count";
1675 	if (unlikely(page->flags & __PG_HWPOISON)) {
1676 		bad_reason = "HWPoisoned (hardware-corrupted)";
1677 		bad_flags = __PG_HWPOISON;
1678 		/* Don't complain about hwpoisoned pages */
1679 		page_mapcount_reset(page); /* remove PageBuddy */
1680 		return;
1681 	}
1682 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1683 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1684 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1685 	}
1686 #ifdef CONFIG_MEMCG
1687 	if (unlikely(page->mem_cgroup))
1688 		bad_reason = "page still charged to cgroup";
1689 #endif
1690 	bad_page(page, bad_reason, bad_flags);
1691 }
1692 
1693 /*
1694  * This page is about to be returned from the page allocator
1695  */
1696 static inline int check_new_page(struct page *page)
1697 {
1698 	if (likely(page_expected_state(page,
1699 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1700 		return 0;
1701 
1702 	check_new_page_bad(page);
1703 	return 1;
1704 }
1705 
1706 static inline bool free_pages_prezeroed(void)
1707 {
1708 	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1709 		page_poisoning_enabled();
1710 }
1711 
1712 #ifdef CONFIG_DEBUG_VM
1713 static bool check_pcp_refill(struct page *page)
1714 {
1715 	return false;
1716 }
1717 
1718 static bool check_new_pcp(struct page *page)
1719 {
1720 	return check_new_page(page);
1721 }
1722 #else
1723 static bool check_pcp_refill(struct page *page)
1724 {
1725 	return check_new_page(page);
1726 }
1727 static bool check_new_pcp(struct page *page)
1728 {
1729 	return false;
1730 }
1731 #endif /* CONFIG_DEBUG_VM */
1732 
1733 static bool check_new_pages(struct page *page, unsigned int order)
1734 {
1735 	int i;
1736 	for (i = 0; i < (1 << order); i++) {
1737 		struct page *p = page + i;
1738 
1739 		if (unlikely(check_new_page(p)))
1740 			return true;
1741 	}
1742 
1743 	return false;
1744 }
1745 
1746 inline void post_alloc_hook(struct page *page, unsigned int order,
1747 				gfp_t gfp_flags)
1748 {
1749 	set_page_private(page, 0);
1750 	set_page_refcounted(page);
1751 
1752 	arch_alloc_page(page, order);
1753 	kernel_map_pages(page, 1 << order, 1);
1754 	kernel_poison_pages(page, 1 << order, 1);
1755 	kasan_alloc_pages(page, order);
1756 	set_page_owner(page, order, gfp_flags);
1757 }
1758 
1759 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1760 							unsigned int alloc_flags)
1761 {
1762 	int i;
1763 
1764 	post_alloc_hook(page, order, gfp_flags);
1765 
1766 	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1767 		for (i = 0; i < (1 << order); i++)
1768 			clear_highpage(page + i);
1769 
1770 	if (order && (gfp_flags & __GFP_COMP))
1771 		prep_compound_page(page, order);
1772 
1773 	/*
1774 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1775 	 * allocate the page. The expectation is that the caller is taking
1776 	 * steps that will free more memory. The caller should avoid the page
1777 	 * being used for !PFMEMALLOC purposes.
1778 	 */
1779 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1780 		set_page_pfmemalloc(page);
1781 	else
1782 		clear_page_pfmemalloc(page);
1783 }
1784 
1785 /*
1786  * Go through the free lists for the given migratetype and remove
1787  * the smallest available page from the freelists
1788  */
1789 static inline
1790 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1791 						int migratetype)
1792 {
1793 	unsigned int current_order;
1794 	struct free_area *area;
1795 	struct page *page;
1796 
1797 	/* Find a page of the appropriate size in the preferred list */
1798 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1799 		area = &(zone->free_area[current_order]);
1800 		page = list_first_entry_or_null(&area->free_list[migratetype],
1801 							struct page, lru);
1802 		if (!page)
1803 			continue;
1804 		list_del(&page->lru);
1805 		rmv_page_order(page);
1806 		area->nr_free--;
1807 		expand(zone, page, order, current_order, area, migratetype);
1808 		set_pcppage_migratetype(page, migratetype);
1809 		return page;
1810 	}
1811 
1812 	return NULL;
1813 }
1814 
1815 
1816 /*
1817  * This array describes the order lists are fallen back to when
1818  * the free lists for the desirable migrate type are depleted
1819  */
1820 static int fallbacks[MIGRATE_TYPES][4] = {
1821 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
1822 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
1823 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1824 #ifdef CONFIG_CMA
1825 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1826 #endif
1827 #ifdef CONFIG_MEMORY_ISOLATION
1828 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1829 #endif
1830 };
1831 
1832 #ifdef CONFIG_CMA
1833 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1834 					unsigned int order)
1835 {
1836 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1837 }
1838 #else
1839 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1840 					unsigned int order) { return NULL; }
1841 #endif
1842 
1843 /*
1844  * Move the free pages in a range to the free lists of the requested type.
1845  * Note that start_page and end_pages are not aligned on a pageblock
1846  * boundary. If alignment is required, use move_freepages_block()
1847  */
1848 static int move_freepages(struct zone *zone,
1849 			  struct page *start_page, struct page *end_page,
1850 			  int migratetype, int *num_movable)
1851 {
1852 	struct page *page;
1853 	unsigned int order;
1854 	int pages_moved = 0;
1855 
1856 #ifndef CONFIG_HOLES_IN_ZONE
1857 	/*
1858 	 * page_zone is not safe to call in this context when
1859 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1860 	 * anyway as we check zone boundaries in move_freepages_block().
1861 	 * Remove at a later date when no bug reports exist related to
1862 	 * grouping pages by mobility
1863 	 */
1864 	VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1865 #endif
1866 
1867 	if (num_movable)
1868 		*num_movable = 0;
1869 
1870 	for (page = start_page; page <= end_page;) {
1871 		if (!pfn_valid_within(page_to_pfn(page))) {
1872 			page++;
1873 			continue;
1874 		}
1875 
1876 		/* Make sure we are not inadvertently changing nodes */
1877 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1878 
1879 		if (!PageBuddy(page)) {
1880 			/*
1881 			 * We assume that pages that could be isolated for
1882 			 * migration are movable. But we don't actually try
1883 			 * isolating, as that would be expensive.
1884 			 */
1885 			if (num_movable &&
1886 					(PageLRU(page) || __PageMovable(page)))
1887 				(*num_movable)++;
1888 
1889 			page++;
1890 			continue;
1891 		}
1892 
1893 		order = page_order(page);
1894 		list_move(&page->lru,
1895 			  &zone->free_area[order].free_list[migratetype]);
1896 		page += 1 << order;
1897 		pages_moved += 1 << order;
1898 	}
1899 
1900 	return pages_moved;
1901 }
1902 
1903 int move_freepages_block(struct zone *zone, struct page *page,
1904 				int migratetype, int *num_movable)
1905 {
1906 	unsigned long start_pfn, end_pfn;
1907 	struct page *start_page, *end_page;
1908 
1909 	start_pfn = page_to_pfn(page);
1910 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1911 	start_page = pfn_to_page(start_pfn);
1912 	end_page = start_page + pageblock_nr_pages - 1;
1913 	end_pfn = start_pfn + pageblock_nr_pages - 1;
1914 
1915 	/* Do not cross zone boundaries */
1916 	if (!zone_spans_pfn(zone, start_pfn))
1917 		start_page = page;
1918 	if (!zone_spans_pfn(zone, end_pfn))
1919 		return 0;
1920 
1921 	return move_freepages(zone, start_page, end_page, migratetype,
1922 								num_movable);
1923 }
1924 
1925 static void change_pageblock_range(struct page *pageblock_page,
1926 					int start_order, int migratetype)
1927 {
1928 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1929 
1930 	while (nr_pageblocks--) {
1931 		set_pageblock_migratetype(pageblock_page, migratetype);
1932 		pageblock_page += pageblock_nr_pages;
1933 	}
1934 }
1935 
1936 /*
1937  * When we are falling back to another migratetype during allocation, try to
1938  * steal extra free pages from the same pageblocks to satisfy further
1939  * allocations, instead of polluting multiple pageblocks.
1940  *
1941  * If we are stealing a relatively large buddy page, it is likely there will
1942  * be more free pages in the pageblock, so try to steal them all. For
1943  * reclaimable and unmovable allocations, we steal regardless of page size,
1944  * as fragmentation caused by those allocations polluting movable pageblocks
1945  * is worse than movable allocations stealing from unmovable and reclaimable
1946  * pageblocks.
1947  */
1948 static bool can_steal_fallback(unsigned int order, int start_mt)
1949 {
1950 	/*
1951 	 * Leaving this order check is intended, although there is
1952 	 * relaxed order check in next check. The reason is that
1953 	 * we can actually steal whole pageblock if this condition met,
1954 	 * but, below check doesn't guarantee it and that is just heuristic
1955 	 * so could be changed anytime.
1956 	 */
1957 	if (order >= pageblock_order)
1958 		return true;
1959 
1960 	if (order >= pageblock_order / 2 ||
1961 		start_mt == MIGRATE_RECLAIMABLE ||
1962 		start_mt == MIGRATE_UNMOVABLE ||
1963 		page_group_by_mobility_disabled)
1964 		return true;
1965 
1966 	return false;
1967 }
1968 
1969 /*
1970  * This function implements actual steal behaviour. If order is large enough,
1971  * we can steal whole pageblock. If not, we first move freepages in this
1972  * pageblock to our migratetype and determine how many already-allocated pages
1973  * are there in the pageblock with a compatible migratetype. If at least half
1974  * of pages are free or compatible, we can change migratetype of the pageblock
1975  * itself, so pages freed in the future will be put on the correct free list.
1976  */
1977 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1978 					int start_type, bool whole_block)
1979 {
1980 	unsigned int current_order = page_order(page);
1981 	struct free_area *area;
1982 	int free_pages, movable_pages, alike_pages;
1983 	int old_block_type;
1984 
1985 	old_block_type = get_pageblock_migratetype(page);
1986 
1987 	/*
1988 	 * This can happen due to races and we want to prevent broken
1989 	 * highatomic accounting.
1990 	 */
1991 	if (is_migrate_highatomic(old_block_type))
1992 		goto single_page;
1993 
1994 	/* Take ownership for orders >= pageblock_order */
1995 	if (current_order >= pageblock_order) {
1996 		change_pageblock_range(page, current_order, start_type);
1997 		goto single_page;
1998 	}
1999 
2000 	/* We are not allowed to try stealing from the whole block */
2001 	if (!whole_block)
2002 		goto single_page;
2003 
2004 	free_pages = move_freepages_block(zone, page, start_type,
2005 						&movable_pages);
2006 	/*
2007 	 * Determine how many pages are compatible with our allocation.
2008 	 * For movable allocation, it's the number of movable pages which
2009 	 * we just obtained. For other types it's a bit more tricky.
2010 	 */
2011 	if (start_type == MIGRATE_MOVABLE) {
2012 		alike_pages = movable_pages;
2013 	} else {
2014 		/*
2015 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2016 		 * to MOVABLE pageblock, consider all non-movable pages as
2017 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2018 		 * vice versa, be conservative since we can't distinguish the
2019 		 * exact migratetype of non-movable pages.
2020 		 */
2021 		if (old_block_type == MIGRATE_MOVABLE)
2022 			alike_pages = pageblock_nr_pages
2023 						- (free_pages + movable_pages);
2024 		else
2025 			alike_pages = 0;
2026 	}
2027 
2028 	/* moving whole block can fail due to zone boundary conditions */
2029 	if (!free_pages)
2030 		goto single_page;
2031 
2032 	/*
2033 	 * If a sufficient number of pages in the block are either free or of
2034 	 * comparable migratability as our allocation, claim the whole block.
2035 	 */
2036 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2037 			page_group_by_mobility_disabled)
2038 		set_pageblock_migratetype(page, start_type);
2039 
2040 	return;
2041 
2042 single_page:
2043 	area = &zone->free_area[current_order];
2044 	list_move(&page->lru, &area->free_list[start_type]);
2045 }
2046 
2047 /*
2048  * Check whether there is a suitable fallback freepage with requested order.
2049  * If only_stealable is true, this function returns fallback_mt only if
2050  * we can steal other freepages all together. This would help to reduce
2051  * fragmentation due to mixed migratetype pages in one pageblock.
2052  */
2053 int find_suitable_fallback(struct free_area *area, unsigned int order,
2054 			int migratetype, bool only_stealable, bool *can_steal)
2055 {
2056 	int i;
2057 	int fallback_mt;
2058 
2059 	if (area->nr_free == 0)
2060 		return -1;
2061 
2062 	*can_steal = false;
2063 	for (i = 0;; i++) {
2064 		fallback_mt = fallbacks[migratetype][i];
2065 		if (fallback_mt == MIGRATE_TYPES)
2066 			break;
2067 
2068 		if (list_empty(&area->free_list[fallback_mt]))
2069 			continue;
2070 
2071 		if (can_steal_fallback(order, migratetype))
2072 			*can_steal = true;
2073 
2074 		if (!only_stealable)
2075 			return fallback_mt;
2076 
2077 		if (*can_steal)
2078 			return fallback_mt;
2079 	}
2080 
2081 	return -1;
2082 }
2083 
2084 /*
2085  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2086  * there are no empty page blocks that contain a page with a suitable order
2087  */
2088 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2089 				unsigned int alloc_order)
2090 {
2091 	int mt;
2092 	unsigned long max_managed, flags;
2093 
2094 	/*
2095 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2096 	 * Check is race-prone but harmless.
2097 	 */
2098 	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2099 	if (zone->nr_reserved_highatomic >= max_managed)
2100 		return;
2101 
2102 	spin_lock_irqsave(&zone->lock, flags);
2103 
2104 	/* Recheck the nr_reserved_highatomic limit under the lock */
2105 	if (zone->nr_reserved_highatomic >= max_managed)
2106 		goto out_unlock;
2107 
2108 	/* Yoink! */
2109 	mt = get_pageblock_migratetype(page);
2110 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2111 	    && !is_migrate_cma(mt)) {
2112 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2113 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2114 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2115 	}
2116 
2117 out_unlock:
2118 	spin_unlock_irqrestore(&zone->lock, flags);
2119 }
2120 
2121 /*
2122  * Used when an allocation is about to fail under memory pressure. This
2123  * potentially hurts the reliability of high-order allocations when under
2124  * intense memory pressure but failed atomic allocations should be easier
2125  * to recover from than an OOM.
2126  *
2127  * If @force is true, try to unreserve a pageblock even though highatomic
2128  * pageblock is exhausted.
2129  */
2130 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2131 						bool force)
2132 {
2133 	struct zonelist *zonelist = ac->zonelist;
2134 	unsigned long flags;
2135 	struct zoneref *z;
2136 	struct zone *zone;
2137 	struct page *page;
2138 	int order;
2139 	bool ret;
2140 
2141 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2142 								ac->nodemask) {
2143 		/*
2144 		 * Preserve at least one pageblock unless memory pressure
2145 		 * is really high.
2146 		 */
2147 		if (!force && zone->nr_reserved_highatomic <=
2148 					pageblock_nr_pages)
2149 			continue;
2150 
2151 		spin_lock_irqsave(&zone->lock, flags);
2152 		for (order = 0; order < MAX_ORDER; order++) {
2153 			struct free_area *area = &(zone->free_area[order]);
2154 
2155 			page = list_first_entry_or_null(
2156 					&area->free_list[MIGRATE_HIGHATOMIC],
2157 					struct page, lru);
2158 			if (!page)
2159 				continue;
2160 
2161 			/*
2162 			 * In page freeing path, migratetype change is racy so
2163 			 * we can counter several free pages in a pageblock
2164 			 * in this loop althoug we changed the pageblock type
2165 			 * from highatomic to ac->migratetype. So we should
2166 			 * adjust the count once.
2167 			 */
2168 			if (is_migrate_highatomic_page(page)) {
2169 				/*
2170 				 * It should never happen but changes to
2171 				 * locking could inadvertently allow a per-cpu
2172 				 * drain to add pages to MIGRATE_HIGHATOMIC
2173 				 * while unreserving so be safe and watch for
2174 				 * underflows.
2175 				 */
2176 				zone->nr_reserved_highatomic -= min(
2177 						pageblock_nr_pages,
2178 						zone->nr_reserved_highatomic);
2179 			}
2180 
2181 			/*
2182 			 * Convert to ac->migratetype and avoid the normal
2183 			 * pageblock stealing heuristics. Minimally, the caller
2184 			 * is doing the work and needs the pages. More
2185 			 * importantly, if the block was always converted to
2186 			 * MIGRATE_UNMOVABLE or another type then the number
2187 			 * of pageblocks that cannot be completely freed
2188 			 * may increase.
2189 			 */
2190 			set_pageblock_migratetype(page, ac->migratetype);
2191 			ret = move_freepages_block(zone, page, ac->migratetype,
2192 									NULL);
2193 			if (ret) {
2194 				spin_unlock_irqrestore(&zone->lock, flags);
2195 				return ret;
2196 			}
2197 		}
2198 		spin_unlock_irqrestore(&zone->lock, flags);
2199 	}
2200 
2201 	return false;
2202 }
2203 
2204 /*
2205  * Try finding a free buddy page on the fallback list and put it on the free
2206  * list of requested migratetype, possibly along with other pages from the same
2207  * block, depending on fragmentation avoidance heuristics. Returns true if
2208  * fallback was found so that __rmqueue_smallest() can grab it.
2209  *
2210  * The use of signed ints for order and current_order is a deliberate
2211  * deviation from the rest of this file, to make the for loop
2212  * condition simpler.
2213  */
2214 static inline bool
2215 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2216 {
2217 	struct free_area *area;
2218 	int current_order;
2219 	struct page *page;
2220 	int fallback_mt;
2221 	bool can_steal;
2222 
2223 	/*
2224 	 * Find the largest available free page in the other list. This roughly
2225 	 * approximates finding the pageblock with the most free pages, which
2226 	 * would be too costly to do exactly.
2227 	 */
2228 	for (current_order = MAX_ORDER - 1; current_order >= order;
2229 				--current_order) {
2230 		area = &(zone->free_area[current_order]);
2231 		fallback_mt = find_suitable_fallback(area, current_order,
2232 				start_migratetype, false, &can_steal);
2233 		if (fallback_mt == -1)
2234 			continue;
2235 
2236 		/*
2237 		 * We cannot steal all free pages from the pageblock and the
2238 		 * requested migratetype is movable. In that case it's better to
2239 		 * steal and split the smallest available page instead of the
2240 		 * largest available page, because even if the next movable
2241 		 * allocation falls back into a different pageblock than this
2242 		 * one, it won't cause permanent fragmentation.
2243 		 */
2244 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2245 					&& current_order > order)
2246 			goto find_smallest;
2247 
2248 		goto do_steal;
2249 	}
2250 
2251 	return false;
2252 
2253 find_smallest:
2254 	for (current_order = order; current_order < MAX_ORDER;
2255 							current_order++) {
2256 		area = &(zone->free_area[current_order]);
2257 		fallback_mt = find_suitable_fallback(area, current_order,
2258 				start_migratetype, false, &can_steal);
2259 		if (fallback_mt != -1)
2260 			break;
2261 	}
2262 
2263 	/*
2264 	 * This should not happen - we already found a suitable fallback
2265 	 * when looking for the largest page.
2266 	 */
2267 	VM_BUG_ON(current_order == MAX_ORDER);
2268 
2269 do_steal:
2270 	page = list_first_entry(&area->free_list[fallback_mt],
2271 							struct page, lru);
2272 
2273 	steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2274 
2275 	trace_mm_page_alloc_extfrag(page, order, current_order,
2276 		start_migratetype, fallback_mt);
2277 
2278 	return true;
2279 
2280 }
2281 
2282 /*
2283  * Do the hard work of removing an element from the buddy allocator.
2284  * Call me with the zone->lock already held.
2285  */
2286 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2287 				int migratetype)
2288 {
2289 	struct page *page;
2290 
2291 retry:
2292 	page = __rmqueue_smallest(zone, order, migratetype);
2293 	if (unlikely(!page)) {
2294 		if (migratetype == MIGRATE_MOVABLE)
2295 			page = __rmqueue_cma_fallback(zone, order);
2296 
2297 		if (!page && __rmqueue_fallback(zone, order, migratetype))
2298 			goto retry;
2299 	}
2300 
2301 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2302 	return page;
2303 }
2304 
2305 /*
2306  * Obtain a specified number of elements from the buddy allocator, all under
2307  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2308  * Returns the number of new pages which were placed at *list.
2309  */
2310 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2311 			unsigned long count, struct list_head *list,
2312 			int migratetype, bool cold)
2313 {
2314 	int i, alloced = 0;
2315 
2316 	spin_lock(&zone->lock);
2317 	for (i = 0; i < count; ++i) {
2318 		struct page *page = __rmqueue(zone, order, migratetype);
2319 		if (unlikely(page == NULL))
2320 			break;
2321 
2322 		if (unlikely(check_pcp_refill(page)))
2323 			continue;
2324 
2325 		/*
2326 		 * Split buddy pages returned by expand() are received here
2327 		 * in physical page order. The page is added to the callers and
2328 		 * list and the list head then moves forward. From the callers
2329 		 * perspective, the linked list is ordered by page number in
2330 		 * some conditions. This is useful for IO devices that can
2331 		 * merge IO requests if the physical pages are ordered
2332 		 * properly.
2333 		 */
2334 		if (likely(!cold))
2335 			list_add(&page->lru, list);
2336 		else
2337 			list_add_tail(&page->lru, list);
2338 		list = &page->lru;
2339 		alloced++;
2340 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2341 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2342 					      -(1 << order));
2343 	}
2344 
2345 	/*
2346 	 * i pages were removed from the buddy list even if some leak due
2347 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2348 	 * on i. Do not confuse with 'alloced' which is the number of
2349 	 * pages added to the pcp list.
2350 	 */
2351 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2352 	spin_unlock(&zone->lock);
2353 	return alloced;
2354 }
2355 
2356 #ifdef CONFIG_NUMA
2357 /*
2358  * Called from the vmstat counter updater to drain pagesets of this
2359  * currently executing processor on remote nodes after they have
2360  * expired.
2361  *
2362  * Note that this function must be called with the thread pinned to
2363  * a single processor.
2364  */
2365 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2366 {
2367 	unsigned long flags;
2368 	int to_drain, batch;
2369 
2370 	local_irq_save(flags);
2371 	batch = READ_ONCE(pcp->batch);
2372 	to_drain = min(pcp->count, batch);
2373 	if (to_drain > 0) {
2374 		free_pcppages_bulk(zone, to_drain, pcp);
2375 		pcp->count -= to_drain;
2376 	}
2377 	local_irq_restore(flags);
2378 }
2379 #endif
2380 
2381 /*
2382  * Drain pcplists of the indicated processor and zone.
2383  *
2384  * The processor must either be the current processor and the
2385  * thread pinned to the current processor or a processor that
2386  * is not online.
2387  */
2388 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2389 {
2390 	unsigned long flags;
2391 	struct per_cpu_pageset *pset;
2392 	struct per_cpu_pages *pcp;
2393 
2394 	local_irq_save(flags);
2395 	pset = per_cpu_ptr(zone->pageset, cpu);
2396 
2397 	pcp = &pset->pcp;
2398 	if (pcp->count) {
2399 		free_pcppages_bulk(zone, pcp->count, pcp);
2400 		pcp->count = 0;
2401 	}
2402 	local_irq_restore(flags);
2403 }
2404 
2405 /*
2406  * Drain pcplists of all zones on the indicated processor.
2407  *
2408  * The processor must either be the current processor and the
2409  * thread pinned to the current processor or a processor that
2410  * is not online.
2411  */
2412 static void drain_pages(unsigned int cpu)
2413 {
2414 	struct zone *zone;
2415 
2416 	for_each_populated_zone(zone) {
2417 		drain_pages_zone(cpu, zone);
2418 	}
2419 }
2420 
2421 /*
2422  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2423  *
2424  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2425  * the single zone's pages.
2426  */
2427 void drain_local_pages(struct zone *zone)
2428 {
2429 	int cpu = smp_processor_id();
2430 
2431 	if (zone)
2432 		drain_pages_zone(cpu, zone);
2433 	else
2434 		drain_pages(cpu);
2435 }
2436 
2437 static void drain_local_pages_wq(struct work_struct *work)
2438 {
2439 	/*
2440 	 * drain_all_pages doesn't use proper cpu hotplug protection so
2441 	 * we can race with cpu offline when the WQ can move this from
2442 	 * a cpu pinned worker to an unbound one. We can operate on a different
2443 	 * cpu which is allright but we also have to make sure to not move to
2444 	 * a different one.
2445 	 */
2446 	preempt_disable();
2447 	drain_local_pages(NULL);
2448 	preempt_enable();
2449 }
2450 
2451 /*
2452  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2453  *
2454  * When zone parameter is non-NULL, spill just the single zone's pages.
2455  *
2456  * Note that this can be extremely slow as the draining happens in a workqueue.
2457  */
2458 void drain_all_pages(struct zone *zone)
2459 {
2460 	int cpu;
2461 
2462 	/*
2463 	 * Allocate in the BSS so we wont require allocation in
2464 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2465 	 */
2466 	static cpumask_t cpus_with_pcps;
2467 
2468 	/*
2469 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
2470 	 * initialized.
2471 	 */
2472 	if (WARN_ON_ONCE(!mm_percpu_wq))
2473 		return;
2474 
2475 	/* Workqueues cannot recurse */
2476 	if (current->flags & PF_WQ_WORKER)
2477 		return;
2478 
2479 	/*
2480 	 * Do not drain if one is already in progress unless it's specific to
2481 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2482 	 * the drain to be complete when the call returns.
2483 	 */
2484 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2485 		if (!zone)
2486 			return;
2487 		mutex_lock(&pcpu_drain_mutex);
2488 	}
2489 
2490 	/*
2491 	 * We don't care about racing with CPU hotplug event
2492 	 * as offline notification will cause the notified
2493 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2494 	 * disables preemption as part of its processing
2495 	 */
2496 	for_each_online_cpu(cpu) {
2497 		struct per_cpu_pageset *pcp;
2498 		struct zone *z;
2499 		bool has_pcps = false;
2500 
2501 		if (zone) {
2502 			pcp = per_cpu_ptr(zone->pageset, cpu);
2503 			if (pcp->pcp.count)
2504 				has_pcps = true;
2505 		} else {
2506 			for_each_populated_zone(z) {
2507 				pcp = per_cpu_ptr(z->pageset, cpu);
2508 				if (pcp->pcp.count) {
2509 					has_pcps = true;
2510 					break;
2511 				}
2512 			}
2513 		}
2514 
2515 		if (has_pcps)
2516 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2517 		else
2518 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2519 	}
2520 
2521 	for_each_cpu(cpu, &cpus_with_pcps) {
2522 		struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2523 		INIT_WORK(work, drain_local_pages_wq);
2524 		queue_work_on(cpu, mm_percpu_wq, work);
2525 	}
2526 	for_each_cpu(cpu, &cpus_with_pcps)
2527 		flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2528 
2529 	mutex_unlock(&pcpu_drain_mutex);
2530 }
2531 
2532 #ifdef CONFIG_HIBERNATION
2533 
2534 void mark_free_pages(struct zone *zone)
2535 {
2536 	unsigned long pfn, max_zone_pfn;
2537 	unsigned long flags;
2538 	unsigned int order, t;
2539 	struct page *page;
2540 
2541 	if (zone_is_empty(zone))
2542 		return;
2543 
2544 	spin_lock_irqsave(&zone->lock, flags);
2545 
2546 	max_zone_pfn = zone_end_pfn(zone);
2547 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2548 		if (pfn_valid(pfn)) {
2549 			page = pfn_to_page(pfn);
2550 
2551 			if (page_zone(page) != zone)
2552 				continue;
2553 
2554 			if (!swsusp_page_is_forbidden(page))
2555 				swsusp_unset_page_free(page);
2556 		}
2557 
2558 	for_each_migratetype_order(order, t) {
2559 		list_for_each_entry(page,
2560 				&zone->free_area[order].free_list[t], lru) {
2561 			unsigned long i;
2562 
2563 			pfn = page_to_pfn(page);
2564 			for (i = 0; i < (1UL << order); i++)
2565 				swsusp_set_page_free(pfn_to_page(pfn + i));
2566 		}
2567 	}
2568 	spin_unlock_irqrestore(&zone->lock, flags);
2569 }
2570 #endif /* CONFIG_PM */
2571 
2572 /*
2573  * Free a 0-order page
2574  * cold == true ? free a cold page : free a hot page
2575  */
2576 void free_hot_cold_page(struct page *page, bool cold)
2577 {
2578 	struct zone *zone = page_zone(page);
2579 	struct per_cpu_pages *pcp;
2580 	unsigned long flags;
2581 	unsigned long pfn = page_to_pfn(page);
2582 	int migratetype;
2583 
2584 	if (!free_pcp_prepare(page))
2585 		return;
2586 
2587 	migratetype = get_pfnblock_migratetype(page, pfn);
2588 	set_pcppage_migratetype(page, migratetype);
2589 	local_irq_save(flags);
2590 	__count_vm_event(PGFREE);
2591 
2592 	/*
2593 	 * We only track unmovable, reclaimable and movable on pcp lists.
2594 	 * Free ISOLATE pages back to the allocator because they are being
2595 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2596 	 * areas back if necessary. Otherwise, we may have to free
2597 	 * excessively into the page allocator
2598 	 */
2599 	if (migratetype >= MIGRATE_PCPTYPES) {
2600 		if (unlikely(is_migrate_isolate(migratetype))) {
2601 			free_one_page(zone, page, pfn, 0, migratetype);
2602 			goto out;
2603 		}
2604 		migratetype = MIGRATE_MOVABLE;
2605 	}
2606 
2607 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2608 	if (!cold)
2609 		list_add(&page->lru, &pcp->lists[migratetype]);
2610 	else
2611 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
2612 	pcp->count++;
2613 	if (pcp->count >= pcp->high) {
2614 		unsigned long batch = READ_ONCE(pcp->batch);
2615 		free_pcppages_bulk(zone, batch, pcp);
2616 		pcp->count -= batch;
2617 	}
2618 
2619 out:
2620 	local_irq_restore(flags);
2621 }
2622 
2623 /*
2624  * Free a list of 0-order pages
2625  */
2626 void free_hot_cold_page_list(struct list_head *list, bool cold)
2627 {
2628 	struct page *page, *next;
2629 
2630 	list_for_each_entry_safe(page, next, list, lru) {
2631 		trace_mm_page_free_batched(page, cold);
2632 		free_hot_cold_page(page, cold);
2633 	}
2634 }
2635 
2636 /*
2637  * split_page takes a non-compound higher-order page, and splits it into
2638  * n (1<<order) sub-pages: page[0..n]
2639  * Each sub-page must be freed individually.
2640  *
2641  * Note: this is probably too low level an operation for use in drivers.
2642  * Please consult with lkml before using this in your driver.
2643  */
2644 void split_page(struct page *page, unsigned int order)
2645 {
2646 	int i;
2647 
2648 	VM_BUG_ON_PAGE(PageCompound(page), page);
2649 	VM_BUG_ON_PAGE(!page_count(page), page);
2650 
2651 #ifdef CONFIG_KMEMCHECK
2652 	/*
2653 	 * Split shadow pages too, because free(page[0]) would
2654 	 * otherwise free the whole shadow.
2655 	 */
2656 	if (kmemcheck_page_is_tracked(page))
2657 		split_page(virt_to_page(page[0].shadow), order);
2658 #endif
2659 
2660 	for (i = 1; i < (1 << order); i++)
2661 		set_page_refcounted(page + i);
2662 	split_page_owner(page, order);
2663 }
2664 EXPORT_SYMBOL_GPL(split_page);
2665 
2666 int __isolate_free_page(struct page *page, unsigned int order)
2667 {
2668 	unsigned long watermark;
2669 	struct zone *zone;
2670 	int mt;
2671 
2672 	BUG_ON(!PageBuddy(page));
2673 
2674 	zone = page_zone(page);
2675 	mt = get_pageblock_migratetype(page);
2676 
2677 	if (!is_migrate_isolate(mt)) {
2678 		/*
2679 		 * Obey watermarks as if the page was being allocated. We can
2680 		 * emulate a high-order watermark check with a raised order-0
2681 		 * watermark, because we already know our high-order page
2682 		 * exists.
2683 		 */
2684 		watermark = min_wmark_pages(zone) + (1UL << order);
2685 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2686 			return 0;
2687 
2688 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2689 	}
2690 
2691 	/* Remove page from free list */
2692 	list_del(&page->lru);
2693 	zone->free_area[order].nr_free--;
2694 	rmv_page_order(page);
2695 
2696 	/*
2697 	 * Set the pageblock if the isolated page is at least half of a
2698 	 * pageblock
2699 	 */
2700 	if (order >= pageblock_order - 1) {
2701 		struct page *endpage = page + (1 << order) - 1;
2702 		for (; page < endpage; page += pageblock_nr_pages) {
2703 			int mt = get_pageblock_migratetype(page);
2704 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2705 			    && !is_migrate_highatomic(mt))
2706 				set_pageblock_migratetype(page,
2707 							  MIGRATE_MOVABLE);
2708 		}
2709 	}
2710 
2711 
2712 	return 1UL << order;
2713 }
2714 
2715 /*
2716  * Update NUMA hit/miss statistics
2717  *
2718  * Must be called with interrupts disabled.
2719  */
2720 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2721 {
2722 #ifdef CONFIG_NUMA
2723 	enum zone_stat_item local_stat = NUMA_LOCAL;
2724 
2725 	if (z->node != numa_node_id())
2726 		local_stat = NUMA_OTHER;
2727 
2728 	if (z->node == preferred_zone->node)
2729 		__inc_zone_state(z, NUMA_HIT);
2730 	else {
2731 		__inc_zone_state(z, NUMA_MISS);
2732 		__inc_zone_state(preferred_zone, NUMA_FOREIGN);
2733 	}
2734 	__inc_zone_state(z, local_stat);
2735 #endif
2736 }
2737 
2738 /* Remove page from the per-cpu list, caller must protect the list */
2739 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2740 			bool cold, struct per_cpu_pages *pcp,
2741 			struct list_head *list)
2742 {
2743 	struct page *page;
2744 
2745 	do {
2746 		if (list_empty(list)) {
2747 			pcp->count += rmqueue_bulk(zone, 0,
2748 					pcp->batch, list,
2749 					migratetype, cold);
2750 			if (unlikely(list_empty(list)))
2751 				return NULL;
2752 		}
2753 
2754 		if (cold)
2755 			page = list_last_entry(list, struct page, lru);
2756 		else
2757 			page = list_first_entry(list, struct page, lru);
2758 
2759 		list_del(&page->lru);
2760 		pcp->count--;
2761 	} while (check_new_pcp(page));
2762 
2763 	return page;
2764 }
2765 
2766 /* Lock and remove page from the per-cpu list */
2767 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2768 			struct zone *zone, unsigned int order,
2769 			gfp_t gfp_flags, int migratetype)
2770 {
2771 	struct per_cpu_pages *pcp;
2772 	struct list_head *list;
2773 	bool cold = ((gfp_flags & __GFP_COLD) != 0);
2774 	struct page *page;
2775 	unsigned long flags;
2776 
2777 	local_irq_save(flags);
2778 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2779 	list = &pcp->lists[migratetype];
2780 	page = __rmqueue_pcplist(zone,  migratetype, cold, pcp, list);
2781 	if (page) {
2782 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2783 		zone_statistics(preferred_zone, zone);
2784 	}
2785 	local_irq_restore(flags);
2786 	return page;
2787 }
2788 
2789 /*
2790  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2791  */
2792 static inline
2793 struct page *rmqueue(struct zone *preferred_zone,
2794 			struct zone *zone, unsigned int order,
2795 			gfp_t gfp_flags, unsigned int alloc_flags,
2796 			int migratetype)
2797 {
2798 	unsigned long flags;
2799 	struct page *page;
2800 
2801 	if (likely(order == 0)) {
2802 		page = rmqueue_pcplist(preferred_zone, zone, order,
2803 				gfp_flags, migratetype);
2804 		goto out;
2805 	}
2806 
2807 	/*
2808 	 * We most definitely don't want callers attempting to
2809 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
2810 	 */
2811 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2812 	spin_lock_irqsave(&zone->lock, flags);
2813 
2814 	do {
2815 		page = NULL;
2816 		if (alloc_flags & ALLOC_HARDER) {
2817 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2818 			if (page)
2819 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
2820 		}
2821 		if (!page)
2822 			page = __rmqueue(zone, order, migratetype);
2823 	} while (page && check_new_pages(page, order));
2824 	spin_unlock(&zone->lock);
2825 	if (!page)
2826 		goto failed;
2827 	__mod_zone_freepage_state(zone, -(1 << order),
2828 				  get_pcppage_migratetype(page));
2829 
2830 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2831 	zone_statistics(preferred_zone, zone);
2832 	local_irq_restore(flags);
2833 
2834 out:
2835 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2836 	return page;
2837 
2838 failed:
2839 	local_irq_restore(flags);
2840 	return NULL;
2841 }
2842 
2843 #ifdef CONFIG_FAIL_PAGE_ALLOC
2844 
2845 static struct {
2846 	struct fault_attr attr;
2847 
2848 	bool ignore_gfp_highmem;
2849 	bool ignore_gfp_reclaim;
2850 	u32 min_order;
2851 } fail_page_alloc = {
2852 	.attr = FAULT_ATTR_INITIALIZER,
2853 	.ignore_gfp_reclaim = true,
2854 	.ignore_gfp_highmem = true,
2855 	.min_order = 1,
2856 };
2857 
2858 static int __init setup_fail_page_alloc(char *str)
2859 {
2860 	return setup_fault_attr(&fail_page_alloc.attr, str);
2861 }
2862 __setup("fail_page_alloc=", setup_fail_page_alloc);
2863 
2864 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2865 {
2866 	if (order < fail_page_alloc.min_order)
2867 		return false;
2868 	if (gfp_mask & __GFP_NOFAIL)
2869 		return false;
2870 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2871 		return false;
2872 	if (fail_page_alloc.ignore_gfp_reclaim &&
2873 			(gfp_mask & __GFP_DIRECT_RECLAIM))
2874 		return false;
2875 
2876 	return should_fail(&fail_page_alloc.attr, 1 << order);
2877 }
2878 
2879 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2880 
2881 static int __init fail_page_alloc_debugfs(void)
2882 {
2883 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2884 	struct dentry *dir;
2885 
2886 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2887 					&fail_page_alloc.attr);
2888 	if (IS_ERR(dir))
2889 		return PTR_ERR(dir);
2890 
2891 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2892 				&fail_page_alloc.ignore_gfp_reclaim))
2893 		goto fail;
2894 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2895 				&fail_page_alloc.ignore_gfp_highmem))
2896 		goto fail;
2897 	if (!debugfs_create_u32("min-order", mode, dir,
2898 				&fail_page_alloc.min_order))
2899 		goto fail;
2900 
2901 	return 0;
2902 fail:
2903 	debugfs_remove_recursive(dir);
2904 
2905 	return -ENOMEM;
2906 }
2907 
2908 late_initcall(fail_page_alloc_debugfs);
2909 
2910 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2911 
2912 #else /* CONFIG_FAIL_PAGE_ALLOC */
2913 
2914 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2915 {
2916 	return false;
2917 }
2918 
2919 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2920 
2921 /*
2922  * Return true if free base pages are above 'mark'. For high-order checks it
2923  * will return true of the order-0 watermark is reached and there is at least
2924  * one free page of a suitable size. Checking now avoids taking the zone lock
2925  * to check in the allocation paths if no pages are free.
2926  */
2927 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2928 			 int classzone_idx, unsigned int alloc_flags,
2929 			 long free_pages)
2930 {
2931 	long min = mark;
2932 	int o;
2933 	const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2934 
2935 	/* free_pages may go negative - that's OK */
2936 	free_pages -= (1 << order) - 1;
2937 
2938 	if (alloc_flags & ALLOC_HIGH)
2939 		min -= min / 2;
2940 
2941 	/*
2942 	 * If the caller does not have rights to ALLOC_HARDER then subtract
2943 	 * the high-atomic reserves. This will over-estimate the size of the
2944 	 * atomic reserve but it avoids a search.
2945 	 */
2946 	if (likely(!alloc_harder))
2947 		free_pages -= z->nr_reserved_highatomic;
2948 	else
2949 		min -= min / 4;
2950 
2951 #ifdef CONFIG_CMA
2952 	/* If allocation can't use CMA areas don't use free CMA pages */
2953 	if (!(alloc_flags & ALLOC_CMA))
2954 		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2955 #endif
2956 
2957 	/*
2958 	 * Check watermarks for an order-0 allocation request. If these
2959 	 * are not met, then a high-order request also cannot go ahead
2960 	 * even if a suitable page happened to be free.
2961 	 */
2962 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2963 		return false;
2964 
2965 	/* If this is an order-0 request then the watermark is fine */
2966 	if (!order)
2967 		return true;
2968 
2969 	/* For a high-order request, check at least one suitable page is free */
2970 	for (o = order; o < MAX_ORDER; o++) {
2971 		struct free_area *area = &z->free_area[o];
2972 		int mt;
2973 
2974 		if (!area->nr_free)
2975 			continue;
2976 
2977 		if (alloc_harder)
2978 			return true;
2979 
2980 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2981 			if (!list_empty(&area->free_list[mt]))
2982 				return true;
2983 		}
2984 
2985 #ifdef CONFIG_CMA
2986 		if ((alloc_flags & ALLOC_CMA) &&
2987 		    !list_empty(&area->free_list[MIGRATE_CMA])) {
2988 			return true;
2989 		}
2990 #endif
2991 	}
2992 	return false;
2993 }
2994 
2995 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2996 		      int classzone_idx, unsigned int alloc_flags)
2997 {
2998 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2999 					zone_page_state(z, NR_FREE_PAGES));
3000 }
3001 
3002 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3003 		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3004 {
3005 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3006 	long cma_pages = 0;
3007 
3008 #ifdef CONFIG_CMA
3009 	/* If allocation can't use CMA areas don't use free CMA pages */
3010 	if (!(alloc_flags & ALLOC_CMA))
3011 		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3012 #endif
3013 
3014 	/*
3015 	 * Fast check for order-0 only. If this fails then the reserves
3016 	 * need to be calculated. There is a corner case where the check
3017 	 * passes but only the high-order atomic reserve are free. If
3018 	 * the caller is !atomic then it'll uselessly search the free
3019 	 * list. That corner case is then slower but it is harmless.
3020 	 */
3021 	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3022 		return true;
3023 
3024 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3025 					free_pages);
3026 }
3027 
3028 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3029 			unsigned long mark, int classzone_idx)
3030 {
3031 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3032 
3033 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3034 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3035 
3036 	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3037 								free_pages);
3038 }
3039 
3040 #ifdef CONFIG_NUMA
3041 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3042 {
3043 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3044 				RECLAIM_DISTANCE;
3045 }
3046 #else	/* CONFIG_NUMA */
3047 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3048 {
3049 	return true;
3050 }
3051 #endif	/* CONFIG_NUMA */
3052 
3053 /*
3054  * get_page_from_freelist goes through the zonelist trying to allocate
3055  * a page.
3056  */
3057 static struct page *
3058 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3059 						const struct alloc_context *ac)
3060 {
3061 	struct zoneref *z = ac->preferred_zoneref;
3062 	struct zone *zone;
3063 	struct pglist_data *last_pgdat_dirty_limit = NULL;
3064 
3065 	/*
3066 	 * Scan zonelist, looking for a zone with enough free.
3067 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3068 	 */
3069 	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3070 								ac->nodemask) {
3071 		struct page *page;
3072 		unsigned long mark;
3073 
3074 		if (cpusets_enabled() &&
3075 			(alloc_flags & ALLOC_CPUSET) &&
3076 			!__cpuset_zone_allowed(zone, gfp_mask))
3077 				continue;
3078 		/*
3079 		 * When allocating a page cache page for writing, we
3080 		 * want to get it from a node that is within its dirty
3081 		 * limit, such that no single node holds more than its
3082 		 * proportional share of globally allowed dirty pages.
3083 		 * The dirty limits take into account the node's
3084 		 * lowmem reserves and high watermark so that kswapd
3085 		 * should be able to balance it without having to
3086 		 * write pages from its LRU list.
3087 		 *
3088 		 * XXX: For now, allow allocations to potentially
3089 		 * exceed the per-node dirty limit in the slowpath
3090 		 * (spread_dirty_pages unset) before going into reclaim,
3091 		 * which is important when on a NUMA setup the allowed
3092 		 * nodes are together not big enough to reach the
3093 		 * global limit.  The proper fix for these situations
3094 		 * will require awareness of nodes in the
3095 		 * dirty-throttling and the flusher threads.
3096 		 */
3097 		if (ac->spread_dirty_pages) {
3098 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3099 				continue;
3100 
3101 			if (!node_dirty_ok(zone->zone_pgdat)) {
3102 				last_pgdat_dirty_limit = zone->zone_pgdat;
3103 				continue;
3104 			}
3105 		}
3106 
3107 		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3108 		if (!zone_watermark_fast(zone, order, mark,
3109 				       ac_classzone_idx(ac), alloc_flags)) {
3110 			int ret;
3111 
3112 			/* Checked here to keep the fast path fast */
3113 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3114 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3115 				goto try_this_zone;
3116 
3117 			if (node_reclaim_mode == 0 ||
3118 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3119 				continue;
3120 
3121 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3122 			switch (ret) {
3123 			case NODE_RECLAIM_NOSCAN:
3124 				/* did not scan */
3125 				continue;
3126 			case NODE_RECLAIM_FULL:
3127 				/* scanned but unreclaimable */
3128 				continue;
3129 			default:
3130 				/* did we reclaim enough */
3131 				if (zone_watermark_ok(zone, order, mark,
3132 						ac_classzone_idx(ac), alloc_flags))
3133 					goto try_this_zone;
3134 
3135 				continue;
3136 			}
3137 		}
3138 
3139 try_this_zone:
3140 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3141 				gfp_mask, alloc_flags, ac->migratetype);
3142 		if (page) {
3143 			prep_new_page(page, order, gfp_mask, alloc_flags);
3144 
3145 			/*
3146 			 * If this is a high-order atomic allocation then check
3147 			 * if the pageblock should be reserved for the future
3148 			 */
3149 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3150 				reserve_highatomic_pageblock(page, zone, order);
3151 
3152 			return page;
3153 		}
3154 	}
3155 
3156 	return NULL;
3157 }
3158 
3159 /*
3160  * Large machines with many possible nodes should not always dump per-node
3161  * meminfo in irq context.
3162  */
3163 static inline bool should_suppress_show_mem(void)
3164 {
3165 	bool ret = false;
3166 
3167 #if NODES_SHIFT > 8
3168 	ret = in_interrupt();
3169 #endif
3170 	return ret;
3171 }
3172 
3173 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3174 {
3175 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3176 	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3177 
3178 	if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3179 		return;
3180 
3181 	/*
3182 	 * This documents exceptions given to allocations in certain
3183 	 * contexts that are allowed to allocate outside current's set
3184 	 * of allowed nodes.
3185 	 */
3186 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3187 		if (test_thread_flag(TIF_MEMDIE) ||
3188 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3189 			filter &= ~SHOW_MEM_FILTER_NODES;
3190 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3191 		filter &= ~SHOW_MEM_FILTER_NODES;
3192 
3193 	show_mem(filter, nodemask);
3194 }
3195 
3196 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3197 {
3198 	struct va_format vaf;
3199 	va_list args;
3200 	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3201 				      DEFAULT_RATELIMIT_BURST);
3202 
3203 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3204 		return;
3205 
3206 	pr_warn("%s: ", current->comm);
3207 
3208 	va_start(args, fmt);
3209 	vaf.fmt = fmt;
3210 	vaf.va = &args;
3211 	pr_cont("%pV", &vaf);
3212 	va_end(args);
3213 
3214 	pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
3215 	if (nodemask)
3216 		pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
3217 	else
3218 		pr_cont("(null)\n");
3219 
3220 	cpuset_print_current_mems_allowed();
3221 
3222 	dump_stack();
3223 	warn_alloc_show_mem(gfp_mask, nodemask);
3224 }
3225 
3226 static inline struct page *
3227 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3228 			      unsigned int alloc_flags,
3229 			      const struct alloc_context *ac)
3230 {
3231 	struct page *page;
3232 
3233 	page = get_page_from_freelist(gfp_mask, order,
3234 			alloc_flags|ALLOC_CPUSET, ac);
3235 	/*
3236 	 * fallback to ignore cpuset restriction if our nodes
3237 	 * are depleted
3238 	 */
3239 	if (!page)
3240 		page = get_page_from_freelist(gfp_mask, order,
3241 				alloc_flags, ac);
3242 
3243 	return page;
3244 }
3245 
3246 static inline struct page *
3247 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3248 	const struct alloc_context *ac, unsigned long *did_some_progress)
3249 {
3250 	struct oom_control oc = {
3251 		.zonelist = ac->zonelist,
3252 		.nodemask = ac->nodemask,
3253 		.memcg = NULL,
3254 		.gfp_mask = gfp_mask,
3255 		.order = order,
3256 	};
3257 	struct page *page;
3258 
3259 	*did_some_progress = 0;
3260 
3261 	/*
3262 	 * Acquire the oom lock.  If that fails, somebody else is
3263 	 * making progress for us.
3264 	 */
3265 	if (!mutex_trylock(&oom_lock)) {
3266 		*did_some_progress = 1;
3267 		schedule_timeout_uninterruptible(1);
3268 		return NULL;
3269 	}
3270 
3271 	/*
3272 	 * Go through the zonelist yet one more time, keep very high watermark
3273 	 * here, this is only to catch a parallel oom killing, we must fail if
3274 	 * we're still under heavy pressure.
3275 	 */
3276 	page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3277 					ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3278 	if (page)
3279 		goto out;
3280 
3281 	/* Coredumps can quickly deplete all memory reserves */
3282 	if (current->flags & PF_DUMPCORE)
3283 		goto out;
3284 	/* The OOM killer will not help higher order allocs */
3285 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3286 		goto out;
3287 	/*
3288 	 * We have already exhausted all our reclaim opportunities without any
3289 	 * success so it is time to admit defeat. We will skip the OOM killer
3290 	 * because it is very likely that the caller has a more reasonable
3291 	 * fallback than shooting a random task.
3292 	 */
3293 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
3294 		goto out;
3295 	/* The OOM killer does not needlessly kill tasks for lowmem */
3296 	if (ac->high_zoneidx < ZONE_NORMAL)
3297 		goto out;
3298 	if (pm_suspended_storage())
3299 		goto out;
3300 	/*
3301 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3302 	 * other request to make a forward progress.
3303 	 * We are in an unfortunate situation where out_of_memory cannot
3304 	 * do much for this context but let's try it to at least get
3305 	 * access to memory reserved if the current task is killed (see
3306 	 * out_of_memory). Once filesystems are ready to handle allocation
3307 	 * failures more gracefully we should just bail out here.
3308 	 */
3309 
3310 	/* The OOM killer may not free memory on a specific node */
3311 	if (gfp_mask & __GFP_THISNODE)
3312 		goto out;
3313 
3314 	/* Exhausted what can be done so it's blamo time */
3315 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3316 		*did_some_progress = 1;
3317 
3318 		/*
3319 		 * Help non-failing allocations by giving them access to memory
3320 		 * reserves
3321 		 */
3322 		if (gfp_mask & __GFP_NOFAIL)
3323 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3324 					ALLOC_NO_WATERMARKS, ac);
3325 	}
3326 out:
3327 	mutex_unlock(&oom_lock);
3328 	return page;
3329 }
3330 
3331 /*
3332  * Maximum number of compaction retries wit a progress before OOM
3333  * killer is consider as the only way to move forward.
3334  */
3335 #define MAX_COMPACT_RETRIES 16
3336 
3337 #ifdef CONFIG_COMPACTION
3338 /* Try memory compaction for high-order allocations before reclaim */
3339 static struct page *
3340 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3341 		unsigned int alloc_flags, const struct alloc_context *ac,
3342 		enum compact_priority prio, enum compact_result *compact_result)
3343 {
3344 	struct page *page;
3345 	unsigned int noreclaim_flag;
3346 
3347 	if (!order)
3348 		return NULL;
3349 
3350 	noreclaim_flag = memalloc_noreclaim_save();
3351 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3352 									prio);
3353 	memalloc_noreclaim_restore(noreclaim_flag);
3354 
3355 	if (*compact_result <= COMPACT_INACTIVE)
3356 		return NULL;
3357 
3358 	/*
3359 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3360 	 * count a compaction stall
3361 	 */
3362 	count_vm_event(COMPACTSTALL);
3363 
3364 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3365 
3366 	if (page) {
3367 		struct zone *zone = page_zone(page);
3368 
3369 		zone->compact_blockskip_flush = false;
3370 		compaction_defer_reset(zone, order, true);
3371 		count_vm_event(COMPACTSUCCESS);
3372 		return page;
3373 	}
3374 
3375 	/*
3376 	 * It's bad if compaction run occurs and fails. The most likely reason
3377 	 * is that pages exist, but not enough to satisfy watermarks.
3378 	 */
3379 	count_vm_event(COMPACTFAIL);
3380 
3381 	cond_resched();
3382 
3383 	return NULL;
3384 }
3385 
3386 static inline bool
3387 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3388 		     enum compact_result compact_result,
3389 		     enum compact_priority *compact_priority,
3390 		     int *compaction_retries)
3391 {
3392 	int max_retries = MAX_COMPACT_RETRIES;
3393 	int min_priority;
3394 	bool ret = false;
3395 	int retries = *compaction_retries;
3396 	enum compact_priority priority = *compact_priority;
3397 
3398 	if (!order)
3399 		return false;
3400 
3401 	if (compaction_made_progress(compact_result))
3402 		(*compaction_retries)++;
3403 
3404 	/*
3405 	 * compaction considers all the zone as desperately out of memory
3406 	 * so it doesn't really make much sense to retry except when the
3407 	 * failure could be caused by insufficient priority
3408 	 */
3409 	if (compaction_failed(compact_result))
3410 		goto check_priority;
3411 
3412 	/*
3413 	 * make sure the compaction wasn't deferred or didn't bail out early
3414 	 * due to locks contention before we declare that we should give up.
3415 	 * But do not retry if the given zonelist is not suitable for
3416 	 * compaction.
3417 	 */
3418 	if (compaction_withdrawn(compact_result)) {
3419 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3420 		goto out;
3421 	}
3422 
3423 	/*
3424 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3425 	 * costly ones because they are de facto nofail and invoke OOM
3426 	 * killer to move on while costly can fail and users are ready
3427 	 * to cope with that. 1/4 retries is rather arbitrary but we
3428 	 * would need much more detailed feedback from compaction to
3429 	 * make a better decision.
3430 	 */
3431 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3432 		max_retries /= 4;
3433 	if (*compaction_retries <= max_retries) {
3434 		ret = true;
3435 		goto out;
3436 	}
3437 
3438 	/*
3439 	 * Make sure there are attempts at the highest priority if we exhausted
3440 	 * all retries or failed at the lower priorities.
3441 	 */
3442 check_priority:
3443 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3444 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3445 
3446 	if (*compact_priority > min_priority) {
3447 		(*compact_priority)--;
3448 		*compaction_retries = 0;
3449 		ret = true;
3450 	}
3451 out:
3452 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3453 	return ret;
3454 }
3455 #else
3456 static inline struct page *
3457 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3458 		unsigned int alloc_flags, const struct alloc_context *ac,
3459 		enum compact_priority prio, enum compact_result *compact_result)
3460 {
3461 	*compact_result = COMPACT_SKIPPED;
3462 	return NULL;
3463 }
3464 
3465 static inline bool
3466 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3467 		     enum compact_result compact_result,
3468 		     enum compact_priority *compact_priority,
3469 		     int *compaction_retries)
3470 {
3471 	struct zone *zone;
3472 	struct zoneref *z;
3473 
3474 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3475 		return false;
3476 
3477 	/*
3478 	 * There are setups with compaction disabled which would prefer to loop
3479 	 * inside the allocator rather than hit the oom killer prematurely.
3480 	 * Let's give them a good hope and keep retrying while the order-0
3481 	 * watermarks are OK.
3482 	 */
3483 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3484 					ac->nodemask) {
3485 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3486 					ac_classzone_idx(ac), alloc_flags))
3487 			return true;
3488 	}
3489 	return false;
3490 }
3491 #endif /* CONFIG_COMPACTION */
3492 
3493 /* Perform direct synchronous page reclaim */
3494 static int
3495 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3496 					const struct alloc_context *ac)
3497 {
3498 	struct reclaim_state reclaim_state;
3499 	int progress;
3500 	unsigned int noreclaim_flag;
3501 
3502 	cond_resched();
3503 
3504 	/* We now go into synchronous reclaim */
3505 	cpuset_memory_pressure_bump();
3506 	noreclaim_flag = memalloc_noreclaim_save();
3507 	lockdep_set_current_reclaim_state(gfp_mask);
3508 	reclaim_state.reclaimed_slab = 0;
3509 	current->reclaim_state = &reclaim_state;
3510 
3511 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3512 								ac->nodemask);
3513 
3514 	current->reclaim_state = NULL;
3515 	lockdep_clear_current_reclaim_state();
3516 	memalloc_noreclaim_restore(noreclaim_flag);
3517 
3518 	cond_resched();
3519 
3520 	return progress;
3521 }
3522 
3523 /* The really slow allocator path where we enter direct reclaim */
3524 static inline struct page *
3525 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3526 		unsigned int alloc_flags, const struct alloc_context *ac,
3527 		unsigned long *did_some_progress)
3528 {
3529 	struct page *page = NULL;
3530 	bool drained = false;
3531 
3532 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3533 	if (unlikely(!(*did_some_progress)))
3534 		return NULL;
3535 
3536 retry:
3537 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3538 
3539 	/*
3540 	 * If an allocation failed after direct reclaim, it could be because
3541 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3542 	 * Shrink them them and try again
3543 	 */
3544 	if (!page && !drained) {
3545 		unreserve_highatomic_pageblock(ac, false);
3546 		drain_all_pages(NULL);
3547 		drained = true;
3548 		goto retry;
3549 	}
3550 
3551 	return page;
3552 }
3553 
3554 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3555 {
3556 	struct zoneref *z;
3557 	struct zone *zone;
3558 	pg_data_t *last_pgdat = NULL;
3559 
3560 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3561 					ac->high_zoneidx, ac->nodemask) {
3562 		if (last_pgdat != zone->zone_pgdat)
3563 			wakeup_kswapd(zone, order, ac->high_zoneidx);
3564 		last_pgdat = zone->zone_pgdat;
3565 	}
3566 }
3567 
3568 static inline unsigned int
3569 gfp_to_alloc_flags(gfp_t gfp_mask)
3570 {
3571 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3572 
3573 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3574 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3575 
3576 	/*
3577 	 * The caller may dip into page reserves a bit more if the caller
3578 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3579 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3580 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3581 	 */
3582 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3583 
3584 	if (gfp_mask & __GFP_ATOMIC) {
3585 		/*
3586 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3587 		 * if it can't schedule.
3588 		 */
3589 		if (!(gfp_mask & __GFP_NOMEMALLOC))
3590 			alloc_flags |= ALLOC_HARDER;
3591 		/*
3592 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3593 		 * comment for __cpuset_node_allowed().
3594 		 */
3595 		alloc_flags &= ~ALLOC_CPUSET;
3596 	} else if (unlikely(rt_task(current)) && !in_interrupt())
3597 		alloc_flags |= ALLOC_HARDER;
3598 
3599 #ifdef CONFIG_CMA
3600 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3601 		alloc_flags |= ALLOC_CMA;
3602 #endif
3603 	return alloc_flags;
3604 }
3605 
3606 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3607 {
3608 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3609 		return false;
3610 
3611 	if (gfp_mask & __GFP_MEMALLOC)
3612 		return true;
3613 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3614 		return true;
3615 	if (!in_interrupt() &&
3616 			((current->flags & PF_MEMALLOC) ||
3617 			 unlikely(test_thread_flag(TIF_MEMDIE))))
3618 		return true;
3619 
3620 	return false;
3621 }
3622 
3623 /*
3624  * Checks whether it makes sense to retry the reclaim to make a forward progress
3625  * for the given allocation request.
3626  *
3627  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3628  * without success, or when we couldn't even meet the watermark if we
3629  * reclaimed all remaining pages on the LRU lists.
3630  *
3631  * Returns true if a retry is viable or false to enter the oom path.
3632  */
3633 static inline bool
3634 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3635 		     struct alloc_context *ac, int alloc_flags,
3636 		     bool did_some_progress, int *no_progress_loops)
3637 {
3638 	struct zone *zone;
3639 	struct zoneref *z;
3640 
3641 	/*
3642 	 * Costly allocations might have made a progress but this doesn't mean
3643 	 * their order will become available due to high fragmentation so
3644 	 * always increment the no progress counter for them
3645 	 */
3646 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3647 		*no_progress_loops = 0;
3648 	else
3649 		(*no_progress_loops)++;
3650 
3651 	/*
3652 	 * Make sure we converge to OOM if we cannot make any progress
3653 	 * several times in the row.
3654 	 */
3655 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3656 		/* Before OOM, exhaust highatomic_reserve */
3657 		return unreserve_highatomic_pageblock(ac, true);
3658 	}
3659 
3660 	/*
3661 	 * Keep reclaiming pages while there is a chance this will lead
3662 	 * somewhere.  If none of the target zones can satisfy our allocation
3663 	 * request even if all reclaimable pages are considered then we are
3664 	 * screwed and have to go OOM.
3665 	 */
3666 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3667 					ac->nodemask) {
3668 		unsigned long available;
3669 		unsigned long reclaimable;
3670 		unsigned long min_wmark = min_wmark_pages(zone);
3671 		bool wmark;
3672 
3673 		available = reclaimable = zone_reclaimable_pages(zone);
3674 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3675 
3676 		/*
3677 		 * Would the allocation succeed if we reclaimed all
3678 		 * reclaimable pages?
3679 		 */
3680 		wmark = __zone_watermark_ok(zone, order, min_wmark,
3681 				ac_classzone_idx(ac), alloc_flags, available);
3682 		trace_reclaim_retry_zone(z, order, reclaimable,
3683 				available, min_wmark, *no_progress_loops, wmark);
3684 		if (wmark) {
3685 			/*
3686 			 * If we didn't make any progress and have a lot of
3687 			 * dirty + writeback pages then we should wait for
3688 			 * an IO to complete to slow down the reclaim and
3689 			 * prevent from pre mature OOM
3690 			 */
3691 			if (!did_some_progress) {
3692 				unsigned long write_pending;
3693 
3694 				write_pending = zone_page_state_snapshot(zone,
3695 							NR_ZONE_WRITE_PENDING);
3696 
3697 				if (2 * write_pending > reclaimable) {
3698 					congestion_wait(BLK_RW_ASYNC, HZ/10);
3699 					return true;
3700 				}
3701 			}
3702 
3703 			/*
3704 			 * Memory allocation/reclaim might be called from a WQ
3705 			 * context and the current implementation of the WQ
3706 			 * concurrency control doesn't recognize that
3707 			 * a particular WQ is congested if the worker thread is
3708 			 * looping without ever sleeping. Therefore we have to
3709 			 * do a short sleep here rather than calling
3710 			 * cond_resched().
3711 			 */
3712 			if (current->flags & PF_WQ_WORKER)
3713 				schedule_timeout_uninterruptible(1);
3714 			else
3715 				cond_resched();
3716 
3717 			return true;
3718 		}
3719 	}
3720 
3721 	return false;
3722 }
3723 
3724 static inline bool
3725 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3726 {
3727 	/*
3728 	 * It's possible that cpuset's mems_allowed and the nodemask from
3729 	 * mempolicy don't intersect. This should be normally dealt with by
3730 	 * policy_nodemask(), but it's possible to race with cpuset update in
3731 	 * such a way the check therein was true, and then it became false
3732 	 * before we got our cpuset_mems_cookie here.
3733 	 * This assumes that for all allocations, ac->nodemask can come only
3734 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3735 	 * when it does not intersect with the cpuset restrictions) or the
3736 	 * caller can deal with a violated nodemask.
3737 	 */
3738 	if (cpusets_enabled() && ac->nodemask &&
3739 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3740 		ac->nodemask = NULL;
3741 		return true;
3742 	}
3743 
3744 	/*
3745 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
3746 	 * possible to race with parallel threads in such a way that our
3747 	 * allocation can fail while the mask is being updated. If we are about
3748 	 * to fail, check if the cpuset changed during allocation and if so,
3749 	 * retry.
3750 	 */
3751 	if (read_mems_allowed_retry(cpuset_mems_cookie))
3752 		return true;
3753 
3754 	return false;
3755 }
3756 
3757 static inline struct page *
3758 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3759 						struct alloc_context *ac)
3760 {
3761 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3762 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3763 	struct page *page = NULL;
3764 	unsigned int alloc_flags;
3765 	unsigned long did_some_progress;
3766 	enum compact_priority compact_priority;
3767 	enum compact_result compact_result;
3768 	int compaction_retries;
3769 	int no_progress_loops;
3770 	unsigned long alloc_start = jiffies;
3771 	unsigned int stall_timeout = 10 * HZ;
3772 	unsigned int cpuset_mems_cookie;
3773 
3774 	/*
3775 	 * In the slowpath, we sanity check order to avoid ever trying to
3776 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3777 	 * be using allocators in order of preference for an area that is
3778 	 * too large.
3779 	 */
3780 	if (order >= MAX_ORDER) {
3781 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3782 		return NULL;
3783 	}
3784 
3785 	/*
3786 	 * We also sanity check to catch abuse of atomic reserves being used by
3787 	 * callers that are not in atomic context.
3788 	 */
3789 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3790 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3791 		gfp_mask &= ~__GFP_ATOMIC;
3792 
3793 retry_cpuset:
3794 	compaction_retries = 0;
3795 	no_progress_loops = 0;
3796 	compact_priority = DEF_COMPACT_PRIORITY;
3797 	cpuset_mems_cookie = read_mems_allowed_begin();
3798 
3799 	/*
3800 	 * The fast path uses conservative alloc_flags to succeed only until
3801 	 * kswapd needs to be woken up, and to avoid the cost of setting up
3802 	 * alloc_flags precisely. So we do that now.
3803 	 */
3804 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
3805 
3806 	/*
3807 	 * We need to recalculate the starting point for the zonelist iterator
3808 	 * because we might have used different nodemask in the fast path, or
3809 	 * there was a cpuset modification and we are retrying - otherwise we
3810 	 * could end up iterating over non-eligible zones endlessly.
3811 	 */
3812 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3813 					ac->high_zoneidx, ac->nodemask);
3814 	if (!ac->preferred_zoneref->zone)
3815 		goto nopage;
3816 
3817 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3818 		wake_all_kswapds(order, ac);
3819 
3820 	/*
3821 	 * The adjusted alloc_flags might result in immediate success, so try
3822 	 * that first
3823 	 */
3824 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3825 	if (page)
3826 		goto got_pg;
3827 
3828 	/*
3829 	 * For costly allocations, try direct compaction first, as it's likely
3830 	 * that we have enough base pages and don't need to reclaim. For non-
3831 	 * movable high-order allocations, do that as well, as compaction will
3832 	 * try prevent permanent fragmentation by migrating from blocks of the
3833 	 * same migratetype.
3834 	 * Don't try this for allocations that are allowed to ignore
3835 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
3836 	 */
3837 	if (can_direct_reclaim &&
3838 			(costly_order ||
3839 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
3840 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
3841 		page = __alloc_pages_direct_compact(gfp_mask, order,
3842 						alloc_flags, ac,
3843 						INIT_COMPACT_PRIORITY,
3844 						&compact_result);
3845 		if (page)
3846 			goto got_pg;
3847 
3848 		/*
3849 		 * Checks for costly allocations with __GFP_NORETRY, which
3850 		 * includes THP page fault allocations
3851 		 */
3852 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
3853 			/*
3854 			 * If compaction is deferred for high-order allocations,
3855 			 * it is because sync compaction recently failed. If
3856 			 * this is the case and the caller requested a THP
3857 			 * allocation, we do not want to heavily disrupt the
3858 			 * system, so we fail the allocation instead of entering
3859 			 * direct reclaim.
3860 			 */
3861 			if (compact_result == COMPACT_DEFERRED)
3862 				goto nopage;
3863 
3864 			/*
3865 			 * Looks like reclaim/compaction is worth trying, but
3866 			 * sync compaction could be very expensive, so keep
3867 			 * using async compaction.
3868 			 */
3869 			compact_priority = INIT_COMPACT_PRIORITY;
3870 		}
3871 	}
3872 
3873 retry:
3874 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3875 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3876 		wake_all_kswapds(order, ac);
3877 
3878 	if (gfp_pfmemalloc_allowed(gfp_mask))
3879 		alloc_flags = ALLOC_NO_WATERMARKS;
3880 
3881 	/*
3882 	 * Reset the zonelist iterators if memory policies can be ignored.
3883 	 * These allocations are high priority and system rather than user
3884 	 * orientated.
3885 	 */
3886 	if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
3887 		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3888 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3889 					ac->high_zoneidx, ac->nodemask);
3890 	}
3891 
3892 	/* Attempt with potentially adjusted zonelist and alloc_flags */
3893 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3894 	if (page)
3895 		goto got_pg;
3896 
3897 	/* Caller is not willing to reclaim, we can't balance anything */
3898 	if (!can_direct_reclaim)
3899 		goto nopage;
3900 
3901 	/* Make sure we know about allocations which stall for too long */
3902 	if (time_after(jiffies, alloc_start + stall_timeout)) {
3903 		warn_alloc(gfp_mask & ~__GFP_NOWARN, ac->nodemask,
3904 			"page allocation stalls for %ums, order:%u",
3905 			jiffies_to_msecs(jiffies-alloc_start), order);
3906 		stall_timeout += 10 * HZ;
3907 	}
3908 
3909 	/* Avoid recursion of direct reclaim */
3910 	if (current->flags & PF_MEMALLOC)
3911 		goto nopage;
3912 
3913 	/* Try direct reclaim and then allocating */
3914 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3915 							&did_some_progress);
3916 	if (page)
3917 		goto got_pg;
3918 
3919 	/* Try direct compaction and then allocating */
3920 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3921 					compact_priority, &compact_result);
3922 	if (page)
3923 		goto got_pg;
3924 
3925 	/* Do not loop if specifically requested */
3926 	if (gfp_mask & __GFP_NORETRY)
3927 		goto nopage;
3928 
3929 	/*
3930 	 * Do not retry costly high order allocations unless they are
3931 	 * __GFP_RETRY_MAYFAIL
3932 	 */
3933 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
3934 		goto nopage;
3935 
3936 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3937 				 did_some_progress > 0, &no_progress_loops))
3938 		goto retry;
3939 
3940 	/*
3941 	 * It doesn't make any sense to retry for the compaction if the order-0
3942 	 * reclaim is not able to make any progress because the current
3943 	 * implementation of the compaction depends on the sufficient amount
3944 	 * of free memory (see __compaction_suitable)
3945 	 */
3946 	if (did_some_progress > 0 &&
3947 			should_compact_retry(ac, order, alloc_flags,
3948 				compact_result, &compact_priority,
3949 				&compaction_retries))
3950 		goto retry;
3951 
3952 
3953 	/* Deal with possible cpuset update races before we start OOM killing */
3954 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
3955 		goto retry_cpuset;
3956 
3957 	/* Reclaim has failed us, start killing things */
3958 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3959 	if (page)
3960 		goto got_pg;
3961 
3962 	/* Avoid allocations with no watermarks from looping endlessly */
3963 	if (test_thread_flag(TIF_MEMDIE) &&
3964 	    (alloc_flags == ALLOC_NO_WATERMARKS ||
3965 	     (gfp_mask & __GFP_NOMEMALLOC)))
3966 		goto nopage;
3967 
3968 	/* Retry as long as the OOM killer is making progress */
3969 	if (did_some_progress) {
3970 		no_progress_loops = 0;
3971 		goto retry;
3972 	}
3973 
3974 nopage:
3975 	/* Deal with possible cpuset update races before we fail */
3976 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
3977 		goto retry_cpuset;
3978 
3979 	/*
3980 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
3981 	 * we always retry
3982 	 */
3983 	if (gfp_mask & __GFP_NOFAIL) {
3984 		/*
3985 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
3986 		 * of any new users that actually require GFP_NOWAIT
3987 		 */
3988 		if (WARN_ON_ONCE(!can_direct_reclaim))
3989 			goto fail;
3990 
3991 		/*
3992 		 * PF_MEMALLOC request from this context is rather bizarre
3993 		 * because we cannot reclaim anything and only can loop waiting
3994 		 * for somebody to do a work for us
3995 		 */
3996 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
3997 
3998 		/*
3999 		 * non failing costly orders are a hard requirement which we
4000 		 * are not prepared for much so let's warn about these users
4001 		 * so that we can identify them and convert them to something
4002 		 * else.
4003 		 */
4004 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4005 
4006 		/*
4007 		 * Help non-failing allocations by giving them access to memory
4008 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
4009 		 * could deplete whole memory reserves which would just make
4010 		 * the situation worse
4011 		 */
4012 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4013 		if (page)
4014 			goto got_pg;
4015 
4016 		cond_resched();
4017 		goto retry;
4018 	}
4019 fail:
4020 	warn_alloc(gfp_mask, ac->nodemask,
4021 			"page allocation failure: order:%u", order);
4022 got_pg:
4023 	return page;
4024 }
4025 
4026 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4027 		int preferred_nid, nodemask_t *nodemask,
4028 		struct alloc_context *ac, gfp_t *alloc_mask,
4029 		unsigned int *alloc_flags)
4030 {
4031 	ac->high_zoneidx = gfp_zone(gfp_mask);
4032 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4033 	ac->nodemask = nodemask;
4034 	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4035 
4036 	if (cpusets_enabled()) {
4037 		*alloc_mask |= __GFP_HARDWALL;
4038 		if (!ac->nodemask)
4039 			ac->nodemask = &cpuset_current_mems_allowed;
4040 		else
4041 			*alloc_flags |= ALLOC_CPUSET;
4042 	}
4043 
4044 	lockdep_trace_alloc(gfp_mask);
4045 
4046 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4047 
4048 	if (should_fail_alloc_page(gfp_mask, order))
4049 		return false;
4050 
4051 	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4052 		*alloc_flags |= ALLOC_CMA;
4053 
4054 	return true;
4055 }
4056 
4057 /* Determine whether to spread dirty pages and what the first usable zone */
4058 static inline void finalise_ac(gfp_t gfp_mask,
4059 		unsigned int order, struct alloc_context *ac)
4060 {
4061 	/* Dirty zone balancing only done in the fast path */
4062 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4063 
4064 	/*
4065 	 * The preferred zone is used for statistics but crucially it is
4066 	 * also used as the starting point for the zonelist iterator. It
4067 	 * may get reset for allocations that ignore memory policies.
4068 	 */
4069 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4070 					ac->high_zoneidx, ac->nodemask);
4071 }
4072 
4073 /*
4074  * This is the 'heart' of the zoned buddy allocator.
4075  */
4076 struct page *
4077 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4078 							nodemask_t *nodemask)
4079 {
4080 	struct page *page;
4081 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4082 	gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
4083 	struct alloc_context ac = { };
4084 
4085 	gfp_mask &= gfp_allowed_mask;
4086 	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4087 		return NULL;
4088 
4089 	finalise_ac(gfp_mask, order, &ac);
4090 
4091 	/* First allocation attempt */
4092 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4093 	if (likely(page))
4094 		goto out;
4095 
4096 	/*
4097 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4098 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4099 	 * from a particular context which has been marked by
4100 	 * memalloc_no{fs,io}_{save,restore}.
4101 	 */
4102 	alloc_mask = current_gfp_context(gfp_mask);
4103 	ac.spread_dirty_pages = false;
4104 
4105 	/*
4106 	 * Restore the original nodemask if it was potentially replaced with
4107 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4108 	 */
4109 	if (unlikely(ac.nodemask != nodemask))
4110 		ac.nodemask = nodemask;
4111 
4112 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4113 
4114 out:
4115 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4116 	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4117 		__free_pages(page, order);
4118 		page = NULL;
4119 	}
4120 
4121 	if (kmemcheck_enabled && page)
4122 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
4123 
4124 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4125 
4126 	return page;
4127 }
4128 EXPORT_SYMBOL(__alloc_pages_nodemask);
4129 
4130 /*
4131  * Common helper functions.
4132  */
4133 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4134 {
4135 	struct page *page;
4136 
4137 	/*
4138 	 * __get_free_pages() returns a 32-bit address, which cannot represent
4139 	 * a highmem page
4140 	 */
4141 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4142 
4143 	page = alloc_pages(gfp_mask, order);
4144 	if (!page)
4145 		return 0;
4146 	return (unsigned long) page_address(page);
4147 }
4148 EXPORT_SYMBOL(__get_free_pages);
4149 
4150 unsigned long get_zeroed_page(gfp_t gfp_mask)
4151 {
4152 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4153 }
4154 EXPORT_SYMBOL(get_zeroed_page);
4155 
4156 void __free_pages(struct page *page, unsigned int order)
4157 {
4158 	if (put_page_testzero(page)) {
4159 		if (order == 0)
4160 			free_hot_cold_page(page, false);
4161 		else
4162 			__free_pages_ok(page, order);
4163 	}
4164 }
4165 
4166 EXPORT_SYMBOL(__free_pages);
4167 
4168 void free_pages(unsigned long addr, unsigned int order)
4169 {
4170 	if (addr != 0) {
4171 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4172 		__free_pages(virt_to_page((void *)addr), order);
4173 	}
4174 }
4175 
4176 EXPORT_SYMBOL(free_pages);
4177 
4178 /*
4179  * Page Fragment:
4180  *  An arbitrary-length arbitrary-offset area of memory which resides
4181  *  within a 0 or higher order page.  Multiple fragments within that page
4182  *  are individually refcounted, in the page's reference counter.
4183  *
4184  * The page_frag functions below provide a simple allocation framework for
4185  * page fragments.  This is used by the network stack and network device
4186  * drivers to provide a backing region of memory for use as either an
4187  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4188  */
4189 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4190 					     gfp_t gfp_mask)
4191 {
4192 	struct page *page = NULL;
4193 	gfp_t gfp = gfp_mask;
4194 
4195 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4196 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4197 		    __GFP_NOMEMALLOC;
4198 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4199 				PAGE_FRAG_CACHE_MAX_ORDER);
4200 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4201 #endif
4202 	if (unlikely(!page))
4203 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4204 
4205 	nc->va = page ? page_address(page) : NULL;
4206 
4207 	return page;
4208 }
4209 
4210 void __page_frag_cache_drain(struct page *page, unsigned int count)
4211 {
4212 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4213 
4214 	if (page_ref_sub_and_test(page, count)) {
4215 		unsigned int order = compound_order(page);
4216 
4217 		if (order == 0)
4218 			free_hot_cold_page(page, false);
4219 		else
4220 			__free_pages_ok(page, order);
4221 	}
4222 }
4223 EXPORT_SYMBOL(__page_frag_cache_drain);
4224 
4225 void *page_frag_alloc(struct page_frag_cache *nc,
4226 		      unsigned int fragsz, gfp_t gfp_mask)
4227 {
4228 	unsigned int size = PAGE_SIZE;
4229 	struct page *page;
4230 	int offset;
4231 
4232 	if (unlikely(!nc->va)) {
4233 refill:
4234 		page = __page_frag_cache_refill(nc, gfp_mask);
4235 		if (!page)
4236 			return NULL;
4237 
4238 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4239 		/* if size can vary use size else just use PAGE_SIZE */
4240 		size = nc->size;
4241 #endif
4242 		/* Even if we own the page, we do not use atomic_set().
4243 		 * This would break get_page_unless_zero() users.
4244 		 */
4245 		page_ref_add(page, size - 1);
4246 
4247 		/* reset page count bias and offset to start of new frag */
4248 		nc->pfmemalloc = page_is_pfmemalloc(page);
4249 		nc->pagecnt_bias = size;
4250 		nc->offset = size;
4251 	}
4252 
4253 	offset = nc->offset - fragsz;
4254 	if (unlikely(offset < 0)) {
4255 		page = virt_to_page(nc->va);
4256 
4257 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4258 			goto refill;
4259 
4260 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4261 		/* if size can vary use size else just use PAGE_SIZE */
4262 		size = nc->size;
4263 #endif
4264 		/* OK, page count is 0, we can safely set it */
4265 		set_page_count(page, size);
4266 
4267 		/* reset page count bias and offset to start of new frag */
4268 		nc->pagecnt_bias = size;
4269 		offset = size - fragsz;
4270 	}
4271 
4272 	nc->pagecnt_bias--;
4273 	nc->offset = offset;
4274 
4275 	return nc->va + offset;
4276 }
4277 EXPORT_SYMBOL(page_frag_alloc);
4278 
4279 /*
4280  * Frees a page fragment allocated out of either a compound or order 0 page.
4281  */
4282 void page_frag_free(void *addr)
4283 {
4284 	struct page *page = virt_to_head_page(addr);
4285 
4286 	if (unlikely(put_page_testzero(page)))
4287 		__free_pages_ok(page, compound_order(page));
4288 }
4289 EXPORT_SYMBOL(page_frag_free);
4290 
4291 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4292 		size_t size)
4293 {
4294 	if (addr) {
4295 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
4296 		unsigned long used = addr + PAGE_ALIGN(size);
4297 
4298 		split_page(virt_to_page((void *)addr), order);
4299 		while (used < alloc_end) {
4300 			free_page(used);
4301 			used += PAGE_SIZE;
4302 		}
4303 	}
4304 	return (void *)addr;
4305 }
4306 
4307 /**
4308  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4309  * @size: the number of bytes to allocate
4310  * @gfp_mask: GFP flags for the allocation
4311  *
4312  * This function is similar to alloc_pages(), except that it allocates the
4313  * minimum number of pages to satisfy the request.  alloc_pages() can only
4314  * allocate memory in power-of-two pages.
4315  *
4316  * This function is also limited by MAX_ORDER.
4317  *
4318  * Memory allocated by this function must be released by free_pages_exact().
4319  */
4320 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4321 {
4322 	unsigned int order = get_order(size);
4323 	unsigned long addr;
4324 
4325 	addr = __get_free_pages(gfp_mask, order);
4326 	return make_alloc_exact(addr, order, size);
4327 }
4328 EXPORT_SYMBOL(alloc_pages_exact);
4329 
4330 /**
4331  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4332  *			   pages on a node.
4333  * @nid: the preferred node ID where memory should be allocated
4334  * @size: the number of bytes to allocate
4335  * @gfp_mask: GFP flags for the allocation
4336  *
4337  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4338  * back.
4339  */
4340 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4341 {
4342 	unsigned int order = get_order(size);
4343 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
4344 	if (!p)
4345 		return NULL;
4346 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4347 }
4348 
4349 /**
4350  * free_pages_exact - release memory allocated via alloc_pages_exact()
4351  * @virt: the value returned by alloc_pages_exact.
4352  * @size: size of allocation, same value as passed to alloc_pages_exact().
4353  *
4354  * Release the memory allocated by a previous call to alloc_pages_exact.
4355  */
4356 void free_pages_exact(void *virt, size_t size)
4357 {
4358 	unsigned long addr = (unsigned long)virt;
4359 	unsigned long end = addr + PAGE_ALIGN(size);
4360 
4361 	while (addr < end) {
4362 		free_page(addr);
4363 		addr += PAGE_SIZE;
4364 	}
4365 }
4366 EXPORT_SYMBOL(free_pages_exact);
4367 
4368 /**
4369  * nr_free_zone_pages - count number of pages beyond high watermark
4370  * @offset: The zone index of the highest zone
4371  *
4372  * nr_free_zone_pages() counts the number of counts pages which are beyond the
4373  * high watermark within all zones at or below a given zone index.  For each
4374  * zone, the number of pages is calculated as:
4375  *
4376  *     nr_free_zone_pages = managed_pages - high_pages
4377  */
4378 static unsigned long nr_free_zone_pages(int offset)
4379 {
4380 	struct zoneref *z;
4381 	struct zone *zone;
4382 
4383 	/* Just pick one node, since fallback list is circular */
4384 	unsigned long sum = 0;
4385 
4386 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4387 
4388 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4389 		unsigned long size = zone->managed_pages;
4390 		unsigned long high = high_wmark_pages(zone);
4391 		if (size > high)
4392 			sum += size - high;
4393 	}
4394 
4395 	return sum;
4396 }
4397 
4398 /**
4399  * nr_free_buffer_pages - count number of pages beyond high watermark
4400  *
4401  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4402  * watermark within ZONE_DMA and ZONE_NORMAL.
4403  */
4404 unsigned long nr_free_buffer_pages(void)
4405 {
4406 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4407 }
4408 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4409 
4410 /**
4411  * nr_free_pagecache_pages - count number of pages beyond high watermark
4412  *
4413  * nr_free_pagecache_pages() counts the number of pages which are beyond the
4414  * high watermark within all zones.
4415  */
4416 unsigned long nr_free_pagecache_pages(void)
4417 {
4418 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4419 }
4420 
4421 static inline void show_node(struct zone *zone)
4422 {
4423 	if (IS_ENABLED(CONFIG_NUMA))
4424 		printk("Node %d ", zone_to_nid(zone));
4425 }
4426 
4427 long si_mem_available(void)
4428 {
4429 	long available;
4430 	unsigned long pagecache;
4431 	unsigned long wmark_low = 0;
4432 	unsigned long pages[NR_LRU_LISTS];
4433 	struct zone *zone;
4434 	int lru;
4435 
4436 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4437 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4438 
4439 	for_each_zone(zone)
4440 		wmark_low += zone->watermark[WMARK_LOW];
4441 
4442 	/*
4443 	 * Estimate the amount of memory available for userspace allocations,
4444 	 * without causing swapping.
4445 	 */
4446 	available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4447 
4448 	/*
4449 	 * Not all the page cache can be freed, otherwise the system will
4450 	 * start swapping. Assume at least half of the page cache, or the
4451 	 * low watermark worth of cache, needs to stay.
4452 	 */
4453 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4454 	pagecache -= min(pagecache / 2, wmark_low);
4455 	available += pagecache;
4456 
4457 	/*
4458 	 * Part of the reclaimable slab consists of items that are in use,
4459 	 * and cannot be freed. Cap this estimate at the low watermark.
4460 	 */
4461 	available += global_page_state(NR_SLAB_RECLAIMABLE) -
4462 		     min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4463 
4464 	if (available < 0)
4465 		available = 0;
4466 	return available;
4467 }
4468 EXPORT_SYMBOL_GPL(si_mem_available);
4469 
4470 void si_meminfo(struct sysinfo *val)
4471 {
4472 	val->totalram = totalram_pages;
4473 	val->sharedram = global_node_page_state(NR_SHMEM);
4474 	val->freeram = global_page_state(NR_FREE_PAGES);
4475 	val->bufferram = nr_blockdev_pages();
4476 	val->totalhigh = totalhigh_pages;
4477 	val->freehigh = nr_free_highpages();
4478 	val->mem_unit = PAGE_SIZE;
4479 }
4480 
4481 EXPORT_SYMBOL(si_meminfo);
4482 
4483 #ifdef CONFIG_NUMA
4484 void si_meminfo_node(struct sysinfo *val, int nid)
4485 {
4486 	int zone_type;		/* needs to be signed */
4487 	unsigned long managed_pages = 0;
4488 	unsigned long managed_highpages = 0;
4489 	unsigned long free_highpages = 0;
4490 	pg_data_t *pgdat = NODE_DATA(nid);
4491 
4492 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4493 		managed_pages += pgdat->node_zones[zone_type].managed_pages;
4494 	val->totalram = managed_pages;
4495 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
4496 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4497 #ifdef CONFIG_HIGHMEM
4498 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4499 		struct zone *zone = &pgdat->node_zones[zone_type];
4500 
4501 		if (is_highmem(zone)) {
4502 			managed_highpages += zone->managed_pages;
4503 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4504 		}
4505 	}
4506 	val->totalhigh = managed_highpages;
4507 	val->freehigh = free_highpages;
4508 #else
4509 	val->totalhigh = managed_highpages;
4510 	val->freehigh = free_highpages;
4511 #endif
4512 	val->mem_unit = PAGE_SIZE;
4513 }
4514 #endif
4515 
4516 /*
4517  * Determine whether the node should be displayed or not, depending on whether
4518  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4519  */
4520 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4521 {
4522 	if (!(flags & SHOW_MEM_FILTER_NODES))
4523 		return false;
4524 
4525 	/*
4526 	 * no node mask - aka implicit memory numa policy. Do not bother with
4527 	 * the synchronization - read_mems_allowed_begin - because we do not
4528 	 * have to be precise here.
4529 	 */
4530 	if (!nodemask)
4531 		nodemask = &cpuset_current_mems_allowed;
4532 
4533 	return !node_isset(nid, *nodemask);
4534 }
4535 
4536 #define K(x) ((x) << (PAGE_SHIFT-10))
4537 
4538 static void show_migration_types(unsigned char type)
4539 {
4540 	static const char types[MIGRATE_TYPES] = {
4541 		[MIGRATE_UNMOVABLE]	= 'U',
4542 		[MIGRATE_MOVABLE]	= 'M',
4543 		[MIGRATE_RECLAIMABLE]	= 'E',
4544 		[MIGRATE_HIGHATOMIC]	= 'H',
4545 #ifdef CONFIG_CMA
4546 		[MIGRATE_CMA]		= 'C',
4547 #endif
4548 #ifdef CONFIG_MEMORY_ISOLATION
4549 		[MIGRATE_ISOLATE]	= 'I',
4550 #endif
4551 	};
4552 	char tmp[MIGRATE_TYPES + 1];
4553 	char *p = tmp;
4554 	int i;
4555 
4556 	for (i = 0; i < MIGRATE_TYPES; i++) {
4557 		if (type & (1 << i))
4558 			*p++ = types[i];
4559 	}
4560 
4561 	*p = '\0';
4562 	printk(KERN_CONT "(%s) ", tmp);
4563 }
4564 
4565 /*
4566  * Show free area list (used inside shift_scroll-lock stuff)
4567  * We also calculate the percentage fragmentation. We do this by counting the
4568  * memory on each free list with the exception of the first item on the list.
4569  *
4570  * Bits in @filter:
4571  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4572  *   cpuset.
4573  */
4574 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4575 {
4576 	unsigned long free_pcp = 0;
4577 	int cpu;
4578 	struct zone *zone;
4579 	pg_data_t *pgdat;
4580 
4581 	for_each_populated_zone(zone) {
4582 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4583 			continue;
4584 
4585 		for_each_online_cpu(cpu)
4586 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4587 	}
4588 
4589 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4590 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4591 		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4592 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4593 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4594 		" free:%lu free_pcp:%lu free_cma:%lu\n",
4595 		global_node_page_state(NR_ACTIVE_ANON),
4596 		global_node_page_state(NR_INACTIVE_ANON),
4597 		global_node_page_state(NR_ISOLATED_ANON),
4598 		global_node_page_state(NR_ACTIVE_FILE),
4599 		global_node_page_state(NR_INACTIVE_FILE),
4600 		global_node_page_state(NR_ISOLATED_FILE),
4601 		global_node_page_state(NR_UNEVICTABLE),
4602 		global_node_page_state(NR_FILE_DIRTY),
4603 		global_node_page_state(NR_WRITEBACK),
4604 		global_node_page_state(NR_UNSTABLE_NFS),
4605 		global_page_state(NR_SLAB_RECLAIMABLE),
4606 		global_page_state(NR_SLAB_UNRECLAIMABLE),
4607 		global_node_page_state(NR_FILE_MAPPED),
4608 		global_node_page_state(NR_SHMEM),
4609 		global_page_state(NR_PAGETABLE),
4610 		global_page_state(NR_BOUNCE),
4611 		global_page_state(NR_FREE_PAGES),
4612 		free_pcp,
4613 		global_page_state(NR_FREE_CMA_PAGES));
4614 
4615 	for_each_online_pgdat(pgdat) {
4616 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4617 			continue;
4618 
4619 		printk("Node %d"
4620 			" active_anon:%lukB"
4621 			" inactive_anon:%lukB"
4622 			" active_file:%lukB"
4623 			" inactive_file:%lukB"
4624 			" unevictable:%lukB"
4625 			" isolated(anon):%lukB"
4626 			" isolated(file):%lukB"
4627 			" mapped:%lukB"
4628 			" dirty:%lukB"
4629 			" writeback:%lukB"
4630 			" shmem:%lukB"
4631 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4632 			" shmem_thp: %lukB"
4633 			" shmem_pmdmapped: %lukB"
4634 			" anon_thp: %lukB"
4635 #endif
4636 			" writeback_tmp:%lukB"
4637 			" unstable:%lukB"
4638 			" all_unreclaimable? %s"
4639 			"\n",
4640 			pgdat->node_id,
4641 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4642 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4643 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4644 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4645 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
4646 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4647 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4648 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
4649 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
4650 			K(node_page_state(pgdat, NR_WRITEBACK)),
4651 			K(node_page_state(pgdat, NR_SHMEM)),
4652 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4653 			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4654 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4655 					* HPAGE_PMD_NR),
4656 			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4657 #endif
4658 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4659 			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4660 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4661 				"yes" : "no");
4662 	}
4663 
4664 	for_each_populated_zone(zone) {
4665 		int i;
4666 
4667 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4668 			continue;
4669 
4670 		free_pcp = 0;
4671 		for_each_online_cpu(cpu)
4672 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4673 
4674 		show_node(zone);
4675 		printk(KERN_CONT
4676 			"%s"
4677 			" free:%lukB"
4678 			" min:%lukB"
4679 			" low:%lukB"
4680 			" high:%lukB"
4681 			" active_anon:%lukB"
4682 			" inactive_anon:%lukB"
4683 			" active_file:%lukB"
4684 			" inactive_file:%lukB"
4685 			" unevictable:%lukB"
4686 			" writepending:%lukB"
4687 			" present:%lukB"
4688 			" managed:%lukB"
4689 			" mlocked:%lukB"
4690 			" kernel_stack:%lukB"
4691 			" pagetables:%lukB"
4692 			" bounce:%lukB"
4693 			" free_pcp:%lukB"
4694 			" local_pcp:%ukB"
4695 			" free_cma:%lukB"
4696 			"\n",
4697 			zone->name,
4698 			K(zone_page_state(zone, NR_FREE_PAGES)),
4699 			K(min_wmark_pages(zone)),
4700 			K(low_wmark_pages(zone)),
4701 			K(high_wmark_pages(zone)),
4702 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4703 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4704 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4705 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4706 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4707 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4708 			K(zone->present_pages),
4709 			K(zone->managed_pages),
4710 			K(zone_page_state(zone, NR_MLOCK)),
4711 			zone_page_state(zone, NR_KERNEL_STACK_KB),
4712 			K(zone_page_state(zone, NR_PAGETABLE)),
4713 			K(zone_page_state(zone, NR_BOUNCE)),
4714 			K(free_pcp),
4715 			K(this_cpu_read(zone->pageset->pcp.count)),
4716 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4717 		printk("lowmem_reserve[]:");
4718 		for (i = 0; i < MAX_NR_ZONES; i++)
4719 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4720 		printk(KERN_CONT "\n");
4721 	}
4722 
4723 	for_each_populated_zone(zone) {
4724 		unsigned int order;
4725 		unsigned long nr[MAX_ORDER], flags, total = 0;
4726 		unsigned char types[MAX_ORDER];
4727 
4728 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4729 			continue;
4730 		show_node(zone);
4731 		printk(KERN_CONT "%s: ", zone->name);
4732 
4733 		spin_lock_irqsave(&zone->lock, flags);
4734 		for (order = 0; order < MAX_ORDER; order++) {
4735 			struct free_area *area = &zone->free_area[order];
4736 			int type;
4737 
4738 			nr[order] = area->nr_free;
4739 			total += nr[order] << order;
4740 
4741 			types[order] = 0;
4742 			for (type = 0; type < MIGRATE_TYPES; type++) {
4743 				if (!list_empty(&area->free_list[type]))
4744 					types[order] |= 1 << type;
4745 			}
4746 		}
4747 		spin_unlock_irqrestore(&zone->lock, flags);
4748 		for (order = 0; order < MAX_ORDER; order++) {
4749 			printk(KERN_CONT "%lu*%lukB ",
4750 			       nr[order], K(1UL) << order);
4751 			if (nr[order])
4752 				show_migration_types(types[order]);
4753 		}
4754 		printk(KERN_CONT "= %lukB\n", K(total));
4755 	}
4756 
4757 	hugetlb_show_meminfo();
4758 
4759 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4760 
4761 	show_swap_cache_info();
4762 }
4763 
4764 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4765 {
4766 	zoneref->zone = zone;
4767 	zoneref->zone_idx = zone_idx(zone);
4768 }
4769 
4770 /*
4771  * Builds allocation fallback zone lists.
4772  *
4773  * Add all populated zones of a node to the zonelist.
4774  */
4775 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4776 				int nr_zones)
4777 {
4778 	struct zone *zone;
4779 	enum zone_type zone_type = MAX_NR_ZONES;
4780 
4781 	do {
4782 		zone_type--;
4783 		zone = pgdat->node_zones + zone_type;
4784 		if (managed_zone(zone)) {
4785 			zoneref_set_zone(zone,
4786 				&zonelist->_zonerefs[nr_zones++]);
4787 			check_highest_zone(zone_type);
4788 		}
4789 	} while (zone_type);
4790 
4791 	return nr_zones;
4792 }
4793 
4794 
4795 /*
4796  *  zonelist_order:
4797  *  0 = automatic detection of better ordering.
4798  *  1 = order by ([node] distance, -zonetype)
4799  *  2 = order by (-zonetype, [node] distance)
4800  *
4801  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4802  *  the same zonelist. So only NUMA can configure this param.
4803  */
4804 #define ZONELIST_ORDER_DEFAULT  0
4805 #define ZONELIST_ORDER_NODE     1
4806 #define ZONELIST_ORDER_ZONE     2
4807 
4808 /* zonelist order in the kernel.
4809  * set_zonelist_order() will set this to NODE or ZONE.
4810  */
4811 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4812 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4813 
4814 
4815 #ifdef CONFIG_NUMA
4816 /* The value user specified ....changed by config */
4817 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4818 /* string for sysctl */
4819 #define NUMA_ZONELIST_ORDER_LEN	16
4820 char numa_zonelist_order[16] = "default";
4821 
4822 /*
4823  * interface for configure zonelist ordering.
4824  * command line option "numa_zonelist_order"
4825  *	= "[dD]efault	- default, automatic configuration.
4826  *	= "[nN]ode 	- order by node locality, then by zone within node
4827  *	= "[zZ]one      - order by zone, then by locality within zone
4828  */
4829 
4830 static int __parse_numa_zonelist_order(char *s)
4831 {
4832 	if (*s == 'd' || *s == 'D') {
4833 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4834 	} else if (*s == 'n' || *s == 'N') {
4835 		user_zonelist_order = ZONELIST_ORDER_NODE;
4836 	} else if (*s == 'z' || *s == 'Z') {
4837 		user_zonelist_order = ZONELIST_ORDER_ZONE;
4838 	} else {
4839 		pr_warn("Ignoring invalid numa_zonelist_order value:  %s\n", s);
4840 		return -EINVAL;
4841 	}
4842 	return 0;
4843 }
4844 
4845 static __init int setup_numa_zonelist_order(char *s)
4846 {
4847 	int ret;
4848 
4849 	if (!s)
4850 		return 0;
4851 
4852 	ret = __parse_numa_zonelist_order(s);
4853 	if (ret == 0)
4854 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4855 
4856 	return ret;
4857 }
4858 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4859 
4860 /*
4861  * sysctl handler for numa_zonelist_order
4862  */
4863 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4864 		void __user *buffer, size_t *length,
4865 		loff_t *ppos)
4866 {
4867 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
4868 	int ret;
4869 	static DEFINE_MUTEX(zl_order_mutex);
4870 
4871 	mutex_lock(&zl_order_mutex);
4872 	if (write) {
4873 		if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4874 			ret = -EINVAL;
4875 			goto out;
4876 		}
4877 		strcpy(saved_string, (char *)table->data);
4878 	}
4879 	ret = proc_dostring(table, write, buffer, length, ppos);
4880 	if (ret)
4881 		goto out;
4882 	if (write) {
4883 		int oldval = user_zonelist_order;
4884 
4885 		ret = __parse_numa_zonelist_order((char *)table->data);
4886 		if (ret) {
4887 			/*
4888 			 * bogus value.  restore saved string
4889 			 */
4890 			strncpy((char *)table->data, saved_string,
4891 				NUMA_ZONELIST_ORDER_LEN);
4892 			user_zonelist_order = oldval;
4893 		} else if (oldval != user_zonelist_order) {
4894 			mutex_lock(&zonelists_mutex);
4895 			build_all_zonelists(NULL, NULL);
4896 			mutex_unlock(&zonelists_mutex);
4897 		}
4898 	}
4899 out:
4900 	mutex_unlock(&zl_order_mutex);
4901 	return ret;
4902 }
4903 
4904 
4905 #define MAX_NODE_LOAD (nr_online_nodes)
4906 static int node_load[MAX_NUMNODES];
4907 
4908 /**
4909  * find_next_best_node - find the next node that should appear in a given node's fallback list
4910  * @node: node whose fallback list we're appending
4911  * @used_node_mask: nodemask_t of already used nodes
4912  *
4913  * We use a number of factors to determine which is the next node that should
4914  * appear on a given node's fallback list.  The node should not have appeared
4915  * already in @node's fallback list, and it should be the next closest node
4916  * according to the distance array (which contains arbitrary distance values
4917  * from each node to each node in the system), and should also prefer nodes
4918  * with no CPUs, since presumably they'll have very little allocation pressure
4919  * on them otherwise.
4920  * It returns -1 if no node is found.
4921  */
4922 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4923 {
4924 	int n, val;
4925 	int min_val = INT_MAX;
4926 	int best_node = NUMA_NO_NODE;
4927 	const struct cpumask *tmp = cpumask_of_node(0);
4928 
4929 	/* Use the local node if we haven't already */
4930 	if (!node_isset(node, *used_node_mask)) {
4931 		node_set(node, *used_node_mask);
4932 		return node;
4933 	}
4934 
4935 	for_each_node_state(n, N_MEMORY) {
4936 
4937 		/* Don't want a node to appear more than once */
4938 		if (node_isset(n, *used_node_mask))
4939 			continue;
4940 
4941 		/* Use the distance array to find the distance */
4942 		val = node_distance(node, n);
4943 
4944 		/* Penalize nodes under us ("prefer the next node") */
4945 		val += (n < node);
4946 
4947 		/* Give preference to headless and unused nodes */
4948 		tmp = cpumask_of_node(n);
4949 		if (!cpumask_empty(tmp))
4950 			val += PENALTY_FOR_NODE_WITH_CPUS;
4951 
4952 		/* Slight preference for less loaded node */
4953 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4954 		val += node_load[n];
4955 
4956 		if (val < min_val) {
4957 			min_val = val;
4958 			best_node = n;
4959 		}
4960 	}
4961 
4962 	if (best_node >= 0)
4963 		node_set(best_node, *used_node_mask);
4964 
4965 	return best_node;
4966 }
4967 
4968 
4969 /*
4970  * Build zonelists ordered by node and zones within node.
4971  * This results in maximum locality--normal zone overflows into local
4972  * DMA zone, if any--but risks exhausting DMA zone.
4973  */
4974 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4975 {
4976 	int j;
4977 	struct zonelist *zonelist;
4978 
4979 	zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4980 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4981 		;
4982 	j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4983 	zonelist->_zonerefs[j].zone = NULL;
4984 	zonelist->_zonerefs[j].zone_idx = 0;
4985 }
4986 
4987 /*
4988  * Build gfp_thisnode zonelists
4989  */
4990 static void build_thisnode_zonelists(pg_data_t *pgdat)
4991 {
4992 	int j;
4993 	struct zonelist *zonelist;
4994 
4995 	zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
4996 	j = build_zonelists_node(pgdat, zonelist, 0);
4997 	zonelist->_zonerefs[j].zone = NULL;
4998 	zonelist->_zonerefs[j].zone_idx = 0;
4999 }
5000 
5001 /*
5002  * Build zonelists ordered by zone and nodes within zones.
5003  * This results in conserving DMA zone[s] until all Normal memory is
5004  * exhausted, but results in overflowing to remote node while memory
5005  * may still exist in local DMA zone.
5006  */
5007 static int node_order[MAX_NUMNODES];
5008 
5009 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
5010 {
5011 	int pos, j, node;
5012 	int zone_type;		/* needs to be signed */
5013 	struct zone *z;
5014 	struct zonelist *zonelist;
5015 
5016 	zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
5017 	pos = 0;
5018 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
5019 		for (j = 0; j < nr_nodes; j++) {
5020 			node = node_order[j];
5021 			z = &NODE_DATA(node)->node_zones[zone_type];
5022 			if (managed_zone(z)) {
5023 				zoneref_set_zone(z,
5024 					&zonelist->_zonerefs[pos++]);
5025 				check_highest_zone(zone_type);
5026 			}
5027 		}
5028 	}
5029 	zonelist->_zonerefs[pos].zone = NULL;
5030 	zonelist->_zonerefs[pos].zone_idx = 0;
5031 }
5032 
5033 #if defined(CONFIG_64BIT)
5034 /*
5035  * Devices that require DMA32/DMA are relatively rare and do not justify a
5036  * penalty to every machine in case the specialised case applies. Default
5037  * to Node-ordering on 64-bit NUMA machines
5038  */
5039 static int default_zonelist_order(void)
5040 {
5041 	return ZONELIST_ORDER_NODE;
5042 }
5043 #else
5044 /*
5045  * On 32-bit, the Normal zone needs to be preserved for allocations accessible
5046  * by the kernel. If processes running on node 0 deplete the low memory zone
5047  * then reclaim will occur more frequency increasing stalls and potentially
5048  * be easier to OOM if a large percentage of the zone is under writeback or
5049  * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
5050  * Hence, default to zone ordering on 32-bit.
5051  */
5052 static int default_zonelist_order(void)
5053 {
5054 	return ZONELIST_ORDER_ZONE;
5055 }
5056 #endif /* CONFIG_64BIT */
5057 
5058 static void set_zonelist_order(void)
5059 {
5060 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
5061 		current_zonelist_order = default_zonelist_order();
5062 	else
5063 		current_zonelist_order = user_zonelist_order;
5064 }
5065 
5066 static void build_zonelists(pg_data_t *pgdat)
5067 {
5068 	int i, node, load;
5069 	nodemask_t used_mask;
5070 	int local_node, prev_node;
5071 	struct zonelist *zonelist;
5072 	unsigned int order = current_zonelist_order;
5073 
5074 	/* initialize zonelists */
5075 	for (i = 0; i < MAX_ZONELISTS; i++) {
5076 		zonelist = pgdat->node_zonelists + i;
5077 		zonelist->_zonerefs[0].zone = NULL;
5078 		zonelist->_zonerefs[0].zone_idx = 0;
5079 	}
5080 
5081 	/* NUMA-aware ordering of nodes */
5082 	local_node = pgdat->node_id;
5083 	load = nr_online_nodes;
5084 	prev_node = local_node;
5085 	nodes_clear(used_mask);
5086 
5087 	memset(node_order, 0, sizeof(node_order));
5088 	i = 0;
5089 
5090 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5091 		/*
5092 		 * We don't want to pressure a particular node.
5093 		 * So adding penalty to the first node in same
5094 		 * distance group to make it round-robin.
5095 		 */
5096 		if (node_distance(local_node, node) !=
5097 		    node_distance(local_node, prev_node))
5098 			node_load[node] = load;
5099 
5100 		prev_node = node;
5101 		load--;
5102 		if (order == ZONELIST_ORDER_NODE)
5103 			build_zonelists_in_node_order(pgdat, node);
5104 		else
5105 			node_order[i++] = node;	/* remember order */
5106 	}
5107 
5108 	if (order == ZONELIST_ORDER_ZONE) {
5109 		/* calculate node order -- i.e., DMA last! */
5110 		build_zonelists_in_zone_order(pgdat, i);
5111 	}
5112 
5113 	build_thisnode_zonelists(pgdat);
5114 }
5115 
5116 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5117 /*
5118  * Return node id of node used for "local" allocations.
5119  * I.e., first node id of first zone in arg node's generic zonelist.
5120  * Used for initializing percpu 'numa_mem', which is used primarily
5121  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5122  */
5123 int local_memory_node(int node)
5124 {
5125 	struct zoneref *z;
5126 
5127 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5128 				   gfp_zone(GFP_KERNEL),
5129 				   NULL);
5130 	return z->zone->node;
5131 }
5132 #endif
5133 
5134 static void setup_min_unmapped_ratio(void);
5135 static void setup_min_slab_ratio(void);
5136 #else	/* CONFIG_NUMA */
5137 
5138 static void set_zonelist_order(void)
5139 {
5140 	current_zonelist_order = ZONELIST_ORDER_ZONE;
5141 }
5142 
5143 static void build_zonelists(pg_data_t *pgdat)
5144 {
5145 	int node, local_node;
5146 	enum zone_type j;
5147 	struct zonelist *zonelist;
5148 
5149 	local_node = pgdat->node_id;
5150 
5151 	zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
5152 	j = build_zonelists_node(pgdat, zonelist, 0);
5153 
5154 	/*
5155 	 * Now we build the zonelist so that it contains the zones
5156 	 * of all the other nodes.
5157 	 * We don't want to pressure a particular node, so when
5158 	 * building the zones for node N, we make sure that the
5159 	 * zones coming right after the local ones are those from
5160 	 * node N+1 (modulo N)
5161 	 */
5162 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5163 		if (!node_online(node))
5164 			continue;
5165 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
5166 	}
5167 	for (node = 0; node < local_node; node++) {
5168 		if (!node_online(node))
5169 			continue;
5170 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
5171 	}
5172 
5173 	zonelist->_zonerefs[j].zone = NULL;
5174 	zonelist->_zonerefs[j].zone_idx = 0;
5175 }
5176 
5177 #endif	/* CONFIG_NUMA */
5178 
5179 /*
5180  * Boot pageset table. One per cpu which is going to be used for all
5181  * zones and all nodes. The parameters will be set in such a way
5182  * that an item put on a list will immediately be handed over to
5183  * the buddy list. This is safe since pageset manipulation is done
5184  * with interrupts disabled.
5185  *
5186  * The boot_pagesets must be kept even after bootup is complete for
5187  * unused processors and/or zones. They do play a role for bootstrapping
5188  * hotplugged processors.
5189  *
5190  * zoneinfo_show() and maybe other functions do
5191  * not check if the processor is online before following the pageset pointer.
5192  * Other parts of the kernel may not check if the zone is available.
5193  */
5194 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5195 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5196 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5197 static void setup_zone_pageset(struct zone *zone);
5198 
5199 /*
5200  * Global mutex to protect against size modification of zonelists
5201  * as well as to serialize pageset setup for the new populated zone.
5202  */
5203 DEFINE_MUTEX(zonelists_mutex);
5204 
5205 /* return values int ....just for stop_machine() */
5206 static int __build_all_zonelists(void *data)
5207 {
5208 	int nid;
5209 	int cpu;
5210 	pg_data_t *self = data;
5211 
5212 #ifdef CONFIG_NUMA
5213 	memset(node_load, 0, sizeof(node_load));
5214 #endif
5215 
5216 	if (self && !node_online(self->node_id)) {
5217 		build_zonelists(self);
5218 	}
5219 
5220 	for_each_online_node(nid) {
5221 		pg_data_t *pgdat = NODE_DATA(nid);
5222 
5223 		build_zonelists(pgdat);
5224 	}
5225 
5226 	/*
5227 	 * Initialize the boot_pagesets that are going to be used
5228 	 * for bootstrapping processors. The real pagesets for
5229 	 * each zone will be allocated later when the per cpu
5230 	 * allocator is available.
5231 	 *
5232 	 * boot_pagesets are used also for bootstrapping offline
5233 	 * cpus if the system is already booted because the pagesets
5234 	 * are needed to initialize allocators on a specific cpu too.
5235 	 * F.e. the percpu allocator needs the page allocator which
5236 	 * needs the percpu allocator in order to allocate its pagesets
5237 	 * (a chicken-egg dilemma).
5238 	 */
5239 	for_each_possible_cpu(cpu) {
5240 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5241 
5242 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5243 		/*
5244 		 * We now know the "local memory node" for each node--
5245 		 * i.e., the node of the first zone in the generic zonelist.
5246 		 * Set up numa_mem percpu variable for on-line cpus.  During
5247 		 * boot, only the boot cpu should be on-line;  we'll init the
5248 		 * secondary cpus' numa_mem as they come on-line.  During
5249 		 * node/memory hotplug, we'll fixup all on-line cpus.
5250 		 */
5251 		if (cpu_online(cpu))
5252 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5253 #endif
5254 	}
5255 
5256 	return 0;
5257 }
5258 
5259 static noinline void __init
5260 build_all_zonelists_init(void)
5261 {
5262 	__build_all_zonelists(NULL);
5263 	mminit_verify_zonelist();
5264 	cpuset_init_current_mems_allowed();
5265 }
5266 
5267 /*
5268  * Called with zonelists_mutex held always
5269  * unless system_state == SYSTEM_BOOTING.
5270  *
5271  * __ref due to (1) call of __meminit annotated setup_zone_pageset
5272  * [we're only called with non-NULL zone through __meminit paths] and
5273  * (2) call of __init annotated helper build_all_zonelists_init
5274  * [protected by SYSTEM_BOOTING].
5275  */
5276 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
5277 {
5278 	set_zonelist_order();
5279 
5280 	if (system_state == SYSTEM_BOOTING) {
5281 		build_all_zonelists_init();
5282 	} else {
5283 #ifdef CONFIG_MEMORY_HOTPLUG
5284 		if (zone)
5285 			setup_zone_pageset(zone);
5286 #endif
5287 		/* we have to stop all cpus to guarantee there is no user
5288 		   of zonelist */
5289 		stop_machine_cpuslocked(__build_all_zonelists, pgdat, NULL);
5290 		/* cpuset refresh routine should be here */
5291 	}
5292 	vm_total_pages = nr_free_pagecache_pages();
5293 	/*
5294 	 * Disable grouping by mobility if the number of pages in the
5295 	 * system is too low to allow the mechanism to work. It would be
5296 	 * more accurate, but expensive to check per-zone. This check is
5297 	 * made on memory-hotadd so a system can start with mobility
5298 	 * disabled and enable it later
5299 	 */
5300 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5301 		page_group_by_mobility_disabled = 1;
5302 	else
5303 		page_group_by_mobility_disabled = 0;
5304 
5305 	pr_info("Built %i zonelists in %s order, mobility grouping %s.  Total pages: %ld\n",
5306 		nr_online_nodes,
5307 		zonelist_order_name[current_zonelist_order],
5308 		page_group_by_mobility_disabled ? "off" : "on",
5309 		vm_total_pages);
5310 #ifdef CONFIG_NUMA
5311 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5312 #endif
5313 }
5314 
5315 /*
5316  * Initially all pages are reserved - free ones are freed
5317  * up by free_all_bootmem() once the early boot process is
5318  * done. Non-atomic initialization, single-pass.
5319  */
5320 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5321 		unsigned long start_pfn, enum memmap_context context)
5322 {
5323 	struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5324 	unsigned long end_pfn = start_pfn + size;
5325 	pg_data_t *pgdat = NODE_DATA(nid);
5326 	unsigned long pfn;
5327 	unsigned long nr_initialised = 0;
5328 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5329 	struct memblock_region *r = NULL, *tmp;
5330 #endif
5331 
5332 	if (highest_memmap_pfn < end_pfn - 1)
5333 		highest_memmap_pfn = end_pfn - 1;
5334 
5335 	/*
5336 	 * Honor reservation requested by the driver for this ZONE_DEVICE
5337 	 * memory
5338 	 */
5339 	if (altmap && start_pfn == altmap->base_pfn)
5340 		start_pfn += altmap->reserve;
5341 
5342 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5343 		/*
5344 		 * There can be holes in boot-time mem_map[]s handed to this
5345 		 * function.  They do not exist on hotplugged memory.
5346 		 */
5347 		if (context != MEMMAP_EARLY)
5348 			goto not_early;
5349 
5350 		if (!early_pfn_valid(pfn)) {
5351 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5352 			/*
5353 			 * Skip to the pfn preceding the next valid one (or
5354 			 * end_pfn), such that we hit a valid pfn (or end_pfn)
5355 			 * on our next iteration of the loop.
5356 			 */
5357 			pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
5358 #endif
5359 			continue;
5360 		}
5361 		if (!early_pfn_in_nid(pfn, nid))
5362 			continue;
5363 		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5364 			break;
5365 
5366 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5367 		/*
5368 		 * Check given memblock attribute by firmware which can affect
5369 		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
5370 		 * mirrored, it's an overlapped memmap init. skip it.
5371 		 */
5372 		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5373 			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5374 				for_each_memblock(memory, tmp)
5375 					if (pfn < memblock_region_memory_end_pfn(tmp))
5376 						break;
5377 				r = tmp;
5378 			}
5379 			if (pfn >= memblock_region_memory_base_pfn(r) &&
5380 			    memblock_is_mirror(r)) {
5381 				/* already initialized as NORMAL */
5382 				pfn = memblock_region_memory_end_pfn(r);
5383 				continue;
5384 			}
5385 		}
5386 #endif
5387 
5388 not_early:
5389 		/*
5390 		 * Mark the block movable so that blocks are reserved for
5391 		 * movable at startup. This will force kernel allocations
5392 		 * to reserve their blocks rather than leaking throughout
5393 		 * the address space during boot when many long-lived
5394 		 * kernel allocations are made.
5395 		 *
5396 		 * bitmap is created for zone's valid pfn range. but memmap
5397 		 * can be created for invalid pages (for alignment)
5398 		 * check here not to call set_pageblock_migratetype() against
5399 		 * pfn out of zone.
5400 		 */
5401 		if (!(pfn & (pageblock_nr_pages - 1))) {
5402 			struct page *page = pfn_to_page(pfn);
5403 
5404 			__init_single_page(page, pfn, zone, nid);
5405 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5406 		} else {
5407 			__init_single_pfn(pfn, zone, nid);
5408 		}
5409 	}
5410 }
5411 
5412 static void __meminit zone_init_free_lists(struct zone *zone)
5413 {
5414 	unsigned int order, t;
5415 	for_each_migratetype_order(order, t) {
5416 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5417 		zone->free_area[order].nr_free = 0;
5418 	}
5419 }
5420 
5421 #ifndef __HAVE_ARCH_MEMMAP_INIT
5422 #define memmap_init(size, nid, zone, start_pfn) \
5423 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5424 #endif
5425 
5426 static int zone_batchsize(struct zone *zone)
5427 {
5428 #ifdef CONFIG_MMU
5429 	int batch;
5430 
5431 	/*
5432 	 * The per-cpu-pages pools are set to around 1000th of the
5433 	 * size of the zone.  But no more than 1/2 of a meg.
5434 	 *
5435 	 * OK, so we don't know how big the cache is.  So guess.
5436 	 */
5437 	batch = zone->managed_pages / 1024;
5438 	if (batch * PAGE_SIZE > 512 * 1024)
5439 		batch = (512 * 1024) / PAGE_SIZE;
5440 	batch /= 4;		/* We effectively *= 4 below */
5441 	if (batch < 1)
5442 		batch = 1;
5443 
5444 	/*
5445 	 * Clamp the batch to a 2^n - 1 value. Having a power
5446 	 * of 2 value was found to be more likely to have
5447 	 * suboptimal cache aliasing properties in some cases.
5448 	 *
5449 	 * For example if 2 tasks are alternately allocating
5450 	 * batches of pages, one task can end up with a lot
5451 	 * of pages of one half of the possible page colors
5452 	 * and the other with pages of the other colors.
5453 	 */
5454 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5455 
5456 	return batch;
5457 
5458 #else
5459 	/* The deferral and batching of frees should be suppressed under NOMMU
5460 	 * conditions.
5461 	 *
5462 	 * The problem is that NOMMU needs to be able to allocate large chunks
5463 	 * of contiguous memory as there's no hardware page translation to
5464 	 * assemble apparent contiguous memory from discontiguous pages.
5465 	 *
5466 	 * Queueing large contiguous runs of pages for batching, however,
5467 	 * causes the pages to actually be freed in smaller chunks.  As there
5468 	 * can be a significant delay between the individual batches being
5469 	 * recycled, this leads to the once large chunks of space being
5470 	 * fragmented and becoming unavailable for high-order allocations.
5471 	 */
5472 	return 0;
5473 #endif
5474 }
5475 
5476 /*
5477  * pcp->high and pcp->batch values are related and dependent on one another:
5478  * ->batch must never be higher then ->high.
5479  * The following function updates them in a safe manner without read side
5480  * locking.
5481  *
5482  * Any new users of pcp->batch and pcp->high should ensure they can cope with
5483  * those fields changing asynchronously (acording the the above rule).
5484  *
5485  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5486  * outside of boot time (or some other assurance that no concurrent updaters
5487  * exist).
5488  */
5489 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5490 		unsigned long batch)
5491 {
5492        /* start with a fail safe value for batch */
5493 	pcp->batch = 1;
5494 	smp_wmb();
5495 
5496        /* Update high, then batch, in order */
5497 	pcp->high = high;
5498 	smp_wmb();
5499 
5500 	pcp->batch = batch;
5501 }
5502 
5503 /* a companion to pageset_set_high() */
5504 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5505 {
5506 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5507 }
5508 
5509 static void pageset_init(struct per_cpu_pageset *p)
5510 {
5511 	struct per_cpu_pages *pcp;
5512 	int migratetype;
5513 
5514 	memset(p, 0, sizeof(*p));
5515 
5516 	pcp = &p->pcp;
5517 	pcp->count = 0;
5518 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5519 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5520 }
5521 
5522 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5523 {
5524 	pageset_init(p);
5525 	pageset_set_batch(p, batch);
5526 }
5527 
5528 /*
5529  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5530  * to the value high for the pageset p.
5531  */
5532 static void pageset_set_high(struct per_cpu_pageset *p,
5533 				unsigned long high)
5534 {
5535 	unsigned long batch = max(1UL, high / 4);
5536 	if ((high / 4) > (PAGE_SHIFT * 8))
5537 		batch = PAGE_SHIFT * 8;
5538 
5539 	pageset_update(&p->pcp, high, batch);
5540 }
5541 
5542 static void pageset_set_high_and_batch(struct zone *zone,
5543 				       struct per_cpu_pageset *pcp)
5544 {
5545 	if (percpu_pagelist_fraction)
5546 		pageset_set_high(pcp,
5547 			(zone->managed_pages /
5548 				percpu_pagelist_fraction));
5549 	else
5550 		pageset_set_batch(pcp, zone_batchsize(zone));
5551 }
5552 
5553 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5554 {
5555 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5556 
5557 	pageset_init(pcp);
5558 	pageset_set_high_and_batch(zone, pcp);
5559 }
5560 
5561 static void __meminit setup_zone_pageset(struct zone *zone)
5562 {
5563 	int cpu;
5564 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5565 	for_each_possible_cpu(cpu)
5566 		zone_pageset_init(zone, cpu);
5567 }
5568 
5569 /*
5570  * Allocate per cpu pagesets and initialize them.
5571  * Before this call only boot pagesets were available.
5572  */
5573 void __init setup_per_cpu_pageset(void)
5574 {
5575 	struct pglist_data *pgdat;
5576 	struct zone *zone;
5577 
5578 	for_each_populated_zone(zone)
5579 		setup_zone_pageset(zone);
5580 
5581 	for_each_online_pgdat(pgdat)
5582 		pgdat->per_cpu_nodestats =
5583 			alloc_percpu(struct per_cpu_nodestat);
5584 }
5585 
5586 static __meminit void zone_pcp_init(struct zone *zone)
5587 {
5588 	/*
5589 	 * per cpu subsystem is not up at this point. The following code
5590 	 * relies on the ability of the linker to provide the
5591 	 * offset of a (static) per cpu variable into the per cpu area.
5592 	 */
5593 	zone->pageset = &boot_pageset;
5594 
5595 	if (populated_zone(zone))
5596 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
5597 			zone->name, zone->present_pages,
5598 					 zone_batchsize(zone));
5599 }
5600 
5601 void __meminit init_currently_empty_zone(struct zone *zone,
5602 					unsigned long zone_start_pfn,
5603 					unsigned long size)
5604 {
5605 	struct pglist_data *pgdat = zone->zone_pgdat;
5606 
5607 	pgdat->nr_zones = zone_idx(zone) + 1;
5608 
5609 	zone->zone_start_pfn = zone_start_pfn;
5610 
5611 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
5612 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
5613 			pgdat->node_id,
5614 			(unsigned long)zone_idx(zone),
5615 			zone_start_pfn, (zone_start_pfn + size));
5616 
5617 	zone_init_free_lists(zone);
5618 	zone->initialized = 1;
5619 }
5620 
5621 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5622 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5623 
5624 /*
5625  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5626  */
5627 int __meminit __early_pfn_to_nid(unsigned long pfn,
5628 					struct mminit_pfnnid_cache *state)
5629 {
5630 	unsigned long start_pfn, end_pfn;
5631 	int nid;
5632 
5633 	if (state->last_start <= pfn && pfn < state->last_end)
5634 		return state->last_nid;
5635 
5636 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5637 	if (nid != -1) {
5638 		state->last_start = start_pfn;
5639 		state->last_end = end_pfn;
5640 		state->last_nid = nid;
5641 	}
5642 
5643 	return nid;
5644 }
5645 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5646 
5647 /**
5648  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5649  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5650  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5651  *
5652  * If an architecture guarantees that all ranges registered contain no holes
5653  * and may be freed, this this function may be used instead of calling
5654  * memblock_free_early_nid() manually.
5655  */
5656 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5657 {
5658 	unsigned long start_pfn, end_pfn;
5659 	int i, this_nid;
5660 
5661 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5662 		start_pfn = min(start_pfn, max_low_pfn);
5663 		end_pfn = min(end_pfn, max_low_pfn);
5664 
5665 		if (start_pfn < end_pfn)
5666 			memblock_free_early_nid(PFN_PHYS(start_pfn),
5667 					(end_pfn - start_pfn) << PAGE_SHIFT,
5668 					this_nid);
5669 	}
5670 }
5671 
5672 /**
5673  * sparse_memory_present_with_active_regions - Call memory_present for each active range
5674  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5675  *
5676  * If an architecture guarantees that all ranges registered contain no holes and may
5677  * be freed, this function may be used instead of calling memory_present() manually.
5678  */
5679 void __init sparse_memory_present_with_active_regions(int nid)
5680 {
5681 	unsigned long start_pfn, end_pfn;
5682 	int i, this_nid;
5683 
5684 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5685 		memory_present(this_nid, start_pfn, end_pfn);
5686 }
5687 
5688 /**
5689  * get_pfn_range_for_nid - Return the start and end page frames for a node
5690  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5691  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5692  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5693  *
5694  * It returns the start and end page frame of a node based on information
5695  * provided by memblock_set_node(). If called for a node
5696  * with no available memory, a warning is printed and the start and end
5697  * PFNs will be 0.
5698  */
5699 void __meminit get_pfn_range_for_nid(unsigned int nid,
5700 			unsigned long *start_pfn, unsigned long *end_pfn)
5701 {
5702 	unsigned long this_start_pfn, this_end_pfn;
5703 	int i;
5704 
5705 	*start_pfn = -1UL;
5706 	*end_pfn = 0;
5707 
5708 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5709 		*start_pfn = min(*start_pfn, this_start_pfn);
5710 		*end_pfn = max(*end_pfn, this_end_pfn);
5711 	}
5712 
5713 	if (*start_pfn == -1UL)
5714 		*start_pfn = 0;
5715 }
5716 
5717 /*
5718  * This finds a zone that can be used for ZONE_MOVABLE pages. The
5719  * assumption is made that zones within a node are ordered in monotonic
5720  * increasing memory addresses so that the "highest" populated zone is used
5721  */
5722 static void __init find_usable_zone_for_movable(void)
5723 {
5724 	int zone_index;
5725 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5726 		if (zone_index == ZONE_MOVABLE)
5727 			continue;
5728 
5729 		if (arch_zone_highest_possible_pfn[zone_index] >
5730 				arch_zone_lowest_possible_pfn[zone_index])
5731 			break;
5732 	}
5733 
5734 	VM_BUG_ON(zone_index == -1);
5735 	movable_zone = zone_index;
5736 }
5737 
5738 /*
5739  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5740  * because it is sized independent of architecture. Unlike the other zones,
5741  * the starting point for ZONE_MOVABLE is not fixed. It may be different
5742  * in each node depending on the size of each node and how evenly kernelcore
5743  * is distributed. This helper function adjusts the zone ranges
5744  * provided by the architecture for a given node by using the end of the
5745  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5746  * zones within a node are in order of monotonic increases memory addresses
5747  */
5748 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5749 					unsigned long zone_type,
5750 					unsigned long node_start_pfn,
5751 					unsigned long node_end_pfn,
5752 					unsigned long *zone_start_pfn,
5753 					unsigned long *zone_end_pfn)
5754 {
5755 	/* Only adjust if ZONE_MOVABLE is on this node */
5756 	if (zone_movable_pfn[nid]) {
5757 		/* Size ZONE_MOVABLE */
5758 		if (zone_type == ZONE_MOVABLE) {
5759 			*zone_start_pfn = zone_movable_pfn[nid];
5760 			*zone_end_pfn = min(node_end_pfn,
5761 				arch_zone_highest_possible_pfn[movable_zone]);
5762 
5763 		/* Adjust for ZONE_MOVABLE starting within this range */
5764 		} else if (!mirrored_kernelcore &&
5765 			*zone_start_pfn < zone_movable_pfn[nid] &&
5766 			*zone_end_pfn > zone_movable_pfn[nid]) {
5767 			*zone_end_pfn = zone_movable_pfn[nid];
5768 
5769 		/* Check if this whole range is within ZONE_MOVABLE */
5770 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
5771 			*zone_start_pfn = *zone_end_pfn;
5772 	}
5773 }
5774 
5775 /*
5776  * Return the number of pages a zone spans in a node, including holes
5777  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5778  */
5779 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5780 					unsigned long zone_type,
5781 					unsigned long node_start_pfn,
5782 					unsigned long node_end_pfn,
5783 					unsigned long *zone_start_pfn,
5784 					unsigned long *zone_end_pfn,
5785 					unsigned long *ignored)
5786 {
5787 	/* When hotadd a new node from cpu_up(), the node should be empty */
5788 	if (!node_start_pfn && !node_end_pfn)
5789 		return 0;
5790 
5791 	/* Get the start and end of the zone */
5792 	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5793 	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5794 	adjust_zone_range_for_zone_movable(nid, zone_type,
5795 				node_start_pfn, node_end_pfn,
5796 				zone_start_pfn, zone_end_pfn);
5797 
5798 	/* Check that this node has pages within the zone's required range */
5799 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5800 		return 0;
5801 
5802 	/* Move the zone boundaries inside the node if necessary */
5803 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5804 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5805 
5806 	/* Return the spanned pages */
5807 	return *zone_end_pfn - *zone_start_pfn;
5808 }
5809 
5810 /*
5811  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5812  * then all holes in the requested range will be accounted for.
5813  */
5814 unsigned long __meminit __absent_pages_in_range(int nid,
5815 				unsigned long range_start_pfn,
5816 				unsigned long range_end_pfn)
5817 {
5818 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
5819 	unsigned long start_pfn, end_pfn;
5820 	int i;
5821 
5822 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5823 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5824 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5825 		nr_absent -= end_pfn - start_pfn;
5826 	}
5827 	return nr_absent;
5828 }
5829 
5830 /**
5831  * absent_pages_in_range - Return number of page frames in holes within a range
5832  * @start_pfn: The start PFN to start searching for holes
5833  * @end_pfn: The end PFN to stop searching for holes
5834  *
5835  * It returns the number of pages frames in memory holes within a range.
5836  */
5837 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5838 							unsigned long end_pfn)
5839 {
5840 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5841 }
5842 
5843 /* Return the number of page frames in holes in a zone on a node */
5844 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5845 					unsigned long zone_type,
5846 					unsigned long node_start_pfn,
5847 					unsigned long node_end_pfn,
5848 					unsigned long *ignored)
5849 {
5850 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5851 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5852 	unsigned long zone_start_pfn, zone_end_pfn;
5853 	unsigned long nr_absent;
5854 
5855 	/* When hotadd a new node from cpu_up(), the node should be empty */
5856 	if (!node_start_pfn && !node_end_pfn)
5857 		return 0;
5858 
5859 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5860 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5861 
5862 	adjust_zone_range_for_zone_movable(nid, zone_type,
5863 			node_start_pfn, node_end_pfn,
5864 			&zone_start_pfn, &zone_end_pfn);
5865 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5866 
5867 	/*
5868 	 * ZONE_MOVABLE handling.
5869 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5870 	 * and vice versa.
5871 	 */
5872 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5873 		unsigned long start_pfn, end_pfn;
5874 		struct memblock_region *r;
5875 
5876 		for_each_memblock(memory, r) {
5877 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
5878 					  zone_start_pfn, zone_end_pfn);
5879 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
5880 					zone_start_pfn, zone_end_pfn);
5881 
5882 			if (zone_type == ZONE_MOVABLE &&
5883 			    memblock_is_mirror(r))
5884 				nr_absent += end_pfn - start_pfn;
5885 
5886 			if (zone_type == ZONE_NORMAL &&
5887 			    !memblock_is_mirror(r))
5888 				nr_absent += end_pfn - start_pfn;
5889 		}
5890 	}
5891 
5892 	return nr_absent;
5893 }
5894 
5895 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5896 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5897 					unsigned long zone_type,
5898 					unsigned long node_start_pfn,
5899 					unsigned long node_end_pfn,
5900 					unsigned long *zone_start_pfn,
5901 					unsigned long *zone_end_pfn,
5902 					unsigned long *zones_size)
5903 {
5904 	unsigned int zone;
5905 
5906 	*zone_start_pfn = node_start_pfn;
5907 	for (zone = 0; zone < zone_type; zone++)
5908 		*zone_start_pfn += zones_size[zone];
5909 
5910 	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5911 
5912 	return zones_size[zone_type];
5913 }
5914 
5915 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5916 						unsigned long zone_type,
5917 						unsigned long node_start_pfn,
5918 						unsigned long node_end_pfn,
5919 						unsigned long *zholes_size)
5920 {
5921 	if (!zholes_size)
5922 		return 0;
5923 
5924 	return zholes_size[zone_type];
5925 }
5926 
5927 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5928 
5929 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5930 						unsigned long node_start_pfn,
5931 						unsigned long node_end_pfn,
5932 						unsigned long *zones_size,
5933 						unsigned long *zholes_size)
5934 {
5935 	unsigned long realtotalpages = 0, totalpages = 0;
5936 	enum zone_type i;
5937 
5938 	for (i = 0; i < MAX_NR_ZONES; i++) {
5939 		struct zone *zone = pgdat->node_zones + i;
5940 		unsigned long zone_start_pfn, zone_end_pfn;
5941 		unsigned long size, real_size;
5942 
5943 		size = zone_spanned_pages_in_node(pgdat->node_id, i,
5944 						  node_start_pfn,
5945 						  node_end_pfn,
5946 						  &zone_start_pfn,
5947 						  &zone_end_pfn,
5948 						  zones_size);
5949 		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5950 						  node_start_pfn, node_end_pfn,
5951 						  zholes_size);
5952 		if (size)
5953 			zone->zone_start_pfn = zone_start_pfn;
5954 		else
5955 			zone->zone_start_pfn = 0;
5956 		zone->spanned_pages = size;
5957 		zone->present_pages = real_size;
5958 
5959 		totalpages += size;
5960 		realtotalpages += real_size;
5961 	}
5962 
5963 	pgdat->node_spanned_pages = totalpages;
5964 	pgdat->node_present_pages = realtotalpages;
5965 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5966 							realtotalpages);
5967 }
5968 
5969 #ifndef CONFIG_SPARSEMEM
5970 /*
5971  * Calculate the size of the zone->blockflags rounded to an unsigned long
5972  * Start by making sure zonesize is a multiple of pageblock_order by rounding
5973  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5974  * round what is now in bits to nearest long in bits, then return it in
5975  * bytes.
5976  */
5977 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5978 {
5979 	unsigned long usemapsize;
5980 
5981 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5982 	usemapsize = roundup(zonesize, pageblock_nr_pages);
5983 	usemapsize = usemapsize >> pageblock_order;
5984 	usemapsize *= NR_PAGEBLOCK_BITS;
5985 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5986 
5987 	return usemapsize / 8;
5988 }
5989 
5990 static void __init setup_usemap(struct pglist_data *pgdat,
5991 				struct zone *zone,
5992 				unsigned long zone_start_pfn,
5993 				unsigned long zonesize)
5994 {
5995 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5996 	zone->pageblock_flags = NULL;
5997 	if (usemapsize)
5998 		zone->pageblock_flags =
5999 			memblock_virt_alloc_node_nopanic(usemapsize,
6000 							 pgdat->node_id);
6001 }
6002 #else
6003 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6004 				unsigned long zone_start_pfn, unsigned long zonesize) {}
6005 #endif /* CONFIG_SPARSEMEM */
6006 
6007 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6008 
6009 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6010 void __paginginit set_pageblock_order(void)
6011 {
6012 	unsigned int order;
6013 
6014 	/* Check that pageblock_nr_pages has not already been setup */
6015 	if (pageblock_order)
6016 		return;
6017 
6018 	if (HPAGE_SHIFT > PAGE_SHIFT)
6019 		order = HUGETLB_PAGE_ORDER;
6020 	else
6021 		order = MAX_ORDER - 1;
6022 
6023 	/*
6024 	 * Assume the largest contiguous order of interest is a huge page.
6025 	 * This value may be variable depending on boot parameters on IA64 and
6026 	 * powerpc.
6027 	 */
6028 	pageblock_order = order;
6029 }
6030 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6031 
6032 /*
6033  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6034  * is unused as pageblock_order is set at compile-time. See
6035  * include/linux/pageblock-flags.h for the values of pageblock_order based on
6036  * the kernel config
6037  */
6038 void __paginginit set_pageblock_order(void)
6039 {
6040 }
6041 
6042 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6043 
6044 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
6045 						   unsigned long present_pages)
6046 {
6047 	unsigned long pages = spanned_pages;
6048 
6049 	/*
6050 	 * Provide a more accurate estimation if there are holes within
6051 	 * the zone and SPARSEMEM is in use. If there are holes within the
6052 	 * zone, each populated memory region may cost us one or two extra
6053 	 * memmap pages due to alignment because memmap pages for each
6054 	 * populated regions may not be naturally aligned on page boundary.
6055 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6056 	 */
6057 	if (spanned_pages > present_pages + (present_pages >> 4) &&
6058 	    IS_ENABLED(CONFIG_SPARSEMEM))
6059 		pages = present_pages;
6060 
6061 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6062 }
6063 
6064 /*
6065  * Set up the zone data structures:
6066  *   - mark all pages reserved
6067  *   - mark all memory queues empty
6068  *   - clear the memory bitmaps
6069  *
6070  * NOTE: pgdat should get zeroed by caller.
6071  */
6072 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
6073 {
6074 	enum zone_type j;
6075 	int nid = pgdat->node_id;
6076 
6077 	pgdat_resize_init(pgdat);
6078 #ifdef CONFIG_NUMA_BALANCING
6079 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
6080 	pgdat->numabalancing_migrate_nr_pages = 0;
6081 	pgdat->numabalancing_migrate_next_window = jiffies;
6082 #endif
6083 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6084 	spin_lock_init(&pgdat->split_queue_lock);
6085 	INIT_LIST_HEAD(&pgdat->split_queue);
6086 	pgdat->split_queue_len = 0;
6087 #endif
6088 	init_waitqueue_head(&pgdat->kswapd_wait);
6089 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6090 #ifdef CONFIG_COMPACTION
6091 	init_waitqueue_head(&pgdat->kcompactd_wait);
6092 #endif
6093 	pgdat_page_ext_init(pgdat);
6094 	spin_lock_init(&pgdat->lru_lock);
6095 	lruvec_init(node_lruvec(pgdat));
6096 
6097 	pgdat->per_cpu_nodestats = &boot_nodestats;
6098 
6099 	for (j = 0; j < MAX_NR_ZONES; j++) {
6100 		struct zone *zone = pgdat->node_zones + j;
6101 		unsigned long size, realsize, freesize, memmap_pages;
6102 		unsigned long zone_start_pfn = zone->zone_start_pfn;
6103 
6104 		size = zone->spanned_pages;
6105 		realsize = freesize = zone->present_pages;
6106 
6107 		/*
6108 		 * Adjust freesize so that it accounts for how much memory
6109 		 * is used by this zone for memmap. This affects the watermark
6110 		 * and per-cpu initialisations
6111 		 */
6112 		memmap_pages = calc_memmap_size(size, realsize);
6113 		if (!is_highmem_idx(j)) {
6114 			if (freesize >= memmap_pages) {
6115 				freesize -= memmap_pages;
6116 				if (memmap_pages)
6117 					printk(KERN_DEBUG
6118 					       "  %s zone: %lu pages used for memmap\n",
6119 					       zone_names[j], memmap_pages);
6120 			} else
6121 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6122 					zone_names[j], memmap_pages, freesize);
6123 		}
6124 
6125 		/* Account for reserved pages */
6126 		if (j == 0 && freesize > dma_reserve) {
6127 			freesize -= dma_reserve;
6128 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6129 					zone_names[0], dma_reserve);
6130 		}
6131 
6132 		if (!is_highmem_idx(j))
6133 			nr_kernel_pages += freesize;
6134 		/* Charge for highmem memmap if there are enough kernel pages */
6135 		else if (nr_kernel_pages > memmap_pages * 2)
6136 			nr_kernel_pages -= memmap_pages;
6137 		nr_all_pages += freesize;
6138 
6139 		/*
6140 		 * Set an approximate value for lowmem here, it will be adjusted
6141 		 * when the bootmem allocator frees pages into the buddy system.
6142 		 * And all highmem pages will be managed by the buddy system.
6143 		 */
6144 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6145 #ifdef CONFIG_NUMA
6146 		zone->node = nid;
6147 #endif
6148 		zone->name = zone_names[j];
6149 		zone->zone_pgdat = pgdat;
6150 		spin_lock_init(&zone->lock);
6151 		zone_seqlock_init(zone);
6152 		zone_pcp_init(zone);
6153 
6154 		if (!size)
6155 			continue;
6156 
6157 		set_pageblock_order();
6158 		setup_usemap(pgdat, zone, zone_start_pfn, size);
6159 		init_currently_empty_zone(zone, zone_start_pfn, size);
6160 		memmap_init(size, nid, j, zone_start_pfn);
6161 	}
6162 }
6163 
6164 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6165 {
6166 	unsigned long __maybe_unused start = 0;
6167 	unsigned long __maybe_unused offset = 0;
6168 
6169 	/* Skip empty nodes */
6170 	if (!pgdat->node_spanned_pages)
6171 		return;
6172 
6173 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6174 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6175 	offset = pgdat->node_start_pfn - start;
6176 	/* ia64 gets its own node_mem_map, before this, without bootmem */
6177 	if (!pgdat->node_mem_map) {
6178 		unsigned long size, end;
6179 		struct page *map;
6180 
6181 		/*
6182 		 * The zone's endpoints aren't required to be MAX_ORDER
6183 		 * aligned but the node_mem_map endpoints must be in order
6184 		 * for the buddy allocator to function correctly.
6185 		 */
6186 		end = pgdat_end_pfn(pgdat);
6187 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
6188 		size =  (end - start) * sizeof(struct page);
6189 		map = alloc_remap(pgdat->node_id, size);
6190 		if (!map)
6191 			map = memblock_virt_alloc_node_nopanic(size,
6192 							       pgdat->node_id);
6193 		pgdat->node_mem_map = map + offset;
6194 	}
6195 #ifndef CONFIG_NEED_MULTIPLE_NODES
6196 	/*
6197 	 * With no DISCONTIG, the global mem_map is just set as node 0's
6198 	 */
6199 	if (pgdat == NODE_DATA(0)) {
6200 		mem_map = NODE_DATA(0)->node_mem_map;
6201 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6202 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6203 			mem_map -= offset;
6204 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6205 	}
6206 #endif
6207 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6208 }
6209 
6210 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6211 		unsigned long node_start_pfn, unsigned long *zholes_size)
6212 {
6213 	pg_data_t *pgdat = NODE_DATA(nid);
6214 	unsigned long start_pfn = 0;
6215 	unsigned long end_pfn = 0;
6216 
6217 	/* pg_data_t should be reset to zero when it's allocated */
6218 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6219 
6220 	pgdat->node_id = nid;
6221 	pgdat->node_start_pfn = node_start_pfn;
6222 	pgdat->per_cpu_nodestats = NULL;
6223 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6224 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6225 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6226 		(u64)start_pfn << PAGE_SHIFT,
6227 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6228 #else
6229 	start_pfn = node_start_pfn;
6230 #endif
6231 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6232 				  zones_size, zholes_size);
6233 
6234 	alloc_node_mem_map(pgdat);
6235 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6236 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6237 		nid, (unsigned long)pgdat,
6238 		(unsigned long)pgdat->node_mem_map);
6239 #endif
6240 
6241 	reset_deferred_meminit(pgdat);
6242 	free_area_init_core(pgdat);
6243 }
6244 
6245 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6246 
6247 #if MAX_NUMNODES > 1
6248 /*
6249  * Figure out the number of possible node ids.
6250  */
6251 void __init setup_nr_node_ids(void)
6252 {
6253 	unsigned int highest;
6254 
6255 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6256 	nr_node_ids = highest + 1;
6257 }
6258 #endif
6259 
6260 /**
6261  * node_map_pfn_alignment - determine the maximum internode alignment
6262  *
6263  * This function should be called after node map is populated and sorted.
6264  * It calculates the maximum power of two alignment which can distinguish
6265  * all the nodes.
6266  *
6267  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6268  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
6269  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
6270  * shifted, 1GiB is enough and this function will indicate so.
6271  *
6272  * This is used to test whether pfn -> nid mapping of the chosen memory
6273  * model has fine enough granularity to avoid incorrect mapping for the
6274  * populated node map.
6275  *
6276  * Returns the determined alignment in pfn's.  0 if there is no alignment
6277  * requirement (single node).
6278  */
6279 unsigned long __init node_map_pfn_alignment(void)
6280 {
6281 	unsigned long accl_mask = 0, last_end = 0;
6282 	unsigned long start, end, mask;
6283 	int last_nid = -1;
6284 	int i, nid;
6285 
6286 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6287 		if (!start || last_nid < 0 || last_nid == nid) {
6288 			last_nid = nid;
6289 			last_end = end;
6290 			continue;
6291 		}
6292 
6293 		/*
6294 		 * Start with a mask granular enough to pin-point to the
6295 		 * start pfn and tick off bits one-by-one until it becomes
6296 		 * too coarse to separate the current node from the last.
6297 		 */
6298 		mask = ~((1 << __ffs(start)) - 1);
6299 		while (mask && last_end <= (start & (mask << 1)))
6300 			mask <<= 1;
6301 
6302 		/* accumulate all internode masks */
6303 		accl_mask |= mask;
6304 	}
6305 
6306 	/* convert mask to number of pages */
6307 	return ~accl_mask + 1;
6308 }
6309 
6310 /* Find the lowest pfn for a node */
6311 static unsigned long __init find_min_pfn_for_node(int nid)
6312 {
6313 	unsigned long min_pfn = ULONG_MAX;
6314 	unsigned long start_pfn;
6315 	int i;
6316 
6317 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6318 		min_pfn = min(min_pfn, start_pfn);
6319 
6320 	if (min_pfn == ULONG_MAX) {
6321 		pr_warn("Could not find start_pfn for node %d\n", nid);
6322 		return 0;
6323 	}
6324 
6325 	return min_pfn;
6326 }
6327 
6328 /**
6329  * find_min_pfn_with_active_regions - Find the minimum PFN registered
6330  *
6331  * It returns the minimum PFN based on information provided via
6332  * memblock_set_node().
6333  */
6334 unsigned long __init find_min_pfn_with_active_regions(void)
6335 {
6336 	return find_min_pfn_for_node(MAX_NUMNODES);
6337 }
6338 
6339 /*
6340  * early_calculate_totalpages()
6341  * Sum pages in active regions for movable zone.
6342  * Populate N_MEMORY for calculating usable_nodes.
6343  */
6344 static unsigned long __init early_calculate_totalpages(void)
6345 {
6346 	unsigned long totalpages = 0;
6347 	unsigned long start_pfn, end_pfn;
6348 	int i, nid;
6349 
6350 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6351 		unsigned long pages = end_pfn - start_pfn;
6352 
6353 		totalpages += pages;
6354 		if (pages)
6355 			node_set_state(nid, N_MEMORY);
6356 	}
6357 	return totalpages;
6358 }
6359 
6360 /*
6361  * Find the PFN the Movable zone begins in each node. Kernel memory
6362  * is spread evenly between nodes as long as the nodes have enough
6363  * memory. When they don't, some nodes will have more kernelcore than
6364  * others
6365  */
6366 static void __init find_zone_movable_pfns_for_nodes(void)
6367 {
6368 	int i, nid;
6369 	unsigned long usable_startpfn;
6370 	unsigned long kernelcore_node, kernelcore_remaining;
6371 	/* save the state before borrow the nodemask */
6372 	nodemask_t saved_node_state = node_states[N_MEMORY];
6373 	unsigned long totalpages = early_calculate_totalpages();
6374 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6375 	struct memblock_region *r;
6376 
6377 	/* Need to find movable_zone earlier when movable_node is specified. */
6378 	find_usable_zone_for_movable();
6379 
6380 	/*
6381 	 * If movable_node is specified, ignore kernelcore and movablecore
6382 	 * options.
6383 	 */
6384 	if (movable_node_is_enabled()) {
6385 		for_each_memblock(memory, r) {
6386 			if (!memblock_is_hotpluggable(r))
6387 				continue;
6388 
6389 			nid = r->nid;
6390 
6391 			usable_startpfn = PFN_DOWN(r->base);
6392 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6393 				min(usable_startpfn, zone_movable_pfn[nid]) :
6394 				usable_startpfn;
6395 		}
6396 
6397 		goto out2;
6398 	}
6399 
6400 	/*
6401 	 * If kernelcore=mirror is specified, ignore movablecore option
6402 	 */
6403 	if (mirrored_kernelcore) {
6404 		bool mem_below_4gb_not_mirrored = false;
6405 
6406 		for_each_memblock(memory, r) {
6407 			if (memblock_is_mirror(r))
6408 				continue;
6409 
6410 			nid = r->nid;
6411 
6412 			usable_startpfn = memblock_region_memory_base_pfn(r);
6413 
6414 			if (usable_startpfn < 0x100000) {
6415 				mem_below_4gb_not_mirrored = true;
6416 				continue;
6417 			}
6418 
6419 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6420 				min(usable_startpfn, zone_movable_pfn[nid]) :
6421 				usable_startpfn;
6422 		}
6423 
6424 		if (mem_below_4gb_not_mirrored)
6425 			pr_warn("This configuration results in unmirrored kernel memory.");
6426 
6427 		goto out2;
6428 	}
6429 
6430 	/*
6431 	 * If movablecore=nn[KMG] was specified, calculate what size of
6432 	 * kernelcore that corresponds so that memory usable for
6433 	 * any allocation type is evenly spread. If both kernelcore
6434 	 * and movablecore are specified, then the value of kernelcore
6435 	 * will be used for required_kernelcore if it's greater than
6436 	 * what movablecore would have allowed.
6437 	 */
6438 	if (required_movablecore) {
6439 		unsigned long corepages;
6440 
6441 		/*
6442 		 * Round-up so that ZONE_MOVABLE is at least as large as what
6443 		 * was requested by the user
6444 		 */
6445 		required_movablecore =
6446 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6447 		required_movablecore = min(totalpages, required_movablecore);
6448 		corepages = totalpages - required_movablecore;
6449 
6450 		required_kernelcore = max(required_kernelcore, corepages);
6451 	}
6452 
6453 	/*
6454 	 * If kernelcore was not specified or kernelcore size is larger
6455 	 * than totalpages, there is no ZONE_MOVABLE.
6456 	 */
6457 	if (!required_kernelcore || required_kernelcore >= totalpages)
6458 		goto out;
6459 
6460 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6461 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6462 
6463 restart:
6464 	/* Spread kernelcore memory as evenly as possible throughout nodes */
6465 	kernelcore_node = required_kernelcore / usable_nodes;
6466 	for_each_node_state(nid, N_MEMORY) {
6467 		unsigned long start_pfn, end_pfn;
6468 
6469 		/*
6470 		 * Recalculate kernelcore_node if the division per node
6471 		 * now exceeds what is necessary to satisfy the requested
6472 		 * amount of memory for the kernel
6473 		 */
6474 		if (required_kernelcore < kernelcore_node)
6475 			kernelcore_node = required_kernelcore / usable_nodes;
6476 
6477 		/*
6478 		 * As the map is walked, we track how much memory is usable
6479 		 * by the kernel using kernelcore_remaining. When it is
6480 		 * 0, the rest of the node is usable by ZONE_MOVABLE
6481 		 */
6482 		kernelcore_remaining = kernelcore_node;
6483 
6484 		/* Go through each range of PFNs within this node */
6485 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6486 			unsigned long size_pages;
6487 
6488 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6489 			if (start_pfn >= end_pfn)
6490 				continue;
6491 
6492 			/* Account for what is only usable for kernelcore */
6493 			if (start_pfn < usable_startpfn) {
6494 				unsigned long kernel_pages;
6495 				kernel_pages = min(end_pfn, usable_startpfn)
6496 								- start_pfn;
6497 
6498 				kernelcore_remaining -= min(kernel_pages,
6499 							kernelcore_remaining);
6500 				required_kernelcore -= min(kernel_pages,
6501 							required_kernelcore);
6502 
6503 				/* Continue if range is now fully accounted */
6504 				if (end_pfn <= usable_startpfn) {
6505 
6506 					/*
6507 					 * Push zone_movable_pfn to the end so
6508 					 * that if we have to rebalance
6509 					 * kernelcore across nodes, we will
6510 					 * not double account here
6511 					 */
6512 					zone_movable_pfn[nid] = end_pfn;
6513 					continue;
6514 				}
6515 				start_pfn = usable_startpfn;
6516 			}
6517 
6518 			/*
6519 			 * The usable PFN range for ZONE_MOVABLE is from
6520 			 * start_pfn->end_pfn. Calculate size_pages as the
6521 			 * number of pages used as kernelcore
6522 			 */
6523 			size_pages = end_pfn - start_pfn;
6524 			if (size_pages > kernelcore_remaining)
6525 				size_pages = kernelcore_remaining;
6526 			zone_movable_pfn[nid] = start_pfn + size_pages;
6527 
6528 			/*
6529 			 * Some kernelcore has been met, update counts and
6530 			 * break if the kernelcore for this node has been
6531 			 * satisfied
6532 			 */
6533 			required_kernelcore -= min(required_kernelcore,
6534 								size_pages);
6535 			kernelcore_remaining -= size_pages;
6536 			if (!kernelcore_remaining)
6537 				break;
6538 		}
6539 	}
6540 
6541 	/*
6542 	 * If there is still required_kernelcore, we do another pass with one
6543 	 * less node in the count. This will push zone_movable_pfn[nid] further
6544 	 * along on the nodes that still have memory until kernelcore is
6545 	 * satisfied
6546 	 */
6547 	usable_nodes--;
6548 	if (usable_nodes && required_kernelcore > usable_nodes)
6549 		goto restart;
6550 
6551 out2:
6552 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6553 	for (nid = 0; nid < MAX_NUMNODES; nid++)
6554 		zone_movable_pfn[nid] =
6555 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6556 
6557 out:
6558 	/* restore the node_state */
6559 	node_states[N_MEMORY] = saved_node_state;
6560 }
6561 
6562 /* Any regular or high memory on that node ? */
6563 static void check_for_memory(pg_data_t *pgdat, int nid)
6564 {
6565 	enum zone_type zone_type;
6566 
6567 	if (N_MEMORY == N_NORMAL_MEMORY)
6568 		return;
6569 
6570 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6571 		struct zone *zone = &pgdat->node_zones[zone_type];
6572 		if (populated_zone(zone)) {
6573 			node_set_state(nid, N_HIGH_MEMORY);
6574 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6575 			    zone_type <= ZONE_NORMAL)
6576 				node_set_state(nid, N_NORMAL_MEMORY);
6577 			break;
6578 		}
6579 	}
6580 }
6581 
6582 /**
6583  * free_area_init_nodes - Initialise all pg_data_t and zone data
6584  * @max_zone_pfn: an array of max PFNs for each zone
6585  *
6586  * This will call free_area_init_node() for each active node in the system.
6587  * Using the page ranges provided by memblock_set_node(), the size of each
6588  * zone in each node and their holes is calculated. If the maximum PFN
6589  * between two adjacent zones match, it is assumed that the zone is empty.
6590  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6591  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6592  * starts where the previous one ended. For example, ZONE_DMA32 starts
6593  * at arch_max_dma_pfn.
6594  */
6595 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6596 {
6597 	unsigned long start_pfn, end_pfn;
6598 	int i, nid;
6599 
6600 	/* Record where the zone boundaries are */
6601 	memset(arch_zone_lowest_possible_pfn, 0,
6602 				sizeof(arch_zone_lowest_possible_pfn));
6603 	memset(arch_zone_highest_possible_pfn, 0,
6604 				sizeof(arch_zone_highest_possible_pfn));
6605 
6606 	start_pfn = find_min_pfn_with_active_regions();
6607 
6608 	for (i = 0; i < MAX_NR_ZONES; i++) {
6609 		if (i == ZONE_MOVABLE)
6610 			continue;
6611 
6612 		end_pfn = max(max_zone_pfn[i], start_pfn);
6613 		arch_zone_lowest_possible_pfn[i] = start_pfn;
6614 		arch_zone_highest_possible_pfn[i] = end_pfn;
6615 
6616 		start_pfn = end_pfn;
6617 	}
6618 
6619 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
6620 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6621 	find_zone_movable_pfns_for_nodes();
6622 
6623 	/* Print out the zone ranges */
6624 	pr_info("Zone ranges:\n");
6625 	for (i = 0; i < MAX_NR_ZONES; i++) {
6626 		if (i == ZONE_MOVABLE)
6627 			continue;
6628 		pr_info("  %-8s ", zone_names[i]);
6629 		if (arch_zone_lowest_possible_pfn[i] ==
6630 				arch_zone_highest_possible_pfn[i])
6631 			pr_cont("empty\n");
6632 		else
6633 			pr_cont("[mem %#018Lx-%#018Lx]\n",
6634 				(u64)arch_zone_lowest_possible_pfn[i]
6635 					<< PAGE_SHIFT,
6636 				((u64)arch_zone_highest_possible_pfn[i]
6637 					<< PAGE_SHIFT) - 1);
6638 	}
6639 
6640 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6641 	pr_info("Movable zone start for each node\n");
6642 	for (i = 0; i < MAX_NUMNODES; i++) {
6643 		if (zone_movable_pfn[i])
6644 			pr_info("  Node %d: %#018Lx\n", i,
6645 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6646 	}
6647 
6648 	/* Print out the early node map */
6649 	pr_info("Early memory node ranges\n");
6650 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6651 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6652 			(u64)start_pfn << PAGE_SHIFT,
6653 			((u64)end_pfn << PAGE_SHIFT) - 1);
6654 
6655 	/* Initialise every node */
6656 	mminit_verify_pageflags_layout();
6657 	setup_nr_node_ids();
6658 	for_each_online_node(nid) {
6659 		pg_data_t *pgdat = NODE_DATA(nid);
6660 		free_area_init_node(nid, NULL,
6661 				find_min_pfn_for_node(nid), NULL);
6662 
6663 		/* Any memory on that node */
6664 		if (pgdat->node_present_pages)
6665 			node_set_state(nid, N_MEMORY);
6666 		check_for_memory(pgdat, nid);
6667 	}
6668 }
6669 
6670 static int __init cmdline_parse_core(char *p, unsigned long *core)
6671 {
6672 	unsigned long long coremem;
6673 	if (!p)
6674 		return -EINVAL;
6675 
6676 	coremem = memparse(p, &p);
6677 	*core = coremem >> PAGE_SHIFT;
6678 
6679 	/* Paranoid check that UL is enough for the coremem value */
6680 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6681 
6682 	return 0;
6683 }
6684 
6685 /*
6686  * kernelcore=size sets the amount of memory for use for allocations that
6687  * cannot be reclaimed or migrated.
6688  */
6689 static int __init cmdline_parse_kernelcore(char *p)
6690 {
6691 	/* parse kernelcore=mirror */
6692 	if (parse_option_str(p, "mirror")) {
6693 		mirrored_kernelcore = true;
6694 		return 0;
6695 	}
6696 
6697 	return cmdline_parse_core(p, &required_kernelcore);
6698 }
6699 
6700 /*
6701  * movablecore=size sets the amount of memory for use for allocations that
6702  * can be reclaimed or migrated.
6703  */
6704 static int __init cmdline_parse_movablecore(char *p)
6705 {
6706 	return cmdline_parse_core(p, &required_movablecore);
6707 }
6708 
6709 early_param("kernelcore", cmdline_parse_kernelcore);
6710 early_param("movablecore", cmdline_parse_movablecore);
6711 
6712 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6713 
6714 void adjust_managed_page_count(struct page *page, long count)
6715 {
6716 	spin_lock(&managed_page_count_lock);
6717 	page_zone(page)->managed_pages += count;
6718 	totalram_pages += count;
6719 #ifdef CONFIG_HIGHMEM
6720 	if (PageHighMem(page))
6721 		totalhigh_pages += count;
6722 #endif
6723 	spin_unlock(&managed_page_count_lock);
6724 }
6725 EXPORT_SYMBOL(adjust_managed_page_count);
6726 
6727 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6728 {
6729 	void *pos;
6730 	unsigned long pages = 0;
6731 
6732 	start = (void *)PAGE_ALIGN((unsigned long)start);
6733 	end = (void *)((unsigned long)end & PAGE_MASK);
6734 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6735 		if ((unsigned int)poison <= 0xFF)
6736 			memset(pos, poison, PAGE_SIZE);
6737 		free_reserved_page(virt_to_page(pos));
6738 	}
6739 
6740 	if (pages && s)
6741 		pr_info("Freeing %s memory: %ldK\n",
6742 			s, pages << (PAGE_SHIFT - 10));
6743 
6744 	return pages;
6745 }
6746 EXPORT_SYMBOL(free_reserved_area);
6747 
6748 #ifdef	CONFIG_HIGHMEM
6749 void free_highmem_page(struct page *page)
6750 {
6751 	__free_reserved_page(page);
6752 	totalram_pages++;
6753 	page_zone(page)->managed_pages++;
6754 	totalhigh_pages++;
6755 }
6756 #endif
6757 
6758 
6759 void __init mem_init_print_info(const char *str)
6760 {
6761 	unsigned long physpages, codesize, datasize, rosize, bss_size;
6762 	unsigned long init_code_size, init_data_size;
6763 
6764 	physpages = get_num_physpages();
6765 	codesize = _etext - _stext;
6766 	datasize = _edata - _sdata;
6767 	rosize = __end_rodata - __start_rodata;
6768 	bss_size = __bss_stop - __bss_start;
6769 	init_data_size = __init_end - __init_begin;
6770 	init_code_size = _einittext - _sinittext;
6771 
6772 	/*
6773 	 * Detect special cases and adjust section sizes accordingly:
6774 	 * 1) .init.* may be embedded into .data sections
6775 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
6776 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
6777 	 * 3) .rodata.* may be embedded into .text or .data sections.
6778 	 */
6779 #define adj_init_size(start, end, size, pos, adj) \
6780 	do { \
6781 		if (start <= pos && pos < end && size > adj) \
6782 			size -= adj; \
6783 	} while (0)
6784 
6785 	adj_init_size(__init_begin, __init_end, init_data_size,
6786 		     _sinittext, init_code_size);
6787 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6788 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6789 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6790 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6791 
6792 #undef	adj_init_size
6793 
6794 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6795 #ifdef	CONFIG_HIGHMEM
6796 		", %luK highmem"
6797 #endif
6798 		"%s%s)\n",
6799 		nr_free_pages() << (PAGE_SHIFT - 10),
6800 		physpages << (PAGE_SHIFT - 10),
6801 		codesize >> 10, datasize >> 10, rosize >> 10,
6802 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
6803 		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6804 		totalcma_pages << (PAGE_SHIFT - 10),
6805 #ifdef	CONFIG_HIGHMEM
6806 		totalhigh_pages << (PAGE_SHIFT - 10),
6807 #endif
6808 		str ? ", " : "", str ? str : "");
6809 }
6810 
6811 /**
6812  * set_dma_reserve - set the specified number of pages reserved in the first zone
6813  * @new_dma_reserve: The number of pages to mark reserved
6814  *
6815  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6816  * In the DMA zone, a significant percentage may be consumed by kernel image
6817  * and other unfreeable allocations which can skew the watermarks badly. This
6818  * function may optionally be used to account for unfreeable pages in the
6819  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6820  * smaller per-cpu batchsize.
6821  */
6822 void __init set_dma_reserve(unsigned long new_dma_reserve)
6823 {
6824 	dma_reserve = new_dma_reserve;
6825 }
6826 
6827 void __init free_area_init(unsigned long *zones_size)
6828 {
6829 	free_area_init_node(0, zones_size,
6830 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6831 }
6832 
6833 static int page_alloc_cpu_dead(unsigned int cpu)
6834 {
6835 
6836 	lru_add_drain_cpu(cpu);
6837 	drain_pages(cpu);
6838 
6839 	/*
6840 	 * Spill the event counters of the dead processor
6841 	 * into the current processors event counters.
6842 	 * This artificially elevates the count of the current
6843 	 * processor.
6844 	 */
6845 	vm_events_fold_cpu(cpu);
6846 
6847 	/*
6848 	 * Zero the differential counters of the dead processor
6849 	 * so that the vm statistics are consistent.
6850 	 *
6851 	 * This is only okay since the processor is dead and cannot
6852 	 * race with what we are doing.
6853 	 */
6854 	cpu_vm_stats_fold(cpu);
6855 	return 0;
6856 }
6857 
6858 void __init page_alloc_init(void)
6859 {
6860 	int ret;
6861 
6862 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6863 					"mm/page_alloc:dead", NULL,
6864 					page_alloc_cpu_dead);
6865 	WARN_ON(ret < 0);
6866 }
6867 
6868 /*
6869  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6870  *	or min_free_kbytes changes.
6871  */
6872 static void calculate_totalreserve_pages(void)
6873 {
6874 	struct pglist_data *pgdat;
6875 	unsigned long reserve_pages = 0;
6876 	enum zone_type i, j;
6877 
6878 	for_each_online_pgdat(pgdat) {
6879 
6880 		pgdat->totalreserve_pages = 0;
6881 
6882 		for (i = 0; i < MAX_NR_ZONES; i++) {
6883 			struct zone *zone = pgdat->node_zones + i;
6884 			long max = 0;
6885 
6886 			/* Find valid and maximum lowmem_reserve in the zone */
6887 			for (j = i; j < MAX_NR_ZONES; j++) {
6888 				if (zone->lowmem_reserve[j] > max)
6889 					max = zone->lowmem_reserve[j];
6890 			}
6891 
6892 			/* we treat the high watermark as reserved pages. */
6893 			max += high_wmark_pages(zone);
6894 
6895 			if (max > zone->managed_pages)
6896 				max = zone->managed_pages;
6897 
6898 			pgdat->totalreserve_pages += max;
6899 
6900 			reserve_pages += max;
6901 		}
6902 	}
6903 	totalreserve_pages = reserve_pages;
6904 }
6905 
6906 /*
6907  * setup_per_zone_lowmem_reserve - called whenever
6908  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
6909  *	has a correct pages reserved value, so an adequate number of
6910  *	pages are left in the zone after a successful __alloc_pages().
6911  */
6912 static void setup_per_zone_lowmem_reserve(void)
6913 {
6914 	struct pglist_data *pgdat;
6915 	enum zone_type j, idx;
6916 
6917 	for_each_online_pgdat(pgdat) {
6918 		for (j = 0; j < MAX_NR_ZONES; j++) {
6919 			struct zone *zone = pgdat->node_zones + j;
6920 			unsigned long managed_pages = zone->managed_pages;
6921 
6922 			zone->lowmem_reserve[j] = 0;
6923 
6924 			idx = j;
6925 			while (idx) {
6926 				struct zone *lower_zone;
6927 
6928 				idx--;
6929 
6930 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
6931 					sysctl_lowmem_reserve_ratio[idx] = 1;
6932 
6933 				lower_zone = pgdat->node_zones + idx;
6934 				lower_zone->lowmem_reserve[j] = managed_pages /
6935 					sysctl_lowmem_reserve_ratio[idx];
6936 				managed_pages += lower_zone->managed_pages;
6937 			}
6938 		}
6939 	}
6940 
6941 	/* update totalreserve_pages */
6942 	calculate_totalreserve_pages();
6943 }
6944 
6945 static void __setup_per_zone_wmarks(void)
6946 {
6947 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6948 	unsigned long lowmem_pages = 0;
6949 	struct zone *zone;
6950 	unsigned long flags;
6951 
6952 	/* Calculate total number of !ZONE_HIGHMEM pages */
6953 	for_each_zone(zone) {
6954 		if (!is_highmem(zone))
6955 			lowmem_pages += zone->managed_pages;
6956 	}
6957 
6958 	for_each_zone(zone) {
6959 		u64 tmp;
6960 
6961 		spin_lock_irqsave(&zone->lock, flags);
6962 		tmp = (u64)pages_min * zone->managed_pages;
6963 		do_div(tmp, lowmem_pages);
6964 		if (is_highmem(zone)) {
6965 			/*
6966 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6967 			 * need highmem pages, so cap pages_min to a small
6968 			 * value here.
6969 			 *
6970 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6971 			 * deltas control asynch page reclaim, and so should
6972 			 * not be capped for highmem.
6973 			 */
6974 			unsigned long min_pages;
6975 
6976 			min_pages = zone->managed_pages / 1024;
6977 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6978 			zone->watermark[WMARK_MIN] = min_pages;
6979 		} else {
6980 			/*
6981 			 * If it's a lowmem zone, reserve a number of pages
6982 			 * proportionate to the zone's size.
6983 			 */
6984 			zone->watermark[WMARK_MIN] = tmp;
6985 		}
6986 
6987 		/*
6988 		 * Set the kswapd watermarks distance according to the
6989 		 * scale factor in proportion to available memory, but
6990 		 * ensure a minimum size on small systems.
6991 		 */
6992 		tmp = max_t(u64, tmp >> 2,
6993 			    mult_frac(zone->managed_pages,
6994 				      watermark_scale_factor, 10000));
6995 
6996 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
6997 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6998 
6999 		spin_unlock_irqrestore(&zone->lock, flags);
7000 	}
7001 
7002 	/* update totalreserve_pages */
7003 	calculate_totalreserve_pages();
7004 }
7005 
7006 /**
7007  * setup_per_zone_wmarks - called when min_free_kbytes changes
7008  * or when memory is hot-{added|removed}
7009  *
7010  * Ensures that the watermark[min,low,high] values for each zone are set
7011  * correctly with respect to min_free_kbytes.
7012  */
7013 void setup_per_zone_wmarks(void)
7014 {
7015 	mutex_lock(&zonelists_mutex);
7016 	__setup_per_zone_wmarks();
7017 	mutex_unlock(&zonelists_mutex);
7018 }
7019 
7020 /*
7021  * Initialise min_free_kbytes.
7022  *
7023  * For small machines we want it small (128k min).  For large machines
7024  * we want it large (64MB max).  But it is not linear, because network
7025  * bandwidth does not increase linearly with machine size.  We use
7026  *
7027  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7028  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
7029  *
7030  * which yields
7031  *
7032  * 16MB:	512k
7033  * 32MB:	724k
7034  * 64MB:	1024k
7035  * 128MB:	1448k
7036  * 256MB:	2048k
7037  * 512MB:	2896k
7038  * 1024MB:	4096k
7039  * 2048MB:	5792k
7040  * 4096MB:	8192k
7041  * 8192MB:	11584k
7042  * 16384MB:	16384k
7043  */
7044 int __meminit init_per_zone_wmark_min(void)
7045 {
7046 	unsigned long lowmem_kbytes;
7047 	int new_min_free_kbytes;
7048 
7049 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7050 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7051 
7052 	if (new_min_free_kbytes > user_min_free_kbytes) {
7053 		min_free_kbytes = new_min_free_kbytes;
7054 		if (min_free_kbytes < 128)
7055 			min_free_kbytes = 128;
7056 		if (min_free_kbytes > 65536)
7057 			min_free_kbytes = 65536;
7058 	} else {
7059 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7060 				new_min_free_kbytes, user_min_free_kbytes);
7061 	}
7062 	setup_per_zone_wmarks();
7063 	refresh_zone_stat_thresholds();
7064 	setup_per_zone_lowmem_reserve();
7065 
7066 #ifdef CONFIG_NUMA
7067 	setup_min_unmapped_ratio();
7068 	setup_min_slab_ratio();
7069 #endif
7070 
7071 	return 0;
7072 }
7073 core_initcall(init_per_zone_wmark_min)
7074 
7075 /*
7076  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7077  *	that we can call two helper functions whenever min_free_kbytes
7078  *	changes.
7079  */
7080 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7081 	void __user *buffer, size_t *length, loff_t *ppos)
7082 {
7083 	int rc;
7084 
7085 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7086 	if (rc)
7087 		return rc;
7088 
7089 	if (write) {
7090 		user_min_free_kbytes = min_free_kbytes;
7091 		setup_per_zone_wmarks();
7092 	}
7093 	return 0;
7094 }
7095 
7096 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7097 	void __user *buffer, size_t *length, loff_t *ppos)
7098 {
7099 	int rc;
7100 
7101 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7102 	if (rc)
7103 		return rc;
7104 
7105 	if (write)
7106 		setup_per_zone_wmarks();
7107 
7108 	return 0;
7109 }
7110 
7111 #ifdef CONFIG_NUMA
7112 static void setup_min_unmapped_ratio(void)
7113 {
7114 	pg_data_t *pgdat;
7115 	struct zone *zone;
7116 
7117 	for_each_online_pgdat(pgdat)
7118 		pgdat->min_unmapped_pages = 0;
7119 
7120 	for_each_zone(zone)
7121 		zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7122 				sysctl_min_unmapped_ratio) / 100;
7123 }
7124 
7125 
7126 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7127 	void __user *buffer, size_t *length, loff_t *ppos)
7128 {
7129 	int rc;
7130 
7131 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7132 	if (rc)
7133 		return rc;
7134 
7135 	setup_min_unmapped_ratio();
7136 
7137 	return 0;
7138 }
7139 
7140 static void setup_min_slab_ratio(void)
7141 {
7142 	pg_data_t *pgdat;
7143 	struct zone *zone;
7144 
7145 	for_each_online_pgdat(pgdat)
7146 		pgdat->min_slab_pages = 0;
7147 
7148 	for_each_zone(zone)
7149 		zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7150 				sysctl_min_slab_ratio) / 100;
7151 }
7152 
7153 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7154 	void __user *buffer, size_t *length, loff_t *ppos)
7155 {
7156 	int rc;
7157 
7158 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7159 	if (rc)
7160 		return rc;
7161 
7162 	setup_min_slab_ratio();
7163 
7164 	return 0;
7165 }
7166 #endif
7167 
7168 /*
7169  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7170  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7171  *	whenever sysctl_lowmem_reserve_ratio changes.
7172  *
7173  * The reserve ratio obviously has absolutely no relation with the
7174  * minimum watermarks. The lowmem reserve ratio can only make sense
7175  * if in function of the boot time zone sizes.
7176  */
7177 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7178 	void __user *buffer, size_t *length, loff_t *ppos)
7179 {
7180 	proc_dointvec_minmax(table, write, buffer, length, ppos);
7181 	setup_per_zone_lowmem_reserve();
7182 	return 0;
7183 }
7184 
7185 /*
7186  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7187  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
7188  * pagelist can have before it gets flushed back to buddy allocator.
7189  */
7190 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7191 	void __user *buffer, size_t *length, loff_t *ppos)
7192 {
7193 	struct zone *zone;
7194 	int old_percpu_pagelist_fraction;
7195 	int ret;
7196 
7197 	mutex_lock(&pcp_batch_high_lock);
7198 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7199 
7200 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7201 	if (!write || ret < 0)
7202 		goto out;
7203 
7204 	/* Sanity checking to avoid pcp imbalance */
7205 	if (percpu_pagelist_fraction &&
7206 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7207 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7208 		ret = -EINVAL;
7209 		goto out;
7210 	}
7211 
7212 	/* No change? */
7213 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7214 		goto out;
7215 
7216 	for_each_populated_zone(zone) {
7217 		unsigned int cpu;
7218 
7219 		for_each_possible_cpu(cpu)
7220 			pageset_set_high_and_batch(zone,
7221 					per_cpu_ptr(zone->pageset, cpu));
7222 	}
7223 out:
7224 	mutex_unlock(&pcp_batch_high_lock);
7225 	return ret;
7226 }
7227 
7228 #ifdef CONFIG_NUMA
7229 int hashdist = HASHDIST_DEFAULT;
7230 
7231 static int __init set_hashdist(char *str)
7232 {
7233 	if (!str)
7234 		return 0;
7235 	hashdist = simple_strtoul(str, &str, 0);
7236 	return 1;
7237 }
7238 __setup("hashdist=", set_hashdist);
7239 #endif
7240 
7241 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7242 /*
7243  * Returns the number of pages that arch has reserved but
7244  * is not known to alloc_large_system_hash().
7245  */
7246 static unsigned long __init arch_reserved_kernel_pages(void)
7247 {
7248 	return 0;
7249 }
7250 #endif
7251 
7252 /*
7253  * Adaptive scale is meant to reduce sizes of hash tables on large memory
7254  * machines. As memory size is increased the scale is also increased but at
7255  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
7256  * quadruples the scale is increased by one, which means the size of hash table
7257  * only doubles, instead of quadrupling as well.
7258  * Because 32-bit systems cannot have large physical memory, where this scaling
7259  * makes sense, it is disabled on such platforms.
7260  */
7261 #if __BITS_PER_LONG > 32
7262 #define ADAPT_SCALE_BASE	(64ul << 30)
7263 #define ADAPT_SCALE_SHIFT	2
7264 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
7265 #endif
7266 
7267 /*
7268  * allocate a large system hash table from bootmem
7269  * - it is assumed that the hash table must contain an exact power-of-2
7270  *   quantity of entries
7271  * - limit is the number of hash buckets, not the total allocation size
7272  */
7273 void *__init alloc_large_system_hash(const char *tablename,
7274 				     unsigned long bucketsize,
7275 				     unsigned long numentries,
7276 				     int scale,
7277 				     int flags,
7278 				     unsigned int *_hash_shift,
7279 				     unsigned int *_hash_mask,
7280 				     unsigned long low_limit,
7281 				     unsigned long high_limit)
7282 {
7283 	unsigned long long max = high_limit;
7284 	unsigned long log2qty, size;
7285 	void *table = NULL;
7286 	gfp_t gfp_flags;
7287 
7288 	/* allow the kernel cmdline to have a say */
7289 	if (!numentries) {
7290 		/* round applicable memory size up to nearest megabyte */
7291 		numentries = nr_kernel_pages;
7292 		numentries -= arch_reserved_kernel_pages();
7293 
7294 		/* It isn't necessary when PAGE_SIZE >= 1MB */
7295 		if (PAGE_SHIFT < 20)
7296 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7297 
7298 #if __BITS_PER_LONG > 32
7299 		if (!high_limit) {
7300 			unsigned long adapt;
7301 
7302 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7303 			     adapt <<= ADAPT_SCALE_SHIFT)
7304 				scale++;
7305 		}
7306 #endif
7307 
7308 		/* limit to 1 bucket per 2^scale bytes of low memory */
7309 		if (scale > PAGE_SHIFT)
7310 			numentries >>= (scale - PAGE_SHIFT);
7311 		else
7312 			numentries <<= (PAGE_SHIFT - scale);
7313 
7314 		/* Make sure we've got at least a 0-order allocation.. */
7315 		if (unlikely(flags & HASH_SMALL)) {
7316 			/* Makes no sense without HASH_EARLY */
7317 			WARN_ON(!(flags & HASH_EARLY));
7318 			if (!(numentries >> *_hash_shift)) {
7319 				numentries = 1UL << *_hash_shift;
7320 				BUG_ON(!numentries);
7321 			}
7322 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7323 			numentries = PAGE_SIZE / bucketsize;
7324 	}
7325 	numentries = roundup_pow_of_two(numentries);
7326 
7327 	/* limit allocation size to 1/16 total memory by default */
7328 	if (max == 0) {
7329 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7330 		do_div(max, bucketsize);
7331 	}
7332 	max = min(max, 0x80000000ULL);
7333 
7334 	if (numentries < low_limit)
7335 		numentries = low_limit;
7336 	if (numentries > max)
7337 		numentries = max;
7338 
7339 	log2qty = ilog2(numentries);
7340 
7341 	/*
7342 	 * memblock allocator returns zeroed memory already, so HASH_ZERO is
7343 	 * currently not used when HASH_EARLY is specified.
7344 	 */
7345 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
7346 	do {
7347 		size = bucketsize << log2qty;
7348 		if (flags & HASH_EARLY)
7349 			table = memblock_virt_alloc_nopanic(size, 0);
7350 		else if (hashdist)
7351 			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7352 		else {
7353 			/*
7354 			 * If bucketsize is not a power-of-two, we may free
7355 			 * some pages at the end of hash table which
7356 			 * alloc_pages_exact() automatically does
7357 			 */
7358 			if (get_order(size) < MAX_ORDER) {
7359 				table = alloc_pages_exact(size, gfp_flags);
7360 				kmemleak_alloc(table, size, 1, gfp_flags);
7361 			}
7362 		}
7363 	} while (!table && size > PAGE_SIZE && --log2qty);
7364 
7365 	if (!table)
7366 		panic("Failed to allocate %s hash table\n", tablename);
7367 
7368 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7369 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7370 
7371 	if (_hash_shift)
7372 		*_hash_shift = log2qty;
7373 	if (_hash_mask)
7374 		*_hash_mask = (1 << log2qty) - 1;
7375 
7376 	return table;
7377 }
7378 
7379 /*
7380  * This function checks whether pageblock includes unmovable pages or not.
7381  * If @count is not zero, it is okay to include less @count unmovable pages
7382  *
7383  * PageLRU check without isolation or lru_lock could race so that
7384  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7385  * check without lock_page also may miss some movable non-lru pages at
7386  * race condition. So you can't expect this function should be exact.
7387  */
7388 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7389 			 bool skip_hwpoisoned_pages)
7390 {
7391 	unsigned long pfn, iter, found;
7392 	int mt;
7393 
7394 	/*
7395 	 * For avoiding noise data, lru_add_drain_all() should be called
7396 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
7397 	 */
7398 	if (zone_idx(zone) == ZONE_MOVABLE)
7399 		return false;
7400 	mt = get_pageblock_migratetype(page);
7401 	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7402 		return false;
7403 
7404 	pfn = page_to_pfn(page);
7405 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7406 		unsigned long check = pfn + iter;
7407 
7408 		if (!pfn_valid_within(check))
7409 			continue;
7410 
7411 		page = pfn_to_page(check);
7412 
7413 		/*
7414 		 * Hugepages are not in LRU lists, but they're movable.
7415 		 * We need not scan over tail pages bacause we don't
7416 		 * handle each tail page individually in migration.
7417 		 */
7418 		if (PageHuge(page)) {
7419 			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7420 			continue;
7421 		}
7422 
7423 		/*
7424 		 * We can't use page_count without pin a page
7425 		 * because another CPU can free compound page.
7426 		 * This check already skips compound tails of THP
7427 		 * because their page->_refcount is zero at all time.
7428 		 */
7429 		if (!page_ref_count(page)) {
7430 			if (PageBuddy(page))
7431 				iter += (1 << page_order(page)) - 1;
7432 			continue;
7433 		}
7434 
7435 		/*
7436 		 * The HWPoisoned page may be not in buddy system, and
7437 		 * page_count() is not 0.
7438 		 */
7439 		if (skip_hwpoisoned_pages && PageHWPoison(page))
7440 			continue;
7441 
7442 		if (__PageMovable(page))
7443 			continue;
7444 
7445 		if (!PageLRU(page))
7446 			found++;
7447 		/*
7448 		 * If there are RECLAIMABLE pages, we need to check
7449 		 * it.  But now, memory offline itself doesn't call
7450 		 * shrink_node_slabs() and it still to be fixed.
7451 		 */
7452 		/*
7453 		 * If the page is not RAM, page_count()should be 0.
7454 		 * we don't need more check. This is an _used_ not-movable page.
7455 		 *
7456 		 * The problematic thing here is PG_reserved pages. PG_reserved
7457 		 * is set to both of a memory hole page and a _used_ kernel
7458 		 * page at boot.
7459 		 */
7460 		if (found > count)
7461 			return true;
7462 	}
7463 	return false;
7464 }
7465 
7466 bool is_pageblock_removable_nolock(struct page *page)
7467 {
7468 	struct zone *zone;
7469 	unsigned long pfn;
7470 
7471 	/*
7472 	 * We have to be careful here because we are iterating over memory
7473 	 * sections which are not zone aware so we might end up outside of
7474 	 * the zone but still within the section.
7475 	 * We have to take care about the node as well. If the node is offline
7476 	 * its NODE_DATA will be NULL - see page_zone.
7477 	 */
7478 	if (!node_online(page_to_nid(page)))
7479 		return false;
7480 
7481 	zone = page_zone(page);
7482 	pfn = page_to_pfn(page);
7483 	if (!zone_spans_pfn(zone, pfn))
7484 		return false;
7485 
7486 	return !has_unmovable_pages(zone, page, 0, true);
7487 }
7488 
7489 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7490 
7491 static unsigned long pfn_max_align_down(unsigned long pfn)
7492 {
7493 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7494 			     pageblock_nr_pages) - 1);
7495 }
7496 
7497 static unsigned long pfn_max_align_up(unsigned long pfn)
7498 {
7499 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7500 				pageblock_nr_pages));
7501 }
7502 
7503 /* [start, end) must belong to a single zone. */
7504 static int __alloc_contig_migrate_range(struct compact_control *cc,
7505 					unsigned long start, unsigned long end)
7506 {
7507 	/* This function is based on compact_zone() from compaction.c. */
7508 	unsigned long nr_reclaimed;
7509 	unsigned long pfn = start;
7510 	unsigned int tries = 0;
7511 	int ret = 0;
7512 
7513 	migrate_prep();
7514 
7515 	while (pfn < end || !list_empty(&cc->migratepages)) {
7516 		if (fatal_signal_pending(current)) {
7517 			ret = -EINTR;
7518 			break;
7519 		}
7520 
7521 		if (list_empty(&cc->migratepages)) {
7522 			cc->nr_migratepages = 0;
7523 			pfn = isolate_migratepages_range(cc, pfn, end);
7524 			if (!pfn) {
7525 				ret = -EINTR;
7526 				break;
7527 			}
7528 			tries = 0;
7529 		} else if (++tries == 5) {
7530 			ret = ret < 0 ? ret : -EBUSY;
7531 			break;
7532 		}
7533 
7534 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7535 							&cc->migratepages);
7536 		cc->nr_migratepages -= nr_reclaimed;
7537 
7538 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7539 				    NULL, 0, cc->mode, MR_CMA);
7540 	}
7541 	if (ret < 0) {
7542 		putback_movable_pages(&cc->migratepages);
7543 		return ret;
7544 	}
7545 	return 0;
7546 }
7547 
7548 /**
7549  * alloc_contig_range() -- tries to allocate given range of pages
7550  * @start:	start PFN to allocate
7551  * @end:	one-past-the-last PFN to allocate
7552  * @migratetype:	migratetype of the underlaying pageblocks (either
7553  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
7554  *			in range must have the same migratetype and it must
7555  *			be either of the two.
7556  * @gfp_mask:	GFP mask to use during compaction
7557  *
7558  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7559  * aligned, however it's the caller's responsibility to guarantee that
7560  * we are the only thread that changes migrate type of pageblocks the
7561  * pages fall in.
7562  *
7563  * The PFN range must belong to a single zone.
7564  *
7565  * Returns zero on success or negative error code.  On success all
7566  * pages which PFN is in [start, end) are allocated for the caller and
7567  * need to be freed with free_contig_range().
7568  */
7569 int alloc_contig_range(unsigned long start, unsigned long end,
7570 		       unsigned migratetype, gfp_t gfp_mask)
7571 {
7572 	unsigned long outer_start, outer_end;
7573 	unsigned int order;
7574 	int ret = 0;
7575 
7576 	struct compact_control cc = {
7577 		.nr_migratepages = 0,
7578 		.order = -1,
7579 		.zone = page_zone(pfn_to_page(start)),
7580 		.mode = MIGRATE_SYNC,
7581 		.ignore_skip_hint = true,
7582 		.gfp_mask = current_gfp_context(gfp_mask),
7583 	};
7584 	INIT_LIST_HEAD(&cc.migratepages);
7585 
7586 	/*
7587 	 * What we do here is we mark all pageblocks in range as
7588 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
7589 	 * have different sizes, and due to the way page allocator
7590 	 * work, we align the range to biggest of the two pages so
7591 	 * that page allocator won't try to merge buddies from
7592 	 * different pageblocks and change MIGRATE_ISOLATE to some
7593 	 * other migration type.
7594 	 *
7595 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7596 	 * migrate the pages from an unaligned range (ie. pages that
7597 	 * we are interested in).  This will put all the pages in
7598 	 * range back to page allocator as MIGRATE_ISOLATE.
7599 	 *
7600 	 * When this is done, we take the pages in range from page
7601 	 * allocator removing them from the buddy system.  This way
7602 	 * page allocator will never consider using them.
7603 	 *
7604 	 * This lets us mark the pageblocks back as
7605 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7606 	 * aligned range but not in the unaligned, original range are
7607 	 * put back to page allocator so that buddy can use them.
7608 	 */
7609 
7610 	ret = start_isolate_page_range(pfn_max_align_down(start),
7611 				       pfn_max_align_up(end), migratetype,
7612 				       false);
7613 	if (ret)
7614 		return ret;
7615 
7616 	/*
7617 	 * In case of -EBUSY, we'd like to know which page causes problem.
7618 	 * So, just fall through. We will check it in test_pages_isolated().
7619 	 */
7620 	ret = __alloc_contig_migrate_range(&cc, start, end);
7621 	if (ret && ret != -EBUSY)
7622 		goto done;
7623 
7624 	/*
7625 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7626 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
7627 	 * more, all pages in [start, end) are free in page allocator.
7628 	 * What we are going to do is to allocate all pages from
7629 	 * [start, end) (that is remove them from page allocator).
7630 	 *
7631 	 * The only problem is that pages at the beginning and at the
7632 	 * end of interesting range may be not aligned with pages that
7633 	 * page allocator holds, ie. they can be part of higher order
7634 	 * pages.  Because of this, we reserve the bigger range and
7635 	 * once this is done free the pages we are not interested in.
7636 	 *
7637 	 * We don't have to hold zone->lock here because the pages are
7638 	 * isolated thus they won't get removed from buddy.
7639 	 */
7640 
7641 	lru_add_drain_all();
7642 	drain_all_pages(cc.zone);
7643 
7644 	order = 0;
7645 	outer_start = start;
7646 	while (!PageBuddy(pfn_to_page(outer_start))) {
7647 		if (++order >= MAX_ORDER) {
7648 			outer_start = start;
7649 			break;
7650 		}
7651 		outer_start &= ~0UL << order;
7652 	}
7653 
7654 	if (outer_start != start) {
7655 		order = page_order(pfn_to_page(outer_start));
7656 
7657 		/*
7658 		 * outer_start page could be small order buddy page and
7659 		 * it doesn't include start page. Adjust outer_start
7660 		 * in this case to report failed page properly
7661 		 * on tracepoint in test_pages_isolated()
7662 		 */
7663 		if (outer_start + (1UL << order) <= start)
7664 			outer_start = start;
7665 	}
7666 
7667 	/* Make sure the range is really isolated. */
7668 	if (test_pages_isolated(outer_start, end, false)) {
7669 		pr_info("%s: [%lx, %lx) PFNs busy\n",
7670 			__func__, outer_start, end);
7671 		ret = -EBUSY;
7672 		goto done;
7673 	}
7674 
7675 	/* Grab isolated pages from freelists. */
7676 	outer_end = isolate_freepages_range(&cc, outer_start, end);
7677 	if (!outer_end) {
7678 		ret = -EBUSY;
7679 		goto done;
7680 	}
7681 
7682 	/* Free head and tail (if any) */
7683 	if (start != outer_start)
7684 		free_contig_range(outer_start, start - outer_start);
7685 	if (end != outer_end)
7686 		free_contig_range(end, outer_end - end);
7687 
7688 done:
7689 	undo_isolate_page_range(pfn_max_align_down(start),
7690 				pfn_max_align_up(end), migratetype);
7691 	return ret;
7692 }
7693 
7694 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7695 {
7696 	unsigned int count = 0;
7697 
7698 	for (; nr_pages--; pfn++) {
7699 		struct page *page = pfn_to_page(pfn);
7700 
7701 		count += page_count(page) != 1;
7702 		__free_page(page);
7703 	}
7704 	WARN(count != 0, "%d pages are still in use!\n", count);
7705 }
7706 #endif
7707 
7708 #ifdef CONFIG_MEMORY_HOTPLUG
7709 /*
7710  * The zone indicated has a new number of managed_pages; batch sizes and percpu
7711  * page high values need to be recalulated.
7712  */
7713 void __meminit zone_pcp_update(struct zone *zone)
7714 {
7715 	unsigned cpu;
7716 	mutex_lock(&pcp_batch_high_lock);
7717 	for_each_possible_cpu(cpu)
7718 		pageset_set_high_and_batch(zone,
7719 				per_cpu_ptr(zone->pageset, cpu));
7720 	mutex_unlock(&pcp_batch_high_lock);
7721 }
7722 #endif
7723 
7724 void zone_pcp_reset(struct zone *zone)
7725 {
7726 	unsigned long flags;
7727 	int cpu;
7728 	struct per_cpu_pageset *pset;
7729 
7730 	/* avoid races with drain_pages()  */
7731 	local_irq_save(flags);
7732 	if (zone->pageset != &boot_pageset) {
7733 		for_each_online_cpu(cpu) {
7734 			pset = per_cpu_ptr(zone->pageset, cpu);
7735 			drain_zonestat(zone, pset);
7736 		}
7737 		free_percpu(zone->pageset);
7738 		zone->pageset = &boot_pageset;
7739 	}
7740 	local_irq_restore(flags);
7741 }
7742 
7743 #ifdef CONFIG_MEMORY_HOTREMOVE
7744 /*
7745  * All pages in the range must be in a single zone and isolated
7746  * before calling this.
7747  */
7748 void
7749 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7750 {
7751 	struct page *page;
7752 	struct zone *zone;
7753 	unsigned int order, i;
7754 	unsigned long pfn;
7755 	unsigned long flags;
7756 	/* find the first valid pfn */
7757 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
7758 		if (pfn_valid(pfn))
7759 			break;
7760 	if (pfn == end_pfn)
7761 		return;
7762 	offline_mem_sections(pfn, end_pfn);
7763 	zone = page_zone(pfn_to_page(pfn));
7764 	spin_lock_irqsave(&zone->lock, flags);
7765 	pfn = start_pfn;
7766 	while (pfn < end_pfn) {
7767 		if (!pfn_valid(pfn)) {
7768 			pfn++;
7769 			continue;
7770 		}
7771 		page = pfn_to_page(pfn);
7772 		/*
7773 		 * The HWPoisoned page may be not in buddy system, and
7774 		 * page_count() is not 0.
7775 		 */
7776 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7777 			pfn++;
7778 			SetPageReserved(page);
7779 			continue;
7780 		}
7781 
7782 		BUG_ON(page_count(page));
7783 		BUG_ON(!PageBuddy(page));
7784 		order = page_order(page);
7785 #ifdef CONFIG_DEBUG_VM
7786 		pr_info("remove from free list %lx %d %lx\n",
7787 			pfn, 1 << order, end_pfn);
7788 #endif
7789 		list_del(&page->lru);
7790 		rmv_page_order(page);
7791 		zone->free_area[order].nr_free--;
7792 		for (i = 0; i < (1 << order); i++)
7793 			SetPageReserved((page+i));
7794 		pfn += (1 << order);
7795 	}
7796 	spin_unlock_irqrestore(&zone->lock, flags);
7797 }
7798 #endif
7799 
7800 bool is_free_buddy_page(struct page *page)
7801 {
7802 	struct zone *zone = page_zone(page);
7803 	unsigned long pfn = page_to_pfn(page);
7804 	unsigned long flags;
7805 	unsigned int order;
7806 
7807 	spin_lock_irqsave(&zone->lock, flags);
7808 	for (order = 0; order < MAX_ORDER; order++) {
7809 		struct page *page_head = page - (pfn & ((1 << order) - 1));
7810 
7811 		if (PageBuddy(page_head) && page_order(page_head) >= order)
7812 			break;
7813 	}
7814 	spin_unlock_irqrestore(&zone->lock, flags);
7815 
7816 	return order < MAX_ORDER;
7817 }
7818