1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kmemcheck.h> 28 #include <linux/module.h> 29 #include <linux/suspend.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/slab.h> 33 #include <linux/ratelimit.h> 34 #include <linux/oom.h> 35 #include <linux/notifier.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/stop_machine.h> 46 #include <linux/sort.h> 47 #include <linux/pfn.h> 48 #include <linux/backing-dev.h> 49 #include <linux/fault-inject.h> 50 #include <linux/page-isolation.h> 51 #include <linux/page_cgroup.h> 52 #include <linux/debugobjects.h> 53 #include <linux/kmemleak.h> 54 #include <linux/compaction.h> 55 #include <trace/events/kmem.h> 56 #include <linux/ftrace_event.h> 57 #include <linux/memcontrol.h> 58 #include <linux/prefetch.h> 59 #include <linux/mm_inline.h> 60 #include <linux/migrate.h> 61 #include <linux/page-debug-flags.h> 62 #include <linux/hugetlb.h> 63 #include <linux/sched/rt.h> 64 65 #include <asm/sections.h> 66 #include <asm/tlbflush.h> 67 #include <asm/div64.h> 68 #include "internal.h" 69 70 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 71 static DEFINE_MUTEX(pcp_batch_high_lock); 72 73 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 74 DEFINE_PER_CPU(int, numa_node); 75 EXPORT_PER_CPU_SYMBOL(numa_node); 76 #endif 77 78 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 79 /* 80 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 81 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 82 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 83 * defined in <linux/topology.h>. 84 */ 85 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 86 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 87 #endif 88 89 /* 90 * Array of node states. 91 */ 92 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 93 [N_POSSIBLE] = NODE_MASK_ALL, 94 [N_ONLINE] = { { [0] = 1UL } }, 95 #ifndef CONFIG_NUMA 96 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 97 #ifdef CONFIG_HIGHMEM 98 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 99 #endif 100 #ifdef CONFIG_MOVABLE_NODE 101 [N_MEMORY] = { { [0] = 1UL } }, 102 #endif 103 [N_CPU] = { { [0] = 1UL } }, 104 #endif /* NUMA */ 105 }; 106 EXPORT_SYMBOL(node_states); 107 108 /* Protect totalram_pages and zone->managed_pages */ 109 static DEFINE_SPINLOCK(managed_page_count_lock); 110 111 unsigned long totalram_pages __read_mostly; 112 unsigned long totalreserve_pages __read_mostly; 113 /* 114 * When calculating the number of globally allowed dirty pages, there 115 * is a certain number of per-zone reserves that should not be 116 * considered dirtyable memory. This is the sum of those reserves 117 * over all existing zones that contribute dirtyable memory. 118 */ 119 unsigned long dirty_balance_reserve __read_mostly; 120 121 int percpu_pagelist_fraction; 122 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 123 124 #ifdef CONFIG_PM_SLEEP 125 /* 126 * The following functions are used by the suspend/hibernate code to temporarily 127 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 128 * while devices are suspended. To avoid races with the suspend/hibernate code, 129 * they should always be called with pm_mutex held (gfp_allowed_mask also should 130 * only be modified with pm_mutex held, unless the suspend/hibernate code is 131 * guaranteed not to run in parallel with that modification). 132 */ 133 134 static gfp_t saved_gfp_mask; 135 136 void pm_restore_gfp_mask(void) 137 { 138 WARN_ON(!mutex_is_locked(&pm_mutex)); 139 if (saved_gfp_mask) { 140 gfp_allowed_mask = saved_gfp_mask; 141 saved_gfp_mask = 0; 142 } 143 } 144 145 void pm_restrict_gfp_mask(void) 146 { 147 WARN_ON(!mutex_is_locked(&pm_mutex)); 148 WARN_ON(saved_gfp_mask); 149 saved_gfp_mask = gfp_allowed_mask; 150 gfp_allowed_mask &= ~GFP_IOFS; 151 } 152 153 bool pm_suspended_storage(void) 154 { 155 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS) 156 return false; 157 return true; 158 } 159 #endif /* CONFIG_PM_SLEEP */ 160 161 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 162 int pageblock_order __read_mostly; 163 #endif 164 165 static void __free_pages_ok(struct page *page, unsigned int order); 166 167 /* 168 * results with 256, 32 in the lowmem_reserve sysctl: 169 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 170 * 1G machine -> (16M dma, 784M normal, 224M high) 171 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 172 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 173 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 174 * 175 * TBD: should special case ZONE_DMA32 machines here - in those we normally 176 * don't need any ZONE_NORMAL reservation 177 */ 178 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 179 #ifdef CONFIG_ZONE_DMA 180 256, 181 #endif 182 #ifdef CONFIG_ZONE_DMA32 183 256, 184 #endif 185 #ifdef CONFIG_HIGHMEM 186 32, 187 #endif 188 32, 189 }; 190 191 EXPORT_SYMBOL(totalram_pages); 192 193 static char * const zone_names[MAX_NR_ZONES] = { 194 #ifdef CONFIG_ZONE_DMA 195 "DMA", 196 #endif 197 #ifdef CONFIG_ZONE_DMA32 198 "DMA32", 199 #endif 200 "Normal", 201 #ifdef CONFIG_HIGHMEM 202 "HighMem", 203 #endif 204 "Movable", 205 }; 206 207 int min_free_kbytes = 1024; 208 int user_min_free_kbytes; 209 210 static unsigned long __meminitdata nr_kernel_pages; 211 static unsigned long __meminitdata nr_all_pages; 212 static unsigned long __meminitdata dma_reserve; 213 214 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 215 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 216 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 217 static unsigned long __initdata required_kernelcore; 218 static unsigned long __initdata required_movablecore; 219 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 220 221 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 222 int movable_zone; 223 EXPORT_SYMBOL(movable_zone); 224 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 225 226 #if MAX_NUMNODES > 1 227 int nr_node_ids __read_mostly = MAX_NUMNODES; 228 int nr_online_nodes __read_mostly = 1; 229 EXPORT_SYMBOL(nr_node_ids); 230 EXPORT_SYMBOL(nr_online_nodes); 231 #endif 232 233 int page_group_by_mobility_disabled __read_mostly; 234 235 void set_pageblock_migratetype(struct page *page, int migratetype) 236 { 237 238 if (unlikely(page_group_by_mobility_disabled)) 239 migratetype = MIGRATE_UNMOVABLE; 240 241 set_pageblock_flags_group(page, (unsigned long)migratetype, 242 PB_migrate, PB_migrate_end); 243 } 244 245 bool oom_killer_disabled __read_mostly; 246 247 #ifdef CONFIG_DEBUG_VM 248 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 249 { 250 int ret = 0; 251 unsigned seq; 252 unsigned long pfn = page_to_pfn(page); 253 unsigned long sp, start_pfn; 254 255 do { 256 seq = zone_span_seqbegin(zone); 257 start_pfn = zone->zone_start_pfn; 258 sp = zone->spanned_pages; 259 if (!zone_spans_pfn(zone, pfn)) 260 ret = 1; 261 } while (zone_span_seqretry(zone, seq)); 262 263 if (ret) 264 pr_err("page %lu outside zone [ %lu - %lu ]\n", 265 pfn, start_pfn, start_pfn + sp); 266 267 return ret; 268 } 269 270 static int page_is_consistent(struct zone *zone, struct page *page) 271 { 272 if (!pfn_valid_within(page_to_pfn(page))) 273 return 0; 274 if (zone != page_zone(page)) 275 return 0; 276 277 return 1; 278 } 279 /* 280 * Temporary debugging check for pages not lying within a given zone. 281 */ 282 static int bad_range(struct zone *zone, struct page *page) 283 { 284 if (page_outside_zone_boundaries(zone, page)) 285 return 1; 286 if (!page_is_consistent(zone, page)) 287 return 1; 288 289 return 0; 290 } 291 #else 292 static inline int bad_range(struct zone *zone, struct page *page) 293 { 294 return 0; 295 } 296 #endif 297 298 static void bad_page(struct page *page) 299 { 300 static unsigned long resume; 301 static unsigned long nr_shown; 302 static unsigned long nr_unshown; 303 304 /* Don't complain about poisoned pages */ 305 if (PageHWPoison(page)) { 306 page_mapcount_reset(page); /* remove PageBuddy */ 307 return; 308 } 309 310 /* 311 * Allow a burst of 60 reports, then keep quiet for that minute; 312 * or allow a steady drip of one report per second. 313 */ 314 if (nr_shown == 60) { 315 if (time_before(jiffies, resume)) { 316 nr_unshown++; 317 goto out; 318 } 319 if (nr_unshown) { 320 printk(KERN_ALERT 321 "BUG: Bad page state: %lu messages suppressed\n", 322 nr_unshown); 323 nr_unshown = 0; 324 } 325 nr_shown = 0; 326 } 327 if (nr_shown++ == 0) 328 resume = jiffies + 60 * HZ; 329 330 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", 331 current->comm, page_to_pfn(page)); 332 dump_page(page); 333 334 print_modules(); 335 dump_stack(); 336 out: 337 /* Leave bad fields for debug, except PageBuddy could make trouble */ 338 page_mapcount_reset(page); /* remove PageBuddy */ 339 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 340 } 341 342 /* 343 * Higher-order pages are called "compound pages". They are structured thusly: 344 * 345 * The first PAGE_SIZE page is called the "head page". 346 * 347 * The remaining PAGE_SIZE pages are called "tail pages". 348 * 349 * All pages have PG_compound set. All tail pages have their ->first_page 350 * pointing at the head page. 351 * 352 * The first tail page's ->lru.next holds the address of the compound page's 353 * put_page() function. Its ->lru.prev holds the order of allocation. 354 * This usage means that zero-order pages may not be compound. 355 */ 356 357 static void free_compound_page(struct page *page) 358 { 359 __free_pages_ok(page, compound_order(page)); 360 } 361 362 void prep_compound_page(struct page *page, unsigned long order) 363 { 364 int i; 365 int nr_pages = 1 << order; 366 367 set_compound_page_dtor(page, free_compound_page); 368 set_compound_order(page, order); 369 __SetPageHead(page); 370 for (i = 1; i < nr_pages; i++) { 371 struct page *p = page + i; 372 __SetPageTail(p); 373 set_page_count(p, 0); 374 p->first_page = page; 375 } 376 } 377 378 /* update __split_huge_page_refcount if you change this function */ 379 static int destroy_compound_page(struct page *page, unsigned long order) 380 { 381 int i; 382 int nr_pages = 1 << order; 383 int bad = 0; 384 385 if (unlikely(compound_order(page) != order)) { 386 bad_page(page); 387 bad++; 388 } 389 390 __ClearPageHead(page); 391 392 for (i = 1; i < nr_pages; i++) { 393 struct page *p = page + i; 394 395 if (unlikely(!PageTail(p) || (p->first_page != page))) { 396 bad_page(page); 397 bad++; 398 } 399 __ClearPageTail(p); 400 } 401 402 return bad; 403 } 404 405 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 406 { 407 int i; 408 409 /* 410 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 411 * and __GFP_HIGHMEM from hard or soft interrupt context. 412 */ 413 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 414 for (i = 0; i < (1 << order); i++) 415 clear_highpage(page + i); 416 } 417 418 #ifdef CONFIG_DEBUG_PAGEALLOC 419 unsigned int _debug_guardpage_minorder; 420 421 static int __init debug_guardpage_minorder_setup(char *buf) 422 { 423 unsigned long res; 424 425 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 426 printk(KERN_ERR "Bad debug_guardpage_minorder value\n"); 427 return 0; 428 } 429 _debug_guardpage_minorder = res; 430 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res); 431 return 0; 432 } 433 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup); 434 435 static inline void set_page_guard_flag(struct page *page) 436 { 437 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 438 } 439 440 static inline void clear_page_guard_flag(struct page *page) 441 { 442 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 443 } 444 #else 445 static inline void set_page_guard_flag(struct page *page) { } 446 static inline void clear_page_guard_flag(struct page *page) { } 447 #endif 448 449 static inline void set_page_order(struct page *page, int order) 450 { 451 set_page_private(page, order); 452 __SetPageBuddy(page); 453 } 454 455 static inline void rmv_page_order(struct page *page) 456 { 457 __ClearPageBuddy(page); 458 set_page_private(page, 0); 459 } 460 461 /* 462 * Locate the struct page for both the matching buddy in our 463 * pair (buddy1) and the combined O(n+1) page they form (page). 464 * 465 * 1) Any buddy B1 will have an order O twin B2 which satisfies 466 * the following equation: 467 * B2 = B1 ^ (1 << O) 468 * For example, if the starting buddy (buddy2) is #8 its order 469 * 1 buddy is #10: 470 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 471 * 472 * 2) Any buddy B will have an order O+1 parent P which 473 * satisfies the following equation: 474 * P = B & ~(1 << O) 475 * 476 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 477 */ 478 static inline unsigned long 479 __find_buddy_index(unsigned long page_idx, unsigned int order) 480 { 481 return page_idx ^ (1 << order); 482 } 483 484 /* 485 * This function checks whether a page is free && is the buddy 486 * we can do coalesce a page and its buddy if 487 * (a) the buddy is not in a hole && 488 * (b) the buddy is in the buddy system && 489 * (c) a page and its buddy have the same order && 490 * (d) a page and its buddy are in the same zone. 491 * 492 * For recording whether a page is in the buddy system, we set ->_mapcount 493 * PAGE_BUDDY_MAPCOUNT_VALUE. 494 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is 495 * serialized by zone->lock. 496 * 497 * For recording page's order, we use page_private(page). 498 */ 499 static inline int page_is_buddy(struct page *page, struct page *buddy, 500 int order) 501 { 502 if (!pfn_valid_within(page_to_pfn(buddy))) 503 return 0; 504 505 if (page_zone_id(page) != page_zone_id(buddy)) 506 return 0; 507 508 if (page_is_guard(buddy) && page_order(buddy) == order) { 509 VM_BUG_ON(page_count(buddy) != 0); 510 return 1; 511 } 512 513 if (PageBuddy(buddy) && page_order(buddy) == order) { 514 VM_BUG_ON(page_count(buddy) != 0); 515 return 1; 516 } 517 return 0; 518 } 519 520 /* 521 * Freeing function for a buddy system allocator. 522 * 523 * The concept of a buddy system is to maintain direct-mapped table 524 * (containing bit values) for memory blocks of various "orders". 525 * The bottom level table contains the map for the smallest allocatable 526 * units of memory (here, pages), and each level above it describes 527 * pairs of units from the levels below, hence, "buddies". 528 * At a high level, all that happens here is marking the table entry 529 * at the bottom level available, and propagating the changes upward 530 * as necessary, plus some accounting needed to play nicely with other 531 * parts of the VM system. 532 * At each level, we keep a list of pages, which are heads of continuous 533 * free pages of length of (1 << order) and marked with _mapcount 534 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page) 535 * field. 536 * So when we are allocating or freeing one, we can derive the state of the 537 * other. That is, if we allocate a small block, and both were 538 * free, the remainder of the region must be split into blocks. 539 * If a block is freed, and its buddy is also free, then this 540 * triggers coalescing into a block of larger size. 541 * 542 * -- nyc 543 */ 544 545 static inline void __free_one_page(struct page *page, 546 struct zone *zone, unsigned int order, 547 int migratetype) 548 { 549 unsigned long page_idx; 550 unsigned long combined_idx; 551 unsigned long uninitialized_var(buddy_idx); 552 struct page *buddy; 553 554 VM_BUG_ON(!zone_is_initialized(zone)); 555 556 if (unlikely(PageCompound(page))) 557 if (unlikely(destroy_compound_page(page, order))) 558 return; 559 560 VM_BUG_ON(migratetype == -1); 561 562 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 563 564 VM_BUG_ON(page_idx & ((1 << order) - 1)); 565 VM_BUG_ON(bad_range(zone, page)); 566 567 while (order < MAX_ORDER-1) { 568 buddy_idx = __find_buddy_index(page_idx, order); 569 buddy = page + (buddy_idx - page_idx); 570 if (!page_is_buddy(page, buddy, order)) 571 break; 572 /* 573 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 574 * merge with it and move up one order. 575 */ 576 if (page_is_guard(buddy)) { 577 clear_page_guard_flag(buddy); 578 set_page_private(page, 0); 579 __mod_zone_freepage_state(zone, 1 << order, 580 migratetype); 581 } else { 582 list_del(&buddy->lru); 583 zone->free_area[order].nr_free--; 584 rmv_page_order(buddy); 585 } 586 combined_idx = buddy_idx & page_idx; 587 page = page + (combined_idx - page_idx); 588 page_idx = combined_idx; 589 order++; 590 } 591 set_page_order(page, order); 592 593 /* 594 * If this is not the largest possible page, check if the buddy 595 * of the next-highest order is free. If it is, it's possible 596 * that pages are being freed that will coalesce soon. In case, 597 * that is happening, add the free page to the tail of the list 598 * so it's less likely to be used soon and more likely to be merged 599 * as a higher order page 600 */ 601 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { 602 struct page *higher_page, *higher_buddy; 603 combined_idx = buddy_idx & page_idx; 604 higher_page = page + (combined_idx - page_idx); 605 buddy_idx = __find_buddy_index(combined_idx, order + 1); 606 higher_buddy = higher_page + (buddy_idx - combined_idx); 607 if (page_is_buddy(higher_page, higher_buddy, order + 1)) { 608 list_add_tail(&page->lru, 609 &zone->free_area[order].free_list[migratetype]); 610 goto out; 611 } 612 } 613 614 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 615 out: 616 zone->free_area[order].nr_free++; 617 } 618 619 static inline int free_pages_check(struct page *page) 620 { 621 if (unlikely(page_mapcount(page) | 622 (page->mapping != NULL) | 623 (atomic_read(&page->_count) != 0) | 624 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) | 625 (mem_cgroup_bad_page_check(page)))) { 626 bad_page(page); 627 return 1; 628 } 629 page_nid_reset_last(page); 630 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 631 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 632 return 0; 633 } 634 635 /* 636 * Frees a number of pages from the PCP lists 637 * Assumes all pages on list are in same zone, and of same order. 638 * count is the number of pages to free. 639 * 640 * If the zone was previously in an "all pages pinned" state then look to 641 * see if this freeing clears that state. 642 * 643 * And clear the zone's pages_scanned counter, to hold off the "all pages are 644 * pinned" detection logic. 645 */ 646 static void free_pcppages_bulk(struct zone *zone, int count, 647 struct per_cpu_pages *pcp) 648 { 649 int migratetype = 0; 650 int batch_free = 0; 651 int to_free = count; 652 653 spin_lock(&zone->lock); 654 zone->pages_scanned = 0; 655 656 while (to_free) { 657 struct page *page; 658 struct list_head *list; 659 660 /* 661 * Remove pages from lists in a round-robin fashion. A 662 * batch_free count is maintained that is incremented when an 663 * empty list is encountered. This is so more pages are freed 664 * off fuller lists instead of spinning excessively around empty 665 * lists 666 */ 667 do { 668 batch_free++; 669 if (++migratetype == MIGRATE_PCPTYPES) 670 migratetype = 0; 671 list = &pcp->lists[migratetype]; 672 } while (list_empty(list)); 673 674 /* This is the only non-empty list. Free them all. */ 675 if (batch_free == MIGRATE_PCPTYPES) 676 batch_free = to_free; 677 678 do { 679 int mt; /* migratetype of the to-be-freed page */ 680 681 page = list_entry(list->prev, struct page, lru); 682 /* must delete as __free_one_page list manipulates */ 683 list_del(&page->lru); 684 mt = get_freepage_migratetype(page); 685 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ 686 __free_one_page(page, zone, 0, mt); 687 trace_mm_page_pcpu_drain(page, 0, mt); 688 if (likely(!is_migrate_isolate_page(page))) { 689 __mod_zone_page_state(zone, NR_FREE_PAGES, 1); 690 if (is_migrate_cma(mt)) 691 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1); 692 } 693 } while (--to_free && --batch_free && !list_empty(list)); 694 } 695 spin_unlock(&zone->lock); 696 } 697 698 static void free_one_page(struct zone *zone, struct page *page, int order, 699 int migratetype) 700 { 701 spin_lock(&zone->lock); 702 zone->pages_scanned = 0; 703 704 __free_one_page(page, zone, order, migratetype); 705 if (unlikely(!is_migrate_isolate(migratetype))) 706 __mod_zone_freepage_state(zone, 1 << order, migratetype); 707 spin_unlock(&zone->lock); 708 } 709 710 static bool free_pages_prepare(struct page *page, unsigned int order) 711 { 712 int i; 713 int bad = 0; 714 715 trace_mm_page_free(page, order); 716 kmemcheck_free_shadow(page, order); 717 718 if (PageAnon(page)) 719 page->mapping = NULL; 720 for (i = 0; i < (1 << order); i++) 721 bad += free_pages_check(page + i); 722 if (bad) 723 return false; 724 725 if (!PageHighMem(page)) { 726 debug_check_no_locks_freed(page_address(page), 727 PAGE_SIZE << order); 728 debug_check_no_obj_freed(page_address(page), 729 PAGE_SIZE << order); 730 } 731 arch_free_page(page, order); 732 kernel_map_pages(page, 1 << order, 0); 733 734 return true; 735 } 736 737 static void __free_pages_ok(struct page *page, unsigned int order) 738 { 739 unsigned long flags; 740 int migratetype; 741 742 if (!free_pages_prepare(page, order)) 743 return; 744 745 local_irq_save(flags); 746 __count_vm_events(PGFREE, 1 << order); 747 migratetype = get_pageblock_migratetype(page); 748 set_freepage_migratetype(page, migratetype); 749 free_one_page(page_zone(page), page, order, migratetype); 750 local_irq_restore(flags); 751 } 752 753 void __init __free_pages_bootmem(struct page *page, unsigned int order) 754 { 755 unsigned int nr_pages = 1 << order; 756 struct page *p = page; 757 unsigned int loop; 758 759 prefetchw(p); 760 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 761 prefetchw(p + 1); 762 __ClearPageReserved(p); 763 set_page_count(p, 0); 764 } 765 __ClearPageReserved(p); 766 set_page_count(p, 0); 767 768 page_zone(page)->managed_pages += nr_pages; 769 set_page_refcounted(page); 770 __free_pages(page, order); 771 } 772 773 #ifdef CONFIG_CMA 774 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 775 void __init init_cma_reserved_pageblock(struct page *page) 776 { 777 unsigned i = pageblock_nr_pages; 778 struct page *p = page; 779 780 do { 781 __ClearPageReserved(p); 782 set_page_count(p, 0); 783 } while (++p, --i); 784 785 set_page_refcounted(page); 786 set_pageblock_migratetype(page, MIGRATE_CMA); 787 __free_pages(page, pageblock_order); 788 adjust_managed_page_count(page, pageblock_nr_pages); 789 } 790 #endif 791 792 /* 793 * The order of subdivision here is critical for the IO subsystem. 794 * Please do not alter this order without good reasons and regression 795 * testing. Specifically, as large blocks of memory are subdivided, 796 * the order in which smaller blocks are delivered depends on the order 797 * they're subdivided in this function. This is the primary factor 798 * influencing the order in which pages are delivered to the IO 799 * subsystem according to empirical testing, and this is also justified 800 * by considering the behavior of a buddy system containing a single 801 * large block of memory acted on by a series of small allocations. 802 * This behavior is a critical factor in sglist merging's success. 803 * 804 * -- nyc 805 */ 806 static inline void expand(struct zone *zone, struct page *page, 807 int low, int high, struct free_area *area, 808 int migratetype) 809 { 810 unsigned long size = 1 << high; 811 812 while (high > low) { 813 area--; 814 high--; 815 size >>= 1; 816 VM_BUG_ON(bad_range(zone, &page[size])); 817 818 #ifdef CONFIG_DEBUG_PAGEALLOC 819 if (high < debug_guardpage_minorder()) { 820 /* 821 * Mark as guard pages (or page), that will allow to 822 * merge back to allocator when buddy will be freed. 823 * Corresponding page table entries will not be touched, 824 * pages will stay not present in virtual address space 825 */ 826 INIT_LIST_HEAD(&page[size].lru); 827 set_page_guard_flag(&page[size]); 828 set_page_private(&page[size], high); 829 /* Guard pages are not available for any usage */ 830 __mod_zone_freepage_state(zone, -(1 << high), 831 migratetype); 832 continue; 833 } 834 #endif 835 list_add(&page[size].lru, &area->free_list[migratetype]); 836 area->nr_free++; 837 set_page_order(&page[size], high); 838 } 839 } 840 841 /* 842 * This page is about to be returned from the page allocator 843 */ 844 static inline int check_new_page(struct page *page) 845 { 846 if (unlikely(page_mapcount(page) | 847 (page->mapping != NULL) | 848 (atomic_read(&page->_count) != 0) | 849 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) | 850 (mem_cgroup_bad_page_check(page)))) { 851 bad_page(page); 852 return 1; 853 } 854 return 0; 855 } 856 857 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 858 { 859 int i; 860 861 for (i = 0; i < (1 << order); i++) { 862 struct page *p = page + i; 863 if (unlikely(check_new_page(p))) 864 return 1; 865 } 866 867 set_page_private(page, 0); 868 set_page_refcounted(page); 869 870 arch_alloc_page(page, order); 871 kernel_map_pages(page, 1 << order, 1); 872 873 if (gfp_flags & __GFP_ZERO) 874 prep_zero_page(page, order, gfp_flags); 875 876 if (order && (gfp_flags & __GFP_COMP)) 877 prep_compound_page(page, order); 878 879 return 0; 880 } 881 882 /* 883 * Go through the free lists for the given migratetype and remove 884 * the smallest available page from the freelists 885 */ 886 static inline 887 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 888 int migratetype) 889 { 890 unsigned int current_order; 891 struct free_area *area; 892 struct page *page; 893 894 /* Find a page of the appropriate size in the preferred list */ 895 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 896 area = &(zone->free_area[current_order]); 897 if (list_empty(&area->free_list[migratetype])) 898 continue; 899 900 page = list_entry(area->free_list[migratetype].next, 901 struct page, lru); 902 list_del(&page->lru); 903 rmv_page_order(page); 904 area->nr_free--; 905 expand(zone, page, order, current_order, area, migratetype); 906 return page; 907 } 908 909 return NULL; 910 } 911 912 913 /* 914 * This array describes the order lists are fallen back to when 915 * the free lists for the desirable migrate type are depleted 916 */ 917 static int fallbacks[MIGRATE_TYPES][4] = { 918 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 919 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 920 #ifdef CONFIG_CMA 921 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 922 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */ 923 #else 924 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 925 #endif 926 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */ 927 #ifdef CONFIG_MEMORY_ISOLATION 928 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */ 929 #endif 930 }; 931 932 /* 933 * Move the free pages in a range to the free lists of the requested type. 934 * Note that start_page and end_pages are not aligned on a pageblock 935 * boundary. If alignment is required, use move_freepages_block() 936 */ 937 int move_freepages(struct zone *zone, 938 struct page *start_page, struct page *end_page, 939 int migratetype) 940 { 941 struct page *page; 942 unsigned long order; 943 int pages_moved = 0; 944 945 #ifndef CONFIG_HOLES_IN_ZONE 946 /* 947 * page_zone is not safe to call in this context when 948 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 949 * anyway as we check zone boundaries in move_freepages_block(). 950 * Remove at a later date when no bug reports exist related to 951 * grouping pages by mobility 952 */ 953 BUG_ON(page_zone(start_page) != page_zone(end_page)); 954 #endif 955 956 for (page = start_page; page <= end_page;) { 957 /* Make sure we are not inadvertently changing nodes */ 958 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone)); 959 960 if (!pfn_valid_within(page_to_pfn(page))) { 961 page++; 962 continue; 963 } 964 965 if (!PageBuddy(page)) { 966 page++; 967 continue; 968 } 969 970 order = page_order(page); 971 list_move(&page->lru, 972 &zone->free_area[order].free_list[migratetype]); 973 set_freepage_migratetype(page, migratetype); 974 page += 1 << order; 975 pages_moved += 1 << order; 976 } 977 978 return pages_moved; 979 } 980 981 int move_freepages_block(struct zone *zone, struct page *page, 982 int migratetype) 983 { 984 unsigned long start_pfn, end_pfn; 985 struct page *start_page, *end_page; 986 987 start_pfn = page_to_pfn(page); 988 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 989 start_page = pfn_to_page(start_pfn); 990 end_page = start_page + pageblock_nr_pages - 1; 991 end_pfn = start_pfn + pageblock_nr_pages - 1; 992 993 /* Do not cross zone boundaries */ 994 if (!zone_spans_pfn(zone, start_pfn)) 995 start_page = page; 996 if (!zone_spans_pfn(zone, end_pfn)) 997 return 0; 998 999 return move_freepages(zone, start_page, end_page, migratetype); 1000 } 1001 1002 static void change_pageblock_range(struct page *pageblock_page, 1003 int start_order, int migratetype) 1004 { 1005 int nr_pageblocks = 1 << (start_order - pageblock_order); 1006 1007 while (nr_pageblocks--) { 1008 set_pageblock_migratetype(pageblock_page, migratetype); 1009 pageblock_page += pageblock_nr_pages; 1010 } 1011 } 1012 1013 /* 1014 * If breaking a large block of pages, move all free pages to the preferred 1015 * allocation list. If falling back for a reclaimable kernel allocation, be 1016 * more aggressive about taking ownership of free pages. 1017 * 1018 * On the other hand, never change migration type of MIGRATE_CMA pageblocks 1019 * nor move CMA pages to different free lists. We don't want unmovable pages 1020 * to be allocated from MIGRATE_CMA areas. 1021 * 1022 * Returns the new migratetype of the pageblock (or the same old migratetype 1023 * if it was unchanged). 1024 */ 1025 static int try_to_steal_freepages(struct zone *zone, struct page *page, 1026 int start_type, int fallback_type) 1027 { 1028 int current_order = page_order(page); 1029 1030 if (is_migrate_cma(fallback_type)) 1031 return fallback_type; 1032 1033 /* Take ownership for orders >= pageblock_order */ 1034 if (current_order >= pageblock_order) { 1035 change_pageblock_range(page, current_order, start_type); 1036 return start_type; 1037 } 1038 1039 if (current_order >= pageblock_order / 2 || 1040 start_type == MIGRATE_RECLAIMABLE || 1041 page_group_by_mobility_disabled) { 1042 int pages; 1043 1044 pages = move_freepages_block(zone, page, start_type); 1045 1046 /* Claim the whole block if over half of it is free */ 1047 if (pages >= (1 << (pageblock_order-1)) || 1048 page_group_by_mobility_disabled) { 1049 1050 set_pageblock_migratetype(page, start_type); 1051 return start_type; 1052 } 1053 1054 } 1055 1056 return fallback_type; 1057 } 1058 1059 /* Remove an element from the buddy allocator from the fallback list */ 1060 static inline struct page * 1061 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) 1062 { 1063 struct free_area *area; 1064 int current_order; 1065 struct page *page; 1066 int migratetype, new_type, i; 1067 1068 /* Find the largest possible block of pages in the other list */ 1069 for (current_order = MAX_ORDER-1; current_order >= order; 1070 --current_order) { 1071 for (i = 0;; i++) { 1072 migratetype = fallbacks[start_migratetype][i]; 1073 1074 /* MIGRATE_RESERVE handled later if necessary */ 1075 if (migratetype == MIGRATE_RESERVE) 1076 break; 1077 1078 area = &(zone->free_area[current_order]); 1079 if (list_empty(&area->free_list[migratetype])) 1080 continue; 1081 1082 page = list_entry(area->free_list[migratetype].next, 1083 struct page, lru); 1084 area->nr_free--; 1085 1086 new_type = try_to_steal_freepages(zone, page, 1087 start_migratetype, 1088 migratetype); 1089 1090 /* Remove the page from the freelists */ 1091 list_del(&page->lru); 1092 rmv_page_order(page); 1093 1094 /* 1095 * Borrow the excess buddy pages as well, irrespective 1096 * of whether we stole freepages, or took ownership of 1097 * the pageblock or not. 1098 * 1099 * Exception: When borrowing from MIGRATE_CMA, release 1100 * the excess buddy pages to CMA itself. 1101 */ 1102 expand(zone, page, order, current_order, area, 1103 is_migrate_cma(migratetype) 1104 ? migratetype : start_migratetype); 1105 1106 trace_mm_page_alloc_extfrag(page, order, 1107 current_order, start_migratetype, migratetype, 1108 new_type == start_migratetype); 1109 1110 return page; 1111 } 1112 } 1113 1114 return NULL; 1115 } 1116 1117 /* 1118 * Do the hard work of removing an element from the buddy allocator. 1119 * Call me with the zone->lock already held. 1120 */ 1121 static struct page *__rmqueue(struct zone *zone, unsigned int order, 1122 int migratetype) 1123 { 1124 struct page *page; 1125 1126 retry_reserve: 1127 page = __rmqueue_smallest(zone, order, migratetype); 1128 1129 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { 1130 page = __rmqueue_fallback(zone, order, migratetype); 1131 1132 /* 1133 * Use MIGRATE_RESERVE rather than fail an allocation. goto 1134 * is used because __rmqueue_smallest is an inline function 1135 * and we want just one call site 1136 */ 1137 if (!page) { 1138 migratetype = MIGRATE_RESERVE; 1139 goto retry_reserve; 1140 } 1141 } 1142 1143 trace_mm_page_alloc_zone_locked(page, order, migratetype); 1144 return page; 1145 } 1146 1147 /* 1148 * Obtain a specified number of elements from the buddy allocator, all under 1149 * a single hold of the lock, for efficiency. Add them to the supplied list. 1150 * Returns the number of new pages which were placed at *list. 1151 */ 1152 static int rmqueue_bulk(struct zone *zone, unsigned int order, 1153 unsigned long count, struct list_head *list, 1154 int migratetype, int cold) 1155 { 1156 int mt = migratetype, i; 1157 1158 spin_lock(&zone->lock); 1159 for (i = 0; i < count; ++i) { 1160 struct page *page = __rmqueue(zone, order, migratetype); 1161 if (unlikely(page == NULL)) 1162 break; 1163 1164 /* 1165 * Split buddy pages returned by expand() are received here 1166 * in physical page order. The page is added to the callers and 1167 * list and the list head then moves forward. From the callers 1168 * perspective, the linked list is ordered by page number in 1169 * some conditions. This is useful for IO devices that can 1170 * merge IO requests if the physical pages are ordered 1171 * properly. 1172 */ 1173 if (likely(cold == 0)) 1174 list_add(&page->lru, list); 1175 else 1176 list_add_tail(&page->lru, list); 1177 if (IS_ENABLED(CONFIG_CMA)) { 1178 mt = get_pageblock_migratetype(page); 1179 if (!is_migrate_cma(mt) && !is_migrate_isolate(mt)) 1180 mt = migratetype; 1181 } 1182 set_freepage_migratetype(page, mt); 1183 list = &page->lru; 1184 if (is_migrate_cma(mt)) 1185 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1186 -(1 << order)); 1187 } 1188 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 1189 spin_unlock(&zone->lock); 1190 return i; 1191 } 1192 1193 #ifdef CONFIG_NUMA 1194 /* 1195 * Called from the vmstat counter updater to drain pagesets of this 1196 * currently executing processor on remote nodes after they have 1197 * expired. 1198 * 1199 * Note that this function must be called with the thread pinned to 1200 * a single processor. 1201 */ 1202 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 1203 { 1204 unsigned long flags; 1205 int to_drain; 1206 unsigned long batch; 1207 1208 local_irq_save(flags); 1209 batch = ACCESS_ONCE(pcp->batch); 1210 if (pcp->count >= batch) 1211 to_drain = batch; 1212 else 1213 to_drain = pcp->count; 1214 if (to_drain > 0) { 1215 free_pcppages_bulk(zone, to_drain, pcp); 1216 pcp->count -= to_drain; 1217 } 1218 local_irq_restore(flags); 1219 } 1220 #endif 1221 1222 /* 1223 * Drain pages of the indicated processor. 1224 * 1225 * The processor must either be the current processor and the 1226 * thread pinned to the current processor or a processor that 1227 * is not online. 1228 */ 1229 static void drain_pages(unsigned int cpu) 1230 { 1231 unsigned long flags; 1232 struct zone *zone; 1233 1234 for_each_populated_zone(zone) { 1235 struct per_cpu_pageset *pset; 1236 struct per_cpu_pages *pcp; 1237 1238 local_irq_save(flags); 1239 pset = per_cpu_ptr(zone->pageset, cpu); 1240 1241 pcp = &pset->pcp; 1242 if (pcp->count) { 1243 free_pcppages_bulk(zone, pcp->count, pcp); 1244 pcp->count = 0; 1245 } 1246 local_irq_restore(flags); 1247 } 1248 } 1249 1250 /* 1251 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 1252 */ 1253 void drain_local_pages(void *arg) 1254 { 1255 drain_pages(smp_processor_id()); 1256 } 1257 1258 /* 1259 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 1260 * 1261 * Note that this code is protected against sending an IPI to an offline 1262 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs: 1263 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but 1264 * nothing keeps CPUs from showing up after we populated the cpumask and 1265 * before the call to on_each_cpu_mask(). 1266 */ 1267 void drain_all_pages(void) 1268 { 1269 int cpu; 1270 struct per_cpu_pageset *pcp; 1271 struct zone *zone; 1272 1273 /* 1274 * Allocate in the BSS so we wont require allocation in 1275 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 1276 */ 1277 static cpumask_t cpus_with_pcps; 1278 1279 /* 1280 * We don't care about racing with CPU hotplug event 1281 * as offline notification will cause the notified 1282 * cpu to drain that CPU pcps and on_each_cpu_mask 1283 * disables preemption as part of its processing 1284 */ 1285 for_each_online_cpu(cpu) { 1286 bool has_pcps = false; 1287 for_each_populated_zone(zone) { 1288 pcp = per_cpu_ptr(zone->pageset, cpu); 1289 if (pcp->pcp.count) { 1290 has_pcps = true; 1291 break; 1292 } 1293 } 1294 if (has_pcps) 1295 cpumask_set_cpu(cpu, &cpus_with_pcps); 1296 else 1297 cpumask_clear_cpu(cpu, &cpus_with_pcps); 1298 } 1299 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1); 1300 } 1301 1302 #ifdef CONFIG_HIBERNATION 1303 1304 void mark_free_pages(struct zone *zone) 1305 { 1306 unsigned long pfn, max_zone_pfn; 1307 unsigned long flags; 1308 int order, t; 1309 struct list_head *curr; 1310 1311 if (zone_is_empty(zone)) 1312 return; 1313 1314 spin_lock_irqsave(&zone->lock, flags); 1315 1316 max_zone_pfn = zone_end_pfn(zone); 1317 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1318 if (pfn_valid(pfn)) { 1319 struct page *page = pfn_to_page(pfn); 1320 1321 if (!swsusp_page_is_forbidden(page)) 1322 swsusp_unset_page_free(page); 1323 } 1324 1325 for_each_migratetype_order(order, t) { 1326 list_for_each(curr, &zone->free_area[order].free_list[t]) { 1327 unsigned long i; 1328 1329 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 1330 for (i = 0; i < (1UL << order); i++) 1331 swsusp_set_page_free(pfn_to_page(pfn + i)); 1332 } 1333 } 1334 spin_unlock_irqrestore(&zone->lock, flags); 1335 } 1336 #endif /* CONFIG_PM */ 1337 1338 /* 1339 * Free a 0-order page 1340 * cold == 1 ? free a cold page : free a hot page 1341 */ 1342 void free_hot_cold_page(struct page *page, int cold) 1343 { 1344 struct zone *zone = page_zone(page); 1345 struct per_cpu_pages *pcp; 1346 unsigned long flags; 1347 int migratetype; 1348 1349 if (!free_pages_prepare(page, 0)) 1350 return; 1351 1352 migratetype = get_pageblock_migratetype(page); 1353 set_freepage_migratetype(page, migratetype); 1354 local_irq_save(flags); 1355 __count_vm_event(PGFREE); 1356 1357 /* 1358 * We only track unmovable, reclaimable and movable on pcp lists. 1359 * Free ISOLATE pages back to the allocator because they are being 1360 * offlined but treat RESERVE as movable pages so we can get those 1361 * areas back if necessary. Otherwise, we may have to free 1362 * excessively into the page allocator 1363 */ 1364 if (migratetype >= MIGRATE_PCPTYPES) { 1365 if (unlikely(is_migrate_isolate(migratetype))) { 1366 free_one_page(zone, page, 0, migratetype); 1367 goto out; 1368 } 1369 migratetype = MIGRATE_MOVABLE; 1370 } 1371 1372 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1373 if (cold) 1374 list_add_tail(&page->lru, &pcp->lists[migratetype]); 1375 else 1376 list_add(&page->lru, &pcp->lists[migratetype]); 1377 pcp->count++; 1378 if (pcp->count >= pcp->high) { 1379 unsigned long batch = ACCESS_ONCE(pcp->batch); 1380 free_pcppages_bulk(zone, batch, pcp); 1381 pcp->count -= batch; 1382 } 1383 1384 out: 1385 local_irq_restore(flags); 1386 } 1387 1388 /* 1389 * Free a list of 0-order pages 1390 */ 1391 void free_hot_cold_page_list(struct list_head *list, int cold) 1392 { 1393 struct page *page, *next; 1394 1395 list_for_each_entry_safe(page, next, list, lru) { 1396 trace_mm_page_free_batched(page, cold); 1397 free_hot_cold_page(page, cold); 1398 } 1399 } 1400 1401 /* 1402 * split_page takes a non-compound higher-order page, and splits it into 1403 * n (1<<order) sub-pages: page[0..n] 1404 * Each sub-page must be freed individually. 1405 * 1406 * Note: this is probably too low level an operation for use in drivers. 1407 * Please consult with lkml before using this in your driver. 1408 */ 1409 void split_page(struct page *page, unsigned int order) 1410 { 1411 int i; 1412 1413 VM_BUG_ON(PageCompound(page)); 1414 VM_BUG_ON(!page_count(page)); 1415 1416 #ifdef CONFIG_KMEMCHECK 1417 /* 1418 * Split shadow pages too, because free(page[0]) would 1419 * otherwise free the whole shadow. 1420 */ 1421 if (kmemcheck_page_is_tracked(page)) 1422 split_page(virt_to_page(page[0].shadow), order); 1423 #endif 1424 1425 for (i = 1; i < (1 << order); i++) 1426 set_page_refcounted(page + i); 1427 } 1428 EXPORT_SYMBOL_GPL(split_page); 1429 1430 static int __isolate_free_page(struct page *page, unsigned int order) 1431 { 1432 unsigned long watermark; 1433 struct zone *zone; 1434 int mt; 1435 1436 BUG_ON(!PageBuddy(page)); 1437 1438 zone = page_zone(page); 1439 mt = get_pageblock_migratetype(page); 1440 1441 if (!is_migrate_isolate(mt)) { 1442 /* Obey watermarks as if the page was being allocated */ 1443 watermark = low_wmark_pages(zone) + (1 << order); 1444 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 1445 return 0; 1446 1447 __mod_zone_freepage_state(zone, -(1UL << order), mt); 1448 } 1449 1450 /* Remove page from free list */ 1451 list_del(&page->lru); 1452 zone->free_area[order].nr_free--; 1453 rmv_page_order(page); 1454 1455 /* Set the pageblock if the isolated page is at least a pageblock */ 1456 if (order >= pageblock_order - 1) { 1457 struct page *endpage = page + (1 << order) - 1; 1458 for (; page < endpage; page += pageblock_nr_pages) { 1459 int mt = get_pageblock_migratetype(page); 1460 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)) 1461 set_pageblock_migratetype(page, 1462 MIGRATE_MOVABLE); 1463 } 1464 } 1465 1466 return 1UL << order; 1467 } 1468 1469 /* 1470 * Similar to split_page except the page is already free. As this is only 1471 * being used for migration, the migratetype of the block also changes. 1472 * As this is called with interrupts disabled, the caller is responsible 1473 * for calling arch_alloc_page() and kernel_map_page() after interrupts 1474 * are enabled. 1475 * 1476 * Note: this is probably too low level an operation for use in drivers. 1477 * Please consult with lkml before using this in your driver. 1478 */ 1479 int split_free_page(struct page *page) 1480 { 1481 unsigned int order; 1482 int nr_pages; 1483 1484 order = page_order(page); 1485 1486 nr_pages = __isolate_free_page(page, order); 1487 if (!nr_pages) 1488 return 0; 1489 1490 /* Split into individual pages */ 1491 set_page_refcounted(page); 1492 split_page(page, order); 1493 return nr_pages; 1494 } 1495 1496 /* 1497 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 1498 * we cheat by calling it from here, in the order > 0 path. Saves a branch 1499 * or two. 1500 */ 1501 static inline 1502 struct page *buffered_rmqueue(struct zone *preferred_zone, 1503 struct zone *zone, int order, gfp_t gfp_flags, 1504 int migratetype) 1505 { 1506 unsigned long flags; 1507 struct page *page; 1508 int cold = !!(gfp_flags & __GFP_COLD); 1509 1510 again: 1511 if (likely(order == 0)) { 1512 struct per_cpu_pages *pcp; 1513 struct list_head *list; 1514 1515 local_irq_save(flags); 1516 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1517 list = &pcp->lists[migratetype]; 1518 if (list_empty(list)) { 1519 pcp->count += rmqueue_bulk(zone, 0, 1520 pcp->batch, list, 1521 migratetype, cold); 1522 if (unlikely(list_empty(list))) 1523 goto failed; 1524 } 1525 1526 if (cold) 1527 page = list_entry(list->prev, struct page, lru); 1528 else 1529 page = list_entry(list->next, struct page, lru); 1530 1531 list_del(&page->lru); 1532 pcp->count--; 1533 } else { 1534 if (unlikely(gfp_flags & __GFP_NOFAIL)) { 1535 /* 1536 * __GFP_NOFAIL is not to be used in new code. 1537 * 1538 * All __GFP_NOFAIL callers should be fixed so that they 1539 * properly detect and handle allocation failures. 1540 * 1541 * We most definitely don't want callers attempting to 1542 * allocate greater than order-1 page units with 1543 * __GFP_NOFAIL. 1544 */ 1545 WARN_ON_ONCE(order > 1); 1546 } 1547 spin_lock_irqsave(&zone->lock, flags); 1548 page = __rmqueue(zone, order, migratetype); 1549 spin_unlock(&zone->lock); 1550 if (!page) 1551 goto failed; 1552 __mod_zone_freepage_state(zone, -(1 << order), 1553 get_pageblock_migratetype(page)); 1554 } 1555 1556 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order)); 1557 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1558 zone_statistics(preferred_zone, zone, gfp_flags); 1559 local_irq_restore(flags); 1560 1561 VM_BUG_ON(bad_range(zone, page)); 1562 if (prep_new_page(page, order, gfp_flags)) 1563 goto again; 1564 return page; 1565 1566 failed: 1567 local_irq_restore(flags); 1568 return NULL; 1569 } 1570 1571 #ifdef CONFIG_FAIL_PAGE_ALLOC 1572 1573 static struct { 1574 struct fault_attr attr; 1575 1576 u32 ignore_gfp_highmem; 1577 u32 ignore_gfp_wait; 1578 u32 min_order; 1579 } fail_page_alloc = { 1580 .attr = FAULT_ATTR_INITIALIZER, 1581 .ignore_gfp_wait = 1, 1582 .ignore_gfp_highmem = 1, 1583 .min_order = 1, 1584 }; 1585 1586 static int __init setup_fail_page_alloc(char *str) 1587 { 1588 return setup_fault_attr(&fail_page_alloc.attr, str); 1589 } 1590 __setup("fail_page_alloc=", setup_fail_page_alloc); 1591 1592 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1593 { 1594 if (order < fail_page_alloc.min_order) 1595 return false; 1596 if (gfp_mask & __GFP_NOFAIL) 1597 return false; 1598 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1599 return false; 1600 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1601 return false; 1602 1603 return should_fail(&fail_page_alloc.attr, 1 << order); 1604 } 1605 1606 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1607 1608 static int __init fail_page_alloc_debugfs(void) 1609 { 1610 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1611 struct dentry *dir; 1612 1613 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 1614 &fail_page_alloc.attr); 1615 if (IS_ERR(dir)) 1616 return PTR_ERR(dir); 1617 1618 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 1619 &fail_page_alloc.ignore_gfp_wait)) 1620 goto fail; 1621 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1622 &fail_page_alloc.ignore_gfp_highmem)) 1623 goto fail; 1624 if (!debugfs_create_u32("min-order", mode, dir, 1625 &fail_page_alloc.min_order)) 1626 goto fail; 1627 1628 return 0; 1629 fail: 1630 debugfs_remove_recursive(dir); 1631 1632 return -ENOMEM; 1633 } 1634 1635 late_initcall(fail_page_alloc_debugfs); 1636 1637 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1638 1639 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1640 1641 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1642 { 1643 return false; 1644 } 1645 1646 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1647 1648 /* 1649 * Return true if free pages are above 'mark'. This takes into account the order 1650 * of the allocation. 1651 */ 1652 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1653 int classzone_idx, int alloc_flags, long free_pages) 1654 { 1655 /* free_pages my go negative - that's OK */ 1656 long min = mark; 1657 long lowmem_reserve = z->lowmem_reserve[classzone_idx]; 1658 int o; 1659 long free_cma = 0; 1660 1661 free_pages -= (1 << order) - 1; 1662 if (alloc_flags & ALLOC_HIGH) 1663 min -= min / 2; 1664 if (alloc_flags & ALLOC_HARDER) 1665 min -= min / 4; 1666 #ifdef CONFIG_CMA 1667 /* If allocation can't use CMA areas don't use free CMA pages */ 1668 if (!(alloc_flags & ALLOC_CMA)) 1669 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES); 1670 #endif 1671 1672 if (free_pages - free_cma <= min + lowmem_reserve) 1673 return false; 1674 for (o = 0; o < order; o++) { 1675 /* At the next order, this order's pages become unavailable */ 1676 free_pages -= z->free_area[o].nr_free << o; 1677 1678 /* Require fewer higher order pages to be free */ 1679 min >>= 1; 1680 1681 if (free_pages <= min) 1682 return false; 1683 } 1684 return true; 1685 } 1686 1687 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1688 int classzone_idx, int alloc_flags) 1689 { 1690 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1691 zone_page_state(z, NR_FREE_PAGES)); 1692 } 1693 1694 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark, 1695 int classzone_idx, int alloc_flags) 1696 { 1697 long free_pages = zone_page_state(z, NR_FREE_PAGES); 1698 1699 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 1700 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 1701 1702 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1703 free_pages); 1704 } 1705 1706 #ifdef CONFIG_NUMA 1707 /* 1708 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1709 * skip over zones that are not allowed by the cpuset, or that have 1710 * been recently (in last second) found to be nearly full. See further 1711 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1712 * that have to skip over a lot of full or unallowed zones. 1713 * 1714 * If the zonelist cache is present in the passed in zonelist, then 1715 * returns a pointer to the allowed node mask (either the current 1716 * tasks mems_allowed, or node_states[N_MEMORY].) 1717 * 1718 * If the zonelist cache is not available for this zonelist, does 1719 * nothing and returns NULL. 1720 * 1721 * If the fullzones BITMAP in the zonelist cache is stale (more than 1722 * a second since last zap'd) then we zap it out (clear its bits.) 1723 * 1724 * We hold off even calling zlc_setup, until after we've checked the 1725 * first zone in the zonelist, on the theory that most allocations will 1726 * be satisfied from that first zone, so best to examine that zone as 1727 * quickly as we can. 1728 */ 1729 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1730 { 1731 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1732 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1733 1734 zlc = zonelist->zlcache_ptr; 1735 if (!zlc) 1736 return NULL; 1737 1738 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1739 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1740 zlc->last_full_zap = jiffies; 1741 } 1742 1743 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1744 &cpuset_current_mems_allowed : 1745 &node_states[N_MEMORY]; 1746 return allowednodes; 1747 } 1748 1749 /* 1750 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1751 * if it is worth looking at further for free memory: 1752 * 1) Check that the zone isn't thought to be full (doesn't have its 1753 * bit set in the zonelist_cache fullzones BITMAP). 1754 * 2) Check that the zones node (obtained from the zonelist_cache 1755 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1756 * Return true (non-zero) if zone is worth looking at further, or 1757 * else return false (zero) if it is not. 1758 * 1759 * This check -ignores- the distinction between various watermarks, 1760 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1761 * found to be full for any variation of these watermarks, it will 1762 * be considered full for up to one second by all requests, unless 1763 * we are so low on memory on all allowed nodes that we are forced 1764 * into the second scan of the zonelist. 1765 * 1766 * In the second scan we ignore this zonelist cache and exactly 1767 * apply the watermarks to all zones, even it is slower to do so. 1768 * We are low on memory in the second scan, and should leave no stone 1769 * unturned looking for a free page. 1770 */ 1771 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1772 nodemask_t *allowednodes) 1773 { 1774 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1775 int i; /* index of *z in zonelist zones */ 1776 int n; /* node that zone *z is on */ 1777 1778 zlc = zonelist->zlcache_ptr; 1779 if (!zlc) 1780 return 1; 1781 1782 i = z - zonelist->_zonerefs; 1783 n = zlc->z_to_n[i]; 1784 1785 /* This zone is worth trying if it is allowed but not full */ 1786 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1787 } 1788 1789 /* 1790 * Given 'z' scanning a zonelist, set the corresponding bit in 1791 * zlc->fullzones, so that subsequent attempts to allocate a page 1792 * from that zone don't waste time re-examining it. 1793 */ 1794 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1795 { 1796 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1797 int i; /* index of *z in zonelist zones */ 1798 1799 zlc = zonelist->zlcache_ptr; 1800 if (!zlc) 1801 return; 1802 1803 i = z - zonelist->_zonerefs; 1804 1805 set_bit(i, zlc->fullzones); 1806 } 1807 1808 /* 1809 * clear all zones full, called after direct reclaim makes progress so that 1810 * a zone that was recently full is not skipped over for up to a second 1811 */ 1812 static void zlc_clear_zones_full(struct zonelist *zonelist) 1813 { 1814 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1815 1816 zlc = zonelist->zlcache_ptr; 1817 if (!zlc) 1818 return; 1819 1820 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1821 } 1822 1823 static bool zone_local(struct zone *local_zone, struct zone *zone) 1824 { 1825 return node_distance(local_zone->node, zone->node) == LOCAL_DISTANCE; 1826 } 1827 1828 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 1829 { 1830 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes); 1831 } 1832 1833 static void __paginginit init_zone_allows_reclaim(int nid) 1834 { 1835 int i; 1836 1837 for_each_online_node(i) 1838 if (node_distance(nid, i) <= RECLAIM_DISTANCE) 1839 node_set(i, NODE_DATA(nid)->reclaim_nodes); 1840 else 1841 zone_reclaim_mode = 1; 1842 } 1843 1844 #else /* CONFIG_NUMA */ 1845 1846 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1847 { 1848 return NULL; 1849 } 1850 1851 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1852 nodemask_t *allowednodes) 1853 { 1854 return 1; 1855 } 1856 1857 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1858 { 1859 } 1860 1861 static void zlc_clear_zones_full(struct zonelist *zonelist) 1862 { 1863 } 1864 1865 static bool zone_local(struct zone *local_zone, struct zone *zone) 1866 { 1867 return true; 1868 } 1869 1870 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 1871 { 1872 return true; 1873 } 1874 1875 static inline void init_zone_allows_reclaim(int nid) 1876 { 1877 } 1878 #endif /* CONFIG_NUMA */ 1879 1880 /* 1881 * get_page_from_freelist goes through the zonelist trying to allocate 1882 * a page. 1883 */ 1884 static struct page * 1885 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, 1886 struct zonelist *zonelist, int high_zoneidx, int alloc_flags, 1887 struct zone *preferred_zone, int migratetype) 1888 { 1889 struct zoneref *z; 1890 struct page *page = NULL; 1891 int classzone_idx; 1892 struct zone *zone; 1893 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1894 int zlc_active = 0; /* set if using zonelist_cache */ 1895 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1896 1897 classzone_idx = zone_idx(preferred_zone); 1898 zonelist_scan: 1899 /* 1900 * Scan zonelist, looking for a zone with enough free. 1901 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c. 1902 */ 1903 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1904 high_zoneidx, nodemask) { 1905 unsigned long mark; 1906 1907 if (IS_ENABLED(CONFIG_NUMA) && zlc_active && 1908 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1909 continue; 1910 if ((alloc_flags & ALLOC_CPUSET) && 1911 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1912 continue; 1913 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 1914 if (unlikely(alloc_flags & ALLOC_NO_WATERMARKS)) 1915 goto try_this_zone; 1916 /* 1917 * Distribute pages in proportion to the individual 1918 * zone size to ensure fair page aging. The zone a 1919 * page was allocated in should have no effect on the 1920 * time the page has in memory before being reclaimed. 1921 * 1922 * When zone_reclaim_mode is enabled, try to stay in 1923 * local zones in the fastpath. If that fails, the 1924 * slowpath is entered, which will do another pass 1925 * starting with the local zones, but ultimately fall 1926 * back to remote zones that do not partake in the 1927 * fairness round-robin cycle of this zonelist. 1928 */ 1929 if (alloc_flags & ALLOC_WMARK_LOW) { 1930 if (zone_page_state(zone, NR_ALLOC_BATCH) <= 0) 1931 continue; 1932 if (zone_reclaim_mode && 1933 !zone_local(preferred_zone, zone)) 1934 continue; 1935 } 1936 /* 1937 * When allocating a page cache page for writing, we 1938 * want to get it from a zone that is within its dirty 1939 * limit, such that no single zone holds more than its 1940 * proportional share of globally allowed dirty pages. 1941 * The dirty limits take into account the zone's 1942 * lowmem reserves and high watermark so that kswapd 1943 * should be able to balance it without having to 1944 * write pages from its LRU list. 1945 * 1946 * This may look like it could increase pressure on 1947 * lower zones by failing allocations in higher zones 1948 * before they are full. But the pages that do spill 1949 * over are limited as the lower zones are protected 1950 * by this very same mechanism. It should not become 1951 * a practical burden to them. 1952 * 1953 * XXX: For now, allow allocations to potentially 1954 * exceed the per-zone dirty limit in the slowpath 1955 * (ALLOC_WMARK_LOW unset) before going into reclaim, 1956 * which is important when on a NUMA setup the allowed 1957 * zones are together not big enough to reach the 1958 * global limit. The proper fix for these situations 1959 * will require awareness of zones in the 1960 * dirty-throttling and the flusher threads. 1961 */ 1962 if ((alloc_flags & ALLOC_WMARK_LOW) && 1963 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone)) 1964 goto this_zone_full; 1965 1966 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 1967 if (!zone_watermark_ok(zone, order, mark, 1968 classzone_idx, alloc_flags)) { 1969 int ret; 1970 1971 if (IS_ENABLED(CONFIG_NUMA) && 1972 !did_zlc_setup && nr_online_nodes > 1) { 1973 /* 1974 * we do zlc_setup if there are multiple nodes 1975 * and before considering the first zone allowed 1976 * by the cpuset. 1977 */ 1978 allowednodes = zlc_setup(zonelist, alloc_flags); 1979 zlc_active = 1; 1980 did_zlc_setup = 1; 1981 } 1982 1983 if (zone_reclaim_mode == 0 || 1984 !zone_allows_reclaim(preferred_zone, zone)) 1985 goto this_zone_full; 1986 1987 /* 1988 * As we may have just activated ZLC, check if the first 1989 * eligible zone has failed zone_reclaim recently. 1990 */ 1991 if (IS_ENABLED(CONFIG_NUMA) && zlc_active && 1992 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1993 continue; 1994 1995 ret = zone_reclaim(zone, gfp_mask, order); 1996 switch (ret) { 1997 case ZONE_RECLAIM_NOSCAN: 1998 /* did not scan */ 1999 continue; 2000 case ZONE_RECLAIM_FULL: 2001 /* scanned but unreclaimable */ 2002 continue; 2003 default: 2004 /* did we reclaim enough */ 2005 if (zone_watermark_ok(zone, order, mark, 2006 classzone_idx, alloc_flags)) 2007 goto try_this_zone; 2008 2009 /* 2010 * Failed to reclaim enough to meet watermark. 2011 * Only mark the zone full if checking the min 2012 * watermark or if we failed to reclaim just 2013 * 1<<order pages or else the page allocator 2014 * fastpath will prematurely mark zones full 2015 * when the watermark is between the low and 2016 * min watermarks. 2017 */ 2018 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) || 2019 ret == ZONE_RECLAIM_SOME) 2020 goto this_zone_full; 2021 2022 continue; 2023 } 2024 } 2025 2026 try_this_zone: 2027 page = buffered_rmqueue(preferred_zone, zone, order, 2028 gfp_mask, migratetype); 2029 if (page) 2030 break; 2031 this_zone_full: 2032 if (IS_ENABLED(CONFIG_NUMA)) 2033 zlc_mark_zone_full(zonelist, z); 2034 } 2035 2036 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) { 2037 /* Disable zlc cache for second zonelist scan */ 2038 zlc_active = 0; 2039 goto zonelist_scan; 2040 } 2041 2042 if (page) 2043 /* 2044 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was 2045 * necessary to allocate the page. The expectation is 2046 * that the caller is taking steps that will free more 2047 * memory. The caller should avoid the page being used 2048 * for !PFMEMALLOC purposes. 2049 */ 2050 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS); 2051 2052 return page; 2053 } 2054 2055 /* 2056 * Large machines with many possible nodes should not always dump per-node 2057 * meminfo in irq context. 2058 */ 2059 static inline bool should_suppress_show_mem(void) 2060 { 2061 bool ret = false; 2062 2063 #if NODES_SHIFT > 8 2064 ret = in_interrupt(); 2065 #endif 2066 return ret; 2067 } 2068 2069 static DEFINE_RATELIMIT_STATE(nopage_rs, 2070 DEFAULT_RATELIMIT_INTERVAL, 2071 DEFAULT_RATELIMIT_BURST); 2072 2073 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...) 2074 { 2075 unsigned int filter = SHOW_MEM_FILTER_NODES; 2076 2077 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) || 2078 debug_guardpage_minorder() > 0) 2079 return; 2080 2081 /* 2082 * Walking all memory to count page types is very expensive and should 2083 * be inhibited in non-blockable contexts. 2084 */ 2085 if (!(gfp_mask & __GFP_WAIT)) 2086 filter |= SHOW_MEM_FILTER_PAGE_COUNT; 2087 2088 /* 2089 * This documents exceptions given to allocations in certain 2090 * contexts that are allowed to allocate outside current's set 2091 * of allowed nodes. 2092 */ 2093 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2094 if (test_thread_flag(TIF_MEMDIE) || 2095 (current->flags & (PF_MEMALLOC | PF_EXITING))) 2096 filter &= ~SHOW_MEM_FILTER_NODES; 2097 if (in_interrupt() || !(gfp_mask & __GFP_WAIT)) 2098 filter &= ~SHOW_MEM_FILTER_NODES; 2099 2100 if (fmt) { 2101 struct va_format vaf; 2102 va_list args; 2103 2104 va_start(args, fmt); 2105 2106 vaf.fmt = fmt; 2107 vaf.va = &args; 2108 2109 pr_warn("%pV", &vaf); 2110 2111 va_end(args); 2112 } 2113 2114 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n", 2115 current->comm, order, gfp_mask); 2116 2117 dump_stack(); 2118 if (!should_suppress_show_mem()) 2119 show_mem(filter); 2120 } 2121 2122 static inline int 2123 should_alloc_retry(gfp_t gfp_mask, unsigned int order, 2124 unsigned long did_some_progress, 2125 unsigned long pages_reclaimed) 2126 { 2127 /* Do not loop if specifically requested */ 2128 if (gfp_mask & __GFP_NORETRY) 2129 return 0; 2130 2131 /* Always retry if specifically requested */ 2132 if (gfp_mask & __GFP_NOFAIL) 2133 return 1; 2134 2135 /* 2136 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim 2137 * making forward progress without invoking OOM. Suspend also disables 2138 * storage devices so kswapd will not help. Bail if we are suspending. 2139 */ 2140 if (!did_some_progress && pm_suspended_storage()) 2141 return 0; 2142 2143 /* 2144 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 2145 * means __GFP_NOFAIL, but that may not be true in other 2146 * implementations. 2147 */ 2148 if (order <= PAGE_ALLOC_COSTLY_ORDER) 2149 return 1; 2150 2151 /* 2152 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 2153 * specified, then we retry until we no longer reclaim any pages 2154 * (above), or we've reclaimed an order of pages at least as 2155 * large as the allocation's order. In both cases, if the 2156 * allocation still fails, we stop retrying. 2157 */ 2158 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) 2159 return 1; 2160 2161 return 0; 2162 } 2163 2164 static inline struct page * 2165 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 2166 struct zonelist *zonelist, enum zone_type high_zoneidx, 2167 nodemask_t *nodemask, struct zone *preferred_zone, 2168 int migratetype) 2169 { 2170 struct page *page; 2171 2172 /* Acquire the OOM killer lock for the zones in zonelist */ 2173 if (!try_set_zonelist_oom(zonelist, gfp_mask)) { 2174 schedule_timeout_uninterruptible(1); 2175 return NULL; 2176 } 2177 2178 /* 2179 * Go through the zonelist yet one more time, keep very high watermark 2180 * here, this is only to catch a parallel oom killing, we must fail if 2181 * we're still under heavy pressure. 2182 */ 2183 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, 2184 order, zonelist, high_zoneidx, 2185 ALLOC_WMARK_HIGH|ALLOC_CPUSET, 2186 preferred_zone, migratetype); 2187 if (page) 2188 goto out; 2189 2190 if (!(gfp_mask & __GFP_NOFAIL)) { 2191 /* The OOM killer will not help higher order allocs */ 2192 if (order > PAGE_ALLOC_COSTLY_ORDER) 2193 goto out; 2194 /* The OOM killer does not needlessly kill tasks for lowmem */ 2195 if (high_zoneidx < ZONE_NORMAL) 2196 goto out; 2197 /* 2198 * GFP_THISNODE contains __GFP_NORETRY and we never hit this. 2199 * Sanity check for bare calls of __GFP_THISNODE, not real OOM. 2200 * The caller should handle page allocation failure by itself if 2201 * it specifies __GFP_THISNODE. 2202 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER. 2203 */ 2204 if (gfp_mask & __GFP_THISNODE) 2205 goto out; 2206 } 2207 /* Exhausted what can be done so it's blamo time */ 2208 out_of_memory(zonelist, gfp_mask, order, nodemask, false); 2209 2210 out: 2211 clear_zonelist_oom(zonelist, gfp_mask); 2212 return page; 2213 } 2214 2215 #ifdef CONFIG_COMPACTION 2216 /* Try memory compaction for high-order allocations before reclaim */ 2217 static struct page * 2218 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2219 struct zonelist *zonelist, enum zone_type high_zoneidx, 2220 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2221 int migratetype, bool sync_migration, 2222 bool *contended_compaction, bool *deferred_compaction, 2223 unsigned long *did_some_progress) 2224 { 2225 if (!order) 2226 return NULL; 2227 2228 if (compaction_deferred(preferred_zone, order)) { 2229 *deferred_compaction = true; 2230 return NULL; 2231 } 2232 2233 current->flags |= PF_MEMALLOC; 2234 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask, 2235 nodemask, sync_migration, 2236 contended_compaction); 2237 current->flags &= ~PF_MEMALLOC; 2238 2239 if (*did_some_progress != COMPACT_SKIPPED) { 2240 struct page *page; 2241 2242 /* Page migration frees to the PCP lists but we want merging */ 2243 drain_pages(get_cpu()); 2244 put_cpu(); 2245 2246 page = get_page_from_freelist(gfp_mask, nodemask, 2247 order, zonelist, high_zoneidx, 2248 alloc_flags & ~ALLOC_NO_WATERMARKS, 2249 preferred_zone, migratetype); 2250 if (page) { 2251 preferred_zone->compact_blockskip_flush = false; 2252 preferred_zone->compact_considered = 0; 2253 preferred_zone->compact_defer_shift = 0; 2254 if (order >= preferred_zone->compact_order_failed) 2255 preferred_zone->compact_order_failed = order + 1; 2256 count_vm_event(COMPACTSUCCESS); 2257 return page; 2258 } 2259 2260 /* 2261 * It's bad if compaction run occurs and fails. 2262 * The most likely reason is that pages exist, 2263 * but not enough to satisfy watermarks. 2264 */ 2265 count_vm_event(COMPACTFAIL); 2266 2267 /* 2268 * As async compaction considers a subset of pageblocks, only 2269 * defer if the failure was a sync compaction failure. 2270 */ 2271 if (sync_migration) 2272 defer_compaction(preferred_zone, order); 2273 2274 cond_resched(); 2275 } 2276 2277 return NULL; 2278 } 2279 #else 2280 static inline struct page * 2281 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2282 struct zonelist *zonelist, enum zone_type high_zoneidx, 2283 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2284 int migratetype, bool sync_migration, 2285 bool *contended_compaction, bool *deferred_compaction, 2286 unsigned long *did_some_progress) 2287 { 2288 return NULL; 2289 } 2290 #endif /* CONFIG_COMPACTION */ 2291 2292 /* Perform direct synchronous page reclaim */ 2293 static int 2294 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist, 2295 nodemask_t *nodemask) 2296 { 2297 struct reclaim_state reclaim_state; 2298 int progress; 2299 2300 cond_resched(); 2301 2302 /* We now go into synchronous reclaim */ 2303 cpuset_memory_pressure_bump(); 2304 current->flags |= PF_MEMALLOC; 2305 lockdep_set_current_reclaim_state(gfp_mask); 2306 reclaim_state.reclaimed_slab = 0; 2307 current->reclaim_state = &reclaim_state; 2308 2309 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask); 2310 2311 current->reclaim_state = NULL; 2312 lockdep_clear_current_reclaim_state(); 2313 current->flags &= ~PF_MEMALLOC; 2314 2315 cond_resched(); 2316 2317 return progress; 2318 } 2319 2320 /* The really slow allocator path where we enter direct reclaim */ 2321 static inline struct page * 2322 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 2323 struct zonelist *zonelist, enum zone_type high_zoneidx, 2324 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2325 int migratetype, unsigned long *did_some_progress) 2326 { 2327 struct page *page = NULL; 2328 bool drained = false; 2329 2330 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist, 2331 nodemask); 2332 if (unlikely(!(*did_some_progress))) 2333 return NULL; 2334 2335 /* After successful reclaim, reconsider all zones for allocation */ 2336 if (IS_ENABLED(CONFIG_NUMA)) 2337 zlc_clear_zones_full(zonelist); 2338 2339 retry: 2340 page = get_page_from_freelist(gfp_mask, nodemask, order, 2341 zonelist, high_zoneidx, 2342 alloc_flags & ~ALLOC_NO_WATERMARKS, 2343 preferred_zone, migratetype); 2344 2345 /* 2346 * If an allocation failed after direct reclaim, it could be because 2347 * pages are pinned on the per-cpu lists. Drain them and try again 2348 */ 2349 if (!page && !drained) { 2350 drain_all_pages(); 2351 drained = true; 2352 goto retry; 2353 } 2354 2355 return page; 2356 } 2357 2358 /* 2359 * This is called in the allocator slow-path if the allocation request is of 2360 * sufficient urgency to ignore watermarks and take other desperate measures 2361 */ 2362 static inline struct page * 2363 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, 2364 struct zonelist *zonelist, enum zone_type high_zoneidx, 2365 nodemask_t *nodemask, struct zone *preferred_zone, 2366 int migratetype) 2367 { 2368 struct page *page; 2369 2370 do { 2371 page = get_page_from_freelist(gfp_mask, nodemask, order, 2372 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS, 2373 preferred_zone, migratetype); 2374 2375 if (!page && gfp_mask & __GFP_NOFAIL) 2376 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2377 } while (!page && (gfp_mask & __GFP_NOFAIL)); 2378 2379 return page; 2380 } 2381 2382 static void prepare_slowpath(gfp_t gfp_mask, unsigned int order, 2383 struct zonelist *zonelist, 2384 enum zone_type high_zoneidx, 2385 struct zone *preferred_zone) 2386 { 2387 struct zoneref *z; 2388 struct zone *zone; 2389 2390 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 2391 if (!(gfp_mask & __GFP_NO_KSWAPD)) 2392 wakeup_kswapd(zone, order, zone_idx(preferred_zone)); 2393 /* 2394 * Only reset the batches of zones that were actually 2395 * considered in the fast path, we don't want to 2396 * thrash fairness information for zones that are not 2397 * actually part of this zonelist's round-robin cycle. 2398 */ 2399 if (zone_reclaim_mode && !zone_local(preferred_zone, zone)) 2400 continue; 2401 mod_zone_page_state(zone, NR_ALLOC_BATCH, 2402 high_wmark_pages(zone) - 2403 low_wmark_pages(zone) - 2404 zone_page_state(zone, NR_ALLOC_BATCH)); 2405 } 2406 } 2407 2408 static inline int 2409 gfp_to_alloc_flags(gfp_t gfp_mask) 2410 { 2411 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 2412 const gfp_t wait = gfp_mask & __GFP_WAIT; 2413 2414 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 2415 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 2416 2417 /* 2418 * The caller may dip into page reserves a bit more if the caller 2419 * cannot run direct reclaim, or if the caller has realtime scheduling 2420 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 2421 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 2422 */ 2423 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 2424 2425 if (!wait) { 2426 /* 2427 * Not worth trying to allocate harder for 2428 * __GFP_NOMEMALLOC even if it can't schedule. 2429 */ 2430 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2431 alloc_flags |= ALLOC_HARDER; 2432 /* 2433 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 2434 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 2435 */ 2436 alloc_flags &= ~ALLOC_CPUSET; 2437 } else if (unlikely(rt_task(current)) && !in_interrupt()) 2438 alloc_flags |= ALLOC_HARDER; 2439 2440 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { 2441 if (gfp_mask & __GFP_MEMALLOC) 2442 alloc_flags |= ALLOC_NO_WATERMARKS; 2443 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 2444 alloc_flags |= ALLOC_NO_WATERMARKS; 2445 else if (!in_interrupt() && 2446 ((current->flags & PF_MEMALLOC) || 2447 unlikely(test_thread_flag(TIF_MEMDIE)))) 2448 alloc_flags |= ALLOC_NO_WATERMARKS; 2449 } 2450 #ifdef CONFIG_CMA 2451 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 2452 alloc_flags |= ALLOC_CMA; 2453 #endif 2454 return alloc_flags; 2455 } 2456 2457 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 2458 { 2459 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS); 2460 } 2461 2462 static inline struct page * 2463 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 2464 struct zonelist *zonelist, enum zone_type high_zoneidx, 2465 nodemask_t *nodemask, struct zone *preferred_zone, 2466 int migratetype) 2467 { 2468 const gfp_t wait = gfp_mask & __GFP_WAIT; 2469 struct page *page = NULL; 2470 int alloc_flags; 2471 unsigned long pages_reclaimed = 0; 2472 unsigned long did_some_progress; 2473 bool sync_migration = false; 2474 bool deferred_compaction = false; 2475 bool contended_compaction = false; 2476 2477 /* 2478 * In the slowpath, we sanity check order to avoid ever trying to 2479 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 2480 * be using allocators in order of preference for an area that is 2481 * too large. 2482 */ 2483 if (order >= MAX_ORDER) { 2484 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 2485 return NULL; 2486 } 2487 2488 /* 2489 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 2490 * __GFP_NOWARN set) should not cause reclaim since the subsystem 2491 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 2492 * using a larger set of nodes after it has established that the 2493 * allowed per node queues are empty and that nodes are 2494 * over allocated. 2495 */ 2496 if (IS_ENABLED(CONFIG_NUMA) && 2497 (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 2498 goto nopage; 2499 2500 restart: 2501 prepare_slowpath(gfp_mask, order, zonelist, 2502 high_zoneidx, preferred_zone); 2503 2504 /* 2505 * OK, we're below the kswapd watermark and have kicked background 2506 * reclaim. Now things get more complex, so set up alloc_flags according 2507 * to how we want to proceed. 2508 */ 2509 alloc_flags = gfp_to_alloc_flags(gfp_mask); 2510 2511 /* 2512 * Find the true preferred zone if the allocation is unconstrained by 2513 * cpusets. 2514 */ 2515 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) 2516 first_zones_zonelist(zonelist, high_zoneidx, NULL, 2517 &preferred_zone); 2518 2519 rebalance: 2520 /* This is the last chance, in general, before the goto nopage. */ 2521 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, 2522 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS, 2523 preferred_zone, migratetype); 2524 if (page) 2525 goto got_pg; 2526 2527 /* Allocate without watermarks if the context allows */ 2528 if (alloc_flags & ALLOC_NO_WATERMARKS) { 2529 /* 2530 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds 2531 * the allocation is high priority and these type of 2532 * allocations are system rather than user orientated 2533 */ 2534 zonelist = node_zonelist(numa_node_id(), gfp_mask); 2535 2536 page = __alloc_pages_high_priority(gfp_mask, order, 2537 zonelist, high_zoneidx, nodemask, 2538 preferred_zone, migratetype); 2539 if (page) { 2540 goto got_pg; 2541 } 2542 } 2543 2544 /* Atomic allocations - we can't balance anything */ 2545 if (!wait) 2546 goto nopage; 2547 2548 /* Avoid recursion of direct reclaim */ 2549 if (current->flags & PF_MEMALLOC) 2550 goto nopage; 2551 2552 /* Avoid allocations with no watermarks from looping endlessly */ 2553 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) 2554 goto nopage; 2555 2556 /* 2557 * Try direct compaction. The first pass is asynchronous. Subsequent 2558 * attempts after direct reclaim are synchronous 2559 */ 2560 page = __alloc_pages_direct_compact(gfp_mask, order, 2561 zonelist, high_zoneidx, 2562 nodemask, 2563 alloc_flags, preferred_zone, 2564 migratetype, sync_migration, 2565 &contended_compaction, 2566 &deferred_compaction, 2567 &did_some_progress); 2568 if (page) 2569 goto got_pg; 2570 sync_migration = true; 2571 2572 /* 2573 * If compaction is deferred for high-order allocations, it is because 2574 * sync compaction recently failed. In this is the case and the caller 2575 * requested a movable allocation that does not heavily disrupt the 2576 * system then fail the allocation instead of entering direct reclaim. 2577 */ 2578 if ((deferred_compaction || contended_compaction) && 2579 (gfp_mask & __GFP_NO_KSWAPD)) 2580 goto nopage; 2581 2582 /* Try direct reclaim and then allocating */ 2583 page = __alloc_pages_direct_reclaim(gfp_mask, order, 2584 zonelist, high_zoneidx, 2585 nodemask, 2586 alloc_flags, preferred_zone, 2587 migratetype, &did_some_progress); 2588 if (page) 2589 goto got_pg; 2590 2591 /* 2592 * If we failed to make any progress reclaiming, then we are 2593 * running out of options and have to consider going OOM 2594 */ 2595 if (!did_some_progress) { 2596 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 2597 if (oom_killer_disabled) 2598 goto nopage; 2599 /* Coredumps can quickly deplete all memory reserves */ 2600 if ((current->flags & PF_DUMPCORE) && 2601 !(gfp_mask & __GFP_NOFAIL)) 2602 goto nopage; 2603 page = __alloc_pages_may_oom(gfp_mask, order, 2604 zonelist, high_zoneidx, 2605 nodemask, preferred_zone, 2606 migratetype); 2607 if (page) 2608 goto got_pg; 2609 2610 if (!(gfp_mask & __GFP_NOFAIL)) { 2611 /* 2612 * The oom killer is not called for high-order 2613 * allocations that may fail, so if no progress 2614 * is being made, there are no other options and 2615 * retrying is unlikely to help. 2616 */ 2617 if (order > PAGE_ALLOC_COSTLY_ORDER) 2618 goto nopage; 2619 /* 2620 * The oom killer is not called for lowmem 2621 * allocations to prevent needlessly killing 2622 * innocent tasks. 2623 */ 2624 if (high_zoneidx < ZONE_NORMAL) 2625 goto nopage; 2626 } 2627 2628 goto restart; 2629 } 2630 } 2631 2632 /* Check if we should retry the allocation */ 2633 pages_reclaimed += did_some_progress; 2634 if (should_alloc_retry(gfp_mask, order, did_some_progress, 2635 pages_reclaimed)) { 2636 /* Wait for some write requests to complete then retry */ 2637 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2638 goto rebalance; 2639 } else { 2640 /* 2641 * High-order allocations do not necessarily loop after 2642 * direct reclaim and reclaim/compaction depends on compaction 2643 * being called after reclaim so call directly if necessary 2644 */ 2645 page = __alloc_pages_direct_compact(gfp_mask, order, 2646 zonelist, high_zoneidx, 2647 nodemask, 2648 alloc_flags, preferred_zone, 2649 migratetype, sync_migration, 2650 &contended_compaction, 2651 &deferred_compaction, 2652 &did_some_progress); 2653 if (page) 2654 goto got_pg; 2655 } 2656 2657 nopage: 2658 warn_alloc_failed(gfp_mask, order, NULL); 2659 return page; 2660 got_pg: 2661 if (kmemcheck_enabled) 2662 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 2663 2664 return page; 2665 } 2666 2667 /* 2668 * This is the 'heart' of the zoned buddy allocator. 2669 */ 2670 struct page * 2671 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 2672 struct zonelist *zonelist, nodemask_t *nodemask) 2673 { 2674 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 2675 struct zone *preferred_zone; 2676 struct page *page = NULL; 2677 int migratetype = allocflags_to_migratetype(gfp_mask); 2678 unsigned int cpuset_mems_cookie; 2679 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET; 2680 struct mem_cgroup *memcg = NULL; 2681 2682 gfp_mask &= gfp_allowed_mask; 2683 2684 lockdep_trace_alloc(gfp_mask); 2685 2686 might_sleep_if(gfp_mask & __GFP_WAIT); 2687 2688 if (should_fail_alloc_page(gfp_mask, order)) 2689 return NULL; 2690 2691 /* 2692 * Check the zones suitable for the gfp_mask contain at least one 2693 * valid zone. It's possible to have an empty zonelist as a result 2694 * of GFP_THISNODE and a memoryless node 2695 */ 2696 if (unlikely(!zonelist->_zonerefs->zone)) 2697 return NULL; 2698 2699 /* 2700 * Will only have any effect when __GFP_KMEMCG is set. This is 2701 * verified in the (always inline) callee 2702 */ 2703 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order)) 2704 return NULL; 2705 2706 retry_cpuset: 2707 cpuset_mems_cookie = get_mems_allowed(); 2708 2709 /* The preferred zone is used for statistics later */ 2710 first_zones_zonelist(zonelist, high_zoneidx, 2711 nodemask ? : &cpuset_current_mems_allowed, 2712 &preferred_zone); 2713 if (!preferred_zone) 2714 goto out; 2715 2716 #ifdef CONFIG_CMA 2717 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 2718 alloc_flags |= ALLOC_CMA; 2719 #endif 2720 /* First allocation attempt */ 2721 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, 2722 zonelist, high_zoneidx, alloc_flags, 2723 preferred_zone, migratetype); 2724 if (unlikely(!page)) { 2725 /* 2726 * Runtime PM, block IO and its error handling path 2727 * can deadlock because I/O on the device might not 2728 * complete. 2729 */ 2730 gfp_mask = memalloc_noio_flags(gfp_mask); 2731 page = __alloc_pages_slowpath(gfp_mask, order, 2732 zonelist, high_zoneidx, nodemask, 2733 preferred_zone, migratetype); 2734 } 2735 2736 trace_mm_page_alloc(page, order, gfp_mask, migratetype); 2737 2738 out: 2739 /* 2740 * When updating a task's mems_allowed, it is possible to race with 2741 * parallel threads in such a way that an allocation can fail while 2742 * the mask is being updated. If a page allocation is about to fail, 2743 * check if the cpuset changed during allocation and if so, retry. 2744 */ 2745 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) 2746 goto retry_cpuset; 2747 2748 memcg_kmem_commit_charge(page, memcg, order); 2749 2750 return page; 2751 } 2752 EXPORT_SYMBOL(__alloc_pages_nodemask); 2753 2754 /* 2755 * Common helper functions. 2756 */ 2757 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 2758 { 2759 struct page *page; 2760 2761 /* 2762 * __get_free_pages() returns a 32-bit address, which cannot represent 2763 * a highmem page 2764 */ 2765 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 2766 2767 page = alloc_pages(gfp_mask, order); 2768 if (!page) 2769 return 0; 2770 return (unsigned long) page_address(page); 2771 } 2772 EXPORT_SYMBOL(__get_free_pages); 2773 2774 unsigned long get_zeroed_page(gfp_t gfp_mask) 2775 { 2776 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 2777 } 2778 EXPORT_SYMBOL(get_zeroed_page); 2779 2780 void __free_pages(struct page *page, unsigned int order) 2781 { 2782 if (put_page_testzero(page)) { 2783 if (order == 0) 2784 free_hot_cold_page(page, 0); 2785 else 2786 __free_pages_ok(page, order); 2787 } 2788 } 2789 2790 EXPORT_SYMBOL(__free_pages); 2791 2792 void free_pages(unsigned long addr, unsigned int order) 2793 { 2794 if (addr != 0) { 2795 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2796 __free_pages(virt_to_page((void *)addr), order); 2797 } 2798 } 2799 2800 EXPORT_SYMBOL(free_pages); 2801 2802 /* 2803 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free 2804 * pages allocated with __GFP_KMEMCG. 2805 * 2806 * Those pages are accounted to a particular memcg, embedded in the 2807 * corresponding page_cgroup. To avoid adding a hit in the allocator to search 2808 * for that information only to find out that it is NULL for users who have no 2809 * interest in that whatsoever, we provide these functions. 2810 * 2811 * The caller knows better which flags it relies on. 2812 */ 2813 void __free_memcg_kmem_pages(struct page *page, unsigned int order) 2814 { 2815 memcg_kmem_uncharge_pages(page, order); 2816 __free_pages(page, order); 2817 } 2818 2819 void free_memcg_kmem_pages(unsigned long addr, unsigned int order) 2820 { 2821 if (addr != 0) { 2822 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2823 __free_memcg_kmem_pages(virt_to_page((void *)addr), order); 2824 } 2825 } 2826 2827 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size) 2828 { 2829 if (addr) { 2830 unsigned long alloc_end = addr + (PAGE_SIZE << order); 2831 unsigned long used = addr + PAGE_ALIGN(size); 2832 2833 split_page(virt_to_page((void *)addr), order); 2834 while (used < alloc_end) { 2835 free_page(used); 2836 used += PAGE_SIZE; 2837 } 2838 } 2839 return (void *)addr; 2840 } 2841 2842 /** 2843 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 2844 * @size: the number of bytes to allocate 2845 * @gfp_mask: GFP flags for the allocation 2846 * 2847 * This function is similar to alloc_pages(), except that it allocates the 2848 * minimum number of pages to satisfy the request. alloc_pages() can only 2849 * allocate memory in power-of-two pages. 2850 * 2851 * This function is also limited by MAX_ORDER. 2852 * 2853 * Memory allocated by this function must be released by free_pages_exact(). 2854 */ 2855 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 2856 { 2857 unsigned int order = get_order(size); 2858 unsigned long addr; 2859 2860 addr = __get_free_pages(gfp_mask, order); 2861 return make_alloc_exact(addr, order, size); 2862 } 2863 EXPORT_SYMBOL(alloc_pages_exact); 2864 2865 /** 2866 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 2867 * pages on a node. 2868 * @nid: the preferred node ID where memory should be allocated 2869 * @size: the number of bytes to allocate 2870 * @gfp_mask: GFP flags for the allocation 2871 * 2872 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 2873 * back. 2874 * Note this is not alloc_pages_exact_node() which allocates on a specific node, 2875 * but is not exact. 2876 */ 2877 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 2878 { 2879 unsigned order = get_order(size); 2880 struct page *p = alloc_pages_node(nid, gfp_mask, order); 2881 if (!p) 2882 return NULL; 2883 return make_alloc_exact((unsigned long)page_address(p), order, size); 2884 } 2885 EXPORT_SYMBOL(alloc_pages_exact_nid); 2886 2887 /** 2888 * free_pages_exact - release memory allocated via alloc_pages_exact() 2889 * @virt: the value returned by alloc_pages_exact. 2890 * @size: size of allocation, same value as passed to alloc_pages_exact(). 2891 * 2892 * Release the memory allocated by a previous call to alloc_pages_exact. 2893 */ 2894 void free_pages_exact(void *virt, size_t size) 2895 { 2896 unsigned long addr = (unsigned long)virt; 2897 unsigned long end = addr + PAGE_ALIGN(size); 2898 2899 while (addr < end) { 2900 free_page(addr); 2901 addr += PAGE_SIZE; 2902 } 2903 } 2904 EXPORT_SYMBOL(free_pages_exact); 2905 2906 /** 2907 * nr_free_zone_pages - count number of pages beyond high watermark 2908 * @offset: The zone index of the highest zone 2909 * 2910 * nr_free_zone_pages() counts the number of counts pages which are beyond the 2911 * high watermark within all zones at or below a given zone index. For each 2912 * zone, the number of pages is calculated as: 2913 * managed_pages - high_pages 2914 */ 2915 static unsigned long nr_free_zone_pages(int offset) 2916 { 2917 struct zoneref *z; 2918 struct zone *zone; 2919 2920 /* Just pick one node, since fallback list is circular */ 2921 unsigned long sum = 0; 2922 2923 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 2924 2925 for_each_zone_zonelist(zone, z, zonelist, offset) { 2926 unsigned long size = zone->managed_pages; 2927 unsigned long high = high_wmark_pages(zone); 2928 if (size > high) 2929 sum += size - high; 2930 } 2931 2932 return sum; 2933 } 2934 2935 /** 2936 * nr_free_buffer_pages - count number of pages beyond high watermark 2937 * 2938 * nr_free_buffer_pages() counts the number of pages which are beyond the high 2939 * watermark within ZONE_DMA and ZONE_NORMAL. 2940 */ 2941 unsigned long nr_free_buffer_pages(void) 2942 { 2943 return nr_free_zone_pages(gfp_zone(GFP_USER)); 2944 } 2945 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 2946 2947 /** 2948 * nr_free_pagecache_pages - count number of pages beyond high watermark 2949 * 2950 * nr_free_pagecache_pages() counts the number of pages which are beyond the 2951 * high watermark within all zones. 2952 */ 2953 unsigned long nr_free_pagecache_pages(void) 2954 { 2955 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 2956 } 2957 2958 static inline void show_node(struct zone *zone) 2959 { 2960 if (IS_ENABLED(CONFIG_NUMA)) 2961 printk("Node %d ", zone_to_nid(zone)); 2962 } 2963 2964 void si_meminfo(struct sysinfo *val) 2965 { 2966 val->totalram = totalram_pages; 2967 val->sharedram = 0; 2968 val->freeram = global_page_state(NR_FREE_PAGES); 2969 val->bufferram = nr_blockdev_pages(); 2970 val->totalhigh = totalhigh_pages; 2971 val->freehigh = nr_free_highpages(); 2972 val->mem_unit = PAGE_SIZE; 2973 } 2974 2975 EXPORT_SYMBOL(si_meminfo); 2976 2977 #ifdef CONFIG_NUMA 2978 void si_meminfo_node(struct sysinfo *val, int nid) 2979 { 2980 int zone_type; /* needs to be signed */ 2981 unsigned long managed_pages = 0; 2982 pg_data_t *pgdat = NODE_DATA(nid); 2983 2984 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 2985 managed_pages += pgdat->node_zones[zone_type].managed_pages; 2986 val->totalram = managed_pages; 2987 val->freeram = node_page_state(nid, NR_FREE_PAGES); 2988 #ifdef CONFIG_HIGHMEM 2989 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages; 2990 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 2991 NR_FREE_PAGES); 2992 #else 2993 val->totalhigh = 0; 2994 val->freehigh = 0; 2995 #endif 2996 val->mem_unit = PAGE_SIZE; 2997 } 2998 #endif 2999 3000 /* 3001 * Determine whether the node should be displayed or not, depending on whether 3002 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 3003 */ 3004 bool skip_free_areas_node(unsigned int flags, int nid) 3005 { 3006 bool ret = false; 3007 unsigned int cpuset_mems_cookie; 3008 3009 if (!(flags & SHOW_MEM_FILTER_NODES)) 3010 goto out; 3011 3012 do { 3013 cpuset_mems_cookie = get_mems_allowed(); 3014 ret = !node_isset(nid, cpuset_current_mems_allowed); 3015 } while (!put_mems_allowed(cpuset_mems_cookie)); 3016 out: 3017 return ret; 3018 } 3019 3020 #define K(x) ((x) << (PAGE_SHIFT-10)) 3021 3022 static void show_migration_types(unsigned char type) 3023 { 3024 static const char types[MIGRATE_TYPES] = { 3025 [MIGRATE_UNMOVABLE] = 'U', 3026 [MIGRATE_RECLAIMABLE] = 'E', 3027 [MIGRATE_MOVABLE] = 'M', 3028 [MIGRATE_RESERVE] = 'R', 3029 #ifdef CONFIG_CMA 3030 [MIGRATE_CMA] = 'C', 3031 #endif 3032 #ifdef CONFIG_MEMORY_ISOLATION 3033 [MIGRATE_ISOLATE] = 'I', 3034 #endif 3035 }; 3036 char tmp[MIGRATE_TYPES + 1]; 3037 char *p = tmp; 3038 int i; 3039 3040 for (i = 0; i < MIGRATE_TYPES; i++) { 3041 if (type & (1 << i)) 3042 *p++ = types[i]; 3043 } 3044 3045 *p = '\0'; 3046 printk("(%s) ", tmp); 3047 } 3048 3049 /* 3050 * Show free area list (used inside shift_scroll-lock stuff) 3051 * We also calculate the percentage fragmentation. We do this by counting the 3052 * memory on each free list with the exception of the first item on the list. 3053 * Suppresses nodes that are not allowed by current's cpuset if 3054 * SHOW_MEM_FILTER_NODES is passed. 3055 */ 3056 void show_free_areas(unsigned int filter) 3057 { 3058 int cpu; 3059 struct zone *zone; 3060 3061 for_each_populated_zone(zone) { 3062 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3063 continue; 3064 show_node(zone); 3065 printk("%s per-cpu:\n", zone->name); 3066 3067 for_each_online_cpu(cpu) { 3068 struct per_cpu_pageset *pageset; 3069 3070 pageset = per_cpu_ptr(zone->pageset, cpu); 3071 3072 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", 3073 cpu, pageset->pcp.high, 3074 pageset->pcp.batch, pageset->pcp.count); 3075 } 3076 } 3077 3078 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 3079 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 3080 " unevictable:%lu" 3081 " dirty:%lu writeback:%lu unstable:%lu\n" 3082 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n" 3083 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 3084 " free_cma:%lu\n", 3085 global_page_state(NR_ACTIVE_ANON), 3086 global_page_state(NR_INACTIVE_ANON), 3087 global_page_state(NR_ISOLATED_ANON), 3088 global_page_state(NR_ACTIVE_FILE), 3089 global_page_state(NR_INACTIVE_FILE), 3090 global_page_state(NR_ISOLATED_FILE), 3091 global_page_state(NR_UNEVICTABLE), 3092 global_page_state(NR_FILE_DIRTY), 3093 global_page_state(NR_WRITEBACK), 3094 global_page_state(NR_UNSTABLE_NFS), 3095 global_page_state(NR_FREE_PAGES), 3096 global_page_state(NR_SLAB_RECLAIMABLE), 3097 global_page_state(NR_SLAB_UNRECLAIMABLE), 3098 global_page_state(NR_FILE_MAPPED), 3099 global_page_state(NR_SHMEM), 3100 global_page_state(NR_PAGETABLE), 3101 global_page_state(NR_BOUNCE), 3102 global_page_state(NR_FREE_CMA_PAGES)); 3103 3104 for_each_populated_zone(zone) { 3105 int i; 3106 3107 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3108 continue; 3109 show_node(zone); 3110 printk("%s" 3111 " free:%lukB" 3112 " min:%lukB" 3113 " low:%lukB" 3114 " high:%lukB" 3115 " active_anon:%lukB" 3116 " inactive_anon:%lukB" 3117 " active_file:%lukB" 3118 " inactive_file:%lukB" 3119 " unevictable:%lukB" 3120 " isolated(anon):%lukB" 3121 " isolated(file):%lukB" 3122 " present:%lukB" 3123 " managed:%lukB" 3124 " mlocked:%lukB" 3125 " dirty:%lukB" 3126 " writeback:%lukB" 3127 " mapped:%lukB" 3128 " shmem:%lukB" 3129 " slab_reclaimable:%lukB" 3130 " slab_unreclaimable:%lukB" 3131 " kernel_stack:%lukB" 3132 " pagetables:%lukB" 3133 " unstable:%lukB" 3134 " bounce:%lukB" 3135 " free_cma:%lukB" 3136 " writeback_tmp:%lukB" 3137 " pages_scanned:%lu" 3138 " all_unreclaimable? %s" 3139 "\n", 3140 zone->name, 3141 K(zone_page_state(zone, NR_FREE_PAGES)), 3142 K(min_wmark_pages(zone)), 3143 K(low_wmark_pages(zone)), 3144 K(high_wmark_pages(zone)), 3145 K(zone_page_state(zone, NR_ACTIVE_ANON)), 3146 K(zone_page_state(zone, NR_INACTIVE_ANON)), 3147 K(zone_page_state(zone, NR_ACTIVE_FILE)), 3148 K(zone_page_state(zone, NR_INACTIVE_FILE)), 3149 K(zone_page_state(zone, NR_UNEVICTABLE)), 3150 K(zone_page_state(zone, NR_ISOLATED_ANON)), 3151 K(zone_page_state(zone, NR_ISOLATED_FILE)), 3152 K(zone->present_pages), 3153 K(zone->managed_pages), 3154 K(zone_page_state(zone, NR_MLOCK)), 3155 K(zone_page_state(zone, NR_FILE_DIRTY)), 3156 K(zone_page_state(zone, NR_WRITEBACK)), 3157 K(zone_page_state(zone, NR_FILE_MAPPED)), 3158 K(zone_page_state(zone, NR_SHMEM)), 3159 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 3160 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 3161 zone_page_state(zone, NR_KERNEL_STACK) * 3162 THREAD_SIZE / 1024, 3163 K(zone_page_state(zone, NR_PAGETABLE)), 3164 K(zone_page_state(zone, NR_UNSTABLE_NFS)), 3165 K(zone_page_state(zone, NR_BOUNCE)), 3166 K(zone_page_state(zone, NR_FREE_CMA_PAGES)), 3167 K(zone_page_state(zone, NR_WRITEBACK_TEMP)), 3168 zone->pages_scanned, 3169 (!zone_reclaimable(zone) ? "yes" : "no") 3170 ); 3171 printk("lowmem_reserve[]:"); 3172 for (i = 0; i < MAX_NR_ZONES; i++) 3173 printk(" %lu", zone->lowmem_reserve[i]); 3174 printk("\n"); 3175 } 3176 3177 for_each_populated_zone(zone) { 3178 unsigned long nr[MAX_ORDER], flags, order, total = 0; 3179 unsigned char types[MAX_ORDER]; 3180 3181 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3182 continue; 3183 show_node(zone); 3184 printk("%s: ", zone->name); 3185 3186 spin_lock_irqsave(&zone->lock, flags); 3187 for (order = 0; order < MAX_ORDER; order++) { 3188 struct free_area *area = &zone->free_area[order]; 3189 int type; 3190 3191 nr[order] = area->nr_free; 3192 total += nr[order] << order; 3193 3194 types[order] = 0; 3195 for (type = 0; type < MIGRATE_TYPES; type++) { 3196 if (!list_empty(&area->free_list[type])) 3197 types[order] |= 1 << type; 3198 } 3199 } 3200 spin_unlock_irqrestore(&zone->lock, flags); 3201 for (order = 0; order < MAX_ORDER; order++) { 3202 printk("%lu*%lukB ", nr[order], K(1UL) << order); 3203 if (nr[order]) 3204 show_migration_types(types[order]); 3205 } 3206 printk("= %lukB\n", K(total)); 3207 } 3208 3209 hugetlb_show_meminfo(); 3210 3211 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 3212 3213 show_swap_cache_info(); 3214 } 3215 3216 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 3217 { 3218 zoneref->zone = zone; 3219 zoneref->zone_idx = zone_idx(zone); 3220 } 3221 3222 /* 3223 * Builds allocation fallback zone lists. 3224 * 3225 * Add all populated zones of a node to the zonelist. 3226 */ 3227 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 3228 int nr_zones) 3229 { 3230 struct zone *zone; 3231 enum zone_type zone_type = MAX_NR_ZONES; 3232 3233 do { 3234 zone_type--; 3235 zone = pgdat->node_zones + zone_type; 3236 if (populated_zone(zone)) { 3237 zoneref_set_zone(zone, 3238 &zonelist->_zonerefs[nr_zones++]); 3239 check_highest_zone(zone_type); 3240 } 3241 } while (zone_type); 3242 3243 return nr_zones; 3244 } 3245 3246 3247 /* 3248 * zonelist_order: 3249 * 0 = automatic detection of better ordering. 3250 * 1 = order by ([node] distance, -zonetype) 3251 * 2 = order by (-zonetype, [node] distance) 3252 * 3253 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 3254 * the same zonelist. So only NUMA can configure this param. 3255 */ 3256 #define ZONELIST_ORDER_DEFAULT 0 3257 #define ZONELIST_ORDER_NODE 1 3258 #define ZONELIST_ORDER_ZONE 2 3259 3260 /* zonelist order in the kernel. 3261 * set_zonelist_order() will set this to NODE or ZONE. 3262 */ 3263 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 3264 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 3265 3266 3267 #ifdef CONFIG_NUMA 3268 /* The value user specified ....changed by config */ 3269 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3270 /* string for sysctl */ 3271 #define NUMA_ZONELIST_ORDER_LEN 16 3272 char numa_zonelist_order[16] = "default"; 3273 3274 /* 3275 * interface for configure zonelist ordering. 3276 * command line option "numa_zonelist_order" 3277 * = "[dD]efault - default, automatic configuration. 3278 * = "[nN]ode - order by node locality, then by zone within node 3279 * = "[zZ]one - order by zone, then by locality within zone 3280 */ 3281 3282 static int __parse_numa_zonelist_order(char *s) 3283 { 3284 if (*s == 'd' || *s == 'D') { 3285 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3286 } else if (*s == 'n' || *s == 'N') { 3287 user_zonelist_order = ZONELIST_ORDER_NODE; 3288 } else if (*s == 'z' || *s == 'Z') { 3289 user_zonelist_order = ZONELIST_ORDER_ZONE; 3290 } else { 3291 printk(KERN_WARNING 3292 "Ignoring invalid numa_zonelist_order value: " 3293 "%s\n", s); 3294 return -EINVAL; 3295 } 3296 return 0; 3297 } 3298 3299 static __init int setup_numa_zonelist_order(char *s) 3300 { 3301 int ret; 3302 3303 if (!s) 3304 return 0; 3305 3306 ret = __parse_numa_zonelist_order(s); 3307 if (ret == 0) 3308 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); 3309 3310 return ret; 3311 } 3312 early_param("numa_zonelist_order", setup_numa_zonelist_order); 3313 3314 /* 3315 * sysctl handler for numa_zonelist_order 3316 */ 3317 int numa_zonelist_order_handler(ctl_table *table, int write, 3318 void __user *buffer, size_t *length, 3319 loff_t *ppos) 3320 { 3321 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 3322 int ret; 3323 static DEFINE_MUTEX(zl_order_mutex); 3324 3325 mutex_lock(&zl_order_mutex); 3326 if (write) { 3327 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) { 3328 ret = -EINVAL; 3329 goto out; 3330 } 3331 strcpy(saved_string, (char *)table->data); 3332 } 3333 ret = proc_dostring(table, write, buffer, length, ppos); 3334 if (ret) 3335 goto out; 3336 if (write) { 3337 int oldval = user_zonelist_order; 3338 3339 ret = __parse_numa_zonelist_order((char *)table->data); 3340 if (ret) { 3341 /* 3342 * bogus value. restore saved string 3343 */ 3344 strncpy((char *)table->data, saved_string, 3345 NUMA_ZONELIST_ORDER_LEN); 3346 user_zonelist_order = oldval; 3347 } else if (oldval != user_zonelist_order) { 3348 mutex_lock(&zonelists_mutex); 3349 build_all_zonelists(NULL, NULL); 3350 mutex_unlock(&zonelists_mutex); 3351 } 3352 } 3353 out: 3354 mutex_unlock(&zl_order_mutex); 3355 return ret; 3356 } 3357 3358 3359 #define MAX_NODE_LOAD (nr_online_nodes) 3360 static int node_load[MAX_NUMNODES]; 3361 3362 /** 3363 * find_next_best_node - find the next node that should appear in a given node's fallback list 3364 * @node: node whose fallback list we're appending 3365 * @used_node_mask: nodemask_t of already used nodes 3366 * 3367 * We use a number of factors to determine which is the next node that should 3368 * appear on a given node's fallback list. The node should not have appeared 3369 * already in @node's fallback list, and it should be the next closest node 3370 * according to the distance array (which contains arbitrary distance values 3371 * from each node to each node in the system), and should also prefer nodes 3372 * with no CPUs, since presumably they'll have very little allocation pressure 3373 * on them otherwise. 3374 * It returns -1 if no node is found. 3375 */ 3376 static int find_next_best_node(int node, nodemask_t *used_node_mask) 3377 { 3378 int n, val; 3379 int min_val = INT_MAX; 3380 int best_node = NUMA_NO_NODE; 3381 const struct cpumask *tmp = cpumask_of_node(0); 3382 3383 /* Use the local node if we haven't already */ 3384 if (!node_isset(node, *used_node_mask)) { 3385 node_set(node, *used_node_mask); 3386 return node; 3387 } 3388 3389 for_each_node_state(n, N_MEMORY) { 3390 3391 /* Don't want a node to appear more than once */ 3392 if (node_isset(n, *used_node_mask)) 3393 continue; 3394 3395 /* Use the distance array to find the distance */ 3396 val = node_distance(node, n); 3397 3398 /* Penalize nodes under us ("prefer the next node") */ 3399 val += (n < node); 3400 3401 /* Give preference to headless and unused nodes */ 3402 tmp = cpumask_of_node(n); 3403 if (!cpumask_empty(tmp)) 3404 val += PENALTY_FOR_NODE_WITH_CPUS; 3405 3406 /* Slight preference for less loaded node */ 3407 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 3408 val += node_load[n]; 3409 3410 if (val < min_val) { 3411 min_val = val; 3412 best_node = n; 3413 } 3414 } 3415 3416 if (best_node >= 0) 3417 node_set(best_node, *used_node_mask); 3418 3419 return best_node; 3420 } 3421 3422 3423 /* 3424 * Build zonelists ordered by node and zones within node. 3425 * This results in maximum locality--normal zone overflows into local 3426 * DMA zone, if any--but risks exhausting DMA zone. 3427 */ 3428 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 3429 { 3430 int j; 3431 struct zonelist *zonelist; 3432 3433 zonelist = &pgdat->node_zonelists[0]; 3434 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 3435 ; 3436 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 3437 zonelist->_zonerefs[j].zone = NULL; 3438 zonelist->_zonerefs[j].zone_idx = 0; 3439 } 3440 3441 /* 3442 * Build gfp_thisnode zonelists 3443 */ 3444 static void build_thisnode_zonelists(pg_data_t *pgdat) 3445 { 3446 int j; 3447 struct zonelist *zonelist; 3448 3449 zonelist = &pgdat->node_zonelists[1]; 3450 j = build_zonelists_node(pgdat, zonelist, 0); 3451 zonelist->_zonerefs[j].zone = NULL; 3452 zonelist->_zonerefs[j].zone_idx = 0; 3453 } 3454 3455 /* 3456 * Build zonelists ordered by zone and nodes within zones. 3457 * This results in conserving DMA zone[s] until all Normal memory is 3458 * exhausted, but results in overflowing to remote node while memory 3459 * may still exist in local DMA zone. 3460 */ 3461 static int node_order[MAX_NUMNODES]; 3462 3463 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 3464 { 3465 int pos, j, node; 3466 int zone_type; /* needs to be signed */ 3467 struct zone *z; 3468 struct zonelist *zonelist; 3469 3470 zonelist = &pgdat->node_zonelists[0]; 3471 pos = 0; 3472 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 3473 for (j = 0; j < nr_nodes; j++) { 3474 node = node_order[j]; 3475 z = &NODE_DATA(node)->node_zones[zone_type]; 3476 if (populated_zone(z)) { 3477 zoneref_set_zone(z, 3478 &zonelist->_zonerefs[pos++]); 3479 check_highest_zone(zone_type); 3480 } 3481 } 3482 } 3483 zonelist->_zonerefs[pos].zone = NULL; 3484 zonelist->_zonerefs[pos].zone_idx = 0; 3485 } 3486 3487 static int default_zonelist_order(void) 3488 { 3489 int nid, zone_type; 3490 unsigned long low_kmem_size, total_size; 3491 struct zone *z; 3492 int average_size; 3493 /* 3494 * ZONE_DMA and ZONE_DMA32 can be very small area in the system. 3495 * If they are really small and used heavily, the system can fall 3496 * into OOM very easily. 3497 * This function detect ZONE_DMA/DMA32 size and configures zone order. 3498 */ 3499 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ 3500 low_kmem_size = 0; 3501 total_size = 0; 3502 for_each_online_node(nid) { 3503 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 3504 z = &NODE_DATA(nid)->node_zones[zone_type]; 3505 if (populated_zone(z)) { 3506 if (zone_type < ZONE_NORMAL) 3507 low_kmem_size += z->managed_pages; 3508 total_size += z->managed_pages; 3509 } else if (zone_type == ZONE_NORMAL) { 3510 /* 3511 * If any node has only lowmem, then node order 3512 * is preferred to allow kernel allocations 3513 * locally; otherwise, they can easily infringe 3514 * on other nodes when there is an abundance of 3515 * lowmem available to allocate from. 3516 */ 3517 return ZONELIST_ORDER_NODE; 3518 } 3519 } 3520 } 3521 if (!low_kmem_size || /* there are no DMA area. */ 3522 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ 3523 return ZONELIST_ORDER_NODE; 3524 /* 3525 * look into each node's config. 3526 * If there is a node whose DMA/DMA32 memory is very big area on 3527 * local memory, NODE_ORDER may be suitable. 3528 */ 3529 average_size = total_size / 3530 (nodes_weight(node_states[N_MEMORY]) + 1); 3531 for_each_online_node(nid) { 3532 low_kmem_size = 0; 3533 total_size = 0; 3534 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 3535 z = &NODE_DATA(nid)->node_zones[zone_type]; 3536 if (populated_zone(z)) { 3537 if (zone_type < ZONE_NORMAL) 3538 low_kmem_size += z->present_pages; 3539 total_size += z->present_pages; 3540 } 3541 } 3542 if (low_kmem_size && 3543 total_size > average_size && /* ignore small node */ 3544 low_kmem_size > total_size * 70/100) 3545 return ZONELIST_ORDER_NODE; 3546 } 3547 return ZONELIST_ORDER_ZONE; 3548 } 3549 3550 static void set_zonelist_order(void) 3551 { 3552 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 3553 current_zonelist_order = default_zonelist_order(); 3554 else 3555 current_zonelist_order = user_zonelist_order; 3556 } 3557 3558 static void build_zonelists(pg_data_t *pgdat) 3559 { 3560 int j, node, load; 3561 enum zone_type i; 3562 nodemask_t used_mask; 3563 int local_node, prev_node; 3564 struct zonelist *zonelist; 3565 int order = current_zonelist_order; 3566 3567 /* initialize zonelists */ 3568 for (i = 0; i < MAX_ZONELISTS; i++) { 3569 zonelist = pgdat->node_zonelists + i; 3570 zonelist->_zonerefs[0].zone = NULL; 3571 zonelist->_zonerefs[0].zone_idx = 0; 3572 } 3573 3574 /* NUMA-aware ordering of nodes */ 3575 local_node = pgdat->node_id; 3576 load = nr_online_nodes; 3577 prev_node = local_node; 3578 nodes_clear(used_mask); 3579 3580 memset(node_order, 0, sizeof(node_order)); 3581 j = 0; 3582 3583 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 3584 /* 3585 * We don't want to pressure a particular node. 3586 * So adding penalty to the first node in same 3587 * distance group to make it round-robin. 3588 */ 3589 if (node_distance(local_node, node) != 3590 node_distance(local_node, prev_node)) 3591 node_load[node] = load; 3592 3593 prev_node = node; 3594 load--; 3595 if (order == ZONELIST_ORDER_NODE) 3596 build_zonelists_in_node_order(pgdat, node); 3597 else 3598 node_order[j++] = node; /* remember order */ 3599 } 3600 3601 if (order == ZONELIST_ORDER_ZONE) { 3602 /* calculate node order -- i.e., DMA last! */ 3603 build_zonelists_in_zone_order(pgdat, j); 3604 } 3605 3606 build_thisnode_zonelists(pgdat); 3607 } 3608 3609 /* Construct the zonelist performance cache - see further mmzone.h */ 3610 static void build_zonelist_cache(pg_data_t *pgdat) 3611 { 3612 struct zonelist *zonelist; 3613 struct zonelist_cache *zlc; 3614 struct zoneref *z; 3615 3616 zonelist = &pgdat->node_zonelists[0]; 3617 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 3618 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 3619 for (z = zonelist->_zonerefs; z->zone; z++) 3620 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 3621 } 3622 3623 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3624 /* 3625 * Return node id of node used for "local" allocations. 3626 * I.e., first node id of first zone in arg node's generic zonelist. 3627 * Used for initializing percpu 'numa_mem', which is used primarily 3628 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 3629 */ 3630 int local_memory_node(int node) 3631 { 3632 struct zone *zone; 3633 3634 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 3635 gfp_zone(GFP_KERNEL), 3636 NULL, 3637 &zone); 3638 return zone->node; 3639 } 3640 #endif 3641 3642 #else /* CONFIG_NUMA */ 3643 3644 static void set_zonelist_order(void) 3645 { 3646 current_zonelist_order = ZONELIST_ORDER_ZONE; 3647 } 3648 3649 static void build_zonelists(pg_data_t *pgdat) 3650 { 3651 int node, local_node; 3652 enum zone_type j; 3653 struct zonelist *zonelist; 3654 3655 local_node = pgdat->node_id; 3656 3657 zonelist = &pgdat->node_zonelists[0]; 3658 j = build_zonelists_node(pgdat, zonelist, 0); 3659 3660 /* 3661 * Now we build the zonelist so that it contains the zones 3662 * of all the other nodes. 3663 * We don't want to pressure a particular node, so when 3664 * building the zones for node N, we make sure that the 3665 * zones coming right after the local ones are those from 3666 * node N+1 (modulo N) 3667 */ 3668 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 3669 if (!node_online(node)) 3670 continue; 3671 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 3672 } 3673 for (node = 0; node < local_node; node++) { 3674 if (!node_online(node)) 3675 continue; 3676 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 3677 } 3678 3679 zonelist->_zonerefs[j].zone = NULL; 3680 zonelist->_zonerefs[j].zone_idx = 0; 3681 } 3682 3683 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 3684 static void build_zonelist_cache(pg_data_t *pgdat) 3685 { 3686 pgdat->node_zonelists[0].zlcache_ptr = NULL; 3687 } 3688 3689 #endif /* CONFIG_NUMA */ 3690 3691 /* 3692 * Boot pageset table. One per cpu which is going to be used for all 3693 * zones and all nodes. The parameters will be set in such a way 3694 * that an item put on a list will immediately be handed over to 3695 * the buddy list. This is safe since pageset manipulation is done 3696 * with interrupts disabled. 3697 * 3698 * The boot_pagesets must be kept even after bootup is complete for 3699 * unused processors and/or zones. They do play a role for bootstrapping 3700 * hotplugged processors. 3701 * 3702 * zoneinfo_show() and maybe other functions do 3703 * not check if the processor is online before following the pageset pointer. 3704 * Other parts of the kernel may not check if the zone is available. 3705 */ 3706 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 3707 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 3708 static void setup_zone_pageset(struct zone *zone); 3709 3710 /* 3711 * Global mutex to protect against size modification of zonelists 3712 * as well as to serialize pageset setup for the new populated zone. 3713 */ 3714 DEFINE_MUTEX(zonelists_mutex); 3715 3716 /* return values int ....just for stop_machine() */ 3717 static int __build_all_zonelists(void *data) 3718 { 3719 int nid; 3720 int cpu; 3721 pg_data_t *self = data; 3722 3723 #ifdef CONFIG_NUMA 3724 memset(node_load, 0, sizeof(node_load)); 3725 #endif 3726 3727 if (self && !node_online(self->node_id)) { 3728 build_zonelists(self); 3729 build_zonelist_cache(self); 3730 } 3731 3732 for_each_online_node(nid) { 3733 pg_data_t *pgdat = NODE_DATA(nid); 3734 3735 build_zonelists(pgdat); 3736 build_zonelist_cache(pgdat); 3737 } 3738 3739 /* 3740 * Initialize the boot_pagesets that are going to be used 3741 * for bootstrapping processors. The real pagesets for 3742 * each zone will be allocated later when the per cpu 3743 * allocator is available. 3744 * 3745 * boot_pagesets are used also for bootstrapping offline 3746 * cpus if the system is already booted because the pagesets 3747 * are needed to initialize allocators on a specific cpu too. 3748 * F.e. the percpu allocator needs the page allocator which 3749 * needs the percpu allocator in order to allocate its pagesets 3750 * (a chicken-egg dilemma). 3751 */ 3752 for_each_possible_cpu(cpu) { 3753 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 3754 3755 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3756 /* 3757 * We now know the "local memory node" for each node-- 3758 * i.e., the node of the first zone in the generic zonelist. 3759 * Set up numa_mem percpu variable for on-line cpus. During 3760 * boot, only the boot cpu should be on-line; we'll init the 3761 * secondary cpus' numa_mem as they come on-line. During 3762 * node/memory hotplug, we'll fixup all on-line cpus. 3763 */ 3764 if (cpu_online(cpu)) 3765 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 3766 #endif 3767 } 3768 3769 return 0; 3770 } 3771 3772 /* 3773 * Called with zonelists_mutex held always 3774 * unless system_state == SYSTEM_BOOTING. 3775 */ 3776 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone) 3777 { 3778 set_zonelist_order(); 3779 3780 if (system_state == SYSTEM_BOOTING) { 3781 __build_all_zonelists(NULL); 3782 mminit_verify_zonelist(); 3783 cpuset_init_current_mems_allowed(); 3784 } else { 3785 #ifdef CONFIG_MEMORY_HOTPLUG 3786 if (zone) 3787 setup_zone_pageset(zone); 3788 #endif 3789 /* we have to stop all cpus to guarantee there is no user 3790 of zonelist */ 3791 stop_machine(__build_all_zonelists, pgdat, NULL); 3792 /* cpuset refresh routine should be here */ 3793 } 3794 vm_total_pages = nr_free_pagecache_pages(); 3795 /* 3796 * Disable grouping by mobility if the number of pages in the 3797 * system is too low to allow the mechanism to work. It would be 3798 * more accurate, but expensive to check per-zone. This check is 3799 * made on memory-hotadd so a system can start with mobility 3800 * disabled and enable it later 3801 */ 3802 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 3803 page_group_by_mobility_disabled = 1; 3804 else 3805 page_group_by_mobility_disabled = 0; 3806 3807 printk("Built %i zonelists in %s order, mobility grouping %s. " 3808 "Total pages: %ld\n", 3809 nr_online_nodes, 3810 zonelist_order_name[current_zonelist_order], 3811 page_group_by_mobility_disabled ? "off" : "on", 3812 vm_total_pages); 3813 #ifdef CONFIG_NUMA 3814 printk("Policy zone: %s\n", zone_names[policy_zone]); 3815 #endif 3816 } 3817 3818 /* 3819 * Helper functions to size the waitqueue hash table. 3820 * Essentially these want to choose hash table sizes sufficiently 3821 * large so that collisions trying to wait on pages are rare. 3822 * But in fact, the number of active page waitqueues on typical 3823 * systems is ridiculously low, less than 200. So this is even 3824 * conservative, even though it seems large. 3825 * 3826 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 3827 * waitqueues, i.e. the size of the waitq table given the number of pages. 3828 */ 3829 #define PAGES_PER_WAITQUEUE 256 3830 3831 #ifndef CONFIG_MEMORY_HOTPLUG 3832 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3833 { 3834 unsigned long size = 1; 3835 3836 pages /= PAGES_PER_WAITQUEUE; 3837 3838 while (size < pages) 3839 size <<= 1; 3840 3841 /* 3842 * Once we have dozens or even hundreds of threads sleeping 3843 * on IO we've got bigger problems than wait queue collision. 3844 * Limit the size of the wait table to a reasonable size. 3845 */ 3846 size = min(size, 4096UL); 3847 3848 return max(size, 4UL); 3849 } 3850 #else 3851 /* 3852 * A zone's size might be changed by hot-add, so it is not possible to determine 3853 * a suitable size for its wait_table. So we use the maximum size now. 3854 * 3855 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 3856 * 3857 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 3858 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 3859 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 3860 * 3861 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 3862 * or more by the traditional way. (See above). It equals: 3863 * 3864 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 3865 * ia64(16K page size) : = ( 8G + 4M)byte. 3866 * powerpc (64K page size) : = (32G +16M)byte. 3867 */ 3868 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3869 { 3870 return 4096UL; 3871 } 3872 #endif 3873 3874 /* 3875 * This is an integer logarithm so that shifts can be used later 3876 * to extract the more random high bits from the multiplicative 3877 * hash function before the remainder is taken. 3878 */ 3879 static inline unsigned long wait_table_bits(unsigned long size) 3880 { 3881 return ffz(~size); 3882 } 3883 3884 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 3885 3886 /* 3887 * Check if a pageblock contains reserved pages 3888 */ 3889 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn) 3890 { 3891 unsigned long pfn; 3892 3893 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3894 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn))) 3895 return 1; 3896 } 3897 return 0; 3898 } 3899 3900 /* 3901 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 3902 * of blocks reserved is based on min_wmark_pages(zone). The memory within 3903 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes 3904 * higher will lead to a bigger reserve which will get freed as contiguous 3905 * blocks as reclaim kicks in 3906 */ 3907 static void setup_zone_migrate_reserve(struct zone *zone) 3908 { 3909 unsigned long start_pfn, pfn, end_pfn, block_end_pfn; 3910 struct page *page; 3911 unsigned long block_migratetype; 3912 int reserve; 3913 3914 /* 3915 * Get the start pfn, end pfn and the number of blocks to reserve 3916 * We have to be careful to be aligned to pageblock_nr_pages to 3917 * make sure that we always check pfn_valid for the first page in 3918 * the block. 3919 */ 3920 start_pfn = zone->zone_start_pfn; 3921 end_pfn = zone_end_pfn(zone); 3922 start_pfn = roundup(start_pfn, pageblock_nr_pages); 3923 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> 3924 pageblock_order; 3925 3926 /* 3927 * Reserve blocks are generally in place to help high-order atomic 3928 * allocations that are short-lived. A min_free_kbytes value that 3929 * would result in more than 2 reserve blocks for atomic allocations 3930 * is assumed to be in place to help anti-fragmentation for the 3931 * future allocation of hugepages at runtime. 3932 */ 3933 reserve = min(2, reserve); 3934 3935 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 3936 if (!pfn_valid(pfn)) 3937 continue; 3938 page = pfn_to_page(pfn); 3939 3940 /* Watch out for overlapping nodes */ 3941 if (page_to_nid(page) != zone_to_nid(zone)) 3942 continue; 3943 3944 block_migratetype = get_pageblock_migratetype(page); 3945 3946 /* Only test what is necessary when the reserves are not met */ 3947 if (reserve > 0) { 3948 /* 3949 * Blocks with reserved pages will never free, skip 3950 * them. 3951 */ 3952 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn); 3953 if (pageblock_is_reserved(pfn, block_end_pfn)) 3954 continue; 3955 3956 /* If this block is reserved, account for it */ 3957 if (block_migratetype == MIGRATE_RESERVE) { 3958 reserve--; 3959 continue; 3960 } 3961 3962 /* Suitable for reserving if this block is movable */ 3963 if (block_migratetype == MIGRATE_MOVABLE) { 3964 set_pageblock_migratetype(page, 3965 MIGRATE_RESERVE); 3966 move_freepages_block(zone, page, 3967 MIGRATE_RESERVE); 3968 reserve--; 3969 continue; 3970 } 3971 } 3972 3973 /* 3974 * If the reserve is met and this is a previous reserved block, 3975 * take it back 3976 */ 3977 if (block_migratetype == MIGRATE_RESERVE) { 3978 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3979 move_freepages_block(zone, page, MIGRATE_MOVABLE); 3980 } 3981 } 3982 } 3983 3984 /* 3985 * Initially all pages are reserved - free ones are freed 3986 * up by free_all_bootmem() once the early boot process is 3987 * done. Non-atomic initialization, single-pass. 3988 */ 3989 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 3990 unsigned long start_pfn, enum memmap_context context) 3991 { 3992 struct page *page; 3993 unsigned long end_pfn = start_pfn + size; 3994 unsigned long pfn; 3995 struct zone *z; 3996 3997 if (highest_memmap_pfn < end_pfn - 1) 3998 highest_memmap_pfn = end_pfn - 1; 3999 4000 z = &NODE_DATA(nid)->node_zones[zone]; 4001 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 4002 /* 4003 * There can be holes in boot-time mem_map[]s 4004 * handed to this function. They do not 4005 * exist on hotplugged memory. 4006 */ 4007 if (context == MEMMAP_EARLY) { 4008 if (!early_pfn_valid(pfn)) 4009 continue; 4010 if (!early_pfn_in_nid(pfn, nid)) 4011 continue; 4012 } 4013 page = pfn_to_page(pfn); 4014 set_page_links(page, zone, nid, pfn); 4015 mminit_verify_page_links(page, zone, nid, pfn); 4016 init_page_count(page); 4017 page_mapcount_reset(page); 4018 page_nid_reset_last(page); 4019 SetPageReserved(page); 4020 /* 4021 * Mark the block movable so that blocks are reserved for 4022 * movable at startup. This will force kernel allocations 4023 * to reserve their blocks rather than leaking throughout 4024 * the address space during boot when many long-lived 4025 * kernel allocations are made. Later some blocks near 4026 * the start are marked MIGRATE_RESERVE by 4027 * setup_zone_migrate_reserve() 4028 * 4029 * bitmap is created for zone's valid pfn range. but memmap 4030 * can be created for invalid pages (for alignment) 4031 * check here not to call set_pageblock_migratetype() against 4032 * pfn out of zone. 4033 */ 4034 if ((z->zone_start_pfn <= pfn) 4035 && (pfn < zone_end_pfn(z)) 4036 && !(pfn & (pageblock_nr_pages - 1))) 4037 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 4038 4039 INIT_LIST_HEAD(&page->lru); 4040 #ifdef WANT_PAGE_VIRTUAL 4041 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 4042 if (!is_highmem_idx(zone)) 4043 set_page_address(page, __va(pfn << PAGE_SHIFT)); 4044 #endif 4045 } 4046 } 4047 4048 static void __meminit zone_init_free_lists(struct zone *zone) 4049 { 4050 int order, t; 4051 for_each_migratetype_order(order, t) { 4052 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 4053 zone->free_area[order].nr_free = 0; 4054 } 4055 } 4056 4057 #ifndef __HAVE_ARCH_MEMMAP_INIT 4058 #define memmap_init(size, nid, zone, start_pfn) \ 4059 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 4060 #endif 4061 4062 static int __meminit zone_batchsize(struct zone *zone) 4063 { 4064 #ifdef CONFIG_MMU 4065 int batch; 4066 4067 /* 4068 * The per-cpu-pages pools are set to around 1000th of the 4069 * size of the zone. But no more than 1/2 of a meg. 4070 * 4071 * OK, so we don't know how big the cache is. So guess. 4072 */ 4073 batch = zone->managed_pages / 1024; 4074 if (batch * PAGE_SIZE > 512 * 1024) 4075 batch = (512 * 1024) / PAGE_SIZE; 4076 batch /= 4; /* We effectively *= 4 below */ 4077 if (batch < 1) 4078 batch = 1; 4079 4080 /* 4081 * Clamp the batch to a 2^n - 1 value. Having a power 4082 * of 2 value was found to be more likely to have 4083 * suboptimal cache aliasing properties in some cases. 4084 * 4085 * For example if 2 tasks are alternately allocating 4086 * batches of pages, one task can end up with a lot 4087 * of pages of one half of the possible page colors 4088 * and the other with pages of the other colors. 4089 */ 4090 batch = rounddown_pow_of_two(batch + batch/2) - 1; 4091 4092 return batch; 4093 4094 #else 4095 /* The deferral and batching of frees should be suppressed under NOMMU 4096 * conditions. 4097 * 4098 * The problem is that NOMMU needs to be able to allocate large chunks 4099 * of contiguous memory as there's no hardware page translation to 4100 * assemble apparent contiguous memory from discontiguous pages. 4101 * 4102 * Queueing large contiguous runs of pages for batching, however, 4103 * causes the pages to actually be freed in smaller chunks. As there 4104 * can be a significant delay between the individual batches being 4105 * recycled, this leads to the once large chunks of space being 4106 * fragmented and becoming unavailable for high-order allocations. 4107 */ 4108 return 0; 4109 #endif 4110 } 4111 4112 /* 4113 * pcp->high and pcp->batch values are related and dependent on one another: 4114 * ->batch must never be higher then ->high. 4115 * The following function updates them in a safe manner without read side 4116 * locking. 4117 * 4118 * Any new users of pcp->batch and pcp->high should ensure they can cope with 4119 * those fields changing asynchronously (acording the the above rule). 4120 * 4121 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 4122 * outside of boot time (or some other assurance that no concurrent updaters 4123 * exist). 4124 */ 4125 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 4126 unsigned long batch) 4127 { 4128 /* start with a fail safe value for batch */ 4129 pcp->batch = 1; 4130 smp_wmb(); 4131 4132 /* Update high, then batch, in order */ 4133 pcp->high = high; 4134 smp_wmb(); 4135 4136 pcp->batch = batch; 4137 } 4138 4139 /* a companion to pageset_set_high() */ 4140 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 4141 { 4142 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 4143 } 4144 4145 static void pageset_init(struct per_cpu_pageset *p) 4146 { 4147 struct per_cpu_pages *pcp; 4148 int migratetype; 4149 4150 memset(p, 0, sizeof(*p)); 4151 4152 pcp = &p->pcp; 4153 pcp->count = 0; 4154 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 4155 INIT_LIST_HEAD(&pcp->lists[migratetype]); 4156 } 4157 4158 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 4159 { 4160 pageset_init(p); 4161 pageset_set_batch(p, batch); 4162 } 4163 4164 /* 4165 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 4166 * to the value high for the pageset p. 4167 */ 4168 static void pageset_set_high(struct per_cpu_pageset *p, 4169 unsigned long high) 4170 { 4171 unsigned long batch = max(1UL, high / 4); 4172 if ((high / 4) > (PAGE_SHIFT * 8)) 4173 batch = PAGE_SHIFT * 8; 4174 4175 pageset_update(&p->pcp, high, batch); 4176 } 4177 4178 static void __meminit pageset_set_high_and_batch(struct zone *zone, 4179 struct per_cpu_pageset *pcp) 4180 { 4181 if (percpu_pagelist_fraction) 4182 pageset_set_high(pcp, 4183 (zone->managed_pages / 4184 percpu_pagelist_fraction)); 4185 else 4186 pageset_set_batch(pcp, zone_batchsize(zone)); 4187 } 4188 4189 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 4190 { 4191 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 4192 4193 pageset_init(pcp); 4194 pageset_set_high_and_batch(zone, pcp); 4195 } 4196 4197 static void __meminit setup_zone_pageset(struct zone *zone) 4198 { 4199 int cpu; 4200 zone->pageset = alloc_percpu(struct per_cpu_pageset); 4201 for_each_possible_cpu(cpu) 4202 zone_pageset_init(zone, cpu); 4203 } 4204 4205 /* 4206 * Allocate per cpu pagesets and initialize them. 4207 * Before this call only boot pagesets were available. 4208 */ 4209 void __init setup_per_cpu_pageset(void) 4210 { 4211 struct zone *zone; 4212 4213 for_each_populated_zone(zone) 4214 setup_zone_pageset(zone); 4215 } 4216 4217 static noinline __init_refok 4218 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 4219 { 4220 int i; 4221 struct pglist_data *pgdat = zone->zone_pgdat; 4222 size_t alloc_size; 4223 4224 /* 4225 * The per-page waitqueue mechanism uses hashed waitqueues 4226 * per zone. 4227 */ 4228 zone->wait_table_hash_nr_entries = 4229 wait_table_hash_nr_entries(zone_size_pages); 4230 zone->wait_table_bits = 4231 wait_table_bits(zone->wait_table_hash_nr_entries); 4232 alloc_size = zone->wait_table_hash_nr_entries 4233 * sizeof(wait_queue_head_t); 4234 4235 if (!slab_is_available()) { 4236 zone->wait_table = (wait_queue_head_t *) 4237 alloc_bootmem_node_nopanic(pgdat, alloc_size); 4238 } else { 4239 /* 4240 * This case means that a zone whose size was 0 gets new memory 4241 * via memory hot-add. 4242 * But it may be the case that a new node was hot-added. In 4243 * this case vmalloc() will not be able to use this new node's 4244 * memory - this wait_table must be initialized to use this new 4245 * node itself as well. 4246 * To use this new node's memory, further consideration will be 4247 * necessary. 4248 */ 4249 zone->wait_table = vmalloc(alloc_size); 4250 } 4251 if (!zone->wait_table) 4252 return -ENOMEM; 4253 4254 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i) 4255 init_waitqueue_head(zone->wait_table + i); 4256 4257 return 0; 4258 } 4259 4260 static __meminit void zone_pcp_init(struct zone *zone) 4261 { 4262 /* 4263 * per cpu subsystem is not up at this point. The following code 4264 * relies on the ability of the linker to provide the 4265 * offset of a (static) per cpu variable into the per cpu area. 4266 */ 4267 zone->pageset = &boot_pageset; 4268 4269 if (zone->present_pages) 4270 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 4271 zone->name, zone->present_pages, 4272 zone_batchsize(zone)); 4273 } 4274 4275 int __meminit init_currently_empty_zone(struct zone *zone, 4276 unsigned long zone_start_pfn, 4277 unsigned long size, 4278 enum memmap_context context) 4279 { 4280 struct pglist_data *pgdat = zone->zone_pgdat; 4281 int ret; 4282 ret = zone_wait_table_init(zone, size); 4283 if (ret) 4284 return ret; 4285 pgdat->nr_zones = zone_idx(zone) + 1; 4286 4287 zone->zone_start_pfn = zone_start_pfn; 4288 4289 mminit_dprintk(MMINIT_TRACE, "memmap_init", 4290 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 4291 pgdat->node_id, 4292 (unsigned long)zone_idx(zone), 4293 zone_start_pfn, (zone_start_pfn + size)); 4294 4295 zone_init_free_lists(zone); 4296 4297 return 0; 4298 } 4299 4300 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4301 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 4302 /* 4303 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 4304 * Architectures may implement their own version but if add_active_range() 4305 * was used and there are no special requirements, this is a convenient 4306 * alternative 4307 */ 4308 int __meminit __early_pfn_to_nid(unsigned long pfn) 4309 { 4310 unsigned long start_pfn, end_pfn; 4311 int nid; 4312 /* 4313 * NOTE: The following SMP-unsafe globals are only used early in boot 4314 * when the kernel is running single-threaded. 4315 */ 4316 static unsigned long __meminitdata last_start_pfn, last_end_pfn; 4317 static int __meminitdata last_nid; 4318 4319 if (last_start_pfn <= pfn && pfn < last_end_pfn) 4320 return last_nid; 4321 4322 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 4323 if (nid != -1) { 4324 last_start_pfn = start_pfn; 4325 last_end_pfn = end_pfn; 4326 last_nid = nid; 4327 } 4328 4329 return nid; 4330 } 4331 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 4332 4333 int __meminit early_pfn_to_nid(unsigned long pfn) 4334 { 4335 int nid; 4336 4337 nid = __early_pfn_to_nid(pfn); 4338 if (nid >= 0) 4339 return nid; 4340 /* just returns 0 */ 4341 return 0; 4342 } 4343 4344 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 4345 bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 4346 { 4347 int nid; 4348 4349 nid = __early_pfn_to_nid(pfn); 4350 if (nid >= 0 && nid != node) 4351 return false; 4352 return true; 4353 } 4354 #endif 4355 4356 /** 4357 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range 4358 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 4359 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node 4360 * 4361 * If an architecture guarantees that all ranges registered with 4362 * add_active_ranges() contain no holes and may be freed, this 4363 * this function may be used instead of calling free_bootmem() manually. 4364 */ 4365 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 4366 { 4367 unsigned long start_pfn, end_pfn; 4368 int i, this_nid; 4369 4370 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 4371 start_pfn = min(start_pfn, max_low_pfn); 4372 end_pfn = min(end_pfn, max_low_pfn); 4373 4374 if (start_pfn < end_pfn) 4375 free_bootmem_node(NODE_DATA(this_nid), 4376 PFN_PHYS(start_pfn), 4377 (end_pfn - start_pfn) << PAGE_SHIFT); 4378 } 4379 } 4380 4381 /** 4382 * sparse_memory_present_with_active_regions - Call memory_present for each active range 4383 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 4384 * 4385 * If an architecture guarantees that all ranges registered with 4386 * add_active_ranges() contain no holes and may be freed, this 4387 * function may be used instead of calling memory_present() manually. 4388 */ 4389 void __init sparse_memory_present_with_active_regions(int nid) 4390 { 4391 unsigned long start_pfn, end_pfn; 4392 int i, this_nid; 4393 4394 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 4395 memory_present(this_nid, start_pfn, end_pfn); 4396 } 4397 4398 /** 4399 * get_pfn_range_for_nid - Return the start and end page frames for a node 4400 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 4401 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 4402 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 4403 * 4404 * It returns the start and end page frame of a node based on information 4405 * provided by an arch calling add_active_range(). If called for a node 4406 * with no available memory, a warning is printed and the start and end 4407 * PFNs will be 0. 4408 */ 4409 void __meminit get_pfn_range_for_nid(unsigned int nid, 4410 unsigned long *start_pfn, unsigned long *end_pfn) 4411 { 4412 unsigned long this_start_pfn, this_end_pfn; 4413 int i; 4414 4415 *start_pfn = -1UL; 4416 *end_pfn = 0; 4417 4418 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 4419 *start_pfn = min(*start_pfn, this_start_pfn); 4420 *end_pfn = max(*end_pfn, this_end_pfn); 4421 } 4422 4423 if (*start_pfn == -1UL) 4424 *start_pfn = 0; 4425 } 4426 4427 /* 4428 * This finds a zone that can be used for ZONE_MOVABLE pages. The 4429 * assumption is made that zones within a node are ordered in monotonic 4430 * increasing memory addresses so that the "highest" populated zone is used 4431 */ 4432 static void __init find_usable_zone_for_movable(void) 4433 { 4434 int zone_index; 4435 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 4436 if (zone_index == ZONE_MOVABLE) 4437 continue; 4438 4439 if (arch_zone_highest_possible_pfn[zone_index] > 4440 arch_zone_lowest_possible_pfn[zone_index]) 4441 break; 4442 } 4443 4444 VM_BUG_ON(zone_index == -1); 4445 movable_zone = zone_index; 4446 } 4447 4448 /* 4449 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 4450 * because it is sized independent of architecture. Unlike the other zones, 4451 * the starting point for ZONE_MOVABLE is not fixed. It may be different 4452 * in each node depending on the size of each node and how evenly kernelcore 4453 * is distributed. This helper function adjusts the zone ranges 4454 * provided by the architecture for a given node by using the end of the 4455 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 4456 * zones within a node are in order of monotonic increases memory addresses 4457 */ 4458 static void __meminit adjust_zone_range_for_zone_movable(int nid, 4459 unsigned long zone_type, 4460 unsigned long node_start_pfn, 4461 unsigned long node_end_pfn, 4462 unsigned long *zone_start_pfn, 4463 unsigned long *zone_end_pfn) 4464 { 4465 /* Only adjust if ZONE_MOVABLE is on this node */ 4466 if (zone_movable_pfn[nid]) { 4467 /* Size ZONE_MOVABLE */ 4468 if (zone_type == ZONE_MOVABLE) { 4469 *zone_start_pfn = zone_movable_pfn[nid]; 4470 *zone_end_pfn = min(node_end_pfn, 4471 arch_zone_highest_possible_pfn[movable_zone]); 4472 4473 /* Adjust for ZONE_MOVABLE starting within this range */ 4474 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 4475 *zone_end_pfn > zone_movable_pfn[nid]) { 4476 *zone_end_pfn = zone_movable_pfn[nid]; 4477 4478 /* Check if this whole range is within ZONE_MOVABLE */ 4479 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 4480 *zone_start_pfn = *zone_end_pfn; 4481 } 4482 } 4483 4484 /* 4485 * Return the number of pages a zone spans in a node, including holes 4486 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 4487 */ 4488 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 4489 unsigned long zone_type, 4490 unsigned long node_start_pfn, 4491 unsigned long node_end_pfn, 4492 unsigned long *ignored) 4493 { 4494 unsigned long zone_start_pfn, zone_end_pfn; 4495 4496 /* Get the start and end of the zone */ 4497 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 4498 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 4499 adjust_zone_range_for_zone_movable(nid, zone_type, 4500 node_start_pfn, node_end_pfn, 4501 &zone_start_pfn, &zone_end_pfn); 4502 4503 /* Check that this node has pages within the zone's required range */ 4504 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 4505 return 0; 4506 4507 /* Move the zone boundaries inside the node if necessary */ 4508 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 4509 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 4510 4511 /* Return the spanned pages */ 4512 return zone_end_pfn - zone_start_pfn; 4513 } 4514 4515 /* 4516 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 4517 * then all holes in the requested range will be accounted for. 4518 */ 4519 unsigned long __meminit __absent_pages_in_range(int nid, 4520 unsigned long range_start_pfn, 4521 unsigned long range_end_pfn) 4522 { 4523 unsigned long nr_absent = range_end_pfn - range_start_pfn; 4524 unsigned long start_pfn, end_pfn; 4525 int i; 4526 4527 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 4528 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 4529 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 4530 nr_absent -= end_pfn - start_pfn; 4531 } 4532 return nr_absent; 4533 } 4534 4535 /** 4536 * absent_pages_in_range - Return number of page frames in holes within a range 4537 * @start_pfn: The start PFN to start searching for holes 4538 * @end_pfn: The end PFN to stop searching for holes 4539 * 4540 * It returns the number of pages frames in memory holes within a range. 4541 */ 4542 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 4543 unsigned long end_pfn) 4544 { 4545 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 4546 } 4547 4548 /* Return the number of page frames in holes in a zone on a node */ 4549 static unsigned long __meminit zone_absent_pages_in_node(int nid, 4550 unsigned long zone_type, 4551 unsigned long node_start_pfn, 4552 unsigned long node_end_pfn, 4553 unsigned long *ignored) 4554 { 4555 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 4556 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 4557 unsigned long zone_start_pfn, zone_end_pfn; 4558 4559 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 4560 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 4561 4562 adjust_zone_range_for_zone_movable(nid, zone_type, 4563 node_start_pfn, node_end_pfn, 4564 &zone_start_pfn, &zone_end_pfn); 4565 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 4566 } 4567 4568 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4569 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 4570 unsigned long zone_type, 4571 unsigned long node_start_pfn, 4572 unsigned long node_end_pfn, 4573 unsigned long *zones_size) 4574 { 4575 return zones_size[zone_type]; 4576 } 4577 4578 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 4579 unsigned long zone_type, 4580 unsigned long node_start_pfn, 4581 unsigned long node_end_pfn, 4582 unsigned long *zholes_size) 4583 { 4584 if (!zholes_size) 4585 return 0; 4586 4587 return zholes_size[zone_type]; 4588 } 4589 4590 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4591 4592 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 4593 unsigned long node_start_pfn, 4594 unsigned long node_end_pfn, 4595 unsigned long *zones_size, 4596 unsigned long *zholes_size) 4597 { 4598 unsigned long realtotalpages, totalpages = 0; 4599 enum zone_type i; 4600 4601 for (i = 0; i < MAX_NR_ZONES; i++) 4602 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 4603 node_start_pfn, 4604 node_end_pfn, 4605 zones_size); 4606 pgdat->node_spanned_pages = totalpages; 4607 4608 realtotalpages = totalpages; 4609 for (i = 0; i < MAX_NR_ZONES; i++) 4610 realtotalpages -= 4611 zone_absent_pages_in_node(pgdat->node_id, i, 4612 node_start_pfn, node_end_pfn, 4613 zholes_size); 4614 pgdat->node_present_pages = realtotalpages; 4615 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 4616 realtotalpages); 4617 } 4618 4619 #ifndef CONFIG_SPARSEMEM 4620 /* 4621 * Calculate the size of the zone->blockflags rounded to an unsigned long 4622 * Start by making sure zonesize is a multiple of pageblock_order by rounding 4623 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 4624 * round what is now in bits to nearest long in bits, then return it in 4625 * bytes. 4626 */ 4627 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 4628 { 4629 unsigned long usemapsize; 4630 4631 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 4632 usemapsize = roundup(zonesize, pageblock_nr_pages); 4633 usemapsize = usemapsize >> pageblock_order; 4634 usemapsize *= NR_PAGEBLOCK_BITS; 4635 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 4636 4637 return usemapsize / 8; 4638 } 4639 4640 static void __init setup_usemap(struct pglist_data *pgdat, 4641 struct zone *zone, 4642 unsigned long zone_start_pfn, 4643 unsigned long zonesize) 4644 { 4645 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 4646 zone->pageblock_flags = NULL; 4647 if (usemapsize) 4648 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat, 4649 usemapsize); 4650 } 4651 #else 4652 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 4653 unsigned long zone_start_pfn, unsigned long zonesize) {} 4654 #endif /* CONFIG_SPARSEMEM */ 4655 4656 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 4657 4658 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 4659 void __paginginit set_pageblock_order(void) 4660 { 4661 unsigned int order; 4662 4663 /* Check that pageblock_nr_pages has not already been setup */ 4664 if (pageblock_order) 4665 return; 4666 4667 if (HPAGE_SHIFT > PAGE_SHIFT) 4668 order = HUGETLB_PAGE_ORDER; 4669 else 4670 order = MAX_ORDER - 1; 4671 4672 /* 4673 * Assume the largest contiguous order of interest is a huge page. 4674 * This value may be variable depending on boot parameters on IA64 and 4675 * powerpc. 4676 */ 4677 pageblock_order = order; 4678 } 4679 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4680 4681 /* 4682 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 4683 * is unused as pageblock_order is set at compile-time. See 4684 * include/linux/pageblock-flags.h for the values of pageblock_order based on 4685 * the kernel config 4686 */ 4687 void __paginginit set_pageblock_order(void) 4688 { 4689 } 4690 4691 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4692 4693 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages, 4694 unsigned long present_pages) 4695 { 4696 unsigned long pages = spanned_pages; 4697 4698 /* 4699 * Provide a more accurate estimation if there are holes within 4700 * the zone and SPARSEMEM is in use. If there are holes within the 4701 * zone, each populated memory region may cost us one or two extra 4702 * memmap pages due to alignment because memmap pages for each 4703 * populated regions may not naturally algined on page boundary. 4704 * So the (present_pages >> 4) heuristic is a tradeoff for that. 4705 */ 4706 if (spanned_pages > present_pages + (present_pages >> 4) && 4707 IS_ENABLED(CONFIG_SPARSEMEM)) 4708 pages = present_pages; 4709 4710 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 4711 } 4712 4713 /* 4714 * Set up the zone data structures: 4715 * - mark all pages reserved 4716 * - mark all memory queues empty 4717 * - clear the memory bitmaps 4718 * 4719 * NOTE: pgdat should get zeroed by caller. 4720 */ 4721 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 4722 unsigned long node_start_pfn, unsigned long node_end_pfn, 4723 unsigned long *zones_size, unsigned long *zholes_size) 4724 { 4725 enum zone_type j; 4726 int nid = pgdat->node_id; 4727 unsigned long zone_start_pfn = pgdat->node_start_pfn; 4728 int ret; 4729 4730 pgdat_resize_init(pgdat); 4731 #ifdef CONFIG_NUMA_BALANCING 4732 spin_lock_init(&pgdat->numabalancing_migrate_lock); 4733 pgdat->numabalancing_migrate_nr_pages = 0; 4734 pgdat->numabalancing_migrate_next_window = jiffies; 4735 #endif 4736 init_waitqueue_head(&pgdat->kswapd_wait); 4737 init_waitqueue_head(&pgdat->pfmemalloc_wait); 4738 pgdat_page_cgroup_init(pgdat); 4739 4740 for (j = 0; j < MAX_NR_ZONES; j++) { 4741 struct zone *zone = pgdat->node_zones + j; 4742 unsigned long size, realsize, freesize, memmap_pages; 4743 4744 size = zone_spanned_pages_in_node(nid, j, node_start_pfn, 4745 node_end_pfn, zones_size); 4746 realsize = freesize = size - zone_absent_pages_in_node(nid, j, 4747 node_start_pfn, 4748 node_end_pfn, 4749 zholes_size); 4750 4751 /* 4752 * Adjust freesize so that it accounts for how much memory 4753 * is used by this zone for memmap. This affects the watermark 4754 * and per-cpu initialisations 4755 */ 4756 memmap_pages = calc_memmap_size(size, realsize); 4757 if (freesize >= memmap_pages) { 4758 freesize -= memmap_pages; 4759 if (memmap_pages) 4760 printk(KERN_DEBUG 4761 " %s zone: %lu pages used for memmap\n", 4762 zone_names[j], memmap_pages); 4763 } else 4764 printk(KERN_WARNING 4765 " %s zone: %lu pages exceeds freesize %lu\n", 4766 zone_names[j], memmap_pages, freesize); 4767 4768 /* Account for reserved pages */ 4769 if (j == 0 && freesize > dma_reserve) { 4770 freesize -= dma_reserve; 4771 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 4772 zone_names[0], dma_reserve); 4773 } 4774 4775 if (!is_highmem_idx(j)) 4776 nr_kernel_pages += freesize; 4777 /* Charge for highmem memmap if there are enough kernel pages */ 4778 else if (nr_kernel_pages > memmap_pages * 2) 4779 nr_kernel_pages -= memmap_pages; 4780 nr_all_pages += freesize; 4781 4782 zone->spanned_pages = size; 4783 zone->present_pages = realsize; 4784 /* 4785 * Set an approximate value for lowmem here, it will be adjusted 4786 * when the bootmem allocator frees pages into the buddy system. 4787 * And all highmem pages will be managed by the buddy system. 4788 */ 4789 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize; 4790 #ifdef CONFIG_NUMA 4791 zone->node = nid; 4792 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio) 4793 / 100; 4794 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100; 4795 #endif 4796 zone->name = zone_names[j]; 4797 spin_lock_init(&zone->lock); 4798 spin_lock_init(&zone->lru_lock); 4799 zone_seqlock_init(zone); 4800 zone->zone_pgdat = pgdat; 4801 zone_pcp_init(zone); 4802 4803 /* For bootup, initialized properly in watermark setup */ 4804 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages); 4805 4806 lruvec_init(&zone->lruvec); 4807 if (!size) 4808 continue; 4809 4810 set_pageblock_order(); 4811 setup_usemap(pgdat, zone, zone_start_pfn, size); 4812 ret = init_currently_empty_zone(zone, zone_start_pfn, 4813 size, MEMMAP_EARLY); 4814 BUG_ON(ret); 4815 memmap_init(size, nid, j, zone_start_pfn); 4816 zone_start_pfn += size; 4817 } 4818 } 4819 4820 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 4821 { 4822 /* Skip empty nodes */ 4823 if (!pgdat->node_spanned_pages) 4824 return; 4825 4826 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4827 /* ia64 gets its own node_mem_map, before this, without bootmem */ 4828 if (!pgdat->node_mem_map) { 4829 unsigned long size, start, end; 4830 struct page *map; 4831 4832 /* 4833 * The zone's endpoints aren't required to be MAX_ORDER 4834 * aligned but the node_mem_map endpoints must be in order 4835 * for the buddy allocator to function correctly. 4836 */ 4837 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 4838 end = pgdat_end_pfn(pgdat); 4839 end = ALIGN(end, MAX_ORDER_NR_PAGES); 4840 size = (end - start) * sizeof(struct page); 4841 map = alloc_remap(pgdat->node_id, size); 4842 if (!map) 4843 map = alloc_bootmem_node_nopanic(pgdat, size); 4844 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 4845 } 4846 #ifndef CONFIG_NEED_MULTIPLE_NODES 4847 /* 4848 * With no DISCONTIG, the global mem_map is just set as node 0's 4849 */ 4850 if (pgdat == NODE_DATA(0)) { 4851 mem_map = NODE_DATA(0)->node_mem_map; 4852 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4853 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 4854 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 4855 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4856 } 4857 #endif 4858 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 4859 } 4860 4861 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 4862 unsigned long node_start_pfn, unsigned long *zholes_size) 4863 { 4864 pg_data_t *pgdat = NODE_DATA(nid); 4865 unsigned long start_pfn = 0; 4866 unsigned long end_pfn = 0; 4867 4868 /* pg_data_t should be reset to zero when it's allocated */ 4869 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx); 4870 4871 pgdat->node_id = nid; 4872 pgdat->node_start_pfn = node_start_pfn; 4873 init_zone_allows_reclaim(nid); 4874 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4875 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 4876 #endif 4877 calculate_node_totalpages(pgdat, start_pfn, end_pfn, 4878 zones_size, zholes_size); 4879 4880 alloc_node_mem_map(pgdat); 4881 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4882 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 4883 nid, (unsigned long)pgdat, 4884 (unsigned long)pgdat->node_mem_map); 4885 #endif 4886 4887 free_area_init_core(pgdat, start_pfn, end_pfn, 4888 zones_size, zholes_size); 4889 } 4890 4891 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4892 4893 #if MAX_NUMNODES > 1 4894 /* 4895 * Figure out the number of possible node ids. 4896 */ 4897 void __init setup_nr_node_ids(void) 4898 { 4899 unsigned int node; 4900 unsigned int highest = 0; 4901 4902 for_each_node_mask(node, node_possible_map) 4903 highest = node; 4904 nr_node_ids = highest + 1; 4905 } 4906 #endif 4907 4908 /** 4909 * node_map_pfn_alignment - determine the maximum internode alignment 4910 * 4911 * This function should be called after node map is populated and sorted. 4912 * It calculates the maximum power of two alignment which can distinguish 4913 * all the nodes. 4914 * 4915 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 4916 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 4917 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 4918 * shifted, 1GiB is enough and this function will indicate so. 4919 * 4920 * This is used to test whether pfn -> nid mapping of the chosen memory 4921 * model has fine enough granularity to avoid incorrect mapping for the 4922 * populated node map. 4923 * 4924 * Returns the determined alignment in pfn's. 0 if there is no alignment 4925 * requirement (single node). 4926 */ 4927 unsigned long __init node_map_pfn_alignment(void) 4928 { 4929 unsigned long accl_mask = 0, last_end = 0; 4930 unsigned long start, end, mask; 4931 int last_nid = -1; 4932 int i, nid; 4933 4934 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 4935 if (!start || last_nid < 0 || last_nid == nid) { 4936 last_nid = nid; 4937 last_end = end; 4938 continue; 4939 } 4940 4941 /* 4942 * Start with a mask granular enough to pin-point to the 4943 * start pfn and tick off bits one-by-one until it becomes 4944 * too coarse to separate the current node from the last. 4945 */ 4946 mask = ~((1 << __ffs(start)) - 1); 4947 while (mask && last_end <= (start & (mask << 1))) 4948 mask <<= 1; 4949 4950 /* accumulate all internode masks */ 4951 accl_mask |= mask; 4952 } 4953 4954 /* convert mask to number of pages */ 4955 return ~accl_mask + 1; 4956 } 4957 4958 /* Find the lowest pfn for a node */ 4959 static unsigned long __init find_min_pfn_for_node(int nid) 4960 { 4961 unsigned long min_pfn = ULONG_MAX; 4962 unsigned long start_pfn; 4963 int i; 4964 4965 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 4966 min_pfn = min(min_pfn, start_pfn); 4967 4968 if (min_pfn == ULONG_MAX) { 4969 printk(KERN_WARNING 4970 "Could not find start_pfn for node %d\n", nid); 4971 return 0; 4972 } 4973 4974 return min_pfn; 4975 } 4976 4977 /** 4978 * find_min_pfn_with_active_regions - Find the minimum PFN registered 4979 * 4980 * It returns the minimum PFN based on information provided via 4981 * add_active_range(). 4982 */ 4983 unsigned long __init find_min_pfn_with_active_regions(void) 4984 { 4985 return find_min_pfn_for_node(MAX_NUMNODES); 4986 } 4987 4988 /* 4989 * early_calculate_totalpages() 4990 * Sum pages in active regions for movable zone. 4991 * Populate N_MEMORY for calculating usable_nodes. 4992 */ 4993 static unsigned long __init early_calculate_totalpages(void) 4994 { 4995 unsigned long totalpages = 0; 4996 unsigned long start_pfn, end_pfn; 4997 int i, nid; 4998 4999 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 5000 unsigned long pages = end_pfn - start_pfn; 5001 5002 totalpages += pages; 5003 if (pages) 5004 node_set_state(nid, N_MEMORY); 5005 } 5006 return totalpages; 5007 } 5008 5009 /* 5010 * Find the PFN the Movable zone begins in each node. Kernel memory 5011 * is spread evenly between nodes as long as the nodes have enough 5012 * memory. When they don't, some nodes will have more kernelcore than 5013 * others 5014 */ 5015 static void __init find_zone_movable_pfns_for_nodes(void) 5016 { 5017 int i, nid; 5018 unsigned long usable_startpfn; 5019 unsigned long kernelcore_node, kernelcore_remaining; 5020 /* save the state before borrow the nodemask */ 5021 nodemask_t saved_node_state = node_states[N_MEMORY]; 5022 unsigned long totalpages = early_calculate_totalpages(); 5023 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 5024 5025 /* 5026 * If movablecore was specified, calculate what size of 5027 * kernelcore that corresponds so that memory usable for 5028 * any allocation type is evenly spread. If both kernelcore 5029 * and movablecore are specified, then the value of kernelcore 5030 * will be used for required_kernelcore if it's greater than 5031 * what movablecore would have allowed. 5032 */ 5033 if (required_movablecore) { 5034 unsigned long corepages; 5035 5036 /* 5037 * Round-up so that ZONE_MOVABLE is at least as large as what 5038 * was requested by the user 5039 */ 5040 required_movablecore = 5041 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 5042 corepages = totalpages - required_movablecore; 5043 5044 required_kernelcore = max(required_kernelcore, corepages); 5045 } 5046 5047 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 5048 if (!required_kernelcore) 5049 goto out; 5050 5051 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 5052 find_usable_zone_for_movable(); 5053 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 5054 5055 restart: 5056 /* Spread kernelcore memory as evenly as possible throughout nodes */ 5057 kernelcore_node = required_kernelcore / usable_nodes; 5058 for_each_node_state(nid, N_MEMORY) { 5059 unsigned long start_pfn, end_pfn; 5060 5061 /* 5062 * Recalculate kernelcore_node if the division per node 5063 * now exceeds what is necessary to satisfy the requested 5064 * amount of memory for the kernel 5065 */ 5066 if (required_kernelcore < kernelcore_node) 5067 kernelcore_node = required_kernelcore / usable_nodes; 5068 5069 /* 5070 * As the map is walked, we track how much memory is usable 5071 * by the kernel using kernelcore_remaining. When it is 5072 * 0, the rest of the node is usable by ZONE_MOVABLE 5073 */ 5074 kernelcore_remaining = kernelcore_node; 5075 5076 /* Go through each range of PFNs within this node */ 5077 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 5078 unsigned long size_pages; 5079 5080 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 5081 if (start_pfn >= end_pfn) 5082 continue; 5083 5084 /* Account for what is only usable for kernelcore */ 5085 if (start_pfn < usable_startpfn) { 5086 unsigned long kernel_pages; 5087 kernel_pages = min(end_pfn, usable_startpfn) 5088 - start_pfn; 5089 5090 kernelcore_remaining -= min(kernel_pages, 5091 kernelcore_remaining); 5092 required_kernelcore -= min(kernel_pages, 5093 required_kernelcore); 5094 5095 /* Continue if range is now fully accounted */ 5096 if (end_pfn <= usable_startpfn) { 5097 5098 /* 5099 * Push zone_movable_pfn to the end so 5100 * that if we have to rebalance 5101 * kernelcore across nodes, we will 5102 * not double account here 5103 */ 5104 zone_movable_pfn[nid] = end_pfn; 5105 continue; 5106 } 5107 start_pfn = usable_startpfn; 5108 } 5109 5110 /* 5111 * The usable PFN range for ZONE_MOVABLE is from 5112 * start_pfn->end_pfn. Calculate size_pages as the 5113 * number of pages used as kernelcore 5114 */ 5115 size_pages = end_pfn - start_pfn; 5116 if (size_pages > kernelcore_remaining) 5117 size_pages = kernelcore_remaining; 5118 zone_movable_pfn[nid] = start_pfn + size_pages; 5119 5120 /* 5121 * Some kernelcore has been met, update counts and 5122 * break if the kernelcore for this node has been 5123 * satisfied 5124 */ 5125 required_kernelcore -= min(required_kernelcore, 5126 size_pages); 5127 kernelcore_remaining -= size_pages; 5128 if (!kernelcore_remaining) 5129 break; 5130 } 5131 } 5132 5133 /* 5134 * If there is still required_kernelcore, we do another pass with one 5135 * less node in the count. This will push zone_movable_pfn[nid] further 5136 * along on the nodes that still have memory until kernelcore is 5137 * satisfied 5138 */ 5139 usable_nodes--; 5140 if (usable_nodes && required_kernelcore > usable_nodes) 5141 goto restart; 5142 5143 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 5144 for (nid = 0; nid < MAX_NUMNODES; nid++) 5145 zone_movable_pfn[nid] = 5146 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 5147 5148 out: 5149 /* restore the node_state */ 5150 node_states[N_MEMORY] = saved_node_state; 5151 } 5152 5153 /* Any regular or high memory on that node ? */ 5154 static void check_for_memory(pg_data_t *pgdat, int nid) 5155 { 5156 enum zone_type zone_type; 5157 5158 if (N_MEMORY == N_NORMAL_MEMORY) 5159 return; 5160 5161 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 5162 struct zone *zone = &pgdat->node_zones[zone_type]; 5163 if (zone->present_pages) { 5164 node_set_state(nid, N_HIGH_MEMORY); 5165 if (N_NORMAL_MEMORY != N_HIGH_MEMORY && 5166 zone_type <= ZONE_NORMAL) 5167 node_set_state(nid, N_NORMAL_MEMORY); 5168 break; 5169 } 5170 } 5171 } 5172 5173 /** 5174 * free_area_init_nodes - Initialise all pg_data_t and zone data 5175 * @max_zone_pfn: an array of max PFNs for each zone 5176 * 5177 * This will call free_area_init_node() for each active node in the system. 5178 * Using the page ranges provided by add_active_range(), the size of each 5179 * zone in each node and their holes is calculated. If the maximum PFN 5180 * between two adjacent zones match, it is assumed that the zone is empty. 5181 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 5182 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 5183 * starts where the previous one ended. For example, ZONE_DMA32 starts 5184 * at arch_max_dma_pfn. 5185 */ 5186 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 5187 { 5188 unsigned long start_pfn, end_pfn; 5189 int i, nid; 5190 5191 /* Record where the zone boundaries are */ 5192 memset(arch_zone_lowest_possible_pfn, 0, 5193 sizeof(arch_zone_lowest_possible_pfn)); 5194 memset(arch_zone_highest_possible_pfn, 0, 5195 sizeof(arch_zone_highest_possible_pfn)); 5196 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 5197 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 5198 for (i = 1; i < MAX_NR_ZONES; i++) { 5199 if (i == ZONE_MOVABLE) 5200 continue; 5201 arch_zone_lowest_possible_pfn[i] = 5202 arch_zone_highest_possible_pfn[i-1]; 5203 arch_zone_highest_possible_pfn[i] = 5204 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 5205 } 5206 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 5207 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 5208 5209 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 5210 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 5211 find_zone_movable_pfns_for_nodes(); 5212 5213 /* Print out the zone ranges */ 5214 printk("Zone ranges:\n"); 5215 for (i = 0; i < MAX_NR_ZONES; i++) { 5216 if (i == ZONE_MOVABLE) 5217 continue; 5218 printk(KERN_CONT " %-8s ", zone_names[i]); 5219 if (arch_zone_lowest_possible_pfn[i] == 5220 arch_zone_highest_possible_pfn[i]) 5221 printk(KERN_CONT "empty\n"); 5222 else 5223 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n", 5224 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT, 5225 (arch_zone_highest_possible_pfn[i] 5226 << PAGE_SHIFT) - 1); 5227 } 5228 5229 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 5230 printk("Movable zone start for each node\n"); 5231 for (i = 0; i < MAX_NUMNODES; i++) { 5232 if (zone_movable_pfn[i]) 5233 printk(" Node %d: %#010lx\n", i, 5234 zone_movable_pfn[i] << PAGE_SHIFT); 5235 } 5236 5237 /* Print out the early node map */ 5238 printk("Early memory node ranges\n"); 5239 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 5240 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid, 5241 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1); 5242 5243 /* Initialise every node */ 5244 mminit_verify_pageflags_layout(); 5245 setup_nr_node_ids(); 5246 for_each_online_node(nid) { 5247 pg_data_t *pgdat = NODE_DATA(nid); 5248 free_area_init_node(nid, NULL, 5249 find_min_pfn_for_node(nid), NULL); 5250 5251 /* Any memory on that node */ 5252 if (pgdat->node_present_pages) 5253 node_set_state(nid, N_MEMORY); 5254 check_for_memory(pgdat, nid); 5255 } 5256 } 5257 5258 static int __init cmdline_parse_core(char *p, unsigned long *core) 5259 { 5260 unsigned long long coremem; 5261 if (!p) 5262 return -EINVAL; 5263 5264 coremem = memparse(p, &p); 5265 *core = coremem >> PAGE_SHIFT; 5266 5267 /* Paranoid check that UL is enough for the coremem value */ 5268 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 5269 5270 return 0; 5271 } 5272 5273 /* 5274 * kernelcore=size sets the amount of memory for use for allocations that 5275 * cannot be reclaimed or migrated. 5276 */ 5277 static int __init cmdline_parse_kernelcore(char *p) 5278 { 5279 return cmdline_parse_core(p, &required_kernelcore); 5280 } 5281 5282 /* 5283 * movablecore=size sets the amount of memory for use for allocations that 5284 * can be reclaimed or migrated. 5285 */ 5286 static int __init cmdline_parse_movablecore(char *p) 5287 { 5288 return cmdline_parse_core(p, &required_movablecore); 5289 } 5290 5291 early_param("kernelcore", cmdline_parse_kernelcore); 5292 early_param("movablecore", cmdline_parse_movablecore); 5293 5294 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5295 5296 void adjust_managed_page_count(struct page *page, long count) 5297 { 5298 spin_lock(&managed_page_count_lock); 5299 page_zone(page)->managed_pages += count; 5300 totalram_pages += count; 5301 #ifdef CONFIG_HIGHMEM 5302 if (PageHighMem(page)) 5303 totalhigh_pages += count; 5304 #endif 5305 spin_unlock(&managed_page_count_lock); 5306 } 5307 EXPORT_SYMBOL(adjust_managed_page_count); 5308 5309 unsigned long free_reserved_area(void *start, void *end, int poison, char *s) 5310 { 5311 void *pos; 5312 unsigned long pages = 0; 5313 5314 start = (void *)PAGE_ALIGN((unsigned long)start); 5315 end = (void *)((unsigned long)end & PAGE_MASK); 5316 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 5317 if ((unsigned int)poison <= 0xFF) 5318 memset(pos, poison, PAGE_SIZE); 5319 free_reserved_page(virt_to_page(pos)); 5320 } 5321 5322 if (pages && s) 5323 pr_info("Freeing %s memory: %ldK (%p - %p)\n", 5324 s, pages << (PAGE_SHIFT - 10), start, end); 5325 5326 return pages; 5327 } 5328 EXPORT_SYMBOL(free_reserved_area); 5329 5330 #ifdef CONFIG_HIGHMEM 5331 void free_highmem_page(struct page *page) 5332 { 5333 __free_reserved_page(page); 5334 totalram_pages++; 5335 page_zone(page)->managed_pages++; 5336 totalhigh_pages++; 5337 } 5338 #endif 5339 5340 5341 void __init mem_init_print_info(const char *str) 5342 { 5343 unsigned long physpages, codesize, datasize, rosize, bss_size; 5344 unsigned long init_code_size, init_data_size; 5345 5346 physpages = get_num_physpages(); 5347 codesize = _etext - _stext; 5348 datasize = _edata - _sdata; 5349 rosize = __end_rodata - __start_rodata; 5350 bss_size = __bss_stop - __bss_start; 5351 init_data_size = __init_end - __init_begin; 5352 init_code_size = _einittext - _sinittext; 5353 5354 /* 5355 * Detect special cases and adjust section sizes accordingly: 5356 * 1) .init.* may be embedded into .data sections 5357 * 2) .init.text.* may be out of [__init_begin, __init_end], 5358 * please refer to arch/tile/kernel/vmlinux.lds.S. 5359 * 3) .rodata.* may be embedded into .text or .data sections. 5360 */ 5361 #define adj_init_size(start, end, size, pos, adj) \ 5362 do { \ 5363 if (start <= pos && pos < end && size > adj) \ 5364 size -= adj; \ 5365 } while (0) 5366 5367 adj_init_size(__init_begin, __init_end, init_data_size, 5368 _sinittext, init_code_size); 5369 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 5370 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 5371 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 5372 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 5373 5374 #undef adj_init_size 5375 5376 printk("Memory: %luK/%luK available " 5377 "(%luK kernel code, %luK rwdata, %luK rodata, " 5378 "%luK init, %luK bss, %luK reserved" 5379 #ifdef CONFIG_HIGHMEM 5380 ", %luK highmem" 5381 #endif 5382 "%s%s)\n", 5383 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10), 5384 codesize >> 10, datasize >> 10, rosize >> 10, 5385 (init_data_size + init_code_size) >> 10, bss_size >> 10, 5386 (physpages - totalram_pages) << (PAGE_SHIFT-10), 5387 #ifdef CONFIG_HIGHMEM 5388 totalhigh_pages << (PAGE_SHIFT-10), 5389 #endif 5390 str ? ", " : "", str ? str : ""); 5391 } 5392 5393 /** 5394 * set_dma_reserve - set the specified number of pages reserved in the first zone 5395 * @new_dma_reserve: The number of pages to mark reserved 5396 * 5397 * The per-cpu batchsize and zone watermarks are determined by present_pages. 5398 * In the DMA zone, a significant percentage may be consumed by kernel image 5399 * and other unfreeable allocations which can skew the watermarks badly. This 5400 * function may optionally be used to account for unfreeable pages in the 5401 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 5402 * smaller per-cpu batchsize. 5403 */ 5404 void __init set_dma_reserve(unsigned long new_dma_reserve) 5405 { 5406 dma_reserve = new_dma_reserve; 5407 } 5408 5409 void __init free_area_init(unsigned long *zones_size) 5410 { 5411 free_area_init_node(0, zones_size, 5412 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 5413 } 5414 5415 static int page_alloc_cpu_notify(struct notifier_block *self, 5416 unsigned long action, void *hcpu) 5417 { 5418 int cpu = (unsigned long)hcpu; 5419 5420 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 5421 lru_add_drain_cpu(cpu); 5422 drain_pages(cpu); 5423 5424 /* 5425 * Spill the event counters of the dead processor 5426 * into the current processors event counters. 5427 * This artificially elevates the count of the current 5428 * processor. 5429 */ 5430 vm_events_fold_cpu(cpu); 5431 5432 /* 5433 * Zero the differential counters of the dead processor 5434 * so that the vm statistics are consistent. 5435 * 5436 * This is only okay since the processor is dead and cannot 5437 * race with what we are doing. 5438 */ 5439 cpu_vm_stats_fold(cpu); 5440 } 5441 return NOTIFY_OK; 5442 } 5443 5444 void __init page_alloc_init(void) 5445 { 5446 hotcpu_notifier(page_alloc_cpu_notify, 0); 5447 } 5448 5449 /* 5450 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 5451 * or min_free_kbytes changes. 5452 */ 5453 static void calculate_totalreserve_pages(void) 5454 { 5455 struct pglist_data *pgdat; 5456 unsigned long reserve_pages = 0; 5457 enum zone_type i, j; 5458 5459 for_each_online_pgdat(pgdat) { 5460 for (i = 0; i < MAX_NR_ZONES; i++) { 5461 struct zone *zone = pgdat->node_zones + i; 5462 unsigned long max = 0; 5463 5464 /* Find valid and maximum lowmem_reserve in the zone */ 5465 for (j = i; j < MAX_NR_ZONES; j++) { 5466 if (zone->lowmem_reserve[j] > max) 5467 max = zone->lowmem_reserve[j]; 5468 } 5469 5470 /* we treat the high watermark as reserved pages. */ 5471 max += high_wmark_pages(zone); 5472 5473 if (max > zone->managed_pages) 5474 max = zone->managed_pages; 5475 reserve_pages += max; 5476 /* 5477 * Lowmem reserves are not available to 5478 * GFP_HIGHUSER page cache allocations and 5479 * kswapd tries to balance zones to their high 5480 * watermark. As a result, neither should be 5481 * regarded as dirtyable memory, to prevent a 5482 * situation where reclaim has to clean pages 5483 * in order to balance the zones. 5484 */ 5485 zone->dirty_balance_reserve = max; 5486 } 5487 } 5488 dirty_balance_reserve = reserve_pages; 5489 totalreserve_pages = reserve_pages; 5490 } 5491 5492 /* 5493 * setup_per_zone_lowmem_reserve - called whenever 5494 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 5495 * has a correct pages reserved value, so an adequate number of 5496 * pages are left in the zone after a successful __alloc_pages(). 5497 */ 5498 static void setup_per_zone_lowmem_reserve(void) 5499 { 5500 struct pglist_data *pgdat; 5501 enum zone_type j, idx; 5502 5503 for_each_online_pgdat(pgdat) { 5504 for (j = 0; j < MAX_NR_ZONES; j++) { 5505 struct zone *zone = pgdat->node_zones + j; 5506 unsigned long managed_pages = zone->managed_pages; 5507 5508 zone->lowmem_reserve[j] = 0; 5509 5510 idx = j; 5511 while (idx) { 5512 struct zone *lower_zone; 5513 5514 idx--; 5515 5516 if (sysctl_lowmem_reserve_ratio[idx] < 1) 5517 sysctl_lowmem_reserve_ratio[idx] = 1; 5518 5519 lower_zone = pgdat->node_zones + idx; 5520 lower_zone->lowmem_reserve[j] = managed_pages / 5521 sysctl_lowmem_reserve_ratio[idx]; 5522 managed_pages += lower_zone->managed_pages; 5523 } 5524 } 5525 } 5526 5527 /* update totalreserve_pages */ 5528 calculate_totalreserve_pages(); 5529 } 5530 5531 static void __setup_per_zone_wmarks(void) 5532 { 5533 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 5534 unsigned long lowmem_pages = 0; 5535 struct zone *zone; 5536 unsigned long flags; 5537 5538 /* Calculate total number of !ZONE_HIGHMEM pages */ 5539 for_each_zone(zone) { 5540 if (!is_highmem(zone)) 5541 lowmem_pages += zone->managed_pages; 5542 } 5543 5544 for_each_zone(zone) { 5545 u64 tmp; 5546 5547 spin_lock_irqsave(&zone->lock, flags); 5548 tmp = (u64)pages_min * zone->managed_pages; 5549 do_div(tmp, lowmem_pages); 5550 if (is_highmem(zone)) { 5551 /* 5552 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 5553 * need highmem pages, so cap pages_min to a small 5554 * value here. 5555 * 5556 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 5557 * deltas controls asynch page reclaim, and so should 5558 * not be capped for highmem. 5559 */ 5560 unsigned long min_pages; 5561 5562 min_pages = zone->managed_pages / 1024; 5563 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 5564 zone->watermark[WMARK_MIN] = min_pages; 5565 } else { 5566 /* 5567 * If it's a lowmem zone, reserve a number of pages 5568 * proportionate to the zone's size. 5569 */ 5570 zone->watermark[WMARK_MIN] = tmp; 5571 } 5572 5573 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); 5574 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); 5575 5576 __mod_zone_page_state(zone, NR_ALLOC_BATCH, 5577 high_wmark_pages(zone) - 5578 low_wmark_pages(zone) - 5579 zone_page_state(zone, NR_ALLOC_BATCH)); 5580 5581 setup_zone_migrate_reserve(zone); 5582 spin_unlock_irqrestore(&zone->lock, flags); 5583 } 5584 5585 /* update totalreserve_pages */ 5586 calculate_totalreserve_pages(); 5587 } 5588 5589 /** 5590 * setup_per_zone_wmarks - called when min_free_kbytes changes 5591 * or when memory is hot-{added|removed} 5592 * 5593 * Ensures that the watermark[min,low,high] values for each zone are set 5594 * correctly with respect to min_free_kbytes. 5595 */ 5596 void setup_per_zone_wmarks(void) 5597 { 5598 mutex_lock(&zonelists_mutex); 5599 __setup_per_zone_wmarks(); 5600 mutex_unlock(&zonelists_mutex); 5601 } 5602 5603 /* 5604 * The inactive anon list should be small enough that the VM never has to 5605 * do too much work, but large enough that each inactive page has a chance 5606 * to be referenced again before it is swapped out. 5607 * 5608 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 5609 * INACTIVE_ANON pages on this zone's LRU, maintained by the 5610 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 5611 * the anonymous pages are kept on the inactive list. 5612 * 5613 * total target max 5614 * memory ratio inactive anon 5615 * ------------------------------------- 5616 * 10MB 1 5MB 5617 * 100MB 1 50MB 5618 * 1GB 3 250MB 5619 * 10GB 10 0.9GB 5620 * 100GB 31 3GB 5621 * 1TB 101 10GB 5622 * 10TB 320 32GB 5623 */ 5624 static void __meminit calculate_zone_inactive_ratio(struct zone *zone) 5625 { 5626 unsigned int gb, ratio; 5627 5628 /* Zone size in gigabytes */ 5629 gb = zone->managed_pages >> (30 - PAGE_SHIFT); 5630 if (gb) 5631 ratio = int_sqrt(10 * gb); 5632 else 5633 ratio = 1; 5634 5635 zone->inactive_ratio = ratio; 5636 } 5637 5638 static void __meminit setup_per_zone_inactive_ratio(void) 5639 { 5640 struct zone *zone; 5641 5642 for_each_zone(zone) 5643 calculate_zone_inactive_ratio(zone); 5644 } 5645 5646 /* 5647 * Initialise min_free_kbytes. 5648 * 5649 * For small machines we want it small (128k min). For large machines 5650 * we want it large (64MB max). But it is not linear, because network 5651 * bandwidth does not increase linearly with machine size. We use 5652 * 5653 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 5654 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 5655 * 5656 * which yields 5657 * 5658 * 16MB: 512k 5659 * 32MB: 724k 5660 * 64MB: 1024k 5661 * 128MB: 1448k 5662 * 256MB: 2048k 5663 * 512MB: 2896k 5664 * 1024MB: 4096k 5665 * 2048MB: 5792k 5666 * 4096MB: 8192k 5667 * 8192MB: 11584k 5668 * 16384MB: 16384k 5669 */ 5670 int __meminit init_per_zone_wmark_min(void) 5671 { 5672 unsigned long lowmem_kbytes; 5673 int new_min_free_kbytes; 5674 5675 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 5676 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 5677 5678 if (new_min_free_kbytes > user_min_free_kbytes) { 5679 min_free_kbytes = new_min_free_kbytes; 5680 if (min_free_kbytes < 128) 5681 min_free_kbytes = 128; 5682 if (min_free_kbytes > 65536) 5683 min_free_kbytes = 65536; 5684 } else { 5685 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 5686 new_min_free_kbytes, user_min_free_kbytes); 5687 } 5688 setup_per_zone_wmarks(); 5689 refresh_zone_stat_thresholds(); 5690 setup_per_zone_lowmem_reserve(); 5691 setup_per_zone_inactive_ratio(); 5692 return 0; 5693 } 5694 module_init(init_per_zone_wmark_min) 5695 5696 /* 5697 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 5698 * that we can call two helper functions whenever min_free_kbytes 5699 * changes. 5700 */ 5701 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 5702 void __user *buffer, size_t *length, loff_t *ppos) 5703 { 5704 proc_dointvec(table, write, buffer, length, ppos); 5705 if (write) { 5706 user_min_free_kbytes = min_free_kbytes; 5707 setup_per_zone_wmarks(); 5708 } 5709 return 0; 5710 } 5711 5712 #ifdef CONFIG_NUMA 5713 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, 5714 void __user *buffer, size_t *length, loff_t *ppos) 5715 { 5716 struct zone *zone; 5717 int rc; 5718 5719 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5720 if (rc) 5721 return rc; 5722 5723 for_each_zone(zone) 5724 zone->min_unmapped_pages = (zone->managed_pages * 5725 sysctl_min_unmapped_ratio) / 100; 5726 return 0; 5727 } 5728 5729 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, 5730 void __user *buffer, size_t *length, loff_t *ppos) 5731 { 5732 struct zone *zone; 5733 int rc; 5734 5735 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5736 if (rc) 5737 return rc; 5738 5739 for_each_zone(zone) 5740 zone->min_slab_pages = (zone->managed_pages * 5741 sysctl_min_slab_ratio) / 100; 5742 return 0; 5743 } 5744 #endif 5745 5746 /* 5747 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 5748 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 5749 * whenever sysctl_lowmem_reserve_ratio changes. 5750 * 5751 * The reserve ratio obviously has absolutely no relation with the 5752 * minimum watermarks. The lowmem reserve ratio can only make sense 5753 * if in function of the boot time zone sizes. 5754 */ 5755 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 5756 void __user *buffer, size_t *length, loff_t *ppos) 5757 { 5758 proc_dointvec_minmax(table, write, buffer, length, ppos); 5759 setup_per_zone_lowmem_reserve(); 5760 return 0; 5761 } 5762 5763 /* 5764 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 5765 * cpu. It is the fraction of total pages in each zone that a hot per cpu 5766 * pagelist can have before it gets flushed back to buddy allocator. 5767 */ 5768 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 5769 void __user *buffer, size_t *length, loff_t *ppos) 5770 { 5771 struct zone *zone; 5772 unsigned int cpu; 5773 int ret; 5774 5775 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 5776 if (!write || (ret < 0)) 5777 return ret; 5778 5779 mutex_lock(&pcp_batch_high_lock); 5780 for_each_populated_zone(zone) { 5781 unsigned long high; 5782 high = zone->managed_pages / percpu_pagelist_fraction; 5783 for_each_possible_cpu(cpu) 5784 pageset_set_high(per_cpu_ptr(zone->pageset, cpu), 5785 high); 5786 } 5787 mutex_unlock(&pcp_batch_high_lock); 5788 return 0; 5789 } 5790 5791 int hashdist = HASHDIST_DEFAULT; 5792 5793 #ifdef CONFIG_NUMA 5794 static int __init set_hashdist(char *str) 5795 { 5796 if (!str) 5797 return 0; 5798 hashdist = simple_strtoul(str, &str, 0); 5799 return 1; 5800 } 5801 __setup("hashdist=", set_hashdist); 5802 #endif 5803 5804 /* 5805 * allocate a large system hash table from bootmem 5806 * - it is assumed that the hash table must contain an exact power-of-2 5807 * quantity of entries 5808 * - limit is the number of hash buckets, not the total allocation size 5809 */ 5810 void *__init alloc_large_system_hash(const char *tablename, 5811 unsigned long bucketsize, 5812 unsigned long numentries, 5813 int scale, 5814 int flags, 5815 unsigned int *_hash_shift, 5816 unsigned int *_hash_mask, 5817 unsigned long low_limit, 5818 unsigned long high_limit) 5819 { 5820 unsigned long long max = high_limit; 5821 unsigned long log2qty, size; 5822 void *table = NULL; 5823 5824 /* allow the kernel cmdline to have a say */ 5825 if (!numentries) { 5826 /* round applicable memory size up to nearest megabyte */ 5827 numentries = nr_kernel_pages; 5828 5829 /* It isn't necessary when PAGE_SIZE >= 1MB */ 5830 if (PAGE_SHIFT < 20) 5831 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 5832 5833 /* limit to 1 bucket per 2^scale bytes of low memory */ 5834 if (scale > PAGE_SHIFT) 5835 numentries >>= (scale - PAGE_SHIFT); 5836 else 5837 numentries <<= (PAGE_SHIFT - scale); 5838 5839 /* Make sure we've got at least a 0-order allocation.. */ 5840 if (unlikely(flags & HASH_SMALL)) { 5841 /* Makes no sense without HASH_EARLY */ 5842 WARN_ON(!(flags & HASH_EARLY)); 5843 if (!(numentries >> *_hash_shift)) { 5844 numentries = 1UL << *_hash_shift; 5845 BUG_ON(!numentries); 5846 } 5847 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 5848 numentries = PAGE_SIZE / bucketsize; 5849 } 5850 numentries = roundup_pow_of_two(numentries); 5851 5852 /* limit allocation size to 1/16 total memory by default */ 5853 if (max == 0) { 5854 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 5855 do_div(max, bucketsize); 5856 } 5857 max = min(max, 0x80000000ULL); 5858 5859 if (numentries < low_limit) 5860 numentries = low_limit; 5861 if (numentries > max) 5862 numentries = max; 5863 5864 log2qty = ilog2(numentries); 5865 5866 do { 5867 size = bucketsize << log2qty; 5868 if (flags & HASH_EARLY) 5869 table = alloc_bootmem_nopanic(size); 5870 else if (hashdist) 5871 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 5872 else { 5873 /* 5874 * If bucketsize is not a power-of-two, we may free 5875 * some pages at the end of hash table which 5876 * alloc_pages_exact() automatically does 5877 */ 5878 if (get_order(size) < MAX_ORDER) { 5879 table = alloc_pages_exact(size, GFP_ATOMIC); 5880 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 5881 } 5882 } 5883 } while (!table && size > PAGE_SIZE && --log2qty); 5884 5885 if (!table) 5886 panic("Failed to allocate %s hash table\n", tablename); 5887 5888 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n", 5889 tablename, 5890 (1UL << log2qty), 5891 ilog2(size) - PAGE_SHIFT, 5892 size); 5893 5894 if (_hash_shift) 5895 *_hash_shift = log2qty; 5896 if (_hash_mask) 5897 *_hash_mask = (1 << log2qty) - 1; 5898 5899 return table; 5900 } 5901 5902 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 5903 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 5904 unsigned long pfn) 5905 { 5906 #ifdef CONFIG_SPARSEMEM 5907 return __pfn_to_section(pfn)->pageblock_flags; 5908 #else 5909 return zone->pageblock_flags; 5910 #endif /* CONFIG_SPARSEMEM */ 5911 } 5912 5913 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 5914 { 5915 #ifdef CONFIG_SPARSEMEM 5916 pfn &= (PAGES_PER_SECTION-1); 5917 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5918 #else 5919 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages); 5920 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5921 #endif /* CONFIG_SPARSEMEM */ 5922 } 5923 5924 /** 5925 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages 5926 * @page: The page within the block of interest 5927 * @start_bitidx: The first bit of interest to retrieve 5928 * @end_bitidx: The last bit of interest 5929 * returns pageblock_bits flags 5930 */ 5931 unsigned long get_pageblock_flags_group(struct page *page, 5932 int start_bitidx, int end_bitidx) 5933 { 5934 struct zone *zone; 5935 unsigned long *bitmap; 5936 unsigned long pfn, bitidx; 5937 unsigned long flags = 0; 5938 unsigned long value = 1; 5939 5940 zone = page_zone(page); 5941 pfn = page_to_pfn(page); 5942 bitmap = get_pageblock_bitmap(zone, pfn); 5943 bitidx = pfn_to_bitidx(zone, pfn); 5944 5945 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5946 if (test_bit(bitidx + start_bitidx, bitmap)) 5947 flags |= value; 5948 5949 return flags; 5950 } 5951 5952 /** 5953 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages 5954 * @page: The page within the block of interest 5955 * @start_bitidx: The first bit of interest 5956 * @end_bitidx: The last bit of interest 5957 * @flags: The flags to set 5958 */ 5959 void set_pageblock_flags_group(struct page *page, unsigned long flags, 5960 int start_bitidx, int end_bitidx) 5961 { 5962 struct zone *zone; 5963 unsigned long *bitmap; 5964 unsigned long pfn, bitidx; 5965 unsigned long value = 1; 5966 5967 zone = page_zone(page); 5968 pfn = page_to_pfn(page); 5969 bitmap = get_pageblock_bitmap(zone, pfn); 5970 bitidx = pfn_to_bitidx(zone, pfn); 5971 VM_BUG_ON(!zone_spans_pfn(zone, pfn)); 5972 5973 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5974 if (flags & value) 5975 __set_bit(bitidx + start_bitidx, bitmap); 5976 else 5977 __clear_bit(bitidx + start_bitidx, bitmap); 5978 } 5979 5980 /* 5981 * This function checks whether pageblock includes unmovable pages or not. 5982 * If @count is not zero, it is okay to include less @count unmovable pages 5983 * 5984 * PageLRU check without isolation or lru_lock could race so that 5985 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't 5986 * expect this function should be exact. 5987 */ 5988 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 5989 bool skip_hwpoisoned_pages) 5990 { 5991 unsigned long pfn, iter, found; 5992 int mt; 5993 5994 /* 5995 * For avoiding noise data, lru_add_drain_all() should be called 5996 * If ZONE_MOVABLE, the zone never contains unmovable pages 5997 */ 5998 if (zone_idx(zone) == ZONE_MOVABLE) 5999 return false; 6000 mt = get_pageblock_migratetype(page); 6001 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt)) 6002 return false; 6003 6004 pfn = page_to_pfn(page); 6005 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 6006 unsigned long check = pfn + iter; 6007 6008 if (!pfn_valid_within(check)) 6009 continue; 6010 6011 page = pfn_to_page(check); 6012 6013 /* 6014 * Hugepages are not in LRU lists, but they're movable. 6015 * We need not scan over tail pages bacause we don't 6016 * handle each tail page individually in migration. 6017 */ 6018 if (PageHuge(page)) { 6019 iter = round_up(iter + 1, 1<<compound_order(page)) - 1; 6020 continue; 6021 } 6022 6023 /* 6024 * We can't use page_count without pin a page 6025 * because another CPU can free compound page. 6026 * This check already skips compound tails of THP 6027 * because their page->_count is zero at all time. 6028 */ 6029 if (!atomic_read(&page->_count)) { 6030 if (PageBuddy(page)) 6031 iter += (1 << page_order(page)) - 1; 6032 continue; 6033 } 6034 6035 /* 6036 * The HWPoisoned page may be not in buddy system, and 6037 * page_count() is not 0. 6038 */ 6039 if (skip_hwpoisoned_pages && PageHWPoison(page)) 6040 continue; 6041 6042 if (!PageLRU(page)) 6043 found++; 6044 /* 6045 * If there are RECLAIMABLE pages, we need to check it. 6046 * But now, memory offline itself doesn't call shrink_slab() 6047 * and it still to be fixed. 6048 */ 6049 /* 6050 * If the page is not RAM, page_count()should be 0. 6051 * we don't need more check. This is an _used_ not-movable page. 6052 * 6053 * The problematic thing here is PG_reserved pages. PG_reserved 6054 * is set to both of a memory hole page and a _used_ kernel 6055 * page at boot. 6056 */ 6057 if (found > count) 6058 return true; 6059 } 6060 return false; 6061 } 6062 6063 bool is_pageblock_removable_nolock(struct page *page) 6064 { 6065 struct zone *zone; 6066 unsigned long pfn; 6067 6068 /* 6069 * We have to be careful here because we are iterating over memory 6070 * sections which are not zone aware so we might end up outside of 6071 * the zone but still within the section. 6072 * We have to take care about the node as well. If the node is offline 6073 * its NODE_DATA will be NULL - see page_zone. 6074 */ 6075 if (!node_online(page_to_nid(page))) 6076 return false; 6077 6078 zone = page_zone(page); 6079 pfn = page_to_pfn(page); 6080 if (!zone_spans_pfn(zone, pfn)) 6081 return false; 6082 6083 return !has_unmovable_pages(zone, page, 0, true); 6084 } 6085 6086 #ifdef CONFIG_CMA 6087 6088 static unsigned long pfn_max_align_down(unsigned long pfn) 6089 { 6090 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 6091 pageblock_nr_pages) - 1); 6092 } 6093 6094 static unsigned long pfn_max_align_up(unsigned long pfn) 6095 { 6096 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 6097 pageblock_nr_pages)); 6098 } 6099 6100 /* [start, end) must belong to a single zone. */ 6101 static int __alloc_contig_migrate_range(struct compact_control *cc, 6102 unsigned long start, unsigned long end) 6103 { 6104 /* This function is based on compact_zone() from compaction.c. */ 6105 unsigned long nr_reclaimed; 6106 unsigned long pfn = start; 6107 unsigned int tries = 0; 6108 int ret = 0; 6109 6110 migrate_prep(); 6111 6112 while (pfn < end || !list_empty(&cc->migratepages)) { 6113 if (fatal_signal_pending(current)) { 6114 ret = -EINTR; 6115 break; 6116 } 6117 6118 if (list_empty(&cc->migratepages)) { 6119 cc->nr_migratepages = 0; 6120 pfn = isolate_migratepages_range(cc->zone, cc, 6121 pfn, end, true); 6122 if (!pfn) { 6123 ret = -EINTR; 6124 break; 6125 } 6126 tries = 0; 6127 } else if (++tries == 5) { 6128 ret = ret < 0 ? ret : -EBUSY; 6129 break; 6130 } 6131 6132 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 6133 &cc->migratepages); 6134 cc->nr_migratepages -= nr_reclaimed; 6135 6136 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 6137 0, MIGRATE_SYNC, MR_CMA); 6138 } 6139 if (ret < 0) { 6140 putback_movable_pages(&cc->migratepages); 6141 return ret; 6142 } 6143 return 0; 6144 } 6145 6146 /** 6147 * alloc_contig_range() -- tries to allocate given range of pages 6148 * @start: start PFN to allocate 6149 * @end: one-past-the-last PFN to allocate 6150 * @migratetype: migratetype of the underlaying pageblocks (either 6151 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 6152 * in range must have the same migratetype and it must 6153 * be either of the two. 6154 * 6155 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 6156 * aligned, however it's the caller's responsibility to guarantee that 6157 * we are the only thread that changes migrate type of pageblocks the 6158 * pages fall in. 6159 * 6160 * The PFN range must belong to a single zone. 6161 * 6162 * Returns zero on success or negative error code. On success all 6163 * pages which PFN is in [start, end) are allocated for the caller and 6164 * need to be freed with free_contig_range(). 6165 */ 6166 int alloc_contig_range(unsigned long start, unsigned long end, 6167 unsigned migratetype) 6168 { 6169 unsigned long outer_start, outer_end; 6170 int ret = 0, order; 6171 6172 struct compact_control cc = { 6173 .nr_migratepages = 0, 6174 .order = -1, 6175 .zone = page_zone(pfn_to_page(start)), 6176 .sync = true, 6177 .ignore_skip_hint = true, 6178 }; 6179 INIT_LIST_HEAD(&cc.migratepages); 6180 6181 /* 6182 * What we do here is we mark all pageblocks in range as 6183 * MIGRATE_ISOLATE. Because pageblock and max order pages may 6184 * have different sizes, and due to the way page allocator 6185 * work, we align the range to biggest of the two pages so 6186 * that page allocator won't try to merge buddies from 6187 * different pageblocks and change MIGRATE_ISOLATE to some 6188 * other migration type. 6189 * 6190 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 6191 * migrate the pages from an unaligned range (ie. pages that 6192 * we are interested in). This will put all the pages in 6193 * range back to page allocator as MIGRATE_ISOLATE. 6194 * 6195 * When this is done, we take the pages in range from page 6196 * allocator removing them from the buddy system. This way 6197 * page allocator will never consider using them. 6198 * 6199 * This lets us mark the pageblocks back as 6200 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 6201 * aligned range but not in the unaligned, original range are 6202 * put back to page allocator so that buddy can use them. 6203 */ 6204 6205 ret = start_isolate_page_range(pfn_max_align_down(start), 6206 pfn_max_align_up(end), migratetype, 6207 false); 6208 if (ret) 6209 return ret; 6210 6211 ret = __alloc_contig_migrate_range(&cc, start, end); 6212 if (ret) 6213 goto done; 6214 6215 /* 6216 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 6217 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 6218 * more, all pages in [start, end) are free in page allocator. 6219 * What we are going to do is to allocate all pages from 6220 * [start, end) (that is remove them from page allocator). 6221 * 6222 * The only problem is that pages at the beginning and at the 6223 * end of interesting range may be not aligned with pages that 6224 * page allocator holds, ie. they can be part of higher order 6225 * pages. Because of this, we reserve the bigger range and 6226 * once this is done free the pages we are not interested in. 6227 * 6228 * We don't have to hold zone->lock here because the pages are 6229 * isolated thus they won't get removed from buddy. 6230 */ 6231 6232 lru_add_drain_all(); 6233 drain_all_pages(); 6234 6235 order = 0; 6236 outer_start = start; 6237 while (!PageBuddy(pfn_to_page(outer_start))) { 6238 if (++order >= MAX_ORDER) { 6239 ret = -EBUSY; 6240 goto done; 6241 } 6242 outer_start &= ~0UL << order; 6243 } 6244 6245 /* Make sure the range is really isolated. */ 6246 if (test_pages_isolated(outer_start, end, false)) { 6247 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n", 6248 outer_start, end); 6249 ret = -EBUSY; 6250 goto done; 6251 } 6252 6253 6254 /* Grab isolated pages from freelists. */ 6255 outer_end = isolate_freepages_range(&cc, outer_start, end); 6256 if (!outer_end) { 6257 ret = -EBUSY; 6258 goto done; 6259 } 6260 6261 /* Free head and tail (if any) */ 6262 if (start != outer_start) 6263 free_contig_range(outer_start, start - outer_start); 6264 if (end != outer_end) 6265 free_contig_range(end, outer_end - end); 6266 6267 done: 6268 undo_isolate_page_range(pfn_max_align_down(start), 6269 pfn_max_align_up(end), migratetype); 6270 return ret; 6271 } 6272 6273 void free_contig_range(unsigned long pfn, unsigned nr_pages) 6274 { 6275 unsigned int count = 0; 6276 6277 for (; nr_pages--; pfn++) { 6278 struct page *page = pfn_to_page(pfn); 6279 6280 count += page_count(page) != 1; 6281 __free_page(page); 6282 } 6283 WARN(count != 0, "%d pages are still in use!\n", count); 6284 } 6285 #endif 6286 6287 #ifdef CONFIG_MEMORY_HOTPLUG 6288 /* 6289 * The zone indicated has a new number of managed_pages; batch sizes and percpu 6290 * page high values need to be recalulated. 6291 */ 6292 void __meminit zone_pcp_update(struct zone *zone) 6293 { 6294 unsigned cpu; 6295 mutex_lock(&pcp_batch_high_lock); 6296 for_each_possible_cpu(cpu) 6297 pageset_set_high_and_batch(zone, 6298 per_cpu_ptr(zone->pageset, cpu)); 6299 mutex_unlock(&pcp_batch_high_lock); 6300 } 6301 #endif 6302 6303 void zone_pcp_reset(struct zone *zone) 6304 { 6305 unsigned long flags; 6306 int cpu; 6307 struct per_cpu_pageset *pset; 6308 6309 /* avoid races with drain_pages() */ 6310 local_irq_save(flags); 6311 if (zone->pageset != &boot_pageset) { 6312 for_each_online_cpu(cpu) { 6313 pset = per_cpu_ptr(zone->pageset, cpu); 6314 drain_zonestat(zone, pset); 6315 } 6316 free_percpu(zone->pageset); 6317 zone->pageset = &boot_pageset; 6318 } 6319 local_irq_restore(flags); 6320 } 6321 6322 #ifdef CONFIG_MEMORY_HOTREMOVE 6323 /* 6324 * All pages in the range must be isolated before calling this. 6325 */ 6326 void 6327 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 6328 { 6329 struct page *page; 6330 struct zone *zone; 6331 int order, i; 6332 unsigned long pfn; 6333 unsigned long flags; 6334 /* find the first valid pfn */ 6335 for (pfn = start_pfn; pfn < end_pfn; pfn++) 6336 if (pfn_valid(pfn)) 6337 break; 6338 if (pfn == end_pfn) 6339 return; 6340 zone = page_zone(pfn_to_page(pfn)); 6341 spin_lock_irqsave(&zone->lock, flags); 6342 pfn = start_pfn; 6343 while (pfn < end_pfn) { 6344 if (!pfn_valid(pfn)) { 6345 pfn++; 6346 continue; 6347 } 6348 page = pfn_to_page(pfn); 6349 /* 6350 * The HWPoisoned page may be not in buddy system, and 6351 * page_count() is not 0. 6352 */ 6353 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 6354 pfn++; 6355 SetPageReserved(page); 6356 continue; 6357 } 6358 6359 BUG_ON(page_count(page)); 6360 BUG_ON(!PageBuddy(page)); 6361 order = page_order(page); 6362 #ifdef CONFIG_DEBUG_VM 6363 printk(KERN_INFO "remove from free list %lx %d %lx\n", 6364 pfn, 1 << order, end_pfn); 6365 #endif 6366 list_del(&page->lru); 6367 rmv_page_order(page); 6368 zone->free_area[order].nr_free--; 6369 #ifdef CONFIG_HIGHMEM 6370 if (PageHighMem(page)) 6371 totalhigh_pages -= 1 << order; 6372 #endif 6373 for (i = 0; i < (1 << order); i++) 6374 SetPageReserved((page+i)); 6375 pfn += (1 << order); 6376 } 6377 spin_unlock_irqrestore(&zone->lock, flags); 6378 } 6379 #endif 6380 6381 #ifdef CONFIG_MEMORY_FAILURE 6382 bool is_free_buddy_page(struct page *page) 6383 { 6384 struct zone *zone = page_zone(page); 6385 unsigned long pfn = page_to_pfn(page); 6386 unsigned long flags; 6387 int order; 6388 6389 spin_lock_irqsave(&zone->lock, flags); 6390 for (order = 0; order < MAX_ORDER; order++) { 6391 struct page *page_head = page - (pfn & ((1 << order) - 1)); 6392 6393 if (PageBuddy(page_head) && page_order(page_head) >= order) 6394 break; 6395 } 6396 spin_unlock_irqrestore(&zone->lock, flags); 6397 6398 return order < MAX_ORDER; 6399 } 6400 #endif 6401 6402 static const struct trace_print_flags pageflag_names[] = { 6403 {1UL << PG_locked, "locked" }, 6404 {1UL << PG_error, "error" }, 6405 {1UL << PG_referenced, "referenced" }, 6406 {1UL << PG_uptodate, "uptodate" }, 6407 {1UL << PG_dirty, "dirty" }, 6408 {1UL << PG_lru, "lru" }, 6409 {1UL << PG_active, "active" }, 6410 {1UL << PG_slab, "slab" }, 6411 {1UL << PG_owner_priv_1, "owner_priv_1" }, 6412 {1UL << PG_arch_1, "arch_1" }, 6413 {1UL << PG_reserved, "reserved" }, 6414 {1UL << PG_private, "private" }, 6415 {1UL << PG_private_2, "private_2" }, 6416 {1UL << PG_writeback, "writeback" }, 6417 #ifdef CONFIG_PAGEFLAGS_EXTENDED 6418 {1UL << PG_head, "head" }, 6419 {1UL << PG_tail, "tail" }, 6420 #else 6421 {1UL << PG_compound, "compound" }, 6422 #endif 6423 {1UL << PG_swapcache, "swapcache" }, 6424 {1UL << PG_mappedtodisk, "mappedtodisk" }, 6425 {1UL << PG_reclaim, "reclaim" }, 6426 {1UL << PG_swapbacked, "swapbacked" }, 6427 {1UL << PG_unevictable, "unevictable" }, 6428 #ifdef CONFIG_MMU 6429 {1UL << PG_mlocked, "mlocked" }, 6430 #endif 6431 #ifdef CONFIG_ARCH_USES_PG_UNCACHED 6432 {1UL << PG_uncached, "uncached" }, 6433 #endif 6434 #ifdef CONFIG_MEMORY_FAILURE 6435 {1UL << PG_hwpoison, "hwpoison" }, 6436 #endif 6437 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6438 {1UL << PG_compound_lock, "compound_lock" }, 6439 #endif 6440 }; 6441 6442 static void dump_page_flags(unsigned long flags) 6443 { 6444 const char *delim = ""; 6445 unsigned long mask; 6446 int i; 6447 6448 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS); 6449 6450 printk(KERN_ALERT "page flags: %#lx(", flags); 6451 6452 /* remove zone id */ 6453 flags &= (1UL << NR_PAGEFLAGS) - 1; 6454 6455 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) { 6456 6457 mask = pageflag_names[i].mask; 6458 if ((flags & mask) != mask) 6459 continue; 6460 6461 flags &= ~mask; 6462 printk("%s%s", delim, pageflag_names[i].name); 6463 delim = "|"; 6464 } 6465 6466 /* check for left over flags */ 6467 if (flags) 6468 printk("%s%#lx", delim, flags); 6469 6470 printk(")\n"); 6471 } 6472 6473 void dump_page(struct page *page) 6474 { 6475 printk(KERN_ALERT 6476 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n", 6477 page, atomic_read(&page->_count), page_mapcount(page), 6478 page->mapping, page->index); 6479 dump_page_flags(page->flags); 6480 mem_cgroup_print_bad_page(page); 6481 } 6482