xref: /openbmc/linux/mm/page_alloc.c (revision 5bd8e16d)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page-debug-flags.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 
65 #include <asm/sections.h>
66 #include <asm/tlbflush.h>
67 #include <asm/div64.h>
68 #include "internal.h"
69 
70 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71 static DEFINE_MUTEX(pcp_batch_high_lock);
72 
73 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
74 DEFINE_PER_CPU(int, numa_node);
75 EXPORT_PER_CPU_SYMBOL(numa_node);
76 #endif
77 
78 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
79 /*
80  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
81  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
82  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
83  * defined in <linux/topology.h>.
84  */
85 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
86 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
87 #endif
88 
89 /*
90  * Array of node states.
91  */
92 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
93 	[N_POSSIBLE] = NODE_MASK_ALL,
94 	[N_ONLINE] = { { [0] = 1UL } },
95 #ifndef CONFIG_NUMA
96 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
97 #ifdef CONFIG_HIGHMEM
98 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
99 #endif
100 #ifdef CONFIG_MOVABLE_NODE
101 	[N_MEMORY] = { { [0] = 1UL } },
102 #endif
103 	[N_CPU] = { { [0] = 1UL } },
104 #endif	/* NUMA */
105 };
106 EXPORT_SYMBOL(node_states);
107 
108 /* Protect totalram_pages and zone->managed_pages */
109 static DEFINE_SPINLOCK(managed_page_count_lock);
110 
111 unsigned long totalram_pages __read_mostly;
112 unsigned long totalreserve_pages __read_mostly;
113 /*
114  * When calculating the number of globally allowed dirty pages, there
115  * is a certain number of per-zone reserves that should not be
116  * considered dirtyable memory.  This is the sum of those reserves
117  * over all existing zones that contribute dirtyable memory.
118  */
119 unsigned long dirty_balance_reserve __read_mostly;
120 
121 int percpu_pagelist_fraction;
122 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
123 
124 #ifdef CONFIG_PM_SLEEP
125 /*
126  * The following functions are used by the suspend/hibernate code to temporarily
127  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
128  * while devices are suspended.  To avoid races with the suspend/hibernate code,
129  * they should always be called with pm_mutex held (gfp_allowed_mask also should
130  * only be modified with pm_mutex held, unless the suspend/hibernate code is
131  * guaranteed not to run in parallel with that modification).
132  */
133 
134 static gfp_t saved_gfp_mask;
135 
136 void pm_restore_gfp_mask(void)
137 {
138 	WARN_ON(!mutex_is_locked(&pm_mutex));
139 	if (saved_gfp_mask) {
140 		gfp_allowed_mask = saved_gfp_mask;
141 		saved_gfp_mask = 0;
142 	}
143 }
144 
145 void pm_restrict_gfp_mask(void)
146 {
147 	WARN_ON(!mutex_is_locked(&pm_mutex));
148 	WARN_ON(saved_gfp_mask);
149 	saved_gfp_mask = gfp_allowed_mask;
150 	gfp_allowed_mask &= ~GFP_IOFS;
151 }
152 
153 bool pm_suspended_storage(void)
154 {
155 	if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
156 		return false;
157 	return true;
158 }
159 #endif /* CONFIG_PM_SLEEP */
160 
161 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
162 int pageblock_order __read_mostly;
163 #endif
164 
165 static void __free_pages_ok(struct page *page, unsigned int order);
166 
167 /*
168  * results with 256, 32 in the lowmem_reserve sysctl:
169  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
170  *	1G machine -> (16M dma, 784M normal, 224M high)
171  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
172  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
173  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
174  *
175  * TBD: should special case ZONE_DMA32 machines here - in those we normally
176  * don't need any ZONE_NORMAL reservation
177  */
178 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
179 #ifdef CONFIG_ZONE_DMA
180 	 256,
181 #endif
182 #ifdef CONFIG_ZONE_DMA32
183 	 256,
184 #endif
185 #ifdef CONFIG_HIGHMEM
186 	 32,
187 #endif
188 	 32,
189 };
190 
191 EXPORT_SYMBOL(totalram_pages);
192 
193 static char * const zone_names[MAX_NR_ZONES] = {
194 #ifdef CONFIG_ZONE_DMA
195 	 "DMA",
196 #endif
197 #ifdef CONFIG_ZONE_DMA32
198 	 "DMA32",
199 #endif
200 	 "Normal",
201 #ifdef CONFIG_HIGHMEM
202 	 "HighMem",
203 #endif
204 	 "Movable",
205 };
206 
207 int min_free_kbytes = 1024;
208 int user_min_free_kbytes;
209 
210 static unsigned long __meminitdata nr_kernel_pages;
211 static unsigned long __meminitdata nr_all_pages;
212 static unsigned long __meminitdata dma_reserve;
213 
214 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
215 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
216 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
217 static unsigned long __initdata required_kernelcore;
218 static unsigned long __initdata required_movablecore;
219 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
220 
221 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
222 int movable_zone;
223 EXPORT_SYMBOL(movable_zone);
224 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
225 
226 #if MAX_NUMNODES > 1
227 int nr_node_ids __read_mostly = MAX_NUMNODES;
228 int nr_online_nodes __read_mostly = 1;
229 EXPORT_SYMBOL(nr_node_ids);
230 EXPORT_SYMBOL(nr_online_nodes);
231 #endif
232 
233 int page_group_by_mobility_disabled __read_mostly;
234 
235 void set_pageblock_migratetype(struct page *page, int migratetype)
236 {
237 
238 	if (unlikely(page_group_by_mobility_disabled))
239 		migratetype = MIGRATE_UNMOVABLE;
240 
241 	set_pageblock_flags_group(page, (unsigned long)migratetype,
242 					PB_migrate, PB_migrate_end);
243 }
244 
245 bool oom_killer_disabled __read_mostly;
246 
247 #ifdef CONFIG_DEBUG_VM
248 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
249 {
250 	int ret = 0;
251 	unsigned seq;
252 	unsigned long pfn = page_to_pfn(page);
253 	unsigned long sp, start_pfn;
254 
255 	do {
256 		seq = zone_span_seqbegin(zone);
257 		start_pfn = zone->zone_start_pfn;
258 		sp = zone->spanned_pages;
259 		if (!zone_spans_pfn(zone, pfn))
260 			ret = 1;
261 	} while (zone_span_seqretry(zone, seq));
262 
263 	if (ret)
264 		pr_err("page %lu outside zone [ %lu - %lu ]\n",
265 			pfn, start_pfn, start_pfn + sp);
266 
267 	return ret;
268 }
269 
270 static int page_is_consistent(struct zone *zone, struct page *page)
271 {
272 	if (!pfn_valid_within(page_to_pfn(page)))
273 		return 0;
274 	if (zone != page_zone(page))
275 		return 0;
276 
277 	return 1;
278 }
279 /*
280  * Temporary debugging check for pages not lying within a given zone.
281  */
282 static int bad_range(struct zone *zone, struct page *page)
283 {
284 	if (page_outside_zone_boundaries(zone, page))
285 		return 1;
286 	if (!page_is_consistent(zone, page))
287 		return 1;
288 
289 	return 0;
290 }
291 #else
292 static inline int bad_range(struct zone *zone, struct page *page)
293 {
294 	return 0;
295 }
296 #endif
297 
298 static void bad_page(struct page *page)
299 {
300 	static unsigned long resume;
301 	static unsigned long nr_shown;
302 	static unsigned long nr_unshown;
303 
304 	/* Don't complain about poisoned pages */
305 	if (PageHWPoison(page)) {
306 		page_mapcount_reset(page); /* remove PageBuddy */
307 		return;
308 	}
309 
310 	/*
311 	 * Allow a burst of 60 reports, then keep quiet for that minute;
312 	 * or allow a steady drip of one report per second.
313 	 */
314 	if (nr_shown == 60) {
315 		if (time_before(jiffies, resume)) {
316 			nr_unshown++;
317 			goto out;
318 		}
319 		if (nr_unshown) {
320 			printk(KERN_ALERT
321 			      "BUG: Bad page state: %lu messages suppressed\n",
322 				nr_unshown);
323 			nr_unshown = 0;
324 		}
325 		nr_shown = 0;
326 	}
327 	if (nr_shown++ == 0)
328 		resume = jiffies + 60 * HZ;
329 
330 	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
331 		current->comm, page_to_pfn(page));
332 	dump_page(page);
333 
334 	print_modules();
335 	dump_stack();
336 out:
337 	/* Leave bad fields for debug, except PageBuddy could make trouble */
338 	page_mapcount_reset(page); /* remove PageBuddy */
339 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
340 }
341 
342 /*
343  * Higher-order pages are called "compound pages".  They are structured thusly:
344  *
345  * The first PAGE_SIZE page is called the "head page".
346  *
347  * The remaining PAGE_SIZE pages are called "tail pages".
348  *
349  * All pages have PG_compound set.  All tail pages have their ->first_page
350  * pointing at the head page.
351  *
352  * The first tail page's ->lru.next holds the address of the compound page's
353  * put_page() function.  Its ->lru.prev holds the order of allocation.
354  * This usage means that zero-order pages may not be compound.
355  */
356 
357 static void free_compound_page(struct page *page)
358 {
359 	__free_pages_ok(page, compound_order(page));
360 }
361 
362 void prep_compound_page(struct page *page, unsigned long order)
363 {
364 	int i;
365 	int nr_pages = 1 << order;
366 
367 	set_compound_page_dtor(page, free_compound_page);
368 	set_compound_order(page, order);
369 	__SetPageHead(page);
370 	for (i = 1; i < nr_pages; i++) {
371 		struct page *p = page + i;
372 		__SetPageTail(p);
373 		set_page_count(p, 0);
374 		p->first_page = page;
375 	}
376 }
377 
378 /* update __split_huge_page_refcount if you change this function */
379 static int destroy_compound_page(struct page *page, unsigned long order)
380 {
381 	int i;
382 	int nr_pages = 1 << order;
383 	int bad = 0;
384 
385 	if (unlikely(compound_order(page) != order)) {
386 		bad_page(page);
387 		bad++;
388 	}
389 
390 	__ClearPageHead(page);
391 
392 	for (i = 1; i < nr_pages; i++) {
393 		struct page *p = page + i;
394 
395 		if (unlikely(!PageTail(p) || (p->first_page != page))) {
396 			bad_page(page);
397 			bad++;
398 		}
399 		__ClearPageTail(p);
400 	}
401 
402 	return bad;
403 }
404 
405 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
406 {
407 	int i;
408 
409 	/*
410 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
411 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
412 	 */
413 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
414 	for (i = 0; i < (1 << order); i++)
415 		clear_highpage(page + i);
416 }
417 
418 #ifdef CONFIG_DEBUG_PAGEALLOC
419 unsigned int _debug_guardpage_minorder;
420 
421 static int __init debug_guardpage_minorder_setup(char *buf)
422 {
423 	unsigned long res;
424 
425 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
426 		printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
427 		return 0;
428 	}
429 	_debug_guardpage_minorder = res;
430 	printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
431 	return 0;
432 }
433 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
434 
435 static inline void set_page_guard_flag(struct page *page)
436 {
437 	__set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
438 }
439 
440 static inline void clear_page_guard_flag(struct page *page)
441 {
442 	__clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
443 }
444 #else
445 static inline void set_page_guard_flag(struct page *page) { }
446 static inline void clear_page_guard_flag(struct page *page) { }
447 #endif
448 
449 static inline void set_page_order(struct page *page, int order)
450 {
451 	set_page_private(page, order);
452 	__SetPageBuddy(page);
453 }
454 
455 static inline void rmv_page_order(struct page *page)
456 {
457 	__ClearPageBuddy(page);
458 	set_page_private(page, 0);
459 }
460 
461 /*
462  * Locate the struct page for both the matching buddy in our
463  * pair (buddy1) and the combined O(n+1) page they form (page).
464  *
465  * 1) Any buddy B1 will have an order O twin B2 which satisfies
466  * the following equation:
467  *     B2 = B1 ^ (1 << O)
468  * For example, if the starting buddy (buddy2) is #8 its order
469  * 1 buddy is #10:
470  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
471  *
472  * 2) Any buddy B will have an order O+1 parent P which
473  * satisfies the following equation:
474  *     P = B & ~(1 << O)
475  *
476  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
477  */
478 static inline unsigned long
479 __find_buddy_index(unsigned long page_idx, unsigned int order)
480 {
481 	return page_idx ^ (1 << order);
482 }
483 
484 /*
485  * This function checks whether a page is free && is the buddy
486  * we can do coalesce a page and its buddy if
487  * (a) the buddy is not in a hole &&
488  * (b) the buddy is in the buddy system &&
489  * (c) a page and its buddy have the same order &&
490  * (d) a page and its buddy are in the same zone.
491  *
492  * For recording whether a page is in the buddy system, we set ->_mapcount
493  * PAGE_BUDDY_MAPCOUNT_VALUE.
494  * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
495  * serialized by zone->lock.
496  *
497  * For recording page's order, we use page_private(page).
498  */
499 static inline int page_is_buddy(struct page *page, struct page *buddy,
500 								int order)
501 {
502 	if (!pfn_valid_within(page_to_pfn(buddy)))
503 		return 0;
504 
505 	if (page_zone_id(page) != page_zone_id(buddy))
506 		return 0;
507 
508 	if (page_is_guard(buddy) && page_order(buddy) == order) {
509 		VM_BUG_ON(page_count(buddy) != 0);
510 		return 1;
511 	}
512 
513 	if (PageBuddy(buddy) && page_order(buddy) == order) {
514 		VM_BUG_ON(page_count(buddy) != 0);
515 		return 1;
516 	}
517 	return 0;
518 }
519 
520 /*
521  * Freeing function for a buddy system allocator.
522  *
523  * The concept of a buddy system is to maintain direct-mapped table
524  * (containing bit values) for memory blocks of various "orders".
525  * The bottom level table contains the map for the smallest allocatable
526  * units of memory (here, pages), and each level above it describes
527  * pairs of units from the levels below, hence, "buddies".
528  * At a high level, all that happens here is marking the table entry
529  * at the bottom level available, and propagating the changes upward
530  * as necessary, plus some accounting needed to play nicely with other
531  * parts of the VM system.
532  * At each level, we keep a list of pages, which are heads of continuous
533  * free pages of length of (1 << order) and marked with _mapcount
534  * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
535  * field.
536  * So when we are allocating or freeing one, we can derive the state of the
537  * other.  That is, if we allocate a small block, and both were
538  * free, the remainder of the region must be split into blocks.
539  * If a block is freed, and its buddy is also free, then this
540  * triggers coalescing into a block of larger size.
541  *
542  * -- nyc
543  */
544 
545 static inline void __free_one_page(struct page *page,
546 		struct zone *zone, unsigned int order,
547 		int migratetype)
548 {
549 	unsigned long page_idx;
550 	unsigned long combined_idx;
551 	unsigned long uninitialized_var(buddy_idx);
552 	struct page *buddy;
553 
554 	VM_BUG_ON(!zone_is_initialized(zone));
555 
556 	if (unlikely(PageCompound(page)))
557 		if (unlikely(destroy_compound_page(page, order)))
558 			return;
559 
560 	VM_BUG_ON(migratetype == -1);
561 
562 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
563 
564 	VM_BUG_ON(page_idx & ((1 << order) - 1));
565 	VM_BUG_ON(bad_range(zone, page));
566 
567 	while (order < MAX_ORDER-1) {
568 		buddy_idx = __find_buddy_index(page_idx, order);
569 		buddy = page + (buddy_idx - page_idx);
570 		if (!page_is_buddy(page, buddy, order))
571 			break;
572 		/*
573 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
574 		 * merge with it and move up one order.
575 		 */
576 		if (page_is_guard(buddy)) {
577 			clear_page_guard_flag(buddy);
578 			set_page_private(page, 0);
579 			__mod_zone_freepage_state(zone, 1 << order,
580 						  migratetype);
581 		} else {
582 			list_del(&buddy->lru);
583 			zone->free_area[order].nr_free--;
584 			rmv_page_order(buddy);
585 		}
586 		combined_idx = buddy_idx & page_idx;
587 		page = page + (combined_idx - page_idx);
588 		page_idx = combined_idx;
589 		order++;
590 	}
591 	set_page_order(page, order);
592 
593 	/*
594 	 * If this is not the largest possible page, check if the buddy
595 	 * of the next-highest order is free. If it is, it's possible
596 	 * that pages are being freed that will coalesce soon. In case,
597 	 * that is happening, add the free page to the tail of the list
598 	 * so it's less likely to be used soon and more likely to be merged
599 	 * as a higher order page
600 	 */
601 	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
602 		struct page *higher_page, *higher_buddy;
603 		combined_idx = buddy_idx & page_idx;
604 		higher_page = page + (combined_idx - page_idx);
605 		buddy_idx = __find_buddy_index(combined_idx, order + 1);
606 		higher_buddy = higher_page + (buddy_idx - combined_idx);
607 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
608 			list_add_tail(&page->lru,
609 				&zone->free_area[order].free_list[migratetype]);
610 			goto out;
611 		}
612 	}
613 
614 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
615 out:
616 	zone->free_area[order].nr_free++;
617 }
618 
619 static inline int free_pages_check(struct page *page)
620 {
621 	if (unlikely(page_mapcount(page) |
622 		(page->mapping != NULL)  |
623 		(atomic_read(&page->_count) != 0) |
624 		(page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
625 		(mem_cgroup_bad_page_check(page)))) {
626 		bad_page(page);
627 		return 1;
628 	}
629 	page_nid_reset_last(page);
630 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
631 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
632 	return 0;
633 }
634 
635 /*
636  * Frees a number of pages from the PCP lists
637  * Assumes all pages on list are in same zone, and of same order.
638  * count is the number of pages to free.
639  *
640  * If the zone was previously in an "all pages pinned" state then look to
641  * see if this freeing clears that state.
642  *
643  * And clear the zone's pages_scanned counter, to hold off the "all pages are
644  * pinned" detection logic.
645  */
646 static void free_pcppages_bulk(struct zone *zone, int count,
647 					struct per_cpu_pages *pcp)
648 {
649 	int migratetype = 0;
650 	int batch_free = 0;
651 	int to_free = count;
652 
653 	spin_lock(&zone->lock);
654 	zone->pages_scanned = 0;
655 
656 	while (to_free) {
657 		struct page *page;
658 		struct list_head *list;
659 
660 		/*
661 		 * Remove pages from lists in a round-robin fashion. A
662 		 * batch_free count is maintained that is incremented when an
663 		 * empty list is encountered.  This is so more pages are freed
664 		 * off fuller lists instead of spinning excessively around empty
665 		 * lists
666 		 */
667 		do {
668 			batch_free++;
669 			if (++migratetype == MIGRATE_PCPTYPES)
670 				migratetype = 0;
671 			list = &pcp->lists[migratetype];
672 		} while (list_empty(list));
673 
674 		/* This is the only non-empty list. Free them all. */
675 		if (batch_free == MIGRATE_PCPTYPES)
676 			batch_free = to_free;
677 
678 		do {
679 			int mt;	/* migratetype of the to-be-freed page */
680 
681 			page = list_entry(list->prev, struct page, lru);
682 			/* must delete as __free_one_page list manipulates */
683 			list_del(&page->lru);
684 			mt = get_freepage_migratetype(page);
685 			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
686 			__free_one_page(page, zone, 0, mt);
687 			trace_mm_page_pcpu_drain(page, 0, mt);
688 			if (likely(!is_migrate_isolate_page(page))) {
689 				__mod_zone_page_state(zone, NR_FREE_PAGES, 1);
690 				if (is_migrate_cma(mt))
691 					__mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
692 			}
693 		} while (--to_free && --batch_free && !list_empty(list));
694 	}
695 	spin_unlock(&zone->lock);
696 }
697 
698 static void free_one_page(struct zone *zone, struct page *page, int order,
699 				int migratetype)
700 {
701 	spin_lock(&zone->lock);
702 	zone->pages_scanned = 0;
703 
704 	__free_one_page(page, zone, order, migratetype);
705 	if (unlikely(!is_migrate_isolate(migratetype)))
706 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
707 	spin_unlock(&zone->lock);
708 }
709 
710 static bool free_pages_prepare(struct page *page, unsigned int order)
711 {
712 	int i;
713 	int bad = 0;
714 
715 	trace_mm_page_free(page, order);
716 	kmemcheck_free_shadow(page, order);
717 
718 	if (PageAnon(page))
719 		page->mapping = NULL;
720 	for (i = 0; i < (1 << order); i++)
721 		bad += free_pages_check(page + i);
722 	if (bad)
723 		return false;
724 
725 	if (!PageHighMem(page)) {
726 		debug_check_no_locks_freed(page_address(page),
727 					   PAGE_SIZE << order);
728 		debug_check_no_obj_freed(page_address(page),
729 					   PAGE_SIZE << order);
730 	}
731 	arch_free_page(page, order);
732 	kernel_map_pages(page, 1 << order, 0);
733 
734 	return true;
735 }
736 
737 static void __free_pages_ok(struct page *page, unsigned int order)
738 {
739 	unsigned long flags;
740 	int migratetype;
741 
742 	if (!free_pages_prepare(page, order))
743 		return;
744 
745 	local_irq_save(flags);
746 	__count_vm_events(PGFREE, 1 << order);
747 	migratetype = get_pageblock_migratetype(page);
748 	set_freepage_migratetype(page, migratetype);
749 	free_one_page(page_zone(page), page, order, migratetype);
750 	local_irq_restore(flags);
751 }
752 
753 void __init __free_pages_bootmem(struct page *page, unsigned int order)
754 {
755 	unsigned int nr_pages = 1 << order;
756 	struct page *p = page;
757 	unsigned int loop;
758 
759 	prefetchw(p);
760 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
761 		prefetchw(p + 1);
762 		__ClearPageReserved(p);
763 		set_page_count(p, 0);
764 	}
765 	__ClearPageReserved(p);
766 	set_page_count(p, 0);
767 
768 	page_zone(page)->managed_pages += nr_pages;
769 	set_page_refcounted(page);
770 	__free_pages(page, order);
771 }
772 
773 #ifdef CONFIG_CMA
774 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
775 void __init init_cma_reserved_pageblock(struct page *page)
776 {
777 	unsigned i = pageblock_nr_pages;
778 	struct page *p = page;
779 
780 	do {
781 		__ClearPageReserved(p);
782 		set_page_count(p, 0);
783 	} while (++p, --i);
784 
785 	set_page_refcounted(page);
786 	set_pageblock_migratetype(page, MIGRATE_CMA);
787 	__free_pages(page, pageblock_order);
788 	adjust_managed_page_count(page, pageblock_nr_pages);
789 }
790 #endif
791 
792 /*
793  * The order of subdivision here is critical for the IO subsystem.
794  * Please do not alter this order without good reasons and regression
795  * testing. Specifically, as large blocks of memory are subdivided,
796  * the order in which smaller blocks are delivered depends on the order
797  * they're subdivided in this function. This is the primary factor
798  * influencing the order in which pages are delivered to the IO
799  * subsystem according to empirical testing, and this is also justified
800  * by considering the behavior of a buddy system containing a single
801  * large block of memory acted on by a series of small allocations.
802  * This behavior is a critical factor in sglist merging's success.
803  *
804  * -- nyc
805  */
806 static inline void expand(struct zone *zone, struct page *page,
807 	int low, int high, struct free_area *area,
808 	int migratetype)
809 {
810 	unsigned long size = 1 << high;
811 
812 	while (high > low) {
813 		area--;
814 		high--;
815 		size >>= 1;
816 		VM_BUG_ON(bad_range(zone, &page[size]));
817 
818 #ifdef CONFIG_DEBUG_PAGEALLOC
819 		if (high < debug_guardpage_minorder()) {
820 			/*
821 			 * Mark as guard pages (or page), that will allow to
822 			 * merge back to allocator when buddy will be freed.
823 			 * Corresponding page table entries will not be touched,
824 			 * pages will stay not present in virtual address space
825 			 */
826 			INIT_LIST_HEAD(&page[size].lru);
827 			set_page_guard_flag(&page[size]);
828 			set_page_private(&page[size], high);
829 			/* Guard pages are not available for any usage */
830 			__mod_zone_freepage_state(zone, -(1 << high),
831 						  migratetype);
832 			continue;
833 		}
834 #endif
835 		list_add(&page[size].lru, &area->free_list[migratetype]);
836 		area->nr_free++;
837 		set_page_order(&page[size], high);
838 	}
839 }
840 
841 /*
842  * This page is about to be returned from the page allocator
843  */
844 static inline int check_new_page(struct page *page)
845 {
846 	if (unlikely(page_mapcount(page) |
847 		(page->mapping != NULL)  |
848 		(atomic_read(&page->_count) != 0)  |
849 		(page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
850 		(mem_cgroup_bad_page_check(page)))) {
851 		bad_page(page);
852 		return 1;
853 	}
854 	return 0;
855 }
856 
857 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
858 {
859 	int i;
860 
861 	for (i = 0; i < (1 << order); i++) {
862 		struct page *p = page + i;
863 		if (unlikely(check_new_page(p)))
864 			return 1;
865 	}
866 
867 	set_page_private(page, 0);
868 	set_page_refcounted(page);
869 
870 	arch_alloc_page(page, order);
871 	kernel_map_pages(page, 1 << order, 1);
872 
873 	if (gfp_flags & __GFP_ZERO)
874 		prep_zero_page(page, order, gfp_flags);
875 
876 	if (order && (gfp_flags & __GFP_COMP))
877 		prep_compound_page(page, order);
878 
879 	return 0;
880 }
881 
882 /*
883  * Go through the free lists for the given migratetype and remove
884  * the smallest available page from the freelists
885  */
886 static inline
887 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
888 						int migratetype)
889 {
890 	unsigned int current_order;
891 	struct free_area *area;
892 	struct page *page;
893 
894 	/* Find a page of the appropriate size in the preferred list */
895 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
896 		area = &(zone->free_area[current_order]);
897 		if (list_empty(&area->free_list[migratetype]))
898 			continue;
899 
900 		page = list_entry(area->free_list[migratetype].next,
901 							struct page, lru);
902 		list_del(&page->lru);
903 		rmv_page_order(page);
904 		area->nr_free--;
905 		expand(zone, page, order, current_order, area, migratetype);
906 		return page;
907 	}
908 
909 	return NULL;
910 }
911 
912 
913 /*
914  * This array describes the order lists are fallen back to when
915  * the free lists for the desirable migrate type are depleted
916  */
917 static int fallbacks[MIGRATE_TYPES][4] = {
918 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,     MIGRATE_RESERVE },
919 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,     MIGRATE_RESERVE },
920 #ifdef CONFIG_CMA
921 	[MIGRATE_MOVABLE]     = { MIGRATE_CMA,         MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
922 	[MIGRATE_CMA]         = { MIGRATE_RESERVE }, /* Never used */
923 #else
924 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE,   MIGRATE_RESERVE },
925 #endif
926 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE }, /* Never used */
927 #ifdef CONFIG_MEMORY_ISOLATION
928 	[MIGRATE_ISOLATE]     = { MIGRATE_RESERVE }, /* Never used */
929 #endif
930 };
931 
932 /*
933  * Move the free pages in a range to the free lists of the requested type.
934  * Note that start_page and end_pages are not aligned on a pageblock
935  * boundary. If alignment is required, use move_freepages_block()
936  */
937 int move_freepages(struct zone *zone,
938 			  struct page *start_page, struct page *end_page,
939 			  int migratetype)
940 {
941 	struct page *page;
942 	unsigned long order;
943 	int pages_moved = 0;
944 
945 #ifndef CONFIG_HOLES_IN_ZONE
946 	/*
947 	 * page_zone is not safe to call in this context when
948 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
949 	 * anyway as we check zone boundaries in move_freepages_block().
950 	 * Remove at a later date when no bug reports exist related to
951 	 * grouping pages by mobility
952 	 */
953 	BUG_ON(page_zone(start_page) != page_zone(end_page));
954 #endif
955 
956 	for (page = start_page; page <= end_page;) {
957 		/* Make sure we are not inadvertently changing nodes */
958 		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
959 
960 		if (!pfn_valid_within(page_to_pfn(page))) {
961 			page++;
962 			continue;
963 		}
964 
965 		if (!PageBuddy(page)) {
966 			page++;
967 			continue;
968 		}
969 
970 		order = page_order(page);
971 		list_move(&page->lru,
972 			  &zone->free_area[order].free_list[migratetype]);
973 		set_freepage_migratetype(page, migratetype);
974 		page += 1 << order;
975 		pages_moved += 1 << order;
976 	}
977 
978 	return pages_moved;
979 }
980 
981 int move_freepages_block(struct zone *zone, struct page *page,
982 				int migratetype)
983 {
984 	unsigned long start_pfn, end_pfn;
985 	struct page *start_page, *end_page;
986 
987 	start_pfn = page_to_pfn(page);
988 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
989 	start_page = pfn_to_page(start_pfn);
990 	end_page = start_page + pageblock_nr_pages - 1;
991 	end_pfn = start_pfn + pageblock_nr_pages - 1;
992 
993 	/* Do not cross zone boundaries */
994 	if (!zone_spans_pfn(zone, start_pfn))
995 		start_page = page;
996 	if (!zone_spans_pfn(zone, end_pfn))
997 		return 0;
998 
999 	return move_freepages(zone, start_page, end_page, migratetype);
1000 }
1001 
1002 static void change_pageblock_range(struct page *pageblock_page,
1003 					int start_order, int migratetype)
1004 {
1005 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1006 
1007 	while (nr_pageblocks--) {
1008 		set_pageblock_migratetype(pageblock_page, migratetype);
1009 		pageblock_page += pageblock_nr_pages;
1010 	}
1011 }
1012 
1013 /*
1014  * If breaking a large block of pages, move all free pages to the preferred
1015  * allocation list. If falling back for a reclaimable kernel allocation, be
1016  * more aggressive about taking ownership of free pages.
1017  *
1018  * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1019  * nor move CMA pages to different free lists. We don't want unmovable pages
1020  * to be allocated from MIGRATE_CMA areas.
1021  *
1022  * Returns the new migratetype of the pageblock (or the same old migratetype
1023  * if it was unchanged).
1024  */
1025 static int try_to_steal_freepages(struct zone *zone, struct page *page,
1026 				  int start_type, int fallback_type)
1027 {
1028 	int current_order = page_order(page);
1029 
1030 	if (is_migrate_cma(fallback_type))
1031 		return fallback_type;
1032 
1033 	/* Take ownership for orders >= pageblock_order */
1034 	if (current_order >= pageblock_order) {
1035 		change_pageblock_range(page, current_order, start_type);
1036 		return start_type;
1037 	}
1038 
1039 	if (current_order >= pageblock_order / 2 ||
1040 	    start_type == MIGRATE_RECLAIMABLE ||
1041 	    page_group_by_mobility_disabled) {
1042 		int pages;
1043 
1044 		pages = move_freepages_block(zone, page, start_type);
1045 
1046 		/* Claim the whole block if over half of it is free */
1047 		if (pages >= (1 << (pageblock_order-1)) ||
1048 				page_group_by_mobility_disabled) {
1049 
1050 			set_pageblock_migratetype(page, start_type);
1051 			return start_type;
1052 		}
1053 
1054 	}
1055 
1056 	return fallback_type;
1057 }
1058 
1059 /* Remove an element from the buddy allocator from the fallback list */
1060 static inline struct page *
1061 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
1062 {
1063 	struct free_area *area;
1064 	int current_order;
1065 	struct page *page;
1066 	int migratetype, new_type, i;
1067 
1068 	/* Find the largest possible block of pages in the other list */
1069 	for (current_order = MAX_ORDER-1; current_order >= order;
1070 						--current_order) {
1071 		for (i = 0;; i++) {
1072 			migratetype = fallbacks[start_migratetype][i];
1073 
1074 			/* MIGRATE_RESERVE handled later if necessary */
1075 			if (migratetype == MIGRATE_RESERVE)
1076 				break;
1077 
1078 			area = &(zone->free_area[current_order]);
1079 			if (list_empty(&area->free_list[migratetype]))
1080 				continue;
1081 
1082 			page = list_entry(area->free_list[migratetype].next,
1083 					struct page, lru);
1084 			area->nr_free--;
1085 
1086 			new_type = try_to_steal_freepages(zone, page,
1087 							  start_migratetype,
1088 							  migratetype);
1089 
1090 			/* Remove the page from the freelists */
1091 			list_del(&page->lru);
1092 			rmv_page_order(page);
1093 
1094 			/*
1095 			 * Borrow the excess buddy pages as well, irrespective
1096 			 * of whether we stole freepages, or took ownership of
1097 			 * the pageblock or not.
1098 			 *
1099 			 * Exception: When borrowing from MIGRATE_CMA, release
1100 			 * the excess buddy pages to CMA itself.
1101 			 */
1102 			expand(zone, page, order, current_order, area,
1103 			       is_migrate_cma(migratetype)
1104 			     ? migratetype : start_migratetype);
1105 
1106 			trace_mm_page_alloc_extfrag(page, order,
1107 				current_order, start_migratetype, migratetype,
1108 				new_type == start_migratetype);
1109 
1110 			return page;
1111 		}
1112 	}
1113 
1114 	return NULL;
1115 }
1116 
1117 /*
1118  * Do the hard work of removing an element from the buddy allocator.
1119  * Call me with the zone->lock already held.
1120  */
1121 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1122 						int migratetype)
1123 {
1124 	struct page *page;
1125 
1126 retry_reserve:
1127 	page = __rmqueue_smallest(zone, order, migratetype);
1128 
1129 	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1130 		page = __rmqueue_fallback(zone, order, migratetype);
1131 
1132 		/*
1133 		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1134 		 * is used because __rmqueue_smallest is an inline function
1135 		 * and we want just one call site
1136 		 */
1137 		if (!page) {
1138 			migratetype = MIGRATE_RESERVE;
1139 			goto retry_reserve;
1140 		}
1141 	}
1142 
1143 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
1144 	return page;
1145 }
1146 
1147 /*
1148  * Obtain a specified number of elements from the buddy allocator, all under
1149  * a single hold of the lock, for efficiency.  Add them to the supplied list.
1150  * Returns the number of new pages which were placed at *list.
1151  */
1152 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1153 			unsigned long count, struct list_head *list,
1154 			int migratetype, int cold)
1155 {
1156 	int mt = migratetype, i;
1157 
1158 	spin_lock(&zone->lock);
1159 	for (i = 0; i < count; ++i) {
1160 		struct page *page = __rmqueue(zone, order, migratetype);
1161 		if (unlikely(page == NULL))
1162 			break;
1163 
1164 		/*
1165 		 * Split buddy pages returned by expand() are received here
1166 		 * in physical page order. The page is added to the callers and
1167 		 * list and the list head then moves forward. From the callers
1168 		 * perspective, the linked list is ordered by page number in
1169 		 * some conditions. This is useful for IO devices that can
1170 		 * merge IO requests if the physical pages are ordered
1171 		 * properly.
1172 		 */
1173 		if (likely(cold == 0))
1174 			list_add(&page->lru, list);
1175 		else
1176 			list_add_tail(&page->lru, list);
1177 		if (IS_ENABLED(CONFIG_CMA)) {
1178 			mt = get_pageblock_migratetype(page);
1179 			if (!is_migrate_cma(mt) && !is_migrate_isolate(mt))
1180 				mt = migratetype;
1181 		}
1182 		set_freepage_migratetype(page, mt);
1183 		list = &page->lru;
1184 		if (is_migrate_cma(mt))
1185 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1186 					      -(1 << order));
1187 	}
1188 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1189 	spin_unlock(&zone->lock);
1190 	return i;
1191 }
1192 
1193 #ifdef CONFIG_NUMA
1194 /*
1195  * Called from the vmstat counter updater to drain pagesets of this
1196  * currently executing processor on remote nodes after they have
1197  * expired.
1198  *
1199  * Note that this function must be called with the thread pinned to
1200  * a single processor.
1201  */
1202 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1203 {
1204 	unsigned long flags;
1205 	int to_drain;
1206 	unsigned long batch;
1207 
1208 	local_irq_save(flags);
1209 	batch = ACCESS_ONCE(pcp->batch);
1210 	if (pcp->count >= batch)
1211 		to_drain = batch;
1212 	else
1213 		to_drain = pcp->count;
1214 	if (to_drain > 0) {
1215 		free_pcppages_bulk(zone, to_drain, pcp);
1216 		pcp->count -= to_drain;
1217 	}
1218 	local_irq_restore(flags);
1219 }
1220 #endif
1221 
1222 /*
1223  * Drain pages of the indicated processor.
1224  *
1225  * The processor must either be the current processor and the
1226  * thread pinned to the current processor or a processor that
1227  * is not online.
1228  */
1229 static void drain_pages(unsigned int cpu)
1230 {
1231 	unsigned long flags;
1232 	struct zone *zone;
1233 
1234 	for_each_populated_zone(zone) {
1235 		struct per_cpu_pageset *pset;
1236 		struct per_cpu_pages *pcp;
1237 
1238 		local_irq_save(flags);
1239 		pset = per_cpu_ptr(zone->pageset, cpu);
1240 
1241 		pcp = &pset->pcp;
1242 		if (pcp->count) {
1243 			free_pcppages_bulk(zone, pcp->count, pcp);
1244 			pcp->count = 0;
1245 		}
1246 		local_irq_restore(flags);
1247 	}
1248 }
1249 
1250 /*
1251  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1252  */
1253 void drain_local_pages(void *arg)
1254 {
1255 	drain_pages(smp_processor_id());
1256 }
1257 
1258 /*
1259  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1260  *
1261  * Note that this code is protected against sending an IPI to an offline
1262  * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1263  * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1264  * nothing keeps CPUs from showing up after we populated the cpumask and
1265  * before the call to on_each_cpu_mask().
1266  */
1267 void drain_all_pages(void)
1268 {
1269 	int cpu;
1270 	struct per_cpu_pageset *pcp;
1271 	struct zone *zone;
1272 
1273 	/*
1274 	 * Allocate in the BSS so we wont require allocation in
1275 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1276 	 */
1277 	static cpumask_t cpus_with_pcps;
1278 
1279 	/*
1280 	 * We don't care about racing with CPU hotplug event
1281 	 * as offline notification will cause the notified
1282 	 * cpu to drain that CPU pcps and on_each_cpu_mask
1283 	 * disables preemption as part of its processing
1284 	 */
1285 	for_each_online_cpu(cpu) {
1286 		bool has_pcps = false;
1287 		for_each_populated_zone(zone) {
1288 			pcp = per_cpu_ptr(zone->pageset, cpu);
1289 			if (pcp->pcp.count) {
1290 				has_pcps = true;
1291 				break;
1292 			}
1293 		}
1294 		if (has_pcps)
1295 			cpumask_set_cpu(cpu, &cpus_with_pcps);
1296 		else
1297 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
1298 	}
1299 	on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1300 }
1301 
1302 #ifdef CONFIG_HIBERNATION
1303 
1304 void mark_free_pages(struct zone *zone)
1305 {
1306 	unsigned long pfn, max_zone_pfn;
1307 	unsigned long flags;
1308 	int order, t;
1309 	struct list_head *curr;
1310 
1311 	if (zone_is_empty(zone))
1312 		return;
1313 
1314 	spin_lock_irqsave(&zone->lock, flags);
1315 
1316 	max_zone_pfn = zone_end_pfn(zone);
1317 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1318 		if (pfn_valid(pfn)) {
1319 			struct page *page = pfn_to_page(pfn);
1320 
1321 			if (!swsusp_page_is_forbidden(page))
1322 				swsusp_unset_page_free(page);
1323 		}
1324 
1325 	for_each_migratetype_order(order, t) {
1326 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1327 			unsigned long i;
1328 
1329 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1330 			for (i = 0; i < (1UL << order); i++)
1331 				swsusp_set_page_free(pfn_to_page(pfn + i));
1332 		}
1333 	}
1334 	spin_unlock_irqrestore(&zone->lock, flags);
1335 }
1336 #endif /* CONFIG_PM */
1337 
1338 /*
1339  * Free a 0-order page
1340  * cold == 1 ? free a cold page : free a hot page
1341  */
1342 void free_hot_cold_page(struct page *page, int cold)
1343 {
1344 	struct zone *zone = page_zone(page);
1345 	struct per_cpu_pages *pcp;
1346 	unsigned long flags;
1347 	int migratetype;
1348 
1349 	if (!free_pages_prepare(page, 0))
1350 		return;
1351 
1352 	migratetype = get_pageblock_migratetype(page);
1353 	set_freepage_migratetype(page, migratetype);
1354 	local_irq_save(flags);
1355 	__count_vm_event(PGFREE);
1356 
1357 	/*
1358 	 * We only track unmovable, reclaimable and movable on pcp lists.
1359 	 * Free ISOLATE pages back to the allocator because they are being
1360 	 * offlined but treat RESERVE as movable pages so we can get those
1361 	 * areas back if necessary. Otherwise, we may have to free
1362 	 * excessively into the page allocator
1363 	 */
1364 	if (migratetype >= MIGRATE_PCPTYPES) {
1365 		if (unlikely(is_migrate_isolate(migratetype))) {
1366 			free_one_page(zone, page, 0, migratetype);
1367 			goto out;
1368 		}
1369 		migratetype = MIGRATE_MOVABLE;
1370 	}
1371 
1372 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
1373 	if (cold)
1374 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1375 	else
1376 		list_add(&page->lru, &pcp->lists[migratetype]);
1377 	pcp->count++;
1378 	if (pcp->count >= pcp->high) {
1379 		unsigned long batch = ACCESS_ONCE(pcp->batch);
1380 		free_pcppages_bulk(zone, batch, pcp);
1381 		pcp->count -= batch;
1382 	}
1383 
1384 out:
1385 	local_irq_restore(flags);
1386 }
1387 
1388 /*
1389  * Free a list of 0-order pages
1390  */
1391 void free_hot_cold_page_list(struct list_head *list, int cold)
1392 {
1393 	struct page *page, *next;
1394 
1395 	list_for_each_entry_safe(page, next, list, lru) {
1396 		trace_mm_page_free_batched(page, cold);
1397 		free_hot_cold_page(page, cold);
1398 	}
1399 }
1400 
1401 /*
1402  * split_page takes a non-compound higher-order page, and splits it into
1403  * n (1<<order) sub-pages: page[0..n]
1404  * Each sub-page must be freed individually.
1405  *
1406  * Note: this is probably too low level an operation for use in drivers.
1407  * Please consult with lkml before using this in your driver.
1408  */
1409 void split_page(struct page *page, unsigned int order)
1410 {
1411 	int i;
1412 
1413 	VM_BUG_ON(PageCompound(page));
1414 	VM_BUG_ON(!page_count(page));
1415 
1416 #ifdef CONFIG_KMEMCHECK
1417 	/*
1418 	 * Split shadow pages too, because free(page[0]) would
1419 	 * otherwise free the whole shadow.
1420 	 */
1421 	if (kmemcheck_page_is_tracked(page))
1422 		split_page(virt_to_page(page[0].shadow), order);
1423 #endif
1424 
1425 	for (i = 1; i < (1 << order); i++)
1426 		set_page_refcounted(page + i);
1427 }
1428 EXPORT_SYMBOL_GPL(split_page);
1429 
1430 static int __isolate_free_page(struct page *page, unsigned int order)
1431 {
1432 	unsigned long watermark;
1433 	struct zone *zone;
1434 	int mt;
1435 
1436 	BUG_ON(!PageBuddy(page));
1437 
1438 	zone = page_zone(page);
1439 	mt = get_pageblock_migratetype(page);
1440 
1441 	if (!is_migrate_isolate(mt)) {
1442 		/* Obey watermarks as if the page was being allocated */
1443 		watermark = low_wmark_pages(zone) + (1 << order);
1444 		if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1445 			return 0;
1446 
1447 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
1448 	}
1449 
1450 	/* Remove page from free list */
1451 	list_del(&page->lru);
1452 	zone->free_area[order].nr_free--;
1453 	rmv_page_order(page);
1454 
1455 	/* Set the pageblock if the isolated page is at least a pageblock */
1456 	if (order >= pageblock_order - 1) {
1457 		struct page *endpage = page + (1 << order) - 1;
1458 		for (; page < endpage; page += pageblock_nr_pages) {
1459 			int mt = get_pageblock_migratetype(page);
1460 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1461 				set_pageblock_migratetype(page,
1462 							  MIGRATE_MOVABLE);
1463 		}
1464 	}
1465 
1466 	return 1UL << order;
1467 }
1468 
1469 /*
1470  * Similar to split_page except the page is already free. As this is only
1471  * being used for migration, the migratetype of the block also changes.
1472  * As this is called with interrupts disabled, the caller is responsible
1473  * for calling arch_alloc_page() and kernel_map_page() after interrupts
1474  * are enabled.
1475  *
1476  * Note: this is probably too low level an operation for use in drivers.
1477  * Please consult with lkml before using this in your driver.
1478  */
1479 int split_free_page(struct page *page)
1480 {
1481 	unsigned int order;
1482 	int nr_pages;
1483 
1484 	order = page_order(page);
1485 
1486 	nr_pages = __isolate_free_page(page, order);
1487 	if (!nr_pages)
1488 		return 0;
1489 
1490 	/* Split into individual pages */
1491 	set_page_refcounted(page);
1492 	split_page(page, order);
1493 	return nr_pages;
1494 }
1495 
1496 /*
1497  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1498  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1499  * or two.
1500  */
1501 static inline
1502 struct page *buffered_rmqueue(struct zone *preferred_zone,
1503 			struct zone *zone, int order, gfp_t gfp_flags,
1504 			int migratetype)
1505 {
1506 	unsigned long flags;
1507 	struct page *page;
1508 	int cold = !!(gfp_flags & __GFP_COLD);
1509 
1510 again:
1511 	if (likely(order == 0)) {
1512 		struct per_cpu_pages *pcp;
1513 		struct list_head *list;
1514 
1515 		local_irq_save(flags);
1516 		pcp = &this_cpu_ptr(zone->pageset)->pcp;
1517 		list = &pcp->lists[migratetype];
1518 		if (list_empty(list)) {
1519 			pcp->count += rmqueue_bulk(zone, 0,
1520 					pcp->batch, list,
1521 					migratetype, cold);
1522 			if (unlikely(list_empty(list)))
1523 				goto failed;
1524 		}
1525 
1526 		if (cold)
1527 			page = list_entry(list->prev, struct page, lru);
1528 		else
1529 			page = list_entry(list->next, struct page, lru);
1530 
1531 		list_del(&page->lru);
1532 		pcp->count--;
1533 	} else {
1534 		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1535 			/*
1536 			 * __GFP_NOFAIL is not to be used in new code.
1537 			 *
1538 			 * All __GFP_NOFAIL callers should be fixed so that they
1539 			 * properly detect and handle allocation failures.
1540 			 *
1541 			 * We most definitely don't want callers attempting to
1542 			 * allocate greater than order-1 page units with
1543 			 * __GFP_NOFAIL.
1544 			 */
1545 			WARN_ON_ONCE(order > 1);
1546 		}
1547 		spin_lock_irqsave(&zone->lock, flags);
1548 		page = __rmqueue(zone, order, migratetype);
1549 		spin_unlock(&zone->lock);
1550 		if (!page)
1551 			goto failed;
1552 		__mod_zone_freepage_state(zone, -(1 << order),
1553 					  get_pageblock_migratetype(page));
1554 	}
1555 
1556 	__mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
1557 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1558 	zone_statistics(preferred_zone, zone, gfp_flags);
1559 	local_irq_restore(flags);
1560 
1561 	VM_BUG_ON(bad_range(zone, page));
1562 	if (prep_new_page(page, order, gfp_flags))
1563 		goto again;
1564 	return page;
1565 
1566 failed:
1567 	local_irq_restore(flags);
1568 	return NULL;
1569 }
1570 
1571 #ifdef CONFIG_FAIL_PAGE_ALLOC
1572 
1573 static struct {
1574 	struct fault_attr attr;
1575 
1576 	u32 ignore_gfp_highmem;
1577 	u32 ignore_gfp_wait;
1578 	u32 min_order;
1579 } fail_page_alloc = {
1580 	.attr = FAULT_ATTR_INITIALIZER,
1581 	.ignore_gfp_wait = 1,
1582 	.ignore_gfp_highmem = 1,
1583 	.min_order = 1,
1584 };
1585 
1586 static int __init setup_fail_page_alloc(char *str)
1587 {
1588 	return setup_fault_attr(&fail_page_alloc.attr, str);
1589 }
1590 __setup("fail_page_alloc=", setup_fail_page_alloc);
1591 
1592 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1593 {
1594 	if (order < fail_page_alloc.min_order)
1595 		return false;
1596 	if (gfp_mask & __GFP_NOFAIL)
1597 		return false;
1598 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1599 		return false;
1600 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1601 		return false;
1602 
1603 	return should_fail(&fail_page_alloc.attr, 1 << order);
1604 }
1605 
1606 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1607 
1608 static int __init fail_page_alloc_debugfs(void)
1609 {
1610 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1611 	struct dentry *dir;
1612 
1613 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1614 					&fail_page_alloc.attr);
1615 	if (IS_ERR(dir))
1616 		return PTR_ERR(dir);
1617 
1618 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1619 				&fail_page_alloc.ignore_gfp_wait))
1620 		goto fail;
1621 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1622 				&fail_page_alloc.ignore_gfp_highmem))
1623 		goto fail;
1624 	if (!debugfs_create_u32("min-order", mode, dir,
1625 				&fail_page_alloc.min_order))
1626 		goto fail;
1627 
1628 	return 0;
1629 fail:
1630 	debugfs_remove_recursive(dir);
1631 
1632 	return -ENOMEM;
1633 }
1634 
1635 late_initcall(fail_page_alloc_debugfs);
1636 
1637 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1638 
1639 #else /* CONFIG_FAIL_PAGE_ALLOC */
1640 
1641 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1642 {
1643 	return false;
1644 }
1645 
1646 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1647 
1648 /*
1649  * Return true if free pages are above 'mark'. This takes into account the order
1650  * of the allocation.
1651  */
1652 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1653 		      int classzone_idx, int alloc_flags, long free_pages)
1654 {
1655 	/* free_pages my go negative - that's OK */
1656 	long min = mark;
1657 	long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1658 	int o;
1659 	long free_cma = 0;
1660 
1661 	free_pages -= (1 << order) - 1;
1662 	if (alloc_flags & ALLOC_HIGH)
1663 		min -= min / 2;
1664 	if (alloc_flags & ALLOC_HARDER)
1665 		min -= min / 4;
1666 #ifdef CONFIG_CMA
1667 	/* If allocation can't use CMA areas don't use free CMA pages */
1668 	if (!(alloc_flags & ALLOC_CMA))
1669 		free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1670 #endif
1671 
1672 	if (free_pages - free_cma <= min + lowmem_reserve)
1673 		return false;
1674 	for (o = 0; o < order; o++) {
1675 		/* At the next order, this order's pages become unavailable */
1676 		free_pages -= z->free_area[o].nr_free << o;
1677 
1678 		/* Require fewer higher order pages to be free */
1679 		min >>= 1;
1680 
1681 		if (free_pages <= min)
1682 			return false;
1683 	}
1684 	return true;
1685 }
1686 
1687 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1688 		      int classzone_idx, int alloc_flags)
1689 {
1690 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1691 					zone_page_state(z, NR_FREE_PAGES));
1692 }
1693 
1694 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1695 		      int classzone_idx, int alloc_flags)
1696 {
1697 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
1698 
1699 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1700 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1701 
1702 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1703 								free_pages);
1704 }
1705 
1706 #ifdef CONFIG_NUMA
1707 /*
1708  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1709  * skip over zones that are not allowed by the cpuset, or that have
1710  * been recently (in last second) found to be nearly full.  See further
1711  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1712  * that have to skip over a lot of full or unallowed zones.
1713  *
1714  * If the zonelist cache is present in the passed in zonelist, then
1715  * returns a pointer to the allowed node mask (either the current
1716  * tasks mems_allowed, or node_states[N_MEMORY].)
1717  *
1718  * If the zonelist cache is not available for this zonelist, does
1719  * nothing and returns NULL.
1720  *
1721  * If the fullzones BITMAP in the zonelist cache is stale (more than
1722  * a second since last zap'd) then we zap it out (clear its bits.)
1723  *
1724  * We hold off even calling zlc_setup, until after we've checked the
1725  * first zone in the zonelist, on the theory that most allocations will
1726  * be satisfied from that first zone, so best to examine that zone as
1727  * quickly as we can.
1728  */
1729 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1730 {
1731 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1732 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1733 
1734 	zlc = zonelist->zlcache_ptr;
1735 	if (!zlc)
1736 		return NULL;
1737 
1738 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1739 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1740 		zlc->last_full_zap = jiffies;
1741 	}
1742 
1743 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1744 					&cpuset_current_mems_allowed :
1745 					&node_states[N_MEMORY];
1746 	return allowednodes;
1747 }
1748 
1749 /*
1750  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1751  * if it is worth looking at further for free memory:
1752  *  1) Check that the zone isn't thought to be full (doesn't have its
1753  *     bit set in the zonelist_cache fullzones BITMAP).
1754  *  2) Check that the zones node (obtained from the zonelist_cache
1755  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1756  * Return true (non-zero) if zone is worth looking at further, or
1757  * else return false (zero) if it is not.
1758  *
1759  * This check -ignores- the distinction between various watermarks,
1760  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1761  * found to be full for any variation of these watermarks, it will
1762  * be considered full for up to one second by all requests, unless
1763  * we are so low on memory on all allowed nodes that we are forced
1764  * into the second scan of the zonelist.
1765  *
1766  * In the second scan we ignore this zonelist cache and exactly
1767  * apply the watermarks to all zones, even it is slower to do so.
1768  * We are low on memory in the second scan, and should leave no stone
1769  * unturned looking for a free page.
1770  */
1771 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1772 						nodemask_t *allowednodes)
1773 {
1774 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1775 	int i;				/* index of *z in zonelist zones */
1776 	int n;				/* node that zone *z is on */
1777 
1778 	zlc = zonelist->zlcache_ptr;
1779 	if (!zlc)
1780 		return 1;
1781 
1782 	i = z - zonelist->_zonerefs;
1783 	n = zlc->z_to_n[i];
1784 
1785 	/* This zone is worth trying if it is allowed but not full */
1786 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1787 }
1788 
1789 /*
1790  * Given 'z' scanning a zonelist, set the corresponding bit in
1791  * zlc->fullzones, so that subsequent attempts to allocate a page
1792  * from that zone don't waste time re-examining it.
1793  */
1794 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1795 {
1796 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1797 	int i;				/* index of *z in zonelist zones */
1798 
1799 	zlc = zonelist->zlcache_ptr;
1800 	if (!zlc)
1801 		return;
1802 
1803 	i = z - zonelist->_zonerefs;
1804 
1805 	set_bit(i, zlc->fullzones);
1806 }
1807 
1808 /*
1809  * clear all zones full, called after direct reclaim makes progress so that
1810  * a zone that was recently full is not skipped over for up to a second
1811  */
1812 static void zlc_clear_zones_full(struct zonelist *zonelist)
1813 {
1814 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1815 
1816 	zlc = zonelist->zlcache_ptr;
1817 	if (!zlc)
1818 		return;
1819 
1820 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1821 }
1822 
1823 static bool zone_local(struct zone *local_zone, struct zone *zone)
1824 {
1825 	return node_distance(local_zone->node, zone->node) == LOCAL_DISTANCE;
1826 }
1827 
1828 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1829 {
1830 	return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1831 }
1832 
1833 static void __paginginit init_zone_allows_reclaim(int nid)
1834 {
1835 	int i;
1836 
1837 	for_each_online_node(i)
1838 		if (node_distance(nid, i) <= RECLAIM_DISTANCE)
1839 			node_set(i, NODE_DATA(nid)->reclaim_nodes);
1840 		else
1841 			zone_reclaim_mode = 1;
1842 }
1843 
1844 #else	/* CONFIG_NUMA */
1845 
1846 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1847 {
1848 	return NULL;
1849 }
1850 
1851 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1852 				nodemask_t *allowednodes)
1853 {
1854 	return 1;
1855 }
1856 
1857 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1858 {
1859 }
1860 
1861 static void zlc_clear_zones_full(struct zonelist *zonelist)
1862 {
1863 }
1864 
1865 static bool zone_local(struct zone *local_zone, struct zone *zone)
1866 {
1867 	return true;
1868 }
1869 
1870 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1871 {
1872 	return true;
1873 }
1874 
1875 static inline void init_zone_allows_reclaim(int nid)
1876 {
1877 }
1878 #endif	/* CONFIG_NUMA */
1879 
1880 /*
1881  * get_page_from_freelist goes through the zonelist trying to allocate
1882  * a page.
1883  */
1884 static struct page *
1885 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1886 		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1887 		struct zone *preferred_zone, int migratetype)
1888 {
1889 	struct zoneref *z;
1890 	struct page *page = NULL;
1891 	int classzone_idx;
1892 	struct zone *zone;
1893 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1894 	int zlc_active = 0;		/* set if using zonelist_cache */
1895 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1896 
1897 	classzone_idx = zone_idx(preferred_zone);
1898 zonelist_scan:
1899 	/*
1900 	 * Scan zonelist, looking for a zone with enough free.
1901 	 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
1902 	 */
1903 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1904 						high_zoneidx, nodemask) {
1905 		unsigned long mark;
1906 
1907 		if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1908 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1909 				continue;
1910 		if ((alloc_flags & ALLOC_CPUSET) &&
1911 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1912 				continue;
1913 		BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1914 		if (unlikely(alloc_flags & ALLOC_NO_WATERMARKS))
1915 			goto try_this_zone;
1916 		/*
1917 		 * Distribute pages in proportion to the individual
1918 		 * zone size to ensure fair page aging.  The zone a
1919 		 * page was allocated in should have no effect on the
1920 		 * time the page has in memory before being reclaimed.
1921 		 *
1922 		 * When zone_reclaim_mode is enabled, try to stay in
1923 		 * local zones in the fastpath.  If that fails, the
1924 		 * slowpath is entered, which will do another pass
1925 		 * starting with the local zones, but ultimately fall
1926 		 * back to remote zones that do not partake in the
1927 		 * fairness round-robin cycle of this zonelist.
1928 		 */
1929 		if (alloc_flags & ALLOC_WMARK_LOW) {
1930 			if (zone_page_state(zone, NR_ALLOC_BATCH) <= 0)
1931 				continue;
1932 			if (zone_reclaim_mode &&
1933 			    !zone_local(preferred_zone, zone))
1934 				continue;
1935 		}
1936 		/*
1937 		 * When allocating a page cache page for writing, we
1938 		 * want to get it from a zone that is within its dirty
1939 		 * limit, such that no single zone holds more than its
1940 		 * proportional share of globally allowed dirty pages.
1941 		 * The dirty limits take into account the zone's
1942 		 * lowmem reserves and high watermark so that kswapd
1943 		 * should be able to balance it without having to
1944 		 * write pages from its LRU list.
1945 		 *
1946 		 * This may look like it could increase pressure on
1947 		 * lower zones by failing allocations in higher zones
1948 		 * before they are full.  But the pages that do spill
1949 		 * over are limited as the lower zones are protected
1950 		 * by this very same mechanism.  It should not become
1951 		 * a practical burden to them.
1952 		 *
1953 		 * XXX: For now, allow allocations to potentially
1954 		 * exceed the per-zone dirty limit in the slowpath
1955 		 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1956 		 * which is important when on a NUMA setup the allowed
1957 		 * zones are together not big enough to reach the
1958 		 * global limit.  The proper fix for these situations
1959 		 * will require awareness of zones in the
1960 		 * dirty-throttling and the flusher threads.
1961 		 */
1962 		if ((alloc_flags & ALLOC_WMARK_LOW) &&
1963 		    (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1964 			goto this_zone_full;
1965 
1966 		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1967 		if (!zone_watermark_ok(zone, order, mark,
1968 				       classzone_idx, alloc_flags)) {
1969 			int ret;
1970 
1971 			if (IS_ENABLED(CONFIG_NUMA) &&
1972 					!did_zlc_setup && nr_online_nodes > 1) {
1973 				/*
1974 				 * we do zlc_setup if there are multiple nodes
1975 				 * and before considering the first zone allowed
1976 				 * by the cpuset.
1977 				 */
1978 				allowednodes = zlc_setup(zonelist, alloc_flags);
1979 				zlc_active = 1;
1980 				did_zlc_setup = 1;
1981 			}
1982 
1983 			if (zone_reclaim_mode == 0 ||
1984 			    !zone_allows_reclaim(preferred_zone, zone))
1985 				goto this_zone_full;
1986 
1987 			/*
1988 			 * As we may have just activated ZLC, check if the first
1989 			 * eligible zone has failed zone_reclaim recently.
1990 			 */
1991 			if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1992 				!zlc_zone_worth_trying(zonelist, z, allowednodes))
1993 				continue;
1994 
1995 			ret = zone_reclaim(zone, gfp_mask, order);
1996 			switch (ret) {
1997 			case ZONE_RECLAIM_NOSCAN:
1998 				/* did not scan */
1999 				continue;
2000 			case ZONE_RECLAIM_FULL:
2001 				/* scanned but unreclaimable */
2002 				continue;
2003 			default:
2004 				/* did we reclaim enough */
2005 				if (zone_watermark_ok(zone, order, mark,
2006 						classzone_idx, alloc_flags))
2007 					goto try_this_zone;
2008 
2009 				/*
2010 				 * Failed to reclaim enough to meet watermark.
2011 				 * Only mark the zone full if checking the min
2012 				 * watermark or if we failed to reclaim just
2013 				 * 1<<order pages or else the page allocator
2014 				 * fastpath will prematurely mark zones full
2015 				 * when the watermark is between the low and
2016 				 * min watermarks.
2017 				 */
2018 				if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2019 				    ret == ZONE_RECLAIM_SOME)
2020 					goto this_zone_full;
2021 
2022 				continue;
2023 			}
2024 		}
2025 
2026 try_this_zone:
2027 		page = buffered_rmqueue(preferred_zone, zone, order,
2028 						gfp_mask, migratetype);
2029 		if (page)
2030 			break;
2031 this_zone_full:
2032 		if (IS_ENABLED(CONFIG_NUMA))
2033 			zlc_mark_zone_full(zonelist, z);
2034 	}
2035 
2036 	if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
2037 		/* Disable zlc cache for second zonelist scan */
2038 		zlc_active = 0;
2039 		goto zonelist_scan;
2040 	}
2041 
2042 	if (page)
2043 		/*
2044 		 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2045 		 * necessary to allocate the page. The expectation is
2046 		 * that the caller is taking steps that will free more
2047 		 * memory. The caller should avoid the page being used
2048 		 * for !PFMEMALLOC purposes.
2049 		 */
2050 		page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
2051 
2052 	return page;
2053 }
2054 
2055 /*
2056  * Large machines with many possible nodes should not always dump per-node
2057  * meminfo in irq context.
2058  */
2059 static inline bool should_suppress_show_mem(void)
2060 {
2061 	bool ret = false;
2062 
2063 #if NODES_SHIFT > 8
2064 	ret = in_interrupt();
2065 #endif
2066 	return ret;
2067 }
2068 
2069 static DEFINE_RATELIMIT_STATE(nopage_rs,
2070 		DEFAULT_RATELIMIT_INTERVAL,
2071 		DEFAULT_RATELIMIT_BURST);
2072 
2073 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2074 {
2075 	unsigned int filter = SHOW_MEM_FILTER_NODES;
2076 
2077 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2078 	    debug_guardpage_minorder() > 0)
2079 		return;
2080 
2081 	/*
2082 	 * Walking all memory to count page types is very expensive and should
2083 	 * be inhibited in non-blockable contexts.
2084 	 */
2085 	if (!(gfp_mask & __GFP_WAIT))
2086 		filter |= SHOW_MEM_FILTER_PAGE_COUNT;
2087 
2088 	/*
2089 	 * This documents exceptions given to allocations in certain
2090 	 * contexts that are allowed to allocate outside current's set
2091 	 * of allowed nodes.
2092 	 */
2093 	if (!(gfp_mask & __GFP_NOMEMALLOC))
2094 		if (test_thread_flag(TIF_MEMDIE) ||
2095 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
2096 			filter &= ~SHOW_MEM_FILTER_NODES;
2097 	if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2098 		filter &= ~SHOW_MEM_FILTER_NODES;
2099 
2100 	if (fmt) {
2101 		struct va_format vaf;
2102 		va_list args;
2103 
2104 		va_start(args, fmt);
2105 
2106 		vaf.fmt = fmt;
2107 		vaf.va = &args;
2108 
2109 		pr_warn("%pV", &vaf);
2110 
2111 		va_end(args);
2112 	}
2113 
2114 	pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2115 		current->comm, order, gfp_mask);
2116 
2117 	dump_stack();
2118 	if (!should_suppress_show_mem())
2119 		show_mem(filter);
2120 }
2121 
2122 static inline int
2123 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2124 				unsigned long did_some_progress,
2125 				unsigned long pages_reclaimed)
2126 {
2127 	/* Do not loop if specifically requested */
2128 	if (gfp_mask & __GFP_NORETRY)
2129 		return 0;
2130 
2131 	/* Always retry if specifically requested */
2132 	if (gfp_mask & __GFP_NOFAIL)
2133 		return 1;
2134 
2135 	/*
2136 	 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2137 	 * making forward progress without invoking OOM. Suspend also disables
2138 	 * storage devices so kswapd will not help. Bail if we are suspending.
2139 	 */
2140 	if (!did_some_progress && pm_suspended_storage())
2141 		return 0;
2142 
2143 	/*
2144 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2145 	 * means __GFP_NOFAIL, but that may not be true in other
2146 	 * implementations.
2147 	 */
2148 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
2149 		return 1;
2150 
2151 	/*
2152 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2153 	 * specified, then we retry until we no longer reclaim any pages
2154 	 * (above), or we've reclaimed an order of pages at least as
2155 	 * large as the allocation's order. In both cases, if the
2156 	 * allocation still fails, we stop retrying.
2157 	 */
2158 	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2159 		return 1;
2160 
2161 	return 0;
2162 }
2163 
2164 static inline struct page *
2165 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2166 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2167 	nodemask_t *nodemask, struct zone *preferred_zone,
2168 	int migratetype)
2169 {
2170 	struct page *page;
2171 
2172 	/* Acquire the OOM killer lock for the zones in zonelist */
2173 	if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2174 		schedule_timeout_uninterruptible(1);
2175 		return NULL;
2176 	}
2177 
2178 	/*
2179 	 * Go through the zonelist yet one more time, keep very high watermark
2180 	 * here, this is only to catch a parallel oom killing, we must fail if
2181 	 * we're still under heavy pressure.
2182 	 */
2183 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2184 		order, zonelist, high_zoneidx,
2185 		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2186 		preferred_zone, migratetype);
2187 	if (page)
2188 		goto out;
2189 
2190 	if (!(gfp_mask & __GFP_NOFAIL)) {
2191 		/* The OOM killer will not help higher order allocs */
2192 		if (order > PAGE_ALLOC_COSTLY_ORDER)
2193 			goto out;
2194 		/* The OOM killer does not needlessly kill tasks for lowmem */
2195 		if (high_zoneidx < ZONE_NORMAL)
2196 			goto out;
2197 		/*
2198 		 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2199 		 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2200 		 * The caller should handle page allocation failure by itself if
2201 		 * it specifies __GFP_THISNODE.
2202 		 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2203 		 */
2204 		if (gfp_mask & __GFP_THISNODE)
2205 			goto out;
2206 	}
2207 	/* Exhausted what can be done so it's blamo time */
2208 	out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2209 
2210 out:
2211 	clear_zonelist_oom(zonelist, gfp_mask);
2212 	return page;
2213 }
2214 
2215 #ifdef CONFIG_COMPACTION
2216 /* Try memory compaction for high-order allocations before reclaim */
2217 static struct page *
2218 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2219 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2220 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2221 	int migratetype, bool sync_migration,
2222 	bool *contended_compaction, bool *deferred_compaction,
2223 	unsigned long *did_some_progress)
2224 {
2225 	if (!order)
2226 		return NULL;
2227 
2228 	if (compaction_deferred(preferred_zone, order)) {
2229 		*deferred_compaction = true;
2230 		return NULL;
2231 	}
2232 
2233 	current->flags |= PF_MEMALLOC;
2234 	*did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2235 						nodemask, sync_migration,
2236 						contended_compaction);
2237 	current->flags &= ~PF_MEMALLOC;
2238 
2239 	if (*did_some_progress != COMPACT_SKIPPED) {
2240 		struct page *page;
2241 
2242 		/* Page migration frees to the PCP lists but we want merging */
2243 		drain_pages(get_cpu());
2244 		put_cpu();
2245 
2246 		page = get_page_from_freelist(gfp_mask, nodemask,
2247 				order, zonelist, high_zoneidx,
2248 				alloc_flags & ~ALLOC_NO_WATERMARKS,
2249 				preferred_zone, migratetype);
2250 		if (page) {
2251 			preferred_zone->compact_blockskip_flush = false;
2252 			preferred_zone->compact_considered = 0;
2253 			preferred_zone->compact_defer_shift = 0;
2254 			if (order >= preferred_zone->compact_order_failed)
2255 				preferred_zone->compact_order_failed = order + 1;
2256 			count_vm_event(COMPACTSUCCESS);
2257 			return page;
2258 		}
2259 
2260 		/*
2261 		 * It's bad if compaction run occurs and fails.
2262 		 * The most likely reason is that pages exist,
2263 		 * but not enough to satisfy watermarks.
2264 		 */
2265 		count_vm_event(COMPACTFAIL);
2266 
2267 		/*
2268 		 * As async compaction considers a subset of pageblocks, only
2269 		 * defer if the failure was a sync compaction failure.
2270 		 */
2271 		if (sync_migration)
2272 			defer_compaction(preferred_zone, order);
2273 
2274 		cond_resched();
2275 	}
2276 
2277 	return NULL;
2278 }
2279 #else
2280 static inline struct page *
2281 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2282 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2283 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2284 	int migratetype, bool sync_migration,
2285 	bool *contended_compaction, bool *deferred_compaction,
2286 	unsigned long *did_some_progress)
2287 {
2288 	return NULL;
2289 }
2290 #endif /* CONFIG_COMPACTION */
2291 
2292 /* Perform direct synchronous page reclaim */
2293 static int
2294 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2295 		  nodemask_t *nodemask)
2296 {
2297 	struct reclaim_state reclaim_state;
2298 	int progress;
2299 
2300 	cond_resched();
2301 
2302 	/* We now go into synchronous reclaim */
2303 	cpuset_memory_pressure_bump();
2304 	current->flags |= PF_MEMALLOC;
2305 	lockdep_set_current_reclaim_state(gfp_mask);
2306 	reclaim_state.reclaimed_slab = 0;
2307 	current->reclaim_state = &reclaim_state;
2308 
2309 	progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2310 
2311 	current->reclaim_state = NULL;
2312 	lockdep_clear_current_reclaim_state();
2313 	current->flags &= ~PF_MEMALLOC;
2314 
2315 	cond_resched();
2316 
2317 	return progress;
2318 }
2319 
2320 /* The really slow allocator path where we enter direct reclaim */
2321 static inline struct page *
2322 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2323 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2324 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2325 	int migratetype, unsigned long *did_some_progress)
2326 {
2327 	struct page *page = NULL;
2328 	bool drained = false;
2329 
2330 	*did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2331 					       nodemask);
2332 	if (unlikely(!(*did_some_progress)))
2333 		return NULL;
2334 
2335 	/* After successful reclaim, reconsider all zones for allocation */
2336 	if (IS_ENABLED(CONFIG_NUMA))
2337 		zlc_clear_zones_full(zonelist);
2338 
2339 retry:
2340 	page = get_page_from_freelist(gfp_mask, nodemask, order,
2341 					zonelist, high_zoneidx,
2342 					alloc_flags & ~ALLOC_NO_WATERMARKS,
2343 					preferred_zone, migratetype);
2344 
2345 	/*
2346 	 * If an allocation failed after direct reclaim, it could be because
2347 	 * pages are pinned on the per-cpu lists. Drain them and try again
2348 	 */
2349 	if (!page && !drained) {
2350 		drain_all_pages();
2351 		drained = true;
2352 		goto retry;
2353 	}
2354 
2355 	return page;
2356 }
2357 
2358 /*
2359  * This is called in the allocator slow-path if the allocation request is of
2360  * sufficient urgency to ignore watermarks and take other desperate measures
2361  */
2362 static inline struct page *
2363 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2364 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2365 	nodemask_t *nodemask, struct zone *preferred_zone,
2366 	int migratetype)
2367 {
2368 	struct page *page;
2369 
2370 	do {
2371 		page = get_page_from_freelist(gfp_mask, nodemask, order,
2372 			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2373 			preferred_zone, migratetype);
2374 
2375 		if (!page && gfp_mask & __GFP_NOFAIL)
2376 			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2377 	} while (!page && (gfp_mask & __GFP_NOFAIL));
2378 
2379 	return page;
2380 }
2381 
2382 static void prepare_slowpath(gfp_t gfp_mask, unsigned int order,
2383 			     struct zonelist *zonelist,
2384 			     enum zone_type high_zoneidx,
2385 			     struct zone *preferred_zone)
2386 {
2387 	struct zoneref *z;
2388 	struct zone *zone;
2389 
2390 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
2391 		if (!(gfp_mask & __GFP_NO_KSWAPD))
2392 			wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2393 		/*
2394 		 * Only reset the batches of zones that were actually
2395 		 * considered in the fast path, we don't want to
2396 		 * thrash fairness information for zones that are not
2397 		 * actually part of this zonelist's round-robin cycle.
2398 		 */
2399 		if (zone_reclaim_mode && !zone_local(preferred_zone, zone))
2400 			continue;
2401 		mod_zone_page_state(zone, NR_ALLOC_BATCH,
2402 				    high_wmark_pages(zone) -
2403 				    low_wmark_pages(zone) -
2404 				    zone_page_state(zone, NR_ALLOC_BATCH));
2405 	}
2406 }
2407 
2408 static inline int
2409 gfp_to_alloc_flags(gfp_t gfp_mask)
2410 {
2411 	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2412 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2413 
2414 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2415 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2416 
2417 	/*
2418 	 * The caller may dip into page reserves a bit more if the caller
2419 	 * cannot run direct reclaim, or if the caller has realtime scheduling
2420 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
2421 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2422 	 */
2423 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2424 
2425 	if (!wait) {
2426 		/*
2427 		 * Not worth trying to allocate harder for
2428 		 * __GFP_NOMEMALLOC even if it can't schedule.
2429 		 */
2430 		if  (!(gfp_mask & __GFP_NOMEMALLOC))
2431 			alloc_flags |= ALLOC_HARDER;
2432 		/*
2433 		 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2434 		 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2435 		 */
2436 		alloc_flags &= ~ALLOC_CPUSET;
2437 	} else if (unlikely(rt_task(current)) && !in_interrupt())
2438 		alloc_flags |= ALLOC_HARDER;
2439 
2440 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2441 		if (gfp_mask & __GFP_MEMALLOC)
2442 			alloc_flags |= ALLOC_NO_WATERMARKS;
2443 		else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2444 			alloc_flags |= ALLOC_NO_WATERMARKS;
2445 		else if (!in_interrupt() &&
2446 				((current->flags & PF_MEMALLOC) ||
2447 				 unlikely(test_thread_flag(TIF_MEMDIE))))
2448 			alloc_flags |= ALLOC_NO_WATERMARKS;
2449 	}
2450 #ifdef CONFIG_CMA
2451 	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2452 		alloc_flags |= ALLOC_CMA;
2453 #endif
2454 	return alloc_flags;
2455 }
2456 
2457 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2458 {
2459 	return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2460 }
2461 
2462 static inline struct page *
2463 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2464 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2465 	nodemask_t *nodemask, struct zone *preferred_zone,
2466 	int migratetype)
2467 {
2468 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2469 	struct page *page = NULL;
2470 	int alloc_flags;
2471 	unsigned long pages_reclaimed = 0;
2472 	unsigned long did_some_progress;
2473 	bool sync_migration = false;
2474 	bool deferred_compaction = false;
2475 	bool contended_compaction = false;
2476 
2477 	/*
2478 	 * In the slowpath, we sanity check order to avoid ever trying to
2479 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2480 	 * be using allocators in order of preference for an area that is
2481 	 * too large.
2482 	 */
2483 	if (order >= MAX_ORDER) {
2484 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2485 		return NULL;
2486 	}
2487 
2488 	/*
2489 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2490 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2491 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2492 	 * using a larger set of nodes after it has established that the
2493 	 * allowed per node queues are empty and that nodes are
2494 	 * over allocated.
2495 	 */
2496 	if (IS_ENABLED(CONFIG_NUMA) &&
2497 			(gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2498 		goto nopage;
2499 
2500 restart:
2501 	prepare_slowpath(gfp_mask, order, zonelist,
2502 			 high_zoneidx, preferred_zone);
2503 
2504 	/*
2505 	 * OK, we're below the kswapd watermark and have kicked background
2506 	 * reclaim. Now things get more complex, so set up alloc_flags according
2507 	 * to how we want to proceed.
2508 	 */
2509 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
2510 
2511 	/*
2512 	 * Find the true preferred zone if the allocation is unconstrained by
2513 	 * cpusets.
2514 	 */
2515 	if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2516 		first_zones_zonelist(zonelist, high_zoneidx, NULL,
2517 					&preferred_zone);
2518 
2519 rebalance:
2520 	/* This is the last chance, in general, before the goto nopage. */
2521 	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2522 			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2523 			preferred_zone, migratetype);
2524 	if (page)
2525 		goto got_pg;
2526 
2527 	/* Allocate without watermarks if the context allows */
2528 	if (alloc_flags & ALLOC_NO_WATERMARKS) {
2529 		/*
2530 		 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2531 		 * the allocation is high priority and these type of
2532 		 * allocations are system rather than user orientated
2533 		 */
2534 		zonelist = node_zonelist(numa_node_id(), gfp_mask);
2535 
2536 		page = __alloc_pages_high_priority(gfp_mask, order,
2537 				zonelist, high_zoneidx, nodemask,
2538 				preferred_zone, migratetype);
2539 		if (page) {
2540 			goto got_pg;
2541 		}
2542 	}
2543 
2544 	/* Atomic allocations - we can't balance anything */
2545 	if (!wait)
2546 		goto nopage;
2547 
2548 	/* Avoid recursion of direct reclaim */
2549 	if (current->flags & PF_MEMALLOC)
2550 		goto nopage;
2551 
2552 	/* Avoid allocations with no watermarks from looping endlessly */
2553 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2554 		goto nopage;
2555 
2556 	/*
2557 	 * Try direct compaction. The first pass is asynchronous. Subsequent
2558 	 * attempts after direct reclaim are synchronous
2559 	 */
2560 	page = __alloc_pages_direct_compact(gfp_mask, order,
2561 					zonelist, high_zoneidx,
2562 					nodemask,
2563 					alloc_flags, preferred_zone,
2564 					migratetype, sync_migration,
2565 					&contended_compaction,
2566 					&deferred_compaction,
2567 					&did_some_progress);
2568 	if (page)
2569 		goto got_pg;
2570 	sync_migration = true;
2571 
2572 	/*
2573 	 * If compaction is deferred for high-order allocations, it is because
2574 	 * sync compaction recently failed. In this is the case and the caller
2575 	 * requested a movable allocation that does not heavily disrupt the
2576 	 * system then fail the allocation instead of entering direct reclaim.
2577 	 */
2578 	if ((deferred_compaction || contended_compaction) &&
2579 						(gfp_mask & __GFP_NO_KSWAPD))
2580 		goto nopage;
2581 
2582 	/* Try direct reclaim and then allocating */
2583 	page = __alloc_pages_direct_reclaim(gfp_mask, order,
2584 					zonelist, high_zoneidx,
2585 					nodemask,
2586 					alloc_flags, preferred_zone,
2587 					migratetype, &did_some_progress);
2588 	if (page)
2589 		goto got_pg;
2590 
2591 	/*
2592 	 * If we failed to make any progress reclaiming, then we are
2593 	 * running out of options and have to consider going OOM
2594 	 */
2595 	if (!did_some_progress) {
2596 		if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2597 			if (oom_killer_disabled)
2598 				goto nopage;
2599 			/* Coredumps can quickly deplete all memory reserves */
2600 			if ((current->flags & PF_DUMPCORE) &&
2601 			    !(gfp_mask & __GFP_NOFAIL))
2602 				goto nopage;
2603 			page = __alloc_pages_may_oom(gfp_mask, order,
2604 					zonelist, high_zoneidx,
2605 					nodemask, preferred_zone,
2606 					migratetype);
2607 			if (page)
2608 				goto got_pg;
2609 
2610 			if (!(gfp_mask & __GFP_NOFAIL)) {
2611 				/*
2612 				 * The oom killer is not called for high-order
2613 				 * allocations that may fail, so if no progress
2614 				 * is being made, there are no other options and
2615 				 * retrying is unlikely to help.
2616 				 */
2617 				if (order > PAGE_ALLOC_COSTLY_ORDER)
2618 					goto nopage;
2619 				/*
2620 				 * The oom killer is not called for lowmem
2621 				 * allocations to prevent needlessly killing
2622 				 * innocent tasks.
2623 				 */
2624 				if (high_zoneidx < ZONE_NORMAL)
2625 					goto nopage;
2626 			}
2627 
2628 			goto restart;
2629 		}
2630 	}
2631 
2632 	/* Check if we should retry the allocation */
2633 	pages_reclaimed += did_some_progress;
2634 	if (should_alloc_retry(gfp_mask, order, did_some_progress,
2635 						pages_reclaimed)) {
2636 		/* Wait for some write requests to complete then retry */
2637 		wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2638 		goto rebalance;
2639 	} else {
2640 		/*
2641 		 * High-order allocations do not necessarily loop after
2642 		 * direct reclaim and reclaim/compaction depends on compaction
2643 		 * being called after reclaim so call directly if necessary
2644 		 */
2645 		page = __alloc_pages_direct_compact(gfp_mask, order,
2646 					zonelist, high_zoneidx,
2647 					nodemask,
2648 					alloc_flags, preferred_zone,
2649 					migratetype, sync_migration,
2650 					&contended_compaction,
2651 					&deferred_compaction,
2652 					&did_some_progress);
2653 		if (page)
2654 			goto got_pg;
2655 	}
2656 
2657 nopage:
2658 	warn_alloc_failed(gfp_mask, order, NULL);
2659 	return page;
2660 got_pg:
2661 	if (kmemcheck_enabled)
2662 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2663 
2664 	return page;
2665 }
2666 
2667 /*
2668  * This is the 'heart' of the zoned buddy allocator.
2669  */
2670 struct page *
2671 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2672 			struct zonelist *zonelist, nodemask_t *nodemask)
2673 {
2674 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2675 	struct zone *preferred_zone;
2676 	struct page *page = NULL;
2677 	int migratetype = allocflags_to_migratetype(gfp_mask);
2678 	unsigned int cpuset_mems_cookie;
2679 	int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
2680 	struct mem_cgroup *memcg = NULL;
2681 
2682 	gfp_mask &= gfp_allowed_mask;
2683 
2684 	lockdep_trace_alloc(gfp_mask);
2685 
2686 	might_sleep_if(gfp_mask & __GFP_WAIT);
2687 
2688 	if (should_fail_alloc_page(gfp_mask, order))
2689 		return NULL;
2690 
2691 	/*
2692 	 * Check the zones suitable for the gfp_mask contain at least one
2693 	 * valid zone. It's possible to have an empty zonelist as a result
2694 	 * of GFP_THISNODE and a memoryless node
2695 	 */
2696 	if (unlikely(!zonelist->_zonerefs->zone))
2697 		return NULL;
2698 
2699 	/*
2700 	 * Will only have any effect when __GFP_KMEMCG is set.  This is
2701 	 * verified in the (always inline) callee
2702 	 */
2703 	if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2704 		return NULL;
2705 
2706 retry_cpuset:
2707 	cpuset_mems_cookie = get_mems_allowed();
2708 
2709 	/* The preferred zone is used for statistics later */
2710 	first_zones_zonelist(zonelist, high_zoneidx,
2711 				nodemask ? : &cpuset_current_mems_allowed,
2712 				&preferred_zone);
2713 	if (!preferred_zone)
2714 		goto out;
2715 
2716 #ifdef CONFIG_CMA
2717 	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2718 		alloc_flags |= ALLOC_CMA;
2719 #endif
2720 	/* First allocation attempt */
2721 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2722 			zonelist, high_zoneidx, alloc_flags,
2723 			preferred_zone, migratetype);
2724 	if (unlikely(!page)) {
2725 		/*
2726 		 * Runtime PM, block IO and its error handling path
2727 		 * can deadlock because I/O on the device might not
2728 		 * complete.
2729 		 */
2730 		gfp_mask = memalloc_noio_flags(gfp_mask);
2731 		page = __alloc_pages_slowpath(gfp_mask, order,
2732 				zonelist, high_zoneidx, nodemask,
2733 				preferred_zone, migratetype);
2734 	}
2735 
2736 	trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2737 
2738 out:
2739 	/*
2740 	 * When updating a task's mems_allowed, it is possible to race with
2741 	 * parallel threads in such a way that an allocation can fail while
2742 	 * the mask is being updated. If a page allocation is about to fail,
2743 	 * check if the cpuset changed during allocation and if so, retry.
2744 	 */
2745 	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2746 		goto retry_cpuset;
2747 
2748 	memcg_kmem_commit_charge(page, memcg, order);
2749 
2750 	return page;
2751 }
2752 EXPORT_SYMBOL(__alloc_pages_nodemask);
2753 
2754 /*
2755  * Common helper functions.
2756  */
2757 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2758 {
2759 	struct page *page;
2760 
2761 	/*
2762 	 * __get_free_pages() returns a 32-bit address, which cannot represent
2763 	 * a highmem page
2764 	 */
2765 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2766 
2767 	page = alloc_pages(gfp_mask, order);
2768 	if (!page)
2769 		return 0;
2770 	return (unsigned long) page_address(page);
2771 }
2772 EXPORT_SYMBOL(__get_free_pages);
2773 
2774 unsigned long get_zeroed_page(gfp_t gfp_mask)
2775 {
2776 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2777 }
2778 EXPORT_SYMBOL(get_zeroed_page);
2779 
2780 void __free_pages(struct page *page, unsigned int order)
2781 {
2782 	if (put_page_testzero(page)) {
2783 		if (order == 0)
2784 			free_hot_cold_page(page, 0);
2785 		else
2786 			__free_pages_ok(page, order);
2787 	}
2788 }
2789 
2790 EXPORT_SYMBOL(__free_pages);
2791 
2792 void free_pages(unsigned long addr, unsigned int order)
2793 {
2794 	if (addr != 0) {
2795 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2796 		__free_pages(virt_to_page((void *)addr), order);
2797 	}
2798 }
2799 
2800 EXPORT_SYMBOL(free_pages);
2801 
2802 /*
2803  * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2804  * pages allocated with __GFP_KMEMCG.
2805  *
2806  * Those pages are accounted to a particular memcg, embedded in the
2807  * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2808  * for that information only to find out that it is NULL for users who have no
2809  * interest in that whatsoever, we provide these functions.
2810  *
2811  * The caller knows better which flags it relies on.
2812  */
2813 void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2814 {
2815 	memcg_kmem_uncharge_pages(page, order);
2816 	__free_pages(page, order);
2817 }
2818 
2819 void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2820 {
2821 	if (addr != 0) {
2822 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2823 		__free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2824 	}
2825 }
2826 
2827 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2828 {
2829 	if (addr) {
2830 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
2831 		unsigned long used = addr + PAGE_ALIGN(size);
2832 
2833 		split_page(virt_to_page((void *)addr), order);
2834 		while (used < alloc_end) {
2835 			free_page(used);
2836 			used += PAGE_SIZE;
2837 		}
2838 	}
2839 	return (void *)addr;
2840 }
2841 
2842 /**
2843  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2844  * @size: the number of bytes to allocate
2845  * @gfp_mask: GFP flags for the allocation
2846  *
2847  * This function is similar to alloc_pages(), except that it allocates the
2848  * minimum number of pages to satisfy the request.  alloc_pages() can only
2849  * allocate memory in power-of-two pages.
2850  *
2851  * This function is also limited by MAX_ORDER.
2852  *
2853  * Memory allocated by this function must be released by free_pages_exact().
2854  */
2855 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2856 {
2857 	unsigned int order = get_order(size);
2858 	unsigned long addr;
2859 
2860 	addr = __get_free_pages(gfp_mask, order);
2861 	return make_alloc_exact(addr, order, size);
2862 }
2863 EXPORT_SYMBOL(alloc_pages_exact);
2864 
2865 /**
2866  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2867  *			   pages on a node.
2868  * @nid: the preferred node ID where memory should be allocated
2869  * @size: the number of bytes to allocate
2870  * @gfp_mask: GFP flags for the allocation
2871  *
2872  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2873  * back.
2874  * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2875  * but is not exact.
2876  */
2877 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2878 {
2879 	unsigned order = get_order(size);
2880 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
2881 	if (!p)
2882 		return NULL;
2883 	return make_alloc_exact((unsigned long)page_address(p), order, size);
2884 }
2885 EXPORT_SYMBOL(alloc_pages_exact_nid);
2886 
2887 /**
2888  * free_pages_exact - release memory allocated via alloc_pages_exact()
2889  * @virt: the value returned by alloc_pages_exact.
2890  * @size: size of allocation, same value as passed to alloc_pages_exact().
2891  *
2892  * Release the memory allocated by a previous call to alloc_pages_exact.
2893  */
2894 void free_pages_exact(void *virt, size_t size)
2895 {
2896 	unsigned long addr = (unsigned long)virt;
2897 	unsigned long end = addr + PAGE_ALIGN(size);
2898 
2899 	while (addr < end) {
2900 		free_page(addr);
2901 		addr += PAGE_SIZE;
2902 	}
2903 }
2904 EXPORT_SYMBOL(free_pages_exact);
2905 
2906 /**
2907  * nr_free_zone_pages - count number of pages beyond high watermark
2908  * @offset: The zone index of the highest zone
2909  *
2910  * nr_free_zone_pages() counts the number of counts pages which are beyond the
2911  * high watermark within all zones at or below a given zone index.  For each
2912  * zone, the number of pages is calculated as:
2913  *     managed_pages - high_pages
2914  */
2915 static unsigned long nr_free_zone_pages(int offset)
2916 {
2917 	struct zoneref *z;
2918 	struct zone *zone;
2919 
2920 	/* Just pick one node, since fallback list is circular */
2921 	unsigned long sum = 0;
2922 
2923 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2924 
2925 	for_each_zone_zonelist(zone, z, zonelist, offset) {
2926 		unsigned long size = zone->managed_pages;
2927 		unsigned long high = high_wmark_pages(zone);
2928 		if (size > high)
2929 			sum += size - high;
2930 	}
2931 
2932 	return sum;
2933 }
2934 
2935 /**
2936  * nr_free_buffer_pages - count number of pages beyond high watermark
2937  *
2938  * nr_free_buffer_pages() counts the number of pages which are beyond the high
2939  * watermark within ZONE_DMA and ZONE_NORMAL.
2940  */
2941 unsigned long nr_free_buffer_pages(void)
2942 {
2943 	return nr_free_zone_pages(gfp_zone(GFP_USER));
2944 }
2945 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2946 
2947 /**
2948  * nr_free_pagecache_pages - count number of pages beyond high watermark
2949  *
2950  * nr_free_pagecache_pages() counts the number of pages which are beyond the
2951  * high watermark within all zones.
2952  */
2953 unsigned long nr_free_pagecache_pages(void)
2954 {
2955 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2956 }
2957 
2958 static inline void show_node(struct zone *zone)
2959 {
2960 	if (IS_ENABLED(CONFIG_NUMA))
2961 		printk("Node %d ", zone_to_nid(zone));
2962 }
2963 
2964 void si_meminfo(struct sysinfo *val)
2965 {
2966 	val->totalram = totalram_pages;
2967 	val->sharedram = 0;
2968 	val->freeram = global_page_state(NR_FREE_PAGES);
2969 	val->bufferram = nr_blockdev_pages();
2970 	val->totalhigh = totalhigh_pages;
2971 	val->freehigh = nr_free_highpages();
2972 	val->mem_unit = PAGE_SIZE;
2973 }
2974 
2975 EXPORT_SYMBOL(si_meminfo);
2976 
2977 #ifdef CONFIG_NUMA
2978 void si_meminfo_node(struct sysinfo *val, int nid)
2979 {
2980 	int zone_type;		/* needs to be signed */
2981 	unsigned long managed_pages = 0;
2982 	pg_data_t *pgdat = NODE_DATA(nid);
2983 
2984 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
2985 		managed_pages += pgdat->node_zones[zone_type].managed_pages;
2986 	val->totalram = managed_pages;
2987 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
2988 #ifdef CONFIG_HIGHMEM
2989 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
2990 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2991 			NR_FREE_PAGES);
2992 #else
2993 	val->totalhigh = 0;
2994 	val->freehigh = 0;
2995 #endif
2996 	val->mem_unit = PAGE_SIZE;
2997 }
2998 #endif
2999 
3000 /*
3001  * Determine whether the node should be displayed or not, depending on whether
3002  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3003  */
3004 bool skip_free_areas_node(unsigned int flags, int nid)
3005 {
3006 	bool ret = false;
3007 	unsigned int cpuset_mems_cookie;
3008 
3009 	if (!(flags & SHOW_MEM_FILTER_NODES))
3010 		goto out;
3011 
3012 	do {
3013 		cpuset_mems_cookie = get_mems_allowed();
3014 		ret = !node_isset(nid, cpuset_current_mems_allowed);
3015 	} while (!put_mems_allowed(cpuset_mems_cookie));
3016 out:
3017 	return ret;
3018 }
3019 
3020 #define K(x) ((x) << (PAGE_SHIFT-10))
3021 
3022 static void show_migration_types(unsigned char type)
3023 {
3024 	static const char types[MIGRATE_TYPES] = {
3025 		[MIGRATE_UNMOVABLE]	= 'U',
3026 		[MIGRATE_RECLAIMABLE]	= 'E',
3027 		[MIGRATE_MOVABLE]	= 'M',
3028 		[MIGRATE_RESERVE]	= 'R',
3029 #ifdef CONFIG_CMA
3030 		[MIGRATE_CMA]		= 'C',
3031 #endif
3032 #ifdef CONFIG_MEMORY_ISOLATION
3033 		[MIGRATE_ISOLATE]	= 'I',
3034 #endif
3035 	};
3036 	char tmp[MIGRATE_TYPES + 1];
3037 	char *p = tmp;
3038 	int i;
3039 
3040 	for (i = 0; i < MIGRATE_TYPES; i++) {
3041 		if (type & (1 << i))
3042 			*p++ = types[i];
3043 	}
3044 
3045 	*p = '\0';
3046 	printk("(%s) ", tmp);
3047 }
3048 
3049 /*
3050  * Show free area list (used inside shift_scroll-lock stuff)
3051  * We also calculate the percentage fragmentation. We do this by counting the
3052  * memory on each free list with the exception of the first item on the list.
3053  * Suppresses nodes that are not allowed by current's cpuset if
3054  * SHOW_MEM_FILTER_NODES is passed.
3055  */
3056 void show_free_areas(unsigned int filter)
3057 {
3058 	int cpu;
3059 	struct zone *zone;
3060 
3061 	for_each_populated_zone(zone) {
3062 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3063 			continue;
3064 		show_node(zone);
3065 		printk("%s per-cpu:\n", zone->name);
3066 
3067 		for_each_online_cpu(cpu) {
3068 			struct per_cpu_pageset *pageset;
3069 
3070 			pageset = per_cpu_ptr(zone->pageset, cpu);
3071 
3072 			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3073 			       cpu, pageset->pcp.high,
3074 			       pageset->pcp.batch, pageset->pcp.count);
3075 		}
3076 	}
3077 
3078 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3079 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3080 		" unevictable:%lu"
3081 		" dirty:%lu writeback:%lu unstable:%lu\n"
3082 		" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3083 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3084 		" free_cma:%lu\n",
3085 		global_page_state(NR_ACTIVE_ANON),
3086 		global_page_state(NR_INACTIVE_ANON),
3087 		global_page_state(NR_ISOLATED_ANON),
3088 		global_page_state(NR_ACTIVE_FILE),
3089 		global_page_state(NR_INACTIVE_FILE),
3090 		global_page_state(NR_ISOLATED_FILE),
3091 		global_page_state(NR_UNEVICTABLE),
3092 		global_page_state(NR_FILE_DIRTY),
3093 		global_page_state(NR_WRITEBACK),
3094 		global_page_state(NR_UNSTABLE_NFS),
3095 		global_page_state(NR_FREE_PAGES),
3096 		global_page_state(NR_SLAB_RECLAIMABLE),
3097 		global_page_state(NR_SLAB_UNRECLAIMABLE),
3098 		global_page_state(NR_FILE_MAPPED),
3099 		global_page_state(NR_SHMEM),
3100 		global_page_state(NR_PAGETABLE),
3101 		global_page_state(NR_BOUNCE),
3102 		global_page_state(NR_FREE_CMA_PAGES));
3103 
3104 	for_each_populated_zone(zone) {
3105 		int i;
3106 
3107 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3108 			continue;
3109 		show_node(zone);
3110 		printk("%s"
3111 			" free:%lukB"
3112 			" min:%lukB"
3113 			" low:%lukB"
3114 			" high:%lukB"
3115 			" active_anon:%lukB"
3116 			" inactive_anon:%lukB"
3117 			" active_file:%lukB"
3118 			" inactive_file:%lukB"
3119 			" unevictable:%lukB"
3120 			" isolated(anon):%lukB"
3121 			" isolated(file):%lukB"
3122 			" present:%lukB"
3123 			" managed:%lukB"
3124 			" mlocked:%lukB"
3125 			" dirty:%lukB"
3126 			" writeback:%lukB"
3127 			" mapped:%lukB"
3128 			" shmem:%lukB"
3129 			" slab_reclaimable:%lukB"
3130 			" slab_unreclaimable:%lukB"
3131 			" kernel_stack:%lukB"
3132 			" pagetables:%lukB"
3133 			" unstable:%lukB"
3134 			" bounce:%lukB"
3135 			" free_cma:%lukB"
3136 			" writeback_tmp:%lukB"
3137 			" pages_scanned:%lu"
3138 			" all_unreclaimable? %s"
3139 			"\n",
3140 			zone->name,
3141 			K(zone_page_state(zone, NR_FREE_PAGES)),
3142 			K(min_wmark_pages(zone)),
3143 			K(low_wmark_pages(zone)),
3144 			K(high_wmark_pages(zone)),
3145 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
3146 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
3147 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
3148 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
3149 			K(zone_page_state(zone, NR_UNEVICTABLE)),
3150 			K(zone_page_state(zone, NR_ISOLATED_ANON)),
3151 			K(zone_page_state(zone, NR_ISOLATED_FILE)),
3152 			K(zone->present_pages),
3153 			K(zone->managed_pages),
3154 			K(zone_page_state(zone, NR_MLOCK)),
3155 			K(zone_page_state(zone, NR_FILE_DIRTY)),
3156 			K(zone_page_state(zone, NR_WRITEBACK)),
3157 			K(zone_page_state(zone, NR_FILE_MAPPED)),
3158 			K(zone_page_state(zone, NR_SHMEM)),
3159 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3160 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3161 			zone_page_state(zone, NR_KERNEL_STACK) *
3162 				THREAD_SIZE / 1024,
3163 			K(zone_page_state(zone, NR_PAGETABLE)),
3164 			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3165 			K(zone_page_state(zone, NR_BOUNCE)),
3166 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3167 			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3168 			zone->pages_scanned,
3169 			(!zone_reclaimable(zone) ? "yes" : "no")
3170 			);
3171 		printk("lowmem_reserve[]:");
3172 		for (i = 0; i < MAX_NR_ZONES; i++)
3173 			printk(" %lu", zone->lowmem_reserve[i]);
3174 		printk("\n");
3175 	}
3176 
3177 	for_each_populated_zone(zone) {
3178 		unsigned long nr[MAX_ORDER], flags, order, total = 0;
3179 		unsigned char types[MAX_ORDER];
3180 
3181 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3182 			continue;
3183 		show_node(zone);
3184 		printk("%s: ", zone->name);
3185 
3186 		spin_lock_irqsave(&zone->lock, flags);
3187 		for (order = 0; order < MAX_ORDER; order++) {
3188 			struct free_area *area = &zone->free_area[order];
3189 			int type;
3190 
3191 			nr[order] = area->nr_free;
3192 			total += nr[order] << order;
3193 
3194 			types[order] = 0;
3195 			for (type = 0; type < MIGRATE_TYPES; type++) {
3196 				if (!list_empty(&area->free_list[type]))
3197 					types[order] |= 1 << type;
3198 			}
3199 		}
3200 		spin_unlock_irqrestore(&zone->lock, flags);
3201 		for (order = 0; order < MAX_ORDER; order++) {
3202 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
3203 			if (nr[order])
3204 				show_migration_types(types[order]);
3205 		}
3206 		printk("= %lukB\n", K(total));
3207 	}
3208 
3209 	hugetlb_show_meminfo();
3210 
3211 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3212 
3213 	show_swap_cache_info();
3214 }
3215 
3216 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3217 {
3218 	zoneref->zone = zone;
3219 	zoneref->zone_idx = zone_idx(zone);
3220 }
3221 
3222 /*
3223  * Builds allocation fallback zone lists.
3224  *
3225  * Add all populated zones of a node to the zonelist.
3226  */
3227 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3228 				int nr_zones)
3229 {
3230 	struct zone *zone;
3231 	enum zone_type zone_type = MAX_NR_ZONES;
3232 
3233 	do {
3234 		zone_type--;
3235 		zone = pgdat->node_zones + zone_type;
3236 		if (populated_zone(zone)) {
3237 			zoneref_set_zone(zone,
3238 				&zonelist->_zonerefs[nr_zones++]);
3239 			check_highest_zone(zone_type);
3240 		}
3241 	} while (zone_type);
3242 
3243 	return nr_zones;
3244 }
3245 
3246 
3247 /*
3248  *  zonelist_order:
3249  *  0 = automatic detection of better ordering.
3250  *  1 = order by ([node] distance, -zonetype)
3251  *  2 = order by (-zonetype, [node] distance)
3252  *
3253  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3254  *  the same zonelist. So only NUMA can configure this param.
3255  */
3256 #define ZONELIST_ORDER_DEFAULT  0
3257 #define ZONELIST_ORDER_NODE     1
3258 #define ZONELIST_ORDER_ZONE     2
3259 
3260 /* zonelist order in the kernel.
3261  * set_zonelist_order() will set this to NODE or ZONE.
3262  */
3263 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3264 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3265 
3266 
3267 #ifdef CONFIG_NUMA
3268 /* The value user specified ....changed by config */
3269 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3270 /* string for sysctl */
3271 #define NUMA_ZONELIST_ORDER_LEN	16
3272 char numa_zonelist_order[16] = "default";
3273 
3274 /*
3275  * interface for configure zonelist ordering.
3276  * command line option "numa_zonelist_order"
3277  *	= "[dD]efault	- default, automatic configuration.
3278  *	= "[nN]ode 	- order by node locality, then by zone within node
3279  *	= "[zZ]one      - order by zone, then by locality within zone
3280  */
3281 
3282 static int __parse_numa_zonelist_order(char *s)
3283 {
3284 	if (*s == 'd' || *s == 'D') {
3285 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3286 	} else if (*s == 'n' || *s == 'N') {
3287 		user_zonelist_order = ZONELIST_ORDER_NODE;
3288 	} else if (*s == 'z' || *s == 'Z') {
3289 		user_zonelist_order = ZONELIST_ORDER_ZONE;
3290 	} else {
3291 		printk(KERN_WARNING
3292 			"Ignoring invalid numa_zonelist_order value:  "
3293 			"%s\n", s);
3294 		return -EINVAL;
3295 	}
3296 	return 0;
3297 }
3298 
3299 static __init int setup_numa_zonelist_order(char *s)
3300 {
3301 	int ret;
3302 
3303 	if (!s)
3304 		return 0;
3305 
3306 	ret = __parse_numa_zonelist_order(s);
3307 	if (ret == 0)
3308 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3309 
3310 	return ret;
3311 }
3312 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3313 
3314 /*
3315  * sysctl handler for numa_zonelist_order
3316  */
3317 int numa_zonelist_order_handler(ctl_table *table, int write,
3318 		void __user *buffer, size_t *length,
3319 		loff_t *ppos)
3320 {
3321 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
3322 	int ret;
3323 	static DEFINE_MUTEX(zl_order_mutex);
3324 
3325 	mutex_lock(&zl_order_mutex);
3326 	if (write) {
3327 		if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3328 			ret = -EINVAL;
3329 			goto out;
3330 		}
3331 		strcpy(saved_string, (char *)table->data);
3332 	}
3333 	ret = proc_dostring(table, write, buffer, length, ppos);
3334 	if (ret)
3335 		goto out;
3336 	if (write) {
3337 		int oldval = user_zonelist_order;
3338 
3339 		ret = __parse_numa_zonelist_order((char *)table->data);
3340 		if (ret) {
3341 			/*
3342 			 * bogus value.  restore saved string
3343 			 */
3344 			strncpy((char *)table->data, saved_string,
3345 				NUMA_ZONELIST_ORDER_LEN);
3346 			user_zonelist_order = oldval;
3347 		} else if (oldval != user_zonelist_order) {
3348 			mutex_lock(&zonelists_mutex);
3349 			build_all_zonelists(NULL, NULL);
3350 			mutex_unlock(&zonelists_mutex);
3351 		}
3352 	}
3353 out:
3354 	mutex_unlock(&zl_order_mutex);
3355 	return ret;
3356 }
3357 
3358 
3359 #define MAX_NODE_LOAD (nr_online_nodes)
3360 static int node_load[MAX_NUMNODES];
3361 
3362 /**
3363  * find_next_best_node - find the next node that should appear in a given node's fallback list
3364  * @node: node whose fallback list we're appending
3365  * @used_node_mask: nodemask_t of already used nodes
3366  *
3367  * We use a number of factors to determine which is the next node that should
3368  * appear on a given node's fallback list.  The node should not have appeared
3369  * already in @node's fallback list, and it should be the next closest node
3370  * according to the distance array (which contains arbitrary distance values
3371  * from each node to each node in the system), and should also prefer nodes
3372  * with no CPUs, since presumably they'll have very little allocation pressure
3373  * on them otherwise.
3374  * It returns -1 if no node is found.
3375  */
3376 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3377 {
3378 	int n, val;
3379 	int min_val = INT_MAX;
3380 	int best_node = NUMA_NO_NODE;
3381 	const struct cpumask *tmp = cpumask_of_node(0);
3382 
3383 	/* Use the local node if we haven't already */
3384 	if (!node_isset(node, *used_node_mask)) {
3385 		node_set(node, *used_node_mask);
3386 		return node;
3387 	}
3388 
3389 	for_each_node_state(n, N_MEMORY) {
3390 
3391 		/* Don't want a node to appear more than once */
3392 		if (node_isset(n, *used_node_mask))
3393 			continue;
3394 
3395 		/* Use the distance array to find the distance */
3396 		val = node_distance(node, n);
3397 
3398 		/* Penalize nodes under us ("prefer the next node") */
3399 		val += (n < node);
3400 
3401 		/* Give preference to headless and unused nodes */
3402 		tmp = cpumask_of_node(n);
3403 		if (!cpumask_empty(tmp))
3404 			val += PENALTY_FOR_NODE_WITH_CPUS;
3405 
3406 		/* Slight preference for less loaded node */
3407 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3408 		val += node_load[n];
3409 
3410 		if (val < min_val) {
3411 			min_val = val;
3412 			best_node = n;
3413 		}
3414 	}
3415 
3416 	if (best_node >= 0)
3417 		node_set(best_node, *used_node_mask);
3418 
3419 	return best_node;
3420 }
3421 
3422 
3423 /*
3424  * Build zonelists ordered by node and zones within node.
3425  * This results in maximum locality--normal zone overflows into local
3426  * DMA zone, if any--but risks exhausting DMA zone.
3427  */
3428 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3429 {
3430 	int j;
3431 	struct zonelist *zonelist;
3432 
3433 	zonelist = &pgdat->node_zonelists[0];
3434 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3435 		;
3436 	j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3437 	zonelist->_zonerefs[j].zone = NULL;
3438 	zonelist->_zonerefs[j].zone_idx = 0;
3439 }
3440 
3441 /*
3442  * Build gfp_thisnode zonelists
3443  */
3444 static void build_thisnode_zonelists(pg_data_t *pgdat)
3445 {
3446 	int j;
3447 	struct zonelist *zonelist;
3448 
3449 	zonelist = &pgdat->node_zonelists[1];
3450 	j = build_zonelists_node(pgdat, zonelist, 0);
3451 	zonelist->_zonerefs[j].zone = NULL;
3452 	zonelist->_zonerefs[j].zone_idx = 0;
3453 }
3454 
3455 /*
3456  * Build zonelists ordered by zone and nodes within zones.
3457  * This results in conserving DMA zone[s] until all Normal memory is
3458  * exhausted, but results in overflowing to remote node while memory
3459  * may still exist in local DMA zone.
3460  */
3461 static int node_order[MAX_NUMNODES];
3462 
3463 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3464 {
3465 	int pos, j, node;
3466 	int zone_type;		/* needs to be signed */
3467 	struct zone *z;
3468 	struct zonelist *zonelist;
3469 
3470 	zonelist = &pgdat->node_zonelists[0];
3471 	pos = 0;
3472 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3473 		for (j = 0; j < nr_nodes; j++) {
3474 			node = node_order[j];
3475 			z = &NODE_DATA(node)->node_zones[zone_type];
3476 			if (populated_zone(z)) {
3477 				zoneref_set_zone(z,
3478 					&zonelist->_zonerefs[pos++]);
3479 				check_highest_zone(zone_type);
3480 			}
3481 		}
3482 	}
3483 	zonelist->_zonerefs[pos].zone = NULL;
3484 	zonelist->_zonerefs[pos].zone_idx = 0;
3485 }
3486 
3487 static int default_zonelist_order(void)
3488 {
3489 	int nid, zone_type;
3490 	unsigned long low_kmem_size, total_size;
3491 	struct zone *z;
3492 	int average_size;
3493 	/*
3494 	 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3495 	 * If they are really small and used heavily, the system can fall
3496 	 * into OOM very easily.
3497 	 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3498 	 */
3499 	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3500 	low_kmem_size = 0;
3501 	total_size = 0;
3502 	for_each_online_node(nid) {
3503 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3504 			z = &NODE_DATA(nid)->node_zones[zone_type];
3505 			if (populated_zone(z)) {
3506 				if (zone_type < ZONE_NORMAL)
3507 					low_kmem_size += z->managed_pages;
3508 				total_size += z->managed_pages;
3509 			} else if (zone_type == ZONE_NORMAL) {
3510 				/*
3511 				 * If any node has only lowmem, then node order
3512 				 * is preferred to allow kernel allocations
3513 				 * locally; otherwise, they can easily infringe
3514 				 * on other nodes when there is an abundance of
3515 				 * lowmem available to allocate from.
3516 				 */
3517 				return ZONELIST_ORDER_NODE;
3518 			}
3519 		}
3520 	}
3521 	if (!low_kmem_size ||  /* there are no DMA area. */
3522 	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3523 		return ZONELIST_ORDER_NODE;
3524 	/*
3525 	 * look into each node's config.
3526 	 * If there is a node whose DMA/DMA32 memory is very big area on
3527 	 * local memory, NODE_ORDER may be suitable.
3528 	 */
3529 	average_size = total_size /
3530 				(nodes_weight(node_states[N_MEMORY]) + 1);
3531 	for_each_online_node(nid) {
3532 		low_kmem_size = 0;
3533 		total_size = 0;
3534 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3535 			z = &NODE_DATA(nid)->node_zones[zone_type];
3536 			if (populated_zone(z)) {
3537 				if (zone_type < ZONE_NORMAL)
3538 					low_kmem_size += z->present_pages;
3539 				total_size += z->present_pages;
3540 			}
3541 		}
3542 		if (low_kmem_size &&
3543 		    total_size > average_size && /* ignore small node */
3544 		    low_kmem_size > total_size * 70/100)
3545 			return ZONELIST_ORDER_NODE;
3546 	}
3547 	return ZONELIST_ORDER_ZONE;
3548 }
3549 
3550 static void set_zonelist_order(void)
3551 {
3552 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3553 		current_zonelist_order = default_zonelist_order();
3554 	else
3555 		current_zonelist_order = user_zonelist_order;
3556 }
3557 
3558 static void build_zonelists(pg_data_t *pgdat)
3559 {
3560 	int j, node, load;
3561 	enum zone_type i;
3562 	nodemask_t used_mask;
3563 	int local_node, prev_node;
3564 	struct zonelist *zonelist;
3565 	int order = current_zonelist_order;
3566 
3567 	/* initialize zonelists */
3568 	for (i = 0; i < MAX_ZONELISTS; i++) {
3569 		zonelist = pgdat->node_zonelists + i;
3570 		zonelist->_zonerefs[0].zone = NULL;
3571 		zonelist->_zonerefs[0].zone_idx = 0;
3572 	}
3573 
3574 	/* NUMA-aware ordering of nodes */
3575 	local_node = pgdat->node_id;
3576 	load = nr_online_nodes;
3577 	prev_node = local_node;
3578 	nodes_clear(used_mask);
3579 
3580 	memset(node_order, 0, sizeof(node_order));
3581 	j = 0;
3582 
3583 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3584 		/*
3585 		 * We don't want to pressure a particular node.
3586 		 * So adding penalty to the first node in same
3587 		 * distance group to make it round-robin.
3588 		 */
3589 		if (node_distance(local_node, node) !=
3590 		    node_distance(local_node, prev_node))
3591 			node_load[node] = load;
3592 
3593 		prev_node = node;
3594 		load--;
3595 		if (order == ZONELIST_ORDER_NODE)
3596 			build_zonelists_in_node_order(pgdat, node);
3597 		else
3598 			node_order[j++] = node;	/* remember order */
3599 	}
3600 
3601 	if (order == ZONELIST_ORDER_ZONE) {
3602 		/* calculate node order -- i.e., DMA last! */
3603 		build_zonelists_in_zone_order(pgdat, j);
3604 	}
3605 
3606 	build_thisnode_zonelists(pgdat);
3607 }
3608 
3609 /* Construct the zonelist performance cache - see further mmzone.h */
3610 static void build_zonelist_cache(pg_data_t *pgdat)
3611 {
3612 	struct zonelist *zonelist;
3613 	struct zonelist_cache *zlc;
3614 	struct zoneref *z;
3615 
3616 	zonelist = &pgdat->node_zonelists[0];
3617 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3618 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3619 	for (z = zonelist->_zonerefs; z->zone; z++)
3620 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3621 }
3622 
3623 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3624 /*
3625  * Return node id of node used for "local" allocations.
3626  * I.e., first node id of first zone in arg node's generic zonelist.
3627  * Used for initializing percpu 'numa_mem', which is used primarily
3628  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3629  */
3630 int local_memory_node(int node)
3631 {
3632 	struct zone *zone;
3633 
3634 	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3635 				   gfp_zone(GFP_KERNEL),
3636 				   NULL,
3637 				   &zone);
3638 	return zone->node;
3639 }
3640 #endif
3641 
3642 #else	/* CONFIG_NUMA */
3643 
3644 static void set_zonelist_order(void)
3645 {
3646 	current_zonelist_order = ZONELIST_ORDER_ZONE;
3647 }
3648 
3649 static void build_zonelists(pg_data_t *pgdat)
3650 {
3651 	int node, local_node;
3652 	enum zone_type j;
3653 	struct zonelist *zonelist;
3654 
3655 	local_node = pgdat->node_id;
3656 
3657 	zonelist = &pgdat->node_zonelists[0];
3658 	j = build_zonelists_node(pgdat, zonelist, 0);
3659 
3660 	/*
3661 	 * Now we build the zonelist so that it contains the zones
3662 	 * of all the other nodes.
3663 	 * We don't want to pressure a particular node, so when
3664 	 * building the zones for node N, we make sure that the
3665 	 * zones coming right after the local ones are those from
3666 	 * node N+1 (modulo N)
3667 	 */
3668 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3669 		if (!node_online(node))
3670 			continue;
3671 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3672 	}
3673 	for (node = 0; node < local_node; node++) {
3674 		if (!node_online(node))
3675 			continue;
3676 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3677 	}
3678 
3679 	zonelist->_zonerefs[j].zone = NULL;
3680 	zonelist->_zonerefs[j].zone_idx = 0;
3681 }
3682 
3683 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3684 static void build_zonelist_cache(pg_data_t *pgdat)
3685 {
3686 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
3687 }
3688 
3689 #endif	/* CONFIG_NUMA */
3690 
3691 /*
3692  * Boot pageset table. One per cpu which is going to be used for all
3693  * zones and all nodes. The parameters will be set in such a way
3694  * that an item put on a list will immediately be handed over to
3695  * the buddy list. This is safe since pageset manipulation is done
3696  * with interrupts disabled.
3697  *
3698  * The boot_pagesets must be kept even after bootup is complete for
3699  * unused processors and/or zones. They do play a role for bootstrapping
3700  * hotplugged processors.
3701  *
3702  * zoneinfo_show() and maybe other functions do
3703  * not check if the processor is online before following the pageset pointer.
3704  * Other parts of the kernel may not check if the zone is available.
3705  */
3706 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3707 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3708 static void setup_zone_pageset(struct zone *zone);
3709 
3710 /*
3711  * Global mutex to protect against size modification of zonelists
3712  * as well as to serialize pageset setup for the new populated zone.
3713  */
3714 DEFINE_MUTEX(zonelists_mutex);
3715 
3716 /* return values int ....just for stop_machine() */
3717 static int __build_all_zonelists(void *data)
3718 {
3719 	int nid;
3720 	int cpu;
3721 	pg_data_t *self = data;
3722 
3723 #ifdef CONFIG_NUMA
3724 	memset(node_load, 0, sizeof(node_load));
3725 #endif
3726 
3727 	if (self && !node_online(self->node_id)) {
3728 		build_zonelists(self);
3729 		build_zonelist_cache(self);
3730 	}
3731 
3732 	for_each_online_node(nid) {
3733 		pg_data_t *pgdat = NODE_DATA(nid);
3734 
3735 		build_zonelists(pgdat);
3736 		build_zonelist_cache(pgdat);
3737 	}
3738 
3739 	/*
3740 	 * Initialize the boot_pagesets that are going to be used
3741 	 * for bootstrapping processors. The real pagesets for
3742 	 * each zone will be allocated later when the per cpu
3743 	 * allocator is available.
3744 	 *
3745 	 * boot_pagesets are used also for bootstrapping offline
3746 	 * cpus if the system is already booted because the pagesets
3747 	 * are needed to initialize allocators on a specific cpu too.
3748 	 * F.e. the percpu allocator needs the page allocator which
3749 	 * needs the percpu allocator in order to allocate its pagesets
3750 	 * (a chicken-egg dilemma).
3751 	 */
3752 	for_each_possible_cpu(cpu) {
3753 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3754 
3755 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3756 		/*
3757 		 * We now know the "local memory node" for each node--
3758 		 * i.e., the node of the first zone in the generic zonelist.
3759 		 * Set up numa_mem percpu variable for on-line cpus.  During
3760 		 * boot, only the boot cpu should be on-line;  we'll init the
3761 		 * secondary cpus' numa_mem as they come on-line.  During
3762 		 * node/memory hotplug, we'll fixup all on-line cpus.
3763 		 */
3764 		if (cpu_online(cpu))
3765 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3766 #endif
3767 	}
3768 
3769 	return 0;
3770 }
3771 
3772 /*
3773  * Called with zonelists_mutex held always
3774  * unless system_state == SYSTEM_BOOTING.
3775  */
3776 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3777 {
3778 	set_zonelist_order();
3779 
3780 	if (system_state == SYSTEM_BOOTING) {
3781 		__build_all_zonelists(NULL);
3782 		mminit_verify_zonelist();
3783 		cpuset_init_current_mems_allowed();
3784 	} else {
3785 #ifdef CONFIG_MEMORY_HOTPLUG
3786 		if (zone)
3787 			setup_zone_pageset(zone);
3788 #endif
3789 		/* we have to stop all cpus to guarantee there is no user
3790 		   of zonelist */
3791 		stop_machine(__build_all_zonelists, pgdat, NULL);
3792 		/* cpuset refresh routine should be here */
3793 	}
3794 	vm_total_pages = nr_free_pagecache_pages();
3795 	/*
3796 	 * Disable grouping by mobility if the number of pages in the
3797 	 * system is too low to allow the mechanism to work. It would be
3798 	 * more accurate, but expensive to check per-zone. This check is
3799 	 * made on memory-hotadd so a system can start with mobility
3800 	 * disabled and enable it later
3801 	 */
3802 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3803 		page_group_by_mobility_disabled = 1;
3804 	else
3805 		page_group_by_mobility_disabled = 0;
3806 
3807 	printk("Built %i zonelists in %s order, mobility grouping %s.  "
3808 		"Total pages: %ld\n",
3809 			nr_online_nodes,
3810 			zonelist_order_name[current_zonelist_order],
3811 			page_group_by_mobility_disabled ? "off" : "on",
3812 			vm_total_pages);
3813 #ifdef CONFIG_NUMA
3814 	printk("Policy zone: %s\n", zone_names[policy_zone]);
3815 #endif
3816 }
3817 
3818 /*
3819  * Helper functions to size the waitqueue hash table.
3820  * Essentially these want to choose hash table sizes sufficiently
3821  * large so that collisions trying to wait on pages are rare.
3822  * But in fact, the number of active page waitqueues on typical
3823  * systems is ridiculously low, less than 200. So this is even
3824  * conservative, even though it seems large.
3825  *
3826  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3827  * waitqueues, i.e. the size of the waitq table given the number of pages.
3828  */
3829 #define PAGES_PER_WAITQUEUE	256
3830 
3831 #ifndef CONFIG_MEMORY_HOTPLUG
3832 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3833 {
3834 	unsigned long size = 1;
3835 
3836 	pages /= PAGES_PER_WAITQUEUE;
3837 
3838 	while (size < pages)
3839 		size <<= 1;
3840 
3841 	/*
3842 	 * Once we have dozens or even hundreds of threads sleeping
3843 	 * on IO we've got bigger problems than wait queue collision.
3844 	 * Limit the size of the wait table to a reasonable size.
3845 	 */
3846 	size = min(size, 4096UL);
3847 
3848 	return max(size, 4UL);
3849 }
3850 #else
3851 /*
3852  * A zone's size might be changed by hot-add, so it is not possible to determine
3853  * a suitable size for its wait_table.  So we use the maximum size now.
3854  *
3855  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
3856  *
3857  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
3858  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3859  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
3860  *
3861  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3862  * or more by the traditional way. (See above).  It equals:
3863  *
3864  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
3865  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
3866  *    powerpc (64K page size)             : =  (32G +16M)byte.
3867  */
3868 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3869 {
3870 	return 4096UL;
3871 }
3872 #endif
3873 
3874 /*
3875  * This is an integer logarithm so that shifts can be used later
3876  * to extract the more random high bits from the multiplicative
3877  * hash function before the remainder is taken.
3878  */
3879 static inline unsigned long wait_table_bits(unsigned long size)
3880 {
3881 	return ffz(~size);
3882 }
3883 
3884 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3885 
3886 /*
3887  * Check if a pageblock contains reserved pages
3888  */
3889 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3890 {
3891 	unsigned long pfn;
3892 
3893 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3894 		if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3895 			return 1;
3896 	}
3897 	return 0;
3898 }
3899 
3900 /*
3901  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3902  * of blocks reserved is based on min_wmark_pages(zone). The memory within
3903  * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3904  * higher will lead to a bigger reserve which will get freed as contiguous
3905  * blocks as reclaim kicks in
3906  */
3907 static void setup_zone_migrate_reserve(struct zone *zone)
3908 {
3909 	unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3910 	struct page *page;
3911 	unsigned long block_migratetype;
3912 	int reserve;
3913 
3914 	/*
3915 	 * Get the start pfn, end pfn and the number of blocks to reserve
3916 	 * We have to be careful to be aligned to pageblock_nr_pages to
3917 	 * make sure that we always check pfn_valid for the first page in
3918 	 * the block.
3919 	 */
3920 	start_pfn = zone->zone_start_pfn;
3921 	end_pfn = zone_end_pfn(zone);
3922 	start_pfn = roundup(start_pfn, pageblock_nr_pages);
3923 	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3924 							pageblock_order;
3925 
3926 	/*
3927 	 * Reserve blocks are generally in place to help high-order atomic
3928 	 * allocations that are short-lived. A min_free_kbytes value that
3929 	 * would result in more than 2 reserve blocks for atomic allocations
3930 	 * is assumed to be in place to help anti-fragmentation for the
3931 	 * future allocation of hugepages at runtime.
3932 	 */
3933 	reserve = min(2, reserve);
3934 
3935 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3936 		if (!pfn_valid(pfn))
3937 			continue;
3938 		page = pfn_to_page(pfn);
3939 
3940 		/* Watch out for overlapping nodes */
3941 		if (page_to_nid(page) != zone_to_nid(zone))
3942 			continue;
3943 
3944 		block_migratetype = get_pageblock_migratetype(page);
3945 
3946 		/* Only test what is necessary when the reserves are not met */
3947 		if (reserve > 0) {
3948 			/*
3949 			 * Blocks with reserved pages will never free, skip
3950 			 * them.
3951 			 */
3952 			block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3953 			if (pageblock_is_reserved(pfn, block_end_pfn))
3954 				continue;
3955 
3956 			/* If this block is reserved, account for it */
3957 			if (block_migratetype == MIGRATE_RESERVE) {
3958 				reserve--;
3959 				continue;
3960 			}
3961 
3962 			/* Suitable for reserving if this block is movable */
3963 			if (block_migratetype == MIGRATE_MOVABLE) {
3964 				set_pageblock_migratetype(page,
3965 							MIGRATE_RESERVE);
3966 				move_freepages_block(zone, page,
3967 							MIGRATE_RESERVE);
3968 				reserve--;
3969 				continue;
3970 			}
3971 		}
3972 
3973 		/*
3974 		 * If the reserve is met and this is a previous reserved block,
3975 		 * take it back
3976 		 */
3977 		if (block_migratetype == MIGRATE_RESERVE) {
3978 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3979 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
3980 		}
3981 	}
3982 }
3983 
3984 /*
3985  * Initially all pages are reserved - free ones are freed
3986  * up by free_all_bootmem() once the early boot process is
3987  * done. Non-atomic initialization, single-pass.
3988  */
3989 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3990 		unsigned long start_pfn, enum memmap_context context)
3991 {
3992 	struct page *page;
3993 	unsigned long end_pfn = start_pfn + size;
3994 	unsigned long pfn;
3995 	struct zone *z;
3996 
3997 	if (highest_memmap_pfn < end_pfn - 1)
3998 		highest_memmap_pfn = end_pfn - 1;
3999 
4000 	z = &NODE_DATA(nid)->node_zones[zone];
4001 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4002 		/*
4003 		 * There can be holes in boot-time mem_map[]s
4004 		 * handed to this function.  They do not
4005 		 * exist on hotplugged memory.
4006 		 */
4007 		if (context == MEMMAP_EARLY) {
4008 			if (!early_pfn_valid(pfn))
4009 				continue;
4010 			if (!early_pfn_in_nid(pfn, nid))
4011 				continue;
4012 		}
4013 		page = pfn_to_page(pfn);
4014 		set_page_links(page, zone, nid, pfn);
4015 		mminit_verify_page_links(page, zone, nid, pfn);
4016 		init_page_count(page);
4017 		page_mapcount_reset(page);
4018 		page_nid_reset_last(page);
4019 		SetPageReserved(page);
4020 		/*
4021 		 * Mark the block movable so that blocks are reserved for
4022 		 * movable at startup. This will force kernel allocations
4023 		 * to reserve their blocks rather than leaking throughout
4024 		 * the address space during boot when many long-lived
4025 		 * kernel allocations are made. Later some blocks near
4026 		 * the start are marked MIGRATE_RESERVE by
4027 		 * setup_zone_migrate_reserve()
4028 		 *
4029 		 * bitmap is created for zone's valid pfn range. but memmap
4030 		 * can be created for invalid pages (for alignment)
4031 		 * check here not to call set_pageblock_migratetype() against
4032 		 * pfn out of zone.
4033 		 */
4034 		if ((z->zone_start_pfn <= pfn)
4035 		    && (pfn < zone_end_pfn(z))
4036 		    && !(pfn & (pageblock_nr_pages - 1)))
4037 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4038 
4039 		INIT_LIST_HEAD(&page->lru);
4040 #ifdef WANT_PAGE_VIRTUAL
4041 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
4042 		if (!is_highmem_idx(zone))
4043 			set_page_address(page, __va(pfn << PAGE_SHIFT));
4044 #endif
4045 	}
4046 }
4047 
4048 static void __meminit zone_init_free_lists(struct zone *zone)
4049 {
4050 	int order, t;
4051 	for_each_migratetype_order(order, t) {
4052 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4053 		zone->free_area[order].nr_free = 0;
4054 	}
4055 }
4056 
4057 #ifndef __HAVE_ARCH_MEMMAP_INIT
4058 #define memmap_init(size, nid, zone, start_pfn) \
4059 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4060 #endif
4061 
4062 static int __meminit zone_batchsize(struct zone *zone)
4063 {
4064 #ifdef CONFIG_MMU
4065 	int batch;
4066 
4067 	/*
4068 	 * The per-cpu-pages pools are set to around 1000th of the
4069 	 * size of the zone.  But no more than 1/2 of a meg.
4070 	 *
4071 	 * OK, so we don't know how big the cache is.  So guess.
4072 	 */
4073 	batch = zone->managed_pages / 1024;
4074 	if (batch * PAGE_SIZE > 512 * 1024)
4075 		batch = (512 * 1024) / PAGE_SIZE;
4076 	batch /= 4;		/* We effectively *= 4 below */
4077 	if (batch < 1)
4078 		batch = 1;
4079 
4080 	/*
4081 	 * Clamp the batch to a 2^n - 1 value. Having a power
4082 	 * of 2 value was found to be more likely to have
4083 	 * suboptimal cache aliasing properties in some cases.
4084 	 *
4085 	 * For example if 2 tasks are alternately allocating
4086 	 * batches of pages, one task can end up with a lot
4087 	 * of pages of one half of the possible page colors
4088 	 * and the other with pages of the other colors.
4089 	 */
4090 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
4091 
4092 	return batch;
4093 
4094 #else
4095 	/* The deferral and batching of frees should be suppressed under NOMMU
4096 	 * conditions.
4097 	 *
4098 	 * The problem is that NOMMU needs to be able to allocate large chunks
4099 	 * of contiguous memory as there's no hardware page translation to
4100 	 * assemble apparent contiguous memory from discontiguous pages.
4101 	 *
4102 	 * Queueing large contiguous runs of pages for batching, however,
4103 	 * causes the pages to actually be freed in smaller chunks.  As there
4104 	 * can be a significant delay between the individual batches being
4105 	 * recycled, this leads to the once large chunks of space being
4106 	 * fragmented and becoming unavailable for high-order allocations.
4107 	 */
4108 	return 0;
4109 #endif
4110 }
4111 
4112 /*
4113  * pcp->high and pcp->batch values are related and dependent on one another:
4114  * ->batch must never be higher then ->high.
4115  * The following function updates them in a safe manner without read side
4116  * locking.
4117  *
4118  * Any new users of pcp->batch and pcp->high should ensure they can cope with
4119  * those fields changing asynchronously (acording the the above rule).
4120  *
4121  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4122  * outside of boot time (or some other assurance that no concurrent updaters
4123  * exist).
4124  */
4125 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4126 		unsigned long batch)
4127 {
4128        /* start with a fail safe value for batch */
4129 	pcp->batch = 1;
4130 	smp_wmb();
4131 
4132        /* Update high, then batch, in order */
4133 	pcp->high = high;
4134 	smp_wmb();
4135 
4136 	pcp->batch = batch;
4137 }
4138 
4139 /* a companion to pageset_set_high() */
4140 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4141 {
4142 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4143 }
4144 
4145 static void pageset_init(struct per_cpu_pageset *p)
4146 {
4147 	struct per_cpu_pages *pcp;
4148 	int migratetype;
4149 
4150 	memset(p, 0, sizeof(*p));
4151 
4152 	pcp = &p->pcp;
4153 	pcp->count = 0;
4154 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4155 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
4156 }
4157 
4158 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4159 {
4160 	pageset_init(p);
4161 	pageset_set_batch(p, batch);
4162 }
4163 
4164 /*
4165  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4166  * to the value high for the pageset p.
4167  */
4168 static void pageset_set_high(struct per_cpu_pageset *p,
4169 				unsigned long high)
4170 {
4171 	unsigned long batch = max(1UL, high / 4);
4172 	if ((high / 4) > (PAGE_SHIFT * 8))
4173 		batch = PAGE_SHIFT * 8;
4174 
4175 	pageset_update(&p->pcp, high, batch);
4176 }
4177 
4178 static void __meminit pageset_set_high_and_batch(struct zone *zone,
4179 		struct per_cpu_pageset *pcp)
4180 {
4181 	if (percpu_pagelist_fraction)
4182 		pageset_set_high(pcp,
4183 			(zone->managed_pages /
4184 				percpu_pagelist_fraction));
4185 	else
4186 		pageset_set_batch(pcp, zone_batchsize(zone));
4187 }
4188 
4189 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4190 {
4191 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4192 
4193 	pageset_init(pcp);
4194 	pageset_set_high_and_batch(zone, pcp);
4195 }
4196 
4197 static void __meminit setup_zone_pageset(struct zone *zone)
4198 {
4199 	int cpu;
4200 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
4201 	for_each_possible_cpu(cpu)
4202 		zone_pageset_init(zone, cpu);
4203 }
4204 
4205 /*
4206  * Allocate per cpu pagesets and initialize them.
4207  * Before this call only boot pagesets were available.
4208  */
4209 void __init setup_per_cpu_pageset(void)
4210 {
4211 	struct zone *zone;
4212 
4213 	for_each_populated_zone(zone)
4214 		setup_zone_pageset(zone);
4215 }
4216 
4217 static noinline __init_refok
4218 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4219 {
4220 	int i;
4221 	struct pglist_data *pgdat = zone->zone_pgdat;
4222 	size_t alloc_size;
4223 
4224 	/*
4225 	 * The per-page waitqueue mechanism uses hashed waitqueues
4226 	 * per zone.
4227 	 */
4228 	zone->wait_table_hash_nr_entries =
4229 		 wait_table_hash_nr_entries(zone_size_pages);
4230 	zone->wait_table_bits =
4231 		wait_table_bits(zone->wait_table_hash_nr_entries);
4232 	alloc_size = zone->wait_table_hash_nr_entries
4233 					* sizeof(wait_queue_head_t);
4234 
4235 	if (!slab_is_available()) {
4236 		zone->wait_table = (wait_queue_head_t *)
4237 			alloc_bootmem_node_nopanic(pgdat, alloc_size);
4238 	} else {
4239 		/*
4240 		 * This case means that a zone whose size was 0 gets new memory
4241 		 * via memory hot-add.
4242 		 * But it may be the case that a new node was hot-added.  In
4243 		 * this case vmalloc() will not be able to use this new node's
4244 		 * memory - this wait_table must be initialized to use this new
4245 		 * node itself as well.
4246 		 * To use this new node's memory, further consideration will be
4247 		 * necessary.
4248 		 */
4249 		zone->wait_table = vmalloc(alloc_size);
4250 	}
4251 	if (!zone->wait_table)
4252 		return -ENOMEM;
4253 
4254 	for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4255 		init_waitqueue_head(zone->wait_table + i);
4256 
4257 	return 0;
4258 }
4259 
4260 static __meminit void zone_pcp_init(struct zone *zone)
4261 {
4262 	/*
4263 	 * per cpu subsystem is not up at this point. The following code
4264 	 * relies on the ability of the linker to provide the
4265 	 * offset of a (static) per cpu variable into the per cpu area.
4266 	 */
4267 	zone->pageset = &boot_pageset;
4268 
4269 	if (zone->present_pages)
4270 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
4271 			zone->name, zone->present_pages,
4272 					 zone_batchsize(zone));
4273 }
4274 
4275 int __meminit init_currently_empty_zone(struct zone *zone,
4276 					unsigned long zone_start_pfn,
4277 					unsigned long size,
4278 					enum memmap_context context)
4279 {
4280 	struct pglist_data *pgdat = zone->zone_pgdat;
4281 	int ret;
4282 	ret = zone_wait_table_init(zone, size);
4283 	if (ret)
4284 		return ret;
4285 	pgdat->nr_zones = zone_idx(zone) + 1;
4286 
4287 	zone->zone_start_pfn = zone_start_pfn;
4288 
4289 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
4290 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
4291 			pgdat->node_id,
4292 			(unsigned long)zone_idx(zone),
4293 			zone_start_pfn, (zone_start_pfn + size));
4294 
4295 	zone_init_free_lists(zone);
4296 
4297 	return 0;
4298 }
4299 
4300 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4301 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4302 /*
4303  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4304  * Architectures may implement their own version but if add_active_range()
4305  * was used and there are no special requirements, this is a convenient
4306  * alternative
4307  */
4308 int __meminit __early_pfn_to_nid(unsigned long pfn)
4309 {
4310 	unsigned long start_pfn, end_pfn;
4311 	int nid;
4312 	/*
4313 	 * NOTE: The following SMP-unsafe globals are only used early in boot
4314 	 * when the kernel is running single-threaded.
4315 	 */
4316 	static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4317 	static int __meminitdata last_nid;
4318 
4319 	if (last_start_pfn <= pfn && pfn < last_end_pfn)
4320 		return last_nid;
4321 
4322 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4323 	if (nid != -1) {
4324 		last_start_pfn = start_pfn;
4325 		last_end_pfn = end_pfn;
4326 		last_nid = nid;
4327 	}
4328 
4329 	return nid;
4330 }
4331 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4332 
4333 int __meminit early_pfn_to_nid(unsigned long pfn)
4334 {
4335 	int nid;
4336 
4337 	nid = __early_pfn_to_nid(pfn);
4338 	if (nid >= 0)
4339 		return nid;
4340 	/* just returns 0 */
4341 	return 0;
4342 }
4343 
4344 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4345 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4346 {
4347 	int nid;
4348 
4349 	nid = __early_pfn_to_nid(pfn);
4350 	if (nid >= 0 && nid != node)
4351 		return false;
4352 	return true;
4353 }
4354 #endif
4355 
4356 /**
4357  * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4358  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4359  * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4360  *
4361  * If an architecture guarantees that all ranges registered with
4362  * add_active_ranges() contain no holes and may be freed, this
4363  * this function may be used instead of calling free_bootmem() manually.
4364  */
4365 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4366 {
4367 	unsigned long start_pfn, end_pfn;
4368 	int i, this_nid;
4369 
4370 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4371 		start_pfn = min(start_pfn, max_low_pfn);
4372 		end_pfn = min(end_pfn, max_low_pfn);
4373 
4374 		if (start_pfn < end_pfn)
4375 			free_bootmem_node(NODE_DATA(this_nid),
4376 					  PFN_PHYS(start_pfn),
4377 					  (end_pfn - start_pfn) << PAGE_SHIFT);
4378 	}
4379 }
4380 
4381 /**
4382  * sparse_memory_present_with_active_regions - Call memory_present for each active range
4383  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4384  *
4385  * If an architecture guarantees that all ranges registered with
4386  * add_active_ranges() contain no holes and may be freed, this
4387  * function may be used instead of calling memory_present() manually.
4388  */
4389 void __init sparse_memory_present_with_active_regions(int nid)
4390 {
4391 	unsigned long start_pfn, end_pfn;
4392 	int i, this_nid;
4393 
4394 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4395 		memory_present(this_nid, start_pfn, end_pfn);
4396 }
4397 
4398 /**
4399  * get_pfn_range_for_nid - Return the start and end page frames for a node
4400  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4401  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4402  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4403  *
4404  * It returns the start and end page frame of a node based on information
4405  * provided by an arch calling add_active_range(). If called for a node
4406  * with no available memory, a warning is printed and the start and end
4407  * PFNs will be 0.
4408  */
4409 void __meminit get_pfn_range_for_nid(unsigned int nid,
4410 			unsigned long *start_pfn, unsigned long *end_pfn)
4411 {
4412 	unsigned long this_start_pfn, this_end_pfn;
4413 	int i;
4414 
4415 	*start_pfn = -1UL;
4416 	*end_pfn = 0;
4417 
4418 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4419 		*start_pfn = min(*start_pfn, this_start_pfn);
4420 		*end_pfn = max(*end_pfn, this_end_pfn);
4421 	}
4422 
4423 	if (*start_pfn == -1UL)
4424 		*start_pfn = 0;
4425 }
4426 
4427 /*
4428  * This finds a zone that can be used for ZONE_MOVABLE pages. The
4429  * assumption is made that zones within a node are ordered in monotonic
4430  * increasing memory addresses so that the "highest" populated zone is used
4431  */
4432 static void __init find_usable_zone_for_movable(void)
4433 {
4434 	int zone_index;
4435 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4436 		if (zone_index == ZONE_MOVABLE)
4437 			continue;
4438 
4439 		if (arch_zone_highest_possible_pfn[zone_index] >
4440 				arch_zone_lowest_possible_pfn[zone_index])
4441 			break;
4442 	}
4443 
4444 	VM_BUG_ON(zone_index == -1);
4445 	movable_zone = zone_index;
4446 }
4447 
4448 /*
4449  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4450  * because it is sized independent of architecture. Unlike the other zones,
4451  * the starting point for ZONE_MOVABLE is not fixed. It may be different
4452  * in each node depending on the size of each node and how evenly kernelcore
4453  * is distributed. This helper function adjusts the zone ranges
4454  * provided by the architecture for a given node by using the end of the
4455  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4456  * zones within a node are in order of monotonic increases memory addresses
4457  */
4458 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4459 					unsigned long zone_type,
4460 					unsigned long node_start_pfn,
4461 					unsigned long node_end_pfn,
4462 					unsigned long *zone_start_pfn,
4463 					unsigned long *zone_end_pfn)
4464 {
4465 	/* Only adjust if ZONE_MOVABLE is on this node */
4466 	if (zone_movable_pfn[nid]) {
4467 		/* Size ZONE_MOVABLE */
4468 		if (zone_type == ZONE_MOVABLE) {
4469 			*zone_start_pfn = zone_movable_pfn[nid];
4470 			*zone_end_pfn = min(node_end_pfn,
4471 				arch_zone_highest_possible_pfn[movable_zone]);
4472 
4473 		/* Adjust for ZONE_MOVABLE starting within this range */
4474 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4475 				*zone_end_pfn > zone_movable_pfn[nid]) {
4476 			*zone_end_pfn = zone_movable_pfn[nid];
4477 
4478 		/* Check if this whole range is within ZONE_MOVABLE */
4479 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
4480 			*zone_start_pfn = *zone_end_pfn;
4481 	}
4482 }
4483 
4484 /*
4485  * Return the number of pages a zone spans in a node, including holes
4486  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4487  */
4488 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4489 					unsigned long zone_type,
4490 					unsigned long node_start_pfn,
4491 					unsigned long node_end_pfn,
4492 					unsigned long *ignored)
4493 {
4494 	unsigned long zone_start_pfn, zone_end_pfn;
4495 
4496 	/* Get the start and end of the zone */
4497 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4498 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4499 	adjust_zone_range_for_zone_movable(nid, zone_type,
4500 				node_start_pfn, node_end_pfn,
4501 				&zone_start_pfn, &zone_end_pfn);
4502 
4503 	/* Check that this node has pages within the zone's required range */
4504 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4505 		return 0;
4506 
4507 	/* Move the zone boundaries inside the node if necessary */
4508 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4509 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4510 
4511 	/* Return the spanned pages */
4512 	return zone_end_pfn - zone_start_pfn;
4513 }
4514 
4515 /*
4516  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4517  * then all holes in the requested range will be accounted for.
4518  */
4519 unsigned long __meminit __absent_pages_in_range(int nid,
4520 				unsigned long range_start_pfn,
4521 				unsigned long range_end_pfn)
4522 {
4523 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
4524 	unsigned long start_pfn, end_pfn;
4525 	int i;
4526 
4527 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4528 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4529 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4530 		nr_absent -= end_pfn - start_pfn;
4531 	}
4532 	return nr_absent;
4533 }
4534 
4535 /**
4536  * absent_pages_in_range - Return number of page frames in holes within a range
4537  * @start_pfn: The start PFN to start searching for holes
4538  * @end_pfn: The end PFN to stop searching for holes
4539  *
4540  * It returns the number of pages frames in memory holes within a range.
4541  */
4542 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4543 							unsigned long end_pfn)
4544 {
4545 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4546 }
4547 
4548 /* Return the number of page frames in holes in a zone on a node */
4549 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4550 					unsigned long zone_type,
4551 					unsigned long node_start_pfn,
4552 					unsigned long node_end_pfn,
4553 					unsigned long *ignored)
4554 {
4555 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4556 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4557 	unsigned long zone_start_pfn, zone_end_pfn;
4558 
4559 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4560 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4561 
4562 	adjust_zone_range_for_zone_movable(nid, zone_type,
4563 			node_start_pfn, node_end_pfn,
4564 			&zone_start_pfn, &zone_end_pfn);
4565 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4566 }
4567 
4568 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4569 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4570 					unsigned long zone_type,
4571 					unsigned long node_start_pfn,
4572 					unsigned long node_end_pfn,
4573 					unsigned long *zones_size)
4574 {
4575 	return zones_size[zone_type];
4576 }
4577 
4578 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4579 						unsigned long zone_type,
4580 						unsigned long node_start_pfn,
4581 						unsigned long node_end_pfn,
4582 						unsigned long *zholes_size)
4583 {
4584 	if (!zholes_size)
4585 		return 0;
4586 
4587 	return zholes_size[zone_type];
4588 }
4589 
4590 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4591 
4592 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4593 						unsigned long node_start_pfn,
4594 						unsigned long node_end_pfn,
4595 						unsigned long *zones_size,
4596 						unsigned long *zholes_size)
4597 {
4598 	unsigned long realtotalpages, totalpages = 0;
4599 	enum zone_type i;
4600 
4601 	for (i = 0; i < MAX_NR_ZONES; i++)
4602 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4603 							 node_start_pfn,
4604 							 node_end_pfn,
4605 							 zones_size);
4606 	pgdat->node_spanned_pages = totalpages;
4607 
4608 	realtotalpages = totalpages;
4609 	for (i = 0; i < MAX_NR_ZONES; i++)
4610 		realtotalpages -=
4611 			zone_absent_pages_in_node(pgdat->node_id, i,
4612 						  node_start_pfn, node_end_pfn,
4613 						  zholes_size);
4614 	pgdat->node_present_pages = realtotalpages;
4615 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4616 							realtotalpages);
4617 }
4618 
4619 #ifndef CONFIG_SPARSEMEM
4620 /*
4621  * Calculate the size of the zone->blockflags rounded to an unsigned long
4622  * Start by making sure zonesize is a multiple of pageblock_order by rounding
4623  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4624  * round what is now in bits to nearest long in bits, then return it in
4625  * bytes.
4626  */
4627 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4628 {
4629 	unsigned long usemapsize;
4630 
4631 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4632 	usemapsize = roundup(zonesize, pageblock_nr_pages);
4633 	usemapsize = usemapsize >> pageblock_order;
4634 	usemapsize *= NR_PAGEBLOCK_BITS;
4635 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4636 
4637 	return usemapsize / 8;
4638 }
4639 
4640 static void __init setup_usemap(struct pglist_data *pgdat,
4641 				struct zone *zone,
4642 				unsigned long zone_start_pfn,
4643 				unsigned long zonesize)
4644 {
4645 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4646 	zone->pageblock_flags = NULL;
4647 	if (usemapsize)
4648 		zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4649 								   usemapsize);
4650 }
4651 #else
4652 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4653 				unsigned long zone_start_pfn, unsigned long zonesize) {}
4654 #endif /* CONFIG_SPARSEMEM */
4655 
4656 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4657 
4658 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4659 void __paginginit set_pageblock_order(void)
4660 {
4661 	unsigned int order;
4662 
4663 	/* Check that pageblock_nr_pages has not already been setup */
4664 	if (pageblock_order)
4665 		return;
4666 
4667 	if (HPAGE_SHIFT > PAGE_SHIFT)
4668 		order = HUGETLB_PAGE_ORDER;
4669 	else
4670 		order = MAX_ORDER - 1;
4671 
4672 	/*
4673 	 * Assume the largest contiguous order of interest is a huge page.
4674 	 * This value may be variable depending on boot parameters on IA64 and
4675 	 * powerpc.
4676 	 */
4677 	pageblock_order = order;
4678 }
4679 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4680 
4681 /*
4682  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4683  * is unused as pageblock_order is set at compile-time. See
4684  * include/linux/pageblock-flags.h for the values of pageblock_order based on
4685  * the kernel config
4686  */
4687 void __paginginit set_pageblock_order(void)
4688 {
4689 }
4690 
4691 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4692 
4693 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4694 						   unsigned long present_pages)
4695 {
4696 	unsigned long pages = spanned_pages;
4697 
4698 	/*
4699 	 * Provide a more accurate estimation if there are holes within
4700 	 * the zone and SPARSEMEM is in use. If there are holes within the
4701 	 * zone, each populated memory region may cost us one or two extra
4702 	 * memmap pages due to alignment because memmap pages for each
4703 	 * populated regions may not naturally algined on page boundary.
4704 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4705 	 */
4706 	if (spanned_pages > present_pages + (present_pages >> 4) &&
4707 	    IS_ENABLED(CONFIG_SPARSEMEM))
4708 		pages = present_pages;
4709 
4710 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4711 }
4712 
4713 /*
4714  * Set up the zone data structures:
4715  *   - mark all pages reserved
4716  *   - mark all memory queues empty
4717  *   - clear the memory bitmaps
4718  *
4719  * NOTE: pgdat should get zeroed by caller.
4720  */
4721 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4722 		unsigned long node_start_pfn, unsigned long node_end_pfn,
4723 		unsigned long *zones_size, unsigned long *zholes_size)
4724 {
4725 	enum zone_type j;
4726 	int nid = pgdat->node_id;
4727 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
4728 	int ret;
4729 
4730 	pgdat_resize_init(pgdat);
4731 #ifdef CONFIG_NUMA_BALANCING
4732 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
4733 	pgdat->numabalancing_migrate_nr_pages = 0;
4734 	pgdat->numabalancing_migrate_next_window = jiffies;
4735 #endif
4736 	init_waitqueue_head(&pgdat->kswapd_wait);
4737 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
4738 	pgdat_page_cgroup_init(pgdat);
4739 
4740 	for (j = 0; j < MAX_NR_ZONES; j++) {
4741 		struct zone *zone = pgdat->node_zones + j;
4742 		unsigned long size, realsize, freesize, memmap_pages;
4743 
4744 		size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4745 						  node_end_pfn, zones_size);
4746 		realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4747 								node_start_pfn,
4748 								node_end_pfn,
4749 								zholes_size);
4750 
4751 		/*
4752 		 * Adjust freesize so that it accounts for how much memory
4753 		 * is used by this zone for memmap. This affects the watermark
4754 		 * and per-cpu initialisations
4755 		 */
4756 		memmap_pages = calc_memmap_size(size, realsize);
4757 		if (freesize >= memmap_pages) {
4758 			freesize -= memmap_pages;
4759 			if (memmap_pages)
4760 				printk(KERN_DEBUG
4761 				       "  %s zone: %lu pages used for memmap\n",
4762 				       zone_names[j], memmap_pages);
4763 		} else
4764 			printk(KERN_WARNING
4765 				"  %s zone: %lu pages exceeds freesize %lu\n",
4766 				zone_names[j], memmap_pages, freesize);
4767 
4768 		/* Account for reserved pages */
4769 		if (j == 0 && freesize > dma_reserve) {
4770 			freesize -= dma_reserve;
4771 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
4772 					zone_names[0], dma_reserve);
4773 		}
4774 
4775 		if (!is_highmem_idx(j))
4776 			nr_kernel_pages += freesize;
4777 		/* Charge for highmem memmap if there are enough kernel pages */
4778 		else if (nr_kernel_pages > memmap_pages * 2)
4779 			nr_kernel_pages -= memmap_pages;
4780 		nr_all_pages += freesize;
4781 
4782 		zone->spanned_pages = size;
4783 		zone->present_pages = realsize;
4784 		/*
4785 		 * Set an approximate value for lowmem here, it will be adjusted
4786 		 * when the bootmem allocator frees pages into the buddy system.
4787 		 * And all highmem pages will be managed by the buddy system.
4788 		 */
4789 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4790 #ifdef CONFIG_NUMA
4791 		zone->node = nid;
4792 		zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4793 						/ 100;
4794 		zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4795 #endif
4796 		zone->name = zone_names[j];
4797 		spin_lock_init(&zone->lock);
4798 		spin_lock_init(&zone->lru_lock);
4799 		zone_seqlock_init(zone);
4800 		zone->zone_pgdat = pgdat;
4801 		zone_pcp_init(zone);
4802 
4803 		/* For bootup, initialized properly in watermark setup */
4804 		mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4805 
4806 		lruvec_init(&zone->lruvec);
4807 		if (!size)
4808 			continue;
4809 
4810 		set_pageblock_order();
4811 		setup_usemap(pgdat, zone, zone_start_pfn, size);
4812 		ret = init_currently_empty_zone(zone, zone_start_pfn,
4813 						size, MEMMAP_EARLY);
4814 		BUG_ON(ret);
4815 		memmap_init(size, nid, j, zone_start_pfn);
4816 		zone_start_pfn += size;
4817 	}
4818 }
4819 
4820 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4821 {
4822 	/* Skip empty nodes */
4823 	if (!pgdat->node_spanned_pages)
4824 		return;
4825 
4826 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4827 	/* ia64 gets its own node_mem_map, before this, without bootmem */
4828 	if (!pgdat->node_mem_map) {
4829 		unsigned long size, start, end;
4830 		struct page *map;
4831 
4832 		/*
4833 		 * The zone's endpoints aren't required to be MAX_ORDER
4834 		 * aligned but the node_mem_map endpoints must be in order
4835 		 * for the buddy allocator to function correctly.
4836 		 */
4837 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4838 		end = pgdat_end_pfn(pgdat);
4839 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
4840 		size =  (end - start) * sizeof(struct page);
4841 		map = alloc_remap(pgdat->node_id, size);
4842 		if (!map)
4843 			map = alloc_bootmem_node_nopanic(pgdat, size);
4844 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4845 	}
4846 #ifndef CONFIG_NEED_MULTIPLE_NODES
4847 	/*
4848 	 * With no DISCONTIG, the global mem_map is just set as node 0's
4849 	 */
4850 	if (pgdat == NODE_DATA(0)) {
4851 		mem_map = NODE_DATA(0)->node_mem_map;
4852 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4853 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4854 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4855 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4856 	}
4857 #endif
4858 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4859 }
4860 
4861 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4862 		unsigned long node_start_pfn, unsigned long *zholes_size)
4863 {
4864 	pg_data_t *pgdat = NODE_DATA(nid);
4865 	unsigned long start_pfn = 0;
4866 	unsigned long end_pfn = 0;
4867 
4868 	/* pg_data_t should be reset to zero when it's allocated */
4869 	WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4870 
4871 	pgdat->node_id = nid;
4872 	pgdat->node_start_pfn = node_start_pfn;
4873 	init_zone_allows_reclaim(nid);
4874 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4875 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
4876 #endif
4877 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
4878 				  zones_size, zholes_size);
4879 
4880 	alloc_node_mem_map(pgdat);
4881 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4882 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4883 		nid, (unsigned long)pgdat,
4884 		(unsigned long)pgdat->node_mem_map);
4885 #endif
4886 
4887 	free_area_init_core(pgdat, start_pfn, end_pfn,
4888 			    zones_size, zholes_size);
4889 }
4890 
4891 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4892 
4893 #if MAX_NUMNODES > 1
4894 /*
4895  * Figure out the number of possible node ids.
4896  */
4897 void __init setup_nr_node_ids(void)
4898 {
4899 	unsigned int node;
4900 	unsigned int highest = 0;
4901 
4902 	for_each_node_mask(node, node_possible_map)
4903 		highest = node;
4904 	nr_node_ids = highest + 1;
4905 }
4906 #endif
4907 
4908 /**
4909  * node_map_pfn_alignment - determine the maximum internode alignment
4910  *
4911  * This function should be called after node map is populated and sorted.
4912  * It calculates the maximum power of two alignment which can distinguish
4913  * all the nodes.
4914  *
4915  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4916  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
4917  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
4918  * shifted, 1GiB is enough and this function will indicate so.
4919  *
4920  * This is used to test whether pfn -> nid mapping of the chosen memory
4921  * model has fine enough granularity to avoid incorrect mapping for the
4922  * populated node map.
4923  *
4924  * Returns the determined alignment in pfn's.  0 if there is no alignment
4925  * requirement (single node).
4926  */
4927 unsigned long __init node_map_pfn_alignment(void)
4928 {
4929 	unsigned long accl_mask = 0, last_end = 0;
4930 	unsigned long start, end, mask;
4931 	int last_nid = -1;
4932 	int i, nid;
4933 
4934 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4935 		if (!start || last_nid < 0 || last_nid == nid) {
4936 			last_nid = nid;
4937 			last_end = end;
4938 			continue;
4939 		}
4940 
4941 		/*
4942 		 * Start with a mask granular enough to pin-point to the
4943 		 * start pfn and tick off bits one-by-one until it becomes
4944 		 * too coarse to separate the current node from the last.
4945 		 */
4946 		mask = ~((1 << __ffs(start)) - 1);
4947 		while (mask && last_end <= (start & (mask << 1)))
4948 			mask <<= 1;
4949 
4950 		/* accumulate all internode masks */
4951 		accl_mask |= mask;
4952 	}
4953 
4954 	/* convert mask to number of pages */
4955 	return ~accl_mask + 1;
4956 }
4957 
4958 /* Find the lowest pfn for a node */
4959 static unsigned long __init find_min_pfn_for_node(int nid)
4960 {
4961 	unsigned long min_pfn = ULONG_MAX;
4962 	unsigned long start_pfn;
4963 	int i;
4964 
4965 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4966 		min_pfn = min(min_pfn, start_pfn);
4967 
4968 	if (min_pfn == ULONG_MAX) {
4969 		printk(KERN_WARNING
4970 			"Could not find start_pfn for node %d\n", nid);
4971 		return 0;
4972 	}
4973 
4974 	return min_pfn;
4975 }
4976 
4977 /**
4978  * find_min_pfn_with_active_regions - Find the minimum PFN registered
4979  *
4980  * It returns the minimum PFN based on information provided via
4981  * add_active_range().
4982  */
4983 unsigned long __init find_min_pfn_with_active_regions(void)
4984 {
4985 	return find_min_pfn_for_node(MAX_NUMNODES);
4986 }
4987 
4988 /*
4989  * early_calculate_totalpages()
4990  * Sum pages in active regions for movable zone.
4991  * Populate N_MEMORY for calculating usable_nodes.
4992  */
4993 static unsigned long __init early_calculate_totalpages(void)
4994 {
4995 	unsigned long totalpages = 0;
4996 	unsigned long start_pfn, end_pfn;
4997 	int i, nid;
4998 
4999 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5000 		unsigned long pages = end_pfn - start_pfn;
5001 
5002 		totalpages += pages;
5003 		if (pages)
5004 			node_set_state(nid, N_MEMORY);
5005 	}
5006 	return totalpages;
5007 }
5008 
5009 /*
5010  * Find the PFN the Movable zone begins in each node. Kernel memory
5011  * is spread evenly between nodes as long as the nodes have enough
5012  * memory. When they don't, some nodes will have more kernelcore than
5013  * others
5014  */
5015 static void __init find_zone_movable_pfns_for_nodes(void)
5016 {
5017 	int i, nid;
5018 	unsigned long usable_startpfn;
5019 	unsigned long kernelcore_node, kernelcore_remaining;
5020 	/* save the state before borrow the nodemask */
5021 	nodemask_t saved_node_state = node_states[N_MEMORY];
5022 	unsigned long totalpages = early_calculate_totalpages();
5023 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5024 
5025 	/*
5026 	 * If movablecore was specified, calculate what size of
5027 	 * kernelcore that corresponds so that memory usable for
5028 	 * any allocation type is evenly spread. If both kernelcore
5029 	 * and movablecore are specified, then the value of kernelcore
5030 	 * will be used for required_kernelcore if it's greater than
5031 	 * what movablecore would have allowed.
5032 	 */
5033 	if (required_movablecore) {
5034 		unsigned long corepages;
5035 
5036 		/*
5037 		 * Round-up so that ZONE_MOVABLE is at least as large as what
5038 		 * was requested by the user
5039 		 */
5040 		required_movablecore =
5041 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5042 		corepages = totalpages - required_movablecore;
5043 
5044 		required_kernelcore = max(required_kernelcore, corepages);
5045 	}
5046 
5047 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
5048 	if (!required_kernelcore)
5049 		goto out;
5050 
5051 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5052 	find_usable_zone_for_movable();
5053 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5054 
5055 restart:
5056 	/* Spread kernelcore memory as evenly as possible throughout nodes */
5057 	kernelcore_node = required_kernelcore / usable_nodes;
5058 	for_each_node_state(nid, N_MEMORY) {
5059 		unsigned long start_pfn, end_pfn;
5060 
5061 		/*
5062 		 * Recalculate kernelcore_node if the division per node
5063 		 * now exceeds what is necessary to satisfy the requested
5064 		 * amount of memory for the kernel
5065 		 */
5066 		if (required_kernelcore < kernelcore_node)
5067 			kernelcore_node = required_kernelcore / usable_nodes;
5068 
5069 		/*
5070 		 * As the map is walked, we track how much memory is usable
5071 		 * by the kernel using kernelcore_remaining. When it is
5072 		 * 0, the rest of the node is usable by ZONE_MOVABLE
5073 		 */
5074 		kernelcore_remaining = kernelcore_node;
5075 
5076 		/* Go through each range of PFNs within this node */
5077 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5078 			unsigned long size_pages;
5079 
5080 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5081 			if (start_pfn >= end_pfn)
5082 				continue;
5083 
5084 			/* Account for what is only usable for kernelcore */
5085 			if (start_pfn < usable_startpfn) {
5086 				unsigned long kernel_pages;
5087 				kernel_pages = min(end_pfn, usable_startpfn)
5088 								- start_pfn;
5089 
5090 				kernelcore_remaining -= min(kernel_pages,
5091 							kernelcore_remaining);
5092 				required_kernelcore -= min(kernel_pages,
5093 							required_kernelcore);
5094 
5095 				/* Continue if range is now fully accounted */
5096 				if (end_pfn <= usable_startpfn) {
5097 
5098 					/*
5099 					 * Push zone_movable_pfn to the end so
5100 					 * that if we have to rebalance
5101 					 * kernelcore across nodes, we will
5102 					 * not double account here
5103 					 */
5104 					zone_movable_pfn[nid] = end_pfn;
5105 					continue;
5106 				}
5107 				start_pfn = usable_startpfn;
5108 			}
5109 
5110 			/*
5111 			 * The usable PFN range for ZONE_MOVABLE is from
5112 			 * start_pfn->end_pfn. Calculate size_pages as the
5113 			 * number of pages used as kernelcore
5114 			 */
5115 			size_pages = end_pfn - start_pfn;
5116 			if (size_pages > kernelcore_remaining)
5117 				size_pages = kernelcore_remaining;
5118 			zone_movable_pfn[nid] = start_pfn + size_pages;
5119 
5120 			/*
5121 			 * Some kernelcore has been met, update counts and
5122 			 * break if the kernelcore for this node has been
5123 			 * satisfied
5124 			 */
5125 			required_kernelcore -= min(required_kernelcore,
5126 								size_pages);
5127 			kernelcore_remaining -= size_pages;
5128 			if (!kernelcore_remaining)
5129 				break;
5130 		}
5131 	}
5132 
5133 	/*
5134 	 * If there is still required_kernelcore, we do another pass with one
5135 	 * less node in the count. This will push zone_movable_pfn[nid] further
5136 	 * along on the nodes that still have memory until kernelcore is
5137 	 * satisfied
5138 	 */
5139 	usable_nodes--;
5140 	if (usable_nodes && required_kernelcore > usable_nodes)
5141 		goto restart;
5142 
5143 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5144 	for (nid = 0; nid < MAX_NUMNODES; nid++)
5145 		zone_movable_pfn[nid] =
5146 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5147 
5148 out:
5149 	/* restore the node_state */
5150 	node_states[N_MEMORY] = saved_node_state;
5151 }
5152 
5153 /* Any regular or high memory on that node ? */
5154 static void check_for_memory(pg_data_t *pgdat, int nid)
5155 {
5156 	enum zone_type zone_type;
5157 
5158 	if (N_MEMORY == N_NORMAL_MEMORY)
5159 		return;
5160 
5161 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5162 		struct zone *zone = &pgdat->node_zones[zone_type];
5163 		if (zone->present_pages) {
5164 			node_set_state(nid, N_HIGH_MEMORY);
5165 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5166 			    zone_type <= ZONE_NORMAL)
5167 				node_set_state(nid, N_NORMAL_MEMORY);
5168 			break;
5169 		}
5170 	}
5171 }
5172 
5173 /**
5174  * free_area_init_nodes - Initialise all pg_data_t and zone data
5175  * @max_zone_pfn: an array of max PFNs for each zone
5176  *
5177  * This will call free_area_init_node() for each active node in the system.
5178  * Using the page ranges provided by add_active_range(), the size of each
5179  * zone in each node and their holes is calculated. If the maximum PFN
5180  * between two adjacent zones match, it is assumed that the zone is empty.
5181  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5182  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5183  * starts where the previous one ended. For example, ZONE_DMA32 starts
5184  * at arch_max_dma_pfn.
5185  */
5186 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5187 {
5188 	unsigned long start_pfn, end_pfn;
5189 	int i, nid;
5190 
5191 	/* Record where the zone boundaries are */
5192 	memset(arch_zone_lowest_possible_pfn, 0,
5193 				sizeof(arch_zone_lowest_possible_pfn));
5194 	memset(arch_zone_highest_possible_pfn, 0,
5195 				sizeof(arch_zone_highest_possible_pfn));
5196 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5197 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5198 	for (i = 1; i < MAX_NR_ZONES; i++) {
5199 		if (i == ZONE_MOVABLE)
5200 			continue;
5201 		arch_zone_lowest_possible_pfn[i] =
5202 			arch_zone_highest_possible_pfn[i-1];
5203 		arch_zone_highest_possible_pfn[i] =
5204 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5205 	}
5206 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5207 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5208 
5209 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
5210 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5211 	find_zone_movable_pfns_for_nodes();
5212 
5213 	/* Print out the zone ranges */
5214 	printk("Zone ranges:\n");
5215 	for (i = 0; i < MAX_NR_ZONES; i++) {
5216 		if (i == ZONE_MOVABLE)
5217 			continue;
5218 		printk(KERN_CONT "  %-8s ", zone_names[i]);
5219 		if (arch_zone_lowest_possible_pfn[i] ==
5220 				arch_zone_highest_possible_pfn[i])
5221 			printk(KERN_CONT "empty\n");
5222 		else
5223 			printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5224 				arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5225 				(arch_zone_highest_possible_pfn[i]
5226 					<< PAGE_SHIFT) - 1);
5227 	}
5228 
5229 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
5230 	printk("Movable zone start for each node\n");
5231 	for (i = 0; i < MAX_NUMNODES; i++) {
5232 		if (zone_movable_pfn[i])
5233 			printk("  Node %d: %#010lx\n", i,
5234 			       zone_movable_pfn[i] << PAGE_SHIFT);
5235 	}
5236 
5237 	/* Print out the early node map */
5238 	printk("Early memory node ranges\n");
5239 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5240 		printk("  node %3d: [mem %#010lx-%#010lx]\n", nid,
5241 		       start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5242 
5243 	/* Initialise every node */
5244 	mminit_verify_pageflags_layout();
5245 	setup_nr_node_ids();
5246 	for_each_online_node(nid) {
5247 		pg_data_t *pgdat = NODE_DATA(nid);
5248 		free_area_init_node(nid, NULL,
5249 				find_min_pfn_for_node(nid), NULL);
5250 
5251 		/* Any memory on that node */
5252 		if (pgdat->node_present_pages)
5253 			node_set_state(nid, N_MEMORY);
5254 		check_for_memory(pgdat, nid);
5255 	}
5256 }
5257 
5258 static int __init cmdline_parse_core(char *p, unsigned long *core)
5259 {
5260 	unsigned long long coremem;
5261 	if (!p)
5262 		return -EINVAL;
5263 
5264 	coremem = memparse(p, &p);
5265 	*core = coremem >> PAGE_SHIFT;
5266 
5267 	/* Paranoid check that UL is enough for the coremem value */
5268 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5269 
5270 	return 0;
5271 }
5272 
5273 /*
5274  * kernelcore=size sets the amount of memory for use for allocations that
5275  * cannot be reclaimed or migrated.
5276  */
5277 static int __init cmdline_parse_kernelcore(char *p)
5278 {
5279 	return cmdline_parse_core(p, &required_kernelcore);
5280 }
5281 
5282 /*
5283  * movablecore=size sets the amount of memory for use for allocations that
5284  * can be reclaimed or migrated.
5285  */
5286 static int __init cmdline_parse_movablecore(char *p)
5287 {
5288 	return cmdline_parse_core(p, &required_movablecore);
5289 }
5290 
5291 early_param("kernelcore", cmdline_parse_kernelcore);
5292 early_param("movablecore", cmdline_parse_movablecore);
5293 
5294 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5295 
5296 void adjust_managed_page_count(struct page *page, long count)
5297 {
5298 	spin_lock(&managed_page_count_lock);
5299 	page_zone(page)->managed_pages += count;
5300 	totalram_pages += count;
5301 #ifdef CONFIG_HIGHMEM
5302 	if (PageHighMem(page))
5303 		totalhigh_pages += count;
5304 #endif
5305 	spin_unlock(&managed_page_count_lock);
5306 }
5307 EXPORT_SYMBOL(adjust_managed_page_count);
5308 
5309 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5310 {
5311 	void *pos;
5312 	unsigned long pages = 0;
5313 
5314 	start = (void *)PAGE_ALIGN((unsigned long)start);
5315 	end = (void *)((unsigned long)end & PAGE_MASK);
5316 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5317 		if ((unsigned int)poison <= 0xFF)
5318 			memset(pos, poison, PAGE_SIZE);
5319 		free_reserved_page(virt_to_page(pos));
5320 	}
5321 
5322 	if (pages && s)
5323 		pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5324 			s, pages << (PAGE_SHIFT - 10), start, end);
5325 
5326 	return pages;
5327 }
5328 EXPORT_SYMBOL(free_reserved_area);
5329 
5330 #ifdef	CONFIG_HIGHMEM
5331 void free_highmem_page(struct page *page)
5332 {
5333 	__free_reserved_page(page);
5334 	totalram_pages++;
5335 	page_zone(page)->managed_pages++;
5336 	totalhigh_pages++;
5337 }
5338 #endif
5339 
5340 
5341 void __init mem_init_print_info(const char *str)
5342 {
5343 	unsigned long physpages, codesize, datasize, rosize, bss_size;
5344 	unsigned long init_code_size, init_data_size;
5345 
5346 	physpages = get_num_physpages();
5347 	codesize = _etext - _stext;
5348 	datasize = _edata - _sdata;
5349 	rosize = __end_rodata - __start_rodata;
5350 	bss_size = __bss_stop - __bss_start;
5351 	init_data_size = __init_end - __init_begin;
5352 	init_code_size = _einittext - _sinittext;
5353 
5354 	/*
5355 	 * Detect special cases and adjust section sizes accordingly:
5356 	 * 1) .init.* may be embedded into .data sections
5357 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
5358 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
5359 	 * 3) .rodata.* may be embedded into .text or .data sections.
5360 	 */
5361 #define adj_init_size(start, end, size, pos, adj) \
5362 	do { \
5363 		if (start <= pos && pos < end && size > adj) \
5364 			size -= adj; \
5365 	} while (0)
5366 
5367 	adj_init_size(__init_begin, __init_end, init_data_size,
5368 		     _sinittext, init_code_size);
5369 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5370 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5371 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5372 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5373 
5374 #undef	adj_init_size
5375 
5376 	printk("Memory: %luK/%luK available "
5377 	       "(%luK kernel code, %luK rwdata, %luK rodata, "
5378 	       "%luK init, %luK bss, %luK reserved"
5379 #ifdef	CONFIG_HIGHMEM
5380 	       ", %luK highmem"
5381 #endif
5382 	       "%s%s)\n",
5383 	       nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5384 	       codesize >> 10, datasize >> 10, rosize >> 10,
5385 	       (init_data_size + init_code_size) >> 10, bss_size >> 10,
5386 	       (physpages - totalram_pages) << (PAGE_SHIFT-10),
5387 #ifdef	CONFIG_HIGHMEM
5388 	       totalhigh_pages << (PAGE_SHIFT-10),
5389 #endif
5390 	       str ? ", " : "", str ? str : "");
5391 }
5392 
5393 /**
5394  * set_dma_reserve - set the specified number of pages reserved in the first zone
5395  * @new_dma_reserve: The number of pages to mark reserved
5396  *
5397  * The per-cpu batchsize and zone watermarks are determined by present_pages.
5398  * In the DMA zone, a significant percentage may be consumed by kernel image
5399  * and other unfreeable allocations which can skew the watermarks badly. This
5400  * function may optionally be used to account for unfreeable pages in the
5401  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5402  * smaller per-cpu batchsize.
5403  */
5404 void __init set_dma_reserve(unsigned long new_dma_reserve)
5405 {
5406 	dma_reserve = new_dma_reserve;
5407 }
5408 
5409 void __init free_area_init(unsigned long *zones_size)
5410 {
5411 	free_area_init_node(0, zones_size,
5412 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5413 }
5414 
5415 static int page_alloc_cpu_notify(struct notifier_block *self,
5416 				 unsigned long action, void *hcpu)
5417 {
5418 	int cpu = (unsigned long)hcpu;
5419 
5420 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5421 		lru_add_drain_cpu(cpu);
5422 		drain_pages(cpu);
5423 
5424 		/*
5425 		 * Spill the event counters of the dead processor
5426 		 * into the current processors event counters.
5427 		 * This artificially elevates the count of the current
5428 		 * processor.
5429 		 */
5430 		vm_events_fold_cpu(cpu);
5431 
5432 		/*
5433 		 * Zero the differential counters of the dead processor
5434 		 * so that the vm statistics are consistent.
5435 		 *
5436 		 * This is only okay since the processor is dead and cannot
5437 		 * race with what we are doing.
5438 		 */
5439 		cpu_vm_stats_fold(cpu);
5440 	}
5441 	return NOTIFY_OK;
5442 }
5443 
5444 void __init page_alloc_init(void)
5445 {
5446 	hotcpu_notifier(page_alloc_cpu_notify, 0);
5447 }
5448 
5449 /*
5450  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5451  *	or min_free_kbytes changes.
5452  */
5453 static void calculate_totalreserve_pages(void)
5454 {
5455 	struct pglist_data *pgdat;
5456 	unsigned long reserve_pages = 0;
5457 	enum zone_type i, j;
5458 
5459 	for_each_online_pgdat(pgdat) {
5460 		for (i = 0; i < MAX_NR_ZONES; i++) {
5461 			struct zone *zone = pgdat->node_zones + i;
5462 			unsigned long max = 0;
5463 
5464 			/* Find valid and maximum lowmem_reserve in the zone */
5465 			for (j = i; j < MAX_NR_ZONES; j++) {
5466 				if (zone->lowmem_reserve[j] > max)
5467 					max = zone->lowmem_reserve[j];
5468 			}
5469 
5470 			/* we treat the high watermark as reserved pages. */
5471 			max += high_wmark_pages(zone);
5472 
5473 			if (max > zone->managed_pages)
5474 				max = zone->managed_pages;
5475 			reserve_pages += max;
5476 			/*
5477 			 * Lowmem reserves are not available to
5478 			 * GFP_HIGHUSER page cache allocations and
5479 			 * kswapd tries to balance zones to their high
5480 			 * watermark.  As a result, neither should be
5481 			 * regarded as dirtyable memory, to prevent a
5482 			 * situation where reclaim has to clean pages
5483 			 * in order to balance the zones.
5484 			 */
5485 			zone->dirty_balance_reserve = max;
5486 		}
5487 	}
5488 	dirty_balance_reserve = reserve_pages;
5489 	totalreserve_pages = reserve_pages;
5490 }
5491 
5492 /*
5493  * setup_per_zone_lowmem_reserve - called whenever
5494  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
5495  *	has a correct pages reserved value, so an adequate number of
5496  *	pages are left in the zone after a successful __alloc_pages().
5497  */
5498 static void setup_per_zone_lowmem_reserve(void)
5499 {
5500 	struct pglist_data *pgdat;
5501 	enum zone_type j, idx;
5502 
5503 	for_each_online_pgdat(pgdat) {
5504 		for (j = 0; j < MAX_NR_ZONES; j++) {
5505 			struct zone *zone = pgdat->node_zones + j;
5506 			unsigned long managed_pages = zone->managed_pages;
5507 
5508 			zone->lowmem_reserve[j] = 0;
5509 
5510 			idx = j;
5511 			while (idx) {
5512 				struct zone *lower_zone;
5513 
5514 				idx--;
5515 
5516 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
5517 					sysctl_lowmem_reserve_ratio[idx] = 1;
5518 
5519 				lower_zone = pgdat->node_zones + idx;
5520 				lower_zone->lowmem_reserve[j] = managed_pages /
5521 					sysctl_lowmem_reserve_ratio[idx];
5522 				managed_pages += lower_zone->managed_pages;
5523 			}
5524 		}
5525 	}
5526 
5527 	/* update totalreserve_pages */
5528 	calculate_totalreserve_pages();
5529 }
5530 
5531 static void __setup_per_zone_wmarks(void)
5532 {
5533 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5534 	unsigned long lowmem_pages = 0;
5535 	struct zone *zone;
5536 	unsigned long flags;
5537 
5538 	/* Calculate total number of !ZONE_HIGHMEM pages */
5539 	for_each_zone(zone) {
5540 		if (!is_highmem(zone))
5541 			lowmem_pages += zone->managed_pages;
5542 	}
5543 
5544 	for_each_zone(zone) {
5545 		u64 tmp;
5546 
5547 		spin_lock_irqsave(&zone->lock, flags);
5548 		tmp = (u64)pages_min * zone->managed_pages;
5549 		do_div(tmp, lowmem_pages);
5550 		if (is_highmem(zone)) {
5551 			/*
5552 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5553 			 * need highmem pages, so cap pages_min to a small
5554 			 * value here.
5555 			 *
5556 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5557 			 * deltas controls asynch page reclaim, and so should
5558 			 * not be capped for highmem.
5559 			 */
5560 			unsigned long min_pages;
5561 
5562 			min_pages = zone->managed_pages / 1024;
5563 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5564 			zone->watermark[WMARK_MIN] = min_pages;
5565 		} else {
5566 			/*
5567 			 * If it's a lowmem zone, reserve a number of pages
5568 			 * proportionate to the zone's size.
5569 			 */
5570 			zone->watermark[WMARK_MIN] = tmp;
5571 		}
5572 
5573 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
5574 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5575 
5576 		__mod_zone_page_state(zone, NR_ALLOC_BATCH,
5577 				      high_wmark_pages(zone) -
5578 				      low_wmark_pages(zone) -
5579 				      zone_page_state(zone, NR_ALLOC_BATCH));
5580 
5581 		setup_zone_migrate_reserve(zone);
5582 		spin_unlock_irqrestore(&zone->lock, flags);
5583 	}
5584 
5585 	/* update totalreserve_pages */
5586 	calculate_totalreserve_pages();
5587 }
5588 
5589 /**
5590  * setup_per_zone_wmarks - called when min_free_kbytes changes
5591  * or when memory is hot-{added|removed}
5592  *
5593  * Ensures that the watermark[min,low,high] values for each zone are set
5594  * correctly with respect to min_free_kbytes.
5595  */
5596 void setup_per_zone_wmarks(void)
5597 {
5598 	mutex_lock(&zonelists_mutex);
5599 	__setup_per_zone_wmarks();
5600 	mutex_unlock(&zonelists_mutex);
5601 }
5602 
5603 /*
5604  * The inactive anon list should be small enough that the VM never has to
5605  * do too much work, but large enough that each inactive page has a chance
5606  * to be referenced again before it is swapped out.
5607  *
5608  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5609  * INACTIVE_ANON pages on this zone's LRU, maintained by the
5610  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5611  * the anonymous pages are kept on the inactive list.
5612  *
5613  * total     target    max
5614  * memory    ratio     inactive anon
5615  * -------------------------------------
5616  *   10MB       1         5MB
5617  *  100MB       1        50MB
5618  *    1GB       3       250MB
5619  *   10GB      10       0.9GB
5620  *  100GB      31         3GB
5621  *    1TB     101        10GB
5622  *   10TB     320        32GB
5623  */
5624 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5625 {
5626 	unsigned int gb, ratio;
5627 
5628 	/* Zone size in gigabytes */
5629 	gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5630 	if (gb)
5631 		ratio = int_sqrt(10 * gb);
5632 	else
5633 		ratio = 1;
5634 
5635 	zone->inactive_ratio = ratio;
5636 }
5637 
5638 static void __meminit setup_per_zone_inactive_ratio(void)
5639 {
5640 	struct zone *zone;
5641 
5642 	for_each_zone(zone)
5643 		calculate_zone_inactive_ratio(zone);
5644 }
5645 
5646 /*
5647  * Initialise min_free_kbytes.
5648  *
5649  * For small machines we want it small (128k min).  For large machines
5650  * we want it large (64MB max).  But it is not linear, because network
5651  * bandwidth does not increase linearly with machine size.  We use
5652  *
5653  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5654  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5655  *
5656  * which yields
5657  *
5658  * 16MB:	512k
5659  * 32MB:	724k
5660  * 64MB:	1024k
5661  * 128MB:	1448k
5662  * 256MB:	2048k
5663  * 512MB:	2896k
5664  * 1024MB:	4096k
5665  * 2048MB:	5792k
5666  * 4096MB:	8192k
5667  * 8192MB:	11584k
5668  * 16384MB:	16384k
5669  */
5670 int __meminit init_per_zone_wmark_min(void)
5671 {
5672 	unsigned long lowmem_kbytes;
5673 	int new_min_free_kbytes;
5674 
5675 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5676 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5677 
5678 	if (new_min_free_kbytes > user_min_free_kbytes) {
5679 		min_free_kbytes = new_min_free_kbytes;
5680 		if (min_free_kbytes < 128)
5681 			min_free_kbytes = 128;
5682 		if (min_free_kbytes > 65536)
5683 			min_free_kbytes = 65536;
5684 	} else {
5685 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5686 				new_min_free_kbytes, user_min_free_kbytes);
5687 	}
5688 	setup_per_zone_wmarks();
5689 	refresh_zone_stat_thresholds();
5690 	setup_per_zone_lowmem_reserve();
5691 	setup_per_zone_inactive_ratio();
5692 	return 0;
5693 }
5694 module_init(init_per_zone_wmark_min)
5695 
5696 /*
5697  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5698  *	that we can call two helper functions whenever min_free_kbytes
5699  *	changes.
5700  */
5701 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5702 	void __user *buffer, size_t *length, loff_t *ppos)
5703 {
5704 	proc_dointvec(table, write, buffer, length, ppos);
5705 	if (write) {
5706 		user_min_free_kbytes = min_free_kbytes;
5707 		setup_per_zone_wmarks();
5708 	}
5709 	return 0;
5710 }
5711 
5712 #ifdef CONFIG_NUMA
5713 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5714 	void __user *buffer, size_t *length, loff_t *ppos)
5715 {
5716 	struct zone *zone;
5717 	int rc;
5718 
5719 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5720 	if (rc)
5721 		return rc;
5722 
5723 	for_each_zone(zone)
5724 		zone->min_unmapped_pages = (zone->managed_pages *
5725 				sysctl_min_unmapped_ratio) / 100;
5726 	return 0;
5727 }
5728 
5729 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5730 	void __user *buffer, size_t *length, loff_t *ppos)
5731 {
5732 	struct zone *zone;
5733 	int rc;
5734 
5735 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5736 	if (rc)
5737 		return rc;
5738 
5739 	for_each_zone(zone)
5740 		zone->min_slab_pages = (zone->managed_pages *
5741 				sysctl_min_slab_ratio) / 100;
5742 	return 0;
5743 }
5744 #endif
5745 
5746 /*
5747  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5748  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5749  *	whenever sysctl_lowmem_reserve_ratio changes.
5750  *
5751  * The reserve ratio obviously has absolutely no relation with the
5752  * minimum watermarks. The lowmem reserve ratio can only make sense
5753  * if in function of the boot time zone sizes.
5754  */
5755 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5756 	void __user *buffer, size_t *length, loff_t *ppos)
5757 {
5758 	proc_dointvec_minmax(table, write, buffer, length, ppos);
5759 	setup_per_zone_lowmem_reserve();
5760 	return 0;
5761 }
5762 
5763 /*
5764  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5765  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
5766  * pagelist can have before it gets flushed back to buddy allocator.
5767  */
5768 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5769 	void __user *buffer, size_t *length, loff_t *ppos)
5770 {
5771 	struct zone *zone;
5772 	unsigned int cpu;
5773 	int ret;
5774 
5775 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5776 	if (!write || (ret < 0))
5777 		return ret;
5778 
5779 	mutex_lock(&pcp_batch_high_lock);
5780 	for_each_populated_zone(zone) {
5781 		unsigned long  high;
5782 		high = zone->managed_pages / percpu_pagelist_fraction;
5783 		for_each_possible_cpu(cpu)
5784 			pageset_set_high(per_cpu_ptr(zone->pageset, cpu),
5785 					 high);
5786 	}
5787 	mutex_unlock(&pcp_batch_high_lock);
5788 	return 0;
5789 }
5790 
5791 int hashdist = HASHDIST_DEFAULT;
5792 
5793 #ifdef CONFIG_NUMA
5794 static int __init set_hashdist(char *str)
5795 {
5796 	if (!str)
5797 		return 0;
5798 	hashdist = simple_strtoul(str, &str, 0);
5799 	return 1;
5800 }
5801 __setup("hashdist=", set_hashdist);
5802 #endif
5803 
5804 /*
5805  * allocate a large system hash table from bootmem
5806  * - it is assumed that the hash table must contain an exact power-of-2
5807  *   quantity of entries
5808  * - limit is the number of hash buckets, not the total allocation size
5809  */
5810 void *__init alloc_large_system_hash(const char *tablename,
5811 				     unsigned long bucketsize,
5812 				     unsigned long numentries,
5813 				     int scale,
5814 				     int flags,
5815 				     unsigned int *_hash_shift,
5816 				     unsigned int *_hash_mask,
5817 				     unsigned long low_limit,
5818 				     unsigned long high_limit)
5819 {
5820 	unsigned long long max = high_limit;
5821 	unsigned long log2qty, size;
5822 	void *table = NULL;
5823 
5824 	/* allow the kernel cmdline to have a say */
5825 	if (!numentries) {
5826 		/* round applicable memory size up to nearest megabyte */
5827 		numentries = nr_kernel_pages;
5828 
5829 		/* It isn't necessary when PAGE_SIZE >= 1MB */
5830 		if (PAGE_SHIFT < 20)
5831 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
5832 
5833 		/* limit to 1 bucket per 2^scale bytes of low memory */
5834 		if (scale > PAGE_SHIFT)
5835 			numentries >>= (scale - PAGE_SHIFT);
5836 		else
5837 			numentries <<= (PAGE_SHIFT - scale);
5838 
5839 		/* Make sure we've got at least a 0-order allocation.. */
5840 		if (unlikely(flags & HASH_SMALL)) {
5841 			/* Makes no sense without HASH_EARLY */
5842 			WARN_ON(!(flags & HASH_EARLY));
5843 			if (!(numentries >> *_hash_shift)) {
5844 				numentries = 1UL << *_hash_shift;
5845 				BUG_ON(!numentries);
5846 			}
5847 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5848 			numentries = PAGE_SIZE / bucketsize;
5849 	}
5850 	numentries = roundup_pow_of_two(numentries);
5851 
5852 	/* limit allocation size to 1/16 total memory by default */
5853 	if (max == 0) {
5854 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5855 		do_div(max, bucketsize);
5856 	}
5857 	max = min(max, 0x80000000ULL);
5858 
5859 	if (numentries < low_limit)
5860 		numentries = low_limit;
5861 	if (numentries > max)
5862 		numentries = max;
5863 
5864 	log2qty = ilog2(numentries);
5865 
5866 	do {
5867 		size = bucketsize << log2qty;
5868 		if (flags & HASH_EARLY)
5869 			table = alloc_bootmem_nopanic(size);
5870 		else if (hashdist)
5871 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5872 		else {
5873 			/*
5874 			 * If bucketsize is not a power-of-two, we may free
5875 			 * some pages at the end of hash table which
5876 			 * alloc_pages_exact() automatically does
5877 			 */
5878 			if (get_order(size) < MAX_ORDER) {
5879 				table = alloc_pages_exact(size, GFP_ATOMIC);
5880 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5881 			}
5882 		}
5883 	} while (!table && size > PAGE_SIZE && --log2qty);
5884 
5885 	if (!table)
5886 		panic("Failed to allocate %s hash table\n", tablename);
5887 
5888 	printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5889 	       tablename,
5890 	       (1UL << log2qty),
5891 	       ilog2(size) - PAGE_SHIFT,
5892 	       size);
5893 
5894 	if (_hash_shift)
5895 		*_hash_shift = log2qty;
5896 	if (_hash_mask)
5897 		*_hash_mask = (1 << log2qty) - 1;
5898 
5899 	return table;
5900 }
5901 
5902 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5903 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5904 							unsigned long pfn)
5905 {
5906 #ifdef CONFIG_SPARSEMEM
5907 	return __pfn_to_section(pfn)->pageblock_flags;
5908 #else
5909 	return zone->pageblock_flags;
5910 #endif /* CONFIG_SPARSEMEM */
5911 }
5912 
5913 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5914 {
5915 #ifdef CONFIG_SPARSEMEM
5916 	pfn &= (PAGES_PER_SECTION-1);
5917 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5918 #else
5919 	pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
5920 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5921 #endif /* CONFIG_SPARSEMEM */
5922 }
5923 
5924 /**
5925  * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5926  * @page: The page within the block of interest
5927  * @start_bitidx: The first bit of interest to retrieve
5928  * @end_bitidx: The last bit of interest
5929  * returns pageblock_bits flags
5930  */
5931 unsigned long get_pageblock_flags_group(struct page *page,
5932 					int start_bitidx, int end_bitidx)
5933 {
5934 	struct zone *zone;
5935 	unsigned long *bitmap;
5936 	unsigned long pfn, bitidx;
5937 	unsigned long flags = 0;
5938 	unsigned long value = 1;
5939 
5940 	zone = page_zone(page);
5941 	pfn = page_to_pfn(page);
5942 	bitmap = get_pageblock_bitmap(zone, pfn);
5943 	bitidx = pfn_to_bitidx(zone, pfn);
5944 
5945 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5946 		if (test_bit(bitidx + start_bitidx, bitmap))
5947 			flags |= value;
5948 
5949 	return flags;
5950 }
5951 
5952 /**
5953  * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5954  * @page: The page within the block of interest
5955  * @start_bitidx: The first bit of interest
5956  * @end_bitidx: The last bit of interest
5957  * @flags: The flags to set
5958  */
5959 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5960 					int start_bitidx, int end_bitidx)
5961 {
5962 	struct zone *zone;
5963 	unsigned long *bitmap;
5964 	unsigned long pfn, bitidx;
5965 	unsigned long value = 1;
5966 
5967 	zone = page_zone(page);
5968 	pfn = page_to_pfn(page);
5969 	bitmap = get_pageblock_bitmap(zone, pfn);
5970 	bitidx = pfn_to_bitidx(zone, pfn);
5971 	VM_BUG_ON(!zone_spans_pfn(zone, pfn));
5972 
5973 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5974 		if (flags & value)
5975 			__set_bit(bitidx + start_bitidx, bitmap);
5976 		else
5977 			__clear_bit(bitidx + start_bitidx, bitmap);
5978 }
5979 
5980 /*
5981  * This function checks whether pageblock includes unmovable pages or not.
5982  * If @count is not zero, it is okay to include less @count unmovable pages
5983  *
5984  * PageLRU check without isolation or lru_lock could race so that
5985  * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5986  * expect this function should be exact.
5987  */
5988 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
5989 			 bool skip_hwpoisoned_pages)
5990 {
5991 	unsigned long pfn, iter, found;
5992 	int mt;
5993 
5994 	/*
5995 	 * For avoiding noise data, lru_add_drain_all() should be called
5996 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
5997 	 */
5998 	if (zone_idx(zone) == ZONE_MOVABLE)
5999 		return false;
6000 	mt = get_pageblock_migratetype(page);
6001 	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6002 		return false;
6003 
6004 	pfn = page_to_pfn(page);
6005 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6006 		unsigned long check = pfn + iter;
6007 
6008 		if (!pfn_valid_within(check))
6009 			continue;
6010 
6011 		page = pfn_to_page(check);
6012 
6013 		/*
6014 		 * Hugepages are not in LRU lists, but they're movable.
6015 		 * We need not scan over tail pages bacause we don't
6016 		 * handle each tail page individually in migration.
6017 		 */
6018 		if (PageHuge(page)) {
6019 			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6020 			continue;
6021 		}
6022 
6023 		/*
6024 		 * We can't use page_count without pin a page
6025 		 * because another CPU can free compound page.
6026 		 * This check already skips compound tails of THP
6027 		 * because their page->_count is zero at all time.
6028 		 */
6029 		if (!atomic_read(&page->_count)) {
6030 			if (PageBuddy(page))
6031 				iter += (1 << page_order(page)) - 1;
6032 			continue;
6033 		}
6034 
6035 		/*
6036 		 * The HWPoisoned page may be not in buddy system, and
6037 		 * page_count() is not 0.
6038 		 */
6039 		if (skip_hwpoisoned_pages && PageHWPoison(page))
6040 			continue;
6041 
6042 		if (!PageLRU(page))
6043 			found++;
6044 		/*
6045 		 * If there are RECLAIMABLE pages, we need to check it.
6046 		 * But now, memory offline itself doesn't call shrink_slab()
6047 		 * and it still to be fixed.
6048 		 */
6049 		/*
6050 		 * If the page is not RAM, page_count()should be 0.
6051 		 * we don't need more check. This is an _used_ not-movable page.
6052 		 *
6053 		 * The problematic thing here is PG_reserved pages. PG_reserved
6054 		 * is set to both of a memory hole page and a _used_ kernel
6055 		 * page at boot.
6056 		 */
6057 		if (found > count)
6058 			return true;
6059 	}
6060 	return false;
6061 }
6062 
6063 bool is_pageblock_removable_nolock(struct page *page)
6064 {
6065 	struct zone *zone;
6066 	unsigned long pfn;
6067 
6068 	/*
6069 	 * We have to be careful here because we are iterating over memory
6070 	 * sections which are not zone aware so we might end up outside of
6071 	 * the zone but still within the section.
6072 	 * We have to take care about the node as well. If the node is offline
6073 	 * its NODE_DATA will be NULL - see page_zone.
6074 	 */
6075 	if (!node_online(page_to_nid(page)))
6076 		return false;
6077 
6078 	zone = page_zone(page);
6079 	pfn = page_to_pfn(page);
6080 	if (!zone_spans_pfn(zone, pfn))
6081 		return false;
6082 
6083 	return !has_unmovable_pages(zone, page, 0, true);
6084 }
6085 
6086 #ifdef CONFIG_CMA
6087 
6088 static unsigned long pfn_max_align_down(unsigned long pfn)
6089 {
6090 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6091 			     pageblock_nr_pages) - 1);
6092 }
6093 
6094 static unsigned long pfn_max_align_up(unsigned long pfn)
6095 {
6096 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6097 				pageblock_nr_pages));
6098 }
6099 
6100 /* [start, end) must belong to a single zone. */
6101 static int __alloc_contig_migrate_range(struct compact_control *cc,
6102 					unsigned long start, unsigned long end)
6103 {
6104 	/* This function is based on compact_zone() from compaction.c. */
6105 	unsigned long nr_reclaimed;
6106 	unsigned long pfn = start;
6107 	unsigned int tries = 0;
6108 	int ret = 0;
6109 
6110 	migrate_prep();
6111 
6112 	while (pfn < end || !list_empty(&cc->migratepages)) {
6113 		if (fatal_signal_pending(current)) {
6114 			ret = -EINTR;
6115 			break;
6116 		}
6117 
6118 		if (list_empty(&cc->migratepages)) {
6119 			cc->nr_migratepages = 0;
6120 			pfn = isolate_migratepages_range(cc->zone, cc,
6121 							 pfn, end, true);
6122 			if (!pfn) {
6123 				ret = -EINTR;
6124 				break;
6125 			}
6126 			tries = 0;
6127 		} else if (++tries == 5) {
6128 			ret = ret < 0 ? ret : -EBUSY;
6129 			break;
6130 		}
6131 
6132 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6133 							&cc->migratepages);
6134 		cc->nr_migratepages -= nr_reclaimed;
6135 
6136 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6137 				    0, MIGRATE_SYNC, MR_CMA);
6138 	}
6139 	if (ret < 0) {
6140 		putback_movable_pages(&cc->migratepages);
6141 		return ret;
6142 	}
6143 	return 0;
6144 }
6145 
6146 /**
6147  * alloc_contig_range() -- tries to allocate given range of pages
6148  * @start:	start PFN to allocate
6149  * @end:	one-past-the-last PFN to allocate
6150  * @migratetype:	migratetype of the underlaying pageblocks (either
6151  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6152  *			in range must have the same migratetype and it must
6153  *			be either of the two.
6154  *
6155  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6156  * aligned, however it's the caller's responsibility to guarantee that
6157  * we are the only thread that changes migrate type of pageblocks the
6158  * pages fall in.
6159  *
6160  * The PFN range must belong to a single zone.
6161  *
6162  * Returns zero on success or negative error code.  On success all
6163  * pages which PFN is in [start, end) are allocated for the caller and
6164  * need to be freed with free_contig_range().
6165  */
6166 int alloc_contig_range(unsigned long start, unsigned long end,
6167 		       unsigned migratetype)
6168 {
6169 	unsigned long outer_start, outer_end;
6170 	int ret = 0, order;
6171 
6172 	struct compact_control cc = {
6173 		.nr_migratepages = 0,
6174 		.order = -1,
6175 		.zone = page_zone(pfn_to_page(start)),
6176 		.sync = true,
6177 		.ignore_skip_hint = true,
6178 	};
6179 	INIT_LIST_HEAD(&cc.migratepages);
6180 
6181 	/*
6182 	 * What we do here is we mark all pageblocks in range as
6183 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6184 	 * have different sizes, and due to the way page allocator
6185 	 * work, we align the range to biggest of the two pages so
6186 	 * that page allocator won't try to merge buddies from
6187 	 * different pageblocks and change MIGRATE_ISOLATE to some
6188 	 * other migration type.
6189 	 *
6190 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6191 	 * migrate the pages from an unaligned range (ie. pages that
6192 	 * we are interested in).  This will put all the pages in
6193 	 * range back to page allocator as MIGRATE_ISOLATE.
6194 	 *
6195 	 * When this is done, we take the pages in range from page
6196 	 * allocator removing them from the buddy system.  This way
6197 	 * page allocator will never consider using them.
6198 	 *
6199 	 * This lets us mark the pageblocks back as
6200 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6201 	 * aligned range but not in the unaligned, original range are
6202 	 * put back to page allocator so that buddy can use them.
6203 	 */
6204 
6205 	ret = start_isolate_page_range(pfn_max_align_down(start),
6206 				       pfn_max_align_up(end), migratetype,
6207 				       false);
6208 	if (ret)
6209 		return ret;
6210 
6211 	ret = __alloc_contig_migrate_range(&cc, start, end);
6212 	if (ret)
6213 		goto done;
6214 
6215 	/*
6216 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6217 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6218 	 * more, all pages in [start, end) are free in page allocator.
6219 	 * What we are going to do is to allocate all pages from
6220 	 * [start, end) (that is remove them from page allocator).
6221 	 *
6222 	 * The only problem is that pages at the beginning and at the
6223 	 * end of interesting range may be not aligned with pages that
6224 	 * page allocator holds, ie. they can be part of higher order
6225 	 * pages.  Because of this, we reserve the bigger range and
6226 	 * once this is done free the pages we are not interested in.
6227 	 *
6228 	 * We don't have to hold zone->lock here because the pages are
6229 	 * isolated thus they won't get removed from buddy.
6230 	 */
6231 
6232 	lru_add_drain_all();
6233 	drain_all_pages();
6234 
6235 	order = 0;
6236 	outer_start = start;
6237 	while (!PageBuddy(pfn_to_page(outer_start))) {
6238 		if (++order >= MAX_ORDER) {
6239 			ret = -EBUSY;
6240 			goto done;
6241 		}
6242 		outer_start &= ~0UL << order;
6243 	}
6244 
6245 	/* Make sure the range is really isolated. */
6246 	if (test_pages_isolated(outer_start, end, false)) {
6247 		pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6248 		       outer_start, end);
6249 		ret = -EBUSY;
6250 		goto done;
6251 	}
6252 
6253 
6254 	/* Grab isolated pages from freelists. */
6255 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6256 	if (!outer_end) {
6257 		ret = -EBUSY;
6258 		goto done;
6259 	}
6260 
6261 	/* Free head and tail (if any) */
6262 	if (start != outer_start)
6263 		free_contig_range(outer_start, start - outer_start);
6264 	if (end != outer_end)
6265 		free_contig_range(end, outer_end - end);
6266 
6267 done:
6268 	undo_isolate_page_range(pfn_max_align_down(start),
6269 				pfn_max_align_up(end), migratetype);
6270 	return ret;
6271 }
6272 
6273 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6274 {
6275 	unsigned int count = 0;
6276 
6277 	for (; nr_pages--; pfn++) {
6278 		struct page *page = pfn_to_page(pfn);
6279 
6280 		count += page_count(page) != 1;
6281 		__free_page(page);
6282 	}
6283 	WARN(count != 0, "%d pages are still in use!\n", count);
6284 }
6285 #endif
6286 
6287 #ifdef CONFIG_MEMORY_HOTPLUG
6288 /*
6289  * The zone indicated has a new number of managed_pages; batch sizes and percpu
6290  * page high values need to be recalulated.
6291  */
6292 void __meminit zone_pcp_update(struct zone *zone)
6293 {
6294 	unsigned cpu;
6295 	mutex_lock(&pcp_batch_high_lock);
6296 	for_each_possible_cpu(cpu)
6297 		pageset_set_high_and_batch(zone,
6298 				per_cpu_ptr(zone->pageset, cpu));
6299 	mutex_unlock(&pcp_batch_high_lock);
6300 }
6301 #endif
6302 
6303 void zone_pcp_reset(struct zone *zone)
6304 {
6305 	unsigned long flags;
6306 	int cpu;
6307 	struct per_cpu_pageset *pset;
6308 
6309 	/* avoid races with drain_pages()  */
6310 	local_irq_save(flags);
6311 	if (zone->pageset != &boot_pageset) {
6312 		for_each_online_cpu(cpu) {
6313 			pset = per_cpu_ptr(zone->pageset, cpu);
6314 			drain_zonestat(zone, pset);
6315 		}
6316 		free_percpu(zone->pageset);
6317 		zone->pageset = &boot_pageset;
6318 	}
6319 	local_irq_restore(flags);
6320 }
6321 
6322 #ifdef CONFIG_MEMORY_HOTREMOVE
6323 /*
6324  * All pages in the range must be isolated before calling this.
6325  */
6326 void
6327 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6328 {
6329 	struct page *page;
6330 	struct zone *zone;
6331 	int order, i;
6332 	unsigned long pfn;
6333 	unsigned long flags;
6334 	/* find the first valid pfn */
6335 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
6336 		if (pfn_valid(pfn))
6337 			break;
6338 	if (pfn == end_pfn)
6339 		return;
6340 	zone = page_zone(pfn_to_page(pfn));
6341 	spin_lock_irqsave(&zone->lock, flags);
6342 	pfn = start_pfn;
6343 	while (pfn < end_pfn) {
6344 		if (!pfn_valid(pfn)) {
6345 			pfn++;
6346 			continue;
6347 		}
6348 		page = pfn_to_page(pfn);
6349 		/*
6350 		 * The HWPoisoned page may be not in buddy system, and
6351 		 * page_count() is not 0.
6352 		 */
6353 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6354 			pfn++;
6355 			SetPageReserved(page);
6356 			continue;
6357 		}
6358 
6359 		BUG_ON(page_count(page));
6360 		BUG_ON(!PageBuddy(page));
6361 		order = page_order(page);
6362 #ifdef CONFIG_DEBUG_VM
6363 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
6364 		       pfn, 1 << order, end_pfn);
6365 #endif
6366 		list_del(&page->lru);
6367 		rmv_page_order(page);
6368 		zone->free_area[order].nr_free--;
6369 #ifdef CONFIG_HIGHMEM
6370 		if (PageHighMem(page))
6371 			totalhigh_pages -= 1 << order;
6372 #endif
6373 		for (i = 0; i < (1 << order); i++)
6374 			SetPageReserved((page+i));
6375 		pfn += (1 << order);
6376 	}
6377 	spin_unlock_irqrestore(&zone->lock, flags);
6378 }
6379 #endif
6380 
6381 #ifdef CONFIG_MEMORY_FAILURE
6382 bool is_free_buddy_page(struct page *page)
6383 {
6384 	struct zone *zone = page_zone(page);
6385 	unsigned long pfn = page_to_pfn(page);
6386 	unsigned long flags;
6387 	int order;
6388 
6389 	spin_lock_irqsave(&zone->lock, flags);
6390 	for (order = 0; order < MAX_ORDER; order++) {
6391 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6392 
6393 		if (PageBuddy(page_head) && page_order(page_head) >= order)
6394 			break;
6395 	}
6396 	spin_unlock_irqrestore(&zone->lock, flags);
6397 
6398 	return order < MAX_ORDER;
6399 }
6400 #endif
6401 
6402 static const struct trace_print_flags pageflag_names[] = {
6403 	{1UL << PG_locked,		"locked"	},
6404 	{1UL << PG_error,		"error"		},
6405 	{1UL << PG_referenced,		"referenced"	},
6406 	{1UL << PG_uptodate,		"uptodate"	},
6407 	{1UL << PG_dirty,		"dirty"		},
6408 	{1UL << PG_lru,			"lru"		},
6409 	{1UL << PG_active,		"active"	},
6410 	{1UL << PG_slab,		"slab"		},
6411 	{1UL << PG_owner_priv_1,	"owner_priv_1"	},
6412 	{1UL << PG_arch_1,		"arch_1"	},
6413 	{1UL << PG_reserved,		"reserved"	},
6414 	{1UL << PG_private,		"private"	},
6415 	{1UL << PG_private_2,		"private_2"	},
6416 	{1UL << PG_writeback,		"writeback"	},
6417 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6418 	{1UL << PG_head,		"head"		},
6419 	{1UL << PG_tail,		"tail"		},
6420 #else
6421 	{1UL << PG_compound,		"compound"	},
6422 #endif
6423 	{1UL << PG_swapcache,		"swapcache"	},
6424 	{1UL << PG_mappedtodisk,	"mappedtodisk"	},
6425 	{1UL << PG_reclaim,		"reclaim"	},
6426 	{1UL << PG_swapbacked,		"swapbacked"	},
6427 	{1UL << PG_unevictable,		"unevictable"	},
6428 #ifdef CONFIG_MMU
6429 	{1UL << PG_mlocked,		"mlocked"	},
6430 #endif
6431 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6432 	{1UL << PG_uncached,		"uncached"	},
6433 #endif
6434 #ifdef CONFIG_MEMORY_FAILURE
6435 	{1UL << PG_hwpoison,		"hwpoison"	},
6436 #endif
6437 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6438 	{1UL << PG_compound_lock,	"compound_lock"	},
6439 #endif
6440 };
6441 
6442 static void dump_page_flags(unsigned long flags)
6443 {
6444 	const char *delim = "";
6445 	unsigned long mask;
6446 	int i;
6447 
6448 	BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6449 
6450 	printk(KERN_ALERT "page flags: %#lx(", flags);
6451 
6452 	/* remove zone id */
6453 	flags &= (1UL << NR_PAGEFLAGS) - 1;
6454 
6455 	for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6456 
6457 		mask = pageflag_names[i].mask;
6458 		if ((flags & mask) != mask)
6459 			continue;
6460 
6461 		flags &= ~mask;
6462 		printk("%s%s", delim, pageflag_names[i].name);
6463 		delim = "|";
6464 	}
6465 
6466 	/* check for left over flags */
6467 	if (flags)
6468 		printk("%s%#lx", delim, flags);
6469 
6470 	printk(")\n");
6471 }
6472 
6473 void dump_page(struct page *page)
6474 {
6475 	printk(KERN_ALERT
6476 	       "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6477 		page, atomic_read(&page->_count), page_mapcount(page),
6478 		page->mapping, page->index);
6479 	dump_page_flags(page->flags);
6480 	mem_cgroup_print_bad_page(page);
6481 }
6482