1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kasan.h> 28 #include <linux/module.h> 29 #include <linux/suspend.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/slab.h> 33 #include <linux/ratelimit.h> 34 #include <linux/oom.h> 35 #include <linux/notifier.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/memremap.h> 46 #include <linux/stop_machine.h> 47 #include <linux/sort.h> 48 #include <linux/pfn.h> 49 #include <linux/backing-dev.h> 50 #include <linux/fault-inject.h> 51 #include <linux/page-isolation.h> 52 #include <linux/page_ext.h> 53 #include <linux/debugobjects.h> 54 #include <linux/kmemleak.h> 55 #include <linux/compaction.h> 56 #include <trace/events/kmem.h> 57 #include <trace/events/oom.h> 58 #include <linux/prefetch.h> 59 #include <linux/mm_inline.h> 60 #include <linux/migrate.h> 61 #include <linux/hugetlb.h> 62 #include <linux/sched/rt.h> 63 #include <linux/sched/mm.h> 64 #include <linux/page_owner.h> 65 #include <linux/kthread.h> 66 #include <linux/memcontrol.h> 67 #include <linux/ftrace.h> 68 #include <linux/lockdep.h> 69 #include <linux/nmi.h> 70 71 #include <asm/sections.h> 72 #include <asm/tlbflush.h> 73 #include <asm/div64.h> 74 #include "internal.h" 75 76 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 77 static DEFINE_MUTEX(pcp_batch_high_lock); 78 #define MIN_PERCPU_PAGELIST_FRACTION (8) 79 80 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 81 DEFINE_PER_CPU(int, numa_node); 82 EXPORT_PER_CPU_SYMBOL(numa_node); 83 #endif 84 85 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 86 87 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 88 /* 89 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 90 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 91 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 92 * defined in <linux/topology.h>. 93 */ 94 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 95 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 96 int _node_numa_mem_[MAX_NUMNODES]; 97 #endif 98 99 /* work_structs for global per-cpu drains */ 100 DEFINE_MUTEX(pcpu_drain_mutex); 101 DEFINE_PER_CPU(struct work_struct, pcpu_drain); 102 103 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 104 volatile unsigned long latent_entropy __latent_entropy; 105 EXPORT_SYMBOL(latent_entropy); 106 #endif 107 108 /* 109 * Array of node states. 110 */ 111 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 112 [N_POSSIBLE] = NODE_MASK_ALL, 113 [N_ONLINE] = { { [0] = 1UL } }, 114 #ifndef CONFIG_NUMA 115 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 116 #ifdef CONFIG_HIGHMEM 117 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 118 #endif 119 [N_MEMORY] = { { [0] = 1UL } }, 120 [N_CPU] = { { [0] = 1UL } }, 121 #endif /* NUMA */ 122 }; 123 EXPORT_SYMBOL(node_states); 124 125 /* Protect totalram_pages and zone->managed_pages */ 126 static DEFINE_SPINLOCK(managed_page_count_lock); 127 128 unsigned long totalram_pages __read_mostly; 129 unsigned long totalreserve_pages __read_mostly; 130 unsigned long totalcma_pages __read_mostly; 131 132 int percpu_pagelist_fraction; 133 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 134 135 /* 136 * A cached value of the page's pageblock's migratetype, used when the page is 137 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 138 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 139 * Also the migratetype set in the page does not necessarily match the pcplist 140 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 141 * other index - this ensures that it will be put on the correct CMA freelist. 142 */ 143 static inline int get_pcppage_migratetype(struct page *page) 144 { 145 return page->index; 146 } 147 148 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 149 { 150 page->index = migratetype; 151 } 152 153 #ifdef CONFIG_PM_SLEEP 154 /* 155 * The following functions are used by the suspend/hibernate code to temporarily 156 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 157 * while devices are suspended. To avoid races with the suspend/hibernate code, 158 * they should always be called with system_transition_mutex held 159 * (gfp_allowed_mask also should only be modified with system_transition_mutex 160 * held, unless the suspend/hibernate code is guaranteed not to run in parallel 161 * with that modification). 162 */ 163 164 static gfp_t saved_gfp_mask; 165 166 void pm_restore_gfp_mask(void) 167 { 168 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 169 if (saved_gfp_mask) { 170 gfp_allowed_mask = saved_gfp_mask; 171 saved_gfp_mask = 0; 172 } 173 } 174 175 void pm_restrict_gfp_mask(void) 176 { 177 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 178 WARN_ON(saved_gfp_mask); 179 saved_gfp_mask = gfp_allowed_mask; 180 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 181 } 182 183 bool pm_suspended_storage(void) 184 { 185 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 186 return false; 187 return true; 188 } 189 #endif /* CONFIG_PM_SLEEP */ 190 191 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 192 unsigned int pageblock_order __read_mostly; 193 #endif 194 195 static void __free_pages_ok(struct page *page, unsigned int order); 196 197 /* 198 * results with 256, 32 in the lowmem_reserve sysctl: 199 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 200 * 1G machine -> (16M dma, 784M normal, 224M high) 201 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 202 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 203 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 204 * 205 * TBD: should special case ZONE_DMA32 machines here - in those we normally 206 * don't need any ZONE_NORMAL reservation 207 */ 208 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 209 #ifdef CONFIG_ZONE_DMA 210 [ZONE_DMA] = 256, 211 #endif 212 #ifdef CONFIG_ZONE_DMA32 213 [ZONE_DMA32] = 256, 214 #endif 215 [ZONE_NORMAL] = 32, 216 #ifdef CONFIG_HIGHMEM 217 [ZONE_HIGHMEM] = 0, 218 #endif 219 [ZONE_MOVABLE] = 0, 220 }; 221 222 EXPORT_SYMBOL(totalram_pages); 223 224 static char * const zone_names[MAX_NR_ZONES] = { 225 #ifdef CONFIG_ZONE_DMA 226 "DMA", 227 #endif 228 #ifdef CONFIG_ZONE_DMA32 229 "DMA32", 230 #endif 231 "Normal", 232 #ifdef CONFIG_HIGHMEM 233 "HighMem", 234 #endif 235 "Movable", 236 #ifdef CONFIG_ZONE_DEVICE 237 "Device", 238 #endif 239 }; 240 241 char * const migratetype_names[MIGRATE_TYPES] = { 242 "Unmovable", 243 "Movable", 244 "Reclaimable", 245 "HighAtomic", 246 #ifdef CONFIG_CMA 247 "CMA", 248 #endif 249 #ifdef CONFIG_MEMORY_ISOLATION 250 "Isolate", 251 #endif 252 }; 253 254 compound_page_dtor * const compound_page_dtors[] = { 255 NULL, 256 free_compound_page, 257 #ifdef CONFIG_HUGETLB_PAGE 258 free_huge_page, 259 #endif 260 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 261 free_transhuge_page, 262 #endif 263 }; 264 265 int min_free_kbytes = 1024; 266 int user_min_free_kbytes = -1; 267 int watermark_scale_factor = 10; 268 269 static unsigned long nr_kernel_pages __meminitdata; 270 static unsigned long nr_all_pages __meminitdata; 271 static unsigned long dma_reserve __meminitdata; 272 273 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 274 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __meminitdata; 275 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __meminitdata; 276 static unsigned long required_kernelcore __initdata; 277 static unsigned long required_kernelcore_percent __initdata; 278 static unsigned long required_movablecore __initdata; 279 static unsigned long required_movablecore_percent __initdata; 280 static unsigned long zone_movable_pfn[MAX_NUMNODES] __meminitdata; 281 static bool mirrored_kernelcore __meminitdata; 282 283 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 284 int movable_zone; 285 EXPORT_SYMBOL(movable_zone); 286 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 287 288 #if MAX_NUMNODES > 1 289 int nr_node_ids __read_mostly = MAX_NUMNODES; 290 int nr_online_nodes __read_mostly = 1; 291 EXPORT_SYMBOL(nr_node_ids); 292 EXPORT_SYMBOL(nr_online_nodes); 293 #endif 294 295 int page_group_by_mobility_disabled __read_mostly; 296 297 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 298 /* Returns true if the struct page for the pfn is uninitialised */ 299 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 300 { 301 int nid = early_pfn_to_nid(pfn); 302 303 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 304 return true; 305 306 return false; 307 } 308 309 /* 310 * Returns false when the remaining initialisation should be deferred until 311 * later in the boot cycle when it can be parallelised. 312 */ 313 static inline bool update_defer_init(pg_data_t *pgdat, 314 unsigned long pfn, unsigned long zone_end, 315 unsigned long *nr_initialised) 316 { 317 /* Always populate low zones for address-constrained allocations */ 318 if (zone_end < pgdat_end_pfn(pgdat)) 319 return true; 320 (*nr_initialised)++; 321 if ((*nr_initialised > pgdat->static_init_pgcnt) && 322 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 323 pgdat->first_deferred_pfn = pfn; 324 return false; 325 } 326 327 return true; 328 } 329 #else 330 static inline bool early_page_uninitialised(unsigned long pfn) 331 { 332 return false; 333 } 334 335 static inline bool update_defer_init(pg_data_t *pgdat, 336 unsigned long pfn, unsigned long zone_end, 337 unsigned long *nr_initialised) 338 { 339 return true; 340 } 341 #endif 342 343 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 344 static inline unsigned long *get_pageblock_bitmap(struct page *page, 345 unsigned long pfn) 346 { 347 #ifdef CONFIG_SPARSEMEM 348 return __pfn_to_section(pfn)->pageblock_flags; 349 #else 350 return page_zone(page)->pageblock_flags; 351 #endif /* CONFIG_SPARSEMEM */ 352 } 353 354 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn) 355 { 356 #ifdef CONFIG_SPARSEMEM 357 pfn &= (PAGES_PER_SECTION-1); 358 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 359 #else 360 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 361 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 362 #endif /* CONFIG_SPARSEMEM */ 363 } 364 365 /** 366 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 367 * @page: The page within the block of interest 368 * @pfn: The target page frame number 369 * @end_bitidx: The last bit of interest to retrieve 370 * @mask: mask of bits that the caller is interested in 371 * 372 * Return: pageblock_bits flags 373 */ 374 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page, 375 unsigned long pfn, 376 unsigned long end_bitidx, 377 unsigned long mask) 378 { 379 unsigned long *bitmap; 380 unsigned long bitidx, word_bitidx; 381 unsigned long word; 382 383 bitmap = get_pageblock_bitmap(page, pfn); 384 bitidx = pfn_to_bitidx(page, pfn); 385 word_bitidx = bitidx / BITS_PER_LONG; 386 bitidx &= (BITS_PER_LONG-1); 387 388 word = bitmap[word_bitidx]; 389 bitidx += end_bitidx; 390 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; 391 } 392 393 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 394 unsigned long end_bitidx, 395 unsigned long mask) 396 { 397 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask); 398 } 399 400 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) 401 { 402 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK); 403 } 404 405 /** 406 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 407 * @page: The page within the block of interest 408 * @flags: The flags to set 409 * @pfn: The target page frame number 410 * @end_bitidx: The last bit of interest 411 * @mask: mask of bits that the caller is interested in 412 */ 413 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 414 unsigned long pfn, 415 unsigned long end_bitidx, 416 unsigned long mask) 417 { 418 unsigned long *bitmap; 419 unsigned long bitidx, word_bitidx; 420 unsigned long old_word, word; 421 422 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 423 424 bitmap = get_pageblock_bitmap(page, pfn); 425 bitidx = pfn_to_bitidx(page, pfn); 426 word_bitidx = bitidx / BITS_PER_LONG; 427 bitidx &= (BITS_PER_LONG-1); 428 429 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 430 431 bitidx += end_bitidx; 432 mask <<= (BITS_PER_LONG - bitidx - 1); 433 flags <<= (BITS_PER_LONG - bitidx - 1); 434 435 word = READ_ONCE(bitmap[word_bitidx]); 436 for (;;) { 437 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 438 if (word == old_word) 439 break; 440 word = old_word; 441 } 442 } 443 444 void set_pageblock_migratetype(struct page *page, int migratetype) 445 { 446 if (unlikely(page_group_by_mobility_disabled && 447 migratetype < MIGRATE_PCPTYPES)) 448 migratetype = MIGRATE_UNMOVABLE; 449 450 set_pageblock_flags_group(page, (unsigned long)migratetype, 451 PB_migrate, PB_migrate_end); 452 } 453 454 #ifdef CONFIG_DEBUG_VM 455 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 456 { 457 int ret = 0; 458 unsigned seq; 459 unsigned long pfn = page_to_pfn(page); 460 unsigned long sp, start_pfn; 461 462 do { 463 seq = zone_span_seqbegin(zone); 464 start_pfn = zone->zone_start_pfn; 465 sp = zone->spanned_pages; 466 if (!zone_spans_pfn(zone, pfn)) 467 ret = 1; 468 } while (zone_span_seqretry(zone, seq)); 469 470 if (ret) 471 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 472 pfn, zone_to_nid(zone), zone->name, 473 start_pfn, start_pfn + sp); 474 475 return ret; 476 } 477 478 static int page_is_consistent(struct zone *zone, struct page *page) 479 { 480 if (!pfn_valid_within(page_to_pfn(page))) 481 return 0; 482 if (zone != page_zone(page)) 483 return 0; 484 485 return 1; 486 } 487 /* 488 * Temporary debugging check for pages not lying within a given zone. 489 */ 490 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 491 { 492 if (page_outside_zone_boundaries(zone, page)) 493 return 1; 494 if (!page_is_consistent(zone, page)) 495 return 1; 496 497 return 0; 498 } 499 #else 500 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 501 { 502 return 0; 503 } 504 #endif 505 506 static void bad_page(struct page *page, const char *reason, 507 unsigned long bad_flags) 508 { 509 static unsigned long resume; 510 static unsigned long nr_shown; 511 static unsigned long nr_unshown; 512 513 /* 514 * Allow a burst of 60 reports, then keep quiet for that minute; 515 * or allow a steady drip of one report per second. 516 */ 517 if (nr_shown == 60) { 518 if (time_before(jiffies, resume)) { 519 nr_unshown++; 520 goto out; 521 } 522 if (nr_unshown) { 523 pr_alert( 524 "BUG: Bad page state: %lu messages suppressed\n", 525 nr_unshown); 526 nr_unshown = 0; 527 } 528 nr_shown = 0; 529 } 530 if (nr_shown++ == 0) 531 resume = jiffies + 60 * HZ; 532 533 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 534 current->comm, page_to_pfn(page)); 535 __dump_page(page, reason); 536 bad_flags &= page->flags; 537 if (bad_flags) 538 pr_alert("bad because of flags: %#lx(%pGp)\n", 539 bad_flags, &bad_flags); 540 dump_page_owner(page); 541 542 print_modules(); 543 dump_stack(); 544 out: 545 /* Leave bad fields for debug, except PageBuddy could make trouble */ 546 page_mapcount_reset(page); /* remove PageBuddy */ 547 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 548 } 549 550 /* 551 * Higher-order pages are called "compound pages". They are structured thusly: 552 * 553 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 554 * 555 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 556 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 557 * 558 * The first tail page's ->compound_dtor holds the offset in array of compound 559 * page destructors. See compound_page_dtors. 560 * 561 * The first tail page's ->compound_order holds the order of allocation. 562 * This usage means that zero-order pages may not be compound. 563 */ 564 565 void free_compound_page(struct page *page) 566 { 567 __free_pages_ok(page, compound_order(page)); 568 } 569 570 void prep_compound_page(struct page *page, unsigned int order) 571 { 572 int i; 573 int nr_pages = 1 << order; 574 575 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 576 set_compound_order(page, order); 577 __SetPageHead(page); 578 for (i = 1; i < nr_pages; i++) { 579 struct page *p = page + i; 580 set_page_count(p, 0); 581 p->mapping = TAIL_MAPPING; 582 set_compound_head(p, page); 583 } 584 atomic_set(compound_mapcount_ptr(page), -1); 585 } 586 587 #ifdef CONFIG_DEBUG_PAGEALLOC 588 unsigned int _debug_guardpage_minorder; 589 bool _debug_pagealloc_enabled __read_mostly 590 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 591 EXPORT_SYMBOL(_debug_pagealloc_enabled); 592 bool _debug_guardpage_enabled __read_mostly; 593 594 static int __init early_debug_pagealloc(char *buf) 595 { 596 if (!buf) 597 return -EINVAL; 598 return kstrtobool(buf, &_debug_pagealloc_enabled); 599 } 600 early_param("debug_pagealloc", early_debug_pagealloc); 601 602 static bool need_debug_guardpage(void) 603 { 604 /* If we don't use debug_pagealloc, we don't need guard page */ 605 if (!debug_pagealloc_enabled()) 606 return false; 607 608 if (!debug_guardpage_minorder()) 609 return false; 610 611 return true; 612 } 613 614 static void init_debug_guardpage(void) 615 { 616 if (!debug_pagealloc_enabled()) 617 return; 618 619 if (!debug_guardpage_minorder()) 620 return; 621 622 _debug_guardpage_enabled = true; 623 } 624 625 struct page_ext_operations debug_guardpage_ops = { 626 .need = need_debug_guardpage, 627 .init = init_debug_guardpage, 628 }; 629 630 static int __init debug_guardpage_minorder_setup(char *buf) 631 { 632 unsigned long res; 633 634 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 635 pr_err("Bad debug_guardpage_minorder value\n"); 636 return 0; 637 } 638 _debug_guardpage_minorder = res; 639 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 640 return 0; 641 } 642 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 643 644 static inline bool set_page_guard(struct zone *zone, struct page *page, 645 unsigned int order, int migratetype) 646 { 647 struct page_ext *page_ext; 648 649 if (!debug_guardpage_enabled()) 650 return false; 651 652 if (order >= debug_guardpage_minorder()) 653 return false; 654 655 page_ext = lookup_page_ext(page); 656 if (unlikely(!page_ext)) 657 return false; 658 659 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 660 661 INIT_LIST_HEAD(&page->lru); 662 set_page_private(page, order); 663 /* Guard pages are not available for any usage */ 664 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 665 666 return true; 667 } 668 669 static inline void clear_page_guard(struct zone *zone, struct page *page, 670 unsigned int order, int migratetype) 671 { 672 struct page_ext *page_ext; 673 674 if (!debug_guardpage_enabled()) 675 return; 676 677 page_ext = lookup_page_ext(page); 678 if (unlikely(!page_ext)) 679 return; 680 681 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 682 683 set_page_private(page, 0); 684 if (!is_migrate_isolate(migratetype)) 685 __mod_zone_freepage_state(zone, (1 << order), migratetype); 686 } 687 #else 688 struct page_ext_operations debug_guardpage_ops; 689 static inline bool set_page_guard(struct zone *zone, struct page *page, 690 unsigned int order, int migratetype) { return false; } 691 static inline void clear_page_guard(struct zone *zone, struct page *page, 692 unsigned int order, int migratetype) {} 693 #endif 694 695 static inline void set_page_order(struct page *page, unsigned int order) 696 { 697 set_page_private(page, order); 698 __SetPageBuddy(page); 699 } 700 701 static inline void rmv_page_order(struct page *page) 702 { 703 __ClearPageBuddy(page); 704 set_page_private(page, 0); 705 } 706 707 /* 708 * This function checks whether a page is free && is the buddy 709 * we can coalesce a page and its buddy if 710 * (a) the buddy is not in a hole (check before calling!) && 711 * (b) the buddy is in the buddy system && 712 * (c) a page and its buddy have the same order && 713 * (d) a page and its buddy are in the same zone. 714 * 715 * For recording whether a page is in the buddy system, we set PageBuddy. 716 * Setting, clearing, and testing PageBuddy is serialized by zone->lock. 717 * 718 * For recording page's order, we use page_private(page). 719 */ 720 static inline int page_is_buddy(struct page *page, struct page *buddy, 721 unsigned int order) 722 { 723 if (page_is_guard(buddy) && page_order(buddy) == order) { 724 if (page_zone_id(page) != page_zone_id(buddy)) 725 return 0; 726 727 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 728 729 return 1; 730 } 731 732 if (PageBuddy(buddy) && page_order(buddy) == order) { 733 /* 734 * zone check is done late to avoid uselessly 735 * calculating zone/node ids for pages that could 736 * never merge. 737 */ 738 if (page_zone_id(page) != page_zone_id(buddy)) 739 return 0; 740 741 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 742 743 return 1; 744 } 745 return 0; 746 } 747 748 /* 749 * Freeing function for a buddy system allocator. 750 * 751 * The concept of a buddy system is to maintain direct-mapped table 752 * (containing bit values) for memory blocks of various "orders". 753 * The bottom level table contains the map for the smallest allocatable 754 * units of memory (here, pages), and each level above it describes 755 * pairs of units from the levels below, hence, "buddies". 756 * At a high level, all that happens here is marking the table entry 757 * at the bottom level available, and propagating the changes upward 758 * as necessary, plus some accounting needed to play nicely with other 759 * parts of the VM system. 760 * At each level, we keep a list of pages, which are heads of continuous 761 * free pages of length of (1 << order) and marked with PageBuddy. 762 * Page's order is recorded in page_private(page) field. 763 * So when we are allocating or freeing one, we can derive the state of the 764 * other. That is, if we allocate a small block, and both were 765 * free, the remainder of the region must be split into blocks. 766 * If a block is freed, and its buddy is also free, then this 767 * triggers coalescing into a block of larger size. 768 * 769 * -- nyc 770 */ 771 772 static inline void __free_one_page(struct page *page, 773 unsigned long pfn, 774 struct zone *zone, unsigned int order, 775 int migratetype) 776 { 777 unsigned long combined_pfn; 778 unsigned long uninitialized_var(buddy_pfn); 779 struct page *buddy; 780 unsigned int max_order; 781 782 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1); 783 784 VM_BUG_ON(!zone_is_initialized(zone)); 785 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 786 787 VM_BUG_ON(migratetype == -1); 788 if (likely(!is_migrate_isolate(migratetype))) 789 __mod_zone_freepage_state(zone, 1 << order, migratetype); 790 791 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 792 VM_BUG_ON_PAGE(bad_range(zone, page), page); 793 794 continue_merging: 795 while (order < max_order - 1) { 796 buddy_pfn = __find_buddy_pfn(pfn, order); 797 buddy = page + (buddy_pfn - pfn); 798 799 if (!pfn_valid_within(buddy_pfn)) 800 goto done_merging; 801 if (!page_is_buddy(page, buddy, order)) 802 goto done_merging; 803 /* 804 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 805 * merge with it and move up one order. 806 */ 807 if (page_is_guard(buddy)) { 808 clear_page_guard(zone, buddy, order, migratetype); 809 } else { 810 list_del(&buddy->lru); 811 zone->free_area[order].nr_free--; 812 rmv_page_order(buddy); 813 } 814 combined_pfn = buddy_pfn & pfn; 815 page = page + (combined_pfn - pfn); 816 pfn = combined_pfn; 817 order++; 818 } 819 if (max_order < MAX_ORDER) { 820 /* If we are here, it means order is >= pageblock_order. 821 * We want to prevent merge between freepages on isolate 822 * pageblock and normal pageblock. Without this, pageblock 823 * isolation could cause incorrect freepage or CMA accounting. 824 * 825 * We don't want to hit this code for the more frequent 826 * low-order merging. 827 */ 828 if (unlikely(has_isolate_pageblock(zone))) { 829 int buddy_mt; 830 831 buddy_pfn = __find_buddy_pfn(pfn, order); 832 buddy = page + (buddy_pfn - pfn); 833 buddy_mt = get_pageblock_migratetype(buddy); 834 835 if (migratetype != buddy_mt 836 && (is_migrate_isolate(migratetype) || 837 is_migrate_isolate(buddy_mt))) 838 goto done_merging; 839 } 840 max_order++; 841 goto continue_merging; 842 } 843 844 done_merging: 845 set_page_order(page, order); 846 847 /* 848 * If this is not the largest possible page, check if the buddy 849 * of the next-highest order is free. If it is, it's possible 850 * that pages are being freed that will coalesce soon. In case, 851 * that is happening, add the free page to the tail of the list 852 * so it's less likely to be used soon and more likely to be merged 853 * as a higher order page 854 */ 855 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) { 856 struct page *higher_page, *higher_buddy; 857 combined_pfn = buddy_pfn & pfn; 858 higher_page = page + (combined_pfn - pfn); 859 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); 860 higher_buddy = higher_page + (buddy_pfn - combined_pfn); 861 if (pfn_valid_within(buddy_pfn) && 862 page_is_buddy(higher_page, higher_buddy, order + 1)) { 863 list_add_tail(&page->lru, 864 &zone->free_area[order].free_list[migratetype]); 865 goto out; 866 } 867 } 868 869 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 870 out: 871 zone->free_area[order].nr_free++; 872 } 873 874 /* 875 * A bad page could be due to a number of fields. Instead of multiple branches, 876 * try and check multiple fields with one check. The caller must do a detailed 877 * check if necessary. 878 */ 879 static inline bool page_expected_state(struct page *page, 880 unsigned long check_flags) 881 { 882 if (unlikely(atomic_read(&page->_mapcount) != -1)) 883 return false; 884 885 if (unlikely((unsigned long)page->mapping | 886 page_ref_count(page) | 887 #ifdef CONFIG_MEMCG 888 (unsigned long)page->mem_cgroup | 889 #endif 890 (page->flags & check_flags))) 891 return false; 892 893 return true; 894 } 895 896 static void free_pages_check_bad(struct page *page) 897 { 898 const char *bad_reason; 899 unsigned long bad_flags; 900 901 bad_reason = NULL; 902 bad_flags = 0; 903 904 if (unlikely(atomic_read(&page->_mapcount) != -1)) 905 bad_reason = "nonzero mapcount"; 906 if (unlikely(page->mapping != NULL)) 907 bad_reason = "non-NULL mapping"; 908 if (unlikely(page_ref_count(page) != 0)) 909 bad_reason = "nonzero _refcount"; 910 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { 911 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 912 bad_flags = PAGE_FLAGS_CHECK_AT_FREE; 913 } 914 #ifdef CONFIG_MEMCG 915 if (unlikely(page->mem_cgroup)) 916 bad_reason = "page still charged to cgroup"; 917 #endif 918 bad_page(page, bad_reason, bad_flags); 919 } 920 921 static inline int free_pages_check(struct page *page) 922 { 923 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 924 return 0; 925 926 /* Something has gone sideways, find it */ 927 free_pages_check_bad(page); 928 return 1; 929 } 930 931 static int free_tail_pages_check(struct page *head_page, struct page *page) 932 { 933 int ret = 1; 934 935 /* 936 * We rely page->lru.next never has bit 0 set, unless the page 937 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 938 */ 939 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 940 941 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 942 ret = 0; 943 goto out; 944 } 945 switch (page - head_page) { 946 case 1: 947 /* the first tail page: ->mapping may be compound_mapcount() */ 948 if (unlikely(compound_mapcount(page))) { 949 bad_page(page, "nonzero compound_mapcount", 0); 950 goto out; 951 } 952 break; 953 case 2: 954 /* 955 * the second tail page: ->mapping is 956 * deferred_list.next -- ignore value. 957 */ 958 break; 959 default: 960 if (page->mapping != TAIL_MAPPING) { 961 bad_page(page, "corrupted mapping in tail page", 0); 962 goto out; 963 } 964 break; 965 } 966 if (unlikely(!PageTail(page))) { 967 bad_page(page, "PageTail not set", 0); 968 goto out; 969 } 970 if (unlikely(compound_head(page) != head_page)) { 971 bad_page(page, "compound_head not consistent", 0); 972 goto out; 973 } 974 ret = 0; 975 out: 976 page->mapping = NULL; 977 clear_compound_head(page); 978 return ret; 979 } 980 981 static __always_inline bool free_pages_prepare(struct page *page, 982 unsigned int order, bool check_free) 983 { 984 int bad = 0; 985 986 VM_BUG_ON_PAGE(PageTail(page), page); 987 988 trace_mm_page_free(page, order); 989 990 /* 991 * Check tail pages before head page information is cleared to 992 * avoid checking PageCompound for order-0 pages. 993 */ 994 if (unlikely(order)) { 995 bool compound = PageCompound(page); 996 int i; 997 998 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 999 1000 if (compound) 1001 ClearPageDoubleMap(page); 1002 for (i = 1; i < (1 << order); i++) { 1003 if (compound) 1004 bad += free_tail_pages_check(page, page + i); 1005 if (unlikely(free_pages_check(page + i))) { 1006 bad++; 1007 continue; 1008 } 1009 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1010 } 1011 } 1012 if (PageMappingFlags(page)) 1013 page->mapping = NULL; 1014 if (memcg_kmem_enabled() && PageKmemcg(page)) 1015 memcg_kmem_uncharge(page, order); 1016 if (check_free) 1017 bad += free_pages_check(page); 1018 if (bad) 1019 return false; 1020 1021 page_cpupid_reset_last(page); 1022 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1023 reset_page_owner(page, order); 1024 1025 if (!PageHighMem(page)) { 1026 debug_check_no_locks_freed(page_address(page), 1027 PAGE_SIZE << order); 1028 debug_check_no_obj_freed(page_address(page), 1029 PAGE_SIZE << order); 1030 } 1031 arch_free_page(page, order); 1032 kernel_poison_pages(page, 1 << order, 0); 1033 kernel_map_pages(page, 1 << order, 0); 1034 kasan_free_pages(page, order); 1035 1036 return true; 1037 } 1038 1039 #ifdef CONFIG_DEBUG_VM 1040 static inline bool free_pcp_prepare(struct page *page) 1041 { 1042 return free_pages_prepare(page, 0, true); 1043 } 1044 1045 static inline bool bulkfree_pcp_prepare(struct page *page) 1046 { 1047 return false; 1048 } 1049 #else 1050 static bool free_pcp_prepare(struct page *page) 1051 { 1052 return free_pages_prepare(page, 0, false); 1053 } 1054 1055 static bool bulkfree_pcp_prepare(struct page *page) 1056 { 1057 return free_pages_check(page); 1058 } 1059 #endif /* CONFIG_DEBUG_VM */ 1060 1061 static inline void prefetch_buddy(struct page *page) 1062 { 1063 unsigned long pfn = page_to_pfn(page); 1064 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0); 1065 struct page *buddy = page + (buddy_pfn - pfn); 1066 1067 prefetch(buddy); 1068 } 1069 1070 /* 1071 * Frees a number of pages from the PCP lists 1072 * Assumes all pages on list are in same zone, and of same order. 1073 * count is the number of pages to free. 1074 * 1075 * If the zone was previously in an "all pages pinned" state then look to 1076 * see if this freeing clears that state. 1077 * 1078 * And clear the zone's pages_scanned counter, to hold off the "all pages are 1079 * pinned" detection logic. 1080 */ 1081 static void free_pcppages_bulk(struct zone *zone, int count, 1082 struct per_cpu_pages *pcp) 1083 { 1084 int migratetype = 0; 1085 int batch_free = 0; 1086 int prefetch_nr = 0; 1087 bool isolated_pageblocks; 1088 struct page *page, *tmp; 1089 LIST_HEAD(head); 1090 1091 while (count) { 1092 struct list_head *list; 1093 1094 /* 1095 * Remove pages from lists in a round-robin fashion. A 1096 * batch_free count is maintained that is incremented when an 1097 * empty list is encountered. This is so more pages are freed 1098 * off fuller lists instead of spinning excessively around empty 1099 * lists 1100 */ 1101 do { 1102 batch_free++; 1103 if (++migratetype == MIGRATE_PCPTYPES) 1104 migratetype = 0; 1105 list = &pcp->lists[migratetype]; 1106 } while (list_empty(list)); 1107 1108 /* This is the only non-empty list. Free them all. */ 1109 if (batch_free == MIGRATE_PCPTYPES) 1110 batch_free = count; 1111 1112 do { 1113 page = list_last_entry(list, struct page, lru); 1114 /* must delete to avoid corrupting pcp list */ 1115 list_del(&page->lru); 1116 pcp->count--; 1117 1118 if (bulkfree_pcp_prepare(page)) 1119 continue; 1120 1121 list_add_tail(&page->lru, &head); 1122 1123 /* 1124 * We are going to put the page back to the global 1125 * pool, prefetch its buddy to speed up later access 1126 * under zone->lock. It is believed the overhead of 1127 * an additional test and calculating buddy_pfn here 1128 * can be offset by reduced memory latency later. To 1129 * avoid excessive prefetching due to large count, only 1130 * prefetch buddy for the first pcp->batch nr of pages. 1131 */ 1132 if (prefetch_nr++ < pcp->batch) 1133 prefetch_buddy(page); 1134 } while (--count && --batch_free && !list_empty(list)); 1135 } 1136 1137 spin_lock(&zone->lock); 1138 isolated_pageblocks = has_isolate_pageblock(zone); 1139 1140 /* 1141 * Use safe version since after __free_one_page(), 1142 * page->lru.next will not point to original list. 1143 */ 1144 list_for_each_entry_safe(page, tmp, &head, lru) { 1145 int mt = get_pcppage_migratetype(page); 1146 /* MIGRATE_ISOLATE page should not go to pcplists */ 1147 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1148 /* Pageblock could have been isolated meanwhile */ 1149 if (unlikely(isolated_pageblocks)) 1150 mt = get_pageblock_migratetype(page); 1151 1152 __free_one_page(page, page_to_pfn(page), zone, 0, mt); 1153 trace_mm_page_pcpu_drain(page, 0, mt); 1154 } 1155 spin_unlock(&zone->lock); 1156 } 1157 1158 static void free_one_page(struct zone *zone, 1159 struct page *page, unsigned long pfn, 1160 unsigned int order, 1161 int migratetype) 1162 { 1163 spin_lock(&zone->lock); 1164 if (unlikely(has_isolate_pageblock(zone) || 1165 is_migrate_isolate(migratetype))) { 1166 migratetype = get_pfnblock_migratetype(page, pfn); 1167 } 1168 __free_one_page(page, pfn, zone, order, migratetype); 1169 spin_unlock(&zone->lock); 1170 } 1171 1172 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1173 unsigned long zone, int nid) 1174 { 1175 mm_zero_struct_page(page); 1176 set_page_links(page, zone, nid, pfn); 1177 init_page_count(page); 1178 page_mapcount_reset(page); 1179 page_cpupid_reset_last(page); 1180 1181 INIT_LIST_HEAD(&page->lru); 1182 #ifdef WANT_PAGE_VIRTUAL 1183 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1184 if (!is_highmem_idx(zone)) 1185 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1186 #endif 1187 } 1188 1189 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1190 static void __meminit init_reserved_page(unsigned long pfn) 1191 { 1192 pg_data_t *pgdat; 1193 int nid, zid; 1194 1195 if (!early_page_uninitialised(pfn)) 1196 return; 1197 1198 nid = early_pfn_to_nid(pfn); 1199 pgdat = NODE_DATA(nid); 1200 1201 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1202 struct zone *zone = &pgdat->node_zones[zid]; 1203 1204 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) 1205 break; 1206 } 1207 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 1208 } 1209 #else 1210 static inline void init_reserved_page(unsigned long pfn) 1211 { 1212 } 1213 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1214 1215 /* 1216 * Initialised pages do not have PageReserved set. This function is 1217 * called for each range allocated by the bootmem allocator and 1218 * marks the pages PageReserved. The remaining valid pages are later 1219 * sent to the buddy page allocator. 1220 */ 1221 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1222 { 1223 unsigned long start_pfn = PFN_DOWN(start); 1224 unsigned long end_pfn = PFN_UP(end); 1225 1226 for (; start_pfn < end_pfn; start_pfn++) { 1227 if (pfn_valid(start_pfn)) { 1228 struct page *page = pfn_to_page(start_pfn); 1229 1230 init_reserved_page(start_pfn); 1231 1232 /* Avoid false-positive PageTail() */ 1233 INIT_LIST_HEAD(&page->lru); 1234 1235 SetPageReserved(page); 1236 } 1237 } 1238 } 1239 1240 static void __free_pages_ok(struct page *page, unsigned int order) 1241 { 1242 unsigned long flags; 1243 int migratetype; 1244 unsigned long pfn = page_to_pfn(page); 1245 1246 if (!free_pages_prepare(page, order, true)) 1247 return; 1248 1249 migratetype = get_pfnblock_migratetype(page, pfn); 1250 local_irq_save(flags); 1251 __count_vm_events(PGFREE, 1 << order); 1252 free_one_page(page_zone(page), page, pfn, order, migratetype); 1253 local_irq_restore(flags); 1254 } 1255 1256 static void __init __free_pages_boot_core(struct page *page, unsigned int order) 1257 { 1258 unsigned int nr_pages = 1 << order; 1259 struct page *p = page; 1260 unsigned int loop; 1261 1262 prefetchw(p); 1263 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1264 prefetchw(p + 1); 1265 __ClearPageReserved(p); 1266 set_page_count(p, 0); 1267 } 1268 __ClearPageReserved(p); 1269 set_page_count(p, 0); 1270 1271 page_zone(page)->managed_pages += nr_pages; 1272 set_page_refcounted(page); 1273 __free_pages(page, order); 1274 } 1275 1276 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \ 1277 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 1278 1279 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1280 1281 int __meminit early_pfn_to_nid(unsigned long pfn) 1282 { 1283 static DEFINE_SPINLOCK(early_pfn_lock); 1284 int nid; 1285 1286 spin_lock(&early_pfn_lock); 1287 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1288 if (nid < 0) 1289 nid = first_online_node; 1290 spin_unlock(&early_pfn_lock); 1291 1292 return nid; 1293 } 1294 #endif 1295 1296 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 1297 static inline bool __meminit __maybe_unused 1298 meminit_pfn_in_nid(unsigned long pfn, int node, 1299 struct mminit_pfnnid_cache *state) 1300 { 1301 int nid; 1302 1303 nid = __early_pfn_to_nid(pfn, state); 1304 if (nid >= 0 && nid != node) 1305 return false; 1306 return true; 1307 } 1308 1309 /* Only safe to use early in boot when initialisation is single-threaded */ 1310 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1311 { 1312 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache); 1313 } 1314 1315 #else 1316 1317 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1318 { 1319 return true; 1320 } 1321 static inline bool __meminit __maybe_unused 1322 meminit_pfn_in_nid(unsigned long pfn, int node, 1323 struct mminit_pfnnid_cache *state) 1324 { 1325 return true; 1326 } 1327 #endif 1328 1329 1330 void __init __free_pages_bootmem(struct page *page, unsigned long pfn, 1331 unsigned int order) 1332 { 1333 if (early_page_uninitialised(pfn)) 1334 return; 1335 return __free_pages_boot_core(page, order); 1336 } 1337 1338 /* 1339 * Check that the whole (or subset of) a pageblock given by the interval of 1340 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1341 * with the migration of free compaction scanner. The scanners then need to 1342 * use only pfn_valid_within() check for arches that allow holes within 1343 * pageblocks. 1344 * 1345 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1346 * 1347 * It's possible on some configurations to have a setup like node0 node1 node0 1348 * i.e. it's possible that all pages within a zones range of pages do not 1349 * belong to a single zone. We assume that a border between node0 and node1 1350 * can occur within a single pageblock, but not a node0 node1 node0 1351 * interleaving within a single pageblock. It is therefore sufficient to check 1352 * the first and last page of a pageblock and avoid checking each individual 1353 * page in a pageblock. 1354 */ 1355 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1356 unsigned long end_pfn, struct zone *zone) 1357 { 1358 struct page *start_page; 1359 struct page *end_page; 1360 1361 /* end_pfn is one past the range we are checking */ 1362 end_pfn--; 1363 1364 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1365 return NULL; 1366 1367 start_page = pfn_to_online_page(start_pfn); 1368 if (!start_page) 1369 return NULL; 1370 1371 if (page_zone(start_page) != zone) 1372 return NULL; 1373 1374 end_page = pfn_to_page(end_pfn); 1375 1376 /* This gives a shorter code than deriving page_zone(end_page) */ 1377 if (page_zone_id(start_page) != page_zone_id(end_page)) 1378 return NULL; 1379 1380 return start_page; 1381 } 1382 1383 void set_zone_contiguous(struct zone *zone) 1384 { 1385 unsigned long block_start_pfn = zone->zone_start_pfn; 1386 unsigned long block_end_pfn; 1387 1388 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1389 for (; block_start_pfn < zone_end_pfn(zone); 1390 block_start_pfn = block_end_pfn, 1391 block_end_pfn += pageblock_nr_pages) { 1392 1393 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1394 1395 if (!__pageblock_pfn_to_page(block_start_pfn, 1396 block_end_pfn, zone)) 1397 return; 1398 } 1399 1400 /* We confirm that there is no hole */ 1401 zone->contiguous = true; 1402 } 1403 1404 void clear_zone_contiguous(struct zone *zone) 1405 { 1406 zone->contiguous = false; 1407 } 1408 1409 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1410 static void __init deferred_free_range(unsigned long pfn, 1411 unsigned long nr_pages) 1412 { 1413 struct page *page; 1414 unsigned long i; 1415 1416 if (!nr_pages) 1417 return; 1418 1419 page = pfn_to_page(pfn); 1420 1421 /* Free a large naturally-aligned chunk if possible */ 1422 if (nr_pages == pageblock_nr_pages && 1423 (pfn & (pageblock_nr_pages - 1)) == 0) { 1424 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1425 __free_pages_boot_core(page, pageblock_order); 1426 return; 1427 } 1428 1429 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1430 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1431 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1432 __free_pages_boot_core(page, 0); 1433 } 1434 } 1435 1436 /* Completion tracking for deferred_init_memmap() threads */ 1437 static atomic_t pgdat_init_n_undone __initdata; 1438 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1439 1440 static inline void __init pgdat_init_report_one_done(void) 1441 { 1442 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1443 complete(&pgdat_init_all_done_comp); 1444 } 1445 1446 /* 1447 * Returns true if page needs to be initialized or freed to buddy allocator. 1448 * 1449 * First we check if pfn is valid on architectures where it is possible to have 1450 * holes within pageblock_nr_pages. On systems where it is not possible, this 1451 * function is optimized out. 1452 * 1453 * Then, we check if a current large page is valid by only checking the validity 1454 * of the head pfn. 1455 * 1456 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave 1457 * within a node: a pfn is between start and end of a node, but does not belong 1458 * to this memory node. 1459 */ 1460 static inline bool __init 1461 deferred_pfn_valid(int nid, unsigned long pfn, 1462 struct mminit_pfnnid_cache *nid_init_state) 1463 { 1464 if (!pfn_valid_within(pfn)) 1465 return false; 1466 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn)) 1467 return false; 1468 if (!meminit_pfn_in_nid(pfn, nid, nid_init_state)) 1469 return false; 1470 return true; 1471 } 1472 1473 /* 1474 * Free pages to buddy allocator. Try to free aligned pages in 1475 * pageblock_nr_pages sizes. 1476 */ 1477 static void __init deferred_free_pages(int nid, int zid, unsigned long pfn, 1478 unsigned long end_pfn) 1479 { 1480 struct mminit_pfnnid_cache nid_init_state = { }; 1481 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1482 unsigned long nr_free = 0; 1483 1484 for (; pfn < end_pfn; pfn++) { 1485 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) { 1486 deferred_free_range(pfn - nr_free, nr_free); 1487 nr_free = 0; 1488 } else if (!(pfn & nr_pgmask)) { 1489 deferred_free_range(pfn - nr_free, nr_free); 1490 nr_free = 1; 1491 touch_nmi_watchdog(); 1492 } else { 1493 nr_free++; 1494 } 1495 } 1496 /* Free the last block of pages to allocator */ 1497 deferred_free_range(pfn - nr_free, nr_free); 1498 } 1499 1500 /* 1501 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1502 * by performing it only once every pageblock_nr_pages. 1503 * Return number of pages initialized. 1504 */ 1505 static unsigned long __init deferred_init_pages(int nid, int zid, 1506 unsigned long pfn, 1507 unsigned long end_pfn) 1508 { 1509 struct mminit_pfnnid_cache nid_init_state = { }; 1510 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1511 unsigned long nr_pages = 0; 1512 struct page *page = NULL; 1513 1514 for (; pfn < end_pfn; pfn++) { 1515 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) { 1516 page = NULL; 1517 continue; 1518 } else if (!page || !(pfn & nr_pgmask)) { 1519 page = pfn_to_page(pfn); 1520 touch_nmi_watchdog(); 1521 } else { 1522 page++; 1523 } 1524 __init_single_page(page, pfn, zid, nid); 1525 nr_pages++; 1526 } 1527 return (nr_pages); 1528 } 1529 1530 /* Initialise remaining memory on a node */ 1531 static int __init deferred_init_memmap(void *data) 1532 { 1533 pg_data_t *pgdat = data; 1534 int nid = pgdat->node_id; 1535 unsigned long start = jiffies; 1536 unsigned long nr_pages = 0; 1537 unsigned long spfn, epfn, first_init_pfn, flags; 1538 phys_addr_t spa, epa; 1539 int zid; 1540 struct zone *zone; 1541 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1542 u64 i; 1543 1544 /* Bind memory initialisation thread to a local node if possible */ 1545 if (!cpumask_empty(cpumask)) 1546 set_cpus_allowed_ptr(current, cpumask); 1547 1548 pgdat_resize_lock(pgdat, &flags); 1549 first_init_pfn = pgdat->first_deferred_pfn; 1550 if (first_init_pfn == ULONG_MAX) { 1551 pgdat_resize_unlock(pgdat, &flags); 1552 pgdat_init_report_one_done(); 1553 return 0; 1554 } 1555 1556 /* Sanity check boundaries */ 1557 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 1558 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 1559 pgdat->first_deferred_pfn = ULONG_MAX; 1560 1561 /* Only the highest zone is deferred so find it */ 1562 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1563 zone = pgdat->node_zones + zid; 1564 if (first_init_pfn < zone_end_pfn(zone)) 1565 break; 1566 } 1567 first_init_pfn = max(zone->zone_start_pfn, first_init_pfn); 1568 1569 /* 1570 * Initialize and free pages. We do it in two loops: first we initialize 1571 * struct page, than free to buddy allocator, because while we are 1572 * freeing pages we can access pages that are ahead (computing buddy 1573 * page in __free_one_page()). 1574 */ 1575 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) { 1576 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa)); 1577 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa)); 1578 nr_pages += deferred_init_pages(nid, zid, spfn, epfn); 1579 } 1580 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) { 1581 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa)); 1582 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa)); 1583 deferred_free_pages(nid, zid, spfn, epfn); 1584 } 1585 pgdat_resize_unlock(pgdat, &flags); 1586 1587 /* Sanity check that the next zone really is unpopulated */ 1588 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 1589 1590 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages, 1591 jiffies_to_msecs(jiffies - start)); 1592 1593 pgdat_init_report_one_done(); 1594 return 0; 1595 } 1596 1597 /* 1598 * During boot we initialize deferred pages on-demand, as needed, but once 1599 * page_alloc_init_late() has finished, the deferred pages are all initialized, 1600 * and we can permanently disable that path. 1601 */ 1602 static DEFINE_STATIC_KEY_TRUE(deferred_pages); 1603 1604 /* 1605 * If this zone has deferred pages, try to grow it by initializing enough 1606 * deferred pages to satisfy the allocation specified by order, rounded up to 1607 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 1608 * of SECTION_SIZE bytes by initializing struct pages in increments of 1609 * PAGES_PER_SECTION * sizeof(struct page) bytes. 1610 * 1611 * Return true when zone was grown, otherwise return false. We return true even 1612 * when we grow less than requested, to let the caller decide if there are 1613 * enough pages to satisfy the allocation. 1614 * 1615 * Note: We use noinline because this function is needed only during boot, and 1616 * it is called from a __ref function _deferred_grow_zone. This way we are 1617 * making sure that it is not inlined into permanent text section. 1618 */ 1619 static noinline bool __init 1620 deferred_grow_zone(struct zone *zone, unsigned int order) 1621 { 1622 int zid = zone_idx(zone); 1623 int nid = zone_to_nid(zone); 1624 pg_data_t *pgdat = NODE_DATA(nid); 1625 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 1626 unsigned long nr_pages = 0; 1627 unsigned long first_init_pfn, spfn, epfn, t, flags; 1628 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 1629 phys_addr_t spa, epa; 1630 u64 i; 1631 1632 /* Only the last zone may have deferred pages */ 1633 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 1634 return false; 1635 1636 pgdat_resize_lock(pgdat, &flags); 1637 1638 /* 1639 * If deferred pages have been initialized while we were waiting for 1640 * the lock, return true, as the zone was grown. The caller will retry 1641 * this zone. We won't return to this function since the caller also 1642 * has this static branch. 1643 */ 1644 if (!static_branch_unlikely(&deferred_pages)) { 1645 pgdat_resize_unlock(pgdat, &flags); 1646 return true; 1647 } 1648 1649 /* 1650 * If someone grew this zone while we were waiting for spinlock, return 1651 * true, as there might be enough pages already. 1652 */ 1653 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 1654 pgdat_resize_unlock(pgdat, &flags); 1655 return true; 1656 } 1657 1658 first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn); 1659 1660 if (first_init_pfn >= pgdat_end_pfn(pgdat)) { 1661 pgdat_resize_unlock(pgdat, &flags); 1662 return false; 1663 } 1664 1665 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) { 1666 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa)); 1667 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa)); 1668 1669 while (spfn < epfn && nr_pages < nr_pages_needed) { 1670 t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION); 1671 first_deferred_pfn = min(t, epfn); 1672 nr_pages += deferred_init_pages(nid, zid, spfn, 1673 first_deferred_pfn); 1674 spfn = first_deferred_pfn; 1675 } 1676 1677 if (nr_pages >= nr_pages_needed) 1678 break; 1679 } 1680 1681 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) { 1682 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa)); 1683 epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa)); 1684 deferred_free_pages(nid, zid, spfn, epfn); 1685 1686 if (first_deferred_pfn == epfn) 1687 break; 1688 } 1689 pgdat->first_deferred_pfn = first_deferred_pfn; 1690 pgdat_resize_unlock(pgdat, &flags); 1691 1692 return nr_pages > 0; 1693 } 1694 1695 /* 1696 * deferred_grow_zone() is __init, but it is called from 1697 * get_page_from_freelist() during early boot until deferred_pages permanently 1698 * disables this call. This is why we have refdata wrapper to avoid warning, 1699 * and to ensure that the function body gets unloaded. 1700 */ 1701 static bool __ref 1702 _deferred_grow_zone(struct zone *zone, unsigned int order) 1703 { 1704 return deferred_grow_zone(zone, order); 1705 } 1706 1707 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1708 1709 void __init page_alloc_init_late(void) 1710 { 1711 struct zone *zone; 1712 1713 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1714 int nid; 1715 1716 /* There will be num_node_state(N_MEMORY) threads */ 1717 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 1718 for_each_node_state(nid, N_MEMORY) { 1719 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 1720 } 1721 1722 /* Block until all are initialised */ 1723 wait_for_completion(&pgdat_init_all_done_comp); 1724 1725 /* 1726 * We initialized the rest of the deferred pages. Permanently disable 1727 * on-demand struct page initialization. 1728 */ 1729 static_branch_disable(&deferred_pages); 1730 1731 /* Reinit limits that are based on free pages after the kernel is up */ 1732 files_maxfiles_init(); 1733 #endif 1734 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK 1735 /* Discard memblock private memory */ 1736 memblock_discard(); 1737 #endif 1738 1739 for_each_populated_zone(zone) 1740 set_zone_contiguous(zone); 1741 } 1742 1743 #ifdef CONFIG_CMA 1744 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 1745 void __init init_cma_reserved_pageblock(struct page *page) 1746 { 1747 unsigned i = pageblock_nr_pages; 1748 struct page *p = page; 1749 1750 do { 1751 __ClearPageReserved(p); 1752 set_page_count(p, 0); 1753 } while (++p, --i); 1754 1755 set_pageblock_migratetype(page, MIGRATE_CMA); 1756 1757 if (pageblock_order >= MAX_ORDER) { 1758 i = pageblock_nr_pages; 1759 p = page; 1760 do { 1761 set_page_refcounted(p); 1762 __free_pages(p, MAX_ORDER - 1); 1763 p += MAX_ORDER_NR_PAGES; 1764 } while (i -= MAX_ORDER_NR_PAGES); 1765 } else { 1766 set_page_refcounted(page); 1767 __free_pages(page, pageblock_order); 1768 } 1769 1770 adjust_managed_page_count(page, pageblock_nr_pages); 1771 } 1772 #endif 1773 1774 /* 1775 * The order of subdivision here is critical for the IO subsystem. 1776 * Please do not alter this order without good reasons and regression 1777 * testing. Specifically, as large blocks of memory are subdivided, 1778 * the order in which smaller blocks are delivered depends on the order 1779 * they're subdivided in this function. This is the primary factor 1780 * influencing the order in which pages are delivered to the IO 1781 * subsystem according to empirical testing, and this is also justified 1782 * by considering the behavior of a buddy system containing a single 1783 * large block of memory acted on by a series of small allocations. 1784 * This behavior is a critical factor in sglist merging's success. 1785 * 1786 * -- nyc 1787 */ 1788 static inline void expand(struct zone *zone, struct page *page, 1789 int low, int high, struct free_area *area, 1790 int migratetype) 1791 { 1792 unsigned long size = 1 << high; 1793 1794 while (high > low) { 1795 area--; 1796 high--; 1797 size >>= 1; 1798 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1799 1800 /* 1801 * Mark as guard pages (or page), that will allow to 1802 * merge back to allocator when buddy will be freed. 1803 * Corresponding page table entries will not be touched, 1804 * pages will stay not present in virtual address space 1805 */ 1806 if (set_page_guard(zone, &page[size], high, migratetype)) 1807 continue; 1808 1809 list_add(&page[size].lru, &area->free_list[migratetype]); 1810 area->nr_free++; 1811 set_page_order(&page[size], high); 1812 } 1813 } 1814 1815 static void check_new_page_bad(struct page *page) 1816 { 1817 const char *bad_reason = NULL; 1818 unsigned long bad_flags = 0; 1819 1820 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1821 bad_reason = "nonzero mapcount"; 1822 if (unlikely(page->mapping != NULL)) 1823 bad_reason = "non-NULL mapping"; 1824 if (unlikely(page_ref_count(page) != 0)) 1825 bad_reason = "nonzero _count"; 1826 if (unlikely(page->flags & __PG_HWPOISON)) { 1827 bad_reason = "HWPoisoned (hardware-corrupted)"; 1828 bad_flags = __PG_HWPOISON; 1829 /* Don't complain about hwpoisoned pages */ 1830 page_mapcount_reset(page); /* remove PageBuddy */ 1831 return; 1832 } 1833 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { 1834 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; 1835 bad_flags = PAGE_FLAGS_CHECK_AT_PREP; 1836 } 1837 #ifdef CONFIG_MEMCG 1838 if (unlikely(page->mem_cgroup)) 1839 bad_reason = "page still charged to cgroup"; 1840 #endif 1841 bad_page(page, bad_reason, bad_flags); 1842 } 1843 1844 /* 1845 * This page is about to be returned from the page allocator 1846 */ 1847 static inline int check_new_page(struct page *page) 1848 { 1849 if (likely(page_expected_state(page, 1850 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 1851 return 0; 1852 1853 check_new_page_bad(page); 1854 return 1; 1855 } 1856 1857 static inline bool free_pages_prezeroed(void) 1858 { 1859 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) && 1860 page_poisoning_enabled(); 1861 } 1862 1863 #ifdef CONFIG_DEBUG_VM 1864 static bool check_pcp_refill(struct page *page) 1865 { 1866 return false; 1867 } 1868 1869 static bool check_new_pcp(struct page *page) 1870 { 1871 return check_new_page(page); 1872 } 1873 #else 1874 static bool check_pcp_refill(struct page *page) 1875 { 1876 return check_new_page(page); 1877 } 1878 static bool check_new_pcp(struct page *page) 1879 { 1880 return false; 1881 } 1882 #endif /* CONFIG_DEBUG_VM */ 1883 1884 static bool check_new_pages(struct page *page, unsigned int order) 1885 { 1886 int i; 1887 for (i = 0; i < (1 << order); i++) { 1888 struct page *p = page + i; 1889 1890 if (unlikely(check_new_page(p))) 1891 return true; 1892 } 1893 1894 return false; 1895 } 1896 1897 inline void post_alloc_hook(struct page *page, unsigned int order, 1898 gfp_t gfp_flags) 1899 { 1900 set_page_private(page, 0); 1901 set_page_refcounted(page); 1902 1903 arch_alloc_page(page, order); 1904 kernel_map_pages(page, 1 << order, 1); 1905 kernel_poison_pages(page, 1 << order, 1); 1906 kasan_alloc_pages(page, order); 1907 set_page_owner(page, order, gfp_flags); 1908 } 1909 1910 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1911 unsigned int alloc_flags) 1912 { 1913 int i; 1914 1915 post_alloc_hook(page, order, gfp_flags); 1916 1917 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO)) 1918 for (i = 0; i < (1 << order); i++) 1919 clear_highpage(page + i); 1920 1921 if (order && (gfp_flags & __GFP_COMP)) 1922 prep_compound_page(page, order); 1923 1924 /* 1925 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1926 * allocate the page. The expectation is that the caller is taking 1927 * steps that will free more memory. The caller should avoid the page 1928 * being used for !PFMEMALLOC purposes. 1929 */ 1930 if (alloc_flags & ALLOC_NO_WATERMARKS) 1931 set_page_pfmemalloc(page); 1932 else 1933 clear_page_pfmemalloc(page); 1934 } 1935 1936 /* 1937 * Go through the free lists for the given migratetype and remove 1938 * the smallest available page from the freelists 1939 */ 1940 static __always_inline 1941 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1942 int migratetype) 1943 { 1944 unsigned int current_order; 1945 struct free_area *area; 1946 struct page *page; 1947 1948 /* Find a page of the appropriate size in the preferred list */ 1949 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 1950 area = &(zone->free_area[current_order]); 1951 page = list_first_entry_or_null(&area->free_list[migratetype], 1952 struct page, lru); 1953 if (!page) 1954 continue; 1955 list_del(&page->lru); 1956 rmv_page_order(page); 1957 area->nr_free--; 1958 expand(zone, page, order, current_order, area, migratetype); 1959 set_pcppage_migratetype(page, migratetype); 1960 return page; 1961 } 1962 1963 return NULL; 1964 } 1965 1966 1967 /* 1968 * This array describes the order lists are fallen back to when 1969 * the free lists for the desirable migrate type are depleted 1970 */ 1971 static int fallbacks[MIGRATE_TYPES][4] = { 1972 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 1973 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 1974 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 1975 #ifdef CONFIG_CMA 1976 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 1977 #endif 1978 #ifdef CONFIG_MEMORY_ISOLATION 1979 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 1980 #endif 1981 }; 1982 1983 #ifdef CONFIG_CMA 1984 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1985 unsigned int order) 1986 { 1987 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1988 } 1989 #else 1990 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1991 unsigned int order) { return NULL; } 1992 #endif 1993 1994 /* 1995 * Move the free pages in a range to the free lists of the requested type. 1996 * Note that start_page and end_pages are not aligned on a pageblock 1997 * boundary. If alignment is required, use move_freepages_block() 1998 */ 1999 static int move_freepages(struct zone *zone, 2000 struct page *start_page, struct page *end_page, 2001 int migratetype, int *num_movable) 2002 { 2003 struct page *page; 2004 unsigned int order; 2005 int pages_moved = 0; 2006 2007 #ifndef CONFIG_HOLES_IN_ZONE 2008 /* 2009 * page_zone is not safe to call in this context when 2010 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 2011 * anyway as we check zone boundaries in move_freepages_block(). 2012 * Remove at a later date when no bug reports exist related to 2013 * grouping pages by mobility 2014 */ 2015 VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) && 2016 pfn_valid(page_to_pfn(end_page)) && 2017 page_zone(start_page) != page_zone(end_page)); 2018 #endif 2019 2020 if (num_movable) 2021 *num_movable = 0; 2022 2023 for (page = start_page; page <= end_page;) { 2024 if (!pfn_valid_within(page_to_pfn(page))) { 2025 page++; 2026 continue; 2027 } 2028 2029 /* Make sure we are not inadvertently changing nodes */ 2030 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 2031 2032 if (!PageBuddy(page)) { 2033 /* 2034 * We assume that pages that could be isolated for 2035 * migration are movable. But we don't actually try 2036 * isolating, as that would be expensive. 2037 */ 2038 if (num_movable && 2039 (PageLRU(page) || __PageMovable(page))) 2040 (*num_movable)++; 2041 2042 page++; 2043 continue; 2044 } 2045 2046 order = page_order(page); 2047 list_move(&page->lru, 2048 &zone->free_area[order].free_list[migratetype]); 2049 page += 1 << order; 2050 pages_moved += 1 << order; 2051 } 2052 2053 return pages_moved; 2054 } 2055 2056 int move_freepages_block(struct zone *zone, struct page *page, 2057 int migratetype, int *num_movable) 2058 { 2059 unsigned long start_pfn, end_pfn; 2060 struct page *start_page, *end_page; 2061 2062 start_pfn = page_to_pfn(page); 2063 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 2064 start_page = pfn_to_page(start_pfn); 2065 end_page = start_page + pageblock_nr_pages - 1; 2066 end_pfn = start_pfn + pageblock_nr_pages - 1; 2067 2068 /* Do not cross zone boundaries */ 2069 if (!zone_spans_pfn(zone, start_pfn)) 2070 start_page = page; 2071 if (!zone_spans_pfn(zone, end_pfn)) 2072 return 0; 2073 2074 return move_freepages(zone, start_page, end_page, migratetype, 2075 num_movable); 2076 } 2077 2078 static void change_pageblock_range(struct page *pageblock_page, 2079 int start_order, int migratetype) 2080 { 2081 int nr_pageblocks = 1 << (start_order - pageblock_order); 2082 2083 while (nr_pageblocks--) { 2084 set_pageblock_migratetype(pageblock_page, migratetype); 2085 pageblock_page += pageblock_nr_pages; 2086 } 2087 } 2088 2089 /* 2090 * When we are falling back to another migratetype during allocation, try to 2091 * steal extra free pages from the same pageblocks to satisfy further 2092 * allocations, instead of polluting multiple pageblocks. 2093 * 2094 * If we are stealing a relatively large buddy page, it is likely there will 2095 * be more free pages in the pageblock, so try to steal them all. For 2096 * reclaimable and unmovable allocations, we steal regardless of page size, 2097 * as fragmentation caused by those allocations polluting movable pageblocks 2098 * is worse than movable allocations stealing from unmovable and reclaimable 2099 * pageblocks. 2100 */ 2101 static bool can_steal_fallback(unsigned int order, int start_mt) 2102 { 2103 /* 2104 * Leaving this order check is intended, although there is 2105 * relaxed order check in next check. The reason is that 2106 * we can actually steal whole pageblock if this condition met, 2107 * but, below check doesn't guarantee it and that is just heuristic 2108 * so could be changed anytime. 2109 */ 2110 if (order >= pageblock_order) 2111 return true; 2112 2113 if (order >= pageblock_order / 2 || 2114 start_mt == MIGRATE_RECLAIMABLE || 2115 start_mt == MIGRATE_UNMOVABLE || 2116 page_group_by_mobility_disabled) 2117 return true; 2118 2119 return false; 2120 } 2121 2122 /* 2123 * This function implements actual steal behaviour. If order is large enough, 2124 * we can steal whole pageblock. If not, we first move freepages in this 2125 * pageblock to our migratetype and determine how many already-allocated pages 2126 * are there in the pageblock with a compatible migratetype. If at least half 2127 * of pages are free or compatible, we can change migratetype of the pageblock 2128 * itself, so pages freed in the future will be put on the correct free list. 2129 */ 2130 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2131 int start_type, bool whole_block) 2132 { 2133 unsigned int current_order = page_order(page); 2134 struct free_area *area; 2135 int free_pages, movable_pages, alike_pages; 2136 int old_block_type; 2137 2138 old_block_type = get_pageblock_migratetype(page); 2139 2140 /* 2141 * This can happen due to races and we want to prevent broken 2142 * highatomic accounting. 2143 */ 2144 if (is_migrate_highatomic(old_block_type)) 2145 goto single_page; 2146 2147 /* Take ownership for orders >= pageblock_order */ 2148 if (current_order >= pageblock_order) { 2149 change_pageblock_range(page, current_order, start_type); 2150 goto single_page; 2151 } 2152 2153 /* We are not allowed to try stealing from the whole block */ 2154 if (!whole_block) 2155 goto single_page; 2156 2157 free_pages = move_freepages_block(zone, page, start_type, 2158 &movable_pages); 2159 /* 2160 * Determine how many pages are compatible with our allocation. 2161 * For movable allocation, it's the number of movable pages which 2162 * we just obtained. For other types it's a bit more tricky. 2163 */ 2164 if (start_type == MIGRATE_MOVABLE) { 2165 alike_pages = movable_pages; 2166 } else { 2167 /* 2168 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2169 * to MOVABLE pageblock, consider all non-movable pages as 2170 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2171 * vice versa, be conservative since we can't distinguish the 2172 * exact migratetype of non-movable pages. 2173 */ 2174 if (old_block_type == MIGRATE_MOVABLE) 2175 alike_pages = pageblock_nr_pages 2176 - (free_pages + movable_pages); 2177 else 2178 alike_pages = 0; 2179 } 2180 2181 /* moving whole block can fail due to zone boundary conditions */ 2182 if (!free_pages) 2183 goto single_page; 2184 2185 /* 2186 * If a sufficient number of pages in the block are either free or of 2187 * comparable migratability as our allocation, claim the whole block. 2188 */ 2189 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2190 page_group_by_mobility_disabled) 2191 set_pageblock_migratetype(page, start_type); 2192 2193 return; 2194 2195 single_page: 2196 area = &zone->free_area[current_order]; 2197 list_move(&page->lru, &area->free_list[start_type]); 2198 } 2199 2200 /* 2201 * Check whether there is a suitable fallback freepage with requested order. 2202 * If only_stealable is true, this function returns fallback_mt only if 2203 * we can steal other freepages all together. This would help to reduce 2204 * fragmentation due to mixed migratetype pages in one pageblock. 2205 */ 2206 int find_suitable_fallback(struct free_area *area, unsigned int order, 2207 int migratetype, bool only_stealable, bool *can_steal) 2208 { 2209 int i; 2210 int fallback_mt; 2211 2212 if (area->nr_free == 0) 2213 return -1; 2214 2215 *can_steal = false; 2216 for (i = 0;; i++) { 2217 fallback_mt = fallbacks[migratetype][i]; 2218 if (fallback_mt == MIGRATE_TYPES) 2219 break; 2220 2221 if (list_empty(&area->free_list[fallback_mt])) 2222 continue; 2223 2224 if (can_steal_fallback(order, migratetype)) 2225 *can_steal = true; 2226 2227 if (!only_stealable) 2228 return fallback_mt; 2229 2230 if (*can_steal) 2231 return fallback_mt; 2232 } 2233 2234 return -1; 2235 } 2236 2237 /* 2238 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2239 * there are no empty page blocks that contain a page with a suitable order 2240 */ 2241 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2242 unsigned int alloc_order) 2243 { 2244 int mt; 2245 unsigned long max_managed, flags; 2246 2247 /* 2248 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2249 * Check is race-prone but harmless. 2250 */ 2251 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages; 2252 if (zone->nr_reserved_highatomic >= max_managed) 2253 return; 2254 2255 spin_lock_irqsave(&zone->lock, flags); 2256 2257 /* Recheck the nr_reserved_highatomic limit under the lock */ 2258 if (zone->nr_reserved_highatomic >= max_managed) 2259 goto out_unlock; 2260 2261 /* Yoink! */ 2262 mt = get_pageblock_migratetype(page); 2263 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt) 2264 && !is_migrate_cma(mt)) { 2265 zone->nr_reserved_highatomic += pageblock_nr_pages; 2266 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2267 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2268 } 2269 2270 out_unlock: 2271 spin_unlock_irqrestore(&zone->lock, flags); 2272 } 2273 2274 /* 2275 * Used when an allocation is about to fail under memory pressure. This 2276 * potentially hurts the reliability of high-order allocations when under 2277 * intense memory pressure but failed atomic allocations should be easier 2278 * to recover from than an OOM. 2279 * 2280 * If @force is true, try to unreserve a pageblock even though highatomic 2281 * pageblock is exhausted. 2282 */ 2283 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2284 bool force) 2285 { 2286 struct zonelist *zonelist = ac->zonelist; 2287 unsigned long flags; 2288 struct zoneref *z; 2289 struct zone *zone; 2290 struct page *page; 2291 int order; 2292 bool ret; 2293 2294 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx, 2295 ac->nodemask) { 2296 /* 2297 * Preserve at least one pageblock unless memory pressure 2298 * is really high. 2299 */ 2300 if (!force && zone->nr_reserved_highatomic <= 2301 pageblock_nr_pages) 2302 continue; 2303 2304 spin_lock_irqsave(&zone->lock, flags); 2305 for (order = 0; order < MAX_ORDER; order++) { 2306 struct free_area *area = &(zone->free_area[order]); 2307 2308 page = list_first_entry_or_null( 2309 &area->free_list[MIGRATE_HIGHATOMIC], 2310 struct page, lru); 2311 if (!page) 2312 continue; 2313 2314 /* 2315 * In page freeing path, migratetype change is racy so 2316 * we can counter several free pages in a pageblock 2317 * in this loop althoug we changed the pageblock type 2318 * from highatomic to ac->migratetype. So we should 2319 * adjust the count once. 2320 */ 2321 if (is_migrate_highatomic_page(page)) { 2322 /* 2323 * It should never happen but changes to 2324 * locking could inadvertently allow a per-cpu 2325 * drain to add pages to MIGRATE_HIGHATOMIC 2326 * while unreserving so be safe and watch for 2327 * underflows. 2328 */ 2329 zone->nr_reserved_highatomic -= min( 2330 pageblock_nr_pages, 2331 zone->nr_reserved_highatomic); 2332 } 2333 2334 /* 2335 * Convert to ac->migratetype and avoid the normal 2336 * pageblock stealing heuristics. Minimally, the caller 2337 * is doing the work and needs the pages. More 2338 * importantly, if the block was always converted to 2339 * MIGRATE_UNMOVABLE or another type then the number 2340 * of pageblocks that cannot be completely freed 2341 * may increase. 2342 */ 2343 set_pageblock_migratetype(page, ac->migratetype); 2344 ret = move_freepages_block(zone, page, ac->migratetype, 2345 NULL); 2346 if (ret) { 2347 spin_unlock_irqrestore(&zone->lock, flags); 2348 return ret; 2349 } 2350 } 2351 spin_unlock_irqrestore(&zone->lock, flags); 2352 } 2353 2354 return false; 2355 } 2356 2357 /* 2358 * Try finding a free buddy page on the fallback list and put it on the free 2359 * list of requested migratetype, possibly along with other pages from the same 2360 * block, depending on fragmentation avoidance heuristics. Returns true if 2361 * fallback was found so that __rmqueue_smallest() can grab it. 2362 * 2363 * The use of signed ints for order and current_order is a deliberate 2364 * deviation from the rest of this file, to make the for loop 2365 * condition simpler. 2366 */ 2367 static __always_inline bool 2368 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) 2369 { 2370 struct free_area *area; 2371 int current_order; 2372 struct page *page; 2373 int fallback_mt; 2374 bool can_steal; 2375 2376 /* 2377 * Find the largest available free page in the other list. This roughly 2378 * approximates finding the pageblock with the most free pages, which 2379 * would be too costly to do exactly. 2380 */ 2381 for (current_order = MAX_ORDER - 1; current_order >= order; 2382 --current_order) { 2383 area = &(zone->free_area[current_order]); 2384 fallback_mt = find_suitable_fallback(area, current_order, 2385 start_migratetype, false, &can_steal); 2386 if (fallback_mt == -1) 2387 continue; 2388 2389 /* 2390 * We cannot steal all free pages from the pageblock and the 2391 * requested migratetype is movable. In that case it's better to 2392 * steal and split the smallest available page instead of the 2393 * largest available page, because even if the next movable 2394 * allocation falls back into a different pageblock than this 2395 * one, it won't cause permanent fragmentation. 2396 */ 2397 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2398 && current_order > order) 2399 goto find_smallest; 2400 2401 goto do_steal; 2402 } 2403 2404 return false; 2405 2406 find_smallest: 2407 for (current_order = order; current_order < MAX_ORDER; 2408 current_order++) { 2409 area = &(zone->free_area[current_order]); 2410 fallback_mt = find_suitable_fallback(area, current_order, 2411 start_migratetype, false, &can_steal); 2412 if (fallback_mt != -1) 2413 break; 2414 } 2415 2416 /* 2417 * This should not happen - we already found a suitable fallback 2418 * when looking for the largest page. 2419 */ 2420 VM_BUG_ON(current_order == MAX_ORDER); 2421 2422 do_steal: 2423 page = list_first_entry(&area->free_list[fallback_mt], 2424 struct page, lru); 2425 2426 steal_suitable_fallback(zone, page, start_migratetype, can_steal); 2427 2428 trace_mm_page_alloc_extfrag(page, order, current_order, 2429 start_migratetype, fallback_mt); 2430 2431 return true; 2432 2433 } 2434 2435 /* 2436 * Do the hard work of removing an element from the buddy allocator. 2437 * Call me with the zone->lock already held. 2438 */ 2439 static __always_inline struct page * 2440 __rmqueue(struct zone *zone, unsigned int order, int migratetype) 2441 { 2442 struct page *page; 2443 2444 retry: 2445 page = __rmqueue_smallest(zone, order, migratetype); 2446 if (unlikely(!page)) { 2447 if (migratetype == MIGRATE_MOVABLE) 2448 page = __rmqueue_cma_fallback(zone, order); 2449 2450 if (!page && __rmqueue_fallback(zone, order, migratetype)) 2451 goto retry; 2452 } 2453 2454 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2455 return page; 2456 } 2457 2458 /* 2459 * Obtain a specified number of elements from the buddy allocator, all under 2460 * a single hold of the lock, for efficiency. Add them to the supplied list. 2461 * Returns the number of new pages which were placed at *list. 2462 */ 2463 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2464 unsigned long count, struct list_head *list, 2465 int migratetype) 2466 { 2467 int i, alloced = 0; 2468 2469 spin_lock(&zone->lock); 2470 for (i = 0; i < count; ++i) { 2471 struct page *page = __rmqueue(zone, order, migratetype); 2472 if (unlikely(page == NULL)) 2473 break; 2474 2475 if (unlikely(check_pcp_refill(page))) 2476 continue; 2477 2478 /* 2479 * Split buddy pages returned by expand() are received here in 2480 * physical page order. The page is added to the tail of 2481 * caller's list. From the callers perspective, the linked list 2482 * is ordered by page number under some conditions. This is 2483 * useful for IO devices that can forward direction from the 2484 * head, thus also in the physical page order. This is useful 2485 * for IO devices that can merge IO requests if the physical 2486 * pages are ordered properly. 2487 */ 2488 list_add_tail(&page->lru, list); 2489 alloced++; 2490 if (is_migrate_cma(get_pcppage_migratetype(page))) 2491 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2492 -(1 << order)); 2493 } 2494 2495 /* 2496 * i pages were removed from the buddy list even if some leak due 2497 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 2498 * on i. Do not confuse with 'alloced' which is the number of 2499 * pages added to the pcp list. 2500 */ 2501 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2502 spin_unlock(&zone->lock); 2503 return alloced; 2504 } 2505 2506 #ifdef CONFIG_NUMA 2507 /* 2508 * Called from the vmstat counter updater to drain pagesets of this 2509 * currently executing processor on remote nodes after they have 2510 * expired. 2511 * 2512 * Note that this function must be called with the thread pinned to 2513 * a single processor. 2514 */ 2515 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2516 { 2517 unsigned long flags; 2518 int to_drain, batch; 2519 2520 local_irq_save(flags); 2521 batch = READ_ONCE(pcp->batch); 2522 to_drain = min(pcp->count, batch); 2523 if (to_drain > 0) 2524 free_pcppages_bulk(zone, to_drain, pcp); 2525 local_irq_restore(flags); 2526 } 2527 #endif 2528 2529 /* 2530 * Drain pcplists of the indicated processor and zone. 2531 * 2532 * The processor must either be the current processor and the 2533 * thread pinned to the current processor or a processor that 2534 * is not online. 2535 */ 2536 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2537 { 2538 unsigned long flags; 2539 struct per_cpu_pageset *pset; 2540 struct per_cpu_pages *pcp; 2541 2542 local_irq_save(flags); 2543 pset = per_cpu_ptr(zone->pageset, cpu); 2544 2545 pcp = &pset->pcp; 2546 if (pcp->count) 2547 free_pcppages_bulk(zone, pcp->count, pcp); 2548 local_irq_restore(flags); 2549 } 2550 2551 /* 2552 * Drain pcplists of all zones on the indicated processor. 2553 * 2554 * The processor must either be the current processor and the 2555 * thread pinned to the current processor or a processor that 2556 * is not online. 2557 */ 2558 static void drain_pages(unsigned int cpu) 2559 { 2560 struct zone *zone; 2561 2562 for_each_populated_zone(zone) { 2563 drain_pages_zone(cpu, zone); 2564 } 2565 } 2566 2567 /* 2568 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2569 * 2570 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 2571 * the single zone's pages. 2572 */ 2573 void drain_local_pages(struct zone *zone) 2574 { 2575 int cpu = smp_processor_id(); 2576 2577 if (zone) 2578 drain_pages_zone(cpu, zone); 2579 else 2580 drain_pages(cpu); 2581 } 2582 2583 static void drain_local_pages_wq(struct work_struct *work) 2584 { 2585 /* 2586 * drain_all_pages doesn't use proper cpu hotplug protection so 2587 * we can race with cpu offline when the WQ can move this from 2588 * a cpu pinned worker to an unbound one. We can operate on a different 2589 * cpu which is allright but we also have to make sure to not move to 2590 * a different one. 2591 */ 2592 preempt_disable(); 2593 drain_local_pages(NULL); 2594 preempt_enable(); 2595 } 2596 2597 /* 2598 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2599 * 2600 * When zone parameter is non-NULL, spill just the single zone's pages. 2601 * 2602 * Note that this can be extremely slow as the draining happens in a workqueue. 2603 */ 2604 void drain_all_pages(struct zone *zone) 2605 { 2606 int cpu; 2607 2608 /* 2609 * Allocate in the BSS so we wont require allocation in 2610 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2611 */ 2612 static cpumask_t cpus_with_pcps; 2613 2614 /* 2615 * Make sure nobody triggers this path before mm_percpu_wq is fully 2616 * initialized. 2617 */ 2618 if (WARN_ON_ONCE(!mm_percpu_wq)) 2619 return; 2620 2621 /* 2622 * Do not drain if one is already in progress unless it's specific to 2623 * a zone. Such callers are primarily CMA and memory hotplug and need 2624 * the drain to be complete when the call returns. 2625 */ 2626 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2627 if (!zone) 2628 return; 2629 mutex_lock(&pcpu_drain_mutex); 2630 } 2631 2632 /* 2633 * We don't care about racing with CPU hotplug event 2634 * as offline notification will cause the notified 2635 * cpu to drain that CPU pcps and on_each_cpu_mask 2636 * disables preemption as part of its processing 2637 */ 2638 for_each_online_cpu(cpu) { 2639 struct per_cpu_pageset *pcp; 2640 struct zone *z; 2641 bool has_pcps = false; 2642 2643 if (zone) { 2644 pcp = per_cpu_ptr(zone->pageset, cpu); 2645 if (pcp->pcp.count) 2646 has_pcps = true; 2647 } else { 2648 for_each_populated_zone(z) { 2649 pcp = per_cpu_ptr(z->pageset, cpu); 2650 if (pcp->pcp.count) { 2651 has_pcps = true; 2652 break; 2653 } 2654 } 2655 } 2656 2657 if (has_pcps) 2658 cpumask_set_cpu(cpu, &cpus_with_pcps); 2659 else 2660 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2661 } 2662 2663 for_each_cpu(cpu, &cpus_with_pcps) { 2664 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu); 2665 INIT_WORK(work, drain_local_pages_wq); 2666 queue_work_on(cpu, mm_percpu_wq, work); 2667 } 2668 for_each_cpu(cpu, &cpus_with_pcps) 2669 flush_work(per_cpu_ptr(&pcpu_drain, cpu)); 2670 2671 mutex_unlock(&pcpu_drain_mutex); 2672 } 2673 2674 #ifdef CONFIG_HIBERNATION 2675 2676 /* 2677 * Touch the watchdog for every WD_PAGE_COUNT pages. 2678 */ 2679 #define WD_PAGE_COUNT (128*1024) 2680 2681 void mark_free_pages(struct zone *zone) 2682 { 2683 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 2684 unsigned long flags; 2685 unsigned int order, t; 2686 struct page *page; 2687 2688 if (zone_is_empty(zone)) 2689 return; 2690 2691 spin_lock_irqsave(&zone->lock, flags); 2692 2693 max_zone_pfn = zone_end_pfn(zone); 2694 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 2695 if (pfn_valid(pfn)) { 2696 page = pfn_to_page(pfn); 2697 2698 if (!--page_count) { 2699 touch_nmi_watchdog(); 2700 page_count = WD_PAGE_COUNT; 2701 } 2702 2703 if (page_zone(page) != zone) 2704 continue; 2705 2706 if (!swsusp_page_is_forbidden(page)) 2707 swsusp_unset_page_free(page); 2708 } 2709 2710 for_each_migratetype_order(order, t) { 2711 list_for_each_entry(page, 2712 &zone->free_area[order].free_list[t], lru) { 2713 unsigned long i; 2714 2715 pfn = page_to_pfn(page); 2716 for (i = 0; i < (1UL << order); i++) { 2717 if (!--page_count) { 2718 touch_nmi_watchdog(); 2719 page_count = WD_PAGE_COUNT; 2720 } 2721 swsusp_set_page_free(pfn_to_page(pfn + i)); 2722 } 2723 } 2724 } 2725 spin_unlock_irqrestore(&zone->lock, flags); 2726 } 2727 #endif /* CONFIG_PM */ 2728 2729 static bool free_unref_page_prepare(struct page *page, unsigned long pfn) 2730 { 2731 int migratetype; 2732 2733 if (!free_pcp_prepare(page)) 2734 return false; 2735 2736 migratetype = get_pfnblock_migratetype(page, pfn); 2737 set_pcppage_migratetype(page, migratetype); 2738 return true; 2739 } 2740 2741 static void free_unref_page_commit(struct page *page, unsigned long pfn) 2742 { 2743 struct zone *zone = page_zone(page); 2744 struct per_cpu_pages *pcp; 2745 int migratetype; 2746 2747 migratetype = get_pcppage_migratetype(page); 2748 __count_vm_event(PGFREE); 2749 2750 /* 2751 * We only track unmovable, reclaimable and movable on pcp lists. 2752 * Free ISOLATE pages back to the allocator because they are being 2753 * offlined but treat HIGHATOMIC as movable pages so we can get those 2754 * areas back if necessary. Otherwise, we may have to free 2755 * excessively into the page allocator 2756 */ 2757 if (migratetype >= MIGRATE_PCPTYPES) { 2758 if (unlikely(is_migrate_isolate(migratetype))) { 2759 free_one_page(zone, page, pfn, 0, migratetype); 2760 return; 2761 } 2762 migratetype = MIGRATE_MOVABLE; 2763 } 2764 2765 pcp = &this_cpu_ptr(zone->pageset)->pcp; 2766 list_add(&page->lru, &pcp->lists[migratetype]); 2767 pcp->count++; 2768 if (pcp->count >= pcp->high) { 2769 unsigned long batch = READ_ONCE(pcp->batch); 2770 free_pcppages_bulk(zone, batch, pcp); 2771 } 2772 } 2773 2774 /* 2775 * Free a 0-order page 2776 */ 2777 void free_unref_page(struct page *page) 2778 { 2779 unsigned long flags; 2780 unsigned long pfn = page_to_pfn(page); 2781 2782 if (!free_unref_page_prepare(page, pfn)) 2783 return; 2784 2785 local_irq_save(flags); 2786 free_unref_page_commit(page, pfn); 2787 local_irq_restore(flags); 2788 } 2789 2790 /* 2791 * Free a list of 0-order pages 2792 */ 2793 void free_unref_page_list(struct list_head *list) 2794 { 2795 struct page *page, *next; 2796 unsigned long flags, pfn; 2797 int batch_count = 0; 2798 2799 /* Prepare pages for freeing */ 2800 list_for_each_entry_safe(page, next, list, lru) { 2801 pfn = page_to_pfn(page); 2802 if (!free_unref_page_prepare(page, pfn)) 2803 list_del(&page->lru); 2804 set_page_private(page, pfn); 2805 } 2806 2807 local_irq_save(flags); 2808 list_for_each_entry_safe(page, next, list, lru) { 2809 unsigned long pfn = page_private(page); 2810 2811 set_page_private(page, 0); 2812 trace_mm_page_free_batched(page); 2813 free_unref_page_commit(page, pfn); 2814 2815 /* 2816 * Guard against excessive IRQ disabled times when we get 2817 * a large list of pages to free. 2818 */ 2819 if (++batch_count == SWAP_CLUSTER_MAX) { 2820 local_irq_restore(flags); 2821 batch_count = 0; 2822 local_irq_save(flags); 2823 } 2824 } 2825 local_irq_restore(flags); 2826 } 2827 2828 /* 2829 * split_page takes a non-compound higher-order page, and splits it into 2830 * n (1<<order) sub-pages: page[0..n] 2831 * Each sub-page must be freed individually. 2832 * 2833 * Note: this is probably too low level an operation for use in drivers. 2834 * Please consult with lkml before using this in your driver. 2835 */ 2836 void split_page(struct page *page, unsigned int order) 2837 { 2838 int i; 2839 2840 VM_BUG_ON_PAGE(PageCompound(page), page); 2841 VM_BUG_ON_PAGE(!page_count(page), page); 2842 2843 for (i = 1; i < (1 << order); i++) 2844 set_page_refcounted(page + i); 2845 split_page_owner(page, order); 2846 } 2847 EXPORT_SYMBOL_GPL(split_page); 2848 2849 int __isolate_free_page(struct page *page, unsigned int order) 2850 { 2851 unsigned long watermark; 2852 struct zone *zone; 2853 int mt; 2854 2855 BUG_ON(!PageBuddy(page)); 2856 2857 zone = page_zone(page); 2858 mt = get_pageblock_migratetype(page); 2859 2860 if (!is_migrate_isolate(mt)) { 2861 /* 2862 * Obey watermarks as if the page was being allocated. We can 2863 * emulate a high-order watermark check with a raised order-0 2864 * watermark, because we already know our high-order page 2865 * exists. 2866 */ 2867 watermark = min_wmark_pages(zone) + (1UL << order); 2868 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 2869 return 0; 2870 2871 __mod_zone_freepage_state(zone, -(1UL << order), mt); 2872 } 2873 2874 /* Remove page from free list */ 2875 list_del(&page->lru); 2876 zone->free_area[order].nr_free--; 2877 rmv_page_order(page); 2878 2879 /* 2880 * Set the pageblock if the isolated page is at least half of a 2881 * pageblock 2882 */ 2883 if (order >= pageblock_order - 1) { 2884 struct page *endpage = page + (1 << order) - 1; 2885 for (; page < endpage; page += pageblock_nr_pages) { 2886 int mt = get_pageblock_migratetype(page); 2887 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt) 2888 && !is_migrate_highatomic(mt)) 2889 set_pageblock_migratetype(page, 2890 MIGRATE_MOVABLE); 2891 } 2892 } 2893 2894 2895 return 1UL << order; 2896 } 2897 2898 /* 2899 * Update NUMA hit/miss statistics 2900 * 2901 * Must be called with interrupts disabled. 2902 */ 2903 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z) 2904 { 2905 #ifdef CONFIG_NUMA 2906 enum numa_stat_item local_stat = NUMA_LOCAL; 2907 2908 /* skip numa counters update if numa stats is disabled */ 2909 if (!static_branch_likely(&vm_numa_stat_key)) 2910 return; 2911 2912 if (zone_to_nid(z) != numa_node_id()) 2913 local_stat = NUMA_OTHER; 2914 2915 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 2916 __inc_numa_state(z, NUMA_HIT); 2917 else { 2918 __inc_numa_state(z, NUMA_MISS); 2919 __inc_numa_state(preferred_zone, NUMA_FOREIGN); 2920 } 2921 __inc_numa_state(z, local_stat); 2922 #endif 2923 } 2924 2925 /* Remove page from the per-cpu list, caller must protect the list */ 2926 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype, 2927 struct per_cpu_pages *pcp, 2928 struct list_head *list) 2929 { 2930 struct page *page; 2931 2932 do { 2933 if (list_empty(list)) { 2934 pcp->count += rmqueue_bulk(zone, 0, 2935 pcp->batch, list, 2936 migratetype); 2937 if (unlikely(list_empty(list))) 2938 return NULL; 2939 } 2940 2941 page = list_first_entry(list, struct page, lru); 2942 list_del(&page->lru); 2943 pcp->count--; 2944 } while (check_new_pcp(page)); 2945 2946 return page; 2947 } 2948 2949 /* Lock and remove page from the per-cpu list */ 2950 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 2951 struct zone *zone, unsigned int order, 2952 gfp_t gfp_flags, int migratetype) 2953 { 2954 struct per_cpu_pages *pcp; 2955 struct list_head *list; 2956 struct page *page; 2957 unsigned long flags; 2958 2959 local_irq_save(flags); 2960 pcp = &this_cpu_ptr(zone->pageset)->pcp; 2961 list = &pcp->lists[migratetype]; 2962 page = __rmqueue_pcplist(zone, migratetype, pcp, list); 2963 if (page) { 2964 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2965 zone_statistics(preferred_zone, zone); 2966 } 2967 local_irq_restore(flags); 2968 return page; 2969 } 2970 2971 /* 2972 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 2973 */ 2974 static inline 2975 struct page *rmqueue(struct zone *preferred_zone, 2976 struct zone *zone, unsigned int order, 2977 gfp_t gfp_flags, unsigned int alloc_flags, 2978 int migratetype) 2979 { 2980 unsigned long flags; 2981 struct page *page; 2982 2983 if (likely(order == 0)) { 2984 page = rmqueue_pcplist(preferred_zone, zone, order, 2985 gfp_flags, migratetype); 2986 goto out; 2987 } 2988 2989 /* 2990 * We most definitely don't want callers attempting to 2991 * allocate greater than order-1 page units with __GFP_NOFAIL. 2992 */ 2993 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 2994 spin_lock_irqsave(&zone->lock, flags); 2995 2996 do { 2997 page = NULL; 2998 if (alloc_flags & ALLOC_HARDER) { 2999 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3000 if (page) 3001 trace_mm_page_alloc_zone_locked(page, order, migratetype); 3002 } 3003 if (!page) 3004 page = __rmqueue(zone, order, migratetype); 3005 } while (page && check_new_pages(page, order)); 3006 spin_unlock(&zone->lock); 3007 if (!page) 3008 goto failed; 3009 __mod_zone_freepage_state(zone, -(1 << order), 3010 get_pcppage_migratetype(page)); 3011 3012 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3013 zone_statistics(preferred_zone, zone); 3014 local_irq_restore(flags); 3015 3016 out: 3017 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3018 return page; 3019 3020 failed: 3021 local_irq_restore(flags); 3022 return NULL; 3023 } 3024 3025 #ifdef CONFIG_FAIL_PAGE_ALLOC 3026 3027 static struct { 3028 struct fault_attr attr; 3029 3030 bool ignore_gfp_highmem; 3031 bool ignore_gfp_reclaim; 3032 u32 min_order; 3033 } fail_page_alloc = { 3034 .attr = FAULT_ATTR_INITIALIZER, 3035 .ignore_gfp_reclaim = true, 3036 .ignore_gfp_highmem = true, 3037 .min_order = 1, 3038 }; 3039 3040 static int __init setup_fail_page_alloc(char *str) 3041 { 3042 return setup_fault_attr(&fail_page_alloc.attr, str); 3043 } 3044 __setup("fail_page_alloc=", setup_fail_page_alloc); 3045 3046 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3047 { 3048 if (order < fail_page_alloc.min_order) 3049 return false; 3050 if (gfp_mask & __GFP_NOFAIL) 3051 return false; 3052 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3053 return false; 3054 if (fail_page_alloc.ignore_gfp_reclaim && 3055 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3056 return false; 3057 3058 return should_fail(&fail_page_alloc.attr, 1 << order); 3059 } 3060 3061 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3062 3063 static int __init fail_page_alloc_debugfs(void) 3064 { 3065 umode_t mode = S_IFREG | 0600; 3066 struct dentry *dir; 3067 3068 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3069 &fail_page_alloc.attr); 3070 if (IS_ERR(dir)) 3071 return PTR_ERR(dir); 3072 3073 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 3074 &fail_page_alloc.ignore_gfp_reclaim)) 3075 goto fail; 3076 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3077 &fail_page_alloc.ignore_gfp_highmem)) 3078 goto fail; 3079 if (!debugfs_create_u32("min-order", mode, dir, 3080 &fail_page_alloc.min_order)) 3081 goto fail; 3082 3083 return 0; 3084 fail: 3085 debugfs_remove_recursive(dir); 3086 3087 return -ENOMEM; 3088 } 3089 3090 late_initcall(fail_page_alloc_debugfs); 3091 3092 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3093 3094 #else /* CONFIG_FAIL_PAGE_ALLOC */ 3095 3096 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3097 { 3098 return false; 3099 } 3100 3101 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3102 3103 /* 3104 * Return true if free base pages are above 'mark'. For high-order checks it 3105 * will return true of the order-0 watermark is reached and there is at least 3106 * one free page of a suitable size. Checking now avoids taking the zone lock 3107 * to check in the allocation paths if no pages are free. 3108 */ 3109 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3110 int classzone_idx, unsigned int alloc_flags, 3111 long free_pages) 3112 { 3113 long min = mark; 3114 int o; 3115 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3116 3117 /* free_pages may go negative - that's OK */ 3118 free_pages -= (1 << order) - 1; 3119 3120 if (alloc_flags & ALLOC_HIGH) 3121 min -= min / 2; 3122 3123 /* 3124 * If the caller does not have rights to ALLOC_HARDER then subtract 3125 * the high-atomic reserves. This will over-estimate the size of the 3126 * atomic reserve but it avoids a search. 3127 */ 3128 if (likely(!alloc_harder)) { 3129 free_pages -= z->nr_reserved_highatomic; 3130 } else { 3131 /* 3132 * OOM victims can try even harder than normal ALLOC_HARDER 3133 * users on the grounds that it's definitely going to be in 3134 * the exit path shortly and free memory. Any allocation it 3135 * makes during the free path will be small and short-lived. 3136 */ 3137 if (alloc_flags & ALLOC_OOM) 3138 min -= min / 2; 3139 else 3140 min -= min / 4; 3141 } 3142 3143 3144 #ifdef CONFIG_CMA 3145 /* If allocation can't use CMA areas don't use free CMA pages */ 3146 if (!(alloc_flags & ALLOC_CMA)) 3147 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES); 3148 #endif 3149 3150 /* 3151 * Check watermarks for an order-0 allocation request. If these 3152 * are not met, then a high-order request also cannot go ahead 3153 * even if a suitable page happened to be free. 3154 */ 3155 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 3156 return false; 3157 3158 /* If this is an order-0 request then the watermark is fine */ 3159 if (!order) 3160 return true; 3161 3162 /* For a high-order request, check at least one suitable page is free */ 3163 for (o = order; o < MAX_ORDER; o++) { 3164 struct free_area *area = &z->free_area[o]; 3165 int mt; 3166 3167 if (!area->nr_free) 3168 continue; 3169 3170 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3171 if (!list_empty(&area->free_list[mt])) 3172 return true; 3173 } 3174 3175 #ifdef CONFIG_CMA 3176 if ((alloc_flags & ALLOC_CMA) && 3177 !list_empty(&area->free_list[MIGRATE_CMA])) { 3178 return true; 3179 } 3180 #endif 3181 if (alloc_harder && 3182 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC])) 3183 return true; 3184 } 3185 return false; 3186 } 3187 3188 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3189 int classzone_idx, unsigned int alloc_flags) 3190 { 3191 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3192 zone_page_state(z, NR_FREE_PAGES)); 3193 } 3194 3195 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3196 unsigned long mark, int classzone_idx, unsigned int alloc_flags) 3197 { 3198 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3199 long cma_pages = 0; 3200 3201 #ifdef CONFIG_CMA 3202 /* If allocation can't use CMA areas don't use free CMA pages */ 3203 if (!(alloc_flags & ALLOC_CMA)) 3204 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES); 3205 #endif 3206 3207 /* 3208 * Fast check for order-0 only. If this fails then the reserves 3209 * need to be calculated. There is a corner case where the check 3210 * passes but only the high-order atomic reserve are free. If 3211 * the caller is !atomic then it'll uselessly search the free 3212 * list. That corner case is then slower but it is harmless. 3213 */ 3214 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx]) 3215 return true; 3216 3217 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3218 free_pages); 3219 } 3220 3221 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3222 unsigned long mark, int classzone_idx) 3223 { 3224 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3225 3226 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3227 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3228 3229 return __zone_watermark_ok(z, order, mark, classzone_idx, 0, 3230 free_pages); 3231 } 3232 3233 #ifdef CONFIG_NUMA 3234 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3235 { 3236 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3237 RECLAIM_DISTANCE; 3238 } 3239 #else /* CONFIG_NUMA */ 3240 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3241 { 3242 return true; 3243 } 3244 #endif /* CONFIG_NUMA */ 3245 3246 /* 3247 * get_page_from_freelist goes through the zonelist trying to allocate 3248 * a page. 3249 */ 3250 static struct page * 3251 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3252 const struct alloc_context *ac) 3253 { 3254 struct zoneref *z = ac->preferred_zoneref; 3255 struct zone *zone; 3256 struct pglist_data *last_pgdat_dirty_limit = NULL; 3257 3258 /* 3259 * Scan zonelist, looking for a zone with enough free. 3260 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 3261 */ 3262 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3263 ac->nodemask) { 3264 struct page *page; 3265 unsigned long mark; 3266 3267 if (cpusets_enabled() && 3268 (alloc_flags & ALLOC_CPUSET) && 3269 !__cpuset_zone_allowed(zone, gfp_mask)) 3270 continue; 3271 /* 3272 * When allocating a page cache page for writing, we 3273 * want to get it from a node that is within its dirty 3274 * limit, such that no single node holds more than its 3275 * proportional share of globally allowed dirty pages. 3276 * The dirty limits take into account the node's 3277 * lowmem reserves and high watermark so that kswapd 3278 * should be able to balance it without having to 3279 * write pages from its LRU list. 3280 * 3281 * XXX: For now, allow allocations to potentially 3282 * exceed the per-node dirty limit in the slowpath 3283 * (spread_dirty_pages unset) before going into reclaim, 3284 * which is important when on a NUMA setup the allowed 3285 * nodes are together not big enough to reach the 3286 * global limit. The proper fix for these situations 3287 * will require awareness of nodes in the 3288 * dirty-throttling and the flusher threads. 3289 */ 3290 if (ac->spread_dirty_pages) { 3291 if (last_pgdat_dirty_limit == zone->zone_pgdat) 3292 continue; 3293 3294 if (!node_dirty_ok(zone->zone_pgdat)) { 3295 last_pgdat_dirty_limit = zone->zone_pgdat; 3296 continue; 3297 } 3298 } 3299 3300 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 3301 if (!zone_watermark_fast(zone, order, mark, 3302 ac_classzone_idx(ac), alloc_flags)) { 3303 int ret; 3304 3305 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3306 /* 3307 * Watermark failed for this zone, but see if we can 3308 * grow this zone if it contains deferred pages. 3309 */ 3310 if (static_branch_unlikely(&deferred_pages)) { 3311 if (_deferred_grow_zone(zone, order)) 3312 goto try_this_zone; 3313 } 3314 #endif 3315 /* Checked here to keep the fast path fast */ 3316 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3317 if (alloc_flags & ALLOC_NO_WATERMARKS) 3318 goto try_this_zone; 3319 3320 if (node_reclaim_mode == 0 || 3321 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3322 continue; 3323 3324 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3325 switch (ret) { 3326 case NODE_RECLAIM_NOSCAN: 3327 /* did not scan */ 3328 continue; 3329 case NODE_RECLAIM_FULL: 3330 /* scanned but unreclaimable */ 3331 continue; 3332 default: 3333 /* did we reclaim enough */ 3334 if (zone_watermark_ok(zone, order, mark, 3335 ac_classzone_idx(ac), alloc_flags)) 3336 goto try_this_zone; 3337 3338 continue; 3339 } 3340 } 3341 3342 try_this_zone: 3343 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3344 gfp_mask, alloc_flags, ac->migratetype); 3345 if (page) { 3346 prep_new_page(page, order, gfp_mask, alloc_flags); 3347 3348 /* 3349 * If this is a high-order atomic allocation then check 3350 * if the pageblock should be reserved for the future 3351 */ 3352 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 3353 reserve_highatomic_pageblock(page, zone, order); 3354 3355 return page; 3356 } else { 3357 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3358 /* Try again if zone has deferred pages */ 3359 if (static_branch_unlikely(&deferred_pages)) { 3360 if (_deferred_grow_zone(zone, order)) 3361 goto try_this_zone; 3362 } 3363 #endif 3364 } 3365 } 3366 3367 return NULL; 3368 } 3369 3370 /* 3371 * Large machines with many possible nodes should not always dump per-node 3372 * meminfo in irq context. 3373 */ 3374 static inline bool should_suppress_show_mem(void) 3375 { 3376 bool ret = false; 3377 3378 #if NODES_SHIFT > 8 3379 ret = in_interrupt(); 3380 #endif 3381 return ret; 3382 } 3383 3384 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3385 { 3386 unsigned int filter = SHOW_MEM_FILTER_NODES; 3387 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1); 3388 3389 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs)) 3390 return; 3391 3392 /* 3393 * This documents exceptions given to allocations in certain 3394 * contexts that are allowed to allocate outside current's set 3395 * of allowed nodes. 3396 */ 3397 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3398 if (tsk_is_oom_victim(current) || 3399 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3400 filter &= ~SHOW_MEM_FILTER_NODES; 3401 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3402 filter &= ~SHOW_MEM_FILTER_NODES; 3403 3404 show_mem(filter, nodemask); 3405 } 3406 3407 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3408 { 3409 struct va_format vaf; 3410 va_list args; 3411 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL, 3412 DEFAULT_RATELIMIT_BURST); 3413 3414 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs)) 3415 return; 3416 3417 va_start(args, fmt); 3418 vaf.fmt = fmt; 3419 vaf.va = &args; 3420 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n", 3421 current->comm, &vaf, gfp_mask, &gfp_mask, 3422 nodemask_pr_args(nodemask)); 3423 va_end(args); 3424 3425 cpuset_print_current_mems_allowed(); 3426 3427 dump_stack(); 3428 warn_alloc_show_mem(gfp_mask, nodemask); 3429 } 3430 3431 static inline struct page * 3432 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3433 unsigned int alloc_flags, 3434 const struct alloc_context *ac) 3435 { 3436 struct page *page; 3437 3438 page = get_page_from_freelist(gfp_mask, order, 3439 alloc_flags|ALLOC_CPUSET, ac); 3440 /* 3441 * fallback to ignore cpuset restriction if our nodes 3442 * are depleted 3443 */ 3444 if (!page) 3445 page = get_page_from_freelist(gfp_mask, order, 3446 alloc_flags, ac); 3447 3448 return page; 3449 } 3450 3451 static inline struct page * 3452 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3453 const struct alloc_context *ac, unsigned long *did_some_progress) 3454 { 3455 struct oom_control oc = { 3456 .zonelist = ac->zonelist, 3457 .nodemask = ac->nodemask, 3458 .memcg = NULL, 3459 .gfp_mask = gfp_mask, 3460 .order = order, 3461 }; 3462 struct page *page; 3463 3464 *did_some_progress = 0; 3465 3466 /* 3467 * Acquire the oom lock. If that fails, somebody else is 3468 * making progress for us. 3469 */ 3470 if (!mutex_trylock(&oom_lock)) { 3471 *did_some_progress = 1; 3472 schedule_timeout_uninterruptible(1); 3473 return NULL; 3474 } 3475 3476 /* 3477 * Go through the zonelist yet one more time, keep very high watermark 3478 * here, this is only to catch a parallel oom killing, we must fail if 3479 * we're still under heavy pressure. But make sure that this reclaim 3480 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3481 * allocation which will never fail due to oom_lock already held. 3482 */ 3483 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3484 ~__GFP_DIRECT_RECLAIM, order, 3485 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3486 if (page) 3487 goto out; 3488 3489 /* Coredumps can quickly deplete all memory reserves */ 3490 if (current->flags & PF_DUMPCORE) 3491 goto out; 3492 /* The OOM killer will not help higher order allocs */ 3493 if (order > PAGE_ALLOC_COSTLY_ORDER) 3494 goto out; 3495 /* 3496 * We have already exhausted all our reclaim opportunities without any 3497 * success so it is time to admit defeat. We will skip the OOM killer 3498 * because it is very likely that the caller has a more reasonable 3499 * fallback than shooting a random task. 3500 */ 3501 if (gfp_mask & __GFP_RETRY_MAYFAIL) 3502 goto out; 3503 /* The OOM killer does not needlessly kill tasks for lowmem */ 3504 if (ac->high_zoneidx < ZONE_NORMAL) 3505 goto out; 3506 if (pm_suspended_storage()) 3507 goto out; 3508 /* 3509 * XXX: GFP_NOFS allocations should rather fail than rely on 3510 * other request to make a forward progress. 3511 * We are in an unfortunate situation where out_of_memory cannot 3512 * do much for this context but let's try it to at least get 3513 * access to memory reserved if the current task is killed (see 3514 * out_of_memory). Once filesystems are ready to handle allocation 3515 * failures more gracefully we should just bail out here. 3516 */ 3517 3518 /* The OOM killer may not free memory on a specific node */ 3519 if (gfp_mask & __GFP_THISNODE) 3520 goto out; 3521 3522 /* Exhausted what can be done so it's blame time */ 3523 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 3524 *did_some_progress = 1; 3525 3526 /* 3527 * Help non-failing allocations by giving them access to memory 3528 * reserves 3529 */ 3530 if (gfp_mask & __GFP_NOFAIL) 3531 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3532 ALLOC_NO_WATERMARKS, ac); 3533 } 3534 out: 3535 mutex_unlock(&oom_lock); 3536 return page; 3537 } 3538 3539 /* 3540 * Maximum number of compaction retries wit a progress before OOM 3541 * killer is consider as the only way to move forward. 3542 */ 3543 #define MAX_COMPACT_RETRIES 16 3544 3545 #ifdef CONFIG_COMPACTION 3546 /* Try memory compaction for high-order allocations before reclaim */ 3547 static struct page * 3548 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3549 unsigned int alloc_flags, const struct alloc_context *ac, 3550 enum compact_priority prio, enum compact_result *compact_result) 3551 { 3552 struct page *page; 3553 unsigned int noreclaim_flag; 3554 3555 if (!order) 3556 return NULL; 3557 3558 noreclaim_flag = memalloc_noreclaim_save(); 3559 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3560 prio); 3561 memalloc_noreclaim_restore(noreclaim_flag); 3562 3563 if (*compact_result <= COMPACT_INACTIVE) 3564 return NULL; 3565 3566 /* 3567 * At least in one zone compaction wasn't deferred or skipped, so let's 3568 * count a compaction stall 3569 */ 3570 count_vm_event(COMPACTSTALL); 3571 3572 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3573 3574 if (page) { 3575 struct zone *zone = page_zone(page); 3576 3577 zone->compact_blockskip_flush = false; 3578 compaction_defer_reset(zone, order, true); 3579 count_vm_event(COMPACTSUCCESS); 3580 return page; 3581 } 3582 3583 /* 3584 * It's bad if compaction run occurs and fails. The most likely reason 3585 * is that pages exist, but not enough to satisfy watermarks. 3586 */ 3587 count_vm_event(COMPACTFAIL); 3588 3589 cond_resched(); 3590 3591 return NULL; 3592 } 3593 3594 static inline bool 3595 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3596 enum compact_result compact_result, 3597 enum compact_priority *compact_priority, 3598 int *compaction_retries) 3599 { 3600 int max_retries = MAX_COMPACT_RETRIES; 3601 int min_priority; 3602 bool ret = false; 3603 int retries = *compaction_retries; 3604 enum compact_priority priority = *compact_priority; 3605 3606 if (!order) 3607 return false; 3608 3609 if (compaction_made_progress(compact_result)) 3610 (*compaction_retries)++; 3611 3612 /* 3613 * compaction considers all the zone as desperately out of memory 3614 * so it doesn't really make much sense to retry except when the 3615 * failure could be caused by insufficient priority 3616 */ 3617 if (compaction_failed(compact_result)) 3618 goto check_priority; 3619 3620 /* 3621 * make sure the compaction wasn't deferred or didn't bail out early 3622 * due to locks contention before we declare that we should give up. 3623 * But do not retry if the given zonelist is not suitable for 3624 * compaction. 3625 */ 3626 if (compaction_withdrawn(compact_result)) { 3627 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 3628 goto out; 3629 } 3630 3631 /* 3632 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 3633 * costly ones because they are de facto nofail and invoke OOM 3634 * killer to move on while costly can fail and users are ready 3635 * to cope with that. 1/4 retries is rather arbitrary but we 3636 * would need much more detailed feedback from compaction to 3637 * make a better decision. 3638 */ 3639 if (order > PAGE_ALLOC_COSTLY_ORDER) 3640 max_retries /= 4; 3641 if (*compaction_retries <= max_retries) { 3642 ret = true; 3643 goto out; 3644 } 3645 3646 /* 3647 * Make sure there are attempts at the highest priority if we exhausted 3648 * all retries or failed at the lower priorities. 3649 */ 3650 check_priority: 3651 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 3652 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 3653 3654 if (*compact_priority > min_priority) { 3655 (*compact_priority)--; 3656 *compaction_retries = 0; 3657 ret = true; 3658 } 3659 out: 3660 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 3661 return ret; 3662 } 3663 #else 3664 static inline struct page * 3665 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3666 unsigned int alloc_flags, const struct alloc_context *ac, 3667 enum compact_priority prio, enum compact_result *compact_result) 3668 { 3669 *compact_result = COMPACT_SKIPPED; 3670 return NULL; 3671 } 3672 3673 static inline bool 3674 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 3675 enum compact_result compact_result, 3676 enum compact_priority *compact_priority, 3677 int *compaction_retries) 3678 { 3679 struct zone *zone; 3680 struct zoneref *z; 3681 3682 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 3683 return false; 3684 3685 /* 3686 * There are setups with compaction disabled which would prefer to loop 3687 * inside the allocator rather than hit the oom killer prematurely. 3688 * Let's give them a good hope and keep retrying while the order-0 3689 * watermarks are OK. 3690 */ 3691 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3692 ac->nodemask) { 3693 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 3694 ac_classzone_idx(ac), alloc_flags)) 3695 return true; 3696 } 3697 return false; 3698 } 3699 #endif /* CONFIG_COMPACTION */ 3700 3701 #ifdef CONFIG_LOCKDEP 3702 static struct lockdep_map __fs_reclaim_map = 3703 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 3704 3705 static bool __need_fs_reclaim(gfp_t gfp_mask) 3706 { 3707 gfp_mask = current_gfp_context(gfp_mask); 3708 3709 /* no reclaim without waiting on it */ 3710 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 3711 return false; 3712 3713 /* this guy won't enter reclaim */ 3714 if (current->flags & PF_MEMALLOC) 3715 return false; 3716 3717 /* We're only interested __GFP_FS allocations for now */ 3718 if (!(gfp_mask & __GFP_FS)) 3719 return false; 3720 3721 if (gfp_mask & __GFP_NOLOCKDEP) 3722 return false; 3723 3724 return true; 3725 } 3726 3727 void __fs_reclaim_acquire(void) 3728 { 3729 lock_map_acquire(&__fs_reclaim_map); 3730 } 3731 3732 void __fs_reclaim_release(void) 3733 { 3734 lock_map_release(&__fs_reclaim_map); 3735 } 3736 3737 void fs_reclaim_acquire(gfp_t gfp_mask) 3738 { 3739 if (__need_fs_reclaim(gfp_mask)) 3740 __fs_reclaim_acquire(); 3741 } 3742 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 3743 3744 void fs_reclaim_release(gfp_t gfp_mask) 3745 { 3746 if (__need_fs_reclaim(gfp_mask)) 3747 __fs_reclaim_release(); 3748 } 3749 EXPORT_SYMBOL_GPL(fs_reclaim_release); 3750 #endif 3751 3752 /* Perform direct synchronous page reclaim */ 3753 static int 3754 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 3755 const struct alloc_context *ac) 3756 { 3757 struct reclaim_state reclaim_state; 3758 int progress; 3759 unsigned int noreclaim_flag; 3760 3761 cond_resched(); 3762 3763 /* We now go into synchronous reclaim */ 3764 cpuset_memory_pressure_bump(); 3765 fs_reclaim_acquire(gfp_mask); 3766 noreclaim_flag = memalloc_noreclaim_save(); 3767 reclaim_state.reclaimed_slab = 0; 3768 current->reclaim_state = &reclaim_state; 3769 3770 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 3771 ac->nodemask); 3772 3773 current->reclaim_state = NULL; 3774 memalloc_noreclaim_restore(noreclaim_flag); 3775 fs_reclaim_release(gfp_mask); 3776 3777 cond_resched(); 3778 3779 return progress; 3780 } 3781 3782 /* The really slow allocator path where we enter direct reclaim */ 3783 static inline struct page * 3784 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 3785 unsigned int alloc_flags, const struct alloc_context *ac, 3786 unsigned long *did_some_progress) 3787 { 3788 struct page *page = NULL; 3789 bool drained = false; 3790 3791 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 3792 if (unlikely(!(*did_some_progress))) 3793 return NULL; 3794 3795 retry: 3796 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3797 3798 /* 3799 * If an allocation failed after direct reclaim, it could be because 3800 * pages are pinned on the per-cpu lists or in high alloc reserves. 3801 * Shrink them them and try again 3802 */ 3803 if (!page && !drained) { 3804 unreserve_highatomic_pageblock(ac, false); 3805 drain_all_pages(NULL); 3806 drained = true; 3807 goto retry; 3808 } 3809 3810 return page; 3811 } 3812 3813 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 3814 const struct alloc_context *ac) 3815 { 3816 struct zoneref *z; 3817 struct zone *zone; 3818 pg_data_t *last_pgdat = NULL; 3819 enum zone_type high_zoneidx = ac->high_zoneidx; 3820 3821 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx, 3822 ac->nodemask) { 3823 if (last_pgdat != zone->zone_pgdat) 3824 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx); 3825 last_pgdat = zone->zone_pgdat; 3826 } 3827 } 3828 3829 static inline unsigned int 3830 gfp_to_alloc_flags(gfp_t gfp_mask) 3831 { 3832 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 3833 3834 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 3835 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 3836 3837 /* 3838 * The caller may dip into page reserves a bit more if the caller 3839 * cannot run direct reclaim, or if the caller has realtime scheduling 3840 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 3841 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 3842 */ 3843 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 3844 3845 if (gfp_mask & __GFP_ATOMIC) { 3846 /* 3847 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 3848 * if it can't schedule. 3849 */ 3850 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3851 alloc_flags |= ALLOC_HARDER; 3852 /* 3853 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 3854 * comment for __cpuset_node_allowed(). 3855 */ 3856 alloc_flags &= ~ALLOC_CPUSET; 3857 } else if (unlikely(rt_task(current)) && !in_interrupt()) 3858 alloc_flags |= ALLOC_HARDER; 3859 3860 #ifdef CONFIG_CMA 3861 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3862 alloc_flags |= ALLOC_CMA; 3863 #endif 3864 return alloc_flags; 3865 } 3866 3867 static bool oom_reserves_allowed(struct task_struct *tsk) 3868 { 3869 if (!tsk_is_oom_victim(tsk)) 3870 return false; 3871 3872 /* 3873 * !MMU doesn't have oom reaper so give access to memory reserves 3874 * only to the thread with TIF_MEMDIE set 3875 */ 3876 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 3877 return false; 3878 3879 return true; 3880 } 3881 3882 /* 3883 * Distinguish requests which really need access to full memory 3884 * reserves from oom victims which can live with a portion of it 3885 */ 3886 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 3887 { 3888 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 3889 return 0; 3890 if (gfp_mask & __GFP_MEMALLOC) 3891 return ALLOC_NO_WATERMARKS; 3892 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 3893 return ALLOC_NO_WATERMARKS; 3894 if (!in_interrupt()) { 3895 if (current->flags & PF_MEMALLOC) 3896 return ALLOC_NO_WATERMARKS; 3897 else if (oom_reserves_allowed(current)) 3898 return ALLOC_OOM; 3899 } 3900 3901 return 0; 3902 } 3903 3904 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 3905 { 3906 return !!__gfp_pfmemalloc_flags(gfp_mask); 3907 } 3908 3909 /* 3910 * Checks whether it makes sense to retry the reclaim to make a forward progress 3911 * for the given allocation request. 3912 * 3913 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 3914 * without success, or when we couldn't even meet the watermark if we 3915 * reclaimed all remaining pages on the LRU lists. 3916 * 3917 * Returns true if a retry is viable or false to enter the oom path. 3918 */ 3919 static inline bool 3920 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 3921 struct alloc_context *ac, int alloc_flags, 3922 bool did_some_progress, int *no_progress_loops) 3923 { 3924 struct zone *zone; 3925 struct zoneref *z; 3926 3927 /* 3928 * Costly allocations might have made a progress but this doesn't mean 3929 * their order will become available due to high fragmentation so 3930 * always increment the no progress counter for them 3931 */ 3932 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 3933 *no_progress_loops = 0; 3934 else 3935 (*no_progress_loops)++; 3936 3937 /* 3938 * Make sure we converge to OOM if we cannot make any progress 3939 * several times in the row. 3940 */ 3941 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 3942 /* Before OOM, exhaust highatomic_reserve */ 3943 return unreserve_highatomic_pageblock(ac, true); 3944 } 3945 3946 /* 3947 * Keep reclaiming pages while there is a chance this will lead 3948 * somewhere. If none of the target zones can satisfy our allocation 3949 * request even if all reclaimable pages are considered then we are 3950 * screwed and have to go OOM. 3951 */ 3952 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3953 ac->nodemask) { 3954 unsigned long available; 3955 unsigned long reclaimable; 3956 unsigned long min_wmark = min_wmark_pages(zone); 3957 bool wmark; 3958 3959 available = reclaimable = zone_reclaimable_pages(zone); 3960 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 3961 3962 /* 3963 * Would the allocation succeed if we reclaimed all 3964 * reclaimable pages? 3965 */ 3966 wmark = __zone_watermark_ok(zone, order, min_wmark, 3967 ac_classzone_idx(ac), alloc_flags, available); 3968 trace_reclaim_retry_zone(z, order, reclaimable, 3969 available, min_wmark, *no_progress_loops, wmark); 3970 if (wmark) { 3971 /* 3972 * If we didn't make any progress and have a lot of 3973 * dirty + writeback pages then we should wait for 3974 * an IO to complete to slow down the reclaim and 3975 * prevent from pre mature OOM 3976 */ 3977 if (!did_some_progress) { 3978 unsigned long write_pending; 3979 3980 write_pending = zone_page_state_snapshot(zone, 3981 NR_ZONE_WRITE_PENDING); 3982 3983 if (2 * write_pending > reclaimable) { 3984 congestion_wait(BLK_RW_ASYNC, HZ/10); 3985 return true; 3986 } 3987 } 3988 3989 /* 3990 * Memory allocation/reclaim might be called from a WQ 3991 * context and the current implementation of the WQ 3992 * concurrency control doesn't recognize that 3993 * a particular WQ is congested if the worker thread is 3994 * looping without ever sleeping. Therefore we have to 3995 * do a short sleep here rather than calling 3996 * cond_resched(). 3997 */ 3998 if (current->flags & PF_WQ_WORKER) 3999 schedule_timeout_uninterruptible(1); 4000 else 4001 cond_resched(); 4002 4003 return true; 4004 } 4005 } 4006 4007 return false; 4008 } 4009 4010 static inline bool 4011 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4012 { 4013 /* 4014 * It's possible that cpuset's mems_allowed and the nodemask from 4015 * mempolicy don't intersect. This should be normally dealt with by 4016 * policy_nodemask(), but it's possible to race with cpuset update in 4017 * such a way the check therein was true, and then it became false 4018 * before we got our cpuset_mems_cookie here. 4019 * This assumes that for all allocations, ac->nodemask can come only 4020 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4021 * when it does not intersect with the cpuset restrictions) or the 4022 * caller can deal with a violated nodemask. 4023 */ 4024 if (cpusets_enabled() && ac->nodemask && 4025 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4026 ac->nodemask = NULL; 4027 return true; 4028 } 4029 4030 /* 4031 * When updating a task's mems_allowed or mempolicy nodemask, it is 4032 * possible to race with parallel threads in such a way that our 4033 * allocation can fail while the mask is being updated. If we are about 4034 * to fail, check if the cpuset changed during allocation and if so, 4035 * retry. 4036 */ 4037 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4038 return true; 4039 4040 return false; 4041 } 4042 4043 static inline struct page * 4044 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4045 struct alloc_context *ac) 4046 { 4047 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4048 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4049 struct page *page = NULL; 4050 unsigned int alloc_flags; 4051 unsigned long did_some_progress; 4052 enum compact_priority compact_priority; 4053 enum compact_result compact_result; 4054 int compaction_retries; 4055 int no_progress_loops; 4056 unsigned int cpuset_mems_cookie; 4057 int reserve_flags; 4058 4059 /* 4060 * In the slowpath, we sanity check order to avoid ever trying to 4061 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 4062 * be using allocators in order of preference for an area that is 4063 * too large. 4064 */ 4065 if (order >= MAX_ORDER) { 4066 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 4067 return NULL; 4068 } 4069 4070 /* 4071 * We also sanity check to catch abuse of atomic reserves being used by 4072 * callers that are not in atomic context. 4073 */ 4074 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 4075 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 4076 gfp_mask &= ~__GFP_ATOMIC; 4077 4078 retry_cpuset: 4079 compaction_retries = 0; 4080 no_progress_loops = 0; 4081 compact_priority = DEF_COMPACT_PRIORITY; 4082 cpuset_mems_cookie = read_mems_allowed_begin(); 4083 4084 /* 4085 * The fast path uses conservative alloc_flags to succeed only until 4086 * kswapd needs to be woken up, and to avoid the cost of setting up 4087 * alloc_flags precisely. So we do that now. 4088 */ 4089 alloc_flags = gfp_to_alloc_flags(gfp_mask); 4090 4091 /* 4092 * We need to recalculate the starting point for the zonelist iterator 4093 * because we might have used different nodemask in the fast path, or 4094 * there was a cpuset modification and we are retrying - otherwise we 4095 * could end up iterating over non-eligible zones endlessly. 4096 */ 4097 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4098 ac->high_zoneidx, ac->nodemask); 4099 if (!ac->preferred_zoneref->zone) 4100 goto nopage; 4101 4102 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 4103 wake_all_kswapds(order, gfp_mask, ac); 4104 4105 /* 4106 * The adjusted alloc_flags might result in immediate success, so try 4107 * that first 4108 */ 4109 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4110 if (page) 4111 goto got_pg; 4112 4113 /* 4114 * For costly allocations, try direct compaction first, as it's likely 4115 * that we have enough base pages and don't need to reclaim. For non- 4116 * movable high-order allocations, do that as well, as compaction will 4117 * try prevent permanent fragmentation by migrating from blocks of the 4118 * same migratetype. 4119 * Don't try this for allocations that are allowed to ignore 4120 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4121 */ 4122 if (can_direct_reclaim && 4123 (costly_order || 4124 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4125 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4126 page = __alloc_pages_direct_compact(gfp_mask, order, 4127 alloc_flags, ac, 4128 INIT_COMPACT_PRIORITY, 4129 &compact_result); 4130 if (page) 4131 goto got_pg; 4132 4133 /* 4134 * Checks for costly allocations with __GFP_NORETRY, which 4135 * includes THP page fault allocations 4136 */ 4137 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4138 /* 4139 * If compaction is deferred for high-order allocations, 4140 * it is because sync compaction recently failed. If 4141 * this is the case and the caller requested a THP 4142 * allocation, we do not want to heavily disrupt the 4143 * system, so we fail the allocation instead of entering 4144 * direct reclaim. 4145 */ 4146 if (compact_result == COMPACT_DEFERRED) 4147 goto nopage; 4148 4149 /* 4150 * Looks like reclaim/compaction is worth trying, but 4151 * sync compaction could be very expensive, so keep 4152 * using async compaction. 4153 */ 4154 compact_priority = INIT_COMPACT_PRIORITY; 4155 } 4156 } 4157 4158 retry: 4159 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4160 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 4161 wake_all_kswapds(order, gfp_mask, ac); 4162 4163 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4164 if (reserve_flags) 4165 alloc_flags = reserve_flags; 4166 4167 /* 4168 * Reset the nodemask and zonelist iterators if memory policies can be 4169 * ignored. These allocations are high priority and system rather than 4170 * user oriented. 4171 */ 4172 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4173 ac->nodemask = NULL; 4174 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4175 ac->high_zoneidx, ac->nodemask); 4176 } 4177 4178 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4179 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4180 if (page) 4181 goto got_pg; 4182 4183 /* Caller is not willing to reclaim, we can't balance anything */ 4184 if (!can_direct_reclaim) 4185 goto nopage; 4186 4187 /* Avoid recursion of direct reclaim */ 4188 if (current->flags & PF_MEMALLOC) 4189 goto nopage; 4190 4191 /* Try direct reclaim and then allocating */ 4192 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4193 &did_some_progress); 4194 if (page) 4195 goto got_pg; 4196 4197 /* Try direct compaction and then allocating */ 4198 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4199 compact_priority, &compact_result); 4200 if (page) 4201 goto got_pg; 4202 4203 /* Do not loop if specifically requested */ 4204 if (gfp_mask & __GFP_NORETRY) 4205 goto nopage; 4206 4207 /* 4208 * Do not retry costly high order allocations unless they are 4209 * __GFP_RETRY_MAYFAIL 4210 */ 4211 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 4212 goto nopage; 4213 4214 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4215 did_some_progress > 0, &no_progress_loops)) 4216 goto retry; 4217 4218 /* 4219 * It doesn't make any sense to retry for the compaction if the order-0 4220 * reclaim is not able to make any progress because the current 4221 * implementation of the compaction depends on the sufficient amount 4222 * of free memory (see __compaction_suitable) 4223 */ 4224 if (did_some_progress > 0 && 4225 should_compact_retry(ac, order, alloc_flags, 4226 compact_result, &compact_priority, 4227 &compaction_retries)) 4228 goto retry; 4229 4230 4231 /* Deal with possible cpuset update races before we start OOM killing */ 4232 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4233 goto retry_cpuset; 4234 4235 /* Reclaim has failed us, start killing things */ 4236 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4237 if (page) 4238 goto got_pg; 4239 4240 /* Avoid allocations with no watermarks from looping endlessly */ 4241 if (tsk_is_oom_victim(current) && 4242 (alloc_flags == ALLOC_OOM || 4243 (gfp_mask & __GFP_NOMEMALLOC))) 4244 goto nopage; 4245 4246 /* Retry as long as the OOM killer is making progress */ 4247 if (did_some_progress) { 4248 no_progress_loops = 0; 4249 goto retry; 4250 } 4251 4252 nopage: 4253 /* Deal with possible cpuset update races before we fail */ 4254 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4255 goto retry_cpuset; 4256 4257 /* 4258 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4259 * we always retry 4260 */ 4261 if (gfp_mask & __GFP_NOFAIL) { 4262 /* 4263 * All existing users of the __GFP_NOFAIL are blockable, so warn 4264 * of any new users that actually require GFP_NOWAIT 4265 */ 4266 if (WARN_ON_ONCE(!can_direct_reclaim)) 4267 goto fail; 4268 4269 /* 4270 * PF_MEMALLOC request from this context is rather bizarre 4271 * because we cannot reclaim anything and only can loop waiting 4272 * for somebody to do a work for us 4273 */ 4274 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4275 4276 /* 4277 * non failing costly orders are a hard requirement which we 4278 * are not prepared for much so let's warn about these users 4279 * so that we can identify them and convert them to something 4280 * else. 4281 */ 4282 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); 4283 4284 /* 4285 * Help non-failing allocations by giving them access to memory 4286 * reserves but do not use ALLOC_NO_WATERMARKS because this 4287 * could deplete whole memory reserves which would just make 4288 * the situation worse 4289 */ 4290 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 4291 if (page) 4292 goto got_pg; 4293 4294 cond_resched(); 4295 goto retry; 4296 } 4297 fail: 4298 warn_alloc(gfp_mask, ac->nodemask, 4299 "page allocation failure: order:%u", order); 4300 got_pg: 4301 return page; 4302 } 4303 4304 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4305 int preferred_nid, nodemask_t *nodemask, 4306 struct alloc_context *ac, gfp_t *alloc_mask, 4307 unsigned int *alloc_flags) 4308 { 4309 ac->high_zoneidx = gfp_zone(gfp_mask); 4310 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4311 ac->nodemask = nodemask; 4312 ac->migratetype = gfpflags_to_migratetype(gfp_mask); 4313 4314 if (cpusets_enabled()) { 4315 *alloc_mask |= __GFP_HARDWALL; 4316 if (!ac->nodemask) 4317 ac->nodemask = &cpuset_current_mems_allowed; 4318 else 4319 *alloc_flags |= ALLOC_CPUSET; 4320 } 4321 4322 fs_reclaim_acquire(gfp_mask); 4323 fs_reclaim_release(gfp_mask); 4324 4325 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 4326 4327 if (should_fail_alloc_page(gfp_mask, order)) 4328 return false; 4329 4330 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE) 4331 *alloc_flags |= ALLOC_CMA; 4332 4333 return true; 4334 } 4335 4336 /* Determine whether to spread dirty pages and what the first usable zone */ 4337 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac) 4338 { 4339 /* Dirty zone balancing only done in the fast path */ 4340 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4341 4342 /* 4343 * The preferred zone is used for statistics but crucially it is 4344 * also used as the starting point for the zonelist iterator. It 4345 * may get reset for allocations that ignore memory policies. 4346 */ 4347 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4348 ac->high_zoneidx, ac->nodemask); 4349 } 4350 4351 /* 4352 * This is the 'heart' of the zoned buddy allocator. 4353 */ 4354 struct page * 4355 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid, 4356 nodemask_t *nodemask) 4357 { 4358 struct page *page; 4359 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4360 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */ 4361 struct alloc_context ac = { }; 4362 4363 gfp_mask &= gfp_allowed_mask; 4364 alloc_mask = gfp_mask; 4365 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags)) 4366 return NULL; 4367 4368 finalise_ac(gfp_mask, &ac); 4369 4370 /* First allocation attempt */ 4371 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); 4372 if (likely(page)) 4373 goto out; 4374 4375 /* 4376 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4377 * resp. GFP_NOIO which has to be inherited for all allocation requests 4378 * from a particular context which has been marked by 4379 * memalloc_no{fs,io}_{save,restore}. 4380 */ 4381 alloc_mask = current_gfp_context(gfp_mask); 4382 ac.spread_dirty_pages = false; 4383 4384 /* 4385 * Restore the original nodemask if it was potentially replaced with 4386 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4387 */ 4388 if (unlikely(ac.nodemask != nodemask)) 4389 ac.nodemask = nodemask; 4390 4391 page = __alloc_pages_slowpath(alloc_mask, order, &ac); 4392 4393 out: 4394 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page && 4395 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) { 4396 __free_pages(page, order); 4397 page = NULL; 4398 } 4399 4400 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); 4401 4402 return page; 4403 } 4404 EXPORT_SYMBOL(__alloc_pages_nodemask); 4405 4406 /* 4407 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 4408 * address cannot represent highmem pages. Use alloc_pages and then kmap if 4409 * you need to access high mem. 4410 */ 4411 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 4412 { 4413 struct page *page; 4414 4415 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 4416 if (!page) 4417 return 0; 4418 return (unsigned long) page_address(page); 4419 } 4420 EXPORT_SYMBOL(__get_free_pages); 4421 4422 unsigned long get_zeroed_page(gfp_t gfp_mask) 4423 { 4424 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 4425 } 4426 EXPORT_SYMBOL(get_zeroed_page); 4427 4428 void __free_pages(struct page *page, unsigned int order) 4429 { 4430 if (put_page_testzero(page)) { 4431 if (order == 0) 4432 free_unref_page(page); 4433 else 4434 __free_pages_ok(page, order); 4435 } 4436 } 4437 4438 EXPORT_SYMBOL(__free_pages); 4439 4440 void free_pages(unsigned long addr, unsigned int order) 4441 { 4442 if (addr != 0) { 4443 VM_BUG_ON(!virt_addr_valid((void *)addr)); 4444 __free_pages(virt_to_page((void *)addr), order); 4445 } 4446 } 4447 4448 EXPORT_SYMBOL(free_pages); 4449 4450 /* 4451 * Page Fragment: 4452 * An arbitrary-length arbitrary-offset area of memory which resides 4453 * within a 0 or higher order page. Multiple fragments within that page 4454 * are individually refcounted, in the page's reference counter. 4455 * 4456 * The page_frag functions below provide a simple allocation framework for 4457 * page fragments. This is used by the network stack and network device 4458 * drivers to provide a backing region of memory for use as either an 4459 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 4460 */ 4461 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 4462 gfp_t gfp_mask) 4463 { 4464 struct page *page = NULL; 4465 gfp_t gfp = gfp_mask; 4466 4467 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4468 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 4469 __GFP_NOMEMALLOC; 4470 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 4471 PAGE_FRAG_CACHE_MAX_ORDER); 4472 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 4473 #endif 4474 if (unlikely(!page)) 4475 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 4476 4477 nc->va = page ? page_address(page) : NULL; 4478 4479 return page; 4480 } 4481 4482 void __page_frag_cache_drain(struct page *page, unsigned int count) 4483 { 4484 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 4485 4486 if (page_ref_sub_and_test(page, count)) { 4487 unsigned int order = compound_order(page); 4488 4489 if (order == 0) 4490 free_unref_page(page); 4491 else 4492 __free_pages_ok(page, order); 4493 } 4494 } 4495 EXPORT_SYMBOL(__page_frag_cache_drain); 4496 4497 void *page_frag_alloc(struct page_frag_cache *nc, 4498 unsigned int fragsz, gfp_t gfp_mask) 4499 { 4500 unsigned int size = PAGE_SIZE; 4501 struct page *page; 4502 int offset; 4503 4504 if (unlikely(!nc->va)) { 4505 refill: 4506 page = __page_frag_cache_refill(nc, gfp_mask); 4507 if (!page) 4508 return NULL; 4509 4510 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4511 /* if size can vary use size else just use PAGE_SIZE */ 4512 size = nc->size; 4513 #endif 4514 /* Even if we own the page, we do not use atomic_set(). 4515 * This would break get_page_unless_zero() users. 4516 */ 4517 page_ref_add(page, size - 1); 4518 4519 /* reset page count bias and offset to start of new frag */ 4520 nc->pfmemalloc = page_is_pfmemalloc(page); 4521 nc->pagecnt_bias = size; 4522 nc->offset = size; 4523 } 4524 4525 offset = nc->offset - fragsz; 4526 if (unlikely(offset < 0)) { 4527 page = virt_to_page(nc->va); 4528 4529 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 4530 goto refill; 4531 4532 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4533 /* if size can vary use size else just use PAGE_SIZE */ 4534 size = nc->size; 4535 #endif 4536 /* OK, page count is 0, we can safely set it */ 4537 set_page_count(page, size); 4538 4539 /* reset page count bias and offset to start of new frag */ 4540 nc->pagecnt_bias = size; 4541 offset = size - fragsz; 4542 } 4543 4544 nc->pagecnt_bias--; 4545 nc->offset = offset; 4546 4547 return nc->va + offset; 4548 } 4549 EXPORT_SYMBOL(page_frag_alloc); 4550 4551 /* 4552 * Frees a page fragment allocated out of either a compound or order 0 page. 4553 */ 4554 void page_frag_free(void *addr) 4555 { 4556 struct page *page = virt_to_head_page(addr); 4557 4558 if (unlikely(put_page_testzero(page))) 4559 __free_pages_ok(page, compound_order(page)); 4560 } 4561 EXPORT_SYMBOL(page_frag_free); 4562 4563 static void *make_alloc_exact(unsigned long addr, unsigned int order, 4564 size_t size) 4565 { 4566 if (addr) { 4567 unsigned long alloc_end = addr + (PAGE_SIZE << order); 4568 unsigned long used = addr + PAGE_ALIGN(size); 4569 4570 split_page(virt_to_page((void *)addr), order); 4571 while (used < alloc_end) { 4572 free_page(used); 4573 used += PAGE_SIZE; 4574 } 4575 } 4576 return (void *)addr; 4577 } 4578 4579 /** 4580 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 4581 * @size: the number of bytes to allocate 4582 * @gfp_mask: GFP flags for the allocation 4583 * 4584 * This function is similar to alloc_pages(), except that it allocates the 4585 * minimum number of pages to satisfy the request. alloc_pages() can only 4586 * allocate memory in power-of-two pages. 4587 * 4588 * This function is also limited by MAX_ORDER. 4589 * 4590 * Memory allocated by this function must be released by free_pages_exact(). 4591 */ 4592 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 4593 { 4594 unsigned int order = get_order(size); 4595 unsigned long addr; 4596 4597 addr = __get_free_pages(gfp_mask, order); 4598 return make_alloc_exact(addr, order, size); 4599 } 4600 EXPORT_SYMBOL(alloc_pages_exact); 4601 4602 /** 4603 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 4604 * pages on a node. 4605 * @nid: the preferred node ID where memory should be allocated 4606 * @size: the number of bytes to allocate 4607 * @gfp_mask: GFP flags for the allocation 4608 * 4609 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 4610 * back. 4611 */ 4612 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 4613 { 4614 unsigned int order = get_order(size); 4615 struct page *p = alloc_pages_node(nid, gfp_mask, order); 4616 if (!p) 4617 return NULL; 4618 return make_alloc_exact((unsigned long)page_address(p), order, size); 4619 } 4620 4621 /** 4622 * free_pages_exact - release memory allocated via alloc_pages_exact() 4623 * @virt: the value returned by alloc_pages_exact. 4624 * @size: size of allocation, same value as passed to alloc_pages_exact(). 4625 * 4626 * Release the memory allocated by a previous call to alloc_pages_exact. 4627 */ 4628 void free_pages_exact(void *virt, size_t size) 4629 { 4630 unsigned long addr = (unsigned long)virt; 4631 unsigned long end = addr + PAGE_ALIGN(size); 4632 4633 while (addr < end) { 4634 free_page(addr); 4635 addr += PAGE_SIZE; 4636 } 4637 } 4638 EXPORT_SYMBOL(free_pages_exact); 4639 4640 /** 4641 * nr_free_zone_pages - count number of pages beyond high watermark 4642 * @offset: The zone index of the highest zone 4643 * 4644 * nr_free_zone_pages() counts the number of counts pages which are beyond the 4645 * high watermark within all zones at or below a given zone index. For each 4646 * zone, the number of pages is calculated as: 4647 * 4648 * nr_free_zone_pages = managed_pages - high_pages 4649 */ 4650 static unsigned long nr_free_zone_pages(int offset) 4651 { 4652 struct zoneref *z; 4653 struct zone *zone; 4654 4655 /* Just pick one node, since fallback list is circular */ 4656 unsigned long sum = 0; 4657 4658 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 4659 4660 for_each_zone_zonelist(zone, z, zonelist, offset) { 4661 unsigned long size = zone->managed_pages; 4662 unsigned long high = high_wmark_pages(zone); 4663 if (size > high) 4664 sum += size - high; 4665 } 4666 4667 return sum; 4668 } 4669 4670 /** 4671 * nr_free_buffer_pages - count number of pages beyond high watermark 4672 * 4673 * nr_free_buffer_pages() counts the number of pages which are beyond the high 4674 * watermark within ZONE_DMA and ZONE_NORMAL. 4675 */ 4676 unsigned long nr_free_buffer_pages(void) 4677 { 4678 return nr_free_zone_pages(gfp_zone(GFP_USER)); 4679 } 4680 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 4681 4682 /** 4683 * nr_free_pagecache_pages - count number of pages beyond high watermark 4684 * 4685 * nr_free_pagecache_pages() counts the number of pages which are beyond the 4686 * high watermark within all zones. 4687 */ 4688 unsigned long nr_free_pagecache_pages(void) 4689 { 4690 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 4691 } 4692 4693 static inline void show_node(struct zone *zone) 4694 { 4695 if (IS_ENABLED(CONFIG_NUMA)) 4696 printk("Node %d ", zone_to_nid(zone)); 4697 } 4698 4699 long si_mem_available(void) 4700 { 4701 long available; 4702 unsigned long pagecache; 4703 unsigned long wmark_low = 0; 4704 unsigned long pages[NR_LRU_LISTS]; 4705 struct zone *zone; 4706 int lru; 4707 4708 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 4709 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 4710 4711 for_each_zone(zone) 4712 wmark_low += zone->watermark[WMARK_LOW]; 4713 4714 /* 4715 * Estimate the amount of memory available for userspace allocations, 4716 * without causing swapping. 4717 */ 4718 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 4719 4720 /* 4721 * Not all the page cache can be freed, otherwise the system will 4722 * start swapping. Assume at least half of the page cache, or the 4723 * low watermark worth of cache, needs to stay. 4724 */ 4725 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 4726 pagecache -= min(pagecache / 2, wmark_low); 4727 available += pagecache; 4728 4729 /* 4730 * Part of the reclaimable slab consists of items that are in use, 4731 * and cannot be freed. Cap this estimate at the low watermark. 4732 */ 4733 available += global_node_page_state(NR_SLAB_RECLAIMABLE) - 4734 min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2, 4735 wmark_low); 4736 4737 /* 4738 * Part of the kernel memory, which can be released under memory 4739 * pressure. 4740 */ 4741 available += global_node_page_state(NR_INDIRECTLY_RECLAIMABLE_BYTES) >> 4742 PAGE_SHIFT; 4743 4744 if (available < 0) 4745 available = 0; 4746 return available; 4747 } 4748 EXPORT_SYMBOL_GPL(si_mem_available); 4749 4750 void si_meminfo(struct sysinfo *val) 4751 { 4752 val->totalram = totalram_pages; 4753 val->sharedram = global_node_page_state(NR_SHMEM); 4754 val->freeram = global_zone_page_state(NR_FREE_PAGES); 4755 val->bufferram = nr_blockdev_pages(); 4756 val->totalhigh = totalhigh_pages; 4757 val->freehigh = nr_free_highpages(); 4758 val->mem_unit = PAGE_SIZE; 4759 } 4760 4761 EXPORT_SYMBOL(si_meminfo); 4762 4763 #ifdef CONFIG_NUMA 4764 void si_meminfo_node(struct sysinfo *val, int nid) 4765 { 4766 int zone_type; /* needs to be signed */ 4767 unsigned long managed_pages = 0; 4768 unsigned long managed_highpages = 0; 4769 unsigned long free_highpages = 0; 4770 pg_data_t *pgdat = NODE_DATA(nid); 4771 4772 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 4773 managed_pages += pgdat->node_zones[zone_type].managed_pages; 4774 val->totalram = managed_pages; 4775 val->sharedram = node_page_state(pgdat, NR_SHMEM); 4776 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 4777 #ifdef CONFIG_HIGHMEM 4778 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 4779 struct zone *zone = &pgdat->node_zones[zone_type]; 4780 4781 if (is_highmem(zone)) { 4782 managed_highpages += zone->managed_pages; 4783 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 4784 } 4785 } 4786 val->totalhigh = managed_highpages; 4787 val->freehigh = free_highpages; 4788 #else 4789 val->totalhigh = managed_highpages; 4790 val->freehigh = free_highpages; 4791 #endif 4792 val->mem_unit = PAGE_SIZE; 4793 } 4794 #endif 4795 4796 /* 4797 * Determine whether the node should be displayed or not, depending on whether 4798 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 4799 */ 4800 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 4801 { 4802 if (!(flags & SHOW_MEM_FILTER_NODES)) 4803 return false; 4804 4805 /* 4806 * no node mask - aka implicit memory numa policy. Do not bother with 4807 * the synchronization - read_mems_allowed_begin - because we do not 4808 * have to be precise here. 4809 */ 4810 if (!nodemask) 4811 nodemask = &cpuset_current_mems_allowed; 4812 4813 return !node_isset(nid, *nodemask); 4814 } 4815 4816 #define K(x) ((x) << (PAGE_SHIFT-10)) 4817 4818 static void show_migration_types(unsigned char type) 4819 { 4820 static const char types[MIGRATE_TYPES] = { 4821 [MIGRATE_UNMOVABLE] = 'U', 4822 [MIGRATE_MOVABLE] = 'M', 4823 [MIGRATE_RECLAIMABLE] = 'E', 4824 [MIGRATE_HIGHATOMIC] = 'H', 4825 #ifdef CONFIG_CMA 4826 [MIGRATE_CMA] = 'C', 4827 #endif 4828 #ifdef CONFIG_MEMORY_ISOLATION 4829 [MIGRATE_ISOLATE] = 'I', 4830 #endif 4831 }; 4832 char tmp[MIGRATE_TYPES + 1]; 4833 char *p = tmp; 4834 int i; 4835 4836 for (i = 0; i < MIGRATE_TYPES; i++) { 4837 if (type & (1 << i)) 4838 *p++ = types[i]; 4839 } 4840 4841 *p = '\0'; 4842 printk(KERN_CONT "(%s) ", tmp); 4843 } 4844 4845 /* 4846 * Show free area list (used inside shift_scroll-lock stuff) 4847 * We also calculate the percentage fragmentation. We do this by counting the 4848 * memory on each free list with the exception of the first item on the list. 4849 * 4850 * Bits in @filter: 4851 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 4852 * cpuset. 4853 */ 4854 void show_free_areas(unsigned int filter, nodemask_t *nodemask) 4855 { 4856 unsigned long free_pcp = 0; 4857 int cpu; 4858 struct zone *zone; 4859 pg_data_t *pgdat; 4860 4861 for_each_populated_zone(zone) { 4862 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 4863 continue; 4864 4865 for_each_online_cpu(cpu) 4866 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 4867 } 4868 4869 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 4870 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 4871 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n" 4872 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 4873 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 4874 " free:%lu free_pcp:%lu free_cma:%lu\n", 4875 global_node_page_state(NR_ACTIVE_ANON), 4876 global_node_page_state(NR_INACTIVE_ANON), 4877 global_node_page_state(NR_ISOLATED_ANON), 4878 global_node_page_state(NR_ACTIVE_FILE), 4879 global_node_page_state(NR_INACTIVE_FILE), 4880 global_node_page_state(NR_ISOLATED_FILE), 4881 global_node_page_state(NR_UNEVICTABLE), 4882 global_node_page_state(NR_FILE_DIRTY), 4883 global_node_page_state(NR_WRITEBACK), 4884 global_node_page_state(NR_UNSTABLE_NFS), 4885 global_node_page_state(NR_SLAB_RECLAIMABLE), 4886 global_node_page_state(NR_SLAB_UNRECLAIMABLE), 4887 global_node_page_state(NR_FILE_MAPPED), 4888 global_node_page_state(NR_SHMEM), 4889 global_zone_page_state(NR_PAGETABLE), 4890 global_zone_page_state(NR_BOUNCE), 4891 global_zone_page_state(NR_FREE_PAGES), 4892 free_pcp, 4893 global_zone_page_state(NR_FREE_CMA_PAGES)); 4894 4895 for_each_online_pgdat(pgdat) { 4896 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 4897 continue; 4898 4899 printk("Node %d" 4900 " active_anon:%lukB" 4901 " inactive_anon:%lukB" 4902 " active_file:%lukB" 4903 " inactive_file:%lukB" 4904 " unevictable:%lukB" 4905 " isolated(anon):%lukB" 4906 " isolated(file):%lukB" 4907 " mapped:%lukB" 4908 " dirty:%lukB" 4909 " writeback:%lukB" 4910 " shmem:%lukB" 4911 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4912 " shmem_thp: %lukB" 4913 " shmem_pmdmapped: %lukB" 4914 " anon_thp: %lukB" 4915 #endif 4916 " writeback_tmp:%lukB" 4917 " unstable:%lukB" 4918 " all_unreclaimable? %s" 4919 "\n", 4920 pgdat->node_id, 4921 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 4922 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 4923 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 4924 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 4925 K(node_page_state(pgdat, NR_UNEVICTABLE)), 4926 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 4927 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 4928 K(node_page_state(pgdat, NR_FILE_MAPPED)), 4929 K(node_page_state(pgdat, NR_FILE_DIRTY)), 4930 K(node_page_state(pgdat, NR_WRITEBACK)), 4931 K(node_page_state(pgdat, NR_SHMEM)), 4932 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4933 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR), 4934 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED) 4935 * HPAGE_PMD_NR), 4936 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR), 4937 #endif 4938 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 4939 K(node_page_state(pgdat, NR_UNSTABLE_NFS)), 4940 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 4941 "yes" : "no"); 4942 } 4943 4944 for_each_populated_zone(zone) { 4945 int i; 4946 4947 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 4948 continue; 4949 4950 free_pcp = 0; 4951 for_each_online_cpu(cpu) 4952 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 4953 4954 show_node(zone); 4955 printk(KERN_CONT 4956 "%s" 4957 " free:%lukB" 4958 " min:%lukB" 4959 " low:%lukB" 4960 " high:%lukB" 4961 " active_anon:%lukB" 4962 " inactive_anon:%lukB" 4963 " active_file:%lukB" 4964 " inactive_file:%lukB" 4965 " unevictable:%lukB" 4966 " writepending:%lukB" 4967 " present:%lukB" 4968 " managed:%lukB" 4969 " mlocked:%lukB" 4970 " kernel_stack:%lukB" 4971 " pagetables:%lukB" 4972 " bounce:%lukB" 4973 " free_pcp:%lukB" 4974 " local_pcp:%ukB" 4975 " free_cma:%lukB" 4976 "\n", 4977 zone->name, 4978 K(zone_page_state(zone, NR_FREE_PAGES)), 4979 K(min_wmark_pages(zone)), 4980 K(low_wmark_pages(zone)), 4981 K(high_wmark_pages(zone)), 4982 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 4983 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 4984 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 4985 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 4986 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 4987 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 4988 K(zone->present_pages), 4989 K(zone->managed_pages), 4990 K(zone_page_state(zone, NR_MLOCK)), 4991 zone_page_state(zone, NR_KERNEL_STACK_KB), 4992 K(zone_page_state(zone, NR_PAGETABLE)), 4993 K(zone_page_state(zone, NR_BOUNCE)), 4994 K(free_pcp), 4995 K(this_cpu_read(zone->pageset->pcp.count)), 4996 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 4997 printk("lowmem_reserve[]:"); 4998 for (i = 0; i < MAX_NR_ZONES; i++) 4999 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 5000 printk(KERN_CONT "\n"); 5001 } 5002 5003 for_each_populated_zone(zone) { 5004 unsigned int order; 5005 unsigned long nr[MAX_ORDER], flags, total = 0; 5006 unsigned char types[MAX_ORDER]; 5007 5008 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5009 continue; 5010 show_node(zone); 5011 printk(KERN_CONT "%s: ", zone->name); 5012 5013 spin_lock_irqsave(&zone->lock, flags); 5014 for (order = 0; order < MAX_ORDER; order++) { 5015 struct free_area *area = &zone->free_area[order]; 5016 int type; 5017 5018 nr[order] = area->nr_free; 5019 total += nr[order] << order; 5020 5021 types[order] = 0; 5022 for (type = 0; type < MIGRATE_TYPES; type++) { 5023 if (!list_empty(&area->free_list[type])) 5024 types[order] |= 1 << type; 5025 } 5026 } 5027 spin_unlock_irqrestore(&zone->lock, flags); 5028 for (order = 0; order < MAX_ORDER; order++) { 5029 printk(KERN_CONT "%lu*%lukB ", 5030 nr[order], K(1UL) << order); 5031 if (nr[order]) 5032 show_migration_types(types[order]); 5033 } 5034 printk(KERN_CONT "= %lukB\n", K(total)); 5035 } 5036 5037 hugetlb_show_meminfo(); 5038 5039 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 5040 5041 show_swap_cache_info(); 5042 } 5043 5044 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 5045 { 5046 zoneref->zone = zone; 5047 zoneref->zone_idx = zone_idx(zone); 5048 } 5049 5050 /* 5051 * Builds allocation fallback zone lists. 5052 * 5053 * Add all populated zones of a node to the zonelist. 5054 */ 5055 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 5056 { 5057 struct zone *zone; 5058 enum zone_type zone_type = MAX_NR_ZONES; 5059 int nr_zones = 0; 5060 5061 do { 5062 zone_type--; 5063 zone = pgdat->node_zones + zone_type; 5064 if (managed_zone(zone)) { 5065 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 5066 check_highest_zone(zone_type); 5067 } 5068 } while (zone_type); 5069 5070 return nr_zones; 5071 } 5072 5073 #ifdef CONFIG_NUMA 5074 5075 static int __parse_numa_zonelist_order(char *s) 5076 { 5077 /* 5078 * We used to support different zonlists modes but they turned 5079 * out to be just not useful. Let's keep the warning in place 5080 * if somebody still use the cmd line parameter so that we do 5081 * not fail it silently 5082 */ 5083 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 5084 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 5085 return -EINVAL; 5086 } 5087 return 0; 5088 } 5089 5090 static __init int setup_numa_zonelist_order(char *s) 5091 { 5092 if (!s) 5093 return 0; 5094 5095 return __parse_numa_zonelist_order(s); 5096 } 5097 early_param("numa_zonelist_order", setup_numa_zonelist_order); 5098 5099 char numa_zonelist_order[] = "Node"; 5100 5101 /* 5102 * sysctl handler for numa_zonelist_order 5103 */ 5104 int numa_zonelist_order_handler(struct ctl_table *table, int write, 5105 void __user *buffer, size_t *length, 5106 loff_t *ppos) 5107 { 5108 char *str; 5109 int ret; 5110 5111 if (!write) 5112 return proc_dostring(table, write, buffer, length, ppos); 5113 str = memdup_user_nul(buffer, 16); 5114 if (IS_ERR(str)) 5115 return PTR_ERR(str); 5116 5117 ret = __parse_numa_zonelist_order(str); 5118 kfree(str); 5119 return ret; 5120 } 5121 5122 5123 #define MAX_NODE_LOAD (nr_online_nodes) 5124 static int node_load[MAX_NUMNODES]; 5125 5126 /** 5127 * find_next_best_node - find the next node that should appear in a given node's fallback list 5128 * @node: node whose fallback list we're appending 5129 * @used_node_mask: nodemask_t of already used nodes 5130 * 5131 * We use a number of factors to determine which is the next node that should 5132 * appear on a given node's fallback list. The node should not have appeared 5133 * already in @node's fallback list, and it should be the next closest node 5134 * according to the distance array (which contains arbitrary distance values 5135 * from each node to each node in the system), and should also prefer nodes 5136 * with no CPUs, since presumably they'll have very little allocation pressure 5137 * on them otherwise. 5138 * It returns -1 if no node is found. 5139 */ 5140 static int find_next_best_node(int node, nodemask_t *used_node_mask) 5141 { 5142 int n, val; 5143 int min_val = INT_MAX; 5144 int best_node = NUMA_NO_NODE; 5145 const struct cpumask *tmp = cpumask_of_node(0); 5146 5147 /* Use the local node if we haven't already */ 5148 if (!node_isset(node, *used_node_mask)) { 5149 node_set(node, *used_node_mask); 5150 return node; 5151 } 5152 5153 for_each_node_state(n, N_MEMORY) { 5154 5155 /* Don't want a node to appear more than once */ 5156 if (node_isset(n, *used_node_mask)) 5157 continue; 5158 5159 /* Use the distance array to find the distance */ 5160 val = node_distance(node, n); 5161 5162 /* Penalize nodes under us ("prefer the next node") */ 5163 val += (n < node); 5164 5165 /* Give preference to headless and unused nodes */ 5166 tmp = cpumask_of_node(n); 5167 if (!cpumask_empty(tmp)) 5168 val += PENALTY_FOR_NODE_WITH_CPUS; 5169 5170 /* Slight preference for less loaded node */ 5171 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 5172 val += node_load[n]; 5173 5174 if (val < min_val) { 5175 min_val = val; 5176 best_node = n; 5177 } 5178 } 5179 5180 if (best_node >= 0) 5181 node_set(best_node, *used_node_mask); 5182 5183 return best_node; 5184 } 5185 5186 5187 /* 5188 * Build zonelists ordered by node and zones within node. 5189 * This results in maximum locality--normal zone overflows into local 5190 * DMA zone, if any--but risks exhausting DMA zone. 5191 */ 5192 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5193 unsigned nr_nodes) 5194 { 5195 struct zoneref *zonerefs; 5196 int i; 5197 5198 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5199 5200 for (i = 0; i < nr_nodes; i++) { 5201 int nr_zones; 5202 5203 pg_data_t *node = NODE_DATA(node_order[i]); 5204 5205 nr_zones = build_zonerefs_node(node, zonerefs); 5206 zonerefs += nr_zones; 5207 } 5208 zonerefs->zone = NULL; 5209 zonerefs->zone_idx = 0; 5210 } 5211 5212 /* 5213 * Build gfp_thisnode zonelists 5214 */ 5215 static void build_thisnode_zonelists(pg_data_t *pgdat) 5216 { 5217 struct zoneref *zonerefs; 5218 int nr_zones; 5219 5220 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5221 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5222 zonerefs += nr_zones; 5223 zonerefs->zone = NULL; 5224 zonerefs->zone_idx = 0; 5225 } 5226 5227 /* 5228 * Build zonelists ordered by zone and nodes within zones. 5229 * This results in conserving DMA zone[s] until all Normal memory is 5230 * exhausted, but results in overflowing to remote node while memory 5231 * may still exist in local DMA zone. 5232 */ 5233 5234 static void build_zonelists(pg_data_t *pgdat) 5235 { 5236 static int node_order[MAX_NUMNODES]; 5237 int node, load, nr_nodes = 0; 5238 nodemask_t used_mask; 5239 int local_node, prev_node; 5240 5241 /* NUMA-aware ordering of nodes */ 5242 local_node = pgdat->node_id; 5243 load = nr_online_nodes; 5244 prev_node = local_node; 5245 nodes_clear(used_mask); 5246 5247 memset(node_order, 0, sizeof(node_order)); 5248 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5249 /* 5250 * We don't want to pressure a particular node. 5251 * So adding penalty to the first node in same 5252 * distance group to make it round-robin. 5253 */ 5254 if (node_distance(local_node, node) != 5255 node_distance(local_node, prev_node)) 5256 node_load[node] = load; 5257 5258 node_order[nr_nodes++] = node; 5259 prev_node = node; 5260 load--; 5261 } 5262 5263 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5264 build_thisnode_zonelists(pgdat); 5265 } 5266 5267 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5268 /* 5269 * Return node id of node used for "local" allocations. 5270 * I.e., first node id of first zone in arg node's generic zonelist. 5271 * Used for initializing percpu 'numa_mem', which is used primarily 5272 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5273 */ 5274 int local_memory_node(int node) 5275 { 5276 struct zoneref *z; 5277 5278 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5279 gfp_zone(GFP_KERNEL), 5280 NULL); 5281 return zone_to_nid(z->zone); 5282 } 5283 #endif 5284 5285 static void setup_min_unmapped_ratio(void); 5286 static void setup_min_slab_ratio(void); 5287 #else /* CONFIG_NUMA */ 5288 5289 static void build_zonelists(pg_data_t *pgdat) 5290 { 5291 int node, local_node; 5292 struct zoneref *zonerefs; 5293 int nr_zones; 5294 5295 local_node = pgdat->node_id; 5296 5297 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5298 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5299 zonerefs += nr_zones; 5300 5301 /* 5302 * Now we build the zonelist so that it contains the zones 5303 * of all the other nodes. 5304 * We don't want to pressure a particular node, so when 5305 * building the zones for node N, we make sure that the 5306 * zones coming right after the local ones are those from 5307 * node N+1 (modulo N) 5308 */ 5309 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 5310 if (!node_online(node)) 5311 continue; 5312 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5313 zonerefs += nr_zones; 5314 } 5315 for (node = 0; node < local_node; node++) { 5316 if (!node_online(node)) 5317 continue; 5318 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5319 zonerefs += nr_zones; 5320 } 5321 5322 zonerefs->zone = NULL; 5323 zonerefs->zone_idx = 0; 5324 } 5325 5326 #endif /* CONFIG_NUMA */ 5327 5328 /* 5329 * Boot pageset table. One per cpu which is going to be used for all 5330 * zones and all nodes. The parameters will be set in such a way 5331 * that an item put on a list will immediately be handed over to 5332 * the buddy list. This is safe since pageset manipulation is done 5333 * with interrupts disabled. 5334 * 5335 * The boot_pagesets must be kept even after bootup is complete for 5336 * unused processors and/or zones. They do play a role for bootstrapping 5337 * hotplugged processors. 5338 * 5339 * zoneinfo_show() and maybe other functions do 5340 * not check if the processor is online before following the pageset pointer. 5341 * Other parts of the kernel may not check if the zone is available. 5342 */ 5343 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 5344 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 5345 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 5346 5347 static void __build_all_zonelists(void *data) 5348 { 5349 int nid; 5350 int __maybe_unused cpu; 5351 pg_data_t *self = data; 5352 static DEFINE_SPINLOCK(lock); 5353 5354 spin_lock(&lock); 5355 5356 #ifdef CONFIG_NUMA 5357 memset(node_load, 0, sizeof(node_load)); 5358 #endif 5359 5360 /* 5361 * This node is hotadded and no memory is yet present. So just 5362 * building zonelists is fine - no need to touch other nodes. 5363 */ 5364 if (self && !node_online(self->node_id)) { 5365 build_zonelists(self); 5366 } else { 5367 for_each_online_node(nid) { 5368 pg_data_t *pgdat = NODE_DATA(nid); 5369 5370 build_zonelists(pgdat); 5371 } 5372 5373 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5374 /* 5375 * We now know the "local memory node" for each node-- 5376 * i.e., the node of the first zone in the generic zonelist. 5377 * Set up numa_mem percpu variable for on-line cpus. During 5378 * boot, only the boot cpu should be on-line; we'll init the 5379 * secondary cpus' numa_mem as they come on-line. During 5380 * node/memory hotplug, we'll fixup all on-line cpus. 5381 */ 5382 for_each_online_cpu(cpu) 5383 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5384 #endif 5385 } 5386 5387 spin_unlock(&lock); 5388 } 5389 5390 static noinline void __init 5391 build_all_zonelists_init(void) 5392 { 5393 int cpu; 5394 5395 __build_all_zonelists(NULL); 5396 5397 /* 5398 * Initialize the boot_pagesets that are going to be used 5399 * for bootstrapping processors. The real pagesets for 5400 * each zone will be allocated later when the per cpu 5401 * allocator is available. 5402 * 5403 * boot_pagesets are used also for bootstrapping offline 5404 * cpus if the system is already booted because the pagesets 5405 * are needed to initialize allocators on a specific cpu too. 5406 * F.e. the percpu allocator needs the page allocator which 5407 * needs the percpu allocator in order to allocate its pagesets 5408 * (a chicken-egg dilemma). 5409 */ 5410 for_each_possible_cpu(cpu) 5411 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 5412 5413 mminit_verify_zonelist(); 5414 cpuset_init_current_mems_allowed(); 5415 } 5416 5417 /* 5418 * unless system_state == SYSTEM_BOOTING. 5419 * 5420 * __ref due to call of __init annotated helper build_all_zonelists_init 5421 * [protected by SYSTEM_BOOTING]. 5422 */ 5423 void __ref build_all_zonelists(pg_data_t *pgdat) 5424 { 5425 if (system_state == SYSTEM_BOOTING) { 5426 build_all_zonelists_init(); 5427 } else { 5428 __build_all_zonelists(pgdat); 5429 /* cpuset refresh routine should be here */ 5430 } 5431 vm_total_pages = nr_free_pagecache_pages(); 5432 /* 5433 * Disable grouping by mobility if the number of pages in the 5434 * system is too low to allow the mechanism to work. It would be 5435 * more accurate, but expensive to check per-zone. This check is 5436 * made on memory-hotadd so a system can start with mobility 5437 * disabled and enable it later 5438 */ 5439 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5440 page_group_by_mobility_disabled = 1; 5441 else 5442 page_group_by_mobility_disabled = 0; 5443 5444 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n", 5445 nr_online_nodes, 5446 page_group_by_mobility_disabled ? "off" : "on", 5447 vm_total_pages); 5448 #ifdef CONFIG_NUMA 5449 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5450 #endif 5451 } 5452 5453 /* 5454 * Initially all pages are reserved - free ones are freed 5455 * up by free_all_bootmem() once the early boot process is 5456 * done. Non-atomic initialization, single-pass. 5457 */ 5458 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 5459 unsigned long start_pfn, enum memmap_context context, 5460 struct vmem_altmap *altmap) 5461 { 5462 unsigned long end_pfn = start_pfn + size; 5463 pg_data_t *pgdat = NODE_DATA(nid); 5464 unsigned long pfn; 5465 unsigned long nr_initialised = 0; 5466 struct page *page; 5467 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5468 struct memblock_region *r = NULL, *tmp; 5469 #endif 5470 5471 if (highest_memmap_pfn < end_pfn - 1) 5472 highest_memmap_pfn = end_pfn - 1; 5473 5474 /* 5475 * Honor reservation requested by the driver for this ZONE_DEVICE 5476 * memory 5477 */ 5478 if (altmap && start_pfn == altmap->base_pfn) 5479 start_pfn += altmap->reserve; 5480 5481 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 5482 /* 5483 * There can be holes in boot-time mem_map[]s handed to this 5484 * function. They do not exist on hotplugged memory. 5485 */ 5486 if (context != MEMMAP_EARLY) 5487 goto not_early; 5488 5489 if (!early_pfn_valid(pfn)) 5490 continue; 5491 if (!early_pfn_in_nid(pfn, nid)) 5492 continue; 5493 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised)) 5494 break; 5495 5496 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5497 /* 5498 * Check given memblock attribute by firmware which can affect 5499 * kernel memory layout. If zone==ZONE_MOVABLE but memory is 5500 * mirrored, it's an overlapped memmap init. skip it. 5501 */ 5502 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 5503 if (!r || pfn >= memblock_region_memory_end_pfn(r)) { 5504 for_each_memblock(memory, tmp) 5505 if (pfn < memblock_region_memory_end_pfn(tmp)) 5506 break; 5507 r = tmp; 5508 } 5509 if (pfn >= memblock_region_memory_base_pfn(r) && 5510 memblock_is_mirror(r)) { 5511 /* already initialized as NORMAL */ 5512 pfn = memblock_region_memory_end_pfn(r); 5513 continue; 5514 } 5515 } 5516 #endif 5517 5518 not_early: 5519 page = pfn_to_page(pfn); 5520 __init_single_page(page, pfn, zone, nid); 5521 if (context == MEMMAP_HOTPLUG) 5522 SetPageReserved(page); 5523 5524 /* 5525 * Mark the block movable so that blocks are reserved for 5526 * movable at startup. This will force kernel allocations 5527 * to reserve their blocks rather than leaking throughout 5528 * the address space during boot when many long-lived 5529 * kernel allocations are made. 5530 * 5531 * bitmap is created for zone's valid pfn range. but memmap 5532 * can be created for invalid pages (for alignment) 5533 * check here not to call set_pageblock_migratetype() against 5534 * pfn out of zone. 5535 * 5536 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap 5537 * because this is done early in sparse_add_one_section 5538 */ 5539 if (!(pfn & (pageblock_nr_pages - 1))) { 5540 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5541 cond_resched(); 5542 } 5543 } 5544 } 5545 5546 static void __meminit zone_init_free_lists(struct zone *zone) 5547 { 5548 unsigned int order, t; 5549 for_each_migratetype_order(order, t) { 5550 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 5551 zone->free_area[order].nr_free = 0; 5552 } 5553 } 5554 5555 #ifndef __HAVE_ARCH_MEMMAP_INIT 5556 #define memmap_init(size, nid, zone, start_pfn) \ 5557 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY, NULL) 5558 #endif 5559 5560 static int zone_batchsize(struct zone *zone) 5561 { 5562 #ifdef CONFIG_MMU 5563 int batch; 5564 5565 /* 5566 * The per-cpu-pages pools are set to around 1000th of the 5567 * size of the zone. 5568 */ 5569 batch = zone->managed_pages / 1024; 5570 /* But no more than a meg. */ 5571 if (batch * PAGE_SIZE > 1024 * 1024) 5572 batch = (1024 * 1024) / PAGE_SIZE; 5573 batch /= 4; /* We effectively *= 4 below */ 5574 if (batch < 1) 5575 batch = 1; 5576 5577 /* 5578 * Clamp the batch to a 2^n - 1 value. Having a power 5579 * of 2 value was found to be more likely to have 5580 * suboptimal cache aliasing properties in some cases. 5581 * 5582 * For example if 2 tasks are alternately allocating 5583 * batches of pages, one task can end up with a lot 5584 * of pages of one half of the possible page colors 5585 * and the other with pages of the other colors. 5586 */ 5587 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5588 5589 return batch; 5590 5591 #else 5592 /* The deferral and batching of frees should be suppressed under NOMMU 5593 * conditions. 5594 * 5595 * The problem is that NOMMU needs to be able to allocate large chunks 5596 * of contiguous memory as there's no hardware page translation to 5597 * assemble apparent contiguous memory from discontiguous pages. 5598 * 5599 * Queueing large contiguous runs of pages for batching, however, 5600 * causes the pages to actually be freed in smaller chunks. As there 5601 * can be a significant delay between the individual batches being 5602 * recycled, this leads to the once large chunks of space being 5603 * fragmented and becoming unavailable for high-order allocations. 5604 */ 5605 return 0; 5606 #endif 5607 } 5608 5609 /* 5610 * pcp->high and pcp->batch values are related and dependent on one another: 5611 * ->batch must never be higher then ->high. 5612 * The following function updates them in a safe manner without read side 5613 * locking. 5614 * 5615 * Any new users of pcp->batch and pcp->high should ensure they can cope with 5616 * those fields changing asynchronously (acording the the above rule). 5617 * 5618 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 5619 * outside of boot time (or some other assurance that no concurrent updaters 5620 * exist). 5621 */ 5622 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 5623 unsigned long batch) 5624 { 5625 /* start with a fail safe value for batch */ 5626 pcp->batch = 1; 5627 smp_wmb(); 5628 5629 /* Update high, then batch, in order */ 5630 pcp->high = high; 5631 smp_wmb(); 5632 5633 pcp->batch = batch; 5634 } 5635 5636 /* a companion to pageset_set_high() */ 5637 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 5638 { 5639 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 5640 } 5641 5642 static void pageset_init(struct per_cpu_pageset *p) 5643 { 5644 struct per_cpu_pages *pcp; 5645 int migratetype; 5646 5647 memset(p, 0, sizeof(*p)); 5648 5649 pcp = &p->pcp; 5650 pcp->count = 0; 5651 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 5652 INIT_LIST_HEAD(&pcp->lists[migratetype]); 5653 } 5654 5655 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 5656 { 5657 pageset_init(p); 5658 pageset_set_batch(p, batch); 5659 } 5660 5661 /* 5662 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 5663 * to the value high for the pageset p. 5664 */ 5665 static void pageset_set_high(struct per_cpu_pageset *p, 5666 unsigned long high) 5667 { 5668 unsigned long batch = max(1UL, high / 4); 5669 if ((high / 4) > (PAGE_SHIFT * 8)) 5670 batch = PAGE_SHIFT * 8; 5671 5672 pageset_update(&p->pcp, high, batch); 5673 } 5674 5675 static void pageset_set_high_and_batch(struct zone *zone, 5676 struct per_cpu_pageset *pcp) 5677 { 5678 if (percpu_pagelist_fraction) 5679 pageset_set_high(pcp, 5680 (zone->managed_pages / 5681 percpu_pagelist_fraction)); 5682 else 5683 pageset_set_batch(pcp, zone_batchsize(zone)); 5684 } 5685 5686 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 5687 { 5688 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 5689 5690 pageset_init(pcp); 5691 pageset_set_high_and_batch(zone, pcp); 5692 } 5693 5694 void __meminit setup_zone_pageset(struct zone *zone) 5695 { 5696 int cpu; 5697 zone->pageset = alloc_percpu(struct per_cpu_pageset); 5698 for_each_possible_cpu(cpu) 5699 zone_pageset_init(zone, cpu); 5700 } 5701 5702 /* 5703 * Allocate per cpu pagesets and initialize them. 5704 * Before this call only boot pagesets were available. 5705 */ 5706 void __init setup_per_cpu_pageset(void) 5707 { 5708 struct pglist_data *pgdat; 5709 struct zone *zone; 5710 5711 for_each_populated_zone(zone) 5712 setup_zone_pageset(zone); 5713 5714 for_each_online_pgdat(pgdat) 5715 pgdat->per_cpu_nodestats = 5716 alloc_percpu(struct per_cpu_nodestat); 5717 } 5718 5719 static __meminit void zone_pcp_init(struct zone *zone) 5720 { 5721 /* 5722 * per cpu subsystem is not up at this point. The following code 5723 * relies on the ability of the linker to provide the 5724 * offset of a (static) per cpu variable into the per cpu area. 5725 */ 5726 zone->pageset = &boot_pageset; 5727 5728 if (populated_zone(zone)) 5729 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 5730 zone->name, zone->present_pages, 5731 zone_batchsize(zone)); 5732 } 5733 5734 void __meminit init_currently_empty_zone(struct zone *zone, 5735 unsigned long zone_start_pfn, 5736 unsigned long size) 5737 { 5738 struct pglist_data *pgdat = zone->zone_pgdat; 5739 5740 pgdat->nr_zones = zone_idx(zone) + 1; 5741 5742 zone->zone_start_pfn = zone_start_pfn; 5743 5744 mminit_dprintk(MMINIT_TRACE, "memmap_init", 5745 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 5746 pgdat->node_id, 5747 (unsigned long)zone_idx(zone), 5748 zone_start_pfn, (zone_start_pfn + size)); 5749 5750 zone_init_free_lists(zone); 5751 zone->initialized = 1; 5752 } 5753 5754 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5755 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 5756 5757 /* 5758 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 5759 */ 5760 int __meminit __early_pfn_to_nid(unsigned long pfn, 5761 struct mminit_pfnnid_cache *state) 5762 { 5763 unsigned long start_pfn, end_pfn; 5764 int nid; 5765 5766 if (state->last_start <= pfn && pfn < state->last_end) 5767 return state->last_nid; 5768 5769 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 5770 if (nid != -1) { 5771 state->last_start = start_pfn; 5772 state->last_end = end_pfn; 5773 state->last_nid = nid; 5774 } 5775 5776 return nid; 5777 } 5778 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 5779 5780 /** 5781 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range 5782 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 5783 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid 5784 * 5785 * If an architecture guarantees that all ranges registered contain no holes 5786 * and may be freed, this this function may be used instead of calling 5787 * memblock_free_early_nid() manually. 5788 */ 5789 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 5790 { 5791 unsigned long start_pfn, end_pfn; 5792 int i, this_nid; 5793 5794 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 5795 start_pfn = min(start_pfn, max_low_pfn); 5796 end_pfn = min(end_pfn, max_low_pfn); 5797 5798 if (start_pfn < end_pfn) 5799 memblock_free_early_nid(PFN_PHYS(start_pfn), 5800 (end_pfn - start_pfn) << PAGE_SHIFT, 5801 this_nid); 5802 } 5803 } 5804 5805 /** 5806 * sparse_memory_present_with_active_regions - Call memory_present for each active range 5807 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 5808 * 5809 * If an architecture guarantees that all ranges registered contain no holes and may 5810 * be freed, this function may be used instead of calling memory_present() manually. 5811 */ 5812 void __init sparse_memory_present_with_active_regions(int nid) 5813 { 5814 unsigned long start_pfn, end_pfn; 5815 int i, this_nid; 5816 5817 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 5818 memory_present(this_nid, start_pfn, end_pfn); 5819 } 5820 5821 /** 5822 * get_pfn_range_for_nid - Return the start and end page frames for a node 5823 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 5824 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 5825 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 5826 * 5827 * It returns the start and end page frame of a node based on information 5828 * provided by memblock_set_node(). If called for a node 5829 * with no available memory, a warning is printed and the start and end 5830 * PFNs will be 0. 5831 */ 5832 void __meminit get_pfn_range_for_nid(unsigned int nid, 5833 unsigned long *start_pfn, unsigned long *end_pfn) 5834 { 5835 unsigned long this_start_pfn, this_end_pfn; 5836 int i; 5837 5838 *start_pfn = -1UL; 5839 *end_pfn = 0; 5840 5841 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 5842 *start_pfn = min(*start_pfn, this_start_pfn); 5843 *end_pfn = max(*end_pfn, this_end_pfn); 5844 } 5845 5846 if (*start_pfn == -1UL) 5847 *start_pfn = 0; 5848 } 5849 5850 /* 5851 * This finds a zone that can be used for ZONE_MOVABLE pages. The 5852 * assumption is made that zones within a node are ordered in monotonic 5853 * increasing memory addresses so that the "highest" populated zone is used 5854 */ 5855 static void __init find_usable_zone_for_movable(void) 5856 { 5857 int zone_index; 5858 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 5859 if (zone_index == ZONE_MOVABLE) 5860 continue; 5861 5862 if (arch_zone_highest_possible_pfn[zone_index] > 5863 arch_zone_lowest_possible_pfn[zone_index]) 5864 break; 5865 } 5866 5867 VM_BUG_ON(zone_index == -1); 5868 movable_zone = zone_index; 5869 } 5870 5871 /* 5872 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 5873 * because it is sized independent of architecture. Unlike the other zones, 5874 * the starting point for ZONE_MOVABLE is not fixed. It may be different 5875 * in each node depending on the size of each node and how evenly kernelcore 5876 * is distributed. This helper function adjusts the zone ranges 5877 * provided by the architecture for a given node by using the end of the 5878 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 5879 * zones within a node are in order of monotonic increases memory addresses 5880 */ 5881 static void __meminit adjust_zone_range_for_zone_movable(int nid, 5882 unsigned long zone_type, 5883 unsigned long node_start_pfn, 5884 unsigned long node_end_pfn, 5885 unsigned long *zone_start_pfn, 5886 unsigned long *zone_end_pfn) 5887 { 5888 /* Only adjust if ZONE_MOVABLE is on this node */ 5889 if (zone_movable_pfn[nid]) { 5890 /* Size ZONE_MOVABLE */ 5891 if (zone_type == ZONE_MOVABLE) { 5892 *zone_start_pfn = zone_movable_pfn[nid]; 5893 *zone_end_pfn = min(node_end_pfn, 5894 arch_zone_highest_possible_pfn[movable_zone]); 5895 5896 /* Adjust for ZONE_MOVABLE starting within this range */ 5897 } else if (!mirrored_kernelcore && 5898 *zone_start_pfn < zone_movable_pfn[nid] && 5899 *zone_end_pfn > zone_movable_pfn[nid]) { 5900 *zone_end_pfn = zone_movable_pfn[nid]; 5901 5902 /* Check if this whole range is within ZONE_MOVABLE */ 5903 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 5904 *zone_start_pfn = *zone_end_pfn; 5905 } 5906 } 5907 5908 /* 5909 * Return the number of pages a zone spans in a node, including holes 5910 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 5911 */ 5912 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 5913 unsigned long zone_type, 5914 unsigned long node_start_pfn, 5915 unsigned long node_end_pfn, 5916 unsigned long *zone_start_pfn, 5917 unsigned long *zone_end_pfn, 5918 unsigned long *ignored) 5919 { 5920 /* When hotadd a new node from cpu_up(), the node should be empty */ 5921 if (!node_start_pfn && !node_end_pfn) 5922 return 0; 5923 5924 /* Get the start and end of the zone */ 5925 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 5926 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 5927 adjust_zone_range_for_zone_movable(nid, zone_type, 5928 node_start_pfn, node_end_pfn, 5929 zone_start_pfn, zone_end_pfn); 5930 5931 /* Check that this node has pages within the zone's required range */ 5932 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 5933 return 0; 5934 5935 /* Move the zone boundaries inside the node if necessary */ 5936 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 5937 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 5938 5939 /* Return the spanned pages */ 5940 return *zone_end_pfn - *zone_start_pfn; 5941 } 5942 5943 /* 5944 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 5945 * then all holes in the requested range will be accounted for. 5946 */ 5947 unsigned long __meminit __absent_pages_in_range(int nid, 5948 unsigned long range_start_pfn, 5949 unsigned long range_end_pfn) 5950 { 5951 unsigned long nr_absent = range_end_pfn - range_start_pfn; 5952 unsigned long start_pfn, end_pfn; 5953 int i; 5954 5955 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 5956 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 5957 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 5958 nr_absent -= end_pfn - start_pfn; 5959 } 5960 return nr_absent; 5961 } 5962 5963 /** 5964 * absent_pages_in_range - Return number of page frames in holes within a range 5965 * @start_pfn: The start PFN to start searching for holes 5966 * @end_pfn: The end PFN to stop searching for holes 5967 * 5968 * It returns the number of pages frames in memory holes within a range. 5969 */ 5970 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 5971 unsigned long end_pfn) 5972 { 5973 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 5974 } 5975 5976 /* Return the number of page frames in holes in a zone on a node */ 5977 static unsigned long __meminit zone_absent_pages_in_node(int nid, 5978 unsigned long zone_type, 5979 unsigned long node_start_pfn, 5980 unsigned long node_end_pfn, 5981 unsigned long *ignored) 5982 { 5983 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 5984 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 5985 unsigned long zone_start_pfn, zone_end_pfn; 5986 unsigned long nr_absent; 5987 5988 /* When hotadd a new node from cpu_up(), the node should be empty */ 5989 if (!node_start_pfn && !node_end_pfn) 5990 return 0; 5991 5992 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 5993 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 5994 5995 adjust_zone_range_for_zone_movable(nid, zone_type, 5996 node_start_pfn, node_end_pfn, 5997 &zone_start_pfn, &zone_end_pfn); 5998 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 5999 6000 /* 6001 * ZONE_MOVABLE handling. 6002 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 6003 * and vice versa. 6004 */ 6005 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 6006 unsigned long start_pfn, end_pfn; 6007 struct memblock_region *r; 6008 6009 for_each_memblock(memory, r) { 6010 start_pfn = clamp(memblock_region_memory_base_pfn(r), 6011 zone_start_pfn, zone_end_pfn); 6012 end_pfn = clamp(memblock_region_memory_end_pfn(r), 6013 zone_start_pfn, zone_end_pfn); 6014 6015 if (zone_type == ZONE_MOVABLE && 6016 memblock_is_mirror(r)) 6017 nr_absent += end_pfn - start_pfn; 6018 6019 if (zone_type == ZONE_NORMAL && 6020 !memblock_is_mirror(r)) 6021 nr_absent += end_pfn - start_pfn; 6022 } 6023 } 6024 6025 return nr_absent; 6026 } 6027 6028 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6029 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 6030 unsigned long zone_type, 6031 unsigned long node_start_pfn, 6032 unsigned long node_end_pfn, 6033 unsigned long *zone_start_pfn, 6034 unsigned long *zone_end_pfn, 6035 unsigned long *zones_size) 6036 { 6037 unsigned int zone; 6038 6039 *zone_start_pfn = node_start_pfn; 6040 for (zone = 0; zone < zone_type; zone++) 6041 *zone_start_pfn += zones_size[zone]; 6042 6043 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type]; 6044 6045 return zones_size[zone_type]; 6046 } 6047 6048 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 6049 unsigned long zone_type, 6050 unsigned long node_start_pfn, 6051 unsigned long node_end_pfn, 6052 unsigned long *zholes_size) 6053 { 6054 if (!zholes_size) 6055 return 0; 6056 6057 return zholes_size[zone_type]; 6058 } 6059 6060 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6061 6062 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 6063 unsigned long node_start_pfn, 6064 unsigned long node_end_pfn, 6065 unsigned long *zones_size, 6066 unsigned long *zholes_size) 6067 { 6068 unsigned long realtotalpages = 0, totalpages = 0; 6069 enum zone_type i; 6070 6071 for (i = 0; i < MAX_NR_ZONES; i++) { 6072 struct zone *zone = pgdat->node_zones + i; 6073 unsigned long zone_start_pfn, zone_end_pfn; 6074 unsigned long size, real_size; 6075 6076 size = zone_spanned_pages_in_node(pgdat->node_id, i, 6077 node_start_pfn, 6078 node_end_pfn, 6079 &zone_start_pfn, 6080 &zone_end_pfn, 6081 zones_size); 6082 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i, 6083 node_start_pfn, node_end_pfn, 6084 zholes_size); 6085 if (size) 6086 zone->zone_start_pfn = zone_start_pfn; 6087 else 6088 zone->zone_start_pfn = 0; 6089 zone->spanned_pages = size; 6090 zone->present_pages = real_size; 6091 6092 totalpages += size; 6093 realtotalpages += real_size; 6094 } 6095 6096 pgdat->node_spanned_pages = totalpages; 6097 pgdat->node_present_pages = realtotalpages; 6098 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 6099 realtotalpages); 6100 } 6101 6102 #ifndef CONFIG_SPARSEMEM 6103 /* 6104 * Calculate the size of the zone->blockflags rounded to an unsigned long 6105 * Start by making sure zonesize is a multiple of pageblock_order by rounding 6106 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 6107 * round what is now in bits to nearest long in bits, then return it in 6108 * bytes. 6109 */ 6110 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 6111 { 6112 unsigned long usemapsize; 6113 6114 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 6115 usemapsize = roundup(zonesize, pageblock_nr_pages); 6116 usemapsize = usemapsize >> pageblock_order; 6117 usemapsize *= NR_PAGEBLOCK_BITS; 6118 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 6119 6120 return usemapsize / 8; 6121 } 6122 6123 static void __ref setup_usemap(struct pglist_data *pgdat, 6124 struct zone *zone, 6125 unsigned long zone_start_pfn, 6126 unsigned long zonesize) 6127 { 6128 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 6129 zone->pageblock_flags = NULL; 6130 if (usemapsize) 6131 zone->pageblock_flags = 6132 memblock_virt_alloc_node_nopanic(usemapsize, 6133 pgdat->node_id); 6134 } 6135 #else 6136 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 6137 unsigned long zone_start_pfn, unsigned long zonesize) {} 6138 #endif /* CONFIG_SPARSEMEM */ 6139 6140 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 6141 6142 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 6143 void __init set_pageblock_order(void) 6144 { 6145 unsigned int order; 6146 6147 /* Check that pageblock_nr_pages has not already been setup */ 6148 if (pageblock_order) 6149 return; 6150 6151 if (HPAGE_SHIFT > PAGE_SHIFT) 6152 order = HUGETLB_PAGE_ORDER; 6153 else 6154 order = MAX_ORDER - 1; 6155 6156 /* 6157 * Assume the largest contiguous order of interest is a huge page. 6158 * This value may be variable depending on boot parameters on IA64 and 6159 * powerpc. 6160 */ 6161 pageblock_order = order; 6162 } 6163 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6164 6165 /* 6166 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 6167 * is unused as pageblock_order is set at compile-time. See 6168 * include/linux/pageblock-flags.h for the values of pageblock_order based on 6169 * the kernel config 6170 */ 6171 void __init set_pageblock_order(void) 6172 { 6173 } 6174 6175 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6176 6177 static unsigned long __init calc_memmap_size(unsigned long spanned_pages, 6178 unsigned long present_pages) 6179 { 6180 unsigned long pages = spanned_pages; 6181 6182 /* 6183 * Provide a more accurate estimation if there are holes within 6184 * the zone and SPARSEMEM is in use. If there are holes within the 6185 * zone, each populated memory region may cost us one or two extra 6186 * memmap pages due to alignment because memmap pages for each 6187 * populated regions may not be naturally aligned on page boundary. 6188 * So the (present_pages >> 4) heuristic is a tradeoff for that. 6189 */ 6190 if (spanned_pages > present_pages + (present_pages >> 4) && 6191 IS_ENABLED(CONFIG_SPARSEMEM)) 6192 pages = present_pages; 6193 6194 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 6195 } 6196 6197 #ifdef CONFIG_NUMA_BALANCING 6198 static void pgdat_init_numabalancing(struct pglist_data *pgdat) 6199 { 6200 spin_lock_init(&pgdat->numabalancing_migrate_lock); 6201 pgdat->numabalancing_migrate_nr_pages = 0; 6202 pgdat->numabalancing_migrate_next_window = jiffies; 6203 } 6204 #else 6205 static void pgdat_init_numabalancing(struct pglist_data *pgdat) {} 6206 #endif 6207 6208 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6209 static void pgdat_init_split_queue(struct pglist_data *pgdat) 6210 { 6211 spin_lock_init(&pgdat->split_queue_lock); 6212 INIT_LIST_HEAD(&pgdat->split_queue); 6213 pgdat->split_queue_len = 0; 6214 } 6215 #else 6216 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 6217 #endif 6218 6219 #ifdef CONFIG_COMPACTION 6220 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 6221 { 6222 init_waitqueue_head(&pgdat->kcompactd_wait); 6223 } 6224 #else 6225 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 6226 #endif 6227 6228 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 6229 { 6230 pgdat_resize_init(pgdat); 6231 6232 pgdat_init_numabalancing(pgdat); 6233 pgdat_init_split_queue(pgdat); 6234 pgdat_init_kcompactd(pgdat); 6235 6236 init_waitqueue_head(&pgdat->kswapd_wait); 6237 init_waitqueue_head(&pgdat->pfmemalloc_wait); 6238 6239 pgdat_page_ext_init(pgdat); 6240 spin_lock_init(&pgdat->lru_lock); 6241 lruvec_init(node_lruvec(pgdat)); 6242 } 6243 6244 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 6245 unsigned long remaining_pages) 6246 { 6247 zone->managed_pages = remaining_pages; 6248 zone_set_nid(zone, nid); 6249 zone->name = zone_names[idx]; 6250 zone->zone_pgdat = NODE_DATA(nid); 6251 spin_lock_init(&zone->lock); 6252 zone_seqlock_init(zone); 6253 zone_pcp_init(zone); 6254 } 6255 6256 /* 6257 * Set up the zone data structures 6258 * - init pgdat internals 6259 * - init all zones belonging to this node 6260 * 6261 * NOTE: this function is only called during memory hotplug 6262 */ 6263 #ifdef CONFIG_MEMORY_HOTPLUG 6264 void __ref free_area_init_core_hotplug(int nid) 6265 { 6266 enum zone_type z; 6267 pg_data_t *pgdat = NODE_DATA(nid); 6268 6269 pgdat_init_internals(pgdat); 6270 for (z = 0; z < MAX_NR_ZONES; z++) 6271 zone_init_internals(&pgdat->node_zones[z], z, nid, 0); 6272 } 6273 #endif 6274 6275 /* 6276 * Set up the zone data structures: 6277 * - mark all pages reserved 6278 * - mark all memory queues empty 6279 * - clear the memory bitmaps 6280 * 6281 * NOTE: pgdat should get zeroed by caller. 6282 * NOTE: this function is only called during early init. 6283 */ 6284 static void __init free_area_init_core(struct pglist_data *pgdat) 6285 { 6286 enum zone_type j; 6287 int nid = pgdat->node_id; 6288 6289 pgdat_init_internals(pgdat); 6290 pgdat->per_cpu_nodestats = &boot_nodestats; 6291 6292 for (j = 0; j < MAX_NR_ZONES; j++) { 6293 struct zone *zone = pgdat->node_zones + j; 6294 unsigned long size, freesize, memmap_pages; 6295 unsigned long zone_start_pfn = zone->zone_start_pfn; 6296 6297 size = zone->spanned_pages; 6298 freesize = zone->present_pages; 6299 6300 /* 6301 * Adjust freesize so that it accounts for how much memory 6302 * is used by this zone for memmap. This affects the watermark 6303 * and per-cpu initialisations 6304 */ 6305 memmap_pages = calc_memmap_size(size, freesize); 6306 if (!is_highmem_idx(j)) { 6307 if (freesize >= memmap_pages) { 6308 freesize -= memmap_pages; 6309 if (memmap_pages) 6310 printk(KERN_DEBUG 6311 " %s zone: %lu pages used for memmap\n", 6312 zone_names[j], memmap_pages); 6313 } else 6314 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n", 6315 zone_names[j], memmap_pages, freesize); 6316 } 6317 6318 /* Account for reserved pages */ 6319 if (j == 0 && freesize > dma_reserve) { 6320 freesize -= dma_reserve; 6321 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 6322 zone_names[0], dma_reserve); 6323 } 6324 6325 if (!is_highmem_idx(j)) 6326 nr_kernel_pages += freesize; 6327 /* Charge for highmem memmap if there are enough kernel pages */ 6328 else if (nr_kernel_pages > memmap_pages * 2) 6329 nr_kernel_pages -= memmap_pages; 6330 nr_all_pages += freesize; 6331 6332 /* 6333 * Set an approximate value for lowmem here, it will be adjusted 6334 * when the bootmem allocator frees pages into the buddy system. 6335 * And all highmem pages will be managed by the buddy system. 6336 */ 6337 zone_init_internals(zone, j, nid, freesize); 6338 6339 if (!size) 6340 continue; 6341 6342 set_pageblock_order(); 6343 setup_usemap(pgdat, zone, zone_start_pfn, size); 6344 init_currently_empty_zone(zone, zone_start_pfn, size); 6345 memmap_init(size, nid, j, zone_start_pfn); 6346 } 6347 } 6348 6349 #ifdef CONFIG_FLAT_NODE_MEM_MAP 6350 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) 6351 { 6352 unsigned long __maybe_unused start = 0; 6353 unsigned long __maybe_unused offset = 0; 6354 6355 /* Skip empty nodes */ 6356 if (!pgdat->node_spanned_pages) 6357 return; 6358 6359 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 6360 offset = pgdat->node_start_pfn - start; 6361 /* ia64 gets its own node_mem_map, before this, without bootmem */ 6362 if (!pgdat->node_mem_map) { 6363 unsigned long size, end; 6364 struct page *map; 6365 6366 /* 6367 * The zone's endpoints aren't required to be MAX_ORDER 6368 * aligned but the node_mem_map endpoints must be in order 6369 * for the buddy allocator to function correctly. 6370 */ 6371 end = pgdat_end_pfn(pgdat); 6372 end = ALIGN(end, MAX_ORDER_NR_PAGES); 6373 size = (end - start) * sizeof(struct page); 6374 map = memblock_virt_alloc_node_nopanic(size, pgdat->node_id); 6375 pgdat->node_mem_map = map + offset; 6376 } 6377 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 6378 __func__, pgdat->node_id, (unsigned long)pgdat, 6379 (unsigned long)pgdat->node_mem_map); 6380 #ifndef CONFIG_NEED_MULTIPLE_NODES 6381 /* 6382 * With no DISCONTIG, the global mem_map is just set as node 0's 6383 */ 6384 if (pgdat == NODE_DATA(0)) { 6385 mem_map = NODE_DATA(0)->node_mem_map; 6386 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM) 6387 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 6388 mem_map -= offset; 6389 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6390 } 6391 #endif 6392 } 6393 #else 6394 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { } 6395 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 6396 6397 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 6398 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 6399 { 6400 /* 6401 * We start only with one section of pages, more pages are added as 6402 * needed until the rest of deferred pages are initialized. 6403 */ 6404 pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION, 6405 pgdat->node_spanned_pages); 6406 pgdat->first_deferred_pfn = ULONG_MAX; 6407 } 6408 #else 6409 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 6410 #endif 6411 6412 void __init free_area_init_node(int nid, unsigned long *zones_size, 6413 unsigned long node_start_pfn, 6414 unsigned long *zholes_size) 6415 { 6416 pg_data_t *pgdat = NODE_DATA(nid); 6417 unsigned long start_pfn = 0; 6418 unsigned long end_pfn = 0; 6419 6420 /* pg_data_t should be reset to zero when it's allocated */ 6421 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx); 6422 6423 pgdat->node_id = nid; 6424 pgdat->node_start_pfn = node_start_pfn; 6425 pgdat->per_cpu_nodestats = NULL; 6426 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6427 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 6428 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 6429 (u64)start_pfn << PAGE_SHIFT, 6430 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 6431 #else 6432 start_pfn = node_start_pfn; 6433 #endif 6434 calculate_node_totalpages(pgdat, start_pfn, end_pfn, 6435 zones_size, zholes_size); 6436 6437 alloc_node_mem_map(pgdat); 6438 pgdat_set_deferred_range(pgdat); 6439 6440 free_area_init_core(pgdat); 6441 } 6442 6443 #if defined(CONFIG_HAVE_MEMBLOCK) && !defined(CONFIG_FLAT_NODE_MEM_MAP) 6444 /* 6445 * Only struct pages that are backed by physical memory are zeroed and 6446 * initialized by going through __init_single_page(). But, there are some 6447 * struct pages which are reserved in memblock allocator and their fields 6448 * may be accessed (for example page_to_pfn() on some configuration accesses 6449 * flags). We must explicitly zero those struct pages. 6450 */ 6451 void __init zero_resv_unavail(void) 6452 { 6453 phys_addr_t start, end; 6454 unsigned long pfn; 6455 u64 i, pgcnt; 6456 6457 /* 6458 * Loop through ranges that are reserved, but do not have reported 6459 * physical memory backing. 6460 */ 6461 pgcnt = 0; 6462 for_each_resv_unavail_range(i, &start, &end) { 6463 for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) { 6464 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) { 6465 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages) 6466 + pageblock_nr_pages - 1; 6467 continue; 6468 } 6469 mm_zero_struct_page(pfn_to_page(pfn)); 6470 pgcnt++; 6471 } 6472 } 6473 6474 /* 6475 * Struct pages that do not have backing memory. This could be because 6476 * firmware is using some of this memory, or for some other reasons. 6477 * Once memblock is changed so such behaviour is not allowed: i.e. 6478 * list of "reserved" memory must be a subset of list of "memory", then 6479 * this code can be removed. 6480 */ 6481 if (pgcnt) 6482 pr_info("Reserved but unavailable: %lld pages", pgcnt); 6483 } 6484 #endif /* CONFIG_HAVE_MEMBLOCK && !CONFIG_FLAT_NODE_MEM_MAP */ 6485 6486 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6487 6488 #if MAX_NUMNODES > 1 6489 /* 6490 * Figure out the number of possible node ids. 6491 */ 6492 void __init setup_nr_node_ids(void) 6493 { 6494 unsigned int highest; 6495 6496 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 6497 nr_node_ids = highest + 1; 6498 } 6499 #endif 6500 6501 /** 6502 * node_map_pfn_alignment - determine the maximum internode alignment 6503 * 6504 * This function should be called after node map is populated and sorted. 6505 * It calculates the maximum power of two alignment which can distinguish 6506 * all the nodes. 6507 * 6508 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 6509 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 6510 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 6511 * shifted, 1GiB is enough and this function will indicate so. 6512 * 6513 * This is used to test whether pfn -> nid mapping of the chosen memory 6514 * model has fine enough granularity to avoid incorrect mapping for the 6515 * populated node map. 6516 * 6517 * Returns the determined alignment in pfn's. 0 if there is no alignment 6518 * requirement (single node). 6519 */ 6520 unsigned long __init node_map_pfn_alignment(void) 6521 { 6522 unsigned long accl_mask = 0, last_end = 0; 6523 unsigned long start, end, mask; 6524 int last_nid = -1; 6525 int i, nid; 6526 6527 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 6528 if (!start || last_nid < 0 || last_nid == nid) { 6529 last_nid = nid; 6530 last_end = end; 6531 continue; 6532 } 6533 6534 /* 6535 * Start with a mask granular enough to pin-point to the 6536 * start pfn and tick off bits one-by-one until it becomes 6537 * too coarse to separate the current node from the last. 6538 */ 6539 mask = ~((1 << __ffs(start)) - 1); 6540 while (mask && last_end <= (start & (mask << 1))) 6541 mask <<= 1; 6542 6543 /* accumulate all internode masks */ 6544 accl_mask |= mask; 6545 } 6546 6547 /* convert mask to number of pages */ 6548 return ~accl_mask + 1; 6549 } 6550 6551 /* Find the lowest pfn for a node */ 6552 static unsigned long __init find_min_pfn_for_node(int nid) 6553 { 6554 unsigned long min_pfn = ULONG_MAX; 6555 unsigned long start_pfn; 6556 int i; 6557 6558 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 6559 min_pfn = min(min_pfn, start_pfn); 6560 6561 if (min_pfn == ULONG_MAX) { 6562 pr_warn("Could not find start_pfn for node %d\n", nid); 6563 return 0; 6564 } 6565 6566 return min_pfn; 6567 } 6568 6569 /** 6570 * find_min_pfn_with_active_regions - Find the minimum PFN registered 6571 * 6572 * It returns the minimum PFN based on information provided via 6573 * memblock_set_node(). 6574 */ 6575 unsigned long __init find_min_pfn_with_active_regions(void) 6576 { 6577 return find_min_pfn_for_node(MAX_NUMNODES); 6578 } 6579 6580 /* 6581 * early_calculate_totalpages() 6582 * Sum pages in active regions for movable zone. 6583 * Populate N_MEMORY for calculating usable_nodes. 6584 */ 6585 static unsigned long __init early_calculate_totalpages(void) 6586 { 6587 unsigned long totalpages = 0; 6588 unsigned long start_pfn, end_pfn; 6589 int i, nid; 6590 6591 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 6592 unsigned long pages = end_pfn - start_pfn; 6593 6594 totalpages += pages; 6595 if (pages) 6596 node_set_state(nid, N_MEMORY); 6597 } 6598 return totalpages; 6599 } 6600 6601 /* 6602 * Find the PFN the Movable zone begins in each node. Kernel memory 6603 * is spread evenly between nodes as long as the nodes have enough 6604 * memory. When they don't, some nodes will have more kernelcore than 6605 * others 6606 */ 6607 static void __init find_zone_movable_pfns_for_nodes(void) 6608 { 6609 int i, nid; 6610 unsigned long usable_startpfn; 6611 unsigned long kernelcore_node, kernelcore_remaining; 6612 /* save the state before borrow the nodemask */ 6613 nodemask_t saved_node_state = node_states[N_MEMORY]; 6614 unsigned long totalpages = early_calculate_totalpages(); 6615 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 6616 struct memblock_region *r; 6617 6618 /* Need to find movable_zone earlier when movable_node is specified. */ 6619 find_usable_zone_for_movable(); 6620 6621 /* 6622 * If movable_node is specified, ignore kernelcore and movablecore 6623 * options. 6624 */ 6625 if (movable_node_is_enabled()) { 6626 for_each_memblock(memory, r) { 6627 if (!memblock_is_hotpluggable(r)) 6628 continue; 6629 6630 nid = r->nid; 6631 6632 usable_startpfn = PFN_DOWN(r->base); 6633 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 6634 min(usable_startpfn, zone_movable_pfn[nid]) : 6635 usable_startpfn; 6636 } 6637 6638 goto out2; 6639 } 6640 6641 /* 6642 * If kernelcore=mirror is specified, ignore movablecore option 6643 */ 6644 if (mirrored_kernelcore) { 6645 bool mem_below_4gb_not_mirrored = false; 6646 6647 for_each_memblock(memory, r) { 6648 if (memblock_is_mirror(r)) 6649 continue; 6650 6651 nid = r->nid; 6652 6653 usable_startpfn = memblock_region_memory_base_pfn(r); 6654 6655 if (usable_startpfn < 0x100000) { 6656 mem_below_4gb_not_mirrored = true; 6657 continue; 6658 } 6659 6660 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 6661 min(usable_startpfn, zone_movable_pfn[nid]) : 6662 usable_startpfn; 6663 } 6664 6665 if (mem_below_4gb_not_mirrored) 6666 pr_warn("This configuration results in unmirrored kernel memory."); 6667 6668 goto out2; 6669 } 6670 6671 /* 6672 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 6673 * amount of necessary memory. 6674 */ 6675 if (required_kernelcore_percent) 6676 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 6677 10000UL; 6678 if (required_movablecore_percent) 6679 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 6680 10000UL; 6681 6682 /* 6683 * If movablecore= was specified, calculate what size of 6684 * kernelcore that corresponds so that memory usable for 6685 * any allocation type is evenly spread. If both kernelcore 6686 * and movablecore are specified, then the value of kernelcore 6687 * will be used for required_kernelcore if it's greater than 6688 * what movablecore would have allowed. 6689 */ 6690 if (required_movablecore) { 6691 unsigned long corepages; 6692 6693 /* 6694 * Round-up so that ZONE_MOVABLE is at least as large as what 6695 * was requested by the user 6696 */ 6697 required_movablecore = 6698 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 6699 required_movablecore = min(totalpages, required_movablecore); 6700 corepages = totalpages - required_movablecore; 6701 6702 required_kernelcore = max(required_kernelcore, corepages); 6703 } 6704 6705 /* 6706 * If kernelcore was not specified or kernelcore size is larger 6707 * than totalpages, there is no ZONE_MOVABLE. 6708 */ 6709 if (!required_kernelcore || required_kernelcore >= totalpages) 6710 goto out; 6711 6712 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 6713 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 6714 6715 restart: 6716 /* Spread kernelcore memory as evenly as possible throughout nodes */ 6717 kernelcore_node = required_kernelcore / usable_nodes; 6718 for_each_node_state(nid, N_MEMORY) { 6719 unsigned long start_pfn, end_pfn; 6720 6721 /* 6722 * Recalculate kernelcore_node if the division per node 6723 * now exceeds what is necessary to satisfy the requested 6724 * amount of memory for the kernel 6725 */ 6726 if (required_kernelcore < kernelcore_node) 6727 kernelcore_node = required_kernelcore / usable_nodes; 6728 6729 /* 6730 * As the map is walked, we track how much memory is usable 6731 * by the kernel using kernelcore_remaining. When it is 6732 * 0, the rest of the node is usable by ZONE_MOVABLE 6733 */ 6734 kernelcore_remaining = kernelcore_node; 6735 6736 /* Go through each range of PFNs within this node */ 6737 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6738 unsigned long size_pages; 6739 6740 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 6741 if (start_pfn >= end_pfn) 6742 continue; 6743 6744 /* Account for what is only usable for kernelcore */ 6745 if (start_pfn < usable_startpfn) { 6746 unsigned long kernel_pages; 6747 kernel_pages = min(end_pfn, usable_startpfn) 6748 - start_pfn; 6749 6750 kernelcore_remaining -= min(kernel_pages, 6751 kernelcore_remaining); 6752 required_kernelcore -= min(kernel_pages, 6753 required_kernelcore); 6754 6755 /* Continue if range is now fully accounted */ 6756 if (end_pfn <= usable_startpfn) { 6757 6758 /* 6759 * Push zone_movable_pfn to the end so 6760 * that if we have to rebalance 6761 * kernelcore across nodes, we will 6762 * not double account here 6763 */ 6764 zone_movable_pfn[nid] = end_pfn; 6765 continue; 6766 } 6767 start_pfn = usable_startpfn; 6768 } 6769 6770 /* 6771 * The usable PFN range for ZONE_MOVABLE is from 6772 * start_pfn->end_pfn. Calculate size_pages as the 6773 * number of pages used as kernelcore 6774 */ 6775 size_pages = end_pfn - start_pfn; 6776 if (size_pages > kernelcore_remaining) 6777 size_pages = kernelcore_remaining; 6778 zone_movable_pfn[nid] = start_pfn + size_pages; 6779 6780 /* 6781 * Some kernelcore has been met, update counts and 6782 * break if the kernelcore for this node has been 6783 * satisfied 6784 */ 6785 required_kernelcore -= min(required_kernelcore, 6786 size_pages); 6787 kernelcore_remaining -= size_pages; 6788 if (!kernelcore_remaining) 6789 break; 6790 } 6791 } 6792 6793 /* 6794 * If there is still required_kernelcore, we do another pass with one 6795 * less node in the count. This will push zone_movable_pfn[nid] further 6796 * along on the nodes that still have memory until kernelcore is 6797 * satisfied 6798 */ 6799 usable_nodes--; 6800 if (usable_nodes && required_kernelcore > usable_nodes) 6801 goto restart; 6802 6803 out2: 6804 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 6805 for (nid = 0; nid < MAX_NUMNODES; nid++) 6806 zone_movable_pfn[nid] = 6807 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 6808 6809 out: 6810 /* restore the node_state */ 6811 node_states[N_MEMORY] = saved_node_state; 6812 } 6813 6814 /* Any regular or high memory on that node ? */ 6815 static void check_for_memory(pg_data_t *pgdat, int nid) 6816 { 6817 enum zone_type zone_type; 6818 6819 if (N_MEMORY == N_NORMAL_MEMORY) 6820 return; 6821 6822 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 6823 struct zone *zone = &pgdat->node_zones[zone_type]; 6824 if (populated_zone(zone)) { 6825 node_set_state(nid, N_HIGH_MEMORY); 6826 if (N_NORMAL_MEMORY != N_HIGH_MEMORY && 6827 zone_type <= ZONE_NORMAL) 6828 node_set_state(nid, N_NORMAL_MEMORY); 6829 break; 6830 } 6831 } 6832 } 6833 6834 /** 6835 * free_area_init_nodes - Initialise all pg_data_t and zone data 6836 * @max_zone_pfn: an array of max PFNs for each zone 6837 * 6838 * This will call free_area_init_node() for each active node in the system. 6839 * Using the page ranges provided by memblock_set_node(), the size of each 6840 * zone in each node and their holes is calculated. If the maximum PFN 6841 * between two adjacent zones match, it is assumed that the zone is empty. 6842 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 6843 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 6844 * starts where the previous one ended. For example, ZONE_DMA32 starts 6845 * at arch_max_dma_pfn. 6846 */ 6847 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 6848 { 6849 unsigned long start_pfn, end_pfn; 6850 int i, nid; 6851 6852 /* Record where the zone boundaries are */ 6853 memset(arch_zone_lowest_possible_pfn, 0, 6854 sizeof(arch_zone_lowest_possible_pfn)); 6855 memset(arch_zone_highest_possible_pfn, 0, 6856 sizeof(arch_zone_highest_possible_pfn)); 6857 6858 start_pfn = find_min_pfn_with_active_regions(); 6859 6860 for (i = 0; i < MAX_NR_ZONES; i++) { 6861 if (i == ZONE_MOVABLE) 6862 continue; 6863 6864 end_pfn = max(max_zone_pfn[i], start_pfn); 6865 arch_zone_lowest_possible_pfn[i] = start_pfn; 6866 arch_zone_highest_possible_pfn[i] = end_pfn; 6867 6868 start_pfn = end_pfn; 6869 } 6870 6871 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 6872 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 6873 find_zone_movable_pfns_for_nodes(); 6874 6875 /* Print out the zone ranges */ 6876 pr_info("Zone ranges:\n"); 6877 for (i = 0; i < MAX_NR_ZONES; i++) { 6878 if (i == ZONE_MOVABLE) 6879 continue; 6880 pr_info(" %-8s ", zone_names[i]); 6881 if (arch_zone_lowest_possible_pfn[i] == 6882 arch_zone_highest_possible_pfn[i]) 6883 pr_cont("empty\n"); 6884 else 6885 pr_cont("[mem %#018Lx-%#018Lx]\n", 6886 (u64)arch_zone_lowest_possible_pfn[i] 6887 << PAGE_SHIFT, 6888 ((u64)arch_zone_highest_possible_pfn[i] 6889 << PAGE_SHIFT) - 1); 6890 } 6891 6892 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 6893 pr_info("Movable zone start for each node\n"); 6894 for (i = 0; i < MAX_NUMNODES; i++) { 6895 if (zone_movable_pfn[i]) 6896 pr_info(" Node %d: %#018Lx\n", i, 6897 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 6898 } 6899 6900 /* Print out the early node map */ 6901 pr_info("Early memory node ranges\n"); 6902 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 6903 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 6904 (u64)start_pfn << PAGE_SHIFT, 6905 ((u64)end_pfn << PAGE_SHIFT) - 1); 6906 6907 /* Initialise every node */ 6908 mminit_verify_pageflags_layout(); 6909 setup_nr_node_ids(); 6910 zero_resv_unavail(); 6911 for_each_online_node(nid) { 6912 pg_data_t *pgdat = NODE_DATA(nid); 6913 free_area_init_node(nid, NULL, 6914 find_min_pfn_for_node(nid), NULL); 6915 6916 /* Any memory on that node */ 6917 if (pgdat->node_present_pages) 6918 node_set_state(nid, N_MEMORY); 6919 check_for_memory(pgdat, nid); 6920 } 6921 } 6922 6923 static int __init cmdline_parse_core(char *p, unsigned long *core, 6924 unsigned long *percent) 6925 { 6926 unsigned long long coremem; 6927 char *endptr; 6928 6929 if (!p) 6930 return -EINVAL; 6931 6932 /* Value may be a percentage of total memory, otherwise bytes */ 6933 coremem = simple_strtoull(p, &endptr, 0); 6934 if (*endptr == '%') { 6935 /* Paranoid check for percent values greater than 100 */ 6936 WARN_ON(coremem > 100); 6937 6938 *percent = coremem; 6939 } else { 6940 coremem = memparse(p, &p); 6941 /* Paranoid check that UL is enough for the coremem value */ 6942 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 6943 6944 *core = coremem >> PAGE_SHIFT; 6945 *percent = 0UL; 6946 } 6947 return 0; 6948 } 6949 6950 /* 6951 * kernelcore=size sets the amount of memory for use for allocations that 6952 * cannot be reclaimed or migrated. 6953 */ 6954 static int __init cmdline_parse_kernelcore(char *p) 6955 { 6956 /* parse kernelcore=mirror */ 6957 if (parse_option_str(p, "mirror")) { 6958 mirrored_kernelcore = true; 6959 return 0; 6960 } 6961 6962 return cmdline_parse_core(p, &required_kernelcore, 6963 &required_kernelcore_percent); 6964 } 6965 6966 /* 6967 * movablecore=size sets the amount of memory for use for allocations that 6968 * can be reclaimed or migrated. 6969 */ 6970 static int __init cmdline_parse_movablecore(char *p) 6971 { 6972 return cmdline_parse_core(p, &required_movablecore, 6973 &required_movablecore_percent); 6974 } 6975 6976 early_param("kernelcore", cmdline_parse_kernelcore); 6977 early_param("movablecore", cmdline_parse_movablecore); 6978 6979 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6980 6981 void adjust_managed_page_count(struct page *page, long count) 6982 { 6983 spin_lock(&managed_page_count_lock); 6984 page_zone(page)->managed_pages += count; 6985 totalram_pages += count; 6986 #ifdef CONFIG_HIGHMEM 6987 if (PageHighMem(page)) 6988 totalhigh_pages += count; 6989 #endif 6990 spin_unlock(&managed_page_count_lock); 6991 } 6992 EXPORT_SYMBOL(adjust_managed_page_count); 6993 6994 unsigned long free_reserved_area(void *start, void *end, int poison, char *s) 6995 { 6996 void *pos; 6997 unsigned long pages = 0; 6998 6999 start = (void *)PAGE_ALIGN((unsigned long)start); 7000 end = (void *)((unsigned long)end & PAGE_MASK); 7001 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 7002 struct page *page = virt_to_page(pos); 7003 void *direct_map_addr; 7004 7005 /* 7006 * 'direct_map_addr' might be different from 'pos' 7007 * because some architectures' virt_to_page() 7008 * work with aliases. Getting the direct map 7009 * address ensures that we get a _writeable_ 7010 * alias for the memset(). 7011 */ 7012 direct_map_addr = page_address(page); 7013 if ((unsigned int)poison <= 0xFF) 7014 memset(direct_map_addr, poison, PAGE_SIZE); 7015 7016 free_reserved_page(page); 7017 } 7018 7019 if (pages && s) 7020 pr_info("Freeing %s memory: %ldK\n", 7021 s, pages << (PAGE_SHIFT - 10)); 7022 7023 return pages; 7024 } 7025 EXPORT_SYMBOL(free_reserved_area); 7026 7027 #ifdef CONFIG_HIGHMEM 7028 void free_highmem_page(struct page *page) 7029 { 7030 __free_reserved_page(page); 7031 totalram_pages++; 7032 page_zone(page)->managed_pages++; 7033 totalhigh_pages++; 7034 } 7035 #endif 7036 7037 7038 void __init mem_init_print_info(const char *str) 7039 { 7040 unsigned long physpages, codesize, datasize, rosize, bss_size; 7041 unsigned long init_code_size, init_data_size; 7042 7043 physpages = get_num_physpages(); 7044 codesize = _etext - _stext; 7045 datasize = _edata - _sdata; 7046 rosize = __end_rodata - __start_rodata; 7047 bss_size = __bss_stop - __bss_start; 7048 init_data_size = __init_end - __init_begin; 7049 init_code_size = _einittext - _sinittext; 7050 7051 /* 7052 * Detect special cases and adjust section sizes accordingly: 7053 * 1) .init.* may be embedded into .data sections 7054 * 2) .init.text.* may be out of [__init_begin, __init_end], 7055 * please refer to arch/tile/kernel/vmlinux.lds.S. 7056 * 3) .rodata.* may be embedded into .text or .data sections. 7057 */ 7058 #define adj_init_size(start, end, size, pos, adj) \ 7059 do { \ 7060 if (start <= pos && pos < end && size > adj) \ 7061 size -= adj; \ 7062 } while (0) 7063 7064 adj_init_size(__init_begin, __init_end, init_data_size, 7065 _sinittext, init_code_size); 7066 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 7067 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 7068 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 7069 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 7070 7071 #undef adj_init_size 7072 7073 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 7074 #ifdef CONFIG_HIGHMEM 7075 ", %luK highmem" 7076 #endif 7077 "%s%s)\n", 7078 nr_free_pages() << (PAGE_SHIFT - 10), 7079 physpages << (PAGE_SHIFT - 10), 7080 codesize >> 10, datasize >> 10, rosize >> 10, 7081 (init_data_size + init_code_size) >> 10, bss_size >> 10, 7082 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10), 7083 totalcma_pages << (PAGE_SHIFT - 10), 7084 #ifdef CONFIG_HIGHMEM 7085 totalhigh_pages << (PAGE_SHIFT - 10), 7086 #endif 7087 str ? ", " : "", str ? str : ""); 7088 } 7089 7090 /** 7091 * set_dma_reserve - set the specified number of pages reserved in the first zone 7092 * @new_dma_reserve: The number of pages to mark reserved 7093 * 7094 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 7095 * In the DMA zone, a significant percentage may be consumed by kernel image 7096 * and other unfreeable allocations which can skew the watermarks badly. This 7097 * function may optionally be used to account for unfreeable pages in the 7098 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 7099 * smaller per-cpu batchsize. 7100 */ 7101 void __init set_dma_reserve(unsigned long new_dma_reserve) 7102 { 7103 dma_reserve = new_dma_reserve; 7104 } 7105 7106 void __init free_area_init(unsigned long *zones_size) 7107 { 7108 zero_resv_unavail(); 7109 free_area_init_node(0, zones_size, 7110 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 7111 } 7112 7113 static int page_alloc_cpu_dead(unsigned int cpu) 7114 { 7115 7116 lru_add_drain_cpu(cpu); 7117 drain_pages(cpu); 7118 7119 /* 7120 * Spill the event counters of the dead processor 7121 * into the current processors event counters. 7122 * This artificially elevates the count of the current 7123 * processor. 7124 */ 7125 vm_events_fold_cpu(cpu); 7126 7127 /* 7128 * Zero the differential counters of the dead processor 7129 * so that the vm statistics are consistent. 7130 * 7131 * This is only okay since the processor is dead and cannot 7132 * race with what we are doing. 7133 */ 7134 cpu_vm_stats_fold(cpu); 7135 return 0; 7136 } 7137 7138 void __init page_alloc_init(void) 7139 { 7140 int ret; 7141 7142 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD, 7143 "mm/page_alloc:dead", NULL, 7144 page_alloc_cpu_dead); 7145 WARN_ON(ret < 0); 7146 } 7147 7148 /* 7149 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 7150 * or min_free_kbytes changes. 7151 */ 7152 static void calculate_totalreserve_pages(void) 7153 { 7154 struct pglist_data *pgdat; 7155 unsigned long reserve_pages = 0; 7156 enum zone_type i, j; 7157 7158 for_each_online_pgdat(pgdat) { 7159 7160 pgdat->totalreserve_pages = 0; 7161 7162 for (i = 0; i < MAX_NR_ZONES; i++) { 7163 struct zone *zone = pgdat->node_zones + i; 7164 long max = 0; 7165 7166 /* Find valid and maximum lowmem_reserve in the zone */ 7167 for (j = i; j < MAX_NR_ZONES; j++) { 7168 if (zone->lowmem_reserve[j] > max) 7169 max = zone->lowmem_reserve[j]; 7170 } 7171 7172 /* we treat the high watermark as reserved pages. */ 7173 max += high_wmark_pages(zone); 7174 7175 if (max > zone->managed_pages) 7176 max = zone->managed_pages; 7177 7178 pgdat->totalreserve_pages += max; 7179 7180 reserve_pages += max; 7181 } 7182 } 7183 totalreserve_pages = reserve_pages; 7184 } 7185 7186 /* 7187 * setup_per_zone_lowmem_reserve - called whenever 7188 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 7189 * has a correct pages reserved value, so an adequate number of 7190 * pages are left in the zone after a successful __alloc_pages(). 7191 */ 7192 static void setup_per_zone_lowmem_reserve(void) 7193 { 7194 struct pglist_data *pgdat; 7195 enum zone_type j, idx; 7196 7197 for_each_online_pgdat(pgdat) { 7198 for (j = 0; j < MAX_NR_ZONES; j++) { 7199 struct zone *zone = pgdat->node_zones + j; 7200 unsigned long managed_pages = zone->managed_pages; 7201 7202 zone->lowmem_reserve[j] = 0; 7203 7204 idx = j; 7205 while (idx) { 7206 struct zone *lower_zone; 7207 7208 idx--; 7209 lower_zone = pgdat->node_zones + idx; 7210 7211 if (sysctl_lowmem_reserve_ratio[idx] < 1) { 7212 sysctl_lowmem_reserve_ratio[idx] = 0; 7213 lower_zone->lowmem_reserve[j] = 0; 7214 } else { 7215 lower_zone->lowmem_reserve[j] = 7216 managed_pages / sysctl_lowmem_reserve_ratio[idx]; 7217 } 7218 managed_pages += lower_zone->managed_pages; 7219 } 7220 } 7221 } 7222 7223 /* update totalreserve_pages */ 7224 calculate_totalreserve_pages(); 7225 } 7226 7227 static void __setup_per_zone_wmarks(void) 7228 { 7229 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 7230 unsigned long lowmem_pages = 0; 7231 struct zone *zone; 7232 unsigned long flags; 7233 7234 /* Calculate total number of !ZONE_HIGHMEM pages */ 7235 for_each_zone(zone) { 7236 if (!is_highmem(zone)) 7237 lowmem_pages += zone->managed_pages; 7238 } 7239 7240 for_each_zone(zone) { 7241 u64 tmp; 7242 7243 spin_lock_irqsave(&zone->lock, flags); 7244 tmp = (u64)pages_min * zone->managed_pages; 7245 do_div(tmp, lowmem_pages); 7246 if (is_highmem(zone)) { 7247 /* 7248 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 7249 * need highmem pages, so cap pages_min to a small 7250 * value here. 7251 * 7252 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 7253 * deltas control asynch page reclaim, and so should 7254 * not be capped for highmem. 7255 */ 7256 unsigned long min_pages; 7257 7258 min_pages = zone->managed_pages / 1024; 7259 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 7260 zone->watermark[WMARK_MIN] = min_pages; 7261 } else { 7262 /* 7263 * If it's a lowmem zone, reserve a number of pages 7264 * proportionate to the zone's size. 7265 */ 7266 zone->watermark[WMARK_MIN] = tmp; 7267 } 7268 7269 /* 7270 * Set the kswapd watermarks distance according to the 7271 * scale factor in proportion to available memory, but 7272 * ensure a minimum size on small systems. 7273 */ 7274 tmp = max_t(u64, tmp >> 2, 7275 mult_frac(zone->managed_pages, 7276 watermark_scale_factor, 10000)); 7277 7278 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 7279 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; 7280 7281 spin_unlock_irqrestore(&zone->lock, flags); 7282 } 7283 7284 /* update totalreserve_pages */ 7285 calculate_totalreserve_pages(); 7286 } 7287 7288 /** 7289 * setup_per_zone_wmarks - called when min_free_kbytes changes 7290 * or when memory is hot-{added|removed} 7291 * 7292 * Ensures that the watermark[min,low,high] values for each zone are set 7293 * correctly with respect to min_free_kbytes. 7294 */ 7295 void setup_per_zone_wmarks(void) 7296 { 7297 static DEFINE_SPINLOCK(lock); 7298 7299 spin_lock(&lock); 7300 __setup_per_zone_wmarks(); 7301 spin_unlock(&lock); 7302 } 7303 7304 /* 7305 * Initialise min_free_kbytes. 7306 * 7307 * For small machines we want it small (128k min). For large machines 7308 * we want it large (64MB max). But it is not linear, because network 7309 * bandwidth does not increase linearly with machine size. We use 7310 * 7311 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 7312 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 7313 * 7314 * which yields 7315 * 7316 * 16MB: 512k 7317 * 32MB: 724k 7318 * 64MB: 1024k 7319 * 128MB: 1448k 7320 * 256MB: 2048k 7321 * 512MB: 2896k 7322 * 1024MB: 4096k 7323 * 2048MB: 5792k 7324 * 4096MB: 8192k 7325 * 8192MB: 11584k 7326 * 16384MB: 16384k 7327 */ 7328 int __meminit init_per_zone_wmark_min(void) 7329 { 7330 unsigned long lowmem_kbytes; 7331 int new_min_free_kbytes; 7332 7333 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 7334 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 7335 7336 if (new_min_free_kbytes > user_min_free_kbytes) { 7337 min_free_kbytes = new_min_free_kbytes; 7338 if (min_free_kbytes < 128) 7339 min_free_kbytes = 128; 7340 if (min_free_kbytes > 65536) 7341 min_free_kbytes = 65536; 7342 } else { 7343 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 7344 new_min_free_kbytes, user_min_free_kbytes); 7345 } 7346 setup_per_zone_wmarks(); 7347 refresh_zone_stat_thresholds(); 7348 setup_per_zone_lowmem_reserve(); 7349 7350 #ifdef CONFIG_NUMA 7351 setup_min_unmapped_ratio(); 7352 setup_min_slab_ratio(); 7353 #endif 7354 7355 return 0; 7356 } 7357 core_initcall(init_per_zone_wmark_min) 7358 7359 /* 7360 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 7361 * that we can call two helper functions whenever min_free_kbytes 7362 * changes. 7363 */ 7364 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 7365 void __user *buffer, size_t *length, loff_t *ppos) 7366 { 7367 int rc; 7368 7369 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7370 if (rc) 7371 return rc; 7372 7373 if (write) { 7374 user_min_free_kbytes = min_free_kbytes; 7375 setup_per_zone_wmarks(); 7376 } 7377 return 0; 7378 } 7379 7380 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 7381 void __user *buffer, size_t *length, loff_t *ppos) 7382 { 7383 int rc; 7384 7385 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7386 if (rc) 7387 return rc; 7388 7389 if (write) 7390 setup_per_zone_wmarks(); 7391 7392 return 0; 7393 } 7394 7395 #ifdef CONFIG_NUMA 7396 static void setup_min_unmapped_ratio(void) 7397 { 7398 pg_data_t *pgdat; 7399 struct zone *zone; 7400 7401 for_each_online_pgdat(pgdat) 7402 pgdat->min_unmapped_pages = 0; 7403 7404 for_each_zone(zone) 7405 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages * 7406 sysctl_min_unmapped_ratio) / 100; 7407 } 7408 7409 7410 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 7411 void __user *buffer, size_t *length, loff_t *ppos) 7412 { 7413 int rc; 7414 7415 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7416 if (rc) 7417 return rc; 7418 7419 setup_min_unmapped_ratio(); 7420 7421 return 0; 7422 } 7423 7424 static void setup_min_slab_ratio(void) 7425 { 7426 pg_data_t *pgdat; 7427 struct zone *zone; 7428 7429 for_each_online_pgdat(pgdat) 7430 pgdat->min_slab_pages = 0; 7431 7432 for_each_zone(zone) 7433 zone->zone_pgdat->min_slab_pages += (zone->managed_pages * 7434 sysctl_min_slab_ratio) / 100; 7435 } 7436 7437 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 7438 void __user *buffer, size_t *length, loff_t *ppos) 7439 { 7440 int rc; 7441 7442 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7443 if (rc) 7444 return rc; 7445 7446 setup_min_slab_ratio(); 7447 7448 return 0; 7449 } 7450 #endif 7451 7452 /* 7453 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 7454 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 7455 * whenever sysctl_lowmem_reserve_ratio changes. 7456 * 7457 * The reserve ratio obviously has absolutely no relation with the 7458 * minimum watermarks. The lowmem reserve ratio can only make sense 7459 * if in function of the boot time zone sizes. 7460 */ 7461 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 7462 void __user *buffer, size_t *length, loff_t *ppos) 7463 { 7464 proc_dointvec_minmax(table, write, buffer, length, ppos); 7465 setup_per_zone_lowmem_reserve(); 7466 return 0; 7467 } 7468 7469 /* 7470 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 7471 * cpu. It is the fraction of total pages in each zone that a hot per cpu 7472 * pagelist can have before it gets flushed back to buddy allocator. 7473 */ 7474 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 7475 void __user *buffer, size_t *length, loff_t *ppos) 7476 { 7477 struct zone *zone; 7478 int old_percpu_pagelist_fraction; 7479 int ret; 7480 7481 mutex_lock(&pcp_batch_high_lock); 7482 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 7483 7484 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 7485 if (!write || ret < 0) 7486 goto out; 7487 7488 /* Sanity checking to avoid pcp imbalance */ 7489 if (percpu_pagelist_fraction && 7490 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 7491 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 7492 ret = -EINVAL; 7493 goto out; 7494 } 7495 7496 /* No change? */ 7497 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 7498 goto out; 7499 7500 for_each_populated_zone(zone) { 7501 unsigned int cpu; 7502 7503 for_each_possible_cpu(cpu) 7504 pageset_set_high_and_batch(zone, 7505 per_cpu_ptr(zone->pageset, cpu)); 7506 } 7507 out: 7508 mutex_unlock(&pcp_batch_high_lock); 7509 return ret; 7510 } 7511 7512 #ifdef CONFIG_NUMA 7513 int hashdist = HASHDIST_DEFAULT; 7514 7515 static int __init set_hashdist(char *str) 7516 { 7517 if (!str) 7518 return 0; 7519 hashdist = simple_strtoul(str, &str, 0); 7520 return 1; 7521 } 7522 __setup("hashdist=", set_hashdist); 7523 #endif 7524 7525 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 7526 /* 7527 * Returns the number of pages that arch has reserved but 7528 * is not known to alloc_large_system_hash(). 7529 */ 7530 static unsigned long __init arch_reserved_kernel_pages(void) 7531 { 7532 return 0; 7533 } 7534 #endif 7535 7536 /* 7537 * Adaptive scale is meant to reduce sizes of hash tables on large memory 7538 * machines. As memory size is increased the scale is also increased but at 7539 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 7540 * quadruples the scale is increased by one, which means the size of hash table 7541 * only doubles, instead of quadrupling as well. 7542 * Because 32-bit systems cannot have large physical memory, where this scaling 7543 * makes sense, it is disabled on such platforms. 7544 */ 7545 #if __BITS_PER_LONG > 32 7546 #define ADAPT_SCALE_BASE (64ul << 30) 7547 #define ADAPT_SCALE_SHIFT 2 7548 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 7549 #endif 7550 7551 /* 7552 * allocate a large system hash table from bootmem 7553 * - it is assumed that the hash table must contain an exact power-of-2 7554 * quantity of entries 7555 * - limit is the number of hash buckets, not the total allocation size 7556 */ 7557 void *__init alloc_large_system_hash(const char *tablename, 7558 unsigned long bucketsize, 7559 unsigned long numentries, 7560 int scale, 7561 int flags, 7562 unsigned int *_hash_shift, 7563 unsigned int *_hash_mask, 7564 unsigned long low_limit, 7565 unsigned long high_limit) 7566 { 7567 unsigned long long max = high_limit; 7568 unsigned long log2qty, size; 7569 void *table = NULL; 7570 gfp_t gfp_flags; 7571 7572 /* allow the kernel cmdline to have a say */ 7573 if (!numentries) { 7574 /* round applicable memory size up to nearest megabyte */ 7575 numentries = nr_kernel_pages; 7576 numentries -= arch_reserved_kernel_pages(); 7577 7578 /* It isn't necessary when PAGE_SIZE >= 1MB */ 7579 if (PAGE_SHIFT < 20) 7580 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 7581 7582 #if __BITS_PER_LONG > 32 7583 if (!high_limit) { 7584 unsigned long adapt; 7585 7586 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 7587 adapt <<= ADAPT_SCALE_SHIFT) 7588 scale++; 7589 } 7590 #endif 7591 7592 /* limit to 1 bucket per 2^scale bytes of low memory */ 7593 if (scale > PAGE_SHIFT) 7594 numentries >>= (scale - PAGE_SHIFT); 7595 else 7596 numentries <<= (PAGE_SHIFT - scale); 7597 7598 /* Make sure we've got at least a 0-order allocation.. */ 7599 if (unlikely(flags & HASH_SMALL)) { 7600 /* Makes no sense without HASH_EARLY */ 7601 WARN_ON(!(flags & HASH_EARLY)); 7602 if (!(numentries >> *_hash_shift)) { 7603 numentries = 1UL << *_hash_shift; 7604 BUG_ON(!numentries); 7605 } 7606 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 7607 numentries = PAGE_SIZE / bucketsize; 7608 } 7609 numentries = roundup_pow_of_two(numentries); 7610 7611 /* limit allocation size to 1/16 total memory by default */ 7612 if (max == 0) { 7613 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 7614 do_div(max, bucketsize); 7615 } 7616 max = min(max, 0x80000000ULL); 7617 7618 if (numentries < low_limit) 7619 numentries = low_limit; 7620 if (numentries > max) 7621 numentries = max; 7622 7623 log2qty = ilog2(numentries); 7624 7625 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 7626 do { 7627 size = bucketsize << log2qty; 7628 if (flags & HASH_EARLY) { 7629 if (flags & HASH_ZERO) 7630 table = memblock_virt_alloc_nopanic(size, 0); 7631 else 7632 table = memblock_virt_alloc_raw(size, 0); 7633 } else if (hashdist) { 7634 table = __vmalloc(size, gfp_flags, PAGE_KERNEL); 7635 } else { 7636 /* 7637 * If bucketsize is not a power-of-two, we may free 7638 * some pages at the end of hash table which 7639 * alloc_pages_exact() automatically does 7640 */ 7641 if (get_order(size) < MAX_ORDER) { 7642 table = alloc_pages_exact(size, gfp_flags); 7643 kmemleak_alloc(table, size, 1, gfp_flags); 7644 } 7645 } 7646 } while (!table && size > PAGE_SIZE && --log2qty); 7647 7648 if (!table) 7649 panic("Failed to allocate %s hash table\n", tablename); 7650 7651 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n", 7652 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size); 7653 7654 if (_hash_shift) 7655 *_hash_shift = log2qty; 7656 if (_hash_mask) 7657 *_hash_mask = (1 << log2qty) - 1; 7658 7659 return table; 7660 } 7661 7662 /* 7663 * This function checks whether pageblock includes unmovable pages or not. 7664 * If @count is not zero, it is okay to include less @count unmovable pages 7665 * 7666 * PageLRU check without isolation or lru_lock could race so that 7667 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable 7668 * check without lock_page also may miss some movable non-lru pages at 7669 * race condition. So you can't expect this function should be exact. 7670 */ 7671 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 7672 int migratetype, 7673 bool skip_hwpoisoned_pages) 7674 { 7675 unsigned long pfn, iter, found; 7676 7677 /* 7678 * TODO we could make this much more efficient by not checking every 7679 * page in the range if we know all of them are in MOVABLE_ZONE and 7680 * that the movable zone guarantees that pages are migratable but 7681 * the later is not the case right now unfortunatelly. E.g. movablecore 7682 * can still lead to having bootmem allocations in zone_movable. 7683 */ 7684 7685 /* 7686 * CMA allocations (alloc_contig_range) really need to mark isolate 7687 * CMA pageblocks even when they are not movable in fact so consider 7688 * them movable here. 7689 */ 7690 if (is_migrate_cma(migratetype) && 7691 is_migrate_cma(get_pageblock_migratetype(page))) 7692 return false; 7693 7694 pfn = page_to_pfn(page); 7695 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 7696 unsigned long check = pfn + iter; 7697 7698 if (!pfn_valid_within(check)) 7699 continue; 7700 7701 page = pfn_to_page(check); 7702 7703 if (PageReserved(page)) 7704 goto unmovable; 7705 7706 /* 7707 * Hugepages are not in LRU lists, but they're movable. 7708 * We need not scan over tail pages bacause we don't 7709 * handle each tail page individually in migration. 7710 */ 7711 if (PageHuge(page)) { 7712 iter = round_up(iter + 1, 1<<compound_order(page)) - 1; 7713 continue; 7714 } 7715 7716 /* 7717 * We can't use page_count without pin a page 7718 * because another CPU can free compound page. 7719 * This check already skips compound tails of THP 7720 * because their page->_refcount is zero at all time. 7721 */ 7722 if (!page_ref_count(page)) { 7723 if (PageBuddy(page)) 7724 iter += (1 << page_order(page)) - 1; 7725 continue; 7726 } 7727 7728 /* 7729 * The HWPoisoned page may be not in buddy system, and 7730 * page_count() is not 0. 7731 */ 7732 if (skip_hwpoisoned_pages && PageHWPoison(page)) 7733 continue; 7734 7735 if (__PageMovable(page)) 7736 continue; 7737 7738 if (!PageLRU(page)) 7739 found++; 7740 /* 7741 * If there are RECLAIMABLE pages, we need to check 7742 * it. But now, memory offline itself doesn't call 7743 * shrink_node_slabs() and it still to be fixed. 7744 */ 7745 /* 7746 * If the page is not RAM, page_count()should be 0. 7747 * we don't need more check. This is an _used_ not-movable page. 7748 * 7749 * The problematic thing here is PG_reserved pages. PG_reserved 7750 * is set to both of a memory hole page and a _used_ kernel 7751 * page at boot. 7752 */ 7753 if (found > count) 7754 goto unmovable; 7755 } 7756 return false; 7757 unmovable: 7758 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE); 7759 return true; 7760 } 7761 7762 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA) 7763 7764 static unsigned long pfn_max_align_down(unsigned long pfn) 7765 { 7766 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 7767 pageblock_nr_pages) - 1); 7768 } 7769 7770 static unsigned long pfn_max_align_up(unsigned long pfn) 7771 { 7772 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 7773 pageblock_nr_pages)); 7774 } 7775 7776 /* [start, end) must belong to a single zone. */ 7777 static int __alloc_contig_migrate_range(struct compact_control *cc, 7778 unsigned long start, unsigned long end) 7779 { 7780 /* This function is based on compact_zone() from compaction.c. */ 7781 unsigned long nr_reclaimed; 7782 unsigned long pfn = start; 7783 unsigned int tries = 0; 7784 int ret = 0; 7785 7786 migrate_prep(); 7787 7788 while (pfn < end || !list_empty(&cc->migratepages)) { 7789 if (fatal_signal_pending(current)) { 7790 ret = -EINTR; 7791 break; 7792 } 7793 7794 if (list_empty(&cc->migratepages)) { 7795 cc->nr_migratepages = 0; 7796 pfn = isolate_migratepages_range(cc, pfn, end); 7797 if (!pfn) { 7798 ret = -EINTR; 7799 break; 7800 } 7801 tries = 0; 7802 } else if (++tries == 5) { 7803 ret = ret < 0 ? ret : -EBUSY; 7804 break; 7805 } 7806 7807 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 7808 &cc->migratepages); 7809 cc->nr_migratepages -= nr_reclaimed; 7810 7811 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 7812 NULL, 0, cc->mode, MR_CONTIG_RANGE); 7813 } 7814 if (ret < 0) { 7815 putback_movable_pages(&cc->migratepages); 7816 return ret; 7817 } 7818 return 0; 7819 } 7820 7821 /** 7822 * alloc_contig_range() -- tries to allocate given range of pages 7823 * @start: start PFN to allocate 7824 * @end: one-past-the-last PFN to allocate 7825 * @migratetype: migratetype of the underlaying pageblocks (either 7826 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 7827 * in range must have the same migratetype and it must 7828 * be either of the two. 7829 * @gfp_mask: GFP mask to use during compaction 7830 * 7831 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 7832 * aligned. The PFN range must belong to a single zone. 7833 * 7834 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 7835 * pageblocks in the range. Once isolated, the pageblocks should not 7836 * be modified by others. 7837 * 7838 * Returns zero on success or negative error code. On success all 7839 * pages which PFN is in [start, end) are allocated for the caller and 7840 * need to be freed with free_contig_range(). 7841 */ 7842 int alloc_contig_range(unsigned long start, unsigned long end, 7843 unsigned migratetype, gfp_t gfp_mask) 7844 { 7845 unsigned long outer_start, outer_end; 7846 unsigned int order; 7847 int ret = 0; 7848 7849 struct compact_control cc = { 7850 .nr_migratepages = 0, 7851 .order = -1, 7852 .zone = page_zone(pfn_to_page(start)), 7853 .mode = MIGRATE_SYNC, 7854 .ignore_skip_hint = true, 7855 .no_set_skip_hint = true, 7856 .gfp_mask = current_gfp_context(gfp_mask), 7857 }; 7858 INIT_LIST_HEAD(&cc.migratepages); 7859 7860 /* 7861 * What we do here is we mark all pageblocks in range as 7862 * MIGRATE_ISOLATE. Because pageblock and max order pages may 7863 * have different sizes, and due to the way page allocator 7864 * work, we align the range to biggest of the two pages so 7865 * that page allocator won't try to merge buddies from 7866 * different pageblocks and change MIGRATE_ISOLATE to some 7867 * other migration type. 7868 * 7869 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 7870 * migrate the pages from an unaligned range (ie. pages that 7871 * we are interested in). This will put all the pages in 7872 * range back to page allocator as MIGRATE_ISOLATE. 7873 * 7874 * When this is done, we take the pages in range from page 7875 * allocator removing them from the buddy system. This way 7876 * page allocator will never consider using them. 7877 * 7878 * This lets us mark the pageblocks back as 7879 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 7880 * aligned range but not in the unaligned, original range are 7881 * put back to page allocator so that buddy can use them. 7882 */ 7883 7884 ret = start_isolate_page_range(pfn_max_align_down(start), 7885 pfn_max_align_up(end), migratetype, 7886 false); 7887 if (ret) 7888 return ret; 7889 7890 /* 7891 * In case of -EBUSY, we'd like to know which page causes problem. 7892 * So, just fall through. test_pages_isolated() has a tracepoint 7893 * which will report the busy page. 7894 * 7895 * It is possible that busy pages could become available before 7896 * the call to test_pages_isolated, and the range will actually be 7897 * allocated. So, if we fall through be sure to clear ret so that 7898 * -EBUSY is not accidentally used or returned to caller. 7899 */ 7900 ret = __alloc_contig_migrate_range(&cc, start, end); 7901 if (ret && ret != -EBUSY) 7902 goto done; 7903 ret =0; 7904 7905 /* 7906 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 7907 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 7908 * more, all pages in [start, end) are free in page allocator. 7909 * What we are going to do is to allocate all pages from 7910 * [start, end) (that is remove them from page allocator). 7911 * 7912 * The only problem is that pages at the beginning and at the 7913 * end of interesting range may be not aligned with pages that 7914 * page allocator holds, ie. they can be part of higher order 7915 * pages. Because of this, we reserve the bigger range and 7916 * once this is done free the pages we are not interested in. 7917 * 7918 * We don't have to hold zone->lock here because the pages are 7919 * isolated thus they won't get removed from buddy. 7920 */ 7921 7922 lru_add_drain_all(); 7923 drain_all_pages(cc.zone); 7924 7925 order = 0; 7926 outer_start = start; 7927 while (!PageBuddy(pfn_to_page(outer_start))) { 7928 if (++order >= MAX_ORDER) { 7929 outer_start = start; 7930 break; 7931 } 7932 outer_start &= ~0UL << order; 7933 } 7934 7935 if (outer_start != start) { 7936 order = page_order(pfn_to_page(outer_start)); 7937 7938 /* 7939 * outer_start page could be small order buddy page and 7940 * it doesn't include start page. Adjust outer_start 7941 * in this case to report failed page properly 7942 * on tracepoint in test_pages_isolated() 7943 */ 7944 if (outer_start + (1UL << order) <= start) 7945 outer_start = start; 7946 } 7947 7948 /* Make sure the range is really isolated. */ 7949 if (test_pages_isolated(outer_start, end, false)) { 7950 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n", 7951 __func__, outer_start, end); 7952 ret = -EBUSY; 7953 goto done; 7954 } 7955 7956 /* Grab isolated pages from freelists. */ 7957 outer_end = isolate_freepages_range(&cc, outer_start, end); 7958 if (!outer_end) { 7959 ret = -EBUSY; 7960 goto done; 7961 } 7962 7963 /* Free head and tail (if any) */ 7964 if (start != outer_start) 7965 free_contig_range(outer_start, start - outer_start); 7966 if (end != outer_end) 7967 free_contig_range(end, outer_end - end); 7968 7969 done: 7970 undo_isolate_page_range(pfn_max_align_down(start), 7971 pfn_max_align_up(end), migratetype); 7972 return ret; 7973 } 7974 7975 void free_contig_range(unsigned long pfn, unsigned nr_pages) 7976 { 7977 unsigned int count = 0; 7978 7979 for (; nr_pages--; pfn++) { 7980 struct page *page = pfn_to_page(pfn); 7981 7982 count += page_count(page) != 1; 7983 __free_page(page); 7984 } 7985 WARN(count != 0, "%d pages are still in use!\n", count); 7986 } 7987 #endif 7988 7989 #ifdef CONFIG_MEMORY_HOTPLUG 7990 /* 7991 * The zone indicated has a new number of managed_pages; batch sizes and percpu 7992 * page high values need to be recalulated. 7993 */ 7994 void __meminit zone_pcp_update(struct zone *zone) 7995 { 7996 unsigned cpu; 7997 mutex_lock(&pcp_batch_high_lock); 7998 for_each_possible_cpu(cpu) 7999 pageset_set_high_and_batch(zone, 8000 per_cpu_ptr(zone->pageset, cpu)); 8001 mutex_unlock(&pcp_batch_high_lock); 8002 } 8003 #endif 8004 8005 void zone_pcp_reset(struct zone *zone) 8006 { 8007 unsigned long flags; 8008 int cpu; 8009 struct per_cpu_pageset *pset; 8010 8011 /* avoid races with drain_pages() */ 8012 local_irq_save(flags); 8013 if (zone->pageset != &boot_pageset) { 8014 for_each_online_cpu(cpu) { 8015 pset = per_cpu_ptr(zone->pageset, cpu); 8016 drain_zonestat(zone, pset); 8017 } 8018 free_percpu(zone->pageset); 8019 zone->pageset = &boot_pageset; 8020 } 8021 local_irq_restore(flags); 8022 } 8023 8024 #ifdef CONFIG_MEMORY_HOTREMOVE 8025 /* 8026 * All pages in the range must be in a single zone and isolated 8027 * before calling this. 8028 */ 8029 void 8030 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 8031 { 8032 struct page *page; 8033 struct zone *zone; 8034 unsigned int order, i; 8035 unsigned long pfn; 8036 unsigned long flags; 8037 /* find the first valid pfn */ 8038 for (pfn = start_pfn; pfn < end_pfn; pfn++) 8039 if (pfn_valid(pfn)) 8040 break; 8041 if (pfn == end_pfn) 8042 return; 8043 offline_mem_sections(pfn, end_pfn); 8044 zone = page_zone(pfn_to_page(pfn)); 8045 spin_lock_irqsave(&zone->lock, flags); 8046 pfn = start_pfn; 8047 while (pfn < end_pfn) { 8048 if (!pfn_valid(pfn)) { 8049 pfn++; 8050 continue; 8051 } 8052 page = pfn_to_page(pfn); 8053 /* 8054 * The HWPoisoned page may be not in buddy system, and 8055 * page_count() is not 0. 8056 */ 8057 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 8058 pfn++; 8059 SetPageReserved(page); 8060 continue; 8061 } 8062 8063 BUG_ON(page_count(page)); 8064 BUG_ON(!PageBuddy(page)); 8065 order = page_order(page); 8066 #ifdef CONFIG_DEBUG_VM 8067 pr_info("remove from free list %lx %d %lx\n", 8068 pfn, 1 << order, end_pfn); 8069 #endif 8070 list_del(&page->lru); 8071 rmv_page_order(page); 8072 zone->free_area[order].nr_free--; 8073 for (i = 0; i < (1 << order); i++) 8074 SetPageReserved((page+i)); 8075 pfn += (1 << order); 8076 } 8077 spin_unlock_irqrestore(&zone->lock, flags); 8078 } 8079 #endif 8080 8081 bool is_free_buddy_page(struct page *page) 8082 { 8083 struct zone *zone = page_zone(page); 8084 unsigned long pfn = page_to_pfn(page); 8085 unsigned long flags; 8086 unsigned int order; 8087 8088 spin_lock_irqsave(&zone->lock, flags); 8089 for (order = 0; order < MAX_ORDER; order++) { 8090 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8091 8092 if (PageBuddy(page_head) && page_order(page_head) >= order) 8093 break; 8094 } 8095 spin_unlock_irqrestore(&zone->lock, flags); 8096 8097 return order < MAX_ORDER; 8098 } 8099 8100 #ifdef CONFIG_MEMORY_FAILURE 8101 /* 8102 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This 8103 * test is performed under the zone lock to prevent a race against page 8104 * allocation. 8105 */ 8106 bool set_hwpoison_free_buddy_page(struct page *page) 8107 { 8108 struct zone *zone = page_zone(page); 8109 unsigned long pfn = page_to_pfn(page); 8110 unsigned long flags; 8111 unsigned int order; 8112 bool hwpoisoned = false; 8113 8114 spin_lock_irqsave(&zone->lock, flags); 8115 for (order = 0; order < MAX_ORDER; order++) { 8116 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8117 8118 if (PageBuddy(page_head) && page_order(page_head) >= order) { 8119 if (!TestSetPageHWPoison(page)) 8120 hwpoisoned = true; 8121 break; 8122 } 8123 } 8124 spin_unlock_irqrestore(&zone->lock, flags); 8125 8126 return hwpoisoned; 8127 } 8128 #endif 8129