xref: /openbmc/linux/mm/page_alloc.c (revision 5b394b2d)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kasan.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <linux/backing-dev.h>
50 #include <linux/fault-inject.h>
51 #include <linux/page-isolation.h>
52 #include <linux/page_ext.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
70 
71 #include <asm/sections.h>
72 #include <asm/tlbflush.h>
73 #include <asm/div64.h>
74 #include "internal.h"
75 
76 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
77 static DEFINE_MUTEX(pcp_batch_high_lock);
78 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
79 
80 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
81 DEFINE_PER_CPU(int, numa_node);
82 EXPORT_PER_CPU_SYMBOL(numa_node);
83 #endif
84 
85 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
86 
87 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
88 /*
89  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
90  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
91  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
92  * defined in <linux/topology.h>.
93  */
94 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
95 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
96 int _node_numa_mem_[MAX_NUMNODES];
97 #endif
98 
99 /* work_structs for global per-cpu drains */
100 DEFINE_MUTEX(pcpu_drain_mutex);
101 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
102 
103 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
104 volatile unsigned long latent_entropy __latent_entropy;
105 EXPORT_SYMBOL(latent_entropy);
106 #endif
107 
108 /*
109  * Array of node states.
110  */
111 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
112 	[N_POSSIBLE] = NODE_MASK_ALL,
113 	[N_ONLINE] = { { [0] = 1UL } },
114 #ifndef CONFIG_NUMA
115 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
116 #ifdef CONFIG_HIGHMEM
117 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
118 #endif
119 	[N_MEMORY] = { { [0] = 1UL } },
120 	[N_CPU] = { { [0] = 1UL } },
121 #endif	/* NUMA */
122 };
123 EXPORT_SYMBOL(node_states);
124 
125 /* Protect totalram_pages and zone->managed_pages */
126 static DEFINE_SPINLOCK(managed_page_count_lock);
127 
128 unsigned long totalram_pages __read_mostly;
129 unsigned long totalreserve_pages __read_mostly;
130 unsigned long totalcma_pages __read_mostly;
131 
132 int percpu_pagelist_fraction;
133 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
134 
135 /*
136  * A cached value of the page's pageblock's migratetype, used when the page is
137  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
138  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
139  * Also the migratetype set in the page does not necessarily match the pcplist
140  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
141  * other index - this ensures that it will be put on the correct CMA freelist.
142  */
143 static inline int get_pcppage_migratetype(struct page *page)
144 {
145 	return page->index;
146 }
147 
148 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
149 {
150 	page->index = migratetype;
151 }
152 
153 #ifdef CONFIG_PM_SLEEP
154 /*
155  * The following functions are used by the suspend/hibernate code to temporarily
156  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
157  * while devices are suspended.  To avoid races with the suspend/hibernate code,
158  * they should always be called with system_transition_mutex held
159  * (gfp_allowed_mask also should only be modified with system_transition_mutex
160  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
161  * with that modification).
162  */
163 
164 static gfp_t saved_gfp_mask;
165 
166 void pm_restore_gfp_mask(void)
167 {
168 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
169 	if (saved_gfp_mask) {
170 		gfp_allowed_mask = saved_gfp_mask;
171 		saved_gfp_mask = 0;
172 	}
173 }
174 
175 void pm_restrict_gfp_mask(void)
176 {
177 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
178 	WARN_ON(saved_gfp_mask);
179 	saved_gfp_mask = gfp_allowed_mask;
180 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
181 }
182 
183 bool pm_suspended_storage(void)
184 {
185 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
186 		return false;
187 	return true;
188 }
189 #endif /* CONFIG_PM_SLEEP */
190 
191 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
192 unsigned int pageblock_order __read_mostly;
193 #endif
194 
195 static void __free_pages_ok(struct page *page, unsigned int order);
196 
197 /*
198  * results with 256, 32 in the lowmem_reserve sysctl:
199  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
200  *	1G machine -> (16M dma, 784M normal, 224M high)
201  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
202  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
203  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
204  *
205  * TBD: should special case ZONE_DMA32 machines here - in those we normally
206  * don't need any ZONE_NORMAL reservation
207  */
208 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
209 #ifdef CONFIG_ZONE_DMA
210 	[ZONE_DMA] = 256,
211 #endif
212 #ifdef CONFIG_ZONE_DMA32
213 	[ZONE_DMA32] = 256,
214 #endif
215 	[ZONE_NORMAL] = 32,
216 #ifdef CONFIG_HIGHMEM
217 	[ZONE_HIGHMEM] = 0,
218 #endif
219 	[ZONE_MOVABLE] = 0,
220 };
221 
222 EXPORT_SYMBOL(totalram_pages);
223 
224 static char * const zone_names[MAX_NR_ZONES] = {
225 #ifdef CONFIG_ZONE_DMA
226 	 "DMA",
227 #endif
228 #ifdef CONFIG_ZONE_DMA32
229 	 "DMA32",
230 #endif
231 	 "Normal",
232 #ifdef CONFIG_HIGHMEM
233 	 "HighMem",
234 #endif
235 	 "Movable",
236 #ifdef CONFIG_ZONE_DEVICE
237 	 "Device",
238 #endif
239 };
240 
241 char * const migratetype_names[MIGRATE_TYPES] = {
242 	"Unmovable",
243 	"Movable",
244 	"Reclaimable",
245 	"HighAtomic",
246 #ifdef CONFIG_CMA
247 	"CMA",
248 #endif
249 #ifdef CONFIG_MEMORY_ISOLATION
250 	"Isolate",
251 #endif
252 };
253 
254 compound_page_dtor * const compound_page_dtors[] = {
255 	NULL,
256 	free_compound_page,
257 #ifdef CONFIG_HUGETLB_PAGE
258 	free_huge_page,
259 #endif
260 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
261 	free_transhuge_page,
262 #endif
263 };
264 
265 int min_free_kbytes = 1024;
266 int user_min_free_kbytes = -1;
267 int watermark_scale_factor = 10;
268 
269 static unsigned long nr_kernel_pages __meminitdata;
270 static unsigned long nr_all_pages __meminitdata;
271 static unsigned long dma_reserve __meminitdata;
272 
273 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
274 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __meminitdata;
275 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __meminitdata;
276 static unsigned long required_kernelcore __initdata;
277 static unsigned long required_kernelcore_percent __initdata;
278 static unsigned long required_movablecore __initdata;
279 static unsigned long required_movablecore_percent __initdata;
280 static unsigned long zone_movable_pfn[MAX_NUMNODES] __meminitdata;
281 static bool mirrored_kernelcore __meminitdata;
282 
283 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
284 int movable_zone;
285 EXPORT_SYMBOL(movable_zone);
286 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
287 
288 #if MAX_NUMNODES > 1
289 int nr_node_ids __read_mostly = MAX_NUMNODES;
290 int nr_online_nodes __read_mostly = 1;
291 EXPORT_SYMBOL(nr_node_ids);
292 EXPORT_SYMBOL(nr_online_nodes);
293 #endif
294 
295 int page_group_by_mobility_disabled __read_mostly;
296 
297 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
298 /* Returns true if the struct page for the pfn is uninitialised */
299 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
300 {
301 	int nid = early_pfn_to_nid(pfn);
302 
303 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
304 		return true;
305 
306 	return false;
307 }
308 
309 /*
310  * Returns false when the remaining initialisation should be deferred until
311  * later in the boot cycle when it can be parallelised.
312  */
313 static inline bool update_defer_init(pg_data_t *pgdat,
314 				unsigned long pfn, unsigned long zone_end,
315 				unsigned long *nr_initialised)
316 {
317 	/* Always populate low zones for address-constrained allocations */
318 	if (zone_end < pgdat_end_pfn(pgdat))
319 		return true;
320 	(*nr_initialised)++;
321 	if ((*nr_initialised > pgdat->static_init_pgcnt) &&
322 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
323 		pgdat->first_deferred_pfn = pfn;
324 		return false;
325 	}
326 
327 	return true;
328 }
329 #else
330 static inline bool early_page_uninitialised(unsigned long pfn)
331 {
332 	return false;
333 }
334 
335 static inline bool update_defer_init(pg_data_t *pgdat,
336 				unsigned long pfn, unsigned long zone_end,
337 				unsigned long *nr_initialised)
338 {
339 	return true;
340 }
341 #endif
342 
343 /* Return a pointer to the bitmap storing bits affecting a block of pages */
344 static inline unsigned long *get_pageblock_bitmap(struct page *page,
345 							unsigned long pfn)
346 {
347 #ifdef CONFIG_SPARSEMEM
348 	return __pfn_to_section(pfn)->pageblock_flags;
349 #else
350 	return page_zone(page)->pageblock_flags;
351 #endif /* CONFIG_SPARSEMEM */
352 }
353 
354 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
355 {
356 #ifdef CONFIG_SPARSEMEM
357 	pfn &= (PAGES_PER_SECTION-1);
358 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
359 #else
360 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
361 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
362 #endif /* CONFIG_SPARSEMEM */
363 }
364 
365 /**
366  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
367  * @page: The page within the block of interest
368  * @pfn: The target page frame number
369  * @end_bitidx: The last bit of interest to retrieve
370  * @mask: mask of bits that the caller is interested in
371  *
372  * Return: pageblock_bits flags
373  */
374 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
375 					unsigned long pfn,
376 					unsigned long end_bitidx,
377 					unsigned long mask)
378 {
379 	unsigned long *bitmap;
380 	unsigned long bitidx, word_bitidx;
381 	unsigned long word;
382 
383 	bitmap = get_pageblock_bitmap(page, pfn);
384 	bitidx = pfn_to_bitidx(page, pfn);
385 	word_bitidx = bitidx / BITS_PER_LONG;
386 	bitidx &= (BITS_PER_LONG-1);
387 
388 	word = bitmap[word_bitidx];
389 	bitidx += end_bitidx;
390 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
391 }
392 
393 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
394 					unsigned long end_bitidx,
395 					unsigned long mask)
396 {
397 	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
398 }
399 
400 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
401 {
402 	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
403 }
404 
405 /**
406  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
407  * @page: The page within the block of interest
408  * @flags: The flags to set
409  * @pfn: The target page frame number
410  * @end_bitidx: The last bit of interest
411  * @mask: mask of bits that the caller is interested in
412  */
413 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
414 					unsigned long pfn,
415 					unsigned long end_bitidx,
416 					unsigned long mask)
417 {
418 	unsigned long *bitmap;
419 	unsigned long bitidx, word_bitidx;
420 	unsigned long old_word, word;
421 
422 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
423 
424 	bitmap = get_pageblock_bitmap(page, pfn);
425 	bitidx = pfn_to_bitidx(page, pfn);
426 	word_bitidx = bitidx / BITS_PER_LONG;
427 	bitidx &= (BITS_PER_LONG-1);
428 
429 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
430 
431 	bitidx += end_bitidx;
432 	mask <<= (BITS_PER_LONG - bitidx - 1);
433 	flags <<= (BITS_PER_LONG - bitidx - 1);
434 
435 	word = READ_ONCE(bitmap[word_bitidx]);
436 	for (;;) {
437 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
438 		if (word == old_word)
439 			break;
440 		word = old_word;
441 	}
442 }
443 
444 void set_pageblock_migratetype(struct page *page, int migratetype)
445 {
446 	if (unlikely(page_group_by_mobility_disabled &&
447 		     migratetype < MIGRATE_PCPTYPES))
448 		migratetype = MIGRATE_UNMOVABLE;
449 
450 	set_pageblock_flags_group(page, (unsigned long)migratetype,
451 					PB_migrate, PB_migrate_end);
452 }
453 
454 #ifdef CONFIG_DEBUG_VM
455 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
456 {
457 	int ret = 0;
458 	unsigned seq;
459 	unsigned long pfn = page_to_pfn(page);
460 	unsigned long sp, start_pfn;
461 
462 	do {
463 		seq = zone_span_seqbegin(zone);
464 		start_pfn = zone->zone_start_pfn;
465 		sp = zone->spanned_pages;
466 		if (!zone_spans_pfn(zone, pfn))
467 			ret = 1;
468 	} while (zone_span_seqretry(zone, seq));
469 
470 	if (ret)
471 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
472 			pfn, zone_to_nid(zone), zone->name,
473 			start_pfn, start_pfn + sp);
474 
475 	return ret;
476 }
477 
478 static int page_is_consistent(struct zone *zone, struct page *page)
479 {
480 	if (!pfn_valid_within(page_to_pfn(page)))
481 		return 0;
482 	if (zone != page_zone(page))
483 		return 0;
484 
485 	return 1;
486 }
487 /*
488  * Temporary debugging check for pages not lying within a given zone.
489  */
490 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
491 {
492 	if (page_outside_zone_boundaries(zone, page))
493 		return 1;
494 	if (!page_is_consistent(zone, page))
495 		return 1;
496 
497 	return 0;
498 }
499 #else
500 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
501 {
502 	return 0;
503 }
504 #endif
505 
506 static void bad_page(struct page *page, const char *reason,
507 		unsigned long bad_flags)
508 {
509 	static unsigned long resume;
510 	static unsigned long nr_shown;
511 	static unsigned long nr_unshown;
512 
513 	/*
514 	 * Allow a burst of 60 reports, then keep quiet for that minute;
515 	 * or allow a steady drip of one report per second.
516 	 */
517 	if (nr_shown == 60) {
518 		if (time_before(jiffies, resume)) {
519 			nr_unshown++;
520 			goto out;
521 		}
522 		if (nr_unshown) {
523 			pr_alert(
524 			      "BUG: Bad page state: %lu messages suppressed\n",
525 				nr_unshown);
526 			nr_unshown = 0;
527 		}
528 		nr_shown = 0;
529 	}
530 	if (nr_shown++ == 0)
531 		resume = jiffies + 60 * HZ;
532 
533 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
534 		current->comm, page_to_pfn(page));
535 	__dump_page(page, reason);
536 	bad_flags &= page->flags;
537 	if (bad_flags)
538 		pr_alert("bad because of flags: %#lx(%pGp)\n",
539 						bad_flags, &bad_flags);
540 	dump_page_owner(page);
541 
542 	print_modules();
543 	dump_stack();
544 out:
545 	/* Leave bad fields for debug, except PageBuddy could make trouble */
546 	page_mapcount_reset(page); /* remove PageBuddy */
547 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
548 }
549 
550 /*
551  * Higher-order pages are called "compound pages".  They are structured thusly:
552  *
553  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
554  *
555  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
556  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
557  *
558  * The first tail page's ->compound_dtor holds the offset in array of compound
559  * page destructors. See compound_page_dtors.
560  *
561  * The first tail page's ->compound_order holds the order of allocation.
562  * This usage means that zero-order pages may not be compound.
563  */
564 
565 void free_compound_page(struct page *page)
566 {
567 	__free_pages_ok(page, compound_order(page));
568 }
569 
570 void prep_compound_page(struct page *page, unsigned int order)
571 {
572 	int i;
573 	int nr_pages = 1 << order;
574 
575 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
576 	set_compound_order(page, order);
577 	__SetPageHead(page);
578 	for (i = 1; i < nr_pages; i++) {
579 		struct page *p = page + i;
580 		set_page_count(p, 0);
581 		p->mapping = TAIL_MAPPING;
582 		set_compound_head(p, page);
583 	}
584 	atomic_set(compound_mapcount_ptr(page), -1);
585 }
586 
587 #ifdef CONFIG_DEBUG_PAGEALLOC
588 unsigned int _debug_guardpage_minorder;
589 bool _debug_pagealloc_enabled __read_mostly
590 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
591 EXPORT_SYMBOL(_debug_pagealloc_enabled);
592 bool _debug_guardpage_enabled __read_mostly;
593 
594 static int __init early_debug_pagealloc(char *buf)
595 {
596 	if (!buf)
597 		return -EINVAL;
598 	return kstrtobool(buf, &_debug_pagealloc_enabled);
599 }
600 early_param("debug_pagealloc", early_debug_pagealloc);
601 
602 static bool need_debug_guardpage(void)
603 {
604 	/* If we don't use debug_pagealloc, we don't need guard page */
605 	if (!debug_pagealloc_enabled())
606 		return false;
607 
608 	if (!debug_guardpage_minorder())
609 		return false;
610 
611 	return true;
612 }
613 
614 static void init_debug_guardpage(void)
615 {
616 	if (!debug_pagealloc_enabled())
617 		return;
618 
619 	if (!debug_guardpage_minorder())
620 		return;
621 
622 	_debug_guardpage_enabled = true;
623 }
624 
625 struct page_ext_operations debug_guardpage_ops = {
626 	.need = need_debug_guardpage,
627 	.init = init_debug_guardpage,
628 };
629 
630 static int __init debug_guardpage_minorder_setup(char *buf)
631 {
632 	unsigned long res;
633 
634 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
635 		pr_err("Bad debug_guardpage_minorder value\n");
636 		return 0;
637 	}
638 	_debug_guardpage_minorder = res;
639 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
640 	return 0;
641 }
642 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
643 
644 static inline bool set_page_guard(struct zone *zone, struct page *page,
645 				unsigned int order, int migratetype)
646 {
647 	struct page_ext *page_ext;
648 
649 	if (!debug_guardpage_enabled())
650 		return false;
651 
652 	if (order >= debug_guardpage_minorder())
653 		return false;
654 
655 	page_ext = lookup_page_ext(page);
656 	if (unlikely(!page_ext))
657 		return false;
658 
659 	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
660 
661 	INIT_LIST_HEAD(&page->lru);
662 	set_page_private(page, order);
663 	/* Guard pages are not available for any usage */
664 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
665 
666 	return true;
667 }
668 
669 static inline void clear_page_guard(struct zone *zone, struct page *page,
670 				unsigned int order, int migratetype)
671 {
672 	struct page_ext *page_ext;
673 
674 	if (!debug_guardpage_enabled())
675 		return;
676 
677 	page_ext = lookup_page_ext(page);
678 	if (unlikely(!page_ext))
679 		return;
680 
681 	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
682 
683 	set_page_private(page, 0);
684 	if (!is_migrate_isolate(migratetype))
685 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
686 }
687 #else
688 struct page_ext_operations debug_guardpage_ops;
689 static inline bool set_page_guard(struct zone *zone, struct page *page,
690 			unsigned int order, int migratetype) { return false; }
691 static inline void clear_page_guard(struct zone *zone, struct page *page,
692 				unsigned int order, int migratetype) {}
693 #endif
694 
695 static inline void set_page_order(struct page *page, unsigned int order)
696 {
697 	set_page_private(page, order);
698 	__SetPageBuddy(page);
699 }
700 
701 static inline void rmv_page_order(struct page *page)
702 {
703 	__ClearPageBuddy(page);
704 	set_page_private(page, 0);
705 }
706 
707 /*
708  * This function checks whether a page is free && is the buddy
709  * we can coalesce a page and its buddy if
710  * (a) the buddy is not in a hole (check before calling!) &&
711  * (b) the buddy is in the buddy system &&
712  * (c) a page and its buddy have the same order &&
713  * (d) a page and its buddy are in the same zone.
714  *
715  * For recording whether a page is in the buddy system, we set PageBuddy.
716  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
717  *
718  * For recording page's order, we use page_private(page).
719  */
720 static inline int page_is_buddy(struct page *page, struct page *buddy,
721 							unsigned int order)
722 {
723 	if (page_is_guard(buddy) && page_order(buddy) == order) {
724 		if (page_zone_id(page) != page_zone_id(buddy))
725 			return 0;
726 
727 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
728 
729 		return 1;
730 	}
731 
732 	if (PageBuddy(buddy) && page_order(buddy) == order) {
733 		/*
734 		 * zone check is done late to avoid uselessly
735 		 * calculating zone/node ids for pages that could
736 		 * never merge.
737 		 */
738 		if (page_zone_id(page) != page_zone_id(buddy))
739 			return 0;
740 
741 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
742 
743 		return 1;
744 	}
745 	return 0;
746 }
747 
748 /*
749  * Freeing function for a buddy system allocator.
750  *
751  * The concept of a buddy system is to maintain direct-mapped table
752  * (containing bit values) for memory blocks of various "orders".
753  * The bottom level table contains the map for the smallest allocatable
754  * units of memory (here, pages), and each level above it describes
755  * pairs of units from the levels below, hence, "buddies".
756  * At a high level, all that happens here is marking the table entry
757  * at the bottom level available, and propagating the changes upward
758  * as necessary, plus some accounting needed to play nicely with other
759  * parts of the VM system.
760  * At each level, we keep a list of pages, which are heads of continuous
761  * free pages of length of (1 << order) and marked with PageBuddy.
762  * Page's order is recorded in page_private(page) field.
763  * So when we are allocating or freeing one, we can derive the state of the
764  * other.  That is, if we allocate a small block, and both were
765  * free, the remainder of the region must be split into blocks.
766  * If a block is freed, and its buddy is also free, then this
767  * triggers coalescing into a block of larger size.
768  *
769  * -- nyc
770  */
771 
772 static inline void __free_one_page(struct page *page,
773 		unsigned long pfn,
774 		struct zone *zone, unsigned int order,
775 		int migratetype)
776 {
777 	unsigned long combined_pfn;
778 	unsigned long uninitialized_var(buddy_pfn);
779 	struct page *buddy;
780 	unsigned int max_order;
781 
782 	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
783 
784 	VM_BUG_ON(!zone_is_initialized(zone));
785 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
786 
787 	VM_BUG_ON(migratetype == -1);
788 	if (likely(!is_migrate_isolate(migratetype)))
789 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
790 
791 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
792 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
793 
794 continue_merging:
795 	while (order < max_order - 1) {
796 		buddy_pfn = __find_buddy_pfn(pfn, order);
797 		buddy = page + (buddy_pfn - pfn);
798 
799 		if (!pfn_valid_within(buddy_pfn))
800 			goto done_merging;
801 		if (!page_is_buddy(page, buddy, order))
802 			goto done_merging;
803 		/*
804 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
805 		 * merge with it and move up one order.
806 		 */
807 		if (page_is_guard(buddy)) {
808 			clear_page_guard(zone, buddy, order, migratetype);
809 		} else {
810 			list_del(&buddy->lru);
811 			zone->free_area[order].nr_free--;
812 			rmv_page_order(buddy);
813 		}
814 		combined_pfn = buddy_pfn & pfn;
815 		page = page + (combined_pfn - pfn);
816 		pfn = combined_pfn;
817 		order++;
818 	}
819 	if (max_order < MAX_ORDER) {
820 		/* If we are here, it means order is >= pageblock_order.
821 		 * We want to prevent merge between freepages on isolate
822 		 * pageblock and normal pageblock. Without this, pageblock
823 		 * isolation could cause incorrect freepage or CMA accounting.
824 		 *
825 		 * We don't want to hit this code for the more frequent
826 		 * low-order merging.
827 		 */
828 		if (unlikely(has_isolate_pageblock(zone))) {
829 			int buddy_mt;
830 
831 			buddy_pfn = __find_buddy_pfn(pfn, order);
832 			buddy = page + (buddy_pfn - pfn);
833 			buddy_mt = get_pageblock_migratetype(buddy);
834 
835 			if (migratetype != buddy_mt
836 					&& (is_migrate_isolate(migratetype) ||
837 						is_migrate_isolate(buddy_mt)))
838 				goto done_merging;
839 		}
840 		max_order++;
841 		goto continue_merging;
842 	}
843 
844 done_merging:
845 	set_page_order(page, order);
846 
847 	/*
848 	 * If this is not the largest possible page, check if the buddy
849 	 * of the next-highest order is free. If it is, it's possible
850 	 * that pages are being freed that will coalesce soon. In case,
851 	 * that is happening, add the free page to the tail of the list
852 	 * so it's less likely to be used soon and more likely to be merged
853 	 * as a higher order page
854 	 */
855 	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
856 		struct page *higher_page, *higher_buddy;
857 		combined_pfn = buddy_pfn & pfn;
858 		higher_page = page + (combined_pfn - pfn);
859 		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
860 		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
861 		if (pfn_valid_within(buddy_pfn) &&
862 		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
863 			list_add_tail(&page->lru,
864 				&zone->free_area[order].free_list[migratetype]);
865 			goto out;
866 		}
867 	}
868 
869 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
870 out:
871 	zone->free_area[order].nr_free++;
872 }
873 
874 /*
875  * A bad page could be due to a number of fields. Instead of multiple branches,
876  * try and check multiple fields with one check. The caller must do a detailed
877  * check if necessary.
878  */
879 static inline bool page_expected_state(struct page *page,
880 					unsigned long check_flags)
881 {
882 	if (unlikely(atomic_read(&page->_mapcount) != -1))
883 		return false;
884 
885 	if (unlikely((unsigned long)page->mapping |
886 			page_ref_count(page) |
887 #ifdef CONFIG_MEMCG
888 			(unsigned long)page->mem_cgroup |
889 #endif
890 			(page->flags & check_flags)))
891 		return false;
892 
893 	return true;
894 }
895 
896 static void free_pages_check_bad(struct page *page)
897 {
898 	const char *bad_reason;
899 	unsigned long bad_flags;
900 
901 	bad_reason = NULL;
902 	bad_flags = 0;
903 
904 	if (unlikely(atomic_read(&page->_mapcount) != -1))
905 		bad_reason = "nonzero mapcount";
906 	if (unlikely(page->mapping != NULL))
907 		bad_reason = "non-NULL mapping";
908 	if (unlikely(page_ref_count(page) != 0))
909 		bad_reason = "nonzero _refcount";
910 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
911 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
912 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
913 	}
914 #ifdef CONFIG_MEMCG
915 	if (unlikely(page->mem_cgroup))
916 		bad_reason = "page still charged to cgroup";
917 #endif
918 	bad_page(page, bad_reason, bad_flags);
919 }
920 
921 static inline int free_pages_check(struct page *page)
922 {
923 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
924 		return 0;
925 
926 	/* Something has gone sideways, find it */
927 	free_pages_check_bad(page);
928 	return 1;
929 }
930 
931 static int free_tail_pages_check(struct page *head_page, struct page *page)
932 {
933 	int ret = 1;
934 
935 	/*
936 	 * We rely page->lru.next never has bit 0 set, unless the page
937 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
938 	 */
939 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
940 
941 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
942 		ret = 0;
943 		goto out;
944 	}
945 	switch (page - head_page) {
946 	case 1:
947 		/* the first tail page: ->mapping may be compound_mapcount() */
948 		if (unlikely(compound_mapcount(page))) {
949 			bad_page(page, "nonzero compound_mapcount", 0);
950 			goto out;
951 		}
952 		break;
953 	case 2:
954 		/*
955 		 * the second tail page: ->mapping is
956 		 * deferred_list.next -- ignore value.
957 		 */
958 		break;
959 	default:
960 		if (page->mapping != TAIL_MAPPING) {
961 			bad_page(page, "corrupted mapping in tail page", 0);
962 			goto out;
963 		}
964 		break;
965 	}
966 	if (unlikely(!PageTail(page))) {
967 		bad_page(page, "PageTail not set", 0);
968 		goto out;
969 	}
970 	if (unlikely(compound_head(page) != head_page)) {
971 		bad_page(page, "compound_head not consistent", 0);
972 		goto out;
973 	}
974 	ret = 0;
975 out:
976 	page->mapping = NULL;
977 	clear_compound_head(page);
978 	return ret;
979 }
980 
981 static __always_inline bool free_pages_prepare(struct page *page,
982 					unsigned int order, bool check_free)
983 {
984 	int bad = 0;
985 
986 	VM_BUG_ON_PAGE(PageTail(page), page);
987 
988 	trace_mm_page_free(page, order);
989 
990 	/*
991 	 * Check tail pages before head page information is cleared to
992 	 * avoid checking PageCompound for order-0 pages.
993 	 */
994 	if (unlikely(order)) {
995 		bool compound = PageCompound(page);
996 		int i;
997 
998 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
999 
1000 		if (compound)
1001 			ClearPageDoubleMap(page);
1002 		for (i = 1; i < (1 << order); i++) {
1003 			if (compound)
1004 				bad += free_tail_pages_check(page, page + i);
1005 			if (unlikely(free_pages_check(page + i))) {
1006 				bad++;
1007 				continue;
1008 			}
1009 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1010 		}
1011 	}
1012 	if (PageMappingFlags(page))
1013 		page->mapping = NULL;
1014 	if (memcg_kmem_enabled() && PageKmemcg(page))
1015 		memcg_kmem_uncharge(page, order);
1016 	if (check_free)
1017 		bad += free_pages_check(page);
1018 	if (bad)
1019 		return false;
1020 
1021 	page_cpupid_reset_last(page);
1022 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1023 	reset_page_owner(page, order);
1024 
1025 	if (!PageHighMem(page)) {
1026 		debug_check_no_locks_freed(page_address(page),
1027 					   PAGE_SIZE << order);
1028 		debug_check_no_obj_freed(page_address(page),
1029 					   PAGE_SIZE << order);
1030 	}
1031 	arch_free_page(page, order);
1032 	kernel_poison_pages(page, 1 << order, 0);
1033 	kernel_map_pages(page, 1 << order, 0);
1034 	kasan_free_pages(page, order);
1035 
1036 	return true;
1037 }
1038 
1039 #ifdef CONFIG_DEBUG_VM
1040 static inline bool free_pcp_prepare(struct page *page)
1041 {
1042 	return free_pages_prepare(page, 0, true);
1043 }
1044 
1045 static inline bool bulkfree_pcp_prepare(struct page *page)
1046 {
1047 	return false;
1048 }
1049 #else
1050 static bool free_pcp_prepare(struct page *page)
1051 {
1052 	return free_pages_prepare(page, 0, false);
1053 }
1054 
1055 static bool bulkfree_pcp_prepare(struct page *page)
1056 {
1057 	return free_pages_check(page);
1058 }
1059 #endif /* CONFIG_DEBUG_VM */
1060 
1061 static inline void prefetch_buddy(struct page *page)
1062 {
1063 	unsigned long pfn = page_to_pfn(page);
1064 	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1065 	struct page *buddy = page + (buddy_pfn - pfn);
1066 
1067 	prefetch(buddy);
1068 }
1069 
1070 /*
1071  * Frees a number of pages from the PCP lists
1072  * Assumes all pages on list are in same zone, and of same order.
1073  * count is the number of pages to free.
1074  *
1075  * If the zone was previously in an "all pages pinned" state then look to
1076  * see if this freeing clears that state.
1077  *
1078  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1079  * pinned" detection logic.
1080  */
1081 static void free_pcppages_bulk(struct zone *zone, int count,
1082 					struct per_cpu_pages *pcp)
1083 {
1084 	int migratetype = 0;
1085 	int batch_free = 0;
1086 	int prefetch_nr = 0;
1087 	bool isolated_pageblocks;
1088 	struct page *page, *tmp;
1089 	LIST_HEAD(head);
1090 
1091 	while (count) {
1092 		struct list_head *list;
1093 
1094 		/*
1095 		 * Remove pages from lists in a round-robin fashion. A
1096 		 * batch_free count is maintained that is incremented when an
1097 		 * empty list is encountered.  This is so more pages are freed
1098 		 * off fuller lists instead of spinning excessively around empty
1099 		 * lists
1100 		 */
1101 		do {
1102 			batch_free++;
1103 			if (++migratetype == MIGRATE_PCPTYPES)
1104 				migratetype = 0;
1105 			list = &pcp->lists[migratetype];
1106 		} while (list_empty(list));
1107 
1108 		/* This is the only non-empty list. Free them all. */
1109 		if (batch_free == MIGRATE_PCPTYPES)
1110 			batch_free = count;
1111 
1112 		do {
1113 			page = list_last_entry(list, struct page, lru);
1114 			/* must delete to avoid corrupting pcp list */
1115 			list_del(&page->lru);
1116 			pcp->count--;
1117 
1118 			if (bulkfree_pcp_prepare(page))
1119 				continue;
1120 
1121 			list_add_tail(&page->lru, &head);
1122 
1123 			/*
1124 			 * We are going to put the page back to the global
1125 			 * pool, prefetch its buddy to speed up later access
1126 			 * under zone->lock. It is believed the overhead of
1127 			 * an additional test and calculating buddy_pfn here
1128 			 * can be offset by reduced memory latency later. To
1129 			 * avoid excessive prefetching due to large count, only
1130 			 * prefetch buddy for the first pcp->batch nr of pages.
1131 			 */
1132 			if (prefetch_nr++ < pcp->batch)
1133 				prefetch_buddy(page);
1134 		} while (--count && --batch_free && !list_empty(list));
1135 	}
1136 
1137 	spin_lock(&zone->lock);
1138 	isolated_pageblocks = has_isolate_pageblock(zone);
1139 
1140 	/*
1141 	 * Use safe version since after __free_one_page(),
1142 	 * page->lru.next will not point to original list.
1143 	 */
1144 	list_for_each_entry_safe(page, tmp, &head, lru) {
1145 		int mt = get_pcppage_migratetype(page);
1146 		/* MIGRATE_ISOLATE page should not go to pcplists */
1147 		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1148 		/* Pageblock could have been isolated meanwhile */
1149 		if (unlikely(isolated_pageblocks))
1150 			mt = get_pageblock_migratetype(page);
1151 
1152 		__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1153 		trace_mm_page_pcpu_drain(page, 0, mt);
1154 	}
1155 	spin_unlock(&zone->lock);
1156 }
1157 
1158 static void free_one_page(struct zone *zone,
1159 				struct page *page, unsigned long pfn,
1160 				unsigned int order,
1161 				int migratetype)
1162 {
1163 	spin_lock(&zone->lock);
1164 	if (unlikely(has_isolate_pageblock(zone) ||
1165 		is_migrate_isolate(migratetype))) {
1166 		migratetype = get_pfnblock_migratetype(page, pfn);
1167 	}
1168 	__free_one_page(page, pfn, zone, order, migratetype);
1169 	spin_unlock(&zone->lock);
1170 }
1171 
1172 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1173 				unsigned long zone, int nid)
1174 {
1175 	mm_zero_struct_page(page);
1176 	set_page_links(page, zone, nid, pfn);
1177 	init_page_count(page);
1178 	page_mapcount_reset(page);
1179 	page_cpupid_reset_last(page);
1180 
1181 	INIT_LIST_HEAD(&page->lru);
1182 #ifdef WANT_PAGE_VIRTUAL
1183 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1184 	if (!is_highmem_idx(zone))
1185 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1186 #endif
1187 }
1188 
1189 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1190 static void __meminit init_reserved_page(unsigned long pfn)
1191 {
1192 	pg_data_t *pgdat;
1193 	int nid, zid;
1194 
1195 	if (!early_page_uninitialised(pfn))
1196 		return;
1197 
1198 	nid = early_pfn_to_nid(pfn);
1199 	pgdat = NODE_DATA(nid);
1200 
1201 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1202 		struct zone *zone = &pgdat->node_zones[zid];
1203 
1204 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1205 			break;
1206 	}
1207 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1208 }
1209 #else
1210 static inline void init_reserved_page(unsigned long pfn)
1211 {
1212 }
1213 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1214 
1215 /*
1216  * Initialised pages do not have PageReserved set. This function is
1217  * called for each range allocated by the bootmem allocator and
1218  * marks the pages PageReserved. The remaining valid pages are later
1219  * sent to the buddy page allocator.
1220  */
1221 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1222 {
1223 	unsigned long start_pfn = PFN_DOWN(start);
1224 	unsigned long end_pfn = PFN_UP(end);
1225 
1226 	for (; start_pfn < end_pfn; start_pfn++) {
1227 		if (pfn_valid(start_pfn)) {
1228 			struct page *page = pfn_to_page(start_pfn);
1229 
1230 			init_reserved_page(start_pfn);
1231 
1232 			/* Avoid false-positive PageTail() */
1233 			INIT_LIST_HEAD(&page->lru);
1234 
1235 			SetPageReserved(page);
1236 		}
1237 	}
1238 }
1239 
1240 static void __free_pages_ok(struct page *page, unsigned int order)
1241 {
1242 	unsigned long flags;
1243 	int migratetype;
1244 	unsigned long pfn = page_to_pfn(page);
1245 
1246 	if (!free_pages_prepare(page, order, true))
1247 		return;
1248 
1249 	migratetype = get_pfnblock_migratetype(page, pfn);
1250 	local_irq_save(flags);
1251 	__count_vm_events(PGFREE, 1 << order);
1252 	free_one_page(page_zone(page), page, pfn, order, migratetype);
1253 	local_irq_restore(flags);
1254 }
1255 
1256 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1257 {
1258 	unsigned int nr_pages = 1 << order;
1259 	struct page *p = page;
1260 	unsigned int loop;
1261 
1262 	prefetchw(p);
1263 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1264 		prefetchw(p + 1);
1265 		__ClearPageReserved(p);
1266 		set_page_count(p, 0);
1267 	}
1268 	__ClearPageReserved(p);
1269 	set_page_count(p, 0);
1270 
1271 	page_zone(page)->managed_pages += nr_pages;
1272 	set_page_refcounted(page);
1273 	__free_pages(page, order);
1274 }
1275 
1276 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1277 	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1278 
1279 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1280 
1281 int __meminit early_pfn_to_nid(unsigned long pfn)
1282 {
1283 	static DEFINE_SPINLOCK(early_pfn_lock);
1284 	int nid;
1285 
1286 	spin_lock(&early_pfn_lock);
1287 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1288 	if (nid < 0)
1289 		nid = first_online_node;
1290 	spin_unlock(&early_pfn_lock);
1291 
1292 	return nid;
1293 }
1294 #endif
1295 
1296 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1297 static inline bool __meminit __maybe_unused
1298 meminit_pfn_in_nid(unsigned long pfn, int node,
1299 		   struct mminit_pfnnid_cache *state)
1300 {
1301 	int nid;
1302 
1303 	nid = __early_pfn_to_nid(pfn, state);
1304 	if (nid >= 0 && nid != node)
1305 		return false;
1306 	return true;
1307 }
1308 
1309 /* Only safe to use early in boot when initialisation is single-threaded */
1310 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1311 {
1312 	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1313 }
1314 
1315 #else
1316 
1317 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1318 {
1319 	return true;
1320 }
1321 static inline bool __meminit  __maybe_unused
1322 meminit_pfn_in_nid(unsigned long pfn, int node,
1323 		   struct mminit_pfnnid_cache *state)
1324 {
1325 	return true;
1326 }
1327 #endif
1328 
1329 
1330 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1331 							unsigned int order)
1332 {
1333 	if (early_page_uninitialised(pfn))
1334 		return;
1335 	return __free_pages_boot_core(page, order);
1336 }
1337 
1338 /*
1339  * Check that the whole (or subset of) a pageblock given by the interval of
1340  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1341  * with the migration of free compaction scanner. The scanners then need to
1342  * use only pfn_valid_within() check for arches that allow holes within
1343  * pageblocks.
1344  *
1345  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1346  *
1347  * It's possible on some configurations to have a setup like node0 node1 node0
1348  * i.e. it's possible that all pages within a zones range of pages do not
1349  * belong to a single zone. We assume that a border between node0 and node1
1350  * can occur within a single pageblock, but not a node0 node1 node0
1351  * interleaving within a single pageblock. It is therefore sufficient to check
1352  * the first and last page of a pageblock and avoid checking each individual
1353  * page in a pageblock.
1354  */
1355 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1356 				     unsigned long end_pfn, struct zone *zone)
1357 {
1358 	struct page *start_page;
1359 	struct page *end_page;
1360 
1361 	/* end_pfn is one past the range we are checking */
1362 	end_pfn--;
1363 
1364 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1365 		return NULL;
1366 
1367 	start_page = pfn_to_online_page(start_pfn);
1368 	if (!start_page)
1369 		return NULL;
1370 
1371 	if (page_zone(start_page) != zone)
1372 		return NULL;
1373 
1374 	end_page = pfn_to_page(end_pfn);
1375 
1376 	/* This gives a shorter code than deriving page_zone(end_page) */
1377 	if (page_zone_id(start_page) != page_zone_id(end_page))
1378 		return NULL;
1379 
1380 	return start_page;
1381 }
1382 
1383 void set_zone_contiguous(struct zone *zone)
1384 {
1385 	unsigned long block_start_pfn = zone->zone_start_pfn;
1386 	unsigned long block_end_pfn;
1387 
1388 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1389 	for (; block_start_pfn < zone_end_pfn(zone);
1390 			block_start_pfn = block_end_pfn,
1391 			 block_end_pfn += pageblock_nr_pages) {
1392 
1393 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1394 
1395 		if (!__pageblock_pfn_to_page(block_start_pfn,
1396 					     block_end_pfn, zone))
1397 			return;
1398 	}
1399 
1400 	/* We confirm that there is no hole */
1401 	zone->contiguous = true;
1402 }
1403 
1404 void clear_zone_contiguous(struct zone *zone)
1405 {
1406 	zone->contiguous = false;
1407 }
1408 
1409 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1410 static void __init deferred_free_range(unsigned long pfn,
1411 				       unsigned long nr_pages)
1412 {
1413 	struct page *page;
1414 	unsigned long i;
1415 
1416 	if (!nr_pages)
1417 		return;
1418 
1419 	page = pfn_to_page(pfn);
1420 
1421 	/* Free a large naturally-aligned chunk if possible */
1422 	if (nr_pages == pageblock_nr_pages &&
1423 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1424 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1425 		__free_pages_boot_core(page, pageblock_order);
1426 		return;
1427 	}
1428 
1429 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1430 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1431 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1432 		__free_pages_boot_core(page, 0);
1433 	}
1434 }
1435 
1436 /* Completion tracking for deferred_init_memmap() threads */
1437 static atomic_t pgdat_init_n_undone __initdata;
1438 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1439 
1440 static inline void __init pgdat_init_report_one_done(void)
1441 {
1442 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1443 		complete(&pgdat_init_all_done_comp);
1444 }
1445 
1446 /*
1447  * Returns true if page needs to be initialized or freed to buddy allocator.
1448  *
1449  * First we check if pfn is valid on architectures where it is possible to have
1450  * holes within pageblock_nr_pages. On systems where it is not possible, this
1451  * function is optimized out.
1452  *
1453  * Then, we check if a current large page is valid by only checking the validity
1454  * of the head pfn.
1455  *
1456  * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
1457  * within a node: a pfn is between start and end of a node, but does not belong
1458  * to this memory node.
1459  */
1460 static inline bool __init
1461 deferred_pfn_valid(int nid, unsigned long pfn,
1462 		   struct mminit_pfnnid_cache *nid_init_state)
1463 {
1464 	if (!pfn_valid_within(pfn))
1465 		return false;
1466 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1467 		return false;
1468 	if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
1469 		return false;
1470 	return true;
1471 }
1472 
1473 /*
1474  * Free pages to buddy allocator. Try to free aligned pages in
1475  * pageblock_nr_pages sizes.
1476  */
1477 static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
1478 				       unsigned long end_pfn)
1479 {
1480 	struct mminit_pfnnid_cache nid_init_state = { };
1481 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1482 	unsigned long nr_free = 0;
1483 
1484 	for (; pfn < end_pfn; pfn++) {
1485 		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1486 			deferred_free_range(pfn - nr_free, nr_free);
1487 			nr_free = 0;
1488 		} else if (!(pfn & nr_pgmask)) {
1489 			deferred_free_range(pfn - nr_free, nr_free);
1490 			nr_free = 1;
1491 			touch_nmi_watchdog();
1492 		} else {
1493 			nr_free++;
1494 		}
1495 	}
1496 	/* Free the last block of pages to allocator */
1497 	deferred_free_range(pfn - nr_free, nr_free);
1498 }
1499 
1500 /*
1501  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1502  * by performing it only once every pageblock_nr_pages.
1503  * Return number of pages initialized.
1504  */
1505 static unsigned long  __init deferred_init_pages(int nid, int zid,
1506 						 unsigned long pfn,
1507 						 unsigned long end_pfn)
1508 {
1509 	struct mminit_pfnnid_cache nid_init_state = { };
1510 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1511 	unsigned long nr_pages = 0;
1512 	struct page *page = NULL;
1513 
1514 	for (; pfn < end_pfn; pfn++) {
1515 		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1516 			page = NULL;
1517 			continue;
1518 		} else if (!page || !(pfn & nr_pgmask)) {
1519 			page = pfn_to_page(pfn);
1520 			touch_nmi_watchdog();
1521 		} else {
1522 			page++;
1523 		}
1524 		__init_single_page(page, pfn, zid, nid);
1525 		nr_pages++;
1526 	}
1527 	return (nr_pages);
1528 }
1529 
1530 /* Initialise remaining memory on a node */
1531 static int __init deferred_init_memmap(void *data)
1532 {
1533 	pg_data_t *pgdat = data;
1534 	int nid = pgdat->node_id;
1535 	unsigned long start = jiffies;
1536 	unsigned long nr_pages = 0;
1537 	unsigned long spfn, epfn, first_init_pfn, flags;
1538 	phys_addr_t spa, epa;
1539 	int zid;
1540 	struct zone *zone;
1541 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1542 	u64 i;
1543 
1544 	/* Bind memory initialisation thread to a local node if possible */
1545 	if (!cpumask_empty(cpumask))
1546 		set_cpus_allowed_ptr(current, cpumask);
1547 
1548 	pgdat_resize_lock(pgdat, &flags);
1549 	first_init_pfn = pgdat->first_deferred_pfn;
1550 	if (first_init_pfn == ULONG_MAX) {
1551 		pgdat_resize_unlock(pgdat, &flags);
1552 		pgdat_init_report_one_done();
1553 		return 0;
1554 	}
1555 
1556 	/* Sanity check boundaries */
1557 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1558 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1559 	pgdat->first_deferred_pfn = ULONG_MAX;
1560 
1561 	/* Only the highest zone is deferred so find it */
1562 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1563 		zone = pgdat->node_zones + zid;
1564 		if (first_init_pfn < zone_end_pfn(zone))
1565 			break;
1566 	}
1567 	first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1568 
1569 	/*
1570 	 * Initialize and free pages. We do it in two loops: first we initialize
1571 	 * struct page, than free to buddy allocator, because while we are
1572 	 * freeing pages we can access pages that are ahead (computing buddy
1573 	 * page in __free_one_page()).
1574 	 */
1575 	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1576 		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1577 		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1578 		nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
1579 	}
1580 	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1581 		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1582 		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1583 		deferred_free_pages(nid, zid, spfn, epfn);
1584 	}
1585 	pgdat_resize_unlock(pgdat, &flags);
1586 
1587 	/* Sanity check that the next zone really is unpopulated */
1588 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1589 
1590 	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1591 					jiffies_to_msecs(jiffies - start));
1592 
1593 	pgdat_init_report_one_done();
1594 	return 0;
1595 }
1596 
1597 /*
1598  * During boot we initialize deferred pages on-demand, as needed, but once
1599  * page_alloc_init_late() has finished, the deferred pages are all initialized,
1600  * and we can permanently disable that path.
1601  */
1602 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
1603 
1604 /*
1605  * If this zone has deferred pages, try to grow it by initializing enough
1606  * deferred pages to satisfy the allocation specified by order, rounded up to
1607  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
1608  * of SECTION_SIZE bytes by initializing struct pages in increments of
1609  * PAGES_PER_SECTION * sizeof(struct page) bytes.
1610  *
1611  * Return true when zone was grown, otherwise return false. We return true even
1612  * when we grow less than requested, to let the caller decide if there are
1613  * enough pages to satisfy the allocation.
1614  *
1615  * Note: We use noinline because this function is needed only during boot, and
1616  * it is called from a __ref function _deferred_grow_zone. This way we are
1617  * making sure that it is not inlined into permanent text section.
1618  */
1619 static noinline bool __init
1620 deferred_grow_zone(struct zone *zone, unsigned int order)
1621 {
1622 	int zid = zone_idx(zone);
1623 	int nid = zone_to_nid(zone);
1624 	pg_data_t *pgdat = NODE_DATA(nid);
1625 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1626 	unsigned long nr_pages = 0;
1627 	unsigned long first_init_pfn, spfn, epfn, t, flags;
1628 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1629 	phys_addr_t spa, epa;
1630 	u64 i;
1631 
1632 	/* Only the last zone may have deferred pages */
1633 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1634 		return false;
1635 
1636 	pgdat_resize_lock(pgdat, &flags);
1637 
1638 	/*
1639 	 * If deferred pages have been initialized while we were waiting for
1640 	 * the lock, return true, as the zone was grown.  The caller will retry
1641 	 * this zone.  We won't return to this function since the caller also
1642 	 * has this static branch.
1643 	 */
1644 	if (!static_branch_unlikely(&deferred_pages)) {
1645 		pgdat_resize_unlock(pgdat, &flags);
1646 		return true;
1647 	}
1648 
1649 	/*
1650 	 * If someone grew this zone while we were waiting for spinlock, return
1651 	 * true, as there might be enough pages already.
1652 	 */
1653 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1654 		pgdat_resize_unlock(pgdat, &flags);
1655 		return true;
1656 	}
1657 
1658 	first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn);
1659 
1660 	if (first_init_pfn >= pgdat_end_pfn(pgdat)) {
1661 		pgdat_resize_unlock(pgdat, &flags);
1662 		return false;
1663 	}
1664 
1665 	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1666 		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1667 		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1668 
1669 		while (spfn < epfn && nr_pages < nr_pages_needed) {
1670 			t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION);
1671 			first_deferred_pfn = min(t, epfn);
1672 			nr_pages += deferred_init_pages(nid, zid, spfn,
1673 							first_deferred_pfn);
1674 			spfn = first_deferred_pfn;
1675 		}
1676 
1677 		if (nr_pages >= nr_pages_needed)
1678 			break;
1679 	}
1680 
1681 	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1682 		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1683 		epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa));
1684 		deferred_free_pages(nid, zid, spfn, epfn);
1685 
1686 		if (first_deferred_pfn == epfn)
1687 			break;
1688 	}
1689 	pgdat->first_deferred_pfn = first_deferred_pfn;
1690 	pgdat_resize_unlock(pgdat, &flags);
1691 
1692 	return nr_pages > 0;
1693 }
1694 
1695 /*
1696  * deferred_grow_zone() is __init, but it is called from
1697  * get_page_from_freelist() during early boot until deferred_pages permanently
1698  * disables this call. This is why we have refdata wrapper to avoid warning,
1699  * and to ensure that the function body gets unloaded.
1700  */
1701 static bool __ref
1702 _deferred_grow_zone(struct zone *zone, unsigned int order)
1703 {
1704 	return deferred_grow_zone(zone, order);
1705 }
1706 
1707 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1708 
1709 void __init page_alloc_init_late(void)
1710 {
1711 	struct zone *zone;
1712 
1713 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1714 	int nid;
1715 
1716 	/* There will be num_node_state(N_MEMORY) threads */
1717 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1718 	for_each_node_state(nid, N_MEMORY) {
1719 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1720 	}
1721 
1722 	/* Block until all are initialised */
1723 	wait_for_completion(&pgdat_init_all_done_comp);
1724 
1725 	/*
1726 	 * We initialized the rest of the deferred pages.  Permanently disable
1727 	 * on-demand struct page initialization.
1728 	 */
1729 	static_branch_disable(&deferred_pages);
1730 
1731 	/* Reinit limits that are based on free pages after the kernel is up */
1732 	files_maxfiles_init();
1733 #endif
1734 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1735 	/* Discard memblock private memory */
1736 	memblock_discard();
1737 #endif
1738 
1739 	for_each_populated_zone(zone)
1740 		set_zone_contiguous(zone);
1741 }
1742 
1743 #ifdef CONFIG_CMA
1744 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1745 void __init init_cma_reserved_pageblock(struct page *page)
1746 {
1747 	unsigned i = pageblock_nr_pages;
1748 	struct page *p = page;
1749 
1750 	do {
1751 		__ClearPageReserved(p);
1752 		set_page_count(p, 0);
1753 	} while (++p, --i);
1754 
1755 	set_pageblock_migratetype(page, MIGRATE_CMA);
1756 
1757 	if (pageblock_order >= MAX_ORDER) {
1758 		i = pageblock_nr_pages;
1759 		p = page;
1760 		do {
1761 			set_page_refcounted(p);
1762 			__free_pages(p, MAX_ORDER - 1);
1763 			p += MAX_ORDER_NR_PAGES;
1764 		} while (i -= MAX_ORDER_NR_PAGES);
1765 	} else {
1766 		set_page_refcounted(page);
1767 		__free_pages(page, pageblock_order);
1768 	}
1769 
1770 	adjust_managed_page_count(page, pageblock_nr_pages);
1771 }
1772 #endif
1773 
1774 /*
1775  * The order of subdivision here is critical for the IO subsystem.
1776  * Please do not alter this order without good reasons and regression
1777  * testing. Specifically, as large blocks of memory are subdivided,
1778  * the order in which smaller blocks are delivered depends on the order
1779  * they're subdivided in this function. This is the primary factor
1780  * influencing the order in which pages are delivered to the IO
1781  * subsystem according to empirical testing, and this is also justified
1782  * by considering the behavior of a buddy system containing a single
1783  * large block of memory acted on by a series of small allocations.
1784  * This behavior is a critical factor in sglist merging's success.
1785  *
1786  * -- nyc
1787  */
1788 static inline void expand(struct zone *zone, struct page *page,
1789 	int low, int high, struct free_area *area,
1790 	int migratetype)
1791 {
1792 	unsigned long size = 1 << high;
1793 
1794 	while (high > low) {
1795 		area--;
1796 		high--;
1797 		size >>= 1;
1798 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1799 
1800 		/*
1801 		 * Mark as guard pages (or page), that will allow to
1802 		 * merge back to allocator when buddy will be freed.
1803 		 * Corresponding page table entries will not be touched,
1804 		 * pages will stay not present in virtual address space
1805 		 */
1806 		if (set_page_guard(zone, &page[size], high, migratetype))
1807 			continue;
1808 
1809 		list_add(&page[size].lru, &area->free_list[migratetype]);
1810 		area->nr_free++;
1811 		set_page_order(&page[size], high);
1812 	}
1813 }
1814 
1815 static void check_new_page_bad(struct page *page)
1816 {
1817 	const char *bad_reason = NULL;
1818 	unsigned long bad_flags = 0;
1819 
1820 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1821 		bad_reason = "nonzero mapcount";
1822 	if (unlikely(page->mapping != NULL))
1823 		bad_reason = "non-NULL mapping";
1824 	if (unlikely(page_ref_count(page) != 0))
1825 		bad_reason = "nonzero _count";
1826 	if (unlikely(page->flags & __PG_HWPOISON)) {
1827 		bad_reason = "HWPoisoned (hardware-corrupted)";
1828 		bad_flags = __PG_HWPOISON;
1829 		/* Don't complain about hwpoisoned pages */
1830 		page_mapcount_reset(page); /* remove PageBuddy */
1831 		return;
1832 	}
1833 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1834 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1835 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1836 	}
1837 #ifdef CONFIG_MEMCG
1838 	if (unlikely(page->mem_cgroup))
1839 		bad_reason = "page still charged to cgroup";
1840 #endif
1841 	bad_page(page, bad_reason, bad_flags);
1842 }
1843 
1844 /*
1845  * This page is about to be returned from the page allocator
1846  */
1847 static inline int check_new_page(struct page *page)
1848 {
1849 	if (likely(page_expected_state(page,
1850 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1851 		return 0;
1852 
1853 	check_new_page_bad(page);
1854 	return 1;
1855 }
1856 
1857 static inline bool free_pages_prezeroed(void)
1858 {
1859 	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1860 		page_poisoning_enabled();
1861 }
1862 
1863 #ifdef CONFIG_DEBUG_VM
1864 static bool check_pcp_refill(struct page *page)
1865 {
1866 	return false;
1867 }
1868 
1869 static bool check_new_pcp(struct page *page)
1870 {
1871 	return check_new_page(page);
1872 }
1873 #else
1874 static bool check_pcp_refill(struct page *page)
1875 {
1876 	return check_new_page(page);
1877 }
1878 static bool check_new_pcp(struct page *page)
1879 {
1880 	return false;
1881 }
1882 #endif /* CONFIG_DEBUG_VM */
1883 
1884 static bool check_new_pages(struct page *page, unsigned int order)
1885 {
1886 	int i;
1887 	for (i = 0; i < (1 << order); i++) {
1888 		struct page *p = page + i;
1889 
1890 		if (unlikely(check_new_page(p)))
1891 			return true;
1892 	}
1893 
1894 	return false;
1895 }
1896 
1897 inline void post_alloc_hook(struct page *page, unsigned int order,
1898 				gfp_t gfp_flags)
1899 {
1900 	set_page_private(page, 0);
1901 	set_page_refcounted(page);
1902 
1903 	arch_alloc_page(page, order);
1904 	kernel_map_pages(page, 1 << order, 1);
1905 	kernel_poison_pages(page, 1 << order, 1);
1906 	kasan_alloc_pages(page, order);
1907 	set_page_owner(page, order, gfp_flags);
1908 }
1909 
1910 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1911 							unsigned int alloc_flags)
1912 {
1913 	int i;
1914 
1915 	post_alloc_hook(page, order, gfp_flags);
1916 
1917 	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1918 		for (i = 0; i < (1 << order); i++)
1919 			clear_highpage(page + i);
1920 
1921 	if (order && (gfp_flags & __GFP_COMP))
1922 		prep_compound_page(page, order);
1923 
1924 	/*
1925 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1926 	 * allocate the page. The expectation is that the caller is taking
1927 	 * steps that will free more memory. The caller should avoid the page
1928 	 * being used for !PFMEMALLOC purposes.
1929 	 */
1930 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1931 		set_page_pfmemalloc(page);
1932 	else
1933 		clear_page_pfmemalloc(page);
1934 }
1935 
1936 /*
1937  * Go through the free lists for the given migratetype and remove
1938  * the smallest available page from the freelists
1939  */
1940 static __always_inline
1941 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1942 						int migratetype)
1943 {
1944 	unsigned int current_order;
1945 	struct free_area *area;
1946 	struct page *page;
1947 
1948 	/* Find a page of the appropriate size in the preferred list */
1949 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1950 		area = &(zone->free_area[current_order]);
1951 		page = list_first_entry_or_null(&area->free_list[migratetype],
1952 							struct page, lru);
1953 		if (!page)
1954 			continue;
1955 		list_del(&page->lru);
1956 		rmv_page_order(page);
1957 		area->nr_free--;
1958 		expand(zone, page, order, current_order, area, migratetype);
1959 		set_pcppage_migratetype(page, migratetype);
1960 		return page;
1961 	}
1962 
1963 	return NULL;
1964 }
1965 
1966 
1967 /*
1968  * This array describes the order lists are fallen back to when
1969  * the free lists for the desirable migrate type are depleted
1970  */
1971 static int fallbacks[MIGRATE_TYPES][4] = {
1972 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
1973 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
1974 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1975 #ifdef CONFIG_CMA
1976 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1977 #endif
1978 #ifdef CONFIG_MEMORY_ISOLATION
1979 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1980 #endif
1981 };
1982 
1983 #ifdef CONFIG_CMA
1984 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1985 					unsigned int order)
1986 {
1987 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1988 }
1989 #else
1990 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1991 					unsigned int order) { return NULL; }
1992 #endif
1993 
1994 /*
1995  * Move the free pages in a range to the free lists of the requested type.
1996  * Note that start_page and end_pages are not aligned on a pageblock
1997  * boundary. If alignment is required, use move_freepages_block()
1998  */
1999 static int move_freepages(struct zone *zone,
2000 			  struct page *start_page, struct page *end_page,
2001 			  int migratetype, int *num_movable)
2002 {
2003 	struct page *page;
2004 	unsigned int order;
2005 	int pages_moved = 0;
2006 
2007 #ifndef CONFIG_HOLES_IN_ZONE
2008 	/*
2009 	 * page_zone is not safe to call in this context when
2010 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
2011 	 * anyway as we check zone boundaries in move_freepages_block().
2012 	 * Remove at a later date when no bug reports exist related to
2013 	 * grouping pages by mobility
2014 	 */
2015 	VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
2016 	          pfn_valid(page_to_pfn(end_page)) &&
2017 	          page_zone(start_page) != page_zone(end_page));
2018 #endif
2019 
2020 	if (num_movable)
2021 		*num_movable = 0;
2022 
2023 	for (page = start_page; page <= end_page;) {
2024 		if (!pfn_valid_within(page_to_pfn(page))) {
2025 			page++;
2026 			continue;
2027 		}
2028 
2029 		/* Make sure we are not inadvertently changing nodes */
2030 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2031 
2032 		if (!PageBuddy(page)) {
2033 			/*
2034 			 * We assume that pages that could be isolated for
2035 			 * migration are movable. But we don't actually try
2036 			 * isolating, as that would be expensive.
2037 			 */
2038 			if (num_movable &&
2039 					(PageLRU(page) || __PageMovable(page)))
2040 				(*num_movable)++;
2041 
2042 			page++;
2043 			continue;
2044 		}
2045 
2046 		order = page_order(page);
2047 		list_move(&page->lru,
2048 			  &zone->free_area[order].free_list[migratetype]);
2049 		page += 1 << order;
2050 		pages_moved += 1 << order;
2051 	}
2052 
2053 	return pages_moved;
2054 }
2055 
2056 int move_freepages_block(struct zone *zone, struct page *page,
2057 				int migratetype, int *num_movable)
2058 {
2059 	unsigned long start_pfn, end_pfn;
2060 	struct page *start_page, *end_page;
2061 
2062 	start_pfn = page_to_pfn(page);
2063 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2064 	start_page = pfn_to_page(start_pfn);
2065 	end_page = start_page + pageblock_nr_pages - 1;
2066 	end_pfn = start_pfn + pageblock_nr_pages - 1;
2067 
2068 	/* Do not cross zone boundaries */
2069 	if (!zone_spans_pfn(zone, start_pfn))
2070 		start_page = page;
2071 	if (!zone_spans_pfn(zone, end_pfn))
2072 		return 0;
2073 
2074 	return move_freepages(zone, start_page, end_page, migratetype,
2075 								num_movable);
2076 }
2077 
2078 static void change_pageblock_range(struct page *pageblock_page,
2079 					int start_order, int migratetype)
2080 {
2081 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2082 
2083 	while (nr_pageblocks--) {
2084 		set_pageblock_migratetype(pageblock_page, migratetype);
2085 		pageblock_page += pageblock_nr_pages;
2086 	}
2087 }
2088 
2089 /*
2090  * When we are falling back to another migratetype during allocation, try to
2091  * steal extra free pages from the same pageblocks to satisfy further
2092  * allocations, instead of polluting multiple pageblocks.
2093  *
2094  * If we are stealing a relatively large buddy page, it is likely there will
2095  * be more free pages in the pageblock, so try to steal them all. For
2096  * reclaimable and unmovable allocations, we steal regardless of page size,
2097  * as fragmentation caused by those allocations polluting movable pageblocks
2098  * is worse than movable allocations stealing from unmovable and reclaimable
2099  * pageblocks.
2100  */
2101 static bool can_steal_fallback(unsigned int order, int start_mt)
2102 {
2103 	/*
2104 	 * Leaving this order check is intended, although there is
2105 	 * relaxed order check in next check. The reason is that
2106 	 * we can actually steal whole pageblock if this condition met,
2107 	 * but, below check doesn't guarantee it and that is just heuristic
2108 	 * so could be changed anytime.
2109 	 */
2110 	if (order >= pageblock_order)
2111 		return true;
2112 
2113 	if (order >= pageblock_order / 2 ||
2114 		start_mt == MIGRATE_RECLAIMABLE ||
2115 		start_mt == MIGRATE_UNMOVABLE ||
2116 		page_group_by_mobility_disabled)
2117 		return true;
2118 
2119 	return false;
2120 }
2121 
2122 /*
2123  * This function implements actual steal behaviour. If order is large enough,
2124  * we can steal whole pageblock. If not, we first move freepages in this
2125  * pageblock to our migratetype and determine how many already-allocated pages
2126  * are there in the pageblock with a compatible migratetype. If at least half
2127  * of pages are free or compatible, we can change migratetype of the pageblock
2128  * itself, so pages freed in the future will be put on the correct free list.
2129  */
2130 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2131 					int start_type, bool whole_block)
2132 {
2133 	unsigned int current_order = page_order(page);
2134 	struct free_area *area;
2135 	int free_pages, movable_pages, alike_pages;
2136 	int old_block_type;
2137 
2138 	old_block_type = get_pageblock_migratetype(page);
2139 
2140 	/*
2141 	 * This can happen due to races and we want to prevent broken
2142 	 * highatomic accounting.
2143 	 */
2144 	if (is_migrate_highatomic(old_block_type))
2145 		goto single_page;
2146 
2147 	/* Take ownership for orders >= pageblock_order */
2148 	if (current_order >= pageblock_order) {
2149 		change_pageblock_range(page, current_order, start_type);
2150 		goto single_page;
2151 	}
2152 
2153 	/* We are not allowed to try stealing from the whole block */
2154 	if (!whole_block)
2155 		goto single_page;
2156 
2157 	free_pages = move_freepages_block(zone, page, start_type,
2158 						&movable_pages);
2159 	/*
2160 	 * Determine how many pages are compatible with our allocation.
2161 	 * For movable allocation, it's the number of movable pages which
2162 	 * we just obtained. For other types it's a bit more tricky.
2163 	 */
2164 	if (start_type == MIGRATE_MOVABLE) {
2165 		alike_pages = movable_pages;
2166 	} else {
2167 		/*
2168 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2169 		 * to MOVABLE pageblock, consider all non-movable pages as
2170 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2171 		 * vice versa, be conservative since we can't distinguish the
2172 		 * exact migratetype of non-movable pages.
2173 		 */
2174 		if (old_block_type == MIGRATE_MOVABLE)
2175 			alike_pages = pageblock_nr_pages
2176 						- (free_pages + movable_pages);
2177 		else
2178 			alike_pages = 0;
2179 	}
2180 
2181 	/* moving whole block can fail due to zone boundary conditions */
2182 	if (!free_pages)
2183 		goto single_page;
2184 
2185 	/*
2186 	 * If a sufficient number of pages in the block are either free or of
2187 	 * comparable migratability as our allocation, claim the whole block.
2188 	 */
2189 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2190 			page_group_by_mobility_disabled)
2191 		set_pageblock_migratetype(page, start_type);
2192 
2193 	return;
2194 
2195 single_page:
2196 	area = &zone->free_area[current_order];
2197 	list_move(&page->lru, &area->free_list[start_type]);
2198 }
2199 
2200 /*
2201  * Check whether there is a suitable fallback freepage with requested order.
2202  * If only_stealable is true, this function returns fallback_mt only if
2203  * we can steal other freepages all together. This would help to reduce
2204  * fragmentation due to mixed migratetype pages in one pageblock.
2205  */
2206 int find_suitable_fallback(struct free_area *area, unsigned int order,
2207 			int migratetype, bool only_stealable, bool *can_steal)
2208 {
2209 	int i;
2210 	int fallback_mt;
2211 
2212 	if (area->nr_free == 0)
2213 		return -1;
2214 
2215 	*can_steal = false;
2216 	for (i = 0;; i++) {
2217 		fallback_mt = fallbacks[migratetype][i];
2218 		if (fallback_mt == MIGRATE_TYPES)
2219 			break;
2220 
2221 		if (list_empty(&area->free_list[fallback_mt]))
2222 			continue;
2223 
2224 		if (can_steal_fallback(order, migratetype))
2225 			*can_steal = true;
2226 
2227 		if (!only_stealable)
2228 			return fallback_mt;
2229 
2230 		if (*can_steal)
2231 			return fallback_mt;
2232 	}
2233 
2234 	return -1;
2235 }
2236 
2237 /*
2238  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2239  * there are no empty page blocks that contain a page with a suitable order
2240  */
2241 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2242 				unsigned int alloc_order)
2243 {
2244 	int mt;
2245 	unsigned long max_managed, flags;
2246 
2247 	/*
2248 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2249 	 * Check is race-prone but harmless.
2250 	 */
2251 	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2252 	if (zone->nr_reserved_highatomic >= max_managed)
2253 		return;
2254 
2255 	spin_lock_irqsave(&zone->lock, flags);
2256 
2257 	/* Recheck the nr_reserved_highatomic limit under the lock */
2258 	if (zone->nr_reserved_highatomic >= max_managed)
2259 		goto out_unlock;
2260 
2261 	/* Yoink! */
2262 	mt = get_pageblock_migratetype(page);
2263 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2264 	    && !is_migrate_cma(mt)) {
2265 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2266 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2267 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2268 	}
2269 
2270 out_unlock:
2271 	spin_unlock_irqrestore(&zone->lock, flags);
2272 }
2273 
2274 /*
2275  * Used when an allocation is about to fail under memory pressure. This
2276  * potentially hurts the reliability of high-order allocations when under
2277  * intense memory pressure but failed atomic allocations should be easier
2278  * to recover from than an OOM.
2279  *
2280  * If @force is true, try to unreserve a pageblock even though highatomic
2281  * pageblock is exhausted.
2282  */
2283 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2284 						bool force)
2285 {
2286 	struct zonelist *zonelist = ac->zonelist;
2287 	unsigned long flags;
2288 	struct zoneref *z;
2289 	struct zone *zone;
2290 	struct page *page;
2291 	int order;
2292 	bool ret;
2293 
2294 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2295 								ac->nodemask) {
2296 		/*
2297 		 * Preserve at least one pageblock unless memory pressure
2298 		 * is really high.
2299 		 */
2300 		if (!force && zone->nr_reserved_highatomic <=
2301 					pageblock_nr_pages)
2302 			continue;
2303 
2304 		spin_lock_irqsave(&zone->lock, flags);
2305 		for (order = 0; order < MAX_ORDER; order++) {
2306 			struct free_area *area = &(zone->free_area[order]);
2307 
2308 			page = list_first_entry_or_null(
2309 					&area->free_list[MIGRATE_HIGHATOMIC],
2310 					struct page, lru);
2311 			if (!page)
2312 				continue;
2313 
2314 			/*
2315 			 * In page freeing path, migratetype change is racy so
2316 			 * we can counter several free pages in a pageblock
2317 			 * in this loop althoug we changed the pageblock type
2318 			 * from highatomic to ac->migratetype. So we should
2319 			 * adjust the count once.
2320 			 */
2321 			if (is_migrate_highatomic_page(page)) {
2322 				/*
2323 				 * It should never happen but changes to
2324 				 * locking could inadvertently allow a per-cpu
2325 				 * drain to add pages to MIGRATE_HIGHATOMIC
2326 				 * while unreserving so be safe and watch for
2327 				 * underflows.
2328 				 */
2329 				zone->nr_reserved_highatomic -= min(
2330 						pageblock_nr_pages,
2331 						zone->nr_reserved_highatomic);
2332 			}
2333 
2334 			/*
2335 			 * Convert to ac->migratetype and avoid the normal
2336 			 * pageblock stealing heuristics. Minimally, the caller
2337 			 * is doing the work and needs the pages. More
2338 			 * importantly, if the block was always converted to
2339 			 * MIGRATE_UNMOVABLE or another type then the number
2340 			 * of pageblocks that cannot be completely freed
2341 			 * may increase.
2342 			 */
2343 			set_pageblock_migratetype(page, ac->migratetype);
2344 			ret = move_freepages_block(zone, page, ac->migratetype,
2345 									NULL);
2346 			if (ret) {
2347 				spin_unlock_irqrestore(&zone->lock, flags);
2348 				return ret;
2349 			}
2350 		}
2351 		spin_unlock_irqrestore(&zone->lock, flags);
2352 	}
2353 
2354 	return false;
2355 }
2356 
2357 /*
2358  * Try finding a free buddy page on the fallback list and put it on the free
2359  * list of requested migratetype, possibly along with other pages from the same
2360  * block, depending on fragmentation avoidance heuristics. Returns true if
2361  * fallback was found so that __rmqueue_smallest() can grab it.
2362  *
2363  * The use of signed ints for order and current_order is a deliberate
2364  * deviation from the rest of this file, to make the for loop
2365  * condition simpler.
2366  */
2367 static __always_inline bool
2368 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2369 {
2370 	struct free_area *area;
2371 	int current_order;
2372 	struct page *page;
2373 	int fallback_mt;
2374 	bool can_steal;
2375 
2376 	/*
2377 	 * Find the largest available free page in the other list. This roughly
2378 	 * approximates finding the pageblock with the most free pages, which
2379 	 * would be too costly to do exactly.
2380 	 */
2381 	for (current_order = MAX_ORDER - 1; current_order >= order;
2382 				--current_order) {
2383 		area = &(zone->free_area[current_order]);
2384 		fallback_mt = find_suitable_fallback(area, current_order,
2385 				start_migratetype, false, &can_steal);
2386 		if (fallback_mt == -1)
2387 			continue;
2388 
2389 		/*
2390 		 * We cannot steal all free pages from the pageblock and the
2391 		 * requested migratetype is movable. In that case it's better to
2392 		 * steal and split the smallest available page instead of the
2393 		 * largest available page, because even if the next movable
2394 		 * allocation falls back into a different pageblock than this
2395 		 * one, it won't cause permanent fragmentation.
2396 		 */
2397 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2398 					&& current_order > order)
2399 			goto find_smallest;
2400 
2401 		goto do_steal;
2402 	}
2403 
2404 	return false;
2405 
2406 find_smallest:
2407 	for (current_order = order; current_order < MAX_ORDER;
2408 							current_order++) {
2409 		area = &(zone->free_area[current_order]);
2410 		fallback_mt = find_suitable_fallback(area, current_order,
2411 				start_migratetype, false, &can_steal);
2412 		if (fallback_mt != -1)
2413 			break;
2414 	}
2415 
2416 	/*
2417 	 * This should not happen - we already found a suitable fallback
2418 	 * when looking for the largest page.
2419 	 */
2420 	VM_BUG_ON(current_order == MAX_ORDER);
2421 
2422 do_steal:
2423 	page = list_first_entry(&area->free_list[fallback_mt],
2424 							struct page, lru);
2425 
2426 	steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2427 
2428 	trace_mm_page_alloc_extfrag(page, order, current_order,
2429 		start_migratetype, fallback_mt);
2430 
2431 	return true;
2432 
2433 }
2434 
2435 /*
2436  * Do the hard work of removing an element from the buddy allocator.
2437  * Call me with the zone->lock already held.
2438  */
2439 static __always_inline struct page *
2440 __rmqueue(struct zone *zone, unsigned int order, int migratetype)
2441 {
2442 	struct page *page;
2443 
2444 retry:
2445 	page = __rmqueue_smallest(zone, order, migratetype);
2446 	if (unlikely(!page)) {
2447 		if (migratetype == MIGRATE_MOVABLE)
2448 			page = __rmqueue_cma_fallback(zone, order);
2449 
2450 		if (!page && __rmqueue_fallback(zone, order, migratetype))
2451 			goto retry;
2452 	}
2453 
2454 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2455 	return page;
2456 }
2457 
2458 /*
2459  * Obtain a specified number of elements from the buddy allocator, all under
2460  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2461  * Returns the number of new pages which were placed at *list.
2462  */
2463 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2464 			unsigned long count, struct list_head *list,
2465 			int migratetype)
2466 {
2467 	int i, alloced = 0;
2468 
2469 	spin_lock(&zone->lock);
2470 	for (i = 0; i < count; ++i) {
2471 		struct page *page = __rmqueue(zone, order, migratetype);
2472 		if (unlikely(page == NULL))
2473 			break;
2474 
2475 		if (unlikely(check_pcp_refill(page)))
2476 			continue;
2477 
2478 		/*
2479 		 * Split buddy pages returned by expand() are received here in
2480 		 * physical page order. The page is added to the tail of
2481 		 * caller's list. From the callers perspective, the linked list
2482 		 * is ordered by page number under some conditions. This is
2483 		 * useful for IO devices that can forward direction from the
2484 		 * head, thus also in the physical page order. This is useful
2485 		 * for IO devices that can merge IO requests if the physical
2486 		 * pages are ordered properly.
2487 		 */
2488 		list_add_tail(&page->lru, list);
2489 		alloced++;
2490 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2491 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2492 					      -(1 << order));
2493 	}
2494 
2495 	/*
2496 	 * i pages were removed from the buddy list even if some leak due
2497 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2498 	 * on i. Do not confuse with 'alloced' which is the number of
2499 	 * pages added to the pcp list.
2500 	 */
2501 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2502 	spin_unlock(&zone->lock);
2503 	return alloced;
2504 }
2505 
2506 #ifdef CONFIG_NUMA
2507 /*
2508  * Called from the vmstat counter updater to drain pagesets of this
2509  * currently executing processor on remote nodes after they have
2510  * expired.
2511  *
2512  * Note that this function must be called with the thread pinned to
2513  * a single processor.
2514  */
2515 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2516 {
2517 	unsigned long flags;
2518 	int to_drain, batch;
2519 
2520 	local_irq_save(flags);
2521 	batch = READ_ONCE(pcp->batch);
2522 	to_drain = min(pcp->count, batch);
2523 	if (to_drain > 0)
2524 		free_pcppages_bulk(zone, to_drain, pcp);
2525 	local_irq_restore(flags);
2526 }
2527 #endif
2528 
2529 /*
2530  * Drain pcplists of the indicated processor and zone.
2531  *
2532  * The processor must either be the current processor and the
2533  * thread pinned to the current processor or a processor that
2534  * is not online.
2535  */
2536 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2537 {
2538 	unsigned long flags;
2539 	struct per_cpu_pageset *pset;
2540 	struct per_cpu_pages *pcp;
2541 
2542 	local_irq_save(flags);
2543 	pset = per_cpu_ptr(zone->pageset, cpu);
2544 
2545 	pcp = &pset->pcp;
2546 	if (pcp->count)
2547 		free_pcppages_bulk(zone, pcp->count, pcp);
2548 	local_irq_restore(flags);
2549 }
2550 
2551 /*
2552  * Drain pcplists of all zones on the indicated processor.
2553  *
2554  * The processor must either be the current processor and the
2555  * thread pinned to the current processor or a processor that
2556  * is not online.
2557  */
2558 static void drain_pages(unsigned int cpu)
2559 {
2560 	struct zone *zone;
2561 
2562 	for_each_populated_zone(zone) {
2563 		drain_pages_zone(cpu, zone);
2564 	}
2565 }
2566 
2567 /*
2568  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2569  *
2570  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2571  * the single zone's pages.
2572  */
2573 void drain_local_pages(struct zone *zone)
2574 {
2575 	int cpu = smp_processor_id();
2576 
2577 	if (zone)
2578 		drain_pages_zone(cpu, zone);
2579 	else
2580 		drain_pages(cpu);
2581 }
2582 
2583 static void drain_local_pages_wq(struct work_struct *work)
2584 {
2585 	/*
2586 	 * drain_all_pages doesn't use proper cpu hotplug protection so
2587 	 * we can race with cpu offline when the WQ can move this from
2588 	 * a cpu pinned worker to an unbound one. We can operate on a different
2589 	 * cpu which is allright but we also have to make sure to not move to
2590 	 * a different one.
2591 	 */
2592 	preempt_disable();
2593 	drain_local_pages(NULL);
2594 	preempt_enable();
2595 }
2596 
2597 /*
2598  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2599  *
2600  * When zone parameter is non-NULL, spill just the single zone's pages.
2601  *
2602  * Note that this can be extremely slow as the draining happens in a workqueue.
2603  */
2604 void drain_all_pages(struct zone *zone)
2605 {
2606 	int cpu;
2607 
2608 	/*
2609 	 * Allocate in the BSS so we wont require allocation in
2610 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2611 	 */
2612 	static cpumask_t cpus_with_pcps;
2613 
2614 	/*
2615 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
2616 	 * initialized.
2617 	 */
2618 	if (WARN_ON_ONCE(!mm_percpu_wq))
2619 		return;
2620 
2621 	/*
2622 	 * Do not drain if one is already in progress unless it's specific to
2623 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2624 	 * the drain to be complete when the call returns.
2625 	 */
2626 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2627 		if (!zone)
2628 			return;
2629 		mutex_lock(&pcpu_drain_mutex);
2630 	}
2631 
2632 	/*
2633 	 * We don't care about racing with CPU hotplug event
2634 	 * as offline notification will cause the notified
2635 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2636 	 * disables preemption as part of its processing
2637 	 */
2638 	for_each_online_cpu(cpu) {
2639 		struct per_cpu_pageset *pcp;
2640 		struct zone *z;
2641 		bool has_pcps = false;
2642 
2643 		if (zone) {
2644 			pcp = per_cpu_ptr(zone->pageset, cpu);
2645 			if (pcp->pcp.count)
2646 				has_pcps = true;
2647 		} else {
2648 			for_each_populated_zone(z) {
2649 				pcp = per_cpu_ptr(z->pageset, cpu);
2650 				if (pcp->pcp.count) {
2651 					has_pcps = true;
2652 					break;
2653 				}
2654 			}
2655 		}
2656 
2657 		if (has_pcps)
2658 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2659 		else
2660 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2661 	}
2662 
2663 	for_each_cpu(cpu, &cpus_with_pcps) {
2664 		struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2665 		INIT_WORK(work, drain_local_pages_wq);
2666 		queue_work_on(cpu, mm_percpu_wq, work);
2667 	}
2668 	for_each_cpu(cpu, &cpus_with_pcps)
2669 		flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2670 
2671 	mutex_unlock(&pcpu_drain_mutex);
2672 }
2673 
2674 #ifdef CONFIG_HIBERNATION
2675 
2676 /*
2677  * Touch the watchdog for every WD_PAGE_COUNT pages.
2678  */
2679 #define WD_PAGE_COUNT	(128*1024)
2680 
2681 void mark_free_pages(struct zone *zone)
2682 {
2683 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2684 	unsigned long flags;
2685 	unsigned int order, t;
2686 	struct page *page;
2687 
2688 	if (zone_is_empty(zone))
2689 		return;
2690 
2691 	spin_lock_irqsave(&zone->lock, flags);
2692 
2693 	max_zone_pfn = zone_end_pfn(zone);
2694 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2695 		if (pfn_valid(pfn)) {
2696 			page = pfn_to_page(pfn);
2697 
2698 			if (!--page_count) {
2699 				touch_nmi_watchdog();
2700 				page_count = WD_PAGE_COUNT;
2701 			}
2702 
2703 			if (page_zone(page) != zone)
2704 				continue;
2705 
2706 			if (!swsusp_page_is_forbidden(page))
2707 				swsusp_unset_page_free(page);
2708 		}
2709 
2710 	for_each_migratetype_order(order, t) {
2711 		list_for_each_entry(page,
2712 				&zone->free_area[order].free_list[t], lru) {
2713 			unsigned long i;
2714 
2715 			pfn = page_to_pfn(page);
2716 			for (i = 0; i < (1UL << order); i++) {
2717 				if (!--page_count) {
2718 					touch_nmi_watchdog();
2719 					page_count = WD_PAGE_COUNT;
2720 				}
2721 				swsusp_set_page_free(pfn_to_page(pfn + i));
2722 			}
2723 		}
2724 	}
2725 	spin_unlock_irqrestore(&zone->lock, flags);
2726 }
2727 #endif /* CONFIG_PM */
2728 
2729 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
2730 {
2731 	int migratetype;
2732 
2733 	if (!free_pcp_prepare(page))
2734 		return false;
2735 
2736 	migratetype = get_pfnblock_migratetype(page, pfn);
2737 	set_pcppage_migratetype(page, migratetype);
2738 	return true;
2739 }
2740 
2741 static void free_unref_page_commit(struct page *page, unsigned long pfn)
2742 {
2743 	struct zone *zone = page_zone(page);
2744 	struct per_cpu_pages *pcp;
2745 	int migratetype;
2746 
2747 	migratetype = get_pcppage_migratetype(page);
2748 	__count_vm_event(PGFREE);
2749 
2750 	/*
2751 	 * We only track unmovable, reclaimable and movable on pcp lists.
2752 	 * Free ISOLATE pages back to the allocator because they are being
2753 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2754 	 * areas back if necessary. Otherwise, we may have to free
2755 	 * excessively into the page allocator
2756 	 */
2757 	if (migratetype >= MIGRATE_PCPTYPES) {
2758 		if (unlikely(is_migrate_isolate(migratetype))) {
2759 			free_one_page(zone, page, pfn, 0, migratetype);
2760 			return;
2761 		}
2762 		migratetype = MIGRATE_MOVABLE;
2763 	}
2764 
2765 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2766 	list_add(&page->lru, &pcp->lists[migratetype]);
2767 	pcp->count++;
2768 	if (pcp->count >= pcp->high) {
2769 		unsigned long batch = READ_ONCE(pcp->batch);
2770 		free_pcppages_bulk(zone, batch, pcp);
2771 	}
2772 }
2773 
2774 /*
2775  * Free a 0-order page
2776  */
2777 void free_unref_page(struct page *page)
2778 {
2779 	unsigned long flags;
2780 	unsigned long pfn = page_to_pfn(page);
2781 
2782 	if (!free_unref_page_prepare(page, pfn))
2783 		return;
2784 
2785 	local_irq_save(flags);
2786 	free_unref_page_commit(page, pfn);
2787 	local_irq_restore(flags);
2788 }
2789 
2790 /*
2791  * Free a list of 0-order pages
2792  */
2793 void free_unref_page_list(struct list_head *list)
2794 {
2795 	struct page *page, *next;
2796 	unsigned long flags, pfn;
2797 	int batch_count = 0;
2798 
2799 	/* Prepare pages for freeing */
2800 	list_for_each_entry_safe(page, next, list, lru) {
2801 		pfn = page_to_pfn(page);
2802 		if (!free_unref_page_prepare(page, pfn))
2803 			list_del(&page->lru);
2804 		set_page_private(page, pfn);
2805 	}
2806 
2807 	local_irq_save(flags);
2808 	list_for_each_entry_safe(page, next, list, lru) {
2809 		unsigned long pfn = page_private(page);
2810 
2811 		set_page_private(page, 0);
2812 		trace_mm_page_free_batched(page);
2813 		free_unref_page_commit(page, pfn);
2814 
2815 		/*
2816 		 * Guard against excessive IRQ disabled times when we get
2817 		 * a large list of pages to free.
2818 		 */
2819 		if (++batch_count == SWAP_CLUSTER_MAX) {
2820 			local_irq_restore(flags);
2821 			batch_count = 0;
2822 			local_irq_save(flags);
2823 		}
2824 	}
2825 	local_irq_restore(flags);
2826 }
2827 
2828 /*
2829  * split_page takes a non-compound higher-order page, and splits it into
2830  * n (1<<order) sub-pages: page[0..n]
2831  * Each sub-page must be freed individually.
2832  *
2833  * Note: this is probably too low level an operation for use in drivers.
2834  * Please consult with lkml before using this in your driver.
2835  */
2836 void split_page(struct page *page, unsigned int order)
2837 {
2838 	int i;
2839 
2840 	VM_BUG_ON_PAGE(PageCompound(page), page);
2841 	VM_BUG_ON_PAGE(!page_count(page), page);
2842 
2843 	for (i = 1; i < (1 << order); i++)
2844 		set_page_refcounted(page + i);
2845 	split_page_owner(page, order);
2846 }
2847 EXPORT_SYMBOL_GPL(split_page);
2848 
2849 int __isolate_free_page(struct page *page, unsigned int order)
2850 {
2851 	unsigned long watermark;
2852 	struct zone *zone;
2853 	int mt;
2854 
2855 	BUG_ON(!PageBuddy(page));
2856 
2857 	zone = page_zone(page);
2858 	mt = get_pageblock_migratetype(page);
2859 
2860 	if (!is_migrate_isolate(mt)) {
2861 		/*
2862 		 * Obey watermarks as if the page was being allocated. We can
2863 		 * emulate a high-order watermark check with a raised order-0
2864 		 * watermark, because we already know our high-order page
2865 		 * exists.
2866 		 */
2867 		watermark = min_wmark_pages(zone) + (1UL << order);
2868 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2869 			return 0;
2870 
2871 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2872 	}
2873 
2874 	/* Remove page from free list */
2875 	list_del(&page->lru);
2876 	zone->free_area[order].nr_free--;
2877 	rmv_page_order(page);
2878 
2879 	/*
2880 	 * Set the pageblock if the isolated page is at least half of a
2881 	 * pageblock
2882 	 */
2883 	if (order >= pageblock_order - 1) {
2884 		struct page *endpage = page + (1 << order) - 1;
2885 		for (; page < endpage; page += pageblock_nr_pages) {
2886 			int mt = get_pageblock_migratetype(page);
2887 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2888 			    && !is_migrate_highatomic(mt))
2889 				set_pageblock_migratetype(page,
2890 							  MIGRATE_MOVABLE);
2891 		}
2892 	}
2893 
2894 
2895 	return 1UL << order;
2896 }
2897 
2898 /*
2899  * Update NUMA hit/miss statistics
2900  *
2901  * Must be called with interrupts disabled.
2902  */
2903 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2904 {
2905 #ifdef CONFIG_NUMA
2906 	enum numa_stat_item local_stat = NUMA_LOCAL;
2907 
2908 	/* skip numa counters update if numa stats is disabled */
2909 	if (!static_branch_likely(&vm_numa_stat_key))
2910 		return;
2911 
2912 	if (zone_to_nid(z) != numa_node_id())
2913 		local_stat = NUMA_OTHER;
2914 
2915 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2916 		__inc_numa_state(z, NUMA_HIT);
2917 	else {
2918 		__inc_numa_state(z, NUMA_MISS);
2919 		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
2920 	}
2921 	__inc_numa_state(z, local_stat);
2922 #endif
2923 }
2924 
2925 /* Remove page from the per-cpu list, caller must protect the list */
2926 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2927 			struct per_cpu_pages *pcp,
2928 			struct list_head *list)
2929 {
2930 	struct page *page;
2931 
2932 	do {
2933 		if (list_empty(list)) {
2934 			pcp->count += rmqueue_bulk(zone, 0,
2935 					pcp->batch, list,
2936 					migratetype);
2937 			if (unlikely(list_empty(list)))
2938 				return NULL;
2939 		}
2940 
2941 		page = list_first_entry(list, struct page, lru);
2942 		list_del(&page->lru);
2943 		pcp->count--;
2944 	} while (check_new_pcp(page));
2945 
2946 	return page;
2947 }
2948 
2949 /* Lock and remove page from the per-cpu list */
2950 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2951 			struct zone *zone, unsigned int order,
2952 			gfp_t gfp_flags, int migratetype)
2953 {
2954 	struct per_cpu_pages *pcp;
2955 	struct list_head *list;
2956 	struct page *page;
2957 	unsigned long flags;
2958 
2959 	local_irq_save(flags);
2960 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2961 	list = &pcp->lists[migratetype];
2962 	page = __rmqueue_pcplist(zone,  migratetype, pcp, list);
2963 	if (page) {
2964 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2965 		zone_statistics(preferred_zone, zone);
2966 	}
2967 	local_irq_restore(flags);
2968 	return page;
2969 }
2970 
2971 /*
2972  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2973  */
2974 static inline
2975 struct page *rmqueue(struct zone *preferred_zone,
2976 			struct zone *zone, unsigned int order,
2977 			gfp_t gfp_flags, unsigned int alloc_flags,
2978 			int migratetype)
2979 {
2980 	unsigned long flags;
2981 	struct page *page;
2982 
2983 	if (likely(order == 0)) {
2984 		page = rmqueue_pcplist(preferred_zone, zone, order,
2985 				gfp_flags, migratetype);
2986 		goto out;
2987 	}
2988 
2989 	/*
2990 	 * We most definitely don't want callers attempting to
2991 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
2992 	 */
2993 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2994 	spin_lock_irqsave(&zone->lock, flags);
2995 
2996 	do {
2997 		page = NULL;
2998 		if (alloc_flags & ALLOC_HARDER) {
2999 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3000 			if (page)
3001 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3002 		}
3003 		if (!page)
3004 			page = __rmqueue(zone, order, migratetype);
3005 	} while (page && check_new_pages(page, order));
3006 	spin_unlock(&zone->lock);
3007 	if (!page)
3008 		goto failed;
3009 	__mod_zone_freepage_state(zone, -(1 << order),
3010 				  get_pcppage_migratetype(page));
3011 
3012 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3013 	zone_statistics(preferred_zone, zone);
3014 	local_irq_restore(flags);
3015 
3016 out:
3017 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3018 	return page;
3019 
3020 failed:
3021 	local_irq_restore(flags);
3022 	return NULL;
3023 }
3024 
3025 #ifdef CONFIG_FAIL_PAGE_ALLOC
3026 
3027 static struct {
3028 	struct fault_attr attr;
3029 
3030 	bool ignore_gfp_highmem;
3031 	bool ignore_gfp_reclaim;
3032 	u32 min_order;
3033 } fail_page_alloc = {
3034 	.attr = FAULT_ATTR_INITIALIZER,
3035 	.ignore_gfp_reclaim = true,
3036 	.ignore_gfp_highmem = true,
3037 	.min_order = 1,
3038 };
3039 
3040 static int __init setup_fail_page_alloc(char *str)
3041 {
3042 	return setup_fault_attr(&fail_page_alloc.attr, str);
3043 }
3044 __setup("fail_page_alloc=", setup_fail_page_alloc);
3045 
3046 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3047 {
3048 	if (order < fail_page_alloc.min_order)
3049 		return false;
3050 	if (gfp_mask & __GFP_NOFAIL)
3051 		return false;
3052 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3053 		return false;
3054 	if (fail_page_alloc.ignore_gfp_reclaim &&
3055 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3056 		return false;
3057 
3058 	return should_fail(&fail_page_alloc.attr, 1 << order);
3059 }
3060 
3061 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3062 
3063 static int __init fail_page_alloc_debugfs(void)
3064 {
3065 	umode_t mode = S_IFREG | 0600;
3066 	struct dentry *dir;
3067 
3068 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3069 					&fail_page_alloc.attr);
3070 	if (IS_ERR(dir))
3071 		return PTR_ERR(dir);
3072 
3073 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
3074 				&fail_page_alloc.ignore_gfp_reclaim))
3075 		goto fail;
3076 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3077 				&fail_page_alloc.ignore_gfp_highmem))
3078 		goto fail;
3079 	if (!debugfs_create_u32("min-order", mode, dir,
3080 				&fail_page_alloc.min_order))
3081 		goto fail;
3082 
3083 	return 0;
3084 fail:
3085 	debugfs_remove_recursive(dir);
3086 
3087 	return -ENOMEM;
3088 }
3089 
3090 late_initcall(fail_page_alloc_debugfs);
3091 
3092 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3093 
3094 #else /* CONFIG_FAIL_PAGE_ALLOC */
3095 
3096 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3097 {
3098 	return false;
3099 }
3100 
3101 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3102 
3103 /*
3104  * Return true if free base pages are above 'mark'. For high-order checks it
3105  * will return true of the order-0 watermark is reached and there is at least
3106  * one free page of a suitable size. Checking now avoids taking the zone lock
3107  * to check in the allocation paths if no pages are free.
3108  */
3109 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3110 			 int classzone_idx, unsigned int alloc_flags,
3111 			 long free_pages)
3112 {
3113 	long min = mark;
3114 	int o;
3115 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3116 
3117 	/* free_pages may go negative - that's OK */
3118 	free_pages -= (1 << order) - 1;
3119 
3120 	if (alloc_flags & ALLOC_HIGH)
3121 		min -= min / 2;
3122 
3123 	/*
3124 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3125 	 * the high-atomic reserves. This will over-estimate the size of the
3126 	 * atomic reserve but it avoids a search.
3127 	 */
3128 	if (likely(!alloc_harder)) {
3129 		free_pages -= z->nr_reserved_highatomic;
3130 	} else {
3131 		/*
3132 		 * OOM victims can try even harder than normal ALLOC_HARDER
3133 		 * users on the grounds that it's definitely going to be in
3134 		 * the exit path shortly and free memory. Any allocation it
3135 		 * makes during the free path will be small and short-lived.
3136 		 */
3137 		if (alloc_flags & ALLOC_OOM)
3138 			min -= min / 2;
3139 		else
3140 			min -= min / 4;
3141 	}
3142 
3143 
3144 #ifdef CONFIG_CMA
3145 	/* If allocation can't use CMA areas don't use free CMA pages */
3146 	if (!(alloc_flags & ALLOC_CMA))
3147 		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3148 #endif
3149 
3150 	/*
3151 	 * Check watermarks for an order-0 allocation request. If these
3152 	 * are not met, then a high-order request also cannot go ahead
3153 	 * even if a suitable page happened to be free.
3154 	 */
3155 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3156 		return false;
3157 
3158 	/* If this is an order-0 request then the watermark is fine */
3159 	if (!order)
3160 		return true;
3161 
3162 	/* For a high-order request, check at least one suitable page is free */
3163 	for (o = order; o < MAX_ORDER; o++) {
3164 		struct free_area *area = &z->free_area[o];
3165 		int mt;
3166 
3167 		if (!area->nr_free)
3168 			continue;
3169 
3170 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3171 			if (!list_empty(&area->free_list[mt]))
3172 				return true;
3173 		}
3174 
3175 #ifdef CONFIG_CMA
3176 		if ((alloc_flags & ALLOC_CMA) &&
3177 		    !list_empty(&area->free_list[MIGRATE_CMA])) {
3178 			return true;
3179 		}
3180 #endif
3181 		if (alloc_harder &&
3182 			!list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3183 			return true;
3184 	}
3185 	return false;
3186 }
3187 
3188 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3189 		      int classzone_idx, unsigned int alloc_flags)
3190 {
3191 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3192 					zone_page_state(z, NR_FREE_PAGES));
3193 }
3194 
3195 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3196 		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3197 {
3198 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3199 	long cma_pages = 0;
3200 
3201 #ifdef CONFIG_CMA
3202 	/* If allocation can't use CMA areas don't use free CMA pages */
3203 	if (!(alloc_flags & ALLOC_CMA))
3204 		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3205 #endif
3206 
3207 	/*
3208 	 * Fast check for order-0 only. If this fails then the reserves
3209 	 * need to be calculated. There is a corner case where the check
3210 	 * passes but only the high-order atomic reserve are free. If
3211 	 * the caller is !atomic then it'll uselessly search the free
3212 	 * list. That corner case is then slower but it is harmless.
3213 	 */
3214 	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3215 		return true;
3216 
3217 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3218 					free_pages);
3219 }
3220 
3221 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3222 			unsigned long mark, int classzone_idx)
3223 {
3224 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3225 
3226 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3227 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3228 
3229 	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3230 								free_pages);
3231 }
3232 
3233 #ifdef CONFIG_NUMA
3234 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3235 {
3236 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3237 				RECLAIM_DISTANCE;
3238 }
3239 #else	/* CONFIG_NUMA */
3240 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3241 {
3242 	return true;
3243 }
3244 #endif	/* CONFIG_NUMA */
3245 
3246 /*
3247  * get_page_from_freelist goes through the zonelist trying to allocate
3248  * a page.
3249  */
3250 static struct page *
3251 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3252 						const struct alloc_context *ac)
3253 {
3254 	struct zoneref *z = ac->preferred_zoneref;
3255 	struct zone *zone;
3256 	struct pglist_data *last_pgdat_dirty_limit = NULL;
3257 
3258 	/*
3259 	 * Scan zonelist, looking for a zone with enough free.
3260 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3261 	 */
3262 	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3263 								ac->nodemask) {
3264 		struct page *page;
3265 		unsigned long mark;
3266 
3267 		if (cpusets_enabled() &&
3268 			(alloc_flags & ALLOC_CPUSET) &&
3269 			!__cpuset_zone_allowed(zone, gfp_mask))
3270 				continue;
3271 		/*
3272 		 * When allocating a page cache page for writing, we
3273 		 * want to get it from a node that is within its dirty
3274 		 * limit, such that no single node holds more than its
3275 		 * proportional share of globally allowed dirty pages.
3276 		 * The dirty limits take into account the node's
3277 		 * lowmem reserves and high watermark so that kswapd
3278 		 * should be able to balance it without having to
3279 		 * write pages from its LRU list.
3280 		 *
3281 		 * XXX: For now, allow allocations to potentially
3282 		 * exceed the per-node dirty limit in the slowpath
3283 		 * (spread_dirty_pages unset) before going into reclaim,
3284 		 * which is important when on a NUMA setup the allowed
3285 		 * nodes are together not big enough to reach the
3286 		 * global limit.  The proper fix for these situations
3287 		 * will require awareness of nodes in the
3288 		 * dirty-throttling and the flusher threads.
3289 		 */
3290 		if (ac->spread_dirty_pages) {
3291 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3292 				continue;
3293 
3294 			if (!node_dirty_ok(zone->zone_pgdat)) {
3295 				last_pgdat_dirty_limit = zone->zone_pgdat;
3296 				continue;
3297 			}
3298 		}
3299 
3300 		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3301 		if (!zone_watermark_fast(zone, order, mark,
3302 				       ac_classzone_idx(ac), alloc_flags)) {
3303 			int ret;
3304 
3305 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3306 			/*
3307 			 * Watermark failed for this zone, but see if we can
3308 			 * grow this zone if it contains deferred pages.
3309 			 */
3310 			if (static_branch_unlikely(&deferred_pages)) {
3311 				if (_deferred_grow_zone(zone, order))
3312 					goto try_this_zone;
3313 			}
3314 #endif
3315 			/* Checked here to keep the fast path fast */
3316 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3317 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3318 				goto try_this_zone;
3319 
3320 			if (node_reclaim_mode == 0 ||
3321 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3322 				continue;
3323 
3324 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3325 			switch (ret) {
3326 			case NODE_RECLAIM_NOSCAN:
3327 				/* did not scan */
3328 				continue;
3329 			case NODE_RECLAIM_FULL:
3330 				/* scanned but unreclaimable */
3331 				continue;
3332 			default:
3333 				/* did we reclaim enough */
3334 				if (zone_watermark_ok(zone, order, mark,
3335 						ac_classzone_idx(ac), alloc_flags))
3336 					goto try_this_zone;
3337 
3338 				continue;
3339 			}
3340 		}
3341 
3342 try_this_zone:
3343 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3344 				gfp_mask, alloc_flags, ac->migratetype);
3345 		if (page) {
3346 			prep_new_page(page, order, gfp_mask, alloc_flags);
3347 
3348 			/*
3349 			 * If this is a high-order atomic allocation then check
3350 			 * if the pageblock should be reserved for the future
3351 			 */
3352 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3353 				reserve_highatomic_pageblock(page, zone, order);
3354 
3355 			return page;
3356 		} else {
3357 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3358 			/* Try again if zone has deferred pages */
3359 			if (static_branch_unlikely(&deferred_pages)) {
3360 				if (_deferred_grow_zone(zone, order))
3361 					goto try_this_zone;
3362 			}
3363 #endif
3364 		}
3365 	}
3366 
3367 	return NULL;
3368 }
3369 
3370 /*
3371  * Large machines with many possible nodes should not always dump per-node
3372  * meminfo in irq context.
3373  */
3374 static inline bool should_suppress_show_mem(void)
3375 {
3376 	bool ret = false;
3377 
3378 #if NODES_SHIFT > 8
3379 	ret = in_interrupt();
3380 #endif
3381 	return ret;
3382 }
3383 
3384 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3385 {
3386 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3387 	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3388 
3389 	if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3390 		return;
3391 
3392 	/*
3393 	 * This documents exceptions given to allocations in certain
3394 	 * contexts that are allowed to allocate outside current's set
3395 	 * of allowed nodes.
3396 	 */
3397 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3398 		if (tsk_is_oom_victim(current) ||
3399 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3400 			filter &= ~SHOW_MEM_FILTER_NODES;
3401 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3402 		filter &= ~SHOW_MEM_FILTER_NODES;
3403 
3404 	show_mem(filter, nodemask);
3405 }
3406 
3407 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3408 {
3409 	struct va_format vaf;
3410 	va_list args;
3411 	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3412 				      DEFAULT_RATELIMIT_BURST);
3413 
3414 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3415 		return;
3416 
3417 	va_start(args, fmt);
3418 	vaf.fmt = fmt;
3419 	vaf.va = &args;
3420 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
3421 			current->comm, &vaf, gfp_mask, &gfp_mask,
3422 			nodemask_pr_args(nodemask));
3423 	va_end(args);
3424 
3425 	cpuset_print_current_mems_allowed();
3426 
3427 	dump_stack();
3428 	warn_alloc_show_mem(gfp_mask, nodemask);
3429 }
3430 
3431 static inline struct page *
3432 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3433 			      unsigned int alloc_flags,
3434 			      const struct alloc_context *ac)
3435 {
3436 	struct page *page;
3437 
3438 	page = get_page_from_freelist(gfp_mask, order,
3439 			alloc_flags|ALLOC_CPUSET, ac);
3440 	/*
3441 	 * fallback to ignore cpuset restriction if our nodes
3442 	 * are depleted
3443 	 */
3444 	if (!page)
3445 		page = get_page_from_freelist(gfp_mask, order,
3446 				alloc_flags, ac);
3447 
3448 	return page;
3449 }
3450 
3451 static inline struct page *
3452 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3453 	const struct alloc_context *ac, unsigned long *did_some_progress)
3454 {
3455 	struct oom_control oc = {
3456 		.zonelist = ac->zonelist,
3457 		.nodemask = ac->nodemask,
3458 		.memcg = NULL,
3459 		.gfp_mask = gfp_mask,
3460 		.order = order,
3461 	};
3462 	struct page *page;
3463 
3464 	*did_some_progress = 0;
3465 
3466 	/*
3467 	 * Acquire the oom lock.  If that fails, somebody else is
3468 	 * making progress for us.
3469 	 */
3470 	if (!mutex_trylock(&oom_lock)) {
3471 		*did_some_progress = 1;
3472 		schedule_timeout_uninterruptible(1);
3473 		return NULL;
3474 	}
3475 
3476 	/*
3477 	 * Go through the zonelist yet one more time, keep very high watermark
3478 	 * here, this is only to catch a parallel oom killing, we must fail if
3479 	 * we're still under heavy pressure. But make sure that this reclaim
3480 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3481 	 * allocation which will never fail due to oom_lock already held.
3482 	 */
3483 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3484 				      ~__GFP_DIRECT_RECLAIM, order,
3485 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3486 	if (page)
3487 		goto out;
3488 
3489 	/* Coredumps can quickly deplete all memory reserves */
3490 	if (current->flags & PF_DUMPCORE)
3491 		goto out;
3492 	/* The OOM killer will not help higher order allocs */
3493 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3494 		goto out;
3495 	/*
3496 	 * We have already exhausted all our reclaim opportunities without any
3497 	 * success so it is time to admit defeat. We will skip the OOM killer
3498 	 * because it is very likely that the caller has a more reasonable
3499 	 * fallback than shooting a random task.
3500 	 */
3501 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
3502 		goto out;
3503 	/* The OOM killer does not needlessly kill tasks for lowmem */
3504 	if (ac->high_zoneidx < ZONE_NORMAL)
3505 		goto out;
3506 	if (pm_suspended_storage())
3507 		goto out;
3508 	/*
3509 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3510 	 * other request to make a forward progress.
3511 	 * We are in an unfortunate situation where out_of_memory cannot
3512 	 * do much for this context but let's try it to at least get
3513 	 * access to memory reserved if the current task is killed (see
3514 	 * out_of_memory). Once filesystems are ready to handle allocation
3515 	 * failures more gracefully we should just bail out here.
3516 	 */
3517 
3518 	/* The OOM killer may not free memory on a specific node */
3519 	if (gfp_mask & __GFP_THISNODE)
3520 		goto out;
3521 
3522 	/* Exhausted what can be done so it's blame time */
3523 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3524 		*did_some_progress = 1;
3525 
3526 		/*
3527 		 * Help non-failing allocations by giving them access to memory
3528 		 * reserves
3529 		 */
3530 		if (gfp_mask & __GFP_NOFAIL)
3531 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3532 					ALLOC_NO_WATERMARKS, ac);
3533 	}
3534 out:
3535 	mutex_unlock(&oom_lock);
3536 	return page;
3537 }
3538 
3539 /*
3540  * Maximum number of compaction retries wit a progress before OOM
3541  * killer is consider as the only way to move forward.
3542  */
3543 #define MAX_COMPACT_RETRIES 16
3544 
3545 #ifdef CONFIG_COMPACTION
3546 /* Try memory compaction for high-order allocations before reclaim */
3547 static struct page *
3548 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3549 		unsigned int alloc_flags, const struct alloc_context *ac,
3550 		enum compact_priority prio, enum compact_result *compact_result)
3551 {
3552 	struct page *page;
3553 	unsigned int noreclaim_flag;
3554 
3555 	if (!order)
3556 		return NULL;
3557 
3558 	noreclaim_flag = memalloc_noreclaim_save();
3559 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3560 									prio);
3561 	memalloc_noreclaim_restore(noreclaim_flag);
3562 
3563 	if (*compact_result <= COMPACT_INACTIVE)
3564 		return NULL;
3565 
3566 	/*
3567 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3568 	 * count a compaction stall
3569 	 */
3570 	count_vm_event(COMPACTSTALL);
3571 
3572 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3573 
3574 	if (page) {
3575 		struct zone *zone = page_zone(page);
3576 
3577 		zone->compact_blockskip_flush = false;
3578 		compaction_defer_reset(zone, order, true);
3579 		count_vm_event(COMPACTSUCCESS);
3580 		return page;
3581 	}
3582 
3583 	/*
3584 	 * It's bad if compaction run occurs and fails. The most likely reason
3585 	 * is that pages exist, but not enough to satisfy watermarks.
3586 	 */
3587 	count_vm_event(COMPACTFAIL);
3588 
3589 	cond_resched();
3590 
3591 	return NULL;
3592 }
3593 
3594 static inline bool
3595 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3596 		     enum compact_result compact_result,
3597 		     enum compact_priority *compact_priority,
3598 		     int *compaction_retries)
3599 {
3600 	int max_retries = MAX_COMPACT_RETRIES;
3601 	int min_priority;
3602 	bool ret = false;
3603 	int retries = *compaction_retries;
3604 	enum compact_priority priority = *compact_priority;
3605 
3606 	if (!order)
3607 		return false;
3608 
3609 	if (compaction_made_progress(compact_result))
3610 		(*compaction_retries)++;
3611 
3612 	/*
3613 	 * compaction considers all the zone as desperately out of memory
3614 	 * so it doesn't really make much sense to retry except when the
3615 	 * failure could be caused by insufficient priority
3616 	 */
3617 	if (compaction_failed(compact_result))
3618 		goto check_priority;
3619 
3620 	/*
3621 	 * make sure the compaction wasn't deferred or didn't bail out early
3622 	 * due to locks contention before we declare that we should give up.
3623 	 * But do not retry if the given zonelist is not suitable for
3624 	 * compaction.
3625 	 */
3626 	if (compaction_withdrawn(compact_result)) {
3627 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3628 		goto out;
3629 	}
3630 
3631 	/*
3632 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3633 	 * costly ones because they are de facto nofail and invoke OOM
3634 	 * killer to move on while costly can fail and users are ready
3635 	 * to cope with that. 1/4 retries is rather arbitrary but we
3636 	 * would need much more detailed feedback from compaction to
3637 	 * make a better decision.
3638 	 */
3639 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3640 		max_retries /= 4;
3641 	if (*compaction_retries <= max_retries) {
3642 		ret = true;
3643 		goto out;
3644 	}
3645 
3646 	/*
3647 	 * Make sure there are attempts at the highest priority if we exhausted
3648 	 * all retries or failed at the lower priorities.
3649 	 */
3650 check_priority:
3651 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3652 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3653 
3654 	if (*compact_priority > min_priority) {
3655 		(*compact_priority)--;
3656 		*compaction_retries = 0;
3657 		ret = true;
3658 	}
3659 out:
3660 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3661 	return ret;
3662 }
3663 #else
3664 static inline struct page *
3665 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3666 		unsigned int alloc_flags, const struct alloc_context *ac,
3667 		enum compact_priority prio, enum compact_result *compact_result)
3668 {
3669 	*compact_result = COMPACT_SKIPPED;
3670 	return NULL;
3671 }
3672 
3673 static inline bool
3674 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3675 		     enum compact_result compact_result,
3676 		     enum compact_priority *compact_priority,
3677 		     int *compaction_retries)
3678 {
3679 	struct zone *zone;
3680 	struct zoneref *z;
3681 
3682 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3683 		return false;
3684 
3685 	/*
3686 	 * There are setups with compaction disabled which would prefer to loop
3687 	 * inside the allocator rather than hit the oom killer prematurely.
3688 	 * Let's give them a good hope and keep retrying while the order-0
3689 	 * watermarks are OK.
3690 	 */
3691 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3692 					ac->nodemask) {
3693 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3694 					ac_classzone_idx(ac), alloc_flags))
3695 			return true;
3696 	}
3697 	return false;
3698 }
3699 #endif /* CONFIG_COMPACTION */
3700 
3701 #ifdef CONFIG_LOCKDEP
3702 static struct lockdep_map __fs_reclaim_map =
3703 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3704 
3705 static bool __need_fs_reclaim(gfp_t gfp_mask)
3706 {
3707 	gfp_mask = current_gfp_context(gfp_mask);
3708 
3709 	/* no reclaim without waiting on it */
3710 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3711 		return false;
3712 
3713 	/* this guy won't enter reclaim */
3714 	if (current->flags & PF_MEMALLOC)
3715 		return false;
3716 
3717 	/* We're only interested __GFP_FS allocations for now */
3718 	if (!(gfp_mask & __GFP_FS))
3719 		return false;
3720 
3721 	if (gfp_mask & __GFP_NOLOCKDEP)
3722 		return false;
3723 
3724 	return true;
3725 }
3726 
3727 void __fs_reclaim_acquire(void)
3728 {
3729 	lock_map_acquire(&__fs_reclaim_map);
3730 }
3731 
3732 void __fs_reclaim_release(void)
3733 {
3734 	lock_map_release(&__fs_reclaim_map);
3735 }
3736 
3737 void fs_reclaim_acquire(gfp_t gfp_mask)
3738 {
3739 	if (__need_fs_reclaim(gfp_mask))
3740 		__fs_reclaim_acquire();
3741 }
3742 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3743 
3744 void fs_reclaim_release(gfp_t gfp_mask)
3745 {
3746 	if (__need_fs_reclaim(gfp_mask))
3747 		__fs_reclaim_release();
3748 }
3749 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3750 #endif
3751 
3752 /* Perform direct synchronous page reclaim */
3753 static int
3754 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3755 					const struct alloc_context *ac)
3756 {
3757 	struct reclaim_state reclaim_state;
3758 	int progress;
3759 	unsigned int noreclaim_flag;
3760 
3761 	cond_resched();
3762 
3763 	/* We now go into synchronous reclaim */
3764 	cpuset_memory_pressure_bump();
3765 	fs_reclaim_acquire(gfp_mask);
3766 	noreclaim_flag = memalloc_noreclaim_save();
3767 	reclaim_state.reclaimed_slab = 0;
3768 	current->reclaim_state = &reclaim_state;
3769 
3770 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3771 								ac->nodemask);
3772 
3773 	current->reclaim_state = NULL;
3774 	memalloc_noreclaim_restore(noreclaim_flag);
3775 	fs_reclaim_release(gfp_mask);
3776 
3777 	cond_resched();
3778 
3779 	return progress;
3780 }
3781 
3782 /* The really slow allocator path where we enter direct reclaim */
3783 static inline struct page *
3784 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3785 		unsigned int alloc_flags, const struct alloc_context *ac,
3786 		unsigned long *did_some_progress)
3787 {
3788 	struct page *page = NULL;
3789 	bool drained = false;
3790 
3791 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3792 	if (unlikely(!(*did_some_progress)))
3793 		return NULL;
3794 
3795 retry:
3796 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3797 
3798 	/*
3799 	 * If an allocation failed after direct reclaim, it could be because
3800 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3801 	 * Shrink them them and try again
3802 	 */
3803 	if (!page && !drained) {
3804 		unreserve_highatomic_pageblock(ac, false);
3805 		drain_all_pages(NULL);
3806 		drained = true;
3807 		goto retry;
3808 	}
3809 
3810 	return page;
3811 }
3812 
3813 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3814 			     const struct alloc_context *ac)
3815 {
3816 	struct zoneref *z;
3817 	struct zone *zone;
3818 	pg_data_t *last_pgdat = NULL;
3819 	enum zone_type high_zoneidx = ac->high_zoneidx;
3820 
3821 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
3822 					ac->nodemask) {
3823 		if (last_pgdat != zone->zone_pgdat)
3824 			wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
3825 		last_pgdat = zone->zone_pgdat;
3826 	}
3827 }
3828 
3829 static inline unsigned int
3830 gfp_to_alloc_flags(gfp_t gfp_mask)
3831 {
3832 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3833 
3834 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3835 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3836 
3837 	/*
3838 	 * The caller may dip into page reserves a bit more if the caller
3839 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3840 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3841 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3842 	 */
3843 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3844 
3845 	if (gfp_mask & __GFP_ATOMIC) {
3846 		/*
3847 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3848 		 * if it can't schedule.
3849 		 */
3850 		if (!(gfp_mask & __GFP_NOMEMALLOC))
3851 			alloc_flags |= ALLOC_HARDER;
3852 		/*
3853 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3854 		 * comment for __cpuset_node_allowed().
3855 		 */
3856 		alloc_flags &= ~ALLOC_CPUSET;
3857 	} else if (unlikely(rt_task(current)) && !in_interrupt())
3858 		alloc_flags |= ALLOC_HARDER;
3859 
3860 #ifdef CONFIG_CMA
3861 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3862 		alloc_flags |= ALLOC_CMA;
3863 #endif
3864 	return alloc_flags;
3865 }
3866 
3867 static bool oom_reserves_allowed(struct task_struct *tsk)
3868 {
3869 	if (!tsk_is_oom_victim(tsk))
3870 		return false;
3871 
3872 	/*
3873 	 * !MMU doesn't have oom reaper so give access to memory reserves
3874 	 * only to the thread with TIF_MEMDIE set
3875 	 */
3876 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3877 		return false;
3878 
3879 	return true;
3880 }
3881 
3882 /*
3883  * Distinguish requests which really need access to full memory
3884  * reserves from oom victims which can live with a portion of it
3885  */
3886 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3887 {
3888 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3889 		return 0;
3890 	if (gfp_mask & __GFP_MEMALLOC)
3891 		return ALLOC_NO_WATERMARKS;
3892 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3893 		return ALLOC_NO_WATERMARKS;
3894 	if (!in_interrupt()) {
3895 		if (current->flags & PF_MEMALLOC)
3896 			return ALLOC_NO_WATERMARKS;
3897 		else if (oom_reserves_allowed(current))
3898 			return ALLOC_OOM;
3899 	}
3900 
3901 	return 0;
3902 }
3903 
3904 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3905 {
3906 	return !!__gfp_pfmemalloc_flags(gfp_mask);
3907 }
3908 
3909 /*
3910  * Checks whether it makes sense to retry the reclaim to make a forward progress
3911  * for the given allocation request.
3912  *
3913  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3914  * without success, or when we couldn't even meet the watermark if we
3915  * reclaimed all remaining pages on the LRU lists.
3916  *
3917  * Returns true if a retry is viable or false to enter the oom path.
3918  */
3919 static inline bool
3920 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3921 		     struct alloc_context *ac, int alloc_flags,
3922 		     bool did_some_progress, int *no_progress_loops)
3923 {
3924 	struct zone *zone;
3925 	struct zoneref *z;
3926 
3927 	/*
3928 	 * Costly allocations might have made a progress but this doesn't mean
3929 	 * their order will become available due to high fragmentation so
3930 	 * always increment the no progress counter for them
3931 	 */
3932 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3933 		*no_progress_loops = 0;
3934 	else
3935 		(*no_progress_loops)++;
3936 
3937 	/*
3938 	 * Make sure we converge to OOM if we cannot make any progress
3939 	 * several times in the row.
3940 	 */
3941 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3942 		/* Before OOM, exhaust highatomic_reserve */
3943 		return unreserve_highatomic_pageblock(ac, true);
3944 	}
3945 
3946 	/*
3947 	 * Keep reclaiming pages while there is a chance this will lead
3948 	 * somewhere.  If none of the target zones can satisfy our allocation
3949 	 * request even if all reclaimable pages are considered then we are
3950 	 * screwed and have to go OOM.
3951 	 */
3952 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3953 					ac->nodemask) {
3954 		unsigned long available;
3955 		unsigned long reclaimable;
3956 		unsigned long min_wmark = min_wmark_pages(zone);
3957 		bool wmark;
3958 
3959 		available = reclaimable = zone_reclaimable_pages(zone);
3960 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3961 
3962 		/*
3963 		 * Would the allocation succeed if we reclaimed all
3964 		 * reclaimable pages?
3965 		 */
3966 		wmark = __zone_watermark_ok(zone, order, min_wmark,
3967 				ac_classzone_idx(ac), alloc_flags, available);
3968 		trace_reclaim_retry_zone(z, order, reclaimable,
3969 				available, min_wmark, *no_progress_loops, wmark);
3970 		if (wmark) {
3971 			/*
3972 			 * If we didn't make any progress and have a lot of
3973 			 * dirty + writeback pages then we should wait for
3974 			 * an IO to complete to slow down the reclaim and
3975 			 * prevent from pre mature OOM
3976 			 */
3977 			if (!did_some_progress) {
3978 				unsigned long write_pending;
3979 
3980 				write_pending = zone_page_state_snapshot(zone,
3981 							NR_ZONE_WRITE_PENDING);
3982 
3983 				if (2 * write_pending > reclaimable) {
3984 					congestion_wait(BLK_RW_ASYNC, HZ/10);
3985 					return true;
3986 				}
3987 			}
3988 
3989 			/*
3990 			 * Memory allocation/reclaim might be called from a WQ
3991 			 * context and the current implementation of the WQ
3992 			 * concurrency control doesn't recognize that
3993 			 * a particular WQ is congested if the worker thread is
3994 			 * looping without ever sleeping. Therefore we have to
3995 			 * do a short sleep here rather than calling
3996 			 * cond_resched().
3997 			 */
3998 			if (current->flags & PF_WQ_WORKER)
3999 				schedule_timeout_uninterruptible(1);
4000 			else
4001 				cond_resched();
4002 
4003 			return true;
4004 		}
4005 	}
4006 
4007 	return false;
4008 }
4009 
4010 static inline bool
4011 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4012 {
4013 	/*
4014 	 * It's possible that cpuset's mems_allowed and the nodemask from
4015 	 * mempolicy don't intersect. This should be normally dealt with by
4016 	 * policy_nodemask(), but it's possible to race with cpuset update in
4017 	 * such a way the check therein was true, and then it became false
4018 	 * before we got our cpuset_mems_cookie here.
4019 	 * This assumes that for all allocations, ac->nodemask can come only
4020 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4021 	 * when it does not intersect with the cpuset restrictions) or the
4022 	 * caller can deal with a violated nodemask.
4023 	 */
4024 	if (cpusets_enabled() && ac->nodemask &&
4025 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4026 		ac->nodemask = NULL;
4027 		return true;
4028 	}
4029 
4030 	/*
4031 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4032 	 * possible to race with parallel threads in such a way that our
4033 	 * allocation can fail while the mask is being updated. If we are about
4034 	 * to fail, check if the cpuset changed during allocation and if so,
4035 	 * retry.
4036 	 */
4037 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4038 		return true;
4039 
4040 	return false;
4041 }
4042 
4043 static inline struct page *
4044 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4045 						struct alloc_context *ac)
4046 {
4047 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4048 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4049 	struct page *page = NULL;
4050 	unsigned int alloc_flags;
4051 	unsigned long did_some_progress;
4052 	enum compact_priority compact_priority;
4053 	enum compact_result compact_result;
4054 	int compaction_retries;
4055 	int no_progress_loops;
4056 	unsigned int cpuset_mems_cookie;
4057 	int reserve_flags;
4058 
4059 	/*
4060 	 * In the slowpath, we sanity check order to avoid ever trying to
4061 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
4062 	 * be using allocators in order of preference for an area that is
4063 	 * too large.
4064 	 */
4065 	if (order >= MAX_ORDER) {
4066 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4067 		return NULL;
4068 	}
4069 
4070 	/*
4071 	 * We also sanity check to catch abuse of atomic reserves being used by
4072 	 * callers that are not in atomic context.
4073 	 */
4074 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4075 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4076 		gfp_mask &= ~__GFP_ATOMIC;
4077 
4078 retry_cpuset:
4079 	compaction_retries = 0;
4080 	no_progress_loops = 0;
4081 	compact_priority = DEF_COMPACT_PRIORITY;
4082 	cpuset_mems_cookie = read_mems_allowed_begin();
4083 
4084 	/*
4085 	 * The fast path uses conservative alloc_flags to succeed only until
4086 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4087 	 * alloc_flags precisely. So we do that now.
4088 	 */
4089 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4090 
4091 	/*
4092 	 * We need to recalculate the starting point for the zonelist iterator
4093 	 * because we might have used different nodemask in the fast path, or
4094 	 * there was a cpuset modification and we are retrying - otherwise we
4095 	 * could end up iterating over non-eligible zones endlessly.
4096 	 */
4097 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4098 					ac->high_zoneidx, ac->nodemask);
4099 	if (!ac->preferred_zoneref->zone)
4100 		goto nopage;
4101 
4102 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4103 		wake_all_kswapds(order, gfp_mask, ac);
4104 
4105 	/*
4106 	 * The adjusted alloc_flags might result in immediate success, so try
4107 	 * that first
4108 	 */
4109 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4110 	if (page)
4111 		goto got_pg;
4112 
4113 	/*
4114 	 * For costly allocations, try direct compaction first, as it's likely
4115 	 * that we have enough base pages and don't need to reclaim. For non-
4116 	 * movable high-order allocations, do that as well, as compaction will
4117 	 * try prevent permanent fragmentation by migrating from blocks of the
4118 	 * same migratetype.
4119 	 * Don't try this for allocations that are allowed to ignore
4120 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4121 	 */
4122 	if (can_direct_reclaim &&
4123 			(costly_order ||
4124 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4125 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4126 		page = __alloc_pages_direct_compact(gfp_mask, order,
4127 						alloc_flags, ac,
4128 						INIT_COMPACT_PRIORITY,
4129 						&compact_result);
4130 		if (page)
4131 			goto got_pg;
4132 
4133 		/*
4134 		 * Checks for costly allocations with __GFP_NORETRY, which
4135 		 * includes THP page fault allocations
4136 		 */
4137 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4138 			/*
4139 			 * If compaction is deferred for high-order allocations,
4140 			 * it is because sync compaction recently failed. If
4141 			 * this is the case and the caller requested a THP
4142 			 * allocation, we do not want to heavily disrupt the
4143 			 * system, so we fail the allocation instead of entering
4144 			 * direct reclaim.
4145 			 */
4146 			if (compact_result == COMPACT_DEFERRED)
4147 				goto nopage;
4148 
4149 			/*
4150 			 * Looks like reclaim/compaction is worth trying, but
4151 			 * sync compaction could be very expensive, so keep
4152 			 * using async compaction.
4153 			 */
4154 			compact_priority = INIT_COMPACT_PRIORITY;
4155 		}
4156 	}
4157 
4158 retry:
4159 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4160 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4161 		wake_all_kswapds(order, gfp_mask, ac);
4162 
4163 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4164 	if (reserve_flags)
4165 		alloc_flags = reserve_flags;
4166 
4167 	/*
4168 	 * Reset the nodemask and zonelist iterators if memory policies can be
4169 	 * ignored. These allocations are high priority and system rather than
4170 	 * user oriented.
4171 	 */
4172 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4173 		ac->nodemask = NULL;
4174 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4175 					ac->high_zoneidx, ac->nodemask);
4176 	}
4177 
4178 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4179 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4180 	if (page)
4181 		goto got_pg;
4182 
4183 	/* Caller is not willing to reclaim, we can't balance anything */
4184 	if (!can_direct_reclaim)
4185 		goto nopage;
4186 
4187 	/* Avoid recursion of direct reclaim */
4188 	if (current->flags & PF_MEMALLOC)
4189 		goto nopage;
4190 
4191 	/* Try direct reclaim and then allocating */
4192 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4193 							&did_some_progress);
4194 	if (page)
4195 		goto got_pg;
4196 
4197 	/* Try direct compaction and then allocating */
4198 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4199 					compact_priority, &compact_result);
4200 	if (page)
4201 		goto got_pg;
4202 
4203 	/* Do not loop if specifically requested */
4204 	if (gfp_mask & __GFP_NORETRY)
4205 		goto nopage;
4206 
4207 	/*
4208 	 * Do not retry costly high order allocations unless they are
4209 	 * __GFP_RETRY_MAYFAIL
4210 	 */
4211 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4212 		goto nopage;
4213 
4214 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4215 				 did_some_progress > 0, &no_progress_loops))
4216 		goto retry;
4217 
4218 	/*
4219 	 * It doesn't make any sense to retry for the compaction if the order-0
4220 	 * reclaim is not able to make any progress because the current
4221 	 * implementation of the compaction depends on the sufficient amount
4222 	 * of free memory (see __compaction_suitable)
4223 	 */
4224 	if (did_some_progress > 0 &&
4225 			should_compact_retry(ac, order, alloc_flags,
4226 				compact_result, &compact_priority,
4227 				&compaction_retries))
4228 		goto retry;
4229 
4230 
4231 	/* Deal with possible cpuset update races before we start OOM killing */
4232 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4233 		goto retry_cpuset;
4234 
4235 	/* Reclaim has failed us, start killing things */
4236 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4237 	if (page)
4238 		goto got_pg;
4239 
4240 	/* Avoid allocations with no watermarks from looping endlessly */
4241 	if (tsk_is_oom_victim(current) &&
4242 	    (alloc_flags == ALLOC_OOM ||
4243 	     (gfp_mask & __GFP_NOMEMALLOC)))
4244 		goto nopage;
4245 
4246 	/* Retry as long as the OOM killer is making progress */
4247 	if (did_some_progress) {
4248 		no_progress_loops = 0;
4249 		goto retry;
4250 	}
4251 
4252 nopage:
4253 	/* Deal with possible cpuset update races before we fail */
4254 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4255 		goto retry_cpuset;
4256 
4257 	/*
4258 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4259 	 * we always retry
4260 	 */
4261 	if (gfp_mask & __GFP_NOFAIL) {
4262 		/*
4263 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4264 		 * of any new users that actually require GFP_NOWAIT
4265 		 */
4266 		if (WARN_ON_ONCE(!can_direct_reclaim))
4267 			goto fail;
4268 
4269 		/*
4270 		 * PF_MEMALLOC request from this context is rather bizarre
4271 		 * because we cannot reclaim anything and only can loop waiting
4272 		 * for somebody to do a work for us
4273 		 */
4274 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4275 
4276 		/*
4277 		 * non failing costly orders are a hard requirement which we
4278 		 * are not prepared for much so let's warn about these users
4279 		 * so that we can identify them and convert them to something
4280 		 * else.
4281 		 */
4282 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4283 
4284 		/*
4285 		 * Help non-failing allocations by giving them access to memory
4286 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
4287 		 * could deplete whole memory reserves which would just make
4288 		 * the situation worse
4289 		 */
4290 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4291 		if (page)
4292 			goto got_pg;
4293 
4294 		cond_resched();
4295 		goto retry;
4296 	}
4297 fail:
4298 	warn_alloc(gfp_mask, ac->nodemask,
4299 			"page allocation failure: order:%u", order);
4300 got_pg:
4301 	return page;
4302 }
4303 
4304 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4305 		int preferred_nid, nodemask_t *nodemask,
4306 		struct alloc_context *ac, gfp_t *alloc_mask,
4307 		unsigned int *alloc_flags)
4308 {
4309 	ac->high_zoneidx = gfp_zone(gfp_mask);
4310 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4311 	ac->nodemask = nodemask;
4312 	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4313 
4314 	if (cpusets_enabled()) {
4315 		*alloc_mask |= __GFP_HARDWALL;
4316 		if (!ac->nodemask)
4317 			ac->nodemask = &cpuset_current_mems_allowed;
4318 		else
4319 			*alloc_flags |= ALLOC_CPUSET;
4320 	}
4321 
4322 	fs_reclaim_acquire(gfp_mask);
4323 	fs_reclaim_release(gfp_mask);
4324 
4325 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4326 
4327 	if (should_fail_alloc_page(gfp_mask, order))
4328 		return false;
4329 
4330 	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4331 		*alloc_flags |= ALLOC_CMA;
4332 
4333 	return true;
4334 }
4335 
4336 /* Determine whether to spread dirty pages and what the first usable zone */
4337 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4338 {
4339 	/* Dirty zone balancing only done in the fast path */
4340 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4341 
4342 	/*
4343 	 * The preferred zone is used for statistics but crucially it is
4344 	 * also used as the starting point for the zonelist iterator. It
4345 	 * may get reset for allocations that ignore memory policies.
4346 	 */
4347 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4348 					ac->high_zoneidx, ac->nodemask);
4349 }
4350 
4351 /*
4352  * This is the 'heart' of the zoned buddy allocator.
4353  */
4354 struct page *
4355 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4356 							nodemask_t *nodemask)
4357 {
4358 	struct page *page;
4359 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4360 	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4361 	struct alloc_context ac = { };
4362 
4363 	gfp_mask &= gfp_allowed_mask;
4364 	alloc_mask = gfp_mask;
4365 	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4366 		return NULL;
4367 
4368 	finalise_ac(gfp_mask, &ac);
4369 
4370 	/* First allocation attempt */
4371 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4372 	if (likely(page))
4373 		goto out;
4374 
4375 	/*
4376 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4377 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4378 	 * from a particular context which has been marked by
4379 	 * memalloc_no{fs,io}_{save,restore}.
4380 	 */
4381 	alloc_mask = current_gfp_context(gfp_mask);
4382 	ac.spread_dirty_pages = false;
4383 
4384 	/*
4385 	 * Restore the original nodemask if it was potentially replaced with
4386 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4387 	 */
4388 	if (unlikely(ac.nodemask != nodemask))
4389 		ac.nodemask = nodemask;
4390 
4391 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4392 
4393 out:
4394 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4395 	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4396 		__free_pages(page, order);
4397 		page = NULL;
4398 	}
4399 
4400 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4401 
4402 	return page;
4403 }
4404 EXPORT_SYMBOL(__alloc_pages_nodemask);
4405 
4406 /*
4407  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4408  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4409  * you need to access high mem.
4410  */
4411 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4412 {
4413 	struct page *page;
4414 
4415 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4416 	if (!page)
4417 		return 0;
4418 	return (unsigned long) page_address(page);
4419 }
4420 EXPORT_SYMBOL(__get_free_pages);
4421 
4422 unsigned long get_zeroed_page(gfp_t gfp_mask)
4423 {
4424 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4425 }
4426 EXPORT_SYMBOL(get_zeroed_page);
4427 
4428 void __free_pages(struct page *page, unsigned int order)
4429 {
4430 	if (put_page_testzero(page)) {
4431 		if (order == 0)
4432 			free_unref_page(page);
4433 		else
4434 			__free_pages_ok(page, order);
4435 	}
4436 }
4437 
4438 EXPORT_SYMBOL(__free_pages);
4439 
4440 void free_pages(unsigned long addr, unsigned int order)
4441 {
4442 	if (addr != 0) {
4443 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4444 		__free_pages(virt_to_page((void *)addr), order);
4445 	}
4446 }
4447 
4448 EXPORT_SYMBOL(free_pages);
4449 
4450 /*
4451  * Page Fragment:
4452  *  An arbitrary-length arbitrary-offset area of memory which resides
4453  *  within a 0 or higher order page.  Multiple fragments within that page
4454  *  are individually refcounted, in the page's reference counter.
4455  *
4456  * The page_frag functions below provide a simple allocation framework for
4457  * page fragments.  This is used by the network stack and network device
4458  * drivers to provide a backing region of memory for use as either an
4459  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4460  */
4461 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4462 					     gfp_t gfp_mask)
4463 {
4464 	struct page *page = NULL;
4465 	gfp_t gfp = gfp_mask;
4466 
4467 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4468 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4469 		    __GFP_NOMEMALLOC;
4470 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4471 				PAGE_FRAG_CACHE_MAX_ORDER);
4472 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4473 #endif
4474 	if (unlikely(!page))
4475 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4476 
4477 	nc->va = page ? page_address(page) : NULL;
4478 
4479 	return page;
4480 }
4481 
4482 void __page_frag_cache_drain(struct page *page, unsigned int count)
4483 {
4484 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4485 
4486 	if (page_ref_sub_and_test(page, count)) {
4487 		unsigned int order = compound_order(page);
4488 
4489 		if (order == 0)
4490 			free_unref_page(page);
4491 		else
4492 			__free_pages_ok(page, order);
4493 	}
4494 }
4495 EXPORT_SYMBOL(__page_frag_cache_drain);
4496 
4497 void *page_frag_alloc(struct page_frag_cache *nc,
4498 		      unsigned int fragsz, gfp_t gfp_mask)
4499 {
4500 	unsigned int size = PAGE_SIZE;
4501 	struct page *page;
4502 	int offset;
4503 
4504 	if (unlikely(!nc->va)) {
4505 refill:
4506 		page = __page_frag_cache_refill(nc, gfp_mask);
4507 		if (!page)
4508 			return NULL;
4509 
4510 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4511 		/* if size can vary use size else just use PAGE_SIZE */
4512 		size = nc->size;
4513 #endif
4514 		/* Even if we own the page, we do not use atomic_set().
4515 		 * This would break get_page_unless_zero() users.
4516 		 */
4517 		page_ref_add(page, size - 1);
4518 
4519 		/* reset page count bias and offset to start of new frag */
4520 		nc->pfmemalloc = page_is_pfmemalloc(page);
4521 		nc->pagecnt_bias = size;
4522 		nc->offset = size;
4523 	}
4524 
4525 	offset = nc->offset - fragsz;
4526 	if (unlikely(offset < 0)) {
4527 		page = virt_to_page(nc->va);
4528 
4529 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4530 			goto refill;
4531 
4532 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4533 		/* if size can vary use size else just use PAGE_SIZE */
4534 		size = nc->size;
4535 #endif
4536 		/* OK, page count is 0, we can safely set it */
4537 		set_page_count(page, size);
4538 
4539 		/* reset page count bias and offset to start of new frag */
4540 		nc->pagecnt_bias = size;
4541 		offset = size - fragsz;
4542 	}
4543 
4544 	nc->pagecnt_bias--;
4545 	nc->offset = offset;
4546 
4547 	return nc->va + offset;
4548 }
4549 EXPORT_SYMBOL(page_frag_alloc);
4550 
4551 /*
4552  * Frees a page fragment allocated out of either a compound or order 0 page.
4553  */
4554 void page_frag_free(void *addr)
4555 {
4556 	struct page *page = virt_to_head_page(addr);
4557 
4558 	if (unlikely(put_page_testzero(page)))
4559 		__free_pages_ok(page, compound_order(page));
4560 }
4561 EXPORT_SYMBOL(page_frag_free);
4562 
4563 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4564 		size_t size)
4565 {
4566 	if (addr) {
4567 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
4568 		unsigned long used = addr + PAGE_ALIGN(size);
4569 
4570 		split_page(virt_to_page((void *)addr), order);
4571 		while (used < alloc_end) {
4572 			free_page(used);
4573 			used += PAGE_SIZE;
4574 		}
4575 	}
4576 	return (void *)addr;
4577 }
4578 
4579 /**
4580  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4581  * @size: the number of bytes to allocate
4582  * @gfp_mask: GFP flags for the allocation
4583  *
4584  * This function is similar to alloc_pages(), except that it allocates the
4585  * minimum number of pages to satisfy the request.  alloc_pages() can only
4586  * allocate memory in power-of-two pages.
4587  *
4588  * This function is also limited by MAX_ORDER.
4589  *
4590  * Memory allocated by this function must be released by free_pages_exact().
4591  */
4592 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4593 {
4594 	unsigned int order = get_order(size);
4595 	unsigned long addr;
4596 
4597 	addr = __get_free_pages(gfp_mask, order);
4598 	return make_alloc_exact(addr, order, size);
4599 }
4600 EXPORT_SYMBOL(alloc_pages_exact);
4601 
4602 /**
4603  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4604  *			   pages on a node.
4605  * @nid: the preferred node ID where memory should be allocated
4606  * @size: the number of bytes to allocate
4607  * @gfp_mask: GFP flags for the allocation
4608  *
4609  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4610  * back.
4611  */
4612 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4613 {
4614 	unsigned int order = get_order(size);
4615 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
4616 	if (!p)
4617 		return NULL;
4618 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4619 }
4620 
4621 /**
4622  * free_pages_exact - release memory allocated via alloc_pages_exact()
4623  * @virt: the value returned by alloc_pages_exact.
4624  * @size: size of allocation, same value as passed to alloc_pages_exact().
4625  *
4626  * Release the memory allocated by a previous call to alloc_pages_exact.
4627  */
4628 void free_pages_exact(void *virt, size_t size)
4629 {
4630 	unsigned long addr = (unsigned long)virt;
4631 	unsigned long end = addr + PAGE_ALIGN(size);
4632 
4633 	while (addr < end) {
4634 		free_page(addr);
4635 		addr += PAGE_SIZE;
4636 	}
4637 }
4638 EXPORT_SYMBOL(free_pages_exact);
4639 
4640 /**
4641  * nr_free_zone_pages - count number of pages beyond high watermark
4642  * @offset: The zone index of the highest zone
4643  *
4644  * nr_free_zone_pages() counts the number of counts pages which are beyond the
4645  * high watermark within all zones at or below a given zone index.  For each
4646  * zone, the number of pages is calculated as:
4647  *
4648  *     nr_free_zone_pages = managed_pages - high_pages
4649  */
4650 static unsigned long nr_free_zone_pages(int offset)
4651 {
4652 	struct zoneref *z;
4653 	struct zone *zone;
4654 
4655 	/* Just pick one node, since fallback list is circular */
4656 	unsigned long sum = 0;
4657 
4658 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4659 
4660 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4661 		unsigned long size = zone->managed_pages;
4662 		unsigned long high = high_wmark_pages(zone);
4663 		if (size > high)
4664 			sum += size - high;
4665 	}
4666 
4667 	return sum;
4668 }
4669 
4670 /**
4671  * nr_free_buffer_pages - count number of pages beyond high watermark
4672  *
4673  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4674  * watermark within ZONE_DMA and ZONE_NORMAL.
4675  */
4676 unsigned long nr_free_buffer_pages(void)
4677 {
4678 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4679 }
4680 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4681 
4682 /**
4683  * nr_free_pagecache_pages - count number of pages beyond high watermark
4684  *
4685  * nr_free_pagecache_pages() counts the number of pages which are beyond the
4686  * high watermark within all zones.
4687  */
4688 unsigned long nr_free_pagecache_pages(void)
4689 {
4690 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4691 }
4692 
4693 static inline void show_node(struct zone *zone)
4694 {
4695 	if (IS_ENABLED(CONFIG_NUMA))
4696 		printk("Node %d ", zone_to_nid(zone));
4697 }
4698 
4699 long si_mem_available(void)
4700 {
4701 	long available;
4702 	unsigned long pagecache;
4703 	unsigned long wmark_low = 0;
4704 	unsigned long pages[NR_LRU_LISTS];
4705 	struct zone *zone;
4706 	int lru;
4707 
4708 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4709 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4710 
4711 	for_each_zone(zone)
4712 		wmark_low += zone->watermark[WMARK_LOW];
4713 
4714 	/*
4715 	 * Estimate the amount of memory available for userspace allocations,
4716 	 * without causing swapping.
4717 	 */
4718 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4719 
4720 	/*
4721 	 * Not all the page cache can be freed, otherwise the system will
4722 	 * start swapping. Assume at least half of the page cache, or the
4723 	 * low watermark worth of cache, needs to stay.
4724 	 */
4725 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4726 	pagecache -= min(pagecache / 2, wmark_low);
4727 	available += pagecache;
4728 
4729 	/*
4730 	 * Part of the reclaimable slab consists of items that are in use,
4731 	 * and cannot be freed. Cap this estimate at the low watermark.
4732 	 */
4733 	available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
4734 		     min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
4735 			 wmark_low);
4736 
4737 	/*
4738 	 * Part of the kernel memory, which can be released under memory
4739 	 * pressure.
4740 	 */
4741 	available += global_node_page_state(NR_INDIRECTLY_RECLAIMABLE_BYTES) >>
4742 		PAGE_SHIFT;
4743 
4744 	if (available < 0)
4745 		available = 0;
4746 	return available;
4747 }
4748 EXPORT_SYMBOL_GPL(si_mem_available);
4749 
4750 void si_meminfo(struct sysinfo *val)
4751 {
4752 	val->totalram = totalram_pages;
4753 	val->sharedram = global_node_page_state(NR_SHMEM);
4754 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
4755 	val->bufferram = nr_blockdev_pages();
4756 	val->totalhigh = totalhigh_pages;
4757 	val->freehigh = nr_free_highpages();
4758 	val->mem_unit = PAGE_SIZE;
4759 }
4760 
4761 EXPORT_SYMBOL(si_meminfo);
4762 
4763 #ifdef CONFIG_NUMA
4764 void si_meminfo_node(struct sysinfo *val, int nid)
4765 {
4766 	int zone_type;		/* needs to be signed */
4767 	unsigned long managed_pages = 0;
4768 	unsigned long managed_highpages = 0;
4769 	unsigned long free_highpages = 0;
4770 	pg_data_t *pgdat = NODE_DATA(nid);
4771 
4772 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4773 		managed_pages += pgdat->node_zones[zone_type].managed_pages;
4774 	val->totalram = managed_pages;
4775 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
4776 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4777 #ifdef CONFIG_HIGHMEM
4778 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4779 		struct zone *zone = &pgdat->node_zones[zone_type];
4780 
4781 		if (is_highmem(zone)) {
4782 			managed_highpages += zone->managed_pages;
4783 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4784 		}
4785 	}
4786 	val->totalhigh = managed_highpages;
4787 	val->freehigh = free_highpages;
4788 #else
4789 	val->totalhigh = managed_highpages;
4790 	val->freehigh = free_highpages;
4791 #endif
4792 	val->mem_unit = PAGE_SIZE;
4793 }
4794 #endif
4795 
4796 /*
4797  * Determine whether the node should be displayed or not, depending on whether
4798  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4799  */
4800 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4801 {
4802 	if (!(flags & SHOW_MEM_FILTER_NODES))
4803 		return false;
4804 
4805 	/*
4806 	 * no node mask - aka implicit memory numa policy. Do not bother with
4807 	 * the synchronization - read_mems_allowed_begin - because we do not
4808 	 * have to be precise here.
4809 	 */
4810 	if (!nodemask)
4811 		nodemask = &cpuset_current_mems_allowed;
4812 
4813 	return !node_isset(nid, *nodemask);
4814 }
4815 
4816 #define K(x) ((x) << (PAGE_SHIFT-10))
4817 
4818 static void show_migration_types(unsigned char type)
4819 {
4820 	static const char types[MIGRATE_TYPES] = {
4821 		[MIGRATE_UNMOVABLE]	= 'U',
4822 		[MIGRATE_MOVABLE]	= 'M',
4823 		[MIGRATE_RECLAIMABLE]	= 'E',
4824 		[MIGRATE_HIGHATOMIC]	= 'H',
4825 #ifdef CONFIG_CMA
4826 		[MIGRATE_CMA]		= 'C',
4827 #endif
4828 #ifdef CONFIG_MEMORY_ISOLATION
4829 		[MIGRATE_ISOLATE]	= 'I',
4830 #endif
4831 	};
4832 	char tmp[MIGRATE_TYPES + 1];
4833 	char *p = tmp;
4834 	int i;
4835 
4836 	for (i = 0; i < MIGRATE_TYPES; i++) {
4837 		if (type & (1 << i))
4838 			*p++ = types[i];
4839 	}
4840 
4841 	*p = '\0';
4842 	printk(KERN_CONT "(%s) ", tmp);
4843 }
4844 
4845 /*
4846  * Show free area list (used inside shift_scroll-lock stuff)
4847  * We also calculate the percentage fragmentation. We do this by counting the
4848  * memory on each free list with the exception of the first item on the list.
4849  *
4850  * Bits in @filter:
4851  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4852  *   cpuset.
4853  */
4854 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4855 {
4856 	unsigned long free_pcp = 0;
4857 	int cpu;
4858 	struct zone *zone;
4859 	pg_data_t *pgdat;
4860 
4861 	for_each_populated_zone(zone) {
4862 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4863 			continue;
4864 
4865 		for_each_online_cpu(cpu)
4866 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4867 	}
4868 
4869 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4870 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4871 		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4872 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4873 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4874 		" free:%lu free_pcp:%lu free_cma:%lu\n",
4875 		global_node_page_state(NR_ACTIVE_ANON),
4876 		global_node_page_state(NR_INACTIVE_ANON),
4877 		global_node_page_state(NR_ISOLATED_ANON),
4878 		global_node_page_state(NR_ACTIVE_FILE),
4879 		global_node_page_state(NR_INACTIVE_FILE),
4880 		global_node_page_state(NR_ISOLATED_FILE),
4881 		global_node_page_state(NR_UNEVICTABLE),
4882 		global_node_page_state(NR_FILE_DIRTY),
4883 		global_node_page_state(NR_WRITEBACK),
4884 		global_node_page_state(NR_UNSTABLE_NFS),
4885 		global_node_page_state(NR_SLAB_RECLAIMABLE),
4886 		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4887 		global_node_page_state(NR_FILE_MAPPED),
4888 		global_node_page_state(NR_SHMEM),
4889 		global_zone_page_state(NR_PAGETABLE),
4890 		global_zone_page_state(NR_BOUNCE),
4891 		global_zone_page_state(NR_FREE_PAGES),
4892 		free_pcp,
4893 		global_zone_page_state(NR_FREE_CMA_PAGES));
4894 
4895 	for_each_online_pgdat(pgdat) {
4896 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4897 			continue;
4898 
4899 		printk("Node %d"
4900 			" active_anon:%lukB"
4901 			" inactive_anon:%lukB"
4902 			" active_file:%lukB"
4903 			" inactive_file:%lukB"
4904 			" unevictable:%lukB"
4905 			" isolated(anon):%lukB"
4906 			" isolated(file):%lukB"
4907 			" mapped:%lukB"
4908 			" dirty:%lukB"
4909 			" writeback:%lukB"
4910 			" shmem:%lukB"
4911 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4912 			" shmem_thp: %lukB"
4913 			" shmem_pmdmapped: %lukB"
4914 			" anon_thp: %lukB"
4915 #endif
4916 			" writeback_tmp:%lukB"
4917 			" unstable:%lukB"
4918 			" all_unreclaimable? %s"
4919 			"\n",
4920 			pgdat->node_id,
4921 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4922 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4923 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4924 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4925 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
4926 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4927 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4928 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
4929 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
4930 			K(node_page_state(pgdat, NR_WRITEBACK)),
4931 			K(node_page_state(pgdat, NR_SHMEM)),
4932 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4933 			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4934 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4935 					* HPAGE_PMD_NR),
4936 			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4937 #endif
4938 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4939 			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4940 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4941 				"yes" : "no");
4942 	}
4943 
4944 	for_each_populated_zone(zone) {
4945 		int i;
4946 
4947 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4948 			continue;
4949 
4950 		free_pcp = 0;
4951 		for_each_online_cpu(cpu)
4952 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4953 
4954 		show_node(zone);
4955 		printk(KERN_CONT
4956 			"%s"
4957 			" free:%lukB"
4958 			" min:%lukB"
4959 			" low:%lukB"
4960 			" high:%lukB"
4961 			" active_anon:%lukB"
4962 			" inactive_anon:%lukB"
4963 			" active_file:%lukB"
4964 			" inactive_file:%lukB"
4965 			" unevictable:%lukB"
4966 			" writepending:%lukB"
4967 			" present:%lukB"
4968 			" managed:%lukB"
4969 			" mlocked:%lukB"
4970 			" kernel_stack:%lukB"
4971 			" pagetables:%lukB"
4972 			" bounce:%lukB"
4973 			" free_pcp:%lukB"
4974 			" local_pcp:%ukB"
4975 			" free_cma:%lukB"
4976 			"\n",
4977 			zone->name,
4978 			K(zone_page_state(zone, NR_FREE_PAGES)),
4979 			K(min_wmark_pages(zone)),
4980 			K(low_wmark_pages(zone)),
4981 			K(high_wmark_pages(zone)),
4982 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4983 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4984 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4985 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4986 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4987 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4988 			K(zone->present_pages),
4989 			K(zone->managed_pages),
4990 			K(zone_page_state(zone, NR_MLOCK)),
4991 			zone_page_state(zone, NR_KERNEL_STACK_KB),
4992 			K(zone_page_state(zone, NR_PAGETABLE)),
4993 			K(zone_page_state(zone, NR_BOUNCE)),
4994 			K(free_pcp),
4995 			K(this_cpu_read(zone->pageset->pcp.count)),
4996 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4997 		printk("lowmem_reserve[]:");
4998 		for (i = 0; i < MAX_NR_ZONES; i++)
4999 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5000 		printk(KERN_CONT "\n");
5001 	}
5002 
5003 	for_each_populated_zone(zone) {
5004 		unsigned int order;
5005 		unsigned long nr[MAX_ORDER], flags, total = 0;
5006 		unsigned char types[MAX_ORDER];
5007 
5008 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5009 			continue;
5010 		show_node(zone);
5011 		printk(KERN_CONT "%s: ", zone->name);
5012 
5013 		spin_lock_irqsave(&zone->lock, flags);
5014 		for (order = 0; order < MAX_ORDER; order++) {
5015 			struct free_area *area = &zone->free_area[order];
5016 			int type;
5017 
5018 			nr[order] = area->nr_free;
5019 			total += nr[order] << order;
5020 
5021 			types[order] = 0;
5022 			for (type = 0; type < MIGRATE_TYPES; type++) {
5023 				if (!list_empty(&area->free_list[type]))
5024 					types[order] |= 1 << type;
5025 			}
5026 		}
5027 		spin_unlock_irqrestore(&zone->lock, flags);
5028 		for (order = 0; order < MAX_ORDER; order++) {
5029 			printk(KERN_CONT "%lu*%lukB ",
5030 			       nr[order], K(1UL) << order);
5031 			if (nr[order])
5032 				show_migration_types(types[order]);
5033 		}
5034 		printk(KERN_CONT "= %lukB\n", K(total));
5035 	}
5036 
5037 	hugetlb_show_meminfo();
5038 
5039 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5040 
5041 	show_swap_cache_info();
5042 }
5043 
5044 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5045 {
5046 	zoneref->zone = zone;
5047 	zoneref->zone_idx = zone_idx(zone);
5048 }
5049 
5050 /*
5051  * Builds allocation fallback zone lists.
5052  *
5053  * Add all populated zones of a node to the zonelist.
5054  */
5055 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5056 {
5057 	struct zone *zone;
5058 	enum zone_type zone_type = MAX_NR_ZONES;
5059 	int nr_zones = 0;
5060 
5061 	do {
5062 		zone_type--;
5063 		zone = pgdat->node_zones + zone_type;
5064 		if (managed_zone(zone)) {
5065 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5066 			check_highest_zone(zone_type);
5067 		}
5068 	} while (zone_type);
5069 
5070 	return nr_zones;
5071 }
5072 
5073 #ifdef CONFIG_NUMA
5074 
5075 static int __parse_numa_zonelist_order(char *s)
5076 {
5077 	/*
5078 	 * We used to support different zonlists modes but they turned
5079 	 * out to be just not useful. Let's keep the warning in place
5080 	 * if somebody still use the cmd line parameter so that we do
5081 	 * not fail it silently
5082 	 */
5083 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5084 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5085 		return -EINVAL;
5086 	}
5087 	return 0;
5088 }
5089 
5090 static __init int setup_numa_zonelist_order(char *s)
5091 {
5092 	if (!s)
5093 		return 0;
5094 
5095 	return __parse_numa_zonelist_order(s);
5096 }
5097 early_param("numa_zonelist_order", setup_numa_zonelist_order);
5098 
5099 char numa_zonelist_order[] = "Node";
5100 
5101 /*
5102  * sysctl handler for numa_zonelist_order
5103  */
5104 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5105 		void __user *buffer, size_t *length,
5106 		loff_t *ppos)
5107 {
5108 	char *str;
5109 	int ret;
5110 
5111 	if (!write)
5112 		return proc_dostring(table, write, buffer, length, ppos);
5113 	str = memdup_user_nul(buffer, 16);
5114 	if (IS_ERR(str))
5115 		return PTR_ERR(str);
5116 
5117 	ret = __parse_numa_zonelist_order(str);
5118 	kfree(str);
5119 	return ret;
5120 }
5121 
5122 
5123 #define MAX_NODE_LOAD (nr_online_nodes)
5124 static int node_load[MAX_NUMNODES];
5125 
5126 /**
5127  * find_next_best_node - find the next node that should appear in a given node's fallback list
5128  * @node: node whose fallback list we're appending
5129  * @used_node_mask: nodemask_t of already used nodes
5130  *
5131  * We use a number of factors to determine which is the next node that should
5132  * appear on a given node's fallback list.  The node should not have appeared
5133  * already in @node's fallback list, and it should be the next closest node
5134  * according to the distance array (which contains arbitrary distance values
5135  * from each node to each node in the system), and should also prefer nodes
5136  * with no CPUs, since presumably they'll have very little allocation pressure
5137  * on them otherwise.
5138  * It returns -1 if no node is found.
5139  */
5140 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5141 {
5142 	int n, val;
5143 	int min_val = INT_MAX;
5144 	int best_node = NUMA_NO_NODE;
5145 	const struct cpumask *tmp = cpumask_of_node(0);
5146 
5147 	/* Use the local node if we haven't already */
5148 	if (!node_isset(node, *used_node_mask)) {
5149 		node_set(node, *used_node_mask);
5150 		return node;
5151 	}
5152 
5153 	for_each_node_state(n, N_MEMORY) {
5154 
5155 		/* Don't want a node to appear more than once */
5156 		if (node_isset(n, *used_node_mask))
5157 			continue;
5158 
5159 		/* Use the distance array to find the distance */
5160 		val = node_distance(node, n);
5161 
5162 		/* Penalize nodes under us ("prefer the next node") */
5163 		val += (n < node);
5164 
5165 		/* Give preference to headless and unused nodes */
5166 		tmp = cpumask_of_node(n);
5167 		if (!cpumask_empty(tmp))
5168 			val += PENALTY_FOR_NODE_WITH_CPUS;
5169 
5170 		/* Slight preference for less loaded node */
5171 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5172 		val += node_load[n];
5173 
5174 		if (val < min_val) {
5175 			min_val = val;
5176 			best_node = n;
5177 		}
5178 	}
5179 
5180 	if (best_node >= 0)
5181 		node_set(best_node, *used_node_mask);
5182 
5183 	return best_node;
5184 }
5185 
5186 
5187 /*
5188  * Build zonelists ordered by node and zones within node.
5189  * This results in maximum locality--normal zone overflows into local
5190  * DMA zone, if any--but risks exhausting DMA zone.
5191  */
5192 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5193 		unsigned nr_nodes)
5194 {
5195 	struct zoneref *zonerefs;
5196 	int i;
5197 
5198 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5199 
5200 	for (i = 0; i < nr_nodes; i++) {
5201 		int nr_zones;
5202 
5203 		pg_data_t *node = NODE_DATA(node_order[i]);
5204 
5205 		nr_zones = build_zonerefs_node(node, zonerefs);
5206 		zonerefs += nr_zones;
5207 	}
5208 	zonerefs->zone = NULL;
5209 	zonerefs->zone_idx = 0;
5210 }
5211 
5212 /*
5213  * Build gfp_thisnode zonelists
5214  */
5215 static void build_thisnode_zonelists(pg_data_t *pgdat)
5216 {
5217 	struct zoneref *zonerefs;
5218 	int nr_zones;
5219 
5220 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5221 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5222 	zonerefs += nr_zones;
5223 	zonerefs->zone = NULL;
5224 	zonerefs->zone_idx = 0;
5225 }
5226 
5227 /*
5228  * Build zonelists ordered by zone and nodes within zones.
5229  * This results in conserving DMA zone[s] until all Normal memory is
5230  * exhausted, but results in overflowing to remote node while memory
5231  * may still exist in local DMA zone.
5232  */
5233 
5234 static void build_zonelists(pg_data_t *pgdat)
5235 {
5236 	static int node_order[MAX_NUMNODES];
5237 	int node, load, nr_nodes = 0;
5238 	nodemask_t used_mask;
5239 	int local_node, prev_node;
5240 
5241 	/* NUMA-aware ordering of nodes */
5242 	local_node = pgdat->node_id;
5243 	load = nr_online_nodes;
5244 	prev_node = local_node;
5245 	nodes_clear(used_mask);
5246 
5247 	memset(node_order, 0, sizeof(node_order));
5248 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5249 		/*
5250 		 * We don't want to pressure a particular node.
5251 		 * So adding penalty to the first node in same
5252 		 * distance group to make it round-robin.
5253 		 */
5254 		if (node_distance(local_node, node) !=
5255 		    node_distance(local_node, prev_node))
5256 			node_load[node] = load;
5257 
5258 		node_order[nr_nodes++] = node;
5259 		prev_node = node;
5260 		load--;
5261 	}
5262 
5263 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5264 	build_thisnode_zonelists(pgdat);
5265 }
5266 
5267 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5268 /*
5269  * Return node id of node used for "local" allocations.
5270  * I.e., first node id of first zone in arg node's generic zonelist.
5271  * Used for initializing percpu 'numa_mem', which is used primarily
5272  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5273  */
5274 int local_memory_node(int node)
5275 {
5276 	struct zoneref *z;
5277 
5278 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5279 				   gfp_zone(GFP_KERNEL),
5280 				   NULL);
5281 	return zone_to_nid(z->zone);
5282 }
5283 #endif
5284 
5285 static void setup_min_unmapped_ratio(void);
5286 static void setup_min_slab_ratio(void);
5287 #else	/* CONFIG_NUMA */
5288 
5289 static void build_zonelists(pg_data_t *pgdat)
5290 {
5291 	int node, local_node;
5292 	struct zoneref *zonerefs;
5293 	int nr_zones;
5294 
5295 	local_node = pgdat->node_id;
5296 
5297 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5298 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5299 	zonerefs += nr_zones;
5300 
5301 	/*
5302 	 * Now we build the zonelist so that it contains the zones
5303 	 * of all the other nodes.
5304 	 * We don't want to pressure a particular node, so when
5305 	 * building the zones for node N, we make sure that the
5306 	 * zones coming right after the local ones are those from
5307 	 * node N+1 (modulo N)
5308 	 */
5309 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5310 		if (!node_online(node))
5311 			continue;
5312 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5313 		zonerefs += nr_zones;
5314 	}
5315 	for (node = 0; node < local_node; node++) {
5316 		if (!node_online(node))
5317 			continue;
5318 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5319 		zonerefs += nr_zones;
5320 	}
5321 
5322 	zonerefs->zone = NULL;
5323 	zonerefs->zone_idx = 0;
5324 }
5325 
5326 #endif	/* CONFIG_NUMA */
5327 
5328 /*
5329  * Boot pageset table. One per cpu which is going to be used for all
5330  * zones and all nodes. The parameters will be set in such a way
5331  * that an item put on a list will immediately be handed over to
5332  * the buddy list. This is safe since pageset manipulation is done
5333  * with interrupts disabled.
5334  *
5335  * The boot_pagesets must be kept even after bootup is complete for
5336  * unused processors and/or zones. They do play a role for bootstrapping
5337  * hotplugged processors.
5338  *
5339  * zoneinfo_show() and maybe other functions do
5340  * not check if the processor is online before following the pageset pointer.
5341  * Other parts of the kernel may not check if the zone is available.
5342  */
5343 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5344 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5345 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5346 
5347 static void __build_all_zonelists(void *data)
5348 {
5349 	int nid;
5350 	int __maybe_unused cpu;
5351 	pg_data_t *self = data;
5352 	static DEFINE_SPINLOCK(lock);
5353 
5354 	spin_lock(&lock);
5355 
5356 #ifdef CONFIG_NUMA
5357 	memset(node_load, 0, sizeof(node_load));
5358 #endif
5359 
5360 	/*
5361 	 * This node is hotadded and no memory is yet present.   So just
5362 	 * building zonelists is fine - no need to touch other nodes.
5363 	 */
5364 	if (self && !node_online(self->node_id)) {
5365 		build_zonelists(self);
5366 	} else {
5367 		for_each_online_node(nid) {
5368 			pg_data_t *pgdat = NODE_DATA(nid);
5369 
5370 			build_zonelists(pgdat);
5371 		}
5372 
5373 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5374 		/*
5375 		 * We now know the "local memory node" for each node--
5376 		 * i.e., the node of the first zone in the generic zonelist.
5377 		 * Set up numa_mem percpu variable for on-line cpus.  During
5378 		 * boot, only the boot cpu should be on-line;  we'll init the
5379 		 * secondary cpus' numa_mem as they come on-line.  During
5380 		 * node/memory hotplug, we'll fixup all on-line cpus.
5381 		 */
5382 		for_each_online_cpu(cpu)
5383 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5384 #endif
5385 	}
5386 
5387 	spin_unlock(&lock);
5388 }
5389 
5390 static noinline void __init
5391 build_all_zonelists_init(void)
5392 {
5393 	int cpu;
5394 
5395 	__build_all_zonelists(NULL);
5396 
5397 	/*
5398 	 * Initialize the boot_pagesets that are going to be used
5399 	 * for bootstrapping processors. The real pagesets for
5400 	 * each zone will be allocated later when the per cpu
5401 	 * allocator is available.
5402 	 *
5403 	 * boot_pagesets are used also for bootstrapping offline
5404 	 * cpus if the system is already booted because the pagesets
5405 	 * are needed to initialize allocators on a specific cpu too.
5406 	 * F.e. the percpu allocator needs the page allocator which
5407 	 * needs the percpu allocator in order to allocate its pagesets
5408 	 * (a chicken-egg dilemma).
5409 	 */
5410 	for_each_possible_cpu(cpu)
5411 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5412 
5413 	mminit_verify_zonelist();
5414 	cpuset_init_current_mems_allowed();
5415 }
5416 
5417 /*
5418  * unless system_state == SYSTEM_BOOTING.
5419  *
5420  * __ref due to call of __init annotated helper build_all_zonelists_init
5421  * [protected by SYSTEM_BOOTING].
5422  */
5423 void __ref build_all_zonelists(pg_data_t *pgdat)
5424 {
5425 	if (system_state == SYSTEM_BOOTING) {
5426 		build_all_zonelists_init();
5427 	} else {
5428 		__build_all_zonelists(pgdat);
5429 		/* cpuset refresh routine should be here */
5430 	}
5431 	vm_total_pages = nr_free_pagecache_pages();
5432 	/*
5433 	 * Disable grouping by mobility if the number of pages in the
5434 	 * system is too low to allow the mechanism to work. It would be
5435 	 * more accurate, but expensive to check per-zone. This check is
5436 	 * made on memory-hotadd so a system can start with mobility
5437 	 * disabled and enable it later
5438 	 */
5439 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5440 		page_group_by_mobility_disabled = 1;
5441 	else
5442 		page_group_by_mobility_disabled = 0;
5443 
5444 	pr_info("Built %i zonelists, mobility grouping %s.  Total pages: %ld\n",
5445 		nr_online_nodes,
5446 		page_group_by_mobility_disabled ? "off" : "on",
5447 		vm_total_pages);
5448 #ifdef CONFIG_NUMA
5449 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5450 #endif
5451 }
5452 
5453 /*
5454  * Initially all pages are reserved - free ones are freed
5455  * up by free_all_bootmem() once the early boot process is
5456  * done. Non-atomic initialization, single-pass.
5457  */
5458 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5459 		unsigned long start_pfn, enum memmap_context context,
5460 		struct vmem_altmap *altmap)
5461 {
5462 	unsigned long end_pfn = start_pfn + size;
5463 	pg_data_t *pgdat = NODE_DATA(nid);
5464 	unsigned long pfn;
5465 	unsigned long nr_initialised = 0;
5466 	struct page *page;
5467 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5468 	struct memblock_region *r = NULL, *tmp;
5469 #endif
5470 
5471 	if (highest_memmap_pfn < end_pfn - 1)
5472 		highest_memmap_pfn = end_pfn - 1;
5473 
5474 	/*
5475 	 * Honor reservation requested by the driver for this ZONE_DEVICE
5476 	 * memory
5477 	 */
5478 	if (altmap && start_pfn == altmap->base_pfn)
5479 		start_pfn += altmap->reserve;
5480 
5481 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5482 		/*
5483 		 * There can be holes in boot-time mem_map[]s handed to this
5484 		 * function.  They do not exist on hotplugged memory.
5485 		 */
5486 		if (context != MEMMAP_EARLY)
5487 			goto not_early;
5488 
5489 		if (!early_pfn_valid(pfn))
5490 			continue;
5491 		if (!early_pfn_in_nid(pfn, nid))
5492 			continue;
5493 		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5494 			break;
5495 
5496 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5497 		/*
5498 		 * Check given memblock attribute by firmware which can affect
5499 		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
5500 		 * mirrored, it's an overlapped memmap init. skip it.
5501 		 */
5502 		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5503 			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5504 				for_each_memblock(memory, tmp)
5505 					if (pfn < memblock_region_memory_end_pfn(tmp))
5506 						break;
5507 				r = tmp;
5508 			}
5509 			if (pfn >= memblock_region_memory_base_pfn(r) &&
5510 			    memblock_is_mirror(r)) {
5511 				/* already initialized as NORMAL */
5512 				pfn = memblock_region_memory_end_pfn(r);
5513 				continue;
5514 			}
5515 		}
5516 #endif
5517 
5518 not_early:
5519 		page = pfn_to_page(pfn);
5520 		__init_single_page(page, pfn, zone, nid);
5521 		if (context == MEMMAP_HOTPLUG)
5522 			SetPageReserved(page);
5523 
5524 		/*
5525 		 * Mark the block movable so that blocks are reserved for
5526 		 * movable at startup. This will force kernel allocations
5527 		 * to reserve their blocks rather than leaking throughout
5528 		 * the address space during boot when many long-lived
5529 		 * kernel allocations are made.
5530 		 *
5531 		 * bitmap is created for zone's valid pfn range. but memmap
5532 		 * can be created for invalid pages (for alignment)
5533 		 * check here not to call set_pageblock_migratetype() against
5534 		 * pfn out of zone.
5535 		 *
5536 		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5537 		 * because this is done early in sparse_add_one_section
5538 		 */
5539 		if (!(pfn & (pageblock_nr_pages - 1))) {
5540 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5541 			cond_resched();
5542 		}
5543 	}
5544 }
5545 
5546 static void __meminit zone_init_free_lists(struct zone *zone)
5547 {
5548 	unsigned int order, t;
5549 	for_each_migratetype_order(order, t) {
5550 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5551 		zone->free_area[order].nr_free = 0;
5552 	}
5553 }
5554 
5555 #ifndef __HAVE_ARCH_MEMMAP_INIT
5556 #define memmap_init(size, nid, zone, start_pfn) \
5557 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY, NULL)
5558 #endif
5559 
5560 static int zone_batchsize(struct zone *zone)
5561 {
5562 #ifdef CONFIG_MMU
5563 	int batch;
5564 
5565 	/*
5566 	 * The per-cpu-pages pools are set to around 1000th of the
5567 	 * size of the zone.
5568 	 */
5569 	batch = zone->managed_pages / 1024;
5570 	/* But no more than a meg. */
5571 	if (batch * PAGE_SIZE > 1024 * 1024)
5572 		batch = (1024 * 1024) / PAGE_SIZE;
5573 	batch /= 4;		/* We effectively *= 4 below */
5574 	if (batch < 1)
5575 		batch = 1;
5576 
5577 	/*
5578 	 * Clamp the batch to a 2^n - 1 value. Having a power
5579 	 * of 2 value was found to be more likely to have
5580 	 * suboptimal cache aliasing properties in some cases.
5581 	 *
5582 	 * For example if 2 tasks are alternately allocating
5583 	 * batches of pages, one task can end up with a lot
5584 	 * of pages of one half of the possible page colors
5585 	 * and the other with pages of the other colors.
5586 	 */
5587 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5588 
5589 	return batch;
5590 
5591 #else
5592 	/* The deferral and batching of frees should be suppressed under NOMMU
5593 	 * conditions.
5594 	 *
5595 	 * The problem is that NOMMU needs to be able to allocate large chunks
5596 	 * of contiguous memory as there's no hardware page translation to
5597 	 * assemble apparent contiguous memory from discontiguous pages.
5598 	 *
5599 	 * Queueing large contiguous runs of pages for batching, however,
5600 	 * causes the pages to actually be freed in smaller chunks.  As there
5601 	 * can be a significant delay between the individual batches being
5602 	 * recycled, this leads to the once large chunks of space being
5603 	 * fragmented and becoming unavailable for high-order allocations.
5604 	 */
5605 	return 0;
5606 #endif
5607 }
5608 
5609 /*
5610  * pcp->high and pcp->batch values are related and dependent on one another:
5611  * ->batch must never be higher then ->high.
5612  * The following function updates them in a safe manner without read side
5613  * locking.
5614  *
5615  * Any new users of pcp->batch and pcp->high should ensure they can cope with
5616  * those fields changing asynchronously (acording the the above rule).
5617  *
5618  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5619  * outside of boot time (or some other assurance that no concurrent updaters
5620  * exist).
5621  */
5622 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5623 		unsigned long batch)
5624 {
5625        /* start with a fail safe value for batch */
5626 	pcp->batch = 1;
5627 	smp_wmb();
5628 
5629        /* Update high, then batch, in order */
5630 	pcp->high = high;
5631 	smp_wmb();
5632 
5633 	pcp->batch = batch;
5634 }
5635 
5636 /* a companion to pageset_set_high() */
5637 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5638 {
5639 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5640 }
5641 
5642 static void pageset_init(struct per_cpu_pageset *p)
5643 {
5644 	struct per_cpu_pages *pcp;
5645 	int migratetype;
5646 
5647 	memset(p, 0, sizeof(*p));
5648 
5649 	pcp = &p->pcp;
5650 	pcp->count = 0;
5651 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5652 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5653 }
5654 
5655 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5656 {
5657 	pageset_init(p);
5658 	pageset_set_batch(p, batch);
5659 }
5660 
5661 /*
5662  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5663  * to the value high for the pageset p.
5664  */
5665 static void pageset_set_high(struct per_cpu_pageset *p,
5666 				unsigned long high)
5667 {
5668 	unsigned long batch = max(1UL, high / 4);
5669 	if ((high / 4) > (PAGE_SHIFT * 8))
5670 		batch = PAGE_SHIFT * 8;
5671 
5672 	pageset_update(&p->pcp, high, batch);
5673 }
5674 
5675 static void pageset_set_high_and_batch(struct zone *zone,
5676 				       struct per_cpu_pageset *pcp)
5677 {
5678 	if (percpu_pagelist_fraction)
5679 		pageset_set_high(pcp,
5680 			(zone->managed_pages /
5681 				percpu_pagelist_fraction));
5682 	else
5683 		pageset_set_batch(pcp, zone_batchsize(zone));
5684 }
5685 
5686 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5687 {
5688 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5689 
5690 	pageset_init(pcp);
5691 	pageset_set_high_and_batch(zone, pcp);
5692 }
5693 
5694 void __meminit setup_zone_pageset(struct zone *zone)
5695 {
5696 	int cpu;
5697 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5698 	for_each_possible_cpu(cpu)
5699 		zone_pageset_init(zone, cpu);
5700 }
5701 
5702 /*
5703  * Allocate per cpu pagesets and initialize them.
5704  * Before this call only boot pagesets were available.
5705  */
5706 void __init setup_per_cpu_pageset(void)
5707 {
5708 	struct pglist_data *pgdat;
5709 	struct zone *zone;
5710 
5711 	for_each_populated_zone(zone)
5712 		setup_zone_pageset(zone);
5713 
5714 	for_each_online_pgdat(pgdat)
5715 		pgdat->per_cpu_nodestats =
5716 			alloc_percpu(struct per_cpu_nodestat);
5717 }
5718 
5719 static __meminit void zone_pcp_init(struct zone *zone)
5720 {
5721 	/*
5722 	 * per cpu subsystem is not up at this point. The following code
5723 	 * relies on the ability of the linker to provide the
5724 	 * offset of a (static) per cpu variable into the per cpu area.
5725 	 */
5726 	zone->pageset = &boot_pageset;
5727 
5728 	if (populated_zone(zone))
5729 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
5730 			zone->name, zone->present_pages,
5731 					 zone_batchsize(zone));
5732 }
5733 
5734 void __meminit init_currently_empty_zone(struct zone *zone,
5735 					unsigned long zone_start_pfn,
5736 					unsigned long size)
5737 {
5738 	struct pglist_data *pgdat = zone->zone_pgdat;
5739 
5740 	pgdat->nr_zones = zone_idx(zone) + 1;
5741 
5742 	zone->zone_start_pfn = zone_start_pfn;
5743 
5744 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
5745 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
5746 			pgdat->node_id,
5747 			(unsigned long)zone_idx(zone),
5748 			zone_start_pfn, (zone_start_pfn + size));
5749 
5750 	zone_init_free_lists(zone);
5751 	zone->initialized = 1;
5752 }
5753 
5754 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5755 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5756 
5757 /*
5758  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5759  */
5760 int __meminit __early_pfn_to_nid(unsigned long pfn,
5761 					struct mminit_pfnnid_cache *state)
5762 {
5763 	unsigned long start_pfn, end_pfn;
5764 	int nid;
5765 
5766 	if (state->last_start <= pfn && pfn < state->last_end)
5767 		return state->last_nid;
5768 
5769 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5770 	if (nid != -1) {
5771 		state->last_start = start_pfn;
5772 		state->last_end = end_pfn;
5773 		state->last_nid = nid;
5774 	}
5775 
5776 	return nid;
5777 }
5778 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5779 
5780 /**
5781  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5782  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5783  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5784  *
5785  * If an architecture guarantees that all ranges registered contain no holes
5786  * and may be freed, this this function may be used instead of calling
5787  * memblock_free_early_nid() manually.
5788  */
5789 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5790 {
5791 	unsigned long start_pfn, end_pfn;
5792 	int i, this_nid;
5793 
5794 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5795 		start_pfn = min(start_pfn, max_low_pfn);
5796 		end_pfn = min(end_pfn, max_low_pfn);
5797 
5798 		if (start_pfn < end_pfn)
5799 			memblock_free_early_nid(PFN_PHYS(start_pfn),
5800 					(end_pfn - start_pfn) << PAGE_SHIFT,
5801 					this_nid);
5802 	}
5803 }
5804 
5805 /**
5806  * sparse_memory_present_with_active_regions - Call memory_present for each active range
5807  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5808  *
5809  * If an architecture guarantees that all ranges registered contain no holes and may
5810  * be freed, this function may be used instead of calling memory_present() manually.
5811  */
5812 void __init sparse_memory_present_with_active_regions(int nid)
5813 {
5814 	unsigned long start_pfn, end_pfn;
5815 	int i, this_nid;
5816 
5817 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5818 		memory_present(this_nid, start_pfn, end_pfn);
5819 }
5820 
5821 /**
5822  * get_pfn_range_for_nid - Return the start and end page frames for a node
5823  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5824  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5825  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5826  *
5827  * It returns the start and end page frame of a node based on information
5828  * provided by memblock_set_node(). If called for a node
5829  * with no available memory, a warning is printed and the start and end
5830  * PFNs will be 0.
5831  */
5832 void __meminit get_pfn_range_for_nid(unsigned int nid,
5833 			unsigned long *start_pfn, unsigned long *end_pfn)
5834 {
5835 	unsigned long this_start_pfn, this_end_pfn;
5836 	int i;
5837 
5838 	*start_pfn = -1UL;
5839 	*end_pfn = 0;
5840 
5841 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5842 		*start_pfn = min(*start_pfn, this_start_pfn);
5843 		*end_pfn = max(*end_pfn, this_end_pfn);
5844 	}
5845 
5846 	if (*start_pfn == -1UL)
5847 		*start_pfn = 0;
5848 }
5849 
5850 /*
5851  * This finds a zone that can be used for ZONE_MOVABLE pages. The
5852  * assumption is made that zones within a node are ordered in monotonic
5853  * increasing memory addresses so that the "highest" populated zone is used
5854  */
5855 static void __init find_usable_zone_for_movable(void)
5856 {
5857 	int zone_index;
5858 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5859 		if (zone_index == ZONE_MOVABLE)
5860 			continue;
5861 
5862 		if (arch_zone_highest_possible_pfn[zone_index] >
5863 				arch_zone_lowest_possible_pfn[zone_index])
5864 			break;
5865 	}
5866 
5867 	VM_BUG_ON(zone_index == -1);
5868 	movable_zone = zone_index;
5869 }
5870 
5871 /*
5872  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5873  * because it is sized independent of architecture. Unlike the other zones,
5874  * the starting point for ZONE_MOVABLE is not fixed. It may be different
5875  * in each node depending on the size of each node and how evenly kernelcore
5876  * is distributed. This helper function adjusts the zone ranges
5877  * provided by the architecture for a given node by using the end of the
5878  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5879  * zones within a node are in order of monotonic increases memory addresses
5880  */
5881 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5882 					unsigned long zone_type,
5883 					unsigned long node_start_pfn,
5884 					unsigned long node_end_pfn,
5885 					unsigned long *zone_start_pfn,
5886 					unsigned long *zone_end_pfn)
5887 {
5888 	/* Only adjust if ZONE_MOVABLE is on this node */
5889 	if (zone_movable_pfn[nid]) {
5890 		/* Size ZONE_MOVABLE */
5891 		if (zone_type == ZONE_MOVABLE) {
5892 			*zone_start_pfn = zone_movable_pfn[nid];
5893 			*zone_end_pfn = min(node_end_pfn,
5894 				arch_zone_highest_possible_pfn[movable_zone]);
5895 
5896 		/* Adjust for ZONE_MOVABLE starting within this range */
5897 		} else if (!mirrored_kernelcore &&
5898 			*zone_start_pfn < zone_movable_pfn[nid] &&
5899 			*zone_end_pfn > zone_movable_pfn[nid]) {
5900 			*zone_end_pfn = zone_movable_pfn[nid];
5901 
5902 		/* Check if this whole range is within ZONE_MOVABLE */
5903 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
5904 			*zone_start_pfn = *zone_end_pfn;
5905 	}
5906 }
5907 
5908 /*
5909  * Return the number of pages a zone spans in a node, including holes
5910  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5911  */
5912 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5913 					unsigned long zone_type,
5914 					unsigned long node_start_pfn,
5915 					unsigned long node_end_pfn,
5916 					unsigned long *zone_start_pfn,
5917 					unsigned long *zone_end_pfn,
5918 					unsigned long *ignored)
5919 {
5920 	/* When hotadd a new node from cpu_up(), the node should be empty */
5921 	if (!node_start_pfn && !node_end_pfn)
5922 		return 0;
5923 
5924 	/* Get the start and end of the zone */
5925 	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5926 	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5927 	adjust_zone_range_for_zone_movable(nid, zone_type,
5928 				node_start_pfn, node_end_pfn,
5929 				zone_start_pfn, zone_end_pfn);
5930 
5931 	/* Check that this node has pages within the zone's required range */
5932 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5933 		return 0;
5934 
5935 	/* Move the zone boundaries inside the node if necessary */
5936 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5937 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5938 
5939 	/* Return the spanned pages */
5940 	return *zone_end_pfn - *zone_start_pfn;
5941 }
5942 
5943 /*
5944  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5945  * then all holes in the requested range will be accounted for.
5946  */
5947 unsigned long __meminit __absent_pages_in_range(int nid,
5948 				unsigned long range_start_pfn,
5949 				unsigned long range_end_pfn)
5950 {
5951 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
5952 	unsigned long start_pfn, end_pfn;
5953 	int i;
5954 
5955 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5956 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5957 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5958 		nr_absent -= end_pfn - start_pfn;
5959 	}
5960 	return nr_absent;
5961 }
5962 
5963 /**
5964  * absent_pages_in_range - Return number of page frames in holes within a range
5965  * @start_pfn: The start PFN to start searching for holes
5966  * @end_pfn: The end PFN to stop searching for holes
5967  *
5968  * It returns the number of pages frames in memory holes within a range.
5969  */
5970 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5971 							unsigned long end_pfn)
5972 {
5973 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5974 }
5975 
5976 /* Return the number of page frames in holes in a zone on a node */
5977 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5978 					unsigned long zone_type,
5979 					unsigned long node_start_pfn,
5980 					unsigned long node_end_pfn,
5981 					unsigned long *ignored)
5982 {
5983 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5984 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5985 	unsigned long zone_start_pfn, zone_end_pfn;
5986 	unsigned long nr_absent;
5987 
5988 	/* When hotadd a new node from cpu_up(), the node should be empty */
5989 	if (!node_start_pfn && !node_end_pfn)
5990 		return 0;
5991 
5992 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5993 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5994 
5995 	adjust_zone_range_for_zone_movable(nid, zone_type,
5996 			node_start_pfn, node_end_pfn,
5997 			&zone_start_pfn, &zone_end_pfn);
5998 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5999 
6000 	/*
6001 	 * ZONE_MOVABLE handling.
6002 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6003 	 * and vice versa.
6004 	 */
6005 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6006 		unsigned long start_pfn, end_pfn;
6007 		struct memblock_region *r;
6008 
6009 		for_each_memblock(memory, r) {
6010 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
6011 					  zone_start_pfn, zone_end_pfn);
6012 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
6013 					zone_start_pfn, zone_end_pfn);
6014 
6015 			if (zone_type == ZONE_MOVABLE &&
6016 			    memblock_is_mirror(r))
6017 				nr_absent += end_pfn - start_pfn;
6018 
6019 			if (zone_type == ZONE_NORMAL &&
6020 			    !memblock_is_mirror(r))
6021 				nr_absent += end_pfn - start_pfn;
6022 		}
6023 	}
6024 
6025 	return nr_absent;
6026 }
6027 
6028 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6029 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
6030 					unsigned long zone_type,
6031 					unsigned long node_start_pfn,
6032 					unsigned long node_end_pfn,
6033 					unsigned long *zone_start_pfn,
6034 					unsigned long *zone_end_pfn,
6035 					unsigned long *zones_size)
6036 {
6037 	unsigned int zone;
6038 
6039 	*zone_start_pfn = node_start_pfn;
6040 	for (zone = 0; zone < zone_type; zone++)
6041 		*zone_start_pfn += zones_size[zone];
6042 
6043 	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6044 
6045 	return zones_size[zone_type];
6046 }
6047 
6048 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
6049 						unsigned long zone_type,
6050 						unsigned long node_start_pfn,
6051 						unsigned long node_end_pfn,
6052 						unsigned long *zholes_size)
6053 {
6054 	if (!zholes_size)
6055 		return 0;
6056 
6057 	return zholes_size[zone_type];
6058 }
6059 
6060 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6061 
6062 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
6063 						unsigned long node_start_pfn,
6064 						unsigned long node_end_pfn,
6065 						unsigned long *zones_size,
6066 						unsigned long *zholes_size)
6067 {
6068 	unsigned long realtotalpages = 0, totalpages = 0;
6069 	enum zone_type i;
6070 
6071 	for (i = 0; i < MAX_NR_ZONES; i++) {
6072 		struct zone *zone = pgdat->node_zones + i;
6073 		unsigned long zone_start_pfn, zone_end_pfn;
6074 		unsigned long size, real_size;
6075 
6076 		size = zone_spanned_pages_in_node(pgdat->node_id, i,
6077 						  node_start_pfn,
6078 						  node_end_pfn,
6079 						  &zone_start_pfn,
6080 						  &zone_end_pfn,
6081 						  zones_size);
6082 		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6083 						  node_start_pfn, node_end_pfn,
6084 						  zholes_size);
6085 		if (size)
6086 			zone->zone_start_pfn = zone_start_pfn;
6087 		else
6088 			zone->zone_start_pfn = 0;
6089 		zone->spanned_pages = size;
6090 		zone->present_pages = real_size;
6091 
6092 		totalpages += size;
6093 		realtotalpages += real_size;
6094 	}
6095 
6096 	pgdat->node_spanned_pages = totalpages;
6097 	pgdat->node_present_pages = realtotalpages;
6098 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6099 							realtotalpages);
6100 }
6101 
6102 #ifndef CONFIG_SPARSEMEM
6103 /*
6104  * Calculate the size of the zone->blockflags rounded to an unsigned long
6105  * Start by making sure zonesize is a multiple of pageblock_order by rounding
6106  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6107  * round what is now in bits to nearest long in bits, then return it in
6108  * bytes.
6109  */
6110 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6111 {
6112 	unsigned long usemapsize;
6113 
6114 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6115 	usemapsize = roundup(zonesize, pageblock_nr_pages);
6116 	usemapsize = usemapsize >> pageblock_order;
6117 	usemapsize *= NR_PAGEBLOCK_BITS;
6118 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6119 
6120 	return usemapsize / 8;
6121 }
6122 
6123 static void __ref setup_usemap(struct pglist_data *pgdat,
6124 				struct zone *zone,
6125 				unsigned long zone_start_pfn,
6126 				unsigned long zonesize)
6127 {
6128 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6129 	zone->pageblock_flags = NULL;
6130 	if (usemapsize)
6131 		zone->pageblock_flags =
6132 			memblock_virt_alloc_node_nopanic(usemapsize,
6133 							 pgdat->node_id);
6134 }
6135 #else
6136 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6137 				unsigned long zone_start_pfn, unsigned long zonesize) {}
6138 #endif /* CONFIG_SPARSEMEM */
6139 
6140 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6141 
6142 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6143 void __init set_pageblock_order(void)
6144 {
6145 	unsigned int order;
6146 
6147 	/* Check that pageblock_nr_pages has not already been setup */
6148 	if (pageblock_order)
6149 		return;
6150 
6151 	if (HPAGE_SHIFT > PAGE_SHIFT)
6152 		order = HUGETLB_PAGE_ORDER;
6153 	else
6154 		order = MAX_ORDER - 1;
6155 
6156 	/*
6157 	 * Assume the largest contiguous order of interest is a huge page.
6158 	 * This value may be variable depending on boot parameters on IA64 and
6159 	 * powerpc.
6160 	 */
6161 	pageblock_order = order;
6162 }
6163 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6164 
6165 /*
6166  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6167  * is unused as pageblock_order is set at compile-time. See
6168  * include/linux/pageblock-flags.h for the values of pageblock_order based on
6169  * the kernel config
6170  */
6171 void __init set_pageblock_order(void)
6172 {
6173 }
6174 
6175 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6176 
6177 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6178 						unsigned long present_pages)
6179 {
6180 	unsigned long pages = spanned_pages;
6181 
6182 	/*
6183 	 * Provide a more accurate estimation if there are holes within
6184 	 * the zone and SPARSEMEM is in use. If there are holes within the
6185 	 * zone, each populated memory region may cost us one or two extra
6186 	 * memmap pages due to alignment because memmap pages for each
6187 	 * populated regions may not be naturally aligned on page boundary.
6188 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6189 	 */
6190 	if (spanned_pages > present_pages + (present_pages >> 4) &&
6191 	    IS_ENABLED(CONFIG_SPARSEMEM))
6192 		pages = present_pages;
6193 
6194 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6195 }
6196 
6197 #ifdef CONFIG_NUMA_BALANCING
6198 static void pgdat_init_numabalancing(struct pglist_data *pgdat)
6199 {
6200 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
6201 	pgdat->numabalancing_migrate_nr_pages = 0;
6202 	pgdat->numabalancing_migrate_next_window = jiffies;
6203 }
6204 #else
6205 static void pgdat_init_numabalancing(struct pglist_data *pgdat) {}
6206 #endif
6207 
6208 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6209 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6210 {
6211 	spin_lock_init(&pgdat->split_queue_lock);
6212 	INIT_LIST_HEAD(&pgdat->split_queue);
6213 	pgdat->split_queue_len = 0;
6214 }
6215 #else
6216 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6217 #endif
6218 
6219 #ifdef CONFIG_COMPACTION
6220 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6221 {
6222 	init_waitqueue_head(&pgdat->kcompactd_wait);
6223 }
6224 #else
6225 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6226 #endif
6227 
6228 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6229 {
6230 	pgdat_resize_init(pgdat);
6231 
6232 	pgdat_init_numabalancing(pgdat);
6233 	pgdat_init_split_queue(pgdat);
6234 	pgdat_init_kcompactd(pgdat);
6235 
6236 	init_waitqueue_head(&pgdat->kswapd_wait);
6237 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6238 
6239 	pgdat_page_ext_init(pgdat);
6240 	spin_lock_init(&pgdat->lru_lock);
6241 	lruvec_init(node_lruvec(pgdat));
6242 }
6243 
6244 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6245 							unsigned long remaining_pages)
6246 {
6247 	zone->managed_pages = remaining_pages;
6248 	zone_set_nid(zone, nid);
6249 	zone->name = zone_names[idx];
6250 	zone->zone_pgdat = NODE_DATA(nid);
6251 	spin_lock_init(&zone->lock);
6252 	zone_seqlock_init(zone);
6253 	zone_pcp_init(zone);
6254 }
6255 
6256 /*
6257  * Set up the zone data structures
6258  * - init pgdat internals
6259  * - init all zones belonging to this node
6260  *
6261  * NOTE: this function is only called during memory hotplug
6262  */
6263 #ifdef CONFIG_MEMORY_HOTPLUG
6264 void __ref free_area_init_core_hotplug(int nid)
6265 {
6266 	enum zone_type z;
6267 	pg_data_t *pgdat = NODE_DATA(nid);
6268 
6269 	pgdat_init_internals(pgdat);
6270 	for (z = 0; z < MAX_NR_ZONES; z++)
6271 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6272 }
6273 #endif
6274 
6275 /*
6276  * Set up the zone data structures:
6277  *   - mark all pages reserved
6278  *   - mark all memory queues empty
6279  *   - clear the memory bitmaps
6280  *
6281  * NOTE: pgdat should get zeroed by caller.
6282  * NOTE: this function is only called during early init.
6283  */
6284 static void __init free_area_init_core(struct pglist_data *pgdat)
6285 {
6286 	enum zone_type j;
6287 	int nid = pgdat->node_id;
6288 
6289 	pgdat_init_internals(pgdat);
6290 	pgdat->per_cpu_nodestats = &boot_nodestats;
6291 
6292 	for (j = 0; j < MAX_NR_ZONES; j++) {
6293 		struct zone *zone = pgdat->node_zones + j;
6294 		unsigned long size, freesize, memmap_pages;
6295 		unsigned long zone_start_pfn = zone->zone_start_pfn;
6296 
6297 		size = zone->spanned_pages;
6298 		freesize = zone->present_pages;
6299 
6300 		/*
6301 		 * Adjust freesize so that it accounts for how much memory
6302 		 * is used by this zone for memmap. This affects the watermark
6303 		 * and per-cpu initialisations
6304 		 */
6305 		memmap_pages = calc_memmap_size(size, freesize);
6306 		if (!is_highmem_idx(j)) {
6307 			if (freesize >= memmap_pages) {
6308 				freesize -= memmap_pages;
6309 				if (memmap_pages)
6310 					printk(KERN_DEBUG
6311 					       "  %s zone: %lu pages used for memmap\n",
6312 					       zone_names[j], memmap_pages);
6313 			} else
6314 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6315 					zone_names[j], memmap_pages, freesize);
6316 		}
6317 
6318 		/* Account for reserved pages */
6319 		if (j == 0 && freesize > dma_reserve) {
6320 			freesize -= dma_reserve;
6321 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6322 					zone_names[0], dma_reserve);
6323 		}
6324 
6325 		if (!is_highmem_idx(j))
6326 			nr_kernel_pages += freesize;
6327 		/* Charge for highmem memmap if there are enough kernel pages */
6328 		else if (nr_kernel_pages > memmap_pages * 2)
6329 			nr_kernel_pages -= memmap_pages;
6330 		nr_all_pages += freesize;
6331 
6332 		/*
6333 		 * Set an approximate value for lowmem here, it will be adjusted
6334 		 * when the bootmem allocator frees pages into the buddy system.
6335 		 * And all highmem pages will be managed by the buddy system.
6336 		 */
6337 		zone_init_internals(zone, j, nid, freesize);
6338 
6339 		if (!size)
6340 			continue;
6341 
6342 		set_pageblock_order();
6343 		setup_usemap(pgdat, zone, zone_start_pfn, size);
6344 		init_currently_empty_zone(zone, zone_start_pfn, size);
6345 		memmap_init(size, nid, j, zone_start_pfn);
6346 	}
6347 }
6348 
6349 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6350 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6351 {
6352 	unsigned long __maybe_unused start = 0;
6353 	unsigned long __maybe_unused offset = 0;
6354 
6355 	/* Skip empty nodes */
6356 	if (!pgdat->node_spanned_pages)
6357 		return;
6358 
6359 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6360 	offset = pgdat->node_start_pfn - start;
6361 	/* ia64 gets its own node_mem_map, before this, without bootmem */
6362 	if (!pgdat->node_mem_map) {
6363 		unsigned long size, end;
6364 		struct page *map;
6365 
6366 		/*
6367 		 * The zone's endpoints aren't required to be MAX_ORDER
6368 		 * aligned but the node_mem_map endpoints must be in order
6369 		 * for the buddy allocator to function correctly.
6370 		 */
6371 		end = pgdat_end_pfn(pgdat);
6372 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
6373 		size =  (end - start) * sizeof(struct page);
6374 		map = memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
6375 		pgdat->node_mem_map = map + offset;
6376 	}
6377 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6378 				__func__, pgdat->node_id, (unsigned long)pgdat,
6379 				(unsigned long)pgdat->node_mem_map);
6380 #ifndef CONFIG_NEED_MULTIPLE_NODES
6381 	/*
6382 	 * With no DISCONTIG, the global mem_map is just set as node 0's
6383 	 */
6384 	if (pgdat == NODE_DATA(0)) {
6385 		mem_map = NODE_DATA(0)->node_mem_map;
6386 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6387 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6388 			mem_map -= offset;
6389 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6390 	}
6391 #endif
6392 }
6393 #else
6394 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6395 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6396 
6397 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6398 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6399 {
6400 	/*
6401 	 * We start only with one section of pages, more pages are added as
6402 	 * needed until the rest of deferred pages are initialized.
6403 	 */
6404 	pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION,
6405 						pgdat->node_spanned_pages);
6406 	pgdat->first_deferred_pfn = ULONG_MAX;
6407 }
6408 #else
6409 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6410 #endif
6411 
6412 void __init free_area_init_node(int nid, unsigned long *zones_size,
6413 				   unsigned long node_start_pfn,
6414 				   unsigned long *zholes_size)
6415 {
6416 	pg_data_t *pgdat = NODE_DATA(nid);
6417 	unsigned long start_pfn = 0;
6418 	unsigned long end_pfn = 0;
6419 
6420 	/* pg_data_t should be reset to zero when it's allocated */
6421 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6422 
6423 	pgdat->node_id = nid;
6424 	pgdat->node_start_pfn = node_start_pfn;
6425 	pgdat->per_cpu_nodestats = NULL;
6426 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6427 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6428 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6429 		(u64)start_pfn << PAGE_SHIFT,
6430 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6431 #else
6432 	start_pfn = node_start_pfn;
6433 #endif
6434 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6435 				  zones_size, zholes_size);
6436 
6437 	alloc_node_mem_map(pgdat);
6438 	pgdat_set_deferred_range(pgdat);
6439 
6440 	free_area_init_core(pgdat);
6441 }
6442 
6443 #if defined(CONFIG_HAVE_MEMBLOCK) && !defined(CONFIG_FLAT_NODE_MEM_MAP)
6444 /*
6445  * Only struct pages that are backed by physical memory are zeroed and
6446  * initialized by going through __init_single_page(). But, there are some
6447  * struct pages which are reserved in memblock allocator and their fields
6448  * may be accessed (for example page_to_pfn() on some configuration accesses
6449  * flags). We must explicitly zero those struct pages.
6450  */
6451 void __init zero_resv_unavail(void)
6452 {
6453 	phys_addr_t start, end;
6454 	unsigned long pfn;
6455 	u64 i, pgcnt;
6456 
6457 	/*
6458 	 * Loop through ranges that are reserved, but do not have reported
6459 	 * physical memory backing.
6460 	 */
6461 	pgcnt = 0;
6462 	for_each_resv_unavail_range(i, &start, &end) {
6463 		for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) {
6464 			if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6465 				pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6466 					+ pageblock_nr_pages - 1;
6467 				continue;
6468 			}
6469 			mm_zero_struct_page(pfn_to_page(pfn));
6470 			pgcnt++;
6471 		}
6472 	}
6473 
6474 	/*
6475 	 * Struct pages that do not have backing memory. This could be because
6476 	 * firmware is using some of this memory, or for some other reasons.
6477 	 * Once memblock is changed so such behaviour is not allowed: i.e.
6478 	 * list of "reserved" memory must be a subset of list of "memory", then
6479 	 * this code can be removed.
6480 	 */
6481 	if (pgcnt)
6482 		pr_info("Reserved but unavailable: %lld pages", pgcnt);
6483 }
6484 #endif /* CONFIG_HAVE_MEMBLOCK && !CONFIG_FLAT_NODE_MEM_MAP */
6485 
6486 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6487 
6488 #if MAX_NUMNODES > 1
6489 /*
6490  * Figure out the number of possible node ids.
6491  */
6492 void __init setup_nr_node_ids(void)
6493 {
6494 	unsigned int highest;
6495 
6496 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6497 	nr_node_ids = highest + 1;
6498 }
6499 #endif
6500 
6501 /**
6502  * node_map_pfn_alignment - determine the maximum internode alignment
6503  *
6504  * This function should be called after node map is populated and sorted.
6505  * It calculates the maximum power of two alignment which can distinguish
6506  * all the nodes.
6507  *
6508  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6509  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
6510  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
6511  * shifted, 1GiB is enough and this function will indicate so.
6512  *
6513  * This is used to test whether pfn -> nid mapping of the chosen memory
6514  * model has fine enough granularity to avoid incorrect mapping for the
6515  * populated node map.
6516  *
6517  * Returns the determined alignment in pfn's.  0 if there is no alignment
6518  * requirement (single node).
6519  */
6520 unsigned long __init node_map_pfn_alignment(void)
6521 {
6522 	unsigned long accl_mask = 0, last_end = 0;
6523 	unsigned long start, end, mask;
6524 	int last_nid = -1;
6525 	int i, nid;
6526 
6527 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6528 		if (!start || last_nid < 0 || last_nid == nid) {
6529 			last_nid = nid;
6530 			last_end = end;
6531 			continue;
6532 		}
6533 
6534 		/*
6535 		 * Start with a mask granular enough to pin-point to the
6536 		 * start pfn and tick off bits one-by-one until it becomes
6537 		 * too coarse to separate the current node from the last.
6538 		 */
6539 		mask = ~((1 << __ffs(start)) - 1);
6540 		while (mask && last_end <= (start & (mask << 1)))
6541 			mask <<= 1;
6542 
6543 		/* accumulate all internode masks */
6544 		accl_mask |= mask;
6545 	}
6546 
6547 	/* convert mask to number of pages */
6548 	return ~accl_mask + 1;
6549 }
6550 
6551 /* Find the lowest pfn for a node */
6552 static unsigned long __init find_min_pfn_for_node(int nid)
6553 {
6554 	unsigned long min_pfn = ULONG_MAX;
6555 	unsigned long start_pfn;
6556 	int i;
6557 
6558 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6559 		min_pfn = min(min_pfn, start_pfn);
6560 
6561 	if (min_pfn == ULONG_MAX) {
6562 		pr_warn("Could not find start_pfn for node %d\n", nid);
6563 		return 0;
6564 	}
6565 
6566 	return min_pfn;
6567 }
6568 
6569 /**
6570  * find_min_pfn_with_active_regions - Find the minimum PFN registered
6571  *
6572  * It returns the minimum PFN based on information provided via
6573  * memblock_set_node().
6574  */
6575 unsigned long __init find_min_pfn_with_active_regions(void)
6576 {
6577 	return find_min_pfn_for_node(MAX_NUMNODES);
6578 }
6579 
6580 /*
6581  * early_calculate_totalpages()
6582  * Sum pages in active regions for movable zone.
6583  * Populate N_MEMORY for calculating usable_nodes.
6584  */
6585 static unsigned long __init early_calculate_totalpages(void)
6586 {
6587 	unsigned long totalpages = 0;
6588 	unsigned long start_pfn, end_pfn;
6589 	int i, nid;
6590 
6591 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6592 		unsigned long pages = end_pfn - start_pfn;
6593 
6594 		totalpages += pages;
6595 		if (pages)
6596 			node_set_state(nid, N_MEMORY);
6597 	}
6598 	return totalpages;
6599 }
6600 
6601 /*
6602  * Find the PFN the Movable zone begins in each node. Kernel memory
6603  * is spread evenly between nodes as long as the nodes have enough
6604  * memory. When they don't, some nodes will have more kernelcore than
6605  * others
6606  */
6607 static void __init find_zone_movable_pfns_for_nodes(void)
6608 {
6609 	int i, nid;
6610 	unsigned long usable_startpfn;
6611 	unsigned long kernelcore_node, kernelcore_remaining;
6612 	/* save the state before borrow the nodemask */
6613 	nodemask_t saved_node_state = node_states[N_MEMORY];
6614 	unsigned long totalpages = early_calculate_totalpages();
6615 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6616 	struct memblock_region *r;
6617 
6618 	/* Need to find movable_zone earlier when movable_node is specified. */
6619 	find_usable_zone_for_movable();
6620 
6621 	/*
6622 	 * If movable_node is specified, ignore kernelcore and movablecore
6623 	 * options.
6624 	 */
6625 	if (movable_node_is_enabled()) {
6626 		for_each_memblock(memory, r) {
6627 			if (!memblock_is_hotpluggable(r))
6628 				continue;
6629 
6630 			nid = r->nid;
6631 
6632 			usable_startpfn = PFN_DOWN(r->base);
6633 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6634 				min(usable_startpfn, zone_movable_pfn[nid]) :
6635 				usable_startpfn;
6636 		}
6637 
6638 		goto out2;
6639 	}
6640 
6641 	/*
6642 	 * If kernelcore=mirror is specified, ignore movablecore option
6643 	 */
6644 	if (mirrored_kernelcore) {
6645 		bool mem_below_4gb_not_mirrored = false;
6646 
6647 		for_each_memblock(memory, r) {
6648 			if (memblock_is_mirror(r))
6649 				continue;
6650 
6651 			nid = r->nid;
6652 
6653 			usable_startpfn = memblock_region_memory_base_pfn(r);
6654 
6655 			if (usable_startpfn < 0x100000) {
6656 				mem_below_4gb_not_mirrored = true;
6657 				continue;
6658 			}
6659 
6660 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6661 				min(usable_startpfn, zone_movable_pfn[nid]) :
6662 				usable_startpfn;
6663 		}
6664 
6665 		if (mem_below_4gb_not_mirrored)
6666 			pr_warn("This configuration results in unmirrored kernel memory.");
6667 
6668 		goto out2;
6669 	}
6670 
6671 	/*
6672 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
6673 	 * amount of necessary memory.
6674 	 */
6675 	if (required_kernelcore_percent)
6676 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
6677 				       10000UL;
6678 	if (required_movablecore_percent)
6679 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
6680 					10000UL;
6681 
6682 	/*
6683 	 * If movablecore= was specified, calculate what size of
6684 	 * kernelcore that corresponds so that memory usable for
6685 	 * any allocation type is evenly spread. If both kernelcore
6686 	 * and movablecore are specified, then the value of kernelcore
6687 	 * will be used for required_kernelcore if it's greater than
6688 	 * what movablecore would have allowed.
6689 	 */
6690 	if (required_movablecore) {
6691 		unsigned long corepages;
6692 
6693 		/*
6694 		 * Round-up so that ZONE_MOVABLE is at least as large as what
6695 		 * was requested by the user
6696 		 */
6697 		required_movablecore =
6698 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6699 		required_movablecore = min(totalpages, required_movablecore);
6700 		corepages = totalpages - required_movablecore;
6701 
6702 		required_kernelcore = max(required_kernelcore, corepages);
6703 	}
6704 
6705 	/*
6706 	 * If kernelcore was not specified or kernelcore size is larger
6707 	 * than totalpages, there is no ZONE_MOVABLE.
6708 	 */
6709 	if (!required_kernelcore || required_kernelcore >= totalpages)
6710 		goto out;
6711 
6712 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6713 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6714 
6715 restart:
6716 	/* Spread kernelcore memory as evenly as possible throughout nodes */
6717 	kernelcore_node = required_kernelcore / usable_nodes;
6718 	for_each_node_state(nid, N_MEMORY) {
6719 		unsigned long start_pfn, end_pfn;
6720 
6721 		/*
6722 		 * Recalculate kernelcore_node if the division per node
6723 		 * now exceeds what is necessary to satisfy the requested
6724 		 * amount of memory for the kernel
6725 		 */
6726 		if (required_kernelcore < kernelcore_node)
6727 			kernelcore_node = required_kernelcore / usable_nodes;
6728 
6729 		/*
6730 		 * As the map is walked, we track how much memory is usable
6731 		 * by the kernel using kernelcore_remaining. When it is
6732 		 * 0, the rest of the node is usable by ZONE_MOVABLE
6733 		 */
6734 		kernelcore_remaining = kernelcore_node;
6735 
6736 		/* Go through each range of PFNs within this node */
6737 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6738 			unsigned long size_pages;
6739 
6740 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6741 			if (start_pfn >= end_pfn)
6742 				continue;
6743 
6744 			/* Account for what is only usable for kernelcore */
6745 			if (start_pfn < usable_startpfn) {
6746 				unsigned long kernel_pages;
6747 				kernel_pages = min(end_pfn, usable_startpfn)
6748 								- start_pfn;
6749 
6750 				kernelcore_remaining -= min(kernel_pages,
6751 							kernelcore_remaining);
6752 				required_kernelcore -= min(kernel_pages,
6753 							required_kernelcore);
6754 
6755 				/* Continue if range is now fully accounted */
6756 				if (end_pfn <= usable_startpfn) {
6757 
6758 					/*
6759 					 * Push zone_movable_pfn to the end so
6760 					 * that if we have to rebalance
6761 					 * kernelcore across nodes, we will
6762 					 * not double account here
6763 					 */
6764 					zone_movable_pfn[nid] = end_pfn;
6765 					continue;
6766 				}
6767 				start_pfn = usable_startpfn;
6768 			}
6769 
6770 			/*
6771 			 * The usable PFN range for ZONE_MOVABLE is from
6772 			 * start_pfn->end_pfn. Calculate size_pages as the
6773 			 * number of pages used as kernelcore
6774 			 */
6775 			size_pages = end_pfn - start_pfn;
6776 			if (size_pages > kernelcore_remaining)
6777 				size_pages = kernelcore_remaining;
6778 			zone_movable_pfn[nid] = start_pfn + size_pages;
6779 
6780 			/*
6781 			 * Some kernelcore has been met, update counts and
6782 			 * break if the kernelcore for this node has been
6783 			 * satisfied
6784 			 */
6785 			required_kernelcore -= min(required_kernelcore,
6786 								size_pages);
6787 			kernelcore_remaining -= size_pages;
6788 			if (!kernelcore_remaining)
6789 				break;
6790 		}
6791 	}
6792 
6793 	/*
6794 	 * If there is still required_kernelcore, we do another pass with one
6795 	 * less node in the count. This will push zone_movable_pfn[nid] further
6796 	 * along on the nodes that still have memory until kernelcore is
6797 	 * satisfied
6798 	 */
6799 	usable_nodes--;
6800 	if (usable_nodes && required_kernelcore > usable_nodes)
6801 		goto restart;
6802 
6803 out2:
6804 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6805 	for (nid = 0; nid < MAX_NUMNODES; nid++)
6806 		zone_movable_pfn[nid] =
6807 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6808 
6809 out:
6810 	/* restore the node_state */
6811 	node_states[N_MEMORY] = saved_node_state;
6812 }
6813 
6814 /* Any regular or high memory on that node ? */
6815 static void check_for_memory(pg_data_t *pgdat, int nid)
6816 {
6817 	enum zone_type zone_type;
6818 
6819 	if (N_MEMORY == N_NORMAL_MEMORY)
6820 		return;
6821 
6822 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6823 		struct zone *zone = &pgdat->node_zones[zone_type];
6824 		if (populated_zone(zone)) {
6825 			node_set_state(nid, N_HIGH_MEMORY);
6826 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6827 			    zone_type <= ZONE_NORMAL)
6828 				node_set_state(nid, N_NORMAL_MEMORY);
6829 			break;
6830 		}
6831 	}
6832 }
6833 
6834 /**
6835  * free_area_init_nodes - Initialise all pg_data_t and zone data
6836  * @max_zone_pfn: an array of max PFNs for each zone
6837  *
6838  * This will call free_area_init_node() for each active node in the system.
6839  * Using the page ranges provided by memblock_set_node(), the size of each
6840  * zone in each node and their holes is calculated. If the maximum PFN
6841  * between two adjacent zones match, it is assumed that the zone is empty.
6842  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6843  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6844  * starts where the previous one ended. For example, ZONE_DMA32 starts
6845  * at arch_max_dma_pfn.
6846  */
6847 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6848 {
6849 	unsigned long start_pfn, end_pfn;
6850 	int i, nid;
6851 
6852 	/* Record where the zone boundaries are */
6853 	memset(arch_zone_lowest_possible_pfn, 0,
6854 				sizeof(arch_zone_lowest_possible_pfn));
6855 	memset(arch_zone_highest_possible_pfn, 0,
6856 				sizeof(arch_zone_highest_possible_pfn));
6857 
6858 	start_pfn = find_min_pfn_with_active_regions();
6859 
6860 	for (i = 0; i < MAX_NR_ZONES; i++) {
6861 		if (i == ZONE_MOVABLE)
6862 			continue;
6863 
6864 		end_pfn = max(max_zone_pfn[i], start_pfn);
6865 		arch_zone_lowest_possible_pfn[i] = start_pfn;
6866 		arch_zone_highest_possible_pfn[i] = end_pfn;
6867 
6868 		start_pfn = end_pfn;
6869 	}
6870 
6871 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
6872 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6873 	find_zone_movable_pfns_for_nodes();
6874 
6875 	/* Print out the zone ranges */
6876 	pr_info("Zone ranges:\n");
6877 	for (i = 0; i < MAX_NR_ZONES; i++) {
6878 		if (i == ZONE_MOVABLE)
6879 			continue;
6880 		pr_info("  %-8s ", zone_names[i]);
6881 		if (arch_zone_lowest_possible_pfn[i] ==
6882 				arch_zone_highest_possible_pfn[i])
6883 			pr_cont("empty\n");
6884 		else
6885 			pr_cont("[mem %#018Lx-%#018Lx]\n",
6886 				(u64)arch_zone_lowest_possible_pfn[i]
6887 					<< PAGE_SHIFT,
6888 				((u64)arch_zone_highest_possible_pfn[i]
6889 					<< PAGE_SHIFT) - 1);
6890 	}
6891 
6892 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6893 	pr_info("Movable zone start for each node\n");
6894 	for (i = 0; i < MAX_NUMNODES; i++) {
6895 		if (zone_movable_pfn[i])
6896 			pr_info("  Node %d: %#018Lx\n", i,
6897 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6898 	}
6899 
6900 	/* Print out the early node map */
6901 	pr_info("Early memory node ranges\n");
6902 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6903 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6904 			(u64)start_pfn << PAGE_SHIFT,
6905 			((u64)end_pfn << PAGE_SHIFT) - 1);
6906 
6907 	/* Initialise every node */
6908 	mminit_verify_pageflags_layout();
6909 	setup_nr_node_ids();
6910 	zero_resv_unavail();
6911 	for_each_online_node(nid) {
6912 		pg_data_t *pgdat = NODE_DATA(nid);
6913 		free_area_init_node(nid, NULL,
6914 				find_min_pfn_for_node(nid), NULL);
6915 
6916 		/* Any memory on that node */
6917 		if (pgdat->node_present_pages)
6918 			node_set_state(nid, N_MEMORY);
6919 		check_for_memory(pgdat, nid);
6920 	}
6921 }
6922 
6923 static int __init cmdline_parse_core(char *p, unsigned long *core,
6924 				     unsigned long *percent)
6925 {
6926 	unsigned long long coremem;
6927 	char *endptr;
6928 
6929 	if (!p)
6930 		return -EINVAL;
6931 
6932 	/* Value may be a percentage of total memory, otherwise bytes */
6933 	coremem = simple_strtoull(p, &endptr, 0);
6934 	if (*endptr == '%') {
6935 		/* Paranoid check for percent values greater than 100 */
6936 		WARN_ON(coremem > 100);
6937 
6938 		*percent = coremem;
6939 	} else {
6940 		coremem = memparse(p, &p);
6941 		/* Paranoid check that UL is enough for the coremem value */
6942 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6943 
6944 		*core = coremem >> PAGE_SHIFT;
6945 		*percent = 0UL;
6946 	}
6947 	return 0;
6948 }
6949 
6950 /*
6951  * kernelcore=size sets the amount of memory for use for allocations that
6952  * cannot be reclaimed or migrated.
6953  */
6954 static int __init cmdline_parse_kernelcore(char *p)
6955 {
6956 	/* parse kernelcore=mirror */
6957 	if (parse_option_str(p, "mirror")) {
6958 		mirrored_kernelcore = true;
6959 		return 0;
6960 	}
6961 
6962 	return cmdline_parse_core(p, &required_kernelcore,
6963 				  &required_kernelcore_percent);
6964 }
6965 
6966 /*
6967  * movablecore=size sets the amount of memory for use for allocations that
6968  * can be reclaimed or migrated.
6969  */
6970 static int __init cmdline_parse_movablecore(char *p)
6971 {
6972 	return cmdline_parse_core(p, &required_movablecore,
6973 				  &required_movablecore_percent);
6974 }
6975 
6976 early_param("kernelcore", cmdline_parse_kernelcore);
6977 early_param("movablecore", cmdline_parse_movablecore);
6978 
6979 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6980 
6981 void adjust_managed_page_count(struct page *page, long count)
6982 {
6983 	spin_lock(&managed_page_count_lock);
6984 	page_zone(page)->managed_pages += count;
6985 	totalram_pages += count;
6986 #ifdef CONFIG_HIGHMEM
6987 	if (PageHighMem(page))
6988 		totalhigh_pages += count;
6989 #endif
6990 	spin_unlock(&managed_page_count_lock);
6991 }
6992 EXPORT_SYMBOL(adjust_managed_page_count);
6993 
6994 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6995 {
6996 	void *pos;
6997 	unsigned long pages = 0;
6998 
6999 	start = (void *)PAGE_ALIGN((unsigned long)start);
7000 	end = (void *)((unsigned long)end & PAGE_MASK);
7001 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7002 		struct page *page = virt_to_page(pos);
7003 		void *direct_map_addr;
7004 
7005 		/*
7006 		 * 'direct_map_addr' might be different from 'pos'
7007 		 * because some architectures' virt_to_page()
7008 		 * work with aliases.  Getting the direct map
7009 		 * address ensures that we get a _writeable_
7010 		 * alias for the memset().
7011 		 */
7012 		direct_map_addr = page_address(page);
7013 		if ((unsigned int)poison <= 0xFF)
7014 			memset(direct_map_addr, poison, PAGE_SIZE);
7015 
7016 		free_reserved_page(page);
7017 	}
7018 
7019 	if (pages && s)
7020 		pr_info("Freeing %s memory: %ldK\n",
7021 			s, pages << (PAGE_SHIFT - 10));
7022 
7023 	return pages;
7024 }
7025 EXPORT_SYMBOL(free_reserved_area);
7026 
7027 #ifdef	CONFIG_HIGHMEM
7028 void free_highmem_page(struct page *page)
7029 {
7030 	__free_reserved_page(page);
7031 	totalram_pages++;
7032 	page_zone(page)->managed_pages++;
7033 	totalhigh_pages++;
7034 }
7035 #endif
7036 
7037 
7038 void __init mem_init_print_info(const char *str)
7039 {
7040 	unsigned long physpages, codesize, datasize, rosize, bss_size;
7041 	unsigned long init_code_size, init_data_size;
7042 
7043 	physpages = get_num_physpages();
7044 	codesize = _etext - _stext;
7045 	datasize = _edata - _sdata;
7046 	rosize = __end_rodata - __start_rodata;
7047 	bss_size = __bss_stop - __bss_start;
7048 	init_data_size = __init_end - __init_begin;
7049 	init_code_size = _einittext - _sinittext;
7050 
7051 	/*
7052 	 * Detect special cases and adjust section sizes accordingly:
7053 	 * 1) .init.* may be embedded into .data sections
7054 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
7055 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
7056 	 * 3) .rodata.* may be embedded into .text or .data sections.
7057 	 */
7058 #define adj_init_size(start, end, size, pos, adj) \
7059 	do { \
7060 		if (start <= pos && pos < end && size > adj) \
7061 			size -= adj; \
7062 	} while (0)
7063 
7064 	adj_init_size(__init_begin, __init_end, init_data_size,
7065 		     _sinittext, init_code_size);
7066 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7067 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7068 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7069 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7070 
7071 #undef	adj_init_size
7072 
7073 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7074 #ifdef	CONFIG_HIGHMEM
7075 		", %luK highmem"
7076 #endif
7077 		"%s%s)\n",
7078 		nr_free_pages() << (PAGE_SHIFT - 10),
7079 		physpages << (PAGE_SHIFT - 10),
7080 		codesize >> 10, datasize >> 10, rosize >> 10,
7081 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7082 		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
7083 		totalcma_pages << (PAGE_SHIFT - 10),
7084 #ifdef	CONFIG_HIGHMEM
7085 		totalhigh_pages << (PAGE_SHIFT - 10),
7086 #endif
7087 		str ? ", " : "", str ? str : "");
7088 }
7089 
7090 /**
7091  * set_dma_reserve - set the specified number of pages reserved in the first zone
7092  * @new_dma_reserve: The number of pages to mark reserved
7093  *
7094  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7095  * In the DMA zone, a significant percentage may be consumed by kernel image
7096  * and other unfreeable allocations which can skew the watermarks badly. This
7097  * function may optionally be used to account for unfreeable pages in the
7098  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7099  * smaller per-cpu batchsize.
7100  */
7101 void __init set_dma_reserve(unsigned long new_dma_reserve)
7102 {
7103 	dma_reserve = new_dma_reserve;
7104 }
7105 
7106 void __init free_area_init(unsigned long *zones_size)
7107 {
7108 	zero_resv_unavail();
7109 	free_area_init_node(0, zones_size,
7110 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7111 }
7112 
7113 static int page_alloc_cpu_dead(unsigned int cpu)
7114 {
7115 
7116 	lru_add_drain_cpu(cpu);
7117 	drain_pages(cpu);
7118 
7119 	/*
7120 	 * Spill the event counters of the dead processor
7121 	 * into the current processors event counters.
7122 	 * This artificially elevates the count of the current
7123 	 * processor.
7124 	 */
7125 	vm_events_fold_cpu(cpu);
7126 
7127 	/*
7128 	 * Zero the differential counters of the dead processor
7129 	 * so that the vm statistics are consistent.
7130 	 *
7131 	 * This is only okay since the processor is dead and cannot
7132 	 * race with what we are doing.
7133 	 */
7134 	cpu_vm_stats_fold(cpu);
7135 	return 0;
7136 }
7137 
7138 void __init page_alloc_init(void)
7139 {
7140 	int ret;
7141 
7142 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7143 					"mm/page_alloc:dead", NULL,
7144 					page_alloc_cpu_dead);
7145 	WARN_ON(ret < 0);
7146 }
7147 
7148 /*
7149  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7150  *	or min_free_kbytes changes.
7151  */
7152 static void calculate_totalreserve_pages(void)
7153 {
7154 	struct pglist_data *pgdat;
7155 	unsigned long reserve_pages = 0;
7156 	enum zone_type i, j;
7157 
7158 	for_each_online_pgdat(pgdat) {
7159 
7160 		pgdat->totalreserve_pages = 0;
7161 
7162 		for (i = 0; i < MAX_NR_ZONES; i++) {
7163 			struct zone *zone = pgdat->node_zones + i;
7164 			long max = 0;
7165 
7166 			/* Find valid and maximum lowmem_reserve in the zone */
7167 			for (j = i; j < MAX_NR_ZONES; j++) {
7168 				if (zone->lowmem_reserve[j] > max)
7169 					max = zone->lowmem_reserve[j];
7170 			}
7171 
7172 			/* we treat the high watermark as reserved pages. */
7173 			max += high_wmark_pages(zone);
7174 
7175 			if (max > zone->managed_pages)
7176 				max = zone->managed_pages;
7177 
7178 			pgdat->totalreserve_pages += max;
7179 
7180 			reserve_pages += max;
7181 		}
7182 	}
7183 	totalreserve_pages = reserve_pages;
7184 }
7185 
7186 /*
7187  * setup_per_zone_lowmem_reserve - called whenever
7188  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
7189  *	has a correct pages reserved value, so an adequate number of
7190  *	pages are left in the zone after a successful __alloc_pages().
7191  */
7192 static void setup_per_zone_lowmem_reserve(void)
7193 {
7194 	struct pglist_data *pgdat;
7195 	enum zone_type j, idx;
7196 
7197 	for_each_online_pgdat(pgdat) {
7198 		for (j = 0; j < MAX_NR_ZONES; j++) {
7199 			struct zone *zone = pgdat->node_zones + j;
7200 			unsigned long managed_pages = zone->managed_pages;
7201 
7202 			zone->lowmem_reserve[j] = 0;
7203 
7204 			idx = j;
7205 			while (idx) {
7206 				struct zone *lower_zone;
7207 
7208 				idx--;
7209 				lower_zone = pgdat->node_zones + idx;
7210 
7211 				if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7212 					sysctl_lowmem_reserve_ratio[idx] = 0;
7213 					lower_zone->lowmem_reserve[j] = 0;
7214 				} else {
7215 					lower_zone->lowmem_reserve[j] =
7216 						managed_pages / sysctl_lowmem_reserve_ratio[idx];
7217 				}
7218 				managed_pages += lower_zone->managed_pages;
7219 			}
7220 		}
7221 	}
7222 
7223 	/* update totalreserve_pages */
7224 	calculate_totalreserve_pages();
7225 }
7226 
7227 static void __setup_per_zone_wmarks(void)
7228 {
7229 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7230 	unsigned long lowmem_pages = 0;
7231 	struct zone *zone;
7232 	unsigned long flags;
7233 
7234 	/* Calculate total number of !ZONE_HIGHMEM pages */
7235 	for_each_zone(zone) {
7236 		if (!is_highmem(zone))
7237 			lowmem_pages += zone->managed_pages;
7238 	}
7239 
7240 	for_each_zone(zone) {
7241 		u64 tmp;
7242 
7243 		spin_lock_irqsave(&zone->lock, flags);
7244 		tmp = (u64)pages_min * zone->managed_pages;
7245 		do_div(tmp, lowmem_pages);
7246 		if (is_highmem(zone)) {
7247 			/*
7248 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7249 			 * need highmem pages, so cap pages_min to a small
7250 			 * value here.
7251 			 *
7252 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7253 			 * deltas control asynch page reclaim, and so should
7254 			 * not be capped for highmem.
7255 			 */
7256 			unsigned long min_pages;
7257 
7258 			min_pages = zone->managed_pages / 1024;
7259 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7260 			zone->watermark[WMARK_MIN] = min_pages;
7261 		} else {
7262 			/*
7263 			 * If it's a lowmem zone, reserve a number of pages
7264 			 * proportionate to the zone's size.
7265 			 */
7266 			zone->watermark[WMARK_MIN] = tmp;
7267 		}
7268 
7269 		/*
7270 		 * Set the kswapd watermarks distance according to the
7271 		 * scale factor in proportion to available memory, but
7272 		 * ensure a minimum size on small systems.
7273 		 */
7274 		tmp = max_t(u64, tmp >> 2,
7275 			    mult_frac(zone->managed_pages,
7276 				      watermark_scale_factor, 10000));
7277 
7278 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
7279 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7280 
7281 		spin_unlock_irqrestore(&zone->lock, flags);
7282 	}
7283 
7284 	/* update totalreserve_pages */
7285 	calculate_totalreserve_pages();
7286 }
7287 
7288 /**
7289  * setup_per_zone_wmarks - called when min_free_kbytes changes
7290  * or when memory is hot-{added|removed}
7291  *
7292  * Ensures that the watermark[min,low,high] values for each zone are set
7293  * correctly with respect to min_free_kbytes.
7294  */
7295 void setup_per_zone_wmarks(void)
7296 {
7297 	static DEFINE_SPINLOCK(lock);
7298 
7299 	spin_lock(&lock);
7300 	__setup_per_zone_wmarks();
7301 	spin_unlock(&lock);
7302 }
7303 
7304 /*
7305  * Initialise min_free_kbytes.
7306  *
7307  * For small machines we want it small (128k min).  For large machines
7308  * we want it large (64MB max).  But it is not linear, because network
7309  * bandwidth does not increase linearly with machine size.  We use
7310  *
7311  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7312  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
7313  *
7314  * which yields
7315  *
7316  * 16MB:	512k
7317  * 32MB:	724k
7318  * 64MB:	1024k
7319  * 128MB:	1448k
7320  * 256MB:	2048k
7321  * 512MB:	2896k
7322  * 1024MB:	4096k
7323  * 2048MB:	5792k
7324  * 4096MB:	8192k
7325  * 8192MB:	11584k
7326  * 16384MB:	16384k
7327  */
7328 int __meminit init_per_zone_wmark_min(void)
7329 {
7330 	unsigned long lowmem_kbytes;
7331 	int new_min_free_kbytes;
7332 
7333 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7334 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7335 
7336 	if (new_min_free_kbytes > user_min_free_kbytes) {
7337 		min_free_kbytes = new_min_free_kbytes;
7338 		if (min_free_kbytes < 128)
7339 			min_free_kbytes = 128;
7340 		if (min_free_kbytes > 65536)
7341 			min_free_kbytes = 65536;
7342 	} else {
7343 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7344 				new_min_free_kbytes, user_min_free_kbytes);
7345 	}
7346 	setup_per_zone_wmarks();
7347 	refresh_zone_stat_thresholds();
7348 	setup_per_zone_lowmem_reserve();
7349 
7350 #ifdef CONFIG_NUMA
7351 	setup_min_unmapped_ratio();
7352 	setup_min_slab_ratio();
7353 #endif
7354 
7355 	return 0;
7356 }
7357 core_initcall(init_per_zone_wmark_min)
7358 
7359 /*
7360  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7361  *	that we can call two helper functions whenever min_free_kbytes
7362  *	changes.
7363  */
7364 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7365 	void __user *buffer, size_t *length, loff_t *ppos)
7366 {
7367 	int rc;
7368 
7369 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7370 	if (rc)
7371 		return rc;
7372 
7373 	if (write) {
7374 		user_min_free_kbytes = min_free_kbytes;
7375 		setup_per_zone_wmarks();
7376 	}
7377 	return 0;
7378 }
7379 
7380 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7381 	void __user *buffer, size_t *length, loff_t *ppos)
7382 {
7383 	int rc;
7384 
7385 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7386 	if (rc)
7387 		return rc;
7388 
7389 	if (write)
7390 		setup_per_zone_wmarks();
7391 
7392 	return 0;
7393 }
7394 
7395 #ifdef CONFIG_NUMA
7396 static void setup_min_unmapped_ratio(void)
7397 {
7398 	pg_data_t *pgdat;
7399 	struct zone *zone;
7400 
7401 	for_each_online_pgdat(pgdat)
7402 		pgdat->min_unmapped_pages = 0;
7403 
7404 	for_each_zone(zone)
7405 		zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7406 				sysctl_min_unmapped_ratio) / 100;
7407 }
7408 
7409 
7410 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7411 	void __user *buffer, size_t *length, loff_t *ppos)
7412 {
7413 	int rc;
7414 
7415 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7416 	if (rc)
7417 		return rc;
7418 
7419 	setup_min_unmapped_ratio();
7420 
7421 	return 0;
7422 }
7423 
7424 static void setup_min_slab_ratio(void)
7425 {
7426 	pg_data_t *pgdat;
7427 	struct zone *zone;
7428 
7429 	for_each_online_pgdat(pgdat)
7430 		pgdat->min_slab_pages = 0;
7431 
7432 	for_each_zone(zone)
7433 		zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7434 				sysctl_min_slab_ratio) / 100;
7435 }
7436 
7437 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7438 	void __user *buffer, size_t *length, loff_t *ppos)
7439 {
7440 	int rc;
7441 
7442 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7443 	if (rc)
7444 		return rc;
7445 
7446 	setup_min_slab_ratio();
7447 
7448 	return 0;
7449 }
7450 #endif
7451 
7452 /*
7453  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7454  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7455  *	whenever sysctl_lowmem_reserve_ratio changes.
7456  *
7457  * The reserve ratio obviously has absolutely no relation with the
7458  * minimum watermarks. The lowmem reserve ratio can only make sense
7459  * if in function of the boot time zone sizes.
7460  */
7461 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7462 	void __user *buffer, size_t *length, loff_t *ppos)
7463 {
7464 	proc_dointvec_minmax(table, write, buffer, length, ppos);
7465 	setup_per_zone_lowmem_reserve();
7466 	return 0;
7467 }
7468 
7469 /*
7470  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7471  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
7472  * pagelist can have before it gets flushed back to buddy allocator.
7473  */
7474 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7475 	void __user *buffer, size_t *length, loff_t *ppos)
7476 {
7477 	struct zone *zone;
7478 	int old_percpu_pagelist_fraction;
7479 	int ret;
7480 
7481 	mutex_lock(&pcp_batch_high_lock);
7482 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7483 
7484 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7485 	if (!write || ret < 0)
7486 		goto out;
7487 
7488 	/* Sanity checking to avoid pcp imbalance */
7489 	if (percpu_pagelist_fraction &&
7490 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7491 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7492 		ret = -EINVAL;
7493 		goto out;
7494 	}
7495 
7496 	/* No change? */
7497 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7498 		goto out;
7499 
7500 	for_each_populated_zone(zone) {
7501 		unsigned int cpu;
7502 
7503 		for_each_possible_cpu(cpu)
7504 			pageset_set_high_and_batch(zone,
7505 					per_cpu_ptr(zone->pageset, cpu));
7506 	}
7507 out:
7508 	mutex_unlock(&pcp_batch_high_lock);
7509 	return ret;
7510 }
7511 
7512 #ifdef CONFIG_NUMA
7513 int hashdist = HASHDIST_DEFAULT;
7514 
7515 static int __init set_hashdist(char *str)
7516 {
7517 	if (!str)
7518 		return 0;
7519 	hashdist = simple_strtoul(str, &str, 0);
7520 	return 1;
7521 }
7522 __setup("hashdist=", set_hashdist);
7523 #endif
7524 
7525 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7526 /*
7527  * Returns the number of pages that arch has reserved but
7528  * is not known to alloc_large_system_hash().
7529  */
7530 static unsigned long __init arch_reserved_kernel_pages(void)
7531 {
7532 	return 0;
7533 }
7534 #endif
7535 
7536 /*
7537  * Adaptive scale is meant to reduce sizes of hash tables on large memory
7538  * machines. As memory size is increased the scale is also increased but at
7539  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
7540  * quadruples the scale is increased by one, which means the size of hash table
7541  * only doubles, instead of quadrupling as well.
7542  * Because 32-bit systems cannot have large physical memory, where this scaling
7543  * makes sense, it is disabled on such platforms.
7544  */
7545 #if __BITS_PER_LONG > 32
7546 #define ADAPT_SCALE_BASE	(64ul << 30)
7547 #define ADAPT_SCALE_SHIFT	2
7548 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
7549 #endif
7550 
7551 /*
7552  * allocate a large system hash table from bootmem
7553  * - it is assumed that the hash table must contain an exact power-of-2
7554  *   quantity of entries
7555  * - limit is the number of hash buckets, not the total allocation size
7556  */
7557 void *__init alloc_large_system_hash(const char *tablename,
7558 				     unsigned long bucketsize,
7559 				     unsigned long numentries,
7560 				     int scale,
7561 				     int flags,
7562 				     unsigned int *_hash_shift,
7563 				     unsigned int *_hash_mask,
7564 				     unsigned long low_limit,
7565 				     unsigned long high_limit)
7566 {
7567 	unsigned long long max = high_limit;
7568 	unsigned long log2qty, size;
7569 	void *table = NULL;
7570 	gfp_t gfp_flags;
7571 
7572 	/* allow the kernel cmdline to have a say */
7573 	if (!numentries) {
7574 		/* round applicable memory size up to nearest megabyte */
7575 		numentries = nr_kernel_pages;
7576 		numentries -= arch_reserved_kernel_pages();
7577 
7578 		/* It isn't necessary when PAGE_SIZE >= 1MB */
7579 		if (PAGE_SHIFT < 20)
7580 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7581 
7582 #if __BITS_PER_LONG > 32
7583 		if (!high_limit) {
7584 			unsigned long adapt;
7585 
7586 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7587 			     adapt <<= ADAPT_SCALE_SHIFT)
7588 				scale++;
7589 		}
7590 #endif
7591 
7592 		/* limit to 1 bucket per 2^scale bytes of low memory */
7593 		if (scale > PAGE_SHIFT)
7594 			numentries >>= (scale - PAGE_SHIFT);
7595 		else
7596 			numentries <<= (PAGE_SHIFT - scale);
7597 
7598 		/* Make sure we've got at least a 0-order allocation.. */
7599 		if (unlikely(flags & HASH_SMALL)) {
7600 			/* Makes no sense without HASH_EARLY */
7601 			WARN_ON(!(flags & HASH_EARLY));
7602 			if (!(numentries >> *_hash_shift)) {
7603 				numentries = 1UL << *_hash_shift;
7604 				BUG_ON(!numentries);
7605 			}
7606 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7607 			numentries = PAGE_SIZE / bucketsize;
7608 	}
7609 	numentries = roundup_pow_of_two(numentries);
7610 
7611 	/* limit allocation size to 1/16 total memory by default */
7612 	if (max == 0) {
7613 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7614 		do_div(max, bucketsize);
7615 	}
7616 	max = min(max, 0x80000000ULL);
7617 
7618 	if (numentries < low_limit)
7619 		numentries = low_limit;
7620 	if (numentries > max)
7621 		numentries = max;
7622 
7623 	log2qty = ilog2(numentries);
7624 
7625 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
7626 	do {
7627 		size = bucketsize << log2qty;
7628 		if (flags & HASH_EARLY) {
7629 			if (flags & HASH_ZERO)
7630 				table = memblock_virt_alloc_nopanic(size, 0);
7631 			else
7632 				table = memblock_virt_alloc_raw(size, 0);
7633 		} else if (hashdist) {
7634 			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7635 		} else {
7636 			/*
7637 			 * If bucketsize is not a power-of-two, we may free
7638 			 * some pages at the end of hash table which
7639 			 * alloc_pages_exact() automatically does
7640 			 */
7641 			if (get_order(size) < MAX_ORDER) {
7642 				table = alloc_pages_exact(size, gfp_flags);
7643 				kmemleak_alloc(table, size, 1, gfp_flags);
7644 			}
7645 		}
7646 	} while (!table && size > PAGE_SIZE && --log2qty);
7647 
7648 	if (!table)
7649 		panic("Failed to allocate %s hash table\n", tablename);
7650 
7651 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7652 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7653 
7654 	if (_hash_shift)
7655 		*_hash_shift = log2qty;
7656 	if (_hash_mask)
7657 		*_hash_mask = (1 << log2qty) - 1;
7658 
7659 	return table;
7660 }
7661 
7662 /*
7663  * This function checks whether pageblock includes unmovable pages or not.
7664  * If @count is not zero, it is okay to include less @count unmovable pages
7665  *
7666  * PageLRU check without isolation or lru_lock could race so that
7667  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7668  * check without lock_page also may miss some movable non-lru pages at
7669  * race condition. So you can't expect this function should be exact.
7670  */
7671 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7672 			 int migratetype,
7673 			 bool skip_hwpoisoned_pages)
7674 {
7675 	unsigned long pfn, iter, found;
7676 
7677 	/*
7678 	 * TODO we could make this much more efficient by not checking every
7679 	 * page in the range if we know all of them are in MOVABLE_ZONE and
7680 	 * that the movable zone guarantees that pages are migratable but
7681 	 * the later is not the case right now unfortunatelly. E.g. movablecore
7682 	 * can still lead to having bootmem allocations in zone_movable.
7683 	 */
7684 
7685 	/*
7686 	 * CMA allocations (alloc_contig_range) really need to mark isolate
7687 	 * CMA pageblocks even when they are not movable in fact so consider
7688 	 * them movable here.
7689 	 */
7690 	if (is_migrate_cma(migratetype) &&
7691 			is_migrate_cma(get_pageblock_migratetype(page)))
7692 		return false;
7693 
7694 	pfn = page_to_pfn(page);
7695 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7696 		unsigned long check = pfn + iter;
7697 
7698 		if (!pfn_valid_within(check))
7699 			continue;
7700 
7701 		page = pfn_to_page(check);
7702 
7703 		if (PageReserved(page))
7704 			goto unmovable;
7705 
7706 		/*
7707 		 * Hugepages are not in LRU lists, but they're movable.
7708 		 * We need not scan over tail pages bacause we don't
7709 		 * handle each tail page individually in migration.
7710 		 */
7711 		if (PageHuge(page)) {
7712 			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7713 			continue;
7714 		}
7715 
7716 		/*
7717 		 * We can't use page_count without pin a page
7718 		 * because another CPU can free compound page.
7719 		 * This check already skips compound tails of THP
7720 		 * because their page->_refcount is zero at all time.
7721 		 */
7722 		if (!page_ref_count(page)) {
7723 			if (PageBuddy(page))
7724 				iter += (1 << page_order(page)) - 1;
7725 			continue;
7726 		}
7727 
7728 		/*
7729 		 * The HWPoisoned page may be not in buddy system, and
7730 		 * page_count() is not 0.
7731 		 */
7732 		if (skip_hwpoisoned_pages && PageHWPoison(page))
7733 			continue;
7734 
7735 		if (__PageMovable(page))
7736 			continue;
7737 
7738 		if (!PageLRU(page))
7739 			found++;
7740 		/*
7741 		 * If there are RECLAIMABLE pages, we need to check
7742 		 * it.  But now, memory offline itself doesn't call
7743 		 * shrink_node_slabs() and it still to be fixed.
7744 		 */
7745 		/*
7746 		 * If the page is not RAM, page_count()should be 0.
7747 		 * we don't need more check. This is an _used_ not-movable page.
7748 		 *
7749 		 * The problematic thing here is PG_reserved pages. PG_reserved
7750 		 * is set to both of a memory hole page and a _used_ kernel
7751 		 * page at boot.
7752 		 */
7753 		if (found > count)
7754 			goto unmovable;
7755 	}
7756 	return false;
7757 unmovable:
7758 	WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
7759 	return true;
7760 }
7761 
7762 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7763 
7764 static unsigned long pfn_max_align_down(unsigned long pfn)
7765 {
7766 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7767 			     pageblock_nr_pages) - 1);
7768 }
7769 
7770 static unsigned long pfn_max_align_up(unsigned long pfn)
7771 {
7772 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7773 				pageblock_nr_pages));
7774 }
7775 
7776 /* [start, end) must belong to a single zone. */
7777 static int __alloc_contig_migrate_range(struct compact_control *cc,
7778 					unsigned long start, unsigned long end)
7779 {
7780 	/* This function is based on compact_zone() from compaction.c. */
7781 	unsigned long nr_reclaimed;
7782 	unsigned long pfn = start;
7783 	unsigned int tries = 0;
7784 	int ret = 0;
7785 
7786 	migrate_prep();
7787 
7788 	while (pfn < end || !list_empty(&cc->migratepages)) {
7789 		if (fatal_signal_pending(current)) {
7790 			ret = -EINTR;
7791 			break;
7792 		}
7793 
7794 		if (list_empty(&cc->migratepages)) {
7795 			cc->nr_migratepages = 0;
7796 			pfn = isolate_migratepages_range(cc, pfn, end);
7797 			if (!pfn) {
7798 				ret = -EINTR;
7799 				break;
7800 			}
7801 			tries = 0;
7802 		} else if (++tries == 5) {
7803 			ret = ret < 0 ? ret : -EBUSY;
7804 			break;
7805 		}
7806 
7807 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7808 							&cc->migratepages);
7809 		cc->nr_migratepages -= nr_reclaimed;
7810 
7811 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7812 				    NULL, 0, cc->mode, MR_CONTIG_RANGE);
7813 	}
7814 	if (ret < 0) {
7815 		putback_movable_pages(&cc->migratepages);
7816 		return ret;
7817 	}
7818 	return 0;
7819 }
7820 
7821 /**
7822  * alloc_contig_range() -- tries to allocate given range of pages
7823  * @start:	start PFN to allocate
7824  * @end:	one-past-the-last PFN to allocate
7825  * @migratetype:	migratetype of the underlaying pageblocks (either
7826  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
7827  *			in range must have the same migratetype and it must
7828  *			be either of the two.
7829  * @gfp_mask:	GFP mask to use during compaction
7830  *
7831  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7832  * aligned.  The PFN range must belong to a single zone.
7833  *
7834  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
7835  * pageblocks in the range.  Once isolated, the pageblocks should not
7836  * be modified by others.
7837  *
7838  * Returns zero on success or negative error code.  On success all
7839  * pages which PFN is in [start, end) are allocated for the caller and
7840  * need to be freed with free_contig_range().
7841  */
7842 int alloc_contig_range(unsigned long start, unsigned long end,
7843 		       unsigned migratetype, gfp_t gfp_mask)
7844 {
7845 	unsigned long outer_start, outer_end;
7846 	unsigned int order;
7847 	int ret = 0;
7848 
7849 	struct compact_control cc = {
7850 		.nr_migratepages = 0,
7851 		.order = -1,
7852 		.zone = page_zone(pfn_to_page(start)),
7853 		.mode = MIGRATE_SYNC,
7854 		.ignore_skip_hint = true,
7855 		.no_set_skip_hint = true,
7856 		.gfp_mask = current_gfp_context(gfp_mask),
7857 	};
7858 	INIT_LIST_HEAD(&cc.migratepages);
7859 
7860 	/*
7861 	 * What we do here is we mark all pageblocks in range as
7862 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
7863 	 * have different sizes, and due to the way page allocator
7864 	 * work, we align the range to biggest of the two pages so
7865 	 * that page allocator won't try to merge buddies from
7866 	 * different pageblocks and change MIGRATE_ISOLATE to some
7867 	 * other migration type.
7868 	 *
7869 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7870 	 * migrate the pages from an unaligned range (ie. pages that
7871 	 * we are interested in).  This will put all the pages in
7872 	 * range back to page allocator as MIGRATE_ISOLATE.
7873 	 *
7874 	 * When this is done, we take the pages in range from page
7875 	 * allocator removing them from the buddy system.  This way
7876 	 * page allocator will never consider using them.
7877 	 *
7878 	 * This lets us mark the pageblocks back as
7879 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7880 	 * aligned range but not in the unaligned, original range are
7881 	 * put back to page allocator so that buddy can use them.
7882 	 */
7883 
7884 	ret = start_isolate_page_range(pfn_max_align_down(start),
7885 				       pfn_max_align_up(end), migratetype,
7886 				       false);
7887 	if (ret)
7888 		return ret;
7889 
7890 	/*
7891 	 * In case of -EBUSY, we'd like to know which page causes problem.
7892 	 * So, just fall through. test_pages_isolated() has a tracepoint
7893 	 * which will report the busy page.
7894 	 *
7895 	 * It is possible that busy pages could become available before
7896 	 * the call to test_pages_isolated, and the range will actually be
7897 	 * allocated.  So, if we fall through be sure to clear ret so that
7898 	 * -EBUSY is not accidentally used or returned to caller.
7899 	 */
7900 	ret = __alloc_contig_migrate_range(&cc, start, end);
7901 	if (ret && ret != -EBUSY)
7902 		goto done;
7903 	ret =0;
7904 
7905 	/*
7906 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7907 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
7908 	 * more, all pages in [start, end) are free in page allocator.
7909 	 * What we are going to do is to allocate all pages from
7910 	 * [start, end) (that is remove them from page allocator).
7911 	 *
7912 	 * The only problem is that pages at the beginning and at the
7913 	 * end of interesting range may be not aligned with pages that
7914 	 * page allocator holds, ie. they can be part of higher order
7915 	 * pages.  Because of this, we reserve the bigger range and
7916 	 * once this is done free the pages we are not interested in.
7917 	 *
7918 	 * We don't have to hold zone->lock here because the pages are
7919 	 * isolated thus they won't get removed from buddy.
7920 	 */
7921 
7922 	lru_add_drain_all();
7923 	drain_all_pages(cc.zone);
7924 
7925 	order = 0;
7926 	outer_start = start;
7927 	while (!PageBuddy(pfn_to_page(outer_start))) {
7928 		if (++order >= MAX_ORDER) {
7929 			outer_start = start;
7930 			break;
7931 		}
7932 		outer_start &= ~0UL << order;
7933 	}
7934 
7935 	if (outer_start != start) {
7936 		order = page_order(pfn_to_page(outer_start));
7937 
7938 		/*
7939 		 * outer_start page could be small order buddy page and
7940 		 * it doesn't include start page. Adjust outer_start
7941 		 * in this case to report failed page properly
7942 		 * on tracepoint in test_pages_isolated()
7943 		 */
7944 		if (outer_start + (1UL << order) <= start)
7945 			outer_start = start;
7946 	}
7947 
7948 	/* Make sure the range is really isolated. */
7949 	if (test_pages_isolated(outer_start, end, false)) {
7950 		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7951 			__func__, outer_start, end);
7952 		ret = -EBUSY;
7953 		goto done;
7954 	}
7955 
7956 	/* Grab isolated pages from freelists. */
7957 	outer_end = isolate_freepages_range(&cc, outer_start, end);
7958 	if (!outer_end) {
7959 		ret = -EBUSY;
7960 		goto done;
7961 	}
7962 
7963 	/* Free head and tail (if any) */
7964 	if (start != outer_start)
7965 		free_contig_range(outer_start, start - outer_start);
7966 	if (end != outer_end)
7967 		free_contig_range(end, outer_end - end);
7968 
7969 done:
7970 	undo_isolate_page_range(pfn_max_align_down(start),
7971 				pfn_max_align_up(end), migratetype);
7972 	return ret;
7973 }
7974 
7975 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7976 {
7977 	unsigned int count = 0;
7978 
7979 	for (; nr_pages--; pfn++) {
7980 		struct page *page = pfn_to_page(pfn);
7981 
7982 		count += page_count(page) != 1;
7983 		__free_page(page);
7984 	}
7985 	WARN(count != 0, "%d pages are still in use!\n", count);
7986 }
7987 #endif
7988 
7989 #ifdef CONFIG_MEMORY_HOTPLUG
7990 /*
7991  * The zone indicated has a new number of managed_pages; batch sizes and percpu
7992  * page high values need to be recalulated.
7993  */
7994 void __meminit zone_pcp_update(struct zone *zone)
7995 {
7996 	unsigned cpu;
7997 	mutex_lock(&pcp_batch_high_lock);
7998 	for_each_possible_cpu(cpu)
7999 		pageset_set_high_and_batch(zone,
8000 				per_cpu_ptr(zone->pageset, cpu));
8001 	mutex_unlock(&pcp_batch_high_lock);
8002 }
8003 #endif
8004 
8005 void zone_pcp_reset(struct zone *zone)
8006 {
8007 	unsigned long flags;
8008 	int cpu;
8009 	struct per_cpu_pageset *pset;
8010 
8011 	/* avoid races with drain_pages()  */
8012 	local_irq_save(flags);
8013 	if (zone->pageset != &boot_pageset) {
8014 		for_each_online_cpu(cpu) {
8015 			pset = per_cpu_ptr(zone->pageset, cpu);
8016 			drain_zonestat(zone, pset);
8017 		}
8018 		free_percpu(zone->pageset);
8019 		zone->pageset = &boot_pageset;
8020 	}
8021 	local_irq_restore(flags);
8022 }
8023 
8024 #ifdef CONFIG_MEMORY_HOTREMOVE
8025 /*
8026  * All pages in the range must be in a single zone and isolated
8027  * before calling this.
8028  */
8029 void
8030 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8031 {
8032 	struct page *page;
8033 	struct zone *zone;
8034 	unsigned int order, i;
8035 	unsigned long pfn;
8036 	unsigned long flags;
8037 	/* find the first valid pfn */
8038 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
8039 		if (pfn_valid(pfn))
8040 			break;
8041 	if (pfn == end_pfn)
8042 		return;
8043 	offline_mem_sections(pfn, end_pfn);
8044 	zone = page_zone(pfn_to_page(pfn));
8045 	spin_lock_irqsave(&zone->lock, flags);
8046 	pfn = start_pfn;
8047 	while (pfn < end_pfn) {
8048 		if (!pfn_valid(pfn)) {
8049 			pfn++;
8050 			continue;
8051 		}
8052 		page = pfn_to_page(pfn);
8053 		/*
8054 		 * The HWPoisoned page may be not in buddy system, and
8055 		 * page_count() is not 0.
8056 		 */
8057 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8058 			pfn++;
8059 			SetPageReserved(page);
8060 			continue;
8061 		}
8062 
8063 		BUG_ON(page_count(page));
8064 		BUG_ON(!PageBuddy(page));
8065 		order = page_order(page);
8066 #ifdef CONFIG_DEBUG_VM
8067 		pr_info("remove from free list %lx %d %lx\n",
8068 			pfn, 1 << order, end_pfn);
8069 #endif
8070 		list_del(&page->lru);
8071 		rmv_page_order(page);
8072 		zone->free_area[order].nr_free--;
8073 		for (i = 0; i < (1 << order); i++)
8074 			SetPageReserved((page+i));
8075 		pfn += (1 << order);
8076 	}
8077 	spin_unlock_irqrestore(&zone->lock, flags);
8078 }
8079 #endif
8080 
8081 bool is_free_buddy_page(struct page *page)
8082 {
8083 	struct zone *zone = page_zone(page);
8084 	unsigned long pfn = page_to_pfn(page);
8085 	unsigned long flags;
8086 	unsigned int order;
8087 
8088 	spin_lock_irqsave(&zone->lock, flags);
8089 	for (order = 0; order < MAX_ORDER; order++) {
8090 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8091 
8092 		if (PageBuddy(page_head) && page_order(page_head) >= order)
8093 			break;
8094 	}
8095 	spin_unlock_irqrestore(&zone->lock, flags);
8096 
8097 	return order < MAX_ORDER;
8098 }
8099 
8100 #ifdef CONFIG_MEMORY_FAILURE
8101 /*
8102  * Set PG_hwpoison flag if a given page is confirmed to be a free page.  This
8103  * test is performed under the zone lock to prevent a race against page
8104  * allocation.
8105  */
8106 bool set_hwpoison_free_buddy_page(struct page *page)
8107 {
8108 	struct zone *zone = page_zone(page);
8109 	unsigned long pfn = page_to_pfn(page);
8110 	unsigned long flags;
8111 	unsigned int order;
8112 	bool hwpoisoned = false;
8113 
8114 	spin_lock_irqsave(&zone->lock, flags);
8115 	for (order = 0; order < MAX_ORDER; order++) {
8116 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8117 
8118 		if (PageBuddy(page_head) && page_order(page_head) >= order) {
8119 			if (!TestSetPageHWPoison(page))
8120 				hwpoisoned = true;
8121 			break;
8122 		}
8123 	}
8124 	spin_unlock_irqrestore(&zone->lock, flags);
8125 
8126 	return hwpoisoned;
8127 }
8128 #endif
8129