xref: /openbmc/linux/mm/page_alloc.c (revision 586b4106)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmstat.h>
38 #include <linux/fault-inject.h>
39 #include <linux/compaction.h>
40 #include <trace/events/kmem.h>
41 #include <trace/events/oom.h>
42 #include <linux/prefetch.h>
43 #include <linux/mm_inline.h>
44 #include <linux/mmu_notifier.h>
45 #include <linux/migrate.h>
46 #include <linux/sched/mm.h>
47 #include <linux/page_owner.h>
48 #include <linux/page_table_check.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/lockdep.h>
52 #include <linux/psi.h>
53 #include <linux/khugepaged.h>
54 #include <linux/delayacct.h>
55 #include <asm/div64.h>
56 #include "internal.h"
57 #include "shuffle.h"
58 #include "page_reporting.h"
59 
60 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
61 typedef int __bitwise fpi_t;
62 
63 /* No special request */
64 #define FPI_NONE		((__force fpi_t)0)
65 
66 /*
67  * Skip free page reporting notification for the (possibly merged) page.
68  * This does not hinder free page reporting from grabbing the page,
69  * reporting it and marking it "reported" -  it only skips notifying
70  * the free page reporting infrastructure about a newly freed page. For
71  * example, used when temporarily pulling a page from a freelist and
72  * putting it back unmodified.
73  */
74 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
75 
76 /*
77  * Place the (possibly merged) page to the tail of the freelist. Will ignore
78  * page shuffling (relevant code - e.g., memory onlining - is expected to
79  * shuffle the whole zone).
80  *
81  * Note: No code should rely on this flag for correctness - it's purely
82  *       to allow for optimizations when handing back either fresh pages
83  *       (memory onlining) or untouched pages (page isolation, free page
84  *       reporting).
85  */
86 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
87 
88 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
89 static DEFINE_MUTEX(pcp_batch_high_lock);
90 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
91 
92 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
93 /*
94  * On SMP, spin_trylock is sufficient protection.
95  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
96  */
97 #define pcp_trylock_prepare(flags)	do { } while (0)
98 #define pcp_trylock_finish(flag)	do { } while (0)
99 #else
100 
101 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
102 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
103 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
104 #endif
105 
106 /*
107  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
108  * a migration causing the wrong PCP to be locked and remote memory being
109  * potentially allocated, pin the task to the CPU for the lookup+lock.
110  * preempt_disable is used on !RT because it is faster than migrate_disable.
111  * migrate_disable is used on RT because otherwise RT spinlock usage is
112  * interfered with and a high priority task cannot preempt the allocator.
113  */
114 #ifndef CONFIG_PREEMPT_RT
115 #define pcpu_task_pin()		preempt_disable()
116 #define pcpu_task_unpin()	preempt_enable()
117 #else
118 #define pcpu_task_pin()		migrate_disable()
119 #define pcpu_task_unpin()	migrate_enable()
120 #endif
121 
122 /*
123  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
124  * Return value should be used with equivalent unlock helper.
125  */
126 #define pcpu_spin_lock(type, member, ptr)				\
127 ({									\
128 	type *_ret;							\
129 	pcpu_task_pin();						\
130 	_ret = this_cpu_ptr(ptr);					\
131 	spin_lock(&_ret->member);					\
132 	_ret;								\
133 })
134 
135 #define pcpu_spin_trylock(type, member, ptr)				\
136 ({									\
137 	type *_ret;							\
138 	pcpu_task_pin();						\
139 	_ret = this_cpu_ptr(ptr);					\
140 	if (!spin_trylock(&_ret->member)) {				\
141 		pcpu_task_unpin();					\
142 		_ret = NULL;						\
143 	}								\
144 	_ret;								\
145 })
146 
147 #define pcpu_spin_unlock(member, ptr)					\
148 ({									\
149 	spin_unlock(&ptr->member);					\
150 	pcpu_task_unpin();						\
151 })
152 
153 /* struct per_cpu_pages specific helpers. */
154 #define pcp_spin_lock(ptr)						\
155 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
156 
157 #define pcp_spin_trylock(ptr)						\
158 	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
159 
160 #define pcp_spin_unlock(ptr)						\
161 	pcpu_spin_unlock(lock, ptr)
162 
163 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
164 DEFINE_PER_CPU(int, numa_node);
165 EXPORT_PER_CPU_SYMBOL(numa_node);
166 #endif
167 
168 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
169 
170 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
171 /*
172  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
173  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
174  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
175  * defined in <linux/topology.h>.
176  */
177 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
178 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
179 #endif
180 
181 static DEFINE_MUTEX(pcpu_drain_mutex);
182 
183 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
184 volatile unsigned long latent_entropy __latent_entropy;
185 EXPORT_SYMBOL(latent_entropy);
186 #endif
187 
188 /*
189  * Array of node states.
190  */
191 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
192 	[N_POSSIBLE] = NODE_MASK_ALL,
193 	[N_ONLINE] = { { [0] = 1UL } },
194 #ifndef CONFIG_NUMA
195 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
196 #ifdef CONFIG_HIGHMEM
197 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
198 #endif
199 	[N_MEMORY] = { { [0] = 1UL } },
200 	[N_CPU] = { { [0] = 1UL } },
201 #endif	/* NUMA */
202 };
203 EXPORT_SYMBOL(node_states);
204 
205 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
206 
207 /*
208  * A cached value of the page's pageblock's migratetype, used when the page is
209  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
210  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
211  * Also the migratetype set in the page does not necessarily match the pcplist
212  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
213  * other index - this ensures that it will be put on the correct CMA freelist.
214  */
215 static inline int get_pcppage_migratetype(struct page *page)
216 {
217 	return page->index;
218 }
219 
220 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
221 {
222 	page->index = migratetype;
223 }
224 
225 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
226 unsigned int pageblock_order __read_mostly;
227 #endif
228 
229 static void __free_pages_ok(struct page *page, unsigned int order,
230 			    fpi_t fpi_flags);
231 
232 /*
233  * results with 256, 32 in the lowmem_reserve sysctl:
234  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
235  *	1G machine -> (16M dma, 784M normal, 224M high)
236  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
237  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
238  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
239  *
240  * TBD: should special case ZONE_DMA32 machines here - in those we normally
241  * don't need any ZONE_NORMAL reservation
242  */
243 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
244 #ifdef CONFIG_ZONE_DMA
245 	[ZONE_DMA] = 256,
246 #endif
247 #ifdef CONFIG_ZONE_DMA32
248 	[ZONE_DMA32] = 256,
249 #endif
250 	[ZONE_NORMAL] = 32,
251 #ifdef CONFIG_HIGHMEM
252 	[ZONE_HIGHMEM] = 0,
253 #endif
254 	[ZONE_MOVABLE] = 0,
255 };
256 
257 char * const zone_names[MAX_NR_ZONES] = {
258 #ifdef CONFIG_ZONE_DMA
259 	 "DMA",
260 #endif
261 #ifdef CONFIG_ZONE_DMA32
262 	 "DMA32",
263 #endif
264 	 "Normal",
265 #ifdef CONFIG_HIGHMEM
266 	 "HighMem",
267 #endif
268 	 "Movable",
269 #ifdef CONFIG_ZONE_DEVICE
270 	 "Device",
271 #endif
272 };
273 
274 const char * const migratetype_names[MIGRATE_TYPES] = {
275 	"Unmovable",
276 	"Movable",
277 	"Reclaimable",
278 	"HighAtomic",
279 #ifdef CONFIG_CMA
280 	"CMA",
281 #endif
282 #ifdef CONFIG_MEMORY_ISOLATION
283 	"Isolate",
284 #endif
285 };
286 
287 int min_free_kbytes = 1024;
288 int user_min_free_kbytes = -1;
289 static int watermark_boost_factor __read_mostly = 15000;
290 static int watermark_scale_factor = 10;
291 
292 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
293 int movable_zone;
294 EXPORT_SYMBOL(movable_zone);
295 
296 #if MAX_NUMNODES > 1
297 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
298 unsigned int nr_online_nodes __read_mostly = 1;
299 EXPORT_SYMBOL(nr_node_ids);
300 EXPORT_SYMBOL(nr_online_nodes);
301 #endif
302 
303 static bool page_contains_unaccepted(struct page *page, unsigned int order);
304 static void accept_page(struct page *page, unsigned int order);
305 static bool try_to_accept_memory(struct zone *zone, unsigned int order);
306 static inline bool has_unaccepted_memory(void);
307 static bool __free_unaccepted(struct page *page);
308 
309 int page_group_by_mobility_disabled __read_mostly;
310 
311 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
312 /*
313  * During boot we initialize deferred pages on-demand, as needed, but once
314  * page_alloc_init_late() has finished, the deferred pages are all initialized,
315  * and we can permanently disable that path.
316  */
317 DEFINE_STATIC_KEY_TRUE(deferred_pages);
318 
319 static inline bool deferred_pages_enabled(void)
320 {
321 	return static_branch_unlikely(&deferred_pages);
322 }
323 
324 /*
325  * deferred_grow_zone() is __init, but it is called from
326  * get_page_from_freelist() during early boot until deferred_pages permanently
327  * disables this call. This is why we have refdata wrapper to avoid warning,
328  * and to ensure that the function body gets unloaded.
329  */
330 static bool __ref
331 _deferred_grow_zone(struct zone *zone, unsigned int order)
332 {
333        return deferred_grow_zone(zone, order);
334 }
335 #else
336 static inline bool deferred_pages_enabled(void)
337 {
338 	return false;
339 }
340 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
341 
342 /* Return a pointer to the bitmap storing bits affecting a block of pages */
343 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
344 							unsigned long pfn)
345 {
346 #ifdef CONFIG_SPARSEMEM
347 	return section_to_usemap(__pfn_to_section(pfn));
348 #else
349 	return page_zone(page)->pageblock_flags;
350 #endif /* CONFIG_SPARSEMEM */
351 }
352 
353 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
354 {
355 #ifdef CONFIG_SPARSEMEM
356 	pfn &= (PAGES_PER_SECTION-1);
357 #else
358 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
359 #endif /* CONFIG_SPARSEMEM */
360 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
361 }
362 
363 /**
364  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
365  * @page: The page within the block of interest
366  * @pfn: The target page frame number
367  * @mask: mask of bits that the caller is interested in
368  *
369  * Return: pageblock_bits flags
370  */
371 unsigned long get_pfnblock_flags_mask(const struct page *page,
372 					unsigned long pfn, unsigned long mask)
373 {
374 	unsigned long *bitmap;
375 	unsigned long bitidx, word_bitidx;
376 	unsigned long word;
377 
378 	bitmap = get_pageblock_bitmap(page, pfn);
379 	bitidx = pfn_to_bitidx(page, pfn);
380 	word_bitidx = bitidx / BITS_PER_LONG;
381 	bitidx &= (BITS_PER_LONG-1);
382 	/*
383 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
384 	 * a consistent read of the memory array, so that results, even though
385 	 * racy, are not corrupted.
386 	 */
387 	word = READ_ONCE(bitmap[word_bitidx]);
388 	return (word >> bitidx) & mask;
389 }
390 
391 static __always_inline int get_pfnblock_migratetype(const struct page *page,
392 					unsigned long pfn)
393 {
394 	return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
395 }
396 
397 /**
398  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
399  * @page: The page within the block of interest
400  * @flags: The flags to set
401  * @pfn: The target page frame number
402  * @mask: mask of bits that the caller is interested in
403  */
404 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
405 					unsigned long pfn,
406 					unsigned long mask)
407 {
408 	unsigned long *bitmap;
409 	unsigned long bitidx, word_bitidx;
410 	unsigned long word;
411 
412 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
413 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
414 
415 	bitmap = get_pageblock_bitmap(page, pfn);
416 	bitidx = pfn_to_bitidx(page, pfn);
417 	word_bitidx = bitidx / BITS_PER_LONG;
418 	bitidx &= (BITS_PER_LONG-1);
419 
420 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
421 
422 	mask <<= bitidx;
423 	flags <<= bitidx;
424 
425 	word = READ_ONCE(bitmap[word_bitidx]);
426 	do {
427 	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
428 }
429 
430 void set_pageblock_migratetype(struct page *page, int migratetype)
431 {
432 	if (unlikely(page_group_by_mobility_disabled &&
433 		     migratetype < MIGRATE_PCPTYPES))
434 		migratetype = MIGRATE_UNMOVABLE;
435 
436 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
437 				page_to_pfn(page), MIGRATETYPE_MASK);
438 }
439 
440 #ifdef CONFIG_DEBUG_VM
441 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
442 {
443 	int ret;
444 	unsigned seq;
445 	unsigned long pfn = page_to_pfn(page);
446 	unsigned long sp, start_pfn;
447 
448 	do {
449 		seq = zone_span_seqbegin(zone);
450 		start_pfn = zone->zone_start_pfn;
451 		sp = zone->spanned_pages;
452 		ret = !zone_spans_pfn(zone, pfn);
453 	} while (zone_span_seqretry(zone, seq));
454 
455 	if (ret)
456 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
457 			pfn, zone_to_nid(zone), zone->name,
458 			start_pfn, start_pfn + sp);
459 
460 	return ret;
461 }
462 
463 /*
464  * Temporary debugging check for pages not lying within a given zone.
465  */
466 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
467 {
468 	if (page_outside_zone_boundaries(zone, page))
469 		return 1;
470 	if (zone != page_zone(page))
471 		return 1;
472 
473 	return 0;
474 }
475 #else
476 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
477 {
478 	return 0;
479 }
480 #endif
481 
482 static void bad_page(struct page *page, const char *reason)
483 {
484 	static unsigned long resume;
485 	static unsigned long nr_shown;
486 	static unsigned long nr_unshown;
487 
488 	/*
489 	 * Allow a burst of 60 reports, then keep quiet for that minute;
490 	 * or allow a steady drip of one report per second.
491 	 */
492 	if (nr_shown == 60) {
493 		if (time_before(jiffies, resume)) {
494 			nr_unshown++;
495 			goto out;
496 		}
497 		if (nr_unshown) {
498 			pr_alert(
499 			      "BUG: Bad page state: %lu messages suppressed\n",
500 				nr_unshown);
501 			nr_unshown = 0;
502 		}
503 		nr_shown = 0;
504 	}
505 	if (nr_shown++ == 0)
506 		resume = jiffies + 60 * HZ;
507 
508 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
509 		current->comm, page_to_pfn(page));
510 	dump_page(page, reason);
511 
512 	print_modules();
513 	dump_stack();
514 out:
515 	/* Leave bad fields for debug, except PageBuddy could make trouble */
516 	page_mapcount_reset(page); /* remove PageBuddy */
517 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
518 }
519 
520 static inline unsigned int order_to_pindex(int migratetype, int order)
521 {
522 	bool __maybe_unused movable;
523 
524 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
525 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
526 		VM_BUG_ON(order != pageblock_order);
527 
528 		movable = migratetype == MIGRATE_MOVABLE;
529 
530 		return NR_LOWORDER_PCP_LISTS + movable;
531 	}
532 #else
533 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
534 #endif
535 
536 	return (MIGRATE_PCPTYPES * order) + migratetype;
537 }
538 
539 static inline int pindex_to_order(unsigned int pindex)
540 {
541 	int order = pindex / MIGRATE_PCPTYPES;
542 
543 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
544 	if (pindex >= NR_LOWORDER_PCP_LISTS)
545 		order = pageblock_order;
546 #else
547 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
548 #endif
549 
550 	return order;
551 }
552 
553 static inline bool pcp_allowed_order(unsigned int order)
554 {
555 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
556 		return true;
557 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
558 	if (order == pageblock_order)
559 		return true;
560 #endif
561 	return false;
562 }
563 
564 static inline void free_the_page(struct page *page, unsigned int order)
565 {
566 	if (pcp_allowed_order(order))		/* Via pcp? */
567 		free_unref_page(page, order);
568 	else
569 		__free_pages_ok(page, order, FPI_NONE);
570 }
571 
572 /*
573  * Higher-order pages are called "compound pages".  They are structured thusly:
574  *
575  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
576  *
577  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
578  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
579  *
580  * The first tail page's ->compound_order holds the order of allocation.
581  * This usage means that zero-order pages may not be compound.
582  */
583 
584 void prep_compound_page(struct page *page, unsigned int order)
585 {
586 	int i;
587 	int nr_pages = 1 << order;
588 
589 	__SetPageHead(page);
590 	for (i = 1; i < nr_pages; i++)
591 		prep_compound_tail(page, i);
592 
593 	prep_compound_head(page, order);
594 }
595 
596 void destroy_large_folio(struct folio *folio)
597 {
598 	if (folio_test_hugetlb(folio)) {
599 		free_huge_folio(folio);
600 		return;
601 	}
602 
603 	if (folio_test_large_rmappable(folio))
604 		folio_undo_large_rmappable(folio);
605 
606 	mem_cgroup_uncharge(folio);
607 	free_the_page(&folio->page, folio_order(folio));
608 }
609 
610 static inline void set_buddy_order(struct page *page, unsigned int order)
611 {
612 	set_page_private(page, order);
613 	__SetPageBuddy(page);
614 }
615 
616 #ifdef CONFIG_COMPACTION
617 static inline struct capture_control *task_capc(struct zone *zone)
618 {
619 	struct capture_control *capc = current->capture_control;
620 
621 	return unlikely(capc) &&
622 		!(current->flags & PF_KTHREAD) &&
623 		!capc->page &&
624 		capc->cc->zone == zone ? capc : NULL;
625 }
626 
627 static inline bool
628 compaction_capture(struct capture_control *capc, struct page *page,
629 		   int order, int migratetype)
630 {
631 	if (!capc || order != capc->cc->order)
632 		return false;
633 
634 	/* Do not accidentally pollute CMA or isolated regions*/
635 	if (is_migrate_cma(migratetype) ||
636 	    is_migrate_isolate(migratetype))
637 		return false;
638 
639 	/*
640 	 * Do not let lower order allocations pollute a movable pageblock.
641 	 * This might let an unmovable request use a reclaimable pageblock
642 	 * and vice-versa but no more than normal fallback logic which can
643 	 * have trouble finding a high-order free page.
644 	 */
645 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
646 		return false;
647 
648 	capc->page = page;
649 	return true;
650 }
651 
652 #else
653 static inline struct capture_control *task_capc(struct zone *zone)
654 {
655 	return NULL;
656 }
657 
658 static inline bool
659 compaction_capture(struct capture_control *capc, struct page *page,
660 		   int order, int migratetype)
661 {
662 	return false;
663 }
664 #endif /* CONFIG_COMPACTION */
665 
666 /* Used for pages not on another list */
667 static inline void add_to_free_list(struct page *page, struct zone *zone,
668 				    unsigned int order, int migratetype)
669 {
670 	struct free_area *area = &zone->free_area[order];
671 
672 	list_add(&page->buddy_list, &area->free_list[migratetype]);
673 	area->nr_free++;
674 }
675 
676 /* Used for pages not on another list */
677 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
678 					 unsigned int order, int migratetype)
679 {
680 	struct free_area *area = &zone->free_area[order];
681 
682 	list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
683 	area->nr_free++;
684 }
685 
686 /*
687  * Used for pages which are on another list. Move the pages to the tail
688  * of the list - so the moved pages won't immediately be considered for
689  * allocation again (e.g., optimization for memory onlining).
690  */
691 static inline void move_to_free_list(struct page *page, struct zone *zone,
692 				     unsigned int order, int migratetype)
693 {
694 	struct free_area *area = &zone->free_area[order];
695 
696 	list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
697 }
698 
699 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
700 					   unsigned int order)
701 {
702 	/* clear reported state and update reported page count */
703 	if (page_reported(page))
704 		__ClearPageReported(page);
705 
706 	list_del(&page->buddy_list);
707 	__ClearPageBuddy(page);
708 	set_page_private(page, 0);
709 	zone->free_area[order].nr_free--;
710 }
711 
712 static inline struct page *get_page_from_free_area(struct free_area *area,
713 					    int migratetype)
714 {
715 	return list_first_entry_or_null(&area->free_list[migratetype],
716 					struct page, buddy_list);
717 }
718 
719 /*
720  * If this is not the largest possible page, check if the buddy
721  * of the next-highest order is free. If it is, it's possible
722  * that pages are being freed that will coalesce soon. In case,
723  * that is happening, add the free page to the tail of the list
724  * so it's less likely to be used soon and more likely to be merged
725  * as a higher order page
726  */
727 static inline bool
728 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
729 		   struct page *page, unsigned int order)
730 {
731 	unsigned long higher_page_pfn;
732 	struct page *higher_page;
733 
734 	if (order >= MAX_ORDER - 1)
735 		return false;
736 
737 	higher_page_pfn = buddy_pfn & pfn;
738 	higher_page = page + (higher_page_pfn - pfn);
739 
740 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
741 			NULL) != NULL;
742 }
743 
744 /*
745  * Freeing function for a buddy system allocator.
746  *
747  * The concept of a buddy system is to maintain direct-mapped table
748  * (containing bit values) for memory blocks of various "orders".
749  * The bottom level table contains the map for the smallest allocatable
750  * units of memory (here, pages), and each level above it describes
751  * pairs of units from the levels below, hence, "buddies".
752  * At a high level, all that happens here is marking the table entry
753  * at the bottom level available, and propagating the changes upward
754  * as necessary, plus some accounting needed to play nicely with other
755  * parts of the VM system.
756  * At each level, we keep a list of pages, which are heads of continuous
757  * free pages of length of (1 << order) and marked with PageBuddy.
758  * Page's order is recorded in page_private(page) field.
759  * So when we are allocating or freeing one, we can derive the state of the
760  * other.  That is, if we allocate a small block, and both were
761  * free, the remainder of the region must be split into blocks.
762  * If a block is freed, and its buddy is also free, then this
763  * triggers coalescing into a block of larger size.
764  *
765  * -- nyc
766  */
767 
768 static inline void __free_one_page(struct page *page,
769 		unsigned long pfn,
770 		struct zone *zone, unsigned int order,
771 		int migratetype, fpi_t fpi_flags)
772 {
773 	struct capture_control *capc = task_capc(zone);
774 	unsigned long buddy_pfn = 0;
775 	unsigned long combined_pfn;
776 	struct page *buddy;
777 	bool to_tail;
778 
779 	VM_BUG_ON(!zone_is_initialized(zone));
780 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
781 
782 	VM_BUG_ON(migratetype == -1);
783 	if (likely(!is_migrate_isolate(migratetype)))
784 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
785 
786 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
787 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
788 
789 	while (order < MAX_ORDER) {
790 		if (compaction_capture(capc, page, order, migratetype)) {
791 			__mod_zone_freepage_state(zone, -(1 << order),
792 								migratetype);
793 			return;
794 		}
795 
796 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
797 		if (!buddy)
798 			goto done_merging;
799 
800 		if (unlikely(order >= pageblock_order)) {
801 			/*
802 			 * We want to prevent merge between freepages on pageblock
803 			 * without fallbacks and normal pageblock. Without this,
804 			 * pageblock isolation could cause incorrect freepage or CMA
805 			 * accounting or HIGHATOMIC accounting.
806 			 */
807 			int buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
808 
809 			if (migratetype != buddy_mt
810 					&& (!migratetype_is_mergeable(migratetype) ||
811 						!migratetype_is_mergeable(buddy_mt)))
812 				goto done_merging;
813 		}
814 
815 		/*
816 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
817 		 * merge with it and move up one order.
818 		 */
819 		if (page_is_guard(buddy))
820 			clear_page_guard(zone, buddy, order, migratetype);
821 		else
822 			del_page_from_free_list(buddy, zone, order);
823 		combined_pfn = buddy_pfn & pfn;
824 		page = page + (combined_pfn - pfn);
825 		pfn = combined_pfn;
826 		order++;
827 	}
828 
829 done_merging:
830 	set_buddy_order(page, order);
831 
832 	if (fpi_flags & FPI_TO_TAIL)
833 		to_tail = true;
834 	else if (is_shuffle_order(order))
835 		to_tail = shuffle_pick_tail();
836 	else
837 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
838 
839 	if (to_tail)
840 		add_to_free_list_tail(page, zone, order, migratetype);
841 	else
842 		add_to_free_list(page, zone, order, migratetype);
843 
844 	/* Notify page reporting subsystem of freed page */
845 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
846 		page_reporting_notify_free(order);
847 }
848 
849 /**
850  * split_free_page() -- split a free page at split_pfn_offset
851  * @free_page:		the original free page
852  * @order:		the order of the page
853  * @split_pfn_offset:	split offset within the page
854  *
855  * Return -ENOENT if the free page is changed, otherwise 0
856  *
857  * It is used when the free page crosses two pageblocks with different migratetypes
858  * at split_pfn_offset within the page. The split free page will be put into
859  * separate migratetype lists afterwards. Otherwise, the function achieves
860  * nothing.
861  */
862 int split_free_page(struct page *free_page,
863 			unsigned int order, unsigned long split_pfn_offset)
864 {
865 	struct zone *zone = page_zone(free_page);
866 	unsigned long free_page_pfn = page_to_pfn(free_page);
867 	unsigned long pfn;
868 	unsigned long flags;
869 	int free_page_order;
870 	int mt;
871 	int ret = 0;
872 
873 	if (split_pfn_offset == 0)
874 		return ret;
875 
876 	spin_lock_irqsave(&zone->lock, flags);
877 
878 	if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
879 		ret = -ENOENT;
880 		goto out;
881 	}
882 
883 	mt = get_pfnblock_migratetype(free_page, free_page_pfn);
884 	if (likely(!is_migrate_isolate(mt)))
885 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
886 
887 	del_page_from_free_list(free_page, zone, order);
888 	for (pfn = free_page_pfn;
889 	     pfn < free_page_pfn + (1UL << order);) {
890 		int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
891 
892 		free_page_order = min_t(unsigned int,
893 					pfn ? __ffs(pfn) : order,
894 					__fls(split_pfn_offset));
895 		__free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
896 				mt, FPI_NONE);
897 		pfn += 1UL << free_page_order;
898 		split_pfn_offset -= (1UL << free_page_order);
899 		/* we have done the first part, now switch to second part */
900 		if (split_pfn_offset == 0)
901 			split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
902 	}
903 out:
904 	spin_unlock_irqrestore(&zone->lock, flags);
905 	return ret;
906 }
907 /*
908  * A bad page could be due to a number of fields. Instead of multiple branches,
909  * try and check multiple fields with one check. The caller must do a detailed
910  * check if necessary.
911  */
912 static inline bool page_expected_state(struct page *page,
913 					unsigned long check_flags)
914 {
915 	if (unlikely(atomic_read(&page->_mapcount) != -1))
916 		return false;
917 
918 	if (unlikely((unsigned long)page->mapping |
919 			page_ref_count(page) |
920 #ifdef CONFIG_MEMCG
921 			page->memcg_data |
922 #endif
923 			(page->flags & check_flags)))
924 		return false;
925 
926 	return true;
927 }
928 
929 static const char *page_bad_reason(struct page *page, unsigned long flags)
930 {
931 	const char *bad_reason = NULL;
932 
933 	if (unlikely(atomic_read(&page->_mapcount) != -1))
934 		bad_reason = "nonzero mapcount";
935 	if (unlikely(page->mapping != NULL))
936 		bad_reason = "non-NULL mapping";
937 	if (unlikely(page_ref_count(page) != 0))
938 		bad_reason = "nonzero _refcount";
939 	if (unlikely(page->flags & flags)) {
940 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
941 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
942 		else
943 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
944 	}
945 #ifdef CONFIG_MEMCG
946 	if (unlikely(page->memcg_data))
947 		bad_reason = "page still charged to cgroup";
948 #endif
949 	return bad_reason;
950 }
951 
952 static void free_page_is_bad_report(struct page *page)
953 {
954 	bad_page(page,
955 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
956 }
957 
958 static inline bool free_page_is_bad(struct page *page)
959 {
960 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
961 		return false;
962 
963 	/* Something has gone sideways, find it */
964 	free_page_is_bad_report(page);
965 	return true;
966 }
967 
968 static inline bool is_check_pages_enabled(void)
969 {
970 	return static_branch_unlikely(&check_pages_enabled);
971 }
972 
973 static int free_tail_page_prepare(struct page *head_page, struct page *page)
974 {
975 	struct folio *folio = (struct folio *)head_page;
976 	int ret = 1;
977 
978 	/*
979 	 * We rely page->lru.next never has bit 0 set, unless the page
980 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
981 	 */
982 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
983 
984 	if (!is_check_pages_enabled()) {
985 		ret = 0;
986 		goto out;
987 	}
988 	switch (page - head_page) {
989 	case 1:
990 		/* the first tail page: these may be in place of ->mapping */
991 		if (unlikely(folio_entire_mapcount(folio))) {
992 			bad_page(page, "nonzero entire_mapcount");
993 			goto out;
994 		}
995 		if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
996 			bad_page(page, "nonzero nr_pages_mapped");
997 			goto out;
998 		}
999 		if (unlikely(atomic_read(&folio->_pincount))) {
1000 			bad_page(page, "nonzero pincount");
1001 			goto out;
1002 		}
1003 		break;
1004 	case 2:
1005 		/*
1006 		 * the second tail page: ->mapping is
1007 		 * deferred_list.next -- ignore value.
1008 		 */
1009 		break;
1010 	default:
1011 		if (page->mapping != TAIL_MAPPING) {
1012 			bad_page(page, "corrupted mapping in tail page");
1013 			goto out;
1014 		}
1015 		break;
1016 	}
1017 	if (unlikely(!PageTail(page))) {
1018 		bad_page(page, "PageTail not set");
1019 		goto out;
1020 	}
1021 	if (unlikely(compound_head(page) != head_page)) {
1022 		bad_page(page, "compound_head not consistent");
1023 		goto out;
1024 	}
1025 	ret = 0;
1026 out:
1027 	page->mapping = NULL;
1028 	clear_compound_head(page);
1029 	return ret;
1030 }
1031 
1032 /*
1033  * Skip KASAN memory poisoning when either:
1034  *
1035  * 1. For generic KASAN: deferred memory initialization has not yet completed.
1036  *    Tag-based KASAN modes skip pages freed via deferred memory initialization
1037  *    using page tags instead (see below).
1038  * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1039  *    that error detection is disabled for accesses via the page address.
1040  *
1041  * Pages will have match-all tags in the following circumstances:
1042  *
1043  * 1. Pages are being initialized for the first time, including during deferred
1044  *    memory init; see the call to page_kasan_tag_reset in __init_single_page.
1045  * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1046  *    exception of pages unpoisoned by kasan_unpoison_vmalloc.
1047  * 3. The allocation was excluded from being checked due to sampling,
1048  *    see the call to kasan_unpoison_pages.
1049  *
1050  * Poisoning pages during deferred memory init will greatly lengthen the
1051  * process and cause problem in large memory systems as the deferred pages
1052  * initialization is done with interrupt disabled.
1053  *
1054  * Assuming that there will be no reference to those newly initialized
1055  * pages before they are ever allocated, this should have no effect on
1056  * KASAN memory tracking as the poison will be properly inserted at page
1057  * allocation time. The only corner case is when pages are allocated by
1058  * on-demand allocation and then freed again before the deferred pages
1059  * initialization is done, but this is not likely to happen.
1060  */
1061 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1062 {
1063 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1064 		return deferred_pages_enabled();
1065 
1066 	return page_kasan_tag(page) == 0xff;
1067 }
1068 
1069 static void kernel_init_pages(struct page *page, int numpages)
1070 {
1071 	int i;
1072 
1073 	/* s390's use of memset() could override KASAN redzones. */
1074 	kasan_disable_current();
1075 	for (i = 0; i < numpages; i++)
1076 		clear_highpage_kasan_tagged(page + i);
1077 	kasan_enable_current();
1078 }
1079 
1080 static __always_inline bool free_pages_prepare(struct page *page,
1081 			unsigned int order, fpi_t fpi_flags)
1082 {
1083 	int bad = 0;
1084 	bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1085 	bool init = want_init_on_free();
1086 
1087 	VM_BUG_ON_PAGE(PageTail(page), page);
1088 
1089 	trace_mm_page_free(page, order);
1090 	kmsan_free_page(page, order);
1091 
1092 	if (unlikely(PageHWPoison(page)) && !order) {
1093 		/*
1094 		 * Do not let hwpoison pages hit pcplists/buddy
1095 		 * Untie memcg state and reset page's owner
1096 		 */
1097 		if (memcg_kmem_online() && PageMemcgKmem(page))
1098 			__memcg_kmem_uncharge_page(page, order);
1099 		reset_page_owner(page, order);
1100 		page_table_check_free(page, order);
1101 		return false;
1102 	}
1103 
1104 	/*
1105 	 * Check tail pages before head page information is cleared to
1106 	 * avoid checking PageCompound for order-0 pages.
1107 	 */
1108 	if (unlikely(order)) {
1109 		bool compound = PageCompound(page);
1110 		int i;
1111 
1112 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1113 
1114 		if (compound)
1115 			page[1].flags &= ~PAGE_FLAGS_SECOND;
1116 		for (i = 1; i < (1 << order); i++) {
1117 			if (compound)
1118 				bad += free_tail_page_prepare(page, page + i);
1119 			if (is_check_pages_enabled()) {
1120 				if (free_page_is_bad(page + i)) {
1121 					bad++;
1122 					continue;
1123 				}
1124 			}
1125 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1126 		}
1127 	}
1128 	if (PageMappingFlags(page))
1129 		page->mapping = NULL;
1130 	if (memcg_kmem_online() && PageMemcgKmem(page))
1131 		__memcg_kmem_uncharge_page(page, order);
1132 	if (is_check_pages_enabled()) {
1133 		if (free_page_is_bad(page))
1134 			bad++;
1135 		if (bad)
1136 			return false;
1137 	}
1138 
1139 	page_cpupid_reset_last(page);
1140 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1141 	reset_page_owner(page, order);
1142 	page_table_check_free(page, order);
1143 
1144 	if (!PageHighMem(page)) {
1145 		debug_check_no_locks_freed(page_address(page),
1146 					   PAGE_SIZE << order);
1147 		debug_check_no_obj_freed(page_address(page),
1148 					   PAGE_SIZE << order);
1149 	}
1150 
1151 	kernel_poison_pages(page, 1 << order);
1152 
1153 	/*
1154 	 * As memory initialization might be integrated into KASAN,
1155 	 * KASAN poisoning and memory initialization code must be
1156 	 * kept together to avoid discrepancies in behavior.
1157 	 *
1158 	 * With hardware tag-based KASAN, memory tags must be set before the
1159 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1160 	 */
1161 	if (!skip_kasan_poison) {
1162 		kasan_poison_pages(page, order, init);
1163 
1164 		/* Memory is already initialized if KASAN did it internally. */
1165 		if (kasan_has_integrated_init())
1166 			init = false;
1167 	}
1168 	if (init)
1169 		kernel_init_pages(page, 1 << order);
1170 
1171 	/*
1172 	 * arch_free_page() can make the page's contents inaccessible.  s390
1173 	 * does this.  So nothing which can access the page's contents should
1174 	 * happen after this.
1175 	 */
1176 	arch_free_page(page, order);
1177 
1178 	debug_pagealloc_unmap_pages(page, 1 << order);
1179 
1180 	return true;
1181 }
1182 
1183 /*
1184  * Frees a number of pages from the PCP lists
1185  * Assumes all pages on list are in same zone.
1186  * count is the number of pages to free.
1187  */
1188 static void free_pcppages_bulk(struct zone *zone, int count,
1189 					struct per_cpu_pages *pcp,
1190 					int pindex)
1191 {
1192 	unsigned long flags;
1193 	unsigned int order;
1194 	bool isolated_pageblocks;
1195 	struct page *page;
1196 
1197 	/*
1198 	 * Ensure proper count is passed which otherwise would stuck in the
1199 	 * below while (list_empty(list)) loop.
1200 	 */
1201 	count = min(pcp->count, count);
1202 
1203 	/* Ensure requested pindex is drained first. */
1204 	pindex = pindex - 1;
1205 
1206 	spin_lock_irqsave(&zone->lock, flags);
1207 	isolated_pageblocks = has_isolate_pageblock(zone);
1208 
1209 	while (count > 0) {
1210 		struct list_head *list;
1211 		int nr_pages;
1212 
1213 		/* Remove pages from lists in a round-robin fashion. */
1214 		do {
1215 			if (++pindex > NR_PCP_LISTS - 1)
1216 				pindex = 0;
1217 			list = &pcp->lists[pindex];
1218 		} while (list_empty(list));
1219 
1220 		order = pindex_to_order(pindex);
1221 		nr_pages = 1 << order;
1222 		do {
1223 			int mt;
1224 
1225 			page = list_last_entry(list, struct page, pcp_list);
1226 			mt = get_pcppage_migratetype(page);
1227 
1228 			/* must delete to avoid corrupting pcp list */
1229 			list_del(&page->pcp_list);
1230 			count -= nr_pages;
1231 			pcp->count -= nr_pages;
1232 
1233 			/* MIGRATE_ISOLATE page should not go to pcplists */
1234 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1235 			/* Pageblock could have been isolated meanwhile */
1236 			if (unlikely(isolated_pageblocks))
1237 				mt = get_pageblock_migratetype(page);
1238 
1239 			__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1240 			trace_mm_page_pcpu_drain(page, order, mt);
1241 		} while (count > 0 && !list_empty(list));
1242 	}
1243 
1244 	spin_unlock_irqrestore(&zone->lock, flags);
1245 }
1246 
1247 static void free_one_page(struct zone *zone,
1248 				struct page *page, unsigned long pfn,
1249 				unsigned int order,
1250 				int migratetype, fpi_t fpi_flags)
1251 {
1252 	unsigned long flags;
1253 
1254 	spin_lock_irqsave(&zone->lock, flags);
1255 	if (unlikely(has_isolate_pageblock(zone) ||
1256 		is_migrate_isolate(migratetype))) {
1257 		migratetype = get_pfnblock_migratetype(page, pfn);
1258 	}
1259 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1260 	spin_unlock_irqrestore(&zone->lock, flags);
1261 }
1262 
1263 static void __free_pages_ok(struct page *page, unsigned int order,
1264 			    fpi_t fpi_flags)
1265 {
1266 	unsigned long flags;
1267 	int migratetype;
1268 	unsigned long pfn = page_to_pfn(page);
1269 	struct zone *zone = page_zone(page);
1270 
1271 	if (!free_pages_prepare(page, order, fpi_flags))
1272 		return;
1273 
1274 	/*
1275 	 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here
1276 	 * is used to avoid calling get_pfnblock_migratetype() under the lock.
1277 	 * This will reduce the lock holding time.
1278 	 */
1279 	migratetype = get_pfnblock_migratetype(page, pfn);
1280 
1281 	spin_lock_irqsave(&zone->lock, flags);
1282 	if (unlikely(has_isolate_pageblock(zone) ||
1283 		is_migrate_isolate(migratetype))) {
1284 		migratetype = get_pfnblock_migratetype(page, pfn);
1285 	}
1286 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1287 	spin_unlock_irqrestore(&zone->lock, flags);
1288 
1289 	__count_vm_events(PGFREE, 1 << order);
1290 }
1291 
1292 void __free_pages_core(struct page *page, unsigned int order)
1293 {
1294 	unsigned int nr_pages = 1 << order;
1295 	struct page *p = page;
1296 	unsigned int loop;
1297 
1298 	/*
1299 	 * When initializing the memmap, __init_single_page() sets the refcount
1300 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1301 	 * refcount of all involved pages to 0.
1302 	 */
1303 	prefetchw(p);
1304 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1305 		prefetchw(p + 1);
1306 		__ClearPageReserved(p);
1307 		set_page_count(p, 0);
1308 	}
1309 	__ClearPageReserved(p);
1310 	set_page_count(p, 0);
1311 
1312 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1313 
1314 	if (page_contains_unaccepted(page, order)) {
1315 		if (order == MAX_ORDER && __free_unaccepted(page))
1316 			return;
1317 
1318 		accept_page(page, order);
1319 	}
1320 
1321 	/*
1322 	 * Bypass PCP and place fresh pages right to the tail, primarily
1323 	 * relevant for memory onlining.
1324 	 */
1325 	__free_pages_ok(page, order, FPI_TO_TAIL);
1326 }
1327 
1328 /*
1329  * Check that the whole (or subset of) a pageblock given by the interval of
1330  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1331  * with the migration of free compaction scanner.
1332  *
1333  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1334  *
1335  * It's possible on some configurations to have a setup like node0 node1 node0
1336  * i.e. it's possible that all pages within a zones range of pages do not
1337  * belong to a single zone. We assume that a border between node0 and node1
1338  * can occur within a single pageblock, but not a node0 node1 node0
1339  * interleaving within a single pageblock. It is therefore sufficient to check
1340  * the first and last page of a pageblock and avoid checking each individual
1341  * page in a pageblock.
1342  *
1343  * Note: the function may return non-NULL struct page even for a page block
1344  * which contains a memory hole (i.e. there is no physical memory for a subset
1345  * of the pfn range). For example, if the pageblock order is MAX_ORDER, which
1346  * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1347  * even though the start pfn is online and valid. This should be safe most of
1348  * the time because struct pages are still initialized via init_unavailable_range()
1349  * and pfn walkers shouldn't touch any physical memory range for which they do
1350  * not recognize any specific metadata in struct pages.
1351  */
1352 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1353 				     unsigned long end_pfn, struct zone *zone)
1354 {
1355 	struct page *start_page;
1356 	struct page *end_page;
1357 
1358 	/* end_pfn is one past the range we are checking */
1359 	end_pfn--;
1360 
1361 	if (!pfn_valid(end_pfn))
1362 		return NULL;
1363 
1364 	start_page = pfn_to_online_page(start_pfn);
1365 	if (!start_page)
1366 		return NULL;
1367 
1368 	if (page_zone(start_page) != zone)
1369 		return NULL;
1370 
1371 	end_page = pfn_to_page(end_pfn);
1372 
1373 	/* This gives a shorter code than deriving page_zone(end_page) */
1374 	if (page_zone_id(start_page) != page_zone_id(end_page))
1375 		return NULL;
1376 
1377 	return start_page;
1378 }
1379 
1380 /*
1381  * The order of subdivision here is critical for the IO subsystem.
1382  * Please do not alter this order without good reasons and regression
1383  * testing. Specifically, as large blocks of memory are subdivided,
1384  * the order in which smaller blocks are delivered depends on the order
1385  * they're subdivided in this function. This is the primary factor
1386  * influencing the order in which pages are delivered to the IO
1387  * subsystem according to empirical testing, and this is also justified
1388  * by considering the behavior of a buddy system containing a single
1389  * large block of memory acted on by a series of small allocations.
1390  * This behavior is a critical factor in sglist merging's success.
1391  *
1392  * -- nyc
1393  */
1394 static inline void expand(struct zone *zone, struct page *page,
1395 	int low, int high, int migratetype)
1396 {
1397 	unsigned long size = 1 << high;
1398 
1399 	while (high > low) {
1400 		high--;
1401 		size >>= 1;
1402 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1403 
1404 		/*
1405 		 * Mark as guard pages (or page), that will allow to
1406 		 * merge back to allocator when buddy will be freed.
1407 		 * Corresponding page table entries will not be touched,
1408 		 * pages will stay not present in virtual address space
1409 		 */
1410 		if (set_page_guard(zone, &page[size], high, migratetype))
1411 			continue;
1412 
1413 		add_to_free_list(&page[size], zone, high, migratetype);
1414 		set_buddy_order(&page[size], high);
1415 	}
1416 }
1417 
1418 static void check_new_page_bad(struct page *page)
1419 {
1420 	if (unlikely(page->flags & __PG_HWPOISON)) {
1421 		/* Don't complain about hwpoisoned pages */
1422 		page_mapcount_reset(page); /* remove PageBuddy */
1423 		return;
1424 	}
1425 
1426 	bad_page(page,
1427 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1428 }
1429 
1430 /*
1431  * This page is about to be returned from the page allocator
1432  */
1433 static int check_new_page(struct page *page)
1434 {
1435 	if (likely(page_expected_state(page,
1436 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1437 		return 0;
1438 
1439 	check_new_page_bad(page);
1440 	return 1;
1441 }
1442 
1443 static inline bool check_new_pages(struct page *page, unsigned int order)
1444 {
1445 	if (is_check_pages_enabled()) {
1446 		for (int i = 0; i < (1 << order); i++) {
1447 			struct page *p = page + i;
1448 
1449 			if (check_new_page(p))
1450 				return true;
1451 		}
1452 	}
1453 
1454 	return false;
1455 }
1456 
1457 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1458 {
1459 	/* Don't skip if a software KASAN mode is enabled. */
1460 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1461 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1462 		return false;
1463 
1464 	/* Skip, if hardware tag-based KASAN is not enabled. */
1465 	if (!kasan_hw_tags_enabled())
1466 		return true;
1467 
1468 	/*
1469 	 * With hardware tag-based KASAN enabled, skip if this has been
1470 	 * requested via __GFP_SKIP_KASAN.
1471 	 */
1472 	return flags & __GFP_SKIP_KASAN;
1473 }
1474 
1475 static inline bool should_skip_init(gfp_t flags)
1476 {
1477 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
1478 	if (!kasan_hw_tags_enabled())
1479 		return false;
1480 
1481 	/* For hardware tag-based KASAN, skip if requested. */
1482 	return (flags & __GFP_SKIP_ZERO);
1483 }
1484 
1485 inline void post_alloc_hook(struct page *page, unsigned int order,
1486 				gfp_t gfp_flags)
1487 {
1488 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1489 			!should_skip_init(gfp_flags);
1490 	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1491 	int i;
1492 
1493 	set_page_private(page, 0);
1494 	set_page_refcounted(page);
1495 
1496 	arch_alloc_page(page, order);
1497 	debug_pagealloc_map_pages(page, 1 << order);
1498 
1499 	/*
1500 	 * Page unpoisoning must happen before memory initialization.
1501 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1502 	 * allocations and the page unpoisoning code will complain.
1503 	 */
1504 	kernel_unpoison_pages(page, 1 << order);
1505 
1506 	/*
1507 	 * As memory initialization might be integrated into KASAN,
1508 	 * KASAN unpoisoning and memory initializion code must be
1509 	 * kept together to avoid discrepancies in behavior.
1510 	 */
1511 
1512 	/*
1513 	 * If memory tags should be zeroed
1514 	 * (which happens only when memory should be initialized as well).
1515 	 */
1516 	if (zero_tags) {
1517 		/* Initialize both memory and memory tags. */
1518 		for (i = 0; i != 1 << order; ++i)
1519 			tag_clear_highpage(page + i);
1520 
1521 		/* Take note that memory was initialized by the loop above. */
1522 		init = false;
1523 	}
1524 	if (!should_skip_kasan_unpoison(gfp_flags) &&
1525 	    kasan_unpoison_pages(page, order, init)) {
1526 		/* Take note that memory was initialized by KASAN. */
1527 		if (kasan_has_integrated_init())
1528 			init = false;
1529 	} else {
1530 		/*
1531 		 * If memory tags have not been set by KASAN, reset the page
1532 		 * tags to ensure page_address() dereferencing does not fault.
1533 		 */
1534 		for (i = 0; i != 1 << order; ++i)
1535 			page_kasan_tag_reset(page + i);
1536 	}
1537 	/* If memory is still not initialized, initialize it now. */
1538 	if (init)
1539 		kernel_init_pages(page, 1 << order);
1540 
1541 	set_page_owner(page, order, gfp_flags);
1542 	page_table_check_alloc(page, order);
1543 }
1544 
1545 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1546 							unsigned int alloc_flags)
1547 {
1548 	post_alloc_hook(page, order, gfp_flags);
1549 
1550 	if (order && (gfp_flags & __GFP_COMP))
1551 		prep_compound_page(page, order);
1552 
1553 	/*
1554 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1555 	 * allocate the page. The expectation is that the caller is taking
1556 	 * steps that will free more memory. The caller should avoid the page
1557 	 * being used for !PFMEMALLOC purposes.
1558 	 */
1559 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1560 		set_page_pfmemalloc(page);
1561 	else
1562 		clear_page_pfmemalloc(page);
1563 }
1564 
1565 /*
1566  * Go through the free lists for the given migratetype and remove
1567  * the smallest available page from the freelists
1568  */
1569 static __always_inline
1570 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1571 						int migratetype)
1572 {
1573 	unsigned int current_order;
1574 	struct free_area *area;
1575 	struct page *page;
1576 
1577 	/* Find a page of the appropriate size in the preferred list */
1578 	for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
1579 		area = &(zone->free_area[current_order]);
1580 		page = get_page_from_free_area(area, migratetype);
1581 		if (!page)
1582 			continue;
1583 		del_page_from_free_list(page, zone, current_order);
1584 		expand(zone, page, order, current_order, migratetype);
1585 		set_pcppage_migratetype(page, migratetype);
1586 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
1587 				pcp_allowed_order(order) &&
1588 				migratetype < MIGRATE_PCPTYPES);
1589 		return page;
1590 	}
1591 
1592 	return NULL;
1593 }
1594 
1595 
1596 /*
1597  * This array describes the order lists are fallen back to when
1598  * the free lists for the desirable migrate type are depleted
1599  *
1600  * The other migratetypes do not have fallbacks.
1601  */
1602 static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = {
1603 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
1604 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1605 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
1606 };
1607 
1608 #ifdef CONFIG_CMA
1609 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1610 					unsigned int order)
1611 {
1612 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1613 }
1614 #else
1615 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1616 					unsigned int order) { return NULL; }
1617 #endif
1618 
1619 /*
1620  * Move the free pages in a range to the freelist tail of the requested type.
1621  * Note that start_page and end_pages are not aligned on a pageblock
1622  * boundary. If alignment is required, use move_freepages_block()
1623  */
1624 static int move_freepages(struct zone *zone,
1625 			  unsigned long start_pfn, unsigned long end_pfn,
1626 			  int migratetype, int *num_movable)
1627 {
1628 	struct page *page;
1629 	unsigned long pfn;
1630 	unsigned int order;
1631 	int pages_moved = 0;
1632 
1633 	for (pfn = start_pfn; pfn <= end_pfn;) {
1634 		page = pfn_to_page(pfn);
1635 		if (!PageBuddy(page)) {
1636 			/*
1637 			 * We assume that pages that could be isolated for
1638 			 * migration are movable. But we don't actually try
1639 			 * isolating, as that would be expensive.
1640 			 */
1641 			if (num_movable &&
1642 					(PageLRU(page) || __PageMovable(page)))
1643 				(*num_movable)++;
1644 			pfn++;
1645 			continue;
1646 		}
1647 
1648 		/* Make sure we are not inadvertently changing nodes */
1649 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1650 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1651 
1652 		order = buddy_order(page);
1653 		move_to_free_list(page, zone, order, migratetype);
1654 		pfn += 1 << order;
1655 		pages_moved += 1 << order;
1656 	}
1657 
1658 	return pages_moved;
1659 }
1660 
1661 int move_freepages_block(struct zone *zone, struct page *page,
1662 				int migratetype, int *num_movable)
1663 {
1664 	unsigned long start_pfn, end_pfn, pfn;
1665 
1666 	if (num_movable)
1667 		*num_movable = 0;
1668 
1669 	pfn = page_to_pfn(page);
1670 	start_pfn = pageblock_start_pfn(pfn);
1671 	end_pfn = pageblock_end_pfn(pfn) - 1;
1672 
1673 	/* Do not cross zone boundaries */
1674 	if (!zone_spans_pfn(zone, start_pfn))
1675 		start_pfn = pfn;
1676 	if (!zone_spans_pfn(zone, end_pfn))
1677 		return 0;
1678 
1679 	return move_freepages(zone, start_pfn, end_pfn, migratetype,
1680 								num_movable);
1681 }
1682 
1683 static void change_pageblock_range(struct page *pageblock_page,
1684 					int start_order, int migratetype)
1685 {
1686 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1687 
1688 	while (nr_pageblocks--) {
1689 		set_pageblock_migratetype(pageblock_page, migratetype);
1690 		pageblock_page += pageblock_nr_pages;
1691 	}
1692 }
1693 
1694 /*
1695  * When we are falling back to another migratetype during allocation, try to
1696  * steal extra free pages from the same pageblocks to satisfy further
1697  * allocations, instead of polluting multiple pageblocks.
1698  *
1699  * If we are stealing a relatively large buddy page, it is likely there will
1700  * be more free pages in the pageblock, so try to steal them all. For
1701  * reclaimable and unmovable allocations, we steal regardless of page size,
1702  * as fragmentation caused by those allocations polluting movable pageblocks
1703  * is worse than movable allocations stealing from unmovable and reclaimable
1704  * pageblocks.
1705  */
1706 static bool can_steal_fallback(unsigned int order, int start_mt)
1707 {
1708 	/*
1709 	 * Leaving this order check is intended, although there is
1710 	 * relaxed order check in next check. The reason is that
1711 	 * we can actually steal whole pageblock if this condition met,
1712 	 * but, below check doesn't guarantee it and that is just heuristic
1713 	 * so could be changed anytime.
1714 	 */
1715 	if (order >= pageblock_order)
1716 		return true;
1717 
1718 	if (order >= pageblock_order / 2 ||
1719 		start_mt == MIGRATE_RECLAIMABLE ||
1720 		start_mt == MIGRATE_UNMOVABLE ||
1721 		page_group_by_mobility_disabled)
1722 		return true;
1723 
1724 	return false;
1725 }
1726 
1727 static inline bool boost_watermark(struct zone *zone)
1728 {
1729 	unsigned long max_boost;
1730 
1731 	if (!watermark_boost_factor)
1732 		return false;
1733 	/*
1734 	 * Don't bother in zones that are unlikely to produce results.
1735 	 * On small machines, including kdump capture kernels running
1736 	 * in a small area, boosting the watermark can cause an out of
1737 	 * memory situation immediately.
1738 	 */
1739 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1740 		return false;
1741 
1742 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1743 			watermark_boost_factor, 10000);
1744 
1745 	/*
1746 	 * high watermark may be uninitialised if fragmentation occurs
1747 	 * very early in boot so do not boost. We do not fall
1748 	 * through and boost by pageblock_nr_pages as failing
1749 	 * allocations that early means that reclaim is not going
1750 	 * to help and it may even be impossible to reclaim the
1751 	 * boosted watermark resulting in a hang.
1752 	 */
1753 	if (!max_boost)
1754 		return false;
1755 
1756 	max_boost = max(pageblock_nr_pages, max_boost);
1757 
1758 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1759 		max_boost);
1760 
1761 	return true;
1762 }
1763 
1764 /*
1765  * This function implements actual steal behaviour. If order is large enough,
1766  * we can steal whole pageblock. If not, we first move freepages in this
1767  * pageblock to our migratetype and determine how many already-allocated pages
1768  * are there in the pageblock with a compatible migratetype. If at least half
1769  * of pages are free or compatible, we can change migratetype of the pageblock
1770  * itself, so pages freed in the future will be put on the correct free list.
1771  */
1772 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1773 		unsigned int alloc_flags, int start_type, bool whole_block)
1774 {
1775 	unsigned int current_order = buddy_order(page);
1776 	int free_pages, movable_pages, alike_pages;
1777 	int old_block_type;
1778 
1779 	old_block_type = get_pageblock_migratetype(page);
1780 
1781 	/*
1782 	 * This can happen due to races and we want to prevent broken
1783 	 * highatomic accounting.
1784 	 */
1785 	if (is_migrate_highatomic(old_block_type))
1786 		goto single_page;
1787 
1788 	/* Take ownership for orders >= pageblock_order */
1789 	if (current_order >= pageblock_order) {
1790 		change_pageblock_range(page, current_order, start_type);
1791 		goto single_page;
1792 	}
1793 
1794 	/*
1795 	 * Boost watermarks to increase reclaim pressure to reduce the
1796 	 * likelihood of future fallbacks. Wake kswapd now as the node
1797 	 * may be balanced overall and kswapd will not wake naturally.
1798 	 */
1799 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1800 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1801 
1802 	/* We are not allowed to try stealing from the whole block */
1803 	if (!whole_block)
1804 		goto single_page;
1805 
1806 	free_pages = move_freepages_block(zone, page, start_type,
1807 						&movable_pages);
1808 	/* moving whole block can fail due to zone boundary conditions */
1809 	if (!free_pages)
1810 		goto single_page;
1811 
1812 	/*
1813 	 * Determine how many pages are compatible with our allocation.
1814 	 * For movable allocation, it's the number of movable pages which
1815 	 * we just obtained. For other types it's a bit more tricky.
1816 	 */
1817 	if (start_type == MIGRATE_MOVABLE) {
1818 		alike_pages = movable_pages;
1819 	} else {
1820 		/*
1821 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1822 		 * to MOVABLE pageblock, consider all non-movable pages as
1823 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1824 		 * vice versa, be conservative since we can't distinguish the
1825 		 * exact migratetype of non-movable pages.
1826 		 */
1827 		if (old_block_type == MIGRATE_MOVABLE)
1828 			alike_pages = pageblock_nr_pages
1829 						- (free_pages + movable_pages);
1830 		else
1831 			alike_pages = 0;
1832 	}
1833 	/*
1834 	 * If a sufficient number of pages in the block are either free or of
1835 	 * compatible migratability as our allocation, claim the whole block.
1836 	 */
1837 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
1838 			page_group_by_mobility_disabled)
1839 		set_pageblock_migratetype(page, start_type);
1840 
1841 	return;
1842 
1843 single_page:
1844 	move_to_free_list(page, zone, current_order, start_type);
1845 }
1846 
1847 /*
1848  * Check whether there is a suitable fallback freepage with requested order.
1849  * If only_stealable is true, this function returns fallback_mt only if
1850  * we can steal other freepages all together. This would help to reduce
1851  * fragmentation due to mixed migratetype pages in one pageblock.
1852  */
1853 int find_suitable_fallback(struct free_area *area, unsigned int order,
1854 			int migratetype, bool only_stealable, bool *can_steal)
1855 {
1856 	int i;
1857 	int fallback_mt;
1858 
1859 	if (area->nr_free == 0)
1860 		return -1;
1861 
1862 	*can_steal = false;
1863 	for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
1864 		fallback_mt = fallbacks[migratetype][i];
1865 		if (free_area_empty(area, fallback_mt))
1866 			continue;
1867 
1868 		if (can_steal_fallback(order, migratetype))
1869 			*can_steal = true;
1870 
1871 		if (!only_stealable)
1872 			return fallback_mt;
1873 
1874 		if (*can_steal)
1875 			return fallback_mt;
1876 	}
1877 
1878 	return -1;
1879 }
1880 
1881 /*
1882  * Reserve a pageblock for exclusive use of high-order atomic allocations if
1883  * there are no empty page blocks that contain a page with a suitable order
1884  */
1885 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone)
1886 {
1887 	int mt;
1888 	unsigned long max_managed, flags;
1889 
1890 	/*
1891 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1892 	 * Check is race-prone but harmless.
1893 	 */
1894 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
1895 	if (zone->nr_reserved_highatomic >= max_managed)
1896 		return;
1897 
1898 	spin_lock_irqsave(&zone->lock, flags);
1899 
1900 	/* Recheck the nr_reserved_highatomic limit under the lock */
1901 	if (zone->nr_reserved_highatomic >= max_managed)
1902 		goto out_unlock;
1903 
1904 	/* Yoink! */
1905 	mt = get_pageblock_migratetype(page);
1906 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
1907 	if (migratetype_is_mergeable(mt)) {
1908 		zone->nr_reserved_highatomic += pageblock_nr_pages;
1909 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1910 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
1911 	}
1912 
1913 out_unlock:
1914 	spin_unlock_irqrestore(&zone->lock, flags);
1915 }
1916 
1917 /*
1918  * Used when an allocation is about to fail under memory pressure. This
1919  * potentially hurts the reliability of high-order allocations when under
1920  * intense memory pressure but failed atomic allocations should be easier
1921  * to recover from than an OOM.
1922  *
1923  * If @force is true, try to unreserve a pageblock even though highatomic
1924  * pageblock is exhausted.
1925  */
1926 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
1927 						bool force)
1928 {
1929 	struct zonelist *zonelist = ac->zonelist;
1930 	unsigned long flags;
1931 	struct zoneref *z;
1932 	struct zone *zone;
1933 	struct page *page;
1934 	int order;
1935 	bool ret;
1936 
1937 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
1938 								ac->nodemask) {
1939 		/*
1940 		 * Preserve at least one pageblock unless memory pressure
1941 		 * is really high.
1942 		 */
1943 		if (!force && zone->nr_reserved_highatomic <=
1944 					pageblock_nr_pages)
1945 			continue;
1946 
1947 		spin_lock_irqsave(&zone->lock, flags);
1948 		for (order = 0; order < NR_PAGE_ORDERS; order++) {
1949 			struct free_area *area = &(zone->free_area[order]);
1950 
1951 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
1952 			if (!page)
1953 				continue;
1954 
1955 			/*
1956 			 * In page freeing path, migratetype change is racy so
1957 			 * we can counter several free pages in a pageblock
1958 			 * in this loop although we changed the pageblock type
1959 			 * from highatomic to ac->migratetype. So we should
1960 			 * adjust the count once.
1961 			 */
1962 			if (is_migrate_highatomic_page(page)) {
1963 				/*
1964 				 * It should never happen but changes to
1965 				 * locking could inadvertently allow a per-cpu
1966 				 * drain to add pages to MIGRATE_HIGHATOMIC
1967 				 * while unreserving so be safe and watch for
1968 				 * underflows.
1969 				 */
1970 				zone->nr_reserved_highatomic -= min(
1971 						pageblock_nr_pages,
1972 						zone->nr_reserved_highatomic);
1973 			}
1974 
1975 			/*
1976 			 * Convert to ac->migratetype and avoid the normal
1977 			 * pageblock stealing heuristics. Minimally, the caller
1978 			 * is doing the work and needs the pages. More
1979 			 * importantly, if the block was always converted to
1980 			 * MIGRATE_UNMOVABLE or another type then the number
1981 			 * of pageblocks that cannot be completely freed
1982 			 * may increase.
1983 			 */
1984 			set_pageblock_migratetype(page, ac->migratetype);
1985 			ret = move_freepages_block(zone, page, ac->migratetype,
1986 									NULL);
1987 			if (ret) {
1988 				spin_unlock_irqrestore(&zone->lock, flags);
1989 				return ret;
1990 			}
1991 		}
1992 		spin_unlock_irqrestore(&zone->lock, flags);
1993 	}
1994 
1995 	return false;
1996 }
1997 
1998 /*
1999  * Try finding a free buddy page on the fallback list and put it on the free
2000  * list of requested migratetype, possibly along with other pages from the same
2001  * block, depending on fragmentation avoidance heuristics. Returns true if
2002  * fallback was found so that __rmqueue_smallest() can grab it.
2003  *
2004  * The use of signed ints for order and current_order is a deliberate
2005  * deviation from the rest of this file, to make the for loop
2006  * condition simpler.
2007  */
2008 static __always_inline bool
2009 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2010 						unsigned int alloc_flags)
2011 {
2012 	struct free_area *area;
2013 	int current_order;
2014 	int min_order = order;
2015 	struct page *page;
2016 	int fallback_mt;
2017 	bool can_steal;
2018 
2019 	/*
2020 	 * Do not steal pages from freelists belonging to other pageblocks
2021 	 * i.e. orders < pageblock_order. If there are no local zones free,
2022 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2023 	 */
2024 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2025 		min_order = pageblock_order;
2026 
2027 	/*
2028 	 * Find the largest available free page in the other list. This roughly
2029 	 * approximates finding the pageblock with the most free pages, which
2030 	 * would be too costly to do exactly.
2031 	 */
2032 	for (current_order = MAX_ORDER; current_order >= min_order;
2033 				--current_order) {
2034 		area = &(zone->free_area[current_order]);
2035 		fallback_mt = find_suitable_fallback(area, current_order,
2036 				start_migratetype, false, &can_steal);
2037 		if (fallback_mt == -1)
2038 			continue;
2039 
2040 		/*
2041 		 * We cannot steal all free pages from the pageblock and the
2042 		 * requested migratetype is movable. In that case it's better to
2043 		 * steal and split the smallest available page instead of the
2044 		 * largest available page, because even if the next movable
2045 		 * allocation falls back into a different pageblock than this
2046 		 * one, it won't cause permanent fragmentation.
2047 		 */
2048 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2049 					&& current_order > order)
2050 			goto find_smallest;
2051 
2052 		goto do_steal;
2053 	}
2054 
2055 	return false;
2056 
2057 find_smallest:
2058 	for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
2059 		area = &(zone->free_area[current_order]);
2060 		fallback_mt = find_suitable_fallback(area, current_order,
2061 				start_migratetype, false, &can_steal);
2062 		if (fallback_mt != -1)
2063 			break;
2064 	}
2065 
2066 	/*
2067 	 * This should not happen - we already found a suitable fallback
2068 	 * when looking for the largest page.
2069 	 */
2070 	VM_BUG_ON(current_order > MAX_ORDER);
2071 
2072 do_steal:
2073 	page = get_page_from_free_area(area, fallback_mt);
2074 
2075 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2076 								can_steal);
2077 
2078 	trace_mm_page_alloc_extfrag(page, order, current_order,
2079 		start_migratetype, fallback_mt);
2080 
2081 	return true;
2082 
2083 }
2084 
2085 /*
2086  * Do the hard work of removing an element from the buddy allocator.
2087  * Call me with the zone->lock already held.
2088  */
2089 static __always_inline struct page *
2090 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2091 						unsigned int alloc_flags)
2092 {
2093 	struct page *page;
2094 
2095 	if (IS_ENABLED(CONFIG_CMA)) {
2096 		/*
2097 		 * Balance movable allocations between regular and CMA areas by
2098 		 * allocating from CMA when over half of the zone's free memory
2099 		 * is in the CMA area.
2100 		 */
2101 		if (alloc_flags & ALLOC_CMA &&
2102 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2103 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2104 			page = __rmqueue_cma_fallback(zone, order);
2105 			if (page)
2106 				return page;
2107 		}
2108 	}
2109 retry:
2110 	page = __rmqueue_smallest(zone, order, migratetype);
2111 	if (unlikely(!page)) {
2112 		if (alloc_flags & ALLOC_CMA)
2113 			page = __rmqueue_cma_fallback(zone, order);
2114 
2115 		if (!page && __rmqueue_fallback(zone, order, migratetype,
2116 								alloc_flags))
2117 			goto retry;
2118 	}
2119 	return page;
2120 }
2121 
2122 /*
2123  * Obtain a specified number of elements from the buddy allocator, all under
2124  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2125  * Returns the number of new pages which were placed at *list.
2126  */
2127 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2128 			unsigned long count, struct list_head *list,
2129 			int migratetype, unsigned int alloc_flags)
2130 {
2131 	unsigned long flags;
2132 	int i;
2133 
2134 	spin_lock_irqsave(&zone->lock, flags);
2135 	for (i = 0; i < count; ++i) {
2136 		struct page *page = __rmqueue(zone, order, migratetype,
2137 								alloc_flags);
2138 		if (unlikely(page == NULL))
2139 			break;
2140 
2141 		/*
2142 		 * Split buddy pages returned by expand() are received here in
2143 		 * physical page order. The page is added to the tail of
2144 		 * caller's list. From the callers perspective, the linked list
2145 		 * is ordered by page number under some conditions. This is
2146 		 * useful for IO devices that can forward direction from the
2147 		 * head, thus also in the physical page order. This is useful
2148 		 * for IO devices that can merge IO requests if the physical
2149 		 * pages are ordered properly.
2150 		 */
2151 		list_add_tail(&page->pcp_list, list);
2152 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2153 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2154 					      -(1 << order));
2155 	}
2156 
2157 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2158 	spin_unlock_irqrestore(&zone->lock, flags);
2159 
2160 	return i;
2161 }
2162 
2163 #ifdef CONFIG_NUMA
2164 /*
2165  * Called from the vmstat counter updater to drain pagesets of this
2166  * currently executing processor on remote nodes after they have
2167  * expired.
2168  */
2169 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2170 {
2171 	int to_drain, batch;
2172 
2173 	batch = READ_ONCE(pcp->batch);
2174 	to_drain = min(pcp->count, batch);
2175 	if (to_drain > 0) {
2176 		spin_lock(&pcp->lock);
2177 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2178 		spin_unlock(&pcp->lock);
2179 	}
2180 }
2181 #endif
2182 
2183 /*
2184  * Drain pcplists of the indicated processor and zone.
2185  */
2186 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2187 {
2188 	struct per_cpu_pages *pcp;
2189 
2190 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2191 	if (pcp->count) {
2192 		spin_lock(&pcp->lock);
2193 		free_pcppages_bulk(zone, pcp->count, pcp, 0);
2194 		spin_unlock(&pcp->lock);
2195 	}
2196 }
2197 
2198 /*
2199  * Drain pcplists of all zones on the indicated processor.
2200  */
2201 static void drain_pages(unsigned int cpu)
2202 {
2203 	struct zone *zone;
2204 
2205 	for_each_populated_zone(zone) {
2206 		drain_pages_zone(cpu, zone);
2207 	}
2208 }
2209 
2210 /*
2211  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2212  */
2213 void drain_local_pages(struct zone *zone)
2214 {
2215 	int cpu = smp_processor_id();
2216 
2217 	if (zone)
2218 		drain_pages_zone(cpu, zone);
2219 	else
2220 		drain_pages(cpu);
2221 }
2222 
2223 /*
2224  * The implementation of drain_all_pages(), exposing an extra parameter to
2225  * drain on all cpus.
2226  *
2227  * drain_all_pages() is optimized to only execute on cpus where pcplists are
2228  * not empty. The check for non-emptiness can however race with a free to
2229  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2230  * that need the guarantee that every CPU has drained can disable the
2231  * optimizing racy check.
2232  */
2233 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2234 {
2235 	int cpu;
2236 
2237 	/*
2238 	 * Allocate in the BSS so we won't require allocation in
2239 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2240 	 */
2241 	static cpumask_t cpus_with_pcps;
2242 
2243 	/*
2244 	 * Do not drain if one is already in progress unless it's specific to
2245 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2246 	 * the drain to be complete when the call returns.
2247 	 */
2248 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2249 		if (!zone)
2250 			return;
2251 		mutex_lock(&pcpu_drain_mutex);
2252 	}
2253 
2254 	/*
2255 	 * We don't care about racing with CPU hotplug event
2256 	 * as offline notification will cause the notified
2257 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2258 	 * disables preemption as part of its processing
2259 	 */
2260 	for_each_online_cpu(cpu) {
2261 		struct per_cpu_pages *pcp;
2262 		struct zone *z;
2263 		bool has_pcps = false;
2264 
2265 		if (force_all_cpus) {
2266 			/*
2267 			 * The pcp.count check is racy, some callers need a
2268 			 * guarantee that no cpu is missed.
2269 			 */
2270 			has_pcps = true;
2271 		} else if (zone) {
2272 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2273 			if (pcp->count)
2274 				has_pcps = true;
2275 		} else {
2276 			for_each_populated_zone(z) {
2277 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2278 				if (pcp->count) {
2279 					has_pcps = true;
2280 					break;
2281 				}
2282 			}
2283 		}
2284 
2285 		if (has_pcps)
2286 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2287 		else
2288 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2289 	}
2290 
2291 	for_each_cpu(cpu, &cpus_with_pcps) {
2292 		if (zone)
2293 			drain_pages_zone(cpu, zone);
2294 		else
2295 			drain_pages(cpu);
2296 	}
2297 
2298 	mutex_unlock(&pcpu_drain_mutex);
2299 }
2300 
2301 /*
2302  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2303  *
2304  * When zone parameter is non-NULL, spill just the single zone's pages.
2305  */
2306 void drain_all_pages(struct zone *zone)
2307 {
2308 	__drain_all_pages(zone, false);
2309 }
2310 
2311 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
2312 							unsigned int order)
2313 {
2314 	int migratetype;
2315 
2316 	if (!free_pages_prepare(page, order, FPI_NONE))
2317 		return false;
2318 
2319 	migratetype = get_pfnblock_migratetype(page, pfn);
2320 	set_pcppage_migratetype(page, migratetype);
2321 	return true;
2322 }
2323 
2324 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, bool free_high)
2325 {
2326 	int min_nr_free, max_nr_free;
2327 	int batch = READ_ONCE(pcp->batch);
2328 
2329 	/* Free everything if batch freeing high-order pages. */
2330 	if (unlikely(free_high))
2331 		return pcp->count;
2332 
2333 	/* Check for PCP disabled or boot pageset */
2334 	if (unlikely(high < batch))
2335 		return 1;
2336 
2337 	/* Leave at least pcp->batch pages on the list */
2338 	min_nr_free = batch;
2339 	max_nr_free = high - batch;
2340 
2341 	/*
2342 	 * Double the number of pages freed each time there is subsequent
2343 	 * freeing of pages without any allocation.
2344 	 */
2345 	batch <<= pcp->free_factor;
2346 	if (batch < max_nr_free)
2347 		pcp->free_factor++;
2348 	batch = clamp(batch, min_nr_free, max_nr_free);
2349 
2350 	return batch;
2351 }
2352 
2353 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2354 		       bool free_high)
2355 {
2356 	int high = READ_ONCE(pcp->high);
2357 
2358 	if (unlikely(!high || free_high))
2359 		return 0;
2360 
2361 	if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
2362 		return high;
2363 
2364 	/*
2365 	 * If reclaim is active, limit the number of pages that can be
2366 	 * stored on pcp lists
2367 	 */
2368 	return min(READ_ONCE(pcp->batch) << 2, high);
2369 }
2370 
2371 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2372 				   struct page *page, int migratetype,
2373 				   unsigned int order)
2374 {
2375 	int high;
2376 	int pindex;
2377 	bool free_high;
2378 
2379 	__count_vm_events(PGFREE, 1 << order);
2380 	pindex = order_to_pindex(migratetype, order);
2381 	list_add(&page->pcp_list, &pcp->lists[pindex]);
2382 	pcp->count += 1 << order;
2383 
2384 	/*
2385 	 * As high-order pages other than THP's stored on PCP can contribute
2386 	 * to fragmentation, limit the number stored when PCP is heavily
2387 	 * freeing without allocation. The remainder after bulk freeing
2388 	 * stops will be drained from vmstat refresh context.
2389 	 */
2390 	free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
2391 
2392 	high = nr_pcp_high(pcp, zone, free_high);
2393 	if (pcp->count >= high) {
2394 		free_pcppages_bulk(zone, nr_pcp_free(pcp, high, free_high), pcp, pindex);
2395 	}
2396 }
2397 
2398 /*
2399  * Free a pcp page
2400  */
2401 void free_unref_page(struct page *page, unsigned int order)
2402 {
2403 	unsigned long __maybe_unused UP_flags;
2404 	struct per_cpu_pages *pcp;
2405 	struct zone *zone;
2406 	unsigned long pfn = page_to_pfn(page);
2407 	int migratetype, pcpmigratetype;
2408 
2409 	if (!free_unref_page_prepare(page, pfn, order))
2410 		return;
2411 
2412 	/*
2413 	 * We only track unmovable, reclaimable and movable on pcp lists.
2414 	 * Place ISOLATE pages on the isolated list because they are being
2415 	 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2416 	 * get those areas back if necessary. Otherwise, we may have to free
2417 	 * excessively into the page allocator
2418 	 */
2419 	migratetype = pcpmigratetype = get_pcppage_migratetype(page);
2420 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2421 		if (unlikely(is_migrate_isolate(migratetype))) {
2422 			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
2423 			return;
2424 		}
2425 		pcpmigratetype = MIGRATE_MOVABLE;
2426 	}
2427 
2428 	zone = page_zone(page);
2429 	pcp_trylock_prepare(UP_flags);
2430 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2431 	if (pcp) {
2432 		free_unref_page_commit(zone, pcp, page, pcpmigratetype, order);
2433 		pcp_spin_unlock(pcp);
2434 	} else {
2435 		free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
2436 	}
2437 	pcp_trylock_finish(UP_flags);
2438 }
2439 
2440 /*
2441  * Free a list of 0-order pages
2442  */
2443 void free_unref_page_list(struct list_head *list)
2444 {
2445 	unsigned long __maybe_unused UP_flags;
2446 	struct page *page, *next;
2447 	struct per_cpu_pages *pcp = NULL;
2448 	struct zone *locked_zone = NULL;
2449 	int batch_count = 0;
2450 	int migratetype;
2451 
2452 	/* Prepare pages for freeing */
2453 	list_for_each_entry_safe(page, next, list, lru) {
2454 		unsigned long pfn = page_to_pfn(page);
2455 		if (!free_unref_page_prepare(page, pfn, 0)) {
2456 			list_del(&page->lru);
2457 			continue;
2458 		}
2459 
2460 		/*
2461 		 * Free isolated pages directly to the allocator, see
2462 		 * comment in free_unref_page.
2463 		 */
2464 		migratetype = get_pcppage_migratetype(page);
2465 		if (unlikely(is_migrate_isolate(migratetype))) {
2466 			list_del(&page->lru);
2467 			free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
2468 			continue;
2469 		}
2470 	}
2471 
2472 	list_for_each_entry_safe(page, next, list, lru) {
2473 		struct zone *zone = page_zone(page);
2474 
2475 		list_del(&page->lru);
2476 		migratetype = get_pcppage_migratetype(page);
2477 
2478 		/*
2479 		 * Either different zone requiring a different pcp lock or
2480 		 * excessive lock hold times when freeing a large list of
2481 		 * pages.
2482 		 */
2483 		if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) {
2484 			if (pcp) {
2485 				pcp_spin_unlock(pcp);
2486 				pcp_trylock_finish(UP_flags);
2487 			}
2488 
2489 			batch_count = 0;
2490 
2491 			/*
2492 			 * trylock is necessary as pages may be getting freed
2493 			 * from IRQ or SoftIRQ context after an IO completion.
2494 			 */
2495 			pcp_trylock_prepare(UP_flags);
2496 			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2497 			if (unlikely(!pcp)) {
2498 				pcp_trylock_finish(UP_flags);
2499 				free_one_page(zone, page, page_to_pfn(page),
2500 					      0, migratetype, FPI_NONE);
2501 				locked_zone = NULL;
2502 				continue;
2503 			}
2504 			locked_zone = zone;
2505 		}
2506 
2507 		/*
2508 		 * Non-isolated types over MIGRATE_PCPTYPES get added
2509 		 * to the MIGRATE_MOVABLE pcp list.
2510 		 */
2511 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2512 			migratetype = MIGRATE_MOVABLE;
2513 
2514 		trace_mm_page_free_batched(page);
2515 		free_unref_page_commit(zone, pcp, page, migratetype, 0);
2516 		batch_count++;
2517 	}
2518 
2519 	if (pcp) {
2520 		pcp_spin_unlock(pcp);
2521 		pcp_trylock_finish(UP_flags);
2522 	}
2523 }
2524 
2525 /*
2526  * split_page takes a non-compound higher-order page, and splits it into
2527  * n (1<<order) sub-pages: page[0..n]
2528  * Each sub-page must be freed individually.
2529  *
2530  * Note: this is probably too low level an operation for use in drivers.
2531  * Please consult with lkml before using this in your driver.
2532  */
2533 void split_page(struct page *page, unsigned int order)
2534 {
2535 	int i;
2536 
2537 	VM_BUG_ON_PAGE(PageCompound(page), page);
2538 	VM_BUG_ON_PAGE(!page_count(page), page);
2539 
2540 	for (i = 1; i < (1 << order); i++)
2541 		set_page_refcounted(page + i);
2542 	split_page_owner(page, 1 << order);
2543 	split_page_memcg(page, 1 << order);
2544 }
2545 EXPORT_SYMBOL_GPL(split_page);
2546 
2547 int __isolate_free_page(struct page *page, unsigned int order)
2548 {
2549 	struct zone *zone = page_zone(page);
2550 	int mt = get_pageblock_migratetype(page);
2551 
2552 	if (!is_migrate_isolate(mt)) {
2553 		unsigned long watermark;
2554 		/*
2555 		 * Obey watermarks as if the page was being allocated. We can
2556 		 * emulate a high-order watermark check with a raised order-0
2557 		 * watermark, because we already know our high-order page
2558 		 * exists.
2559 		 */
2560 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2561 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2562 			return 0;
2563 
2564 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2565 	}
2566 
2567 	del_page_from_free_list(page, zone, order);
2568 
2569 	/*
2570 	 * Set the pageblock if the isolated page is at least half of a
2571 	 * pageblock
2572 	 */
2573 	if (order >= pageblock_order - 1) {
2574 		struct page *endpage = page + (1 << order) - 1;
2575 		for (; page < endpage; page += pageblock_nr_pages) {
2576 			int mt = get_pageblock_migratetype(page);
2577 			/*
2578 			 * Only change normal pageblocks (i.e., they can merge
2579 			 * with others)
2580 			 */
2581 			if (migratetype_is_mergeable(mt))
2582 				set_pageblock_migratetype(page,
2583 							  MIGRATE_MOVABLE);
2584 		}
2585 	}
2586 
2587 	return 1UL << order;
2588 }
2589 
2590 /**
2591  * __putback_isolated_page - Return a now-isolated page back where we got it
2592  * @page: Page that was isolated
2593  * @order: Order of the isolated page
2594  * @mt: The page's pageblock's migratetype
2595  *
2596  * This function is meant to return a page pulled from the free lists via
2597  * __isolate_free_page back to the free lists they were pulled from.
2598  */
2599 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2600 {
2601 	struct zone *zone = page_zone(page);
2602 
2603 	/* zone lock should be held when this function is called */
2604 	lockdep_assert_held(&zone->lock);
2605 
2606 	/* Return isolated page to tail of freelist. */
2607 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
2608 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2609 }
2610 
2611 /*
2612  * Update NUMA hit/miss statistics
2613  */
2614 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2615 				   long nr_account)
2616 {
2617 #ifdef CONFIG_NUMA
2618 	enum numa_stat_item local_stat = NUMA_LOCAL;
2619 
2620 	/* skip numa counters update if numa stats is disabled */
2621 	if (!static_branch_likely(&vm_numa_stat_key))
2622 		return;
2623 
2624 	if (zone_to_nid(z) != numa_node_id())
2625 		local_stat = NUMA_OTHER;
2626 
2627 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2628 		__count_numa_events(z, NUMA_HIT, nr_account);
2629 	else {
2630 		__count_numa_events(z, NUMA_MISS, nr_account);
2631 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2632 	}
2633 	__count_numa_events(z, local_stat, nr_account);
2634 #endif
2635 }
2636 
2637 static __always_inline
2638 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2639 			   unsigned int order, unsigned int alloc_flags,
2640 			   int migratetype)
2641 {
2642 	struct page *page;
2643 	unsigned long flags;
2644 
2645 	do {
2646 		page = NULL;
2647 		spin_lock_irqsave(&zone->lock, flags);
2648 		if (alloc_flags & ALLOC_HIGHATOMIC)
2649 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2650 		if (!page) {
2651 			page = __rmqueue(zone, order, migratetype, alloc_flags);
2652 
2653 			/*
2654 			 * If the allocation fails, allow OOM handling access
2655 			 * to HIGHATOMIC reserves as failing now is worse than
2656 			 * failing a high-order atomic allocation in the
2657 			 * future.
2658 			 */
2659 			if (!page && (alloc_flags & ALLOC_OOM))
2660 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2661 
2662 			if (!page) {
2663 				spin_unlock_irqrestore(&zone->lock, flags);
2664 				return NULL;
2665 			}
2666 		}
2667 		__mod_zone_freepage_state(zone, -(1 << order),
2668 					  get_pcppage_migratetype(page));
2669 		spin_unlock_irqrestore(&zone->lock, flags);
2670 	} while (check_new_pages(page, order));
2671 
2672 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2673 	zone_statistics(preferred_zone, zone, 1);
2674 
2675 	return page;
2676 }
2677 
2678 /* Remove page from the per-cpu list, caller must protect the list */
2679 static inline
2680 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2681 			int migratetype,
2682 			unsigned int alloc_flags,
2683 			struct per_cpu_pages *pcp,
2684 			struct list_head *list)
2685 {
2686 	struct page *page;
2687 
2688 	do {
2689 		if (list_empty(list)) {
2690 			int batch = READ_ONCE(pcp->batch);
2691 			int alloced;
2692 
2693 			/*
2694 			 * Scale batch relative to order if batch implies
2695 			 * free pages can be stored on the PCP. Batch can
2696 			 * be 1 for small zones or for boot pagesets which
2697 			 * should never store free pages as the pages may
2698 			 * belong to arbitrary zones.
2699 			 */
2700 			if (batch > 1)
2701 				batch = max(batch >> order, 2);
2702 			alloced = rmqueue_bulk(zone, order,
2703 					batch, list,
2704 					migratetype, alloc_flags);
2705 
2706 			pcp->count += alloced << order;
2707 			if (unlikely(list_empty(list)))
2708 				return NULL;
2709 		}
2710 
2711 		page = list_first_entry(list, struct page, pcp_list);
2712 		list_del(&page->pcp_list);
2713 		pcp->count -= 1 << order;
2714 	} while (check_new_pages(page, order));
2715 
2716 	return page;
2717 }
2718 
2719 /* Lock and remove page from the per-cpu list */
2720 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2721 			struct zone *zone, unsigned int order,
2722 			int migratetype, unsigned int alloc_flags)
2723 {
2724 	struct per_cpu_pages *pcp;
2725 	struct list_head *list;
2726 	struct page *page;
2727 	unsigned long __maybe_unused UP_flags;
2728 
2729 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
2730 	pcp_trylock_prepare(UP_flags);
2731 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2732 	if (!pcp) {
2733 		pcp_trylock_finish(UP_flags);
2734 		return NULL;
2735 	}
2736 
2737 	/*
2738 	 * On allocation, reduce the number of pages that are batch freed.
2739 	 * See nr_pcp_free() where free_factor is increased for subsequent
2740 	 * frees.
2741 	 */
2742 	pcp->free_factor >>= 1;
2743 	list = &pcp->lists[order_to_pindex(migratetype, order)];
2744 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
2745 	pcp_spin_unlock(pcp);
2746 	pcp_trylock_finish(UP_flags);
2747 	if (page) {
2748 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2749 		zone_statistics(preferred_zone, zone, 1);
2750 	}
2751 	return page;
2752 }
2753 
2754 /*
2755  * Allocate a page from the given zone.
2756  * Use pcplists for THP or "cheap" high-order allocations.
2757  */
2758 
2759 /*
2760  * Do not instrument rmqueue() with KMSAN. This function may call
2761  * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
2762  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
2763  * may call rmqueue() again, which will result in a deadlock.
2764  */
2765 __no_sanitize_memory
2766 static inline
2767 struct page *rmqueue(struct zone *preferred_zone,
2768 			struct zone *zone, unsigned int order,
2769 			gfp_t gfp_flags, unsigned int alloc_flags,
2770 			int migratetype)
2771 {
2772 	struct page *page;
2773 
2774 	/*
2775 	 * We most definitely don't want callers attempting to
2776 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
2777 	 */
2778 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2779 
2780 	if (likely(pcp_allowed_order(order))) {
2781 		page = rmqueue_pcplist(preferred_zone, zone, order,
2782 				       migratetype, alloc_flags);
2783 		if (likely(page))
2784 			goto out;
2785 	}
2786 
2787 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
2788 							migratetype);
2789 
2790 out:
2791 	/* Separate test+clear to avoid unnecessary atomics */
2792 	if ((alloc_flags & ALLOC_KSWAPD) &&
2793 	    unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
2794 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2795 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
2796 	}
2797 
2798 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2799 	return page;
2800 }
2801 
2802 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2803 {
2804 	return __should_fail_alloc_page(gfp_mask, order);
2805 }
2806 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
2807 
2808 static inline long __zone_watermark_unusable_free(struct zone *z,
2809 				unsigned int order, unsigned int alloc_flags)
2810 {
2811 	long unusable_free = (1 << order) - 1;
2812 
2813 	/*
2814 	 * If the caller does not have rights to reserves below the min
2815 	 * watermark then subtract the high-atomic reserves. This will
2816 	 * over-estimate the size of the atomic reserve but it avoids a search.
2817 	 */
2818 	if (likely(!(alloc_flags & ALLOC_RESERVES)))
2819 		unusable_free += z->nr_reserved_highatomic;
2820 
2821 #ifdef CONFIG_CMA
2822 	/* If allocation can't use CMA areas don't use free CMA pages */
2823 	if (!(alloc_flags & ALLOC_CMA))
2824 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
2825 #endif
2826 #ifdef CONFIG_UNACCEPTED_MEMORY
2827 	unusable_free += zone_page_state(z, NR_UNACCEPTED);
2828 #endif
2829 
2830 	return unusable_free;
2831 }
2832 
2833 /*
2834  * Return true if free base pages are above 'mark'. For high-order checks it
2835  * will return true of the order-0 watermark is reached and there is at least
2836  * one free page of a suitable size. Checking now avoids taking the zone lock
2837  * to check in the allocation paths if no pages are free.
2838  */
2839 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2840 			 int highest_zoneidx, unsigned int alloc_flags,
2841 			 long free_pages)
2842 {
2843 	long min = mark;
2844 	int o;
2845 
2846 	/* free_pages may go negative - that's OK */
2847 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
2848 
2849 	if (unlikely(alloc_flags & ALLOC_RESERVES)) {
2850 		/*
2851 		 * __GFP_HIGH allows access to 50% of the min reserve as well
2852 		 * as OOM.
2853 		 */
2854 		if (alloc_flags & ALLOC_MIN_RESERVE) {
2855 			min -= min / 2;
2856 
2857 			/*
2858 			 * Non-blocking allocations (e.g. GFP_ATOMIC) can
2859 			 * access more reserves than just __GFP_HIGH. Other
2860 			 * non-blocking allocations requests such as GFP_NOWAIT
2861 			 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
2862 			 * access to the min reserve.
2863 			 */
2864 			if (alloc_flags & ALLOC_NON_BLOCK)
2865 				min -= min / 4;
2866 		}
2867 
2868 		/*
2869 		 * OOM victims can try even harder than the normal reserve
2870 		 * users on the grounds that it's definitely going to be in
2871 		 * the exit path shortly and free memory. Any allocation it
2872 		 * makes during the free path will be small and short-lived.
2873 		 */
2874 		if (alloc_flags & ALLOC_OOM)
2875 			min -= min / 2;
2876 	}
2877 
2878 	/*
2879 	 * Check watermarks for an order-0 allocation request. If these
2880 	 * are not met, then a high-order request also cannot go ahead
2881 	 * even if a suitable page happened to be free.
2882 	 */
2883 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
2884 		return false;
2885 
2886 	/* If this is an order-0 request then the watermark is fine */
2887 	if (!order)
2888 		return true;
2889 
2890 	/* For a high-order request, check at least one suitable page is free */
2891 	for (o = order; o < NR_PAGE_ORDERS; o++) {
2892 		struct free_area *area = &z->free_area[o];
2893 		int mt;
2894 
2895 		if (!area->nr_free)
2896 			continue;
2897 
2898 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2899 			if (!free_area_empty(area, mt))
2900 				return true;
2901 		}
2902 
2903 #ifdef CONFIG_CMA
2904 		if ((alloc_flags & ALLOC_CMA) &&
2905 		    !free_area_empty(area, MIGRATE_CMA)) {
2906 			return true;
2907 		}
2908 #endif
2909 		if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
2910 		    !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
2911 			return true;
2912 		}
2913 	}
2914 	return false;
2915 }
2916 
2917 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2918 		      int highest_zoneidx, unsigned int alloc_flags)
2919 {
2920 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
2921 					zone_page_state(z, NR_FREE_PAGES));
2922 }
2923 
2924 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2925 				unsigned long mark, int highest_zoneidx,
2926 				unsigned int alloc_flags, gfp_t gfp_mask)
2927 {
2928 	long free_pages;
2929 
2930 	free_pages = zone_page_state(z, NR_FREE_PAGES);
2931 
2932 	/*
2933 	 * Fast check for order-0 only. If this fails then the reserves
2934 	 * need to be calculated.
2935 	 */
2936 	if (!order) {
2937 		long usable_free;
2938 		long reserved;
2939 
2940 		usable_free = free_pages;
2941 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
2942 
2943 		/* reserved may over estimate high-atomic reserves. */
2944 		usable_free -= min(usable_free, reserved);
2945 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
2946 			return true;
2947 	}
2948 
2949 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
2950 					free_pages))
2951 		return true;
2952 
2953 	/*
2954 	 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
2955 	 * when checking the min watermark. The min watermark is the
2956 	 * point where boosting is ignored so that kswapd is woken up
2957 	 * when below the low watermark.
2958 	 */
2959 	if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
2960 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
2961 		mark = z->_watermark[WMARK_MIN];
2962 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
2963 					alloc_flags, free_pages);
2964 	}
2965 
2966 	return false;
2967 }
2968 
2969 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2970 			unsigned long mark, int highest_zoneidx)
2971 {
2972 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
2973 
2974 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2975 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2976 
2977 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
2978 								free_pages);
2979 }
2980 
2981 #ifdef CONFIG_NUMA
2982 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
2983 
2984 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2985 {
2986 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
2987 				node_reclaim_distance;
2988 }
2989 #else	/* CONFIG_NUMA */
2990 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2991 {
2992 	return true;
2993 }
2994 #endif	/* CONFIG_NUMA */
2995 
2996 /*
2997  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
2998  * fragmentation is subtle. If the preferred zone was HIGHMEM then
2999  * premature use of a lower zone may cause lowmem pressure problems that
3000  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3001  * probably too small. It only makes sense to spread allocations to avoid
3002  * fragmentation between the Normal and DMA32 zones.
3003  */
3004 static inline unsigned int
3005 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3006 {
3007 	unsigned int alloc_flags;
3008 
3009 	/*
3010 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3011 	 * to save a branch.
3012 	 */
3013 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3014 
3015 #ifdef CONFIG_ZONE_DMA32
3016 	if (!zone)
3017 		return alloc_flags;
3018 
3019 	if (zone_idx(zone) != ZONE_NORMAL)
3020 		return alloc_flags;
3021 
3022 	/*
3023 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3024 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3025 	 * on UMA that if Normal is populated then so is DMA32.
3026 	 */
3027 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3028 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3029 		return alloc_flags;
3030 
3031 	alloc_flags |= ALLOC_NOFRAGMENT;
3032 #endif /* CONFIG_ZONE_DMA32 */
3033 	return alloc_flags;
3034 }
3035 
3036 /* Must be called after current_gfp_context() which can change gfp_mask */
3037 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3038 						  unsigned int alloc_flags)
3039 {
3040 #ifdef CONFIG_CMA
3041 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3042 		alloc_flags |= ALLOC_CMA;
3043 #endif
3044 	return alloc_flags;
3045 }
3046 
3047 /*
3048  * get_page_from_freelist goes through the zonelist trying to allocate
3049  * a page.
3050  */
3051 static struct page *
3052 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3053 						const struct alloc_context *ac)
3054 {
3055 	struct zoneref *z;
3056 	struct zone *zone;
3057 	struct pglist_data *last_pgdat = NULL;
3058 	bool last_pgdat_dirty_ok = false;
3059 	bool no_fallback;
3060 
3061 retry:
3062 	/*
3063 	 * Scan zonelist, looking for a zone with enough free.
3064 	 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3065 	 */
3066 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3067 	z = ac->preferred_zoneref;
3068 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3069 					ac->nodemask) {
3070 		struct page *page;
3071 		unsigned long mark;
3072 
3073 		if (cpusets_enabled() &&
3074 			(alloc_flags & ALLOC_CPUSET) &&
3075 			!__cpuset_zone_allowed(zone, gfp_mask))
3076 				continue;
3077 		/*
3078 		 * When allocating a page cache page for writing, we
3079 		 * want to get it from a node that is within its dirty
3080 		 * limit, such that no single node holds more than its
3081 		 * proportional share of globally allowed dirty pages.
3082 		 * The dirty limits take into account the node's
3083 		 * lowmem reserves and high watermark so that kswapd
3084 		 * should be able to balance it without having to
3085 		 * write pages from its LRU list.
3086 		 *
3087 		 * XXX: For now, allow allocations to potentially
3088 		 * exceed the per-node dirty limit in the slowpath
3089 		 * (spread_dirty_pages unset) before going into reclaim,
3090 		 * which is important when on a NUMA setup the allowed
3091 		 * nodes are together not big enough to reach the
3092 		 * global limit.  The proper fix for these situations
3093 		 * will require awareness of nodes in the
3094 		 * dirty-throttling and the flusher threads.
3095 		 */
3096 		if (ac->spread_dirty_pages) {
3097 			if (last_pgdat != zone->zone_pgdat) {
3098 				last_pgdat = zone->zone_pgdat;
3099 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3100 			}
3101 
3102 			if (!last_pgdat_dirty_ok)
3103 				continue;
3104 		}
3105 
3106 		if (no_fallback && nr_online_nodes > 1 &&
3107 		    zone != ac->preferred_zoneref->zone) {
3108 			int local_nid;
3109 
3110 			/*
3111 			 * If moving to a remote node, retry but allow
3112 			 * fragmenting fallbacks. Locality is more important
3113 			 * than fragmentation avoidance.
3114 			 */
3115 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3116 			if (zone_to_nid(zone) != local_nid) {
3117 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3118 				goto retry;
3119 			}
3120 		}
3121 
3122 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3123 		if (!zone_watermark_fast(zone, order, mark,
3124 				       ac->highest_zoneidx, alloc_flags,
3125 				       gfp_mask)) {
3126 			int ret;
3127 
3128 			if (has_unaccepted_memory()) {
3129 				if (try_to_accept_memory(zone, order))
3130 					goto try_this_zone;
3131 			}
3132 
3133 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3134 			/*
3135 			 * Watermark failed for this zone, but see if we can
3136 			 * grow this zone if it contains deferred pages.
3137 			 */
3138 			if (deferred_pages_enabled()) {
3139 				if (_deferred_grow_zone(zone, order))
3140 					goto try_this_zone;
3141 			}
3142 #endif
3143 			/* Checked here to keep the fast path fast */
3144 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3145 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3146 				goto try_this_zone;
3147 
3148 			if (!node_reclaim_enabled() ||
3149 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3150 				continue;
3151 
3152 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3153 			switch (ret) {
3154 			case NODE_RECLAIM_NOSCAN:
3155 				/* did not scan */
3156 				continue;
3157 			case NODE_RECLAIM_FULL:
3158 				/* scanned but unreclaimable */
3159 				continue;
3160 			default:
3161 				/* did we reclaim enough */
3162 				if (zone_watermark_ok(zone, order, mark,
3163 					ac->highest_zoneidx, alloc_flags))
3164 					goto try_this_zone;
3165 
3166 				continue;
3167 			}
3168 		}
3169 
3170 try_this_zone:
3171 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3172 				gfp_mask, alloc_flags, ac->migratetype);
3173 		if (page) {
3174 			prep_new_page(page, order, gfp_mask, alloc_flags);
3175 
3176 			/*
3177 			 * If this is a high-order atomic allocation then check
3178 			 * if the pageblock should be reserved for the future
3179 			 */
3180 			if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3181 				reserve_highatomic_pageblock(page, zone);
3182 
3183 			return page;
3184 		} else {
3185 			if (has_unaccepted_memory()) {
3186 				if (try_to_accept_memory(zone, order))
3187 					goto try_this_zone;
3188 			}
3189 
3190 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3191 			/* Try again if zone has deferred pages */
3192 			if (deferred_pages_enabled()) {
3193 				if (_deferred_grow_zone(zone, order))
3194 					goto try_this_zone;
3195 			}
3196 #endif
3197 		}
3198 	}
3199 
3200 	/*
3201 	 * It's possible on a UMA machine to get through all zones that are
3202 	 * fragmented. If avoiding fragmentation, reset and try again.
3203 	 */
3204 	if (no_fallback) {
3205 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3206 		goto retry;
3207 	}
3208 
3209 	return NULL;
3210 }
3211 
3212 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3213 {
3214 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3215 
3216 	/*
3217 	 * This documents exceptions given to allocations in certain
3218 	 * contexts that are allowed to allocate outside current's set
3219 	 * of allowed nodes.
3220 	 */
3221 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3222 		if (tsk_is_oom_victim(current) ||
3223 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3224 			filter &= ~SHOW_MEM_FILTER_NODES;
3225 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3226 		filter &= ~SHOW_MEM_FILTER_NODES;
3227 
3228 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
3229 }
3230 
3231 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3232 {
3233 	struct va_format vaf;
3234 	va_list args;
3235 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3236 
3237 	if ((gfp_mask & __GFP_NOWARN) ||
3238 	     !__ratelimit(&nopage_rs) ||
3239 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3240 		return;
3241 
3242 	va_start(args, fmt);
3243 	vaf.fmt = fmt;
3244 	vaf.va = &args;
3245 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3246 			current->comm, &vaf, gfp_mask, &gfp_mask,
3247 			nodemask_pr_args(nodemask));
3248 	va_end(args);
3249 
3250 	cpuset_print_current_mems_allowed();
3251 	pr_cont("\n");
3252 	dump_stack();
3253 	warn_alloc_show_mem(gfp_mask, nodemask);
3254 }
3255 
3256 static inline struct page *
3257 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3258 			      unsigned int alloc_flags,
3259 			      const struct alloc_context *ac)
3260 {
3261 	struct page *page;
3262 
3263 	page = get_page_from_freelist(gfp_mask, order,
3264 			alloc_flags|ALLOC_CPUSET, ac);
3265 	/*
3266 	 * fallback to ignore cpuset restriction if our nodes
3267 	 * are depleted
3268 	 */
3269 	if (!page)
3270 		page = get_page_from_freelist(gfp_mask, order,
3271 				alloc_flags, ac);
3272 
3273 	return page;
3274 }
3275 
3276 static inline struct page *
3277 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3278 	const struct alloc_context *ac, unsigned long *did_some_progress)
3279 {
3280 	struct oom_control oc = {
3281 		.zonelist = ac->zonelist,
3282 		.nodemask = ac->nodemask,
3283 		.memcg = NULL,
3284 		.gfp_mask = gfp_mask,
3285 		.order = order,
3286 	};
3287 	struct page *page;
3288 
3289 	*did_some_progress = 0;
3290 
3291 	/*
3292 	 * Acquire the oom lock.  If that fails, somebody else is
3293 	 * making progress for us.
3294 	 */
3295 	if (!mutex_trylock(&oom_lock)) {
3296 		*did_some_progress = 1;
3297 		schedule_timeout_uninterruptible(1);
3298 		return NULL;
3299 	}
3300 
3301 	/*
3302 	 * Go through the zonelist yet one more time, keep very high watermark
3303 	 * here, this is only to catch a parallel oom killing, we must fail if
3304 	 * we're still under heavy pressure. But make sure that this reclaim
3305 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3306 	 * allocation which will never fail due to oom_lock already held.
3307 	 */
3308 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3309 				      ~__GFP_DIRECT_RECLAIM, order,
3310 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3311 	if (page)
3312 		goto out;
3313 
3314 	/* Coredumps can quickly deplete all memory reserves */
3315 	if (current->flags & PF_DUMPCORE)
3316 		goto out;
3317 	/* The OOM killer will not help higher order allocs */
3318 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3319 		goto out;
3320 	/*
3321 	 * We have already exhausted all our reclaim opportunities without any
3322 	 * success so it is time to admit defeat. We will skip the OOM killer
3323 	 * because it is very likely that the caller has a more reasonable
3324 	 * fallback than shooting a random task.
3325 	 *
3326 	 * The OOM killer may not free memory on a specific node.
3327 	 */
3328 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3329 		goto out;
3330 	/* The OOM killer does not needlessly kill tasks for lowmem */
3331 	if (ac->highest_zoneidx < ZONE_NORMAL)
3332 		goto out;
3333 	if (pm_suspended_storage())
3334 		goto out;
3335 	/*
3336 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3337 	 * other request to make a forward progress.
3338 	 * We are in an unfortunate situation where out_of_memory cannot
3339 	 * do much for this context but let's try it to at least get
3340 	 * access to memory reserved if the current task is killed (see
3341 	 * out_of_memory). Once filesystems are ready to handle allocation
3342 	 * failures more gracefully we should just bail out here.
3343 	 */
3344 
3345 	/* Exhausted what can be done so it's blame time */
3346 	if (out_of_memory(&oc) ||
3347 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3348 		*did_some_progress = 1;
3349 
3350 		/*
3351 		 * Help non-failing allocations by giving them access to memory
3352 		 * reserves
3353 		 */
3354 		if (gfp_mask & __GFP_NOFAIL)
3355 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3356 					ALLOC_NO_WATERMARKS, ac);
3357 	}
3358 out:
3359 	mutex_unlock(&oom_lock);
3360 	return page;
3361 }
3362 
3363 /*
3364  * Maximum number of compaction retries with a progress before OOM
3365  * killer is consider as the only way to move forward.
3366  */
3367 #define MAX_COMPACT_RETRIES 16
3368 
3369 #ifdef CONFIG_COMPACTION
3370 /* Try memory compaction for high-order allocations before reclaim */
3371 static struct page *
3372 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3373 		unsigned int alloc_flags, const struct alloc_context *ac,
3374 		enum compact_priority prio, enum compact_result *compact_result)
3375 {
3376 	struct page *page = NULL;
3377 	unsigned long pflags;
3378 	unsigned int noreclaim_flag;
3379 
3380 	if (!order)
3381 		return NULL;
3382 
3383 	psi_memstall_enter(&pflags);
3384 	delayacct_compact_start();
3385 	noreclaim_flag = memalloc_noreclaim_save();
3386 
3387 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3388 								prio, &page);
3389 
3390 	memalloc_noreclaim_restore(noreclaim_flag);
3391 	psi_memstall_leave(&pflags);
3392 	delayacct_compact_end();
3393 
3394 	if (*compact_result == COMPACT_SKIPPED)
3395 		return NULL;
3396 	/*
3397 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3398 	 * count a compaction stall
3399 	 */
3400 	count_vm_event(COMPACTSTALL);
3401 
3402 	/* Prep a captured page if available */
3403 	if (page)
3404 		prep_new_page(page, order, gfp_mask, alloc_flags);
3405 
3406 	/* Try get a page from the freelist if available */
3407 	if (!page)
3408 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3409 
3410 	if (page) {
3411 		struct zone *zone = page_zone(page);
3412 
3413 		zone->compact_blockskip_flush = false;
3414 		compaction_defer_reset(zone, order, true);
3415 		count_vm_event(COMPACTSUCCESS);
3416 		return page;
3417 	}
3418 
3419 	/*
3420 	 * It's bad if compaction run occurs and fails. The most likely reason
3421 	 * is that pages exist, but not enough to satisfy watermarks.
3422 	 */
3423 	count_vm_event(COMPACTFAIL);
3424 
3425 	cond_resched();
3426 
3427 	return NULL;
3428 }
3429 
3430 static inline bool
3431 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3432 		     enum compact_result compact_result,
3433 		     enum compact_priority *compact_priority,
3434 		     int *compaction_retries)
3435 {
3436 	int max_retries = MAX_COMPACT_RETRIES;
3437 	int min_priority;
3438 	bool ret = false;
3439 	int retries = *compaction_retries;
3440 	enum compact_priority priority = *compact_priority;
3441 
3442 	if (!order)
3443 		return false;
3444 
3445 	if (fatal_signal_pending(current))
3446 		return false;
3447 
3448 	/*
3449 	 * Compaction was skipped due to a lack of free order-0
3450 	 * migration targets. Continue if reclaim can help.
3451 	 */
3452 	if (compact_result == COMPACT_SKIPPED) {
3453 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3454 		goto out;
3455 	}
3456 
3457 	/*
3458 	 * Compaction managed to coalesce some page blocks, but the
3459 	 * allocation failed presumably due to a race. Retry some.
3460 	 */
3461 	if (compact_result == COMPACT_SUCCESS) {
3462 		/*
3463 		 * !costly requests are much more important than
3464 		 * __GFP_RETRY_MAYFAIL costly ones because they are de
3465 		 * facto nofail and invoke OOM killer to move on while
3466 		 * costly can fail and users are ready to cope with
3467 		 * that. 1/4 retries is rather arbitrary but we would
3468 		 * need much more detailed feedback from compaction to
3469 		 * make a better decision.
3470 		 */
3471 		if (order > PAGE_ALLOC_COSTLY_ORDER)
3472 			max_retries /= 4;
3473 
3474 		if (++(*compaction_retries) <= max_retries) {
3475 			ret = true;
3476 			goto out;
3477 		}
3478 	}
3479 
3480 	/*
3481 	 * Compaction failed. Retry with increasing priority.
3482 	 */
3483 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3484 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3485 
3486 	if (*compact_priority > min_priority) {
3487 		(*compact_priority)--;
3488 		*compaction_retries = 0;
3489 		ret = true;
3490 	}
3491 out:
3492 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3493 	return ret;
3494 }
3495 #else
3496 static inline struct page *
3497 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3498 		unsigned int alloc_flags, const struct alloc_context *ac,
3499 		enum compact_priority prio, enum compact_result *compact_result)
3500 {
3501 	*compact_result = COMPACT_SKIPPED;
3502 	return NULL;
3503 }
3504 
3505 static inline bool
3506 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3507 		     enum compact_result compact_result,
3508 		     enum compact_priority *compact_priority,
3509 		     int *compaction_retries)
3510 {
3511 	struct zone *zone;
3512 	struct zoneref *z;
3513 
3514 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3515 		return false;
3516 
3517 	/*
3518 	 * There are setups with compaction disabled which would prefer to loop
3519 	 * inside the allocator rather than hit the oom killer prematurely.
3520 	 * Let's give them a good hope and keep retrying while the order-0
3521 	 * watermarks are OK.
3522 	 */
3523 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3524 				ac->highest_zoneidx, ac->nodemask) {
3525 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3526 					ac->highest_zoneidx, alloc_flags))
3527 			return true;
3528 	}
3529 	return false;
3530 }
3531 #endif /* CONFIG_COMPACTION */
3532 
3533 #ifdef CONFIG_LOCKDEP
3534 static struct lockdep_map __fs_reclaim_map =
3535 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3536 
3537 static bool __need_reclaim(gfp_t gfp_mask)
3538 {
3539 	/* no reclaim without waiting on it */
3540 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3541 		return false;
3542 
3543 	/* this guy won't enter reclaim */
3544 	if (current->flags & PF_MEMALLOC)
3545 		return false;
3546 
3547 	if (gfp_mask & __GFP_NOLOCKDEP)
3548 		return false;
3549 
3550 	return true;
3551 }
3552 
3553 void __fs_reclaim_acquire(unsigned long ip)
3554 {
3555 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3556 }
3557 
3558 void __fs_reclaim_release(unsigned long ip)
3559 {
3560 	lock_release(&__fs_reclaim_map, ip);
3561 }
3562 
3563 void fs_reclaim_acquire(gfp_t gfp_mask)
3564 {
3565 	gfp_mask = current_gfp_context(gfp_mask);
3566 
3567 	if (__need_reclaim(gfp_mask)) {
3568 		if (gfp_mask & __GFP_FS)
3569 			__fs_reclaim_acquire(_RET_IP_);
3570 
3571 #ifdef CONFIG_MMU_NOTIFIER
3572 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3573 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3574 #endif
3575 
3576 	}
3577 }
3578 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3579 
3580 void fs_reclaim_release(gfp_t gfp_mask)
3581 {
3582 	gfp_mask = current_gfp_context(gfp_mask);
3583 
3584 	if (__need_reclaim(gfp_mask)) {
3585 		if (gfp_mask & __GFP_FS)
3586 			__fs_reclaim_release(_RET_IP_);
3587 	}
3588 }
3589 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3590 #endif
3591 
3592 /*
3593  * Zonelists may change due to hotplug during allocation. Detect when zonelists
3594  * have been rebuilt so allocation retries. Reader side does not lock and
3595  * retries the allocation if zonelist changes. Writer side is protected by the
3596  * embedded spin_lock.
3597  */
3598 static DEFINE_SEQLOCK(zonelist_update_seq);
3599 
3600 static unsigned int zonelist_iter_begin(void)
3601 {
3602 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3603 		return read_seqbegin(&zonelist_update_seq);
3604 
3605 	return 0;
3606 }
3607 
3608 static unsigned int check_retry_zonelist(unsigned int seq)
3609 {
3610 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3611 		return read_seqretry(&zonelist_update_seq, seq);
3612 
3613 	return seq;
3614 }
3615 
3616 /* Perform direct synchronous page reclaim */
3617 static unsigned long
3618 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3619 					const struct alloc_context *ac)
3620 {
3621 	unsigned int noreclaim_flag;
3622 	unsigned long progress;
3623 
3624 	cond_resched();
3625 
3626 	/* We now go into synchronous reclaim */
3627 	cpuset_memory_pressure_bump();
3628 	fs_reclaim_acquire(gfp_mask);
3629 	noreclaim_flag = memalloc_noreclaim_save();
3630 
3631 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3632 								ac->nodemask);
3633 
3634 	memalloc_noreclaim_restore(noreclaim_flag);
3635 	fs_reclaim_release(gfp_mask);
3636 
3637 	cond_resched();
3638 
3639 	return progress;
3640 }
3641 
3642 /* The really slow allocator path where we enter direct reclaim */
3643 static inline struct page *
3644 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3645 		unsigned int alloc_flags, const struct alloc_context *ac,
3646 		unsigned long *did_some_progress)
3647 {
3648 	struct page *page = NULL;
3649 	unsigned long pflags;
3650 	bool drained = false;
3651 
3652 	psi_memstall_enter(&pflags);
3653 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3654 	if (unlikely(!(*did_some_progress)))
3655 		goto out;
3656 
3657 retry:
3658 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3659 
3660 	/*
3661 	 * If an allocation failed after direct reclaim, it could be because
3662 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3663 	 * Shrink them and try again
3664 	 */
3665 	if (!page && !drained) {
3666 		unreserve_highatomic_pageblock(ac, false);
3667 		drain_all_pages(NULL);
3668 		drained = true;
3669 		goto retry;
3670 	}
3671 out:
3672 	psi_memstall_leave(&pflags);
3673 
3674 	return page;
3675 }
3676 
3677 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3678 			     const struct alloc_context *ac)
3679 {
3680 	struct zoneref *z;
3681 	struct zone *zone;
3682 	pg_data_t *last_pgdat = NULL;
3683 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
3684 
3685 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
3686 					ac->nodemask) {
3687 		if (!managed_zone(zone))
3688 			continue;
3689 		if (last_pgdat != zone->zone_pgdat) {
3690 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
3691 			last_pgdat = zone->zone_pgdat;
3692 		}
3693 	}
3694 }
3695 
3696 static inline unsigned int
3697 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
3698 {
3699 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3700 
3701 	/*
3702 	 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
3703 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3704 	 * to save two branches.
3705 	 */
3706 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
3707 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
3708 
3709 	/*
3710 	 * The caller may dip into page reserves a bit more if the caller
3711 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3712 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3713 	 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
3714 	 */
3715 	alloc_flags |= (__force int)
3716 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
3717 
3718 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
3719 		/*
3720 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3721 		 * if it can't schedule.
3722 		 */
3723 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
3724 			alloc_flags |= ALLOC_NON_BLOCK;
3725 
3726 			if (order > 0)
3727 				alloc_flags |= ALLOC_HIGHATOMIC;
3728 		}
3729 
3730 		/*
3731 		 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
3732 		 * GFP_ATOMIC) rather than fail, see the comment for
3733 		 * cpuset_node_allowed().
3734 		 */
3735 		if (alloc_flags & ALLOC_MIN_RESERVE)
3736 			alloc_flags &= ~ALLOC_CPUSET;
3737 	} else if (unlikely(rt_task(current)) && in_task())
3738 		alloc_flags |= ALLOC_MIN_RESERVE;
3739 
3740 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
3741 
3742 	return alloc_flags;
3743 }
3744 
3745 static bool oom_reserves_allowed(struct task_struct *tsk)
3746 {
3747 	if (!tsk_is_oom_victim(tsk))
3748 		return false;
3749 
3750 	/*
3751 	 * !MMU doesn't have oom reaper so give access to memory reserves
3752 	 * only to the thread with TIF_MEMDIE set
3753 	 */
3754 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3755 		return false;
3756 
3757 	return true;
3758 }
3759 
3760 /*
3761  * Distinguish requests which really need access to full memory
3762  * reserves from oom victims which can live with a portion of it
3763  */
3764 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3765 {
3766 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3767 		return 0;
3768 	if (gfp_mask & __GFP_MEMALLOC)
3769 		return ALLOC_NO_WATERMARKS;
3770 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3771 		return ALLOC_NO_WATERMARKS;
3772 	if (!in_interrupt()) {
3773 		if (current->flags & PF_MEMALLOC)
3774 			return ALLOC_NO_WATERMARKS;
3775 		else if (oom_reserves_allowed(current))
3776 			return ALLOC_OOM;
3777 	}
3778 
3779 	return 0;
3780 }
3781 
3782 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3783 {
3784 	return !!__gfp_pfmemalloc_flags(gfp_mask);
3785 }
3786 
3787 /*
3788  * Checks whether it makes sense to retry the reclaim to make a forward progress
3789  * for the given allocation request.
3790  *
3791  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3792  * without success, or when we couldn't even meet the watermark if we
3793  * reclaimed all remaining pages on the LRU lists.
3794  *
3795  * Returns true if a retry is viable or false to enter the oom path.
3796  */
3797 static inline bool
3798 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3799 		     struct alloc_context *ac, int alloc_flags,
3800 		     bool did_some_progress, int *no_progress_loops)
3801 {
3802 	struct zone *zone;
3803 	struct zoneref *z;
3804 	bool ret = false;
3805 
3806 	/*
3807 	 * Costly allocations might have made a progress but this doesn't mean
3808 	 * their order will become available due to high fragmentation so
3809 	 * always increment the no progress counter for them
3810 	 */
3811 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3812 		*no_progress_loops = 0;
3813 	else
3814 		(*no_progress_loops)++;
3815 
3816 	if (*no_progress_loops > MAX_RECLAIM_RETRIES)
3817 		goto out;
3818 
3819 
3820 	/*
3821 	 * Keep reclaiming pages while there is a chance this will lead
3822 	 * somewhere.  If none of the target zones can satisfy our allocation
3823 	 * request even if all reclaimable pages are considered then we are
3824 	 * screwed and have to go OOM.
3825 	 */
3826 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3827 				ac->highest_zoneidx, ac->nodemask) {
3828 		unsigned long available;
3829 		unsigned long reclaimable;
3830 		unsigned long min_wmark = min_wmark_pages(zone);
3831 		bool wmark;
3832 
3833 		available = reclaimable = zone_reclaimable_pages(zone);
3834 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3835 
3836 		/*
3837 		 * Would the allocation succeed if we reclaimed all
3838 		 * reclaimable pages?
3839 		 */
3840 		wmark = __zone_watermark_ok(zone, order, min_wmark,
3841 				ac->highest_zoneidx, alloc_flags, available);
3842 		trace_reclaim_retry_zone(z, order, reclaimable,
3843 				available, min_wmark, *no_progress_loops, wmark);
3844 		if (wmark) {
3845 			ret = true;
3846 			break;
3847 		}
3848 	}
3849 
3850 	/*
3851 	 * Memory allocation/reclaim might be called from a WQ context and the
3852 	 * current implementation of the WQ concurrency control doesn't
3853 	 * recognize that a particular WQ is congested if the worker thread is
3854 	 * looping without ever sleeping. Therefore we have to do a short sleep
3855 	 * here rather than calling cond_resched().
3856 	 */
3857 	if (current->flags & PF_WQ_WORKER)
3858 		schedule_timeout_uninterruptible(1);
3859 	else
3860 		cond_resched();
3861 out:
3862 	/* Before OOM, exhaust highatomic_reserve */
3863 	if (!ret)
3864 		return unreserve_highatomic_pageblock(ac, true);
3865 
3866 	return ret;
3867 }
3868 
3869 static inline bool
3870 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3871 {
3872 	/*
3873 	 * It's possible that cpuset's mems_allowed and the nodemask from
3874 	 * mempolicy don't intersect. This should be normally dealt with by
3875 	 * policy_nodemask(), but it's possible to race with cpuset update in
3876 	 * such a way the check therein was true, and then it became false
3877 	 * before we got our cpuset_mems_cookie here.
3878 	 * This assumes that for all allocations, ac->nodemask can come only
3879 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3880 	 * when it does not intersect with the cpuset restrictions) or the
3881 	 * caller can deal with a violated nodemask.
3882 	 */
3883 	if (cpusets_enabled() && ac->nodemask &&
3884 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3885 		ac->nodemask = NULL;
3886 		return true;
3887 	}
3888 
3889 	/*
3890 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
3891 	 * possible to race with parallel threads in such a way that our
3892 	 * allocation can fail while the mask is being updated. If we are about
3893 	 * to fail, check if the cpuset changed during allocation and if so,
3894 	 * retry.
3895 	 */
3896 	if (read_mems_allowed_retry(cpuset_mems_cookie))
3897 		return true;
3898 
3899 	return false;
3900 }
3901 
3902 static inline struct page *
3903 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3904 						struct alloc_context *ac)
3905 {
3906 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3907 	bool can_compact = gfp_compaction_allowed(gfp_mask);
3908 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3909 	struct page *page = NULL;
3910 	unsigned int alloc_flags;
3911 	unsigned long did_some_progress;
3912 	enum compact_priority compact_priority;
3913 	enum compact_result compact_result;
3914 	int compaction_retries;
3915 	int no_progress_loops;
3916 	unsigned int cpuset_mems_cookie;
3917 	unsigned int zonelist_iter_cookie;
3918 	int reserve_flags;
3919 
3920 restart:
3921 	compaction_retries = 0;
3922 	no_progress_loops = 0;
3923 	compact_priority = DEF_COMPACT_PRIORITY;
3924 	cpuset_mems_cookie = read_mems_allowed_begin();
3925 	zonelist_iter_cookie = zonelist_iter_begin();
3926 
3927 	/*
3928 	 * The fast path uses conservative alloc_flags to succeed only until
3929 	 * kswapd needs to be woken up, and to avoid the cost of setting up
3930 	 * alloc_flags precisely. So we do that now.
3931 	 */
3932 	alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
3933 
3934 	/*
3935 	 * We need to recalculate the starting point for the zonelist iterator
3936 	 * because we might have used different nodemask in the fast path, or
3937 	 * there was a cpuset modification and we are retrying - otherwise we
3938 	 * could end up iterating over non-eligible zones endlessly.
3939 	 */
3940 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3941 					ac->highest_zoneidx, ac->nodemask);
3942 	if (!ac->preferred_zoneref->zone)
3943 		goto nopage;
3944 
3945 	/*
3946 	 * Check for insane configurations where the cpuset doesn't contain
3947 	 * any suitable zone to satisfy the request - e.g. non-movable
3948 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
3949 	 */
3950 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
3951 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
3952 					ac->highest_zoneidx,
3953 					&cpuset_current_mems_allowed);
3954 		if (!z->zone)
3955 			goto nopage;
3956 	}
3957 
3958 	if (alloc_flags & ALLOC_KSWAPD)
3959 		wake_all_kswapds(order, gfp_mask, ac);
3960 
3961 	/*
3962 	 * The adjusted alloc_flags might result in immediate success, so try
3963 	 * that first
3964 	 */
3965 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3966 	if (page)
3967 		goto got_pg;
3968 
3969 	/*
3970 	 * For costly allocations, try direct compaction first, as it's likely
3971 	 * that we have enough base pages and don't need to reclaim. For non-
3972 	 * movable high-order allocations, do that as well, as compaction will
3973 	 * try prevent permanent fragmentation by migrating from blocks of the
3974 	 * same migratetype.
3975 	 * Don't try this for allocations that are allowed to ignore
3976 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
3977 	 */
3978 	if (can_direct_reclaim && can_compact &&
3979 			(costly_order ||
3980 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
3981 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
3982 		page = __alloc_pages_direct_compact(gfp_mask, order,
3983 						alloc_flags, ac,
3984 						INIT_COMPACT_PRIORITY,
3985 						&compact_result);
3986 		if (page)
3987 			goto got_pg;
3988 
3989 		/*
3990 		 * Checks for costly allocations with __GFP_NORETRY, which
3991 		 * includes some THP page fault allocations
3992 		 */
3993 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
3994 			/*
3995 			 * If allocating entire pageblock(s) and compaction
3996 			 * failed because all zones are below low watermarks
3997 			 * or is prohibited because it recently failed at this
3998 			 * order, fail immediately unless the allocator has
3999 			 * requested compaction and reclaim retry.
4000 			 *
4001 			 * Reclaim is
4002 			 *  - potentially very expensive because zones are far
4003 			 *    below their low watermarks or this is part of very
4004 			 *    bursty high order allocations,
4005 			 *  - not guaranteed to help because isolate_freepages()
4006 			 *    may not iterate over freed pages as part of its
4007 			 *    linear scan, and
4008 			 *  - unlikely to make entire pageblocks free on its
4009 			 *    own.
4010 			 */
4011 			if (compact_result == COMPACT_SKIPPED ||
4012 			    compact_result == COMPACT_DEFERRED)
4013 				goto nopage;
4014 
4015 			/*
4016 			 * Looks like reclaim/compaction is worth trying, but
4017 			 * sync compaction could be very expensive, so keep
4018 			 * using async compaction.
4019 			 */
4020 			compact_priority = INIT_COMPACT_PRIORITY;
4021 		}
4022 	}
4023 
4024 retry:
4025 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4026 	if (alloc_flags & ALLOC_KSWAPD)
4027 		wake_all_kswapds(order, gfp_mask, ac);
4028 
4029 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4030 	if (reserve_flags)
4031 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4032 					  (alloc_flags & ALLOC_KSWAPD);
4033 
4034 	/*
4035 	 * Reset the nodemask and zonelist iterators if memory policies can be
4036 	 * ignored. These allocations are high priority and system rather than
4037 	 * user oriented.
4038 	 */
4039 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4040 		ac->nodemask = NULL;
4041 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4042 					ac->highest_zoneidx, ac->nodemask);
4043 	}
4044 
4045 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4046 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4047 	if (page)
4048 		goto got_pg;
4049 
4050 	/* Caller is not willing to reclaim, we can't balance anything */
4051 	if (!can_direct_reclaim)
4052 		goto nopage;
4053 
4054 	/* Avoid recursion of direct reclaim */
4055 	if (current->flags & PF_MEMALLOC)
4056 		goto nopage;
4057 
4058 	/* Try direct reclaim and then allocating */
4059 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4060 							&did_some_progress);
4061 	if (page)
4062 		goto got_pg;
4063 
4064 	/* Try direct compaction and then allocating */
4065 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4066 					compact_priority, &compact_result);
4067 	if (page)
4068 		goto got_pg;
4069 
4070 	/* Do not loop if specifically requested */
4071 	if (gfp_mask & __GFP_NORETRY)
4072 		goto nopage;
4073 
4074 	/*
4075 	 * Do not retry costly high order allocations unless they are
4076 	 * __GFP_RETRY_MAYFAIL and we can compact
4077 	 */
4078 	if (costly_order && (!can_compact ||
4079 			     !(gfp_mask & __GFP_RETRY_MAYFAIL)))
4080 		goto nopage;
4081 
4082 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4083 				 did_some_progress > 0, &no_progress_loops))
4084 		goto retry;
4085 
4086 	/*
4087 	 * It doesn't make any sense to retry for the compaction if the order-0
4088 	 * reclaim is not able to make any progress because the current
4089 	 * implementation of the compaction depends on the sufficient amount
4090 	 * of free memory (see __compaction_suitable)
4091 	 */
4092 	if (did_some_progress > 0 && can_compact &&
4093 			should_compact_retry(ac, order, alloc_flags,
4094 				compact_result, &compact_priority,
4095 				&compaction_retries))
4096 		goto retry;
4097 
4098 
4099 	/*
4100 	 * Deal with possible cpuset update races or zonelist updates to avoid
4101 	 * a unnecessary OOM kill.
4102 	 */
4103 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4104 	    check_retry_zonelist(zonelist_iter_cookie))
4105 		goto restart;
4106 
4107 	/* Reclaim has failed us, start killing things */
4108 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4109 	if (page)
4110 		goto got_pg;
4111 
4112 	/* Avoid allocations with no watermarks from looping endlessly */
4113 	if (tsk_is_oom_victim(current) &&
4114 	    (alloc_flags & ALLOC_OOM ||
4115 	     (gfp_mask & __GFP_NOMEMALLOC)))
4116 		goto nopage;
4117 
4118 	/* Retry as long as the OOM killer is making progress */
4119 	if (did_some_progress) {
4120 		no_progress_loops = 0;
4121 		goto retry;
4122 	}
4123 
4124 nopage:
4125 	/*
4126 	 * Deal with possible cpuset update races or zonelist updates to avoid
4127 	 * a unnecessary OOM kill.
4128 	 */
4129 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4130 	    check_retry_zonelist(zonelist_iter_cookie))
4131 		goto restart;
4132 
4133 	/*
4134 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4135 	 * we always retry
4136 	 */
4137 	if (gfp_mask & __GFP_NOFAIL) {
4138 		/*
4139 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4140 		 * of any new users that actually require GFP_NOWAIT
4141 		 */
4142 		if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
4143 			goto fail;
4144 
4145 		/*
4146 		 * PF_MEMALLOC request from this context is rather bizarre
4147 		 * because we cannot reclaim anything and only can loop waiting
4148 		 * for somebody to do a work for us
4149 		 */
4150 		WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
4151 
4152 		/*
4153 		 * non failing costly orders are a hard requirement which we
4154 		 * are not prepared for much so let's warn about these users
4155 		 * so that we can identify them and convert them to something
4156 		 * else.
4157 		 */
4158 		WARN_ON_ONCE_GFP(costly_order, gfp_mask);
4159 
4160 		/*
4161 		 * Help non-failing allocations by giving some access to memory
4162 		 * reserves normally used for high priority non-blocking
4163 		 * allocations but do not use ALLOC_NO_WATERMARKS because this
4164 		 * could deplete whole memory reserves which would just make
4165 		 * the situation worse.
4166 		 */
4167 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4168 		if (page)
4169 			goto got_pg;
4170 
4171 		cond_resched();
4172 		goto retry;
4173 	}
4174 fail:
4175 	warn_alloc(gfp_mask, ac->nodemask,
4176 			"page allocation failure: order:%u", order);
4177 got_pg:
4178 	return page;
4179 }
4180 
4181 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4182 		int preferred_nid, nodemask_t *nodemask,
4183 		struct alloc_context *ac, gfp_t *alloc_gfp,
4184 		unsigned int *alloc_flags)
4185 {
4186 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4187 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4188 	ac->nodemask = nodemask;
4189 	ac->migratetype = gfp_migratetype(gfp_mask);
4190 
4191 	if (cpusets_enabled()) {
4192 		*alloc_gfp |= __GFP_HARDWALL;
4193 		/*
4194 		 * When we are in the interrupt context, it is irrelevant
4195 		 * to the current task context. It means that any node ok.
4196 		 */
4197 		if (in_task() && !ac->nodemask)
4198 			ac->nodemask = &cpuset_current_mems_allowed;
4199 		else
4200 			*alloc_flags |= ALLOC_CPUSET;
4201 	}
4202 
4203 	might_alloc(gfp_mask);
4204 
4205 	if (should_fail_alloc_page(gfp_mask, order))
4206 		return false;
4207 
4208 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4209 
4210 	/* Dirty zone balancing only done in the fast path */
4211 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4212 
4213 	/*
4214 	 * The preferred zone is used for statistics but crucially it is
4215 	 * also used as the starting point for the zonelist iterator. It
4216 	 * may get reset for allocations that ignore memory policies.
4217 	 */
4218 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4219 					ac->highest_zoneidx, ac->nodemask);
4220 
4221 	return true;
4222 }
4223 
4224 /*
4225  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4226  * @gfp: GFP flags for the allocation
4227  * @preferred_nid: The preferred NUMA node ID to allocate from
4228  * @nodemask: Set of nodes to allocate from, may be NULL
4229  * @nr_pages: The number of pages desired on the list or array
4230  * @page_list: Optional list to store the allocated pages
4231  * @page_array: Optional array to store the pages
4232  *
4233  * This is a batched version of the page allocator that attempts to
4234  * allocate nr_pages quickly. Pages are added to page_list if page_list
4235  * is not NULL, otherwise it is assumed that the page_array is valid.
4236  *
4237  * For lists, nr_pages is the number of pages that should be allocated.
4238  *
4239  * For arrays, only NULL elements are populated with pages and nr_pages
4240  * is the maximum number of pages that will be stored in the array.
4241  *
4242  * Returns the number of pages on the list or array.
4243  */
4244 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
4245 			nodemask_t *nodemask, int nr_pages,
4246 			struct list_head *page_list,
4247 			struct page **page_array)
4248 {
4249 	struct page *page;
4250 	unsigned long __maybe_unused UP_flags;
4251 	struct zone *zone;
4252 	struct zoneref *z;
4253 	struct per_cpu_pages *pcp;
4254 	struct list_head *pcp_list;
4255 	struct alloc_context ac;
4256 	gfp_t alloc_gfp;
4257 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4258 	int nr_populated = 0, nr_account = 0;
4259 
4260 	/*
4261 	 * Skip populated array elements to determine if any pages need
4262 	 * to be allocated before disabling IRQs.
4263 	 */
4264 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4265 		nr_populated++;
4266 
4267 	/* No pages requested? */
4268 	if (unlikely(nr_pages <= 0))
4269 		goto out;
4270 
4271 	/* Already populated array? */
4272 	if (unlikely(page_array && nr_pages - nr_populated == 0))
4273 		goto out;
4274 
4275 	/* Bulk allocator does not support memcg accounting. */
4276 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4277 		goto failed;
4278 
4279 	/* Use the single page allocator for one page. */
4280 	if (nr_pages - nr_populated == 1)
4281 		goto failed;
4282 
4283 #ifdef CONFIG_PAGE_OWNER
4284 	/*
4285 	 * PAGE_OWNER may recurse into the allocator to allocate space to
4286 	 * save the stack with pagesets.lock held. Releasing/reacquiring
4287 	 * removes much of the performance benefit of bulk allocation so
4288 	 * force the caller to allocate one page at a time as it'll have
4289 	 * similar performance to added complexity to the bulk allocator.
4290 	 */
4291 	if (static_branch_unlikely(&page_owner_inited))
4292 		goto failed;
4293 #endif
4294 
4295 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4296 	gfp &= gfp_allowed_mask;
4297 	alloc_gfp = gfp;
4298 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4299 		goto out;
4300 	gfp = alloc_gfp;
4301 
4302 	/* Find an allowed local zone that meets the low watermark. */
4303 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
4304 		unsigned long mark;
4305 
4306 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4307 		    !__cpuset_zone_allowed(zone, gfp)) {
4308 			continue;
4309 		}
4310 
4311 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
4312 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
4313 			goto failed;
4314 		}
4315 
4316 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4317 		if (zone_watermark_fast(zone, 0,  mark,
4318 				zonelist_zone_idx(ac.preferred_zoneref),
4319 				alloc_flags, gfp)) {
4320 			break;
4321 		}
4322 	}
4323 
4324 	/*
4325 	 * If there are no allowed local zones that meets the watermarks then
4326 	 * try to allocate a single page and reclaim if necessary.
4327 	 */
4328 	if (unlikely(!zone))
4329 		goto failed;
4330 
4331 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4332 	pcp_trylock_prepare(UP_flags);
4333 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4334 	if (!pcp)
4335 		goto failed_irq;
4336 
4337 	/* Attempt the batch allocation */
4338 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4339 	while (nr_populated < nr_pages) {
4340 
4341 		/* Skip existing pages */
4342 		if (page_array && page_array[nr_populated]) {
4343 			nr_populated++;
4344 			continue;
4345 		}
4346 
4347 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4348 								pcp, pcp_list);
4349 		if (unlikely(!page)) {
4350 			/* Try and allocate at least one page */
4351 			if (!nr_account) {
4352 				pcp_spin_unlock(pcp);
4353 				goto failed_irq;
4354 			}
4355 			break;
4356 		}
4357 		nr_account++;
4358 
4359 		prep_new_page(page, 0, gfp, 0);
4360 		if (page_list)
4361 			list_add(&page->lru, page_list);
4362 		else
4363 			page_array[nr_populated] = page;
4364 		nr_populated++;
4365 	}
4366 
4367 	pcp_spin_unlock(pcp);
4368 	pcp_trylock_finish(UP_flags);
4369 
4370 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4371 	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
4372 
4373 out:
4374 	return nr_populated;
4375 
4376 failed_irq:
4377 	pcp_trylock_finish(UP_flags);
4378 
4379 failed:
4380 	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
4381 	if (page) {
4382 		if (page_list)
4383 			list_add(&page->lru, page_list);
4384 		else
4385 			page_array[nr_populated] = page;
4386 		nr_populated++;
4387 	}
4388 
4389 	goto out;
4390 }
4391 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
4392 
4393 /*
4394  * This is the 'heart' of the zoned buddy allocator.
4395  */
4396 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
4397 							nodemask_t *nodemask)
4398 {
4399 	struct page *page;
4400 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4401 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4402 	struct alloc_context ac = { };
4403 
4404 	/*
4405 	 * There are several places where we assume that the order value is sane
4406 	 * so bail out early if the request is out of bound.
4407 	 */
4408 	if (WARN_ON_ONCE_GFP(order > MAX_ORDER, gfp))
4409 		return NULL;
4410 
4411 	gfp &= gfp_allowed_mask;
4412 	/*
4413 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4414 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4415 	 * from a particular context which has been marked by
4416 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4417 	 * movable zones are not used during allocation.
4418 	 */
4419 	gfp = current_gfp_context(gfp);
4420 	alloc_gfp = gfp;
4421 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4422 			&alloc_gfp, &alloc_flags))
4423 		return NULL;
4424 
4425 	/*
4426 	 * Forbid the first pass from falling back to types that fragment
4427 	 * memory until all local zones are considered.
4428 	 */
4429 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
4430 
4431 	/* First allocation attempt */
4432 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4433 	if (likely(page))
4434 		goto out;
4435 
4436 	alloc_gfp = gfp;
4437 	ac.spread_dirty_pages = false;
4438 
4439 	/*
4440 	 * Restore the original nodemask if it was potentially replaced with
4441 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4442 	 */
4443 	ac.nodemask = nodemask;
4444 
4445 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4446 
4447 out:
4448 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4449 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4450 		__free_pages(page, order);
4451 		page = NULL;
4452 	}
4453 
4454 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4455 	kmsan_alloc_page(page, order, alloc_gfp);
4456 
4457 	return page;
4458 }
4459 EXPORT_SYMBOL(__alloc_pages);
4460 
4461 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
4462 		nodemask_t *nodemask)
4463 {
4464 	struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
4465 			preferred_nid, nodemask);
4466 	struct folio *folio = (struct folio *)page;
4467 
4468 	if (folio && order > 1)
4469 		folio_prep_large_rmappable(folio);
4470 	return folio;
4471 }
4472 EXPORT_SYMBOL(__folio_alloc);
4473 
4474 /*
4475  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4476  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4477  * you need to access high mem.
4478  */
4479 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4480 {
4481 	struct page *page;
4482 
4483 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4484 	if (!page)
4485 		return 0;
4486 	return (unsigned long) page_address(page);
4487 }
4488 EXPORT_SYMBOL(__get_free_pages);
4489 
4490 unsigned long get_zeroed_page(gfp_t gfp_mask)
4491 {
4492 	return __get_free_page(gfp_mask | __GFP_ZERO);
4493 }
4494 EXPORT_SYMBOL(get_zeroed_page);
4495 
4496 /**
4497  * __free_pages - Free pages allocated with alloc_pages().
4498  * @page: The page pointer returned from alloc_pages().
4499  * @order: The order of the allocation.
4500  *
4501  * This function can free multi-page allocations that are not compound
4502  * pages.  It does not check that the @order passed in matches that of
4503  * the allocation, so it is easy to leak memory.  Freeing more memory
4504  * than was allocated will probably emit a warning.
4505  *
4506  * If the last reference to this page is speculative, it will be released
4507  * by put_page() which only frees the first page of a non-compound
4508  * allocation.  To prevent the remaining pages from being leaked, we free
4509  * the subsequent pages here.  If you want to use the page's reference
4510  * count to decide when to free the allocation, you should allocate a
4511  * compound page, and use put_page() instead of __free_pages().
4512  *
4513  * Context: May be called in interrupt context or while holding a normal
4514  * spinlock, but not in NMI context or while holding a raw spinlock.
4515  */
4516 void __free_pages(struct page *page, unsigned int order)
4517 {
4518 	/* get PageHead before we drop reference */
4519 	int head = PageHead(page);
4520 
4521 	if (put_page_testzero(page))
4522 		free_the_page(page, order);
4523 	else if (!head)
4524 		while (order-- > 0)
4525 			free_the_page(page + (1 << order), order);
4526 }
4527 EXPORT_SYMBOL(__free_pages);
4528 
4529 void free_pages(unsigned long addr, unsigned int order)
4530 {
4531 	if (addr != 0) {
4532 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4533 		__free_pages(virt_to_page((void *)addr), order);
4534 	}
4535 }
4536 
4537 EXPORT_SYMBOL(free_pages);
4538 
4539 /*
4540  * Page Fragment:
4541  *  An arbitrary-length arbitrary-offset area of memory which resides
4542  *  within a 0 or higher order page.  Multiple fragments within that page
4543  *  are individually refcounted, in the page's reference counter.
4544  *
4545  * The page_frag functions below provide a simple allocation framework for
4546  * page fragments.  This is used by the network stack and network device
4547  * drivers to provide a backing region of memory for use as either an
4548  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4549  */
4550 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4551 					     gfp_t gfp_mask)
4552 {
4553 	struct page *page = NULL;
4554 	gfp_t gfp = gfp_mask;
4555 
4556 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4557 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4558 		    __GFP_NOMEMALLOC;
4559 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4560 				PAGE_FRAG_CACHE_MAX_ORDER);
4561 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4562 #endif
4563 	if (unlikely(!page))
4564 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4565 
4566 	nc->va = page ? page_address(page) : NULL;
4567 
4568 	return page;
4569 }
4570 
4571 void __page_frag_cache_drain(struct page *page, unsigned int count)
4572 {
4573 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4574 
4575 	if (page_ref_sub_and_test(page, count))
4576 		free_the_page(page, compound_order(page));
4577 }
4578 EXPORT_SYMBOL(__page_frag_cache_drain);
4579 
4580 void *page_frag_alloc_align(struct page_frag_cache *nc,
4581 		      unsigned int fragsz, gfp_t gfp_mask,
4582 		      unsigned int align_mask)
4583 {
4584 	unsigned int size = PAGE_SIZE;
4585 	struct page *page;
4586 	int offset;
4587 
4588 	if (unlikely(!nc->va)) {
4589 refill:
4590 		page = __page_frag_cache_refill(nc, gfp_mask);
4591 		if (!page)
4592 			return NULL;
4593 
4594 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4595 		/* if size can vary use size else just use PAGE_SIZE */
4596 		size = nc->size;
4597 #endif
4598 		/* Even if we own the page, we do not use atomic_set().
4599 		 * This would break get_page_unless_zero() users.
4600 		 */
4601 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4602 
4603 		/* reset page count bias and offset to start of new frag */
4604 		nc->pfmemalloc = page_is_pfmemalloc(page);
4605 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4606 		nc->offset = size;
4607 	}
4608 
4609 	offset = nc->offset - fragsz;
4610 	if (unlikely(offset < 0)) {
4611 		page = virt_to_page(nc->va);
4612 
4613 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4614 			goto refill;
4615 
4616 		if (unlikely(nc->pfmemalloc)) {
4617 			free_the_page(page, compound_order(page));
4618 			goto refill;
4619 		}
4620 
4621 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4622 		/* if size can vary use size else just use PAGE_SIZE */
4623 		size = nc->size;
4624 #endif
4625 		/* OK, page count is 0, we can safely set it */
4626 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4627 
4628 		/* reset page count bias and offset to start of new frag */
4629 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4630 		offset = size - fragsz;
4631 		if (unlikely(offset < 0)) {
4632 			/*
4633 			 * The caller is trying to allocate a fragment
4634 			 * with fragsz > PAGE_SIZE but the cache isn't big
4635 			 * enough to satisfy the request, this may
4636 			 * happen in low memory conditions.
4637 			 * We don't release the cache page because
4638 			 * it could make memory pressure worse
4639 			 * so we simply return NULL here.
4640 			 */
4641 			return NULL;
4642 		}
4643 	}
4644 
4645 	nc->pagecnt_bias--;
4646 	offset &= align_mask;
4647 	nc->offset = offset;
4648 
4649 	return nc->va + offset;
4650 }
4651 EXPORT_SYMBOL(page_frag_alloc_align);
4652 
4653 /*
4654  * Frees a page fragment allocated out of either a compound or order 0 page.
4655  */
4656 void page_frag_free(void *addr)
4657 {
4658 	struct page *page = virt_to_head_page(addr);
4659 
4660 	if (unlikely(put_page_testzero(page)))
4661 		free_the_page(page, compound_order(page));
4662 }
4663 EXPORT_SYMBOL(page_frag_free);
4664 
4665 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4666 		size_t size)
4667 {
4668 	if (addr) {
4669 		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4670 		struct page *page = virt_to_page((void *)addr);
4671 		struct page *last = page + nr;
4672 
4673 		split_page_owner(page, 1 << order);
4674 		split_page_memcg(page, 1 << order);
4675 		while (page < --last)
4676 			set_page_refcounted(last);
4677 
4678 		last = page + (1UL << order);
4679 		for (page += nr; page < last; page++)
4680 			__free_pages_ok(page, 0, FPI_TO_TAIL);
4681 	}
4682 	return (void *)addr;
4683 }
4684 
4685 /**
4686  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4687  * @size: the number of bytes to allocate
4688  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4689  *
4690  * This function is similar to alloc_pages(), except that it allocates the
4691  * minimum number of pages to satisfy the request.  alloc_pages() can only
4692  * allocate memory in power-of-two pages.
4693  *
4694  * This function is also limited by MAX_ORDER.
4695  *
4696  * Memory allocated by this function must be released by free_pages_exact().
4697  *
4698  * Return: pointer to the allocated area or %NULL in case of error.
4699  */
4700 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4701 {
4702 	unsigned int order = get_order(size);
4703 	unsigned long addr;
4704 
4705 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4706 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4707 
4708 	addr = __get_free_pages(gfp_mask, order);
4709 	return make_alloc_exact(addr, order, size);
4710 }
4711 EXPORT_SYMBOL(alloc_pages_exact);
4712 
4713 /**
4714  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4715  *			   pages on a node.
4716  * @nid: the preferred node ID where memory should be allocated
4717  * @size: the number of bytes to allocate
4718  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4719  *
4720  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4721  * back.
4722  *
4723  * Return: pointer to the allocated area or %NULL in case of error.
4724  */
4725 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4726 {
4727 	unsigned int order = get_order(size);
4728 	struct page *p;
4729 
4730 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4731 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4732 
4733 	p = alloc_pages_node(nid, gfp_mask, order);
4734 	if (!p)
4735 		return NULL;
4736 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4737 }
4738 
4739 /**
4740  * free_pages_exact - release memory allocated via alloc_pages_exact()
4741  * @virt: the value returned by alloc_pages_exact.
4742  * @size: size of allocation, same value as passed to alloc_pages_exact().
4743  *
4744  * Release the memory allocated by a previous call to alloc_pages_exact.
4745  */
4746 void free_pages_exact(void *virt, size_t size)
4747 {
4748 	unsigned long addr = (unsigned long)virt;
4749 	unsigned long end = addr + PAGE_ALIGN(size);
4750 
4751 	while (addr < end) {
4752 		free_page(addr);
4753 		addr += PAGE_SIZE;
4754 	}
4755 }
4756 EXPORT_SYMBOL(free_pages_exact);
4757 
4758 /**
4759  * nr_free_zone_pages - count number of pages beyond high watermark
4760  * @offset: The zone index of the highest zone
4761  *
4762  * nr_free_zone_pages() counts the number of pages which are beyond the
4763  * high watermark within all zones at or below a given zone index.  For each
4764  * zone, the number of pages is calculated as:
4765  *
4766  *     nr_free_zone_pages = managed_pages - high_pages
4767  *
4768  * Return: number of pages beyond high watermark.
4769  */
4770 static unsigned long nr_free_zone_pages(int offset)
4771 {
4772 	struct zoneref *z;
4773 	struct zone *zone;
4774 
4775 	/* Just pick one node, since fallback list is circular */
4776 	unsigned long sum = 0;
4777 
4778 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4779 
4780 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4781 		unsigned long size = zone_managed_pages(zone);
4782 		unsigned long high = high_wmark_pages(zone);
4783 		if (size > high)
4784 			sum += size - high;
4785 	}
4786 
4787 	return sum;
4788 }
4789 
4790 /**
4791  * nr_free_buffer_pages - count number of pages beyond high watermark
4792  *
4793  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4794  * watermark within ZONE_DMA and ZONE_NORMAL.
4795  *
4796  * Return: number of pages beyond high watermark within ZONE_DMA and
4797  * ZONE_NORMAL.
4798  */
4799 unsigned long nr_free_buffer_pages(void)
4800 {
4801 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4802 }
4803 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4804 
4805 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4806 {
4807 	zoneref->zone = zone;
4808 	zoneref->zone_idx = zone_idx(zone);
4809 }
4810 
4811 /*
4812  * Builds allocation fallback zone lists.
4813  *
4814  * Add all populated zones of a node to the zonelist.
4815  */
4816 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
4817 {
4818 	struct zone *zone;
4819 	enum zone_type zone_type = MAX_NR_ZONES;
4820 	int nr_zones = 0;
4821 
4822 	do {
4823 		zone_type--;
4824 		zone = pgdat->node_zones + zone_type;
4825 		if (populated_zone(zone)) {
4826 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
4827 			check_highest_zone(zone_type);
4828 		}
4829 	} while (zone_type);
4830 
4831 	return nr_zones;
4832 }
4833 
4834 #ifdef CONFIG_NUMA
4835 
4836 static int __parse_numa_zonelist_order(char *s)
4837 {
4838 	/*
4839 	 * We used to support different zonelists modes but they turned
4840 	 * out to be just not useful. Let's keep the warning in place
4841 	 * if somebody still use the cmd line parameter so that we do
4842 	 * not fail it silently
4843 	 */
4844 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4845 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
4846 		return -EINVAL;
4847 	}
4848 	return 0;
4849 }
4850 
4851 static char numa_zonelist_order[] = "Node";
4852 #define NUMA_ZONELIST_ORDER_LEN	16
4853 /*
4854  * sysctl handler for numa_zonelist_order
4855  */
4856 static int numa_zonelist_order_handler(struct ctl_table *table, int write,
4857 		void *buffer, size_t *length, loff_t *ppos)
4858 {
4859 	if (write)
4860 		return __parse_numa_zonelist_order(buffer);
4861 	return proc_dostring(table, write, buffer, length, ppos);
4862 }
4863 
4864 static int node_load[MAX_NUMNODES];
4865 
4866 /**
4867  * find_next_best_node - find the next node that should appear in a given node's fallback list
4868  * @node: node whose fallback list we're appending
4869  * @used_node_mask: nodemask_t of already used nodes
4870  *
4871  * We use a number of factors to determine which is the next node that should
4872  * appear on a given node's fallback list.  The node should not have appeared
4873  * already in @node's fallback list, and it should be the next closest node
4874  * according to the distance array (which contains arbitrary distance values
4875  * from each node to each node in the system), and should also prefer nodes
4876  * with no CPUs, since presumably they'll have very little allocation pressure
4877  * on them otherwise.
4878  *
4879  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
4880  */
4881 int find_next_best_node(int node, nodemask_t *used_node_mask)
4882 {
4883 	int n, val;
4884 	int min_val = INT_MAX;
4885 	int best_node = NUMA_NO_NODE;
4886 
4887 	/* Use the local node if we haven't already */
4888 	if (!node_isset(node, *used_node_mask)) {
4889 		node_set(node, *used_node_mask);
4890 		return node;
4891 	}
4892 
4893 	for_each_node_state(n, N_MEMORY) {
4894 
4895 		/* Don't want a node to appear more than once */
4896 		if (node_isset(n, *used_node_mask))
4897 			continue;
4898 
4899 		/* Use the distance array to find the distance */
4900 		val = node_distance(node, n);
4901 
4902 		/* Penalize nodes under us ("prefer the next node") */
4903 		val += (n < node);
4904 
4905 		/* Give preference to headless and unused nodes */
4906 		if (!cpumask_empty(cpumask_of_node(n)))
4907 			val += PENALTY_FOR_NODE_WITH_CPUS;
4908 
4909 		/* Slight preference for less loaded node */
4910 		val *= MAX_NUMNODES;
4911 		val += node_load[n];
4912 
4913 		if (val < min_val) {
4914 			min_val = val;
4915 			best_node = n;
4916 		}
4917 	}
4918 
4919 	if (best_node >= 0)
4920 		node_set(best_node, *used_node_mask);
4921 
4922 	return best_node;
4923 }
4924 
4925 
4926 /*
4927  * Build zonelists ordered by node and zones within node.
4928  * This results in maximum locality--normal zone overflows into local
4929  * DMA zone, if any--but risks exhausting DMA zone.
4930  */
4931 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
4932 		unsigned nr_nodes)
4933 {
4934 	struct zoneref *zonerefs;
4935 	int i;
4936 
4937 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
4938 
4939 	for (i = 0; i < nr_nodes; i++) {
4940 		int nr_zones;
4941 
4942 		pg_data_t *node = NODE_DATA(node_order[i]);
4943 
4944 		nr_zones = build_zonerefs_node(node, zonerefs);
4945 		zonerefs += nr_zones;
4946 	}
4947 	zonerefs->zone = NULL;
4948 	zonerefs->zone_idx = 0;
4949 }
4950 
4951 /*
4952  * Build gfp_thisnode zonelists
4953  */
4954 static void build_thisnode_zonelists(pg_data_t *pgdat)
4955 {
4956 	struct zoneref *zonerefs;
4957 	int nr_zones;
4958 
4959 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
4960 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
4961 	zonerefs += nr_zones;
4962 	zonerefs->zone = NULL;
4963 	zonerefs->zone_idx = 0;
4964 }
4965 
4966 /*
4967  * Build zonelists ordered by zone and nodes within zones.
4968  * This results in conserving DMA zone[s] until all Normal memory is
4969  * exhausted, but results in overflowing to remote node while memory
4970  * may still exist in local DMA zone.
4971  */
4972 
4973 static void build_zonelists(pg_data_t *pgdat)
4974 {
4975 	static int node_order[MAX_NUMNODES];
4976 	int node, nr_nodes = 0;
4977 	nodemask_t used_mask = NODE_MASK_NONE;
4978 	int local_node, prev_node;
4979 
4980 	/* NUMA-aware ordering of nodes */
4981 	local_node = pgdat->node_id;
4982 	prev_node = local_node;
4983 
4984 	memset(node_order, 0, sizeof(node_order));
4985 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4986 		/*
4987 		 * We don't want to pressure a particular node.
4988 		 * So adding penalty to the first node in same
4989 		 * distance group to make it round-robin.
4990 		 */
4991 		if (node_distance(local_node, node) !=
4992 		    node_distance(local_node, prev_node))
4993 			node_load[node] += 1;
4994 
4995 		node_order[nr_nodes++] = node;
4996 		prev_node = node;
4997 	}
4998 
4999 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5000 	build_thisnode_zonelists(pgdat);
5001 	pr_info("Fallback order for Node %d: ", local_node);
5002 	for (node = 0; node < nr_nodes; node++)
5003 		pr_cont("%d ", node_order[node]);
5004 	pr_cont("\n");
5005 }
5006 
5007 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5008 /*
5009  * Return node id of node used for "local" allocations.
5010  * I.e., first node id of first zone in arg node's generic zonelist.
5011  * Used for initializing percpu 'numa_mem', which is used primarily
5012  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5013  */
5014 int local_memory_node(int node)
5015 {
5016 	struct zoneref *z;
5017 
5018 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5019 				   gfp_zone(GFP_KERNEL),
5020 				   NULL);
5021 	return zone_to_nid(z->zone);
5022 }
5023 #endif
5024 
5025 static void setup_min_unmapped_ratio(void);
5026 static void setup_min_slab_ratio(void);
5027 #else	/* CONFIG_NUMA */
5028 
5029 static void build_zonelists(pg_data_t *pgdat)
5030 {
5031 	int node, local_node;
5032 	struct zoneref *zonerefs;
5033 	int nr_zones;
5034 
5035 	local_node = pgdat->node_id;
5036 
5037 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5038 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5039 	zonerefs += nr_zones;
5040 
5041 	/*
5042 	 * Now we build the zonelist so that it contains the zones
5043 	 * of all the other nodes.
5044 	 * We don't want to pressure a particular node, so when
5045 	 * building the zones for node N, we make sure that the
5046 	 * zones coming right after the local ones are those from
5047 	 * node N+1 (modulo N)
5048 	 */
5049 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5050 		if (!node_online(node))
5051 			continue;
5052 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5053 		zonerefs += nr_zones;
5054 	}
5055 	for (node = 0; node < local_node; node++) {
5056 		if (!node_online(node))
5057 			continue;
5058 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5059 		zonerefs += nr_zones;
5060 	}
5061 
5062 	zonerefs->zone = NULL;
5063 	zonerefs->zone_idx = 0;
5064 }
5065 
5066 #endif	/* CONFIG_NUMA */
5067 
5068 /*
5069  * Boot pageset table. One per cpu which is going to be used for all
5070  * zones and all nodes. The parameters will be set in such a way
5071  * that an item put on a list will immediately be handed over to
5072  * the buddy list. This is safe since pageset manipulation is done
5073  * with interrupts disabled.
5074  *
5075  * The boot_pagesets must be kept even after bootup is complete for
5076  * unused processors and/or zones. They do play a role for bootstrapping
5077  * hotplugged processors.
5078  *
5079  * zoneinfo_show() and maybe other functions do
5080  * not check if the processor is online before following the pageset pointer.
5081  * Other parts of the kernel may not check if the zone is available.
5082  */
5083 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5084 /* These effectively disable the pcplists in the boot pageset completely */
5085 #define BOOT_PAGESET_HIGH	0
5086 #define BOOT_PAGESET_BATCH	1
5087 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5088 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5089 
5090 static void __build_all_zonelists(void *data)
5091 {
5092 	int nid;
5093 	int __maybe_unused cpu;
5094 	pg_data_t *self = data;
5095 	unsigned long flags;
5096 
5097 	/*
5098 	 * The zonelist_update_seq must be acquired with irqsave because the
5099 	 * reader can be invoked from IRQ with GFP_ATOMIC.
5100 	 */
5101 	write_seqlock_irqsave(&zonelist_update_seq, flags);
5102 	/*
5103 	 * Also disable synchronous printk() to prevent any printk() from
5104 	 * trying to hold port->lock, for
5105 	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5106 	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5107 	 */
5108 	printk_deferred_enter();
5109 
5110 #ifdef CONFIG_NUMA
5111 	memset(node_load, 0, sizeof(node_load));
5112 #endif
5113 
5114 	/*
5115 	 * This node is hotadded and no memory is yet present.   So just
5116 	 * building zonelists is fine - no need to touch other nodes.
5117 	 */
5118 	if (self && !node_online(self->node_id)) {
5119 		build_zonelists(self);
5120 	} else {
5121 		/*
5122 		 * All possible nodes have pgdat preallocated
5123 		 * in free_area_init
5124 		 */
5125 		for_each_node(nid) {
5126 			pg_data_t *pgdat = NODE_DATA(nid);
5127 
5128 			build_zonelists(pgdat);
5129 		}
5130 
5131 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5132 		/*
5133 		 * We now know the "local memory node" for each node--
5134 		 * i.e., the node of the first zone in the generic zonelist.
5135 		 * Set up numa_mem percpu variable for on-line cpus.  During
5136 		 * boot, only the boot cpu should be on-line;  we'll init the
5137 		 * secondary cpus' numa_mem as they come on-line.  During
5138 		 * node/memory hotplug, we'll fixup all on-line cpus.
5139 		 */
5140 		for_each_online_cpu(cpu)
5141 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5142 #endif
5143 	}
5144 
5145 	printk_deferred_exit();
5146 	write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5147 }
5148 
5149 static noinline void __init
5150 build_all_zonelists_init(void)
5151 {
5152 	int cpu;
5153 
5154 	__build_all_zonelists(NULL);
5155 
5156 	/*
5157 	 * Initialize the boot_pagesets that are going to be used
5158 	 * for bootstrapping processors. The real pagesets for
5159 	 * each zone will be allocated later when the per cpu
5160 	 * allocator is available.
5161 	 *
5162 	 * boot_pagesets are used also for bootstrapping offline
5163 	 * cpus if the system is already booted because the pagesets
5164 	 * are needed to initialize allocators on a specific cpu too.
5165 	 * F.e. the percpu allocator needs the page allocator which
5166 	 * needs the percpu allocator in order to allocate its pagesets
5167 	 * (a chicken-egg dilemma).
5168 	 */
5169 	for_each_possible_cpu(cpu)
5170 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5171 
5172 	mminit_verify_zonelist();
5173 	cpuset_init_current_mems_allowed();
5174 }
5175 
5176 /*
5177  * unless system_state == SYSTEM_BOOTING.
5178  *
5179  * __ref due to call of __init annotated helper build_all_zonelists_init
5180  * [protected by SYSTEM_BOOTING].
5181  */
5182 void __ref build_all_zonelists(pg_data_t *pgdat)
5183 {
5184 	unsigned long vm_total_pages;
5185 
5186 	if (system_state == SYSTEM_BOOTING) {
5187 		build_all_zonelists_init();
5188 	} else {
5189 		__build_all_zonelists(pgdat);
5190 		/* cpuset refresh routine should be here */
5191 	}
5192 	/* Get the number of free pages beyond high watermark in all zones. */
5193 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5194 	/*
5195 	 * Disable grouping by mobility if the number of pages in the
5196 	 * system is too low to allow the mechanism to work. It would be
5197 	 * more accurate, but expensive to check per-zone. This check is
5198 	 * made on memory-hotadd so a system can start with mobility
5199 	 * disabled and enable it later
5200 	 */
5201 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5202 		page_group_by_mobility_disabled = 1;
5203 	else
5204 		page_group_by_mobility_disabled = 0;
5205 
5206 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5207 		nr_online_nodes,
5208 		page_group_by_mobility_disabled ? "off" : "on",
5209 		vm_total_pages);
5210 #ifdef CONFIG_NUMA
5211 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5212 #endif
5213 }
5214 
5215 static int zone_batchsize(struct zone *zone)
5216 {
5217 #ifdef CONFIG_MMU
5218 	int batch;
5219 
5220 	/*
5221 	 * The number of pages to batch allocate is either ~0.1%
5222 	 * of the zone or 1MB, whichever is smaller. The batch
5223 	 * size is striking a balance between allocation latency
5224 	 * and zone lock contention.
5225 	 */
5226 	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5227 	batch /= 4;		/* We effectively *= 4 below */
5228 	if (batch < 1)
5229 		batch = 1;
5230 
5231 	/*
5232 	 * Clamp the batch to a 2^n - 1 value. Having a power
5233 	 * of 2 value was found to be more likely to have
5234 	 * suboptimal cache aliasing properties in some cases.
5235 	 *
5236 	 * For example if 2 tasks are alternately allocating
5237 	 * batches of pages, one task can end up with a lot
5238 	 * of pages of one half of the possible page colors
5239 	 * and the other with pages of the other colors.
5240 	 */
5241 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5242 
5243 	return batch;
5244 
5245 #else
5246 	/* The deferral and batching of frees should be suppressed under NOMMU
5247 	 * conditions.
5248 	 *
5249 	 * The problem is that NOMMU needs to be able to allocate large chunks
5250 	 * of contiguous memory as there's no hardware page translation to
5251 	 * assemble apparent contiguous memory from discontiguous pages.
5252 	 *
5253 	 * Queueing large contiguous runs of pages for batching, however,
5254 	 * causes the pages to actually be freed in smaller chunks.  As there
5255 	 * can be a significant delay between the individual batches being
5256 	 * recycled, this leads to the once large chunks of space being
5257 	 * fragmented and becoming unavailable for high-order allocations.
5258 	 */
5259 	return 0;
5260 #endif
5261 }
5262 
5263 static int percpu_pagelist_high_fraction;
5264 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
5265 {
5266 #ifdef CONFIG_MMU
5267 	int high;
5268 	int nr_split_cpus;
5269 	unsigned long total_pages;
5270 
5271 	if (!percpu_pagelist_high_fraction) {
5272 		/*
5273 		 * By default, the high value of the pcp is based on the zone
5274 		 * low watermark so that if they are full then background
5275 		 * reclaim will not be started prematurely.
5276 		 */
5277 		total_pages = low_wmark_pages(zone);
5278 	} else {
5279 		/*
5280 		 * If percpu_pagelist_high_fraction is configured, the high
5281 		 * value is based on a fraction of the managed pages in the
5282 		 * zone.
5283 		 */
5284 		total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
5285 	}
5286 
5287 	/*
5288 	 * Split the high value across all online CPUs local to the zone. Note
5289 	 * that early in boot that CPUs may not be online yet and that during
5290 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5291 	 * onlined. For memory nodes that have no CPUs, split pcp->high across
5292 	 * all online CPUs to mitigate the risk that reclaim is triggered
5293 	 * prematurely due to pages stored on pcp lists.
5294 	 */
5295 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5296 	if (!nr_split_cpus)
5297 		nr_split_cpus = num_online_cpus();
5298 	high = total_pages / nr_split_cpus;
5299 
5300 	/*
5301 	 * Ensure high is at least batch*4. The multiple is based on the
5302 	 * historical relationship between high and batch.
5303 	 */
5304 	high = max(high, batch << 2);
5305 
5306 	return high;
5307 #else
5308 	return 0;
5309 #endif
5310 }
5311 
5312 /*
5313  * pcp->high and pcp->batch values are related and generally batch is lower
5314  * than high. They are also related to pcp->count such that count is lower
5315  * than high, and as soon as it reaches high, the pcplist is flushed.
5316  *
5317  * However, guaranteeing these relations at all times would require e.g. write
5318  * barriers here but also careful usage of read barriers at the read side, and
5319  * thus be prone to error and bad for performance. Thus the update only prevents
5320  * store tearing. Any new users of pcp->batch and pcp->high should ensure they
5321  * can cope with those fields changing asynchronously, and fully trust only the
5322  * pcp->count field on the local CPU with interrupts disabled.
5323  *
5324  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5325  * outside of boot time (or some other assurance that no concurrent updaters
5326  * exist).
5327  */
5328 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5329 		unsigned long batch)
5330 {
5331 	WRITE_ONCE(pcp->batch, batch);
5332 	WRITE_ONCE(pcp->high, high);
5333 }
5334 
5335 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5336 {
5337 	int pindex;
5338 
5339 	memset(pcp, 0, sizeof(*pcp));
5340 	memset(pzstats, 0, sizeof(*pzstats));
5341 
5342 	spin_lock_init(&pcp->lock);
5343 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5344 		INIT_LIST_HEAD(&pcp->lists[pindex]);
5345 
5346 	/*
5347 	 * Set batch and high values safe for a boot pageset. A true percpu
5348 	 * pageset's initialization will update them subsequently. Here we don't
5349 	 * need to be as careful as pageset_update() as nobody can access the
5350 	 * pageset yet.
5351 	 */
5352 	pcp->high = BOOT_PAGESET_HIGH;
5353 	pcp->batch = BOOT_PAGESET_BATCH;
5354 	pcp->free_factor = 0;
5355 }
5356 
5357 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
5358 		unsigned long batch)
5359 {
5360 	struct per_cpu_pages *pcp;
5361 	int cpu;
5362 
5363 	for_each_possible_cpu(cpu) {
5364 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5365 		pageset_update(pcp, high, batch);
5366 	}
5367 }
5368 
5369 /*
5370  * Calculate and set new high and batch values for all per-cpu pagesets of a
5371  * zone based on the zone's size.
5372  */
5373 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5374 {
5375 	int new_high, new_batch;
5376 
5377 	new_batch = max(1, zone_batchsize(zone));
5378 	new_high = zone_highsize(zone, new_batch, cpu_online);
5379 
5380 	if (zone->pageset_high == new_high &&
5381 	    zone->pageset_batch == new_batch)
5382 		return;
5383 
5384 	zone->pageset_high = new_high;
5385 	zone->pageset_batch = new_batch;
5386 
5387 	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
5388 }
5389 
5390 void __meminit setup_zone_pageset(struct zone *zone)
5391 {
5392 	int cpu;
5393 
5394 	/* Size may be 0 on !SMP && !NUMA */
5395 	if (sizeof(struct per_cpu_zonestat) > 0)
5396 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5397 
5398 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5399 	for_each_possible_cpu(cpu) {
5400 		struct per_cpu_pages *pcp;
5401 		struct per_cpu_zonestat *pzstats;
5402 
5403 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5404 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5405 		per_cpu_pages_init(pcp, pzstats);
5406 	}
5407 
5408 	zone_set_pageset_high_and_batch(zone, 0);
5409 }
5410 
5411 /*
5412  * The zone indicated has a new number of managed_pages; batch sizes and percpu
5413  * page high values need to be recalculated.
5414  */
5415 static void zone_pcp_update(struct zone *zone, int cpu_online)
5416 {
5417 	mutex_lock(&pcp_batch_high_lock);
5418 	zone_set_pageset_high_and_batch(zone, cpu_online);
5419 	mutex_unlock(&pcp_batch_high_lock);
5420 }
5421 
5422 /*
5423  * Allocate per cpu pagesets and initialize them.
5424  * Before this call only boot pagesets were available.
5425  */
5426 void __init setup_per_cpu_pageset(void)
5427 {
5428 	struct pglist_data *pgdat;
5429 	struct zone *zone;
5430 	int __maybe_unused cpu;
5431 
5432 	for_each_populated_zone(zone)
5433 		setup_zone_pageset(zone);
5434 
5435 #ifdef CONFIG_NUMA
5436 	/*
5437 	 * Unpopulated zones continue using the boot pagesets.
5438 	 * The numa stats for these pagesets need to be reset.
5439 	 * Otherwise, they will end up skewing the stats of
5440 	 * the nodes these zones are associated with.
5441 	 */
5442 	for_each_possible_cpu(cpu) {
5443 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5444 		memset(pzstats->vm_numa_event, 0,
5445 		       sizeof(pzstats->vm_numa_event));
5446 	}
5447 #endif
5448 
5449 	for_each_online_pgdat(pgdat)
5450 		pgdat->per_cpu_nodestats =
5451 			alloc_percpu(struct per_cpu_nodestat);
5452 }
5453 
5454 __meminit void zone_pcp_init(struct zone *zone)
5455 {
5456 	/*
5457 	 * per cpu subsystem is not up at this point. The following code
5458 	 * relies on the ability of the linker to provide the
5459 	 * offset of a (static) per cpu variable into the per cpu area.
5460 	 */
5461 	zone->per_cpu_pageset = &boot_pageset;
5462 	zone->per_cpu_zonestats = &boot_zonestats;
5463 	zone->pageset_high = BOOT_PAGESET_HIGH;
5464 	zone->pageset_batch = BOOT_PAGESET_BATCH;
5465 
5466 	if (populated_zone(zone))
5467 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5468 			 zone->present_pages, zone_batchsize(zone));
5469 }
5470 
5471 void adjust_managed_page_count(struct page *page, long count)
5472 {
5473 	atomic_long_add(count, &page_zone(page)->managed_pages);
5474 	totalram_pages_add(count);
5475 #ifdef CONFIG_HIGHMEM
5476 	if (PageHighMem(page))
5477 		totalhigh_pages_add(count);
5478 #endif
5479 }
5480 EXPORT_SYMBOL(adjust_managed_page_count);
5481 
5482 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5483 {
5484 	void *pos;
5485 	unsigned long pages = 0;
5486 
5487 	start = (void *)PAGE_ALIGN((unsigned long)start);
5488 	end = (void *)((unsigned long)end & PAGE_MASK);
5489 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5490 		struct page *page = virt_to_page(pos);
5491 		void *direct_map_addr;
5492 
5493 		/*
5494 		 * 'direct_map_addr' might be different from 'pos'
5495 		 * because some architectures' virt_to_page()
5496 		 * work with aliases.  Getting the direct map
5497 		 * address ensures that we get a _writeable_
5498 		 * alias for the memset().
5499 		 */
5500 		direct_map_addr = page_address(page);
5501 		/*
5502 		 * Perform a kasan-unchecked memset() since this memory
5503 		 * has not been initialized.
5504 		 */
5505 		direct_map_addr = kasan_reset_tag(direct_map_addr);
5506 		if ((unsigned int)poison <= 0xFF)
5507 			memset(direct_map_addr, poison, PAGE_SIZE);
5508 
5509 		free_reserved_page(page);
5510 	}
5511 
5512 	if (pages && s)
5513 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5514 
5515 	return pages;
5516 }
5517 
5518 static int page_alloc_cpu_dead(unsigned int cpu)
5519 {
5520 	struct zone *zone;
5521 
5522 	lru_add_drain_cpu(cpu);
5523 	mlock_drain_remote(cpu);
5524 	drain_pages(cpu);
5525 
5526 	/*
5527 	 * Spill the event counters of the dead processor
5528 	 * into the current processors event counters.
5529 	 * This artificially elevates the count of the current
5530 	 * processor.
5531 	 */
5532 	vm_events_fold_cpu(cpu);
5533 
5534 	/*
5535 	 * Zero the differential counters of the dead processor
5536 	 * so that the vm statistics are consistent.
5537 	 *
5538 	 * This is only okay since the processor is dead and cannot
5539 	 * race with what we are doing.
5540 	 */
5541 	cpu_vm_stats_fold(cpu);
5542 
5543 	for_each_populated_zone(zone)
5544 		zone_pcp_update(zone, 0);
5545 
5546 	return 0;
5547 }
5548 
5549 static int page_alloc_cpu_online(unsigned int cpu)
5550 {
5551 	struct zone *zone;
5552 
5553 	for_each_populated_zone(zone)
5554 		zone_pcp_update(zone, 1);
5555 	return 0;
5556 }
5557 
5558 void __init page_alloc_init_cpuhp(void)
5559 {
5560 	int ret;
5561 
5562 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5563 					"mm/page_alloc:pcp",
5564 					page_alloc_cpu_online,
5565 					page_alloc_cpu_dead);
5566 	WARN_ON(ret < 0);
5567 }
5568 
5569 /*
5570  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5571  *	or min_free_kbytes changes.
5572  */
5573 static void calculate_totalreserve_pages(void)
5574 {
5575 	struct pglist_data *pgdat;
5576 	unsigned long reserve_pages = 0;
5577 	enum zone_type i, j;
5578 
5579 	for_each_online_pgdat(pgdat) {
5580 
5581 		pgdat->totalreserve_pages = 0;
5582 
5583 		for (i = 0; i < MAX_NR_ZONES; i++) {
5584 			struct zone *zone = pgdat->node_zones + i;
5585 			long max = 0;
5586 			unsigned long managed_pages = zone_managed_pages(zone);
5587 
5588 			/* Find valid and maximum lowmem_reserve in the zone */
5589 			for (j = i; j < MAX_NR_ZONES; j++) {
5590 				if (zone->lowmem_reserve[j] > max)
5591 					max = zone->lowmem_reserve[j];
5592 			}
5593 
5594 			/* we treat the high watermark as reserved pages. */
5595 			max += high_wmark_pages(zone);
5596 
5597 			if (max > managed_pages)
5598 				max = managed_pages;
5599 
5600 			pgdat->totalreserve_pages += max;
5601 
5602 			reserve_pages += max;
5603 		}
5604 	}
5605 	totalreserve_pages = reserve_pages;
5606 }
5607 
5608 /*
5609  * setup_per_zone_lowmem_reserve - called whenever
5610  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
5611  *	has a correct pages reserved value, so an adequate number of
5612  *	pages are left in the zone after a successful __alloc_pages().
5613  */
5614 static void setup_per_zone_lowmem_reserve(void)
5615 {
5616 	struct pglist_data *pgdat;
5617 	enum zone_type i, j;
5618 
5619 	for_each_online_pgdat(pgdat) {
5620 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5621 			struct zone *zone = &pgdat->node_zones[i];
5622 			int ratio = sysctl_lowmem_reserve_ratio[i];
5623 			bool clear = !ratio || !zone_managed_pages(zone);
5624 			unsigned long managed_pages = 0;
5625 
5626 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
5627 				struct zone *upper_zone = &pgdat->node_zones[j];
5628 
5629 				managed_pages += zone_managed_pages(upper_zone);
5630 
5631 				if (clear)
5632 					zone->lowmem_reserve[j] = 0;
5633 				else
5634 					zone->lowmem_reserve[j] = managed_pages / ratio;
5635 			}
5636 		}
5637 	}
5638 
5639 	/* update totalreserve_pages */
5640 	calculate_totalreserve_pages();
5641 }
5642 
5643 static void __setup_per_zone_wmarks(void)
5644 {
5645 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5646 	unsigned long lowmem_pages = 0;
5647 	struct zone *zone;
5648 	unsigned long flags;
5649 
5650 	/* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
5651 	for_each_zone(zone) {
5652 		if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
5653 			lowmem_pages += zone_managed_pages(zone);
5654 	}
5655 
5656 	for_each_zone(zone) {
5657 		u64 tmp;
5658 
5659 		spin_lock_irqsave(&zone->lock, flags);
5660 		tmp = (u64)pages_min * zone_managed_pages(zone);
5661 		do_div(tmp, lowmem_pages);
5662 		if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
5663 			/*
5664 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5665 			 * need highmem and movable zones pages, so cap pages_min
5666 			 * to a small  value here.
5667 			 *
5668 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5669 			 * deltas control async page reclaim, and so should
5670 			 * not be capped for highmem and movable zones.
5671 			 */
5672 			unsigned long min_pages;
5673 
5674 			min_pages = zone_managed_pages(zone) / 1024;
5675 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5676 			zone->_watermark[WMARK_MIN] = min_pages;
5677 		} else {
5678 			/*
5679 			 * If it's a lowmem zone, reserve a number of pages
5680 			 * proportionate to the zone's size.
5681 			 */
5682 			zone->_watermark[WMARK_MIN] = tmp;
5683 		}
5684 
5685 		/*
5686 		 * Set the kswapd watermarks distance according to the
5687 		 * scale factor in proportion to available memory, but
5688 		 * ensure a minimum size on small systems.
5689 		 */
5690 		tmp = max_t(u64, tmp >> 2,
5691 			    mult_frac(zone_managed_pages(zone),
5692 				      watermark_scale_factor, 10000));
5693 
5694 		zone->watermark_boost = 0;
5695 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
5696 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
5697 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
5698 
5699 		spin_unlock_irqrestore(&zone->lock, flags);
5700 	}
5701 
5702 	/* update totalreserve_pages */
5703 	calculate_totalreserve_pages();
5704 }
5705 
5706 /**
5707  * setup_per_zone_wmarks - called when min_free_kbytes changes
5708  * or when memory is hot-{added|removed}
5709  *
5710  * Ensures that the watermark[min,low,high] values for each zone are set
5711  * correctly with respect to min_free_kbytes.
5712  */
5713 void setup_per_zone_wmarks(void)
5714 {
5715 	struct zone *zone;
5716 	static DEFINE_SPINLOCK(lock);
5717 
5718 	spin_lock(&lock);
5719 	__setup_per_zone_wmarks();
5720 	spin_unlock(&lock);
5721 
5722 	/*
5723 	 * The watermark size have changed so update the pcpu batch
5724 	 * and high limits or the limits may be inappropriate.
5725 	 */
5726 	for_each_zone(zone)
5727 		zone_pcp_update(zone, 0);
5728 }
5729 
5730 /*
5731  * Initialise min_free_kbytes.
5732  *
5733  * For small machines we want it small (128k min).  For large machines
5734  * we want it large (256MB max).  But it is not linear, because network
5735  * bandwidth does not increase linearly with machine size.  We use
5736  *
5737  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5738  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5739  *
5740  * which yields
5741  *
5742  * 16MB:	512k
5743  * 32MB:	724k
5744  * 64MB:	1024k
5745  * 128MB:	1448k
5746  * 256MB:	2048k
5747  * 512MB:	2896k
5748  * 1024MB:	4096k
5749  * 2048MB:	5792k
5750  * 4096MB:	8192k
5751  * 8192MB:	11584k
5752  * 16384MB:	16384k
5753  */
5754 void calculate_min_free_kbytes(void)
5755 {
5756 	unsigned long lowmem_kbytes;
5757 	int new_min_free_kbytes;
5758 
5759 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5760 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5761 
5762 	if (new_min_free_kbytes > user_min_free_kbytes)
5763 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
5764 	else
5765 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5766 				new_min_free_kbytes, user_min_free_kbytes);
5767 
5768 }
5769 
5770 int __meminit init_per_zone_wmark_min(void)
5771 {
5772 	calculate_min_free_kbytes();
5773 	setup_per_zone_wmarks();
5774 	refresh_zone_stat_thresholds();
5775 	setup_per_zone_lowmem_reserve();
5776 
5777 #ifdef CONFIG_NUMA
5778 	setup_min_unmapped_ratio();
5779 	setup_min_slab_ratio();
5780 #endif
5781 
5782 	khugepaged_min_free_kbytes_update();
5783 
5784 	return 0;
5785 }
5786 postcore_initcall(init_per_zone_wmark_min)
5787 
5788 /*
5789  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5790  *	that we can call two helper functions whenever min_free_kbytes
5791  *	changes.
5792  */
5793 static int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5794 		void *buffer, size_t *length, loff_t *ppos)
5795 {
5796 	int rc;
5797 
5798 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5799 	if (rc)
5800 		return rc;
5801 
5802 	if (write) {
5803 		user_min_free_kbytes = min_free_kbytes;
5804 		setup_per_zone_wmarks();
5805 	}
5806 	return 0;
5807 }
5808 
5809 static int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
5810 		void *buffer, size_t *length, loff_t *ppos)
5811 {
5812 	int rc;
5813 
5814 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5815 	if (rc)
5816 		return rc;
5817 
5818 	if (write)
5819 		setup_per_zone_wmarks();
5820 
5821 	return 0;
5822 }
5823 
5824 #ifdef CONFIG_NUMA
5825 static void setup_min_unmapped_ratio(void)
5826 {
5827 	pg_data_t *pgdat;
5828 	struct zone *zone;
5829 
5830 	for_each_online_pgdat(pgdat)
5831 		pgdat->min_unmapped_pages = 0;
5832 
5833 	for_each_zone(zone)
5834 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
5835 						         sysctl_min_unmapped_ratio) / 100;
5836 }
5837 
5838 
5839 static int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
5840 		void *buffer, size_t *length, loff_t *ppos)
5841 {
5842 	int rc;
5843 
5844 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5845 	if (rc)
5846 		return rc;
5847 
5848 	setup_min_unmapped_ratio();
5849 
5850 	return 0;
5851 }
5852 
5853 static void setup_min_slab_ratio(void)
5854 {
5855 	pg_data_t *pgdat;
5856 	struct zone *zone;
5857 
5858 	for_each_online_pgdat(pgdat)
5859 		pgdat->min_slab_pages = 0;
5860 
5861 	for_each_zone(zone)
5862 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
5863 						     sysctl_min_slab_ratio) / 100;
5864 }
5865 
5866 static int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
5867 		void *buffer, size_t *length, loff_t *ppos)
5868 {
5869 	int rc;
5870 
5871 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5872 	if (rc)
5873 		return rc;
5874 
5875 	setup_min_slab_ratio();
5876 
5877 	return 0;
5878 }
5879 #endif
5880 
5881 /*
5882  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5883  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5884  *	whenever sysctl_lowmem_reserve_ratio changes.
5885  *
5886  * The reserve ratio obviously has absolutely no relation with the
5887  * minimum watermarks. The lowmem reserve ratio can only make sense
5888  * if in function of the boot time zone sizes.
5889  */
5890 static int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table,
5891 		int write, void *buffer, size_t *length, loff_t *ppos)
5892 {
5893 	int i;
5894 
5895 	proc_dointvec_minmax(table, write, buffer, length, ppos);
5896 
5897 	for (i = 0; i < MAX_NR_ZONES; i++) {
5898 		if (sysctl_lowmem_reserve_ratio[i] < 1)
5899 			sysctl_lowmem_reserve_ratio[i] = 0;
5900 	}
5901 
5902 	setup_per_zone_lowmem_reserve();
5903 	return 0;
5904 }
5905 
5906 /*
5907  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
5908  * cpu. It is the fraction of total pages in each zone that a hot per cpu
5909  * pagelist can have before it gets flushed back to buddy allocator.
5910  */
5911 static int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
5912 		int write, void *buffer, size_t *length, loff_t *ppos)
5913 {
5914 	struct zone *zone;
5915 	int old_percpu_pagelist_high_fraction;
5916 	int ret;
5917 
5918 	mutex_lock(&pcp_batch_high_lock);
5919 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
5920 
5921 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5922 	if (!write || ret < 0)
5923 		goto out;
5924 
5925 	/* Sanity checking to avoid pcp imbalance */
5926 	if (percpu_pagelist_high_fraction &&
5927 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
5928 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
5929 		ret = -EINVAL;
5930 		goto out;
5931 	}
5932 
5933 	/* No change? */
5934 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
5935 		goto out;
5936 
5937 	for_each_populated_zone(zone)
5938 		zone_set_pageset_high_and_batch(zone, 0);
5939 out:
5940 	mutex_unlock(&pcp_batch_high_lock);
5941 	return ret;
5942 }
5943 
5944 static struct ctl_table page_alloc_sysctl_table[] = {
5945 	{
5946 		.procname	= "min_free_kbytes",
5947 		.data		= &min_free_kbytes,
5948 		.maxlen		= sizeof(min_free_kbytes),
5949 		.mode		= 0644,
5950 		.proc_handler	= min_free_kbytes_sysctl_handler,
5951 		.extra1		= SYSCTL_ZERO,
5952 	},
5953 	{
5954 		.procname	= "watermark_boost_factor",
5955 		.data		= &watermark_boost_factor,
5956 		.maxlen		= sizeof(watermark_boost_factor),
5957 		.mode		= 0644,
5958 		.proc_handler	= proc_dointvec_minmax,
5959 		.extra1		= SYSCTL_ZERO,
5960 	},
5961 	{
5962 		.procname	= "watermark_scale_factor",
5963 		.data		= &watermark_scale_factor,
5964 		.maxlen		= sizeof(watermark_scale_factor),
5965 		.mode		= 0644,
5966 		.proc_handler	= watermark_scale_factor_sysctl_handler,
5967 		.extra1		= SYSCTL_ONE,
5968 		.extra2		= SYSCTL_THREE_THOUSAND,
5969 	},
5970 	{
5971 		.procname	= "percpu_pagelist_high_fraction",
5972 		.data		= &percpu_pagelist_high_fraction,
5973 		.maxlen		= sizeof(percpu_pagelist_high_fraction),
5974 		.mode		= 0644,
5975 		.proc_handler	= percpu_pagelist_high_fraction_sysctl_handler,
5976 		.extra1		= SYSCTL_ZERO,
5977 	},
5978 	{
5979 		.procname	= "lowmem_reserve_ratio",
5980 		.data		= &sysctl_lowmem_reserve_ratio,
5981 		.maxlen		= sizeof(sysctl_lowmem_reserve_ratio),
5982 		.mode		= 0644,
5983 		.proc_handler	= lowmem_reserve_ratio_sysctl_handler,
5984 	},
5985 #ifdef CONFIG_NUMA
5986 	{
5987 		.procname	= "numa_zonelist_order",
5988 		.data		= &numa_zonelist_order,
5989 		.maxlen		= NUMA_ZONELIST_ORDER_LEN,
5990 		.mode		= 0644,
5991 		.proc_handler	= numa_zonelist_order_handler,
5992 	},
5993 	{
5994 		.procname	= "min_unmapped_ratio",
5995 		.data		= &sysctl_min_unmapped_ratio,
5996 		.maxlen		= sizeof(sysctl_min_unmapped_ratio),
5997 		.mode		= 0644,
5998 		.proc_handler	= sysctl_min_unmapped_ratio_sysctl_handler,
5999 		.extra1		= SYSCTL_ZERO,
6000 		.extra2		= SYSCTL_ONE_HUNDRED,
6001 	},
6002 	{
6003 		.procname	= "min_slab_ratio",
6004 		.data		= &sysctl_min_slab_ratio,
6005 		.maxlen		= sizeof(sysctl_min_slab_ratio),
6006 		.mode		= 0644,
6007 		.proc_handler	= sysctl_min_slab_ratio_sysctl_handler,
6008 		.extra1		= SYSCTL_ZERO,
6009 		.extra2		= SYSCTL_ONE_HUNDRED,
6010 	},
6011 #endif
6012 	{}
6013 };
6014 
6015 void __init page_alloc_sysctl_init(void)
6016 {
6017 	register_sysctl_init("vm", page_alloc_sysctl_table);
6018 }
6019 
6020 #ifdef CONFIG_CONTIG_ALLOC
6021 /* Usage: See admin-guide/dynamic-debug-howto.rst */
6022 static void alloc_contig_dump_pages(struct list_head *page_list)
6023 {
6024 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6025 
6026 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6027 		struct page *page;
6028 
6029 		dump_stack();
6030 		list_for_each_entry(page, page_list, lru)
6031 			dump_page(page, "migration failure");
6032 	}
6033 }
6034 
6035 /* [start, end) must belong to a single zone. */
6036 int __alloc_contig_migrate_range(struct compact_control *cc,
6037 					unsigned long start, unsigned long end)
6038 {
6039 	/* This function is based on compact_zone() from compaction.c. */
6040 	unsigned int nr_reclaimed;
6041 	unsigned long pfn = start;
6042 	unsigned int tries = 0;
6043 	int ret = 0;
6044 	struct migration_target_control mtc = {
6045 		.nid = zone_to_nid(cc->zone),
6046 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6047 	};
6048 
6049 	lru_cache_disable();
6050 
6051 	while (pfn < end || !list_empty(&cc->migratepages)) {
6052 		if (fatal_signal_pending(current)) {
6053 			ret = -EINTR;
6054 			break;
6055 		}
6056 
6057 		if (list_empty(&cc->migratepages)) {
6058 			cc->nr_migratepages = 0;
6059 			ret = isolate_migratepages_range(cc, pfn, end);
6060 			if (ret && ret != -EAGAIN)
6061 				break;
6062 			pfn = cc->migrate_pfn;
6063 			tries = 0;
6064 		} else if (++tries == 5) {
6065 			ret = -EBUSY;
6066 			break;
6067 		}
6068 
6069 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6070 							&cc->migratepages);
6071 		cc->nr_migratepages -= nr_reclaimed;
6072 
6073 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6074 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6075 
6076 		/*
6077 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6078 		 * to retry again over this error, so do the same here.
6079 		 */
6080 		if (ret == -ENOMEM)
6081 			break;
6082 	}
6083 
6084 	lru_cache_enable();
6085 	if (ret < 0) {
6086 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6087 			alloc_contig_dump_pages(&cc->migratepages);
6088 		putback_movable_pages(&cc->migratepages);
6089 		return ret;
6090 	}
6091 	return 0;
6092 }
6093 
6094 /**
6095  * alloc_contig_range() -- tries to allocate given range of pages
6096  * @start:	start PFN to allocate
6097  * @end:	one-past-the-last PFN to allocate
6098  * @migratetype:	migratetype of the underlying pageblocks (either
6099  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6100  *			in range must have the same migratetype and it must
6101  *			be either of the two.
6102  * @gfp_mask:	GFP mask to use during compaction
6103  *
6104  * The PFN range does not have to be pageblock aligned. The PFN range must
6105  * belong to a single zone.
6106  *
6107  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6108  * pageblocks in the range.  Once isolated, the pageblocks should not
6109  * be modified by others.
6110  *
6111  * Return: zero on success or negative error code.  On success all
6112  * pages which PFN is in [start, end) are allocated for the caller and
6113  * need to be freed with free_contig_range().
6114  */
6115 int alloc_contig_range(unsigned long start, unsigned long end,
6116 		       unsigned migratetype, gfp_t gfp_mask)
6117 {
6118 	unsigned long outer_start, outer_end;
6119 	int order;
6120 	int ret = 0;
6121 
6122 	struct compact_control cc = {
6123 		.nr_migratepages = 0,
6124 		.order = -1,
6125 		.zone = page_zone(pfn_to_page(start)),
6126 		.mode = MIGRATE_SYNC,
6127 		.ignore_skip_hint = true,
6128 		.no_set_skip_hint = true,
6129 		.gfp_mask = current_gfp_context(gfp_mask),
6130 		.alloc_contig = true,
6131 	};
6132 	INIT_LIST_HEAD(&cc.migratepages);
6133 
6134 	/*
6135 	 * What we do here is we mark all pageblocks in range as
6136 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6137 	 * have different sizes, and due to the way page allocator
6138 	 * work, start_isolate_page_range() has special handlings for this.
6139 	 *
6140 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6141 	 * migrate the pages from an unaligned range (ie. pages that
6142 	 * we are interested in). This will put all the pages in
6143 	 * range back to page allocator as MIGRATE_ISOLATE.
6144 	 *
6145 	 * When this is done, we take the pages in range from page
6146 	 * allocator removing them from the buddy system.  This way
6147 	 * page allocator will never consider using them.
6148 	 *
6149 	 * This lets us mark the pageblocks back as
6150 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6151 	 * aligned range but not in the unaligned, original range are
6152 	 * put back to page allocator so that buddy can use them.
6153 	 */
6154 
6155 	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
6156 	if (ret)
6157 		goto done;
6158 
6159 	drain_all_pages(cc.zone);
6160 
6161 	/*
6162 	 * In case of -EBUSY, we'd like to know which page causes problem.
6163 	 * So, just fall through. test_pages_isolated() has a tracepoint
6164 	 * which will report the busy page.
6165 	 *
6166 	 * It is possible that busy pages could become available before
6167 	 * the call to test_pages_isolated, and the range will actually be
6168 	 * allocated.  So, if we fall through be sure to clear ret so that
6169 	 * -EBUSY is not accidentally used or returned to caller.
6170 	 */
6171 	ret = __alloc_contig_migrate_range(&cc, start, end);
6172 	if (ret && ret != -EBUSY)
6173 		goto done;
6174 	ret = 0;
6175 
6176 	/*
6177 	 * Pages from [start, end) are within a pageblock_nr_pages
6178 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6179 	 * more, all pages in [start, end) are free in page allocator.
6180 	 * What we are going to do is to allocate all pages from
6181 	 * [start, end) (that is remove them from page allocator).
6182 	 *
6183 	 * The only problem is that pages at the beginning and at the
6184 	 * end of interesting range may be not aligned with pages that
6185 	 * page allocator holds, ie. they can be part of higher order
6186 	 * pages.  Because of this, we reserve the bigger range and
6187 	 * once this is done free the pages we are not interested in.
6188 	 *
6189 	 * We don't have to hold zone->lock here because the pages are
6190 	 * isolated thus they won't get removed from buddy.
6191 	 */
6192 
6193 	order = 0;
6194 	outer_start = start;
6195 	while (!PageBuddy(pfn_to_page(outer_start))) {
6196 		if (++order > MAX_ORDER) {
6197 			outer_start = start;
6198 			break;
6199 		}
6200 		outer_start &= ~0UL << order;
6201 	}
6202 
6203 	if (outer_start != start) {
6204 		order = buddy_order(pfn_to_page(outer_start));
6205 
6206 		/*
6207 		 * outer_start page could be small order buddy page and
6208 		 * it doesn't include start page. Adjust outer_start
6209 		 * in this case to report failed page properly
6210 		 * on tracepoint in test_pages_isolated()
6211 		 */
6212 		if (outer_start + (1UL << order) <= start)
6213 			outer_start = start;
6214 	}
6215 
6216 	/* Make sure the range is really isolated. */
6217 	if (test_pages_isolated(outer_start, end, 0)) {
6218 		ret = -EBUSY;
6219 		goto done;
6220 	}
6221 
6222 	/* Grab isolated pages from freelists. */
6223 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6224 	if (!outer_end) {
6225 		ret = -EBUSY;
6226 		goto done;
6227 	}
6228 
6229 	/* Free head and tail (if any) */
6230 	if (start != outer_start)
6231 		free_contig_range(outer_start, start - outer_start);
6232 	if (end != outer_end)
6233 		free_contig_range(end, outer_end - end);
6234 
6235 done:
6236 	undo_isolate_page_range(start, end, migratetype);
6237 	return ret;
6238 }
6239 EXPORT_SYMBOL(alloc_contig_range);
6240 
6241 static int __alloc_contig_pages(unsigned long start_pfn,
6242 				unsigned long nr_pages, gfp_t gfp_mask)
6243 {
6244 	unsigned long end_pfn = start_pfn + nr_pages;
6245 
6246 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
6247 				  gfp_mask);
6248 }
6249 
6250 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6251 				   unsigned long nr_pages)
6252 {
6253 	unsigned long i, end_pfn = start_pfn + nr_pages;
6254 	struct page *page;
6255 
6256 	for (i = start_pfn; i < end_pfn; i++) {
6257 		page = pfn_to_online_page(i);
6258 		if (!page)
6259 			return false;
6260 
6261 		if (page_zone(page) != z)
6262 			return false;
6263 
6264 		if (PageReserved(page))
6265 			return false;
6266 
6267 		if (PageHuge(page))
6268 			return false;
6269 	}
6270 	return true;
6271 }
6272 
6273 static bool zone_spans_last_pfn(const struct zone *zone,
6274 				unsigned long start_pfn, unsigned long nr_pages)
6275 {
6276 	unsigned long last_pfn = start_pfn + nr_pages - 1;
6277 
6278 	return zone_spans_pfn(zone, last_pfn);
6279 }
6280 
6281 /**
6282  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6283  * @nr_pages:	Number of contiguous pages to allocate
6284  * @gfp_mask:	GFP mask to limit search and used during compaction
6285  * @nid:	Target node
6286  * @nodemask:	Mask for other possible nodes
6287  *
6288  * This routine is a wrapper around alloc_contig_range(). It scans over zones
6289  * on an applicable zonelist to find a contiguous pfn range which can then be
6290  * tried for allocation with alloc_contig_range(). This routine is intended
6291  * for allocation requests which can not be fulfilled with the buddy allocator.
6292  *
6293  * The allocated memory is always aligned to a page boundary. If nr_pages is a
6294  * power of two, then allocated range is also guaranteed to be aligned to same
6295  * nr_pages (e.g. 1GB request would be aligned to 1GB).
6296  *
6297  * Allocated pages can be freed with free_contig_range() or by manually calling
6298  * __free_page() on each allocated page.
6299  *
6300  * Return: pointer to contiguous pages on success, or NULL if not successful.
6301  */
6302 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
6303 				int nid, nodemask_t *nodemask)
6304 {
6305 	unsigned long ret, pfn, flags;
6306 	struct zonelist *zonelist;
6307 	struct zone *zone;
6308 	struct zoneref *z;
6309 
6310 	zonelist = node_zonelist(nid, gfp_mask);
6311 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6312 					gfp_zone(gfp_mask), nodemask) {
6313 		spin_lock_irqsave(&zone->lock, flags);
6314 
6315 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6316 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6317 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6318 				/*
6319 				 * We release the zone lock here because
6320 				 * alloc_contig_range() will also lock the zone
6321 				 * at some point. If there's an allocation
6322 				 * spinning on this lock, it may win the race
6323 				 * and cause alloc_contig_range() to fail...
6324 				 */
6325 				spin_unlock_irqrestore(&zone->lock, flags);
6326 				ret = __alloc_contig_pages(pfn, nr_pages,
6327 							gfp_mask);
6328 				if (!ret)
6329 					return pfn_to_page(pfn);
6330 				spin_lock_irqsave(&zone->lock, flags);
6331 			}
6332 			pfn += nr_pages;
6333 		}
6334 		spin_unlock_irqrestore(&zone->lock, flags);
6335 	}
6336 	return NULL;
6337 }
6338 #endif /* CONFIG_CONTIG_ALLOC */
6339 
6340 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6341 {
6342 	unsigned long count = 0;
6343 
6344 	for (; nr_pages--; pfn++) {
6345 		struct page *page = pfn_to_page(pfn);
6346 
6347 		count += page_count(page) != 1;
6348 		__free_page(page);
6349 	}
6350 	WARN(count != 0, "%lu pages are still in use!\n", count);
6351 }
6352 EXPORT_SYMBOL(free_contig_range);
6353 
6354 /*
6355  * Effectively disable pcplists for the zone by setting the high limit to 0
6356  * and draining all cpus. A concurrent page freeing on another CPU that's about
6357  * to put the page on pcplist will either finish before the drain and the page
6358  * will be drained, or observe the new high limit and skip the pcplist.
6359  *
6360  * Must be paired with a call to zone_pcp_enable().
6361  */
6362 void zone_pcp_disable(struct zone *zone)
6363 {
6364 	mutex_lock(&pcp_batch_high_lock);
6365 	__zone_set_pageset_high_and_batch(zone, 0, 1);
6366 	__drain_all_pages(zone, true);
6367 }
6368 
6369 void zone_pcp_enable(struct zone *zone)
6370 {
6371 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
6372 	mutex_unlock(&pcp_batch_high_lock);
6373 }
6374 
6375 void zone_pcp_reset(struct zone *zone)
6376 {
6377 	int cpu;
6378 	struct per_cpu_zonestat *pzstats;
6379 
6380 	if (zone->per_cpu_pageset != &boot_pageset) {
6381 		for_each_online_cpu(cpu) {
6382 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6383 			drain_zonestat(zone, pzstats);
6384 		}
6385 		free_percpu(zone->per_cpu_pageset);
6386 		zone->per_cpu_pageset = &boot_pageset;
6387 		if (zone->per_cpu_zonestats != &boot_zonestats) {
6388 			free_percpu(zone->per_cpu_zonestats);
6389 			zone->per_cpu_zonestats = &boot_zonestats;
6390 		}
6391 	}
6392 }
6393 
6394 #ifdef CONFIG_MEMORY_HOTREMOVE
6395 /*
6396  * All pages in the range must be in a single zone, must not contain holes,
6397  * must span full sections, and must be isolated before calling this function.
6398  */
6399 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6400 {
6401 	unsigned long pfn = start_pfn;
6402 	struct page *page;
6403 	struct zone *zone;
6404 	unsigned int order;
6405 	unsigned long flags;
6406 
6407 	offline_mem_sections(pfn, end_pfn);
6408 	zone = page_zone(pfn_to_page(pfn));
6409 	spin_lock_irqsave(&zone->lock, flags);
6410 	while (pfn < end_pfn) {
6411 		page = pfn_to_page(pfn);
6412 		/*
6413 		 * The HWPoisoned page may be not in buddy system, and
6414 		 * page_count() is not 0.
6415 		 */
6416 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6417 			pfn++;
6418 			continue;
6419 		}
6420 		/*
6421 		 * At this point all remaining PageOffline() pages have a
6422 		 * reference count of 0 and can simply be skipped.
6423 		 */
6424 		if (PageOffline(page)) {
6425 			BUG_ON(page_count(page));
6426 			BUG_ON(PageBuddy(page));
6427 			pfn++;
6428 			continue;
6429 		}
6430 
6431 		BUG_ON(page_count(page));
6432 		BUG_ON(!PageBuddy(page));
6433 		order = buddy_order(page);
6434 		del_page_from_free_list(page, zone, order);
6435 		pfn += (1 << order);
6436 	}
6437 	spin_unlock_irqrestore(&zone->lock, flags);
6438 }
6439 #endif
6440 
6441 /*
6442  * This function returns a stable result only if called under zone lock.
6443  */
6444 bool is_free_buddy_page(struct page *page)
6445 {
6446 	unsigned long pfn = page_to_pfn(page);
6447 	unsigned int order;
6448 
6449 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6450 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6451 
6452 		if (PageBuddy(page_head) &&
6453 		    buddy_order_unsafe(page_head) >= order)
6454 			break;
6455 	}
6456 
6457 	return order <= MAX_ORDER;
6458 }
6459 EXPORT_SYMBOL(is_free_buddy_page);
6460 
6461 #ifdef CONFIG_MEMORY_FAILURE
6462 /*
6463  * Break down a higher-order page in sub-pages, and keep our target out of
6464  * buddy allocator.
6465  */
6466 static void break_down_buddy_pages(struct zone *zone, struct page *page,
6467 				   struct page *target, int low, int high,
6468 				   int migratetype)
6469 {
6470 	unsigned long size = 1 << high;
6471 	struct page *current_buddy, *next_page;
6472 
6473 	while (high > low) {
6474 		high--;
6475 		size >>= 1;
6476 
6477 		if (target >= &page[size]) {
6478 			next_page = page + size;
6479 			current_buddy = page;
6480 		} else {
6481 			next_page = page;
6482 			current_buddy = page + size;
6483 		}
6484 		page = next_page;
6485 
6486 		if (set_page_guard(zone, current_buddy, high, migratetype))
6487 			continue;
6488 
6489 		if (current_buddy != target) {
6490 			add_to_free_list(current_buddy, zone, high, migratetype);
6491 			set_buddy_order(current_buddy, high);
6492 		}
6493 	}
6494 }
6495 
6496 /*
6497  * Take a page that will be marked as poisoned off the buddy allocator.
6498  */
6499 bool take_page_off_buddy(struct page *page)
6500 {
6501 	struct zone *zone = page_zone(page);
6502 	unsigned long pfn = page_to_pfn(page);
6503 	unsigned long flags;
6504 	unsigned int order;
6505 	bool ret = false;
6506 
6507 	spin_lock_irqsave(&zone->lock, flags);
6508 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6509 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6510 		int page_order = buddy_order(page_head);
6511 
6512 		if (PageBuddy(page_head) && page_order >= order) {
6513 			unsigned long pfn_head = page_to_pfn(page_head);
6514 			int migratetype = get_pfnblock_migratetype(page_head,
6515 								   pfn_head);
6516 
6517 			del_page_from_free_list(page_head, zone, page_order);
6518 			break_down_buddy_pages(zone, page_head, page, 0,
6519 						page_order, migratetype);
6520 			SetPageHWPoisonTakenOff(page);
6521 			if (!is_migrate_isolate(migratetype))
6522 				__mod_zone_freepage_state(zone, -1, migratetype);
6523 			ret = true;
6524 			break;
6525 		}
6526 		if (page_count(page_head) > 0)
6527 			break;
6528 	}
6529 	spin_unlock_irqrestore(&zone->lock, flags);
6530 	return ret;
6531 }
6532 
6533 /*
6534  * Cancel takeoff done by take_page_off_buddy().
6535  */
6536 bool put_page_back_buddy(struct page *page)
6537 {
6538 	struct zone *zone = page_zone(page);
6539 	unsigned long pfn = page_to_pfn(page);
6540 	unsigned long flags;
6541 	int migratetype = get_pfnblock_migratetype(page, pfn);
6542 	bool ret = false;
6543 
6544 	spin_lock_irqsave(&zone->lock, flags);
6545 	if (put_page_testzero(page)) {
6546 		ClearPageHWPoisonTakenOff(page);
6547 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6548 		if (TestClearPageHWPoison(page)) {
6549 			ret = true;
6550 		}
6551 	}
6552 	spin_unlock_irqrestore(&zone->lock, flags);
6553 
6554 	return ret;
6555 }
6556 #endif
6557 
6558 #ifdef CONFIG_ZONE_DMA
6559 bool has_managed_dma(void)
6560 {
6561 	struct pglist_data *pgdat;
6562 
6563 	for_each_online_pgdat(pgdat) {
6564 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6565 
6566 		if (managed_zone(zone))
6567 			return true;
6568 	}
6569 	return false;
6570 }
6571 #endif /* CONFIG_ZONE_DMA */
6572 
6573 #ifdef CONFIG_UNACCEPTED_MEMORY
6574 
6575 /* Counts number of zones with unaccepted pages. */
6576 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
6577 
6578 static bool lazy_accept = true;
6579 
6580 static int __init accept_memory_parse(char *p)
6581 {
6582 	if (!strcmp(p, "lazy")) {
6583 		lazy_accept = true;
6584 		return 0;
6585 	} else if (!strcmp(p, "eager")) {
6586 		lazy_accept = false;
6587 		return 0;
6588 	} else {
6589 		return -EINVAL;
6590 	}
6591 }
6592 early_param("accept_memory", accept_memory_parse);
6593 
6594 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6595 {
6596 	phys_addr_t start = page_to_phys(page);
6597 	phys_addr_t end = start + (PAGE_SIZE << order);
6598 
6599 	return range_contains_unaccepted_memory(start, end);
6600 }
6601 
6602 static void accept_page(struct page *page, unsigned int order)
6603 {
6604 	phys_addr_t start = page_to_phys(page);
6605 
6606 	accept_memory(start, start + (PAGE_SIZE << order));
6607 }
6608 
6609 static bool try_to_accept_memory_one(struct zone *zone)
6610 {
6611 	unsigned long flags;
6612 	struct page *page;
6613 	bool last;
6614 
6615 	if (list_empty(&zone->unaccepted_pages))
6616 		return false;
6617 
6618 	spin_lock_irqsave(&zone->lock, flags);
6619 	page = list_first_entry_or_null(&zone->unaccepted_pages,
6620 					struct page, lru);
6621 	if (!page) {
6622 		spin_unlock_irqrestore(&zone->lock, flags);
6623 		return false;
6624 	}
6625 
6626 	list_del(&page->lru);
6627 	last = list_empty(&zone->unaccepted_pages);
6628 
6629 	__mod_zone_freepage_state(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6630 	__mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
6631 	spin_unlock_irqrestore(&zone->lock, flags);
6632 
6633 	accept_page(page, MAX_ORDER);
6634 
6635 	__free_pages_ok(page, MAX_ORDER, FPI_TO_TAIL);
6636 
6637 	if (last)
6638 		static_branch_dec(&zones_with_unaccepted_pages);
6639 
6640 	return true;
6641 }
6642 
6643 static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6644 {
6645 	long to_accept;
6646 	int ret = false;
6647 
6648 	/* How much to accept to get to high watermark? */
6649 	to_accept = high_wmark_pages(zone) -
6650 		    (zone_page_state(zone, NR_FREE_PAGES) -
6651 		    __zone_watermark_unusable_free(zone, order, 0));
6652 
6653 	/* Accept at least one page */
6654 	do {
6655 		if (!try_to_accept_memory_one(zone))
6656 			break;
6657 		ret = true;
6658 		to_accept -= MAX_ORDER_NR_PAGES;
6659 	} while (to_accept > 0);
6660 
6661 	return ret;
6662 }
6663 
6664 static inline bool has_unaccepted_memory(void)
6665 {
6666 	return static_branch_unlikely(&zones_with_unaccepted_pages);
6667 }
6668 
6669 static bool __free_unaccepted(struct page *page)
6670 {
6671 	struct zone *zone = page_zone(page);
6672 	unsigned long flags;
6673 	bool first = false;
6674 
6675 	if (!lazy_accept)
6676 		return false;
6677 
6678 	spin_lock_irqsave(&zone->lock, flags);
6679 	first = list_empty(&zone->unaccepted_pages);
6680 	list_add_tail(&page->lru, &zone->unaccepted_pages);
6681 	__mod_zone_freepage_state(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6682 	__mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
6683 	spin_unlock_irqrestore(&zone->lock, flags);
6684 
6685 	if (first)
6686 		static_branch_inc(&zones_with_unaccepted_pages);
6687 
6688 	return true;
6689 }
6690 
6691 #else
6692 
6693 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6694 {
6695 	return false;
6696 }
6697 
6698 static void accept_page(struct page *page, unsigned int order)
6699 {
6700 }
6701 
6702 static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6703 {
6704 	return false;
6705 }
6706 
6707 static inline bool has_unaccepted_memory(void)
6708 {
6709 	return false;
6710 }
6711 
6712 static bool __free_unaccepted(struct page *page)
6713 {
6714 	BUILD_BUG();
6715 	return false;
6716 }
6717 
6718 #endif /* CONFIG_UNACCEPTED_MEMORY */
6719