1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/swap.h> 22 #include <linux/swapops.h> 23 #include <linux/interrupt.h> 24 #include <linux/pagemap.h> 25 #include <linux/jiffies.h> 26 #include <linux/memblock.h> 27 #include <linux/compiler.h> 28 #include <linux/kernel.h> 29 #include <linux/kasan.h> 30 #include <linux/kmsan.h> 31 #include <linux/module.h> 32 #include <linux/suspend.h> 33 #include <linux/pagevec.h> 34 #include <linux/blkdev.h> 35 #include <linux/slab.h> 36 #include <linux/ratelimit.h> 37 #include <linux/oom.h> 38 #include <linux/topology.h> 39 #include <linux/sysctl.h> 40 #include <linux/cpu.h> 41 #include <linux/cpuset.h> 42 #include <linux/memory_hotplug.h> 43 #include <linux/nodemask.h> 44 #include <linux/vmalloc.h> 45 #include <linux/vmstat.h> 46 #include <linux/mempolicy.h> 47 #include <linux/memremap.h> 48 #include <linux/stop_machine.h> 49 #include <linux/random.h> 50 #include <linux/sort.h> 51 #include <linux/pfn.h> 52 #include <linux/backing-dev.h> 53 #include <linux/fault-inject.h> 54 #include <linux/page-isolation.h> 55 #include <linux/debugobjects.h> 56 #include <linux/kmemleak.h> 57 #include <linux/compaction.h> 58 #include <trace/events/kmem.h> 59 #include <trace/events/oom.h> 60 #include <linux/prefetch.h> 61 #include <linux/mm_inline.h> 62 #include <linux/mmu_notifier.h> 63 #include <linux/migrate.h> 64 #include <linux/hugetlb.h> 65 #include <linux/sched/rt.h> 66 #include <linux/sched/mm.h> 67 #include <linux/page_owner.h> 68 #include <linux/page_table_check.h> 69 #include <linux/kthread.h> 70 #include <linux/memcontrol.h> 71 #include <linux/ftrace.h> 72 #include <linux/lockdep.h> 73 #include <linux/nmi.h> 74 #include <linux/psi.h> 75 #include <linux/padata.h> 76 #include <linux/khugepaged.h> 77 #include <linux/buffer_head.h> 78 #include <linux/delayacct.h> 79 #include <asm/sections.h> 80 #include <asm/tlbflush.h> 81 #include <asm/div64.h> 82 #include "internal.h" 83 #include "shuffle.h" 84 #include "page_reporting.h" 85 #include "swap.h" 86 87 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 88 typedef int __bitwise fpi_t; 89 90 /* No special request */ 91 #define FPI_NONE ((__force fpi_t)0) 92 93 /* 94 * Skip free page reporting notification for the (possibly merged) page. 95 * This does not hinder free page reporting from grabbing the page, 96 * reporting it and marking it "reported" - it only skips notifying 97 * the free page reporting infrastructure about a newly freed page. For 98 * example, used when temporarily pulling a page from a freelist and 99 * putting it back unmodified. 100 */ 101 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 102 103 /* 104 * Place the (possibly merged) page to the tail of the freelist. Will ignore 105 * page shuffling (relevant code - e.g., memory onlining - is expected to 106 * shuffle the whole zone). 107 * 108 * Note: No code should rely on this flag for correctness - it's purely 109 * to allow for optimizations when handing back either fresh pages 110 * (memory onlining) or untouched pages (page isolation, free page 111 * reporting). 112 */ 113 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 114 115 /* 116 * Don't poison memory with KASAN (only for the tag-based modes). 117 * During boot, all non-reserved memblock memory is exposed to page_alloc. 118 * Poisoning all that memory lengthens boot time, especially on systems with 119 * large amount of RAM. This flag is used to skip that poisoning. 120 * This is only done for the tag-based KASAN modes, as those are able to 121 * detect memory corruptions with the memory tags assigned by default. 122 * All memory allocated normally after boot gets poisoned as usual. 123 */ 124 #define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2)) 125 126 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 127 static DEFINE_MUTEX(pcp_batch_high_lock); 128 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) 129 130 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT) 131 /* 132 * On SMP, spin_trylock is sufficient protection. 133 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP. 134 */ 135 #define pcp_trylock_prepare(flags) do { } while (0) 136 #define pcp_trylock_finish(flag) do { } while (0) 137 #else 138 139 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */ 140 #define pcp_trylock_prepare(flags) local_irq_save(flags) 141 #define pcp_trylock_finish(flags) local_irq_restore(flags) 142 #endif 143 144 /* 145 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid 146 * a migration causing the wrong PCP to be locked and remote memory being 147 * potentially allocated, pin the task to the CPU for the lookup+lock. 148 * preempt_disable is used on !RT because it is faster than migrate_disable. 149 * migrate_disable is used on RT because otherwise RT spinlock usage is 150 * interfered with and a high priority task cannot preempt the allocator. 151 */ 152 #ifndef CONFIG_PREEMPT_RT 153 #define pcpu_task_pin() preempt_disable() 154 #define pcpu_task_unpin() preempt_enable() 155 #else 156 #define pcpu_task_pin() migrate_disable() 157 #define pcpu_task_unpin() migrate_enable() 158 #endif 159 160 /* 161 * Generic helper to lookup and a per-cpu variable with an embedded spinlock. 162 * Return value should be used with equivalent unlock helper. 163 */ 164 #define pcpu_spin_lock(type, member, ptr) \ 165 ({ \ 166 type *_ret; \ 167 pcpu_task_pin(); \ 168 _ret = this_cpu_ptr(ptr); \ 169 spin_lock(&_ret->member); \ 170 _ret; \ 171 }) 172 173 #define pcpu_spin_lock_irqsave(type, member, ptr, flags) \ 174 ({ \ 175 type *_ret; \ 176 pcpu_task_pin(); \ 177 _ret = this_cpu_ptr(ptr); \ 178 spin_lock_irqsave(&_ret->member, flags); \ 179 _ret; \ 180 }) 181 182 #define pcpu_spin_trylock_irqsave(type, member, ptr, flags) \ 183 ({ \ 184 type *_ret; \ 185 pcpu_task_pin(); \ 186 _ret = this_cpu_ptr(ptr); \ 187 if (!spin_trylock_irqsave(&_ret->member, flags)) { \ 188 pcpu_task_unpin(); \ 189 _ret = NULL; \ 190 } \ 191 _ret; \ 192 }) 193 194 #define pcpu_spin_unlock(member, ptr) \ 195 ({ \ 196 spin_unlock(&ptr->member); \ 197 pcpu_task_unpin(); \ 198 }) 199 200 #define pcpu_spin_unlock_irqrestore(member, ptr, flags) \ 201 ({ \ 202 spin_unlock_irqrestore(&ptr->member, flags); \ 203 pcpu_task_unpin(); \ 204 }) 205 206 /* struct per_cpu_pages specific helpers. */ 207 #define pcp_spin_lock(ptr) \ 208 pcpu_spin_lock(struct per_cpu_pages, lock, ptr) 209 210 #define pcp_spin_lock_irqsave(ptr, flags) \ 211 pcpu_spin_lock_irqsave(struct per_cpu_pages, lock, ptr, flags) 212 213 #define pcp_spin_trylock_irqsave(ptr, flags) \ 214 pcpu_spin_trylock_irqsave(struct per_cpu_pages, lock, ptr, flags) 215 216 #define pcp_spin_unlock(ptr) \ 217 pcpu_spin_unlock(lock, ptr) 218 219 #define pcp_spin_unlock_irqrestore(ptr, flags) \ 220 pcpu_spin_unlock_irqrestore(lock, ptr, flags) 221 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 222 DEFINE_PER_CPU(int, numa_node); 223 EXPORT_PER_CPU_SYMBOL(numa_node); 224 #endif 225 226 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 227 228 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 229 /* 230 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 231 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 232 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 233 * defined in <linux/topology.h>. 234 */ 235 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 236 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 237 #endif 238 239 static DEFINE_MUTEX(pcpu_drain_mutex); 240 241 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 242 volatile unsigned long latent_entropy __latent_entropy; 243 EXPORT_SYMBOL(latent_entropy); 244 #endif 245 246 /* 247 * Array of node states. 248 */ 249 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 250 [N_POSSIBLE] = NODE_MASK_ALL, 251 [N_ONLINE] = { { [0] = 1UL } }, 252 #ifndef CONFIG_NUMA 253 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 254 #ifdef CONFIG_HIGHMEM 255 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 256 #endif 257 [N_MEMORY] = { { [0] = 1UL } }, 258 [N_CPU] = { { [0] = 1UL } }, 259 #endif /* NUMA */ 260 }; 261 EXPORT_SYMBOL(node_states); 262 263 atomic_long_t _totalram_pages __read_mostly; 264 EXPORT_SYMBOL(_totalram_pages); 265 unsigned long totalreserve_pages __read_mostly; 266 unsigned long totalcma_pages __read_mostly; 267 268 int percpu_pagelist_high_fraction; 269 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 270 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 271 EXPORT_SYMBOL(init_on_alloc); 272 273 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 274 EXPORT_SYMBOL(init_on_free); 275 276 static bool _init_on_alloc_enabled_early __read_mostly 277 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON); 278 static int __init early_init_on_alloc(char *buf) 279 { 280 281 return kstrtobool(buf, &_init_on_alloc_enabled_early); 282 } 283 early_param("init_on_alloc", early_init_on_alloc); 284 285 static bool _init_on_free_enabled_early __read_mostly 286 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON); 287 static int __init early_init_on_free(char *buf) 288 { 289 return kstrtobool(buf, &_init_on_free_enabled_early); 290 } 291 early_param("init_on_free", early_init_on_free); 292 293 /* 294 * A cached value of the page's pageblock's migratetype, used when the page is 295 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 296 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 297 * Also the migratetype set in the page does not necessarily match the pcplist 298 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 299 * other index - this ensures that it will be put on the correct CMA freelist. 300 */ 301 static inline int get_pcppage_migratetype(struct page *page) 302 { 303 return page->index; 304 } 305 306 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 307 { 308 page->index = migratetype; 309 } 310 311 #ifdef CONFIG_PM_SLEEP 312 /* 313 * The following functions are used by the suspend/hibernate code to temporarily 314 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 315 * while devices are suspended. To avoid races with the suspend/hibernate code, 316 * they should always be called with system_transition_mutex held 317 * (gfp_allowed_mask also should only be modified with system_transition_mutex 318 * held, unless the suspend/hibernate code is guaranteed not to run in parallel 319 * with that modification). 320 */ 321 322 static gfp_t saved_gfp_mask; 323 324 void pm_restore_gfp_mask(void) 325 { 326 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 327 if (saved_gfp_mask) { 328 gfp_allowed_mask = saved_gfp_mask; 329 saved_gfp_mask = 0; 330 } 331 } 332 333 void pm_restrict_gfp_mask(void) 334 { 335 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 336 WARN_ON(saved_gfp_mask); 337 saved_gfp_mask = gfp_allowed_mask; 338 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 339 } 340 341 bool pm_suspended_storage(void) 342 { 343 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 344 return false; 345 return true; 346 } 347 #endif /* CONFIG_PM_SLEEP */ 348 349 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 350 unsigned int pageblock_order __read_mostly; 351 #endif 352 353 static void __free_pages_ok(struct page *page, unsigned int order, 354 fpi_t fpi_flags); 355 356 /* 357 * results with 256, 32 in the lowmem_reserve sysctl: 358 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 359 * 1G machine -> (16M dma, 784M normal, 224M high) 360 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 361 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 362 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 363 * 364 * TBD: should special case ZONE_DMA32 machines here - in those we normally 365 * don't need any ZONE_NORMAL reservation 366 */ 367 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 368 #ifdef CONFIG_ZONE_DMA 369 [ZONE_DMA] = 256, 370 #endif 371 #ifdef CONFIG_ZONE_DMA32 372 [ZONE_DMA32] = 256, 373 #endif 374 [ZONE_NORMAL] = 32, 375 #ifdef CONFIG_HIGHMEM 376 [ZONE_HIGHMEM] = 0, 377 #endif 378 [ZONE_MOVABLE] = 0, 379 }; 380 381 static char * const zone_names[MAX_NR_ZONES] = { 382 #ifdef CONFIG_ZONE_DMA 383 "DMA", 384 #endif 385 #ifdef CONFIG_ZONE_DMA32 386 "DMA32", 387 #endif 388 "Normal", 389 #ifdef CONFIG_HIGHMEM 390 "HighMem", 391 #endif 392 "Movable", 393 #ifdef CONFIG_ZONE_DEVICE 394 "Device", 395 #endif 396 }; 397 398 const char * const migratetype_names[MIGRATE_TYPES] = { 399 "Unmovable", 400 "Movable", 401 "Reclaimable", 402 "HighAtomic", 403 #ifdef CONFIG_CMA 404 "CMA", 405 #endif 406 #ifdef CONFIG_MEMORY_ISOLATION 407 "Isolate", 408 #endif 409 }; 410 411 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = { 412 [NULL_COMPOUND_DTOR] = NULL, 413 [COMPOUND_PAGE_DTOR] = free_compound_page, 414 #ifdef CONFIG_HUGETLB_PAGE 415 [HUGETLB_PAGE_DTOR] = free_huge_page, 416 #endif 417 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 418 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page, 419 #endif 420 }; 421 422 int min_free_kbytes = 1024; 423 int user_min_free_kbytes = -1; 424 int watermark_boost_factor __read_mostly = 15000; 425 int watermark_scale_factor = 10; 426 427 static unsigned long nr_kernel_pages __initdata; 428 static unsigned long nr_all_pages __initdata; 429 static unsigned long dma_reserve __initdata; 430 431 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 432 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 433 static unsigned long required_kernelcore __initdata; 434 static unsigned long required_kernelcore_percent __initdata; 435 static unsigned long required_movablecore __initdata; 436 static unsigned long required_movablecore_percent __initdata; 437 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 438 bool mirrored_kernelcore __initdata_memblock; 439 440 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 441 int movable_zone; 442 EXPORT_SYMBOL(movable_zone); 443 444 #if MAX_NUMNODES > 1 445 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 446 unsigned int nr_online_nodes __read_mostly = 1; 447 EXPORT_SYMBOL(nr_node_ids); 448 EXPORT_SYMBOL(nr_online_nodes); 449 #endif 450 451 int page_group_by_mobility_disabled __read_mostly; 452 453 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 454 /* 455 * During boot we initialize deferred pages on-demand, as needed, but once 456 * page_alloc_init_late() has finished, the deferred pages are all initialized, 457 * and we can permanently disable that path. 458 */ 459 static DEFINE_STATIC_KEY_TRUE(deferred_pages); 460 461 static inline bool deferred_pages_enabled(void) 462 { 463 return static_branch_unlikely(&deferred_pages); 464 } 465 466 /* Returns true if the struct page for the pfn is uninitialised */ 467 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 468 { 469 int nid = early_pfn_to_nid(pfn); 470 471 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 472 return true; 473 474 return false; 475 } 476 477 /* 478 * Returns true when the remaining initialisation should be deferred until 479 * later in the boot cycle when it can be parallelised. 480 */ 481 static bool __meminit 482 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 483 { 484 static unsigned long prev_end_pfn, nr_initialised; 485 486 if (early_page_ext_enabled()) 487 return false; 488 /* 489 * prev_end_pfn static that contains the end of previous zone 490 * No need to protect because called very early in boot before smp_init. 491 */ 492 if (prev_end_pfn != end_pfn) { 493 prev_end_pfn = end_pfn; 494 nr_initialised = 0; 495 } 496 497 /* Always populate low zones for address-constrained allocations */ 498 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 499 return false; 500 501 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX) 502 return true; 503 /* 504 * We start only with one section of pages, more pages are added as 505 * needed until the rest of deferred pages are initialized. 506 */ 507 nr_initialised++; 508 if ((nr_initialised > PAGES_PER_SECTION) && 509 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 510 NODE_DATA(nid)->first_deferred_pfn = pfn; 511 return true; 512 } 513 return false; 514 } 515 #else 516 static inline bool deferred_pages_enabled(void) 517 { 518 return false; 519 } 520 521 static inline bool early_page_uninitialised(unsigned long pfn) 522 { 523 return false; 524 } 525 526 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 527 { 528 return false; 529 } 530 #endif 531 532 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 533 static inline unsigned long *get_pageblock_bitmap(const struct page *page, 534 unsigned long pfn) 535 { 536 #ifdef CONFIG_SPARSEMEM 537 return section_to_usemap(__pfn_to_section(pfn)); 538 #else 539 return page_zone(page)->pageblock_flags; 540 #endif /* CONFIG_SPARSEMEM */ 541 } 542 543 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) 544 { 545 #ifdef CONFIG_SPARSEMEM 546 pfn &= (PAGES_PER_SECTION-1); 547 #else 548 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn); 549 #endif /* CONFIG_SPARSEMEM */ 550 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 551 } 552 553 static __always_inline 554 unsigned long __get_pfnblock_flags_mask(const struct page *page, 555 unsigned long pfn, 556 unsigned long mask) 557 { 558 unsigned long *bitmap; 559 unsigned long bitidx, word_bitidx; 560 unsigned long word; 561 562 bitmap = get_pageblock_bitmap(page, pfn); 563 bitidx = pfn_to_bitidx(page, pfn); 564 word_bitidx = bitidx / BITS_PER_LONG; 565 bitidx &= (BITS_PER_LONG-1); 566 /* 567 * This races, without locks, with set_pfnblock_flags_mask(). Ensure 568 * a consistent read of the memory array, so that results, even though 569 * racy, are not corrupted. 570 */ 571 word = READ_ONCE(bitmap[word_bitidx]); 572 return (word >> bitidx) & mask; 573 } 574 575 /** 576 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 577 * @page: The page within the block of interest 578 * @pfn: The target page frame number 579 * @mask: mask of bits that the caller is interested in 580 * 581 * Return: pageblock_bits flags 582 */ 583 unsigned long get_pfnblock_flags_mask(const struct page *page, 584 unsigned long pfn, unsigned long mask) 585 { 586 return __get_pfnblock_flags_mask(page, pfn, mask); 587 } 588 589 static __always_inline int get_pfnblock_migratetype(const struct page *page, 590 unsigned long pfn) 591 { 592 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 593 } 594 595 /** 596 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 597 * @page: The page within the block of interest 598 * @flags: The flags to set 599 * @pfn: The target page frame number 600 * @mask: mask of bits that the caller is interested in 601 */ 602 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 603 unsigned long pfn, 604 unsigned long mask) 605 { 606 unsigned long *bitmap; 607 unsigned long bitidx, word_bitidx; 608 unsigned long word; 609 610 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 611 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 612 613 bitmap = get_pageblock_bitmap(page, pfn); 614 bitidx = pfn_to_bitidx(page, pfn); 615 word_bitidx = bitidx / BITS_PER_LONG; 616 bitidx &= (BITS_PER_LONG-1); 617 618 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 619 620 mask <<= bitidx; 621 flags <<= bitidx; 622 623 word = READ_ONCE(bitmap[word_bitidx]); 624 do { 625 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags)); 626 } 627 628 void set_pageblock_migratetype(struct page *page, int migratetype) 629 { 630 if (unlikely(page_group_by_mobility_disabled && 631 migratetype < MIGRATE_PCPTYPES)) 632 migratetype = MIGRATE_UNMOVABLE; 633 634 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 635 page_to_pfn(page), MIGRATETYPE_MASK); 636 } 637 638 #ifdef CONFIG_DEBUG_VM 639 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 640 { 641 int ret = 0; 642 unsigned seq; 643 unsigned long pfn = page_to_pfn(page); 644 unsigned long sp, start_pfn; 645 646 do { 647 seq = zone_span_seqbegin(zone); 648 start_pfn = zone->zone_start_pfn; 649 sp = zone->spanned_pages; 650 if (!zone_spans_pfn(zone, pfn)) 651 ret = 1; 652 } while (zone_span_seqretry(zone, seq)); 653 654 if (ret) 655 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 656 pfn, zone_to_nid(zone), zone->name, 657 start_pfn, start_pfn + sp); 658 659 return ret; 660 } 661 662 static int page_is_consistent(struct zone *zone, struct page *page) 663 { 664 if (zone != page_zone(page)) 665 return 0; 666 667 return 1; 668 } 669 /* 670 * Temporary debugging check for pages not lying within a given zone. 671 */ 672 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 673 { 674 if (page_outside_zone_boundaries(zone, page)) 675 return 1; 676 if (!page_is_consistent(zone, page)) 677 return 1; 678 679 return 0; 680 } 681 #else 682 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 683 { 684 return 0; 685 } 686 #endif 687 688 static void bad_page(struct page *page, const char *reason) 689 { 690 static unsigned long resume; 691 static unsigned long nr_shown; 692 static unsigned long nr_unshown; 693 694 /* 695 * Allow a burst of 60 reports, then keep quiet for that minute; 696 * or allow a steady drip of one report per second. 697 */ 698 if (nr_shown == 60) { 699 if (time_before(jiffies, resume)) { 700 nr_unshown++; 701 goto out; 702 } 703 if (nr_unshown) { 704 pr_alert( 705 "BUG: Bad page state: %lu messages suppressed\n", 706 nr_unshown); 707 nr_unshown = 0; 708 } 709 nr_shown = 0; 710 } 711 if (nr_shown++ == 0) 712 resume = jiffies + 60 * HZ; 713 714 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 715 current->comm, page_to_pfn(page)); 716 dump_page(page, reason); 717 718 print_modules(); 719 dump_stack(); 720 out: 721 /* Leave bad fields for debug, except PageBuddy could make trouble */ 722 page_mapcount_reset(page); /* remove PageBuddy */ 723 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 724 } 725 726 static inline unsigned int order_to_pindex(int migratetype, int order) 727 { 728 int base = order; 729 730 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 731 if (order > PAGE_ALLOC_COSTLY_ORDER) { 732 VM_BUG_ON(order != pageblock_order); 733 return NR_LOWORDER_PCP_LISTS; 734 } 735 #else 736 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 737 #endif 738 739 return (MIGRATE_PCPTYPES * base) + migratetype; 740 } 741 742 static inline int pindex_to_order(unsigned int pindex) 743 { 744 int order = pindex / MIGRATE_PCPTYPES; 745 746 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 747 if (pindex == NR_LOWORDER_PCP_LISTS) 748 order = pageblock_order; 749 #else 750 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 751 #endif 752 753 return order; 754 } 755 756 static inline bool pcp_allowed_order(unsigned int order) 757 { 758 if (order <= PAGE_ALLOC_COSTLY_ORDER) 759 return true; 760 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 761 if (order == pageblock_order) 762 return true; 763 #endif 764 return false; 765 } 766 767 static inline void free_the_page(struct page *page, unsigned int order) 768 { 769 if (pcp_allowed_order(order)) /* Via pcp? */ 770 free_unref_page(page, order); 771 else 772 __free_pages_ok(page, order, FPI_NONE); 773 } 774 775 /* 776 * Higher-order pages are called "compound pages". They are structured thusly: 777 * 778 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 779 * 780 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 781 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 782 * 783 * The first tail page's ->compound_dtor holds the offset in array of compound 784 * page destructors. See compound_page_dtors. 785 * 786 * The first tail page's ->compound_order holds the order of allocation. 787 * This usage means that zero-order pages may not be compound. 788 */ 789 790 void free_compound_page(struct page *page) 791 { 792 mem_cgroup_uncharge(page_folio(page)); 793 free_the_page(page, compound_order(page)); 794 } 795 796 static void prep_compound_head(struct page *page, unsigned int order) 797 { 798 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 799 set_compound_order(page, order); 800 atomic_set(compound_mapcount_ptr(page), -1); 801 atomic_set(compound_pincount_ptr(page), 0); 802 } 803 804 static void prep_compound_tail(struct page *head, int tail_idx) 805 { 806 struct page *p = head + tail_idx; 807 808 p->mapping = TAIL_MAPPING; 809 set_compound_head(p, head); 810 } 811 812 void prep_compound_page(struct page *page, unsigned int order) 813 { 814 int i; 815 int nr_pages = 1 << order; 816 817 __SetPageHead(page); 818 for (i = 1; i < nr_pages; i++) 819 prep_compound_tail(page, i); 820 821 prep_compound_head(page, order); 822 } 823 824 void destroy_large_folio(struct folio *folio) 825 { 826 enum compound_dtor_id dtor = folio_page(folio, 1)->compound_dtor; 827 828 VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio); 829 compound_page_dtors[dtor](&folio->page); 830 } 831 832 #ifdef CONFIG_DEBUG_PAGEALLOC 833 unsigned int _debug_guardpage_minorder; 834 835 bool _debug_pagealloc_enabled_early __read_mostly 836 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 837 EXPORT_SYMBOL(_debug_pagealloc_enabled_early); 838 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 839 EXPORT_SYMBOL(_debug_pagealloc_enabled); 840 841 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 842 843 static int __init early_debug_pagealloc(char *buf) 844 { 845 return kstrtobool(buf, &_debug_pagealloc_enabled_early); 846 } 847 early_param("debug_pagealloc", early_debug_pagealloc); 848 849 static int __init debug_guardpage_minorder_setup(char *buf) 850 { 851 unsigned long res; 852 853 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 854 pr_err("Bad debug_guardpage_minorder value\n"); 855 return 0; 856 } 857 _debug_guardpage_minorder = res; 858 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 859 return 0; 860 } 861 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 862 863 static inline bool set_page_guard(struct zone *zone, struct page *page, 864 unsigned int order, int migratetype) 865 { 866 if (!debug_guardpage_enabled()) 867 return false; 868 869 if (order >= debug_guardpage_minorder()) 870 return false; 871 872 __SetPageGuard(page); 873 INIT_LIST_HEAD(&page->buddy_list); 874 set_page_private(page, order); 875 /* Guard pages are not available for any usage */ 876 if (!is_migrate_isolate(migratetype)) 877 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 878 879 return true; 880 } 881 882 static inline void clear_page_guard(struct zone *zone, struct page *page, 883 unsigned int order, int migratetype) 884 { 885 if (!debug_guardpage_enabled()) 886 return; 887 888 __ClearPageGuard(page); 889 890 set_page_private(page, 0); 891 if (!is_migrate_isolate(migratetype)) 892 __mod_zone_freepage_state(zone, (1 << order), migratetype); 893 } 894 #else 895 static inline bool set_page_guard(struct zone *zone, struct page *page, 896 unsigned int order, int migratetype) { return false; } 897 static inline void clear_page_guard(struct zone *zone, struct page *page, 898 unsigned int order, int migratetype) {} 899 #endif 900 901 /* 902 * Enable static keys related to various memory debugging and hardening options. 903 * Some override others, and depend on early params that are evaluated in the 904 * order of appearance. So we need to first gather the full picture of what was 905 * enabled, and then make decisions. 906 */ 907 void __init init_mem_debugging_and_hardening(void) 908 { 909 bool page_poisoning_requested = false; 910 911 #ifdef CONFIG_PAGE_POISONING 912 /* 913 * Page poisoning is debug page alloc for some arches. If 914 * either of those options are enabled, enable poisoning. 915 */ 916 if (page_poisoning_enabled() || 917 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) && 918 debug_pagealloc_enabled())) { 919 static_branch_enable(&_page_poisoning_enabled); 920 page_poisoning_requested = true; 921 } 922 #endif 923 924 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) && 925 page_poisoning_requested) { 926 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, " 927 "will take precedence over init_on_alloc and init_on_free\n"); 928 _init_on_alloc_enabled_early = false; 929 _init_on_free_enabled_early = false; 930 } 931 932 if (_init_on_alloc_enabled_early) 933 static_branch_enable(&init_on_alloc); 934 else 935 static_branch_disable(&init_on_alloc); 936 937 if (_init_on_free_enabled_early) 938 static_branch_enable(&init_on_free); 939 else 940 static_branch_disable(&init_on_free); 941 942 if (IS_ENABLED(CONFIG_KMSAN) && 943 (_init_on_alloc_enabled_early || _init_on_free_enabled_early)) 944 pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n"); 945 946 #ifdef CONFIG_DEBUG_PAGEALLOC 947 if (!debug_pagealloc_enabled()) 948 return; 949 950 static_branch_enable(&_debug_pagealloc_enabled); 951 952 if (!debug_guardpage_minorder()) 953 return; 954 955 static_branch_enable(&_debug_guardpage_enabled); 956 #endif 957 } 958 959 static inline void set_buddy_order(struct page *page, unsigned int order) 960 { 961 set_page_private(page, order); 962 __SetPageBuddy(page); 963 } 964 965 #ifdef CONFIG_COMPACTION 966 static inline struct capture_control *task_capc(struct zone *zone) 967 { 968 struct capture_control *capc = current->capture_control; 969 970 return unlikely(capc) && 971 !(current->flags & PF_KTHREAD) && 972 !capc->page && 973 capc->cc->zone == zone ? capc : NULL; 974 } 975 976 static inline bool 977 compaction_capture(struct capture_control *capc, struct page *page, 978 int order, int migratetype) 979 { 980 if (!capc || order != capc->cc->order) 981 return false; 982 983 /* Do not accidentally pollute CMA or isolated regions*/ 984 if (is_migrate_cma(migratetype) || 985 is_migrate_isolate(migratetype)) 986 return false; 987 988 /* 989 * Do not let lower order allocations pollute a movable pageblock. 990 * This might let an unmovable request use a reclaimable pageblock 991 * and vice-versa but no more than normal fallback logic which can 992 * have trouble finding a high-order free page. 993 */ 994 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 995 return false; 996 997 capc->page = page; 998 return true; 999 } 1000 1001 #else 1002 static inline struct capture_control *task_capc(struct zone *zone) 1003 { 1004 return NULL; 1005 } 1006 1007 static inline bool 1008 compaction_capture(struct capture_control *capc, struct page *page, 1009 int order, int migratetype) 1010 { 1011 return false; 1012 } 1013 #endif /* CONFIG_COMPACTION */ 1014 1015 /* Used for pages not on another list */ 1016 static inline void add_to_free_list(struct page *page, struct zone *zone, 1017 unsigned int order, int migratetype) 1018 { 1019 struct free_area *area = &zone->free_area[order]; 1020 1021 list_add(&page->buddy_list, &area->free_list[migratetype]); 1022 area->nr_free++; 1023 } 1024 1025 /* Used for pages not on another list */ 1026 static inline void add_to_free_list_tail(struct page *page, struct zone *zone, 1027 unsigned int order, int migratetype) 1028 { 1029 struct free_area *area = &zone->free_area[order]; 1030 1031 list_add_tail(&page->buddy_list, &area->free_list[migratetype]); 1032 area->nr_free++; 1033 } 1034 1035 /* 1036 * Used for pages which are on another list. Move the pages to the tail 1037 * of the list - so the moved pages won't immediately be considered for 1038 * allocation again (e.g., optimization for memory onlining). 1039 */ 1040 static inline void move_to_free_list(struct page *page, struct zone *zone, 1041 unsigned int order, int migratetype) 1042 { 1043 struct free_area *area = &zone->free_area[order]; 1044 1045 list_move_tail(&page->buddy_list, &area->free_list[migratetype]); 1046 } 1047 1048 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 1049 unsigned int order) 1050 { 1051 /* clear reported state and update reported page count */ 1052 if (page_reported(page)) 1053 __ClearPageReported(page); 1054 1055 list_del(&page->buddy_list); 1056 __ClearPageBuddy(page); 1057 set_page_private(page, 0); 1058 zone->free_area[order].nr_free--; 1059 } 1060 1061 /* 1062 * If this is not the largest possible page, check if the buddy 1063 * of the next-highest order is free. If it is, it's possible 1064 * that pages are being freed that will coalesce soon. In case, 1065 * that is happening, add the free page to the tail of the list 1066 * so it's less likely to be used soon and more likely to be merged 1067 * as a higher order page 1068 */ 1069 static inline bool 1070 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 1071 struct page *page, unsigned int order) 1072 { 1073 unsigned long higher_page_pfn; 1074 struct page *higher_page; 1075 1076 if (order >= MAX_ORDER - 2) 1077 return false; 1078 1079 higher_page_pfn = buddy_pfn & pfn; 1080 higher_page = page + (higher_page_pfn - pfn); 1081 1082 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1, 1083 NULL) != NULL; 1084 } 1085 1086 /* 1087 * Freeing function for a buddy system allocator. 1088 * 1089 * The concept of a buddy system is to maintain direct-mapped table 1090 * (containing bit values) for memory blocks of various "orders". 1091 * The bottom level table contains the map for the smallest allocatable 1092 * units of memory (here, pages), and each level above it describes 1093 * pairs of units from the levels below, hence, "buddies". 1094 * At a high level, all that happens here is marking the table entry 1095 * at the bottom level available, and propagating the changes upward 1096 * as necessary, plus some accounting needed to play nicely with other 1097 * parts of the VM system. 1098 * At each level, we keep a list of pages, which are heads of continuous 1099 * free pages of length of (1 << order) and marked with PageBuddy. 1100 * Page's order is recorded in page_private(page) field. 1101 * So when we are allocating or freeing one, we can derive the state of the 1102 * other. That is, if we allocate a small block, and both were 1103 * free, the remainder of the region must be split into blocks. 1104 * If a block is freed, and its buddy is also free, then this 1105 * triggers coalescing into a block of larger size. 1106 * 1107 * -- nyc 1108 */ 1109 1110 static inline void __free_one_page(struct page *page, 1111 unsigned long pfn, 1112 struct zone *zone, unsigned int order, 1113 int migratetype, fpi_t fpi_flags) 1114 { 1115 struct capture_control *capc = task_capc(zone); 1116 unsigned long buddy_pfn = 0; 1117 unsigned long combined_pfn; 1118 struct page *buddy; 1119 bool to_tail; 1120 1121 VM_BUG_ON(!zone_is_initialized(zone)); 1122 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 1123 1124 VM_BUG_ON(migratetype == -1); 1125 if (likely(!is_migrate_isolate(migratetype))) 1126 __mod_zone_freepage_state(zone, 1 << order, migratetype); 1127 1128 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 1129 VM_BUG_ON_PAGE(bad_range(zone, page), page); 1130 1131 while (order < MAX_ORDER - 1) { 1132 if (compaction_capture(capc, page, order, migratetype)) { 1133 __mod_zone_freepage_state(zone, -(1 << order), 1134 migratetype); 1135 return; 1136 } 1137 1138 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn); 1139 if (!buddy) 1140 goto done_merging; 1141 1142 if (unlikely(order >= pageblock_order)) { 1143 /* 1144 * We want to prevent merge between freepages on pageblock 1145 * without fallbacks and normal pageblock. Without this, 1146 * pageblock isolation could cause incorrect freepage or CMA 1147 * accounting or HIGHATOMIC accounting. 1148 */ 1149 int buddy_mt = get_pageblock_migratetype(buddy); 1150 1151 if (migratetype != buddy_mt 1152 && (!migratetype_is_mergeable(migratetype) || 1153 !migratetype_is_mergeable(buddy_mt))) 1154 goto done_merging; 1155 } 1156 1157 /* 1158 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 1159 * merge with it and move up one order. 1160 */ 1161 if (page_is_guard(buddy)) 1162 clear_page_guard(zone, buddy, order, migratetype); 1163 else 1164 del_page_from_free_list(buddy, zone, order); 1165 combined_pfn = buddy_pfn & pfn; 1166 page = page + (combined_pfn - pfn); 1167 pfn = combined_pfn; 1168 order++; 1169 } 1170 1171 done_merging: 1172 set_buddy_order(page, order); 1173 1174 if (fpi_flags & FPI_TO_TAIL) 1175 to_tail = true; 1176 else if (is_shuffle_order(order)) 1177 to_tail = shuffle_pick_tail(); 1178 else 1179 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 1180 1181 if (to_tail) 1182 add_to_free_list_tail(page, zone, order, migratetype); 1183 else 1184 add_to_free_list(page, zone, order, migratetype); 1185 1186 /* Notify page reporting subsystem of freed page */ 1187 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 1188 page_reporting_notify_free(order); 1189 } 1190 1191 /** 1192 * split_free_page() -- split a free page at split_pfn_offset 1193 * @free_page: the original free page 1194 * @order: the order of the page 1195 * @split_pfn_offset: split offset within the page 1196 * 1197 * Return -ENOENT if the free page is changed, otherwise 0 1198 * 1199 * It is used when the free page crosses two pageblocks with different migratetypes 1200 * at split_pfn_offset within the page. The split free page will be put into 1201 * separate migratetype lists afterwards. Otherwise, the function achieves 1202 * nothing. 1203 */ 1204 int split_free_page(struct page *free_page, 1205 unsigned int order, unsigned long split_pfn_offset) 1206 { 1207 struct zone *zone = page_zone(free_page); 1208 unsigned long free_page_pfn = page_to_pfn(free_page); 1209 unsigned long pfn; 1210 unsigned long flags; 1211 int free_page_order; 1212 int mt; 1213 int ret = 0; 1214 1215 if (split_pfn_offset == 0) 1216 return ret; 1217 1218 spin_lock_irqsave(&zone->lock, flags); 1219 1220 if (!PageBuddy(free_page) || buddy_order(free_page) != order) { 1221 ret = -ENOENT; 1222 goto out; 1223 } 1224 1225 mt = get_pageblock_migratetype(free_page); 1226 if (likely(!is_migrate_isolate(mt))) 1227 __mod_zone_freepage_state(zone, -(1UL << order), mt); 1228 1229 del_page_from_free_list(free_page, zone, order); 1230 for (pfn = free_page_pfn; 1231 pfn < free_page_pfn + (1UL << order);) { 1232 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn); 1233 1234 free_page_order = min_t(unsigned int, 1235 pfn ? __ffs(pfn) : order, 1236 __fls(split_pfn_offset)); 1237 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order, 1238 mt, FPI_NONE); 1239 pfn += 1UL << free_page_order; 1240 split_pfn_offset -= (1UL << free_page_order); 1241 /* we have done the first part, now switch to second part */ 1242 if (split_pfn_offset == 0) 1243 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn); 1244 } 1245 out: 1246 spin_unlock_irqrestore(&zone->lock, flags); 1247 return ret; 1248 } 1249 /* 1250 * A bad page could be due to a number of fields. Instead of multiple branches, 1251 * try and check multiple fields with one check. The caller must do a detailed 1252 * check if necessary. 1253 */ 1254 static inline bool page_expected_state(struct page *page, 1255 unsigned long check_flags) 1256 { 1257 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1258 return false; 1259 1260 if (unlikely((unsigned long)page->mapping | 1261 page_ref_count(page) | 1262 #ifdef CONFIG_MEMCG 1263 page->memcg_data | 1264 #endif 1265 (page->flags & check_flags))) 1266 return false; 1267 1268 return true; 1269 } 1270 1271 static const char *page_bad_reason(struct page *page, unsigned long flags) 1272 { 1273 const char *bad_reason = NULL; 1274 1275 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1276 bad_reason = "nonzero mapcount"; 1277 if (unlikely(page->mapping != NULL)) 1278 bad_reason = "non-NULL mapping"; 1279 if (unlikely(page_ref_count(page) != 0)) 1280 bad_reason = "nonzero _refcount"; 1281 if (unlikely(page->flags & flags)) { 1282 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 1283 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 1284 else 1285 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 1286 } 1287 #ifdef CONFIG_MEMCG 1288 if (unlikely(page->memcg_data)) 1289 bad_reason = "page still charged to cgroup"; 1290 #endif 1291 return bad_reason; 1292 } 1293 1294 static void free_page_is_bad_report(struct page *page) 1295 { 1296 bad_page(page, 1297 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 1298 } 1299 1300 static inline bool free_page_is_bad(struct page *page) 1301 { 1302 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 1303 return false; 1304 1305 /* Something has gone sideways, find it */ 1306 free_page_is_bad_report(page); 1307 return true; 1308 } 1309 1310 static int free_tail_pages_check(struct page *head_page, struct page *page) 1311 { 1312 int ret = 1; 1313 1314 /* 1315 * We rely page->lru.next never has bit 0 set, unless the page 1316 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 1317 */ 1318 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1319 1320 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 1321 ret = 0; 1322 goto out; 1323 } 1324 switch (page - head_page) { 1325 case 1: 1326 /* the first tail page: ->mapping may be compound_mapcount() */ 1327 if (unlikely(compound_mapcount(page))) { 1328 bad_page(page, "nonzero compound_mapcount"); 1329 goto out; 1330 } 1331 break; 1332 case 2: 1333 /* 1334 * the second tail page: ->mapping is 1335 * deferred_list.next -- ignore value. 1336 */ 1337 break; 1338 default: 1339 if (page->mapping != TAIL_MAPPING) { 1340 bad_page(page, "corrupted mapping in tail page"); 1341 goto out; 1342 } 1343 break; 1344 } 1345 if (unlikely(!PageTail(page))) { 1346 bad_page(page, "PageTail not set"); 1347 goto out; 1348 } 1349 if (unlikely(compound_head(page) != head_page)) { 1350 bad_page(page, "compound_head not consistent"); 1351 goto out; 1352 } 1353 ret = 0; 1354 out: 1355 page->mapping = NULL; 1356 clear_compound_head(page); 1357 return ret; 1358 } 1359 1360 /* 1361 * Skip KASAN memory poisoning when either: 1362 * 1363 * 1. Deferred memory initialization has not yet completed, 1364 * see the explanation below. 1365 * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON, 1366 * see the comment next to it. 1367 * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON, 1368 * see the comment next to it. 1369 * 1370 * Poisoning pages during deferred memory init will greatly lengthen the 1371 * process and cause problem in large memory systems as the deferred pages 1372 * initialization is done with interrupt disabled. 1373 * 1374 * Assuming that there will be no reference to those newly initialized 1375 * pages before they are ever allocated, this should have no effect on 1376 * KASAN memory tracking as the poison will be properly inserted at page 1377 * allocation time. The only corner case is when pages are allocated by 1378 * on-demand allocation and then freed again before the deferred pages 1379 * initialization is done, but this is not likely to happen. 1380 */ 1381 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags) 1382 { 1383 return deferred_pages_enabled() || 1384 (!IS_ENABLED(CONFIG_KASAN_GENERIC) && 1385 (fpi_flags & FPI_SKIP_KASAN_POISON)) || 1386 PageSkipKASanPoison(page); 1387 } 1388 1389 static void kernel_init_pages(struct page *page, int numpages) 1390 { 1391 int i; 1392 1393 /* s390's use of memset() could override KASAN redzones. */ 1394 kasan_disable_current(); 1395 for (i = 0; i < numpages; i++) 1396 clear_highpage_kasan_tagged(page + i); 1397 kasan_enable_current(); 1398 } 1399 1400 static __always_inline bool free_pages_prepare(struct page *page, 1401 unsigned int order, bool check_free, fpi_t fpi_flags) 1402 { 1403 int bad = 0; 1404 bool init = want_init_on_free(); 1405 1406 VM_BUG_ON_PAGE(PageTail(page), page); 1407 1408 trace_mm_page_free(page, order); 1409 kmsan_free_page(page, order); 1410 1411 if (unlikely(PageHWPoison(page)) && !order) { 1412 /* 1413 * Do not let hwpoison pages hit pcplists/buddy 1414 * Untie memcg state and reset page's owner 1415 */ 1416 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1417 __memcg_kmem_uncharge_page(page, order); 1418 reset_page_owner(page, order); 1419 page_table_check_free(page, order); 1420 return false; 1421 } 1422 1423 /* 1424 * Check tail pages before head page information is cleared to 1425 * avoid checking PageCompound for order-0 pages. 1426 */ 1427 if (unlikely(order)) { 1428 bool compound = PageCompound(page); 1429 int i; 1430 1431 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1432 1433 if (compound) { 1434 ClearPageDoubleMap(page); 1435 ClearPageHasHWPoisoned(page); 1436 } 1437 for (i = 1; i < (1 << order); i++) { 1438 if (compound) 1439 bad += free_tail_pages_check(page, page + i); 1440 if (unlikely(free_page_is_bad(page + i))) { 1441 bad++; 1442 continue; 1443 } 1444 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1445 } 1446 } 1447 if (PageMappingFlags(page)) 1448 page->mapping = NULL; 1449 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1450 __memcg_kmem_uncharge_page(page, order); 1451 if (check_free && free_page_is_bad(page)) 1452 bad++; 1453 if (bad) 1454 return false; 1455 1456 page_cpupid_reset_last(page); 1457 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1458 reset_page_owner(page, order); 1459 page_table_check_free(page, order); 1460 1461 if (!PageHighMem(page)) { 1462 debug_check_no_locks_freed(page_address(page), 1463 PAGE_SIZE << order); 1464 debug_check_no_obj_freed(page_address(page), 1465 PAGE_SIZE << order); 1466 } 1467 1468 kernel_poison_pages(page, 1 << order); 1469 1470 /* 1471 * As memory initialization might be integrated into KASAN, 1472 * KASAN poisoning and memory initialization code must be 1473 * kept together to avoid discrepancies in behavior. 1474 * 1475 * With hardware tag-based KASAN, memory tags must be set before the 1476 * page becomes unavailable via debug_pagealloc or arch_free_page. 1477 */ 1478 if (!should_skip_kasan_poison(page, fpi_flags)) { 1479 kasan_poison_pages(page, order, init); 1480 1481 /* Memory is already initialized if KASAN did it internally. */ 1482 if (kasan_has_integrated_init()) 1483 init = false; 1484 } 1485 if (init) 1486 kernel_init_pages(page, 1 << order); 1487 1488 /* 1489 * arch_free_page() can make the page's contents inaccessible. s390 1490 * does this. So nothing which can access the page's contents should 1491 * happen after this. 1492 */ 1493 arch_free_page(page, order); 1494 1495 debug_pagealloc_unmap_pages(page, 1 << order); 1496 1497 return true; 1498 } 1499 1500 #ifdef CONFIG_DEBUG_VM 1501 /* 1502 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed 1503 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when 1504 * moved from pcp lists to free lists. 1505 */ 1506 static bool free_pcp_prepare(struct page *page, unsigned int order) 1507 { 1508 return free_pages_prepare(page, order, true, FPI_NONE); 1509 } 1510 1511 /* return true if this page has an inappropriate state */ 1512 static bool bulkfree_pcp_prepare(struct page *page) 1513 { 1514 if (debug_pagealloc_enabled_static()) 1515 return free_page_is_bad(page); 1516 else 1517 return false; 1518 } 1519 #else 1520 /* 1521 * With DEBUG_VM disabled, order-0 pages being freed are checked only when 1522 * moving from pcp lists to free list in order to reduce overhead. With 1523 * debug_pagealloc enabled, they are checked also immediately when being freed 1524 * to the pcp lists. 1525 */ 1526 static bool free_pcp_prepare(struct page *page, unsigned int order) 1527 { 1528 if (debug_pagealloc_enabled_static()) 1529 return free_pages_prepare(page, order, true, FPI_NONE); 1530 else 1531 return free_pages_prepare(page, order, false, FPI_NONE); 1532 } 1533 1534 static bool bulkfree_pcp_prepare(struct page *page) 1535 { 1536 return free_page_is_bad(page); 1537 } 1538 #endif /* CONFIG_DEBUG_VM */ 1539 1540 /* 1541 * Frees a number of pages from the PCP lists 1542 * Assumes all pages on list are in same zone. 1543 * count is the number of pages to free. 1544 */ 1545 static void free_pcppages_bulk(struct zone *zone, int count, 1546 struct per_cpu_pages *pcp, 1547 int pindex) 1548 { 1549 int min_pindex = 0; 1550 int max_pindex = NR_PCP_LISTS - 1; 1551 unsigned int order; 1552 bool isolated_pageblocks; 1553 struct page *page; 1554 1555 /* 1556 * Ensure proper count is passed which otherwise would stuck in the 1557 * below while (list_empty(list)) loop. 1558 */ 1559 count = min(pcp->count, count); 1560 1561 /* Ensure requested pindex is drained first. */ 1562 pindex = pindex - 1; 1563 1564 /* Caller must hold IRQ-safe pcp->lock so IRQs are disabled. */ 1565 spin_lock(&zone->lock); 1566 isolated_pageblocks = has_isolate_pageblock(zone); 1567 1568 while (count > 0) { 1569 struct list_head *list; 1570 int nr_pages; 1571 1572 /* Remove pages from lists in a round-robin fashion. */ 1573 do { 1574 if (++pindex > max_pindex) 1575 pindex = min_pindex; 1576 list = &pcp->lists[pindex]; 1577 if (!list_empty(list)) 1578 break; 1579 1580 if (pindex == max_pindex) 1581 max_pindex--; 1582 if (pindex == min_pindex) 1583 min_pindex++; 1584 } while (1); 1585 1586 order = pindex_to_order(pindex); 1587 nr_pages = 1 << order; 1588 do { 1589 int mt; 1590 1591 page = list_last_entry(list, struct page, pcp_list); 1592 mt = get_pcppage_migratetype(page); 1593 1594 /* must delete to avoid corrupting pcp list */ 1595 list_del(&page->pcp_list); 1596 count -= nr_pages; 1597 pcp->count -= nr_pages; 1598 1599 if (bulkfree_pcp_prepare(page)) 1600 continue; 1601 1602 /* MIGRATE_ISOLATE page should not go to pcplists */ 1603 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1604 /* Pageblock could have been isolated meanwhile */ 1605 if (unlikely(isolated_pageblocks)) 1606 mt = get_pageblock_migratetype(page); 1607 1608 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE); 1609 trace_mm_page_pcpu_drain(page, order, mt); 1610 } while (count > 0 && !list_empty(list)); 1611 } 1612 1613 spin_unlock(&zone->lock); 1614 } 1615 1616 static void free_one_page(struct zone *zone, 1617 struct page *page, unsigned long pfn, 1618 unsigned int order, 1619 int migratetype, fpi_t fpi_flags) 1620 { 1621 unsigned long flags; 1622 1623 spin_lock_irqsave(&zone->lock, flags); 1624 if (unlikely(has_isolate_pageblock(zone) || 1625 is_migrate_isolate(migratetype))) { 1626 migratetype = get_pfnblock_migratetype(page, pfn); 1627 } 1628 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1629 spin_unlock_irqrestore(&zone->lock, flags); 1630 } 1631 1632 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1633 unsigned long zone, int nid) 1634 { 1635 mm_zero_struct_page(page); 1636 set_page_links(page, zone, nid, pfn); 1637 init_page_count(page); 1638 page_mapcount_reset(page); 1639 page_cpupid_reset_last(page); 1640 page_kasan_tag_reset(page); 1641 1642 INIT_LIST_HEAD(&page->lru); 1643 #ifdef WANT_PAGE_VIRTUAL 1644 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1645 if (!is_highmem_idx(zone)) 1646 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1647 #endif 1648 } 1649 1650 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1651 static void __meminit init_reserved_page(unsigned long pfn) 1652 { 1653 pg_data_t *pgdat; 1654 int nid, zid; 1655 1656 if (!early_page_uninitialised(pfn)) 1657 return; 1658 1659 nid = early_pfn_to_nid(pfn); 1660 pgdat = NODE_DATA(nid); 1661 1662 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1663 struct zone *zone = &pgdat->node_zones[zid]; 1664 1665 if (zone_spans_pfn(zone, pfn)) 1666 break; 1667 } 1668 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 1669 } 1670 #else 1671 static inline void init_reserved_page(unsigned long pfn) 1672 { 1673 } 1674 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1675 1676 /* 1677 * Initialised pages do not have PageReserved set. This function is 1678 * called for each range allocated by the bootmem allocator and 1679 * marks the pages PageReserved. The remaining valid pages are later 1680 * sent to the buddy page allocator. 1681 */ 1682 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1683 { 1684 unsigned long start_pfn = PFN_DOWN(start); 1685 unsigned long end_pfn = PFN_UP(end); 1686 1687 for (; start_pfn < end_pfn; start_pfn++) { 1688 if (pfn_valid(start_pfn)) { 1689 struct page *page = pfn_to_page(start_pfn); 1690 1691 init_reserved_page(start_pfn); 1692 1693 /* Avoid false-positive PageTail() */ 1694 INIT_LIST_HEAD(&page->lru); 1695 1696 /* 1697 * no need for atomic set_bit because the struct 1698 * page is not visible yet so nobody should 1699 * access it yet. 1700 */ 1701 __SetPageReserved(page); 1702 } 1703 } 1704 } 1705 1706 static void __free_pages_ok(struct page *page, unsigned int order, 1707 fpi_t fpi_flags) 1708 { 1709 unsigned long flags; 1710 int migratetype; 1711 unsigned long pfn = page_to_pfn(page); 1712 struct zone *zone = page_zone(page); 1713 1714 if (!free_pages_prepare(page, order, true, fpi_flags)) 1715 return; 1716 1717 migratetype = get_pfnblock_migratetype(page, pfn); 1718 1719 spin_lock_irqsave(&zone->lock, flags); 1720 if (unlikely(has_isolate_pageblock(zone) || 1721 is_migrate_isolate(migratetype))) { 1722 migratetype = get_pfnblock_migratetype(page, pfn); 1723 } 1724 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1725 spin_unlock_irqrestore(&zone->lock, flags); 1726 1727 __count_vm_events(PGFREE, 1 << order); 1728 } 1729 1730 void __free_pages_core(struct page *page, unsigned int order) 1731 { 1732 unsigned int nr_pages = 1 << order; 1733 struct page *p = page; 1734 unsigned int loop; 1735 1736 /* 1737 * When initializing the memmap, __init_single_page() sets the refcount 1738 * of all pages to 1 ("allocated"/"not free"). We have to set the 1739 * refcount of all involved pages to 0. 1740 */ 1741 prefetchw(p); 1742 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1743 prefetchw(p + 1); 1744 __ClearPageReserved(p); 1745 set_page_count(p, 0); 1746 } 1747 __ClearPageReserved(p); 1748 set_page_count(p, 0); 1749 1750 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1751 1752 /* 1753 * Bypass PCP and place fresh pages right to the tail, primarily 1754 * relevant for memory onlining. 1755 */ 1756 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON); 1757 } 1758 1759 #ifdef CONFIG_NUMA 1760 1761 /* 1762 * During memory init memblocks map pfns to nids. The search is expensive and 1763 * this caches recent lookups. The implementation of __early_pfn_to_nid 1764 * treats start/end as pfns. 1765 */ 1766 struct mminit_pfnnid_cache { 1767 unsigned long last_start; 1768 unsigned long last_end; 1769 int last_nid; 1770 }; 1771 1772 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1773 1774 /* 1775 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 1776 */ 1777 static int __meminit __early_pfn_to_nid(unsigned long pfn, 1778 struct mminit_pfnnid_cache *state) 1779 { 1780 unsigned long start_pfn, end_pfn; 1781 int nid; 1782 1783 if (state->last_start <= pfn && pfn < state->last_end) 1784 return state->last_nid; 1785 1786 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 1787 if (nid != NUMA_NO_NODE) { 1788 state->last_start = start_pfn; 1789 state->last_end = end_pfn; 1790 state->last_nid = nid; 1791 } 1792 1793 return nid; 1794 } 1795 1796 int __meminit early_pfn_to_nid(unsigned long pfn) 1797 { 1798 static DEFINE_SPINLOCK(early_pfn_lock); 1799 int nid; 1800 1801 spin_lock(&early_pfn_lock); 1802 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1803 if (nid < 0) 1804 nid = first_online_node; 1805 spin_unlock(&early_pfn_lock); 1806 1807 return nid; 1808 } 1809 #endif /* CONFIG_NUMA */ 1810 1811 void __init memblock_free_pages(struct page *page, unsigned long pfn, 1812 unsigned int order) 1813 { 1814 if (early_page_uninitialised(pfn)) 1815 return; 1816 if (!kmsan_memblock_free_pages(page, order)) { 1817 /* KMSAN will take care of these pages. */ 1818 return; 1819 } 1820 __free_pages_core(page, order); 1821 } 1822 1823 /* 1824 * Check that the whole (or subset of) a pageblock given by the interval of 1825 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1826 * with the migration of free compaction scanner. 1827 * 1828 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1829 * 1830 * It's possible on some configurations to have a setup like node0 node1 node0 1831 * i.e. it's possible that all pages within a zones range of pages do not 1832 * belong to a single zone. We assume that a border between node0 and node1 1833 * can occur within a single pageblock, but not a node0 node1 node0 1834 * interleaving within a single pageblock. It is therefore sufficient to check 1835 * the first and last page of a pageblock and avoid checking each individual 1836 * page in a pageblock. 1837 */ 1838 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1839 unsigned long end_pfn, struct zone *zone) 1840 { 1841 struct page *start_page; 1842 struct page *end_page; 1843 1844 /* end_pfn is one past the range we are checking */ 1845 end_pfn--; 1846 1847 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1848 return NULL; 1849 1850 start_page = pfn_to_online_page(start_pfn); 1851 if (!start_page) 1852 return NULL; 1853 1854 if (page_zone(start_page) != zone) 1855 return NULL; 1856 1857 end_page = pfn_to_page(end_pfn); 1858 1859 /* This gives a shorter code than deriving page_zone(end_page) */ 1860 if (page_zone_id(start_page) != page_zone_id(end_page)) 1861 return NULL; 1862 1863 return start_page; 1864 } 1865 1866 void set_zone_contiguous(struct zone *zone) 1867 { 1868 unsigned long block_start_pfn = zone->zone_start_pfn; 1869 unsigned long block_end_pfn; 1870 1871 block_end_pfn = pageblock_end_pfn(block_start_pfn); 1872 for (; block_start_pfn < zone_end_pfn(zone); 1873 block_start_pfn = block_end_pfn, 1874 block_end_pfn += pageblock_nr_pages) { 1875 1876 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1877 1878 if (!__pageblock_pfn_to_page(block_start_pfn, 1879 block_end_pfn, zone)) 1880 return; 1881 cond_resched(); 1882 } 1883 1884 /* We confirm that there is no hole */ 1885 zone->contiguous = true; 1886 } 1887 1888 void clear_zone_contiguous(struct zone *zone) 1889 { 1890 zone->contiguous = false; 1891 } 1892 1893 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1894 static void __init deferred_free_range(unsigned long pfn, 1895 unsigned long nr_pages) 1896 { 1897 struct page *page; 1898 unsigned long i; 1899 1900 if (!nr_pages) 1901 return; 1902 1903 page = pfn_to_page(pfn); 1904 1905 /* Free a large naturally-aligned chunk if possible */ 1906 if (nr_pages == pageblock_nr_pages && pageblock_aligned(pfn)) { 1907 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1908 __free_pages_core(page, pageblock_order); 1909 return; 1910 } 1911 1912 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1913 if (pageblock_aligned(pfn)) 1914 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1915 __free_pages_core(page, 0); 1916 } 1917 } 1918 1919 /* Completion tracking for deferred_init_memmap() threads */ 1920 static atomic_t pgdat_init_n_undone __initdata; 1921 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1922 1923 static inline void __init pgdat_init_report_one_done(void) 1924 { 1925 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1926 complete(&pgdat_init_all_done_comp); 1927 } 1928 1929 /* 1930 * Returns true if page needs to be initialized or freed to buddy allocator. 1931 * 1932 * We check if a current large page is valid by only checking the validity 1933 * of the head pfn. 1934 */ 1935 static inline bool __init deferred_pfn_valid(unsigned long pfn) 1936 { 1937 if (pageblock_aligned(pfn) && !pfn_valid(pfn)) 1938 return false; 1939 return true; 1940 } 1941 1942 /* 1943 * Free pages to buddy allocator. Try to free aligned pages in 1944 * pageblock_nr_pages sizes. 1945 */ 1946 static void __init deferred_free_pages(unsigned long pfn, 1947 unsigned long end_pfn) 1948 { 1949 unsigned long nr_free = 0; 1950 1951 for (; pfn < end_pfn; pfn++) { 1952 if (!deferred_pfn_valid(pfn)) { 1953 deferred_free_range(pfn - nr_free, nr_free); 1954 nr_free = 0; 1955 } else if (pageblock_aligned(pfn)) { 1956 deferred_free_range(pfn - nr_free, nr_free); 1957 nr_free = 1; 1958 } else { 1959 nr_free++; 1960 } 1961 } 1962 /* Free the last block of pages to allocator */ 1963 deferred_free_range(pfn - nr_free, nr_free); 1964 } 1965 1966 /* 1967 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1968 * by performing it only once every pageblock_nr_pages. 1969 * Return number of pages initialized. 1970 */ 1971 static unsigned long __init deferred_init_pages(struct zone *zone, 1972 unsigned long pfn, 1973 unsigned long end_pfn) 1974 { 1975 int nid = zone_to_nid(zone); 1976 unsigned long nr_pages = 0; 1977 int zid = zone_idx(zone); 1978 struct page *page = NULL; 1979 1980 for (; pfn < end_pfn; pfn++) { 1981 if (!deferred_pfn_valid(pfn)) { 1982 page = NULL; 1983 continue; 1984 } else if (!page || pageblock_aligned(pfn)) { 1985 page = pfn_to_page(pfn); 1986 } else { 1987 page++; 1988 } 1989 __init_single_page(page, pfn, zid, nid); 1990 nr_pages++; 1991 } 1992 return (nr_pages); 1993 } 1994 1995 /* 1996 * This function is meant to pre-load the iterator for the zone init. 1997 * Specifically it walks through the ranges until we are caught up to the 1998 * first_init_pfn value and exits there. If we never encounter the value we 1999 * return false indicating there are no valid ranges left. 2000 */ 2001 static bool __init 2002 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, 2003 unsigned long *spfn, unsigned long *epfn, 2004 unsigned long first_init_pfn) 2005 { 2006 u64 j; 2007 2008 /* 2009 * Start out by walking through the ranges in this zone that have 2010 * already been initialized. We don't need to do anything with them 2011 * so we just need to flush them out of the system. 2012 */ 2013 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { 2014 if (*epfn <= first_init_pfn) 2015 continue; 2016 if (*spfn < first_init_pfn) 2017 *spfn = first_init_pfn; 2018 *i = j; 2019 return true; 2020 } 2021 2022 return false; 2023 } 2024 2025 /* 2026 * Initialize and free pages. We do it in two loops: first we initialize 2027 * struct page, then free to buddy allocator, because while we are 2028 * freeing pages we can access pages that are ahead (computing buddy 2029 * page in __free_one_page()). 2030 * 2031 * In order to try and keep some memory in the cache we have the loop 2032 * broken along max page order boundaries. This way we will not cause 2033 * any issues with the buddy page computation. 2034 */ 2035 static unsigned long __init 2036 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, 2037 unsigned long *end_pfn) 2038 { 2039 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); 2040 unsigned long spfn = *start_pfn, epfn = *end_pfn; 2041 unsigned long nr_pages = 0; 2042 u64 j = *i; 2043 2044 /* First we loop through and initialize the page values */ 2045 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { 2046 unsigned long t; 2047 2048 if (mo_pfn <= *start_pfn) 2049 break; 2050 2051 t = min(mo_pfn, *end_pfn); 2052 nr_pages += deferred_init_pages(zone, *start_pfn, t); 2053 2054 if (mo_pfn < *end_pfn) { 2055 *start_pfn = mo_pfn; 2056 break; 2057 } 2058 } 2059 2060 /* Reset values and now loop through freeing pages as needed */ 2061 swap(j, *i); 2062 2063 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { 2064 unsigned long t; 2065 2066 if (mo_pfn <= spfn) 2067 break; 2068 2069 t = min(mo_pfn, epfn); 2070 deferred_free_pages(spfn, t); 2071 2072 if (mo_pfn <= epfn) 2073 break; 2074 } 2075 2076 return nr_pages; 2077 } 2078 2079 static void __init 2080 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn, 2081 void *arg) 2082 { 2083 unsigned long spfn, epfn; 2084 struct zone *zone = arg; 2085 u64 i; 2086 2087 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn); 2088 2089 /* 2090 * Initialize and free pages in MAX_ORDER sized increments so that we 2091 * can avoid introducing any issues with the buddy allocator. 2092 */ 2093 while (spfn < end_pfn) { 2094 deferred_init_maxorder(&i, zone, &spfn, &epfn); 2095 cond_resched(); 2096 } 2097 } 2098 2099 /* An arch may override for more concurrency. */ 2100 __weak int __init 2101 deferred_page_init_max_threads(const struct cpumask *node_cpumask) 2102 { 2103 return 1; 2104 } 2105 2106 /* Initialise remaining memory on a node */ 2107 static int __init deferred_init_memmap(void *data) 2108 { 2109 pg_data_t *pgdat = data; 2110 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2111 unsigned long spfn = 0, epfn = 0; 2112 unsigned long first_init_pfn, flags; 2113 unsigned long start = jiffies; 2114 struct zone *zone; 2115 int zid, max_threads; 2116 u64 i; 2117 2118 /* Bind memory initialisation thread to a local node if possible */ 2119 if (!cpumask_empty(cpumask)) 2120 set_cpus_allowed_ptr(current, cpumask); 2121 2122 pgdat_resize_lock(pgdat, &flags); 2123 first_init_pfn = pgdat->first_deferred_pfn; 2124 if (first_init_pfn == ULONG_MAX) { 2125 pgdat_resize_unlock(pgdat, &flags); 2126 pgdat_init_report_one_done(); 2127 return 0; 2128 } 2129 2130 /* Sanity check boundaries */ 2131 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 2132 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 2133 pgdat->first_deferred_pfn = ULONG_MAX; 2134 2135 /* 2136 * Once we unlock here, the zone cannot be grown anymore, thus if an 2137 * interrupt thread must allocate this early in boot, zone must be 2138 * pre-grown prior to start of deferred page initialization. 2139 */ 2140 pgdat_resize_unlock(pgdat, &flags); 2141 2142 /* Only the highest zone is deferred so find it */ 2143 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2144 zone = pgdat->node_zones + zid; 2145 if (first_init_pfn < zone_end_pfn(zone)) 2146 break; 2147 } 2148 2149 /* If the zone is empty somebody else may have cleared out the zone */ 2150 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2151 first_init_pfn)) 2152 goto zone_empty; 2153 2154 max_threads = deferred_page_init_max_threads(cpumask); 2155 2156 while (spfn < epfn) { 2157 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION); 2158 struct padata_mt_job job = { 2159 .thread_fn = deferred_init_memmap_chunk, 2160 .fn_arg = zone, 2161 .start = spfn, 2162 .size = epfn_align - spfn, 2163 .align = PAGES_PER_SECTION, 2164 .min_chunk = PAGES_PER_SECTION, 2165 .max_threads = max_threads, 2166 }; 2167 2168 padata_do_multithreaded(&job); 2169 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2170 epfn_align); 2171 } 2172 zone_empty: 2173 /* Sanity check that the next zone really is unpopulated */ 2174 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 2175 2176 pr_info("node %d deferred pages initialised in %ums\n", 2177 pgdat->node_id, jiffies_to_msecs(jiffies - start)); 2178 2179 pgdat_init_report_one_done(); 2180 return 0; 2181 } 2182 2183 /* 2184 * If this zone has deferred pages, try to grow it by initializing enough 2185 * deferred pages to satisfy the allocation specified by order, rounded up to 2186 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 2187 * of SECTION_SIZE bytes by initializing struct pages in increments of 2188 * PAGES_PER_SECTION * sizeof(struct page) bytes. 2189 * 2190 * Return true when zone was grown, otherwise return false. We return true even 2191 * when we grow less than requested, to let the caller decide if there are 2192 * enough pages to satisfy the allocation. 2193 * 2194 * Note: We use noinline because this function is needed only during boot, and 2195 * it is called from a __ref function _deferred_grow_zone. This way we are 2196 * making sure that it is not inlined into permanent text section. 2197 */ 2198 static noinline bool __init 2199 deferred_grow_zone(struct zone *zone, unsigned int order) 2200 { 2201 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 2202 pg_data_t *pgdat = zone->zone_pgdat; 2203 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 2204 unsigned long spfn, epfn, flags; 2205 unsigned long nr_pages = 0; 2206 u64 i; 2207 2208 /* Only the last zone may have deferred pages */ 2209 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 2210 return false; 2211 2212 pgdat_resize_lock(pgdat, &flags); 2213 2214 /* 2215 * If someone grew this zone while we were waiting for spinlock, return 2216 * true, as there might be enough pages already. 2217 */ 2218 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 2219 pgdat_resize_unlock(pgdat, &flags); 2220 return true; 2221 } 2222 2223 /* If the zone is empty somebody else may have cleared out the zone */ 2224 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2225 first_deferred_pfn)) { 2226 pgdat->first_deferred_pfn = ULONG_MAX; 2227 pgdat_resize_unlock(pgdat, &flags); 2228 /* Retry only once. */ 2229 return first_deferred_pfn != ULONG_MAX; 2230 } 2231 2232 /* 2233 * Initialize and free pages in MAX_ORDER sized increments so 2234 * that we can avoid introducing any issues with the buddy 2235 * allocator. 2236 */ 2237 while (spfn < epfn) { 2238 /* update our first deferred PFN for this section */ 2239 first_deferred_pfn = spfn; 2240 2241 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 2242 touch_nmi_watchdog(); 2243 2244 /* We should only stop along section boundaries */ 2245 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) 2246 continue; 2247 2248 /* If our quota has been met we can stop here */ 2249 if (nr_pages >= nr_pages_needed) 2250 break; 2251 } 2252 2253 pgdat->first_deferred_pfn = spfn; 2254 pgdat_resize_unlock(pgdat, &flags); 2255 2256 return nr_pages > 0; 2257 } 2258 2259 /* 2260 * deferred_grow_zone() is __init, but it is called from 2261 * get_page_from_freelist() during early boot until deferred_pages permanently 2262 * disables this call. This is why we have refdata wrapper to avoid warning, 2263 * and to ensure that the function body gets unloaded. 2264 */ 2265 static bool __ref 2266 _deferred_grow_zone(struct zone *zone, unsigned int order) 2267 { 2268 return deferred_grow_zone(zone, order); 2269 } 2270 2271 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 2272 2273 void __init page_alloc_init_late(void) 2274 { 2275 struct zone *zone; 2276 int nid; 2277 2278 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 2279 2280 /* There will be num_node_state(N_MEMORY) threads */ 2281 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 2282 for_each_node_state(nid, N_MEMORY) { 2283 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 2284 } 2285 2286 /* Block until all are initialised */ 2287 wait_for_completion(&pgdat_init_all_done_comp); 2288 2289 /* 2290 * We initialized the rest of the deferred pages. Permanently disable 2291 * on-demand struct page initialization. 2292 */ 2293 static_branch_disable(&deferred_pages); 2294 2295 /* Reinit limits that are based on free pages after the kernel is up */ 2296 files_maxfiles_init(); 2297 #endif 2298 2299 buffer_init(); 2300 2301 /* Discard memblock private memory */ 2302 memblock_discard(); 2303 2304 for_each_node_state(nid, N_MEMORY) 2305 shuffle_free_memory(NODE_DATA(nid)); 2306 2307 for_each_populated_zone(zone) 2308 set_zone_contiguous(zone); 2309 } 2310 2311 #ifdef CONFIG_CMA 2312 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 2313 void __init init_cma_reserved_pageblock(struct page *page) 2314 { 2315 unsigned i = pageblock_nr_pages; 2316 struct page *p = page; 2317 2318 do { 2319 __ClearPageReserved(p); 2320 set_page_count(p, 0); 2321 } while (++p, --i); 2322 2323 set_pageblock_migratetype(page, MIGRATE_CMA); 2324 set_page_refcounted(page); 2325 __free_pages(page, pageblock_order); 2326 2327 adjust_managed_page_count(page, pageblock_nr_pages); 2328 page_zone(page)->cma_pages += pageblock_nr_pages; 2329 } 2330 #endif 2331 2332 /* 2333 * The order of subdivision here is critical for the IO subsystem. 2334 * Please do not alter this order without good reasons and regression 2335 * testing. Specifically, as large blocks of memory are subdivided, 2336 * the order in which smaller blocks are delivered depends on the order 2337 * they're subdivided in this function. This is the primary factor 2338 * influencing the order in which pages are delivered to the IO 2339 * subsystem according to empirical testing, and this is also justified 2340 * by considering the behavior of a buddy system containing a single 2341 * large block of memory acted on by a series of small allocations. 2342 * This behavior is a critical factor in sglist merging's success. 2343 * 2344 * -- nyc 2345 */ 2346 static inline void expand(struct zone *zone, struct page *page, 2347 int low, int high, int migratetype) 2348 { 2349 unsigned long size = 1 << high; 2350 2351 while (high > low) { 2352 high--; 2353 size >>= 1; 2354 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 2355 2356 /* 2357 * Mark as guard pages (or page), that will allow to 2358 * merge back to allocator when buddy will be freed. 2359 * Corresponding page table entries will not be touched, 2360 * pages will stay not present in virtual address space 2361 */ 2362 if (set_page_guard(zone, &page[size], high, migratetype)) 2363 continue; 2364 2365 add_to_free_list(&page[size], zone, high, migratetype); 2366 set_buddy_order(&page[size], high); 2367 } 2368 } 2369 2370 static void check_new_page_bad(struct page *page) 2371 { 2372 if (unlikely(page->flags & __PG_HWPOISON)) { 2373 /* Don't complain about hwpoisoned pages */ 2374 page_mapcount_reset(page); /* remove PageBuddy */ 2375 return; 2376 } 2377 2378 bad_page(page, 2379 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 2380 } 2381 2382 /* 2383 * This page is about to be returned from the page allocator 2384 */ 2385 static inline int check_new_page(struct page *page) 2386 { 2387 if (likely(page_expected_state(page, 2388 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 2389 return 0; 2390 2391 check_new_page_bad(page); 2392 return 1; 2393 } 2394 2395 static bool check_new_pages(struct page *page, unsigned int order) 2396 { 2397 int i; 2398 for (i = 0; i < (1 << order); i++) { 2399 struct page *p = page + i; 2400 2401 if (unlikely(check_new_page(p))) 2402 return true; 2403 } 2404 2405 return false; 2406 } 2407 2408 #ifdef CONFIG_DEBUG_VM 2409 /* 2410 * With DEBUG_VM enabled, order-0 pages are checked for expected state when 2411 * being allocated from pcp lists. With debug_pagealloc also enabled, they are 2412 * also checked when pcp lists are refilled from the free lists. 2413 */ 2414 static inline bool check_pcp_refill(struct page *page, unsigned int order) 2415 { 2416 if (debug_pagealloc_enabled_static()) 2417 return check_new_pages(page, order); 2418 else 2419 return false; 2420 } 2421 2422 static inline bool check_new_pcp(struct page *page, unsigned int order) 2423 { 2424 return check_new_pages(page, order); 2425 } 2426 #else 2427 /* 2428 * With DEBUG_VM disabled, free order-0 pages are checked for expected state 2429 * when pcp lists are being refilled from the free lists. With debug_pagealloc 2430 * enabled, they are also checked when being allocated from the pcp lists. 2431 */ 2432 static inline bool check_pcp_refill(struct page *page, unsigned int order) 2433 { 2434 return check_new_pages(page, order); 2435 } 2436 static inline bool check_new_pcp(struct page *page, unsigned int order) 2437 { 2438 if (debug_pagealloc_enabled_static()) 2439 return check_new_pages(page, order); 2440 else 2441 return false; 2442 } 2443 #endif /* CONFIG_DEBUG_VM */ 2444 2445 static inline bool should_skip_kasan_unpoison(gfp_t flags) 2446 { 2447 /* Don't skip if a software KASAN mode is enabled. */ 2448 if (IS_ENABLED(CONFIG_KASAN_GENERIC) || 2449 IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 2450 return false; 2451 2452 /* Skip, if hardware tag-based KASAN is not enabled. */ 2453 if (!kasan_hw_tags_enabled()) 2454 return true; 2455 2456 /* 2457 * With hardware tag-based KASAN enabled, skip if this has been 2458 * requested via __GFP_SKIP_KASAN_UNPOISON. 2459 */ 2460 return flags & __GFP_SKIP_KASAN_UNPOISON; 2461 } 2462 2463 static inline bool should_skip_init(gfp_t flags) 2464 { 2465 /* Don't skip, if hardware tag-based KASAN is not enabled. */ 2466 if (!kasan_hw_tags_enabled()) 2467 return false; 2468 2469 /* For hardware tag-based KASAN, skip if requested. */ 2470 return (flags & __GFP_SKIP_ZERO); 2471 } 2472 2473 inline void post_alloc_hook(struct page *page, unsigned int order, 2474 gfp_t gfp_flags) 2475 { 2476 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) && 2477 !should_skip_init(gfp_flags); 2478 bool init_tags = init && (gfp_flags & __GFP_ZEROTAGS); 2479 int i; 2480 2481 set_page_private(page, 0); 2482 set_page_refcounted(page); 2483 2484 arch_alloc_page(page, order); 2485 debug_pagealloc_map_pages(page, 1 << order); 2486 2487 /* 2488 * Page unpoisoning must happen before memory initialization. 2489 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 2490 * allocations and the page unpoisoning code will complain. 2491 */ 2492 kernel_unpoison_pages(page, 1 << order); 2493 2494 /* 2495 * As memory initialization might be integrated into KASAN, 2496 * KASAN unpoisoning and memory initializion code must be 2497 * kept together to avoid discrepancies in behavior. 2498 */ 2499 2500 /* 2501 * If memory tags should be zeroed (which happens only when memory 2502 * should be initialized as well). 2503 */ 2504 if (init_tags) { 2505 /* Initialize both memory and tags. */ 2506 for (i = 0; i != 1 << order; ++i) 2507 tag_clear_highpage(page + i); 2508 2509 /* Note that memory is already initialized by the loop above. */ 2510 init = false; 2511 } 2512 if (!should_skip_kasan_unpoison(gfp_flags)) { 2513 /* Unpoison shadow memory or set memory tags. */ 2514 kasan_unpoison_pages(page, order, init); 2515 2516 /* Note that memory is already initialized by KASAN. */ 2517 if (kasan_has_integrated_init()) 2518 init = false; 2519 } else { 2520 /* Ensure page_address() dereferencing does not fault. */ 2521 for (i = 0; i != 1 << order; ++i) 2522 page_kasan_tag_reset(page + i); 2523 } 2524 /* If memory is still not initialized, do it now. */ 2525 if (init) 2526 kernel_init_pages(page, 1 << order); 2527 /* Propagate __GFP_SKIP_KASAN_POISON to page flags. */ 2528 if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON)) 2529 SetPageSkipKASanPoison(page); 2530 2531 set_page_owner(page, order, gfp_flags); 2532 page_table_check_alloc(page, order); 2533 } 2534 2535 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 2536 unsigned int alloc_flags) 2537 { 2538 post_alloc_hook(page, order, gfp_flags); 2539 2540 if (order && (gfp_flags & __GFP_COMP)) 2541 prep_compound_page(page, order); 2542 2543 /* 2544 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 2545 * allocate the page. The expectation is that the caller is taking 2546 * steps that will free more memory. The caller should avoid the page 2547 * being used for !PFMEMALLOC purposes. 2548 */ 2549 if (alloc_flags & ALLOC_NO_WATERMARKS) 2550 set_page_pfmemalloc(page); 2551 else 2552 clear_page_pfmemalloc(page); 2553 } 2554 2555 /* 2556 * Go through the free lists for the given migratetype and remove 2557 * the smallest available page from the freelists 2558 */ 2559 static __always_inline 2560 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 2561 int migratetype) 2562 { 2563 unsigned int current_order; 2564 struct free_area *area; 2565 struct page *page; 2566 2567 /* Find a page of the appropriate size in the preferred list */ 2568 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 2569 area = &(zone->free_area[current_order]); 2570 page = get_page_from_free_area(area, migratetype); 2571 if (!page) 2572 continue; 2573 del_page_from_free_list(page, zone, current_order); 2574 expand(zone, page, order, current_order, migratetype); 2575 set_pcppage_migratetype(page, migratetype); 2576 trace_mm_page_alloc_zone_locked(page, order, migratetype, 2577 pcp_allowed_order(order) && 2578 migratetype < MIGRATE_PCPTYPES); 2579 return page; 2580 } 2581 2582 return NULL; 2583 } 2584 2585 2586 /* 2587 * This array describes the order lists are fallen back to when 2588 * the free lists for the desirable migrate type are depleted 2589 * 2590 * The other migratetypes do not have fallbacks. 2591 */ 2592 static int fallbacks[MIGRATE_TYPES][3] = { 2593 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2594 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 2595 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2596 }; 2597 2598 #ifdef CONFIG_CMA 2599 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2600 unsigned int order) 2601 { 2602 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 2603 } 2604 #else 2605 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2606 unsigned int order) { return NULL; } 2607 #endif 2608 2609 /* 2610 * Move the free pages in a range to the freelist tail of the requested type. 2611 * Note that start_page and end_pages are not aligned on a pageblock 2612 * boundary. If alignment is required, use move_freepages_block() 2613 */ 2614 static int move_freepages(struct zone *zone, 2615 unsigned long start_pfn, unsigned long end_pfn, 2616 int migratetype, int *num_movable) 2617 { 2618 struct page *page; 2619 unsigned long pfn; 2620 unsigned int order; 2621 int pages_moved = 0; 2622 2623 for (pfn = start_pfn; pfn <= end_pfn;) { 2624 page = pfn_to_page(pfn); 2625 if (!PageBuddy(page)) { 2626 /* 2627 * We assume that pages that could be isolated for 2628 * migration are movable. But we don't actually try 2629 * isolating, as that would be expensive. 2630 */ 2631 if (num_movable && 2632 (PageLRU(page) || __PageMovable(page))) 2633 (*num_movable)++; 2634 pfn++; 2635 continue; 2636 } 2637 2638 /* Make sure we are not inadvertently changing nodes */ 2639 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 2640 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 2641 2642 order = buddy_order(page); 2643 move_to_free_list(page, zone, order, migratetype); 2644 pfn += 1 << order; 2645 pages_moved += 1 << order; 2646 } 2647 2648 return pages_moved; 2649 } 2650 2651 int move_freepages_block(struct zone *zone, struct page *page, 2652 int migratetype, int *num_movable) 2653 { 2654 unsigned long start_pfn, end_pfn, pfn; 2655 2656 if (num_movable) 2657 *num_movable = 0; 2658 2659 pfn = page_to_pfn(page); 2660 start_pfn = pageblock_start_pfn(pfn); 2661 end_pfn = pageblock_end_pfn(pfn) - 1; 2662 2663 /* Do not cross zone boundaries */ 2664 if (!zone_spans_pfn(zone, start_pfn)) 2665 start_pfn = pfn; 2666 if (!zone_spans_pfn(zone, end_pfn)) 2667 return 0; 2668 2669 return move_freepages(zone, start_pfn, end_pfn, migratetype, 2670 num_movable); 2671 } 2672 2673 static void change_pageblock_range(struct page *pageblock_page, 2674 int start_order, int migratetype) 2675 { 2676 int nr_pageblocks = 1 << (start_order - pageblock_order); 2677 2678 while (nr_pageblocks--) { 2679 set_pageblock_migratetype(pageblock_page, migratetype); 2680 pageblock_page += pageblock_nr_pages; 2681 } 2682 } 2683 2684 /* 2685 * When we are falling back to another migratetype during allocation, try to 2686 * steal extra free pages from the same pageblocks to satisfy further 2687 * allocations, instead of polluting multiple pageblocks. 2688 * 2689 * If we are stealing a relatively large buddy page, it is likely there will 2690 * be more free pages in the pageblock, so try to steal them all. For 2691 * reclaimable and unmovable allocations, we steal regardless of page size, 2692 * as fragmentation caused by those allocations polluting movable pageblocks 2693 * is worse than movable allocations stealing from unmovable and reclaimable 2694 * pageblocks. 2695 */ 2696 static bool can_steal_fallback(unsigned int order, int start_mt) 2697 { 2698 /* 2699 * Leaving this order check is intended, although there is 2700 * relaxed order check in next check. The reason is that 2701 * we can actually steal whole pageblock if this condition met, 2702 * but, below check doesn't guarantee it and that is just heuristic 2703 * so could be changed anytime. 2704 */ 2705 if (order >= pageblock_order) 2706 return true; 2707 2708 if (order >= pageblock_order / 2 || 2709 start_mt == MIGRATE_RECLAIMABLE || 2710 start_mt == MIGRATE_UNMOVABLE || 2711 page_group_by_mobility_disabled) 2712 return true; 2713 2714 return false; 2715 } 2716 2717 static inline bool boost_watermark(struct zone *zone) 2718 { 2719 unsigned long max_boost; 2720 2721 if (!watermark_boost_factor) 2722 return false; 2723 /* 2724 * Don't bother in zones that are unlikely to produce results. 2725 * On small machines, including kdump capture kernels running 2726 * in a small area, boosting the watermark can cause an out of 2727 * memory situation immediately. 2728 */ 2729 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 2730 return false; 2731 2732 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2733 watermark_boost_factor, 10000); 2734 2735 /* 2736 * high watermark may be uninitialised if fragmentation occurs 2737 * very early in boot so do not boost. We do not fall 2738 * through and boost by pageblock_nr_pages as failing 2739 * allocations that early means that reclaim is not going 2740 * to help and it may even be impossible to reclaim the 2741 * boosted watermark resulting in a hang. 2742 */ 2743 if (!max_boost) 2744 return false; 2745 2746 max_boost = max(pageblock_nr_pages, max_boost); 2747 2748 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2749 max_boost); 2750 2751 return true; 2752 } 2753 2754 /* 2755 * This function implements actual steal behaviour. If order is large enough, 2756 * we can steal whole pageblock. If not, we first move freepages in this 2757 * pageblock to our migratetype and determine how many already-allocated pages 2758 * are there in the pageblock with a compatible migratetype. If at least half 2759 * of pages are free or compatible, we can change migratetype of the pageblock 2760 * itself, so pages freed in the future will be put on the correct free list. 2761 */ 2762 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2763 unsigned int alloc_flags, int start_type, bool whole_block) 2764 { 2765 unsigned int current_order = buddy_order(page); 2766 int free_pages, movable_pages, alike_pages; 2767 int old_block_type; 2768 2769 old_block_type = get_pageblock_migratetype(page); 2770 2771 /* 2772 * This can happen due to races and we want to prevent broken 2773 * highatomic accounting. 2774 */ 2775 if (is_migrate_highatomic(old_block_type)) 2776 goto single_page; 2777 2778 /* Take ownership for orders >= pageblock_order */ 2779 if (current_order >= pageblock_order) { 2780 change_pageblock_range(page, current_order, start_type); 2781 goto single_page; 2782 } 2783 2784 /* 2785 * Boost watermarks to increase reclaim pressure to reduce the 2786 * likelihood of future fallbacks. Wake kswapd now as the node 2787 * may be balanced overall and kswapd will not wake naturally. 2788 */ 2789 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 2790 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2791 2792 /* We are not allowed to try stealing from the whole block */ 2793 if (!whole_block) 2794 goto single_page; 2795 2796 free_pages = move_freepages_block(zone, page, start_type, 2797 &movable_pages); 2798 /* 2799 * Determine how many pages are compatible with our allocation. 2800 * For movable allocation, it's the number of movable pages which 2801 * we just obtained. For other types it's a bit more tricky. 2802 */ 2803 if (start_type == MIGRATE_MOVABLE) { 2804 alike_pages = movable_pages; 2805 } else { 2806 /* 2807 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2808 * to MOVABLE pageblock, consider all non-movable pages as 2809 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2810 * vice versa, be conservative since we can't distinguish the 2811 * exact migratetype of non-movable pages. 2812 */ 2813 if (old_block_type == MIGRATE_MOVABLE) 2814 alike_pages = pageblock_nr_pages 2815 - (free_pages + movable_pages); 2816 else 2817 alike_pages = 0; 2818 } 2819 2820 /* moving whole block can fail due to zone boundary conditions */ 2821 if (!free_pages) 2822 goto single_page; 2823 2824 /* 2825 * If a sufficient number of pages in the block are either free or of 2826 * comparable migratability as our allocation, claim the whole block. 2827 */ 2828 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2829 page_group_by_mobility_disabled) 2830 set_pageblock_migratetype(page, start_type); 2831 2832 return; 2833 2834 single_page: 2835 move_to_free_list(page, zone, current_order, start_type); 2836 } 2837 2838 /* 2839 * Check whether there is a suitable fallback freepage with requested order. 2840 * If only_stealable is true, this function returns fallback_mt only if 2841 * we can steal other freepages all together. This would help to reduce 2842 * fragmentation due to mixed migratetype pages in one pageblock. 2843 */ 2844 int find_suitable_fallback(struct free_area *area, unsigned int order, 2845 int migratetype, bool only_stealable, bool *can_steal) 2846 { 2847 int i; 2848 int fallback_mt; 2849 2850 if (area->nr_free == 0) 2851 return -1; 2852 2853 *can_steal = false; 2854 for (i = 0;; i++) { 2855 fallback_mt = fallbacks[migratetype][i]; 2856 if (fallback_mt == MIGRATE_TYPES) 2857 break; 2858 2859 if (free_area_empty(area, fallback_mt)) 2860 continue; 2861 2862 if (can_steal_fallback(order, migratetype)) 2863 *can_steal = true; 2864 2865 if (!only_stealable) 2866 return fallback_mt; 2867 2868 if (*can_steal) 2869 return fallback_mt; 2870 } 2871 2872 return -1; 2873 } 2874 2875 /* 2876 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2877 * there are no empty page blocks that contain a page with a suitable order 2878 */ 2879 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2880 unsigned int alloc_order) 2881 { 2882 int mt; 2883 unsigned long max_managed, flags; 2884 2885 /* 2886 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2887 * Check is race-prone but harmless. 2888 */ 2889 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 2890 if (zone->nr_reserved_highatomic >= max_managed) 2891 return; 2892 2893 spin_lock_irqsave(&zone->lock, flags); 2894 2895 /* Recheck the nr_reserved_highatomic limit under the lock */ 2896 if (zone->nr_reserved_highatomic >= max_managed) 2897 goto out_unlock; 2898 2899 /* Yoink! */ 2900 mt = get_pageblock_migratetype(page); 2901 /* Only reserve normal pageblocks (i.e., they can merge with others) */ 2902 if (migratetype_is_mergeable(mt)) { 2903 zone->nr_reserved_highatomic += pageblock_nr_pages; 2904 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2905 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2906 } 2907 2908 out_unlock: 2909 spin_unlock_irqrestore(&zone->lock, flags); 2910 } 2911 2912 /* 2913 * Used when an allocation is about to fail under memory pressure. This 2914 * potentially hurts the reliability of high-order allocations when under 2915 * intense memory pressure but failed atomic allocations should be easier 2916 * to recover from than an OOM. 2917 * 2918 * If @force is true, try to unreserve a pageblock even though highatomic 2919 * pageblock is exhausted. 2920 */ 2921 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2922 bool force) 2923 { 2924 struct zonelist *zonelist = ac->zonelist; 2925 unsigned long flags; 2926 struct zoneref *z; 2927 struct zone *zone; 2928 struct page *page; 2929 int order; 2930 bool ret; 2931 2932 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 2933 ac->nodemask) { 2934 /* 2935 * Preserve at least one pageblock unless memory pressure 2936 * is really high. 2937 */ 2938 if (!force && zone->nr_reserved_highatomic <= 2939 pageblock_nr_pages) 2940 continue; 2941 2942 spin_lock_irqsave(&zone->lock, flags); 2943 for (order = 0; order < MAX_ORDER; order++) { 2944 struct free_area *area = &(zone->free_area[order]); 2945 2946 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2947 if (!page) 2948 continue; 2949 2950 /* 2951 * In page freeing path, migratetype change is racy so 2952 * we can counter several free pages in a pageblock 2953 * in this loop although we changed the pageblock type 2954 * from highatomic to ac->migratetype. So we should 2955 * adjust the count once. 2956 */ 2957 if (is_migrate_highatomic_page(page)) { 2958 /* 2959 * It should never happen but changes to 2960 * locking could inadvertently allow a per-cpu 2961 * drain to add pages to MIGRATE_HIGHATOMIC 2962 * while unreserving so be safe and watch for 2963 * underflows. 2964 */ 2965 zone->nr_reserved_highatomic -= min( 2966 pageblock_nr_pages, 2967 zone->nr_reserved_highatomic); 2968 } 2969 2970 /* 2971 * Convert to ac->migratetype and avoid the normal 2972 * pageblock stealing heuristics. Minimally, the caller 2973 * is doing the work and needs the pages. More 2974 * importantly, if the block was always converted to 2975 * MIGRATE_UNMOVABLE or another type then the number 2976 * of pageblocks that cannot be completely freed 2977 * may increase. 2978 */ 2979 set_pageblock_migratetype(page, ac->migratetype); 2980 ret = move_freepages_block(zone, page, ac->migratetype, 2981 NULL); 2982 if (ret) { 2983 spin_unlock_irqrestore(&zone->lock, flags); 2984 return ret; 2985 } 2986 } 2987 spin_unlock_irqrestore(&zone->lock, flags); 2988 } 2989 2990 return false; 2991 } 2992 2993 /* 2994 * Try finding a free buddy page on the fallback list and put it on the free 2995 * list of requested migratetype, possibly along with other pages from the same 2996 * block, depending on fragmentation avoidance heuristics. Returns true if 2997 * fallback was found so that __rmqueue_smallest() can grab it. 2998 * 2999 * The use of signed ints for order and current_order is a deliberate 3000 * deviation from the rest of this file, to make the for loop 3001 * condition simpler. 3002 */ 3003 static __always_inline bool 3004 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 3005 unsigned int alloc_flags) 3006 { 3007 struct free_area *area; 3008 int current_order; 3009 int min_order = order; 3010 struct page *page; 3011 int fallback_mt; 3012 bool can_steal; 3013 3014 /* 3015 * Do not steal pages from freelists belonging to other pageblocks 3016 * i.e. orders < pageblock_order. If there are no local zones free, 3017 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 3018 */ 3019 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT) 3020 min_order = pageblock_order; 3021 3022 /* 3023 * Find the largest available free page in the other list. This roughly 3024 * approximates finding the pageblock with the most free pages, which 3025 * would be too costly to do exactly. 3026 */ 3027 for (current_order = MAX_ORDER - 1; current_order >= min_order; 3028 --current_order) { 3029 area = &(zone->free_area[current_order]); 3030 fallback_mt = find_suitable_fallback(area, current_order, 3031 start_migratetype, false, &can_steal); 3032 if (fallback_mt == -1) 3033 continue; 3034 3035 /* 3036 * We cannot steal all free pages from the pageblock and the 3037 * requested migratetype is movable. In that case it's better to 3038 * steal and split the smallest available page instead of the 3039 * largest available page, because even if the next movable 3040 * allocation falls back into a different pageblock than this 3041 * one, it won't cause permanent fragmentation. 3042 */ 3043 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 3044 && current_order > order) 3045 goto find_smallest; 3046 3047 goto do_steal; 3048 } 3049 3050 return false; 3051 3052 find_smallest: 3053 for (current_order = order; current_order < MAX_ORDER; 3054 current_order++) { 3055 area = &(zone->free_area[current_order]); 3056 fallback_mt = find_suitable_fallback(area, current_order, 3057 start_migratetype, false, &can_steal); 3058 if (fallback_mt != -1) 3059 break; 3060 } 3061 3062 /* 3063 * This should not happen - we already found a suitable fallback 3064 * when looking for the largest page. 3065 */ 3066 VM_BUG_ON(current_order == MAX_ORDER); 3067 3068 do_steal: 3069 page = get_page_from_free_area(area, fallback_mt); 3070 3071 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 3072 can_steal); 3073 3074 trace_mm_page_alloc_extfrag(page, order, current_order, 3075 start_migratetype, fallback_mt); 3076 3077 return true; 3078 3079 } 3080 3081 /* 3082 * Do the hard work of removing an element from the buddy allocator. 3083 * Call me with the zone->lock already held. 3084 */ 3085 static __always_inline struct page * 3086 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 3087 unsigned int alloc_flags) 3088 { 3089 struct page *page; 3090 3091 if (IS_ENABLED(CONFIG_CMA)) { 3092 /* 3093 * Balance movable allocations between regular and CMA areas by 3094 * allocating from CMA when over half of the zone's free memory 3095 * is in the CMA area. 3096 */ 3097 if (alloc_flags & ALLOC_CMA && 3098 zone_page_state(zone, NR_FREE_CMA_PAGES) > 3099 zone_page_state(zone, NR_FREE_PAGES) / 2) { 3100 page = __rmqueue_cma_fallback(zone, order); 3101 if (page) 3102 return page; 3103 } 3104 } 3105 retry: 3106 page = __rmqueue_smallest(zone, order, migratetype); 3107 if (unlikely(!page)) { 3108 if (alloc_flags & ALLOC_CMA) 3109 page = __rmqueue_cma_fallback(zone, order); 3110 3111 if (!page && __rmqueue_fallback(zone, order, migratetype, 3112 alloc_flags)) 3113 goto retry; 3114 } 3115 return page; 3116 } 3117 3118 /* 3119 * Obtain a specified number of elements from the buddy allocator, all under 3120 * a single hold of the lock, for efficiency. Add them to the supplied list. 3121 * Returns the number of new pages which were placed at *list. 3122 */ 3123 static int rmqueue_bulk(struct zone *zone, unsigned int order, 3124 unsigned long count, struct list_head *list, 3125 int migratetype, unsigned int alloc_flags) 3126 { 3127 int i, allocated = 0; 3128 3129 /* Caller must hold IRQ-safe pcp->lock so IRQs are disabled. */ 3130 spin_lock(&zone->lock); 3131 for (i = 0; i < count; ++i) { 3132 struct page *page = __rmqueue(zone, order, migratetype, 3133 alloc_flags); 3134 if (unlikely(page == NULL)) 3135 break; 3136 3137 if (unlikely(check_pcp_refill(page, order))) 3138 continue; 3139 3140 /* 3141 * Split buddy pages returned by expand() are received here in 3142 * physical page order. The page is added to the tail of 3143 * caller's list. From the callers perspective, the linked list 3144 * is ordered by page number under some conditions. This is 3145 * useful for IO devices that can forward direction from the 3146 * head, thus also in the physical page order. This is useful 3147 * for IO devices that can merge IO requests if the physical 3148 * pages are ordered properly. 3149 */ 3150 list_add_tail(&page->pcp_list, list); 3151 allocated++; 3152 if (is_migrate_cma(get_pcppage_migratetype(page))) 3153 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 3154 -(1 << order)); 3155 } 3156 3157 /* 3158 * i pages were removed from the buddy list even if some leak due 3159 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 3160 * on i. Do not confuse with 'allocated' which is the number of 3161 * pages added to the pcp list. 3162 */ 3163 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 3164 spin_unlock(&zone->lock); 3165 return allocated; 3166 } 3167 3168 #ifdef CONFIG_NUMA 3169 /* 3170 * Called from the vmstat counter updater to drain pagesets of this 3171 * currently executing processor on remote nodes after they have 3172 * expired. 3173 */ 3174 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 3175 { 3176 int to_drain, batch; 3177 3178 batch = READ_ONCE(pcp->batch); 3179 to_drain = min(pcp->count, batch); 3180 if (to_drain > 0) { 3181 unsigned long flags; 3182 3183 /* 3184 * free_pcppages_bulk expects IRQs disabled for zone->lock 3185 * so even though pcp->lock is not intended to be IRQ-safe, 3186 * it's needed in this context. 3187 */ 3188 spin_lock_irqsave(&pcp->lock, flags); 3189 free_pcppages_bulk(zone, to_drain, pcp, 0); 3190 spin_unlock_irqrestore(&pcp->lock, flags); 3191 } 3192 } 3193 #endif 3194 3195 /* 3196 * Drain pcplists of the indicated processor and zone. 3197 */ 3198 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 3199 { 3200 struct per_cpu_pages *pcp; 3201 3202 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 3203 if (pcp->count) { 3204 unsigned long flags; 3205 3206 /* See drain_zone_pages on why this is disabling IRQs */ 3207 spin_lock_irqsave(&pcp->lock, flags); 3208 free_pcppages_bulk(zone, pcp->count, pcp, 0); 3209 spin_unlock_irqrestore(&pcp->lock, flags); 3210 } 3211 } 3212 3213 /* 3214 * Drain pcplists of all zones on the indicated processor. 3215 */ 3216 static void drain_pages(unsigned int cpu) 3217 { 3218 struct zone *zone; 3219 3220 for_each_populated_zone(zone) { 3221 drain_pages_zone(cpu, zone); 3222 } 3223 } 3224 3225 /* 3226 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 3227 */ 3228 void drain_local_pages(struct zone *zone) 3229 { 3230 int cpu = smp_processor_id(); 3231 3232 if (zone) 3233 drain_pages_zone(cpu, zone); 3234 else 3235 drain_pages(cpu); 3236 } 3237 3238 /* 3239 * The implementation of drain_all_pages(), exposing an extra parameter to 3240 * drain on all cpus. 3241 * 3242 * drain_all_pages() is optimized to only execute on cpus where pcplists are 3243 * not empty. The check for non-emptiness can however race with a free to 3244 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 3245 * that need the guarantee that every CPU has drained can disable the 3246 * optimizing racy check. 3247 */ 3248 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 3249 { 3250 int cpu; 3251 3252 /* 3253 * Allocate in the BSS so we won't require allocation in 3254 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 3255 */ 3256 static cpumask_t cpus_with_pcps; 3257 3258 /* 3259 * Do not drain if one is already in progress unless it's specific to 3260 * a zone. Such callers are primarily CMA and memory hotplug and need 3261 * the drain to be complete when the call returns. 3262 */ 3263 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 3264 if (!zone) 3265 return; 3266 mutex_lock(&pcpu_drain_mutex); 3267 } 3268 3269 /* 3270 * We don't care about racing with CPU hotplug event 3271 * as offline notification will cause the notified 3272 * cpu to drain that CPU pcps and on_each_cpu_mask 3273 * disables preemption as part of its processing 3274 */ 3275 for_each_online_cpu(cpu) { 3276 struct per_cpu_pages *pcp; 3277 struct zone *z; 3278 bool has_pcps = false; 3279 3280 if (force_all_cpus) { 3281 /* 3282 * The pcp.count check is racy, some callers need a 3283 * guarantee that no cpu is missed. 3284 */ 3285 has_pcps = true; 3286 } else if (zone) { 3287 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 3288 if (pcp->count) 3289 has_pcps = true; 3290 } else { 3291 for_each_populated_zone(z) { 3292 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); 3293 if (pcp->count) { 3294 has_pcps = true; 3295 break; 3296 } 3297 } 3298 } 3299 3300 if (has_pcps) 3301 cpumask_set_cpu(cpu, &cpus_with_pcps); 3302 else 3303 cpumask_clear_cpu(cpu, &cpus_with_pcps); 3304 } 3305 3306 for_each_cpu(cpu, &cpus_with_pcps) { 3307 if (zone) 3308 drain_pages_zone(cpu, zone); 3309 else 3310 drain_pages(cpu); 3311 } 3312 3313 mutex_unlock(&pcpu_drain_mutex); 3314 } 3315 3316 /* 3317 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 3318 * 3319 * When zone parameter is non-NULL, spill just the single zone's pages. 3320 */ 3321 void drain_all_pages(struct zone *zone) 3322 { 3323 __drain_all_pages(zone, false); 3324 } 3325 3326 #ifdef CONFIG_HIBERNATION 3327 3328 /* 3329 * Touch the watchdog for every WD_PAGE_COUNT pages. 3330 */ 3331 #define WD_PAGE_COUNT (128*1024) 3332 3333 void mark_free_pages(struct zone *zone) 3334 { 3335 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 3336 unsigned long flags; 3337 unsigned int order, t; 3338 struct page *page; 3339 3340 if (zone_is_empty(zone)) 3341 return; 3342 3343 spin_lock_irqsave(&zone->lock, flags); 3344 3345 max_zone_pfn = zone_end_pfn(zone); 3346 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 3347 if (pfn_valid(pfn)) { 3348 page = pfn_to_page(pfn); 3349 3350 if (!--page_count) { 3351 touch_nmi_watchdog(); 3352 page_count = WD_PAGE_COUNT; 3353 } 3354 3355 if (page_zone(page) != zone) 3356 continue; 3357 3358 if (!swsusp_page_is_forbidden(page)) 3359 swsusp_unset_page_free(page); 3360 } 3361 3362 for_each_migratetype_order(order, t) { 3363 list_for_each_entry(page, 3364 &zone->free_area[order].free_list[t], buddy_list) { 3365 unsigned long i; 3366 3367 pfn = page_to_pfn(page); 3368 for (i = 0; i < (1UL << order); i++) { 3369 if (!--page_count) { 3370 touch_nmi_watchdog(); 3371 page_count = WD_PAGE_COUNT; 3372 } 3373 swsusp_set_page_free(pfn_to_page(pfn + i)); 3374 } 3375 } 3376 } 3377 spin_unlock_irqrestore(&zone->lock, flags); 3378 } 3379 #endif /* CONFIG_PM */ 3380 3381 static bool free_unref_page_prepare(struct page *page, unsigned long pfn, 3382 unsigned int order) 3383 { 3384 int migratetype; 3385 3386 if (!free_pcp_prepare(page, order)) 3387 return false; 3388 3389 migratetype = get_pfnblock_migratetype(page, pfn); 3390 set_pcppage_migratetype(page, migratetype); 3391 return true; 3392 } 3393 3394 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch, 3395 bool free_high) 3396 { 3397 int min_nr_free, max_nr_free; 3398 3399 /* Free everything if batch freeing high-order pages. */ 3400 if (unlikely(free_high)) 3401 return pcp->count; 3402 3403 /* Check for PCP disabled or boot pageset */ 3404 if (unlikely(high < batch)) 3405 return 1; 3406 3407 /* Leave at least pcp->batch pages on the list */ 3408 min_nr_free = batch; 3409 max_nr_free = high - batch; 3410 3411 /* 3412 * Double the number of pages freed each time there is subsequent 3413 * freeing of pages without any allocation. 3414 */ 3415 batch <<= pcp->free_factor; 3416 if (batch < max_nr_free) 3417 pcp->free_factor++; 3418 batch = clamp(batch, min_nr_free, max_nr_free); 3419 3420 return batch; 3421 } 3422 3423 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone, 3424 bool free_high) 3425 { 3426 int high = READ_ONCE(pcp->high); 3427 3428 if (unlikely(!high || free_high)) 3429 return 0; 3430 3431 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) 3432 return high; 3433 3434 /* 3435 * If reclaim is active, limit the number of pages that can be 3436 * stored on pcp lists 3437 */ 3438 return min(READ_ONCE(pcp->batch) << 2, high); 3439 } 3440 3441 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp, 3442 struct page *page, int migratetype, 3443 unsigned int order) 3444 { 3445 int high; 3446 int pindex; 3447 bool free_high; 3448 3449 __count_vm_events(PGFREE, 1 << order); 3450 pindex = order_to_pindex(migratetype, order); 3451 list_add(&page->pcp_list, &pcp->lists[pindex]); 3452 pcp->count += 1 << order; 3453 3454 /* 3455 * As high-order pages other than THP's stored on PCP can contribute 3456 * to fragmentation, limit the number stored when PCP is heavily 3457 * freeing without allocation. The remainder after bulk freeing 3458 * stops will be drained from vmstat refresh context. 3459 */ 3460 free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER); 3461 3462 high = nr_pcp_high(pcp, zone, free_high); 3463 if (pcp->count >= high) { 3464 int batch = READ_ONCE(pcp->batch); 3465 3466 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex); 3467 } 3468 } 3469 3470 /* 3471 * Free a pcp page 3472 */ 3473 void free_unref_page(struct page *page, unsigned int order) 3474 { 3475 unsigned long flags; 3476 unsigned long __maybe_unused UP_flags; 3477 struct per_cpu_pages *pcp; 3478 struct zone *zone; 3479 unsigned long pfn = page_to_pfn(page); 3480 int migratetype; 3481 3482 if (!free_unref_page_prepare(page, pfn, order)) 3483 return; 3484 3485 /* 3486 * We only track unmovable, reclaimable and movable on pcp lists. 3487 * Place ISOLATE pages on the isolated list because they are being 3488 * offlined but treat HIGHATOMIC as movable pages so we can get those 3489 * areas back if necessary. Otherwise, we may have to free 3490 * excessively into the page allocator 3491 */ 3492 migratetype = get_pcppage_migratetype(page); 3493 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 3494 if (unlikely(is_migrate_isolate(migratetype))) { 3495 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE); 3496 return; 3497 } 3498 migratetype = MIGRATE_MOVABLE; 3499 } 3500 3501 zone = page_zone(page); 3502 pcp_trylock_prepare(UP_flags); 3503 pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags); 3504 if (pcp) { 3505 free_unref_page_commit(zone, pcp, page, migratetype, order); 3506 pcp_spin_unlock_irqrestore(pcp, flags); 3507 } else { 3508 free_one_page(zone, page, pfn, order, migratetype, FPI_NONE); 3509 } 3510 pcp_trylock_finish(UP_flags); 3511 } 3512 3513 /* 3514 * Free a list of 0-order pages 3515 */ 3516 void free_unref_page_list(struct list_head *list) 3517 { 3518 struct page *page, *next; 3519 struct per_cpu_pages *pcp = NULL; 3520 struct zone *locked_zone = NULL; 3521 unsigned long flags; 3522 int batch_count = 0; 3523 int migratetype; 3524 3525 /* Prepare pages for freeing */ 3526 list_for_each_entry_safe(page, next, list, lru) { 3527 unsigned long pfn = page_to_pfn(page); 3528 if (!free_unref_page_prepare(page, pfn, 0)) { 3529 list_del(&page->lru); 3530 continue; 3531 } 3532 3533 /* 3534 * Free isolated pages directly to the allocator, see 3535 * comment in free_unref_page. 3536 */ 3537 migratetype = get_pcppage_migratetype(page); 3538 if (unlikely(is_migrate_isolate(migratetype))) { 3539 list_del(&page->lru); 3540 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE); 3541 continue; 3542 } 3543 } 3544 3545 list_for_each_entry_safe(page, next, list, lru) { 3546 struct zone *zone = page_zone(page); 3547 3548 /* Different zone, different pcp lock. */ 3549 if (zone != locked_zone) { 3550 if (pcp) 3551 pcp_spin_unlock_irqrestore(pcp, flags); 3552 3553 locked_zone = zone; 3554 pcp = pcp_spin_lock_irqsave(locked_zone->per_cpu_pageset, flags); 3555 } 3556 3557 /* 3558 * Non-isolated types over MIGRATE_PCPTYPES get added 3559 * to the MIGRATE_MOVABLE pcp list. 3560 */ 3561 migratetype = get_pcppage_migratetype(page); 3562 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) 3563 migratetype = MIGRATE_MOVABLE; 3564 3565 trace_mm_page_free_batched(page); 3566 free_unref_page_commit(zone, pcp, page, migratetype, 0); 3567 3568 /* 3569 * Guard against excessive IRQ disabled times when we get 3570 * a large list of pages to free. 3571 */ 3572 if (++batch_count == SWAP_CLUSTER_MAX) { 3573 pcp_spin_unlock_irqrestore(pcp, flags); 3574 batch_count = 0; 3575 pcp = pcp_spin_lock_irqsave(locked_zone->per_cpu_pageset, flags); 3576 } 3577 } 3578 3579 if (pcp) 3580 pcp_spin_unlock_irqrestore(pcp, flags); 3581 } 3582 3583 /* 3584 * split_page takes a non-compound higher-order page, and splits it into 3585 * n (1<<order) sub-pages: page[0..n] 3586 * Each sub-page must be freed individually. 3587 * 3588 * Note: this is probably too low level an operation for use in drivers. 3589 * Please consult with lkml before using this in your driver. 3590 */ 3591 void split_page(struct page *page, unsigned int order) 3592 { 3593 int i; 3594 3595 VM_BUG_ON_PAGE(PageCompound(page), page); 3596 VM_BUG_ON_PAGE(!page_count(page), page); 3597 3598 for (i = 1; i < (1 << order); i++) 3599 set_page_refcounted(page + i); 3600 split_page_owner(page, 1 << order); 3601 split_page_memcg(page, 1 << order); 3602 } 3603 EXPORT_SYMBOL_GPL(split_page); 3604 3605 int __isolate_free_page(struct page *page, unsigned int order) 3606 { 3607 struct zone *zone = page_zone(page); 3608 int mt = get_pageblock_migratetype(page); 3609 3610 if (!is_migrate_isolate(mt)) { 3611 unsigned long watermark; 3612 /* 3613 * Obey watermarks as if the page was being allocated. We can 3614 * emulate a high-order watermark check with a raised order-0 3615 * watermark, because we already know our high-order page 3616 * exists. 3617 */ 3618 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 3619 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 3620 return 0; 3621 3622 __mod_zone_freepage_state(zone, -(1UL << order), mt); 3623 } 3624 3625 del_page_from_free_list(page, zone, order); 3626 3627 /* 3628 * Set the pageblock if the isolated page is at least half of a 3629 * pageblock 3630 */ 3631 if (order >= pageblock_order - 1) { 3632 struct page *endpage = page + (1 << order) - 1; 3633 for (; page < endpage; page += pageblock_nr_pages) { 3634 int mt = get_pageblock_migratetype(page); 3635 /* 3636 * Only change normal pageblocks (i.e., they can merge 3637 * with others) 3638 */ 3639 if (migratetype_is_mergeable(mt)) 3640 set_pageblock_migratetype(page, 3641 MIGRATE_MOVABLE); 3642 } 3643 } 3644 3645 return 1UL << order; 3646 } 3647 3648 /** 3649 * __putback_isolated_page - Return a now-isolated page back where we got it 3650 * @page: Page that was isolated 3651 * @order: Order of the isolated page 3652 * @mt: The page's pageblock's migratetype 3653 * 3654 * This function is meant to return a page pulled from the free lists via 3655 * __isolate_free_page back to the free lists they were pulled from. 3656 */ 3657 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 3658 { 3659 struct zone *zone = page_zone(page); 3660 3661 /* zone lock should be held when this function is called */ 3662 lockdep_assert_held(&zone->lock); 3663 3664 /* Return isolated page to tail of freelist. */ 3665 __free_one_page(page, page_to_pfn(page), zone, order, mt, 3666 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 3667 } 3668 3669 /* 3670 * Update NUMA hit/miss statistics 3671 */ 3672 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 3673 long nr_account) 3674 { 3675 #ifdef CONFIG_NUMA 3676 enum numa_stat_item local_stat = NUMA_LOCAL; 3677 3678 /* skip numa counters update if numa stats is disabled */ 3679 if (!static_branch_likely(&vm_numa_stat_key)) 3680 return; 3681 3682 if (zone_to_nid(z) != numa_node_id()) 3683 local_stat = NUMA_OTHER; 3684 3685 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 3686 __count_numa_events(z, NUMA_HIT, nr_account); 3687 else { 3688 __count_numa_events(z, NUMA_MISS, nr_account); 3689 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); 3690 } 3691 __count_numa_events(z, local_stat, nr_account); 3692 #endif 3693 } 3694 3695 static __always_inline 3696 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone, 3697 unsigned int order, unsigned int alloc_flags, 3698 int migratetype) 3699 { 3700 struct page *page; 3701 unsigned long flags; 3702 3703 do { 3704 page = NULL; 3705 spin_lock_irqsave(&zone->lock, flags); 3706 /* 3707 * order-0 request can reach here when the pcplist is skipped 3708 * due to non-CMA allocation context. HIGHATOMIC area is 3709 * reserved for high-order atomic allocation, so order-0 3710 * request should skip it. 3711 */ 3712 if (order > 0 && alloc_flags & ALLOC_HARDER) 3713 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3714 if (!page) { 3715 page = __rmqueue(zone, order, migratetype, alloc_flags); 3716 if (!page) { 3717 spin_unlock_irqrestore(&zone->lock, flags); 3718 return NULL; 3719 } 3720 } 3721 __mod_zone_freepage_state(zone, -(1 << order), 3722 get_pcppage_migratetype(page)); 3723 spin_unlock_irqrestore(&zone->lock, flags); 3724 } while (check_new_pages(page, order)); 3725 3726 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3727 zone_statistics(preferred_zone, zone, 1); 3728 3729 return page; 3730 } 3731 3732 /* Remove page from the per-cpu list, caller must protect the list */ 3733 static inline 3734 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, 3735 int migratetype, 3736 unsigned int alloc_flags, 3737 struct per_cpu_pages *pcp, 3738 struct list_head *list) 3739 { 3740 struct page *page; 3741 3742 do { 3743 if (list_empty(list)) { 3744 int batch = READ_ONCE(pcp->batch); 3745 int alloced; 3746 3747 /* 3748 * Scale batch relative to order if batch implies 3749 * free pages can be stored on the PCP. Batch can 3750 * be 1 for small zones or for boot pagesets which 3751 * should never store free pages as the pages may 3752 * belong to arbitrary zones. 3753 */ 3754 if (batch > 1) 3755 batch = max(batch >> order, 2); 3756 alloced = rmqueue_bulk(zone, order, 3757 batch, list, 3758 migratetype, alloc_flags); 3759 3760 pcp->count += alloced << order; 3761 if (unlikely(list_empty(list))) 3762 return NULL; 3763 } 3764 3765 page = list_first_entry(list, struct page, pcp_list); 3766 list_del(&page->pcp_list); 3767 pcp->count -= 1 << order; 3768 } while (check_new_pcp(page, order)); 3769 3770 return page; 3771 } 3772 3773 /* Lock and remove page from the per-cpu list */ 3774 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3775 struct zone *zone, unsigned int order, 3776 int migratetype, unsigned int alloc_flags) 3777 { 3778 struct per_cpu_pages *pcp; 3779 struct list_head *list; 3780 struct page *page; 3781 unsigned long flags; 3782 unsigned long __maybe_unused UP_flags; 3783 3784 /* 3785 * spin_trylock may fail due to a parallel drain. In the future, the 3786 * trylock will also protect against IRQ reentrancy. 3787 */ 3788 pcp_trylock_prepare(UP_flags); 3789 pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags); 3790 if (!pcp) { 3791 pcp_trylock_finish(UP_flags); 3792 return NULL; 3793 } 3794 3795 /* 3796 * On allocation, reduce the number of pages that are batch freed. 3797 * See nr_pcp_free() where free_factor is increased for subsequent 3798 * frees. 3799 */ 3800 pcp->free_factor >>= 1; 3801 list = &pcp->lists[order_to_pindex(migratetype, order)]; 3802 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); 3803 pcp_spin_unlock_irqrestore(pcp, flags); 3804 pcp_trylock_finish(UP_flags); 3805 if (page) { 3806 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3807 zone_statistics(preferred_zone, zone, 1); 3808 } 3809 return page; 3810 } 3811 3812 /* 3813 * Allocate a page from the given zone. 3814 * Use pcplists for THP or "cheap" high-order allocations. 3815 */ 3816 3817 /* 3818 * Do not instrument rmqueue() with KMSAN. This function may call 3819 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask(). 3820 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it 3821 * may call rmqueue() again, which will result in a deadlock. 3822 */ 3823 __no_sanitize_memory 3824 static inline 3825 struct page *rmqueue(struct zone *preferred_zone, 3826 struct zone *zone, unsigned int order, 3827 gfp_t gfp_flags, unsigned int alloc_flags, 3828 int migratetype) 3829 { 3830 struct page *page; 3831 3832 /* 3833 * We most definitely don't want callers attempting to 3834 * allocate greater than order-1 page units with __GFP_NOFAIL. 3835 */ 3836 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3837 3838 if (likely(pcp_allowed_order(order))) { 3839 /* 3840 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and 3841 * we need to skip it when CMA area isn't allowed. 3842 */ 3843 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA || 3844 migratetype != MIGRATE_MOVABLE) { 3845 page = rmqueue_pcplist(preferred_zone, zone, order, 3846 migratetype, alloc_flags); 3847 if (likely(page)) 3848 goto out; 3849 } 3850 } 3851 3852 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags, 3853 migratetype); 3854 3855 out: 3856 /* Separate test+clear to avoid unnecessary atomics */ 3857 if (unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) { 3858 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3859 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3860 } 3861 3862 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3863 return page; 3864 } 3865 3866 #ifdef CONFIG_FAIL_PAGE_ALLOC 3867 3868 static struct { 3869 struct fault_attr attr; 3870 3871 bool ignore_gfp_highmem; 3872 bool ignore_gfp_reclaim; 3873 u32 min_order; 3874 } fail_page_alloc = { 3875 .attr = FAULT_ATTR_INITIALIZER, 3876 .ignore_gfp_reclaim = true, 3877 .ignore_gfp_highmem = true, 3878 .min_order = 1, 3879 }; 3880 3881 static int __init setup_fail_page_alloc(char *str) 3882 { 3883 return setup_fault_attr(&fail_page_alloc.attr, str); 3884 } 3885 __setup("fail_page_alloc=", setup_fail_page_alloc); 3886 3887 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3888 { 3889 if (order < fail_page_alloc.min_order) 3890 return false; 3891 if (gfp_mask & __GFP_NOFAIL) 3892 return false; 3893 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3894 return false; 3895 if (fail_page_alloc.ignore_gfp_reclaim && 3896 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3897 return false; 3898 3899 if (gfp_mask & __GFP_NOWARN) 3900 fail_page_alloc.attr.no_warn = true; 3901 3902 return should_fail(&fail_page_alloc.attr, 1 << order); 3903 } 3904 3905 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3906 3907 static int __init fail_page_alloc_debugfs(void) 3908 { 3909 umode_t mode = S_IFREG | 0600; 3910 struct dentry *dir; 3911 3912 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3913 &fail_page_alloc.attr); 3914 3915 debugfs_create_bool("ignore-gfp-wait", mode, dir, 3916 &fail_page_alloc.ignore_gfp_reclaim); 3917 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3918 &fail_page_alloc.ignore_gfp_highmem); 3919 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order); 3920 3921 return 0; 3922 } 3923 3924 late_initcall(fail_page_alloc_debugfs); 3925 3926 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3927 3928 #else /* CONFIG_FAIL_PAGE_ALLOC */ 3929 3930 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3931 { 3932 return false; 3933 } 3934 3935 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3936 3937 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3938 { 3939 return __should_fail_alloc_page(gfp_mask, order); 3940 } 3941 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 3942 3943 static inline long __zone_watermark_unusable_free(struct zone *z, 3944 unsigned int order, unsigned int alloc_flags) 3945 { 3946 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3947 long unusable_free = (1 << order) - 1; 3948 3949 /* 3950 * If the caller does not have rights to ALLOC_HARDER then subtract 3951 * the high-atomic reserves. This will over-estimate the size of the 3952 * atomic reserve but it avoids a search. 3953 */ 3954 if (likely(!alloc_harder)) 3955 unusable_free += z->nr_reserved_highatomic; 3956 3957 #ifdef CONFIG_CMA 3958 /* If allocation can't use CMA areas don't use free CMA pages */ 3959 if (!(alloc_flags & ALLOC_CMA)) 3960 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3961 #endif 3962 3963 return unusable_free; 3964 } 3965 3966 /* 3967 * Return true if free base pages are above 'mark'. For high-order checks it 3968 * will return true of the order-0 watermark is reached and there is at least 3969 * one free page of a suitable size. Checking now avoids taking the zone lock 3970 * to check in the allocation paths if no pages are free. 3971 */ 3972 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3973 int highest_zoneidx, unsigned int alloc_flags, 3974 long free_pages) 3975 { 3976 long min = mark; 3977 int o; 3978 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3979 3980 /* free_pages may go negative - that's OK */ 3981 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3982 3983 if (alloc_flags & ALLOC_HIGH) 3984 min -= min / 2; 3985 3986 if (unlikely(alloc_harder)) { 3987 /* 3988 * OOM victims can try even harder than normal ALLOC_HARDER 3989 * users on the grounds that it's definitely going to be in 3990 * the exit path shortly and free memory. Any allocation it 3991 * makes during the free path will be small and short-lived. 3992 */ 3993 if (alloc_flags & ALLOC_OOM) 3994 min -= min / 2; 3995 else 3996 min -= min / 4; 3997 } 3998 3999 /* 4000 * Check watermarks for an order-0 allocation request. If these 4001 * are not met, then a high-order request also cannot go ahead 4002 * even if a suitable page happened to be free. 4003 */ 4004 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 4005 return false; 4006 4007 /* If this is an order-0 request then the watermark is fine */ 4008 if (!order) 4009 return true; 4010 4011 /* For a high-order request, check at least one suitable page is free */ 4012 for (o = order; o < MAX_ORDER; o++) { 4013 struct free_area *area = &z->free_area[o]; 4014 int mt; 4015 4016 if (!area->nr_free) 4017 continue; 4018 4019 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 4020 if (!free_area_empty(area, mt)) 4021 return true; 4022 } 4023 4024 #ifdef CONFIG_CMA 4025 if ((alloc_flags & ALLOC_CMA) && 4026 !free_area_empty(area, MIGRATE_CMA)) { 4027 return true; 4028 } 4029 #endif 4030 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC)) 4031 return true; 4032 } 4033 return false; 4034 } 4035 4036 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 4037 int highest_zoneidx, unsigned int alloc_flags) 4038 { 4039 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 4040 zone_page_state(z, NR_FREE_PAGES)); 4041 } 4042 4043 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 4044 unsigned long mark, int highest_zoneidx, 4045 unsigned int alloc_flags, gfp_t gfp_mask) 4046 { 4047 long free_pages; 4048 4049 free_pages = zone_page_state(z, NR_FREE_PAGES); 4050 4051 /* 4052 * Fast check for order-0 only. If this fails then the reserves 4053 * need to be calculated. 4054 */ 4055 if (!order) { 4056 long usable_free; 4057 long reserved; 4058 4059 usable_free = free_pages; 4060 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags); 4061 4062 /* reserved may over estimate high-atomic reserves. */ 4063 usable_free -= min(usable_free, reserved); 4064 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx]) 4065 return true; 4066 } 4067 4068 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 4069 free_pages)) 4070 return true; 4071 /* 4072 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations 4073 * when checking the min watermark. The min watermark is the 4074 * point where boosting is ignored so that kswapd is woken up 4075 * when below the low watermark. 4076 */ 4077 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost 4078 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 4079 mark = z->_watermark[WMARK_MIN]; 4080 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 4081 alloc_flags, free_pages); 4082 } 4083 4084 return false; 4085 } 4086 4087 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 4088 unsigned long mark, int highest_zoneidx) 4089 { 4090 long free_pages = zone_page_state(z, NR_FREE_PAGES); 4091 4092 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 4093 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 4094 4095 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 4096 free_pages); 4097 } 4098 4099 #ifdef CONFIG_NUMA 4100 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 4101 4102 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 4103 { 4104 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 4105 node_reclaim_distance; 4106 } 4107 #else /* CONFIG_NUMA */ 4108 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 4109 { 4110 return true; 4111 } 4112 #endif /* CONFIG_NUMA */ 4113 4114 /* 4115 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 4116 * fragmentation is subtle. If the preferred zone was HIGHMEM then 4117 * premature use of a lower zone may cause lowmem pressure problems that 4118 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 4119 * probably too small. It only makes sense to spread allocations to avoid 4120 * fragmentation between the Normal and DMA32 zones. 4121 */ 4122 static inline unsigned int 4123 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 4124 { 4125 unsigned int alloc_flags; 4126 4127 /* 4128 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4129 * to save a branch. 4130 */ 4131 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 4132 4133 #ifdef CONFIG_ZONE_DMA32 4134 if (!zone) 4135 return alloc_flags; 4136 4137 if (zone_idx(zone) != ZONE_NORMAL) 4138 return alloc_flags; 4139 4140 /* 4141 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 4142 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 4143 * on UMA that if Normal is populated then so is DMA32. 4144 */ 4145 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 4146 if (nr_online_nodes > 1 && !populated_zone(--zone)) 4147 return alloc_flags; 4148 4149 alloc_flags |= ALLOC_NOFRAGMENT; 4150 #endif /* CONFIG_ZONE_DMA32 */ 4151 return alloc_flags; 4152 } 4153 4154 /* Must be called after current_gfp_context() which can change gfp_mask */ 4155 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 4156 unsigned int alloc_flags) 4157 { 4158 #ifdef CONFIG_CMA 4159 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 4160 alloc_flags |= ALLOC_CMA; 4161 #endif 4162 return alloc_flags; 4163 } 4164 4165 /* 4166 * get_page_from_freelist goes through the zonelist trying to allocate 4167 * a page. 4168 */ 4169 static struct page * 4170 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 4171 const struct alloc_context *ac) 4172 { 4173 struct zoneref *z; 4174 struct zone *zone; 4175 struct pglist_data *last_pgdat = NULL; 4176 bool last_pgdat_dirty_ok = false; 4177 bool no_fallback; 4178 4179 retry: 4180 /* 4181 * Scan zonelist, looking for a zone with enough free. 4182 * See also __cpuset_node_allowed() comment in kernel/cgroup/cpuset.c. 4183 */ 4184 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 4185 z = ac->preferred_zoneref; 4186 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 4187 ac->nodemask) { 4188 struct page *page; 4189 unsigned long mark; 4190 4191 if (cpusets_enabled() && 4192 (alloc_flags & ALLOC_CPUSET) && 4193 !__cpuset_zone_allowed(zone, gfp_mask)) 4194 continue; 4195 /* 4196 * When allocating a page cache page for writing, we 4197 * want to get it from a node that is within its dirty 4198 * limit, such that no single node holds more than its 4199 * proportional share of globally allowed dirty pages. 4200 * The dirty limits take into account the node's 4201 * lowmem reserves and high watermark so that kswapd 4202 * should be able to balance it without having to 4203 * write pages from its LRU list. 4204 * 4205 * XXX: For now, allow allocations to potentially 4206 * exceed the per-node dirty limit in the slowpath 4207 * (spread_dirty_pages unset) before going into reclaim, 4208 * which is important when on a NUMA setup the allowed 4209 * nodes are together not big enough to reach the 4210 * global limit. The proper fix for these situations 4211 * will require awareness of nodes in the 4212 * dirty-throttling and the flusher threads. 4213 */ 4214 if (ac->spread_dirty_pages) { 4215 if (last_pgdat != zone->zone_pgdat) { 4216 last_pgdat = zone->zone_pgdat; 4217 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat); 4218 } 4219 4220 if (!last_pgdat_dirty_ok) 4221 continue; 4222 } 4223 4224 if (no_fallback && nr_online_nodes > 1 && 4225 zone != ac->preferred_zoneref->zone) { 4226 int local_nid; 4227 4228 /* 4229 * If moving to a remote node, retry but allow 4230 * fragmenting fallbacks. Locality is more important 4231 * than fragmentation avoidance. 4232 */ 4233 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 4234 if (zone_to_nid(zone) != local_nid) { 4235 alloc_flags &= ~ALLOC_NOFRAGMENT; 4236 goto retry; 4237 } 4238 } 4239 4240 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 4241 if (!zone_watermark_fast(zone, order, mark, 4242 ac->highest_zoneidx, alloc_flags, 4243 gfp_mask)) { 4244 int ret; 4245 4246 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 4247 /* 4248 * Watermark failed for this zone, but see if we can 4249 * grow this zone if it contains deferred pages. 4250 */ 4251 if (static_branch_unlikely(&deferred_pages)) { 4252 if (_deferred_grow_zone(zone, order)) 4253 goto try_this_zone; 4254 } 4255 #endif 4256 /* Checked here to keep the fast path fast */ 4257 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 4258 if (alloc_flags & ALLOC_NO_WATERMARKS) 4259 goto try_this_zone; 4260 4261 if (!node_reclaim_enabled() || 4262 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 4263 continue; 4264 4265 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 4266 switch (ret) { 4267 case NODE_RECLAIM_NOSCAN: 4268 /* did not scan */ 4269 continue; 4270 case NODE_RECLAIM_FULL: 4271 /* scanned but unreclaimable */ 4272 continue; 4273 default: 4274 /* did we reclaim enough */ 4275 if (zone_watermark_ok(zone, order, mark, 4276 ac->highest_zoneidx, alloc_flags)) 4277 goto try_this_zone; 4278 4279 continue; 4280 } 4281 } 4282 4283 try_this_zone: 4284 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 4285 gfp_mask, alloc_flags, ac->migratetype); 4286 if (page) { 4287 prep_new_page(page, order, gfp_mask, alloc_flags); 4288 4289 /* 4290 * If this is a high-order atomic allocation then check 4291 * if the pageblock should be reserved for the future 4292 */ 4293 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 4294 reserve_highatomic_pageblock(page, zone, order); 4295 4296 return page; 4297 } else { 4298 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 4299 /* Try again if zone has deferred pages */ 4300 if (static_branch_unlikely(&deferred_pages)) { 4301 if (_deferred_grow_zone(zone, order)) 4302 goto try_this_zone; 4303 } 4304 #endif 4305 } 4306 } 4307 4308 /* 4309 * It's possible on a UMA machine to get through all zones that are 4310 * fragmented. If avoiding fragmentation, reset and try again. 4311 */ 4312 if (no_fallback) { 4313 alloc_flags &= ~ALLOC_NOFRAGMENT; 4314 goto retry; 4315 } 4316 4317 return NULL; 4318 } 4319 4320 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 4321 { 4322 unsigned int filter = SHOW_MEM_FILTER_NODES; 4323 4324 /* 4325 * This documents exceptions given to allocations in certain 4326 * contexts that are allowed to allocate outside current's set 4327 * of allowed nodes. 4328 */ 4329 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4330 if (tsk_is_oom_victim(current) || 4331 (current->flags & (PF_MEMALLOC | PF_EXITING))) 4332 filter &= ~SHOW_MEM_FILTER_NODES; 4333 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 4334 filter &= ~SHOW_MEM_FILTER_NODES; 4335 4336 __show_mem(filter, nodemask, gfp_zone(gfp_mask)); 4337 } 4338 4339 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 4340 { 4341 struct va_format vaf; 4342 va_list args; 4343 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 4344 4345 if ((gfp_mask & __GFP_NOWARN) || 4346 !__ratelimit(&nopage_rs) || 4347 ((gfp_mask & __GFP_DMA) && !has_managed_dma())) 4348 return; 4349 4350 va_start(args, fmt); 4351 vaf.fmt = fmt; 4352 vaf.va = &args; 4353 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 4354 current->comm, &vaf, gfp_mask, &gfp_mask, 4355 nodemask_pr_args(nodemask)); 4356 va_end(args); 4357 4358 cpuset_print_current_mems_allowed(); 4359 pr_cont("\n"); 4360 dump_stack(); 4361 warn_alloc_show_mem(gfp_mask, nodemask); 4362 } 4363 4364 static inline struct page * 4365 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 4366 unsigned int alloc_flags, 4367 const struct alloc_context *ac) 4368 { 4369 struct page *page; 4370 4371 page = get_page_from_freelist(gfp_mask, order, 4372 alloc_flags|ALLOC_CPUSET, ac); 4373 /* 4374 * fallback to ignore cpuset restriction if our nodes 4375 * are depleted 4376 */ 4377 if (!page) 4378 page = get_page_from_freelist(gfp_mask, order, 4379 alloc_flags, ac); 4380 4381 return page; 4382 } 4383 4384 static inline struct page * 4385 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 4386 const struct alloc_context *ac, unsigned long *did_some_progress) 4387 { 4388 struct oom_control oc = { 4389 .zonelist = ac->zonelist, 4390 .nodemask = ac->nodemask, 4391 .memcg = NULL, 4392 .gfp_mask = gfp_mask, 4393 .order = order, 4394 }; 4395 struct page *page; 4396 4397 *did_some_progress = 0; 4398 4399 /* 4400 * Acquire the oom lock. If that fails, somebody else is 4401 * making progress for us. 4402 */ 4403 if (!mutex_trylock(&oom_lock)) { 4404 *did_some_progress = 1; 4405 schedule_timeout_uninterruptible(1); 4406 return NULL; 4407 } 4408 4409 /* 4410 * Go through the zonelist yet one more time, keep very high watermark 4411 * here, this is only to catch a parallel oom killing, we must fail if 4412 * we're still under heavy pressure. But make sure that this reclaim 4413 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 4414 * allocation which will never fail due to oom_lock already held. 4415 */ 4416 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 4417 ~__GFP_DIRECT_RECLAIM, order, 4418 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 4419 if (page) 4420 goto out; 4421 4422 /* Coredumps can quickly deplete all memory reserves */ 4423 if (current->flags & PF_DUMPCORE) 4424 goto out; 4425 /* The OOM killer will not help higher order allocs */ 4426 if (order > PAGE_ALLOC_COSTLY_ORDER) 4427 goto out; 4428 /* 4429 * We have already exhausted all our reclaim opportunities without any 4430 * success so it is time to admit defeat. We will skip the OOM killer 4431 * because it is very likely that the caller has a more reasonable 4432 * fallback than shooting a random task. 4433 * 4434 * The OOM killer may not free memory on a specific node. 4435 */ 4436 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 4437 goto out; 4438 /* The OOM killer does not needlessly kill tasks for lowmem */ 4439 if (ac->highest_zoneidx < ZONE_NORMAL) 4440 goto out; 4441 if (pm_suspended_storage()) 4442 goto out; 4443 /* 4444 * XXX: GFP_NOFS allocations should rather fail than rely on 4445 * other request to make a forward progress. 4446 * We are in an unfortunate situation where out_of_memory cannot 4447 * do much for this context but let's try it to at least get 4448 * access to memory reserved if the current task is killed (see 4449 * out_of_memory). Once filesystems are ready to handle allocation 4450 * failures more gracefully we should just bail out here. 4451 */ 4452 4453 /* Exhausted what can be done so it's blame time */ 4454 if (out_of_memory(&oc) || 4455 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) { 4456 *did_some_progress = 1; 4457 4458 /* 4459 * Help non-failing allocations by giving them access to memory 4460 * reserves 4461 */ 4462 if (gfp_mask & __GFP_NOFAIL) 4463 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 4464 ALLOC_NO_WATERMARKS, ac); 4465 } 4466 out: 4467 mutex_unlock(&oom_lock); 4468 return page; 4469 } 4470 4471 /* 4472 * Maximum number of compaction retries with a progress before OOM 4473 * killer is consider as the only way to move forward. 4474 */ 4475 #define MAX_COMPACT_RETRIES 16 4476 4477 #ifdef CONFIG_COMPACTION 4478 /* Try memory compaction for high-order allocations before reclaim */ 4479 static struct page * 4480 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4481 unsigned int alloc_flags, const struct alloc_context *ac, 4482 enum compact_priority prio, enum compact_result *compact_result) 4483 { 4484 struct page *page = NULL; 4485 unsigned long pflags; 4486 unsigned int noreclaim_flag; 4487 4488 if (!order) 4489 return NULL; 4490 4491 psi_memstall_enter(&pflags); 4492 delayacct_compact_start(); 4493 noreclaim_flag = memalloc_noreclaim_save(); 4494 4495 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 4496 prio, &page); 4497 4498 memalloc_noreclaim_restore(noreclaim_flag); 4499 psi_memstall_leave(&pflags); 4500 delayacct_compact_end(); 4501 4502 if (*compact_result == COMPACT_SKIPPED) 4503 return NULL; 4504 /* 4505 * At least in one zone compaction wasn't deferred or skipped, so let's 4506 * count a compaction stall 4507 */ 4508 count_vm_event(COMPACTSTALL); 4509 4510 /* Prep a captured page if available */ 4511 if (page) 4512 prep_new_page(page, order, gfp_mask, alloc_flags); 4513 4514 /* Try get a page from the freelist if available */ 4515 if (!page) 4516 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4517 4518 if (page) { 4519 struct zone *zone = page_zone(page); 4520 4521 zone->compact_blockskip_flush = false; 4522 compaction_defer_reset(zone, order, true); 4523 count_vm_event(COMPACTSUCCESS); 4524 return page; 4525 } 4526 4527 /* 4528 * It's bad if compaction run occurs and fails. The most likely reason 4529 * is that pages exist, but not enough to satisfy watermarks. 4530 */ 4531 count_vm_event(COMPACTFAIL); 4532 4533 cond_resched(); 4534 4535 return NULL; 4536 } 4537 4538 static inline bool 4539 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 4540 enum compact_result compact_result, 4541 enum compact_priority *compact_priority, 4542 int *compaction_retries) 4543 { 4544 int max_retries = MAX_COMPACT_RETRIES; 4545 int min_priority; 4546 bool ret = false; 4547 int retries = *compaction_retries; 4548 enum compact_priority priority = *compact_priority; 4549 4550 if (!order) 4551 return false; 4552 4553 if (fatal_signal_pending(current)) 4554 return false; 4555 4556 if (compaction_made_progress(compact_result)) 4557 (*compaction_retries)++; 4558 4559 /* 4560 * compaction considers all the zone as desperately out of memory 4561 * so it doesn't really make much sense to retry except when the 4562 * failure could be caused by insufficient priority 4563 */ 4564 if (compaction_failed(compact_result)) 4565 goto check_priority; 4566 4567 /* 4568 * compaction was skipped because there are not enough order-0 pages 4569 * to work with, so we retry only if it looks like reclaim can help. 4570 */ 4571 if (compaction_needs_reclaim(compact_result)) { 4572 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 4573 goto out; 4574 } 4575 4576 /* 4577 * make sure the compaction wasn't deferred or didn't bail out early 4578 * due to locks contention before we declare that we should give up. 4579 * But the next retry should use a higher priority if allowed, so 4580 * we don't just keep bailing out endlessly. 4581 */ 4582 if (compaction_withdrawn(compact_result)) { 4583 goto check_priority; 4584 } 4585 4586 /* 4587 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 4588 * costly ones because they are de facto nofail and invoke OOM 4589 * killer to move on while costly can fail and users are ready 4590 * to cope with that. 1/4 retries is rather arbitrary but we 4591 * would need much more detailed feedback from compaction to 4592 * make a better decision. 4593 */ 4594 if (order > PAGE_ALLOC_COSTLY_ORDER) 4595 max_retries /= 4; 4596 if (*compaction_retries <= max_retries) { 4597 ret = true; 4598 goto out; 4599 } 4600 4601 /* 4602 * Make sure there are attempts at the highest priority if we exhausted 4603 * all retries or failed at the lower priorities. 4604 */ 4605 check_priority: 4606 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 4607 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 4608 4609 if (*compact_priority > min_priority) { 4610 (*compact_priority)--; 4611 *compaction_retries = 0; 4612 ret = true; 4613 } 4614 out: 4615 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 4616 return ret; 4617 } 4618 #else 4619 static inline struct page * 4620 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4621 unsigned int alloc_flags, const struct alloc_context *ac, 4622 enum compact_priority prio, enum compact_result *compact_result) 4623 { 4624 *compact_result = COMPACT_SKIPPED; 4625 return NULL; 4626 } 4627 4628 static inline bool 4629 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 4630 enum compact_result compact_result, 4631 enum compact_priority *compact_priority, 4632 int *compaction_retries) 4633 { 4634 struct zone *zone; 4635 struct zoneref *z; 4636 4637 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 4638 return false; 4639 4640 /* 4641 * There are setups with compaction disabled which would prefer to loop 4642 * inside the allocator rather than hit the oom killer prematurely. 4643 * Let's give them a good hope and keep retrying while the order-0 4644 * watermarks are OK. 4645 */ 4646 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4647 ac->highest_zoneidx, ac->nodemask) { 4648 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 4649 ac->highest_zoneidx, alloc_flags)) 4650 return true; 4651 } 4652 return false; 4653 } 4654 #endif /* CONFIG_COMPACTION */ 4655 4656 #ifdef CONFIG_LOCKDEP 4657 static struct lockdep_map __fs_reclaim_map = 4658 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 4659 4660 static bool __need_reclaim(gfp_t gfp_mask) 4661 { 4662 /* no reclaim without waiting on it */ 4663 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 4664 return false; 4665 4666 /* this guy won't enter reclaim */ 4667 if (current->flags & PF_MEMALLOC) 4668 return false; 4669 4670 if (gfp_mask & __GFP_NOLOCKDEP) 4671 return false; 4672 4673 return true; 4674 } 4675 4676 void __fs_reclaim_acquire(unsigned long ip) 4677 { 4678 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); 4679 } 4680 4681 void __fs_reclaim_release(unsigned long ip) 4682 { 4683 lock_release(&__fs_reclaim_map, ip); 4684 } 4685 4686 void fs_reclaim_acquire(gfp_t gfp_mask) 4687 { 4688 gfp_mask = current_gfp_context(gfp_mask); 4689 4690 if (__need_reclaim(gfp_mask)) { 4691 if (gfp_mask & __GFP_FS) 4692 __fs_reclaim_acquire(_RET_IP_); 4693 4694 #ifdef CONFIG_MMU_NOTIFIER 4695 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 4696 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 4697 #endif 4698 4699 } 4700 } 4701 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4702 4703 void fs_reclaim_release(gfp_t gfp_mask) 4704 { 4705 gfp_mask = current_gfp_context(gfp_mask); 4706 4707 if (__need_reclaim(gfp_mask)) { 4708 if (gfp_mask & __GFP_FS) 4709 __fs_reclaim_release(_RET_IP_); 4710 } 4711 } 4712 EXPORT_SYMBOL_GPL(fs_reclaim_release); 4713 #endif 4714 4715 /* 4716 * Zonelists may change due to hotplug during allocation. Detect when zonelists 4717 * have been rebuilt so allocation retries. Reader side does not lock and 4718 * retries the allocation if zonelist changes. Writer side is protected by the 4719 * embedded spin_lock. 4720 */ 4721 static DEFINE_SEQLOCK(zonelist_update_seq); 4722 4723 static unsigned int zonelist_iter_begin(void) 4724 { 4725 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 4726 return read_seqbegin(&zonelist_update_seq); 4727 4728 return 0; 4729 } 4730 4731 static unsigned int check_retry_zonelist(unsigned int seq) 4732 { 4733 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 4734 return read_seqretry(&zonelist_update_seq, seq); 4735 4736 return seq; 4737 } 4738 4739 /* Perform direct synchronous page reclaim */ 4740 static unsigned long 4741 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 4742 const struct alloc_context *ac) 4743 { 4744 unsigned int noreclaim_flag; 4745 unsigned long progress; 4746 4747 cond_resched(); 4748 4749 /* We now go into synchronous reclaim */ 4750 cpuset_memory_pressure_bump(); 4751 fs_reclaim_acquire(gfp_mask); 4752 noreclaim_flag = memalloc_noreclaim_save(); 4753 4754 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4755 ac->nodemask); 4756 4757 memalloc_noreclaim_restore(noreclaim_flag); 4758 fs_reclaim_release(gfp_mask); 4759 4760 cond_resched(); 4761 4762 return progress; 4763 } 4764 4765 /* The really slow allocator path where we enter direct reclaim */ 4766 static inline struct page * 4767 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4768 unsigned int alloc_flags, const struct alloc_context *ac, 4769 unsigned long *did_some_progress) 4770 { 4771 struct page *page = NULL; 4772 unsigned long pflags; 4773 bool drained = false; 4774 4775 psi_memstall_enter(&pflags); 4776 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4777 if (unlikely(!(*did_some_progress))) 4778 goto out; 4779 4780 retry: 4781 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4782 4783 /* 4784 * If an allocation failed after direct reclaim, it could be because 4785 * pages are pinned on the per-cpu lists or in high alloc reserves. 4786 * Shrink them and try again 4787 */ 4788 if (!page && !drained) { 4789 unreserve_highatomic_pageblock(ac, false); 4790 drain_all_pages(NULL); 4791 drained = true; 4792 goto retry; 4793 } 4794 out: 4795 psi_memstall_leave(&pflags); 4796 4797 return page; 4798 } 4799 4800 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4801 const struct alloc_context *ac) 4802 { 4803 struct zoneref *z; 4804 struct zone *zone; 4805 pg_data_t *last_pgdat = NULL; 4806 enum zone_type highest_zoneidx = ac->highest_zoneidx; 4807 4808 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 4809 ac->nodemask) { 4810 if (!managed_zone(zone)) 4811 continue; 4812 if (last_pgdat != zone->zone_pgdat) { 4813 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); 4814 last_pgdat = zone->zone_pgdat; 4815 } 4816 } 4817 } 4818 4819 static inline unsigned int 4820 gfp_to_alloc_flags(gfp_t gfp_mask) 4821 { 4822 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4823 4824 /* 4825 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH 4826 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4827 * to save two branches. 4828 */ 4829 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 4830 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 4831 4832 /* 4833 * The caller may dip into page reserves a bit more if the caller 4834 * cannot run direct reclaim, or if the caller has realtime scheduling 4835 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4836 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 4837 */ 4838 alloc_flags |= (__force int) 4839 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 4840 4841 if (gfp_mask & __GFP_ATOMIC) { 4842 /* 4843 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4844 * if it can't schedule. 4845 */ 4846 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4847 alloc_flags |= ALLOC_HARDER; 4848 /* 4849 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 4850 * comment for __cpuset_node_allowed(). 4851 */ 4852 alloc_flags &= ~ALLOC_CPUSET; 4853 } else if (unlikely(rt_task(current)) && in_task()) 4854 alloc_flags |= ALLOC_HARDER; 4855 4856 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 4857 4858 return alloc_flags; 4859 } 4860 4861 static bool oom_reserves_allowed(struct task_struct *tsk) 4862 { 4863 if (!tsk_is_oom_victim(tsk)) 4864 return false; 4865 4866 /* 4867 * !MMU doesn't have oom reaper so give access to memory reserves 4868 * only to the thread with TIF_MEMDIE set 4869 */ 4870 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4871 return false; 4872 4873 return true; 4874 } 4875 4876 /* 4877 * Distinguish requests which really need access to full memory 4878 * reserves from oom victims which can live with a portion of it 4879 */ 4880 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4881 { 4882 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4883 return 0; 4884 if (gfp_mask & __GFP_MEMALLOC) 4885 return ALLOC_NO_WATERMARKS; 4886 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4887 return ALLOC_NO_WATERMARKS; 4888 if (!in_interrupt()) { 4889 if (current->flags & PF_MEMALLOC) 4890 return ALLOC_NO_WATERMARKS; 4891 else if (oom_reserves_allowed(current)) 4892 return ALLOC_OOM; 4893 } 4894 4895 return 0; 4896 } 4897 4898 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4899 { 4900 return !!__gfp_pfmemalloc_flags(gfp_mask); 4901 } 4902 4903 /* 4904 * Checks whether it makes sense to retry the reclaim to make a forward progress 4905 * for the given allocation request. 4906 * 4907 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4908 * without success, or when we couldn't even meet the watermark if we 4909 * reclaimed all remaining pages on the LRU lists. 4910 * 4911 * Returns true if a retry is viable or false to enter the oom path. 4912 */ 4913 static inline bool 4914 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4915 struct alloc_context *ac, int alloc_flags, 4916 bool did_some_progress, int *no_progress_loops) 4917 { 4918 struct zone *zone; 4919 struct zoneref *z; 4920 bool ret = false; 4921 4922 /* 4923 * Costly allocations might have made a progress but this doesn't mean 4924 * their order will become available due to high fragmentation so 4925 * always increment the no progress counter for them 4926 */ 4927 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4928 *no_progress_loops = 0; 4929 else 4930 (*no_progress_loops)++; 4931 4932 /* 4933 * Make sure we converge to OOM if we cannot make any progress 4934 * several times in the row. 4935 */ 4936 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 4937 /* Before OOM, exhaust highatomic_reserve */ 4938 return unreserve_highatomic_pageblock(ac, true); 4939 } 4940 4941 /* 4942 * Keep reclaiming pages while there is a chance this will lead 4943 * somewhere. If none of the target zones can satisfy our allocation 4944 * request even if all reclaimable pages are considered then we are 4945 * screwed and have to go OOM. 4946 */ 4947 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4948 ac->highest_zoneidx, ac->nodemask) { 4949 unsigned long available; 4950 unsigned long reclaimable; 4951 unsigned long min_wmark = min_wmark_pages(zone); 4952 bool wmark; 4953 4954 available = reclaimable = zone_reclaimable_pages(zone); 4955 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4956 4957 /* 4958 * Would the allocation succeed if we reclaimed all 4959 * reclaimable pages? 4960 */ 4961 wmark = __zone_watermark_ok(zone, order, min_wmark, 4962 ac->highest_zoneidx, alloc_flags, available); 4963 trace_reclaim_retry_zone(z, order, reclaimable, 4964 available, min_wmark, *no_progress_loops, wmark); 4965 if (wmark) { 4966 ret = true; 4967 break; 4968 } 4969 } 4970 4971 /* 4972 * Memory allocation/reclaim might be called from a WQ context and the 4973 * current implementation of the WQ concurrency control doesn't 4974 * recognize that a particular WQ is congested if the worker thread is 4975 * looping without ever sleeping. Therefore we have to do a short sleep 4976 * here rather than calling cond_resched(). 4977 */ 4978 if (current->flags & PF_WQ_WORKER) 4979 schedule_timeout_uninterruptible(1); 4980 else 4981 cond_resched(); 4982 return ret; 4983 } 4984 4985 static inline bool 4986 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4987 { 4988 /* 4989 * It's possible that cpuset's mems_allowed and the nodemask from 4990 * mempolicy don't intersect. This should be normally dealt with by 4991 * policy_nodemask(), but it's possible to race with cpuset update in 4992 * such a way the check therein was true, and then it became false 4993 * before we got our cpuset_mems_cookie here. 4994 * This assumes that for all allocations, ac->nodemask can come only 4995 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4996 * when it does not intersect with the cpuset restrictions) or the 4997 * caller can deal with a violated nodemask. 4998 */ 4999 if (cpusets_enabled() && ac->nodemask && 5000 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 5001 ac->nodemask = NULL; 5002 return true; 5003 } 5004 5005 /* 5006 * When updating a task's mems_allowed or mempolicy nodemask, it is 5007 * possible to race with parallel threads in such a way that our 5008 * allocation can fail while the mask is being updated. If we are about 5009 * to fail, check if the cpuset changed during allocation and if so, 5010 * retry. 5011 */ 5012 if (read_mems_allowed_retry(cpuset_mems_cookie)) 5013 return true; 5014 5015 return false; 5016 } 5017 5018 static inline struct page * 5019 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 5020 struct alloc_context *ac) 5021 { 5022 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 5023 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 5024 struct page *page = NULL; 5025 unsigned int alloc_flags; 5026 unsigned long did_some_progress; 5027 enum compact_priority compact_priority; 5028 enum compact_result compact_result; 5029 int compaction_retries; 5030 int no_progress_loops; 5031 unsigned int cpuset_mems_cookie; 5032 unsigned int zonelist_iter_cookie; 5033 int reserve_flags; 5034 5035 /* 5036 * We also sanity check to catch abuse of atomic reserves being used by 5037 * callers that are not in atomic context. 5038 */ 5039 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 5040 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 5041 gfp_mask &= ~__GFP_ATOMIC; 5042 5043 restart: 5044 compaction_retries = 0; 5045 no_progress_loops = 0; 5046 compact_priority = DEF_COMPACT_PRIORITY; 5047 cpuset_mems_cookie = read_mems_allowed_begin(); 5048 zonelist_iter_cookie = zonelist_iter_begin(); 5049 5050 /* 5051 * The fast path uses conservative alloc_flags to succeed only until 5052 * kswapd needs to be woken up, and to avoid the cost of setting up 5053 * alloc_flags precisely. So we do that now. 5054 */ 5055 alloc_flags = gfp_to_alloc_flags(gfp_mask); 5056 5057 /* 5058 * We need to recalculate the starting point for the zonelist iterator 5059 * because we might have used different nodemask in the fast path, or 5060 * there was a cpuset modification and we are retrying - otherwise we 5061 * could end up iterating over non-eligible zones endlessly. 5062 */ 5063 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5064 ac->highest_zoneidx, ac->nodemask); 5065 if (!ac->preferred_zoneref->zone) 5066 goto nopage; 5067 5068 /* 5069 * Check for insane configurations where the cpuset doesn't contain 5070 * any suitable zone to satisfy the request - e.g. non-movable 5071 * GFP_HIGHUSER allocations from MOVABLE nodes only. 5072 */ 5073 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { 5074 struct zoneref *z = first_zones_zonelist(ac->zonelist, 5075 ac->highest_zoneidx, 5076 &cpuset_current_mems_allowed); 5077 if (!z->zone) 5078 goto nopage; 5079 } 5080 5081 if (alloc_flags & ALLOC_KSWAPD) 5082 wake_all_kswapds(order, gfp_mask, ac); 5083 5084 /* 5085 * The adjusted alloc_flags might result in immediate success, so try 5086 * that first 5087 */ 5088 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 5089 if (page) 5090 goto got_pg; 5091 5092 /* 5093 * For costly allocations, try direct compaction first, as it's likely 5094 * that we have enough base pages and don't need to reclaim. For non- 5095 * movable high-order allocations, do that as well, as compaction will 5096 * try prevent permanent fragmentation by migrating from blocks of the 5097 * same migratetype. 5098 * Don't try this for allocations that are allowed to ignore 5099 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 5100 */ 5101 if (can_direct_reclaim && 5102 (costly_order || 5103 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 5104 && !gfp_pfmemalloc_allowed(gfp_mask)) { 5105 page = __alloc_pages_direct_compact(gfp_mask, order, 5106 alloc_flags, ac, 5107 INIT_COMPACT_PRIORITY, 5108 &compact_result); 5109 if (page) 5110 goto got_pg; 5111 5112 /* 5113 * Checks for costly allocations with __GFP_NORETRY, which 5114 * includes some THP page fault allocations 5115 */ 5116 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 5117 /* 5118 * If allocating entire pageblock(s) and compaction 5119 * failed because all zones are below low watermarks 5120 * or is prohibited because it recently failed at this 5121 * order, fail immediately unless the allocator has 5122 * requested compaction and reclaim retry. 5123 * 5124 * Reclaim is 5125 * - potentially very expensive because zones are far 5126 * below their low watermarks or this is part of very 5127 * bursty high order allocations, 5128 * - not guaranteed to help because isolate_freepages() 5129 * may not iterate over freed pages as part of its 5130 * linear scan, and 5131 * - unlikely to make entire pageblocks free on its 5132 * own. 5133 */ 5134 if (compact_result == COMPACT_SKIPPED || 5135 compact_result == COMPACT_DEFERRED) 5136 goto nopage; 5137 5138 /* 5139 * Looks like reclaim/compaction is worth trying, but 5140 * sync compaction could be very expensive, so keep 5141 * using async compaction. 5142 */ 5143 compact_priority = INIT_COMPACT_PRIORITY; 5144 } 5145 } 5146 5147 retry: 5148 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 5149 if (alloc_flags & ALLOC_KSWAPD) 5150 wake_all_kswapds(order, gfp_mask, ac); 5151 5152 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 5153 if (reserve_flags) 5154 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) | 5155 (alloc_flags & ALLOC_KSWAPD); 5156 5157 /* 5158 * Reset the nodemask and zonelist iterators if memory policies can be 5159 * ignored. These allocations are high priority and system rather than 5160 * user oriented. 5161 */ 5162 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 5163 ac->nodemask = NULL; 5164 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5165 ac->highest_zoneidx, ac->nodemask); 5166 } 5167 5168 /* Attempt with potentially adjusted zonelist and alloc_flags */ 5169 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 5170 if (page) 5171 goto got_pg; 5172 5173 /* Caller is not willing to reclaim, we can't balance anything */ 5174 if (!can_direct_reclaim) 5175 goto nopage; 5176 5177 /* Avoid recursion of direct reclaim */ 5178 if (current->flags & PF_MEMALLOC) 5179 goto nopage; 5180 5181 /* Try direct reclaim and then allocating */ 5182 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 5183 &did_some_progress); 5184 if (page) 5185 goto got_pg; 5186 5187 /* Try direct compaction and then allocating */ 5188 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 5189 compact_priority, &compact_result); 5190 if (page) 5191 goto got_pg; 5192 5193 /* Do not loop if specifically requested */ 5194 if (gfp_mask & __GFP_NORETRY) 5195 goto nopage; 5196 5197 /* 5198 * Do not retry costly high order allocations unless they are 5199 * __GFP_RETRY_MAYFAIL 5200 */ 5201 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 5202 goto nopage; 5203 5204 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 5205 did_some_progress > 0, &no_progress_loops)) 5206 goto retry; 5207 5208 /* 5209 * It doesn't make any sense to retry for the compaction if the order-0 5210 * reclaim is not able to make any progress because the current 5211 * implementation of the compaction depends on the sufficient amount 5212 * of free memory (see __compaction_suitable) 5213 */ 5214 if (did_some_progress > 0 && 5215 should_compact_retry(ac, order, alloc_flags, 5216 compact_result, &compact_priority, 5217 &compaction_retries)) 5218 goto retry; 5219 5220 5221 /* 5222 * Deal with possible cpuset update races or zonelist updates to avoid 5223 * a unnecessary OOM kill. 5224 */ 5225 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 5226 check_retry_zonelist(zonelist_iter_cookie)) 5227 goto restart; 5228 5229 /* Reclaim has failed us, start killing things */ 5230 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 5231 if (page) 5232 goto got_pg; 5233 5234 /* Avoid allocations with no watermarks from looping endlessly */ 5235 if (tsk_is_oom_victim(current) && 5236 (alloc_flags & ALLOC_OOM || 5237 (gfp_mask & __GFP_NOMEMALLOC))) 5238 goto nopage; 5239 5240 /* Retry as long as the OOM killer is making progress */ 5241 if (did_some_progress) { 5242 no_progress_loops = 0; 5243 goto retry; 5244 } 5245 5246 nopage: 5247 /* 5248 * Deal with possible cpuset update races or zonelist updates to avoid 5249 * a unnecessary OOM kill. 5250 */ 5251 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 5252 check_retry_zonelist(zonelist_iter_cookie)) 5253 goto restart; 5254 5255 /* 5256 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 5257 * we always retry 5258 */ 5259 if (gfp_mask & __GFP_NOFAIL) { 5260 /* 5261 * All existing users of the __GFP_NOFAIL are blockable, so warn 5262 * of any new users that actually require GFP_NOWAIT 5263 */ 5264 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask)) 5265 goto fail; 5266 5267 /* 5268 * PF_MEMALLOC request from this context is rather bizarre 5269 * because we cannot reclaim anything and only can loop waiting 5270 * for somebody to do a work for us 5271 */ 5272 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask); 5273 5274 /* 5275 * non failing costly orders are a hard requirement which we 5276 * are not prepared for much so let's warn about these users 5277 * so that we can identify them and convert them to something 5278 * else. 5279 */ 5280 WARN_ON_ONCE_GFP(costly_order, gfp_mask); 5281 5282 /* 5283 * Help non-failing allocations by giving them access to memory 5284 * reserves but do not use ALLOC_NO_WATERMARKS because this 5285 * could deplete whole memory reserves which would just make 5286 * the situation worse 5287 */ 5288 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 5289 if (page) 5290 goto got_pg; 5291 5292 cond_resched(); 5293 goto retry; 5294 } 5295 fail: 5296 warn_alloc(gfp_mask, ac->nodemask, 5297 "page allocation failure: order:%u", order); 5298 got_pg: 5299 return page; 5300 } 5301 5302 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 5303 int preferred_nid, nodemask_t *nodemask, 5304 struct alloc_context *ac, gfp_t *alloc_gfp, 5305 unsigned int *alloc_flags) 5306 { 5307 ac->highest_zoneidx = gfp_zone(gfp_mask); 5308 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 5309 ac->nodemask = nodemask; 5310 ac->migratetype = gfp_migratetype(gfp_mask); 5311 5312 if (cpusets_enabled()) { 5313 *alloc_gfp |= __GFP_HARDWALL; 5314 /* 5315 * When we are in the interrupt context, it is irrelevant 5316 * to the current task context. It means that any node ok. 5317 */ 5318 if (in_task() && !ac->nodemask) 5319 ac->nodemask = &cpuset_current_mems_allowed; 5320 else 5321 *alloc_flags |= ALLOC_CPUSET; 5322 } 5323 5324 might_alloc(gfp_mask); 5325 5326 if (should_fail_alloc_page(gfp_mask, order)) 5327 return false; 5328 5329 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 5330 5331 /* Dirty zone balancing only done in the fast path */ 5332 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 5333 5334 /* 5335 * The preferred zone is used for statistics but crucially it is 5336 * also used as the starting point for the zonelist iterator. It 5337 * may get reset for allocations that ignore memory policies. 5338 */ 5339 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5340 ac->highest_zoneidx, ac->nodemask); 5341 5342 return true; 5343 } 5344 5345 /* 5346 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array 5347 * @gfp: GFP flags for the allocation 5348 * @preferred_nid: The preferred NUMA node ID to allocate from 5349 * @nodemask: Set of nodes to allocate from, may be NULL 5350 * @nr_pages: The number of pages desired on the list or array 5351 * @page_list: Optional list to store the allocated pages 5352 * @page_array: Optional array to store the pages 5353 * 5354 * This is a batched version of the page allocator that attempts to 5355 * allocate nr_pages quickly. Pages are added to page_list if page_list 5356 * is not NULL, otherwise it is assumed that the page_array is valid. 5357 * 5358 * For lists, nr_pages is the number of pages that should be allocated. 5359 * 5360 * For arrays, only NULL elements are populated with pages and nr_pages 5361 * is the maximum number of pages that will be stored in the array. 5362 * 5363 * Returns the number of pages on the list or array. 5364 */ 5365 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid, 5366 nodemask_t *nodemask, int nr_pages, 5367 struct list_head *page_list, 5368 struct page **page_array) 5369 { 5370 struct page *page; 5371 unsigned long flags; 5372 unsigned long __maybe_unused UP_flags; 5373 struct zone *zone; 5374 struct zoneref *z; 5375 struct per_cpu_pages *pcp; 5376 struct list_head *pcp_list; 5377 struct alloc_context ac; 5378 gfp_t alloc_gfp; 5379 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5380 int nr_populated = 0, nr_account = 0; 5381 5382 /* 5383 * Skip populated array elements to determine if any pages need 5384 * to be allocated before disabling IRQs. 5385 */ 5386 while (page_array && nr_populated < nr_pages && page_array[nr_populated]) 5387 nr_populated++; 5388 5389 /* No pages requested? */ 5390 if (unlikely(nr_pages <= 0)) 5391 goto out; 5392 5393 /* Already populated array? */ 5394 if (unlikely(page_array && nr_pages - nr_populated == 0)) 5395 goto out; 5396 5397 /* Bulk allocator does not support memcg accounting. */ 5398 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT)) 5399 goto failed; 5400 5401 /* Use the single page allocator for one page. */ 5402 if (nr_pages - nr_populated == 1) 5403 goto failed; 5404 5405 #ifdef CONFIG_PAGE_OWNER 5406 /* 5407 * PAGE_OWNER may recurse into the allocator to allocate space to 5408 * save the stack with pagesets.lock held. Releasing/reacquiring 5409 * removes much of the performance benefit of bulk allocation so 5410 * force the caller to allocate one page at a time as it'll have 5411 * similar performance to added complexity to the bulk allocator. 5412 */ 5413 if (static_branch_unlikely(&page_owner_inited)) 5414 goto failed; 5415 #endif 5416 5417 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 5418 gfp &= gfp_allowed_mask; 5419 alloc_gfp = gfp; 5420 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 5421 goto out; 5422 gfp = alloc_gfp; 5423 5424 /* Find an allowed local zone that meets the low watermark. */ 5425 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) { 5426 unsigned long mark; 5427 5428 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 5429 !__cpuset_zone_allowed(zone, gfp)) { 5430 continue; 5431 } 5432 5433 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone && 5434 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) { 5435 goto failed; 5436 } 5437 5438 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 5439 if (zone_watermark_fast(zone, 0, mark, 5440 zonelist_zone_idx(ac.preferred_zoneref), 5441 alloc_flags, gfp)) { 5442 break; 5443 } 5444 } 5445 5446 /* 5447 * If there are no allowed local zones that meets the watermarks then 5448 * try to allocate a single page and reclaim if necessary. 5449 */ 5450 if (unlikely(!zone)) 5451 goto failed; 5452 5453 /* Is a parallel drain in progress? */ 5454 pcp_trylock_prepare(UP_flags); 5455 pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags); 5456 if (!pcp) 5457 goto failed_irq; 5458 5459 /* Attempt the batch allocation */ 5460 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; 5461 while (nr_populated < nr_pages) { 5462 5463 /* Skip existing pages */ 5464 if (page_array && page_array[nr_populated]) { 5465 nr_populated++; 5466 continue; 5467 } 5468 5469 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, 5470 pcp, pcp_list); 5471 if (unlikely(!page)) { 5472 /* Try and allocate at least one page */ 5473 if (!nr_account) { 5474 pcp_spin_unlock_irqrestore(pcp, flags); 5475 goto failed_irq; 5476 } 5477 break; 5478 } 5479 nr_account++; 5480 5481 prep_new_page(page, 0, gfp, 0); 5482 if (page_list) 5483 list_add(&page->lru, page_list); 5484 else 5485 page_array[nr_populated] = page; 5486 nr_populated++; 5487 } 5488 5489 pcp_spin_unlock_irqrestore(pcp, flags); 5490 pcp_trylock_finish(UP_flags); 5491 5492 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); 5493 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account); 5494 5495 out: 5496 return nr_populated; 5497 5498 failed_irq: 5499 pcp_trylock_finish(UP_flags); 5500 5501 failed: 5502 page = __alloc_pages(gfp, 0, preferred_nid, nodemask); 5503 if (page) { 5504 if (page_list) 5505 list_add(&page->lru, page_list); 5506 else 5507 page_array[nr_populated] = page; 5508 nr_populated++; 5509 } 5510 5511 goto out; 5512 } 5513 EXPORT_SYMBOL_GPL(__alloc_pages_bulk); 5514 5515 /* 5516 * This is the 'heart' of the zoned buddy allocator. 5517 */ 5518 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid, 5519 nodemask_t *nodemask) 5520 { 5521 struct page *page; 5522 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5523 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 5524 struct alloc_context ac = { }; 5525 5526 /* 5527 * There are several places where we assume that the order value is sane 5528 * so bail out early if the request is out of bound. 5529 */ 5530 if (WARN_ON_ONCE_GFP(order >= MAX_ORDER, gfp)) 5531 return NULL; 5532 5533 gfp &= gfp_allowed_mask; 5534 /* 5535 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 5536 * resp. GFP_NOIO which has to be inherited for all allocation requests 5537 * from a particular context which has been marked by 5538 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 5539 * movable zones are not used during allocation. 5540 */ 5541 gfp = current_gfp_context(gfp); 5542 alloc_gfp = gfp; 5543 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 5544 &alloc_gfp, &alloc_flags)) 5545 return NULL; 5546 5547 /* 5548 * Forbid the first pass from falling back to types that fragment 5549 * memory until all local zones are considered. 5550 */ 5551 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp); 5552 5553 /* First allocation attempt */ 5554 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 5555 if (likely(page)) 5556 goto out; 5557 5558 alloc_gfp = gfp; 5559 ac.spread_dirty_pages = false; 5560 5561 /* 5562 * Restore the original nodemask if it was potentially replaced with 5563 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 5564 */ 5565 ac.nodemask = nodemask; 5566 5567 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 5568 5569 out: 5570 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page && 5571 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 5572 __free_pages(page, order); 5573 page = NULL; 5574 } 5575 5576 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 5577 kmsan_alloc_page(page, order, alloc_gfp); 5578 5579 return page; 5580 } 5581 EXPORT_SYMBOL(__alloc_pages); 5582 5583 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid, 5584 nodemask_t *nodemask) 5585 { 5586 struct page *page = __alloc_pages(gfp | __GFP_COMP, order, 5587 preferred_nid, nodemask); 5588 5589 if (page && order > 1) 5590 prep_transhuge_page(page); 5591 return (struct folio *)page; 5592 } 5593 EXPORT_SYMBOL(__folio_alloc); 5594 5595 /* 5596 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 5597 * address cannot represent highmem pages. Use alloc_pages and then kmap if 5598 * you need to access high mem. 5599 */ 5600 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 5601 { 5602 struct page *page; 5603 5604 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 5605 if (!page) 5606 return 0; 5607 return (unsigned long) page_address(page); 5608 } 5609 EXPORT_SYMBOL(__get_free_pages); 5610 5611 unsigned long get_zeroed_page(gfp_t gfp_mask) 5612 { 5613 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 5614 } 5615 EXPORT_SYMBOL(get_zeroed_page); 5616 5617 /** 5618 * __free_pages - Free pages allocated with alloc_pages(). 5619 * @page: The page pointer returned from alloc_pages(). 5620 * @order: The order of the allocation. 5621 * 5622 * This function can free multi-page allocations that are not compound 5623 * pages. It does not check that the @order passed in matches that of 5624 * the allocation, so it is easy to leak memory. Freeing more memory 5625 * than was allocated will probably emit a warning. 5626 * 5627 * If the last reference to this page is speculative, it will be released 5628 * by put_page() which only frees the first page of a non-compound 5629 * allocation. To prevent the remaining pages from being leaked, we free 5630 * the subsequent pages here. If you want to use the page's reference 5631 * count to decide when to free the allocation, you should allocate a 5632 * compound page, and use put_page() instead of __free_pages(). 5633 * 5634 * Context: May be called in interrupt context or while holding a normal 5635 * spinlock, but not in NMI context or while holding a raw spinlock. 5636 */ 5637 void __free_pages(struct page *page, unsigned int order) 5638 { 5639 if (put_page_testzero(page)) 5640 free_the_page(page, order); 5641 else if (!PageHead(page)) 5642 while (order-- > 0) 5643 free_the_page(page + (1 << order), order); 5644 } 5645 EXPORT_SYMBOL(__free_pages); 5646 5647 void free_pages(unsigned long addr, unsigned int order) 5648 { 5649 if (addr != 0) { 5650 VM_BUG_ON(!virt_addr_valid((void *)addr)); 5651 __free_pages(virt_to_page((void *)addr), order); 5652 } 5653 } 5654 5655 EXPORT_SYMBOL(free_pages); 5656 5657 /* 5658 * Page Fragment: 5659 * An arbitrary-length arbitrary-offset area of memory which resides 5660 * within a 0 or higher order page. Multiple fragments within that page 5661 * are individually refcounted, in the page's reference counter. 5662 * 5663 * The page_frag functions below provide a simple allocation framework for 5664 * page fragments. This is used by the network stack and network device 5665 * drivers to provide a backing region of memory for use as either an 5666 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 5667 */ 5668 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 5669 gfp_t gfp_mask) 5670 { 5671 struct page *page = NULL; 5672 gfp_t gfp = gfp_mask; 5673 5674 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5675 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 5676 __GFP_NOMEMALLOC; 5677 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 5678 PAGE_FRAG_CACHE_MAX_ORDER); 5679 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 5680 #endif 5681 if (unlikely(!page)) 5682 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 5683 5684 nc->va = page ? page_address(page) : NULL; 5685 5686 return page; 5687 } 5688 5689 void __page_frag_cache_drain(struct page *page, unsigned int count) 5690 { 5691 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 5692 5693 if (page_ref_sub_and_test(page, count)) 5694 free_the_page(page, compound_order(page)); 5695 } 5696 EXPORT_SYMBOL(__page_frag_cache_drain); 5697 5698 void *page_frag_alloc_align(struct page_frag_cache *nc, 5699 unsigned int fragsz, gfp_t gfp_mask, 5700 unsigned int align_mask) 5701 { 5702 unsigned int size = PAGE_SIZE; 5703 struct page *page; 5704 int offset; 5705 5706 if (unlikely(!nc->va)) { 5707 refill: 5708 page = __page_frag_cache_refill(nc, gfp_mask); 5709 if (!page) 5710 return NULL; 5711 5712 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5713 /* if size can vary use size else just use PAGE_SIZE */ 5714 size = nc->size; 5715 #endif 5716 /* Even if we own the page, we do not use atomic_set(). 5717 * This would break get_page_unless_zero() users. 5718 */ 5719 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 5720 5721 /* reset page count bias and offset to start of new frag */ 5722 nc->pfmemalloc = page_is_pfmemalloc(page); 5723 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5724 nc->offset = size; 5725 } 5726 5727 offset = nc->offset - fragsz; 5728 if (unlikely(offset < 0)) { 5729 page = virt_to_page(nc->va); 5730 5731 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 5732 goto refill; 5733 5734 if (unlikely(nc->pfmemalloc)) { 5735 free_the_page(page, compound_order(page)); 5736 goto refill; 5737 } 5738 5739 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5740 /* if size can vary use size else just use PAGE_SIZE */ 5741 size = nc->size; 5742 #endif 5743 /* OK, page count is 0, we can safely set it */ 5744 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 5745 5746 /* reset page count bias and offset to start of new frag */ 5747 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5748 offset = size - fragsz; 5749 if (unlikely(offset < 0)) { 5750 /* 5751 * The caller is trying to allocate a fragment 5752 * with fragsz > PAGE_SIZE but the cache isn't big 5753 * enough to satisfy the request, this may 5754 * happen in low memory conditions. 5755 * We don't release the cache page because 5756 * it could make memory pressure worse 5757 * so we simply return NULL here. 5758 */ 5759 return NULL; 5760 } 5761 } 5762 5763 nc->pagecnt_bias--; 5764 offset &= align_mask; 5765 nc->offset = offset; 5766 5767 return nc->va + offset; 5768 } 5769 EXPORT_SYMBOL(page_frag_alloc_align); 5770 5771 /* 5772 * Frees a page fragment allocated out of either a compound or order 0 page. 5773 */ 5774 void page_frag_free(void *addr) 5775 { 5776 struct page *page = virt_to_head_page(addr); 5777 5778 if (unlikely(put_page_testzero(page))) 5779 free_the_page(page, compound_order(page)); 5780 } 5781 EXPORT_SYMBOL(page_frag_free); 5782 5783 static void *make_alloc_exact(unsigned long addr, unsigned int order, 5784 size_t size) 5785 { 5786 if (addr) { 5787 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE); 5788 struct page *page = virt_to_page((void *)addr); 5789 struct page *last = page + nr; 5790 5791 split_page_owner(page, 1 << order); 5792 split_page_memcg(page, 1 << order); 5793 while (page < --last) 5794 set_page_refcounted(last); 5795 5796 last = page + (1UL << order); 5797 for (page += nr; page < last; page++) 5798 __free_pages_ok(page, 0, FPI_TO_TAIL); 5799 } 5800 return (void *)addr; 5801 } 5802 5803 /** 5804 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 5805 * @size: the number of bytes to allocate 5806 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5807 * 5808 * This function is similar to alloc_pages(), except that it allocates the 5809 * minimum number of pages to satisfy the request. alloc_pages() can only 5810 * allocate memory in power-of-two pages. 5811 * 5812 * This function is also limited by MAX_ORDER. 5813 * 5814 * Memory allocated by this function must be released by free_pages_exact(). 5815 * 5816 * Return: pointer to the allocated area or %NULL in case of error. 5817 */ 5818 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 5819 { 5820 unsigned int order = get_order(size); 5821 unsigned long addr; 5822 5823 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5824 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5825 5826 addr = __get_free_pages(gfp_mask, order); 5827 return make_alloc_exact(addr, order, size); 5828 } 5829 EXPORT_SYMBOL(alloc_pages_exact); 5830 5831 /** 5832 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 5833 * pages on a node. 5834 * @nid: the preferred node ID where memory should be allocated 5835 * @size: the number of bytes to allocate 5836 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5837 * 5838 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 5839 * back. 5840 * 5841 * Return: pointer to the allocated area or %NULL in case of error. 5842 */ 5843 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 5844 { 5845 unsigned int order = get_order(size); 5846 struct page *p; 5847 5848 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5849 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5850 5851 p = alloc_pages_node(nid, gfp_mask, order); 5852 if (!p) 5853 return NULL; 5854 return make_alloc_exact((unsigned long)page_address(p), order, size); 5855 } 5856 5857 /** 5858 * free_pages_exact - release memory allocated via alloc_pages_exact() 5859 * @virt: the value returned by alloc_pages_exact. 5860 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5861 * 5862 * Release the memory allocated by a previous call to alloc_pages_exact. 5863 */ 5864 void free_pages_exact(void *virt, size_t size) 5865 { 5866 unsigned long addr = (unsigned long)virt; 5867 unsigned long end = addr + PAGE_ALIGN(size); 5868 5869 while (addr < end) { 5870 free_page(addr); 5871 addr += PAGE_SIZE; 5872 } 5873 } 5874 EXPORT_SYMBOL(free_pages_exact); 5875 5876 /** 5877 * nr_free_zone_pages - count number of pages beyond high watermark 5878 * @offset: The zone index of the highest zone 5879 * 5880 * nr_free_zone_pages() counts the number of pages which are beyond the 5881 * high watermark within all zones at or below a given zone index. For each 5882 * zone, the number of pages is calculated as: 5883 * 5884 * nr_free_zone_pages = managed_pages - high_pages 5885 * 5886 * Return: number of pages beyond high watermark. 5887 */ 5888 static unsigned long nr_free_zone_pages(int offset) 5889 { 5890 struct zoneref *z; 5891 struct zone *zone; 5892 5893 /* Just pick one node, since fallback list is circular */ 5894 unsigned long sum = 0; 5895 5896 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5897 5898 for_each_zone_zonelist(zone, z, zonelist, offset) { 5899 unsigned long size = zone_managed_pages(zone); 5900 unsigned long high = high_wmark_pages(zone); 5901 if (size > high) 5902 sum += size - high; 5903 } 5904 5905 return sum; 5906 } 5907 5908 /** 5909 * nr_free_buffer_pages - count number of pages beyond high watermark 5910 * 5911 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5912 * watermark within ZONE_DMA and ZONE_NORMAL. 5913 * 5914 * Return: number of pages beyond high watermark within ZONE_DMA and 5915 * ZONE_NORMAL. 5916 */ 5917 unsigned long nr_free_buffer_pages(void) 5918 { 5919 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5920 } 5921 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5922 5923 static inline void show_node(struct zone *zone) 5924 { 5925 if (IS_ENABLED(CONFIG_NUMA)) 5926 printk("Node %d ", zone_to_nid(zone)); 5927 } 5928 5929 long si_mem_available(void) 5930 { 5931 long available; 5932 unsigned long pagecache; 5933 unsigned long wmark_low = 0; 5934 unsigned long pages[NR_LRU_LISTS]; 5935 unsigned long reclaimable; 5936 struct zone *zone; 5937 int lru; 5938 5939 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 5940 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 5941 5942 for_each_zone(zone) 5943 wmark_low += low_wmark_pages(zone); 5944 5945 /* 5946 * Estimate the amount of memory available for userspace allocations, 5947 * without causing swapping or OOM. 5948 */ 5949 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 5950 5951 /* 5952 * Not all the page cache can be freed, otherwise the system will 5953 * start swapping or thrashing. Assume at least half of the page 5954 * cache, or the low watermark worth of cache, needs to stay. 5955 */ 5956 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 5957 pagecache -= min(pagecache / 2, wmark_low); 5958 available += pagecache; 5959 5960 /* 5961 * Part of the reclaimable slab and other kernel memory consists of 5962 * items that are in use, and cannot be freed. Cap this estimate at the 5963 * low watermark. 5964 */ 5965 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) + 5966 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); 5967 available += reclaimable - min(reclaimable / 2, wmark_low); 5968 5969 if (available < 0) 5970 available = 0; 5971 return available; 5972 } 5973 EXPORT_SYMBOL_GPL(si_mem_available); 5974 5975 void si_meminfo(struct sysinfo *val) 5976 { 5977 val->totalram = totalram_pages(); 5978 val->sharedram = global_node_page_state(NR_SHMEM); 5979 val->freeram = global_zone_page_state(NR_FREE_PAGES); 5980 val->bufferram = nr_blockdev_pages(); 5981 val->totalhigh = totalhigh_pages(); 5982 val->freehigh = nr_free_highpages(); 5983 val->mem_unit = PAGE_SIZE; 5984 } 5985 5986 EXPORT_SYMBOL(si_meminfo); 5987 5988 #ifdef CONFIG_NUMA 5989 void si_meminfo_node(struct sysinfo *val, int nid) 5990 { 5991 int zone_type; /* needs to be signed */ 5992 unsigned long managed_pages = 0; 5993 unsigned long managed_highpages = 0; 5994 unsigned long free_highpages = 0; 5995 pg_data_t *pgdat = NODE_DATA(nid); 5996 5997 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 5998 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]); 5999 val->totalram = managed_pages; 6000 val->sharedram = node_page_state(pgdat, NR_SHMEM); 6001 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 6002 #ifdef CONFIG_HIGHMEM 6003 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 6004 struct zone *zone = &pgdat->node_zones[zone_type]; 6005 6006 if (is_highmem(zone)) { 6007 managed_highpages += zone_managed_pages(zone); 6008 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 6009 } 6010 } 6011 val->totalhigh = managed_highpages; 6012 val->freehigh = free_highpages; 6013 #else 6014 val->totalhigh = managed_highpages; 6015 val->freehigh = free_highpages; 6016 #endif 6017 val->mem_unit = PAGE_SIZE; 6018 } 6019 #endif 6020 6021 /* 6022 * Determine whether the node should be displayed or not, depending on whether 6023 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 6024 */ 6025 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 6026 { 6027 if (!(flags & SHOW_MEM_FILTER_NODES)) 6028 return false; 6029 6030 /* 6031 * no node mask - aka implicit memory numa policy. Do not bother with 6032 * the synchronization - read_mems_allowed_begin - because we do not 6033 * have to be precise here. 6034 */ 6035 if (!nodemask) 6036 nodemask = &cpuset_current_mems_allowed; 6037 6038 return !node_isset(nid, *nodemask); 6039 } 6040 6041 #define K(x) ((x) << (PAGE_SHIFT-10)) 6042 6043 static void show_migration_types(unsigned char type) 6044 { 6045 static const char types[MIGRATE_TYPES] = { 6046 [MIGRATE_UNMOVABLE] = 'U', 6047 [MIGRATE_MOVABLE] = 'M', 6048 [MIGRATE_RECLAIMABLE] = 'E', 6049 [MIGRATE_HIGHATOMIC] = 'H', 6050 #ifdef CONFIG_CMA 6051 [MIGRATE_CMA] = 'C', 6052 #endif 6053 #ifdef CONFIG_MEMORY_ISOLATION 6054 [MIGRATE_ISOLATE] = 'I', 6055 #endif 6056 }; 6057 char tmp[MIGRATE_TYPES + 1]; 6058 char *p = tmp; 6059 int i; 6060 6061 for (i = 0; i < MIGRATE_TYPES; i++) { 6062 if (type & (1 << i)) 6063 *p++ = types[i]; 6064 } 6065 6066 *p = '\0'; 6067 printk(KERN_CONT "(%s) ", tmp); 6068 } 6069 6070 static bool node_has_managed_zones(pg_data_t *pgdat, int max_zone_idx) 6071 { 6072 int zone_idx; 6073 for (zone_idx = 0; zone_idx <= max_zone_idx; zone_idx++) 6074 if (zone_managed_pages(pgdat->node_zones + zone_idx)) 6075 return true; 6076 return false; 6077 } 6078 6079 /* 6080 * Show free area list (used inside shift_scroll-lock stuff) 6081 * We also calculate the percentage fragmentation. We do this by counting the 6082 * memory on each free list with the exception of the first item on the list. 6083 * 6084 * Bits in @filter: 6085 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 6086 * cpuset. 6087 */ 6088 void __show_free_areas(unsigned int filter, nodemask_t *nodemask, int max_zone_idx) 6089 { 6090 unsigned long free_pcp = 0; 6091 int cpu, nid; 6092 struct zone *zone; 6093 pg_data_t *pgdat; 6094 6095 for_each_populated_zone(zone) { 6096 if (zone_idx(zone) > max_zone_idx) 6097 continue; 6098 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 6099 continue; 6100 6101 for_each_online_cpu(cpu) 6102 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count; 6103 } 6104 6105 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 6106 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 6107 " unevictable:%lu dirty:%lu writeback:%lu\n" 6108 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 6109 " mapped:%lu shmem:%lu pagetables:%lu\n" 6110 " sec_pagetables:%lu bounce:%lu\n" 6111 " kernel_misc_reclaimable:%lu\n" 6112 " free:%lu free_pcp:%lu free_cma:%lu\n", 6113 global_node_page_state(NR_ACTIVE_ANON), 6114 global_node_page_state(NR_INACTIVE_ANON), 6115 global_node_page_state(NR_ISOLATED_ANON), 6116 global_node_page_state(NR_ACTIVE_FILE), 6117 global_node_page_state(NR_INACTIVE_FILE), 6118 global_node_page_state(NR_ISOLATED_FILE), 6119 global_node_page_state(NR_UNEVICTABLE), 6120 global_node_page_state(NR_FILE_DIRTY), 6121 global_node_page_state(NR_WRITEBACK), 6122 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B), 6123 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B), 6124 global_node_page_state(NR_FILE_MAPPED), 6125 global_node_page_state(NR_SHMEM), 6126 global_node_page_state(NR_PAGETABLE), 6127 global_node_page_state(NR_SECONDARY_PAGETABLE), 6128 global_zone_page_state(NR_BOUNCE), 6129 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE), 6130 global_zone_page_state(NR_FREE_PAGES), 6131 free_pcp, 6132 global_zone_page_state(NR_FREE_CMA_PAGES)); 6133 6134 for_each_online_pgdat(pgdat) { 6135 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 6136 continue; 6137 if (!node_has_managed_zones(pgdat, max_zone_idx)) 6138 continue; 6139 6140 printk("Node %d" 6141 " active_anon:%lukB" 6142 " inactive_anon:%lukB" 6143 " active_file:%lukB" 6144 " inactive_file:%lukB" 6145 " unevictable:%lukB" 6146 " isolated(anon):%lukB" 6147 " isolated(file):%lukB" 6148 " mapped:%lukB" 6149 " dirty:%lukB" 6150 " writeback:%lukB" 6151 " shmem:%lukB" 6152 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6153 " shmem_thp: %lukB" 6154 " shmem_pmdmapped: %lukB" 6155 " anon_thp: %lukB" 6156 #endif 6157 " writeback_tmp:%lukB" 6158 " kernel_stack:%lukB" 6159 #ifdef CONFIG_SHADOW_CALL_STACK 6160 " shadow_call_stack:%lukB" 6161 #endif 6162 " pagetables:%lukB" 6163 " sec_pagetables:%lukB" 6164 " all_unreclaimable? %s" 6165 "\n", 6166 pgdat->node_id, 6167 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 6168 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 6169 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 6170 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 6171 K(node_page_state(pgdat, NR_UNEVICTABLE)), 6172 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 6173 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 6174 K(node_page_state(pgdat, NR_FILE_MAPPED)), 6175 K(node_page_state(pgdat, NR_FILE_DIRTY)), 6176 K(node_page_state(pgdat, NR_WRITEBACK)), 6177 K(node_page_state(pgdat, NR_SHMEM)), 6178 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6179 K(node_page_state(pgdat, NR_SHMEM_THPS)), 6180 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)), 6181 K(node_page_state(pgdat, NR_ANON_THPS)), 6182 #endif 6183 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 6184 node_page_state(pgdat, NR_KERNEL_STACK_KB), 6185 #ifdef CONFIG_SHADOW_CALL_STACK 6186 node_page_state(pgdat, NR_KERNEL_SCS_KB), 6187 #endif 6188 K(node_page_state(pgdat, NR_PAGETABLE)), 6189 K(node_page_state(pgdat, NR_SECONDARY_PAGETABLE)), 6190 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 6191 "yes" : "no"); 6192 } 6193 6194 for_each_populated_zone(zone) { 6195 int i; 6196 6197 if (zone_idx(zone) > max_zone_idx) 6198 continue; 6199 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 6200 continue; 6201 6202 free_pcp = 0; 6203 for_each_online_cpu(cpu) 6204 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count; 6205 6206 show_node(zone); 6207 printk(KERN_CONT 6208 "%s" 6209 " free:%lukB" 6210 " boost:%lukB" 6211 " min:%lukB" 6212 " low:%lukB" 6213 " high:%lukB" 6214 " reserved_highatomic:%luKB" 6215 " active_anon:%lukB" 6216 " inactive_anon:%lukB" 6217 " active_file:%lukB" 6218 " inactive_file:%lukB" 6219 " unevictable:%lukB" 6220 " writepending:%lukB" 6221 " present:%lukB" 6222 " managed:%lukB" 6223 " mlocked:%lukB" 6224 " bounce:%lukB" 6225 " free_pcp:%lukB" 6226 " local_pcp:%ukB" 6227 " free_cma:%lukB" 6228 "\n", 6229 zone->name, 6230 K(zone_page_state(zone, NR_FREE_PAGES)), 6231 K(zone->watermark_boost), 6232 K(min_wmark_pages(zone)), 6233 K(low_wmark_pages(zone)), 6234 K(high_wmark_pages(zone)), 6235 K(zone->nr_reserved_highatomic), 6236 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 6237 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 6238 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 6239 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 6240 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 6241 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 6242 K(zone->present_pages), 6243 K(zone_managed_pages(zone)), 6244 K(zone_page_state(zone, NR_MLOCK)), 6245 K(zone_page_state(zone, NR_BOUNCE)), 6246 K(free_pcp), 6247 K(this_cpu_read(zone->per_cpu_pageset->count)), 6248 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 6249 printk("lowmem_reserve[]:"); 6250 for (i = 0; i < MAX_NR_ZONES; i++) 6251 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 6252 printk(KERN_CONT "\n"); 6253 } 6254 6255 for_each_populated_zone(zone) { 6256 unsigned int order; 6257 unsigned long nr[MAX_ORDER], flags, total = 0; 6258 unsigned char types[MAX_ORDER]; 6259 6260 if (zone_idx(zone) > max_zone_idx) 6261 continue; 6262 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 6263 continue; 6264 show_node(zone); 6265 printk(KERN_CONT "%s: ", zone->name); 6266 6267 spin_lock_irqsave(&zone->lock, flags); 6268 for (order = 0; order < MAX_ORDER; order++) { 6269 struct free_area *area = &zone->free_area[order]; 6270 int type; 6271 6272 nr[order] = area->nr_free; 6273 total += nr[order] << order; 6274 6275 types[order] = 0; 6276 for (type = 0; type < MIGRATE_TYPES; type++) { 6277 if (!free_area_empty(area, type)) 6278 types[order] |= 1 << type; 6279 } 6280 } 6281 spin_unlock_irqrestore(&zone->lock, flags); 6282 for (order = 0; order < MAX_ORDER; order++) { 6283 printk(KERN_CONT "%lu*%lukB ", 6284 nr[order], K(1UL) << order); 6285 if (nr[order]) 6286 show_migration_types(types[order]); 6287 } 6288 printk(KERN_CONT "= %lukB\n", K(total)); 6289 } 6290 6291 for_each_online_node(nid) { 6292 if (show_mem_node_skip(filter, nid, nodemask)) 6293 continue; 6294 hugetlb_show_meminfo_node(nid); 6295 } 6296 6297 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 6298 6299 show_swap_cache_info(); 6300 } 6301 6302 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 6303 { 6304 zoneref->zone = zone; 6305 zoneref->zone_idx = zone_idx(zone); 6306 } 6307 6308 /* 6309 * Builds allocation fallback zone lists. 6310 * 6311 * Add all populated zones of a node to the zonelist. 6312 */ 6313 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 6314 { 6315 struct zone *zone; 6316 enum zone_type zone_type = MAX_NR_ZONES; 6317 int nr_zones = 0; 6318 6319 do { 6320 zone_type--; 6321 zone = pgdat->node_zones + zone_type; 6322 if (populated_zone(zone)) { 6323 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 6324 check_highest_zone(zone_type); 6325 } 6326 } while (zone_type); 6327 6328 return nr_zones; 6329 } 6330 6331 #ifdef CONFIG_NUMA 6332 6333 static int __parse_numa_zonelist_order(char *s) 6334 { 6335 /* 6336 * We used to support different zonelists modes but they turned 6337 * out to be just not useful. Let's keep the warning in place 6338 * if somebody still use the cmd line parameter so that we do 6339 * not fail it silently 6340 */ 6341 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 6342 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 6343 return -EINVAL; 6344 } 6345 return 0; 6346 } 6347 6348 char numa_zonelist_order[] = "Node"; 6349 6350 /* 6351 * sysctl handler for numa_zonelist_order 6352 */ 6353 int numa_zonelist_order_handler(struct ctl_table *table, int write, 6354 void *buffer, size_t *length, loff_t *ppos) 6355 { 6356 if (write) 6357 return __parse_numa_zonelist_order(buffer); 6358 return proc_dostring(table, write, buffer, length, ppos); 6359 } 6360 6361 6362 static int node_load[MAX_NUMNODES]; 6363 6364 /** 6365 * find_next_best_node - find the next node that should appear in a given node's fallback list 6366 * @node: node whose fallback list we're appending 6367 * @used_node_mask: nodemask_t of already used nodes 6368 * 6369 * We use a number of factors to determine which is the next node that should 6370 * appear on a given node's fallback list. The node should not have appeared 6371 * already in @node's fallback list, and it should be the next closest node 6372 * according to the distance array (which contains arbitrary distance values 6373 * from each node to each node in the system), and should also prefer nodes 6374 * with no CPUs, since presumably they'll have very little allocation pressure 6375 * on them otherwise. 6376 * 6377 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 6378 */ 6379 int find_next_best_node(int node, nodemask_t *used_node_mask) 6380 { 6381 int n, val; 6382 int min_val = INT_MAX; 6383 int best_node = NUMA_NO_NODE; 6384 6385 /* Use the local node if we haven't already */ 6386 if (!node_isset(node, *used_node_mask)) { 6387 node_set(node, *used_node_mask); 6388 return node; 6389 } 6390 6391 for_each_node_state(n, N_MEMORY) { 6392 6393 /* Don't want a node to appear more than once */ 6394 if (node_isset(n, *used_node_mask)) 6395 continue; 6396 6397 /* Use the distance array to find the distance */ 6398 val = node_distance(node, n); 6399 6400 /* Penalize nodes under us ("prefer the next node") */ 6401 val += (n < node); 6402 6403 /* Give preference to headless and unused nodes */ 6404 if (!cpumask_empty(cpumask_of_node(n))) 6405 val += PENALTY_FOR_NODE_WITH_CPUS; 6406 6407 /* Slight preference for less loaded node */ 6408 val *= MAX_NUMNODES; 6409 val += node_load[n]; 6410 6411 if (val < min_val) { 6412 min_val = val; 6413 best_node = n; 6414 } 6415 } 6416 6417 if (best_node >= 0) 6418 node_set(best_node, *used_node_mask); 6419 6420 return best_node; 6421 } 6422 6423 6424 /* 6425 * Build zonelists ordered by node and zones within node. 6426 * This results in maximum locality--normal zone overflows into local 6427 * DMA zone, if any--but risks exhausting DMA zone. 6428 */ 6429 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 6430 unsigned nr_nodes) 6431 { 6432 struct zoneref *zonerefs; 6433 int i; 6434 6435 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 6436 6437 for (i = 0; i < nr_nodes; i++) { 6438 int nr_zones; 6439 6440 pg_data_t *node = NODE_DATA(node_order[i]); 6441 6442 nr_zones = build_zonerefs_node(node, zonerefs); 6443 zonerefs += nr_zones; 6444 } 6445 zonerefs->zone = NULL; 6446 zonerefs->zone_idx = 0; 6447 } 6448 6449 /* 6450 * Build gfp_thisnode zonelists 6451 */ 6452 static void build_thisnode_zonelists(pg_data_t *pgdat) 6453 { 6454 struct zoneref *zonerefs; 6455 int nr_zones; 6456 6457 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 6458 nr_zones = build_zonerefs_node(pgdat, zonerefs); 6459 zonerefs += nr_zones; 6460 zonerefs->zone = NULL; 6461 zonerefs->zone_idx = 0; 6462 } 6463 6464 /* 6465 * Build zonelists ordered by zone and nodes within zones. 6466 * This results in conserving DMA zone[s] until all Normal memory is 6467 * exhausted, but results in overflowing to remote node while memory 6468 * may still exist in local DMA zone. 6469 */ 6470 6471 static void build_zonelists(pg_data_t *pgdat) 6472 { 6473 static int node_order[MAX_NUMNODES]; 6474 int node, nr_nodes = 0; 6475 nodemask_t used_mask = NODE_MASK_NONE; 6476 int local_node, prev_node; 6477 6478 /* NUMA-aware ordering of nodes */ 6479 local_node = pgdat->node_id; 6480 prev_node = local_node; 6481 6482 memset(node_order, 0, sizeof(node_order)); 6483 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 6484 /* 6485 * We don't want to pressure a particular node. 6486 * So adding penalty to the first node in same 6487 * distance group to make it round-robin. 6488 */ 6489 if (node_distance(local_node, node) != 6490 node_distance(local_node, prev_node)) 6491 node_load[node] += 1; 6492 6493 node_order[nr_nodes++] = node; 6494 prev_node = node; 6495 } 6496 6497 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 6498 build_thisnode_zonelists(pgdat); 6499 pr_info("Fallback order for Node %d: ", local_node); 6500 for (node = 0; node < nr_nodes; node++) 6501 pr_cont("%d ", node_order[node]); 6502 pr_cont("\n"); 6503 } 6504 6505 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 6506 /* 6507 * Return node id of node used for "local" allocations. 6508 * I.e., first node id of first zone in arg node's generic zonelist. 6509 * Used for initializing percpu 'numa_mem', which is used primarily 6510 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 6511 */ 6512 int local_memory_node(int node) 6513 { 6514 struct zoneref *z; 6515 6516 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 6517 gfp_zone(GFP_KERNEL), 6518 NULL); 6519 return zone_to_nid(z->zone); 6520 } 6521 #endif 6522 6523 static void setup_min_unmapped_ratio(void); 6524 static void setup_min_slab_ratio(void); 6525 #else /* CONFIG_NUMA */ 6526 6527 static void build_zonelists(pg_data_t *pgdat) 6528 { 6529 int node, local_node; 6530 struct zoneref *zonerefs; 6531 int nr_zones; 6532 6533 local_node = pgdat->node_id; 6534 6535 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 6536 nr_zones = build_zonerefs_node(pgdat, zonerefs); 6537 zonerefs += nr_zones; 6538 6539 /* 6540 * Now we build the zonelist so that it contains the zones 6541 * of all the other nodes. 6542 * We don't want to pressure a particular node, so when 6543 * building the zones for node N, we make sure that the 6544 * zones coming right after the local ones are those from 6545 * node N+1 (modulo N) 6546 */ 6547 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 6548 if (!node_online(node)) 6549 continue; 6550 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 6551 zonerefs += nr_zones; 6552 } 6553 for (node = 0; node < local_node; node++) { 6554 if (!node_online(node)) 6555 continue; 6556 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 6557 zonerefs += nr_zones; 6558 } 6559 6560 zonerefs->zone = NULL; 6561 zonerefs->zone_idx = 0; 6562 } 6563 6564 #endif /* CONFIG_NUMA */ 6565 6566 /* 6567 * Boot pageset table. One per cpu which is going to be used for all 6568 * zones and all nodes. The parameters will be set in such a way 6569 * that an item put on a list will immediately be handed over to 6570 * the buddy list. This is safe since pageset manipulation is done 6571 * with interrupts disabled. 6572 * 6573 * The boot_pagesets must be kept even after bootup is complete for 6574 * unused processors and/or zones. They do play a role for bootstrapping 6575 * hotplugged processors. 6576 * 6577 * zoneinfo_show() and maybe other functions do 6578 * not check if the processor is online before following the pageset pointer. 6579 * Other parts of the kernel may not check if the zone is available. 6580 */ 6581 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); 6582 /* These effectively disable the pcplists in the boot pageset completely */ 6583 #define BOOT_PAGESET_HIGH 0 6584 #define BOOT_PAGESET_BATCH 1 6585 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); 6586 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); 6587 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 6588 6589 static void __build_all_zonelists(void *data) 6590 { 6591 int nid; 6592 int __maybe_unused cpu; 6593 pg_data_t *self = data; 6594 6595 write_seqlock(&zonelist_update_seq); 6596 6597 #ifdef CONFIG_NUMA 6598 memset(node_load, 0, sizeof(node_load)); 6599 #endif 6600 6601 /* 6602 * This node is hotadded and no memory is yet present. So just 6603 * building zonelists is fine - no need to touch other nodes. 6604 */ 6605 if (self && !node_online(self->node_id)) { 6606 build_zonelists(self); 6607 } else { 6608 /* 6609 * All possible nodes have pgdat preallocated 6610 * in free_area_init 6611 */ 6612 for_each_node(nid) { 6613 pg_data_t *pgdat = NODE_DATA(nid); 6614 6615 build_zonelists(pgdat); 6616 } 6617 6618 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 6619 /* 6620 * We now know the "local memory node" for each node-- 6621 * i.e., the node of the first zone in the generic zonelist. 6622 * Set up numa_mem percpu variable for on-line cpus. During 6623 * boot, only the boot cpu should be on-line; we'll init the 6624 * secondary cpus' numa_mem as they come on-line. During 6625 * node/memory hotplug, we'll fixup all on-line cpus. 6626 */ 6627 for_each_online_cpu(cpu) 6628 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 6629 #endif 6630 } 6631 6632 write_sequnlock(&zonelist_update_seq); 6633 } 6634 6635 static noinline void __init 6636 build_all_zonelists_init(void) 6637 { 6638 int cpu; 6639 6640 __build_all_zonelists(NULL); 6641 6642 /* 6643 * Initialize the boot_pagesets that are going to be used 6644 * for bootstrapping processors. The real pagesets for 6645 * each zone will be allocated later when the per cpu 6646 * allocator is available. 6647 * 6648 * boot_pagesets are used also for bootstrapping offline 6649 * cpus if the system is already booted because the pagesets 6650 * are needed to initialize allocators on a specific cpu too. 6651 * F.e. the percpu allocator needs the page allocator which 6652 * needs the percpu allocator in order to allocate its pagesets 6653 * (a chicken-egg dilemma). 6654 */ 6655 for_each_possible_cpu(cpu) 6656 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); 6657 6658 mminit_verify_zonelist(); 6659 cpuset_init_current_mems_allowed(); 6660 } 6661 6662 /* 6663 * unless system_state == SYSTEM_BOOTING. 6664 * 6665 * __ref due to call of __init annotated helper build_all_zonelists_init 6666 * [protected by SYSTEM_BOOTING]. 6667 */ 6668 void __ref build_all_zonelists(pg_data_t *pgdat) 6669 { 6670 unsigned long vm_total_pages; 6671 6672 if (system_state == SYSTEM_BOOTING) { 6673 build_all_zonelists_init(); 6674 } else { 6675 __build_all_zonelists(pgdat); 6676 /* cpuset refresh routine should be here */ 6677 } 6678 /* Get the number of free pages beyond high watermark in all zones. */ 6679 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 6680 /* 6681 * Disable grouping by mobility if the number of pages in the 6682 * system is too low to allow the mechanism to work. It would be 6683 * more accurate, but expensive to check per-zone. This check is 6684 * made on memory-hotadd so a system can start with mobility 6685 * disabled and enable it later 6686 */ 6687 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 6688 page_group_by_mobility_disabled = 1; 6689 else 6690 page_group_by_mobility_disabled = 0; 6691 6692 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 6693 nr_online_nodes, 6694 page_group_by_mobility_disabled ? "off" : "on", 6695 vm_total_pages); 6696 #ifdef CONFIG_NUMA 6697 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 6698 #endif 6699 } 6700 6701 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 6702 static bool __meminit 6703 overlap_memmap_init(unsigned long zone, unsigned long *pfn) 6704 { 6705 static struct memblock_region *r; 6706 6707 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 6708 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 6709 for_each_mem_region(r) { 6710 if (*pfn < memblock_region_memory_end_pfn(r)) 6711 break; 6712 } 6713 } 6714 if (*pfn >= memblock_region_memory_base_pfn(r) && 6715 memblock_is_mirror(r)) { 6716 *pfn = memblock_region_memory_end_pfn(r); 6717 return true; 6718 } 6719 } 6720 return false; 6721 } 6722 6723 /* 6724 * Initially all pages are reserved - free ones are freed 6725 * up by memblock_free_all() once the early boot process is 6726 * done. Non-atomic initialization, single-pass. 6727 * 6728 * All aligned pageblocks are initialized to the specified migratetype 6729 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related 6730 * zone stats (e.g., nr_isolate_pageblock) are touched. 6731 */ 6732 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone, 6733 unsigned long start_pfn, unsigned long zone_end_pfn, 6734 enum meminit_context context, 6735 struct vmem_altmap *altmap, int migratetype) 6736 { 6737 unsigned long pfn, end_pfn = start_pfn + size; 6738 struct page *page; 6739 6740 if (highest_memmap_pfn < end_pfn - 1) 6741 highest_memmap_pfn = end_pfn - 1; 6742 6743 #ifdef CONFIG_ZONE_DEVICE 6744 /* 6745 * Honor reservation requested by the driver for this ZONE_DEVICE 6746 * memory. We limit the total number of pages to initialize to just 6747 * those that might contain the memory mapping. We will defer the 6748 * ZONE_DEVICE page initialization until after we have released 6749 * the hotplug lock. 6750 */ 6751 if (zone == ZONE_DEVICE) { 6752 if (!altmap) 6753 return; 6754 6755 if (start_pfn == altmap->base_pfn) 6756 start_pfn += altmap->reserve; 6757 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6758 } 6759 #endif 6760 6761 for (pfn = start_pfn; pfn < end_pfn; ) { 6762 /* 6763 * There can be holes in boot-time mem_map[]s handed to this 6764 * function. They do not exist on hotplugged memory. 6765 */ 6766 if (context == MEMINIT_EARLY) { 6767 if (overlap_memmap_init(zone, &pfn)) 6768 continue; 6769 if (defer_init(nid, pfn, zone_end_pfn)) 6770 break; 6771 } 6772 6773 page = pfn_to_page(pfn); 6774 __init_single_page(page, pfn, zone, nid); 6775 if (context == MEMINIT_HOTPLUG) 6776 __SetPageReserved(page); 6777 6778 /* 6779 * Usually, we want to mark the pageblock MIGRATE_MOVABLE, 6780 * such that unmovable allocations won't be scattered all 6781 * over the place during system boot. 6782 */ 6783 if (pageblock_aligned(pfn)) { 6784 set_pageblock_migratetype(page, migratetype); 6785 cond_resched(); 6786 } 6787 pfn++; 6788 } 6789 } 6790 6791 #ifdef CONFIG_ZONE_DEVICE 6792 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn, 6793 unsigned long zone_idx, int nid, 6794 struct dev_pagemap *pgmap) 6795 { 6796 6797 __init_single_page(page, pfn, zone_idx, nid); 6798 6799 /* 6800 * Mark page reserved as it will need to wait for onlining 6801 * phase for it to be fully associated with a zone. 6802 * 6803 * We can use the non-atomic __set_bit operation for setting 6804 * the flag as we are still initializing the pages. 6805 */ 6806 __SetPageReserved(page); 6807 6808 /* 6809 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer 6810 * and zone_device_data. It is a bug if a ZONE_DEVICE page is 6811 * ever freed or placed on a driver-private list. 6812 */ 6813 page->pgmap = pgmap; 6814 page->zone_device_data = NULL; 6815 6816 /* 6817 * Mark the block movable so that blocks are reserved for 6818 * movable at startup. This will force kernel allocations 6819 * to reserve their blocks rather than leaking throughout 6820 * the address space during boot when many long-lived 6821 * kernel allocations are made. 6822 * 6823 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap 6824 * because this is done early in section_activate() 6825 */ 6826 if (pageblock_aligned(pfn)) { 6827 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 6828 cond_resched(); 6829 } 6830 6831 /* 6832 * ZONE_DEVICE pages are released directly to the driver page allocator 6833 * which will set the page count to 1 when allocating the page. 6834 */ 6835 if (pgmap->type == MEMORY_DEVICE_PRIVATE || 6836 pgmap->type == MEMORY_DEVICE_COHERENT) 6837 set_page_count(page, 0); 6838 } 6839 6840 /* 6841 * With compound page geometry and when struct pages are stored in ram most 6842 * tail pages are reused. Consequently, the amount of unique struct pages to 6843 * initialize is a lot smaller that the total amount of struct pages being 6844 * mapped. This is a paired / mild layering violation with explicit knowledge 6845 * of how the sparse_vmemmap internals handle compound pages in the lack 6846 * of an altmap. See vmemmap_populate_compound_pages(). 6847 */ 6848 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap, 6849 unsigned long nr_pages) 6850 { 6851 return is_power_of_2(sizeof(struct page)) && 6852 !altmap ? 2 * (PAGE_SIZE / sizeof(struct page)) : nr_pages; 6853 } 6854 6855 static void __ref memmap_init_compound(struct page *head, 6856 unsigned long head_pfn, 6857 unsigned long zone_idx, int nid, 6858 struct dev_pagemap *pgmap, 6859 unsigned long nr_pages) 6860 { 6861 unsigned long pfn, end_pfn = head_pfn + nr_pages; 6862 unsigned int order = pgmap->vmemmap_shift; 6863 6864 __SetPageHead(head); 6865 for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) { 6866 struct page *page = pfn_to_page(pfn); 6867 6868 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); 6869 prep_compound_tail(head, pfn - head_pfn); 6870 set_page_count(page, 0); 6871 6872 /* 6873 * The first tail page stores compound_mapcount_ptr() and 6874 * compound_order() and the second tail page stores 6875 * compound_pincount_ptr(). Call prep_compound_head() after 6876 * the first and second tail pages have been initialized to 6877 * not have the data overwritten. 6878 */ 6879 if (pfn == head_pfn + 2) 6880 prep_compound_head(head, order); 6881 } 6882 } 6883 6884 void __ref memmap_init_zone_device(struct zone *zone, 6885 unsigned long start_pfn, 6886 unsigned long nr_pages, 6887 struct dev_pagemap *pgmap) 6888 { 6889 unsigned long pfn, end_pfn = start_pfn + nr_pages; 6890 struct pglist_data *pgdat = zone->zone_pgdat; 6891 struct vmem_altmap *altmap = pgmap_altmap(pgmap); 6892 unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap); 6893 unsigned long zone_idx = zone_idx(zone); 6894 unsigned long start = jiffies; 6895 int nid = pgdat->node_id; 6896 6897 if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE)) 6898 return; 6899 6900 /* 6901 * The call to memmap_init should have already taken care 6902 * of the pages reserved for the memmap, so we can just jump to 6903 * the end of that region and start processing the device pages. 6904 */ 6905 if (altmap) { 6906 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6907 nr_pages = end_pfn - start_pfn; 6908 } 6909 6910 for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) { 6911 struct page *page = pfn_to_page(pfn); 6912 6913 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); 6914 6915 if (pfns_per_compound == 1) 6916 continue; 6917 6918 memmap_init_compound(page, pfn, zone_idx, nid, pgmap, 6919 compound_nr_pages(altmap, pfns_per_compound)); 6920 } 6921 6922 pr_info("%s initialised %lu pages in %ums\n", __func__, 6923 nr_pages, jiffies_to_msecs(jiffies - start)); 6924 } 6925 6926 #endif 6927 static void __meminit zone_init_free_lists(struct zone *zone) 6928 { 6929 unsigned int order, t; 6930 for_each_migratetype_order(order, t) { 6931 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 6932 zone->free_area[order].nr_free = 0; 6933 } 6934 } 6935 6936 /* 6937 * Only struct pages that correspond to ranges defined by memblock.memory 6938 * are zeroed and initialized by going through __init_single_page() during 6939 * memmap_init_zone_range(). 6940 * 6941 * But, there could be struct pages that correspond to holes in 6942 * memblock.memory. This can happen because of the following reasons: 6943 * - physical memory bank size is not necessarily the exact multiple of the 6944 * arbitrary section size 6945 * - early reserved memory may not be listed in memblock.memory 6946 * - memory layouts defined with memmap= kernel parameter may not align 6947 * nicely with memmap sections 6948 * 6949 * Explicitly initialize those struct pages so that: 6950 * - PG_Reserved is set 6951 * - zone and node links point to zone and node that span the page if the 6952 * hole is in the middle of a zone 6953 * - zone and node links point to adjacent zone/node if the hole falls on 6954 * the zone boundary; the pages in such holes will be prepended to the 6955 * zone/node above the hole except for the trailing pages in the last 6956 * section that will be appended to the zone/node below. 6957 */ 6958 static void __init init_unavailable_range(unsigned long spfn, 6959 unsigned long epfn, 6960 int zone, int node) 6961 { 6962 unsigned long pfn; 6963 u64 pgcnt = 0; 6964 6965 for (pfn = spfn; pfn < epfn; pfn++) { 6966 if (!pfn_valid(pageblock_start_pfn(pfn))) { 6967 pfn = pageblock_end_pfn(pfn) - 1; 6968 continue; 6969 } 6970 __init_single_page(pfn_to_page(pfn), pfn, zone, node); 6971 __SetPageReserved(pfn_to_page(pfn)); 6972 pgcnt++; 6973 } 6974 6975 if (pgcnt) 6976 pr_info("On node %d, zone %s: %lld pages in unavailable ranges", 6977 node, zone_names[zone], pgcnt); 6978 } 6979 6980 static void __init memmap_init_zone_range(struct zone *zone, 6981 unsigned long start_pfn, 6982 unsigned long end_pfn, 6983 unsigned long *hole_pfn) 6984 { 6985 unsigned long zone_start_pfn = zone->zone_start_pfn; 6986 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages; 6987 int nid = zone_to_nid(zone), zone_id = zone_idx(zone); 6988 6989 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn); 6990 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn); 6991 6992 if (start_pfn >= end_pfn) 6993 return; 6994 6995 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn, 6996 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE); 6997 6998 if (*hole_pfn < start_pfn) 6999 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid); 7000 7001 *hole_pfn = end_pfn; 7002 } 7003 7004 static void __init memmap_init(void) 7005 { 7006 unsigned long start_pfn, end_pfn; 7007 unsigned long hole_pfn = 0; 7008 int i, j, zone_id = 0, nid; 7009 7010 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7011 struct pglist_data *node = NODE_DATA(nid); 7012 7013 for (j = 0; j < MAX_NR_ZONES; j++) { 7014 struct zone *zone = node->node_zones + j; 7015 7016 if (!populated_zone(zone)) 7017 continue; 7018 7019 memmap_init_zone_range(zone, start_pfn, end_pfn, 7020 &hole_pfn); 7021 zone_id = j; 7022 } 7023 } 7024 7025 #ifdef CONFIG_SPARSEMEM 7026 /* 7027 * Initialize the memory map for hole in the range [memory_end, 7028 * section_end]. 7029 * Append the pages in this hole to the highest zone in the last 7030 * node. 7031 * The call to init_unavailable_range() is outside the ifdef to 7032 * silence the compiler warining about zone_id set but not used; 7033 * for FLATMEM it is a nop anyway 7034 */ 7035 end_pfn = round_up(end_pfn, PAGES_PER_SECTION); 7036 if (hole_pfn < end_pfn) 7037 #endif 7038 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid); 7039 } 7040 7041 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align, 7042 phys_addr_t min_addr, int nid, bool exact_nid) 7043 { 7044 void *ptr; 7045 7046 if (exact_nid) 7047 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr, 7048 MEMBLOCK_ALLOC_ACCESSIBLE, 7049 nid); 7050 else 7051 ptr = memblock_alloc_try_nid_raw(size, align, min_addr, 7052 MEMBLOCK_ALLOC_ACCESSIBLE, 7053 nid); 7054 7055 if (ptr && size > 0) 7056 page_init_poison(ptr, size); 7057 7058 return ptr; 7059 } 7060 7061 static int zone_batchsize(struct zone *zone) 7062 { 7063 #ifdef CONFIG_MMU 7064 int batch; 7065 7066 /* 7067 * The number of pages to batch allocate is either ~0.1% 7068 * of the zone or 1MB, whichever is smaller. The batch 7069 * size is striking a balance between allocation latency 7070 * and zone lock contention. 7071 */ 7072 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE); 7073 batch /= 4; /* We effectively *= 4 below */ 7074 if (batch < 1) 7075 batch = 1; 7076 7077 /* 7078 * Clamp the batch to a 2^n - 1 value. Having a power 7079 * of 2 value was found to be more likely to have 7080 * suboptimal cache aliasing properties in some cases. 7081 * 7082 * For example if 2 tasks are alternately allocating 7083 * batches of pages, one task can end up with a lot 7084 * of pages of one half of the possible page colors 7085 * and the other with pages of the other colors. 7086 */ 7087 batch = rounddown_pow_of_two(batch + batch/2) - 1; 7088 7089 return batch; 7090 7091 #else 7092 /* The deferral and batching of frees should be suppressed under NOMMU 7093 * conditions. 7094 * 7095 * The problem is that NOMMU needs to be able to allocate large chunks 7096 * of contiguous memory as there's no hardware page translation to 7097 * assemble apparent contiguous memory from discontiguous pages. 7098 * 7099 * Queueing large contiguous runs of pages for batching, however, 7100 * causes the pages to actually be freed in smaller chunks. As there 7101 * can be a significant delay between the individual batches being 7102 * recycled, this leads to the once large chunks of space being 7103 * fragmented and becoming unavailable for high-order allocations. 7104 */ 7105 return 0; 7106 #endif 7107 } 7108 7109 static int zone_highsize(struct zone *zone, int batch, int cpu_online) 7110 { 7111 #ifdef CONFIG_MMU 7112 int high; 7113 int nr_split_cpus; 7114 unsigned long total_pages; 7115 7116 if (!percpu_pagelist_high_fraction) { 7117 /* 7118 * By default, the high value of the pcp is based on the zone 7119 * low watermark so that if they are full then background 7120 * reclaim will not be started prematurely. 7121 */ 7122 total_pages = low_wmark_pages(zone); 7123 } else { 7124 /* 7125 * If percpu_pagelist_high_fraction is configured, the high 7126 * value is based on a fraction of the managed pages in the 7127 * zone. 7128 */ 7129 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction; 7130 } 7131 7132 /* 7133 * Split the high value across all online CPUs local to the zone. Note 7134 * that early in boot that CPUs may not be online yet and that during 7135 * CPU hotplug that the cpumask is not yet updated when a CPU is being 7136 * onlined. For memory nodes that have no CPUs, split pcp->high across 7137 * all online CPUs to mitigate the risk that reclaim is triggered 7138 * prematurely due to pages stored on pcp lists. 7139 */ 7140 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; 7141 if (!nr_split_cpus) 7142 nr_split_cpus = num_online_cpus(); 7143 high = total_pages / nr_split_cpus; 7144 7145 /* 7146 * Ensure high is at least batch*4. The multiple is based on the 7147 * historical relationship between high and batch. 7148 */ 7149 high = max(high, batch << 2); 7150 7151 return high; 7152 #else 7153 return 0; 7154 #endif 7155 } 7156 7157 /* 7158 * pcp->high and pcp->batch values are related and generally batch is lower 7159 * than high. They are also related to pcp->count such that count is lower 7160 * than high, and as soon as it reaches high, the pcplist is flushed. 7161 * 7162 * However, guaranteeing these relations at all times would require e.g. write 7163 * barriers here but also careful usage of read barriers at the read side, and 7164 * thus be prone to error and bad for performance. Thus the update only prevents 7165 * store tearing. Any new users of pcp->batch and pcp->high should ensure they 7166 * can cope with those fields changing asynchronously, and fully trust only the 7167 * pcp->count field on the local CPU with interrupts disabled. 7168 * 7169 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 7170 * outside of boot time (or some other assurance that no concurrent updaters 7171 * exist). 7172 */ 7173 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 7174 unsigned long batch) 7175 { 7176 WRITE_ONCE(pcp->batch, batch); 7177 WRITE_ONCE(pcp->high, high); 7178 } 7179 7180 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) 7181 { 7182 int pindex; 7183 7184 memset(pcp, 0, sizeof(*pcp)); 7185 memset(pzstats, 0, sizeof(*pzstats)); 7186 7187 spin_lock_init(&pcp->lock); 7188 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) 7189 INIT_LIST_HEAD(&pcp->lists[pindex]); 7190 7191 /* 7192 * Set batch and high values safe for a boot pageset. A true percpu 7193 * pageset's initialization will update them subsequently. Here we don't 7194 * need to be as careful as pageset_update() as nobody can access the 7195 * pageset yet. 7196 */ 7197 pcp->high = BOOT_PAGESET_HIGH; 7198 pcp->batch = BOOT_PAGESET_BATCH; 7199 pcp->free_factor = 0; 7200 } 7201 7202 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high, 7203 unsigned long batch) 7204 { 7205 struct per_cpu_pages *pcp; 7206 int cpu; 7207 7208 for_each_possible_cpu(cpu) { 7209 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 7210 pageset_update(pcp, high, batch); 7211 } 7212 } 7213 7214 /* 7215 * Calculate and set new high and batch values for all per-cpu pagesets of a 7216 * zone based on the zone's size. 7217 */ 7218 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) 7219 { 7220 int new_high, new_batch; 7221 7222 new_batch = max(1, zone_batchsize(zone)); 7223 new_high = zone_highsize(zone, new_batch, cpu_online); 7224 7225 if (zone->pageset_high == new_high && 7226 zone->pageset_batch == new_batch) 7227 return; 7228 7229 zone->pageset_high = new_high; 7230 zone->pageset_batch = new_batch; 7231 7232 __zone_set_pageset_high_and_batch(zone, new_high, new_batch); 7233 } 7234 7235 void __meminit setup_zone_pageset(struct zone *zone) 7236 { 7237 int cpu; 7238 7239 /* Size may be 0 on !SMP && !NUMA */ 7240 if (sizeof(struct per_cpu_zonestat) > 0) 7241 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); 7242 7243 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); 7244 for_each_possible_cpu(cpu) { 7245 struct per_cpu_pages *pcp; 7246 struct per_cpu_zonestat *pzstats; 7247 7248 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 7249 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 7250 per_cpu_pages_init(pcp, pzstats); 7251 } 7252 7253 zone_set_pageset_high_and_batch(zone, 0); 7254 } 7255 7256 /* 7257 * The zone indicated has a new number of managed_pages; batch sizes and percpu 7258 * page high values need to be recalculated. 7259 */ 7260 static void zone_pcp_update(struct zone *zone, int cpu_online) 7261 { 7262 mutex_lock(&pcp_batch_high_lock); 7263 zone_set_pageset_high_and_batch(zone, cpu_online); 7264 mutex_unlock(&pcp_batch_high_lock); 7265 } 7266 7267 /* 7268 * Allocate per cpu pagesets and initialize them. 7269 * Before this call only boot pagesets were available. 7270 */ 7271 void __init setup_per_cpu_pageset(void) 7272 { 7273 struct pglist_data *pgdat; 7274 struct zone *zone; 7275 int __maybe_unused cpu; 7276 7277 for_each_populated_zone(zone) 7278 setup_zone_pageset(zone); 7279 7280 #ifdef CONFIG_NUMA 7281 /* 7282 * Unpopulated zones continue using the boot pagesets. 7283 * The numa stats for these pagesets need to be reset. 7284 * Otherwise, they will end up skewing the stats of 7285 * the nodes these zones are associated with. 7286 */ 7287 for_each_possible_cpu(cpu) { 7288 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); 7289 memset(pzstats->vm_numa_event, 0, 7290 sizeof(pzstats->vm_numa_event)); 7291 } 7292 #endif 7293 7294 for_each_online_pgdat(pgdat) 7295 pgdat->per_cpu_nodestats = 7296 alloc_percpu(struct per_cpu_nodestat); 7297 } 7298 7299 static __meminit void zone_pcp_init(struct zone *zone) 7300 { 7301 /* 7302 * per cpu subsystem is not up at this point. The following code 7303 * relies on the ability of the linker to provide the 7304 * offset of a (static) per cpu variable into the per cpu area. 7305 */ 7306 zone->per_cpu_pageset = &boot_pageset; 7307 zone->per_cpu_zonestats = &boot_zonestats; 7308 zone->pageset_high = BOOT_PAGESET_HIGH; 7309 zone->pageset_batch = BOOT_PAGESET_BATCH; 7310 7311 if (populated_zone(zone)) 7312 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, 7313 zone->present_pages, zone_batchsize(zone)); 7314 } 7315 7316 void __meminit init_currently_empty_zone(struct zone *zone, 7317 unsigned long zone_start_pfn, 7318 unsigned long size) 7319 { 7320 struct pglist_data *pgdat = zone->zone_pgdat; 7321 int zone_idx = zone_idx(zone) + 1; 7322 7323 if (zone_idx > pgdat->nr_zones) 7324 pgdat->nr_zones = zone_idx; 7325 7326 zone->zone_start_pfn = zone_start_pfn; 7327 7328 mminit_dprintk(MMINIT_TRACE, "memmap_init", 7329 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 7330 pgdat->node_id, 7331 (unsigned long)zone_idx(zone), 7332 zone_start_pfn, (zone_start_pfn + size)); 7333 7334 zone_init_free_lists(zone); 7335 zone->initialized = 1; 7336 } 7337 7338 /** 7339 * get_pfn_range_for_nid - Return the start and end page frames for a node 7340 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 7341 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 7342 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 7343 * 7344 * It returns the start and end page frame of a node based on information 7345 * provided by memblock_set_node(). If called for a node 7346 * with no available memory, a warning is printed and the start and end 7347 * PFNs will be 0. 7348 */ 7349 void __init get_pfn_range_for_nid(unsigned int nid, 7350 unsigned long *start_pfn, unsigned long *end_pfn) 7351 { 7352 unsigned long this_start_pfn, this_end_pfn; 7353 int i; 7354 7355 *start_pfn = -1UL; 7356 *end_pfn = 0; 7357 7358 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 7359 *start_pfn = min(*start_pfn, this_start_pfn); 7360 *end_pfn = max(*end_pfn, this_end_pfn); 7361 } 7362 7363 if (*start_pfn == -1UL) 7364 *start_pfn = 0; 7365 } 7366 7367 /* 7368 * This finds a zone that can be used for ZONE_MOVABLE pages. The 7369 * assumption is made that zones within a node are ordered in monotonic 7370 * increasing memory addresses so that the "highest" populated zone is used 7371 */ 7372 static void __init find_usable_zone_for_movable(void) 7373 { 7374 int zone_index; 7375 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 7376 if (zone_index == ZONE_MOVABLE) 7377 continue; 7378 7379 if (arch_zone_highest_possible_pfn[zone_index] > 7380 arch_zone_lowest_possible_pfn[zone_index]) 7381 break; 7382 } 7383 7384 VM_BUG_ON(zone_index == -1); 7385 movable_zone = zone_index; 7386 } 7387 7388 /* 7389 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 7390 * because it is sized independent of architecture. Unlike the other zones, 7391 * the starting point for ZONE_MOVABLE is not fixed. It may be different 7392 * in each node depending on the size of each node and how evenly kernelcore 7393 * is distributed. This helper function adjusts the zone ranges 7394 * provided by the architecture for a given node by using the end of the 7395 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 7396 * zones within a node are in order of monotonic increases memory addresses 7397 */ 7398 static void __init adjust_zone_range_for_zone_movable(int nid, 7399 unsigned long zone_type, 7400 unsigned long node_start_pfn, 7401 unsigned long node_end_pfn, 7402 unsigned long *zone_start_pfn, 7403 unsigned long *zone_end_pfn) 7404 { 7405 /* Only adjust if ZONE_MOVABLE is on this node */ 7406 if (zone_movable_pfn[nid]) { 7407 /* Size ZONE_MOVABLE */ 7408 if (zone_type == ZONE_MOVABLE) { 7409 *zone_start_pfn = zone_movable_pfn[nid]; 7410 *zone_end_pfn = min(node_end_pfn, 7411 arch_zone_highest_possible_pfn[movable_zone]); 7412 7413 /* Adjust for ZONE_MOVABLE starting within this range */ 7414 } else if (!mirrored_kernelcore && 7415 *zone_start_pfn < zone_movable_pfn[nid] && 7416 *zone_end_pfn > zone_movable_pfn[nid]) { 7417 *zone_end_pfn = zone_movable_pfn[nid]; 7418 7419 /* Check if this whole range is within ZONE_MOVABLE */ 7420 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 7421 *zone_start_pfn = *zone_end_pfn; 7422 } 7423 } 7424 7425 /* 7426 * Return the number of pages a zone spans in a node, including holes 7427 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 7428 */ 7429 static unsigned long __init zone_spanned_pages_in_node(int nid, 7430 unsigned long zone_type, 7431 unsigned long node_start_pfn, 7432 unsigned long node_end_pfn, 7433 unsigned long *zone_start_pfn, 7434 unsigned long *zone_end_pfn) 7435 { 7436 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 7437 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 7438 /* When hotadd a new node from cpu_up(), the node should be empty */ 7439 if (!node_start_pfn && !node_end_pfn) 7440 return 0; 7441 7442 /* Get the start and end of the zone */ 7443 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 7444 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 7445 adjust_zone_range_for_zone_movable(nid, zone_type, 7446 node_start_pfn, node_end_pfn, 7447 zone_start_pfn, zone_end_pfn); 7448 7449 /* Check that this node has pages within the zone's required range */ 7450 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 7451 return 0; 7452 7453 /* Move the zone boundaries inside the node if necessary */ 7454 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 7455 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 7456 7457 /* Return the spanned pages */ 7458 return *zone_end_pfn - *zone_start_pfn; 7459 } 7460 7461 /* 7462 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 7463 * then all holes in the requested range will be accounted for. 7464 */ 7465 unsigned long __init __absent_pages_in_range(int nid, 7466 unsigned long range_start_pfn, 7467 unsigned long range_end_pfn) 7468 { 7469 unsigned long nr_absent = range_end_pfn - range_start_pfn; 7470 unsigned long start_pfn, end_pfn; 7471 int i; 7472 7473 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7474 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 7475 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 7476 nr_absent -= end_pfn - start_pfn; 7477 } 7478 return nr_absent; 7479 } 7480 7481 /** 7482 * absent_pages_in_range - Return number of page frames in holes within a range 7483 * @start_pfn: The start PFN to start searching for holes 7484 * @end_pfn: The end PFN to stop searching for holes 7485 * 7486 * Return: the number of pages frames in memory holes within a range. 7487 */ 7488 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 7489 unsigned long end_pfn) 7490 { 7491 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 7492 } 7493 7494 /* Return the number of page frames in holes in a zone on a node */ 7495 static unsigned long __init zone_absent_pages_in_node(int nid, 7496 unsigned long zone_type, 7497 unsigned long node_start_pfn, 7498 unsigned long node_end_pfn) 7499 { 7500 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 7501 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 7502 unsigned long zone_start_pfn, zone_end_pfn; 7503 unsigned long nr_absent; 7504 7505 /* When hotadd a new node from cpu_up(), the node should be empty */ 7506 if (!node_start_pfn && !node_end_pfn) 7507 return 0; 7508 7509 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 7510 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 7511 7512 adjust_zone_range_for_zone_movable(nid, zone_type, 7513 node_start_pfn, node_end_pfn, 7514 &zone_start_pfn, &zone_end_pfn); 7515 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 7516 7517 /* 7518 * ZONE_MOVABLE handling. 7519 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 7520 * and vice versa. 7521 */ 7522 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 7523 unsigned long start_pfn, end_pfn; 7524 struct memblock_region *r; 7525 7526 for_each_mem_region(r) { 7527 start_pfn = clamp(memblock_region_memory_base_pfn(r), 7528 zone_start_pfn, zone_end_pfn); 7529 end_pfn = clamp(memblock_region_memory_end_pfn(r), 7530 zone_start_pfn, zone_end_pfn); 7531 7532 if (zone_type == ZONE_MOVABLE && 7533 memblock_is_mirror(r)) 7534 nr_absent += end_pfn - start_pfn; 7535 7536 if (zone_type == ZONE_NORMAL && 7537 !memblock_is_mirror(r)) 7538 nr_absent += end_pfn - start_pfn; 7539 } 7540 } 7541 7542 return nr_absent; 7543 } 7544 7545 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 7546 unsigned long node_start_pfn, 7547 unsigned long node_end_pfn) 7548 { 7549 unsigned long realtotalpages = 0, totalpages = 0; 7550 enum zone_type i; 7551 7552 for (i = 0; i < MAX_NR_ZONES; i++) { 7553 struct zone *zone = pgdat->node_zones + i; 7554 unsigned long zone_start_pfn, zone_end_pfn; 7555 unsigned long spanned, absent; 7556 unsigned long size, real_size; 7557 7558 spanned = zone_spanned_pages_in_node(pgdat->node_id, i, 7559 node_start_pfn, 7560 node_end_pfn, 7561 &zone_start_pfn, 7562 &zone_end_pfn); 7563 absent = zone_absent_pages_in_node(pgdat->node_id, i, 7564 node_start_pfn, 7565 node_end_pfn); 7566 7567 size = spanned; 7568 real_size = size - absent; 7569 7570 if (size) 7571 zone->zone_start_pfn = zone_start_pfn; 7572 else 7573 zone->zone_start_pfn = 0; 7574 zone->spanned_pages = size; 7575 zone->present_pages = real_size; 7576 #if defined(CONFIG_MEMORY_HOTPLUG) 7577 zone->present_early_pages = real_size; 7578 #endif 7579 7580 totalpages += size; 7581 realtotalpages += real_size; 7582 } 7583 7584 pgdat->node_spanned_pages = totalpages; 7585 pgdat->node_present_pages = realtotalpages; 7586 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); 7587 } 7588 7589 #ifndef CONFIG_SPARSEMEM 7590 /* 7591 * Calculate the size of the zone->blockflags rounded to an unsigned long 7592 * Start by making sure zonesize is a multiple of pageblock_order by rounding 7593 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 7594 * round what is now in bits to nearest long in bits, then return it in 7595 * bytes. 7596 */ 7597 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 7598 { 7599 unsigned long usemapsize; 7600 7601 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 7602 usemapsize = roundup(zonesize, pageblock_nr_pages); 7603 usemapsize = usemapsize >> pageblock_order; 7604 usemapsize *= NR_PAGEBLOCK_BITS; 7605 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 7606 7607 return usemapsize / 8; 7608 } 7609 7610 static void __ref setup_usemap(struct zone *zone) 7611 { 7612 unsigned long usemapsize = usemap_size(zone->zone_start_pfn, 7613 zone->spanned_pages); 7614 zone->pageblock_flags = NULL; 7615 if (usemapsize) { 7616 zone->pageblock_flags = 7617 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, 7618 zone_to_nid(zone)); 7619 if (!zone->pageblock_flags) 7620 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", 7621 usemapsize, zone->name, zone_to_nid(zone)); 7622 } 7623 } 7624 #else 7625 static inline void setup_usemap(struct zone *zone) {} 7626 #endif /* CONFIG_SPARSEMEM */ 7627 7628 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 7629 7630 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 7631 void __init set_pageblock_order(void) 7632 { 7633 unsigned int order = MAX_ORDER - 1; 7634 7635 /* Check that pageblock_nr_pages has not already been setup */ 7636 if (pageblock_order) 7637 return; 7638 7639 /* Don't let pageblocks exceed the maximum allocation granularity. */ 7640 if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order) 7641 order = HUGETLB_PAGE_ORDER; 7642 7643 /* 7644 * Assume the largest contiguous order of interest is a huge page. 7645 * This value may be variable depending on boot parameters on IA64 and 7646 * powerpc. 7647 */ 7648 pageblock_order = order; 7649 } 7650 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 7651 7652 /* 7653 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 7654 * is unused as pageblock_order is set at compile-time. See 7655 * include/linux/pageblock-flags.h for the values of pageblock_order based on 7656 * the kernel config 7657 */ 7658 void __init set_pageblock_order(void) 7659 { 7660 } 7661 7662 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 7663 7664 static unsigned long __init calc_memmap_size(unsigned long spanned_pages, 7665 unsigned long present_pages) 7666 { 7667 unsigned long pages = spanned_pages; 7668 7669 /* 7670 * Provide a more accurate estimation if there are holes within 7671 * the zone and SPARSEMEM is in use. If there are holes within the 7672 * zone, each populated memory region may cost us one or two extra 7673 * memmap pages due to alignment because memmap pages for each 7674 * populated regions may not be naturally aligned on page boundary. 7675 * So the (present_pages >> 4) heuristic is a tradeoff for that. 7676 */ 7677 if (spanned_pages > present_pages + (present_pages >> 4) && 7678 IS_ENABLED(CONFIG_SPARSEMEM)) 7679 pages = present_pages; 7680 7681 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 7682 } 7683 7684 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 7685 static void pgdat_init_split_queue(struct pglist_data *pgdat) 7686 { 7687 struct deferred_split *ds_queue = &pgdat->deferred_split_queue; 7688 7689 spin_lock_init(&ds_queue->split_queue_lock); 7690 INIT_LIST_HEAD(&ds_queue->split_queue); 7691 ds_queue->split_queue_len = 0; 7692 } 7693 #else 7694 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 7695 #endif 7696 7697 #ifdef CONFIG_COMPACTION 7698 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 7699 { 7700 init_waitqueue_head(&pgdat->kcompactd_wait); 7701 } 7702 #else 7703 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 7704 #endif 7705 7706 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 7707 { 7708 int i; 7709 7710 pgdat_resize_init(pgdat); 7711 pgdat_kswapd_lock_init(pgdat); 7712 7713 pgdat_init_split_queue(pgdat); 7714 pgdat_init_kcompactd(pgdat); 7715 7716 init_waitqueue_head(&pgdat->kswapd_wait); 7717 init_waitqueue_head(&pgdat->pfmemalloc_wait); 7718 7719 for (i = 0; i < NR_VMSCAN_THROTTLE; i++) 7720 init_waitqueue_head(&pgdat->reclaim_wait[i]); 7721 7722 pgdat_page_ext_init(pgdat); 7723 lruvec_init(&pgdat->__lruvec); 7724 } 7725 7726 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 7727 unsigned long remaining_pages) 7728 { 7729 atomic_long_set(&zone->managed_pages, remaining_pages); 7730 zone_set_nid(zone, nid); 7731 zone->name = zone_names[idx]; 7732 zone->zone_pgdat = NODE_DATA(nid); 7733 spin_lock_init(&zone->lock); 7734 zone_seqlock_init(zone); 7735 zone_pcp_init(zone); 7736 } 7737 7738 /* 7739 * Set up the zone data structures 7740 * - init pgdat internals 7741 * - init all zones belonging to this node 7742 * 7743 * NOTE: this function is only called during memory hotplug 7744 */ 7745 #ifdef CONFIG_MEMORY_HOTPLUG 7746 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat) 7747 { 7748 int nid = pgdat->node_id; 7749 enum zone_type z; 7750 int cpu; 7751 7752 pgdat_init_internals(pgdat); 7753 7754 if (pgdat->per_cpu_nodestats == &boot_nodestats) 7755 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat); 7756 7757 /* 7758 * Reset the nr_zones, order and highest_zoneidx before reuse. 7759 * Note that kswapd will init kswapd_highest_zoneidx properly 7760 * when it starts in the near future. 7761 */ 7762 pgdat->nr_zones = 0; 7763 pgdat->kswapd_order = 0; 7764 pgdat->kswapd_highest_zoneidx = 0; 7765 pgdat->node_start_pfn = 0; 7766 for_each_online_cpu(cpu) { 7767 struct per_cpu_nodestat *p; 7768 7769 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); 7770 memset(p, 0, sizeof(*p)); 7771 } 7772 7773 for (z = 0; z < MAX_NR_ZONES; z++) 7774 zone_init_internals(&pgdat->node_zones[z], z, nid, 0); 7775 } 7776 #endif 7777 7778 /* 7779 * Set up the zone data structures: 7780 * - mark all pages reserved 7781 * - mark all memory queues empty 7782 * - clear the memory bitmaps 7783 * 7784 * NOTE: pgdat should get zeroed by caller. 7785 * NOTE: this function is only called during early init. 7786 */ 7787 static void __init free_area_init_core(struct pglist_data *pgdat) 7788 { 7789 enum zone_type j; 7790 int nid = pgdat->node_id; 7791 7792 pgdat_init_internals(pgdat); 7793 pgdat->per_cpu_nodestats = &boot_nodestats; 7794 7795 for (j = 0; j < MAX_NR_ZONES; j++) { 7796 struct zone *zone = pgdat->node_zones + j; 7797 unsigned long size, freesize, memmap_pages; 7798 7799 size = zone->spanned_pages; 7800 freesize = zone->present_pages; 7801 7802 /* 7803 * Adjust freesize so that it accounts for how much memory 7804 * is used by this zone for memmap. This affects the watermark 7805 * and per-cpu initialisations 7806 */ 7807 memmap_pages = calc_memmap_size(size, freesize); 7808 if (!is_highmem_idx(j)) { 7809 if (freesize >= memmap_pages) { 7810 freesize -= memmap_pages; 7811 if (memmap_pages) 7812 pr_debug(" %s zone: %lu pages used for memmap\n", 7813 zone_names[j], memmap_pages); 7814 } else 7815 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n", 7816 zone_names[j], memmap_pages, freesize); 7817 } 7818 7819 /* Account for reserved pages */ 7820 if (j == 0 && freesize > dma_reserve) { 7821 freesize -= dma_reserve; 7822 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve); 7823 } 7824 7825 if (!is_highmem_idx(j)) 7826 nr_kernel_pages += freesize; 7827 /* Charge for highmem memmap if there are enough kernel pages */ 7828 else if (nr_kernel_pages > memmap_pages * 2) 7829 nr_kernel_pages -= memmap_pages; 7830 nr_all_pages += freesize; 7831 7832 /* 7833 * Set an approximate value for lowmem here, it will be adjusted 7834 * when the bootmem allocator frees pages into the buddy system. 7835 * And all highmem pages will be managed by the buddy system. 7836 */ 7837 zone_init_internals(zone, j, nid, freesize); 7838 7839 if (!size) 7840 continue; 7841 7842 set_pageblock_order(); 7843 setup_usemap(zone); 7844 init_currently_empty_zone(zone, zone->zone_start_pfn, size); 7845 } 7846 } 7847 7848 #ifdef CONFIG_FLATMEM 7849 static void __init alloc_node_mem_map(struct pglist_data *pgdat) 7850 { 7851 unsigned long __maybe_unused start = 0; 7852 unsigned long __maybe_unused offset = 0; 7853 7854 /* Skip empty nodes */ 7855 if (!pgdat->node_spanned_pages) 7856 return; 7857 7858 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 7859 offset = pgdat->node_start_pfn - start; 7860 /* ia64 gets its own node_mem_map, before this, without bootmem */ 7861 if (!pgdat->node_mem_map) { 7862 unsigned long size, end; 7863 struct page *map; 7864 7865 /* 7866 * The zone's endpoints aren't required to be MAX_ORDER 7867 * aligned but the node_mem_map endpoints must be in order 7868 * for the buddy allocator to function correctly. 7869 */ 7870 end = pgdat_end_pfn(pgdat); 7871 end = ALIGN(end, MAX_ORDER_NR_PAGES); 7872 size = (end - start) * sizeof(struct page); 7873 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT, 7874 pgdat->node_id, false); 7875 if (!map) 7876 panic("Failed to allocate %ld bytes for node %d memory map\n", 7877 size, pgdat->node_id); 7878 pgdat->node_mem_map = map + offset; 7879 } 7880 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 7881 __func__, pgdat->node_id, (unsigned long)pgdat, 7882 (unsigned long)pgdat->node_mem_map); 7883 #ifndef CONFIG_NUMA 7884 /* 7885 * With no DISCONTIG, the global mem_map is just set as node 0's 7886 */ 7887 if (pgdat == NODE_DATA(0)) { 7888 mem_map = NODE_DATA(0)->node_mem_map; 7889 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 7890 mem_map -= offset; 7891 } 7892 #endif 7893 } 7894 #else 7895 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { } 7896 #endif /* CONFIG_FLATMEM */ 7897 7898 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 7899 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 7900 { 7901 pgdat->first_deferred_pfn = ULONG_MAX; 7902 } 7903 #else 7904 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 7905 #endif 7906 7907 static void __init free_area_init_node(int nid) 7908 { 7909 pg_data_t *pgdat = NODE_DATA(nid); 7910 unsigned long start_pfn = 0; 7911 unsigned long end_pfn = 0; 7912 7913 /* pg_data_t should be reset to zero when it's allocated */ 7914 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx); 7915 7916 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 7917 7918 pgdat->node_id = nid; 7919 pgdat->node_start_pfn = start_pfn; 7920 pgdat->per_cpu_nodestats = NULL; 7921 7922 if (start_pfn != end_pfn) { 7923 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 7924 (u64)start_pfn << PAGE_SHIFT, 7925 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 7926 } else { 7927 pr_info("Initmem setup node %d as memoryless\n", nid); 7928 } 7929 7930 calculate_node_totalpages(pgdat, start_pfn, end_pfn); 7931 7932 alloc_node_mem_map(pgdat); 7933 pgdat_set_deferred_range(pgdat); 7934 7935 free_area_init_core(pgdat); 7936 } 7937 7938 static void __init free_area_init_memoryless_node(int nid) 7939 { 7940 free_area_init_node(nid); 7941 } 7942 7943 #if MAX_NUMNODES > 1 7944 /* 7945 * Figure out the number of possible node ids. 7946 */ 7947 void __init setup_nr_node_ids(void) 7948 { 7949 unsigned int highest; 7950 7951 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 7952 nr_node_ids = highest + 1; 7953 } 7954 #endif 7955 7956 /** 7957 * node_map_pfn_alignment - determine the maximum internode alignment 7958 * 7959 * This function should be called after node map is populated and sorted. 7960 * It calculates the maximum power of two alignment which can distinguish 7961 * all the nodes. 7962 * 7963 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 7964 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 7965 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 7966 * shifted, 1GiB is enough and this function will indicate so. 7967 * 7968 * This is used to test whether pfn -> nid mapping of the chosen memory 7969 * model has fine enough granularity to avoid incorrect mapping for the 7970 * populated node map. 7971 * 7972 * Return: the determined alignment in pfn's. 0 if there is no alignment 7973 * requirement (single node). 7974 */ 7975 unsigned long __init node_map_pfn_alignment(void) 7976 { 7977 unsigned long accl_mask = 0, last_end = 0; 7978 unsigned long start, end, mask; 7979 int last_nid = NUMA_NO_NODE; 7980 int i, nid; 7981 7982 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 7983 if (!start || last_nid < 0 || last_nid == nid) { 7984 last_nid = nid; 7985 last_end = end; 7986 continue; 7987 } 7988 7989 /* 7990 * Start with a mask granular enough to pin-point to the 7991 * start pfn and tick off bits one-by-one until it becomes 7992 * too coarse to separate the current node from the last. 7993 */ 7994 mask = ~((1 << __ffs(start)) - 1); 7995 while (mask && last_end <= (start & (mask << 1))) 7996 mask <<= 1; 7997 7998 /* accumulate all internode masks */ 7999 accl_mask |= mask; 8000 } 8001 8002 /* convert mask to number of pages */ 8003 return ~accl_mask + 1; 8004 } 8005 8006 /* 8007 * early_calculate_totalpages() 8008 * Sum pages in active regions for movable zone. 8009 * Populate N_MEMORY for calculating usable_nodes. 8010 */ 8011 static unsigned long __init early_calculate_totalpages(void) 8012 { 8013 unsigned long totalpages = 0; 8014 unsigned long start_pfn, end_pfn; 8015 int i, nid; 8016 8017 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 8018 unsigned long pages = end_pfn - start_pfn; 8019 8020 totalpages += pages; 8021 if (pages) 8022 node_set_state(nid, N_MEMORY); 8023 } 8024 return totalpages; 8025 } 8026 8027 /* 8028 * Find the PFN the Movable zone begins in each node. Kernel memory 8029 * is spread evenly between nodes as long as the nodes have enough 8030 * memory. When they don't, some nodes will have more kernelcore than 8031 * others 8032 */ 8033 static void __init find_zone_movable_pfns_for_nodes(void) 8034 { 8035 int i, nid; 8036 unsigned long usable_startpfn; 8037 unsigned long kernelcore_node, kernelcore_remaining; 8038 /* save the state before borrow the nodemask */ 8039 nodemask_t saved_node_state = node_states[N_MEMORY]; 8040 unsigned long totalpages = early_calculate_totalpages(); 8041 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 8042 struct memblock_region *r; 8043 8044 /* Need to find movable_zone earlier when movable_node is specified. */ 8045 find_usable_zone_for_movable(); 8046 8047 /* 8048 * If movable_node is specified, ignore kernelcore and movablecore 8049 * options. 8050 */ 8051 if (movable_node_is_enabled()) { 8052 for_each_mem_region(r) { 8053 if (!memblock_is_hotpluggable(r)) 8054 continue; 8055 8056 nid = memblock_get_region_node(r); 8057 8058 usable_startpfn = PFN_DOWN(r->base); 8059 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 8060 min(usable_startpfn, zone_movable_pfn[nid]) : 8061 usable_startpfn; 8062 } 8063 8064 goto out2; 8065 } 8066 8067 /* 8068 * If kernelcore=mirror is specified, ignore movablecore option 8069 */ 8070 if (mirrored_kernelcore) { 8071 bool mem_below_4gb_not_mirrored = false; 8072 8073 for_each_mem_region(r) { 8074 if (memblock_is_mirror(r)) 8075 continue; 8076 8077 nid = memblock_get_region_node(r); 8078 8079 usable_startpfn = memblock_region_memory_base_pfn(r); 8080 8081 if (usable_startpfn < PHYS_PFN(SZ_4G)) { 8082 mem_below_4gb_not_mirrored = true; 8083 continue; 8084 } 8085 8086 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 8087 min(usable_startpfn, zone_movable_pfn[nid]) : 8088 usable_startpfn; 8089 } 8090 8091 if (mem_below_4gb_not_mirrored) 8092 pr_warn("This configuration results in unmirrored kernel memory.\n"); 8093 8094 goto out2; 8095 } 8096 8097 /* 8098 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 8099 * amount of necessary memory. 8100 */ 8101 if (required_kernelcore_percent) 8102 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 8103 10000UL; 8104 if (required_movablecore_percent) 8105 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 8106 10000UL; 8107 8108 /* 8109 * If movablecore= was specified, calculate what size of 8110 * kernelcore that corresponds so that memory usable for 8111 * any allocation type is evenly spread. If both kernelcore 8112 * and movablecore are specified, then the value of kernelcore 8113 * will be used for required_kernelcore if it's greater than 8114 * what movablecore would have allowed. 8115 */ 8116 if (required_movablecore) { 8117 unsigned long corepages; 8118 8119 /* 8120 * Round-up so that ZONE_MOVABLE is at least as large as what 8121 * was requested by the user 8122 */ 8123 required_movablecore = 8124 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 8125 required_movablecore = min(totalpages, required_movablecore); 8126 corepages = totalpages - required_movablecore; 8127 8128 required_kernelcore = max(required_kernelcore, corepages); 8129 } 8130 8131 /* 8132 * If kernelcore was not specified or kernelcore size is larger 8133 * than totalpages, there is no ZONE_MOVABLE. 8134 */ 8135 if (!required_kernelcore || required_kernelcore >= totalpages) 8136 goto out; 8137 8138 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 8139 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 8140 8141 restart: 8142 /* Spread kernelcore memory as evenly as possible throughout nodes */ 8143 kernelcore_node = required_kernelcore / usable_nodes; 8144 for_each_node_state(nid, N_MEMORY) { 8145 unsigned long start_pfn, end_pfn; 8146 8147 /* 8148 * Recalculate kernelcore_node if the division per node 8149 * now exceeds what is necessary to satisfy the requested 8150 * amount of memory for the kernel 8151 */ 8152 if (required_kernelcore < kernelcore_node) 8153 kernelcore_node = required_kernelcore / usable_nodes; 8154 8155 /* 8156 * As the map is walked, we track how much memory is usable 8157 * by the kernel using kernelcore_remaining. When it is 8158 * 0, the rest of the node is usable by ZONE_MOVABLE 8159 */ 8160 kernelcore_remaining = kernelcore_node; 8161 8162 /* Go through each range of PFNs within this node */ 8163 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 8164 unsigned long size_pages; 8165 8166 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 8167 if (start_pfn >= end_pfn) 8168 continue; 8169 8170 /* Account for what is only usable for kernelcore */ 8171 if (start_pfn < usable_startpfn) { 8172 unsigned long kernel_pages; 8173 kernel_pages = min(end_pfn, usable_startpfn) 8174 - start_pfn; 8175 8176 kernelcore_remaining -= min(kernel_pages, 8177 kernelcore_remaining); 8178 required_kernelcore -= min(kernel_pages, 8179 required_kernelcore); 8180 8181 /* Continue if range is now fully accounted */ 8182 if (end_pfn <= usable_startpfn) { 8183 8184 /* 8185 * Push zone_movable_pfn to the end so 8186 * that if we have to rebalance 8187 * kernelcore across nodes, we will 8188 * not double account here 8189 */ 8190 zone_movable_pfn[nid] = end_pfn; 8191 continue; 8192 } 8193 start_pfn = usable_startpfn; 8194 } 8195 8196 /* 8197 * The usable PFN range for ZONE_MOVABLE is from 8198 * start_pfn->end_pfn. Calculate size_pages as the 8199 * number of pages used as kernelcore 8200 */ 8201 size_pages = end_pfn - start_pfn; 8202 if (size_pages > kernelcore_remaining) 8203 size_pages = kernelcore_remaining; 8204 zone_movable_pfn[nid] = start_pfn + size_pages; 8205 8206 /* 8207 * Some kernelcore has been met, update counts and 8208 * break if the kernelcore for this node has been 8209 * satisfied 8210 */ 8211 required_kernelcore -= min(required_kernelcore, 8212 size_pages); 8213 kernelcore_remaining -= size_pages; 8214 if (!kernelcore_remaining) 8215 break; 8216 } 8217 } 8218 8219 /* 8220 * If there is still required_kernelcore, we do another pass with one 8221 * less node in the count. This will push zone_movable_pfn[nid] further 8222 * along on the nodes that still have memory until kernelcore is 8223 * satisfied 8224 */ 8225 usable_nodes--; 8226 if (usable_nodes && required_kernelcore > usable_nodes) 8227 goto restart; 8228 8229 out2: 8230 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 8231 for (nid = 0; nid < MAX_NUMNODES; nid++) { 8232 unsigned long start_pfn, end_pfn; 8233 8234 zone_movable_pfn[nid] = 8235 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 8236 8237 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 8238 if (zone_movable_pfn[nid] >= end_pfn) 8239 zone_movable_pfn[nid] = 0; 8240 } 8241 8242 out: 8243 /* restore the node_state */ 8244 node_states[N_MEMORY] = saved_node_state; 8245 } 8246 8247 /* Any regular or high memory on that node ? */ 8248 static void check_for_memory(pg_data_t *pgdat, int nid) 8249 { 8250 enum zone_type zone_type; 8251 8252 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 8253 struct zone *zone = &pgdat->node_zones[zone_type]; 8254 if (populated_zone(zone)) { 8255 if (IS_ENABLED(CONFIG_HIGHMEM)) 8256 node_set_state(nid, N_HIGH_MEMORY); 8257 if (zone_type <= ZONE_NORMAL) 8258 node_set_state(nid, N_NORMAL_MEMORY); 8259 break; 8260 } 8261 } 8262 } 8263 8264 /* 8265 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For 8266 * such cases we allow max_zone_pfn sorted in the descending order 8267 */ 8268 bool __weak arch_has_descending_max_zone_pfns(void) 8269 { 8270 return false; 8271 } 8272 8273 /** 8274 * free_area_init - Initialise all pg_data_t and zone data 8275 * @max_zone_pfn: an array of max PFNs for each zone 8276 * 8277 * This will call free_area_init_node() for each active node in the system. 8278 * Using the page ranges provided by memblock_set_node(), the size of each 8279 * zone in each node and their holes is calculated. If the maximum PFN 8280 * between two adjacent zones match, it is assumed that the zone is empty. 8281 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 8282 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 8283 * starts where the previous one ended. For example, ZONE_DMA32 starts 8284 * at arch_max_dma_pfn. 8285 */ 8286 void __init free_area_init(unsigned long *max_zone_pfn) 8287 { 8288 unsigned long start_pfn, end_pfn; 8289 int i, nid, zone; 8290 bool descending; 8291 8292 /* Record where the zone boundaries are */ 8293 memset(arch_zone_lowest_possible_pfn, 0, 8294 sizeof(arch_zone_lowest_possible_pfn)); 8295 memset(arch_zone_highest_possible_pfn, 0, 8296 sizeof(arch_zone_highest_possible_pfn)); 8297 8298 start_pfn = PHYS_PFN(memblock_start_of_DRAM()); 8299 descending = arch_has_descending_max_zone_pfns(); 8300 8301 for (i = 0; i < MAX_NR_ZONES; i++) { 8302 if (descending) 8303 zone = MAX_NR_ZONES - i - 1; 8304 else 8305 zone = i; 8306 8307 if (zone == ZONE_MOVABLE) 8308 continue; 8309 8310 end_pfn = max(max_zone_pfn[zone], start_pfn); 8311 arch_zone_lowest_possible_pfn[zone] = start_pfn; 8312 arch_zone_highest_possible_pfn[zone] = end_pfn; 8313 8314 start_pfn = end_pfn; 8315 } 8316 8317 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 8318 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 8319 find_zone_movable_pfns_for_nodes(); 8320 8321 /* Print out the zone ranges */ 8322 pr_info("Zone ranges:\n"); 8323 for (i = 0; i < MAX_NR_ZONES; i++) { 8324 if (i == ZONE_MOVABLE) 8325 continue; 8326 pr_info(" %-8s ", zone_names[i]); 8327 if (arch_zone_lowest_possible_pfn[i] == 8328 arch_zone_highest_possible_pfn[i]) 8329 pr_cont("empty\n"); 8330 else 8331 pr_cont("[mem %#018Lx-%#018Lx]\n", 8332 (u64)arch_zone_lowest_possible_pfn[i] 8333 << PAGE_SHIFT, 8334 ((u64)arch_zone_highest_possible_pfn[i] 8335 << PAGE_SHIFT) - 1); 8336 } 8337 8338 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 8339 pr_info("Movable zone start for each node\n"); 8340 for (i = 0; i < MAX_NUMNODES; i++) { 8341 if (zone_movable_pfn[i]) 8342 pr_info(" Node %d: %#018Lx\n", i, 8343 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 8344 } 8345 8346 /* 8347 * Print out the early node map, and initialize the 8348 * subsection-map relative to active online memory ranges to 8349 * enable future "sub-section" extensions of the memory map. 8350 */ 8351 pr_info("Early memory node ranges\n"); 8352 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 8353 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 8354 (u64)start_pfn << PAGE_SHIFT, 8355 ((u64)end_pfn << PAGE_SHIFT) - 1); 8356 subsection_map_init(start_pfn, end_pfn - start_pfn); 8357 } 8358 8359 /* Initialise every node */ 8360 mminit_verify_pageflags_layout(); 8361 setup_nr_node_ids(); 8362 for_each_node(nid) { 8363 pg_data_t *pgdat; 8364 8365 if (!node_online(nid)) { 8366 pr_info("Initializing node %d as memoryless\n", nid); 8367 8368 /* Allocator not initialized yet */ 8369 pgdat = arch_alloc_nodedata(nid); 8370 if (!pgdat) { 8371 pr_err("Cannot allocate %zuB for node %d.\n", 8372 sizeof(*pgdat), nid); 8373 continue; 8374 } 8375 arch_refresh_nodedata(nid, pgdat); 8376 free_area_init_memoryless_node(nid); 8377 8378 /* 8379 * We do not want to confuse userspace by sysfs 8380 * files/directories for node without any memory 8381 * attached to it, so this node is not marked as 8382 * N_MEMORY and not marked online so that no sysfs 8383 * hierarchy will be created via register_one_node for 8384 * it. The pgdat will get fully initialized by 8385 * hotadd_init_pgdat() when memory is hotplugged into 8386 * this node. 8387 */ 8388 continue; 8389 } 8390 8391 pgdat = NODE_DATA(nid); 8392 free_area_init_node(nid); 8393 8394 /* Any memory on that node */ 8395 if (pgdat->node_present_pages) 8396 node_set_state(nid, N_MEMORY); 8397 check_for_memory(pgdat, nid); 8398 } 8399 8400 memmap_init(); 8401 } 8402 8403 static int __init cmdline_parse_core(char *p, unsigned long *core, 8404 unsigned long *percent) 8405 { 8406 unsigned long long coremem; 8407 char *endptr; 8408 8409 if (!p) 8410 return -EINVAL; 8411 8412 /* Value may be a percentage of total memory, otherwise bytes */ 8413 coremem = simple_strtoull(p, &endptr, 0); 8414 if (*endptr == '%') { 8415 /* Paranoid check for percent values greater than 100 */ 8416 WARN_ON(coremem > 100); 8417 8418 *percent = coremem; 8419 } else { 8420 coremem = memparse(p, &p); 8421 /* Paranoid check that UL is enough for the coremem value */ 8422 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 8423 8424 *core = coremem >> PAGE_SHIFT; 8425 *percent = 0UL; 8426 } 8427 return 0; 8428 } 8429 8430 /* 8431 * kernelcore=size sets the amount of memory for use for allocations that 8432 * cannot be reclaimed or migrated. 8433 */ 8434 static int __init cmdline_parse_kernelcore(char *p) 8435 { 8436 /* parse kernelcore=mirror */ 8437 if (parse_option_str(p, "mirror")) { 8438 mirrored_kernelcore = true; 8439 return 0; 8440 } 8441 8442 return cmdline_parse_core(p, &required_kernelcore, 8443 &required_kernelcore_percent); 8444 } 8445 8446 /* 8447 * movablecore=size sets the amount of memory for use for allocations that 8448 * can be reclaimed or migrated. 8449 */ 8450 static int __init cmdline_parse_movablecore(char *p) 8451 { 8452 return cmdline_parse_core(p, &required_movablecore, 8453 &required_movablecore_percent); 8454 } 8455 8456 early_param("kernelcore", cmdline_parse_kernelcore); 8457 early_param("movablecore", cmdline_parse_movablecore); 8458 8459 void adjust_managed_page_count(struct page *page, long count) 8460 { 8461 atomic_long_add(count, &page_zone(page)->managed_pages); 8462 totalram_pages_add(count); 8463 #ifdef CONFIG_HIGHMEM 8464 if (PageHighMem(page)) 8465 totalhigh_pages_add(count); 8466 #endif 8467 } 8468 EXPORT_SYMBOL(adjust_managed_page_count); 8469 8470 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 8471 { 8472 void *pos; 8473 unsigned long pages = 0; 8474 8475 start = (void *)PAGE_ALIGN((unsigned long)start); 8476 end = (void *)((unsigned long)end & PAGE_MASK); 8477 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 8478 struct page *page = virt_to_page(pos); 8479 void *direct_map_addr; 8480 8481 /* 8482 * 'direct_map_addr' might be different from 'pos' 8483 * because some architectures' virt_to_page() 8484 * work with aliases. Getting the direct map 8485 * address ensures that we get a _writeable_ 8486 * alias for the memset(). 8487 */ 8488 direct_map_addr = page_address(page); 8489 /* 8490 * Perform a kasan-unchecked memset() since this memory 8491 * has not been initialized. 8492 */ 8493 direct_map_addr = kasan_reset_tag(direct_map_addr); 8494 if ((unsigned int)poison <= 0xFF) 8495 memset(direct_map_addr, poison, PAGE_SIZE); 8496 8497 free_reserved_page(page); 8498 } 8499 8500 if (pages && s) 8501 pr_info("Freeing %s memory: %ldK\n", s, K(pages)); 8502 8503 return pages; 8504 } 8505 8506 void __init mem_init_print_info(void) 8507 { 8508 unsigned long physpages, codesize, datasize, rosize, bss_size; 8509 unsigned long init_code_size, init_data_size; 8510 8511 physpages = get_num_physpages(); 8512 codesize = _etext - _stext; 8513 datasize = _edata - _sdata; 8514 rosize = __end_rodata - __start_rodata; 8515 bss_size = __bss_stop - __bss_start; 8516 init_data_size = __init_end - __init_begin; 8517 init_code_size = _einittext - _sinittext; 8518 8519 /* 8520 * Detect special cases and adjust section sizes accordingly: 8521 * 1) .init.* may be embedded into .data sections 8522 * 2) .init.text.* may be out of [__init_begin, __init_end], 8523 * please refer to arch/tile/kernel/vmlinux.lds.S. 8524 * 3) .rodata.* may be embedded into .text or .data sections. 8525 */ 8526 #define adj_init_size(start, end, size, pos, adj) \ 8527 do { \ 8528 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \ 8529 size -= adj; \ 8530 } while (0) 8531 8532 adj_init_size(__init_begin, __init_end, init_data_size, 8533 _sinittext, init_code_size); 8534 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 8535 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 8536 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 8537 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 8538 8539 #undef adj_init_size 8540 8541 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 8542 #ifdef CONFIG_HIGHMEM 8543 ", %luK highmem" 8544 #endif 8545 ")\n", 8546 K(nr_free_pages()), K(physpages), 8547 codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K, 8548 (init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K, 8549 K(physpages - totalram_pages() - totalcma_pages), 8550 K(totalcma_pages) 8551 #ifdef CONFIG_HIGHMEM 8552 , K(totalhigh_pages()) 8553 #endif 8554 ); 8555 } 8556 8557 /** 8558 * set_dma_reserve - set the specified number of pages reserved in the first zone 8559 * @new_dma_reserve: The number of pages to mark reserved 8560 * 8561 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 8562 * In the DMA zone, a significant percentage may be consumed by kernel image 8563 * and other unfreeable allocations which can skew the watermarks badly. This 8564 * function may optionally be used to account for unfreeable pages in the 8565 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 8566 * smaller per-cpu batchsize. 8567 */ 8568 void __init set_dma_reserve(unsigned long new_dma_reserve) 8569 { 8570 dma_reserve = new_dma_reserve; 8571 } 8572 8573 static int page_alloc_cpu_dead(unsigned int cpu) 8574 { 8575 struct zone *zone; 8576 8577 lru_add_drain_cpu(cpu); 8578 mlock_page_drain_remote(cpu); 8579 drain_pages(cpu); 8580 8581 /* 8582 * Spill the event counters of the dead processor 8583 * into the current processors event counters. 8584 * This artificially elevates the count of the current 8585 * processor. 8586 */ 8587 vm_events_fold_cpu(cpu); 8588 8589 /* 8590 * Zero the differential counters of the dead processor 8591 * so that the vm statistics are consistent. 8592 * 8593 * This is only okay since the processor is dead and cannot 8594 * race with what we are doing. 8595 */ 8596 cpu_vm_stats_fold(cpu); 8597 8598 for_each_populated_zone(zone) 8599 zone_pcp_update(zone, 0); 8600 8601 return 0; 8602 } 8603 8604 static int page_alloc_cpu_online(unsigned int cpu) 8605 { 8606 struct zone *zone; 8607 8608 for_each_populated_zone(zone) 8609 zone_pcp_update(zone, 1); 8610 return 0; 8611 } 8612 8613 #ifdef CONFIG_NUMA 8614 int hashdist = HASHDIST_DEFAULT; 8615 8616 static int __init set_hashdist(char *str) 8617 { 8618 if (!str) 8619 return 0; 8620 hashdist = simple_strtoul(str, &str, 0); 8621 return 1; 8622 } 8623 __setup("hashdist=", set_hashdist); 8624 #endif 8625 8626 void __init page_alloc_init(void) 8627 { 8628 int ret; 8629 8630 #ifdef CONFIG_NUMA 8631 if (num_node_state(N_MEMORY) == 1) 8632 hashdist = 0; 8633 #endif 8634 8635 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, 8636 "mm/page_alloc:pcp", 8637 page_alloc_cpu_online, 8638 page_alloc_cpu_dead); 8639 WARN_ON(ret < 0); 8640 } 8641 8642 /* 8643 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 8644 * or min_free_kbytes changes. 8645 */ 8646 static void calculate_totalreserve_pages(void) 8647 { 8648 struct pglist_data *pgdat; 8649 unsigned long reserve_pages = 0; 8650 enum zone_type i, j; 8651 8652 for_each_online_pgdat(pgdat) { 8653 8654 pgdat->totalreserve_pages = 0; 8655 8656 for (i = 0; i < MAX_NR_ZONES; i++) { 8657 struct zone *zone = pgdat->node_zones + i; 8658 long max = 0; 8659 unsigned long managed_pages = zone_managed_pages(zone); 8660 8661 /* Find valid and maximum lowmem_reserve in the zone */ 8662 for (j = i; j < MAX_NR_ZONES; j++) { 8663 if (zone->lowmem_reserve[j] > max) 8664 max = zone->lowmem_reserve[j]; 8665 } 8666 8667 /* we treat the high watermark as reserved pages. */ 8668 max += high_wmark_pages(zone); 8669 8670 if (max > managed_pages) 8671 max = managed_pages; 8672 8673 pgdat->totalreserve_pages += max; 8674 8675 reserve_pages += max; 8676 } 8677 } 8678 totalreserve_pages = reserve_pages; 8679 } 8680 8681 /* 8682 * setup_per_zone_lowmem_reserve - called whenever 8683 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 8684 * has a correct pages reserved value, so an adequate number of 8685 * pages are left in the zone after a successful __alloc_pages(). 8686 */ 8687 static void setup_per_zone_lowmem_reserve(void) 8688 { 8689 struct pglist_data *pgdat; 8690 enum zone_type i, j; 8691 8692 for_each_online_pgdat(pgdat) { 8693 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 8694 struct zone *zone = &pgdat->node_zones[i]; 8695 int ratio = sysctl_lowmem_reserve_ratio[i]; 8696 bool clear = !ratio || !zone_managed_pages(zone); 8697 unsigned long managed_pages = 0; 8698 8699 for (j = i + 1; j < MAX_NR_ZONES; j++) { 8700 struct zone *upper_zone = &pgdat->node_zones[j]; 8701 8702 managed_pages += zone_managed_pages(upper_zone); 8703 8704 if (clear) 8705 zone->lowmem_reserve[j] = 0; 8706 else 8707 zone->lowmem_reserve[j] = managed_pages / ratio; 8708 } 8709 } 8710 } 8711 8712 /* update totalreserve_pages */ 8713 calculate_totalreserve_pages(); 8714 } 8715 8716 static void __setup_per_zone_wmarks(void) 8717 { 8718 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 8719 unsigned long lowmem_pages = 0; 8720 struct zone *zone; 8721 unsigned long flags; 8722 8723 /* Calculate total number of !ZONE_HIGHMEM pages */ 8724 for_each_zone(zone) { 8725 if (!is_highmem(zone)) 8726 lowmem_pages += zone_managed_pages(zone); 8727 } 8728 8729 for_each_zone(zone) { 8730 u64 tmp; 8731 8732 spin_lock_irqsave(&zone->lock, flags); 8733 tmp = (u64)pages_min * zone_managed_pages(zone); 8734 do_div(tmp, lowmem_pages); 8735 if (is_highmem(zone)) { 8736 /* 8737 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 8738 * need highmem pages, so cap pages_min to a small 8739 * value here. 8740 * 8741 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 8742 * deltas control async page reclaim, and so should 8743 * not be capped for highmem. 8744 */ 8745 unsigned long min_pages; 8746 8747 min_pages = zone_managed_pages(zone) / 1024; 8748 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 8749 zone->_watermark[WMARK_MIN] = min_pages; 8750 } else { 8751 /* 8752 * If it's a lowmem zone, reserve a number of pages 8753 * proportionate to the zone's size. 8754 */ 8755 zone->_watermark[WMARK_MIN] = tmp; 8756 } 8757 8758 /* 8759 * Set the kswapd watermarks distance according to the 8760 * scale factor in proportion to available memory, but 8761 * ensure a minimum size on small systems. 8762 */ 8763 tmp = max_t(u64, tmp >> 2, 8764 mult_frac(zone_managed_pages(zone), 8765 watermark_scale_factor, 10000)); 8766 8767 zone->watermark_boost = 0; 8768 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 8769 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp; 8770 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp; 8771 8772 spin_unlock_irqrestore(&zone->lock, flags); 8773 } 8774 8775 /* update totalreserve_pages */ 8776 calculate_totalreserve_pages(); 8777 } 8778 8779 /** 8780 * setup_per_zone_wmarks - called when min_free_kbytes changes 8781 * or when memory is hot-{added|removed} 8782 * 8783 * Ensures that the watermark[min,low,high] values for each zone are set 8784 * correctly with respect to min_free_kbytes. 8785 */ 8786 void setup_per_zone_wmarks(void) 8787 { 8788 struct zone *zone; 8789 static DEFINE_SPINLOCK(lock); 8790 8791 spin_lock(&lock); 8792 __setup_per_zone_wmarks(); 8793 spin_unlock(&lock); 8794 8795 /* 8796 * The watermark size have changed so update the pcpu batch 8797 * and high limits or the limits may be inappropriate. 8798 */ 8799 for_each_zone(zone) 8800 zone_pcp_update(zone, 0); 8801 } 8802 8803 /* 8804 * Initialise min_free_kbytes. 8805 * 8806 * For small machines we want it small (128k min). For large machines 8807 * we want it large (256MB max). But it is not linear, because network 8808 * bandwidth does not increase linearly with machine size. We use 8809 * 8810 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 8811 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 8812 * 8813 * which yields 8814 * 8815 * 16MB: 512k 8816 * 32MB: 724k 8817 * 64MB: 1024k 8818 * 128MB: 1448k 8819 * 256MB: 2048k 8820 * 512MB: 2896k 8821 * 1024MB: 4096k 8822 * 2048MB: 5792k 8823 * 4096MB: 8192k 8824 * 8192MB: 11584k 8825 * 16384MB: 16384k 8826 */ 8827 void calculate_min_free_kbytes(void) 8828 { 8829 unsigned long lowmem_kbytes; 8830 int new_min_free_kbytes; 8831 8832 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 8833 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 8834 8835 if (new_min_free_kbytes > user_min_free_kbytes) 8836 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144); 8837 else 8838 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 8839 new_min_free_kbytes, user_min_free_kbytes); 8840 8841 } 8842 8843 int __meminit init_per_zone_wmark_min(void) 8844 { 8845 calculate_min_free_kbytes(); 8846 setup_per_zone_wmarks(); 8847 refresh_zone_stat_thresholds(); 8848 setup_per_zone_lowmem_reserve(); 8849 8850 #ifdef CONFIG_NUMA 8851 setup_min_unmapped_ratio(); 8852 setup_min_slab_ratio(); 8853 #endif 8854 8855 khugepaged_min_free_kbytes_update(); 8856 8857 return 0; 8858 } 8859 postcore_initcall(init_per_zone_wmark_min) 8860 8861 /* 8862 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 8863 * that we can call two helper functions whenever min_free_kbytes 8864 * changes. 8865 */ 8866 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 8867 void *buffer, size_t *length, loff_t *ppos) 8868 { 8869 int rc; 8870 8871 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8872 if (rc) 8873 return rc; 8874 8875 if (write) { 8876 user_min_free_kbytes = min_free_kbytes; 8877 setup_per_zone_wmarks(); 8878 } 8879 return 0; 8880 } 8881 8882 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 8883 void *buffer, size_t *length, loff_t *ppos) 8884 { 8885 int rc; 8886 8887 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8888 if (rc) 8889 return rc; 8890 8891 if (write) 8892 setup_per_zone_wmarks(); 8893 8894 return 0; 8895 } 8896 8897 #ifdef CONFIG_NUMA 8898 static void setup_min_unmapped_ratio(void) 8899 { 8900 pg_data_t *pgdat; 8901 struct zone *zone; 8902 8903 for_each_online_pgdat(pgdat) 8904 pgdat->min_unmapped_pages = 0; 8905 8906 for_each_zone(zone) 8907 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 8908 sysctl_min_unmapped_ratio) / 100; 8909 } 8910 8911 8912 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 8913 void *buffer, size_t *length, loff_t *ppos) 8914 { 8915 int rc; 8916 8917 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8918 if (rc) 8919 return rc; 8920 8921 setup_min_unmapped_ratio(); 8922 8923 return 0; 8924 } 8925 8926 static void setup_min_slab_ratio(void) 8927 { 8928 pg_data_t *pgdat; 8929 struct zone *zone; 8930 8931 for_each_online_pgdat(pgdat) 8932 pgdat->min_slab_pages = 0; 8933 8934 for_each_zone(zone) 8935 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 8936 sysctl_min_slab_ratio) / 100; 8937 } 8938 8939 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 8940 void *buffer, size_t *length, loff_t *ppos) 8941 { 8942 int rc; 8943 8944 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8945 if (rc) 8946 return rc; 8947 8948 setup_min_slab_ratio(); 8949 8950 return 0; 8951 } 8952 #endif 8953 8954 /* 8955 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 8956 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 8957 * whenever sysctl_lowmem_reserve_ratio changes. 8958 * 8959 * The reserve ratio obviously has absolutely no relation with the 8960 * minimum watermarks. The lowmem reserve ratio can only make sense 8961 * if in function of the boot time zone sizes. 8962 */ 8963 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 8964 void *buffer, size_t *length, loff_t *ppos) 8965 { 8966 int i; 8967 8968 proc_dointvec_minmax(table, write, buffer, length, ppos); 8969 8970 for (i = 0; i < MAX_NR_ZONES; i++) { 8971 if (sysctl_lowmem_reserve_ratio[i] < 1) 8972 sysctl_lowmem_reserve_ratio[i] = 0; 8973 } 8974 8975 setup_per_zone_lowmem_reserve(); 8976 return 0; 8977 } 8978 8979 /* 8980 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each 8981 * cpu. It is the fraction of total pages in each zone that a hot per cpu 8982 * pagelist can have before it gets flushed back to buddy allocator. 8983 */ 8984 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table, 8985 int write, void *buffer, size_t *length, loff_t *ppos) 8986 { 8987 struct zone *zone; 8988 int old_percpu_pagelist_high_fraction; 8989 int ret; 8990 8991 mutex_lock(&pcp_batch_high_lock); 8992 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; 8993 8994 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 8995 if (!write || ret < 0) 8996 goto out; 8997 8998 /* Sanity checking to avoid pcp imbalance */ 8999 if (percpu_pagelist_high_fraction && 9000 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { 9001 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; 9002 ret = -EINVAL; 9003 goto out; 9004 } 9005 9006 /* No change? */ 9007 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) 9008 goto out; 9009 9010 for_each_populated_zone(zone) 9011 zone_set_pageset_high_and_batch(zone, 0); 9012 out: 9013 mutex_unlock(&pcp_batch_high_lock); 9014 return ret; 9015 } 9016 9017 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 9018 /* 9019 * Returns the number of pages that arch has reserved but 9020 * is not known to alloc_large_system_hash(). 9021 */ 9022 static unsigned long __init arch_reserved_kernel_pages(void) 9023 { 9024 return 0; 9025 } 9026 #endif 9027 9028 /* 9029 * Adaptive scale is meant to reduce sizes of hash tables on large memory 9030 * machines. As memory size is increased the scale is also increased but at 9031 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 9032 * quadruples the scale is increased by one, which means the size of hash table 9033 * only doubles, instead of quadrupling as well. 9034 * Because 32-bit systems cannot have large physical memory, where this scaling 9035 * makes sense, it is disabled on such platforms. 9036 */ 9037 #if __BITS_PER_LONG > 32 9038 #define ADAPT_SCALE_BASE (64ul << 30) 9039 #define ADAPT_SCALE_SHIFT 2 9040 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 9041 #endif 9042 9043 /* 9044 * allocate a large system hash table from bootmem 9045 * - it is assumed that the hash table must contain an exact power-of-2 9046 * quantity of entries 9047 * - limit is the number of hash buckets, not the total allocation size 9048 */ 9049 void *__init alloc_large_system_hash(const char *tablename, 9050 unsigned long bucketsize, 9051 unsigned long numentries, 9052 int scale, 9053 int flags, 9054 unsigned int *_hash_shift, 9055 unsigned int *_hash_mask, 9056 unsigned long low_limit, 9057 unsigned long high_limit) 9058 { 9059 unsigned long long max = high_limit; 9060 unsigned long log2qty, size; 9061 void *table; 9062 gfp_t gfp_flags; 9063 bool virt; 9064 bool huge; 9065 9066 /* allow the kernel cmdline to have a say */ 9067 if (!numentries) { 9068 /* round applicable memory size up to nearest megabyte */ 9069 numentries = nr_kernel_pages; 9070 numentries -= arch_reserved_kernel_pages(); 9071 9072 /* It isn't necessary when PAGE_SIZE >= 1MB */ 9073 if (PAGE_SIZE < SZ_1M) 9074 numentries = round_up(numentries, SZ_1M / PAGE_SIZE); 9075 9076 #if __BITS_PER_LONG > 32 9077 if (!high_limit) { 9078 unsigned long adapt; 9079 9080 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 9081 adapt <<= ADAPT_SCALE_SHIFT) 9082 scale++; 9083 } 9084 #endif 9085 9086 /* limit to 1 bucket per 2^scale bytes of low memory */ 9087 if (scale > PAGE_SHIFT) 9088 numentries >>= (scale - PAGE_SHIFT); 9089 else 9090 numentries <<= (PAGE_SHIFT - scale); 9091 9092 /* Make sure we've got at least a 0-order allocation.. */ 9093 if (unlikely(flags & HASH_SMALL)) { 9094 /* Makes no sense without HASH_EARLY */ 9095 WARN_ON(!(flags & HASH_EARLY)); 9096 if (!(numentries >> *_hash_shift)) { 9097 numentries = 1UL << *_hash_shift; 9098 BUG_ON(!numentries); 9099 } 9100 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 9101 numentries = PAGE_SIZE / bucketsize; 9102 } 9103 numentries = roundup_pow_of_two(numentries); 9104 9105 /* limit allocation size to 1/16 total memory by default */ 9106 if (max == 0) { 9107 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 9108 do_div(max, bucketsize); 9109 } 9110 max = min(max, 0x80000000ULL); 9111 9112 if (numentries < low_limit) 9113 numentries = low_limit; 9114 if (numentries > max) 9115 numentries = max; 9116 9117 log2qty = ilog2(numentries); 9118 9119 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 9120 do { 9121 virt = false; 9122 size = bucketsize << log2qty; 9123 if (flags & HASH_EARLY) { 9124 if (flags & HASH_ZERO) 9125 table = memblock_alloc(size, SMP_CACHE_BYTES); 9126 else 9127 table = memblock_alloc_raw(size, 9128 SMP_CACHE_BYTES); 9129 } else if (get_order(size) >= MAX_ORDER || hashdist) { 9130 table = vmalloc_huge(size, gfp_flags); 9131 virt = true; 9132 if (table) 9133 huge = is_vm_area_hugepages(table); 9134 } else { 9135 /* 9136 * If bucketsize is not a power-of-two, we may free 9137 * some pages at the end of hash table which 9138 * alloc_pages_exact() automatically does 9139 */ 9140 table = alloc_pages_exact(size, gfp_flags); 9141 kmemleak_alloc(table, size, 1, gfp_flags); 9142 } 9143 } while (!table && size > PAGE_SIZE && --log2qty); 9144 9145 if (!table) 9146 panic("Failed to allocate %s hash table\n", tablename); 9147 9148 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", 9149 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, 9150 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear"); 9151 9152 if (_hash_shift) 9153 *_hash_shift = log2qty; 9154 if (_hash_mask) 9155 *_hash_mask = (1 << log2qty) - 1; 9156 9157 return table; 9158 } 9159 9160 #ifdef CONFIG_CONTIG_ALLOC 9161 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 9162 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 9163 /* Usage: See admin-guide/dynamic-debug-howto.rst */ 9164 static void alloc_contig_dump_pages(struct list_head *page_list) 9165 { 9166 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 9167 9168 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 9169 struct page *page; 9170 9171 dump_stack(); 9172 list_for_each_entry(page, page_list, lru) 9173 dump_page(page, "migration failure"); 9174 } 9175 } 9176 #else 9177 static inline void alloc_contig_dump_pages(struct list_head *page_list) 9178 { 9179 } 9180 #endif 9181 9182 /* [start, end) must belong to a single zone. */ 9183 int __alloc_contig_migrate_range(struct compact_control *cc, 9184 unsigned long start, unsigned long end) 9185 { 9186 /* This function is based on compact_zone() from compaction.c. */ 9187 unsigned int nr_reclaimed; 9188 unsigned long pfn = start; 9189 unsigned int tries = 0; 9190 int ret = 0; 9191 struct migration_target_control mtc = { 9192 .nid = zone_to_nid(cc->zone), 9193 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 9194 }; 9195 9196 lru_cache_disable(); 9197 9198 while (pfn < end || !list_empty(&cc->migratepages)) { 9199 if (fatal_signal_pending(current)) { 9200 ret = -EINTR; 9201 break; 9202 } 9203 9204 if (list_empty(&cc->migratepages)) { 9205 cc->nr_migratepages = 0; 9206 ret = isolate_migratepages_range(cc, pfn, end); 9207 if (ret && ret != -EAGAIN) 9208 break; 9209 pfn = cc->migrate_pfn; 9210 tries = 0; 9211 } else if (++tries == 5) { 9212 ret = -EBUSY; 9213 break; 9214 } 9215 9216 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 9217 &cc->migratepages); 9218 cc->nr_migratepages -= nr_reclaimed; 9219 9220 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 9221 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); 9222 9223 /* 9224 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 9225 * to retry again over this error, so do the same here. 9226 */ 9227 if (ret == -ENOMEM) 9228 break; 9229 } 9230 9231 lru_cache_enable(); 9232 if (ret < 0) { 9233 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY) 9234 alloc_contig_dump_pages(&cc->migratepages); 9235 putback_movable_pages(&cc->migratepages); 9236 return ret; 9237 } 9238 return 0; 9239 } 9240 9241 /** 9242 * alloc_contig_range() -- tries to allocate given range of pages 9243 * @start: start PFN to allocate 9244 * @end: one-past-the-last PFN to allocate 9245 * @migratetype: migratetype of the underlying pageblocks (either 9246 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 9247 * in range must have the same migratetype and it must 9248 * be either of the two. 9249 * @gfp_mask: GFP mask to use during compaction 9250 * 9251 * The PFN range does not have to be pageblock aligned. The PFN range must 9252 * belong to a single zone. 9253 * 9254 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 9255 * pageblocks in the range. Once isolated, the pageblocks should not 9256 * be modified by others. 9257 * 9258 * Return: zero on success or negative error code. On success all 9259 * pages which PFN is in [start, end) are allocated for the caller and 9260 * need to be freed with free_contig_range(). 9261 */ 9262 int alloc_contig_range(unsigned long start, unsigned long end, 9263 unsigned migratetype, gfp_t gfp_mask) 9264 { 9265 unsigned long outer_start, outer_end; 9266 int order; 9267 int ret = 0; 9268 9269 struct compact_control cc = { 9270 .nr_migratepages = 0, 9271 .order = -1, 9272 .zone = page_zone(pfn_to_page(start)), 9273 .mode = MIGRATE_SYNC, 9274 .ignore_skip_hint = true, 9275 .no_set_skip_hint = true, 9276 .gfp_mask = current_gfp_context(gfp_mask), 9277 .alloc_contig = true, 9278 }; 9279 INIT_LIST_HEAD(&cc.migratepages); 9280 9281 /* 9282 * What we do here is we mark all pageblocks in range as 9283 * MIGRATE_ISOLATE. Because pageblock and max order pages may 9284 * have different sizes, and due to the way page allocator 9285 * work, start_isolate_page_range() has special handlings for this. 9286 * 9287 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 9288 * migrate the pages from an unaligned range (ie. pages that 9289 * we are interested in). This will put all the pages in 9290 * range back to page allocator as MIGRATE_ISOLATE. 9291 * 9292 * When this is done, we take the pages in range from page 9293 * allocator removing them from the buddy system. This way 9294 * page allocator will never consider using them. 9295 * 9296 * This lets us mark the pageblocks back as 9297 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 9298 * aligned range but not in the unaligned, original range are 9299 * put back to page allocator so that buddy can use them. 9300 */ 9301 9302 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask); 9303 if (ret) 9304 goto done; 9305 9306 drain_all_pages(cc.zone); 9307 9308 /* 9309 * In case of -EBUSY, we'd like to know which page causes problem. 9310 * So, just fall through. test_pages_isolated() has a tracepoint 9311 * which will report the busy page. 9312 * 9313 * It is possible that busy pages could become available before 9314 * the call to test_pages_isolated, and the range will actually be 9315 * allocated. So, if we fall through be sure to clear ret so that 9316 * -EBUSY is not accidentally used or returned to caller. 9317 */ 9318 ret = __alloc_contig_migrate_range(&cc, start, end); 9319 if (ret && ret != -EBUSY) 9320 goto done; 9321 ret = 0; 9322 9323 /* 9324 * Pages from [start, end) are within a pageblock_nr_pages 9325 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 9326 * more, all pages in [start, end) are free in page allocator. 9327 * What we are going to do is to allocate all pages from 9328 * [start, end) (that is remove them from page allocator). 9329 * 9330 * The only problem is that pages at the beginning and at the 9331 * end of interesting range may be not aligned with pages that 9332 * page allocator holds, ie. they can be part of higher order 9333 * pages. Because of this, we reserve the bigger range and 9334 * once this is done free the pages we are not interested in. 9335 * 9336 * We don't have to hold zone->lock here because the pages are 9337 * isolated thus they won't get removed from buddy. 9338 */ 9339 9340 order = 0; 9341 outer_start = start; 9342 while (!PageBuddy(pfn_to_page(outer_start))) { 9343 if (++order >= MAX_ORDER) { 9344 outer_start = start; 9345 break; 9346 } 9347 outer_start &= ~0UL << order; 9348 } 9349 9350 if (outer_start != start) { 9351 order = buddy_order(pfn_to_page(outer_start)); 9352 9353 /* 9354 * outer_start page could be small order buddy page and 9355 * it doesn't include start page. Adjust outer_start 9356 * in this case to report failed page properly 9357 * on tracepoint in test_pages_isolated() 9358 */ 9359 if (outer_start + (1UL << order) <= start) 9360 outer_start = start; 9361 } 9362 9363 /* Make sure the range is really isolated. */ 9364 if (test_pages_isolated(outer_start, end, 0)) { 9365 ret = -EBUSY; 9366 goto done; 9367 } 9368 9369 /* Grab isolated pages from freelists. */ 9370 outer_end = isolate_freepages_range(&cc, outer_start, end); 9371 if (!outer_end) { 9372 ret = -EBUSY; 9373 goto done; 9374 } 9375 9376 /* Free head and tail (if any) */ 9377 if (start != outer_start) 9378 free_contig_range(outer_start, start - outer_start); 9379 if (end != outer_end) 9380 free_contig_range(end, outer_end - end); 9381 9382 done: 9383 undo_isolate_page_range(start, end, migratetype); 9384 return ret; 9385 } 9386 EXPORT_SYMBOL(alloc_contig_range); 9387 9388 static int __alloc_contig_pages(unsigned long start_pfn, 9389 unsigned long nr_pages, gfp_t gfp_mask) 9390 { 9391 unsigned long end_pfn = start_pfn + nr_pages; 9392 9393 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 9394 gfp_mask); 9395 } 9396 9397 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 9398 unsigned long nr_pages) 9399 { 9400 unsigned long i, end_pfn = start_pfn + nr_pages; 9401 struct page *page; 9402 9403 for (i = start_pfn; i < end_pfn; i++) { 9404 page = pfn_to_online_page(i); 9405 if (!page) 9406 return false; 9407 9408 if (page_zone(page) != z) 9409 return false; 9410 9411 if (PageReserved(page)) 9412 return false; 9413 } 9414 return true; 9415 } 9416 9417 static bool zone_spans_last_pfn(const struct zone *zone, 9418 unsigned long start_pfn, unsigned long nr_pages) 9419 { 9420 unsigned long last_pfn = start_pfn + nr_pages - 1; 9421 9422 return zone_spans_pfn(zone, last_pfn); 9423 } 9424 9425 /** 9426 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 9427 * @nr_pages: Number of contiguous pages to allocate 9428 * @gfp_mask: GFP mask to limit search and used during compaction 9429 * @nid: Target node 9430 * @nodemask: Mask for other possible nodes 9431 * 9432 * This routine is a wrapper around alloc_contig_range(). It scans over zones 9433 * on an applicable zonelist to find a contiguous pfn range which can then be 9434 * tried for allocation with alloc_contig_range(). This routine is intended 9435 * for allocation requests which can not be fulfilled with the buddy allocator. 9436 * 9437 * The allocated memory is always aligned to a page boundary. If nr_pages is a 9438 * power of two, then allocated range is also guaranteed to be aligned to same 9439 * nr_pages (e.g. 1GB request would be aligned to 1GB). 9440 * 9441 * Allocated pages can be freed with free_contig_range() or by manually calling 9442 * __free_page() on each allocated page. 9443 * 9444 * Return: pointer to contiguous pages on success, or NULL if not successful. 9445 */ 9446 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, 9447 int nid, nodemask_t *nodemask) 9448 { 9449 unsigned long ret, pfn, flags; 9450 struct zonelist *zonelist; 9451 struct zone *zone; 9452 struct zoneref *z; 9453 9454 zonelist = node_zonelist(nid, gfp_mask); 9455 for_each_zone_zonelist_nodemask(zone, z, zonelist, 9456 gfp_zone(gfp_mask), nodemask) { 9457 spin_lock_irqsave(&zone->lock, flags); 9458 9459 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 9460 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 9461 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 9462 /* 9463 * We release the zone lock here because 9464 * alloc_contig_range() will also lock the zone 9465 * at some point. If there's an allocation 9466 * spinning on this lock, it may win the race 9467 * and cause alloc_contig_range() to fail... 9468 */ 9469 spin_unlock_irqrestore(&zone->lock, flags); 9470 ret = __alloc_contig_pages(pfn, nr_pages, 9471 gfp_mask); 9472 if (!ret) 9473 return pfn_to_page(pfn); 9474 spin_lock_irqsave(&zone->lock, flags); 9475 } 9476 pfn += nr_pages; 9477 } 9478 spin_unlock_irqrestore(&zone->lock, flags); 9479 } 9480 return NULL; 9481 } 9482 #endif /* CONFIG_CONTIG_ALLOC */ 9483 9484 void free_contig_range(unsigned long pfn, unsigned long nr_pages) 9485 { 9486 unsigned long count = 0; 9487 9488 for (; nr_pages--; pfn++) { 9489 struct page *page = pfn_to_page(pfn); 9490 9491 count += page_count(page) != 1; 9492 __free_page(page); 9493 } 9494 WARN(count != 0, "%lu pages are still in use!\n", count); 9495 } 9496 EXPORT_SYMBOL(free_contig_range); 9497 9498 /* 9499 * Effectively disable pcplists for the zone by setting the high limit to 0 9500 * and draining all cpus. A concurrent page freeing on another CPU that's about 9501 * to put the page on pcplist will either finish before the drain and the page 9502 * will be drained, or observe the new high limit and skip the pcplist. 9503 * 9504 * Must be paired with a call to zone_pcp_enable(). 9505 */ 9506 void zone_pcp_disable(struct zone *zone) 9507 { 9508 mutex_lock(&pcp_batch_high_lock); 9509 __zone_set_pageset_high_and_batch(zone, 0, 1); 9510 __drain_all_pages(zone, true); 9511 } 9512 9513 void zone_pcp_enable(struct zone *zone) 9514 { 9515 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch); 9516 mutex_unlock(&pcp_batch_high_lock); 9517 } 9518 9519 void zone_pcp_reset(struct zone *zone) 9520 { 9521 int cpu; 9522 struct per_cpu_zonestat *pzstats; 9523 9524 if (zone->per_cpu_pageset != &boot_pageset) { 9525 for_each_online_cpu(cpu) { 9526 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 9527 drain_zonestat(zone, pzstats); 9528 } 9529 free_percpu(zone->per_cpu_pageset); 9530 zone->per_cpu_pageset = &boot_pageset; 9531 if (zone->per_cpu_zonestats != &boot_zonestats) { 9532 free_percpu(zone->per_cpu_zonestats); 9533 zone->per_cpu_zonestats = &boot_zonestats; 9534 } 9535 } 9536 } 9537 9538 #ifdef CONFIG_MEMORY_HOTREMOVE 9539 /* 9540 * All pages in the range must be in a single zone, must not contain holes, 9541 * must span full sections, and must be isolated before calling this function. 9542 */ 9543 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 9544 { 9545 unsigned long pfn = start_pfn; 9546 struct page *page; 9547 struct zone *zone; 9548 unsigned int order; 9549 unsigned long flags; 9550 9551 offline_mem_sections(pfn, end_pfn); 9552 zone = page_zone(pfn_to_page(pfn)); 9553 spin_lock_irqsave(&zone->lock, flags); 9554 while (pfn < end_pfn) { 9555 page = pfn_to_page(pfn); 9556 /* 9557 * The HWPoisoned page may be not in buddy system, and 9558 * page_count() is not 0. 9559 */ 9560 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 9561 pfn++; 9562 continue; 9563 } 9564 /* 9565 * At this point all remaining PageOffline() pages have a 9566 * reference count of 0 and can simply be skipped. 9567 */ 9568 if (PageOffline(page)) { 9569 BUG_ON(page_count(page)); 9570 BUG_ON(PageBuddy(page)); 9571 pfn++; 9572 continue; 9573 } 9574 9575 BUG_ON(page_count(page)); 9576 BUG_ON(!PageBuddy(page)); 9577 order = buddy_order(page); 9578 del_page_from_free_list(page, zone, order); 9579 pfn += (1 << order); 9580 } 9581 spin_unlock_irqrestore(&zone->lock, flags); 9582 } 9583 #endif 9584 9585 /* 9586 * This function returns a stable result only if called under zone lock. 9587 */ 9588 bool is_free_buddy_page(struct page *page) 9589 { 9590 unsigned long pfn = page_to_pfn(page); 9591 unsigned int order; 9592 9593 for (order = 0; order < MAX_ORDER; order++) { 9594 struct page *page_head = page - (pfn & ((1 << order) - 1)); 9595 9596 if (PageBuddy(page_head) && 9597 buddy_order_unsafe(page_head) >= order) 9598 break; 9599 } 9600 9601 return order < MAX_ORDER; 9602 } 9603 EXPORT_SYMBOL(is_free_buddy_page); 9604 9605 #ifdef CONFIG_MEMORY_FAILURE 9606 /* 9607 * Break down a higher-order page in sub-pages, and keep our target out of 9608 * buddy allocator. 9609 */ 9610 static void break_down_buddy_pages(struct zone *zone, struct page *page, 9611 struct page *target, int low, int high, 9612 int migratetype) 9613 { 9614 unsigned long size = 1 << high; 9615 struct page *current_buddy, *next_page; 9616 9617 while (high > low) { 9618 high--; 9619 size >>= 1; 9620 9621 if (target >= &page[size]) { 9622 next_page = page + size; 9623 current_buddy = page; 9624 } else { 9625 next_page = page; 9626 current_buddy = page + size; 9627 } 9628 9629 if (set_page_guard(zone, current_buddy, high, migratetype)) 9630 continue; 9631 9632 if (current_buddy != target) { 9633 add_to_free_list(current_buddy, zone, high, migratetype); 9634 set_buddy_order(current_buddy, high); 9635 page = next_page; 9636 } 9637 } 9638 } 9639 9640 /* 9641 * Take a page that will be marked as poisoned off the buddy allocator. 9642 */ 9643 bool take_page_off_buddy(struct page *page) 9644 { 9645 struct zone *zone = page_zone(page); 9646 unsigned long pfn = page_to_pfn(page); 9647 unsigned long flags; 9648 unsigned int order; 9649 bool ret = false; 9650 9651 spin_lock_irqsave(&zone->lock, flags); 9652 for (order = 0; order < MAX_ORDER; order++) { 9653 struct page *page_head = page - (pfn & ((1 << order) - 1)); 9654 int page_order = buddy_order(page_head); 9655 9656 if (PageBuddy(page_head) && page_order >= order) { 9657 unsigned long pfn_head = page_to_pfn(page_head); 9658 int migratetype = get_pfnblock_migratetype(page_head, 9659 pfn_head); 9660 9661 del_page_from_free_list(page_head, zone, page_order); 9662 break_down_buddy_pages(zone, page_head, page, 0, 9663 page_order, migratetype); 9664 SetPageHWPoisonTakenOff(page); 9665 if (!is_migrate_isolate(migratetype)) 9666 __mod_zone_freepage_state(zone, -1, migratetype); 9667 ret = true; 9668 break; 9669 } 9670 if (page_count(page_head) > 0) 9671 break; 9672 } 9673 spin_unlock_irqrestore(&zone->lock, flags); 9674 return ret; 9675 } 9676 9677 /* 9678 * Cancel takeoff done by take_page_off_buddy(). 9679 */ 9680 bool put_page_back_buddy(struct page *page) 9681 { 9682 struct zone *zone = page_zone(page); 9683 unsigned long pfn = page_to_pfn(page); 9684 unsigned long flags; 9685 int migratetype = get_pfnblock_migratetype(page, pfn); 9686 bool ret = false; 9687 9688 spin_lock_irqsave(&zone->lock, flags); 9689 if (put_page_testzero(page)) { 9690 ClearPageHWPoisonTakenOff(page); 9691 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE); 9692 if (TestClearPageHWPoison(page)) { 9693 ret = true; 9694 } 9695 } 9696 spin_unlock_irqrestore(&zone->lock, flags); 9697 9698 return ret; 9699 } 9700 #endif 9701 9702 #ifdef CONFIG_ZONE_DMA 9703 bool has_managed_dma(void) 9704 { 9705 struct pglist_data *pgdat; 9706 9707 for_each_online_pgdat(pgdat) { 9708 struct zone *zone = &pgdat->node_zones[ZONE_DMA]; 9709 9710 if (managed_zone(zone)) 9711 return true; 9712 } 9713 return false; 9714 } 9715 #endif /* CONFIG_ZONE_DMA */ 9716