xref: /openbmc/linux/mm/page_alloc.c (revision 56ea353ea49ad21dd4c14e7baa235493ec27e766)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/swapops.h>
23 #include <linux/interrupt.h>
24 #include <linux/pagemap.h>
25 #include <linux/jiffies.h>
26 #include <linux/memblock.h>
27 #include <linux/compiler.h>
28 #include <linux/kernel.h>
29 #include <linux/kasan.h>
30 #include <linux/kmsan.h>
31 #include <linux/module.h>
32 #include <linux/suspend.h>
33 #include <linux/pagevec.h>
34 #include <linux/blkdev.h>
35 #include <linux/slab.h>
36 #include <linux/ratelimit.h>
37 #include <linux/oom.h>
38 #include <linux/topology.h>
39 #include <linux/sysctl.h>
40 #include <linux/cpu.h>
41 #include <linux/cpuset.h>
42 #include <linux/memory_hotplug.h>
43 #include <linux/nodemask.h>
44 #include <linux/vmalloc.h>
45 #include <linux/vmstat.h>
46 #include <linux/mempolicy.h>
47 #include <linux/memremap.h>
48 #include <linux/stop_machine.h>
49 #include <linux/random.h>
50 #include <linux/sort.h>
51 #include <linux/pfn.h>
52 #include <linux/backing-dev.h>
53 #include <linux/fault-inject.h>
54 #include <linux/page-isolation.h>
55 #include <linux/debugobjects.h>
56 #include <linux/kmemleak.h>
57 #include <linux/compaction.h>
58 #include <trace/events/kmem.h>
59 #include <trace/events/oom.h>
60 #include <linux/prefetch.h>
61 #include <linux/mm_inline.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/migrate.h>
64 #include <linux/hugetlb.h>
65 #include <linux/sched/rt.h>
66 #include <linux/sched/mm.h>
67 #include <linux/page_owner.h>
68 #include <linux/page_table_check.h>
69 #include <linux/kthread.h>
70 #include <linux/memcontrol.h>
71 #include <linux/ftrace.h>
72 #include <linux/lockdep.h>
73 #include <linux/nmi.h>
74 #include <linux/psi.h>
75 #include <linux/padata.h>
76 #include <linux/khugepaged.h>
77 #include <linux/buffer_head.h>
78 #include <linux/delayacct.h>
79 #include <asm/sections.h>
80 #include <asm/tlbflush.h>
81 #include <asm/div64.h>
82 #include "internal.h"
83 #include "shuffle.h"
84 #include "page_reporting.h"
85 #include "swap.h"
86 
87 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
88 typedef int __bitwise fpi_t;
89 
90 /* No special request */
91 #define FPI_NONE		((__force fpi_t)0)
92 
93 /*
94  * Skip free page reporting notification for the (possibly merged) page.
95  * This does not hinder free page reporting from grabbing the page,
96  * reporting it and marking it "reported" -  it only skips notifying
97  * the free page reporting infrastructure about a newly freed page. For
98  * example, used when temporarily pulling a page from a freelist and
99  * putting it back unmodified.
100  */
101 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
102 
103 /*
104  * Place the (possibly merged) page to the tail of the freelist. Will ignore
105  * page shuffling (relevant code - e.g., memory onlining - is expected to
106  * shuffle the whole zone).
107  *
108  * Note: No code should rely on this flag for correctness - it's purely
109  *       to allow for optimizations when handing back either fresh pages
110  *       (memory onlining) or untouched pages (page isolation, free page
111  *       reporting).
112  */
113 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
114 
115 /*
116  * Don't poison memory with KASAN (only for the tag-based modes).
117  * During boot, all non-reserved memblock memory is exposed to page_alloc.
118  * Poisoning all that memory lengthens boot time, especially on systems with
119  * large amount of RAM. This flag is used to skip that poisoning.
120  * This is only done for the tag-based KASAN modes, as those are able to
121  * detect memory corruptions with the memory tags assigned by default.
122  * All memory allocated normally after boot gets poisoned as usual.
123  */
124 #define FPI_SKIP_KASAN_POISON	((__force fpi_t)BIT(2))
125 
126 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
127 static DEFINE_MUTEX(pcp_batch_high_lock);
128 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
129 
130 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
131 /*
132  * On SMP, spin_trylock is sufficient protection.
133  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
134  */
135 #define pcp_trylock_prepare(flags)	do { } while (0)
136 #define pcp_trylock_finish(flag)	do { } while (0)
137 #else
138 
139 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
140 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
141 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
142 #endif
143 
144 /*
145  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
146  * a migration causing the wrong PCP to be locked and remote memory being
147  * potentially allocated, pin the task to the CPU for the lookup+lock.
148  * preempt_disable is used on !RT because it is faster than migrate_disable.
149  * migrate_disable is used on RT because otherwise RT spinlock usage is
150  * interfered with and a high priority task cannot preempt the allocator.
151  */
152 #ifndef CONFIG_PREEMPT_RT
153 #define pcpu_task_pin()		preempt_disable()
154 #define pcpu_task_unpin()	preempt_enable()
155 #else
156 #define pcpu_task_pin()		migrate_disable()
157 #define pcpu_task_unpin()	migrate_enable()
158 #endif
159 
160 /*
161  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
162  * Return value should be used with equivalent unlock helper.
163  */
164 #define pcpu_spin_lock(type, member, ptr)				\
165 ({									\
166 	type *_ret;							\
167 	pcpu_task_pin();						\
168 	_ret = this_cpu_ptr(ptr);					\
169 	spin_lock(&_ret->member);					\
170 	_ret;								\
171 })
172 
173 #define pcpu_spin_lock_irqsave(type, member, ptr, flags)		\
174 ({									\
175 	type *_ret;							\
176 	pcpu_task_pin();						\
177 	_ret = this_cpu_ptr(ptr);					\
178 	spin_lock_irqsave(&_ret->member, flags);			\
179 	_ret;								\
180 })
181 
182 #define pcpu_spin_trylock_irqsave(type, member, ptr, flags)		\
183 ({									\
184 	type *_ret;							\
185 	pcpu_task_pin();						\
186 	_ret = this_cpu_ptr(ptr);					\
187 	if (!spin_trylock_irqsave(&_ret->member, flags)) {		\
188 		pcpu_task_unpin();					\
189 		_ret = NULL;						\
190 	}								\
191 	_ret;								\
192 })
193 
194 #define pcpu_spin_unlock(member, ptr)					\
195 ({									\
196 	spin_unlock(&ptr->member);					\
197 	pcpu_task_unpin();						\
198 })
199 
200 #define pcpu_spin_unlock_irqrestore(member, ptr, flags)			\
201 ({									\
202 	spin_unlock_irqrestore(&ptr->member, flags);			\
203 	pcpu_task_unpin();						\
204 })
205 
206 /* struct per_cpu_pages specific helpers. */
207 #define pcp_spin_lock(ptr)						\
208 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
209 
210 #define pcp_spin_lock_irqsave(ptr, flags)				\
211 	pcpu_spin_lock_irqsave(struct per_cpu_pages, lock, ptr, flags)
212 
213 #define pcp_spin_trylock_irqsave(ptr, flags)				\
214 	pcpu_spin_trylock_irqsave(struct per_cpu_pages, lock, ptr, flags)
215 
216 #define pcp_spin_unlock(ptr)						\
217 	pcpu_spin_unlock(lock, ptr)
218 
219 #define pcp_spin_unlock_irqrestore(ptr, flags)				\
220 	pcpu_spin_unlock_irqrestore(lock, ptr, flags)
221 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
222 DEFINE_PER_CPU(int, numa_node);
223 EXPORT_PER_CPU_SYMBOL(numa_node);
224 #endif
225 
226 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
227 
228 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
229 /*
230  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
231  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
232  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
233  * defined in <linux/topology.h>.
234  */
235 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
236 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
237 #endif
238 
239 static DEFINE_MUTEX(pcpu_drain_mutex);
240 
241 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
242 volatile unsigned long latent_entropy __latent_entropy;
243 EXPORT_SYMBOL(latent_entropy);
244 #endif
245 
246 /*
247  * Array of node states.
248  */
249 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
250 	[N_POSSIBLE] = NODE_MASK_ALL,
251 	[N_ONLINE] = { { [0] = 1UL } },
252 #ifndef CONFIG_NUMA
253 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
254 #ifdef CONFIG_HIGHMEM
255 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
256 #endif
257 	[N_MEMORY] = { { [0] = 1UL } },
258 	[N_CPU] = { { [0] = 1UL } },
259 #endif	/* NUMA */
260 };
261 EXPORT_SYMBOL(node_states);
262 
263 atomic_long_t _totalram_pages __read_mostly;
264 EXPORT_SYMBOL(_totalram_pages);
265 unsigned long totalreserve_pages __read_mostly;
266 unsigned long totalcma_pages __read_mostly;
267 
268 int percpu_pagelist_high_fraction;
269 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
270 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
271 EXPORT_SYMBOL(init_on_alloc);
272 
273 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
274 EXPORT_SYMBOL(init_on_free);
275 
276 static bool _init_on_alloc_enabled_early __read_mostly
277 				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
278 static int __init early_init_on_alloc(char *buf)
279 {
280 
281 	return kstrtobool(buf, &_init_on_alloc_enabled_early);
282 }
283 early_param("init_on_alloc", early_init_on_alloc);
284 
285 static bool _init_on_free_enabled_early __read_mostly
286 				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
287 static int __init early_init_on_free(char *buf)
288 {
289 	return kstrtobool(buf, &_init_on_free_enabled_early);
290 }
291 early_param("init_on_free", early_init_on_free);
292 
293 /*
294  * A cached value of the page's pageblock's migratetype, used when the page is
295  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
296  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
297  * Also the migratetype set in the page does not necessarily match the pcplist
298  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
299  * other index - this ensures that it will be put on the correct CMA freelist.
300  */
301 static inline int get_pcppage_migratetype(struct page *page)
302 {
303 	return page->index;
304 }
305 
306 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
307 {
308 	page->index = migratetype;
309 }
310 
311 #ifdef CONFIG_PM_SLEEP
312 /*
313  * The following functions are used by the suspend/hibernate code to temporarily
314  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
315  * while devices are suspended.  To avoid races with the suspend/hibernate code,
316  * they should always be called with system_transition_mutex held
317  * (gfp_allowed_mask also should only be modified with system_transition_mutex
318  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
319  * with that modification).
320  */
321 
322 static gfp_t saved_gfp_mask;
323 
324 void pm_restore_gfp_mask(void)
325 {
326 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
327 	if (saved_gfp_mask) {
328 		gfp_allowed_mask = saved_gfp_mask;
329 		saved_gfp_mask = 0;
330 	}
331 }
332 
333 void pm_restrict_gfp_mask(void)
334 {
335 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
336 	WARN_ON(saved_gfp_mask);
337 	saved_gfp_mask = gfp_allowed_mask;
338 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
339 }
340 
341 bool pm_suspended_storage(void)
342 {
343 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
344 		return false;
345 	return true;
346 }
347 #endif /* CONFIG_PM_SLEEP */
348 
349 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
350 unsigned int pageblock_order __read_mostly;
351 #endif
352 
353 static void __free_pages_ok(struct page *page, unsigned int order,
354 			    fpi_t fpi_flags);
355 
356 /*
357  * results with 256, 32 in the lowmem_reserve sysctl:
358  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
359  *	1G machine -> (16M dma, 784M normal, 224M high)
360  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
361  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
362  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
363  *
364  * TBD: should special case ZONE_DMA32 machines here - in those we normally
365  * don't need any ZONE_NORMAL reservation
366  */
367 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
368 #ifdef CONFIG_ZONE_DMA
369 	[ZONE_DMA] = 256,
370 #endif
371 #ifdef CONFIG_ZONE_DMA32
372 	[ZONE_DMA32] = 256,
373 #endif
374 	[ZONE_NORMAL] = 32,
375 #ifdef CONFIG_HIGHMEM
376 	[ZONE_HIGHMEM] = 0,
377 #endif
378 	[ZONE_MOVABLE] = 0,
379 };
380 
381 static char * const zone_names[MAX_NR_ZONES] = {
382 #ifdef CONFIG_ZONE_DMA
383 	 "DMA",
384 #endif
385 #ifdef CONFIG_ZONE_DMA32
386 	 "DMA32",
387 #endif
388 	 "Normal",
389 #ifdef CONFIG_HIGHMEM
390 	 "HighMem",
391 #endif
392 	 "Movable",
393 #ifdef CONFIG_ZONE_DEVICE
394 	 "Device",
395 #endif
396 };
397 
398 const char * const migratetype_names[MIGRATE_TYPES] = {
399 	"Unmovable",
400 	"Movable",
401 	"Reclaimable",
402 	"HighAtomic",
403 #ifdef CONFIG_CMA
404 	"CMA",
405 #endif
406 #ifdef CONFIG_MEMORY_ISOLATION
407 	"Isolate",
408 #endif
409 };
410 
411 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
412 	[NULL_COMPOUND_DTOR] = NULL,
413 	[COMPOUND_PAGE_DTOR] = free_compound_page,
414 #ifdef CONFIG_HUGETLB_PAGE
415 	[HUGETLB_PAGE_DTOR] = free_huge_page,
416 #endif
417 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
418 	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
419 #endif
420 };
421 
422 int min_free_kbytes = 1024;
423 int user_min_free_kbytes = -1;
424 int watermark_boost_factor __read_mostly = 15000;
425 int watermark_scale_factor = 10;
426 
427 static unsigned long nr_kernel_pages __initdata;
428 static unsigned long nr_all_pages __initdata;
429 static unsigned long dma_reserve __initdata;
430 
431 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
432 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
433 static unsigned long required_kernelcore __initdata;
434 static unsigned long required_kernelcore_percent __initdata;
435 static unsigned long required_movablecore __initdata;
436 static unsigned long required_movablecore_percent __initdata;
437 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
438 bool mirrored_kernelcore __initdata_memblock;
439 
440 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
441 int movable_zone;
442 EXPORT_SYMBOL(movable_zone);
443 
444 #if MAX_NUMNODES > 1
445 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
446 unsigned int nr_online_nodes __read_mostly = 1;
447 EXPORT_SYMBOL(nr_node_ids);
448 EXPORT_SYMBOL(nr_online_nodes);
449 #endif
450 
451 int page_group_by_mobility_disabled __read_mostly;
452 
453 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
454 /*
455  * During boot we initialize deferred pages on-demand, as needed, but once
456  * page_alloc_init_late() has finished, the deferred pages are all initialized,
457  * and we can permanently disable that path.
458  */
459 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
460 
461 static inline bool deferred_pages_enabled(void)
462 {
463 	return static_branch_unlikely(&deferred_pages);
464 }
465 
466 /* Returns true if the struct page for the pfn is uninitialised */
467 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
468 {
469 	int nid = early_pfn_to_nid(pfn);
470 
471 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
472 		return true;
473 
474 	return false;
475 }
476 
477 /*
478  * Returns true when the remaining initialisation should be deferred until
479  * later in the boot cycle when it can be parallelised.
480  */
481 static bool __meminit
482 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
483 {
484 	static unsigned long prev_end_pfn, nr_initialised;
485 
486 	if (early_page_ext_enabled())
487 		return false;
488 	/*
489 	 * prev_end_pfn static that contains the end of previous zone
490 	 * No need to protect because called very early in boot before smp_init.
491 	 */
492 	if (prev_end_pfn != end_pfn) {
493 		prev_end_pfn = end_pfn;
494 		nr_initialised = 0;
495 	}
496 
497 	/* Always populate low zones for address-constrained allocations */
498 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
499 		return false;
500 
501 	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
502 		return true;
503 	/*
504 	 * We start only with one section of pages, more pages are added as
505 	 * needed until the rest of deferred pages are initialized.
506 	 */
507 	nr_initialised++;
508 	if ((nr_initialised > PAGES_PER_SECTION) &&
509 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
510 		NODE_DATA(nid)->first_deferred_pfn = pfn;
511 		return true;
512 	}
513 	return false;
514 }
515 #else
516 static inline bool deferred_pages_enabled(void)
517 {
518 	return false;
519 }
520 
521 static inline bool early_page_uninitialised(unsigned long pfn)
522 {
523 	return false;
524 }
525 
526 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
527 {
528 	return false;
529 }
530 #endif
531 
532 /* Return a pointer to the bitmap storing bits affecting a block of pages */
533 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
534 							unsigned long pfn)
535 {
536 #ifdef CONFIG_SPARSEMEM
537 	return section_to_usemap(__pfn_to_section(pfn));
538 #else
539 	return page_zone(page)->pageblock_flags;
540 #endif /* CONFIG_SPARSEMEM */
541 }
542 
543 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
544 {
545 #ifdef CONFIG_SPARSEMEM
546 	pfn &= (PAGES_PER_SECTION-1);
547 #else
548 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
549 #endif /* CONFIG_SPARSEMEM */
550 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
551 }
552 
553 static __always_inline
554 unsigned long __get_pfnblock_flags_mask(const struct page *page,
555 					unsigned long pfn,
556 					unsigned long mask)
557 {
558 	unsigned long *bitmap;
559 	unsigned long bitidx, word_bitidx;
560 	unsigned long word;
561 
562 	bitmap = get_pageblock_bitmap(page, pfn);
563 	bitidx = pfn_to_bitidx(page, pfn);
564 	word_bitidx = bitidx / BITS_PER_LONG;
565 	bitidx &= (BITS_PER_LONG-1);
566 	/*
567 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
568 	 * a consistent read of the memory array, so that results, even though
569 	 * racy, are not corrupted.
570 	 */
571 	word = READ_ONCE(bitmap[word_bitidx]);
572 	return (word >> bitidx) & mask;
573 }
574 
575 /**
576  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
577  * @page: The page within the block of interest
578  * @pfn: The target page frame number
579  * @mask: mask of bits that the caller is interested in
580  *
581  * Return: pageblock_bits flags
582  */
583 unsigned long get_pfnblock_flags_mask(const struct page *page,
584 					unsigned long pfn, unsigned long mask)
585 {
586 	return __get_pfnblock_flags_mask(page, pfn, mask);
587 }
588 
589 static __always_inline int get_pfnblock_migratetype(const struct page *page,
590 					unsigned long pfn)
591 {
592 	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
593 }
594 
595 /**
596  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
597  * @page: The page within the block of interest
598  * @flags: The flags to set
599  * @pfn: The target page frame number
600  * @mask: mask of bits that the caller is interested in
601  */
602 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
603 					unsigned long pfn,
604 					unsigned long mask)
605 {
606 	unsigned long *bitmap;
607 	unsigned long bitidx, word_bitidx;
608 	unsigned long word;
609 
610 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
611 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
612 
613 	bitmap = get_pageblock_bitmap(page, pfn);
614 	bitidx = pfn_to_bitidx(page, pfn);
615 	word_bitidx = bitidx / BITS_PER_LONG;
616 	bitidx &= (BITS_PER_LONG-1);
617 
618 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
619 
620 	mask <<= bitidx;
621 	flags <<= bitidx;
622 
623 	word = READ_ONCE(bitmap[word_bitidx]);
624 	do {
625 	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
626 }
627 
628 void set_pageblock_migratetype(struct page *page, int migratetype)
629 {
630 	if (unlikely(page_group_by_mobility_disabled &&
631 		     migratetype < MIGRATE_PCPTYPES))
632 		migratetype = MIGRATE_UNMOVABLE;
633 
634 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
635 				page_to_pfn(page), MIGRATETYPE_MASK);
636 }
637 
638 #ifdef CONFIG_DEBUG_VM
639 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
640 {
641 	int ret = 0;
642 	unsigned seq;
643 	unsigned long pfn = page_to_pfn(page);
644 	unsigned long sp, start_pfn;
645 
646 	do {
647 		seq = zone_span_seqbegin(zone);
648 		start_pfn = zone->zone_start_pfn;
649 		sp = zone->spanned_pages;
650 		if (!zone_spans_pfn(zone, pfn))
651 			ret = 1;
652 	} while (zone_span_seqretry(zone, seq));
653 
654 	if (ret)
655 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
656 			pfn, zone_to_nid(zone), zone->name,
657 			start_pfn, start_pfn + sp);
658 
659 	return ret;
660 }
661 
662 static int page_is_consistent(struct zone *zone, struct page *page)
663 {
664 	if (zone != page_zone(page))
665 		return 0;
666 
667 	return 1;
668 }
669 /*
670  * Temporary debugging check for pages not lying within a given zone.
671  */
672 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
673 {
674 	if (page_outside_zone_boundaries(zone, page))
675 		return 1;
676 	if (!page_is_consistent(zone, page))
677 		return 1;
678 
679 	return 0;
680 }
681 #else
682 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
683 {
684 	return 0;
685 }
686 #endif
687 
688 static void bad_page(struct page *page, const char *reason)
689 {
690 	static unsigned long resume;
691 	static unsigned long nr_shown;
692 	static unsigned long nr_unshown;
693 
694 	/*
695 	 * Allow a burst of 60 reports, then keep quiet for that minute;
696 	 * or allow a steady drip of one report per second.
697 	 */
698 	if (nr_shown == 60) {
699 		if (time_before(jiffies, resume)) {
700 			nr_unshown++;
701 			goto out;
702 		}
703 		if (nr_unshown) {
704 			pr_alert(
705 			      "BUG: Bad page state: %lu messages suppressed\n",
706 				nr_unshown);
707 			nr_unshown = 0;
708 		}
709 		nr_shown = 0;
710 	}
711 	if (nr_shown++ == 0)
712 		resume = jiffies + 60 * HZ;
713 
714 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
715 		current->comm, page_to_pfn(page));
716 	dump_page(page, reason);
717 
718 	print_modules();
719 	dump_stack();
720 out:
721 	/* Leave bad fields for debug, except PageBuddy could make trouble */
722 	page_mapcount_reset(page); /* remove PageBuddy */
723 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
724 }
725 
726 static inline unsigned int order_to_pindex(int migratetype, int order)
727 {
728 	int base = order;
729 
730 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
731 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
732 		VM_BUG_ON(order != pageblock_order);
733 		return NR_LOWORDER_PCP_LISTS;
734 	}
735 #else
736 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
737 #endif
738 
739 	return (MIGRATE_PCPTYPES * base) + migratetype;
740 }
741 
742 static inline int pindex_to_order(unsigned int pindex)
743 {
744 	int order = pindex / MIGRATE_PCPTYPES;
745 
746 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
747 	if (pindex == NR_LOWORDER_PCP_LISTS)
748 		order = pageblock_order;
749 #else
750 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
751 #endif
752 
753 	return order;
754 }
755 
756 static inline bool pcp_allowed_order(unsigned int order)
757 {
758 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
759 		return true;
760 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
761 	if (order == pageblock_order)
762 		return true;
763 #endif
764 	return false;
765 }
766 
767 static inline void free_the_page(struct page *page, unsigned int order)
768 {
769 	if (pcp_allowed_order(order))		/* Via pcp? */
770 		free_unref_page(page, order);
771 	else
772 		__free_pages_ok(page, order, FPI_NONE);
773 }
774 
775 /*
776  * Higher-order pages are called "compound pages".  They are structured thusly:
777  *
778  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
779  *
780  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
781  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
782  *
783  * The first tail page's ->compound_dtor holds the offset in array of compound
784  * page destructors. See compound_page_dtors.
785  *
786  * The first tail page's ->compound_order holds the order of allocation.
787  * This usage means that zero-order pages may not be compound.
788  */
789 
790 void free_compound_page(struct page *page)
791 {
792 	mem_cgroup_uncharge(page_folio(page));
793 	free_the_page(page, compound_order(page));
794 }
795 
796 static void prep_compound_head(struct page *page, unsigned int order)
797 {
798 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
799 	set_compound_order(page, order);
800 	atomic_set(compound_mapcount_ptr(page), -1);
801 	atomic_set(compound_pincount_ptr(page), 0);
802 }
803 
804 static void prep_compound_tail(struct page *head, int tail_idx)
805 {
806 	struct page *p = head + tail_idx;
807 
808 	p->mapping = TAIL_MAPPING;
809 	set_compound_head(p, head);
810 }
811 
812 void prep_compound_page(struct page *page, unsigned int order)
813 {
814 	int i;
815 	int nr_pages = 1 << order;
816 
817 	__SetPageHead(page);
818 	for (i = 1; i < nr_pages; i++)
819 		prep_compound_tail(page, i);
820 
821 	prep_compound_head(page, order);
822 }
823 
824 void destroy_large_folio(struct folio *folio)
825 {
826 	enum compound_dtor_id dtor = folio_page(folio, 1)->compound_dtor;
827 
828 	VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio);
829 	compound_page_dtors[dtor](&folio->page);
830 }
831 
832 #ifdef CONFIG_DEBUG_PAGEALLOC
833 unsigned int _debug_guardpage_minorder;
834 
835 bool _debug_pagealloc_enabled_early __read_mostly
836 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
837 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
838 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
839 EXPORT_SYMBOL(_debug_pagealloc_enabled);
840 
841 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
842 
843 static int __init early_debug_pagealloc(char *buf)
844 {
845 	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
846 }
847 early_param("debug_pagealloc", early_debug_pagealloc);
848 
849 static int __init debug_guardpage_minorder_setup(char *buf)
850 {
851 	unsigned long res;
852 
853 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
854 		pr_err("Bad debug_guardpage_minorder value\n");
855 		return 0;
856 	}
857 	_debug_guardpage_minorder = res;
858 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
859 	return 0;
860 }
861 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
862 
863 static inline bool set_page_guard(struct zone *zone, struct page *page,
864 				unsigned int order, int migratetype)
865 {
866 	if (!debug_guardpage_enabled())
867 		return false;
868 
869 	if (order >= debug_guardpage_minorder())
870 		return false;
871 
872 	__SetPageGuard(page);
873 	INIT_LIST_HEAD(&page->buddy_list);
874 	set_page_private(page, order);
875 	/* Guard pages are not available for any usage */
876 	if (!is_migrate_isolate(migratetype))
877 		__mod_zone_freepage_state(zone, -(1 << order), migratetype);
878 
879 	return true;
880 }
881 
882 static inline void clear_page_guard(struct zone *zone, struct page *page,
883 				unsigned int order, int migratetype)
884 {
885 	if (!debug_guardpage_enabled())
886 		return;
887 
888 	__ClearPageGuard(page);
889 
890 	set_page_private(page, 0);
891 	if (!is_migrate_isolate(migratetype))
892 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
893 }
894 #else
895 static inline bool set_page_guard(struct zone *zone, struct page *page,
896 			unsigned int order, int migratetype) { return false; }
897 static inline void clear_page_guard(struct zone *zone, struct page *page,
898 				unsigned int order, int migratetype) {}
899 #endif
900 
901 /*
902  * Enable static keys related to various memory debugging and hardening options.
903  * Some override others, and depend on early params that are evaluated in the
904  * order of appearance. So we need to first gather the full picture of what was
905  * enabled, and then make decisions.
906  */
907 void __init init_mem_debugging_and_hardening(void)
908 {
909 	bool page_poisoning_requested = false;
910 
911 #ifdef CONFIG_PAGE_POISONING
912 	/*
913 	 * Page poisoning is debug page alloc for some arches. If
914 	 * either of those options are enabled, enable poisoning.
915 	 */
916 	if (page_poisoning_enabled() ||
917 	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
918 	      debug_pagealloc_enabled())) {
919 		static_branch_enable(&_page_poisoning_enabled);
920 		page_poisoning_requested = true;
921 	}
922 #endif
923 
924 	if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
925 	    page_poisoning_requested) {
926 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
927 			"will take precedence over init_on_alloc and init_on_free\n");
928 		_init_on_alloc_enabled_early = false;
929 		_init_on_free_enabled_early = false;
930 	}
931 
932 	if (_init_on_alloc_enabled_early)
933 		static_branch_enable(&init_on_alloc);
934 	else
935 		static_branch_disable(&init_on_alloc);
936 
937 	if (_init_on_free_enabled_early)
938 		static_branch_enable(&init_on_free);
939 	else
940 		static_branch_disable(&init_on_free);
941 
942 	if (IS_ENABLED(CONFIG_KMSAN) &&
943 	    (_init_on_alloc_enabled_early || _init_on_free_enabled_early))
944 		pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n");
945 
946 #ifdef CONFIG_DEBUG_PAGEALLOC
947 	if (!debug_pagealloc_enabled())
948 		return;
949 
950 	static_branch_enable(&_debug_pagealloc_enabled);
951 
952 	if (!debug_guardpage_minorder())
953 		return;
954 
955 	static_branch_enable(&_debug_guardpage_enabled);
956 #endif
957 }
958 
959 static inline void set_buddy_order(struct page *page, unsigned int order)
960 {
961 	set_page_private(page, order);
962 	__SetPageBuddy(page);
963 }
964 
965 #ifdef CONFIG_COMPACTION
966 static inline struct capture_control *task_capc(struct zone *zone)
967 {
968 	struct capture_control *capc = current->capture_control;
969 
970 	return unlikely(capc) &&
971 		!(current->flags & PF_KTHREAD) &&
972 		!capc->page &&
973 		capc->cc->zone == zone ? capc : NULL;
974 }
975 
976 static inline bool
977 compaction_capture(struct capture_control *capc, struct page *page,
978 		   int order, int migratetype)
979 {
980 	if (!capc || order != capc->cc->order)
981 		return false;
982 
983 	/* Do not accidentally pollute CMA or isolated regions*/
984 	if (is_migrate_cma(migratetype) ||
985 	    is_migrate_isolate(migratetype))
986 		return false;
987 
988 	/*
989 	 * Do not let lower order allocations pollute a movable pageblock.
990 	 * This might let an unmovable request use a reclaimable pageblock
991 	 * and vice-versa but no more than normal fallback logic which can
992 	 * have trouble finding a high-order free page.
993 	 */
994 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
995 		return false;
996 
997 	capc->page = page;
998 	return true;
999 }
1000 
1001 #else
1002 static inline struct capture_control *task_capc(struct zone *zone)
1003 {
1004 	return NULL;
1005 }
1006 
1007 static inline bool
1008 compaction_capture(struct capture_control *capc, struct page *page,
1009 		   int order, int migratetype)
1010 {
1011 	return false;
1012 }
1013 #endif /* CONFIG_COMPACTION */
1014 
1015 /* Used for pages not on another list */
1016 static inline void add_to_free_list(struct page *page, struct zone *zone,
1017 				    unsigned int order, int migratetype)
1018 {
1019 	struct free_area *area = &zone->free_area[order];
1020 
1021 	list_add(&page->buddy_list, &area->free_list[migratetype]);
1022 	area->nr_free++;
1023 }
1024 
1025 /* Used for pages not on another list */
1026 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
1027 					 unsigned int order, int migratetype)
1028 {
1029 	struct free_area *area = &zone->free_area[order];
1030 
1031 	list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
1032 	area->nr_free++;
1033 }
1034 
1035 /*
1036  * Used for pages which are on another list. Move the pages to the tail
1037  * of the list - so the moved pages won't immediately be considered for
1038  * allocation again (e.g., optimization for memory onlining).
1039  */
1040 static inline void move_to_free_list(struct page *page, struct zone *zone,
1041 				     unsigned int order, int migratetype)
1042 {
1043 	struct free_area *area = &zone->free_area[order];
1044 
1045 	list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
1046 }
1047 
1048 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
1049 					   unsigned int order)
1050 {
1051 	/* clear reported state and update reported page count */
1052 	if (page_reported(page))
1053 		__ClearPageReported(page);
1054 
1055 	list_del(&page->buddy_list);
1056 	__ClearPageBuddy(page);
1057 	set_page_private(page, 0);
1058 	zone->free_area[order].nr_free--;
1059 }
1060 
1061 /*
1062  * If this is not the largest possible page, check if the buddy
1063  * of the next-highest order is free. If it is, it's possible
1064  * that pages are being freed that will coalesce soon. In case,
1065  * that is happening, add the free page to the tail of the list
1066  * so it's less likely to be used soon and more likely to be merged
1067  * as a higher order page
1068  */
1069 static inline bool
1070 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1071 		   struct page *page, unsigned int order)
1072 {
1073 	unsigned long higher_page_pfn;
1074 	struct page *higher_page;
1075 
1076 	if (order >= MAX_ORDER - 2)
1077 		return false;
1078 
1079 	higher_page_pfn = buddy_pfn & pfn;
1080 	higher_page = page + (higher_page_pfn - pfn);
1081 
1082 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
1083 			NULL) != NULL;
1084 }
1085 
1086 /*
1087  * Freeing function for a buddy system allocator.
1088  *
1089  * The concept of a buddy system is to maintain direct-mapped table
1090  * (containing bit values) for memory blocks of various "orders".
1091  * The bottom level table contains the map for the smallest allocatable
1092  * units of memory (here, pages), and each level above it describes
1093  * pairs of units from the levels below, hence, "buddies".
1094  * At a high level, all that happens here is marking the table entry
1095  * at the bottom level available, and propagating the changes upward
1096  * as necessary, plus some accounting needed to play nicely with other
1097  * parts of the VM system.
1098  * At each level, we keep a list of pages, which are heads of continuous
1099  * free pages of length of (1 << order) and marked with PageBuddy.
1100  * Page's order is recorded in page_private(page) field.
1101  * So when we are allocating or freeing one, we can derive the state of the
1102  * other.  That is, if we allocate a small block, and both were
1103  * free, the remainder of the region must be split into blocks.
1104  * If a block is freed, and its buddy is also free, then this
1105  * triggers coalescing into a block of larger size.
1106  *
1107  * -- nyc
1108  */
1109 
1110 static inline void __free_one_page(struct page *page,
1111 		unsigned long pfn,
1112 		struct zone *zone, unsigned int order,
1113 		int migratetype, fpi_t fpi_flags)
1114 {
1115 	struct capture_control *capc = task_capc(zone);
1116 	unsigned long buddy_pfn = 0;
1117 	unsigned long combined_pfn;
1118 	struct page *buddy;
1119 	bool to_tail;
1120 
1121 	VM_BUG_ON(!zone_is_initialized(zone));
1122 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1123 
1124 	VM_BUG_ON(migratetype == -1);
1125 	if (likely(!is_migrate_isolate(migratetype)))
1126 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
1127 
1128 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1129 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1130 
1131 	while (order < MAX_ORDER - 1) {
1132 		if (compaction_capture(capc, page, order, migratetype)) {
1133 			__mod_zone_freepage_state(zone, -(1 << order),
1134 								migratetype);
1135 			return;
1136 		}
1137 
1138 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
1139 		if (!buddy)
1140 			goto done_merging;
1141 
1142 		if (unlikely(order >= pageblock_order)) {
1143 			/*
1144 			 * We want to prevent merge between freepages on pageblock
1145 			 * without fallbacks and normal pageblock. Without this,
1146 			 * pageblock isolation could cause incorrect freepage or CMA
1147 			 * accounting or HIGHATOMIC accounting.
1148 			 */
1149 			int buddy_mt = get_pageblock_migratetype(buddy);
1150 
1151 			if (migratetype != buddy_mt
1152 					&& (!migratetype_is_mergeable(migratetype) ||
1153 						!migratetype_is_mergeable(buddy_mt)))
1154 				goto done_merging;
1155 		}
1156 
1157 		/*
1158 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1159 		 * merge with it and move up one order.
1160 		 */
1161 		if (page_is_guard(buddy))
1162 			clear_page_guard(zone, buddy, order, migratetype);
1163 		else
1164 			del_page_from_free_list(buddy, zone, order);
1165 		combined_pfn = buddy_pfn & pfn;
1166 		page = page + (combined_pfn - pfn);
1167 		pfn = combined_pfn;
1168 		order++;
1169 	}
1170 
1171 done_merging:
1172 	set_buddy_order(page, order);
1173 
1174 	if (fpi_flags & FPI_TO_TAIL)
1175 		to_tail = true;
1176 	else if (is_shuffle_order(order))
1177 		to_tail = shuffle_pick_tail();
1178 	else
1179 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1180 
1181 	if (to_tail)
1182 		add_to_free_list_tail(page, zone, order, migratetype);
1183 	else
1184 		add_to_free_list(page, zone, order, migratetype);
1185 
1186 	/* Notify page reporting subsystem of freed page */
1187 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1188 		page_reporting_notify_free(order);
1189 }
1190 
1191 /**
1192  * split_free_page() -- split a free page at split_pfn_offset
1193  * @free_page:		the original free page
1194  * @order:		the order of the page
1195  * @split_pfn_offset:	split offset within the page
1196  *
1197  * Return -ENOENT if the free page is changed, otherwise 0
1198  *
1199  * It is used when the free page crosses two pageblocks with different migratetypes
1200  * at split_pfn_offset within the page. The split free page will be put into
1201  * separate migratetype lists afterwards. Otherwise, the function achieves
1202  * nothing.
1203  */
1204 int split_free_page(struct page *free_page,
1205 			unsigned int order, unsigned long split_pfn_offset)
1206 {
1207 	struct zone *zone = page_zone(free_page);
1208 	unsigned long free_page_pfn = page_to_pfn(free_page);
1209 	unsigned long pfn;
1210 	unsigned long flags;
1211 	int free_page_order;
1212 	int mt;
1213 	int ret = 0;
1214 
1215 	if (split_pfn_offset == 0)
1216 		return ret;
1217 
1218 	spin_lock_irqsave(&zone->lock, flags);
1219 
1220 	if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
1221 		ret = -ENOENT;
1222 		goto out;
1223 	}
1224 
1225 	mt = get_pageblock_migratetype(free_page);
1226 	if (likely(!is_migrate_isolate(mt)))
1227 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
1228 
1229 	del_page_from_free_list(free_page, zone, order);
1230 	for (pfn = free_page_pfn;
1231 	     pfn < free_page_pfn + (1UL << order);) {
1232 		int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
1233 
1234 		free_page_order = min_t(unsigned int,
1235 					pfn ? __ffs(pfn) : order,
1236 					__fls(split_pfn_offset));
1237 		__free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
1238 				mt, FPI_NONE);
1239 		pfn += 1UL << free_page_order;
1240 		split_pfn_offset -= (1UL << free_page_order);
1241 		/* we have done the first part, now switch to second part */
1242 		if (split_pfn_offset == 0)
1243 			split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
1244 	}
1245 out:
1246 	spin_unlock_irqrestore(&zone->lock, flags);
1247 	return ret;
1248 }
1249 /*
1250  * A bad page could be due to a number of fields. Instead of multiple branches,
1251  * try and check multiple fields with one check. The caller must do a detailed
1252  * check if necessary.
1253  */
1254 static inline bool page_expected_state(struct page *page,
1255 					unsigned long check_flags)
1256 {
1257 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1258 		return false;
1259 
1260 	if (unlikely((unsigned long)page->mapping |
1261 			page_ref_count(page) |
1262 #ifdef CONFIG_MEMCG
1263 			page->memcg_data |
1264 #endif
1265 			(page->flags & check_flags)))
1266 		return false;
1267 
1268 	return true;
1269 }
1270 
1271 static const char *page_bad_reason(struct page *page, unsigned long flags)
1272 {
1273 	const char *bad_reason = NULL;
1274 
1275 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1276 		bad_reason = "nonzero mapcount";
1277 	if (unlikely(page->mapping != NULL))
1278 		bad_reason = "non-NULL mapping";
1279 	if (unlikely(page_ref_count(page) != 0))
1280 		bad_reason = "nonzero _refcount";
1281 	if (unlikely(page->flags & flags)) {
1282 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1283 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1284 		else
1285 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1286 	}
1287 #ifdef CONFIG_MEMCG
1288 	if (unlikely(page->memcg_data))
1289 		bad_reason = "page still charged to cgroup";
1290 #endif
1291 	return bad_reason;
1292 }
1293 
1294 static void free_page_is_bad_report(struct page *page)
1295 {
1296 	bad_page(page,
1297 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1298 }
1299 
1300 static inline bool free_page_is_bad(struct page *page)
1301 {
1302 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1303 		return false;
1304 
1305 	/* Something has gone sideways, find it */
1306 	free_page_is_bad_report(page);
1307 	return true;
1308 }
1309 
1310 static int free_tail_pages_check(struct page *head_page, struct page *page)
1311 {
1312 	int ret = 1;
1313 
1314 	/*
1315 	 * We rely page->lru.next never has bit 0 set, unless the page
1316 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1317 	 */
1318 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1319 
1320 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1321 		ret = 0;
1322 		goto out;
1323 	}
1324 	switch (page - head_page) {
1325 	case 1:
1326 		/* the first tail page: ->mapping may be compound_mapcount() */
1327 		if (unlikely(compound_mapcount(page))) {
1328 			bad_page(page, "nonzero compound_mapcount");
1329 			goto out;
1330 		}
1331 		break;
1332 	case 2:
1333 		/*
1334 		 * the second tail page: ->mapping is
1335 		 * deferred_list.next -- ignore value.
1336 		 */
1337 		break;
1338 	default:
1339 		if (page->mapping != TAIL_MAPPING) {
1340 			bad_page(page, "corrupted mapping in tail page");
1341 			goto out;
1342 		}
1343 		break;
1344 	}
1345 	if (unlikely(!PageTail(page))) {
1346 		bad_page(page, "PageTail not set");
1347 		goto out;
1348 	}
1349 	if (unlikely(compound_head(page) != head_page)) {
1350 		bad_page(page, "compound_head not consistent");
1351 		goto out;
1352 	}
1353 	ret = 0;
1354 out:
1355 	page->mapping = NULL;
1356 	clear_compound_head(page);
1357 	return ret;
1358 }
1359 
1360 /*
1361  * Skip KASAN memory poisoning when either:
1362  *
1363  * 1. Deferred memory initialization has not yet completed,
1364  *    see the explanation below.
1365  * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON,
1366  *    see the comment next to it.
1367  * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON,
1368  *    see the comment next to it.
1369  *
1370  * Poisoning pages during deferred memory init will greatly lengthen the
1371  * process and cause problem in large memory systems as the deferred pages
1372  * initialization is done with interrupt disabled.
1373  *
1374  * Assuming that there will be no reference to those newly initialized
1375  * pages before they are ever allocated, this should have no effect on
1376  * KASAN memory tracking as the poison will be properly inserted at page
1377  * allocation time. The only corner case is when pages are allocated by
1378  * on-demand allocation and then freed again before the deferred pages
1379  * initialization is done, but this is not likely to happen.
1380  */
1381 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1382 {
1383 	return deferred_pages_enabled() ||
1384 	       (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
1385 		(fpi_flags & FPI_SKIP_KASAN_POISON)) ||
1386 	       PageSkipKASanPoison(page);
1387 }
1388 
1389 static void kernel_init_pages(struct page *page, int numpages)
1390 {
1391 	int i;
1392 
1393 	/* s390's use of memset() could override KASAN redzones. */
1394 	kasan_disable_current();
1395 	for (i = 0; i < numpages; i++)
1396 		clear_highpage_kasan_tagged(page + i);
1397 	kasan_enable_current();
1398 }
1399 
1400 static __always_inline bool free_pages_prepare(struct page *page,
1401 			unsigned int order, bool check_free, fpi_t fpi_flags)
1402 {
1403 	int bad = 0;
1404 	bool init = want_init_on_free();
1405 
1406 	VM_BUG_ON_PAGE(PageTail(page), page);
1407 
1408 	trace_mm_page_free(page, order);
1409 	kmsan_free_page(page, order);
1410 
1411 	if (unlikely(PageHWPoison(page)) && !order) {
1412 		/*
1413 		 * Do not let hwpoison pages hit pcplists/buddy
1414 		 * Untie memcg state and reset page's owner
1415 		 */
1416 		if (memcg_kmem_enabled() && PageMemcgKmem(page))
1417 			__memcg_kmem_uncharge_page(page, order);
1418 		reset_page_owner(page, order);
1419 		page_table_check_free(page, order);
1420 		return false;
1421 	}
1422 
1423 	/*
1424 	 * Check tail pages before head page information is cleared to
1425 	 * avoid checking PageCompound for order-0 pages.
1426 	 */
1427 	if (unlikely(order)) {
1428 		bool compound = PageCompound(page);
1429 		int i;
1430 
1431 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1432 
1433 		if (compound) {
1434 			ClearPageDoubleMap(page);
1435 			ClearPageHasHWPoisoned(page);
1436 		}
1437 		for (i = 1; i < (1 << order); i++) {
1438 			if (compound)
1439 				bad += free_tail_pages_check(page, page + i);
1440 			if (unlikely(free_page_is_bad(page + i))) {
1441 				bad++;
1442 				continue;
1443 			}
1444 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1445 		}
1446 	}
1447 	if (PageMappingFlags(page))
1448 		page->mapping = NULL;
1449 	if (memcg_kmem_enabled() && PageMemcgKmem(page))
1450 		__memcg_kmem_uncharge_page(page, order);
1451 	if (check_free && free_page_is_bad(page))
1452 		bad++;
1453 	if (bad)
1454 		return false;
1455 
1456 	page_cpupid_reset_last(page);
1457 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1458 	reset_page_owner(page, order);
1459 	page_table_check_free(page, order);
1460 
1461 	if (!PageHighMem(page)) {
1462 		debug_check_no_locks_freed(page_address(page),
1463 					   PAGE_SIZE << order);
1464 		debug_check_no_obj_freed(page_address(page),
1465 					   PAGE_SIZE << order);
1466 	}
1467 
1468 	kernel_poison_pages(page, 1 << order);
1469 
1470 	/*
1471 	 * As memory initialization might be integrated into KASAN,
1472 	 * KASAN poisoning and memory initialization code must be
1473 	 * kept together to avoid discrepancies in behavior.
1474 	 *
1475 	 * With hardware tag-based KASAN, memory tags must be set before the
1476 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1477 	 */
1478 	if (!should_skip_kasan_poison(page, fpi_flags)) {
1479 		kasan_poison_pages(page, order, init);
1480 
1481 		/* Memory is already initialized if KASAN did it internally. */
1482 		if (kasan_has_integrated_init())
1483 			init = false;
1484 	}
1485 	if (init)
1486 		kernel_init_pages(page, 1 << order);
1487 
1488 	/*
1489 	 * arch_free_page() can make the page's contents inaccessible.  s390
1490 	 * does this.  So nothing which can access the page's contents should
1491 	 * happen after this.
1492 	 */
1493 	arch_free_page(page, order);
1494 
1495 	debug_pagealloc_unmap_pages(page, 1 << order);
1496 
1497 	return true;
1498 }
1499 
1500 #ifdef CONFIG_DEBUG_VM
1501 /*
1502  * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1503  * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1504  * moved from pcp lists to free lists.
1505  */
1506 static bool free_pcp_prepare(struct page *page, unsigned int order)
1507 {
1508 	return free_pages_prepare(page, order, true, FPI_NONE);
1509 }
1510 
1511 /* return true if this page has an inappropriate state */
1512 static bool bulkfree_pcp_prepare(struct page *page)
1513 {
1514 	if (debug_pagealloc_enabled_static())
1515 		return free_page_is_bad(page);
1516 	else
1517 		return false;
1518 }
1519 #else
1520 /*
1521  * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1522  * moving from pcp lists to free list in order to reduce overhead. With
1523  * debug_pagealloc enabled, they are checked also immediately when being freed
1524  * to the pcp lists.
1525  */
1526 static bool free_pcp_prepare(struct page *page, unsigned int order)
1527 {
1528 	if (debug_pagealloc_enabled_static())
1529 		return free_pages_prepare(page, order, true, FPI_NONE);
1530 	else
1531 		return free_pages_prepare(page, order, false, FPI_NONE);
1532 }
1533 
1534 static bool bulkfree_pcp_prepare(struct page *page)
1535 {
1536 	return free_page_is_bad(page);
1537 }
1538 #endif /* CONFIG_DEBUG_VM */
1539 
1540 /*
1541  * Frees a number of pages from the PCP lists
1542  * Assumes all pages on list are in same zone.
1543  * count is the number of pages to free.
1544  */
1545 static void free_pcppages_bulk(struct zone *zone, int count,
1546 					struct per_cpu_pages *pcp,
1547 					int pindex)
1548 {
1549 	int min_pindex = 0;
1550 	int max_pindex = NR_PCP_LISTS - 1;
1551 	unsigned int order;
1552 	bool isolated_pageblocks;
1553 	struct page *page;
1554 
1555 	/*
1556 	 * Ensure proper count is passed which otherwise would stuck in the
1557 	 * below while (list_empty(list)) loop.
1558 	 */
1559 	count = min(pcp->count, count);
1560 
1561 	/* Ensure requested pindex is drained first. */
1562 	pindex = pindex - 1;
1563 
1564 	/* Caller must hold IRQ-safe pcp->lock so IRQs are disabled. */
1565 	spin_lock(&zone->lock);
1566 	isolated_pageblocks = has_isolate_pageblock(zone);
1567 
1568 	while (count > 0) {
1569 		struct list_head *list;
1570 		int nr_pages;
1571 
1572 		/* Remove pages from lists in a round-robin fashion. */
1573 		do {
1574 			if (++pindex > max_pindex)
1575 				pindex = min_pindex;
1576 			list = &pcp->lists[pindex];
1577 			if (!list_empty(list))
1578 				break;
1579 
1580 			if (pindex == max_pindex)
1581 				max_pindex--;
1582 			if (pindex == min_pindex)
1583 				min_pindex++;
1584 		} while (1);
1585 
1586 		order = pindex_to_order(pindex);
1587 		nr_pages = 1 << order;
1588 		do {
1589 			int mt;
1590 
1591 			page = list_last_entry(list, struct page, pcp_list);
1592 			mt = get_pcppage_migratetype(page);
1593 
1594 			/* must delete to avoid corrupting pcp list */
1595 			list_del(&page->pcp_list);
1596 			count -= nr_pages;
1597 			pcp->count -= nr_pages;
1598 
1599 			if (bulkfree_pcp_prepare(page))
1600 				continue;
1601 
1602 			/* MIGRATE_ISOLATE page should not go to pcplists */
1603 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1604 			/* Pageblock could have been isolated meanwhile */
1605 			if (unlikely(isolated_pageblocks))
1606 				mt = get_pageblock_migratetype(page);
1607 
1608 			__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1609 			trace_mm_page_pcpu_drain(page, order, mt);
1610 		} while (count > 0 && !list_empty(list));
1611 	}
1612 
1613 	spin_unlock(&zone->lock);
1614 }
1615 
1616 static void free_one_page(struct zone *zone,
1617 				struct page *page, unsigned long pfn,
1618 				unsigned int order,
1619 				int migratetype, fpi_t fpi_flags)
1620 {
1621 	unsigned long flags;
1622 
1623 	spin_lock_irqsave(&zone->lock, flags);
1624 	if (unlikely(has_isolate_pageblock(zone) ||
1625 		is_migrate_isolate(migratetype))) {
1626 		migratetype = get_pfnblock_migratetype(page, pfn);
1627 	}
1628 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1629 	spin_unlock_irqrestore(&zone->lock, flags);
1630 }
1631 
1632 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1633 				unsigned long zone, int nid)
1634 {
1635 	mm_zero_struct_page(page);
1636 	set_page_links(page, zone, nid, pfn);
1637 	init_page_count(page);
1638 	page_mapcount_reset(page);
1639 	page_cpupid_reset_last(page);
1640 	page_kasan_tag_reset(page);
1641 
1642 	INIT_LIST_HEAD(&page->lru);
1643 #ifdef WANT_PAGE_VIRTUAL
1644 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1645 	if (!is_highmem_idx(zone))
1646 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1647 #endif
1648 }
1649 
1650 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1651 static void __meminit init_reserved_page(unsigned long pfn)
1652 {
1653 	pg_data_t *pgdat;
1654 	int nid, zid;
1655 
1656 	if (!early_page_uninitialised(pfn))
1657 		return;
1658 
1659 	nid = early_pfn_to_nid(pfn);
1660 	pgdat = NODE_DATA(nid);
1661 
1662 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1663 		struct zone *zone = &pgdat->node_zones[zid];
1664 
1665 		if (zone_spans_pfn(zone, pfn))
1666 			break;
1667 	}
1668 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1669 }
1670 #else
1671 static inline void init_reserved_page(unsigned long pfn)
1672 {
1673 }
1674 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1675 
1676 /*
1677  * Initialised pages do not have PageReserved set. This function is
1678  * called for each range allocated by the bootmem allocator and
1679  * marks the pages PageReserved. The remaining valid pages are later
1680  * sent to the buddy page allocator.
1681  */
1682 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1683 {
1684 	unsigned long start_pfn = PFN_DOWN(start);
1685 	unsigned long end_pfn = PFN_UP(end);
1686 
1687 	for (; start_pfn < end_pfn; start_pfn++) {
1688 		if (pfn_valid(start_pfn)) {
1689 			struct page *page = pfn_to_page(start_pfn);
1690 
1691 			init_reserved_page(start_pfn);
1692 
1693 			/* Avoid false-positive PageTail() */
1694 			INIT_LIST_HEAD(&page->lru);
1695 
1696 			/*
1697 			 * no need for atomic set_bit because the struct
1698 			 * page is not visible yet so nobody should
1699 			 * access it yet.
1700 			 */
1701 			__SetPageReserved(page);
1702 		}
1703 	}
1704 }
1705 
1706 static void __free_pages_ok(struct page *page, unsigned int order,
1707 			    fpi_t fpi_flags)
1708 {
1709 	unsigned long flags;
1710 	int migratetype;
1711 	unsigned long pfn = page_to_pfn(page);
1712 	struct zone *zone = page_zone(page);
1713 
1714 	if (!free_pages_prepare(page, order, true, fpi_flags))
1715 		return;
1716 
1717 	migratetype = get_pfnblock_migratetype(page, pfn);
1718 
1719 	spin_lock_irqsave(&zone->lock, flags);
1720 	if (unlikely(has_isolate_pageblock(zone) ||
1721 		is_migrate_isolate(migratetype))) {
1722 		migratetype = get_pfnblock_migratetype(page, pfn);
1723 	}
1724 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1725 	spin_unlock_irqrestore(&zone->lock, flags);
1726 
1727 	__count_vm_events(PGFREE, 1 << order);
1728 }
1729 
1730 void __free_pages_core(struct page *page, unsigned int order)
1731 {
1732 	unsigned int nr_pages = 1 << order;
1733 	struct page *p = page;
1734 	unsigned int loop;
1735 
1736 	/*
1737 	 * When initializing the memmap, __init_single_page() sets the refcount
1738 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1739 	 * refcount of all involved pages to 0.
1740 	 */
1741 	prefetchw(p);
1742 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1743 		prefetchw(p + 1);
1744 		__ClearPageReserved(p);
1745 		set_page_count(p, 0);
1746 	}
1747 	__ClearPageReserved(p);
1748 	set_page_count(p, 0);
1749 
1750 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1751 
1752 	/*
1753 	 * Bypass PCP and place fresh pages right to the tail, primarily
1754 	 * relevant for memory onlining.
1755 	 */
1756 	__free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1757 }
1758 
1759 #ifdef CONFIG_NUMA
1760 
1761 /*
1762  * During memory init memblocks map pfns to nids. The search is expensive and
1763  * this caches recent lookups. The implementation of __early_pfn_to_nid
1764  * treats start/end as pfns.
1765  */
1766 struct mminit_pfnnid_cache {
1767 	unsigned long last_start;
1768 	unsigned long last_end;
1769 	int last_nid;
1770 };
1771 
1772 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1773 
1774 /*
1775  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1776  */
1777 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1778 					struct mminit_pfnnid_cache *state)
1779 {
1780 	unsigned long start_pfn, end_pfn;
1781 	int nid;
1782 
1783 	if (state->last_start <= pfn && pfn < state->last_end)
1784 		return state->last_nid;
1785 
1786 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1787 	if (nid != NUMA_NO_NODE) {
1788 		state->last_start = start_pfn;
1789 		state->last_end = end_pfn;
1790 		state->last_nid = nid;
1791 	}
1792 
1793 	return nid;
1794 }
1795 
1796 int __meminit early_pfn_to_nid(unsigned long pfn)
1797 {
1798 	static DEFINE_SPINLOCK(early_pfn_lock);
1799 	int nid;
1800 
1801 	spin_lock(&early_pfn_lock);
1802 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1803 	if (nid < 0)
1804 		nid = first_online_node;
1805 	spin_unlock(&early_pfn_lock);
1806 
1807 	return nid;
1808 }
1809 #endif /* CONFIG_NUMA */
1810 
1811 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1812 							unsigned int order)
1813 {
1814 	if (early_page_uninitialised(pfn))
1815 		return;
1816 	if (!kmsan_memblock_free_pages(page, order)) {
1817 		/* KMSAN will take care of these pages. */
1818 		return;
1819 	}
1820 	__free_pages_core(page, order);
1821 }
1822 
1823 /*
1824  * Check that the whole (or subset of) a pageblock given by the interval of
1825  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1826  * with the migration of free compaction scanner.
1827  *
1828  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1829  *
1830  * It's possible on some configurations to have a setup like node0 node1 node0
1831  * i.e. it's possible that all pages within a zones range of pages do not
1832  * belong to a single zone. We assume that a border between node0 and node1
1833  * can occur within a single pageblock, but not a node0 node1 node0
1834  * interleaving within a single pageblock. It is therefore sufficient to check
1835  * the first and last page of a pageblock and avoid checking each individual
1836  * page in a pageblock.
1837  */
1838 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1839 				     unsigned long end_pfn, struct zone *zone)
1840 {
1841 	struct page *start_page;
1842 	struct page *end_page;
1843 
1844 	/* end_pfn is one past the range we are checking */
1845 	end_pfn--;
1846 
1847 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1848 		return NULL;
1849 
1850 	start_page = pfn_to_online_page(start_pfn);
1851 	if (!start_page)
1852 		return NULL;
1853 
1854 	if (page_zone(start_page) != zone)
1855 		return NULL;
1856 
1857 	end_page = pfn_to_page(end_pfn);
1858 
1859 	/* This gives a shorter code than deriving page_zone(end_page) */
1860 	if (page_zone_id(start_page) != page_zone_id(end_page))
1861 		return NULL;
1862 
1863 	return start_page;
1864 }
1865 
1866 void set_zone_contiguous(struct zone *zone)
1867 {
1868 	unsigned long block_start_pfn = zone->zone_start_pfn;
1869 	unsigned long block_end_pfn;
1870 
1871 	block_end_pfn = pageblock_end_pfn(block_start_pfn);
1872 	for (; block_start_pfn < zone_end_pfn(zone);
1873 			block_start_pfn = block_end_pfn,
1874 			 block_end_pfn += pageblock_nr_pages) {
1875 
1876 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1877 
1878 		if (!__pageblock_pfn_to_page(block_start_pfn,
1879 					     block_end_pfn, zone))
1880 			return;
1881 		cond_resched();
1882 	}
1883 
1884 	/* We confirm that there is no hole */
1885 	zone->contiguous = true;
1886 }
1887 
1888 void clear_zone_contiguous(struct zone *zone)
1889 {
1890 	zone->contiguous = false;
1891 }
1892 
1893 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1894 static void __init deferred_free_range(unsigned long pfn,
1895 				       unsigned long nr_pages)
1896 {
1897 	struct page *page;
1898 	unsigned long i;
1899 
1900 	if (!nr_pages)
1901 		return;
1902 
1903 	page = pfn_to_page(pfn);
1904 
1905 	/* Free a large naturally-aligned chunk if possible */
1906 	if (nr_pages == pageblock_nr_pages && pageblock_aligned(pfn)) {
1907 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1908 		__free_pages_core(page, pageblock_order);
1909 		return;
1910 	}
1911 
1912 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1913 		if (pageblock_aligned(pfn))
1914 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1915 		__free_pages_core(page, 0);
1916 	}
1917 }
1918 
1919 /* Completion tracking for deferred_init_memmap() threads */
1920 static atomic_t pgdat_init_n_undone __initdata;
1921 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1922 
1923 static inline void __init pgdat_init_report_one_done(void)
1924 {
1925 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1926 		complete(&pgdat_init_all_done_comp);
1927 }
1928 
1929 /*
1930  * Returns true if page needs to be initialized or freed to buddy allocator.
1931  *
1932  * We check if a current large page is valid by only checking the validity
1933  * of the head pfn.
1934  */
1935 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1936 {
1937 	if (pageblock_aligned(pfn) && !pfn_valid(pfn))
1938 		return false;
1939 	return true;
1940 }
1941 
1942 /*
1943  * Free pages to buddy allocator. Try to free aligned pages in
1944  * pageblock_nr_pages sizes.
1945  */
1946 static void __init deferred_free_pages(unsigned long pfn,
1947 				       unsigned long end_pfn)
1948 {
1949 	unsigned long nr_free = 0;
1950 
1951 	for (; pfn < end_pfn; pfn++) {
1952 		if (!deferred_pfn_valid(pfn)) {
1953 			deferred_free_range(pfn - nr_free, nr_free);
1954 			nr_free = 0;
1955 		} else if (pageblock_aligned(pfn)) {
1956 			deferred_free_range(pfn - nr_free, nr_free);
1957 			nr_free = 1;
1958 		} else {
1959 			nr_free++;
1960 		}
1961 	}
1962 	/* Free the last block of pages to allocator */
1963 	deferred_free_range(pfn - nr_free, nr_free);
1964 }
1965 
1966 /*
1967  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1968  * by performing it only once every pageblock_nr_pages.
1969  * Return number of pages initialized.
1970  */
1971 static unsigned long  __init deferred_init_pages(struct zone *zone,
1972 						 unsigned long pfn,
1973 						 unsigned long end_pfn)
1974 {
1975 	int nid = zone_to_nid(zone);
1976 	unsigned long nr_pages = 0;
1977 	int zid = zone_idx(zone);
1978 	struct page *page = NULL;
1979 
1980 	for (; pfn < end_pfn; pfn++) {
1981 		if (!deferred_pfn_valid(pfn)) {
1982 			page = NULL;
1983 			continue;
1984 		} else if (!page || pageblock_aligned(pfn)) {
1985 			page = pfn_to_page(pfn);
1986 		} else {
1987 			page++;
1988 		}
1989 		__init_single_page(page, pfn, zid, nid);
1990 		nr_pages++;
1991 	}
1992 	return (nr_pages);
1993 }
1994 
1995 /*
1996  * This function is meant to pre-load the iterator for the zone init.
1997  * Specifically it walks through the ranges until we are caught up to the
1998  * first_init_pfn value and exits there. If we never encounter the value we
1999  * return false indicating there are no valid ranges left.
2000  */
2001 static bool __init
2002 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
2003 				    unsigned long *spfn, unsigned long *epfn,
2004 				    unsigned long first_init_pfn)
2005 {
2006 	u64 j;
2007 
2008 	/*
2009 	 * Start out by walking through the ranges in this zone that have
2010 	 * already been initialized. We don't need to do anything with them
2011 	 * so we just need to flush them out of the system.
2012 	 */
2013 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
2014 		if (*epfn <= first_init_pfn)
2015 			continue;
2016 		if (*spfn < first_init_pfn)
2017 			*spfn = first_init_pfn;
2018 		*i = j;
2019 		return true;
2020 	}
2021 
2022 	return false;
2023 }
2024 
2025 /*
2026  * Initialize and free pages. We do it in two loops: first we initialize
2027  * struct page, then free to buddy allocator, because while we are
2028  * freeing pages we can access pages that are ahead (computing buddy
2029  * page in __free_one_page()).
2030  *
2031  * In order to try and keep some memory in the cache we have the loop
2032  * broken along max page order boundaries. This way we will not cause
2033  * any issues with the buddy page computation.
2034  */
2035 static unsigned long __init
2036 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
2037 		       unsigned long *end_pfn)
2038 {
2039 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
2040 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
2041 	unsigned long nr_pages = 0;
2042 	u64 j = *i;
2043 
2044 	/* First we loop through and initialize the page values */
2045 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
2046 		unsigned long t;
2047 
2048 		if (mo_pfn <= *start_pfn)
2049 			break;
2050 
2051 		t = min(mo_pfn, *end_pfn);
2052 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
2053 
2054 		if (mo_pfn < *end_pfn) {
2055 			*start_pfn = mo_pfn;
2056 			break;
2057 		}
2058 	}
2059 
2060 	/* Reset values and now loop through freeing pages as needed */
2061 	swap(j, *i);
2062 
2063 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2064 		unsigned long t;
2065 
2066 		if (mo_pfn <= spfn)
2067 			break;
2068 
2069 		t = min(mo_pfn, epfn);
2070 		deferred_free_pages(spfn, t);
2071 
2072 		if (mo_pfn <= epfn)
2073 			break;
2074 	}
2075 
2076 	return nr_pages;
2077 }
2078 
2079 static void __init
2080 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2081 			   void *arg)
2082 {
2083 	unsigned long spfn, epfn;
2084 	struct zone *zone = arg;
2085 	u64 i;
2086 
2087 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2088 
2089 	/*
2090 	 * Initialize and free pages in MAX_ORDER sized increments so that we
2091 	 * can avoid introducing any issues with the buddy allocator.
2092 	 */
2093 	while (spfn < end_pfn) {
2094 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
2095 		cond_resched();
2096 	}
2097 }
2098 
2099 /* An arch may override for more concurrency. */
2100 __weak int __init
2101 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2102 {
2103 	return 1;
2104 }
2105 
2106 /* Initialise remaining memory on a node */
2107 static int __init deferred_init_memmap(void *data)
2108 {
2109 	pg_data_t *pgdat = data;
2110 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2111 	unsigned long spfn = 0, epfn = 0;
2112 	unsigned long first_init_pfn, flags;
2113 	unsigned long start = jiffies;
2114 	struct zone *zone;
2115 	int zid, max_threads;
2116 	u64 i;
2117 
2118 	/* Bind memory initialisation thread to a local node if possible */
2119 	if (!cpumask_empty(cpumask))
2120 		set_cpus_allowed_ptr(current, cpumask);
2121 
2122 	pgdat_resize_lock(pgdat, &flags);
2123 	first_init_pfn = pgdat->first_deferred_pfn;
2124 	if (first_init_pfn == ULONG_MAX) {
2125 		pgdat_resize_unlock(pgdat, &flags);
2126 		pgdat_init_report_one_done();
2127 		return 0;
2128 	}
2129 
2130 	/* Sanity check boundaries */
2131 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2132 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2133 	pgdat->first_deferred_pfn = ULONG_MAX;
2134 
2135 	/*
2136 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
2137 	 * interrupt thread must allocate this early in boot, zone must be
2138 	 * pre-grown prior to start of deferred page initialization.
2139 	 */
2140 	pgdat_resize_unlock(pgdat, &flags);
2141 
2142 	/* Only the highest zone is deferred so find it */
2143 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2144 		zone = pgdat->node_zones + zid;
2145 		if (first_init_pfn < zone_end_pfn(zone))
2146 			break;
2147 	}
2148 
2149 	/* If the zone is empty somebody else may have cleared out the zone */
2150 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2151 						 first_init_pfn))
2152 		goto zone_empty;
2153 
2154 	max_threads = deferred_page_init_max_threads(cpumask);
2155 
2156 	while (spfn < epfn) {
2157 		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2158 		struct padata_mt_job job = {
2159 			.thread_fn   = deferred_init_memmap_chunk,
2160 			.fn_arg      = zone,
2161 			.start       = spfn,
2162 			.size        = epfn_align - spfn,
2163 			.align       = PAGES_PER_SECTION,
2164 			.min_chunk   = PAGES_PER_SECTION,
2165 			.max_threads = max_threads,
2166 		};
2167 
2168 		padata_do_multithreaded(&job);
2169 		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2170 						    epfn_align);
2171 	}
2172 zone_empty:
2173 	/* Sanity check that the next zone really is unpopulated */
2174 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2175 
2176 	pr_info("node %d deferred pages initialised in %ums\n",
2177 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
2178 
2179 	pgdat_init_report_one_done();
2180 	return 0;
2181 }
2182 
2183 /*
2184  * If this zone has deferred pages, try to grow it by initializing enough
2185  * deferred pages to satisfy the allocation specified by order, rounded up to
2186  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2187  * of SECTION_SIZE bytes by initializing struct pages in increments of
2188  * PAGES_PER_SECTION * sizeof(struct page) bytes.
2189  *
2190  * Return true when zone was grown, otherwise return false. We return true even
2191  * when we grow less than requested, to let the caller decide if there are
2192  * enough pages to satisfy the allocation.
2193  *
2194  * Note: We use noinline because this function is needed only during boot, and
2195  * it is called from a __ref function _deferred_grow_zone. This way we are
2196  * making sure that it is not inlined into permanent text section.
2197  */
2198 static noinline bool __init
2199 deferred_grow_zone(struct zone *zone, unsigned int order)
2200 {
2201 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2202 	pg_data_t *pgdat = zone->zone_pgdat;
2203 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2204 	unsigned long spfn, epfn, flags;
2205 	unsigned long nr_pages = 0;
2206 	u64 i;
2207 
2208 	/* Only the last zone may have deferred pages */
2209 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2210 		return false;
2211 
2212 	pgdat_resize_lock(pgdat, &flags);
2213 
2214 	/*
2215 	 * If someone grew this zone while we were waiting for spinlock, return
2216 	 * true, as there might be enough pages already.
2217 	 */
2218 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2219 		pgdat_resize_unlock(pgdat, &flags);
2220 		return true;
2221 	}
2222 
2223 	/* If the zone is empty somebody else may have cleared out the zone */
2224 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2225 						 first_deferred_pfn)) {
2226 		pgdat->first_deferred_pfn = ULONG_MAX;
2227 		pgdat_resize_unlock(pgdat, &flags);
2228 		/* Retry only once. */
2229 		return first_deferred_pfn != ULONG_MAX;
2230 	}
2231 
2232 	/*
2233 	 * Initialize and free pages in MAX_ORDER sized increments so
2234 	 * that we can avoid introducing any issues with the buddy
2235 	 * allocator.
2236 	 */
2237 	while (spfn < epfn) {
2238 		/* update our first deferred PFN for this section */
2239 		first_deferred_pfn = spfn;
2240 
2241 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2242 		touch_nmi_watchdog();
2243 
2244 		/* We should only stop along section boundaries */
2245 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2246 			continue;
2247 
2248 		/* If our quota has been met we can stop here */
2249 		if (nr_pages >= nr_pages_needed)
2250 			break;
2251 	}
2252 
2253 	pgdat->first_deferred_pfn = spfn;
2254 	pgdat_resize_unlock(pgdat, &flags);
2255 
2256 	return nr_pages > 0;
2257 }
2258 
2259 /*
2260  * deferred_grow_zone() is __init, but it is called from
2261  * get_page_from_freelist() during early boot until deferred_pages permanently
2262  * disables this call. This is why we have refdata wrapper to avoid warning,
2263  * and to ensure that the function body gets unloaded.
2264  */
2265 static bool __ref
2266 _deferred_grow_zone(struct zone *zone, unsigned int order)
2267 {
2268 	return deferred_grow_zone(zone, order);
2269 }
2270 
2271 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2272 
2273 void __init page_alloc_init_late(void)
2274 {
2275 	struct zone *zone;
2276 	int nid;
2277 
2278 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2279 
2280 	/* There will be num_node_state(N_MEMORY) threads */
2281 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2282 	for_each_node_state(nid, N_MEMORY) {
2283 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2284 	}
2285 
2286 	/* Block until all are initialised */
2287 	wait_for_completion(&pgdat_init_all_done_comp);
2288 
2289 	/*
2290 	 * We initialized the rest of the deferred pages.  Permanently disable
2291 	 * on-demand struct page initialization.
2292 	 */
2293 	static_branch_disable(&deferred_pages);
2294 
2295 	/* Reinit limits that are based on free pages after the kernel is up */
2296 	files_maxfiles_init();
2297 #endif
2298 
2299 	buffer_init();
2300 
2301 	/* Discard memblock private memory */
2302 	memblock_discard();
2303 
2304 	for_each_node_state(nid, N_MEMORY)
2305 		shuffle_free_memory(NODE_DATA(nid));
2306 
2307 	for_each_populated_zone(zone)
2308 		set_zone_contiguous(zone);
2309 }
2310 
2311 #ifdef CONFIG_CMA
2312 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2313 void __init init_cma_reserved_pageblock(struct page *page)
2314 {
2315 	unsigned i = pageblock_nr_pages;
2316 	struct page *p = page;
2317 
2318 	do {
2319 		__ClearPageReserved(p);
2320 		set_page_count(p, 0);
2321 	} while (++p, --i);
2322 
2323 	set_pageblock_migratetype(page, MIGRATE_CMA);
2324 	set_page_refcounted(page);
2325 	__free_pages(page, pageblock_order);
2326 
2327 	adjust_managed_page_count(page, pageblock_nr_pages);
2328 	page_zone(page)->cma_pages += pageblock_nr_pages;
2329 }
2330 #endif
2331 
2332 /*
2333  * The order of subdivision here is critical for the IO subsystem.
2334  * Please do not alter this order without good reasons and regression
2335  * testing. Specifically, as large blocks of memory are subdivided,
2336  * the order in which smaller blocks are delivered depends on the order
2337  * they're subdivided in this function. This is the primary factor
2338  * influencing the order in which pages are delivered to the IO
2339  * subsystem according to empirical testing, and this is also justified
2340  * by considering the behavior of a buddy system containing a single
2341  * large block of memory acted on by a series of small allocations.
2342  * This behavior is a critical factor in sglist merging's success.
2343  *
2344  * -- nyc
2345  */
2346 static inline void expand(struct zone *zone, struct page *page,
2347 	int low, int high, int migratetype)
2348 {
2349 	unsigned long size = 1 << high;
2350 
2351 	while (high > low) {
2352 		high--;
2353 		size >>= 1;
2354 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2355 
2356 		/*
2357 		 * Mark as guard pages (or page), that will allow to
2358 		 * merge back to allocator when buddy will be freed.
2359 		 * Corresponding page table entries will not be touched,
2360 		 * pages will stay not present in virtual address space
2361 		 */
2362 		if (set_page_guard(zone, &page[size], high, migratetype))
2363 			continue;
2364 
2365 		add_to_free_list(&page[size], zone, high, migratetype);
2366 		set_buddy_order(&page[size], high);
2367 	}
2368 }
2369 
2370 static void check_new_page_bad(struct page *page)
2371 {
2372 	if (unlikely(page->flags & __PG_HWPOISON)) {
2373 		/* Don't complain about hwpoisoned pages */
2374 		page_mapcount_reset(page); /* remove PageBuddy */
2375 		return;
2376 	}
2377 
2378 	bad_page(page,
2379 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2380 }
2381 
2382 /*
2383  * This page is about to be returned from the page allocator
2384  */
2385 static inline int check_new_page(struct page *page)
2386 {
2387 	if (likely(page_expected_state(page,
2388 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2389 		return 0;
2390 
2391 	check_new_page_bad(page);
2392 	return 1;
2393 }
2394 
2395 static bool check_new_pages(struct page *page, unsigned int order)
2396 {
2397 	int i;
2398 	for (i = 0; i < (1 << order); i++) {
2399 		struct page *p = page + i;
2400 
2401 		if (unlikely(check_new_page(p)))
2402 			return true;
2403 	}
2404 
2405 	return false;
2406 }
2407 
2408 #ifdef CONFIG_DEBUG_VM
2409 /*
2410  * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2411  * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2412  * also checked when pcp lists are refilled from the free lists.
2413  */
2414 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2415 {
2416 	if (debug_pagealloc_enabled_static())
2417 		return check_new_pages(page, order);
2418 	else
2419 		return false;
2420 }
2421 
2422 static inline bool check_new_pcp(struct page *page, unsigned int order)
2423 {
2424 	return check_new_pages(page, order);
2425 }
2426 #else
2427 /*
2428  * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2429  * when pcp lists are being refilled from the free lists. With debug_pagealloc
2430  * enabled, they are also checked when being allocated from the pcp lists.
2431  */
2432 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2433 {
2434 	return check_new_pages(page, order);
2435 }
2436 static inline bool check_new_pcp(struct page *page, unsigned int order)
2437 {
2438 	if (debug_pagealloc_enabled_static())
2439 		return check_new_pages(page, order);
2440 	else
2441 		return false;
2442 }
2443 #endif /* CONFIG_DEBUG_VM */
2444 
2445 static inline bool should_skip_kasan_unpoison(gfp_t flags)
2446 {
2447 	/* Don't skip if a software KASAN mode is enabled. */
2448 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
2449 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
2450 		return false;
2451 
2452 	/* Skip, if hardware tag-based KASAN is not enabled. */
2453 	if (!kasan_hw_tags_enabled())
2454 		return true;
2455 
2456 	/*
2457 	 * With hardware tag-based KASAN enabled, skip if this has been
2458 	 * requested via __GFP_SKIP_KASAN_UNPOISON.
2459 	 */
2460 	return flags & __GFP_SKIP_KASAN_UNPOISON;
2461 }
2462 
2463 static inline bool should_skip_init(gfp_t flags)
2464 {
2465 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
2466 	if (!kasan_hw_tags_enabled())
2467 		return false;
2468 
2469 	/* For hardware tag-based KASAN, skip if requested. */
2470 	return (flags & __GFP_SKIP_ZERO);
2471 }
2472 
2473 inline void post_alloc_hook(struct page *page, unsigned int order,
2474 				gfp_t gfp_flags)
2475 {
2476 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
2477 			!should_skip_init(gfp_flags);
2478 	bool init_tags = init && (gfp_flags & __GFP_ZEROTAGS);
2479 	int i;
2480 
2481 	set_page_private(page, 0);
2482 	set_page_refcounted(page);
2483 
2484 	arch_alloc_page(page, order);
2485 	debug_pagealloc_map_pages(page, 1 << order);
2486 
2487 	/*
2488 	 * Page unpoisoning must happen before memory initialization.
2489 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2490 	 * allocations and the page unpoisoning code will complain.
2491 	 */
2492 	kernel_unpoison_pages(page, 1 << order);
2493 
2494 	/*
2495 	 * As memory initialization might be integrated into KASAN,
2496 	 * KASAN unpoisoning and memory initializion code must be
2497 	 * kept together to avoid discrepancies in behavior.
2498 	 */
2499 
2500 	/*
2501 	 * If memory tags should be zeroed (which happens only when memory
2502 	 * should be initialized as well).
2503 	 */
2504 	if (init_tags) {
2505 		/* Initialize both memory and tags. */
2506 		for (i = 0; i != 1 << order; ++i)
2507 			tag_clear_highpage(page + i);
2508 
2509 		/* Note that memory is already initialized by the loop above. */
2510 		init = false;
2511 	}
2512 	if (!should_skip_kasan_unpoison(gfp_flags)) {
2513 		/* Unpoison shadow memory or set memory tags. */
2514 		kasan_unpoison_pages(page, order, init);
2515 
2516 		/* Note that memory is already initialized by KASAN. */
2517 		if (kasan_has_integrated_init())
2518 			init = false;
2519 	} else {
2520 		/* Ensure page_address() dereferencing does not fault. */
2521 		for (i = 0; i != 1 << order; ++i)
2522 			page_kasan_tag_reset(page + i);
2523 	}
2524 	/* If memory is still not initialized, do it now. */
2525 	if (init)
2526 		kernel_init_pages(page, 1 << order);
2527 	/* Propagate __GFP_SKIP_KASAN_POISON to page flags. */
2528 	if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON))
2529 		SetPageSkipKASanPoison(page);
2530 
2531 	set_page_owner(page, order, gfp_flags);
2532 	page_table_check_alloc(page, order);
2533 }
2534 
2535 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2536 							unsigned int alloc_flags)
2537 {
2538 	post_alloc_hook(page, order, gfp_flags);
2539 
2540 	if (order && (gfp_flags & __GFP_COMP))
2541 		prep_compound_page(page, order);
2542 
2543 	/*
2544 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2545 	 * allocate the page. The expectation is that the caller is taking
2546 	 * steps that will free more memory. The caller should avoid the page
2547 	 * being used for !PFMEMALLOC purposes.
2548 	 */
2549 	if (alloc_flags & ALLOC_NO_WATERMARKS)
2550 		set_page_pfmemalloc(page);
2551 	else
2552 		clear_page_pfmemalloc(page);
2553 }
2554 
2555 /*
2556  * Go through the free lists for the given migratetype and remove
2557  * the smallest available page from the freelists
2558  */
2559 static __always_inline
2560 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2561 						int migratetype)
2562 {
2563 	unsigned int current_order;
2564 	struct free_area *area;
2565 	struct page *page;
2566 
2567 	/* Find a page of the appropriate size in the preferred list */
2568 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2569 		area = &(zone->free_area[current_order]);
2570 		page = get_page_from_free_area(area, migratetype);
2571 		if (!page)
2572 			continue;
2573 		del_page_from_free_list(page, zone, current_order);
2574 		expand(zone, page, order, current_order, migratetype);
2575 		set_pcppage_migratetype(page, migratetype);
2576 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
2577 				pcp_allowed_order(order) &&
2578 				migratetype < MIGRATE_PCPTYPES);
2579 		return page;
2580 	}
2581 
2582 	return NULL;
2583 }
2584 
2585 
2586 /*
2587  * This array describes the order lists are fallen back to when
2588  * the free lists for the desirable migrate type are depleted
2589  *
2590  * The other migratetypes do not have fallbacks.
2591  */
2592 static int fallbacks[MIGRATE_TYPES][3] = {
2593 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2594 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2595 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2596 };
2597 
2598 #ifdef CONFIG_CMA
2599 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2600 					unsigned int order)
2601 {
2602 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2603 }
2604 #else
2605 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2606 					unsigned int order) { return NULL; }
2607 #endif
2608 
2609 /*
2610  * Move the free pages in a range to the freelist tail of the requested type.
2611  * Note that start_page and end_pages are not aligned on a pageblock
2612  * boundary. If alignment is required, use move_freepages_block()
2613  */
2614 static int move_freepages(struct zone *zone,
2615 			  unsigned long start_pfn, unsigned long end_pfn,
2616 			  int migratetype, int *num_movable)
2617 {
2618 	struct page *page;
2619 	unsigned long pfn;
2620 	unsigned int order;
2621 	int pages_moved = 0;
2622 
2623 	for (pfn = start_pfn; pfn <= end_pfn;) {
2624 		page = pfn_to_page(pfn);
2625 		if (!PageBuddy(page)) {
2626 			/*
2627 			 * We assume that pages that could be isolated for
2628 			 * migration are movable. But we don't actually try
2629 			 * isolating, as that would be expensive.
2630 			 */
2631 			if (num_movable &&
2632 					(PageLRU(page) || __PageMovable(page)))
2633 				(*num_movable)++;
2634 			pfn++;
2635 			continue;
2636 		}
2637 
2638 		/* Make sure we are not inadvertently changing nodes */
2639 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2640 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2641 
2642 		order = buddy_order(page);
2643 		move_to_free_list(page, zone, order, migratetype);
2644 		pfn += 1 << order;
2645 		pages_moved += 1 << order;
2646 	}
2647 
2648 	return pages_moved;
2649 }
2650 
2651 int move_freepages_block(struct zone *zone, struct page *page,
2652 				int migratetype, int *num_movable)
2653 {
2654 	unsigned long start_pfn, end_pfn, pfn;
2655 
2656 	if (num_movable)
2657 		*num_movable = 0;
2658 
2659 	pfn = page_to_pfn(page);
2660 	start_pfn = pageblock_start_pfn(pfn);
2661 	end_pfn = pageblock_end_pfn(pfn) - 1;
2662 
2663 	/* Do not cross zone boundaries */
2664 	if (!zone_spans_pfn(zone, start_pfn))
2665 		start_pfn = pfn;
2666 	if (!zone_spans_pfn(zone, end_pfn))
2667 		return 0;
2668 
2669 	return move_freepages(zone, start_pfn, end_pfn, migratetype,
2670 								num_movable);
2671 }
2672 
2673 static void change_pageblock_range(struct page *pageblock_page,
2674 					int start_order, int migratetype)
2675 {
2676 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2677 
2678 	while (nr_pageblocks--) {
2679 		set_pageblock_migratetype(pageblock_page, migratetype);
2680 		pageblock_page += pageblock_nr_pages;
2681 	}
2682 }
2683 
2684 /*
2685  * When we are falling back to another migratetype during allocation, try to
2686  * steal extra free pages from the same pageblocks to satisfy further
2687  * allocations, instead of polluting multiple pageblocks.
2688  *
2689  * If we are stealing a relatively large buddy page, it is likely there will
2690  * be more free pages in the pageblock, so try to steal them all. For
2691  * reclaimable and unmovable allocations, we steal regardless of page size,
2692  * as fragmentation caused by those allocations polluting movable pageblocks
2693  * is worse than movable allocations stealing from unmovable and reclaimable
2694  * pageblocks.
2695  */
2696 static bool can_steal_fallback(unsigned int order, int start_mt)
2697 {
2698 	/*
2699 	 * Leaving this order check is intended, although there is
2700 	 * relaxed order check in next check. The reason is that
2701 	 * we can actually steal whole pageblock if this condition met,
2702 	 * but, below check doesn't guarantee it and that is just heuristic
2703 	 * so could be changed anytime.
2704 	 */
2705 	if (order >= pageblock_order)
2706 		return true;
2707 
2708 	if (order >= pageblock_order / 2 ||
2709 		start_mt == MIGRATE_RECLAIMABLE ||
2710 		start_mt == MIGRATE_UNMOVABLE ||
2711 		page_group_by_mobility_disabled)
2712 		return true;
2713 
2714 	return false;
2715 }
2716 
2717 static inline bool boost_watermark(struct zone *zone)
2718 {
2719 	unsigned long max_boost;
2720 
2721 	if (!watermark_boost_factor)
2722 		return false;
2723 	/*
2724 	 * Don't bother in zones that are unlikely to produce results.
2725 	 * On small machines, including kdump capture kernels running
2726 	 * in a small area, boosting the watermark can cause an out of
2727 	 * memory situation immediately.
2728 	 */
2729 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2730 		return false;
2731 
2732 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2733 			watermark_boost_factor, 10000);
2734 
2735 	/*
2736 	 * high watermark may be uninitialised if fragmentation occurs
2737 	 * very early in boot so do not boost. We do not fall
2738 	 * through and boost by pageblock_nr_pages as failing
2739 	 * allocations that early means that reclaim is not going
2740 	 * to help and it may even be impossible to reclaim the
2741 	 * boosted watermark resulting in a hang.
2742 	 */
2743 	if (!max_boost)
2744 		return false;
2745 
2746 	max_boost = max(pageblock_nr_pages, max_boost);
2747 
2748 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2749 		max_boost);
2750 
2751 	return true;
2752 }
2753 
2754 /*
2755  * This function implements actual steal behaviour. If order is large enough,
2756  * we can steal whole pageblock. If not, we first move freepages in this
2757  * pageblock to our migratetype and determine how many already-allocated pages
2758  * are there in the pageblock with a compatible migratetype. If at least half
2759  * of pages are free or compatible, we can change migratetype of the pageblock
2760  * itself, so pages freed in the future will be put on the correct free list.
2761  */
2762 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2763 		unsigned int alloc_flags, int start_type, bool whole_block)
2764 {
2765 	unsigned int current_order = buddy_order(page);
2766 	int free_pages, movable_pages, alike_pages;
2767 	int old_block_type;
2768 
2769 	old_block_type = get_pageblock_migratetype(page);
2770 
2771 	/*
2772 	 * This can happen due to races and we want to prevent broken
2773 	 * highatomic accounting.
2774 	 */
2775 	if (is_migrate_highatomic(old_block_type))
2776 		goto single_page;
2777 
2778 	/* Take ownership for orders >= pageblock_order */
2779 	if (current_order >= pageblock_order) {
2780 		change_pageblock_range(page, current_order, start_type);
2781 		goto single_page;
2782 	}
2783 
2784 	/*
2785 	 * Boost watermarks to increase reclaim pressure to reduce the
2786 	 * likelihood of future fallbacks. Wake kswapd now as the node
2787 	 * may be balanced overall and kswapd will not wake naturally.
2788 	 */
2789 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2790 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2791 
2792 	/* We are not allowed to try stealing from the whole block */
2793 	if (!whole_block)
2794 		goto single_page;
2795 
2796 	free_pages = move_freepages_block(zone, page, start_type,
2797 						&movable_pages);
2798 	/*
2799 	 * Determine how many pages are compatible with our allocation.
2800 	 * For movable allocation, it's the number of movable pages which
2801 	 * we just obtained. For other types it's a bit more tricky.
2802 	 */
2803 	if (start_type == MIGRATE_MOVABLE) {
2804 		alike_pages = movable_pages;
2805 	} else {
2806 		/*
2807 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2808 		 * to MOVABLE pageblock, consider all non-movable pages as
2809 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2810 		 * vice versa, be conservative since we can't distinguish the
2811 		 * exact migratetype of non-movable pages.
2812 		 */
2813 		if (old_block_type == MIGRATE_MOVABLE)
2814 			alike_pages = pageblock_nr_pages
2815 						- (free_pages + movable_pages);
2816 		else
2817 			alike_pages = 0;
2818 	}
2819 
2820 	/* moving whole block can fail due to zone boundary conditions */
2821 	if (!free_pages)
2822 		goto single_page;
2823 
2824 	/*
2825 	 * If a sufficient number of pages in the block are either free or of
2826 	 * comparable migratability as our allocation, claim the whole block.
2827 	 */
2828 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2829 			page_group_by_mobility_disabled)
2830 		set_pageblock_migratetype(page, start_type);
2831 
2832 	return;
2833 
2834 single_page:
2835 	move_to_free_list(page, zone, current_order, start_type);
2836 }
2837 
2838 /*
2839  * Check whether there is a suitable fallback freepage with requested order.
2840  * If only_stealable is true, this function returns fallback_mt only if
2841  * we can steal other freepages all together. This would help to reduce
2842  * fragmentation due to mixed migratetype pages in one pageblock.
2843  */
2844 int find_suitable_fallback(struct free_area *area, unsigned int order,
2845 			int migratetype, bool only_stealable, bool *can_steal)
2846 {
2847 	int i;
2848 	int fallback_mt;
2849 
2850 	if (area->nr_free == 0)
2851 		return -1;
2852 
2853 	*can_steal = false;
2854 	for (i = 0;; i++) {
2855 		fallback_mt = fallbacks[migratetype][i];
2856 		if (fallback_mt == MIGRATE_TYPES)
2857 			break;
2858 
2859 		if (free_area_empty(area, fallback_mt))
2860 			continue;
2861 
2862 		if (can_steal_fallback(order, migratetype))
2863 			*can_steal = true;
2864 
2865 		if (!only_stealable)
2866 			return fallback_mt;
2867 
2868 		if (*can_steal)
2869 			return fallback_mt;
2870 	}
2871 
2872 	return -1;
2873 }
2874 
2875 /*
2876  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2877  * there are no empty page blocks that contain a page with a suitable order
2878  */
2879 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2880 				unsigned int alloc_order)
2881 {
2882 	int mt;
2883 	unsigned long max_managed, flags;
2884 
2885 	/*
2886 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2887 	 * Check is race-prone but harmless.
2888 	 */
2889 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2890 	if (zone->nr_reserved_highatomic >= max_managed)
2891 		return;
2892 
2893 	spin_lock_irqsave(&zone->lock, flags);
2894 
2895 	/* Recheck the nr_reserved_highatomic limit under the lock */
2896 	if (zone->nr_reserved_highatomic >= max_managed)
2897 		goto out_unlock;
2898 
2899 	/* Yoink! */
2900 	mt = get_pageblock_migratetype(page);
2901 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
2902 	if (migratetype_is_mergeable(mt)) {
2903 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2904 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2905 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2906 	}
2907 
2908 out_unlock:
2909 	spin_unlock_irqrestore(&zone->lock, flags);
2910 }
2911 
2912 /*
2913  * Used when an allocation is about to fail under memory pressure. This
2914  * potentially hurts the reliability of high-order allocations when under
2915  * intense memory pressure but failed atomic allocations should be easier
2916  * to recover from than an OOM.
2917  *
2918  * If @force is true, try to unreserve a pageblock even though highatomic
2919  * pageblock is exhausted.
2920  */
2921 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2922 						bool force)
2923 {
2924 	struct zonelist *zonelist = ac->zonelist;
2925 	unsigned long flags;
2926 	struct zoneref *z;
2927 	struct zone *zone;
2928 	struct page *page;
2929 	int order;
2930 	bool ret;
2931 
2932 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2933 								ac->nodemask) {
2934 		/*
2935 		 * Preserve at least one pageblock unless memory pressure
2936 		 * is really high.
2937 		 */
2938 		if (!force && zone->nr_reserved_highatomic <=
2939 					pageblock_nr_pages)
2940 			continue;
2941 
2942 		spin_lock_irqsave(&zone->lock, flags);
2943 		for (order = 0; order < MAX_ORDER; order++) {
2944 			struct free_area *area = &(zone->free_area[order]);
2945 
2946 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2947 			if (!page)
2948 				continue;
2949 
2950 			/*
2951 			 * In page freeing path, migratetype change is racy so
2952 			 * we can counter several free pages in a pageblock
2953 			 * in this loop although we changed the pageblock type
2954 			 * from highatomic to ac->migratetype. So we should
2955 			 * adjust the count once.
2956 			 */
2957 			if (is_migrate_highatomic_page(page)) {
2958 				/*
2959 				 * It should never happen but changes to
2960 				 * locking could inadvertently allow a per-cpu
2961 				 * drain to add pages to MIGRATE_HIGHATOMIC
2962 				 * while unreserving so be safe and watch for
2963 				 * underflows.
2964 				 */
2965 				zone->nr_reserved_highatomic -= min(
2966 						pageblock_nr_pages,
2967 						zone->nr_reserved_highatomic);
2968 			}
2969 
2970 			/*
2971 			 * Convert to ac->migratetype and avoid the normal
2972 			 * pageblock stealing heuristics. Minimally, the caller
2973 			 * is doing the work and needs the pages. More
2974 			 * importantly, if the block was always converted to
2975 			 * MIGRATE_UNMOVABLE or another type then the number
2976 			 * of pageblocks that cannot be completely freed
2977 			 * may increase.
2978 			 */
2979 			set_pageblock_migratetype(page, ac->migratetype);
2980 			ret = move_freepages_block(zone, page, ac->migratetype,
2981 									NULL);
2982 			if (ret) {
2983 				spin_unlock_irqrestore(&zone->lock, flags);
2984 				return ret;
2985 			}
2986 		}
2987 		spin_unlock_irqrestore(&zone->lock, flags);
2988 	}
2989 
2990 	return false;
2991 }
2992 
2993 /*
2994  * Try finding a free buddy page on the fallback list and put it on the free
2995  * list of requested migratetype, possibly along with other pages from the same
2996  * block, depending on fragmentation avoidance heuristics. Returns true if
2997  * fallback was found so that __rmqueue_smallest() can grab it.
2998  *
2999  * The use of signed ints for order and current_order is a deliberate
3000  * deviation from the rest of this file, to make the for loop
3001  * condition simpler.
3002  */
3003 static __always_inline bool
3004 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
3005 						unsigned int alloc_flags)
3006 {
3007 	struct free_area *area;
3008 	int current_order;
3009 	int min_order = order;
3010 	struct page *page;
3011 	int fallback_mt;
3012 	bool can_steal;
3013 
3014 	/*
3015 	 * Do not steal pages from freelists belonging to other pageblocks
3016 	 * i.e. orders < pageblock_order. If there are no local zones free,
3017 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
3018 	 */
3019 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
3020 		min_order = pageblock_order;
3021 
3022 	/*
3023 	 * Find the largest available free page in the other list. This roughly
3024 	 * approximates finding the pageblock with the most free pages, which
3025 	 * would be too costly to do exactly.
3026 	 */
3027 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
3028 				--current_order) {
3029 		area = &(zone->free_area[current_order]);
3030 		fallback_mt = find_suitable_fallback(area, current_order,
3031 				start_migratetype, false, &can_steal);
3032 		if (fallback_mt == -1)
3033 			continue;
3034 
3035 		/*
3036 		 * We cannot steal all free pages from the pageblock and the
3037 		 * requested migratetype is movable. In that case it's better to
3038 		 * steal and split the smallest available page instead of the
3039 		 * largest available page, because even if the next movable
3040 		 * allocation falls back into a different pageblock than this
3041 		 * one, it won't cause permanent fragmentation.
3042 		 */
3043 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
3044 					&& current_order > order)
3045 			goto find_smallest;
3046 
3047 		goto do_steal;
3048 	}
3049 
3050 	return false;
3051 
3052 find_smallest:
3053 	for (current_order = order; current_order < MAX_ORDER;
3054 							current_order++) {
3055 		area = &(zone->free_area[current_order]);
3056 		fallback_mt = find_suitable_fallback(area, current_order,
3057 				start_migratetype, false, &can_steal);
3058 		if (fallback_mt != -1)
3059 			break;
3060 	}
3061 
3062 	/*
3063 	 * This should not happen - we already found a suitable fallback
3064 	 * when looking for the largest page.
3065 	 */
3066 	VM_BUG_ON(current_order == MAX_ORDER);
3067 
3068 do_steal:
3069 	page = get_page_from_free_area(area, fallback_mt);
3070 
3071 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
3072 								can_steal);
3073 
3074 	trace_mm_page_alloc_extfrag(page, order, current_order,
3075 		start_migratetype, fallback_mt);
3076 
3077 	return true;
3078 
3079 }
3080 
3081 /*
3082  * Do the hard work of removing an element from the buddy allocator.
3083  * Call me with the zone->lock already held.
3084  */
3085 static __always_inline struct page *
3086 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
3087 						unsigned int alloc_flags)
3088 {
3089 	struct page *page;
3090 
3091 	if (IS_ENABLED(CONFIG_CMA)) {
3092 		/*
3093 		 * Balance movable allocations between regular and CMA areas by
3094 		 * allocating from CMA when over half of the zone's free memory
3095 		 * is in the CMA area.
3096 		 */
3097 		if (alloc_flags & ALLOC_CMA &&
3098 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
3099 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
3100 			page = __rmqueue_cma_fallback(zone, order);
3101 			if (page)
3102 				return page;
3103 		}
3104 	}
3105 retry:
3106 	page = __rmqueue_smallest(zone, order, migratetype);
3107 	if (unlikely(!page)) {
3108 		if (alloc_flags & ALLOC_CMA)
3109 			page = __rmqueue_cma_fallback(zone, order);
3110 
3111 		if (!page && __rmqueue_fallback(zone, order, migratetype,
3112 								alloc_flags))
3113 			goto retry;
3114 	}
3115 	return page;
3116 }
3117 
3118 /*
3119  * Obtain a specified number of elements from the buddy allocator, all under
3120  * a single hold of the lock, for efficiency.  Add them to the supplied list.
3121  * Returns the number of new pages which were placed at *list.
3122  */
3123 static int rmqueue_bulk(struct zone *zone, unsigned int order,
3124 			unsigned long count, struct list_head *list,
3125 			int migratetype, unsigned int alloc_flags)
3126 {
3127 	int i, allocated = 0;
3128 
3129 	/* Caller must hold IRQ-safe pcp->lock so IRQs are disabled. */
3130 	spin_lock(&zone->lock);
3131 	for (i = 0; i < count; ++i) {
3132 		struct page *page = __rmqueue(zone, order, migratetype,
3133 								alloc_flags);
3134 		if (unlikely(page == NULL))
3135 			break;
3136 
3137 		if (unlikely(check_pcp_refill(page, order)))
3138 			continue;
3139 
3140 		/*
3141 		 * Split buddy pages returned by expand() are received here in
3142 		 * physical page order. The page is added to the tail of
3143 		 * caller's list. From the callers perspective, the linked list
3144 		 * is ordered by page number under some conditions. This is
3145 		 * useful for IO devices that can forward direction from the
3146 		 * head, thus also in the physical page order. This is useful
3147 		 * for IO devices that can merge IO requests if the physical
3148 		 * pages are ordered properly.
3149 		 */
3150 		list_add_tail(&page->pcp_list, list);
3151 		allocated++;
3152 		if (is_migrate_cma(get_pcppage_migratetype(page)))
3153 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3154 					      -(1 << order));
3155 	}
3156 
3157 	/*
3158 	 * i pages were removed from the buddy list even if some leak due
3159 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3160 	 * on i. Do not confuse with 'allocated' which is the number of
3161 	 * pages added to the pcp list.
3162 	 */
3163 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3164 	spin_unlock(&zone->lock);
3165 	return allocated;
3166 }
3167 
3168 #ifdef CONFIG_NUMA
3169 /*
3170  * Called from the vmstat counter updater to drain pagesets of this
3171  * currently executing processor on remote nodes after they have
3172  * expired.
3173  */
3174 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3175 {
3176 	int to_drain, batch;
3177 
3178 	batch = READ_ONCE(pcp->batch);
3179 	to_drain = min(pcp->count, batch);
3180 	if (to_drain > 0) {
3181 		unsigned long flags;
3182 
3183 		/*
3184 		 * free_pcppages_bulk expects IRQs disabled for zone->lock
3185 		 * so even though pcp->lock is not intended to be IRQ-safe,
3186 		 * it's needed in this context.
3187 		 */
3188 		spin_lock_irqsave(&pcp->lock, flags);
3189 		free_pcppages_bulk(zone, to_drain, pcp, 0);
3190 		spin_unlock_irqrestore(&pcp->lock, flags);
3191 	}
3192 }
3193 #endif
3194 
3195 /*
3196  * Drain pcplists of the indicated processor and zone.
3197  */
3198 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3199 {
3200 	struct per_cpu_pages *pcp;
3201 
3202 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3203 	if (pcp->count) {
3204 		unsigned long flags;
3205 
3206 		/* See drain_zone_pages on why this is disabling IRQs */
3207 		spin_lock_irqsave(&pcp->lock, flags);
3208 		free_pcppages_bulk(zone, pcp->count, pcp, 0);
3209 		spin_unlock_irqrestore(&pcp->lock, flags);
3210 	}
3211 }
3212 
3213 /*
3214  * Drain pcplists of all zones on the indicated processor.
3215  */
3216 static void drain_pages(unsigned int cpu)
3217 {
3218 	struct zone *zone;
3219 
3220 	for_each_populated_zone(zone) {
3221 		drain_pages_zone(cpu, zone);
3222 	}
3223 }
3224 
3225 /*
3226  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3227  */
3228 void drain_local_pages(struct zone *zone)
3229 {
3230 	int cpu = smp_processor_id();
3231 
3232 	if (zone)
3233 		drain_pages_zone(cpu, zone);
3234 	else
3235 		drain_pages(cpu);
3236 }
3237 
3238 /*
3239  * The implementation of drain_all_pages(), exposing an extra parameter to
3240  * drain on all cpus.
3241  *
3242  * drain_all_pages() is optimized to only execute on cpus where pcplists are
3243  * not empty. The check for non-emptiness can however race with a free to
3244  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3245  * that need the guarantee that every CPU has drained can disable the
3246  * optimizing racy check.
3247  */
3248 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3249 {
3250 	int cpu;
3251 
3252 	/*
3253 	 * Allocate in the BSS so we won't require allocation in
3254 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3255 	 */
3256 	static cpumask_t cpus_with_pcps;
3257 
3258 	/*
3259 	 * Do not drain if one is already in progress unless it's specific to
3260 	 * a zone. Such callers are primarily CMA and memory hotplug and need
3261 	 * the drain to be complete when the call returns.
3262 	 */
3263 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3264 		if (!zone)
3265 			return;
3266 		mutex_lock(&pcpu_drain_mutex);
3267 	}
3268 
3269 	/*
3270 	 * We don't care about racing with CPU hotplug event
3271 	 * as offline notification will cause the notified
3272 	 * cpu to drain that CPU pcps and on_each_cpu_mask
3273 	 * disables preemption as part of its processing
3274 	 */
3275 	for_each_online_cpu(cpu) {
3276 		struct per_cpu_pages *pcp;
3277 		struct zone *z;
3278 		bool has_pcps = false;
3279 
3280 		if (force_all_cpus) {
3281 			/*
3282 			 * The pcp.count check is racy, some callers need a
3283 			 * guarantee that no cpu is missed.
3284 			 */
3285 			has_pcps = true;
3286 		} else if (zone) {
3287 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3288 			if (pcp->count)
3289 				has_pcps = true;
3290 		} else {
3291 			for_each_populated_zone(z) {
3292 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3293 				if (pcp->count) {
3294 					has_pcps = true;
3295 					break;
3296 				}
3297 			}
3298 		}
3299 
3300 		if (has_pcps)
3301 			cpumask_set_cpu(cpu, &cpus_with_pcps);
3302 		else
3303 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
3304 	}
3305 
3306 	for_each_cpu(cpu, &cpus_with_pcps) {
3307 		if (zone)
3308 			drain_pages_zone(cpu, zone);
3309 		else
3310 			drain_pages(cpu);
3311 	}
3312 
3313 	mutex_unlock(&pcpu_drain_mutex);
3314 }
3315 
3316 /*
3317  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3318  *
3319  * When zone parameter is non-NULL, spill just the single zone's pages.
3320  */
3321 void drain_all_pages(struct zone *zone)
3322 {
3323 	__drain_all_pages(zone, false);
3324 }
3325 
3326 #ifdef CONFIG_HIBERNATION
3327 
3328 /*
3329  * Touch the watchdog for every WD_PAGE_COUNT pages.
3330  */
3331 #define WD_PAGE_COUNT	(128*1024)
3332 
3333 void mark_free_pages(struct zone *zone)
3334 {
3335 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3336 	unsigned long flags;
3337 	unsigned int order, t;
3338 	struct page *page;
3339 
3340 	if (zone_is_empty(zone))
3341 		return;
3342 
3343 	spin_lock_irqsave(&zone->lock, flags);
3344 
3345 	max_zone_pfn = zone_end_pfn(zone);
3346 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3347 		if (pfn_valid(pfn)) {
3348 			page = pfn_to_page(pfn);
3349 
3350 			if (!--page_count) {
3351 				touch_nmi_watchdog();
3352 				page_count = WD_PAGE_COUNT;
3353 			}
3354 
3355 			if (page_zone(page) != zone)
3356 				continue;
3357 
3358 			if (!swsusp_page_is_forbidden(page))
3359 				swsusp_unset_page_free(page);
3360 		}
3361 
3362 	for_each_migratetype_order(order, t) {
3363 		list_for_each_entry(page,
3364 				&zone->free_area[order].free_list[t], buddy_list) {
3365 			unsigned long i;
3366 
3367 			pfn = page_to_pfn(page);
3368 			for (i = 0; i < (1UL << order); i++) {
3369 				if (!--page_count) {
3370 					touch_nmi_watchdog();
3371 					page_count = WD_PAGE_COUNT;
3372 				}
3373 				swsusp_set_page_free(pfn_to_page(pfn + i));
3374 			}
3375 		}
3376 	}
3377 	spin_unlock_irqrestore(&zone->lock, flags);
3378 }
3379 #endif /* CONFIG_PM */
3380 
3381 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3382 							unsigned int order)
3383 {
3384 	int migratetype;
3385 
3386 	if (!free_pcp_prepare(page, order))
3387 		return false;
3388 
3389 	migratetype = get_pfnblock_migratetype(page, pfn);
3390 	set_pcppage_migratetype(page, migratetype);
3391 	return true;
3392 }
3393 
3394 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch,
3395 		       bool free_high)
3396 {
3397 	int min_nr_free, max_nr_free;
3398 
3399 	/* Free everything if batch freeing high-order pages. */
3400 	if (unlikely(free_high))
3401 		return pcp->count;
3402 
3403 	/* Check for PCP disabled or boot pageset */
3404 	if (unlikely(high < batch))
3405 		return 1;
3406 
3407 	/* Leave at least pcp->batch pages on the list */
3408 	min_nr_free = batch;
3409 	max_nr_free = high - batch;
3410 
3411 	/*
3412 	 * Double the number of pages freed each time there is subsequent
3413 	 * freeing of pages without any allocation.
3414 	 */
3415 	batch <<= pcp->free_factor;
3416 	if (batch < max_nr_free)
3417 		pcp->free_factor++;
3418 	batch = clamp(batch, min_nr_free, max_nr_free);
3419 
3420 	return batch;
3421 }
3422 
3423 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
3424 		       bool free_high)
3425 {
3426 	int high = READ_ONCE(pcp->high);
3427 
3428 	if (unlikely(!high || free_high))
3429 		return 0;
3430 
3431 	if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3432 		return high;
3433 
3434 	/*
3435 	 * If reclaim is active, limit the number of pages that can be
3436 	 * stored on pcp lists
3437 	 */
3438 	return min(READ_ONCE(pcp->batch) << 2, high);
3439 }
3440 
3441 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
3442 				   struct page *page, int migratetype,
3443 				   unsigned int order)
3444 {
3445 	int high;
3446 	int pindex;
3447 	bool free_high;
3448 
3449 	__count_vm_events(PGFREE, 1 << order);
3450 	pindex = order_to_pindex(migratetype, order);
3451 	list_add(&page->pcp_list, &pcp->lists[pindex]);
3452 	pcp->count += 1 << order;
3453 
3454 	/*
3455 	 * As high-order pages other than THP's stored on PCP can contribute
3456 	 * to fragmentation, limit the number stored when PCP is heavily
3457 	 * freeing without allocation. The remainder after bulk freeing
3458 	 * stops will be drained from vmstat refresh context.
3459 	 */
3460 	free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
3461 
3462 	high = nr_pcp_high(pcp, zone, free_high);
3463 	if (pcp->count >= high) {
3464 		int batch = READ_ONCE(pcp->batch);
3465 
3466 		free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex);
3467 	}
3468 }
3469 
3470 /*
3471  * Free a pcp page
3472  */
3473 void free_unref_page(struct page *page, unsigned int order)
3474 {
3475 	unsigned long flags;
3476 	unsigned long __maybe_unused UP_flags;
3477 	struct per_cpu_pages *pcp;
3478 	struct zone *zone;
3479 	unsigned long pfn = page_to_pfn(page);
3480 	int migratetype;
3481 
3482 	if (!free_unref_page_prepare(page, pfn, order))
3483 		return;
3484 
3485 	/*
3486 	 * We only track unmovable, reclaimable and movable on pcp lists.
3487 	 * Place ISOLATE pages on the isolated list because they are being
3488 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3489 	 * areas back if necessary. Otherwise, we may have to free
3490 	 * excessively into the page allocator
3491 	 */
3492 	migratetype = get_pcppage_migratetype(page);
3493 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3494 		if (unlikely(is_migrate_isolate(migratetype))) {
3495 			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3496 			return;
3497 		}
3498 		migratetype = MIGRATE_MOVABLE;
3499 	}
3500 
3501 	zone = page_zone(page);
3502 	pcp_trylock_prepare(UP_flags);
3503 	pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags);
3504 	if (pcp) {
3505 		free_unref_page_commit(zone, pcp, page, migratetype, order);
3506 		pcp_spin_unlock_irqrestore(pcp, flags);
3507 	} else {
3508 		free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
3509 	}
3510 	pcp_trylock_finish(UP_flags);
3511 }
3512 
3513 /*
3514  * Free a list of 0-order pages
3515  */
3516 void free_unref_page_list(struct list_head *list)
3517 {
3518 	struct page *page, *next;
3519 	struct per_cpu_pages *pcp = NULL;
3520 	struct zone *locked_zone = NULL;
3521 	unsigned long flags;
3522 	int batch_count = 0;
3523 	int migratetype;
3524 
3525 	/* Prepare pages for freeing */
3526 	list_for_each_entry_safe(page, next, list, lru) {
3527 		unsigned long pfn = page_to_pfn(page);
3528 		if (!free_unref_page_prepare(page, pfn, 0)) {
3529 			list_del(&page->lru);
3530 			continue;
3531 		}
3532 
3533 		/*
3534 		 * Free isolated pages directly to the allocator, see
3535 		 * comment in free_unref_page.
3536 		 */
3537 		migratetype = get_pcppage_migratetype(page);
3538 		if (unlikely(is_migrate_isolate(migratetype))) {
3539 			list_del(&page->lru);
3540 			free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3541 			continue;
3542 		}
3543 	}
3544 
3545 	list_for_each_entry_safe(page, next, list, lru) {
3546 		struct zone *zone = page_zone(page);
3547 
3548 		/* Different zone, different pcp lock. */
3549 		if (zone != locked_zone) {
3550 			if (pcp)
3551 				pcp_spin_unlock_irqrestore(pcp, flags);
3552 
3553 			locked_zone = zone;
3554 			pcp = pcp_spin_lock_irqsave(locked_zone->per_cpu_pageset, flags);
3555 		}
3556 
3557 		/*
3558 		 * Non-isolated types over MIGRATE_PCPTYPES get added
3559 		 * to the MIGRATE_MOVABLE pcp list.
3560 		 */
3561 		migratetype = get_pcppage_migratetype(page);
3562 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3563 			migratetype = MIGRATE_MOVABLE;
3564 
3565 		trace_mm_page_free_batched(page);
3566 		free_unref_page_commit(zone, pcp, page, migratetype, 0);
3567 
3568 		/*
3569 		 * Guard against excessive IRQ disabled times when we get
3570 		 * a large list of pages to free.
3571 		 */
3572 		if (++batch_count == SWAP_CLUSTER_MAX) {
3573 			pcp_spin_unlock_irqrestore(pcp, flags);
3574 			batch_count = 0;
3575 			pcp = pcp_spin_lock_irqsave(locked_zone->per_cpu_pageset, flags);
3576 		}
3577 	}
3578 
3579 	if (pcp)
3580 		pcp_spin_unlock_irqrestore(pcp, flags);
3581 }
3582 
3583 /*
3584  * split_page takes a non-compound higher-order page, and splits it into
3585  * n (1<<order) sub-pages: page[0..n]
3586  * Each sub-page must be freed individually.
3587  *
3588  * Note: this is probably too low level an operation for use in drivers.
3589  * Please consult with lkml before using this in your driver.
3590  */
3591 void split_page(struct page *page, unsigned int order)
3592 {
3593 	int i;
3594 
3595 	VM_BUG_ON_PAGE(PageCompound(page), page);
3596 	VM_BUG_ON_PAGE(!page_count(page), page);
3597 
3598 	for (i = 1; i < (1 << order); i++)
3599 		set_page_refcounted(page + i);
3600 	split_page_owner(page, 1 << order);
3601 	split_page_memcg(page, 1 << order);
3602 }
3603 EXPORT_SYMBOL_GPL(split_page);
3604 
3605 int __isolate_free_page(struct page *page, unsigned int order)
3606 {
3607 	struct zone *zone = page_zone(page);
3608 	int mt = get_pageblock_migratetype(page);
3609 
3610 	if (!is_migrate_isolate(mt)) {
3611 		unsigned long watermark;
3612 		/*
3613 		 * Obey watermarks as if the page was being allocated. We can
3614 		 * emulate a high-order watermark check with a raised order-0
3615 		 * watermark, because we already know our high-order page
3616 		 * exists.
3617 		 */
3618 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3619 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3620 			return 0;
3621 
3622 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3623 	}
3624 
3625 	del_page_from_free_list(page, zone, order);
3626 
3627 	/*
3628 	 * Set the pageblock if the isolated page is at least half of a
3629 	 * pageblock
3630 	 */
3631 	if (order >= pageblock_order - 1) {
3632 		struct page *endpage = page + (1 << order) - 1;
3633 		for (; page < endpage; page += pageblock_nr_pages) {
3634 			int mt = get_pageblock_migratetype(page);
3635 			/*
3636 			 * Only change normal pageblocks (i.e., they can merge
3637 			 * with others)
3638 			 */
3639 			if (migratetype_is_mergeable(mt))
3640 				set_pageblock_migratetype(page,
3641 							  MIGRATE_MOVABLE);
3642 		}
3643 	}
3644 
3645 	return 1UL << order;
3646 }
3647 
3648 /**
3649  * __putback_isolated_page - Return a now-isolated page back where we got it
3650  * @page: Page that was isolated
3651  * @order: Order of the isolated page
3652  * @mt: The page's pageblock's migratetype
3653  *
3654  * This function is meant to return a page pulled from the free lists via
3655  * __isolate_free_page back to the free lists they were pulled from.
3656  */
3657 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3658 {
3659 	struct zone *zone = page_zone(page);
3660 
3661 	/* zone lock should be held when this function is called */
3662 	lockdep_assert_held(&zone->lock);
3663 
3664 	/* Return isolated page to tail of freelist. */
3665 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
3666 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3667 }
3668 
3669 /*
3670  * Update NUMA hit/miss statistics
3671  */
3672 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3673 				   long nr_account)
3674 {
3675 #ifdef CONFIG_NUMA
3676 	enum numa_stat_item local_stat = NUMA_LOCAL;
3677 
3678 	/* skip numa counters update if numa stats is disabled */
3679 	if (!static_branch_likely(&vm_numa_stat_key))
3680 		return;
3681 
3682 	if (zone_to_nid(z) != numa_node_id())
3683 		local_stat = NUMA_OTHER;
3684 
3685 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3686 		__count_numa_events(z, NUMA_HIT, nr_account);
3687 	else {
3688 		__count_numa_events(z, NUMA_MISS, nr_account);
3689 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3690 	}
3691 	__count_numa_events(z, local_stat, nr_account);
3692 #endif
3693 }
3694 
3695 static __always_inline
3696 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
3697 			   unsigned int order, unsigned int alloc_flags,
3698 			   int migratetype)
3699 {
3700 	struct page *page;
3701 	unsigned long flags;
3702 
3703 	do {
3704 		page = NULL;
3705 		spin_lock_irqsave(&zone->lock, flags);
3706 		/*
3707 		 * order-0 request can reach here when the pcplist is skipped
3708 		 * due to non-CMA allocation context. HIGHATOMIC area is
3709 		 * reserved for high-order atomic allocation, so order-0
3710 		 * request should skip it.
3711 		 */
3712 		if (order > 0 && alloc_flags & ALLOC_HARDER)
3713 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3714 		if (!page) {
3715 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3716 			if (!page) {
3717 				spin_unlock_irqrestore(&zone->lock, flags);
3718 				return NULL;
3719 			}
3720 		}
3721 		__mod_zone_freepage_state(zone, -(1 << order),
3722 					  get_pcppage_migratetype(page));
3723 		spin_unlock_irqrestore(&zone->lock, flags);
3724 	} while (check_new_pages(page, order));
3725 
3726 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3727 	zone_statistics(preferred_zone, zone, 1);
3728 
3729 	return page;
3730 }
3731 
3732 /* Remove page from the per-cpu list, caller must protect the list */
3733 static inline
3734 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3735 			int migratetype,
3736 			unsigned int alloc_flags,
3737 			struct per_cpu_pages *pcp,
3738 			struct list_head *list)
3739 {
3740 	struct page *page;
3741 
3742 	do {
3743 		if (list_empty(list)) {
3744 			int batch = READ_ONCE(pcp->batch);
3745 			int alloced;
3746 
3747 			/*
3748 			 * Scale batch relative to order if batch implies
3749 			 * free pages can be stored on the PCP. Batch can
3750 			 * be 1 for small zones or for boot pagesets which
3751 			 * should never store free pages as the pages may
3752 			 * belong to arbitrary zones.
3753 			 */
3754 			if (batch > 1)
3755 				batch = max(batch >> order, 2);
3756 			alloced = rmqueue_bulk(zone, order,
3757 					batch, list,
3758 					migratetype, alloc_flags);
3759 
3760 			pcp->count += alloced << order;
3761 			if (unlikely(list_empty(list)))
3762 				return NULL;
3763 		}
3764 
3765 		page = list_first_entry(list, struct page, pcp_list);
3766 		list_del(&page->pcp_list);
3767 		pcp->count -= 1 << order;
3768 	} while (check_new_pcp(page, order));
3769 
3770 	return page;
3771 }
3772 
3773 /* Lock and remove page from the per-cpu list */
3774 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3775 			struct zone *zone, unsigned int order,
3776 			int migratetype, unsigned int alloc_flags)
3777 {
3778 	struct per_cpu_pages *pcp;
3779 	struct list_head *list;
3780 	struct page *page;
3781 	unsigned long flags;
3782 	unsigned long __maybe_unused UP_flags;
3783 
3784 	/*
3785 	 * spin_trylock may fail due to a parallel drain. In the future, the
3786 	 * trylock will also protect against IRQ reentrancy.
3787 	 */
3788 	pcp_trylock_prepare(UP_flags);
3789 	pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags);
3790 	if (!pcp) {
3791 		pcp_trylock_finish(UP_flags);
3792 		return NULL;
3793 	}
3794 
3795 	/*
3796 	 * On allocation, reduce the number of pages that are batch freed.
3797 	 * See nr_pcp_free() where free_factor is increased for subsequent
3798 	 * frees.
3799 	 */
3800 	pcp->free_factor >>= 1;
3801 	list = &pcp->lists[order_to_pindex(migratetype, order)];
3802 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3803 	pcp_spin_unlock_irqrestore(pcp, flags);
3804 	pcp_trylock_finish(UP_flags);
3805 	if (page) {
3806 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3807 		zone_statistics(preferred_zone, zone, 1);
3808 	}
3809 	return page;
3810 }
3811 
3812 /*
3813  * Allocate a page from the given zone.
3814  * Use pcplists for THP or "cheap" high-order allocations.
3815  */
3816 
3817 /*
3818  * Do not instrument rmqueue() with KMSAN. This function may call
3819  * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
3820  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3821  * may call rmqueue() again, which will result in a deadlock.
3822  */
3823 __no_sanitize_memory
3824 static inline
3825 struct page *rmqueue(struct zone *preferred_zone,
3826 			struct zone *zone, unsigned int order,
3827 			gfp_t gfp_flags, unsigned int alloc_flags,
3828 			int migratetype)
3829 {
3830 	struct page *page;
3831 
3832 	/*
3833 	 * We most definitely don't want callers attempting to
3834 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3835 	 */
3836 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3837 
3838 	if (likely(pcp_allowed_order(order))) {
3839 		/*
3840 		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3841 		 * we need to skip it when CMA area isn't allowed.
3842 		 */
3843 		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3844 				migratetype != MIGRATE_MOVABLE) {
3845 			page = rmqueue_pcplist(preferred_zone, zone, order,
3846 					migratetype, alloc_flags);
3847 			if (likely(page))
3848 				goto out;
3849 		}
3850 	}
3851 
3852 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3853 							migratetype);
3854 
3855 out:
3856 	/* Separate test+clear to avoid unnecessary atomics */
3857 	if (unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3858 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3859 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3860 	}
3861 
3862 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3863 	return page;
3864 }
3865 
3866 #ifdef CONFIG_FAIL_PAGE_ALLOC
3867 
3868 static struct {
3869 	struct fault_attr attr;
3870 
3871 	bool ignore_gfp_highmem;
3872 	bool ignore_gfp_reclaim;
3873 	u32 min_order;
3874 } fail_page_alloc = {
3875 	.attr = FAULT_ATTR_INITIALIZER,
3876 	.ignore_gfp_reclaim = true,
3877 	.ignore_gfp_highmem = true,
3878 	.min_order = 1,
3879 };
3880 
3881 static int __init setup_fail_page_alloc(char *str)
3882 {
3883 	return setup_fault_attr(&fail_page_alloc.attr, str);
3884 }
3885 __setup("fail_page_alloc=", setup_fail_page_alloc);
3886 
3887 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3888 {
3889 	if (order < fail_page_alloc.min_order)
3890 		return false;
3891 	if (gfp_mask & __GFP_NOFAIL)
3892 		return false;
3893 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3894 		return false;
3895 	if (fail_page_alloc.ignore_gfp_reclaim &&
3896 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3897 		return false;
3898 
3899 	if (gfp_mask & __GFP_NOWARN)
3900 		fail_page_alloc.attr.no_warn = true;
3901 
3902 	return should_fail(&fail_page_alloc.attr, 1 << order);
3903 }
3904 
3905 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3906 
3907 static int __init fail_page_alloc_debugfs(void)
3908 {
3909 	umode_t mode = S_IFREG | 0600;
3910 	struct dentry *dir;
3911 
3912 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3913 					&fail_page_alloc.attr);
3914 
3915 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3916 			    &fail_page_alloc.ignore_gfp_reclaim);
3917 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3918 			    &fail_page_alloc.ignore_gfp_highmem);
3919 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3920 
3921 	return 0;
3922 }
3923 
3924 late_initcall(fail_page_alloc_debugfs);
3925 
3926 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3927 
3928 #else /* CONFIG_FAIL_PAGE_ALLOC */
3929 
3930 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3931 {
3932 	return false;
3933 }
3934 
3935 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3936 
3937 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3938 {
3939 	return __should_fail_alloc_page(gfp_mask, order);
3940 }
3941 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3942 
3943 static inline long __zone_watermark_unusable_free(struct zone *z,
3944 				unsigned int order, unsigned int alloc_flags)
3945 {
3946 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3947 	long unusable_free = (1 << order) - 1;
3948 
3949 	/*
3950 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3951 	 * the high-atomic reserves. This will over-estimate the size of the
3952 	 * atomic reserve but it avoids a search.
3953 	 */
3954 	if (likely(!alloc_harder))
3955 		unusable_free += z->nr_reserved_highatomic;
3956 
3957 #ifdef CONFIG_CMA
3958 	/* If allocation can't use CMA areas don't use free CMA pages */
3959 	if (!(alloc_flags & ALLOC_CMA))
3960 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3961 #endif
3962 
3963 	return unusable_free;
3964 }
3965 
3966 /*
3967  * Return true if free base pages are above 'mark'. For high-order checks it
3968  * will return true of the order-0 watermark is reached and there is at least
3969  * one free page of a suitable size. Checking now avoids taking the zone lock
3970  * to check in the allocation paths if no pages are free.
3971  */
3972 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3973 			 int highest_zoneidx, unsigned int alloc_flags,
3974 			 long free_pages)
3975 {
3976 	long min = mark;
3977 	int o;
3978 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3979 
3980 	/* free_pages may go negative - that's OK */
3981 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3982 
3983 	if (alloc_flags & ALLOC_HIGH)
3984 		min -= min / 2;
3985 
3986 	if (unlikely(alloc_harder)) {
3987 		/*
3988 		 * OOM victims can try even harder than normal ALLOC_HARDER
3989 		 * users on the grounds that it's definitely going to be in
3990 		 * the exit path shortly and free memory. Any allocation it
3991 		 * makes during the free path will be small and short-lived.
3992 		 */
3993 		if (alloc_flags & ALLOC_OOM)
3994 			min -= min / 2;
3995 		else
3996 			min -= min / 4;
3997 	}
3998 
3999 	/*
4000 	 * Check watermarks for an order-0 allocation request. If these
4001 	 * are not met, then a high-order request also cannot go ahead
4002 	 * even if a suitable page happened to be free.
4003 	 */
4004 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
4005 		return false;
4006 
4007 	/* If this is an order-0 request then the watermark is fine */
4008 	if (!order)
4009 		return true;
4010 
4011 	/* For a high-order request, check at least one suitable page is free */
4012 	for (o = order; o < MAX_ORDER; o++) {
4013 		struct free_area *area = &z->free_area[o];
4014 		int mt;
4015 
4016 		if (!area->nr_free)
4017 			continue;
4018 
4019 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
4020 			if (!free_area_empty(area, mt))
4021 				return true;
4022 		}
4023 
4024 #ifdef CONFIG_CMA
4025 		if ((alloc_flags & ALLOC_CMA) &&
4026 		    !free_area_empty(area, MIGRATE_CMA)) {
4027 			return true;
4028 		}
4029 #endif
4030 		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
4031 			return true;
4032 	}
4033 	return false;
4034 }
4035 
4036 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
4037 		      int highest_zoneidx, unsigned int alloc_flags)
4038 {
4039 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4040 					zone_page_state(z, NR_FREE_PAGES));
4041 }
4042 
4043 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
4044 				unsigned long mark, int highest_zoneidx,
4045 				unsigned int alloc_flags, gfp_t gfp_mask)
4046 {
4047 	long free_pages;
4048 
4049 	free_pages = zone_page_state(z, NR_FREE_PAGES);
4050 
4051 	/*
4052 	 * Fast check for order-0 only. If this fails then the reserves
4053 	 * need to be calculated.
4054 	 */
4055 	if (!order) {
4056 		long usable_free;
4057 		long reserved;
4058 
4059 		usable_free = free_pages;
4060 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
4061 
4062 		/* reserved may over estimate high-atomic reserves. */
4063 		usable_free -= min(usable_free, reserved);
4064 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
4065 			return true;
4066 	}
4067 
4068 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4069 					free_pages))
4070 		return true;
4071 	/*
4072 	 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
4073 	 * when checking the min watermark. The min watermark is the
4074 	 * point where boosting is ignored so that kswapd is woken up
4075 	 * when below the low watermark.
4076 	 */
4077 	if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
4078 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
4079 		mark = z->_watermark[WMARK_MIN];
4080 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
4081 					alloc_flags, free_pages);
4082 	}
4083 
4084 	return false;
4085 }
4086 
4087 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
4088 			unsigned long mark, int highest_zoneidx)
4089 {
4090 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
4091 
4092 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
4093 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
4094 
4095 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
4096 								free_pages);
4097 }
4098 
4099 #ifdef CONFIG_NUMA
4100 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
4101 
4102 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4103 {
4104 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
4105 				node_reclaim_distance;
4106 }
4107 #else	/* CONFIG_NUMA */
4108 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4109 {
4110 	return true;
4111 }
4112 #endif	/* CONFIG_NUMA */
4113 
4114 /*
4115  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
4116  * fragmentation is subtle. If the preferred zone was HIGHMEM then
4117  * premature use of a lower zone may cause lowmem pressure problems that
4118  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
4119  * probably too small. It only makes sense to spread allocations to avoid
4120  * fragmentation between the Normal and DMA32 zones.
4121  */
4122 static inline unsigned int
4123 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
4124 {
4125 	unsigned int alloc_flags;
4126 
4127 	/*
4128 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4129 	 * to save a branch.
4130 	 */
4131 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
4132 
4133 #ifdef CONFIG_ZONE_DMA32
4134 	if (!zone)
4135 		return alloc_flags;
4136 
4137 	if (zone_idx(zone) != ZONE_NORMAL)
4138 		return alloc_flags;
4139 
4140 	/*
4141 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4142 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4143 	 * on UMA that if Normal is populated then so is DMA32.
4144 	 */
4145 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4146 	if (nr_online_nodes > 1 && !populated_zone(--zone))
4147 		return alloc_flags;
4148 
4149 	alloc_flags |= ALLOC_NOFRAGMENT;
4150 #endif /* CONFIG_ZONE_DMA32 */
4151 	return alloc_flags;
4152 }
4153 
4154 /* Must be called after current_gfp_context() which can change gfp_mask */
4155 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4156 						  unsigned int alloc_flags)
4157 {
4158 #ifdef CONFIG_CMA
4159 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4160 		alloc_flags |= ALLOC_CMA;
4161 #endif
4162 	return alloc_flags;
4163 }
4164 
4165 /*
4166  * get_page_from_freelist goes through the zonelist trying to allocate
4167  * a page.
4168  */
4169 static struct page *
4170 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4171 						const struct alloc_context *ac)
4172 {
4173 	struct zoneref *z;
4174 	struct zone *zone;
4175 	struct pglist_data *last_pgdat = NULL;
4176 	bool last_pgdat_dirty_ok = false;
4177 	bool no_fallback;
4178 
4179 retry:
4180 	/*
4181 	 * Scan zonelist, looking for a zone with enough free.
4182 	 * See also __cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
4183 	 */
4184 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4185 	z = ac->preferred_zoneref;
4186 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4187 					ac->nodemask) {
4188 		struct page *page;
4189 		unsigned long mark;
4190 
4191 		if (cpusets_enabled() &&
4192 			(alloc_flags & ALLOC_CPUSET) &&
4193 			!__cpuset_zone_allowed(zone, gfp_mask))
4194 				continue;
4195 		/*
4196 		 * When allocating a page cache page for writing, we
4197 		 * want to get it from a node that is within its dirty
4198 		 * limit, such that no single node holds more than its
4199 		 * proportional share of globally allowed dirty pages.
4200 		 * The dirty limits take into account the node's
4201 		 * lowmem reserves and high watermark so that kswapd
4202 		 * should be able to balance it without having to
4203 		 * write pages from its LRU list.
4204 		 *
4205 		 * XXX: For now, allow allocations to potentially
4206 		 * exceed the per-node dirty limit in the slowpath
4207 		 * (spread_dirty_pages unset) before going into reclaim,
4208 		 * which is important when on a NUMA setup the allowed
4209 		 * nodes are together not big enough to reach the
4210 		 * global limit.  The proper fix for these situations
4211 		 * will require awareness of nodes in the
4212 		 * dirty-throttling and the flusher threads.
4213 		 */
4214 		if (ac->spread_dirty_pages) {
4215 			if (last_pgdat != zone->zone_pgdat) {
4216 				last_pgdat = zone->zone_pgdat;
4217 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
4218 			}
4219 
4220 			if (!last_pgdat_dirty_ok)
4221 				continue;
4222 		}
4223 
4224 		if (no_fallback && nr_online_nodes > 1 &&
4225 		    zone != ac->preferred_zoneref->zone) {
4226 			int local_nid;
4227 
4228 			/*
4229 			 * If moving to a remote node, retry but allow
4230 			 * fragmenting fallbacks. Locality is more important
4231 			 * than fragmentation avoidance.
4232 			 */
4233 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4234 			if (zone_to_nid(zone) != local_nid) {
4235 				alloc_flags &= ~ALLOC_NOFRAGMENT;
4236 				goto retry;
4237 			}
4238 		}
4239 
4240 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4241 		if (!zone_watermark_fast(zone, order, mark,
4242 				       ac->highest_zoneidx, alloc_flags,
4243 				       gfp_mask)) {
4244 			int ret;
4245 
4246 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4247 			/*
4248 			 * Watermark failed for this zone, but see if we can
4249 			 * grow this zone if it contains deferred pages.
4250 			 */
4251 			if (static_branch_unlikely(&deferred_pages)) {
4252 				if (_deferred_grow_zone(zone, order))
4253 					goto try_this_zone;
4254 			}
4255 #endif
4256 			/* Checked here to keep the fast path fast */
4257 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4258 			if (alloc_flags & ALLOC_NO_WATERMARKS)
4259 				goto try_this_zone;
4260 
4261 			if (!node_reclaim_enabled() ||
4262 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4263 				continue;
4264 
4265 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4266 			switch (ret) {
4267 			case NODE_RECLAIM_NOSCAN:
4268 				/* did not scan */
4269 				continue;
4270 			case NODE_RECLAIM_FULL:
4271 				/* scanned but unreclaimable */
4272 				continue;
4273 			default:
4274 				/* did we reclaim enough */
4275 				if (zone_watermark_ok(zone, order, mark,
4276 					ac->highest_zoneidx, alloc_flags))
4277 					goto try_this_zone;
4278 
4279 				continue;
4280 			}
4281 		}
4282 
4283 try_this_zone:
4284 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4285 				gfp_mask, alloc_flags, ac->migratetype);
4286 		if (page) {
4287 			prep_new_page(page, order, gfp_mask, alloc_flags);
4288 
4289 			/*
4290 			 * If this is a high-order atomic allocation then check
4291 			 * if the pageblock should be reserved for the future
4292 			 */
4293 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4294 				reserve_highatomic_pageblock(page, zone, order);
4295 
4296 			return page;
4297 		} else {
4298 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4299 			/* Try again if zone has deferred pages */
4300 			if (static_branch_unlikely(&deferred_pages)) {
4301 				if (_deferred_grow_zone(zone, order))
4302 					goto try_this_zone;
4303 			}
4304 #endif
4305 		}
4306 	}
4307 
4308 	/*
4309 	 * It's possible on a UMA machine to get through all zones that are
4310 	 * fragmented. If avoiding fragmentation, reset and try again.
4311 	 */
4312 	if (no_fallback) {
4313 		alloc_flags &= ~ALLOC_NOFRAGMENT;
4314 		goto retry;
4315 	}
4316 
4317 	return NULL;
4318 }
4319 
4320 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4321 {
4322 	unsigned int filter = SHOW_MEM_FILTER_NODES;
4323 
4324 	/*
4325 	 * This documents exceptions given to allocations in certain
4326 	 * contexts that are allowed to allocate outside current's set
4327 	 * of allowed nodes.
4328 	 */
4329 	if (!(gfp_mask & __GFP_NOMEMALLOC))
4330 		if (tsk_is_oom_victim(current) ||
4331 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
4332 			filter &= ~SHOW_MEM_FILTER_NODES;
4333 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4334 		filter &= ~SHOW_MEM_FILTER_NODES;
4335 
4336 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
4337 }
4338 
4339 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4340 {
4341 	struct va_format vaf;
4342 	va_list args;
4343 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4344 
4345 	if ((gfp_mask & __GFP_NOWARN) ||
4346 	     !__ratelimit(&nopage_rs) ||
4347 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
4348 		return;
4349 
4350 	va_start(args, fmt);
4351 	vaf.fmt = fmt;
4352 	vaf.va = &args;
4353 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4354 			current->comm, &vaf, gfp_mask, &gfp_mask,
4355 			nodemask_pr_args(nodemask));
4356 	va_end(args);
4357 
4358 	cpuset_print_current_mems_allowed();
4359 	pr_cont("\n");
4360 	dump_stack();
4361 	warn_alloc_show_mem(gfp_mask, nodemask);
4362 }
4363 
4364 static inline struct page *
4365 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4366 			      unsigned int alloc_flags,
4367 			      const struct alloc_context *ac)
4368 {
4369 	struct page *page;
4370 
4371 	page = get_page_from_freelist(gfp_mask, order,
4372 			alloc_flags|ALLOC_CPUSET, ac);
4373 	/*
4374 	 * fallback to ignore cpuset restriction if our nodes
4375 	 * are depleted
4376 	 */
4377 	if (!page)
4378 		page = get_page_from_freelist(gfp_mask, order,
4379 				alloc_flags, ac);
4380 
4381 	return page;
4382 }
4383 
4384 static inline struct page *
4385 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4386 	const struct alloc_context *ac, unsigned long *did_some_progress)
4387 {
4388 	struct oom_control oc = {
4389 		.zonelist = ac->zonelist,
4390 		.nodemask = ac->nodemask,
4391 		.memcg = NULL,
4392 		.gfp_mask = gfp_mask,
4393 		.order = order,
4394 	};
4395 	struct page *page;
4396 
4397 	*did_some_progress = 0;
4398 
4399 	/*
4400 	 * Acquire the oom lock.  If that fails, somebody else is
4401 	 * making progress for us.
4402 	 */
4403 	if (!mutex_trylock(&oom_lock)) {
4404 		*did_some_progress = 1;
4405 		schedule_timeout_uninterruptible(1);
4406 		return NULL;
4407 	}
4408 
4409 	/*
4410 	 * Go through the zonelist yet one more time, keep very high watermark
4411 	 * here, this is only to catch a parallel oom killing, we must fail if
4412 	 * we're still under heavy pressure. But make sure that this reclaim
4413 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4414 	 * allocation which will never fail due to oom_lock already held.
4415 	 */
4416 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4417 				      ~__GFP_DIRECT_RECLAIM, order,
4418 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4419 	if (page)
4420 		goto out;
4421 
4422 	/* Coredumps can quickly deplete all memory reserves */
4423 	if (current->flags & PF_DUMPCORE)
4424 		goto out;
4425 	/* The OOM killer will not help higher order allocs */
4426 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4427 		goto out;
4428 	/*
4429 	 * We have already exhausted all our reclaim opportunities without any
4430 	 * success so it is time to admit defeat. We will skip the OOM killer
4431 	 * because it is very likely that the caller has a more reasonable
4432 	 * fallback than shooting a random task.
4433 	 *
4434 	 * The OOM killer may not free memory on a specific node.
4435 	 */
4436 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4437 		goto out;
4438 	/* The OOM killer does not needlessly kill tasks for lowmem */
4439 	if (ac->highest_zoneidx < ZONE_NORMAL)
4440 		goto out;
4441 	if (pm_suspended_storage())
4442 		goto out;
4443 	/*
4444 	 * XXX: GFP_NOFS allocations should rather fail than rely on
4445 	 * other request to make a forward progress.
4446 	 * We are in an unfortunate situation where out_of_memory cannot
4447 	 * do much for this context but let's try it to at least get
4448 	 * access to memory reserved if the current task is killed (see
4449 	 * out_of_memory). Once filesystems are ready to handle allocation
4450 	 * failures more gracefully we should just bail out here.
4451 	 */
4452 
4453 	/* Exhausted what can be done so it's blame time */
4454 	if (out_of_memory(&oc) ||
4455 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
4456 		*did_some_progress = 1;
4457 
4458 		/*
4459 		 * Help non-failing allocations by giving them access to memory
4460 		 * reserves
4461 		 */
4462 		if (gfp_mask & __GFP_NOFAIL)
4463 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4464 					ALLOC_NO_WATERMARKS, ac);
4465 	}
4466 out:
4467 	mutex_unlock(&oom_lock);
4468 	return page;
4469 }
4470 
4471 /*
4472  * Maximum number of compaction retries with a progress before OOM
4473  * killer is consider as the only way to move forward.
4474  */
4475 #define MAX_COMPACT_RETRIES 16
4476 
4477 #ifdef CONFIG_COMPACTION
4478 /* Try memory compaction for high-order allocations before reclaim */
4479 static struct page *
4480 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4481 		unsigned int alloc_flags, const struct alloc_context *ac,
4482 		enum compact_priority prio, enum compact_result *compact_result)
4483 {
4484 	struct page *page = NULL;
4485 	unsigned long pflags;
4486 	unsigned int noreclaim_flag;
4487 
4488 	if (!order)
4489 		return NULL;
4490 
4491 	psi_memstall_enter(&pflags);
4492 	delayacct_compact_start();
4493 	noreclaim_flag = memalloc_noreclaim_save();
4494 
4495 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4496 								prio, &page);
4497 
4498 	memalloc_noreclaim_restore(noreclaim_flag);
4499 	psi_memstall_leave(&pflags);
4500 	delayacct_compact_end();
4501 
4502 	if (*compact_result == COMPACT_SKIPPED)
4503 		return NULL;
4504 	/*
4505 	 * At least in one zone compaction wasn't deferred or skipped, so let's
4506 	 * count a compaction stall
4507 	 */
4508 	count_vm_event(COMPACTSTALL);
4509 
4510 	/* Prep a captured page if available */
4511 	if (page)
4512 		prep_new_page(page, order, gfp_mask, alloc_flags);
4513 
4514 	/* Try get a page from the freelist if available */
4515 	if (!page)
4516 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4517 
4518 	if (page) {
4519 		struct zone *zone = page_zone(page);
4520 
4521 		zone->compact_blockskip_flush = false;
4522 		compaction_defer_reset(zone, order, true);
4523 		count_vm_event(COMPACTSUCCESS);
4524 		return page;
4525 	}
4526 
4527 	/*
4528 	 * It's bad if compaction run occurs and fails. The most likely reason
4529 	 * is that pages exist, but not enough to satisfy watermarks.
4530 	 */
4531 	count_vm_event(COMPACTFAIL);
4532 
4533 	cond_resched();
4534 
4535 	return NULL;
4536 }
4537 
4538 static inline bool
4539 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4540 		     enum compact_result compact_result,
4541 		     enum compact_priority *compact_priority,
4542 		     int *compaction_retries)
4543 {
4544 	int max_retries = MAX_COMPACT_RETRIES;
4545 	int min_priority;
4546 	bool ret = false;
4547 	int retries = *compaction_retries;
4548 	enum compact_priority priority = *compact_priority;
4549 
4550 	if (!order)
4551 		return false;
4552 
4553 	if (fatal_signal_pending(current))
4554 		return false;
4555 
4556 	if (compaction_made_progress(compact_result))
4557 		(*compaction_retries)++;
4558 
4559 	/*
4560 	 * compaction considers all the zone as desperately out of memory
4561 	 * so it doesn't really make much sense to retry except when the
4562 	 * failure could be caused by insufficient priority
4563 	 */
4564 	if (compaction_failed(compact_result))
4565 		goto check_priority;
4566 
4567 	/*
4568 	 * compaction was skipped because there are not enough order-0 pages
4569 	 * to work with, so we retry only if it looks like reclaim can help.
4570 	 */
4571 	if (compaction_needs_reclaim(compact_result)) {
4572 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4573 		goto out;
4574 	}
4575 
4576 	/*
4577 	 * make sure the compaction wasn't deferred or didn't bail out early
4578 	 * due to locks contention before we declare that we should give up.
4579 	 * But the next retry should use a higher priority if allowed, so
4580 	 * we don't just keep bailing out endlessly.
4581 	 */
4582 	if (compaction_withdrawn(compact_result)) {
4583 		goto check_priority;
4584 	}
4585 
4586 	/*
4587 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4588 	 * costly ones because they are de facto nofail and invoke OOM
4589 	 * killer to move on while costly can fail and users are ready
4590 	 * to cope with that. 1/4 retries is rather arbitrary but we
4591 	 * would need much more detailed feedback from compaction to
4592 	 * make a better decision.
4593 	 */
4594 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4595 		max_retries /= 4;
4596 	if (*compaction_retries <= max_retries) {
4597 		ret = true;
4598 		goto out;
4599 	}
4600 
4601 	/*
4602 	 * Make sure there are attempts at the highest priority if we exhausted
4603 	 * all retries or failed at the lower priorities.
4604 	 */
4605 check_priority:
4606 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4607 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4608 
4609 	if (*compact_priority > min_priority) {
4610 		(*compact_priority)--;
4611 		*compaction_retries = 0;
4612 		ret = true;
4613 	}
4614 out:
4615 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4616 	return ret;
4617 }
4618 #else
4619 static inline struct page *
4620 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4621 		unsigned int alloc_flags, const struct alloc_context *ac,
4622 		enum compact_priority prio, enum compact_result *compact_result)
4623 {
4624 	*compact_result = COMPACT_SKIPPED;
4625 	return NULL;
4626 }
4627 
4628 static inline bool
4629 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4630 		     enum compact_result compact_result,
4631 		     enum compact_priority *compact_priority,
4632 		     int *compaction_retries)
4633 {
4634 	struct zone *zone;
4635 	struct zoneref *z;
4636 
4637 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4638 		return false;
4639 
4640 	/*
4641 	 * There are setups with compaction disabled which would prefer to loop
4642 	 * inside the allocator rather than hit the oom killer prematurely.
4643 	 * Let's give them a good hope and keep retrying while the order-0
4644 	 * watermarks are OK.
4645 	 */
4646 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4647 				ac->highest_zoneidx, ac->nodemask) {
4648 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4649 					ac->highest_zoneidx, alloc_flags))
4650 			return true;
4651 	}
4652 	return false;
4653 }
4654 #endif /* CONFIG_COMPACTION */
4655 
4656 #ifdef CONFIG_LOCKDEP
4657 static struct lockdep_map __fs_reclaim_map =
4658 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4659 
4660 static bool __need_reclaim(gfp_t gfp_mask)
4661 {
4662 	/* no reclaim without waiting on it */
4663 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4664 		return false;
4665 
4666 	/* this guy won't enter reclaim */
4667 	if (current->flags & PF_MEMALLOC)
4668 		return false;
4669 
4670 	if (gfp_mask & __GFP_NOLOCKDEP)
4671 		return false;
4672 
4673 	return true;
4674 }
4675 
4676 void __fs_reclaim_acquire(unsigned long ip)
4677 {
4678 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4679 }
4680 
4681 void __fs_reclaim_release(unsigned long ip)
4682 {
4683 	lock_release(&__fs_reclaim_map, ip);
4684 }
4685 
4686 void fs_reclaim_acquire(gfp_t gfp_mask)
4687 {
4688 	gfp_mask = current_gfp_context(gfp_mask);
4689 
4690 	if (__need_reclaim(gfp_mask)) {
4691 		if (gfp_mask & __GFP_FS)
4692 			__fs_reclaim_acquire(_RET_IP_);
4693 
4694 #ifdef CONFIG_MMU_NOTIFIER
4695 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4696 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4697 #endif
4698 
4699 	}
4700 }
4701 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4702 
4703 void fs_reclaim_release(gfp_t gfp_mask)
4704 {
4705 	gfp_mask = current_gfp_context(gfp_mask);
4706 
4707 	if (__need_reclaim(gfp_mask)) {
4708 		if (gfp_mask & __GFP_FS)
4709 			__fs_reclaim_release(_RET_IP_);
4710 	}
4711 }
4712 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4713 #endif
4714 
4715 /*
4716  * Zonelists may change due to hotplug during allocation. Detect when zonelists
4717  * have been rebuilt so allocation retries. Reader side does not lock and
4718  * retries the allocation if zonelist changes. Writer side is protected by the
4719  * embedded spin_lock.
4720  */
4721 static DEFINE_SEQLOCK(zonelist_update_seq);
4722 
4723 static unsigned int zonelist_iter_begin(void)
4724 {
4725 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4726 		return read_seqbegin(&zonelist_update_seq);
4727 
4728 	return 0;
4729 }
4730 
4731 static unsigned int check_retry_zonelist(unsigned int seq)
4732 {
4733 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4734 		return read_seqretry(&zonelist_update_seq, seq);
4735 
4736 	return seq;
4737 }
4738 
4739 /* Perform direct synchronous page reclaim */
4740 static unsigned long
4741 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4742 					const struct alloc_context *ac)
4743 {
4744 	unsigned int noreclaim_flag;
4745 	unsigned long progress;
4746 
4747 	cond_resched();
4748 
4749 	/* We now go into synchronous reclaim */
4750 	cpuset_memory_pressure_bump();
4751 	fs_reclaim_acquire(gfp_mask);
4752 	noreclaim_flag = memalloc_noreclaim_save();
4753 
4754 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4755 								ac->nodemask);
4756 
4757 	memalloc_noreclaim_restore(noreclaim_flag);
4758 	fs_reclaim_release(gfp_mask);
4759 
4760 	cond_resched();
4761 
4762 	return progress;
4763 }
4764 
4765 /* The really slow allocator path where we enter direct reclaim */
4766 static inline struct page *
4767 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4768 		unsigned int alloc_flags, const struct alloc_context *ac,
4769 		unsigned long *did_some_progress)
4770 {
4771 	struct page *page = NULL;
4772 	unsigned long pflags;
4773 	bool drained = false;
4774 
4775 	psi_memstall_enter(&pflags);
4776 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4777 	if (unlikely(!(*did_some_progress)))
4778 		goto out;
4779 
4780 retry:
4781 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4782 
4783 	/*
4784 	 * If an allocation failed after direct reclaim, it could be because
4785 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4786 	 * Shrink them and try again
4787 	 */
4788 	if (!page && !drained) {
4789 		unreserve_highatomic_pageblock(ac, false);
4790 		drain_all_pages(NULL);
4791 		drained = true;
4792 		goto retry;
4793 	}
4794 out:
4795 	psi_memstall_leave(&pflags);
4796 
4797 	return page;
4798 }
4799 
4800 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4801 			     const struct alloc_context *ac)
4802 {
4803 	struct zoneref *z;
4804 	struct zone *zone;
4805 	pg_data_t *last_pgdat = NULL;
4806 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4807 
4808 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4809 					ac->nodemask) {
4810 		if (!managed_zone(zone))
4811 			continue;
4812 		if (last_pgdat != zone->zone_pgdat) {
4813 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4814 			last_pgdat = zone->zone_pgdat;
4815 		}
4816 	}
4817 }
4818 
4819 static inline unsigned int
4820 gfp_to_alloc_flags(gfp_t gfp_mask)
4821 {
4822 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4823 
4824 	/*
4825 	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4826 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4827 	 * to save two branches.
4828 	 */
4829 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4830 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4831 
4832 	/*
4833 	 * The caller may dip into page reserves a bit more if the caller
4834 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4835 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4836 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4837 	 */
4838 	alloc_flags |= (__force int)
4839 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4840 
4841 	if (gfp_mask & __GFP_ATOMIC) {
4842 		/*
4843 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4844 		 * if it can't schedule.
4845 		 */
4846 		if (!(gfp_mask & __GFP_NOMEMALLOC))
4847 			alloc_flags |= ALLOC_HARDER;
4848 		/*
4849 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4850 		 * comment for __cpuset_node_allowed().
4851 		 */
4852 		alloc_flags &= ~ALLOC_CPUSET;
4853 	} else if (unlikely(rt_task(current)) && in_task())
4854 		alloc_flags |= ALLOC_HARDER;
4855 
4856 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4857 
4858 	return alloc_flags;
4859 }
4860 
4861 static bool oom_reserves_allowed(struct task_struct *tsk)
4862 {
4863 	if (!tsk_is_oom_victim(tsk))
4864 		return false;
4865 
4866 	/*
4867 	 * !MMU doesn't have oom reaper so give access to memory reserves
4868 	 * only to the thread with TIF_MEMDIE set
4869 	 */
4870 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4871 		return false;
4872 
4873 	return true;
4874 }
4875 
4876 /*
4877  * Distinguish requests which really need access to full memory
4878  * reserves from oom victims which can live with a portion of it
4879  */
4880 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4881 {
4882 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4883 		return 0;
4884 	if (gfp_mask & __GFP_MEMALLOC)
4885 		return ALLOC_NO_WATERMARKS;
4886 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4887 		return ALLOC_NO_WATERMARKS;
4888 	if (!in_interrupt()) {
4889 		if (current->flags & PF_MEMALLOC)
4890 			return ALLOC_NO_WATERMARKS;
4891 		else if (oom_reserves_allowed(current))
4892 			return ALLOC_OOM;
4893 	}
4894 
4895 	return 0;
4896 }
4897 
4898 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4899 {
4900 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4901 }
4902 
4903 /*
4904  * Checks whether it makes sense to retry the reclaim to make a forward progress
4905  * for the given allocation request.
4906  *
4907  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4908  * without success, or when we couldn't even meet the watermark if we
4909  * reclaimed all remaining pages on the LRU lists.
4910  *
4911  * Returns true if a retry is viable or false to enter the oom path.
4912  */
4913 static inline bool
4914 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4915 		     struct alloc_context *ac, int alloc_flags,
4916 		     bool did_some_progress, int *no_progress_loops)
4917 {
4918 	struct zone *zone;
4919 	struct zoneref *z;
4920 	bool ret = false;
4921 
4922 	/*
4923 	 * Costly allocations might have made a progress but this doesn't mean
4924 	 * their order will become available due to high fragmentation so
4925 	 * always increment the no progress counter for them
4926 	 */
4927 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4928 		*no_progress_loops = 0;
4929 	else
4930 		(*no_progress_loops)++;
4931 
4932 	/*
4933 	 * Make sure we converge to OOM if we cannot make any progress
4934 	 * several times in the row.
4935 	 */
4936 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4937 		/* Before OOM, exhaust highatomic_reserve */
4938 		return unreserve_highatomic_pageblock(ac, true);
4939 	}
4940 
4941 	/*
4942 	 * Keep reclaiming pages while there is a chance this will lead
4943 	 * somewhere.  If none of the target zones can satisfy our allocation
4944 	 * request even if all reclaimable pages are considered then we are
4945 	 * screwed and have to go OOM.
4946 	 */
4947 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4948 				ac->highest_zoneidx, ac->nodemask) {
4949 		unsigned long available;
4950 		unsigned long reclaimable;
4951 		unsigned long min_wmark = min_wmark_pages(zone);
4952 		bool wmark;
4953 
4954 		available = reclaimable = zone_reclaimable_pages(zone);
4955 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4956 
4957 		/*
4958 		 * Would the allocation succeed if we reclaimed all
4959 		 * reclaimable pages?
4960 		 */
4961 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4962 				ac->highest_zoneidx, alloc_flags, available);
4963 		trace_reclaim_retry_zone(z, order, reclaimable,
4964 				available, min_wmark, *no_progress_loops, wmark);
4965 		if (wmark) {
4966 			ret = true;
4967 			break;
4968 		}
4969 	}
4970 
4971 	/*
4972 	 * Memory allocation/reclaim might be called from a WQ context and the
4973 	 * current implementation of the WQ concurrency control doesn't
4974 	 * recognize that a particular WQ is congested if the worker thread is
4975 	 * looping without ever sleeping. Therefore we have to do a short sleep
4976 	 * here rather than calling cond_resched().
4977 	 */
4978 	if (current->flags & PF_WQ_WORKER)
4979 		schedule_timeout_uninterruptible(1);
4980 	else
4981 		cond_resched();
4982 	return ret;
4983 }
4984 
4985 static inline bool
4986 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4987 {
4988 	/*
4989 	 * It's possible that cpuset's mems_allowed and the nodemask from
4990 	 * mempolicy don't intersect. This should be normally dealt with by
4991 	 * policy_nodemask(), but it's possible to race with cpuset update in
4992 	 * such a way the check therein was true, and then it became false
4993 	 * before we got our cpuset_mems_cookie here.
4994 	 * This assumes that for all allocations, ac->nodemask can come only
4995 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4996 	 * when it does not intersect with the cpuset restrictions) or the
4997 	 * caller can deal with a violated nodemask.
4998 	 */
4999 	if (cpusets_enabled() && ac->nodemask &&
5000 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
5001 		ac->nodemask = NULL;
5002 		return true;
5003 	}
5004 
5005 	/*
5006 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
5007 	 * possible to race with parallel threads in such a way that our
5008 	 * allocation can fail while the mask is being updated. If we are about
5009 	 * to fail, check if the cpuset changed during allocation and if so,
5010 	 * retry.
5011 	 */
5012 	if (read_mems_allowed_retry(cpuset_mems_cookie))
5013 		return true;
5014 
5015 	return false;
5016 }
5017 
5018 static inline struct page *
5019 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
5020 						struct alloc_context *ac)
5021 {
5022 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
5023 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
5024 	struct page *page = NULL;
5025 	unsigned int alloc_flags;
5026 	unsigned long did_some_progress;
5027 	enum compact_priority compact_priority;
5028 	enum compact_result compact_result;
5029 	int compaction_retries;
5030 	int no_progress_loops;
5031 	unsigned int cpuset_mems_cookie;
5032 	unsigned int zonelist_iter_cookie;
5033 	int reserve_flags;
5034 
5035 	/*
5036 	 * We also sanity check to catch abuse of atomic reserves being used by
5037 	 * callers that are not in atomic context.
5038 	 */
5039 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
5040 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
5041 		gfp_mask &= ~__GFP_ATOMIC;
5042 
5043 restart:
5044 	compaction_retries = 0;
5045 	no_progress_loops = 0;
5046 	compact_priority = DEF_COMPACT_PRIORITY;
5047 	cpuset_mems_cookie = read_mems_allowed_begin();
5048 	zonelist_iter_cookie = zonelist_iter_begin();
5049 
5050 	/*
5051 	 * The fast path uses conservative alloc_flags to succeed only until
5052 	 * kswapd needs to be woken up, and to avoid the cost of setting up
5053 	 * alloc_flags precisely. So we do that now.
5054 	 */
5055 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
5056 
5057 	/*
5058 	 * We need to recalculate the starting point for the zonelist iterator
5059 	 * because we might have used different nodemask in the fast path, or
5060 	 * there was a cpuset modification and we are retrying - otherwise we
5061 	 * could end up iterating over non-eligible zones endlessly.
5062 	 */
5063 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5064 					ac->highest_zoneidx, ac->nodemask);
5065 	if (!ac->preferred_zoneref->zone)
5066 		goto nopage;
5067 
5068 	/*
5069 	 * Check for insane configurations where the cpuset doesn't contain
5070 	 * any suitable zone to satisfy the request - e.g. non-movable
5071 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
5072 	 */
5073 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
5074 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
5075 					ac->highest_zoneidx,
5076 					&cpuset_current_mems_allowed);
5077 		if (!z->zone)
5078 			goto nopage;
5079 	}
5080 
5081 	if (alloc_flags & ALLOC_KSWAPD)
5082 		wake_all_kswapds(order, gfp_mask, ac);
5083 
5084 	/*
5085 	 * The adjusted alloc_flags might result in immediate success, so try
5086 	 * that first
5087 	 */
5088 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5089 	if (page)
5090 		goto got_pg;
5091 
5092 	/*
5093 	 * For costly allocations, try direct compaction first, as it's likely
5094 	 * that we have enough base pages and don't need to reclaim. For non-
5095 	 * movable high-order allocations, do that as well, as compaction will
5096 	 * try prevent permanent fragmentation by migrating from blocks of the
5097 	 * same migratetype.
5098 	 * Don't try this for allocations that are allowed to ignore
5099 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
5100 	 */
5101 	if (can_direct_reclaim &&
5102 			(costly_order ||
5103 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
5104 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
5105 		page = __alloc_pages_direct_compact(gfp_mask, order,
5106 						alloc_flags, ac,
5107 						INIT_COMPACT_PRIORITY,
5108 						&compact_result);
5109 		if (page)
5110 			goto got_pg;
5111 
5112 		/*
5113 		 * Checks for costly allocations with __GFP_NORETRY, which
5114 		 * includes some THP page fault allocations
5115 		 */
5116 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
5117 			/*
5118 			 * If allocating entire pageblock(s) and compaction
5119 			 * failed because all zones are below low watermarks
5120 			 * or is prohibited because it recently failed at this
5121 			 * order, fail immediately unless the allocator has
5122 			 * requested compaction and reclaim retry.
5123 			 *
5124 			 * Reclaim is
5125 			 *  - potentially very expensive because zones are far
5126 			 *    below their low watermarks or this is part of very
5127 			 *    bursty high order allocations,
5128 			 *  - not guaranteed to help because isolate_freepages()
5129 			 *    may not iterate over freed pages as part of its
5130 			 *    linear scan, and
5131 			 *  - unlikely to make entire pageblocks free on its
5132 			 *    own.
5133 			 */
5134 			if (compact_result == COMPACT_SKIPPED ||
5135 			    compact_result == COMPACT_DEFERRED)
5136 				goto nopage;
5137 
5138 			/*
5139 			 * Looks like reclaim/compaction is worth trying, but
5140 			 * sync compaction could be very expensive, so keep
5141 			 * using async compaction.
5142 			 */
5143 			compact_priority = INIT_COMPACT_PRIORITY;
5144 		}
5145 	}
5146 
5147 retry:
5148 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
5149 	if (alloc_flags & ALLOC_KSWAPD)
5150 		wake_all_kswapds(order, gfp_mask, ac);
5151 
5152 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
5153 	if (reserve_flags)
5154 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
5155 					  (alloc_flags & ALLOC_KSWAPD);
5156 
5157 	/*
5158 	 * Reset the nodemask and zonelist iterators if memory policies can be
5159 	 * ignored. These allocations are high priority and system rather than
5160 	 * user oriented.
5161 	 */
5162 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
5163 		ac->nodemask = NULL;
5164 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5165 					ac->highest_zoneidx, ac->nodemask);
5166 	}
5167 
5168 	/* Attempt with potentially adjusted zonelist and alloc_flags */
5169 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5170 	if (page)
5171 		goto got_pg;
5172 
5173 	/* Caller is not willing to reclaim, we can't balance anything */
5174 	if (!can_direct_reclaim)
5175 		goto nopage;
5176 
5177 	/* Avoid recursion of direct reclaim */
5178 	if (current->flags & PF_MEMALLOC)
5179 		goto nopage;
5180 
5181 	/* Try direct reclaim and then allocating */
5182 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5183 							&did_some_progress);
5184 	if (page)
5185 		goto got_pg;
5186 
5187 	/* Try direct compaction and then allocating */
5188 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5189 					compact_priority, &compact_result);
5190 	if (page)
5191 		goto got_pg;
5192 
5193 	/* Do not loop if specifically requested */
5194 	if (gfp_mask & __GFP_NORETRY)
5195 		goto nopage;
5196 
5197 	/*
5198 	 * Do not retry costly high order allocations unless they are
5199 	 * __GFP_RETRY_MAYFAIL
5200 	 */
5201 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5202 		goto nopage;
5203 
5204 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5205 				 did_some_progress > 0, &no_progress_loops))
5206 		goto retry;
5207 
5208 	/*
5209 	 * It doesn't make any sense to retry for the compaction if the order-0
5210 	 * reclaim is not able to make any progress because the current
5211 	 * implementation of the compaction depends on the sufficient amount
5212 	 * of free memory (see __compaction_suitable)
5213 	 */
5214 	if (did_some_progress > 0 &&
5215 			should_compact_retry(ac, order, alloc_flags,
5216 				compact_result, &compact_priority,
5217 				&compaction_retries))
5218 		goto retry;
5219 
5220 
5221 	/*
5222 	 * Deal with possible cpuset update races or zonelist updates to avoid
5223 	 * a unnecessary OOM kill.
5224 	 */
5225 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5226 	    check_retry_zonelist(zonelist_iter_cookie))
5227 		goto restart;
5228 
5229 	/* Reclaim has failed us, start killing things */
5230 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5231 	if (page)
5232 		goto got_pg;
5233 
5234 	/* Avoid allocations with no watermarks from looping endlessly */
5235 	if (tsk_is_oom_victim(current) &&
5236 	    (alloc_flags & ALLOC_OOM ||
5237 	     (gfp_mask & __GFP_NOMEMALLOC)))
5238 		goto nopage;
5239 
5240 	/* Retry as long as the OOM killer is making progress */
5241 	if (did_some_progress) {
5242 		no_progress_loops = 0;
5243 		goto retry;
5244 	}
5245 
5246 nopage:
5247 	/*
5248 	 * Deal with possible cpuset update races or zonelist updates to avoid
5249 	 * a unnecessary OOM kill.
5250 	 */
5251 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5252 	    check_retry_zonelist(zonelist_iter_cookie))
5253 		goto restart;
5254 
5255 	/*
5256 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5257 	 * we always retry
5258 	 */
5259 	if (gfp_mask & __GFP_NOFAIL) {
5260 		/*
5261 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
5262 		 * of any new users that actually require GFP_NOWAIT
5263 		 */
5264 		if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
5265 			goto fail;
5266 
5267 		/*
5268 		 * PF_MEMALLOC request from this context is rather bizarre
5269 		 * because we cannot reclaim anything and only can loop waiting
5270 		 * for somebody to do a work for us
5271 		 */
5272 		WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
5273 
5274 		/*
5275 		 * non failing costly orders are a hard requirement which we
5276 		 * are not prepared for much so let's warn about these users
5277 		 * so that we can identify them and convert them to something
5278 		 * else.
5279 		 */
5280 		WARN_ON_ONCE_GFP(costly_order, gfp_mask);
5281 
5282 		/*
5283 		 * Help non-failing allocations by giving them access to memory
5284 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
5285 		 * could deplete whole memory reserves which would just make
5286 		 * the situation worse
5287 		 */
5288 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5289 		if (page)
5290 			goto got_pg;
5291 
5292 		cond_resched();
5293 		goto retry;
5294 	}
5295 fail:
5296 	warn_alloc(gfp_mask, ac->nodemask,
5297 			"page allocation failure: order:%u", order);
5298 got_pg:
5299 	return page;
5300 }
5301 
5302 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5303 		int preferred_nid, nodemask_t *nodemask,
5304 		struct alloc_context *ac, gfp_t *alloc_gfp,
5305 		unsigned int *alloc_flags)
5306 {
5307 	ac->highest_zoneidx = gfp_zone(gfp_mask);
5308 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5309 	ac->nodemask = nodemask;
5310 	ac->migratetype = gfp_migratetype(gfp_mask);
5311 
5312 	if (cpusets_enabled()) {
5313 		*alloc_gfp |= __GFP_HARDWALL;
5314 		/*
5315 		 * When we are in the interrupt context, it is irrelevant
5316 		 * to the current task context. It means that any node ok.
5317 		 */
5318 		if (in_task() && !ac->nodemask)
5319 			ac->nodemask = &cpuset_current_mems_allowed;
5320 		else
5321 			*alloc_flags |= ALLOC_CPUSET;
5322 	}
5323 
5324 	might_alloc(gfp_mask);
5325 
5326 	if (should_fail_alloc_page(gfp_mask, order))
5327 		return false;
5328 
5329 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5330 
5331 	/* Dirty zone balancing only done in the fast path */
5332 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5333 
5334 	/*
5335 	 * The preferred zone is used for statistics but crucially it is
5336 	 * also used as the starting point for the zonelist iterator. It
5337 	 * may get reset for allocations that ignore memory policies.
5338 	 */
5339 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5340 					ac->highest_zoneidx, ac->nodemask);
5341 
5342 	return true;
5343 }
5344 
5345 /*
5346  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5347  * @gfp: GFP flags for the allocation
5348  * @preferred_nid: The preferred NUMA node ID to allocate from
5349  * @nodemask: Set of nodes to allocate from, may be NULL
5350  * @nr_pages: The number of pages desired on the list or array
5351  * @page_list: Optional list to store the allocated pages
5352  * @page_array: Optional array to store the pages
5353  *
5354  * This is a batched version of the page allocator that attempts to
5355  * allocate nr_pages quickly. Pages are added to page_list if page_list
5356  * is not NULL, otherwise it is assumed that the page_array is valid.
5357  *
5358  * For lists, nr_pages is the number of pages that should be allocated.
5359  *
5360  * For arrays, only NULL elements are populated with pages and nr_pages
5361  * is the maximum number of pages that will be stored in the array.
5362  *
5363  * Returns the number of pages on the list or array.
5364  */
5365 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5366 			nodemask_t *nodemask, int nr_pages,
5367 			struct list_head *page_list,
5368 			struct page **page_array)
5369 {
5370 	struct page *page;
5371 	unsigned long flags;
5372 	unsigned long __maybe_unused UP_flags;
5373 	struct zone *zone;
5374 	struct zoneref *z;
5375 	struct per_cpu_pages *pcp;
5376 	struct list_head *pcp_list;
5377 	struct alloc_context ac;
5378 	gfp_t alloc_gfp;
5379 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5380 	int nr_populated = 0, nr_account = 0;
5381 
5382 	/*
5383 	 * Skip populated array elements to determine if any pages need
5384 	 * to be allocated before disabling IRQs.
5385 	 */
5386 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5387 		nr_populated++;
5388 
5389 	/* No pages requested? */
5390 	if (unlikely(nr_pages <= 0))
5391 		goto out;
5392 
5393 	/* Already populated array? */
5394 	if (unlikely(page_array && nr_pages - nr_populated == 0))
5395 		goto out;
5396 
5397 	/* Bulk allocator does not support memcg accounting. */
5398 	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT))
5399 		goto failed;
5400 
5401 	/* Use the single page allocator for one page. */
5402 	if (nr_pages - nr_populated == 1)
5403 		goto failed;
5404 
5405 #ifdef CONFIG_PAGE_OWNER
5406 	/*
5407 	 * PAGE_OWNER may recurse into the allocator to allocate space to
5408 	 * save the stack with pagesets.lock held. Releasing/reacquiring
5409 	 * removes much of the performance benefit of bulk allocation so
5410 	 * force the caller to allocate one page at a time as it'll have
5411 	 * similar performance to added complexity to the bulk allocator.
5412 	 */
5413 	if (static_branch_unlikely(&page_owner_inited))
5414 		goto failed;
5415 #endif
5416 
5417 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5418 	gfp &= gfp_allowed_mask;
5419 	alloc_gfp = gfp;
5420 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5421 		goto out;
5422 	gfp = alloc_gfp;
5423 
5424 	/* Find an allowed local zone that meets the low watermark. */
5425 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5426 		unsigned long mark;
5427 
5428 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5429 		    !__cpuset_zone_allowed(zone, gfp)) {
5430 			continue;
5431 		}
5432 
5433 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5434 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5435 			goto failed;
5436 		}
5437 
5438 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5439 		if (zone_watermark_fast(zone, 0,  mark,
5440 				zonelist_zone_idx(ac.preferred_zoneref),
5441 				alloc_flags, gfp)) {
5442 			break;
5443 		}
5444 	}
5445 
5446 	/*
5447 	 * If there are no allowed local zones that meets the watermarks then
5448 	 * try to allocate a single page and reclaim if necessary.
5449 	 */
5450 	if (unlikely(!zone))
5451 		goto failed;
5452 
5453 	/* Is a parallel drain in progress? */
5454 	pcp_trylock_prepare(UP_flags);
5455 	pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags);
5456 	if (!pcp)
5457 		goto failed_irq;
5458 
5459 	/* Attempt the batch allocation */
5460 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5461 	while (nr_populated < nr_pages) {
5462 
5463 		/* Skip existing pages */
5464 		if (page_array && page_array[nr_populated]) {
5465 			nr_populated++;
5466 			continue;
5467 		}
5468 
5469 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5470 								pcp, pcp_list);
5471 		if (unlikely(!page)) {
5472 			/* Try and allocate at least one page */
5473 			if (!nr_account) {
5474 				pcp_spin_unlock_irqrestore(pcp, flags);
5475 				goto failed_irq;
5476 			}
5477 			break;
5478 		}
5479 		nr_account++;
5480 
5481 		prep_new_page(page, 0, gfp, 0);
5482 		if (page_list)
5483 			list_add(&page->lru, page_list);
5484 		else
5485 			page_array[nr_populated] = page;
5486 		nr_populated++;
5487 	}
5488 
5489 	pcp_spin_unlock_irqrestore(pcp, flags);
5490 	pcp_trylock_finish(UP_flags);
5491 
5492 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5493 	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5494 
5495 out:
5496 	return nr_populated;
5497 
5498 failed_irq:
5499 	pcp_trylock_finish(UP_flags);
5500 
5501 failed:
5502 	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5503 	if (page) {
5504 		if (page_list)
5505 			list_add(&page->lru, page_list);
5506 		else
5507 			page_array[nr_populated] = page;
5508 		nr_populated++;
5509 	}
5510 
5511 	goto out;
5512 }
5513 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5514 
5515 /*
5516  * This is the 'heart' of the zoned buddy allocator.
5517  */
5518 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5519 							nodemask_t *nodemask)
5520 {
5521 	struct page *page;
5522 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5523 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5524 	struct alloc_context ac = { };
5525 
5526 	/*
5527 	 * There are several places where we assume that the order value is sane
5528 	 * so bail out early if the request is out of bound.
5529 	 */
5530 	if (WARN_ON_ONCE_GFP(order >= MAX_ORDER, gfp))
5531 		return NULL;
5532 
5533 	gfp &= gfp_allowed_mask;
5534 	/*
5535 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5536 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
5537 	 * from a particular context which has been marked by
5538 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5539 	 * movable zones are not used during allocation.
5540 	 */
5541 	gfp = current_gfp_context(gfp);
5542 	alloc_gfp = gfp;
5543 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5544 			&alloc_gfp, &alloc_flags))
5545 		return NULL;
5546 
5547 	/*
5548 	 * Forbid the first pass from falling back to types that fragment
5549 	 * memory until all local zones are considered.
5550 	 */
5551 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5552 
5553 	/* First allocation attempt */
5554 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5555 	if (likely(page))
5556 		goto out;
5557 
5558 	alloc_gfp = gfp;
5559 	ac.spread_dirty_pages = false;
5560 
5561 	/*
5562 	 * Restore the original nodemask if it was potentially replaced with
5563 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5564 	 */
5565 	ac.nodemask = nodemask;
5566 
5567 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5568 
5569 out:
5570 	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5571 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5572 		__free_pages(page, order);
5573 		page = NULL;
5574 	}
5575 
5576 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5577 	kmsan_alloc_page(page, order, alloc_gfp);
5578 
5579 	return page;
5580 }
5581 EXPORT_SYMBOL(__alloc_pages);
5582 
5583 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
5584 		nodemask_t *nodemask)
5585 {
5586 	struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
5587 			preferred_nid, nodemask);
5588 
5589 	if (page && order > 1)
5590 		prep_transhuge_page(page);
5591 	return (struct folio *)page;
5592 }
5593 EXPORT_SYMBOL(__folio_alloc);
5594 
5595 /*
5596  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5597  * address cannot represent highmem pages. Use alloc_pages and then kmap if
5598  * you need to access high mem.
5599  */
5600 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5601 {
5602 	struct page *page;
5603 
5604 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5605 	if (!page)
5606 		return 0;
5607 	return (unsigned long) page_address(page);
5608 }
5609 EXPORT_SYMBOL(__get_free_pages);
5610 
5611 unsigned long get_zeroed_page(gfp_t gfp_mask)
5612 {
5613 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5614 }
5615 EXPORT_SYMBOL(get_zeroed_page);
5616 
5617 /**
5618  * __free_pages - Free pages allocated with alloc_pages().
5619  * @page: The page pointer returned from alloc_pages().
5620  * @order: The order of the allocation.
5621  *
5622  * This function can free multi-page allocations that are not compound
5623  * pages.  It does not check that the @order passed in matches that of
5624  * the allocation, so it is easy to leak memory.  Freeing more memory
5625  * than was allocated will probably emit a warning.
5626  *
5627  * If the last reference to this page is speculative, it will be released
5628  * by put_page() which only frees the first page of a non-compound
5629  * allocation.  To prevent the remaining pages from being leaked, we free
5630  * the subsequent pages here.  If you want to use the page's reference
5631  * count to decide when to free the allocation, you should allocate a
5632  * compound page, and use put_page() instead of __free_pages().
5633  *
5634  * Context: May be called in interrupt context or while holding a normal
5635  * spinlock, but not in NMI context or while holding a raw spinlock.
5636  */
5637 void __free_pages(struct page *page, unsigned int order)
5638 {
5639 	if (put_page_testzero(page))
5640 		free_the_page(page, order);
5641 	else if (!PageHead(page))
5642 		while (order-- > 0)
5643 			free_the_page(page + (1 << order), order);
5644 }
5645 EXPORT_SYMBOL(__free_pages);
5646 
5647 void free_pages(unsigned long addr, unsigned int order)
5648 {
5649 	if (addr != 0) {
5650 		VM_BUG_ON(!virt_addr_valid((void *)addr));
5651 		__free_pages(virt_to_page((void *)addr), order);
5652 	}
5653 }
5654 
5655 EXPORT_SYMBOL(free_pages);
5656 
5657 /*
5658  * Page Fragment:
5659  *  An arbitrary-length arbitrary-offset area of memory which resides
5660  *  within a 0 or higher order page.  Multiple fragments within that page
5661  *  are individually refcounted, in the page's reference counter.
5662  *
5663  * The page_frag functions below provide a simple allocation framework for
5664  * page fragments.  This is used by the network stack and network device
5665  * drivers to provide a backing region of memory for use as either an
5666  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5667  */
5668 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5669 					     gfp_t gfp_mask)
5670 {
5671 	struct page *page = NULL;
5672 	gfp_t gfp = gfp_mask;
5673 
5674 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5675 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5676 		    __GFP_NOMEMALLOC;
5677 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5678 				PAGE_FRAG_CACHE_MAX_ORDER);
5679 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5680 #endif
5681 	if (unlikely(!page))
5682 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5683 
5684 	nc->va = page ? page_address(page) : NULL;
5685 
5686 	return page;
5687 }
5688 
5689 void __page_frag_cache_drain(struct page *page, unsigned int count)
5690 {
5691 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5692 
5693 	if (page_ref_sub_and_test(page, count))
5694 		free_the_page(page, compound_order(page));
5695 }
5696 EXPORT_SYMBOL(__page_frag_cache_drain);
5697 
5698 void *page_frag_alloc_align(struct page_frag_cache *nc,
5699 		      unsigned int fragsz, gfp_t gfp_mask,
5700 		      unsigned int align_mask)
5701 {
5702 	unsigned int size = PAGE_SIZE;
5703 	struct page *page;
5704 	int offset;
5705 
5706 	if (unlikely(!nc->va)) {
5707 refill:
5708 		page = __page_frag_cache_refill(nc, gfp_mask);
5709 		if (!page)
5710 			return NULL;
5711 
5712 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5713 		/* if size can vary use size else just use PAGE_SIZE */
5714 		size = nc->size;
5715 #endif
5716 		/* Even if we own the page, we do not use atomic_set().
5717 		 * This would break get_page_unless_zero() users.
5718 		 */
5719 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5720 
5721 		/* reset page count bias and offset to start of new frag */
5722 		nc->pfmemalloc = page_is_pfmemalloc(page);
5723 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5724 		nc->offset = size;
5725 	}
5726 
5727 	offset = nc->offset - fragsz;
5728 	if (unlikely(offset < 0)) {
5729 		page = virt_to_page(nc->va);
5730 
5731 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5732 			goto refill;
5733 
5734 		if (unlikely(nc->pfmemalloc)) {
5735 			free_the_page(page, compound_order(page));
5736 			goto refill;
5737 		}
5738 
5739 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5740 		/* if size can vary use size else just use PAGE_SIZE */
5741 		size = nc->size;
5742 #endif
5743 		/* OK, page count is 0, we can safely set it */
5744 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5745 
5746 		/* reset page count bias and offset to start of new frag */
5747 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5748 		offset = size - fragsz;
5749 		if (unlikely(offset < 0)) {
5750 			/*
5751 			 * The caller is trying to allocate a fragment
5752 			 * with fragsz > PAGE_SIZE but the cache isn't big
5753 			 * enough to satisfy the request, this may
5754 			 * happen in low memory conditions.
5755 			 * We don't release the cache page because
5756 			 * it could make memory pressure worse
5757 			 * so we simply return NULL here.
5758 			 */
5759 			return NULL;
5760 		}
5761 	}
5762 
5763 	nc->pagecnt_bias--;
5764 	offset &= align_mask;
5765 	nc->offset = offset;
5766 
5767 	return nc->va + offset;
5768 }
5769 EXPORT_SYMBOL(page_frag_alloc_align);
5770 
5771 /*
5772  * Frees a page fragment allocated out of either a compound or order 0 page.
5773  */
5774 void page_frag_free(void *addr)
5775 {
5776 	struct page *page = virt_to_head_page(addr);
5777 
5778 	if (unlikely(put_page_testzero(page)))
5779 		free_the_page(page, compound_order(page));
5780 }
5781 EXPORT_SYMBOL(page_frag_free);
5782 
5783 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5784 		size_t size)
5785 {
5786 	if (addr) {
5787 		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
5788 		struct page *page = virt_to_page((void *)addr);
5789 		struct page *last = page + nr;
5790 
5791 		split_page_owner(page, 1 << order);
5792 		split_page_memcg(page, 1 << order);
5793 		while (page < --last)
5794 			set_page_refcounted(last);
5795 
5796 		last = page + (1UL << order);
5797 		for (page += nr; page < last; page++)
5798 			__free_pages_ok(page, 0, FPI_TO_TAIL);
5799 	}
5800 	return (void *)addr;
5801 }
5802 
5803 /**
5804  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5805  * @size: the number of bytes to allocate
5806  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5807  *
5808  * This function is similar to alloc_pages(), except that it allocates the
5809  * minimum number of pages to satisfy the request.  alloc_pages() can only
5810  * allocate memory in power-of-two pages.
5811  *
5812  * This function is also limited by MAX_ORDER.
5813  *
5814  * Memory allocated by this function must be released by free_pages_exact().
5815  *
5816  * Return: pointer to the allocated area or %NULL in case of error.
5817  */
5818 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5819 {
5820 	unsigned int order = get_order(size);
5821 	unsigned long addr;
5822 
5823 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5824 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5825 
5826 	addr = __get_free_pages(gfp_mask, order);
5827 	return make_alloc_exact(addr, order, size);
5828 }
5829 EXPORT_SYMBOL(alloc_pages_exact);
5830 
5831 /**
5832  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5833  *			   pages on a node.
5834  * @nid: the preferred node ID where memory should be allocated
5835  * @size: the number of bytes to allocate
5836  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5837  *
5838  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5839  * back.
5840  *
5841  * Return: pointer to the allocated area or %NULL in case of error.
5842  */
5843 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5844 {
5845 	unsigned int order = get_order(size);
5846 	struct page *p;
5847 
5848 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5849 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5850 
5851 	p = alloc_pages_node(nid, gfp_mask, order);
5852 	if (!p)
5853 		return NULL;
5854 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5855 }
5856 
5857 /**
5858  * free_pages_exact - release memory allocated via alloc_pages_exact()
5859  * @virt: the value returned by alloc_pages_exact.
5860  * @size: size of allocation, same value as passed to alloc_pages_exact().
5861  *
5862  * Release the memory allocated by a previous call to alloc_pages_exact.
5863  */
5864 void free_pages_exact(void *virt, size_t size)
5865 {
5866 	unsigned long addr = (unsigned long)virt;
5867 	unsigned long end = addr + PAGE_ALIGN(size);
5868 
5869 	while (addr < end) {
5870 		free_page(addr);
5871 		addr += PAGE_SIZE;
5872 	}
5873 }
5874 EXPORT_SYMBOL(free_pages_exact);
5875 
5876 /**
5877  * nr_free_zone_pages - count number of pages beyond high watermark
5878  * @offset: The zone index of the highest zone
5879  *
5880  * nr_free_zone_pages() counts the number of pages which are beyond the
5881  * high watermark within all zones at or below a given zone index.  For each
5882  * zone, the number of pages is calculated as:
5883  *
5884  *     nr_free_zone_pages = managed_pages - high_pages
5885  *
5886  * Return: number of pages beyond high watermark.
5887  */
5888 static unsigned long nr_free_zone_pages(int offset)
5889 {
5890 	struct zoneref *z;
5891 	struct zone *zone;
5892 
5893 	/* Just pick one node, since fallback list is circular */
5894 	unsigned long sum = 0;
5895 
5896 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5897 
5898 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5899 		unsigned long size = zone_managed_pages(zone);
5900 		unsigned long high = high_wmark_pages(zone);
5901 		if (size > high)
5902 			sum += size - high;
5903 	}
5904 
5905 	return sum;
5906 }
5907 
5908 /**
5909  * nr_free_buffer_pages - count number of pages beyond high watermark
5910  *
5911  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5912  * watermark within ZONE_DMA and ZONE_NORMAL.
5913  *
5914  * Return: number of pages beyond high watermark within ZONE_DMA and
5915  * ZONE_NORMAL.
5916  */
5917 unsigned long nr_free_buffer_pages(void)
5918 {
5919 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5920 }
5921 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5922 
5923 static inline void show_node(struct zone *zone)
5924 {
5925 	if (IS_ENABLED(CONFIG_NUMA))
5926 		printk("Node %d ", zone_to_nid(zone));
5927 }
5928 
5929 long si_mem_available(void)
5930 {
5931 	long available;
5932 	unsigned long pagecache;
5933 	unsigned long wmark_low = 0;
5934 	unsigned long pages[NR_LRU_LISTS];
5935 	unsigned long reclaimable;
5936 	struct zone *zone;
5937 	int lru;
5938 
5939 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5940 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5941 
5942 	for_each_zone(zone)
5943 		wmark_low += low_wmark_pages(zone);
5944 
5945 	/*
5946 	 * Estimate the amount of memory available for userspace allocations,
5947 	 * without causing swapping or OOM.
5948 	 */
5949 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5950 
5951 	/*
5952 	 * Not all the page cache can be freed, otherwise the system will
5953 	 * start swapping or thrashing. Assume at least half of the page
5954 	 * cache, or the low watermark worth of cache, needs to stay.
5955 	 */
5956 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5957 	pagecache -= min(pagecache / 2, wmark_low);
5958 	available += pagecache;
5959 
5960 	/*
5961 	 * Part of the reclaimable slab and other kernel memory consists of
5962 	 * items that are in use, and cannot be freed. Cap this estimate at the
5963 	 * low watermark.
5964 	 */
5965 	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5966 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5967 	available += reclaimable - min(reclaimable / 2, wmark_low);
5968 
5969 	if (available < 0)
5970 		available = 0;
5971 	return available;
5972 }
5973 EXPORT_SYMBOL_GPL(si_mem_available);
5974 
5975 void si_meminfo(struct sysinfo *val)
5976 {
5977 	val->totalram = totalram_pages();
5978 	val->sharedram = global_node_page_state(NR_SHMEM);
5979 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5980 	val->bufferram = nr_blockdev_pages();
5981 	val->totalhigh = totalhigh_pages();
5982 	val->freehigh = nr_free_highpages();
5983 	val->mem_unit = PAGE_SIZE;
5984 }
5985 
5986 EXPORT_SYMBOL(si_meminfo);
5987 
5988 #ifdef CONFIG_NUMA
5989 void si_meminfo_node(struct sysinfo *val, int nid)
5990 {
5991 	int zone_type;		/* needs to be signed */
5992 	unsigned long managed_pages = 0;
5993 	unsigned long managed_highpages = 0;
5994 	unsigned long free_highpages = 0;
5995 	pg_data_t *pgdat = NODE_DATA(nid);
5996 
5997 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5998 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5999 	val->totalram = managed_pages;
6000 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
6001 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
6002 #ifdef CONFIG_HIGHMEM
6003 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
6004 		struct zone *zone = &pgdat->node_zones[zone_type];
6005 
6006 		if (is_highmem(zone)) {
6007 			managed_highpages += zone_managed_pages(zone);
6008 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
6009 		}
6010 	}
6011 	val->totalhigh = managed_highpages;
6012 	val->freehigh = free_highpages;
6013 #else
6014 	val->totalhigh = managed_highpages;
6015 	val->freehigh = free_highpages;
6016 #endif
6017 	val->mem_unit = PAGE_SIZE;
6018 }
6019 #endif
6020 
6021 /*
6022  * Determine whether the node should be displayed or not, depending on whether
6023  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
6024  */
6025 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
6026 {
6027 	if (!(flags & SHOW_MEM_FILTER_NODES))
6028 		return false;
6029 
6030 	/*
6031 	 * no node mask - aka implicit memory numa policy. Do not bother with
6032 	 * the synchronization - read_mems_allowed_begin - because we do not
6033 	 * have to be precise here.
6034 	 */
6035 	if (!nodemask)
6036 		nodemask = &cpuset_current_mems_allowed;
6037 
6038 	return !node_isset(nid, *nodemask);
6039 }
6040 
6041 #define K(x) ((x) << (PAGE_SHIFT-10))
6042 
6043 static void show_migration_types(unsigned char type)
6044 {
6045 	static const char types[MIGRATE_TYPES] = {
6046 		[MIGRATE_UNMOVABLE]	= 'U',
6047 		[MIGRATE_MOVABLE]	= 'M',
6048 		[MIGRATE_RECLAIMABLE]	= 'E',
6049 		[MIGRATE_HIGHATOMIC]	= 'H',
6050 #ifdef CONFIG_CMA
6051 		[MIGRATE_CMA]		= 'C',
6052 #endif
6053 #ifdef CONFIG_MEMORY_ISOLATION
6054 		[MIGRATE_ISOLATE]	= 'I',
6055 #endif
6056 	};
6057 	char tmp[MIGRATE_TYPES + 1];
6058 	char *p = tmp;
6059 	int i;
6060 
6061 	for (i = 0; i < MIGRATE_TYPES; i++) {
6062 		if (type & (1 << i))
6063 			*p++ = types[i];
6064 	}
6065 
6066 	*p = '\0';
6067 	printk(KERN_CONT "(%s) ", tmp);
6068 }
6069 
6070 static bool node_has_managed_zones(pg_data_t *pgdat, int max_zone_idx)
6071 {
6072 	int zone_idx;
6073 	for (zone_idx = 0; zone_idx <= max_zone_idx; zone_idx++)
6074 		if (zone_managed_pages(pgdat->node_zones + zone_idx))
6075 			return true;
6076 	return false;
6077 }
6078 
6079 /*
6080  * Show free area list (used inside shift_scroll-lock stuff)
6081  * We also calculate the percentage fragmentation. We do this by counting the
6082  * memory on each free list with the exception of the first item on the list.
6083  *
6084  * Bits in @filter:
6085  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
6086  *   cpuset.
6087  */
6088 void __show_free_areas(unsigned int filter, nodemask_t *nodemask, int max_zone_idx)
6089 {
6090 	unsigned long free_pcp = 0;
6091 	int cpu, nid;
6092 	struct zone *zone;
6093 	pg_data_t *pgdat;
6094 
6095 	for_each_populated_zone(zone) {
6096 		if (zone_idx(zone) > max_zone_idx)
6097 			continue;
6098 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6099 			continue;
6100 
6101 		for_each_online_cpu(cpu)
6102 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6103 	}
6104 
6105 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
6106 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
6107 		" unevictable:%lu dirty:%lu writeback:%lu\n"
6108 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
6109 		" mapped:%lu shmem:%lu pagetables:%lu\n"
6110 		" sec_pagetables:%lu bounce:%lu\n"
6111 		" kernel_misc_reclaimable:%lu\n"
6112 		" free:%lu free_pcp:%lu free_cma:%lu\n",
6113 		global_node_page_state(NR_ACTIVE_ANON),
6114 		global_node_page_state(NR_INACTIVE_ANON),
6115 		global_node_page_state(NR_ISOLATED_ANON),
6116 		global_node_page_state(NR_ACTIVE_FILE),
6117 		global_node_page_state(NR_INACTIVE_FILE),
6118 		global_node_page_state(NR_ISOLATED_FILE),
6119 		global_node_page_state(NR_UNEVICTABLE),
6120 		global_node_page_state(NR_FILE_DIRTY),
6121 		global_node_page_state(NR_WRITEBACK),
6122 		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
6123 		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
6124 		global_node_page_state(NR_FILE_MAPPED),
6125 		global_node_page_state(NR_SHMEM),
6126 		global_node_page_state(NR_PAGETABLE),
6127 		global_node_page_state(NR_SECONDARY_PAGETABLE),
6128 		global_zone_page_state(NR_BOUNCE),
6129 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
6130 		global_zone_page_state(NR_FREE_PAGES),
6131 		free_pcp,
6132 		global_zone_page_state(NR_FREE_CMA_PAGES));
6133 
6134 	for_each_online_pgdat(pgdat) {
6135 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
6136 			continue;
6137 		if (!node_has_managed_zones(pgdat, max_zone_idx))
6138 			continue;
6139 
6140 		printk("Node %d"
6141 			" active_anon:%lukB"
6142 			" inactive_anon:%lukB"
6143 			" active_file:%lukB"
6144 			" inactive_file:%lukB"
6145 			" unevictable:%lukB"
6146 			" isolated(anon):%lukB"
6147 			" isolated(file):%lukB"
6148 			" mapped:%lukB"
6149 			" dirty:%lukB"
6150 			" writeback:%lukB"
6151 			" shmem:%lukB"
6152 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6153 			" shmem_thp: %lukB"
6154 			" shmem_pmdmapped: %lukB"
6155 			" anon_thp: %lukB"
6156 #endif
6157 			" writeback_tmp:%lukB"
6158 			" kernel_stack:%lukB"
6159 #ifdef CONFIG_SHADOW_CALL_STACK
6160 			" shadow_call_stack:%lukB"
6161 #endif
6162 			" pagetables:%lukB"
6163 			" sec_pagetables:%lukB"
6164 			" all_unreclaimable? %s"
6165 			"\n",
6166 			pgdat->node_id,
6167 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
6168 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
6169 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
6170 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
6171 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
6172 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
6173 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
6174 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
6175 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
6176 			K(node_page_state(pgdat, NR_WRITEBACK)),
6177 			K(node_page_state(pgdat, NR_SHMEM)),
6178 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6179 			K(node_page_state(pgdat, NR_SHMEM_THPS)),
6180 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
6181 			K(node_page_state(pgdat, NR_ANON_THPS)),
6182 #endif
6183 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
6184 			node_page_state(pgdat, NR_KERNEL_STACK_KB),
6185 #ifdef CONFIG_SHADOW_CALL_STACK
6186 			node_page_state(pgdat, NR_KERNEL_SCS_KB),
6187 #endif
6188 			K(node_page_state(pgdat, NR_PAGETABLE)),
6189 			K(node_page_state(pgdat, NR_SECONDARY_PAGETABLE)),
6190 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
6191 				"yes" : "no");
6192 	}
6193 
6194 	for_each_populated_zone(zone) {
6195 		int i;
6196 
6197 		if (zone_idx(zone) > max_zone_idx)
6198 			continue;
6199 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6200 			continue;
6201 
6202 		free_pcp = 0;
6203 		for_each_online_cpu(cpu)
6204 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6205 
6206 		show_node(zone);
6207 		printk(KERN_CONT
6208 			"%s"
6209 			" free:%lukB"
6210 			" boost:%lukB"
6211 			" min:%lukB"
6212 			" low:%lukB"
6213 			" high:%lukB"
6214 			" reserved_highatomic:%luKB"
6215 			" active_anon:%lukB"
6216 			" inactive_anon:%lukB"
6217 			" active_file:%lukB"
6218 			" inactive_file:%lukB"
6219 			" unevictable:%lukB"
6220 			" writepending:%lukB"
6221 			" present:%lukB"
6222 			" managed:%lukB"
6223 			" mlocked:%lukB"
6224 			" bounce:%lukB"
6225 			" free_pcp:%lukB"
6226 			" local_pcp:%ukB"
6227 			" free_cma:%lukB"
6228 			"\n",
6229 			zone->name,
6230 			K(zone_page_state(zone, NR_FREE_PAGES)),
6231 			K(zone->watermark_boost),
6232 			K(min_wmark_pages(zone)),
6233 			K(low_wmark_pages(zone)),
6234 			K(high_wmark_pages(zone)),
6235 			K(zone->nr_reserved_highatomic),
6236 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6237 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6238 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6239 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6240 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6241 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6242 			K(zone->present_pages),
6243 			K(zone_managed_pages(zone)),
6244 			K(zone_page_state(zone, NR_MLOCK)),
6245 			K(zone_page_state(zone, NR_BOUNCE)),
6246 			K(free_pcp),
6247 			K(this_cpu_read(zone->per_cpu_pageset->count)),
6248 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6249 		printk("lowmem_reserve[]:");
6250 		for (i = 0; i < MAX_NR_ZONES; i++)
6251 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6252 		printk(KERN_CONT "\n");
6253 	}
6254 
6255 	for_each_populated_zone(zone) {
6256 		unsigned int order;
6257 		unsigned long nr[MAX_ORDER], flags, total = 0;
6258 		unsigned char types[MAX_ORDER];
6259 
6260 		if (zone_idx(zone) > max_zone_idx)
6261 			continue;
6262 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6263 			continue;
6264 		show_node(zone);
6265 		printk(KERN_CONT "%s: ", zone->name);
6266 
6267 		spin_lock_irqsave(&zone->lock, flags);
6268 		for (order = 0; order < MAX_ORDER; order++) {
6269 			struct free_area *area = &zone->free_area[order];
6270 			int type;
6271 
6272 			nr[order] = area->nr_free;
6273 			total += nr[order] << order;
6274 
6275 			types[order] = 0;
6276 			for (type = 0; type < MIGRATE_TYPES; type++) {
6277 				if (!free_area_empty(area, type))
6278 					types[order] |= 1 << type;
6279 			}
6280 		}
6281 		spin_unlock_irqrestore(&zone->lock, flags);
6282 		for (order = 0; order < MAX_ORDER; order++) {
6283 			printk(KERN_CONT "%lu*%lukB ",
6284 			       nr[order], K(1UL) << order);
6285 			if (nr[order])
6286 				show_migration_types(types[order]);
6287 		}
6288 		printk(KERN_CONT "= %lukB\n", K(total));
6289 	}
6290 
6291 	for_each_online_node(nid) {
6292 		if (show_mem_node_skip(filter, nid, nodemask))
6293 			continue;
6294 		hugetlb_show_meminfo_node(nid);
6295 	}
6296 
6297 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6298 
6299 	show_swap_cache_info();
6300 }
6301 
6302 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6303 {
6304 	zoneref->zone = zone;
6305 	zoneref->zone_idx = zone_idx(zone);
6306 }
6307 
6308 /*
6309  * Builds allocation fallback zone lists.
6310  *
6311  * Add all populated zones of a node to the zonelist.
6312  */
6313 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6314 {
6315 	struct zone *zone;
6316 	enum zone_type zone_type = MAX_NR_ZONES;
6317 	int nr_zones = 0;
6318 
6319 	do {
6320 		zone_type--;
6321 		zone = pgdat->node_zones + zone_type;
6322 		if (populated_zone(zone)) {
6323 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6324 			check_highest_zone(zone_type);
6325 		}
6326 	} while (zone_type);
6327 
6328 	return nr_zones;
6329 }
6330 
6331 #ifdef CONFIG_NUMA
6332 
6333 static int __parse_numa_zonelist_order(char *s)
6334 {
6335 	/*
6336 	 * We used to support different zonelists modes but they turned
6337 	 * out to be just not useful. Let's keep the warning in place
6338 	 * if somebody still use the cmd line parameter so that we do
6339 	 * not fail it silently
6340 	 */
6341 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6342 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
6343 		return -EINVAL;
6344 	}
6345 	return 0;
6346 }
6347 
6348 char numa_zonelist_order[] = "Node";
6349 
6350 /*
6351  * sysctl handler for numa_zonelist_order
6352  */
6353 int numa_zonelist_order_handler(struct ctl_table *table, int write,
6354 		void *buffer, size_t *length, loff_t *ppos)
6355 {
6356 	if (write)
6357 		return __parse_numa_zonelist_order(buffer);
6358 	return proc_dostring(table, write, buffer, length, ppos);
6359 }
6360 
6361 
6362 static int node_load[MAX_NUMNODES];
6363 
6364 /**
6365  * find_next_best_node - find the next node that should appear in a given node's fallback list
6366  * @node: node whose fallback list we're appending
6367  * @used_node_mask: nodemask_t of already used nodes
6368  *
6369  * We use a number of factors to determine which is the next node that should
6370  * appear on a given node's fallback list.  The node should not have appeared
6371  * already in @node's fallback list, and it should be the next closest node
6372  * according to the distance array (which contains arbitrary distance values
6373  * from each node to each node in the system), and should also prefer nodes
6374  * with no CPUs, since presumably they'll have very little allocation pressure
6375  * on them otherwise.
6376  *
6377  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6378  */
6379 int find_next_best_node(int node, nodemask_t *used_node_mask)
6380 {
6381 	int n, val;
6382 	int min_val = INT_MAX;
6383 	int best_node = NUMA_NO_NODE;
6384 
6385 	/* Use the local node if we haven't already */
6386 	if (!node_isset(node, *used_node_mask)) {
6387 		node_set(node, *used_node_mask);
6388 		return node;
6389 	}
6390 
6391 	for_each_node_state(n, N_MEMORY) {
6392 
6393 		/* Don't want a node to appear more than once */
6394 		if (node_isset(n, *used_node_mask))
6395 			continue;
6396 
6397 		/* Use the distance array to find the distance */
6398 		val = node_distance(node, n);
6399 
6400 		/* Penalize nodes under us ("prefer the next node") */
6401 		val += (n < node);
6402 
6403 		/* Give preference to headless and unused nodes */
6404 		if (!cpumask_empty(cpumask_of_node(n)))
6405 			val += PENALTY_FOR_NODE_WITH_CPUS;
6406 
6407 		/* Slight preference for less loaded node */
6408 		val *= MAX_NUMNODES;
6409 		val += node_load[n];
6410 
6411 		if (val < min_val) {
6412 			min_val = val;
6413 			best_node = n;
6414 		}
6415 	}
6416 
6417 	if (best_node >= 0)
6418 		node_set(best_node, *used_node_mask);
6419 
6420 	return best_node;
6421 }
6422 
6423 
6424 /*
6425  * Build zonelists ordered by node and zones within node.
6426  * This results in maximum locality--normal zone overflows into local
6427  * DMA zone, if any--but risks exhausting DMA zone.
6428  */
6429 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6430 		unsigned nr_nodes)
6431 {
6432 	struct zoneref *zonerefs;
6433 	int i;
6434 
6435 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6436 
6437 	for (i = 0; i < nr_nodes; i++) {
6438 		int nr_zones;
6439 
6440 		pg_data_t *node = NODE_DATA(node_order[i]);
6441 
6442 		nr_zones = build_zonerefs_node(node, zonerefs);
6443 		zonerefs += nr_zones;
6444 	}
6445 	zonerefs->zone = NULL;
6446 	zonerefs->zone_idx = 0;
6447 }
6448 
6449 /*
6450  * Build gfp_thisnode zonelists
6451  */
6452 static void build_thisnode_zonelists(pg_data_t *pgdat)
6453 {
6454 	struct zoneref *zonerefs;
6455 	int nr_zones;
6456 
6457 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6458 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6459 	zonerefs += nr_zones;
6460 	zonerefs->zone = NULL;
6461 	zonerefs->zone_idx = 0;
6462 }
6463 
6464 /*
6465  * Build zonelists ordered by zone and nodes within zones.
6466  * This results in conserving DMA zone[s] until all Normal memory is
6467  * exhausted, but results in overflowing to remote node while memory
6468  * may still exist in local DMA zone.
6469  */
6470 
6471 static void build_zonelists(pg_data_t *pgdat)
6472 {
6473 	static int node_order[MAX_NUMNODES];
6474 	int node, nr_nodes = 0;
6475 	nodemask_t used_mask = NODE_MASK_NONE;
6476 	int local_node, prev_node;
6477 
6478 	/* NUMA-aware ordering of nodes */
6479 	local_node = pgdat->node_id;
6480 	prev_node = local_node;
6481 
6482 	memset(node_order, 0, sizeof(node_order));
6483 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6484 		/*
6485 		 * We don't want to pressure a particular node.
6486 		 * So adding penalty to the first node in same
6487 		 * distance group to make it round-robin.
6488 		 */
6489 		if (node_distance(local_node, node) !=
6490 		    node_distance(local_node, prev_node))
6491 			node_load[node] += 1;
6492 
6493 		node_order[nr_nodes++] = node;
6494 		prev_node = node;
6495 	}
6496 
6497 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6498 	build_thisnode_zonelists(pgdat);
6499 	pr_info("Fallback order for Node %d: ", local_node);
6500 	for (node = 0; node < nr_nodes; node++)
6501 		pr_cont("%d ", node_order[node]);
6502 	pr_cont("\n");
6503 }
6504 
6505 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6506 /*
6507  * Return node id of node used for "local" allocations.
6508  * I.e., first node id of first zone in arg node's generic zonelist.
6509  * Used for initializing percpu 'numa_mem', which is used primarily
6510  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6511  */
6512 int local_memory_node(int node)
6513 {
6514 	struct zoneref *z;
6515 
6516 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6517 				   gfp_zone(GFP_KERNEL),
6518 				   NULL);
6519 	return zone_to_nid(z->zone);
6520 }
6521 #endif
6522 
6523 static void setup_min_unmapped_ratio(void);
6524 static void setup_min_slab_ratio(void);
6525 #else	/* CONFIG_NUMA */
6526 
6527 static void build_zonelists(pg_data_t *pgdat)
6528 {
6529 	int node, local_node;
6530 	struct zoneref *zonerefs;
6531 	int nr_zones;
6532 
6533 	local_node = pgdat->node_id;
6534 
6535 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6536 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6537 	zonerefs += nr_zones;
6538 
6539 	/*
6540 	 * Now we build the zonelist so that it contains the zones
6541 	 * of all the other nodes.
6542 	 * We don't want to pressure a particular node, so when
6543 	 * building the zones for node N, we make sure that the
6544 	 * zones coming right after the local ones are those from
6545 	 * node N+1 (modulo N)
6546 	 */
6547 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6548 		if (!node_online(node))
6549 			continue;
6550 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6551 		zonerefs += nr_zones;
6552 	}
6553 	for (node = 0; node < local_node; node++) {
6554 		if (!node_online(node))
6555 			continue;
6556 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6557 		zonerefs += nr_zones;
6558 	}
6559 
6560 	zonerefs->zone = NULL;
6561 	zonerefs->zone_idx = 0;
6562 }
6563 
6564 #endif	/* CONFIG_NUMA */
6565 
6566 /*
6567  * Boot pageset table. One per cpu which is going to be used for all
6568  * zones and all nodes. The parameters will be set in such a way
6569  * that an item put on a list will immediately be handed over to
6570  * the buddy list. This is safe since pageset manipulation is done
6571  * with interrupts disabled.
6572  *
6573  * The boot_pagesets must be kept even after bootup is complete for
6574  * unused processors and/or zones. They do play a role for bootstrapping
6575  * hotplugged processors.
6576  *
6577  * zoneinfo_show() and maybe other functions do
6578  * not check if the processor is online before following the pageset pointer.
6579  * Other parts of the kernel may not check if the zone is available.
6580  */
6581 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6582 /* These effectively disable the pcplists in the boot pageset completely */
6583 #define BOOT_PAGESET_HIGH	0
6584 #define BOOT_PAGESET_BATCH	1
6585 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6586 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6587 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6588 
6589 static void __build_all_zonelists(void *data)
6590 {
6591 	int nid;
6592 	int __maybe_unused cpu;
6593 	pg_data_t *self = data;
6594 
6595 	write_seqlock(&zonelist_update_seq);
6596 
6597 #ifdef CONFIG_NUMA
6598 	memset(node_load, 0, sizeof(node_load));
6599 #endif
6600 
6601 	/*
6602 	 * This node is hotadded and no memory is yet present.   So just
6603 	 * building zonelists is fine - no need to touch other nodes.
6604 	 */
6605 	if (self && !node_online(self->node_id)) {
6606 		build_zonelists(self);
6607 	} else {
6608 		/*
6609 		 * All possible nodes have pgdat preallocated
6610 		 * in free_area_init
6611 		 */
6612 		for_each_node(nid) {
6613 			pg_data_t *pgdat = NODE_DATA(nid);
6614 
6615 			build_zonelists(pgdat);
6616 		}
6617 
6618 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6619 		/*
6620 		 * We now know the "local memory node" for each node--
6621 		 * i.e., the node of the first zone in the generic zonelist.
6622 		 * Set up numa_mem percpu variable for on-line cpus.  During
6623 		 * boot, only the boot cpu should be on-line;  we'll init the
6624 		 * secondary cpus' numa_mem as they come on-line.  During
6625 		 * node/memory hotplug, we'll fixup all on-line cpus.
6626 		 */
6627 		for_each_online_cpu(cpu)
6628 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6629 #endif
6630 	}
6631 
6632 	write_sequnlock(&zonelist_update_seq);
6633 }
6634 
6635 static noinline void __init
6636 build_all_zonelists_init(void)
6637 {
6638 	int cpu;
6639 
6640 	__build_all_zonelists(NULL);
6641 
6642 	/*
6643 	 * Initialize the boot_pagesets that are going to be used
6644 	 * for bootstrapping processors. The real pagesets for
6645 	 * each zone will be allocated later when the per cpu
6646 	 * allocator is available.
6647 	 *
6648 	 * boot_pagesets are used also for bootstrapping offline
6649 	 * cpus if the system is already booted because the pagesets
6650 	 * are needed to initialize allocators on a specific cpu too.
6651 	 * F.e. the percpu allocator needs the page allocator which
6652 	 * needs the percpu allocator in order to allocate its pagesets
6653 	 * (a chicken-egg dilemma).
6654 	 */
6655 	for_each_possible_cpu(cpu)
6656 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6657 
6658 	mminit_verify_zonelist();
6659 	cpuset_init_current_mems_allowed();
6660 }
6661 
6662 /*
6663  * unless system_state == SYSTEM_BOOTING.
6664  *
6665  * __ref due to call of __init annotated helper build_all_zonelists_init
6666  * [protected by SYSTEM_BOOTING].
6667  */
6668 void __ref build_all_zonelists(pg_data_t *pgdat)
6669 {
6670 	unsigned long vm_total_pages;
6671 
6672 	if (system_state == SYSTEM_BOOTING) {
6673 		build_all_zonelists_init();
6674 	} else {
6675 		__build_all_zonelists(pgdat);
6676 		/* cpuset refresh routine should be here */
6677 	}
6678 	/* Get the number of free pages beyond high watermark in all zones. */
6679 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6680 	/*
6681 	 * Disable grouping by mobility if the number of pages in the
6682 	 * system is too low to allow the mechanism to work. It would be
6683 	 * more accurate, but expensive to check per-zone. This check is
6684 	 * made on memory-hotadd so a system can start with mobility
6685 	 * disabled and enable it later
6686 	 */
6687 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6688 		page_group_by_mobility_disabled = 1;
6689 	else
6690 		page_group_by_mobility_disabled = 0;
6691 
6692 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
6693 		nr_online_nodes,
6694 		page_group_by_mobility_disabled ? "off" : "on",
6695 		vm_total_pages);
6696 #ifdef CONFIG_NUMA
6697 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6698 #endif
6699 }
6700 
6701 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6702 static bool __meminit
6703 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6704 {
6705 	static struct memblock_region *r;
6706 
6707 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6708 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6709 			for_each_mem_region(r) {
6710 				if (*pfn < memblock_region_memory_end_pfn(r))
6711 					break;
6712 			}
6713 		}
6714 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
6715 		    memblock_is_mirror(r)) {
6716 			*pfn = memblock_region_memory_end_pfn(r);
6717 			return true;
6718 		}
6719 	}
6720 	return false;
6721 }
6722 
6723 /*
6724  * Initially all pages are reserved - free ones are freed
6725  * up by memblock_free_all() once the early boot process is
6726  * done. Non-atomic initialization, single-pass.
6727  *
6728  * All aligned pageblocks are initialized to the specified migratetype
6729  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6730  * zone stats (e.g., nr_isolate_pageblock) are touched.
6731  */
6732 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6733 		unsigned long start_pfn, unsigned long zone_end_pfn,
6734 		enum meminit_context context,
6735 		struct vmem_altmap *altmap, int migratetype)
6736 {
6737 	unsigned long pfn, end_pfn = start_pfn + size;
6738 	struct page *page;
6739 
6740 	if (highest_memmap_pfn < end_pfn - 1)
6741 		highest_memmap_pfn = end_pfn - 1;
6742 
6743 #ifdef CONFIG_ZONE_DEVICE
6744 	/*
6745 	 * Honor reservation requested by the driver for this ZONE_DEVICE
6746 	 * memory. We limit the total number of pages to initialize to just
6747 	 * those that might contain the memory mapping. We will defer the
6748 	 * ZONE_DEVICE page initialization until after we have released
6749 	 * the hotplug lock.
6750 	 */
6751 	if (zone == ZONE_DEVICE) {
6752 		if (!altmap)
6753 			return;
6754 
6755 		if (start_pfn == altmap->base_pfn)
6756 			start_pfn += altmap->reserve;
6757 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6758 	}
6759 #endif
6760 
6761 	for (pfn = start_pfn; pfn < end_pfn; ) {
6762 		/*
6763 		 * There can be holes in boot-time mem_map[]s handed to this
6764 		 * function.  They do not exist on hotplugged memory.
6765 		 */
6766 		if (context == MEMINIT_EARLY) {
6767 			if (overlap_memmap_init(zone, &pfn))
6768 				continue;
6769 			if (defer_init(nid, pfn, zone_end_pfn))
6770 				break;
6771 		}
6772 
6773 		page = pfn_to_page(pfn);
6774 		__init_single_page(page, pfn, zone, nid);
6775 		if (context == MEMINIT_HOTPLUG)
6776 			__SetPageReserved(page);
6777 
6778 		/*
6779 		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6780 		 * such that unmovable allocations won't be scattered all
6781 		 * over the place during system boot.
6782 		 */
6783 		if (pageblock_aligned(pfn)) {
6784 			set_pageblock_migratetype(page, migratetype);
6785 			cond_resched();
6786 		}
6787 		pfn++;
6788 	}
6789 }
6790 
6791 #ifdef CONFIG_ZONE_DEVICE
6792 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
6793 					  unsigned long zone_idx, int nid,
6794 					  struct dev_pagemap *pgmap)
6795 {
6796 
6797 	__init_single_page(page, pfn, zone_idx, nid);
6798 
6799 	/*
6800 	 * Mark page reserved as it will need to wait for onlining
6801 	 * phase for it to be fully associated with a zone.
6802 	 *
6803 	 * We can use the non-atomic __set_bit operation for setting
6804 	 * the flag as we are still initializing the pages.
6805 	 */
6806 	__SetPageReserved(page);
6807 
6808 	/*
6809 	 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6810 	 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
6811 	 * ever freed or placed on a driver-private list.
6812 	 */
6813 	page->pgmap = pgmap;
6814 	page->zone_device_data = NULL;
6815 
6816 	/*
6817 	 * Mark the block movable so that blocks are reserved for
6818 	 * movable at startup. This will force kernel allocations
6819 	 * to reserve their blocks rather than leaking throughout
6820 	 * the address space during boot when many long-lived
6821 	 * kernel allocations are made.
6822 	 *
6823 	 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6824 	 * because this is done early in section_activate()
6825 	 */
6826 	if (pageblock_aligned(pfn)) {
6827 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6828 		cond_resched();
6829 	}
6830 
6831 	/*
6832 	 * ZONE_DEVICE pages are released directly to the driver page allocator
6833 	 * which will set the page count to 1 when allocating the page.
6834 	 */
6835 	if (pgmap->type == MEMORY_DEVICE_PRIVATE ||
6836 	    pgmap->type == MEMORY_DEVICE_COHERENT)
6837 		set_page_count(page, 0);
6838 }
6839 
6840 /*
6841  * With compound page geometry and when struct pages are stored in ram most
6842  * tail pages are reused. Consequently, the amount of unique struct pages to
6843  * initialize is a lot smaller that the total amount of struct pages being
6844  * mapped. This is a paired / mild layering violation with explicit knowledge
6845  * of how the sparse_vmemmap internals handle compound pages in the lack
6846  * of an altmap. See vmemmap_populate_compound_pages().
6847  */
6848 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
6849 					      unsigned long nr_pages)
6850 {
6851 	return is_power_of_2(sizeof(struct page)) &&
6852 		!altmap ? 2 * (PAGE_SIZE / sizeof(struct page)) : nr_pages;
6853 }
6854 
6855 static void __ref memmap_init_compound(struct page *head,
6856 				       unsigned long head_pfn,
6857 				       unsigned long zone_idx, int nid,
6858 				       struct dev_pagemap *pgmap,
6859 				       unsigned long nr_pages)
6860 {
6861 	unsigned long pfn, end_pfn = head_pfn + nr_pages;
6862 	unsigned int order = pgmap->vmemmap_shift;
6863 
6864 	__SetPageHead(head);
6865 	for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
6866 		struct page *page = pfn_to_page(pfn);
6867 
6868 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6869 		prep_compound_tail(head, pfn - head_pfn);
6870 		set_page_count(page, 0);
6871 
6872 		/*
6873 		 * The first tail page stores compound_mapcount_ptr() and
6874 		 * compound_order() and the second tail page stores
6875 		 * compound_pincount_ptr(). Call prep_compound_head() after
6876 		 * the first and second tail pages have been initialized to
6877 		 * not have the data overwritten.
6878 		 */
6879 		if (pfn == head_pfn + 2)
6880 			prep_compound_head(head, order);
6881 	}
6882 }
6883 
6884 void __ref memmap_init_zone_device(struct zone *zone,
6885 				   unsigned long start_pfn,
6886 				   unsigned long nr_pages,
6887 				   struct dev_pagemap *pgmap)
6888 {
6889 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6890 	struct pglist_data *pgdat = zone->zone_pgdat;
6891 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6892 	unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
6893 	unsigned long zone_idx = zone_idx(zone);
6894 	unsigned long start = jiffies;
6895 	int nid = pgdat->node_id;
6896 
6897 	if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE))
6898 		return;
6899 
6900 	/*
6901 	 * The call to memmap_init should have already taken care
6902 	 * of the pages reserved for the memmap, so we can just jump to
6903 	 * the end of that region and start processing the device pages.
6904 	 */
6905 	if (altmap) {
6906 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6907 		nr_pages = end_pfn - start_pfn;
6908 	}
6909 
6910 	for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
6911 		struct page *page = pfn_to_page(pfn);
6912 
6913 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6914 
6915 		if (pfns_per_compound == 1)
6916 			continue;
6917 
6918 		memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
6919 				     compound_nr_pages(altmap, pfns_per_compound));
6920 	}
6921 
6922 	pr_info("%s initialised %lu pages in %ums\n", __func__,
6923 		nr_pages, jiffies_to_msecs(jiffies - start));
6924 }
6925 
6926 #endif
6927 static void __meminit zone_init_free_lists(struct zone *zone)
6928 {
6929 	unsigned int order, t;
6930 	for_each_migratetype_order(order, t) {
6931 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6932 		zone->free_area[order].nr_free = 0;
6933 	}
6934 }
6935 
6936 /*
6937  * Only struct pages that correspond to ranges defined by memblock.memory
6938  * are zeroed and initialized by going through __init_single_page() during
6939  * memmap_init_zone_range().
6940  *
6941  * But, there could be struct pages that correspond to holes in
6942  * memblock.memory. This can happen because of the following reasons:
6943  * - physical memory bank size is not necessarily the exact multiple of the
6944  *   arbitrary section size
6945  * - early reserved memory may not be listed in memblock.memory
6946  * - memory layouts defined with memmap= kernel parameter may not align
6947  *   nicely with memmap sections
6948  *
6949  * Explicitly initialize those struct pages so that:
6950  * - PG_Reserved is set
6951  * - zone and node links point to zone and node that span the page if the
6952  *   hole is in the middle of a zone
6953  * - zone and node links point to adjacent zone/node if the hole falls on
6954  *   the zone boundary; the pages in such holes will be prepended to the
6955  *   zone/node above the hole except for the trailing pages in the last
6956  *   section that will be appended to the zone/node below.
6957  */
6958 static void __init init_unavailable_range(unsigned long spfn,
6959 					  unsigned long epfn,
6960 					  int zone, int node)
6961 {
6962 	unsigned long pfn;
6963 	u64 pgcnt = 0;
6964 
6965 	for (pfn = spfn; pfn < epfn; pfn++) {
6966 		if (!pfn_valid(pageblock_start_pfn(pfn))) {
6967 			pfn = pageblock_end_pfn(pfn) - 1;
6968 			continue;
6969 		}
6970 		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
6971 		__SetPageReserved(pfn_to_page(pfn));
6972 		pgcnt++;
6973 	}
6974 
6975 	if (pgcnt)
6976 		pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6977 			node, zone_names[zone], pgcnt);
6978 }
6979 
6980 static void __init memmap_init_zone_range(struct zone *zone,
6981 					  unsigned long start_pfn,
6982 					  unsigned long end_pfn,
6983 					  unsigned long *hole_pfn)
6984 {
6985 	unsigned long zone_start_pfn = zone->zone_start_pfn;
6986 	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6987 	int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6988 
6989 	start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6990 	end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6991 
6992 	if (start_pfn >= end_pfn)
6993 		return;
6994 
6995 	memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6996 			  zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6997 
6998 	if (*hole_pfn < start_pfn)
6999 		init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
7000 
7001 	*hole_pfn = end_pfn;
7002 }
7003 
7004 static void __init memmap_init(void)
7005 {
7006 	unsigned long start_pfn, end_pfn;
7007 	unsigned long hole_pfn = 0;
7008 	int i, j, zone_id = 0, nid;
7009 
7010 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7011 		struct pglist_data *node = NODE_DATA(nid);
7012 
7013 		for (j = 0; j < MAX_NR_ZONES; j++) {
7014 			struct zone *zone = node->node_zones + j;
7015 
7016 			if (!populated_zone(zone))
7017 				continue;
7018 
7019 			memmap_init_zone_range(zone, start_pfn, end_pfn,
7020 					       &hole_pfn);
7021 			zone_id = j;
7022 		}
7023 	}
7024 
7025 #ifdef CONFIG_SPARSEMEM
7026 	/*
7027 	 * Initialize the memory map for hole in the range [memory_end,
7028 	 * section_end].
7029 	 * Append the pages in this hole to the highest zone in the last
7030 	 * node.
7031 	 * The call to init_unavailable_range() is outside the ifdef to
7032 	 * silence the compiler warining about zone_id set but not used;
7033 	 * for FLATMEM it is a nop anyway
7034 	 */
7035 	end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
7036 	if (hole_pfn < end_pfn)
7037 #endif
7038 		init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
7039 }
7040 
7041 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
7042 			  phys_addr_t min_addr, int nid, bool exact_nid)
7043 {
7044 	void *ptr;
7045 
7046 	if (exact_nid)
7047 		ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
7048 						   MEMBLOCK_ALLOC_ACCESSIBLE,
7049 						   nid);
7050 	else
7051 		ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
7052 						 MEMBLOCK_ALLOC_ACCESSIBLE,
7053 						 nid);
7054 
7055 	if (ptr && size > 0)
7056 		page_init_poison(ptr, size);
7057 
7058 	return ptr;
7059 }
7060 
7061 static int zone_batchsize(struct zone *zone)
7062 {
7063 #ifdef CONFIG_MMU
7064 	int batch;
7065 
7066 	/*
7067 	 * The number of pages to batch allocate is either ~0.1%
7068 	 * of the zone or 1MB, whichever is smaller. The batch
7069 	 * size is striking a balance between allocation latency
7070 	 * and zone lock contention.
7071 	 */
7072 	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
7073 	batch /= 4;		/* We effectively *= 4 below */
7074 	if (batch < 1)
7075 		batch = 1;
7076 
7077 	/*
7078 	 * Clamp the batch to a 2^n - 1 value. Having a power
7079 	 * of 2 value was found to be more likely to have
7080 	 * suboptimal cache aliasing properties in some cases.
7081 	 *
7082 	 * For example if 2 tasks are alternately allocating
7083 	 * batches of pages, one task can end up with a lot
7084 	 * of pages of one half of the possible page colors
7085 	 * and the other with pages of the other colors.
7086 	 */
7087 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
7088 
7089 	return batch;
7090 
7091 #else
7092 	/* The deferral and batching of frees should be suppressed under NOMMU
7093 	 * conditions.
7094 	 *
7095 	 * The problem is that NOMMU needs to be able to allocate large chunks
7096 	 * of contiguous memory as there's no hardware page translation to
7097 	 * assemble apparent contiguous memory from discontiguous pages.
7098 	 *
7099 	 * Queueing large contiguous runs of pages for batching, however,
7100 	 * causes the pages to actually be freed in smaller chunks.  As there
7101 	 * can be a significant delay between the individual batches being
7102 	 * recycled, this leads to the once large chunks of space being
7103 	 * fragmented and becoming unavailable for high-order allocations.
7104 	 */
7105 	return 0;
7106 #endif
7107 }
7108 
7109 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
7110 {
7111 #ifdef CONFIG_MMU
7112 	int high;
7113 	int nr_split_cpus;
7114 	unsigned long total_pages;
7115 
7116 	if (!percpu_pagelist_high_fraction) {
7117 		/*
7118 		 * By default, the high value of the pcp is based on the zone
7119 		 * low watermark so that if they are full then background
7120 		 * reclaim will not be started prematurely.
7121 		 */
7122 		total_pages = low_wmark_pages(zone);
7123 	} else {
7124 		/*
7125 		 * If percpu_pagelist_high_fraction is configured, the high
7126 		 * value is based on a fraction of the managed pages in the
7127 		 * zone.
7128 		 */
7129 		total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
7130 	}
7131 
7132 	/*
7133 	 * Split the high value across all online CPUs local to the zone. Note
7134 	 * that early in boot that CPUs may not be online yet and that during
7135 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
7136 	 * onlined. For memory nodes that have no CPUs, split pcp->high across
7137 	 * all online CPUs to mitigate the risk that reclaim is triggered
7138 	 * prematurely due to pages stored on pcp lists.
7139 	 */
7140 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
7141 	if (!nr_split_cpus)
7142 		nr_split_cpus = num_online_cpus();
7143 	high = total_pages / nr_split_cpus;
7144 
7145 	/*
7146 	 * Ensure high is at least batch*4. The multiple is based on the
7147 	 * historical relationship between high and batch.
7148 	 */
7149 	high = max(high, batch << 2);
7150 
7151 	return high;
7152 #else
7153 	return 0;
7154 #endif
7155 }
7156 
7157 /*
7158  * pcp->high and pcp->batch values are related and generally batch is lower
7159  * than high. They are also related to pcp->count such that count is lower
7160  * than high, and as soon as it reaches high, the pcplist is flushed.
7161  *
7162  * However, guaranteeing these relations at all times would require e.g. write
7163  * barriers here but also careful usage of read barriers at the read side, and
7164  * thus be prone to error and bad for performance. Thus the update only prevents
7165  * store tearing. Any new users of pcp->batch and pcp->high should ensure they
7166  * can cope with those fields changing asynchronously, and fully trust only the
7167  * pcp->count field on the local CPU with interrupts disabled.
7168  *
7169  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
7170  * outside of boot time (or some other assurance that no concurrent updaters
7171  * exist).
7172  */
7173 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
7174 		unsigned long batch)
7175 {
7176 	WRITE_ONCE(pcp->batch, batch);
7177 	WRITE_ONCE(pcp->high, high);
7178 }
7179 
7180 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
7181 {
7182 	int pindex;
7183 
7184 	memset(pcp, 0, sizeof(*pcp));
7185 	memset(pzstats, 0, sizeof(*pzstats));
7186 
7187 	spin_lock_init(&pcp->lock);
7188 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
7189 		INIT_LIST_HEAD(&pcp->lists[pindex]);
7190 
7191 	/*
7192 	 * Set batch and high values safe for a boot pageset. A true percpu
7193 	 * pageset's initialization will update them subsequently. Here we don't
7194 	 * need to be as careful as pageset_update() as nobody can access the
7195 	 * pageset yet.
7196 	 */
7197 	pcp->high = BOOT_PAGESET_HIGH;
7198 	pcp->batch = BOOT_PAGESET_BATCH;
7199 	pcp->free_factor = 0;
7200 }
7201 
7202 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
7203 		unsigned long batch)
7204 {
7205 	struct per_cpu_pages *pcp;
7206 	int cpu;
7207 
7208 	for_each_possible_cpu(cpu) {
7209 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7210 		pageset_update(pcp, high, batch);
7211 	}
7212 }
7213 
7214 /*
7215  * Calculate and set new high and batch values for all per-cpu pagesets of a
7216  * zone based on the zone's size.
7217  */
7218 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
7219 {
7220 	int new_high, new_batch;
7221 
7222 	new_batch = max(1, zone_batchsize(zone));
7223 	new_high = zone_highsize(zone, new_batch, cpu_online);
7224 
7225 	if (zone->pageset_high == new_high &&
7226 	    zone->pageset_batch == new_batch)
7227 		return;
7228 
7229 	zone->pageset_high = new_high;
7230 	zone->pageset_batch = new_batch;
7231 
7232 	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
7233 }
7234 
7235 void __meminit setup_zone_pageset(struct zone *zone)
7236 {
7237 	int cpu;
7238 
7239 	/* Size may be 0 on !SMP && !NUMA */
7240 	if (sizeof(struct per_cpu_zonestat) > 0)
7241 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
7242 
7243 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
7244 	for_each_possible_cpu(cpu) {
7245 		struct per_cpu_pages *pcp;
7246 		struct per_cpu_zonestat *pzstats;
7247 
7248 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7249 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7250 		per_cpu_pages_init(pcp, pzstats);
7251 	}
7252 
7253 	zone_set_pageset_high_and_batch(zone, 0);
7254 }
7255 
7256 /*
7257  * The zone indicated has a new number of managed_pages; batch sizes and percpu
7258  * page high values need to be recalculated.
7259  */
7260 static void zone_pcp_update(struct zone *zone, int cpu_online)
7261 {
7262 	mutex_lock(&pcp_batch_high_lock);
7263 	zone_set_pageset_high_and_batch(zone, cpu_online);
7264 	mutex_unlock(&pcp_batch_high_lock);
7265 }
7266 
7267 /*
7268  * Allocate per cpu pagesets and initialize them.
7269  * Before this call only boot pagesets were available.
7270  */
7271 void __init setup_per_cpu_pageset(void)
7272 {
7273 	struct pglist_data *pgdat;
7274 	struct zone *zone;
7275 	int __maybe_unused cpu;
7276 
7277 	for_each_populated_zone(zone)
7278 		setup_zone_pageset(zone);
7279 
7280 #ifdef CONFIG_NUMA
7281 	/*
7282 	 * Unpopulated zones continue using the boot pagesets.
7283 	 * The numa stats for these pagesets need to be reset.
7284 	 * Otherwise, they will end up skewing the stats of
7285 	 * the nodes these zones are associated with.
7286 	 */
7287 	for_each_possible_cpu(cpu) {
7288 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
7289 		memset(pzstats->vm_numa_event, 0,
7290 		       sizeof(pzstats->vm_numa_event));
7291 	}
7292 #endif
7293 
7294 	for_each_online_pgdat(pgdat)
7295 		pgdat->per_cpu_nodestats =
7296 			alloc_percpu(struct per_cpu_nodestat);
7297 }
7298 
7299 static __meminit void zone_pcp_init(struct zone *zone)
7300 {
7301 	/*
7302 	 * per cpu subsystem is not up at this point. The following code
7303 	 * relies on the ability of the linker to provide the
7304 	 * offset of a (static) per cpu variable into the per cpu area.
7305 	 */
7306 	zone->per_cpu_pageset = &boot_pageset;
7307 	zone->per_cpu_zonestats = &boot_zonestats;
7308 	zone->pageset_high = BOOT_PAGESET_HIGH;
7309 	zone->pageset_batch = BOOT_PAGESET_BATCH;
7310 
7311 	if (populated_zone(zone))
7312 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7313 			 zone->present_pages, zone_batchsize(zone));
7314 }
7315 
7316 void __meminit init_currently_empty_zone(struct zone *zone,
7317 					unsigned long zone_start_pfn,
7318 					unsigned long size)
7319 {
7320 	struct pglist_data *pgdat = zone->zone_pgdat;
7321 	int zone_idx = zone_idx(zone) + 1;
7322 
7323 	if (zone_idx > pgdat->nr_zones)
7324 		pgdat->nr_zones = zone_idx;
7325 
7326 	zone->zone_start_pfn = zone_start_pfn;
7327 
7328 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
7329 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
7330 			pgdat->node_id,
7331 			(unsigned long)zone_idx(zone),
7332 			zone_start_pfn, (zone_start_pfn + size));
7333 
7334 	zone_init_free_lists(zone);
7335 	zone->initialized = 1;
7336 }
7337 
7338 /**
7339  * get_pfn_range_for_nid - Return the start and end page frames for a node
7340  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7341  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7342  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7343  *
7344  * It returns the start and end page frame of a node based on information
7345  * provided by memblock_set_node(). If called for a node
7346  * with no available memory, a warning is printed and the start and end
7347  * PFNs will be 0.
7348  */
7349 void __init get_pfn_range_for_nid(unsigned int nid,
7350 			unsigned long *start_pfn, unsigned long *end_pfn)
7351 {
7352 	unsigned long this_start_pfn, this_end_pfn;
7353 	int i;
7354 
7355 	*start_pfn = -1UL;
7356 	*end_pfn = 0;
7357 
7358 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7359 		*start_pfn = min(*start_pfn, this_start_pfn);
7360 		*end_pfn = max(*end_pfn, this_end_pfn);
7361 	}
7362 
7363 	if (*start_pfn == -1UL)
7364 		*start_pfn = 0;
7365 }
7366 
7367 /*
7368  * This finds a zone that can be used for ZONE_MOVABLE pages. The
7369  * assumption is made that zones within a node are ordered in monotonic
7370  * increasing memory addresses so that the "highest" populated zone is used
7371  */
7372 static void __init find_usable_zone_for_movable(void)
7373 {
7374 	int zone_index;
7375 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7376 		if (zone_index == ZONE_MOVABLE)
7377 			continue;
7378 
7379 		if (arch_zone_highest_possible_pfn[zone_index] >
7380 				arch_zone_lowest_possible_pfn[zone_index])
7381 			break;
7382 	}
7383 
7384 	VM_BUG_ON(zone_index == -1);
7385 	movable_zone = zone_index;
7386 }
7387 
7388 /*
7389  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7390  * because it is sized independent of architecture. Unlike the other zones,
7391  * the starting point for ZONE_MOVABLE is not fixed. It may be different
7392  * in each node depending on the size of each node and how evenly kernelcore
7393  * is distributed. This helper function adjusts the zone ranges
7394  * provided by the architecture for a given node by using the end of the
7395  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7396  * zones within a node are in order of monotonic increases memory addresses
7397  */
7398 static void __init adjust_zone_range_for_zone_movable(int nid,
7399 					unsigned long zone_type,
7400 					unsigned long node_start_pfn,
7401 					unsigned long node_end_pfn,
7402 					unsigned long *zone_start_pfn,
7403 					unsigned long *zone_end_pfn)
7404 {
7405 	/* Only adjust if ZONE_MOVABLE is on this node */
7406 	if (zone_movable_pfn[nid]) {
7407 		/* Size ZONE_MOVABLE */
7408 		if (zone_type == ZONE_MOVABLE) {
7409 			*zone_start_pfn = zone_movable_pfn[nid];
7410 			*zone_end_pfn = min(node_end_pfn,
7411 				arch_zone_highest_possible_pfn[movable_zone]);
7412 
7413 		/* Adjust for ZONE_MOVABLE starting within this range */
7414 		} else if (!mirrored_kernelcore &&
7415 			*zone_start_pfn < zone_movable_pfn[nid] &&
7416 			*zone_end_pfn > zone_movable_pfn[nid]) {
7417 			*zone_end_pfn = zone_movable_pfn[nid];
7418 
7419 		/* Check if this whole range is within ZONE_MOVABLE */
7420 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
7421 			*zone_start_pfn = *zone_end_pfn;
7422 	}
7423 }
7424 
7425 /*
7426  * Return the number of pages a zone spans in a node, including holes
7427  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7428  */
7429 static unsigned long __init zone_spanned_pages_in_node(int nid,
7430 					unsigned long zone_type,
7431 					unsigned long node_start_pfn,
7432 					unsigned long node_end_pfn,
7433 					unsigned long *zone_start_pfn,
7434 					unsigned long *zone_end_pfn)
7435 {
7436 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7437 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7438 	/* When hotadd a new node from cpu_up(), the node should be empty */
7439 	if (!node_start_pfn && !node_end_pfn)
7440 		return 0;
7441 
7442 	/* Get the start and end of the zone */
7443 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7444 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7445 	adjust_zone_range_for_zone_movable(nid, zone_type,
7446 				node_start_pfn, node_end_pfn,
7447 				zone_start_pfn, zone_end_pfn);
7448 
7449 	/* Check that this node has pages within the zone's required range */
7450 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7451 		return 0;
7452 
7453 	/* Move the zone boundaries inside the node if necessary */
7454 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7455 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7456 
7457 	/* Return the spanned pages */
7458 	return *zone_end_pfn - *zone_start_pfn;
7459 }
7460 
7461 /*
7462  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7463  * then all holes in the requested range will be accounted for.
7464  */
7465 unsigned long __init __absent_pages_in_range(int nid,
7466 				unsigned long range_start_pfn,
7467 				unsigned long range_end_pfn)
7468 {
7469 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
7470 	unsigned long start_pfn, end_pfn;
7471 	int i;
7472 
7473 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7474 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7475 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7476 		nr_absent -= end_pfn - start_pfn;
7477 	}
7478 	return nr_absent;
7479 }
7480 
7481 /**
7482  * absent_pages_in_range - Return number of page frames in holes within a range
7483  * @start_pfn: The start PFN to start searching for holes
7484  * @end_pfn: The end PFN to stop searching for holes
7485  *
7486  * Return: the number of pages frames in memory holes within a range.
7487  */
7488 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7489 							unsigned long end_pfn)
7490 {
7491 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7492 }
7493 
7494 /* Return the number of page frames in holes in a zone on a node */
7495 static unsigned long __init zone_absent_pages_in_node(int nid,
7496 					unsigned long zone_type,
7497 					unsigned long node_start_pfn,
7498 					unsigned long node_end_pfn)
7499 {
7500 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7501 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7502 	unsigned long zone_start_pfn, zone_end_pfn;
7503 	unsigned long nr_absent;
7504 
7505 	/* When hotadd a new node from cpu_up(), the node should be empty */
7506 	if (!node_start_pfn && !node_end_pfn)
7507 		return 0;
7508 
7509 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7510 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7511 
7512 	adjust_zone_range_for_zone_movable(nid, zone_type,
7513 			node_start_pfn, node_end_pfn,
7514 			&zone_start_pfn, &zone_end_pfn);
7515 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7516 
7517 	/*
7518 	 * ZONE_MOVABLE handling.
7519 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7520 	 * and vice versa.
7521 	 */
7522 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7523 		unsigned long start_pfn, end_pfn;
7524 		struct memblock_region *r;
7525 
7526 		for_each_mem_region(r) {
7527 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
7528 					  zone_start_pfn, zone_end_pfn);
7529 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
7530 					zone_start_pfn, zone_end_pfn);
7531 
7532 			if (zone_type == ZONE_MOVABLE &&
7533 			    memblock_is_mirror(r))
7534 				nr_absent += end_pfn - start_pfn;
7535 
7536 			if (zone_type == ZONE_NORMAL &&
7537 			    !memblock_is_mirror(r))
7538 				nr_absent += end_pfn - start_pfn;
7539 		}
7540 	}
7541 
7542 	return nr_absent;
7543 }
7544 
7545 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7546 						unsigned long node_start_pfn,
7547 						unsigned long node_end_pfn)
7548 {
7549 	unsigned long realtotalpages = 0, totalpages = 0;
7550 	enum zone_type i;
7551 
7552 	for (i = 0; i < MAX_NR_ZONES; i++) {
7553 		struct zone *zone = pgdat->node_zones + i;
7554 		unsigned long zone_start_pfn, zone_end_pfn;
7555 		unsigned long spanned, absent;
7556 		unsigned long size, real_size;
7557 
7558 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7559 						     node_start_pfn,
7560 						     node_end_pfn,
7561 						     &zone_start_pfn,
7562 						     &zone_end_pfn);
7563 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
7564 						   node_start_pfn,
7565 						   node_end_pfn);
7566 
7567 		size = spanned;
7568 		real_size = size - absent;
7569 
7570 		if (size)
7571 			zone->zone_start_pfn = zone_start_pfn;
7572 		else
7573 			zone->zone_start_pfn = 0;
7574 		zone->spanned_pages = size;
7575 		zone->present_pages = real_size;
7576 #if defined(CONFIG_MEMORY_HOTPLUG)
7577 		zone->present_early_pages = real_size;
7578 #endif
7579 
7580 		totalpages += size;
7581 		realtotalpages += real_size;
7582 	}
7583 
7584 	pgdat->node_spanned_pages = totalpages;
7585 	pgdat->node_present_pages = realtotalpages;
7586 	pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7587 }
7588 
7589 #ifndef CONFIG_SPARSEMEM
7590 /*
7591  * Calculate the size of the zone->blockflags rounded to an unsigned long
7592  * Start by making sure zonesize is a multiple of pageblock_order by rounding
7593  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7594  * round what is now in bits to nearest long in bits, then return it in
7595  * bytes.
7596  */
7597 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7598 {
7599 	unsigned long usemapsize;
7600 
7601 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7602 	usemapsize = roundup(zonesize, pageblock_nr_pages);
7603 	usemapsize = usemapsize >> pageblock_order;
7604 	usemapsize *= NR_PAGEBLOCK_BITS;
7605 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7606 
7607 	return usemapsize / 8;
7608 }
7609 
7610 static void __ref setup_usemap(struct zone *zone)
7611 {
7612 	unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7613 					       zone->spanned_pages);
7614 	zone->pageblock_flags = NULL;
7615 	if (usemapsize) {
7616 		zone->pageblock_flags =
7617 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7618 					    zone_to_nid(zone));
7619 		if (!zone->pageblock_flags)
7620 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7621 			      usemapsize, zone->name, zone_to_nid(zone));
7622 	}
7623 }
7624 #else
7625 static inline void setup_usemap(struct zone *zone) {}
7626 #endif /* CONFIG_SPARSEMEM */
7627 
7628 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7629 
7630 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7631 void __init set_pageblock_order(void)
7632 {
7633 	unsigned int order = MAX_ORDER - 1;
7634 
7635 	/* Check that pageblock_nr_pages has not already been setup */
7636 	if (pageblock_order)
7637 		return;
7638 
7639 	/* Don't let pageblocks exceed the maximum allocation granularity. */
7640 	if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
7641 		order = HUGETLB_PAGE_ORDER;
7642 
7643 	/*
7644 	 * Assume the largest contiguous order of interest is a huge page.
7645 	 * This value may be variable depending on boot parameters on IA64 and
7646 	 * powerpc.
7647 	 */
7648 	pageblock_order = order;
7649 }
7650 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7651 
7652 /*
7653  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7654  * is unused as pageblock_order is set at compile-time. See
7655  * include/linux/pageblock-flags.h for the values of pageblock_order based on
7656  * the kernel config
7657  */
7658 void __init set_pageblock_order(void)
7659 {
7660 }
7661 
7662 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7663 
7664 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7665 						unsigned long present_pages)
7666 {
7667 	unsigned long pages = spanned_pages;
7668 
7669 	/*
7670 	 * Provide a more accurate estimation if there are holes within
7671 	 * the zone and SPARSEMEM is in use. If there are holes within the
7672 	 * zone, each populated memory region may cost us one or two extra
7673 	 * memmap pages due to alignment because memmap pages for each
7674 	 * populated regions may not be naturally aligned on page boundary.
7675 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7676 	 */
7677 	if (spanned_pages > present_pages + (present_pages >> 4) &&
7678 	    IS_ENABLED(CONFIG_SPARSEMEM))
7679 		pages = present_pages;
7680 
7681 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7682 }
7683 
7684 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
7685 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7686 {
7687 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7688 
7689 	spin_lock_init(&ds_queue->split_queue_lock);
7690 	INIT_LIST_HEAD(&ds_queue->split_queue);
7691 	ds_queue->split_queue_len = 0;
7692 }
7693 #else
7694 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7695 #endif
7696 
7697 #ifdef CONFIG_COMPACTION
7698 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7699 {
7700 	init_waitqueue_head(&pgdat->kcompactd_wait);
7701 }
7702 #else
7703 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7704 #endif
7705 
7706 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7707 {
7708 	int i;
7709 
7710 	pgdat_resize_init(pgdat);
7711 	pgdat_kswapd_lock_init(pgdat);
7712 
7713 	pgdat_init_split_queue(pgdat);
7714 	pgdat_init_kcompactd(pgdat);
7715 
7716 	init_waitqueue_head(&pgdat->kswapd_wait);
7717 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
7718 
7719 	for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
7720 		init_waitqueue_head(&pgdat->reclaim_wait[i]);
7721 
7722 	pgdat_page_ext_init(pgdat);
7723 	lruvec_init(&pgdat->__lruvec);
7724 }
7725 
7726 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7727 							unsigned long remaining_pages)
7728 {
7729 	atomic_long_set(&zone->managed_pages, remaining_pages);
7730 	zone_set_nid(zone, nid);
7731 	zone->name = zone_names[idx];
7732 	zone->zone_pgdat = NODE_DATA(nid);
7733 	spin_lock_init(&zone->lock);
7734 	zone_seqlock_init(zone);
7735 	zone_pcp_init(zone);
7736 }
7737 
7738 /*
7739  * Set up the zone data structures
7740  * - init pgdat internals
7741  * - init all zones belonging to this node
7742  *
7743  * NOTE: this function is only called during memory hotplug
7744  */
7745 #ifdef CONFIG_MEMORY_HOTPLUG
7746 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
7747 {
7748 	int nid = pgdat->node_id;
7749 	enum zone_type z;
7750 	int cpu;
7751 
7752 	pgdat_init_internals(pgdat);
7753 
7754 	if (pgdat->per_cpu_nodestats == &boot_nodestats)
7755 		pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
7756 
7757 	/*
7758 	 * Reset the nr_zones, order and highest_zoneidx before reuse.
7759 	 * Note that kswapd will init kswapd_highest_zoneidx properly
7760 	 * when it starts in the near future.
7761 	 */
7762 	pgdat->nr_zones = 0;
7763 	pgdat->kswapd_order = 0;
7764 	pgdat->kswapd_highest_zoneidx = 0;
7765 	pgdat->node_start_pfn = 0;
7766 	for_each_online_cpu(cpu) {
7767 		struct per_cpu_nodestat *p;
7768 
7769 		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
7770 		memset(p, 0, sizeof(*p));
7771 	}
7772 
7773 	for (z = 0; z < MAX_NR_ZONES; z++)
7774 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7775 }
7776 #endif
7777 
7778 /*
7779  * Set up the zone data structures:
7780  *   - mark all pages reserved
7781  *   - mark all memory queues empty
7782  *   - clear the memory bitmaps
7783  *
7784  * NOTE: pgdat should get zeroed by caller.
7785  * NOTE: this function is only called during early init.
7786  */
7787 static void __init free_area_init_core(struct pglist_data *pgdat)
7788 {
7789 	enum zone_type j;
7790 	int nid = pgdat->node_id;
7791 
7792 	pgdat_init_internals(pgdat);
7793 	pgdat->per_cpu_nodestats = &boot_nodestats;
7794 
7795 	for (j = 0; j < MAX_NR_ZONES; j++) {
7796 		struct zone *zone = pgdat->node_zones + j;
7797 		unsigned long size, freesize, memmap_pages;
7798 
7799 		size = zone->spanned_pages;
7800 		freesize = zone->present_pages;
7801 
7802 		/*
7803 		 * Adjust freesize so that it accounts for how much memory
7804 		 * is used by this zone for memmap. This affects the watermark
7805 		 * and per-cpu initialisations
7806 		 */
7807 		memmap_pages = calc_memmap_size(size, freesize);
7808 		if (!is_highmem_idx(j)) {
7809 			if (freesize >= memmap_pages) {
7810 				freesize -= memmap_pages;
7811 				if (memmap_pages)
7812 					pr_debug("  %s zone: %lu pages used for memmap\n",
7813 						 zone_names[j], memmap_pages);
7814 			} else
7815 				pr_warn("  %s zone: %lu memmap pages exceeds freesize %lu\n",
7816 					zone_names[j], memmap_pages, freesize);
7817 		}
7818 
7819 		/* Account for reserved pages */
7820 		if (j == 0 && freesize > dma_reserve) {
7821 			freesize -= dma_reserve;
7822 			pr_debug("  %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7823 		}
7824 
7825 		if (!is_highmem_idx(j))
7826 			nr_kernel_pages += freesize;
7827 		/* Charge for highmem memmap if there are enough kernel pages */
7828 		else if (nr_kernel_pages > memmap_pages * 2)
7829 			nr_kernel_pages -= memmap_pages;
7830 		nr_all_pages += freesize;
7831 
7832 		/*
7833 		 * Set an approximate value for lowmem here, it will be adjusted
7834 		 * when the bootmem allocator frees pages into the buddy system.
7835 		 * And all highmem pages will be managed by the buddy system.
7836 		 */
7837 		zone_init_internals(zone, j, nid, freesize);
7838 
7839 		if (!size)
7840 			continue;
7841 
7842 		set_pageblock_order();
7843 		setup_usemap(zone);
7844 		init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7845 	}
7846 }
7847 
7848 #ifdef CONFIG_FLATMEM
7849 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
7850 {
7851 	unsigned long __maybe_unused start = 0;
7852 	unsigned long __maybe_unused offset = 0;
7853 
7854 	/* Skip empty nodes */
7855 	if (!pgdat->node_spanned_pages)
7856 		return;
7857 
7858 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7859 	offset = pgdat->node_start_pfn - start;
7860 	/* ia64 gets its own node_mem_map, before this, without bootmem */
7861 	if (!pgdat->node_mem_map) {
7862 		unsigned long size, end;
7863 		struct page *map;
7864 
7865 		/*
7866 		 * The zone's endpoints aren't required to be MAX_ORDER
7867 		 * aligned but the node_mem_map endpoints must be in order
7868 		 * for the buddy allocator to function correctly.
7869 		 */
7870 		end = pgdat_end_pfn(pgdat);
7871 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
7872 		size =  (end - start) * sizeof(struct page);
7873 		map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7874 				   pgdat->node_id, false);
7875 		if (!map)
7876 			panic("Failed to allocate %ld bytes for node %d memory map\n",
7877 			      size, pgdat->node_id);
7878 		pgdat->node_mem_map = map + offset;
7879 	}
7880 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7881 				__func__, pgdat->node_id, (unsigned long)pgdat,
7882 				(unsigned long)pgdat->node_mem_map);
7883 #ifndef CONFIG_NUMA
7884 	/*
7885 	 * With no DISCONTIG, the global mem_map is just set as node 0's
7886 	 */
7887 	if (pgdat == NODE_DATA(0)) {
7888 		mem_map = NODE_DATA(0)->node_mem_map;
7889 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7890 			mem_map -= offset;
7891 	}
7892 #endif
7893 }
7894 #else
7895 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
7896 #endif /* CONFIG_FLATMEM */
7897 
7898 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7899 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7900 {
7901 	pgdat->first_deferred_pfn = ULONG_MAX;
7902 }
7903 #else
7904 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7905 #endif
7906 
7907 static void __init free_area_init_node(int nid)
7908 {
7909 	pg_data_t *pgdat = NODE_DATA(nid);
7910 	unsigned long start_pfn = 0;
7911 	unsigned long end_pfn = 0;
7912 
7913 	/* pg_data_t should be reset to zero when it's allocated */
7914 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7915 
7916 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7917 
7918 	pgdat->node_id = nid;
7919 	pgdat->node_start_pfn = start_pfn;
7920 	pgdat->per_cpu_nodestats = NULL;
7921 
7922 	if (start_pfn != end_pfn) {
7923 		pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7924 			(u64)start_pfn << PAGE_SHIFT,
7925 			end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7926 	} else {
7927 		pr_info("Initmem setup node %d as memoryless\n", nid);
7928 	}
7929 
7930 	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7931 
7932 	alloc_node_mem_map(pgdat);
7933 	pgdat_set_deferred_range(pgdat);
7934 
7935 	free_area_init_core(pgdat);
7936 }
7937 
7938 static void __init free_area_init_memoryless_node(int nid)
7939 {
7940 	free_area_init_node(nid);
7941 }
7942 
7943 #if MAX_NUMNODES > 1
7944 /*
7945  * Figure out the number of possible node ids.
7946  */
7947 void __init setup_nr_node_ids(void)
7948 {
7949 	unsigned int highest;
7950 
7951 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7952 	nr_node_ids = highest + 1;
7953 }
7954 #endif
7955 
7956 /**
7957  * node_map_pfn_alignment - determine the maximum internode alignment
7958  *
7959  * This function should be called after node map is populated and sorted.
7960  * It calculates the maximum power of two alignment which can distinguish
7961  * all the nodes.
7962  *
7963  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7964  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7965  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7966  * shifted, 1GiB is enough and this function will indicate so.
7967  *
7968  * This is used to test whether pfn -> nid mapping of the chosen memory
7969  * model has fine enough granularity to avoid incorrect mapping for the
7970  * populated node map.
7971  *
7972  * Return: the determined alignment in pfn's.  0 if there is no alignment
7973  * requirement (single node).
7974  */
7975 unsigned long __init node_map_pfn_alignment(void)
7976 {
7977 	unsigned long accl_mask = 0, last_end = 0;
7978 	unsigned long start, end, mask;
7979 	int last_nid = NUMA_NO_NODE;
7980 	int i, nid;
7981 
7982 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7983 		if (!start || last_nid < 0 || last_nid == nid) {
7984 			last_nid = nid;
7985 			last_end = end;
7986 			continue;
7987 		}
7988 
7989 		/*
7990 		 * Start with a mask granular enough to pin-point to the
7991 		 * start pfn and tick off bits one-by-one until it becomes
7992 		 * too coarse to separate the current node from the last.
7993 		 */
7994 		mask = ~((1 << __ffs(start)) - 1);
7995 		while (mask && last_end <= (start & (mask << 1)))
7996 			mask <<= 1;
7997 
7998 		/* accumulate all internode masks */
7999 		accl_mask |= mask;
8000 	}
8001 
8002 	/* convert mask to number of pages */
8003 	return ~accl_mask + 1;
8004 }
8005 
8006 /*
8007  * early_calculate_totalpages()
8008  * Sum pages in active regions for movable zone.
8009  * Populate N_MEMORY for calculating usable_nodes.
8010  */
8011 static unsigned long __init early_calculate_totalpages(void)
8012 {
8013 	unsigned long totalpages = 0;
8014 	unsigned long start_pfn, end_pfn;
8015 	int i, nid;
8016 
8017 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8018 		unsigned long pages = end_pfn - start_pfn;
8019 
8020 		totalpages += pages;
8021 		if (pages)
8022 			node_set_state(nid, N_MEMORY);
8023 	}
8024 	return totalpages;
8025 }
8026 
8027 /*
8028  * Find the PFN the Movable zone begins in each node. Kernel memory
8029  * is spread evenly between nodes as long as the nodes have enough
8030  * memory. When they don't, some nodes will have more kernelcore than
8031  * others
8032  */
8033 static void __init find_zone_movable_pfns_for_nodes(void)
8034 {
8035 	int i, nid;
8036 	unsigned long usable_startpfn;
8037 	unsigned long kernelcore_node, kernelcore_remaining;
8038 	/* save the state before borrow the nodemask */
8039 	nodemask_t saved_node_state = node_states[N_MEMORY];
8040 	unsigned long totalpages = early_calculate_totalpages();
8041 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
8042 	struct memblock_region *r;
8043 
8044 	/* Need to find movable_zone earlier when movable_node is specified. */
8045 	find_usable_zone_for_movable();
8046 
8047 	/*
8048 	 * If movable_node is specified, ignore kernelcore and movablecore
8049 	 * options.
8050 	 */
8051 	if (movable_node_is_enabled()) {
8052 		for_each_mem_region(r) {
8053 			if (!memblock_is_hotpluggable(r))
8054 				continue;
8055 
8056 			nid = memblock_get_region_node(r);
8057 
8058 			usable_startpfn = PFN_DOWN(r->base);
8059 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8060 				min(usable_startpfn, zone_movable_pfn[nid]) :
8061 				usable_startpfn;
8062 		}
8063 
8064 		goto out2;
8065 	}
8066 
8067 	/*
8068 	 * If kernelcore=mirror is specified, ignore movablecore option
8069 	 */
8070 	if (mirrored_kernelcore) {
8071 		bool mem_below_4gb_not_mirrored = false;
8072 
8073 		for_each_mem_region(r) {
8074 			if (memblock_is_mirror(r))
8075 				continue;
8076 
8077 			nid = memblock_get_region_node(r);
8078 
8079 			usable_startpfn = memblock_region_memory_base_pfn(r);
8080 
8081 			if (usable_startpfn < PHYS_PFN(SZ_4G)) {
8082 				mem_below_4gb_not_mirrored = true;
8083 				continue;
8084 			}
8085 
8086 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8087 				min(usable_startpfn, zone_movable_pfn[nid]) :
8088 				usable_startpfn;
8089 		}
8090 
8091 		if (mem_below_4gb_not_mirrored)
8092 			pr_warn("This configuration results in unmirrored kernel memory.\n");
8093 
8094 		goto out2;
8095 	}
8096 
8097 	/*
8098 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
8099 	 * amount of necessary memory.
8100 	 */
8101 	if (required_kernelcore_percent)
8102 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
8103 				       10000UL;
8104 	if (required_movablecore_percent)
8105 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
8106 					10000UL;
8107 
8108 	/*
8109 	 * If movablecore= was specified, calculate what size of
8110 	 * kernelcore that corresponds so that memory usable for
8111 	 * any allocation type is evenly spread. If both kernelcore
8112 	 * and movablecore are specified, then the value of kernelcore
8113 	 * will be used for required_kernelcore if it's greater than
8114 	 * what movablecore would have allowed.
8115 	 */
8116 	if (required_movablecore) {
8117 		unsigned long corepages;
8118 
8119 		/*
8120 		 * Round-up so that ZONE_MOVABLE is at least as large as what
8121 		 * was requested by the user
8122 		 */
8123 		required_movablecore =
8124 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
8125 		required_movablecore = min(totalpages, required_movablecore);
8126 		corepages = totalpages - required_movablecore;
8127 
8128 		required_kernelcore = max(required_kernelcore, corepages);
8129 	}
8130 
8131 	/*
8132 	 * If kernelcore was not specified or kernelcore size is larger
8133 	 * than totalpages, there is no ZONE_MOVABLE.
8134 	 */
8135 	if (!required_kernelcore || required_kernelcore >= totalpages)
8136 		goto out;
8137 
8138 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
8139 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
8140 
8141 restart:
8142 	/* Spread kernelcore memory as evenly as possible throughout nodes */
8143 	kernelcore_node = required_kernelcore / usable_nodes;
8144 	for_each_node_state(nid, N_MEMORY) {
8145 		unsigned long start_pfn, end_pfn;
8146 
8147 		/*
8148 		 * Recalculate kernelcore_node if the division per node
8149 		 * now exceeds what is necessary to satisfy the requested
8150 		 * amount of memory for the kernel
8151 		 */
8152 		if (required_kernelcore < kernelcore_node)
8153 			kernelcore_node = required_kernelcore / usable_nodes;
8154 
8155 		/*
8156 		 * As the map is walked, we track how much memory is usable
8157 		 * by the kernel using kernelcore_remaining. When it is
8158 		 * 0, the rest of the node is usable by ZONE_MOVABLE
8159 		 */
8160 		kernelcore_remaining = kernelcore_node;
8161 
8162 		/* Go through each range of PFNs within this node */
8163 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
8164 			unsigned long size_pages;
8165 
8166 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
8167 			if (start_pfn >= end_pfn)
8168 				continue;
8169 
8170 			/* Account for what is only usable for kernelcore */
8171 			if (start_pfn < usable_startpfn) {
8172 				unsigned long kernel_pages;
8173 				kernel_pages = min(end_pfn, usable_startpfn)
8174 								- start_pfn;
8175 
8176 				kernelcore_remaining -= min(kernel_pages,
8177 							kernelcore_remaining);
8178 				required_kernelcore -= min(kernel_pages,
8179 							required_kernelcore);
8180 
8181 				/* Continue if range is now fully accounted */
8182 				if (end_pfn <= usable_startpfn) {
8183 
8184 					/*
8185 					 * Push zone_movable_pfn to the end so
8186 					 * that if we have to rebalance
8187 					 * kernelcore across nodes, we will
8188 					 * not double account here
8189 					 */
8190 					zone_movable_pfn[nid] = end_pfn;
8191 					continue;
8192 				}
8193 				start_pfn = usable_startpfn;
8194 			}
8195 
8196 			/*
8197 			 * The usable PFN range for ZONE_MOVABLE is from
8198 			 * start_pfn->end_pfn. Calculate size_pages as the
8199 			 * number of pages used as kernelcore
8200 			 */
8201 			size_pages = end_pfn - start_pfn;
8202 			if (size_pages > kernelcore_remaining)
8203 				size_pages = kernelcore_remaining;
8204 			zone_movable_pfn[nid] = start_pfn + size_pages;
8205 
8206 			/*
8207 			 * Some kernelcore has been met, update counts and
8208 			 * break if the kernelcore for this node has been
8209 			 * satisfied
8210 			 */
8211 			required_kernelcore -= min(required_kernelcore,
8212 								size_pages);
8213 			kernelcore_remaining -= size_pages;
8214 			if (!kernelcore_remaining)
8215 				break;
8216 		}
8217 	}
8218 
8219 	/*
8220 	 * If there is still required_kernelcore, we do another pass with one
8221 	 * less node in the count. This will push zone_movable_pfn[nid] further
8222 	 * along on the nodes that still have memory until kernelcore is
8223 	 * satisfied
8224 	 */
8225 	usable_nodes--;
8226 	if (usable_nodes && required_kernelcore > usable_nodes)
8227 		goto restart;
8228 
8229 out2:
8230 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
8231 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
8232 		unsigned long start_pfn, end_pfn;
8233 
8234 		zone_movable_pfn[nid] =
8235 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
8236 
8237 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8238 		if (zone_movable_pfn[nid] >= end_pfn)
8239 			zone_movable_pfn[nid] = 0;
8240 	}
8241 
8242 out:
8243 	/* restore the node_state */
8244 	node_states[N_MEMORY] = saved_node_state;
8245 }
8246 
8247 /* Any regular or high memory on that node ? */
8248 static void check_for_memory(pg_data_t *pgdat, int nid)
8249 {
8250 	enum zone_type zone_type;
8251 
8252 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
8253 		struct zone *zone = &pgdat->node_zones[zone_type];
8254 		if (populated_zone(zone)) {
8255 			if (IS_ENABLED(CONFIG_HIGHMEM))
8256 				node_set_state(nid, N_HIGH_MEMORY);
8257 			if (zone_type <= ZONE_NORMAL)
8258 				node_set_state(nid, N_NORMAL_MEMORY);
8259 			break;
8260 		}
8261 	}
8262 }
8263 
8264 /*
8265  * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
8266  * such cases we allow max_zone_pfn sorted in the descending order
8267  */
8268 bool __weak arch_has_descending_max_zone_pfns(void)
8269 {
8270 	return false;
8271 }
8272 
8273 /**
8274  * free_area_init - Initialise all pg_data_t and zone data
8275  * @max_zone_pfn: an array of max PFNs for each zone
8276  *
8277  * This will call free_area_init_node() for each active node in the system.
8278  * Using the page ranges provided by memblock_set_node(), the size of each
8279  * zone in each node and their holes is calculated. If the maximum PFN
8280  * between two adjacent zones match, it is assumed that the zone is empty.
8281  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
8282  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
8283  * starts where the previous one ended. For example, ZONE_DMA32 starts
8284  * at arch_max_dma_pfn.
8285  */
8286 void __init free_area_init(unsigned long *max_zone_pfn)
8287 {
8288 	unsigned long start_pfn, end_pfn;
8289 	int i, nid, zone;
8290 	bool descending;
8291 
8292 	/* Record where the zone boundaries are */
8293 	memset(arch_zone_lowest_possible_pfn, 0,
8294 				sizeof(arch_zone_lowest_possible_pfn));
8295 	memset(arch_zone_highest_possible_pfn, 0,
8296 				sizeof(arch_zone_highest_possible_pfn));
8297 
8298 	start_pfn = PHYS_PFN(memblock_start_of_DRAM());
8299 	descending = arch_has_descending_max_zone_pfns();
8300 
8301 	for (i = 0; i < MAX_NR_ZONES; i++) {
8302 		if (descending)
8303 			zone = MAX_NR_ZONES - i - 1;
8304 		else
8305 			zone = i;
8306 
8307 		if (zone == ZONE_MOVABLE)
8308 			continue;
8309 
8310 		end_pfn = max(max_zone_pfn[zone], start_pfn);
8311 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
8312 		arch_zone_highest_possible_pfn[zone] = end_pfn;
8313 
8314 		start_pfn = end_pfn;
8315 	}
8316 
8317 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
8318 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
8319 	find_zone_movable_pfns_for_nodes();
8320 
8321 	/* Print out the zone ranges */
8322 	pr_info("Zone ranges:\n");
8323 	for (i = 0; i < MAX_NR_ZONES; i++) {
8324 		if (i == ZONE_MOVABLE)
8325 			continue;
8326 		pr_info("  %-8s ", zone_names[i]);
8327 		if (arch_zone_lowest_possible_pfn[i] ==
8328 				arch_zone_highest_possible_pfn[i])
8329 			pr_cont("empty\n");
8330 		else
8331 			pr_cont("[mem %#018Lx-%#018Lx]\n",
8332 				(u64)arch_zone_lowest_possible_pfn[i]
8333 					<< PAGE_SHIFT,
8334 				((u64)arch_zone_highest_possible_pfn[i]
8335 					<< PAGE_SHIFT) - 1);
8336 	}
8337 
8338 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
8339 	pr_info("Movable zone start for each node\n");
8340 	for (i = 0; i < MAX_NUMNODES; i++) {
8341 		if (zone_movable_pfn[i])
8342 			pr_info("  Node %d: %#018Lx\n", i,
8343 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
8344 	}
8345 
8346 	/*
8347 	 * Print out the early node map, and initialize the
8348 	 * subsection-map relative to active online memory ranges to
8349 	 * enable future "sub-section" extensions of the memory map.
8350 	 */
8351 	pr_info("Early memory node ranges\n");
8352 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8353 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8354 			(u64)start_pfn << PAGE_SHIFT,
8355 			((u64)end_pfn << PAGE_SHIFT) - 1);
8356 		subsection_map_init(start_pfn, end_pfn - start_pfn);
8357 	}
8358 
8359 	/* Initialise every node */
8360 	mminit_verify_pageflags_layout();
8361 	setup_nr_node_ids();
8362 	for_each_node(nid) {
8363 		pg_data_t *pgdat;
8364 
8365 		if (!node_online(nid)) {
8366 			pr_info("Initializing node %d as memoryless\n", nid);
8367 
8368 			/* Allocator not initialized yet */
8369 			pgdat = arch_alloc_nodedata(nid);
8370 			if (!pgdat) {
8371 				pr_err("Cannot allocate %zuB for node %d.\n",
8372 						sizeof(*pgdat), nid);
8373 				continue;
8374 			}
8375 			arch_refresh_nodedata(nid, pgdat);
8376 			free_area_init_memoryless_node(nid);
8377 
8378 			/*
8379 			 * We do not want to confuse userspace by sysfs
8380 			 * files/directories for node without any memory
8381 			 * attached to it, so this node is not marked as
8382 			 * N_MEMORY and not marked online so that no sysfs
8383 			 * hierarchy will be created via register_one_node for
8384 			 * it. The pgdat will get fully initialized by
8385 			 * hotadd_init_pgdat() when memory is hotplugged into
8386 			 * this node.
8387 			 */
8388 			continue;
8389 		}
8390 
8391 		pgdat = NODE_DATA(nid);
8392 		free_area_init_node(nid);
8393 
8394 		/* Any memory on that node */
8395 		if (pgdat->node_present_pages)
8396 			node_set_state(nid, N_MEMORY);
8397 		check_for_memory(pgdat, nid);
8398 	}
8399 
8400 	memmap_init();
8401 }
8402 
8403 static int __init cmdline_parse_core(char *p, unsigned long *core,
8404 				     unsigned long *percent)
8405 {
8406 	unsigned long long coremem;
8407 	char *endptr;
8408 
8409 	if (!p)
8410 		return -EINVAL;
8411 
8412 	/* Value may be a percentage of total memory, otherwise bytes */
8413 	coremem = simple_strtoull(p, &endptr, 0);
8414 	if (*endptr == '%') {
8415 		/* Paranoid check for percent values greater than 100 */
8416 		WARN_ON(coremem > 100);
8417 
8418 		*percent = coremem;
8419 	} else {
8420 		coremem = memparse(p, &p);
8421 		/* Paranoid check that UL is enough for the coremem value */
8422 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8423 
8424 		*core = coremem >> PAGE_SHIFT;
8425 		*percent = 0UL;
8426 	}
8427 	return 0;
8428 }
8429 
8430 /*
8431  * kernelcore=size sets the amount of memory for use for allocations that
8432  * cannot be reclaimed or migrated.
8433  */
8434 static int __init cmdline_parse_kernelcore(char *p)
8435 {
8436 	/* parse kernelcore=mirror */
8437 	if (parse_option_str(p, "mirror")) {
8438 		mirrored_kernelcore = true;
8439 		return 0;
8440 	}
8441 
8442 	return cmdline_parse_core(p, &required_kernelcore,
8443 				  &required_kernelcore_percent);
8444 }
8445 
8446 /*
8447  * movablecore=size sets the amount of memory for use for allocations that
8448  * can be reclaimed or migrated.
8449  */
8450 static int __init cmdline_parse_movablecore(char *p)
8451 {
8452 	return cmdline_parse_core(p, &required_movablecore,
8453 				  &required_movablecore_percent);
8454 }
8455 
8456 early_param("kernelcore", cmdline_parse_kernelcore);
8457 early_param("movablecore", cmdline_parse_movablecore);
8458 
8459 void adjust_managed_page_count(struct page *page, long count)
8460 {
8461 	atomic_long_add(count, &page_zone(page)->managed_pages);
8462 	totalram_pages_add(count);
8463 #ifdef CONFIG_HIGHMEM
8464 	if (PageHighMem(page))
8465 		totalhigh_pages_add(count);
8466 #endif
8467 }
8468 EXPORT_SYMBOL(adjust_managed_page_count);
8469 
8470 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8471 {
8472 	void *pos;
8473 	unsigned long pages = 0;
8474 
8475 	start = (void *)PAGE_ALIGN((unsigned long)start);
8476 	end = (void *)((unsigned long)end & PAGE_MASK);
8477 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8478 		struct page *page = virt_to_page(pos);
8479 		void *direct_map_addr;
8480 
8481 		/*
8482 		 * 'direct_map_addr' might be different from 'pos'
8483 		 * because some architectures' virt_to_page()
8484 		 * work with aliases.  Getting the direct map
8485 		 * address ensures that we get a _writeable_
8486 		 * alias for the memset().
8487 		 */
8488 		direct_map_addr = page_address(page);
8489 		/*
8490 		 * Perform a kasan-unchecked memset() since this memory
8491 		 * has not been initialized.
8492 		 */
8493 		direct_map_addr = kasan_reset_tag(direct_map_addr);
8494 		if ((unsigned int)poison <= 0xFF)
8495 			memset(direct_map_addr, poison, PAGE_SIZE);
8496 
8497 		free_reserved_page(page);
8498 	}
8499 
8500 	if (pages && s)
8501 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
8502 
8503 	return pages;
8504 }
8505 
8506 void __init mem_init_print_info(void)
8507 {
8508 	unsigned long physpages, codesize, datasize, rosize, bss_size;
8509 	unsigned long init_code_size, init_data_size;
8510 
8511 	physpages = get_num_physpages();
8512 	codesize = _etext - _stext;
8513 	datasize = _edata - _sdata;
8514 	rosize = __end_rodata - __start_rodata;
8515 	bss_size = __bss_stop - __bss_start;
8516 	init_data_size = __init_end - __init_begin;
8517 	init_code_size = _einittext - _sinittext;
8518 
8519 	/*
8520 	 * Detect special cases and adjust section sizes accordingly:
8521 	 * 1) .init.* may be embedded into .data sections
8522 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
8523 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
8524 	 * 3) .rodata.* may be embedded into .text or .data sections.
8525 	 */
8526 #define adj_init_size(start, end, size, pos, adj) \
8527 	do { \
8528 		if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
8529 			size -= adj; \
8530 	} while (0)
8531 
8532 	adj_init_size(__init_begin, __init_end, init_data_size,
8533 		     _sinittext, init_code_size);
8534 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8535 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8536 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8537 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8538 
8539 #undef	adj_init_size
8540 
8541 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8542 #ifdef	CONFIG_HIGHMEM
8543 		", %luK highmem"
8544 #endif
8545 		")\n",
8546 		K(nr_free_pages()), K(physpages),
8547 		codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K,
8548 		(init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K,
8549 		K(physpages - totalram_pages() - totalcma_pages),
8550 		K(totalcma_pages)
8551 #ifdef	CONFIG_HIGHMEM
8552 		, K(totalhigh_pages())
8553 #endif
8554 		);
8555 }
8556 
8557 /**
8558  * set_dma_reserve - set the specified number of pages reserved in the first zone
8559  * @new_dma_reserve: The number of pages to mark reserved
8560  *
8561  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8562  * In the DMA zone, a significant percentage may be consumed by kernel image
8563  * and other unfreeable allocations which can skew the watermarks badly. This
8564  * function may optionally be used to account for unfreeable pages in the
8565  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8566  * smaller per-cpu batchsize.
8567  */
8568 void __init set_dma_reserve(unsigned long new_dma_reserve)
8569 {
8570 	dma_reserve = new_dma_reserve;
8571 }
8572 
8573 static int page_alloc_cpu_dead(unsigned int cpu)
8574 {
8575 	struct zone *zone;
8576 
8577 	lru_add_drain_cpu(cpu);
8578 	mlock_page_drain_remote(cpu);
8579 	drain_pages(cpu);
8580 
8581 	/*
8582 	 * Spill the event counters of the dead processor
8583 	 * into the current processors event counters.
8584 	 * This artificially elevates the count of the current
8585 	 * processor.
8586 	 */
8587 	vm_events_fold_cpu(cpu);
8588 
8589 	/*
8590 	 * Zero the differential counters of the dead processor
8591 	 * so that the vm statistics are consistent.
8592 	 *
8593 	 * This is only okay since the processor is dead and cannot
8594 	 * race with what we are doing.
8595 	 */
8596 	cpu_vm_stats_fold(cpu);
8597 
8598 	for_each_populated_zone(zone)
8599 		zone_pcp_update(zone, 0);
8600 
8601 	return 0;
8602 }
8603 
8604 static int page_alloc_cpu_online(unsigned int cpu)
8605 {
8606 	struct zone *zone;
8607 
8608 	for_each_populated_zone(zone)
8609 		zone_pcp_update(zone, 1);
8610 	return 0;
8611 }
8612 
8613 #ifdef CONFIG_NUMA
8614 int hashdist = HASHDIST_DEFAULT;
8615 
8616 static int __init set_hashdist(char *str)
8617 {
8618 	if (!str)
8619 		return 0;
8620 	hashdist = simple_strtoul(str, &str, 0);
8621 	return 1;
8622 }
8623 __setup("hashdist=", set_hashdist);
8624 #endif
8625 
8626 void __init page_alloc_init(void)
8627 {
8628 	int ret;
8629 
8630 #ifdef CONFIG_NUMA
8631 	if (num_node_state(N_MEMORY) == 1)
8632 		hashdist = 0;
8633 #endif
8634 
8635 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8636 					"mm/page_alloc:pcp",
8637 					page_alloc_cpu_online,
8638 					page_alloc_cpu_dead);
8639 	WARN_ON(ret < 0);
8640 }
8641 
8642 /*
8643  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8644  *	or min_free_kbytes changes.
8645  */
8646 static void calculate_totalreserve_pages(void)
8647 {
8648 	struct pglist_data *pgdat;
8649 	unsigned long reserve_pages = 0;
8650 	enum zone_type i, j;
8651 
8652 	for_each_online_pgdat(pgdat) {
8653 
8654 		pgdat->totalreserve_pages = 0;
8655 
8656 		for (i = 0; i < MAX_NR_ZONES; i++) {
8657 			struct zone *zone = pgdat->node_zones + i;
8658 			long max = 0;
8659 			unsigned long managed_pages = zone_managed_pages(zone);
8660 
8661 			/* Find valid and maximum lowmem_reserve in the zone */
8662 			for (j = i; j < MAX_NR_ZONES; j++) {
8663 				if (zone->lowmem_reserve[j] > max)
8664 					max = zone->lowmem_reserve[j];
8665 			}
8666 
8667 			/* we treat the high watermark as reserved pages. */
8668 			max += high_wmark_pages(zone);
8669 
8670 			if (max > managed_pages)
8671 				max = managed_pages;
8672 
8673 			pgdat->totalreserve_pages += max;
8674 
8675 			reserve_pages += max;
8676 		}
8677 	}
8678 	totalreserve_pages = reserve_pages;
8679 }
8680 
8681 /*
8682  * setup_per_zone_lowmem_reserve - called whenever
8683  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
8684  *	has a correct pages reserved value, so an adequate number of
8685  *	pages are left in the zone after a successful __alloc_pages().
8686  */
8687 static void setup_per_zone_lowmem_reserve(void)
8688 {
8689 	struct pglist_data *pgdat;
8690 	enum zone_type i, j;
8691 
8692 	for_each_online_pgdat(pgdat) {
8693 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8694 			struct zone *zone = &pgdat->node_zones[i];
8695 			int ratio = sysctl_lowmem_reserve_ratio[i];
8696 			bool clear = !ratio || !zone_managed_pages(zone);
8697 			unsigned long managed_pages = 0;
8698 
8699 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
8700 				struct zone *upper_zone = &pgdat->node_zones[j];
8701 
8702 				managed_pages += zone_managed_pages(upper_zone);
8703 
8704 				if (clear)
8705 					zone->lowmem_reserve[j] = 0;
8706 				else
8707 					zone->lowmem_reserve[j] = managed_pages / ratio;
8708 			}
8709 		}
8710 	}
8711 
8712 	/* update totalreserve_pages */
8713 	calculate_totalreserve_pages();
8714 }
8715 
8716 static void __setup_per_zone_wmarks(void)
8717 {
8718 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8719 	unsigned long lowmem_pages = 0;
8720 	struct zone *zone;
8721 	unsigned long flags;
8722 
8723 	/* Calculate total number of !ZONE_HIGHMEM pages */
8724 	for_each_zone(zone) {
8725 		if (!is_highmem(zone))
8726 			lowmem_pages += zone_managed_pages(zone);
8727 	}
8728 
8729 	for_each_zone(zone) {
8730 		u64 tmp;
8731 
8732 		spin_lock_irqsave(&zone->lock, flags);
8733 		tmp = (u64)pages_min * zone_managed_pages(zone);
8734 		do_div(tmp, lowmem_pages);
8735 		if (is_highmem(zone)) {
8736 			/*
8737 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8738 			 * need highmem pages, so cap pages_min to a small
8739 			 * value here.
8740 			 *
8741 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8742 			 * deltas control async page reclaim, and so should
8743 			 * not be capped for highmem.
8744 			 */
8745 			unsigned long min_pages;
8746 
8747 			min_pages = zone_managed_pages(zone) / 1024;
8748 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8749 			zone->_watermark[WMARK_MIN] = min_pages;
8750 		} else {
8751 			/*
8752 			 * If it's a lowmem zone, reserve a number of pages
8753 			 * proportionate to the zone's size.
8754 			 */
8755 			zone->_watermark[WMARK_MIN] = tmp;
8756 		}
8757 
8758 		/*
8759 		 * Set the kswapd watermarks distance according to the
8760 		 * scale factor in proportion to available memory, but
8761 		 * ensure a minimum size on small systems.
8762 		 */
8763 		tmp = max_t(u64, tmp >> 2,
8764 			    mult_frac(zone_managed_pages(zone),
8765 				      watermark_scale_factor, 10000));
8766 
8767 		zone->watermark_boost = 0;
8768 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
8769 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
8770 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
8771 
8772 		spin_unlock_irqrestore(&zone->lock, flags);
8773 	}
8774 
8775 	/* update totalreserve_pages */
8776 	calculate_totalreserve_pages();
8777 }
8778 
8779 /**
8780  * setup_per_zone_wmarks - called when min_free_kbytes changes
8781  * or when memory is hot-{added|removed}
8782  *
8783  * Ensures that the watermark[min,low,high] values for each zone are set
8784  * correctly with respect to min_free_kbytes.
8785  */
8786 void setup_per_zone_wmarks(void)
8787 {
8788 	struct zone *zone;
8789 	static DEFINE_SPINLOCK(lock);
8790 
8791 	spin_lock(&lock);
8792 	__setup_per_zone_wmarks();
8793 	spin_unlock(&lock);
8794 
8795 	/*
8796 	 * The watermark size have changed so update the pcpu batch
8797 	 * and high limits or the limits may be inappropriate.
8798 	 */
8799 	for_each_zone(zone)
8800 		zone_pcp_update(zone, 0);
8801 }
8802 
8803 /*
8804  * Initialise min_free_kbytes.
8805  *
8806  * For small machines we want it small (128k min).  For large machines
8807  * we want it large (256MB max).  But it is not linear, because network
8808  * bandwidth does not increase linearly with machine size.  We use
8809  *
8810  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8811  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
8812  *
8813  * which yields
8814  *
8815  * 16MB:	512k
8816  * 32MB:	724k
8817  * 64MB:	1024k
8818  * 128MB:	1448k
8819  * 256MB:	2048k
8820  * 512MB:	2896k
8821  * 1024MB:	4096k
8822  * 2048MB:	5792k
8823  * 4096MB:	8192k
8824  * 8192MB:	11584k
8825  * 16384MB:	16384k
8826  */
8827 void calculate_min_free_kbytes(void)
8828 {
8829 	unsigned long lowmem_kbytes;
8830 	int new_min_free_kbytes;
8831 
8832 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8833 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8834 
8835 	if (new_min_free_kbytes > user_min_free_kbytes)
8836 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
8837 	else
8838 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8839 				new_min_free_kbytes, user_min_free_kbytes);
8840 
8841 }
8842 
8843 int __meminit init_per_zone_wmark_min(void)
8844 {
8845 	calculate_min_free_kbytes();
8846 	setup_per_zone_wmarks();
8847 	refresh_zone_stat_thresholds();
8848 	setup_per_zone_lowmem_reserve();
8849 
8850 #ifdef CONFIG_NUMA
8851 	setup_min_unmapped_ratio();
8852 	setup_min_slab_ratio();
8853 #endif
8854 
8855 	khugepaged_min_free_kbytes_update();
8856 
8857 	return 0;
8858 }
8859 postcore_initcall(init_per_zone_wmark_min)
8860 
8861 /*
8862  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8863  *	that we can call two helper functions whenever min_free_kbytes
8864  *	changes.
8865  */
8866 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8867 		void *buffer, size_t *length, loff_t *ppos)
8868 {
8869 	int rc;
8870 
8871 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8872 	if (rc)
8873 		return rc;
8874 
8875 	if (write) {
8876 		user_min_free_kbytes = min_free_kbytes;
8877 		setup_per_zone_wmarks();
8878 	}
8879 	return 0;
8880 }
8881 
8882 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8883 		void *buffer, size_t *length, loff_t *ppos)
8884 {
8885 	int rc;
8886 
8887 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8888 	if (rc)
8889 		return rc;
8890 
8891 	if (write)
8892 		setup_per_zone_wmarks();
8893 
8894 	return 0;
8895 }
8896 
8897 #ifdef CONFIG_NUMA
8898 static void setup_min_unmapped_ratio(void)
8899 {
8900 	pg_data_t *pgdat;
8901 	struct zone *zone;
8902 
8903 	for_each_online_pgdat(pgdat)
8904 		pgdat->min_unmapped_pages = 0;
8905 
8906 	for_each_zone(zone)
8907 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8908 						         sysctl_min_unmapped_ratio) / 100;
8909 }
8910 
8911 
8912 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8913 		void *buffer, size_t *length, loff_t *ppos)
8914 {
8915 	int rc;
8916 
8917 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8918 	if (rc)
8919 		return rc;
8920 
8921 	setup_min_unmapped_ratio();
8922 
8923 	return 0;
8924 }
8925 
8926 static void setup_min_slab_ratio(void)
8927 {
8928 	pg_data_t *pgdat;
8929 	struct zone *zone;
8930 
8931 	for_each_online_pgdat(pgdat)
8932 		pgdat->min_slab_pages = 0;
8933 
8934 	for_each_zone(zone)
8935 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8936 						     sysctl_min_slab_ratio) / 100;
8937 }
8938 
8939 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8940 		void *buffer, size_t *length, loff_t *ppos)
8941 {
8942 	int rc;
8943 
8944 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8945 	if (rc)
8946 		return rc;
8947 
8948 	setup_min_slab_ratio();
8949 
8950 	return 0;
8951 }
8952 #endif
8953 
8954 /*
8955  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8956  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8957  *	whenever sysctl_lowmem_reserve_ratio changes.
8958  *
8959  * The reserve ratio obviously has absolutely no relation with the
8960  * minimum watermarks. The lowmem reserve ratio can only make sense
8961  * if in function of the boot time zone sizes.
8962  */
8963 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8964 		void *buffer, size_t *length, loff_t *ppos)
8965 {
8966 	int i;
8967 
8968 	proc_dointvec_minmax(table, write, buffer, length, ppos);
8969 
8970 	for (i = 0; i < MAX_NR_ZONES; i++) {
8971 		if (sysctl_lowmem_reserve_ratio[i] < 1)
8972 			sysctl_lowmem_reserve_ratio[i] = 0;
8973 	}
8974 
8975 	setup_per_zone_lowmem_reserve();
8976 	return 0;
8977 }
8978 
8979 /*
8980  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8981  * cpu. It is the fraction of total pages in each zone that a hot per cpu
8982  * pagelist can have before it gets flushed back to buddy allocator.
8983  */
8984 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8985 		int write, void *buffer, size_t *length, loff_t *ppos)
8986 {
8987 	struct zone *zone;
8988 	int old_percpu_pagelist_high_fraction;
8989 	int ret;
8990 
8991 	mutex_lock(&pcp_batch_high_lock);
8992 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
8993 
8994 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8995 	if (!write || ret < 0)
8996 		goto out;
8997 
8998 	/* Sanity checking to avoid pcp imbalance */
8999 	if (percpu_pagelist_high_fraction &&
9000 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
9001 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
9002 		ret = -EINVAL;
9003 		goto out;
9004 	}
9005 
9006 	/* No change? */
9007 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
9008 		goto out;
9009 
9010 	for_each_populated_zone(zone)
9011 		zone_set_pageset_high_and_batch(zone, 0);
9012 out:
9013 	mutex_unlock(&pcp_batch_high_lock);
9014 	return ret;
9015 }
9016 
9017 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
9018 /*
9019  * Returns the number of pages that arch has reserved but
9020  * is not known to alloc_large_system_hash().
9021  */
9022 static unsigned long __init arch_reserved_kernel_pages(void)
9023 {
9024 	return 0;
9025 }
9026 #endif
9027 
9028 /*
9029  * Adaptive scale is meant to reduce sizes of hash tables on large memory
9030  * machines. As memory size is increased the scale is also increased but at
9031  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
9032  * quadruples the scale is increased by one, which means the size of hash table
9033  * only doubles, instead of quadrupling as well.
9034  * Because 32-bit systems cannot have large physical memory, where this scaling
9035  * makes sense, it is disabled on such platforms.
9036  */
9037 #if __BITS_PER_LONG > 32
9038 #define ADAPT_SCALE_BASE	(64ul << 30)
9039 #define ADAPT_SCALE_SHIFT	2
9040 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
9041 #endif
9042 
9043 /*
9044  * allocate a large system hash table from bootmem
9045  * - it is assumed that the hash table must contain an exact power-of-2
9046  *   quantity of entries
9047  * - limit is the number of hash buckets, not the total allocation size
9048  */
9049 void *__init alloc_large_system_hash(const char *tablename,
9050 				     unsigned long bucketsize,
9051 				     unsigned long numentries,
9052 				     int scale,
9053 				     int flags,
9054 				     unsigned int *_hash_shift,
9055 				     unsigned int *_hash_mask,
9056 				     unsigned long low_limit,
9057 				     unsigned long high_limit)
9058 {
9059 	unsigned long long max = high_limit;
9060 	unsigned long log2qty, size;
9061 	void *table;
9062 	gfp_t gfp_flags;
9063 	bool virt;
9064 	bool huge;
9065 
9066 	/* allow the kernel cmdline to have a say */
9067 	if (!numentries) {
9068 		/* round applicable memory size up to nearest megabyte */
9069 		numentries = nr_kernel_pages;
9070 		numentries -= arch_reserved_kernel_pages();
9071 
9072 		/* It isn't necessary when PAGE_SIZE >= 1MB */
9073 		if (PAGE_SIZE < SZ_1M)
9074 			numentries = round_up(numentries, SZ_1M / PAGE_SIZE);
9075 
9076 #if __BITS_PER_LONG > 32
9077 		if (!high_limit) {
9078 			unsigned long adapt;
9079 
9080 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
9081 			     adapt <<= ADAPT_SCALE_SHIFT)
9082 				scale++;
9083 		}
9084 #endif
9085 
9086 		/* limit to 1 bucket per 2^scale bytes of low memory */
9087 		if (scale > PAGE_SHIFT)
9088 			numentries >>= (scale - PAGE_SHIFT);
9089 		else
9090 			numentries <<= (PAGE_SHIFT - scale);
9091 
9092 		/* Make sure we've got at least a 0-order allocation.. */
9093 		if (unlikely(flags & HASH_SMALL)) {
9094 			/* Makes no sense without HASH_EARLY */
9095 			WARN_ON(!(flags & HASH_EARLY));
9096 			if (!(numentries >> *_hash_shift)) {
9097 				numentries = 1UL << *_hash_shift;
9098 				BUG_ON(!numentries);
9099 			}
9100 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9101 			numentries = PAGE_SIZE / bucketsize;
9102 	}
9103 	numentries = roundup_pow_of_two(numentries);
9104 
9105 	/* limit allocation size to 1/16 total memory by default */
9106 	if (max == 0) {
9107 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
9108 		do_div(max, bucketsize);
9109 	}
9110 	max = min(max, 0x80000000ULL);
9111 
9112 	if (numentries < low_limit)
9113 		numentries = low_limit;
9114 	if (numentries > max)
9115 		numentries = max;
9116 
9117 	log2qty = ilog2(numentries);
9118 
9119 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
9120 	do {
9121 		virt = false;
9122 		size = bucketsize << log2qty;
9123 		if (flags & HASH_EARLY) {
9124 			if (flags & HASH_ZERO)
9125 				table = memblock_alloc(size, SMP_CACHE_BYTES);
9126 			else
9127 				table = memblock_alloc_raw(size,
9128 							   SMP_CACHE_BYTES);
9129 		} else if (get_order(size) >= MAX_ORDER || hashdist) {
9130 			table = vmalloc_huge(size, gfp_flags);
9131 			virt = true;
9132 			if (table)
9133 				huge = is_vm_area_hugepages(table);
9134 		} else {
9135 			/*
9136 			 * If bucketsize is not a power-of-two, we may free
9137 			 * some pages at the end of hash table which
9138 			 * alloc_pages_exact() automatically does
9139 			 */
9140 			table = alloc_pages_exact(size, gfp_flags);
9141 			kmemleak_alloc(table, size, 1, gfp_flags);
9142 		}
9143 	} while (!table && size > PAGE_SIZE && --log2qty);
9144 
9145 	if (!table)
9146 		panic("Failed to allocate %s hash table\n", tablename);
9147 
9148 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
9149 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
9150 		virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
9151 
9152 	if (_hash_shift)
9153 		*_hash_shift = log2qty;
9154 	if (_hash_mask)
9155 		*_hash_mask = (1 << log2qty) - 1;
9156 
9157 	return table;
9158 }
9159 
9160 #ifdef CONFIG_CONTIG_ALLOC
9161 #if defined(CONFIG_DYNAMIC_DEBUG) || \
9162 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
9163 /* Usage: See admin-guide/dynamic-debug-howto.rst */
9164 static void alloc_contig_dump_pages(struct list_head *page_list)
9165 {
9166 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
9167 
9168 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
9169 		struct page *page;
9170 
9171 		dump_stack();
9172 		list_for_each_entry(page, page_list, lru)
9173 			dump_page(page, "migration failure");
9174 	}
9175 }
9176 #else
9177 static inline void alloc_contig_dump_pages(struct list_head *page_list)
9178 {
9179 }
9180 #endif
9181 
9182 /* [start, end) must belong to a single zone. */
9183 int __alloc_contig_migrate_range(struct compact_control *cc,
9184 					unsigned long start, unsigned long end)
9185 {
9186 	/* This function is based on compact_zone() from compaction.c. */
9187 	unsigned int nr_reclaimed;
9188 	unsigned long pfn = start;
9189 	unsigned int tries = 0;
9190 	int ret = 0;
9191 	struct migration_target_control mtc = {
9192 		.nid = zone_to_nid(cc->zone),
9193 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
9194 	};
9195 
9196 	lru_cache_disable();
9197 
9198 	while (pfn < end || !list_empty(&cc->migratepages)) {
9199 		if (fatal_signal_pending(current)) {
9200 			ret = -EINTR;
9201 			break;
9202 		}
9203 
9204 		if (list_empty(&cc->migratepages)) {
9205 			cc->nr_migratepages = 0;
9206 			ret = isolate_migratepages_range(cc, pfn, end);
9207 			if (ret && ret != -EAGAIN)
9208 				break;
9209 			pfn = cc->migrate_pfn;
9210 			tries = 0;
9211 		} else if (++tries == 5) {
9212 			ret = -EBUSY;
9213 			break;
9214 		}
9215 
9216 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
9217 							&cc->migratepages);
9218 		cc->nr_migratepages -= nr_reclaimed;
9219 
9220 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
9221 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
9222 
9223 		/*
9224 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
9225 		 * to retry again over this error, so do the same here.
9226 		 */
9227 		if (ret == -ENOMEM)
9228 			break;
9229 	}
9230 
9231 	lru_cache_enable();
9232 	if (ret < 0) {
9233 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
9234 			alloc_contig_dump_pages(&cc->migratepages);
9235 		putback_movable_pages(&cc->migratepages);
9236 		return ret;
9237 	}
9238 	return 0;
9239 }
9240 
9241 /**
9242  * alloc_contig_range() -- tries to allocate given range of pages
9243  * @start:	start PFN to allocate
9244  * @end:	one-past-the-last PFN to allocate
9245  * @migratetype:	migratetype of the underlying pageblocks (either
9246  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
9247  *			in range must have the same migratetype and it must
9248  *			be either of the two.
9249  * @gfp_mask:	GFP mask to use during compaction
9250  *
9251  * The PFN range does not have to be pageblock aligned. The PFN range must
9252  * belong to a single zone.
9253  *
9254  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9255  * pageblocks in the range.  Once isolated, the pageblocks should not
9256  * be modified by others.
9257  *
9258  * Return: zero on success or negative error code.  On success all
9259  * pages which PFN is in [start, end) are allocated for the caller and
9260  * need to be freed with free_contig_range().
9261  */
9262 int alloc_contig_range(unsigned long start, unsigned long end,
9263 		       unsigned migratetype, gfp_t gfp_mask)
9264 {
9265 	unsigned long outer_start, outer_end;
9266 	int order;
9267 	int ret = 0;
9268 
9269 	struct compact_control cc = {
9270 		.nr_migratepages = 0,
9271 		.order = -1,
9272 		.zone = page_zone(pfn_to_page(start)),
9273 		.mode = MIGRATE_SYNC,
9274 		.ignore_skip_hint = true,
9275 		.no_set_skip_hint = true,
9276 		.gfp_mask = current_gfp_context(gfp_mask),
9277 		.alloc_contig = true,
9278 	};
9279 	INIT_LIST_HEAD(&cc.migratepages);
9280 
9281 	/*
9282 	 * What we do here is we mark all pageblocks in range as
9283 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
9284 	 * have different sizes, and due to the way page allocator
9285 	 * work, start_isolate_page_range() has special handlings for this.
9286 	 *
9287 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9288 	 * migrate the pages from an unaligned range (ie. pages that
9289 	 * we are interested in). This will put all the pages in
9290 	 * range back to page allocator as MIGRATE_ISOLATE.
9291 	 *
9292 	 * When this is done, we take the pages in range from page
9293 	 * allocator removing them from the buddy system.  This way
9294 	 * page allocator will never consider using them.
9295 	 *
9296 	 * This lets us mark the pageblocks back as
9297 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9298 	 * aligned range but not in the unaligned, original range are
9299 	 * put back to page allocator so that buddy can use them.
9300 	 */
9301 
9302 	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
9303 	if (ret)
9304 		goto done;
9305 
9306 	drain_all_pages(cc.zone);
9307 
9308 	/*
9309 	 * In case of -EBUSY, we'd like to know which page causes problem.
9310 	 * So, just fall through. test_pages_isolated() has a tracepoint
9311 	 * which will report the busy page.
9312 	 *
9313 	 * It is possible that busy pages could become available before
9314 	 * the call to test_pages_isolated, and the range will actually be
9315 	 * allocated.  So, if we fall through be sure to clear ret so that
9316 	 * -EBUSY is not accidentally used or returned to caller.
9317 	 */
9318 	ret = __alloc_contig_migrate_range(&cc, start, end);
9319 	if (ret && ret != -EBUSY)
9320 		goto done;
9321 	ret = 0;
9322 
9323 	/*
9324 	 * Pages from [start, end) are within a pageblock_nr_pages
9325 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
9326 	 * more, all pages in [start, end) are free in page allocator.
9327 	 * What we are going to do is to allocate all pages from
9328 	 * [start, end) (that is remove them from page allocator).
9329 	 *
9330 	 * The only problem is that pages at the beginning and at the
9331 	 * end of interesting range may be not aligned with pages that
9332 	 * page allocator holds, ie. they can be part of higher order
9333 	 * pages.  Because of this, we reserve the bigger range and
9334 	 * once this is done free the pages we are not interested in.
9335 	 *
9336 	 * We don't have to hold zone->lock here because the pages are
9337 	 * isolated thus they won't get removed from buddy.
9338 	 */
9339 
9340 	order = 0;
9341 	outer_start = start;
9342 	while (!PageBuddy(pfn_to_page(outer_start))) {
9343 		if (++order >= MAX_ORDER) {
9344 			outer_start = start;
9345 			break;
9346 		}
9347 		outer_start &= ~0UL << order;
9348 	}
9349 
9350 	if (outer_start != start) {
9351 		order = buddy_order(pfn_to_page(outer_start));
9352 
9353 		/*
9354 		 * outer_start page could be small order buddy page and
9355 		 * it doesn't include start page. Adjust outer_start
9356 		 * in this case to report failed page properly
9357 		 * on tracepoint in test_pages_isolated()
9358 		 */
9359 		if (outer_start + (1UL << order) <= start)
9360 			outer_start = start;
9361 	}
9362 
9363 	/* Make sure the range is really isolated. */
9364 	if (test_pages_isolated(outer_start, end, 0)) {
9365 		ret = -EBUSY;
9366 		goto done;
9367 	}
9368 
9369 	/* Grab isolated pages from freelists. */
9370 	outer_end = isolate_freepages_range(&cc, outer_start, end);
9371 	if (!outer_end) {
9372 		ret = -EBUSY;
9373 		goto done;
9374 	}
9375 
9376 	/* Free head and tail (if any) */
9377 	if (start != outer_start)
9378 		free_contig_range(outer_start, start - outer_start);
9379 	if (end != outer_end)
9380 		free_contig_range(end, outer_end - end);
9381 
9382 done:
9383 	undo_isolate_page_range(start, end, migratetype);
9384 	return ret;
9385 }
9386 EXPORT_SYMBOL(alloc_contig_range);
9387 
9388 static int __alloc_contig_pages(unsigned long start_pfn,
9389 				unsigned long nr_pages, gfp_t gfp_mask)
9390 {
9391 	unsigned long end_pfn = start_pfn + nr_pages;
9392 
9393 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9394 				  gfp_mask);
9395 }
9396 
9397 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9398 				   unsigned long nr_pages)
9399 {
9400 	unsigned long i, end_pfn = start_pfn + nr_pages;
9401 	struct page *page;
9402 
9403 	for (i = start_pfn; i < end_pfn; i++) {
9404 		page = pfn_to_online_page(i);
9405 		if (!page)
9406 			return false;
9407 
9408 		if (page_zone(page) != z)
9409 			return false;
9410 
9411 		if (PageReserved(page))
9412 			return false;
9413 	}
9414 	return true;
9415 }
9416 
9417 static bool zone_spans_last_pfn(const struct zone *zone,
9418 				unsigned long start_pfn, unsigned long nr_pages)
9419 {
9420 	unsigned long last_pfn = start_pfn + nr_pages - 1;
9421 
9422 	return zone_spans_pfn(zone, last_pfn);
9423 }
9424 
9425 /**
9426  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9427  * @nr_pages:	Number of contiguous pages to allocate
9428  * @gfp_mask:	GFP mask to limit search and used during compaction
9429  * @nid:	Target node
9430  * @nodemask:	Mask for other possible nodes
9431  *
9432  * This routine is a wrapper around alloc_contig_range(). It scans over zones
9433  * on an applicable zonelist to find a contiguous pfn range which can then be
9434  * tried for allocation with alloc_contig_range(). This routine is intended
9435  * for allocation requests which can not be fulfilled with the buddy allocator.
9436  *
9437  * The allocated memory is always aligned to a page boundary. If nr_pages is a
9438  * power of two, then allocated range is also guaranteed to be aligned to same
9439  * nr_pages (e.g. 1GB request would be aligned to 1GB).
9440  *
9441  * Allocated pages can be freed with free_contig_range() or by manually calling
9442  * __free_page() on each allocated page.
9443  *
9444  * Return: pointer to contiguous pages on success, or NULL if not successful.
9445  */
9446 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9447 				int nid, nodemask_t *nodemask)
9448 {
9449 	unsigned long ret, pfn, flags;
9450 	struct zonelist *zonelist;
9451 	struct zone *zone;
9452 	struct zoneref *z;
9453 
9454 	zonelist = node_zonelist(nid, gfp_mask);
9455 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
9456 					gfp_zone(gfp_mask), nodemask) {
9457 		spin_lock_irqsave(&zone->lock, flags);
9458 
9459 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9460 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9461 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9462 				/*
9463 				 * We release the zone lock here because
9464 				 * alloc_contig_range() will also lock the zone
9465 				 * at some point. If there's an allocation
9466 				 * spinning on this lock, it may win the race
9467 				 * and cause alloc_contig_range() to fail...
9468 				 */
9469 				spin_unlock_irqrestore(&zone->lock, flags);
9470 				ret = __alloc_contig_pages(pfn, nr_pages,
9471 							gfp_mask);
9472 				if (!ret)
9473 					return pfn_to_page(pfn);
9474 				spin_lock_irqsave(&zone->lock, flags);
9475 			}
9476 			pfn += nr_pages;
9477 		}
9478 		spin_unlock_irqrestore(&zone->lock, flags);
9479 	}
9480 	return NULL;
9481 }
9482 #endif /* CONFIG_CONTIG_ALLOC */
9483 
9484 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9485 {
9486 	unsigned long count = 0;
9487 
9488 	for (; nr_pages--; pfn++) {
9489 		struct page *page = pfn_to_page(pfn);
9490 
9491 		count += page_count(page) != 1;
9492 		__free_page(page);
9493 	}
9494 	WARN(count != 0, "%lu pages are still in use!\n", count);
9495 }
9496 EXPORT_SYMBOL(free_contig_range);
9497 
9498 /*
9499  * Effectively disable pcplists for the zone by setting the high limit to 0
9500  * and draining all cpus. A concurrent page freeing on another CPU that's about
9501  * to put the page on pcplist will either finish before the drain and the page
9502  * will be drained, or observe the new high limit and skip the pcplist.
9503  *
9504  * Must be paired with a call to zone_pcp_enable().
9505  */
9506 void zone_pcp_disable(struct zone *zone)
9507 {
9508 	mutex_lock(&pcp_batch_high_lock);
9509 	__zone_set_pageset_high_and_batch(zone, 0, 1);
9510 	__drain_all_pages(zone, true);
9511 }
9512 
9513 void zone_pcp_enable(struct zone *zone)
9514 {
9515 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9516 	mutex_unlock(&pcp_batch_high_lock);
9517 }
9518 
9519 void zone_pcp_reset(struct zone *zone)
9520 {
9521 	int cpu;
9522 	struct per_cpu_zonestat *pzstats;
9523 
9524 	if (zone->per_cpu_pageset != &boot_pageset) {
9525 		for_each_online_cpu(cpu) {
9526 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9527 			drain_zonestat(zone, pzstats);
9528 		}
9529 		free_percpu(zone->per_cpu_pageset);
9530 		zone->per_cpu_pageset = &boot_pageset;
9531 		if (zone->per_cpu_zonestats != &boot_zonestats) {
9532 			free_percpu(zone->per_cpu_zonestats);
9533 			zone->per_cpu_zonestats = &boot_zonestats;
9534 		}
9535 	}
9536 }
9537 
9538 #ifdef CONFIG_MEMORY_HOTREMOVE
9539 /*
9540  * All pages in the range must be in a single zone, must not contain holes,
9541  * must span full sections, and must be isolated before calling this function.
9542  */
9543 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9544 {
9545 	unsigned long pfn = start_pfn;
9546 	struct page *page;
9547 	struct zone *zone;
9548 	unsigned int order;
9549 	unsigned long flags;
9550 
9551 	offline_mem_sections(pfn, end_pfn);
9552 	zone = page_zone(pfn_to_page(pfn));
9553 	spin_lock_irqsave(&zone->lock, flags);
9554 	while (pfn < end_pfn) {
9555 		page = pfn_to_page(pfn);
9556 		/*
9557 		 * The HWPoisoned page may be not in buddy system, and
9558 		 * page_count() is not 0.
9559 		 */
9560 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9561 			pfn++;
9562 			continue;
9563 		}
9564 		/*
9565 		 * At this point all remaining PageOffline() pages have a
9566 		 * reference count of 0 and can simply be skipped.
9567 		 */
9568 		if (PageOffline(page)) {
9569 			BUG_ON(page_count(page));
9570 			BUG_ON(PageBuddy(page));
9571 			pfn++;
9572 			continue;
9573 		}
9574 
9575 		BUG_ON(page_count(page));
9576 		BUG_ON(!PageBuddy(page));
9577 		order = buddy_order(page);
9578 		del_page_from_free_list(page, zone, order);
9579 		pfn += (1 << order);
9580 	}
9581 	spin_unlock_irqrestore(&zone->lock, flags);
9582 }
9583 #endif
9584 
9585 /*
9586  * This function returns a stable result only if called under zone lock.
9587  */
9588 bool is_free_buddy_page(struct page *page)
9589 {
9590 	unsigned long pfn = page_to_pfn(page);
9591 	unsigned int order;
9592 
9593 	for (order = 0; order < MAX_ORDER; order++) {
9594 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9595 
9596 		if (PageBuddy(page_head) &&
9597 		    buddy_order_unsafe(page_head) >= order)
9598 			break;
9599 	}
9600 
9601 	return order < MAX_ORDER;
9602 }
9603 EXPORT_SYMBOL(is_free_buddy_page);
9604 
9605 #ifdef CONFIG_MEMORY_FAILURE
9606 /*
9607  * Break down a higher-order page in sub-pages, and keep our target out of
9608  * buddy allocator.
9609  */
9610 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9611 				   struct page *target, int low, int high,
9612 				   int migratetype)
9613 {
9614 	unsigned long size = 1 << high;
9615 	struct page *current_buddy, *next_page;
9616 
9617 	while (high > low) {
9618 		high--;
9619 		size >>= 1;
9620 
9621 		if (target >= &page[size]) {
9622 			next_page = page + size;
9623 			current_buddy = page;
9624 		} else {
9625 			next_page = page;
9626 			current_buddy = page + size;
9627 		}
9628 
9629 		if (set_page_guard(zone, current_buddy, high, migratetype))
9630 			continue;
9631 
9632 		if (current_buddy != target) {
9633 			add_to_free_list(current_buddy, zone, high, migratetype);
9634 			set_buddy_order(current_buddy, high);
9635 			page = next_page;
9636 		}
9637 	}
9638 }
9639 
9640 /*
9641  * Take a page that will be marked as poisoned off the buddy allocator.
9642  */
9643 bool take_page_off_buddy(struct page *page)
9644 {
9645 	struct zone *zone = page_zone(page);
9646 	unsigned long pfn = page_to_pfn(page);
9647 	unsigned long flags;
9648 	unsigned int order;
9649 	bool ret = false;
9650 
9651 	spin_lock_irqsave(&zone->lock, flags);
9652 	for (order = 0; order < MAX_ORDER; order++) {
9653 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9654 		int page_order = buddy_order(page_head);
9655 
9656 		if (PageBuddy(page_head) && page_order >= order) {
9657 			unsigned long pfn_head = page_to_pfn(page_head);
9658 			int migratetype = get_pfnblock_migratetype(page_head,
9659 								   pfn_head);
9660 
9661 			del_page_from_free_list(page_head, zone, page_order);
9662 			break_down_buddy_pages(zone, page_head, page, 0,
9663 						page_order, migratetype);
9664 			SetPageHWPoisonTakenOff(page);
9665 			if (!is_migrate_isolate(migratetype))
9666 				__mod_zone_freepage_state(zone, -1, migratetype);
9667 			ret = true;
9668 			break;
9669 		}
9670 		if (page_count(page_head) > 0)
9671 			break;
9672 	}
9673 	spin_unlock_irqrestore(&zone->lock, flags);
9674 	return ret;
9675 }
9676 
9677 /*
9678  * Cancel takeoff done by take_page_off_buddy().
9679  */
9680 bool put_page_back_buddy(struct page *page)
9681 {
9682 	struct zone *zone = page_zone(page);
9683 	unsigned long pfn = page_to_pfn(page);
9684 	unsigned long flags;
9685 	int migratetype = get_pfnblock_migratetype(page, pfn);
9686 	bool ret = false;
9687 
9688 	spin_lock_irqsave(&zone->lock, flags);
9689 	if (put_page_testzero(page)) {
9690 		ClearPageHWPoisonTakenOff(page);
9691 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
9692 		if (TestClearPageHWPoison(page)) {
9693 			ret = true;
9694 		}
9695 	}
9696 	spin_unlock_irqrestore(&zone->lock, flags);
9697 
9698 	return ret;
9699 }
9700 #endif
9701 
9702 #ifdef CONFIG_ZONE_DMA
9703 bool has_managed_dma(void)
9704 {
9705 	struct pglist_data *pgdat;
9706 
9707 	for_each_online_pgdat(pgdat) {
9708 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9709 
9710 		if (managed_zone(zone))
9711 			return true;
9712 	}
9713 	return false;
9714 }
9715 #endif /* CONFIG_ZONE_DMA */
9716