xref: /openbmc/linux/mm/page_alloc.c (revision 565d76cb)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/oom.h>
34 #include <linux/notifier.h>
35 #include <linux/topology.h>
36 #include <linux/sysctl.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/memory_hotplug.h>
40 #include <linux/nodemask.h>
41 #include <linux/vmalloc.h>
42 #include <linux/mempolicy.h>
43 #include <linux/stop_machine.h>
44 #include <linux/sort.h>
45 #include <linux/pfn.h>
46 #include <linux/backing-dev.h>
47 #include <linux/fault-inject.h>
48 #include <linux/page-isolation.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/debugobjects.h>
51 #include <linux/kmemleak.h>
52 #include <linux/memory.h>
53 #include <linux/compaction.h>
54 #include <trace/events/kmem.h>
55 #include <linux/ftrace_event.h>
56 
57 #include <asm/tlbflush.h>
58 #include <asm/div64.h>
59 #include "internal.h"
60 
61 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
62 DEFINE_PER_CPU(int, numa_node);
63 EXPORT_PER_CPU_SYMBOL(numa_node);
64 #endif
65 
66 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
67 /*
68  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
69  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
70  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
71  * defined in <linux/topology.h>.
72  */
73 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
74 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
75 #endif
76 
77 /*
78  * Array of node states.
79  */
80 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
81 	[N_POSSIBLE] = NODE_MASK_ALL,
82 	[N_ONLINE] = { { [0] = 1UL } },
83 #ifndef CONFIG_NUMA
84 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
85 #ifdef CONFIG_HIGHMEM
86 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
87 #endif
88 	[N_CPU] = { { [0] = 1UL } },
89 #endif	/* NUMA */
90 };
91 EXPORT_SYMBOL(node_states);
92 
93 unsigned long totalram_pages __read_mostly;
94 unsigned long totalreserve_pages __read_mostly;
95 int percpu_pagelist_fraction;
96 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
97 
98 #ifdef CONFIG_PM_SLEEP
99 /*
100  * The following functions are used by the suspend/hibernate code to temporarily
101  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
102  * while devices are suspended.  To avoid races with the suspend/hibernate code,
103  * they should always be called with pm_mutex held (gfp_allowed_mask also should
104  * only be modified with pm_mutex held, unless the suspend/hibernate code is
105  * guaranteed not to run in parallel with that modification).
106  */
107 
108 static gfp_t saved_gfp_mask;
109 
110 void pm_restore_gfp_mask(void)
111 {
112 	WARN_ON(!mutex_is_locked(&pm_mutex));
113 	if (saved_gfp_mask) {
114 		gfp_allowed_mask = saved_gfp_mask;
115 		saved_gfp_mask = 0;
116 	}
117 }
118 
119 void pm_restrict_gfp_mask(void)
120 {
121 	WARN_ON(!mutex_is_locked(&pm_mutex));
122 	WARN_ON(saved_gfp_mask);
123 	saved_gfp_mask = gfp_allowed_mask;
124 	gfp_allowed_mask &= ~GFP_IOFS;
125 }
126 #endif /* CONFIG_PM_SLEEP */
127 
128 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
129 int pageblock_order __read_mostly;
130 #endif
131 
132 static void __free_pages_ok(struct page *page, unsigned int order);
133 
134 /*
135  * results with 256, 32 in the lowmem_reserve sysctl:
136  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
137  *	1G machine -> (16M dma, 784M normal, 224M high)
138  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
139  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
140  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
141  *
142  * TBD: should special case ZONE_DMA32 machines here - in those we normally
143  * don't need any ZONE_NORMAL reservation
144  */
145 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
146 #ifdef CONFIG_ZONE_DMA
147 	 256,
148 #endif
149 #ifdef CONFIG_ZONE_DMA32
150 	 256,
151 #endif
152 #ifdef CONFIG_HIGHMEM
153 	 32,
154 #endif
155 	 32,
156 };
157 
158 EXPORT_SYMBOL(totalram_pages);
159 
160 static char * const zone_names[MAX_NR_ZONES] = {
161 #ifdef CONFIG_ZONE_DMA
162 	 "DMA",
163 #endif
164 #ifdef CONFIG_ZONE_DMA32
165 	 "DMA32",
166 #endif
167 	 "Normal",
168 #ifdef CONFIG_HIGHMEM
169 	 "HighMem",
170 #endif
171 	 "Movable",
172 };
173 
174 int min_free_kbytes = 1024;
175 
176 static unsigned long __meminitdata nr_kernel_pages;
177 static unsigned long __meminitdata nr_all_pages;
178 static unsigned long __meminitdata dma_reserve;
179 
180 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
181   /*
182    * MAX_ACTIVE_REGIONS determines the maximum number of distinct
183    * ranges of memory (RAM) that may be registered with add_active_range().
184    * Ranges passed to add_active_range() will be merged if possible
185    * so the number of times add_active_range() can be called is
186    * related to the number of nodes and the number of holes
187    */
188   #ifdef CONFIG_MAX_ACTIVE_REGIONS
189     /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
190     #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
191   #else
192     #if MAX_NUMNODES >= 32
193       /* If there can be many nodes, allow up to 50 holes per node */
194       #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
195     #else
196       /* By default, allow up to 256 distinct regions */
197       #define MAX_ACTIVE_REGIONS 256
198     #endif
199   #endif
200 
201   static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
202   static int __meminitdata nr_nodemap_entries;
203   static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
204   static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
205   static unsigned long __initdata required_kernelcore;
206   static unsigned long __initdata required_movablecore;
207   static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
208 
209   /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
210   int movable_zone;
211   EXPORT_SYMBOL(movable_zone);
212 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
213 
214 #if MAX_NUMNODES > 1
215 int nr_node_ids __read_mostly = MAX_NUMNODES;
216 int nr_online_nodes __read_mostly = 1;
217 EXPORT_SYMBOL(nr_node_ids);
218 EXPORT_SYMBOL(nr_online_nodes);
219 #endif
220 
221 int page_group_by_mobility_disabled __read_mostly;
222 
223 static void set_pageblock_migratetype(struct page *page, int migratetype)
224 {
225 
226 	if (unlikely(page_group_by_mobility_disabled))
227 		migratetype = MIGRATE_UNMOVABLE;
228 
229 	set_pageblock_flags_group(page, (unsigned long)migratetype,
230 					PB_migrate, PB_migrate_end);
231 }
232 
233 bool oom_killer_disabled __read_mostly;
234 
235 #ifdef CONFIG_DEBUG_VM
236 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
237 {
238 	int ret = 0;
239 	unsigned seq;
240 	unsigned long pfn = page_to_pfn(page);
241 
242 	do {
243 		seq = zone_span_seqbegin(zone);
244 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
245 			ret = 1;
246 		else if (pfn < zone->zone_start_pfn)
247 			ret = 1;
248 	} while (zone_span_seqretry(zone, seq));
249 
250 	return ret;
251 }
252 
253 static int page_is_consistent(struct zone *zone, struct page *page)
254 {
255 	if (!pfn_valid_within(page_to_pfn(page)))
256 		return 0;
257 	if (zone != page_zone(page))
258 		return 0;
259 
260 	return 1;
261 }
262 /*
263  * Temporary debugging check for pages not lying within a given zone.
264  */
265 static int bad_range(struct zone *zone, struct page *page)
266 {
267 	if (page_outside_zone_boundaries(zone, page))
268 		return 1;
269 	if (!page_is_consistent(zone, page))
270 		return 1;
271 
272 	return 0;
273 }
274 #else
275 static inline int bad_range(struct zone *zone, struct page *page)
276 {
277 	return 0;
278 }
279 #endif
280 
281 static void bad_page(struct page *page)
282 {
283 	static unsigned long resume;
284 	static unsigned long nr_shown;
285 	static unsigned long nr_unshown;
286 
287 	/* Don't complain about poisoned pages */
288 	if (PageHWPoison(page)) {
289 		reset_page_mapcount(page); /* remove PageBuddy */
290 		return;
291 	}
292 
293 	/*
294 	 * Allow a burst of 60 reports, then keep quiet for that minute;
295 	 * or allow a steady drip of one report per second.
296 	 */
297 	if (nr_shown == 60) {
298 		if (time_before(jiffies, resume)) {
299 			nr_unshown++;
300 			goto out;
301 		}
302 		if (nr_unshown) {
303 			printk(KERN_ALERT
304 			      "BUG: Bad page state: %lu messages suppressed\n",
305 				nr_unshown);
306 			nr_unshown = 0;
307 		}
308 		nr_shown = 0;
309 	}
310 	if (nr_shown++ == 0)
311 		resume = jiffies + 60 * HZ;
312 
313 	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
314 		current->comm, page_to_pfn(page));
315 	dump_page(page);
316 
317 	dump_stack();
318 out:
319 	/* Leave bad fields for debug, except PageBuddy could make trouble */
320 	reset_page_mapcount(page); /* remove PageBuddy */
321 	add_taint(TAINT_BAD_PAGE);
322 }
323 
324 /*
325  * Higher-order pages are called "compound pages".  They are structured thusly:
326  *
327  * The first PAGE_SIZE page is called the "head page".
328  *
329  * The remaining PAGE_SIZE pages are called "tail pages".
330  *
331  * All pages have PG_compound set.  All pages have their ->private pointing at
332  * the head page (even the head page has this).
333  *
334  * The first tail page's ->lru.next holds the address of the compound page's
335  * put_page() function.  Its ->lru.prev holds the order of allocation.
336  * This usage means that zero-order pages may not be compound.
337  */
338 
339 static void free_compound_page(struct page *page)
340 {
341 	__free_pages_ok(page, compound_order(page));
342 }
343 
344 void prep_compound_page(struct page *page, unsigned long order)
345 {
346 	int i;
347 	int nr_pages = 1 << order;
348 
349 	set_compound_page_dtor(page, free_compound_page);
350 	set_compound_order(page, order);
351 	__SetPageHead(page);
352 	for (i = 1; i < nr_pages; i++) {
353 		struct page *p = page + i;
354 
355 		__SetPageTail(p);
356 		p->first_page = page;
357 	}
358 }
359 
360 /* update __split_huge_page_refcount if you change this function */
361 static int destroy_compound_page(struct page *page, unsigned long order)
362 {
363 	int i;
364 	int nr_pages = 1 << order;
365 	int bad = 0;
366 
367 	if (unlikely(compound_order(page) != order) ||
368 	    unlikely(!PageHead(page))) {
369 		bad_page(page);
370 		bad++;
371 	}
372 
373 	__ClearPageHead(page);
374 
375 	for (i = 1; i < nr_pages; i++) {
376 		struct page *p = page + i;
377 
378 		if (unlikely(!PageTail(p) || (p->first_page != page))) {
379 			bad_page(page);
380 			bad++;
381 		}
382 		__ClearPageTail(p);
383 	}
384 
385 	return bad;
386 }
387 
388 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
389 {
390 	int i;
391 
392 	/*
393 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
394 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
395 	 */
396 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
397 	for (i = 0; i < (1 << order); i++)
398 		clear_highpage(page + i);
399 }
400 
401 static inline void set_page_order(struct page *page, int order)
402 {
403 	set_page_private(page, order);
404 	__SetPageBuddy(page);
405 }
406 
407 static inline void rmv_page_order(struct page *page)
408 {
409 	__ClearPageBuddy(page);
410 	set_page_private(page, 0);
411 }
412 
413 /*
414  * Locate the struct page for both the matching buddy in our
415  * pair (buddy1) and the combined O(n+1) page they form (page).
416  *
417  * 1) Any buddy B1 will have an order O twin B2 which satisfies
418  * the following equation:
419  *     B2 = B1 ^ (1 << O)
420  * For example, if the starting buddy (buddy2) is #8 its order
421  * 1 buddy is #10:
422  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
423  *
424  * 2) Any buddy B will have an order O+1 parent P which
425  * satisfies the following equation:
426  *     P = B & ~(1 << O)
427  *
428  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
429  */
430 static inline unsigned long
431 __find_buddy_index(unsigned long page_idx, unsigned int order)
432 {
433 	return page_idx ^ (1 << order);
434 }
435 
436 /*
437  * This function checks whether a page is free && is the buddy
438  * we can do coalesce a page and its buddy if
439  * (a) the buddy is not in a hole &&
440  * (b) the buddy is in the buddy system &&
441  * (c) a page and its buddy have the same order &&
442  * (d) a page and its buddy are in the same zone.
443  *
444  * For recording whether a page is in the buddy system, we set ->_mapcount -2.
445  * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
446  *
447  * For recording page's order, we use page_private(page).
448  */
449 static inline int page_is_buddy(struct page *page, struct page *buddy,
450 								int order)
451 {
452 	if (!pfn_valid_within(page_to_pfn(buddy)))
453 		return 0;
454 
455 	if (page_zone_id(page) != page_zone_id(buddy))
456 		return 0;
457 
458 	if (PageBuddy(buddy) && page_order(buddy) == order) {
459 		VM_BUG_ON(page_count(buddy) != 0);
460 		return 1;
461 	}
462 	return 0;
463 }
464 
465 /*
466  * Freeing function for a buddy system allocator.
467  *
468  * The concept of a buddy system is to maintain direct-mapped table
469  * (containing bit values) for memory blocks of various "orders".
470  * The bottom level table contains the map for the smallest allocatable
471  * units of memory (here, pages), and each level above it describes
472  * pairs of units from the levels below, hence, "buddies".
473  * At a high level, all that happens here is marking the table entry
474  * at the bottom level available, and propagating the changes upward
475  * as necessary, plus some accounting needed to play nicely with other
476  * parts of the VM system.
477  * At each level, we keep a list of pages, which are heads of continuous
478  * free pages of length of (1 << order) and marked with _mapcount -2. Page's
479  * order is recorded in page_private(page) field.
480  * So when we are allocating or freeing one, we can derive the state of the
481  * other.  That is, if we allocate a small block, and both were
482  * free, the remainder of the region must be split into blocks.
483  * If a block is freed, and its buddy is also free, then this
484  * triggers coalescing into a block of larger size.
485  *
486  * -- wli
487  */
488 
489 static inline void __free_one_page(struct page *page,
490 		struct zone *zone, unsigned int order,
491 		int migratetype)
492 {
493 	unsigned long page_idx;
494 	unsigned long combined_idx;
495 	unsigned long uninitialized_var(buddy_idx);
496 	struct page *buddy;
497 
498 	if (unlikely(PageCompound(page)))
499 		if (unlikely(destroy_compound_page(page, order)))
500 			return;
501 
502 	VM_BUG_ON(migratetype == -1);
503 
504 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
505 
506 	VM_BUG_ON(page_idx & ((1 << order) - 1));
507 	VM_BUG_ON(bad_range(zone, page));
508 
509 	while (order < MAX_ORDER-1) {
510 		buddy_idx = __find_buddy_index(page_idx, order);
511 		buddy = page + (buddy_idx - page_idx);
512 		if (!page_is_buddy(page, buddy, order))
513 			break;
514 
515 		/* Our buddy is free, merge with it and move up one order. */
516 		list_del(&buddy->lru);
517 		zone->free_area[order].nr_free--;
518 		rmv_page_order(buddy);
519 		combined_idx = buddy_idx & page_idx;
520 		page = page + (combined_idx - page_idx);
521 		page_idx = combined_idx;
522 		order++;
523 	}
524 	set_page_order(page, order);
525 
526 	/*
527 	 * If this is not the largest possible page, check if the buddy
528 	 * of the next-highest order is free. If it is, it's possible
529 	 * that pages are being freed that will coalesce soon. In case,
530 	 * that is happening, add the free page to the tail of the list
531 	 * so it's less likely to be used soon and more likely to be merged
532 	 * as a higher order page
533 	 */
534 	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
535 		struct page *higher_page, *higher_buddy;
536 		combined_idx = buddy_idx & page_idx;
537 		higher_page = page + (combined_idx - page_idx);
538 		buddy_idx = __find_buddy_index(combined_idx, order + 1);
539 		higher_buddy = page + (buddy_idx - combined_idx);
540 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
541 			list_add_tail(&page->lru,
542 				&zone->free_area[order].free_list[migratetype]);
543 			goto out;
544 		}
545 	}
546 
547 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
548 out:
549 	zone->free_area[order].nr_free++;
550 }
551 
552 /*
553  * free_page_mlock() -- clean up attempts to free and mlocked() page.
554  * Page should not be on lru, so no need to fix that up.
555  * free_pages_check() will verify...
556  */
557 static inline void free_page_mlock(struct page *page)
558 {
559 	__dec_zone_page_state(page, NR_MLOCK);
560 	__count_vm_event(UNEVICTABLE_MLOCKFREED);
561 }
562 
563 static inline int free_pages_check(struct page *page)
564 {
565 	if (unlikely(page_mapcount(page) |
566 		(page->mapping != NULL)  |
567 		(atomic_read(&page->_count) != 0) |
568 		(page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
569 		bad_page(page);
570 		return 1;
571 	}
572 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
573 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
574 	return 0;
575 }
576 
577 /*
578  * Frees a number of pages from the PCP lists
579  * Assumes all pages on list are in same zone, and of same order.
580  * count is the number of pages to free.
581  *
582  * If the zone was previously in an "all pages pinned" state then look to
583  * see if this freeing clears that state.
584  *
585  * And clear the zone's pages_scanned counter, to hold off the "all pages are
586  * pinned" detection logic.
587  */
588 static void free_pcppages_bulk(struct zone *zone, int count,
589 					struct per_cpu_pages *pcp)
590 {
591 	int migratetype = 0;
592 	int batch_free = 0;
593 	int to_free = count;
594 
595 	spin_lock(&zone->lock);
596 	zone->all_unreclaimable = 0;
597 	zone->pages_scanned = 0;
598 
599 	while (to_free) {
600 		struct page *page;
601 		struct list_head *list;
602 
603 		/*
604 		 * Remove pages from lists in a round-robin fashion. A
605 		 * batch_free count is maintained that is incremented when an
606 		 * empty list is encountered.  This is so more pages are freed
607 		 * off fuller lists instead of spinning excessively around empty
608 		 * lists
609 		 */
610 		do {
611 			batch_free++;
612 			if (++migratetype == MIGRATE_PCPTYPES)
613 				migratetype = 0;
614 			list = &pcp->lists[migratetype];
615 		} while (list_empty(list));
616 
617 		/* This is the only non-empty list. Free them all. */
618 		if (batch_free == MIGRATE_PCPTYPES)
619 			batch_free = to_free;
620 
621 		do {
622 			page = list_entry(list->prev, struct page, lru);
623 			/* must delete as __free_one_page list manipulates */
624 			list_del(&page->lru);
625 			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
626 			__free_one_page(page, zone, 0, page_private(page));
627 			trace_mm_page_pcpu_drain(page, 0, page_private(page));
628 		} while (--to_free && --batch_free && !list_empty(list));
629 	}
630 	__mod_zone_page_state(zone, NR_FREE_PAGES, count);
631 	spin_unlock(&zone->lock);
632 }
633 
634 static void free_one_page(struct zone *zone, struct page *page, int order,
635 				int migratetype)
636 {
637 	spin_lock(&zone->lock);
638 	zone->all_unreclaimable = 0;
639 	zone->pages_scanned = 0;
640 
641 	__free_one_page(page, zone, order, migratetype);
642 	__mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
643 	spin_unlock(&zone->lock);
644 }
645 
646 static bool free_pages_prepare(struct page *page, unsigned int order)
647 {
648 	int i;
649 	int bad = 0;
650 
651 	trace_mm_page_free_direct(page, order);
652 	kmemcheck_free_shadow(page, order);
653 
654 	if (PageAnon(page))
655 		page->mapping = NULL;
656 	for (i = 0; i < (1 << order); i++)
657 		bad += free_pages_check(page + i);
658 	if (bad)
659 		return false;
660 
661 	if (!PageHighMem(page)) {
662 		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
663 		debug_check_no_obj_freed(page_address(page),
664 					   PAGE_SIZE << order);
665 	}
666 	arch_free_page(page, order);
667 	kernel_map_pages(page, 1 << order, 0);
668 
669 	return true;
670 }
671 
672 static void __free_pages_ok(struct page *page, unsigned int order)
673 {
674 	unsigned long flags;
675 	int wasMlocked = __TestClearPageMlocked(page);
676 
677 	if (!free_pages_prepare(page, order))
678 		return;
679 
680 	local_irq_save(flags);
681 	if (unlikely(wasMlocked))
682 		free_page_mlock(page);
683 	__count_vm_events(PGFREE, 1 << order);
684 	free_one_page(page_zone(page), page, order,
685 					get_pageblock_migratetype(page));
686 	local_irq_restore(flags);
687 }
688 
689 /*
690  * permit the bootmem allocator to evade page validation on high-order frees
691  */
692 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
693 {
694 	if (order == 0) {
695 		__ClearPageReserved(page);
696 		set_page_count(page, 0);
697 		set_page_refcounted(page);
698 		__free_page(page);
699 	} else {
700 		int loop;
701 
702 		prefetchw(page);
703 		for (loop = 0; loop < BITS_PER_LONG; loop++) {
704 			struct page *p = &page[loop];
705 
706 			if (loop + 1 < BITS_PER_LONG)
707 				prefetchw(p + 1);
708 			__ClearPageReserved(p);
709 			set_page_count(p, 0);
710 		}
711 
712 		set_page_refcounted(page);
713 		__free_pages(page, order);
714 	}
715 }
716 
717 
718 /*
719  * The order of subdivision here is critical for the IO subsystem.
720  * Please do not alter this order without good reasons and regression
721  * testing. Specifically, as large blocks of memory are subdivided,
722  * the order in which smaller blocks are delivered depends on the order
723  * they're subdivided in this function. This is the primary factor
724  * influencing the order in which pages are delivered to the IO
725  * subsystem according to empirical testing, and this is also justified
726  * by considering the behavior of a buddy system containing a single
727  * large block of memory acted on by a series of small allocations.
728  * This behavior is a critical factor in sglist merging's success.
729  *
730  * -- wli
731  */
732 static inline void expand(struct zone *zone, struct page *page,
733 	int low, int high, struct free_area *area,
734 	int migratetype)
735 {
736 	unsigned long size = 1 << high;
737 
738 	while (high > low) {
739 		area--;
740 		high--;
741 		size >>= 1;
742 		VM_BUG_ON(bad_range(zone, &page[size]));
743 		list_add(&page[size].lru, &area->free_list[migratetype]);
744 		area->nr_free++;
745 		set_page_order(&page[size], high);
746 	}
747 }
748 
749 /*
750  * This page is about to be returned from the page allocator
751  */
752 static inline int check_new_page(struct page *page)
753 {
754 	if (unlikely(page_mapcount(page) |
755 		(page->mapping != NULL)  |
756 		(atomic_read(&page->_count) != 0)  |
757 		(page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
758 		bad_page(page);
759 		return 1;
760 	}
761 	return 0;
762 }
763 
764 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
765 {
766 	int i;
767 
768 	for (i = 0; i < (1 << order); i++) {
769 		struct page *p = page + i;
770 		if (unlikely(check_new_page(p)))
771 			return 1;
772 	}
773 
774 	set_page_private(page, 0);
775 	set_page_refcounted(page);
776 
777 	arch_alloc_page(page, order);
778 	kernel_map_pages(page, 1 << order, 1);
779 
780 	if (gfp_flags & __GFP_ZERO)
781 		prep_zero_page(page, order, gfp_flags);
782 
783 	if (order && (gfp_flags & __GFP_COMP))
784 		prep_compound_page(page, order);
785 
786 	return 0;
787 }
788 
789 /*
790  * Go through the free lists for the given migratetype and remove
791  * the smallest available page from the freelists
792  */
793 static inline
794 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
795 						int migratetype)
796 {
797 	unsigned int current_order;
798 	struct free_area * area;
799 	struct page *page;
800 
801 	/* Find a page of the appropriate size in the preferred list */
802 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
803 		area = &(zone->free_area[current_order]);
804 		if (list_empty(&area->free_list[migratetype]))
805 			continue;
806 
807 		page = list_entry(area->free_list[migratetype].next,
808 							struct page, lru);
809 		list_del(&page->lru);
810 		rmv_page_order(page);
811 		area->nr_free--;
812 		expand(zone, page, order, current_order, area, migratetype);
813 		return page;
814 	}
815 
816 	return NULL;
817 }
818 
819 
820 /*
821  * This array describes the order lists are fallen back to when
822  * the free lists for the desirable migrate type are depleted
823  */
824 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
825 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_RESERVE },
826 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_RESERVE },
827 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
828 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE,     MIGRATE_RESERVE,   MIGRATE_RESERVE }, /* Never used */
829 };
830 
831 /*
832  * Move the free pages in a range to the free lists of the requested type.
833  * Note that start_page and end_pages are not aligned on a pageblock
834  * boundary. If alignment is required, use move_freepages_block()
835  */
836 static int move_freepages(struct zone *zone,
837 			  struct page *start_page, struct page *end_page,
838 			  int migratetype)
839 {
840 	struct page *page;
841 	unsigned long order;
842 	int pages_moved = 0;
843 
844 #ifndef CONFIG_HOLES_IN_ZONE
845 	/*
846 	 * page_zone is not safe to call in this context when
847 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
848 	 * anyway as we check zone boundaries in move_freepages_block().
849 	 * Remove at a later date when no bug reports exist related to
850 	 * grouping pages by mobility
851 	 */
852 	BUG_ON(page_zone(start_page) != page_zone(end_page));
853 #endif
854 
855 	for (page = start_page; page <= end_page;) {
856 		/* Make sure we are not inadvertently changing nodes */
857 		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
858 
859 		if (!pfn_valid_within(page_to_pfn(page))) {
860 			page++;
861 			continue;
862 		}
863 
864 		if (!PageBuddy(page)) {
865 			page++;
866 			continue;
867 		}
868 
869 		order = page_order(page);
870 		list_move(&page->lru,
871 			  &zone->free_area[order].free_list[migratetype]);
872 		page += 1 << order;
873 		pages_moved += 1 << order;
874 	}
875 
876 	return pages_moved;
877 }
878 
879 static int move_freepages_block(struct zone *zone, struct page *page,
880 				int migratetype)
881 {
882 	unsigned long start_pfn, end_pfn;
883 	struct page *start_page, *end_page;
884 
885 	start_pfn = page_to_pfn(page);
886 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
887 	start_page = pfn_to_page(start_pfn);
888 	end_page = start_page + pageblock_nr_pages - 1;
889 	end_pfn = start_pfn + pageblock_nr_pages - 1;
890 
891 	/* Do not cross zone boundaries */
892 	if (start_pfn < zone->zone_start_pfn)
893 		start_page = page;
894 	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
895 		return 0;
896 
897 	return move_freepages(zone, start_page, end_page, migratetype);
898 }
899 
900 static void change_pageblock_range(struct page *pageblock_page,
901 					int start_order, int migratetype)
902 {
903 	int nr_pageblocks = 1 << (start_order - pageblock_order);
904 
905 	while (nr_pageblocks--) {
906 		set_pageblock_migratetype(pageblock_page, migratetype);
907 		pageblock_page += pageblock_nr_pages;
908 	}
909 }
910 
911 /* Remove an element from the buddy allocator from the fallback list */
912 static inline struct page *
913 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
914 {
915 	struct free_area * area;
916 	int current_order;
917 	struct page *page;
918 	int migratetype, i;
919 
920 	/* Find the largest possible block of pages in the other list */
921 	for (current_order = MAX_ORDER-1; current_order >= order;
922 						--current_order) {
923 		for (i = 0; i < MIGRATE_TYPES - 1; i++) {
924 			migratetype = fallbacks[start_migratetype][i];
925 
926 			/* MIGRATE_RESERVE handled later if necessary */
927 			if (migratetype == MIGRATE_RESERVE)
928 				continue;
929 
930 			area = &(zone->free_area[current_order]);
931 			if (list_empty(&area->free_list[migratetype]))
932 				continue;
933 
934 			page = list_entry(area->free_list[migratetype].next,
935 					struct page, lru);
936 			area->nr_free--;
937 
938 			/*
939 			 * If breaking a large block of pages, move all free
940 			 * pages to the preferred allocation list. If falling
941 			 * back for a reclaimable kernel allocation, be more
942 			 * agressive about taking ownership of free pages
943 			 */
944 			if (unlikely(current_order >= (pageblock_order >> 1)) ||
945 					start_migratetype == MIGRATE_RECLAIMABLE ||
946 					page_group_by_mobility_disabled) {
947 				unsigned long pages;
948 				pages = move_freepages_block(zone, page,
949 								start_migratetype);
950 
951 				/* Claim the whole block if over half of it is free */
952 				if (pages >= (1 << (pageblock_order-1)) ||
953 						page_group_by_mobility_disabled)
954 					set_pageblock_migratetype(page,
955 								start_migratetype);
956 
957 				migratetype = start_migratetype;
958 			}
959 
960 			/* Remove the page from the freelists */
961 			list_del(&page->lru);
962 			rmv_page_order(page);
963 
964 			/* Take ownership for orders >= pageblock_order */
965 			if (current_order >= pageblock_order)
966 				change_pageblock_range(page, current_order,
967 							start_migratetype);
968 
969 			expand(zone, page, order, current_order, area, migratetype);
970 
971 			trace_mm_page_alloc_extfrag(page, order, current_order,
972 				start_migratetype, migratetype);
973 
974 			return page;
975 		}
976 	}
977 
978 	return NULL;
979 }
980 
981 /*
982  * Do the hard work of removing an element from the buddy allocator.
983  * Call me with the zone->lock already held.
984  */
985 static struct page *__rmqueue(struct zone *zone, unsigned int order,
986 						int migratetype)
987 {
988 	struct page *page;
989 
990 retry_reserve:
991 	page = __rmqueue_smallest(zone, order, migratetype);
992 
993 	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
994 		page = __rmqueue_fallback(zone, order, migratetype);
995 
996 		/*
997 		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
998 		 * is used because __rmqueue_smallest is an inline function
999 		 * and we want just one call site
1000 		 */
1001 		if (!page) {
1002 			migratetype = MIGRATE_RESERVE;
1003 			goto retry_reserve;
1004 		}
1005 	}
1006 
1007 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
1008 	return page;
1009 }
1010 
1011 /*
1012  * Obtain a specified number of elements from the buddy allocator, all under
1013  * a single hold of the lock, for efficiency.  Add them to the supplied list.
1014  * Returns the number of new pages which were placed at *list.
1015  */
1016 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1017 			unsigned long count, struct list_head *list,
1018 			int migratetype, int cold)
1019 {
1020 	int i;
1021 
1022 	spin_lock(&zone->lock);
1023 	for (i = 0; i < count; ++i) {
1024 		struct page *page = __rmqueue(zone, order, migratetype);
1025 		if (unlikely(page == NULL))
1026 			break;
1027 
1028 		/*
1029 		 * Split buddy pages returned by expand() are received here
1030 		 * in physical page order. The page is added to the callers and
1031 		 * list and the list head then moves forward. From the callers
1032 		 * perspective, the linked list is ordered by page number in
1033 		 * some conditions. This is useful for IO devices that can
1034 		 * merge IO requests if the physical pages are ordered
1035 		 * properly.
1036 		 */
1037 		if (likely(cold == 0))
1038 			list_add(&page->lru, list);
1039 		else
1040 			list_add_tail(&page->lru, list);
1041 		set_page_private(page, migratetype);
1042 		list = &page->lru;
1043 	}
1044 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1045 	spin_unlock(&zone->lock);
1046 	return i;
1047 }
1048 
1049 #ifdef CONFIG_NUMA
1050 /*
1051  * Called from the vmstat counter updater to drain pagesets of this
1052  * currently executing processor on remote nodes after they have
1053  * expired.
1054  *
1055  * Note that this function must be called with the thread pinned to
1056  * a single processor.
1057  */
1058 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1059 {
1060 	unsigned long flags;
1061 	int to_drain;
1062 
1063 	local_irq_save(flags);
1064 	if (pcp->count >= pcp->batch)
1065 		to_drain = pcp->batch;
1066 	else
1067 		to_drain = pcp->count;
1068 	free_pcppages_bulk(zone, to_drain, pcp);
1069 	pcp->count -= to_drain;
1070 	local_irq_restore(flags);
1071 }
1072 #endif
1073 
1074 /*
1075  * Drain pages of the indicated processor.
1076  *
1077  * The processor must either be the current processor and the
1078  * thread pinned to the current processor or a processor that
1079  * is not online.
1080  */
1081 static void drain_pages(unsigned int cpu)
1082 {
1083 	unsigned long flags;
1084 	struct zone *zone;
1085 
1086 	for_each_populated_zone(zone) {
1087 		struct per_cpu_pageset *pset;
1088 		struct per_cpu_pages *pcp;
1089 
1090 		local_irq_save(flags);
1091 		pset = per_cpu_ptr(zone->pageset, cpu);
1092 
1093 		pcp = &pset->pcp;
1094 		if (pcp->count) {
1095 			free_pcppages_bulk(zone, pcp->count, pcp);
1096 			pcp->count = 0;
1097 		}
1098 		local_irq_restore(flags);
1099 	}
1100 }
1101 
1102 /*
1103  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1104  */
1105 void drain_local_pages(void *arg)
1106 {
1107 	drain_pages(smp_processor_id());
1108 }
1109 
1110 /*
1111  * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1112  */
1113 void drain_all_pages(void)
1114 {
1115 	on_each_cpu(drain_local_pages, NULL, 1);
1116 }
1117 
1118 #ifdef CONFIG_HIBERNATION
1119 
1120 void mark_free_pages(struct zone *zone)
1121 {
1122 	unsigned long pfn, max_zone_pfn;
1123 	unsigned long flags;
1124 	int order, t;
1125 	struct list_head *curr;
1126 
1127 	if (!zone->spanned_pages)
1128 		return;
1129 
1130 	spin_lock_irqsave(&zone->lock, flags);
1131 
1132 	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1133 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1134 		if (pfn_valid(pfn)) {
1135 			struct page *page = pfn_to_page(pfn);
1136 
1137 			if (!swsusp_page_is_forbidden(page))
1138 				swsusp_unset_page_free(page);
1139 		}
1140 
1141 	for_each_migratetype_order(order, t) {
1142 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1143 			unsigned long i;
1144 
1145 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1146 			for (i = 0; i < (1UL << order); i++)
1147 				swsusp_set_page_free(pfn_to_page(pfn + i));
1148 		}
1149 	}
1150 	spin_unlock_irqrestore(&zone->lock, flags);
1151 }
1152 #endif /* CONFIG_PM */
1153 
1154 /*
1155  * Free a 0-order page
1156  * cold == 1 ? free a cold page : free a hot page
1157  */
1158 void free_hot_cold_page(struct page *page, int cold)
1159 {
1160 	struct zone *zone = page_zone(page);
1161 	struct per_cpu_pages *pcp;
1162 	unsigned long flags;
1163 	int migratetype;
1164 	int wasMlocked = __TestClearPageMlocked(page);
1165 
1166 	if (!free_pages_prepare(page, 0))
1167 		return;
1168 
1169 	migratetype = get_pageblock_migratetype(page);
1170 	set_page_private(page, migratetype);
1171 	local_irq_save(flags);
1172 	if (unlikely(wasMlocked))
1173 		free_page_mlock(page);
1174 	__count_vm_event(PGFREE);
1175 
1176 	/*
1177 	 * We only track unmovable, reclaimable and movable on pcp lists.
1178 	 * Free ISOLATE pages back to the allocator because they are being
1179 	 * offlined but treat RESERVE as movable pages so we can get those
1180 	 * areas back if necessary. Otherwise, we may have to free
1181 	 * excessively into the page allocator
1182 	 */
1183 	if (migratetype >= MIGRATE_PCPTYPES) {
1184 		if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1185 			free_one_page(zone, page, 0, migratetype);
1186 			goto out;
1187 		}
1188 		migratetype = MIGRATE_MOVABLE;
1189 	}
1190 
1191 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
1192 	if (cold)
1193 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1194 	else
1195 		list_add(&page->lru, &pcp->lists[migratetype]);
1196 	pcp->count++;
1197 	if (pcp->count >= pcp->high) {
1198 		free_pcppages_bulk(zone, pcp->batch, pcp);
1199 		pcp->count -= pcp->batch;
1200 	}
1201 
1202 out:
1203 	local_irq_restore(flags);
1204 }
1205 
1206 /*
1207  * split_page takes a non-compound higher-order page, and splits it into
1208  * n (1<<order) sub-pages: page[0..n]
1209  * Each sub-page must be freed individually.
1210  *
1211  * Note: this is probably too low level an operation for use in drivers.
1212  * Please consult with lkml before using this in your driver.
1213  */
1214 void split_page(struct page *page, unsigned int order)
1215 {
1216 	int i;
1217 
1218 	VM_BUG_ON(PageCompound(page));
1219 	VM_BUG_ON(!page_count(page));
1220 
1221 #ifdef CONFIG_KMEMCHECK
1222 	/*
1223 	 * Split shadow pages too, because free(page[0]) would
1224 	 * otherwise free the whole shadow.
1225 	 */
1226 	if (kmemcheck_page_is_tracked(page))
1227 		split_page(virt_to_page(page[0].shadow), order);
1228 #endif
1229 
1230 	for (i = 1; i < (1 << order); i++)
1231 		set_page_refcounted(page + i);
1232 }
1233 
1234 /*
1235  * Similar to split_page except the page is already free. As this is only
1236  * being used for migration, the migratetype of the block also changes.
1237  * As this is called with interrupts disabled, the caller is responsible
1238  * for calling arch_alloc_page() and kernel_map_page() after interrupts
1239  * are enabled.
1240  *
1241  * Note: this is probably too low level an operation for use in drivers.
1242  * Please consult with lkml before using this in your driver.
1243  */
1244 int split_free_page(struct page *page)
1245 {
1246 	unsigned int order;
1247 	unsigned long watermark;
1248 	struct zone *zone;
1249 
1250 	BUG_ON(!PageBuddy(page));
1251 
1252 	zone = page_zone(page);
1253 	order = page_order(page);
1254 
1255 	/* Obey watermarks as if the page was being allocated */
1256 	watermark = low_wmark_pages(zone) + (1 << order);
1257 	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1258 		return 0;
1259 
1260 	/* Remove page from free list */
1261 	list_del(&page->lru);
1262 	zone->free_area[order].nr_free--;
1263 	rmv_page_order(page);
1264 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1265 
1266 	/* Split into individual pages */
1267 	set_page_refcounted(page);
1268 	split_page(page, order);
1269 
1270 	if (order >= pageblock_order - 1) {
1271 		struct page *endpage = page + (1 << order) - 1;
1272 		for (; page < endpage; page += pageblock_nr_pages)
1273 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1274 	}
1275 
1276 	return 1 << order;
1277 }
1278 
1279 /*
1280  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1281  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1282  * or two.
1283  */
1284 static inline
1285 struct page *buffered_rmqueue(struct zone *preferred_zone,
1286 			struct zone *zone, int order, gfp_t gfp_flags,
1287 			int migratetype)
1288 {
1289 	unsigned long flags;
1290 	struct page *page;
1291 	int cold = !!(gfp_flags & __GFP_COLD);
1292 
1293 again:
1294 	if (likely(order == 0)) {
1295 		struct per_cpu_pages *pcp;
1296 		struct list_head *list;
1297 
1298 		local_irq_save(flags);
1299 		pcp = &this_cpu_ptr(zone->pageset)->pcp;
1300 		list = &pcp->lists[migratetype];
1301 		if (list_empty(list)) {
1302 			pcp->count += rmqueue_bulk(zone, 0,
1303 					pcp->batch, list,
1304 					migratetype, cold);
1305 			if (unlikely(list_empty(list)))
1306 				goto failed;
1307 		}
1308 
1309 		if (cold)
1310 			page = list_entry(list->prev, struct page, lru);
1311 		else
1312 			page = list_entry(list->next, struct page, lru);
1313 
1314 		list_del(&page->lru);
1315 		pcp->count--;
1316 	} else {
1317 		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1318 			/*
1319 			 * __GFP_NOFAIL is not to be used in new code.
1320 			 *
1321 			 * All __GFP_NOFAIL callers should be fixed so that they
1322 			 * properly detect and handle allocation failures.
1323 			 *
1324 			 * We most definitely don't want callers attempting to
1325 			 * allocate greater than order-1 page units with
1326 			 * __GFP_NOFAIL.
1327 			 */
1328 			WARN_ON_ONCE(order > 1);
1329 		}
1330 		spin_lock_irqsave(&zone->lock, flags);
1331 		page = __rmqueue(zone, order, migratetype);
1332 		spin_unlock(&zone->lock);
1333 		if (!page)
1334 			goto failed;
1335 		__mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1336 	}
1337 
1338 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1339 	zone_statistics(preferred_zone, zone, gfp_flags);
1340 	local_irq_restore(flags);
1341 
1342 	VM_BUG_ON(bad_range(zone, page));
1343 	if (prep_new_page(page, order, gfp_flags))
1344 		goto again;
1345 	return page;
1346 
1347 failed:
1348 	local_irq_restore(flags);
1349 	return NULL;
1350 }
1351 
1352 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1353 #define ALLOC_WMARK_MIN		WMARK_MIN
1354 #define ALLOC_WMARK_LOW		WMARK_LOW
1355 #define ALLOC_WMARK_HIGH	WMARK_HIGH
1356 #define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
1357 
1358 /* Mask to get the watermark bits */
1359 #define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
1360 
1361 #define ALLOC_HARDER		0x10 /* try to alloc harder */
1362 #define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
1363 #define ALLOC_CPUSET		0x40 /* check for correct cpuset */
1364 
1365 #ifdef CONFIG_FAIL_PAGE_ALLOC
1366 
1367 static struct fail_page_alloc_attr {
1368 	struct fault_attr attr;
1369 
1370 	u32 ignore_gfp_highmem;
1371 	u32 ignore_gfp_wait;
1372 	u32 min_order;
1373 
1374 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1375 
1376 	struct dentry *ignore_gfp_highmem_file;
1377 	struct dentry *ignore_gfp_wait_file;
1378 	struct dentry *min_order_file;
1379 
1380 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1381 
1382 } fail_page_alloc = {
1383 	.attr = FAULT_ATTR_INITIALIZER,
1384 	.ignore_gfp_wait = 1,
1385 	.ignore_gfp_highmem = 1,
1386 	.min_order = 1,
1387 };
1388 
1389 static int __init setup_fail_page_alloc(char *str)
1390 {
1391 	return setup_fault_attr(&fail_page_alloc.attr, str);
1392 }
1393 __setup("fail_page_alloc=", setup_fail_page_alloc);
1394 
1395 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1396 {
1397 	if (order < fail_page_alloc.min_order)
1398 		return 0;
1399 	if (gfp_mask & __GFP_NOFAIL)
1400 		return 0;
1401 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1402 		return 0;
1403 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1404 		return 0;
1405 
1406 	return should_fail(&fail_page_alloc.attr, 1 << order);
1407 }
1408 
1409 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1410 
1411 static int __init fail_page_alloc_debugfs(void)
1412 {
1413 	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1414 	struct dentry *dir;
1415 	int err;
1416 
1417 	err = init_fault_attr_dentries(&fail_page_alloc.attr,
1418 				       "fail_page_alloc");
1419 	if (err)
1420 		return err;
1421 	dir = fail_page_alloc.attr.dentries.dir;
1422 
1423 	fail_page_alloc.ignore_gfp_wait_file =
1424 		debugfs_create_bool("ignore-gfp-wait", mode, dir,
1425 				      &fail_page_alloc.ignore_gfp_wait);
1426 
1427 	fail_page_alloc.ignore_gfp_highmem_file =
1428 		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1429 				      &fail_page_alloc.ignore_gfp_highmem);
1430 	fail_page_alloc.min_order_file =
1431 		debugfs_create_u32("min-order", mode, dir,
1432 				   &fail_page_alloc.min_order);
1433 
1434 	if (!fail_page_alloc.ignore_gfp_wait_file ||
1435             !fail_page_alloc.ignore_gfp_highmem_file ||
1436             !fail_page_alloc.min_order_file) {
1437 		err = -ENOMEM;
1438 		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1439 		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1440 		debugfs_remove(fail_page_alloc.min_order_file);
1441 		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1442 	}
1443 
1444 	return err;
1445 }
1446 
1447 late_initcall(fail_page_alloc_debugfs);
1448 
1449 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1450 
1451 #else /* CONFIG_FAIL_PAGE_ALLOC */
1452 
1453 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1454 {
1455 	return 0;
1456 }
1457 
1458 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1459 
1460 /*
1461  * Return true if free pages are above 'mark'. This takes into account the order
1462  * of the allocation.
1463  */
1464 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1465 		      int classzone_idx, int alloc_flags, long free_pages)
1466 {
1467 	/* free_pages my go negative - that's OK */
1468 	long min = mark;
1469 	int o;
1470 
1471 	free_pages -= (1 << order) + 1;
1472 	if (alloc_flags & ALLOC_HIGH)
1473 		min -= min / 2;
1474 	if (alloc_flags & ALLOC_HARDER)
1475 		min -= min / 4;
1476 
1477 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1478 		return false;
1479 	for (o = 0; o < order; o++) {
1480 		/* At the next order, this order's pages become unavailable */
1481 		free_pages -= z->free_area[o].nr_free << o;
1482 
1483 		/* Require fewer higher order pages to be free */
1484 		min >>= 1;
1485 
1486 		if (free_pages <= min)
1487 			return false;
1488 	}
1489 	return true;
1490 }
1491 
1492 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1493 		      int classzone_idx, int alloc_flags)
1494 {
1495 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1496 					zone_page_state(z, NR_FREE_PAGES));
1497 }
1498 
1499 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1500 		      int classzone_idx, int alloc_flags)
1501 {
1502 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
1503 
1504 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1505 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1506 
1507 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1508 								free_pages);
1509 }
1510 
1511 #ifdef CONFIG_NUMA
1512 /*
1513  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1514  * skip over zones that are not allowed by the cpuset, or that have
1515  * been recently (in last second) found to be nearly full.  See further
1516  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1517  * that have to skip over a lot of full or unallowed zones.
1518  *
1519  * If the zonelist cache is present in the passed in zonelist, then
1520  * returns a pointer to the allowed node mask (either the current
1521  * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1522  *
1523  * If the zonelist cache is not available for this zonelist, does
1524  * nothing and returns NULL.
1525  *
1526  * If the fullzones BITMAP in the zonelist cache is stale (more than
1527  * a second since last zap'd) then we zap it out (clear its bits.)
1528  *
1529  * We hold off even calling zlc_setup, until after we've checked the
1530  * first zone in the zonelist, on the theory that most allocations will
1531  * be satisfied from that first zone, so best to examine that zone as
1532  * quickly as we can.
1533  */
1534 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1535 {
1536 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1537 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1538 
1539 	zlc = zonelist->zlcache_ptr;
1540 	if (!zlc)
1541 		return NULL;
1542 
1543 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1544 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1545 		zlc->last_full_zap = jiffies;
1546 	}
1547 
1548 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1549 					&cpuset_current_mems_allowed :
1550 					&node_states[N_HIGH_MEMORY];
1551 	return allowednodes;
1552 }
1553 
1554 /*
1555  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1556  * if it is worth looking at further for free memory:
1557  *  1) Check that the zone isn't thought to be full (doesn't have its
1558  *     bit set in the zonelist_cache fullzones BITMAP).
1559  *  2) Check that the zones node (obtained from the zonelist_cache
1560  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1561  * Return true (non-zero) if zone is worth looking at further, or
1562  * else return false (zero) if it is not.
1563  *
1564  * This check -ignores- the distinction between various watermarks,
1565  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1566  * found to be full for any variation of these watermarks, it will
1567  * be considered full for up to one second by all requests, unless
1568  * we are so low on memory on all allowed nodes that we are forced
1569  * into the second scan of the zonelist.
1570  *
1571  * In the second scan we ignore this zonelist cache and exactly
1572  * apply the watermarks to all zones, even it is slower to do so.
1573  * We are low on memory in the second scan, and should leave no stone
1574  * unturned looking for a free page.
1575  */
1576 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1577 						nodemask_t *allowednodes)
1578 {
1579 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1580 	int i;				/* index of *z in zonelist zones */
1581 	int n;				/* node that zone *z is on */
1582 
1583 	zlc = zonelist->zlcache_ptr;
1584 	if (!zlc)
1585 		return 1;
1586 
1587 	i = z - zonelist->_zonerefs;
1588 	n = zlc->z_to_n[i];
1589 
1590 	/* This zone is worth trying if it is allowed but not full */
1591 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1592 }
1593 
1594 /*
1595  * Given 'z' scanning a zonelist, set the corresponding bit in
1596  * zlc->fullzones, so that subsequent attempts to allocate a page
1597  * from that zone don't waste time re-examining it.
1598  */
1599 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1600 {
1601 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1602 	int i;				/* index of *z in zonelist zones */
1603 
1604 	zlc = zonelist->zlcache_ptr;
1605 	if (!zlc)
1606 		return;
1607 
1608 	i = z - zonelist->_zonerefs;
1609 
1610 	set_bit(i, zlc->fullzones);
1611 }
1612 
1613 #else	/* CONFIG_NUMA */
1614 
1615 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1616 {
1617 	return NULL;
1618 }
1619 
1620 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1621 				nodemask_t *allowednodes)
1622 {
1623 	return 1;
1624 }
1625 
1626 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1627 {
1628 }
1629 #endif	/* CONFIG_NUMA */
1630 
1631 /*
1632  * get_page_from_freelist goes through the zonelist trying to allocate
1633  * a page.
1634  */
1635 static struct page *
1636 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1637 		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1638 		struct zone *preferred_zone, int migratetype)
1639 {
1640 	struct zoneref *z;
1641 	struct page *page = NULL;
1642 	int classzone_idx;
1643 	struct zone *zone;
1644 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1645 	int zlc_active = 0;		/* set if using zonelist_cache */
1646 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1647 
1648 	classzone_idx = zone_idx(preferred_zone);
1649 zonelist_scan:
1650 	/*
1651 	 * Scan zonelist, looking for a zone with enough free.
1652 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1653 	 */
1654 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1655 						high_zoneidx, nodemask) {
1656 		if (NUMA_BUILD && zlc_active &&
1657 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1658 				continue;
1659 		if ((alloc_flags & ALLOC_CPUSET) &&
1660 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1661 				goto try_next_zone;
1662 
1663 		BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1664 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1665 			unsigned long mark;
1666 			int ret;
1667 
1668 			mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1669 			if (zone_watermark_ok(zone, order, mark,
1670 				    classzone_idx, alloc_flags))
1671 				goto try_this_zone;
1672 
1673 			if (zone_reclaim_mode == 0)
1674 				goto this_zone_full;
1675 
1676 			ret = zone_reclaim(zone, gfp_mask, order);
1677 			switch (ret) {
1678 			case ZONE_RECLAIM_NOSCAN:
1679 				/* did not scan */
1680 				goto try_next_zone;
1681 			case ZONE_RECLAIM_FULL:
1682 				/* scanned but unreclaimable */
1683 				goto this_zone_full;
1684 			default:
1685 				/* did we reclaim enough */
1686 				if (!zone_watermark_ok(zone, order, mark,
1687 						classzone_idx, alloc_flags))
1688 					goto this_zone_full;
1689 			}
1690 		}
1691 
1692 try_this_zone:
1693 		page = buffered_rmqueue(preferred_zone, zone, order,
1694 						gfp_mask, migratetype);
1695 		if (page)
1696 			break;
1697 this_zone_full:
1698 		if (NUMA_BUILD)
1699 			zlc_mark_zone_full(zonelist, z);
1700 try_next_zone:
1701 		if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1702 			/*
1703 			 * we do zlc_setup after the first zone is tried but only
1704 			 * if there are multiple nodes make it worthwhile
1705 			 */
1706 			allowednodes = zlc_setup(zonelist, alloc_flags);
1707 			zlc_active = 1;
1708 			did_zlc_setup = 1;
1709 		}
1710 	}
1711 
1712 	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1713 		/* Disable zlc cache for second zonelist scan */
1714 		zlc_active = 0;
1715 		goto zonelist_scan;
1716 	}
1717 	return page;
1718 }
1719 
1720 /*
1721  * Large machines with many possible nodes should not always dump per-node
1722  * meminfo in irq context.
1723  */
1724 static inline bool should_suppress_show_mem(void)
1725 {
1726 	bool ret = false;
1727 
1728 #if NODES_SHIFT > 8
1729 	ret = in_interrupt();
1730 #endif
1731 	return ret;
1732 }
1733 
1734 static inline int
1735 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1736 				unsigned long pages_reclaimed)
1737 {
1738 	/* Do not loop if specifically requested */
1739 	if (gfp_mask & __GFP_NORETRY)
1740 		return 0;
1741 
1742 	/*
1743 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1744 	 * means __GFP_NOFAIL, but that may not be true in other
1745 	 * implementations.
1746 	 */
1747 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
1748 		return 1;
1749 
1750 	/*
1751 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1752 	 * specified, then we retry until we no longer reclaim any pages
1753 	 * (above), or we've reclaimed an order of pages at least as
1754 	 * large as the allocation's order. In both cases, if the
1755 	 * allocation still fails, we stop retrying.
1756 	 */
1757 	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1758 		return 1;
1759 
1760 	/*
1761 	 * Don't let big-order allocations loop unless the caller
1762 	 * explicitly requests that.
1763 	 */
1764 	if (gfp_mask & __GFP_NOFAIL)
1765 		return 1;
1766 
1767 	return 0;
1768 }
1769 
1770 static inline struct page *
1771 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1772 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1773 	nodemask_t *nodemask, struct zone *preferred_zone,
1774 	int migratetype)
1775 {
1776 	struct page *page;
1777 
1778 	/* Acquire the OOM killer lock for the zones in zonelist */
1779 	if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
1780 		schedule_timeout_uninterruptible(1);
1781 		return NULL;
1782 	}
1783 
1784 	/*
1785 	 * Go through the zonelist yet one more time, keep very high watermark
1786 	 * here, this is only to catch a parallel oom killing, we must fail if
1787 	 * we're still under heavy pressure.
1788 	 */
1789 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1790 		order, zonelist, high_zoneidx,
1791 		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1792 		preferred_zone, migratetype);
1793 	if (page)
1794 		goto out;
1795 
1796 	if (!(gfp_mask & __GFP_NOFAIL)) {
1797 		/* The OOM killer will not help higher order allocs */
1798 		if (order > PAGE_ALLOC_COSTLY_ORDER)
1799 			goto out;
1800 		/* The OOM killer does not needlessly kill tasks for lowmem */
1801 		if (high_zoneidx < ZONE_NORMAL)
1802 			goto out;
1803 		/*
1804 		 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1805 		 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1806 		 * The caller should handle page allocation failure by itself if
1807 		 * it specifies __GFP_THISNODE.
1808 		 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1809 		 */
1810 		if (gfp_mask & __GFP_THISNODE)
1811 			goto out;
1812 	}
1813 	/* Exhausted what can be done so it's blamo time */
1814 	out_of_memory(zonelist, gfp_mask, order, nodemask);
1815 
1816 out:
1817 	clear_zonelist_oom(zonelist, gfp_mask);
1818 	return page;
1819 }
1820 
1821 #ifdef CONFIG_COMPACTION
1822 /* Try memory compaction for high-order allocations before reclaim */
1823 static struct page *
1824 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1825 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1826 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1827 	int migratetype, unsigned long *did_some_progress,
1828 	bool sync_migration)
1829 {
1830 	struct page *page;
1831 
1832 	if (!order || compaction_deferred(preferred_zone))
1833 		return NULL;
1834 
1835 	current->flags |= PF_MEMALLOC;
1836 	*did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
1837 						nodemask, sync_migration);
1838 	current->flags &= ~PF_MEMALLOC;
1839 	if (*did_some_progress != COMPACT_SKIPPED) {
1840 
1841 		/* Page migration frees to the PCP lists but we want merging */
1842 		drain_pages(get_cpu());
1843 		put_cpu();
1844 
1845 		page = get_page_from_freelist(gfp_mask, nodemask,
1846 				order, zonelist, high_zoneidx,
1847 				alloc_flags, preferred_zone,
1848 				migratetype);
1849 		if (page) {
1850 			preferred_zone->compact_considered = 0;
1851 			preferred_zone->compact_defer_shift = 0;
1852 			count_vm_event(COMPACTSUCCESS);
1853 			return page;
1854 		}
1855 
1856 		/*
1857 		 * It's bad if compaction run occurs and fails.
1858 		 * The most likely reason is that pages exist,
1859 		 * but not enough to satisfy watermarks.
1860 		 */
1861 		count_vm_event(COMPACTFAIL);
1862 		defer_compaction(preferred_zone);
1863 
1864 		cond_resched();
1865 	}
1866 
1867 	return NULL;
1868 }
1869 #else
1870 static inline struct page *
1871 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1872 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1873 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1874 	int migratetype, unsigned long *did_some_progress,
1875 	bool sync_migration)
1876 {
1877 	return NULL;
1878 }
1879 #endif /* CONFIG_COMPACTION */
1880 
1881 /* The really slow allocator path where we enter direct reclaim */
1882 static inline struct page *
1883 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1884 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1885 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1886 	int migratetype, unsigned long *did_some_progress)
1887 {
1888 	struct page *page = NULL;
1889 	struct reclaim_state reclaim_state;
1890 	bool drained = false;
1891 
1892 	cond_resched();
1893 
1894 	/* We now go into synchronous reclaim */
1895 	cpuset_memory_pressure_bump();
1896 	current->flags |= PF_MEMALLOC;
1897 	lockdep_set_current_reclaim_state(gfp_mask);
1898 	reclaim_state.reclaimed_slab = 0;
1899 	current->reclaim_state = &reclaim_state;
1900 
1901 	*did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1902 
1903 	current->reclaim_state = NULL;
1904 	lockdep_clear_current_reclaim_state();
1905 	current->flags &= ~PF_MEMALLOC;
1906 
1907 	cond_resched();
1908 
1909 	if (unlikely(!(*did_some_progress)))
1910 		return NULL;
1911 
1912 retry:
1913 	page = get_page_from_freelist(gfp_mask, nodemask, order,
1914 					zonelist, high_zoneidx,
1915 					alloc_flags, preferred_zone,
1916 					migratetype);
1917 
1918 	/*
1919 	 * If an allocation failed after direct reclaim, it could be because
1920 	 * pages are pinned on the per-cpu lists. Drain them and try again
1921 	 */
1922 	if (!page && !drained) {
1923 		drain_all_pages();
1924 		drained = true;
1925 		goto retry;
1926 	}
1927 
1928 	return page;
1929 }
1930 
1931 /*
1932  * This is called in the allocator slow-path if the allocation request is of
1933  * sufficient urgency to ignore watermarks and take other desperate measures
1934  */
1935 static inline struct page *
1936 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1937 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1938 	nodemask_t *nodemask, struct zone *preferred_zone,
1939 	int migratetype)
1940 {
1941 	struct page *page;
1942 
1943 	do {
1944 		page = get_page_from_freelist(gfp_mask, nodemask, order,
1945 			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1946 			preferred_zone, migratetype);
1947 
1948 		if (!page && gfp_mask & __GFP_NOFAIL)
1949 			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1950 	} while (!page && (gfp_mask & __GFP_NOFAIL));
1951 
1952 	return page;
1953 }
1954 
1955 static inline
1956 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1957 						enum zone_type high_zoneidx,
1958 						enum zone_type classzone_idx)
1959 {
1960 	struct zoneref *z;
1961 	struct zone *zone;
1962 
1963 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1964 		wakeup_kswapd(zone, order, classzone_idx);
1965 }
1966 
1967 static inline int
1968 gfp_to_alloc_flags(gfp_t gfp_mask)
1969 {
1970 	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1971 	const gfp_t wait = gfp_mask & __GFP_WAIT;
1972 
1973 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1974 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
1975 
1976 	/*
1977 	 * The caller may dip into page reserves a bit more if the caller
1978 	 * cannot run direct reclaim, or if the caller has realtime scheduling
1979 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1980 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1981 	 */
1982 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1983 
1984 	if (!wait) {
1985 		/*
1986 		 * Not worth trying to allocate harder for
1987 		 * __GFP_NOMEMALLOC even if it can't schedule.
1988 		 */
1989 		if  (!(gfp_mask & __GFP_NOMEMALLOC))
1990 			alloc_flags |= ALLOC_HARDER;
1991 		/*
1992 		 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1993 		 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1994 		 */
1995 		alloc_flags &= ~ALLOC_CPUSET;
1996 	} else if (unlikely(rt_task(current)) && !in_interrupt())
1997 		alloc_flags |= ALLOC_HARDER;
1998 
1999 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2000 		if (!in_interrupt() &&
2001 		    ((current->flags & PF_MEMALLOC) ||
2002 		     unlikely(test_thread_flag(TIF_MEMDIE))))
2003 			alloc_flags |= ALLOC_NO_WATERMARKS;
2004 	}
2005 
2006 	return alloc_flags;
2007 }
2008 
2009 static inline struct page *
2010 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2011 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2012 	nodemask_t *nodemask, struct zone *preferred_zone,
2013 	int migratetype)
2014 {
2015 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2016 	struct page *page = NULL;
2017 	int alloc_flags;
2018 	unsigned long pages_reclaimed = 0;
2019 	unsigned long did_some_progress;
2020 	bool sync_migration = false;
2021 
2022 	/*
2023 	 * In the slowpath, we sanity check order to avoid ever trying to
2024 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2025 	 * be using allocators in order of preference for an area that is
2026 	 * too large.
2027 	 */
2028 	if (order >= MAX_ORDER) {
2029 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2030 		return NULL;
2031 	}
2032 
2033 	/*
2034 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2035 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2036 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2037 	 * using a larger set of nodes after it has established that the
2038 	 * allowed per node queues are empty and that nodes are
2039 	 * over allocated.
2040 	 */
2041 	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2042 		goto nopage;
2043 
2044 restart:
2045 	if (!(gfp_mask & __GFP_NO_KSWAPD))
2046 		wake_all_kswapd(order, zonelist, high_zoneidx,
2047 						zone_idx(preferred_zone));
2048 
2049 	/*
2050 	 * OK, we're below the kswapd watermark and have kicked background
2051 	 * reclaim. Now things get more complex, so set up alloc_flags according
2052 	 * to how we want to proceed.
2053 	 */
2054 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
2055 
2056 	/*
2057 	 * Find the true preferred zone if the allocation is unconstrained by
2058 	 * cpusets.
2059 	 */
2060 	if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2061 		first_zones_zonelist(zonelist, high_zoneidx, NULL,
2062 					&preferred_zone);
2063 
2064 	/* This is the last chance, in general, before the goto nopage. */
2065 	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2066 			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2067 			preferred_zone, migratetype);
2068 	if (page)
2069 		goto got_pg;
2070 
2071 rebalance:
2072 	/* Allocate without watermarks if the context allows */
2073 	if (alloc_flags & ALLOC_NO_WATERMARKS) {
2074 		page = __alloc_pages_high_priority(gfp_mask, order,
2075 				zonelist, high_zoneidx, nodemask,
2076 				preferred_zone, migratetype);
2077 		if (page)
2078 			goto got_pg;
2079 	}
2080 
2081 	/* Atomic allocations - we can't balance anything */
2082 	if (!wait)
2083 		goto nopage;
2084 
2085 	/* Avoid recursion of direct reclaim */
2086 	if (current->flags & PF_MEMALLOC)
2087 		goto nopage;
2088 
2089 	/* Avoid allocations with no watermarks from looping endlessly */
2090 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2091 		goto nopage;
2092 
2093 	/*
2094 	 * Try direct compaction. The first pass is asynchronous. Subsequent
2095 	 * attempts after direct reclaim are synchronous
2096 	 */
2097 	page = __alloc_pages_direct_compact(gfp_mask, order,
2098 					zonelist, high_zoneidx,
2099 					nodemask,
2100 					alloc_flags, preferred_zone,
2101 					migratetype, &did_some_progress,
2102 					sync_migration);
2103 	if (page)
2104 		goto got_pg;
2105 	sync_migration = !(gfp_mask & __GFP_NO_KSWAPD);
2106 
2107 	/* Try direct reclaim and then allocating */
2108 	page = __alloc_pages_direct_reclaim(gfp_mask, order,
2109 					zonelist, high_zoneidx,
2110 					nodemask,
2111 					alloc_flags, preferred_zone,
2112 					migratetype, &did_some_progress);
2113 	if (page)
2114 		goto got_pg;
2115 
2116 	/*
2117 	 * If we failed to make any progress reclaiming, then we are
2118 	 * running out of options and have to consider going OOM
2119 	 */
2120 	if (!did_some_progress) {
2121 		if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2122 			if (oom_killer_disabled)
2123 				goto nopage;
2124 			page = __alloc_pages_may_oom(gfp_mask, order,
2125 					zonelist, high_zoneidx,
2126 					nodemask, preferred_zone,
2127 					migratetype);
2128 			if (page)
2129 				goto got_pg;
2130 
2131 			if (!(gfp_mask & __GFP_NOFAIL)) {
2132 				/*
2133 				 * The oom killer is not called for high-order
2134 				 * allocations that may fail, so if no progress
2135 				 * is being made, there are no other options and
2136 				 * retrying is unlikely to help.
2137 				 */
2138 				if (order > PAGE_ALLOC_COSTLY_ORDER)
2139 					goto nopage;
2140 				/*
2141 				 * The oom killer is not called for lowmem
2142 				 * allocations to prevent needlessly killing
2143 				 * innocent tasks.
2144 				 */
2145 				if (high_zoneidx < ZONE_NORMAL)
2146 					goto nopage;
2147 			}
2148 
2149 			goto restart;
2150 		}
2151 	}
2152 
2153 	/* Check if we should retry the allocation */
2154 	pages_reclaimed += did_some_progress;
2155 	if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2156 		/* Wait for some write requests to complete then retry */
2157 		wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2158 		goto rebalance;
2159 	} else {
2160 		/*
2161 		 * High-order allocations do not necessarily loop after
2162 		 * direct reclaim and reclaim/compaction depends on compaction
2163 		 * being called after reclaim so call directly if necessary
2164 		 */
2165 		page = __alloc_pages_direct_compact(gfp_mask, order,
2166 					zonelist, high_zoneidx,
2167 					nodemask,
2168 					alloc_flags, preferred_zone,
2169 					migratetype, &did_some_progress,
2170 					sync_migration);
2171 		if (page)
2172 			goto got_pg;
2173 	}
2174 
2175 nopage:
2176 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
2177 		unsigned int filter = SHOW_MEM_FILTER_NODES;
2178 
2179 		/*
2180 		 * This documents exceptions given to allocations in certain
2181 		 * contexts that are allowed to allocate outside current's set
2182 		 * of allowed nodes.
2183 		 */
2184 		if (!(gfp_mask & __GFP_NOMEMALLOC))
2185 			if (test_thread_flag(TIF_MEMDIE) ||
2186 			    (current->flags & (PF_MEMALLOC | PF_EXITING)))
2187 				filter &= ~SHOW_MEM_FILTER_NODES;
2188 		if (in_interrupt() || !wait)
2189 			filter &= ~SHOW_MEM_FILTER_NODES;
2190 
2191 		pr_warning("%s: page allocation failure. order:%d, mode:0x%x\n",
2192 			current->comm, order, gfp_mask);
2193 		dump_stack();
2194 		if (!should_suppress_show_mem())
2195 			__show_mem(filter);
2196 	}
2197 	return page;
2198 got_pg:
2199 	if (kmemcheck_enabled)
2200 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2201 	return page;
2202 
2203 }
2204 
2205 /*
2206  * This is the 'heart' of the zoned buddy allocator.
2207  */
2208 struct page *
2209 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2210 			struct zonelist *zonelist, nodemask_t *nodemask)
2211 {
2212 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2213 	struct zone *preferred_zone;
2214 	struct page *page;
2215 	int migratetype = allocflags_to_migratetype(gfp_mask);
2216 
2217 	gfp_mask &= gfp_allowed_mask;
2218 
2219 	lockdep_trace_alloc(gfp_mask);
2220 
2221 	might_sleep_if(gfp_mask & __GFP_WAIT);
2222 
2223 	if (should_fail_alloc_page(gfp_mask, order))
2224 		return NULL;
2225 
2226 	/*
2227 	 * Check the zones suitable for the gfp_mask contain at least one
2228 	 * valid zone. It's possible to have an empty zonelist as a result
2229 	 * of GFP_THISNODE and a memoryless node
2230 	 */
2231 	if (unlikely(!zonelist->_zonerefs->zone))
2232 		return NULL;
2233 
2234 	get_mems_allowed();
2235 	/* The preferred zone is used for statistics later */
2236 	first_zones_zonelist(zonelist, high_zoneidx,
2237 				nodemask ? : &cpuset_current_mems_allowed,
2238 				&preferred_zone);
2239 	if (!preferred_zone) {
2240 		put_mems_allowed();
2241 		return NULL;
2242 	}
2243 
2244 	/* First allocation attempt */
2245 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2246 			zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2247 			preferred_zone, migratetype);
2248 	if (unlikely(!page))
2249 		page = __alloc_pages_slowpath(gfp_mask, order,
2250 				zonelist, high_zoneidx, nodemask,
2251 				preferred_zone, migratetype);
2252 	put_mems_allowed();
2253 
2254 	trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2255 	return page;
2256 }
2257 EXPORT_SYMBOL(__alloc_pages_nodemask);
2258 
2259 /*
2260  * Common helper functions.
2261  */
2262 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2263 {
2264 	struct page *page;
2265 
2266 	/*
2267 	 * __get_free_pages() returns a 32-bit address, which cannot represent
2268 	 * a highmem page
2269 	 */
2270 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2271 
2272 	page = alloc_pages(gfp_mask, order);
2273 	if (!page)
2274 		return 0;
2275 	return (unsigned long) page_address(page);
2276 }
2277 EXPORT_SYMBOL(__get_free_pages);
2278 
2279 unsigned long get_zeroed_page(gfp_t gfp_mask)
2280 {
2281 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2282 }
2283 EXPORT_SYMBOL(get_zeroed_page);
2284 
2285 void __pagevec_free(struct pagevec *pvec)
2286 {
2287 	int i = pagevec_count(pvec);
2288 
2289 	while (--i >= 0) {
2290 		trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2291 		free_hot_cold_page(pvec->pages[i], pvec->cold);
2292 	}
2293 }
2294 
2295 void __free_pages(struct page *page, unsigned int order)
2296 {
2297 	if (put_page_testzero(page)) {
2298 		if (order == 0)
2299 			free_hot_cold_page(page, 0);
2300 		else
2301 			__free_pages_ok(page, order);
2302 	}
2303 }
2304 
2305 EXPORT_SYMBOL(__free_pages);
2306 
2307 void free_pages(unsigned long addr, unsigned int order)
2308 {
2309 	if (addr != 0) {
2310 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2311 		__free_pages(virt_to_page((void *)addr), order);
2312 	}
2313 }
2314 
2315 EXPORT_SYMBOL(free_pages);
2316 
2317 /**
2318  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2319  * @size: the number of bytes to allocate
2320  * @gfp_mask: GFP flags for the allocation
2321  *
2322  * This function is similar to alloc_pages(), except that it allocates the
2323  * minimum number of pages to satisfy the request.  alloc_pages() can only
2324  * allocate memory in power-of-two pages.
2325  *
2326  * This function is also limited by MAX_ORDER.
2327  *
2328  * Memory allocated by this function must be released by free_pages_exact().
2329  */
2330 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2331 {
2332 	unsigned int order = get_order(size);
2333 	unsigned long addr;
2334 
2335 	addr = __get_free_pages(gfp_mask, order);
2336 	if (addr) {
2337 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
2338 		unsigned long used = addr + PAGE_ALIGN(size);
2339 
2340 		split_page(virt_to_page((void *)addr), order);
2341 		while (used < alloc_end) {
2342 			free_page(used);
2343 			used += PAGE_SIZE;
2344 		}
2345 	}
2346 
2347 	return (void *)addr;
2348 }
2349 EXPORT_SYMBOL(alloc_pages_exact);
2350 
2351 /**
2352  * free_pages_exact - release memory allocated via alloc_pages_exact()
2353  * @virt: the value returned by alloc_pages_exact.
2354  * @size: size of allocation, same value as passed to alloc_pages_exact().
2355  *
2356  * Release the memory allocated by a previous call to alloc_pages_exact.
2357  */
2358 void free_pages_exact(void *virt, size_t size)
2359 {
2360 	unsigned long addr = (unsigned long)virt;
2361 	unsigned long end = addr + PAGE_ALIGN(size);
2362 
2363 	while (addr < end) {
2364 		free_page(addr);
2365 		addr += PAGE_SIZE;
2366 	}
2367 }
2368 EXPORT_SYMBOL(free_pages_exact);
2369 
2370 static unsigned int nr_free_zone_pages(int offset)
2371 {
2372 	struct zoneref *z;
2373 	struct zone *zone;
2374 
2375 	/* Just pick one node, since fallback list is circular */
2376 	unsigned int sum = 0;
2377 
2378 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2379 
2380 	for_each_zone_zonelist(zone, z, zonelist, offset) {
2381 		unsigned long size = zone->present_pages;
2382 		unsigned long high = high_wmark_pages(zone);
2383 		if (size > high)
2384 			sum += size - high;
2385 	}
2386 
2387 	return sum;
2388 }
2389 
2390 /*
2391  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2392  */
2393 unsigned int nr_free_buffer_pages(void)
2394 {
2395 	return nr_free_zone_pages(gfp_zone(GFP_USER));
2396 }
2397 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2398 
2399 /*
2400  * Amount of free RAM allocatable within all zones
2401  */
2402 unsigned int nr_free_pagecache_pages(void)
2403 {
2404 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2405 }
2406 
2407 static inline void show_node(struct zone *zone)
2408 {
2409 	if (NUMA_BUILD)
2410 		printk("Node %d ", zone_to_nid(zone));
2411 }
2412 
2413 void si_meminfo(struct sysinfo *val)
2414 {
2415 	val->totalram = totalram_pages;
2416 	val->sharedram = 0;
2417 	val->freeram = global_page_state(NR_FREE_PAGES);
2418 	val->bufferram = nr_blockdev_pages();
2419 	val->totalhigh = totalhigh_pages;
2420 	val->freehigh = nr_free_highpages();
2421 	val->mem_unit = PAGE_SIZE;
2422 }
2423 
2424 EXPORT_SYMBOL(si_meminfo);
2425 
2426 #ifdef CONFIG_NUMA
2427 void si_meminfo_node(struct sysinfo *val, int nid)
2428 {
2429 	pg_data_t *pgdat = NODE_DATA(nid);
2430 
2431 	val->totalram = pgdat->node_present_pages;
2432 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
2433 #ifdef CONFIG_HIGHMEM
2434 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2435 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2436 			NR_FREE_PAGES);
2437 #else
2438 	val->totalhigh = 0;
2439 	val->freehigh = 0;
2440 #endif
2441 	val->mem_unit = PAGE_SIZE;
2442 }
2443 #endif
2444 
2445 /*
2446  * Determine whether the zone's node should be displayed or not, depending on
2447  * whether SHOW_MEM_FILTER_NODES was passed to __show_free_areas().
2448  */
2449 static bool skip_free_areas_zone(unsigned int flags, const struct zone *zone)
2450 {
2451 	bool ret = false;
2452 
2453 	if (!(flags & SHOW_MEM_FILTER_NODES))
2454 		goto out;
2455 
2456 	get_mems_allowed();
2457 	ret = !node_isset(zone->zone_pgdat->node_id,
2458 				cpuset_current_mems_allowed);
2459 	put_mems_allowed();
2460 out:
2461 	return ret;
2462 }
2463 
2464 #define K(x) ((x) << (PAGE_SHIFT-10))
2465 
2466 /*
2467  * Show free area list (used inside shift_scroll-lock stuff)
2468  * We also calculate the percentage fragmentation. We do this by counting the
2469  * memory on each free list with the exception of the first item on the list.
2470  * Suppresses nodes that are not allowed by current's cpuset if
2471  * SHOW_MEM_FILTER_NODES is passed.
2472  */
2473 void __show_free_areas(unsigned int filter)
2474 {
2475 	int cpu;
2476 	struct zone *zone;
2477 
2478 	for_each_populated_zone(zone) {
2479 		if (skip_free_areas_zone(filter, zone))
2480 			continue;
2481 		show_node(zone);
2482 		printk("%s per-cpu:\n", zone->name);
2483 
2484 		for_each_online_cpu(cpu) {
2485 			struct per_cpu_pageset *pageset;
2486 
2487 			pageset = per_cpu_ptr(zone->pageset, cpu);
2488 
2489 			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2490 			       cpu, pageset->pcp.high,
2491 			       pageset->pcp.batch, pageset->pcp.count);
2492 		}
2493 	}
2494 
2495 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2496 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2497 		" unevictable:%lu"
2498 		" dirty:%lu writeback:%lu unstable:%lu\n"
2499 		" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2500 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2501 		global_page_state(NR_ACTIVE_ANON),
2502 		global_page_state(NR_INACTIVE_ANON),
2503 		global_page_state(NR_ISOLATED_ANON),
2504 		global_page_state(NR_ACTIVE_FILE),
2505 		global_page_state(NR_INACTIVE_FILE),
2506 		global_page_state(NR_ISOLATED_FILE),
2507 		global_page_state(NR_UNEVICTABLE),
2508 		global_page_state(NR_FILE_DIRTY),
2509 		global_page_state(NR_WRITEBACK),
2510 		global_page_state(NR_UNSTABLE_NFS),
2511 		global_page_state(NR_FREE_PAGES),
2512 		global_page_state(NR_SLAB_RECLAIMABLE),
2513 		global_page_state(NR_SLAB_UNRECLAIMABLE),
2514 		global_page_state(NR_FILE_MAPPED),
2515 		global_page_state(NR_SHMEM),
2516 		global_page_state(NR_PAGETABLE),
2517 		global_page_state(NR_BOUNCE));
2518 
2519 	for_each_populated_zone(zone) {
2520 		int i;
2521 
2522 		if (skip_free_areas_zone(filter, zone))
2523 			continue;
2524 		show_node(zone);
2525 		printk("%s"
2526 			" free:%lukB"
2527 			" min:%lukB"
2528 			" low:%lukB"
2529 			" high:%lukB"
2530 			" active_anon:%lukB"
2531 			" inactive_anon:%lukB"
2532 			" active_file:%lukB"
2533 			" inactive_file:%lukB"
2534 			" unevictable:%lukB"
2535 			" isolated(anon):%lukB"
2536 			" isolated(file):%lukB"
2537 			" present:%lukB"
2538 			" mlocked:%lukB"
2539 			" dirty:%lukB"
2540 			" writeback:%lukB"
2541 			" mapped:%lukB"
2542 			" shmem:%lukB"
2543 			" slab_reclaimable:%lukB"
2544 			" slab_unreclaimable:%lukB"
2545 			" kernel_stack:%lukB"
2546 			" pagetables:%lukB"
2547 			" unstable:%lukB"
2548 			" bounce:%lukB"
2549 			" writeback_tmp:%lukB"
2550 			" pages_scanned:%lu"
2551 			" all_unreclaimable? %s"
2552 			"\n",
2553 			zone->name,
2554 			K(zone_page_state(zone, NR_FREE_PAGES)),
2555 			K(min_wmark_pages(zone)),
2556 			K(low_wmark_pages(zone)),
2557 			K(high_wmark_pages(zone)),
2558 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
2559 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
2560 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
2561 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
2562 			K(zone_page_state(zone, NR_UNEVICTABLE)),
2563 			K(zone_page_state(zone, NR_ISOLATED_ANON)),
2564 			K(zone_page_state(zone, NR_ISOLATED_FILE)),
2565 			K(zone->present_pages),
2566 			K(zone_page_state(zone, NR_MLOCK)),
2567 			K(zone_page_state(zone, NR_FILE_DIRTY)),
2568 			K(zone_page_state(zone, NR_WRITEBACK)),
2569 			K(zone_page_state(zone, NR_FILE_MAPPED)),
2570 			K(zone_page_state(zone, NR_SHMEM)),
2571 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2572 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2573 			zone_page_state(zone, NR_KERNEL_STACK) *
2574 				THREAD_SIZE / 1024,
2575 			K(zone_page_state(zone, NR_PAGETABLE)),
2576 			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2577 			K(zone_page_state(zone, NR_BOUNCE)),
2578 			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2579 			zone->pages_scanned,
2580 			(zone->all_unreclaimable ? "yes" : "no")
2581 			);
2582 		printk("lowmem_reserve[]:");
2583 		for (i = 0; i < MAX_NR_ZONES; i++)
2584 			printk(" %lu", zone->lowmem_reserve[i]);
2585 		printk("\n");
2586 	}
2587 
2588 	for_each_populated_zone(zone) {
2589  		unsigned long nr[MAX_ORDER], flags, order, total = 0;
2590 
2591 		if (skip_free_areas_zone(filter, zone))
2592 			continue;
2593 		show_node(zone);
2594 		printk("%s: ", zone->name);
2595 
2596 		spin_lock_irqsave(&zone->lock, flags);
2597 		for (order = 0; order < MAX_ORDER; order++) {
2598 			nr[order] = zone->free_area[order].nr_free;
2599 			total += nr[order] << order;
2600 		}
2601 		spin_unlock_irqrestore(&zone->lock, flags);
2602 		for (order = 0; order < MAX_ORDER; order++)
2603 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
2604 		printk("= %lukB\n", K(total));
2605 	}
2606 
2607 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2608 
2609 	show_swap_cache_info();
2610 }
2611 
2612 void show_free_areas(void)
2613 {
2614 	__show_free_areas(0);
2615 }
2616 
2617 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2618 {
2619 	zoneref->zone = zone;
2620 	zoneref->zone_idx = zone_idx(zone);
2621 }
2622 
2623 /*
2624  * Builds allocation fallback zone lists.
2625  *
2626  * Add all populated zones of a node to the zonelist.
2627  */
2628 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2629 				int nr_zones, enum zone_type zone_type)
2630 {
2631 	struct zone *zone;
2632 
2633 	BUG_ON(zone_type >= MAX_NR_ZONES);
2634 	zone_type++;
2635 
2636 	do {
2637 		zone_type--;
2638 		zone = pgdat->node_zones + zone_type;
2639 		if (populated_zone(zone)) {
2640 			zoneref_set_zone(zone,
2641 				&zonelist->_zonerefs[nr_zones++]);
2642 			check_highest_zone(zone_type);
2643 		}
2644 
2645 	} while (zone_type);
2646 	return nr_zones;
2647 }
2648 
2649 
2650 /*
2651  *  zonelist_order:
2652  *  0 = automatic detection of better ordering.
2653  *  1 = order by ([node] distance, -zonetype)
2654  *  2 = order by (-zonetype, [node] distance)
2655  *
2656  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2657  *  the same zonelist. So only NUMA can configure this param.
2658  */
2659 #define ZONELIST_ORDER_DEFAULT  0
2660 #define ZONELIST_ORDER_NODE     1
2661 #define ZONELIST_ORDER_ZONE     2
2662 
2663 /* zonelist order in the kernel.
2664  * set_zonelist_order() will set this to NODE or ZONE.
2665  */
2666 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2667 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2668 
2669 
2670 #ifdef CONFIG_NUMA
2671 /* The value user specified ....changed by config */
2672 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2673 /* string for sysctl */
2674 #define NUMA_ZONELIST_ORDER_LEN	16
2675 char numa_zonelist_order[16] = "default";
2676 
2677 /*
2678  * interface for configure zonelist ordering.
2679  * command line option "numa_zonelist_order"
2680  *	= "[dD]efault	- default, automatic configuration.
2681  *	= "[nN]ode 	- order by node locality, then by zone within node
2682  *	= "[zZ]one      - order by zone, then by locality within zone
2683  */
2684 
2685 static int __parse_numa_zonelist_order(char *s)
2686 {
2687 	if (*s == 'd' || *s == 'D') {
2688 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2689 	} else if (*s == 'n' || *s == 'N') {
2690 		user_zonelist_order = ZONELIST_ORDER_NODE;
2691 	} else if (*s == 'z' || *s == 'Z') {
2692 		user_zonelist_order = ZONELIST_ORDER_ZONE;
2693 	} else {
2694 		printk(KERN_WARNING
2695 			"Ignoring invalid numa_zonelist_order value:  "
2696 			"%s\n", s);
2697 		return -EINVAL;
2698 	}
2699 	return 0;
2700 }
2701 
2702 static __init int setup_numa_zonelist_order(char *s)
2703 {
2704 	int ret;
2705 
2706 	if (!s)
2707 		return 0;
2708 
2709 	ret = __parse_numa_zonelist_order(s);
2710 	if (ret == 0)
2711 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
2712 
2713 	return ret;
2714 }
2715 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2716 
2717 /*
2718  * sysctl handler for numa_zonelist_order
2719  */
2720 int numa_zonelist_order_handler(ctl_table *table, int write,
2721 		void __user *buffer, size_t *length,
2722 		loff_t *ppos)
2723 {
2724 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
2725 	int ret;
2726 	static DEFINE_MUTEX(zl_order_mutex);
2727 
2728 	mutex_lock(&zl_order_mutex);
2729 	if (write)
2730 		strcpy(saved_string, (char*)table->data);
2731 	ret = proc_dostring(table, write, buffer, length, ppos);
2732 	if (ret)
2733 		goto out;
2734 	if (write) {
2735 		int oldval = user_zonelist_order;
2736 		if (__parse_numa_zonelist_order((char*)table->data)) {
2737 			/*
2738 			 * bogus value.  restore saved string
2739 			 */
2740 			strncpy((char*)table->data, saved_string,
2741 				NUMA_ZONELIST_ORDER_LEN);
2742 			user_zonelist_order = oldval;
2743 		} else if (oldval != user_zonelist_order) {
2744 			mutex_lock(&zonelists_mutex);
2745 			build_all_zonelists(NULL);
2746 			mutex_unlock(&zonelists_mutex);
2747 		}
2748 	}
2749 out:
2750 	mutex_unlock(&zl_order_mutex);
2751 	return ret;
2752 }
2753 
2754 
2755 #define MAX_NODE_LOAD (nr_online_nodes)
2756 static int node_load[MAX_NUMNODES];
2757 
2758 /**
2759  * find_next_best_node - find the next node that should appear in a given node's fallback list
2760  * @node: node whose fallback list we're appending
2761  * @used_node_mask: nodemask_t of already used nodes
2762  *
2763  * We use a number of factors to determine which is the next node that should
2764  * appear on a given node's fallback list.  The node should not have appeared
2765  * already in @node's fallback list, and it should be the next closest node
2766  * according to the distance array (which contains arbitrary distance values
2767  * from each node to each node in the system), and should also prefer nodes
2768  * with no CPUs, since presumably they'll have very little allocation pressure
2769  * on them otherwise.
2770  * It returns -1 if no node is found.
2771  */
2772 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2773 {
2774 	int n, val;
2775 	int min_val = INT_MAX;
2776 	int best_node = -1;
2777 	const struct cpumask *tmp = cpumask_of_node(0);
2778 
2779 	/* Use the local node if we haven't already */
2780 	if (!node_isset(node, *used_node_mask)) {
2781 		node_set(node, *used_node_mask);
2782 		return node;
2783 	}
2784 
2785 	for_each_node_state(n, N_HIGH_MEMORY) {
2786 
2787 		/* Don't want a node to appear more than once */
2788 		if (node_isset(n, *used_node_mask))
2789 			continue;
2790 
2791 		/* Use the distance array to find the distance */
2792 		val = node_distance(node, n);
2793 
2794 		/* Penalize nodes under us ("prefer the next node") */
2795 		val += (n < node);
2796 
2797 		/* Give preference to headless and unused nodes */
2798 		tmp = cpumask_of_node(n);
2799 		if (!cpumask_empty(tmp))
2800 			val += PENALTY_FOR_NODE_WITH_CPUS;
2801 
2802 		/* Slight preference for less loaded node */
2803 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2804 		val += node_load[n];
2805 
2806 		if (val < min_val) {
2807 			min_val = val;
2808 			best_node = n;
2809 		}
2810 	}
2811 
2812 	if (best_node >= 0)
2813 		node_set(best_node, *used_node_mask);
2814 
2815 	return best_node;
2816 }
2817 
2818 
2819 /*
2820  * Build zonelists ordered by node and zones within node.
2821  * This results in maximum locality--normal zone overflows into local
2822  * DMA zone, if any--but risks exhausting DMA zone.
2823  */
2824 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2825 {
2826 	int j;
2827 	struct zonelist *zonelist;
2828 
2829 	zonelist = &pgdat->node_zonelists[0];
2830 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2831 		;
2832 	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2833 							MAX_NR_ZONES - 1);
2834 	zonelist->_zonerefs[j].zone = NULL;
2835 	zonelist->_zonerefs[j].zone_idx = 0;
2836 }
2837 
2838 /*
2839  * Build gfp_thisnode zonelists
2840  */
2841 static void build_thisnode_zonelists(pg_data_t *pgdat)
2842 {
2843 	int j;
2844 	struct zonelist *zonelist;
2845 
2846 	zonelist = &pgdat->node_zonelists[1];
2847 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2848 	zonelist->_zonerefs[j].zone = NULL;
2849 	zonelist->_zonerefs[j].zone_idx = 0;
2850 }
2851 
2852 /*
2853  * Build zonelists ordered by zone and nodes within zones.
2854  * This results in conserving DMA zone[s] until all Normal memory is
2855  * exhausted, but results in overflowing to remote node while memory
2856  * may still exist in local DMA zone.
2857  */
2858 static int node_order[MAX_NUMNODES];
2859 
2860 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2861 {
2862 	int pos, j, node;
2863 	int zone_type;		/* needs to be signed */
2864 	struct zone *z;
2865 	struct zonelist *zonelist;
2866 
2867 	zonelist = &pgdat->node_zonelists[0];
2868 	pos = 0;
2869 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2870 		for (j = 0; j < nr_nodes; j++) {
2871 			node = node_order[j];
2872 			z = &NODE_DATA(node)->node_zones[zone_type];
2873 			if (populated_zone(z)) {
2874 				zoneref_set_zone(z,
2875 					&zonelist->_zonerefs[pos++]);
2876 				check_highest_zone(zone_type);
2877 			}
2878 		}
2879 	}
2880 	zonelist->_zonerefs[pos].zone = NULL;
2881 	zonelist->_zonerefs[pos].zone_idx = 0;
2882 }
2883 
2884 static int default_zonelist_order(void)
2885 {
2886 	int nid, zone_type;
2887 	unsigned long low_kmem_size,total_size;
2888 	struct zone *z;
2889 	int average_size;
2890 	/*
2891          * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
2892 	 * If they are really small and used heavily, the system can fall
2893 	 * into OOM very easily.
2894 	 * This function detect ZONE_DMA/DMA32 size and configures zone order.
2895 	 */
2896 	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2897 	low_kmem_size = 0;
2898 	total_size = 0;
2899 	for_each_online_node(nid) {
2900 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2901 			z = &NODE_DATA(nid)->node_zones[zone_type];
2902 			if (populated_zone(z)) {
2903 				if (zone_type < ZONE_NORMAL)
2904 					low_kmem_size += z->present_pages;
2905 				total_size += z->present_pages;
2906 			} else if (zone_type == ZONE_NORMAL) {
2907 				/*
2908 				 * If any node has only lowmem, then node order
2909 				 * is preferred to allow kernel allocations
2910 				 * locally; otherwise, they can easily infringe
2911 				 * on other nodes when there is an abundance of
2912 				 * lowmem available to allocate from.
2913 				 */
2914 				return ZONELIST_ORDER_NODE;
2915 			}
2916 		}
2917 	}
2918 	if (!low_kmem_size ||  /* there are no DMA area. */
2919 	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2920 		return ZONELIST_ORDER_NODE;
2921 	/*
2922 	 * look into each node's config.
2923   	 * If there is a node whose DMA/DMA32 memory is very big area on
2924  	 * local memory, NODE_ORDER may be suitable.
2925          */
2926 	average_size = total_size /
2927 				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2928 	for_each_online_node(nid) {
2929 		low_kmem_size = 0;
2930 		total_size = 0;
2931 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2932 			z = &NODE_DATA(nid)->node_zones[zone_type];
2933 			if (populated_zone(z)) {
2934 				if (zone_type < ZONE_NORMAL)
2935 					low_kmem_size += z->present_pages;
2936 				total_size += z->present_pages;
2937 			}
2938 		}
2939 		if (low_kmem_size &&
2940 		    total_size > average_size && /* ignore small node */
2941 		    low_kmem_size > total_size * 70/100)
2942 			return ZONELIST_ORDER_NODE;
2943 	}
2944 	return ZONELIST_ORDER_ZONE;
2945 }
2946 
2947 static void set_zonelist_order(void)
2948 {
2949 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2950 		current_zonelist_order = default_zonelist_order();
2951 	else
2952 		current_zonelist_order = user_zonelist_order;
2953 }
2954 
2955 static void build_zonelists(pg_data_t *pgdat)
2956 {
2957 	int j, node, load;
2958 	enum zone_type i;
2959 	nodemask_t used_mask;
2960 	int local_node, prev_node;
2961 	struct zonelist *zonelist;
2962 	int order = current_zonelist_order;
2963 
2964 	/* initialize zonelists */
2965 	for (i = 0; i < MAX_ZONELISTS; i++) {
2966 		zonelist = pgdat->node_zonelists + i;
2967 		zonelist->_zonerefs[0].zone = NULL;
2968 		zonelist->_zonerefs[0].zone_idx = 0;
2969 	}
2970 
2971 	/* NUMA-aware ordering of nodes */
2972 	local_node = pgdat->node_id;
2973 	load = nr_online_nodes;
2974 	prev_node = local_node;
2975 	nodes_clear(used_mask);
2976 
2977 	memset(node_order, 0, sizeof(node_order));
2978 	j = 0;
2979 
2980 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2981 		int distance = node_distance(local_node, node);
2982 
2983 		/*
2984 		 * If another node is sufficiently far away then it is better
2985 		 * to reclaim pages in a zone before going off node.
2986 		 */
2987 		if (distance > RECLAIM_DISTANCE)
2988 			zone_reclaim_mode = 1;
2989 
2990 		/*
2991 		 * We don't want to pressure a particular node.
2992 		 * So adding penalty to the first node in same
2993 		 * distance group to make it round-robin.
2994 		 */
2995 		if (distance != node_distance(local_node, prev_node))
2996 			node_load[node] = load;
2997 
2998 		prev_node = node;
2999 		load--;
3000 		if (order == ZONELIST_ORDER_NODE)
3001 			build_zonelists_in_node_order(pgdat, node);
3002 		else
3003 			node_order[j++] = node;	/* remember order */
3004 	}
3005 
3006 	if (order == ZONELIST_ORDER_ZONE) {
3007 		/* calculate node order -- i.e., DMA last! */
3008 		build_zonelists_in_zone_order(pgdat, j);
3009 	}
3010 
3011 	build_thisnode_zonelists(pgdat);
3012 }
3013 
3014 /* Construct the zonelist performance cache - see further mmzone.h */
3015 static void build_zonelist_cache(pg_data_t *pgdat)
3016 {
3017 	struct zonelist *zonelist;
3018 	struct zonelist_cache *zlc;
3019 	struct zoneref *z;
3020 
3021 	zonelist = &pgdat->node_zonelists[0];
3022 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3023 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3024 	for (z = zonelist->_zonerefs; z->zone; z++)
3025 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3026 }
3027 
3028 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3029 /*
3030  * Return node id of node used for "local" allocations.
3031  * I.e., first node id of first zone in arg node's generic zonelist.
3032  * Used for initializing percpu 'numa_mem', which is used primarily
3033  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3034  */
3035 int local_memory_node(int node)
3036 {
3037 	struct zone *zone;
3038 
3039 	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3040 				   gfp_zone(GFP_KERNEL),
3041 				   NULL,
3042 				   &zone);
3043 	return zone->node;
3044 }
3045 #endif
3046 
3047 #else	/* CONFIG_NUMA */
3048 
3049 static void set_zonelist_order(void)
3050 {
3051 	current_zonelist_order = ZONELIST_ORDER_ZONE;
3052 }
3053 
3054 static void build_zonelists(pg_data_t *pgdat)
3055 {
3056 	int node, local_node;
3057 	enum zone_type j;
3058 	struct zonelist *zonelist;
3059 
3060 	local_node = pgdat->node_id;
3061 
3062 	zonelist = &pgdat->node_zonelists[0];
3063 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3064 
3065 	/*
3066 	 * Now we build the zonelist so that it contains the zones
3067 	 * of all the other nodes.
3068 	 * We don't want to pressure a particular node, so when
3069 	 * building the zones for node N, we make sure that the
3070 	 * zones coming right after the local ones are those from
3071 	 * node N+1 (modulo N)
3072 	 */
3073 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3074 		if (!node_online(node))
3075 			continue;
3076 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3077 							MAX_NR_ZONES - 1);
3078 	}
3079 	for (node = 0; node < local_node; node++) {
3080 		if (!node_online(node))
3081 			continue;
3082 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3083 							MAX_NR_ZONES - 1);
3084 	}
3085 
3086 	zonelist->_zonerefs[j].zone = NULL;
3087 	zonelist->_zonerefs[j].zone_idx = 0;
3088 }
3089 
3090 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3091 static void build_zonelist_cache(pg_data_t *pgdat)
3092 {
3093 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
3094 }
3095 
3096 #endif	/* CONFIG_NUMA */
3097 
3098 /*
3099  * Boot pageset table. One per cpu which is going to be used for all
3100  * zones and all nodes. The parameters will be set in such a way
3101  * that an item put on a list will immediately be handed over to
3102  * the buddy list. This is safe since pageset manipulation is done
3103  * with interrupts disabled.
3104  *
3105  * The boot_pagesets must be kept even after bootup is complete for
3106  * unused processors and/or zones. They do play a role for bootstrapping
3107  * hotplugged processors.
3108  *
3109  * zoneinfo_show() and maybe other functions do
3110  * not check if the processor is online before following the pageset pointer.
3111  * Other parts of the kernel may not check if the zone is available.
3112  */
3113 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3114 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3115 static void setup_zone_pageset(struct zone *zone);
3116 
3117 /*
3118  * Global mutex to protect against size modification of zonelists
3119  * as well as to serialize pageset setup for the new populated zone.
3120  */
3121 DEFINE_MUTEX(zonelists_mutex);
3122 
3123 /* return values int ....just for stop_machine() */
3124 static __init_refok int __build_all_zonelists(void *data)
3125 {
3126 	int nid;
3127 	int cpu;
3128 
3129 #ifdef CONFIG_NUMA
3130 	memset(node_load, 0, sizeof(node_load));
3131 #endif
3132 	for_each_online_node(nid) {
3133 		pg_data_t *pgdat = NODE_DATA(nid);
3134 
3135 		build_zonelists(pgdat);
3136 		build_zonelist_cache(pgdat);
3137 	}
3138 
3139 	/*
3140 	 * Initialize the boot_pagesets that are going to be used
3141 	 * for bootstrapping processors. The real pagesets for
3142 	 * each zone will be allocated later when the per cpu
3143 	 * allocator is available.
3144 	 *
3145 	 * boot_pagesets are used also for bootstrapping offline
3146 	 * cpus if the system is already booted because the pagesets
3147 	 * are needed to initialize allocators on a specific cpu too.
3148 	 * F.e. the percpu allocator needs the page allocator which
3149 	 * needs the percpu allocator in order to allocate its pagesets
3150 	 * (a chicken-egg dilemma).
3151 	 */
3152 	for_each_possible_cpu(cpu) {
3153 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3154 
3155 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3156 		/*
3157 		 * We now know the "local memory node" for each node--
3158 		 * i.e., the node of the first zone in the generic zonelist.
3159 		 * Set up numa_mem percpu variable for on-line cpus.  During
3160 		 * boot, only the boot cpu should be on-line;  we'll init the
3161 		 * secondary cpus' numa_mem as they come on-line.  During
3162 		 * node/memory hotplug, we'll fixup all on-line cpus.
3163 		 */
3164 		if (cpu_online(cpu))
3165 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3166 #endif
3167 	}
3168 
3169 	return 0;
3170 }
3171 
3172 /*
3173  * Called with zonelists_mutex held always
3174  * unless system_state == SYSTEM_BOOTING.
3175  */
3176 void build_all_zonelists(void *data)
3177 {
3178 	set_zonelist_order();
3179 
3180 	if (system_state == SYSTEM_BOOTING) {
3181 		__build_all_zonelists(NULL);
3182 		mminit_verify_zonelist();
3183 		cpuset_init_current_mems_allowed();
3184 	} else {
3185 		/* we have to stop all cpus to guarantee there is no user
3186 		   of zonelist */
3187 #ifdef CONFIG_MEMORY_HOTPLUG
3188 		if (data)
3189 			setup_zone_pageset((struct zone *)data);
3190 #endif
3191 		stop_machine(__build_all_zonelists, NULL, NULL);
3192 		/* cpuset refresh routine should be here */
3193 	}
3194 	vm_total_pages = nr_free_pagecache_pages();
3195 	/*
3196 	 * Disable grouping by mobility if the number of pages in the
3197 	 * system is too low to allow the mechanism to work. It would be
3198 	 * more accurate, but expensive to check per-zone. This check is
3199 	 * made on memory-hotadd so a system can start with mobility
3200 	 * disabled and enable it later
3201 	 */
3202 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3203 		page_group_by_mobility_disabled = 1;
3204 	else
3205 		page_group_by_mobility_disabled = 0;
3206 
3207 	printk("Built %i zonelists in %s order, mobility grouping %s.  "
3208 		"Total pages: %ld\n",
3209 			nr_online_nodes,
3210 			zonelist_order_name[current_zonelist_order],
3211 			page_group_by_mobility_disabled ? "off" : "on",
3212 			vm_total_pages);
3213 #ifdef CONFIG_NUMA
3214 	printk("Policy zone: %s\n", zone_names[policy_zone]);
3215 #endif
3216 }
3217 
3218 /*
3219  * Helper functions to size the waitqueue hash table.
3220  * Essentially these want to choose hash table sizes sufficiently
3221  * large so that collisions trying to wait on pages are rare.
3222  * But in fact, the number of active page waitqueues on typical
3223  * systems is ridiculously low, less than 200. So this is even
3224  * conservative, even though it seems large.
3225  *
3226  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3227  * waitqueues, i.e. the size of the waitq table given the number of pages.
3228  */
3229 #define PAGES_PER_WAITQUEUE	256
3230 
3231 #ifndef CONFIG_MEMORY_HOTPLUG
3232 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3233 {
3234 	unsigned long size = 1;
3235 
3236 	pages /= PAGES_PER_WAITQUEUE;
3237 
3238 	while (size < pages)
3239 		size <<= 1;
3240 
3241 	/*
3242 	 * Once we have dozens or even hundreds of threads sleeping
3243 	 * on IO we've got bigger problems than wait queue collision.
3244 	 * Limit the size of the wait table to a reasonable size.
3245 	 */
3246 	size = min(size, 4096UL);
3247 
3248 	return max(size, 4UL);
3249 }
3250 #else
3251 /*
3252  * A zone's size might be changed by hot-add, so it is not possible to determine
3253  * a suitable size for its wait_table.  So we use the maximum size now.
3254  *
3255  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
3256  *
3257  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
3258  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3259  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
3260  *
3261  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3262  * or more by the traditional way. (See above).  It equals:
3263  *
3264  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
3265  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
3266  *    powerpc (64K page size)             : =  (32G +16M)byte.
3267  */
3268 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3269 {
3270 	return 4096UL;
3271 }
3272 #endif
3273 
3274 /*
3275  * This is an integer logarithm so that shifts can be used later
3276  * to extract the more random high bits from the multiplicative
3277  * hash function before the remainder is taken.
3278  */
3279 static inline unsigned long wait_table_bits(unsigned long size)
3280 {
3281 	return ffz(~size);
3282 }
3283 
3284 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3285 
3286 /*
3287  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3288  * of blocks reserved is based on min_wmark_pages(zone). The memory within
3289  * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3290  * higher will lead to a bigger reserve which will get freed as contiguous
3291  * blocks as reclaim kicks in
3292  */
3293 static void setup_zone_migrate_reserve(struct zone *zone)
3294 {
3295 	unsigned long start_pfn, pfn, end_pfn;
3296 	struct page *page;
3297 	unsigned long block_migratetype;
3298 	int reserve;
3299 
3300 	/* Get the start pfn, end pfn and the number of blocks to reserve */
3301 	start_pfn = zone->zone_start_pfn;
3302 	end_pfn = start_pfn + zone->spanned_pages;
3303 	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3304 							pageblock_order;
3305 
3306 	/*
3307 	 * Reserve blocks are generally in place to help high-order atomic
3308 	 * allocations that are short-lived. A min_free_kbytes value that
3309 	 * would result in more than 2 reserve blocks for atomic allocations
3310 	 * is assumed to be in place to help anti-fragmentation for the
3311 	 * future allocation of hugepages at runtime.
3312 	 */
3313 	reserve = min(2, reserve);
3314 
3315 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3316 		if (!pfn_valid(pfn))
3317 			continue;
3318 		page = pfn_to_page(pfn);
3319 
3320 		/* Watch out for overlapping nodes */
3321 		if (page_to_nid(page) != zone_to_nid(zone))
3322 			continue;
3323 
3324 		/* Blocks with reserved pages will never free, skip them. */
3325 		if (PageReserved(page))
3326 			continue;
3327 
3328 		block_migratetype = get_pageblock_migratetype(page);
3329 
3330 		/* If this block is reserved, account for it */
3331 		if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3332 			reserve--;
3333 			continue;
3334 		}
3335 
3336 		/* Suitable for reserving if this block is movable */
3337 		if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3338 			set_pageblock_migratetype(page, MIGRATE_RESERVE);
3339 			move_freepages_block(zone, page, MIGRATE_RESERVE);
3340 			reserve--;
3341 			continue;
3342 		}
3343 
3344 		/*
3345 		 * If the reserve is met and this is a previous reserved block,
3346 		 * take it back
3347 		 */
3348 		if (block_migratetype == MIGRATE_RESERVE) {
3349 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3350 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
3351 		}
3352 	}
3353 }
3354 
3355 /*
3356  * Initially all pages are reserved - free ones are freed
3357  * up by free_all_bootmem() once the early boot process is
3358  * done. Non-atomic initialization, single-pass.
3359  */
3360 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3361 		unsigned long start_pfn, enum memmap_context context)
3362 {
3363 	struct page *page;
3364 	unsigned long end_pfn = start_pfn + size;
3365 	unsigned long pfn;
3366 	struct zone *z;
3367 
3368 	if (highest_memmap_pfn < end_pfn - 1)
3369 		highest_memmap_pfn = end_pfn - 1;
3370 
3371 	z = &NODE_DATA(nid)->node_zones[zone];
3372 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3373 		/*
3374 		 * There can be holes in boot-time mem_map[]s
3375 		 * handed to this function.  They do not
3376 		 * exist on hotplugged memory.
3377 		 */
3378 		if (context == MEMMAP_EARLY) {
3379 			if (!early_pfn_valid(pfn))
3380 				continue;
3381 			if (!early_pfn_in_nid(pfn, nid))
3382 				continue;
3383 		}
3384 		page = pfn_to_page(pfn);
3385 		set_page_links(page, zone, nid, pfn);
3386 		mminit_verify_page_links(page, zone, nid, pfn);
3387 		init_page_count(page);
3388 		reset_page_mapcount(page);
3389 		SetPageReserved(page);
3390 		/*
3391 		 * Mark the block movable so that blocks are reserved for
3392 		 * movable at startup. This will force kernel allocations
3393 		 * to reserve their blocks rather than leaking throughout
3394 		 * the address space during boot when many long-lived
3395 		 * kernel allocations are made. Later some blocks near
3396 		 * the start are marked MIGRATE_RESERVE by
3397 		 * setup_zone_migrate_reserve()
3398 		 *
3399 		 * bitmap is created for zone's valid pfn range. but memmap
3400 		 * can be created for invalid pages (for alignment)
3401 		 * check here not to call set_pageblock_migratetype() against
3402 		 * pfn out of zone.
3403 		 */
3404 		if ((z->zone_start_pfn <= pfn)
3405 		    && (pfn < z->zone_start_pfn + z->spanned_pages)
3406 		    && !(pfn & (pageblock_nr_pages - 1)))
3407 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3408 
3409 		INIT_LIST_HEAD(&page->lru);
3410 #ifdef WANT_PAGE_VIRTUAL
3411 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
3412 		if (!is_highmem_idx(zone))
3413 			set_page_address(page, __va(pfn << PAGE_SHIFT));
3414 #endif
3415 	}
3416 }
3417 
3418 static void __meminit zone_init_free_lists(struct zone *zone)
3419 {
3420 	int order, t;
3421 	for_each_migratetype_order(order, t) {
3422 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3423 		zone->free_area[order].nr_free = 0;
3424 	}
3425 }
3426 
3427 #ifndef __HAVE_ARCH_MEMMAP_INIT
3428 #define memmap_init(size, nid, zone, start_pfn) \
3429 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3430 #endif
3431 
3432 static int zone_batchsize(struct zone *zone)
3433 {
3434 #ifdef CONFIG_MMU
3435 	int batch;
3436 
3437 	/*
3438 	 * The per-cpu-pages pools are set to around 1000th of the
3439 	 * size of the zone.  But no more than 1/2 of a meg.
3440 	 *
3441 	 * OK, so we don't know how big the cache is.  So guess.
3442 	 */
3443 	batch = zone->present_pages / 1024;
3444 	if (batch * PAGE_SIZE > 512 * 1024)
3445 		batch = (512 * 1024) / PAGE_SIZE;
3446 	batch /= 4;		/* We effectively *= 4 below */
3447 	if (batch < 1)
3448 		batch = 1;
3449 
3450 	/*
3451 	 * Clamp the batch to a 2^n - 1 value. Having a power
3452 	 * of 2 value was found to be more likely to have
3453 	 * suboptimal cache aliasing properties in some cases.
3454 	 *
3455 	 * For example if 2 tasks are alternately allocating
3456 	 * batches of pages, one task can end up with a lot
3457 	 * of pages of one half of the possible page colors
3458 	 * and the other with pages of the other colors.
3459 	 */
3460 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
3461 
3462 	return batch;
3463 
3464 #else
3465 	/* The deferral and batching of frees should be suppressed under NOMMU
3466 	 * conditions.
3467 	 *
3468 	 * The problem is that NOMMU needs to be able to allocate large chunks
3469 	 * of contiguous memory as there's no hardware page translation to
3470 	 * assemble apparent contiguous memory from discontiguous pages.
3471 	 *
3472 	 * Queueing large contiguous runs of pages for batching, however,
3473 	 * causes the pages to actually be freed in smaller chunks.  As there
3474 	 * can be a significant delay between the individual batches being
3475 	 * recycled, this leads to the once large chunks of space being
3476 	 * fragmented and becoming unavailable for high-order allocations.
3477 	 */
3478 	return 0;
3479 #endif
3480 }
3481 
3482 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3483 {
3484 	struct per_cpu_pages *pcp;
3485 	int migratetype;
3486 
3487 	memset(p, 0, sizeof(*p));
3488 
3489 	pcp = &p->pcp;
3490 	pcp->count = 0;
3491 	pcp->high = 6 * batch;
3492 	pcp->batch = max(1UL, 1 * batch);
3493 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3494 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
3495 }
3496 
3497 /*
3498  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3499  * to the value high for the pageset p.
3500  */
3501 
3502 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3503 				unsigned long high)
3504 {
3505 	struct per_cpu_pages *pcp;
3506 
3507 	pcp = &p->pcp;
3508 	pcp->high = high;
3509 	pcp->batch = max(1UL, high/4);
3510 	if ((high/4) > (PAGE_SHIFT * 8))
3511 		pcp->batch = PAGE_SHIFT * 8;
3512 }
3513 
3514 static __meminit void setup_zone_pageset(struct zone *zone)
3515 {
3516 	int cpu;
3517 
3518 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
3519 
3520 	for_each_possible_cpu(cpu) {
3521 		struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3522 
3523 		setup_pageset(pcp, zone_batchsize(zone));
3524 
3525 		if (percpu_pagelist_fraction)
3526 			setup_pagelist_highmark(pcp,
3527 				(zone->present_pages /
3528 					percpu_pagelist_fraction));
3529 	}
3530 }
3531 
3532 /*
3533  * Allocate per cpu pagesets and initialize them.
3534  * Before this call only boot pagesets were available.
3535  */
3536 void __init setup_per_cpu_pageset(void)
3537 {
3538 	struct zone *zone;
3539 
3540 	for_each_populated_zone(zone)
3541 		setup_zone_pageset(zone);
3542 }
3543 
3544 static noinline __init_refok
3545 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3546 {
3547 	int i;
3548 	struct pglist_data *pgdat = zone->zone_pgdat;
3549 	size_t alloc_size;
3550 
3551 	/*
3552 	 * The per-page waitqueue mechanism uses hashed waitqueues
3553 	 * per zone.
3554 	 */
3555 	zone->wait_table_hash_nr_entries =
3556 		 wait_table_hash_nr_entries(zone_size_pages);
3557 	zone->wait_table_bits =
3558 		wait_table_bits(zone->wait_table_hash_nr_entries);
3559 	alloc_size = zone->wait_table_hash_nr_entries
3560 					* sizeof(wait_queue_head_t);
3561 
3562 	if (!slab_is_available()) {
3563 		zone->wait_table = (wait_queue_head_t *)
3564 			alloc_bootmem_node(pgdat, alloc_size);
3565 	} else {
3566 		/*
3567 		 * This case means that a zone whose size was 0 gets new memory
3568 		 * via memory hot-add.
3569 		 * But it may be the case that a new node was hot-added.  In
3570 		 * this case vmalloc() will not be able to use this new node's
3571 		 * memory - this wait_table must be initialized to use this new
3572 		 * node itself as well.
3573 		 * To use this new node's memory, further consideration will be
3574 		 * necessary.
3575 		 */
3576 		zone->wait_table = vmalloc(alloc_size);
3577 	}
3578 	if (!zone->wait_table)
3579 		return -ENOMEM;
3580 
3581 	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3582 		init_waitqueue_head(zone->wait_table + i);
3583 
3584 	return 0;
3585 }
3586 
3587 static int __zone_pcp_update(void *data)
3588 {
3589 	struct zone *zone = data;
3590 	int cpu;
3591 	unsigned long batch = zone_batchsize(zone), flags;
3592 
3593 	for_each_possible_cpu(cpu) {
3594 		struct per_cpu_pageset *pset;
3595 		struct per_cpu_pages *pcp;
3596 
3597 		pset = per_cpu_ptr(zone->pageset, cpu);
3598 		pcp = &pset->pcp;
3599 
3600 		local_irq_save(flags);
3601 		free_pcppages_bulk(zone, pcp->count, pcp);
3602 		setup_pageset(pset, batch);
3603 		local_irq_restore(flags);
3604 	}
3605 	return 0;
3606 }
3607 
3608 void zone_pcp_update(struct zone *zone)
3609 {
3610 	stop_machine(__zone_pcp_update, zone, NULL);
3611 }
3612 
3613 static __meminit void zone_pcp_init(struct zone *zone)
3614 {
3615 	/*
3616 	 * per cpu subsystem is not up at this point. The following code
3617 	 * relies on the ability of the linker to provide the
3618 	 * offset of a (static) per cpu variable into the per cpu area.
3619 	 */
3620 	zone->pageset = &boot_pageset;
3621 
3622 	if (zone->present_pages)
3623 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
3624 			zone->name, zone->present_pages,
3625 					 zone_batchsize(zone));
3626 }
3627 
3628 __meminit int init_currently_empty_zone(struct zone *zone,
3629 					unsigned long zone_start_pfn,
3630 					unsigned long size,
3631 					enum memmap_context context)
3632 {
3633 	struct pglist_data *pgdat = zone->zone_pgdat;
3634 	int ret;
3635 	ret = zone_wait_table_init(zone, size);
3636 	if (ret)
3637 		return ret;
3638 	pgdat->nr_zones = zone_idx(zone) + 1;
3639 
3640 	zone->zone_start_pfn = zone_start_pfn;
3641 
3642 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
3643 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
3644 			pgdat->node_id,
3645 			(unsigned long)zone_idx(zone),
3646 			zone_start_pfn, (zone_start_pfn + size));
3647 
3648 	zone_init_free_lists(zone);
3649 
3650 	return 0;
3651 }
3652 
3653 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3654 /*
3655  * Basic iterator support. Return the first range of PFNs for a node
3656  * Note: nid == MAX_NUMNODES returns first region regardless of node
3657  */
3658 static int __meminit first_active_region_index_in_nid(int nid)
3659 {
3660 	int i;
3661 
3662 	for (i = 0; i < nr_nodemap_entries; i++)
3663 		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3664 			return i;
3665 
3666 	return -1;
3667 }
3668 
3669 /*
3670  * Basic iterator support. Return the next active range of PFNs for a node
3671  * Note: nid == MAX_NUMNODES returns next region regardless of node
3672  */
3673 static int __meminit next_active_region_index_in_nid(int index, int nid)
3674 {
3675 	for (index = index + 1; index < nr_nodemap_entries; index++)
3676 		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3677 			return index;
3678 
3679 	return -1;
3680 }
3681 
3682 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3683 /*
3684  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3685  * Architectures may implement their own version but if add_active_range()
3686  * was used and there are no special requirements, this is a convenient
3687  * alternative
3688  */
3689 int __meminit __early_pfn_to_nid(unsigned long pfn)
3690 {
3691 	int i;
3692 
3693 	for (i = 0; i < nr_nodemap_entries; i++) {
3694 		unsigned long start_pfn = early_node_map[i].start_pfn;
3695 		unsigned long end_pfn = early_node_map[i].end_pfn;
3696 
3697 		if (start_pfn <= pfn && pfn < end_pfn)
3698 			return early_node_map[i].nid;
3699 	}
3700 	/* This is a memory hole */
3701 	return -1;
3702 }
3703 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3704 
3705 int __meminit early_pfn_to_nid(unsigned long pfn)
3706 {
3707 	int nid;
3708 
3709 	nid = __early_pfn_to_nid(pfn);
3710 	if (nid >= 0)
3711 		return nid;
3712 	/* just returns 0 */
3713 	return 0;
3714 }
3715 
3716 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3717 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3718 {
3719 	int nid;
3720 
3721 	nid = __early_pfn_to_nid(pfn);
3722 	if (nid >= 0 && nid != node)
3723 		return false;
3724 	return true;
3725 }
3726 #endif
3727 
3728 /* Basic iterator support to walk early_node_map[] */
3729 #define for_each_active_range_index_in_nid(i, nid) \
3730 	for (i = first_active_region_index_in_nid(nid); i != -1; \
3731 				i = next_active_region_index_in_nid(i, nid))
3732 
3733 /**
3734  * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3735  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3736  * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3737  *
3738  * If an architecture guarantees that all ranges registered with
3739  * add_active_ranges() contain no holes and may be freed, this
3740  * this function may be used instead of calling free_bootmem() manually.
3741  */
3742 void __init free_bootmem_with_active_regions(int nid,
3743 						unsigned long max_low_pfn)
3744 {
3745 	int i;
3746 
3747 	for_each_active_range_index_in_nid(i, nid) {
3748 		unsigned long size_pages = 0;
3749 		unsigned long end_pfn = early_node_map[i].end_pfn;
3750 
3751 		if (early_node_map[i].start_pfn >= max_low_pfn)
3752 			continue;
3753 
3754 		if (end_pfn > max_low_pfn)
3755 			end_pfn = max_low_pfn;
3756 
3757 		size_pages = end_pfn - early_node_map[i].start_pfn;
3758 		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3759 				PFN_PHYS(early_node_map[i].start_pfn),
3760 				size_pages << PAGE_SHIFT);
3761 	}
3762 }
3763 
3764 #ifdef CONFIG_HAVE_MEMBLOCK
3765 /*
3766  * Basic iterator support. Return the last range of PFNs for a node
3767  * Note: nid == MAX_NUMNODES returns last region regardless of node
3768  */
3769 static int __meminit last_active_region_index_in_nid(int nid)
3770 {
3771 	int i;
3772 
3773 	for (i = nr_nodemap_entries - 1; i >= 0; i--)
3774 		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3775 			return i;
3776 
3777 	return -1;
3778 }
3779 
3780 /*
3781  * Basic iterator support. Return the previous active range of PFNs for a node
3782  * Note: nid == MAX_NUMNODES returns next region regardless of node
3783  */
3784 static int __meminit previous_active_region_index_in_nid(int index, int nid)
3785 {
3786 	for (index = index - 1; index >= 0; index--)
3787 		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3788 			return index;
3789 
3790 	return -1;
3791 }
3792 
3793 #define for_each_active_range_index_in_nid_reverse(i, nid) \
3794 	for (i = last_active_region_index_in_nid(nid); i != -1; \
3795 				i = previous_active_region_index_in_nid(i, nid))
3796 
3797 u64 __init find_memory_core_early(int nid, u64 size, u64 align,
3798 					u64 goal, u64 limit)
3799 {
3800 	int i;
3801 
3802 	/* Need to go over early_node_map to find out good range for node */
3803 	for_each_active_range_index_in_nid_reverse(i, nid) {
3804 		u64 addr;
3805 		u64 ei_start, ei_last;
3806 		u64 final_start, final_end;
3807 
3808 		ei_last = early_node_map[i].end_pfn;
3809 		ei_last <<= PAGE_SHIFT;
3810 		ei_start = early_node_map[i].start_pfn;
3811 		ei_start <<= PAGE_SHIFT;
3812 
3813 		final_start = max(ei_start, goal);
3814 		final_end = min(ei_last, limit);
3815 
3816 		if (final_start >= final_end)
3817 			continue;
3818 
3819 		addr = memblock_find_in_range(final_start, final_end, size, align);
3820 
3821 		if (addr == MEMBLOCK_ERROR)
3822 			continue;
3823 
3824 		return addr;
3825 	}
3826 
3827 	return MEMBLOCK_ERROR;
3828 }
3829 #endif
3830 
3831 int __init add_from_early_node_map(struct range *range, int az,
3832 				   int nr_range, int nid)
3833 {
3834 	int i;
3835 	u64 start, end;
3836 
3837 	/* need to go over early_node_map to find out good range for node */
3838 	for_each_active_range_index_in_nid(i, nid) {
3839 		start = early_node_map[i].start_pfn;
3840 		end = early_node_map[i].end_pfn;
3841 		nr_range = add_range(range, az, nr_range, start, end);
3842 	}
3843 	return nr_range;
3844 }
3845 
3846 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3847 {
3848 	int i;
3849 	int ret;
3850 
3851 	for_each_active_range_index_in_nid(i, nid) {
3852 		ret = work_fn(early_node_map[i].start_pfn,
3853 			      early_node_map[i].end_pfn, data);
3854 		if (ret)
3855 			break;
3856 	}
3857 }
3858 /**
3859  * sparse_memory_present_with_active_regions - Call memory_present for each active range
3860  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3861  *
3862  * If an architecture guarantees that all ranges registered with
3863  * add_active_ranges() contain no holes and may be freed, this
3864  * function may be used instead of calling memory_present() manually.
3865  */
3866 void __init sparse_memory_present_with_active_regions(int nid)
3867 {
3868 	int i;
3869 
3870 	for_each_active_range_index_in_nid(i, nid)
3871 		memory_present(early_node_map[i].nid,
3872 				early_node_map[i].start_pfn,
3873 				early_node_map[i].end_pfn);
3874 }
3875 
3876 /**
3877  * get_pfn_range_for_nid - Return the start and end page frames for a node
3878  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3879  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3880  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3881  *
3882  * It returns the start and end page frame of a node based on information
3883  * provided by an arch calling add_active_range(). If called for a node
3884  * with no available memory, a warning is printed and the start and end
3885  * PFNs will be 0.
3886  */
3887 void __meminit get_pfn_range_for_nid(unsigned int nid,
3888 			unsigned long *start_pfn, unsigned long *end_pfn)
3889 {
3890 	int i;
3891 	*start_pfn = -1UL;
3892 	*end_pfn = 0;
3893 
3894 	for_each_active_range_index_in_nid(i, nid) {
3895 		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3896 		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3897 	}
3898 
3899 	if (*start_pfn == -1UL)
3900 		*start_pfn = 0;
3901 }
3902 
3903 /*
3904  * This finds a zone that can be used for ZONE_MOVABLE pages. The
3905  * assumption is made that zones within a node are ordered in monotonic
3906  * increasing memory addresses so that the "highest" populated zone is used
3907  */
3908 static void __init find_usable_zone_for_movable(void)
3909 {
3910 	int zone_index;
3911 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3912 		if (zone_index == ZONE_MOVABLE)
3913 			continue;
3914 
3915 		if (arch_zone_highest_possible_pfn[zone_index] >
3916 				arch_zone_lowest_possible_pfn[zone_index])
3917 			break;
3918 	}
3919 
3920 	VM_BUG_ON(zone_index == -1);
3921 	movable_zone = zone_index;
3922 }
3923 
3924 /*
3925  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3926  * because it is sized independant of architecture. Unlike the other zones,
3927  * the starting point for ZONE_MOVABLE is not fixed. It may be different
3928  * in each node depending on the size of each node and how evenly kernelcore
3929  * is distributed. This helper function adjusts the zone ranges
3930  * provided by the architecture for a given node by using the end of the
3931  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3932  * zones within a node are in order of monotonic increases memory addresses
3933  */
3934 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3935 					unsigned long zone_type,
3936 					unsigned long node_start_pfn,
3937 					unsigned long node_end_pfn,
3938 					unsigned long *zone_start_pfn,
3939 					unsigned long *zone_end_pfn)
3940 {
3941 	/* Only adjust if ZONE_MOVABLE is on this node */
3942 	if (zone_movable_pfn[nid]) {
3943 		/* Size ZONE_MOVABLE */
3944 		if (zone_type == ZONE_MOVABLE) {
3945 			*zone_start_pfn = zone_movable_pfn[nid];
3946 			*zone_end_pfn = min(node_end_pfn,
3947 				arch_zone_highest_possible_pfn[movable_zone]);
3948 
3949 		/* Adjust for ZONE_MOVABLE starting within this range */
3950 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3951 				*zone_end_pfn > zone_movable_pfn[nid]) {
3952 			*zone_end_pfn = zone_movable_pfn[nid];
3953 
3954 		/* Check if this whole range is within ZONE_MOVABLE */
3955 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
3956 			*zone_start_pfn = *zone_end_pfn;
3957 	}
3958 }
3959 
3960 /*
3961  * Return the number of pages a zone spans in a node, including holes
3962  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3963  */
3964 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3965 					unsigned long zone_type,
3966 					unsigned long *ignored)
3967 {
3968 	unsigned long node_start_pfn, node_end_pfn;
3969 	unsigned long zone_start_pfn, zone_end_pfn;
3970 
3971 	/* Get the start and end of the node and zone */
3972 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3973 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3974 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3975 	adjust_zone_range_for_zone_movable(nid, zone_type,
3976 				node_start_pfn, node_end_pfn,
3977 				&zone_start_pfn, &zone_end_pfn);
3978 
3979 	/* Check that this node has pages within the zone's required range */
3980 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3981 		return 0;
3982 
3983 	/* Move the zone boundaries inside the node if necessary */
3984 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3985 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3986 
3987 	/* Return the spanned pages */
3988 	return zone_end_pfn - zone_start_pfn;
3989 }
3990 
3991 /*
3992  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3993  * then all holes in the requested range will be accounted for.
3994  */
3995 unsigned long __meminit __absent_pages_in_range(int nid,
3996 				unsigned long range_start_pfn,
3997 				unsigned long range_end_pfn)
3998 {
3999 	int i = 0;
4000 	unsigned long prev_end_pfn = 0, hole_pages = 0;
4001 	unsigned long start_pfn;
4002 
4003 	/* Find the end_pfn of the first active range of pfns in the node */
4004 	i = first_active_region_index_in_nid(nid);
4005 	if (i == -1)
4006 		return 0;
4007 
4008 	prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
4009 
4010 	/* Account for ranges before physical memory on this node */
4011 	if (early_node_map[i].start_pfn > range_start_pfn)
4012 		hole_pages = prev_end_pfn - range_start_pfn;
4013 
4014 	/* Find all holes for the zone within the node */
4015 	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
4016 
4017 		/* No need to continue if prev_end_pfn is outside the zone */
4018 		if (prev_end_pfn >= range_end_pfn)
4019 			break;
4020 
4021 		/* Make sure the end of the zone is not within the hole */
4022 		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
4023 		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
4024 
4025 		/* Update the hole size cound and move on */
4026 		if (start_pfn > range_start_pfn) {
4027 			BUG_ON(prev_end_pfn > start_pfn);
4028 			hole_pages += start_pfn - prev_end_pfn;
4029 		}
4030 		prev_end_pfn = early_node_map[i].end_pfn;
4031 	}
4032 
4033 	/* Account for ranges past physical memory on this node */
4034 	if (range_end_pfn > prev_end_pfn)
4035 		hole_pages += range_end_pfn -
4036 				max(range_start_pfn, prev_end_pfn);
4037 
4038 	return hole_pages;
4039 }
4040 
4041 /**
4042  * absent_pages_in_range - Return number of page frames in holes within a range
4043  * @start_pfn: The start PFN to start searching for holes
4044  * @end_pfn: The end PFN to stop searching for holes
4045  *
4046  * It returns the number of pages frames in memory holes within a range.
4047  */
4048 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4049 							unsigned long end_pfn)
4050 {
4051 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4052 }
4053 
4054 /* Return the number of page frames in holes in a zone on a node */
4055 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4056 					unsigned long zone_type,
4057 					unsigned long *ignored)
4058 {
4059 	unsigned long node_start_pfn, node_end_pfn;
4060 	unsigned long zone_start_pfn, zone_end_pfn;
4061 
4062 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4063 	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
4064 							node_start_pfn);
4065 	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
4066 							node_end_pfn);
4067 
4068 	adjust_zone_range_for_zone_movable(nid, zone_type,
4069 			node_start_pfn, node_end_pfn,
4070 			&zone_start_pfn, &zone_end_pfn);
4071 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4072 }
4073 
4074 #else
4075 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4076 					unsigned long zone_type,
4077 					unsigned long *zones_size)
4078 {
4079 	return zones_size[zone_type];
4080 }
4081 
4082 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4083 						unsigned long zone_type,
4084 						unsigned long *zholes_size)
4085 {
4086 	if (!zholes_size)
4087 		return 0;
4088 
4089 	return zholes_size[zone_type];
4090 }
4091 
4092 #endif
4093 
4094 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4095 		unsigned long *zones_size, unsigned long *zholes_size)
4096 {
4097 	unsigned long realtotalpages, totalpages = 0;
4098 	enum zone_type i;
4099 
4100 	for (i = 0; i < MAX_NR_ZONES; i++)
4101 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4102 								zones_size);
4103 	pgdat->node_spanned_pages = totalpages;
4104 
4105 	realtotalpages = totalpages;
4106 	for (i = 0; i < MAX_NR_ZONES; i++)
4107 		realtotalpages -=
4108 			zone_absent_pages_in_node(pgdat->node_id, i,
4109 								zholes_size);
4110 	pgdat->node_present_pages = realtotalpages;
4111 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4112 							realtotalpages);
4113 }
4114 
4115 #ifndef CONFIG_SPARSEMEM
4116 /*
4117  * Calculate the size of the zone->blockflags rounded to an unsigned long
4118  * Start by making sure zonesize is a multiple of pageblock_order by rounding
4119  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4120  * round what is now in bits to nearest long in bits, then return it in
4121  * bytes.
4122  */
4123 static unsigned long __init usemap_size(unsigned long zonesize)
4124 {
4125 	unsigned long usemapsize;
4126 
4127 	usemapsize = roundup(zonesize, pageblock_nr_pages);
4128 	usemapsize = usemapsize >> pageblock_order;
4129 	usemapsize *= NR_PAGEBLOCK_BITS;
4130 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4131 
4132 	return usemapsize / 8;
4133 }
4134 
4135 static void __init setup_usemap(struct pglist_data *pgdat,
4136 				struct zone *zone, unsigned long zonesize)
4137 {
4138 	unsigned long usemapsize = usemap_size(zonesize);
4139 	zone->pageblock_flags = NULL;
4140 	if (usemapsize)
4141 		zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
4142 }
4143 #else
4144 static inline void setup_usemap(struct pglist_data *pgdat,
4145 				struct zone *zone, unsigned long zonesize) {}
4146 #endif /* CONFIG_SPARSEMEM */
4147 
4148 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4149 
4150 /* Return a sensible default order for the pageblock size. */
4151 static inline int pageblock_default_order(void)
4152 {
4153 	if (HPAGE_SHIFT > PAGE_SHIFT)
4154 		return HUGETLB_PAGE_ORDER;
4155 
4156 	return MAX_ORDER-1;
4157 }
4158 
4159 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4160 static inline void __init set_pageblock_order(unsigned int order)
4161 {
4162 	/* Check that pageblock_nr_pages has not already been setup */
4163 	if (pageblock_order)
4164 		return;
4165 
4166 	/*
4167 	 * Assume the largest contiguous order of interest is a huge page.
4168 	 * This value may be variable depending on boot parameters on IA64
4169 	 */
4170 	pageblock_order = order;
4171 }
4172 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4173 
4174 /*
4175  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4176  * and pageblock_default_order() are unused as pageblock_order is set
4177  * at compile-time. See include/linux/pageblock-flags.h for the values of
4178  * pageblock_order based on the kernel config
4179  */
4180 static inline int pageblock_default_order(unsigned int order)
4181 {
4182 	return MAX_ORDER-1;
4183 }
4184 #define set_pageblock_order(x)	do {} while (0)
4185 
4186 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4187 
4188 /*
4189  * Set up the zone data structures:
4190  *   - mark all pages reserved
4191  *   - mark all memory queues empty
4192  *   - clear the memory bitmaps
4193  */
4194 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4195 		unsigned long *zones_size, unsigned long *zholes_size)
4196 {
4197 	enum zone_type j;
4198 	int nid = pgdat->node_id;
4199 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
4200 	int ret;
4201 
4202 	pgdat_resize_init(pgdat);
4203 	pgdat->nr_zones = 0;
4204 	init_waitqueue_head(&pgdat->kswapd_wait);
4205 	pgdat->kswapd_max_order = 0;
4206 	pgdat_page_cgroup_init(pgdat);
4207 
4208 	for (j = 0; j < MAX_NR_ZONES; j++) {
4209 		struct zone *zone = pgdat->node_zones + j;
4210 		unsigned long size, realsize, memmap_pages;
4211 		enum lru_list l;
4212 
4213 		size = zone_spanned_pages_in_node(nid, j, zones_size);
4214 		realsize = size - zone_absent_pages_in_node(nid, j,
4215 								zholes_size);
4216 
4217 		/*
4218 		 * Adjust realsize so that it accounts for how much memory
4219 		 * is used by this zone for memmap. This affects the watermark
4220 		 * and per-cpu initialisations
4221 		 */
4222 		memmap_pages =
4223 			PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4224 		if (realsize >= memmap_pages) {
4225 			realsize -= memmap_pages;
4226 			if (memmap_pages)
4227 				printk(KERN_DEBUG
4228 				       "  %s zone: %lu pages used for memmap\n",
4229 				       zone_names[j], memmap_pages);
4230 		} else
4231 			printk(KERN_WARNING
4232 				"  %s zone: %lu pages exceeds realsize %lu\n",
4233 				zone_names[j], memmap_pages, realsize);
4234 
4235 		/* Account for reserved pages */
4236 		if (j == 0 && realsize > dma_reserve) {
4237 			realsize -= dma_reserve;
4238 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
4239 					zone_names[0], dma_reserve);
4240 		}
4241 
4242 		if (!is_highmem_idx(j))
4243 			nr_kernel_pages += realsize;
4244 		nr_all_pages += realsize;
4245 
4246 		zone->spanned_pages = size;
4247 		zone->present_pages = realsize;
4248 #ifdef CONFIG_NUMA
4249 		zone->node = nid;
4250 		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4251 						/ 100;
4252 		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4253 #endif
4254 		zone->name = zone_names[j];
4255 		spin_lock_init(&zone->lock);
4256 		spin_lock_init(&zone->lru_lock);
4257 		zone_seqlock_init(zone);
4258 		zone->zone_pgdat = pgdat;
4259 
4260 		zone_pcp_init(zone);
4261 		for_each_lru(l) {
4262 			INIT_LIST_HEAD(&zone->lru[l].list);
4263 			zone->reclaim_stat.nr_saved_scan[l] = 0;
4264 		}
4265 		zone->reclaim_stat.recent_rotated[0] = 0;
4266 		zone->reclaim_stat.recent_rotated[1] = 0;
4267 		zone->reclaim_stat.recent_scanned[0] = 0;
4268 		zone->reclaim_stat.recent_scanned[1] = 0;
4269 		zap_zone_vm_stats(zone);
4270 		zone->flags = 0;
4271 		if (!size)
4272 			continue;
4273 
4274 		set_pageblock_order(pageblock_default_order());
4275 		setup_usemap(pgdat, zone, size);
4276 		ret = init_currently_empty_zone(zone, zone_start_pfn,
4277 						size, MEMMAP_EARLY);
4278 		BUG_ON(ret);
4279 		memmap_init(size, nid, j, zone_start_pfn);
4280 		zone_start_pfn += size;
4281 	}
4282 }
4283 
4284 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4285 {
4286 	/* Skip empty nodes */
4287 	if (!pgdat->node_spanned_pages)
4288 		return;
4289 
4290 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4291 	/* ia64 gets its own node_mem_map, before this, without bootmem */
4292 	if (!pgdat->node_mem_map) {
4293 		unsigned long size, start, end;
4294 		struct page *map;
4295 
4296 		/*
4297 		 * The zone's endpoints aren't required to be MAX_ORDER
4298 		 * aligned but the node_mem_map endpoints must be in order
4299 		 * for the buddy allocator to function correctly.
4300 		 */
4301 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4302 		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4303 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
4304 		size =  (end - start) * sizeof(struct page);
4305 		map = alloc_remap(pgdat->node_id, size);
4306 		if (!map)
4307 			map = alloc_bootmem_node(pgdat, size);
4308 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4309 	}
4310 #ifndef CONFIG_NEED_MULTIPLE_NODES
4311 	/*
4312 	 * With no DISCONTIG, the global mem_map is just set as node 0's
4313 	 */
4314 	if (pgdat == NODE_DATA(0)) {
4315 		mem_map = NODE_DATA(0)->node_mem_map;
4316 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4317 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4318 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4319 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4320 	}
4321 #endif
4322 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4323 }
4324 
4325 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4326 		unsigned long node_start_pfn, unsigned long *zholes_size)
4327 {
4328 	pg_data_t *pgdat = NODE_DATA(nid);
4329 
4330 	pgdat->node_id = nid;
4331 	pgdat->node_start_pfn = node_start_pfn;
4332 	calculate_node_totalpages(pgdat, zones_size, zholes_size);
4333 
4334 	alloc_node_mem_map(pgdat);
4335 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4336 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4337 		nid, (unsigned long)pgdat,
4338 		(unsigned long)pgdat->node_mem_map);
4339 #endif
4340 
4341 	free_area_init_core(pgdat, zones_size, zholes_size);
4342 }
4343 
4344 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4345 
4346 #if MAX_NUMNODES > 1
4347 /*
4348  * Figure out the number of possible node ids.
4349  */
4350 static void __init setup_nr_node_ids(void)
4351 {
4352 	unsigned int node;
4353 	unsigned int highest = 0;
4354 
4355 	for_each_node_mask(node, node_possible_map)
4356 		highest = node;
4357 	nr_node_ids = highest + 1;
4358 }
4359 #else
4360 static inline void setup_nr_node_ids(void)
4361 {
4362 }
4363 #endif
4364 
4365 /**
4366  * add_active_range - Register a range of PFNs backed by physical memory
4367  * @nid: The node ID the range resides on
4368  * @start_pfn: The start PFN of the available physical memory
4369  * @end_pfn: The end PFN of the available physical memory
4370  *
4371  * These ranges are stored in an early_node_map[] and later used by
4372  * free_area_init_nodes() to calculate zone sizes and holes. If the
4373  * range spans a memory hole, it is up to the architecture to ensure
4374  * the memory is not freed by the bootmem allocator. If possible
4375  * the range being registered will be merged with existing ranges.
4376  */
4377 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4378 						unsigned long end_pfn)
4379 {
4380 	int i;
4381 
4382 	mminit_dprintk(MMINIT_TRACE, "memory_register",
4383 			"Entering add_active_range(%d, %#lx, %#lx) "
4384 			"%d entries of %d used\n",
4385 			nid, start_pfn, end_pfn,
4386 			nr_nodemap_entries, MAX_ACTIVE_REGIONS);
4387 
4388 	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4389 
4390 	/* Merge with existing active regions if possible */
4391 	for (i = 0; i < nr_nodemap_entries; i++) {
4392 		if (early_node_map[i].nid != nid)
4393 			continue;
4394 
4395 		/* Skip if an existing region covers this new one */
4396 		if (start_pfn >= early_node_map[i].start_pfn &&
4397 				end_pfn <= early_node_map[i].end_pfn)
4398 			return;
4399 
4400 		/* Merge forward if suitable */
4401 		if (start_pfn <= early_node_map[i].end_pfn &&
4402 				end_pfn > early_node_map[i].end_pfn) {
4403 			early_node_map[i].end_pfn = end_pfn;
4404 			return;
4405 		}
4406 
4407 		/* Merge backward if suitable */
4408 		if (start_pfn < early_node_map[i].start_pfn &&
4409 				end_pfn >= early_node_map[i].start_pfn) {
4410 			early_node_map[i].start_pfn = start_pfn;
4411 			return;
4412 		}
4413 	}
4414 
4415 	/* Check that early_node_map is large enough */
4416 	if (i >= MAX_ACTIVE_REGIONS) {
4417 		printk(KERN_CRIT "More than %d memory regions, truncating\n",
4418 							MAX_ACTIVE_REGIONS);
4419 		return;
4420 	}
4421 
4422 	early_node_map[i].nid = nid;
4423 	early_node_map[i].start_pfn = start_pfn;
4424 	early_node_map[i].end_pfn = end_pfn;
4425 	nr_nodemap_entries = i + 1;
4426 }
4427 
4428 /**
4429  * remove_active_range - Shrink an existing registered range of PFNs
4430  * @nid: The node id the range is on that should be shrunk
4431  * @start_pfn: The new PFN of the range
4432  * @end_pfn: The new PFN of the range
4433  *
4434  * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4435  * The map is kept near the end physical page range that has already been
4436  * registered. This function allows an arch to shrink an existing registered
4437  * range.
4438  */
4439 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4440 				unsigned long end_pfn)
4441 {
4442 	int i, j;
4443 	int removed = 0;
4444 
4445 	printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4446 			  nid, start_pfn, end_pfn);
4447 
4448 	/* Find the old active region end and shrink */
4449 	for_each_active_range_index_in_nid(i, nid) {
4450 		if (early_node_map[i].start_pfn >= start_pfn &&
4451 		    early_node_map[i].end_pfn <= end_pfn) {
4452 			/* clear it */
4453 			early_node_map[i].start_pfn = 0;
4454 			early_node_map[i].end_pfn = 0;
4455 			removed = 1;
4456 			continue;
4457 		}
4458 		if (early_node_map[i].start_pfn < start_pfn &&
4459 		    early_node_map[i].end_pfn > start_pfn) {
4460 			unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4461 			early_node_map[i].end_pfn = start_pfn;
4462 			if (temp_end_pfn > end_pfn)
4463 				add_active_range(nid, end_pfn, temp_end_pfn);
4464 			continue;
4465 		}
4466 		if (early_node_map[i].start_pfn >= start_pfn &&
4467 		    early_node_map[i].end_pfn > end_pfn &&
4468 		    early_node_map[i].start_pfn < end_pfn) {
4469 			early_node_map[i].start_pfn = end_pfn;
4470 			continue;
4471 		}
4472 	}
4473 
4474 	if (!removed)
4475 		return;
4476 
4477 	/* remove the blank ones */
4478 	for (i = nr_nodemap_entries - 1; i > 0; i--) {
4479 		if (early_node_map[i].nid != nid)
4480 			continue;
4481 		if (early_node_map[i].end_pfn)
4482 			continue;
4483 		/* we found it, get rid of it */
4484 		for (j = i; j < nr_nodemap_entries - 1; j++)
4485 			memcpy(&early_node_map[j], &early_node_map[j+1],
4486 				sizeof(early_node_map[j]));
4487 		j = nr_nodemap_entries - 1;
4488 		memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4489 		nr_nodemap_entries--;
4490 	}
4491 }
4492 
4493 /**
4494  * remove_all_active_ranges - Remove all currently registered regions
4495  *
4496  * During discovery, it may be found that a table like SRAT is invalid
4497  * and an alternative discovery method must be used. This function removes
4498  * all currently registered regions.
4499  */
4500 void __init remove_all_active_ranges(void)
4501 {
4502 	memset(early_node_map, 0, sizeof(early_node_map));
4503 	nr_nodemap_entries = 0;
4504 }
4505 
4506 /* Compare two active node_active_regions */
4507 static int __init cmp_node_active_region(const void *a, const void *b)
4508 {
4509 	struct node_active_region *arange = (struct node_active_region *)a;
4510 	struct node_active_region *brange = (struct node_active_region *)b;
4511 
4512 	/* Done this way to avoid overflows */
4513 	if (arange->start_pfn > brange->start_pfn)
4514 		return 1;
4515 	if (arange->start_pfn < brange->start_pfn)
4516 		return -1;
4517 
4518 	return 0;
4519 }
4520 
4521 /* sort the node_map by start_pfn */
4522 void __init sort_node_map(void)
4523 {
4524 	sort(early_node_map, (size_t)nr_nodemap_entries,
4525 			sizeof(struct node_active_region),
4526 			cmp_node_active_region, NULL);
4527 }
4528 
4529 /* Find the lowest pfn for a node */
4530 static unsigned long __init find_min_pfn_for_node(int nid)
4531 {
4532 	int i;
4533 	unsigned long min_pfn = ULONG_MAX;
4534 
4535 	/* Assuming a sorted map, the first range found has the starting pfn */
4536 	for_each_active_range_index_in_nid(i, nid)
4537 		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4538 
4539 	if (min_pfn == ULONG_MAX) {
4540 		printk(KERN_WARNING
4541 			"Could not find start_pfn for node %d\n", nid);
4542 		return 0;
4543 	}
4544 
4545 	return min_pfn;
4546 }
4547 
4548 /**
4549  * find_min_pfn_with_active_regions - Find the minimum PFN registered
4550  *
4551  * It returns the minimum PFN based on information provided via
4552  * add_active_range().
4553  */
4554 unsigned long __init find_min_pfn_with_active_regions(void)
4555 {
4556 	return find_min_pfn_for_node(MAX_NUMNODES);
4557 }
4558 
4559 /*
4560  * early_calculate_totalpages()
4561  * Sum pages in active regions for movable zone.
4562  * Populate N_HIGH_MEMORY for calculating usable_nodes.
4563  */
4564 static unsigned long __init early_calculate_totalpages(void)
4565 {
4566 	int i;
4567 	unsigned long totalpages = 0;
4568 
4569 	for (i = 0; i < nr_nodemap_entries; i++) {
4570 		unsigned long pages = early_node_map[i].end_pfn -
4571 						early_node_map[i].start_pfn;
4572 		totalpages += pages;
4573 		if (pages)
4574 			node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4575 	}
4576   	return totalpages;
4577 }
4578 
4579 /*
4580  * Find the PFN the Movable zone begins in each node. Kernel memory
4581  * is spread evenly between nodes as long as the nodes have enough
4582  * memory. When they don't, some nodes will have more kernelcore than
4583  * others
4584  */
4585 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4586 {
4587 	int i, nid;
4588 	unsigned long usable_startpfn;
4589 	unsigned long kernelcore_node, kernelcore_remaining;
4590 	/* save the state before borrow the nodemask */
4591 	nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4592 	unsigned long totalpages = early_calculate_totalpages();
4593 	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4594 
4595 	/*
4596 	 * If movablecore was specified, calculate what size of
4597 	 * kernelcore that corresponds so that memory usable for
4598 	 * any allocation type is evenly spread. If both kernelcore
4599 	 * and movablecore are specified, then the value of kernelcore
4600 	 * will be used for required_kernelcore if it's greater than
4601 	 * what movablecore would have allowed.
4602 	 */
4603 	if (required_movablecore) {
4604 		unsigned long corepages;
4605 
4606 		/*
4607 		 * Round-up so that ZONE_MOVABLE is at least as large as what
4608 		 * was requested by the user
4609 		 */
4610 		required_movablecore =
4611 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4612 		corepages = totalpages - required_movablecore;
4613 
4614 		required_kernelcore = max(required_kernelcore, corepages);
4615 	}
4616 
4617 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
4618 	if (!required_kernelcore)
4619 		goto out;
4620 
4621 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4622 	find_usable_zone_for_movable();
4623 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4624 
4625 restart:
4626 	/* Spread kernelcore memory as evenly as possible throughout nodes */
4627 	kernelcore_node = required_kernelcore / usable_nodes;
4628 	for_each_node_state(nid, N_HIGH_MEMORY) {
4629 		/*
4630 		 * Recalculate kernelcore_node if the division per node
4631 		 * now exceeds what is necessary to satisfy the requested
4632 		 * amount of memory for the kernel
4633 		 */
4634 		if (required_kernelcore < kernelcore_node)
4635 			kernelcore_node = required_kernelcore / usable_nodes;
4636 
4637 		/*
4638 		 * As the map is walked, we track how much memory is usable
4639 		 * by the kernel using kernelcore_remaining. When it is
4640 		 * 0, the rest of the node is usable by ZONE_MOVABLE
4641 		 */
4642 		kernelcore_remaining = kernelcore_node;
4643 
4644 		/* Go through each range of PFNs within this node */
4645 		for_each_active_range_index_in_nid(i, nid) {
4646 			unsigned long start_pfn, end_pfn;
4647 			unsigned long size_pages;
4648 
4649 			start_pfn = max(early_node_map[i].start_pfn,
4650 						zone_movable_pfn[nid]);
4651 			end_pfn = early_node_map[i].end_pfn;
4652 			if (start_pfn >= end_pfn)
4653 				continue;
4654 
4655 			/* Account for what is only usable for kernelcore */
4656 			if (start_pfn < usable_startpfn) {
4657 				unsigned long kernel_pages;
4658 				kernel_pages = min(end_pfn, usable_startpfn)
4659 								- start_pfn;
4660 
4661 				kernelcore_remaining -= min(kernel_pages,
4662 							kernelcore_remaining);
4663 				required_kernelcore -= min(kernel_pages,
4664 							required_kernelcore);
4665 
4666 				/* Continue if range is now fully accounted */
4667 				if (end_pfn <= usable_startpfn) {
4668 
4669 					/*
4670 					 * Push zone_movable_pfn to the end so
4671 					 * that if we have to rebalance
4672 					 * kernelcore across nodes, we will
4673 					 * not double account here
4674 					 */
4675 					zone_movable_pfn[nid] = end_pfn;
4676 					continue;
4677 				}
4678 				start_pfn = usable_startpfn;
4679 			}
4680 
4681 			/*
4682 			 * The usable PFN range for ZONE_MOVABLE is from
4683 			 * start_pfn->end_pfn. Calculate size_pages as the
4684 			 * number of pages used as kernelcore
4685 			 */
4686 			size_pages = end_pfn - start_pfn;
4687 			if (size_pages > kernelcore_remaining)
4688 				size_pages = kernelcore_remaining;
4689 			zone_movable_pfn[nid] = start_pfn + size_pages;
4690 
4691 			/*
4692 			 * Some kernelcore has been met, update counts and
4693 			 * break if the kernelcore for this node has been
4694 			 * satisified
4695 			 */
4696 			required_kernelcore -= min(required_kernelcore,
4697 								size_pages);
4698 			kernelcore_remaining -= size_pages;
4699 			if (!kernelcore_remaining)
4700 				break;
4701 		}
4702 	}
4703 
4704 	/*
4705 	 * If there is still required_kernelcore, we do another pass with one
4706 	 * less node in the count. This will push zone_movable_pfn[nid] further
4707 	 * along on the nodes that still have memory until kernelcore is
4708 	 * satisified
4709 	 */
4710 	usable_nodes--;
4711 	if (usable_nodes && required_kernelcore > usable_nodes)
4712 		goto restart;
4713 
4714 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4715 	for (nid = 0; nid < MAX_NUMNODES; nid++)
4716 		zone_movable_pfn[nid] =
4717 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4718 
4719 out:
4720 	/* restore the node_state */
4721 	node_states[N_HIGH_MEMORY] = saved_node_state;
4722 }
4723 
4724 /* Any regular memory on that node ? */
4725 static void check_for_regular_memory(pg_data_t *pgdat)
4726 {
4727 #ifdef CONFIG_HIGHMEM
4728 	enum zone_type zone_type;
4729 
4730 	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4731 		struct zone *zone = &pgdat->node_zones[zone_type];
4732 		if (zone->present_pages)
4733 			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4734 	}
4735 #endif
4736 }
4737 
4738 /**
4739  * free_area_init_nodes - Initialise all pg_data_t and zone data
4740  * @max_zone_pfn: an array of max PFNs for each zone
4741  *
4742  * This will call free_area_init_node() for each active node in the system.
4743  * Using the page ranges provided by add_active_range(), the size of each
4744  * zone in each node and their holes is calculated. If the maximum PFN
4745  * between two adjacent zones match, it is assumed that the zone is empty.
4746  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4747  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4748  * starts where the previous one ended. For example, ZONE_DMA32 starts
4749  * at arch_max_dma_pfn.
4750  */
4751 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4752 {
4753 	unsigned long nid;
4754 	int i;
4755 
4756 	/* Sort early_node_map as initialisation assumes it is sorted */
4757 	sort_node_map();
4758 
4759 	/* Record where the zone boundaries are */
4760 	memset(arch_zone_lowest_possible_pfn, 0,
4761 				sizeof(arch_zone_lowest_possible_pfn));
4762 	memset(arch_zone_highest_possible_pfn, 0,
4763 				sizeof(arch_zone_highest_possible_pfn));
4764 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4765 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4766 	for (i = 1; i < MAX_NR_ZONES; i++) {
4767 		if (i == ZONE_MOVABLE)
4768 			continue;
4769 		arch_zone_lowest_possible_pfn[i] =
4770 			arch_zone_highest_possible_pfn[i-1];
4771 		arch_zone_highest_possible_pfn[i] =
4772 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4773 	}
4774 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4775 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4776 
4777 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
4778 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4779 	find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4780 
4781 	/* Print out the zone ranges */
4782 	printk("Zone PFN ranges:\n");
4783 	for (i = 0; i < MAX_NR_ZONES; i++) {
4784 		if (i == ZONE_MOVABLE)
4785 			continue;
4786 		printk("  %-8s ", zone_names[i]);
4787 		if (arch_zone_lowest_possible_pfn[i] ==
4788 				arch_zone_highest_possible_pfn[i])
4789 			printk("empty\n");
4790 		else
4791 			printk("%0#10lx -> %0#10lx\n",
4792 				arch_zone_lowest_possible_pfn[i],
4793 				arch_zone_highest_possible_pfn[i]);
4794 	}
4795 
4796 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
4797 	printk("Movable zone start PFN for each node\n");
4798 	for (i = 0; i < MAX_NUMNODES; i++) {
4799 		if (zone_movable_pfn[i])
4800 			printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
4801 	}
4802 
4803 	/* Print out the early_node_map[] */
4804 	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4805 	for (i = 0; i < nr_nodemap_entries; i++)
4806 		printk("  %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4807 						early_node_map[i].start_pfn,
4808 						early_node_map[i].end_pfn);
4809 
4810 	/* Initialise every node */
4811 	mminit_verify_pageflags_layout();
4812 	setup_nr_node_ids();
4813 	for_each_online_node(nid) {
4814 		pg_data_t *pgdat = NODE_DATA(nid);
4815 		free_area_init_node(nid, NULL,
4816 				find_min_pfn_for_node(nid), NULL);
4817 
4818 		/* Any memory on that node */
4819 		if (pgdat->node_present_pages)
4820 			node_set_state(nid, N_HIGH_MEMORY);
4821 		check_for_regular_memory(pgdat);
4822 	}
4823 }
4824 
4825 static int __init cmdline_parse_core(char *p, unsigned long *core)
4826 {
4827 	unsigned long long coremem;
4828 	if (!p)
4829 		return -EINVAL;
4830 
4831 	coremem = memparse(p, &p);
4832 	*core = coremem >> PAGE_SHIFT;
4833 
4834 	/* Paranoid check that UL is enough for the coremem value */
4835 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4836 
4837 	return 0;
4838 }
4839 
4840 /*
4841  * kernelcore=size sets the amount of memory for use for allocations that
4842  * cannot be reclaimed or migrated.
4843  */
4844 static int __init cmdline_parse_kernelcore(char *p)
4845 {
4846 	return cmdline_parse_core(p, &required_kernelcore);
4847 }
4848 
4849 /*
4850  * movablecore=size sets the amount of memory for use for allocations that
4851  * can be reclaimed or migrated.
4852  */
4853 static int __init cmdline_parse_movablecore(char *p)
4854 {
4855 	return cmdline_parse_core(p, &required_movablecore);
4856 }
4857 
4858 early_param("kernelcore", cmdline_parse_kernelcore);
4859 early_param("movablecore", cmdline_parse_movablecore);
4860 
4861 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4862 
4863 /**
4864  * set_dma_reserve - set the specified number of pages reserved in the first zone
4865  * @new_dma_reserve: The number of pages to mark reserved
4866  *
4867  * The per-cpu batchsize and zone watermarks are determined by present_pages.
4868  * In the DMA zone, a significant percentage may be consumed by kernel image
4869  * and other unfreeable allocations which can skew the watermarks badly. This
4870  * function may optionally be used to account for unfreeable pages in the
4871  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4872  * smaller per-cpu batchsize.
4873  */
4874 void __init set_dma_reserve(unsigned long new_dma_reserve)
4875 {
4876 	dma_reserve = new_dma_reserve;
4877 }
4878 
4879 void __init free_area_init(unsigned long *zones_size)
4880 {
4881 	free_area_init_node(0, zones_size,
4882 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4883 }
4884 
4885 static int page_alloc_cpu_notify(struct notifier_block *self,
4886 				 unsigned long action, void *hcpu)
4887 {
4888 	int cpu = (unsigned long)hcpu;
4889 
4890 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4891 		drain_pages(cpu);
4892 
4893 		/*
4894 		 * Spill the event counters of the dead processor
4895 		 * into the current processors event counters.
4896 		 * This artificially elevates the count of the current
4897 		 * processor.
4898 		 */
4899 		vm_events_fold_cpu(cpu);
4900 
4901 		/*
4902 		 * Zero the differential counters of the dead processor
4903 		 * so that the vm statistics are consistent.
4904 		 *
4905 		 * This is only okay since the processor is dead and cannot
4906 		 * race with what we are doing.
4907 		 */
4908 		refresh_cpu_vm_stats(cpu);
4909 	}
4910 	return NOTIFY_OK;
4911 }
4912 
4913 void __init page_alloc_init(void)
4914 {
4915 	hotcpu_notifier(page_alloc_cpu_notify, 0);
4916 }
4917 
4918 /*
4919  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4920  *	or min_free_kbytes changes.
4921  */
4922 static void calculate_totalreserve_pages(void)
4923 {
4924 	struct pglist_data *pgdat;
4925 	unsigned long reserve_pages = 0;
4926 	enum zone_type i, j;
4927 
4928 	for_each_online_pgdat(pgdat) {
4929 		for (i = 0; i < MAX_NR_ZONES; i++) {
4930 			struct zone *zone = pgdat->node_zones + i;
4931 			unsigned long max = 0;
4932 
4933 			/* Find valid and maximum lowmem_reserve in the zone */
4934 			for (j = i; j < MAX_NR_ZONES; j++) {
4935 				if (zone->lowmem_reserve[j] > max)
4936 					max = zone->lowmem_reserve[j];
4937 			}
4938 
4939 			/* we treat the high watermark as reserved pages. */
4940 			max += high_wmark_pages(zone);
4941 
4942 			if (max > zone->present_pages)
4943 				max = zone->present_pages;
4944 			reserve_pages += max;
4945 		}
4946 	}
4947 	totalreserve_pages = reserve_pages;
4948 }
4949 
4950 /*
4951  * setup_per_zone_lowmem_reserve - called whenever
4952  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
4953  *	has a correct pages reserved value, so an adequate number of
4954  *	pages are left in the zone after a successful __alloc_pages().
4955  */
4956 static void setup_per_zone_lowmem_reserve(void)
4957 {
4958 	struct pglist_data *pgdat;
4959 	enum zone_type j, idx;
4960 
4961 	for_each_online_pgdat(pgdat) {
4962 		for (j = 0; j < MAX_NR_ZONES; j++) {
4963 			struct zone *zone = pgdat->node_zones + j;
4964 			unsigned long present_pages = zone->present_pages;
4965 
4966 			zone->lowmem_reserve[j] = 0;
4967 
4968 			idx = j;
4969 			while (idx) {
4970 				struct zone *lower_zone;
4971 
4972 				idx--;
4973 
4974 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
4975 					sysctl_lowmem_reserve_ratio[idx] = 1;
4976 
4977 				lower_zone = pgdat->node_zones + idx;
4978 				lower_zone->lowmem_reserve[j] = present_pages /
4979 					sysctl_lowmem_reserve_ratio[idx];
4980 				present_pages += lower_zone->present_pages;
4981 			}
4982 		}
4983 	}
4984 
4985 	/* update totalreserve_pages */
4986 	calculate_totalreserve_pages();
4987 }
4988 
4989 /**
4990  * setup_per_zone_wmarks - called when min_free_kbytes changes
4991  * or when memory is hot-{added|removed}
4992  *
4993  * Ensures that the watermark[min,low,high] values for each zone are set
4994  * correctly with respect to min_free_kbytes.
4995  */
4996 void setup_per_zone_wmarks(void)
4997 {
4998 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4999 	unsigned long lowmem_pages = 0;
5000 	struct zone *zone;
5001 	unsigned long flags;
5002 
5003 	/* Calculate total number of !ZONE_HIGHMEM pages */
5004 	for_each_zone(zone) {
5005 		if (!is_highmem(zone))
5006 			lowmem_pages += zone->present_pages;
5007 	}
5008 
5009 	for_each_zone(zone) {
5010 		u64 tmp;
5011 
5012 		spin_lock_irqsave(&zone->lock, flags);
5013 		tmp = (u64)pages_min * zone->present_pages;
5014 		do_div(tmp, lowmem_pages);
5015 		if (is_highmem(zone)) {
5016 			/*
5017 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5018 			 * need highmem pages, so cap pages_min to a small
5019 			 * value here.
5020 			 *
5021 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5022 			 * deltas controls asynch page reclaim, and so should
5023 			 * not be capped for highmem.
5024 			 */
5025 			int min_pages;
5026 
5027 			min_pages = zone->present_pages / 1024;
5028 			if (min_pages < SWAP_CLUSTER_MAX)
5029 				min_pages = SWAP_CLUSTER_MAX;
5030 			if (min_pages > 128)
5031 				min_pages = 128;
5032 			zone->watermark[WMARK_MIN] = min_pages;
5033 		} else {
5034 			/*
5035 			 * If it's a lowmem zone, reserve a number of pages
5036 			 * proportionate to the zone's size.
5037 			 */
5038 			zone->watermark[WMARK_MIN] = tmp;
5039 		}
5040 
5041 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
5042 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5043 		setup_zone_migrate_reserve(zone);
5044 		spin_unlock_irqrestore(&zone->lock, flags);
5045 	}
5046 
5047 	/* update totalreserve_pages */
5048 	calculate_totalreserve_pages();
5049 }
5050 
5051 /*
5052  * The inactive anon list should be small enough that the VM never has to
5053  * do too much work, but large enough that each inactive page has a chance
5054  * to be referenced again before it is swapped out.
5055  *
5056  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5057  * INACTIVE_ANON pages on this zone's LRU, maintained by the
5058  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5059  * the anonymous pages are kept on the inactive list.
5060  *
5061  * total     target    max
5062  * memory    ratio     inactive anon
5063  * -------------------------------------
5064  *   10MB       1         5MB
5065  *  100MB       1        50MB
5066  *    1GB       3       250MB
5067  *   10GB      10       0.9GB
5068  *  100GB      31         3GB
5069  *    1TB     101        10GB
5070  *   10TB     320        32GB
5071  */
5072 void calculate_zone_inactive_ratio(struct zone *zone)
5073 {
5074 	unsigned int gb, ratio;
5075 
5076 	/* Zone size in gigabytes */
5077 	gb = zone->present_pages >> (30 - PAGE_SHIFT);
5078 	if (gb)
5079 		ratio = int_sqrt(10 * gb);
5080 	else
5081 		ratio = 1;
5082 
5083 	zone->inactive_ratio = ratio;
5084 }
5085 
5086 static void __init setup_per_zone_inactive_ratio(void)
5087 {
5088 	struct zone *zone;
5089 
5090 	for_each_zone(zone)
5091 		calculate_zone_inactive_ratio(zone);
5092 }
5093 
5094 /*
5095  * Initialise min_free_kbytes.
5096  *
5097  * For small machines we want it small (128k min).  For large machines
5098  * we want it large (64MB max).  But it is not linear, because network
5099  * bandwidth does not increase linearly with machine size.  We use
5100  *
5101  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5102  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5103  *
5104  * which yields
5105  *
5106  * 16MB:	512k
5107  * 32MB:	724k
5108  * 64MB:	1024k
5109  * 128MB:	1448k
5110  * 256MB:	2048k
5111  * 512MB:	2896k
5112  * 1024MB:	4096k
5113  * 2048MB:	5792k
5114  * 4096MB:	8192k
5115  * 8192MB:	11584k
5116  * 16384MB:	16384k
5117  */
5118 static int __init init_per_zone_wmark_min(void)
5119 {
5120 	unsigned long lowmem_kbytes;
5121 
5122 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5123 
5124 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5125 	if (min_free_kbytes < 128)
5126 		min_free_kbytes = 128;
5127 	if (min_free_kbytes > 65536)
5128 		min_free_kbytes = 65536;
5129 	setup_per_zone_wmarks();
5130 	setup_per_zone_lowmem_reserve();
5131 	setup_per_zone_inactive_ratio();
5132 	return 0;
5133 }
5134 module_init(init_per_zone_wmark_min)
5135 
5136 /*
5137  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5138  *	that we can call two helper functions whenever min_free_kbytes
5139  *	changes.
5140  */
5141 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5142 	void __user *buffer, size_t *length, loff_t *ppos)
5143 {
5144 	proc_dointvec(table, write, buffer, length, ppos);
5145 	if (write)
5146 		setup_per_zone_wmarks();
5147 	return 0;
5148 }
5149 
5150 #ifdef CONFIG_NUMA
5151 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5152 	void __user *buffer, size_t *length, loff_t *ppos)
5153 {
5154 	struct zone *zone;
5155 	int rc;
5156 
5157 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5158 	if (rc)
5159 		return rc;
5160 
5161 	for_each_zone(zone)
5162 		zone->min_unmapped_pages = (zone->present_pages *
5163 				sysctl_min_unmapped_ratio) / 100;
5164 	return 0;
5165 }
5166 
5167 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5168 	void __user *buffer, size_t *length, loff_t *ppos)
5169 {
5170 	struct zone *zone;
5171 	int rc;
5172 
5173 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5174 	if (rc)
5175 		return rc;
5176 
5177 	for_each_zone(zone)
5178 		zone->min_slab_pages = (zone->present_pages *
5179 				sysctl_min_slab_ratio) / 100;
5180 	return 0;
5181 }
5182 #endif
5183 
5184 /*
5185  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5186  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5187  *	whenever sysctl_lowmem_reserve_ratio changes.
5188  *
5189  * The reserve ratio obviously has absolutely no relation with the
5190  * minimum watermarks. The lowmem reserve ratio can only make sense
5191  * if in function of the boot time zone sizes.
5192  */
5193 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5194 	void __user *buffer, size_t *length, loff_t *ppos)
5195 {
5196 	proc_dointvec_minmax(table, write, buffer, length, ppos);
5197 	setup_per_zone_lowmem_reserve();
5198 	return 0;
5199 }
5200 
5201 /*
5202  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5203  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
5204  * can have before it gets flushed back to buddy allocator.
5205  */
5206 
5207 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5208 	void __user *buffer, size_t *length, loff_t *ppos)
5209 {
5210 	struct zone *zone;
5211 	unsigned int cpu;
5212 	int ret;
5213 
5214 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5215 	if (!write || (ret == -EINVAL))
5216 		return ret;
5217 	for_each_populated_zone(zone) {
5218 		for_each_possible_cpu(cpu) {
5219 			unsigned long  high;
5220 			high = zone->present_pages / percpu_pagelist_fraction;
5221 			setup_pagelist_highmark(
5222 				per_cpu_ptr(zone->pageset, cpu), high);
5223 		}
5224 	}
5225 	return 0;
5226 }
5227 
5228 int hashdist = HASHDIST_DEFAULT;
5229 
5230 #ifdef CONFIG_NUMA
5231 static int __init set_hashdist(char *str)
5232 {
5233 	if (!str)
5234 		return 0;
5235 	hashdist = simple_strtoul(str, &str, 0);
5236 	return 1;
5237 }
5238 __setup("hashdist=", set_hashdist);
5239 #endif
5240 
5241 /*
5242  * allocate a large system hash table from bootmem
5243  * - it is assumed that the hash table must contain an exact power-of-2
5244  *   quantity of entries
5245  * - limit is the number of hash buckets, not the total allocation size
5246  */
5247 void *__init alloc_large_system_hash(const char *tablename,
5248 				     unsigned long bucketsize,
5249 				     unsigned long numentries,
5250 				     int scale,
5251 				     int flags,
5252 				     unsigned int *_hash_shift,
5253 				     unsigned int *_hash_mask,
5254 				     unsigned long limit)
5255 {
5256 	unsigned long long max = limit;
5257 	unsigned long log2qty, size;
5258 	void *table = NULL;
5259 
5260 	/* allow the kernel cmdline to have a say */
5261 	if (!numentries) {
5262 		/* round applicable memory size up to nearest megabyte */
5263 		numentries = nr_kernel_pages;
5264 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5265 		numentries >>= 20 - PAGE_SHIFT;
5266 		numentries <<= 20 - PAGE_SHIFT;
5267 
5268 		/* limit to 1 bucket per 2^scale bytes of low memory */
5269 		if (scale > PAGE_SHIFT)
5270 			numentries >>= (scale - PAGE_SHIFT);
5271 		else
5272 			numentries <<= (PAGE_SHIFT - scale);
5273 
5274 		/* Make sure we've got at least a 0-order allocation.. */
5275 		if (unlikely(flags & HASH_SMALL)) {
5276 			/* Makes no sense without HASH_EARLY */
5277 			WARN_ON(!(flags & HASH_EARLY));
5278 			if (!(numentries >> *_hash_shift)) {
5279 				numentries = 1UL << *_hash_shift;
5280 				BUG_ON(!numentries);
5281 			}
5282 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5283 			numentries = PAGE_SIZE / bucketsize;
5284 	}
5285 	numentries = roundup_pow_of_two(numentries);
5286 
5287 	/* limit allocation size to 1/16 total memory by default */
5288 	if (max == 0) {
5289 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5290 		do_div(max, bucketsize);
5291 	}
5292 
5293 	if (numentries > max)
5294 		numentries = max;
5295 
5296 	log2qty = ilog2(numentries);
5297 
5298 	do {
5299 		size = bucketsize << log2qty;
5300 		if (flags & HASH_EARLY)
5301 			table = alloc_bootmem_nopanic(size);
5302 		else if (hashdist)
5303 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5304 		else {
5305 			/*
5306 			 * If bucketsize is not a power-of-two, we may free
5307 			 * some pages at the end of hash table which
5308 			 * alloc_pages_exact() automatically does
5309 			 */
5310 			if (get_order(size) < MAX_ORDER) {
5311 				table = alloc_pages_exact(size, GFP_ATOMIC);
5312 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5313 			}
5314 		}
5315 	} while (!table && size > PAGE_SIZE && --log2qty);
5316 
5317 	if (!table)
5318 		panic("Failed to allocate %s hash table\n", tablename);
5319 
5320 	printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5321 	       tablename,
5322 	       (1UL << log2qty),
5323 	       ilog2(size) - PAGE_SHIFT,
5324 	       size);
5325 
5326 	if (_hash_shift)
5327 		*_hash_shift = log2qty;
5328 	if (_hash_mask)
5329 		*_hash_mask = (1 << log2qty) - 1;
5330 
5331 	return table;
5332 }
5333 
5334 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5335 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5336 							unsigned long pfn)
5337 {
5338 #ifdef CONFIG_SPARSEMEM
5339 	return __pfn_to_section(pfn)->pageblock_flags;
5340 #else
5341 	return zone->pageblock_flags;
5342 #endif /* CONFIG_SPARSEMEM */
5343 }
5344 
5345 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5346 {
5347 #ifdef CONFIG_SPARSEMEM
5348 	pfn &= (PAGES_PER_SECTION-1);
5349 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5350 #else
5351 	pfn = pfn - zone->zone_start_pfn;
5352 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5353 #endif /* CONFIG_SPARSEMEM */
5354 }
5355 
5356 /**
5357  * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5358  * @page: The page within the block of interest
5359  * @start_bitidx: The first bit of interest to retrieve
5360  * @end_bitidx: The last bit of interest
5361  * returns pageblock_bits flags
5362  */
5363 unsigned long get_pageblock_flags_group(struct page *page,
5364 					int start_bitidx, int end_bitidx)
5365 {
5366 	struct zone *zone;
5367 	unsigned long *bitmap;
5368 	unsigned long pfn, bitidx;
5369 	unsigned long flags = 0;
5370 	unsigned long value = 1;
5371 
5372 	zone = page_zone(page);
5373 	pfn = page_to_pfn(page);
5374 	bitmap = get_pageblock_bitmap(zone, pfn);
5375 	bitidx = pfn_to_bitidx(zone, pfn);
5376 
5377 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5378 		if (test_bit(bitidx + start_bitidx, bitmap))
5379 			flags |= value;
5380 
5381 	return flags;
5382 }
5383 
5384 /**
5385  * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5386  * @page: The page within the block of interest
5387  * @start_bitidx: The first bit of interest
5388  * @end_bitidx: The last bit of interest
5389  * @flags: The flags to set
5390  */
5391 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5392 					int start_bitidx, int end_bitidx)
5393 {
5394 	struct zone *zone;
5395 	unsigned long *bitmap;
5396 	unsigned long pfn, bitidx;
5397 	unsigned long value = 1;
5398 
5399 	zone = page_zone(page);
5400 	pfn = page_to_pfn(page);
5401 	bitmap = get_pageblock_bitmap(zone, pfn);
5402 	bitidx = pfn_to_bitidx(zone, pfn);
5403 	VM_BUG_ON(pfn < zone->zone_start_pfn);
5404 	VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5405 
5406 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5407 		if (flags & value)
5408 			__set_bit(bitidx + start_bitidx, bitmap);
5409 		else
5410 			__clear_bit(bitidx + start_bitidx, bitmap);
5411 }
5412 
5413 /*
5414  * This is designed as sub function...plz see page_isolation.c also.
5415  * set/clear page block's type to be ISOLATE.
5416  * page allocater never alloc memory from ISOLATE block.
5417  */
5418 
5419 static int
5420 __count_immobile_pages(struct zone *zone, struct page *page, int count)
5421 {
5422 	unsigned long pfn, iter, found;
5423 	/*
5424 	 * For avoiding noise data, lru_add_drain_all() should be called
5425 	 * If ZONE_MOVABLE, the zone never contains immobile pages
5426 	 */
5427 	if (zone_idx(zone) == ZONE_MOVABLE)
5428 		return true;
5429 
5430 	if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
5431 		return true;
5432 
5433 	pfn = page_to_pfn(page);
5434 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5435 		unsigned long check = pfn + iter;
5436 
5437 		if (!pfn_valid_within(check))
5438 			continue;
5439 
5440 		page = pfn_to_page(check);
5441 		if (!page_count(page)) {
5442 			if (PageBuddy(page))
5443 				iter += (1 << page_order(page)) - 1;
5444 			continue;
5445 		}
5446 		if (!PageLRU(page))
5447 			found++;
5448 		/*
5449 		 * If there are RECLAIMABLE pages, we need to check it.
5450 		 * But now, memory offline itself doesn't call shrink_slab()
5451 		 * and it still to be fixed.
5452 		 */
5453 		/*
5454 		 * If the page is not RAM, page_count()should be 0.
5455 		 * we don't need more check. This is an _used_ not-movable page.
5456 		 *
5457 		 * The problematic thing here is PG_reserved pages. PG_reserved
5458 		 * is set to both of a memory hole page and a _used_ kernel
5459 		 * page at boot.
5460 		 */
5461 		if (found > count)
5462 			return false;
5463 	}
5464 	return true;
5465 }
5466 
5467 bool is_pageblock_removable_nolock(struct page *page)
5468 {
5469 	struct zone *zone = page_zone(page);
5470 	return __count_immobile_pages(zone, page, 0);
5471 }
5472 
5473 int set_migratetype_isolate(struct page *page)
5474 {
5475 	struct zone *zone;
5476 	unsigned long flags, pfn;
5477 	struct memory_isolate_notify arg;
5478 	int notifier_ret;
5479 	int ret = -EBUSY;
5480 	int zone_idx;
5481 
5482 	zone = page_zone(page);
5483 	zone_idx = zone_idx(zone);
5484 
5485 	spin_lock_irqsave(&zone->lock, flags);
5486 
5487 	pfn = page_to_pfn(page);
5488 	arg.start_pfn = pfn;
5489 	arg.nr_pages = pageblock_nr_pages;
5490 	arg.pages_found = 0;
5491 
5492 	/*
5493 	 * It may be possible to isolate a pageblock even if the
5494 	 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5495 	 * notifier chain is used by balloon drivers to return the
5496 	 * number of pages in a range that are held by the balloon
5497 	 * driver to shrink memory. If all the pages are accounted for
5498 	 * by balloons, are free, or on the LRU, isolation can continue.
5499 	 * Later, for example, when memory hotplug notifier runs, these
5500 	 * pages reported as "can be isolated" should be isolated(freed)
5501 	 * by the balloon driver through the memory notifier chain.
5502 	 */
5503 	notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5504 	notifier_ret = notifier_to_errno(notifier_ret);
5505 	if (notifier_ret)
5506 		goto out;
5507 	/*
5508 	 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5509 	 * We just check MOVABLE pages.
5510 	 */
5511 	if (__count_immobile_pages(zone, page, arg.pages_found))
5512 		ret = 0;
5513 
5514 	/*
5515 	 * immobile means "not-on-lru" paes. If immobile is larger than
5516 	 * removable-by-driver pages reported by notifier, we'll fail.
5517 	 */
5518 
5519 out:
5520 	if (!ret) {
5521 		set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5522 		move_freepages_block(zone, page, MIGRATE_ISOLATE);
5523 	}
5524 
5525 	spin_unlock_irqrestore(&zone->lock, flags);
5526 	if (!ret)
5527 		drain_all_pages();
5528 	return ret;
5529 }
5530 
5531 void unset_migratetype_isolate(struct page *page)
5532 {
5533 	struct zone *zone;
5534 	unsigned long flags;
5535 	zone = page_zone(page);
5536 	spin_lock_irqsave(&zone->lock, flags);
5537 	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5538 		goto out;
5539 	set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5540 	move_freepages_block(zone, page, MIGRATE_MOVABLE);
5541 out:
5542 	spin_unlock_irqrestore(&zone->lock, flags);
5543 }
5544 
5545 #ifdef CONFIG_MEMORY_HOTREMOVE
5546 /*
5547  * All pages in the range must be isolated before calling this.
5548  */
5549 void
5550 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5551 {
5552 	struct page *page;
5553 	struct zone *zone;
5554 	int order, i;
5555 	unsigned long pfn;
5556 	unsigned long flags;
5557 	/* find the first valid pfn */
5558 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
5559 		if (pfn_valid(pfn))
5560 			break;
5561 	if (pfn == end_pfn)
5562 		return;
5563 	zone = page_zone(pfn_to_page(pfn));
5564 	spin_lock_irqsave(&zone->lock, flags);
5565 	pfn = start_pfn;
5566 	while (pfn < end_pfn) {
5567 		if (!pfn_valid(pfn)) {
5568 			pfn++;
5569 			continue;
5570 		}
5571 		page = pfn_to_page(pfn);
5572 		BUG_ON(page_count(page));
5573 		BUG_ON(!PageBuddy(page));
5574 		order = page_order(page);
5575 #ifdef CONFIG_DEBUG_VM
5576 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
5577 		       pfn, 1 << order, end_pfn);
5578 #endif
5579 		list_del(&page->lru);
5580 		rmv_page_order(page);
5581 		zone->free_area[order].nr_free--;
5582 		__mod_zone_page_state(zone, NR_FREE_PAGES,
5583 				      - (1UL << order));
5584 		for (i = 0; i < (1 << order); i++)
5585 			SetPageReserved((page+i));
5586 		pfn += (1 << order);
5587 	}
5588 	spin_unlock_irqrestore(&zone->lock, flags);
5589 }
5590 #endif
5591 
5592 #ifdef CONFIG_MEMORY_FAILURE
5593 bool is_free_buddy_page(struct page *page)
5594 {
5595 	struct zone *zone = page_zone(page);
5596 	unsigned long pfn = page_to_pfn(page);
5597 	unsigned long flags;
5598 	int order;
5599 
5600 	spin_lock_irqsave(&zone->lock, flags);
5601 	for (order = 0; order < MAX_ORDER; order++) {
5602 		struct page *page_head = page - (pfn & ((1 << order) - 1));
5603 
5604 		if (PageBuddy(page_head) && page_order(page_head) >= order)
5605 			break;
5606 	}
5607 	spin_unlock_irqrestore(&zone->lock, flags);
5608 
5609 	return order < MAX_ORDER;
5610 }
5611 #endif
5612 
5613 static struct trace_print_flags pageflag_names[] = {
5614 	{1UL << PG_locked,		"locked"	},
5615 	{1UL << PG_error,		"error"		},
5616 	{1UL << PG_referenced,		"referenced"	},
5617 	{1UL << PG_uptodate,		"uptodate"	},
5618 	{1UL << PG_dirty,		"dirty"		},
5619 	{1UL << PG_lru,			"lru"		},
5620 	{1UL << PG_active,		"active"	},
5621 	{1UL << PG_slab,		"slab"		},
5622 	{1UL << PG_owner_priv_1,	"owner_priv_1"	},
5623 	{1UL << PG_arch_1,		"arch_1"	},
5624 	{1UL << PG_reserved,		"reserved"	},
5625 	{1UL << PG_private,		"private"	},
5626 	{1UL << PG_private_2,		"private_2"	},
5627 	{1UL << PG_writeback,		"writeback"	},
5628 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5629 	{1UL << PG_head,		"head"		},
5630 	{1UL << PG_tail,		"tail"		},
5631 #else
5632 	{1UL << PG_compound,		"compound"	},
5633 #endif
5634 	{1UL << PG_swapcache,		"swapcache"	},
5635 	{1UL << PG_mappedtodisk,	"mappedtodisk"	},
5636 	{1UL << PG_reclaim,		"reclaim"	},
5637 	{1UL << PG_swapbacked,		"swapbacked"	},
5638 	{1UL << PG_unevictable,		"unevictable"	},
5639 #ifdef CONFIG_MMU
5640 	{1UL << PG_mlocked,		"mlocked"	},
5641 #endif
5642 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5643 	{1UL << PG_uncached,		"uncached"	},
5644 #endif
5645 #ifdef CONFIG_MEMORY_FAILURE
5646 	{1UL << PG_hwpoison,		"hwpoison"	},
5647 #endif
5648 	{-1UL,				NULL		},
5649 };
5650 
5651 static void dump_page_flags(unsigned long flags)
5652 {
5653 	const char *delim = "";
5654 	unsigned long mask;
5655 	int i;
5656 
5657 	printk(KERN_ALERT "page flags: %#lx(", flags);
5658 
5659 	/* remove zone id */
5660 	flags &= (1UL << NR_PAGEFLAGS) - 1;
5661 
5662 	for (i = 0; pageflag_names[i].name && flags; i++) {
5663 
5664 		mask = pageflag_names[i].mask;
5665 		if ((flags & mask) != mask)
5666 			continue;
5667 
5668 		flags &= ~mask;
5669 		printk("%s%s", delim, pageflag_names[i].name);
5670 		delim = "|";
5671 	}
5672 
5673 	/* check for left over flags */
5674 	if (flags)
5675 		printk("%s%#lx", delim, flags);
5676 
5677 	printk(")\n");
5678 }
5679 
5680 void dump_page(struct page *page)
5681 {
5682 	printk(KERN_ALERT
5683 	       "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5684 		page, atomic_read(&page->_count), page_mapcount(page),
5685 		page->mapping, page->index);
5686 	dump_page_flags(page->flags);
5687 }
5688