1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kmemcheck.h> 28 #include <linux/module.h> 29 #include <linux/suspend.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/slab.h> 33 #include <linux/oom.h> 34 #include <linux/notifier.h> 35 #include <linux/topology.h> 36 #include <linux/sysctl.h> 37 #include <linux/cpu.h> 38 #include <linux/cpuset.h> 39 #include <linux/memory_hotplug.h> 40 #include <linux/nodemask.h> 41 #include <linux/vmalloc.h> 42 #include <linux/mempolicy.h> 43 #include <linux/stop_machine.h> 44 #include <linux/sort.h> 45 #include <linux/pfn.h> 46 #include <linux/backing-dev.h> 47 #include <linux/fault-inject.h> 48 #include <linux/page-isolation.h> 49 #include <linux/page_cgroup.h> 50 #include <linux/debugobjects.h> 51 #include <linux/kmemleak.h> 52 #include <linux/memory.h> 53 #include <linux/compaction.h> 54 #include <trace/events/kmem.h> 55 #include <linux/ftrace_event.h> 56 57 #include <asm/tlbflush.h> 58 #include <asm/div64.h> 59 #include "internal.h" 60 61 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 62 DEFINE_PER_CPU(int, numa_node); 63 EXPORT_PER_CPU_SYMBOL(numa_node); 64 #endif 65 66 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 67 /* 68 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 69 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 70 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 71 * defined in <linux/topology.h>. 72 */ 73 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 74 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 75 #endif 76 77 /* 78 * Array of node states. 79 */ 80 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 81 [N_POSSIBLE] = NODE_MASK_ALL, 82 [N_ONLINE] = { { [0] = 1UL } }, 83 #ifndef CONFIG_NUMA 84 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 85 #ifdef CONFIG_HIGHMEM 86 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 87 #endif 88 [N_CPU] = { { [0] = 1UL } }, 89 #endif /* NUMA */ 90 }; 91 EXPORT_SYMBOL(node_states); 92 93 unsigned long totalram_pages __read_mostly; 94 unsigned long totalreserve_pages __read_mostly; 95 int percpu_pagelist_fraction; 96 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 97 98 #ifdef CONFIG_PM_SLEEP 99 /* 100 * The following functions are used by the suspend/hibernate code to temporarily 101 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 102 * while devices are suspended. To avoid races with the suspend/hibernate code, 103 * they should always be called with pm_mutex held (gfp_allowed_mask also should 104 * only be modified with pm_mutex held, unless the suspend/hibernate code is 105 * guaranteed not to run in parallel with that modification). 106 */ 107 108 static gfp_t saved_gfp_mask; 109 110 void pm_restore_gfp_mask(void) 111 { 112 WARN_ON(!mutex_is_locked(&pm_mutex)); 113 if (saved_gfp_mask) { 114 gfp_allowed_mask = saved_gfp_mask; 115 saved_gfp_mask = 0; 116 } 117 } 118 119 void pm_restrict_gfp_mask(void) 120 { 121 WARN_ON(!mutex_is_locked(&pm_mutex)); 122 WARN_ON(saved_gfp_mask); 123 saved_gfp_mask = gfp_allowed_mask; 124 gfp_allowed_mask &= ~GFP_IOFS; 125 } 126 #endif /* CONFIG_PM_SLEEP */ 127 128 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 129 int pageblock_order __read_mostly; 130 #endif 131 132 static void __free_pages_ok(struct page *page, unsigned int order); 133 134 /* 135 * results with 256, 32 in the lowmem_reserve sysctl: 136 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 137 * 1G machine -> (16M dma, 784M normal, 224M high) 138 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 139 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 140 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 141 * 142 * TBD: should special case ZONE_DMA32 machines here - in those we normally 143 * don't need any ZONE_NORMAL reservation 144 */ 145 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 146 #ifdef CONFIG_ZONE_DMA 147 256, 148 #endif 149 #ifdef CONFIG_ZONE_DMA32 150 256, 151 #endif 152 #ifdef CONFIG_HIGHMEM 153 32, 154 #endif 155 32, 156 }; 157 158 EXPORT_SYMBOL(totalram_pages); 159 160 static char * const zone_names[MAX_NR_ZONES] = { 161 #ifdef CONFIG_ZONE_DMA 162 "DMA", 163 #endif 164 #ifdef CONFIG_ZONE_DMA32 165 "DMA32", 166 #endif 167 "Normal", 168 #ifdef CONFIG_HIGHMEM 169 "HighMem", 170 #endif 171 "Movable", 172 }; 173 174 int min_free_kbytes = 1024; 175 176 static unsigned long __meminitdata nr_kernel_pages; 177 static unsigned long __meminitdata nr_all_pages; 178 static unsigned long __meminitdata dma_reserve; 179 180 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 181 /* 182 * MAX_ACTIVE_REGIONS determines the maximum number of distinct 183 * ranges of memory (RAM) that may be registered with add_active_range(). 184 * Ranges passed to add_active_range() will be merged if possible 185 * so the number of times add_active_range() can be called is 186 * related to the number of nodes and the number of holes 187 */ 188 #ifdef CONFIG_MAX_ACTIVE_REGIONS 189 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */ 190 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS 191 #else 192 #if MAX_NUMNODES >= 32 193 /* If there can be many nodes, allow up to 50 holes per node */ 194 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50) 195 #else 196 /* By default, allow up to 256 distinct regions */ 197 #define MAX_ACTIVE_REGIONS 256 198 #endif 199 #endif 200 201 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS]; 202 static int __meminitdata nr_nodemap_entries; 203 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 204 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 205 static unsigned long __initdata required_kernelcore; 206 static unsigned long __initdata required_movablecore; 207 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 208 209 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 210 int movable_zone; 211 EXPORT_SYMBOL(movable_zone); 212 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 213 214 #if MAX_NUMNODES > 1 215 int nr_node_ids __read_mostly = MAX_NUMNODES; 216 int nr_online_nodes __read_mostly = 1; 217 EXPORT_SYMBOL(nr_node_ids); 218 EXPORT_SYMBOL(nr_online_nodes); 219 #endif 220 221 int page_group_by_mobility_disabled __read_mostly; 222 223 static void set_pageblock_migratetype(struct page *page, int migratetype) 224 { 225 226 if (unlikely(page_group_by_mobility_disabled)) 227 migratetype = MIGRATE_UNMOVABLE; 228 229 set_pageblock_flags_group(page, (unsigned long)migratetype, 230 PB_migrate, PB_migrate_end); 231 } 232 233 bool oom_killer_disabled __read_mostly; 234 235 #ifdef CONFIG_DEBUG_VM 236 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 237 { 238 int ret = 0; 239 unsigned seq; 240 unsigned long pfn = page_to_pfn(page); 241 242 do { 243 seq = zone_span_seqbegin(zone); 244 if (pfn >= zone->zone_start_pfn + zone->spanned_pages) 245 ret = 1; 246 else if (pfn < zone->zone_start_pfn) 247 ret = 1; 248 } while (zone_span_seqretry(zone, seq)); 249 250 return ret; 251 } 252 253 static int page_is_consistent(struct zone *zone, struct page *page) 254 { 255 if (!pfn_valid_within(page_to_pfn(page))) 256 return 0; 257 if (zone != page_zone(page)) 258 return 0; 259 260 return 1; 261 } 262 /* 263 * Temporary debugging check for pages not lying within a given zone. 264 */ 265 static int bad_range(struct zone *zone, struct page *page) 266 { 267 if (page_outside_zone_boundaries(zone, page)) 268 return 1; 269 if (!page_is_consistent(zone, page)) 270 return 1; 271 272 return 0; 273 } 274 #else 275 static inline int bad_range(struct zone *zone, struct page *page) 276 { 277 return 0; 278 } 279 #endif 280 281 static void bad_page(struct page *page) 282 { 283 static unsigned long resume; 284 static unsigned long nr_shown; 285 static unsigned long nr_unshown; 286 287 /* Don't complain about poisoned pages */ 288 if (PageHWPoison(page)) { 289 reset_page_mapcount(page); /* remove PageBuddy */ 290 return; 291 } 292 293 /* 294 * Allow a burst of 60 reports, then keep quiet for that minute; 295 * or allow a steady drip of one report per second. 296 */ 297 if (nr_shown == 60) { 298 if (time_before(jiffies, resume)) { 299 nr_unshown++; 300 goto out; 301 } 302 if (nr_unshown) { 303 printk(KERN_ALERT 304 "BUG: Bad page state: %lu messages suppressed\n", 305 nr_unshown); 306 nr_unshown = 0; 307 } 308 nr_shown = 0; 309 } 310 if (nr_shown++ == 0) 311 resume = jiffies + 60 * HZ; 312 313 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", 314 current->comm, page_to_pfn(page)); 315 dump_page(page); 316 317 dump_stack(); 318 out: 319 /* Leave bad fields for debug, except PageBuddy could make trouble */ 320 reset_page_mapcount(page); /* remove PageBuddy */ 321 add_taint(TAINT_BAD_PAGE); 322 } 323 324 /* 325 * Higher-order pages are called "compound pages". They are structured thusly: 326 * 327 * The first PAGE_SIZE page is called the "head page". 328 * 329 * The remaining PAGE_SIZE pages are called "tail pages". 330 * 331 * All pages have PG_compound set. All pages have their ->private pointing at 332 * the head page (even the head page has this). 333 * 334 * The first tail page's ->lru.next holds the address of the compound page's 335 * put_page() function. Its ->lru.prev holds the order of allocation. 336 * This usage means that zero-order pages may not be compound. 337 */ 338 339 static void free_compound_page(struct page *page) 340 { 341 __free_pages_ok(page, compound_order(page)); 342 } 343 344 void prep_compound_page(struct page *page, unsigned long order) 345 { 346 int i; 347 int nr_pages = 1 << order; 348 349 set_compound_page_dtor(page, free_compound_page); 350 set_compound_order(page, order); 351 __SetPageHead(page); 352 for (i = 1; i < nr_pages; i++) { 353 struct page *p = page + i; 354 355 __SetPageTail(p); 356 p->first_page = page; 357 } 358 } 359 360 /* update __split_huge_page_refcount if you change this function */ 361 static int destroy_compound_page(struct page *page, unsigned long order) 362 { 363 int i; 364 int nr_pages = 1 << order; 365 int bad = 0; 366 367 if (unlikely(compound_order(page) != order) || 368 unlikely(!PageHead(page))) { 369 bad_page(page); 370 bad++; 371 } 372 373 __ClearPageHead(page); 374 375 for (i = 1; i < nr_pages; i++) { 376 struct page *p = page + i; 377 378 if (unlikely(!PageTail(p) || (p->first_page != page))) { 379 bad_page(page); 380 bad++; 381 } 382 __ClearPageTail(p); 383 } 384 385 return bad; 386 } 387 388 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 389 { 390 int i; 391 392 /* 393 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 394 * and __GFP_HIGHMEM from hard or soft interrupt context. 395 */ 396 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 397 for (i = 0; i < (1 << order); i++) 398 clear_highpage(page + i); 399 } 400 401 static inline void set_page_order(struct page *page, int order) 402 { 403 set_page_private(page, order); 404 __SetPageBuddy(page); 405 } 406 407 static inline void rmv_page_order(struct page *page) 408 { 409 __ClearPageBuddy(page); 410 set_page_private(page, 0); 411 } 412 413 /* 414 * Locate the struct page for both the matching buddy in our 415 * pair (buddy1) and the combined O(n+1) page they form (page). 416 * 417 * 1) Any buddy B1 will have an order O twin B2 which satisfies 418 * the following equation: 419 * B2 = B1 ^ (1 << O) 420 * For example, if the starting buddy (buddy2) is #8 its order 421 * 1 buddy is #10: 422 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 423 * 424 * 2) Any buddy B will have an order O+1 parent P which 425 * satisfies the following equation: 426 * P = B & ~(1 << O) 427 * 428 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 429 */ 430 static inline unsigned long 431 __find_buddy_index(unsigned long page_idx, unsigned int order) 432 { 433 return page_idx ^ (1 << order); 434 } 435 436 /* 437 * This function checks whether a page is free && is the buddy 438 * we can do coalesce a page and its buddy if 439 * (a) the buddy is not in a hole && 440 * (b) the buddy is in the buddy system && 441 * (c) a page and its buddy have the same order && 442 * (d) a page and its buddy are in the same zone. 443 * 444 * For recording whether a page is in the buddy system, we set ->_mapcount -2. 445 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock. 446 * 447 * For recording page's order, we use page_private(page). 448 */ 449 static inline int page_is_buddy(struct page *page, struct page *buddy, 450 int order) 451 { 452 if (!pfn_valid_within(page_to_pfn(buddy))) 453 return 0; 454 455 if (page_zone_id(page) != page_zone_id(buddy)) 456 return 0; 457 458 if (PageBuddy(buddy) && page_order(buddy) == order) { 459 VM_BUG_ON(page_count(buddy) != 0); 460 return 1; 461 } 462 return 0; 463 } 464 465 /* 466 * Freeing function for a buddy system allocator. 467 * 468 * The concept of a buddy system is to maintain direct-mapped table 469 * (containing bit values) for memory blocks of various "orders". 470 * The bottom level table contains the map for the smallest allocatable 471 * units of memory (here, pages), and each level above it describes 472 * pairs of units from the levels below, hence, "buddies". 473 * At a high level, all that happens here is marking the table entry 474 * at the bottom level available, and propagating the changes upward 475 * as necessary, plus some accounting needed to play nicely with other 476 * parts of the VM system. 477 * At each level, we keep a list of pages, which are heads of continuous 478 * free pages of length of (1 << order) and marked with _mapcount -2. Page's 479 * order is recorded in page_private(page) field. 480 * So when we are allocating or freeing one, we can derive the state of the 481 * other. That is, if we allocate a small block, and both were 482 * free, the remainder of the region must be split into blocks. 483 * If a block is freed, and its buddy is also free, then this 484 * triggers coalescing into a block of larger size. 485 * 486 * -- wli 487 */ 488 489 static inline void __free_one_page(struct page *page, 490 struct zone *zone, unsigned int order, 491 int migratetype) 492 { 493 unsigned long page_idx; 494 unsigned long combined_idx; 495 unsigned long uninitialized_var(buddy_idx); 496 struct page *buddy; 497 498 if (unlikely(PageCompound(page))) 499 if (unlikely(destroy_compound_page(page, order))) 500 return; 501 502 VM_BUG_ON(migratetype == -1); 503 504 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 505 506 VM_BUG_ON(page_idx & ((1 << order) - 1)); 507 VM_BUG_ON(bad_range(zone, page)); 508 509 while (order < MAX_ORDER-1) { 510 buddy_idx = __find_buddy_index(page_idx, order); 511 buddy = page + (buddy_idx - page_idx); 512 if (!page_is_buddy(page, buddy, order)) 513 break; 514 515 /* Our buddy is free, merge with it and move up one order. */ 516 list_del(&buddy->lru); 517 zone->free_area[order].nr_free--; 518 rmv_page_order(buddy); 519 combined_idx = buddy_idx & page_idx; 520 page = page + (combined_idx - page_idx); 521 page_idx = combined_idx; 522 order++; 523 } 524 set_page_order(page, order); 525 526 /* 527 * If this is not the largest possible page, check if the buddy 528 * of the next-highest order is free. If it is, it's possible 529 * that pages are being freed that will coalesce soon. In case, 530 * that is happening, add the free page to the tail of the list 531 * so it's less likely to be used soon and more likely to be merged 532 * as a higher order page 533 */ 534 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { 535 struct page *higher_page, *higher_buddy; 536 combined_idx = buddy_idx & page_idx; 537 higher_page = page + (combined_idx - page_idx); 538 buddy_idx = __find_buddy_index(combined_idx, order + 1); 539 higher_buddy = page + (buddy_idx - combined_idx); 540 if (page_is_buddy(higher_page, higher_buddy, order + 1)) { 541 list_add_tail(&page->lru, 542 &zone->free_area[order].free_list[migratetype]); 543 goto out; 544 } 545 } 546 547 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 548 out: 549 zone->free_area[order].nr_free++; 550 } 551 552 /* 553 * free_page_mlock() -- clean up attempts to free and mlocked() page. 554 * Page should not be on lru, so no need to fix that up. 555 * free_pages_check() will verify... 556 */ 557 static inline void free_page_mlock(struct page *page) 558 { 559 __dec_zone_page_state(page, NR_MLOCK); 560 __count_vm_event(UNEVICTABLE_MLOCKFREED); 561 } 562 563 static inline int free_pages_check(struct page *page) 564 { 565 if (unlikely(page_mapcount(page) | 566 (page->mapping != NULL) | 567 (atomic_read(&page->_count) != 0) | 568 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) { 569 bad_page(page); 570 return 1; 571 } 572 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 573 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 574 return 0; 575 } 576 577 /* 578 * Frees a number of pages from the PCP lists 579 * Assumes all pages on list are in same zone, and of same order. 580 * count is the number of pages to free. 581 * 582 * If the zone was previously in an "all pages pinned" state then look to 583 * see if this freeing clears that state. 584 * 585 * And clear the zone's pages_scanned counter, to hold off the "all pages are 586 * pinned" detection logic. 587 */ 588 static void free_pcppages_bulk(struct zone *zone, int count, 589 struct per_cpu_pages *pcp) 590 { 591 int migratetype = 0; 592 int batch_free = 0; 593 int to_free = count; 594 595 spin_lock(&zone->lock); 596 zone->all_unreclaimable = 0; 597 zone->pages_scanned = 0; 598 599 while (to_free) { 600 struct page *page; 601 struct list_head *list; 602 603 /* 604 * Remove pages from lists in a round-robin fashion. A 605 * batch_free count is maintained that is incremented when an 606 * empty list is encountered. This is so more pages are freed 607 * off fuller lists instead of spinning excessively around empty 608 * lists 609 */ 610 do { 611 batch_free++; 612 if (++migratetype == MIGRATE_PCPTYPES) 613 migratetype = 0; 614 list = &pcp->lists[migratetype]; 615 } while (list_empty(list)); 616 617 /* This is the only non-empty list. Free them all. */ 618 if (batch_free == MIGRATE_PCPTYPES) 619 batch_free = to_free; 620 621 do { 622 page = list_entry(list->prev, struct page, lru); 623 /* must delete as __free_one_page list manipulates */ 624 list_del(&page->lru); 625 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ 626 __free_one_page(page, zone, 0, page_private(page)); 627 trace_mm_page_pcpu_drain(page, 0, page_private(page)); 628 } while (--to_free && --batch_free && !list_empty(list)); 629 } 630 __mod_zone_page_state(zone, NR_FREE_PAGES, count); 631 spin_unlock(&zone->lock); 632 } 633 634 static void free_one_page(struct zone *zone, struct page *page, int order, 635 int migratetype) 636 { 637 spin_lock(&zone->lock); 638 zone->all_unreclaimable = 0; 639 zone->pages_scanned = 0; 640 641 __free_one_page(page, zone, order, migratetype); 642 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order); 643 spin_unlock(&zone->lock); 644 } 645 646 static bool free_pages_prepare(struct page *page, unsigned int order) 647 { 648 int i; 649 int bad = 0; 650 651 trace_mm_page_free_direct(page, order); 652 kmemcheck_free_shadow(page, order); 653 654 if (PageAnon(page)) 655 page->mapping = NULL; 656 for (i = 0; i < (1 << order); i++) 657 bad += free_pages_check(page + i); 658 if (bad) 659 return false; 660 661 if (!PageHighMem(page)) { 662 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); 663 debug_check_no_obj_freed(page_address(page), 664 PAGE_SIZE << order); 665 } 666 arch_free_page(page, order); 667 kernel_map_pages(page, 1 << order, 0); 668 669 return true; 670 } 671 672 static void __free_pages_ok(struct page *page, unsigned int order) 673 { 674 unsigned long flags; 675 int wasMlocked = __TestClearPageMlocked(page); 676 677 if (!free_pages_prepare(page, order)) 678 return; 679 680 local_irq_save(flags); 681 if (unlikely(wasMlocked)) 682 free_page_mlock(page); 683 __count_vm_events(PGFREE, 1 << order); 684 free_one_page(page_zone(page), page, order, 685 get_pageblock_migratetype(page)); 686 local_irq_restore(flags); 687 } 688 689 /* 690 * permit the bootmem allocator to evade page validation on high-order frees 691 */ 692 void __meminit __free_pages_bootmem(struct page *page, unsigned int order) 693 { 694 if (order == 0) { 695 __ClearPageReserved(page); 696 set_page_count(page, 0); 697 set_page_refcounted(page); 698 __free_page(page); 699 } else { 700 int loop; 701 702 prefetchw(page); 703 for (loop = 0; loop < BITS_PER_LONG; loop++) { 704 struct page *p = &page[loop]; 705 706 if (loop + 1 < BITS_PER_LONG) 707 prefetchw(p + 1); 708 __ClearPageReserved(p); 709 set_page_count(p, 0); 710 } 711 712 set_page_refcounted(page); 713 __free_pages(page, order); 714 } 715 } 716 717 718 /* 719 * The order of subdivision here is critical for the IO subsystem. 720 * Please do not alter this order without good reasons and regression 721 * testing. Specifically, as large blocks of memory are subdivided, 722 * the order in which smaller blocks are delivered depends on the order 723 * they're subdivided in this function. This is the primary factor 724 * influencing the order in which pages are delivered to the IO 725 * subsystem according to empirical testing, and this is also justified 726 * by considering the behavior of a buddy system containing a single 727 * large block of memory acted on by a series of small allocations. 728 * This behavior is a critical factor in sglist merging's success. 729 * 730 * -- wli 731 */ 732 static inline void expand(struct zone *zone, struct page *page, 733 int low, int high, struct free_area *area, 734 int migratetype) 735 { 736 unsigned long size = 1 << high; 737 738 while (high > low) { 739 area--; 740 high--; 741 size >>= 1; 742 VM_BUG_ON(bad_range(zone, &page[size])); 743 list_add(&page[size].lru, &area->free_list[migratetype]); 744 area->nr_free++; 745 set_page_order(&page[size], high); 746 } 747 } 748 749 /* 750 * This page is about to be returned from the page allocator 751 */ 752 static inline int check_new_page(struct page *page) 753 { 754 if (unlikely(page_mapcount(page) | 755 (page->mapping != NULL) | 756 (atomic_read(&page->_count) != 0) | 757 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) { 758 bad_page(page); 759 return 1; 760 } 761 return 0; 762 } 763 764 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 765 { 766 int i; 767 768 for (i = 0; i < (1 << order); i++) { 769 struct page *p = page + i; 770 if (unlikely(check_new_page(p))) 771 return 1; 772 } 773 774 set_page_private(page, 0); 775 set_page_refcounted(page); 776 777 arch_alloc_page(page, order); 778 kernel_map_pages(page, 1 << order, 1); 779 780 if (gfp_flags & __GFP_ZERO) 781 prep_zero_page(page, order, gfp_flags); 782 783 if (order && (gfp_flags & __GFP_COMP)) 784 prep_compound_page(page, order); 785 786 return 0; 787 } 788 789 /* 790 * Go through the free lists for the given migratetype and remove 791 * the smallest available page from the freelists 792 */ 793 static inline 794 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 795 int migratetype) 796 { 797 unsigned int current_order; 798 struct free_area * area; 799 struct page *page; 800 801 /* Find a page of the appropriate size in the preferred list */ 802 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 803 area = &(zone->free_area[current_order]); 804 if (list_empty(&area->free_list[migratetype])) 805 continue; 806 807 page = list_entry(area->free_list[migratetype].next, 808 struct page, lru); 809 list_del(&page->lru); 810 rmv_page_order(page); 811 area->nr_free--; 812 expand(zone, page, order, current_order, area, migratetype); 813 return page; 814 } 815 816 return NULL; 817 } 818 819 820 /* 821 * This array describes the order lists are fallen back to when 822 * the free lists for the desirable migrate type are depleted 823 */ 824 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = { 825 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 826 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 827 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 828 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */ 829 }; 830 831 /* 832 * Move the free pages in a range to the free lists of the requested type. 833 * Note that start_page and end_pages are not aligned on a pageblock 834 * boundary. If alignment is required, use move_freepages_block() 835 */ 836 static int move_freepages(struct zone *zone, 837 struct page *start_page, struct page *end_page, 838 int migratetype) 839 { 840 struct page *page; 841 unsigned long order; 842 int pages_moved = 0; 843 844 #ifndef CONFIG_HOLES_IN_ZONE 845 /* 846 * page_zone is not safe to call in this context when 847 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 848 * anyway as we check zone boundaries in move_freepages_block(). 849 * Remove at a later date when no bug reports exist related to 850 * grouping pages by mobility 851 */ 852 BUG_ON(page_zone(start_page) != page_zone(end_page)); 853 #endif 854 855 for (page = start_page; page <= end_page;) { 856 /* Make sure we are not inadvertently changing nodes */ 857 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone)); 858 859 if (!pfn_valid_within(page_to_pfn(page))) { 860 page++; 861 continue; 862 } 863 864 if (!PageBuddy(page)) { 865 page++; 866 continue; 867 } 868 869 order = page_order(page); 870 list_move(&page->lru, 871 &zone->free_area[order].free_list[migratetype]); 872 page += 1 << order; 873 pages_moved += 1 << order; 874 } 875 876 return pages_moved; 877 } 878 879 static int move_freepages_block(struct zone *zone, struct page *page, 880 int migratetype) 881 { 882 unsigned long start_pfn, end_pfn; 883 struct page *start_page, *end_page; 884 885 start_pfn = page_to_pfn(page); 886 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 887 start_page = pfn_to_page(start_pfn); 888 end_page = start_page + pageblock_nr_pages - 1; 889 end_pfn = start_pfn + pageblock_nr_pages - 1; 890 891 /* Do not cross zone boundaries */ 892 if (start_pfn < zone->zone_start_pfn) 893 start_page = page; 894 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages) 895 return 0; 896 897 return move_freepages(zone, start_page, end_page, migratetype); 898 } 899 900 static void change_pageblock_range(struct page *pageblock_page, 901 int start_order, int migratetype) 902 { 903 int nr_pageblocks = 1 << (start_order - pageblock_order); 904 905 while (nr_pageblocks--) { 906 set_pageblock_migratetype(pageblock_page, migratetype); 907 pageblock_page += pageblock_nr_pages; 908 } 909 } 910 911 /* Remove an element from the buddy allocator from the fallback list */ 912 static inline struct page * 913 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) 914 { 915 struct free_area * area; 916 int current_order; 917 struct page *page; 918 int migratetype, i; 919 920 /* Find the largest possible block of pages in the other list */ 921 for (current_order = MAX_ORDER-1; current_order >= order; 922 --current_order) { 923 for (i = 0; i < MIGRATE_TYPES - 1; i++) { 924 migratetype = fallbacks[start_migratetype][i]; 925 926 /* MIGRATE_RESERVE handled later if necessary */ 927 if (migratetype == MIGRATE_RESERVE) 928 continue; 929 930 area = &(zone->free_area[current_order]); 931 if (list_empty(&area->free_list[migratetype])) 932 continue; 933 934 page = list_entry(area->free_list[migratetype].next, 935 struct page, lru); 936 area->nr_free--; 937 938 /* 939 * If breaking a large block of pages, move all free 940 * pages to the preferred allocation list. If falling 941 * back for a reclaimable kernel allocation, be more 942 * agressive about taking ownership of free pages 943 */ 944 if (unlikely(current_order >= (pageblock_order >> 1)) || 945 start_migratetype == MIGRATE_RECLAIMABLE || 946 page_group_by_mobility_disabled) { 947 unsigned long pages; 948 pages = move_freepages_block(zone, page, 949 start_migratetype); 950 951 /* Claim the whole block if over half of it is free */ 952 if (pages >= (1 << (pageblock_order-1)) || 953 page_group_by_mobility_disabled) 954 set_pageblock_migratetype(page, 955 start_migratetype); 956 957 migratetype = start_migratetype; 958 } 959 960 /* Remove the page from the freelists */ 961 list_del(&page->lru); 962 rmv_page_order(page); 963 964 /* Take ownership for orders >= pageblock_order */ 965 if (current_order >= pageblock_order) 966 change_pageblock_range(page, current_order, 967 start_migratetype); 968 969 expand(zone, page, order, current_order, area, migratetype); 970 971 trace_mm_page_alloc_extfrag(page, order, current_order, 972 start_migratetype, migratetype); 973 974 return page; 975 } 976 } 977 978 return NULL; 979 } 980 981 /* 982 * Do the hard work of removing an element from the buddy allocator. 983 * Call me with the zone->lock already held. 984 */ 985 static struct page *__rmqueue(struct zone *zone, unsigned int order, 986 int migratetype) 987 { 988 struct page *page; 989 990 retry_reserve: 991 page = __rmqueue_smallest(zone, order, migratetype); 992 993 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { 994 page = __rmqueue_fallback(zone, order, migratetype); 995 996 /* 997 * Use MIGRATE_RESERVE rather than fail an allocation. goto 998 * is used because __rmqueue_smallest is an inline function 999 * and we want just one call site 1000 */ 1001 if (!page) { 1002 migratetype = MIGRATE_RESERVE; 1003 goto retry_reserve; 1004 } 1005 } 1006 1007 trace_mm_page_alloc_zone_locked(page, order, migratetype); 1008 return page; 1009 } 1010 1011 /* 1012 * Obtain a specified number of elements from the buddy allocator, all under 1013 * a single hold of the lock, for efficiency. Add them to the supplied list. 1014 * Returns the number of new pages which were placed at *list. 1015 */ 1016 static int rmqueue_bulk(struct zone *zone, unsigned int order, 1017 unsigned long count, struct list_head *list, 1018 int migratetype, int cold) 1019 { 1020 int i; 1021 1022 spin_lock(&zone->lock); 1023 for (i = 0; i < count; ++i) { 1024 struct page *page = __rmqueue(zone, order, migratetype); 1025 if (unlikely(page == NULL)) 1026 break; 1027 1028 /* 1029 * Split buddy pages returned by expand() are received here 1030 * in physical page order. The page is added to the callers and 1031 * list and the list head then moves forward. From the callers 1032 * perspective, the linked list is ordered by page number in 1033 * some conditions. This is useful for IO devices that can 1034 * merge IO requests if the physical pages are ordered 1035 * properly. 1036 */ 1037 if (likely(cold == 0)) 1038 list_add(&page->lru, list); 1039 else 1040 list_add_tail(&page->lru, list); 1041 set_page_private(page, migratetype); 1042 list = &page->lru; 1043 } 1044 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 1045 spin_unlock(&zone->lock); 1046 return i; 1047 } 1048 1049 #ifdef CONFIG_NUMA 1050 /* 1051 * Called from the vmstat counter updater to drain pagesets of this 1052 * currently executing processor on remote nodes after they have 1053 * expired. 1054 * 1055 * Note that this function must be called with the thread pinned to 1056 * a single processor. 1057 */ 1058 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 1059 { 1060 unsigned long flags; 1061 int to_drain; 1062 1063 local_irq_save(flags); 1064 if (pcp->count >= pcp->batch) 1065 to_drain = pcp->batch; 1066 else 1067 to_drain = pcp->count; 1068 free_pcppages_bulk(zone, to_drain, pcp); 1069 pcp->count -= to_drain; 1070 local_irq_restore(flags); 1071 } 1072 #endif 1073 1074 /* 1075 * Drain pages of the indicated processor. 1076 * 1077 * The processor must either be the current processor and the 1078 * thread pinned to the current processor or a processor that 1079 * is not online. 1080 */ 1081 static void drain_pages(unsigned int cpu) 1082 { 1083 unsigned long flags; 1084 struct zone *zone; 1085 1086 for_each_populated_zone(zone) { 1087 struct per_cpu_pageset *pset; 1088 struct per_cpu_pages *pcp; 1089 1090 local_irq_save(flags); 1091 pset = per_cpu_ptr(zone->pageset, cpu); 1092 1093 pcp = &pset->pcp; 1094 if (pcp->count) { 1095 free_pcppages_bulk(zone, pcp->count, pcp); 1096 pcp->count = 0; 1097 } 1098 local_irq_restore(flags); 1099 } 1100 } 1101 1102 /* 1103 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 1104 */ 1105 void drain_local_pages(void *arg) 1106 { 1107 drain_pages(smp_processor_id()); 1108 } 1109 1110 /* 1111 * Spill all the per-cpu pages from all CPUs back into the buddy allocator 1112 */ 1113 void drain_all_pages(void) 1114 { 1115 on_each_cpu(drain_local_pages, NULL, 1); 1116 } 1117 1118 #ifdef CONFIG_HIBERNATION 1119 1120 void mark_free_pages(struct zone *zone) 1121 { 1122 unsigned long pfn, max_zone_pfn; 1123 unsigned long flags; 1124 int order, t; 1125 struct list_head *curr; 1126 1127 if (!zone->spanned_pages) 1128 return; 1129 1130 spin_lock_irqsave(&zone->lock, flags); 1131 1132 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1133 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1134 if (pfn_valid(pfn)) { 1135 struct page *page = pfn_to_page(pfn); 1136 1137 if (!swsusp_page_is_forbidden(page)) 1138 swsusp_unset_page_free(page); 1139 } 1140 1141 for_each_migratetype_order(order, t) { 1142 list_for_each(curr, &zone->free_area[order].free_list[t]) { 1143 unsigned long i; 1144 1145 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 1146 for (i = 0; i < (1UL << order); i++) 1147 swsusp_set_page_free(pfn_to_page(pfn + i)); 1148 } 1149 } 1150 spin_unlock_irqrestore(&zone->lock, flags); 1151 } 1152 #endif /* CONFIG_PM */ 1153 1154 /* 1155 * Free a 0-order page 1156 * cold == 1 ? free a cold page : free a hot page 1157 */ 1158 void free_hot_cold_page(struct page *page, int cold) 1159 { 1160 struct zone *zone = page_zone(page); 1161 struct per_cpu_pages *pcp; 1162 unsigned long flags; 1163 int migratetype; 1164 int wasMlocked = __TestClearPageMlocked(page); 1165 1166 if (!free_pages_prepare(page, 0)) 1167 return; 1168 1169 migratetype = get_pageblock_migratetype(page); 1170 set_page_private(page, migratetype); 1171 local_irq_save(flags); 1172 if (unlikely(wasMlocked)) 1173 free_page_mlock(page); 1174 __count_vm_event(PGFREE); 1175 1176 /* 1177 * We only track unmovable, reclaimable and movable on pcp lists. 1178 * Free ISOLATE pages back to the allocator because they are being 1179 * offlined but treat RESERVE as movable pages so we can get those 1180 * areas back if necessary. Otherwise, we may have to free 1181 * excessively into the page allocator 1182 */ 1183 if (migratetype >= MIGRATE_PCPTYPES) { 1184 if (unlikely(migratetype == MIGRATE_ISOLATE)) { 1185 free_one_page(zone, page, 0, migratetype); 1186 goto out; 1187 } 1188 migratetype = MIGRATE_MOVABLE; 1189 } 1190 1191 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1192 if (cold) 1193 list_add_tail(&page->lru, &pcp->lists[migratetype]); 1194 else 1195 list_add(&page->lru, &pcp->lists[migratetype]); 1196 pcp->count++; 1197 if (pcp->count >= pcp->high) { 1198 free_pcppages_bulk(zone, pcp->batch, pcp); 1199 pcp->count -= pcp->batch; 1200 } 1201 1202 out: 1203 local_irq_restore(flags); 1204 } 1205 1206 /* 1207 * split_page takes a non-compound higher-order page, and splits it into 1208 * n (1<<order) sub-pages: page[0..n] 1209 * Each sub-page must be freed individually. 1210 * 1211 * Note: this is probably too low level an operation for use in drivers. 1212 * Please consult with lkml before using this in your driver. 1213 */ 1214 void split_page(struct page *page, unsigned int order) 1215 { 1216 int i; 1217 1218 VM_BUG_ON(PageCompound(page)); 1219 VM_BUG_ON(!page_count(page)); 1220 1221 #ifdef CONFIG_KMEMCHECK 1222 /* 1223 * Split shadow pages too, because free(page[0]) would 1224 * otherwise free the whole shadow. 1225 */ 1226 if (kmemcheck_page_is_tracked(page)) 1227 split_page(virt_to_page(page[0].shadow), order); 1228 #endif 1229 1230 for (i = 1; i < (1 << order); i++) 1231 set_page_refcounted(page + i); 1232 } 1233 1234 /* 1235 * Similar to split_page except the page is already free. As this is only 1236 * being used for migration, the migratetype of the block also changes. 1237 * As this is called with interrupts disabled, the caller is responsible 1238 * for calling arch_alloc_page() and kernel_map_page() after interrupts 1239 * are enabled. 1240 * 1241 * Note: this is probably too low level an operation for use in drivers. 1242 * Please consult with lkml before using this in your driver. 1243 */ 1244 int split_free_page(struct page *page) 1245 { 1246 unsigned int order; 1247 unsigned long watermark; 1248 struct zone *zone; 1249 1250 BUG_ON(!PageBuddy(page)); 1251 1252 zone = page_zone(page); 1253 order = page_order(page); 1254 1255 /* Obey watermarks as if the page was being allocated */ 1256 watermark = low_wmark_pages(zone) + (1 << order); 1257 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 1258 return 0; 1259 1260 /* Remove page from free list */ 1261 list_del(&page->lru); 1262 zone->free_area[order].nr_free--; 1263 rmv_page_order(page); 1264 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order)); 1265 1266 /* Split into individual pages */ 1267 set_page_refcounted(page); 1268 split_page(page, order); 1269 1270 if (order >= pageblock_order - 1) { 1271 struct page *endpage = page + (1 << order) - 1; 1272 for (; page < endpage; page += pageblock_nr_pages) 1273 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1274 } 1275 1276 return 1 << order; 1277 } 1278 1279 /* 1280 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 1281 * we cheat by calling it from here, in the order > 0 path. Saves a branch 1282 * or two. 1283 */ 1284 static inline 1285 struct page *buffered_rmqueue(struct zone *preferred_zone, 1286 struct zone *zone, int order, gfp_t gfp_flags, 1287 int migratetype) 1288 { 1289 unsigned long flags; 1290 struct page *page; 1291 int cold = !!(gfp_flags & __GFP_COLD); 1292 1293 again: 1294 if (likely(order == 0)) { 1295 struct per_cpu_pages *pcp; 1296 struct list_head *list; 1297 1298 local_irq_save(flags); 1299 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1300 list = &pcp->lists[migratetype]; 1301 if (list_empty(list)) { 1302 pcp->count += rmqueue_bulk(zone, 0, 1303 pcp->batch, list, 1304 migratetype, cold); 1305 if (unlikely(list_empty(list))) 1306 goto failed; 1307 } 1308 1309 if (cold) 1310 page = list_entry(list->prev, struct page, lru); 1311 else 1312 page = list_entry(list->next, struct page, lru); 1313 1314 list_del(&page->lru); 1315 pcp->count--; 1316 } else { 1317 if (unlikely(gfp_flags & __GFP_NOFAIL)) { 1318 /* 1319 * __GFP_NOFAIL is not to be used in new code. 1320 * 1321 * All __GFP_NOFAIL callers should be fixed so that they 1322 * properly detect and handle allocation failures. 1323 * 1324 * We most definitely don't want callers attempting to 1325 * allocate greater than order-1 page units with 1326 * __GFP_NOFAIL. 1327 */ 1328 WARN_ON_ONCE(order > 1); 1329 } 1330 spin_lock_irqsave(&zone->lock, flags); 1331 page = __rmqueue(zone, order, migratetype); 1332 spin_unlock(&zone->lock); 1333 if (!page) 1334 goto failed; 1335 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order)); 1336 } 1337 1338 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1339 zone_statistics(preferred_zone, zone, gfp_flags); 1340 local_irq_restore(flags); 1341 1342 VM_BUG_ON(bad_range(zone, page)); 1343 if (prep_new_page(page, order, gfp_flags)) 1344 goto again; 1345 return page; 1346 1347 failed: 1348 local_irq_restore(flags); 1349 return NULL; 1350 } 1351 1352 /* The ALLOC_WMARK bits are used as an index to zone->watermark */ 1353 #define ALLOC_WMARK_MIN WMARK_MIN 1354 #define ALLOC_WMARK_LOW WMARK_LOW 1355 #define ALLOC_WMARK_HIGH WMARK_HIGH 1356 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ 1357 1358 /* Mask to get the watermark bits */ 1359 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) 1360 1361 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 1362 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 1363 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 1364 1365 #ifdef CONFIG_FAIL_PAGE_ALLOC 1366 1367 static struct fail_page_alloc_attr { 1368 struct fault_attr attr; 1369 1370 u32 ignore_gfp_highmem; 1371 u32 ignore_gfp_wait; 1372 u32 min_order; 1373 1374 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1375 1376 struct dentry *ignore_gfp_highmem_file; 1377 struct dentry *ignore_gfp_wait_file; 1378 struct dentry *min_order_file; 1379 1380 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1381 1382 } fail_page_alloc = { 1383 .attr = FAULT_ATTR_INITIALIZER, 1384 .ignore_gfp_wait = 1, 1385 .ignore_gfp_highmem = 1, 1386 .min_order = 1, 1387 }; 1388 1389 static int __init setup_fail_page_alloc(char *str) 1390 { 1391 return setup_fault_attr(&fail_page_alloc.attr, str); 1392 } 1393 __setup("fail_page_alloc=", setup_fail_page_alloc); 1394 1395 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1396 { 1397 if (order < fail_page_alloc.min_order) 1398 return 0; 1399 if (gfp_mask & __GFP_NOFAIL) 1400 return 0; 1401 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1402 return 0; 1403 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1404 return 0; 1405 1406 return should_fail(&fail_page_alloc.attr, 1 << order); 1407 } 1408 1409 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1410 1411 static int __init fail_page_alloc_debugfs(void) 1412 { 1413 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1414 struct dentry *dir; 1415 int err; 1416 1417 err = init_fault_attr_dentries(&fail_page_alloc.attr, 1418 "fail_page_alloc"); 1419 if (err) 1420 return err; 1421 dir = fail_page_alloc.attr.dentries.dir; 1422 1423 fail_page_alloc.ignore_gfp_wait_file = 1424 debugfs_create_bool("ignore-gfp-wait", mode, dir, 1425 &fail_page_alloc.ignore_gfp_wait); 1426 1427 fail_page_alloc.ignore_gfp_highmem_file = 1428 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1429 &fail_page_alloc.ignore_gfp_highmem); 1430 fail_page_alloc.min_order_file = 1431 debugfs_create_u32("min-order", mode, dir, 1432 &fail_page_alloc.min_order); 1433 1434 if (!fail_page_alloc.ignore_gfp_wait_file || 1435 !fail_page_alloc.ignore_gfp_highmem_file || 1436 !fail_page_alloc.min_order_file) { 1437 err = -ENOMEM; 1438 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file); 1439 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file); 1440 debugfs_remove(fail_page_alloc.min_order_file); 1441 cleanup_fault_attr_dentries(&fail_page_alloc.attr); 1442 } 1443 1444 return err; 1445 } 1446 1447 late_initcall(fail_page_alloc_debugfs); 1448 1449 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1450 1451 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1452 1453 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1454 { 1455 return 0; 1456 } 1457 1458 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1459 1460 /* 1461 * Return true if free pages are above 'mark'. This takes into account the order 1462 * of the allocation. 1463 */ 1464 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1465 int classzone_idx, int alloc_flags, long free_pages) 1466 { 1467 /* free_pages my go negative - that's OK */ 1468 long min = mark; 1469 int o; 1470 1471 free_pages -= (1 << order) + 1; 1472 if (alloc_flags & ALLOC_HIGH) 1473 min -= min / 2; 1474 if (alloc_flags & ALLOC_HARDER) 1475 min -= min / 4; 1476 1477 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 1478 return false; 1479 for (o = 0; o < order; o++) { 1480 /* At the next order, this order's pages become unavailable */ 1481 free_pages -= z->free_area[o].nr_free << o; 1482 1483 /* Require fewer higher order pages to be free */ 1484 min >>= 1; 1485 1486 if (free_pages <= min) 1487 return false; 1488 } 1489 return true; 1490 } 1491 1492 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1493 int classzone_idx, int alloc_flags) 1494 { 1495 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1496 zone_page_state(z, NR_FREE_PAGES)); 1497 } 1498 1499 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark, 1500 int classzone_idx, int alloc_flags) 1501 { 1502 long free_pages = zone_page_state(z, NR_FREE_PAGES); 1503 1504 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 1505 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 1506 1507 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1508 free_pages); 1509 } 1510 1511 #ifdef CONFIG_NUMA 1512 /* 1513 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1514 * skip over zones that are not allowed by the cpuset, or that have 1515 * been recently (in last second) found to be nearly full. See further 1516 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1517 * that have to skip over a lot of full or unallowed zones. 1518 * 1519 * If the zonelist cache is present in the passed in zonelist, then 1520 * returns a pointer to the allowed node mask (either the current 1521 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].) 1522 * 1523 * If the zonelist cache is not available for this zonelist, does 1524 * nothing and returns NULL. 1525 * 1526 * If the fullzones BITMAP in the zonelist cache is stale (more than 1527 * a second since last zap'd) then we zap it out (clear its bits.) 1528 * 1529 * We hold off even calling zlc_setup, until after we've checked the 1530 * first zone in the zonelist, on the theory that most allocations will 1531 * be satisfied from that first zone, so best to examine that zone as 1532 * quickly as we can. 1533 */ 1534 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1535 { 1536 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1537 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1538 1539 zlc = zonelist->zlcache_ptr; 1540 if (!zlc) 1541 return NULL; 1542 1543 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1544 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1545 zlc->last_full_zap = jiffies; 1546 } 1547 1548 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1549 &cpuset_current_mems_allowed : 1550 &node_states[N_HIGH_MEMORY]; 1551 return allowednodes; 1552 } 1553 1554 /* 1555 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1556 * if it is worth looking at further for free memory: 1557 * 1) Check that the zone isn't thought to be full (doesn't have its 1558 * bit set in the zonelist_cache fullzones BITMAP). 1559 * 2) Check that the zones node (obtained from the zonelist_cache 1560 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1561 * Return true (non-zero) if zone is worth looking at further, or 1562 * else return false (zero) if it is not. 1563 * 1564 * This check -ignores- the distinction between various watermarks, 1565 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1566 * found to be full for any variation of these watermarks, it will 1567 * be considered full for up to one second by all requests, unless 1568 * we are so low on memory on all allowed nodes that we are forced 1569 * into the second scan of the zonelist. 1570 * 1571 * In the second scan we ignore this zonelist cache and exactly 1572 * apply the watermarks to all zones, even it is slower to do so. 1573 * We are low on memory in the second scan, and should leave no stone 1574 * unturned looking for a free page. 1575 */ 1576 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1577 nodemask_t *allowednodes) 1578 { 1579 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1580 int i; /* index of *z in zonelist zones */ 1581 int n; /* node that zone *z is on */ 1582 1583 zlc = zonelist->zlcache_ptr; 1584 if (!zlc) 1585 return 1; 1586 1587 i = z - zonelist->_zonerefs; 1588 n = zlc->z_to_n[i]; 1589 1590 /* This zone is worth trying if it is allowed but not full */ 1591 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1592 } 1593 1594 /* 1595 * Given 'z' scanning a zonelist, set the corresponding bit in 1596 * zlc->fullzones, so that subsequent attempts to allocate a page 1597 * from that zone don't waste time re-examining it. 1598 */ 1599 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1600 { 1601 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1602 int i; /* index of *z in zonelist zones */ 1603 1604 zlc = zonelist->zlcache_ptr; 1605 if (!zlc) 1606 return; 1607 1608 i = z - zonelist->_zonerefs; 1609 1610 set_bit(i, zlc->fullzones); 1611 } 1612 1613 #else /* CONFIG_NUMA */ 1614 1615 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1616 { 1617 return NULL; 1618 } 1619 1620 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1621 nodemask_t *allowednodes) 1622 { 1623 return 1; 1624 } 1625 1626 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1627 { 1628 } 1629 #endif /* CONFIG_NUMA */ 1630 1631 /* 1632 * get_page_from_freelist goes through the zonelist trying to allocate 1633 * a page. 1634 */ 1635 static struct page * 1636 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, 1637 struct zonelist *zonelist, int high_zoneidx, int alloc_flags, 1638 struct zone *preferred_zone, int migratetype) 1639 { 1640 struct zoneref *z; 1641 struct page *page = NULL; 1642 int classzone_idx; 1643 struct zone *zone; 1644 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1645 int zlc_active = 0; /* set if using zonelist_cache */ 1646 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1647 1648 classzone_idx = zone_idx(preferred_zone); 1649 zonelist_scan: 1650 /* 1651 * Scan zonelist, looking for a zone with enough free. 1652 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1653 */ 1654 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1655 high_zoneidx, nodemask) { 1656 if (NUMA_BUILD && zlc_active && 1657 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1658 continue; 1659 if ((alloc_flags & ALLOC_CPUSET) && 1660 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1661 goto try_next_zone; 1662 1663 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 1664 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 1665 unsigned long mark; 1666 int ret; 1667 1668 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 1669 if (zone_watermark_ok(zone, order, mark, 1670 classzone_idx, alloc_flags)) 1671 goto try_this_zone; 1672 1673 if (zone_reclaim_mode == 0) 1674 goto this_zone_full; 1675 1676 ret = zone_reclaim(zone, gfp_mask, order); 1677 switch (ret) { 1678 case ZONE_RECLAIM_NOSCAN: 1679 /* did not scan */ 1680 goto try_next_zone; 1681 case ZONE_RECLAIM_FULL: 1682 /* scanned but unreclaimable */ 1683 goto this_zone_full; 1684 default: 1685 /* did we reclaim enough */ 1686 if (!zone_watermark_ok(zone, order, mark, 1687 classzone_idx, alloc_flags)) 1688 goto this_zone_full; 1689 } 1690 } 1691 1692 try_this_zone: 1693 page = buffered_rmqueue(preferred_zone, zone, order, 1694 gfp_mask, migratetype); 1695 if (page) 1696 break; 1697 this_zone_full: 1698 if (NUMA_BUILD) 1699 zlc_mark_zone_full(zonelist, z); 1700 try_next_zone: 1701 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) { 1702 /* 1703 * we do zlc_setup after the first zone is tried but only 1704 * if there are multiple nodes make it worthwhile 1705 */ 1706 allowednodes = zlc_setup(zonelist, alloc_flags); 1707 zlc_active = 1; 1708 did_zlc_setup = 1; 1709 } 1710 } 1711 1712 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) { 1713 /* Disable zlc cache for second zonelist scan */ 1714 zlc_active = 0; 1715 goto zonelist_scan; 1716 } 1717 return page; 1718 } 1719 1720 /* 1721 * Large machines with many possible nodes should not always dump per-node 1722 * meminfo in irq context. 1723 */ 1724 static inline bool should_suppress_show_mem(void) 1725 { 1726 bool ret = false; 1727 1728 #if NODES_SHIFT > 8 1729 ret = in_interrupt(); 1730 #endif 1731 return ret; 1732 } 1733 1734 static inline int 1735 should_alloc_retry(gfp_t gfp_mask, unsigned int order, 1736 unsigned long pages_reclaimed) 1737 { 1738 /* Do not loop if specifically requested */ 1739 if (gfp_mask & __GFP_NORETRY) 1740 return 0; 1741 1742 /* 1743 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 1744 * means __GFP_NOFAIL, but that may not be true in other 1745 * implementations. 1746 */ 1747 if (order <= PAGE_ALLOC_COSTLY_ORDER) 1748 return 1; 1749 1750 /* 1751 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 1752 * specified, then we retry until we no longer reclaim any pages 1753 * (above), or we've reclaimed an order of pages at least as 1754 * large as the allocation's order. In both cases, if the 1755 * allocation still fails, we stop retrying. 1756 */ 1757 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) 1758 return 1; 1759 1760 /* 1761 * Don't let big-order allocations loop unless the caller 1762 * explicitly requests that. 1763 */ 1764 if (gfp_mask & __GFP_NOFAIL) 1765 return 1; 1766 1767 return 0; 1768 } 1769 1770 static inline struct page * 1771 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 1772 struct zonelist *zonelist, enum zone_type high_zoneidx, 1773 nodemask_t *nodemask, struct zone *preferred_zone, 1774 int migratetype) 1775 { 1776 struct page *page; 1777 1778 /* Acquire the OOM killer lock for the zones in zonelist */ 1779 if (!try_set_zonelist_oom(zonelist, gfp_mask)) { 1780 schedule_timeout_uninterruptible(1); 1781 return NULL; 1782 } 1783 1784 /* 1785 * Go through the zonelist yet one more time, keep very high watermark 1786 * here, this is only to catch a parallel oom killing, we must fail if 1787 * we're still under heavy pressure. 1788 */ 1789 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, 1790 order, zonelist, high_zoneidx, 1791 ALLOC_WMARK_HIGH|ALLOC_CPUSET, 1792 preferred_zone, migratetype); 1793 if (page) 1794 goto out; 1795 1796 if (!(gfp_mask & __GFP_NOFAIL)) { 1797 /* The OOM killer will not help higher order allocs */ 1798 if (order > PAGE_ALLOC_COSTLY_ORDER) 1799 goto out; 1800 /* The OOM killer does not needlessly kill tasks for lowmem */ 1801 if (high_zoneidx < ZONE_NORMAL) 1802 goto out; 1803 /* 1804 * GFP_THISNODE contains __GFP_NORETRY and we never hit this. 1805 * Sanity check for bare calls of __GFP_THISNODE, not real OOM. 1806 * The caller should handle page allocation failure by itself if 1807 * it specifies __GFP_THISNODE. 1808 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER. 1809 */ 1810 if (gfp_mask & __GFP_THISNODE) 1811 goto out; 1812 } 1813 /* Exhausted what can be done so it's blamo time */ 1814 out_of_memory(zonelist, gfp_mask, order, nodemask); 1815 1816 out: 1817 clear_zonelist_oom(zonelist, gfp_mask); 1818 return page; 1819 } 1820 1821 #ifdef CONFIG_COMPACTION 1822 /* Try memory compaction for high-order allocations before reclaim */ 1823 static struct page * 1824 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 1825 struct zonelist *zonelist, enum zone_type high_zoneidx, 1826 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 1827 int migratetype, unsigned long *did_some_progress, 1828 bool sync_migration) 1829 { 1830 struct page *page; 1831 1832 if (!order || compaction_deferred(preferred_zone)) 1833 return NULL; 1834 1835 current->flags |= PF_MEMALLOC; 1836 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask, 1837 nodemask, sync_migration); 1838 current->flags &= ~PF_MEMALLOC; 1839 if (*did_some_progress != COMPACT_SKIPPED) { 1840 1841 /* Page migration frees to the PCP lists but we want merging */ 1842 drain_pages(get_cpu()); 1843 put_cpu(); 1844 1845 page = get_page_from_freelist(gfp_mask, nodemask, 1846 order, zonelist, high_zoneidx, 1847 alloc_flags, preferred_zone, 1848 migratetype); 1849 if (page) { 1850 preferred_zone->compact_considered = 0; 1851 preferred_zone->compact_defer_shift = 0; 1852 count_vm_event(COMPACTSUCCESS); 1853 return page; 1854 } 1855 1856 /* 1857 * It's bad if compaction run occurs and fails. 1858 * The most likely reason is that pages exist, 1859 * but not enough to satisfy watermarks. 1860 */ 1861 count_vm_event(COMPACTFAIL); 1862 defer_compaction(preferred_zone); 1863 1864 cond_resched(); 1865 } 1866 1867 return NULL; 1868 } 1869 #else 1870 static inline struct page * 1871 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 1872 struct zonelist *zonelist, enum zone_type high_zoneidx, 1873 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 1874 int migratetype, unsigned long *did_some_progress, 1875 bool sync_migration) 1876 { 1877 return NULL; 1878 } 1879 #endif /* CONFIG_COMPACTION */ 1880 1881 /* The really slow allocator path where we enter direct reclaim */ 1882 static inline struct page * 1883 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 1884 struct zonelist *zonelist, enum zone_type high_zoneidx, 1885 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 1886 int migratetype, unsigned long *did_some_progress) 1887 { 1888 struct page *page = NULL; 1889 struct reclaim_state reclaim_state; 1890 bool drained = false; 1891 1892 cond_resched(); 1893 1894 /* We now go into synchronous reclaim */ 1895 cpuset_memory_pressure_bump(); 1896 current->flags |= PF_MEMALLOC; 1897 lockdep_set_current_reclaim_state(gfp_mask); 1898 reclaim_state.reclaimed_slab = 0; 1899 current->reclaim_state = &reclaim_state; 1900 1901 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask); 1902 1903 current->reclaim_state = NULL; 1904 lockdep_clear_current_reclaim_state(); 1905 current->flags &= ~PF_MEMALLOC; 1906 1907 cond_resched(); 1908 1909 if (unlikely(!(*did_some_progress))) 1910 return NULL; 1911 1912 retry: 1913 page = get_page_from_freelist(gfp_mask, nodemask, order, 1914 zonelist, high_zoneidx, 1915 alloc_flags, preferred_zone, 1916 migratetype); 1917 1918 /* 1919 * If an allocation failed after direct reclaim, it could be because 1920 * pages are pinned on the per-cpu lists. Drain them and try again 1921 */ 1922 if (!page && !drained) { 1923 drain_all_pages(); 1924 drained = true; 1925 goto retry; 1926 } 1927 1928 return page; 1929 } 1930 1931 /* 1932 * This is called in the allocator slow-path if the allocation request is of 1933 * sufficient urgency to ignore watermarks and take other desperate measures 1934 */ 1935 static inline struct page * 1936 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, 1937 struct zonelist *zonelist, enum zone_type high_zoneidx, 1938 nodemask_t *nodemask, struct zone *preferred_zone, 1939 int migratetype) 1940 { 1941 struct page *page; 1942 1943 do { 1944 page = get_page_from_freelist(gfp_mask, nodemask, order, 1945 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS, 1946 preferred_zone, migratetype); 1947 1948 if (!page && gfp_mask & __GFP_NOFAIL) 1949 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 1950 } while (!page && (gfp_mask & __GFP_NOFAIL)); 1951 1952 return page; 1953 } 1954 1955 static inline 1956 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist, 1957 enum zone_type high_zoneidx, 1958 enum zone_type classzone_idx) 1959 { 1960 struct zoneref *z; 1961 struct zone *zone; 1962 1963 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) 1964 wakeup_kswapd(zone, order, classzone_idx); 1965 } 1966 1967 static inline int 1968 gfp_to_alloc_flags(gfp_t gfp_mask) 1969 { 1970 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 1971 const gfp_t wait = gfp_mask & __GFP_WAIT; 1972 1973 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 1974 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 1975 1976 /* 1977 * The caller may dip into page reserves a bit more if the caller 1978 * cannot run direct reclaim, or if the caller has realtime scheduling 1979 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 1980 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 1981 */ 1982 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 1983 1984 if (!wait) { 1985 /* 1986 * Not worth trying to allocate harder for 1987 * __GFP_NOMEMALLOC even if it can't schedule. 1988 */ 1989 if (!(gfp_mask & __GFP_NOMEMALLOC)) 1990 alloc_flags |= ALLOC_HARDER; 1991 /* 1992 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 1993 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1994 */ 1995 alloc_flags &= ~ALLOC_CPUSET; 1996 } else if (unlikely(rt_task(current)) && !in_interrupt()) 1997 alloc_flags |= ALLOC_HARDER; 1998 1999 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { 2000 if (!in_interrupt() && 2001 ((current->flags & PF_MEMALLOC) || 2002 unlikely(test_thread_flag(TIF_MEMDIE)))) 2003 alloc_flags |= ALLOC_NO_WATERMARKS; 2004 } 2005 2006 return alloc_flags; 2007 } 2008 2009 static inline struct page * 2010 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 2011 struct zonelist *zonelist, enum zone_type high_zoneidx, 2012 nodemask_t *nodemask, struct zone *preferred_zone, 2013 int migratetype) 2014 { 2015 const gfp_t wait = gfp_mask & __GFP_WAIT; 2016 struct page *page = NULL; 2017 int alloc_flags; 2018 unsigned long pages_reclaimed = 0; 2019 unsigned long did_some_progress; 2020 bool sync_migration = false; 2021 2022 /* 2023 * In the slowpath, we sanity check order to avoid ever trying to 2024 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 2025 * be using allocators in order of preference for an area that is 2026 * too large. 2027 */ 2028 if (order >= MAX_ORDER) { 2029 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 2030 return NULL; 2031 } 2032 2033 /* 2034 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 2035 * __GFP_NOWARN set) should not cause reclaim since the subsystem 2036 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 2037 * using a larger set of nodes after it has established that the 2038 * allowed per node queues are empty and that nodes are 2039 * over allocated. 2040 */ 2041 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 2042 goto nopage; 2043 2044 restart: 2045 if (!(gfp_mask & __GFP_NO_KSWAPD)) 2046 wake_all_kswapd(order, zonelist, high_zoneidx, 2047 zone_idx(preferred_zone)); 2048 2049 /* 2050 * OK, we're below the kswapd watermark and have kicked background 2051 * reclaim. Now things get more complex, so set up alloc_flags according 2052 * to how we want to proceed. 2053 */ 2054 alloc_flags = gfp_to_alloc_flags(gfp_mask); 2055 2056 /* 2057 * Find the true preferred zone if the allocation is unconstrained by 2058 * cpusets. 2059 */ 2060 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) 2061 first_zones_zonelist(zonelist, high_zoneidx, NULL, 2062 &preferred_zone); 2063 2064 /* This is the last chance, in general, before the goto nopage. */ 2065 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, 2066 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS, 2067 preferred_zone, migratetype); 2068 if (page) 2069 goto got_pg; 2070 2071 rebalance: 2072 /* Allocate without watermarks if the context allows */ 2073 if (alloc_flags & ALLOC_NO_WATERMARKS) { 2074 page = __alloc_pages_high_priority(gfp_mask, order, 2075 zonelist, high_zoneidx, nodemask, 2076 preferred_zone, migratetype); 2077 if (page) 2078 goto got_pg; 2079 } 2080 2081 /* Atomic allocations - we can't balance anything */ 2082 if (!wait) 2083 goto nopage; 2084 2085 /* Avoid recursion of direct reclaim */ 2086 if (current->flags & PF_MEMALLOC) 2087 goto nopage; 2088 2089 /* Avoid allocations with no watermarks from looping endlessly */ 2090 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) 2091 goto nopage; 2092 2093 /* 2094 * Try direct compaction. The first pass is asynchronous. Subsequent 2095 * attempts after direct reclaim are synchronous 2096 */ 2097 page = __alloc_pages_direct_compact(gfp_mask, order, 2098 zonelist, high_zoneidx, 2099 nodemask, 2100 alloc_flags, preferred_zone, 2101 migratetype, &did_some_progress, 2102 sync_migration); 2103 if (page) 2104 goto got_pg; 2105 sync_migration = !(gfp_mask & __GFP_NO_KSWAPD); 2106 2107 /* Try direct reclaim and then allocating */ 2108 page = __alloc_pages_direct_reclaim(gfp_mask, order, 2109 zonelist, high_zoneidx, 2110 nodemask, 2111 alloc_flags, preferred_zone, 2112 migratetype, &did_some_progress); 2113 if (page) 2114 goto got_pg; 2115 2116 /* 2117 * If we failed to make any progress reclaiming, then we are 2118 * running out of options and have to consider going OOM 2119 */ 2120 if (!did_some_progress) { 2121 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 2122 if (oom_killer_disabled) 2123 goto nopage; 2124 page = __alloc_pages_may_oom(gfp_mask, order, 2125 zonelist, high_zoneidx, 2126 nodemask, preferred_zone, 2127 migratetype); 2128 if (page) 2129 goto got_pg; 2130 2131 if (!(gfp_mask & __GFP_NOFAIL)) { 2132 /* 2133 * The oom killer is not called for high-order 2134 * allocations that may fail, so if no progress 2135 * is being made, there are no other options and 2136 * retrying is unlikely to help. 2137 */ 2138 if (order > PAGE_ALLOC_COSTLY_ORDER) 2139 goto nopage; 2140 /* 2141 * The oom killer is not called for lowmem 2142 * allocations to prevent needlessly killing 2143 * innocent tasks. 2144 */ 2145 if (high_zoneidx < ZONE_NORMAL) 2146 goto nopage; 2147 } 2148 2149 goto restart; 2150 } 2151 } 2152 2153 /* Check if we should retry the allocation */ 2154 pages_reclaimed += did_some_progress; 2155 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) { 2156 /* Wait for some write requests to complete then retry */ 2157 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2158 goto rebalance; 2159 } else { 2160 /* 2161 * High-order allocations do not necessarily loop after 2162 * direct reclaim and reclaim/compaction depends on compaction 2163 * being called after reclaim so call directly if necessary 2164 */ 2165 page = __alloc_pages_direct_compact(gfp_mask, order, 2166 zonelist, high_zoneidx, 2167 nodemask, 2168 alloc_flags, preferred_zone, 2169 migratetype, &did_some_progress, 2170 sync_migration); 2171 if (page) 2172 goto got_pg; 2173 } 2174 2175 nopage: 2176 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) { 2177 unsigned int filter = SHOW_MEM_FILTER_NODES; 2178 2179 /* 2180 * This documents exceptions given to allocations in certain 2181 * contexts that are allowed to allocate outside current's set 2182 * of allowed nodes. 2183 */ 2184 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2185 if (test_thread_flag(TIF_MEMDIE) || 2186 (current->flags & (PF_MEMALLOC | PF_EXITING))) 2187 filter &= ~SHOW_MEM_FILTER_NODES; 2188 if (in_interrupt() || !wait) 2189 filter &= ~SHOW_MEM_FILTER_NODES; 2190 2191 pr_warning("%s: page allocation failure. order:%d, mode:0x%x\n", 2192 current->comm, order, gfp_mask); 2193 dump_stack(); 2194 if (!should_suppress_show_mem()) 2195 __show_mem(filter); 2196 } 2197 return page; 2198 got_pg: 2199 if (kmemcheck_enabled) 2200 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 2201 return page; 2202 2203 } 2204 2205 /* 2206 * This is the 'heart' of the zoned buddy allocator. 2207 */ 2208 struct page * 2209 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 2210 struct zonelist *zonelist, nodemask_t *nodemask) 2211 { 2212 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 2213 struct zone *preferred_zone; 2214 struct page *page; 2215 int migratetype = allocflags_to_migratetype(gfp_mask); 2216 2217 gfp_mask &= gfp_allowed_mask; 2218 2219 lockdep_trace_alloc(gfp_mask); 2220 2221 might_sleep_if(gfp_mask & __GFP_WAIT); 2222 2223 if (should_fail_alloc_page(gfp_mask, order)) 2224 return NULL; 2225 2226 /* 2227 * Check the zones suitable for the gfp_mask contain at least one 2228 * valid zone. It's possible to have an empty zonelist as a result 2229 * of GFP_THISNODE and a memoryless node 2230 */ 2231 if (unlikely(!zonelist->_zonerefs->zone)) 2232 return NULL; 2233 2234 get_mems_allowed(); 2235 /* The preferred zone is used for statistics later */ 2236 first_zones_zonelist(zonelist, high_zoneidx, 2237 nodemask ? : &cpuset_current_mems_allowed, 2238 &preferred_zone); 2239 if (!preferred_zone) { 2240 put_mems_allowed(); 2241 return NULL; 2242 } 2243 2244 /* First allocation attempt */ 2245 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, 2246 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET, 2247 preferred_zone, migratetype); 2248 if (unlikely(!page)) 2249 page = __alloc_pages_slowpath(gfp_mask, order, 2250 zonelist, high_zoneidx, nodemask, 2251 preferred_zone, migratetype); 2252 put_mems_allowed(); 2253 2254 trace_mm_page_alloc(page, order, gfp_mask, migratetype); 2255 return page; 2256 } 2257 EXPORT_SYMBOL(__alloc_pages_nodemask); 2258 2259 /* 2260 * Common helper functions. 2261 */ 2262 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 2263 { 2264 struct page *page; 2265 2266 /* 2267 * __get_free_pages() returns a 32-bit address, which cannot represent 2268 * a highmem page 2269 */ 2270 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 2271 2272 page = alloc_pages(gfp_mask, order); 2273 if (!page) 2274 return 0; 2275 return (unsigned long) page_address(page); 2276 } 2277 EXPORT_SYMBOL(__get_free_pages); 2278 2279 unsigned long get_zeroed_page(gfp_t gfp_mask) 2280 { 2281 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 2282 } 2283 EXPORT_SYMBOL(get_zeroed_page); 2284 2285 void __pagevec_free(struct pagevec *pvec) 2286 { 2287 int i = pagevec_count(pvec); 2288 2289 while (--i >= 0) { 2290 trace_mm_pagevec_free(pvec->pages[i], pvec->cold); 2291 free_hot_cold_page(pvec->pages[i], pvec->cold); 2292 } 2293 } 2294 2295 void __free_pages(struct page *page, unsigned int order) 2296 { 2297 if (put_page_testzero(page)) { 2298 if (order == 0) 2299 free_hot_cold_page(page, 0); 2300 else 2301 __free_pages_ok(page, order); 2302 } 2303 } 2304 2305 EXPORT_SYMBOL(__free_pages); 2306 2307 void free_pages(unsigned long addr, unsigned int order) 2308 { 2309 if (addr != 0) { 2310 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2311 __free_pages(virt_to_page((void *)addr), order); 2312 } 2313 } 2314 2315 EXPORT_SYMBOL(free_pages); 2316 2317 /** 2318 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 2319 * @size: the number of bytes to allocate 2320 * @gfp_mask: GFP flags for the allocation 2321 * 2322 * This function is similar to alloc_pages(), except that it allocates the 2323 * minimum number of pages to satisfy the request. alloc_pages() can only 2324 * allocate memory in power-of-two pages. 2325 * 2326 * This function is also limited by MAX_ORDER. 2327 * 2328 * Memory allocated by this function must be released by free_pages_exact(). 2329 */ 2330 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 2331 { 2332 unsigned int order = get_order(size); 2333 unsigned long addr; 2334 2335 addr = __get_free_pages(gfp_mask, order); 2336 if (addr) { 2337 unsigned long alloc_end = addr + (PAGE_SIZE << order); 2338 unsigned long used = addr + PAGE_ALIGN(size); 2339 2340 split_page(virt_to_page((void *)addr), order); 2341 while (used < alloc_end) { 2342 free_page(used); 2343 used += PAGE_SIZE; 2344 } 2345 } 2346 2347 return (void *)addr; 2348 } 2349 EXPORT_SYMBOL(alloc_pages_exact); 2350 2351 /** 2352 * free_pages_exact - release memory allocated via alloc_pages_exact() 2353 * @virt: the value returned by alloc_pages_exact. 2354 * @size: size of allocation, same value as passed to alloc_pages_exact(). 2355 * 2356 * Release the memory allocated by a previous call to alloc_pages_exact. 2357 */ 2358 void free_pages_exact(void *virt, size_t size) 2359 { 2360 unsigned long addr = (unsigned long)virt; 2361 unsigned long end = addr + PAGE_ALIGN(size); 2362 2363 while (addr < end) { 2364 free_page(addr); 2365 addr += PAGE_SIZE; 2366 } 2367 } 2368 EXPORT_SYMBOL(free_pages_exact); 2369 2370 static unsigned int nr_free_zone_pages(int offset) 2371 { 2372 struct zoneref *z; 2373 struct zone *zone; 2374 2375 /* Just pick one node, since fallback list is circular */ 2376 unsigned int sum = 0; 2377 2378 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 2379 2380 for_each_zone_zonelist(zone, z, zonelist, offset) { 2381 unsigned long size = zone->present_pages; 2382 unsigned long high = high_wmark_pages(zone); 2383 if (size > high) 2384 sum += size - high; 2385 } 2386 2387 return sum; 2388 } 2389 2390 /* 2391 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 2392 */ 2393 unsigned int nr_free_buffer_pages(void) 2394 { 2395 return nr_free_zone_pages(gfp_zone(GFP_USER)); 2396 } 2397 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 2398 2399 /* 2400 * Amount of free RAM allocatable within all zones 2401 */ 2402 unsigned int nr_free_pagecache_pages(void) 2403 { 2404 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 2405 } 2406 2407 static inline void show_node(struct zone *zone) 2408 { 2409 if (NUMA_BUILD) 2410 printk("Node %d ", zone_to_nid(zone)); 2411 } 2412 2413 void si_meminfo(struct sysinfo *val) 2414 { 2415 val->totalram = totalram_pages; 2416 val->sharedram = 0; 2417 val->freeram = global_page_state(NR_FREE_PAGES); 2418 val->bufferram = nr_blockdev_pages(); 2419 val->totalhigh = totalhigh_pages; 2420 val->freehigh = nr_free_highpages(); 2421 val->mem_unit = PAGE_SIZE; 2422 } 2423 2424 EXPORT_SYMBOL(si_meminfo); 2425 2426 #ifdef CONFIG_NUMA 2427 void si_meminfo_node(struct sysinfo *val, int nid) 2428 { 2429 pg_data_t *pgdat = NODE_DATA(nid); 2430 2431 val->totalram = pgdat->node_present_pages; 2432 val->freeram = node_page_state(nid, NR_FREE_PAGES); 2433 #ifdef CONFIG_HIGHMEM 2434 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 2435 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 2436 NR_FREE_PAGES); 2437 #else 2438 val->totalhigh = 0; 2439 val->freehigh = 0; 2440 #endif 2441 val->mem_unit = PAGE_SIZE; 2442 } 2443 #endif 2444 2445 /* 2446 * Determine whether the zone's node should be displayed or not, depending on 2447 * whether SHOW_MEM_FILTER_NODES was passed to __show_free_areas(). 2448 */ 2449 static bool skip_free_areas_zone(unsigned int flags, const struct zone *zone) 2450 { 2451 bool ret = false; 2452 2453 if (!(flags & SHOW_MEM_FILTER_NODES)) 2454 goto out; 2455 2456 get_mems_allowed(); 2457 ret = !node_isset(zone->zone_pgdat->node_id, 2458 cpuset_current_mems_allowed); 2459 put_mems_allowed(); 2460 out: 2461 return ret; 2462 } 2463 2464 #define K(x) ((x) << (PAGE_SHIFT-10)) 2465 2466 /* 2467 * Show free area list (used inside shift_scroll-lock stuff) 2468 * We also calculate the percentage fragmentation. We do this by counting the 2469 * memory on each free list with the exception of the first item on the list. 2470 * Suppresses nodes that are not allowed by current's cpuset if 2471 * SHOW_MEM_FILTER_NODES is passed. 2472 */ 2473 void __show_free_areas(unsigned int filter) 2474 { 2475 int cpu; 2476 struct zone *zone; 2477 2478 for_each_populated_zone(zone) { 2479 if (skip_free_areas_zone(filter, zone)) 2480 continue; 2481 show_node(zone); 2482 printk("%s per-cpu:\n", zone->name); 2483 2484 for_each_online_cpu(cpu) { 2485 struct per_cpu_pageset *pageset; 2486 2487 pageset = per_cpu_ptr(zone->pageset, cpu); 2488 2489 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", 2490 cpu, pageset->pcp.high, 2491 pageset->pcp.batch, pageset->pcp.count); 2492 } 2493 } 2494 2495 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 2496 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 2497 " unevictable:%lu" 2498 " dirty:%lu writeback:%lu unstable:%lu\n" 2499 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n" 2500 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n", 2501 global_page_state(NR_ACTIVE_ANON), 2502 global_page_state(NR_INACTIVE_ANON), 2503 global_page_state(NR_ISOLATED_ANON), 2504 global_page_state(NR_ACTIVE_FILE), 2505 global_page_state(NR_INACTIVE_FILE), 2506 global_page_state(NR_ISOLATED_FILE), 2507 global_page_state(NR_UNEVICTABLE), 2508 global_page_state(NR_FILE_DIRTY), 2509 global_page_state(NR_WRITEBACK), 2510 global_page_state(NR_UNSTABLE_NFS), 2511 global_page_state(NR_FREE_PAGES), 2512 global_page_state(NR_SLAB_RECLAIMABLE), 2513 global_page_state(NR_SLAB_UNRECLAIMABLE), 2514 global_page_state(NR_FILE_MAPPED), 2515 global_page_state(NR_SHMEM), 2516 global_page_state(NR_PAGETABLE), 2517 global_page_state(NR_BOUNCE)); 2518 2519 for_each_populated_zone(zone) { 2520 int i; 2521 2522 if (skip_free_areas_zone(filter, zone)) 2523 continue; 2524 show_node(zone); 2525 printk("%s" 2526 " free:%lukB" 2527 " min:%lukB" 2528 " low:%lukB" 2529 " high:%lukB" 2530 " active_anon:%lukB" 2531 " inactive_anon:%lukB" 2532 " active_file:%lukB" 2533 " inactive_file:%lukB" 2534 " unevictable:%lukB" 2535 " isolated(anon):%lukB" 2536 " isolated(file):%lukB" 2537 " present:%lukB" 2538 " mlocked:%lukB" 2539 " dirty:%lukB" 2540 " writeback:%lukB" 2541 " mapped:%lukB" 2542 " shmem:%lukB" 2543 " slab_reclaimable:%lukB" 2544 " slab_unreclaimable:%lukB" 2545 " kernel_stack:%lukB" 2546 " pagetables:%lukB" 2547 " unstable:%lukB" 2548 " bounce:%lukB" 2549 " writeback_tmp:%lukB" 2550 " pages_scanned:%lu" 2551 " all_unreclaimable? %s" 2552 "\n", 2553 zone->name, 2554 K(zone_page_state(zone, NR_FREE_PAGES)), 2555 K(min_wmark_pages(zone)), 2556 K(low_wmark_pages(zone)), 2557 K(high_wmark_pages(zone)), 2558 K(zone_page_state(zone, NR_ACTIVE_ANON)), 2559 K(zone_page_state(zone, NR_INACTIVE_ANON)), 2560 K(zone_page_state(zone, NR_ACTIVE_FILE)), 2561 K(zone_page_state(zone, NR_INACTIVE_FILE)), 2562 K(zone_page_state(zone, NR_UNEVICTABLE)), 2563 K(zone_page_state(zone, NR_ISOLATED_ANON)), 2564 K(zone_page_state(zone, NR_ISOLATED_FILE)), 2565 K(zone->present_pages), 2566 K(zone_page_state(zone, NR_MLOCK)), 2567 K(zone_page_state(zone, NR_FILE_DIRTY)), 2568 K(zone_page_state(zone, NR_WRITEBACK)), 2569 K(zone_page_state(zone, NR_FILE_MAPPED)), 2570 K(zone_page_state(zone, NR_SHMEM)), 2571 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 2572 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 2573 zone_page_state(zone, NR_KERNEL_STACK) * 2574 THREAD_SIZE / 1024, 2575 K(zone_page_state(zone, NR_PAGETABLE)), 2576 K(zone_page_state(zone, NR_UNSTABLE_NFS)), 2577 K(zone_page_state(zone, NR_BOUNCE)), 2578 K(zone_page_state(zone, NR_WRITEBACK_TEMP)), 2579 zone->pages_scanned, 2580 (zone->all_unreclaimable ? "yes" : "no") 2581 ); 2582 printk("lowmem_reserve[]:"); 2583 for (i = 0; i < MAX_NR_ZONES; i++) 2584 printk(" %lu", zone->lowmem_reserve[i]); 2585 printk("\n"); 2586 } 2587 2588 for_each_populated_zone(zone) { 2589 unsigned long nr[MAX_ORDER], flags, order, total = 0; 2590 2591 if (skip_free_areas_zone(filter, zone)) 2592 continue; 2593 show_node(zone); 2594 printk("%s: ", zone->name); 2595 2596 spin_lock_irqsave(&zone->lock, flags); 2597 for (order = 0; order < MAX_ORDER; order++) { 2598 nr[order] = zone->free_area[order].nr_free; 2599 total += nr[order] << order; 2600 } 2601 spin_unlock_irqrestore(&zone->lock, flags); 2602 for (order = 0; order < MAX_ORDER; order++) 2603 printk("%lu*%lukB ", nr[order], K(1UL) << order); 2604 printk("= %lukB\n", K(total)); 2605 } 2606 2607 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 2608 2609 show_swap_cache_info(); 2610 } 2611 2612 void show_free_areas(void) 2613 { 2614 __show_free_areas(0); 2615 } 2616 2617 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 2618 { 2619 zoneref->zone = zone; 2620 zoneref->zone_idx = zone_idx(zone); 2621 } 2622 2623 /* 2624 * Builds allocation fallback zone lists. 2625 * 2626 * Add all populated zones of a node to the zonelist. 2627 */ 2628 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 2629 int nr_zones, enum zone_type zone_type) 2630 { 2631 struct zone *zone; 2632 2633 BUG_ON(zone_type >= MAX_NR_ZONES); 2634 zone_type++; 2635 2636 do { 2637 zone_type--; 2638 zone = pgdat->node_zones + zone_type; 2639 if (populated_zone(zone)) { 2640 zoneref_set_zone(zone, 2641 &zonelist->_zonerefs[nr_zones++]); 2642 check_highest_zone(zone_type); 2643 } 2644 2645 } while (zone_type); 2646 return nr_zones; 2647 } 2648 2649 2650 /* 2651 * zonelist_order: 2652 * 0 = automatic detection of better ordering. 2653 * 1 = order by ([node] distance, -zonetype) 2654 * 2 = order by (-zonetype, [node] distance) 2655 * 2656 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 2657 * the same zonelist. So only NUMA can configure this param. 2658 */ 2659 #define ZONELIST_ORDER_DEFAULT 0 2660 #define ZONELIST_ORDER_NODE 1 2661 #define ZONELIST_ORDER_ZONE 2 2662 2663 /* zonelist order in the kernel. 2664 * set_zonelist_order() will set this to NODE or ZONE. 2665 */ 2666 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 2667 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 2668 2669 2670 #ifdef CONFIG_NUMA 2671 /* The value user specified ....changed by config */ 2672 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 2673 /* string for sysctl */ 2674 #define NUMA_ZONELIST_ORDER_LEN 16 2675 char numa_zonelist_order[16] = "default"; 2676 2677 /* 2678 * interface for configure zonelist ordering. 2679 * command line option "numa_zonelist_order" 2680 * = "[dD]efault - default, automatic configuration. 2681 * = "[nN]ode - order by node locality, then by zone within node 2682 * = "[zZ]one - order by zone, then by locality within zone 2683 */ 2684 2685 static int __parse_numa_zonelist_order(char *s) 2686 { 2687 if (*s == 'd' || *s == 'D') { 2688 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 2689 } else if (*s == 'n' || *s == 'N') { 2690 user_zonelist_order = ZONELIST_ORDER_NODE; 2691 } else if (*s == 'z' || *s == 'Z') { 2692 user_zonelist_order = ZONELIST_ORDER_ZONE; 2693 } else { 2694 printk(KERN_WARNING 2695 "Ignoring invalid numa_zonelist_order value: " 2696 "%s\n", s); 2697 return -EINVAL; 2698 } 2699 return 0; 2700 } 2701 2702 static __init int setup_numa_zonelist_order(char *s) 2703 { 2704 int ret; 2705 2706 if (!s) 2707 return 0; 2708 2709 ret = __parse_numa_zonelist_order(s); 2710 if (ret == 0) 2711 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); 2712 2713 return ret; 2714 } 2715 early_param("numa_zonelist_order", setup_numa_zonelist_order); 2716 2717 /* 2718 * sysctl handler for numa_zonelist_order 2719 */ 2720 int numa_zonelist_order_handler(ctl_table *table, int write, 2721 void __user *buffer, size_t *length, 2722 loff_t *ppos) 2723 { 2724 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 2725 int ret; 2726 static DEFINE_MUTEX(zl_order_mutex); 2727 2728 mutex_lock(&zl_order_mutex); 2729 if (write) 2730 strcpy(saved_string, (char*)table->data); 2731 ret = proc_dostring(table, write, buffer, length, ppos); 2732 if (ret) 2733 goto out; 2734 if (write) { 2735 int oldval = user_zonelist_order; 2736 if (__parse_numa_zonelist_order((char*)table->data)) { 2737 /* 2738 * bogus value. restore saved string 2739 */ 2740 strncpy((char*)table->data, saved_string, 2741 NUMA_ZONELIST_ORDER_LEN); 2742 user_zonelist_order = oldval; 2743 } else if (oldval != user_zonelist_order) { 2744 mutex_lock(&zonelists_mutex); 2745 build_all_zonelists(NULL); 2746 mutex_unlock(&zonelists_mutex); 2747 } 2748 } 2749 out: 2750 mutex_unlock(&zl_order_mutex); 2751 return ret; 2752 } 2753 2754 2755 #define MAX_NODE_LOAD (nr_online_nodes) 2756 static int node_load[MAX_NUMNODES]; 2757 2758 /** 2759 * find_next_best_node - find the next node that should appear in a given node's fallback list 2760 * @node: node whose fallback list we're appending 2761 * @used_node_mask: nodemask_t of already used nodes 2762 * 2763 * We use a number of factors to determine which is the next node that should 2764 * appear on a given node's fallback list. The node should not have appeared 2765 * already in @node's fallback list, and it should be the next closest node 2766 * according to the distance array (which contains arbitrary distance values 2767 * from each node to each node in the system), and should also prefer nodes 2768 * with no CPUs, since presumably they'll have very little allocation pressure 2769 * on them otherwise. 2770 * It returns -1 if no node is found. 2771 */ 2772 static int find_next_best_node(int node, nodemask_t *used_node_mask) 2773 { 2774 int n, val; 2775 int min_val = INT_MAX; 2776 int best_node = -1; 2777 const struct cpumask *tmp = cpumask_of_node(0); 2778 2779 /* Use the local node if we haven't already */ 2780 if (!node_isset(node, *used_node_mask)) { 2781 node_set(node, *used_node_mask); 2782 return node; 2783 } 2784 2785 for_each_node_state(n, N_HIGH_MEMORY) { 2786 2787 /* Don't want a node to appear more than once */ 2788 if (node_isset(n, *used_node_mask)) 2789 continue; 2790 2791 /* Use the distance array to find the distance */ 2792 val = node_distance(node, n); 2793 2794 /* Penalize nodes under us ("prefer the next node") */ 2795 val += (n < node); 2796 2797 /* Give preference to headless and unused nodes */ 2798 tmp = cpumask_of_node(n); 2799 if (!cpumask_empty(tmp)) 2800 val += PENALTY_FOR_NODE_WITH_CPUS; 2801 2802 /* Slight preference for less loaded node */ 2803 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 2804 val += node_load[n]; 2805 2806 if (val < min_val) { 2807 min_val = val; 2808 best_node = n; 2809 } 2810 } 2811 2812 if (best_node >= 0) 2813 node_set(best_node, *used_node_mask); 2814 2815 return best_node; 2816 } 2817 2818 2819 /* 2820 * Build zonelists ordered by node and zones within node. 2821 * This results in maximum locality--normal zone overflows into local 2822 * DMA zone, if any--but risks exhausting DMA zone. 2823 */ 2824 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 2825 { 2826 int j; 2827 struct zonelist *zonelist; 2828 2829 zonelist = &pgdat->node_zonelists[0]; 2830 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 2831 ; 2832 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2833 MAX_NR_ZONES - 1); 2834 zonelist->_zonerefs[j].zone = NULL; 2835 zonelist->_zonerefs[j].zone_idx = 0; 2836 } 2837 2838 /* 2839 * Build gfp_thisnode zonelists 2840 */ 2841 static void build_thisnode_zonelists(pg_data_t *pgdat) 2842 { 2843 int j; 2844 struct zonelist *zonelist; 2845 2846 zonelist = &pgdat->node_zonelists[1]; 2847 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 2848 zonelist->_zonerefs[j].zone = NULL; 2849 zonelist->_zonerefs[j].zone_idx = 0; 2850 } 2851 2852 /* 2853 * Build zonelists ordered by zone and nodes within zones. 2854 * This results in conserving DMA zone[s] until all Normal memory is 2855 * exhausted, but results in overflowing to remote node while memory 2856 * may still exist in local DMA zone. 2857 */ 2858 static int node_order[MAX_NUMNODES]; 2859 2860 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 2861 { 2862 int pos, j, node; 2863 int zone_type; /* needs to be signed */ 2864 struct zone *z; 2865 struct zonelist *zonelist; 2866 2867 zonelist = &pgdat->node_zonelists[0]; 2868 pos = 0; 2869 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 2870 for (j = 0; j < nr_nodes; j++) { 2871 node = node_order[j]; 2872 z = &NODE_DATA(node)->node_zones[zone_type]; 2873 if (populated_zone(z)) { 2874 zoneref_set_zone(z, 2875 &zonelist->_zonerefs[pos++]); 2876 check_highest_zone(zone_type); 2877 } 2878 } 2879 } 2880 zonelist->_zonerefs[pos].zone = NULL; 2881 zonelist->_zonerefs[pos].zone_idx = 0; 2882 } 2883 2884 static int default_zonelist_order(void) 2885 { 2886 int nid, zone_type; 2887 unsigned long low_kmem_size,total_size; 2888 struct zone *z; 2889 int average_size; 2890 /* 2891 * ZONE_DMA and ZONE_DMA32 can be very small area in the system. 2892 * If they are really small and used heavily, the system can fall 2893 * into OOM very easily. 2894 * This function detect ZONE_DMA/DMA32 size and configures zone order. 2895 */ 2896 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ 2897 low_kmem_size = 0; 2898 total_size = 0; 2899 for_each_online_node(nid) { 2900 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 2901 z = &NODE_DATA(nid)->node_zones[zone_type]; 2902 if (populated_zone(z)) { 2903 if (zone_type < ZONE_NORMAL) 2904 low_kmem_size += z->present_pages; 2905 total_size += z->present_pages; 2906 } else if (zone_type == ZONE_NORMAL) { 2907 /* 2908 * If any node has only lowmem, then node order 2909 * is preferred to allow kernel allocations 2910 * locally; otherwise, they can easily infringe 2911 * on other nodes when there is an abundance of 2912 * lowmem available to allocate from. 2913 */ 2914 return ZONELIST_ORDER_NODE; 2915 } 2916 } 2917 } 2918 if (!low_kmem_size || /* there are no DMA area. */ 2919 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ 2920 return ZONELIST_ORDER_NODE; 2921 /* 2922 * look into each node's config. 2923 * If there is a node whose DMA/DMA32 memory is very big area on 2924 * local memory, NODE_ORDER may be suitable. 2925 */ 2926 average_size = total_size / 2927 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1); 2928 for_each_online_node(nid) { 2929 low_kmem_size = 0; 2930 total_size = 0; 2931 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 2932 z = &NODE_DATA(nid)->node_zones[zone_type]; 2933 if (populated_zone(z)) { 2934 if (zone_type < ZONE_NORMAL) 2935 low_kmem_size += z->present_pages; 2936 total_size += z->present_pages; 2937 } 2938 } 2939 if (low_kmem_size && 2940 total_size > average_size && /* ignore small node */ 2941 low_kmem_size > total_size * 70/100) 2942 return ZONELIST_ORDER_NODE; 2943 } 2944 return ZONELIST_ORDER_ZONE; 2945 } 2946 2947 static void set_zonelist_order(void) 2948 { 2949 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 2950 current_zonelist_order = default_zonelist_order(); 2951 else 2952 current_zonelist_order = user_zonelist_order; 2953 } 2954 2955 static void build_zonelists(pg_data_t *pgdat) 2956 { 2957 int j, node, load; 2958 enum zone_type i; 2959 nodemask_t used_mask; 2960 int local_node, prev_node; 2961 struct zonelist *zonelist; 2962 int order = current_zonelist_order; 2963 2964 /* initialize zonelists */ 2965 for (i = 0; i < MAX_ZONELISTS; i++) { 2966 zonelist = pgdat->node_zonelists + i; 2967 zonelist->_zonerefs[0].zone = NULL; 2968 zonelist->_zonerefs[0].zone_idx = 0; 2969 } 2970 2971 /* NUMA-aware ordering of nodes */ 2972 local_node = pgdat->node_id; 2973 load = nr_online_nodes; 2974 prev_node = local_node; 2975 nodes_clear(used_mask); 2976 2977 memset(node_order, 0, sizeof(node_order)); 2978 j = 0; 2979 2980 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 2981 int distance = node_distance(local_node, node); 2982 2983 /* 2984 * If another node is sufficiently far away then it is better 2985 * to reclaim pages in a zone before going off node. 2986 */ 2987 if (distance > RECLAIM_DISTANCE) 2988 zone_reclaim_mode = 1; 2989 2990 /* 2991 * We don't want to pressure a particular node. 2992 * So adding penalty to the first node in same 2993 * distance group to make it round-robin. 2994 */ 2995 if (distance != node_distance(local_node, prev_node)) 2996 node_load[node] = load; 2997 2998 prev_node = node; 2999 load--; 3000 if (order == ZONELIST_ORDER_NODE) 3001 build_zonelists_in_node_order(pgdat, node); 3002 else 3003 node_order[j++] = node; /* remember order */ 3004 } 3005 3006 if (order == ZONELIST_ORDER_ZONE) { 3007 /* calculate node order -- i.e., DMA last! */ 3008 build_zonelists_in_zone_order(pgdat, j); 3009 } 3010 3011 build_thisnode_zonelists(pgdat); 3012 } 3013 3014 /* Construct the zonelist performance cache - see further mmzone.h */ 3015 static void build_zonelist_cache(pg_data_t *pgdat) 3016 { 3017 struct zonelist *zonelist; 3018 struct zonelist_cache *zlc; 3019 struct zoneref *z; 3020 3021 zonelist = &pgdat->node_zonelists[0]; 3022 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 3023 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 3024 for (z = zonelist->_zonerefs; z->zone; z++) 3025 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 3026 } 3027 3028 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3029 /* 3030 * Return node id of node used for "local" allocations. 3031 * I.e., first node id of first zone in arg node's generic zonelist. 3032 * Used for initializing percpu 'numa_mem', which is used primarily 3033 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 3034 */ 3035 int local_memory_node(int node) 3036 { 3037 struct zone *zone; 3038 3039 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 3040 gfp_zone(GFP_KERNEL), 3041 NULL, 3042 &zone); 3043 return zone->node; 3044 } 3045 #endif 3046 3047 #else /* CONFIG_NUMA */ 3048 3049 static void set_zonelist_order(void) 3050 { 3051 current_zonelist_order = ZONELIST_ORDER_ZONE; 3052 } 3053 3054 static void build_zonelists(pg_data_t *pgdat) 3055 { 3056 int node, local_node; 3057 enum zone_type j; 3058 struct zonelist *zonelist; 3059 3060 local_node = pgdat->node_id; 3061 3062 zonelist = &pgdat->node_zonelists[0]; 3063 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 3064 3065 /* 3066 * Now we build the zonelist so that it contains the zones 3067 * of all the other nodes. 3068 * We don't want to pressure a particular node, so when 3069 * building the zones for node N, we make sure that the 3070 * zones coming right after the local ones are those from 3071 * node N+1 (modulo N) 3072 */ 3073 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 3074 if (!node_online(node)) 3075 continue; 3076 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3077 MAX_NR_ZONES - 1); 3078 } 3079 for (node = 0; node < local_node; node++) { 3080 if (!node_online(node)) 3081 continue; 3082 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3083 MAX_NR_ZONES - 1); 3084 } 3085 3086 zonelist->_zonerefs[j].zone = NULL; 3087 zonelist->_zonerefs[j].zone_idx = 0; 3088 } 3089 3090 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 3091 static void build_zonelist_cache(pg_data_t *pgdat) 3092 { 3093 pgdat->node_zonelists[0].zlcache_ptr = NULL; 3094 } 3095 3096 #endif /* CONFIG_NUMA */ 3097 3098 /* 3099 * Boot pageset table. One per cpu which is going to be used for all 3100 * zones and all nodes. The parameters will be set in such a way 3101 * that an item put on a list will immediately be handed over to 3102 * the buddy list. This is safe since pageset manipulation is done 3103 * with interrupts disabled. 3104 * 3105 * The boot_pagesets must be kept even after bootup is complete for 3106 * unused processors and/or zones. They do play a role for bootstrapping 3107 * hotplugged processors. 3108 * 3109 * zoneinfo_show() and maybe other functions do 3110 * not check if the processor is online before following the pageset pointer. 3111 * Other parts of the kernel may not check if the zone is available. 3112 */ 3113 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 3114 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 3115 static void setup_zone_pageset(struct zone *zone); 3116 3117 /* 3118 * Global mutex to protect against size modification of zonelists 3119 * as well as to serialize pageset setup for the new populated zone. 3120 */ 3121 DEFINE_MUTEX(zonelists_mutex); 3122 3123 /* return values int ....just for stop_machine() */ 3124 static __init_refok int __build_all_zonelists(void *data) 3125 { 3126 int nid; 3127 int cpu; 3128 3129 #ifdef CONFIG_NUMA 3130 memset(node_load, 0, sizeof(node_load)); 3131 #endif 3132 for_each_online_node(nid) { 3133 pg_data_t *pgdat = NODE_DATA(nid); 3134 3135 build_zonelists(pgdat); 3136 build_zonelist_cache(pgdat); 3137 } 3138 3139 /* 3140 * Initialize the boot_pagesets that are going to be used 3141 * for bootstrapping processors. The real pagesets for 3142 * each zone will be allocated later when the per cpu 3143 * allocator is available. 3144 * 3145 * boot_pagesets are used also for bootstrapping offline 3146 * cpus if the system is already booted because the pagesets 3147 * are needed to initialize allocators on a specific cpu too. 3148 * F.e. the percpu allocator needs the page allocator which 3149 * needs the percpu allocator in order to allocate its pagesets 3150 * (a chicken-egg dilemma). 3151 */ 3152 for_each_possible_cpu(cpu) { 3153 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 3154 3155 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3156 /* 3157 * We now know the "local memory node" for each node-- 3158 * i.e., the node of the first zone in the generic zonelist. 3159 * Set up numa_mem percpu variable for on-line cpus. During 3160 * boot, only the boot cpu should be on-line; we'll init the 3161 * secondary cpus' numa_mem as they come on-line. During 3162 * node/memory hotplug, we'll fixup all on-line cpus. 3163 */ 3164 if (cpu_online(cpu)) 3165 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 3166 #endif 3167 } 3168 3169 return 0; 3170 } 3171 3172 /* 3173 * Called with zonelists_mutex held always 3174 * unless system_state == SYSTEM_BOOTING. 3175 */ 3176 void build_all_zonelists(void *data) 3177 { 3178 set_zonelist_order(); 3179 3180 if (system_state == SYSTEM_BOOTING) { 3181 __build_all_zonelists(NULL); 3182 mminit_verify_zonelist(); 3183 cpuset_init_current_mems_allowed(); 3184 } else { 3185 /* we have to stop all cpus to guarantee there is no user 3186 of zonelist */ 3187 #ifdef CONFIG_MEMORY_HOTPLUG 3188 if (data) 3189 setup_zone_pageset((struct zone *)data); 3190 #endif 3191 stop_machine(__build_all_zonelists, NULL, NULL); 3192 /* cpuset refresh routine should be here */ 3193 } 3194 vm_total_pages = nr_free_pagecache_pages(); 3195 /* 3196 * Disable grouping by mobility if the number of pages in the 3197 * system is too low to allow the mechanism to work. It would be 3198 * more accurate, but expensive to check per-zone. This check is 3199 * made on memory-hotadd so a system can start with mobility 3200 * disabled and enable it later 3201 */ 3202 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 3203 page_group_by_mobility_disabled = 1; 3204 else 3205 page_group_by_mobility_disabled = 0; 3206 3207 printk("Built %i zonelists in %s order, mobility grouping %s. " 3208 "Total pages: %ld\n", 3209 nr_online_nodes, 3210 zonelist_order_name[current_zonelist_order], 3211 page_group_by_mobility_disabled ? "off" : "on", 3212 vm_total_pages); 3213 #ifdef CONFIG_NUMA 3214 printk("Policy zone: %s\n", zone_names[policy_zone]); 3215 #endif 3216 } 3217 3218 /* 3219 * Helper functions to size the waitqueue hash table. 3220 * Essentially these want to choose hash table sizes sufficiently 3221 * large so that collisions trying to wait on pages are rare. 3222 * But in fact, the number of active page waitqueues on typical 3223 * systems is ridiculously low, less than 200. So this is even 3224 * conservative, even though it seems large. 3225 * 3226 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 3227 * waitqueues, i.e. the size of the waitq table given the number of pages. 3228 */ 3229 #define PAGES_PER_WAITQUEUE 256 3230 3231 #ifndef CONFIG_MEMORY_HOTPLUG 3232 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3233 { 3234 unsigned long size = 1; 3235 3236 pages /= PAGES_PER_WAITQUEUE; 3237 3238 while (size < pages) 3239 size <<= 1; 3240 3241 /* 3242 * Once we have dozens or even hundreds of threads sleeping 3243 * on IO we've got bigger problems than wait queue collision. 3244 * Limit the size of the wait table to a reasonable size. 3245 */ 3246 size = min(size, 4096UL); 3247 3248 return max(size, 4UL); 3249 } 3250 #else 3251 /* 3252 * A zone's size might be changed by hot-add, so it is not possible to determine 3253 * a suitable size for its wait_table. So we use the maximum size now. 3254 * 3255 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 3256 * 3257 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 3258 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 3259 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 3260 * 3261 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 3262 * or more by the traditional way. (See above). It equals: 3263 * 3264 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 3265 * ia64(16K page size) : = ( 8G + 4M)byte. 3266 * powerpc (64K page size) : = (32G +16M)byte. 3267 */ 3268 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3269 { 3270 return 4096UL; 3271 } 3272 #endif 3273 3274 /* 3275 * This is an integer logarithm so that shifts can be used later 3276 * to extract the more random high bits from the multiplicative 3277 * hash function before the remainder is taken. 3278 */ 3279 static inline unsigned long wait_table_bits(unsigned long size) 3280 { 3281 return ffz(~size); 3282 } 3283 3284 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 3285 3286 /* 3287 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 3288 * of blocks reserved is based on min_wmark_pages(zone). The memory within 3289 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes 3290 * higher will lead to a bigger reserve which will get freed as contiguous 3291 * blocks as reclaim kicks in 3292 */ 3293 static void setup_zone_migrate_reserve(struct zone *zone) 3294 { 3295 unsigned long start_pfn, pfn, end_pfn; 3296 struct page *page; 3297 unsigned long block_migratetype; 3298 int reserve; 3299 3300 /* Get the start pfn, end pfn and the number of blocks to reserve */ 3301 start_pfn = zone->zone_start_pfn; 3302 end_pfn = start_pfn + zone->spanned_pages; 3303 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> 3304 pageblock_order; 3305 3306 /* 3307 * Reserve blocks are generally in place to help high-order atomic 3308 * allocations that are short-lived. A min_free_kbytes value that 3309 * would result in more than 2 reserve blocks for atomic allocations 3310 * is assumed to be in place to help anti-fragmentation for the 3311 * future allocation of hugepages at runtime. 3312 */ 3313 reserve = min(2, reserve); 3314 3315 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 3316 if (!pfn_valid(pfn)) 3317 continue; 3318 page = pfn_to_page(pfn); 3319 3320 /* Watch out for overlapping nodes */ 3321 if (page_to_nid(page) != zone_to_nid(zone)) 3322 continue; 3323 3324 /* Blocks with reserved pages will never free, skip them. */ 3325 if (PageReserved(page)) 3326 continue; 3327 3328 block_migratetype = get_pageblock_migratetype(page); 3329 3330 /* If this block is reserved, account for it */ 3331 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) { 3332 reserve--; 3333 continue; 3334 } 3335 3336 /* Suitable for reserving if this block is movable */ 3337 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) { 3338 set_pageblock_migratetype(page, MIGRATE_RESERVE); 3339 move_freepages_block(zone, page, MIGRATE_RESERVE); 3340 reserve--; 3341 continue; 3342 } 3343 3344 /* 3345 * If the reserve is met and this is a previous reserved block, 3346 * take it back 3347 */ 3348 if (block_migratetype == MIGRATE_RESERVE) { 3349 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3350 move_freepages_block(zone, page, MIGRATE_MOVABLE); 3351 } 3352 } 3353 } 3354 3355 /* 3356 * Initially all pages are reserved - free ones are freed 3357 * up by free_all_bootmem() once the early boot process is 3358 * done. Non-atomic initialization, single-pass. 3359 */ 3360 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 3361 unsigned long start_pfn, enum memmap_context context) 3362 { 3363 struct page *page; 3364 unsigned long end_pfn = start_pfn + size; 3365 unsigned long pfn; 3366 struct zone *z; 3367 3368 if (highest_memmap_pfn < end_pfn - 1) 3369 highest_memmap_pfn = end_pfn - 1; 3370 3371 z = &NODE_DATA(nid)->node_zones[zone]; 3372 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3373 /* 3374 * There can be holes in boot-time mem_map[]s 3375 * handed to this function. They do not 3376 * exist on hotplugged memory. 3377 */ 3378 if (context == MEMMAP_EARLY) { 3379 if (!early_pfn_valid(pfn)) 3380 continue; 3381 if (!early_pfn_in_nid(pfn, nid)) 3382 continue; 3383 } 3384 page = pfn_to_page(pfn); 3385 set_page_links(page, zone, nid, pfn); 3386 mminit_verify_page_links(page, zone, nid, pfn); 3387 init_page_count(page); 3388 reset_page_mapcount(page); 3389 SetPageReserved(page); 3390 /* 3391 * Mark the block movable so that blocks are reserved for 3392 * movable at startup. This will force kernel allocations 3393 * to reserve their blocks rather than leaking throughout 3394 * the address space during boot when many long-lived 3395 * kernel allocations are made. Later some blocks near 3396 * the start are marked MIGRATE_RESERVE by 3397 * setup_zone_migrate_reserve() 3398 * 3399 * bitmap is created for zone's valid pfn range. but memmap 3400 * can be created for invalid pages (for alignment) 3401 * check here not to call set_pageblock_migratetype() against 3402 * pfn out of zone. 3403 */ 3404 if ((z->zone_start_pfn <= pfn) 3405 && (pfn < z->zone_start_pfn + z->spanned_pages) 3406 && !(pfn & (pageblock_nr_pages - 1))) 3407 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3408 3409 INIT_LIST_HEAD(&page->lru); 3410 #ifdef WANT_PAGE_VIRTUAL 3411 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 3412 if (!is_highmem_idx(zone)) 3413 set_page_address(page, __va(pfn << PAGE_SHIFT)); 3414 #endif 3415 } 3416 } 3417 3418 static void __meminit zone_init_free_lists(struct zone *zone) 3419 { 3420 int order, t; 3421 for_each_migratetype_order(order, t) { 3422 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 3423 zone->free_area[order].nr_free = 0; 3424 } 3425 } 3426 3427 #ifndef __HAVE_ARCH_MEMMAP_INIT 3428 #define memmap_init(size, nid, zone, start_pfn) \ 3429 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 3430 #endif 3431 3432 static int zone_batchsize(struct zone *zone) 3433 { 3434 #ifdef CONFIG_MMU 3435 int batch; 3436 3437 /* 3438 * The per-cpu-pages pools are set to around 1000th of the 3439 * size of the zone. But no more than 1/2 of a meg. 3440 * 3441 * OK, so we don't know how big the cache is. So guess. 3442 */ 3443 batch = zone->present_pages / 1024; 3444 if (batch * PAGE_SIZE > 512 * 1024) 3445 batch = (512 * 1024) / PAGE_SIZE; 3446 batch /= 4; /* We effectively *= 4 below */ 3447 if (batch < 1) 3448 batch = 1; 3449 3450 /* 3451 * Clamp the batch to a 2^n - 1 value. Having a power 3452 * of 2 value was found to be more likely to have 3453 * suboptimal cache aliasing properties in some cases. 3454 * 3455 * For example if 2 tasks are alternately allocating 3456 * batches of pages, one task can end up with a lot 3457 * of pages of one half of the possible page colors 3458 * and the other with pages of the other colors. 3459 */ 3460 batch = rounddown_pow_of_two(batch + batch/2) - 1; 3461 3462 return batch; 3463 3464 #else 3465 /* The deferral and batching of frees should be suppressed under NOMMU 3466 * conditions. 3467 * 3468 * The problem is that NOMMU needs to be able to allocate large chunks 3469 * of contiguous memory as there's no hardware page translation to 3470 * assemble apparent contiguous memory from discontiguous pages. 3471 * 3472 * Queueing large contiguous runs of pages for batching, however, 3473 * causes the pages to actually be freed in smaller chunks. As there 3474 * can be a significant delay between the individual batches being 3475 * recycled, this leads to the once large chunks of space being 3476 * fragmented and becoming unavailable for high-order allocations. 3477 */ 3478 return 0; 3479 #endif 3480 } 3481 3482 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 3483 { 3484 struct per_cpu_pages *pcp; 3485 int migratetype; 3486 3487 memset(p, 0, sizeof(*p)); 3488 3489 pcp = &p->pcp; 3490 pcp->count = 0; 3491 pcp->high = 6 * batch; 3492 pcp->batch = max(1UL, 1 * batch); 3493 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 3494 INIT_LIST_HEAD(&pcp->lists[migratetype]); 3495 } 3496 3497 /* 3498 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 3499 * to the value high for the pageset p. 3500 */ 3501 3502 static void setup_pagelist_highmark(struct per_cpu_pageset *p, 3503 unsigned long high) 3504 { 3505 struct per_cpu_pages *pcp; 3506 3507 pcp = &p->pcp; 3508 pcp->high = high; 3509 pcp->batch = max(1UL, high/4); 3510 if ((high/4) > (PAGE_SHIFT * 8)) 3511 pcp->batch = PAGE_SHIFT * 8; 3512 } 3513 3514 static __meminit void setup_zone_pageset(struct zone *zone) 3515 { 3516 int cpu; 3517 3518 zone->pageset = alloc_percpu(struct per_cpu_pageset); 3519 3520 for_each_possible_cpu(cpu) { 3521 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 3522 3523 setup_pageset(pcp, zone_batchsize(zone)); 3524 3525 if (percpu_pagelist_fraction) 3526 setup_pagelist_highmark(pcp, 3527 (zone->present_pages / 3528 percpu_pagelist_fraction)); 3529 } 3530 } 3531 3532 /* 3533 * Allocate per cpu pagesets and initialize them. 3534 * Before this call only boot pagesets were available. 3535 */ 3536 void __init setup_per_cpu_pageset(void) 3537 { 3538 struct zone *zone; 3539 3540 for_each_populated_zone(zone) 3541 setup_zone_pageset(zone); 3542 } 3543 3544 static noinline __init_refok 3545 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 3546 { 3547 int i; 3548 struct pglist_data *pgdat = zone->zone_pgdat; 3549 size_t alloc_size; 3550 3551 /* 3552 * The per-page waitqueue mechanism uses hashed waitqueues 3553 * per zone. 3554 */ 3555 zone->wait_table_hash_nr_entries = 3556 wait_table_hash_nr_entries(zone_size_pages); 3557 zone->wait_table_bits = 3558 wait_table_bits(zone->wait_table_hash_nr_entries); 3559 alloc_size = zone->wait_table_hash_nr_entries 3560 * sizeof(wait_queue_head_t); 3561 3562 if (!slab_is_available()) { 3563 zone->wait_table = (wait_queue_head_t *) 3564 alloc_bootmem_node(pgdat, alloc_size); 3565 } else { 3566 /* 3567 * This case means that a zone whose size was 0 gets new memory 3568 * via memory hot-add. 3569 * But it may be the case that a new node was hot-added. In 3570 * this case vmalloc() will not be able to use this new node's 3571 * memory - this wait_table must be initialized to use this new 3572 * node itself as well. 3573 * To use this new node's memory, further consideration will be 3574 * necessary. 3575 */ 3576 zone->wait_table = vmalloc(alloc_size); 3577 } 3578 if (!zone->wait_table) 3579 return -ENOMEM; 3580 3581 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) 3582 init_waitqueue_head(zone->wait_table + i); 3583 3584 return 0; 3585 } 3586 3587 static int __zone_pcp_update(void *data) 3588 { 3589 struct zone *zone = data; 3590 int cpu; 3591 unsigned long batch = zone_batchsize(zone), flags; 3592 3593 for_each_possible_cpu(cpu) { 3594 struct per_cpu_pageset *pset; 3595 struct per_cpu_pages *pcp; 3596 3597 pset = per_cpu_ptr(zone->pageset, cpu); 3598 pcp = &pset->pcp; 3599 3600 local_irq_save(flags); 3601 free_pcppages_bulk(zone, pcp->count, pcp); 3602 setup_pageset(pset, batch); 3603 local_irq_restore(flags); 3604 } 3605 return 0; 3606 } 3607 3608 void zone_pcp_update(struct zone *zone) 3609 { 3610 stop_machine(__zone_pcp_update, zone, NULL); 3611 } 3612 3613 static __meminit void zone_pcp_init(struct zone *zone) 3614 { 3615 /* 3616 * per cpu subsystem is not up at this point. The following code 3617 * relies on the ability of the linker to provide the 3618 * offset of a (static) per cpu variable into the per cpu area. 3619 */ 3620 zone->pageset = &boot_pageset; 3621 3622 if (zone->present_pages) 3623 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 3624 zone->name, zone->present_pages, 3625 zone_batchsize(zone)); 3626 } 3627 3628 __meminit int init_currently_empty_zone(struct zone *zone, 3629 unsigned long zone_start_pfn, 3630 unsigned long size, 3631 enum memmap_context context) 3632 { 3633 struct pglist_data *pgdat = zone->zone_pgdat; 3634 int ret; 3635 ret = zone_wait_table_init(zone, size); 3636 if (ret) 3637 return ret; 3638 pgdat->nr_zones = zone_idx(zone) + 1; 3639 3640 zone->zone_start_pfn = zone_start_pfn; 3641 3642 mminit_dprintk(MMINIT_TRACE, "memmap_init", 3643 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 3644 pgdat->node_id, 3645 (unsigned long)zone_idx(zone), 3646 zone_start_pfn, (zone_start_pfn + size)); 3647 3648 zone_init_free_lists(zone); 3649 3650 return 0; 3651 } 3652 3653 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 3654 /* 3655 * Basic iterator support. Return the first range of PFNs for a node 3656 * Note: nid == MAX_NUMNODES returns first region regardless of node 3657 */ 3658 static int __meminit first_active_region_index_in_nid(int nid) 3659 { 3660 int i; 3661 3662 for (i = 0; i < nr_nodemap_entries; i++) 3663 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid) 3664 return i; 3665 3666 return -1; 3667 } 3668 3669 /* 3670 * Basic iterator support. Return the next active range of PFNs for a node 3671 * Note: nid == MAX_NUMNODES returns next region regardless of node 3672 */ 3673 static int __meminit next_active_region_index_in_nid(int index, int nid) 3674 { 3675 for (index = index + 1; index < nr_nodemap_entries; index++) 3676 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid) 3677 return index; 3678 3679 return -1; 3680 } 3681 3682 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 3683 /* 3684 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 3685 * Architectures may implement their own version but if add_active_range() 3686 * was used and there are no special requirements, this is a convenient 3687 * alternative 3688 */ 3689 int __meminit __early_pfn_to_nid(unsigned long pfn) 3690 { 3691 int i; 3692 3693 for (i = 0; i < nr_nodemap_entries; i++) { 3694 unsigned long start_pfn = early_node_map[i].start_pfn; 3695 unsigned long end_pfn = early_node_map[i].end_pfn; 3696 3697 if (start_pfn <= pfn && pfn < end_pfn) 3698 return early_node_map[i].nid; 3699 } 3700 /* This is a memory hole */ 3701 return -1; 3702 } 3703 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 3704 3705 int __meminit early_pfn_to_nid(unsigned long pfn) 3706 { 3707 int nid; 3708 3709 nid = __early_pfn_to_nid(pfn); 3710 if (nid >= 0) 3711 return nid; 3712 /* just returns 0 */ 3713 return 0; 3714 } 3715 3716 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 3717 bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 3718 { 3719 int nid; 3720 3721 nid = __early_pfn_to_nid(pfn); 3722 if (nid >= 0 && nid != node) 3723 return false; 3724 return true; 3725 } 3726 #endif 3727 3728 /* Basic iterator support to walk early_node_map[] */ 3729 #define for_each_active_range_index_in_nid(i, nid) \ 3730 for (i = first_active_region_index_in_nid(nid); i != -1; \ 3731 i = next_active_region_index_in_nid(i, nid)) 3732 3733 /** 3734 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range 3735 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 3736 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node 3737 * 3738 * If an architecture guarantees that all ranges registered with 3739 * add_active_ranges() contain no holes and may be freed, this 3740 * this function may be used instead of calling free_bootmem() manually. 3741 */ 3742 void __init free_bootmem_with_active_regions(int nid, 3743 unsigned long max_low_pfn) 3744 { 3745 int i; 3746 3747 for_each_active_range_index_in_nid(i, nid) { 3748 unsigned long size_pages = 0; 3749 unsigned long end_pfn = early_node_map[i].end_pfn; 3750 3751 if (early_node_map[i].start_pfn >= max_low_pfn) 3752 continue; 3753 3754 if (end_pfn > max_low_pfn) 3755 end_pfn = max_low_pfn; 3756 3757 size_pages = end_pfn - early_node_map[i].start_pfn; 3758 free_bootmem_node(NODE_DATA(early_node_map[i].nid), 3759 PFN_PHYS(early_node_map[i].start_pfn), 3760 size_pages << PAGE_SHIFT); 3761 } 3762 } 3763 3764 #ifdef CONFIG_HAVE_MEMBLOCK 3765 /* 3766 * Basic iterator support. Return the last range of PFNs for a node 3767 * Note: nid == MAX_NUMNODES returns last region regardless of node 3768 */ 3769 static int __meminit last_active_region_index_in_nid(int nid) 3770 { 3771 int i; 3772 3773 for (i = nr_nodemap_entries - 1; i >= 0; i--) 3774 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid) 3775 return i; 3776 3777 return -1; 3778 } 3779 3780 /* 3781 * Basic iterator support. Return the previous active range of PFNs for a node 3782 * Note: nid == MAX_NUMNODES returns next region regardless of node 3783 */ 3784 static int __meminit previous_active_region_index_in_nid(int index, int nid) 3785 { 3786 for (index = index - 1; index >= 0; index--) 3787 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid) 3788 return index; 3789 3790 return -1; 3791 } 3792 3793 #define for_each_active_range_index_in_nid_reverse(i, nid) \ 3794 for (i = last_active_region_index_in_nid(nid); i != -1; \ 3795 i = previous_active_region_index_in_nid(i, nid)) 3796 3797 u64 __init find_memory_core_early(int nid, u64 size, u64 align, 3798 u64 goal, u64 limit) 3799 { 3800 int i; 3801 3802 /* Need to go over early_node_map to find out good range for node */ 3803 for_each_active_range_index_in_nid_reverse(i, nid) { 3804 u64 addr; 3805 u64 ei_start, ei_last; 3806 u64 final_start, final_end; 3807 3808 ei_last = early_node_map[i].end_pfn; 3809 ei_last <<= PAGE_SHIFT; 3810 ei_start = early_node_map[i].start_pfn; 3811 ei_start <<= PAGE_SHIFT; 3812 3813 final_start = max(ei_start, goal); 3814 final_end = min(ei_last, limit); 3815 3816 if (final_start >= final_end) 3817 continue; 3818 3819 addr = memblock_find_in_range(final_start, final_end, size, align); 3820 3821 if (addr == MEMBLOCK_ERROR) 3822 continue; 3823 3824 return addr; 3825 } 3826 3827 return MEMBLOCK_ERROR; 3828 } 3829 #endif 3830 3831 int __init add_from_early_node_map(struct range *range, int az, 3832 int nr_range, int nid) 3833 { 3834 int i; 3835 u64 start, end; 3836 3837 /* need to go over early_node_map to find out good range for node */ 3838 for_each_active_range_index_in_nid(i, nid) { 3839 start = early_node_map[i].start_pfn; 3840 end = early_node_map[i].end_pfn; 3841 nr_range = add_range(range, az, nr_range, start, end); 3842 } 3843 return nr_range; 3844 } 3845 3846 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data) 3847 { 3848 int i; 3849 int ret; 3850 3851 for_each_active_range_index_in_nid(i, nid) { 3852 ret = work_fn(early_node_map[i].start_pfn, 3853 early_node_map[i].end_pfn, data); 3854 if (ret) 3855 break; 3856 } 3857 } 3858 /** 3859 * sparse_memory_present_with_active_regions - Call memory_present for each active range 3860 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 3861 * 3862 * If an architecture guarantees that all ranges registered with 3863 * add_active_ranges() contain no holes and may be freed, this 3864 * function may be used instead of calling memory_present() manually. 3865 */ 3866 void __init sparse_memory_present_with_active_regions(int nid) 3867 { 3868 int i; 3869 3870 for_each_active_range_index_in_nid(i, nid) 3871 memory_present(early_node_map[i].nid, 3872 early_node_map[i].start_pfn, 3873 early_node_map[i].end_pfn); 3874 } 3875 3876 /** 3877 * get_pfn_range_for_nid - Return the start and end page frames for a node 3878 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 3879 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 3880 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 3881 * 3882 * It returns the start and end page frame of a node based on information 3883 * provided by an arch calling add_active_range(). If called for a node 3884 * with no available memory, a warning is printed and the start and end 3885 * PFNs will be 0. 3886 */ 3887 void __meminit get_pfn_range_for_nid(unsigned int nid, 3888 unsigned long *start_pfn, unsigned long *end_pfn) 3889 { 3890 int i; 3891 *start_pfn = -1UL; 3892 *end_pfn = 0; 3893 3894 for_each_active_range_index_in_nid(i, nid) { 3895 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn); 3896 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn); 3897 } 3898 3899 if (*start_pfn == -1UL) 3900 *start_pfn = 0; 3901 } 3902 3903 /* 3904 * This finds a zone that can be used for ZONE_MOVABLE pages. The 3905 * assumption is made that zones within a node are ordered in monotonic 3906 * increasing memory addresses so that the "highest" populated zone is used 3907 */ 3908 static void __init find_usable_zone_for_movable(void) 3909 { 3910 int zone_index; 3911 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 3912 if (zone_index == ZONE_MOVABLE) 3913 continue; 3914 3915 if (arch_zone_highest_possible_pfn[zone_index] > 3916 arch_zone_lowest_possible_pfn[zone_index]) 3917 break; 3918 } 3919 3920 VM_BUG_ON(zone_index == -1); 3921 movable_zone = zone_index; 3922 } 3923 3924 /* 3925 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 3926 * because it is sized independant of architecture. Unlike the other zones, 3927 * the starting point for ZONE_MOVABLE is not fixed. It may be different 3928 * in each node depending on the size of each node and how evenly kernelcore 3929 * is distributed. This helper function adjusts the zone ranges 3930 * provided by the architecture for a given node by using the end of the 3931 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 3932 * zones within a node are in order of monotonic increases memory addresses 3933 */ 3934 static void __meminit adjust_zone_range_for_zone_movable(int nid, 3935 unsigned long zone_type, 3936 unsigned long node_start_pfn, 3937 unsigned long node_end_pfn, 3938 unsigned long *zone_start_pfn, 3939 unsigned long *zone_end_pfn) 3940 { 3941 /* Only adjust if ZONE_MOVABLE is on this node */ 3942 if (zone_movable_pfn[nid]) { 3943 /* Size ZONE_MOVABLE */ 3944 if (zone_type == ZONE_MOVABLE) { 3945 *zone_start_pfn = zone_movable_pfn[nid]; 3946 *zone_end_pfn = min(node_end_pfn, 3947 arch_zone_highest_possible_pfn[movable_zone]); 3948 3949 /* Adjust for ZONE_MOVABLE starting within this range */ 3950 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 3951 *zone_end_pfn > zone_movable_pfn[nid]) { 3952 *zone_end_pfn = zone_movable_pfn[nid]; 3953 3954 /* Check if this whole range is within ZONE_MOVABLE */ 3955 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 3956 *zone_start_pfn = *zone_end_pfn; 3957 } 3958 } 3959 3960 /* 3961 * Return the number of pages a zone spans in a node, including holes 3962 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 3963 */ 3964 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 3965 unsigned long zone_type, 3966 unsigned long *ignored) 3967 { 3968 unsigned long node_start_pfn, node_end_pfn; 3969 unsigned long zone_start_pfn, zone_end_pfn; 3970 3971 /* Get the start and end of the node and zone */ 3972 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 3973 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 3974 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 3975 adjust_zone_range_for_zone_movable(nid, zone_type, 3976 node_start_pfn, node_end_pfn, 3977 &zone_start_pfn, &zone_end_pfn); 3978 3979 /* Check that this node has pages within the zone's required range */ 3980 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 3981 return 0; 3982 3983 /* Move the zone boundaries inside the node if necessary */ 3984 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 3985 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 3986 3987 /* Return the spanned pages */ 3988 return zone_end_pfn - zone_start_pfn; 3989 } 3990 3991 /* 3992 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 3993 * then all holes in the requested range will be accounted for. 3994 */ 3995 unsigned long __meminit __absent_pages_in_range(int nid, 3996 unsigned long range_start_pfn, 3997 unsigned long range_end_pfn) 3998 { 3999 int i = 0; 4000 unsigned long prev_end_pfn = 0, hole_pages = 0; 4001 unsigned long start_pfn; 4002 4003 /* Find the end_pfn of the first active range of pfns in the node */ 4004 i = first_active_region_index_in_nid(nid); 4005 if (i == -1) 4006 return 0; 4007 4008 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 4009 4010 /* Account for ranges before physical memory on this node */ 4011 if (early_node_map[i].start_pfn > range_start_pfn) 4012 hole_pages = prev_end_pfn - range_start_pfn; 4013 4014 /* Find all holes for the zone within the node */ 4015 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) { 4016 4017 /* No need to continue if prev_end_pfn is outside the zone */ 4018 if (prev_end_pfn >= range_end_pfn) 4019 break; 4020 4021 /* Make sure the end of the zone is not within the hole */ 4022 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 4023 prev_end_pfn = max(prev_end_pfn, range_start_pfn); 4024 4025 /* Update the hole size cound and move on */ 4026 if (start_pfn > range_start_pfn) { 4027 BUG_ON(prev_end_pfn > start_pfn); 4028 hole_pages += start_pfn - prev_end_pfn; 4029 } 4030 prev_end_pfn = early_node_map[i].end_pfn; 4031 } 4032 4033 /* Account for ranges past physical memory on this node */ 4034 if (range_end_pfn > prev_end_pfn) 4035 hole_pages += range_end_pfn - 4036 max(range_start_pfn, prev_end_pfn); 4037 4038 return hole_pages; 4039 } 4040 4041 /** 4042 * absent_pages_in_range - Return number of page frames in holes within a range 4043 * @start_pfn: The start PFN to start searching for holes 4044 * @end_pfn: The end PFN to stop searching for holes 4045 * 4046 * It returns the number of pages frames in memory holes within a range. 4047 */ 4048 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 4049 unsigned long end_pfn) 4050 { 4051 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 4052 } 4053 4054 /* Return the number of page frames in holes in a zone on a node */ 4055 static unsigned long __meminit zone_absent_pages_in_node(int nid, 4056 unsigned long zone_type, 4057 unsigned long *ignored) 4058 { 4059 unsigned long node_start_pfn, node_end_pfn; 4060 unsigned long zone_start_pfn, zone_end_pfn; 4061 4062 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 4063 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type], 4064 node_start_pfn); 4065 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type], 4066 node_end_pfn); 4067 4068 adjust_zone_range_for_zone_movable(nid, zone_type, 4069 node_start_pfn, node_end_pfn, 4070 &zone_start_pfn, &zone_end_pfn); 4071 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 4072 } 4073 4074 #else 4075 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 4076 unsigned long zone_type, 4077 unsigned long *zones_size) 4078 { 4079 return zones_size[zone_type]; 4080 } 4081 4082 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 4083 unsigned long zone_type, 4084 unsigned long *zholes_size) 4085 { 4086 if (!zholes_size) 4087 return 0; 4088 4089 return zholes_size[zone_type]; 4090 } 4091 4092 #endif 4093 4094 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 4095 unsigned long *zones_size, unsigned long *zholes_size) 4096 { 4097 unsigned long realtotalpages, totalpages = 0; 4098 enum zone_type i; 4099 4100 for (i = 0; i < MAX_NR_ZONES; i++) 4101 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 4102 zones_size); 4103 pgdat->node_spanned_pages = totalpages; 4104 4105 realtotalpages = totalpages; 4106 for (i = 0; i < MAX_NR_ZONES; i++) 4107 realtotalpages -= 4108 zone_absent_pages_in_node(pgdat->node_id, i, 4109 zholes_size); 4110 pgdat->node_present_pages = realtotalpages; 4111 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 4112 realtotalpages); 4113 } 4114 4115 #ifndef CONFIG_SPARSEMEM 4116 /* 4117 * Calculate the size of the zone->blockflags rounded to an unsigned long 4118 * Start by making sure zonesize is a multiple of pageblock_order by rounding 4119 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 4120 * round what is now in bits to nearest long in bits, then return it in 4121 * bytes. 4122 */ 4123 static unsigned long __init usemap_size(unsigned long zonesize) 4124 { 4125 unsigned long usemapsize; 4126 4127 usemapsize = roundup(zonesize, pageblock_nr_pages); 4128 usemapsize = usemapsize >> pageblock_order; 4129 usemapsize *= NR_PAGEBLOCK_BITS; 4130 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 4131 4132 return usemapsize / 8; 4133 } 4134 4135 static void __init setup_usemap(struct pglist_data *pgdat, 4136 struct zone *zone, unsigned long zonesize) 4137 { 4138 unsigned long usemapsize = usemap_size(zonesize); 4139 zone->pageblock_flags = NULL; 4140 if (usemapsize) 4141 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize); 4142 } 4143 #else 4144 static inline void setup_usemap(struct pglist_data *pgdat, 4145 struct zone *zone, unsigned long zonesize) {} 4146 #endif /* CONFIG_SPARSEMEM */ 4147 4148 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 4149 4150 /* Return a sensible default order for the pageblock size. */ 4151 static inline int pageblock_default_order(void) 4152 { 4153 if (HPAGE_SHIFT > PAGE_SHIFT) 4154 return HUGETLB_PAGE_ORDER; 4155 4156 return MAX_ORDER-1; 4157 } 4158 4159 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 4160 static inline void __init set_pageblock_order(unsigned int order) 4161 { 4162 /* Check that pageblock_nr_pages has not already been setup */ 4163 if (pageblock_order) 4164 return; 4165 4166 /* 4167 * Assume the largest contiguous order of interest is a huge page. 4168 * This value may be variable depending on boot parameters on IA64 4169 */ 4170 pageblock_order = order; 4171 } 4172 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4173 4174 /* 4175 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 4176 * and pageblock_default_order() are unused as pageblock_order is set 4177 * at compile-time. See include/linux/pageblock-flags.h for the values of 4178 * pageblock_order based on the kernel config 4179 */ 4180 static inline int pageblock_default_order(unsigned int order) 4181 { 4182 return MAX_ORDER-1; 4183 } 4184 #define set_pageblock_order(x) do {} while (0) 4185 4186 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4187 4188 /* 4189 * Set up the zone data structures: 4190 * - mark all pages reserved 4191 * - mark all memory queues empty 4192 * - clear the memory bitmaps 4193 */ 4194 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 4195 unsigned long *zones_size, unsigned long *zholes_size) 4196 { 4197 enum zone_type j; 4198 int nid = pgdat->node_id; 4199 unsigned long zone_start_pfn = pgdat->node_start_pfn; 4200 int ret; 4201 4202 pgdat_resize_init(pgdat); 4203 pgdat->nr_zones = 0; 4204 init_waitqueue_head(&pgdat->kswapd_wait); 4205 pgdat->kswapd_max_order = 0; 4206 pgdat_page_cgroup_init(pgdat); 4207 4208 for (j = 0; j < MAX_NR_ZONES; j++) { 4209 struct zone *zone = pgdat->node_zones + j; 4210 unsigned long size, realsize, memmap_pages; 4211 enum lru_list l; 4212 4213 size = zone_spanned_pages_in_node(nid, j, zones_size); 4214 realsize = size - zone_absent_pages_in_node(nid, j, 4215 zholes_size); 4216 4217 /* 4218 * Adjust realsize so that it accounts for how much memory 4219 * is used by this zone for memmap. This affects the watermark 4220 * and per-cpu initialisations 4221 */ 4222 memmap_pages = 4223 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT; 4224 if (realsize >= memmap_pages) { 4225 realsize -= memmap_pages; 4226 if (memmap_pages) 4227 printk(KERN_DEBUG 4228 " %s zone: %lu pages used for memmap\n", 4229 zone_names[j], memmap_pages); 4230 } else 4231 printk(KERN_WARNING 4232 " %s zone: %lu pages exceeds realsize %lu\n", 4233 zone_names[j], memmap_pages, realsize); 4234 4235 /* Account for reserved pages */ 4236 if (j == 0 && realsize > dma_reserve) { 4237 realsize -= dma_reserve; 4238 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 4239 zone_names[0], dma_reserve); 4240 } 4241 4242 if (!is_highmem_idx(j)) 4243 nr_kernel_pages += realsize; 4244 nr_all_pages += realsize; 4245 4246 zone->spanned_pages = size; 4247 zone->present_pages = realsize; 4248 #ifdef CONFIG_NUMA 4249 zone->node = nid; 4250 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio) 4251 / 100; 4252 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100; 4253 #endif 4254 zone->name = zone_names[j]; 4255 spin_lock_init(&zone->lock); 4256 spin_lock_init(&zone->lru_lock); 4257 zone_seqlock_init(zone); 4258 zone->zone_pgdat = pgdat; 4259 4260 zone_pcp_init(zone); 4261 for_each_lru(l) { 4262 INIT_LIST_HEAD(&zone->lru[l].list); 4263 zone->reclaim_stat.nr_saved_scan[l] = 0; 4264 } 4265 zone->reclaim_stat.recent_rotated[0] = 0; 4266 zone->reclaim_stat.recent_rotated[1] = 0; 4267 zone->reclaim_stat.recent_scanned[0] = 0; 4268 zone->reclaim_stat.recent_scanned[1] = 0; 4269 zap_zone_vm_stats(zone); 4270 zone->flags = 0; 4271 if (!size) 4272 continue; 4273 4274 set_pageblock_order(pageblock_default_order()); 4275 setup_usemap(pgdat, zone, size); 4276 ret = init_currently_empty_zone(zone, zone_start_pfn, 4277 size, MEMMAP_EARLY); 4278 BUG_ON(ret); 4279 memmap_init(size, nid, j, zone_start_pfn); 4280 zone_start_pfn += size; 4281 } 4282 } 4283 4284 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 4285 { 4286 /* Skip empty nodes */ 4287 if (!pgdat->node_spanned_pages) 4288 return; 4289 4290 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4291 /* ia64 gets its own node_mem_map, before this, without bootmem */ 4292 if (!pgdat->node_mem_map) { 4293 unsigned long size, start, end; 4294 struct page *map; 4295 4296 /* 4297 * The zone's endpoints aren't required to be MAX_ORDER 4298 * aligned but the node_mem_map endpoints must be in order 4299 * for the buddy allocator to function correctly. 4300 */ 4301 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 4302 end = pgdat->node_start_pfn + pgdat->node_spanned_pages; 4303 end = ALIGN(end, MAX_ORDER_NR_PAGES); 4304 size = (end - start) * sizeof(struct page); 4305 map = alloc_remap(pgdat->node_id, size); 4306 if (!map) 4307 map = alloc_bootmem_node(pgdat, size); 4308 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 4309 } 4310 #ifndef CONFIG_NEED_MULTIPLE_NODES 4311 /* 4312 * With no DISCONTIG, the global mem_map is just set as node 0's 4313 */ 4314 if (pgdat == NODE_DATA(0)) { 4315 mem_map = NODE_DATA(0)->node_mem_map; 4316 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 4317 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 4318 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 4319 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 4320 } 4321 #endif 4322 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 4323 } 4324 4325 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 4326 unsigned long node_start_pfn, unsigned long *zholes_size) 4327 { 4328 pg_data_t *pgdat = NODE_DATA(nid); 4329 4330 pgdat->node_id = nid; 4331 pgdat->node_start_pfn = node_start_pfn; 4332 calculate_node_totalpages(pgdat, zones_size, zholes_size); 4333 4334 alloc_node_mem_map(pgdat); 4335 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4336 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 4337 nid, (unsigned long)pgdat, 4338 (unsigned long)pgdat->node_mem_map); 4339 #endif 4340 4341 free_area_init_core(pgdat, zones_size, zholes_size); 4342 } 4343 4344 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 4345 4346 #if MAX_NUMNODES > 1 4347 /* 4348 * Figure out the number of possible node ids. 4349 */ 4350 static void __init setup_nr_node_ids(void) 4351 { 4352 unsigned int node; 4353 unsigned int highest = 0; 4354 4355 for_each_node_mask(node, node_possible_map) 4356 highest = node; 4357 nr_node_ids = highest + 1; 4358 } 4359 #else 4360 static inline void setup_nr_node_ids(void) 4361 { 4362 } 4363 #endif 4364 4365 /** 4366 * add_active_range - Register a range of PFNs backed by physical memory 4367 * @nid: The node ID the range resides on 4368 * @start_pfn: The start PFN of the available physical memory 4369 * @end_pfn: The end PFN of the available physical memory 4370 * 4371 * These ranges are stored in an early_node_map[] and later used by 4372 * free_area_init_nodes() to calculate zone sizes and holes. If the 4373 * range spans a memory hole, it is up to the architecture to ensure 4374 * the memory is not freed by the bootmem allocator. If possible 4375 * the range being registered will be merged with existing ranges. 4376 */ 4377 void __init add_active_range(unsigned int nid, unsigned long start_pfn, 4378 unsigned long end_pfn) 4379 { 4380 int i; 4381 4382 mminit_dprintk(MMINIT_TRACE, "memory_register", 4383 "Entering add_active_range(%d, %#lx, %#lx) " 4384 "%d entries of %d used\n", 4385 nid, start_pfn, end_pfn, 4386 nr_nodemap_entries, MAX_ACTIVE_REGIONS); 4387 4388 mminit_validate_memmodel_limits(&start_pfn, &end_pfn); 4389 4390 /* Merge with existing active regions if possible */ 4391 for (i = 0; i < nr_nodemap_entries; i++) { 4392 if (early_node_map[i].nid != nid) 4393 continue; 4394 4395 /* Skip if an existing region covers this new one */ 4396 if (start_pfn >= early_node_map[i].start_pfn && 4397 end_pfn <= early_node_map[i].end_pfn) 4398 return; 4399 4400 /* Merge forward if suitable */ 4401 if (start_pfn <= early_node_map[i].end_pfn && 4402 end_pfn > early_node_map[i].end_pfn) { 4403 early_node_map[i].end_pfn = end_pfn; 4404 return; 4405 } 4406 4407 /* Merge backward if suitable */ 4408 if (start_pfn < early_node_map[i].start_pfn && 4409 end_pfn >= early_node_map[i].start_pfn) { 4410 early_node_map[i].start_pfn = start_pfn; 4411 return; 4412 } 4413 } 4414 4415 /* Check that early_node_map is large enough */ 4416 if (i >= MAX_ACTIVE_REGIONS) { 4417 printk(KERN_CRIT "More than %d memory regions, truncating\n", 4418 MAX_ACTIVE_REGIONS); 4419 return; 4420 } 4421 4422 early_node_map[i].nid = nid; 4423 early_node_map[i].start_pfn = start_pfn; 4424 early_node_map[i].end_pfn = end_pfn; 4425 nr_nodemap_entries = i + 1; 4426 } 4427 4428 /** 4429 * remove_active_range - Shrink an existing registered range of PFNs 4430 * @nid: The node id the range is on that should be shrunk 4431 * @start_pfn: The new PFN of the range 4432 * @end_pfn: The new PFN of the range 4433 * 4434 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node. 4435 * The map is kept near the end physical page range that has already been 4436 * registered. This function allows an arch to shrink an existing registered 4437 * range. 4438 */ 4439 void __init remove_active_range(unsigned int nid, unsigned long start_pfn, 4440 unsigned long end_pfn) 4441 { 4442 int i, j; 4443 int removed = 0; 4444 4445 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n", 4446 nid, start_pfn, end_pfn); 4447 4448 /* Find the old active region end and shrink */ 4449 for_each_active_range_index_in_nid(i, nid) { 4450 if (early_node_map[i].start_pfn >= start_pfn && 4451 early_node_map[i].end_pfn <= end_pfn) { 4452 /* clear it */ 4453 early_node_map[i].start_pfn = 0; 4454 early_node_map[i].end_pfn = 0; 4455 removed = 1; 4456 continue; 4457 } 4458 if (early_node_map[i].start_pfn < start_pfn && 4459 early_node_map[i].end_pfn > start_pfn) { 4460 unsigned long temp_end_pfn = early_node_map[i].end_pfn; 4461 early_node_map[i].end_pfn = start_pfn; 4462 if (temp_end_pfn > end_pfn) 4463 add_active_range(nid, end_pfn, temp_end_pfn); 4464 continue; 4465 } 4466 if (early_node_map[i].start_pfn >= start_pfn && 4467 early_node_map[i].end_pfn > end_pfn && 4468 early_node_map[i].start_pfn < end_pfn) { 4469 early_node_map[i].start_pfn = end_pfn; 4470 continue; 4471 } 4472 } 4473 4474 if (!removed) 4475 return; 4476 4477 /* remove the blank ones */ 4478 for (i = nr_nodemap_entries - 1; i > 0; i--) { 4479 if (early_node_map[i].nid != nid) 4480 continue; 4481 if (early_node_map[i].end_pfn) 4482 continue; 4483 /* we found it, get rid of it */ 4484 for (j = i; j < nr_nodemap_entries - 1; j++) 4485 memcpy(&early_node_map[j], &early_node_map[j+1], 4486 sizeof(early_node_map[j])); 4487 j = nr_nodemap_entries - 1; 4488 memset(&early_node_map[j], 0, sizeof(early_node_map[j])); 4489 nr_nodemap_entries--; 4490 } 4491 } 4492 4493 /** 4494 * remove_all_active_ranges - Remove all currently registered regions 4495 * 4496 * During discovery, it may be found that a table like SRAT is invalid 4497 * and an alternative discovery method must be used. This function removes 4498 * all currently registered regions. 4499 */ 4500 void __init remove_all_active_ranges(void) 4501 { 4502 memset(early_node_map, 0, sizeof(early_node_map)); 4503 nr_nodemap_entries = 0; 4504 } 4505 4506 /* Compare two active node_active_regions */ 4507 static int __init cmp_node_active_region(const void *a, const void *b) 4508 { 4509 struct node_active_region *arange = (struct node_active_region *)a; 4510 struct node_active_region *brange = (struct node_active_region *)b; 4511 4512 /* Done this way to avoid overflows */ 4513 if (arange->start_pfn > brange->start_pfn) 4514 return 1; 4515 if (arange->start_pfn < brange->start_pfn) 4516 return -1; 4517 4518 return 0; 4519 } 4520 4521 /* sort the node_map by start_pfn */ 4522 void __init sort_node_map(void) 4523 { 4524 sort(early_node_map, (size_t)nr_nodemap_entries, 4525 sizeof(struct node_active_region), 4526 cmp_node_active_region, NULL); 4527 } 4528 4529 /* Find the lowest pfn for a node */ 4530 static unsigned long __init find_min_pfn_for_node(int nid) 4531 { 4532 int i; 4533 unsigned long min_pfn = ULONG_MAX; 4534 4535 /* Assuming a sorted map, the first range found has the starting pfn */ 4536 for_each_active_range_index_in_nid(i, nid) 4537 min_pfn = min(min_pfn, early_node_map[i].start_pfn); 4538 4539 if (min_pfn == ULONG_MAX) { 4540 printk(KERN_WARNING 4541 "Could not find start_pfn for node %d\n", nid); 4542 return 0; 4543 } 4544 4545 return min_pfn; 4546 } 4547 4548 /** 4549 * find_min_pfn_with_active_regions - Find the minimum PFN registered 4550 * 4551 * It returns the minimum PFN based on information provided via 4552 * add_active_range(). 4553 */ 4554 unsigned long __init find_min_pfn_with_active_regions(void) 4555 { 4556 return find_min_pfn_for_node(MAX_NUMNODES); 4557 } 4558 4559 /* 4560 * early_calculate_totalpages() 4561 * Sum pages in active regions for movable zone. 4562 * Populate N_HIGH_MEMORY for calculating usable_nodes. 4563 */ 4564 static unsigned long __init early_calculate_totalpages(void) 4565 { 4566 int i; 4567 unsigned long totalpages = 0; 4568 4569 for (i = 0; i < nr_nodemap_entries; i++) { 4570 unsigned long pages = early_node_map[i].end_pfn - 4571 early_node_map[i].start_pfn; 4572 totalpages += pages; 4573 if (pages) 4574 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY); 4575 } 4576 return totalpages; 4577 } 4578 4579 /* 4580 * Find the PFN the Movable zone begins in each node. Kernel memory 4581 * is spread evenly between nodes as long as the nodes have enough 4582 * memory. When they don't, some nodes will have more kernelcore than 4583 * others 4584 */ 4585 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn) 4586 { 4587 int i, nid; 4588 unsigned long usable_startpfn; 4589 unsigned long kernelcore_node, kernelcore_remaining; 4590 /* save the state before borrow the nodemask */ 4591 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY]; 4592 unsigned long totalpages = early_calculate_totalpages(); 4593 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]); 4594 4595 /* 4596 * If movablecore was specified, calculate what size of 4597 * kernelcore that corresponds so that memory usable for 4598 * any allocation type is evenly spread. If both kernelcore 4599 * and movablecore are specified, then the value of kernelcore 4600 * will be used for required_kernelcore if it's greater than 4601 * what movablecore would have allowed. 4602 */ 4603 if (required_movablecore) { 4604 unsigned long corepages; 4605 4606 /* 4607 * Round-up so that ZONE_MOVABLE is at least as large as what 4608 * was requested by the user 4609 */ 4610 required_movablecore = 4611 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 4612 corepages = totalpages - required_movablecore; 4613 4614 required_kernelcore = max(required_kernelcore, corepages); 4615 } 4616 4617 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 4618 if (!required_kernelcore) 4619 goto out; 4620 4621 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 4622 find_usable_zone_for_movable(); 4623 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 4624 4625 restart: 4626 /* Spread kernelcore memory as evenly as possible throughout nodes */ 4627 kernelcore_node = required_kernelcore / usable_nodes; 4628 for_each_node_state(nid, N_HIGH_MEMORY) { 4629 /* 4630 * Recalculate kernelcore_node if the division per node 4631 * now exceeds what is necessary to satisfy the requested 4632 * amount of memory for the kernel 4633 */ 4634 if (required_kernelcore < kernelcore_node) 4635 kernelcore_node = required_kernelcore / usable_nodes; 4636 4637 /* 4638 * As the map is walked, we track how much memory is usable 4639 * by the kernel using kernelcore_remaining. When it is 4640 * 0, the rest of the node is usable by ZONE_MOVABLE 4641 */ 4642 kernelcore_remaining = kernelcore_node; 4643 4644 /* Go through each range of PFNs within this node */ 4645 for_each_active_range_index_in_nid(i, nid) { 4646 unsigned long start_pfn, end_pfn; 4647 unsigned long size_pages; 4648 4649 start_pfn = max(early_node_map[i].start_pfn, 4650 zone_movable_pfn[nid]); 4651 end_pfn = early_node_map[i].end_pfn; 4652 if (start_pfn >= end_pfn) 4653 continue; 4654 4655 /* Account for what is only usable for kernelcore */ 4656 if (start_pfn < usable_startpfn) { 4657 unsigned long kernel_pages; 4658 kernel_pages = min(end_pfn, usable_startpfn) 4659 - start_pfn; 4660 4661 kernelcore_remaining -= min(kernel_pages, 4662 kernelcore_remaining); 4663 required_kernelcore -= min(kernel_pages, 4664 required_kernelcore); 4665 4666 /* Continue if range is now fully accounted */ 4667 if (end_pfn <= usable_startpfn) { 4668 4669 /* 4670 * Push zone_movable_pfn to the end so 4671 * that if we have to rebalance 4672 * kernelcore across nodes, we will 4673 * not double account here 4674 */ 4675 zone_movable_pfn[nid] = end_pfn; 4676 continue; 4677 } 4678 start_pfn = usable_startpfn; 4679 } 4680 4681 /* 4682 * The usable PFN range for ZONE_MOVABLE is from 4683 * start_pfn->end_pfn. Calculate size_pages as the 4684 * number of pages used as kernelcore 4685 */ 4686 size_pages = end_pfn - start_pfn; 4687 if (size_pages > kernelcore_remaining) 4688 size_pages = kernelcore_remaining; 4689 zone_movable_pfn[nid] = start_pfn + size_pages; 4690 4691 /* 4692 * Some kernelcore has been met, update counts and 4693 * break if the kernelcore for this node has been 4694 * satisified 4695 */ 4696 required_kernelcore -= min(required_kernelcore, 4697 size_pages); 4698 kernelcore_remaining -= size_pages; 4699 if (!kernelcore_remaining) 4700 break; 4701 } 4702 } 4703 4704 /* 4705 * If there is still required_kernelcore, we do another pass with one 4706 * less node in the count. This will push zone_movable_pfn[nid] further 4707 * along on the nodes that still have memory until kernelcore is 4708 * satisified 4709 */ 4710 usable_nodes--; 4711 if (usable_nodes && required_kernelcore > usable_nodes) 4712 goto restart; 4713 4714 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 4715 for (nid = 0; nid < MAX_NUMNODES; nid++) 4716 zone_movable_pfn[nid] = 4717 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 4718 4719 out: 4720 /* restore the node_state */ 4721 node_states[N_HIGH_MEMORY] = saved_node_state; 4722 } 4723 4724 /* Any regular memory on that node ? */ 4725 static void check_for_regular_memory(pg_data_t *pgdat) 4726 { 4727 #ifdef CONFIG_HIGHMEM 4728 enum zone_type zone_type; 4729 4730 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) { 4731 struct zone *zone = &pgdat->node_zones[zone_type]; 4732 if (zone->present_pages) 4733 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY); 4734 } 4735 #endif 4736 } 4737 4738 /** 4739 * free_area_init_nodes - Initialise all pg_data_t and zone data 4740 * @max_zone_pfn: an array of max PFNs for each zone 4741 * 4742 * This will call free_area_init_node() for each active node in the system. 4743 * Using the page ranges provided by add_active_range(), the size of each 4744 * zone in each node and their holes is calculated. If the maximum PFN 4745 * between two adjacent zones match, it is assumed that the zone is empty. 4746 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 4747 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 4748 * starts where the previous one ended. For example, ZONE_DMA32 starts 4749 * at arch_max_dma_pfn. 4750 */ 4751 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 4752 { 4753 unsigned long nid; 4754 int i; 4755 4756 /* Sort early_node_map as initialisation assumes it is sorted */ 4757 sort_node_map(); 4758 4759 /* Record where the zone boundaries are */ 4760 memset(arch_zone_lowest_possible_pfn, 0, 4761 sizeof(arch_zone_lowest_possible_pfn)); 4762 memset(arch_zone_highest_possible_pfn, 0, 4763 sizeof(arch_zone_highest_possible_pfn)); 4764 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 4765 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 4766 for (i = 1; i < MAX_NR_ZONES; i++) { 4767 if (i == ZONE_MOVABLE) 4768 continue; 4769 arch_zone_lowest_possible_pfn[i] = 4770 arch_zone_highest_possible_pfn[i-1]; 4771 arch_zone_highest_possible_pfn[i] = 4772 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 4773 } 4774 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 4775 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 4776 4777 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 4778 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 4779 find_zone_movable_pfns_for_nodes(zone_movable_pfn); 4780 4781 /* Print out the zone ranges */ 4782 printk("Zone PFN ranges:\n"); 4783 for (i = 0; i < MAX_NR_ZONES; i++) { 4784 if (i == ZONE_MOVABLE) 4785 continue; 4786 printk(" %-8s ", zone_names[i]); 4787 if (arch_zone_lowest_possible_pfn[i] == 4788 arch_zone_highest_possible_pfn[i]) 4789 printk("empty\n"); 4790 else 4791 printk("%0#10lx -> %0#10lx\n", 4792 arch_zone_lowest_possible_pfn[i], 4793 arch_zone_highest_possible_pfn[i]); 4794 } 4795 4796 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 4797 printk("Movable zone start PFN for each node\n"); 4798 for (i = 0; i < MAX_NUMNODES; i++) { 4799 if (zone_movable_pfn[i]) 4800 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]); 4801 } 4802 4803 /* Print out the early_node_map[] */ 4804 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries); 4805 for (i = 0; i < nr_nodemap_entries; i++) 4806 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid, 4807 early_node_map[i].start_pfn, 4808 early_node_map[i].end_pfn); 4809 4810 /* Initialise every node */ 4811 mminit_verify_pageflags_layout(); 4812 setup_nr_node_ids(); 4813 for_each_online_node(nid) { 4814 pg_data_t *pgdat = NODE_DATA(nid); 4815 free_area_init_node(nid, NULL, 4816 find_min_pfn_for_node(nid), NULL); 4817 4818 /* Any memory on that node */ 4819 if (pgdat->node_present_pages) 4820 node_set_state(nid, N_HIGH_MEMORY); 4821 check_for_regular_memory(pgdat); 4822 } 4823 } 4824 4825 static int __init cmdline_parse_core(char *p, unsigned long *core) 4826 { 4827 unsigned long long coremem; 4828 if (!p) 4829 return -EINVAL; 4830 4831 coremem = memparse(p, &p); 4832 *core = coremem >> PAGE_SHIFT; 4833 4834 /* Paranoid check that UL is enough for the coremem value */ 4835 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 4836 4837 return 0; 4838 } 4839 4840 /* 4841 * kernelcore=size sets the amount of memory for use for allocations that 4842 * cannot be reclaimed or migrated. 4843 */ 4844 static int __init cmdline_parse_kernelcore(char *p) 4845 { 4846 return cmdline_parse_core(p, &required_kernelcore); 4847 } 4848 4849 /* 4850 * movablecore=size sets the amount of memory for use for allocations that 4851 * can be reclaimed or migrated. 4852 */ 4853 static int __init cmdline_parse_movablecore(char *p) 4854 { 4855 return cmdline_parse_core(p, &required_movablecore); 4856 } 4857 4858 early_param("kernelcore", cmdline_parse_kernelcore); 4859 early_param("movablecore", cmdline_parse_movablecore); 4860 4861 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 4862 4863 /** 4864 * set_dma_reserve - set the specified number of pages reserved in the first zone 4865 * @new_dma_reserve: The number of pages to mark reserved 4866 * 4867 * The per-cpu batchsize and zone watermarks are determined by present_pages. 4868 * In the DMA zone, a significant percentage may be consumed by kernel image 4869 * and other unfreeable allocations which can skew the watermarks badly. This 4870 * function may optionally be used to account for unfreeable pages in the 4871 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 4872 * smaller per-cpu batchsize. 4873 */ 4874 void __init set_dma_reserve(unsigned long new_dma_reserve) 4875 { 4876 dma_reserve = new_dma_reserve; 4877 } 4878 4879 void __init free_area_init(unsigned long *zones_size) 4880 { 4881 free_area_init_node(0, zones_size, 4882 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 4883 } 4884 4885 static int page_alloc_cpu_notify(struct notifier_block *self, 4886 unsigned long action, void *hcpu) 4887 { 4888 int cpu = (unsigned long)hcpu; 4889 4890 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 4891 drain_pages(cpu); 4892 4893 /* 4894 * Spill the event counters of the dead processor 4895 * into the current processors event counters. 4896 * This artificially elevates the count of the current 4897 * processor. 4898 */ 4899 vm_events_fold_cpu(cpu); 4900 4901 /* 4902 * Zero the differential counters of the dead processor 4903 * so that the vm statistics are consistent. 4904 * 4905 * This is only okay since the processor is dead and cannot 4906 * race with what we are doing. 4907 */ 4908 refresh_cpu_vm_stats(cpu); 4909 } 4910 return NOTIFY_OK; 4911 } 4912 4913 void __init page_alloc_init(void) 4914 { 4915 hotcpu_notifier(page_alloc_cpu_notify, 0); 4916 } 4917 4918 /* 4919 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 4920 * or min_free_kbytes changes. 4921 */ 4922 static void calculate_totalreserve_pages(void) 4923 { 4924 struct pglist_data *pgdat; 4925 unsigned long reserve_pages = 0; 4926 enum zone_type i, j; 4927 4928 for_each_online_pgdat(pgdat) { 4929 for (i = 0; i < MAX_NR_ZONES; i++) { 4930 struct zone *zone = pgdat->node_zones + i; 4931 unsigned long max = 0; 4932 4933 /* Find valid and maximum lowmem_reserve in the zone */ 4934 for (j = i; j < MAX_NR_ZONES; j++) { 4935 if (zone->lowmem_reserve[j] > max) 4936 max = zone->lowmem_reserve[j]; 4937 } 4938 4939 /* we treat the high watermark as reserved pages. */ 4940 max += high_wmark_pages(zone); 4941 4942 if (max > zone->present_pages) 4943 max = zone->present_pages; 4944 reserve_pages += max; 4945 } 4946 } 4947 totalreserve_pages = reserve_pages; 4948 } 4949 4950 /* 4951 * setup_per_zone_lowmem_reserve - called whenever 4952 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 4953 * has a correct pages reserved value, so an adequate number of 4954 * pages are left in the zone after a successful __alloc_pages(). 4955 */ 4956 static void setup_per_zone_lowmem_reserve(void) 4957 { 4958 struct pglist_data *pgdat; 4959 enum zone_type j, idx; 4960 4961 for_each_online_pgdat(pgdat) { 4962 for (j = 0; j < MAX_NR_ZONES; j++) { 4963 struct zone *zone = pgdat->node_zones + j; 4964 unsigned long present_pages = zone->present_pages; 4965 4966 zone->lowmem_reserve[j] = 0; 4967 4968 idx = j; 4969 while (idx) { 4970 struct zone *lower_zone; 4971 4972 idx--; 4973 4974 if (sysctl_lowmem_reserve_ratio[idx] < 1) 4975 sysctl_lowmem_reserve_ratio[idx] = 1; 4976 4977 lower_zone = pgdat->node_zones + idx; 4978 lower_zone->lowmem_reserve[j] = present_pages / 4979 sysctl_lowmem_reserve_ratio[idx]; 4980 present_pages += lower_zone->present_pages; 4981 } 4982 } 4983 } 4984 4985 /* update totalreserve_pages */ 4986 calculate_totalreserve_pages(); 4987 } 4988 4989 /** 4990 * setup_per_zone_wmarks - called when min_free_kbytes changes 4991 * or when memory is hot-{added|removed} 4992 * 4993 * Ensures that the watermark[min,low,high] values for each zone are set 4994 * correctly with respect to min_free_kbytes. 4995 */ 4996 void setup_per_zone_wmarks(void) 4997 { 4998 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 4999 unsigned long lowmem_pages = 0; 5000 struct zone *zone; 5001 unsigned long flags; 5002 5003 /* Calculate total number of !ZONE_HIGHMEM pages */ 5004 for_each_zone(zone) { 5005 if (!is_highmem(zone)) 5006 lowmem_pages += zone->present_pages; 5007 } 5008 5009 for_each_zone(zone) { 5010 u64 tmp; 5011 5012 spin_lock_irqsave(&zone->lock, flags); 5013 tmp = (u64)pages_min * zone->present_pages; 5014 do_div(tmp, lowmem_pages); 5015 if (is_highmem(zone)) { 5016 /* 5017 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 5018 * need highmem pages, so cap pages_min to a small 5019 * value here. 5020 * 5021 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 5022 * deltas controls asynch page reclaim, and so should 5023 * not be capped for highmem. 5024 */ 5025 int min_pages; 5026 5027 min_pages = zone->present_pages / 1024; 5028 if (min_pages < SWAP_CLUSTER_MAX) 5029 min_pages = SWAP_CLUSTER_MAX; 5030 if (min_pages > 128) 5031 min_pages = 128; 5032 zone->watermark[WMARK_MIN] = min_pages; 5033 } else { 5034 /* 5035 * If it's a lowmem zone, reserve a number of pages 5036 * proportionate to the zone's size. 5037 */ 5038 zone->watermark[WMARK_MIN] = tmp; 5039 } 5040 5041 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); 5042 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); 5043 setup_zone_migrate_reserve(zone); 5044 spin_unlock_irqrestore(&zone->lock, flags); 5045 } 5046 5047 /* update totalreserve_pages */ 5048 calculate_totalreserve_pages(); 5049 } 5050 5051 /* 5052 * The inactive anon list should be small enough that the VM never has to 5053 * do too much work, but large enough that each inactive page has a chance 5054 * to be referenced again before it is swapped out. 5055 * 5056 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 5057 * INACTIVE_ANON pages on this zone's LRU, maintained by the 5058 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 5059 * the anonymous pages are kept on the inactive list. 5060 * 5061 * total target max 5062 * memory ratio inactive anon 5063 * ------------------------------------- 5064 * 10MB 1 5MB 5065 * 100MB 1 50MB 5066 * 1GB 3 250MB 5067 * 10GB 10 0.9GB 5068 * 100GB 31 3GB 5069 * 1TB 101 10GB 5070 * 10TB 320 32GB 5071 */ 5072 void calculate_zone_inactive_ratio(struct zone *zone) 5073 { 5074 unsigned int gb, ratio; 5075 5076 /* Zone size in gigabytes */ 5077 gb = zone->present_pages >> (30 - PAGE_SHIFT); 5078 if (gb) 5079 ratio = int_sqrt(10 * gb); 5080 else 5081 ratio = 1; 5082 5083 zone->inactive_ratio = ratio; 5084 } 5085 5086 static void __init setup_per_zone_inactive_ratio(void) 5087 { 5088 struct zone *zone; 5089 5090 for_each_zone(zone) 5091 calculate_zone_inactive_ratio(zone); 5092 } 5093 5094 /* 5095 * Initialise min_free_kbytes. 5096 * 5097 * For small machines we want it small (128k min). For large machines 5098 * we want it large (64MB max). But it is not linear, because network 5099 * bandwidth does not increase linearly with machine size. We use 5100 * 5101 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 5102 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 5103 * 5104 * which yields 5105 * 5106 * 16MB: 512k 5107 * 32MB: 724k 5108 * 64MB: 1024k 5109 * 128MB: 1448k 5110 * 256MB: 2048k 5111 * 512MB: 2896k 5112 * 1024MB: 4096k 5113 * 2048MB: 5792k 5114 * 4096MB: 8192k 5115 * 8192MB: 11584k 5116 * 16384MB: 16384k 5117 */ 5118 static int __init init_per_zone_wmark_min(void) 5119 { 5120 unsigned long lowmem_kbytes; 5121 5122 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 5123 5124 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 5125 if (min_free_kbytes < 128) 5126 min_free_kbytes = 128; 5127 if (min_free_kbytes > 65536) 5128 min_free_kbytes = 65536; 5129 setup_per_zone_wmarks(); 5130 setup_per_zone_lowmem_reserve(); 5131 setup_per_zone_inactive_ratio(); 5132 return 0; 5133 } 5134 module_init(init_per_zone_wmark_min) 5135 5136 /* 5137 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 5138 * that we can call two helper functions whenever min_free_kbytes 5139 * changes. 5140 */ 5141 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 5142 void __user *buffer, size_t *length, loff_t *ppos) 5143 { 5144 proc_dointvec(table, write, buffer, length, ppos); 5145 if (write) 5146 setup_per_zone_wmarks(); 5147 return 0; 5148 } 5149 5150 #ifdef CONFIG_NUMA 5151 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, 5152 void __user *buffer, size_t *length, loff_t *ppos) 5153 { 5154 struct zone *zone; 5155 int rc; 5156 5157 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5158 if (rc) 5159 return rc; 5160 5161 for_each_zone(zone) 5162 zone->min_unmapped_pages = (zone->present_pages * 5163 sysctl_min_unmapped_ratio) / 100; 5164 return 0; 5165 } 5166 5167 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, 5168 void __user *buffer, size_t *length, loff_t *ppos) 5169 { 5170 struct zone *zone; 5171 int rc; 5172 5173 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5174 if (rc) 5175 return rc; 5176 5177 for_each_zone(zone) 5178 zone->min_slab_pages = (zone->present_pages * 5179 sysctl_min_slab_ratio) / 100; 5180 return 0; 5181 } 5182 #endif 5183 5184 /* 5185 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 5186 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 5187 * whenever sysctl_lowmem_reserve_ratio changes. 5188 * 5189 * The reserve ratio obviously has absolutely no relation with the 5190 * minimum watermarks. The lowmem reserve ratio can only make sense 5191 * if in function of the boot time zone sizes. 5192 */ 5193 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 5194 void __user *buffer, size_t *length, loff_t *ppos) 5195 { 5196 proc_dointvec_minmax(table, write, buffer, length, ppos); 5197 setup_per_zone_lowmem_reserve(); 5198 return 0; 5199 } 5200 5201 /* 5202 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 5203 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 5204 * can have before it gets flushed back to buddy allocator. 5205 */ 5206 5207 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 5208 void __user *buffer, size_t *length, loff_t *ppos) 5209 { 5210 struct zone *zone; 5211 unsigned int cpu; 5212 int ret; 5213 5214 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 5215 if (!write || (ret == -EINVAL)) 5216 return ret; 5217 for_each_populated_zone(zone) { 5218 for_each_possible_cpu(cpu) { 5219 unsigned long high; 5220 high = zone->present_pages / percpu_pagelist_fraction; 5221 setup_pagelist_highmark( 5222 per_cpu_ptr(zone->pageset, cpu), high); 5223 } 5224 } 5225 return 0; 5226 } 5227 5228 int hashdist = HASHDIST_DEFAULT; 5229 5230 #ifdef CONFIG_NUMA 5231 static int __init set_hashdist(char *str) 5232 { 5233 if (!str) 5234 return 0; 5235 hashdist = simple_strtoul(str, &str, 0); 5236 return 1; 5237 } 5238 __setup("hashdist=", set_hashdist); 5239 #endif 5240 5241 /* 5242 * allocate a large system hash table from bootmem 5243 * - it is assumed that the hash table must contain an exact power-of-2 5244 * quantity of entries 5245 * - limit is the number of hash buckets, not the total allocation size 5246 */ 5247 void *__init alloc_large_system_hash(const char *tablename, 5248 unsigned long bucketsize, 5249 unsigned long numentries, 5250 int scale, 5251 int flags, 5252 unsigned int *_hash_shift, 5253 unsigned int *_hash_mask, 5254 unsigned long limit) 5255 { 5256 unsigned long long max = limit; 5257 unsigned long log2qty, size; 5258 void *table = NULL; 5259 5260 /* allow the kernel cmdline to have a say */ 5261 if (!numentries) { 5262 /* round applicable memory size up to nearest megabyte */ 5263 numentries = nr_kernel_pages; 5264 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 5265 numentries >>= 20 - PAGE_SHIFT; 5266 numentries <<= 20 - PAGE_SHIFT; 5267 5268 /* limit to 1 bucket per 2^scale bytes of low memory */ 5269 if (scale > PAGE_SHIFT) 5270 numentries >>= (scale - PAGE_SHIFT); 5271 else 5272 numentries <<= (PAGE_SHIFT - scale); 5273 5274 /* Make sure we've got at least a 0-order allocation.. */ 5275 if (unlikely(flags & HASH_SMALL)) { 5276 /* Makes no sense without HASH_EARLY */ 5277 WARN_ON(!(flags & HASH_EARLY)); 5278 if (!(numentries >> *_hash_shift)) { 5279 numentries = 1UL << *_hash_shift; 5280 BUG_ON(!numentries); 5281 } 5282 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 5283 numentries = PAGE_SIZE / bucketsize; 5284 } 5285 numentries = roundup_pow_of_two(numentries); 5286 5287 /* limit allocation size to 1/16 total memory by default */ 5288 if (max == 0) { 5289 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 5290 do_div(max, bucketsize); 5291 } 5292 5293 if (numentries > max) 5294 numentries = max; 5295 5296 log2qty = ilog2(numentries); 5297 5298 do { 5299 size = bucketsize << log2qty; 5300 if (flags & HASH_EARLY) 5301 table = alloc_bootmem_nopanic(size); 5302 else if (hashdist) 5303 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 5304 else { 5305 /* 5306 * If bucketsize is not a power-of-two, we may free 5307 * some pages at the end of hash table which 5308 * alloc_pages_exact() automatically does 5309 */ 5310 if (get_order(size) < MAX_ORDER) { 5311 table = alloc_pages_exact(size, GFP_ATOMIC); 5312 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 5313 } 5314 } 5315 } while (!table && size > PAGE_SIZE && --log2qty); 5316 5317 if (!table) 5318 panic("Failed to allocate %s hash table\n", tablename); 5319 5320 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n", 5321 tablename, 5322 (1UL << log2qty), 5323 ilog2(size) - PAGE_SHIFT, 5324 size); 5325 5326 if (_hash_shift) 5327 *_hash_shift = log2qty; 5328 if (_hash_mask) 5329 *_hash_mask = (1 << log2qty) - 1; 5330 5331 return table; 5332 } 5333 5334 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 5335 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 5336 unsigned long pfn) 5337 { 5338 #ifdef CONFIG_SPARSEMEM 5339 return __pfn_to_section(pfn)->pageblock_flags; 5340 #else 5341 return zone->pageblock_flags; 5342 #endif /* CONFIG_SPARSEMEM */ 5343 } 5344 5345 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 5346 { 5347 #ifdef CONFIG_SPARSEMEM 5348 pfn &= (PAGES_PER_SECTION-1); 5349 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5350 #else 5351 pfn = pfn - zone->zone_start_pfn; 5352 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5353 #endif /* CONFIG_SPARSEMEM */ 5354 } 5355 5356 /** 5357 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages 5358 * @page: The page within the block of interest 5359 * @start_bitidx: The first bit of interest to retrieve 5360 * @end_bitidx: The last bit of interest 5361 * returns pageblock_bits flags 5362 */ 5363 unsigned long get_pageblock_flags_group(struct page *page, 5364 int start_bitidx, int end_bitidx) 5365 { 5366 struct zone *zone; 5367 unsigned long *bitmap; 5368 unsigned long pfn, bitidx; 5369 unsigned long flags = 0; 5370 unsigned long value = 1; 5371 5372 zone = page_zone(page); 5373 pfn = page_to_pfn(page); 5374 bitmap = get_pageblock_bitmap(zone, pfn); 5375 bitidx = pfn_to_bitidx(zone, pfn); 5376 5377 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5378 if (test_bit(bitidx + start_bitidx, bitmap)) 5379 flags |= value; 5380 5381 return flags; 5382 } 5383 5384 /** 5385 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages 5386 * @page: The page within the block of interest 5387 * @start_bitidx: The first bit of interest 5388 * @end_bitidx: The last bit of interest 5389 * @flags: The flags to set 5390 */ 5391 void set_pageblock_flags_group(struct page *page, unsigned long flags, 5392 int start_bitidx, int end_bitidx) 5393 { 5394 struct zone *zone; 5395 unsigned long *bitmap; 5396 unsigned long pfn, bitidx; 5397 unsigned long value = 1; 5398 5399 zone = page_zone(page); 5400 pfn = page_to_pfn(page); 5401 bitmap = get_pageblock_bitmap(zone, pfn); 5402 bitidx = pfn_to_bitidx(zone, pfn); 5403 VM_BUG_ON(pfn < zone->zone_start_pfn); 5404 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages); 5405 5406 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5407 if (flags & value) 5408 __set_bit(bitidx + start_bitidx, bitmap); 5409 else 5410 __clear_bit(bitidx + start_bitidx, bitmap); 5411 } 5412 5413 /* 5414 * This is designed as sub function...plz see page_isolation.c also. 5415 * set/clear page block's type to be ISOLATE. 5416 * page allocater never alloc memory from ISOLATE block. 5417 */ 5418 5419 static int 5420 __count_immobile_pages(struct zone *zone, struct page *page, int count) 5421 { 5422 unsigned long pfn, iter, found; 5423 /* 5424 * For avoiding noise data, lru_add_drain_all() should be called 5425 * If ZONE_MOVABLE, the zone never contains immobile pages 5426 */ 5427 if (zone_idx(zone) == ZONE_MOVABLE) 5428 return true; 5429 5430 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE) 5431 return true; 5432 5433 pfn = page_to_pfn(page); 5434 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 5435 unsigned long check = pfn + iter; 5436 5437 if (!pfn_valid_within(check)) 5438 continue; 5439 5440 page = pfn_to_page(check); 5441 if (!page_count(page)) { 5442 if (PageBuddy(page)) 5443 iter += (1 << page_order(page)) - 1; 5444 continue; 5445 } 5446 if (!PageLRU(page)) 5447 found++; 5448 /* 5449 * If there are RECLAIMABLE pages, we need to check it. 5450 * But now, memory offline itself doesn't call shrink_slab() 5451 * and it still to be fixed. 5452 */ 5453 /* 5454 * If the page is not RAM, page_count()should be 0. 5455 * we don't need more check. This is an _used_ not-movable page. 5456 * 5457 * The problematic thing here is PG_reserved pages. PG_reserved 5458 * is set to both of a memory hole page and a _used_ kernel 5459 * page at boot. 5460 */ 5461 if (found > count) 5462 return false; 5463 } 5464 return true; 5465 } 5466 5467 bool is_pageblock_removable_nolock(struct page *page) 5468 { 5469 struct zone *zone = page_zone(page); 5470 return __count_immobile_pages(zone, page, 0); 5471 } 5472 5473 int set_migratetype_isolate(struct page *page) 5474 { 5475 struct zone *zone; 5476 unsigned long flags, pfn; 5477 struct memory_isolate_notify arg; 5478 int notifier_ret; 5479 int ret = -EBUSY; 5480 int zone_idx; 5481 5482 zone = page_zone(page); 5483 zone_idx = zone_idx(zone); 5484 5485 spin_lock_irqsave(&zone->lock, flags); 5486 5487 pfn = page_to_pfn(page); 5488 arg.start_pfn = pfn; 5489 arg.nr_pages = pageblock_nr_pages; 5490 arg.pages_found = 0; 5491 5492 /* 5493 * It may be possible to isolate a pageblock even if the 5494 * migratetype is not MIGRATE_MOVABLE. The memory isolation 5495 * notifier chain is used by balloon drivers to return the 5496 * number of pages in a range that are held by the balloon 5497 * driver to shrink memory. If all the pages are accounted for 5498 * by balloons, are free, or on the LRU, isolation can continue. 5499 * Later, for example, when memory hotplug notifier runs, these 5500 * pages reported as "can be isolated" should be isolated(freed) 5501 * by the balloon driver through the memory notifier chain. 5502 */ 5503 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg); 5504 notifier_ret = notifier_to_errno(notifier_ret); 5505 if (notifier_ret) 5506 goto out; 5507 /* 5508 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself. 5509 * We just check MOVABLE pages. 5510 */ 5511 if (__count_immobile_pages(zone, page, arg.pages_found)) 5512 ret = 0; 5513 5514 /* 5515 * immobile means "not-on-lru" paes. If immobile is larger than 5516 * removable-by-driver pages reported by notifier, we'll fail. 5517 */ 5518 5519 out: 5520 if (!ret) { 5521 set_pageblock_migratetype(page, MIGRATE_ISOLATE); 5522 move_freepages_block(zone, page, MIGRATE_ISOLATE); 5523 } 5524 5525 spin_unlock_irqrestore(&zone->lock, flags); 5526 if (!ret) 5527 drain_all_pages(); 5528 return ret; 5529 } 5530 5531 void unset_migratetype_isolate(struct page *page) 5532 { 5533 struct zone *zone; 5534 unsigned long flags; 5535 zone = page_zone(page); 5536 spin_lock_irqsave(&zone->lock, flags); 5537 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE) 5538 goto out; 5539 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5540 move_freepages_block(zone, page, MIGRATE_MOVABLE); 5541 out: 5542 spin_unlock_irqrestore(&zone->lock, flags); 5543 } 5544 5545 #ifdef CONFIG_MEMORY_HOTREMOVE 5546 /* 5547 * All pages in the range must be isolated before calling this. 5548 */ 5549 void 5550 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 5551 { 5552 struct page *page; 5553 struct zone *zone; 5554 int order, i; 5555 unsigned long pfn; 5556 unsigned long flags; 5557 /* find the first valid pfn */ 5558 for (pfn = start_pfn; pfn < end_pfn; pfn++) 5559 if (pfn_valid(pfn)) 5560 break; 5561 if (pfn == end_pfn) 5562 return; 5563 zone = page_zone(pfn_to_page(pfn)); 5564 spin_lock_irqsave(&zone->lock, flags); 5565 pfn = start_pfn; 5566 while (pfn < end_pfn) { 5567 if (!pfn_valid(pfn)) { 5568 pfn++; 5569 continue; 5570 } 5571 page = pfn_to_page(pfn); 5572 BUG_ON(page_count(page)); 5573 BUG_ON(!PageBuddy(page)); 5574 order = page_order(page); 5575 #ifdef CONFIG_DEBUG_VM 5576 printk(KERN_INFO "remove from free list %lx %d %lx\n", 5577 pfn, 1 << order, end_pfn); 5578 #endif 5579 list_del(&page->lru); 5580 rmv_page_order(page); 5581 zone->free_area[order].nr_free--; 5582 __mod_zone_page_state(zone, NR_FREE_PAGES, 5583 - (1UL << order)); 5584 for (i = 0; i < (1 << order); i++) 5585 SetPageReserved((page+i)); 5586 pfn += (1 << order); 5587 } 5588 spin_unlock_irqrestore(&zone->lock, flags); 5589 } 5590 #endif 5591 5592 #ifdef CONFIG_MEMORY_FAILURE 5593 bool is_free_buddy_page(struct page *page) 5594 { 5595 struct zone *zone = page_zone(page); 5596 unsigned long pfn = page_to_pfn(page); 5597 unsigned long flags; 5598 int order; 5599 5600 spin_lock_irqsave(&zone->lock, flags); 5601 for (order = 0; order < MAX_ORDER; order++) { 5602 struct page *page_head = page - (pfn & ((1 << order) - 1)); 5603 5604 if (PageBuddy(page_head) && page_order(page_head) >= order) 5605 break; 5606 } 5607 spin_unlock_irqrestore(&zone->lock, flags); 5608 5609 return order < MAX_ORDER; 5610 } 5611 #endif 5612 5613 static struct trace_print_flags pageflag_names[] = { 5614 {1UL << PG_locked, "locked" }, 5615 {1UL << PG_error, "error" }, 5616 {1UL << PG_referenced, "referenced" }, 5617 {1UL << PG_uptodate, "uptodate" }, 5618 {1UL << PG_dirty, "dirty" }, 5619 {1UL << PG_lru, "lru" }, 5620 {1UL << PG_active, "active" }, 5621 {1UL << PG_slab, "slab" }, 5622 {1UL << PG_owner_priv_1, "owner_priv_1" }, 5623 {1UL << PG_arch_1, "arch_1" }, 5624 {1UL << PG_reserved, "reserved" }, 5625 {1UL << PG_private, "private" }, 5626 {1UL << PG_private_2, "private_2" }, 5627 {1UL << PG_writeback, "writeback" }, 5628 #ifdef CONFIG_PAGEFLAGS_EXTENDED 5629 {1UL << PG_head, "head" }, 5630 {1UL << PG_tail, "tail" }, 5631 #else 5632 {1UL << PG_compound, "compound" }, 5633 #endif 5634 {1UL << PG_swapcache, "swapcache" }, 5635 {1UL << PG_mappedtodisk, "mappedtodisk" }, 5636 {1UL << PG_reclaim, "reclaim" }, 5637 {1UL << PG_swapbacked, "swapbacked" }, 5638 {1UL << PG_unevictable, "unevictable" }, 5639 #ifdef CONFIG_MMU 5640 {1UL << PG_mlocked, "mlocked" }, 5641 #endif 5642 #ifdef CONFIG_ARCH_USES_PG_UNCACHED 5643 {1UL << PG_uncached, "uncached" }, 5644 #endif 5645 #ifdef CONFIG_MEMORY_FAILURE 5646 {1UL << PG_hwpoison, "hwpoison" }, 5647 #endif 5648 {-1UL, NULL }, 5649 }; 5650 5651 static void dump_page_flags(unsigned long flags) 5652 { 5653 const char *delim = ""; 5654 unsigned long mask; 5655 int i; 5656 5657 printk(KERN_ALERT "page flags: %#lx(", flags); 5658 5659 /* remove zone id */ 5660 flags &= (1UL << NR_PAGEFLAGS) - 1; 5661 5662 for (i = 0; pageflag_names[i].name && flags; i++) { 5663 5664 mask = pageflag_names[i].mask; 5665 if ((flags & mask) != mask) 5666 continue; 5667 5668 flags &= ~mask; 5669 printk("%s%s", delim, pageflag_names[i].name); 5670 delim = "|"; 5671 } 5672 5673 /* check for left over flags */ 5674 if (flags) 5675 printk("%s%#lx", delim, flags); 5676 5677 printk(")\n"); 5678 } 5679 5680 void dump_page(struct page *page) 5681 { 5682 printk(KERN_ALERT 5683 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n", 5684 page, atomic_read(&page->_count), page_mapcount(page), 5685 page->mapping, page->index); 5686 dump_page_flags(page->flags); 5687 } 5688